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1 - Introduction

1.1 . Background & Objectives

Structural mechanics is an essential field of engineering that focuses on theanalysis and design of structures such as buildings, bridges, and aircraft. The ob-jective is to understand how these structures behave and respond to differentloads and environmental conditions while ensuring their safety, efficiency, andcost-effectiveness.However, analyzing and designing complex structures can be time-consumingand computationally intensive, especially for large-scale problems. To addressthese challenges, parallel computing has emerged as a powerful tool in structuralmechanics. Parallel computing involves breaking down a computational task intosmaller, independent parts that can be executed simultaneously on multiple pro-cessing units, such as CPU cores or GPUs.Parallel computing offers several advantages in structural mechanics:
• Speed and Efficiency: By harnessing the processing power of multiple coresorGPUs, parallel computing significantly reduces computation time for large-scale problems. It can expedite structural analysis and design processes.
• Scalability: Parallel computing allows computational resources to scale ac-cording to the problem’s complexity. This is crucial in structural mechanics,where problems can vary from simple to highly complex.
• Accuracy: Parallel computing can enhance result accuracy by enabling theuse of finer mesh resolution or more precise numerical methods. It facil-itates the utilization of larger and more complex models, leading to moreaccurate outcomes compared to smaller models.
One of the most commonly used methods in structural mechanics for par-allel computing is the parallel domain decomposition approach, typically basedon finite element analysis. This method involves dividing a large computationaldomain into smaller, independent subdomains that can be solved in parallel. Itoffers significant computational advantages, particularly for complex problemsinvolving linear or nonlinear, static or dynamic scenarios.However, parallelizing domain decomposition methods presents certain chal-lenges:
• DataCommunication: For problemswith highly interdependent subdomains,communication overhead can become a bottleneck in the computation pro-cess.
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• Load Balancing: Distributing the computational load evenly across multipleprocessing units can be challenging. This imbalance can lead to certain sub-domains taking significantly longer to solve, while others remain idle.
Asynchronous iteration is a parallel computing method that has gained pop-ularity in recent years. It allows for the concurrent execution of multiple par-allel tasks, where each task operates independently without waiting for othersto finish. Instead of blocking the execution flow until all tasks are completed,the program continues executing tasks asynchronously in the background. Thisapproach optimizes system resources utilization and overall execution time, es-pecially for tasks with longer durations. Asynchronous programming concepts,such as asynchronous functions and threads, are commonly employed in high-performance distributed computing systems.Asynchronous domain decomposition offers several advantages:
• Flexibility: Computation can proceed at different speeds, allowing each pro-cessing unit to operate at its maximum performance. This results in fasteroverall computation times, particularly for highly parallelizable problems.
• Robustness: Computation can proceed without synchronizing across pro-cessing units, even in the presence of communication failures. This makes itsuitable for solving problems in large-scale distributed computing environ-ments.
• Load Balancing: Computational load can be dynamically balanced based onthe processing capabilities of each unit, leading to more efficient resourceutilization and faster overall computation times.
However, one significant challenge in asynchronous iterations is maintainingdata consistency, as computations can proceed at different speeds.Themain objective of this Ph.D. thesis is to advance the understanding and de-velopment of asynchronous domain decomposition methods. The work aims toaddress the challenges faced by conventional domain decomposition techniquesin parallel computing, particularly in terms of load balancing and communicationoverhead.Through a detailed analysis of a specific domain decompositionmethod in thefield of structural mechanics, this thesis aims to address the current limitationsand gaps in the literature. It is worth noting that the chosen domain decomposi-tion method is particularly popular in industry as it fulfills their requirements in anon-intrusive manner.The research questions addressed in this thesis include:
• Howcan asynchronous domain decompositionmethods bedesigned to achievebetter load balancing and communication efficiency in parallel computingenvironments?
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• What are the trade-offs between communication overhead, load balancing,and accuracy in asynchronous domain decomposition methods?
This work focuses on the development and analysis of new asynchronous do-main decomposition algorithms that can overcome these challenges. The algo-rithms will be evaluated and compared with existing synchronous methods interms of efficiency, scalability, and robustness.

1.2 . Outline

Following this introductory chapter, this thesis is organized as follows:
• Chapter 2: This chapter begins with a review of relevant academic litera-ture related to the development of domain decomposition methods. It pro-vides an overview of both early and recent methods and explains the the-ory and algorithms underlying primal methods in detail. Additionally, it in-troduces the current state of non-intrusive global/local coupling methodsand discusses their performance limitations due to the alternation betweentwo computation steps. Furthermore, the chapter introduces the concept ofasynchronous parallel computation, highlighting its potential improvementfor domain decomposition methods in general, and specifically in the caseof non-intrusive global/local coupling.
• Chapter 3: This chapter presents a mathematical overview of non-intrusiveglobal/local coupling. It explores the method’s application to linear ellipticand nonlinear problems. Additionally, it interprets the non-intrusive glob-al/localmethod as a right-preconditionedprimal domain decompositionmethod,offering a novel approach.
• Chapter 4: This chapter presents an asynchronous version of the non-intrusiveglobal/local computation method for linear and nonlinear elliptic problems,building upon the new interpretation from the previous chapter. It estab-lishes a proof of convergence for the discretized system using paracontrac-tions techniques.
• Chapter 5: This chapter provides an implementation of an asynchronouscode for non-intrusive global/local coupling using the Remote Memory Ac-cess (RMA) technique with the Message Passing Interface (MPI). RMA-MPIenables processes to directly access thememory of other processes in a dis-tributed system, resulting in faster communication and increased efficiencycompared to traditional data-copying methods.
• Chapter 6: This chapter presents numerical results obtained from studiesconducted on academic and industrial cases. The objective is to compare the
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asynchronous version of the non-intrusive global/local coupling with the ac-celerated synchronous version, demonstrating the advantages of the asyn-chronous approach.
• Chapter 7: This concluding chapter summarizes themain findings, highlightsthe contributions of the study, and provides recommendations for futureresearch.

1.3 . Scientific Contributions

1.3.1 . Articles
• Ahmed El Kerim, Pierre Gosselet, Frederic Magoules. Asynchronous Global-Local Non-Invasive Coupling for Linear Elliptic Problems. Computer Methods
in AppliedMechanics and Engineering, 2023, 406 (115910), ⟨10.1016/j.cma.2023.115910⟩.
This article presents the first asynchronous version of the non-invasive global-local coupling method, capable of effectively handling multiple and poten-tially adjacent patches. We provide a new interpretation of the coupling as aprimal domain decompositionmethod and prove the convergence of the re-laxed asynchronous iteration. The asynchronous paradigm overcomes sev-eral limitations of the performance of the global-local coupling. We illustratethemethodwith various linear elliptic problems encountered in thermal andelasticity studies.
1.3.2 . Proceeding

• Ahmed El Kerim, Pierre Gosselet, Frédéric Magoulès. Couplage Global-Localen asynchrone pour des problèmes linèaires. 15ème colloque national encalcul des structures, Université PolytechniqueHauts-de-France [UPHF],May2022, 83400 Hyères-les-Palmiers, France.
• Ahmed EL KERIM, Pierre Gosselet, Frederic Magoules. Asynchronous scal-able version of the Global-Local non-invasive coupling. 9th European Con-ference for Aeronautics and Space Sciences, Jun 2022, Lille, France. ⟨10.13009/EUCASS2022-4830⟩.

1.3.3 . Abstracts at conferences
• 17th International Miklos Ivanyi PhD, DLA Symposium, 25 - 26 Octobre 2021,Pecs, Hungary.
• SIAM Conference on Parallel Processing for Scientific Computing (PP22) 23 -26 fevrier 2022 2022, Seattle, Washington, U.S.
• 15ème colloque national en calcul des structures, 16 – 20 mai 2022, Giens,France.
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• EUCASS-3AF 2022, 9th European Conference for Aerospace Sciences, 27 Juin- 1 Juillet Lille, 2022, France.
• 27th International Domain Decomposition Conference, 25 - 29 Juillet 2022,Prague, Czech Republic.
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2 - Literature review

As mentioned in the introduction, this work is interested in the parallel sim-ulation of structural problems discretized by the finite element method leadingto massive nonlinear systems. Using domain decomposition methods is a natu-ral strategy to distribute the computation over many computational units. So inthis chapter, a literature review is presented on the history of the domain decom-position methods, emphasizing the most used methods in structural mechanics.After, the existing works on the global/local coupling techniques are reviewed andtheir advantages and inconveniences compared to the classical domain decom-position methods are specified. Then the parallel aspect of all these methods arediscussed by identifying the limit due to the high cost of communications whenusing large calculation tools.

2.1 . Introduction

The numerical simulation of mechanical problems requires the considerationof behaviors and geometries that can vary from simple linear academic prob-lems to nonlinear industrial problems. Finite element methods provide a pow-erful framework for convergence toward the solution sought.However, a suitable choice of finite elements and a well-refined mesh are re-quired. This last condition can lead to massive systems whose resolution is costlyin computation time and memory storage.One strategy is the domain decomposition method, which divides the struc-ture under study into several sub-structures. A strong point of this technique isthat it is well adapted for parallel computing since a sub-problem can be definedon each sub-structure to be solved in parallel.An iterative process is then established to obtain the solution. The idea is to ex-change data between the different sub-domains at each iteration, correspondingto a communication between the processors.

2.2 . Domain decomposition

2.2.1 . Motivation
First introduced by H.A. Schwarz 1870 [96], the motivation behind domain de-composition methods was to find the solution to the Poisson PDE (equation 2.1)defined on a complex geometry as shown in Figure 2.1:

Find u such that: ⎧⎪⎪⎨⎪⎪⎩

−∆u = f in Ω

u = 0 on BΩ
(2.1)
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Figure 2.1: Schwarz first domain decomposition problem
with BΩ the boundary of the domain Ω.Schwarz considered that the domain Ω of Figure 2.1 was the union of a diskand a rectangle. The suggested solution was to divide the domain Ω, into twosubdomains corresponding to two simple geometries, where one can computethe solution of the problem for any given boundary conditions,

(a) Circular subdomain Ω1

(b) Rectangular subdomain Ω2

Figure 2.2: Domain decomposition
Figure 2.2 shows the decomposition of the domain Ω into two subdomains:the circular subdomain Ω1 in Figure 2.2a and the rectangular subdomain Ω2 inFigure 2.2b.

2.2.2 . Schwarz alternating method
Schwarz then established an iterative approach, known as the overlapping al-ternating Schwarz method, to compute the solution of the problem on the wholedomain Ω, by alternating between a resolution in Domain Ω1 and another one inDomainΩ2. The idea is to retrieve the solution on the shared boundary within theblue overlap areaα = Ω1∩Ω2 in Figure 2.3, calculatedwhen solving one subdomainand impose it on the other subdomain.So the system at the iteration n + 1 can be written as:

Find un+1
1 such that: Find un+1

2 such that:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆un+1
1 = f in Ω1

un+1
1 = un on BΩ1 ∩Ω2

un+1
1 = 0 on BΩ1 ∩ BΩ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆un+1
2 = f in Ω2

un+1
2 = un+1

1 on Ω2 ∩ BΩ1

un+1
2 = 0 on BΩ2 ∩ BΩ
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Figure 2.3: Schwarz alternating method with overlap
This method is not parallel due to the alternating nature of the computationsbetween the subdomains, which imposes that the calculation in Ω1 is finished be-fore launching the other computation on the domain Ω2. When more than twosubdomains are involved, it is possible to color the subdomains and solve thesubdomains of the same color in parallel.

Remark 1. Note that the convergence of these methods depends strongly on theoverlap size; the larger the overlap width, the faster the convergence.
2.2.3 . Schwarz parallel method

To raise the issue of parallelization, the work presented in [69] introduced thefirst approach to parallelize the previous Schwarz algorithm, Iteration n+1 can bewritten as:
Find un+1

1 such that: Find un+1
2 such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆un+1
1 = f in Ω1

un+1
1 = un on BΩ1 ∩Ω2

un+1
1 = 0 on BΩ1 ∩ BΩ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆un+1
2 = f in Ω2

un+1
2 = un1 on BΩ2 ∩Ω1

un+1
2 = 0 on BΩ2 ∩ BΩ

The idea is to eliminate the alternating state of the algorithm where the (n +
1)th computation on Ω1 to compute the (n + 1)th solution on Ω2 must be used, bycalculating both subdomains simultaneously using the boundary condition fromthe nth iteration of the neighboring subdomain.So in both algorithms, the idea was to check each problem in its subdomainand, after that, by ensuring via an iterative process, the algorithm’s convergencewhile guaranteeing the equality of the field of displacement in the area of theoverlap.This approach was then generalized for the case with several subdomainsusing parallel computing and more general geometries and applications. Onecan find more details about the convergence theory and the implementation in[36, 98, 110]. The references [69, 39] relate the history of development of domaindecomposition methods.
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2.2.4 . Non overlapping Schwarz method
Other than their adaptation to parallel computation by allowing the distribu-tion of the calculation of each subdomain on a computational unit, the domain de-compositionmethods allow to couple several problems of different natures (fluid-structure, magneto-mechanical, . . . etc.). For this reason the methods with over-lap may seem inadequate and therefore a non-overlapping variant of Schwarz’smethods was later introduced in the work of Lions [70].It is thus supposed that the two subdomainsΩ1 andΩ2 are such that Ω̄ = Ω̄1∪Ω̄2and Ω1 ∩Ω2 = ∅, and their interface is introduced as Γ = BΩ1 ∩ BΩ2, see Figure 2.4.

Figure 2.4: Two non overlapping subdomains
The non-overlapping Schwarz domain decomposition method requires intro-ducing two parameters, named q1 and q2, which act as “interface stiffness” orimpedance and which allow for the introduction of the Robin or Fourier bound-ary conditions on the interface. These parameters offer the possibility to findtheir best configuration, hence the name Optimized Schwarz Method (OSM) is of-ten used for this method. Bn corresponds to the normal derivative operator, theparallel non-overlapping Schwarz iteration can be written as:
Find un+1

1 such that: Find un+1
2 such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆un+1
1 = f in Ω1

(Bn+q1)un+1
1 =(−Bn+q1)un2 on Γ

un+1
1 = 0 on BΩ1 ∩ BΩ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆un+1
2 = f in Ω2

(Bn+q2)un+1
2 =(−Bn+q2)un1 on Γ

un+1
2 = 0 on BΩ2 ∩ BΩ

Note that it is also possible to derive an alternating version, and that optimized(i.e. Robin) interface conditions can also be used in the presence of an overlap.In structuralmechanics awell-known version of OSM is the Latin approach [63]which combines such interface conditions with a nonlinear solver, making it pos-sible to solve complex elastoviscoplastic problems with friction at the interface.
2.2.5 . Non stationary methods

The Schwarz methods rely on a fixed point iteration with a contraction prop-erty. It is possible to derive other approaches which do not naturally express as
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the search for a fixed point, and when turned into a fixed point (e.g. using a pre-conditioner) do not have a contraction property, making it necessary to use en-hanced solvers like Krylov in the linear case or Newton in the nonlinear case.These methods are often referred to as sub-structuring methods, and one ofthe first was [90], developed by mechanical engineers for the finite element anal-ysis of complex structures. A full historical review can be found in [40].To simplify the introduction of themethod, the case of Figure 2.4 is consideredwith two subdomains Ω1 and Ω2, Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅, separated by Γ =
BΩ1 ∩ BΩ2.If independent fields u1 and u2 are considered in the subdomains, beside thePoisson equation inside the subdomains, they must satisfy two interface condi-tions in order to be the restriction of the solution of the problem set on the wholedomain Ω. The first condition is the continuity u1∣Γ = u2∣Γ, and the second is thebalance of the fluxes Bnu1∣Γ + Bnu2∣Γ = 0.This leads to the classical approaches:

• The primal approach:
Find the Dirichlet condition uΓ

such that Bnu1∣Γ + Bnu2∣Γ = 0, where
for s = 1,2, us solves

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆us = f in Ωs

us = uΓ on Γ

us = 0 on BΩs ∩ BΩ

• The dual approach:
Find the Neumann condition λΓ

such that u1∣Γ = u2∣Γ, where
for s = 1,2, us solves

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆us = f in Ωs

Bnus = (−1)sλΓ on Γ

us = 0 on BΩs ∩ BΩ

After discretization, all thesemethods enter the framework of linear systemswherethe unknown is a boundary condition and the residual corresponds to the non-satisfaction of the remaining interface conditions. Due to the different physicalnature of the unknown and of the residual, it is clear that stationary iteration isnot possible. Anyhow, powerful preconditioners are available which can be usedin conjunction with a Krylov solver, leading to efficient methods like the balancingdomain decomposition (BDD) [77] or the finite element tearing and interconnect-ing (FETI) method [35] and their recent variants [60, 62].The literature regarding these methods is very rich, with important progressbeing recently accomplished regarding automated coarse problems [99] or mul-tipreconditioned solvers [17].
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2.2.6 . Primal approach
In the next chapter, a new interpretation of the non invasive global/localmethod,studied in this thesis, is proposed as a primal domain decompositionmethodwitha preconditioner. This subsection aims at providing enough details on the stan-dard primal approach. The presentation of the primal approach presented hereis inspired from [85]. For simplicity it is made in a discrete setting.

2.2.6.1 . Setting of the method
A classical quasi-static mechanical (or thermal) problem set on a domain Ωand discretized with the finite element method is considered. If nonlinearity isinvolved, an incremental approach is considered and this study is restricted toone increment. The system to be solved, called reference system here, can bewritten as:

Find u so that fint(u) + fext = 0 (2.2)
Using the language of mechanics, fext stands for the (generalized) external forces,
fint is the vector of internal forces and u is the vector of unknown displacements(Dirichlet conditions are assumed to have been eliminated).Note that in the case of linear problems, the internal forces take the form of alinear application:

fint(u) = −Ku (2.3)
whereK is the sparse symmetric definite positive stiffness matrix.The conforming partition of Ω into N non-overlapping subdomains Ωs is con-sidered, so that each element belongs to exactly one subdomain. Superscript (s)will refer to data attached to domain Ωs. Let Γs denote the interface of subdo-main Ωs. The classical notation is used to distinguish between interface (bound-ary) degrees of freedom, with a b subscript, and internal degrees of freedom, witha subscript i. Let Γ = ∪Γs be the set of all interface degrees of freedom. The traceoperators are defined as Ts ∶ Ωs → Γs. Also, the assembly operators are definedas As ∶ Γs → Γ which connect subdomains together. The subscript Γ is used forquantities defined on the global interface.In order to write the equilibrium of subdomain Ωs, The introduction of thevector of nodal traction λs that is imposed by its neighboring subdomains on itsinterface is required:

f sint(us) + f sext +TsTλs = 0 (2.4)
Where TsT can be viewed as an extension-by-zero operator inside the subdo-main. Note that the b subscript is omitted for λs because by nature this quantityonly exists on the boundary of the subdomain.In order to make the subdomains’ equilibrium equivalent to the global equi-librium (2.2), the addition of two interface conditions is needed:
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Continuity of displacement,∃uΓ such that ∀s, usb =AsTuΓ,

Balance of interface traction,∑
s

Asλs = 0 (2.5)
It was chosen to express the continuity of the displacement by saying that localdisplacements should be the restriction of a common interface displacement. An-other possibility would be to require the nullity of the jump of displacement usinga signed assembly operator. This would be the starting point of dual approacheswhich need not be detailed here.
Assuming the well-posedness of local Dirichlet problems, it is possible to re-word the global problem in terms of the unknown interface displacement uΓ:

Find uΓ such that ∑
s

Asλs = 0

where ∀s, (λs,us) are solutions to local Dirichlet problems:
⎧⎪⎪⎨⎪⎪⎩

f sint(us) + f sext +TsTλs = 0

Tsus =AsTuΓ

(2.6)

Note that the local Dirichlet problems correspond to solving:
Dirichlet condition: usb =AsTuΓ

Internal nonlinear problem: Find usi , f
s
int,i (

usi
usb

) + f sext,i = 0

Interface post-processing: λs = −f sint,b (usiusb) − f sext,b

(2.7)

2.2.6.2 . Condensation
As subdomains’ internal quantities are always obtained from the solution of lo-cal problems with given interface conditions, the convergence of non-overlappingdomain decomposition methods is governed by the convergence of interface un-knowns. It is thus convenient to only think in terms of interface quantities andintroduce condensed formulation where the internal equilibrium is implicitly al-ways satisfied. In particular, the subdomains’ Dirichlet-to-Neumann operator isdefined as ss:

λs = ss(usb; f sext) as defined in (2.7) (2.8)
Note that in the case of linear systems, the explicit expression of the (affine)Dirichlet-to-Neumann operator can be written as:

sslin(usb; f sext) = (Ks
bb −Ks

biK
s−1

ii Ks
ib)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ss

usb − (f sext,b −Ks
biK

s−1

ii f sext,i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bs

(2.9)
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Ss is the well-known Schur complement matrix and bs is the condensed right-hand side. The Schur complement inherits important properties from MatrixKs,in particular symmetry and (semi)definiteness positivity.It is thus possible to rewrite the reference system as:
Find uΓ such that ∑Asss(AsTuΓ; f sext) = 0 (2.10)

In [85], it is proposed to solve the systemwith a Newton-Raphson solver, which in-volves solving tangent systemswhich have the structure of a linear primal domaindecomposition problem. In the following section, the well established ingredientsused to efficiently solve such systems are detailed.
2.2.6.3 . Solution strategy in the linear case

A focus is placed on the solution of the linearized system (2.10):
(∑AsSsAsT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SΓ

uΓ =∑Asbs

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
bΓ

(2.11)

where the different operators are given in (2.9). In order to avoid exchangingdense matrices between processors, it is recommended to use a Krylov solver.Moreover, it is not necessary to actually form the Schur complement, one onlyneeds to compute the solution to Dirichlet problems (using a factorization ofKs
ii).For the Krylov solver to converge efficiently, it is necessary to use a precondi-tioner. The one which naturally arises is the Neumann-Neumann:

(∑AsSsAsT )
−1
≃ (∑ ÃsSs

†
ÃsT ) (2.12)

where the (Ãs) are scaled assembly operators such that ∑AsÃsT = IΓ, and Ss
†

is a pseudo-inverse of Ss. Note that it can be computed as Ss† = TsKs†TsT . Thepreconditioner thus corresponds to the parallel solution of Neumann problemsset on the subdomains.For the use of the pseudo-inverse to be well-defined, it is necessary to ensurethat it is applied to a vector belonging to the image of the operator. This constraintis usually implemented using a projector/initialization procedure. LetRs be ama-trix whose columns form a basis of kernel ofKs, i.e. the rigid body motions of thesubdomain, thenRs
b = TsRs is a basis of the kernel of Ss. The following quantitiesare introduced:

G̃ = (. . . ÃsRs
b . . .) ,

P = I − G̃ (G̃TSΓG̃)−1
G̃TSΓ

uΓ0 = G̃ (G̃TSΓG̃)−1
G̃TbΓ

(2.13)

Since the subdomains’ rigid body motions are linearly independent and SΓ is aSPD matrix, the matrix (G̃SΓG̃) is also SPD and thus invertible.
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P is a projector such that PG̃ = 0 and PTSΓG̃ = 0. The matrix (G̃TSΓG̃) iscalled the coarse problem by analogy with multigrid approaches and it plays acentral role in the convergence of themethod. It is also a technical difficulty whenimplementing the method, and it can become a bottleneck for large number ofsubdomains.The interface displacement is searched for under the form uΓ = uΓ0 +PûΓ, andthe unknown ûΓ is the solution to the following system:
SΓPûΓ = bΓ − SΓuΓ0 = PTbΓ (2.14)

Note that SΓP = PTSΓP so that the system is symmetric semi-definite, and it canbe preconditioned by the Neumann-Neumann scaled operator (∑ ÃsSs
†
ÃsT ).As equipped, the method takes the name of Balancing Domain Decomposi-tion (BDD) [77, 67] and it is proved to be scalable for a large class of problems.Anyhow, some situations are known to cause problems, like corners in shell mod-els, or jagged interfaces, or heterogeneity near the interface. In theses cases itis proved that the coarse problem should be enriched by more modes than thesimple rigid body motions which can be computed for each subdomain by a gen-eralized eigenvalue problem, named GENEO [99].Also, it is worthmentioning themore recent BDDC approach where the coarseproblem is implemented by directly imposing some continuity between subdo-mains during the preconditioning step [62]. This version presents some algorith-mic advantages, and it avoids the factorization of the pseudo-inverse which canbe numerically difficult.

2.2.7 . Multi-scale methods
The BalancingDomainDecompositionmethod is equippedwith a coarse prob-lem that ensures the well-posedness of local Neumann problems during the pre-conditioning step.From the mechanical point of view, the coarse problem ensures the equilib-rium over the whole structure of the resultant and the moment (also known asthe torsor) of the forces applied to the subdomains. According to the Saint-Venantprinciple, the remaining part to be computed is localized. This means that thanksto the coarse problem there should be no need to transfer long-range informationand the solution could be found by local exchanges between neighboring subdo-mains. As the number of neighbors remains bounded even when the number ofsubdomains increases, the coarse problem should ensure the scalability of themethod.It appears that the coarse problem is a key ingredient for domain decomposi-tion methods to achieve high performance. It plays the same role as the coarsegrid in multigrid methods [107] and it bears strong similarity with algebraic multi-grid methods.In methods like BDDC or FETI-DP [61], the coarse problem corresponds to en-suring the primal continuity of some well-chosen interface degrees of freedom.
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The coarse problem can also be viewed as a long-range simplification of theproblem, what is sometime referred to as a numerical multi-scale method. Forinstance, the micro-macro Latin method [64] can be viewed as a parallel non-overlapping Schwarzmethod equippedwith a coarse problembased on the Saint-Venant principle. An attempt to optimize the macro problem based on GENEOconcept was proposed in [87].

2.3 . The non-invasive global/local coupling

2.3.1 . Introduction
Nested models, as presented in Figure 2.5, are ubiquitous in industry to give amulti-scale description of structures. They call for the use of multi-scale domaindecomposition methods to avoid a prohibitive cost of meshing and remeshing ofthe structure that can subsequently lead to systemswhose resolution and storageare cost prohibitive.

