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Résumé : Les émetteurs quantiques sont des
sources de photons uniques intéressantes pour les
technologies quantiques, pouvant théoriquement
émettre un photon unique sur demande. En 2019,
il a été démontré que sous excitation résonnante,
la cohérence imprimée entre l’état fondamental et
l’état excité de l’émetteur quantique est transférée
lors de l’émission spontanée en cohérence dans la
base d’états de nombre de photons, créant une su-
perposition cohérente de zéro et un photon. Cette
démonstration a conduit à de nouvelles études
théoriques sur le rôle de la cohérence en nombre
de photons en optique quantique et en thermody-
namique quantique. Dans cette thèse, nous étu-
dions expérimentalement l’impact de la cohérence
en nombre de photons sur certains fondamentaux
de l’optique quantique – par exemple l’effet Hong-
Ou-Mandel et les interférences de Ramsey – du
point de vue de l’optique quantique et de la ther-
modynamique quantique. Nous démontrons que la
cohérence en nombre de photons doit être prise en
compte lors de la réalisation de mesures d’indis-
cernabilité et peut conduire à de nouveaux phéno-
mènes d’interférence quantique qui peuvent altérer

considérablement les performances de portes quan-
tiques annoncées. Par ailleurs, nous démontrons
que la cohérence occupe non seulement une place
centrale en optique quantique, mais aussi dans le
domaine de la thermodynamique quantique en pro-
posant et mettant en œuvre des protocoles expéri-
mentaux afin de mesurer les échanges énergétiques
entre un émetteur quantique et la lumière. Nous
montrons que la génération de cohérence dans un
émetteur quantique peut conduire à un transfert
spontané de travail vers le champ électromagné-
tique, qui est réduite par la décohérence de l’émet-
teur ainsi que par intrication cumulée émetteur-
champ lors de l’émission spontanée. Cette dernière
observation est approfondie en étudiant les trans-
ferts énergétiques entre un émetteur quantique et
le vide du champ électromagnétique lors de l’inter-
férence de Ramsey. Cette thèse pose ainsi les bases
pour de nombreuses autres études expérimentales
sur l’impact et l’utilisation des états de superpo-
sition en nombre de photons dans les protocoles
d’optique quantique et l’énergétique de l’informa-
tique quantique optique.



Title : Impact of photon-number coherence on the performance and energetics of quantum optics pro-
tocols
Keywords : Photon-number superpositions, quantum thermodynamics, quantum optics, energy ex-
changes, coherence, quantum dots

Abstract : Quantum emitters are interesting
single-photon sources for quantum technologies
that can theoretically emit a single-photon on-
demand. In 2019 it was shown that when reso-
nantly excited, the coherence imprinted on the
quantum emitter in the energy basis is mapped
upon spontaneous emission onto coherence in the
photon-number basis, creating a coherent photon-
number superposition of zero- and one-photon.
This demonstration led to new theoretical inves-
tigations on the role of photon-number coherence
in quantum optics and quantum thermodynamics.
In this thesis we experimentally study the impact
of photon-number coherence on pillars of quan-
tum optics – e.g. the Hong-Ou-Mandel effect and
the Ramsey sequence – from a quantum optics
and quantum thermodynamics perspective. We de-
monstrate that photon-number coherence has to
be considered when performing indistinguishability
measurements and can lead to new quantum in-
terference phenomena that can substantially alter

the performances of heralded quantum gates. Ad-
ditionally, we demonstrate that coherence not only
takes a pivotal place in quantum optics, but also
in the field of quantum thermodynamics by propo-
sing and implementing experimental protocols to
measure energetic exchanges between a quantum
emitter and light fields. We show that the genera-
tion of coherence in a quantum emitter can lead
to the spontaneous release of work in the electro-
magnetic field, which is reduced by decoherence
and the build-up of emitter-field entanglement du-
ring spontaneous emission. The latter observation
is further exploited by studying the energetic trans-
fers between a quantum emitter and the vacuum
of the electromagnetic field along the Ramsey se-
quence. This thesis serves as the first steps to ho-
pefully many more experimental studies into the
impact and use of photon-number superposition
states and photon-number coherence in quantum
optics protocols and the energetics of optical quan-
tum computing.
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Synthèse en français

Les émetteurs quantiques sont des sources de photons uniques intéressantes
pour les technologies quantiques, pouvant théoriquement émettre un photon unique
sur demande. En 2019, il a été démontré que sous excitation résonnante, la cohé-
rence imprimée entre l’état fondamental et l’état excité de l’émetteur quantique est
transférée lors de l’émission spontanée en cohérence dans la base d’états de nombre
de photons, créant une superposition cohérente de zéro et un photon. Cette dé-
monstration a conduit à de nouvelles études théoriques sur le rôle de la cohérence
en nombre de photons en optique quantique et en thermodynamique quantique.
Dans cette thèse, nous étudions expérimentalement l’impact de la cohérence en
nombre de photons sur certains aspects fondamentaux de vue de l’optique quan-
tique et de la thermodynamique quantique.

Après un chapitre d’introduction des concepts, nous montrons dans le chapitre
3 que la présence éventuelle de la cohérence en nombre de photons affecte le traite-
ment quantique de l’information. Nous étudions explicitement l’impact de la cohé-
rence en nombre de photons sur une expérience pionnière de l’optique quantique :
l’effet Hong-Ou-Mandel. Nous démontrons théoriquement et expérimentalement
que lors de l’excitation d’un émetteur quantique en dessous de l’inversion totale de
population avec un laser pulsé, la cohérence en nombre de photons qui en résulte
doit être soigneusement prise en compte. Plus précisément, la procédure de nor-
malisation des mesures de corrélation doit être revue afin de ne pas sous-estimer
les paramètres de l’état quantique tels que l’indiscernabilité du paquet d’ondes et
la cohérence en nombre de photons.

Lorsqu’elles sont correctement normalisées, les mesures de corrélation révèlent
également un nouveau phénomène d’interférence quantique en présence de co-
hérence en nombre de photons. Si l’entrée d’un interféromètre de Mach-Zehnder
est un train d’impulsions contenant des superpositions de nombres de photons, la
mesure de coïncidences séparées par une impulsion - c’est-à-dire deux clics retar-
dés dans le temps - enchevêtre trois impulsions. Cette intrication se manifeste par
une dépendance de phase des pics du premier retard dans les histogrammes de
coïncidence.

Nous démontrons que ce type d’interférence quantique affecte les performances
et le taux d’erreur de portes quantiques bien connues dans l’informatique quan-
tique optique en considérant à la fois la porte CNOT post-sélectionnée et la porte
CNOT annoncée. Le fait que dans une porte CNOT annoncée, seuls deux pho-
tons sur quatre sont détectés donne lieu à des interférences quantiques qui ont un
impact important sur le taux d’erreur de la porte. Ces deux exemples démontrent
l’impact préjudiciable de la cohérence en nombre de photons sur les schémas de
calcul quantique si elle n’est pas prise en compte.
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Dans les chapitres 4 et 5, nous étudions l’impact de la cohérence en nombre
de photons sur l’énergétique des éléments constitutifs du traitement de l’informa-
tion quantique par la lumière. Dans le chapitre 4, nous proposons et mettons en
œuvre un protocole expérimental pour mesurer les échanges énergétiques au niveau
le plus fondamental : entre un qubit et le vide du champ électromagnétique par
émission spontanée, et entre un champ quantique et un champ cohérent classique.
En thermodynamique quantique, ces étapes sont équivalentes à la charge et à la
décharge d’une batterie quantique, ici le mode de champ électromagnétique dans
lequel émet le qubit. Les protocoles des deux étapes de l’étude reposent sur des me-
sures de type homodyne, par lesquelles nous extrayons la visibilité de l’interférence,
que nous pouvons à son tour relier directement aux quantités énergétiques impli-
quées dans le processus. Nous démontrons que nous sommes en mesure de mesurer
directement le travail et la chaleur transférés du qubit au électromagnétique, qui
sont affectés par la présence d’un déphasage pur.

Dans la deuxième étape, nous montrons que l’interférence entre le champ de
la batterie et un champ classique. Là encore, nous sommes capables de séparer
les différentes contributions énergétiques : le travail et l’énergie thermique. Cepen-
dant, nous démontrons que, contrairement à la première étape (chargement de
la batterie quantique), le transfert de travail est ici limité et que nous produisons
même un flux de travail indésirable du champ classique vers le champ de la batterie.

Dans le chapitre 5, nous revisitons l’excitation d’un système à quatre niveaux
avec des séquences de Ramsey en termes de thermodynamique quantique. Tout
d’abord, nous examinons comment l’excitation avec des séquences de Ramsey peut
conduire à une absorption de travail accrue lorsque deux impulsions sont séparées
dans le temps par un délai spécifique. Des mesures ultérieures avec notre système à
quatre niveaux révèlent en effet cette augmentation de l’absorption travail, comme
en témoigne l’augmentation de l’intensité d’émission de notre qubit par rapport à
l’énergie émise lorsqu’on conduit un qubit jusqu’à l’inversion totale de population.

Pour comprendre la nature de l’énergie émise par le qubit, nous effectuons des
mesures homodynes avec les paquets d’ondes résultant des séquences de Ramsey
pour deux délais différents, un délai proche du délai d’absorption de travail maxi-
male et l’autre où nous n’attendons pas d’amélioration de l’absorption de travail.
Après l’interférence, nous calculons la visibilité à partir des intensités d’émission
résolues dans le temps (c’est-à-dire les profils de désintégration). Les visibilités
obtenues nous permettent de résoudre temporellement le travail et le transfert
de chaleur du qubit vers le vide du champ électromagnétique pendant l’émission
spontanée. Cette procédure nous donne non seulement un outil puissant pour com-
prendre l’énergétique résolue dans le temps de l’émission spontanée, mais elle nous
donne aussi potentiellement une nouvelle méthode pour mesurer le taux de dépha-
sage d’un émetteur quantique. Les transferts de travail et de chaleur résolus dans
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le temps indiquent que l’énergie émise par le qubit est principalement de nature
thermique. De plus, quel que soit le délai, la chaleur est la seule quantité qui soit
affectée par la phase relative entre les deux impulsions d’excitation. Le transfert
de travail, quant à lui, n’est pas affecté par cette phase et reste plus ou moins
constant entre les impulsions d’excitation.

Enfin, nous soulignons que les scénarios étudiés ici dans le cadre de la thermody-
namique quantique sont des processus importants dans de nombreuses technologies
quantiques, qu’il s’agisse de générer des mémoires quantiques à base d’atomes, de
réaliser des portes optiques linéaires ou des mesures de l’état de Bell. En tant que
telle, notre étude peut servir de point de départ à des études expérimentales sur
l’énergétique de l’informatique quantique.
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1 - Introduction

In the last decades, quantum technologies have made incredible progress. These
technologies make use of quantum physics and all its quirkiness, with subtle quan-
tum phenomena such as superpositions, where a particle can be in two or more
states simultaneously, or entanglement, where the state of a particle is directly
and instantaneously related to the state of another particle. The latter phenome-
non, entanglement, so-called “spooky action at a distance”, was recently celebrated
in the 2022 Nobel prize (1). Besides practical applications in the fields of quan-
tum key distribution (2; 3), quantum networks (4; 5), quantum metrology (6–8),
and quantum computation (9) for example, these advancements also allow to fur-
ther delve into the world of quantum physics and use the technologies as test beds.

To develop these applications and further study the fundamentals of quantum
superpositions and entanglement, requires to encode information in a physical sup-
port. An optical approach is the use of single-photons as information carriers. It
ideally relies on quantum light sources that generate on-demand a single quanta of
light : a single-photon of high quantum purity. In the last two decades two different
approaches to single-photon sources have emerged : sources based on spontaneous
parametric down conversion (SPDC) technology (10; 11), and sources based on
quantum emitters (12–14). SPDC sources make use of a nonlinear birefringent
crystal which converts an intense pump field into two low intensity fields : a signal
and an idler field, where the detection of one heralds the presence of the other.
Despite great progress in the field, SPDC sources suffer from limited efficiencies
caused by their probabilistic nature. This efficiency is even further reduced when
considering that to produce a single-photon with high quantum purity, i.e. indis-
tinguishable photons, requires operating at low photon pair generation probability
in the first place, making scalability a real challenge.

The other approach to light-based devices, is the use of quantum emitters
– diamond defects (15–18), molecules (19–21), atoms (22–24) or semiconductor
quantum dots (13; 14; 25; 26) for example – as the single-photon source. Here,
the quantum emitter ideally functions as a two-level system, an (artificial) atom
with a ground |g⟩ and excited state |e⟩. This two-level system inherently can only
emit up to a single photon |1⟩ at a time. Unlike SPDC sources, single-photon
generation with quantum emitters is a deterministic process at a rate dictated
by the repetition rate of the driving field. When non-radiative processes are negli-
gible, the (artificial) atom emits a photon with near-unity probability per excitation
pulse. However, this single-photon is emitted in all directions of space. Fortunately,
it was proposed in 1946 by Purcell that an atom coupled to a cavity allows for
control over the emission dynamics (27), leading to enhanced emission into

17



the cavity mode. Such scheme was used to efficiently collect the emitted single-
photons (14; 28–30), a necessity for many quantum technologies and research.

Because photons have no charge and no mass, they hardly couple to their
environment and do not suffer from decoherence. However, implementing photon-
photon gates is a real challenge for precisely the same reason. An initial solution
to this challenge relies on the use of the Hong-Ou-Mandel effect, as proposed
by the Knill-Laflamme-Milburn (KLM) linear quantum computation scheme (31).
The Hong-Ou-Mandel (HOM) effect, named after the researchers who first experi-
mentally demonstrated it in 1987 (32), occurs when two single-photon Fock states
(|1⟩), identical in every degree of freedom and thus indistinguishable, impinge on
either side of a beam splitter. As a result, the photons get entangled, resulting in
a path-entangled two-photon state of the form |20⟩ + |02⟩, a two-photon N00N

state (7; 33) where both photons exit through the same output port of the beam
splitter.

To produce indistinguishable single-photons from a quantum emitter, most
schemes use coherent control techniques such as resonant excitation or two-
photon excitation (34) to fully control the time at which the emitter is brought into
its excited state and to reduce time jitter of the photon emission. These schemes
rely on the interaction between an intense laser field and the atom, giving rise to
atom population oscillations between the ground (pg) and the excited (pe) state
with Rabi frequency ΩR (35). Besides the creation of populations, coherent control
of the atom also generates coherences between the ground and excited state, called
energy coherence and whose maximum amplitude is given by √

pgpe.

Until 2019, the fact that a driving excitation pulse was not producing a photon
each time, was thought as “limited brightness" of the source – i.e. probability of
having a photon per pulse on-demand is below one – and the emitted field is a
mixed state in the form of

ρ = p0 |0⟩ ⟨0|+ p1 |1⟩ ⟨1| , (1.1)

with Fock state population probabilities p0 and p1. Such image appears correct
under incoherent excitation, for instance non-resonant excitation. However, in 2019
– for the first time in the optical domain – it was shown by our group that under
resonant excitation the emitted field is a photon-number superposition state of
the

|Ψ⟩ = p0 |0⟩+ eiαp1 |1⟩ ,

with p0 + p1 = 1 and α a phase in the Fock state basis. This demonstration re-
vealed that coherence in the energy basis was transferred from the atom to
the electromagnetic field. Spontaneous emission should not be considered
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a “decoherence" process, instead one should consider the atom and the one-
dimensional electromagnetic field it couples to, as a closed system. This publication
triggered a very original proposal for photon-number entanglement, exploiting the
entanglement between the atom and the emitted field (36), and theoretical studies
into the energetics of atom-field coupling (37; 38), and the use of photon-number
superpositions for quantum computing applications (39).

In this PhD work, we experimentally explored the impact of photon-
number superpositions on the building blocks of quantum optics, in terms
of energetics and quantum protocols. To do so, we study semiconductor quan-
tum dots, artificial atoms comprised of ≈ 104 atoms, that can act as three- or
four-level systems, generating single-photons upon resonant and off-resonant exci-
tation (40). Since the first demonstration of control over the spontaneous emission
of the QD through coupling to a (micro-pillar) cavity (28; 29; 41), the field has
made significant advances in terms of efficiency of quantum light generation, with
photon collection efficiencies reaching as high as 57% and near-unity single-photon
indistinguishability (13; 14; 30). Moreover, our group at the Center for Nanos-
ciences and Nanotechnologies (C2N) developed a technology to deterministically
couple a QD to a cavity, a unique tool that allows for further studies (13; 42; 43).

To present our investigation of the role of photon-number superpositions in the
fields of quantum thermodynamics, and quantum optics, we need first to explain
the basics of the quantum dot cavity platform. This thesis is therefore ordered as
follows :

■ We present in Chapter 2 the quantum dot-cavity system. We first explain
in Section 2.2 how quantum dots (QDs) can act as artificial atoms and be
described as three- and four-level systems, generating single-photons. In
Section 2.3, we show that coupling a QD to a micropillar cavity enhances
the spontaneous emission rate into a desired photonic mode, thereby in-
creasing the efficiency of light collection and the possibility to produce
highly indistinguishable photonic fields. We then explain in Section 2.4
some experimental techniques used to benchmark single-photon sources,
and explain in Section 2.5 how resonant excitation allows us to cohe-
rently control the photonic state of light generated by the QD-cavity
systems. This latter section forms the starting point for my PhD thesis :
we present the 2019 work by our group where it was shown that energy
coherence imprinted by a laser on the QD-cavity system, transfers to the
spontaneously emitted field in the form of photon-number coherence.
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■ In Chapter 3 we examine the impact of photon-number coherence on a
cornerstone of optical quantum computing : the Hong-Ou-Mandel inter-
ference. We formerly introduce the notion of first-order coherence in the
photon-number basis and explain how resonant excitation under realistic
settings inevitably results in the presence of this photon-number coherence
in Section 3.2. We explore the consequences of this observation by studying
the phase-dependence of two-photon correlation measurements and show
in Section 3.3 that commonly used normalization procedures break down in
presence of photon-number coherence and can result in the underestima-
tion of wavepacket indistinguishabilities. Moreover, we show in Section 3.4
that photon-number coherence in correlation measurements can result in
new quantum interference phenomena, and, in turn, as we show in
Section 3.5 can lead to errors in heralded quantum gates.

■ In Chapter 4 and 5 we use photon-number coherence to study the energe-
tics of building blocks of quantum information processing with light.
Importantly, we first introduce some basics of quantum thermodynamics
in Section 4.2 and define concepts of work and heat in a closed quantum
system, where two coupled quantum systems interact, but are otherwise
isolated from the environment. This framework allows us to study in Chap-
ter 4 the energetic exchanges between a qubit and light fields. We
propose an experimental protocol to measure work directly in the sponta-
neously emitted photonic field in Section 4.3 and subsequently implement
the protocol whereby we validate previously published theory. We then go
beyond theory by deliberately introducing decoherence to our qubit. In a
second step of our protocol, Section 4.4, we show how one can measure the
work and heat exchanged between two light fields interfering on a beam
splitter.

■ In Chapter 5 we study the energetics of the Ramsey sequence, used to
study the free evolution of a qubit by applying two excitation pulses shortly
separated in time. We break down the well-known Ramsey sequence in
terms of work and heat transferred from the qubit to the electromagnetic
field in spontaneous emission in Section 5.2 and predict an enhancement in
work absorption by the qubit. This latter prediction is then experimentally
evidenced in Section 5.3. In Section 5.4 we endeavor on temporally resol-
ving the energetics in a Ramsey sequence, and show that we can determine
the nature of the energy emitted by the qubit during and in between exci-
tation pulses. The experimental results presented in this chapter have been
obtained at the end of my PhD, hence we conclude with questions standing
that we will address in the coming weeks.
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■ Finally, we give a general conclusion and outlook in Chapter 6. Here we
anticipate on possible new lines of research exploiting photon-number co-
herence, and implications of the results presented in this thesis.
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2 - Basics of a quantum dot-cavity system
and photon-number coherence

2.1 . Introduction

Over the past couple of decades semiconductor quantum dots (QDs) coupled
to micropillar cavities have proven to be very promising systems as single-photon
sources (14; 25; 30; 44; 45) for quantum technologies such as quantum compu-
tation, quantum networks and quantum cryptography (2; 5; 46; 47). Ongoing
research into quantum dots-cavity systems have matured the platform making
them close to the ideal artificial atom at cryogenic temperatures (13; 42; 48–50).
These advances in the technology also bring new opportunities to study previously
uncharted territory in quantum physics. In this thesis, we use III-IV InGaAs/GaAs
quantum dot-cavity systems as two-level systems to investigate the role of energy
coherence in the energetic exchanges and in quantum light generation.

In this chapter, we explain how these semiconductor quantum dot-cavity
systems are fabricated and how they can act as an artificial atom – or qubit –
mostly isolated from their solid-state environment and coupled to a single mode
of the electromagnetic field. We then explain how one can imprint coherence
between the ground and excited state of the artificial atom - also called energy
coherence - and how this coherence can be transferred onto a photonic field in the
form of photon-number coherence. These properties make QD-cavity systems
ideal platforms to experimentally investigate the impact of energy coherence on
energy transfers in the context of quantum thermodynamics, and quantum light
generation.

23



2.2 . Quantum dots as artificial atoms

2.2.1 . Growth of self-assembled quantum dots

The quantum dots we study are self-assembled indium gallium arsenide (In-
GaAs) and gallium arsenide (GaAs) QDs where nanostructures are fabricated by
stacking layers of atoms with molecular beam epitaxy (MBE). GaAs, acting as
the host material, is first deposited, followed by layers of InAs material. Because
of lattice mismatch of 7% between the two materials (51), depositing layers of
these materials will eventually induce lattice strain. When the InAs layer reaches
a threshold of 1.7 monolayers, randomly distributed three-dimensional (3D) InAs
islands will form through Stranski-Krastanov (SK) transition (52). This formation
of 3D islands reduces the strain in the crystal, making the process energetically
favorable. The growth proceeds with GaAs deposition, thereby obtaining InGaAs
clusters mostly free from nonradiative defects (53). A large band gap difference
between GaAs and InAs QDs of ∆Eg = 1.1 eV (at ≃ 300 K) (53; 54) results in
the QDs forming 3D confinement potential wells for charge carriers, both electrons
e− and holes h+. This process leads to discrete electronic energy levels, making
the QDs mimic a natural atom despite the fact that the islands are made out of
≃ 104 atoms. In this work, the process is followed by annealing of the QDs at high
temperatures (850 − 950◦) to adjust their energy as it leads to interdiffusion of
GaAs and InAs materials (55). This step in the growth of QDs lowers the poten-
tial barrier between the islands and the bulk material and affects the shape of the
QDs. Across QDs, the shapes will be more homogeneous and the size larger than
under pre-annealing conditions. Depending on the fabrication conditions, the InAs
density and size of the QDs can differ (56). Typically they will form nano-lenses,
elongated in the transverse plane, with a diameter on the order of 10− 20 nm and
heights of approximately 3.5 nm. The remainder of the InAs layer constitutes the
wetting layer where carriers are confined in a 2D potential well with an energy gap
of approximately 1.45 eV (855 nm), larger than the typical fundamental energy
level of the QDs, 1.34 eV (925 nm) at 5 K for the samples studied here (55).

2.2.2 . Electron and hole confinement

Modelling the QD energy levels in such structures is complex and the core of
a dedicated research field (57–59). However, we can get a “back of the envelop"
estimation of the energy level structure of a quantum dot by using the effective
mass approximation and reducing the system to a single conduction and single
valence band (60).

Let us consider a 3D potential well with dimensions Lx, Ly, Lz. A charge carrier
in the QD will be described by the electronic wavefunction Ψ(x, y, z), which in the
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Figure 2.1 – Schematic of the energy level structure of an InAs quan-
tum dot. The s and p shells for the electron (black circle) and hole
(white) are indicated together with the energy band gap of the wet-
ting layer and bulk GaAs.

effective mass approximation is a solution of the Schrödinger equation :(
ℏ2

2m∗
e,h

∇2 + V (x, y, z)

)
Ψ(x, y, z) = EΨ(x, y, z), (2.1)

where m∗
e,h is the effective mass of the charge carrier (e− or h+) and V the

potential boundary conditions in x, y, z. If we further simplify and consider our
potential well to be of infinite depth so that :

Vj =

{
0, 0 ≤ j ≤ Lj ∀j = (x, y, z)

∞, otherwise.
(2.2)

We can then separate the energy into E = Ex + Ey + Ez and Ψ(x, y, z) =

Ψx(x)Ψy(y)Ψz(z) which must verify the second order differential equation

Ψ′′(j) + k2jΨ(j) = 0, (2.3)

with k2j = 1
ℏ2 2m

∗Ej . Under the boundary conditions given in Eq. 2.2 we find for
the energy levels as seen by the charge carriers :

Ee,h =
ℏ2π2

2m∗
e,h

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
, (2.4)

where nx, ny, nz ≥ 0 and integers. The confinement of charge carriers in a 3D
infinite potential well results in discrete energy levels for electrons and holes referred
to as the s-shell and p-shell in analogy to the physics of an atom – considering
the symmetry of the envelop function – see Fig. 2.1. Because of the nanometer
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|g⟩

|e⟩

|g⟩ → |X⟩

Positive
trion

|g⟩ → |X+⟩ |g⟩ → |X−⟩

Figure 2.2 – Occupancy states of a QD. The QDs used in this thesis
support different charge configurations. Excitation brings an electron
into the excited state |e⟩ and leaves a hole in the ground state |g⟩, the
exciton state. If the conduction (valence) band contains an additional
charge carrier, we refer to the excited state as a negatively (positively)
charged trion state : X−(X+).

height of the QDs there is only one confined state in the z-direction. In contrast,
the in-plane directions supports several states. However, in this thesis we consider
only the lowest energy levels for both electrons and holes. We will consider the
ground state and first excited state to describe optical properties of the QDs. As
such, a QD will be considered as a three- or four-level system when considering
the ground state occupation and spin degrees of freedom.

2.2.3 . Charge configurations
The QD supports different ground and excited states considering the spin

degree of freedom and the Pauli exclusion principle. In this thesis we consider
two types of QD states comprising the ground and excited state levels : the trion
and exciton. Fig. 2.2 shows three of the possible electron-hole configurations,
constituting different transitions from the ground |g⟩ to the excited state |e⟩.
Generally, upon excitation of the QD, an electron is transferred to the conduction
band, leaving a hole in the valence band. This neutral state of the QD is referred
to as an exciton (X) state. The electron and hole are oppositely charged, resulting
in Coulomb interaction and limited lifetime of the state, with the emission of a
single-photon upon decay, i.e. recombination of the electron and hole. If the QD
contains an extra hole in the valence band (or electron in the conduction band)
we refer to the excited QD state as a positively (negatively) charged trion X+

(X−) state. We show in Section 2.2.5 how we can control the charge state of the
QD when it is inserted in a diode structure.
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2.2.4 . Energy levels of neutral and charged quantum dots
We can describe the energy levels of both the neutral and charged QDs by

considering the interaction between the electrons and holes involved in the optical
transition. The energy levels result from both the direct Coulomb interaction indu-
ced by particles of opposite charge (electron and hole), and the exchange Coulomb
interaction. The exchange Coulomb interaction can be divided into two contribu-
tions : the long-range, and the short-range exchange interaction. The long-range
contribution in quantum dots arises from monopole-monopole coupling between
different bulk unit cells, and is often neglected as it is screened by the bulk dielec-
tric tensor (61). On the other hand, the short-range contribution emanates from
Coulomb attraction between an electron and hole in the same bulk unit cell, and
effectively couples the electron and hole spins (62). The balance between the short-
and long-range exchange interaction depends on the dimensions of the QD, where
the contribution of the short-range exchange interaction increases with quantum
confinement. This latter interaction is responsible for the exciton fine-structure
splitting (62; 63), (see section below). Contrastingly, the trion state, or charged
exciton state, does not exhibit effects of fine-structure splitting and can be descri-
bed through spin parity considerations. To explain how energy levels are determined
by these Coulomb forces and considerations we summarize the discussion given in
details in the PhD manuscript of Dr. Helène Ollivier (64).

Energy levels in neutral QDs
Direct Coulomb interaction
We first consider the simplest situation where we have a hole and an electron, cor-
responding to an exciton state. In such a bipartite system, two oppositely charged
carriers qi, qj at position ri, rj, respectively, exhibit a direct Coulomb interaction
as a function of their relative distance :

Vij(ri, rj) =
1

4πϵrϵ0

qiqj
|ri − rj|

(2.5)

This Coulomb direct interaction binds the electron and hole, whose energy is lower
than the sum of energies arising from a confined electron and hole individually. The
energy levels of a excitonic state are mainly dictated by the spatial confinement of
the carriers, as the QD size is smaller than the exciton radius in bulk. From Eq. 2.5
we see that the interaction goes as 1/R with R = |ri − rj|, whereas a particle in
a box model results in discrete energy level spacing proportional to 1/R2. As a re-
sult, the size of the QD dominantly dictates the confinement of the charge carriers.

Exchange Coulomb interaction
For our semiconductor quantum dot sources we consider the holes to be heavy
holes (64), whose spin can be written as |⇑⟩ or |⇓⟩, and its angular momentum –
along growth axis z – is Jh = ±3/2. The electron has spin |↑⟩ or |↓⟩ and angular
momenta Se = ±1/2. These angular momenta and the their projections mJ ,mS
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give rise to four possible excitonic states given by |J,mJ⟩h ⊗ |mS⟩e :

|+1⟩ = |3
2
,+

3

2
⟩
hole

⊗ |−1

2
⟩
electron

|+2⟩ = |3
2
,+

3

2
⟩
hole

⊗ |+1

2
⟩
electron

|−1⟩ = |3
2
,−3

2
⟩
hole

⊗ |+1

2
⟩
electron

|−2⟩ = |3
2
,−3

2
⟩
hole

⊗ |−1

2
⟩
electron

, (2.6)

with total angular momentum projection F = Se + Jh = ±1 or ±2.

Not all states correspond to an optically active state. We can see this by
considering F , and considering that when an electron and hole recombine, the QD
returns to its ground state with zero angular momentum. The F = ±2 states are
optically inactive since conservation of angular momentum is not compatible with
photon emission. As such, these F = ±2 states are called dark excitonic states.
Contrastingly, the F = ±1 states are called bright excitonic states, and have
dipole transitions coupled to left |L⟩ and right |R⟩ circular (i.e. polarized) photons.

We write the short-range part of the exchange interaction between an electron
and a hole as :

Ĥexchange = −
∑

i=x,y,z

(aiJh,i · Se,i + biJ
3
h,i · Se,i), (2.7)

with spin coupling constants ai, bi along axis i, and where the z-axis corresponds
to the growth axis of the QD, and x, y correspond to the in-plane axes. The ex-
change interaction Hamiltonian in the eigenbasis of the exciton angular momentum
(|+1⟩ , |−1⟩ , |+2⟩ , |−2⟩), is given by (55) :

Ĥexchange =
1

2


δ0 δ1 0 0
δ1 δ0 0 0
0 0 −δ0 δ2
0 0 δ2 −δ0,

 (2.8)

where δi are parameters dependent on spin coupling constants ai, bi, and can be
written as

δ0 = −3

4

(
az +

9

4
bz

)
δ1 =

3

8
(bx − by)

δ2 =
3

8
(bx + by) . (2.9)

The diagonal of the matrix in Eq. 2.8 reveals that the bright and dark states
are split by energy δ0 (typically ≈ 500 µeV). The terms δ2 refer to mixing and
splitting of the dark states, whereas δ1 corresponds to mixing and splitting of
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Figure 2.3 – Exciton energy level diagram and degeneracies arising
from asymmetries. Depending on the exchange interaction and spin
coupling constants ai and bi in the i = x, y, z direction, the in-plane
symmetry can be broken, giving rise to the exciton fine-structure split-
ting δ1 when bx ̸= by.

the bright states whenever bx ̸= by, which is called the exciton fine-structure
splitting (FSS) (65). This latter condition happens when there is an asymmetry
in the x, y-plane. We summarize the influence of (a-)symmetry considerations and
interactions on the energy level structure of the excitonic manifold in Fig. 2.3 where
the different symmetries correspond to a thetrahedral point symmetry of the bulk
semiconductor (Td), a symmetry caused by z-confinement (D2d), and no in-plane
symmetry (C2v). Typical values for the degeneracy breaking of bright and dark
excitons are δ1 ∼ 1− 100 µeV and δ2 ∼ 1 µeV, respectively (60).

If we now consider only the bright excitonic states in absence of in-
plane symmetry (C2v), the eigenstates of the exchange Hamiltonian become
|X⟩ = (|+1⟩ + |−1⟩)/

√
2 and |Y ⟩ = (|+1⟩ − |−1⟩)/

√
2, split by energy

δ1 = ∆FSS. These two states are optically coupled to a single ground state |g⟩
where the QD embeds no carrier (empty QD), resulting in a “V"-type optical
system, see Fig. 2.4. The corresponding optical selection rules dictate that both
exciton states |X⟩ and |Y ⟩ are coupled to the ground state through a combination
of circularly polarized photons (|R⟩ − |L⟩)

√
2 and (|R⟩+ |L⟩)

√
2.
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Figure 2.4 – Energy levels in a neutral quantum dot. Two excited
states |e⟩ of an exciton, |X⟩ and |Y ⟩, are separated by the fine-structure
splitting energy ∆FSS and coupled to the ground state |g⟩ through a
combination of circularly polarized photons |R⟩ and |L⟩.

Energy levels in charged QDs
The charged excitonic state, or trion, is composed out of an electron-hole

pair with an additional charge carrier. Two carriers of the same nature must have
opposite parity, as these charge carriers are fermions and therefore obey Pauli’s
exclusion principle (60). As a result, the exchange interaction – present when
we have a single electron and hole pair – cancels, and, therefore, so does the
fine-structure splitting. The energy of a trion transition is the combination of the
energy of the charge carriers forming an exciton and the extra charge carrier, and
the binding energy from direct Coulomb interaction whose sign and magnitude
are dictated by the shape and size of the QD. As such, a single-photon emitted
by a source based on a trion transition will have a different energy compared to a
single-photon coming from an exciton source.

The energy level diagram of the trion transition is a four-level system
containing hole and electron spins. We show an example for a positively charged
trion under resonant excitation in absence of a magnetic field in Fig. 2.5, where
we have the degenerate ground state levels composed out of hole spin states |⇑⟩Z
and |⇓⟩Z aligned along the axis z, perpendicular to the growth plane. The excited
state is similarly degenerate and corresponds to the contribution of two holes with
opposite spin states and a single electron, either in electron spin state |↑⟩ or |↓⟩.
The ground and excited states are coupled through optical selection rules, where
excitation with circularly right- |R⟩ or left-handed |L⟩ light determines the excited
electron hole spin state.
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|⇑⟩Z |⇓⟩Z

Figure 2.5 – Energy level diagramof a quantumdot source based on
the trion transition. The degenerate ground and excited state levels
of a positively charged trion state, composed of hole spin states |⇑⟩Z ,
|⇓⟩Z , and electron spin states |↑⟩Z , |↓⟩Z , in absence of a magnetic field.
The ground and excited states are coupled through circularly polarized
photons |R⟩ and |L⟩.

2.2.5 . Tuning the charge state
The charge state of a QD can be tuned by inserting the QD in a p-i-n

structure. Fig. 2.6 illustrates a p-i-n diode structure used to trap a hole inside the
QD (66; 67) introducing proper doping structure and barriers. In the structure
under study, n-doping is brought close to the QD, which in turn experiences a
local electric field that allows, once the QD is excited, the electron to tunnel out.
Conversely, an Al0.1Ga0.9As barrier prevents the remaining hole from tunneling
outward. A sufficient trapping time of the hole then allows to generate a positive
trion state with a second laser pulse.

En
er
gy

z-direction

20 nm
barrier

p-doping

n-doping

QD

Figure 2.6 – Trapping charge carriers. The doping structure used to
trap charge carriers inside a QD, here a hole. An n-doping is brought
close to the QD, which as a result experiences a local electric field, al-
lowing for the electron to tunnel out. An Al0.1Ga0.9As barrier traps the
hole. Taken from Ref. (66).
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2.3 . Spontaneous emission of a quantum dot in a cavity

When the QD is brought into an excited state, light-matter interaction gives
rise to relaxation to the ground state through spontaneous emission of a photonic
field. The QD, however, acts as a point emitter radiating over a wide range
of angles, thereby reducing the light collection efficiency. This light collection
efficiency is further reduced by another phenomenon in the bulk semiconductor,
total internal reflection of light : light is reflected at the boundary of GaAs and
air because of the difference in refractive index between the two materials. These
two factors combined result in a poor photon collection efficiency which at best
reaches ≈ 2% in the bulk.

While the photon collection efficiency is not a property that is fundamentally
critical for the experimental studies conducted within this PhD work, it turns out
to be pivotal to enable the experiments. We studied samples where the QD is
coupled to a single cavity mode, thereby realizing important enabling features for
our studies. First, this coupling leads to an efficient collection of the QD emission
and allows high detection rates that are critical to make most studies presented
here feasible. Second, by forcing the QD to emit in a well-defined mode of the
electromagnetic field, our system is close to textbook situation of the so-called
one-dimensional atom (13; 14). Finally, by accelerating the spontaneous emission,
interaction with the QD environment is strongly suppressed - and the coherence
which is at the core of our studies strongly enhanced.

In Section 2.3.1 we describe how light-matter interaction gives rise to sponta-
neous emission, initially for QDs in bulk material. Then, we will discuss how by
coupling the QD to a cavity, one can control the direction of spontaneous emission
and thereby enhance the collection efficiency.

2.3.1 . Spontaneous emission in the bulk

To understand how coupling a QD to a cavity alters the emission dynamics,
we first discuss spontaneous emission from quantum dots in bulk material. For this
section and the following, we follow the explanation found in Refs. (64; 68; 69).
In a general picture, let us consider a two-level system, a point dipole, located at
r = 0 and surrounded by a continuous homogeneous dielectric material, here GaAs.
With an optical pulse we resonantly excite the two-level system with frequency ω0

such that population inversion takes place, thereby populating the excited state.
Once the QD is excited, the optical excitation pulse is instantaneously switched
off, leaving the electromagnetic field surrounding the QD in a vacuum state. After
a certain amount of time, the excited state population of the QD starts to decay
back to the ground state. The population is transferred via spontaneous emission
onto the electromagnetic field, generating a photonic field – an excited state of the
electromagnetic field – with wave vector k and polarization p. The transition rate,
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or decay rate, can be calculated using perturbation theory, making use of Fermi’s
Golden Rule :

Γi→[f ] =
π

2

∑
f

|(Ĥpert.)fi|2

ℏ2
δ(ω − ωfi), (2.10)

where i denotes the initial state |i⟩ = |e, 0⟩ (atom in excited state, no photon)
and f the accessible final state |f⟩ = |g,k,p⟩ (atom in ground state, photon in
mode k,p), Ĥpert. the perturbation Hamiltonian, ω the frequency of radiation,
and ωfi the atomic transition frequency. Summing over the possible final states
of the QD-bulk system results in a spontaneous emission rate Γbulk

sp .

The perturbation Hamiltonian introduced in Eq. 2.10 in the dipole approxima-
tion reads :

Ĥpert. = −d̂ · Ê, (2.11)

with dipole d̂ and electric field operators in the second quantization framework
given by

Ê(r, t) = i

(
ℏω

2n2ε0V

)1/2

p(âk,pe
ik·r − â†k,pe

−ik·r), (2.12)

where âk,p and â†k,p are the annihilation and creation operators in mode {k,p}.
Moreover, we have the material specific parameters ε0, n which are the dielectric
permittivity and refractive index of a medium, respectively. We also recognize the
quantization volume V = L3.

