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Abstract

Flexoelectricity is a type of electromechanical coupling, pertaining to the elec-
trical polarization response to mechanical strain gradients. Unlike piezoelectricity,
this effect is not restricted to non-centrosymmetric materials, but it tends to be
rather weak for most macroscale materials, i.e. bulk ceramics. However, it can be
comparable and even more important than the piezoelectric effect at the nanoscale.
Hence, it becomes increasingly significant to seek for a nanomaterial with a com-
parably large flexoelectric coefficient for applications in energy harvesters or elec-
tromechanical conversion device. The main objective of this thesis is to develop
a systematic method for calculating flexoelectric coefficients for two-dimensional
(2D) materials and heterostructures of these materials, using continuum mechan-
ics and/or an atomistic model with effective charges and dipoles corresponding to
Gaussian radial distributions of charges. We first checked analytically the equiva-
lence of two formulas used to calculate the electrostatic interaction forces between
atoms due to an external electric field. Next, we sought to extend a previous
work by incorporating terms involving effective charges into an analytical expres-
sion for calculating the flexoelectric coefficients of ionic crystals, such as MoS2.
In a second, more numerical part, we were able to find simulation set-ups allow-
ing us to calculate the in-plane µ1111 and µ2222, transverse µ3311 and out-of-plane
µ3333 flexoelectric coefficients for a monolayer of MoS2. For this purpose, we have
used a definition of polarization including the effects of both charge and effective
dipole, as well as charge conservation enforcement. The results obtained being in
good agreement with the data available in the literature, we were able to apply
our method to the case of a graphene / h-BN bilayer structure and to study the
influence of the relative positions of the two layers.
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Résumé

La flexoélectricité est un type de couplage électromécanique relatif à un change-
ment de polarisation électrique d’un matériau en réponse à un gradient de con-
trainte mécanique. Contrairement à la piézoélectricité, cet effet n’est pas restreint
aux matériaux non-centrosymmétriques, mais il a tendance à être plutôt faible à
l’échelle macroscopique. Par contre, il peut être comparable et même supérieur
à l’effet piézoélectrique à l’échelle nanométrique. Par conséquent, il devient de
plus en plus important de rechercher des nanomatériaux avec des coefficients
flexoélectriques relativement élevés pour des applications dans des récupérateurs
d’énergie ou des dispositifs de conversion électromécaniques. L’objectif principal
de cette thèse est de mettre au point une méthode systématique pour calculer
des coefficients flexoélectriques pour des matériaux bidimensionnels (2D) et des
hétérostructures de ces matériaux, en utilisant la mécanique des milieux continus
et/ou un modèle atomistique avec des charges et des dipôles effectifs correspon-
dant à des distributions radiales gaussiennes de charge. Nous avons tout d’abord
vérifié analytiquement l’équivalence de deux formules utilisées pour calculer les
forces d’interaction électrostatique entre atomes dues à un champ électrique ex-
terieur. Ensuite, nous avons cherché à étendre un travail précédent en incorporant
des termes impliquant les charges effectives dans une expression analytique, pour
calculer les coefficients flexoélectriques de cristaux ioniques, tels que MoS2. Dans
une deuxième partie plus numérique, nous avons pu trouver des configurations de
simulation nous permettant de calculer les coefficients flexoélectriques dans le plan
µ1111 et µ2222, transversal µ3311 et hors-plan µ3333 pour une monocouche de MoS2.
Pour cela, nous avons utilisé une définition de la polarisation incluant à la fois les
effets des charges et des dipôles effectifs, ainsi que le forçage de la conservation de
la charge. Les résultats obtenus étant en bon accord avec les données disponibles
dans la littérature, nous avons pu appliquer notre méthode au cas d’une structure
bicouche graphène / h-BN et étudier l’influence des positions relatives des deux
couches.
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Introduction

Introduction

If we consider bone repair and remodelling, barium strontium titanate-fabricated
microphone, ultra-high density memories, microcurvature sensor, nanogenerator
without piezoelectric materials, we can wonder what all theses recent study sub-
jects have in common? The answer is flexoelectricity.

Flexoelectricity, distinguished from piezoelectricity, is a type of electromechan-
ical coupling between dielectric polarization and strain gradient, whereas piezo-
electricity is now restricted to be the coupling between dielectric polarization and
uniform strain. This effect does not rely on the breaking of centrosymmetry in the
material and therefore universally exists in all condensed phase materials. How-
ever, at the macro scale, the flexoelectric effect can be considered too much weaker
than piezoelectricity for most materials as regards the ability to convert a strain
(uniform or not) into an electric polarization (voltage). A breakthrough, however,
came with the realization that flexoelectricity can be enhanced to a level com-
parable to piezoelectricity at nano scale, for strain gradient at that scale can be
much larger than that at the macroscale. Accordingly, the significance of studying
flexoelectricity of nanomaterials, i.e., two-dimensional materials (2D materials), is
growing due to the urgent needs for miniaturized materials from the technology
industry in the current era. Early experimental studies on flexoelectricity mostly
focused on liquid crystals. However, this situation changed in the early 2000s, with
a series of publications from Cross et al. at Pennsylvania State University, show-
ing that the flexoelectric coefficient in materials with high dielectric constants is
measured experimentally to be much larger than previously expected. Since then,
the interest of researchers in flexoelectricity increased at an accelerating rate, both
computationally and experimentally.

This PhD thesis is thus principally aimed at finding a multilayer nanomaterial
with a comparably large bending flexoelectric coefficient for energy conversion
use, taking advantage of computational means, for applications such as energy
harvesters. In order to do this, we designed and tested a novel simulation setup to
compute the bending flexoelectric coefficient for some two-dimensional materials
and heterostructures constituted by them. It is organized as follows:

• Chapter 1 is a general introduction to flexoelectricity that include (1): A
comparison between piezoelectricity and flexoelectricity (2) Discussion of
some different definitions for flexoelectric coefficients (3) Historical investiga-
tion to flexoelectricity (theory and experiment development) (4) Computa-
tional method on flexoelectricity (5) Application of flexoelectricity. Chapter
1 can make reader get to know flexoelectricity.
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Introduction

• In chapter 2, we give account of our efforts to compare the results we ob-
tained by improving a fortran code developed in our group for years and
in particular during a previous PhD [Lecoutre 18], with results published
just before the beginning of this thesis in an article by a group working in
Hannover [Javvaji 18] in which they used the same model we also use, i.e.
the charge dipole model. In this atomistic model, self-consistently computed
effective charges and dipoles are used in combination with a ’structure’ force
field to simulate the effect of an external electric field on a nanosystem. Jav-
vaji et al. used that model to compute the in-plane flexoelectric coefficient
µ1111 for patterned graphene. Unfortunately, we found several typesetting
errors in that paper (especially in the appendix) and questioned ourselves
about some of the formula. We clarified some problems through exchange
of mails with the first author, but some problems remained concerning the
analytical expressions used to compute forces as function of the effective
charges and dipoles, or the definition of polarization, or the absence of any
enforcement of charge conservation. The various steps we took to study the
first of these three points is discussed in detail at the beginning of chapter 2,
while the other two points are discussed in the second part of chapter 2 based
on the computation of in-plane piezoelectric coefficient e111 of several pat-
terned graphenes with a circular or triangular defect or a trapezium-shaped
graphene.

• In chapter 3, trying to establish a connexion between continuum physics used
e.g. in finite element simulations and our atomistic charge dipole model, we
tentatively incorporated charge terms into the analytical formula derived by
Gautier Lecoutre during his PhD thesis[Lecoutre 18], using virtual power
principle and an extended Cauchy-Born homogenization hypothesis, for cal-
culating the flexoelectric coefficients of various carbon nanotubes. We then
explain how we tested our new formula for the computation of the full flex-
oelectric coefficients of 2D MoS2. The results were however unsatisfactory.
We try to propose reasons for that.

• For the work detailed in chapter 4, we took inspiration from another paper of
the Hannover group[Zhuang 19] reporting transverse (bending) flexoelectric
coefficients for many 2D materials, using the charge dipole model coupled
with molecular dynamics, to study the effect of taking into account (or not) a
charge term in the polarization and enforcing explicitly charge conservation
for an ionic material e.g. 2D MoS2. Hence, we explain how we computed
not only the transverse (bending) flexoelectric coefficient µ3311, but also the
out-of-plane flexoelectric coefficient µ3333 and the in-plane flexoelectric co-
efficients µ1111 and µ2222. Since we found negative signs for some of these
coefficients whereas they are always positive in the literature, we discuss the
common use of definitions that favor obtaining a positive material coefficient
and we point out the interplay between two opposite effects that can indeed
give rise to net negative coefficients.
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• In chapter 5, we first describe how we parameterized the charge dipole model
for the graphene/hexagonal Boron Nitride (GBN) heterostructure by using
an iterative algorithm plus an optimization algorithm named BOBYQA[Powell 09]
and how the obtained parameters were then validated by calculating the
piezoelectric coefficient e222 of GBN system by comparison with ab-initio
calculations. At the end of this chapter, we describe how we computed
the bending flexoelectric coefficient µ3311 for graphene/h-boron nitride het-
erostructure, using the same simulation setup used in chapter 4. We then
compare the values found for various stackings of this heterostructure to the
µ3311 values we obtained for hexagonal boron nitride alone and graphene
alone.

• Finally, we recall the conclusions of our work and propose some perspectives.
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Chapter I. Introduction to Flexoelectricity

I.1 Piezoelectricity Versus Flexoelectric-
ity

Flexoelectricity is different from piezoelectricity, although both generate po-
larization as a response to a mechanical stimulus. Piezoelectric materials, which
generate polarization induced by uniform strain, must be non centrosymmetric
(see Figure I.1a) because an uniform strain is not able to separate the centroids of
positive and negative charges (see Figure I.1). In contrast, flexoelectricity gener-
ates polarization from strain gradients. Because the deformation gradient yielded
eg. by bending, breaks spatial inversion symmetry, a change of polarization can
be produced by flexoelectricity even if the crystal is symmetric, since the inhomo-
geneous deformation separates the centroids of positive and negative charges (see
Figure I.1d).

Flexoelectricity describes the generation of electric polarization by a strain
gradient, both in the static and dynamic regimes. The dynamic regime occurs in
the case of a propagating acoustic wave, which distorts non-uniformly the lattice.
However, in this thesis, we only discuss the static regime, as in the bending of a
plate. Following the theory of Kogan[Kogan 64], one of the possible constitutive
electromechanical equations, for a non-ferroelectric material, can be written:

Pk = ϵ0χkjEj + eijkSij + µijkl
∂Sij

∂xl

(I.1)

where the first term on the right hand side describes the dielectric polarization with
χkj and Ej being the dielectric susceptibility and the macroscopic electric field re-
spectively; the second term describes the piezoelectric response to symmetrized
strain Sij characterized by the piezoelectric tensor eijk. The last term describes
the flexoelectric polarization, where µijkl is a flexoelectric coefficient from a fourth
rank tensor and ∂Sij

∂xk
is the gradient of the elastic strain. The Einstein summation

convention is assumed with repeating indices i, j, k, and l in a term indicating sum-
mation from 1 to 3. In the absence of macroscopic electric fields, piezoelectricity
and flexoelectricity are characterized by tensor relationship, as follows:

(Pk)E=0 = eijkSij + µijkl
∂Sij

∂xl

. (I.2)

Let us note that another effect by which a stress is generated as a response to
an electric field gradient can be written:

Tij = cijklSkl − eijkEk + µijkl
∂Ek

∂xl

(I.3)

where cijkl is the tensor of elastic modulus, Tij is the stress tensor and Ek is the
electric field inside the material.

More complete descriptions for flexoelectricity from the phenomenology, lattice
dynamics and first-principle points of view, can be found in several reviews[Wang 19,
Yudin 13, Zubko 13, Tagantsev 16].
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Figure I.1: Effects of mechanical stimulus on centrosymmetric and
non-centrosymmetric crystals. (a) and (b) homogeneous deformation polarizes
only non-centrosymmetric materials. (c) and (d) inhomogeneous deformation

breaks the symmetry of the material to generate non-zero polarization, in both
cases.

I.2 On the different definitions for flexo-
electric coefficients

There are many different conventions in the literature corresponding to differ-
ent choices of conjugated thermodynamic variables for the free energy and order
of indices of the tensors. Hence the reported flexoelectric coefficients in one paper
may not have the same signification or even physical dimension as those reported
in other papers and much care should be taken to relate them. Here, we con-
centrate on two such conventions that seem the most used to us. In order to
describe the flexoelectric effect, the traditional equation of piezoelectricity giving
the dielectric polarization Pi as a function of the symmetrized strain tensor Sij =
(ui,j + uj,i) /2, with ui,j = ∂ui

∂xj
and the product of the dielectric susceptibility at

constant strain and entropy density (σ) with the electric field Ej is complemented
with a term proportional to the strain gradient (either the symmetrized strain
gradient Sij,k[Zhu 06, Fu 06, Yudin 13, Tagantsev 16]

∆Pm = µijmkSij,k (I.4)

or the unsymmetrized strain gradient uj,kl[Kogan 64, Tagantsev 86, Maranganti 09,
Hong 13])

∆Pi = µijkluj,kl (I.5)
In equations I.4 and I.5, µ is the fourth order flexoelectric tensor and ∆Pm or ∆Pi

is the corresponding induced electric polarization. It can be seen in Eqs. I.4 and
I.5 that the indices m or i corresponding to the polarization are respectively put to
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the third and the first place in flexoelectric tensor by different researchers. There
are also other notations. As an example, in the paper of Zubko et al[Zubko 13],
the flexoelectric tensor is defined by Pl = fijklSij,k, and in Eq. (1) of Zhuang et
al’s paper[Zhuang 19] as P α = dαβγϵβγ +µαβγδ

(
∂ϵγδ/∂xβ

)
. In this thesis, we chose

to use
∆Pi = µijkluj,kl (I.6)

I.3 Historical Review

I.3.1 Theoretical Literature Review

The concept of flexoelectricity was first identified theoretically in solids by
Mashkevich and Tolpygo [Mashkevich 57, Tolpygo 63] in the studies of lattice
dynamics in crystals and later phenomenologically described by Kogan in 1963
and 1964, based on electron-phonon coupling[Kogan 64] in centrosymmetric crys-
tals. According to his calculations, the characteristic coefficient of the deforma-
tion potential, which is now known as flexocoupling coefficient fijkl (such that
µijmk = ϵ0χmnfijnk), should have a value between 1 − 10 V. Alternatively, in
1965, Harris[Harris 65] added a term proportional to the gradient of stress to the
usual expression for the polarization of a piezoelectric material to account for the
existence of the electrical signals observed in the nonpiezoelectric materials sub-
jected to a mechanical disturbances (shock wave) and addressed a microscopic
description of dynamic flexoelectricity. In 1968, a macroscopic treatment of the
flexoelectric effect, now regarded as the continuum theory of flexoelectricity in the
field of mechanics, originated from Mindlin’s seminal work on the electromechan-
ical coupling between polarization gradient and strain in elastic dielectrics, which
is now referred to as converse flexoelectric effect[Mindlin 68]. In 1970, Askar et al.
used lattice dynamics and a core-shell model to obtain the macroscopic materials
parameters. However, this effect in solid crystals was not "officially" named flexo-
electricity until 1981 by Indenbom et al, who directly used the name of a similar
phenomenon discovered in liquid crystals by Meyer in 1969[Meyer 69]. Starting
in 1985, Tagantsev[Tagantsev 85, Tagantsev 86, Tagantsev 91] systematically for-
mulated the phenomenological and microscopic descriptions of flexoelectricity in
crystalline dielectrics, distinguishing the flexoelectric effect from the piezoelec-
tric effect. This author also identified four different contributions to flexoelectric
responses, and suggested the significance of flexoelectricity at the nanoscale espe-
cially in materials with a large susceptibility χij, such as ferroelectrics, since he
proposed that the flexoelectric coefficient should be of the order of χe/a and not
e/a as estimated by Kogan in 1963. In 2008, M. S. Majdoub et al [Majdoub 08]
obtained an enhancement of energy harvesting in a bent piezoelectric cantilever
nanobeams due to direct flexoelectric effect, employing an atomically informed
dynamical continuum model. Based on the surface energy density, Shen and
Hu[Shen 10] introduced in 2010 the surface flexoelectric effect for the first time.
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Through ab-initio calculation, Resta[Resta 10] made the first effort toward under-
standing the electronic contribution to flexoelectricity in bulk crystals and proved
that the flexoelectric responses induced by a long-wavelength phonon and a uni-
form strain gradient are identical. In 2011 and 2013, a unified first-principles
theory of flexoelectricity in insulating crystals with both ionic and electronic con-
tributions has been formulated in the context of density-functional theory by Hong
and Vanderbilt[Hong 11, Hong 13] and within the framework of density-functional
perturbation theory (DFPT) by Stengel[Stengel 13]. Very recently, a practical
scheme to calculate the full flexoelectric tensor using a unit cell-based method
built on density functional perturbation theory has been demonstrated by Dreyer,
Stengel, and Vanderbilt[Dreyer 18].

I.3.2 Experimental Literature Review

To understand and further utilize flexoelectricity, it is critical to quantitatively
measure the flexoelectric coefficients of a material. First measurements of the
flexoelectric effect are said to have been done by J. F. Scott[Scott 68] and E.
Bursian and O. Zaikovskii.[Bursian 68]. The first measurements of polarization
induced by bending in crystal plates are reported to have been done by Bur-
sian and Trunov in 1974[Bursian 74]. Also the direct and converse flexoelectric
effects had been measured in lipidic membranes during the 80’s-90’s[Petrov 86,
Petrov 89, Petrov 93, Derzhanski 90, Todorov 94]. However, the subject really be-
gan to get hot in the solid state community only when effects much higher than
theoretically estimated (measured µC/m, about 3 orders of magnitude than nC/m
estimated from Kogan’s estimate) were observed for materials with high dielec-
tric permittivity by Eric Cross’s group at Pennsylvania State University[Ma 01a,
Ma 06, Ma 05, Ma 03, Ma 01b, Ma 02]. It is precisely due to these pioneering
works of Cross and collaborators that a large number of people have shown inter-
est in the measurement of the flexoelectric coefficient of ceramics. For example,
Zubko et al.[Zubko 07] measured the full tensor for SrTiO3 and found results of
the order estimated by theory. Shu et al also measured the shear flexoelectricity
of (Ba,Sr)TiO3 (BST) ceramics. A comprehensive literature survey on flexoelec-
tric coefficient measurements on ceramics as well as single crystals is listed in
Table I.1. Note that as already stated in a previous paragraph, flexoelectric co-
efficients are defined with different meanings for the four indices i, j, k, l. We
therefore indicate the convention used by a digit in the last column of Table I.1,
with 1 for Pl = µijkl∂εij/∂xk, 2 for Pi = µijkl∂εkl/∂xj and 3 for Pi = µijkl∂εjk/∂xl

in Table I.1. Very recently, Christopher A. Mizzi et al[Mizzi 22] measured the flex-
oelectric coefficients of SrTiO3, KTaO3, TiO2, and YAlO3 single crystals, finding
values of the order of ∼ |1-10| nC/m. They also found that low dielectric con-
stant oxides possess flexocoupling constants (in V) ∼ 5-10 times larger than the
flexocoupling constants of high dielectric constant oxides. It was also found that
the flexoelectric coefficient of SrTiO3 can be significantly improved through dop-
ing by graphite[Dai 21]. Measurements on thin films were performed by Catalan
et al[Catalan 04] as soon as 2004. More recently, some measurements have been
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performed on polymer materials[Baskaran 11a, Baskaran 12, Chu 12, Zhang 17a,
Zhang 16, Zhang 15b, Zhang 15a, Baskaran 11b]. Reviews on this subject were
published by Cross[Cross 06] in 2006, Maranganti and Sharma[Maranganti 09],
Yudin and Tagantsev[Yudin 13], Zubko, Catalan and Tagantsev[Zubko 13], per-
spectives by Krichen and Sharma[Krichen 16], and Wang[Wang 19]. Furthermore,
flexoelectricity can be used at temperature where ferroelectric materials are in fact
paraelectric (above the material Curie temperature) and more generally at higher
temperatures than for conventional piezoelectric materials[Mbarki 14a]. Indeed,
ferroelectrics lose their piezoelectricity above the so-called Curie temperature,
whereas the fact that centrosymmetry is lost due to a non-uniform mechanical
deformation is not temperature dependent. Furthermore, similarly to extension
gauges, flexoelectricity could be used as a mean to electrically measure strain gra-
dients in order to check the health status of some mechanical structure[Huang 16].
Flexoelectricity has also been used to switch the polarization orientation in piezo-
electric thin films by applying a mechanical force upon the thin film using an AFM,
in order to induce a strain gradient that itself creates a polarization whose effect
can exceed the coercive electric field of the thin film.[Cao 15] The strain gradi-
ent can also be produced by a lattice mismatch between the substrate and the
film, with the magnitude of the strain gradient induced at the interface between
different materials ranging from 10−4 to 10−7 m−1[Wu 21].

I.3.3 Experimental setups

I.3.3.a Measurements of flexoelectric coefficients using the direct effect

A systematical measurement of flexoelectric coefficients was not performed un-
til early 2000s by Ma and Cross at Penn State. In their seminal works[Ma 01a,
Ma 01b, Ma 02, Ma 03, Ma 05, Ma 06], three experimental schemes were used to
measure the flexoelectric constants of ceramics, as can be seen in Figure I.2. The
dynamic cantilever bending (Figure I.2 (a)) and quasi-static four-point bending
(Figure I.2 (c)) methods are designed to measure the effective transverse flexoelec-
tric coefficient µ1122, while the pyramid compression (Figure I.2 (e)) method is used
for the effective longitudinal flexoelectric coefficient µ1111. A three-point bending
(Figure I.2 (d)) scheme was developed by Zubko et al. based on the earlier work
of Kityk et al.[Kityk 00] to measure the full flexoelectric tensor. The cantilever
twisting (Figure I.2 (e)) approach was devised to measure the shear flexoelectric
component.

I.3.3.b Measurements of flexoelectric coefficients using the converse effect

Figure I.3(a) shows a schematic of Piezoresponse Force Microscopy (PFM), as
used by Catalan’s group[Abdollahi 19] to measure the out of plane polarization
response of SrTiO3 crystal induced by the electric field gradient applied through
an electrically conducting tip. It operates by delivering a voltage V to the surface
of the material via the tip. The tip voltage induces an inhomogeneous electric field
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Materials Materials type µ1111 µ1122 µ1212 Definition
Ba0.7Sr0.3TiO3[Kwon 14] Polycrystal thin film 24.5 1
Ba0.67Sr0.33TiO3[Ma 02] Ceramics 100 1
Ba0.67Sr0.33TiO3[Fu 06] Ceramics 120 1

Ba0.67Sr0.33TiO3[Cross 06] Ceramics 150 1
Ba0.67Sr0.33TiO3[Shu 14] Ceramics 124 1

Ba0.67Sr0.33TiO3[Huang 11] Ceramics 8.5 1
Ba0.67Sr0.33TiO3[Hu 18] Ceramics 47.6 2

BaTiO3[Ma 06] Ceramics 50 1
BaTi0.87Sn0.13O3[Shu 13] Ceramics 53 3
Magnesium niobate
(PMN)[Ma 01a, Ma 01b] Ceramics 4 1

Magnesium niobate
titanate(PMNT)[Hana 06] Ceramics ∼1000 3

Magnesium niobate
titanate(PMNT)[Ma 01a, Ma 01b] Ceramics 6.2-12.3 1

unpoled lead
zirconate titanate [Ma 06] Ceramics 1.5 1

unpoled lead
zirconate titanate [Ma 05] Ceramics 1.4 1

Pb0.3Sr0.7TiO3[Cross 06] Ceramics 20 1
Ba0.6Sr0.4TiO3/
Ni0.8Zn0.2Fe2O4[Li 14] Ceramics composite 128.6 1

(Bi1.5Zn0.5)
(Zn0.5Nb1.5)O7/Ag[Li 13] Ceramics composite 0.17 1

BaTiO3[Narvaez 15] (0 0 1)Single crystal 0.2 2
BaTiO3[Narvaez 15] (1 1 0)Single crystal -0.05 2
BaTiO3[Narvaez 15] (1 1 1)Single crystal -0.01 2

Bi12TiO20[Shandarov 12] Single crystal 5.3 1
SrTiO3[Zubko 07] Single crystal 0.0002 0.007 0.0058 2

Pb(Mg1/3 Nb2/3 O3)
-PbTiO3[Narvaez 14] Single crystal 38 2

BaTiO3[Gharbi 11] Single crystal 4 3
BaTiO3-0.08 Bi
(Zn1/2Ti1/2) O3[Huang 17] Ceramics 25 3

Ba0.6Sr0.4TiO3/epoxy[Li 20] Composite 25 1
0.3 Pb (In1/2Nb1/2)
O3-0.35 Pb (Mg1/3Nb2/3)
O3-0.35 PbTiO3
(PIN-PMN-PT)[Shu 17]

single crystal 57 3

Table I.1: Flexoelectric constants of various materials measured experimentally.
The unit of measured flexoelectric coefficients shown is this table is in µC/m. 1,

2 and 3 represent different definitions of flexoelectric coefficients (1 for
Pl = µijkl∂εij/∂xk, 2 for Pi = µijkl∂εkl/∂xj and 3 for Pi = µijkl∂εjk/∂xl).
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Figure I.2: Schematics of flexoelectric experimental setups for direct
measurements of flexoelectric constants (a) Cantilever bending, (b) cylinder
twisting, (c) four-point bending, (d) three-point bending, and (e) pyramid

compression. Adapted from Figure 3.1 of Wang et al 2019

below the PFM tip, which decays as the tip is moved away from the substrate. The
gradient of this electric field effectively induce a strain gradient via the converse
flexoelectric effect in all dielectrics, including non-piezoelectric ones, which results
in a measured deformation h, and consequently an effective piezoelectric coefficient.
A similar experiment was recently performed by Brennan et al. to obtain converse
flexoelectric coefficients for an MoS2 monolayer[Brennan 17, Brennan 20]. Figure
I.3(b) presents how the electric field gradient induces the generation of deformation
thanks to converse flexoelectric effect. Such an experimental setup is normally
utilized to measure either the effective converse piezoelectric coefficient or the
converse flexoelectric coefficient[Zhang 19]. The configuration shown in Figure
I.3(c) can produce a directional electric field gradient. Slightly differently from the
experimental setup described above, the deformation of the sample was measured
using a high resolution (< 10 pm) laser vibrometer and a lock-in amplifier[Shu 14].
Figure I.3(d) presents an optical experimental setups, designed by Cross’ group,
for the measurements of converse flexoelectric coefficients[Fu 06].
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Figure I.3: (a) Schematic of piezoresponse force microscopy measurement,
adapted from Figure 1 of Abdollahi et al 2019. (b) electric field gradient

generation method with a part-cylindrical bar and a trapezoid-section shaped
structure, adapted from Figure 1 of Zhang et al 2019. (c) Diagram of sample
assembly for converse flexoelectric measurement of the shear strain along x1

direction generated by the electric field gradient along x3 direction. Schematic
deformation of the trapezoid sample in the lateral mode, adapted from Figure 1

of Shu et al 2014. (d) An optical measurement system based on the scanning
Michelson laser beam interferometer. PD: photodiode; BS: beam splitter,

adapted from Figure 3 of Fu et al 2006.

I.4 Computational methods for flexoelec-
tricity

I.4.1 Ab-initio calculations

There are mainly two approaches to estimate the flexoelectric coefficient, com-
puted via first-principles density functional theory calculations.