Figure 2.5: Nested models, courtesy Dassault Aviation
The motivation of industry to use non-intrusive multiscale coupling strategiesis to be able to provide methods that can be integrated into legacy industrial soft-ware codes. To do so, they must respect several constraints, including the lim-itation to use the standard outputs and inputs of the software, which limits thechoice of computational methods in mechanics, because these methods are gen-erally developed in homemade codes but are not made to be used outside theacademic domain.The idea of the global/local coupling is to replace a globalmodel withmore pre-cise models in some local parts of the structure, solved with dedicated software.An iterative approach is implemented to achieve the strong coupling. Of course,it comes with a convergence threshold and the need to tolerate a controlled errorcompared to the reference monolithic computation.
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2.3.2 . Illustration
Generally, when studying the design of a part with a specific material, complexbehaviors tend to develop in some local zones. This can be explained by the ex-posure of these areas to more critical physical phenomena such as higher heat,higher load or cracking, etc. Very particular and complex geometries can also dis-tinguish these areas from the rest of the structure.To illustrate the type of study performed, an approximation of a 2D turbineblade as in Figure 2.6 is considered. In this model, two zones of interest, shownin yellow and green, with specific complex geometries are considered. Anotherblue global zone exists where no important behaviors or complex geometries aredistinguished. This model is defined on several scales, illustrated in the following

Figure 2.6: 2D turbine blade
Figures.Figure 2.7 corresponds to a coarse scale representation of the 2D turbine bladeas in Figure 2.6 also known as the global model, where its coarse mesh cannotconsider what happens in the zones of interest. A highly refined mesh is requiredto simulate it well. These zones of interest can be much larger than the meshof the global problem. Ω1,G and Ω2,G are the two zones of interest and Ω0,G thecomplementary domain. ΓA is the interface between these zones of interest andthis complementary domain.As in Figure 2.8, geometries or behaviors can exist that are reproduced in someregions of interest (local models) of the global structure (global model). The geo-metrical modification can correspond to removing a part of the geometry of theglobal structure and introducing holes. It can also correspond to strong nonlin-ear behaviors, like plasticity, viscoplasticity, fatigue, and cracking. Ω1,F and Ω2,F
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ΓA

Ω(1),G

Ω(2),G

Ω(0),G

Figure 2.7: Global problem

Ω(2),F Ω(1),F

Figure 2.8: Refined zones of interest

correspond to the refined zones of interest.
The assembly of the localmodels on the zones of interestwith the globalmodelon the rest of the structure corresponds to what is known in the literature as thereference problem (Figure 2.9), and this problem is generally costly to build andsolve. Indeed, in spite of the recent progress in meshing software, obtaining agood mesh for a complex part is still the most time-consuming step of an indus-trial simulation, before computation itself.
The multiscale coupling approaches used to find the solution of the referenceproblem without going through its resolution proceeds by two steps. First, anevaluation of the global coarse model on the whole structure, which allows esti-mating the large flows of efforts in the domain. Then, a second evaluation of thezones of interest with the local model on refined meshes to substitute the globalmodel in these zones.
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Figure 2.9: Reference problem

2.3.3 . Submodeling

An approach generally used by the industry is the well-known submodelingtechnique [58, 91, 22]. This coupling technique is often already integrated intocommercial software. It consists in solving the discretized finite element globalproblem on the coarse scale of the structure and extracting the solution obtainedon the interface of the zones of interest to send it as a Dirichlet conditions to thelocal models. Then the discretized finite element problem is solved on the localmodels by considering all the specificities of these zones of interest and usingthe condition at the boundary sent by the global problem. Finally, the solutionobtained locally replaces the solution of the global model in these zones.
However, despite the advantages of this approach, it leads to large errors thatcan be materialized by the imbalance on the interface of the patches in the ref-erence model, because the effects of local fine problems are not sent back to theglobal model, and interactions between local problems are thus impossible to ac-count for.
To illustrate the limits of thismethod, the example of the 2D turbine blade as infigure 2.6 presented in the previous section is consideredwith thermal or elasticitylinear problems. Then, significant quantities are considered for the mechanicalanalysis, like the Von-Mises and the thermal gradient.
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(a) Submodeling solution (b) Reference solution
Figure 2.10: Comparison of the thermal gradient for the submodeling and refer-ence approaches

(a) Submodeling solution (b) Reference solution
Figure 2.11: Comparison of the vonMises stress for the submodeling and referenceapproaches

Figures 2.10 and 2.11 present the von Mises stress obtained from the resolu-tion of a linear elasticity problem and the gradient of the resolution of a linearthermal problem. They show the quantities obtained in submodeling comparedto the ones obtained in the reference problem. In both situations, a discontinu-ity corresponding to the disequilibrium at the interfaces can be observed for thequantities calculated by the submodeling method. The error observed in theseresults is due to not considering the effect of local problems on the global prob-lem.
28



2.3.4 . Motivation
The global/local coupling has been introduced to correct the errors induced bythe submodeling method while keeping the non-intrusive aspect. The idea is toput in place an iterative approach that sets up data exchange between the globalmodel and the local models. This exchange takes into account the effect of eachon the other, allowing an accurate evaluation of the reference solution.

(a) Global Local solution (b) Reference solution
Figure 2.12: Comparison of the von Mises stress for the Global local coupling andreference approaches

(a) Global Local solution (b) Reference solution
Figure 2.13: Comparison of the thermal gradient for the Global Local coupling andreference approaches

The method is non-invasive in the sense that it is adapted to coupling com-mercial (closed) and research software. Its first implementation in Abaqus was
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proposed in [47]. Thus, it was implemented to couple research codes and legacycommercial software like Abaqus [15], Code_Aster [28], or Z-set [106].
The global/local coupling is strongly related tomany reanalysis techniques [57,108, 109], domain decomposition methods [54, 50], and multiscale methods [64].
Themain idea is to start from a simplified global model and then allow local al-terations (geometry, material, load, andmesh) to be inserted and their effect to beevaluated without heavy intervention on the initial model (see [1] for a pedagogicpresentation). It was successfully applied in many contexts like the introductionof local plasticity and geometrical refinements [47], the computation of the prop-agation of cracks in a sound model [28], the evaluation of stochastic effects withdeterministic computations [20, 86], the taking into account of the exact geome-try of connectors in an assembly of plates [52], in the NURBS context in order tosimplify the modeling of local behavior within a NURBS patch [16], in the analysisof composite structures with elastic shell representation at global scale and solidmodeling at local scale [53]. In [66], the method was used for the coupling of aglobalmodel describedwith an IsoGeometric Analysis (IGA) and a localmodels de-scritized using the standard finite elementsmethods. In [28] themethodwas usedin order to implement a nonlinear domain decomposition method [59, 23, 55, 85]in a non-invasive manner in Code_Aster. Extension of the approach to explicit dy-namics was proposed in [12], improved in [13], and applied to the prediction ofdelamination under impact loading in [14].

2.3.5 . Principle of the method
The classical scenario is illustrated in Figure 2.14. A linear global coarse modelis used to describe a large structure. After the initial computation (Figure 2.7),some zones of interest Ωs,G (s > 0) are selected because some criterion has beenexceeded or because it was known from the beginning that some details weremissing in the Global model. This is the case for the presented illustration wheregeometrical details and adapted meshes are introduced in the fine modeling ofthe zones of interest Ωs,F . Material laws could also be modified. Fine compu-tations are run in parallel on the patches using the global solution as Dirichletboundary condition (for s > 0, the fine and global subdomains may differ, buttheir interface Γs must be the same Γs = Ω ∩ BΩs,G = Ω ∩ BΩs,F ).
The error can be materialized by the lack of balance of the fluxes between theglobal zone not covered by patches, denoted byΩ0 and the Finemodels. As can beseen in Figure 2.11a, which shows the von Mises stress and where the fine modelsoverwrite the global ones. There is a discontinuity at the interface which does notexist in the reference computation where all interactions are taken into account.See Figure 2.11bwhich corresponds to adirect computation of the referencemodelwhere the zones of interest are described with the fine models, see Figure 2.9.
With the residual being the lack of balance at the interface, it can be reinjectedinto the global model as an immersed Neumann condition on the interface. The
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Figure 2.14: Global Local non-invasive coupling iteration

global model corrected by this interface load can be solved, followed by localDirichlet problems and the iteration can go on. So at this point the global/localcoupling is a simple iterative technique (a Richardson iteration for its simpler ver-sion) aiming at obtaining the Reference solution from computations carried onthe Global and Fine models (that is to say without the potentially cumbersomecreation of the Reference model) with minimal intervention on the models andsoftware. One notes that if the calculation is stopped after the first iteration andthe nodal reactions are not sent back to the global model a Submodeling methodis performed.
2.3.6 . Parallel global/local coupling

Despite its robustness and non-intrusiveness, the parallelization of the glob-al/local coupling remains a significant problem. As the literature explains, sev-eral case studies are found involving patches and then the parallelization of thesepatches using MPI. The coupling performance remains limited, even if the paral-lelization of these local patches can allow for a gain in performance. The synchro-nization at the end of each local computation imposes all the patches to wait forthe end of the last calculation of the heaviest patches in terms of computationtime, which raises the central problem of load balance. A second problem thatthis method suffers from, like all the two-step methods, is that the evaluation ofthe global problem is performed sequentially with the local problems. What thismeans is that even if the patches are well-balanced and parallelized, there willbe a step of inactivity while the global one is performing its computation, which
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makes the method not scalable using this classical synchronous parallelizationtechniques.All the cited applicationswere developed in a synchronous framework that hasbeen taken advantage of by accelerators (Aitken, quasi-Newton, Krylov). See [50],where the method is proved to be an implementation of an alternating Dirichlet-Robin approach where the Robin parameter corresponds to the condensation ofthe coarse domain covered by the patch. One can also see [28] where a parallelversion of the method was presented with several adjacent patches similar andparallelized like a domain decomposition method. However, due to the alternat-ing nature of the method, where the global model is performed alternating thelocal ones, its computational performance is inherently limited, with processorscomputing the local problems being idle while the global model is computing andthe same for the global when the locals are computing.To show the actual parallelization technique used, the case in Figure 2.6 is con-sidered, with two zones of interest. The idea is to parallelize the two local prob-lems and to keep an evaluation of the global problem on another processor.

Figure 2.15: Synchronous iteration
Figure 2.15 shows a sequence of iterations of the global/local coupling paral-lelized with classical synchronous techniques. The global problem is presentedin blue, and the locals are presented in orange and green. At first the influenceof the nature of the alternating method can be seen during the global evalua-tion, where the local problems are waiting for an update from the global. In the
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same way, it can be seen that the evaluation of the locals makes the global onewait. Also, the importance of these periods of inactivity can be seen, as well as thedegradation that they bring to themethod’s performance. A second point that canbe observed is the load imbalance between the two local problems, which forcesproblem 1 to wait for the end of the calculation of problem 2 to synchronize andsend the necessary information to the global problem.It can be imagined that the performance will decrease in the case of severalpatches with more important load imbalance or also in the case when the globalproblem has a significant size which will increase the duration of the sequentialpart.In the next section the asynchronous parallel technique which correspond tothe suppression of the synchronization step is presented. This enables the elimi-nation of waiting periods.

2.4 . Asynchronous iterations

Asynchronous parallel computing techniques have been applied to domaindecomposition methods to improve their performance and scalability. First, sev-eral works have targeted classical alternating Schwarz methods with overlap byproving its theoretical convergence with some numerical illustration. In [81] a newtheoretical study of asynchronous algorithms with flexible communication is pre-sented for the Schwarz alternating method, an application of this approach inlinear and nonlinear cases can be found in [103, 102, 7]. In [37] an asynchronousversion of weighted additive Schwarz method is investigated, its convergence isshown, and some numerical results show a significant improvement compared tothe synchronous version. [18] presents an application of the asynchronous alter-nating Schwarz method to a large structural mechanic problem using the super-computer Grid5000. In [65] an asynchronous additive Schwarz was investigatedtheoretically and numerically to solve nonlinear problem with finite differencescheme. In [105] the rate of convergence of asynchronous domain decompositionmethods is studied in the context of convex optimization. Recently, [48] presentsa novel scalable asynchronous two-level Schwarz method.Other works have been interested in asynchronous domain decompositionmethods without overlap. As mentioned in the introduction, those methods arewell suited to the problem coming from mechanics, which interests this study.One of the first works realized in this framework is presented in [71] where a firstconvergence proof of the classical sub-structuring is presented with interestingnumerical results for a 3D Poisson problem. Later, [43] found an improvementof the method and proposed a Gauss–Seidel scheme to alternate between reso-lution on the interface and on the local subdomains. In [46] a coarse space cor-rection is added allowing a good scalability of the method. Other studies wereinterested in the asynchronous optimized Schwarz method [76] and one can find
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several applications of it in [41, 30, 112]. In [45] the convergence of primal Schurdomain decomposition has been established under suitable relaxation and in [111]an asynchronous multigrid method was presented within a shared memory sys-tems.
2.4.1 . Idea

To introduce the basic notions of asynchronous parallel computing, a PDEproblem is supposed with a finite element discretization which leads to a largelinear system to be solved:
Ax = b (2.15)

with A ∈ RN×N matrix, x ∈ RN solution vector and b ∈ RN right-hand side vector.
2.4.1.1 . Classic iterative solver

Compared to direct solvers, iterative solvers evaluate the solution by succes-sive approximation, they use much less memory and are more suited to paral-lelism than their direct counterparts at the price of an uncertain number of oper-ations to achieve convergence.The idea is to build a sequence xk with k ∈ N such that :
lim
k→∞

xk = A−1b

The algorithm is stopped after reaching a certain chosen precision.Generally the linear iterative algorithm can be written as :
⎧⎪⎪⎨⎪⎪⎩

Initial chosen: x0

Compute at the step k+1: xk+1 = Txk + c
(2.16)

The iteration matrix T corresponds to a splitting of the matrix A, for example:
A = M − N , with M a non singular matrix and then, the system in (2.15) can bewritten as:

(M −N)x = b
Mx = Nx + b (Fixed point equation) (2.17)

From (2.17) the following linear iterative algorithm can be deduced:
xk+1 =M−1Nxk +M−1b, For a given x0 (2.18)

Thus T =M−1N . The convergence of this algorithm is guaranteed [5] if ρ(T ) < 1

2.4.1.2 . Parallel computing
The use of these iterative methods is usually accompanied by the implemen-tation of a parallel process that allows the distribution of the computation taskin several subtasks and calls upon a certain number of machines to take careof these subtasks. The idea is to reproduce these calculations simultaneously in
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parallel. A significant problem in parallel computing is the communication man-agement between these different machines, which generally corresponds to anassembly of the global solution from the solutions computed in parallel or thediffusion of global information to all the machines as a message of convergence,for example.The idea is to split the vector xk+1 in the system (2.16) into L parts and to use Lprocessors to compute each part in parallel
⎛
⎜
⎝

x1
k+1

⋯
xLk+1

⎞
⎟
⎠
=
⎛
⎜
⎝

f 1(x1
k,⋯, xLk )
⋯

fL(x1
k,⋯, xLk )

⎞
⎟
⎠

The calculation of block j of the vector xj with 1 ≤ j ≤ L at the iteration k + 1depends on all the otherL blocks calculated in the previous iteration k. Therefore,an exchange of information is mandatory between the different blocks beforepassing from one iteration to the other.A classical parallelization model that exists is the model with synchronizedcommunications and calculations. The idea is that at each iteration, a step calledsynchronization is set up, where all the processors are blocked until the end of thecalculation of the last processor to exchange the information and launch a newiteration.

Figure 2.16: Synchronous model with L=4
Figure 2.16 presents a graph of synchronous iterations; with L = 4, there arefour processors, and a part of the calculation takes place on each of the proces-sors. At the end of each iteration, processors who finished early, in this case,processors 1,3 and 4, are obliged to wait for processor 2, which takes more timefor calculation; thesewaiting times aremodeled by the empty spaces between themoment when the calculation is finished and the moment when the exchange ofdata takes place.
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The computations start at each iteration at the same time. The waiting timesare considered a period of inactivity which can, with their repetition, degrade theperformance of the parallel algorithms considerablySeveral parameters can affect the performance of the used parallel approach:
● The architecture of the used machines (heterogeneity of the processors,number of processors, organization of the memory, speed of the intercon-nection network between the machines),
● The method of computation because there is no universal method that per-forms in all cases,
● The implementation of the stopping criterion for the iterative methods,
● The weight of the sequential irreducible part of the parallel method.

2.4.1.3 . Illustration
Asynchronous parallel computing, first introduced in [93], was then studiednumerically in [19] under the chaotic relaxation technique to solve large linear sys-tems ensuring its convergence with contraction properties. It has subsequentlybeen the subject of several convergence studies. [79] generalized the study in[19] to nonlinear problems. The work in [8] allowed the first implementation ofasynchronous methods on multiprocessor architectures with unbounded com-munication delays between processors. In [32] general convergence results forthe asynchronous iterations based on the notion of classical contraction is pre-sented. Recent work in [21] shows interesting theoretical and practical results forthe Richardson iterations from the asynchronous point of view.In [101, 38, 3], one can find a global review of asynchronous iterations fromboth theoretical and implementation points of view. Also in [100] one can find asimple and didactic presentation of the asynchronous iterations.

Figure 2.17: Asynchronous model with L=4
Parallel asynchronous iterations correspond to a fixed point without any syn-chronization step, i.e., all the processors start simultaneously at the beginning of
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the calculation but stop only after the end of the calculation, meaning the algo-rithm’s convergence. The data exchange (sending or receiving) is systematicallydone by each processor independent of the others once its calculation is finished.In the most common case where there is an unbalanced load distribution orprocessors that do not have the same computation speed, the asynchronousmodel is very advantageous compared to the synchronous model. A drastic de-crease in communication time is observed with the suppression of this synchro-nization step.
2.4.2 . Mathematical model

The parallel asynchronousmodel corresponding to equation 2.4.1.2 for solvingthe linear system 2.15 is written in the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = (x1
0,⋯, xL0 )

xjk+1 =
⎧⎪⎪⎨⎪⎪⎩

f j(x1
s1(k)

, . . . . . . . . . . . . xL
sL(k)

) if j ∈Hk

xjk if ∉Hk

j = 1,⋯L
k = 0,1,⋯

(2.19)

The algorithm describes the behavior of an iterative process parallelized asyn-chronously using L processors. At each iteration k + 1, the processor j computes
xjk+1 by using the data available by the other processors. If there is no new data,
the value of the previous iteration xjk is kept.

● Hk is a non-empty subset corresponding to the updated components at theiteration k
● rj(k) = k−sj(k) corresponds to the potential delay function of the processor
j when computing the block j at iteration k + 1.
2.4.3 . Convergence

As presented before, the asynchronous paradigm allows some processors togo faster than others by removing the synchronization barrier, which leads tomore information being exchanged for some processors than others.However, a local prediction cannot be made for the number of iterations. Theadvantages, as mentioned before, are numerous. However, the passage in asyn-chronous can be complicated for certain numericalmethods by leading to their di-vergencebecause the conditions required tomake themconverge in synchronous,which are the same ones as that of the algorithm in sequential, are not sufficientto guarantee the convergence of the method in asynchronous. Thus, theoreticalstudies are essential for the proof of the convergence in the asynchronous case.Since their introduction, several theoretical studies have been interested inconverging asynchronous computation methods.
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The first works of Chazan and Miranker have established sufficient but notnecessary proof of convergence:
Theorem1. If ρ(∣T ∣) < 1, with ∣T ∣ = (∣Ti,j ∣) and ρ the spectral radius of thematrix, then
the asynchronous iterations converge to the solution x∗ whatever the initialization.

However, if in the other case ρ(∣T ∣) > 1, there exists a set of delays and aninitial solution x0 allowing the convergence of the asynchronous model. Severalother techniques of analysis of the convergence of the asynchronous iterationsare found, which are based on different approaches and with a different level ofasynchronism in each case of study. First, we find the technique of partial or-dering in [79, 80]. Other studies use the same techniques with the discrete max-imum principle for nonlinear problem using the notion of M-Function [29], fornon-singular linear and nonlinear systems
2.4.4 . Stopping Asynchronous iterations

The detection of convergence in asynchronous, or rather the stopping of thealgorithm when the solution vector approaches the desired solution, is a majorproblem in the case of asynchronous iterations. Generally, whether in the sequen-tial or parallel case in synchronous, the stopping or convergence criterion corre-sponds to the evaluation of a residual formed from a reduction operation appliedto the other residuals calculated locally. This operation is thus realized with thehelp of synchronization. However, the asynchronous parallelizationmodel is non-deterministic, and the notion of iterations is not the same as in the synchronous,where a certain number of iterations are performed by all processors before con-verging. In asynchronous, each one performs its iterations locally without takinginto account the progress of the other and therefore establishes a protocol thatallows evaluating the progress of the algorithm to know if the criterion of con-vergence is reached or not. While remaining in an asynchronous framework isa highly complex task either from a numerical analysis point of view or from acomputer science point of view, i.e., programming, especially with multiproces-sor architectures and distributed memories.The most used asynchronous iteration-stopping techniques are based on theobservation of the local state of the solution in each processor to detect if theconvergence is reached locally and then send the information to a processor,which manages the iteration stopping. In the literature several approaches canbe found. In [11, 10, 95] a special processor is designed to check the convergencelocally on each processor and then use a specific protocol to check the globalstate of the algorithm convergence. In [6] a non-centralized approach to globalconvergence detection based only on local information required from the pro-cessors has been established, as well as a theoretical proof. The performance ofthe approach has been improved in [4]. In [82] a new criterion is considered forparallel linear fixed point methods using macro-iterations. In [75], a good global
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evaluation of the residual using non-blocking communication techniques was in-troduced. This study was based on the use of a protocol based on the snapshotalgorithm to assemble the global vector, an improvement of the performance ofthis approach is presented in [72]. The works in [44, 42] allow to implement aprotocol-free distributed convergence detection technique. The idea is to diffusethe global residual using non-blocking global reduction techniques, enabling thecalculation to stop once the global convergence is reached.As, presented asynchronous convergence detection usually requires a specificdetection protocol, which can sometimes be complex. In the studied case of glob-al/local coupling the residual is assembled on the global model and it is alwaysavailable. Therefore, the stopping criterion is the same as in synchronous be-cause it is based on the calculation of the same residual at each iteration.
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3 - Derivation of the non-invasive Global/local cou-
pling

In this chapter, a new derivation of the global/local coupling is proposed. In-deed, there are many ways to derive the global/local coupling in the literature,hence themany nameswhich were given to themethod (Dirichlet-Robin, one vari-ant of localized multigrid, semi-Schwarz Lagrange. . . ). The most advanced the-oretical framework was probably the one developed by [86] in a synchronouscontext with non-adjacent patches (which are equivalent to one non-connectedpatch).This new interpretation makes it easy to treat as many patches as wanted,possibly adjacent patches, with analysis similar to what was proposed in [28], andalso makes it possible to compare the method with the primal domain decompo-sition method. For simplicity, the continuous problem is not considered, and thefocus will be on the properties of the discretized system. This chapter sets up themethod. The convergence of the asynchronous iteration is the subject of the nextchapter.The method is presented for a quasi-static mechanical problem, but othercases like thermal problems can easily be deduced. A structure occupying a do-mainΩ is considered, submitted to given load and boundary conditions. One loadincrement is studied.The system to be solved can be written as:
div(σ) + f = 0 in Ω

σ ⋅ n = g on BnΩ

u = ud on BdΩ

σ = σ(u) =H(∇su) in Ω

(3.1)

Where u is the displacement field, σ the Cauchy stress tensor, ud is the givendisplacement on the Dirichlet part of the boundary BdΩ, g is the traction imposedon the Neumann part of the boundary BnΩ, f is the body load. For simplicity, in-finitesimal strain is assumed,∇su is the symmetric part of the gradient of displace-ment. The mechanical behavior is symbolized by the operator H . In the linearelasticity case,H is the Hooke tensor. More general behaviors can be consideredlike elasto(visco)plasticity, in which case internal variables should be added to thesystem but for simplicity they are not written.The weak form reads: find u ∈ H1
d(Ω) (i.e. satisfying Dirichlet boundary condi-tion):

∫
Ω
σ(u) ∶ ∇sv dx = ∫

Ω
f ⋅ v dx + ∫

BnΩ
g ⋅ v ds ∀v ∈H1

0(Ω) (3.2)
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The term of the left-hand side is the opposite of the internal mechanical work,the term on the right-hand side is the mechanical work of external forces.Using a variational formulation form of this problem, the convergence condi-tions of the Global/local coupling will be presented. A discrete form will be pre-sented, and finally, after the deduction of the condensed form, the new derivationof the Global/local coupling is introduced.

3.1 . Variational formulation framework

The domainΩ is partitioned intoN +1 non-overlapping subdomains (Ωs). Γs =
BΩs ∩Ω is the interface of the subdomain Ωs, and Γ = ∪Γs the total interface. Theequation (3.2) can be written under the form :

Find u ∈ V (Ω), a(u, v) = l(v),∀v ∈ V0(Ω) (3.3)
with :

a(u, v) ∶=
N

∑
s=0

as(u∣Ωs , v∣Ωs)

l(v) ∶=
N

∑
s=0

ls(v∣Ωs)

where V (Ω) ⊂H1(Ω) is the subset of H1-fields satisfying Dirichlet conditions and
V 0(Ω) is the associated vector space. In the following, the Fine and Global mod-eling will be distinguished when needed. The following hypotheses are assumed:

• The patches are regular enough for trace operators to be well defined.
• The loads (boundary conditions andbody load) lead to a linearH1-continuousforms ls,G and ls,F . Dirichlet conditions are regular enough to be continuedin the domains.
• For s ≥ 0, the Global patches are characterized by symmetric bilinear forms
as,G which are H1-continuous, and coercive in the H1 semi-norm; at leastone patch is H1-coercive (that is to say with enough Dirichlet conditions).

• If it exists, the patch 0 (complementary domain) is the same in the Fine andGlobal modelings.
• For s > 0, Fine patches are characterized by forms as,F which are the sum oftwo terms:

as,F = as,Fb + as,Fm
where :

● as,Fb : BilinearH1-continuous and coercive in theH1 semi-norm (fullH1

norm for at least one patch s > 0)
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● as,Fm : Linear continuous in the second variable, radially continuous andmonotonous in the first variable.
Note that the subdomainΩs,F needs not coincidewith its Global counterpart
Ωs,G as long their interface Γs is identical (it is possible to add holes in Ωs,F ).