We obtain

Γi→f =
2π

ℏ
Ef

2|n|2ε0V
d2|ez · p|2δ(Ef − Ei), (2.13)

with d = | ⟨g|d̂|e⟩ |, Ef = ℏω and ez is the unit vector pointing along the dipole
direction. We can simplify this transition rate by noting that the real part of the
refractive index of GaAs for 900 nm is 3.5, whereas the imaginary part is close
to zero. Moreover, we know that each wavevector k has two possible orthogonal
polarization states p1,p2, but we can choose them such that one is orthogonal to
the orientation of the dipole, resulting in a single polarization state contributing to
the emitted field : |ez ·p|2 = sin2 θ, with θ being the angle between the dipole and
the wavevector, see Fig. 2.7 where a dipole is situated at the origin pointing along z.

As mentioned before, the sum of the spontaneous emission rates gives rise to
the bulk spontaneous emission rate. More accurately, the sum should be replaced
by an integral over all possible energies and solid angles Ω, weighted by the density
of states ρ(Ω, E) which is defined by :

dN = ρ(Ω, E)dEdΩ, (2.14)
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Figure 2.7 – Integration volume in a sphere. Integration angles with
a dipole positioned at r = 0. The colored lines indicate the integration
slices and the arrow at the origin points into the direction of the dipole
orientation.

with the number of states dN within energy range [E,E + dE], and whose
wavevectors k point along the solid angle dΩ.

The volume over which to integrate in terms of polar coordinates
(k = k(sin θ cosϕ, sin θ sinϕ, cos θ)) to obtain the total spontaneous emis-
sion rate in all the possible emission modes is given by d3k = k2dkdΩ, with
dΩ = sin θdθdϕ the element of solid angle around the direction of k.

Inside volume d3k we find the number of modes by choosing a quantization
volume L3 :

dN =
d3k(
2π
L

)3 = ρdEdΩ. (2.15)

The discrete energies are given by E = ℏω = ℏkc
n which allows us to write :

d3k =
n3E2

(ℏc)3
dEdΩ. (2.16)

The number of modes inside d3k is then found by dividing Eq. 2.16 by the volume
of a single mode (2π/L)3, obtaining

dN =

(
L

2π

)3 n3E2

(ℏc)3
dEdΩ (2.17)
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which results in the density of states :

ρ(Ω, E) =

(
L

2π

)3 n3E2

(ℏc)3
. (2.18)

Finally, we find the bulk spontaneous emission rate by integrating over all
accessible final states :

Γbulk
sp =

∫
f
Γi→fdN =

∫ ∫
Γi→fρ(Ω, Ef )dEfdΩ. (2.19)

Inserting our previously found expressions, noting Ei = Ee − Eg = ℏω, we get :

Γbulk
sp =

nω3d2

3πε0ℏc3
, (2.20)

from which we also obtain the radiative lifetime of the exciton in the bulk T =

(Γbulk
sp )−1, which for an InGaAs QD in GaAs is approximately 1 ns at 930 nm.

2.3.2 . Enhancing the spontaneous emission : the Purcell effect
For application purposes it is highly desirable to control the emission of the

QD. A solution is offered by cavity quantum electrodynamics (cQED), from which
we know that coupling a two-level system to a cavity will modify the emission
rate into the cavity mode (70). In this section we discuss how coupling a QD to a
cavity strongly alters the emission dynamics and can lead to a drastic increase in
the spontaneous emission rate, the so-called Purcell effect (27; 68).

Enhancement spontaneous emission rate
We consider a two-level system inside the cavity, see Fig. 2.8. The coupling

constant between the two-level system and the cavity mode is noted by the
parameter g. Other important QD-cavity parameters are the cavity damping rate
κ, describing the photon escape rate out of the cavity, and the total dephasing
rate of the emitter Γ. The latter is the sum of the spontaneous emission decay
rate γ into all modes (including outside the cavity mode), and the pure dephasing
rate γ∗ : Γ = γ

2 + γ∗.

In terms of coupling strength, we can discern between two regimes : the strong
coupling regime, where g > |κ−γ|/4 and the spontaneous emission will happen at
two distinct frequencies, or the weak coupling regime, where g < |κ−γ|/4 (71; 72).
The first scenario entails that once excited, a two-level system can emit and absorb
a photon for several cycles until the photon exits the cavity : the system exhibits
vacuum Rabi oscillations. Contrastingly, in the weak coupling regime the emitted
photon escapes faster from the cavity than the time scale of the re-absorption
and emission cycle. In such regime the excited state population of a QD will decay
exponentially and thereby spontaneously emit a photon in a dissipative process. Our
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Figure 2.8 –Different contributions to emission rate.A two-level sys-
tem coupled to a cavity (indicated by two bent mirrors) mode with cou-
pling strength g. The cavity damping rate is given by κ and the total
dephasing rate of the emitter by Γ.

devices operate in the weak coupling regime where g < |κ−γ|/4 with typical values
on the order of ℏg ≈ 10− 20 µeV , ℏκ ≈ 100− 300 µeV , and ℏγ ≈ 1− 4 µeV .

In the weak coupling regime the spontaneous emission regime is still dictated by
Fermi’s golden rule (41). The cavity effectively alters the density of electromagnetic
modes coupled to the two-level system. If we consider the two-level system of
frequency ω coupled to the cavity (ωc with linewidth κ), the density of modes seen
by the QD is given by (70) :

ρcav(ω) =
2

πκ

κ2

4(ω − ωc)2 + κ2
, (2.21)

which at the frequency of the cavity becomes :

ρcav(ωc) =
2

πκ
=

2Q
πωc

, (2.22)

where we introduce another important parameter of the system : the cavity quality
factor Q = ωc/κ.

Applying Fermi’s golden rule (Eq. 2.10), we find the spontaneous emission rate

Γcav
sp =

2Qd2

n2ℏε0V
, (2.23)

for ω = ωc. Finally, we can define the Purcell factor as being the ratio between
the spontaneous emission rate of the emitter optically coupled to the cavity mode
and of the emitter in bulk :

FP =
Γcav
sp

Γbulk
sp

=
3

4π2

Qλ3
0

n3V
=

4g2

κΓbulk
sp

, (2.24)
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where λ0 = 2πc/ω. This Purcell factor quantifies the enhancement of the
spontaneous emission rate into the mode of the cavity, and as can be seen
from Eq. 2.24 is proportional to the ratio of the quality factor and the mode
volume (27). As such, a cavity with a high quality factor and low mode volume is
desirable for efficient photon emission into the cavity mode.

In most situations, because the cavity presents some angular acceptances, the
two-level system can still emit in other directions. The total lifetime of the emitter
is actually given by the sum of the emission in the cavity mode and the emission
into the continuum of modes outside the cavity : (T1)

−1 = Γcav
sp +Γother

sp . We can
define a parameter β which will be the fraction of photons emitted in the cavity
mode, or the mode coupling :

β =
Γcav
sp

Γcav
sp + Γother

sp

. (2.25)

For the cavities studied during this PhD, it has been shown that Γother
sp ≈

F bulk
sp (41). In such case we have :

β ≈ FP

FP + 1
. (2.26)

This latter expression shows that the larger the Purcell factor, or enhancement of
spontaneous emission, the more photons are emitted into the desired mode (cavity
mode).

Fig. 2.9 sketches a typical pillar structure used in our team where a layer of
self-assembled InGaAs QDs is embedded into a λ/n thick GaAs layer – with λ

the emission wavelength of the QD and n the material index of the layer. Bragg
mirrors made out of 34 pairs of λ/(4n) GaAs/Al0.9Ga0.1As layers at the bottom
and 16 other pairs at the top of this QD layer confine the light in the vertical
direction and the etching of a cylindrical shape of the cavity induces confinement
in the other directions. The typical height of one such pillar is around 13 µm and
its radius on the order of a couple of micrometers. To obtain maximum coupling
between the pillar and the quantum dot, the latter should be positioned at the
absolute center of the pillar in the x, y plane, where the cavity electric field of
the fundamental pillar mode is maximum, and in the z direction at the position
of the antinode of the cavity mode. This latter requirement is obtained thanks to
the QD atomic layer deposition during the molecular beam epitaxy (MBE) growth
process.

Also shown in Fig. 2.9 are the different escape channels a photon can take
to exit the cavity : via the top mirror, the bottom mirror, or absorption and
sidewall losses. The rate at which the photon escapes the cavity is thus given by :
κ = κtop + κbottom + κloss. Once the QD emits a photon into the cavity mode
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Figure 2.9 – The studied quantum dot micropillar cavity system.
Left : A typical pillar structure for the QD-cavity systems studied in this
thesis. A layer of self-assembled InGaAs QDs is embedded into a GaAs
layer and surrounded by Bragg mirrors made out of 34 and 16 pairs of
λ/(4n) GaAs/Al0.9Ga0.1As layers on the top and on the bottom (not to
scale here), respectively, confining light. Right : The different channels
through which photons can escape the cavity, either via the top mirror
at rate κtop, via the bottom mirror κbottom, or via the sidewalls κloss. The
QD emits photons outside the cavity mode at decoherence rate Γ.

through the Purcell effect, the fraction leaving the cavity through the top mirror
is given by κtop/κ. Efficiently collecting the photons from the top of the cavity, is
equivalent to κ ≈ κtop.

As a final note, we can write the total dephasing rate of our emitter in terms of
the found spontaneous emission rates : Γ =

Γcav
sp +Γbulk

sp

2 +γ∗, with γ = Γcav
sp +Γbulk

sp .

2.3.3 . Deterministic QD-cavity assembling
The Purcell effect is maximal if the QD is centered in the pillar cavity and

spectrally matched to the cavity mode. However, in the x, y plane this condition
is a challenge since QDs grow at random spatial positions, and therefore regularly
spaced pillars often contain more than one or no QDs. Moreover, QDs present
different emission energies. Here we explain the technique used in the lab to solve
these difficulties and deterministically couple self-assembled quantum dots to
cavities, using the cryogenic in situ lithography technique developed in our group
since 2008 (73). This technique allows for precise positioning of a quantum dot
within a pillar microcavity with up to 50 nm accuracy. We briefly explain here the
main steps of this lithography technique, for more details, we refer the reader to
Ref. (73).
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Figure 2.10 – In-situ lithography for deterministic quantum dot mi-
crocavity pillar assembly. (a) An excitation laser (∼ 800 nm) off-
resonantly excites QDs. The resulting QD emission (PL) is detected by
a spectrometer and CCD camera. If the QD emission is at the right wa-
velength (∼ 925 nm), the center of the QD position is obtained by scan-
ning the photoluminescence as a function of position. A second laser
at ∼ 532 nm then exposes the photoresist, creating a circular mask
centered around the QD. (b) QD PL intensity as a function of sample
position. Taken from Ref. (73).

To produce optimally coupled QD-cavity system, our group proposed an
“in-situ" lithography method. The process starts by spin coating a planar cavity
embedding the QD in the two-dimensional Bragg cavity structure with a positive
photoresist. The resulting samples are placed inside a cryostation operating at 7K
where the sample is mounted on piezoelectric actuators which allow for precise
positioning of the sample with up to 10 nm accuracy. A microscope objective
focuses an excitation laser (750 nm< λ <830 nm) onto the sample without
affecting the photoresist layer, see Fig. 2.10(a). This laser off-resonantly excites
a QD, which in turn results in photoluminescence (PL). The photoluminescence
is detected by a spectrometer and a CCD camera. If a QD with the desired
wavelength is detected, the PL is scanned as a function of sample position, see
Fig. 2.10(b). A spatial PL map is obtained with a spatial distribution reflecting
roughly the profile of the focused laser (FWHM≈ 1 µm), allowing us to attribute
the coordinates of maximum PL intensity to the center of the QD position. A
second laser at 532 nm then exposes the photoresist, creating a circular mask
centered on the QD x, y-coordinates. The circular mask is later used as a mask
for the pillar etching. This method allows to position the QD at the maximum of
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the pillar fundamental mode with ±50 nm accuracy.

The in situ technique also allows to spectrally match the microcavity fun-
damental mode to the QD frequency by adjusting the radius of the pillar which
dictates the wavelength of the cavity (73). The radius is a function of the exposure
time and intensity of the 532 nm laser where a longer exposure time and higher
intensity result in a larger pillar radius. By choosing the right parameters, a
QD-cavity system with the desired parameters is obtained. Finally, the sample is
removed from the cryostation and the photoresist is developed to obtain a mask
suitable for the etching of micropillar cavities.

2.3.4 . Controlling the QD charge state in a cavity

In 2014 (74), our group demonstrated the ability to create pillar patterns
with an advanced in-situ lithography technique, allowing for electrical control
of the device, see Fig. 2.11. Here the pillar is connected to a circular outer
edge through four bridges creating a cross-like pattern. The outer edge is then
electrically contacted with the ground. This electrical contact is especially useful
as it provides a tool to control the charge state of the quantum dot, corresponding
to the exciton or trion transition introduced in Section 2.2.3, and tune the QD
into resonance with the cavity through the Stark effect.

Figure 2.11 – A schematic of an electrically contacted QD-cavity de-
vice. A pillar is connected to a circular outer edge through four bridges,
forming a cross pattern. The outer edge, in turn, is electrically contac-
ted to apply a bias. Taken from Ref. (75).

In order to create these electrically contacted pillars, the top and bottom Bragg
mirrors are p- and n-doped respectively, forming together with the QD layer a p-i-n
type band structure. During the in-situ lithography step, the full connected pillar
shape is defined and centered around the QD. After resist development, metallic
deposition and bonding is done to define the p-contact on top of the pillar, with the
n-contact defined at the bottom of the pillar. This electrical connection allows for
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fine-tuning of the QD-cavity resonance after fabrication through the Stark effect,
which shifts the electron and hole states. Specifically, when applying a negative
(positive) bias, the band gap energy decreases (increases), resulting in a red (blue)
shifted emission wavelength. We show in Chapter 3 that applying an electrical field
to our QD-cavity system allows to maintain QD-cavity resonance when increasing
the temperature of the sample.

2.4 . Properties of single-photon wavepackets

All along this PhD thesis, we study the properties of the single-photon wave-
packets emitted by the QD. In particular, we characterize our generated photonic
states in terms of temporal profile, purity and indistinguishability. These parame-
ters reveal information on the QD emission dynamics, on the number of photons
emitted, and on the spectral quantum purity of the emitted state. In this section
we will describe how we experimentally measure these characteristics. All measu-
rements are performed under pulsed excitation of the QD with a laser operating at
a repetition rate of 81 MHz.

2.4.1 . Temporal profile photonic field
A temporal profile, or lifetime measurement, is dictated by the spontaneous

decay rate γ = T−1
1 , and shows the temporal distribution of photons emitted by the

QD. To measure such a profile, we directly send the emitted signal through a fiber
to a superconducting nanowire single-photon detector (SNSPD, Single Quantum)
connected to a time-to-digital converter (TDC) used for correlation measurements.
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Figure 2.12 – Measuring temporal distribution QD emission. (a) A
clock signal (black pulses) of the laser with repetition rate 1/τp is sent to
a correlator. Every time the correlator receives a clock signal, it starts
the internal clock and saves the time stamp τi of the next incoming
photonic field from the QD (red). (b) Measuring the arrival times with
respect to the clock of the laser allows building a histogram of arrival
times, or lifetime measurement of the QD.

The correlator is connected to the clock signal of the laser sending pulses at
81MHz, equivalent to a pulse separation of τp = 12.3 ns. In Fig. 2.12(a) we show
a simplified image of how the temporal profile of the QD emission is reconstructed.
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Every time the correlator receives a signal from the laser clock (black pulse) it will
start the internal clock. As soon as an incoming photon is detected (red circles),
the correlator saves the relative delay between the laser clock and photon signal :
τi. By repeating this procedure over a period of time, sufficient statistics are
gathered, resulting in a histogram of arrival times, see Fig. 2.12(b) showing an
example of such a decay curve.

The histogram is created by measuring the average photon number per unit
time. From a formal point of view, we can write this intensity as I(t) = ⟨â†(t)â(t)⟩
where we introduce the quantum operators â(â†) as creating (annihilating) photons
in the propagating modes into which light is emitted.

2.4.2 . Single-photon purity
An important figure of merit for single-photon sources is the single-photon

purity, used to quantify the probability of the photonic wavepacket to contain
more than a single-photon Fock state. We quantify this probability with a Hanbury
Brown - Twiss (HBT) setup, see Fig. 2.13(a). Photonic wavepackets separated in
time by τp (with pulse repetition rate (τp)

−1) enter the interferometer (input mode
â1) where they impinge on a beam splitter (BS) of reflectivity R and transmission
T (input mode â2 is in an uncorrelated vacuum state).
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Figure 2.13 –Hanbury Brown - Twiss setup formeasuring the purity
of a photonic state. (a) Schematic of the optical setup (see main text).
(b) A coincidence histogram as a function of delay computed by mea-
suring detector clicks with the setup in (a). The absence of coincidence
clicks at zero delay (τ = 0) indicates the input photonic state consists
only of up to a single-photon Fock state. Peaks are separated in time
set by the laser repetition rate (τp)

−1.

If the wavepacket contains up to a single photon, it can either be reflected
or transmitted by the beam splitter into output mode â3 or â4, respectively.
Depending on the path taken by the photonic state, detector D1 or D2 (with
detection efficiencies η1, η2, respectively) will click once a photon is detected.
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Figure 2.14 –Measuring coincidenceswith arrival time photons.De-
tectors D1, D2 in a HBT setup register the arrival time of photon (red)
detection events, resulting in two lists with time tags : {ti} and {t′i},
respectively. Comparing the lists for relative delays τ results in coin-
cidences as a function of delay, where τ = 0 corresponds to simulta-
neous events.

Alternatively, if the photonic state consists of higher dimension Fock states there
is a chance of D1 and D2 to click simultaneously.

A cross-correlation histogram is built by comparing lists of photon arrival times
(time tags) registered by D1 and D2 over a period of time, t = {t1, ..., ti} and
t′ = {t′1, ..., t′i}, respectively. The principle is shown in the upper panel of Fig. 2.14
with relative delay (offset) τ = 0 between the lists. The coincidences between
the two lists are counted (here : one), and repeated for different relative delays τ

between the two event lists. In the lower panel of Fig. 2.14 the event list of D2

is offset by delay τp with respect to D1, resulting in three coincidences for the
events pictured here. Fig. 2.13(b) shows a typical coincidence histogram for pulsed
input states separated by τp where the peak at zero delay shows the non-zero
probability of having more than one photon in a single input state. Formally, the
plotted histogram is described by the time integral over the coincidences for delay
τ :

G
(2)
34 (τ) =

∫
G

(2)
34 (t, τ)dt (2.27)

where we introduce the unnormalized second-order correlation function G
(2)
34 (76).

This correlation function, in terms of interferometer output modes â3, â4, is given
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by
G

(2)
34 (t, τ) = η1η2 ⟨â†3(t)â

†
4(t+ τ)â4(t+ τ)â3(t)⟩ , (2.28)

where, again, t and t′ are the arrival times of photons at detector D1 and D2, and
τ the delay introduced between lists of events from detectors τ = |t− t′|. We can
express the unnormalized second-order correlation function in terms of its input
state â1 by using the beam splitter relations :(

â3(t)
â4(t)

)
=

(
T −R
R T

)(
â1(t)
â2(t)

)
, (2.29)

with â2 a vacuum state and R2+T 2 = 1, and we find for a 50 : 50 BS (R = T =

1/
√
2) :

G
(2)
34 (t, τ) = R2T 2η1η2 ⟨â†1(t)â

†
1(t+ τ)â1(t+ τ)â1(t)⟩ =

1

4
G

(2)
11 (t, τ), (2.30)

where G
(2)
11 (t, τ) is the correlation function in terms of the input state â1(t). Thus,

measuring coincidence clicks between output mode â3 and â4 gives us direct
access to the unnormalized second-order autocorrelation of the input state and
therefore how likely it is that the wavepacket contains more than one photon.

To benchmark our generated photonic state we need to be able to compare
single-photon purities across different measurements (with different R, T, η1, η2).
A common method to normalize coincidence histograms uses uncorrelated coinci-
dence counts for large delay τ . For pulsed input states this entails extracting peak
areas at large delay τ . For a pulse separation τp, these peak areas are given by

G(2)
nτp =

∫ τp/2

−τp/2
G(2)(τ + nτp)dτ. (2.31)

In the limit of τp ≫ γ, with γ the decay rate of a single pulse, i.e. when the
correlation peaks do not temporally overlap, Eq. 2.30 for n ≥ 1 can be written as :

G
(2)
34 (t, τ > τp) =R2T 2η1η2 ⟨â†1(t)â1(t)⟩ ⟨â

†
1(t+ τ)â1(t+ τ)⟩

=R2T 2η1η2I(t)I(t+ τ), (2.32)

with the input intensity
I(t) = ⟨â†1(t)â1(t)⟩ . (2.33)

Using the uncorrelated peak areas therefore provides a way to remove the unwanted
prefactors R2T 2η1η2 from Eq. 2.30, and the normalized peak area at zero delay
becomes :

G
(2)
34 (t, τ = 0)

G
(2)
34 (t, τ > τp)

= g(2) =
1

µ2

∫ ∫
⟨â†1(t)â

†
1(t+ τ)â1(t+ τ)â1(t)⟩ dtdτ, (2.34)

where µ =
∫
I(t)dt is the mean photon number of a single pulse. This normaliza-

tion allows us to thus extract a single-photon purity given by : 1− g(2).
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2.4.3 . Indistinguishability : the Hong-Ou-Mandel effect

Another important figure of merit of the emitted wavepackets is the indistin-
guishability. It measures the purity of the quantum state in the temporal domain.
This property is quantified by the mean wavepacket overlap M , with M = 1 if the
emitted state is pure in the temporal domain. This indistinguishability is an impor-
tant requisite for performing any quantum gates in the Knill-Laflamme-Milburn
(KLM) scheme (see Section 3.5.2 and Refs. (31; 77; 78)). In this PhD work, this
quantity is also critical as it carries information on the coherence of the QD during
spontaneous emission. The indistinguishability of a photonic wavepacket can be
quantified using an unbalanced Mach-Zehnder interferometer, which we refer to
as a Hong-Ou-Mandel interferometer henceforth, see Fig. 2.15.

τ = τp

â1

â2

â3

â4

â

R,T

D1

D2

τp

Figure 2.15 – Hong-Ou-Mandel interferometer. A pulsed field â is in-
put to an unbalancedMach-Zehnder interferometer where it is tempo-
rally overlapped, using a delay line and a beam splitter, with a second
pulse separated by τp. The beam splitters have similar transmission
and reflection coefficients R ≈ T . Two detectors D1 and D2 register
photon detection events at the output of the second beam splitter.

To measure the indistinguishability we temporally overlap two consecutively
emitted photonic fields at the second beam splitter (R : T = 50 : 50) by inserting
a temporal delay equal to the pulse separation τp in one arm of the interferometer.
We then quantify the mean wavepacket overlap, or purity in the temporal domain,
according to :

M =
1

µ2

∫ ∫
|G(1)(t, τ)|2dtdτ =

1

µ2

∫ ∫
| ⟨â†(t+ τ)â(t)⟩ |2dtdτ (2.35)

where we introduce the first-order (amplitude) correlation function

G(1)(t, τ) = ⟨â†(t+ τ)â(t)⟩ (2.36)
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Figure 2.16 – Hong-Ou-Mandel coincidence histogram. Coincidences
as a function of relative delay τ for pulsed excitation in parallel (∥) po-
larization and perpendicular (⊥) polarization configuration. Peaks are
separated by pulse repetition rate τp.

in terms of the propagating input mode â(t).

In our setup, both beam splitters have very similar transmission and reflection
coefficients (R ≈ T ). Two superconducting nanowire single photon detectors
(D1, D2) at the outputs of the second beam splitter monitor output modes â3 and
â4, where we omit the time dependence for simplicity. If the consecutively emitted
wavepackets are indistinguishable, they will bunch together at the second beam
splitter. This effect is referred to as the Hong-Ou-Mandel effect, named after the
researchers who first experimentally reported on this phenomenon in 1987 (32).
Qualitatively, this phenomenon means that if you measure simultaneous events
(coincidences) with the detectors monitoring outputs â3 and â4 that the two input
fields share limited or no wavepacket overlap.

In practice, similar to measuring the single-photon purity, one can compute a
coincidence histogram measuring coincidence clicks over a period of time, resulting
in a time integrated histogram such as the one shown in Fig. 2.16. This histogram
contains two measurements : a coincidence histogram for wavepackets that share
same polarization (G(2)

HOM,∥), and wavepackets that have perpendicular polariza-

tion (G(2)
HOM,⊥) making them distinguishable 1. This second measurement, where no

interference is expected, is used as a reference to G
(2)
HOM,∥. The second-order cor-

relation function in terms of output mode operators describing this measurement
is given by

G
(2)
HOM(t, τ) = ⟨â†3(t)â

†
4(t+ τ)â3(t)â4(t+ τ)⟩ , (2.37)

and similar to the correlation function describing a HBT measurement, we have

1. For example by adding a half wave plate (λ/2) in one of the arms of the inter-
ferometer in Fig. 2.15.
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the time integral over the coincidences for delay τ

G
(2)
HOM(τ) =

∫
G

(2)
HOM(t, τ)dt, (2.38)

describing the histogram in Fig. 2.16.

We apply the beam splitter relations in Eq. 2.29 giving us G
(2)
HOM in terms of

â1, â2. To simplify the resulting expression we assume again that the emitted pulse
length (1/γ) is much shorter than τp. We then have :

4G
(2)
HOM(t, τ) = ⟨â†1(t)â

†
1(t+ τ)â1(t+ τ)â1(t)⟩

+ ⟨â†1(t)â1(t)⟩ ⟨â
†
2(t+ τ)â2(t+ τ)⟩

+ ⟨â†1(t+ τ)â1(t+ τ)⟩ ⟨â†2(t)â2(t)⟩

+ ⟨â†2(t)â
†
2(t+ τ)â2(t+ τ)â2(t⟩

− 2Re
(
⟨â†1(t)â1(t+ τ)⟩ ⟨â†2(t)â2(t+ τ)⟩

)
. (2.39)

We then apply the beam splitter relations a second time. In terms of input state â

we find
8G

(2)
HOM(t, τ) = I(t)I(t+ τ) +G(2)(t, τ)− |G(1)(t, τ)|2 (2.40)

with G(2)(t, τ) = ⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩, the second-order correlation from
measuring intensity correlations with the Hanbury Brown - Twiss setup and
G(1)(t, τ) containing the information on the indistinguishability M , see Eq. 2.35.

Similarly to the Hanbury-Brown and Twiss normalization procedure, the far
delay peaks τ = |t− t′| with t′ ≫ t serve as a reference for normalization. Indeed,
for single-photon input states these coincidences are uncorrelated, and Eq. 2.40
becomes :

4G
(2)
HOM(t, t′ ≫ t) = η1η2 ⟨â†3(t)â

†
4(t

′)â3(t)â4(t
′)⟩

= η1η2I3I4 = η1η2I
2. (2.41)

We define the normalized second-order correlation function according to :

g
(2)
HOM(τ) =

∫
G

(2)
HOM(t, τ)dt

2η1η2µ2
, (2.42)

with µ3 =
∫
I3dt and µ4 =

∫
I4dt. The peak at zero delay g

(2)
HOM(0) contains

the coincidences measured with zero delay between the detectors. This peak area
increases with simultaneous detection of photons, a sign of imperfect wavepacket
overlap M between the interfering states. To solve for M , one can use zero de-
lay coincidences measured in cross-polarization configuration where photons are
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made perfectly distinguishable, and thus serve as a benchmark where no interfe-
rence is expected. In such case, the second-order correlation function measured in
orthogonal polarization and for zero delay (τ = 0) is given by :∫

G
(2)
HOM,⊥(t, τ = 0)dt =

∫
1

4
η1η2I(t)I(t+ τ)dt =

1

4
η1η2µ

2 (2.43)

Because generally, the detector efficiencies in parallel and in orthogonal polarization
are not equal, ηi,∥ ̸= ηi,⊥, we define the the visibility of HOM interference, giving
access to M , through the normalized second-order correlation functions :

VHOM =
g
(2)
HOM,⊥(0)− g

(2)
HOM,∥(0)

g
(2)
HOM,⊥(0)

= 1−
g
(2)
HOM,∥(0)

g
(2)
HOM,⊥(0)

. (2.44)

Considering Eq. 2.42 and Eq. 2.43, we have g
(2)
HOM,⊥ = 1/2. As a result, the

visibility of Hong-Ou-Mandel interference reduces to : VHOM = M with M defined
in Eq. 2.35. It was previously shown that in presence of multi-photon components,
spectrally and temporally identical to the wanted single-photon component, the
HOM visibility in Eq. 2.44 can be written as : VHOM = M−g(2) (79; 80). However,
multi-photon components can arise from different sources, and as such share no
to limited overlap (i.e. temporally, spectrally) with the single-photon component.
Below we show how to account for such separable noise in indistinguishability
measurements.

Indistinguishability measurement of an imperfect source
As part of this PhD work, we conducted a study on how the mean wavepacket

indistinguishability (and thus HOM visibility) is affected by the nature of unwanted
multi-photon components (64; 81). We therefore differentiate between the total
mean wavepacket overlap M , which corresponds to the whole state after losses,
and the mean wavepacket overlap of the single-photon component at the source
Ms. The latter parameter is important as it reveals the impact of different
dephasing mechanisms on the single-photon source and is mostly independent
from the phenomena resulting in g(2) ̸= 0.

Multi-photon components can be classified as either distinguishable from, or
identical to the wanted single-photon component. In Ref. (81) we take these dif-
ferences into account and show that the visibility of HOM interference for an
imperfect single-photon source is given by (for R = T = 1/

√
2) :

VHOM = Ms −
(

1 +Ms

1 +Msn

)
g(2), (2.45)

where Msn is the mean wavepacket overlap between the single-photon component
and the noise photon, with 0 ≤ Msn ≤ Ms. We studied two limiting cases of this
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Figure 2.17 – The impact of different types of noise photons on the
visibility of HOM interference. The visibility of HOM interference as
a function of single-photon purity for distinguishable (green squares)
noise photons and identical (black circles) noise photons. Taken from
Ref. (81).

expression : Ms = Msn, when the noise photon is identical to the single-photon,
and Msn = 0, when the noise photon shares no overlap with the single-photon.
An experimental study of these two limiting cases shows that indeed the nature
of the noise photon impacts the HOM visibility differently. In Fig. 2.17 we
plot the visibility of HOM interference as a function of single-photon purity for
distinguishable (green squares) and identical (black circles) noise sources. Here
we add noise, increase g(2), by either increasingly adding laser photons (distingui-
shable) or single-photons from the same QD source (identical) to the light field.
The fits correspond to Eq. 2.45 considering Msn = 0 (green) and Ms = Msn (blue).

When considering the origin of noise in our QD sources, we can distinguish
between trion-based sources and exciton-based sources. For trion-based sources,
the multi-photon component arises from re-excitation during the excitation
pulse (81; 82). The photon can get emitted by the QD before the end of the
excitation pulse, leaving the possibility to emit a second photon. These photons
are therefore temporally distinguishable from each other, and as such deemed
as separable noise. Exciton-based sources on the other hand, do not suffer from
re-excitation. The fine-structure splitting and optical selection rules imply that
single-photon emission most likely occurs once the excitation pulse is over, see
Ref. (43). Therefore, noise contributing to a non-zero g(2) is dominantly caused
by imperfect laser rejection, and as such also considered as separable noise. We
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Figure 2.18 – Influence of the photon noise in exciton- and trion-
based sources. The visibility of HOM interference as a function of
single-photon purity for (a) an exciton-based source where we increase
g(2) by either increasing the pulse duration causing re-excitation (blue)
or decreasing the laser rejection (red), and for (b) a trion-based source
where we increase the pulse duration. Taken from Ref. (81).

thus expect, despite the different origins of multi-photon components, that in
both cases we can treat the multi-photon component in trion- and exciton-based
sources as uncorrelated – distinguishable – noise.

Subsequent measurements support this hypothesis, as shown in Fig. 2.18. Here
again we measure the HOM visibility as a function single-photon purity now for an
exciton- and a trion-based source. For both sources we increase the g(2) by either
increasing the pulse duration of the excitation pulse (exciton : red ; trion : purple),
or decreasing the suppression of the excitation laser (exciton : blue). The data is fit
with Eq. 2.45, from which we extract Msn = 0, indicating indeed that despite that
we can treat noise as separable for both trion- and exciton-based sources. Hence,
in the limit of low g(2) (g(2) < 0.15), the single-photon indistinguishability is given
by :

Ms =
VHOM + g(2)

1− g(2)
, (2.46)

for R = T = 1/
√
2. This equation is altered when compensating for imbalance in

the final beam splitter :

Ms =
VHOM + 4RT (1 + g(2))− 1

4RT (1− g(2))
. (2.47)

These formulas, Eq. 2.46 and Eq. 2.47, presented here and in Ref. (81) thus allow
to extract an upper bound (before losses) on the indistinguishability through HOM
measurements, knowing the single-photon purity of the wavepacket, and are used
in this thesis to quantify the wavepacket indistinguishability.
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2.5 . Coherent control and energy coherence

In this section, we discuss how we can coherently control the state of our
QD through resonant excitation of the transition. This technique is central for
the present PhD work : it allows to create a quantum superposition of the QD
ground and excited state. We then recall an important result published in 2019 by
our group showing for the first time how this coherence in the QD energy basis is
transferred to the electromagnetic field upon spontaneous emission (83).

2.5.1 . Coherent control of a two-level system
In this section we use the optical Bloch equations (OBE) in the Schrödinger

picture to describe the dynamics of a coherently driven two-level system. This
set of equations also describes the decay of the excited state population of an
atom, thereby populating the ground state, as well as the decay of coherences (68).

Let us start by considering the Hamiltonian describing the quantized qubit-
cavity system under coherent driving :

Ĥ = Ĥatom + Ĥcavity + Ĥint, (2.48)

with Ĥatom the Hamiltonian describing the qubit dynamics, Ĥcavity the field Ha-
miltonian inside the cavity, and Ĥint the interaction Hamiltonian describing the
coupling between the two quantized systems. The atom Hamiltonian is given by

Ĥatom = ℏω0σ̂+σ̂− (2.49)

with ω0 the transition frequency between the ground and excited state, and with
the raising and lowering operators :

σ̂+ = |e⟩ ⟨g|
σ̂− = |g⟩ ⟨e| ,

respectively, and where

|g⟩ =
[
1
0

]
|e⟩ =

[
0
1

]
.

We can also introduce the inversion operator

σ̂3 = |e⟩ ⟨e| − |g⟩ ⟨g| , (2.50)

where the introduced operators obey

[σ̂+, σ̂−] = σ̂3

[σ̂3, σ̂±] = ±2σ̂±. (2.51)

The Hamiltonian of the quantized electromagnetic field in the cavity, approxi-
mated as a single mode field, is written as

Ĥcavity = ℏωâ†â, (2.52)
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and the interaction Hamiltonian as :

Ĥint = −d̂ · Ê,

with dipole operator :
d̂ = dge(σ− + σ+). (2.53)

The electric field at the position of the QD (r0) is given by, see Section 2.3 :

Ê(r0) =

√
ℏω

2n2ϵ0V
p(r0)(â+ â†), (2.54)

where p(r0) is the real part of the normalized spatial mode profile (polarization
mode), and we recall V is the quantization volume. We can now write the inter-
action Hamiltonian as

Ĥint = ℏg(σ̂+ + σ̂−)(â+ â†). (2.55)

Here we recognize the coupling strength g, previously introduced, whose definition
can be written as

ℏg =

√
ℏω

2n2ϵ0V
dge · p(r0), (2.56)

If we assume the field is maximum at r0 and the polarization of the field is aligned
to the dipole (i.e. dge · p(r0) = d), the coupling strength can be written as :

ℏg = d

√
ℏω

2n2ϵ0V
, (2.57)

where we assume d is real.

When driving the QD on-resonance (ω ≈ ω0), this parameter g is related to
the Rabi frequency ΩR through ΩR = 2gα (84). This is the frequency, dependent
on the coupling strength and field amplitude α =

√
I (with I the field intensity),

at which the populations of the combined QD-cavity system oscillate, known
as Rabi oscillations. If the field is initially in a vacuum state, then we have ΩR = 2g.

Combining the three Hamiltonians, we obtain the total Hamiltonian of the
two-body system :

Ĥ = Ĥatom + Ĥcavity + Ĥint

= ℏω0σ̂+σ̂− + ℏωâ†â+
ΩRℏ
2

(σ̂+ + σ̂−)(â+ â†). (2.58)

We simplify this Hamiltonian by expressing the operators in terms of their explicit
time dependence :

â(t) = â(0)e−iωt, â†(t) = â†(0)eiωt, σ̂±(t) = σ̂±(0)e
±iω0t. (2.59)
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Then the products of the operators in Eq. 2.58 become

σ̂+â ∼ ei(ω0−ω)t, σ̂−â
† ∼ e−i(ω0−ω)t,

σ̂+â
† ∼ ei(ω0+ω)t, σ̂−â ∼ e−i(ω0+ω)t.

For ω0 ≈ ω, the two terms containing the sum of frequencies (bottom line) will
vary faster than the other two terms. The last two terms σ̂+â†, σ̂−â do not uphold
energy conservation, and correspond to the emission of a photon as the atom
transitions from the ground to the excited state, and to the absorption of a photon
as the atom goes from the excited state to the ground state, respectively. These
non-energy conserving terms cancel under the rotating wave approximation, where
we use the fact that the fast evolving terms containing ω0 + ω average to zero
when time integrating. This allows us to write the total Hamiltonian as :

Ĥ = ℏω0σ̂+σ̂− + ℏωâ†â+
ΩRℏ
2

(σ̂+â+ σ̂−â
†), (2.60)

which is referred to as the Jaynes-Cummings model, and describes the inter-
action between a two-level system and a single-mode electromagnetic field (68; 85).