The direct approach follows the definition of the flexoelectric coefficient (∆Pi =
µijkl∂uj,k/∂xl, if no external electric field exists and piezoelectricity can be can-
celed out thanks to symmetric strain contribution) since it directly evaluates the
polarization induced by an applied strain gradient. In order for side effects to be
eliminated, the strain gradient itself must satisfy periodical boundary conditions.
Hence, it is usually done by applying a sinusoidal atomic displacement to the su-
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percell. Finally, the flexoelectric component can be obtained by dividing the local
polarization by the applied strain gradient. Based on the above-mentioned set-
ting of the deformation configuration, a DFT-based first principle calculations was
firstly performed by Hong et al.[Hong 10] to obtain the longitudinal component
of a flexoelectric tensor for SrTiO3 (STO) and BaTiO3 (BTO). Later, it has been
extended by Xu et al.[Xu 13] to evaluate the transverse and shear flexoelectric
coefficients. It is worth mentioning that in Refs [Hong 10] and [Xu 13], modern
theory of polarization based on Berry phase method was used to compute change
in polarization yielded by strain gradient.[Zhong 94, King-Smith 93] Even though
this direct method is easy to be understood and implemented, with commercial
or open source softwares based on density functional theory, i.e. VASP or Quan-
tum Espresso, the computed results are very sensitive to the selection of sublattice
and the size of supercell. Furthermore, the computed flexoelectric coefficients
intrinsically include the sum of two contributions, that is lattice and electronic
contributions, which are difficult to compute at the same time.

In this paragraph, we focus on the indirect approach based on the first-principles
theory of flexoelectricity. Using rigid-ion theory and core-shell model respec-
tively proposed by Tagantsev[Tagantsev 86] and Askar[Askar 70], Maranganti and
Sharma [Maranganti 09] computed the flexoelectric coefficients for three semi-
conductors (GaAs, GaP, and ZnS), cubic perovskite materials SrTiO3 (STO)
and BaTiO3 (BTO) and cubic alkali halides NaCl and KCl. A first-principles-
based effective Hamiltonian technique is developed to study flexoelectricity in
Ba0.5Sr0.5TiO3 thin films of different thicknesses in their paraelectric phase, show-
ing that flexoelectric coefficients depend strongly on the film’s thickness and tem-
perature [Ponomareva 12]. Later on, Hong and Vanderbilt[Hong 13] developed
a general and unified first-principles theory for the computation of piezoelectric
and flexoelectric tensors. They used it to compute the coefficients for a variety of
cubic insulating materials including C, Si, MgO, NaCl, CsCl, BaZrO3, BaTiO3,
PbTiO3, and SrTiO3, to find that the estimated values are two orders of magni-
tude smaller than common experimental results, which is attributed by the authors
to the absence of surface contribution in ab-initio based first principles theory.
Stengel[Stengel 13] derived the complete flexoelectric tensor, including electronic
and lattice-mediated effects, of an arbitrary insulator within the framework of the
density-functional perturbation theory (DFPT), with the microscopic linear re-
sponse of the crystal to atomic displacements induced by long-wavelength acoustic
phonon. In this theoretical context, a series of paper has been published by Sten-
gel’s group[Stengel 14, Schiaffino 19, Royo 19, Royo 22, Stengel 15, Springolo 21]
to demonstrate the validity of this theory by computing the flexoelectric coefficient
of SrTiO3 and 2D materials, with a good agreement with the available literature
data.
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I.4.2 Other calculation methods

Molecular dynamics simulations have been utilized to compute the flexoelec-
tric tensors through the direct method (change of polarization divided by change
of strain gradient). Chatzopoulos et al[Chatzopoulos 16] obtained the flexoelectric
coefficient of MgO using an effective interaction force field. Mbarki et al[Mbarki 14b]
developed a molecular dynamics approach based on a specially tailored interatomic
force field to extract the temperature dependence of flexoelectricity in BaTiO3 and
SrTiO3 perovskite nanostructures. Very recently, Zhuang et al.[Zhuang 19] per-
formed molecular dynamics simulations coupled with an atomic model (regularized
charge dipole model) to evaluate the flexoelectric constants of several representa-
tive 2D materials.

In addition to the molecular dynamics methods mentioned above, the finite
element theory based on continuum mechanics is also commonly used in the study
of flexoelectricity. For instance, Abdollahi et al.[Abdollahi 14] firstly applied a
meshfree technique to interpret the flexoelectric responses in the cantilever bend-
ing and pyramid compression schemes extensively used for flexoelectricity mea-
surement, with higher accuracy. Abdollahi et al. then explored the effect of
flexoelectricity on mechanical and electromechanical properties in several com-
plex structures[Abdollahi 15a, Abdollahi 15b, Abdollahi 15c]. Meanwhile, the first
phase-field model to treat flexoelectricity was used by Chen et al. to study the
impact of flexoelectric coupling on domain structure properties in ferroelectric thin
films [Chen 14] and ordinary dielectrics[Chen 15]. Compared with atomistic simu-
lation techniques, phase-field simulations are computationally less costly and thus
allow to study larger spatial and/or temporal scales.

I.5 Application of flexoelectricity

I.5.1 Sensors

Flexoelectric sensors are becoming increasingly popular because of their small
size, absence of depoling, and lead-free composition. Recently, Yan et al.[Yan 13a,
Yan 13b] designed a Barium Strontium Titanate (BST) based flexoelectric curva-
ture sensor (see Figure I.4a), which can transfer the bending deflections directly
to the charge output (see Figure I.4b). Figure I.4c and d present an experimen-
tal setup, commonly used for measurements of flexoelectricity. The use of 6.6
µm-thick soft polyurethane films as large curvature sensors was investigated by
Merupo et al. by subjecting a flexible aluminum foil/PET bi-layered substrate to
large deflections [Merupo 17]. Other direct curvature sensing measurements based
on the flexoelectricity of some materials, i.e., ceramics, through electromechani-
cal coupling can be found in ref [Hu 15]. Recently, Kwon et al. reported that
a new type of microphone with both high sensitivity and strong resonance was
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fabricated using the flexoelectricity of Ba0.67Sr0.33TiO3[Kwon 16]. This device has
the potential to exhibit even higher sensitivity (0.77 – 0.85 pC/Pa) when further
miniaturized, which is promising for acoustic sensing applications.

Figure I.4: Beam curvature sensing: BST curvature sensor attached to beam,
adapted from Figure 4 of Yan et al. 2013. (b) Relationship between charge
output and beam curvature-experimental results of BST curvature sensor,
adapted from Figure 7 of Yan et al. 2013. (c) Experimental set-up and (d)
close-up of the actual curvature sensor attached on a beam, adapted from

Figure 6 of et al. 2013

I.5.2 Nanogenerators

It is known that in practical applications of materials, flexoelectric effect can
be difficult to separate from piezoelectric effect. There is therefore not much
work on pure flexoelectric nanogenerators. However, the performance of some
piezoelectric nanogenerators and systems can be enhanced due to flexoelectric
effect[Qi 10]. Han et al.[Han 16] prepared a flexoelectric nanogenerator consisting
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of piezoelectric lead zirconate titanate (PZT) particles directly grown on multi-
walled carbon nanotubes, which can repeatedly generate a voltage output of 8.6 V
and a current output of 47 nA at a mechanical force of 20 N. PZT ribbons can
be transferred onto polydimethylsiloxane (PDMS) by attaching the pre-stretched
PDMS onto a magnesium oxide host substrate with 500 nm thick PZT ribbons
resting on it, as shown in Figure I.5[Qi 10]. With the release of the pre-strain
in PDMS, PZT ribbons buckled into sinusoidal waveforms with wavelengths of
80 µm and heights of 11 µm. Uniaxial strain in the midplane was calculated to be
8.5 MPa and maximum strain gradient can be as high as 3 × 104 m−1, which is
several orders of magnitude larger than those achieved by pyramid compressing or
flexure bending tests using bulk materials. Such high strain gradient would induce
a considerable amount of charge separation in addition to piezoelectric charge
generation, leading to an enhancement up to 70% comparing with flat regions of
PZT ribbons without flexoelectric contribution. Wang et al.[Wang 13] reported
that macroscopic strain gradient can induce substantial flexoelectric polarization
in a bent PZT diaphragm, with the measured flexoelectric coefficient equal to 2.0
× 10−4 C/m.

Figure I.5: Fabrication process of buckled PZT ribbons. (A) PZT ribbons were
patterned on an MgO substrate. Released PZT ribbons were transferred to a
pre-stretched PDMS slab. Relaxation of PDMS caused the peel-off of certain
areas of ribbons and formed the buckled structures. (B) SEM image of PZT

ribbons transferred to PDMS with no prestrain. (C) Buckled PZT ribbons after
transfer to PDMS with prestrain. Adapted from Figure 1 of Qi et al. 2011

13



Chapter I. Introduction to Flexoelectricity

I.5.3 Actuators

The mechanism for applications of flexoelectric materials as actuators is primar-
ily converse flexoelectricity. The material deforms in response to the electric field
gradient (see Figure I.6 a and c). As shown in Fig. I.6(a), Zhang et al.[Zhang 17b]
designed and fabricated a polymer-based actuator with which a converse flexoelec-
tric coefficient was measured. This actuator exhibited good actuation properties
with a resolution of the displacement reaching up to 1.0 nm and a largest displace-
ment as high as 63.6 nm (as shown in Fig. I.6(b)). It is also worth highlighting that
Bhaskar et al.[Bhaskar 16] implemented a flexoelectric actuator made of micron-
sized barium titanate (as shown in Fig. I.6(c)) which is fully compatible with the
silicon semiconductor technology. Particularly, the flexoelectric layer is compatible
with silicon or any of its gate dielectrics in a completely complementary metal ox-
ide semiconductor-compatible environment. The performance result (Fig. I.6(d))
suggests that this flexoelectric actuator displays comparable performance to the
actuators using lead-containing piezoelectric material.
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Figure I.6: (a) Schematic diagram of a PVDF-based actuator. The symbol θ
represents the angle of electrode attachment. To achieve a uniform electric field
gradient and application safety, θ in this actuator is set as 120◦, adapted from

Figure 1 of Zhang et al. 2017. (b) Induced displacement as a function of voltage
in that PVDF-based actuator, adapted from Figure 4 of Zhang et al. 2017. (c)
Schematic view of the SrTiO3-based actuator of Bhaskar et al., adapted from

Figure 1 of Bhaskar et al. 2016. (d) Comparison of the performance of
flexoelectric SrTiO3 with those of state-of-the-art piezoelectric bimorphs,

adapted from Figure 4 of Bhaskar et al. 2016.
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Chapter II. Effective piezoelectricity coefficient in patterned graphene computed
using electrostatic forces calculated within charge dipole model

II.1 Introduction

At the beginning of my PhD thesis, a necessary work was to prove the ana-
lytical formulas for calculating flexoelectric coefficient proposed by G. Lecoutre,
derived by means of virtual power principle and an extended Cauchy-Born homog-
enization hypothesis, to be effective and robust by making a comparison between
the results for flexoelectric coefficient of patterned graphene computed with G.
Lecoutre’s method[Lecoutre 18] and those obtained from a paper by B. Javvaji et
al[Javvaji 18], published in 2018. In the paper of B. Javvaji et al, the authors com-
puted piezoelectric and flexoelectric coefficients for some structured graphene flakes
through implementing a stretching simulation using Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) combined with charge dipole model by
using the command "addforce" and "shell". Since we have the relevant code for the
charge dipole model and have been using the charge dipole model in our group
for more than 10 years, we tried to reproduce the results of Javvaji et al. In
the process of doing that, however, we found several typos/errors in formulas for
computing forces on atoms in the Appendix of [Javvaji 18] and an inappropri-
ate definition of polarization. Specifically, a term involving effective charges is
neglected/omitted in the definition of polarization though it is necessary in the
context of charge dipole model. Also, it seemed strange for us that gradient of
effective charges and dipoles were not considered in [Javvaji 18], whereas we have
been using them in the group since 2007[Wang 07b]. Indeed, in our method, the
forces are computed with the gradient of a simplified expression of the total en-
ergy at electrostatic equilibrium using values of effective charges and dipoles at
equilibrium computed as functions of the positions of the atoms at each time step
of the optimization of the geometry of the system. More information on this point
will be given in this chapter. After finding this problem, we thought necessary to
check whether results shown in [Javvaji 18] would be correct or not. Hence, we
computed piezoelectric and flexoelectric coefficients of trapezium shaped graphene
under the proper definition of polarization (charge term included in the definition
of polarization) and our expression for the forces. Since we found results different
from those published in [Javvaji 18], we contacted the first author (B. Javvaji) and
agreed, among other things, to choose a very simple system with only two carbon
atoms to compute the interaction forces between them, with and without taking
into account the gradient of charges and dipoles. However, to our surprise, the
values of total forces that we obtained were the same for the two different cases,
though the breaking of the total force in force between charges, between charges
and dipoles and between dipoles, was different. We then turned all of our attention
to the derivation of expression for force to figure out why this equivalence occurred.
Once this was done, we computed the in-plane piezoelectric coefficient e111 of a
patterned graphene (with a hole defect and triangle defect and trapezium-shaped
graphene) with the proper definition of polarization. This chapter is devoted to
the description of these verifications.
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II.2 Description of the charge dipole model

Historically, the development of the charge-dipole model was initially centered
on computation for the polarizability of molecules which had been in fact a tricky
problem due to the limitation of computer technology, until in 1972, Applequist
et al [Applequist 72, Applequist 77] computed the polarizability tensors of some
small molecules principally including C, H, O, N elements using a method called
atomic dipole interaction model, also pointing out the shortcomings of calculating
molecular polarizability by the sum of atomic polarizabilities. Since then, a se-
ries of studies on computation of molecular polarizability has been done using the
above-mentioned point dipole interaction model, which we here call PDI model
or dipole only model. For instance, F. Torrens[Torrens 02b] computed molecu-
lar polarizability of semiconductor clusters, such as, Sin, Gen and GanAsm small
clusters and some nanostructures using dipole only model, the results for the po-
larizability being in agreement with reference calculations reported. This suggests
to some extent the success in predicting molecular polarizabilities via PDI model.
In a general case, however, failure of the PDI model tends to occur especially
when two atoms are too close to each other, which is usually called "polarization
catastrophe". This led the researchers to improve the model by introducing a
damping function in the calculation of the interaction tensor in order to prevent
the polarizability from going to infinity [Thole 81, Birge 80, Miller 90, Jensen 02,
Torrens 99, Torrens 00, Torrens 01, Torrens 02a, Torrens 03, Torrens 04]. Of these
modifications of PDI model, the gaussian dipole interaction model consisting of
convolution of the interaction tensor with two radial gaussian functions is found
to be the most robust for it allows continuity of the charge interaction tensor and
its gradients, which is good for molecular dynamics simulations. We note that
adopting Gaussian-regularized point dipole interaction model (convolution with
only one gaussian), R. Langlet et al studied the influence of molecular adsorption
on the dielectric properties of a single wall nanotube[Langlet 04, Picaud 05] and
successfully reproduced experimental static polarizabilities of multi-wall carbon
nanotubes and fullerenes[Langlet 06].

However, it is inadequate to apply the Gaussian-regularized point dipole inter-
action model to compute electrostatic properties of some materials, for example,
metallic nanotubes or ionic crystals, since partial charge transfer in those materials
is allowed to happen, either because of the existence of π delocalized electrons or
because of the intrinsic large difference in electronegativity between atoms. For
this reason, in 1978, Olson and Sundberg[Olson 78] used a non-regularized charge
dipole model for the treatment of the computation of polarizability of molecules
with conjugated π bond, with a better agreement with experimental polarizabil-
ities. Starting in 2005, A. Mayer modified the original charge dipole model by
adding convolution with two Gaussian functions into the interaction tensor and
linked to the polarizability the radius of the Gaussian function in the convoluted
interaction tensors between dipoles, and to the atomic capacitance (or chemical
hardness) the radius of the Gaussian function in the convoluted interaction ten-
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sors between charges [Mayer 05a, Mayer 05b]. A Mayer then published many pa-
pers on calculation of electrostatic properties for nanotubes or fullerenes[Mayer 06,
Mayer 07a, Langlet 07, Mayer 07b], carbon-containing small molecules[Mayer 08],
silver clusters[Mayer 09b] and some other relevant studies[Langlet 08, Mayer 09a,
Mayer 05c]. Meanwhile, Z. Wang and M. Devel published a series of papers
on the computation of electrostatic and electromechanical properties for nan-
otubes with various chirality[Wang 07a, Wang 08b, Wang 09b, Wang 09c] and
graphene[Wang 09a, Wang 10a, Wang 10b] by using Gaussian-regularized charge
dipole model. Recently, the charge dipole model, was parameterized using DFT-
computed Bader-type charges as reference data, for the prediction of charge density
distribution of 2D molybdenum disulfide[Yang 18] and h-boron nitride[Song 21].
This participates to studies on electromechanical couplings such as piezoelectric-
ity and flexoelectricity, using the charge dipole model to calculate polarization of
carbon-doped boron nitride nanosheets[Kundalwal 20], structured graphene[Javvaji 21,
Javvaji 18], many varieties of 2D materials[Zhuang 19] and Janus transition-metal
dichalcogenides[Javvaji 19].

II.3 Description of the Gaussian regular-
ized charge dipole model

In the regularized charge-dipole (QP) model, each atom is described by the
combination of an effective charge and a dipole both delocalized with a spherical
symmetry and a Gaussian radial distribution, plus an effective electronegativity.
The total electrostatic energy Uelec associated with those effective charges {qα}
and dipoles {p⃗α} located at the atomic positions {r⃗α} (with α = 1, · · · , N), in
the presence of an external electric field E⃗ext (derived from an external electric
potential Vext) is given by:

Uelec =
N∑

α=1
qα(χα + Vext,α) −

N∑
α=1

p⃗α · E⃗ext + 1
2

N∑
α=1

N∑
β=1

qαT
(0,0)
q−q (r⃗α, r⃗β)qβ

− 1
2

N∑
α=1

N∑
β=1

p⃗α · T
(1,0)
p−q (r⃗α, r⃗β)qβ + 1

2

N∑
α=1

N∑
β=1

qαT
(0,1)
q−p (r⃗α, r⃗β) · p⃗β

− 1
2

N∑
α=1

N∑
β=1

p⃗α · T
(1,1)
p−p (r⃗α, r⃗β) · p⃗β

(II.1)

where N stands for the number of atoms in the structure considered and χα is
the electronegativity of atom α, once inserted in the molecule. Vext,α is the elec-
trostatic potential at r⃗α corresponding to the external electric field. Vext,α can be
expressed as −E⃗ext · r⃗α in the case of a uniform external field. T

(0,0)
q−q , T

(1,0)
p−q , T

(0,1)
p−q

and T
(1,1)
p−p are interaction tensors between effective charges or dipoles in vacuum

(see equation II.1), which have been convoluted with one Gaussian radial distri-
bution per atom, of the form π3/2R3

α exp(−|r⃗ − r⃗α|2/R2
α). This allows to take into
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account approximately the extension of the electronic clouds, and prevents the
occurrence of divergence problems, i.e. polarization catastrophes, that can occur
in simulations when two atoms are so close to each other that the approximation
of an interaction between point charges or dipoles is not a good approximation
any more. The expression of those interaction tensors are:

T (m,n) (r⃗α, r⃗β) = (−∇⃗α) ⊗ . . . ⊗ (−∇⃗α)︸ ︷︷ ︸
m times

⊗ ∇⃗β ⊗ ∇⃗β ⊗ . . . ⊗ ∇⃗β︸ ︷︷ ︸
n times

T
(0,0)
q−q (r⃗α, r⃗β)

(II.2)

∀α ̸= β



T
(0,0)
q−q (r⃗α, r⃗β) = 1

4πϵ0rαβ
erf

(
rαβ√

R2
α+R2

β

)
T

(1,0)
p−q (r⃗α, r⃗β) = −∇⃗αT

(0,0)
q−q (r⃗α, r⃗β)

= − 1
4πϵ0

r⃗αβ

r3
αβ

[
erf

(
rαβ√

R2
α+R2

β

)
− 2√

π

rα,β√
R2

α+R2
β

exp
(

− r2
αβ

R2
α+R2

β

)]
T

(0,1)
q−p (r⃗α, r⃗β) = ∇⃗βT

(0,0)
q−q (r⃗α, r⃗β)

= − 1
4πϵ0

r⃗αβ

r3
αβ

[
erf

(
rαβ√

R2
α+R2

β

)
− 2√

π

rα,β√
R2

α+R2
β

exp
(

− r2
αβ

R2
α+R2

β

)]
T

(1,1)
p−p (r⃗α, r⃗β) =

(
−∇⃗α

)
⊗ ∇⃗βT

(0,0)
q−q (r⃗α, r⃗β)

= 1
4πϵ0

{
3r⃗αβ⊗r⃗αβ−r2

αβ
¯̄I

r5
αβ

[
erf

(
rαβ√

R2
α+R2

β

)
− 2√

π

rα,β√
R2

α+R2
β

exp
(

− r2
α,β

R2
α+R2

β

)]
− 4√

π

r⃗αβ⊗r⃗αβ

r2
αβ

1
(
√

R2
α+R2

β
)3 exp

(
− r2

αβ

R2
α+R2

β

)}
T

(2,1)
p−p (r⃗α, r⃗β) =

(
−∇⃗α

)
⊗
(
−∇⃗α

)
⊗ ∇⃗βT

(0,0)
q−q (r⃗α, r⃗β)

= − 1
4πϵ0

[
15r⃗αβ⊗r⃗αβ⊗r⃗αβ−3r2

αβ( ¯̄I⊗r⃗αβ+Ī⊗⃗rαβ⊗Ī+⃗rαβ⊗ ¯̄I)
r7

αβ

]
{

erf
(

rαβ√
R2

α+R2
β

)
− 2√

π

[
rαβ√

R2
α+R2

β

+ 2
3

(
rαβ√

R2
α+R2

β

)3
]

exp
(

− r2
αβ

R2
α+R2

β

)}
− r⃗αβ⊗r⃗αβ⊗r⃗αβ

4πϵ0r7
αβ

8√
π

(
rαβ√

R2
α+R2

β

)5
exp

(
− r2

αβ

R2
α+R2

β

)
T

(1,2)
p−p (r⃗α, r⃗β) =

(
−∇⃗α

)
⊗ ∇⃗β ⊗ ∇⃗βT

(0,0)
q−q (r⃗α, r⃗β) = T

(2,1)
p−p (r⃗α, r⃗β)

.

(II.3)
where ∇⃗α = ∂/∂r⃗α, r⃗αβ = r⃗β − r⃗α is the vector pointing from αth atom to βth atom.
Rα and Rβ are the characteristic widths of Gaussian charge distributions for atom
type α and β respectively, ⊗ is the tensor product and (Ī⊗⃗rαβ⊗Ī)ijk = (r⃗β−r⃗α)jδik.
In the limit r⃗α = r⃗β, the expressions of the various T (r⃗α, r⃗β) interaction tensors in
equation II.3 converge to finite values (Eq. II.4) related to the self-energy for each
atom (atomic ’capacitance’ cα or chemical hardness and isotropic polarizability
αα).



qαT
(0,0)
q−q (r⃗α, r⃗α)qα = q2

α

4πϵ0

√
2/π

Rα
= q2

α

cα

p⃗α · T
(1,0)
p−q (r⃗α, r⃗α)qα = 0

qαT
(0,1)
q−p (r⃗α, r⃗α) · p⃗α = 0

p⃗α · T
(1,1)
p−p (r⃗α, r⃗α) · p⃗α = − p2

α

4πϵ0

√
2/π

3R3
α

= − p2
α

αα
.

(II.4)

21



Chapter II. Effective piezoelectricity coefficient in patterned graphene computed
using electrostatic forces calculated within charge dipole model

The charges and dipoles at electrostatic equilibrium are then determined by
minimizing the electrostatic energy (Eq. II.1) using a Lagrange multiplier λ to
enforce charge conservation in the nanoribbon:

U ′
elec = Uelec + λ(

N∑
α=1

qα − Qtot) (II.5)

This Lagrange multiplier can be physically interpreted as minus the electronega-
tivity of the molecule at equilibrium common to all the atoms [Mayer 07a].

Requiring the derivatives of function U ′
elec(q, p, λ) with respect to qα, px,α, py,α,

pz,α and λ to be zero for electrostatic equilibrium values q∗, p⃗∗, and λ∗, it can be
demonstrated (in a following section) that the equilibrium values of the the 4N +1
scalar unknowns ({qα, px,α, py,α, pz,α}α=1,··· ,N and λ) are solutions of a system of
4N + 1 linear equations. These linear equations may be written in a matrix form:

 T
(0,0)
q−q

(
T

(0,1)
q−p

)T
1

T
(1,0)
p−q T

(1,1)
p−p 0

1 0 0


 q∗

p⃗∗

λ∗

 =

 −(χ + Vext)
−E⃗ext

Qtot

 (II.6)

where T
(0,0)
q−q is a block matrix with N rows and N columns. T

(1,1)
p−p is a block

matrix with 3N rows and 3N columns. T
(1,0)
p−q is a block matrix with 3N rows and

N columns.
(
T

(1,0)
p−q

)T
is the transpose of T

(1,0)
p−q . Similarly, blocks q∗ and −(χ+Vext)

have N rows and 1 column, while blocks p⃗∗ and −E⃗ext have 3N rows and 1 column.
More information on that can be found in the PhD thesis of Z. Wang[Wang 08a]
and G. Lecoutre[Lecoutre 18]. Note that q∗ and p⃗∗ are the solution of equation
II.6. In other word, q∗ and p⃗∗ are the charge and dipole moment distributions at
the electrostatic equilibrium and they are determined as functions of the positions
of the atoms using radii of Gaussian radial distributions and electronegativities as
parameters.

II.4 Computation of electrostatic forces for
two carbon atoms

Here we selected a simple system containing only two carbon atoms to compute
their electrostatic force, with the consideration of gradient of electrostatic equilib-
rium charges and dipoles and without taking into account those gradients, respec-
tively. The energy of the whole system Utot can be decomposed into three terms
including the interaction between charges, charges and dipoles, dipoles, termed
Uq−q, Up−q(Uq−p), Up−p, respectively.