These hypotheses lead to the following properties:
• The Global model is linear and it can be derived from a quadratic energy,leading to a variational formulation with a symmetric coercive bilinear form.
• The patches-problem with Dirichlet condition on the interface are associ-ated with continuous coercive strongly monotone formulations which leadto the uniqueness, existence and continuity of the solution with respect tothe given load and to the Dirichlet condition in W (Γs), the trace space of
V (Ωs).

The total trace space is writtenW (Γ), we assume it is identical for the fine andglobal models V (ΩG) and V (ΩF ).Following [86], these properties make it possible to define well-posed con-tinuous Dirichlet-to-Neumann maps on the subdomains. The assembled Globalmodel can be used to define a normon the interface fields. The strongmonotonic-ity introduces a bounding from below (similar to the coercivity of bilinear forms)with a positive constant which is useful to prove the existence of a convergingrelaxed iteration.These properties are preserved by a classical finite element formulation.In the following subsections, the concepts needed to derive the Global/localcoupling are defined.
3.1.1 . Reference problem

The reference problem, generally indexed byR, corresponds to the exact rep-resentation of the structure in terms of geometry and behavior. It is, therefore,the combination of the fine representation of the zones of interest (Ωs)s>0 withthe coarse representation of the rest of the structure (Ω0) where no complex be-havior or geometry are distinguished. The last one is generally called a comple-mentary problem. In some situations, it does not exist, and the reference problemcorresponds to the assembly of the local fine problems.After a finite element discretization, this reference problem is written in thefollowing variational form:
Find u ∈ V R, such that aR(u, v) = lR(v),∀v ∈ V R

0 (3.4)
where V R is the subspace of H1(ΩR)d of fields satisfying the Dirichlet conditions.
V R

0 is the associated vector subspace. It inherits the classicalH1 Hilbert structure.
∥u∥ is the H1 norm and ∣u∣ is the H1 seminorm.
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Asmentioned earlier,ΩR is partitioned intoN+1 sufficiently regular non-overlappingsubdomains Ωs,F , (0 ≤ s ≤ N). It has been assumed that the forms in (3.4) have anadditive structure with respect to the domain: ∀(u, v) ∈ V R × V R
0 ,

aR(u, v) ∶=
N

∑
s=0

as,F (u∣Ωs,F , v∣Ωs,F )

lR(v) ∶=
N

∑
s=0

ls,F (v∣Ωs,F )

For s ≥ 0, V s,F is defined as, the space of functions of V R restricted to Ωs,F : us ∈
V s,F ⇔ ∃u ∈ V R such that us = u∣Ωs,F .

The following assumptions aremade and the necessary constants for our anal-ysis are introduced:
1. For s ≥ 0, ls,F is a linear continuous form on V s,F

0 . Its norm is introduced as:
∀vs,F ∈ V s,F

0 , ∣ls,F (vs,F )∣ ≤ ∥ls,F ∥⋆V s,F ∥vs,F ∥V s,F (3.5)
2. Subdomain s = 0 can be non-existent. If it exists, a0,F is a symmetric bilinearcontinuous semi-coercive form:

∃M0,F > 0,∀(u0,F , v0,F ) ∈ (V 0,F
0 )2, ∣a0,F (u0,F , v0,F )∣ ≤M0,F ∥v0,F ∥V 0,F ∥u0,F ∥V 0,F

∃C0,F ⩾ 0,∀u0,F ∈ (V 0,F
0 ), a0,F (u0,F , u0,F ) ≥ C0,F ∥u0,F ∥2

V 0,F (3.6)
3. For s > 0, as,F is semi-continuous, semi-coercive, linear in the second vari-able, and strongly monotone in the first variable:

∃M s,F > 0,Cs,F ≥ 0,∀(us,F1 , us,F2 , vs,F ) ∈ (V s,F )2 × V s,F
0

∣as,F (us,F1 , vs,F ) − as,F (us,F2 , vs,F )∣ ≤M s,F ∥vs,F ∥V s,F ∥us,F1 − us,F2 ∥V s,F

as,F (us,F1 , us,F1 − us,F2 ) − as,F (us,F2 , us,F1 − us,F2 ) ≥ Cs,F ∥us,F1 − us,F2 ∥2
V s,F

(3.7)

4. At least one of the forms as,F for s ≥ 0, is (strictly) coercive, which corre-sponds to the Reference problem containing sufficiently many Dirichlet con-ditions.
Under these hypotheses, the reference problem admits a unique solution.

3.1.2 . Global problem
The global problem (superscript G) is a classical discrete finite element modelcorresponding to a simplification of the discrete reference problem, suited forfast computation and capable of giving a correct representation of the long range
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fluxes. It does not need to be locally accurate. For instance, for a slender struc-ture, a shell finite element model, known to correctly transfer generalized forces,can be used as a global model [51]. Also, the material constitutive law can be sim-plified, as well as the topology and the geometry. In general, the global problemis sufficiently simple to be solved with a sequential solver.The same notation as in the previous section is used, and for s ≥ 0 a simplifiedversion of the problem is introduced, written with superscript G, for global.The following hypotheses are assumed:
● For s ≥ 0, all as,Gmust be symmetric bilinear continuous semi-coercive forms(with at least one strictly coercive).
● Subdomain 0 is identical in the Global and Reference formulations, a0,G =
a0,F and l0,G = l0,F .

The Global forms can be built from a simplified geometry of the subdomain,
Ωs,G, as long as the Global and Fine interfacesmatch: BΩs,G∩Ω = BΩs,F ∩Ω = Γs. Forinstance, in Figure 2.7, the Global subdomains do not possess holes and a corneris omitted.Thus V G and (V s,G) can be defined independently of the Fine model, as longas the trace spacesW and (W s) are the same.The Global problem corresponds then to the “linearized and simplified” ver-sion of the Reference problem.The variational formulation reads:

Find u ∈ V G, such that aG(u, v) = lG(v), ∀v ∈ V G
0 (3.8)

with : ∀(u, v) ∈ V G × V G
0 ,

aG(u, v) ∶=
N

∑
s=0

as,G(u∣Ωs,G , v∣Ωs,G), lG(v) ∶=
N

∑
s=0

ls,G(v∣Ωs,G) (3.9)
3.1.3 . Global/local coupling

The Global/local coupling consists in using the Global problem with an extraingredient: the interface load p ∈W ⋆.The global problem variational formulation reads:
Find u ∈ V G, such that aG(u, v) = lG(v) + ⟨p, TGv⟩,∀v ∈ V G

0 (3.10)
where TG ∶ V G →W is the trace operator, and the duality bracket is in (W ∗,W ).The resolution of the global problem allows obtaining the unknown global dis-placement extracted on the total interface Γ: uGΓ = TGuG which serves as Dirichletcondition for the Fine problems, imposed by Lagrange multipliers (λs,F )s≥0. The

45



local trace operator T s,F ∶ V s,F Ð→W s is used.
For given us,GΓ ∈W s, find (us,F , λs,F ) ∈ V s,F ×W s,⋆, s.t ∶

⎧⎪⎪⎨⎪⎪⎩

as,F (us,F , vs,F ) − ⟨λs,F , T s,Fvs,F ⟩ = ls,F (vs,F ), ∀vs,F ∈ V s,F
0

⟨µ,T s,Fus,F − us,GΓ ⟩ = 0,∀µs ∈W s⋆

(3.11)

Under the chosen hypotheses, these problems arewell-posed, they have a uniquesolution which depends continuously on the inputs [97]. The signs are chosensuch that λs,F has the physical meaning of an imposed flux on the boundary ofthe subdomain.The residual can then be computed as:
r = −∑

s≥0

Asλs,F (3.12)
where As ∶ W s,∗ → W ∗ is the injection operator. The coupling iteration can bewritten as:

p = p + ωr (3.13)
where ω > 0 is a relaxation parameter.

3.2 . Discrete formulation framework

This section describes the global/local coupling method in a finite elementframework. In order to be more practical, the presentation is ordered in agree-ment with the unfolding of the iteration. More, the general case of a nonlinearglobal problem is considered, which is not covered by the current convergencetheory.
3.2.1 . Global problem
3.2.1.1 . Initial global problem

After classical finite element discretization, the (uncorrected) global problemto be solved can be written as:
fGint(u) + fGext = 0 (3.14)

where fGint is the vector of internal forces and fGext the vector of external forces.Theirmth component reads:
(fint(u))m = −∫

Ω
σh(u) ∶ grads(φm)dx

(fext)m = ∫
Ω
f ⋅ φm dx + ∫

BnΩ
g ⋅ φm ds

(3.15)

where φm is the finite element shape function associated with the mth degree offreedom.
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We introduce a decomposition of the global domain intoN+1 non-overlappingsubdomains (Ωs) with s ∈ [0..N]. Subdomains are supposed to be sets of con-nected elements so that the decomposition is matching at the interface.The interface is defined as the boundary degrees of freedom of the patches.For each subdomain Γs,G = ⋃j (BΩs,G ∩ BΩj,G) ∖ BdΩG, the interface is constitutedby degrees of freedom sharedwith other subdomains, excluded Dirichlet degreesof freedom. Globally, ΓG = ⋃s Γs,G.The boundary (interface) degrees of freedom (index Γ) can be separated, frominternal degrees of freedom (index i). The trace operatorswhich extract the bound-ary degrees of freedom of a vector can be defined as Ts,G ∶ Ωs,G → Γs,G and
TG ∶ ΩG → ΓG, for instance Ts,Gus,G = us,GΓ . The transpose is an extension-by-zero operator.Let As be the interface injection operator Γs,G → ΓG like in primal domaindecomposition methods as presented in the Section 2.2.6

For a given uG solution to (3.14), the nodal reaction λs,G are defined at theboundary of the subdomains. It can be computed with different approaches:
• Algebraic post-processing, using the subdomain injection operator Ās ∶ Ωs,G →

ΩG:
f s,Gint (ĀsuG) + f s,Gext +TsTλs,G = 0 (3.16)

• Integration:
λs,Gm = ∫

Ωs,G
σh(us,G) ∶ grads(φm)dx − ∫

Ωs,G
f ⋅ φm dx − ∫

BnΩs,G
g ⋅ φm ds (3.17)

wherem is an interface degree of freedom of subdomain Ωs,G.
• Solution of a Dirichlet problem on the subdomain:

Find (us,G,λs,G) solution to:
⎧⎪⎪⎨⎪⎪⎩

Ts,Gus,G =AsTTGuG

f s,Gint (us,G) + f s,Gext +TsTλs,G = 0

(3.18)

Note that formula (3.17) or (3.16) are not always implemented in commercial soft-ware, in which case the computation of λs,G must resort to (3.18).
Remark 2. In the linear case, f s,Gint (us,G) = −Ks,Gus,G where Ks,G is the stiffnessmatrix of the subdomain, f s,Gext = fG,s the vector of generalized forces, and:

(K
s,G
ii Ks,G

iΓ

Ks,G
Γi Ks,G

ΓΓ

)(u
s,G
i

us,GΓ

) = ( fG,si

fG,sΓ +λs,G
) (3.19)
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3.2.1.2 . Corrected global problem
During the coupling iterations, the following modified global problem is used:

fGint(u) + fGext +TGT

pΓ = 0 (3.20)
pΓ is an interface load, it introduces a lack of balance between nodal reactionswhere

∑Asλs,G = pΓ (3.21)
3.2.2 . Fine problems

The Fine problems are set on the refined subdomains Ωs,F . For a good match-ing of the models, the interface is assumed to be geometrically identical in theglobal and finemodels. It coincides with the edges of finite elements in all models.Anyhow, non-matching interpolations are tolerated, and the Global-to-Fine trans-fermatrices (Js) are introduced, enabling the definition of FineDirichlet problemswith boundary conditions coming from the Global model. The transpose of thesematrices enables to transfer of nodal reactions from the localmodels to the globalone.The Fine version of the local interfaces is written Γs,F and the local fine traceoperators are Ts,F ∶ Ωs,F → Γs,F . Js ∶ Γs,G → Γs,F is the interpolation operatorbetween the meshes.
The fine problems can be written as:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

For given uGΓ on Γ, for all s > 0, find us,F in Ωs,F and λs,F on Γs s.t.
− f s,Fint (us,F ) = f s,F +Ts,FT

λs,F

Ts,Fus,F = JsAsTuGΓ

(3.22)

Thanks to the chosen hypothesis, these problems are well-posed.The strong monotonicity property resulting from the previous assumptionstranslates into:
− (f s,Fint (us,F ) − f s,Fint (vs,F ))

T (us,F − vs,F ) ⩾ γs,F ∥us,F − vs,F ∥2 (3.23)
For simplicity, the discrete Euclidean norm is used, which makes γs,F > 0 depen-dent on the mesh.

3.2.3 . Reference problem
The Reference problem as presented before is the collection of Fine problemsconnected to the same interface displacement uGΓ and such that the nodal reac-tions λs,F are in balance once projected back on the Global interface.First, the clarification of the role played by Subdomain 0, which might be non-existent is needed. It is a subdomain, sometimes called Complement domain in
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the global/Local literature, where the Fine and Global model coincide (same ge-ometry Ω0, same properties, same load, same approximation).In particular, it is associated with a linear system and simply serves to processthe nodal reaction λ0 using (3.18), (3.17) or (3.16). In some implementations, it isproposed to be computed as:
A0λ0 = pΓ −∑

s>0

Asλs,G (3.24)
because it may be more convenient to compute (λs,G) from the global subprob-lems for s > 0.Now, the Reference problem can be formulated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find uGΓ on Γ s.t
rΓ ∶= −(λ0 +

N

∑
s=1

AsJs
T

λs,F) = 0

where the reactions are obtained from (3.22) and (3.24).
(3.25)

The minus sign is meant to make r agree with the classical definition of the resid-ual when the system is linear.
3.2.4 . Global/local coupling

The aim of the coupling is to achieve (3.25) using (3.20),(3.22),(3.18) or ((3.17)) or((3.16)) or (3.24). To do so, a simple modified Richardson iteration is used.Starting from pΓ = 0, uG is computed in ((3.20)), then uGΓ is used as a Dirichletcondition to compute the Fine reactions λs,F using (3.22) and (3.24), finally theresidual rΓ is the lack of balance between the nodal reactions as in (3.25).If the residual is not small enough, the interface load is updated as pΓ = pΓ +
ωrΓ.It can be proved that under the chosen hypothesis, there exist 0 < ωmax suchthat the iteration converge for all 0 < ω < ωmax. In practice, dynamic relaxationthrough Aitken’s δ2 technique gives an excellent performance.

3.3 . Condensation at the interface

Because all manipulated data are associated withmechanical problems in bal-ance, and thanks to the well-posedness of the local Dirichlet problems induced bythe chosen hypotheses, the convergence is driven by the interface, and it is con-venient to formally eliminate internal degrees of freedom and to condense allproblems at the interface.To do so, Dirichlet-to-Neumann (DtN) maps is introduced, and the nodal re-actions λs on the subdomain’s interface are written as a function of the imposed
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Dirichlet condition usΓ (the following formulas apply to both Global and Fine sub-domains):

λs = ss(usΓ; f sext) means
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∃vs such that ⎧⎪⎪⎨⎪⎪⎩

Tsvs = usΓ

(f sint(vs,G) + f sext)i = 0

λs ∶= − (f sint(vs,G) + f sext)Γ

(3.26)

Remark 3. In the linear case, the DtN operator is affine:
λs = SsusΓ − bs with {

Ss =Ks
ΓΓ −Ks

Γi(Ks
ii)−1Ks

iΓ

bs = fext
s
Γ −Ks

Γi(Ks
ii)−1f sext,i

(3.27)
Ss is the Schur complement matrix and bs the condensed right-hand side.

If the monotonicity property is applied to the two fields obtained from thecomputation of Dirichlet problems, a monotonicity property for the Dirichlet toNeuman map is obtained:
(ss,F (us,FΓ ; f s,F ) − ss,F (vs,FΓ ; f s,F ))T (us,FΓ − vs,FΓ ) ⩾ γs,F ∥us,F − vs,F ∥2 ⩾ γs,F ∥us,FΓ − vs,FΓ ∥2

(3.28)Similarly, the continuity of the Dirichlet problem with respect to the boundarycondition leads to a bounding of the form:
∥ss,F (us,FΓ ) − ss,F (vs,FΓ )∥ ⩽M s,F ∥us,FΓ − vs,FΓ ∥ (3.29)

3.3.1 . Global problem
The corrected global problem (3.20) can be written in condensed form, forgiven interface load pΓ, find interface displacement uGΓ such that:

N

∑
s=0

Asss,G(AsTuGΓ ; f s,G) = pΓ (3.30)
i.e.

uGΓ = SG−1(fG;pGΓ ) (3.31)
In the case of a linear global problem and in order to connect subdomain to-gether, the assembly operators As that map the local interface on the Global in-terface are used. Thanks to these operators, theGlobal problem canbe rephrasedas:

(
N

∑
s=0

AsSs,GAsT )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SG

uGΓ = (
N

∑
s=0

Asbs,G)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bG

+ pΓ (3.32)

One can recognize a primal domain decomposition [68] with the original extraload pΓ. 0 < γG <MG the bounds of the spectrum of SG.
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3.3.2 . Reference problem
Similarly, the condensed Reference problem is obtained by assembling all theFine subproblems together on the interface coarse grid.The fine displacement atthe interface is forced to follow the equation us,FΓ = Jsus,GΓ and the balance of reac-tions is evaluated on the global interface. This leads to the condensed formulationof the reference problem where fine models are used (except on subdomain Ω0),find reference interface displacement uRΓ such that:

N

∑
s=0

AsJs
T

ss,F (JsAsTuRΓ ; f s,F ) = 0 (3.33)
i.e.:

SF (uRA; fF ) = 0 (3.34)
Up to the mesh incompatibility which is not totally standard, this system is of-ten referred to as the starting point of the primal nonlinear domain decompo-sition of [85], where it is proposed to apply a Newton-Raphson linearization anduse classical Neumann-Neumann preconditioner for the tangent system togetherwith balancing coarse space to ensure scalability. It is also the starting point ofHPC iterative solvers like BDD [78] or BDDC [27] were efficient parallel multilevelpreconditioners are designed in linear, and relocalization strategies are possiblein the nonlinear case [24, 85, 61].

3.3.3 . Global/local coupling
The global/local coupling as presented before is a simple technique to itera-tively find the solution to the reference problem using only simpler computations,by alterning beetwen the global computation and the local one.The global/local coupling can be formulated as:

Find extra load pGΓ such that
SF (SG−1(fG;pGΓ ); fF ) = 0

(3.35)
If the following notation is used:

SF = (SF − SG) + SG

The previous equation can be rewritten as: Find extra load pGΓ such that:
r ∶= − (pGΓ − (SG − SF )(SG−1(fG;pGΓ ); fF )) = 0 (3.36)

Note that the sign is adjusted so that the residual is consistent with the convention
r ∶= b − Mx when solving Mx = b. Mechanically speaking, the residual is theopposite of the lack of balance between subdomains in the reference problem.Equation( 3.36) suggests using a stationary iteration as described in Algorithm 1.One recognizes a modified Richardson iteration. The fundamental result, which

51



Algorithm 1: Sequential stationary iterations
Initialization pΓ = 0, ω sufficiently small
while ∥r∥ is too large doResolution of the Global system (3.32), uGΓ = SG

−1(pΓ + bG)
if Ω0 exists thenPost-processing (3.24), q0 ∶= λ0 = S0A0TuGΓ − b0,G

end
for s > 0 doFine solution (3.22), λs,F = ss,F (JsAsTuGΓ ; f s,F )
end
Compute residual r = −(A0λ0 +∑s≥0 A

sJs
T
λs,F )Update pΓ = pΓ + ωr

end

can be obtained from the general theory of Schwarz domain decompositionmeth-ods [2] or operator splitting techniques [94], is that under monotonicity hypoth-esis of the semilinear form in (3.2), the iteration converges for sufficiently smallrelaxation parameter. Simple acceleration procedures are possible like Aitken,quasi-Newton or Krylov, see [50].

3.4 . Global/local coupling as a primal domain decomposition method

Equation (3.35) makes it possible to interpret the global/local coupling as aright-preconditioner to the primal reference system (3.33). Note that other inter-pretations exist, including as a special multigrid method, or an implementationof a non-overlapping alternating Dirichlet-Robin Schwarz domain decompositionmethod; see [50] for a list.
Contrarily to the recommended (scalable) strategy to solve this system, brieflydescribed in Section 2.2.6 this preconditioner does not possess an additive (i.e.parallel) structure, it is thus not expected to scale up to very large number of sub-domains. Anyhow, if the global problem is simple enough to be solved efficiently,it generally provides excellent information so that convergence can be fast and in-teresting performance can be achieved. In particular, It can not be expected fromit require multiscale information as provided by BDD’s coarse problem made outof zero energy modes (rigid body motions) or well-chosen GENEO-modes [99] incase of poorly-conditioned problem.
Moreover the global/local coupling works in a nonlinear context. Note that theGlobal problem is an affine preconditioner, meaning that not only it affects thespectrum of the iteration operator but it also embeds a good initialization. Con-trarily to the GENEO-BDD approach where Krylov solver is mandatory, the glob-
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al/local coupling supports a stationary iteration. Furthermore, the right-preconditioningdoes not modify the nature of the residual of the system to be solved, allowingflexibility, and in our context, asynchronism.

53



54



4 - Asynchronous global/local non invasive coupling

In this chapter, the asynchronous version of the global/local coupling is pre-sented. First, the asynchronous algorithm with an explanation of the sequence ofiterations is presented. Then a theoretical study of the convergence of the asyn-chronous iterations under a certain relaxation coefficient is presented. This studycovers the cases with a linear global problem and linear locals as well as the non-linear case with monotone locals.

4.1 . Asynchronous algorithm

The previous chapter presented the global/local non-intrusive coupling froman equation point of view. It can be written as a classical synchronous as in algo-rithm 2. In practice, it is recommended to use dynamic relaxation with Aitken’sformula to find the relaxation parameter ω.
Algorithm 2: Synchronous stationary iterations
Initialization pΓ = 0, ω sufficiently small
while ∥r∥ is too large doResolution of the Global system (3.30) or (3.32), uGΓ = SG

−1(pΓ + bG)
if Ω0 exists then

Post-processing (3.24), q0 ∶= λ0 = S0u0,G
Γ − b0,G

end
Global scattersAsTuGΓ to subdmains s > 0
for s > 0 doPatch receivesAsTuGΓLocal solution (3.22), λs,F = ss,F (JsAsTuGΓ ; f s,F )

Patch sends of qs ∶= Js
T
λs,F to the Global

endGlobal gathers all qsGlobal computes residual r = −∑sA
sqsGlobal updates pΓ = pΓ + ωr

end

Now an asynchronous parallel version of this algorithm is established. Theidea is that each processor updates its calculation as soon as one new piece ofinformation is available from one of the other processors, without having to waitfor all the other processors to synchronize. To illustrate this technique, the samesituation as presented in the synchronous case of Figure 2.16 is considered.Figure 4.1 presents the asynchronous method in the case where the globalproblem is updated as soon as new data is obtained from one of the local prob-
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Figure 4.1: Asynchronous iterations
lems. Otherwise, it waits without doing any calculation. From the patches’ pointof view, the finemodels wait for the global problem to send new information, oth-erwise, they idle. The advantage of this model is both to move forward as soonas further information is present and to avoid redoing calculations with the samedata as before. One can also imagine the case where the asynchronous modelmakes calculations without stopping with or without new data. Thus, calculationsalready made will have to be redone, whether for the global or the local.Thus, Based on the figure 4.1, Algorithm ??, presents an asynchronous versionof the Algorithm 2.
Remark 4. One crucial point is that the reaction of the complement subdomain
λ0,Gmust be kept synchronizedwith the global iteration. It seems thusmore prac-tical to use a software able to post-process λ0,G after the global solve, and avoidthe methods that involves solving Dirichlet problems on the global version of thepatches.

4.2 . Convergence proof of the asynchronous iteration

Proving convergence of asynchronous iteration can be tedious. In the studiedcase, the Global domain has the advantages of playing a special role such that itcan be used to cadence the solver.
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Algorithm 3: Asynchronous iterations using RDMA
while ∥r∥ is too large do

switch Rank s do
case s == 0 (global domain) doGlobal gathers all qsGlobal computes residual r = −∑sA

sqsGlobal updates pΓ = pΓ + ωrGlobal solve system (3.32), uGΓ = SG
−1(pΓ + bG)

if Ω0 exists then
Post-processing (3.24), q0 ∶= λ0 = S0u0,G

Γ − b0,G

end
Global scattersAsTuGΓ to subdmains s > 0

end
case s > 0 (local patch) doPatch receivesAsTuGΓLocal solves (3.22), λs,F = Ss,FJsAsTuGΓ − bs,F

Local sends of qs ∶= Js
T
λs,F to the Global

end
end

end

As presented before, several techniques exist to study the convergence of anasynchronous method. The difficulty is added in the studied case because thestudied problems are without discrete maximal principle, so the matrices do notpossess the favorable M-property [9], and the non-intrusive objective makes itimpossible to recover such properties by invasive manipulations.
A recent study [21] proved the convergence of Richardson iterations in asyn-chronous but with a delay bounded at 2 and for linear problems. To generalizethat study and go to the case with larger delay, the paracontraction techniquesintroduced in [33] are used. The idea is to formulate the method as a successionof contractive operators (for a well-chosen relaxation) sharing a common fixedpoint. We can find other applications of this approach for linear and nonlinearproblems in [89, 34, 104].
For now, the study requires the linearity of the global problem, which is thencharacterized by a symmetric positive definite Schur complement, For now, ourstudy requires the linearity of the global problem which thus takes the form ofequation (3.19). Note that the stiffness matrix of (3.19) being SPD, so is its Shcurcomplement, and as presented before, 0 < γG <MG the bounds of its spectrum.

4.2.1 . Paracontactions
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Let (Tm) be a finite family of paracontractions with a common fixed point x̂ insome Hilbert space E. In other words:
• ∀x ∈ E, ∥Tm(x) − x̂∥ < ∥x − x̂∥ or Tm(x) = x,
• ∀m, Tm(x̂) = x̂.

Then a sequence of the form:
xj+1 = Tm(j)(xj) (4.1)

converges to x̂, assuming that all the paracontractions (Tm) are sufficiently fre-quently activated [33].
4.2.2 . Asynchronous formulation

Before studying the convergence of the asynchronous model, a rewriting ofthe problem is introduced, considering the delays affecting the patches.Referring to Algorithm 4, during the step from iteration j to j+1 it is consideredthat, some patches provide new pieces of information in order to evaluate theresidual, anyhow these pieces of informationmay be related to old configurations
pΓj−σ(s,j).
Remark 5. σ(s, j) ⩾ 0: are delay functions, modeling the delay of the subdomain sat iteration j of the global problem.