We now turn to the semi-classical representation of the electromagnetic field to
describe the dynamics of a coherently driven QD using the optical Bloch equations
in the Schrödinger picture. The density matrix describing our two-level system in
the energy basis is given by :

ρ =

[
ρee ρeg
ρge ρgg

]
,

with ρij = ⟨i|ρ|j⟩. The diagonal entries correspond to the populations of the
ground and excited state, and the off-diagonal terms contain coherences, also
called energy coherence. We can write the master equation for a dissipative process,
describing the evolution of the two-level system upon interaction with the driving
field as (83; 86; 87) :

d

dt
ρ(t) =− i

ℏ
[Ĥ, ρ] +

γ

2
([σ̂−, ρσ̂+] + [σ̂−ρ, σ̂+])

+ γ∗ ([σ̂−σ̂+, ρσ̂−σ̂+] + [σ̂−σ̂+ρ, σ̂−σ̂+]) , (2.61)

with total decoherence rate Γ = γ/2+γ∗, where γ is the spontaneous decay
rate and γ∗ the dephasing rate of the two-level system. We can discard the
bare cavity Hamiltonian as it does not contribute to the dynamics of the system
in the weak coupling regime, thus leaving the effective Hamiltonian :

Ĥeff = Ĥatom + Ĥint = ℏω0σ̂+σ̂− +
ΩRℏ
2

(σ̂+e
iωt + σ̂−e

−iωt). (2.62)
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To solve the equation of motion for any of the density matrix elements, one
can compute ⟨i|ρ|j⟩. For example, let us consider the off-diagonal elements of the
density matrix, the first part of the master equation becomes :

d

dt
ρeg = − i

ℏ
⟨e|[Ĥeff, ρ]|g⟩ (2.63)

When substituting Ĥeff for Eq. 2.62, we can divide the equation into three parts.
Using σ− |e⟩ = |g⟩ , σ− |g⟩ = 0, σ+ |e⟩ = 0 and σ+ |g⟩ = |e⟩, the evolution of the
two-level system gives

− i

ℏ
⟨e|[Ĥatom, ρ]|g⟩ = −iω0 ⟨e|(σ+σ−ρ− ρσ+σ−)|g⟩ = −iω0ρeg. (2.64)

The second part, containing the interaction Hamiltonian, leads to

− i

ℏ
⟨e|[Ĥint, ρ]|g⟩ = −i

ΩR

2
⟨e|(σ−eiωt + σ+e

−iωt)ρ− ρ(σ−e
iωt + σ+e

−iωt)|g⟩

= −i
ΩR

2
⟨g|e−iωtρ|g⟩+ i

ΩR

2
⟨e|e−iωtρ|e⟩

= i
ΩR

2
(ρee − ρgg)e

−iωt, (2.65)

and the dissipative term in Eq. 2.62 becomes −γ∗ρeg. Combining the three ele-
ments, we obtain the evolution of density matrix element ρeg (energy coherence
term) :

d

dt
ρeg = −γ∗ρeg − iω0ρeg + i

ΩR

2
(ρee − ρgg)e

−iωt. (2.66)

Finally, we simplify the expression by moving into the rotating frame, thereby
obtaining :

d

dt
ρeg =

d

dt
ρ∗ge = −γ∗ρeg + i∆ρeg + i

ΩR

2
(ρgg − ρee), (2.67)

where ∆ = ω0 − ω. In a similar fashion, we obtain expressions for the ground
and excited state population dynamics. We then write the coupled optical Bloch
equations describing the dynamics of a two-level system upon resonant excitation :

ρ̇ee
ρ̇gg
ρ̇ge
ρ̇eg

 =


−γ 0 iΩR

2
−iΩR

2

γ 0 −iΩR
2

iΩR
2

iΩR
2

−iΩR
2 −i∆− γ∗ 0

−iΩR
2

iΩR
2 0 i∆− γ∗



ρee
ρgg
ρge
ρeg

 , (2.68)

where we take for on-resonance conditions ∆ = 0. We can see from the coupled
Bloch equations that the density matrix elements ρgg and ρee decay with
spontaneous emission rate γ, whereas the coherences are affected by dephasing of
the system.
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We can solve these coupled equations for some particular cases, such as for
purely coherent dynamics (Γ = 0). If we assume an atom initially in the ground
state and ∆ = 0, we get the coupled equations :

d

dt
ρee = − d

dt
ρgg =

iΩR

2
(ρeg − ρge) (2.69)

d

dt
ρeg =

d

dt
ρ∗ge =

iΩR

2
(ρgg − ρee) (2.70)

Solving these differential equations for ρ results in :

ρee = sin2
(
ΩR

2
t

)
(2.71)

ρge = i sin

(
ΩR

2
t

)
cos

(
ΩR

2
t

)
, (2.72)

which describe the evolution of the density matrix for a closed quantum system.
The populations at time t, or probability of finding the atom in the ground state
|g⟩ or excited state |e⟩ with the atom initially in the ground state, are given by

Pg = cos2
(
ΩR

2
t

)
(2.73)

Pe = sin2
(
ΩR

2
t

)
, (2.74)

respectively. For a pulse duration equal to t = π/ΩR, these equations predict full
population inversion and no coherences. In Fig. 2.19 we plot different solutions to
the optical Bloch equations in Eq. 2.68, population oscillations as a function of
time for ∆ = 0. We plot the excited state population as a function of time where
we assume the driving field stays on after time t = 0. The dephasing rate γ∗

affects the time it takes to reduce the oscillations to a steady-state. Whereas the
Rabi frequency ΩR = 2g

√
I impacts the probability of reaching the excited state,

and the oscillation frequency. For an ideal emitter, we have γ∗ = 0, or Γ = γ/2.
Under the latter condition, we call the emitter a lifetime-limited quantum emitter.

Measuring population oscillations (Rabi oscillations) in emission, whether in
absence or presence of damping, are an indication of coherent control over the qubit
state whereby the light field and the qubit periodically exchange energy at frequency
ΩR. We show in Section 2.5.4 how we measure these Rabi oscillations, which attest
for coherent control over the QD states, and as we will show in Section 2.5.5, in
our system also leads to the generation of photon-number superpositions with
coherence in the photon-number basis.
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Figure 2.19 – Solutions to optical Bloch equations. The excited state
population ρee as a function of time when driving with resonant laser
field ∆ = 0. For different Rabi frequencies ΩR (intensity of the driving
field) and dephasing rates γ∗.

2.5.2 . Resonant excitation of a QD in a cavity

To resonantly excite our QD source and reject the excitation laser that is at the
same wavelength as the single-photons, we use a cross-polarization configuration,
Fig 2.20. We resonantly (≈ 925 nm) excite our QD inside a cryostation with a
pulsed laser with a pulse duration between 3 − 7 ps. The excitation laser has a
polarization dictated by the first polarizer and polarizing beam splitter (PBS) in
Fig. 2.20. The polarization is set to the transmission axis of the PBS. By aligning
the quarter- (λ/4) and half-wave (λ/2) plate we can control the linear polarization
of the light entering the cavity and we can compensate for distortions in polarization
due to ellipticity in our setup. We set the polarization of the excitation field along
one of the cavity axes so not to collect reflected laser light whose polarization is ro-
tated by the cavity birefringence. As a result, the laser light reflected from the pillar
and the emission from the QD are cross-polarized. This orthogonal polarization in
combination with the PBS leads to rejection of the laser field in the collection
path. The remaining field, containing the emission from the QD, is then either
sent to other optical setups, to a spectrometer (Horiba, 35 pixels/nanometer), or
to superconducting nanowire single-photon detectors (SNSPDs, Single Quantum)
for characterization or other measurements.
Note that, although the pillar cavity is mostly of circular shaped, the cavity still

presents some birefringence caused by slight asymmetries in the cylindrical geo-
metry arising from anisotropy present during the etching step of the fabrication
process. As a result, the cavity supports two perpendicular linearly polarized cavity
modes H and V split by energy. This cavity birefringence puts constraints on the
resonant excitation of exciton and trion states coupled to micropillar cavities as we
summarize below.
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Figure 2.20 – Cross-polarization configuration for resonant excita-
tion of the QD. The polarization of the resonant excitation laser is set
in cross-polarization with respect to the emission of the QD through
a set of polarizers, waveplates and a polarizing beam splitter (PBS).
An objective lens placed inside the cryostat focuses the laser onto the
sample. The emitted field is reflected from the PBS and sent towards
other parts of the setup.

Resonant fluorescence of a neutral QD
The energy level diagram of a neutral QD consists of three levels, Fig. 2.4.

The three levels constitute a ground state |g⟩ and two excited states |X⟩ , |Y ⟩,
separated by the fine-structure splitting ∆FSS = Ex − Ey. The neutral exciton
states couple to the cavity modes |V ⟩ and |H⟩ according to :

|V ⟩ = − sin(θ) |X⟩+ cos(θ) |Y ⟩
|H⟩ = cos(θ) |X⟩+ sin(θ) |Y ⟩ ,

where θ is the angle between the X-dipole and H-polarization axis, see Fig. 2.21.
This angle θ is determined randomly during the fabrication process as a result of
cavity (a-)symmetry.

In cross-polarization configuration we align the polarization of the excitation
laser to the polarization of the PBS in Fig. 2.20, Vexc, at 90◦ angle with respect to
the polarization of the collected photons, Hcoll. Whenever Vexc and Hcoll are not
aligned to the cavity axes V and H (ϕ ̸= 0 in Fig. 2.20(a)), cavity birefringence –
effectively acting as a wave plate – causes the excitation light to rotate to Hcoll.
This laser leakage causes serious degrading of the collected single-photon purity
and indistinguishability. As such, it is necessary to align the excitation and

57



|H⟩|V ⟩

|H⟩=cos(θ)|X⟩

|V ⟩=− sin(θ)|X⟩

ℏωXY cos(2θ)

ℏωXY
2 sin(2θ)

|g⟩

+cos(θ)|Y ⟩

+sin(θ)|Y ⟩

H

V Y

X

Vexc

Hcoll

ϕ

θ

(a) (b)

Figure 2.21 – Energy level diagram of a neutral QD.(a) Orientation
of QD dipole axes X, Y , cavity polarization axes V,H , and polarization
axes of the excitation laser Vexc and collection polarization Hcoll, with
θ the angle between the X-dipole and H-polarization axis, and ϕ the
angle between the cavity H axis and the collection polarization Hcoll.
(b) Energy level diagram of an exciton based quantum dot source in
the cavity mode bases with ground |g⟩ and excited states |V ⟩, |H⟩, and
where θ is directly linked to the fine-structure splitting according to
∆FSS = ℏωXY sin(2θ)/2.

collection axes along the cavity axes such that ϕ = 0 and V = Vexc, H = Hcoll.

In the cavity polarization basis, the energy level diagram of a neutral QD can
be described by Fig. 2.21(b). We see that under resonant excitation the coupling
between the excited states |V ⟩ and |H⟩, proportional to the fine-structure splitting
∆FSS = ℏωXY sin(2θ)/2, gives rise to an oscillation in excited state populations
whenever θ ̸= 0. As a result, the emission of a photon will have a time-dependent
probability of being H-polarized. Using a cross-polarization configuration to excite
in V -polarization and collect photons in H-polarization will thus lead to the
rejection of any photon emitted in V . Contrastingly, if θ = 0 or π/2 – equivalent
to excitation in |X⟩ or |Y ⟩ – the emitted photons have the same polarization as
the driving field. In such case, cross-polarization configuration cannot be used to
measure single-photons.

Resonant fluorescence of a charged QD

In the case of a charged QD, the resonant excitation scheme is much simpler.
Indeed, as shown in Fig. 2.22, in absence of an in-plane magnetic field, the optical
selection rules can be rewritten in the cavity polarization basis with H and V .
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Figure 2.22 – Energy level diagram trion. (a) The degenerate ground
and excited state levels of a positively charged trion state, composed
of hole spin states |⇑⟩Z , |⇓⟩Z , and electron spin states |↑⟩Z , |↓⟩Z , in ab-
sence of a magnetic field. (b) Same as in for (a), but rewritten in the
cavity polarization basis H and V .

Defining

|⇑X⟩ = 1√
2
(|⇑Z⟩+ |⇓Z⟩)

|⇓X⟩ = 1√
2
(|⇑Z⟩ − |⇓Z⟩),

and similar expressions for the excited states, we can write the linearly polarized
optical transitions connecting the ground and excited states :

|H⟩ = 1√
2
(|R⟩+ |L⟩)

|V ⟩ = −i√
2
(|R⟩ − |L⟩),

which leads to the energy level diagram in the cavity polarization basis in
Fig. 2.5(b). There we see that a linearly polarized V excitation pulse populates
both excited states, which in turn both radiate H polarized light with a 50%

probability.
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2.5.3 . Excitation pulse shaping

f ff f

grating grating
L1 L1

mirror

slit

Figure 2.23 – A 4f-system to control the temporal shape of a co-
herent field. Two gratings, two lenses L1 with focal length f and a slit
are all placed at distance f from each other. A slit allows for selecting
wavelengths of the 3 ps pulsed laser, thereby temporally shaping the
excitation laser.

In our experiments we use mode-locked Ti :Sapphire wavelength-tunable driving
lasers (Mira from Coherent, and Tsunami from SpectraPhysics) which produce 3 ps
pulses at a repetition rate of 81MHz. For the experiments in this thesis we need
to control the pulse duration, or temporal shape, of the driving laser. In order to
alter the pulse duration we use a 4f-system as depicted in Fig. 2.23. The setup
consists of 2 gratings with 1200 lines/mm, 2 lenses L1 of focal length f , and a slit,
all equidistantly placed at distance f of each other. The laser pulse is spectrally
dispersed by the first diffraction grating. Next, a convex lens with focal length
f makes the different spectral components of the beam parallel. A slit placed in
the Fourier plane (at the shared focal point of the two lenses) allows to select a
spectral component of the beam, cutting out the unwanted components. A second
lens converges the beam onto a second grating which collapses the remaining
components into a coherent beam. This technique allows us to adjust the pulse
duration from 3 ps up to 15 ps. To achieve longer pulse durations we can insert
multiple etalons in the path of the shaped laser pulse. The combination of 4f-line
and etalons allows us to reach pulses with durations up to the lifetime of a single
photon (around 180 ps). Moreover, shaping the spectral or temporal profile of our
driving laser also allows us to increase the mode matching between the laser field
and the QD-micropillar cavity to increase the excitation efficiency.
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2.5.4 . Example of measured Rabi oscillations
We present here an example of measured Rabi oscillations when we resonantly

drive our QD with a pulsed laser with constant pulse duration t = τexc (here 3ps)
while varying the laser power. We measure the QD emission intensity IQD as a
function of laser power P . During the excitation pulse, the ground and excited state
populations of the QD oscillate with Rabi frequency ΩR. The Rabi frequency is
proportional to the electric field amplitude, and thus to

√
P . After the pulse, the QD

returns to the ground state, emitting a single-photon. The probability of emitting
a single-photon is proportional to the probability of the QD being in the excited
state, Pe = sin2 (θ/2) (Eq. 2.74) where we define pulse area θ =

∫
ΩR(t)dt, not

to be confused with the angle previously used to define the fine-structure splitting
in Section 2.5.2.

1 1.5
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Figure 2.24 – Example of measured Rabi oscillations. The measured
emission intensity of a quantum dot as a function of pulse area θ of the
driving laser, where θ = 2arcsin(

√
P ). By varying the pulse area we can

see a periodic increase and decrease of emission intensity of our QD.

The relation between Rabi frequency and laser power (ΩR = 2g
√
I) reveals

that the emission intensity IQD of a two-level system oscillating with phase ΩRτexc
is directly related to

√
P , and proportional to :

IQD ∝ sin2
(
θ

2

)
. (2.75)

Fig. 2.24 shows a typical Rabi oscillation measurement from our two-level system,
where we plot the unnormalized emission intensity as a function of the effective
pulse area θ = 2arcsin(

√
P ) in units of π, from θ = 0 to 2.5π. We observe

that as we increase the excitation power, the probability of the QD being in the
excited state, increases. We can define the pulse area for which the QD emission
is maximum : θ = π, with an excitation probability approaching unity. This pulse
area is referred to as π-pulse and equal to the power necessary to generate a
single-photon Fock state.
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2.5.5 . Energy coherence in the emitted light field

In 2019, our group demonstrated in Ref. (83) that the coherently driven
QD-cavity systems produce quantum superpositions of zero and one photons, in
other words : coherence in the photon-number basis. In this section we recall
these results that are the core of my PhD studies.

As mentioned in Section 2.5.4 we have coherent control over the atomic state
of our QD through resonant pulsed excitation. To simplify, we consider the case of a
two-level system composed of a ground |g⟩ and excited |e⟩ state. As we resonantly
drive our QD, we generate a superposition in the two-level system basis :

|Ψatom⟩ =
√
pg |g⟩+

√
pee

iα |e⟩ , (2.76)

where we use pg and pe to indicate the ground and excited state populations,
given by cos(θ/2) and sin(θ/2), respectively. Moreover, this coherent driving also
imprints its classical phase α onto the atomic state, and brings energy coherence
to the qubit as seen in the off-diagonal terms of the density matrix describing the
state :

ρ =

[
pg e−iα√pgpe

eiα
√
pepg pe

]
.

Thus, we can write the energy coherence initially given to the qubit as :

s(0) = eiα
√
pgpe = eiα cos

(
θ

2

)
sin

(
θ

2

)
. (2.77)

Upon spontaneous decay, Ref. (83) demonstrated experimentally that the cohe-
rence present in the atom is transferred onto the photonic field, generating a
photonic field according to :

|Ψa⟩ =
√
p0 |0⟩+

√
p1e

iα |1⟩ , (2.78)

where p0 = pg and p1 = pe.

To demonstrate this phenomena, the authors performed homodyne measure-
ments with the emitted photonic fields using an unbalanced Mach-Zehnder inter-
ferometer as described in Section 2.4.3 and seen in Fig. 2.25 from Ref. (83). Here
the HOM interference takes place at a 50 : 50 fibered beam splitter (FBS) bet-
ween two consecutively emitted fields, one described by Eq. 2.78, and the other
only differing by a relative phase ϕ between the states :

|Ψb⟩ =
√
p0 |0⟩+

√
p1e

i(α+ϕ) |1⟩ , (2.79)

where ϕ arises from path length differences between the two arms of the MZI.
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Figure 2.25 – Measuring photon-number coherence. A pulsed state
ρ̂s comprising a photon-number superposition is input to a HOM inter-
ferometer. A temporal delay τ , matched to the repetition rate of the
pulses, temporally overlaps two consecutively entering states ρ̂s at a
50 :50 fiber beam splitter. Detectors monitoring the outputs of the FBS
register the coincidence clicks. Taken from Ref. (83).

The output state resulting from interference is :

|Ψout⟩ =p0 |0, 0⟩+
p1√
2
ei(2α+ϕ)(|2, 0⟩ − |0, 2⟩)

+
√

2p0p1e
i(α+ϕ

2
)

(
cos

(
ϕ

2

)
|1, 0⟩ − i sin

(
ϕ

2

)
|0, 1⟩

)
, (2.80)

where we find the N00N (N = 2) state for p0 = 0. In contrast, whenever p0 ̸= 0

we obtain an oscillation in the single counts |1, 0⟩ , |0, 1⟩ as a function of the
interferometer phase ϕ : µc,d = p1(1± p0 cos(ϕ)). Defining the visibility of single
counts :

vmax = max
ϕ

µc − µd

µc + µd
, (2.81)

one can show vmax = p0 for pure states in the photon-number basis, as described
in Eq. 2.79.

To describe the more general situation where the light fields can no longer
be described by a pure photonic state, the authors of Ref. (83) defined a density
matrix in the form of :

ρS = λρpure + (1− λ)ρmixed, (2.82)

with ρpure = |Ψi⟩ ⟨Ψi| and ρmixed = diag{p0, p1} a diagonal matrix, and λ a
parameter tuning the photon-number purity. The density matrix of the pure
state is given by :

ρpure =

(
p0

√
p0p1√

p1p0 p1

)
, (2.83)

with photon-number coherence given by the off-diagonal elements
ρ01 = ρ∗10 =

√
p0p1.
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Figure 2.26 – Signatureof photon-number coherence.Normalized in-
tensities measured by detectors (here c, d) as a function of time when
driving a QD below π-pulse, here for pulse areas A = θ of 0.14π and
0.61π. The anticorrelated oscillations evidence the generation of quan-
tum coherence in the photon-number basis and temporal domain. Ta-
ken from Ref. (83)

The visibility amplitude for a general state described by ρS is given by :

vmax = λ2p0
√

Ms, (2.84)

with the photon indistinguishability (or purity in the temporal domain) Ms given
previously in Section 2.4.3. Importantly, indistinguishability and photon-number
purity both affect the visibility amplitude. As a result, observing vmax ̸= 0 means
that the light field contains quantum coherences both in the photon-
number basis and temporal domain.

To demonstrate that the coherence of the atomic state is transferred onto the
photonic field, the authors of Ref. (83) registered the single counts over 350sec
with the setup in Fig. 2.25 for different values of p0 (or pulse area θ, here A).
Two resulting timetraces are given in Fig. 2.26, where they observe anticorrelated
oscillations as a function of freely evolving phase ϕ, evidence the generation of
quantum coherence in the photon-number basis and temporal domain. Moreover,
the amplitude of these anticorrelated oscillations increases with lower pulse areas,
as predicted. From these measurements, they extract the visibility as a function of
pulse area vmax, see Fig. 2.27. By fitting the data to vmax = λ2p0

√
Ms, they were

able to deduce the purity in photon-number basis λ = 0.965 ± 0.018 for a mean
wavepacket overlap Ms = 0.903± 0.008 that is measured at θ = π from standard
HOM measurements (see Section 2.4.3), where λ ≈ 1 indicates a pure state in the
photon-number basis.

This paper is the starting point of my thesis in which we use the ability to
generate any arbitrary photon-number superposition up to a single-photon Fock
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Figure 2.27 – Extracting purity in the photon-number basis. The vi-
sibility of single counts as a function of pulse area A = θ (or emis-
sion intensity in MHz), where the experimental data is indicated by the
squares. The fit to the data is given by vmax = λ2p0

√
M , from which the

purity in the photon-number basis λ is extracted. Taken from Ref. (83).

state with high purity in the photon-number basis to investigate the influence of
first-order coherence, or quantum coherence, on energetic transfers and quantum
measurements.

Conclusion Chapter 2 – Basics of a quantum dot-cavity system and photon-
number coherence

In this chapter we have introduced all the tools necessary to present the
main results of my PhD work. With these tools, we first study Chapter 3
the impact of photon-number coherence on basic quantum protocols, such
as the cornerstone of linear optical quantum computing : Hong-Ou-Mandel
interference. By extension, we then show that this result has implications for
certain types of quantum gates. In Chapter 4 and 5 we show that photon-
number coherence plays an important role in the energetics of basic quantum
optics schemes. Specifically, we investigate the energetics of three key buil-
ding blocks in quantum information processing : quantum light generation,
two field interference, and Ramsey interferometry.
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3 - Quantum interference with photon-
number superpositions

3.1 . Introduction

Over the past few decades, quantum computing based on single-photon
sources has emerged as a promising platform (14; 47; 88; 89). The underlying
principle of many quantum technologies such as linear optical quantum compu-
ting (9), quantum networks (4; 5), and quantum key distribution (2; 3), is the
Hong-Ou-Mandel effect (32) where two identical single-photons impinging on
a beam splitter get entangled (see Section 2.4.3).

To fully exploit this feature, these technologies require single-photon sources,
which ideally generate highly indistinguishable single-photons on demand. Over
the years several quantum emitter platforms have been developed and opti-
mized in parallel of which semiconductor quantum dot-cavity systems are one
example (14; 74; 88; 90; 91). To create highly indistinguishable photons with
these quantum emitters, requires bringing the two-level system in the excited
state with minimal time jitter. A common method to bring a quantum emitter
into the excited state is using coherent excitation techniques such as resonant
excitation (see Section 2.5.2) or two-photon excitation schemes (92–94). With
these techniques quantum dot-cavity systems are able to produce single-photons
of high indistinguishability (13; 14; 25), making them excellent building blocks for
optical quantum technologies.

With the work of Loredo et al. (see Section 2.5.5) it was evidenced that under
coherent excitation, a two-level system generates quantum superpositions of
vacuum and one-photon Fock states : the energy coherence initially imprinted on
the driven qubit is transferred onto the electromagnetic field through spontaneous
emission (83). Changing the drive power and optical phase ϕ allows to tune the
vacuum and one-photon component of the emitted field and the coherence in
photon-number basis. This demonstration opens up new pathways to encode
information in quantum states of light (36), and already led to new quantum
sampling schemes such as superposition Boson sampling (39), and theoretical
proposals for twin-field quantum key distribution (95).

Despite the potential applications of quantum superpositions, common quan-
tum protocols so far have been based on single-photon inputs. However, physical
limitations and experimental inaccuracies – as we show in this chapter – often
result in the generation of unwanted photon-number coherence. Here we study
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the effect of photon-number coherence on core building blocks of optical quantum
technologies. We first study the impact of photon-number coherence on the
Hong-Ou-Mandel (HOM) interference, and show that considering photon-number
coherence forces to rethink commonly used normalization methods to extract
single-photon indistinguishability. We show that because it was overlooked, this
effect has led to improper indistinguishability measurements in the past. Secondly,
we observe new physical phenomena when interfering trains of photon-number
superpositions with an unbalanced Mach-Zehnder interferometer : the presence of
quantum interference between temporally separated photonic fields when partially
measuring the qubits. We explore the consequences of this new effect in quantum
computing schemes relying on partial qubit measurements such as heralded CNOT
gates. The results we report here, demonstrate a sample of the wide range of
possibilities and complications arising from performing quantum protocols with
photon-number superpositions.

The work presented in this chapter has been developed in close collaboration
with Jean Senellart 1 and Dr. Stephen Wein 2 who provided the theory for the
research.

1. Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France.
2. Previously : Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000

Grenoble, France.
Currently : Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France.
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3.2 . Generation of photon-number coherence under resonant
excitation

Optical quantum protocols frequently require photonic fields of high brightness
and high single-photon purity, g(2) = 0 (Section 2.4.2). However, finding the right
conditions for particular measurements is generally a trade-off between these two
requirements. Indeed, as discussed for instance in Refs. (96; 97), re-excitation of
the QD during the drive pulse decreases the single-photon purity, an effect
that increases with the pulse area θ. Experimentalists often choose to operate
below θ = π to minimize re-excitation effects that reduce the single-photon purity.
As a result, following our discussion in Section 2.5.5, the photonic field emitted by
the two-level system is of the form :

|Ψ⟩ = √
p0 |0⟩+ eiϕ

√
p1 |1⟩ , (3.1)

presenting photon-number coherence attested by the off-diagonal density ma-
trix elements ρ01 =

√
p0p1, and where p0 = cos2(θ/2) and p1 = sin2(θ/2).

Consequently, when performing Hong-Ou-Mandel measurements using an unba-
lanced Mach-Zehnder interferometer, oscillations in single counts are expected – as
a function of the optical phase ϕ – between the two arms of the interferometer (83).
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Figure 3.1 – Photon-number coherence for π-pulse. The intensities µ1

and µ2 measured with two detectors in a Hong-Ou-Mandel interfero-
meter as a function of time for θ ≈ π. The presence of anti-correlated
oscillations as a function of ϕ indicates the presence of photon-number
coherence.

On the other hand, to increase brightness and reducing the vacuum component
in the field, requires driving the quantum emitter with θ = π at the potential
cost of reducing the single-photon purity, i.e. the addition of a two-photon
component in the field. Yet, even when operating close to θ = π with a
temporally short pulse (7 ps), we experimentally observe single counts oscillations
in HOM measurements when driving a QD source resonantly as shown in Fig. 3.1,
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which presents a typical intensity time trace recorded with two detectors part of
the HOM setup presented in Fig. 2.15. These anti-correlated oscillations indicate
the presence of photon-number coherences, despite driving the quantum emitter
close to population inversion.

3.2.1 . First-order coherence
At this point, we need to introduce the notion of first-order coherence, descri-

bing the coherence in photon-number basis between |n⟩ and |n+ 1⟩ Fock states.
We first generalize the study of Ref. (83) by considering a more general photonic
state comprising the |0⟩ and |1⟩ Fock state in the pulse operator formalism (98) :

ρ̂ =p0 |0⟩ ⟨0|+ p1

∫∫
dtdt′ξ(t, t′)â†(t) |0⟩ ⟨0| â(t′)

+
√
p0p1

∫
dtζ(t)â†(t) |0⟩ ⟨0|+ h.c.

=p0ρ̂0 + p1ρ̂1 +
√
p0p1(ρ̂01 + ρ̂10), (3.2)

where ρ̂i(j) = |i⟩ ⟨i(j)| is the photonic density operator, and â(t) is the propagating
mode, and the photon-number probabilities p0, p1 satisfy p0+p1 = 1. Additionally,
we introduce two parameters : the Hermitian function ξ(t, t′) = ξ∗(t′, t) describing
the temporal shape and coherence of the pulse, and the complex amplitude ζ(t)

describing the temporal dynamics of the photon-number coherence. Thus, if the
photonic field ρ̂ is a pure field, Tr[ρ̂] = 1 we have

∫
ξ(t, t)dt = 1.

For a state described by Eq. 3.2 the total purity (i.e. in photon-number and
temporal domain) of the state is given by

P = Tr[ρ̂2] = p20 + p21Ms + 2p0p1C (3.3)

with the single-photon indistinguishability, or purity in the temporal domain :

Ms = Tr[ρ̂21] =

∫∫
|ξ(t, t′)|2dtdt′. (3.4)

The parameter C is to define the purity in the number coherence between the
vacuum and the single photon Fock state :

C = Tr[ρ̂01ρ̂10] =

∫
|ζ(t)|2dt. (3.5)

We note that if we consider a quantum emitter affected by pure dephasing, we
obtain (Appendix 8.2) :

Ms =
γ

γ + 2γ∗
(3.6)

C = λ2

(
γ

γ + 2γ∗

)
= λ2Ms, (3.7)
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with γ the spontaneous decay rate, γ∗ the dephasing rate (Section 2.5.1), and
λ a parameter tuning the purity in photon-number basis (Section 2.5.5 and
Ref. (83)). Thus, for a quantum emitter subject to pure dephasing we find
Ms = C. However, when considering other dephasing mechanisms, we have
C ≤

√
Ms, see Appendix 8.3.

We define the first-order coherence between the |n⟩ and |n+ 1⟩ photon-number
states present in the field as :

c(1) =
1

µ

∫
| ⟨â(t)⟩ |2dt, (3.8)

In the case of the state described by Eq. 3.2, limited to zero and one-photon, the
first-order coherence is given by :

c(1) = cos2
(
θ

2

)
C. (3.9)

As we show below, in case of a light state comprising zero, one-, and two-photon
Fock states, the same definition holds. Generally speaking, this first-order coherence
c(1) is related to the single counts visibility in the Mach-Zehnder-based Hong-Ou-
Mandel interference, where the visibility is given by :

v(t) =
µ1(t)− µ2(t)

µ1(t) + µ2(t)
, (3.10)

with average photon-number µi =
∫
⟨â†i (t)âi(t)⟩ dt measured by detector Di. We

then find the visibility is related to the first-order coherence between |0⟩ and |1⟩
according to :

v = cos(ϕ)c(1), (3.11)

see Section 4.3.1 for explicit derivation.

3.2.2 . Re-excitation and first-order coherence
The observation of a non-zero visibility at θ = π is thus a signature of first-

order coherence. The presence of first-order coherence for θ = π can be explained
by considering light-matter interaction between a temporally finite excitation pulse
and the quantum emitter, whereby the emitter undergoes stimulated emission and
absorption during the pulse (96; 97). As a result, there is a possibility that a second
photon is emitted at the end of the pulse. Indeed, a simulation in Fig. 3.2(a) for 7 ps
pulses shows that as we move towards pulse area θ = π, the probability of emit-
ting a second photon (p2) becomes non-zero and steadily increases with pulse area.

The probability of generating a two-photon component at θ = π is further
affected by increasing the pulse duration. Fig. 3.2(b) shows for several pulse dura-
tions the probabilities of generating a photonic field containing vacuum (p0) and
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Figure 3.2 – Photon-number populations. (a) The probability of ge-
nerating vacuum p0, one-photon p1, and two-photon p2 populations as
a function of pulse area, for resonant excitation with a 7 ps pulse. (b)
The p0 (blue) and p2 (orange) population as a function of pulse area for
several pulse durations (7 ps, 15 ps, and 20 ps). Simulations by Dr. Ste-
phen Wein.

two-photon (p2) components for pulse areas close to θ = π. Operating close to
π-pulse in the ideal case creates a photon-number superposition of the form :

|Ψ⟩ = √
p0 |0⟩+

√
p1 |1⟩+ eiϕ

√
p2 |2⟩ , (3.12)

where we note |2⟩ = |1⟩e |1⟩l in time bin basis, indicating a photon emitted during
the pulse (e) and another one at the end of the pulse (l) (36; 81).

A state such as the one given in Eq. 3.12 exhibits not only first-order coherence
between the vacuum and one-photon component, but also between the one- and
two-photon component of the emitted field (83). In the general case of a mixed
state containing vacuum, one- and two-photon components, it can be shown that
the first-order coherence c(1) contains contributions from the off-diagonal density
matrix elements ρ01 and ρ12 :

c(1) ≃ |ρ01 + eiϕρ12|2

p1 + 2p2
. (3.13)

To gain insight into the different contributions to the first-order coherence,
we plot Eq. 3.13 (in absence of decoherence) for ϕ = π/2 and γτ = 0.1 in
Fig. 3.3 as a function of pulse area together with the coherences ρ01 =

√
p0p1

and ρ12 =
√
p1p2. Indeed, in line with Fig. 3.2, we observe that the first-order

coherence at θ = π is expected to stem from the prevailing coherence between
one- and two-photon Fock state. As such, although the vacuum component of the
field vanishes for θ → π, the first-order coherence c(1) does not.
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Figure 3.3 – Contributions to first-order coherence. The first-order
coherence as a function of pulse area, together with the density ma-
trix elements ρ01 and ρ12 contributing to the first-order coherence. See
main text for details. Simulations by Dr. Stephen Wein.

The observations in Fig. 3.2 and Fig. 3.3 thus suggest that completely
removing photon-number coherence would require driving the qubit with tem-
porally infinitely short pulses of exactly θ = π. However, a calculation of
the first-order coherence as a function of pulse duration γτ and pulse area
in Fig. 3.4 demonstrates that for θ = π the first-order coherence does not
vanish. Hence, resonantly driving a two-level system – with a finite pulse – in-
evitably results in the generation of first-order coherence whatever the pulse area θ.
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Figure 3.4 – First-order coherence and pulse duration. The first-
order coherence c(1) as a function of pulse area θ in units π and pulse
duration γτ , with γ the decay rate of the emitter. Pulse durations com-
monly used in experiments lay outside the shaded area. Simulations
by Dr. Stephen Wein.
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3.2.3 . First-order coherence and correlation measurements
As seen in the previous sections, first-order coherence gives rise to oscillations in

the single counts measured in a Mach-Zehnder-based HOM interferometer. Here we
show that number coherence also leads to other effects in multi-photon correlations.
We exemplify this by measuring the second-order intensity correlation curves from
a Hong-Ou-Mandel interference (Section 2.4.3) with wavepackets generated with
pulse areas θ = π and θ = 0.22π. The subsequent correlation histograms are shown
in Fig. 3.5, where we also plot the correlation histogram for perfectly distinguishable
wavepackets obtained with θ = π, Fig. 3.5(a) lower panel. The latter histogram
is obtained by setting the polarization of interfering wavepackets at orthogonal
angles, see Section 2.4.1.
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Figure 3.5 – Effect of photon-number superpositions on correlation
measurements. Coincidence histograms obtained through Hong-Ou-
Mandel measurements where the input field is in a photon-number
superposition, for (a) θ = π and (b) with θ = 0.22π. The lower panel
in (a) shows the coincidence histogram obtained for θ = π when the
photons are perfectly distinguishable.

The peaks in Fig. 3.5(b) show different behavior compared to driving with
a pulse area close to π. In such histograms, the peaks correspond to intensity
correlation measurements with respect to different delays : τk = kτp with
τp ≃ 12.3 ns and k ∈ Z. We observe different relative peak heights depending
on pulse area θ. For θ = π, the |k| = 1 peaks are roughly 3/4 of the |k| > 2

peaks. This ratio arises from statistical considerations, as is explained in Ref. (99)
where they show that the different possible paths leading to coincidences at
delay τk, corresponding to the delay of the Mach-Zehnder interferometer, result
in A1/A2 = 3/4 for input state |1⟩, where Ak is the area of coincidence peak
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τk. However, as shown in Fig. 3.5(b), for θ = 0.22π this ratio no longer holds,
suggesting that photon-number coherence also affects two-photon correlations.

In the following of the chapter, we study the impact of first-order photon-
number coherence on the Hong-Ou-Mandel interference. We limit our study to
the case where we can neglect p2, hence θ < π. We explain the phenomena
behind the observations mentioned in this section by deliberately increasing the
photon-number coherence in the photonic field (i.e. decreasing pulse areas θ). In
Sec. 3.3 we show that the way correlation histograms are normalized should be
revised in presence of photon-number coherence, and leads to wrong assessment
of wavepacket indistinguishability Ms if photon-number coherence is disregarded.
Next, in Sec. 3.4, we explain how photon-number coherence gives rise to new
quantum interference phenomena in particular correlation measurements, witnessed
in Fig. 3.5 in correlation peaks τk for |k| = 1. Finally, in Sec. 3.5 we discuss
how photon-number coherence impacts the performance and error rates in optical
quantum gates.

Conclusion Section 3.2 – Resonant excitation and photon-number coherence

In this section we explained how resonant excitation of a quantum emitter
inevitably leads to the generation of a photonic field containing photon-
number coherence. This coherence is first-order coherence c(1) either bet-
ween the vacuum and one-photon component of the emitted field for θ < π,
or between the one- and two-photon component for θ ≈ π, where the latter
arises from re-excitation effects during the drive pulse. We have shown that
under realistic conditions, the photon-number coherence does not vanish.
The first-order coherence between the vacuum and one-photon component
of the field (θ < π), can be directly related to the single counts visibility
measured in Mach-Zehnder-based Hong-Ou-Mandel measurements :

c(1) = cos2
(
θ

2

)
C = vmax,

where we also introduced C to capture the purity in photon-number cohe-
rence between the vacuum and single-photon Fock state. Finally, we predict
that this first-order coherence affects two-photon correlations, as suggested
by initial measurements.
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3.3 . Measuring indistinguishability in the presence of photon-
number coherence

As explained in Section 2.4.3, the Hong-Ou-Mandel interferometer is commonly
used to measure wavepacket indistinguishability through analysis of coincidence
(i.e. correlation) histograms. To obtain the indistinguishability requires quantifying
the visibility of HOM interference : VHOM. This visibility is extracted by performing
two coincidence measurements : one measurement with a train of photonic fields
with parallel polarization G

(2)
HOM,∥, and one measurement where the interfering fields

are orthogonally (or cross-) polarized G
(2)
HOM,⊥. The latter measurement serves as

a benchmark where no interference of photons is expected. The visibility is defined
through :

VHOM = 1−
g
(2)
HOM,∥(0)

g
(2)
HOM,⊥(0)

, (3.14)

where the normalized second-order intensity correlations g(2)HOM,∥,⊥(0) at zero delay
(k = 0) are deduced from the area of the zero delay peaks in correlation histograms,
A0,∥/⊥, after proper normalization. These zero delay areas are given by :

A0,∥/⊥ =
1

4
η1η2

∫∫
G

(2)
D1,D2

(t1, t2)dt1dt2, (3.15)

with t1 − t2 = 0, G(2)
D1,D2

being the second-order cross-correlation function
experimentally obtained with detector D1 and detector D2 of efficiencies η1 and η2,
respectively, in a HOM setup, and where the integrals are taken over the duration
of a single pulse. In this chapter, henceforth, we use the subscript D1,D2 instead
of HOM whenever we refer to a second-order cross-correlation function g(2) or G(2).