Utot = Uq−q + Up−q + Uq−p + Up−p (II.7)
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with

Uq−q = 1
2

2∑
α=1

2∑
β=1

q∗
αT

(0,0)
q−q (r⃗α, r⃗β) q∗

β +
2∑

α=1
q∗

αχα

= 1
2q∗

1T
(0,0)
q−q (r⃗1, r⃗1) q∗

1 + 1
2q∗

2T
(0,0)
q−q (r⃗2, r⃗2) q∗

2 + 1
2q∗

1T
(0,0)
q−q (r⃗1, r⃗2) q∗

2 + 1
2q∗

2T
(0,0)
q−q (r⃗2, r⃗1) q∗

1

+ q∗
1χ1 + q∗

2χ2
(II.8)

Up−q = −1
2

2∑
α=1

2∑
β=1

p⃗∗
α · T

(1,0)
p−q (r⃗α, r⃗β) q∗

β

= −1
2
(
p⃗∗

1 · T
(1,0)
p−q (r⃗1, r⃗1) q∗

1 + p⃗∗
1 · T

(1,0)
p−q (r⃗1, r⃗2) q∗

2 +p⃗∗
2 · T

(1,0)
p−q (r⃗2, r⃗1) q∗

1 + p⃗∗
2 · T

(1,0)
p−q (r⃗2, r⃗2) q∗

2

)
(II.9)

Uq−p = 1
2

2∑
α=1

2∑
β=1

T
(0,1)
q−p q∗

α (r⃗α, r⃗β) · p⃗∗
β

= 1
2
(
q∗

1T
(0,1)
q−p (r⃗1, r⃗1) · p⃗∗

1 + q∗
2T

(0,1)
q−p (r⃗1, r⃗2) · p⃗∗

1 +q∗
1T

(0,1)
q−p (r⃗2, r⃗1) · p⃗∗

2 + q∗
2T

(0,1)
q−p (r⃗2, r⃗2) · p⃗∗

2

)
(II.10)

Up−p = −1
2

2∑
α=1

2∑
β=1

p⃗∗
α · T

(1,1)
p−p (r⃗α, r⃗β) · p⃗∗

β

= −1
2
(
p⃗∗

1 · T
(1,1)
p−p (r⃗1, r⃗1) · p⃗∗

1 + p⃗∗
1 · T

(1,1)
p−p (r⃗1, r⃗2) · p⃗∗

2 + p⃗∗
2 · T

(1,1)
p−p (r⃗∗

2, r⃗1) · p⃗∗
1

+p⃗∗
2 · T

(1,1)
p−p (r⃗2, r⃗2) · p⃗∗

2

)
(II.11)

The force acting on each atom can be defined as the negative gradient of Utot with
respect to the coordinates of that atom, by which the force on the two atoms may
be expressed as: F⃗1 = −∇⃗r⃗1Utot and F⃗2 = −∇⃗r⃗2Utot, with F⃗2 = −F⃗1, as required by
Newton’s third law of motion. Hence, we here compute analytically only F⃗1, but we
used F⃗2 = −F⃗1 as a consistency check in our symbolic and numeric computations.
Considering that q∗

1, q∗
2, p⃗∗

1 and p⃗∗
2 are functions of position coordinates r⃗1, r⃗2,

respectively, e.g. q∗
1 (r⃗1, r⃗2), F⃗q−q, F⃗p−q and F⃗p−p may be written as:

F⃗1,q−q = −∇⃗r⃗1Uq−q

= −
(1

2∇⃗r⃗1q∗
1T

(0,0)
q−q (r⃗1, r⃗1) q∗

1 + 1
2q∗

1T
(0,0)
q−q (r⃗1, r⃗1) ∇⃗r⃗1q∗

1 + 1
2∇⃗r⃗1q∗

2T
(0,0)
q−q (r⃗2, r⃗2) q∗

2

+ 1
2q∗

2T
(0,0)
q−q (r⃗2, r⃗2) ∇⃗r⃗1q∗

2 + 1
2∇⃗r⃗1q∗

1T
(0,0)
q−q (r⃗1, r⃗2) q∗

2 + 1
2q∗

1∇⃗r⃗1T
(0,0)
q−q (r⃗1, r⃗2) q∗

2

+ 1
2q∗

1T
(0,0)
q−q (r⃗1, r⃗2) ∇⃗r⃗1q∗

2 + 1
2∇⃗r⃗1q∗

2T̃
(0,0)
q−q (r⃗2, r⃗1) q∗

1 + 1
2q∗

2∇⃗r⃗1T
(0,0)
q−q (r⃗2, r⃗1) q∗

1

+ 1
2q∗

2T
(0,0)
q−q (r⃗2, r⃗1) ∇⃗r⃗1q∗

1 +∇⃗r⃗1q∗
1χ1 + ∇⃗r⃗1q∗

2χ2
)

(II.12)
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F⃗1,p−q = −∇⃗r⃗1Up−q

= 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(1,0)
p−q (r⃗1, r⃗2) q∗

2 + 1
2
(
∇⃗r⃗1 ⊗ T

(1,0)
p−q (r⃗1, r⃗2)

)
· p⃗∗

1q
∗
2

+ 1
2
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1 · T
(1,0)
p−q (r⃗1, r⃗2)

) (
∇⃗r⃗1q∗

2
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2
(
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2
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(1,0)
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1 + 1
2
(
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p−q (r⃗2, r⃗1)
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∗
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+ 1
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(
p⃗∗

2 · T
(1,0)
p−q (r⃗2, r⃗1)

) (
∇⃗r⃗1q∗

1

)
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F⃗1,q−p = −∇⃗r⃗1Uq−p

= −1
2
(
∇⃗r⃗1q∗

1

) (
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(0,1)
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2

)
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− 1
2
(
∇⃗r⃗1q∗

2

) (
T

(0,1)
q−p (r⃗2, r⃗1) · p⃗∗

1

)
− 1

2q∗
2

(
∇⃗r⃗1 ⊗ T

(0,1)
q−p (r⃗2, r⃗1)

)
· p⃗∗

1

− 1
2q∗

2

(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(0,1)
q−p (r⃗2, r⃗1) (II.14)

F⃗1,p−p = −∇⃗r⃗1Up−p

= 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(1,1)
p−p (r⃗1, r⃗1) · p⃗∗

1 + 1
2
[(

∇⃗r⃗1 ⊗ T
(1,1)
p−p (r⃗1, r⃗1)

)
· p⃗∗

1

]
· p⃗∗

1

+ 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
·
[
p⃗∗

1 · T
(1,1)
p−p (r⃗1, r⃗1)

]
+ 1

2
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(1,1)
p−p (r⃗1, r⃗2) · p⃗∗

2 + 1
2
[(

∇⃗r⃗1 ⊗ T
(1,1)
p−p (r⃗1, r⃗2)

)
· p⃗∗

2

]
· p⃗∗

1

+ 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
·
[
p⃗∗

1 · T
(1,1)
p−p (r⃗1, r⃗2)

]
+ 1

2
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
· T

(1,1)
p−p (r⃗2, r⃗1) · p⃗∗

1 + 1
2
[(

∇⃗r⃗1 ⊗ T
(1,1)
p−p (r⃗2, r⃗1)

)
· p⃗∗

1

]
· p⃗∗

2

+ 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
·
[
p⃗∗

2 · T
(1,1)
p−p (r⃗2, r⃗1)

]
+ 1

2
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
· T

(1,1)
p−p (r⃗2, r⃗2) · p⃗∗

2 + 1
2
[(

∇⃗r⃗1 ⊗ T
(1,1)
p−p (r⃗2, r⃗2)

)
· p⃗∗

2

]
· p⃗∗

2

+ 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
·
[
p⃗∗

2 · T
(1,1)
p−p (r⃗2, r⃗2)

]
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where we used T
(1,0)
p−q (r⃗1, r⃗1) = T

(1,0)
p−q (r⃗2, r⃗2) = T

(0,1)
q−p (r⃗1, r⃗1) = T

(0,1)
q−p (r⃗2, r⃗2) = 0⃗.

Now, using T
(0,0)
q−q (r⃗1, r⃗2) = T

(0,0)
q−q (r⃗2, r⃗1), T

(0,1)
q−p (r⃗1, r⃗2) = −T

(0,1)
q−p (r⃗2, r⃗1), T

(1,0)
p−q (r⃗1, r⃗2) =

−T
(1,0)
p−q (r⃗2, r⃗1), T

(1,1)
p−p (r⃗1, r⃗2) = T

(1,1)
p−p (r⃗2, r⃗1), ∇⃗r⃗1T

(0,0)
q−q (r⃗1, r⃗2) = −T

(1,0)
q−q (r⃗1, r⃗2),

∇⃗r⃗1T
(1,0)
p−q (r⃗1, r⃗2) = −T

(2,0)
p−q (r⃗1, r⃗2), ∇⃗r⃗1T

(1,1)
p−p (r⃗1, r⃗2) = −T

(2,1)
p−p (r⃗1, r⃗2), T

(2,1)
p−p (r⃗1, r⃗1) =
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T
(2,1)
p−p (r⃗2, r⃗2) = ¯̄0, we have:

F⃗1,q−q = −∇⃗r⃗1Uq−q

= −
(
∇⃗r⃗1q∗

1

)
T

(0,0)
q−q (r⃗1, r⃗1) q∗

1 −
(
∇⃗r⃗1q∗

2

)
T

(0,0)
q−q (r⃗2, r⃗2) q∗

2

−
(
∇⃗r⃗1q∗

1

)
T

(0,0)
q−q (r⃗1, r⃗2) q∗

2 − q∗
1T

(0,0)
q−q (r⃗1, r⃗2)

(
∇⃗r⃗1q∗

2

)
+ q∗

1q∗
2T

(1,0)
q−q (r⃗1, r⃗2) −

(
∇⃗r⃗1q∗

1

)
χ1 −

(
∇⃗r⃗1q∗

2

)
χ2 (II.16)

F⃗1,p−q = −∇⃗r⃗1Up−q

= 1
2
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(1,0)
p−q (r⃗1, r⃗2) q∗

2 − 1
2T

(2,0)
p−q (r⃗1, r⃗2) · p⃗∗

1q
∗
2 + 1

2
(
p⃗∗

1 · T
(1,0)
p−q (r⃗1, r⃗2)

) (
∇⃗r⃗1q∗

2

)
+ 1

2
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
· T

(1,0)
p−q (r⃗2, r⃗1) q∗

1 + 1
2T

(1,1)
p−q (r⃗2, r⃗1) · p⃗∗

2q
∗
1 + 1

2
(
p⃗∗

2 · T
(1,0)
p−q (r⃗2, r⃗1)

) (
∇⃗r⃗1q∗

1

)
(II.17)

F⃗1,q−p = −∇⃗r⃗1Uq−p

= −1
2
(
∇⃗r⃗1q∗

1

) (
T

(0,1)
q−p (r⃗1, r⃗2) · p⃗∗

2

)
+ 1

2q∗
1T

(1,1)
q−p (r⃗1, r⃗2) · p⃗∗

2 − 1
2q∗

1

(
∇⃗r⃗1 ⊗ p⃗∗

2

)
· T

(0,1)
q−p (r⃗1, r⃗2)

− 1
2
(
∇⃗r⃗1q∗

2

) (
T

(0,1)
q−p (r⃗2, r⃗1) · p⃗∗

1

)
− 1

2q∗
2T

(0,2)
q−p (r⃗2, r⃗1) · p⃗∗

1 − 1
2q∗

2

(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(0,1)
q−p (r⃗2, r⃗1)

(II.18)

F⃗1,p−p = −∇⃗r⃗1Up−p

=
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(1,1)
p−p (r⃗1, r⃗1) · p⃗∗

1 +
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
· T

(1,1)
p−p (r⃗2, r⃗2) · p⃗∗

2

+
(
∇⃗r⃗1 ⊗ p⃗∗

1

)
· T

(1,1)
p−p (r⃗1, r⃗2) · p⃗∗

2 +
(
∇⃗r⃗1 ⊗ p⃗∗

2

)
· T

(1,1)
p−p (r⃗2, r⃗1) · p⃗∗

1

−
[
T

(2,1)
p−p (r⃗1, r⃗2) · p⃗∗

2

]
· p⃗∗

1 (II.19)

For the sake of convenience, we first adopt the method of finite difference to esti-
mate the value of ∇⃗r⃗1q∗

1 and ∇⃗r⃗1q∗
2, which can be computed as [q∗

1(r⃗1+hu⃗,r⃗2)−q∗
1(r⃗1−hu⃗,r⃗2)]

2h

and [q∗
2(r⃗1+hu⃗,r⃗2)−q∗

2(r⃗1−hu⃗,r⃗2)]
2h

, respectively, with h being a very small number, i.e.,
0.00001. Similarly, ∇⃗r⃗1 ⊗ p⃗∗

1 and ∇⃗r⃗1 ⊗ p⃗∗
2 are computed as [p⃗∗

1(r⃗1+hu⃗,r⃗2)−p⃗∗
1(r⃗1−hu⃗,r⃗2)]

2h

and [p⃗∗
2(r⃗1+hu⃗,r⃗2)−p⃗∗

2(r⃗1−hu⃗,r⃗2)]
2h

, with u⃗ a unit vector respectively along the three co-
ordinate axis.

With these formulas, we compute numerically the electrostatic force for one
of the two carbon atoms. To our big surprise, we found that the total force
computed with the gradient of charges and dipoles considered is totally the same
as that computed when they are not included, while Fq−q, Fp−q, Fq−p and Fp−p are
different in the two cases, as shown in Table II.2, in which F gra

qq , F gra
pq , F gra

qp , F gra
pp

denotes the interaction forces, respectively computed considering the gradient of
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effective charges and dipoles using equation II.16, II.17, II.18 and II.19, whereas
Fq−q, Fp−q, Fq−p and Fp−p is computed without taking into account the gradient of
charges and dipoles (The third methods in the next section). In order for readers
to reproduce the computation of forces described above, we gave, in Table II.1,
some necessary values that we used for the two atoms, including characteristic
widths Rq and Rp, electronegativities χ, coordinates x, y, z, electric equilibrium
effective charges q∗ and dipole moment p∗

x, p∗
y ,p∗

z, numerical derivative of q∗ and
p⃗∗ with respect to their positions ∇⃗r⃗1q∗, ∇⃗r⃗1 ⊗ p⃗∗. Taking into account some
accidental cancellations that may occur in the process of calculation of the forces,
we assigned four completely different values to characteristic widths R, as can be
seen in Table II.3. The calculated results of forces displayed in Table II.4 suggest
that the arguments that we stated above still hold true, which further confirms
the correctness of the conclusions that we made in this chapter. We also checked
analytically these results using Mathematica, with the same result. Finally, the
fact that the computed total force is the same made us figure out why the gradients
of charges and dipoles cancel each other in the derivation of force in the context
of charge dipole model. We will see in the next section how this result can in fact
be proven analytically in the general case.
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atom 1 atom 2
Rq (Å) 0.6862 0.6862
Rp (Å) 0.6862 0.6862
χ(V) 1.26212 3.3000
x (Å) 1.21222 2.37479
y (Å) 0.19103 0.37429
z (Å) -3.9745 -3.22534
q∗(e) 0.230474360788924 -0.415859060071387

p∗
x(eÅ) 0.207141805257659 0.151045856651196

p∗
y(eÅ) 3.265249166202350E-002 2.380988989041366E-002

p∗
z(eÅ) 0.133482160065052 9.733393599422840E-002

∇xq∗(e/Å) 0.780207211479353 -0.763296521992390
∇yq∗(e/Å) 0.122986802608226 -0.120321111120645
∇zq∗(e/Å) 0.502765440961283 -0.491868194231213
∇xp∗

x(e) 0.435777113543773 0.418413380078719
∇xp∗

y(e) 9.677955349577556E-002 8.643636593079529E-002
∇xp∗

z(e) 0.395631181362689 0.353348618906962
∇yp∗

x(e) 9.677955346246887E-002 8.643636589592735E-002
∇yp∗

y(e) -0.162920068699334 -0.116298827783905
∇yp∗

z(e) 6.236473525828387E-002 5.569958615227900E-002
∇zp∗

x(e) 0.395631181235013 0.353348618782756
∇zp∗

y(e) 6.236473526175332E-002 5.569958615696275E-002
∇zp∗

z(e) 7.676892612502347E-002 9.777372077774175E-002

Table II.1: Data necessary to computing the forces in our two atoms case.

x y z
F gra

q−q -1.3991655031301486 -0.22055535594621295 -0.90162206420616364
Fq−q 0.444694330764454 7.009872981105415E-002 0.286561005149064
F gra

p−q 2.1662472838748457 0.34147316769617464 1.3959294647347280
Fp−q 0.21049326950213698 3.3180793648775561E-002 0.13564185264505890
F gra

q−p 2.1662472838748457 0.34147316769617464 1.3959294647347280
Fq−p 0.21049326950213698 3.3180793648775561E-002 0.13564185264505890
F gra

p−p -2.1662471844500915 -0.34147316472099265 -1.3959294555160222
Fp−p -9.859923287488231E-002 -1.554254351071221E-002 -6.353734087633076E-002
F gra

tot 0.76708188016945122 0.12091781472514362 0.49430740974726994
Ftot 0.767081656168877 0.120917780711355 0.494307348017673

Table II.2: Computed forces (in eV/Å) considering the gradients of effective
charges and dipoles, using equations II.16, II.17, II.18 and II.19 and without
taking them into account (by removing the gradient terms in the previous

equations)
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atom 1 atom 2
Rq(Å) 0.6862 0.9704
Rp(Å) 1.44102 1.18853
χ(V) 1.26212 3.3000
x(Å) 1.21222 2.37479
y(Å) 0.19103 0.37429
z(Å) -3.9745 -3.22534
q∗(e) 0.51507613411954423 -0.88505378132072787

p∗
x(eÅ) 0.99756646503020385 0.41765481506183688

p∗
y(eÅ) 0.15724990687538171 6.5836395946349352E-002

p∗
z(eÅ) 0.64283178162095822 0.26913674254340836

∇xq∗(e/Å) 0.62307904865939978 -0.65327001236428317
∇yq∗(e/Å) 9.8218139655211492E-002 -0.10297724734126144
∇zq∗(e/Å) 0.40151210869772669 -0.42096716424299935
∇xp∗

x(e) -4.2689248543164471E-002 0.18394256166338507
∇xp∗

y(e) 0.12853133617039747 8.5625561197106154E-002
∇xp∗

z(e) 0.52543133071625481 0.35003411544307439
∇yp∗

x(e) 0.12853133617039739 8.5625561197106015E-002
∇yp∗

y(e) -0.83780917572040559 -0.34575386888872933
∇yp∗

z(e) 8.2825586786377497E-002 5.5177107477208144E-002
∇zp∗

x(e) 0.52543133071625459 0.35003411544307350
∇zp∗

y(e) 8.2825586786377553E-002 5.5177107477208068E-002
∇zp∗

z(e) -0.51948209784412258 -0.13368935995639944

Table II.3: Data necessary to computing the forces in our two atoms case, with
different values for all parameters.

x y z
F gra

q−q -2.5726892588569177 -0.40554204712795427 -1.6578408334707038
Fq−q 1.5995650997157405 0.25214506680895221 1.0307596725776487
F gra

p−q 1.8142747388684368 0.28599050162014189 1.1691185536207718
Fp−q -0.15645534198667646 -2.4662605269931467E-002 -0.10081981477832261
F gra

q−p 1.8142747388684368 0.28599050162014189 1.1691185536207718
Fq−p -0.15645534198667646 -2.4662605269931467E-002 -0.10081981477832261
F gra

p−p -1.0558602188799542 -0.16643895611232959 -0.68039627377084033
Fp−p -0.60195917800180532 -9.4888940237880928E-002 -0.38790246507160969
F gra

tot 0.68469523774058416 0.10793091603120825 0.44121757794939320
Ftot 0.68469523774058205 0.10793091603120834 0.44121757794939381

Table II.4: Computed forces (in eV/Å) considering the gradients of effective
charges and dipoles, using equations II.16, II.17, II.18 and II.19 and without
taking them into account (by removing the gradient terms in the previous

equations), with different values for all parameters.
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II.5 Analytical expressions for the force

II.5.1 Direct method by direct derivation of the full en-
ergy, valid even if charges and dipoles are not
equilibrated

Using the expression of U ′
elec constructed in the previous section (Eqs. II.1 and

II.5), we have:

F⃗γ ≡ −∇⃗γU ′
elec

= −∇⃗γ

1
2

N∑
α=1

N∑
β=1

qαT
(0,0)
q−q (r⃗α, r⃗β) qβ +

N∑
α=1

qα (χα + Vext (r⃗α))

+ λ

(
N∑

α=1
qα − Qtot

)
− 1

2

N∑
α=1

N∑
β=1

p⃗α · T
(1,1)
p−p (r⃗α, r⃗β) · p⃗β

−
N∑

α=1
p⃗α · E⃗ext (r⃗α) − 1

2

N∑
α=1

N∑
β=1

p⃗α · T
(1,0)
p−q (r⃗α, r⃗β) qβ

+1
2

N∑
α=1

N∑
β=1

qαT
(0,1)
q−p (r⃗α, r⃗β) · p⃗β

 , ∀γ = 1, · · · , N

(II.20)
In this expression, the charges can have non electric equilibrium values, so that
they can be considered independent of the positions. The only parts to differentiate
are the external potential and field and the interaction tensors. Thus, we find:

F⃗γ =

1
2

N∑
β=1

T
(1,0)
q−q (r⃗γ, r⃗β) qβ − 1

2

N∑
α=1

T
(0,1)
q−q (r⃗α, r⃗γ) qα + E⃗ext (r⃗γ)

+1
2

N∑
α=1,α ̸=γ

T
(1,1)
p−q (r⃗α, r⃗γ) · p⃗α + 1

2

N∑
β=1,β ̸=γ

T
(1,1)
q−p (r⃗γ, r⃗β) · p⃗β

 qγ

+

−1
2

N∑
β=1

T
(2,1)
p−p (r⃗γ, r⃗β) · p⃗β + 1

2

N∑
α=1

T
(1,2)
p−p (r⃗α, r⃗γ) · p⃗α + ∇⃗γ ⊗ Eext (r⃗γ)

−1
2

N∑
β=1,β ̸=γ

T
(2,0)
p−q (r⃗γ, r⃗β) qβ − 1

2

N∑
α=1,α ̸=γ

T
(0,2)
q−p (r⃗α, r⃗γ) qα

 p⃗γ

(II.21)
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Using T
(1,0)
q−q (r⃗α, r⃗β) = −T

(0,1)
q−q (r⃗β, r⃗α) (in vacuum), T

(1,1)
p−q (r⃗α, r⃗β) =

(
T

(1,1)
q−p (r⃗β, r⃗α)

)T
,

T
(2,0)
p−q (r⃗α, r⃗β) =

(
T

(0,2)
q−p (r⃗β, r⃗α)

)T
, T

(2,1)
p−p (r⃗α, r⃗β) = −T

(1,2)
p−p (r⃗β, r⃗α), the expression of

the forces simplifies as: ∀γ = 1, · · · , N

F⃗γ =

E⃗ext (r⃗γ) +
N∑

β=1
T

(1,0)
q−q (r⃗γ, r⃗β) qβ +

N∑
β=1,β ̸=γ

T
(1,1)
q−p (r⃗γ, r⃗β) · p⃗β

 qγ

+

∇⃗γ ⊗ E⃗ext (r⃗γ) −
N∑

β=1,β ̸=γ

T
(2,0)
p−q (r⃗γ, r⃗β) qβ −

N∑
β=1

T
(2,1)
p−p (r⃗γ, r⃗β) · p⃗β

 · p⃗γ

(II.22)
Note that if the characteristic radius of the radial Gaussian charge density dis-
tribution is the same for the charge and the dipole of a given atom, which seems
physically reasonable, then T

(1,0)
q−q = T

(1,0)
p−q and T

(1,1)
q−p = T

(1,1)
p−p , so that the first term

between braces (right multiplied by qγ) is zero at electrostatic equilibrium, since
it is then equal to ∂U ′

elec/∂p⃗α

II.5.2 Second method with explicit determination of the
gradients

In this method, we use the electrostatic equilibrium equation to simplify the
expression of U ′

elec before taking its gradient. We first reorder the terms in U ′
elec to

get:

U ′
elec = 1

2

N∑
α=1

qα

 N∑
β=1

T
(0,0)
q−q (r⃗α, r⃗β) qβ +

N∑
β=1

T
(0,1)
q−p (r⃗α, r⃗β) · p⃗β + (χα + Vext (r⃗α))


+ 1

2

N∑
α=1

qα (χα + Vext (r⃗α))

− 1
2

N∑
α=1

p⃗α ·

 N∑
β=1

T
(1,0)
p−q (r⃗α, r⃗β) qβ +

N∑
β=1

T
(1,1)
p−p (r⃗α, r⃗β) · p⃗β + E⃗ext (r⃗α)


− 1

2

N∑
α=1

p⃗α · E⃗ext (r⃗α) + λ

(
N∑

α=1
qα − Qtot

)
(II.23)

Then by expressing explicitly the linear system of II.6, we have: ∀α = 1, · · · , N
∑N

β=1 T
(0,0)
q−q (r⃗α, r⃗β) q∗

β +∑N
β=1 T

(0,1)
q−p (r⃗α, r⃗β) · p⃗∗

β + λ∗ = − (χα + Vext (r⃗α))∑N
β=1 T

(1,0)
p−q (r⃗α, r⃗β) q∗

β +∑N
β=1 T

(1,1)
p−p (r⃗α, r⃗β) · p⃗∗

β = −E⃗ext (r⃗α)∑N
β=1 q∗

β = Qtot

(II.24)
Inserting those generalized equilibrium equations into the definition of U ′

elec

(Eq.II.23) to compute its value at electrostatic equilibrium, we get a simplified
U∗

elec:
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U∗
elec = 1

2

N∑
α=1

q∗
α (χα + Vext (r⃗α) − λ∗) − 1

2

N∑
α=1

p⃗∗
α · E⃗ext (r⃗α)

= 1
2

N∑
α=1

q∗
α (χα + Vext (r⃗α)) − 1

2

N∑
α=1

p⃗∗
α · E⃗ext (r⃗α) − 1

2λ∗Qtot

(II.25)

Let us now derive the force acting on the atom γ, by the other atoms of the system,
starting from the above simplified expression of the total energy of the system at
generalized equilibrium. We get:

F⃗γ ≡ −∇⃗γU∗
elec = −∇⃗γ

[
1
2

N∑
α=1

q∗
α (χα + Vext (r⃗α)) − 1

2

N∑
α=1

p⃗∗
α · E⃗ext (r⃗α) − 1

2λ∗Qtot

]
(II.26)

F⃗γ = 1
2q∗

γE⃗ext (r⃗γ) + 1
2
[
∇⃗γ ⊗ E⃗ext (r⃗γ)

]
· p⃗∗

γ

− 1
2

N∑
α=1

(
∇⃗γq∗

α

)
(χα + Vext (r⃗α)) + 1

2

N∑
α=1

[
∇⃗γ ⊗ p⃗∗

α

]
· E⃗ext (r⃗α) + 1

2

n∑
m=1

(
∇⃗γλ∗

)
Qtot

(II.27)
Thus, we need to compute gradient terms such as ∇⃗γq∗

α, ∇⃗γ ⊗ p⃗∗
α and ∇⃗γλ∗. In the

following, we prove that this can be done thanks to systems of equations coming
from the derivation with respect to the N vectors r⃗γ, of the equations obtained
during the minimization of the (total energy + Lagrangian term) with respect to
the charges, dipoles and Lagrange multipliers, which we recall once more:


∑N

β=1 T
(0,0)
q−q (r⃗α, r⃗β) q∗

β +∑N
β=1 T

(0,1)
q−p (r⃗α, r⃗β) · p⃗∗

β + λ∗ = − (χα + Vext (r⃗α))∑N
β=1 T

(1,0)
p−q (r⃗α, r⃗β) q∗

β +∑N
β=1 T

(1,1)
p−p (r⃗α, r⃗β) · p⃗∗

β = −E⃗ext (r⃗α)∑N
β=1 q∗

β = Qtot

∀α = 1, · · · , N
(II.28)