So that the asynchronous iteration can be modeled as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uGΓ,j = SG
−1(bG + pΓj)

If s = 0 ∶ q0
j = S0(A0TuGΓ,j − b0,G)

If s > 0 ∶ qsj =
⎧⎪⎪⎨⎪⎪⎩

Js
T
ss,F (JsAsTuG

Γ,j−σ(s,j)
; f s,F ) Updated

qsj−1, Not updated
rj = −(A0q0

j +∑
s>0

Asqsj)

pΓj+1 = pΓj + ωrj

(4.2)

For subdomains not updated: σ(s, j) = σ(s, j − 1) + 1.It is crucial to note that if it exists, subdomain 0 always contributes to theevaluation of the residual. Since computing q0
j+1 is only a post-processing of theGlobal solution, this constraint is not really a problem. In order to unify notations,

σ(0, j) = 0 is introduced, ∀j, And thus, the residual at a global iteration j is writtenin the asynchronous form:
rj =

N

∑
s=0

AsJs
T

ss,F (JsAsTSG
−1(pΓj−σ(s,j) + bG); f s,F ) (4.3)
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and then:
pΓj+1 = pΓj − ω

N

∑
s=0

AsJs
T

ss,F (JsAsTSG
−1(pΓj−σ(s,j) + bG); f s,F ) (4.4)

Note that this expression is valid only after all local patches have at least con-tributed once to the estimation of the residual.In order to ensure that at some point all patches provide new information, itis assumed that:
∃D ⩾ 0 such that ∀(s, j), σ(s, j) ⩽D (4.5)

For a given delay 0 ⩽ k ⩽D,$(k, j) the set of subdomains (s) such that σ(s, j) = k.
Let p̂Γ be the solution to the coupling problem:

N

∑
s=0

AsJs
T

ss,F (JsAsTSG
−1(p̂Γ + bG); f s,F ) = 0 (4.6)

Then, if at some point ∀k ∈ [0,D], pΓj−k = p̂Γ, pΓj+1 = p̂Γ whatever the distributionof delays among the subdomains, which makes it a common fixed point for anysituation in (4.4).Note that there may be some (unlikely) situations where the iteration (4.4)stalls. For instance, ∀s f s,F = 0 and AsTSG
−1(pΓj−σ(s,j) + bG) = 0, which corre-sponds to the delayed load always being applied far from the concerned subdo-mains. This is covered by the theory (Tm(x) = x case). So the assumption (4.5) isstrengthened, and the blocking is required to last at most D iterations.What remains to be proved is the contractive nature of the non-stalling itera-tion. More precisely the objective is to prove that there exists some non-emptyinterval of relaxation parameter which makes any series of D iterations a contrac-tion. First, the linear case is studied where the contraction can be characterizedby the spectral radius of a linear operator. Then the case of nonlinear monotonefine patches is considered where the contraction is characterized by the decreaseof a well-chosen norm of the error.

4.2.3 . Analysis of the linear case
First, the case of linear local problems is considered. In that case the localDirichlet to Neuman operator takes the form of an affine operator.The asynchronous global/local coupling iteration can be rewritten as:

pΓj+1 = pΓj − ω (
N

∑
s=0

Ŝs,FSG
−1

pΓj−σ(s,j) + b̂)

pΓj+1 = pΓj − ω
⎛
⎝

D

∑
k=0

⎛
⎝ ∑
s∈$(k,j)

Ŝs,F
⎞
⎠
SG

−1

pΓj−k + b̂
⎞
⎠

(4.7)
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with: ⎧⎪⎪⎨⎪⎪⎩

Ŝs,F =AsJs
T
Ss,FJsAsT

b̂ = ∑N
s=0 A

sJs
T (Ss,FJsAsTSG

−1
bG − bs,F )

(4.8)
In order to make appear the paracontractions, a non-zero delay D > 0, is as-sumed and, in the “history space” obtained by concatenating the last (D+1) valuesof pΓj is the work space.The history at iteration j + 1 can be rewritten as:

⎛
⎜⎜⎜
⎝

pΓj+1

pΓj

⋮
pΓj−D+1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

I − ωXj,0 −ωXj,1 . . . −ωXj,D

I 0 . . . 0
0 I 0 . . .
. . . 0 I 0

⎞
⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Bj

⎛
⎜⎜⎜
⎝

pΓj

pΓj−1

⋮
pΓj−D

⎞
⎟⎟⎟
⎠
−
⎛
⎜⎜⎜
⎝

ωb̂
0
⋮
0

⎞
⎟⎟⎟
⎠

withXj,k =
⎛
⎝ ∑
s∈$(k,j)

Ŝs,F
⎞
⎠
SG

−1

(4.9)

As noted earlier, since ∀j, ∑kXj,kp̂Γ + b̃ = 0, the vector obtained by repeatingthe solution p̂Γ is a fixed point for the above iteration.In order to prove the paracontracting nature of the iteration, it suffices to provethat anymatrixBj of (4.9) can be turned into contraction by correctly selecting therelaxation ω > 0. Since Bj is a block companion matrix, it seems natural to studyits spectrum and prove that it can be bounded by 1.The eigenvalues (λ) of Bj are the roots of the polynomial:
det((1 − λ)λDI − ω

D

∑
k=0

λD−kXj,k) = 0 (4.10)
This is the determinant of a real momic matrix polynomial [49]. In order to ben-efit from the underlying symmetry, the Cholesky factorization of SG = LLT is in-troduced, left-multiply the polynomial by L−1 and right-multiply it by L, the rootsof (4.10) are also the root of the polynomial Pj,ω(λ):

Pj,ω(λ) = det((1 − λ)λDI − ω
D

∑
k=0

λD−kX̂j,k) = 0 (4.11)
where X̂j,k = L−1Xj,kL = L−1 (∑s∈$(k,j) Ŝ

s,F )L−T .Using the absolute continuity of the roots of a polynomial with respect to itscoefficients (see [56, 88] for instance), it has been seen that for a small enough ω,the eigenvalues tend to concentrate around the roots of Pj,0(λ) = det((1−λ)λDI),that is to say around 0 and 1.Let λ̃j,ω be one of the roots of Pj,ω, and ε = min (sin ( π
3D

) , 1
2
), ω0 can be found

such that ω < ω0 ⇒ ∣λ̃j,ω − λ̃j,0∣ < ε. With ω0 = min(ω0,j) over all the possible
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configuration of j. At that point, the roots that tend to zero have all modulus lessthan ε < 1, only the roots that tend to 1 could pose a problem.
In what follows, λ̃j,ω is such a root that tends to 1, its modulus and argumentcan be bounded, see Figure 4.2.

Figure 4.2: Constraining roots near 1

∣λ̃j,ω − 1∣ < ε implies that:
1 − ε < ∣λ̃j,ω ∣ < 1 + ε
∣ sin(arg(λ̃j,ω))∣ < ε

(4.12)

For ε = sin π
3D and 0 ⩽ k ⩽ D, the modulus and the reel part are bounded on (realpart symbolR):

(1 − ε)D < ∣λ̃j,ω ∣k < (1 + ε)D

R(λ̃kj,ω) = ∣λ̃j,ω ∣k cos(k arg(λ̃j,ω)) >
(1 − ε)D

2

(4.13)

Let ṽj,ω be an eigenvector of the matrix polynomial associated with λ̃j,ω:

(1 − λ̃j,ω)λ̃Dj,ωṽj,ω − ω
D

∑
k=0

λ̃D−kj,ω X̂j,kṽj,ω = 0 (4.14)

The expression can be left-multiplied by the Hermitian transpose ṽHj,ω:

(1 − λ̃j,ω)λ̃Dj,ωṽHj,ωṽj,ω − ω
D

∑
k=0

λ̃D−kj,ω ṽHj,ωX̂j,kṽj,ω = 0 (4.15)
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To simplify, ṽj,ω can be chosen of unit Euclidean norm. For ω < ω0, λ̃j,ω ≠ 0, then:
λ̃j,ω = 1 − ω

D

∑
k=0

∥ṽj,ω∥2
X̂j,k

λ̃kj,ω

∣λ̃j,ω ∣2 = 1 − 2ω
D

∑
k=0

R(λ̃kj,ω)∥ṽ∥2
X̂j,k

∣λ̃j,ω ∣2k
+ ω2

RRRRRRRRRRRR

D

∑
k=0

∥ṽ∥2
X̂j,k

λ̃kj,ω

RRRRRRRRRRRR

2 (4.16)

Using (4.13), we have:

∣λ̃j,ω ∣2 < 1 − ω
(∑D

k=0 ∥ṽ∥2
X̂j,k

)

(1 + ε)D
+ ω2

(∑D
k=0 ∥ṽ∥2

X̂j,k
)

2

(1 − ε)2D

(4.17)

Indeed by the definition of the delay D and $,∪k$(k, j) = 1 ∶ N and for k ≠ k′
$(k, j)∩$(k′, j) = ∅, so the sum of norms is simplified because each subdomainappears only once:

D

∑
k=0

∥ṽ∥2
X̂j,k

=
D

∑
k=0

ṽHj,ωX̂j,kṽj,ω = ṽHj,ωL
−1

⎛
⎝

D

∑
k=0

∑
s∈$(k,j)

Ŝs,F
⎞
⎠
L−T ṽj,ω

= ṽHj,ωL
−1 (

N

∑
s=0

Ŝs,F)L−T ṽj,ω

(4.18)

Since ṽj,ω is of unit Euclidean norm, the term above can directly be bounded by
the extremal eigenvalues of L−1 (∑N

s=0 Ŝ
s,F )L−T which coincide to the generalizedeigenvalues of the system:

αmin ⩽
D

∑
k=0

∥ṽ∥2
X̂j,k

⩽ αmax

where (α) solve det((
N

∑
s=0

Ŝs,F) + αSG) = 0

(4.19)

Thus the upper bound is obtained:
∣λ̃j,ω ∣2 ⩽ 1 − ω αmin

(1 + ε)D
+ ω2 α2

max

(1 − ε)2D
, ∀0 < ω < ω0 (4.20)

This is a bound of the form ∣λ̃j,ω ∣2 ⩽ 1 − Aω + Bω2 (with 0 < A < B) which is asecond degree polynomial in ω, and which is less than 1 for 0 < ω < A/B. As aconsequence:
∣λ̃j,ω ∣ < 1 for 0 < ω < ωasync = min(ω0,

(1 − ε)Dαmin

(1 + ε)2D α2
max

) (4.21)
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This is probably an extremely crude bound, but it has the advantage to onlydepend onD and not on the configuration of the iteration (index j). Thus, such arelaxation makes any Bj a paracontraction, and the asynchronous iteration con-verge.
Remark 6. For the synchronous iteration, the bound can be derived from (4.10)with D = 0, it is 0 < ω < ωsync = 2

αmax
.

4.2.4 . Analysis of the nonlinear case with monotone local models
First let us introduce the notation:

xs(pΓ) =AsJs
T

ss,F (JsAsTSG
−1(pΓ + bG); f s,F ) (4.22)

The iteration writes:
pΓj+1 = pΓj − ω

D

∑
k=0

∑
s∈$(k,j)

xs(pΓj−k) (4.23)
Again, the reference solution p̂Γ satisfies:

N

∑
s=0

xs(p̂Γ) = 0

and ∀s, pΓj−σ(s,j) = p̂Γ is a fixed point.The following notations are considered:
• ej = pΓj − p̂Γ the error at iteration j,
• rsj = xs(pΓj) − xs(p̂Γ) the contribution to the residual such that ∀j, ∑N

s=0 r
s
j =

rj .
Then:

pΓj+1 − p̂Γ = pΓj − p̂Γ − ω
D

∑
k=0

∑
s∈$(k,j)

(xs(pΓj−k) − xs(p̂Γ))

ej+1 = ej − ω
D

∑
k=0

∑
s∈$(k,j)

rsj−k

(4.24)

The aim is to obtain a bound of the form:
e2
j+1 ⩽ e2

j (1 − 2ωA + ω2B) with A > 0. (4.25)
where ej is some measure of the error.Indeed, in that case, for 0 < ω < 2A/B, (1 − 2ωA + ω2B) < 1, the iteration isa contraction, and it converges to the common fixed point. Note that the bestconvergence ratio is obtained for ω = A/B, it is worth (1−A2/B). Moreover, sincethe iteration is always well-defined, we necessarily have B ⩾ A2.
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The assumptions on the localmodels lead topΓ ↦ x(pΓ)s being stronglymono-tone and continuous, the associated constants were given in (3.29) and (3.28). Theassumptions on the global model enable to exploit a Euclidean structure for theconvergence analysis. Indeed, the SG
−1 is used as an inner product for interfacereactions, with the notation:

⟨a,b⟩G = aTSG
−1

b ; ~a~ = ⟨a,a⟩1/2
G . (4.26)

Due to Equation (4.24):
~ej+1~

2 = ~ej~2 − 2ω
D

∑
k=0

∑
s∈$(k,j)

⟨ej, rsj−k⟩G + ω2~
D

∑
k=0

∑
s∈$(k,j)

rsj−k~
2 . (4.27)

The first degree term needs to be further analyzed in order to make appearterms with the same delay. The recursion is obtained with:
ej = ej−1 − ω

⎛
⎝

D

∑
q=0

∑
s∈$(q,j−1)

rsj−1−q

⎞
⎠

= ej−k − ω
⎛
⎝

k

∑
K=1

D

∑
q=0

∑
t∈$(q,j−K)

rtj−K−q

⎞
⎠
.

(4.28)

Hence using (4.28):
D

∑
k=0

∑
s∈$(k,j)

⟨ej, rsj−k⟩G =
D

∑
k=0

∑
s∈$(k,j)

⟨ej−k, rsj−k⟩G−ω
D

∑
k=1

∑
s∈$(k,j)

k

∑
K=1

D

∑
q=0

∑
t∈$(q,j−K)

⟨rtj−K−q, r
s
j−k⟩G.

(4.29)Finally, using (4.29), the equation (4.27) can be written as:
~ej+1~

2 = ~ej~2 − 2ω
D

∑
k=0

∑
s∈$(k,j)

⟨ej−k, rsj−k⟩G

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

+ ω2
⎛
⎝
~
D

∑
k=0

∑
s∈$(k,j)

rsj−k~
2 + 2

D

∑
k=1

∑
s∈$(k,j)

k

∑
K=1

D

∑
q=0

∑
t∈$(q,j−K)

⟨rtj−K−q, r
s
j−k⟩G

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b

.

(4.30)In order to recover the situation of (4.25), find a bounding from below of the firstdegree coefficient a and a bounding from above for the second degree coefficient
b is needed.Using convexity and Cauchy-Schwarz inequalities:

b ⩽
D

∑
k=0

∑
s∈$(k,j)

N~rsj−k~
2 + 2

D

∑
K=1

D

∑
k=1

∑
s∈$(k,j)

D

∑
q=0

∑
t∈$(q,j−K)

~rtj−K−q~~r
s
j−k~ (4.31)
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The bounding from above is a classical consequence of the continuity of the fineproblems.
~rsj−k~ = ~AsJs

T (ss,F (JsAsTSG
−1(pΓj−k + bG); f s,F ) − ss,F (JsAsTSG

−1(p̂Γ + bG); f s,F ))~

⩽ αsM s,F ∥JsAsTSG
−1

ej−k∥ ⩽ αsM s,F ∥JsAsTSG
−1∥∥ej−k∥

⩽ αsM s,F ∥JsAsTSG
−1∥M

G

γG
~ej−k~

(4.32)whereαs is the square root of the largest eigenvalue of the SPDmatrix (JsAsTSG
−1
AsJs

T ).The coarse constants are used to switch from the Euclidean norm to the SG
−1-norm.

The bounding from above of the individual terms is thus not complicated, thedifficulty lies in the handling of the many delayed terms, with delays ranging from
0 to 2D.

Regarding the first degree term, the bounding from below is a consequenceof the monotonicity:

a =
D

∑
k=0

∑
s∈$(k,j)

((pΓj−k − bG) − (p̂Γ − bG))TSG−1

AsJs
T

(ss,F (JsAsTSG
−1(pΓj−k + bG); f s,F ) − ss,F (JsAsTSG

−1(p̂Γ + bG); f s,F ))

⩾
D

∑
k=0

∑
s∈$(k,j)

γs,F ∥JsAsTSG
−1

ej−k∥2.

(4.33)To complete the bounding, considering more specific cases are needed. In thefollowing, we study two non-exclusive favorable situations that are made explicit.
4.2.4.1 . Max norm on the history vector

Following [33], the history unknown is introduced:
êTj = (eTj eTj−1 . . . eTj−2D) ,

equipped with the sup norm
~êj~∞ = max

0⩽k⩽2D
~ej−k~

k̂j the delay for which the maximum is reached at iteration j.This normmakes it trivial to bound the second degree term b (4.31) from above
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using (4.32):

b ⩽ ∥JsAsTSG−1
∥
2
(

MG

γG
)

2
⎛

⎜
⎜
⎜
⎜

⎝

N
D

∑

k=0

∑

s∈$(k,j)

(αsMs,F
)
2
+ 2

D

∑

K=1
k=1
q=0

∑

s∈$(k,j)
t∈$(q,j−K)

αsαtM t,FMs,F

⎞

⎟
⎟
⎟
⎟

⎠
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Bj

~êj~∞

(4.34)
To bound a from below:
a ⩾

D

∑
k=0

∑
s∈$(k,j)

γs,F ∥JsAsTSG
−1

ej−k∥2 ⩾ ∑
s∈$(k̂j ,j)

γs,F ∥JsAsTSG
−1

ej−k̂j∥
2, (4.35)

To further strengthen hypothesis (4.5): It is needed to assume that sufficientlymany subdomains are activated for the k̂j contribution so that the following boundholds:
∑

s∈$(k̂j ,j)

γs,F ∥JsAsTSG
−1

ej−k̂j∥
2 ⩾

θk̂j ,j

κ
∥ej−k̂j∥

2 ⩾
θk̂j ,j

κ
( γ

G

MG
)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Aj

~ej−k̂j~
2 (4.36)

where θk̂j ,j is the minimal non-zero eigenvalue of the matrix:
⎛
⎜
⎝

∑
s∈$(k̂j ,j)

SG
−1

AsJs
T

γs,FJsAsTSG
−1
⎞
⎟
⎠

And where κ ⩾ 1 is some constant. Two cases can be distinguished:
• κ = 1would be suited to ej−k̂j being non-zero only on theboundary of⋃s∈$(k̂j ,j)Ωs.
• κ = N would correspond to one subdomain being activated with the k̂j andthe error ej−k̂j being smoothly distributed on the domain.

In practice κ can be influenced by the load balancing between patches, and hard-ware properties like the speed of the network.Introducing A = minAj > 0 and B = maxBj taken among all the potentialdistribution of delays in the subdomains:
~ej+1~

2 ⩽ ~êj~2
∞

(1 − 2ωA +Bω2) , (4.37)
which implies that:

~êj+2D~
2
∞
⩽ ~êj~2

∞
(1 − 2ωA +Bω2) , (4.38)

and the iteration converges for 0 < ω2A/B.
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4.2.4.2 . Monotone convergence for non-adjacent patches
In the case of non-adjacent patches, the subdomain 0 plays a particular role asit is always synchronous and it is in contact with the whole interface (the interfacedegrees of freedom can be ordered such that A0 = I and J0 = I). Thus, if thesubdomain 0 exists, the bounding from below is simple to obtain:

D

∑
k=0

∑
s∈$(k,j)

⟨ej−k, rsj−k⟩G ⩾ γ0∥SG−1

ej∥2 ⩾ γ
0γG

MG2

´¹¹¸¹¹¶
A

~ej~
2 (4.39)

The bounding from above of the b term is a bit more complex, because of themany delayed error terms.A proof that there exists some interval (ωmin, ωmax) is proposed for which therelaxed iteration is strictly decreasing, in the sense that there exists 1 > c > 0whichdepends on ω such that, ∀j:
~ej+1~

2 ⩽ c~ej~2

Assuming such c exists:
b ⩽ ∥JsAsTSG−1

∥
2
(

MG

γG
)

2

. . .

. . .

⎛

⎜
⎜
⎜
⎜

⎝

N
D

∑

k=0

∑

s∈$(k,j)

(αsMs,F
)
2
c−2k + 2

D

∑

K=1
k=1
q=0

∑

s∈$(k,j)
t∈$(q,j−K)

αsαtM t,FMs,F c−(q+K+k)

⎞

⎟
⎟
⎟
⎟

⎠
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2
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γG
)

2
⎛

⎜
⎜
⎜
⎜

⎝

N
D

∑

k=0

∑

s∈$(k,j)

(αsMs,F
)
2
+ 2

D

∑

K=1
k=1
q=0

∑

s∈$(k,j)
t∈$(q,j−K)

αsαtM t,FMs,F

⎞

⎟
⎟
⎟
⎟

⎠
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B̃j

c−3D~ej~
2

(4.40)Introducing B̃ = max B̃j , taken among all the potential distributions of delays inthe subdomains:
~ej+1~

2 ⩽ ~ej~2 (1 − 2ωA + ω2B̃c−3D) (4.41)
The minimal rate of convergence is attained for ωopt = Ac3D/B̃, and it is worth

ropt = (1 − A2c3D

B̃
). Figure 4.3 illustrates the existence of a domain (c0,1) where

c ∈ (c0,1)⇒ c ⩾ ropt. Note that c0 > 0 depends only on A, B̃ and D.
For a given c ∈ (c0,1), let δ = A2 − (1 − c)B̃c−3D > 0, any ω ∈ ( A−

√

δ
B̃c−3D ,

A+
√

δ
B̃c−3D ) leadsto a strict decrease of the error at each iteration.Contrarily to the synchronous case, or to previous analysis with the historyvector, the difficulty is that the relaxation can not be too small.
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5 - Implementation details

In this chapter, first some works are cited in which a sample implementationof the asynchronous domain decomposition methods has been realized . ThenRMA-MPI parallelization techniques are detailed with some illustrative examples.Finally, the asynchronous and synchronous version of the code that was devel-oped during the Ph.D. thesis are presented by detailing the implementation andthe tools used.

5.1 . Introduction

Implementing an asynchronous communication protocol based on the clas-sical message passing paradigm MPI has been the subject of several researchworks. In [75, 73], an efficient library is proposed for asynchronous domain de-composition solvers, based on classical two-sided communications. In [112, 48]the use of one-sided communications, also known as MPI-RDMA (Remote DirectMemory Access), is considered. The idea of this approach is indeed well adaptedto the asynchronous calculation because there is no need to stop computing tosend or receive operations.

5.2 . RMA-MPI

The classical message passing paradigm allows the transfer of data from onememory address to another, classical two-sided communications involve at leasttwo ranks and allow data transfer from one memory address to another usingexplicit communication commands. Still, it does not control the arrival of the in-formation if the synchronization is not explicit. Whatever is the kind of communi-cation, blocking Send, recv or non-blocking Isend, Irecev coupled with commandlike MPI.test() or MPI.wait(), to check the status of the transfer and to synchro-nize it. Several transfers coupled with synchronizations can negatively influencethe simulation performance.Figure 5.1 corresponds to sending from processor 1 with the send commandto processor 0, which receives with the recv command.TheMPI solution to this problem is one-sided communication, it was proposedfirst in theMPI2 protocol [83], allowing to decouple the data transfer from the syn-chronization, so that several transfers can be performed with only one synchro-nization barrier at the end. In [84], MPI 3 proposed a new version of one-sidedcommunication with more efficient techniques allowing complete asynchronouscommunications. The one-sided communication is then an optimization for per-formance to reduce management overhead, also known as remote memory ac-
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Figure 5.1: Send + Recv (Ref : Two sided communication concepts)
cess RMA. It can be viewed as an emulation of shared memory in a distributedcontext.
Remark 7. Note that the performance of the RMA strongly depends on the MPIimplementation and network hardware.

The basic idea is that each rank exposes a so-calledwindow of its local mem-ory and allows other ranks either write or read from it. Ranks, in this case, are nolonger identified as sender or receiver but as origin rank who initiates the opera-tion and target rank.The latter does not participate in the data exchange.The following sections will present how it works in detail.
5.2.1 . One sided communication workflow

The RMA-MPI workflow is based the following on five ordered steps:
1. Window allocation: The local memory buffer that other MPI ranks can ac-cess need to be allocated first.
2. Open epoch: The epoch, in MPI designation, corresponds to the time dura-tion during which the window is open, and the other ranks can access thedata. It is also seen as a synchronization call that informs the target thatother ranks are ready to access data.
3. Data accessing: After that, each rank can access the window as it wants inorder to put data in it or to get data from it. Data access does not necessar-ily require any action for the receiving side or the target rank that exposes
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the memory. The origin ranks can just put and get data from the exposingmemory without involving the target. When this target rank closes the win-dow, it checks the data states after all the ranks end their operations. Butwhat happened in the meantime does not matter to it.
4. Close epoch: Once the data operations are done, the epoch is closed, corre-sponding to synchronization. The target rank closes the window, it ensuresthat all accesses have completed (local synchronization). At this point, thetarget rank can read and process the data.
5. Window free: The window is deallocated and the memory buffer freed.

Note that during one epoch, data can be accessed as much as desired, reopenother epochs, and close as many as wanted.
5.2.2 . Window creation

As explained before, the first step is creating amemory window allowing otherprocessors to access the variables stored in it with RMAoperations. There are fourso called windows models wich are different way to create windows:
1. Window_create: Creates a new memory window from an already existingbuffer, which is well allocated, the buffer’s pointer is passed as an argumentof this function with the variable type, and the window is created.
2. Window_allocate: Allocates a new memory window instead of using anexisting buffer likeWindow_create. The buffer is created when needing touse it, which allows MPI to decide where to allocate the memory. It is some-times faster but not coherent for some MPI implementation and hardwarearchitecture.
3. Window_create_dynamic: Exposes a specific buffer that is not availableyet, and it is just attached later onwithMPI_win_attach andMPI_win_detach,which is a sort of performance optimization because it allows the dynamicmanagement of the window creation.
4. Window_allocate_shared: It is a specific case for Window_allocate, whichmeans that buffers are allocated and used in the sharedmemory within onenode, which only works in MPI_comm_shared. It allows using high-speedoperations because it uses only copy-and-write memory operations.

