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1 - Introduction

1.1. Background & Objectives

Structural mechanics is an essential field of engineering that focuses on the
analysis and design of structures such as buildings, bridges, and aircraft. The ob-
jective is to understand how these structures behave and respond to different
loads and environmental conditions while ensuring their safety, efficiency, and
cost-effectiveness.

However, analyzing and designing complex structures can be time-consuming
and computationally intensive, especially for large-scale problems. To address
these challenges, parallel computing has emerged as a powerful tool in structural
mechanics. Parallel computing involves breaking down a computational task into
smaller, independent parts that can be executed simultaneously on multiple pro-
cessing units, such as CPU cores or GPUs.

Parallel computing offers several advantages in structural mechanics:

+ Speed and Efficiency: By harnessing the processing power of multiple cores
or GPUs, parallel computing significantly reduces computation time for large-
scale problems. It can expedite structural analysis and design processes.

+ Scalability: Parallel computing allows computational resources to scale ac-
cording to the problem’s complexity. This is crucial in structural mechanics,
where problems can vary from simple to highly complex.

* Accuracy: Parallel computing can enhance result accuracy by enabling the
use of finer mesh resolution or more precise numerical methods. It facil-
itates the utilization of larger and more complex models, leading to more
accurate outcomes compared to smaller models.

One of the most commonly used methods in structural mechanics for par-
allel computing is the parallel domain decomposition approach, typically based
on finite element analysis. This method involves dividing a large computational
domain into smaller, independent subdomains that can be solved in parallel. It
offers significant computational advantages, particularly for complex problems
involving linear or nonlinear, static or dynamic scenarios.

However, parallelizing domain decomposition methods presents certain chal-
lenges:

+ Data Communication: For problems with highly interdependent subdomains,
communication overhead can become a bottleneck in the computation pro-
cess.



+ Load Balancing: Distributing the computational load evenly across multiple
processing units can be challenging. This imbalance can lead to certain sub-
domains taking significantly longer to solve, while others remain idle.

Asynchronous iteration is a parallel computing method that has gained pop-
ularity in recent years. It allows for the concurrent execution of multiple par-
allel tasks, where each task operates independently without waiting for others
to finish. Instead of blocking the execution flow until all tasks are completed,
the program continues executing tasks asynchronously in the background. This
approach optimizes system resources utilization and overall execution time, es-
pecially for tasks with longer durations. Asynchronous programming concepts,
such as asynchronous functions and threads, are commonly employed in high-
performance distributed computing systems.

Asynchronous domain decomposition offers several advantages:

* Flexibility: Computation can proceed at different speeds, allowing each pro-
cessing unit to operate at its maximum performance. This results in faster
overall computation times, particularly for highly parallelizable problems.

* Robustness: Computation can proceed without synchronizing across pro-
cessing units, even in the presence of communication failures. This makes it
suitable for solving problems in large-scale distributed computing environ-
ments.

+ Load Balancing: Computational load can be dynamically balanced based on
the processing capabilities of each unit, leading to more efficient resource
utilization and faster overall computation times.

However, one significant challenge in asynchronous iterations is maintaining
data consistency, as computations can proceed at different speeds.

The main objective of this Ph.D. thesis is to advance the understanding and de-
velopment of asynchronous domain decomposition methods. The work aims to
address the challenges faced by conventional domain decomposition techniques
in parallel computing, particularly in terms of load balancing and communication
overhead.

Through a detailed analysis of a specific domain decomposition method in the
field of structural mechanics, this thesis aims to address the current limitations
and gaps in the literature. It is worth noting that the chosen domain decomposi-
tion method is particularly popular in industry as it fulfills their requirements in a
non-intrusive manner.

The research questions addressed in this thesis include:

* How can asynchronous domain decomposition methods be designed to achieve

better load balancing and communication efficiency in parallel computing
environments?
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+ What are the trade-offs between communication overhead, load balancing,
and accuracy in asynchronous domain decomposition methods?

This work focuses on the development and analysis of new asynchronous do-
main decomposition algorithms that can overcome these challenges. The algo-
rithms will be evaluated and compared with existing synchronous methods in
terms of efficiency, scalability, and robustness.

1.2. Outline
Following this introductory chapter, this thesis is organized as follows:

« Chapter 2: This chapter begins with a review of relevant academic litera-
ture related to the development of domain decomposition methods. It pro-
vides an overview of both early and recent methods and explains the the-
ory and algorithms underlying primal methods in detail. Additionally, it in-
troduces the current state of non-intrusive global/local coupling methods
and discusses their performance limitations due to the alternation between
two computation steps. Furthermore, the chapter introduces the concept of
asynchronous parallel computation, highlighting its potential improvement
for domain decomposition methods in general, and specifically in the case
of non-intrusive global/local coupling.

+ Chapter 3: This chapter presents a mathematical overview of non-intrusive
global/local coupling. It explores the method’s application to linear elliptic
and nonlinear problems. Additionally, it interprets the non-intrusive glob-
al/local method as a right-preconditioned primal domain decomposition method,
offering a novel approach.

+ Chapter 4: This chapter presents an asynchronous version of the non-intrusive
global/local computation method for linear and nonlinear elliptic problems,
building upon the new interpretation from the previous chapter. It estab-
lishes a proof of convergence for the discretized system using paracontrac-
tions techniques.

« Chapter 5: This chapter provides an implementation of an asynchronous
code for non-intrusive global/local coupling using the Remote Memory Ac-
cess (RMA) technique with the Message Passing Interface (MPI). RMA-MPI
enables processes to directly access the memory of other processes in a dis-
tributed system, resulting in faster communication and increased efficiency
compared to traditional data-copying methods.

+ Chapter 6: This chapter presents numerical results obtained from studies
conducted on academic and industrial cases. The objective is to compare the
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asynchronous version of the non-intrusive global/local coupling with the ac-
celerated synchronous version, demonstrating the advantages of the asyn-
chronous approach.

+ Chapter 7: This concluding chapter summarizes the main findings, highlights
the contributions of the study, and provides recommendations for future
research.

1.3 . Scientific Contributions

1.3.1. Articles

« Ahmed El Kerim, Pierre Gosselet, Frederic Magoules. Asynchronous Global-
Local Non-Invasive Coupling for Linear Elliptic Problems. Computer Methods
in Applied Mechanics and Engineering, 2023, 406 (115910), (10.1016/j.cma.2023.115910).

This article presents the first asynchronous version of the non-invasive global-
local coupling method, capable of effectively handling multiple and poten-
tially adjacent patches. We provide a new interpretation of the coupling as a
primal domain decomposition method and prove the convergence of the re-
laxed asynchronous iteration. The asynchronous paradigm overcomes sev-
eral limitations of the performance of the global-local coupling. We illustrate
the method with various linear elliptic problems encountered in thermal and
elasticity studies.

1.3.2. Proceeding
« Ahmed El Kerim, Pierre Gosselet, Frédéric Magoulés. Couplage Global-Local
en asynchrone pour des problémes lineaires. 15eme colloque national en
calcul des structures, Université Polytechnique Hauts-de-France [UPHF], May
2022, 83400 Hyeres-les-Palmiers, France.

+ Ahmed EL KERIM, Pierre Gosselet, Frederic Magoules. Asynchronous scal-
able version of the Global-Local non-invasive coupling. gth European Con-
ference for Aeronautics and Space Sciences, Jun 2022, Lille, France. (10.13009/EUCASS2022-

4830).

1.3.3 . Abstracts at conferences

+ 17th International Miklos Ivanyi PhD, DLA Symposium, 25 - 26 Octobre 2021,
Pecs, Hungary.

+ SIAM Conference on Parallel Processing for Scientific Computing (PP22) 23 -
26 fevrier 2022 2022, Seattle, Washington, U.S.

+ 15éme colloque national en calcul des structures, 16 - 20 mai 2022, Giens,
France.
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+ EUCASS-3AF 2022, gth European Conference for Aerospace Sciences, 27 Juin
- 1]uillet Lille, 2022, France.

+ 27th International Domain Decomposition Conference, 25 - 29 Juillet 2022,
Prague, Czech Republic.
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2 - Literature review

As mentioned in the introduction, this work is interested in the parallel sim-
ulation of structural problems discretized by the finite element method leading
to massive nonlinear systems. Using domain decomposition methods is a natu-
ral strategy to distribute the computation over many computational units. So in
this chapter, a literature review is presented on the history of the domain decom-
position methods, emphasizing the most used methods in structural mechanics.
After, the existing works on the global/local coupling techniques are reviewed and
their advantages and inconveniences compared to the classical domain decom-
position methods are specified. Then the parallel aspect of all these methods are
discussed by identifying the limit due to the high cost of communications when
using large calculation tools.

2.1. Introduction

The numerical simulation of mechanical problems requires the consideration
of behaviors and geometries that can vary from simple linear academic prob-
lems to nonlinear industrial problems. Finite element methods provide a pow-
erful framework for convergence toward the solution sought.

However, a suitable choice of finite elements and a well-refined mesh are re-
quired. This last condition can lead to massive systems whose resolution is costly
in computation time and memory storage.

One strategy is the domain decomposition method, which divides the struc-
ture under study into several sub-structures. A strong point of this technique is
that it is well adapted for parallel computing since a sub-problem can be defined
on each sub-structure to be solved in parallel.

An iterative process is then established to obtain the solution. The idea is to ex-
change data between the different sub-domains at each iteration, corresponding
to a communication between the processors.

2.2 . Domain decomposition

2.2.1. Motivation
First introduced by H.A. Schwarz 1870 [96], the motivation behind domain de-
composition methods was to find the solution to the Poisson PDE (equation
defined on a complex geometry as shown in Figure 2.1}
Au=fin

Find u such that: { (2.1)
u=0o0n o
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Figure 2.1: Schwarz first domain decomposition problem

with 02 the boundary of the domain €.

Schwarz considered that the domain 2 of Figure 2.1 was the union of a disk
and a rectangle. The suggested solution was to divide the domain {2, into two
subdomains corresponding to two simple geometries, where one can compute
the solution of the problem for any given boundary conditions,

(b) Rectangular subdomain Q9

(a) Circular subdomain €4

Figure 2.2: Domain decomposition

Figure [2.2] shows the decomposition of the domain € into two subdomains:
the circular subdomain Q; in Figure and the rectangular subdomain €, in

Figure[2.2b]

2.2.2. Schwarz alternating method

Schwarz then established an iterative approach, known as the overlapping al-
ternating Schwarz method, to compute the solution of the problem on the whole
domain €2, by alternating between a resolution in Domain 2; and another one in
Domain €2,. The idea is to retrieve the solution on the shared boundary within the
blue overlap area a = 2,1, in Figure[2.3] calculated when solving one subdomain
and impose it on the other subdomain.

So the system at the iteration n + 1 can be written as:

Find u}*! such that: Find u5*! such that:
“Au = fin —Aul = finQy
uttt =y on 091 N Qy udtt = w7t on Qy N oY
u?t =00on 00y NN uf*t =0 0on 0Qy N 0N
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Figure 2.3: Schwarz alternating method with overlap

This method is not parallel due to the alternating nature of the computations
between the subdomains, which imposes that the calculation in §2; is finished be-
fore launching the other computation on the domain ,. When more than two
subdomains are involved, it is possible to color the subdomains and solve the
subdomains of the same color in parallel.

Remark 1. Note that the convergence of these methods depends strongly on the
overlap size; the larger the overlap width, the faster the convergence.

2.2.3. Schwarz parallel method
To raise the issue of parallelization, the work presented in introduced the
first approach to parallelize the previous Schwarz algorithm, Iteration n+1 can be
written as:

Find u}*! such that: Find u5*! such that:
“Aut = finQy “AuR = finQy
’U{H—l =u" on (991 N QQ ’Ué”l = U? on (992 N Ql
U;Hl =0on an n of2 Ug+1 =0 on 592 n of2

The idea is to eliminate the alternating state of the algorithm where the (n +
1)* computation on ; to compute the (n + 1) solution on Q, must be used, by
calculating both subdomains simultaneously using the boundary condition from
the n'" iteration of the neighboring subdomain.

So in both algorithms, the idea was to check each problem in its subdomain
and, after that, by ensuring via an iterative process, the algorithm’s convergence
while guaranteeing the equality of the field of displacement in the area of the
overlap.

This approach was then generalized for the case with several subdomains
using parallel computing and more general geometries and applications. One
can find more details about the convergence theory and the implementation in
[36} 98, 10]. The references [69,[39] relate the history of development of domain
decomposition methods.
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2.2.4 . Non overlapping Schwarz method

Other than their adaptation to parallel computation by allowing the distribu-
tion of the calculation of each subdomain on a computational unit, the domain de-
composition methods allow to couple several problems of different natures (fluid-
structure, magneto-mechanical, ...etc.). For this reason the methods with over-
lap may seem inadequate and therefore a non-overlapping variant of Schwarz's
methods was later introduced in the work of Lions [[70].

Itis thus supposed that the two subdomains Q; and €, are such that Q = Q,uQ,
and Q; Ny = @, and their interface is introduced as I' = 9, n 025, see Figure

Figure 2.4: Two non overlapping subdomains

The non-overlapping Schwarz domain decomposition method requires intro-
ducing two parameters, named ¢; and ¢, which act as “interface stiffness” or
impedance and which allow for the introduction of the Robin or Fourier bound-
ary conditions on the interface. These parameters offer the possibility to find
their best configuration, hence the name Optimized Schwarz Method (OSM) is of-
ten used for this method. ¢, corresponds to the normal derivative operator, the
parallel non-overlapping Schwarz iteration can be written as:

Find u}*! such that: Find u5*! such that:
“Aur = finQ, ~Au = finQy
(On+q)utt=(=0p+q)ul on T (On+q)uitt=(-0,+q)ut on T
uf*t =0on Q4 NN uf*t =0 on dQy NN

Note that it is also possible to derive an alternating version, and that optimized
(i.e. Robin) interface conditions can also be used in the presence of an overlap.

In structural mechanics a well-known version of OSM is the Latin approach [63]
which combines such interface conditions with a nonlinear solver, making it pos-
sible to solve complex elastoviscoplastic problems with friction at the interface.

2.2.5. Non stationary methods

The Schwarz methods rely on a fixed point iteration with a contraction prop-
erty. It is possible to derive other approaches which do not naturally express as
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the search for a fixed point, and when turned into a fixed point (e.g. using a pre-
conditioner) do not have a contraction property, making it necessary to use en-
hanced solvers like Krylov in the linear case or Newton in the nonlinear case.

These methods are often referred to as sub-structuring methods, and one of
the first was [90], developed by mechanical engineers for the finite element anal-
ysis of complex structures. A full historical review can be found in [40].

To simplify the introduction of the method, the case of Figure[2.4]is considered
with two subdomains €; and Q,, Q = Q; U, and Q; N, = @, separated by I' =
an n 592

If independent fields u; and uy are considered in the subdomains, beside the
Poisson equation inside the subdomains, they must satisfy two interface condi-
tions in order to be the restriction of the solution of the problem set on the whole
domain (2. The first condition is the continuity uyr = uyr, and the second is the
balance of the fluxes ¢, uyr + dnugr = 0.

This leads to the classical approaches:

* The primal approach:

Find the Dirichlet condition ur
such that d,uyr + d,ugr = 0, where

—Aug = fin Q,
fors=1,2, wu,solves {u,=uronT
ugs = 0 on 09, N 612

* The dual approach:

Find the Neumann condition Arp
such that uyr = ugr, where

-Aug = fin Q,
fors=1,2, wusolves {d,us,=(-1)* \ronT
us = 0 on 08, N oS

After discretization, all these methods enter the framework of linear systems where
the unknown is a boundary condition and the residual corresponds to the non-
satisfaction of the remaining interface conditions. Due to the different physical
nature of the unknown and of the residual, it is clear that stationary iteration is
not possible. Anyhow, powerful preconditioners are available which can be used
in conjunction with a Krylov solver, leading to efficient methods like the balancing
domain decomposition (BDD) [77] or the finite element tearing and interconnect-
ing (FETI) method [35] and their recent variants [60, [62].

The literature regarding these methods is very rich, with important progress
being recently accomplished regarding automated coarse problems [9g] or mul-
tipreconditioned solvers [17].
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2.2.6 . Primal approach

Inthe next chapter, a new interpretation of the non invasive global/local method,
studied in this thesis, is proposed as a primal domain decomposition method with
a preconditioner. This subsection aims at providing enough details on the stan-
dard primal approach. The presentation of the primal approach presented here
is inspired from [85]. For simplicity it is made in a discrete setting.

2.2.6.1. Setting of the method

A classical quasi-static mechanical (or thermal) problem set on a domain
and discretized with the finite element method is considered. If nonlinearity is
involved, an incremental approach is considered and this study is restricted to
one increment. The system to be solved, called reference system here, can be
written as:

Find u so that f;,;(u) + f.,; =0 (2.2)

Using the language of mechanics, f.,; stands for the (generalized) external forces,
f..: is the vector of internal forces and u is the vector of unknown displacements
(Dirichlet conditions are assumed to have been eliminated).

Note that in the case of linear problems, the internal forces take the form of a
linear application:

fi(u) = -Ku (2.3)

where K is the sparse symmetric definite positive stiffness matrix.

The conforming partition of €2 into NV non-overlapping subdomains Q¢ is con-
sidered, so that each element belongs to exactly one subdomain. Superscript (s)
will refer to data attached to domain 2¢. Let I'* denote the interface of subdo-
main Q*. The classical notation is used to distinguish between interface (bound-
ary) degrees of freedom, with a b subscript, and internal degrees of freedom, with
a subscript i. Let I' = ul'® be the set of all interface degrees of freedom. The trace
operators are defined as T¢ : (¢ — I's. Also, the assembly operators are defined
as As : I'* - I which connect subdomains together. The subscript I' is used for
quantities defined on the global interface.

In order to write the equilibrium of subdomain 2%, The introduction of the
vector of nodal traction A® that is imposed by its neighboring subdomains on its
interface is required:

£2,(u”) +£5, + TS A* =0 (2.4)

Where T¢" can be viewed as an extension-by-zero operator inside the subdo-
main. Note that the b subscript is omitted for A* because by nature this quantity
only exists on the boundary of the subdomain.

In order to make the subdomains’ equilibrium equivalent to the global equi-
librium (2.2), the addition of two interface conditions is needed:
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Continuity of displacement, 3ur such that Vs, u; = ASTUF,
Balance of interface traction, Z AN =0 (2.5)

It was chosen to express the continuity of the displacement by saying that local
displacements should be the restriction of a common interface displacement. An-
other possibility would be to require the nullity of the jump of displacement using
a signed assembly operator. This would be the starting point of dual approaches
which need not be detailed here.

Assuming the well-posedness of local Dirichlet problems, it is possible to re-
word the global problem in terms of the unknown interface displacement ur:

Find ur such that >~ A*A* =0

where Vs, (A% u®) are solutions to local Dirichlet problems:

. (2.6)
£2 () +£5,+T° X°=0
Tsu® = A* ur
Note that the local Dirichlet problems correspond to solving:
Dirichlet condition: u; = A up
Internal nonlinear problem: Find u;, f;,, ; “g +£,,=0
“\ug , (2.7)
Interface post-processing: A* = -7, (E%) o

2.2.6.2 . Condensation

As subdomains’ internal quantities are always obtained from the solution of lo-
cal problems with given interface conditions, the convergence of non-overlapping
domain decomposition methods is governed by the convergence of interface un-
knowns. It is thus convenient to only think in terms of interface quantities and
introduce condensed formulation where the internal equilibrium is implicitly al-
ways satisfied. In particular, the subdomains’ Dirichlet-to-Neumann operator is
defined as s*:

A* =s%(uy; £2,,) as defined in (2.8)

Note that in the case of linear systems, the explicit expression of the (affine)
Dirichlet-to-Neumann operator can be written as:

i (i £200) = (K — K3 KK ) w) = (£, - KoK £2,,) (2.9)

ext) —

Ss b*
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S¢ is the well-known Schur complement matrix and b# is the condensed right-
hand side. The Schur complement inherits important properties from Matrix K3,
in particular symmetry and (semi)definiteness positivity.
It is thus possible to rewrite the reference system as:
Find ur such that 3" A®s*(A* up; £

ext

)=0 (2.10)

In [85], it is proposed to solve the system with a Newton-Raphson solver, which in-
volves solving tangent systems which have the structure of a linear primal domain
decomposition problem. In the following section, the well established ingredients
used to efficiently solve such systems are detailed.

2.2.6.3 . Solution strategy in the linear case
A focus is placed on the solution of the linearized system (2.10):

(A A Jur = Y A*b? (2.11)
—
Sr br

where the different operators are given in (.9). In order to avoid exchanging
dense matrices between processors, it is recommended to use a Krylov solver.
Moreover, it is not necessary to actually form the Schur complement, one only
needs to compute the solution to Dirichlet problems (using a factorization of K3,).

For the Krylov solver to converge efficiently, it is necessary to use a precondi-
tioner. The one which naturally arises is the Neumann-Neumann:

(L asA) ~ (LA AT (2.12)

where the (A#®) are scaled assembly operators such that 3 AsAs" = I, and S*'
is a pseudo-inverse of S5. Note that it can be computed as S¢' = T*K*'T*". The
preconditioner thus corresponds to the parallel solution of Neumann problems
set on the subdomains.

For the use of the pseudo-inverse to be well-defined, it is necessary to ensure
thatitis applied to a vector belonging to the image of the operator. This constraint
is usually implemented using a projector/initialization procedure. Let R* be a ma-
trix whose columns form a basis of kernel of K5, i.e. the rigid body motions of the
subdomain, then R; = T*R¢ is a basis of the kernel of S*. The following quantities
are introduced:

G=(...A°R;...),
P-1-G(GTS;G) " GTs; (2.13)
up, = G (G7SrG) " GTbr
Since the subdomains’ rigid body motions are linearly independent and Sr is a
SPD matrix, the matrix (GSrG) is also SPD and thus invertible.
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P is a projector such that PG = 0 and PTSyG = 0. The matrix (GTSrG) is
called the coarse problem by analogy with multigrid approaches and it plays a
central role in the convergence of the method. Itis also a technical difficulty when
implementing the method, and it can become a bottleneck for large number of
subdomains.