Applying −∇⃗γ to these equations gives: ∀α = 1, · · · , N ; ∀γ = 1, · · · , N

 N∑
β=1

T
(1,0)
q−q (r⃗α, r⃗β) q∗

β

δγα − T
(0,1)
q−q (r⃗α, r⃗β) q∗

βδγβ −
N∑

β=1
T

(0,0)
q−q (r⃗α, r⃗β) ∇⃗γq∗

β

+
 N∑

β=1,β ̸=α

T
(1,1)
q−p (r⃗α, r⃗β) · p⃗∗

β

 δγα − T
(0,2)
q−p (r⃗α, r⃗β) · p⃗∗

βδγβ

−
N∑

β=1

(
∇⃗γ ⊗ p⃗∗

β

)
· T

(0,1)
q−p (r⃗α, r⃗β) − ∇⃗γλ∗ = −E⃗ext (r⃗α) δγα

(II.29)
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 N∑
β=1,β ̸=α

T
(2,0)
p−q (r⃗α, r⃗β) q∗

β

 δγα − T
(1,1)
p−q (r⃗α, r⃗β) q∗

βδβγ −
N∑

β=1

(
∇⃗γq∗

β

)
⊗ T

(1,0)
p−q (r⃗α, r⃗β)

+
 N∑

β=1
T

(2,1)
p−p (r⃗α, r⃗β) · p⃗∗

β

 δγα − T
(1,2)
p−p (r⃗α, r⃗β) · p⃗∗

βδβγ −
N∑

β=1

(
∇⃗γ ⊗ p⃗∗

β

)
·
(
T

(1,1)
p−p (r⃗α, r⃗β)

)T

=
[
∇⃗γ ⊗ E⃗ext (r⃗α)

]
δγα

(II.30)

N∑
β=1

∇⃗γq∗
β = 0⃗ (II.31)

In order to cast these equations into a block-matrix form, we reorder them and
transpose both hand sides: ∀α = 1, · · · , N ; ∀γ = 1, · · · , N

N∑
β=1

T
(0,0)
q−q (r⃗α, r⃗β)

(
∇⃗γq∗

β

)T
+

N∑
β=1

(
T

(0,1)
q−p (r⃗α, r⃗β)

)
·
(
∇⃗γ ⊗ p⃗∗

β

)T
+
(
∇⃗γλ∗

)T

=
 N∑

β=1
T

(1,0)
q−q (r⃗α, r⃗β) q∗

β +
N∑

β=1,β ̸=γ

T
(1,1)
q−p (r⃗α, r⃗β) · p⃗∗

β + E⃗ext (r⃗α)
T

δγα

−
[
T

(0,1)
q−q (r⃗α, r⃗γ) q∗

γ + T
(0,2)
q−p (r⃗α, r⃗γ

)
· p⃗∗

γ

]T
(1 − δγα)

(II.32)
N∑

β=1
T

(1,0)
p−q (r⃗α, r⃗β) ⊗

(
∇⃗γq∗

β

)
+

N∑
β=1

T
(1,1)
p−p (r⃗α, r⃗β)

(
∇⃗γ ⊗ p⃗∗

β

)T

=
 N∑

β=1,β ̸=α

T
(2,0)
p−q (r⃗α, r⃗β) q∗

β +
N∑

β=1
T

(2,1)
p−p (r⃗α, r⃗β) · p⃗∗

β − ∇⃗γ ⊗ E⃗ext (r⃗α)
T

δγα

−
[
T

(1,1)
p−q (r⃗α, r⃗γ) q∗

γ + T
(1,2)
p−p (r⃗α, r⃗γ) · p⃗∗

γ

]T
(1 − δγα)

(II.33)

N∑
β=1

(
∇⃗γq∗

β

)T
= 0⃗T (II.34)

The resulting block matrix linear system can then be written for a given value of
index γ as:



(
T̂

(0,0)
q−q

)
N×N

(T̂
(0,1)
q−p

)T


N×3N

1̂N×1(
T̂

(1,0)
p−q

)
3N×N

(
T̂

(1,1)
p−p

)
3N×3N

0̂3N×1

1̂1×N 0̂1×3N 0̂1×1





(
̂⃗∇γq∗

β

)T

N×3(
̂∇⃗γ ⊗ p⃗∗

β

)T

3N×3(
̂⃗∇γλ∗

)T

1×3


=



(̂̄
Vαγ

)
N×3( ̂̄̄

Mαγ

)
3N×3(̂⃗0)

1×3


(II.35)
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with

∀α, γ = 1, · · · , N

V̄αγ ≡

 N∑
β=1

T
(1,0)
q−q (r⃗α, r⃗β) q∗

β +
N∑

β=1,β ̸=α

T
(1,1)
q−p (r⃗α, r⃗β) · p⃗∗

β + E⃗ext (r⃗γ)
T

δγα

−
[
T

(0,1)
q−q (r⃗α, r⃗γ) q∗

γ + T
(0,2)
q−p (r⃗α, r⃗γ) · p⃗∗

γ

]T
(1 − δγα)

(II.36)

and

∀α, γ = 1, · · · , N

¯̄Mαγ ≡

 N∑
β=1,β ̸=α

T
(2,0)
p−q (r⃗α, r⃗β) q∗

β +
N∑

β=1
T

(2,1)
p−p (r⃗α, r⃗β) · p⃗∗

β − ∇⃗γ ⊗ E⃗ext (r⃗γ)
T

δγα

−
[
T

(1,1)
p−q (r⃗α, r⃗γ) q∗

γ + T
(1,2)
p−p (r⃗α, r⃗γ) · p⃗∗

γ

]T
(1 − δγα)

(II.37)
Hence, we obtain N systems (γ index) of 4N +1 equations (α index + equation due
to Lagrange multiplier) with 4N + 1 row-vector unknowns (β index) each with a
right hand-side with 3 columns constituted by the superposition of a N×3 matrix
(itself constituted by the superposition of the N row vectors with 3 components V̄αγ

with α = 1, · · · , N) above a 4N ×3 matrix (itself constituted by the superposition
of the N (3 × 3) matrices ¯̄Mαγ with γ = 1, · · · , N) above a 1 × 3 matrix of zeros).
It is then numerically advantageous to invert the matrix of the system, since it
will be enough to multiply that inverse with the row-vector right hand sides to
obtain all the gradients in a single operation! The forces are then finally obtained
by putting the values of all these gradients in Eq. II.26.

These were the formula used in previous works of Devel and collaborators who
checked numerically that they gave the same values as the first method.

II.5.3 Third method using the derivative of the block-
matrix of interaction tensors

In order to prove that the two previous methods would be analytically equiva-
lent in all cases, let us try once more to start from the simplified electric equilibrium
expression of the system energy (Eq. II.25), but this time put into block matrix
form right from the start:

U∗
elec = 1

2

N∑
α=1

q∗
α (χα + Vext (r⃗α)) − 1

2

N∑
α=1

p⃗∗
α · E⃗ext (r⃗α) − 1

2λ∗Qtot

= −1
2

(̂̄
B′
)T

· ˆ̄X = −1
2

(̂̄
B′
)T

· [(
̂̄̄
M) · ( ̂̄B)] (II.38)
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with ˆ̄̄
M ≡ ( ˆ̄̄

A)−1,
(

ˆ̄B′
)T

=
(

− ̂(Vext + χ) ̂⃗
Eext Q̂tot

)
and

ˆ̄̄
A ˆ̄X =



(
T̂

(0,0)
q−q

)
N×N

(T̂
(0,1)
q−p

)T


N×3N

1̂N×1(
T̂

(1,0)
p−q

)
3N×N

(
T̂

(1,1)
p−p

)
3N×3N

0̂3N×1(
1̂T
)

1×N
0̂1×3N 0̂1×1


 q̂∗

ˆ⃗p∗

λ̂∗

 =


− ̂(Vext + χ)

− ̂⃗
Eext

Q̂tot

 = ˆ̄B

(II.39)
Note that this could easily be generalized by using several Lagrange multipliers to
provide the possibility to enforce charge conservation on several different molecules

or parts of the system (done by M. Devel). Also note that the block
(

T̂
(0,1)
q−p

)T

is

not the transpose of block
(

T̂
(1,0)
p−q

)
, but its opposite (recall that T

(0,1)
q−p (r⃗α, r⃗β) =

−T
(1,0)
p−q (r⃗β, r⃗α)), so that the block matrix ˆ̄̄

A is not symmetric!
Using Eq. II.38, the ith Cartesian coordinate of the force on atom γ can be

calculated as:(
F⃗γ

)
i

= −∇γ,iU
∗
elec = 1

2∇γ,i

[(
ˆ̄B′
)T

· ˆ̄M · ˆ̄B
]

= 1
2

[
∇γ,i

((
ˆ̄B′
)T
)

· ˆ̄̄
M · ˆ̄B +

(
ˆ̄B′
)T

· ∇γ,i(
ˆ̄̄

M) · ˆ̄B +
(

ˆ̄B′
)T

· ˆ̄̄
M · ∇γ,i( ˆ̄B)

]
(II.40)

We thus have three different terms to compute. Concerning the first term,
since

∇γ,i

((
ˆ̄B′
)T
)

= ∇γ,i

(
− ̂(Vext + χ) ̂⃗

Eext Q̂tot

)
=
(

(0 . . . Eext,i (r⃗γ) . . . 0)1×N

(⃗
0T . . . ∇γ,iE⃗ext (r⃗γ) . . . 0⃗T

)
1×3N

01×1

) (II.41)

we have

∇⃗γ

((
ˆ̄B∗
)T
)

· ˆ̄X = q∗
γE⃗ext (r⃗γ) +

[
∇⃗γ ⊗ E⃗ext (r⃗γ)

]
· p⃗∗

γ (II.42)

As for the second term, since [ ˆ̄̄
A]−1 · [ ˆ̄̄

A] = 1(4N+1)×(4N+1) and ˆ̄̄
M ≡ ( ˆ̄̄

A)−1, one
has: ∀γ = 1, . . . , N ; ∀i = x, y, z

∇γ,i
ˆ̄̄

M · ˆ̄̄
A + ˆ̄̄

M · ∇γ,i
ˆ̄̄
A = 0(4N+1)×(4N+1) ⇔ ∇γ,i

ˆ̄̄
M = − ˆ̄̄

M · ∇γ,i
ˆ̄̄
A · ˆ̄̄

M (II.43)

with: ∇γ,i
ˆ̄̄
A =


∇γ,i

(
T̂

(0,0)
q−q

)
∇γ,i

(
T̂

(0,1)
q−p

)T

∇γ,i1̂

∇γ,i

(
T̂

(1,0)
p−q

)
∇γ,i

(
T̂

(1,1)
p−p

)
∇γ,i0̂

∇γ,i

(
1̂T
)

∇γ,i0̂ ∇γ,i0̂


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Hence,
(

ˆ̄B′
)T

· ∇⃗γ,i(
ˆ̄̄

M) · ˆ̄B = −
(

ˆ̄B′
)T

· ˆ̄̄
M ·∇γ,i

ˆ̄̄
A · ˆ̄̄

M · ˆ̄B = −
(

ˆ̄X ′
)T

·∇γ,i
ˆ̄̄
A · ˆ̄X,

where we have defined
(

ˆ̄X ′
)T

≡
(

ˆ̄B′
)T

· ˆ̄̄
M .

Furthermore, we can also use
(

ˆ̄X ′
)T

in the third term, so that
(

ˆ̄B′
)T

· ˆ̄̄
M ·

∇γ,i( ˆ̄B) =
(

ˆ̄X ′
)T

· ∇γ,i( ˆ̄B). We therefore have:

(
ˆ̄B′
)T

· ∇⃗γ,i(
ˆ̄̄

M) · ˆ̄B +
(

ˆ̄B′
)T

· ˆ̄̄
M · ∇γ,i

ˆ̄B

=
(

ˆ̄X ′
)T

·
[
∇γ,i( ˆ̄B) − ∇γ,i

ˆ̄̄
A · ˆ̄X

]
=
(

ˆ̄X ′
)T

· ˆ̄̄
A · ∇γ,i( ˆ̄X) =

(
ˆ̄B′
)T

· ˆ̄̄
M · ˆ̄̄

A · ∇γ,i( ˆ̄X)

=
(

ˆ̄B′
)T

· ∇γ,i( ˆ̄X) (II.44)

Putting Eqs. II.42 and II.44 into Eq. II.40, we recover the result of the second
method (Eq. II.27):

F⃗γ = 1
2q∗

γE⃗ext (r⃗γ) + 1
2
[
∇⃗γ ⊗ E⃗ext (r⃗γ)

]
· p⃗∗

γ

− 1
2

N∑
α=1

(
∇⃗γq∗

α

)
(χα + Vext (r⃗α)) + 1

2

N∑
α=1

[
∇⃗γ ⊗ p⃗∗

α

]
· E⃗ext (r⃗α) + 1

2

n∑
m=1

(
∇⃗γλ∗

)
Qtot

(II.45)

Alternatively, we can recover the result of the first method by decomposing ˆ̄̄
M

in the same block matrix form as ˆ̄̄
A:


M̂N×N

(
−
(
M̂3N×N

)T
)

N×3N
M̂N×1

M̂3N×N M̂3N×3N M̂3N×1

M̂1×N M̂1×3N M̂1×1

 (II.46)
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Hence, using ˆ̄X ′ =
[(

ˆ̄B′
)T

· ˆ̄̄
M

]T

and ˆ̄X = ˆ̄̄
M · ˆ̄B , we have:


(

−
(
V̂ext + χ

)
1×N

(
Êext

T
)

1×3N
Q̂tot

)
M̂N×N

(
−
(
M̂3N×N

)T
)

N×3N
M̂N×1

M̂3N×N M̂3N×3N M̂3N×1

M̂1×N M̂1×3N M̂1×1




T

=



[
−
(
V̂ext + χ

)
1×N

M̂N×N +
( ̂⃗

Eext

)T

1×3N
M̂3N×N + Q̂totM̂1×N

]T

[
(Vext + χ)1×N

((
M̂3N×N

)T
)

N×3N
+
( ̂⃗

Eext

)T

1×3N
M̂3N×3N + Q̂totM̂1×3N

]T

[
−
(
V̂ext + χ

)
1×N

M̂N×1 +
(
Êext

)T

1×3N
M̂3N×1 + Q̂totM̂1×1

]T



=

 X̂ ′
N×1

X̂ ′
3N×1

X̂ ′
1×1


(II.47)

and
 q̂∗

ˆ⃗p∗

λ̂∗

 =

 X̂N×1

X̂3N×1

X̂N×1

 =


M̂N×N −

((
M̂3N×N

)T
)

N×3N
M̂N×1

M̂3N×N M̂3N×3N M̂3N×1

M̂1×N M̂1×3N M̂1×1




−
(

̂Vext + χ
)

− ̂⃗
Eext

Qtot



=


−M̂N×N (Vext + χ)N×1 +

((
M̂3N×N

)T
)

N×3N

( ̂⃗
Eext

)
3N×1

+ M̂N×1Q̂tot

−M̂3N×N (Vext + χ)N×1 − M̂3N×3N

( ̂⃗
Eext

)
3N×1

+ M̂3N×1Q̂tot

−M̂1×N (Vext + χ)N×1 − M̂1×3N

(
Êext

)
3N×1

+ M̂1×1Q̂tot


(II.48)

Using the fact the M̂N×N is symmetric since ÂN×N = T̂
(0,0)
q−q is symmetric, we

see that:
X̂ ′

N×1 = X̂N×1 = q̂∗ (II.49)
Furthermore

X̂ ′
3N×1 = −X̂3N×1 + 2M̂3N×1Q̂tot = −̂⃗p∗ + 2M̂3N×1Q̂tot (II.50)

If we now suppose that M̂3N×1 = 0 as in ˆ̄̄
A or that Qtot = 0, we have X̂ ′

3N×1 = −̂⃗p∗.
Now, noting that only a few elements are non zero in ∇γ,i

ˆ̄̄
A and ∇γ,i( ˆ̄B):

∀α, β = 1, . . . , N[
∇γ,i

(
T̂

(0,0)
q−q

)]
α,β

=
[
T

(0,1)
q−q (r⃗α, r⃗γ)

]
i
δβγ −

[
T

(1,0)
q−q (r⃗γ, r⃗β)

]
i
δαγ[

∇γ,i

(
T̂

(0,1)
q−p

)]
α,β

=
[
T

(0,2)
q−p (r⃗α, r⃗γ)

]
i,·

δβγ −
[
T

(1,1)
q−p (r⃗γ, r⃗β)

]
i,·

δαγ
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[
∇γ,i

(
T̂

(1,0)
p−q

)]
α,β

=
[
T

(1,1)
p−q (r⃗α, r⃗γ)

]
i,·

δβγ −
[
T

(2,0)
p−q (r⃗γ, r⃗β)

]
i,·

δαγ[
∇γ,i

(
T̂

(1,1)
p−p

)]
α,β

=
[
T

(1,2)
p−p (r⃗α, r⃗γ)

]
i,·,·

δβγ −
[
T

(2,1)
p−p (r⃗γ, r⃗β)

]
i,·,·

δαγ

and

∇γ,i( ˆ̄B) = ∇γ,i

(
− ̂(Vext + χ) − ̂⃗

Eext Q̂tot

)T

=
(

(0 . . . Eext,i (r⃗γ) . . . 0)1×N

(⃗
0T . . . − ∇γ,iE⃗ext (r⃗γ) . . . 0⃗T

)
1×3N

01×1

)T

(II.51)
We finally recover Eq. II.21:

F⃗γ =

E⃗ext (r⃗γ) +
N∑

β=1

[
T

(1,0)
q−q (r⃗γ, r⃗β)

]
q∗

β +
N∑

β=1

[
T

(1,1)
q−p (r⃗γ, r⃗β)

]
· p⃗∗

β

 q∗
γ+

[∇⃗γ ⊗ E⃗ext (r⃗γ)
]

−
N∑

β=1

[
T

(2,0)
p−q (r⃗γ, r⃗β)

]
q∗

β −
N∑

β=1

[
T

(2,1)
p−p (r⃗γ, r⃗β)

]
· p⃗∗

β

 · p⃗∗
γ

(II.52)
Hence we do recover exactly the same analytical result than with the first method.

II.6 Computation of in-plane piezoelectric
coefficient caused by flexoelectricity
for patterned graphene

II.6.1 A little literature review on computation of piezo-
electricity for graphene

Among the now numerous 2D materials, graphene, an atomically thin hexag-
onal monolayer structure, has extensive application in various aspects due to its
mechanical, electric, optical and thermal properties[Zhu 10]. The centrosymmetry
of pristine graphene, however, leads to some challenges to design electromechan-
ical nanodevices with graphene. To overcome this difficulty, considerable efforts
have been made within the framework of ab-initio-based calculation. For instance,
Kalinin and Meunier reported that polarization can be induced through bending
the graphene[Kalinin 08]. Chandrate et al. introduced defects with various shapes
in a graphene flake to induce a net polarization[Chandratre 12]. The same method
for inducing polarization in pristine graphene by breaking the symmetry was also
adopted by Kundalwal et al.[Kundalwal 17] to yield a non-zero piezoelectric coef-
ficient (≈0.27 C/m2). Moreover, chemical functionalization[Pandey 21b, Ong 12,
El-Kelany 16] and doping[Ong 12, El-Kelany 16] were recently used to generate a
localized net polarization due to which piezoelectric coefficient can be improved
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by several orders of magnitude, compared to their corresponding pure material.
In 2018, Javvaji et al. published a paper on the calculation of piezoelectricity
and flexoelectricity coefficients for a patterned graphene, using molecular dynam-
ics (MD) simulations coupled with a charge dipole model[Javvaji 18]. This is the
article from which we want to compare their results with ours.

II.6.2 Introduction to Javvaji’s 2018 paper

Figure II.1: The three types of patterned graphene used by Javvaji et al. and us
for our stretching simulations: (a) with a circular hole defect, (b) with a

triangular hole defect, (c) trapezium shaped

Javvaji et al[Javvaji 18] performed stretching simulations using molecular me-
chanics as implemented in LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator)[Thompson 22],using the Adaptive Interatomic Reactive Em-
pirical Bond Order (AIREBO) potential[Stuart 00] plus the charge dipole poten-
tial described in the previous parts of this chapter, to compute piezoelectric and
flexoelectric coefficients for three sorts of structured graphene (with cicular hole
defect, with triangular hole defect, and trapezium-shaped graphene, see Fig. II.1).
These structures are first stretched a small distance (displacement of the atoms
in the boundary regions by ux = 0.1 Å, see Fig. II.2), then they are relaxed in
LAMMPS by energy optimization, with atoms in the boundary regions on both
sides of the structured graphene held fixed during relaxation. Once the energy
optimization is finished, all the obtained configurations are stored for the compu-
tation of polarization, using only the atoms in the calculation region (see Fig. II.2),
then the structure is stretched once more to begin a new cycle. A total of about
15 stretching cycles were performed to achieve the target strain (0.03).

The Polarization for the stored atom configuration is then computed in two
steps by Javvaji et al. First, the polarization of a unit cell is computed as (Eq.
(12) of [Javvaji 18]):

P⃗m = 1
Vm

(
n∑

i=1
p⃗i

)
(II.53)

where n is the number of basis atoms present in the unit cell m. Vm is the volume
of the unit cell (see Figure II.2). The polarization of the complete graphene sheet
is then supposed to be equal to the sum of the polarization from each individual

38



II.6. Computation of in-plane piezoelectric coefficient caused by flexoelectricity
for patterned graphene

Figure II.2: A schematic representation of graphene under loading. Boundary
and calculation regions are shown. Unit cell of the graphene lattice is highlighted.

cell. Total polarization P⃗ is then (Eq. (13) of [Javvaji 18]):

P⃗ =
M∑

m=1
P⃗m (II.54)

The total polarization induced by the x-direction mechanical deformation is given
by Eq. (14) of [Javvaji 18]:

Px = dxxxεxx + µxxxx
∂εxx

∂x
+ P0,x (II.55)

where dxxx is the piezoelectric coefficient, µxxxx is the flexoelectric coefficient. P0,x

is the polarization contribution from other components of strain and strain gra-
dient. εxx refers to the engineering strain, which is defined as (lx − l0

x) /l0
x, where

lx is the instantaneous length along x direction and l0
x is its initial value after the

energy minimization. The engineering strain εxx delivers the information on the
global strain in the atomic system. ∂εxx

∂x
represents the strain gradient.

To compute piezoelectric coefficient dxxx and flexoelectric coefficient µxxxx, Jav-
vaji et al. split the equation II.55 into two equations II.56 and II.57.

Px = dxxxεxx + P f
x , (II.56)

where P f
x is

P f
x = µxxxx

∂εxx

∂x
+ P0,x (II.57)

The least squares fitting between variation of Px and εxx will give the coefficient
dxxx and constant P f

x (see Figure II.4b). With P f
x and ∂εxx

∂x
, µxxxx can then be

obtained by the slope of the fit of P f
x as a function of ∂εxx

∂x
[Javvaji 18].
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II.6.3 Modifications with respect to the work of Javvaji
et al

In this subsection, we describe the changes done with repect to the work of
Javvaji et al. during our attempts to understand their results.

Before starting the stretching simulation, we initially relaxed the structure by
the minimization of UAIREBO, with all the atoms kept free to move in the whole
space. Then, we shifted the atoms on the rightmost row of the patterned graphene
to exert strain, followed by an energy-minimization calculation, which was car-
ried out by minimizing UAIREBO+Uelec with x-direction degree of freedom for the
leftmost and rightmost row of atoms constrained. This algorithm is depicted in
Fig.II.3. This stretching operation is performed fifteen times to reach an engineer-
ing strain of 0.03. Conjugate gradient (CG) algorithm is used to minimize the
energy function. Similarly to Javvaji et al., we used a simplified version of Eq.
II.1 to compute Uelec, in order to take into account the fact there is no external
electric field or potential in these simulations:

Uelec =
N∑

α=1
qαχα + 1

2

N∑
α=1

N∑
β=1

qαT
(0,0)
q−q (r⃗α, r⃗β) qβ −

N∑
α=1

N∑
β=1

p⃗α · T
(1,0)
p−q (r⃗α, r⃗β) qβ

− 1
2

N∑
α=1

N∑
β=1

p⃗α · T
(1,1)
p−p (r⃗α, r⃗β) · p⃗β

(II.58)
where N is the total number of atoms. T

(0,0)
q−q , T

(1,0)
p−q and T

(1,1)
p−p are the electrostatic

interacting tensors between charges and dipoles in vacuum already used in previous
sections of this chapter. We note incidentally that there are several coherence
problems in the definitions of these tensors in [Javvaji 18] and in the calculation of
the forces in their Appendix (a complete list is available upon request to M. Devel).
As in [Javvaji 18], the characteristic width R of the Gaussian radial function is set
to be 0.06862 nm[Mayer 07b] and electronegativity 1.26212 V[Bresteau 16], for all
atoms, independently of their number of nearest neighbors, which we believe is a
debatable approximation. As in the first part of this chapter, in order to compute
the effective charges and dipoles at electrostatic equilibrium for each atom, we
minimize the total electrostatic energy by respectively making ∂Uelec

∂qi
and ∂Uelec

∂p⃗i

equal zero. By doing that, we then have: ∀α = 1, . . . , N


∑N

β=1 T
(1,1)
p−p (r⃗α, r⃗β) · p⃗∗

β +∑N
β=1 T

(1,0)
p−q (r⃗α, r⃗β) q∗

β = 0⃗∑N
β=1 T

(1,0)
p−q (r⃗α, r⃗β) · p⃗∗

β +∑N
β=1 T

(0,0)
q−q (r⃗α, r⃗β) q∗

β = −χα

(II.59)

With the computed charges and dipoles from the above system of linear equation,
we then compute the total polarization as:

P⃗ tot =
N∑

α=1

p⃗∗
α + q∗

α (r⃗α − r⃗c)
V

(II.60)
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Figure II.3: Search algorithm for the static equilibrium of the system subjected
to the action of an external load. The convergence criteria c of forces is set to

0.00004 eV/Å.

where V and r⃗c respectively are the volume and centroid of the configuration
considered. It is worth mentioning here that centroid r⃗c must be involved in the
definition of dipole moment because the configurations to be computed may not be
neutral due to the lack of global charge neutrality conservation enforced through a
Lagrange factor (third equation missing in system II.59). Furthermore, even if we
would use dipoles only, our definition of polarization would not be equivalent to
the definition of Javvaji et al. (Eqs. II.53 and II.54 do not lead to Eq. II.60 even
if all effective charges equal zero).

Then, we follow Javvaji et al. in considering that the total change of polar-
ization P⃗ tot with strain can be viewed as coming from an effective piezoelectricity
term, formulated as eijkεjk, which is in fact caused by flexoelectricity in this case,
with eijk being the piezoelectric coefficient and εjk being the 3 by 3 strain tensor.
Note that we here only consider the polarization caused by principal component ε11
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owing to the fact that we found ε11 is relatively large, compared to the other com-
ponents of the strain tensor, so that the x-direction polarization can be expressed
as:

P1 = P 0
1 + e111ε11 + h (II.61)

where P 0
1 is the preexisting polarization due to the inflow of charges from the

external environment due to the absence of charge conservation in system II.59
and to spontaneous strain gradient due to difference in material properties at the
interface between atoms and space. h accounts for higher-order terms, which are
here neglected with respect to piezoelectricity. Engineering strain ε11 is defined as
l−l0

l0
, where l0 is the initial length before applying load and l is length along x axis

of graphene after stretching.

II.6.4 Computation of piezoelectric coefficient

We obtain a piezoelectric coefficient of 0.03911 C/m2 for trapezium-shaped
graphene, of −0.0062 C/m2 for graphene with a triangular defect, and of 0.00056
C/m2 for graphene with a circular defect (Fig. II.4 and Table IV.1).