The normalized cross-correlation for zero delay is then given by :

g
(2)
D1,D2,∥(⊥)(0) =

4A0,∥(⊥)

η1η2µ2
,

with average photon-number µ =
∫
Idt in a single input pulse. It was previously

assumed that the average photon-number can be extracted from correlation peak
areas |k| ≥ 2, considering that :

A⊥(k) = A∥(k) =

∫∫
I(t1)I(t2)dt1dt2 = η1η2

µ2

4
. (3.16)

This is a commonly used method for normalization, and even seen as standard in
commercially available correlators (Swabian TimeTagger). However, as we show
in this section, this normalization method is no longer valid in the presence of
photon-number coherence.
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3.3.1 . Normalization revisited
As discussed in Sec. 2.5.5 and in Sec. 3.2- 3.2.2, first-order photon-number

coherence leads to phase-dependent single counts in the standard Mach-Zehnder-
based HOM interferometer. This phase-dependence in single counts measured
by detector D1 and D2 translates to phase-dependent coincidence counts :
µ1(ϕ)µ2(ϕ) with µ1,2 = η1,2µ(1 ± c(1) cos(ϕ))/2 and µ1 + µ2 = µ. Generally,
the areas of the k ≥ 2 peaks in parallel polarization configuration are thus propor-
tional to

A|k|≥2,∥ = η1η2
µ2

4

(
1−

(
c(1) cos(ϕ)

)2)
, (3.17)

with first-order coherence c(1). In the general case described by Eq. 3.2,
C = Tr[ρ̂01ρ̂10] and c(1) = C cos2(θ/2) = vmax where C = 1 signals a pure state in
the photon-number basis, see Appendix 8.1. As seen from Eq. 3.17, in presence of
photon-number coherence the k ≥ 2 peaks for parallel polarization are no longer
equal to η1η2µ

2/4, reflecting that there are missing coincidence counts arising
from the single-photon interference between two wavepackets.
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Figure 3.6 – Phase-dependence single counts.Normalized intensities
µ1 and µ2 as a function of time for an HOMmeasurement when the wa-
vepackets are made perfectly distinguishable through orthogonal po-
larization ⊥ (upper panel), or (partially) indistinguishable through pa-
rallel polarization ∥ (lower panel). Here θ = 0.22π.

We can understand this by considering the single counts in parallel (∥) and
orthogonal (⊥) polarization configuration in an HOM interferometer, see Fig. 3.6.
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Figure 3.7 – Cross- and auto-correlations. Cross-correlation G
(2)
D1,D2

obtained by comparing events between detector 1 and detector 2, and
auto-correlationsG(2)

Di,Di
obtainedwith events froma single detectorDi.

In orthogonal polarization, the wavepackets are fully distinguishable. As a result,
there is no interference, and thus no phase-dependence on the single counts as
can be seen in the upper panel, where a slight difference in intensities is caused by
different detection efficiencies. This observation also translates to the coincidences
at long delay |k| ≥ 2, which are dependent on the product of the single counts
only. In contrast, for parallel polarization we see a clear phase-dependence in the
single counts (Fig. 3.6 lower panel). Hence, the coincidences at long delays |k| ≥ 2

are also affected. Therefore, one needs to revise the normalization procedure used
in second-order correlation measurements.

When the overall detection efficiencies are identical (η1 = η2), taking the sum
(µ1 + µ2)

2/4 instead of the product (µ1µ2 as was the case in Section 2.4.3),
cancels the phase dependence and gives access to η1η2µ

2/4. This factor not only
depends on the cross-correlation function G

(2)
D1,D2

, but also on the auto-

correlation function of each detector : G
(2)
D1,D1

and G
(2)
D2,D2

. Generally, these
functions can be experimentally accessed through the areas of long delay peaks
(|k| ≥ 2) in cross- and auto-correlation histograms measured with both detectors.

In Fig. 3.7 we plot examples of raw coincidence histograms obtained from the
auto-correlation and from the cross-correlation functions. In a similar fashion to
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the cross-correlation histogram (see Section 2.4.2), an auto-correlation histogram
is obtained by comparing the list of photon arrival times measured by detector Di

with a copy of itself. Distinctly different from the cross-correlation histogram in
Fig. 3.7, is the fact that auto-correlation measurements suffer from electronic dead
time (detectors and correlators), resulting in the absence of peaks in the 0− 85 ns
range. In the case of η1 = η2 = η, we have :

η2
µ2

4
=

(µ1 + µ2)
2

4
η2 =

1

4
(AD1,D1 + 2AD1,D2 +AD2,D2) , (3.18)

where A is the peak area extracted from correlation peaks k ≥ 2 in auto- (Di, Di)

and cross-correlation (Di, Dj) histograms in parallel polarization. Generally, when
η1 ̸= η2, Eq. 3.18 becomes (see Appendix 7.2) :

(µ1 + rηµ2)
2

4rη
=

1

4rη

(
AD1,D1 + 2rηAD1,D2 + r2ηAD2,D2

)
, (3.19)

where we have introduced rη, a parameter accounting for differences in detection
efficiencies :

rη =
η1
η2

. (3.20)

Fig. 3.8 shows two time-integrated coincidence histograms measured in ortho-
gonal and parallel polarization configuration for θ = 0.22π, normalized accor-
ding to Eq. 3.19. The histogram in parallel configuration shows a stark contrast
with the histogram obtained in orthogonal polarization with a strong suppression
of the |k| ≥ 2 peak areas in parallel compared to the orthogonal polarization.
This observation is consistent considering Eq. 3.17. However, it should be noted
that these histograms correspond to time-integrated measurements, resulting in a
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phase-averaging effect on the correlation histograms. In the next section we per-
form phase-resolved analysis to remove the effect of phase-averaging, allowing us
to study the effect of phase on correlation measurements.

3.3.2 . Experimentally resolving phase-dependence long delay peaks
To evidence the phase-dependence of the |k| ≥ 2 peaks in coincidence histo-

grams, we measure for different pulse areas the coincidence clicks with the Hong-
Ou-Mandel setup shown in Section 2.4.3, and we use the corresponding single
count oscillations to access the interferometer phase ϕ at each point in time. More
specifically, we perform time-tagged correlation measurements with two detectors
D1 and D2 at the output of a beam splitter, and we acquire all arrival times of
incoming photon clicks. For each pulse area θ we acquire time stamps for approxi-
mately twenty minutes during which we let the relative phase ϕ(t) freely evolve and
explore the full phase space [0, π]. From the single counts time trace, see example
Fig. 3.6 lower panel for θ = 0.22π, we extract the visibility as a function of time
v(t) (Eq. 3.10) and the maximum visibility vmax given by

vmax = max
ϕ

µ1 − µ2

µ1 + µ2
. (3.21)

We can then assign to each time stamp an interferometer phase given by
ϕ(t) = arccos(v(t)/vmax).

For each measurement (θ) we acquire over a time span of 20 minutes two lists
of photon arrival times measured with D1 and D2. From these event lists we can
build correlation histograms as discussed in Section 2.4.2. Each list is divided into
one second time chunks, a time span over which the interferometer phase ϕ is
stable. We now have two lists of photon arrival times corresponding to detection
events measured by D1 and D2 happening within the one second time chunk.
For each time chunk we compute the corresponding auto- and cross-correlation
functions. As a result, for a 20 minutes measurement we obtain approximately
1200 cross-correlation histograms, and ∼ 2400 corresponding auto-correlation
histograms. Finally, the single counts time trace of D1 and D2 allow us to
determine the optical phase corresponding to each time chunk.

Fig. 3.9 shows an example of a chunked raw histogram for pulse area θ = 0.48π

and interferometer phase at the time of acquisition ϕ = 0.58π. We normalize
each cross-correlation histogram according to Eq. 3.19, using the corresponding
auto-correlation histograms. From the normalized histogram we then compute the
k = ±2 peak area, where the error in areas is given by the square root of the area
and through error propagation. We repeat this measurement for six different pulse
areas θ.

Fig. 3.10 shows the theoretical expectation of the |k| ≥ 2 peak areas according
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Figure 3.9 – Time chunked coincidence histogram. A raw chunked
coincidence histogram where we plot the coincidences as a function
of delay τ , with measurement integration time 1s, for θ = 0.48π and
ϕ = 0.58π.

to Eq. 3.17 as a function of optical phase ϕ and θ, where θ = arcsin
√
I/Iπ with

Iπ the emission intensity at the first maximum of the Rabi curve (π-pulse, see
Fig. 2.24). We predict and observe an increasing phase-dependence of the peak
areas with increasing vacuum component, θ → 0. The phase-resolved intensity
measurements in Fig. 3.10 show excellent agreement with theory, where we again
observe an increasing phase-dependence with increasing vacuum population. The
experimental data exhibits a slight offset with respect to the theory (−6% offset),
which we attribute to path-dependent losses in the interferometer. The results
presented here, reveal for the first time the impact of first-order photon-number
coherence on intensity correlation measurements in HOM experiments.
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Figure 3.10 – Phase-dependence long delay correlation peaks. Ave-
rage normalized area of the long delay (|k| = 2) peaks as a function of
optical phase ϕ for different pulse areas, theory and experiment.

We fit the experimental data with the theory curves, Eq. 3.17 and extract
the first-order coherence c(1) as a function of pulse area. We plot the extracted
first-order coherence together with the visibility vmax obtained from single counts,
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Figure 3.11 – First-order coherence from coincidence measure-
ments. The single counts visibility vmax and first-order coherence c(1)

as a function of pulse area θ, where c(1) is extracted from the fits to the
uncorrelated peak areas in coincidence measurements.

see Section 2.5.5. As mentioned in Section 3.2.1, this latter quantity is directly
related to the first-order coherence according to vmax = c(1). We expect both
parameters, although extracted via different types of measurements, thus to be
identical. Indeed, Fig. 3.11 shows the comparable values obtained via either single
counts visibility vmax, or via coincidence counts c(1). In both cases we fit the
data to C cos2(θ/2), resulting in C = (98.60 ± 0.01)% for the vmax curve, and
C = (100.00± 0.09)% for c(1) obtained from coincidence measurements, in close
agreement with the single counts measurement.

3.3.3 . Error in wavepacket indistinguishability

To assess the consequences of ignoring the presence of photon-number
coherence in indistinguishability measurements, we study the impact of a standard
normalization procedure on the extracted indistinguishability Ms, as performed
prior to the present study and discussed in Section 2.4.3. This normalization
procedure relies on normalizing using the correlation peak areas |k| ≥ 2, or
making the assumption that A∥(|k| ≥ 2) = A⊥(|k| ≥ 2). Both assumptions are
equivalent to considering the product of the detector intensities : µ1µ2 = µ2/4.
However, taking the product leads to an underestimation of the actual wavepa-
cket indistinguishability as we show in the following. This can be qualitatively
understood by considering the effect of using a too small normalization factor.
When the long delay peaks |k| ≥ 2 in cross-correlation functions are reduced
due to photon-number coherence, normalization of coincidence histograms with
these peaks as reference will artificially increase the zero delay peak containing
information on the wavepacket indistinguishability Ms.
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We consider two situations to estimate the error in the wavepacket indistin-
guishability. Firstly, we consider the case where the phase evolves faster than the
measurement time so that there is an effect of phase averaging on the coincidence
histograms. In such case, we have cos2 (ϕ) = 1/2 and the normalized areas of the
|k| ≥ 2 peaks become :

g
(2)
D1,D2,∥(|k| ≥ 2) = 1− 1

2
(c(1))2

= 1− 1

2
Ms(1− p1)

2, (3.22)

where we used the relation c(1) =
√
Msp0 for a state pure in the photon-number

basis, see Section 3.2.1 and Ref. (83). Experimentally, to retrieve the indistingui-
shability from correlation histograms, one measures and normalizes the zero delay
peak area (k = 0). This peak in presence of photon-number coherence remains
unaffected (see Appendix 7.1), and – when normalized properly – is given by :

g
(2)
D1,D2,∥(k = 0) =

1

2
(1−Ms). (3.23)

Properly normalized (using Eq. 3.19) time-tagged measurements also reflect this
theoretical prediction, as shown in Fig. 3.12 where we plot the normalized zero
delay peak areas as a function of pulse area.
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Figure 3.12 – Zero delay peak area. Average normalized area of the
zero delay peak (k = 0) peaks as a function of optical phase ϕ for dif-
ferent pulse areas, theory (lines) and experiment (data).

With the newly introduced normalization, we thus have Ms = 1−2g
(2)
D1,D2,∥(k =

0). This also corresponds to Ms = VHOM for g
(2)
D1,D2,⊥(0) = 1/2 (see Eq. 3.14),

with or without photon-number coherence. As such, we fit Eq. 3.23 to each data
set and are able to directly retrieve Ms without needing an additional set
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Figure 3.13 – Effect of phase-averaging on indistinguishability mea-
surements. Underestimation of indistinguishability δMs = Ms − VHOM
as a function of true indistinguishabilityMs and excited state probabi-
lity p1 for phase-averaged coincidence histograms.

of measurements in cross-polarization.

In contrast, ignoring possible first-order coherence effects and using the
phase-averaged peak areas in Eq. 3.22 to define the HOM visibility through :

VHOM = 1−
g
(2)
D1,D2,∥(0)

g
(2)
D1,D2,⊥(0)

= 1− 2A0

A|k|≥2
, (3.24)

where g
(2)
D1,D2,∥(0) is taken as A0/A|k|≥2, and g

(2)
HOM,⊥(0) = 1/2 following

Section 2.4.3, leads to an error in Ms defined as δMs = Ms − VHOM, with
Ms the actual wavepacket indistinguishabillity. We find that δMs > 0 in presence
of photon-number coherence and plot δMs in Fig. 3.13 as a function of the
actual Ms and excited state probability p1. We observe for a pure state close to
full population inversion, the error in Ms is less than 0.001. However, measuring
the wavepacket indistinguishabillity for pure photon-number superpositions
without proper normalization, can easily result in δMs > 0.02 under certain
conditions. This effect worsens when interfering wavepackets of limited overlap Ms.
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Figure 3.14 – Effect of time integrating on indistinguishability mea-
surements. Underestimation of indistinguishability δMs as a function
of true indistinguishability Ms and excited state probability p1 for ϕ =
0(π) for time-integrated coincidence histograms.

If instead, the Mach-Zehnder interferometer is stable over the correlation mea-
surement, potentially one can obtain an integrated phase of ϕ = 0 or π, a phase
where the peak areas are most affected by the photon-number coherence. Under
such conditions, cos2(ϕ) = 1 and the peak areas of the |k| ≥ 2 peaks are given
by :

A|k|≥2 ∝ 1−Ms(1− p1)
2.

We plot the error δMs again as a function of Ms and p1, see Fig. 3.14. Similar to
Fig. 3.13, we observe a decrease in extracted wavepacket indistinguishability with
p1 and Ms. In such case, the error can be much higher, with the error δMs quickly
reaching values > 5% for p1 < 0.5.

Conclusion Section 3.3 – Indistinguishability and photon-number coherence

In this section, we discussed the effect of first-order coherence on indis-
tinguishability measurements. If not properly taken into account, i.e. not
using the correct normalization method, photon-number coherence can lead
to errors in the extracted wavepacket indistinguishability. This normaliza-
tion method involves both auto- and cross-correlation functions, and allows
to resolve the phase-dependence of correlation histograms. By performing
time-tagged coincidence measurements and using the correct normalization
method, we were able to – for the first time – experimentally demonstrate
the phase-dependence of far delay peaks in correlation histograms, and show
the impact of first-order coherence on coincidence measurements.

85



3.4 . Quantum interference between temporally separated wa-
vepackets

Besides the impact on the |k| ≥ 2 peaks, the photon-number coherence also
affects the first delay peak areas A|k|=1. In this section we demonstrate that these
observations result from a new phenomenon coming from temporally distant inter-
ference effects.

3.4.1 . New quantum interference phenomena

Let us consider three pulses input to a Mach-Zehnder interferometer and
separated by delay τp, see Fig. 3.15 where the subscripts indicate the order in
which the pulses have been generated. All three pulses contain a photon-number
superposition of the form

√
p0 |0⟩ + eiα

√
p1 |1⟩ with α = 0, but for readability

we omit the prefactors
√
p0 and

√
p1 in Fig. 3.15. The superposition of two

scenarios leads to quantum interference signaled by the phase ϕ dependence of
the |k| = 1 correlation peak areas. First, we consider the first and second pulse in
Fig. 3.15(a) taking the long and short path, respectively, in a HOM interferometer.
The first and second pulse arrive simultaneously at the 50 : 50 beam splitter
where the one-photon components interfere – depending on indistinguishability
M – and result in a detector click. The third pulse follows the same path as
the second pulse, resulting in a detector click delayed by τp with respect to the
previous detection event. If these delayed clicks happen in two different detectors,
in Fig. 3.15 indicated by early and late output port of the beam splitter, they
contribute to the cross-correlation peak area |k| = 1.

(a) (b)

Lat
e

Early

+

Lat
e

Early

|0⟩3 + eiϕ |1⟩3
|0⟩2 + |1⟩2

|0⟩1 + eiϕ |1⟩1

|0⟩3 + eiϕ |1⟩3

|0⟩2 + |1⟩2

|0⟩1 + eiϕ |1⟩1

Figure 3.15 – A new quantum interference phenomenon. A quan-
tum interference phenomenon arising from HOMmeasurements with
a train of pulses containing photon-number superpositions. (a) The
first pulse arrives simultaneously with the second pulse at the beam
splitter. (b) Second pulse arrives simultaneously with the third pulse.
See main text for details.
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Secondly, we consider the scenario pictured in Fig. 3.15(b). Here the first and
second pulse both follow the long path in the interferometer. As a result, the
second pulse arrives at the beam splitter simultaneously with the third pulse. In
such case, the one-photon component of the second and third pulse will interfere,
and can contribute to the cross-correlation peak area |k| = 1. In such case, the
coincidence clicks measured are indistinguishable from the first scenario. Indeed,
the coincidence clicks can arise from the one-photon component in either the first
two pulses or the latter two pulses, with a phase ϕ difference. Thus, measuring two
out of three pulses generates quantum interference. This quantum interference is
dependent on both the first-order coherence present in the wavepackets as well as
on the wavepacket indistinguishability, or spectral coherence.

3.4.2 . Phase-dependence first delay correlation peaks
This quantum interference phenomenon results in a ϕ-dependence of the nor-

malized areas of the first delay peaks given by (see Appendix 7.1) :

g
(2)
D1,D2,∥(|k| = 1) =

3

4
− 1

2
s
(2)
{1|M} cos(2ϕ), (3.25)

for g(2) = 0, and where we introduce a new parameter s
(2)
{1|M} : a parameter

that quantifies the overlap between first-order coherence and temporal coherence,
where the superscript indicates a two-photon process. This parameter, for a purely
dephased emitter driven by an instantaneous pulse (τexc → 0), is expected to be
equal to :

s
(2)
{1|M} = c(1)

(
2M

1 +M

)
, (3.26)

with M = Ms if g(2) = 0, see Appendix 8.2. Note that, in absence of
photon-number coherence, Eq. 3.25 reduces to 3/4, as expected from statistical
considerations (99).

Using the same techniques as for the |k| ≥ 2 correlation peaks we extract
the average |k| = 1 peak areas as a function of ϕ, Fig. 3.16 right panel. As
expected for pulse areas close to θ = π, we retrieve the normalized peak area
g
(2)
D1,D2,∥(|k| = 1) = 3/4. We fit the data to the theoretical expectation given

by Eq. 3.25, and see excellent agreement between theory and experiment with
again an offset of 6% due to path-dependent losses. Moreover, from both the
theory curves and the experimental data we notice an increasing amplitude with
photon-number coherence, with normalized maximum peak areas reaching above
one. This value is higher than the maximum achievable normalized area for the
|k| ≥ 2 correlation peaks in orthogonal polarization.
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Figure 3.16 – Phase-dependence |k| = 1 peak area. Average area of
first delay (|k| = 1) peaks as a function of optical phase ϕ for different
pulse areas, theory and experiment.

The theory curves in Fig. 3.16 allow us to retrieve the joint temporal
photon-number coherence s

(2)
{1|M} as a function of pulse area. In Fig. 3.17 we

plot this parameter together with the first-order coherence c(1) obtained from
the |k| ≥ 2 peaks with the corresponding theory curve : c(1) = C cos2(θ/2). In
addition, we plot the wavepacket indistinguishability Ms obtained from the fits to
the normalized zero delay peaks in Fig. 3.12. Combining Ms with the first-order
coherence allows us to compare s

(2)
{1|M} and the expression given for an ideal

quantum emitter, Eq. 3.26 (square points and dashed curve). We notice that
for an emitter with a mean single-photon purity of g(2) ≈ (1.32 ± 0.08)% over
the probed θ range, the overlap in temporal coherence and first-order coherence
is remarkably well approximated by the expression given in Eq. 3.26. Finally, we
also note that the wavepacket indistinguishability is constant with increasing
photon-number coherence, showing again the importance of proper normalization
to source characterization.

3.4.3 . A witness for photon-number coherence in correlation his-
tograms

As suggested in the previous section, the presence of photon-number coherence
can be efficiently recognized considering the peak ratio |k| = 1 over |k| ≥ 2. We
plot this ratio as a function of ϕ in Fig. 3.18, both theory and experiment. We
see that as we move away from π pulse and increase the vacuum component, the
ratio between the first and the far delay peaks becomes phase-dependent, and the
first delay peak areas even exceed the |k| ≥ 2 peaks. For even lower pulse areas,
the first delay peak area is bigger than the |k| ≥ 2 peak areas for any value of ϕ.
The ratio between the first and second delay peaks (area or amplitude) thus caries
with information on the amount of vacuum component of the interfering photonic
fields. Only for photonic states prepared with a pulse area close to π-pulse do we
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Figure 3.17 – State parameters from coincidence measurements.
Quantum state parameters, first-order coherence c(1), indistinguisha-
bility Ms, and joint temporal photon-number coherence s

(2)
{1|M}, ob-

tained from coincidence measurements and single counts measure-
ments as a function of pulse area.

expect the ratio to be 3/4. Under resonant excitation of a quantum emitter, any
discrepancy thus reveals the presence of photon-number coherence.
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Figure 3.18 – Identifying photon-number coherence. Ratio of the
|k| = 1 and |k| ≥ 2 peak areas as a function of optical phase ϕ, theory
and experiment.

A search through papers performing HOM measurements with coherently dri-
ven quantum emitters, however, shows a large number of coincidence histograms
where the ratio of the first and second delay peak is not equal to the expected 3/4,
indicating the presence of photon-number coherence, see a selection in Fig. 3.19
taken from Refs. (100–103) for several QD-based single-photon sources. The
effect is very clear in Fig. 3.19(a,c,d) where the peak ratio indicates a suppression
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Figure 3.19 – Photon-number coherence in coincidence histograms.
Coincidence histograms diverging from the τ1/τ2 = 3/4 peak ratios
(see main) : (a) in cross- and co-polarization for a QD single-photon
source under resonant excitation, taken from Ref. (100) ; (b) for a QD
in planar nanobeam waveguide, taken from Ref. (101) ; (c) in cross-
and co-polarization for a QD embedded in a Schottky diode, taken
from Ref. (102) ; (d) for a QD-cavity single-photon source, taken from
Ref. (103). Red curves in (b,d) are fits to data (dots).

of long delay peaks due to coherence. There is thus a number of reports where the
effect of photon-number coherence in HOM measurements has been overlooked.
As discussed, this observation may indicate an underestimation in Ms and we
expect that the high single-photon indistinguishability mentioned in the articles,
probably are a lower limit on the actual single-photon indistinguishability based on
our findings in this chapter. Considering the peak ratios in Fig. 3.19, it is highly
likely that the wavepacket indistinguishability extracted from the histograms using
side peak normalization resulted in an apparent value 1−5% below the actual Ms,
indicating that at time of measurement, the source was not driven up to full popu-
lation inversion, but rather around p1 ≃ 0.7− 0.8. Therefore, awareness should be
raised to discrepancies in peak ratios or oscillations in single counts when charac-
terizing coherently driven single-photon sources through HOM-type measurements.

90



Conclusion Section 3.4 – Quantum interference between temporally separa-
ted wavepackets

In this section we have shown that – besides resulting in phase-dependence
of far delay peaks – the first-order coherence also affects the first delay peaks
in correlation histograms. More importantly, the presence of first-order co-
herence in Hong-Ou-Mandel-type measurements can also result in a new
quantum interference phenomenon between temporally separated wavepa-
ckets when performing partial detection (i.e. detection of two out of three
photons). In addition, we discussed how the ratio between first and far delay
peaks in correlation histograms can be used as a witness for photon-number
coherence. As we have shown, in the presence of first-order coherence this
ratio is no longer equal to the ratio expected at pulse area θ = π : 3/4.
Using this observation, we argue how witnessing a discrepancy in the 3/4
ratio can potentially reveal an error in the measured wavepacket indistingui-
shability. Based on the examples used in this section, we suspect that the
wavepacket indistinguishability in more published articles is actually higher
than the reported value, showing the importance of proper normalization
and awareness of the impact of photon-number coherence.
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3.5 . Errors in heralded quantum gates

As we have shown in Sec. 3.4, measurements based on the Mach-Zehnder
interferometer where the input is a train of pulses, can generate a new quantum
interference phenomenon when detecting two photons out of three pulses which
contain photon-number coherence. This observation suggests potential errors in
quantum computation schemes when the input photon carries photon-number
coherence. We demonstrate in this section using the Perceval framework (104)
that when considering quantum gates, the use of quantum superpositions of
zero- and one-photon – as expected when resonantly driving a quantum emitter
– can impact both the performance of the gate and the error rate under certain
conditions.

3.5.1 . Post-selected CNOT gate

We first consider the linear optical quantum gate depicted in Fig. 3.20, the
post-selected path-encoded CNOT gate proposed by Ralph et al. (77) comprising
two control input modes c0l and c1l , two target input modes t0l , t1l , and two
ancillary input modes in the vacuum state vc, vt. Fig. 3.20 presents the optical
circuit of the proposed gate with four beam splitters of reflection ratios R = 1/3

and R = 1/2. The control (target) input modes form the logical 0 or 1 bit with
either a single-photon input in c0l (t0l) or c1l (t0l), respectively. In this section,
to distinguish |0⟩ ≡ |vacuum⟩ and |0⟩ ≡ |0logical⟩, we therefore note the
|0⟩ ≡ |vacuum⟩ and |0l⟩ ≡ |0logical⟩.

R=1/3

R=1/3

R=1/3

R=1/2 R=1/2

c0l
c1l

t0l

t1l

vt

vc

c0l,out
c1l,out

t0l,out

t1l,out

vt,out

vc,out

Figure 3.20 – A post-selected CNOT gate. The path-encoded configu-
ration of a post-selected path-encoded CNOT gate, with control cil , tar-
get til and vacuum v input modes. R corresponds to the beam splitter
reflection coefficient (angle) with R ∈ [0, 1].
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The relations between the input and output modes in this circuit are given by

c0l,out =
1√
3
(
√
2vc + c0l)

c1l,out =
1√
3
(−c1l + t0l + t1l)

t0l,out =
1√
3
(c1l + t0l + vt)

t1l,out =
1√
3
(c1l + t1l − vt)

vc,out =
1√
3
(−vc +

√
2c0l)

vt,out =
1√
3
(t0l + t1l − vt).

Conditional on the presence of a single-photon in the control input mode c1l
(|1l⟩c), a single-photon in one of the target input modes switches logical state
(from |0l⟩t to |1l⟩t or vice versa). The gate performs as a CNOT gate when
measuring coincidences between the control and target outputs (ci,out and til,out,
with i = 0 or 1). The gate operates thus as a probabilistic gate where we
post-select on the desired output, with the probability of a successful gate ideally
1/9 ≈ 11%.

We write the truth table of the CNOT gate with in the first column the possible
logical input states for the control and target input modes, and in the first row the
possible logical outputs :

|0l⟩c |0l⟩t |0l⟩c |1l⟩t |1l⟩c |0l⟩t |1l⟩c |1l⟩t
|0l⟩c |0l⟩t P0000 δ1 δ2 δ3

|0l⟩c |1l⟩t δ4 P0101 δ5 δ6

|1l⟩c |0l⟩t δ7 δ8 δ9 P1010

|1l⟩c |1l⟩t δ10 δ11 P1101 δ12

The entries indicated by Pijkl are in the ideal case equal and 11%. The other values
δm correspond to unwanted outputs, and thus can be related to an error rate. An
ideal probabilistic Ralph CNOT gate would therefore have entries Pijkl = 11%

and δm = 0%. However, errors in computation can be introduced due to limited
indistinguishability and beam splitting ratios, for example. These sources of error
potentially decrease the probability of the wanted outcomes, Pijkl, and increase
the probability of generating unwanted outcomes, referred to as the error rate δm.
We define for the quantum gates the performance rate as determined by the
lowest value of the four entries Pijkl.
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We test the fidelity of the gate considering the input logical state :

1√
2
(|0l⟩c + |1l⟩c)⊗ |0l⟩t .

The output state of the CNOT gate is then the post-selected Bell state :

|Ψ+⟩ = 1√
2
(|0l⟩c |0l⟩t + |1l⟩c |1l⟩t) . (3.27)

We then plot the state fidelity, the overlap between the generated state |Φout⟩
and the desired state |Ψ+⟩, as :

F = | ⟨Φout|Ψ+⟩ |2 (3.28)

where F = 1 indicates a perfect overlap.

We study whether changing the input state into a photon-number superposition
degrades the performance of quantum gates. These quantum gates are operated
with single-photon input states |1⟩ on which we encode the logical bits. However,
when inputting a photon-number superposition with zero- and one-photon com-
ponent, the possible output state distribution changes. We can anticipate that
this change also affects the performance of the gate. To investigate the effect
of photon-number superpositions on the performance of the post-selected CNOT
gate, we define a superposition input state (not in logical basis)

|in⟩ = cos

(
θ

2

)
|0⟩+ sin

(
θ

2

)
|1⟩ ,

where we set global phase α = 0, and we tune the angle θ (pulse area) between
0 − π in steps of 50. For each angle we compute the possible outcomes, and the
resulting performance and fidelity.

Fig. 3.21 shows the performance and fidelity as a function of pulse area. At
full population inversion the gate performs as expected with a ≈ 11% probability.
However, as soon as we introduce vacuum population, the performance of the
gate degrades as a result the lower probability to detect two photons : one for the
control, and one for the target qubit. Interestingly, this performance degradation
is not reflected in a change in fidelity, which remains 1 for all θ. This observation
can be understood by the fact that this CNOT gate is a post-selected gate. The
probability of generating the wanted outcome, performance, decreases with pulse
area. However, because of post-selection, we discard all outcomes that are of no
interest in the computation, i.e. other generated states. Hence, the fidelity is unity
and only drops in the limit of |in⟩ ≡ |0⟩.
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Figure 3.21 –Performance and gate fidelity using a Ralph CNOT gate
with photon-number superpositions. (a) The performance of a post-
selected CNOT gate as a function of pulse area θ, where θ = π corres-
ponds to an ideal single-photon input state. (b) The gate fidelity of the
post-selected CNOT gate as a function of pulse area. Because of post-
selection, the fidelity only drops in the limit of θ → 0.

3.5.2 . Heralded CNOT gate

We now consider another important quantum gate in optical quantum
computing, the Knill-Laflamme-Milburn (KLM) heralded CNOT gate (31; 105).
The basic idea behind this scheme is the following : four logical bits formed by
indistinguishable control cil , target til and ancilla hil photons are input to the
quantum gate, see Fig. 3.22, where again R indicates the beam splitter ratios.
Conditional on the simultaneous detection, i.e. heralding, of two output ancilla
photons – one at either detector h0l,out or h1l,out and one at either detector h2l,out
or h3l,out – a CNOT operation is performed whereby the target qubit switches
mode (106). Similar to the post-selected CNOT gate, the gate we described
here is probabilistic, although the protocol can be altered by using teleportation
to create near-deterministic gates (105; 107). An advantage of heralded CNOT
gates, is that the measurement is non-destructive, i.e. the generated states can be
used in subsequent gates, unlike post-selected CNOT gates, where a successful
operation is solely verified by measuring the output state a posteriori (106).
However, as we show here, the operation of such of a heralded CNOT gate is
affected when the input states contain photon-number coherence.

Here in Fig. 3.23 we study three different scenarios : where the heralding
qubits are in a single-photon Fock state, and both the control and target qubit
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Figure 3.22 – A heralded CNOT gate. The path-encoded configuration
of a heralded KLM CNOT gate, with control cil , target til and ancilla hil

input modes. R corresponds to the beam splitter reflection coefficient
with R ∈ [0, 1].

are in a photon-number superposition state with vacuum component determined
by θ (“perfect herald") ; where the heralding qubits are in a superposition state,
and the target and control are in single-photon Fock states (“perfect data") ; and
where all qubits are in a photon-number superposition state according to Eq. 3.5.1
(“
√
p0 |0⟩+

√
p1 |1⟩"). Analogous to the CNOT gate simulation, we plot the gate

performance as a function of pulse area θ and the overlap between the desired
state and the output state, the state fidelity in Eq. 3.28.

Let us first consider Fig. 3.23(a). Similarly to the post-selected CNOT we wit-
ness a degradation in performance with smaller pulse area when all qubits contain
photon-number coherence (dashed red), caused by the decreasing probability of
detecting the two photons. However, if only the herald qubit, or target and control
qubit, are in a superposition state, the slope observed in the performance as a
function of θ is less steep. This can be understood by considering for instance the
case of an imperfect herald. Such an imperfect herald does not always herald a
successful gate, but when it does, the gate is indeed successful because the target
and control are in a single-photon Fock state. The same logic can be applied to
the case of imperfect data.

Unlike the post-selected CNOT gate, the state fidelity of the heralded CNOT
gate is heavily impacted by the presence of photon-number coherence, see
Fig. 3.23(b) and (c). The working principle of the heralded CNOT gate is similar
to the detection of coincidences separated by one pulse, corresponding to the
first delay peak in coincidence histograms : the gate is performed based on the
conditional detection of two out of four photons. This partial detection results
in quantum interference phenomena similar to those discussed in Sec. 3.4 : if all
input qubits are in a photon-number superposition, there will be phase-dependent
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Figure 3.23 – Effect of photon-number coherence in heralded CNOT
gate. (a) The performance of a heralded CNOT gate as a function of
pulse area. (b) The fidelity as a function of pulse area. (c) A zoom-in
of the fidelity in (b) for pulse areas close to θ = π. (a-c) : dashed red
corresponds to heralding, target and control qubits in a superposition
state with vacuum population determined according to p0 = cos2(θ/2) ;
solid blue corresponds to target and control qubits in a perfect single-
photon Fock state, and herald in superposition state ; dashed yellow
corresponds to herald in a perfect single-photon Fock state, and target
and control in superposition state.

interference between the one-photon components. The photon-number superpo-
sitions in the heralded CNOT gate therefore result in unwanted output states,
which in turn affect subsequent quantum gates in the optical circuit, removing
the benefit of using heralded CNOT gates.

Conclusion Section 3.5 – CNOT gates and photon-number coherence

We have shown that introducing photon-number superpositions does not
only affect the probability of a successful gate (performance), but it can
also change the output state due to interference effects. Hence, the input
quantum state of light should be carefully considered and prepared when
performing optical quantum computations based on Hong-Ou-Mandel-type
interferometry. The two examples shown here, are common gates in optical
quantum computing, and only present a small selection of gates based on
the Hong-Ou-Mandel effect. As such, one can imagine that other quantum
gates – specifically heralded gates – may similarly suffer from the presence
of quantum coherence.
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3.6 . Conclusion and perspectives

In this chapter we have shown that the possible presence of photon-number
coherence affects quantum information processing in all its facets. We explicitly
investigated the impact of photon-number coherence on the cornerstone of optical
quantum computing : the Hong-Ou-Mandel effect. We demonstrate theoretically
and experimentally that when exciting a quantum emitter below full population
inversion with a pulsed laser, the resulting first-order coherence requires careful
consideration. Specifically, the normalization procedure of correlation measure-
ments based on uncorrelated peaks, needs to be revisited to not underestimate
quantum state parameters such as wavepacket indistinguishability and first-order
coherence. We demonstrated that one has to take into account auto-correlation
functions to obtain a phase-robust normalization procedure.

When properly normalized, the coincidence histograms also reveal a new
quantum interference phenomenon in presence of photon-number coherence.
If the input to a Mach-Zehnder interferometer is a train of pulses containing
photon-number superpositions, measuring coincidences separated by one pulse –
i.e. two temporally delayed clicks – entangles three pulses. Indeed, we demonstrate
that the coincidence click corresponding to delay τk with |k| = 1 can arise from
coincidences between the first two pulses or the last two pulses. This entanglement
manifests itself as a phase-dependence of the first delay peak areas in coincidence
histograms, and is dependent on the overlap between the first-order coherence
and temporal coherence : the joint temporal photon-number coherence s

(2)
{1|M}.

Together with the phase-dependence of the uncorrelated peaks, the coincidence
histograms thus reveal information on the first-order coherence, wavepacket
indistinguishability, and s

(2)
{1|M}.

Finally, we have shown that this type of quantum interference affects the
performance and error rate of well-known quantum gates in optical quantum
computing by considering both the post-selected CNOT gate and the heralded
CNOT gate. The fact that in a heralded CNOT gate only two out of four photons
are detected, gives rise to quantum interference which strongly impacts the error
rate of the gate. We show that photon-number coherence does not affect the error
rate in a post-selected CNOT gate, but does affect the performance of the gate
in a similar fashion to the heralded CNOT gate. These two examples demonstrate
the detrimental impact of photon-number coherence on quantum computation
schemes if disregarded.
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Overcoming computation errors
To overcome the negative effect of photon-number coherence in quantum

computation schemes, one could therefore consider alternative excitation schemes
which do not create photon-number coherence. In 2021 our group proposed an
alternative to coherent excitation, making use of phonon assisted excitation (40).
A spectrally blue-detuned driving laser (∆LA = 0.4− 0.8 nm) dresses the ground
and excited states of the QD. During the excitation pulse, the QD relaxes to the
excited states through longitudinal-acoustic (LA) phonon emission.

The laser field is easily separated from the single-photons through spectral
filtering, and as a result we obtain photonic fields of high single-photon purity and
indistinguishability comparable to resonant excitation schemes.
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Figure 3.24 – (a) The principle of LA excitation, inspired by Ref. (40).
(b) A coincidence histogram obtained using LA excitation.

However, because of the emission of acoustic phonon during the pulse, phonon
assisted excitation does not produce any atomic coherence in the energy basis,
and therefore no photon-number coherence. This absence of photon-number
coherence is reflected in the coincidence histograms obtained with subsequent
HOM measurements, Fig. 3.24(b). The peaks exhibit no phase-dependence,
despite a maximum occupation probability of 85% for the presented experimental
data (40; 108). This protocol thus offers an excellent solution to benefit from the
high source performance for optical quantum computing.

Perspectives
Finally, besides negative effects, one can also imagine new research opportu-

nities with the quantum interference phenomenon discussed in this chapter. This
quantum interference, present in any Mach-Zehnder-like interferometer when the
input is a train of pulses containing photon-number coherence, could be further
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investigated to understand how it could be turned into an asset for the generation
of complex states of light showing photon-number superpositions (39), or time bin
entanglement (36).
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4 - Experimental study of the energetic ex-
changes between a qubit and light fields

4.1 . Introduction

The observation of energy coherence transfer between a QD and a light
field (83) has triggered theoretical work to revisit this physical phenomenon in the
framework of quantum thermodynamics. Indeed, coherence has been identified
as a fundamental property in work exchange (109; 110). This chapter presents a
major experimental effort conducted during this PhD, exploiting for the first time
a QD in order to experimentally access heat and work in the energetic exchanges
between two coupled systems. We thus validate a fundamental model for quantum
thermodynamics and show experimentally how quantum features connect with
energetics - i.e. ubiquitous thermodynamics.