The interface displacement is searched for under the form ur = ur, + Pur, and
the unknown 1r is the solution to the following system:

SFPﬁF = bp - SFuFO = PTbF (2.14)

Note that SyP = P”SrP so that the system is symmetric semi-definite, and it can
be preconditioned by the Neumann-Neumann scaled operator (Z ASSS*AST).

As equipped, the method takes the name of Balancing Domain Decomposi-
tion (BDD) [77, 671 and it is proved to be scalable for a large class of problems.
Anyhow, some situations are known to cause problems, like corners in shell mod-
els, or jagged interfaces, or heterogeneity near the interface. In theses cases it
is proved that the coarse problem should be enriched by more modes than the
simple rigid body motions which can be computed for each subdomain by a gen-
eralized eigenvalue problem, named GENEO [g9].

Also, it is worth mentioning the more recent BDDC approach where the coarse
problem is implemented by directly imposing some continuity between subdo-
mains during the preconditioning step [62]. This version presents some algorith-
mic advantages, and it avoids the factorization of the pseudo-inverse which can
be numerically difficult.

2.2.7 . Multi-scale methods

The Balancing Domain Decomposition method is equipped with a coarse prob-
lem that ensures the well-posedness of local Neumann problems during the pre-
conditioning step.

From the mechanical point of view, the coarse problem ensures the equilib-
rium over the whole structure of the resultant and the moment (also known as
the torsor) of the forces applied to the subdomains. According to the Saint-Venant
principle, the remaining part to be computed is localized. This means that thanks
to the coarse problem there should be no need to transfer long-range information
and the solution could be found by local exchanges between neighboring subdo-
mains. As the number of neighbors remains bounded even when the number of
subdomains increases, the coarse problem should ensure the scalability of the
method.

It appears that the coarse problem is a key ingredient for domain decomposi-
tion methods to achieve high performance. It plays the same role as the coarse
grid in multigrid methods [107] and it bears strong similarity with algebraic multi-
grid methods.

In methods like BDDC or FETI-DP [61], the coarse problem corresponds to en-
suring the primal continuity of some well-chosen interface degrees of freedom.
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The coarse problem can also be viewed as a long-range simplification of the
problem, what is sometime referred to as a numerical multi-scale method. For
instance, the micro-macro Latin method [64] can be viewed as a parallel non-
overlapping Schwarz method equipped with a coarse problem based on the Saint-
Venant principle. An attempt to optimize the macro problem based on GENEO
concept was proposed in [87].

2.3 . The non-invasive global/local coupling

2.3.1. Introduction

Nested models, as presented in Figure2.5] are ubiquitous in industry to give a
multi-scale description of structures. They call for the use of multi-scale domain
decomposition methods to avoid a prohibitive cost of meshing and remeshing of
the structure that can subsequently lead to systems whose resolution and storage
are cost prohibitive.

Figure 2.5: Nested models, courtesy Dassault Aviation

The motivation of industry to use non-intrusive multiscale coupling strategies
is to be able to provide methods that can be integrated into legacy industrial soft-
ware codes. To do so, they must respect several constraints, including the lim-
itation to use the standard outputs and inputs of the software, which limits the
choice of computational methods in mechanics, because these methods are gen-
erally developed in homemade codes but are not made to be used outside the
academic domain.

The idea of the global/local coupling is to replace a global model with more pre-
cise models in some local parts of the structure, solved with dedicated software.
An iterative approach is implemented to achieve the strong coupling. Of course,
it comes with a convergence threshold and the need to tolerate a controlled error
compared to the reference monolithic computation.
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2.3.2. lllustration

Generally, when studying the design of a part with a specific material, complex
behaviors tend to develop in some local zones. This can be explained by the ex-
posure of these areas to more critical physical phenomena such as higher heat,
higher load or cracking, etc. Very particular and complex geometries can also dis-
tinguish these areas from the rest of the structure.

To illustrate the type of study performed, an approximation of a 2D turbine
blade as in Figure [2.6]is considered. In this model, two zones of interest, shown
in yellow and green, with specific complex geometries are considered. Another
blue global zone exists where no important behaviors or complex geometries are
distinguished. This model is defined on several scales, illustrated in the following

Figure 2.6: 2D turbine blade

Figures.

Figure[2.7|corresponds to a coarse scale representation of the 2D turbine blade
as in Figure [2.6 also known as the global model, where its coarse mesh cannot
consider what happens in the zones of interest. A highly refined mesh is required
to simulate it well. These zones of interest can be much larger than the mesh
of the global problem. Q¢ and Q¢ are the two zones of interest and Q%¢ the
complementary domain. I'4 is the interface between these zones of interest and
this complementary domain.

Asin Figure[2.8] geometries or behaviors can exist that are reproduced in some
regions of interest (local models) of the global structure (global model). The geo-
metrical modification can correspond to removing a part of the geometry of the
global structure and introducing holes. It can also correspond to strong nonlin-
ear behaviors, like plasticity, viscoplasticity, fatigue, and cracking. QL and Q2%
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Figure 2.8: Refined zones of interest

correspond to the refined zones of interest.

The assembly of the local models on the zones of interest with the global model
on the rest of the structure corresponds to what is known in the literature as the
reference problem (Figure [2.9), and this problem is generally costly to build and
solve. Indeed, in spite of the recent progress in meshing software, obtaining a
good mesh for a complex part is still the most time-consuming step of an indus-
trial simulation, before computation itself.

The multiscale coupling approaches used to find the solution of the reference
problem without going through its resolution proceeds by two steps. First, an
evaluation of the global coarse model on the whole structure, which allows esti-
mating the large flows of efforts in the domain. Then, a second evaluation of the
zones of interest with the local model on refined meshes to substitute the global
model in these zones.
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Figure 2.9: Reference problem

2.3.3. Submodeling

An approach generally used by the industry is the well-known submodeling
technique [58, 97, 22]. This coupling technique is often already integrated into
commercial software. It consists in solving the discretized finite element global
problem on the coarse scale of the structure and extracting the solution obtained
on the interface of the zones of interest to send it as a Dirichlet conditions to the
local models. Then the discretized finite element problem is solved on the local
models by considering all the specificities of these zones of interest and using
the condition at the boundary sent by the global problem. Finally, the solution
obtained locally replaces the solution of the global model in these zones.

However, despite the advantages of this approach, it leads to large errors that
can be materialized by the imbalance on the interface of the patches in the ref-
erence model, because the effects of local fine problems are not sent back to the
global model, and interactions between local problems are thus impossible to ac-
count for.

Toillustrate the limits of this method, the example of the 2D turbine blade as in
figure2.6|presented in the previous section is considered with thermal or elasticity
linear problems. Then, significant quantities are considered for the mechanical
analysis, like the Von-Mises and the thermal gradient.
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(a) Submodeling solution (b) Reference solution

Figure 2.10: Comparison of the thermal gradient for the submodeling and refer-
ence approaches

Von_Mises_Stress
68601 500 1000 1800 2000 2500280402
| | |

(a) Submodeling solution (b) Reference solution

Figure 2.11: Comparison of the von Mises stress for the submodeling and reference
approaches

Figures and present the von Mises stress obtained from the resolu-
tion of a linear elasticity problem and the gradient of the resolution of a linear
thermal problem. They show the quantities obtained in submodeling compared
to the ones obtained in the reference problem. In both situations, a discontinu-
ity corresponding to the disequilibrium at the interfaces can be observed for the
quantities calculated by the submodeling method. The error observed in these
results is due to not considering the effect of local problems on the global prob-
lem.
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2.3.4 . Motivation

The global/local coupling has been introduced to correct the errors induced by
the submodeling method while keeping the non-intrusive aspect. The idea is to
put in place an iterative approach that sets up data exchange between the global
model and the local models. This exchange takes into account the effect of each
on the other, allowing an accurate evaluation of the reference solution.

Von Mises Stress
6se01 S0 100 1500 2000 2500288403
— L ;

Von_Mises_Stress
1000 1800 2000 250028e+02
| | |

(a) Global Local solution (b) Reference solution

Figure 2.12: Comparison of the von Mises stress for the Global local coupling and
reference approaches

Themic_gradient Magnitude
118 2 25 3

(a) Global Local solution (b) Reference solution

Figure 2.13: Comparison of the thermal gradient for the Global Local coupling and
reference approaches

The method is non-invasive in the sense that it is adapted to coupling com-
mercial (closed) and research software. Its first implementation in Abaqus was
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proposed in [47]. Thus, it was implemented to couple research codes and legacy
commercial software like Abaqus [15], Code_Aster [28], or Z-set [106].

The global/local coupling is strongly related to many reanalysis techniques [57,
108, [109]], domain decomposition methods [54, [50], and multiscale methods [64].

The mainidea is to start from a simplified global model and then allow local al-
terations (geometry, material, load, and mesh) to be inserted and their effect to be
evaluated without heavy intervention on the initial model (see [1] for a pedagogic
presentation). It was successfully applied in many contexts like the introduction
of local plasticity and geometrical refinements [47], the computation of the prop-
agation of cracks in a sound model [28], the evaluation of stochastic effects with
deterministic computations [20, [86], the taking into account of the exact geome-
try of connectors in an assembly of plates [52], in the NURBS context in order to
simplify the modeling of local behavior within a NURBS patch [16], in the analysis
of composite structures with elastic shell representation at global scale and solid
modeling at local scale [53]. In [66], the method was used for the coupling of a
global model described with an IsoGeometric Analysis (IGA) and a local models de-
scritized using the standard finite elements methods. In [28] the method was used
in order to implement a nonlinear domain decomposition method [59, 23} 55, [85]
in @ non-invasive manner in Code_Aster. Extension of the approach to explicit dy-
namics was proposed in [12], improved in [13], and applied to the prediction of
delamination under impact loading in [14].

2.3.5. Principle of the method

The classical scenario is illustrated in Figure[2.14] A linear global coarse model
is used to describe a large structure. After the initial computation (Figure [2.7),
some zones of interest 25¢ (s > 0) are selected because some criterion has been
exceeded or because it was known from the beginning that some details were
missing in the Global model. This is the case for the presented illustration where
geometrical details and adapted meshes are introduced in the fine modeling of
the zones of interest Q. Material laws could also be modified. Fine compu-
tations are run in parallel on the patches using the global solution as Dirichlet
boundary condition (for s > 0, the fine and global subdomains may differ, but
their interface I's must be the same I's = Q n 005G = QO n Qs F).

The error can be materialized by the lack of balance of the fluxes between the
global zone not covered by patches, denoted by 2° and the Fine models. As can be
seen in Figure [2.113) which shows the von Mises stress and where the fine models
overwrite the global ones. There is a discontinuity at the interface which does not
exist in the reference computation where all interactions are taken into account.
See Figure[z.11blwhich corresponds to a direct computation of the reference model
where the zones of interest are described with the fine models, see Figure 2.9l

With the residual being the lack of balance at the interface, it can be reinjected
into the global model as an immersed Neumann condition on the interface. The
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Global Dirichlet conditions

Global computation
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Figure 2.14: Global Local non-invasive coupling iteration

global model corrected by this interface load can be solved, followed by local
Dirichlet problems and the iteration can go on. So at this point the global/local
coupling is a simple iterative technique (a Richardson iteration for its simpler ver-
sion) aiming at obtaining the Reference solution from computations carried on
the Global and Fine models (that is to say without the potentially cumbersome
creation of the Reference model) with minimal intervention on the models and
software. One notes that if the calculation is stopped after the first iteration and
the nodal reactions are not sent back to the global model a Submodeling method
is performed.

2.3.6 . Parallel global/local coupling

Despite its robustness and non-intrusiveness, the parallelization of the glob-
al/local coupling remains a significant problem. As the literature explains, sev-
eral case studies are found involving patches and then the parallelization of these
patches using MPI. The coupling performance remains limited, even if the paral-
lelization of these local patches can allow for a gain in performance. The synchro-
nization at the end of each local computation imposes all the patches to wait for
the end of the last calculation of the heaviest patches in terms of computation
time, which raises the central problem of load balance. A second problem that
this method suffers from, like all the two-step methods, is that the evaluation of
the global problem is performed sequentially with the local problems. What this
means is that even if the patches are well-balanced and parallelized, there will
be a step of inactivity while the global one is performing its computation, which
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makes the method not scalable using this classical synchronous parallelization
techniques.

All the cited applications were developed in a synchronous framework that has
been taken advantage of by accelerators (Aitken, quasi-Newton, Krylov). See [50],
where the method is proved to be an implementation of an alternating Dirichlet-
Robin approach where the Robin parameter corresponds to the condensation of
the coarse domain covered by the patch. One can also see [28] where a parallel
version of the method was presented with several adjacent patches similar and
parallelized like a domain decomposition method. However, due to the alternat-
ing nature of the method, where the global model is performed alternating the
local ones, its computational performance is inherently limited, with processors
computing the local problems being idle while the global model is computing and
the same for the global when the locals are computing.

To show the actual parallelization technique used, the case in Figure [2.6]is con-
sidered, with two zones of interest. The idea is to parallelize the two local prob-
lems and to keep an evaluation of the global problem on another processor.

A Global

H

g

TIME

é

Figure 2.15: Synchronous iteration

Figure shows a sequence of iterations of the global/local coupling paral-
lelized with classical synchronous techniques. The global problem is presented
in blue, and the locals are presented in orange and green. At first the influence
of the nature of the alternating method can be seen during the global evalua-
tion, where the local problems are waiting for an update from the global. In the
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same way, it can be seen that the evaluation of the locals makes the global one
wait. Also, the importance of these periods of inactivity can be seen, as well as the
degradation that they bring to the method's performance. A second point that can
be observed is the load imbalance between the two local problems, which forces
problem 1 to wait for the end of the calculation of problem 2 to synchronize and
send the necessary information to the global problem.

It can be imagined that the performance will decrease in the case of several
patches with more important load imbalance or also in the case when the global
problem has a significant size which will increase the duration of the sequential
part.

In the next section the asynchronous parallel technique which correspond to
the suppression of the synchronization step is presented. This enables the elimi-
nation of waiting periods.

2.4 . Asynchronous iterations

Asynchronous parallel computing techniques have been applied to domain
decomposition methods to improve their performance and scalability. First, sev-
eral works have targeted classical alternating Schwarz methods with overlap by
proving its theoretical convergence with some numerical illustration. In [81] a new
theoretical study of asynchronous algorithms with flexible communication is pre-
sented for the Schwarz alternating method, an application of this approach in
linear and nonlinear cases can be found in [103, 102, [7]. In [37] an asynchronous
version of weighted additive Schwarz method is investigated, its convergence is
shown, and some numerical results show a significant improvement compared to
the synchronous version. [18] presents an application of the asynchronous alter-
nating Schwarz method to a large structural mechanic problem using the super-
computer Grid5000. In [65] an asynchronous additive Schwarz was investigated
theoretically and numerically to solve nonlinear problem with finite difference
scheme. In [105] the rate of convergence of asynchronous domain decomposition
methods is studied in the context of convex optimization. Recently, [48] presents
a novel scalable asynchronous two-level Schwarz method.

Other works have been interested in asynchronous domain decomposition
methods without overlap. As mentioned in the introduction, those methods are
well suited to the problem coming from mechanics, which interests this study.
One of the first works realized in this framework is presented in [71] where a first
convergence proof of the classical sub-structuring is presented with interesting
numerical results for a 3D Poisson problem. Later, [43] found an improvement
of the method and proposed a Gauss-Seidel scheme to alternate between reso-
lution on the interface and on the local subdomains. In [46] a coarse space cor-
rection is added allowing a good scalability of the method. Other studies were
interested in the asynchronous optimized Schwarz method [76] and one can find

33



several applications of it in [47, 30, 112]. In [45] the convergence of primal Schur
domain decomposition has been established under suitable relaxation and in [111]
an asynchronous multigrid method was presented within a shared memory sys-
tems.

2.4.1. ldea
To introduce the basic notions of asynchronous parallel computing, a PDE
problem is supposed with a finite element discretization which leads to a large
linear system to be solved:
Az =10 (2.15)

with A € RVN matrix, z € R solution vector and b € R” right-hand side vector.

2.4.1.1. Classic iterative solver
Compared to direct solvers, iterative solvers evaluate the solution by succes-

sive approximation, they use much less memory and are more suited to paral-
lelism than their direct counterparts at the price of an uncertain number of oper-
ations to achieve convergence.
The idea is to build a sequence x;, with k£ € N such that :
%im xp= A1
The algorithm is stopped after reaching a certain chosen precision.
Generally the linear iterative algorithm can be written as :

{ Initial chosen: x (2.16)

Compute at the step k+1: zgy1 =Ty + ¢

The iteration matrix T corresponds to a splitting of the matrix A, for example:
A = M - N, with M a non singular matrix and then, the system in (2.15) can be
written as:

(M-N)x=0b (2.17)
Mzx = Nz + b (Fixed point equation) 7

From the following linear iterative algorithm can be deduced:
T = M'Nay, + M1, For a given g (2.18)

Thus T = M~'N. The convergence of this algorithm is guaranteed [5] if p(T") < 1

2.4.1.2 . Parallel computing
The use of these iterative methods is usually accompanied by the implemen-
tation of a parallel process that allows the distribution of the computation task
in several subtasks and calls upon a certain number of machines to take care
of these subtasks. The idea is to reproduce these calculations simultaneously in
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parallel. A significant problem in parallel computing is the communication man-
agement between these different machines, which generally corresponds to an
assembly of the global solution from the solutions computed in parallel or the
diffusion of global information to all the machines as a message of convergence,
for example.

The idea is to split the vector . in the system into L parts and to use L
processors to compute each partin parallel

Tha) (S @)
o) \fE(og, g

The calculation of block j of the vector 27 with 1 < j < L at the iteration & + 1
depends on all the other L blocks calculated in the previous iteration k. Therefore,
an exchange of information is mandatory between the different blocks before
passing from one iteration to the other.

A classical parallelization model that exists is the model with synchronized
communications and calculations. The idea is that at each iteration, a step called
synchronization is set up, where all the processors are blocked until the end of the
calculation of the last processor to exchange the information and launch a new
iteration.

e
d .
l e Time

-

= Synchronization *~
Figure 2.16: Synchronous model with L=4

Figure presents a graph of synchronous iterations; with L = 4, there are
four processors, and a part of the calculation takes place on each of the proces-
sors. At the end of each iteration, processors who finished early, in this case,
processors 1,3 and 4, are obliged to wait for processor 2, which takes more time
for calculation; these waiting times are modeled by the empty spaces between the
moment when the calculation is finished and the moment when the exchange of
data takes place.
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The computations start at each iteration at the same time. The waiting times
are considered a period of inactivity which can, with their repetition, degrade the
performance of the parallel algorithms considerably

Several parameters can affect the performance of the used parallel approach:

e The architecture of the used machines (heterogeneity of the processors,
number of processors, organization of the memory, speed of the intercon-
nection network between the machines),

e The method of computation because there is no universal method that per-
forms in all cases,

e The implementation of the stopping criterion for the iterative methods,

e The weight of the sequential irreducible part of the parallel method.

2.4.1.3 . lllustration

Asynchronous parallel computing, first introduced in [93], was then studied
numerically in [19] under the chaotic relaxation technique to solve large linear sys-
tems ensuring its convergence with contraction properties. It has subsequently
been the subject of several convergence studies. [79] generalized the study in
[19] to nonlinear problems. The work in [8] allowed the first implementation of
asynchronous methods on multiprocessor architectures with unbounded com-
munication delays between processors. In [32] general convergence results for
the asynchronous iterations based on the notion of classical contraction is pre-
sented. Recent work in [21] shows interesting theoretical and practical results for
the Richardson iterations from the asynchronous point of view.

In [101, 38, 3], one can find a global review of asynchronous iterations from
both theoretical and implementation points of view. Also in [100] one can find a
simple and didactic presentation of the asynchronous iterations.

Time
Figure 2.17: Asynchronous model with L=4

Parallel asynchronous iterations correspond to a fixed point without any syn-
chronization step, i.e., all the processors start simultaneously at the beginning of
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the calculation but stop only after the end of the calculation, meaning the algo-
rithm'’s convergence. The data exchange (sending or receiving) is systematically
done by each processor independent of the others once its calculation is finished.

In the most common case where there is an unbalanced load distribution or
processors that do not have the same computation speed, the asynchronous
model is very advantageous compared to the synchronous model. A drastic de-
crease in communication time is observed with the suppression of this synchro-
nization step.

2.4.2 . Mathematical model
The parallel asynchronous model corresponding to equation2.4.1.2|for solving

the linear system is written in the following form:

w0 = (g, ()

I JI@L oy ol ) ifj e Hy
B o if ¢ Hy (2.19)

The algorithm describes the behavior of an iterative process parallelized asyn-
chronously using L processors. At each iteration k + 1, the processor j computes
xiﬂ by using the data available by the other processors. If there is no new data,
the value of the previous iteration mi is kept.

e H; is a non-empty subset corresponding to the updated components at the
iteration k

e 7;(k) = k—s;(k) corresponds to the potential delay function of the processor
j when computing the block j at iteration k + 1.

2.4.3. Convergence

As presented before, the asynchronous paradigm allows some processors to
go faster than others by removing the synchronization barrier, which leads to
more information being exchanged for some processors than others.

However, a local prediction cannot be made for the number of iterations. The
advantages, as mentioned before, are numerous. However, the passage in asyn-
chronous can be complicated for certain numerical methods by leading to their di-
vergence because the conditions required to make them converge in synchronous,
which are the same ones as that of the algorithm in sequential, are not sufficient
to guarantee the convergence of the method in asynchronous. Thus, theoretical
studies are essential for the proof of the convergence in the asynchronous case.

Since their introduction, several theoretical studies have been interested in
converging asynchronous computation methods.
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The first works of Chazan and Miranker have established sufficient but not
necessary proof of convergence:

Theorem . If p(|T|) < 1, with|T| = (|T; ;|) and p the spectral radius of the matrix, then
the asynchronous iterations converge to the solution x* whatever the initialization.

