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Abstract ix

Tensor-based methods for multidimensional data: Learning and rank estimation

Abstract

Many scenarios involve the representation of data as multidimensional arrays called
tensors, thus it is crucial to take this structure into account when analyzing the data.
The curse of dimensionality, which refers to the exponential growth of processing and
storage costs of large order tensors, is a modern scientific bottleneck. Consequently,
tensor factorizations are crucial to reduce the complexity of tensor storage without
sacrificing its multidimensionality. The Canonical Polyadic Decomposition (cpd) is the
most commonly used tensor decomposition since it permits the representation of tensors
as interpretable components. It is however difficult to determine the exact number of
components (i.e. rank-one tensors) of this model, which constitutes its most significant
limitation. For this purpose, the first part of this thesis proposes an optimization-based
method called Joint FActors and RANk canonical estimation (farac) estimation that
jointly estimates both the Canonical Polyadic (CP) factors and the canonical rank. The
farac method is formulated as a convex optimization problem on each variable in which
a sparse promoting constraint is added to the super diagonal of the core tensor of the
cpd, whereas the Frobenius norm of the off-diagonal terms is constrained to be bounded.
An alternated minimization strategy for the Lagrangian-based cost function is then
proposed to solve the optimization problem. The second part of this thesis will focus
on machine learning for tensor data. Machine learning algorithms often use similarity
measures to perform supervised and unsupervised tasks, such as classification and
clustering. Similarity can be determined using kernel methods, which are popular
because of their performance in a variety of learning algorithms. Firstly, a method for
extracting features from the cpd is analyzed, and it is demonstrated that the scaling
ambiguity of the cpd negatively influences its performance. Accordingly, their kernel
function cannot theoretically satisfy the properties of a kernel function. Using the
extension of Support Vector Machines on tensors for classification, the model shows
poor performance on real datasets. The performance of classification can be improved
by modifying the choice of the kernel based on Grassmannian geometry. The second
contribution in the context of supervised tensor learning aims to break the curse of
dimensionality by using the Tensor Train Decomposition (TTD) which enjoys the benefits
of good stability properties. As TT-cores are the building blocks for the TTD, a kernel
function between two tensors is defined based on their similarities with respect to their
respective TT-cores. As TTD is not unique, learning is considered on the subspaces
spanned by TT-cores defined using the tensor-linear algebra of third-order tensors.
While some of the ambiguities model-based have been mitigated, others still remain,
so, another contribution has been proposed to define similarities between TT-cores on
the basis of the subspaces spanned by their second unfoldings. In addition to being
computationally efficient, this approach will eliminate all ambiguities associated with
the TT model.

Keywords: kernel, learning, tensor train decomposition, cannonical polyadic decompo-
sition, rank estimation
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UMR CRIStAL – Université de Lille - Campus scientifique – Bâtiment ESPRIT –
Avenue Henri Poincaré – 59655 Villeneuve d’Ascq



x Abstract

Méthodes tensorielles pour les données multidimensionnelles : Apprentissage et
estimation du rang

Résumé

De nombreux scénarios impliquent la représentation des données sous forme de ta-
bleaux multidimensionnels appelés tenseurs, il est donc crucial de prendre en compte
cette structure lors de l’analyse des données. La malédiction de la dimensionnalité est
un problème associé aux tenseurs d’ordre élevé et qui fait référence à l’augmentation
exponentielle des coûts de traitement et de stockage. Par conséquent, les décompositions
tensorielles sont cruciales pour réduire la complexité du stockage de tenseurs sans
sacrifier leur multidimensionnalité. La décomposition canonique polyadique CP est la
décomposition de tenseurs la plus couramment utilisée car elle permet la représentation
des tenseurs en tant que composants interprétables (tenseurs de rang 1). Il est cependant
difficile de déterminer le nombre exact de composants de ce modèle, ce qui constitue
sa limite la plus importante. Pour cela, la première partie de cette thèse propose une
méthode basée sur l’optimisation convexe pour estimer conjointement les facteurs CP
et le rang canonique appelée farac (Joint FActors and RANk canonical estimation). La
méthode farac est formulée comme un problème d’optimisation convexe dans lequel
une contrainte de parcimonie est rajoutée à la superdiagonale du tenseur central de la
CP, tandis que la norme de Frobenius des termes hors diagonaux est contrainte d’être
bornée. Une stratégie de minimisation alternée du Lagrangien est ensuite proposée pour
résoudre le problème d’optimisation. La deuxième partie de cette thèse portera sur l’ap-
prentissage automatique pour les données tensorielles. Les algorithmes d’apprentissage
automatique utilisent souvent des mesures de similarité pour effectuer des tâches super-
visées et non supervisées, telles que la classification et le regroupement. La similarité
peut être déterminée à l’aide des méthodes à noyau, qui sont populaires en raison de
leurs performances dans une variété d’algorithmes d’apprentissage. Tout d’abord, une
méthode proposant un noyau tensoriel basé sur l’extraction de facteurs à partir de la CP

est analysée. Il est ensuite démontré que celle-ci ne satisfait pas théoriquement les pro-
priétés d’une fonction noyau à cause de l’ambiguïté de mise à l’échelle de la CP. Celle-ci
affecte négativement ses performances de classification. En modifiant le choix du noyau
basé sur la géométrie Grassmannienne, il est démontré que les performances de classi-
fication peuvent être améliorées. Pour casser la malédiction de la dimensionnalité, la
décomposition en trains de tenseurs TTD qui bénéficie de bonnes propriétés de stabilité
serait utilisée pour définir une nouvelle fonction noyau dans l’espace tensoriel. Comme
les cœurs TT sont les éléments constitutifs de la TTD, la fonction noyau proposée entre
deux tenseurs est définie en fonction des similitudes entre leus coeurs TT respectifs.
Comme la TTD n’est pas unique, les sous-espaces engendrés par les cœurs TT seront
considérés. Ceux-ci sont définis à l’aide de l’algèbre linéaire des tenseurs d’ordre 3. Alors
que certaines des ambiguïtés ont été éliminées, d’autres perdurent. Une autre fonction
noyau serait alors proposée qui définit les similitudes entre leurs cœurs TT sur la base
des sous-espaces engendrés par leurs deuxième dépliements . En plus d’être efficace
numériquement, cette approche éliminera toutes les ambiguïtés associées au modèle TT.

Mots clés : noyau, décomposition en train de tenseurs, estimation du rang
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Chapter1
General Introduction

Outline of the current chapter

1.1 Tensors 1

1.2 Tensorial Kernel Methods 2

1.3 Contributions 3

1.4 List of publications 5

1.1 Tensors

The amount of data generated today is enormous, and therefore methods for

analyzing this data are always needed. Data is often stored in matrices, and

matrix decompositions can be used to extract relevant information. However,

the matrix decompositions are not unique unless some additional constraints

are imposed, such as orthogonality. Constraints of this type can be unrealistic.

Using matrices to represent data has also the disadvantage of obscuring the data

structure of tensors due to their inability to exploit the structural information of

the tensors’s representation. As an example, an Functional magnetic resonance

imaging or functional MRI (FMRI) measures the electrical activity of the brain

indirectly by measuring changes in blood oxygen levels. In FMRI images, the

brain is represented as a volume and its evolution over time is shown as a fourth

1



2 CHAPTER 1. General Introduction

spatial dimension. If input data is flattened, FMRI images lose their spatial

and temporal representation. This type of data requires four dimensions to be

represented. It is possible to do this using a tensor of order 4 without destroying

its multidimensional structure. Tensors are higher-order extensions of vectors

and matrices. Tensors can represent data in more than one dimension; however,

one drawback is the curse of dimensionality, which means that more entries

need to be stored as the tensor gets larger. Thus, high-dimensional tensors are

decomposed into lower dimensionnal factors using tensor decompositions. Using

tensor decompositions, data representation complexity and computation time

can be reduced. The cpd is a widespreadly used tensor decomposition in different

fields due to its atttractive property of uniqueness under mild conditions and up

to some scaling and permutation ambiguities. Its first application in psychology

was in [119, 46]. Pioneered the application of cpd in chemistry, [18] uses the

cpd for the analysis of fluorescence data. A number of studies have utilized the

cpd to analyze time-frequency-transformed Electroencephalography (EEG) data.

These studies include [34, 86], and others. Furthermore, the cpd has shown to be

useful for sensor array processing in wireless communication [99, 96, 128]. In

practice, however, determining cpd’s canonical rank poses a major problem. In

this context, a new method called farac will be proposed to jointly estimate the

CP factors as well as the cannonical rank of the cpd.

1.2 Tensorial Kernel Methods

In the machine learning community, kernel methods are widely used due to

their high performance in a wide range of learning tasks [17, 95, 132, 78, 62, 94,

134, 12, 71]. Additionally, kernel methods have gained a great deal of attention

in the statistics and mathematics communities due to their solid theoretical

foundation, in comparison to other methods such as deep learning. Among their

greatest advantage, these approaches allow the use of machine learning algo-

rithms such as Support Vector Machines (svm),Principal Component Analysis

(PCA),Linear Discriminant Analysis (LDA), among others, on a variety of data

types, such as graphs, text, images, subspaces, and tensors without the need for

vectorization. They can be seen as a kind of similarity measure between two
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objects. In addition, kernel methods can be used to extend learning algorithms

based on the assumption that data is linearly separable to the most common

case of nonlinearity. By mapping data to a Hilbert space, linear separation is

possible. The advantage of this mapping is that it is implicit since the explicit

representation of data in the new Hilbert space is not necessary; only the dot

products of the data in the feature space are calculated by a kernel function.

In the second part of the thesis, we will be interested in kernel methods on

the tensor space, where the dataset consists mainly of tensors. There are two

main reasons why vectorizing tensors is not a suitable approach. The first prob-

lem is that the data structure will be lost. Secondly, vectorization results in

high-dimensional vectors with high computational costs. To avoid the curse of

dimensionality, tensor decompositions will be used. A tensorial kernel function

is then defined from the similarities between lower-order factors obtained from

the decomposition of a tensor.

1.3 Contributions

The contributions of this thesis can be devided in two parts. Please see Figure

1.1 for an overview.

• In the first part of this thesis and as a first contribution, a new method

called farac is proposed in chapter 2 that jointly estimates the CP factors

and the canonical rank. Since the cpd represents a special case of the Tucker

Decomposition (TD), the optimization problem proposed is formulated

as a constrained TD in which the number of the Tucker core tensor’s

superdiagonal elements is minimized as an objective function by applying

a sparse promoting constraint. Using the Frobenius norm, a first constraint

is added to the error loss, and a second one is added to the offdiagonal

terms, making them non-zero but bounded. The proposed optimization

problem is then solved using an alternative minimization strategy based on

the Lagrangian-based cost function. The validation of farac was conducted

using synthetic and real data.
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• The thesis’ second part aims to define tensorial kernel functions that can

handle the model ambiguities of the cpd and the TTD.

– In chapter 4, an analysis of the state-of-the-art method presented in

[72] is proposed. This latter proposes a tensorial kernel function that

evaluates the similarity between two tensors using their CP factors.

The scaling ambiguities associated with the cpd make this method

ineffective. As the similarity measure determines the parameters

of the learning algorithm, classification performance is adversely

affected. The kernel choice can be modified to better handle the

scaling ambiguities of the cpd and improve classification accuracy

by using Grassmannian geometry. In order to avoid convergence

problems during the computation of the cpd, the TTD will be used to

determine the CP factors using the equivalence between the cpd and

the TTD. This can be done by applying the JIRAFE algorithm recently

developed [151] to derive the CP factors from the TT-cores.