All the routines used for window creation are called collectively by all the proces-sors. However, the allocation of these windows and the call of dynamic routinesare locally done by each processor separately.
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5.2.3 . Free window
When origin processors end their sending operations, the windows must befreed after closing the access epoch, using the command Window_free(). It iscalled collectively by all the processors associated with the window. Processorscan only reach this command after completing all operations within the window.It also blocks and returns nothing until all processors have executed it to ensurethat no processor continues to access the window afterward.

5.2.4 . Communication operations
The remote memory access (RMA) proposes three communication functionsthat allow, once access to the window is acquired, to read data with the command

Get, to write directly in the window with Put, and to update a variable in thiswindow with reduction operations using Accumulate.All these functions correspond to non-blocking communications performedwithin an epoch as specified before.
1. Put: It is the equivalent of the Send operation in the case of two-sided com-munication which requires a Recv operation to ensure reception on the re-ceiver processor. However, with the one-sided communication, this functionrealizes the whole task guaranteeing the completion of the data writing inthe target processor window without involving it in the transfer operation.

Figure 5.2: Put (Ref : ENCSS One sided communication concepts)

The figure 5.2 corresponds to a Put communication where the origin pro-cessor 0 copies a piece of data Y in the window whose access was allocatedby the target processor 1.
2. Get: This operation is similar to Put, except that the communication order
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is reversed. The origin processor reads the data in the target processorwindow and copies the value into its memory.

Figure 5.3: Get (Ref : ENCSS One sided communication concepts)

The figure 5.3 corresponds to a Get communication, where origin processor
1 recovers a data Y in the windowwhose access was allocated to it by targetprocessor 0.

3. Accumulate: This operation is also similar to the Put operation, except thatinstead of overwriting the value in the target processor window with thenew value proposed by the origin processor, operations are applied withtheOp argument as in theMPI_Reduce function, such asMPI_SUM, to sumall the values coming from the origin processors.
5.2.5 . Synchronization

A synchronization stage generally follows these communications operations.Two types of synchronization in RMA can be distinguished: active and passive.
5.2.5.1 . Active synchronization

The target participates in the synchronization. It is similar to the classic mes-sage passing paradigm, but an amount of data can be sent without synchroniza-tion and still have to synchronize at the end, including the target ranks. Two waysare considered active synchronization which correspond to the epoch’s openingand closing:
• Window_Fence: MPI.Win.Fence() is a collective operation which starts anepoch at the beginning and closes it at the end. Both the target and origincall it. Between the two calls, data access can be done as much as wanted.
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Since it is a collective call, theywill synchronize. So there is no need to specifythe target or the origin because they are all involved, and all the ranks arestarting the epoch simultaneously and closing it simultaneously, the second
MPI.Win.Fence() call closes the epoch and enforces the synchronization.

Code Listing 5.1: Example of RMA-MPI with MPI.win.Fence()
# Import python package for MPI

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank ()

# Number of processors

nprocs = comm.Get_size ()

# Size of the buffer used to create the window

N=10

# Creation of the Window for the origin rank = 0

if rank == 0:

window = MPI.Win.Create(None , comm=MPI.COMM_WORLD)

# Creation of the Window for the target ranks != 0

if rank != 0:

window = MPI.Win.Create(np.zeros(N), comm=MPI.COMM_WORLD)

# Fill the send vector with

if rank == 0:

U = np.ones(N)

# Fisrt MPI.win.Fence () collective call to start the epoch

window.Fence()

# The origin rank = 0 put data in the window of target ranks

if rank == 0 :

for i in range(1, nprocs):

window.Put([uG , MPI.DOUBLE], i)

# The final MPI.win.Fence () collective call to close the

epoch and synchronize all

ranks

window.Fence()

# Window deallocation

window.free()

Code 5.1 illustrates MPI-RMA case with an active synchronization triggeredbyMPI.Win.Fence(). It corresponds to sending a vector of size N from pro-cessor 0 (origin) to the other processors (targets). Thus, this command’s col-lective call can be seen at the beginning to initiate the epoch and close it inall the ranks at the end and synchronize the data simultaneously in all theprocessors.
• Post/Start/Complete/Wait: UnlikeMPI.Win.Fence(), which is called collec-tively by all processors, this approach is used where only a certain numberof processors are involved in communication within a specific window.
The idea is that a target processor allows access to its window to a cer-tain number of processors, which is specified by the MPI.Win.Post com-
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mand. Then the origin processors execute the MPI.Win.Start commandand pass to it the group of target processors they want to access their win-dows. Then, at the end of the transfer data operations, those origin proces-sors execute theMPI.Win.complete command to ensure the completion ofthe data transfer. The target processors then call the MPI.Win.Wait func-tion to ensure the completion of the communication at the target proces-sors. Access to the targetwindows is not possible before theMPI.Win.Postfunction’s call. The function MPI.Win.Wait cannot be executed until the
MPI.Win.complete operation is done for all origin processors.
5.2.5.2 . Passive synchronization

In the passive synchronization, the target does not even participate in the syn-chronization, It is similar to shared memory, the idea is to access data withoutinvolving the target. The origin has the full control.
• Open the epoch: To open the access to the epoch, the origin processorscall the commandMPI.win.Lock(Target rank), this command allows originprocessors to access the window that the target has made accessible in anexclusive (only one processor has access at any time) or a shared way (sev-eral processors can access it at the same time). Origin processors can alsocall the commandMPI.win.Lock_all() that allows controlling the window ac-cess in shared way for several associated processors.
• Complete transfer operations: There are several commands to ensurethe completion of all RMA operations after the epoch is opened with the
MPI.win.Lock_all() orMPI.win.Lock(Target rank) commands:

1. MPI_Win_flush(Target rank): Ensure that all local and remote trans-fer operations at the target processor on the specified window, initi-ated by the origin processor, are completed before continuing programexecution. It allows for the optimization of program performance byoverlapping communication and computation. For example, a processmay initiate a remote memory access operation, then perform somelocal calculations before calling MPI_Win_flush to ensure the operationis completed before continuing.
2. MPI_Win_flush_all(): Completes the data transfer operations remotelyat all target processors on the specified window, initiated by the originprocessor calling the function.
3. MPI_Win_flush_local(Target rank): Completes the data transfer oper-ations locally at the target processor on the specified window, initiatedby the origin processor calling the function.
4. MPI_Win_flush_local_all(): Completes the data transfer operations lo-cally at all target processors on the specified window, initiated by the
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origin processor calling the function.
After completing the operations with these commands, the data can be reador written in the window.

• Close the epoch: At the end of the RMA operations, the origin processorcalls the commandMPI.win.Unlock(Target rank), which closes the accessto the window. After having been reassured that all operations have beencompleted. Or they callMPI.win.Unlock_all() if the epoch was opened withthe commandMPI.win.Lock_all().
Code Listing 5.2: Example of RMA-MPI with Passive synchronization()

# Import python package for MPI

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank ()

# Number of processors

nprocs = comm.Get_size ()

# Size of the buffer used to create the window

N=10

# Creation of the Window for the origin rank = 0

if rank == 0:

window = MPI.Win.Create(None , comm=MPI.COMM_WORLD)

# Creation of the Window for the target ranks != 0

if rank != 0:

window = MPI.Win.Create(np.zeros(N), comm=MPI.COMM_WORLD)

if rank == 0:

# The origin rank = 0 put data in the window of target ranks

uG = np.ones(N)

window.Lock_all ()

for i in range(1, nprocs):

window.Put([uG , MPI.DOUBLE], i)

window.Flush_all ()

window.Unlock_all ()

# Window deallocation

window.free()

Code 5.2 shown a version of the code Code 5.1 with a Passive synchronization.
MPI.Win.Lock_all() is used to open an epoch on all the target processors andclose it withMPI.Win.Unlock_all(), alsoMPI.Win.Flush_all() is used to ensure thecompletion of thePut operations on all the target processors. So as it can be seen,this operation involves only the processor of rank 0 which sends a vector of sizeN to the other processors (targets).

5.3 . Illustration
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To illustrate what has been presented in the previous sections, the followingping-pong algorithm is used:
• Rank = 0 : Sends a buffer to rank 1

• Rank = 1 : Modifies the buffer and sends it back to the rank 0

This algorithm is implemented in 3 different parallel versions:
• A non-blocking version with two-sided communication (Isend, Irecv)
• A version with the one-sided communication using active synchronization(blocking)
• A version with the one-sided communication using passive synchronization(asynchronous)
The idea is to use two processors and to increase the size of the sent bufferto analyze the impact of its length on the performance of those techniques. Thisstudy was conducted using two processors within one node, the size vector isscaled from 1 to 100.000 The computation time is the average of the computationtimes required by the 2 processors after several simulations. In Figure 5.4, thecurves giving the computation time can be seen according to the size of the vectorsent.The passive synchronization is ten times faster with small vectors and twotimes faster for the largest vectors. However, the active synchronization modelis slightly faster than the non-blocking two-sided communication even if this syn-chronization using Fence is expensive by blocking each time to complete the com-munications before continuing the calculations. This quick study on two proces-sors with a simple algorithm like this one, where the computation load is not veryimportant, allows to show the clear improvement RDMA can bring compared tothe classical two-sided communication model.
5.4 . Code details

A homemade code is implemented for the non-intrusive global/local couplingmethod during the Ph.D Thesis. This code was realized in python. The non-intrusive aspect of the global/local coupling allows the use of industrial finite ele-ment codes. But in our case, the (more research-oriented) finite element libraryGetfem [92] is used, which allowed to manage all the construction parts of thefinite element model, the interpolation operators for the coupling, and the reso-lution part using the solvers already linked by this library (like the famousMUMPSsolver). The choice was particularly motivated by the availability of postprocess-ing methods to obtain the nodal reaction of the complement domain λ0, which isan operation not always simple to implement in legacy industrial software.For the construction of the finite element model, Getfem proposes two ways:
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Figure 5.4: RMA vs Two sided
• The construction of the linear system and its exportation in matrix-vectorformat in order to solve it externally with chosen algebraic solvers.
• The use of bricks where no need to build the linear system explicitly. Getfemthen appears like a black box to which the input data are specified like theproblem the presented problem, the boundary conditions, and the right-hand side.

This last option is the one selected during the thesis. It allows for solving severaltypes of linear problems in thermal or linear elasticity, non-linear elliptic prob-lems, and problems of elastoplasticity type.The developed code allows solving these problemswith a global/local couplingparallelized in synchronous or asynchronous way. MPI [25] is used for the parallelprocessing part and specially MPI-RMA techniques.
5.4.1 . Code architecture

The code is structured in several modules:
• Preprocessing: This module contains the interface_identification func-tion, which is in charge of reading the data from the provided mesh, de-
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tecting the number of patches and identifying the interfaces of each patch,seeing if there are common interfaces with other patches.
• Several problems have been treated, and several modules have been de-fined: linear_elasticity, laplace_gl (for thermal problems in linear and non-linear), and then a plasticity model. Each of these models contains thosetwo functions:

– FE_GLOBAL_MODEL: defines the global problem on the whole struc-ture with its boundary conditions and right-hand side.
– FE_LOCAL_MODEL: function called in parallel by the patches to buildthe local problems and impose the correct boundary conditions if it isa patch on the Dirichlet boundary.

• Coupling: This module contains two functions:
– Global_to_local_coupling: This allows to build of the interpolation op-erator, which helps to pass the global coarse mesh to the local finemesh. This operator is computed in parallel for each patch.
– Add_lagrange_multipliers: this function allows defining and initializ-ing for each local problem its Lagrange multipliers on its interface.

• Resolution: This module contains three functions:
– Global_resolution: It solves the global problemon thewhole structure.This function allows the resolution with the Aitken accelerator as wellas with a fixed relaxation coefficient.
– Local_resolution: It is called in parallel and allows solving the localproblem for each patch and then post-processing to calculate the nodalreaction or the Lagrange multiplier on the interface.
– Residual_computation: It is called at each iteration to evaluate theresidual. It recovers the nodal reactions calculated by the local prob-lems. It post-processes the global problem in case the complementarydomain exists to calculate the nodal reactions on the interface from aglobal point of view.

• Post_processing : Depending on the problem studied, thismodule containsseveral functions to calculate the gradient in the case of elliptic problems orthe von Mises stress in the case of mechanical problems. This module alsoallows plotting the solution (displacement or temperature).
The architecture and calling order of the modules presented in the code areillustrated in the following diagram:
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Pre-processing
FE Model construction

Coupling: Operators construction

Parallel coupling algorithm (Resolution)

Post-processing

From this diagram it can be seen that the central part is the coupling algorithmpart where the parallelization is done. This part only uses the Resolutionmodule.In the following two sections, the details of the different parallelization techniquesused are presented. The associated pieces of code are given in appendix.
5.4.2 . Window creation

The non-intrusive global/local coupling algorithm is characterized by sendingthe Dirichlet conditions from the global to the local patches and sending the nodalreactions from the local patches to the global. One last communication is set upfor the management of the convergence detection, the global sends a messageto the locals to signal the algorithm’s convergence. Each of these three communi-cations is assigned a window.So in conclusion parallel computing scheme master-slave is the one used.
• To send the Dirichlet conditions from the global problem to local problems.The processor of rank 0, in charge of the global problem computation, sendsto each processor in charge of a local calculation the part of the displace-ment corresponding to its interface. Each of these processors must allocatea memory corresponding to the window in which the global problem willcome to put the information.
The part of the code B.1 corresponds to the allocation of these windows

• Sending nodal reaction from the processors in charge of the local problemsto the processor of rank 0 requires creating a window in the memory of
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processor 0 for each of these local problems. So a list of vectors of adequatesize is created and a list of windows associated with each of the vectors.
The part of the code B.2 corresponds to the allocation of these windows.

• After detecting the convergence, the global problem sends amessage to thelocal problems, which stop the calculations on all the processors. For that,a boolean with an initial value of 0 is used, and if the algorithm converges, ithas the value 1. So a window is created in each local processor so that theprocessor of rank 0 can write the information.
The part of the code B.3 corresponds to the allocation of these windows.

At the end of the algorithm and after convergence, thememory allocated to thesewindows is freed as in the code B.4.
5.4.3 . Synchronous version

In this subsection, the focus is on the synchronous parallel implementation ofthe coupling algorithm, which can be summarized in 3 blocks:
• Global displacement window synchronization
• if rank = 0:

– Global computation.
– Put global displacement in local windows.

• Global displacement window synchronization
As explained before, this first block is wrapped between two synchronizations,which correspond to the opening and closing of an epoch. During this epoch, pro-cessor 0 performs a resolution of the global problem and then sends the Dirichletboundary conditions to the local problems.

• Local nodal reaction window synchronization
• if rank ≠ 0:

– Local computation.
– Put local nodal reaction in the global window.

• Local nodal reaction window synchronization
Again, this second block is wrapped too between two synchronizations, corre-sponding to the opening and the closing of an epoch. During this epoch, All theother processors except rank 0 solve their local problems. They then post-processthe results to compute the nodal reactions on the interface and put them in theglobal window.
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• Convergence boolean window synchronization
• if rank = 0:

– Residual computation.
– Put convergence boolean to local windows.

• Convergence boolean window synchronization
The last block has the same two synchronizations, corresponding to an epoch’sopening and closing. During this epoch, After the evaluation of the residual, theprocessor of rank 0 checks the convergence status and then sends an updatevalue of the boolean to the other processors. Algorithm 4 shows the pseudo-codecorresponding to the synchronous version.
Algorithm 4: Synchronous stationary iterations using RDMA
Window creation + Initialization pΓ = 0, ω sufficiently small
while ∥r∥ is too large doMPI.Fence()(For the global displacement window)

if rank == 0 thenResolution of the Global system (3.30) or (3.32), uGΓ = SG
−1(pΓ + bG)

if Ω0 exists then
Post-processing (3.24), q0 ∶= λ0 = S0u0,G

Γ − b0,G

end
Put AsTuGΓ in subdmains s > 0 windows ;

endMPI.Fence()(For the global displacement window)MPI.Fence()(For the local nodal reaction)
if rank != 0 thenFine solution (3.22), λs,F = Ss,FJsAsTuGΓ − bs,F

Patch Put qs ∶= Js
T
λs,F in the rank 0 window

endMPI.Fence()(For the local nodal reaction)MPI.Fence()(For the convergence detection window)
if rank == 0 thenGlobal computes residual r = −∑sA

sqsGlobal updates pΓ = pΓ + ωr
endMPI.Fence()(For the convergence detection window)

endWindow free
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Code B.5 shows the implementation of the synchronous version in our code.Each part is commented on and allows making the distinction between each ofthe three blocks presented before
5.4.4 . Asynchronous version

For the implementation of the asynchronous algorithm, MPI-RMA passive syn-chronization presented above is used, two implementations are considered:
• The first implementation proposes an asynchronous model that updates it-self as soon as new information arrives. This algorithm can be divided intothree blocks:

– Rank = 0:
1. The global problem is solved by using a specific relaxation coeffi-cient and updating it with a Neuman condition based on an asyn-chronously computed residual. The global displacement is storedin a buffer whose last component contains a variable indicating thecurrent global iteration.
2. To put the displacement as a boundary condition for the other pro-cessors, an epoch is open for each one using passive synchroniza-tion. The putting is realized, and the completion of this sending isassured before closing this epoch.

– Rank ≠ 0:
1. To check if a new Dirichlet condition is available, each processorlaunches a loop that opens an epoch in its window and checks if thevariable corresponding to the global problem iteration has beenupdated.
2. Once sure to have new information, each processor solves its lo-cal problem, then performs post-processing to calculate the nodalreactions.
3. Each processor opens an epoch on its allocated window on the tar-get rank 0, puts the nodal reaction, and then closes the epoch. Thenodal reactions calculated by each processor are stored in a bufferwhose last component contains the corresponding local iteration.

– Rank = 0:
1. The rank 0 launches a loop on all the windows in which the otherprocessors put their nodal reactions and checks with the variablecorresponding to the number of local iterations of each one if newdata is accessible.
2. Rank 0 evaluates the residual, computes its norm, and checks if thealgorithm has converged or not.
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3. If the algorithm has converged, rank 0 opens an epoch in the win-dow allocated by each of the other processors, puts the booleanwith the new value that corresponds to the convergence, and thencloses the epoch.
The pseudo-code in Algorithm 5 presents a version based on MPI-RDMAtechniques with passive synchronization.

Algorithm 5: Asynchronous iterations using RDMA
Window creation + Initialization pΓ = 0, ω sufficiently smallMPI.Lock(target) (For all the window by specifying the specific target ofeach one) while ∥r∥ is too large do

switch Rank s do
case s == 0 (global domain) doGlobal reads all (qs) in its windowsGlobal computes residual r = −∑sA

sqsGlobal updates pΓ = pΓ + ωrGlobal solve system (3.32), uGΓ = SG
−1(pΓ + bG)

if Ω0 exists then
Post-processing (3.24), q0 ∶= λ0 = S0u0,G

Γ − b0,G

end
Global putsAsTuGΓ in all subdomains s > 0 windows
Flush(subdomains s window)

end
case s > 0 (local patch) doLocal reads newAsTuGΓ in its window

Local solves (3.22), λs,F = Ss,FJsAsTuGΓ − bs,F

Local puts qs ∶= Js
T
λs,F in Rank 0’s window

Flush(0)
end

end
endMPI.UnLock(target) (For all the window by specifying the specific target ofeach one)
The implementation of this algorithm is in code B.6.
This implementation is well recommended if the number of patches is notvery significant. In the chapter of applications it will be shown that becauseof the network used, the choice of this implementation is restricted to fewcases
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• The second implementation corresponds to the case where the global andthe local computation is done all the time, whether with new information orjust reusing the information they have in the memory from previous itera-tions.
This implementation can be summarized in the following five blocks:

– Contrary to the first implementation, the epochs are opened and closedat each communication, in this implementation, the epochs are openedbefore the launching of the algorithm, which will allow to do a seriesof communications during these epochs until the convergence of thealgorithm, and then to close the epochs at the end.
1. rank = 0: Rank 0 opens access to all the open windows allocatedby the other target processors to send the Dirichlet conditions andalso the boolean corresponding to the stopping criterion of the al-gorithm after the convergence
2. rank ≠ 0: Each processor opens the access to the epoch allocatedby rank 0 to receive the nodal reactions.

– Rank = 0:
1. The global problem is solved by using a specific relaxation coeffi-cient and updating it with a Neuman condition based on an asyn-chronously computed residual.
2. The displacement is sent as a boundary condition for the other pro-cessors, and the completion of this sending is assured on all thetarget processors.

– Rank ≠ 0:
1. Each processor solves its local problemwith the available boundaryDirichlet condition, then performs post-processing to calculate thenodal reactions.
2. Each processor puts the nodal reaction on the window allocated bythe rank 0 and ensures its completion.

– Rank = 0:
1. Rank 0 evaluates the residual with the available nodal reactions,computes its norm, and checks if the algorithm has converged ornot.
2. If the algorithm has converged, rank 0 puts the boolean with thenew value corresponding to the convergence in the window allo-cated to it by each of the other processors and ensures its comple-tion on all the target processors.

– After the convergence of the algorithm:
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1. rank = 0: Rank 0 closes all the opened accesses to the windowsallocated by the other target processors.
2. rank ≠ 0: Each processor closes the access to thewindows allocatedby rank 0 to receive the nodal reactions.

The implementation of this algorithm is in code B.7. It is recommended inthe case of a very high number of patches, where the probability of an up-date from one of these patches to the global problem is very high.
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6 - Applications

This last chapter, interest in confirming the theoretical results presented pre-viously and examining the performance of the implemented asynchronous algo-rithm compared to the synchronous one. A variety of linear and nonlinear prob-lems have been studied. For this purpose, the study moved from simple 2D aca-demic cases to more complicated 3D academic and industrial cases. The idea wasto compare the asynchronous and synchronous algorithms on different global/lo-cal coupling situations considering few or many patches. Weak scalability studiesas well as tests that focus on the load imbalance that is regularly faced in this typeof problems are considered.

6.1 . Setup

6.1.1 . Methods
During all these studies, the first idea is to compare the synchronous and theasynchronous models without relaxation. A second goal is, to compare the bestperformance attainable. In the synchronous case, the powerful Aitken accelera-tor is used (which can be viewed as an efficient way to find a good dynamic relax-ation), in the asynchronous, an optimal relaxation coefficient obtained empiricallyby trial-and-error is used.Note that the concept of optimal relaxation is a bit ill-posed for the asynchronouscase, as the relaxation depends on the frequency of the updates which is hard-ware dependent.Note that asynchronous acceleration techniques have been investigated dur-ing the thesis to improvedmore performance to the asynchronousmodel, follow-ing the works in [26] where the idea was to accelerate the convergence of asyn-chronous iterationswith Aitken’s acceleration technique using a low-rank approxi-mation based on SVD. The study presents several examples in the case of the RASmethod. The idea is based on the fact that the error operator depends on theiterations and the use of the SVD for a low-rank approximation of this operatorallows accelerating the convergence based on an SVD applied to the iterated so-lutions. After several attempts with this technique, It can be conclude that it is stillslower than an empirically relaxed asynchronous model. In the rest of the study,this approach will not be considered.For the rest of this chapter:
• Synch: synchronous iteration without relaxation(ω = 1),
• Aitken: Aitken-accelerated (synchronous) iteration,
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• Async: asynchronous iteration without relaxation (ω = 1),
• Relax async: asynchronous iteration with optimized relaxation.
In order to evaluate the performance, the number of iterations performed bythe global problem and the number of maximum and minimum iterations per-formed by the local problems is presented. Of course, for the synchronous ver-sion, the number of iterations performed is the same for the global and local prob-lems.We also present wallclock time measurements. In order to smooth the vari-ability of asynchronous computations, the average over 3 executions is given withidentical setup.

6.1.2 . Cluster
The studies were carried out with the cluster of the LMPS simulation centerusing several workstations with an ethernet network. These machines are quiteheterogeneous with 4 different generation of CPUs:
• Intel(R) Xeon(R) CPU E5-1660 v3 (Haswell) @ 3.00GHz (8 cores)
• Intel(R) Xeon(R) CPU E5-2630 v4 (Broadwell) @ 2.20GHz (10 cores)
• Intel(R) Xeon(R) Silver 4116 CPU (Skylake) @ 2.10GHz (12 cores)
• Intel(R) Xeon(R) W-2255 CPU (Cascade Lake) @ 3.70GHz (10 cores)

Besides the heterogeneity, another characteristic is that the cluster can be usedby several users simultaneously, there is no queuing system.We use one MPI process for the global problem and as many processes asneed to distribute the local problems according to the study. As much as possiblethe MPI processes are allocated to the cores of the same CPUs.
6.1.3 . Academic cases
6.1.3.1 . 2D test-case

The first test-case, Figure 6.1, is supposed to be a 2D approximation of a 3Dturbine blade, it is inspired from [47]. This case comprises two zones of interestin which complex geometrical details are added. In the green zone of interest,the addition of 3 circular holes and a modification at the boundary of the globalstructure can been seen. The yellow patch inside the structure is characterized bythe addition of four square voids.For this case, the subdomain 0 (complementary zone) exists, it is representedin blue in the global model. Null Dirichlet conditions are imposed on the bottomside, null Neumann conditions are imposed elsewhere. A constant body load isgiven. These two areas of interest have a refined mesh compared to the comple-mentary area.
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(a) Global problem
(b) Zones of interestCe cas contient une zonecomplémentaire

Figure 6.1: 2D academic test-case

The idea of the study will be to consider linear or nonlinear behaviors and tosee locally what the geometrical details bring. This case composed of 2 patches istoo simple to allow us to conclude on the performance of the asynchronous ver-sion. Still, it allows simple illustrations, and it enables us to close the loop initiatedby our presentation of the global/local coupling of Section 2.3.
6.1.3.2 . 3D test-case

For the second academic study, the idea is being able to generate as manypatches as desired, in particular non-overlapping contiguous patches that coverthe global model. Thus a cuboid domain covered by cuboid patches is consid-ered, see for instance the 8-patch case on Figure 6.2b and the 16-patch case onFigure 6.2a.
Two representations of the cubes are considered. The cubes in the globalmodel are homogeneous, and their mesh is coarse, see Figure6.3a. The cubes inthe local models have refined meshes (see Figure 6.3b), they are heterogeneous,with a spherical inclusion inside each cube (by default the sphere is centered ra-dius is a quarter of the side of the cube, but these parameters vary in some stud-ies, see Figure 6.3c). Note that the fine meshes are built independently on thepatches so that they are not constrained to match at the interface. On the con-trary, the global mesh is conforming at the interface.
The contrast between the material properties of the sphere and of the cube isa parameter of the studies.
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(a) 16 patches (b) 8 patches
Figure 6.2: fig:3Dacad

Null Dirichlet boundary conditions are imposed on one face of the domain,null Neumann conditions are imposed elsewhere. A constant body load is given.