However, if in the other case p(|T|) > 1, there exists a set of delays and an
initial solution z, allowing the convergence of the asynchronous model. Several
other techniques of analysis of the convergence of the asynchronous iterations
are found, which are based on different approaches and with a different level of
asynchronism in each case of study. First, we find the technique of partial or-
dering in [79, 80]. Other studies use the same techniques with the discrete max-
imum principle for nonlinear problem using the notion of M-Function [29], for
non-singular linear and nonlinear systems

2.4.4 . Stopping Asynchronous iterations

The detection of convergence in asynchronous, or rather the stopping of the
algorithm when the solution vector approaches the desired solution, is a major
probleminthe case of asynchronous iterations. Generally, whether in the sequen-
tial or parallel case in synchronous, the stopping or convergence criterion corre-
sponds to the evaluation of a residual formed from a reduction operation applied
to the other residuals calculated locally. This operation is thus realized with the
help of synchronization. However, the asynchronous parallelization model is non-
deterministic, and the notion of iterations is not the same as in the synchronous,
where a certain number of iterations are performed by all processors before con-
verging. In asynchronous, each one performs its iterations locally without taking
into account the progress of the other and therefore establishes a protocol that
allows evaluating the progress of the algorithm to know if the criterion of con-
vergence is reached or not. While remaining in an asynchronous framework is
a highly complex task either from a numerical analysis point of view or from a
computer science point of view, i.e., programming, especially with multiproces-
sor architectures and distributed memories.

The most used asynchronous iteration-stopping techniques are based on the
observation of the local state of the solution in each processor to detect if the
convergence is reached locally and then send the information to a processor,
which manages the iteration stopping. In the literature several approaches can
be found. In [11, [0, [95] a special processor is designed to check the convergence
locally on each processor and then use a specific protocol to check the global
state of the algorithm convergence. In [6] a non-centralized approach to global
convergence detection based only on local information required from the pro-
cessors has been established, as well as a theoretical proof. The performance of
the approach has been improved in [4]. In [82] a new criterion is considered for
parallel linear fixed point methods using macro-iterations. In [75], a good global
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evaluation of the residual using non-blocking communication techniques was in-
troduced. This study was based on the use of a protocol based on the snapshot
algorithm to assemble the global vector, an improvement of the performance of
this approach is presented in [72]. The works in [44, 42] allow to implement a
protocol-free distributed convergence detection technique. The idea is to diffuse
the global residual using non-blocking global reduction techniques, enabling the
calculation to stop once the global convergence is reached.

As, presented asynchronous convergence detection usually requires a specific
detection protocol, which can sometimes be complex. In the studied case of glob-
al/local coupling the residual is assembled on the global model and it is always
available. Therefore, the stopping criterion is the same as in synchronous be-
cause it is based on the calculation of the same residual at each iteration.
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3 - Derivation of the non-invasive Global/local cou-
pling

In this chapter, a new derivation of the global/local coupling is proposed. In-
deed, there are many ways to derive the global/local coupling in the literature,
hence the many names which were given to the method (Dirichlet-Robin, one vari-
ant of localized multigrid, semi-Schwarz Lagrange...). The most advanced the-
oretical framework was probably the one developed by [86] in a synchronous
context with non-adjacent patches (which are equivalent to one non-connected
patch).

This new interpretation makes it easy to treat as many patches as wanted,
possibly adjacent patches, with analysis similar to what was proposed in [28], and
also makes it possible to compare the method with the primal domain decompo-
sition method. For simplicity, the continuous problem is not considered, and the
focus will be on the properties of the discretized system. This chapter sets up the
method. The convergence of the asynchronous iteration is the subject of the next
chapter.

The method is presented for a quasi-static mechanical problem, but other
cases like thermal problems can easily be deduced. A structure occupying a do-
main 2 is considered, submitted to given load and boundary conditions. One load
increment is studied.

The system to be solved can be written as:

div(o)+ f=0inQ
o-n=gon d,f)
U = ug oN 0452
o=0(u)=H(Vsu)in

Where u is the displacement field, o the Cauchy stress tensor, u, is the given
displacement on the Dirichlet part of the boundary 7,12, g is the traction imposed
on the Neumann part of the boundary 2,{2, f is the body load. For simplicity, in-
finitesimal strain is assumed, V,u is the symmetric part of the gradient of displace-
ment. The mechanical behavior is symbolized by the operator H. In the linear
elasticity case, H is the Hooke tensor. More general behaviors can be considered
like elasto(visco)plasticity, in which case internal variables should be added to the
system but for simplicity they are not written.

The weak form reads: find u € H}(Q) (i.e. satisfying Dirichlet boundary condi-
tion):

/Qa(u):stdX=[Qf~vdx+/aan-vds Vo e Hy(Q) (3.2)
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The term of the left-hand side is the opposite of the internal mechanical work,
the term on the right-hand side is the mechanical work of external forces.

Using a variational formulation form of this problem, the convergence condi-
tions of the Global/local coupling will be presented. A discrete form will be pre-
sented, and finally, after the deduction of the condensed form, the new derivation
of the Global/local coupling is introduced.

3.1. Variational formulation framework

The domain Q is partitioned into N +1 non-overlapping subdomains (Q¢). I's =
0 n Q) is the interface of the subdomain ¢, and I' = UI'® the total interface. The
equation can be written under the form:

Find u € V(Q),a(u,v) =1(v), Vv e V() (3.3)
with :
N
a(u,v) =Y a*(ujs, vjos)
s=0

I(v) := Z:(:] I*(vjas)

where V() c H(Q) is the subset of H'!-fields satisfying Dirichlet conditions and
V0(Q) is the associated vector space. In the following, the Fine and Global mod-
eling will be distinguished when needed. The following hypotheses are assumed:

+ The patches are regular enough for trace operators to be well defined.

+ Theloads (boundary conditions and body load) lead to a linear H!-continuous
forms (=& and [*¥. Dirichlet conditions are regular enough to be continued
in the domains.

*+ For s > 0, the Global patches are characterized by symmetric bilinear forms
a*>“ which are H!-continuous, and coercive in the H'! semi-norm; at least
one patch is H'-coercive (that is to say with enough Dirichlet conditions).

« If it exists, the patch 0 (complementary domain) is the same in the Fine and
Global modelings.

* For s >0, Fine patches are characterized by forms a*f which are the sum of
two terms:

s, F

F
>’ =ay +a>t

m

where :

° aZ’F : Bilinear H!-continuous and coercive in the H! semi-norm (full H*
norm for at least one patch s > 0)
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e a3 : Linear continuous in the second variable, radially continuous and
monotonous in the first variable.

Note that the subdomain 2% needs not coincide with its Global counterpart
Q¢ as long their interface I'¢ is identical (it is possible to add holes in 1),

These hypotheses lead to the following properties:

* The Global model is linear and it can be derived from a quadratic energy,
leading to a variational formulation with a symmetric coercive bilinear form.

* The patches-problem with Dirichlet condition on the interface are associ-
ated with continuous coercive strongly monotone formulations which lead
to the uniqueness, existence and continuity of the solution with respect to
the given load and to the Dirichlet condition in W (I'®), the trace space of
V().

The total trace space is written W (I'), we assume it is identical for the fine and
global models V(Q¢) and V (QF).

Following [86], these properties make it possible to define well-posed con-
tinuous Dirichlet-to-Neumann maps on the subdomains. The assembled Global
model can be used to define a norm on the interface fields. The strong monotonic-
ity introduces a bounding from below (similar to the coercivity of bilinear forms)
with a positive constant which is useful to prove the existence of a converging
relaxed iteration.

These properties are preserved by a classical finite element formulation.

In the following subsections, the concepts needed to derive the Global/local
coupling are defined.

3.1.1. Reference problem

The reference problem, generally indexed by R, corresponds to the exact rep-
resentation of the structure in terms of geometry and behavior. It is, therefore,
the combination of the fine representation of the zones of interest (%), with
the coarse representation of the rest of the structure (Q2°) where no complex be-
havior or geometry are distinguished. The last one is generally called a comple-
mentary problem. In some situations, it does not exist, and the reference problem
corresponds to the assembly of the local fine problems.

After a finite element discretization, this reference problem is written in the
following variational form:

Find u € V', such that a®(u,v) = I®(v), Vv e V? (3.4)

where V' is the subspace of H' (%)< of fields satisfying the Dirichlet conditions.
Vit is the associated vector subspace. It inherits the classical H' Hilbert structure.
|u| is the H! norm and |u| is the H! seminorm.
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As mentioned earlier, Qf is partitioned into N +1 sufficiently regular non-overlapping
subdomains Q= (0 < s < N). It has been assumed that the forms in (3.4) have an
additive structure with respect to the domain: V(u,v) € VE x Vi,

N
a™(u,v) =Y a®" (ygs.r, vjgsr)
5=0
N
F(v) =Y 19" (vqer)
s=0

For s > 0, V¥ is defined as, the space of functions of V% restricted to Q%f : u* €
VeE < 3u e VE such that us =y r.

The following assumptions are made and the necessary constants for our anal-
ysis are introduced:

1. For s >0, = is a linear continuous form on V¥, Its norm is introduced as:

Vot e Vo I (o) <

Y TP P (3.5)

2. Subdomain s = 0 can be non-existent. If it exists, a%f is a symmetric bilinear
continuous semi-coercive form:
0,F 0,F ,0,F 0,F\2 0,F(,0F ,0F 0,F,,0,F
AMPT >0,V (u™",0%") e (Vo' )2, Ja™ (u™, 0™ ) < M o

EICO’F > 0’ VuO’F c (VOO,F)7 CLO’F(UO’F, uO,F) > CO’F ||UO’F||%/O,F

’\/O,F HUO’F”VO,F

(3.6)

3. For s > 0, a®!" is semi-continuous, semi-coercive, linear in the second vari-
able, and strongly monotone in the first variable:

AMSF > 0,057 20,V (ud™ udt v5F) e (V)2 VF
R e T (R | Ve T IS [l v N € %)

N N T T R e (e B e e

4. At least one of the forms a** for s > 0, is (strictly) coercive, which corre-

sponds to the Reference problem containing sufficiently many Dirichlet con-
ditions.

Under these hypotheses, the reference problem admits a unique solution.

3.1.2. Global problem

The global problem (superscript G) is a classical discrete finite element model
corresponding to a simplification of the discrete reference problem, suited for
fast computation and capable of giving a correct representation of the long range
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fluxes. It does not need to be locally accurate. For instance, for a slender struc-
ture, a shell finite element model, known to correctly transfer generalized forces,
can be used as a global model [57]. Also, the material constitutive law can be sim-
plified, as well as the topology and the geometry. In general, the global problem
is sufficiently simple to be solved with a sequential solver.

The same notation as in the previous section is used, and for s > 0 a simplified
version of the problem is introduced, written with superscript G, for global.

The following hypotheses are assumed:

e For s >0, all a>“ must be symmetric bilinear continuous semi-coercive forms
(with at least one strictly coercive).

e Subdomain 0 is identical in the Global and Reference formulations, a%¢ =
a%F and (06 = [0.F,

The Global forms can be built from a simplified geometry of the subdomain,
(%C, as long as the Global and Fine interfaces match: 0Q%¢nQ = 0Q*FnQ =T, For
instance, in Figure2.7} the Global subdomains do not possess holes and a corner
is omitted.

Thus V& and (V*¢) can be defined independently of the Fine model, as long
as the trace spaces W and (1W#) are the same.

The Global problem corresponds then to the “linearized and simplified” ver-
sion of the Reference problem.

The variational formulation reads:

Find u € VE, such that a®(u,v) = 1%(v), Yv eV (3.8)

with @ V(u,v) e V& x V&,

N N
a®(u,v) =Y a*%(ugsc,vgsc), 19(v) =) 179 (vgsc) (3.9)
5=0 s=0

3.1.3. Global/local coupling

The Global/local coupling consists in using the Global problem with an extra
ingredient: the interface load p e W*.
The global problem variational formulation reads:

Find u € V©, such that a(u,v) = 1%(v) + {p, T%), Yv e V (3.10)

where T¢ : V& - W is the trace operator, and the duality bracket is in (W*, W).
The resolution of the global problem allows obtaining the unknown global dis-

placement extracted on the total interface I': uf = T%u“ which serves as Dirichlet

condition for the Fine problems, imposed by Lagrange multipliers (A%%)0. The
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local trace operator 7% : VI — T¥/s is used.
For given u% e W*, find (u*", A\*") e V¥ x W** st

as,F(us,F7 /US,F) _ (/\s,F’ TS,FUS,F> — lS’F(US’F), Vost e %S»F (3.11)
s s 5,Gy _ s s*
(p, TsFust —uf™) =0,Yus e W

Under the chosen hypotheses, these problems are well-posed, they have a unique
solution which depends continuously on the inputs [97]. The signs are chosen
such that A** has the physical meaning of an imposed flux on the boundary of
the subdomain.

The residual can then be computed as:

r=—y AT (3.12)

>0

where A% : Ws* - W+ is the injection operator. The coupling iteration can be
written as:
p=ptuwr (3.13)

where w > 0 is a relaxation parameter.

3.2 . Discrete formulation framework

This section describes the global/local coupling method in a finite element
framework. In order to be more practical, the presentation is ordered in agree-
ment with the unfolding of the iteration. More, the general case of a nonlinear
global problem is considered, which is not covered by the current convergence
theory.

3.2.1. Global problem
3.2.1.1. Initial global problem

After classical finite element discretization, the (uncorrected) global problem
to be solved can be written as:

£, (u) +£5, =0 (3.14)

where f¢, is the vector of internal forces and £, the vector of external forces.
Their m** component reads:

(@) == [ () grad, (60,) dx
(fext)m:fgf'gbmdx'f_/agg'gbmds

where ¢,, is the finite element shape function associated with the m!" degree of
freedom.

(3.15)
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We introduce a decomposition of the global domain into N +1 non-overlapping
subdomains (£2%) with s € [0..N]. Subdomains are supposed to be sets of con-
nected elements so that the decomposition is matching at the interface.

The interface is defined as the boundary degrees of freedom of the patches.
For each subdomain I'¢ = {J; (0Q5¢ n 0Q3:¢) \ 9,0C, the interface is constituted
by degrees of freedom shared with other subdomains, excluded Dirichlet degrees
of freedom. Globally, T'¢ = |, '€,

The boundary (interface) degrees of freedom (index I') can be separated, from
internal degrees of freedom (index ). The trace operators which extract the bound-
ary degrees of freedom of a vector can be defined as T*¢ : Q¢ — I's¢ and
TG : Q¢ - I'G, for instance T=CusC¢ = u}“. The transpose is an extension-by-
zero operator.

Let A be the interface injection operator I's¢ — T'C like in primal domain
decomposition methods as presented in the Section[2.2.]

For a given u® solution to (3.14), the nodal reaction \*¢ are defined at the
boundary of the subdomains. It can be computed with different approaches:

« Algebraic post-processing, using the subdomain injection operator As : (26 —

0&:
£2C(Asul) + £25 + T AC = 0 (3.16)

wnt ext

* Integration:

)\fﬁG = Kzs,e Uh(u&G) : grads(¢m) dx - AS»G fodmdx— [6 Qs.G g Omds (317)

n

where m is an interface degree of freedom of subdomain Q€.
+ Solution of a Dirichlet problem on the subdomain:

Find (u®“, A*%) solution to:
{PGWG:AJT%ﬁ (3.18)

s,G G s,G Tys,G _
fint (us, ) + fext + T A =0

Note that formula or (3.16) are not always implemented in commercial soft-
ware, in which case the computation of A*“ must resort to (3.19).

Remark 2. In the linear case, £ (us¢) = —-K*Gu*G where K*C is the stiffness

I Tint
matrix of the subdomain, £ = fG:s the vector of generalized forces, and:

1 text

K5O KGO (W) (£ (3.19)
it K \up®) g ae >
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3.2.1.2. Corrected global problem
During the coupling iterations, the following modified global problem is used:

£, (u) + £S5, + T pr = 0 (3.20)

pr is an interface load, it introduces a lack of balance between nodal reactions
where

DLAN = pr (3.21)

3.2.2. Fine problems

The Fine problems are set on the refined subdomains Q. For a good match-
ing of the models, the interface is assumed to be geometrically identical in the
global and fine models. It coincides with the edges of finite elements in all models.
Anyhow, non-matching interpolations are tolerated, and the Global-to-Fine trans-
fer matrices (J*) are introduced, enabling the definition of Fine Dirichlet problems
with boundary conditions coming from the Global model. The transpose of these
matrices enables to transfer of nodal reactions from the local models to the global
one.

The Fine version of the local interfaces is written T'*:¥" and the local fine trace
operators are TsF : QsF - ['sF, Js : I'sCG - I's'F is the interpolation operator
between the meshes.

The fine problems can be written as:

For given u§ on I, for all s > 0, find u®" in Q%% and A** on I'* s.t.
— £ (uF) = fF + TN (3.22)

wnt

s,F.. s, F _ s AsT..G
T*"u*>" = J°A® up

Thanks to the chosen hypothesis, these problems are well-posed.
The strong monotonicity property resulting from the previous assumptions
translates into:
T
_ (f:ﬁf(u&F) _ f:ﬁf(VS’F)) (us,F _ VS,F) > ’YS’F Hus,F _ VS,F”2 (3.23)

For simplicity, the discrete Euclidean norm is used, which makes % > 0 depen-
dent on the mesh.

3.2.3. Reference problem

The Reference problem as presented before is the collection of Fine problems
connected to the same interface displacement u$ and such that the nodal reac-
tions A*»f" are in balance once projected back on the Global interface.

First, the clarification of the role played by Subdomain 0, which might be non-
existent is needed. It is a subdomain, sometimes called Complement domain in
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the global/Local literature, where the Fine and Global model coincide (same ge-
ometry §2°, same properties, same load, same approximation).

In particular, it is associated with a linear system and simply serves to process
the nodal reaction A° using (3.18), (3.17) or (3.16). In some implementations, it is
proposed to be computed as:

AN =pp - Y AN (3.24)

s>0

because it may be more convenient to compute (A*¢) from the global subprob-
lems for s > 0.
Now, the Reference problem can be formulated as:

Find uf on T s.t
N

Irp = — ()\0 + Z ASJSTAS’F) =0 (3.25)
s=1

where the reactions are obtained from and (3.24).

The minus sign is meant to make r agree with the classical definition of the resid-
ual when the system is linear.

3.2.4 . Global/local coupling

The aim of the coupling is to achieve using (3.20),(3.22),(3.18) or ((3.17)) or
((3.16)) or (3.24). To do so, a simple modified Richardson iteration is used.

Starting from pr = 0, u® is computed in ((3.20)), then ugr' is used as a Dirichlet
condition to compute the Fine reactions A* using and (3.24), finally the
residual rr is the lack of balance between the nodal reactions as in (3.25).

If the residual is not small enough, the interface load is updated as pr = pr +
wrr.

It can be proved that under the chosen hypothesis, there exist 0 < wy,., such
that the iteration converge for all 0 < w < wpay. IN practice, dynamic relaxation
through Aitken'’s §2 technique gives an excellent performance.

3.3 . Condensation at the interface

Because all manipulated data are associated with mechanical problems in bal-
ance, and thanks to the well-posedness of the local Dirichlet problems induced by
the chosen hypotheses, the convergence is driven by the interface, and it is con-
venient to formally eliminate internal degrees of freedom and to condense all
problems at the interface.

To do so, Dirichlet-to-Neumann (DtN) maps is introduced, and the nodal re-
actions A’ on the subdomain'’s interface are written as a function of the imposed
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Dirichlet condition uj. (the following formulas apply to both Global and Fine sub-
domains):

T°v® = up
( z‘snt(VS’ )+ fésa;t) 0 (3.26)
As = ( znt(vs G) + ea:t)F

Remark 3. In the linear case, the DtN operator is affine:

3v® such that
A’ =s°(u};f5,,) means

S* = Kir - Ki (K3) 'K
b* = £, — Ko, (K5 e

ext,t

A° =Sui - b*  with { (3-27)

Ss is the Schur complement matrix and b* the condensed right-hand side.

If the monotonicity property is applied to the two fields obtained from the
computation of Dirichlet problems, a monotonicity property for the Dirichlet to
Neuman map is obtained:

(SS,F(u%F; fs,F) _ SS,F(V £ F)) ( s,F V;F) > ,.ys,F Hus,F _ VS,FHQ > ,.Ys,F Hus F

(3. 28
Similarly, the continuity of the Dirichlet problem with respect to the boundary
condition leads to a bounding of the form:

F v F v B ¥ v
s> (ap") = s> (v )| < M g - vt (3-29)

3.3.1. Global problem

The corrected global problem can be written in condensed form, for
given interface load pr, find interface displacement u{ such that:

N
ZAS sG AS ulg;fs,G) =pr (330)

SG (fG7p1") (331)

In the case of a linear global problem and in order to connect subdomain to-
gether, the assembly operators A that map the local interface on the Global in-
terface are used. Thanks to these operators, the Global problem can be rephrased

as:
N N
(Z ASSSGAH)U? = (Z Asbs’G) +Pr (3.32)

s=0 s=0

SG bG
One can recognize a primal domain decomposition [68] with the original extra
load pr. 0 < v¢ < M© the bounds of the spectrum of S&.
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3.3.2. Reference problem

Similarly, the condensed Reference problem is obtained by assembling all the
Fine subproblems together on the interface coarse grid.The fine displacement at
the interface is forced to follow the equation u¥’"" = J*u®“ and the balance of reac-
tions is evaluated on the global interface. This leads to the condensed formulation
of the reference problem where fine models are used (except on subdomain °),
find reference interface displacement uff such that:

N
S AT s (ATl ) = 0 (3.33)
s=0

SFf ) =0 (3.34)
Up to the mesh incompatibility which is not totally standard, this system is of-
ten referred to as the starting point of the primal nonlinear domain decompo-
sition of [85]], where it is proposed to apply a Newton-Raphson linearization and
use classical Neumann-Neumann preconditioner for the tangent system together
with balancing coarse space to ensure scalability. It is also the starting point of
HPC iterative solvers like BDD [78] or BDDC [27] were efficient parallel multilevel
preconditioners are designed in linear, and relocalization strategies are possible
in the nonlinear case [24] 85, 61].