– In chapter 5, the third contribution is described in which a kernel

function is defined on the tensor space using the TTD. The similarity

between two tensors will be determined by a TT-core comparison.

However, the non-unicity of the TT-cores could adversely affect this

measure. To overcome this problem, it is proposed to evaluate the

similarities between the subspaces spanned by the TT-cores. These

subspaces will be characterized by tensor-linear algebra, also known

as t-algebra that generalizes the linear algebra concepts for third-order

tensors. The proposed kernel function allows thus to minimize the

impact of the TTD’s non-unicity on the evaluation of the similarity

between two tensors.

– In chapter 6, the 4-th contribution is presented which defines a tenso-

rial kernel function that completely mitigates the ambiguities associ-

ated with TTD. It is shown in this context that the subspaces spanned

by the second unfoldings of the TT-cores are invariant to the TT-cores’

non-unicity. A tensorial kernel function will be defined based on

these subspaces. Further, it will be shown that the kernel proposed
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Figure 1.1 – Thesis Structure.

in [90] which is based on the subspaces spanned by the HOSVD fac-

tors can be equivalently computed using the proposed kernel in this

work. This equivalence occurs because the TD and TTD introduced in

JIRAFE are equivalent. There is, however, a curse of dimensionality

associated with HOSVD, which appears in [90]. With TTD, the curse

of dimensionality can be overcome and the same subspaces can be

retrieved.
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In the present study, we propose estimating both the canonical rank and the

CP factors from noisy observations using a constrained TD in which a sparse

promoting constraint is added to the superdiagonal of the core tensor of the

cpd, whereas the Frobenius norm of the offdiagonal terms is constrained to

be bounded. We give a formulation of the problem of interest as a convex

optimization problem on each variable. The reminder of the paper is organised

as follows:

First, we introduce some notations and preliminaries in multilinear algebra in

section 2.1. In section 2.2 , we describe our proposed approach farac and our

algorithm for solving the problem. We then present some existing works for the

estimation of the canonical rank in section 2.3. As a final step, we do a number

of numerical experiments in section 2.4 to evaluate and compare our proposed

approach with CORCONDIA method.

2.1 Tensor Background

Notations

Vectors are denoted by blodface lowercase letter i.e. x, Matrices are denoted by

boldface capital letters i.e. X , tensors are denoted by caligraphic letters i.e. X .

The i-th entry of a vector x is denoted by x(i). The (i1, i2)-th entry of a matrix

X is denoted by X(i1, i2). The (i1, . . . , iN )-th entry of a tensor X is denoted by

X (i1, . . . , iN ).

Tubes represent higher-order generalization of columns and rows of a matrix.

They are defined by fixing all indices except one. Third order tensors have

column, row and tube fibers denoted by X (:, i2, i3), X (i1, :, i3), and X (i1, i2, :). In

this section, we recall some algebraic definitions on tensor algebra from [135]:
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Scalar product and the Frobenius norm of a Tensor

Definition 1. (Inner product): The inner product 〈., .〉 of two N-order tensors X ,Y ∈
RI1×···×IN is defined as:

〈X ,Y〉 =
I1∑
i1=1

I2∑
i2=1

. . .
IN∑
iN=1

X (i1, . . . , iN )Y (i1, . . . , iN ).

Definition 2. (Frobenius Norm of a Tensor): The norm Frobenius norm ||.||F of a
tensor X is defined as:

||X ||F =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .
IN∑
iN=1

X 2(i1, . . . , iN ).

Transforming a Tensor to a Matrix

Definition 3. (Unfolding) The n-mode unfolding of a tensor X is a matrix denoted
by X(n), whose columns are the n-mode fibers of X .

Diagonal Tensor

Definition 4. (Diagonal tensor) A tensor X ∈ RI1×···×IN is diagonal if all of its
entries are zero except those in its superdiagonal, that is: X (i1, . . . , iN ) , 0 only if
i1 = i2 = · · · = iN .

Products

Definition 5. (Outer product) The outer product of N vectors u1 ◦u2 ◦ · · · ◦uN with
un ∈ RIn is a tensor X ∈ RI1×···×IN of order N with:

X (i1, · · · , iN ) = u1(i) · · ·uN (iN ).

Definition 6. (Kronecker product) The Kronecker product denoted by ⊗ of a matrix
A of size I1 × I2 and a matrix B of size J1 × J2 is a matrix of size (I1J1)× (I2J2) defined
as:
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A⊗B =


a11B · · · a1I2B
...

...
. . .

aI11B · · · aI1I2B


= [a1 ⊗b1 a1 ⊗b2 · · · aI2 ⊗bJ2−1 aI2 ⊗bJ2].

Definition 7. (Khatri-Rao product) The Khatri-Rao product denoted by � of a matrix
A of size I1 × I2 and a matrix B of size J × I2 is denoted by A�B is a matrix of size
(I1J)× I2 and is defined as:

A�B = [a1 ⊗b1 a2 ⊗b2 · · · aI2 ⊗bI2].

Definition 8. (n-mode multiplication) The n-mode product denoted by ×n of a tensor
X ∈ RI1×···×IN with a matrix U ∈ RJ×In is a tensor of order N and size I1 × . . . In−1 ×
J × · · · × IN and is defined by:

(X ×n U )(i1, . . . , in−1, j, in+1, . . . , iN ) =
In∑
in=1

X (i1, . . . , iN )U (j, in).

2.1.1 Tensor ranks

The concept of matrix rank can be generalized to tensors in a variety of ways.

Their definitions are quite similar but their properties are very different. As a

first generalization of the concept of rank for tensors, the n-rank is defined as

follows:

Definition 9. (n-rank) The n-rank Rn of a tensor X is the generalization of the
columm (row) rank of matrices. It is defined as the dimension of the space spanned by
the In dimensionnal vectors of the n-mode unfolding i.e:

Rn = rank(X(n)).
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The N -tuple (R1, . . . ,RN ) of n-ranks is called the multilinear rank of X .

Definition 10. (Rank-one tensor) In the same way that a rank-one matrix is derived
from the outer product of two vectors, a tensor X ∈ RI1×···×IN of order N is rank-one if
it can be written as the outer product of N vectors:

X = u1 ◦ · · · ◦uN :=
N
©
n=1
un, (2.1)

where un ∈ RIn with 1 ≤ n ≤N .

Definition 11. (Canonical rank) The canonical rank of a tensor is defined as the
minimum number of rank-one tensors necessary to produce X as their sum.

Typical, maximal rank

Another difference of the tensor rank from the matrix rank has to deal with

typical and maximal ranks. If the entries of a tensor are drawn from a continuous

probability distribution, typical ranks are those encoutered with propbability

one and the maximam rank is the largest attainable rank. In fact, while the

typical rank and the maximum rank are equal to min{I1, I2} for I1 × I2 matrices,

they may be different for tensors. There may also exist more that one typical

rank over R. Formulas for specific tensors of specific sizes are given in [135, 111].

For a general third-order tensor X ∈ RI1×I2×I3 , the following upper bound holds

[51]:

R ≤min{I1 I2, I1 I3, I2 I3}. (2.2)

2.1.2 The Canonical Polyadic Decomposition

The cpd has gained popularity following its introduction by [119] and [46]. The

cpd of a tensor X of canonical rank-R is expressed as the sum of R rank-one
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tensors:

X =
R∑
r=1

N
©
n=1
un,r = JU1, ...,UN K, (2.3)

where JU1, ...,UN K denotes the cpd of X . Each matrix Un is of size In ×R and

the vectors un,r constitute its columns. Un, 1 ≤ n ≤N are called the CP factors.

Unicity

The attractiveness of cpd yields in its uniqueness without any additional con-

straints contrary to matrix decompositions that are non unique unless some

additionnal constraints are added such as orthogonality for the Singular Value

Decomposition (SVD). The most well-known result about uniqueness is given

by [52] which gives sufficient condition for uniqueness of the cpd. The latter is

given as follows for rank-R tensor X :

N∑
n=1

krank(Un) ≥ 2R+N − 1, (2.4)

Whenever the condition in eq.(2.4) does not hold, uni-mode uniqueness con-

dition (uniqueness of one CP factor) is derived for three-order tensors [143].

Sufficient conditions for uniqueness of the cpd of a fourth-order tensor with one

full column rank factor and at most three collinear factors(having one (or more)

column(s) proportional to another column) are provided in[26].

• Column permutation : Factors Un are unique up to a common (over n)

column permutation, i.e.,

X = JU1, ...,UN K = JU1Π, ...,UNΠK, (2.5)

for any R×R permutation matrix Π.

• Column scaling : For a given couple (n,r), the column un,r is unique up to
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a scaling factor denoted βn,r ∈ R \ {0} i.e.

X =
R∑
r=1

N
©
n=1

(
βn,run,r

)
, (2.6)

with
∏N
n=1βn,r = 1.

By normalizing the vectors βn,run,r , the cpd of X can be expressed as

follows:

X =
R∑
r=1

λ(r)
N
©
n=1

(
sgn(βn,r)ũn,r

)
, (2.7)

where ũn,r are unit vectors and λ(r) =
∏N
n=1 ||βn,run,r ||, 1 ≤ r ≤ R.

From eq.(2.7), the canonical rank can also be defined as the number of

strictly positive and ordered values of λ.

Unless specified otherwise, the signs of the scalars βn,r will not appear

in the formula of the cpd and considered absorbed into the normalized

column factors; therefore, the following expression of the cpd will be

considered:

X =
R∑
r=1

λ(r)
N
©
n=1

un,r , (2.8)

where un,r are unit vectors (The tilde notation will be omitted for ease of

notation).

Computation of the CPD:

To compute the cpd of a rank-R tensor X from possibly noisy data, a least squares

criterion is usually adopted :

min
Un,1≤n≤N

||X − JU1, ...,UN K||2F . (2.9)

The most popular algorithm to solve the non convex problem in eq.(2.9) is

called ALS [120]. Its idea consists in splitting the problem into smaller linear
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square problems that are solved iteratively. At each step, a CP factor is computed

conditionnaly to the remaining ones by solving the following linear regression

problem:

min
Un,1≤n≤N

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣X(n) −UnΛ


l=1⊙
l=N
l,n

Ul


T
∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

F

,

whereΛ is a diagonal matrix with λ in its diagonal and
l=1⊙
l=N
l,n

denotes the kronecker

product of the factors Ul .

Once all the subproblems are solved, an iteration is completed. To solve the

optimization problem in eq.(2.9), the canonical rank R should be first specified

at the beginning. If the data is noise free, one attempts of simply comparing

the error loss and identifying the number of components that give a zero loss.

However, this approach may not be feasible since if the number of rank-one

tensors is strictly smaller that the canonical rank R, the optimization problem in

eq.(2.9) can be ill-posed [126, 140] contrarly to the matrix case where the best

low rank approximation is provided by the truncated SVD [22]. Even it is not

the case (the low-rank approximation exists), this procedure does not work in

the presence of noise since the decrease of the error loss when more components

are extracted can be very small, without a clear jump[24].