The chapter is ordered as follows : in Sec. 4.2 we first explain work and heat
in the quantum regime in the framework of two coupled systems, otherwise
isolated. To understand how these definitions apply to our quantum dot-cavity
system, we briefly set out the main results from previous works where the
theoretical framework was applied to a more specific setting : a qubit coupled to
the electromagnetic field (37; 38). The results presented there form the starting
point and give predictions for Sec. 4.3 and Chapter 5.
In Sec. 4.3, we discuss the experimental protocol that we propose to access
these energetic quantities and the results obtained in this framework of quantum
thermodynamics with a qubit operating in the spontaneous emission regime.
This step is energetically equivalent to the charging of a quantum battery :
an energy storage device exploiting non-classical features such as coherence or
entanglement (111). We therefore first apply the theory discussed in Sec. 4.2.2 to
our specific quantum dot-cavity system, and show that we can measure the ener-
getic exchanges in spontaneous emission through homodyne-type measurements
with the spontaneously emitted photonic fields. We then extend the theory by
introducing decoherence to our qubit system and experimentally measure its
impact on the energetic transfers in spontaneous emission.
In a second step, Sec. 4.4, of our experimental protocol we develop a new
experimental and theoretical framework to quantify and measure the energetic
exchanges between two light fields, the photonic field emitted by the qubit
and a classical coherent field interfering at a beam splitter. This step is a common
operation in optical quantum computing, and energetically equivalent to the
discharging of a quantum battery. Here again, we show how we can measure the
energetic exchanges experimentally, and discuss our observations. We show that
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measuring the energetic exchanges experimentally in this scenario can also be
achieved by performing a homodyne measurement.

The theoretical work presented in this chapter, supporting and guiding our
experimental research, has been developed by Prof. Alexia Auffèves 1, Dr. Maria
Maffei 2, and Dr. Stephen Wein 3.

1. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble,
France.

2. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble,
France.

3. Previously : Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000
Grenoble, France.
Currently : Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France.
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4.2 . Defining work and heat in the quantum regime

Classical thermodynamics deals with energetic processes in the macroscopic
world, where the relation with statistical physics holds because it describes many-
body systems (112). In classical thermodynamics, a change in energy within a
closed system can be decomposed into a heat and work contribution, giving rise
to the first law of classical thermodynamics, a formulation of the conservation of
energy :

δE = δW + δQ, (4.1)

where δW is the amount of work exerted onto the system by another entity,
and δQ the heat transferred to the system. Work and heat are path-dependent
statistical quantities and therefore are associated with a process (113; 114).
These energetic transfers in the form of work and heat, are often also defined as
reversible (useful) or irreversible (wasteful) processes, respectively. The internal
energy change, however, is only a function of its initial and final state. With these
definitions one can for example determine the efficiency of heat engines, where
the system (for instance a gas) contains a manifold of molecules.

A B

Environment

A B

(a) (b)

Interaction Energy
dissipation W

Q

Figure 4.1 – Two approaches to defining thermodynamic quantities
in the quantum regime. (a) An open system where two quantum bo-
dies are coupled to each other and interact with the environment (se-
veral and different baths). (b) A closed quantum systems where two
coupled quantum systems do not exchange energy with any external
bath, and where we are able to define work and heat transfer.

One of the most important challenges in quantum thermodynamics addresses
the question on how the field of classical thermodynamics, with concepts such as
heat and work, translates to the level of a few, or even of a single particle : the
quantum regime, where statistical physics does not hold and the systems are time-
reversal invariant (114; 115). Over the past decades different approaches to defining
these thermodynamic quantities in the quantum regime have been put forward,
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with one of the first in a paper by R. Alicki in 1979 defining work exchange
in a quantum open system (116). Such open quantum system can be seen as
two quantum systems A,B coupled to each other and to the environment (a heat
bath for example), see Fig. 4.1(a). In such a system, energy can dissipate into
the environment through interaction. In the paper by Alicki, the author considers
an open quantum system weakly coupled to two thermal reservoirs at different
temperatures T1 and T2 (where T1 ≥ T2). Under the influence of time-dependent
external conditions (e.g. switching on and off coupling with a classical field (117)),
the heat engine periodically dissipates work into the environment, see Fig. 4.2.

A

Q1

Q2

W

T1

T2

Figure 4.2 – A quantum heat engine. A quantum open system des-
cribing a heat engine where a quantum system A is coupled to two
thermal baths with temperatures T1 ≥ T2 that supply heat Qi and in-
duce mechanical workW .

This periodically-driven open quantum system constitutes a heat engine and
is described by a time-dependent Hamiltonian. Under the assumption that the
external conditions during a cycle are slowly varying in time, heat can be defined as
the sum of heat originating from the different heat baths. Combining this definition
with the first law of thermodynamics, Eq. 4.1, the author finds that the sum of heat
contributions is equal to the work performed by the system per cycle, W = Q1+Q2,
which in turn allows to define an efficiency η of the heat engine :

η =
W
Q1

≤ T1 − T2

T1
.

This equation is actually identical to the famous Carnot inequality which holds in
the classical limit of thermodynamics.

Other approaches have been put forward to account for work and heat transfer
in time-independent quantum open systems. One such approach comprises a
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system coupled to one or more thermal baths with temperatures Ti and a “work-
storage" device in the form of a quantum system with mass m that can be raised or
lowered, thereby storing work in the form of gravitational energy (118), see Fig. 4.3.
Imposing the first law of thermodynamics – average total energy is preserved –
allows to define the heat flow as the decrease in average energy of the bath, and
the work exchange as the change in average (gravitational) energy of the weight.
For a recent overview on other approaches to define work and heat in an open
quantum system, we refer the reader to Ref. (114).

A

Q1

Q2

W

T1

T2
h

m

Figure 4.3 – Storingwork in a quantum system. A quantumopen sys-
tem describing a heat engine with quantum system A and a quantum
system (weight) with massm at height h which is used to store work in
the form of gravitational energy.

The various approaches to describe thermodynamics in an open quantum sys-
tem have put forward different definitions of work (114) : average work defined for
an ensemble of experimental runs such as the one described in Fig. 4.3, fluctuating
work for a single shot measurement (119), optimal single shot work (120), and
work given by optimal thermodynamic resource theory (110). Despite the different
approaches to defining work and heat in open quantum systems, the approaches
seem not entirely consistent with one another leading to different values of work
exchanged when evaluating the same system (114; 121–123). In addition, for an
open quantum system strongly coupled to the environment, the possibility of a
thermodynamically consistent definition for heat is still debated (124–126). Mo-
reover, some approaches do not take into account the possible role played by
genuine quantum features such as quantum correlations or coherences (121; 122).
For all these reasons, the work conducted during this PhD, led on the theoretical
side by Prof. A. Auffèves and collaborators, is positioned in a framework of closed
systems : we will only consider situations where two quantum systems are coupled
to, but do not exchange energy with baths.
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4.2.1 . Defining work and heat in a closed quantum system
We study the notions of work and heat in the quantum regime within closed

quantum systems where two coupled quantum systems A,B are otherwise isolated,
Fig. 4.1(b) (122; 127–129). The two systems interact, generating classical and
quantum correlations such as entanglement, but do not dissipate energy to the
environment.

In Ref. (122) the state of such a bipartite system in absence of correla-
tions is described by the density matrix ρ(t) = ρA(t) ⊗ ρB(t) with ρA(B)(t) =

TrB(A){ρ(t)}, and evolves under a total time-independent Hamiltonian :

Htot = HA +HB + VA,B, (4.2)

where the interaction Hamiltonian VA,B couples the two systems. In presence of
correlations between the subsystems, the state is written as :

ρ(t) = ρA(t)⊗ ρB(t) + χA,B(t), (4.3)

where the correlation matrix χAB(t) quantifies all classical and quantum correla-
tions. This separation of dynamics given in Eq. 4.3, allows us to define work and
heat in terms of the bare Hamiltonians of the two systems :

ẆA(B) = − i

ℏ
TrA,B

{[
HA(B), VA,B

]
ρA(t)⊗ ρB(t)

}
, (4.4)

Q̇A(B) = − i

ℏ
TrA,B

{[
HA(B), VA,B

]
χA,B(t)

}
. (4.5)

These definitions combined form the quantum version of the first law of ther-
modynamics, where for each system undergoing a change in internal energy ∆E
we can write :

∆EA(B) = WA(B) +QA(B). (4.6)

If the average coupling energy is constant, i.e. d
dtTr {VA,Bρ(t)} = 0, Refs. (38; 122)

find that the work and heat transfer from B to A are equal in amplitude,
but opposite :

ẆA(t) = −ẆB(t), (4.7)
Q̇A(t) = −Q̇B(t), (4.8)

where A absorbs work (heat) and B releases work (heat).

Thus, correlations (classical and quantum) can be directly related to
the heat transfer between A and B in a closed quantum system, and work
exchange is defined as an effective unitary interaction between the two
systems. These definitions of work and heat therefore do not, unlike in open
quantum systems, require the incorporation of any external driving forces or
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coupling to an external bath. Importantly, this framework can be generalized to
any pairs of systems A and B

Another important feature of this framework is that whenever one of the sub-
systems becomes classical, these definitions of work and heat in a closed quantum
system are consistent with the classical framework. This framework has established
some consensus within the field of quantum thermodynamics. The presented theo-
retical framework does therefore provide a footing to experimentally investigate
energetic flows at the quantum level for a qubit coupled to another quantum sys-
tem (e.g. the electromagnetic field), but otherwise isolated from its environment.

4.2.2 . Predicted energetic exchanges between an atom and light
fields

Recently theorists started to apply the definitions for work and heat in closed
quantum systems to more specific cases, such as that of a two-level system coupled
to a reservoir of electromagnetic modes, and investigate the energy flows for such a
coupled system in different scenarios (130–132). A particularly interesting scenario
is a qubit coupled to the vacuum of the electromagnetic field. This is the
regime of spontaneous emission, and is energetically equivalent to the charging of
an empty quantum battery, an energy storage device exploiting quantum features.
In the following we briefly review published results examining this regime of light-
matter interaction in terms of work and heat flow to understand how we can
apply this framework to our QD-cavity system and quantify the various energetic
exchanges. The theoretical results presented here serve as a starting point for the
first part of the chapter.

4.2.3 . Energetic exchanges between a qubit and a driving field
The work by Maffei et al. (38), considers two quantum systems : a qubit q

initially in the ground state and stationary at position x = 0, and a coherent
field f propagating along x with speed v, see Fig. 4.4. At time t = t0, both
systems are brought into a pure state by Alice (A) through unitary operations
which have an energetic cost corresponding to work −WA = ∆Eq +∆Ef (blue),
where ∆Ei corresponds to the change in internal energy of system i. At time t = 0,
Fig. 4.4(b), the field is resonant with the qubit and they interact whereby the two
systems exchange work (blue) and heat (blue and red) in the form of correlation
energy. Finally, at time t in Fig. 4.4(c), Bob (B) attempts to extract work from
the bipartite system using unitary operations.

In this framework, energy conservation holds, and the work flow between
the qubit and the field at time t = 0 is defined as : Ẇ = Ẇq = −Ẇf . In terms of
the field operators, this work flow is equal to the energy change of the field
coherent component :

Ẇ = ℏω0(| ⟨âout(t)⟩ |2 − | ⟨âin(t)⟩ |2), (4.9)
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Figure 4.4 – Energetic exchanges between a qubit and a propaga-
ting field. (a) At time t = t0, a qubit q stationary at x = 0 and a pro-
pagating electromagnetic field f , described by input operator âin, are
prepared in an initial state by Alice, at the expense of work−WA (blue).
(b) At time t = 0, the two systems interact, exchanging work W (blue)
and correlation energyQ arising from entanglement (blue and red). (c)
At time t, Bob extracts work from the two systemsWB. The energy ari-
sing from correlations is not extractable and remains inside the field
and the qubit. The propagating output field is now described by out-
put operator âout. Figure adapted from Ref. (38). See text for details.

where ω0 is the frequency of the qubit, and âin(t) and âout(t) are the time-
dependent input and output operators of the propagating field before and after
time t = 0, respectively, see Fig. 4.5. Strikingly, even in the absence of an input
field (⟨âin(t)⟩ = 0), the qubit can spontaneously release work into the vacuum
of the electromagnetic field (initially empty battery), a scenario corresponding to
the spontaneous emission regime of light-matter interaction. In the absence of an
input field, Eq. 4.9 then simply becomes :

W = ℏω0

∫
dt′|⟨âout(t′)⟩|2, (4.10)

where the work corresponds to the energy change of the coherent component
of the output field. More precisely, Eq. 4.10 is the work provided by the qubit
– i.e. originating from energy coherence, see Section 2.5.5 – to the vacuum of
the electromagnetic field. The authors note that a change in coherence of the
propagating field can be used as a witness for quantum correlations present at
the time of interaction (t = 0). Correlations, built up during the interaction,
reduce the total amount of work that can be extracted from the system
at time t. To extract all work initially given to the bipartite system WA would
require one of the subsystems, f or q, to be initially prepared in a classical state, for
example the driving field f being a high-intensity coherent field. This is a scenario
corresponding to the stimulated emission regime of light-matter interaction, where
thus work extraction from the qubit is possible, but comes at a high energetic cost.
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Figure 4.5 – Input-output formalism. Input âin(t) and output âout(t)
operators of a propagating field where wavepackets travel without de-
formation before and after interaction (t = 0) with a qubit at position
x = 0 composed of a ground and excited state.

4.2.4 . Impact of quantum coherence on energetic exchanges bet-
ween a qubit and the electromagnetic field

Similar to the previous section, Monsel et al. (37) also investigate work
exchange between a qubit and light fields. Inspired by the experimental evidence
brought by Ref. (83) (see Section 2.5.5), the authors assume all energy coherence
initially present in the qubit is transferred to the coherence in photon-number
basis upon spontaneous emission. Under this assumption, they demonstrate that
work exchange in spontaneous emission is equal to the change in energy coherence
in the output field, Eq. 4.10.

The aim of Ref. (37) is to maximize work transfer from the qubit to the
electromagnetic field, thus reducing the amount of quantum correlations built up
during interaction between the two systems. More specifically, they study how
work extraction from a qubit is affected by the presence of initial qubit coherence
in the energy basis, and by the initial energy carried by the electromagnetic
field. A simplistic sketch of the framework is given in Fig. 4.6, where a qubit is
constantly coupled to a mode of the electromagnetic field, here depicted as a
quantum battery and initially empty.

The authors consider a qubit initially (t = 0) prepared by a laser with pulse
area θ in the pure quantum state :

|Ψq⟩ = cos

(
θ

2

)
|g⟩+ sin

(
θ

2

)
|e⟩ ,

This state preparation also brings energy to the qubit Eq(0) = ℏω0 sin
2(θ/2), with

ω0 the frequency of the qubit. Additionally, this state preparation creates coherence
in the energy basis of the qubit according to s(t = 0) = cos(θ/2) sin(θ/2). By
choosing the initial state of the battery (e.g. vacuum, charged) and the coupling
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|g⟩
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Figure 4.6 – Energetics of spontaneous emission. A qubit coupled
to the vacuum of the electromagnetic field, here depicted as an empty
battery field. A pulsed laser excites the qubit, which subsequently spon-
taneously decays and transfers work (coherence) to the battery field.
Inspired by Ref. (37).

duration between the qubit and the battery carefully, work extraction from the qu-
bit is optimized. As discussed previously, work is defined as the coherent fraction of
energy radiated by the qubit in the battery (Eq. 4.9), whereas heat corresponds to
the incoherent part, making up the energy balance previously introduced in Eq. 4.1.

First, the authors consider a qubit-battery coupling duration which maximizes
the work transfer from the qubit to the field. For a given initial state of the
qubit, the amount of work transfer increases with initial energy contained inside
the battery and reaches a maximum value in the limit where the input photon
rate is Ṅ ≫ γ, with γ being the spontaneous emission rate of the qubit. This is
equivalent to the stimulated emission regime of light-matter interaction,
where spontaneous emission is negligible. In this regime, the qubit-battery
interaction is unitary and thus the heat flow becomes Q̇ = 0. However, this limit
requires heavy energetic resources as the required input photon rate in the battery
is high.

A second scenario assumes an initially empty battery. This scenario corres-
ponds to the spontaneous emission regime of light-matter interaction. After
spontaneous emission (time t) the energy is transferred to the battery (b) field :

∆Eq = Eq(t)− Eq(0) = 0− Eq(0)

= −ℏω0µb = −ℏω0 sin
2

(
θ

2

)
, (4.11)

where we have the average photon-number µb =
∫
⟨â†b(t)âb(t)⟩ dt and −∆Eq =

∆Eb. In the transfer, the energy coherence is mapped onto the photon-number
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basis of the battery field that reads :

|Ψb⟩ = cos

(
θ

2

)
|0⟩+ sin

(
θ

2

)
|1⟩ .

In such case the work transferred to the battery is shown to be directly
proportional to the energy coherence (see Section 2.5.5) initially present in the
qubit :

Wq,b = ℏω0s
2(0) = ℏω0 sin

2

(
θ

2

)
cos2

(
θ

2

)
, (4.12)

where we rewrite W as Wq,b to highlight that work is transferred from the qubit
to the field. The heat is then given by the incoherent part of the spon-
taneously emitted field and is obtained by considering the energy balance in a
closed quantum system :

Qq,b = ∆Eb −Wq,b = ℏω0

[
sin2

(
θ

2

)
− cos2

(
θ

2

)
sin2

(
θ

2

)]
. (4.13)

This result implies that as soon as the qubit contains energy coherence, s(0) ̸= 0,
the qubit can spontaneously transfer work to the electromagnetic field, rea-
ching a maximum when the qubit contains maximum energy coherence s(0) =

cos(θ/2) sin(θ/2) = 0.5. This limit is reached when the qubit is initially brought
into a pure and equal superposition (θ = π/2) between the ground and excited
state :

|Ψq⟩ =
1√
2
(|g⟩+ |e⟩).

The authors expand on this result by considering the case where the qubit is
in a general state described by the density matrix :

ρ(0) = p |−θ⟩ ⟨−θ|+ (1− p) |+θ⟩ ⟨+θ| (4.14)

with |+θ⟩ = cos(θ/2) |g⟩ + sin(θ/2) |e⟩, |−θ⟩ = − cos(θ/2) |e⟩ + sin(θ/2) |g⟩,
and p a parameter tuning the purity of the field, ranging from p = 0, a pure
state, to a fully mixed state for p = 1/2. For such a general state, they predict
that a degradation in purity decreases the maximum achievable work
exchange between the qubit and the battery, see Fig. 4.7 where the work
transfer W (blue, dashed), and initial energy of the qubit E(0) (green) are
plotted as a function of pulse area of the driving field for different values of p.
Also shown is the qubit’s ergotropy W(0) (red, dashed) which is the maximum
energy one can extract from the system through unitary actions (133). We
can see from Fig. 4.7 that for a fully mixed state with p = 1/2, the qubit
does not spontaneously transfer work to the battery, all energy contained
inside the qubit is of incoherent nature. In contrast, work transfer is optimized for
p = 0 and θ = π/2, corresponding to maximum initial qubit coherence s(0) = 1/2.
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θ

Figure 4.7 – Impact of the qubit’s energy coherence on the work
transfer.Work transferW (blue, dashed) from a qubit to a battery field
as a function of the pulse area θ of the driving field. Also shown are the
total energy E(0) (green) and ergotropy W(0) (red, dashed) transfer,
where the ergotropy is defined as the maximum energy extractable
through unitary actions. From Ref. (37).

The above theoretical studies, conducted in the group of Alexia Auffèves, were
strongly inspired by the work of Loredo and Antón et al. (2019) where it was
shown that upon resonant excitation of the QD-cavity system, the energy coherence
s(0) is mapped onto the photon-number coherence of the spontaneously emitted
photonic field, allowing for on-demand generation of photon-number superposition
states with coherence in the photon-number basis with near-unity photon-number
purity, see Section 2.5.5 and Ref. (83). In this PhD, we experimentally studied the
energetics of spontaneous emission in a QD-cavity system, whereby we propose
protocols to measure the work and heat in a closed quantum system. Moreover, we
extend the theory to include scenarios where the qubit is subject to pure dephasing.
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4.3 . Coherence-powered energy and work exchange during
spontaneous emission

We experimentally study the energetic exchange during spontaneous emission
with our QD-cavity platform described in Chapter 2 and test the previously des-
cribed theory. From a quantum thermodynamics point of view, the qubit acts as a
work provider, and the vacuum of the electromagnetic field as an empty quantum
battery at the beginning of the process, see a sketch of the equivalent energy proto-
col in Fig. 4.8. Here the qubit is initially brought into an atomic state by a classical
drive through coherent control, before it spontaneously decays and provides work
to the battery.

Charging

Classical
drive

Quantum
battery

Work
provider

|e⟩
|g⟩

Figure 4.8 –Quantumbattery charging. A sketch of the quantum bat-
tery charging protocol where a classical drive resonantly excites a two-
level system, acting as a work provider. The qubit is coupled to the va-
cuum of the electromagnetic field, presented here as a battery, and
transfers work to it through spontaneous emission, thereby charging
the initially empty battery.

4.3.1 . Protocol to measure the energetic transfers
At the beginning of this PhD work, we proposed an experimental protocol to

measure heat and work exchanges between the qubit and the electromagnetic field
during spontaneous emission. This protocol is inspired by work performed in our
group in 2019 (83) where the authors performed self-homodyne measurements with
two consecutively emitted photonic wavepackets temporally overlapped at a beam
splitter, and extract the maximum visibility of interference vmax as a function of
pulse area θ (see Section 2.5.5). Similarly, here we resonantly excite the qubit with
a pulsed laser and interfere successively emitted battery fields at a beam splitter in
a Mach-Zehnder interferometer, Fig. 4.9. The visibility of interference is given by

v =
µ3 − µ4

µ3 + µ4
, (4.15)

with average photon numbers µi =
∫
⟨â†i (t)âi(t)⟩ dt in output mode i of a 50 : 50

beam splitter.
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Figure 4.9 – Experimental protocol to measure energetic ex-
changes. A two-level system is resonantly excited by a pulsed laser
field with repetition rate τ−1. The qubit spontaneously decays, thereby
emitting a photonic field (the battery field), containing photon-number
coherence. The battery field is input to an unbalanced Mach-Zehnder
interferometer where two consecutively emitted battery fields, with
a relative phase ϕ caused by path differences, interfere at a second
50 : 50 beam splitter. By measuring the output intensities with two
detectors D1 and D2, we can extract the amount of photon-number
coherence present in the battery field.

The beam splitter equation relating the output modes to the input modes, are
given by : (

â3(t)
â4(t)

)
=

1√
2

(
1 1
−1 1

)(
â1(t)
â2(t)

)
. (4.16)

Two wavepackets taking different paths in the Mach-Zehnder interferometer will
experience different path lengths. As a result, the two wavepackets arriving in
input modes â1 and â2 of the final beam splitter obtain a relative phase ϕ in
the Fock state basis. This phase changes with differences in optical paths, and
leads to constructive and destructive interference at output ports â3 and â4 of the
final beam splitter. We can absorb the phase arising from the MZI interferometer
into Eq. 4.16 to relate the input and output ports of the final beam splitter in this
specific setup : (

â3(t)
â4(t)

)
=

1√
2

(
1 eiϕ

−eiϕ 1

)(
â1(t)
â2(t)

)
. (4.17)

This protocol corresponds to a self-homodyne measurement where we interfere
a battery field with a copy of itself. In this first part, we assume that the qubit
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is not subject to any source of decoherence. Thus we have â1(t) and â2(t)

corresponding to battery fields âb1(t) and âb2(t), respectively, where the two input
fields are identical except for the relative phase ϕ. Evaluating Eq. 4.15 for these
input states, we find the numerator can be written in terms of input modes :

2Re

[∫
dt ⟨eiϕâ†b1(t)âb2(t)⟩

]
= 2Re

[∫
dteiϕ ⟨â†b1(t)âb2(t)⟩

]
= 2 cos (ϕ)

∫
dt| ⟨âb(t)⟩ |2 (4.18)

considering that ⟨âb1⟩ = ⟨âb2⟩ = ⟨âb⟩. Since the input intensities are equal, µ1 =

µ2 = µb, and considering energy conservation rules, µ1 + µ2 = µ3 + µ4, Eq. 4.15
becomes

v = cos (ϕ)

∫
dt| ⟨âb(t)⟩ |2

µb
(4.19)

Considering Eq. 4.10, Eq. 4.12, and 2µb = 2Eb/ℏω0, we find :

v = cos (ϕ)
Wq,b

Eb
= cos (ϕ) cos2

(
θ

2

)
. (4.20)

We see that the visibility of interference is equal to the fraction of energy
corresponding to work transferred from the qubit to the battery. We can thus
simply access the work transfer efficiency η = Wq,b/Eb from the visibility. The
visibility also depends on the cosine of the interferometer phase ϕ, which means
that we will have maximum (minimum) work transfer efficiency for ϕ = 0(π).
Thus, measuring the maximum visibility of interference vmax for a given
pulse area θ allows to quantify the energetic exchanges between a qubit
and the vacuum of the electromagnetic field.
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Figure 4.10 – Quantum battery performance. (a) The single-photon
purity, and (b) single-photon indistinguishability measurements with a
battery field. For θ = π at 5K normalized to the average amplitude of
large delay peaks. We extract values of (a) g(2) = (2.84± 0.08)% and (b)
Ms = (92.6± 0.1)%.

We first implement this protocol with our InGaAs QD-cavity system inside
a cryostation kept at 5K. At this temperature, our emitter acts close to the
ideal two-level system, which can produce photon-number superpositions with
high single-photon purity and near-unity indistinguishability (13; 83). For our
measurements we use a neutral QD, exciton, as a work provider which we drive
resonantly with a pulsed laser (see Section 2.5.2). Coincidence measurements for
θ = π reveal a high single-photon purity of g(2) = (2.84± 0.08)%, allowing us to
neglect two-photon emission from the QD, and a single-photon indistinguishability
of Ms = (92.6± 0.1)%, see Fig. 4.10. These high values allow us to consider that
our qubit system is well isolated from its solid state environment and thus will be
approximated as a closed quantum system coupled to the electromagnetic
field in the first part of our study.

The experimental setup is shown in Fig. 4.11, where we resonantly excite our
qubit with a Ti :Sapphire pulsed laser at 81 MHz repetition rate with a pulse
duration of 7 ps which is focused onto the QD with a lens L, bringing the qubit into
a pure quantum superposition state depending on the pulse area θ. We separate
the spontaneously emitted battery field from the excitation laser with a cross-
polarization configuration at the polarizing beam splitter (PBS). The remaining
battery field is then sent to a Mach-Zehnder interferometer where we perform self-
homodyne measurements. A beam splitter and a temporal delay (τ = τp) matched
to the repetition rate of the laser are placed in the optical setup to temporally
overlap two consecutively emitted battery fields at the final beam splitter BS2.
Here the coherent parts of the field will interfere constructively or destructively
depending on the relative phase ϕ between the two fields. Two superconducting
nanowire single photon detectors (SNSPDs), D1, D2 at the output of BS2 record
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âb
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BS1

Figure 4.11 – Experimental setup to study energetic exchanges bet-
ween a qubit and light fields. The qubit (q) is placed inside a cryo-
stat operating at 5 − 20 K. We resonantly excite our qubit, generating
a quantum battery field. A cross-polarization configuration (PBS, λ/2,
λ/4) suppresses the reflected driving field. The battery field enters a
Mach-Zehnder interferometer where we perform self-homodynemea-
surements with two consecutively emitted battery fields âb. They are
temporally overlapped at the BS2 by inserting a delay line τ matched
to the repetition rate of the laser. Two SNSPDsD1 andD2 at the output
of BS2 register the photon clicks as a function of time.

the single counts over a period of up to 20 minutes, allowing us to extract the
visibility of interference and thus access the photon-number coherence.

Initial measurements of the emission intensity as a function of pulse area of
the driving laser show the onset of Rabi oscillations (Fig. 4.12) demonstrating
coherent control over the atomic state and transfer of energy to the battery
field through spontaneous emission. This measurement allows us to access the
energy transferred to the battery field : Eb = ℏω0µb, where we take µb ∝ Ib as the
sum of intensities measured by the two detectors in Fig. 4.11 : Ib = I1 + I2.
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Figure 4.12 – Rabi oscillations. The measured emission intensity from
a resonantly driven QD-cavity system as a function of pulse area θ.

The single counts show phase-dependent anti-correlated oscillations
whose amplitudes grow with decreasing pulse area. An example data set for
θ = 0.20π is shown in Fig. 4.13. For each pulse area θ we extract the maximum
visibility of interference vmax from the normalized intensity time traces in
Fig. 4.13(a). Such time traces are normalized to compensate for differences in
detection efficiencies : we normalize each point in time I1(ti) (or I2(ti)) by the
sum of the two detectors : I1(ti) + I2(ti). From these normalized intensity traces
we can compute the visibility time trace in Fig. 4.13(b) according to Eq. 4.15 with
I1(ti) ∝ µ3 and I2(ti) ∝ µ4.
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Figure 4.13 – Extracting visibility. Example data set for self-homodyne
measurements performed at 5K for θ = 0.21π. (a) QD emission inten-
sity recorded over the duration of 20 minutes, where two signals I1(t)
and I2(t), measured by detectorsD1 andD2, respectively, show phase-
dependent anticorrelated oscillations (see inset). (b) The visibility time
trace corresponding to measurement in (a). (c) A histogram of the visi-
bility values measured over time. The visibility distribution follows an
arccos dependency since v ∝ cos(ϕ).

118



0

80%

20%

40%

60%

100%

Vi
si
bi
lit
y
v m

a
x

Pulse area θ(×π)
0 0.25 0.5 0.75 1

N=10
N=100
N=200
N=500

Figure 4.14 – Standard deviation in visibility. The average visibility
of interference vmax as a function of pulse area θ, where the mean is
taken by considering the N highest and N lowest visibilities, with N ∈
[10, 100, 200, 500].

From the visibility time trace in Fig. 4.13(b) we construct a histogram, revealing
the visibility distribution over the duration of the measurement, Fig. 4.13(c). This
distribution shows a typical arccos dependence expected from the relation between
the visibility and the optical phase ϕ : ϕ(t) = arccos (v(t)/vmax) (see Eq. 4.20).
This arccos distribution reveals that the phase ϕ fully explores the phase space
ϕ ∈ [0, π]. We extract vmax from the histograms by taking the average of the
absolute value of the N highest, and N lowest visibility data points. We choose
here a value of N = 100 as we want to capture the edges of the visibility histogram
in Fig. 4.13(c), but do not wish to underestimate or overestimate vmax : if N is
too small random counting error dominates, but if N is too high we underestimate
the visibility by including lower visibility values. A study on vmax as a function of
N shows that for N ∈ [100, 200, 500] there is little variation in vmax, see Fig. 4.14
where we also plot N = 10, but discard it as this value overestimates the visibility.
The error in vmax is determined by the variation and by the standard counting
error. For the data set shown in Fig. 4.13 we obtain a visibility of 0.775± 0.016.

4.3.2 . Energetic exchanges for a pure battery field
Following the procedure described in Sec. 4.3.1 we extract the visibility of

interference vmax as a function of the driving pulse area θ, see Fig. 4.15(a). We
can see that the visibility increases with decreasing pulse area, as expected (see
Section 2.5.5). The data is well accounted for by the theory without considering
any decoherence of the qubit, as can be seen by comparing the data to the fitted
curve : vmax = cos2 (θ/2) from Eq. 4.20.

From the measured Rabi oscillations in Fig. 4.12 we extract the total
energy transferred from the qubit to the battery field normalized to the
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Figure 4.15 – Quantum battery charging.(a) Measured visibility of in-
terference vmax as a function of θ from self-homodyne measurements
with the battery field. (b) The total energy ∆Eb, work Wq,b, and heat
Qq,b transferred from the qubit q to the battery b upon spontaneous
excitation. All theoretical curves are fitted to the data, assuming no de-
coherence.

transition energy of the qubit, Fig. 4.15(b) (diamonds). We fit the data to
∆Eb/(ℏω0) = µb = sin2(θ/2) (black curve). The visibility measurements combi-
ned with the Rabi oscillation fit allow us to deduce the thermodynamic quantities
plotted in Fig. 4.15(b). We obtain the work and heat charged into the battery
field : Wq,b/(ℏω0) = ∆Eb×vmax (open circles) and Qq,b/(ℏω0) = ∆Eb×(1−vmax)

(solid circles), respectively.

From the curves in Fig. 4.15(b) we see that, as predicted in Ref. (37), the
fraction of work in the energy transfer is highest for low pulse areas. This high
efficiency can be understood by considering that all the emission originates
from the qubit dipole only in the low power limit : no entanglement takes
place between the qubit and the electromagnetic field. Moreover, for small θ the
quantum battery field’s amplitude is close to that of a coherent field, which has
unity first-order coherence c(1) = 1, truncated for photon number components
above 1 : |α⟩ ≈ e−|α|2/2(|0⟩+α |1⟩). Work transfer from the qubit to the vacuum
is therefore most efficient in this limit.

As we move towards higher values for θ Fig. 4.15(b), the work contribution of
the battery field drops. We can understand this effect by considering light-matter
interaction between the qubit and the electromagnetic field : as we build qubit
population with increasing θ, entanglement takes place between the qubit and the
electromagnetic field, lasting until the end of the spontaneous emission process.
The resulting quantum correlations during the emission process reduce
the work transfer to the battery field, which in the limit of θ → π actually
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results in net zero work transfer. In this limit, the qubit acts as a single-photon
source that only spontaneously emits energy in the form of heat. At 5K we see
that maximum work transfer is highest at θ = π/2 as predicted, a situation
where the emitted field is in an equal superposition between zero and one photon
Fock state and therefore contains highest possible first-order coherence c(1) ≈ 1/2.

Even though the work transfer for a fully inverted qubit acting as a perfect
single-photon source is zero, Ref. (37; 38) predicts that one can still extract
work if the battery is not in the vacuum state. Indeed, in Ref. (37) the
authors predict that more work can be exchanged with growing energy contained
in the electromagnetic field at the beginning of the interaction. This work transfer
scenario corresponds to the regime of stimulated emission.

4.3.3 . Energetic exchanges in presence of decoherence

In a second step of this study, we went beyond the theoretical framework
introduced and studied in Sec. 4.2 by deliberately introducing decoherence to the
qubit, which we achieve by increasing its environment temperature. As we raise the
temperature the QD couples to acoustic phonons with growing strength (134–136).
As a result, the zero-phonon line starts to broaden with pure dephasing, and pho-
non sidebands appear where phonon-assisted emission can occur. These phonons
affect the indistinguishability of generated photons by producing frequency-detuned
photons in the sideband through interaction with the QD, and by dephasing of the
zero phonon line (137). In 2019, however, Thomas et al. (40) demonstrated that
the phonon sideband emission in our QD-cavity system is strongly suppressed by
the Purcell effect : the cavity accelerates the zero-phonon line emission by many
orders of magnitude more than the phonon sideband emission. Therefore, we can
neglect the effect of phonon sidebands, and can assume that the qubit is subject
to pure dephasing, and does not exchange energy with the phonon bath. We
will provide in Sec. 4.3.4 clear experimental proof that the QD does not exchange
energy with the phonon bath during the excitation and emission process since we
show that the amount of energy emitted in the field at higher temperature remains
unchanged with respect to the emitted energy at 5K.

Although the QD is observed not to exchange energy with the phonon bath
during spontaneous emission, it does undergo pure dephasing. To evidence this, we
carry out an initial measurement to investigate the effect of increasing temperature
on photon indistinguishability. We heat up the environment by changing the target
temperature of the cryostation. As we increase the environment temperature of
the qubit, the QD red shifts caused by a change in band gap energy. For each
probed temperature we excite the qubit with a π-pulse, and apply a suitable
voltage to maintain qubit-cavity resonance through Stark shift. We perform
Hong-Ou-Mandel measurements with the generated single-photon field to extract
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Figure 4.16 – Single-photon purity g(2) and indistinguishability Ms

versus temperature. As we increase the qubit environment tempe-
rature, the measured single-photon indistinguishabilityMs decreases.
The indistinguishability is corrected for an imperfect single-photon pu-
rity.Within the range 5−20KwemaintainQD-cavity resonance through
Stark shift using a voltage source.

the visibility of interference VHOM (using side peak normalization since θ = π).
Subsequent Hanbury-Brown and Twiss measurements with the single-photon
field (blocking one arm of the HOM interferometer) allow us to correct for
a non-zero multiphonon component (81). Fig. 4.16 shows the single-photon
indistinguishability Ms as function of temperature. We see that the corrected
wavepacket indistinguishability decreases from Ms(π) = (92.6 ± 0.1)% at 5 K
to Ms(π) = (58.0 ± 0.1)% at 20 K, while still maintaining QD-cavity resonance.
Note that we limit our study to ≈ 20 K since above this temperature we are
not able to keep the QD in resonance with the cavity.

At 20 K the qubit is prone to pure dephasing effects, but does not exchange
energy with the phonon bath. Moreover, the phonon bath does not couple to the
electromagnetic field. As such, the phonon bath does not exchange energy with the
two systems and we can consider the bipartite subsystem as an energetically
closed quantum system, allowing us to adopt the same framework as in Sec. 4.3.2
where work and heat transferred between qubit and field are equal and opposite,
see full proof developed by the theory team in Appendix 9.3.1. However, pure
dephasing degrades the performance of the qubit which is reflected in the single-
photon indistinguishability at 20 K. We can thus no longer describe our battery
field as a pure state, but rather have to consider a mixed state described by the
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density matrix operator :

ρ̂b = cos2(θ/2)ρ̂0 + sin2(θ/2)ρ̂1 + cos(θ/2) sin(θ/2)(ρ̂01 + ρ̂10), (4.21)

where the subscripts 0, 1 indicate the vacuum or one-photon component of the
battery field. For this battery field, we can write the single-photon indistinguisha-
bility, or purity in the temporal domain, in terms of the density matrix operator as
Ms = Tr[ρ̂21]. Considering the case where the qubit is subject to pure dephasing
we have :

Ms =
γ

γ + 2γ∗
, (4.22)

where γ + 2γ∗ = 2/T2, with T2 the total decoherence rate creating the homoge-
neous broadening of the emission line width. Moreover, if there is a slow fluctuation
in the QD solid state environment (spectral diffusion), the emission energy of the
QD varies with δω. In this case, the indistinguishability is given by :

Ms(δω) =
γ(γ + 2γ∗)

(γ + 2γ∗)2 + δω2
, (4.23)

see Appendix 8.3.

In contrast to the battery field at 5 K described in Sec. 4.3, the first-order cohe-
rence between the zero and one-photon component is now reduced. The theoretical
framework is extended to capture this reduction by introducing the parameter (Ap-
pendix 8.1) :

C = Tr[ρ̂01ρ̂10]. (4.24)

In terms of the density matrix describing the state given in Eq. 4.21, the
reduction in quantum coherence is given by the off-diagonal terms (see the ge-
neral density matrix for a state with up to one-photon component in Section 2.5.5).

Evaluating the definition for work transfer in spontaneous emission Eq. 4.10 on
the general battery state in Eq. 4.21 results in the equations for energetic transfers :

Wq,b = ℏω0 cos
2

(
θ

2

)
sin2

(
θ

2

)
C (4.25)

Qq,b = ∆Eb −Wq,b = ℏω0

[
sin2

(
θ

2

)
− cos2

(
θ

2

)
sin2

(
θ

2

)
C
]
. (4.26)

The maximum visibility of interference is now reduced to : vmax = C cos2(θ/2).
As shown in Appendix 8.3, in the presence of pure dephasing, the reduction in
quantum coherence is related to the temporal purity according to : C = Ms,
posing an important bound on the maximum coherence present in the field.
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Figure 4.17 – Quantum battery charging.(a) Measured visibility of in-
terference vmax as a function of θ from self-homodyne measurements
with the battery field. (b) The total energy∆Eb, workWq,b, and heatQq,b

transferred from the qubit (q) to the battery (b) upon spontaneous ex-
citation.