3.3.3 . Global/local coupling
The global/local coupling as presented before is a simple technique to itera-
tively find the solution to the reference problem using only simpler computations,
by alterning beetwen the global computation and the local one.
The global/local coupling can be formulated as:

Find extra load p& such that

SF(S (£ pE): ) =0 239
If the following notation is used:
St =(8"-8%) +8¢
The previous equation can be rewritten as: Find extra load p§ such that:
ri=—(pf - (89-8")(87 (t%pf);t7)) =0 (3:36)

Note that the sign is adjusted so that the residual is consistent with the convention
r := b - Mx when solving Mx = b. Mechanically speaking, the residual is the
opposite of the lack of balance between subdomains in the reference problem.
Equation([3.36) suggests using a stationary iteration as described in Algorithm[i]
One recognizes a modified Richardson iteration. The fundamental result, which
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Algorithm 1: Sequential stationary iterations

Initialization pr = 0, w sufficiently small
while |r| is too large do
Resolution of the Global system (3:32), u& = S¢' (pr + b%)
if Q0 exists then
| Post-processing (3:24), q° := A° = SOA u& — bO-¢

end
for s >0do

| Fine solution (3:22), A>" = s5F (J5As ug; £+F)
end

Compute residual r = —(A°X? + ¥ o AsTs" X*F)
Update pr = pr + wr
end

can be obtained from the general theory of Schwarz domain decomposition meth-
ods [2] or operator splitting techniques [94], is that under monotonicity hypoth-
esis of the semilinear form in (3.2), the iteration converges for sufficiently small
relaxation parameter. Simple acceleration procedures are possible like Aitken,
quasi-Newton or Krylov, see [50].

3.4 . Global/local coupling as a primal domain decomposition method

Equation (3.35) makes it possible to interpret the global/local coupling as a
right-preconditioner to the primal reference system (3.33). Note that other inter-
pretations exist, including as a special multigrid method, or an implementation
of a non-overlapping alternating Dirichlet-Robin Schwarz domain decomposition
method; see [50] for a list.

Contrarily to the recommended (scalable) strategy to solve this system, briefly
described in Section [2.2.6] this preconditioner does not possess an additive (i.e.
parallel) structure, it is thus not expected to scale up to very large number of sub-
domains. Anyhow, if the global problem is simple enough to be solved efficiently,
it generally provides excellent information so that convergence can be fast and in-
teresting performance can be achieved. In particular, It can not be expected from
it require multiscale information as provided by BDD'’s coarse problem made out
of zero energy modes (rigid body motions) or well-chosen GENEO-modes [99] in
case of poorly-conditioned problem.

Moreover the global/local coupling works in a nonlinear context. Note that the
Global problem is an affine preconditioner, meaning that not only it affects the
spectrum of the iteration operator but it also embeds a good initialization. Con-
trarily to the GENEO-BDD approach where Krylov solver is mandatory, the glob-
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al/local coupling supports a stationary iteration. Furthermore, the right-preconditioning
does not modify the nature of the residual of the system to be solved, allowing
flexibility, and in our context, asynchronism.
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4 - Asynchronous global/local non invasive coupling

In this chapter, the asynchronous version of the global/local coupling is pre-
sented. First, the asynchronous algorithm with an explanation of the sequence of
iterations is presented. Then a theoretical study of the convergence of the asyn-
chronous iterations under a certain relaxation coefficient is presented. This study
covers the cases with a linear global problem and linear locals as well as the non-
linear case with monotone locals.

4.1 . Asynchronous algorithm

The previous chapter presented the global/local non-intrusive coupling from
an equation point of view. It can be written as a classical synchronous as in algo-
rithm 2l In practice, it is recommended to use dynamic relaxation with Aitken'’s
formula to find the relaxation parameter w.

Algorithm 2: Synchronous stationary iterations

Initialization pr = 0, w sufficiently small
while |r| is too large do
Resolution of the Global system or 3:32), u& =S¢ (pr + b%)
if Q0 exists then
| Post-processing (3:24), q° := A’ = SPul“ — b0.¢
end
Global scatters As" u§ to subdmains s > 0
for s >0do
Patch receives A" u&
Local solution (3.22), A*" = s (Js A" uf; fsF')
Patch sends of g° := J5" A*!" to the Global
end
Global gathers all g*
Global computes residual r = - Y, Asq*
Global updates pr = pr + wr
end

Now an asynchronous parallel version of this algorithm is established. The
idea is that each processor updates its calculation as soon as one new piece of
information is available from one of the other processors, without having to wait
for all the other processors to synchronize. To illustrate this technique, the same
situation as presented in the synchronous case of Figure 2.16]is considered.

Figure presents the asynchronous method in the case where the global
problem is updated as soon as new data is obtained from one of the local prob-
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lems. Otherwise, it waits without doing any calculation. From the patches’ point
of view, the fine models wait for the global problem to send new information, oth-
erwise, they idle. The advantage of this model is both to move forward as soon
as further information is present and to avoid redoing calculations with the same
data as before. One can also imagine the case where the asynchronous model
makes calculations without stopping with or without new data. Thus, calculations
already made will have to be redone, whether for the global or the local.

Thus, Based on the figure[4.1 Algorithm ??, presents an asynchronous version
of the Algorithm

Remark 4. One crucial point is that the reaction of the complement subdomain
A%“ must be kept synchronized with the global iteration. It seems thus more prac-
tical to use a software able to post-process A*¢ after the global solve, and avoid
the methods that involves solving Dirichlet problems on the global version of the
patches.

4.2 . Convergence proof of the asynchronous iteration

Proving convergence of asynchronous iteration can be tedious. In the studied
case, the Global domain has the advantages of playing a special role such that it
can be used to cadence the solver.
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Algorithm 3: Asynchronous iterations using RDMA
while ||r|| is too large do
switch Rank s do
case s == ( (global domain) do
Global gathers all *
Global computes residual r = -}, Asq®
Global updates pr = pr + wr
Global solve system (3:32), u& = S (pr + b%)
if Q20 exists then
| Post-processing (3.24), q° == A° = SPu%¢ - bO.G
end
Global scatters A" u& to subdmains s > 0
end
case s > 0 (local patch) do
Patch receives As" u&
Local solves (3:22), A*" = S+ JsAs" uf - bsF"
Local sends of g* := J*" A*" to the Global
end
end
end

As presented before, several techniques exist to study the convergence of an
asynchronous method. The difficulty is added in the studied case because the
studied problems are without discrete maximal principle, so the matrices do not
possess the favorable M-property [9], and the non-intrusive objective makes it
impossible to recover such properties by invasive manipulations.

A recent study [21] proved the convergence of Richardson iterations in asyn-
chronous but with a delay bounded at 2 and for linear problems. To generalize
that study and go to the case with larger delay, the paracontraction techniques
introduced in [33] are used. The idea is to formulate the method as a succession
of contractive operators (for a well-chosen relaxation) sharing a common fixed
point. We can find other applications of this approach for linear and nonlinear
problems in [89) 32, io4].

For now, the study requires the linearity of the global problem, which is then
characterized by a symmetric positive definite Schur complement, For now, our
study requires the linearity of the global problem which thus takes the form of
equation (3.19). Note that the stiffness matrix of being SPD, so is its Shcur
complement, and as presented before, 0 < v¢ < M the bounds of its spectrum.

4.2.1. Paracontactions
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Let (7,,) be a finite family of paracontractions with a common fixed point & in
some Hilbert space E. In other words:

VeeE, |T(z)-z| < |x-z| or T,,(z) ==,
* Ym, T,,(2) = 2.
Then a sequence of the form:
L1 = Ty (x5) (4.9)

converges to &, assuming that all the paracontractions (7,,) are sufficiently fre-
quently activated [33].

4.2.2 . Asynchronous formulation

Before studying the convergence of the asynchronous model, a rewriting of
the problem is introduced, considering the delays affecting the patches.

Referring to Algorithmlg] during the step from iteration j to j+1itis considered
that, some patches provide new pieces of information in order to evaluate the
residual, anyhow these pieces of information may be related to old configurations

prjfo'(svj).
Remark 5. o(s,7) > 0: are delay functions, modeling the delay of the subdomain s
at iteration j of the global problem.

So that the asynchronous iteration can be modeled as:

uﬁj - 8¢ (b + pr;)
Ifs=0: q? - SO(AOTugj _ bO,G)
JST s, JSAST G, - fsF) Updated
Ifs>0: q; = S ( uF, -o(s,5)’ ) P
q;_,, Not updated (4.2)

rj=- (Aoqg- +> Asqj-)

s>0

Prj;1 = Pr; t Wrj

For subdomains not updated: o(s,j) =o(s,j—1) + 1.

It is crucial to note that if it exists, subdomain 0 always contributes to the
evaluation of the residual. Since computing ¢, is only a post-processing of the
Global solution, this constraint is not really a problem. In order to unify notations,
0(0,7) = 0isintroduced, ¥j, And thus, the residual at a global iteration j is written
in the asynchronous form:

N
rj = Z(:) ASJSTSS,F(JSAST SGfl (pl"j_a(&j) n bG); fs,F) (4.3)
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and then:
N stsT s, F s AsTqG™! G s, F
Prj. =Pr;—w ) AT s (JTAT 8% (prj (. ) + b)) (4-4)
s=0

Note that this expression is valid only after all local patches have at least con-
tributed once to the estimation of the residual.

In order to ensure that at some point all patches provide new information, it
is assumed that:

3D > 0 such that V(s, ), o(s,j) <D (4.5)
Foragivendelay 0 < k < D, w(k, j) the set of subdomains (s) such thato(s,j) = k.

Let pr be the solution to the coupling problem:
N T T -1
D AT s (JTAT S (pr + bY) £47) = 0 (4.6)
5=0

Then, if at some point V& € [0, D], pr;_ = Pr, Pr;,1 = Pr whatever the distribution
of delays among the subdomains, which makes it a common fixed point for any
situation in (4.4).

Note that there may be some (unlikely) situations where the iteration (4.4)
stalls. For instance, Vs £ = 0 and A*"S " (pr;_,(, ) + b%) = 0, which corre-
sponds to the delayed load always being applied far from the concerned subdo-
mains. This is covered by the theory (7,,(x) = z case). So the assumption is
strengthened, and the blocking is required to last at most D iterations.

What remains to be proved is the contractive nature of the non-stalling itera-
tion. More precisely the objective is to prove that there exists some non-empty
interval of relaxation parameter which makes any series of D iterations a contrac-
tion. First, the linear case is studied where the contraction can be characterized
by the spectral radius of a linear operator. Then the case of nonlinear monotone
fine patches is considered where the contraction is characterized by the decrease
of a well-chosen norm of the error.

4.2.3 . Analysis of the linear case

First, the case of linear local problems is considered. In that case the local
Dirichlet to Neuman operator takes the form of an affine operator.
The asynchronous global/local coupling iteration can be rewritten as:

N
. . .
Prj. =Prj—w (Z S* S Pr (s * b)
s=0

D
Z ( Z gsF) SGilij—k N B)

(4.7)

Prj.1 =Pr; —w
k=0 \ sew(k,j)
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with:
gs,F — ASJSTSS,FJSAST 8
]5 — Zé\;() ASJST(SS,FJSASTSG_le _ bs,F) (4 )
In order to make appear the paracontractions, a non-zero delay D > 0, is as-
sumed and, in the “history space” obtained by concatenating the last (D+1) values
of pr; is the work space.
The history at iteration j + 1 can be rewritten as:

ij+1 I- (,UXj"O —(,UXjJ e _(A)Xj’D prj CUB

ij _ I 0 e 0 pfj_l _ 0

: 0 I 0 .. : :

Prj_p+1 o 0 I 0 Pri-p 0
e 5 ! (4.9)

B;
with X, = ( D SF) ¢
sew(k,j)

As noted earlier, since ¥j, ¥, X, .pr + b = 0, the vector obtained by repeating
the solution pr is a fixed point for the above iteration.

In order to prove the paracontracting nature of the iteration, it suffices to prove
that any matrix B; of can be turned into contraction by correctly selecting the
relaxation w > 0. Since B; is a block companion matrix, it seems natural to study
its spectrum and prove that it can be bounded by 1.

The eigenvalues () of B; are the roots of the polynomial:

k=0

D
det ((1 ~O)AT-w ) )\D"‘“vak) =0 (4.10)

This is the determinant of a real momic matrix polynomial [49]. In order to ben-
efit from the underlying symmetry, the Cholesky factorization of S¢ = LL” is in-
troduced, left-multiply the polynomial by L' and right-multiply it by L, the roots
of are also the root of the polynomial P;,,()\):

D
Pj,w()\) =det ((1 - )\)/\DI -w Z )\D_ka,k) =0 (4.11)

k=0

where X, = L' X ;L =L (S ;) S¥F) LT

Using the absolute continuity of the roots of a polynomial with respect to its
coefficients (see [56| 88] for instance), it has been seen that for a small enough w,
the eigenvalues tend to concentrate around the roots of P; () = det((1-A)APT),
that is to say around 0 and 1.

Let );., be one of the roots of P;,, and & = min (sin (5% ), 1), wo can be found

such that w < wy = |5\j,w - S\j,o\ < e. With wy = min(w ;) over all the possible
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configuration of j. At that point, the roots that tend to zero have all modulus less

than ¢ < 1, only the roots that tend to 1 could pose a problem.
In what follows, A;,, is such a root that tends to 1, its modulus and argument

can be bounded, see Figure[4.2

A

| T I ‘L | I
. 1 1-4 i o |
| J
/.

Figure 4.2: Constraining roots near 1

I\ — 1] < e implies that:
l-e<|Mu|<l+e
(4.12)

| sin(arg(j\jvw))| <e

For ¢ = sin 35 and 0 < k < D, the modulus and the reel part are bounded on (real

part symbol fR):

(1-e)P < NjulfF < (1+6)P
- - . 1-¢)D (4.13)
RO = [l cos(Rarg(Rn) > o2
Let ¥;,, be an eigenvector of the matrix polynomial associated with \;,:
~ ~ D ~ A
(1 — Aj’w)Afwvj7w - W Z Af;kxj,k{’j,w =0 (414)
k=0
The expression can be left-multiplied by the Hermitian transpose Vfw:
~ ~ D ~ A
(1 - /\j7w))‘jD,wi}fwi}j,w - W Z /\]I‘,)_ki}fwxj,k{/j,w =0 (415)

k=0
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To simplify, v, can be chosen of unit Euclidean norm. For w < wy, A, # 0, then:

o 9501},

Gw = 1l-w ik
= (4.16)
- A
b ROE)F b 19 | :
|/~\ 2=1-2w Z S Xjk 2 Xjk
e k=0 I\l k=0 Sxﬁw
Using (4.13), we have:
2
D ~ 12 D ~ 112
MNP <l (Zk=° v Xk) 2(2’“0 v Xk) (4.17)
R (TS LI s

Indeed by the definition of the delay D and w,u,w(k,j) = 1: N and for k + k’
w(k,j)nw(k’,j) = @, so the sum of norms is simplified because each subdomain
appears only once:

D D D
Z ”{1”3‘(] A = Z i7;'L,]cu)(J',k{}j,w = waL_l (Z Z Ss,F) L_T‘?j,w
k=0 ’ k=0 k=0 sew(k,j)

N
= wa—l (Z; SS,F) L_Ti}j,w

Since v, is of unit Euclidean norm, the term above can directly be bounded by
the extremal eigenvalues of L-! (Zi\io SS:F) L-7 which coincide to the generalized
eigenvalues of the system:

(4.18)

!

D
Qmin < Z H{;“%( < Qmax
k=0 Tk

N (419)
where (a) solve det ((Z SS’F) + aSG) =0
s5=0
Thus the upper bound is obtained:
- . 2
N2 < 1 - wmin 2 Cimax Y0 < w < wo (4.20)

Yo Y -

This is a bound of the form |5\j7w|2 <1-Aw+ Bw? (with 0 < A < B) which is a
second degree polynomial in w, and which is less than 1 for 0 < w < A/B. As a
consequence:

|5\j,w| < 1for 0 <w < Wygyne = min (wo, (4.21)

(1-¢e)Pamn )

(1+2)*P afa

62



This is probably an extremely crude bound, but it has the advantage to only
depend on D and not on the configuration of the iteration (index j). Thus, such a
relaxation makes any B; a paracontraction, and the asynchronous iteration con-
verge.

Remark 6. For the synchronous iteration, the bound can be derived from
with D =0, it is 0 < w < Weyne =

Qmax

4.2.4 . Analysis of the nonlinear case with monotone local models
First let us introduce the notation:

Xs(pl") — ASJSTSS,F(JsAsTsG’l (pF + bG), fs,F) (4.22)

The iteration writes:

D
Prj.1 =Pr; - W Z Z XS(ijfk) (4.23)
k=0 sew(k,j)

Again, the reference solution pr satisfies:

and Vs, pr;_, (s ) = Pr is a fixed point.
The following notations are considered:

* e; = pr; - Pr the error at iteration j,

» r* = x*(pr;) - x*(pr) the contribution to the residual such that Vj, ¥, rs =
I'j.
Then:
D
Prj. — pr = Pr; - pr-w Z Z (Xs(ij—k) - XS(ﬁF))
k=0 sew(k,j)
’ ! (4.24)
eji=e-wy, ) Tj,
k=0 sew(k,j)
The aim is to obtain a bound of the form:
el <e?(1-2wA+w’B) with A > 0. (4.25)

where e; is some measure of the error.

Indeed, in that case, for 0 < w < 2A4/B, (1-2wA +w?B) < 1, the iteration is
a contraction, and it converges to the common fixed point. Note that the best
convergence ratio is obtained for w = A/B, itis worth (1 - A%/B). Moreover, since
the iteration is always well-defined, we necessarily have B > A2.
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The assumptions on the local models lead to pr ~ x(pr)® being strongly mono-
tone and continuous, the associated constants were given in and (3.28). The
assumptions on the global model enable to exploit a Euclidean structure for the
convergence analysis. Indeed, the S¢' is used as an inner product for interface
reactions, with the notation:

(a,b)e=a"8%'b ;  |a] = (aa)l’ (4.26)
Due to Equation (4.24):
2 2 2 2 2 2
llejill® =llesll? =2w ), >0 (eprip)e+wly, > riull® . (4.27)
k=0 sew(k,j) k=0 sew(k,j)

The first degree term needs to be further analyzed in order to make appear
terms with the same delay. The recursion is obtained with:

D
€ =€j1-Ww (Z > r?—l—q)

q:O Sew(qzj_l)

(4.28)
k D
e PR
K=1¢=0tew(q,j-K)
Hence using (4.28):
D D D k D
Z Z (ej,r5 1) Z Z eﬂ—’f’rj—ﬁG‘WZ Z Z Z Z (rz‘—K—qarj—k>G-
k=0 sew(k,j) k=0 seww(k,j) k=1 sew(k,j) K=1q=0tew(q,j-K)
(4.29)
Finally, using (4.29), the equation can be written as:
2 2 D
lejll® = llejll* =2w > >, {ejokx5 y)a
k=0 sew(k,j)

w(ui Yoy ¥ Sy <>)

k=0 sew(k,j) k=1 sew(k,j) K=1¢=0tew(q,j-K)

b
(4.30)
In order to recover the situation of (4.25), find a bounding from below of the first
degree coefficient e and a bounding from above for the second degree coefficient
b is needed.
Using convexity and Cauchy-Schwarz inequalities:

D D D D
by 2 NP+ 2x > > 2 2 sl (4.31)
k=0 sew(k,j) K=1k=1sew(k,j) ¢=0 tew(q,j—K)
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The bounding from above is a classical consequence of the continuity of the fine
problems.

0 S sAsT -1 S s s AsT -1/ s
el = | A" (527 (3° A" S (pr,_y + BO); £27) =77 (J*ASE (pr + BE); £7) ) |
<M I ATS ey | <t M T ATSE e i
s s s AsT -1 MG
oM AT | el

(4.32)
where a® is the square root of the largest eigenvalue of the SPD matrix (JsAs" S¢™' AsJs"),
The coarse constants are used to switch from the Euclidean norm to the S¢'-
norm.

The bounding from above of the individual terms is thus not complicated, the
difficulty lies in the handling of the many delayed terms, with delays ranging from
0to2D.

Regarding the first degree term, the bounding from below is a consequence
of the monotonicity:

1= 5 ((bry - b%) - (br - b))TSE AT

(SS’F(JSASTSG_l (ij—k + bG); fs,F) _ SS’F(JSASTSG_l (f)F + bG); fs,F))

D
s s AsT -1
>3 > AnF|ITAT S ey
k=0 seww(k,j)

(4.33)
To complete the bounding, considering more specific cases are needed. In the
following, we study two non-exclusive favorable situations that are made explicit.

4.2.4.1. Max norm on the history vector
Following [33], the history unknown is introduced:

AT _ (T T T
ej_(ej € .- ej_QD),

equipped with the sup norm

lesllee = ma el

k; the delay for which the maximum is reached at iteration .
This norm makes it trivial to bound the second degree term b from above
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using (4.32):

sAsT QG2 ]\/[G ? D s 5, F\2 D s t t,F s, F ~

b<|IAT ST P =) [NY X (eM>T) +2% Y ot MYTMOT ]l
7 k=0 sew (k.j) K=1 sew(k,j)

k=g tew(q.i-K)

B;
(4.34)
To bound a from below:
D
s s A st -1 s s A sl -1
2% 3 rTICATS enl> T rfRATS el s
=0 sewo (kg s (kj.5)

To further strengthen hypothesis (4.5): It is needed to assume that sufficiently
many subdomains are activated for the k; contribution so that the following bound
holds:

K MG
—_————
A

s, F| 75 A sT QG 2 el%j,j 2 eifjvj ’YG ? 2
> FIIATS e P e P (T e 12 436

sea(kj.j)
where ;. is the minimal non-zero eigenvalue of the matrix:
7.

Z SG’lAstT,ys,FJsAsTsG’l
sew(l;:j,j)
And where > 1 is some constant. Two cases can be distinguished:
Qs.

* £ =1wouldbesuitedtoe; ; beingnon-zeroonly onthe boundary of U, .

* k= N would correspond to one subdomain being activated with the I%j and
the error €, being smoothly distributed on the domain.

In practice x can be influenced by the load balancing between patches, and hard-
ware properties like the speed of the network.

Introducing A = minA; > 0 and B = max B; taken among all the potential
distribution of delays in the subdomains:

lejll® < lléjll% (1 - 2wA + Bw?), (4.37)
which implies that:
l&jnll% < 1&)]I% (1 - 2wA + Bw?) (4.38)

and the iteration converges for 0 < w2A/B.
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4.2.4.2 . Monotone convergence for non-adjacent patches

In the case of non-adjacent patches, the subdomain 0 plays a particular role as
itis always synchronous and it is in contact with the whole interface (the interface
degrees of freedom can be ordered such that A° = T and J° = I). Thus, if the
subdomain 0 exists, the bounding from below is simple to obtain:

i > {ejom iy )e 27°SY e H2>707GH|e II?
i—kyli k|G Z j z j
hetnyy I T e (4.39)
A

The bounding from above of the b term is a bit more complex, because of the
many delayed error terms.