2.1.3 Tucker Decomposition

The TD was first introduced in [75, 53, 77, 76] and was popularized by [65] for

a particular method to compute it the under the name of HOSVD. Among the

applications of this latter are facial expression analysis [92], noise filtering of

color images [40]. By providing an orthonormal basis, the HOSVD method can

be extended to higher-order tensors extending the SVD subspace method [13,

14].
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Definition 12. (Tucker Decomposition TD) The TD decomposes a tensor X ∈
RI1×···×IN into a core tensor G multiplied by a factor matrix Tn in each mode n:

X = G ×1 T1 ×2 ...×N TN , (2.10)

where Tn are of size In ×Rn, 1 ≤ n ≤N and G is the core tensor of size R1 × · · · ×RN .

The core tensor G compresses the tensor and captures interactions between

the columns of the factors Tn which can be useful in many data analysis [135,

108].

As opposed to cpd, TDis not unique. It should also be noted that contrarly to the

cpd, a low multilinear rank approximation is always well-posed [6]; however,

truncation may not be optimal in the least squares sense, although this can

usually be determined by taking into account the degree of truncation.

An interesting fact is that the cpd can be seen as a special case of the TD where

the core tensor is diagonal with R1 = · · · = RN = R.

2.2 Proposed method (FARAC)

The purpose of this section is to present the method farac for estimating the

canonical rank and the CP factors simultaneously for a rank-R tensor X . Begin-

ning from the fact that the cpd is a special case of the TD, we use this latter with

a constrained core tensor G with all its dimensions set to a large value R0. We

will minimize the number of non-null terms of the superdiagonal of G under a

first constraint on the error loss and a second one on the offdiagonal terms by

allowing them to be non-zero but bounded. Our goal is to find a core tensor

structured as shown in Fig. 2.1. This can be accomplished by minimizing the

superdiagonal of the core tensor using the l0 norm ||.||0 as an objective function,

using the Frobenius norm for the error loss and on the offdiagonal terms.
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2.2.1 Optimization Problem

In the following, G denotes the CP core tensor, λ its superdiagonal and G̃ is

defined according to:

G = diag(λ) + G̃,

where diag(λ) is a diagonal tensor whose superdiagonal is λ.

Our optimization problem can then be expressed mathematicaly as follows:

minimize
G,(Un)n

||λ||0,

subject to
1
2

∣∣∣∣∣∣∣∣∣∣X −G N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F
≤ ε1,

1
2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
≤ ε2,

(2.11)

where ε1 and ε2 are small positive constants. Unlike existing methods that

estimate the canonical rank, we do not constrain the factors Un to be orthogonal

[35, 48]. However, since minimizing the l0 norm is NP-hard [28], we minimize

the l1 norm ||.||1 of λ. Eq. (2.11) becomes:

minimize
G,(Un)n

α1||λ||1,

subject to
1
2

∣∣∣∣∣∣∣∣∣∣X −G N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F
≤ ε1,

1
2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
≤ ε2,

(2.12)

where α1 is a strictly positive hyper-parameter.

2.2.2 Derivation of farac

In this section, we present the proposed approach for solving the optimization

problem with constraints in eq. (2.12). Recall that the Lagrangian function is the

augmented objective function by the constraint equations using the Lagrangian

multipliers. Following this, the Lagrangian function of the problem in eq. (2.12)
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Algorithme 1 : Joint FActors and RAnk Canonical estimation for the
Polyadic decomposition (FARAC)

Input: X ∈ RI1×...IN : CP Tensor, R0: Upper bound of the rank of X .
Require: η1,η2 ∈ [0,1]: Exponential decay rates; η3: Stepsize; Niter:
Number of iterations, µ: Threshold parameter ε = 10−8: Parameter to
avoid numerical instabilities.
Initialize: For 1 ≤ n ≤N :

U
(0)
n =

{
SVD(X(n),R0) if In > R0,

conc
(
SVD(X(n),R0), (R0 − In) random uniform vectors

)
else.

• Entries of G(0) of order N and all dimensions equal R0 are drawn from the
standard uniform probability distribution.

• m
(0)
G̃ = v(0)

G̃ = 0 (Initialize the first and the second moment estimates ).

for t = 1, . . . ,Niter:

1: Compute U (t)
n from eq. (2.14).

2: Update biased first moment estimate of the offdiagonals:

m
(t)
G̃ ← η1m

(t−1)
G̃ + (1− η1)∇(t)

G̃ (r1, . . . , rN ).

3: Update biased second raw moment estimate of the offdiagonals:

v
(t)
G̃ ← η2v

(t−1)
G̃ + (1− η2)∇2(t)

G̃ (r1, . . . , rN ).

4: Compute bias-corrected first and second moment estimates of the
offdiagonals:

m̂
(t)
G̃ ←

m
(t)
G̃

1− ηt1
; v̂

(t)
G̃ ←

v
(t)
G̃

1− ηt2
.

5: Update each entry (r1, . . . , rN ) of G̃ :

G̃(t)(r1, . . . , rN )← G̃(t−1)(r1, . . . , rN )− η3

m̂
(t)
G̃√

v̂
(t)
G̃ + ε

.

6: Update each entry l of the superdiagonal λ using eq. (2.16):

λ(t)(l) = Sµ

− 〈 N
©
n=1
u

(t)
n,l ,

R0∑
r=1
r,l

λ(t)(r)
N
©
n=1

u
(t)
n,r

〉
+
〈
X − G̃

N
×n
n=1

U
(t)
n ,

N
©
n=1
u

(t)
n,l

〉,
where Sµ is defined in eq. (2.17).

end for
Canonical rank: Number of non-zero values of the superdiagonal of G.
CP factors: Columns of U (T )

n with indices of non-zero values of the
superdiagonal of G.
Returns: [Canonical rank, CP factors].
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Figure 2.1 – CP core tensor G of a rank-R tensor of order 3 and size R0 with
λ(1) > · · · > λ(R) > 0 .

is given by:

LG,{Un} = α1||λ||1 +
α2

2

(∣∣∣∣∣∣∣∣∣∣X −G N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F
− ε1

)
+
α3

2

(∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
− ε2

)
, (2.13)

where α2 and α3 are two strictly positive Lagrange multipliers. According to the

Lagrangian method [125], LG,{Un} is minimized with respect to {Un}n, G̃ and λ.

To do that, we will proceed iteratively. We first minimize LG,{Un} w.r.t the n-th

CP factor Un at each iteration, assuming the remaining factors and G are known.

This is a classical linear regression problem. Following that, we derive LG,{Un}
w.r.t G̃ using the factors {Un}n from the previous step. The convexity w.r.t G̃ is

demonstrated in Appendix .2. Then, we update G̃ using the Adam optimizer

[30]. Finally, we minimize LG,{Un} w.r.t λ, which is also a convex optimization

problem as shown in Appendix .2. Its expression is given by the soft thresholding

operator[123] using the current updates of G̃ and {Un}n. The final expressions of

the solutions of the CP factors, the gradient of the Lagrangian w.r.t the G̃ and the

expression to update the λ are given below. Details of the computations can be

found in Appendix .1.
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• The update of the CP factors Un is given by:

Un = X(n)

G(n)


l=1⊗
l=N
l,n

U T
l



†

, (2.14)

where † is the Moore-Penrose inverse.

• Gradient of LG,{Un} w.r.t the offdiagonals of G i.e G(r1, . . . , rN ) such that r1 , r2
or . . . or rN−1 , rN :

(
∇G̃

(
LG,{Un}

))
(r1, . . . , rN ) = −α2

I1∑
i1=1

. . .
IN∑
iN=1

A(i1, . . . , iN )

 N∏
n=1

Un(in, rn)

+α3G̃(r1, . . . , rN ),

(2.15)

where A = X −G
N
×n
n=1

Un.

• Expression for updating the superdiagonal of G:

λ(l) = Sµ
(
−
〈 N
©
n=1

un,l ,
R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r
〉

+
〈
X − G̃

N
×n
n=1

Un,
N
©
n=1
un,l

〉)
, (2.16)

where Sµ is the soft thresholding operator [123] of threshold µ > 0 defined

as follows for x ∈ R:

Sµ(x) =


x −µ if x > µ,

0 if |x| ≤ µ,
x+µ if x < −µ.

(2.17)

2.2.3 Algorithm farac

The CP factors are initialised with the left leading singular vectors of the un-

foldings as in [135] while the offdiagonals of the TD core tensor G are randomly

initialised. The Adam optimiser [30] is used to update the offdiagonals. Adam is

an extended version of gradient descent. It updates exponential moving averages
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of gradients and squared gradients using two hyperparameters η1,η2 (called

exponential decay rates) to control their exponential decay rates averages. Ba-

sically, moving averages are estimates of the first moment (the mean) and the

second moment of the gradient (the uncentered variance). As mentionned in

[30], it is important to note, however, that these moving averages are intialized

to 0 leading to moment estimates that are biased to 0 in particular in the first

iterations and especially when decay rates are small (i.e. when the ηs are close

to 1). As a result, bias-corrected data comes from overcoming the initialization

bias. The whole algorithm of our derived approach is described in Algorithm 1.

2.2.4 Complexity Analysis

• We evaluate the complexity of Algorithm 1 by taking into consideration

the SVDs in the initialization and the main parts of the algorithm, as the

computations of the different gradients, the pseudo inverse of factors as

well as the shrinkage operator. The complexity is evaluated as follows:

O

 N∑
n=1

In

R2
0 +Niter

N +

 N∑
n=1

In

R0 +

 N∏
n=1

In

(N +R0 +NRN−1
0

), (2.18)

where Niter is the number of iterations.

• If Imax = max(I1, . . . , IN ), then the complexity in eq. (2.18) becomes:

O
(
NImaxR

2
0 +Niter

(
N +NImaxR0 +NImax(N +R0 +NRN−1

0 )
))
,

which can be simplified to:

O(NRN−1
0 +NiterImaxN

2RN−1
0 ).

2.3 Related works

Existing approaches for the canonical rank detection include:

• CORCONDIA [122] is a heuristic method for detecting the canonical rank
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of a tensor X . As a first step, the CP factors are computed with a fixed

number of rank-one tensors. The factors obtained will be used to fit a TD

in order to determine whether the tensor X can be adequately explained

by these factors alone or by incorporating their interactions. The principle

behind CORCONDIA is to assess the degree of similarity between the

implicit superdiagonal tensor and the least squares fitted Tucker tensor

using different values of the number of rank-one tensors, beginning with

a rank-one tensor. Then, CORCONDIA calculates the similarity between

the estimated core tensor and the ideal identity core (known as core consis-

tency) for different cpds . Based on the gap between the core consistency of

different cpds with different number of rank-one tensors, it determines the

canonical rank. The optimal value for the canonical rank is determined by

taking the cpd of the largest number of rank-one tensors whose core array

remains similar to the ideal diagonal tensor.

• A fast version of CORCONDIA was presented in [107]. It suggests an

efficient way to compute the CORCONDIA diagnostic that takes advantage

of sparse data and works well as the tensor size grows. In cases where either

the tensor, the factors or both are sparse [107], their algorithm significantly

outperforms the state-of-the-art baselines and scales well when the tensor

size increases. In the fully dense scenario, their proposed algorithm is as

good as the state of the art (The CORCONDIA method) for rank estimation.

• Automatic Relevance Determination (ARD) [87] is a Bayesian approach

applied to the TD and cpd. In ARD, entries of CP factors are assigned

a Gaussian prior. The objective is to find the canonical rank and the CP

factors by solving an l2−regularized cpd. By assigning priors to the CP

factors and learning the hyperparameters of these priors, ARD reduces the

excess of rank-one tensors and simplifies the core structure.