(a) Coarse representation (b) Fine representation
(c) Sphericalinclusion

Figure 6.3: Example of one unit cube with different representations

6.2 . Linear cases

The asynchronous global/local coupling is assessed on two academic exam-ples: the simple 2D case of Figures 6.1a and 6.1b, and the 3D case involving manypatches like in the Figure 6.2b.
For this two linear problems are considered:
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• The Poisson equation, which models thermal problems:
Find u ∶ Ω ⊂ Rd → R

−div(agrad(u)) = f in Ω

u = 0 on BdΩ

Bu

Bn
= 0 on BΩ ∖ BdΩ

(6.1)

For simplicity, homogeneous boundary conditions are used. In some casesa contrast of conductivity coefficient a is used. The source term is simplyequal to 1.
• The linear elasticity equation:

Find u ∶ Ω ⊂ Rd → Rd

div(σ) + f = 0 in Ω

u = 0 on BdΩ

σ ⋅ n = 0 on BΩ ∖ BdΩ

σ = E

1 + ν
(ε(u) + ν

1 − 2ν
tr(ε(u))I)

ε(u) = 1

2
(∇u + (∇u)T )

(6.2)

E is Young’s modulus, and ν = 0.3 is Poisson’s coefficient. In some cases, acontrast of Young’s modulus is used. The source term is simply the vectorwith all components equal to 1.
To avoid redundancy in the results, the results in linear thermal and others inlinear elasticity are either considered both cases are presented only when impor-tant distinctions appear.

6.2.1 . Simple 2D test-case
To begin with the illustrations, the test-case of Figures 6.1a and 6.1b is consid-ered where the patches only introduce geometric alterations. The patches andthe global model are treated on three different cores.As shown in Table 6.1, the problem is of very small dimension, and the patchesare well-balanced, which is in favor of synchronous algorithms.

Problem Global 1st Zone of interest 2nd Zone of interest
Nodes 701 381 379

Table 6.1: Size of the domains or the 2D test case.
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Tables 6.2 and 6.3 present the performance in terms of time and number ofiterations (the numbers in the brackets correspond to the number of solves inthe patches). For these small cases, Aitken remains unbeatable. The interest offinding a good relaxation for the asynchronous iteration is observed to performbetter than the raw synchronous iteration.To explain the choice of optimal relaxation coefficient, in Figure 6.4 the compu-tation times obtained for different relaxation coefficients is presented. The plottends to show a fairly well-marked minimum. Note that the same approach tochoosing the relaxation coefficient is applied to all the examples that will follow.However, the value of the coefficient is insignificant as it depends not only on themechanical problem but also on the hardware configuration, so we did not find ituseful to systematically write it.

Figure 6.4: Relaxation coefficient study for thermal problem
What is more interesting to observe is the large amount of computation thatcan be done by the asynchronous solver thanks to the removal of waiting time.

6.2.2 . Preliminary study
• Linear elasticity problem
• 16 subdomains 6.2a
• Heterogeneity: Young’s modulus in the spherical inclusion is 100 times lowerthan in the rest of the cube, the global model uses the stiffer modulus.
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Variant Sync. Sync. Async. Async.
ω = 1 Aitken ω = 1 ωoptTime (s) 0.31 0.17 0.4 0.26#iter. glob. 23 12 43 35#loc. sol. [min, max] ⋅ ⋅ [95, 106] [82, 85]

Table 6.2: 2D test-case: performance for thermal problem.
Variant Sync. Sync. Async. Async.

ω = 1 Aitken ω = 1 ωoptTime (s) 0.67 0.3 0.6 0.52#iter. glob. 43 16 53 48#loc. sol. [min, max] ⋅ ⋅ [112,119] [100,107]
Table 6.3: 2D test-case: performance for the elasticity problem.

• Convergence criterion: global residual < 10−7

Problem Global Local (One subdomain)Numbre of nodes 2675 1249
Table 6.4: Mesh data for subsection 6.2.2

Considering these data, several machine configurations are tested. In the dif-ferent situations, comparing the two synchronous models (with optimal relax-ation) presented in the previous chapter (with and without waiting for new in-formation) with the synchronous Aitken.
• 1 16-core machine oversubscribed with 17 MPI processes. In this case study,the local ethernet network is not used. The case of a shared memory con-figuration within a single machine is considered.

Aitken Asynchronous with wait Asynchronous w/o wait#iter #iter. glob. [[min, max] #loc.] #iter. glob. [[min, max] #loc.]#time (s) #time (s) #time (s)21 & 37.65s 540[62, 92] & 14.18s 649[71, 106] & 15.83s

• 2 10-core CPUs non-oversubscribed for 17MPI processes. The idea it to forcethe use of the local ethernet network between the machines. However, Inthis configuration the machines are in fully utilized.
Aitken Asynchronous with wait Asynchronous w/o wait#iter #iter. glob. [[min, max] #loc.] #iter. glob.[[min, max] #loc.]#time (s) #time (s) #time (s)21 & 7.36s 64[64, 65] & 6.67s 458[60, 106] & 6.65s
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• 17 CPUs using 1 core per machine. In this situation the CPUs are not muchsolicited but all the communications pass through the network.
Aitken Asynchronous with wait Asynchronous w/o wait#iter #iter. glob. [[min, max] #loc.] #iter. glob. [[min, max] #loc.]#time (s) #time (s) #time (s)21 & 4.79s 67[67 - 68] & 8.77s 749[65, 171] & 8.81s

Comparing the computation times, it can be seen that the two asynchronousmodels are much faster than the Aitken in the first case with an oversubscribedmachine. the difference decreases in the second case, but the two asynchronousmodels remain faster. In the third case, where machines have a light computa-tional load, as the load balance is almost perfect, the processes are naturally pro-gressing synchronously, and the Aitken technique is faster than the asynchronousmodels.
In a second analysis, the number of iterations is compared. As expected, Aitkenis a deterministic method which requires the same number of iterations in the 3cases.However,the asynchronous model without wait has a very variable numberof iterations depending on the configuration, with a significant number of globaliterations compared to the local ones, due to the repetition of the global compu-tations without new piece of information.For the asynchronousmodel with wait, It can be seen that in the first case witha single machine, the number of iterations varies between global and local prob-lems. However, the passage to several machines linked by the local ethernet net-work leads to a similar number of iterations between the local and the global. Infact our Ethernet network does not support RDMA communication by default, andit generates implicit synchronizations when MPI.win.Lock and MPI.win.Unlockcommands are used to check if new data is available in the target processor.Thus, to remain in a purely asynchronous mode, the following studies theasynchronousmode without waiting is considered for the analysis of the study in-troducing several calculation machines. However, the asynchronous model withwaiting will be used for the cases with few patches where the calculation can bedone within a single machine. Note that other infrastructures, like infiniband, al-low RDMA networking.

6.2.3 . Rate of communication study
In order to better grasp the impact of synchronization on communication andwaiting time, a preliminary study is proposed based on the thermal problem seton the well-balanced 64-subdomain case (with a heterogeneity ratio of 100, thethermal diffusion coefficient in the spherical inclusion being 100 times lower thanin the rest of the cube). The dimensions of the problems are recalled in Table 6.5.Different numbers of MPI processes are used. This means that for less that 65
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processes, one MPI rank has to handle several subdomains. The percentage ofcommunication time in the total simulation time is presented, for a convergencetolerance of 10−7 for the norm of the residual.
Problem Global Local (One subdomain)Number of nodes 1449 1858

Table 6.5: Mesh data
First, the synchronous and asynchronous iterations are compared without re-laxation.
#ranks Synchronous Asynchronous#iter #iter. glob.[#loc. sol. [min, max]]#time (s) #time (s)[% communication time] [% communication time]
9 – & ≥1h 7683[980, 1109] & 455s [8%]
17 – & ≥1h 7682[1804, 3856] & 469s [17%]
33 – & ≥1h 7692[3828, 7364] & 481s [35%]
65 7707 & 5362.83 [94.8%] 7692[3249, 7737] & 489.81s [63%]

Table 6.6: Analysis of the time spent in communication (64-subdomain thermalcase) without relaxation.
In table 6.6, the number of iterations, the calculation time, and the percentagethat the communication time represents of this calculation time are summarized.
For the synchronous version, the cases studied could not finish their calcula-tion after one hour, which corresponds to the time allocated on the machines,except the last case with 65 CPUs, where a very high percentage (95%) of timespent in communication are seen. This result can be explained by several factors,the most important of which is the sequential side of the method, which imposessynchronization when sending data from global to local and local to global. Onecan also note that the computational load is very light, somost of the time is spentmanaging communications.
In the asynchronous case, It can be seen that the computation time is quiteclose in all the cases and more than ten time faster than the synchronous ver-sion, with a global number of iterations almost constant in all cases. However,the number of local iterations changes from one case to another because thecomputation load per CPU decreases, which leads to the increase of the numberof iterations performed, one can also see that the percentage of communicationincreases with the rise of the number of processes, it remains around 65% in thecase involving 65 processes.
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Now, the focus is on the case where the comparison is between the Aitkenaccelerator for the synchronous iteration and optimal relaxation for the asyn-chronous iteration.
#ranks Aitken Asynchronous#iter #iter. glob.[#loc. sol. [min, max]]#time (s) #time (s)[% communication time] [% communication time]
9 25 & 11.72s [30%] 334[49, 54] & 22.4s[10%]
17 25 & 8.08s [80%] 182[56, 77] & 13.25s[10%]
33 25 & 4.53s [71%] 104[65, 124]& 8.13s[16%]
65 25 & 8.57s [97%] 105[81, 160] & 8.40s[46%]

Table 6.7: Analysis of the time spent in communication (64-subdomain thermalcase).
The same study as in the previous one is considered. On Table 6.7 it can beobserved that, in this case, the asynchronous approach is globally slower than theaccelerated synchronous one. However, the proportion of time spent in commu-nication increases strongly in the synchronous case (up to 97%) and much moremoderately in the asynchronous case (never more than 50%), which leads to theasynchronous approach being faster in the 65-process case. In particular the tran-sition between one node (9 subdomains) computation and two nodes (17 subdo-mains) leads to a strong increase of the time spent in communication in the syn-chronous case whereas it is unmoved in the asynchronous case.

6.2.4 . Weak scalability 3D test-case
Now the academic 3D case is considered. The idea is to realize a study of weakscalability. A cubic geometry as in Figure 6.5 is preserved while adding patches.The cases made out of n3 (n = 2 . . .7) cube patches are treated. As classically doneforweak scalability assessment of domain decompositionmethods, the size of thedomain increases with the number of subdomains. Note that the whole domainis covered with patches (Ω0 = ∅). The Global model is homogeneous, whereas theLocal models contain one softer spherical inclusion, see Figures 6.5a and 6.5b.One side of the Global model is submitted to Dirichlet conditions. In the case ofthermal problems, the inclusions have a diffusion coefficient 10 times lower thanthe rest of the domain, whereas in the elasticity case the Young’s modulus in theinclusions is 100 times lower than in the rest of the domain.Even if their meshes are not identical, the patches are well-balanced in termsof degrees of freedom and numerical complexity (since the problem is linear). Ofcourse, the Global model grows along the study, from 8 times smaller than onepatch to 3.7 times larger. Table 6.8 sums up the number of nodes for each case.Figures 6.6 and 6.7 compare the performance in wallclock time of the relaxed
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(a) Global model (b) Reference model
Figure 6.5: Weak scalability test-case: 2 × 2 × 2 subdomains

# of subdomains 8 27 64 125 216 343
Global 233 667 1449 2681 4465 6903Local (1 subdomain) 1858 1858 1858 1858 1858 1858

Table 6.8: Number of nodes in the meshes for the weak scalability study.
asynchronous iteration (with hand-tuned relaxation) and the synchronous itera-tionwith Aitken’s dynamic relaxation. The good performance of the asynchronousversion is observed despite the good load-balance.For small test-cases (8 and 27 subdomains), the size of the global problem isnegligible compared to the locals’. This means that the sequential phase of thesynchronous coupling is realized very quickly and this leads to the Aitken acceler-ator being faster than the asynchronous solver. However, for 64 subdomains andmore, this step becomes heavier and takesmore synchronous time. For the asyn-chronous method, the Global solve is realized simultaneously as the locals’. Thus,the execution time increases very slightly from one case to another and remains2 to 3 times lower than for Aitken.
#patches 8 27 64 125 216 343
Aitken #iter. 11 13 12 11 11 11Async. #iter. glob. 255 256 87 65 69 71Async. #loc. sol. [min, max] [32,39] [43,74] [49,153] [84,207] [276,694] [407,2902]

Table 6.9: Weak scalability: Number of iterations in the thermal case.
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Figure 6.6: Time performance in theweak scalability study for linear thermal prob-lem
#patches 8 27 64 125 216 343
Aitken #iter. 22 21 25 25 26 29Async. #iter. glob. 2065 1349 372 296 295 209Async. #loc. sol. [min, max] [78,240] [102,237] [128,475] [157,517] [147,514] [175,407]

Table 6.10: Weak scalability: Number of iterations in the elasticity case.

Tables 6.9 and 6.10 gather the number of iterations for each case. In the asyn-chronous case, the number of Global solves is given as well as the minimum andmaximum numbers of patches’ solves.
The number of iterations barely varies in the synchronous experiments (inparticular for the thermal problem) for all studied cases. For the asynchronoussolver, it can be seen that in the 8 and 27 subdomains where the global problemis very light, many more solves are performed by the global model than by thelocal models. Because of the non-waiting asynchronous model, the global prob-lem repeats several times the same calculation without having new input fromthe locals. However when the size of this problem increases for the case with 64and 125 subdomains, the locals make more repetitive iterations while waiting forthe update of the global problem, this last one performs only a few iterations.
Note the performance achieved in the elasticity case (2 times faster) despitethe tremendous number of iterations (7 times more).
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Figure 6.7: Time performance in the weak scalability study for linear elasticityproblem
6.2.5 . Load imbalance study

The previous studies considered an almost perfect load balance. In this sec-tion, the case of load imbalance is studied, which is very interesting to show theeffect of synchronization and the advantages that the asynchronous model canbring.This study has been carried out on the 128-patch geometry (Figure 6.8) withdimensions given in Table 6.11. The Young’s modulus in the spherical inclusion is100 times lower than in the rest of the cube, with a global residual norm aimed tobe lower than 10−7

Problem Global Local (One subdomain)
Numbre of nodes 2769 1254

Table 6.11: Mesh data
The idea, in this case, is to assign a different computational load to each core,assuming having a limited number of cores at disposal; in this case, just 65 cores.The distribution of tasks being random, the following two cases are considered:
1. Access to all the cluster’s machines, but only allocate a certain number ofcores per machine. So the machines work less. However, exchanging infor-mation is larger because it involves many machines.
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Figure 6.8: 128 subdomains with Ω0 = ∅

Model Aitken Relaxed asynchronous
Time(s) 150 130.07Async. #iter. glob. 24 239Async. #loc. sol. [min, max] - [70 - 338]
In the asynchronous case, despite the very large number of iterations real-ized in global and local it is still faster. The significant difference betweenthe minimum and the maximum number of iterations due to the load im-balance can be seen. This situation, which in some way disadvantages thesynchronous, allows to see that the asynchronous is more adapted to a loadimbalance situation.

2. Consider a limited number of machines that allows it to reach 65 cores. In-tensively used machines and a less solicited exchange network
Model Aitken Relaxed asynchronous
Time(s) 286.9 177.27sAsync. #iter. glob. 24 353Async. #loc. sol. [min, max] - [69 - 417]
Globally the computation times are larger than in the previous situation,the strong solicitation of the machines penalizes the synchronous, and theasynchronous algorithm is significantly faster.

In a second study, the idea is to evaluate the influence of a significant dise-quilibrium in the number of nodes to be handled by processors. It starts from ageometry formed with a 16x4x4 repetition of cubes with spherical inclusion. Fig-ure 6.9b corresponds to the global problem on the structure with (quasi-identical)homogeneous subdomains. Each Fine subdomain has a randomly chosen num-ber of nodes compared to the other subdomains, allowing to have very refinedsubdomains and others slightly refined, see Figure 6.9a.The table 6.12 summarizes the number of nodes for the global problem andthe smallest and largest number of nodes among the 256 Fine subdomains. Themost refined subdomain is ten times larger than the least refined:
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(a) Reference problem with unbalanced patches

(b) Global representation
Figure 6.9: Load imbalance case with 256 patches

# of subdomains Global Smallest local Biggest localNumber of nodes 5490 534 4698
Table 6.12: Mesh details

First, consider a linear thermal problem with a thermal diffusion coefficientin the spherical inclusion ten times lower than in the rest of the cube (moderateheterogeneity). As usual, convergence is achieved for a residual norm of less than
10−7. The performance is given in Table 6.13.

Variant Sync. Async.Aitken ωoptTime (s) 881.55 79.44#iter. glob. 36 506#loc. sol. [min, max] ⋅ [348, 6788]
Table 6.13: Poor load balancing case: Iterations & Time (thermal problem)
Second, consider a linear elasticity problem, with a Youngmodulus in the spher-ical inclusion 104 times lower than in the rest of the cube (strong heterogeneity). Asusual, convergence is achieved for a residual of less than 10−7. The performanceis given in Table 6.14.
This case study has been performed using 257 cores, one for the global prob-lem and one processor for each one of the 256 local problems.
The number of iteration is very large in the asynchronous case, but the CPUtime is much reduced: 10 times in the thermal case and 2 times for the elasticitycase. Again, this highlights the prohibitive cost of synchronization.

101



Variant Sync. Async.Aitken ωoptTime (s) 3509.6 1904.34#iter. glob. 113 2354#loc. sol. [min, max] ⋅ [818, 2951]
Table 6.14: Poor load balancing case: Iterations & Time (linear elasticity problem)

6.3 . Nonlinear cases

In this section, the nonlinear cases covered by the theoretical study is con-sidered, that is to say the global problem is linear and the local problems aremonotonic. This case study allows introducing another type of load imbalance,associated with the unevenly distributed nonlinear intensity among the patchesdue to structure effects. Two types of nonlinear problems are considered:
• Scalar nonlinear elliptic problem, inspired by [86]:

Find u ∶ Ω ⊂ Rd → R
−div(agrad(u)) + u3 = f in Ω

u = 0 on BdΩ

Bu

Bn
= 0 on BΩ ∖ BdΩ

(6.3)

with f = 1 and u3 the nonlinear term.
• Associated elastoplasticitywith linear kinematic & isotropic hardening

Find u ∶ Ω ⊂ Rd → Rd

div(σ) + f = 0 in Ω

u = 0 on BdΩ

σ ⋅ n = 0 on BΩ ∖ BdΩ
ε(u) = εe + εp

σ = E

1 + ν
(εe + ν

1 − 2ν
tr(εe)I)

Yield function f(σ,α) = ∥Dev(σ − 2

3
Hkε

p)∥ − 2

3

√
σy0 +Hiα ⩽ 0

(6.4)

where εe is the elastic part of the strain tensor and εp the plastic part. Hiand Hk are the positive scalar isotropic and kinematic hardening modulus.A classical θ-scheme is used for the (pseudo)-time integration. This modeland solution technique are readily available in GetFem.
Only one load increment is considered in the following. In the respective works,the asynchronous for the parallelization in time will be considered based on [15]in synchronous, in which several cyclic loadings are considered.
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6.3.1 . Preliminary study
The focus will be on cases where the load imbalance is due to the intensity ofthe nonlinearity. First study the 128-subdomain case of Table 6.11. the sphericalinclusions are considered non-linear whereas the rest of the structure evolveslinearly. Subdomains near the Dirichlet conditions are submitted to a strongernonlinearity than others.

Variant Sync. Aitken Async. ωoptTime(s) 31.5 15.84#iter. glob. 30 197#loc. sol. [min, max] ⋅ [242-1315]
Table 6.15: Iterations & Time (Nonlinear scalar elliptic inclusion)

Variant Sync. Aitken Async. ωoptTime(s) 508 155#iter. glob. 25 84#loc. sol. [min, max] ⋅ [119 - 428]
Table 6.16: Iterations & Time (Nonlinear plastic inclusion)

Tables 6.15 and 6.16 show the results obtained in the case of scalar and elasto-plastic problems. Like in the linear case, the number of iterations is much moreimportant with the asynchronous approach but the time is much lower (up to 3times for plasticity).the same studies are repeated this time with the case of 256 subdomains with:Problem Global Local (One subdomain)Number of nodes 5490 2308
Variant Sync. Aitken Async. ωoptTime(s) 304.33 87.6#iter. glob. 30 240#loc. sol. [min, max] ⋅ [412 - 7425]

Table 6.17: Iterations & Time (Nonlinear scalar elliptic inclusion)

Variant Sync. Aitken Async. ωoptTime(s) 703 403#iter. glob. 30 95#loc. sol. [min, max] ⋅ [181 - 594]
Table 6.18: Iterations & Time (Nonlinear plastic inclusion)
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Tables 6.17 and 6.18 show the obtained results. Similar conclusions can beendrawn. In a hard-to-predict manner, the gain is improved in the scalar case andreduced in the plastic one.
6.3.2 . Weak scalability

the same study as Subsection 6.2.4 is conducted but with nonlinear inclusions.

Figure 6.10: Weak scalability: time in the nonlinear thermal case.

#patches 8 27 64 125 216 343
Aitken #iter. 5 10 14 20 24 30Async. #iter. glob. 720 41 65 151 207 229Async. #loc. sol. [min, max] [11 - 27 ] [40 - 41] [45 - 54] [103 - 177] [216 - 398] [306 - 729]
Table 6.19: Weak scalability: Number of iterations in the nonlinear thermal case.

Figure 6.10 and Table 6.19 present the performance of the methods in thescalar case. As soon as enough patches are involved, the asynchronous versionbehaves much better than its synchronous counterpart, with a ten-fold reductionin time.
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Figure 6.11: Weak scalability: time in the plasticity case.

#patches 8 27 64 125 216 343
Aitken #iter. 25 23 23 25 26 27Async. #iter. glob. 1083 72 77 81 99 96Async. #loc. sol. [min, max] [68 - 191] [84 - 183] [106 - 241] [126 - 490] [152 - 410] [178 - 518]

Table 6.20: Weak scalability: Number of iterations in the plasticity case.

Figure 6.11 and Table 6.20 present the performance of the methods in theelastoplastic case. Here, the time vs patches curve is much flatter in the asyn-chronous case, which corresponds to a much more scalable method.
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Figure 6.12: Von Mises stress in the case of 8 subdomains
Figure 6.12 shows the von Mises stress in the case with eight subdomains, inorder to illustrate the fact that some spherical inclusions could reach their plasticlimit = 3750, but others remained in an elastic regime.