4.3.4 . Measuring the impact of decoherence
We repeat the same measurements as for the 5K case described in Sec. 4.3.1

and extract the visibility as function of pulse area. We show the results of
the self-homodyne measurements at both temperatures in Fig. 4.17(a), where
we see that the work transfer efficiency is significantly decreased with higher
temperature. We fit both data sets to vmax = C cos2(θ/2), taking into account
the possible reduction in quantum coherence. We extract C(5 K) = 0.975±0.007,
showing indeed that the battery field at 5 K is close to a pure state, and
C(20 K) = 0.594± 0.007, revealing a mixed state.

The clean proof that the QD does no exchange energy with the phonon bath
at 20K is found by comparing the Rabi oscillation curves at both 5K and 20K.
Fig. 4.18(a) shows the raw measured QD intensity as a function of pulse area
where we see that the maximum intensity (θ = π) remains similar when increa-
sing temperature. From these raw intensities we can estimate the occupation
probability of the excited state p1 as a function of pulse area for the two dif-
ferent temperatures. We estimate p1 for θ = π through the measured visibility of
interference according to

p1(π) = 1− vmax(π)

C
, (4.27)

see Section 3.2, and where we use the values for C extracted from the fits in
Fig. 4.17(a) at 5 K and 20 K. We scale the intensity measurements in Fig. 4.18(a)
for 5 K and 20 K by the obtained values for p1(π) : 0.95± 0.19 and 0.92± 0.02,
respectively, resulting in Fig. 4.18(b). We can see that despite the introduced
decoherence, the qubit operating at 20K still reaches an occupation close to unity
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pulse area. (a) The emission intensity as a function of pulse area for a
resonantly driven qubit at 5 K (blue) and 20 K (red). (b) The correspon-
ding excited state probability as a function of pulse area.

at π pulse and the total energy transferred to the electromagnetic field remains
unchanged.

From these measurements and the Rabi oscillation data, we can deduce the
work and heat transport between the qubit and the battery field at 20 K, red
circles (open and solid, resp.) in Fig. 4.17(b). The maximum work transfer is still
found at pulse areas close to θ = π/2, but we can see that the reduction in
quantum coherence at 20 K significantly impacts the absolute amount
of work transfer, which reduces from Wq,b/ℏω0 = (27.9 ± 1.2)% at 5 K to
Wq,b/ℏω0 = (15.8± 0.6)% at 20 K. In contrast, the proportion of heat exchanged
has increased with temperature. This change in the nature of energy transfer is in
agreement with the intuition that decoherence reduces the effective unitary
interaction between the qubit and the field. Again, we fit both data sets using
the values of C obtained from the visibility measurements in Fig. 4.17(a) and see
good agreement between the data and the theoretical curves.

Finally, we can also test the theoretical bound on C mentioned in section 4.3.3
by measuring the mean wavepacket indistinguishability Ms of our battery fields at
5 K and 20 K. From Fig. 4.16 we know the single-photon indistinguishability at
5 K and 20 K : Ms(5 K) = (92.6± 0.1)% and Ms(20 K) = (58.0± 1.0)%. These
values saturate the theoretical predicted bound C ≈ Ms, demonstrating maximum
achievable work transfer at both temperatures.
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Conclusion Section 4.3 – Charging a quantum battery

In this section we proposed a protocol based on homodyne measurements
to measure the work Wq,b and heat Qq,b transfers between a qubit and the
electromagnetic field in spontaneous emission. We implemented this proto-
col and measured for the first time these energetic quantities for a two-level
system coupled to the vacuum of the electromagnetic field, energetically
equivalent to charging a quantum battery. Our observations confirm theo-
retical predictions, where the amount of work transfer is predicted to be pro-
portional to the initial quantum coherence present in the qubit. We pushed
the framework further by introducing pure dephasing to our qubit system,
both experimentally and theoretically, emphasizing the special role played by
quantum coherence on the energetic exchanges between a two-level system
and the vacuum of the electromagnetic field.
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4.4 . Coherence-powered energy and work exchange between
light fields

In the last part of this study, we proposed to study the possibility to discharge
the battery field into a classical field. To discharge the battery field we propose
to interfere it with a classical field on a beam splitter. A sketch of the full protocol
is given in Fig. 4.19. The use of a coherent field as a receiver illustrates the whole
concept of the battery field : a laser (classical drive) gives energy to the qubit
that in turn transfers the energy to the battery field. The battery is subsequently
discharged towards a similar classical coherent field.

Charging

Classical
drive

Quantum
battery

Work
provider

Classical
receiver

Discharging

|e⟩

|g⟩

Figure 4.19 – Charging and discharging a quantum battery. In a two-
step protocol wemeasure the energetic transfers between a work pro-
vider (resonantly driven by a classical drive) and the vacuumof the elec-
tromagnetic field (initially empty quantum battery), and between two
light fields : the charged quantum battery field and a classical receiver
interfering at a 50 : 50 beam splitter. The two steps in the protocol are
equivalent to charging and discharging of a battery.

4.4.1 . Theory : Energy transfers in quantum battery discharge
This discharging step is conceptually different from the charging step, and

therefore required the development of a new theoretical framework, led by our
colleagues at Institute Néel and Quandela - Alexia Auffèves, Maria Maffei, and
Stephen Wein.

We consider the beam splitter in Fig. 4.20 where we now have two different
input fields that we set to show equal intensities : the coherent field (c) in input
port â1(t) = â

(in)
c (t) and the battery field (b) in input port â2(t) = â

(in)
b (t). We

define the discharged battery field as the field exiting through output port 4 : â4(t).
The energy received by the classical receiver in this output port is then given by
(see Appendix 9.1) :

∆Ec = ℏω0 cos

(
θ

2

)
sin2

(
θ

2

)
Cb,c = −∆Eb, (4.28)

127
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Figure 4.20 –Homodyne interference at a 50 : 50 beam splitter. Two
input fields â1(t) and â2(t) interfere and exchange energy at a beam
splitter and exit the beam splitter in output ports â3(t) and â4(t).

where we see that an amount of the battery’s energy is transferred to the classical
field. The amount of energy transferred to the classical field is limited by the
parameter Cb,c, a parameter which captures simultaneously the classical and
quantum coherence exchanged in the process. In the case of a qubit subject
to pure dephasing, this parameter Cb,c is equal to the mean wavepacket overlap
between the battery field and the classical field : Mb,c. For a battery field and
classical field with equal decay rate, γb = γc = γ, the mean wavepacket overlap is
given by :

Mb,c =
γ

γ + γ∗
, (4.29)

see Appendix 9.3.2. This expression is identical to the expression found for Ms

except for a factor 2 in front of γ∗, which disappears when one of the two fields,
the coherent field, is not subject to pure dephasing.

The visibility of interference vmax is given by :

vmax = cos

(
θ

2

)
Cb,c, (4.30)

see Appendix 9.2. Hence, measuring the maximum visibility of interference in
homodyne-type measurements with a classical receiver and a battery field, allows
us to determine the total energy transferred from the battery to the receiver in the
process according to :

∆Ec = vmax × E(in)
b . (4.31)

We can split the energy exchanged in Eq. 4.28 into a work and heat contribu-
tion, similarly to the charging step :

∆Ec = Wb,c +Qb,c, (4.32)
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Figure 4.21 – Theoretical predictions on energy exchange between
two coupled light fields. The predicted total energy transfer∆Ec, the
workWb,c, and heatQb,c from a pure battery field to a classical field as
a function of pulse area θ in the discharging step.

where the work component is equal to the coherent part of the field and the
heat is equal to the incoherent part. Following the analysis method introduced in
Refs. (38; 122; 127–129), it can be shown that

Wb,c = ℏω0 sin
2

(
θ

2

)[
cos

(
θ

2

)
Cb,c +

1

2

(
cos2

(
θ

2

)
C − 1

)]
, (4.33)

see Appendix 9.1. Combining this expression for work with the energy balance in
Eq. 4.32 we obtain the heat transfer in discharge :

Qb,c =
1

2
ℏω0 sin

2

(
θ

2

)(
1− cos2

(
θ

2

)
C
)

= Qq,b/2, (4.34)

which, remarkably, is equal to half of the energy initially transferred from the
qubit to the battery field in the charging process, see Eq. 4.26.

Fig. 4.21 shows the expected work, heat and total energy transferred to the
classical field for a pure battery state. In the limit of θ → 0 we expect the most
efficient work discharge. In this limit, when intensities of both fields are matched,
the battery field and the coherent field have the highest overlap, as explained in
Sec. 4.3.2. Furthermore we can see that we expect most energy transfer ∆Ec for
π/2 ≤ θ ≤ π, resulting from an interplay of quantum coherence and classical
coherence : the battery field has maximum quantum coherence C for θ = π/2,
whereas the normalization condition E(in)

b = E(in)
c = ℏω0 sin

2(θ/2) results in an
increase of classical coherence of the coherent field as θ → π. Another interesting
feature arises at high values for θ, where the work transfer becomes negative.
This negative work flow indicates an unexpected transfer of work from the
classical receiver to the quantum battery and reaches its minimum value for
θ = π, where it balances out with the positive maximal heat flow resulting in a
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Figure 4.22 – Experimental setup to study energetic transfers bet-
ween light fields. A 7ps pulsed laser is split into two paths : one exci-
tation path towards the qubit (q), and one path towards a mirror (M),
both placed inside a cryostation. The qubit is resonantly excited and
emits a battery field âb, which is sent towards a beam splitter BS2. The
laser field sent towards the mirror inside the cryostation is reflected
and sent towards BS2. Two Fabry-Pérot etalons (one depicted) and an
inserted delay line in both paths ensure the temporal overlap and si-
multaneous arrival, respectively, of the laser field and the qubit at BS2,
where they interfere. DetectorsD1 andD2 monitor the output ports of
BS2, registering the single counts.

zero net energy transfer.

4.4.2 . Experimental implementation

Experimentally we adopt the setup given in Fig. 4.22 where we interfere the
quantum battery field âb generated by the QD with a coherent field âc at the
beam splitter BS2. The classical receiver is derived from the laser driving the
QD, and temporally shaped by two Fabry-Pérot (FP) etalons to ensure temporal
mode matching between the classical field and the battery field. We align the
etalons to the central wavelength of the QD by first sending the QD emission
through the etalons in the path of the classical receiver. We center the etalons by
adjusting their angle with respect to the light path, maximizing the QD signal at
the output. Once we have maximized the transmission of the QD signal through
the etalons we redirect the laser field into the etalon and send the QD emission
to the homodyne set-up, thereby obtaining the setup in Fig. 4.22.
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Figure 4.23 – Temporal profiles battery fields and classical receiver.
Wemeasure the temporal profile of our battery fields generated at 5 K
and 20 K, and the temporal profile of the classical receiver (coherent
laser) to ensure temporal mode matching.

With two detectors D1, D2 at the output of the final beam splitter we can
estimate the quality of temporal mode matching between the photonic field and
the laser field. Fig. 4.23 shows the temporal profiles of the battery fields measured
at 5 K and 20 K and the temporal profile of the classical receiver (dashed black).
Because we measure the temporal profiles with the detectors D1, D2 placed at the
outputs of the final beam splitter in Fig. 4.22, this measurement also shows that
by inserting the right delay τ in the battery arm, the battery field and classical
field arrive simultaneously at the beam splitter.

Similarly to the procedure for the charging step in our protocol, we register
the single counts received by two SNSPDs for a period of time and extract the
visibility of interference. Initial measurements at 5K where we interfere the QD
light field with the classical receiver field bypassing the cryostation in Fig. 4.22,
show fast oscillating intensity counts such as in Fig. 4.24(a) (for θ = 0.39π).
These fast oscillating counts result in a visibility (phase space) distribution shown
in Fig. 4.24(c), where we observe that ϕ does not cover the entire [0, π] space. A
visibility distribution such as the one shown in Fig. 4.24(c) does not allow for easy
access to the maximum visibility of interference, crucial for quantifying work and
heat. Fourier transposing the visibility time trace, see Fig. 4.25, shows principal
frequencies in the low frequency range 35 − 75 Hz, probably associated with the
mechanical pumping of the cryostation.

4.4.3 . Study on mechanical vibrations in measurements

To test whether the visibility measurements are limited by vibrations originating
from the cryostation, we perform a study with our laser field, using a setup dis-
played in Fig. 4.26. We send a pulsed laser field into an unbalanced Mach-Zehnder
interferometer where the laser path is split into two branches. The laser field in the
upper branch is sent through the same cryostation as the one containing the qubit.
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Figure 4.24 – Extracting visibility for homodyne-type measure-
ments from initial measurements. Data set for QD-laser interfe-
rence at 5K for θ = 0.39π when the laser is not sent via the cryostation.
(a) The intensity time trace shows fast oscillating counts. (b) The fast
oscillations in (a) result in telegraph-like visibility time traces. (c) The
histogram of the visibility distribution shows a maximum around zero.
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Figure 4.25 –Mechanical noise. Fast Fourier transform of the visibility
time trace in Fig. 4.24(b) shows principal frequencies in range 35-75Hz.

A lens L1 in the cryostation focuses the laser onto a mirror which reflects the laser,
see Fig. 4.22. In this configuration the laser field in the upper branch of Fig. 4.26
is subject to the similar vibrations as the qubit and battery field. The laser field in
the lower branch does not enter the cryostation and instead is temporally delayed
such that two consecutive pulses following the two different paths coincide at the
final beam splitter. Two detectors at the output register single counts, allowing us
to extract the visibility of interference.

The Cryostation s200 from Montana Instruments allows for operation at
different compressor powers corresponding to different mechanical frequencies.
We first perform the measurements at high compressor power and obtain the
intensity time traces in Fig. 4.27(a). The corresponding visibility time trace shows
the same telegraphic behavior as seen in Fig. 4.24. Subsequent measurements at
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Figure 4.26 – Testing effect mechanical vibrations on phase stabi-
lity. Self-interference with a laser field. A pulsed laser field is split into
two paths : through a cryostation (upper branch) or via a time-delayed
path (lower branch), after which they interfere at a second 50 : 50 beam
splitter, where two SNSPDs at the outputs record the single counts.

low compressor power result in an increase in intensity (and visibility) oscillation
amplitude (Fig. 4.28). The corresponding visibility histogram shows a distribution
more similar to the expected arccos shape. We note that both measurements do
not show a fully explored phase space (askew histograms) which is caused by
the relatively short integration time whereby we do not explore the full phase space.
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Figure 4.27 – Laser interference through cryostation operating at
high compressor power. (a) Intensity time trace with fast anticorrela-
ted oscillations. (b) Visibility time trace corresponding to (a). (c) Visibility
distribution shows a spike around zero.
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Figure 4.28 – Laser interference through cryostation operating at
low compressor power. Intensity time trace shows increased ampli-
tude of oscillations. (a) Intensity time trace, (b) visibility time trace, and
(c) distribution.

To fully appreciate the effect of mechanical vibrations on the visibility distribu-
tions, we perform the same measurement but bypass the cryostation in the upper
branch in Fig. 4.26. We see a drastic increase in oscillation amplitude, Fig. 4.29,
with the normalized visibility reaching unity as expected for self-interference with a
laser field with first-order coherence c(1) = 1. These measurements show that the
qubit and classical receiver are subject to different (mechanical) vibrations. The
resulting fluctuating difference in path length introduces fast phase oscillations
and suppresses the visibility of interference. As a result of these measurements,
we perform the discharge measurements with the classical receiver focused onto,
and reflected off a mirror M inside the cryostation as depicted in Fig. 4.22. Fur-
thermore, we place waveplates (λ/2, λ/4) in both paths leading to the final beam
splitter to ensure parallel polarization of the two fields, and set the intensities of
the two fields for each θ to be equal at the final beam splitter in the setup : µb = µc.
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Figure 4.29 – Laser interference in absence of cryostation vibra-
tions. (a) Intensity time trace of self-homodyne measurements with a
coherent field containing maximum first-order coherence. (b) Visibility
time trace, and (c) distribution.
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4.4.4 . Energetic exchanges between two light fields

We implement the protocol we propose to discharge the battery field, using
the experimental conditions discussed above. We show an example data set in
Fig. 4.30 where we drive our qubit with a θ = 0.55π pulse area. Compared to the
self-homodyne measurements, the optical phase changes at a faster rate. The in-
set in Fig. 4.30(a), however, clearly shows anticorrelated oscillations. The presence
of anticorrelated oscillations is a clear indication that we have achieved energy
transfer from the battery field to the classical field. However, the visibility
histogram in Fig. 4.30(c) shows slightly less clear bounds to the visibility distribu-
tion compared to the self-homodyne measurements. Nevertheless, we can extract
a maximum visibility of interference by again taking the mean absolute value of
the N highest and N lowest visibilities, where we take N = 100. The error in
visibility is given by the standard deviation in vmax by comparing the results for
N ∈ [10, 500], and standard counting error. For the example data set in Fig. 4.30
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Figure 4.30 – Visibility measurements with a battery field and clas-
sical receiver. For θ = 0.55π. (a) Intensity time trace, (b) visibility time
trace, and (c) histogram showing the visibility distribution.

we find vmax = 0.25± 0.01. We repeat this measurement for different pulse areas
at 5K and 20K.

We first examine the scenario where the qubit is kept at 5K and weakly couples
to the phonon bath. Fig. 4.31(a) (blue) shows the results of the interference
measurement. As in the battery charging step of the protocol, we can see
an increase in visibility with decreasing θ which corresponds to an increasing
efficiency of discharge, albeit significantly reduced with respect to the charging
step. From the fitted curve vmax = Cb,c cos (θ/2) we extract Cb,c which captures
the overall coherence between the two fields (classical and quantum). We find
Cb,c(5K) = (36.3 ± 0.4)%. Next, we perform the same set of measurements at
20K, red data in Fig. 4.31(a), where now the total energy transfer is further
reduced due to reduction in photon-number coherence of the battery field. From
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Figure 4.31 – Discharging a quantum battery with a classical recei-
ver.(a) Visibility as a function of pulse area θ for the interference of the
battery field with a classical receiver, for a qubit operating at 5K (blue)
and 20K (red). (b) The energetic transfers upon interference between
a battery field and a classical receiver, with the total energy ∆Ec (dia-
monds), workWb,c (open circles), and heatQb,c (circles) as a function of
pulse area.

the fitted theory curve we extract Cb,c(20K) = (27.2± 0.4%).

In Fig. 4.31(b) we show the total energy exchanged between the battery
field and the classical receiver (solid diamonds) where a positive value on the
y-axis indicates a net energy transfer from the qubit towards the classical
receiver. The other thermodynamic quantities can then be deduced from the
visibility measurement where we highlight that the heat component of the energy
exchanged Qb,c only originates from the quantum battery field as the classical
receiver is a coherent field. As shown in the previous section we find the heat
to be Qb,c = Qq,b/2 and therefore the work component Wb,c = E(in)

b vmax−Qq,b/2.

The heat and work exchanged during the experiment are displayed in
Fig. 4.31(b) as solid and open circles, respectively, and we fit the data to the
theoretical predictions. We notice that although the net energy transfer is positive,
the work transfer from the battery field is only positive for a small range of
θ, indicating undesired work flow in the opposite direction. This effect is
amplified at 20K as a result of introducing pure dephasing to the qubit, which
affects the charging of the battery field.
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Figure 4.32 – Mean wavepacket overlap between a quantum bat-
tery and a classical receiver.(a) Second-order correlation histograms
for a qubit operating at 5 K and θ = π for co-polarization with the classi-
cal receiver (blue) and cross-polarization (gray). Histogramsnormalized
by the amplitude of the uncorrelated peaks. (b) Same as in (a) but for
the qubit operating at 20 K.

4.4.5 . Limitations to discharging energy
To understand the limited energy exchange between the battery field and

the classical receiver, we perform Hong-Ou-Mandel measurements to extract their
mean wavepacket overlap at θ = π. From the measurements, Fig. 4.32, we find
Mb,c(5 K) = (48.9±0.3)% and Mb,c(20 K) = (32.3±0.7)% where we have taken
into account the non-negligible classical intensity correlation g

(2)
c = 1 from the

classical receiver (see textbox). These values are lower than initially expected when
observing the overlap in temporal profiles in Fig. 4.23, and the indistinguishability
Ms of the battery field. This could indicate the presence of spectral diffusion
of the qubit resonance. Indeed, the spectral diffusion takes place on timescales
longer than the timescale at which we probe the indistinguishability of our battery
field Ms (12.3 ns). As a result we do not capture the spectral diffusion with Ms

but possibly see the effect of this when interfering the battery field and classical
receiver. For a qubit prone to pure dephasing and spectral diffusion (δω), the mean
wavepacket overlap with the classical receiver is given by (Appendix 9.3.2) :

Mb,c(δω) =
γ(γ + γ∗)

(γ + γ∗)2 + δω2
, (4.35)

where we consider γb = γc = γ, and we see that spectral diffusion over a range
δω decreases the mean wavepacket overlap.
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In contrast, we observe Mb,c only slightly higher than Cb,c, with
Cb,c(5 K) = (36.3 ± 0.4)% and Cb,c(20 K) = (27.2 ± 0.4%). We attribute
this slight discrepancy to blinking effects of the QD transition, which affects
the measurements for Cb,c and Mb,c differently. When we interfere the battery field
with the classical field on the 50 : 50 beam splitter, we balance the intensities,
or mean average photon-number. When a QD suffers from blinking, it switches
between two different emission intensities "high" and "low" over long timescales.
Whenever the QD emits at low intensity, the inputs to the beam splitter are no
longer balanced, affecting the interference. Therefore, the extracted visibility and
mean wavepacket overlap are limited by the amount of time the QD is in the
"high" emission state, which could explain the slight discrepancy between the
extracted values for Cb,c and Mb,c.

Extracting wavepacket overlap between a classical field and a quantum field

Let us consider two fields, a classical coherent field and a single-photon
field, impinging on a 50 : 50 beam splitter. Coincidences at the outputs can
be the result of :

1. Photon from classical source and quantum source do not bunch ;
contribution : 2µbµc(1−Mb,c), where the factor two is taking into
account the two ways this can happen (both photons reflected or
transmitted).

2. Two photons originate from the same source, with the other input of
the beam splitter in vacuum state ; contribution : µ2

cg
(2)
c or µ2

bg
(2).

Assuming we drive our qubit close to π-pulse, the average uncorrelated peak
area is Āτ>0,∥ = 2µcµb, resulting in :

g
(2)
HOM,∥ = 1−Mb,c + ḡ(2),

with the weighted average input intensity correlation ḡ(2) = (µc/µb)g
(2)
c /2+

(µb/µc)g
(2)/2.

Realising g
(2)
HOM,⊥ = 1 + ḡ(2), we obtain

Mb,c =
g
(2)
HOM,⊥ − g

(2)
HOM,∥

g
(2)
HOM,⊥

(
1 + ḡ(2)

)
(4.36)

For equal input intensities (µb = µc) we get 1 + ḡ(2) = 1 + (g(2) + 1)/2.
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Conclusion Section 4.4 - Discharging a quantum battery with a classical
field

In this section we proposed a protocol to discharge the charged quantum bat-
tery and measure the energetic exchanges during the process. This protocol
is experimentally demonstrated whereby we discharge the battery through
homodyne interference with a classical receiver, a coherent laser field. The
energy transfer from the battery to the classical field is reduced by pure
dephasing introduced to the qubit, which reduces the amount of work ini-
tially charged in the battery. Moreover, in terms of work transfer, we witness
an unwanted work transfer from the receiver to the battery. Finally, in the
protocol we chose to balance the input intensities at the beam splitter,
which abets the perceptibility of the visibility of interference, and therefore
maximizes the energy discharge.
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4.5 . Conclusion and outlook

In this chapter we have proposed and implemented an experimental protocol
to measure energetic exchanges on the most fundamental level : between a qubit
and the vacuum of the electromagnetic field through spontaneous emission, and
between a quantum field and a classical coherent field. In quantum thermodyna-
mics these steps are equivalent to charging and discharging a quantum battery,
here the photonic field emitted by the qubit.

Figure 4.33 – Summary energetic exchanges between a qubit and
light fieldsA two-level system resonantly excited by a pulsed laser field
with pulse area θ, spontaneously decays, thereby transferring energy
∆Eb in the form of work Wq,b and heat Qq,b to the vacuum of the elec-
tromagnetic field (a quantum battery). In the second step, the battery
field is discharged through interference with a coherent field |α⟩, trans-
ferring workWb,c and heatQb,c to the field, leaving the battery field with
less energy. In both steps the work transfer is reduced by dephasing,
which affects the purity in photon-number basis C and Cb,c.

In the charging step of our protocol we extended previous theory by considering
the effect of pure dephasing on the energetic transfers. However, more theory
is needed to understand the energetics beyond the pure dephasing framework.
Additionally, to fully understand the dephasing and decoherence mechanisms
affecting the performance of the qubit presented in this chapter, assessment of the
performance of the battery field at long delays should be considered. This would
allow us to fully explain the energetic exchanges in discharging, and measure the
effect of spectral wandering. This spectral wandering is hypothesized to arise from
changes in the charge environment of the QD. As such, an important experimental
improvement could be made by looking into ways to electrically isolate the QD
from the environment.

In the discharging step of the protocol, improvements could be made by
considering interference between the battery field and classical receiver under

140



Figure 4.34 – Optimizing work transfer. The amount of work trans-
fer from a battery field to a classical work receiver (w) as a function of
pulse area θ when setting equal field intensities (blue), or setting equal
field amplitudes (red). Simulations performed by Dr. M. Maffei, see Ap-
pendix 9.4.

different conditions. Here we chose to match the fields’ input intensities, abetting
the total energy transfer to the classical field. However, under this condition, we
demonstrated that the energy transferred to the classical field is mostly of heat
nature, and we see unwanted work transfer in the opposite direction. Instead
of choosing to optimize the energy transfer, one could consider experimental
and theoretical conditions whereby the work transfer from the battery field to
the classical field in discharging is optimized. We mention that one possible
solution to this could be matching of field amplitudes instead of intensities, see
Fig. 4.34 where the subscript w indicates the energy received by the classical
work receiver (Appendix 9.4). We see that when setting equal field intensities
E(in)
b = E(in)

c (blue), the work flow is indeed as previously shown. However, if we
were to set the amplitudes of the interfering fields equal (red), corresponding to
α = sin(θ/2) cos(θ/2), the work is discharged into the classical field for all θ,
as desired for the discharging step in the protocol. Another important limitation
to the total energy transfer, and therefore work transfer, is the presence of QD
emission blinking. How much this blinking affects the energy flows could be
investigated to fully understand under what conditions we can optimize discharge.

Finally, we underline that both steps in our protocol are important processes
in many quantum technologies, from generating atom-based quantum memories,
to performing linear optical gates or Bell state measurements. As such, our study
can serve as the first steps to experimental studies on the energetics of quantum
computing.
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5 - Temporally resolved energetic exchanges
in the Ramsey sequence

5.1 . Introduction

In the previous chapter we have seen how, in the framework of a closed
bipartite quantum system, one can relate energy coherence and work transfer. We
studied the spontaneous emission of an atom coherently driven. Our study showed
in particular how the entanglement between the atom and the field arising during
spontaneous emission led to heat in the energy exchange, see Sec. 4.2.

A Ramsey sequence where two pulses (both of pulse area θ = π/2) with a time
delay are applied to a qubit after which the qubit decays, is a fundamental tool in
quantum optics to determine the dephasing rate of a prepared state (138–140).
In the present chapter, we revisit the Ramsey sequences in terms of the quantum
thermodynamics framework introduced in Section 4 and study how generated
correlations affect the energetic transfers between an atom and the emitted state
of light.

First, in Sec. 5.2 we introduce the Ramsey sequence applied to a two-level
system and explain the thermodynamic quantities relevant to each step in the
protocol. Reconstruction of the output state of light at the end of a Ramsey
sequence shows us that under certain conditions a qubit can actually absorb more
energy from two θ = π/2 pulses than from a single π-pulse. This finding leads
us to Sec. 5.3, where we experimentally study the dynamics of energy absorption
as a function of pulse separation with a QD-cavity system, and experimentally
find a range of delays for which the emission intensity exceeds the energy
given by a single π-pulse. We propose an experimental protocol in Sec. 5.4 to
temporally resolve energetic transfers during the Ramsey sequences. In line with
the nature of Ramsey sequences, we show that the energy emitted by the emitter
mostly originates from correlations (heat) : energy arising from entanglement
between the field and the quantum emitter. Finally, we give some perspectives
based on the results presented here in this chapter. We underline that the
present study was still ongoing at the time of writing of the manuscript. We dis-
cuss some remaining open questions in Sec. 5.6 to give an outlook to future studies.
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5.2 . Work and heat transfers in Ramsey sequences

We are interested in understanding the Ramsey sequence from a quantum
thermodynamic perspective, where we study the work and heat flow between a
qubit, subject to two π/2 excitation pulses, and the vacuum of the electromagnetic
field, into which the energy is released through spontaneous emission. Again, we
consider the qubit and the electromagnetic field as a closed quantum system
where the energy released by the qubit (q) is equal to the energy received by
the vacuum of the electromagnetic field – i.e. Ẇq = −Ẇf , and Q̇q = −Q̇f ,
see Section 4.2, and where the dot over W and Q represents a derivative with
respect to time. In this section we use this framework to break down the Ramsey
sequence in time bins with their corresponding energetic exchanges, and describe
the output state of light.

|e⟩

|g⟩

|−⟩|+⟩

|e⟩

|g⟩

|e⟩

|g⟩

|e⟩

|g⟩

W +Q emittedW absorbed W +Q emittedW absorbed

P1 T1 P2 T2

Time∆t

π/2 π/2

ϕR

Figure 5.1 – A Ramsey sequence. A two-level system, represented by
the Bloch sphere, is resonantly driven by two θ = π/2 pulses separated
by time∆t and with relative Ramsey phase ϕR. During each pulse (time
bin P1 and P2) work is transferred to the qubit, where the first pulse
brings it in an equal superposition between ground and excited state.
Between the two pulses (time bin T1), the qubit spontaneously decays,
thereby transferring energy to the vacuum of the electromagnetic field
in the form of heat and work. After the second pulse (time bin T2), we
let the system fully decay to the ground state.

5.2.1 . A Ramsey sequence

In a Ramsey sequence, a qubit is driven by two pulses of pulse area θ = π/2

separated in time by ∆t, and repeated at laser repetition rate τ−1
p with τp >> ∆t.

Fig. 5.1 schematically depicts the procedure and the subsequent evolution of
the qubit during one Ramsey sequence. In the first time bin (P1), a driving
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field (pulse 1) with θ = π/2 provides energy to the qubit. As a result, the drive
brings the qubit into an equal superposition between ground and excited state :
|+⟩ = (|g⟩ + |e⟩)/

√
2. The energy absorbed by the qubit in the process is of

work W nature, considering the driving field is a classical – i.e. coherent – field
with classical coherence, and the entanglement between the field and the qubit is
negligible during the excitation (38). The energy change of the drive is equal to
the work absorbed by the qubit : ∆Ef = WP1 .

After the pulse (time bin T1), relaxation takes place whereby the qubit spon-
taneously transfers energy to the vacuum of the electromagnetic field in the form
of a photonic field. This photonic field receives energy from the qubit, of coherent
and incoherent nature : work W and heat Q. The work and heat rate from the
qubit to the electromagnetic field in absence of dephasing are defined as :

Ẇq,f = ℏω0γ| ⟨σ̂−(t)⟩ |2 (5.1)
Q̇q,f = ℏω0γ

(
⟨σ̂+(t)σ̂−(t)⟩ − | ⟨σ̂−(t)⟩ |2

)
(5.2)

with σ̂± defined in Section 2.5.1, and where γ is the spontaneous emission rate
of the qubit. We also note that | ⟨σ̂−(t)⟩ |2 is equal to the atomic coherence in
the energy basis squared : s2 = pgpe. We emphasize that we are discussing here
the work and heat rates, which are a function of time, hence the dot over W and
Q, and whose rates are set by the emission rate of the atom, γ : the speed with
which the atom releases energy into the electromagnetic field. Note : from now
we drop the subscripts q, f , and we only consider the energetic transfers from the
qubit to the field.

After time ∆t, a second π/2 pulse is applied (time bin P2), again providing
work to the qubit : ∆Ef = WP2 . The second pulse has a relative phase with
respect to the first pulse of ϕR, where R indicates we are referring to the
Ramsey phase. For ϕR = 0(ϕR = π), the sequence is constructive (destructive),
meaning the second pulse brings the qubit closer to the excited (ground) state in
terms of population. At the end of the pulse (time bin T2), the qubit relaxes back
to the ground state, through spontaneous emission. The photonic field receives
again energy from the qubit in the form of work and heat. Finally, we can write
down the energy balance describing a single Ramsey sequence in a closed system
in terms of time bin-integrated energies :

WP1 +WP2 = WT1 +QT2 +WT2 +QT2 ,

Eabs = WT1 +QT2 +WT2 +QT2 ,

where we see that the total energy absorbed (Eabs) is equal to the sum of the
total work and heat emitted by the qubit at the end of the sequence. To study the
thermodynamics of the Ramsey sequence thus requires us to look at the output
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θ = π/2 ∆t
|e⟩

|g⟩

Figure 5.2 – Light-matter entanglement In between two π/2 pulses in
a Ramsey sequence, entanglement between field and qubit builds up.
A first pulse creates an equal superposition between the ground and
excited state in the qubit. During time∆t, the excited state has time to
decay, resulting in an entangled qubit-field state.

state of light along the whole pulse sequence, subdividing time into two bins : the
interval between pulses (P1 + T1) and the interval between the second pulse and
the end of the spontaneous emission (P2 + T2).

5.2.2 . Time bin entanglement with Ramsey sequences
The photonic state after the Ramsey sequence can be determined by consi-

dering the schematic in Fig. 5.2, where we start with the two-level system in the
ground state |g⟩. A π/2 pulse then creates an equal superposition. The joint field-
qubit state at this point in time is given by

|Ψ2LS⟩ ⊗ |Ψfield⟩ =
1√
2
(|g⟩+ |e⟩) |0⟩ (5.3)

During time ∆t the state of the two-level system evolves, creating the state (141) :

|Ψ⟩ = 1√
2
|g0⟩+ α |e0⟩+ β |g1⟩√

2
, (5.4)

where the amplitudes α = e−γ∆t/2 and β =
√
1− α2. At this point we notice that

the field and qubit are entangled, and we rewrite the state as :

|Ψ⟩ = 1√
2
(|0T1⟩+ β |1T1⟩) |g⟩+

α√
2
|0T1⟩ |e⟩ , (5.5)

where the subscript indicates that we consider the photonic field in time bin T1.
A second π/2 pulse with Ramsey phase ϕR changes the atomic state of the joint
system

|Ψ⟩ = 1√
2
(|0T1⟩+ β |1T1⟩)

|g⟩+ eiϕR |e⟩√
2

+
α√
2
|0T1⟩

|e⟩ − e−iϕR |g⟩√
2

. (5.6)

In time bin T2 we let the atomic state fully decay, i.e. |g⟩ → |0⟩ and |e⟩ → |1⟩,
and the photonic field acquires the properties of the entangled qubit-field state :

|Ψ⟩ = 1

2
[(1− e−iϕRα) |00⟩+ (eiϕR + α) |01⟩+ β |10⟩+ eiϕRβ |11⟩], (5.7)
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Figure 5.3 –Absorbedenergy in aRamsey sequence. The total energy
absorbed by a qubit in a Ramsey sequence as a function of pulse se-
paration normalized by the lifetime of the qubit γ−1, for constructive
(destructive) phase ϕR = 0(π) between pulses. Grey vertical line in-
dicates the delay for which we expect a maximum energy absorbed :
2ln(2)/γ. Here the energy absorbed is 9/8 times higher than expected
from two π/2 pulses, see grey horizontal line.

where |ij⟩ = |iT1jT2⟩ with i, j ∈ [0, 1]. The total photon number at the end of
the Ramsey sequence for constructive phase ϕR = 0 is given by

µ =
1

4
[(1 + α)2 + β2 + 2β2] = 1 +

α

2
(1− α). (5.8)

The total photon-number emission µ is optimized for ϕR = 0, and
α = e−γ∆t/2 = 1/2, resulting in µ = 9/8. For a quantum emitter with li-
fetime γ−1, this thus scenario corresponds to a pulse separation of γ∆t = 2ln(2).

The expected average photon-number in emission µ is equal to the amount
of energy absorbed by the qubit E (i.e. work Wabs) normalized to the qubit
transition energy ℏω0, which we plot in Fig. 5.3 as a function of pulse separation
γ∆t for constructive phase ϕR = 0 and destructive phase ϕR = π. As expected,
for two π/2-pulses driving simultaneously (∆t → 0) in-phase (ϕR = 0) the
qubit, we effectively generate a π-pulse, resulting in a single-photon Fock
state |1⟩. However, as we increase the delay between the two pulses, we see an
enhancement in the work absorbed, manifested by an increase in average
photon-number released at the end of the sequence, with an expected
maximum for γ∆t = 2ln(2) = 9/8. For a Ramsey phase ϕR = π, two pulses
simultaneously arriving at the qubit (∆t → 0), bring the qubit back to the ground
state. As we change the delay, the qubit starts to decay between pulses, and in
the limit of ∆t ≫ γ−1, the qubit is fully decayed by the time the second pulse
arrives. As a result, in this limit the energy absorbed by the qubit is equivalent to
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twice a π/2-pulse, and we retrieve µ = 1.

5.3 . Experimental study of enhancement in work absorption

To investigate the energetic of Ramsey interferometry, we use a charged QD
state, a four-level system (see Section 2.5.2), which is placed inside a cryostation
kept at 5K. We resonantly excite the QD using a pulsed laser field operating at
925nm. Initial benchmark measurements for single pulse excitation and pulse area
θ = π, reveal a high single-photon indistinguishability Ms = (93.43 ± 0.39)%

(Section 2.4.3), and from the decay profile, see Fig. 5.4, we extract a lifetime
γ−1 = 202.4± 5.1 ps from a mono-exponential decay.
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Figure 5.4 – Decay profile of a charged QD state. Spontaneous decay
profile of a chargedQD state under resonant excitation with pulse area
θ = π.

To apply Ramsey interferometry to the QD, the pulsed laser field is first sent
into a Michelson interferometer, allowing us to generate pulse sequences with
variable delay ∆t between two output pulses of pulse area θ = π/2, see Fig. 5.5.
The Michelson interferometer contains a 50 : 50 beam splitter that splits the input
field into two arms containing mirrors. The mirrors reflect the light back towards
the beam splitter, where 50% of the light is sent into the output of the Michelson
interferometer (here the excitation path). One of the mirrors is mounted onto a
variable delay stage ; we refer to this interferometer arm as the delay arm. This
delay stage allows us to coarsely tune the pulse delay ∆t in the range 0− 334 ps.
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Figure 5.5 – The Michelson interferometer to generate pulse se-
quences. A pulsed coherent laser field |α⟩ is input to a 50 : 50 beam
splitter which divides the classical field into two pulses, one in each
port containing a reflective mirror. One mirror is mounted on a coarse
delay stage which is used to adjust the pulse separation between the
two reflected pulses within a 0 − 334ps range. Applying a voltage to a
piezoelectric actuator changes the delay with ⪅ 20nm precision, resul-
ting in a change in the relative phase between the two excitation pulses
output to the interferometer.