• Tensor learning models for regression are proposed in [138]. In their regu-

larization process, they suppose that the weight tensor of the regression

problem has a low-rank cpd. They constrain the CP factors using the

group-sparsity norm. This procedure gives an automatic selection of the
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canonical rank during the learning procedure.

• By adding orthogonality constraints on the CP factors, [114] views the

superdiagonal of the CP core as analogous to the vector of singular values.

To determine the rank of an incomplete tensor, they add l1 regularization

on the superdiagonal of the tensor.

In short, state-of-the-art methods use either Bayesian approaches, propose rank

estimation within a learning framework, or use too restricting constraints like

factor orthogonality. In contrast to existing methods, the proposed method

belongs to the family of deterministic parameter estimators.

2.4 Numerical Experiments

The Tensorflow framework [80] was used for the implementation of the Algo-

rithm 1, where gradient computations are done using automatic differentiation.

Numerical experiments involving CORCONDIA were conducted in Python using

the CORCONDIA package [24].

SNR [db] 15 20 25 30 35 40
Accuracy [%] 72 77 87 91 96 100

Table 2.1 – Accuracy of farac w.r.t SNR for a tensor of a noisy tensor Xnoise of
size 5× 5× 5. The true rank is R = 6 and R0 = 7.

2.4.1 Evaluation metrics

• The convergence of the proposed method will be evaluated in terms of the

RSE at each iteration t, which is given by:∣∣∣∣∣∣Xnoise −X (t)
∣∣∣∣∣∣
F

||Xnoise||F
.

• The accuracy of rank estimation for synthetic data will be given by the

proportion of realizations where the canonical rank is well estimated.
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Figure 2.2 – Convergence curve of the mean reconstruction error using the RSE

along iterations using farac. We used a noisy tensor Xnoise with a size of 5×5×5
and an SNR of 25db. The threshold parameter is equal to 0.02.

Figure 2.3 – The mean principal angle between the three subspaces spanned by
CP factors along iterations using our method. We used a noisy tensor Xnoise of
size 5× 5× 5 and SNR of 25db. The threshold parameter is equal to 0.02.
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Figure 2.4 – Accuracy of rank estimation of a tensor of size 5 × 5 × 5 w.r.t the
threshold parameter. The true rank is R = 2 and R0 = 5.

• The recovery of the CP factors will be evaluated by checking the subspace

error. This can be done by computing the largest principal angle [127]

between the true subspaces and the estimated ones at each iteration t.

θ(t) = arcsin
(∣∣∣∣∣∣∣∣UnU †n − Û (t)

n Û
(t)†
n

∣∣∣∣∣∣∣∣
2

)
,

where Un and Û
(t)
n are the exact and the estimated factors at iteration t,

respectively.

2.4.2 Synthetic data

Data generation

We create a synthetic rank-R real valued tensor X of orderN from its cpd. The CP

factors are derived from a single realization of the normal standard distribution.

B is a zero mean, unit variance and white noise. Our noisy data tensor is given
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Figure 2.5 – farac Vs. CORCONDIA accuracy w.r.t SNR for a tensor of a noisy
tensor Xnoise with SNR values ranging from 0db to 20db. Xnoise is of size 5×5×5.
Different CP models with a rank ranging from 1 to 5 are used to fit CORCONDIA.
R = 2 is the true rank.
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Figure 2.6 – Accuracy of rank estimation of a noisy tensor Xnoise with different
low SNR values ranging from 0db to 10db using farac. The size of Xnoise is
5 × 5 × 5. The used large bound of rank used is R0 = 5, while the true rank is
R = 2.
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Figure 2.7 – The CORCONDIA approach’s accuracy for a noisy tensor Xnoise.
SNR values range from 0db to 5db. The size of Xnoise is 5× 5× 5. Different CP
models with a rank ranging from 1 to 5 are used to fit CORCONDIA. R = 2 is
the true rank.
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Figure 2.8 – Convergence loss of farac (left) and rank estimation (right) on the
amino acid dataset over iterations .

Figure 2.9 – Convergence loss of farac (left) and rank estimation (right) on the
amino acid dataset over iterations .
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Figure 2.10 – Convergence loss of farac (left) and rank estimation (right) on the
sugar process dataset over iterations .

by:

Xnoise = X ′ + σB′, (2.19)

where X ′ = X
||X ||F

and B′ = B
||B||F

. Hence, the SNR will be calculated using the

following formula:

SNR = −10log10σ
2 ∈ [0db,40db].

farac has been run on a rank-2 tensor X with size I × I × I where R0 = I = 5.

Experiments are conducted on a tensor with these parameters until other settings

are indicated. Similar results are obtained for tensors with other orders and sizes.

By using X and eq. (2.19), we generate 100 noisy realisations of the input tensor.

Accuracy of rank estimation

• The accuracy of rank estimation using the proposed approach is illustrated

in Fig. 2.4. We can clearly see that the farac approach allows to estimate

the exact canonical rank while being robust to the choise of the threshold

parameter.

• Fig. 2.2 depicts the convergence curves of the proposed method. We can
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see that the reconstruction error quickly decreases to zero w.r.t iterations.

• The recovery of the CP factors is shown in Fig. 2.3 by checking the subspace

error. We see that the mean angle between the subspaces of the three CP

factors converges to a low value with respect to iterations.

• In Fig. 2.5, we compare the farac method with CORCONDIA with respect

to SNR values. We can see that farac clearly outperforms the state-of-the-

art method.

• In Table 2.1, we show the accuracy of the rank estimation using farac

when the true rank exceeds one of the dimensions of the input tensor. As

we can see, farac can handle this difficult scenario for a large range of SNR

values. The CORCONDIA approach, on the other hand, is ineffective in

that situation [60].

• For low SNR values, accuracy of having a rank 3 instead of 2 increases but

farac still gives the highest accuracy for the true rank according to Fig.

2.6. In contrast, rank estimation using the CORCONDIA method becomes

a difficult task at low SNR according to Fig. 2.7.

Compared with the state-of-the-art method, farac shows very good performance

in terms of the accuracy of rank estimation for large range of values of SNRs

while being robust to the choise of the threshold parameter. farac also handles

the difficult case where the rank is bigger than one of the dimensions of the

input tensor.

2.4.3 Real datatsets

Datasets

• Amino acid fluorescence: As described in [118], the dataset includes the

excitation and emission spectra of five samples of different concentrations

of tyrosine, tryptophane and phenylalanine, forming a tensor of 5 (samples)

× 51 (excitation) × 201 (emission) of canonical rank equal to 3.
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• Sugar process data [117]: The dataset contains 265 samples that can be

arranged in an I1I2I3 three-order tensor of size 265×571×7. The first mode

relates to samples, the second to emission wavelengths, and the third to

excitation wavelengths. The (i1i2i3)-th element of this tensor, X (i1, i2, i3),

represents the measured emission intensity from sample i1, excited at

wavelength i3, and measured at wavelength i2. The canonical rank of the

tensor X is equal to 4.

• Dorrit fluorescence data [54]: Fluorescence spectrometer was used to mea-

sure 27 synthetic samples containing different concentrations of four an-

alytes (hydroquinone, tryptophan, phenylalanine and dopa). Each flu-

orescence landscape corresponds to 233 emission wavelengths and 24

excitation wavelengths. This dataset is represented with a tensor of size

27× 233× 24 and its cannonical rank is equal to 4.

Accuracy of rank estimation

• In Fig. 2.8, 2.9 and 2.10, we present the convergence loss of farac, as

well as the canonical rank estimation over iterations on the amino acid

fluorescence, the dorrit fluorescence and the sugar process datasets. As

shown in these figures, the canonical rank is well estimated for the three

real datasets. For the amino and dorrit fluorescence datasets, the threshold

parameter µ used is equal to 0.01; for the sugar process dataset, it is equal

to 0.001.

Hyperparameters settings

Based on the noise level, one can use a grid search on the threshold parameter µ

over the range of values [0.1,0.01,0.001]. It is important to note that the farac

method is robust to the choice of the threshold as shown in Fig. 2.4 The learning

rate and the exponential decay rates used in the Adam optimizer are all equal

to their default values that are good default settings for different optimization

problems [30] ( η1 = 0.09,η2 = 0.0999,η3 = 0.001).



34 CHAPTER 2. Joint Factors And Canonical Rank Estimation For The CPD

2.5 Conclusion

We have addressed the challenging problem of estimating the canonical rank in

this study. With the proposed method, called farac, both canonical rank and

CP factors are estimated jointly. Our proposed method is shown to be effective

in estimating the canonical rank for large values of SNR through different

experiments. We have compared farac with the well-known CORCONDIA

method and found that farac is more accurate especially when dealing with

high-level noise. In addition, we have demonstrated that farac shows strong

robustness to the choice of the threshold parameter and that it is capable of

handling the difficult case of rank exceeding one dimension of the tensor, unlike

CORCONDIA. Lastly, we demonstrate the validity of the farac method on real

datasets.
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.1 Detail computations for the derivation of FARAC

Let us recall the Lagrangien of the problem (2.12) that we want to minimize w.r.t

(Un)n, G̃ and λ:

LG,{Un} = α1||λ||1 +
α2

2

(∣∣∣∣∣∣∣∣∣∣X −G N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F
− ε1

)
+
α3

2

(∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
− ε2

)
,

• We denote by LUn , the part of LG,{Un} which depends only on Un.

LUn =
α2

2

∣∣∣∣∣∣∣∣∣∣X −G N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F
. (20)

The matricized form of eq. (20) is given by:

LUn =
α2

2

∣∣∣∣∣∣
∣∣∣∣∣∣X(n) −UnG(n)


l=1⊗
l=N
l,n

U T
l


∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

.

The optimal solution is given by:

Un = X(n)

G(n)


l=1⊗
l=N
l,n

U T
l



†

.

• The part of LG,{Un} that depends only on G̃ is denoted by LG̃:

LG̃ =
α2

2

∑
i1,...,iN

(
X (i1, . . . , iN )−

(
G

N
×n
n=1

Un

)
(i1, . . . , iN )

)2

︸                                           ︷︷                                           ︸
A2(i1,...,iN )

+
α3

2

∑
r1,...,rN

G̃2(r1, . . . , rN ).

Let us derive LG̃ with respect to G̃(r1, . . . , rN ) such that r1 , r2 or . . . or
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rN−1 , rN (diagonal elements are excluded since they are equal to 0):

[∇G̃LG̃](r1, . . . , rN ) = −α2

∑
i1,...,iN

A(i1, . . . , iN )

 N∏
n=1

Un(in, rn)

+α3G̃(r1, . . . , rN ).

(21)

• We want to derive LG,{Un} w.r.t λ. Let us first rewrite it as follows:

LG,{Un} = α1||λ||1 +
α2

2

∣∣∣∣∣∣∣∣∣∣X − (G̃ + diag(λ)
) N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F

+
α3

2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
,

= α1||λ||1 +
α2

2

∣∣∣∣∣∣∣∣ (X − G̃ N
×n
n=1

Un

)
−

R0∑
r=1

λ(r)
N
©
n=1

un,r
∣∣∣∣∣∣∣∣2
F

+
α3

2

∣∣∣∣∣∣G̃∣∣∣∣∣∣2
F
.