A proof that there exists some interval (wmin, wmax) iS proposed for which the
relaxed iteration is strictly decreasing, in the sense that there exists 1 > ¢ > 0 which
depends on w such that, Vj:

llejull* < clle;I®

Assuming such c exists:

o (MO

b< I A SC |2(G)
gl

D D
INY S (oMY e*i2 Y Y atal MM @R e )2
k=0 sew (k,5) K=1 sew(k,j)
h=p tew(q,5-K)

saAst QG2 MG ’ D sass,F 2 2 s tagrt,Fars,F -3D 2
<A SE | = NI;) % l)(a M) +2KZ1 % ‘)a " MEEMST e3P ey
=0 sew(k,) = sew(k,)

v tew(a.5-K)

(4.40)

Introducing B = max B;, taken among all the potential distributions of delays in
the subdomains: .

llejall® < llegll? (1 - 2wA +w?BeP) (4.41)

The minimal rate of convergence is attained for w,,; = Ac3D/B, and it is worth
Topt = (1 — %). Figure illustrates the existence of a domain (¢, 1) where
ce(co,1) = ¢ > ryy. Note that ¢y > 0 depends only on A, B and D.

For a given c e (co,1), let 6 = A2 = (1-¢)Be3P > 0, any w € (%, g;—_{g) leads
to a strict decrease of the error at each iteration.

Contrarily to the synchronous case, or to previous analysis with the history
vector, the difficulty is that the relaxation can not be too small.
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Figure 4.3: Typical dependence of rate of convergence vs ¢

68



5 - Implementation details

In this chapter, first some works are cited in which a sample implementation
of the asynchronous domain decomposition methods has been realized . Then
RMA-MPI parallelization techniques are detailed with some illustrative examples.
Finally, the asynchronous and synchronous version of the code that was devel-
oped during the Ph.D. thesis are presented by detailing the implementation and
the tools used.

5.1. Introduction

Implementing an asynchronous communication protocol based on the clas-
sical message passing paradigm MPI has been the subject of several research
works. In [75} 73], an efficient library is proposed for asynchronous domain de-
composition solvers, based on classical two-sided communications. In [112, l48]
the use of one-sided communications, also known as MPI-RDMA (Remote Direct
Memory Access), is considered. The idea of this approach is indeed well adapted
to the asynchronous calculation because there is no need to stop computing to
send or receive operations.

5.2 . RMA-MPI

The classical message passing paradigm allows the transfer of data from one
memory address to another, classical two-sided communications involve at least
two ranks and allow data transfer from one memory address to another using
explicit communication commands. Still, it does not control the arrival of the in-
formation if the synchronization is not explicit. Whatever is the kind of communi-
cation, blocking Send, recv or non-blocking Isend, Irecev coupled with command
like MPl.test() or MPlL.wait(), to check the status of the transfer and to synchro-
nize it. Several transfers coupled with synchronizations can negatively influence
the simulation performance.

Figure [5.1 corresponds to sending from processor 1 with the send command
to processor 0, which receives with the recv command.

The MPI solution to this problem is one-sided communication, it was proposed
firstin the MPI2 protocol [83], allowing to decouple the data transfer from the syn-
chronization, so that several transfers can be performed with only one synchro-
nization barrier at the end. In [84], MPI 3 proposed a new version of one-sided
communication with more efficient techniques allowing complete asynchronous
communications. The one-sided communication is then an optimization for per-
formance to reduce management overhead, also known as remote memory ac-
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Figure 5.1: Send + Recv (Ref : Two sided communication concepts)

cess RMA. It can be viewed as an emulation of shared memory in a distributed
context.

Remark 7. Note that the performance of the RMA strongly depends on the MPI
implementation and network hardware.

The basic idea is that each rank exposes a so-called window of its local mem-
ory and allows other ranks either write or read from it. Ranks, in this case, are no
longer identified as sender or receiver but as origin rank who initiates the opera-
tion and target rank.The latter does not participate in the data exchange.

The following sections will present how it works in detail.

5.2.1. One sided communication workflow
The RMA-MPI workflow is based the following on five ordered steps:

1. Window allocation: The local memory buffer that other MPI ranks can ac-
cess need to be allocated first.

2. Open epoch: The epoch, in MPI designation, corresponds to the time dura-
tion during which the window is open, and the other ranks can access the
data. It is also seen as a synchronization call that informs the target that
other ranks are ready to access data.

3. Data accessing: After that, each rank can access the window as it wants in
order to put data in it or to get data from it. Data access does not necessar-
ily require any action for the receiving side or the target rank that exposes
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the memory. The origin ranks can just put and get data from the exposing
memory without involving the target. When this target rank closes the win-
dow, it checks the data states after all the ranks end their operations. But
what happened in the meantime does not matter to it.

4. Close epoch: Once the data operations are done, the epoch is closed, corre-
sponding to synchronization. The target rank closes the window, it ensures
that all accesses have completed (local synchronization). At this point, the
target rank can read and process the data.

5. Window free: The window is deallocated and the memory buffer freed.

Note that during one epoch, data can be accessed as much as desired, reopen
other epochs, and close as many as wanted.

5.2.2 . Window creation

As explained before, the first step is creating a memory window allowing other
processors to access the variables stored in it with RMA operations. There are four
so called windows models wich are different way to create windows:

1. Window_create: Creates a new memory window from an already existing
buffer, which is well allocated, the buffer’'s pointer is passed as an argument
of this function with the variable type, and the window is created.

2. Window_allocate: Allocates a new memory window instead of using an
existing buffer like Window_create. The buffer is created when needing to
use it, which allows MPI to decide where to allocate the memory. It is some-
times faster but not coherent for some MPI implementation and hardware
architecture.

3. Window_create_dynamic: Exposes a specific buffer that is not available
yet, and itis just attached later on with MPI_win_attach and MPI_win_detach,
which is a sort of performance optimization because it allows the dynamic
management of the window creation.

4. Window_allocate_shared: It is a specific case for Window_allocate, which
means that buffers are allocated and used in the shared memory within one
node, which only works in MPI_comm_shared. It allows using high-speed
operations because it uses only copy-and-write memory operations.

All the routines used for window creation are called collectively by all the proces-

sors. However, the allocation of these windows and the call of dynamic routines
are locally done by each processor separately.
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5.2.3 . Free window

When origin processors end their sending operations, the windows must be
freed after closing the access epoch, using the command Window_free(). It is
called collectively by all the processors associated with the window. Processors
can only reach this command after completing all operations within the window.
It also blocks and returns nothing until all processors have executed it to ensure
that no processor continues to access the window afterward.

5.2.4 . Communication operations

The remote memory access (RMA) proposes three communication functions
that allow, once access to the window is acquired, to read data with the command
Get, to write directly in the window with Put, and to update a variable in this
window with reduction operations using Accumulate.

All these functions correspond to non-blocking communications performed
within an epoch as specified before.

1. Put: Itis the equivalent of the Send operation in the case of two-sided com-
munication which requires a Recv operation to ensure reception on the re-
ceiver processor. However, with the one-sided communication, this function
realizes the whole task guaranteeing the completion of the data writing in
the target processor window without involving it in the transfer operation.

Process 0 Process 1
/ﬁemory \ /I':'harni:nr3,|r N
Y
__MPI_Put
’

i Windivy , Window/

Figure 5.2: Put (Ref : ENCSS One sided communication concepts)

The figure corresponds to a Put communication where the origin pro-
cessor 0 copies a piece of data Y in the window whose access was allocated
by the target processor 1.

2. Get: This operation is similar to Put, except that the communication order
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is reversed. The origin processor reads the data in the target processor
window and copies the value into its memory.

Process 0 Process 1
/Memory \ m!emory N\
MPI Get T

7

/‘?
Y
Ao Windwy \ Windovy

Figure 5.3: Get (Ref : ENCSS One sided communication concepts)

The figure[s.3]corresponds to a Get communication, where origin processor
1 recovers adataY in the window whose access was allocated to it by target
processor 0.

3. Accumulate: This operation is also similar to the Put operation, except that
instead of overwriting the value in the target processor window with the
new value proposed by the origin processor, operations are applied with
the Op argument as in the MPI_Reduce function, such as MPI_SUM, to sum
all the values coming from the origin processors.

5.2.5. Synchronization

A synchronization stage generally follows these communications operations.
Two types of synchronization in RMA can be distinguished: active and passive.

5.2.5.1. Active synchronization
The target participates in the synchronization. It is similar to the classic mes-
sage passing paradigm, but an amount of data can be sent without synchroniza-
tion and still have to synchronize at the end, including the target ranks. Two ways
are considered active synchronization which correspond to the epoch’s opening
and closing:

* Window_Fence: MPL.Win.Fence() is a collective operation which starts an
epoch at the beginning and closes it at the end. Both the target and origin
call it. Between the two calls, data access can be done as much as wanted.
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Since itis a collective call, they will synchronize. So there is no need to specify
the target or the origin because they are all involved, and all the ranks are
starting the epoch simultaneously and closing it simultaneously, the second
MPIL.Win.Fence() call closes the epoch and enforces the synchronization.

Code Listing 5.1: Example of RMA-MPI with MPlL.win.Fence()

# Import python package for MPI

from mpid4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank ()

# Number of processors

nprocs = comm.Get_size ()

# Size of the buffer used to create the window
N=10

# Creation of the Window for the origin rank = 0
if ramnk ==

window = MPI.Win.Create(None, comm=MPI.COMM_WORLD)
# Creation of the Window for the target ranks != 0
if rank != O:

window = MPI.Win.Create(np.zeros(N), comm=MPI.COMM_WORLD)

# Fill the send vector with

if rank ==

U = np.omnes(N)

# Fisrt MPI.win.Fence () collective call to start the epoch

window.Fence ()

# The origin rank = 0 put data in the window of target ranks

if rank ==

for i in range(l, nprocs):

window.Put ([uG, MPI.DOUBLE], i)

# The final MPI.win.Fence() collective call to close the
epoch and synchronize all
ranks

window.Fence ()

# Window deallocation

window.free ()

Code [5.1|illustrates MPI-RMA case with an active synchronization triggered
by MPL.Win.Fence(). It corresponds to sending a vector of size N from pro-
cessor 0 (origin) to the other processors (targets). Thus, this command's col-
lective call can be seen at the beginning to initiate the epoch and close it in
all the ranks at the end and synchronize the data simultaneously in all the
processors.

Post/Start/Complete/Wait: Unlike MP1.Win.Fence(), which is called collec-
tively by all processors, this approach is used where only a certain number
of processors are involved in communication within a specific window.

The idea is that a target processor allows access to its window to a cer-
tain number of processors, which is specified by the MPL.Win.Post com-
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mand. Then the origin processors execute the MPL.Win.Start command
and pass to it the group of target processors they want to access their win-
dows. Then, at the end of the transfer data operations, those origin proces-
sors execute the MPL.Win.complete command to ensure the completion of
the data transfer. The target processors then call the MPL.Win.Wait func-
tion to ensure the completion of the communication at the target proces-
sors. Access to the target windows is not possible before the MPI.Win.Post
function’s call. The function MPL.Win.Wait cannot be executed until the
MPIL.Win.complete operation is done for all origin processors.

5.2.5.2 . Passive synchronization

In the passive synchronization, the target does not even participate in the syn-
chronization, It is similar to shared memory, the idea is to access data without
involving the target. The origin has the full control.

* Open the epoch: To open the access to the epoch, the origin processors
call the command MPIL.win.Lock(Target rank), this command allows origin
processors to access the window that the target has made accessible in an
exclusive (only one processor has access at any time) or a shared way (sev-
eral processors can access it at the same time). Origin processors can also
call the command MPI.win.Lock_all() that allows controlling the window ac-
cess in shared way for several associated processors.

+ Complete transfer operations: There are several commands to ensure
the completion of all RMA operations after the epoch is opened with the
MPl.win.Lock_all() or MPl.win.Lock(Target rank) commands:

1. MPI_Win_flush(Target rank): Ensure that all local and remote trans-
fer operations at the target processor on the specified window, initi-
ated by the origin processor, are completed before continuing program
execution. It allows for the optimization of program performance by
overlapping communication and computation. For example, a process
may initiate a remote memory access operation, then perform some
local calculations before calling MPI_Win_flush to ensure the operation
is completed before continuing.

2. MPI_Win_flush_all(): Completes the data transfer operations remotely
at all target processors on the specified window, initiated by the origin
processor calling the function.

3. MPI_Win_flush_local(Target rank): Completes the data transfer oper-
ations locally at the target processor on the specified window, initiated
by the origin processor calling the function.

4. MPI_Win_flush_local_all(): Completes the data transfer operations lo-
cally at all target processors on the specified window, initiated by the
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origin processor calling the function.

After completing the operations with these commands, the data can be read
or written in the window.

* Close the epoch: At the end of the RMA operations, the origin processor
calls the command MPIL.win.Unlock(Target rank), which closes the access
to the window. After having been reassured that all operations have been
completed. Or they call MPL.win.Unlock_all() if the epoch was opened with
the command MPL.win.Lock_all().

Code Listing 5.2: Example of RMA-MPI with Passive synchronization()

# Import python package for MPI

from mpidpy import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank ()

# Number of processors

nprocs = comm.Get_size ()

# Size of the buffer used to create the window
N=10

# Creation of the Window for the origin rank = 0
if rank ==

window = MPI.Win.Create(None, comm=MPI.COMM_WORLD)
# Creation of the Window for the target ranks != 0
if rank != O:

window = MPI.Win.Create(np.zeros(N), comm=MPI.COMM_WORLD)

if rank == 0:

# The origin rank = 0 put data in the window of target ranks
uG = np.ones (N)

window.Lock_all ()

for i in range(l, nprocs):

window.Put ([uG, MPI.DOUBLE], i)

window.Flush_all ()

window.Unlock_all ()

# Window deallocation

window.free ()

Code|[5.2shown a version of the code Code|[5.1with a Passive synchronization.
MPI.Win.Lock_all() is used to open an epoch on all the target processors and
close it with MPL.Win.Unlock_all(), also MPL.Win.Flush_all() is used to ensure the
completion of the Put operations on all the target processors. So as it can be seen,
this operation involves only the processor of rank 0 which sends a vector of size
N to the other processors (targets).

5.3 . lllustration
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To illustrate what has been presented in the previous sections, the following
ping-pong algorithm is used:

» Rank =0: Sends a buffer to rank 1
« Rank =1 : Modifies the buffer and sends it back to the rank 0

This algorithm is implemented in 3 different parallel versions:

+ A non-blocking version with two-sided communication (Isend, Irecv)

+ A version with the one-sided communication using active synchronization
(blocking)

+ Aversion with the one-sided communication using passive synchronization
(asynchronous)

The idea is to use two processors and to increase the size of the sent buffer
to analyze the impact of its length on the performance of those techniques. This
study was conducted using two processors within one node, the size vector is
scaled from 1to 100.000 The computation time is the average of the computation
times required by the 2 processors after several simulations. In Figure the
curves giving the computation time can be seen according to the size of the vector
sent.

The passive synchronization is ten times faster with small vectors and two
times faster for the largest vectors. However, the active synchronization model
is slightly faster than the non-blocking two-sided communication even if this syn-
chronization using Fence is expensive by blocking each time to complete the com-
munications before continuing the calculations. This quick study on two proces-
sors with a simple algorithm like this one, where the computation load is not very
important, allows to show the clear improvement RDMA can bring compared to
the classical two-sided communication model.

5.4 . Code details

A homemade code is implemented for the non-intrusive global/local coupling
method during the Ph.D Thesis. This code was realized in python. The non-
intrusive aspect of the global/local coupling allows the use of industrial finite ele-
ment codes. But in our case, the (more research-oriented) finite element library
Getfem [92] is used, which allowed to manage all the construction parts of the
finite element model, the interpolation operators for the coupling, and the reso-
lution part using the solvers already linked by this library (like the famous MUMPS
solver). The choice was particularly motivated by the availability of postprocess-
ing methods to obtain the nodal reaction of the complement domain A, which is
an operation not always simple to implement in legacy industrial software.

For the construction of the finite element model, Getfem proposes two ways:
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Figure 5.4: RMA vs Two sided

+ The construction of the linear system and its exportation in matrix-vector
format in order to solve it externally with chosen algebraic solvers.

* The use of bricks where no need to build the linear system explicitly. Getfem
then appears like a black box to which the input data are specified like the
problem the presented problem, the boundary conditions, and the right-
hand side.

This last option is the one selected during the thesis. It allows for solving several
types of linear problems in thermal or linear elasticity, non-linear elliptic prob-
lems, and problems of elastoplasticity type.

The developed code allows solving these problems with a global/local coupling
parallelized in synchronous or asynchronous way. MPI [25] is used for the parallel
processing part and specially MPI-RMA techniques.

5.4.1. Code architecture
The code is structured in several modules:

* Preprocessing: This module contains the interface_identification func-
tion, which is in charge of reading the data from the provided mesh, de-
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tecting the number of patches and identifying the interfaces of each patch,
seeing if there are common interfaces with other patches.

+ Several problems have been treated, and several modules have been de-
fined: linear_elasticity, laplace_gl (for thermal problems in linear and non-
linear), and then a plasticity model. Each of these models contains those
two functions:

- FE_GLOBAL_MODEL: defines the global problem on the whole struc-
ture with its boundary conditions and right-hand side.

- FE_LOCAL_MODEL: function called in parallel by the patches to build
the local problems and impose the correct boundary conditions if it is
a patch on the Dirichlet boundary.

*+ Coupling: This module contains two functions:

- Global_to_local_coupling: This allows to build of the interpolation op-
erator, which helps to pass the global coarse mesh to the local fine
mesh. This operator is computed in parallel for each patch.

- Add_lagrange_multipliers: this function allows defining and initializ-
ing for each local problem its Lagrange multipliers on its interface.

* Resolution: This module contains three functions:

- Global_resolution: It solves the global problem on the whole structure.
This function allows the resolution with the Aitken accelerator as well
as with a fixed relaxation coefficient.

- Local_resolution: It is called in parallel and allows solving the local
problem for each patch and then post-processing to calculate the nodal
reaction or the Lagrange multiplier on the interface.

- Residual_computation: It is called at each iteration to evaluate the
residual. It recovers the nodal reactions calculated by the local prob-
lems. It post-processes the global problem in case the complementary
domain exists to calculate the nodal reactions on the interface from a
global point of view.

* Post_processing: Depending on the problem studied, this module contains
several functions to calculate the gradient in the case of elliptic problems or
the von Mises stress in the case of mechanical problems. This module also
allows plotting the solution (displacement or temperature).

The architecture and calling order of the modules presented in the code are
illustrated in the following diagram:
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Pre-processing

FE Model construction

Coupling: Operators construction

Parallel coupling algorithm (Resolution)

Post-processing

From this diagram it can be seen that the central part is the coupling algorithm
part where the parallelization is done. This part only uses the Resolution module.
In the following two sections, the details of the different parallelization techniques
used are presented. The associated pieces of code are given in appendix.

5.4.2 . Window creation

The non-intrusive global/local coupling algorithm is characterized by sending
the Dirichlet conditions from the global to the local patches and sending the nodal
reactions from the local patches to the global. One last communication is set up
for the management of the convergence detection, the global sends a message
to the locals to signal the algorithm’s convergence. Each of these three communi-
cations is assigned a window.

So in conclusion parallel computing scheme master-slave is the one used.

+ To send the Dirichlet conditions from the global problem to local problems.
The processor of rank 0, in charge of the global problem computation, sends
to each processor in charge of a local calculation the part of the displace-
ment corresponding to its interface. Each of these processors must allocate
a memory corresponding to the window in which the global problem will
come to put the information.

The part of the code[B.1 corresponds to the allocation of these windows

+ Sending nodal reaction from the processors in charge of the local problems
to the processor of rank 0 requires creating a window in the memory of
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processor 0 for each of these local problems. So a list of vectors of adequate
size is created and a list of windows associated with each of the vectors.

The part of the code[B.2 corresponds to the allocation of these windows.

+ After detecting the convergence, the global problem sends a message to the
local problems, which stop the calculations on all the processors. For that,
a boolean with an initial value of 0 is used, and if the algorithm converges, it

has the value 1. So a window is created in each local processor so that the
processor of rank 0 can write the information.

The part of the code B.3|corresponds to the allocation of these windows.

At the end of the algorithm and after convergence, the memory allocated to these
windows is freed as in the code B.4l

5.4.3 . Synchronous version

In this subsection, the focus is on the synchronous parallel implementation of
the coupling algorithm, which can be summarized in 3 blocks:

* Global displacement window synchronization
« ifrank =0:

- Global computation.

- Put global displacement in local windows.
* Global displacement window synchronization

As explained before, this first block is wrapped between two synchronizations,
which correspond to the opening and closing of an epoch. During this epoch, pro-
cessor o performs a resolution of the global problem and then sends the Dirichlet
boundary conditions to the local problems.

+ Local nodal reaction window synchronization
* ifrank # 0:

- Local computation.
- Put local nodal reaction in the global window.

+ Local nodal reaction window synchronization

Again, this second block is wrapped too between two synchronizations, corre-
sponding to the opening and the closing of an epoch. During this epoch, All the
other processors except rank 0 solve their local problems. They then post-process
the results to compute the nodal reactions on the interface and put them in the
global window.
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+ Convergence boolean window synchronization
* ifrank = 0:

- Residual computation.

- Put convergence boolean to local windows.
+ Convergence boolean window synchronization

The last block has the same two synchronizations, corresponding to an epoch’s
opening and closing. During this epoch, After the evaluation of the residual, the
processor of rank 0 checks the convergence status and then sends an update
value of the boolean to the other processors. Algorithm[g|shows the pseudo-code
corresponding to the synchronous version.