We are able to change the relative phase ϕR between the two excitation
pulses by using a piezoelectric actuator attached to the back of the mirror in the
delay arm. The actuator (PK25LA2P2, Thorlabs) has a maximum displacement
of 12 µm ±15% for a drive voltage of 200 V, and can be electrically tuned with
≈ 10 nm precision. A change in position on this scale creates a path length
difference between the pulses, resulting in a relative phase ϕR. As qualitatively
explained in the previous section, this Ramsey phase in turn affects the photonic
state emitted by the QD, with ϕR = 0(π) leading to constructive (destructive)
quantum interference in the excitation step.

We apply this Ramsey sequence to the QD repeated at the repetition rate of
the laser (τp)−1 = 81 MHz, see Fig. 5.6. Here, the mirrors on both sides of the QD
represent the cavity, thereby forming the four-level system indicated in inset. After
one sequence, the QD fully decays whereby it emits a photonic field |Ψ⟩. This
photonic field is separated from the driving field through cross-polarization (see
Section 2.5.2), indicated by the two polarizers with orthogonal linear polarization
V and H.

We record the QD emission intensity time trace whilst continuously changing
the relative phase. In Fig. 5.7 we show the resulting time traces for two coarse
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Figure 5.6 – Experimental procedure. A four-level system is cohe-
rently excited by two π/2 pulses (V polarized) separated by time∆t at a
repetition rate of τ−1

p = 81MHz. We separate the spontaneously emit-
ted photonic field |Ψ⟩ from the drive using a cross-polarization confi-
guration, here indicated by the two polarizers with orthogonal polari-
zations H and V before and after the QD-cavity system.

delays : ∆t = 17 ps and ∆t = 167 ps. As we scan the phase, we see constructive
and destructive interference (i.e. Ramsey fringes) between the two π/2 pulses
used to excite the QD. When increasing the coarse delay, we notice a decrease in
amplitude. This decrease in amplitude can be understood from the fact that as
the coarse delay is increased, the qubit has time to decay between pulses. As a
result, the second π/2 pulse, in or out of phase, cannot fully excite the qubit.
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Figure 5.7 – Ramsey fringes. The QD emission intensity obtained with
Ramsey sequences as a function of time when continuously changing
the relative phase between excitation pulses ϕR. For pulse delays∆t =
17 ps and ∆t = 167 ps.
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Figure 5.8 – Energy absorbed by the qubit in a Ramsey sequence.
The energy normalized to the transition frequency of the qubit as a
function of pulse delay between two π/2 excitation pulses for construc-
tive and destructive Ramsey phase. With γ−1 = 202.4± 5.1 ps.

From the Ramsey fringes we extract the average minimum (Imin) and
maximum (Imax) emission intensity, corresponding to ϕR = π and ϕR = 0,
respectively, which we repeat for several delays ∆t. We normalize by the emission
intensity measured when exciting the QD with a single π-pulse. These values
represent the energy emitted by the qubit ∆Eq/(ℏω0) over the whole sequence,
and are equal to the work absorbed E = Wabs. In Fig. 5.8, we plot the mean
energy absorbed for Ramsey phase ϕR = 0 and ϕR = π, together with their
corresponding theoretical curves in solid and dashed, respectively, considering no
dephasing. We indicate with a gray vertical line where the delay is corresponding
to γ∆t = 2ln(2), and with the gray horizontal line the energy emitted for state
preparation with a single θ = π pulse.

Let us first examine the data for ϕR = 0. Remarkably, we observe an increase in
work absorption with a maximum around γ∆t = 2ln(2) as theoretically predicted.
Our observations nicely follow theoretical prediction within error bars. For the data
corresponding to Ramsey phase ϕR = π, the general behavior is in agreement
with predictions : with almost no energy released into the electromagnetic field
for ∆t → 0 and a continuous increase with ∆t. However, we observe an emission
intensity consistently higher than expected and seemingly diverging from the
theoretical curve for increasing delays. This trend could potentially be caused by
memory effects in the charged quantum dot, induced when probing the quantum
dot with pulse sequences. In a charged QD the central spin couples to a nuclear
spin bath, which induces an effective magnetic field (Overhauser field) around
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which the central spin precesses. This coupling is delay dependent and alters the
spin relaxation time (139; 142; 143). As such, what we witness in Fig. 5.8 for
ϕR = π could be a signature of the spin dependence of the Ramsey sequence, not
captured by our simple two-level model.

In the following sections we study the nature of the energy exchange between
the QD and the electromagnetic field by the QD during the Ramsey sequence.
We therefore focus on two delays : γ∆t = 0.33 (∆t = 67 ps) and γ∆t ≈ 2ln(2)
(∆t = 287 ps), corresponding to Wabs ≈ ℏω0 and Wabs ≈ 9/8ℏω0, respectively.

5.4 . Experimental study of temporally resolved energetic ex-
changes during spontaneous emission

We are interested in investigating the energetic exchanges during spontaneous
emission along the Ramsey sequence, i.e. in time bins T1 and T2 (see Fig. 5.1).
From Eq. 5.2 we see that this requires temporally resolving the coherence transfer
along the qubit decay. Here, we propose a protocol to measure temporally resolved
energetic exchanges in Ramsey sequences. It involves self-homodyne measurements
with two detectors D1 and D2 whereby we compute the visibility of interference
time-resolved over the temporal profile of the emitted photonic fields.

Indeed, a decay profile, such as in Fig. 5.4, measured by detector Di is nothing
more than the temporally resolved intensity over the spontaneous decay of an ex-
cited QD : µi(t) = ⟨â†(t)â(t)⟩, see Section 2.4.1. As such, the profile contains
information on the rate with which energy is given to the electromagnetic field,
see Ref. (83) and Section 2.5.5. To temporally resolve the coherence transfer we
perform homodyne measurements with the spontaneously emitted fields, see Sec-
tion 4, and compute the decay profiles measured by detectors Di after interference.
From the decay profiles we extract the temporally resolved visibility of interference

vmax(t) = max
ϕ

µ1(t)− µ2(t)

µ1(t) + µ2(t)
, (5.9)

with ϕ the interferometer phase, and we find the first-order coherence transferred
over the emission profile : vmax(t) ≤ | ⟨σ̂−(t)⟩ |2. Experimentally, to build temporal
profiles – and thus extract energetic quantities – requires integration over longer
measurement times, whereby we repeat the exact same Ramsey sequence. To do
so, we need a stabilized Ramsey phase relation over several sequence repetitions.

5.4.1 . Locking the Ramsey phase
To maintain a fixed phase relation between the two θ = π/2 excitation pulses

we add to the Michelson interferometer a continuous wave laser (CW, Toptica),
operating at 925 nm, and a photo diode, see Fig. 5.9. Because the CW laser
has a comparable wavelength to the excitation laser, path length differences are
similarly sensed. The CW laser also interferes at the beam splitter in the Michelson

153



Input
M

Stage

Piezo

Photo diode

half mirror

Excitation path

∆t

Figure 5.9 – A phase-stabilized Michelson interferometer. A conti-
nuous wave laser, a photo diode, and a voltage driven piezo are used in
a Michelson interferometer to stabilize the phase between two pulses
separated by time∆t. The pulses with fixed relative phase ϕR are sent
into the QD excitation path, which undergoes a Ramsey sequence.

interferometer. The interferometric signal imprinted on the amplitude of the CW
field is registered by a photo diode in one of the output ports of the beam splitter.
The photo diode transforms the intensity time trace of the CW field to an electrical
signal. Using a PID (Proportional - Integral - Derivative) controller, the signal from
the photo diode generates a feedback signal to stabilize the phase controlling a
piezo. The PID controller takes an error signal, defined as the difference between
the signal measured and the desired signal (called set point), and generates a
feedback signal that can be described by the following formula :

u(t) = P · e(t) + I

∫ t

0
e(τ)dτ +D

de(t)

dt
, (5.10)

with e(t) the error signal at time t. The coefficients P, I,D are chosen such
that the deviation over time from the set point is minimized. Basically, the P

component is a proportional response to a deviation from the set point, i.e. if the
deviation is large, the response is equally large. The integral part compensates
for slow drift over time, whereas the derivative part generates a feedback signal
in response to sudden changes in the signal. We calibrate the set point where
to lock the phase based on the resulting QD emission intensity (i.e. maximum
constructive or destructive interference). For every set point we find the optimal
parameters P, I,D that allow us to minimize the deviation.

In Fig. 5.10 we show the time trace of the QD emission intensity for
delay ∆t = 67 ps and indicate the measurement intervals where the locked
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Figure 5.10 – Locking the Ramsey phase. The QD emission intensity
as a function of time. The inset shows the Ramsey fringes visible when
varying the path length difference on the order of the wavelength of
the QD. In between scanning of the phase (witnessed here as spikes)
the relative phase ϕR between two excitation pulses is locked, resulting
in a stable emission intensity.

Ramsey phase corresponds to ϕR = π and ϕR = 0. We scan the phase before
locking it, as indicated by the Ramsey fringes visible in the inset. In between
those scans, the phase is locked and the small residual fluctuations are caused by
acoustic noise coming from the lab environment and charge noise in the QD sample.

With the PID controller we can thus prepare excitation pulses of θ = π/2

with relative phases locked to ϕR = 0 and ϕR = π – corresponding to maximum
emission intensity and minimum emission intensity in Fig. 5.10, respectively –
and pulse delay ∆t. We apply the prepared excitation sequence to the charged
QD at repetition rate (τp)

−1. The resulting photonic field is sent to a detector
where we measure the temporally resolved emission intensity. Fig. 5.11 shows an
example of the temporal profile of a photonic field acquired with ϕR = 0(π) and
∆t = 287 ps in solid (dashed). The rising slopes of the two peaks coincide with
the two excitation pulses. We witness a decrease in intensity when the pulses have
opposite phase, as expected when considering the evolution of the Bloch vector
in Ramsey sequences.
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Figure 5.11 – Lifetimes of the photonic field emitted during the
whole Ramsey sequence. The temporal profile of the spontaneous
emission of a quantum emitter when excited by two θ = π/2 pulses
separated by∆t = 287 ps. For pulses arriving in phase ϕR = 0 (solid) or
out of phase ϕR = π (dashed). The x-axis is normalized to the lifetime
of the emitter γ−1.

5.4.2 . Experimental protocol
In order to quantify the work and heat exchanges during spontaneous emission,

we need to measure the first-order coherence present at each point in time in the
wavepacket emitted by the QD. We do so by sending the wavepacket |Ψ⟩, the
resulting emitted field from the Ramsey sequences with locked phase ϕR, into an
unbalanced Mach-Zehnder interferometer, see Fig. 5.12. Here, two consecutively
generated wavepackets – with equal ϕR – interfere at BS2 constructively or
destructively depending on the interferometer phase ϕ. We determine the
amount of coherence in the photonic field by probing interferometer phase
ϕ = 0 (equivalent to ϕ = π), corresponding to maximum constructive
(destructive) interference in output port containing detectors D1 (D2).
In practice, this means that we let the interferometer phase ϕ freely evolve and
perform post-selection on the data.

With the two detectors we register the photon arrival times. In addition, we
register the laser clock signal, allowing us to build a histogram of photon arrival
time after two wavepacket interference, i.e. decay profiles, see Section 2.4.1. At
the end of each measurement, we obtain two lists of photon arrival times (one per
detector), which we cut into 500ms chunks. For each time chunk we compute the
integrated intensity and the decay profiles measured by detector D1 and D2 during
that time chunk. With the integrated intensities we determine the optical phase
ϕ per time chunk, i.e. for each decay profile, according to : ϕ = arccos(v(t)/vmax).
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Figure 5.12 – Extracting temporally resolved coherence transfer. An
unbalancedMach-Zehnder interferometerwhere consecutive identical
inputs |Ψ⟩, taking different paths, interfere at BS2. DetectorsD1 andD2

register the photon events after interference.

Fig. 5.13(b) shows an example of such a visibility time trace for ∆t = 67 ps
and ϕR = π resulting from the anti-correlated intensities displayed in Fig. 5.13(a).
Each time chunk (iteration), corresponding to two decay profile, is now assigned
to an interferometer phase ϕ. From this visibility time trace we determine
the 5 highest and 5 lowest visibilities (ϕ = 0(π)) – i.e. vmax – and save the
corresponding decay profiles (20 in total). As a result, we have selected the decay
profiles corresponding to a measurement where the interferometer phase was
ϕ = 0(π). We repeat this procedure for several ϕR and ∆t.
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Figure 5.13 – Extracting Hong-Ou-Mandel phase ϕ. (a) The integra-
ted intensities measured by detector D1 and D2 as a function of time,
where each point corresponds to 500ms integration time. (b) The cor-
responding visibility of interference from which we determine the in-
terferometer phase ϕ(t).
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5.4.3 . Heat and work transfer during spontaneous emission
Let us initially consider the delay ∆t = 287 ps (γ∆t ≈ 2ln(2)). An example

of two paired decay profiles – i.e. temporally resolved intensities µ1(t) and µ2(t) –
measured with detectors D1 and D2 after HOM interference is shown in Fig. 5.14
for (a) ϕR = 0 and (b) ϕR = π. We observe two emission peaks, corresponding to
the arrival times of the two excitation pulses separated by ∆t. For both Ramsey
phases we witness constructive (destructive) interference in detector D1 (D2),
indicating interferometer phase ϕ = 0(ϕ = π). Moreover, we clearly see the effect
of probing with different Ramsey phases : ϕR = 0 resulting in a second emission
peak higher than the initial peak, and ϕR = π resulting in a lower peak emission
after the second pulse arrives.
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Figure 5.14 – Temporal profiles after HOM interference. The tempo-
rally resolved photonic wavepackets after interference in a Hong-Ou-
Mandel interferometer measured with two detectorsD1 andD2 moni-
toring the output ports of the beam splitter. For interferometer phase
ϕ = 0(π)measured by D1 (D2) for (a) ϕR = 0 (b) ϕR = π.

We compute for both ϕR = 0 and ϕR = π the sum of the two temporally
resolved intensities µ(t) = µ1(t) + µ2(t). The sum of the detector intensities is
equal to the total energy rate from the qubit to the vacuum of the electromagnetic
field : Ė(t), see Fig. 5.15(a) where we normalize each curve by considering that
the initial peak corresponds to the energy given by a θ = π/2 pulse in the Ramsey
sequence, thus setting the value of the first peak to Ė = ℏω0 sin

2(θ/2) = 1/2.

From the temporal profiles, we also calculate the absolute value of the tempo-
rally resolved visibility, which is given by :

vmax(t) =
|µ1(t)− µ2(t)|
µ1(t) + µ2(t)

=
Ẇ
Ė
, (5.11)

see Sec. 4.3, and is proportional to the efficiency of coherence transfer rate. Note
that we explicitly write the time-dependence of vmax to indicate that we consider
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Figure 5.15 – Temporally resolved energy transfer. (a) The total
energy Ė transferred from the quantum emitter to the vacuum of the
electromagnetic field (normalized by the transition energy of the qubit)
as a function of time t (normalized by the lifetime of the emitter γ−1).
(b) The coherence transfer rate as a function of time, where we also
indicate the time bins in the Ramsey sequence : P1, T1, P2, T2. Both pa-
nels show the curves for constructive and destructive Ramsey phase :
ϕR = 0, and ϕR = π, respectively.

the temporally resolved visibility of interference. The resulting temporally resolved
visibilities of interference are shown in Fig. 5.15(b).

For both ϕR = 0 and ϕR = π, we observe two spikes coinciding with
the arrival times of the θ = π/2 excitation pulses in time bin P1 and P2 (i.e.
t = 0, t = 287 ps). These peaks are the direct evidence for the highly ideal
emission taking place during the excitation pulses and arise from scattering of
coherent laser light (144; 145).

At the end of the laser pulse in time bin P1 and P2, the coherence transfer
rate reaches a constant value, evidenced by the plateaus in Ẇ/Ė . This behavior
is expected when considering the evolution of the density matrix of the quantum
emitter in time bin T1 and T2. During these time bins, the coherences in the qubit
decay according to :

s =
√
pgpee

−γt/2 =
1

2
e−γt/2−γ∗t, (5.12)

where Γ = γ
2 + γ∗ (see Section 2.5.1), and the excited state decays following :

Pe =
1

2
e−γt. (5.13)

for θ = π/2. Considering W = ℏω0s
2 and E = ℏω0Pe, see Section 4.2, we get

for γ∗ ≪ γ/2 that the time-dependence in Ẇ/Ė cancels, resulting in a constant
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Figure 5.16 – Temporally resolved work and heat transfer for ∆t =
287 ps. (a) The temporally resolved work transfer normalized to the
transition energy of the qubit as a function of time for two excitation
pulses of pulse area θ = π/2 separated by∆t = 287 ps andwith relative
Ramsey phase ϕR = 0 and ϕR = π. (b) The temporally resolved heat
transfer normalized to the transition energy of the qubit as a function
of time. The dashed vertical line in both panels indicates the threshold
between time bins T1 and T2.

coherence transfer rate in time bin T1 and T2. This measurement, whereby
we measure the temporally resolved visibility in Ramsey sequences for a single
delay ∆t, thus potentially provides a new tool to quantify the dephasing rate of a
quantum emitter.

From the temporally resolved normalized energy transfer and visibility in
Fig. 5.15, we calculate the temporally resolved work and heat transfer according
to :

Ẇ = vmax(t)× Ė , (5.14)
Q̇ = (1− vmax(t))× Ė , (5.15)

where we remove the contribution in coherence coming from the scattered laser
field in time bin P1 and P2 (spikes in Fig. 5.15(b)). Indeed, we need to discriminate
between coherence transfer coming from spontaneous emission and scattered
coherent light during the excitation pulse. We therefore extrapolate the plateau
in time bin T1 and T2 into time bin P1 and P2 to include the coherence transfer
attributed to spontaneous decay during the pulse. In time bin P2 the coherence
transfer due to spontaneous emission can be attributed to both time bin T1
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Figure 5.17 – Temporally resolved energy transfer for ∆t = 67 ps.
(a) The total energy Ė transferred from the quantum emitter to the va-
cuum of the electromagnetic field (normalized by the transition energy
of the qubit) as a function of time t (normalized by the lifetime of
the emitter γ−1). (b) The coherence transfer rate as a function of
time, where we also indicate the time bins in the Ramsey sequence :
P1, T1, P2, T2. Both panels show the curves for constructive and des-
tructive Ramsey phase : ϕR = 0, and ϕR = π, respectively.

and T2, and therefore is divided into two. We calculate the error in work and
heat transfer by considering the limiting cases where we attribute the coherence
transfer in P2 fully to T1 or fully to T2. The resulting temporally resolved work
and heat transfer for ϕR = 0 and ϕR = π are shown in Fig. 5.16 where the dashed
vertical line indicates the end (beginning) of time bin T1 (T2), and corresponds to
∆t = 287 ps. Interestingly, the work transfer during spontaneous decay is
barely affected by the Ramsey phase, unlike the heat transfer where the
second pulse is able to boost the heat transfer. Hence, the enhancement
in work absorption for constructive phase ϕR = 0 mostly results in the
generation of energy of correlation nature.

We perform the same data analysis for pulse separation ∆t = 67 ps, and
plot the temporally resolved total energy transfer and fraction of coherence
transfer (vmax) as a function of time γt in Fig. 5.17. We normalize the total
energy transfer Fig. 5.17(a) by setting the height of the first peak to Ė = 1/2.
Although the excitation pulses are separated shortly in time, we can identify
the first excitation pulse for ϕR = 0 as the shoulder in the temporal profile,
and normalize it to Ė = 1/2. In the temporal profile for ϕR we see the effect
of driving the qubit with two θ = π/2 pulses of opposite phase : the second
pulse brings the qubit closer to the ground state, reducing the emission in-
tensity. Similar to the visibility for ∆t = 287 ps, we observe in Fig. 5.17(b) a
plateau in the coherence transfer in time bin T2, indicating no dephasing γ∗ ≪ γ/2.
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Figure 5.18 – Temporally resolved work and heat transfer for ∆t =
67ps. (a) The temporally resolvedwork transfer normalized to the tran-
sition energy of the qubit as a function of time for two excitation pulses
of pulse area θ = π/2 separated by ∆t = 67 ps and with relative Ram-
sey phase ϕR = 0 and ϕR = π. (b) The temporally resolved heat transfer
normalized to the transition energy of the qubit as a function of time.
The dashed vertical lines in both panels indicate the threshold between
time bins T1 and T2.

Using Eqs. 5.14 and 5.15, we plot the temporally resolved work and heat
transfer for ϕR = 0 and ϕR = π, see Fig. 5.18. We see that the main contribution
to energy transfer over the decay profile is of heat nature, which is further
increased by the second excitation pulse at t = 67 ps (dashed vertical line).
Comparable to the temporally resolved work and heat for ∆t = 287 ps, we find
that the work transfer is not affected by the Ramsey phase, whereas the heat
transfer is. We can expect such behavior in heat transfer with Ramsey phase,
considering that for ϕR = 0 we create more entanglement between the qubit
and the light field, which ties in with the nature of the Ramsey sequence : a
tool to measure coherence and the ability to maintain the atom-field quantum
superposition.

To fully appreciate the differences in work and heat transfer between
∆t = 67 ps and ∆t = 287 ps, we calculate the time integrated work W and
heat Q transfer for each time bin and Ramsey phase, Fig. 5.19. We normalize
the work and heat in each time bin (per ϕR) by the total energy emitted
E(ϕR = 0) = W + Q for delay ∆t = 67 ps. This E should be proportional to
ℏω0, see Fig. 5.3, and thus allows us to visualize the enhancement in energy
absorption expected for ∆t = 287 ps. The largest difference between ∆t = 67 ps
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Figure 5.19 – Integrated work and heat transfer. The work W and
heat Q transferred from the qubit to the vacuum of the electroma-
gnetic field, integrated over time bin T1 and T2 and normalized by the
transition energy of the qubit. For (a) ∆t = 67 ps, and (b) ∆t = 287 ps.
Colors indicate the different Ramsey phases ϕR.

and ∆t = 287 ps is indeed observed in the heat transfer, where we witness
a larger increase (across time bins) than in the work transfer. From these
integrated work and heat we find the total energy (equal to the work absorbed)
integrated over T1 and T2 for ϕR = 0 : E(∆t = 67ps) = (1.02 ± 0.13)ℏω0

and E(∆t = 287 ps) = (1.25 ± 0.09)ℏω0. This latter value is slightly above
the theoretically expected maximum achievable work absorbed by the qubit, i.e.
E = Wabs = 9/8ℏω0.

5.5 . Signatures of memory effects

While most our observations are qualitatively in agreement with our simple
picture presented in Sec. 5.2, we observe interesting deviations arising from the
specific nature of our four-level system.

We note that for both ∆t = 67 ps and ∆t = 287 ps, the (onset of
the) visibility plateau in time bin T1 (Figs. 5.15, 5.17) reaches a value of
Ẇ/Ė ≈ 0.4, a value lower than expected for a θ = π/2 pulse. Indeed, for a
pulse of θ = π/2, we expect the coherence brought to the qubit to be equal to :
s(θ = π/2) = cos(θ/2) sin(θ/2) = 1/2. We suspect this discrepancy is – similarly
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to the data in Sec. 5.3 – due to the build-up of a fluctuating magnetic field caused
by nuclear spin noise in the charged quantum dot, induced when performing
two-pulse excitation, and leading to dephasing and decoherence of the optical
states (146; 147). As a result, nuclear spin noise reduces the purity in coherence
and thereby the maximum obtainable coherence transfer.

This observation shows that spin memory effects are probably at play in our
measurements, and cause reduced coherence transfer and discrepancies between
theory – for a two-level system – and experiment in emission intensity E = Wabs.
At the time of measurement, we studied various delays ∆t, and witnessed another
phenomenon which potentially can be explained with this hypothesis, but needs
further investigation.
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Figure 5.20 – Delay-dependent coherence transfer. The temporally
resolved visibility of interference v = Ẇ/Ė as a function of time (nor-
malized by the decay rate of the emitter), shows delay-dependent pla-
teaus, indicating decoherence mechanisms at play.

Fig. 5.20 shows the temporally resolved visibility of interference vmax(t) = Ẇ/Ė
for all probed delays with ϕR = π, where we highlight the previously studied
delays in dashed. We witness a delay-dependent coherence transfer rate, indicated
by the varying height of the initial plateau (i.e. time bin T1), which, in addition,
never reaches the expected value s = 1/2. These results led us to choose delays
∆t = 67 ps and 287 ps for our initial study, since these delays have comparable
plateau heights in time bin T1, and whose values are closest to the ideal case of
Ẇ/Ė = 1/2, thus allowing us to compare energetics. Indeed, with exception of
∆t = 251 ps, all other delays seem to suffer more from the unknown source of
noise with plateau heights varying between Ẇ/Ė = 0.25− 0.3.
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5.6 . Conclusion and perspectives

In this chapter we have revisited excitation of a four-level system with
Ramsey sequences in terms of quantum thermodynamics. Firstly, we discussed
how excitation with Ramsey sequences (θ = π/2) can lead to an enhanced work
absorption of Wabs = 9/8ℏω0 when two pulses are delayed by γ∆t = 2ln(2).
Subsequent measurements with out four-level system indeed reveal this enhanced
work absorption, witnessed by the increase in emission intensity from our qubit
with respect to a single π-pulse.

To understand the nature of the energy emitted by the qubit – and how the
enhanced work absorption influences it – we performed homodyne measurements
with the wavepackets resulting from Ramsey sequences for ∆t = 67 ps and
∆t = 287 ps, where we expect the latter to be close to the delay of maximum
work absorption (γ∆t = 2ln(2)) and the first to be energetically equivalent to
excitation with a single π-pulse. After interference, we computed the visibility from
the temporally resolved emission intensities (i.e. decay profiles). The resulting
visibilities allowed us to temporally resolve the work and heat transfer from the
qubit to the vacuum of the electromagnetic field during spontaneous emission.
This procedure not only gives us a powerful tool to understand the time resolved
energetics of spontaneous emission, but also potentially gives us a new method
to measure the dephasing rate of a quantum emitter. Indeed, we qualitatively
explained that the observation of plateaus in the temporally resolved visibilities
(or coherence transfer rates) can be related to a dephasing rate of γ∗ ≪ γ/2.
Hence, any slope observed in between Ramsey excitation could reveal γ∗ ̸= 0.

The temporally resolved work and heat transfers indicate that the energy
emitted by the qubit is mostly of heat nature. Moreover, regardless of delay,
the heat is the only quantity that is impacted by the relative phase between the
two excitation pulses. The work transfer, on the other hand, is not affected by
this phase and remains more or less constant between excitation pulses. This
is consistent with the picture that for ∆t ≈ 2ln(2)γ−1 the second pulse with
ϕR = 0 generates additional entanglement between the atom and the emitted field.

The work presented here in this chapter is, however, not finished yet. More
analysis needs to be done to understand the data presented, and the potential
implications. Different questions need to be addressed, such as whether spin
memory effects explain the discrepancy between theory and experiment in work
absorption or coherence transfer, or the potential usefulness of the state of light
generated by Ramsey sequences.

Finally, one can also imagine a possibility to connect the amount of entangle-
ment between the field and the qubit to the fraction of heat emitted by the qubit
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in between, or at the end of a Ramsey sequence. However, to do so requires the
ability to distinguish between “quantum" heat and “classical" heat, which is not
always possible. Indeed, qubit dephasing also increases the heat transfer efficiency.
More theory research needs to be performed to understand if there is a figure
of merit which could potentially be used as a witness for entanglement in these
protocols, and others.

166



6 - General conclusion and perspectives

In this thesis, we studied the role of photon-number coherence in optical
quantum schemes and in the energetics of basic building blocks of photon-based
quantum technologies. We conducted experimental studies making use of QD-
cavity devices based on deterministic and mature technology.

We first used the QD-cavity system to explore the impact of photon-number
coherence in optical quantum schemes. To exemplify the impact, we performed
Hong-Ou-Mandel experiments – a pillar of linear quantum information processing
– with photon-number superpositions. We showed that the presence of photon-
number coherence strongly modifies interference in correlation measurements,
compared to the use of single-photon Fock state inputs. We subsequently revealed
this strong modification through phase-resolved correlation measurements, and
demonstrated that the way of extracting the wavepacket indistinguishability
adopted so far in the quantum emitter community should be revisited. Moreover,
we showed that phase-resolved correlation measurements can then reveal the
presence of a new quantum interference phenomenon, which lead to errors in
heralded quantum gate schemes.

In a second part of the thesis, we investigated the role of quantum coherence in
the energetic transfers between two systems. We first explained in Chapter 4 how
considering a closed bipartite quantum system, allows us to define notions such as
work and heat in the quantum regime. Using this framework we then explored the
energetic transfers between a qubit and the vacuum of the electromagnetic field
that takes place during spontaneous emission, in absence and presence of deco-
herence. In a second step of our protocol, we measured the energetic exchanges
between two light fields interfering at a beam splitter. We showed that we were
able to transfer energy from a quantum field onto a classical field, and quantify
the nature of the energy transfer, i.e. work or heat. Finally, in our conclusion and
perspectives we discussed ways to optimize the discharging process in our protocol.

Finally, we used the energetic framework to revisit another pillar of quantum
optics : the Ramsey sequence. We revealed, theoretically and experimentally, how
applying a Ramsey sequence to a qubit results in an enhanced energy absorption
with respect to a single π-pulse. Moreover, we demonstrated that we were able
to temporally resolve the energetic transfers between the qubit and the vacuum
of the electromagnetic field in between excitation pulses. Lastly, we discussed
the questions to be addressed in the next steps of this study, such as possible
spin-based memory effects, or the possibility to define a metric to quantify
qubit-field entanglement.
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In the following, I will briefly summarize a few possible directions of research,
exploiting photon-number coherence.

6.1 . On the use of photon-number superpositions

Many optical quantum schemes, such as quantum key distribution, quantum
computation or quantum networks for example, rely on the use of single-photon
Fock states. However, photon-number superpositions can potentially bring interes-
ting features to established protocols where correlations between the vacuum and
one-photon component of the photonic field, can be exploited.

6.1.1 . Twin-field quantum key distribution
One interesting approach to quantum key distribution, is the so-called

twin-field QKD scheme, which makes use of photon-number superpositions. First
proposed in 2018 by Lucamarini et al. (148), the scheme constitutes pairs of
optical fields generated at two distant locations (A and B) that are combined at
a measuring station (C), where the latter consists of a 50 : 50 beam splitter with
two photon detectors monitoring two output ports. In the original proposal, the
states generated at station A and B are two attenuated laser fields, both carrying
an optical phase. If the two coherent fields, arriving at the beam splitter, carry
the same (’twin’) phase, they are used to generate a quantum key. The authors
predict that the key rate – i.e. the amount of information (bits) per unit time –
is comparable to other QKD schemes, which is given by the square root of the
channel transmittance :

√
η. However, as the authors mention, this scheme could

potentially drastically outperform other schemes and extend the distance of secure
quantum key distribution. This better scaling over distance is due to mainly the
fact that twin-field QKD uses a central station "C" that mitigates the exponential
losses into fiber links. Additionally, even though it requires two sources at stations
A and B, the principle relies on the detection of a single click by the detectors,
thus, making twin-field QKD more robust against losses.

Since the first publication, other proposals have been put forward whereby
the authors consider changes to the original protocol such as removing the
requirement of post-selection on the ’twin’ phase (149), changing the combination
of input states into station A and B (150; 151), or considering different network
structures (152). These changes, the authors predict, possibly can increase the key
rate over long distances, and help scaling the technologies to realistic multi-users
network infrastructures. Subsequently, researchers were able to implement the
protocol suggested by Ref. (149) and achieve twin-field key distribution between
two cities separated by more than 500 km, with key rates orders of magnitudes
larger than other schemes (3).
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Figure 6.1 – Twin-field QKD with different sources. The key rate as a
function of overall channel losses between stations A (Alice) andB (Bob)
for different light sources, attenuated laser (solid) or photon-number
superposition states (dashed). Color-coded is the dark counts noise (pd,
colors), together with the fundamental PLOB bound (blue). Taken from
Ref. (149). See main text for details.

Crucially, all twin-field QKD experiments so far have been based on the use
of attenuated coherent fields. Contrastingly, the authors of Refs. (95; 149) predict
that the use of photon-number superpositions of the form

|±⟩ = √
p0 |0⟩ ± eiϕ

√
p1 |1⟩ , (6.1)

as input states, can potentially outperform attenuated laser fields in twin-field
QKD by tens of dB. This prediction can be understood by considering that for
attenuated laser pulses, the photon statistics are those of a coherent source.
Therefore, suppressing the two-photon component (which is vulnerable to photon
splitting attacks) requires a strong attenuation and the usage of additional states
(decoy states) to prevent eavesdropping. Fig. 6.1, taken from Ref. (149), shows
the predicted key rates as a function of overall loss between A (Alice) and B (Bob)
for different scenarios where the colors (pd) indicate the different dark counts, and
blue the PLOB bound (153), which is a fundamental limit to the secret key rate
obtained in repeaterless schemes (i.e. no additional measurements, nodes needed).
The two protocols studied here either consider attenuated laser fields as input
to A and B (solid lines), or a photon-number superposition according to Eq. 6.1
input to A(B) and |0⟩ or |1⟩ input to A(B) (dashed lines). As seen in Fig. 6.1,
the authors predict that under certain conditions, implementing photon-number
superpositions can surpass the PLOB bound and outperform the use of coherent
fields, showing the potential photon-number superpositions in twin-field QKD.
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The demonstration of coherent control over the photon-number superposition
state (83), and the capability to interfere two different sources (Section 4), po-
tentially opens up the road to the use of QD-cavity systems in twin-field QKD
protocols. Additionally, the first demonstration of active phase stabilization in our
lab (Section 5), can also remove the requirement of post-selection on the ’twin’
phase. As a result, recently, Dr. Dario Fioretto started to implement twin-field
QKD protocols using our QD-cavity systems as sources to test whether we can
reach the theoretical predicted curves, and perhaps extend the schemes by using
two different QD sources.

6.1.2 . Compensating for photon-number coherence in quantum
gates

In Chapter 3 we discussed the impact of photon-number coherence on the
performance and fidelity of quantum gates. At Quandela, researchers are currently
looking into ways to overcome the negative impact of coherent photon-number
superpositions using the Perceval platform (104). In the past, researchers already
studied ways to compensate for source inefficiencies (i.e. brightness) or detector
inefficiencies (154), or for imperfect beam splitters (155) in heralded CNOT
gates. Both Ref. (154) and Ref. (155) predict that one can compensate for these
imperfections and increase the fidelity by changing gate parameters (e.g. beam
splitter ratios). In Ref. (155), the authors test this hypothesis by simulating a
reconfigurable photonic processor (an integrated photonic circuit) that allows to
tune the gate parameters. Based on the results of the simulation the authors predict
that a reconfigurable chip could form a solution to errors in quantum gate perfor-
mance due to losses. Such a chip was simultaneously experimentally fabricated and
tested by the authors of Ref. (156), demonstrating the feasibility of such a scheme.

These studies, so far, only discussed changing gate parameters to overcome
photon losses. New methods should be developed to overcome the effects of
photon-number coherence leading to single-photon interference effects.

6.1.3 . Towards continuous variable quantum computation
In Sec. 5.2 we have shown that the photonic state resulting from double pulse

excitation is of the from :

|Ψ⟩ = 1

2
[(1− e−iϕRα) |0e0l⟩+ (eiϕR + α) |0e1l⟩+ β |1e0l⟩+ eiϕRβ |1e1l⟩], (6.2)

a state which is partially entangled in the time bin basis with a photon emitted in
the early (e) time bin T1 and/or in the late (l) time bin T2, and a state which is
partially coherent since most energy arises from correlations (of heat nature).

Our experimental setup in Chapter 5 also allowed to perform time-resolved
intensity correlation measurements whereby we collect time tags of coincidences
in an HOM measurement with respect to a laser clock signal. With this data
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Figure 6.2 – Time bin entanglement. (a) A coincidence histogram as a
function of delay τ obtained with HOMmeasurements with the photo-
nic state generated in Ramsey sequences for∆t = 287 ps. (b) The two-
time coincidencemap of the zero delay peak (τ = 0 = τ0 in coincidence
histograms) for ∆t = 67 ps and 287 ps, with τ = t1 − t2, divided into
quadrants corresponding to the early e and late l time bins of Eq. 6.2.

we can not only compute coincidence histograms such as the one shown in
Fig. 6.2(a) for ∆t = 287 ps, but also two-time coincidence maps G(2)(t1, t2),
Fig. 6.2(b). Essentially, such a map is created by considering that any coincidence
in a histogram is related to two detection event times : τ = t1 − t2. Hence, once
t1 and t2 are known, we can visualize the correlations between clicks in a 2D
coincidence map with t1 and t2 on the x,y-axes.

In Fig. 6.2(b) we plot the two-time coincidence maps of the zero delay peak
τ0 for ∆t = 67 ps and 287 ps, where the latter map corresponds to the zero delay
peak in the histogram in Fig. 6.2(a). We can divide both maps into quadrants
based on the early (e) and late (l) time bins. We observe for the zero delay peaks
that we only obtain coincidences between different time bins (i.e. el and le),
indicating that the two photons in Eq. 6.2 are indeed temporally separated. These
two-time coincidence maps reveal interesting entangled states of light generated
with Ramsey sequences, which potentially can be extended by multiple π/2-pulses
to generate more complex states of light, and could be of great interest for
continuous variable quantum computing.

In our group, within the PhD of Hubert Lam, different types of quantum light
states for quantum computing are currently investigated, exploring their potential
use in continuous variable schemes. Further research can focus on characterization
of these output states of light produced in Ramsey interferometry or other common
excitation protocols (36), and the potential possibility to produce high-dimensional
entanglement by extending the protocol to include spin-photon entanglement for
example.
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6.2 . On the energetics of optical quantum computing

As discussed in Chapter 4, quantum thermodynamics is a relatively young
field whose focus so far has mainly been on theory. As such, much experimental
research is needed for testing proposed theories and push them further towards
realistic systems.

6.2.1 . Energetic exchanges at a beam splitter
In Chapter 4 we demonstrated how self-homodyne and homodyne measure-

ments between quantum fields and between a quantum field and a coherent field
allow to measure the work and heat transferred from one field to another. It would
be interesting, for the field of quantum optics and quantum thermodynamics, to
explore more variations of input states to a beam splitter and push further the
energetics of a beam splitter. Possible scenarios to study would be the interference
between two different quantum fields, for a variety of input states. Additionally,
one could investigate ways of optimizing work transfer at the beam splitter. Such
an extensive study could potentially reveal methods of mitigating the energetic
footprint of optical quantum technologies (157).

6.2.2 . Energetics of entangling states
Another possibility could be to investigate the energetics of the generation

of entangled photonic states of light. Such states, GHZ (158) or cluster (159)
states for example, are at the core of measurement-based quantum computing
and quantum networks and anticipated to overcome the difficulties encountered
when performing quantum logical gates with single-photons (Section 3) (160; 161).
From a thermodynamic point-of-view, it would thus be interesting to compare the
energetics of spin-based (cluster) to post-selection-based (GHZ) entanglement, and
potentially predict the energetic benefit of using one scheme over the other.
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7 - Appendix : Hong-Ou-Mandel interfe-
rence with photon-number superpositions
– theory

In this appendix, we present theory developed by Dr. Stephen Wein 1 to describe
all the experimental work presented in this manuscript relying on a Mach-Zehnder-
based Hong-Ou-Mandel (HOM) interferometer.