• We denote by Lλ, the part of LG,{Un} which depends only on λ. Lλ is given

as follows:

Lλ = α1||λ||1 +
α2

2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
R0∑
r=1

λ(r)
N
©
n=1

un,r

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

− 2
〈
X − G̃

N
×n
n=1

Un,
R0∑
r=1

λ(r)
N
©
n=1

un,r

〉

+
∣∣∣∣∣∣∣∣∣∣X − G̃ N

×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F

,
= α1

|λ(l)|+
∑
r,l

|λ(r)|

+
α2

2


∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

F

+λ(l)2
∣∣∣∣∣∣∣∣∣∣ N©
n=1
un,l

∣∣∣∣∣∣∣∣∣∣2
F

+ 2
〈
λ(l)

N
©
n=1

un,l ,
R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r

〉
,

− 2
〈
X − G̃

N
×n
n=1

Un,
R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r

〉
− 2

〈
X − G̃

N
×n
n=1

Un, λ(l)
N
©
n=1

un,l

〉
+

∣∣∣∣∣∣∣∣∣∣X − G̃ N
×n
n=1

Un

∣∣∣∣∣∣∣∣∣∣2
F

. (22)
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Let us derive Lλ with respect to λ(l) and set it to 0.

∂ (Lλ)
∂λ(l)

= 0,

⇔ α1
∂|λ(l)|
∂λ(l)

+α2

λ(l)
∣∣∣∣∣∣∣∣∣∣ N©
n=1
un,l

∣∣∣∣∣∣∣∣∣∣2
F
+
〈
N
©
n=1
un,l ,

R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r

〉
−
〈
X − G̃

N
×n
n=1

Un,
N
©
n=1
un,l

〉 = 0,

⇔ λ(l)+
α1

α2||
N
©
n=1

un,l ||2

∂|λ(l)|
∂λ(l)

= −α2

〈
N
©
n=1
un,l ,

R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r

〉
+α2

〈
X − G̃

N
×n
n=1

Un,
N
©
n=1
un,l

〉
.

(23)

Furthermore, we have the following:

∣∣∣∣∣∣∣∣∣∣ N©
n=1
un,l

∣∣∣∣∣∣∣∣∣∣2 =
N∏
n=1

∣∣∣∣∣∣un,l ∣∣∣∣∣∣2 .
Since un,l are unit vectors, we have

∣∣∣∣∣∣∣∣∣∣ N©
n=1
un,l

∣∣∣∣∣∣∣∣∣∣2 = 1. Hence we find the

following:

λ(l) +
α1

α2

∂|λ(l)|
∂λ(l)

= −
〈
N
©
n=1
un,l ,

R0∑
r=1
r,l
,

λ(r)
N
©
n=1

un,r

〉
+
〈
X − G̃

N
×n
n=1

Un,
N
©
n=1
un,l

〉
.

As a result, the value of λ(l) can be computed using the soft thresholding

operator Sµ [123]:

λ(l) = Sµ

− 〈
N
©
n=1
un,l ,

R0∑
r=1
r,l

λ(r)
N
©
n=1

un,r

〉
+
〈
X − G̃

N
×n
n=1

Un,
N
©
n=1
un,l

〉.
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.2 Convexity

In this section, we will demonstrate that the Lagrangien in eq. (22) is convex

w.r.t to λ and G̃ so that the global minimum will be reached. To do that, we will

show that the hessian w.r.t λ and G̃ are positive semi-definite matrices.

• Convexity w.r.t λ:

Let Hλ be the hessian of LG,{Un} w.r.t λ. Using the gradient computed in eq.

(23), we have:

Hλ(s, l) :=
∂2LG,{Un}
∂λ(s)∂λ(l)

= α2

〈
N
©
n=1
un,l ,

N
©
n=1
un,s

〉
.

Let x ∈ RR0 ,

xTHλx = α2

∑
l,s

x(l)x(s)
〈
N
©
n=1
un,l ,

N
©
n=1
un,s

〉
,

= α2

〈∑
l

x(l)
N
©
n=1

un,l ,
∑
s

x(s)
N
©
n=1

un,s

〉
,

= α2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑
l

x(l)
N
©
n=1

un,l

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≥ 0,

since α2 is a positive Lagrange multiplier.

• Convexity w.r.t G̃:

We first place the elements G̃(r1, . . . , rN ) in a vector x ∈ RR0
N−R0 and use the

same method as for λ.

Let HG̃ be the hessian of LG,{Un} w.r.t G̃. Using eq.(21), we compute the

second derivates of LG,{Un}. The following derivatives are done only on the

offdiagonals of G̃ since its diagonal is zero.

HG̃(r1 . . . rN , r
′
1 . . . r

′
N ) :=

∂2LG,{Un}
∂G̃(r1, . . . , rN )∂G̃(r ′1, . . . , r

′
N )
,

= α2

∑
i1,...,iN

 N∏
n=1

Un(in, r
′
n)


 N∏
n=1

Un(in, rn)

+α3.
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Let x ∈ RR0
N−R0 ,

xTHG̃x = α2

∑
i1,...,iN

∑
rn

 N∏
n=1

Un(in, rn)

︸                 ︷︷                 ︸
Z(i1,...,iN )

∑
r ′n

 N∏
n=1

Un(in, r
′
n)

︸                 ︷︷                 ︸
Z(i1,...,iN )

+α3x
T x,

= α2||Z||2F +α3||x||2 ≥ 0,

since α2 and α3 are strictly positive values.
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3.1 Introduction

Many machine learning tasks are carried out using supervised learning on

labeled data. Classification is a major task in supervised learning. The solid

foundation of svm makes it suitable for a wide range of applications. However,

svm cannot be used for nonlinear classification. In real-life scenarios, kernels are

45
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often helpful in dealing with such cases.

This chapter provides some preliminary information regarding kernel methods,

beginning with kernel svm. By mapping input data to high-dimensional Hilbert

spaces, these kernel methods appear to extend svm to non-linearly separable

data. Then, we will discuss kernels based on Grassmann manifolds, and finally,

present how svm were extended to tensorial data, along with some methods that

propose kernels based on tensor decompositions.

3.2 Support Vector Machines (SVMs)

3.2.1 Linear SVMs classifier

Problem setting

Let consider the following set of training data composed of M vectors xm ∈ RI

with labels ym ∈ {1,−1}:

Dtrain = {(x1, y1), (x2, y1), . . . , (xM , yM), xm, ym ∈ {1,−1}}.

Assume that Dtrain is linearly separable, meaning that there is a hyperplane that

separates the two classes of data (Vectors with labels 1 and vectors with labels

−1). The equation for this hyperplane is:

h(x) := wT x+ b = 0, (3.1)

where w is a normal vector to the hyperplane and b
||w|| is the offset of the hyper-

plane from the origin.

Based on the assumption that all points with the label ym = 1 lie on the positive

side of the hyperplane (h(x) ≥ 0) and all points with the label ym = −1 lie on the

negative side of the hyperplane, it follows that:

ymh(xm) ≥ 0, 1 ≤m ≤M. (3.2)
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Maximizing the margin

The basic idea behind svm is to choose the hyperplane that maximizes the

margin, which is defined as the minimum distance between the hyperplane

and the training points. The support vectors are those located at this minimal

distance. Choosing a hyperplane maximizing margins is the best choice for

predicting good classification while dealing with unseen data [133].

Even though the optimal hyperplane is unique, there exist infinite couples (w,b)

that describe it. Thus, (w,b) are determined classically such that the distance

between the support vectors and the hyperplane is equal to 1. As a result, for

any point that is not a support vector, ymh(xm) > 1, since it is, by definition,

further from the hyperplane, and the margin is equal to 1
||w|| [1]. Thus, we have

the following inequalities over all points in the dataset:

ymh(xm) ≥ 1, for all xm ∈Dtrain. (3.3)

The margin can also be seen as the distance between the hyperplanes of equations

h(x) = 1 and h(x) = −1.

Optimization problem of the svm:

The svm’s goal is to find the hyperplane that maximizes the margin 1
||w|| under

the constraints (3.3). Since maximizing the margin is equivalent to minimizing

||w|| or 1
2 ||w||

2, the standard formulation of the optimization problem of svm is

given by [94]: Objective function : min
w,b

1
2
||w||2,

Linear constraints : ymh(xm) ≥ 1, ∀xm ∈Dtrain.
(3.4)

To solve the optimization problem in eq. (3.4), it is very common to solve its

dual. The main idea is to introduce the lagrangian multiplier αm using the
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Karush-Kuhn-Tucker (KKT) conditions:

αm (ymh(xm)− 1) = 0, (3.5)

αm ≥ 0. (3.6)

By minimizing the lagrangian of eq.(3.4) according to w,b, the following equa-

tions can be derived [94]:

w =
M∑
m=1

αmymxm, (3.7)

M∑
m=1

αmym = 0. (3.8)

The lagrangian variables are then obtained by solving the following maximiza-

tion problem known as the dual problem [94]:
Objective function : max

αm

M∑
m=1

αm −
1
2

M∑
m1=1

M∑
m2=1

αm1
αm2

ym1
ym2

xTm1
xm2

,

Linear constraints :
M∑
m=1

αmym = 0.

(3.9)

Once the αm are computed, w can be determined using eq.(3.7) . Using eq.(3.5)

for a training point (xm0
, ym0

) ∈Dtrain, b will be equal to :

b = ym0
−

∑
αm>0

αmym〈xm,xm0
〉. (3.10)

Decision function

In order to classify a new data point z, its label is calculated based on the decision

function defined as follows:

f (z) := sgn(h(z)). (3.11)
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Slack variables

Due to noise, a perfectly linear separation may not be possible. It is possible that

some outliers violate the margin of error. In such a case, svm will allow some

training points to violate the constraints, but these violations will be penalized.

Thus, svm introduces a slack variable ξm for each training point xm and relaxes

the constraints associated with it [19]:

ym(wT xm + b) ≥ 1− ξm,

where ξm ≥ 0. In order to minimize these violations, an additional term of slack

variables will be introduced in the svm optimization problem, which can have a

quadratic loss on the slack variables. The new optimization problem for svm is

as follows [19]:
Objective function : min

w,b

1
2
||w||2 +C

M∑
m=1

ξ2
m,

Linear constraints : ymh(xm) ≥ 1− ξm, ∀xm ∈Dtrain,

(3.12)

where C is a penalty parameter trading off the size of the margin and the number

of missclassifications. Larger C leads to a small number of misclassifications but

with a small margin and vice versa.

3.2.2 Kernel SVM: Non linear case

The majority of real-world machine learning problems cannot be linearly sep-

arated, therefore learning algorithms based on linear decision functions, such

as svm, cannot identify appropriate boundaries for classifying data. For such a

challenging situation, kernel methods are an effective solution. In general, the

idea is to project data using a nonlinear map φ called the feature map into a

high dimensionnal Hilbert space H, where data become linearly separable. The
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map φ can be defined as follows [134]:

φ : RI →H (3.13)

x→ φ(x) (3.14)

In practice, the vector x can lie in a high-dimensional space getting its transfor-

mation using the feature map φ very complicated involving many polynomial

combinations of its components. This will lead to impractical and extremely

high computationnal cost. To overcome this problem, the concept of the kernel

trick is introduced [12]. In fact, instead of computing explicitely the transformed

outputs φ(x) in the feature space H, we only need to compute the inner products

of the transformed vectors φ(x) in the feature space. This inner products are

given via a kernel function defined as follows [129]:

Definition 13. (Kernel function in RI) For x,y ∈ RI and φ : RI →H, then

k(x,y) = 〈φ(x),φ(y)〉, (3.15)

is a kernel function.

It is important to note that using the kernel function implicitely defines a

feature map and a feature space that are not explicitly constructed in practice.