Algorithm 4: Synchronous stationary iterations using RDMA

Window creation + Initialization pr = 0, w sufficiently small
while |r| is too large do

MPI.Fence()(For the global displacement window)

if rank == 0 then

Resolution of the Global system or (3:32), u& = S¢ ' (pr + b%)
if Q0 exists then

| Post-processing (3.:24), q° = A’ = SPu%“ — b0.¢
end
Put A<"u$ in subdmains s > 0 windows ;
end
MPI.Fence()(For the global displacement window)
MPI.Fence()(For the local nodal reaction)
if rank =0 then
Fine solution 3.22), A*" = S*FJsAs"u§ - bsF
Patch Put q° := J*" X** in the rank 0 window
end
MPI.Fence()(For the local nodal reaction)
MPI.Fence()(For the convergence detection window)
if rank == 0 then
Global computes residual r = - Y  Asq*
Global updates pr = pr + wr
end
MPI.Fence()(For the convergence detection window)
end
Window free
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Code [B.5|shows the implementation of the synchronous version in our code.
Each part is commented on and allows making the distinction between each of
the three blocks presented before

5.4.4 . Asynchronous version

For the implementation of the asynchronous algorithm, MPI-RMA passive syn-
chronization presented above is used, two implementations are considered:

* The first implementation proposes an asynchronous model that updates it-
self as soon as new information arrives. This algorithm can be divided into
three blocks:

- Rank =0:

1. The global problem is solved by using a specific relaxation coeffi-
cient and updating it with a Neuman condition based on an asyn-
chronously computed residual. The global displacement is stored
in a buffer whose last component contains a variable indicating the
current global iteration.

2. To put the displacement as a boundary condition for the other pro-
cessors, an epoch is open for each one using passive synchroniza-
tion. The putting is realized, and the completion of this sending is
assured before closing this epoch.

- Rank # 0:

1. To check if a new Dirichlet condition is available, each processor
launches a loop that opens an epoch in its window and checks if the
variable corresponding to the global problem iteration has been
updated.

2. Once sure to have new information, each processor solves its lo-
cal problem, then performs post-processing to calculate the nodal
reactions.

3. Each processor opens an epoch on its allocated window on the tar-
getrank 0, puts the nodal reaction, and then closes the epoch. The
nodal reactions calculated by each processor are stored in a buffer
whose last component contains the corresponding local iteration.

- Rank =0:

1. The rank 0 launches a loop on all the windows in which the other
processors put their nodal reactions and checks with the variable
corresponding to the number of local iterations of each one if new
data is accessible.

2. Rank 0 evaluates the residual, computes its norm, and checks if the
algorithm has converged or not.
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3. If the algorithm has converged, rank 0 opens an epoch in the win-
dow allocated by each of the other processors, puts the boolean
with the new value that corresponds to the convergence, and then
closes the epoch.

The pseudo-code in Algorithm [5| presents a version based on MPI-RDMA
techniques with passive synchronization.

Algorithm 5: Asynchronous iterations using RDMA

Window creation + Initialization pr = 0, w sufficiently small

MPI.Lock(target) (For all the window by specifying the specific target of
each one) while |r| is too large do

switch Rank s do

case s == () (global domain) do

Global reads all (g*) in its windows

Global computes residual r = -, Asq®

Global updates pr = pr + wr

Global solve system (3:32), u& = S (pr + b%)

if Q20 exists then
\ Post-processing (3.24), q° := A” = S0u® - b0.G

end

Global puts As"u in all subdomains s > 0 windows

Flush(subdomains s window)

end

ase s > 0 (local patch) do

Local reads new As"u¢ in its window

Local solves (3:22), A*" = S5FJsAs" uf - bs

Local puts g* := J*" A* in Rank o's window

Flush(o)

end

end

end

MPI.UnLock(target) (For all the window by specifying the specific target of
each one)

0

The implementation of this algorithm is in code[B.6]

This implementation is well recommended if the number of patches is not
very significant. In the chapter of applications it will be shown that because
of the network used, the choice of this implementation is restricted to few
cases
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+ The second implementation corresponds to the case where the global and
the local computation is done all the time, whether with new information or
just reusing the information they have in the memory from previous itera-
tions.

This implementation can be summarized in the following five blocks:

- Contrarytothe firstimplementation, the epochs are opened and closed
at each communication, in this implementation, the epochs are opened
before the launching of the algorithm, which will allow to do a series
of communications during these epochs until the convergence of the
algorithm, and then to close the epochs at the end.

1. rank = 0: Rank 0 opens access to all the open windows allocated
by the other target processors to send the Dirichlet conditions and
also the boolean corresponding to the stopping criterion of the al-
gorithm after the convergence

2. rank # 0: Each processor opens the access to the epoch allocated
by rank 0 to receive the nodal reactions.

- Rank =0:

1. The global problem is solved by using a specific relaxation coeffi-
cient and updating it with a Neuman condition based on an asyn-
chronously computed residual.

2. Thedisplacementis sent as a boundary condition for the other pro-

cessors, and the completion of this sending is assured on all the
target processors.

- Rank # 0:

1. Each processor solvesits local problem with the available boundary
Dirichlet condition, then performs post-processing to calculate the
nodal reactions.

2. Each processor puts the nodal reaction on the window allocated by
the rank 0 and ensures its completion.
- Rank =0:

1. Rank 0 evaluates the residual with the available nodal reactions,
computes its norm, and checks if the algorithm has converged or
not.

2. If the algorithm has converged, rank 0 puts the boolean with the
new value corresponding to the convergence in the window allo-
cated to it by each of the other processors and ensures its comple-
tion on all the target processors.

- After the convergence of the algorithm:
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1. rank = 0: Rank 0 closes all the opened accesses to the windows
allocated by the other target processors.

2. rank # 0: Each processor closes the access to the windows allocated
by rank 0 to receive the nodal reactions.

The implementation of this algorithm is in code [B.7] It is recommended in
the case of a very high number of patches, where the probability of an up-
date from one of these patches to the global problem is very high.
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6 - Applications

This last chapter, interest in confirming the theoretical results presented pre-
viously and examining the performance of the implemented asynchronous algo-
rithm compared to the synchronous one. A variety of linear and nonlinear prob-
lems have been studied. For this purpose, the study moved from simple 2D aca-
demic cases to more complicated 3D academic and industrial cases. The idea was
to compare the asynchronous and synchronous algorithms on different global/lo-
cal coupling situations considering few or many patches. Weak scalability studies
as well as tests that focus on the load imbalance that is regularly faced in this type
of problems are considered.

6.1. Setup

6.1.1. Methods

During all these studies, the first idea is to compare the synchronous and the
asynchronous models without relaxation. A second goal is, to compare the best
performance attainable. In the synchronous case, the powerful Aitken accelera-
tor is used (which can be viewed as an efficient way to find a good dynamic relax-
ation), in the asynchronous, an optimal relaxation coefficient obtained empirically
by trial-and-error is used.

Note that the concept of optimal relaxation is a bitill-posed for the asynchronous
case, as the relaxation depends on the frequency of the updates which is hard-
ware dependent.

Note that asynchronous acceleration techniques have been investigated dur-
ing the thesis to improved more performance to the asynchronous model, follow-
ing the works in [26] where the idea was to accelerate the convergence of asyn-
chronous iterations with Aitken’s acceleration technique using a low-rank approxi-
mation based on SVD. The study presents several examples in the case of the RAS
method. The idea is based on the fact that the error operator depends on the
iterations and the use of the SVD for a low-rank approximation of this operator
allows accelerating the convergence based on an SVD applied to the iterated so-
lutions. After several attempts with this technique, It can be conclude that it is still
slower than an empirically relaxed asynchronous model. In the rest of the study,
this approach will not be considered.

For the rest of this chapter:

* Synch: synchronous iteration without relaxation(w = 1),

* Aitken: Aitken-accelerated (synchronous) iteration,
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+ Async: asynchronous iteration without relaxation (w = 1),
* Relax async: asynchronous iteration with optimized relaxation.

In order to evaluate the performance, the number of iterations performed by
the global problem and the number of maximum and minimum iterations per-
formed by the local problems is presented. Of course, for the synchronous ver-
sion, the number of iterations performed is the same for the global and local prob-
lems.

We also present wallclock time measurements. In order to smooth the vari-
ability of asynchronous computations, the average over 3 executions is given with
identical setup.

6.1.2 . Cluster

The studies were carried out with the cluster of the LMPS simulation center
using several workstations with an ethernet network. These machines are quite
heterogeneous with 4 different generation of CPUs:

* Intel(R) Xeon(R) CPU E5-1660 v3 (Haswell) @ 3.00GHz (8 cores)

* Intel(R) Xeon(R) CPU E5-2630 v4 (Broadwell) @ 2.20GHz (10 cores)
* Intel(R) Xeon(R) Silver 4116 CPU (Skylake) @ 2.10GHz (12 cores)

* Intel(R) Xeon(R) W-2255 CPU (Cascade Lake) @ 3.70GHz (10 cores)

Besides the heterogeneity, another characteristic is that the cluster can be used
by several users simultaneously, there is no queuing system.

We use one MPI process for the global problem and as many processes as
need to distribute the local problems according to the study. As much as possible
the MPI processes are allocated to the cores of the same CPUs.

6.1.3 . Academic cases
6.1.3.1. 2D test-case

The first test-case, Figure is supposed to be a 2D approximation of a 3D
turbine blade, it is inspired from [47]. This case comprises two zones of interest
in which complex geometrical details are added. In the green zone of interest,
the addition of 3 circular holes and a modification at the boundary of the global
structure can been seen. The yellow patch inside the structure is characterized by
the addition of four square voids.

For this case, the subdomain 0 (complementary zone) exists, it is represented
in blue in the global model. Null Dirichlet conditions are imposed on the bottom
side, null Neumann conditions are imposed elsewhere. A constant body load is
given. These two areas of interest have a refined mesh compared to the comple-
mentary area.
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(b) Zones of interest
Ce cas contient une zone
(a) Global problem complémentaire

Figure 6.1: 2D academic test-case

The idea of the study will be to consider linear or nonlinear behaviors and to
see locally what the geometrical details bring. This case composed of 2 patches is
too simple to allow us to conclude on the performance of the asynchronous ver-
sion. Still, it allows simple illustrations, and it enables us to close the loop initiated
by our presentation of the global/local coupling of Section.3]

6.1.3.2. 3D test-case

For the second academic study, the idea is being able to generate as many
patches as desired, in particular non-overlapping contiguous patches that cover
the global model. Thus a cuboid domain covered by cuboid patches is consid-
ered, see for instance the 8-patch case on Figure [6.2b| and the 16-patch case on
Figure[6.2a|

Two representations of the cubes are considered. The cubes in the global
model are homogeneous, and their mesh is coarse, see Figure6.3al The cubes in
the local models have refined meshes (see Figure [6.3b), they are heterogeneous,
with a spherical inclusion inside each cube (by default the sphere is centered ra-
dius is a quarter of the side of the cube, but these parameters vary in some stud-
ies, see Figure[6.3¢). Note that the fine meshes are built independently on the
patches so that they are not constrained to match at the interface. On the con-
trary, the global mesh is conforming at the interface.

The contrast between the material properties of the sphere and of the cube is
a parameter of the studies.
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(a) 16 patches (b) 8 patches

Figure 6.2: fig:3Dacad

Null Dirichlet boundary conditions are imposed on one face of the domain,
null Neumann conditions are imposed elsewhere. A constant body load is given.

(c) Spherical
_ inclusion
(a) Coarse representation (b) Fine representation

Figure 6.3: Example of one unit cube with different representations

6.2. Linear cases

The asynchronous global/local coupling is assessed on two academic exam-
ples: the simple 2D case of Figures[6.1aland[6.1b] and the 3D case involving many

patches like in the Figure[6.2b]
For this two linear problems are considered:
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+ The Poisson equation, which models thermal problems:

Findu:QcRY> R
—div(agrad(u)) = fin Q

u=0o0n g, (6.1)
6_u =00n 0\ 9,8
on

For simplicity, homogeneous boundary conditions are used. In some cases
a contrast of conductivity coefficient a is used. The source term is simply
equal to 1.

* The linear elasticity equation:

Find v : Q c R¢ > R?
div(e)+ f=0inQ

uw=0o0n 7d;Q
o-n=00n o\ g (6.2)
1%
o= (s(u) D tr(g(u))l)

() = 5(u+ (va)")

FE is Young's modulus, and v = 0.3 is Poisson’s coefficient. In some cases, a
contrast of Young's modulus is used. The source term is simply the vector
with all components equal to 1.

To avoid redundancy in the results, the results in linear thermal and others in
linear elasticity are either considered both cases are presented only when impor-
tant distinctions appear.

6.2.1. Simple 2D test-case

To begin with the illustrations, the test-case of Figures|[6.1aand is consid-
ered where the patches only introduce geometric alterations. The patches and
the global model are treated on three different cores.

As shown in Table[6.1, the problem is of very small dimension, and the patches
are well-balanced, which is in favor of synchronous algorithms.

| Problem | Global | 1* Zone of interest | 2! Zone of interest |
[Nodes | 701 | 381 | 379 |

Table 6.1: Size of the domains or the 2D test case.
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Tables|6.2/and [6.3| present the performance in terms of time and number of
iterations (the numbers in the brackets correspond to the number of solves in
the patches). For these small cases, Aitken remains unbeatable. The interest of
finding a good relaxation for the asynchronous iteration is observed to perform
better than the raw synchronous iteration.

To explain the choice of optimal relaxation coefficient, in Figure[6.4]the compu-
tation times obtained for different relaxation coefficients is presented. The plot
tends to show a fairly well-marked minimum. Note that the same approach to
choosing the relaxation coefficient is applied to all the examples that will follow.
However, the value of the coefficient is insignificant as it depends not only on the
mechanical problem but also on the hardware configuration, so we did not find it
useful to systematically write it.

2.49 1
2.075 4

1.575 4

115+

0.63 4

Execution time (s)

0.46

0.3
0.26 1

T T T T T T T T T T T T T T T T T T T
010203040506070809 1 1.11.2131415161.71.81.9
relaxation coefficient

Figure 6.4: Relaxation coefficient study for thermal problem

What is more interesting to observe is the large amount of computation that
can be done by the asynchronous solver thanks to the removal of waiting time.

6.2.2. Preliminary study
* Linear elasticity problem

+ 16 subdomains[6.2al

+ Heterogeneity: Young's modulus in the spherical inclusion is 100 times lower
than in the rest of the cube, the global model uses the stiffer modulus.
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Variant Sync. | Sync. | Async. | Async.
w=1|Aitken| w=1 Wopt
Time (s) 0.31 0.17 0.4 0.26
#iter. glob. 23 12 43 35
#loc. sol. [min, max] . [95, 106] | [82, 85]

Table 6.2: 2D test-case: performance for thermal problem.

Variant Sync.| Sync. | Async. | Async.
w=1|Aitken| w=1 Wopt
Time (s) 0.67 | 0.3 0.6 0.52
#iter. glob. 43 16 53 48
#loc. sol. [min, max]| - [112,119]|[100,107]

Table 6.3: 2D test-case: performance for the elasticity problem.

« Convergence criterion: global residual < 107

Problem

Global

Local (One subdomain)

Numbre of nodes

2675

1249

Table 6.4: Mesh data for subsection

Considering these data, several machine configurations are tested. In the dif-
ferent situations, comparing the two synchronous models (with optimal relax-
ation) presented in the previous chapter (with and without waiting for new in-
formation) with the synchronous Aitken.

* 116-core machine oversubscribed with 17 MPI processes. In this case study,
the local ethernet network is not used. The case of a shared memory con-
figuration within a single machine is considered.

Aitken Asynchronous with wait Asynchronous w/o wait
#iter #iter. glob. [[min, max] #loc.] | #iter. glob. [[min, max] #loc.]
#time (s) #time (s) #time (s)

21 & 37.655 | 540[62, 92] & 14.18s 649[71, 106] & 15.83s

+ 210-core CPUs non-oversubscribed for 17 MPI processes. The idea it to force
the use of the local ethernet network between the machines. However, In
this configuration the machines are in fully utilized.

Aitken Asynchronous with wait Asynchronous w/o wait
iter #iter. glob. [[min, max] #loc.] | #iter. glob.[[min, max] #loc.]
#time (s) | #time (s) #time (s)

21 & 7.365 | 64[64, 65] & 6.67s 458[60, 106] & 6.65s
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*+ 17 CPUs using 1 core per machine. In this situation the CPUs are not much
solicited but all the communications pass through the network.

Aitken Asynchronous with wait Asynchronous w/o wait
#iter #iter. glob. [[min, max] #loc.] | #iter. glob. [[min, max] #loc.]
#time (s) | #time (s) #time (s)

21 & 4.79s | 67[67 - 68] & 8.77s 749[65, 171] & 8.81s

Comparing the computation times, it can be seen that the two asynchronous
models are much faster than the Aitken in the first case with an oversubscribed
machine. the difference decreases in the second case, but the two asynchronous
models remain faster. In the third case, where machines have a light computa-
tional load, as the load balance is almost perfect, the processes are naturally pro-
gressing synchronously, and the Aitken technique is faster than the asynchronous
models.

In a second analysis, the number of iterations is compared. As expected, Aitken
is a deterministic method which requires the same number of iterations in the 3
cases.

However,the asynchronous model without wait has a very variable number
of iterations depending on the configuration, with a significant number of global
iterations compared to the local ones, due to the repetition of the global compu-
tations without new piece of information.

For the asynchronous model with wait, It can be seen that in the first case with
a single machine, the number of iterations varies between global and local prob-
lems. However, the passage to several machines linked by the local ethernet net-
work leads to a similar number of iterations between the local and the global. In
fact our Ethernet network does not support RDMA communication by default, and
it generates implicit synchronizations when MPlL.win.Lock and MPlL.win.Unlock
commands are used to check if new data is available in the target processor.

Thus, to remain in a purely asynchronous mode, the following studies the
asynchronous mode without waiting is considered for the analysis of the study in-
troducing several calculation machines. However, the asynchronous model with
waiting will be used for the cases with few patches where the calculation can be
done within a single machine. Note that other infrastructures, like infiniband, al-
low RDMA networking.

6.2.3 . Rate of communication study

In order to better grasp the impact of synchronization on communication and
waiting time, a preliminary study is proposed based on the thermal problem set
on the well-balanced 64-subdomain case (with a heterogeneity ratio of 100, the
thermal diffusion coefficient in the spherical inclusion being 100 times lower than
in the rest of the cube). The dimensions of the problems are recalled in Table[6.5]
Different numbers of MPI processes are used. This means that for less that 65
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processes, one MPI rank has to handle several subdomains. The percentage of
communication time in the total simulation time is presented, for a convergence
tolerance of 10-7 for the norm of the residual.

Problem Global | Local (One subdomain)
Number of nodes | 1449 1858

Table 6.5: Mesh data

First, the synchronous and asynchronous iterations are compared without re-
laxation.

#ranks Synchronous Asynchronous

#iter #iter. glob.[#loc. sol. [min, max]]

#time (s) #time (s)
[% communication time] [% communication time]

9 - & >1h 7683[980, 1109] & 4555 [8%]
17 - & >1h 7682[1804, 3856] & 469s [17%]
33 - & >1h 7692[3828, 7364] & 481s [35%]
65 7707 & 5362.83 [94.8%] | 7692[3249, 7737] & 489.81s [63%)]

Table 6.6: Analysis of the time spent in communication (64-subdomain thermal
case) without relaxation.

In table[6.6] the number of iterations, the calculation time, and the percentage
that the communication time represents of this calculation time are summarized.

For the synchronous version, the cases studied could not finish their calcula-
tion after one hour, which corresponds to the time allocated on the machines,
except the last case with 65 CPUs, where a very high percentage (95%) of time
spent in communication are seen. This result can be explained by several factors,
the most important of which is the sequential side of the method, which imposes
synchronization when sending data from global to local and local to global. One
can also note that the computational load is very light, so most of the time is spent
managing communications.

In the asynchronous case, It can be seen that the computation time is quite
close in all the cases and more than ten time faster than the synchronous ver-
sion, with a global number of iterations almost constant in all cases. However,
the number of local iterations changes from one case to another because the
computation load per CPU decreases, which leads to the increase of the number
of iterations performed, one can also see that the percentage of communication
increases with the rise of the number of processes, it remains around 65% in the
case involving 65 processes.
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Now, the focus is on the case where the comparison is between the Aitken
accelerator for the synchronous iteration and optimal relaxation for the asyn-
chronous iteration.

#ranks Aitken Asynchronous
#iter #iter. glob.[#loc. sol. [min, max]]
#time (s) #time (s)

[% communication time] [% communication time]
9 25 & 11.72s [30%)] 334[49, 54] & 22.4s[10%]
17 25 & 8.08s [80%] 182[56, 77] & 13.255[10%]
33 25 & 4.53s [71%] 104[65, 124]& 8.135[16%)]
65 25 & 8.57s [97%] 105[81, 160] & 8.405[46%]

Table 6.7: Analysis of the time spent in communication (64-subdomain thermal
case).

The same study as in the previous one is considered. On Table it can be
observed that, in this case, the asynchronous approach is globally slower than the
accelerated synchronous one. However, the proportion of time spent in commu-
nication increases strongly in the synchronous case (up to 97%) and much more
moderately in the asynchronous case (never more than 50%), which leads to the
asynchronous approach being faster in the 65-process case. In particular the tran-
sition between one node (9 subdomains) computation and two nodes (17 subdo-
mains) leads to a strong increase of the time spent in communication in the syn-
chronous case whereas it is unmoved in the asynchronous case.

6.2.4 . Weak scalability 3D test-case

Now the academic 3D case is considered. The idea is to realize a study of weak
scalability. A cubic geometry as in Figure [6.5]is preserved while adding patches.
The cases made out of n? (n = 2...7) cube patches are treated. As classically done
for weak scalability assessment of domain decomposition methods, the size of the
domain increases with the number of subdomains. Note that the whole domain
is covered with patches (Q2° = ). The Global model is homogeneous, whereas the
Local models contain one softer spherical inclusion, see Figures and
One side of the Global model is submitted to Dirichlet conditions. In the case of
thermal problems, the inclusions have a diffusion coefficient 10 times lower than
the rest of the domain, whereas in the elasticity case the Young's modulus in the
inclusions is 100 times lower than in the rest of the domain.

Even if their meshes are not identical, the patches are well-balanced in terms
of degrees of freedom and numerical complexity (since the problem is linear). Of
course, the Global model grows along the study, from 8 times smaller than one
patch to 3.7 times larger. Table[6.8|sums up the number of nodes for each case.

Figures[6.6/and [6.7/compare the performance in wallclock time of the relaxed
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(a) Global model

(b) Reference model

Figure 6.5: Weak scalability test-case: 2 x 2 x 2 subdomains

]#ofsubdomakw

| 8 [ 27 | 64 [125] 216 | 343 |

Global

Local (1 subdomain)

233 | 667
1858 11858

1449
1858

2681|4465
1858 | 1858

6903
1858

Table 6.8: Number of nodes in the meshes for the weak scalability study.

asynchronous iteration (with hand-tuned relaxation) and the synchronous itera-
tion with Aitken’s dynamic relaxation. The good performance of the asynchronous
version is observed despite the good load-balance.