Piezoelectric
coefficient

for trapezium-shaped
graphene (C/m2)

Piezoelectric
coefficient

for graphene with
triangular defect (C/m2)

Piezoelectric
coefficient

for graphene with
hole defect (C/m2)

Present 0.03911 -0.0062
(for 7.9% defect) 0.00056

B. Javvaji
et al[Javvaji 18] 0.08013 0.02826 ≈ 0

Kundalwal
et al[Kundalwal 17] — 0.027

(for 4.5% defect) —

Kundalwal
et al[Kundalwal 17] — 0.12

(for 20% defect) —

Chandratre
et al[Chandratre 12] — (-)0.124

(defect size is large) —

Table II.5: piezoelectric coefficients for trapezium-shaped graphene, graphene
with triangular defect, and circular hole defect

It can be noticed that the intercept of the linear fit function, which denotes
the value of the polarization corresponding to engineering strain equal to zero
(unstretched state), is not zero. This preexisting polarization before stretching is
in fact due to the absence of the charge conservation in Eq. II.59), which allows
charges to freely flow into or out of material as if it were being charged. In fact, the
enforcement of charge conservation could readily work out the problem mentioned
above. However, in that case, the computed effective charges and dipoles would
all be close to zero. This should be due to the value of affinity (electronegativity)
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Figure II.4: (a) Variation of polarization along x axis with strain, for
trapezium-shaped graphene, graphene with a triangular defect and circular hole

defect. The red straight line is the fitting result. The atoms covered with the red
regions are fixed during the stretching simulations. (b) Fig. 2b from [Javvaji 18],

shown for comparison.
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obtained in the experimental measurement, reported in [Bresteau 16], not being
suitable for all the atoms (e.g. not for edge atoms), even though it is an experi-
mental value. It can also be found that the computed piezoelectric coefficient for
the graphene with circular hole is the smallest one (as expected), which can be
interpreted by the fact that the oppositely signed charges induced at the inter-
face between the internal circular space and the graphene can cancel each other
out due to the high symmetry of the circle, resulting in a very small polarization,
whereas, for the other two cases, a larger polarization is induced due to the broken
symmetry along the x-direction. Furthermore, sign-wise, it should be noted that
differently from the other two cases, sign of the polarization (or of the total dipole
moment) for the case of trapezium graphene is computed to be negative. A same
computing result can be seen in the paper of Chandratre et al.[Chandratre 12], in
which the direction of the induced polarization by stretching a graphene flake with
a triangle hole computed through ab-initio calculation points to −x axis(left) as
well, though they quote a positive number (hence the minus between parenthesis
in Table IV.1. This means that charge dipole model is, to a certain degree, effec-
tive as concerns the calculation of the polarization. In order to further understand
the differences in sign between these two cases, we plot Figure II.5, showing the
graphene sheet with a triangle hole divided into four regions marked A, B, C, D.
It can be observed that region B and C may coincidentally make up a trapezoid
with the same shape as Figure II.1c). Compared to regions B and C, the polariza-
tions in regions A and D are negligible due to their relatively high symmetry. We
thus respectively computed the direction of the dipole moment in region B and C,
pointing to the −x (left) direction, in agreement with that for trapezium-shaped
graphene (Figure II.1c). This thus illustrates the self-consistency of the charge
dipole model in the calculation of polarization due to the fact that the calcula-
tions for the polarizations in graphene with triangle hole and trapezium-shaped
graphene can be mutually confirmed. Finally, for comparison, the relevant results
for piezoelectric coefficients of patterned graphene with several defects are shown
in Table II.5, from which it can be seen that the piezoelectric coefficient for the
graphene with triangle hole obtained by Javvaji et al. is different from ours. We
attribute this to the a priori inappropriate definition of polarization in [Javvaji 18]
and possibly to other problems we found in their paper. Further discussion con-
cerning this point can be found in chapter 4 on the study of flexoelectric coefficient
of MoS2 monolayer.
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Figure II.5: Graphene divided into four pieces marked with A, B, C, D with p
meaning dipole moment.

II.7 Conclusions

Using a numerical differentiation method, we found, in the particular case of
the interaction between two carbon atoms, that the forces between these atoms
at electrostatic equilibrium could be computed either by taking into account the
gradients of {q∗

α}, {p⃗∗
α} and λ∗ in an expression of energy simplified to take into

account the equations valid at electrostatic equilibrium, or by not taking them
into account when differenciating the full expression of energy, valid even out of
electrostatic equilibrium. We then showed how to compute gradients of {q∗

α},
{p⃗∗

α} and λ∗ by solving linear systems with the same system matrix as the one
used to get {q∗

α}, {p⃗∗
α} and λ∗). We then showed analytically, using a supermatrix

formulation, that the resulting forces were the same as the ones obtained from the
gradient of the non-simplified general expression for the energy, without using any
gradient of charge or dipole (thus validating our simplified expression of the total
energy of the system and our way to compute the gradients of effective charges and
dipoles). We believe that this is the first time that such equivalence is reported.

Finally, using the charge dipole model and a definition of polarization including
a charge term (unlike what was done in [Javvaji 18]), we computed the in-plane
piezoelectric coefficient for trapezium-shaped graphene and graphene with triangu-
lar or circular defects. We found results significantly different from those obtained
by Javvaji et al. in [Javvaji 18]. We thus believe that our computed results are
physically more meaningful, even if we think that using different parameters for
carbon atoms with different numbers of nearest neighbors and enforcing charge
conservation, would give even more meaningful results.

In chapter 4, we will use again this improved definition of polarization and add
charge conservation to compute the flexoelectric coefficients for monolayer MoS2
and see that our results compare better to reported experimental results than those
published in another paper by the same Hannover group. However, before that,
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we will describe out attempt to find an analytical formula for the flexoelectric
coefficients of an ionic 2D material, using an extended Cauchy-Born rule to bridge
continuum electromechanics and atomistic electromechanics.
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Chapter III. Study of the flexoelectricity of MoS2 through the development of
multi-scale algorithms mixing atomistic approach and continuum physics

III.1 Introduction

In 2018, G. Lecoutre et al[Lecoutre 18] derived a constitutive equation, with
which the expression for flexocoupling coefficients fijKL (see below) can be ob-
tained, by applying the principle of virtual powers and classical thermodynamics:

fijKL = 1
V

∂2Uelec

∂Pi∂GjKL

= − ∂LEi

∂GjKL

(III.1)

where ∂2Uelec/∂Pi∂GjKL represents the variation of the electrostatic part of of the
interaction energies between constituents, in a given volume V , due to variations
of polarization component Pi and second-order deformation gradient component
GiKL. LEi is the ith component of the local electric field.

Based on equation III.1, an analytic expression for the flexocoupling tensor
(see equation III.2) has also been obtained by G. Lecoutre thanks to the use of an
extended Cauchy-Born homogenization hypothesis[Sunyk 03] and an atomic model
with distributed induced and permanent dipoles. This analytic formula was used
to compute the flexocoupling tensor for various carbon nanotubes[Lecoutre 18],
which at first order was found to be equal to:

fijKL = 1
2n

n∑
λ=1

3∑
k=1

 n∑
α=1

n∑
β=1

(
∇λ

j T (2)
(
r⃗α, r⃗β

))
ik

(
µβ

k

)
+
(
T (2)

(
r⃗α, r⃗β

))
ik

(
∇λ

j µβ
k

)Rλ
KRλ

L

(III.2)
where, n is the total number of atoms in a Representative Volume Element (RVE)
to be defined in next paragraph. The four indices i, j, K, L represent components
x, y, z of cartesian coordinate with uppercase letters when in the deformed coor-
dinate system, and lowercase letters when in the undeformed coordinate system.
T (2)

(
r⃗α, r⃗β

)
is a second order interaction tensor between dipoles located at r⃗α

and r⃗β. µβ
k is component k of the permanent dipole on atom β. Rλ

K and Rλ
L

are coordinates in the undeformed coordinate system of atom λ. In this chap-
ter, we extend that approach to incorporate effective charges for computing the
flexoelectric coefficient of a MoS2 monolayer.

III.2 Representative volume elements

For a macroscopic heterogeneous material, it is impossible to simulate or calcu-
late the properties of the entire material at the atomistic level, due to the limitation
of computational resources and time. It becomes particularly important to find a
region in the material that can represent the properties of the entire material. His-
torically, the definition of a representative volume element (RVE) was first given
by Hill[Hill 63], according to which, RVE must contain a sufficiently large number
of atoms and structurally represent the properties of the entire system.
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In continuum physics, the RVE concept plays a critical role in the compu-
tation of mechanical properties, electromechanical properties and other averaged
quantities that are used to describe physical systems constituted with several ma-
terials. Defining RVE can be quite complicated for heterogeneous materials such
as composite materials, but it is simpler for homogeneous materials with a peri-
odic structure, such as, for example, a perfect single crystal. Actually, the unit cell
is always chosen as RVE in homogeneous crystalline materials such as 2D MoS2.
Fig.III.1 shows a unit cell of MoS2 as RVE extracted from large MoS2.

Figure III.1: Representative volume element of MoS2, with 3 atoms (1 Mo, and
2S on top of one another)

III.3 Use of an extended Cauchy-Born rule

In our calculations, we will make the approximation that the deformation of the
whole monolayer is characterized by a single second order transformation gradient
which corresponds to an extended Cauchy-Born hypothesis.

Let us name F the mapping between the coordinates of the atoms in the
undeformed (R⃗) and deformed (r⃗) configurations:

∀α = 1, ..., N r⃗α = F(R⃗α) (III.3)

with rα and Rα, the positions of the αth atom in the deformed and undeformed
configurations, respectively. Now, if we turn our attention to vectors between
atoms (cf. Fig.III.2), we can write:

∀α, β = 1, ..., N r⃗αβ = F(R⃗α + R⃗αβ) − F(R⃗α) (III.4)

with R⃗αβ = R⃗β − R⃗α and r⃗αβ = r⃗β − r⃗α.
The local Cauchy-Born rule states that this mapping can be approximated to

be linear in a representative volume element (RVE), characterized by a local defor-
mation gradient characteristic of that RVE, so that the deformation is assumed to
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Figure III.2: Illustration of the extended Cauchy-Born rule. F and G are
respectively the first-order and second-order transformation gradients, in a

mechanical continuum.

be the same for all the atoms in the RVE (see ref[Falk 98] and ref[Javvaji 17] for
a numerical scheme to compute the local strain in such a case). In the extended
Cauchy-Born rule, the Taylor expansion of the mapping F is pushed one step
further and it is the second order transformation gradient that is assumed to be
constant in the RVE. This corresponds to the following approximation:

r⃗αβ = ∇RF(R⃗α) · R⃗αβ + 1
2∇R∇RF(R⃗α) : (R⃗αβ ⊗ R⃗αβ) (III.5)

where the transformation gradient F = ∇R⃗F(R⃗α) is a second order tensor with
9 tensor components and the second order transformation gradient (related to
the strain gradient) G = ∇R⃗∇R⃗F(R⃗α) is a third order tensor with 27 tensor
components, ’·’ denotes the scalar product, ’:’ denotes the contraction on two
indices, here between a third rank tensor and a second rank tensor, and ’⊗’ is the
standard tensor product. Using cartesian coordinates (1 : x, 2 : y, 3 : z), this can
be restated as:

∀i = 1, 2, 3, rαβ
i = FiJRαβ

J + 1
2GiJKRαβ

J Rαβ
K (III.6)

with summation from 1 to 3, on indices J and K being implied, following Einstein’s
convention.

Equation III.6 gives an explicit expression for the deformed interatomic dis-
placement vector and bridges the gap between microscopic and macroscopic quan-
tities. Note that higher order terms are omitted in Eq.III.6.
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III.4 Derivation of analytical formula for
computation of flexocoupling coeffi-
cients

The total energy for QP model for MoS2 in the absence of external electric
potential and field is written as:

U elec = 1
2

N∑
α=1

N∑
β=1

qαT
(0,0)
q−q

(
r⃗α, r⃗β

)
qβ − 1

2

N∑
α=1

N∑
β=1

p⃗α · T
(1,0)
p−q

(
r⃗α, r⃗β

)
qβ

+ 1
2

N∑
α=1

N∑
β=1

qαT
(0,1)
q−p

(
r⃗α, r⃗β

)
· p⃗β − 1

2

N∑
α=1

N∑
β=1

p⃗α · T
(1,1)
p−p

(
r⃗α, r⃗β

)
· p⃗β +

N∑
α=1

qαχα

(III.7)
with T 0,0

q−q(r⃗α, r⃗α) = 1
4πϵ0

√
2/π

Rα
, T

(1,0)
p−q (r⃗α, r⃗α) = T

(0,1)
q−p (r⃗α, r⃗α) = 0 and T

(1,1)
p−p (r⃗α, r⃗α) =

− 1
4πϵ0

√
2/π

3R3
α

, with Rα being the characteristic radius of the radial Gaussian charge
distribution of atom α

The total electrostatic internal energy due to the induced effective charges and
dipoles in a RVE containing n atoms can then be written as:

URV E,int,ind = 1
2

n∑
α=1

n∑
β=1

qαT
(0,0)
q−q

(
r⃗α, r⃗β

)
qβ − 1

2

n∑
α=1

n∑
β=1

p⃗α · T
(1,0)
p−q

(
r⃗α, r⃗β

)
qβ

+ 1
2

n∑
α=1

n∑
β=1

qαT
(0,1)
q−p

(
r⃗α, r⃗β

)
· p⃗β − 1

2

n∑
α=1

n∑
β=1

p⃗α · T
(1,1)
p−p

(
r⃗α, r⃗β

)
· p⃗β +

n∑
α=1

qαχα
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which, using T

(1,0)
p−q

(
r⃗α, r⃗β

)
= −T

(0,1)
q−p

(
r⃗β, r⃗α

)
simplifies into:

URV E,int,ind = 1
2

n∑
α=1

n∑
β=1

qαT
(0,0)
q−q

(
r⃗α, r⃗β

)
qβ −

n∑
α=1

n∑
β=1

p⃗α · T
(1,0)
p−q

(
r⃗α, r⃗β

)
qβ

− 1
2

n∑
α=1

n∑
β=1

p⃗α · T
(1,1)
p−p

(
r⃗α, r⃗β

)
· p⃗β +

n∑
α=1

qαχα

(III.9)

Additionaly, the total polarization in RVE can be expressed as:

P⃗ =
n∑

α=1

1
VRV E

(qα · (r⃗α − r⃗c) + p⃗α) (III.10)

with VRV E being the volume of RVE and r⃗c denoting the center of charges in RVE.
In order to further deduce an atomistic expression for the flexoelectric tensor,

we first define the effective local electric field in the continuum approximation
(Eq. III.11), then use the chain rule of derivation and the atomistic definitions
of polarization (Eq. III.10) and internal induced electrostatic energy volume den-
sity (Eq. III.9) to express the connections between the atomic quantities and the
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continuum ones (Eqs. III.12 and III.13):

EL
k = − 1

VRV E

(
∂URV E, int,ind ({p}, {q}, {r})

∂Pk

)

= − 1
VRV E

[ 3∑
i=1

n∑
α=1

∂URV E,int,ind({p}, {q}, {r})
∂pα

i

∂pα
i

∂Pk

+
n∑

α=1

∂URV E,int,ind({p}, {q}, {r})
∂qα

∂qα

∂Pk

+
3∑

i=1

n∑
α=1

∂URV E, int,ind ({p}, {q}, {r})
∂rα

i

∂rα
i

∂Pk

]
(III.11)

where,

(
∂pα

i

∂Pk

)
{q}{r}{p⃗β ̸=α}

= VRV E · δki

(
∂qα

∂Pk

)
{qβ ̸=α}{r}{p}

= VRV E

rα
k − rc,k(

∂rα
i

∂Pk

)
{q}{r⃗β ̸=α}{p}

= VRV E

qα
· δki

(III.12)

∂URV E,int,ind({p⃗}, {q}, {r⃗})
∂pα

i

=
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β=1
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j=1

[
T

(1,1)
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(
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)]
ij

pβ
j +

n∑
β=1

[
T

(1,0)
p−q

(
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)]
i
qβ
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∂qα

=
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β=1
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j=1

[
T

(1,0)
p−q

(
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)]
j
pβ
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T

(0,0)
q−q

(
r⃗α, r⃗β

)
qβ + χα
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= 1
2
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(
pγ

j ∇α
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[
T
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p−q

(
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j
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−1
2
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(
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j ∇α
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[
T
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(
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jl

pβ
l

)
(III.13)

52



III.4. Derivation of analytical formula for computation of flexocoupling
coefficients

where ∇α
i is the derivative with respect to the component i of the position of atom

α. Substituting formulas III.12 and III.13 into formula III.11, we have:

EL
k = −

n∑
α=1


 n∑

β=1
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)]
i
pβ

i +
n∑

β=1
T

(0,0)
q−q

(
r⃗α, r⃗β
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) 1
qα


(III.14)

The last term (coming from the gradient of the energy, i.e. the opposite of the
force) can be simplified, thanks to equation III.15 and similar formula for the other
interaction tensors (Recall that we defined T (1,0)

(
r⃗α, r⃗β

)
= −∇⃗αT (0,0)

(
r⃗α, r⃗β

)
=

T (0,1)
(
r⃗α, r⃗β

)
= ∇⃗βT (0,0)

(
r⃗α, r⃗β

)
, which leads to a sign difference with respect to

the other common definition T (1)(R⃗) = ∇⃗RT (0)(R⃗) with R⃗ = r⃗α − r⃗β):

∇α
i T

(0,0)
q−q
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[
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i

(III.15)
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Using T
(1,0)
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, this simplifies into:
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If we take the same Gaussian radii for charges and dipoles, then
[
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i

=[
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i

and there is a further simplification:
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Now we have to compute ∂EL
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Using equation III.15, ∂EL
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can be further simplified as:
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Now, recalling Eq. III.1, we have:
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Finally,
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Equation III.22 is the final derived expression for computing the flexocoupling
tensor fijKL for an ionic material such as MoS2. However, in order to compute
the flexoelectric coefficients which are usually used in experiments and theory, we
have to compute the susceptibility tensor χim = ϵ−1

0 ∂Pi/∂Em of MoS2 that can
link the flexocoupling coefficients with the flexoelectric coefficients, since µijkl =
ε0χimfmjkl, since we defined ∆Pi = µijkluj,kl.

In our case, the easiest to write is not ∂Pi/∂Em, but ∂EL
i

∂Pj
. We therefore proceed

to write its explicit expression:
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in which, ∂EL
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Substituting the formula III.25, III.24 and III.20 into formula III.23, we get:
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Finally, the susceptibility tensor χij can be written as[Lecoutre 18]:

χij =


ε0
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.

∂P.
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
−1


ij

(III.27)

III.5 Results and Discussion

Using the derived expression for flexocoupling tensor III.22, we computed the
flexocoupling coefficient f2222 of MoS2 for two different shapes of the RVE. As can
be seen by comparing the values of two color scale bars in Figure III.3, the value
for flexoelectric coupling f2222 computed in rectangle-shaped RVE III.3 (b) is much
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III.5. Results and Discussion

Figure III.3: Computed distribution profiles for flexocoupling coefficient f2222 for
(a) parallelogram-shaped and (b) rectangular RVE for MoS2 monolayer, with
three and six atoms included in (a) parallelogram-shaped and (b) rectangular

RVE, respectively

larger than that computed for a parallelogram shape III.3 (a). This means that
the calculated flexoelectric coefficients will vary accordingly with different choices
of RVE, which obviously violates the invariance of the flexoelectric coefficients
under different RVE choices. Furthermore, it can also be seen on Figure III.3,
that the calculated flexocoupling coefficient distribution correlates strongly with
the location of RVE. We attribute this to the fact that, due to side effects, the
values of charges and dipoles on atoms are different for different RVEs located
in different position. The flexocoupling coefficient in the inner RVE (red region
in Figure III.3a) will be insusceptible to the side of MoS2 flake and therefore
approach to bulk value. Hence, we chose the inner flexocoupling coefficients in the
parallelogram-shaped RVE case, for the final calculated results tabulated in Table
III.1. It can be seen that some of the computed flexocoupling tensor components
are infinite, which can be ascribed to the fact that the term 1/(rα

i − rc,i) is infinite
when rα

i = rc,i, which is the case for the z component of the positions of the Mo
atoms, in the undeformed configuration. We also find that the first two terms
in the expression III.22 represent the major (99%) contribution to the computed
flexocoupling tensor. In order to obtain the flexoelectric coefficient µijkl in units
of nC/m, as commonly reported in the literatures, we use µijkl = ε0χimfmjkl to
associate µijkl with fijkl, with χim being susceptibility tensor. We now turn to the
computation of susceptibility tensor χij by using equation III.27 derived above.
Unfortunately, the computed χij is infinitely great, which is again attributable
to the term including 1/(rα

i − rc,i) in equation III.26. To get a finite value, we
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f1111 -4.7 f1321 0 f2231 0 f3211 I
f1112 2.7 f1322 0 f2232 0 f3212 I
f1113 0 f1323 7.5 f2233 0 f3213 807.5
f1121 2.7 f1331 -12.9 f2311 0 f3221 I
f1122 -1.6 f1332 7.5 f2312 0 f3222 I
f1123 0 f1333 0 f2313 5.7 f3223 -465.0
f1131 0 f2111 38.2 f2321 0 f3231 807.5
f1132 0 f2112 -22.1 f2322 0 f3232 -465.0
f1133 0 f2113 0 f2323 -3.3 f3233 I
f1211 33.8 f2121 -22.1 f2331 5.7 f3311 I
f1212 -19.5 f2122 12.8 f2332 -3.3 f3312 I
f1213 0 f2123 0 f2333 0 f3313 I
f1221 -19.5 f2131 0 f3111 I f3321 I
f1222 11.3 f2132 0 f3112 I f3322 I
f1223 0 f2133 0 f3113 -1140.0 f3323 I
f1231 0 f2211 88.1 f3121 I f3331 I
f1232 0 f2212 -50.9 f3122 I f3332 I
f1233 0 f2213 0 f3123 657.5 f3333 28.0
f1311 0 f2221 -50.9 f3131 -1140.0
f1312 0 f2222 29.4 f3132 657.5
f1313 -12.9 f2223 0 f3133 I

Table III.1: Flexocoupling coefficients in volt for MoS2 monolayer. I means
infinity.

removed the terms with 1/(rα
i − rc,i) in equation III.26, so that:
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Susceptibility tensor for MoS2 is computed with the equation III.28 to be −12.73 0 0
0 −12.67 0
0 0 −12.77

, which are of the same order of magnitude as the

result reported in the literature[Laturia 18]. However, the sign of it is not rea-
sonable since it is negative. With the calculated susceptibility tensor and flexo-
coupling coefficients, the values of flexoelectric coefficients can be computed using
µijkl = ε0χimfmjkl, as shown in Table III.3. We compare these computed results
with those obtained from the experimental measurements conducted by Brennan et
al.[Brennan 17, Brennan 20] and atomic-level calculations by Gaussian-regularized
charge dipole model in combination with the interatomic interaction (Chapter IV),
as shown in Table III.2. It can be seen that µ1111 and µ2222 are of the same order
of magnitude as those calculated using the atomistic model introduced in the pre-
vious chapters. However, the obtained results show that the magnitude of µ1111
and µ2222 are much different, which is inconsistent with the quantitative relation-
ship (µ1111 ≈ µ2222) obtained in the next chapter. This could result from the
discrepancy in lattice symmetry between RVE and the MoS2 flake with four sides
perpendicular to each other. In order to illustrate this problem, we computed and
then compared the numerical relationship of f(µ)1111 and f(µ)2222 with the shape
of the RVE changed from a parallelogram to a rectangle (see Fig. III.3b). The
computed results are 55.25 V and 72.2 V for f1111 and f2222, respectively. f2222 is
bigger than f1111 by a factor of around one (as expected), suggesting that different
choices for RVEs do affect the calculation results. We can also see from Table III.2
that the computed µ3333 is two orders of magnitude larger than that reported.
Furthermore, some of the calculated flexoelectric coefficients, i.e. µ3123 and µ3131
etc, are two orders of magnitude larger than the previously generally measured
and calculated values (0.1-1 nC/m) for most 2D materials.

Table III.2: Comparison between transverse flexoelectric coefficient µ3311
obtained by charge dipole model and theoretical computation.

Ref. µ3333 (nC/m) µ1111(nC/m) µ2222(nC/m)
present work -2.9 0.5 -3.3
Yang et al -0.0416 0.68 0.71

Brennan et al 0.08 or 0.12 – –
Brennan et al 0.065 – –
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µ1111 0.5 µ1321 0 µ2231 0 µ3211 I
µ1112 -0.3 µ1322 0 µ2232 0 µ3212 I
µ1113 0 µ1323 -0.8 µ2233 0 µ3213 -91.0
µ1121 -0.3 µ1331 1.5 µ2311 0 µ3221 I
µ1122 0.2 µ1332 -0.8 µ2312 0 µ3222 I
µ1123 0 µ1333 0 µ2313 -0.6 µ3223 52.5
µ1131 0 µ2111 -4.3 µ2321 0 µ3231 -91.0
µ1132 0 µ2112 2.5 µ2322 0 µ3232 52.5
µ1133 0 µ2113 0 µ2323 0.4 µ3233 I
µ1211 -3.8 µ2121 2.5 µ2331 -0.6 µ3311 I
µ1212 2.2 µ2122 -1.4 µ2332 0.4 µ3312 I
µ1213 0 µ2123 0 µ2333 0 µ3313 I
µ1221 2.2 µ2131 0 µ3111 I µ3321 I
µ1222 -1.3 µ2132 0 µ3112 I µ3322 I
µ1223 0 µ2133 0 µ3113 53.0 µ3323 I
µ1231 0 µ2211 -9.9 µ3121 I µ3331 I
µ1232 0 µ2212 5.7 µ3122 I µ3332 I
µ1233 0 µ2213 0 µ3123 -45.4 µ3333 -2.9
µ1311 0 µ2221 5.7 µ3131 53.0
µ1312 0 µ2222 -3.3 µ3132 -45.4
µ1313 1.5 µ2223 0 µ3133 I

Table III.3: Flexoelectric coefficients in nC/m for MoS2 monolayer. I means
infinity.

III.6 Conclusion

In this chapter, we describe how we tried to incorporate charge terms in the
analytical formula involving only dipoles, derived by G. Lecoutre to compute the
flexocoupling coefficients of carbon nanotubes, in order to be able to deal with
ionic materials such as 2D MoS2 for which the charge-dipole model is supposed
to be more adequate than the pure dipole model. With the derived analytic
formula, we calculated many components of the flexoelectric tensor of 2D MoS2.
Results indicate that those flexoelectric coefficients cannot be well predicted with
the method proposed in the current chapter. However, due to the complexity of
those calculations, we chose to keep that chapter in the thesis, in hope that at least
part of it may be useful for someone having a new try to this problem. However,
as a result of the problems with our results, we changed our method and finally
used numerical computations to calculate the flexoelectric tensor of MoS2. This
will be described in the next chapter.
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Chapter IV. Computation of Flexoelectric Coefficients of a MoS2 monolayer

IV.1 Motivation

Since we did not manage to obtain the same order of magnitude as the exper-
imental measurement of the flexoelectric coefficients of MoS2 using the analytical
formula derived in Chapter 3, we tentatively tried to adopt a relatively safe way.
The regularized charge dipole model (already used in the previous chapters) was
employed to numerically compute polarization of material so that we could use the
direct flexoelectric effect to calculate the flexoelectric coefficient of molybdenum
disulfide[Zhuang 19]. Furthermore, the charge dipole model was recently used to
compute flexoelectric coefficients of some representative 2D materials in an article
by Zhuang and co-workers[Zhuang 19]. Studying this paper in details, we found
that, as in the paper by Javvaji et al discussed in chapter 2[Javvaji 18], the polar-
ization seems inappropriately defined and charge conservation is also not included
(which seems normal since both papers have almost the same authors). These
reasons lead us to begin our research detailed in this chapter.