The kernel can then be constructed without explicitly constructing the feature

space. For a function k to be considered as a valid kernel, it must be a real-valued,

positive definite function [12] as follows:

Definition 14. A function k : RI ×RI → R is called a kernel if it is a symmetric and
positive definite function i.e.:

∀M ∈ N∗,∀x1, . . . ,xM ∈ RI ,∀c1, . . . cM ∈ R,
M∑

m1=1

M∑
m2=1

cm1
cm2

k(xm1
,xm2

) ≥ 0. (3.16)

Examples of kernels on RI :

• Polynomial kernel:
The Polynomial kernel represents the similarity between two vectors as
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follows:

kP (x,x) = (〈x,x〉+ 1)n,

where n is the degree of the polynomial. This kernel consists of all monomi-

als with degrees less than or equal to n and their combinations. If n = 1, the

constant is omitted, and kP corresponds to the linear kernel generated by

the dot product, which corresponds to the angle between the two vectors

(that have been normalized). The linear kernel does not perform well for

challenging classification problems, particularly when the dataset cannot

be separated linearly. In most cases, n = 2 is used, since large values of n

can result in an overfitting of the data (the score on the training set is high

and low given new data).

• Radial Basis Function kernel:
The Radial Basis Function kernel (or Gaussian-Euclidean (GE)) is a kernel

that has the form of a Gaussian function. GE represents the similarity

between two vectors as a function of their euclidean distance (the squared

norm of the distance between them). According to this definition, kGE is

calculated as follows:

kGE(x,y) = exp
(
−γ ||x − y||2

)
,

where the parameter γ determines the influence of each data point. De-

pending on γ , this can give a good fit or an over fit: If γ is too small

compared to the distance between classes, this means discriminant sur-

faces will be flat. If γ is too large, it may be overfitting. Thus, the parameter

γ is crucial to have good performance. Selecting a proper value is necessary

and worth to do in practice.

Kernel matrix:

Based on the definition of the kernel function, we can define an important

quantity during learning, known as the kernel matrix K. For a set of data
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{x1, . . . ,xM}, the kernel matrix (also called Gram matrix) is the M ×M defined as

follows:

K =


k(x1,x1) . . . k(x1,xM)

... . . .
...

k(xM ,x1) . . . k(xM ,xM)

 .
We will see that in dual forms of svms utilizing kernel methods, the algorithm

receives information about the training set from the kernel matrix and the labels

associated with it.

Optimization problem of SVM using kernels:

By mapping data using a feature map φ, the optimization problem in eq. (3.12)

is given in the feature space by the following [134]:
Objective function : min

w,b

1
2
||w||2 +C

M∑
m=1

ξ2
m,

Linear constraints : ym(φ(xm)Tw+ b) ≥ 1− ξm, ∀xm ∈Dtrain,

(3.17)

where the weight vector w and the slack variables are all defined in the feature

space.

The dual problem of eq.(3.17) is then given by [134]:
Objective function : max

α

M∑
m=1

αm −
1
2

M∑
m1=1

n∑
m2=1

αm1
αm2

ym1
ym2
〈φ(xm1

),φ(xm2
)〉,

Linear constraints : 0 ≤ αm ≤ C,
M∑
m=1

αmym = 0.

(3.18)

It should be noted that the dual problem in eq. (3.18) depends only on dot

products between data in the feature space and since this dot products verify

〈φ(xm1
),φ(xm2

)〉 = k(xm1
,xm2

), the optimization problem in eq.(3.18) will be

solved using the kernel matrix K = {(xm1
,xm2

)}Mm1,m2=1.
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Weight vector and bias:

The solution (w,b) of eq.(3.18) is given by [94]:

w =
∑
αM>0

αmymφ(xm), b = ym0
αm0
−

∑
αm>0

ymk(xm,xm0
), m0 ∈ {1, . . . ,M}. (3.19)

Decision function:

The predicted class for a new point z is given by:

y = sgn
(
wTφ(z) + b

)
, (3.20)

= sgn

∑
αm>0

αmymφ(xm)Tφ(z) + b

 , (3.21)

= sgn

∑
αm>0

αmymk(xm,z)

 . (3.22)

In the above equation, only dot products are evaluated on the feature space

specified by the non-linear kernel function k, so it is not necessary to calculate

φ(xm) explicitly. The choice of the kernel function will have a significant impact

on the performance of the classification process. Although there is no theory on

how to select a kernel based on data, the Gaussian-Euclidean kernel has been

found to be very effective for a wide variety of classification problems [16].

Kernels as similarity measures:

Because kernels are inner products in the feature space, they naturally induce

similarity measures that quantify similarity between objects [12]. Unlike dis-

tance metrics, kernel functions yield large values for similar objects and small

values for dissimilar objects. It is possible to define kernels on a variety of

objects, such as subspaces, graphs, images, tensors, texts, and so on. Based on

the context, the structure of the data, and the knowledge of the application, a

kernel function may be defined as a comparison between two input objects.
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3.3 Kernels on Grassmann manifold

In many applications such as human activity modeling, face recognition, video

based face recognition, learning is involved on cetain non-euclidean spaces called

Grassmann manifolds [124, 139, 62, 39]. Due to the non-euclidean geometry

of these spaces, learning algorithms cannot be directly used. To overcome this

problem, some techniques are used to be able to use Euclidean tools. One of this

tools lies on the use of kernels. We will present how in this section. but first we

will review some basic Grassmannian geometry concepts.

3.3.1 Grassmann manifold

Definition 15. (Grassmann manifold) The Grassmann manifold G(I,R) with in-
tegers I ≥ R is the space formed by all R-dimensional linear subspaces in an I-
dimensional euclidean space. An element of G(I,R) is represented by an arbitrarly
I ×R orthonormal matrix U whose columns span the corresponding subspace. G(I,R)

can be written as [106]:

G(I,R) = {span(U ), U ∈ RI×R, U TU = IR}, (3.23)

where span(U ) denotes the subspace spanned by the columns of U . Since elements
in G(I,R) are subspaces, they are invariant to rotations, this means that U and UR
define the same elements in G(I,R) for any R×R invertible matrix R.

Each element of G(I,R) can be identified with an equivalence class of or-

thonormal basis that span the same subspace. Theses orthonormal basis are

elements of the so-called Stiefel manifold defined by:

S(I,R) = {U ∈ RI×R, U TU = IR}. (3.24)

3.3.2 Principal angles

Given two subspaces span(U ), span(V ) ∈G(I,R) there exist R angles {θr}Rr=1 de-

fined by [3, 50]:
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cos(θr) = max

ur∈span(U ),vr∈span(V )
uTr vr ,

uTr ur = 1, vTr vr = 1 1 ≤ r ≤ R,

uTr ul = 0, uTr ul = 0 ∀l < r, r ≥ 1.

(3.25)

The principal angles {θr}Rr=1 form a set of minimal angles between all possi-

ble bases of span(X) and span(V ). The vectors {ur}Rr=1 and {vr}Rr=1 are called

principal vectors of the pair of subspaces. In practice, principal angles can be

computed from the SVD, where the singular values sr of U TV are the cosines of

the principal angles. Thus, θr are computed by the following:

θr = arccos(sr), 1 ≤ r ≤ R. (3.26)

3.3.3 Subspace Distance on Grassmann manifold

In Riemannien manifolds, smooth curves connect points. A Riemannien mani-

fold’s geodesic distance between two points is equal to the length of the shortest

curve connecting them. In the Grassmannien manifold, the geodesic distance is

obtained from the 2-norm of the principal angle vector between two points[8].

dG (span(U ), span(V )) = ||θ||2. (3.27)

There are still many other distances that can be defined on a Grassmann mani-

fold [63, 83]. This is not an exhaustive list. But, we will give some examples w.r.t

to the principal angles {θr}Rr=1 and the orthonormal matrices U and V spanning

span(U ) and span(V ).

• Chordal distance [8]:

dC(span(U ), span(V )) = ||UU T −V V T ||F =
√

2

 R∑
r=1

sin2(θr)


1/2

. (3.28)
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To understand the construction of the chordal distance in eq. (3.28), recall

that Grassmann manifold is not an Euclidean space, therefore, tools of

Euclidean space cannot be used. To address this issue, one way is to embed

elements of the grassmann manifold onto an Euclidean space [50]. By

taking the space of I × I matrices Sym(I) and taking the Frobenius norm as

a distance in the embedding space, the projection metric can be derived

[83]. Due to the fact that singular values ofU TV are the cosines of principal

angles, the formula with principal angles can be derived.

• Projection metric [147]:

dP (span(U ), span(V )) = sin(θR) = ||UU T −V V T ||2. (3.29)

As with the chordal distance metric, the projection metric is derived by the

same embedding using the 2-norm.

3.3.4 Grassmann kernel

It is also possible to define kernel methods on Grassmann manifolds. The kernel

must verify the following properties in order to be considered valid on the

Grassmann manifold:

Definition 16. A function k : G(I,R)×G(I,R)→ R is a Grassmanine kernel if it is
positive definite and invariant to the choice of basis to represent subspaces in G(I,R)

[83]. This means that

k(span(U ), span(V )) = k(span(UR1), span(YR2)), (3.30)

for all span(U ), span(V ) ∈G(I,R) and for all R×R invertible matrices R1,R2.

3.3.5 Examples of Grassmannien kernels

It is possible to generalize Gaussian kernels on Grassmannien manifolds by

replacing Euclidean distance with a Grassmannien one. Such a kernel will be
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called a Grassmannien kernel that follows this form [124]:

k(span(U ), span(V )) = exp
(
−γ

(
d2 (span(U ), span(V ))

))
, (3.31)

where d can be any Grassmannian distance that allows the Grassmann kernel to

be a valid Gaussian kernel, such as the chordal as well as the projection distance.

Several Grassmannien metrics do not result in valid Gaussian kernels, such as

the geodesic distance, which does not allow the Gaussian kernel to be positive

definite.

The major focus of the work will be the use of Gaussian kernels because they

are universal kernels [57], i.e., they provide good results in approximating

any arbitrarily continuous function, provided there is sufficient training data.

Besides these kernels, there are several other Grassmannien kernels, including:

• Binet-Cauchy kernel [78]:

k(span(U ), span(V )) = det(UU TV V T ). (3.32)

• Polynomial kernel [83]:

k(span(U ), span(V )) = (β + ||U TV ||2F)n, (3.33)

where β > 0 and n is the polynomial degree.

In the following section, we introduce a number of methods that extend

svm to handle tensor data. As a next step, we will review some literature that

presents kernel methods for tensor data.

3.4 Support Tensor Machines

Traditional supervised learning methods based on flattening tensors into vectors

or matrices will not be effective for two reasons. First, tensors will lose their

structure [72]. In general, an entry in a data tensor is correlated with its sur-

rounding entries, much like the arrangement of voxels in a 3D FMRI image,
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where adjacent voxels typically exhibit similar characteristics, or the arrange-

ment of pixels in an image.

Furthermore, tensors have large dimensions. As an example, consider the video

of the UCF11 dataset [74], which is a tensor of order 4 and size 240×240×320×3.

If we flatten this tensor, we get 55 × 106 features, which leads to overfitting

(The learning algorithm seems working well on the training data set, but does

not perform well on data that has not been seen before), particularly if there

are only a few data points [47]. Moreover, learning with such large vectors is

computationally inefficient.