For small test-cases (8 and 27 subdomains), the size of the global problem is
negligible compared to the locals. This means that the sequential phase of the
synchronous coupling is realized very quickly and this leads to the Aitken acceler-
ator being faster than the asynchronous solver. However, for 64 subdomains and
more, this step becomes heavier and takes more synchronous time. For the asyn-
chronous method, the Global solve is realized simultaneously as the locals’. Thus,
the execution time increases very slightly from one case to another and remains
2 to 3 times lower than for Aitken.

| #patches | 8 | 27 | 64 | 125 | 216 | 343
Aitken #iter. 1 13 12 11 1 11
Async. #iter. glob. 255 256 87 65 69 71
Async. #loc. sol. [min, max] | [32,39] | [43,74] | [49,153] | [84,207]1| [276,694] | [407,2902]

Table 6.9: Weak scalability: Number of iterations in the thermal case.
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Figure 6.6: Time performance in the weak scalability study for linear thermal prob-
lem

| #patches | 8 | 27 | 64 | 125 [ 216 | 343 |
Aitken #iter. 22 21 25 25 26 29
Async. #iter. glob. 2065 1349 372 296 295 209
Async. #loc. sol. [min, max] | [78,240] | [102,237] | [128,475] | [157.517] | [147,514] | [175,407]

Table 6.10: Weak scalability: Number of iterations in the elasticity case.

Tables[6.9/and[6.10/gather the number of iterations for each case. In the asyn-
chronous case, the number of Global solves is given as well as the minimum and
maximum numbers of patches’ solves.

The number of iterations barely varies in the synchronous experiments (in
particular for the thermal problem) for all studied cases. For the asynchronous
solver, it can be seen that in the 8 and 27 subdomains where the global problem
is very light, many more solves are performed by the global model than by the
local models. Because of the non-waiting asynchronous model, the global prob-
lem repeats several times the same calculation without having new input from
the locals. However when the size of this problem increases for the case with 64
and 125 subdomains, the locals make more repetitive iterations while waiting for
the update of the global problem, this last one performs only a few iterations.

Note the performance achieved in the elasticity case (2 times faster) despite
the tremendous number of iterations (7 times more).
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Figure 6.7: Time performance in the weak scalability study for linear elasticity
problem

6.2.5. Load imbalance study

The previous studies considered an almost perfect load balance. In this sec-
tion, the case of load imbalance is studied, which is very interesting to show the
effect of synchronization and the advantages that the asynchronous model can
bring.

This study has been carried out on the 128-patch geometry (Figure with
dimensions given in Table[6.11 The Young's modulus in the spherical inclusion is
100 times lower than in the rest of the cube, with a global residual norm aimed to
be lower than 107

| Problem | Global | Local (One subdomain) |
| Numbre of nodes | 2769 | 1254 |

Table 6.11: Mesh data

The idea, in this case, is to assign a different computational load to each core,
assuming having a limited number of cores at disposal; in this case, just 65 cores.
The distribution of tasks being random, the following two cases are considered:

1. Access to all the cluster's machines, but only allocate a certain number of
cores per machine. So the machines work less. However, exchanging infor-
mation is larger because it involves many machines.
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Figure 6.8: 128 subdomains with Q° = &

| Model | Aitken | Relaxed asynchronous
Time(s) 150 130.07
Async. #iter. glob. 24 239
Async. #loc. sol. [min, max] - [70 - 338]

In the asynchronous case, despite the very large number of iterations real-
ized in global and local it is still faster. The significant difference between
the minimum and the maximum number of iterations due to the load im-
balance can be seen. This situation, which in some way disadvantages the
synchronous, allows to see that the asynchronous is more adapted to a load
imbalance situation.

. Consider a limited number of machines that allows it to reach 65 cores. In-
tensively used machines and a less solicited exchange network

| Model | Aitken | Relaxed asynchronous |
Time(s) 286.9 177.27S
Async. #iter. glob. 24 353
Async. #loc. sol. [min, max] - [69 - 417]

Globally the computation times are larger than in the previous situation,
the strong solicitation of the machines penalizes the synchronous, and the
asynchronous algorithm is significantly faster.

In a second study, the idea is to evaluate the influence of a significant dise-

quilibrium in the number of nodes to be handled by processors. It starts from a
geometry formed with a 16x4x4 repetition of cubes with spherical inclusion. Fig-
ure[6.g9b|corresponds to the global problem on the structure with (quasi-identical)
homogeneous subdomains. Each Fine subdomain has a randomly chosen num-
ber of nodes compared to the other subdomains, allowing to have very refined
subdomains and others slightly refined, see Figure[6.9a]

The table summarizes the number of nodes for the global problem and

the smallest and largest number of nodes among the 256 Fine subdomains. The
most refined subdomain is ten times larger than the least refined:
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(@)

(b) Global representation

Figure 6.9: Load imbalance case with 256 patches

# of subdomains | Global | Smallest local | Biggest local
Number of nodes | 5490 534 4698

Table 6.12;: Mesh details

First, consider a linear thermal problem with a thermal diffusion coefficient
in the spherical inclusion ten times lower than in the rest of the cube (moderate
heterogeneity). As usual, convergence is achieved for a residual norm of less than
10-7. The performance is given in Table[6.13

Variant Sync. Async.
Aitken Wopt
Time (s) 881.55 79.44
#iter. glob. 36 506
#loc. sol. [min, max] . [348, 6788]

Table 6.13: Poor load balancing case: Iterations & Time (thermal problem)

Second, consider a linear elasticity problem, with a Young modulus in the spher-
icalinclusion 10* times lower than in the rest of the cube (strong heterogeneity). As
usual, convergence is achieved for a residual of less than 10-7. The performance
is given in Table[6.14]

This case study has been performed using 257 cores, one for the global prob-
lem and one processor for each one of the 256 local problems.

The number of iteration is very large in the asynchronous case, but the CPU
time is much reduced: 10 times in the thermal case and 2 times for the elasticity
case. Again, this highlights the prohibitive cost of synchronization.

101



Variant Sync. Async.
Aitken Wopt
Time (s) 3509.6 | 1904.34
#iter. glob. 13 2354
#loc. sol. [min, max] . [818, 2951]

Table 6.14: Poor load balancing case: Iterations & Time (linear elasticity problem)

6.3 . Nonlinear cases

In this section, the nonlinear cases covered by the theoretical study is con-
sidered, that is to say the global problem is linear and the local problems are
monotonic. This case study allows introducing another type of load imbalance,
associated with the unevenly distributed nonlinear intensity among the patches
due to structure effects. Two types of nonlinear problems are considered:

+ Scalar nonlinear elliptic problem, inspired by [86]:
Findu:QcR?Y >R
—div(agrad(u)) +u® = fin Q

u=0o0n 0,0 (6.3)
% =00on o~ ;02
on

with f =1 and »? the nonlinear term.

+ Associated elastoplasticity with linear kinematic & isotropic hardening
Find u: Q c RY > R
div(e)+ f=0in
uw=0o0n 9;Q
o-n=00nd~\ J;0Q
e(u) =e+¢eP

E v
— e 6[
1+1/(6 +1—21/tr(6) )

2 2
Yield function f(o,a) = | Dev(o - gﬂkgi’)H - 5\/0y0 +H;,a<0

where ¢ is the elastic part of the strain tensor and 7 the plastic part. H;
and H,, are the positive scalar isotropic and kinematic hardening modulus.
A classical #-scheme is used for the (pseudo)-time integration. This model
and solution technique are readily available in GetFem.

(6.4)

Only one load increment is considered in the following. In the respective works,
the asynchronous for the parallelization in time will be considered based on [15]
in synchronous, in which several cyclic loadings are considered.
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6.3.1. Preliminary study
The focus will be on cases where the load imbalance is due to the intensity of
the nonlinearity. First study the 128-subdomain case of Table [6.11 the spherical
inclusions are considered non-linear whereas the rest of the structure evolves
linearly. Subdomains near the Dirichlet conditions are submitted to a stronger

nonlinearity than others.

Table 6.15: Iterations & Time (Nonlinear scalar elliptic inclusion)

Variant Sync. Aitken | Async. wopt
Time(s) 31.5 15.84
#iter. glob. 30 197
#loc. sol. [min, max] . [242-1315]

Variant Sync. Aitken | Async. wopt
Time(s) 508 155
#iter. glob. 25 84
#loc. sol. [min, max] . [119 - 428]

Table 6.16: Iterations & Time (Nonlinear plastic inclusion)

Tables[6.15]and[6.16]show the results obtained in the case of scalar and elasto-
plastic problems. Like in the linear case, the number of iterations is much more
important with the asynchronous approach but the time is much lower (up to 3
times for plasticity).

the same studies are repeated this time with the case of 256 subdomains with:

Table 6.17: Iterations & Time (Nonlinear scalar elliptic inclusion)

Table 6.18: Iterations & Time (Nonlinear plastic inclusion)

Problem Global | Local (One subdomain)
Number of nodes | 5490 2308
Variant Sync. Aitken | Async. wopt
Time(s) 304.33 87.6
#iter. glob. 30 240
#loc. sol. [min, max] . [412 - 7425]

Variant Sync. Aitken | Async. wopt
Time(s) 703 403
#iter. glob. 30 95
#loc. sol. [min, max] . [181- 594]
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Tables[6.17/and [6.18| show the obtained results. Similar conclusions can been
drawn. In a hard-to-predict manner, the gain is improved in the scalar case and
reduced in the plastic one.

6.3.2 . Weak scalability
the same study as Subsection[6.2.4]is conducted but with nonlinear inclusions.
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103

=

[=]
S
L

Execution time (s)

=

=)
=
I

100 H

T T
8 27 64 125 216 343
number of subdomains

Figure 6.10: Weak scalability: time in the nonlinear thermal case.

|#patches | 8 [ 27 | 64 | 125 | 216 | 343 |
Aitken #iter. 5 10 14 20 24 30
Async. #iter. glob. 720 41 65 151 207 229
Async. #loc. sol. [min, max]|[11 - 27 1|[40 - 41]|[45 - 54]|[103 - 177]|[216 - 398]|[306 - 729]

Table 6.19: Weak scalability: Number of iterations in the nonlinear thermal case.

Figure and Table present the performance of the methods in the
scalar case. As soon as enough patches are involved, the asynchronous version
behaves much better than its synchronous counterpart, with a ten-fold reduction
in time.
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Weak scalability: time in the plasticity case.

[#patches 8 27 | 64 | 125 216 | 343 |
Aitken #iter. 25 23 23 25 26 27
Async. #iter. glob. 1083 72 77 81 99 96
Async. #loc. sol. [min, max]|[68 - 191]|[84 - 183]|[106 - 241]([126 - 490] |[152 - 410]|[178 - 518]

Table 6.20: Weak scalability: Number of iterations in the plasticity case.

Figure and Table present the performance of the methods in the
elastoplastic case. Here, the time vs patches curve is much flatter in the asyn-
chronous case, which corresponds to a much more scalable method.
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Figure 6.12: Von Mises stress in the case of 8 subdomains

Figure shows the von Mises stress in the case with eight subdomains, in
order to illustrate the fact that some spherical inclusions could reach their plastic
limit = 3750, but others remained in an elastic regime.

6.4 . 3D industrial problem

In this part, a test case inspired by an industrial problem is considered. The ge-
ometry corresponds to the turbine blade of an aircraft engine. The Global model
makes use of a simplified geometry which omits cooling micro-perforations. The
two zones of interest are two critical regions of the domain where the precise
geometry (with the perforations) is taken into account, see Figures[6.13and

The number of nodes of the meshes are given in Table[6.21 it can be see that
one zone of interest is about two times larger than the other one which is roughly
of the same size as the Global model.

Problem | Global | 15t Zone of interest | 27¢ Zone of interest
Nodes 3.10° 3.10° 6.10°

Table 6.21: Mesh data for the industrial test-case

The parallel analysis is conducted using three cores: one for the global prob-
lem and the other two for each zone of interest. Note that it appears that some
difficulty in configuring the linear solver has appeared embedded in GetFem and
the solution time of the mechanical systems was unexpectedly long compared to
what can be observed with industrial software dealing with similar problems.

First, a linear thermal problem is considered with a constant source term.

Table presents the computation times of the relaxed asynchronous, the
synchronous without relaxation, and the Aitken model. The simplicity of the lin-
ear behavior allows a fast convergence with Aitken, and the asynchronous com-
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Figure 6.14: Zones of interest

Figure 6.13: Global problem

Variant Sync. Sync. Async.
w=1 Aitken Wopt
Time (s) [% communication time] | 1447s[76.7%] | 836.43s [30.46%)] | 1444.25[2%]
#iter. glob. 21 12 90
#loc. sol. [min, max] . . [91-32]

Table 6.22: 3D test-case: performance for thermal problem.

putation with optimized relaxation does barely better than the raw synchronous
iteration. Comparing these two configurations, the communication time is negli-
gible for the asynchronous approach (2%) whereas it is predominant in the syn-
chronous case (76%). A better direct linear solver in the subdomains would have
lead to better performance for the asynchronous iteration.
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Figure 6.15: Temperature by the global local solution

DU Magnitude
5.1e-04 100 200 300 4.1e+02

Figure 6.16: Gradient obtained by the global local solution

Figures and show the evolution of the temperature and its gradient
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inside the turbine blade. As expected, it can be seen that the gradient is significant
in the towers of the holes added in the zones of interest.

In a second time, the study of this problem is considered in the case where the
global problem, as well as the local ones, are nonlinear. This study is a step ahead
of our theory because the proof of convergence in the totally nonlinear case is not
yet established. The performance is summed up in Table[6.23]

Variant Sync. | Async.
Aitken | wopt
Time (s) 3351 2055
#iter. glob. 13 19
#loc. sol. [min, max] . [6-16]

Table 6.23: 3D test-case: performance for the nonlinear case.

The asynchronous iteration is about 30% faster than the accelerated (Aitken)
synchronous iteration. The largest subdomain needs fewer iterations in the asyn-
chronous case (6) than in the synchronous case (13); in fact what mattered was
having the Global and other subdomain sufficiently converged.
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7 - Conclusion

In this work, a new method of asynchronous parallelization of the non-invasive
global local coupling has been proposed. This new method has significantly im-
proved the method’s performance by limiting the degradation due to the alternat-
ing nature of the method’s calculations. This work focused on three main steps:

+ The formulation of the method in the form of a primal domain decomposi-
tion method: a first contribution of this work has been to review the state
of the art on the global local coupling method and its history. The method
has been studied from a theoretical point of view, starting from the basic
variational formulation, to the finite element condensed system on the in-
terface, which allowed the interpretation of the coupling as a primal domain
decomposition method of the reference problem, right-preconditioned by
the global problem. This preconditioner is less capable of HPC than the tra-
ditional BDD, but it embeds two-level mechanical information which permits
more flexibility and, especially in this case, allows the use of fixed point iter-
ation paving the way to asynchronous iterations.

+ Theoretical study of the convergence in asynchronous: after the analysis of
the method in its current form, it was possible to take a step forward by
setting up an original theoretical study of convergence in the asynchronous
case, based on paracontraction techniques. Two cases were distinguished
according to the behavior of our local problems while considering the possi-
bility of adjacent and non-adjacent patches, which corresponds to the pres-
ence or not of a complementary domain. The global problem was linear in
all the studies. First, linear local patches were considered, and thanks to
this property, the contraction could be rephrased in terms of the spectral
radius of a matrix applied to the “history vector”, i.e. vector with delayed
components, which allowed for the deduction of the convergence for a suf-
ficiently small relaxation. Second, the nonlinear case with monotonic local
patches was considered, which corresponds to a large class of problems in
solid mechanics. In that case, the linear global system provided a favorable
Hilbert space where it was possible to directly bound the error between the
exact solution and the iteration. This permitted the explanation of various
phenomena like the sawtooth convergence with decreasing errors peaks for
sufficiently small relaxation, and the monotone convergence for smaller (but
not too small) relaxation.

* Implementations and numerical results: for the implementation part of the
coupling, the non-intrusive aspect of the method allowed the use of a partic-
ular finite element library as a black box and to manage the communications
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between the different sub-domains using an advanced technique in asyn-
chronous parallel computing called RDMA. The asynchronous non-invasive
global local coupling algorithm developed in this thesis proved to be more
efficient, scalable, and robust than the synchronous one coupled with the
Aitken accelerator through a series of numerical experiments and compar-
isons. Important insights into the trade-offs between communication over-
head, load balancing, and accuracy in asynchronous domain decomposition
methods were provided.

The application of asynchronous iterations can be extended to more complex
computational problems, such as plasticity and nonlinear elliptic problems, demon-
strating the potential of asynchronous methods to tackle a wide range of scientific
and engineering problems. Overall, the findings of this work have the potential
to impact the design and development of parallel algorithms for a wide range of
applications. The results provide a solid foundation for future work and pave the
way for developing even more advanced and efficient parallel algorithms. There
are several promising directions for future research in this area, including:

+ Finding an efficient protocol to estimate the optimal relaxation parameter,
and even better adapting the relaxation to the data available at a given itera-
tion. More generally trying to derive algorithmic asynchronous accelerators.

+ Using hardware accelerators, such as graphics processing units (GPUs), to
explore hybrid techniques that combine the benefits of multiple accelerator
technologies.

+ Setting up a theoretical study to extend the proofs obtained in this work
to the case where the global problem is also nonlinear (monotone), since
convergence has been observed in practice.

« Implementing time asynchronism to deal with complex history of loads, with
a particular interest in the determination of stabilized elastoviscoplastic cy-
cles [15].
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A - Résumé

A.1. Le couplage global/local

Le couplage global/local est une méthode puissante permettant d'améliorer la
précision des résultats mécaniques en prenant en compte les effets locaux dans
un modele global. Cette méthode combine les avantages d'un modeéle grossier
(efficacité de calcul, représentation générale du systéme) avec les détails fournis
par des modeles plus fins.

L'approche du couplage global/local peut étre mise en ceuvre en utilisant des
meéthodes de traitement et des procédures d’entrée/sortie standard dans les codes
éléments finis. Cela facilite son intégration dans les flux de travail existants, sans
nécessiter de modifications majeures du code ou d'interfaces personnalisées. Des
codes commerciaux tels que Abaqus ou Code_Aster prennent en charge cette
méthode, ce qui permet aux ingénieurs de l'industrie de 'adopter facilement.

Sur le plan conceptuel, le couplage global/local peut étre considéré comme
une méthode de décomposition de domaine. Cela signifie que le domaine global
est divisé en sous-domaines, ou des modeles plus fins sont utilisés pour résoudre
les problemes locaux. Ces sous-domaines sont ensuite couplés au modele global
en appliquant des conditions aux limites appropriées. L'interaction entre les mod-
eles globaux et locaux permet de tenir compte des effets locaux sur le comporte-
ment global du systéme.

Malgré sa robustesse et sa non-intrusivité, la parallélisation du couplage glob-
al/local reste un probléme significatif. Comme I'explique la littérature, plusieurs
études de cas impliquent l'utilisation de patchs et la parallélisation de ces patchs
a l'aide de MPI. Les performances du couplage restent limitées, méme si la paral-
|élisation de ces patchs locaux peut permettre un gain de performance. La syn-
chronisation a la fin de chaque calcul local oblige tous les patchs a attendre la
fin du dernier calcul des patchs les plus lourds en termes de temps de calcul, ce
qui pose le probleme central de I'équilibrage de charge. Un deuxieme probleme
que cette méthode rencontre, comme toutes les méthodes en deux étapes, est
que I'évaluation du probléme global est effectuée séquentiellement avec les prob-
lemes locaux. Cela signifie que méme si les patchs sont bien équilibrés et paral-
lélisés, il y aura une période d'inactivité pendant que le probléme global effectue
ses calculs, ce qui rend la méthode non évolutive en utilisant des techniques de
parallélisation synchrones classiques.

Pour résoudre ces problemes, des approches asynchrones ont été proposées.
Les itérations asynchrones permettent aux processeurs de travailler de maniere
indépendante dés qu'ils ont des données a traiter, sans attendre les autres. Cela
réduit le temps d'attente inutile et améliore I'utilisation des ressources de calcul.
De plus, les itérations asynchrones offrent une meilleure tolérance aux retards de
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réseau, aux désequilibres de charge et aux architectures fortement hétérogeénes.

A.2. Le couplage global/local asynchrone

A.2.1. Algorithme asynchrone

L'idée fondamentale de l'algorithme asynchrone est de tirer parti des moments
d'inactivité des processeurs pour effectuer des calculs. Dés qu'une nouvelle don-
née est disponible, le systéme détecte un processeur libre et lance immédiate-
ment le calcul correspondant. Cette approche asynchrone permet d'optimiser
l'utilisation des ressources de calcul en évitant les temps d'attente inutiles.

La séquence temporelle asynchrone, illustrée dans la Figure met en év-
idence le fait que I'élimination de la synchronisation accroit I'intensité du calcul.
En évitant une coordination stricte entre les processeurs, chaque processeur peut
travailler de maniéere indépendante des qu'il dispose de données a traiter. Cela
accélere le processus global de calcul.

L'algorithme asynchrone est détaillé dans I'Algorithme ??2. Il est important de
noter que, dans chaque itération, le modéle global effectue toujours une opéra-
tion d'assemblage pour construire un résidu. Cette caractéristique est avantageuse,
car elle facilite la détection de la convergence. La présence d’'un résidu permet de
mesurer la différence entre les résultats actuels et les résultats attendus, et de
déterminer si le processus de calcul a atteint un état de convergence satisfaisant.
Dans d’'autres méthodes, cette étape peut poser des problemes, mais dans notre
approche, elle est simplifiée grace a la construction réguliere du résidu.

En conclusion, en adoptant une approche asynchrone et en exploitant les temps
d’inactivité des processeurs, notre méthode permet d'optimiser l'utilisation des
ressources de calcul et d'accélérer le processus global de calcul. La détection de la
convergence est facilitée grace a 'assemblage régulier d'un résidu, ce quiaméliore
I'efficacité et la fiabilité de notre méthode par rapport a d'autres approches exis-
tantes [74) [79].