IV.2 Introduction

Two-dimensional transition metal dichalcogenides (TMDs) are semiconducting
and have excellent optoelectronic properties, making them good candidates for
photodetection and light-emitting devices[Tian 16, Choi 17, Singh 21]. In several
experiments, 2D MoS2 materials are found to possess strong in-plane piezoelectric-
ity and piezotronic effects, which could be used in piezoelectric and triboelectric
nanogenerators[Fan 19, Han 19, Kim 19]. Recently, another experiment reports
that monolayer MoS2 exhibits remarkable out-of-plane polarization when a com-
pressive loading exerted by the tip of atomic force microscopy acts on it, and the
enhancement of vertical piezoelectricity in the MoS2 is explained by the possible
flexoelectric effect induced by structural deformation[Brennan 20, Brennan 17].
Hence, 2D materials can easily undergo out-of-plane deformation due to deforma-
tion, eg. bending. The bending of 2D materials leads to nonuniform deformation,
which could cause a significant strain gradient. Further understanding the influ-
ence of structural bending on the charge polarization in monolayer TMDs will be of
importance in unveiling their flexoelectricity, for which, some of studies on calcula-
tion of flexoelectric coefficient for 2D materials have been conducted in the context
of density functional theory. For example, the dependency of the global dipole
moment (polarization) on curvature of carbon nanotube and graphene was inves-
tigated by Dumitrică[Dumitrică 02] and Kalinin [Kalinin 08], respectively. Kvash-
nin et al[Kvashnin 15] studied and then established the universality of the linear
dependence of flexoelectric atomic dipole moments on local curvature in various
carbon networks (carbon nanotubes, fullerenes and nanocones). Chandratre et
al[Chandratre 12] and Kundalwal et al[Kundalwal 17] created hole with different
shapes (triangle, circle, trapezoid) on graphene to generate an in-plane net polar-
ization due to symmetry breaking. Such a treatment makes it possible for non-
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piezoelectric materials to behave as effective piezoelectric materials. Furthermore,
the bending-mode flexoelectric coefficient of Phosphorene[Pandey 21a], hexagonal
boron nitride[Kundalwal 21, Guo 22], monolayer GaSe[Zhang 22] and transition-
metal dichalcogenides[Shi 18, Shi 19] have been also calculated by means of first-
principle calculations. Remarkably, Kumar et al very recently calculated the flex-
oelectric coefficient for fifty-four representative atomic monolayers selected from
distinct groups in the periodic table of elements using ab-initio Density Functional
Theory (DFT)[Kumar 21].

Recently, Zhuang and co-workers used molecular dynamics simulations coupled
with a charge dipole (QP) model to compute flexoelectric coefficients for transition-
metal dichalcogenides[Zhuang 19] and related materials[Javvaji 19]. This kind of
method uses calculations much faster than DFT calculations, and provides an
easier way to predict the properties of bigger and less symmetric heterostruc-
tures. Since we have some experience in using the QP model[Wang 07a, Wang 08b,
Yang 18] we studied those papers in details and noticed that a term involving effec-
tive charges was neglected/omitted in the definition of polarization that only used
the effective dipoles, as in the case of covalent materials such as e.g. graphene.
Furthermore, the enforcement of charge conservation was also not implemented,
meaning that charges could flow in or out of the materials without any constraint,
which can conflict with the fact that an insulating substrate (Polydimethylsiloxane
(PDMS), Au, Al2O3)[Brennan 17, Brennan 20] was used to obtain the out-of-plane
effective flexoelectricity coefficient of monolayer MoS2, by using an equation for
converse flexoelectricity to compute a flexoelectric coefficient using the measured
out-of-plane effective piezoelectric coefficient[Brennan 17, Brennan 20]. We also
note that in-plane flexoelectric coefficients µ1111 or µ2222 for such 2D materials
have not yet been experimentally obtained, since it has been difficult to isolate
the relative contributions of piezoelectricity and flexoelectricity to the resulting
polarization.

In this chapter, we computed the in-plane flexoelectric coefficients µ1111, µ2222,
transverse flexoelectric coefficient µ3311 and out-of-plane flexoelectric coefficient
µ3333 for monolayer MoS2 using the charge-dipole model[Olson 78] with radial
Gaussian regularization[Mayer 06, Mayer 07a, Wang 07a, Mayer 08, Mayer 09b,
Yang 18] enforcing charge conservation with a Lagrange multiplier and adding an
ionic charge term in the definition of polarization. The significance of the miss-
ing charge term is estimated in the computation of µ3333, by comparison with the
simulation paper of Javvaji et al.[Javvaji 19] and the experimental papers of Bren-
nan et al.[Brennan 17, Brennan 20]. Our calculations illustrate that the results
for this flexoelectric coefficient computed with the improved definition of polar-
ization agree in magnitude with experimental measurements, with the possible
reason causing the discrepancy in sign discussed. Moreover, two critical factors
capable of affecting the sign of flexoelectric coefficient are fully elucidated while
µ3311 is computed. Additionally, µ1111 and µ2222 are calculated by using an in-plane
displacement field that effectively eliminates the piezoelectric contribution to the
polarization.
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IV.3 Principle of the method used to com-
pute flexoelectricity coefficients

As written in chapter 1, the direct flexoelectric effect describes the fact that
a strain gradient in a material will cause an (additional) electric polarization of
the material, because of the inhomogeneous distribution of positive and negative
charge centers caused by the inhomogeneous deformation. Polarization being a
vector described by a vector (first order tensor) and strain gradient a third order
tensor, the supposedly linear relation between these two quantities is represented
by a fourth order flexoelectricity tensor. Various conventions for the signification of
the indices, leading to different matrix compressed representations, are used in the
literature. We chose the one that puts the index corresponding to the polarization
in first place, since we do not make use of the equivalence of the two strain indices:

∆Pi = µijklGjkl (IV.1)

where G is the second order displacement gradient and i, j, k, l are indices labeling
the coordinates x, y, z or 1, 2, 3. The Einstein implied summation convention for
repeated indices is used.

Our goal is to compute values for these µijkl coefficients. For that purpose we
will use an inverse effect: when submitted to an external electric field, a dielectric
material tends to deform so as to align its global dielectric polarization vector with
the external field. Hence, we use various symmetric field configurations designed
to deform inhomogeneously a MoS2 monolayer, while not changing the global po-
larization contributions due to the dielectric susceptibility of the material or its
piezoelectric properties. Then, we compute both the global polarization and the
global strain gradient of the deformed structure and fit the (hopefully linear) re-
lation between these two quantities to find the µ coefficients.

We shall therefore describe now, how we compute the global polarization and
strain gradient in the monolayer. Since the description on regularized charge
dipole model has been discussed in the previous chapter, we omit this part in
this chapter. Our version of the QP model for MoS2 possesses 8 parameters: 2 (χ
and R) per kind of atoms by 4 kinds: Mo and S ’bulk’ + Mo and S ’edge’. Details
on this parameterization, by comparison with DFT data, are given in our previous
work[Yang 18]. Recalling equation II.6, the solution can be written in two parts
as:
 q

p⃗
λ

 =

 T
(0,0)
q−q

(
T

(1,0)
p−q

)T
1

T
(1,0)
p−q T

(1,1)
p−p 0

1 0 0


−1  −χ

0
Qtot

+

 T
(0,0)
q−q

(
T

(1,0)
p−q

)T
1

T
(1,0)
p−q T

(1,1)
p−p 0

1 0 0


−1  −Vext

−E⃗ext

0


(IV.2)

where the first term on the right side corresponds to intrinsic charges q0
α and

dipoles p⃗0
α, i.e. charges and dipoles in the absence of any external electric field,

that can however vary due to a mechanical deformation. The electronegativities
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χα uniquely determine these intrinsic charges and dipoles (given the atomic po-
sitions), independently from any external electric field E⃗ext or potential Vext. For
our calculations, the total charge of the nanoribbon (Qtot) is set to be zero because
of the fact that flexoelectricity is supposed to be an intrinsic property, therefore
requiring no extra charge to appear. The second term on the right side corresponds
to effective additional charges (qind

α ) and dipoles (pind
α generated by the external

electric field and potential). This can be summarized under the form:

px =
N∑

α=1
(p0

x,α + pind
x,α)

py =
N∑

α=1
(p0

y,α + pind
y,α)

pz =
N∑

α=1
(p0

z,α + pind
z,α)

q =
N∑

α=1
(q0

α + qind
α )

(IV.3)

In terms of the calculated dipoles p⃗ and charges q, the global polarization P⃗ for
MoS2 nanoribbon is defined as[Olson 78]:

P⃗ =

N∑
α=1

(qαr⃗α + p⃗α)

V
(IV.4)

in which V is the volume of MoS2 nanoribbon. A thickness of 6.5 Å is used in
computing V .[Li 15] More information on the charge dipole model for MoS2 can
be found in our previous work[Yang 18]. Note that since MoS2 is not ferroelectric,
the total contribution to polarization of the q0

α and p⃗0
α is zero (verified numerically),

so that Eq. IV.4 could be rewritten by taking into account the induced charges
and dipoles only.

In order to compare with some DFT results or remove edge effects, periodic
boundary conditions can be applied in the QP model by adding the contributions
of periodic images in the interaction tensors, i.e. adding contributions obtained
by replacing rαβ in Eq.II.3 with rαβ + L ∗ p (p ∈ [−k, k]) , with L denoting
the periodic length in a given direction and k being a very large integer. We
verified that setting k = 100 in our calculation is already sufficiently large to reach
convergence in the computation of in-plane flexoelectric coefficients µ1111, µ2222
and out-of-plane flexoelectric coefficient µ3333, thus eliminating edge effects.

IV.4 Method for the computation of strain
gradient G

To compute the second order strain gradient G, we considered that the RVE
was the whole system if non periodized and the supercell if periodized. Then,
we tried several methods implemented using various functions of the LAPACK
library.[Anderson 99]
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As a first common step, we choose the centroid (C) of the undeformed config-
uration as the origin of this undeformed configuration and make the continuum
approximation that Eq.III.6 also apply to that point taken as atom α. Then, by
inserting R⃗αβ = R⃗β − R⃗α and r⃗αβ = r⃗β − r⃗α into Eq.III.6 and simplifying the result
using ∀J = 1, 2, 3, RJ,α = RJ,C = 0, we have:

∀i = 1, 2, 3, ∀β = 1, ..., N
ri,β − ri,α = ∑3

J=1 FiJRJ,β +∑3
J=1

∑3
K=1

GiJK

2 RJ,βRK,β
(IV.5)

Let us insist that, in this equation, all the components of ri,β, ri,α and RJ,β are now
taken in the frame with its origin in C and the three axes x, y and z and that the
three values of ri,α = ri,C are a priori unknown. Eq.IV.5 can be cast into matrix
form, component-wise, by defining a N by 13 (or 10 if we take into account the
symmetry between J and K indices) matrix A, a 13 (or 10) by 3 matrix X and a
N by 3 matrix B, such that AX = B, with:

A =



1 {RJ,1}J=1,2,3 (1/2){RJ,1RK,1}J,K=1,2,3
... ...
1 {RJ,α}J=1,2,3 (1/2){RJ,αRK,α}J,K=1,2,3
... ...
1 {RJ,N}J=1,2,3 (1/2){RJ,NRK,N}J,K=1,2,3

 , (IV.6)

X =

 r1,C r2,C r3,C

{F1J}T
J=1,2,3 {F2J}T

J=1,2,3 {F3J}T
J=1,2,3

{G1JK}T
J,K=1,2,3 {G2JK}T

J,K=1,2,3 {G3JK}T
J,K=1,2,3

 , (IV.7)

B =



r1,1 r2,1 r3,1
... ... ...

r1,β r2,β r3,β
... ... ...

r1,N r2,N r3,N

 (IV.8)

This problem could then be solved directly using routine DGELS of LAPACK,
which computes the least squares solution vector, by QR or LQ factorization, for
this a priori overdetermined problem (provided that there are more than 13 (or
10) atoms in the RVE). However, DGELS requires that matrix A be full rank
which is not the case for a 2D material with a flat undeformed configuration, since
in that case there is a degeneracy due to the fact that all the atoms in a given
layer (e.g. all Mo atoms in our case) have very similar coordinates along the axis
perpendicular to the plane (z axis in our case, also called axis 3). We therefore
used routine DGELSD that solves overdetermined linear systems as linear least
squares problems using Singular Value Decomposition (with an algorithm that is
said to be much faster than DGELSS in LAPACK user’s guide[Anderson 99]).

We also tested another method that minimize more explicitly the sum of the
squares of the residuals of Eq.IV.5:

68



IV.5. Calculation of flexoelectricity coefficients

∀i = 1, 2, 3

χ2
i (ri,α, {FiJ}, {GiJK}) =

N∑
β=1

(
ri,β − ri,α −

3∑
J=1

FiJRJ,β −
3∑

J=1

3∑
K=1

GiJK

2 RJ,βRK,β

)2

,

(IV.9)

Indeed this can be cast into matrix form by defining a 14 (or 11) by N matrix Ai

and a 1 by N vector Yi for the three values of i, such that:

Ai =



−ri,1 1 {X1
J}J=1,2,3 {X1

JX1
K}J,K=1,2,3

... ... ... ...
−ri,α 1 {Xα

J }J=1,2,3 {Xα
J Xα

K}J,K=1,2,3
... ... ... ...

−ri,N 1 {XN
J }J=1,2,3 {XN

J XN
K }J,K=1,2,3

 , Yi =


1

ri,C

{FiJ}T
J=1,2,3

{2GiJK}T
J,K=1,2,3


(IV.10)

since using these definitions (Eq. IV.5) into Eq.IV.9, we have:

χ2
i = (AiYi)T AiYi = Y T

i AT
i AiYi = Y T

i NiYi (IV.11)

with Ni = AT
i Ai. The minimum of χ2

i (Y ) can then be obtained when Yi is the
ratio of the eigenvector (given by DSYEV) corresponding to the smallest non-zero
eigenvalue of matrix Ni (selected with a threshold set to 10−6), divided by the
value of the first component of this eigenvector.

We tested these methods and variants using explicitly the symmetry between
indices J and K of GiJK using various imposed deformation, and checked whether
we could recover what we put. We found that the method using DGELSD was
the most stable and allowed a check of consistency by assessing the respect of the
symmetry between J and K indices.

IV.5 Calculation of flexoelectricity coef-
ficients

We illustrate the method we use to compute the flexoelectric coefficients on
the special case of the determination of µ3311.

IV.5.1 potential energy functional used for the ’struc-
ture’ part

The key of the molecular simulations is actually the interatomic potential,
which is applied to describe the interaction among atoms. For single-layer MoS2,
the Stillinger-Weber many-body potential (ESW ) as parameterized by Wen et
al[Wen 17] was very recently proven to be robust through a quantitative systematic
comparison of structural and mechanical properties, as well as phonon dispersion
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for single-layer MoS2 using density functional theory (DFT) and molecular stat-
ics calculations.[Madziarz 21] We therefore used this parameterization of the SW
potential (ESW ) in our simulations, and found it very stable. The various MoS2
nanoribbons we use in our simulations are thus initially relaxed by minimizing
ESW . This gives the undeformed configuration mentioned in the previous subsec-
tion.

To compute the deformed configurations, we removed the interactions between
intrinsic charges and dipoles in Eelec, since they are already included in ESW .
We also neglected the total contribution of the interactions between intrinsic and
induced charges and dipoles to keep only the total contributions of the interactions
between charges and dipoles induced by the external field and potential (which we
name E ′

elec).

IV.5.2 Initial conditions for the calculation of µ3311

Figure IV.1: Schematic of bending simulation for MoS2 nanoribbon subjected to
an external electric field. The left and right parts of the MoS2 sheet are

submitted to an electric field in the bottom-right and top-right direction,
respectively. The external electric field E⃗ is represented by the arrows. θ is the

angle with the +x direction.

In order to compute µ3311, a ↘↗-like external electric field E⃗ext, with both
directions of E⃗ext in the x-z plane, is applied to the MoS2 nanoribbon, keeping the
middle row of atoms fixed (as if it were attached to a virtual fixed object). This
field generates a bending deformation of the nanoribbon because of the inverse
flexoelectric effect, as seen in Fig IV.1. The conjugate gradient algorithm is then
used to minimize the energy function Etot = ESW + E ′

elec which now includes
the interactions with the external field and potential and the contributions of the
effective induced charges and dipoles. The energy optimization simulation then
makes the MoS2 flake bend towards the direction of the applied electric field by
adjusting the positions of the atoms until the computed average force is less than
0.00004 eV/Å. Note that all these simulations are done with a FORTRAN code
that has been continuously developed in the group for years.
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The mechanism of electrostatic bending of MoS2 flake is depicted in Figure
IV.2. We can see that negative and positive charges are shifted to opposite direc-
tions due to the non-zero transversal electric field (positive charges move to top
right and negative ones move to upper left of the MoS2 flake). The interaction be-
tween the total dipoles induced on each side by the changes of the effective charges
and the external electric field produces two torques with opposite direction, termed
τ1 and τ2, making the two sides of the MoS2 flake respectively bend towards the
direction of the external electric field with the fixed atoms as the rotation axis,
while giving a zero total polarization along the vertical axis.

Figure IV.2: Induced charge on a MoS2 nanoribbon subjected to external
electric field. The positive charges move to the right side and the negative ones

move to the left side. E represents external electric field, whose direction is
denoted by the arrows. The atoms colored red and blue are positively and

negatively charged, respectively. The atoms in the central gray zone are fixed. τ⃗1
and τ⃗2 stand for the induced bending moments acting on the MoS2.

IV.5.3 Detailed description for Stillinger-Weber poten-
tial

The SW potential is obtained as a combination of two- and three-body inter-
actions.

USW

(
{r⃗α}α=1,··· ,N

)
= 1

2

N∑
α,β=1
α ̸=β

U2 (rαβ) + 1
6

N∑
α,β,γ=1
α ̸=β ̸=γ

U3 (r⃗α, r⃗β, r⃗γ) (IV.12)

with:

U2 (rαβ) =

 εA
[
B
(

σ
rαβ

)p
−
(

σ
rαβ

)q]
exp

(
σ

rαβ−r
U2
c

)
rαβ < rU2

c

0 rαβ ≥ rU2
c

(IV.13)

U3 (r⃗α, r⃗β, r⃗γ) = h (rαβ, rαγ, θβαγ) + h (rβα, rβγ, θαβγ) + h (rγα, rγβ, θαγβ) (IV.14)
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h (rαβ, rαγ, θβαγ) =

 ελ exp
[(

ζσ

rαβ−r
U3
c

)
+
(

ζσ

rαγ−r
U3
c

)]
(cos θβαγ − cos θ0)2 rαβ, rαγ < rU3

c

0 rαβ or rαγ ≥ rU3
c

(IV.15)
In these definitions, rαβ is the distance between αth and βth atoms which are

within the range of cutoff radius rc. θβαγ is the bond angle subtended by the
bonds rαβ and rαγ at vertex α, θ0 is the angle between nearest neighbor atoms
at equilibrium state of MoS2, with cos θ0 = −1/3 for the symmetric tetravalent
equilibrium configuration. The values of the parameters (θ0, ϵ, A, B, p, q, σ, rU2

c ,
rU3

c , λ and ζ) depend on the chemical nature of atoms α, β and γ. The values we
used[Wen 17] are given in Table IV.1 and IV.2.