6.4 . 3D industrial problem

In this part, a test case inspired by an industrial problem is considered. The ge-ometry corresponds to the turbine blade of an aircraft engine. The Global modelmakes use of a simplified geometry which omits cooling micro-perforations. Thetwo zones of interest are two critical regions of the domain where the precisegeometry (with the perforations) is taken into account, see Figures 6.13 and 6.14.The number of nodes of the meshes are given in Table 6.21, it can be see thatone zone of interest is about two times larger than the other one which is roughlyof the same size as the Global model.
Problem Global 1st Zone of interest 2nd Zone of interestNodes 3.105 3.105 6.105

Table 6.21: Mesh data for the industrial test-case
The parallel analysis is conducted using three cores: one for the global prob-lem and the other two for each zone of interest. Note that it appears that somedifficulty in configuring the linear solver has appeared embedded in GetFem andthe solution time of the mechanical systems was unexpectedly long compared towhat can be observed with industrial software dealing with similar problems.
First, a linear thermal problem is considered with a constant source term.Table 6.22 presents the computation times of the relaxed asynchronous, thesynchronous without relaxation, and the Aitken model. The simplicity of the lin-ear behavior allows a fast convergence with Aitken, and the asynchronous com-
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Figure 6.13: Global problem Figure 6.14: Zones of interest

Variant Sync. Sync. Async.
ω = 1 Aitken ωoptTime (s) [% communication time] 1447s[76.7%] 836.43s [30.46%] 1444.2s[2%]#iter. glob. 21 12 90#loc. sol. [min, max] ⋅ ⋅ [91 - 32]

Table 6.22: 3D test-case: performance for thermal problem.

putation with optimized relaxation does barely better than the raw synchronousiteration. Comparing these two configurations, the communication time is negli-gible for the asynchronous approach (2%) whereas it is predominant in the syn-chronous case (76%). A better direct linear solver in the subdomains would havelead to better performance for the asynchronous iteration.
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Figure 6.15: Temperature by the global local solution

Figure 6.16: Gradient obtained by the global local solution
Figures 6.15 and 6.16 show the evolution of the temperature and its gradient
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inside the turbine blade. As expected, it can be seen that the gradient is significantin the towers of the holes added in the zones of interest.In a second time, the study of this problem is considered in the case where theglobal problem, as well as the local ones, are nonlinear. This study is a step aheadof our theory because the proof of convergence in the totally nonlinear case is notyet established. The performance is summed up in Table 6.23
Variant Sync. Async.Aitken ωoptTime (s) 3351 2055#iter. glob. 13 19#loc. sol. [min, max] ⋅ [6-16]

Table 6.23: 3D test-case: performance for the nonlinear case.
The asynchronous iteration is about 30% faster than the accelerated (Aitken)synchronous iteration. The largest subdomain needs fewer iterations in the asyn-chronous case (6) than in the synchronous case (13); in fact what mattered washaving the Global and other subdomain sufficiently converged.
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7 - Conclusion

In this work, a newmethod of asynchronous parallelization of the non-invasiveglobal local coupling has been proposed. This new method has significantly im-proved themethod’s performance by limiting the degradation due to the alternat-ing nature of the method’s calculations. This work focused on three main steps:
• The formulation of the method in the form of a primal domain decomposi-tion method: a first contribution of this work has been to review the stateof the art on the global local coupling method and its history. The methodhas been studied from a theoretical point of view, starting from the basicvariational formulation, to the finite element condensed system on the in-terface, which allowed the interpretation of the coupling as a primal domaindecomposition method of the reference problem, right-preconditioned bythe global problem. This preconditioner is less capable of HPC than the tra-ditional BDD, but it embeds two-levelmechanical informationwhich permitsmore flexibility and, especially in this case, allows the use of fixed point iter-ation paving the way to asynchronous iterations.
• Theoretical study of the convergence in asynchronous: after the analysis ofthe method in its current form, it was possible to take a step forward bysetting up an original theoretical study of convergence in the asynchronouscase, based on paracontraction techniques. Two cases were distinguishedaccording to the behavior of our local problems while considering the possi-bility of adjacent and non-adjacent patches, which corresponds to the pres-ence or not of a complementary domain. The global problem was linear inall the studies. First, linear local patches were considered, and thanks tothis property, the contraction could be rephrased in terms of the spectralradius of a matrix applied to the “history vector”, i.e. vector with delayedcomponents, which allowed for the deduction of the convergence for a suf-ficiently small relaxation. Second, the nonlinear case with monotonic localpatches was considered, which corresponds to a large class of problems insolid mechanics. In that case, the linear global system provided a favorableHilbert space where it was possible to directly bound the error between theexact solution and the iteration. This permitted the explanation of variousphenomena like the sawtooth convergence with decreasing errors peaks forsufficiently small relaxation, and themonotone convergence for smaller (butnot too small) relaxation.
• Implementations and numerical results: for the implementation part of thecoupling, the non-intrusive aspect of themethod allowed the use of a partic-ular finite element library as a black box and tomanage the communications
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between the different sub-domains using an advanced technique in asyn-chronous parallel computing called RDMA. The asynchronous non-invasiveglobal local coupling algorithm developed in this thesis proved to be moreefficient, scalable, and robust than the synchronous one coupled with theAitken accelerator through a series of numerical experiments and compar-isons. Important insights into the trade-offs between communication over-head, load balancing, and accuracy in asynchronous domain decompositionmethods were provided.
The application of asynchronous iterations can be extended to more complexcomputational problems, such as plasticity andnonlinear elliptic problems, demon-strating the potential of asynchronousmethods to tackle a wide range of scientificand engineering problems. Overall, the findings of this work have the potentialto impact the design and development of parallel algorithms for a wide range ofapplications. The results provide a solid foundation for future work and pave theway for developing even more advanced and efficient parallel algorithms. Thereare several promising directions for future research in this area, including:

• Finding an efficient protocol to estimate the optimal relaxation parameter,and even better adapting the relaxation to the data available at a given itera-tion. More generally trying to derive algorithmic asynchronous accelerators.
• Using hardware accelerators, such as graphics processing units (GPUs), toexplore hybrid techniques that combine the benefits of multiple acceleratortechnologies.
• Setting up a theoretical study to extend the proofs obtained in this workto the case where the global problem is also nonlinear (monotone), sinceconvergence has been observed in practice.
• Implementing time asynchronism to deal with complex history of loads, witha particular interest in the determination of stabilized elastoviscoplastic cy-cles [15].
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A - Résumé

A.1 . Le couplage global/local

Le couplage global/local est uneméthode puissante permettant d’améliorer laprécision des résultats mécaniques en prenant en compte les effets locaux dansun modèle global. Cette méthode combine les avantages d’un modèle grossier(efficacité de calcul, représentation générale du système) avec les détails fournispar des modèles plus fins.L’approche du couplage global/local peut être mise en œuvre en utilisant desméthodes de traitement et des procédures d’entrée/sortie standarddans les codeséléments finis. Cela facilite son intégration dans les flux de travail existants, sansnécessiter demodificationsmajeures du code oud’interfaces personnalisées. Descodes commerciaux tels que Abaqus ou Code_Aster prennent en charge cetteméthode, ce qui permet aux ingénieurs de l’industrie de l’adopter facilement.Sur le plan conceptuel, le couplage global/local peut être considéré commeune méthode de décomposition de domaine. Cela signifie que le domaine globalest divisé en sous-domaines, où desmodèles plus fins sont utilisés pour résoudreles problèmes locaux. Ces sous-domaines sont ensuite couplés au modèle globalen appliquant des conditions aux limites appropriées. L’interaction entre lesmod-èles globaux et locaux permet de tenir compte des effets locaux sur le comporte-ment global du système.Malgré sa robustesse et sa non-intrusivité, la parallélisation du couplage glob-al/local reste un problème significatif. Comme l’explique la littérature, plusieursétudes de cas impliquent l’utilisation de patchs et la parallélisation de ces patchsà l’aide de MPI. Les performances du couplage restent limitées, même si la paral-lélisation de ces patchs locaux peut permettre un gain de performance. La syn-chronisation à la fin de chaque calcul local oblige tous les patchs à attendre lafin du dernier calcul des patchs les plus lourds en termes de temps de calcul, cequi pose le problème central de l’équilibrage de charge. Un deuxième problèmeque cette méthode rencontre, comme toutes les méthodes en deux étapes, estque l’évaluation du problème global est effectuée séquentiellement avec les prob-lèmes locaux. Cela signifie que même si les patchs sont bien équilibrés et paral-lélisés, il y aura une période d’inactivité pendant que le problème global effectueses calculs, ce qui rend la méthode non évolutive en utilisant des techniques deparallélisation synchrones classiques.Pour résoudre ces problèmes, des approches asynchrones ont été proposées.Les itérations asynchrones permettent aux processeurs de travailler de manièreindépendante dès qu’ils ont des données à traiter, sans attendre les autres. Celaréduit le temps d’attente inutile et améliore l’utilisation des ressources de calcul.De plus, les itérations asynchrones offrent unemeilleure tolérance aux retards de
113



réseau, aux déséquilibres de charge et aux architectures fortement hétérogènes.

A.2 . Le couplage global/local asynchrone

A.2.1 . Algorithme asynchrone
L’idée fondamentale de l’algorithmeasynchrone est de tirer parti desmomentsd’inactivité des processeurs pour effectuer des calculs. Dès qu’une nouvelle don-née est disponible, le système détecte un processeur libre et lance immédiate-ment le calcul correspondant. Cette approche asynchrone permet d’optimiserl’utilisation des ressources de calcul en évitant les temps d’attente inutiles.La séquence temporelle asynchrone, illustrée dans la Figure 4.1, met en év-idence le fait que l’élimination de la synchronisation accroît l’intensité du calcul.En évitant une coordination stricte entre les processeurs, chaque processeur peuttravailler de manière indépendante dès qu’il dispose de données à traiter. Celaaccélère le processus global de calcul.L’algorithme asynchrone est détaillé dans l’Algorithme ??. Il est important denoter que, dans chaque itération, le modèle global effectue toujours une opéra-tion d’assemblagepour construire un résidu. Cette caractéristique est avantageuse,car elle facilite la détection de la convergence. La présence d’un résidu permet demesurer la différence entre les résultats actuels et les résultats attendus, et dedéterminer si le processus de calcul a atteint un état de convergence satisfaisant.Dans d’autres méthodes, cette étape peut poser des problèmes, mais dans notreapproche, elle est simplifiée grâce à la construction régulière du résidu.En conclusion, en adoptant une approche asynchrone et en exploitant les tempsd’inactivité des processeurs, notre méthode permet d’optimiser l’utilisation desressources de calcul et d’accélérer le processus global de calcul. La détection de laconvergence est facilitée grâce à l’assemblage régulier d’un résidu, ce qui améliorel’efficacité et la fiabilité de notre méthode par rapport à d’autres approches exis-tantes [74, 79].Une preuve théorique de convergence de l’algorithme asynchrone global/localpeut être établie en utilisant le cadre des paracontractions [31]. Le résultat prin-cipal indique que pour une certaine valeur donnée du paramètre de relaxation,l’itération asynchrone converge avec des pacthes locaux lineaire et non lineaireset un probleme global lineaire.Cependant, un inconvénient de l’algorithme asynchrone est qu’actuellement,aucune stratégie d’accélération n’est disponible. Néanmoins, il convient de soulignerque l’algorithmeasynchroneprésente des avantages importants en termesd’utilisationefficacedes ressources de calcul disponibles. Il permet d’exploiter les tempsd’inactivitédes processeurs et d’effectuer des calculs dès que de nouvelles données sontdisponibles.

A.2.2 . Implémentation
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La mise en œuvre d’un protocole de communication asynchrone a fait l’objetde plusieurs travaux de recherche, généralement basés sur MPI, comme décritdans l’article [75], où l’idée est d’utiliser une communication classique bidirection-nelle. Cependant, de nouvelles recherches basées sur une communication unidi-rectionnelle [112, 48], également connue sous le nom de MPI-RDMA, ont prouvél’efficacité de ces techniques et leur adaptation à la communication asynchrone.Les performances de ces techniques dépendent de la version de MPI utiliséeet du réseau. Nous avons réalisé des tests sur plusieurs configurations : OPEN-MPI, INTELMPI, MPICH, et différentes architectures réseau telles que l’Ethernetclassique, l’Infiniband plus avancé ou Intel OPA. L’influence de ces choix a été ob-servée dans les communications asynchrones, parfois avec une synchronisationimplicite imposée par le réseau ou des opérations de communication moins per-formantes selon la version de MPI.L’idée générale de RDMA (Remote Direct Memory Access) est de permettrel’accès aux données sur d’autres machines sans impliquer la machine cible. Nouscréons une partie de la mémoire appelée fenêtre dans laquelle nous plaçons lesdonnées recherchées. Les autres machines peuvent effectuer des opérationsde type PUT ou GET pour mettre à jour ces informations dans la fenêtre ou lesrécupérer et les utiliser par la suite. Cette idée est donc bien adaptée au calculasynchrone car nous sommes dans une procédure où nous n’avons pas besoind’interrompre le calcul pour effectuer des opérations d’envoi ou de réception.Les figures 5.2 et 5.3 correspondent à une communication entre un processeur0 et un processeur 1, où ce dernier effectue deux opérations de communicationPUT et GET sur le processeur 0 pour recevoir la valeur X et envoyer la valeur Y.Ces deux opérations, comme mentionné précédemment, sont effectuées sansimpliquer le processeur 0.Ces communications sont généralement suivies d’une étape de synchronisa-tion. On distingue deux types de synchronisation dans RDMA : la synchronisa-tion active, où nous effectuons une opération collective pour mettre à jour tout lemonde avant depasser d’une itération àune autre avec la commandeMPI_WIN_Fence(),et la synchronisation passive, utilisée dans le mode asynchrone. Cette techniqueconsiste à synchroniser chaque processeur sans nécessairement effectuer unesynchronisation globale. Chaqueprocesseur ouvre une époque avecMPI_Win_locket effectue ces opérations PUT et GET dans cette époque avant de la fermer avec
MPI_Win_Unlock. Les opérations d’achèvement d’envoi MPI_Win_Flush suiventces opérations à l’intérieur de cette époque pour garantir que l’envoi est terminé.

A.3 . Résultats numériques

Dans le cadre de nos résultats numériques, nous avons utilisé notre code im-plémenté en Python, qui est soutenu par divers outils et logiciels. Nous avonsutilisé GMSH pour générer les géométries et les maillages des cas étudiés, tandis
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que la bibliothèque Getfem a été utilisée pour l’approximation par éléments finis.Pour la partie parallèle, nous avons fait appel à la bibliothèque mpi4py.Les expériences ont été réalisées sur le cluster du centre de simulation LMPS,en utilisant plusieurs postes de travail connectés par un réseau Ethernet. Il con-vient de noter que ces machines présentent une certaine hétérogénéité, avecdifférentes générations de processeurs Intel, notamment Intel(R) Xeon(R) CPUE5-1660 v3 (Haswell) @ 3.00GHz, Intel(R) Xeon(R) CPU E5-2630 v4 (Broadwell) @2.20GHz, Intel(R) Xeon(R) Silver 4116 CPU (Skylake) @ 2.10GHz, et Intel(R) Xeon(R)W-2255 CPU (Cascade Lake) @ 3.70GHz.Nous avons effectué des comparaisons entre les versions synchrone et asyn-chrone, en tenant compte de la présence ou de l’absence de relaxation. Dans lecas synchrone, nous avons utilisé l’accélération d’Aitken pour adapter dynamique-ment la relaxation. En revanche, pour le cas asynchrone, nous avons procédéà des essais et erreurs afin de trouver le meilleur coefficient de relaxation pourobtenir les résultats optimaux.Nos résultats numériques visaient à confirmer les résultats théoriques présen-tés précédemment et à évaluer les performances de l’algorithme asynchrone parrapport à la version synchrone. Pour ce faire, nous avons étudié une variété deproblèmes, qu’ils soient linéaires ou non linéaires. Nous avons commencé pardes cas académiques relativement simples en 2D, puis nous avons progressive-ment augmenté la complexité en passant à des cas académiques et industrielsplus avancés en 3D.L’objectif était de comparer les performances des algorithmes asynchrone etsynchrone dans différentes situations de couplage global/local, en prenant encompte le nombre de patchs impliqués. Nous avons également examiné la scala-bilité faible de notre approche, ainsi que les problèmes de déséquilibre de chargeauxquels nous sommes régulièrement confrontés dans ce type de simulations.Ces résultats numériques nous permettent de valider nos conclusions théoriques,d’évaluer l’efficacité de l’algorithmeasynchronepar rapport à la version synchroneet de mieux comprendre les performances de notre approche dans différentesconfigurations de problèmes.

A.4 . Conclusion & Perspectives

Ce travail a introduit une nouvelle méthode asynchrone de couplage global-local non invasif, qui a considérablement amélioré les performances par rapport àla méthode synchrone. Les principales étapes de cette méthode comprennent laformulation du couplage sous la forme d’une décomposition de domaine primale,l’étude théorique de la convergence en mode asynchrone, ainsi que la mise enœuvre et les résultats numériques qui ont confirmé l’efficacité et la robustesse del’algorithme asynchrone par rapport à sa version synchrone.Les itérations asynchrones ont démontré leur capacité à être étendues à des
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problèmes plus complexes tels que la plasticité et les problèmes elliptiques nonlinéaires, ce qui témoigne de leur potentiel pour résoudre une large gamme deproblèmes scientifiques et d’ingénierie. Les résultats de cette étude ont des im-plications significatives pour la conception d’algorithmes parallèles dans diversdomaines d’application.Plusieurs pistes prometteuses pour la recherche future ont été identifiées.Tout d’abord, il est essentiel de trouver des méthodes efficaces pour estimerle paramètre de relaxation optimal, voire développer des accélérateurs algorith-miques asynchrones. De plus, l’utilisation d’accélérateurs matériels tels que lesGPU ou l’exploration de techniques hybrides combinant différentes technologiesd’accélération ouvrent denouvelles perspectives. Une autre direction de rechercheimportante consisterait à étendre les preuves théoriques obtenues dans ce travailaux problèmes globaux non linéaires, qui sont souvent rencontrés dans de nom-breuxdomaines de lamécaniquedes solides. Enfin, l’applicationde l’asynchronismetemporel pour gérer les charges complexes, en particulier pour la déterminationdes cycles élastoviscoplastiques stabilisés, représente un domaine de rechercheintéressant à explorer.Dans l’ensemble, cette étude a fourni une base solide pour les travaux futursdans le domaine du couplage global-local asynchrone. Les résultats obtenus ontdémontré l’efficacité et la pertinence de l’algorithme asynchrone par rapport à laméthode synchrone, tout en ouvrant la voie au développement d’algorithmes par-allèles plus avancés et efficaces pour résoudre une grande variété de problèmesscientifiques et d’ingénierie.
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B - Appendices

B.1 . Windows free and allocation

Code Listing B.1: Creation of the Global displacement window
#The Global Displacement vector

uG = np.zeros(Gnbd + 1, dtype=float)

#The rank 0 does not have to allowed any memory

if rank == 0:

win_uG = MPI.Win.Create(None , comm=MPI.COMM_WORLD)

# The other processor allowing a memory equal to the size of the

Global vector displacement at the

interface

if rank != 0:

win_uG = MPI.Win.Create(uG , comm=MPI.COMM_WORLD)

Code Listing B.2: Creation of the local nodal reaction windows
# Buffers list

rG_win_s = np.zeros (( nprocs - 1, Gnbd + nprocs - 1))

# Windows list

win_rG_s = {}

#The rank 0 creates a number of windows equal to the number of

patches

if rank == 0:

for s in range(0, nprocs - 1):

win_rG_s[s] = MPI.Win.Create(rG_win_s[s, :], comm=MPI.COMM_WORLD)

# The other does not have to allow any memory

if rank != 0:

for s in range(0, nprocs - 1):

win_rG_s[s] = MPI.Win.Create(None , comm=MPI.COMM_WORLD)

Code Listing B.3: Creation of the windows for the convergence detection boolean
# Boolean variable

converged = np.arange(1, dtype='i')

# Initialization

converged[0] = 0

# The processor of rank 0 does not have to allow any window

if rank == 0:

win_conv = MPI.Win.Create(None , comm=MPI.COMM_WORLD)

# Allowing a window of the size of the boolean on each other

processor

if rank != 0:

win_conv = MPI.Win.Create(converged , comm=MPI.COMM_WORLD)

Code Listing B.4: Free the allocated windows
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win_uG.Free()

win_conv.Free()

for s in range(0, nprocs - 1):

win_rG_s[s].Free()

B.2 . Synchronous code

Code Listing B.5: Implementation of the synchronous global/local algorithm
# While the boolean variable equal to 0 we do

while (( converged[0] == 0)):

# Fence collective call for the synchronization (opening an epoch

access for the rank 0 on the

other rank windows)

win_uG.Fence()

# Rank 0 in charge of the global computation

if rank == 0:

# Call of the function global resolution to resolve with a chosen

solver (Aitken , or classic) the

Global Problem , by pG imposing as

an immersed Neuman condition

# pG is updated with the call of this function using the residual

rG_j

uG, rG_j , rG_j_1 , omega_new = \

Resolution_gl.Global_resolution(solveur , rG_j_1 , rG_j , ci,

omega_old , omega_new , pG ,

pG_index , rG , Gmd)

# Rank 0 excute a Put operation , to send the Global displacement

uG to all of the other target

Rank

for i in range(1, nprocs):

win_uG.Put([uG , MPI.DOUBLE], i)

loc_iter += 1

# Fence collective call for the synchronization (closing the

epoch access)

win_uG.Fence()

# Fence collective call for the synchronization (opening an epoch

access for all the processor (

origin) to processor of rank 0 (

target) window)

for s in range(0, nprocs - 1):

win_rG_s[s].Fence()

# Each processor except Rank 0 is in charge of a local problem

computation.

if rank != 0:

# Initialization of local residual computed for each local

problem
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rG_loc[0:Gnbd] = 0

# Call of the function local resolution to resolve the local

Problem , by imposing the

Dirichlet condition uG

for i in range(0, size):

(uF[i], LFonG[Gbound[i]]) = \

Resolution_gl.Local_resolution(Fmd[i], Interpo[i], uG[0:Gnbd],

Gbound[i], new_region_100_fin[i],

uFd[i],C[i], F_index[i], FM[i])

rG_loc[Gbound[i]] += LFonG[Gbound[i]]

loc_iter += 1

# Orgin processors excute a Put operation , to send the nodal

reaction stored on the rG_loc to

the target processor of rank 0

win_rG_s[rank - 1].Put([rG_loc , MPI.DOUBLE], 0)

# Fence collective call for the synchronization (closing the

epoch access)

for s in range(0, nprocs - 1):

win_rG_s[s].Fence()

# Fence collective call for the synchronization (opening an epoch

access for the rank 0 on the

other rank windows) to stop the

algorithm after convergence

win_conv.Fence()

if rank == 0:

# The processor of rank 0 compute the global residual norm using

the receiving nodal reaction

rG_win_s from the local problems.

norm_rG , rG = Resolution_gl.Residu_computation(Gnbd , nprocs ,

rG_win_s)

print("it", ci, "norm r", norm_rG , "rank:", " ", rank)

ci += 1

# Check if the algorithm converges

if norm_rG < 1.e-6:

# If convergence , updating the boolean value converged and set it

to 1

converged[0] = 1

# Processor of rank 0 sends the value of this boolean to the all

the other target processor

for i in range(1, nprocs):

win_conv.Put([converged , MPI.INT], i)

# Fence collective call for the synchronization (closing the

epoch access)

win_conv.Fence()
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B.3 . Asynchronous code

Code Listing B.6: Implementation of asynchronous global/local couplingwithwait-ing
while converged[0] == 0:

# Rank 0 solves the global problem with a classic solver and a

chosen relaxation coefficient

omega_new

if rank == 0:

uG[0:Gnbd], rG_j , rG_j_1 , omega_new = \

Resolution_gl.Global_resolution(solveur , rG_j_1 , rG_j , ci,

omega_old ,omega_new , pG, pG_index

, rG , Gmd)

# Updating the number of iteration of the global problem

loc_iter += 1

uG[Gnbd] = loc_iter

# The rank 0 open access epoch on each of the other processors

using lock using passive

synchronization then put data and

ensure its completion on the

target processor then close the

access on this target processor.

for i in range(1, nprocs):

win_uG.Lock(i)

win_uG.Put([uG , MPI.DOUBLE], i)

win_uG.Flush(i)

win_uG.Unlock(i)

# All processors except 0 open an access epoch on a passive

synchronization way , checking if

new Global displacement is

available during this epoch.

After reviewing this status , the

epoch is closed.

if rank != 0:

while loc_G == loc_G_prec and converged[0] == 0:

win_uG.Lock(rank)

loc_G = np.copy(uG[Gnbd])

win_uG.Unlock(rank)

loc_G_prec = np.copy(loc_G)

rG_loc[0:Gnbd] = 0

# All processors asynchronously solve the local problems , using

different Global displacements

from various iterations

for i in range(0, size):

(uF[i], LFonG[Gbound[i]]) = \

Resolution_gl.Local_resolution(Fmd[i], Interpo[i], uG[0:Gnbd],

Gbound[i], new_region_100_fin[i],

uFd[i], C[i], F_index[i], FM[i])

rG_loc[Gbound[i]] += LFonG[Gbound[i]]
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loc_iter += 1

rG_loc[Gnbd + rank - 1] = loc_iter

# All processors open access passively on the rank 0,

asynchronously Put nodal reaction

on these windows , ensure its

completion and close the opened

epoch.

win_rG_s[rank - 1].Lock(0)

win_rG_s[rank - 1].Put([rG_loc , MPI.DOUBLE], 0)

win_rG_s[rank - 1].Flush(0)

win_rG_s[rank - 1].Unlock(0)

# Processor 0 opens an access epoch on a passive synchronization

way , checking if new nodal

reactions is available from other

processors during this epoch.

After reviewing this status , the

epoch is closed.

if rank == 0:

while np.array_equal(Glob_c , Glob_c_prec) and converged[0] == 0:

for i in range(0, nprocs - 1):

win_rG_s[i].Lock(0)

Glob_c[i] = rG_win_s[i, Gnbd + i]

win_rG_s[i].Unlock(0)

Glob_c_prec = Glob_c.copy()

# The residual is evaluated and its norm is computed

norm_rG , rG = Resolution_gl.Residu_computation(Gnbd , nprocs ,

rG_win_s)

print("it", ci, "norm r", norm_rG , "rank:", " ", rank)

ci += 1

# If the algorithm converged , open an access epoch on a passive

synchronization way , send the

stopping criterion to all the

other processors to ensure its

completion , and then close these

epochs.

if norm_rG < 1.e-6:

converged[0] = 1

for i in range(1, nprocs):

win_conv.Lock(i)

win_conv.Put([converged , MPI.INT], i)

win_conv.Flush(i)

win_conv.Unlock(i)

Code Listing B.7: Implementation of asynchronous global/local coupling withoutwaiting
%\begin{mypython}[caption={Implementation of asynchronous Global/

Local coupling without waiting},

label=without]

# Rank 0 opens access using passive synchronization to all the

123



target processor windows for

global displacement and boolean

variable for stopping convergence

.

if rank == 0:

win_uG.Lock_all ()

win_conv.Lock_all ()

# All processors except ranks 0 open access on the target rank 0

using passive synchronization ,

for the nodal reaction sends

if rank != 0:

win_rG_s[rank - 1].Lock(0)

while converged[0] == 0:

# Rank 0 solves the global problem with a relaxation coefficient

omega_new

if rank == 0:

uG[0:Gnbd], rG_j , rG_j_1 , omega_new = \

Resolution_gl.Global_resolution(solveur , rG_j_1 , rG_j , ci,

omega_old , omega_new , pG ,

pG_index , rG , Gmd)

# Update the number of iteration of the global problem

loc_iter += 1

uG[Gnbd] = loc_iter

# Put the global displacement to all the target processors and

ensure the completion of the

operation to all these processors

using Flush_all ()

for i in range(1, nprocs):

win_uG.Put([uG , MPI.DOUBLE], i)

win_uG.Flush_all ()

# All processors asynchronously solve the local problems , using

different Global displacements

from various iterations.

if rank != 0:

rG_loc[0:Gnbd] = 0

for i in range(0, size):

(uF[i], LFonG[Gbound[i]]) = \

Resolution_gl.Local_resolution(Fmd[i], Interpo[i], uG[0:Gnbd],

Gbound[i],new_region_100_fin[i]

, uFd[i], C[i],F_index[i], FM[i])

rG_loc[Gbound[i]] += LFonG[Gbound[i]]

loc_iter += 1

rG_loc[Gnbd + rank - 1] = loc_iter

# All processors asynchronously Put nodal reaction on the rank 0

windows and ensure its completion

on the target processor 0

win_rG_s[rank - 1].Put([rG_loc , MPI.DOUBLE], 0)

win_rG_s[rank - 1].Flush(0)

# Rank 0 Compute the residual and send a boolean to the other
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processors and ensure its

completion to stop the algorithm

if it is converged.

if rank == 0:

norm_rG , rG = Resolution_gl.Residu_computation(Gnbd , nprocs ,

rG_win_s)

print("it", ci, "norm r", norm_rG , "rank:", " ", rank)

ci += 1

if norm_rG < 1.e-6 and ci > 10:

converged[0] = 1

for i in range(1, nprocs):

win_conv.Put([converged , MPI.INT], i)

win_conv.Flush(0)

# Rank 0 closes all the opening epoch on the other processors

if rank == 0:

win_uG.Unlock_all ()

win_conv.Unlock_all ()

# All processors close the opening access epoch on the rank 0

windows

if rank != 0:

win_rG_s[rank - 1].Unlock(0)

125



126



Bibliography

[1] Olivier Allix and Pierre Gosselet. Non intrusive global/local coupling tech-niques in solid mechanics: An introduction to different coupling strategiesand acceleration techniques. In L. De Lorenzis and A. Düster, editors, Mod-
eling in Engineering Using Innovative Numerical Methods for Solids and Fluids,volume 599 of CISM International Centre for Mechanical Sciences – Courses and
Lectures, pages 203–220. Springer Nature Switzerland AG, 2020.