For all these reasons, [21, 144, 70, 42, 20, 32] propose not to flatten the data

tensor. To avoid the curse of dimensionality problem related to tensors, they

propose to retain information about the structure of the tensor using tensor

decompositions. Based on these decompositions, they propose algorithms for

supervised learning on data tensors that is called supervised tensor learning. In

this context, the following is a description of the problem statement of Support

Tensor Machines (STM) as the extension of svm to tensors.

Given a training set of input tensors {(Xm, ym)}Mm=1, we would like to solve a

binary classification problem where Xm ∈ RI1×···×IN and ym ∈ {−1,1} are the labels

of Xm. The extension of the standard linear svm in eq.(3.12) is given by [72]:
min
W ,b,ξ

1
2
||W||2F +C

M∑
m=1

ξm,

subject to : ym(〈W ,Xm〉+ b) ≥ 1− ξm,

ξm ≥ 0,1 ≤m ≤M,

(3.34)

whereW ∈ RI1×···×IN is a tensor weight parameter.

The multiway correlation in W can be captured by imposing a low rank con-

straint on W [32]. In [32], for example, Supervised Tensor Learning (STL) is

proposed, and W is assumed to be rank-1. However, it involves nonconvex

optimization problems and requires iterative methods. As a result, it is very

time-consuming and may lead to local minima. For better model expressive

power, rank-1 weight tensors of STM are generalized using the cpd in [42]. In
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addition, they took into account the spread of training data along the different

tensor modes. The approach described in [41] called Support Tucker machines

(STuMs) assumes that the weight tensor follows the Tucker model. The size of

the weight tensor,W , however, scales exponentially with the number of entries,

so it is computationally prohibitive to learn. This problem can be addressed by

[20] by proposing Support Tensor Train Machines (STTM) . This method replaces

the TD with the TTD that can approximate any tensor with a scalable number of

parameters. As an alternative to imposing constraints on the weight parameter,

[153] proposes a linear support tensor machine that constructs a hyperplane in

the tensor space based on inner products between input tensors. This approach

yields linear bounds for classification, which is extremely limited.

Using the approaches cited, the problem can be solved in eq.(3.34) in its

primal form. However, solving the dual form will allow kernel methods to

be applied easily to more challenging datasets in order to detect nonlinear

boundaries. As a result, [72] extends eq. 3.34 to the nonlinear case using a

nonlinear map φ described below:

φ : RI1×···×IN → RH1×···×HN . (3.35)

The projected tensor φ(X ) may be of a different order from X , and its dimensions

may be larger than those of X , or be infinite. The tensor feature space is the

space in which the tensor X is projected. In this space, 3.34 can be represented

by the following: 
min
W ,b,ξ

1
2
||W||2F +C

M∑
m=1

ξm,

subject to : ym(〈W ,φ(Xm)〉+ b) ≥ 1− ξm,

ξm ≥ 0, 1 ≤m ≤M,

(3.36)
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The Dual problem of 3.36 is expressed as [72]:
Objective function : max

αm

M∑
m=1

αm −
1
2

M∑
m1=1

M∑
m2=1

αm1
αm2

ym1
ym2
〈φ(Xm1

),φ(Xm2
)〉,

Linear constraints : 0 ≤ αm ≤ C,
M∑
m=1

αmym = 0,1 ≤m ≤M.

(3.37)

Based on the fundamental principe of kernel methods, the inner products

〈φ(Xm1
),φ(Xm2

)〉 is given by a tensorial kernel k(Xm1
,Xm2

). The predicted class

for a new tensor Z is then given by:

f (Z) = sgn

 M∑
m=1

αmymk(Xm,Z) + b

 , (3.38)

where k is a kernel function on the tensor space.

In order to classify a new tensor point Z, the evaluation of similarities between

Z and all the training points should be computed, therefore, the choice of k is

crucial. In this context, in their publication [90], Signoretto et al. propose a

Grassmannien tensor-based kernel. The kernel function is defined by consid-

ering the matrix-based subspaces spanned by factors of the HOSVD. Recently,

[21] Kernelized Support Tensor Train Machines (KSTTM) proposed a kernelized

support tensor train machine. The authors propose a kernel metric based on

kernel mappings on the different fibers of TT-cores based on the TTD. It should

be noted, however that due to the fact that TTD is not unique, the kernel func-

tion expression in [21] may be negatively impacted. The work described in [71]

proposes a kernelized tensor factorization method which can be understood as

performing cpd in a high-dimensional space implicitly defined by a kernel func-

tion. In [70], this approach was generalized using the TD and the parameters of

the classification model were estimated jointly. The DuSK method [72] proposes

a scheme to design structure-preserving kernels for supervised tensor learning.

First, the cpd is used to extract a more compact and informative representation

of the original data, and then a new kernel function is defined in the tensor space
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based on the columns of the CP factors. It is important to note, however, that

the ambiguities inherent in the cpd will affect the performance classification of

this method. In the following chapter, we will provide a detailed analysis of this

method, as well as analyze how scaling impacts the intrinsic similarity measure.
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In this chapter, the tensor-based kernel approach DuSK proposed in [72] is

analyzed. This method aims to design a tensorial kernel for tensors. Based on the

cpd, [72] uses a GE kernel between CP factors in order to perform classification
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using STM. However, their choice of kernel function is unable to address the

scaling ambiguities inherent in the cpd. It is demonstrated that the DuSK

method fails theoretically to satisfy the intrinsic property of similarity of a

kernel function. In particular, it fails to the evaluation of auto-similarity, which

is the similarity between the tensor and itself. In addition, it will be shown

that the scaling ambiguities of the cpd corrupt the STM algorithm’s decision

function. The difficulty of DuSK to achieve high classification performance on

real datasets can be explained by these two weaknesses. By modifying the kernel

choice based on Grassmannian geometry, the scaling ambiguities of the cpd can

be effectively managed and the classification performance will be improved.

4.1 Analysis of the DuSK’s scheme

Let (X ,X ′) a couple of rank-R tensors, the tensorial kernel function proposed in

DuSK [72] is based on their cpds given by:

X =
R∑
r=1

N
©
n=1
un,r , X ′ =

R∑
r=1

N
©
n=1
u′n,r . (4.1)

The DuSK’s kernel kDuSK is defined as follows:

kDuSK(X ,X ′) :=
1
R

R∑
r=1

R∑
r ′=1

N∏
n=1

k
(
un,r ,u

′
n,r ′

)
, (4.2)

where kGE is the standard Gaussian kernel. Thus, for every pair of rank-one

tensors of X and X ′, the product of subkernels kGE between the respective

columns of the CP factors is calculated.

As stated in section 2.1.2, the cpd is unique under mild conditions. These

conditions are supposed to be verified here up to the ambiguities of the cpd. The

permutation ambiguity will not affect the expression of the kDuSK kernel since the

order of computing similarities between rank-one tensors is irrelevant( they will

be added at the end via the summation over r and r ′ in eq.(4.2)). Nevertheless,

the scaling ambiguity will affect the similarity of the kernel function even if the
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column factors of CP are normalized. This normalization is an important step

before calculating the subkernel kGE to ensure that no column factors affect the

kernel value because of its range. Even though normalization was performed,

sign ambiguity remains, which will negatively affect classification performance.

For measuring these impacts, we recall the notion of the congruent set Xk which

contains tensors that are similar to X with respect to a kernel function k.

Definition 1. [89] With a normalized kernel function k that assigns a value of 1 to
similar tensors, the congruent set Xk associated with a tensor X is the set of similar
tensors to X and defined as follows:

Xk = {X ′ ∈ RI1×···×IN : k(X ,X ′) = 1 }.

From the definition of the congruent set above, Xk should at least contain

the tensor X itself. However, we will demonstrate that the auto-similarity (the

similarity between a tensor ant itself) is prone to zero value.

4.1.1 Probability of nonemptiness of the congruent set

We will demonstrate that in the general case of rank-R tensors, the probability

of XkDuSK not being empty tends to zero with the order N .

Let us consider two cpds of a rank-R tensor X from eq.(2.7):

X =
R∑
r=1

λ(r)
N
©
n=1

(
sgn

(
βn,r

)
un,r

)
, X =

R∑
r=1

λ′(r)
N
©
n=1

sgn
((
β′n,r

)
un,r

)
. (4.3)

Thus, the kernel kDuSK(X ,X ) can be written as:

kDuSK(X ,X ) =
1
R

 R∑
r=1

exp

−γ N∑
n=1

(
1− sgn

(
αn,r

))2

+ TN,R

 ,
where

αn,r =
βn,r
β′n,r

, (4.4)
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and

TN,R :=
R∑
r=1

R∑
r′,r
r ′=1

N∏
n=1

exp
(
−γ

∣∣∣∣∣∣sgn(βn,r)un,r − sgn(β′n,r ′ )un,r ′
∣∣∣∣∣∣2) . (4.5)

In eq.(4.5), the ambiguity of permutation of the cpd is considered equal to the

identity matrix because of the double summation over the rank.

The constraints of the scaling factors of the cpd are given by (see section 2.1.2):

N∏
n=1

βn,r = 1,
N∏
n=1

β′n,r = 1, 1 ≤ r ≤ R, (4.6)

Thus, we have :

N∏
n=1

αn,r = 1. (4.7)

It is clear from eq. (4.7) that the number of negative values of αn,r defined

by Qr = #{αn,r = −1}n must be an even number that belongs to {0, · · · ,N }. This

quantity will be crucial when examining the non-emptiness of XkDuSK .

An example may be given as follows: for a given tensor of order N = 3, if the

set of signs of βn,1 is {1,−1,1} and the set of signs β′n,1 is {−1,1,1}, then the set of

signs of αn,1 are {−1,−1,1} and Q1 is equal to 2.

The terms αn,r are then considered discrete random variables and Qr will be

modeled as a binomial random variable belonging to a truncated support, which

leaves out odd values. Based on these assumptions, the following theorem gives

the probability of nonemptiness for rank-R tensors.

Theorem 1. Let X be a rank-R tensor. We can show that:

P(XkDuSK
,∅) ≤ P

 R∏
r=1

Qr = CR

 −→N→+∞
0, (4.8)

where CR =
[

ln(R)
(4γ)R

]
.
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Proof. See Appendix .1.

As shown by Theorem 1, computing the auto-similarity using kDuSK results

in an empty congruent set. Consequently, two identical tensors can not even be

considered as elements from the same class. Thus, as N increases, kDuSK will be

unable to verify the kernel properties.

The following specific results are obtained for rank-one tensors:

Theorem 2. Let X be a rank-1 tensor. We can show that:

• The probability to have a non-empty congruent set is given by:

P(XkDuSK
,∅) = P(Q1 = 0) =

1
2N−1 . (4.9)

• The expectation E
[
kDuSK(X ,X )

]
converges towards 0 with respect to the order

N .

Proof. See Appendix .2.

Theorem 2 provides the exact probability of non-emptiness of XkDuSK
for

rank-one tensors as well as the expectation of kDuSK and shows that the DuSK

kernel fails to measure the autosimilarity and thus the congruent set is empty

with probability 1 when the tensor’s order N tends to infinity.

To validate the choice of modelization of the random variable N1, the following

numerical experiment is conducted. A single rank-one deterministic tensor of

different orders where all dimensions are equal to 5 is generated. The theoritical

value of P(Q1 = 0) given by the model considered is compared with the empirical

value given by 1000 cpds of a fixed tensor of a specific order. We present in

Figure 4.1 a fitting of the numerical and theoretical probabilities. We note that

the model chosen for Q1 is well suited.