Table IV.1: SW potential parameters (part 1)

``````````````̀Interaction
Parameters

A (eV) B p q σ (Å) rU2
c (Å)

Mo-Mo 3.9781804791 0.4446021306 5 0 2.85295 5.54660
Mo-S 11.3797414404 0.5266688197 5 0 2.17517 4.02692
S-S 1.1907355764 0.9015152673 5 0 2.84133 4.51956

Table IV.2: SW potential parameters (part 2)

ϵ (eV) λS−Mo−S (eV) λMo−S−Mo (eV) ζ (Å) θ0 rMo−S
c(U3) (Å) rS−S

c(U3) (Å)
1. 7.4767529158 8.1595181220 1.3566322033 81.7868◦ 4.02692 3.86095

To compute the forces, we will need several intermediate point (using r⃗αβ ≡ r⃗α→β ≡ r⃗β − r⃗α),
we have

∀n, α ̸= β, ∇⃗nf (rαβ) ≡ ∂f (rαβ)
∂r⃗n

= r⃗α − r⃗β

∥r⃗α − r⃗β∥
f ′ (rαβ) (δnα − δnβ) (IV.16)

Then:

∇⃗n cos θβαγ ≡ ∂

∂r⃗n

(
r⃗αβ · r⃗αγ

rαβrαγ

)
= 1

rαβrαγ

[(r⃗α − r⃗γ) (δnα − δnβ) + (r⃗α − r⃗β) (δnα − δnγ)]

+
(

r⃗αβ · r⃗αγ

rαγ

)[
− r⃗n − r⃗β

∥r⃗n − r⃗β∥3 δnα + r⃗α − r⃗n

∥r⃗α − r⃗n∥3 δnβ

]

+
(

r⃗αβ · r⃗αγ

rαβ

)[
− r⃗n − r⃗γ

∥r⃗n − r⃗γ∥3 δnα + r⃗α − r⃗n

∥r⃗α − r⃗n∥3 δnγ

]
∀n, α ̸= β ̸= γ

(IV.17)
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So that:

∇⃗α cos θβαγ = 1
rαβrαγ

[(r⃗α − r⃗γ) + (r⃗α − r⃗β)] − cos θβαγ

[
r⃗α − r⃗β

∥r⃗α − r⃗β∥2 + r⃗α − r⃗γ

∥r⃗α − r⃗γ∥2

]

∇⃗β cos θβαγ = −(r⃗α − r⃗γ)
rαβrαγ

+ cos θβαγ

[
r⃗α − r⃗β

∥r⃗α − r⃗β∥2

]

∇⃗γ cos θβαγ = −(r⃗α − r⃗β)
rαβrαγ

+ cos θβαγ

[
r⃗α − r⃗γ

∥r⃗α − r⃗γ∥2

] ∀α ̸= β ̸= γ

(IV.18)
Then, in the case f = U2, we have: f ′ (rαβ) = 0 if rαβ ≥ rU2

c , and otherwise:

U ′
2 (rαβ) = εA
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(
σ

rαβ
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(
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rαβ
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σ
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c
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−
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B

(
σ

rαβ

)p

−
(

σ

rαβ

)q](
σ

rαβ − rU2
c

)2

exp
(

σ

rαβ − rU2
c

)
(IV.19)

Finally, in the case f = h, we have, e.g.: h (rαβ, rαγ, θβαγ) = 0 if rαβ or rαγ ≥ rc,
and otherwise:

∇⃗nh (rαβ, rαγ, θβαγ)

= −ελ

ζσ

( ζσ

rαβ − rU3
c

)2
r⃗α − r⃗β

∥r⃗α − r⃗β∥
(δnα − δnβ)

+
(

ζσ

rαγ − rU3
c

)2
r⃗α − r⃗γ

∥r⃗α − r⃗γ∥
(δnα − δnγ)

 exp
[(

ζσ

rαβ − rU3
c

)

+
(

ζσ

rαγ − rU3
c

)]
(cos θβαγ − cos θ0)2

+ 2ελ exp
[(

ζσ

rαβ − rU3
c

)
+
(

ζσ

rαγ − rU3
c

)]
(cos θβαγ − cos θ0) ∇⃗n cos θβαγ

(IV.20)

IV.5.4 Calculation of µ3311

Contributions to the polarization of a given dielectric material submitted to an
external electric field may come from piezoelectricity, flexoelectricity and electric
susceptibility. In the simulations defined in the previous subsection, piezoelectric-
ity need not be taken into account due to the symmetric bending deformation[Zhuang 19].
This makes the total induced polarization due to the first order deformation gra-
dient become zero. Additionally, one can find the total external electric field along
the out-of-plane is also zero. Hence, the out-of-plane polarization equal to the
product of the susceptibility and the electric field should be removed as well. The
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remaining flexoelectric part of the out-of-plane polarization P3 can be written as:

P3 =
3∑

j=1

3∑
k=1

3∑
l=1

µ3jklGjkl (IV.21)

with µ3jkl standing for flexoelectric tensor components. With the setup defined in
the previous section, this can be approximated by:

P3 = µ3311G311 (IV.22)

Hence µ3311 can be determined as the slope of the supposedly linear relation be-
tween P3 and G311.

IV.6 Results and discussion

Figure IV.3: (a) Schematic diagram of creation of strain gradient G333 inside
monolayer MoS2. h and t stand for the small upward shift for a layer of

molybdenum atom and the geometric thickness of monolayer MoS2, respectively.
(b) Basic unit for periodic monolayer MoS2, with length and width of basic unit
being 6.570 nm and 6.322 nm, respectively. (c) Variation of polarization P3 with

strain gradient G333 for monolayer MoS2.

In this section, we discuss the results we got for the computation of the in-
plane flexoelectric coefficients µ1111, µ2222, the transverse flexoelectric coefficient
µ3311 and the out-of-plane coefficient µ3333. In order to check the accuracy of
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our parameterized charge dipole model, we computed in-plane piezoelectric coef-
ficient e222 for MoS2 monolayer, defined as e222 = ( ∂P2

∂ε22
)E,T . As can be seen on

Fig.IV.4, the value of in-plane piezoelectric coefficient e222 (0.76×10−10C/m ) is of
the same order of magnitude as the experimental result (2.9×10−10C/m ) reported
in ref[Zhu 15].

Figure IV.4: y-axis polarization P2 vs uniaxial strain ε22 for an MoS2 monolayer.
The x axis corresponds to a zigzag edge while the y axis corresponds to an

armchair edge.

IV.6.1 Out-of-plane flexoelectric coefficient µ3333

As can be seen on Fig.IV.3a, for this calculation, the layer of molybdenum
atoms is shifted a small distance h to the positive direction of z axis to generate a
strain gradient only along the out-of-plane (z) direction. In this case, the unique
strain gradient that does exist is G333 and the expression for computing µ3333
can be written as µ3333 = ∂P3

∂G333
. The geometric thickness of monolayer MoS2 is

t. With both h and t, the strain gradient G333 can be computed as −8h
t2 , which

may be derived by: G333 = d2uz(0)
dz2 ≈ uz(− t

2 )+uz( t
2 )−2uz(0)

(t/2)2 = 0+0−2h
(t/2)2 = −8h

t2 , with
uz( t

2), uz(− t
2) and uz(0) representing the displacement of atoms for top sulfur

layer, bottom sulfur layer and molybdenum layer, respectively. In this calculation,
we enforce periodic boundary conditions to eliminate edge effects that can be
quite important in such a setup. As can be seen on Fig.IV.3b, we use a MoS2
flake with a width of 6.164 nm and a length of 6.388 nm as supercell, which gives
periods along x and y direction of 6.322 nm and 6.570 nm, respectively. Bond
length between Mo and S is set as 2.39763 Å in the presence of periodic boundary
conditions. On Fig.IV.3c, we plot the polarization P3 as a function of G333, in
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order to obtain the flexoelectric coefficient µ3333 of 2D MoS2. Three different ways
to compute the polarization are used (using qαr⃗α only, using p⃗α only or using both
terms in Eq.IV.4, with charges and dipoles computed using the QP scheme in the
three cases). The units of polarization P3 and strain gradient G333 are converted
from e/Å2 and Å−1 to 1010 nC/m2 and 1010 m−1 respectively, so as to readily
obtain µ3333 in nC/m from the slope of the fitted straight line. We compare
µ3333 computed under the various definitions of polarization with that obtained
from the experimental measurements conducted by Brennan et al in 2017 and
2020[Brennan 17, Brennan 20], respectively, as shown in Table IV.3.

Table IV.3: Comparison between out-of-plane flexoelectric coefficients µ3333
obtained by charge-dipole model and experimental measurements. The two

different contributions to the polarization coming from charges alone or dipoles
alone are considered separately then together for the computation of µ3333 by the

charge-dipole model.

Ref. µ3333 (nC/m) Definition of polarization

present work -0.0416 P3 =

N∑
α=1

(qαr3,α+p3,α)

V

present work -0.0350 P3 =

N∑
α=1

qαr3,α

V

present work -0.0066 P3 =

N∑
α=1

p3,α

V

Brennan et al (2017)[Brennan 17] 0.08 or 0.12 ———
Brennan et al (2020)[Brennan 20] 0.065 ———

It can be seen that the result for µ3333 computed when the charge term is
included in the definition of polarization will be comparatively closer to the ex-
perimental result in absolute value whereas µ3333 computed with the dipole term
only considered is of the same order of magnitude but much smaller than the
experimental value. This manifests that the charge term, omitted/neglected in
Ref.[Zhuang 19], cannot be neglected for the calculation of polarization for MoS2.
We do not take into account the discrepancy in sign between our computed results
and the results of the Piezoresponse Force Microscopy (PFM) measurements of
Brennan et al., since we believe that it is due to a problem of different definition
for the algebraic (or not) radius of curvature. This is reflected in another exper-
imental measurement of out-of-plane flexoelectric coefficient µ3333 for few-layers
MoS2 with PFM, very recently conducted by Hirakata et al[Hirakata 21]. In their
work, the sign of the out-of-plane flexoelectric coefficient is measured to be nega-
tive, though they quote a positive number. Indeed, using their Eq. 9, one can get
µ3333 = −c33ϵ3/

∂E3
∂x3

, with c33 meaning elastic constant of MoS2. Since c33, ϵ3 and
∂E3
∂x3

(see their Figure 11) are all positive, their µ3333 is in fact negative.[Hirakata 21]
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Other problems could arise because the MoS2 samples used in the PFM exper-
iments might not be as perfect as that used in our calculation. Indeed, intrinsic
atomic defects have been observed in the CVD-grown monolayer MoS2 using near-
field photoluminescence imaging[Lee 15]. These defects could give rise to very
localized strain gradients and therefore to noticeable additional polarization due
to flexoelectricity, since monolayer MoS2 is sensitive to any tiny deformation along
vertical direction (z) due to its atomically thin thickness. Furthermore, the pos-
sibly existing interfacial contamination between substrate and MoS2 sample and
the other uncertainties relevant to the measurements could be another cause of
discrepancy between our theoretical results and the experimental ones. It would
be useful if these (difficult) experiments could be repeated many times, so as to
reduce the large uncertainties on the experimental results, but we feel that our
present results for µ3333 of a MoS2 monolayer, agree well enough with experiment,
to encourage us to compute other flexoelectric coefficients for MoS2 monolayer, for
which we do not have experimental data to compare with.

IV.6.2 Transverse flexoelectric coefficient µ3311

The bending simulation described in the ’Methods’ section is employed to com-
pute the transverse flexoelectric coefficient µ3311 of MoS2. Since the visible dis-
placements are mostly along z direction, the strain gradient enabling polarization
to be nonzero is principally G311. Hence, µ3311 may be approximately expressed as
µ3311 = ∂P3

∂G311
. Fig.IV.5a presents the variations of the out-of-plane polarization P3

for a MoS2 flake bent along (x) zigzag direction with respect to the strain gradient
G311. One can notice that the intercept of the linear-fitting straight line is almost
zero, meaning that the nonzero polarization is mainly caused by G311.

Contrarily to what we did for the computation of µ3333, periodic boundary con-
ditions cannot be exerted in the bending simulation because bending of material
submitted to the external electric field will break the periodicity of the lattice it-
self. We therefore studied the effect of the size of the MoS2 flake, on the computed
flexoelectric coefficient. Fig.IV.5b is plotted to present the variation of transverse
flexoelectric coefficient µ3311 with the increasing number of atoms. It can be seen
that the value of µ3311 scales non-linearly down with the number of atoms. The
larger the number of atoms, the more obvious the trend of curve convergence. To
obtain a converged value, data is fitted with an exponential function. With the
number of atoms increasing, the transverse flexoelectric coefficient µ3311 converges
to −0.1075 nC/m, comparable to that for phosphorene[Pandey 21a] and boron ni-
tride sheet[Kundalwal 21]. A comparison is made between µ3311 computed with QP
model and that obtained by DFT-based first principle calculation by Shashikant
et al[Kumar 21], as listed in Table IV.4. It can be seen that our computed result
for µ3311 agrees much better in absolute value with that obtained from DFT cal-
culations than the one computed by Zhuang et al.[Zhuang 19], signifying that the
computation of transverse flexoelectric coefficient of MoS2 can be well captured
by the QP model, if the proper definition for the polarization is used. Note that
the radial polarization p⃗r defined in reference [Kumar 21] and [Springolo 21] to
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Chapter IV. Computation of Flexoelectric Coefficients of a MoS2 monolayer

Figure IV.5: (a)Variation of P3 with strain gradient G311. The magnitude of the
electric fields imposed to the MoS2 monolayer for bending simulation are

0.0424 V/Å, 0.0566 V/Å, 0.0707 V/Å, respectively. (b)Transverse flexoelectric
coefficient µ3311 vs number of atoms. An exponential function is used to describe
the tendency to convergence. The lengths a and b of the sides of the MoS2 flakes

are marked next to each computed µ3311. The first and second number for the
size of MoS2 flake corresponds to a and b, respectively. The unit of a and b is Å.
δ denotes characteristic length of exponential function. The angle between the

electric field and the positive direction of the x-axis is set to 45 degrees.

compute µ3311 can be considered equivalent to the pz used in our work, since it is
always locally perpendicular to the 2D material. We will now turn again to the
question of the sign of the flexoelectric coefficients.
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IV.6. Results and discussion

Table IV.4: Comparison between transverse flexoelectric coefficient µ3311
obtained by charge dipole model and theoretical computation.

Ref. µ3311 (nC/m)
present work -0.1075

Shashikant et al [Kumar 21] 0.14
Zhuang et al [Zhuang 19] 0.016

Understanding the reason causing the discrepancy in the sign of flexoelectric
coefficients is essential because the direction of the electric polarization induced by
flexoelectricity is of significance for sensors and energy harvesters. We will study
successively the sign of the polarization and the strain gradient.

Figure IV.6: Origin of flexoelectric effect in bending deformation. (a) Under
bending deformation, the direction of induced dipole moment points to -z

direction. For an undeformed MoS2 flake, the total dipole moment along the
direction normal to the surface of MoS2 is zero. (b) Separation of the centers (in

black) of positive (in red) and negative charges (in blue) due to bending
deformation.

Concerning polarization, we separate two distinct contributions: one due to
the deformation of the lattice and the other one due to charge transfer between
the inner and outer layers during bending. For that purpose we first compute the
relaxed positions of a MoS2 flake deformed under the action of an electric field,
using the QP model (Fig.IV.6a). Then we compute the polarization for that bent
MoS2 flake, for an hypothetical case where the charges of the sulfur atoms would be
the same in the upper and lower layers. In that hypothetical case, the computation
gives a polarization in the negative direction of z axis, whereas in the undeformed
MoS2 flake, the total dipole moment along the out-of-plane direction is always zero
due to the fact that the molybdenum atomic layer is equidistantly sandwiched
between two layers of sulfur atoms. Fig.IV.6b illustrates this phenomenon with
the case of the two rows of atoms nearest to the symmetry plane of the deformed
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flake: the molybdenum cations are repelled away from the inner part of the bend
(which is its denser part). The consequence is that, while the charge center of
the sulfur anions stays half way between the two layers, the charge center of the
molybdenum is lower which results in a polarization pointing downwards (hence a
negative contribution to µ3311 since G311 is positive in that case).

Figure IV.7: (a) Charge distribution of a bent MoS2 subjected to Ex = Ez =
0.4 V/Å. A and B are two representative regions for explanation of charges

transfer from the upper layer to the lower layer, respectively. (b) ∆q vs index.
∆q is calculated as the charge of sulfur atoms in the lower layer minus the

corresponding quantity for the upper layer. The upper and lower sulfur atoms
are numbered by increasing value of z. Only the right portion of the bent MoS2

is shown here.

However, the above effect is not enough to fully account for the polarization
since we artificially used identical charges for the sulfur atoms. In reality, since
the overlapping of the electronic clouds of two nearby ions change during bending,
partial charges can be transferred from one sulfur layer to the other. In order to
understand that second contribution to the polarization, two representative areas
of the same deformed MoS2 flake, named A and B, are considered in Fig.IV.7a. The
average charge for the sulfur atoms in the upper and lower layers, calculated by
averaging net charges obtained by the QP model along y direction perpendicular
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to the figure, are −0.776 e and −0.803 e, respectively. Therefore the atoms of the
lower sulfur layer appear to be more negative than those of the upper layer. This
creates a net dipole moment pointing from the outside to the inside of the curvature
(in the positive direction of z axis in our case). At the B site, the curvature is
much smaller than at the A site and consequently the difference in charges between
sulfur atoms in the upper and lower layer is smaller. In Fig.IV.7b, we plotted the
average charge difference ∆q = qlower −qupper between sulfur atoms in the lower and
upper layer, as a function of their index along the x coordinate (see numbers on the
molecular picture inside the graph). It can be seen that the absolute value of ∆q
decreases with the increasing index of sulfur, which agrees with what we expected
before implementing the computation, since it corresponds to the flexoelectric
effect: if the strain gradient is smaller, then the polarization is smaller (in absolute
value). Hence, we have two contributions in opposite directions: a downward
electric dipole moment due to bending of the lattice and an upward electric dipole
moment due to charge transfer. In the case of MoS2, our computations show
that polarization caused by bending deformation of lattice (which tends to give
a negative flexoelectric coefficient) surpasses that resulting from charge transfer
(which tends to give a positive flexoelectric coefficient). It is worth mentioning
here that a negative µ3311 for MoS2 monolayer has very recently been obtained
using first-principles linear-response theory[Springolo 21]. Very interestingly, it
can be found in their calculations that two contributions coming from the dipolar
and the lattice-mediated response, respectively, to the total polarization response
also play a competing role, the signs of the former and the latter tending to be
opposite, as in our study.

Figure IV.8: Illustration of the different definitions for strain gradient G311.
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We now turn to the sign of the strain gradient. In a review paper, Wang et
al[Wang 19] pointed the discrepancies between definitions and symbols of physical
quantities to be one of the reasons for the inconsistency of the reported signs of
flexoelectric coefficients. It is often the case for the strain gradient G311. Indeed,
on Fig.IV.8 we illustrate that the strain gradient, defined as G311 = u′′

z(x) which
can be either positive or negative, is often approximated as the inverse of the
radius of curvature. Since, for some authors, the radius of curvature is always
positive, G311 is always positive for them, regardless of the bending direction of
the material. Slightly differently, Kundalwal et al[Kundalwal 21] considered a
boron nitride sheet shaped as an upward convex curved arch and defined G311 as
the absolute value of the inverse of radius of curvature. We note, however, that we
used a downward pointing bend (top part of Fig.IV.8 and Fig.IV.6) which gives a
positive strain gradient for all these definitions.

The previous considerations tentatively explain why flexoelectric coefficients
can be either positive or negative, due to a competition between lattice and charge
transfer effect, and not always positive as some authors define it by using absolute
values inside their definition.

IV.6.3 In-plane flexoelectric coefficient µ1111 and µ2222

Inspired by the work of Hong et al[Hong 10], the in-plane flexoelectric coeffi-
cients µ1111 and µ2222 are computed in the present work. Strain gradient G111 is cre-
ated by displacing every atoms along x axis, according to a parabolic displacement
function ux(x). Fig.IV.9a is a schematic diagram showing the transverse displace-
ment of atoms for a MoS2 flake with a bigger (so that it be visible thanks to the two
vertical lines) strain gradient imposed along x axis. Fig.IV.9b shows the variation
of displacement of atoms along x direction in the case ∆d = ux(x) = 0.01−10−5x2,
strain ϵxx and strain gradient ϵxx,x (G111) as functions of the position along x axis
for MoS2. We can see that the total strain is zero due to the symmetric distri-
bution of displacement with respect to x = 0. Hence, the polarization due to
piezoelectricity can be fully removed from the total polarization, leaving only flex-
oelectricity. Furthermore, µ1111 can be expressed as µ1111 = ∂P1

∂G111
and for a similar

simulation with parabolic displacement along y, µ2222 = ∂P2
∂G222

. The magnitude of
strain gradient for our calculations of µ1111 and µ2222 ranges from 0 to 0.00004 Å−1,
which is small enough to neglect any non-linear effect.

The dependence of in-plane flexoelectric coefficients µ1111 and µ2222 on the
width of nanoribbon with infinite lengths is shown in Figure IV.10. Clearly, the
in-plane flexoelectric coefficients increase as the width of nanoribbons increases
(polynomial fits are guides to the eye). The non-convergence behavior of those
flexoelectric coefficients with the increase of the width of the nanoribbons has been
elaborately discussed[Hao 21]. Hao et al. reveals through DFT calculations that
the flexoelectric coefficients of the 2D Janus TMDs nanoribbons depend strongly
upon their widths. The (slightly) different results for the two orientations are
probably due to edge effects different for armchair and zigzag edges. To completely
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Figure IV.9: (a) Applied displacement field along x axis for each atom with ∆d
denoting the difference between the x coordinate of atoms in deformed MoS2 and
that in undeformed MoS2. The two vertical lines are guides to the eye to see the
displacements along x between the top and bottom sub-figures. (b) Displacement

field ∆d = ux(x), strain (ϵxx) and strain gradient (ϵxx,x = G111) vs the position
along x axis for MoS2.

Figure IV.10: µ1111 and µ2222 as a function of width for MoS2 nanoribbons with
an infinite length and a finite width
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eliminate edge effect we use periodic boundary conditions in both directions for
the displacements. In their article,[Hong 10] Hong et al. computed the in-plane
flexoelectric coefficients of SrTiO3 using a strain gradient with a cosine form, to
be compatible with the periodic boundary conditions.

In our work, strain gradient is a constant function (see Fig.IV.9b), which is
an even simpler case. Fig.IV.11 shows the variations of polarization P1 and P2
with strain gradient G111 and G222 for those doubly-periodic setups. The com-
puted flexoelectric coefficients µ1111 and µ2222 are 0.6872 nC/m and 0.7119 nC/m,
respectively. Hence, the in-plane flexoelectric properties of doubly-infinite MoS2
are nearly isotropic, i.e. independent of the zigzag or armchair direction.

Figure IV.11: Variations of polarization P1 and P2 with strain gradient G111 and
G222, respectively. The rectangular frame surrounding the edge of molybdenum

disulfide represents the enforcement of periodic boundary conditions in both
directions.

IV.7 Conclusions

Employing three different simulation setups, we calculated in-plane flexoelec-
tric coefficients µ1111, µ2222, transverse flexoelectric coefficient µ3311 and out of
plane flexoelectric coefficient µ3333 for monolayer MoS2 using the charge dipole
model and charge conservation. The out-of-plane flexoelectric coefficient µ3333 and
transverse flexoelectric coefficient µ3311 computed by the charge-dipole model are
compared with those obtained by experimental measurements and DFT-based first
principle calculations, by which good agreement in absolute value can be seen when
the charge term is included in the computation of the polarization. We discuss in
details possible origins of discrepancy in sign between our calculated flexoelectric
coefficient µ3311 and other reported results, by showing two opposite effects for the
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sign of the polarization. Furthermore, we emphasize that comparison of flexoelec-
tric coefficients between different computational works requires a careful check for
the sign of strain gradient and the way of defining the polarization. Concerning
the computed in-plane flexoelectric coefficient µ1111 and µ2222 are found to be quasi
identical, which is consistent with the analysis of symmetry for the flexoelectric
coefficient tensor of a 2D continuum.

Finally, it is worth pointing out that the computed in-plane flexoelectric coef-
ficient is about twenty times greater than out-of-plane flexoelectric coefficient for
MoS2, which can be ascribed to the fact that the net charges induced by in-plane
strain gradient between every primitive cells lead to the generation of larger electric
dipole moments, whereas the movement of the charge in the out-of-plane direction
is restricted due to the finite thickness. Hence, a relatively small polarization is
then induced in the out-of-plane direction. For 2D materials, bending seems to
be the easiest way to externally generate a big strain gradient at nanoscale, on a
large area. Therefore, even if in-plane flexoelectric coefficients may play a role in
some systems, the differences between in-plane, out-of-plane and transverse coef-
ficients in MoS2 flakes is not big enough to compensate for the bigger and more
homogeneous strain gradient that can be realized by bending. It is thus important
to find 2D materials that optimize the transverse flexoelectric coefficients µ3311 for
applications in energy harvesting.
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V.1 Introduction

As we saw in chapter 1 and in the introduction of chapter 4, recently, there has
been an upsurge in studies on flexoelectricity in two-dimensional materials, leading
to computations for bilayer or multilayer homogeneous or heterogeneous materi-
als constituted by previously studied 2D materials. For instance, Zhuang’s group
very recently reported flexoelectric coefficient µ3311 for bilayer MoS2[Sun 22], com-
puted using charge dipole model in combination with a machine-learning potential.
With the same computation method, they also computed flexoelectric coefficient
µ3311 of some bilayer materials composed of those from several materials groups,
e.g. TMDs, Diamanes and BN diamanes[Javvaji 22]. Furthermore, V.K. Choyal
computed µ3311 of BN with odd-numbered layers(1 layer-11 layer) and studied the
relationship between the flexoelectric coefficients of multilayer BN and the num-
ber of layers[Choyal 22]. The flexoelectricity in a 100 nm-thick BaTiO3 (BTO)
thin film based metal/ferroelectric insulator/semiconductor heterostructure was
studied[Huang 18].

Due to relevance of our implementation of the charge dipole model in the
calculation of the flexoelectric coefficients of an MoS2 monolayer, we also wanted to
go one step further and focus in this chapter on the calculation of the flexoelectric
coefficient of a bilayered heterostructure of graphene and 2D Boron Nitride, with
mostly the same research methodology as in the previous chapter.

V.2 Methods

V.2.1 First principle calculations

We perform density-functional theory (DFT) calculations using the projector-
augmented wave method with a plane wave basis set, as implemented in the Vienna
ab initio Simulation Package (VASP) [Kresse 96]. Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functionals are used within the generalized gradient approxi-
mation (GGA)[Perdew 96]. The plane-wave cutoff energy is taken to be 450 eV for
structure relaxation and 600 eV for the computation of properties of polarization.
In order to minimize the periodic interaction along the z-direction, the vacuum
space between the layers is taken to be at least 15 Å. Brillouin zone integration
is applied with a 6 × 6 × 1 grid for geometry optimization and a 26 × 26 × 1
grid for polarization calculations, using the Γ-center scheme. Conjugate gradient
algorithm is applied for energy minimization calculation, with convergence criteria
for electronic and ionic relaxations set as 10−6 eV and 10−3 eV/Å, for the total
energy and force, respectively.
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Table V.1: Parameters of LJ potential for the interactions between carbon and
boron and between carbon and nitrogen

σ (Å) ε (eV)
carbon-boron 3.411 0.003293

carbon-nitrogen 3.367 0.004068

V.2.2 Molecular dynamics simulations for computation
of µ3311

The Large scale Atomic Molecular Massively Parallel Simulation (LAMMPS)
software[Plimpton 95] is employed to simulate the bending deformation of graphene
alone, hexagonal boron nitride (h-BN) alone and several Graphene/hexagonal
Boron Nitride (GBN) heterostructures. Regarding force field, Adaptive Inter-
molecular Reactive Empirical Bond Order (AIREBO) potential[Stuart 00] is adopted
to describe the interaction between carbon atoms in graphene. Tersoff potential[Tersoff 88]
is utilized to describe the interaction between boron and nitrogen atoms in h-BN.
Finally, interactions between carbon and boron or carbon and nitrogen are de-
scribed by a Lennard-Jones (LJ) potential[Jones 24a, Jones 24b]:

V (r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

(V.1)

where the parameters σ and ε represent the characteristic distance and energy for
a given pair of atoms, and r represents the actual distance between those atoms.
The cutoff radius is taken to be 2.5σ, as is common in comparable simulations.
The LJ parameters we used, are listed in Table V.1[Iwata 18, Neek-Amal 14].

For simulation setup, we consider a rectangular supercell with a width of
12.5621 nm and a length of 2.0308 nm. A period of 2.2356 nm is applied in
the width direction of the flake to avoid edge ripples caused by concentrations of
stress field occurring at the edge of the flake. Periodic boundary conditions are
considered in both charge dipole model and potential function used in LAMMPS.
The bending simulation for GBN heterostructure is performed by minimizing the
total energy function which includes the interaction between carbons (AIREBO
potential), between boron and nitrogen (Tersoff) and intermolecular pair potential
for carbon-boron and carbon-nitrogen interactions (LJ potential). The additional
energy (EQP ) and force (FQP ) due to the action of an external electric field are
added to the total energy and force via the command "addforce" in LAMMPS. Fur-
thermore, we kept fixed the coordinates of some atoms (the middle rows of atoms)
by applying "fix setforce 0.0 0.0 0.0" to those atoms. A built-in "shell" command
is used to call a compiled binary executable for computing EQP and FQP in the
input file of LAMMPS. The FIRE algorithm, as proposed in 2006[Bitzek 06], is
used for energy minimization calculation. The time step is set to 0.002 picosec-
onds. Velocity Verlet integration is used. Energy minimization is performed until
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Figure V.1: Schematic of bending simulation for a 12.5621 nm by 2.0308 nm
graphene/h-BN nanoribbon in which the upper layer is graphene and the lower
layer is h-boron nitride. A ↘↗-like external electric field E⃗ is applied to the
graphene/h-BN nanoribbon, keeping the middle row of atoms fixed. Periodic
boundary conditions are imposed along the y axis. θ is the angle with the +x

direction.

force falls below 0.0001 eV/Å. The application of some constraints is entirely the
same as in chapter 4. More information on the bending simulation can thus be
found in chapter 4.

V.2.3 Computation of polarization

In curved graphene, the curvature of the graphene sheet causes a change in the
hybridization of the orbitals of the valence electrons of the carbon atoms. In 2002,
Dumitrică et al.[Dumitrică 02] showed by ab-initio calculations that this change of
hybridization creates a permanent dipole on each carbon atom, which is function
of the angle θσπ between the σ and π bonds (cf. Fig. V.2). This was then utilized
again in the context of the flexoelectricity of sp2-hybrided carbon nanomaterial,
such as, nanotubes, fullerenes, and nanocones by Kvashnin et al[Kvashnin 15] in
2015. According to these authors, the permanent dipole created by the local
curvature of the graphene sheet can be calculated by:

∀α = 1, . . . , N, µ⃗α = µ⃗
(
θα

p , n⃗α
)

= fθθ
α
p n⃗α (V.2)
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Figure V.2: Before bending, the π-orbitals of graphene are symmetric and
oriented perpendicularly to the plane formed by the three C-C bonds. After
bending, charges in π-orbitals are redistributed due to hybridization with σ

orbitals.

where θα
p = θσπ − π/2 is the pyramidal angle between the atom α and the plane

formed by its three nearest neighbors. n⃗α corresponds to unit normal vector per-
pendicular to the π plane. The effective flexoelectric constant fθ was calculated,
by Kvashnin et al, to be 2.34 D/rad by linear regression of the calculated values
of µ⃗α as a function of θα

p for nanotubes with various indices. For graphene, we
therefore used Eq.V.2 to compute the ’permanent’ dipoles µ⃗α that allowed us to
calculate the z component of polarization as:

P tot
3 =

∑N
α=1 µα

3
V

(V.3)

with N being the total number of atoms, 3 meaning the z direction and V
denoting volume of the graphene sheet, computed using a thickness equal to
3.50 Å [Ishigami 07]. Finally, for the computation of polarization for h-BN alone
or in the GBN heterostructure, we followed exactly the same procedure as that de-
scribed in the previous chapter, with a thickness for h-BN equal to 0.906 Å[Yan 19]
and a thickness for AB-stacked, AB′-stacked and AA-stacked GBN equal to 5.593 Å,
5.753 Å and 5.753 Å respectively, which were obtained as the sum of the inter-