Une preuve théorique de convergence de l'algorithme asynchrone global/local
peut étre établie en utilisant le cadre des paracontractions [31]. Le résultat prin-
cipal indique que pour une certaine valeur donnée du parametre de relaxation,
I'itération asynchrone converge avec des pacthes locaux lineaire et non lineaires
et un probleme global lineaire.

Cependant, un inconvénient de l'algorithme asynchrone est qu'actuellement,
aucune stratégie d’'accélération n'est disponible. Néanmoins, il convient de souligner
que l'algorithme asynchrone présente des avantages importants en termes d'utilisation
efficace desressources de calcul disponibles. Il permet d’exploiter les temps d'inactivité
des processeurs et d'effectuer des calculs des que de nouvelles données sont
disponibles.

A.2.2 . Implémentation
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La mise en ceuvre d'un protocole de communication asynchrone a fait l'objet
de plusieurs travaux de recherche, généralement basés sur MPI, comme décrit
dans l'article [75], ou l'idée est d'utiliser une communication classique bidirection-
nelle. Cependant, de nouvelles recherches basées sur une communication unidi-
rectionnelle [112, 48], également connue sous le nom de MPI-RDMA, ont prouvé
I'efficacité de ces techniques et leur adaptation a la communication asynchrone.

Les performances de ces techniques dépendent de la version de MPI utilisée
et du réseau. Nous avons réalisé des tests sur plusieurs configurations : OPEN-
MPI, INTELMPI, MPICH, et différentes architectures réseau telles que I'Ethernet
classique, I'Infiniband plus avancé ou Intel OPA. L'influence de ces choix a été ob-
servée dans les communications asynchrones, parfois avec une synchronisation
implicite imposée par le réseau ou des opérations de communication moins per-
formantes selon la version de MPI.

L'idée générale de RDMA (Remote Direct Memory Access) est de permettre
I'acces aux données sur d'autres machines sans impliquer la machine cible. Nous
créons une partie de la mémoire appelée fenétre dans laquelle nous placons les
données recherchées. Les autres machines peuvent effectuer des opérations
de type PUT ou GET pour mettre a jour ces informations dans la fenétre ou les
récupérer et les utiliser par la suite. Cette idée est donc bien adaptée au calcul
asynchrone car nous sommes dans une procédure ou nous n'avons pas besoin
d’interrompre le calcul pour effectuer des opérations d’envoi ou de réception.

Les figures|[s.2]et[5.3]correspondent a une communication entre un processeur
0 et un processeur 1, ou ce dernier effectue deux opérations de communication
PUT et GET sur le processeur o pour recevoir la valeur X et envoyer la valeur Y.
Ces deux opérations, comme mentionné précédemment, sont effectuées sans
impliquer le processeur o.

Ces communications sont généralement suivies d'une étape de synchronisa-
tion. On distingue deux types de synchronisation dans RDMA : la synchronisa-
tion active, ou nous effectuons une opération collective pour mettre a jour tout le
monde avant de passer d'uneitération a une autre avec lacommande MPI_WIN_Fence(),
et la synchronisation passive, utilisée dans le mode asynchrone. Cette technique
consiste a synchroniser chaque processeur sans nécessairement effectuer une
synchronisation globale. Chaque processeur ouvre une époque avec MPI_Win_lock
et effectue ces opérations PUT et GET dans cette époque avant de la fermer avec
MPI_Win_Unlock. Les opérations d'achevement d’envoi MPI_Win_Flush suivent
ces opérations a l'intérieur de cette époque pour garantir que I'envoi est terminé.

A.3 . Résultats numériques

Dans le cadre de nos résultats numériques, nous avons utilisé notre code im-
plémenté en Python, qui est soutenu par divers outils et logiciels. Nous avons
utilisé GMSH pour générer les géométries et les maillages des cas étudiés, tandis
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que la bibliothéque Getfem a été utilisée pour I'approximation par éléments finis.
Pour la partie paralléle, nous avons fait appel a la bibliotheque mpi4py.

Les expériences ont été réalisées sur le cluster du centre de simulation LMPS,
en utilisant plusieurs postes de travail connectés par un réseau Ethernet. Il con-
vient de noter que ces machines présentent une certaine hétérogénéité, avec
différentes générations de processeurs Intel, notamment Intel(R) Xeon(R) CPU
E5-1660 v3 (Haswell) @ 3.00GHz, Intel(R) Xeon(R) CPU E5-2630 v4 (Broadwell) @
2.20GHz, Intel(R) Xeon(R) Silver 4116 CPU (Skylake) @ 2.10GHz, et Intel(R) Xeon(R)
W-2255 CPU (Cascade Lake) @ 3.70GHz.

Nous avons effectué des comparaisons entre les versions synchrone et asyn-
chrone, en tenant compte de la présence ou de I'absence de relaxation. Dans le
cas synchrone, nous avons utilisé I'accélération d’Aitken pour adapter dynamique-
ment la relaxation. En revanche, pour le cas asynchrone, nous avons procédé
a des essais et erreurs afin de trouver le meilleur coefficient de relaxation pour
obtenir les résultats optimaux.

Nos résultats numériques visaient a confirmer les résultats théoriques présen-
tés précédemment et a évaluer les performances de l'algorithme asynchrone par
rapport a la version synchrone. Pour ce faire, nous avons étudié une variété de
probléemes, qu'ils soient linéaires ou non linéaires. Nous avons commencé par
des cas académiques relativement simples en 2D, puis nous avons progressive-
ment augmenté la complexité en passant a des cas académiques et industriels
plus avancés en 3D.

L'objectif était de comparer les performances des algorithmes asynchrone et
synchrone dans différentes situations de couplage global/local, en prenant en
compte le nombre de patchs impliqués. Nous avons également examiné la scala-
bilité faible de notre approche, ainsi que les problemes de déséquilibre de charge
auxquels nous sommes régulierement confrontés dans ce type de simulations.

Cesrésultats numériques nous permettent de valider nos conclusions théoriques,
d'évaluer l'efficacité de 'algorithme asynchrone par rapport a la version synchrone
et de mieux comprendre les performances de notre approche dans différentes
configurations de problemes.

A.4 . Conclusion & Perspectives

Ce travail a introduit une nouvelle méthode asynchrone de couplage global-
local non invasif, qui a considérablement amélioré les performances par rapport a
la méthode synchrone. Les principales étapes de cette méthode comprennent la
formulation du couplage sous la forme d'une décomposition de domaine primale,
I'étude théorique de la convergence en mode asynchrone, ainsi que la mise en
ceuvre et les résultats numériques qui ont confirmé l'efficacité et la robustesse de
l'algorithme asynchrone par rapport a sa version synchrone.

Les itérations asynchrones ont démontré leur capacité a étre étendues a des
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problémes plus complexes tels que la plasticité et les problemes elliptiques non
linéaires, ce qui témoigne de leur potentiel pour résoudre une large gamme de
problémes scientifiques et d'ingénierie. Les résultats de cette étude ont des im-
plications significatives pour la conception d’algorithmes paralléles dans divers
domaines d'application.

Plusieurs pistes prometteuses pour la recherche future ont été identifiées.
Tout d'abord, il est essentiel de trouver des méthodes efficaces pour estimer
le parameétre de relaxation optimal, voire développer des accélérateurs algorith-
miques asynchrones. De plus, l'utilisation d'accélérateurs matériels tels que les
GPU ou I'exploration de techniques hybrides combinant différentes technologies
d'accélération ouvrent de nouvelles perspectives. Une autre direction de recherche
importante consisterait a étendre les preuves théoriques obtenues dans ce travail
aux problemes globaux non linéaires, qui sont souvent rencontrés dans de nom-
breux domaines de la mécanique des solides. Enfin, I'application de I'asynchronisme
temporel pour gérer les charges complexes, en particulier pour la détermination
des cycles élastoviscoplastiques stabilisés, représente un domaine de recherche
intéressant a explorer.

Dans l'ensemble, cette étude a fourni une base solide pour les travaux futurs
dans le domaine du couplage global-local asynchrone. Les résultats obtenus ont
démontré l'efficacité et la pertinence de l'algorithme asynchrone par rapport a la
méthode synchrone, tout en ouvrant la voie au développement d’algorithmes par-
alléles plus avancés et efficaces pour résoudre une grande variété de problémes
scientifiques et d'ingénierie.
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B - Appendices
B.1. Windows free and allocation

Code Listing B.1: Creation of the Global displacement window

#The Global Displacement vector

uG = np.zeros(Gnbd + 1, dtype=float)

#The rank 0 does not have to allowed any memory

if rank == 0:

win_uG = MPI.Win.Create(None, comm=MPI.COMM_WORLD)

# The other processor allowing a memory equal to the size of the
Global vector displacement at the

interface
if ramk != 0:
win_uG = MPI.Win.Create(uG, comm=MPI.COMM_WORLD)

Code Listing B.2: Creation of the local nodal reaction windows

# Buffers 1list

rG_win_s = np.zeros ((nprocs - 1, Gnbd + nprocs - 1))

# Windows list

win_rG_s = {}

#The rank 0 creates a number of windows equal to the number of
patches

if rank == 0:

for s in range(0, nprocs - 1):

win_rG_s[s] = MPI.Win.Create(rG_win_s[s, :], comm=MPI.COMM_WORLD)
# The other does not have to allow any memory

if rank != 0:

for s in range(0, nprocs - 1):

win_rG_s[s] = MPI.Win.Create(None, comm=MPI.COMM_WORLD)

Code Listing B.3: Creation of the windows for the convergence detection boolean

# Boolean variable

converged = np.arange(l, dtype=’i’)

# Initialization

converged [0] = 0

# The processor of rank 0O does not have to allow any window

if rank == 0:

win_conv = MPI.Win.Create(None, comm=MPI.COMM_WORLD)

# Allowing a window of the size of the boolean on each other
processor

if rank !'= 0:

win_conv = MPI.Win.Create(converged, comm=MPI.COMM_WORLD)

Code Listing B.4: Free the allocated windows
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win_uG.Free ()

win_conv.Free ()

for s in range(0, nprocs - 1):
win_rG_s[s].Free()

B.2. Synchronous code

Code Listing B.5: Implementation of the synchronous global/local algorithm

# While the boolean variable equal to 0 we do
while ((converged[0] == 0)):

# Fence collective call for the synchronization (opening an epoch
access for the rank 0 on the
other rank windows)
win_uG.Fence ()
# Rank 0 in charge of the global computation
if rank == 0:
# Call of the function global resolution to resolve with a chosen
solver (Aitken, or classic) the
Global Problem, by pG imposing as
an immersed Neuman condition
# pG is updated with the call of this function using the residual
rG_j
uG, rG_j, rG_j_1, omega_new = \
Resolution_gl.Global_resolution(solveur, rG_j_1, rG_j, ci,
omega_old, omega_new, pG,
pG_index, rG, Gmd)
# Rank 0 excute a Put operation, to send the Global displacement
uG to all of the other target
Rank
for i in range(l, nprocs):
win_uG.Put([uG, MPI.DOUBLE], i)
loc_iter += 1
# Fence collective call for the synchronization (closing the
epoch access)
win_uG.Fence ()

# Fence collective call for the synchronization (opening an epoch
access for all the processor (

origin) to processor of rank 0 (
target) window)

for s in range(0, nprocs - 1):

win_rG_s[s].Fence ()

# Each processor except Rank 0 is in charge of a local problem
computation.

if rank !'= 0:

# Initialization of local residual computed for each local
problem
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rG_loc[0:Gnbd] = 0

# Call of the function local resolution to resolve the local
Problem, by imposing the
Dirichlet condition uG

for i in range(0, size):

(uF[i], LFonG[Gbound[i]]) = \

Resolution_gl.Local_resolution(Fmd[i], Interpo[i], uG[0:Gnbd],
Gbound[i], new_region_100_fin[il,
uFd[i],C[i], F_index[i]l, FM[il)

rG_loc[Gbound[i]] += LFonG[Gbound[i]]

loc_iter += 1

# Orgin processors excute a Put operation, to send the nodal
reaction stored on the rG_loc to
the target processor of rank 0

win_rG_s[rank - 1].Put([rG_loc, MPI.DOUBLE], 0)

# Fence collective call for the synchronization (closing the
epoch access)

for s in range(0, nprocs - 1):

win_rG_s[s].Fence ()

# Fence collective call for the synchronization (opening an epoch
access for the rank 0 on the
other rank windows) to stop the
algorithm after convergence
win_conv.Fence ()
if rank == 0:
# The processor of rank 0 compute the global residual norm using
the receiving nodal reaction
rG_win_s from the local problems.

norm_rG, rG = Resolution_gl.Residu_computation(Gnbd, nprocs,
rG_win_s)

print ("it", ci, "norm r", norm_rG, "rank:", " "  rank)

ci += 1

# Check if the algorithm converges

if norm_rG < 1.e-6:

# If convergence, updating the boolean value converged and set it

to 1

converged [0] = 1

# Processor of rank 0 sends the value of this boolean to the all
the other target processor

for i in range(l, nprocs):

win_conv.Put ([converged, MPI.INT], i)

# Fence collective call for the synchronization (closing the
epoch access)

win_conv.Fence ()
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B.3. Asynchronous code

Code Listing B.6: Implementation of asynchronous global/local coupling with wait-
ing

while converged[0] == 0:

# Rank 0 solves the global problem with a classic solver and a
chosen relaxation coefficient
omega_new

if rank == 0:

uG[0:Gnbd]l, rG_j, rG_j_1, omega_new = \

Resolution_gl.Global_resolution(solveur, rG_j_1, rG_j, ci,
omega_old ,omega_new, pG, pG_index
, rG, Gmd)

# Updating the number of iteration of the global problem

loc_iter += 1

uG[Gnbd] = loc_iter

# The rank 0O open access epoch on each of the other processors
using lock using passive
synchronization then put data and

ensure its completion on the
target processor then close the
access on this target processor.
for i in range(l, nprocs):

win_uG.Lock (i)

win_uG.Put([uG, MPI.DOUBLE], i)

win_uG.Flush (i)

win_uG.Unlock (i)

# All processors except O open an access epoch on a passive
synchronization way, checking if
new Global displacement 1is
available during this epoch.
After reviewing this status, the
epoch is closed.

if rank != 0:

while loc_G == loc_G_prec and converged[0] == 0:

win_uG.Lock(rank)

loc_G = np.copy(uG[Gnbdl)

win_uG.Unlock (rank)

loc_G_prec = np.copy(loc_G)

rG_loc[0:Gnbd] = O

# All processors asynchronously solve the local problems, using
different Global displacements
from various iterations

for i in range(0, size):

(uF[i], LFonG[Gbound[i]]) = \

Resolution_gl.Local_resolution(Fmd[i], Interpol[i], uG[O0:Gnbd],
Gbound [i], new_region_100_fin[il,

uFd[il, C[il, F_index[il, FM[il)
rG_loc[Gbound[i]] += LFonG[Gbound[i]]
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loc_iter += 1
rG_loc[Gnbd + rank - 1] = loc_iter
# All processors open access passively on the rank O,

asynchronously Put nodal reaction

on these windows, ensure 1its
completion and close the opened
epoch.

win_rG_s[rank - 1].Lock(0)

win_rG_s[rank - 1].Put([rG_loc, MPI.DOUBLE], 0)

win_rG_s[rank - 1].Flush(O0)

win_rG_s[rank - 1].Unlock(0)

# Processor (0 opens an access epoch on a passive synchronization
way, checking if new nodal

reactions 1is available from other

processors during this epoch.
After reviewing this status, the
epoch is closed.

if rank == 0:
while np.array_equal (Glob_c, Glob_c_prec) and converged[0] == 0:
for i in range(0, nprocs - 1):

win_rG_s[i] .Lock (0)

Glob_c[i] = rG_win_s[i, Gnbd + i]

win_rG_s[i] .Unlock (0)

Glob_c_prec = Glob_c.copy()

# The residual is evaluated and its norm is computed

norm_rG, rG = Resolution_gl.Residu_computation (Gnbd, nprocs,
rG_win_s)

print ("it", ci, "norm r", norm_rG, "rank:", " "  rank)

ci += 1

# If the algorithm converged, open an access epoch on a passive
synchronization way, send the
stopping criterion to all the
other processors to ensure its
completion, and then close these
epochs.

if norm_rG < 1l.e-6:

converged [0] = 1

for i in range(l, nprocs):

win_conv.Lock (i)

win_conv.Put ([converged, MPI.INT], i)

win_conv.Flush (i)

win_conv.Unlock (i)

Code Listing B.7: Implementation of asynchronous global/local coupling without

waiting

%\begin{mypython} [caption={Implementation of asynchronous Global/
Local coupling without waitingl,
label=without]

# Rank 0 opens access using passive synchronization to all the
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target processor windows for
global displacement and boolean
variable for stopping convergence

if rank == 0:

win_uG.Lock_all ()

win_conv.Lock_all ()

# All processors except ranks 0O open access on the target rank 0
using passive synchronization,
for the nodal reaction sends

if rank !'= O:
win_rG_s[rank - 1].Lock(0)
while converged[0] == 0:

# Rank 0 solves the global problem with a relaxation coefficient
omega_new

if rank == 0:

uG[0:Gnbd], rG_j, rG_j_1, omega_new = \

Resolution_gl.Global_resolution(solveur, rG_j_1, rG_j, ci,
omega_old, omega_new, pG,
pG_index, rG, Gmd)

# Update the number of iteration of the global problem

loc_iter += 1

uG[Gnbd] = loc_iter

# Put the global displacement to all the target processors and
ensure the completion of the
operation to all these processors

using Flush_all ()

for i in range(l, nprocs):

win_uG.Put([uG, MPI.DOUBLE], i)

win_uG.Flush_all ()

# All processors asynchronously solve the local problems, using
different Global displacements
from various iterations.

if rank != 0:

rG_loc[0:Gnbd] = O

for i in range(0, size):

(uF[i], LFonG[Gbound[i]]) = \

Resolution_gl.Local_resolution(Fmd[i], Interpo[i], uG[O0:Gnbd],

Gbound [i] ,new_region_100_fin[il]
, uFd[il, C[il,F_index[il, FM[il)
rG_loc[Gbound[i]] += LFonG[Gbound[i]]

loc_iter += 1

rG_loc[Gnbd + rank - 1] = loc_iter

# All processors asynchronously Put nodal reaction on the rank 0
windows and ensure 1its completion

on the target processor 0

win_rG_s[rank - 1].Put([rG_loc, MPI.DOUBLE], 0)

win_rG_s[rank - 1].Flush(0)

# Rank 0 Compute the residual and send a boolean to the other
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processors and ensure its
completion to stop the algorithm
if it is converged.

if rank == 0:

norm_rG, rG = Resolution_gl.Residu_computation(Gnbd, nprocs,
rG_win_s)

print ("it", ci, "norm r", norm_rG, "rank:", " "  rank)

ci +=1

if norm_rG < 1.e-6 and ci > 10:

converged[0] = 1

for i in range(l, nprocs):

win_conv.Put ([converged, MPI.INT], i)

win_conv.Flush (0)

# Rank 0 closes all the opening epoch on the other processors

if rank == 0:

win_uG.Unlock_all ()

win_conv.Unlock_all ()

# All processors close the opening access epoch on the rank 0
windows

if rank != 0:

win_rG_s[rank - 1].Unlock(0)
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calculs intensifs, notamment pour les problémes
a grande échelle. Les méthodes de décomposi-
tion de domaine sont devenues un outil puissant
en mécanique des structures pour relever ces dé-
fis. Elles consistent & diviser une tiche de calcul
plus petites et indépendantes taches qui peuvent
8tre exécutées en paralléle. Des travaux récents
montrent de nombreux avantages lors du couplage
du calcul paralléle asynchrone avec ces méthodes,
permettant de surmonter les limites des méthodes
synchrones classiques et une utilisation plus effi-
cace des ressources de calcul et un meilleur par-
allélisme, résultant en des temps de solution plus
rapides.

Dans ce travail de recherche, nous présen-
tons la premiére version asynchrone du couplage
global/local non intrusif, capable de traiter ef-

ficacement plusieurs patchs éventuellement adja-
cents. Nous proposons une nouvelle interpréta-
tion du couplage comme une méthode de dé-
composition de domaine primale préconditionnée
a droite. Nous démontrons également la conver-
gence de I'itération asynchrone relaxée dans les cas
linéaires et non-linéaires monotones en utilisant
les techniques de paracontraction. Par la suite,
nous proposons une mise en ceuvre basée sur les
techniques MPI-RDMA.. Cette implémentation est
comparée avec une méthode synchrone accélérée,
nous |'illustrons sur plusieurs problémes elliptiques
linéaires, tels que ceux rencontrés dans les études
thermiques et d’élasticité et sur des problémes non-
linéaires, notamment d’élastoplasticité. Nous ob-
servons que le paradigme asynchrone élimine de
nombreux problémes de performance du couplage
global/local.

Title: Asynchronous domain decomposition method in structure mechanics — the case of the glob-

al/local coupling

Keywords: Non-invasive Global Local coupling, Asynchronous domain decomposition, Linear and non
linear domain decomposition method, Paracontraction techniques, MPI-RDMA.

The analysis and design of complex structures
can be time-consuming and computationally inten-
sive, especially for large-scale problems. Domain
decomposition methods have become a powerful
tool in structural mechanics to address these chal-
lenges. They divide a computational task into
smaller and independent tasks that can be exe-
cuted in parallel. Recent work shows many advan-
tages when coupling asynchronous parallel compu-
tation with these methods, overcoming the limita-
tions of classical synchronous methods and result-
ing in more efficient use of computational resources
and better parallelism, resulting in faster solution
times.

This research work presents the first asyn-
chronous version of non-intrusive global/local cou-

pling, capable of efficiently processing multiple
possibly adjacent patches. A new interpretation
of the coupling by a primal domain decomposi-
tion method is proposed. The convergence of re-
laxed asynchronous iteration in the linear and non-
linear cases using paracontractions techniques is
also demonstrated. Subsequently, an implementa-
tion based on MPI-RDMA techniques is proposed.
This implementation is then confronted with an
accelerated synchronous method. The implemen-
tation is illustrated on several linear elliptic prob-
lems, such as those encountered in thermal and
elasticity studies, and on nonlinear problems, such
as nonlinear elliptic and plasticity problems. The
asynchronous paradigm eliminates many global /lo-
cal coupling performance problems.
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