7.1 . General description

τ = τp

â
1

â 2

â 3

â
4

â

R,T

D1

D2

τp

η1, η2 ϕ

Figure 7.1 –GeneralHong-Ou-Mandel interferometerAnunbalanced
Mach-Zehnder interferometer with input mode â and two beam split-
ters with transmission and reflection coefficients R, T and efficiencies
η1, η2. Two detectors D1 and D2 with efficiencies η3 and η4 monitor the
output ports of the final beam splitter.

We consider the Hong-Ou-Mandel interferometer in Fig. 7.1 where the input is
a stream of identical pulses â(t) impinging the first beam splitter. We neglect the
other beam splitter input as it is in a vacuum state and considered uncorrelated
with the main input mode. We define detector D1 (D2) monitoring output mode
â3 with an efficiency η3 (â4, η4). Moreover, we introduce efficiencies η1, η2 captu-
ring the possible intensity imbalance in the two arms of the HOM, and reflection
(transmission) coefficient R (T ) of the second beam splitter. Finally, we label the
time t1 (t2) as the time at which detector D1 (D2) clicks, and we assume parallel
polarization (∥) configuration for the fields in â1 and â2 unless otherwise stated.

1. Previously : Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000
Grenoble, France.
Currently : Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France.
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To express the intensity correlation G
(2)
D1,D2

= η3η4 ⟨â†3(t1)â
†
4(t2)â3(t1)â4(t2)⟩ in

terms of the input mode â, we work our way back from the detector level to the
interferometer input.

We introduce the superoperators J ,S and R, which are defined as

J ρ̂ = âρ̂â†

Sρ̂ = âρ̂

Rρ̂ = ρ̂â†,

and define the expectation value as

⟨⟨A1(t1)A2(t2) · · · An(tn)⟩⟩ = Tr {T [A1(t1)A2(t2) · · · An(tn)]ρ̂(t0)} , (7.1)

with time-ordering superoperator T and t0 ≤ tn for all n. Defining the ex-
pectation value in this fashion, shows that R and S commute and thus can
be time-ordered. Consequently, the correlation function G

(2)
34 can be written as

⟨⟨R3(t1)R4(t2)S4(t2)S3(t1)⟩⟩, which in turn can be written as ⟨⟨J4(t2)J3(t1)⟩⟩.

The beam splitter relations for the second beam splitter in Fig. 7.1 with reflec-
tion and transmission coefficients R, T are

â3(t) = T â1(t)−Râ2(t)

â4(t) = Râ1(t) + T â2(t)
(7.2)

resulting in a second-order correlation function in terms of beam splitter input
modes â1, â2. If we then also apply the relative time delay τp and the phase ϕ shift
induced by the interferometer through

â1(t) =

√
η1
2
â(t)

â2(t) =

√
η2
2
â(t− τp)e

iϕ,

(7.3)

where we take into account the possible intensity imbalance in the arms of the
interferometer with η1, η2, we can express the second-order correlation function in
terms of a general input mode â.

The derivation of G
(2)
D1,D2

in terms of the input mode â follows a 3 step
procedure, which we do not detail here 2.

2. Quantum interferences with photon-number superposition states emit-
ted by coherently driven quantum emitters (2023)
I. Maillette de Buy Wenniger, D. Fioretto, S.C. Wein, J. Senellart, C. Antón-Solanas, S.
E. Thomas, N. Belabas, and P. Senellart
In preparation
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We find

4G
(2)
D1,D2

(t1, t2)

η3η4
=
1

2
η1η2

(
R4 + T 4

)
[⟨⟨J (t2)J (t1 − τ)⟩⟩+ ⟨⟨J (t2 − τ)J (t1)⟩⟩]

+R2T 2
[
η21⟨⟨J (t2)J (t1)⟩⟩+ η22⟨⟨J (t2 − τ)J (t1 − τ)⟩⟩

]
− 2η1η2R

2T 2Re{⟨⟨S(t2)R(t2 − τ)R(t1)S(t1 − τ)⟩⟩}
− 2η1η2R

2T 2Re{⟨⟨S(t2)R(t2 − τ)S(t1)R(t1 − τ)⟩⟩} cos(2ϕ)
+ 2

√
η1η2RT

(
R4 − T 4

)
[Re{B+(t1, t2)} cos(ϕ)

− Im{B+(t1, t2)} sin(ϕ)]
(7.4)

where

B+(t1, t2) =
1

2
(B(t1, t2) +B(t2, t1))

=
1

2
[⟨⟨R(t2)S(t2 − τ)[η1J (t1)− η2J (t1 − τ)]⟩⟩

+ ⟨⟨R(t1)S(t1 − τ)[η1J (t2)− η2J (t2 − τ)]⟩⟩],

(7.5)

and

B(t1, t2) =⟨⟨R(t2)S(t2 − τ)
[
η1T

2J (t1) + η2R
2J (t1 − τ)

]
⟩⟩

− ⟨⟨R(t1)S(t1 − τ)
[
η1R

2J (t2) + η2T
2J (t2 − τ)

]
⟩⟩.

(7.6)

We see that when R ̸= T , the last two lines of Eq. 7.4 become non-zero,
which correspond to single-photon interference effects that occur in the presence
of one or more photons and are captured by two-time correlation function B(t1, t2).

With Eq. 7.4, we can analyze the coincidences for different delays τk = kτp
as defined in Section 3.2.3, and examine the effect of phase on the peak areas in
correlation histograms. We restrict ourselves to a time-ordered scenario t2 ≥ t1,
and set t2 = t1 + τ to probe specific histogram peaks, where the detection delay
τ is in the vicinity of nτp with n ≥ 0.

7.1.1 . Zero delay peak

To analyze the central peak (k = 0), we restrict ourselves to τ = τp. We
then factor correlation functions separated by delays t2 − t1 ≥ τp, followed
by applying the periodic condition to eliminate τp from the resulting expres-
sion. This would entail that if we have the term ⟨⟨J (t2 − τp)J (t1)⟩⟩, we get
⟨⟨J (t2 − τp)⟩⟩⟨⟨J (t1)⟩⟩ = ⟨⟨J (t2)⟩⟩⟨⟨J (t1)⟩⟩ = I(t1)I(t2), with I(t) the
intensity of the input mode at time t.
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If we apply these steps to Eq. 7.4, we get

4G
(2)
D1,D2,0

(t1, t2)

η3η4
=η1η2(R

4 + T 4)I(t1)I(t2) + (η21 + η22)R
2T 2G(2)(t1, t2)

− 2η1η2R
2T 2

[
|G(1)(t1, t2)|2 + |C(2)|2 cos(2ϕ)

]
+
√
η1η2RT (R4 − T 4)[(η1 − η2)Re{B0(t1, t2)} cos(ϕ)

− (η1 + η2)Im{B0(t1, t2)} sin(ϕ)],
(7.7)

with

B0(t1, t2) = ⟨â(t2)⟩ ⟨â†(t2)â†(t1)â(t1)⟩+ ⟨â(t1)⟩ ⟨â†(t1)â†(t2)â(t2)⟩ . (7.8)

To get the peak areas, we integrate t1 and t2 over all time. Using a normaliza-
tion factor N = η1η2η3η4µ

2/4, where µ =
∫
I(t)dt, the average photon number

of the interferometer input. As a result we obtain the central peak area :

2g
(2)
D1,D2

(k = 0) =(R4 + T 4) +
(η21 + η22)

η1η2
R2T 2

(
M + c(2) cos(2ϕ)

)
+RT (R4 − T 4)

[
(η1 − η2)√

η1η2)
Re{b0} cos(ϕ)−

(η1 + η2)√
η1η2

Im{b0} sin(ϕ)

] (7.9)

where g(2), M , c(2) are the intensity correlation, mean wavepacket overlap, and
second-order coherence between Fock states |n⟩ and |n+ 2⟩, given by :

g(2) =
1

µ2

∫∫
⟨â†(t)â†(t′)â(t′)â(t)⟩ dtdt′ (7.10)

M =
1

µ2

∫∫
| ⟨â†(t′)â(t)⟩ |2dtdt′ (7.11)

c(2) =
1

µ2

∫∫
| ⟨â(t′)â(t)⟩ |2dtdt′, (7.12)

respectively, where the integrals are taken over a single pulse of the input mode
for both t and t′. Moreover, we have normalized the two-time correlation function
according to b0 = (1/µ2)

∫∫
B(t1, t2)dt1dt2.

For a balanced interferometer where R = T = 1/
√
2 and η1 = η2 = 1 we find

g
(2)
D1,D2

(k = 0) =
1

2
+

1

2
g(2) − 1

2
M − 1

2
c(2) cos(2ϕ). (7.13)

which in the case of g(2) = 0 becomes :

g
(2)
D1,D2

(k = 0) =
1

2
(1−M), (7.14)
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with M = Ms, see Section 2.4.3 and Section 3.2.1 for definition Ms.

7.1.2 . First delay peak
We find the phase dependence of the first delay (|k| = 1) peak area by setting

t2 → t2+ τp, shifting the correlation function to have the delay τ centered around
the first delay peaks of a coincidence histogram. Consequently, some terms with
factor τp cancels, changing the factorization of the correlation functions. We find :

4G
(2)
D1,D2,1

(t1, t2)

η3η4
=
1

2
η1η2(R

4 + T 4)
[
I(t1)I(t2) +G(2)(t1, t2)

]
+R2T 2

[
η21 + η22

]
I(t1)I(t2)

− 2η1η2R
2T 2

[
S
(2)
{1|2}(t1, t2) + S

(2)
{1|M}(t1, t2) cos(2ϕ)

]
+ 2

√
η1η2RT (R4 − T 4)

[
Re{B1(t1, t2)} cos(ϕ)

− Im{B1(t1, t2)} sin(ϕ)
]

+ 2
√
η1η2RT (R4 − T 4)

[
η1| ⟨â(t1)⟩ |2I(t2)

− η2I(t1)| ⟨â(t2)⟩ |2
]
cos(ϕ),

(7.15)
with B1(t1, t2) = η1 ⟨â†(t2)⟩ ⟨â†(t1)â(t2)â(t1)⟩ − η2 ⟨â(t1)⟩ ⟨â†(t1)â†(t2)â(t2)⟩.
Integrating over time and normalizing by N = η1η2η3η4µ

2/4, we obtain :

g
(2)
D1,D2

(|k| = 1) =
1

2
(R4 + T 4)(1 + g(2)) +

(η21 + η22)

η1η2
R2T 2

− 2R2T 2
(
s
(2)
{1|2} + s

(2)
{1|M} cos(2ϕ)

)
+

2
√
η1η2

RT (R4 − T 4)
[(

Re{b1}+ (η1 + η2)c
(1)
)
cos(ϕ)

− Im{b1} sin(ϕ)
]
,

(7.16)
where we have b1 = (1/µ2)

∫∫
B1(t1, t2)dt1dt2, and the first-order coherence c(1)

between Fock states |n⟩ and |n+ 1⟩, the temporal overlap between first- and
second-order coherence s

(2)
{1|2}, and the temporal overlap between the first-order

coherence and first-order two-time correlation function, or temporal coherence,
s
(2)
{1|M}, defined as :

c(1) =
1

µ

∫
| ⟨â(t)⟩ |2dt (7.17)

s
(2)
{1|2} =

1

µ2

∫∫
Re{⟨â†(t)⟩ ⟨â†(t′)⟩ ⟨â(t′)â(t)⟩}dtdt′ (7.18)

s
(2)
{1|M} =

1

µ2

∫∫
Re{⟨â†(t)⟩ ⟨â(t′)⟩ ⟨â†(t′)â(t)⟩}dtdt′. (7.19)
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The latter term only arises when two photons from different pulses interfere. In the
absence of a two-photon component in the pulsed input field (g(2) = 0), the latter
term becomes :

s
(2)
{1,M} = c(1)

(
2M

1 +M

)
, (7.20)

where M = Ms.

For a balanced beam splitter, η1 = η2 and R = T = 1/
√
2, we finally obtain :

g
(2)
D1,D2

(|k| = 1) =
3

4
+

1

4
g(2) − 1

2
s
(2)
{1,2} −

1

2
s
(2)
{1,M} cos(2ϕ). (7.21)

7.1.3 . Far delay peaks
The second delay peaks and higher (|k| ≥ 2) are commonly referred to as the

uncorrelated side peaks in literature and used for normalization of coincidence
histograms. We show here that by deriving the peak area for the second delay
peak, which we extend to further delays, that we can no longer consider these
peaks uncorrelated and therefore are not a reliable reference for normalization.

To show the phase dependence of these peaks, we set t2 → t2+2τp and follow
the same procedure as detailed in the previous two sections. We obtain :

4G
(2)
D1,D2,2

(t1, t2)

η3η4
=
[
η1η2(R

4 + T 4) + (η21 + η22)R
2T 2

]
I(t1)I(t2)

− 2η1η2R
2T 2| ⟨â(t1)⟩ |2| ⟨â(t2)⟩ |2(1 + cos(2ϕ))

+
√
η1η2(η1 − η2)RT (R4 − T 4)

[
I(t1)| ⟨â(t2)⟩ |2

+ | ⟨â(t1)⟩ |2I(t2)
]
cos(ϕ),

(7.22)

where we write the index 2 in G
(2)
D1,D2,2

but this applies to any further delay.

Integrating and normalizing results in the peak area :

g
(2)
D1,D2

(|k| ≥ 2) =(R4 + T 4) +
η21 + η22
η1η2

R2T 2

− 2R2T 2[c(1)]2(1 + cos(2ϕ))

+ 2
(η1 − η2)√

η1η2
RT (R4 − T 4)c(1) cos(ϕ),

(7.23)

which for R = T = 1/
√
2 and η1 = η2 = 1 becomes

g
(2)
D1,D2

(|k| ≥ 2) = 1−
(
c(1) cos(ϕ)

)2
, (7.24)

where we recognize the self-homodyne signal used to define interferometer phase.
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7.2 . Normalization second-order correlation histograms

To understand the normalization procedure proposed in Section 3.3.1
let us consider a normalization of phase dependent coincidences by a factor
proportional to (µ3 + µ4)

2/4 ≃ µ2/4, a factor which is phase independent.
If we write this normalization factor in terms of the jump operators we get
(1/4)[

∫
⟨⟨J3(t) + J4(t)⟩⟩dt]2. Adding the two jump operators ideally cancels

the phase-dependent terms. However, whenever η3 ̸= η4, the terms do not fully
cancel. In practice, η3 ̸= η4 can arise from differences in losses before detection,
or difference in detection efficiencies.

We can potentially overcome this experimental difficulty by measuring the
efficiency ratio rη = η3/η4. This ratio can be measured by taking the ratio of
phase-averaged counts at each detector : rη = (

∫
µ3dϕ)/(

∫
µ4dϕ), or by taking

the ratio of maximum (or minimum) counts at each detector :

rη =
maxϕµ3

maxϕµ4
. (7.25)

In both cases, 1± c(1) cos(ϕ), becomes identical for µ3 and µ4.

Knowing rη, the phase-independent normalization factor becomes

1

4rη
(µ3 + rηµ4)

2 =
1

4
η3η4µ

2. (7.26)

This normalization method holds as long as the inputs at the final beam splitter
are balanced, i.e. µ1 = µ2 = µ (η1 = η2 = 1).

To obtain a phase- and loss-robust normalization factor, we consider the quan-
tity ⟨⟨(J3(t2) + rηJ4(t2))(J3(t1) + rηJ4(t1))⟩⟩/(4rη). Applying τ = τp, and ta-
king t2 ≫ t1, we obtain

1

4rη
⟨⟨(J3(t2) + rηJ4(t2))(J3(t1) + rηJ4(t1))⟩⟩ =

η23
16rη

⟨⟨[η1J (t2) + η2J (t2 − τp)][η1J (t1) + η2J (t1 − τp)]⟩⟩

=
1

4
η3η4

(η1 + η2)
2

4
I(t1)I(t2).

(7.27)

Secondly, we can expand the first line in Eq. 7.27 in terms of G(2)
D1,D2

and autocor-

relations G(2)
D1,D1

(t1, t2) and G
(2)
D2,D2

(t1, t2), where the autocorrelations are defined
as :

G
(2)
D1,D1

(t1, t2) = η23⟨⟨J3(t1)J3(t2)⟩⟩

G
(2)
D2,D2

(t1, t2) = η24⟨⟨J4(t1)J4(t2)⟩⟩.
(7.28)
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After integrating over the entire uncorrelated peak and normalizing by the
factor N = η1η2η3η4µ

2/4, we get :

1

4rη
(g

(2)
D1,D1

+ 2rηg
(2)
D1,D2

(|k| ≥ 2) + r2ηg
(2)
D2,D2

) = 1 +
(η1 − η2)

2

4
, (7.29)

where g
(2)
Di,Di

is the average peak area of the auto-correlation histogram obtained
with detector i.
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8 - Appendix : Photonic field

The theory presented in this appendix has been developed by the group of Prof.
Alexia Auffèves 1 with Dr. Maria Maffei 2, and Dr. Stephen Wein 3. It describes
formally the field emitted by a quantum emitter subject to pure dephasing.

8.1 . General form of the emitted field

In our experiments we consider the decoherence witnessed by the qubit to
mainly perturb the spontaneous emission process, an assumption which we ex-
perimentally justify in Section 4.3.4. With this assumption we can describe the
photonic (or battery) field containing at most one photon in the pulse operator
formalism (98) as

ρ̂ =p0 |0⟩ ⟨0|+ p1

∫∫
dtdt′ξ(t, t′)â†(t) |0⟩ ⟨0| â(t′)

+
√
p0p1

∫
dtζ(t)â†(t) |0⟩ ⟨0|+ h.c.

=p0ρ̂0 + p1ρ̂1 +
√
p0p1(ρ̂01 + ρ̂10), (8.1)

where ρ̂i(j) = |i⟩ ⟨i(j)| is the photonic density operator, and â(t) is the propagating
mode, and the photon-number probabilities p0, p1 satisfy p0+p1 = 1. Additionally,
we introduce two parameters : the Hermitian function ξ(t, t′) = ξ∗(t′, t) describing
the temporal shape and coherence of the pulse, and the complex amplitude ζ(t)

describing the temporal dynamics of the photon-number coherence. Considering
the photon-number probabilities p0 and p1 satisfy p0 + p1 = 1, we have Tr[ρ̂] = 1

implies
∫
ξ(t, t)dt = 1.

For a state described by Eq. 8.1 the total purity of the state is given by

P = Tr[ρ̂2] = p20 + p21Ms + 2p0p1C (8.2)

with the single-photon indistinguishability, or purity in the temporal domain,

Ms = Tr[ρ̂21] =

∫∫
|ξ(t, t′)|2dtdt′. (8.3)

1. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble,
France.

2. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble,
France.

3. Previously : Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000
Grenoble, France.
Currently : Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France.
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Finally, we can write the purity in number coherence, between the vacuum and the
single photon Fock state :

C = Tr[ρ̂01ρ̂10] =

∫
|ζ(t)|2dt. (8.4)

8.2 . Purely dephased emitter

Ideally, upon excitation of our two-level system we do not generate a two-
photon component, g(2) ≪ 1, and thus ρ2,j = 0, implying c(2) = 0, s

(2)
{1|2} = 0

(see Appendix 7.1). Generating photonic states with high single-photon purity is
desired in many optical quantum technologies. Hence, we want to predict how the
peak areas of coincidence histograms are affected in absence of re-excitation, or
emission of a two-photon component of our emitter.

We can analytically predict the phase dependence of the coincidence peak areas
by considering a perfectly-prepared two-level system affected by pure dephasing.
Instantaneous excitation (with pulse duration τexc → 0) generates a photonic field
described by the density operator :

ρ̂ = p0 |0⟩ ⟨0|+ p1

∫∫
dtdt′ξ(t, t′)â†(t) |0⟩ ⟨0| â(t′)

+
√
p0p1

∫
dtζ(t)â†(t) |0⟩ ⟨0|+ h.c.

where

ξ(t, t′) = f(t)f∗(t′)e−γ∗|t−t′|

ζ(t) = λf(t)eiϕ−γ∗t,

with the pure-state wavefunction f(t) =
√
γe−iωt−γt/2, the spontaneous emission

rate γ, the pure dephasing rate γ∗, and λ a parameter tuning the photon-number
purity (83). Combined with c(2) = 0, s

(2)
{1|2} = 0 and g(2) = 0 we get M = Ms

and :
Ms =

γ

γ + 2γ∗

c(1) =λ2p0

(
γ

γ + 2γ∗

)
= λ2p0Ms

s
(2)
{1|M} =λ2p0

(
γ2

(γ + γ∗)(γ + 2γ∗)

)
= c(1)

(
2Ms

1 +Ms

)
.

(8.5)

Thus, we see that in the absence of a two-photon component the overlap between
temporal coherence and first-order coherence simply is a product of the two.
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8.3 . Relation between Ms and C

For a two-level system spontaneously emitting a field under influence of pure
dephasing and spectral diffusion we can relate Ms to C. First, we consider the
emission of a single photon in absence of pure dephasing. The temporal wave
function associated with this field is given by f(t, ω0) =

√
γe−γt/2−iω0t, with the

emitter transition frequency ω0. Such a field has some temporal coherence, which
in the presence of pure dephasing undergoes an exponential decay in the time
interval (t− t′) captured by the temporal density function and coherence function,
respectively :

ξ(t, t′, ω0) = f(t, ω0)f
∗(t′, ω0)e

−γ∗|t−t′|

ζ(t, ω0) = f(t, ω0)e
−γ∗t. (8.6)

This decay over time interval (t− t′) prevents the temporal density function from
being factored further. As a result, the single-photon component of a state subject
to pure dephasing can no longer be considered as temporally pure.

In between successive excitations of the emitter, the transition frequency can
change by an amount δω, although we consider the frequency fixed during each
emission of a photonic field. Hence, when performing Hong-Ou-Mandel measure-
ments the spectral diffusion between successive emitted photons will reduce the
single-photon indistinguishability :

Ms(δω) =

∫∫
dtdt′Re[ξ(t, t′, ω0)ξ

∗(t, t′, ω0 + δω)]. (8.7)

For the photonic field described in Eq. 8.1 subject to pure dephasing, this latter
expression becomes :

Ms(δω) =
γ(γ + 2γ∗)

(γ + 2γ∗)2 + δω2
, (8.8)

with γ + 2γ∗ = 2/T2, where T2 the total decoherence rate. This decoherence
creates homogeneous broadening of the emission linewidth, which is broadened
further by averaging over the spectral diffusion of the emitter δω.

Symmetrically, we see how the purity in photon-number basis between the
vacuum and single-photon component is affected by pure dephasing and spectral
diffusion :

C(δω) =
∫

dtRe[ζ(t, ω0)ζ
∗(t, ω0 + δω)]. (8.9)

Evaluating this expression for our two-level system, we again find :

C(δω) = γ(γ + 2γ∗)

(γ + 2γ∗)2 + δω2
= Ms(δω). (8.10)

Thus, pure dephasing affects the photon-number purity and single-photon
indistinguishability identically : C = Ms.
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As a side note, the equality C = Ms does not hold for all dephasing phenomena.
In Ref. (83) they find the photon-number purity to be upperbounded by

C ≤
√
Ms. (8.11)

This upper bound shows that the photonic state will contain no photon number
coherence in the limit of the temporal purity going to zero, but we can have a
high temporal coherence without photon number coherence. Eq. 8.11 allows us to
define the parameter λ2 = C

√
Ms with 0 ≤ λ ≤ 1 quantifying the decoherence

in photon number basis not arising from loss in temporal coherence.
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9 - Appendix : Discharging a quantum bat-
tery – theory

The theory provided in this appendix has been developed by Prof. Alexia Auf-
fèves 1, Dr. Maria Maffei 2, and Dr. Stephen Wein 3. It describes the experiments of
Section 4.4 where we interfere the field emitted by the qubit with a classical field
(discharging step of the protocol).

9.1 . Energy transfers in discharging

In the second step of the protocol presented in Section 4.4 we discharge the
quantum battery through interference with a classical receiver. We consider the
beam splitter depicted in Fig. 4.20 where we have the coherent field (c), |β⟩, in
input port â1(t) = â

(in)
c (t) and the battery field (b) in input port â2(t) = â

(in)
b (t),

with ⟨â(in)b (t)⟩ = sin (θ/2) cos (θ/2)ζ(t) and ⟨â(in)c (t)⟩ = β(t).

We consider constructive interference in output â4(t), the energy received by
the classical receiver in this output port is

E(out)
c =

1

2

[
E(in)
c + E(in)

b

]
+ ℏω0Re

[∫
dt ⟨â(in)b (t)⟩ ⟨â(in)c (t)⟩∗

]
=
ℏω0

2

[∫
dt|β(t)|2 + sin2

(
θ

2

)]
+ ℏω0 cos

(
θ

2

)
sin

(
θ

2

)
Re

[∫
dtζ(t)β(t)∗

]
, (9.1)

where the second term ℏω0Re
[∫

dt ⟨â(in)b (t)⟩ ⟨â(in)c (t)⟩
∗]

is the energy exchange
from interference between the coherent parts of the fields. Because of energy
conservation, the addition of this energy in one output of the beam splitter must
entail that the energy in the other output port â3(t) is reduced by the same
amount of energy.

We can define an efficiency of energy transfer in discharging, denoted by the
letter G, which is equal to the energy received by the classical field E(out)

c divided

1. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble,
France.

2. Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble,
France.

3. Previously : Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000
Grenoble, France.
Currently : Quandela SAS, 7 Rue Léonard de Vinci, 91300 Massy, France.
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by the total energy into the beam splitter E(in)
c + E(in)

b . Using the expression for
E(out)
c in Eq. 9.1 we find a maximum energy transfer for

∫
dt|β(t)|2 = sin2 (θ/2)

(i.e. β(t) = sin (θ/2)
√
ξ(t, t′)e−iϕ(t)) : when both fields impinging the beam

splitter have the same input energy.

With equal input intensities we find that the energy exchanged, second term
in Eq. 9.1, can be written as :

∆Ec = ℏω0 cos

(
θ

2

)
sin2

(
θ

2

)
Cb,c = −∆Eb, (9.2)

where we define the parameter capturing the classical and quantum coherence
exchanged Cb,c = Re

[∫
dtζ(t)

√
ξ(t, t′)eiϕ(t)

]
.

The energy exchanged in Eq. 9.2 can be split into a work and heat contribution,
similar to the charging step :

∆Ec = Wb,c +Qb,c, (9.3)

where the work component is equal to the coherent part of the field and the
heat equal to the incoherent part. Following the analysis method introduced in
Refs. (38; 122; 127–129), we find for the work

Wb,c =ℏω0

(∫
dt| ⟨âoutc (t)⟩ |2 −

∫
dt| ⟨âinc (t)⟩ |2

)
=ℏω0Re

[∫
dt ⟨â(in)c (t)⟩ ⟨â(in)b (t)⟩

∗
]

+
ℏω0

2

(∫
dt| ⟨â(in)b (t)⟩ |2 −

∫
dt| ⟨â(in)c (t)⟩ |2

)
=ℏω0 sin

2

(
θ

2

)[
cos

(
θ

2

)
Cb,c +

1

2

(
cos2

(
θ

2

)
C − 1

)]
. (9.4)

Finally, by combining this expression for work with the energy balance in Eq. 9.3
we obtain the heat transfer in discharge :

Qb,c =
1

2
ℏω0 sin

2

(
θ

2

)(
1− cos2

(
θ

2

)
C
)

= Qq,b/2. (9.5)

9.2 . Relating visibility of interference and energetic exchanges

As before, we can access the first-order coherence c(1) in photon-number basis
by performing homodyne-type measurements and extracting the visibility v from
the average photon-number µi =

∫
⟨â†i (t)âi(t)⟩ dt measured at the output of a

beam splitter :

v =
µ3 − µ4

µ3 + µ4
. (9.6)
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For a beam splitter with input modes â1(t), â2(t) and output modes
â3(t), â4(t), the beam splitter relations are given by :(

â3(t)
â4(t)

)
=

1√
2

(
1 eiϕ

−eiϕ 1

)(
â1(t)
â2(t)

)
, (9.7)

with ϕ = ϕ(t) the freely evolving relative phase between the interfering fields
originating from a path length difference.

In the discharging step, the input fields are a quantum battery field (b)
â1(t) = â

(in)
b (t) and a classical coherent field (c) â2(t) = â

(in)
c (t), with ⟨â(in)b (t)⟩ =

sin (θ/2) cos (θ/2)ζ(t) and ⟨â(in)c (t)⟩ = β(t). From the normalization condition we
impose on the experiment, E(in)

b = E(in)
c = ℏω0 sin

2(θ/2) we find that the visibility
in the discharge process is given by :

v =
1

µb
Re

[∫
dt ⟨â(in)c (t)⟩ ⟨â(in)b (t)⟩

∗
]

= cos

(
θ

2

)
Re

[∫
dtζ(t)

√
ξ(t, t′)eiϕ

]
= cos

(
θ

2

)
Cb,c, (9.8)

where again we have Cb,c = Re
[∫

dtζ(t)
√
ξ(t, t′)eiϕ

]
.

9.3 . Pure dephasing in energy transfer

9.3.1 . Work and heat equations in presence of pure dephasing
To demonstrate the validity of our theoretical framework in the presence of

pure dephasing, we start from the main results reported in Refs. (122; 127; 128).
Let us consider the bipartite system containing a qubit q coupled to a battery
field b. This frame can be generalized to any pair of systems (A and B) coupled
by an Hamiltonian interaction VA,B. At time t we can write the joint state as
ρ(t) = ρA(t)⊗ρB(t)+χA,B(t), with ρA(B)(t) = TrB(A){ρ(t)} and the correlation
matrix χA,B(t) containing all classical and quantum correlations. Through this
separation of dynamics we can find the definitions of work and heat transfer in
terms of the bare Hamiltonians of the two systems HA(B) :

ẆA(B) = − i

ℏ
TrA,B

{[
HA(B), VA,B

]
ρA (t)⊗ ρB (t)

}
, (9.9)

Q̇A(B)(t) = − i

ℏ
TrA,B

{[
HA(B), VA,B

]
χA,B(t)

}
. (9.10)

For these coupled systems we can write a “quantum version" of the first law
of thermodynamics, where for each system undergoing a change in internal
energy ∆E we can write ∆EA(B) = WA(B) + QA(B). If the average coupling
energy is constant (d/dtTr{VA,Bρ(t)} = 0), we find ẆA(t) = −ẆB(t) and
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Q̇A(t) = −Q̇B(t).

Next, we want to include pure dephasing in the framework. When introducing
pure dephasing we can no longer consider a bipartite system. We now consider a
three-body system comprising the qubit (A), electromagnetic field (B), and pho-
nons (C). In this tripartite system, the phonons do not couple to the electromagne-
tic field, leaving us with the Hamiltonian HA,B,C = HA+HB+HC+VA,B+VA,C ,
and the joint system state written as ρ(t) = ρA(t) ⊗ ρB(t) ⊗ ρC(t) + χA,B,C(t).
The work and heat transfers to the qubit are now given by :

ẆA =− i

ℏ
TrA,B

{
[HA, VA,B] ρ

A (t)⊗ ρB (t)
}

− i

ℏ
TrA,C

{
[HA, VA,C ] ρ

A (t)⊗ ρC (t)
}
, (9.11)

Q̇A(t) =− i

ℏ
TrA,B {[HA, VA,B]χA,B(t)}

− i

ℏ
TrA,C {[HA, VA,C ]χA,C(t)} . (9.12)

The work and heat transfers towards the electromagnetic field (B), and/or the
phonon bath (C) read :

ẆB(C) = − i

ℏ
TrA,B(C)

{[
HB(C), VA,B(C)

]
ρA (t)⊗ ρB(C) (t)

}
, (9.13)

Q̇B(C)(t) = − i

ℏ
TrA,B(C)

{[
HB(C), VA,B(C)

]
χA,B(C)(t)

}
, (9.14)

with χA,C(t) = TrB{χ(t)} and χA,B(t) = TrC{χ(t)}. The internal energy change
of the qubit and electromagnetic field are still governed by ∆EA(B) = WA(B) +

QA(B). However, now the average coupling energy is given by Tr{VA,Bρ(t)} +

Tr{VA,Cρ(t)}, which, if constant, results in ẆA(t) + ẆB(t) + ẆC(t) = 0, and
symmetrically for the heat flow : Q̇A(t)+Q̇B(t)+Q̇C(t) = 0. Because the phonon
bath does not exchange energy with the qubit we can set ẆC(t) = 0, Q̇C(t) = 0,
and Tr{VA,Cρ(t)} = 0. Moreover, as we are considering spontaneous emission, the
field is initially in a vacuum state resulting in a Lorentzian-shaped light spectrum
centered at the qubit wavelength, giving Tr{VA,Bρ(t)} = 0. As a result, as long as
the phonon bath does not exchange energy with the other two systems, we find that
the work and heat exchanged between the qubit and field are equal and opposite
in sign. Finally we note that the expressions for the heat and work transfer to the
electromagnetic field in Eqs. 9.13, 9.14 are identical to Eqs. 9.11, 9.12. Therefore,
following the derivation in Ref. (122) we obtain for the tripartite system Eq. 4.25
in the main text.

204



9.3.2 . Relation between Mb,c and Cb,c
We can derive a relation between Cb,c and Mb,c when only the qubit emission is

affected by pure dephasing and spectral diffusion. In the discharging step we have
a photonic state described by temporal density function ξ and coherence function
ζ, and a classical field described by amplitude β(t) = sin(θ/2)

√
ξ(t, t)e−iϕ(t). The

mean wavepacket overlap, prone to spectral diffusion, between the two fields is
given by :

Mb,c(δω) =

∫∫
dtdt′Re

[√
ξ(t, t, ω0)ξ(t′, t′, ω0)e

−iω0(t−t′)ξ∗(t, t′, ω0 + δω)
]

=
γ(γ + γ∗)

(γ + γ∗)2 + δω2
, (9.15)

where ϕ(t) = ω0t.

We find for Cb,c :

Cb,c(δω) =
∫

dtRe
[√

ξ(t, t, ω0)e
−iω0tζ∗(t, t, ω0 + δω)

]
=

γ(γ + γ∗)

(γ + γ∗)2 + δω2
, (9.16)

which gives Cb,c(δω) = Mb,c(δω), showing both parameters are equally affected
by pure dephasing and spectral diffusion. For completeness, a more general bound
using a Cauchy-Schwarz inequality can be found if the decoherence is not only due
to pure dephasing :

Cb,c ≤
√
Mb,c. (9.17)

9.4 . Field amplitude and work transfer

Let us consider the matrix describing beam splitter interaction between two
plane waves of the same frequency (i.e. ω = ω0) :(

â3
â4

)
=

(
cos
(φ
2

)
eiϕ sin

(φ
2

)
−eiϕ sin

(φ
2

)
cos
(φ
2

) )(â1
â2

)
, (9.18)

with φ the beam splitter angle. Input channel â2 carries the battery field b, and input
channel â1 carries the work receiver w. The Hamiltonian describing the bipartite
system is given by :

H = ℏω0(ŵ
†ŵ + b̂†b̂) +

iℏΩ
2

(ŵ†b̂− b̂†ŵ), (9.19)

where Ω corresponds to the coupling strength between the two fields. In the inter-
action picture we can remove the bare Hamiltonians of the work receiver and the
battery field, leaving us :

H =
iℏΩ
2

(ŵ†b̂− b̂†ŵ). (9.20)
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The two fields interact for time τ = Ωτ = φ, resulting in the density matrix ρ(t)

describing the joint state :

ρ(τ) = U(τ)ρ(0)U † = eφ(ŵ
†b̂−b̂†ŵ)/2ρ(0)e−φ(ŵ†b̂−b̂†ŵ)/2, (9.21)

where

U †(τ)b̂U(τ) = cos
(φ
2

)
b̂− sin

(φ
2

)
ŵ,

U †(τ)ŵU(τ) = cos
(φ
2

)
ŵ + sin

(φ
2

)
b̂.

We can now derive the energy exchanged among two system and decompose
the energy into a work and heat component. The energetic exchanges in this
closed bipartite system are equal and opposite. As such, we will only write down
the explicit expressions for the work receiver w. For the work receiver, the energy
change reads :

∆Ew ≡ Ew(τ)− Ew(0) = ℏω0

[
sin2

(φ
2

)
(⟨b̂†b̂⟩0 − ⟨ŵ†ŵ⟩0)2 + sin(φ)Re[⟨b̂ŵ†⟩0]

]
= ℏω0

[
sin2

(φ
2

)
(⟨â†2â2⟩ − ⟨â†1â1⟩)2 + sin(φ)Re[⟨â2â†1⟩]

]
= E3 − E1, (9.22)

where we use ⟨...⟩0 ≡ Tr[...ρ(0)] and ρ(0) = ρ(1, 2). Consequently, we find that
the work transfer towards the work receiver reads :

Ẇw(t)/(ℏω0) = ΩRe{Tr[ŵρ(t)]Tr[b̂†ρ(t)]}
= ΩRe{Tr[U †(t)ŵU(t)ρ(0)]Tr[U †(t)b̂†U(t)ρ(0)]}

= ΩRe{(cos(Ωt/2) ⟨ŵ⟩0 + sin(Ωt/2) ⟨b̂⟩0)(cos(Ωt/2) ⟨b̂⟩
∗
0 − sin(Ωt/2) ⟨ŵ⟩∗0)}

= Ω
(
cos2(Ωt/2)− sin2(Ωt/2)

)
Re{⟨ŵ⟩0 ⟨b̂⟩

∗
0}

− cos(Ωt/2) sin(Ωt/2)
(
| ⟨w⟩0 |

2 − | ⟨b⟩0 |
2
)
. (9.23)

The total work received by w is then computed by integrating between 0 and τ :

Ww ≡
∫ τ

0
dtW(t) = ℏω0

[
sin(φ)Re{⟨ŵ⟩0 ⟨b̂⟩

∗
0}+ sin2(φ/2)

(
| ⟨b̂⟩0 |

2 − | ⟨ŵ⟩0 |
2
)]

= ℏω0

[
sin(φ)Re{⟨â1⟩ ⟨â2⟩∗}+ sin2(φ/2)

(
| ⟨â2⟩ |2 − | ⟨â1⟩ |2

)]
,

(9.24)

and the heat transfer to the work receiver is given by :

Qw ≡ ∆Ew −Ww

= ℏω0

[
sin(φ)Re

{
⟨â2â†1⟩ − ⟨â2⟩ ⟨â1⟩∗

}
+ sin2(φ/2)

(
⟨â†2â2⟩ − | ⟨â2⟩ |2

)]
− ℏω0

[
sin2(φ/2)

(
⟨â†1â1⟩ − | ⟨â1⟩ |2

)]
. (9.25)
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Thus, the heat depends on the statistics of both input fields and their correlations.
We can consider some examples :

ρ(0) = |α⟩ ⟨α| ⊗ |β⟩ ⟨β| → Qw = 0; (9.26)
ρ(0) = |1⟩ ⟨1| ⊗ |1⟩ ⟨1| → Ww = 0; (9.27)
ρ(0) = |α⟩ ⟨α| ⊗ |1⟩ ⟨1| → Ww = −ℏω0|α|2 sin2(φ/2),

Qw = ℏω0 sin
2(φ/2); (9.28)

ρ(0) = |α⟩ ⟨α| ⊗ (c∗1 |1⟩+ c∗0 |0⟩)(c1 ⟨1|+ c0 ⟨0|) →
Ww = ℏω0[Re{αc1c∗0} sin(φ) +

(
|c1c∗0|2 − |α|2

)
sin2(φ/2)]. (9.29)
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