layer spacing (obtained in next section), half the thickness of h-BN and half the
thickness of graphene.
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Table V.2: Nearest neighbor distance in Å of graphene and h-BN monolayer

graphene h-BN
Nearest neighbour distance (Our work) 1.42 1.45

Nearest neighbour distance ([Pakdel 12]) 1.42 1.44

V.3 Structural properties of graphene/h-
BN heterostructures

We first discuss the physical structures of a pristine graphene monolayer and an
h-BN monolayer considered independently, at their mechanical equilibrium state,
by calculating their nearest-neighbor and next nearest-neighbor distance, using
VASP with parameters given in subsection V.2.1. It can be seen from Figure
V.3 (a) and (b) that the nearest-neighbor distance is computed to be 1.45 Å
and 1.42 Å for h-BN monolayer and graphene, well consistent with that reported
experimentally in [Pakdel 12] (see Table V.2). The next nearest-neighbor distance
computed for h-BN and graphene monolayer are 2.51 Å and 2.47 Å, respectively,
as marked in Figure V.3 (a) and (b).

Figure V.3: Computationally obtained configurations for h-BN (a), graphene
(b), AA-stacked (c), AB-stacked (d) and AB′ (e) graphene/h-BN heterostructure.

Nearest and next-nearest neighbour distances for graphene and h-BN are
respectively marked in (a) and (b). Boron atoms are in green and nitrogen atoms
in white. The equilibrium inter-layer distances, computed within DFT-D3 plus

PBE, for AA-stacked (c), AB-stacked (d) and AB′ (e) graphene/h-BN
heterostructure are indicated in the corresponding subfigures

Regarding the graphene/h-BN heterostructure, we consider three inequivalent
stackings of graphene on h-BN, see Figure V.3 (c), (d) and (e):
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1. AA-stacking configuration where all carbon atoms directly sit on either boron
or nitrogen atom in h-BN.

2. AB-stacking configuration with one carbon over boron and the other carbon
centered above an h-BN hexagon.

3. AB′-stacking configuration with one carbon over nitrogen and the other car-
bon centered above an h-BN hexagon.

The knowledge of equilibrium layer spacing of vertically stacked GBN heterostruc-
ture is of importance for the calculation of the flexoelectric coefficient to be re-
ported in section V.6 and we therefore computed inter-layer distance of three stack-
ings of graphene on h-BN with Grimme et al’s DFT-D3 correction[Grimme 11]
that is considered to be computationally efficient and robust across the periodic
table, which makes this correction particularly valuable for the treatment of large
systems[Goerigk 17].

The computed equilibrium interlayer distances are 3.55 Å for AA stacking,
3.39 Å for AB stacking and 3.55 Å for AB′ stacking, in agreement with previ-
ous computational results[Fan 11], as tabulated in Table V.3. Experimentally, a
value of 3.32 Å was reported[Haigh 12], well consistent with our computed result
for AB-stacked GBN heterostructure. The differences in the calculated inter-layer
distances between these three different stacking cases are mainly related to the
attractive interaction between π electrons and cations (boron) and repulsive in-
teraction between π electrons and anions (nitrogen). Nitrogen atoms tend to stay
below the center of carbon hexagons since the density of π electrons is very low
there, whereas boron prefers to be right on top of the carbon around which the
density of electron is relatively high. Therefore, among the three cases, the GBN
heterostructure stacked in AB form has the lowest inter-layer distance, and is
also the most energetically favorable structure. These computationally obtained
results completely accord with those previously reported[Fan 11]. For further il-
lustration of the results, we also performed molecular static energy minimization
calculation using LAMMPS with LJ potential describing the interlayer vdW in-
teraction of GBN heterostructure. It can be found that no matter how the GBN
heterostructure is stacked in the initial configuration, its energy-converged struc-
ture always tends to the AB-stacked GBN heterostructure. The layer spacing
of GBN heterostructure was also calculated without vdW correction (see Table
V.3). It can be found that the calculated results differ significantly with and
without vdW correction, demonstrating that within density functional theory, the
enforcement of vdW correction plays an indispensable role in the calculation of the
interlayer spacing for layered material. Moreover, from the energy point of view,
AB-stacked GBN heterostructure is in the most stable state, while the other two
kinds are in a metastable state. This does not, however, suggest that AA and AB′

stacked GBN heterostructure could not be prepared in real experiment. In fact,
it has been reported by Kim et al. in an experimental work that AA-like stacked
graphene/hBN heterostructure can be successfully synthesized using a dedicated
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Table V.3: Equilibrium layer spacing in Å for AA, AB and AB′-stacked GBN
heterostructure with and without vdW corrections. ref[a]:[Giovannetti 07],

ref[b]:[Fan 11], ref[c]:[Haigh 12]

AA AB AB’
None vdW None vdW None vdW

Interlayer distance
(Our work) 4.22 3.55 3.73 3.39 3.84 3.55

Interlayer distance
[refs] 4.41[a] 3.62[a],3.50[b] – 3.22[b],3.32[c] – 3.40[b]

synthesis sequence[Kim 13]. Hence, in this work, we intend to compute the bend-
ing flexoelectric coefficient µ3311 of GBN heterostructures with the three types of
stacking above mentioned.

V.4 Parameterization of the charge dipole
model for Graphene/Boron Nitride het-
erostructure system

We first make a rough estimate of the parameters (R and χ) used in the
charge dipole model using a self-made iterative algorithm program. Specifically,
the bounds of the twelve parameters, inner and edged value for both R and χ each
for three types of elements (carbon, nitrogen and boron), is initially specified, with
R and χ belonging to [0,1] and [1,200], respectively. Considering the running time
of optimization calculations, we first select some equidistant values, i.e, 0.1, 0.2,
0.3 · · ·, 1 Å for Rα and 1, 2, 3, · · ·, 200 V for χα for parameters to be input into
the program. With these selected parameters {Rα}α=1,···12 and {χα}α=1,···12, mul-
tiple sets of effective charges may be obtained from charge dipole model through
iterating over all possible parameter combinations. Each set of calculated charge
values corresponds to a set of parameters. We evaluate how close the calculated
charge value (QQP ) is to that calculated by DFT (QDF T ) by calculating the ratio
of the difference between the charge value calculated by the charge dipole model
and the DFT-computed charges divided by the DFT-computed charges, which
can be formulated as f(QQP ) = |(QQP − QDF T )/QDF T |, with QQP being function
of {Rα}α=1,···12 and {χα}α=1,···12 for a configuration with known coordinates. We
chose the set of parameters that yielded the minimum value of the objective func-
tion f(QQP ) among all those we computed. More details about this algorithm can
be found in our previous work[Yang 18].

These parameters, which are roughly estimated by using the procedure men-
tioned above, need to be refined in order to obtain higher precision parameters.
In view of the difficulty of obtaining the derivatives of the objective function
f(QQP ) with respect to the Rα, χα, we exploited a numerical optimization al-
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heterostructure system

Table V.4: Values of the Gaussian charge density widths and atomic
electronegativities for boron, nitride and carbon.

Atom R(Å) χ(V)
Inner Edged Inner Edged

B 0.3017 0.4853 19.9221 47.7300
N 0.1466 0.3963 201.5337 91.8163
C 0.7712 0.9591 67.1012 67.4874

gorithm named BOBYQA (Bound Optimization BY Quadratic Approximation)
developed by Michael J. D. Powell[Powell 09] to refine these parameters, since
BOBYQA does not require to compute the derivative of the objective function
with respect to its variables. The resultant refined values of R and χ for in-
ner and edge boron, nitrogen and carbon atoms are listed in Table V.4. It can
be seen that values of R are larger for edged atoms, which seems physical since
atoms at the edges can be polarized more strongly than the inner atoms, due to
the extra space available for the orbitals. These values are similar to the Gaussian
charge distribution widths in sp2-hybridized carbon nanomaterials[Mayer 07a] and
MoS2[Yang 18]. Concerning χ, it is well-known that the rank order of Pauling elec-
tronegativities is nitrogen (3.04) > carbon (2.55) > boron (2.04). Fortunately, the
ordering of the electronegativity parameters obtained here (which are more like
Mulliken electronegativities, though they do not seem to have the same order of
magnitude) is exactly the same as that with Pauling’s electronegativities.

A comparison is made between the distributions of intrinsic charges (in electron
per atom), calculated by the charge dipole model and first principle calculations
on AA-stacked GBN heterostructure flakes, as shown in Figure V.4(a). It can be
seen that agreement on the average charge density of the intrinsic charge ρ̄ is quite
good, suggesting that the distribution of intrinsic charge in GBN heterostructure
can be well captured by the QP model. Moreover, we can also see that the set
of parameters obtained for the AA-stacked GBN flake can also be successfully
applied to calculate the charge of the AB-stacked GBN flake, as shown in Figure
V.4(b), illustrating that such a set of parameters possess good transferability, at
least among GBN stackings.
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Figure V.4: y-averaged intrinsic charge density profile ρ̄, in e/atom, for boron,
nitride and carbon atoms in a (a) AA-stacked and (b) AB-stacked

Graphene/Boron Nitride heterostructure vs the normalized xnor coordinate along
the flake (xnor = x/L where L is the length of the flake in the x direction).

V.5 Validation of the charge dipole model

In this section, the parameters obtained for the charge-dipole (QP) model
will be validated by comparing the piezoelectric coefficients of AA-stacked GBN
computed using the QP model with the same coefficients computed using VASP.

Since there are several possibilities for computing piezoelectric coefficients with
VASP, we first conducted benchmark calculations of piezoelectric coefficient e222
for five selected 2D materials, using either Berry Phase approach[Vanderbilt 00] or
Density Functional Perturbation Theory (DFPT)[Wu 05], as implemented in the
VASP package.

For the former, an uniform strain, with its value ranging from -0.01 to 0.01
by steps of 0.005, is applied along armchair side of the rectangular cell (see inset
of Figure V.5(b)) by changing the y-direction length of the lattice. A first set of
coefficients, called clamped-ion coefficients, is then computed in order to concen-
trate on the purely electronic contribution and compare to the results of other
authors[Duerloo 12]. Then, the atoms are relaxed, while preserving the shape and
area of the supercell, to yield so-called relaxed-ion coefficients that thus include
both the electronic and ionic contributions. When using the Berry phase method,
the piezoelectric coefficient e222 can be defined as the ratio of change in polariza-
tion to a strain change, formulated as e222 = ∂P2/∂ε22 and estimated as the slope
of fitted straight lines in the graphs of P2 as a function of ε22, as can be seen on
Figure V.5. Results are given in Table V.5.
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Note that, since definitions and therefore values of thickness for 2D-materials
vary between authors, it is customary to report total dipole per unit area for the
2D-material, since this quantity, contrarily to the usual polarization, is indepen-
dent of the chosen thickness. In this subsection, polarization P2 and coefficient
e222 are therefore defined with respect to the area of the simulation box rather
than to its volume, so that they are expressed in C/m instead of C/m2 (see e.g. y
axis legend in Fig. V.5).

For the DFPT method, there is only a single set of values in Table V.5, because
in that method e222 is estimated using the change of stress caused by a change of
external electric field: e222 = −∂σ22/∂E2.

The comparison of our results with reported data also given in Table V.5 clearly
shows that using either DFPT or Berry phase method, the calculated results for
piezoelectric coefficients for the five selected 2D materials are in good agreement
with the data from the literature and that results of the Berry phase method for
the relaxed structure are quite close to those of the DFPT method.

Surprisingly, though, the experimental value for MoS2 (2.9 × 10−10 C/m)
[Zhu 15] is closer to the clamped-ion piezoelectric coefficient (3.18 × 10−10 C/m)
than to the two other coefficients.

Figure V.5: (a) Clamped-ion and (b) relaxed-ion polarization change under
applied uniaxial strain (ϵ22) along the y direction for the selected 2D materials

including h-BN, MoS2, MoTe2, WS2 and MoSe2. Piezoelectric coefficient is
determined from the slope of the fitted straight line. The inset in (b) shows the
geometry of a monolayer of boron nitride (h-BN) from top view, with the black

rectangular frame representing a periodic cell used for computation of
polarization

Secondly, we used the slope of the straight line fit of P2 = f(ϵ22) to compute the
relaxed-ion piezoelectric coefficient e222 for an AA-stacked GBN heterostructure,
using the QP model with the parameters reported in Table V.4. As shown in Figure
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Table V.5: Piezoelectric effective coefficient e222/eyyy for various 2D materials (in
unit of 10−10 C/m since we do not divide by the thickness of the 2D-material),
computed by DFT calculations using density functional perturbation theory or

Berry phase method. First three lines give our results, last three lines give
corresponding results from the literature.

Material h-BN 2H-MoS2 2H-MoTe2 2H-WS2 2H-MoSe2
DFPT 1.39 3.68 4.70 2.44 3.83

clamped-ion
(Berry phase) 3.68 3.18 2.76 2.33 2.93

relaxed-ion
(Berry phase) 1.27 3.90 5.49 2.68 4.35

ref
(DFPT)[Blonsky 15] 1.39 3.64 4.67 2.43 3.83

ref
clamped-ion

(Berry phase)[Duerloo 12]
3.71 3.06 2.98 2.20 2.80

ref
relaxed-ion

(Berry phase)[Duerloo 12]
1.38 3.64 5.43 2.47 3.92

V.6, the agreement is quite good with the results of the Berry phase method for
the relaxed-ion configuration. This suggests that the polarization properties of
2D materials can be well captured by charge dipole model provided a set of good
parameters ({R}α=1,···N plus {χ}α=1,···N) is used. However, we also note that for
h-BN alone the QP model results (using the parameters for N and B found for the
GBN heterostructure) compare less favorably with the DFT results, as shown in
Figure V.7.
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Figure V.6: Variations of P2 as a function of applied uniaxial strain ϵ22 for
graphene/h-BN heterostructure.

Figure V.7: Variations of P2 as a function of applied uniaxial strain ϵ22 for h-BN
monolayer.
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V.6 Computation of bending flexoelectric
coefficient for graphene, h-BN and their
vertically stacked heterostructure

We now use the aforedescribed framework to calculate the bending flexoelectric
coefficient µ3311 for graphene and h-BN monolayers considered independently. As
shown in Figure V.8, we found 0.016 nC/m and 0.204 nC/m, respectively. Then,
due to the significant disagreement between authors, associated with the thickness
of 2D materials[Huang 06], we multiplied our value of µ3311 (in nC/m) by the
thickness t of the corresponding monolayer (3.50 Å [Ishigami 07] for graphene and
0.906 Å [Yan 19] for h-BN) that we used to compute the volume of the system
during the computation of the polarization, thus obtaining a result independant
of t. Then, we converted the values of µ3311 × t to electron charge unit (e) and
got a value easier to compare with the data in other references, as shown in Table
V.6. It can be seen that the result computed with Eq. V.3 for graphene are of
the same order of magnitude as that computed using first principle method by S.
Kalinin[Kalinin 08], suggesting that the theoretical method proposed by Kvashnin
et al[Kvashnin 15] is capable of predicting or calculating the order of magnitude
of the flexoelectric coefficient of curved graphene. Then, we performed again, the
calculation of µ3311 for graphene alone, but this time using the QP method with
the obtained parameters for carbon atom, shown in Table V.4. The computed
result (-0.014 nC/m, see Figure V.9) is in good agreement with that obtained via
Kvashnin’s method, illustrating that these two methods are consistent.

In Table V.6, we can also see that our result of µ3311 × t for h-BN, is of the
same order of magnitude as the one computed by DFT [Kumar 21], which can
be considered a fair agreement recalling that the R and χ parameters were not
fitted for h-BN alone but for h-BN in GBN. Meanwhile, we can finally see that the
values of µ3311 for both graphene and h-BN taken from the paper by Zhuang at
al [Zhuang 19] differ by at least one order of magnitude with respect to the other
values. As in the previous chapter, we tentatively attribute this problem to the
use of a polarization defined without any charge term and the fact that charge
conservation was not enforced in their calculations.

We now turn to the calculation of the bending flexoelectric coefficient for GBN.
Unlike isolated graphene and h-BN, which are not ferroelectric, the GBN het-
erostructure is endowed with out-of-plane spontaneous polarization due to inter-

Table V.6: Comparison between µ3311 obtained in our work and from the
literature, with µ3311 for BN and graphene computed with charge dipole (QP)

model and Kvashnin et al.’s approach, respectively.

µ3311 our result (nC/m) our result (e) DFT (e) other QP (nC/m)
graphene −0.016 −0.035 0.094 [Kalinin 08] 0.0014 [Zhuang 19]

h-BN 0.204 0.116 0.2 [Kumar 21] 0.00013 [Zhuang 19]
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their vertically stacked heterostructure

Figure V.8: Variation of P3 with strain gradient G311 for graphene (dipoles and
P3 calculated via the method described in [Dumitrică 02] and [Kvashnin 15])(a)

and h-BN (dipoles and P3 calculated via the QP method) (b). The magnitude of
the electric fields applied to (a) graphene for bending simulation is 0.0424,

0.0495, and 0.05656 V/Å and (b) h-BN is 0.03535, 0.0424 and 0.0495 V/Å. The
angle between the electric fields and the the x-axis is set to 45◦. Insets in (a)

show the computed dipole moment vector for each atom, with the color of every
arrow representing the magnitude of the corresponding dipole moment. 101
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Figure V.9: Variation of polarization P3 with strain gradient G311 for graphene.

layer charge transfer due to the differences in electronegativity between carbon,
boron and nitrogen. It is therefore a ferroelectric material that could thus naturally
possess a large flexoelectric coefficient and could therefore be used for nanogener-
ators and energy harvesters.

However, it is unexpected that the flexoelectric coefficient µ3311 computed with
the charge dipole model and our values for the radii and electronegativities are
as large as that for graphene and around two times smaller than that for h-BN
alone, since we found 0.00596 nC/m (or 0.021 e since t = 5.593 Å) for AB stacking,
0.00338 nC/m (or 0.012 e since t = 5.753 Å) for AB′ stacking and 0.00702 nC/m
(or 0.024 e since t = 5.753 Å) for AA stacking, as can be seen in Table V.7 and
Figure V.10. This can be attributed to the fact that the out of plane polarization
(P3) produced by bending deformation for graphene and boron nitride will partially
cancel each other due to the opposite signs in polarization (see y axis in Figure V.8
(a) and (b) ). It should be noted that for multilayered materials, a key factor that
determines the flexoelectric coefficient is not the inter-layer charge transfer, but
the change in the amount of charge transfer with the curvature (strain gradient).

We also see in Table V.7 that the signs of the spontaneous polarizations for the
undeformed GBN heterostructures, which correspond to the intercepts of the fitted
straight lines, are obtained to be negative (≈ −0.001 × 1010 nC/m2), suggesting
that the polarization orientation is from the BN layer to the graphene layer.
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Figure V.10: Variation of polarization P3 with strain gradient G311 for AA, AB,
AB′ graphene/h-BN heterostructure.

Table V.7: Computed µ3311 and intercept of fitting equation for AA, AB and
AB′-stacked heterostructure.

µ3311 (nC/m) µ3311 × t(e) Intercept (1010 nC/m2)
AB stacking 0.00596 0.021 -0.00153
AB′ stacking 0.00338 0.012 -0.00145
AA stacking 0.00702 0.024 -0.00149

To better understand that orientation, we calculated the z-axis total dipole
moment (P tot

3 ) for an AB-stacked GBN nanoribbon, put in a cubic box with a
length of 13.00 nm, a width of 0.431 nm and a height of 3.00 nm (see Figure V.11),
both with the charge dipole model and Berry phase method. The computed results
for P tot

3 (−0.003 e/Å2 with charge dipole model and −0.011 e/Å2 using Berry
phase method) are in fair agreement, which once again gives us confidence in our
methodology. To gain a deeper understanding of the origin of the negative sign of
spontaneous total dipole, hence spontaneous polarization, in both QP and Berry
phase results, we plot on Figure V.12, the charge density difference between GBN
and the isolated monolayers: ∆ρ = ρGBN − ρBN − ρG, thus displaying the transfer
of electron between atoms. The red regions show charge accumulation, while
blue regions represent charge depletion. For AB′ stacking, it can be seen from
Figure V.12(a) that red and blue areas are arranged alternately, in the bottom
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graphene layer, causing the resulting z-direction dipole moments to cancel each
other out, whereas in the top h-BN layer, the blue area largely clustered around
the nitrogen atom indicates the transfer of charge from the valence electrons of
nitrogen atoms to the carbon atom layer. Hence, we can assume that the direction
of the polarization (total dipole moment per unit volume) points to the negative
direction of the z-axis, in agreement with our negative sign for P tot

3 . We can also see
that charges appear to be localized around the nitrogen atoms because of Coulomb
repulsion between electron-rich nitrogen atoms and π electrons of carbon atoms.
This argument can be rationalized with the result for charge density difference for
AB-stacked GBN heterostructure, shown in Figure V.12(b), from which it can be
seen that the inter-layer strip-like red regions seem to connect the carbon atom
with cation boron, signifying that a strong charge transfer (Coulomb electrostatic
attraction interplay) occurs between the electron-poor boron and the carbon atom
directly below it. It is precisely because of this interlayer Coulomb attraction that
the interlayer spacing of AB-stacked GBN heterostructure is smaller than that of
the others. Such strong interlayer charge transfer between h-BN and graphene was
also observed experimentally[Bjelkevig 10].

Figure V.11: Schematic diagram of AB-stacked graphene/hBN nanoribbon
placed in a cubic box (a) top view, (b) side view.
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Figure V.12: Charge density difference plots for (a) AB′ and (b) AB-stacked
heterostructures. The blue and red areas around the atoms represent apparent

loss and gain of electrons, respectively.

V.7 Conclusion

Based on the simulation setup designed in Chapter 4 for bending simula-
tion, we, with the use of LAMMPS package in combination with charge dipole
model, computed bending flexoelectric coefficient µ3311 for AA, AB, AB′-stacked
graphene/hBN heterostructure. These coefficients are as large as that for graphene
and about twice smaller than that for h-BN which is due to the opposite out-of-
plane directions of polarization of graphene and boron nitride. Hence, it is im-
perative to find other double-layer heterostructure for energy conversion use, with
each layer of it having the same direction of polarization under bending deforma-
tion, such as, MoS2/graphene heterostructure. These optimized heterostructures
could then provide opportunities for the development of nanoelectronic devices,
i.e., nanogenerators taking profit of the inhomogeneous mechanical deformation of
GBN heterostructures.
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Conclusions and perspectives

The goal of this thesis was to set up a methodology to compute the flexoelectric
coefficient of various 2D materials and heterostructure of these materials within
the QP model.

During chapter 2, we, within charge dipole model, calculated the force be-
tween two carbon atoms to check the equivalence (or not) of two different formu-
las for the forces within QP model (one that our group used in previous studies,
e.g. [Wang 07a], [Wang 07b], [Wang 08b] and another one found in an article by
Zhuang’s group at Hanover [Javvaji 18]). The computed results indicate that for
a simple electric equilibrium system containing two atoms, the calculation of the
total forces is independent of whether the gradients of the charges and dipoles
are taken into account or not. We then numerically confirmed the equivalence of
the two formulas in a more general case. We finally proved analytically that both
methods are equivalent in all cases using supermatrix formulation. At the end of
the chapter, we, using charge dipole model with an improved definition of polariza-
tion with respect to the one used in [Javvaji 18], computed in-plane piezoelectric
coefficient e111 for trapezium-shaped graphene and graphene with triangular defect
and circular defect, respectively. Results made us believe that our computed result
is physically more meaningful than that obtained by Javvaji et al.

In chapter 3, we tried to extend a previous work in the group (Gautier Lecoutre’s
PhD thesis), by incorporating terms involving effective charges into his analytical
expression of the flexoelectric tensor as a function of permanent dipoles due to
the change of hybridization during the curvature of a graphene sheet rolled into
a CNT wall, to calculate the full flexoelectric tensor of ionic materials, such as
MoS2. Unfortunately, the orders of magnitude of computed results do not ac-
cord with those reported experimentally, due to problems of divergence in the new
charge terms. We therefore stopped analytical development and proceeded with
numerical studies.

In chapter 4, we designed three different setups that allowed us to calculate
in-plane flexoelectric coefficients µ1111, µ2222, transverse flexoelectric coefficient
µ3311 and out-of-plane flexoelectric coefficient µ3333, for monolayer MoS2, using
Gaussian-regularized charge dipole model and charge conservation. The computed
out-of-plane flexoelectric coefficient µ3333 and transverse flexoelectric coefficient
µ3311 are compared with those obtained by experimental measurements and com-
puted by DFT calculations, respectively. The calculated results for µ3333 or µ3311
are of the same order of magnitude as those reported experimentally and com-
putationally, provided charge term is considered in the definition of polarization.
In terms of sign, the computationally obtained flexoelectric coefficients µ3333 and
µ3311 however, do not coincide with those shown in reference. We then discuss
in details some possible origins of this discrepancy in sign between our calculated
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flexoelectric coefficient µ3311 and other reported results, leading to two opposite
effects for the sign of the polarization. Finally, we computed in-plane flexoelectric
coefficient µ1111 and µ2222, which are found to be quasi identical.

In the last part of the thesis, we, exploiting the bending simulation setup
designed in chapter 4, computed the bending flexoelectric coefficient µ3311 for
graphene/h-boron nitride heterostructure and h-boron nitride alone. The val-
ues of µ3311 for h-BN and graphene are of the same order of magnitude as those
reported previously. The bending flexoelectric coefficient for graphene/h-BN het-
erostructure is by computation found to be twice smaller than that for h-BN and
of same value as graphene, respectively, which is caused by opposite directions of
the polarizations in the graphene and h-BN bent layers.

In summary, it can be seen from this PhD thesis that the charge dipole model
(QP model) is indeed a very useful tool for computation of electrostatic prop-
erties of some 2D materials. In the near future, charge dipole model could be
applied for computations of flexoelectric coefficients of other kinds of 2D materi-
als, such as MXenes, particularly in their single - or few layer form. Moreover,
charge dipole model could be further optimized in terms of enhancing accuracy
of calculation of polarization by introducing the contribution of multipoles to the
total energy, especially the quadrupole in the context of flexoelectricity since the
quadrupolar part of the polarization can appear in the reverse flexoelectric effect
Qij = µijkl∇kEl. It could also be interesting to study the distinction between
surface (or edge) and bulk contributions to flexoelectricity or piezoelectricity by
differentiating these contributions in simulations of multilayer structures.

The charge dipole model coded with FORTRAN can be ported into LAMMPS
through interface. The merits of doing so is that there is no need to code new
potential functions for those materials that have not been studied. In addition,
the charge dipole model can also be used in conjunction with a potential functions
library shared on the internet through interface.

Molecular simulation of nanobubbles could be another interesting project. In
terms of reported literature, under anisotropic strain gradient, nanobubbles can
generate quasi-constant pseudomagnetic field and manifest further opening of band
gap. The applications of nanobubbles are interesting enough that its physical prop-
erties have been studied and reported by many researchers. Nanobubble structures
initially originate from the entrapment of air molecules between the single layer
graphene sheet. Very recently, it has been experimentally and theoretically re-
ported that nanobubbles can induce a non-zero out-of-plane polarization due to
a nonuniform strain (strain gradient). It has not, however, been studied compu-
tationally. We therefore intend to study the electromechanical coupling effects of
mechanically strained nanobubbles on 2D materials or multilayered materials us-
ing the charge dipole model to calculate the resulting polarization, from which one
can finally get the electrodynamic coupling coefficient. Such a simulation setup
offers an alternative avenue for studying electromechanical coupling effects in 2D
materials.
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Finally, it is known that charge dipole model is an electrostatic model, which
is of course not associated with time. In the future, it may nonetheless be possible
for charge dipole model to be combined with lattice dynamics as a quasi-static
approximation, to study dynamic flexoelectricity.

Figure V.13: Nanobubbles, adapted from [Bao 15]
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Résumé : L’objectif principal de cette
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systématique pour calculer des coefficients
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mensionnels (2D) et des hétérostructures de
ces matériaux, en utilisant la mécanique des
milieux continus et/ou un modèle atomis-
tique avec des charges et des dipôles effec-
tifs correspondant à des distributions radi-
ales gaussiennes de charge. Nous avons tout
d’abord vérifié analytiquement l’équivalence
de deux formules utilisées pour calculer
les forces d’interaction électrostatique en-
tre atomes dues à un champ électrique ex-
terieur. Ensuite, nous avons cherché à éten-
dre un travail précédent en incorporant des
termes impliquant les charges effectives dans
une expression analytique, pour calculer les

coefficients flexoélectriques de cristaux ion-
iques, tels que MoS2. Dans une deuxième
partie plus numérique, nous avons pu trou-
ver des configurations de simulation nous
permettant de calculer les coefficients flex-
oélectriques dans le plan µ1111 et µ2222,
transversal µ3311 et hors-plan µ3333 pour
une monocouche de MoS2. Pour cela, nous
avons utilisé une définition de la polarisa-
tion incluant à la fois les effets des charges
et des dipôles effectifs, ainsi que le forçage
de la conservation de la charge. Les résul-
tats obtenus étant en bon accord avec les
données disponibles dans la littérature, nous
avons pu appliquer notre méthode au cas
d’une structure bicouche graphène / h-BN
et étudier l’influence des positions relatives
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sis is to develop a systematic method for
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dimensional (2D) materials and heterostruc-
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mechanics and/or an atomistic model with
effective charges and dipoles corresponding
to Gaussian radial distributions of charges.
We first checked analytically the equivalence
of two formulas used to calculate the elec-
trostatic interaction forces between atoms
due to an external electric field. Next, we
sought to extend a previous work by incor-
porating terms involving effective charges
into an analytical expression for calculating
the flexoelectric coefficients of ionic crystals,

such as MoS2. In a second, more numer-
ical part, we were able to find simulation
set-ups allowing us to calculate the in-plane
µ1111 and µ2222, transverse µ3311 and out-
of-plane µ3333 flexoelectric coefficients for a
monolayer of MoS2. For this purpose, we
have used a definition of polarization includ-
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dipole, as well as charge conservation en-
forcement. The results obtained being in
good agreement with the data available in
the literature, we were able to apply our
method to the case of a graphene / h-BN
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