[2] Lori Badea. On the Schwarz alternating method with more than two subdo-mains for nonlinearmonotone problems. SIAM Journal onNumerical Analysis,28(1):179–204, 1991.
[3] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. Parallel it-

erative algorithms: from sequential to grid computing. Chapman andHall/CRC,2007.
[4] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. An ef-ficient and robust decentralized algorithm for detecting the global con-vergence in asynchronous iterative algorithms. In International Conference

on High Performance Computing for Computational Science, pages 240–254.Springer, 2008.
[5] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. Parallel

iterative algorithms from sequentiel to grid computing. Numerical analysis and
scientific computing. Chapman & Hall/CRC, 2008.

[6] Jacques M. Bahi, Sylvain Contassot-Vivier, Raphaël Couturier, and FlavienVernier. A decentralized convergence detection algorithm for asynchronousparallel iterative algorithms. IEEE Transactions on Parallel and Distributed Sys-
tems, 16(1):4–13, 2005.

[7] Jacques M. Bahi, Jean-ClaudeMiellou, and Karim Rhofir. Asynchronous mul-tisplittingmethods for nonlinear fixed point problems. Numerical Algorithms,15:315–345, 1997.
[8] Gerard M. Baudet. Asynchronous iterative methods for multiprocessors.

Journal of the Association for Computing Machinery, 25(2), 1978.
[9] AbrahamBerman andRobert J. Plemmons. Nonnegativematrices in themath-

ematical sciences. SIAM, 2 edition, 1994.
127



[10] Dimitri P. Bertsekas and JohnN. Tsitsiklis. Convergence rate and terminationof asynchronous iterative algorithms. In Proceedings of the 3rd International
Conference on Supercomputing, pages 461–470, 1989.

[11] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena scientific, Belmont (MA), 1989.

[12] Omar Bettinotti, Olivier Allix, and Benoît Malherbe. A coupling strategy foradaptive local refinement in space and time with a fixed global model inexplicit dynamics. Computational Mechanics, pages 1–14, 2013.
[13] OmarBettinotti, Olivier Allix, Umberto Perego, VictorOncea, andBenoîtMal-herbe. A fast weakly intrusive multiscale method in explicit dynamics. Inter-

national Journal for Numerical Methods in Engineering, 100(8):577–595, 2014.
[14] OmarBettinotti, Olivier Allix, Umberto Perego, VictorOncea, andBenoîtMal-herbe. Simulation of delamination under impact using a global localmethodin explicit dynamics. Finite Elements in Analysis and Design, 125:1–13, 2017.
[15] Maxime Blanchard, Olivier Allix, Pierre Gosselet, and Geoffrey Desmeure.Space/time global/local noninvasive coupling strategy: Application to vis-coplastic structures. Finite Elements in Analysis and Design, 156:1–12, 2019.
[16] Robin Bouclier, Jean-Charles Passieux, andMichel Salaün. Local enrichmentof NURBS patches using a non-intrusive coupling strategy: Geometric de-tails, local refinement, inclusion, fracture. Computer Methods in Applied Me-

chanics and Engineering, 300:1–26, 2016.
[17] Christophe Bovet, Augustin Parret-Fréaud, and Pierre Gosselet. Two-leveladaptation for adaptive multipreconditioned FETI. Advances in Engineering

Software, 152, 2021.
[18] Ming Chau, Thierry Garcia, and Pierre Spitéri. Asynchronous schwarz meth-ods applied to constrained mechanical structures in grid environment. Ad-

vances in Engineering Software, 74:1–15, 2014.
[19] Dan Chazan and Willard L. Miranker. Chaotic relaxation. Linear Algebra and

Its Application, 2:199–222, 1969.
[20] Mathilde Chevreuil, Anthony Nouy, and Elias Safatly. A multiscale methodwith patch for the solution of stochastic partial differential equations withlocalized uncertainties. Computer Methods in AppliedMechanics and Engineer-

ing, 255(0):255 – 274, 2013.
[21] Edmond Chow, Andreas Frommer, and Daniel B. Szyld. AsynchronousRichardson iterations: theory and practice. Numerical Algorithms,87(4):1635–1651, 2021.

128



[22] Nathan Cormier, Brian S. Smallwood, Gleen B. Sinclair, and G. Meda. Ag-gressive submodelling of stress concentrations. International Journal for Nu-
merical Methods in Engineering, 46(6):889–909, 1999.

[23] Philippe Cresta, Olivier Allix, Christian Rey, and Stéphane Guinard. Nonlin-ear localization strategies for domain decomposition methods: applicationto post-buckling analyses. Computer Methods in Applied Mechanics and Engi-
neering, 196(8):1436–1446, 2007.

[24] Philippe Cresta, Olivier Allix, Christian Rey, and Stéphane Guinard. Nonlin-ear localization strategies for domain decomposition methods: Applicationto post-buckling analyses. Computer Methods in Applied Mechanics and Engi-
neering, 196(8):1436–1446, 2007.

[25] Lisandro Dalcin and Yao-Lung L. Fang. mpi4py: Status update after 12 yearsof development,. Computing in Science & Engineering, 23(4):47–54, 2021.
[26] D. Tromeur Dervout. Acceleration of the convergence of the asynchronousras method. In Susanne C. Brenner, Eric Chung, Axel Klawonn, Felix Kwok,Jinchao Xu, and Jun Zou, editors, Domain Decomposition Methods in Science

and Engineering XXVI, pages 773–780, Cham, 2022. Springer InternationalPublishing.
[27] Clark R. Dohrmann. A preconditionner for substructuring based on con-strained energy minimization. SIAM Journal for Scientific Computing, 25:246,2003.
[28] Mickaël Duval, Jean-Charles Passieux, Michel Salaün, and StéphaneGuinard.Non-intrusive coupling: recent advances and scalable nonlinear domain de-composition. Archives of Computational Methods in Engineering, 23(1):17–38,2014.
[29] Didier El Baz. M-functions and parallel asynchronous algorithms. SIAM Jour-

nal on Numerical Analysis, 27(1):136–140, 1990.
[30] Mireille El Haddad, José C. Garay, Frédéric Magoulès, and Daniel B. Szyld.Synchronous and asynchronous optimized Schwarz methods for one-waysubdivision of bounded domains. Numerical Linear Algebra with Applications,27(2), 2020.
[31] Ahmed El Kerim, Pierre Gosselet, and Frédéric Magoulès. Asynchronousglobal–local non-invasive coupling for linear elliptic problems. Computer

Methods in Applied Mechanics and Engineering, 406:115910, 2023.
[32] Mouhamed Nabih El Tarazi. Some convergence results for asynchronousalgorithms. Numerische Mathematik, 39:325–340, 1984.

129



[33] Ludwig Elsner, Israel Koltracht, and Michael Neumann. Convergence of se-quential and asynchronous nonlinear paracontractions. Numerische Mathe-
matik, 62:305–319, 1992.

[34] Lei Fang and Panos J Antsaklis. Asynchronous consensus protocols usingnonlinear paracontractions theory. IEEE Transactions on Automatic Control,53(10):2351–2355, 2008.
[35] Charbel Farhat and Francois-Xavier Roux. The dual schur complementmethodwith well-posed local neumann problems. Contemporary Mathemat-

ics, 157:193, 1994.
[36] Tony F.Chan and Tarek P.Mathew. Domain decomposition algorithms. Acta

numerica, pages 61 – 143, 1994.
[37] Andreas Frommer, Hartmut Schwandt, and Daniel B. Szyld. Asynchronousweighted additive Schwarz methods. Electronic Transactions on Numerical

Analysis, 5(48-61):1–5, 1997.
[38] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal

of Computational and Applied Mathematics,, 123:201–216, 2000.
[39] Martin J. Gander. Schwarzmethods over the course of time. Electronic Trans-

actions on Numerical Analysis., 31:228–255, 2008.
[40] Martin J. Gander and Xuemin Tu. On the origins of iterative substructuringmethods. In Domain Decomposition Methods in Science and Engineering XXI,volume 98 of Lecture Notes in Computational Science and Engineering, pages597–605. Springer International Publishing, 2014.
[41] José C. Garay, Frédéric Magoulès, and Daniel B. Szyld. Synchronous andasynchronous optimized Schwarz methods for Poisson’s equation in rect-angular domains. ETNA - Electronic Transactions on Numerical Analysis, 2022.
[42] Guillaume Gbikpi-Benissan and Frédéric Magoulès. Protocol-free asyn-chronous iterations termination. Advances in Engineering Software,146:102827, 2020.
[43] GuillaumeGbikpi-Benissan and FrédéricMagoulès. Asynchronous substruc-turing method with alternating local and global iterations. Journal of Com-

putational and Applied Mathematics, 393:116–133, 2021.
[44] Guillaume Gbikpi-Benissan and Frédéric Magoulès. Distributed asyn-chronous convergence detection without detection protocol. arXiv preprint

arXiv:2206.15418, 2022.
130



[45] Guillaume Gbikpi-Benissan and Frédéric Magoulès. Resilient asynchronousprimal schur method. Applications of Mathematics, 2022.
[46] Guillaume Gbikpi-Benissan, Marina Rynkovskaya, and Frédéric Magoulès.Scalable asynchronous domain decomposition solvers for non-homogeneous elastic structures. Advances in Engineering Software,174:103299, 2022.
[47] Lionel Gendre, Olivier Allix, Pierre Gosselet, and François Comte. Non-intrusive and exact global/local techniques for structural problems with lo-cal plasticity. Computational Mechanics, 44(2):233–245, 2009.
[48] Christian Glusa, Erik G. Boman, Edmond Chow, Sivasankaran Rajaman-ickam, and Daniel B. Szyld. Sacalable asynchronous domain decompositionsolvers. SIAM Journal on Scientific Computing, 42(6):384–409, 2020.
[49] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Matrix Polynomials. So-ciety for Industrial and Applied Mathematics, 2009.
[50] Pierre Gosselet, Maxime Blanchard, Olivier Allix, and Guillaume Guguin.Non-invasive global-local coupling as a Schwarz domain decompositionmethod: acceleration and generalization. Advanced Modeling and Simulation

in Engineering Sciences, 5(4), 2018.
[51] GuillaumeGuguin, Olivier Allix, Pierre Gosselet, and Stéphane Guinard. Nonintrusive coupling between 3d and 2d laminated composite models basedon finite element 3d recovery. International Journal for Numerical Methods in

Engineering, 98(5):324–343, 2014.
[52] Guillaume Guguin, Olivier Allix, Pierre Gosselet, and Stéphane Guinard. Onthe computation of plate assemblies using realistic 3d joint model: a non-intrusive approach. Advanced Modeling and Simulation in Engineering Sci-

ences, 3(16), 2016.
[53] Stéphane Guinard, Robin Bouclier, Mateus Toniolli, and Jean-CharlesPassieux. Multiscale analysis of complex aeronautical structures using ro-bust non-intrusive coupling. AdvancedModeling and Simulation in Engineering

Sciences, 5(1):1, 2018.
[54] Frédéric Hecht, Alexei Lozinski, and Olivier Pironneau. Numerical zoom andthe Schwarz algorithm. In Proceedings of the 18th conference on domain de-

composition methods, 2009.
[55] Jorge Hinojosa, Olivier Allix, Pierra-Alain Guidault, and Philippe Cresta. Do-main decomposition methods with nonlinear localization for the buckling

131



and post-buckling analyses of large structures. Advances in Engineering Soft-
ware, 70:13–24, 2014.

[56] Kenichi Hirose. Continuity of the roots of a polynomial. The American Math-
ematical Monthly, 127(4):359–363, 2020.

[57] C. C. Jara-Almonte and Charles E. Knight. The specified boundary stiffness/-force SBSF method for finite element subregion analysis. International Jour-
nal for Numerical Methods in Engineering, 26(7):1567–1578, 1988.

[58] FS Kelley. Mesh requirements for the analysis of a stress concentration bythe specified boundary displacement method. In Proceedings of the Second
International Computers in Engineering Conference, ASME, pages 39–42, 1982.

[59] David E Keyes. Aerodynamic applications ofNewton-Krylov-Schwarz solvers.In Fourteenth International Conference on Numerical Methods in Fluid Dynam-
ics, pages 1–20. Springer, 1995.

[60] Axel Klawonn, Martin Kühn, and Oliver Rheinbach. Adaptive coarse spacesfor FETI-DP in three dimensions. SIAM Journal on Scientific Computing,38(5):A2880–A2911, 2016.
[61] Axel Klawonn, Martin Lanser, and Oliver Rheinbach. Nonlinear FETI-DP andBDDCmethods. SIAM Journal on Scientific Computing, 36(2):A737–A765, 2014.
[62] Axel Klawonn, Patrick Radtke, andOliver Rheinbach. Adaptive coarse spacesfor BDDC with a transformation of basis. In Twenty Second International Con-

ference on Domain Decomposition Methods, 2014.
[63] Pierre Ladevèze. Nonlinear computational structural mechanics: new ap-

proaches and non-incremental methods of calculation. Springer, Berlin, 1999.translation by J. Simmonds.
[64] Pierre Ladevèze, Olivier Loiseau, and David Dureisseix. A micro-macro andparallel computational strategy for highly heterogeneous structures. Inter-

national Journal for Numerical Methods in Engineering, 52(1-2):121–138, 2001.
[65] Erkki K. Laitinen, Alexander Lapin, and Jali Pieskä. Asynchronous domaindecomposition methods for continuous casting problem. Journal of Compu-

tational and Applied Mathematics, 154:393–413, 2003.
[66] Evgeniia Lapina, Paul Oumaziz, Robin Bouclier, and Jean-Charles Passieux. Afully non-invasive hybrid IGA/FEM scheme for the analysis of localized non-linear phenomena. Computational Mechanics, 2022.
[67] Patrick Le Tallec. Domain decomposition methods in computational me-chanics. Computational Mechanics Advances, 1(2):121–220, 1994.

132



[68] Patrick Le Tallec, Y.H. De Roeck, and Marina Vidrascu. Domain decomposi-tion methods for large linearly elliptic three-dimensional problems. Journal
of Computational and Applied Mathematics, 34(1):93, 1991.

[69] Pierre-Louis Lions. On the schwarz alternating method. i. In First inter-
national symposium on domain decomposition methods for partial diferential
equations, pages 1–42, Paris, France, 1988.

[70] Pierre-Louis Lions. On the schwarz alternating method. iii: a variant fornonoverlapping subdomains. In Third international symposium on domain
decompositionmethods for partial diferential equations, volume 6, Domain De-composition Methods in Science and Engineering XXVI, page 202–223, SIAMPhiladelphia, PA., 1988.

[71] Frédéric Magoulès and Cédric Venet. Asynchronous iterative sub-structuring methods. Mathematics and Computers in Simulation, 145:34–49,2018.
[72] Frédéric Magoulès and Guillaume Gbikpi-Benissan. Distributed conver-gence detection based on global residual error under asynchronous iter-ations. IEEE Transactions on Parallel and Distributed Systems, 29(4):819–829,2017.
[73] Frédéric Magoulès and Guillaume Gbikpi-Benissan. Jack: An asynchronouscommunication kernel library for iterative algorithms. The Journal of Super-

computing, 73(8):3468–3487, 2017.
[74] Frédéric Magoulès and Guillaume Gbikpi-Benissan. Distributed conver-gence detection based on global residual error under asynchronous iter-ations,. IEEE transactions on parallel and distributed systems, 29, 2018.
[75] Frédéric Magoulès and Guillaume Gbikpi-Benissan. Jack2: An mpi-basedcommunication librarywith non-blocking synchronization for asynchronousiterations. Advances in Engineering Software, 119:116–133, 2018.
[76] Frédéric Magoulès, Daniel B. Szyld, and Cédric Venet. Asynchronous opti-mized Schwarz methods with and without overlap. Numerische Mathematik,137:199–227, 2017.
[77] JanMandel. Balancing domain decomposition. Communications in Numerical

Methods in Engineering, 9(3):233, 1993.
[78] Jan Mandel and Marian Brezina. Balancing Domain Decomposition: Theory

and Performance in Two and Three Dimensions. University of Colorado at Den-ver, Denver, CO, USA, 1993.
133



[79] Jean-Claude Miellou. Algorithmes de relaxation chaotiques à retard. ESAIM
Mathematical modelling and numerical analysis, 9:55 – 82, 1975.

[80] Jean-Claude Miellou. Asynchronous iterations and order intervals. In Pro-
ceedings of the international workshop on Parallel algorithms & architectures,pages 85–96, 1986.

[81] Jean-Claude Miellou, Didier El Baz, and Pierre Spitéri. A new class of asyn-chronous iterative algorithms with order intervals. Mathematics of Compu-
tation, 67(221):237–255, 1998.

[82] Jean-Clause Miellou, Pierre Spitéri, and Didier El Baz. A new stopping crite-rion for linear perturbed asynchronous iterations. Journal of computational
and applied mathematics, 219(2):471–483, 2008.

[83] Forum MPI. Mpi-2: Extensions to the message-passing interface, 2003.
[84] Forum MPI. Mpi: A message-passing interface standard version 3.0, 2012.
[85] Camille Negrello, Pierre Gosselet, Christian Rey, and Julien Pebrel. Substruc-tured formulations of nonlinear structure problems — influence of the in-terface condition. International Journal for Numerical Methods in Engineering,107(13):1083–1105, 2016.
[86] Anthony Nouy and Florent Pled. A multiscale method for semi-linear ellipticequations with localized uncertainties and non-linearities. ESAIM: Mathemat-

ical Modelling and Numerical Analysis, 52(5):1763 – 1802, 2018. 39 pages.
[87] Paul Oumaziz, Pierre Gosselet, Karin Saavedra, and Nicolas Tardieu. Analy-sis, improvement and limits of the multiscale latin method. Computer Meth-

ods in Applied Mechanics and Engineering, 384:113955, 2021.
[88] Adam Parusinski and Armin Rainer. Optimal regularity of roots of polyno-mials. working paper or preprint, Mar 2016.
[89] Matthias Pott. On the convergence of asynchronous iteration methods fornonlinear paracontractions and consistent linear systems. Linear Algebra

and its Applications, 283(1-3):1–33, 1998.
[90] Janusz S. Przemieniecki. Matrix structural analysis of subtructures. 1:138–147, 1963.
[91] Jonathan B Ransom, Susan L McCleary, Mohammad A Aminpour, and Nor-man F Knight Jr. Computational methods for global/local analysis. NASA

STI/Recon Technical Report N, 92:33104, 1992.
134



[92] Yves Renard and Konstantinos Poulios. Getfem: Automated fe modeling ofmultiphysics problems based on a generic weak form language,. Advances
in Engineering Software, 47:1–31, 2021.

[93] Jack L Rosenfeld. A case study in programming for parallel-processors. Com-
munications of the ACM, 12(12):645–655, 1969.

[94] Ernest K. Ryu and Stephen Boyd. Primer on monotone operator methods.
Applied and Computational Mathematics, 15(1):3–43, 2016.

[95] Serap Ays, e Savarí and Dimitri P. Bertsekas. Finite termination of asyn-chronous iterative algorithms. Parallel Computing, 22(1):39–56, 1996.
[96] Hermann A. Schwarz. ¨uber einen grenz¨ubergang durch alternierendesverfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich,15:272–286, 1870.
[97] László Simon. Application of monotone type operators to nonlinear pde’s.Author’s edition, Budapest, 2013.
[98] Barry Smith, Petter Bjorstand, and William Gropp. Domain decomposition

parallel multilevel methods for elliptic partial differential equations. Cambridgeuniversity press, 1996.
[99] Nicole Spillane and Daniel J. Rixen. Automatic spectral coarse spaces forrobust FETI and BDD algorithms. International Journal for Numerical Methods

in Engineering, 95(11):953–990, 2013.
[100] Pierre Spitéri. Synthetic presentation of iterative asynchronous parallel al-gorithms. In 6th conference on parallel, distributed, GPU and Cloud computing

for engineering (PARENG), Pécs (Hungary), 2019.
[101] Pierre Spitéri. Parallel asynchronous algorithms: A survey. Advances in engi-

neering software, 149, 2020.
[102] Pierre Spitéri, Jean-ClaudeMiellou, andDidier El Baz. Asynchronous Schwarzalternating methods with flexible communication for the obstacle problem.

Calculateurs parallèles, réseaux et systèmes répartis, 13:47–66, 2001.
[103] Pierre Spitéri, Jean Claude Miellou, and Didier El Baz. Parallel asynchronousschwarz and multisplitting methods for a nonlinear diffusion problem. Nu-

merical Algorithms, 33:461–474, 2003.
[104] Yangfeng Su and Amit Bhaya. Convergence of pseudocontractions andapplications to two-stage and asynchronous multisplitting for singular m-matrices. SIAM Journal on Matrix Analysis and Applications, 22(3):948–964,2001.

135



[105] Xue-Cheng Tai and Paul Tseng. Convergence rate analysis of an asyn-chronous space decomposition method for convex minimization. Mathe-
matics of Computation, 71(239):1105–1135, 2002.

[106] MaxenceWangermez, Olivier Allix, Pierre-AlainGuidault, OanaCiobanu, andChristian Rey. Non-intrusive global-local analysis of heterogeneous struc-tures based on a second-order interface coupling. Computational Mechanics,69:1241–1257, 2022.
[107] Pieter Wesseling. An introduction to multigrid methods. Edwards, 2004.
[108] Jhon D. Whitcomb. Iterative global/local finite element analysis. Computers

and structures, 40(4):1027–1031, 1991.
[109] Jhon D. Whitcomb and Kyeongsik Woo. Application of iterative global/localfinite-element analysis. part 1: linear analysis. Communications in Numerical

Methods in Engineering, 9:745–745, 1993.
[110] Olof B. Widlund and Andrea Toselli. Domain decomposition methods - algo-

rithms and theory, volume 34 of Series in computational mechanics. Springer,2005.
[111] Jordi Wolfson-Pou and Edmond Chow. Asynchronous multigrid methods.

IEEE International Parallel and Distributed Processing Symposium (IPDPS), 149,2020.
[112] Ichitaro Yamazaki, Edmond Chow, Aurelien Bouteiller, and Jack Dongarra.Performance of asynchronous optimized schwarz with one-sided commu-nication. Parallel Computing, 86:66 – 81, 2019.



Titre: Méthode de décomposition de domaine asynchrone en calcul des structures � cas du couplage
global/local
Mots clés: Couplage global/local non intrusif, décomposition de domaine asynchrone, méthodes de
décomposition de domaine linéaires et non linéaires, techniques de paracontraction, MPI-RDMA.

L'analyse et la conception de structures com-
plexes peuvent être chronophages et nécessiter des
calculs intensifs, notamment pour les problèmes
à grande échelle. Les méthodes de décomposi-
tion de domaine sont devenues un outil puissant
en mécanique des structures pour relever ces dé-
�s. Elles consistent à diviser une tâche de calcul
plus petites et indépendantes tâches qui peuvent
être exécutées en parallèle. Des travaux récents
montrent de nombreux avantages lors du couplage
du calcul parallèle asynchrone avec ces méthodes,
permettant de surmonter les limites des méthodes
synchrones classiques et une utilisation plus e�-
cace des ressources de calcul et un meilleur par-
allélisme, résultant en des temps de solution plus
rapides.

Dans ce travail de recherche, nous présen-
tons la première version asynchrone du couplage
global/local non intrusif, capable de traiter ef-

�cacement plusieurs patchs éventuellement adja-
cents. Nous proposons une nouvelle interpréta-
tion du couplage comme une méthode de dé-
composition de domaine primale préconditionnée
à droite. Nous démontrons également la conver-
gence de l'itération asynchrone relaxée dans les cas
linéaires et non-linéaires monotones en utilisant
les techniques de paracontraction. Par la suite,
nous proposons une mise en ÷uvre basée sur les
techniques MPI-RDMA. Cette implémentation est
comparée avec une méthode synchrone accélérée,
nous l'illustrons sur plusieurs problèmes elliptiques
linéaires, tels que ceux rencontrés dans les études
thermiques et d'élasticité et sur des problèmes non-
linéaires, notamment d'élastoplasticité. Nous ob-
servons que le paradigme asynchrone élimine de
nombreux problèmes de performance du couplage
global/local.

Title: Asynchronous domain decomposition method in structure mechanics � the case of the glob-
al/local coupling
Keywords: Non-invasive Global Local coupling, Asynchronous domain decomposition, Linear and non
linear domain decomposition method, Paracontraction techniques, MPI-RDMA.

The analysis and design of complex structures
can be time-consuming and computationally inten-
sive, especially for large-scale problems. Domain
decomposition methods have become a powerful
tool in structural mechanics to address these chal-
lenges. They divide a computational task into
smaller and independent tasks that can be exe-
cuted in parallel. Recent work shows many advan-
tages when coupling asynchronous parallel compu-
tation with these methods, overcoming the limita-
tions of classical synchronous methods and result-
ing in more e�cient use of computational resources
and better parallelism, resulting in faster solution
times.

This research work presents the �rst asyn-
chronous version of non-intrusive global/local cou-

pling, capable of e�ciently processing multiple
possibly adjacent patches. A new interpretation
of the coupling by a primal domain decomposi-
tion method is proposed. The convergence of re-
laxed asynchronous iteration in the linear and non-
linear cases using paracontractions techniques is
also demonstrated. Subsequently, an implementa-
tion based on MPI-RDMA techniques is proposed.
This implementation is then confronted with an
accelerated synchronous method. The implemen-
tation is illustrated on several linear elliptic prob-
lems, such as those encountered in thermal and
elasticity studies, and on nonlinear problems, such
as nonlinear elliptic and plasticity problems. The
asynchronous paradigm eliminates many global/lo-
cal coupling performance problems.
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