4.1.2 Effect of scaling ambiguity on the kernel matrix

This section demonstrates how the failure of kDuSK to verify the similarity prop-

erty impacts the kernel matrix, which is the key to parameter learning. We
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Figure 4.1 – Illustration of the probability of XkDuSK
to have a non empty con-

gruent set for different values of N . Theoretical and Numerical values of
P(XkDuSK

,∅) are presented. Theoretical values are computed using the probabil-
ity from Theorem 2.

consider rank-one tensors since ambiguity permutation is not an issue with

kDuSK as explained in section 4.1 and thus, the rank-one case is considered here

just to see the impact of the scaling ambiguity. Consider the following toy

example from a binary classification problem:

Dtrain = { X0,X0︸︷︷︸
1st class

, X1,X2︸︷︷︸
2nd class

}. (4.10)

Theoretically, the kernel matrix should have the following form:

K =


1 K(1,2) O(ε) O(ε)

K(1,2) 1 O(ε) O(ε)

O(ε) O(ε) 1 K(3,4)

O(ε) O(ε) K(3,4) 1

 ,
where kDuSK(Xm,Xm) = 1, 1 ≤m ≤ 4, O(ε) is a small constant and

K(1,2) = kDuSK(X0,X0),

K(3,4) = kDuSK(X1,X2).
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As X0 appears twice in the dataset, the cpd of X0 will be computed twice, re-

sulting in differing scaling factors. Thus, K(1,2) will tend towards 0 thanks

to Theorem 2. In this case, the submatrix M :=

 1 K(1,2)

K(1,2) 1

 in the kernel

matrix K, will be equal to

 1 O(ε)

O(ε) 1

 instead of

1 1

1 1

. Based on the experi-

ments in section 4.3, the learning process may fail. The failure of kDuSK will also

negatively affect the decision function as we will see in the next section.

4.1.3 Effect of scaling ambiguity on the decision function

In this section, we show how the DuSK method fails to accurately predict the

right labels due to the scaling ambiguity of the cpd of input data tensors. This

can be illustrated by considering the classification of a new data tensor Z with

label 1 without any loss of generality. In such case, the decision function f is

given by:

f (Z) = sgn(T1 − T2) + b, (4.11)

where

T1 =
∑
m∈S

αmkGE(Xi ,Z),

and

T2 =
∑
m<S

αmkGE(Xm,Z),

where b is the parameter of svm and αm are the dual lagrangien variables of the

primal problem of svm discussed in chapter 3 and S represents the set of indices

of the same class as Z. A numerical value of T1 should be larger than that of T2

because T1 correponds to kernels of similar tensors whereas T2 correponds to

the other class. However, we verify that it is not always the case.

In order to achieve this, 4th-order rank-one tensors were generated where all

dimensions are equal to 20. The columns of CP factors of tensors of each class
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1 2 3 4 5 6 7
T1 10−34 10−4 10−33 10−4 10−27 10−33 10−28

T2 10−11 10−13 10−4 10−14 10−9 10−10 10−4

f (Z) -1 1 -1 1 -1 -1 -1

Table 4.1 – Different realisations and comparisons of T1 (kernel value of similar
tensors) and T2 (kernel value of different tensors) using the DuSK kernel

are respectively generated from a Gaussian distribution of standard deviation

0.01 and mean 0.2 and (resp. 0.3). αm are found equal to 1 and b equal to 0.

Table 4.1 shows the repetition of the numerical experiment described. We note

that in realisations 1,3,5,6,7 in Table 4.1, T2 is greater than T1. This means that

the similarity between tensors within the same class is smaller than that between

tensors of different classes. As a result, whenever the test point Z has label 1,

the decision function in eq. (4.11) will return the false prediction if T1 < T2.

4.2 Proposed scheme

A possible solution to the scaling ambiguity due to the cpd discussed previously

is to use the Grassmann geometry. Thus, the Grassmann geometry can be used

in our context by considering in eq. (4.2) the subspaces spanned by the column

factors and by considering the Gaussian-Grassmann kernel defined in section

3.3.4. In this case, the chordal distance between the two subspaces defined in

eq.(3.28) will be used. Due to the fact that the projectors are scale-invariant to

any non-zero multiplicative scaling, we can avoid the scaling ambiguity inherent

in cpd using the Grassmann kernel. We call this approach Tensor Learning on

Grassmann Manifold (TL-OGA).

As the ALS optimization strategy used in [72] to compute the cpd suffers greatly

from the curse of dimensionality in the sense that its complexity grows exponen-

tially with the order of the input tensor, we use the JIRAFE [151] as an efficient

method to mitigate it for the computation of the CP factors wich is based on

the exploitation of an algebraic relation between the cpd and the Tensor-Train

Decomposition TTD. When the cpd is derived using the JIRAFE algorithm, we
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call this approach Fast Tensor Learning on Grassmann Manifold (FTL-OGA).

4.3 Numerical Experiments

This section compares the state-of-the-art method DuSK [72] with the two pro-

posed approaches (TL-OGA and FTL-OGA).

4.3.1 Datasets

• UCF11 dataset [74]: In this dataset, there are 1600 video clips some of

which show diving, trampoling jumping, walking, shooting... . We ran-

domly chose two human actions, "Trampoling jumping" and "Walking"

for human activity recognition. This is a binary classification problem in

which the 2 classes are given by the two human actions considered. The

clips have a frame rate of 29.97 Frames Per Second (FPS) and each video has

only one action associated with it. From each video, we consider a sequence

that contains the first 240 frames from each clip video where the resolution

of each Red-Green-Blue (RGB) frame is 320 × 240. The clip videos are

organized as tensors of order 4 with dimensions 240× 240× 320× 3.

• Extended Yale dataset B [9]: There are 28 human subjects in this dataset.

For each subject, there are 576 images of size 480 × 640 taken under 9

poses and each pose is taken under 64 different illuminations. The images

of three subjects are randomly chosen for subject recognition. This is a

multiclass classification problem where the classes are given by the three

subjects considered. We can arrange the images of each subject into a 4-th

order tensor with dimensions 9× 480× 640× 64 where 9 is the number of

poses and 64 is the number of illuminations. The training and the test set

are constructed by breaking the tensor of each subject into 16 tensors and

considering each 4 illuminations in a tensor of size 9× 480× 640× 4.
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4.3.2 Classification performance

• The number of rank-one tensors used to compute the cpd will be denoted

by R.

• To begin with, the dataset is divided into a training set and a test set. If it is

not stated otherwise, the training set contains 60% of the data and the test

set contains the remainder. Each training and test set was randomly sam-

pled ten times, and the accuracy scores were calculated using the accuracy

score, a classical metric for evaluating classification performance, which is

a measure of the percentage of well classified data in a set of test data.

• We remark that both TL-OGA and FTL-OGA offer superior performance for

various possible values of R for the two real-world datasets considered (see

Tables 4.2 and 4.3). Our approaches are successful because the Grassmann

kernel allows for circumvention of scaling ambiguities due to the cpd.

• Using FTL-OGA in Table 4.2, accuracy scores are slightly better that TL-

OGA. This is because TL-OGA may suffer from some convergence difficul-

ties problems related to ALS. This is not the case of the FTL-OGA that uses

the JIRAFE algorithm instead.

• In Table 4.4, we note that TL-OGA and FTL-OGA are robust to a small

training dataset such that, respectively, they reach high accuracy scores

of 97% and 95% when only 20% of the dataset are used as training data,

compared to 55% obtained using the DuSK method.

4.3.3 Hyperparameters settings

The couple of hyperparameters of STM are tuned using grid search from the

grid {2−9,2−8, ...,28,29} by a 5-fold cross-validation. We thus divided the training

set into 5 parts. Each pair of hyperparameters is used to learn on one subset
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each time, and the accuracy score is calculated based on the remaining subsets.

Based on the average score, we can establish a prediction of the model’s per-

formance. The pair of hyperparameters chosen are the ones with the highest

average validation score.

4.3.4 Parameter sensitivity

For the computation of the cpd, different small values (values smaller than the

smallest dimension of the tensor) of R were tested. When R is small, the factors

may not be able to model the given tensor with enough accuracy. However,

when it is too large, the factors can be poorly estimated. This can explain the

variation in scores of TL-OGA in Table 4.2 w.r.t R if we assume that a low-rank

approximation exists. On the other hand, the difficulty of DuSK to reach high

scores on the UCF11 dataset can be explained by the impact of the scaling

ambiguities of cpd on finding accurate boundaries for classification. In Table.

4.3, we remark that TL-OGA and FTL-OGA are both robust to the choice of the

rank.

4.3.5 Time computation of the CPD

The major part of time computation of DuSK and TL-OGA is due to the compu-

tation of the cpd. Time computation of these two methods are reported in tables

4.5 and 4.6. This illustrates the benefit of using the JIRAFE method. For example,

the gain is around a factor of 200 when R = 2 and a factor of 400 when R = 3 on

the UCF11 dataset while on the Extended Yale dataset, the gain is around 125

when R = 3 and a factor of 75 when R = 4. With FTL-OGA, similar scores can be

reached while computing cpd takes less time.



74 CHAPTER 4. Probabilistic analysis of the CPD-based tensor learning

R 1 2 3
DuSK 0.65(10−2) 0.57(10−2) 0.63(10−2)
TL-OGA 0.8210−2) 0.84(10−2) 0.72(10−2)
FTL-OGA 0.86(10−2) 0.86(10−2) 0.81(10−2)

Table 4.2 – Average accuracy scores for the different methods on the UCF11
dataset according to the rank of input tensors: mean(standard deviation)

R 1 2 3 4
DuSK 0.88(0.12) 0.9(10−2) 0.77(10−2) 0.93(10−2)
TL-OGA 1(0) 1(0) 1(0) 1(0)
FTL-OGA 1(0) 0.99(10−2) 0.99(10−2) 1(0)

Table 4.3 – Average accuracy scores using different methods on the Extended
yale dataset B with respect to R: mean(standard deviation)

% Train 20 % 40% 60% 80%
DuSK 0.55(10−2) 0.69(10−2) 0.93(10−2) 0.88(10−2)
TL-OGA 0.97(10−2) 0.99(10−3) 1(0) 1(0)
FTL-OGA 0.95(10−2) 0.99(10−3) 1(0) 1(0)

Table 4.4 – Average accuracy scores using different methods on the Extended
yale dataset B with respect to the percentage of the training set: mean(standard
deviation)

R 1 2 3
ALS(s) 470 6264 8887
JIRAFE(s) 14 22 30
Gain 33 283 444

Table 4.5 – Computational time in seconds for computeing the cpd of the UCF11
dataset using the JIRAFE algorithm compared with the ALS algorithm and the
gain in time using JIRAFE
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R 1 2 3 4
ALS(s) 49 760 1251 1455
JIRAFE(s) 3 9 11 20
Gain 16 84 113 73

Table 4.6 – Computational time in seconds for computing the cpd for the Ex-
tended yale dataset B using JIRAFE algorithm compared with ALS algorithm
and the gain in time using JIRAFE

4.4 Conclusion

A statistical analysis of the popular DuSK method for supervised learning of

high-order tensors is derived. By using the ALS optimization method, the DuSK

method derives the factors of the cpd of the data tensor. Then, the GE is exploited

as a similarity metric between the columns of the CP factors in the context of

STM. The present work shows that the DuSK approach fails to verify the intrinsic

property of similarity of a kernel function. Due to scaling ambiguities in cpd,

the GE kernel was unable to achieve high accuracy classification scores on real

datasets. Therefore, the approach TL-OGA is proposed in this work which uses a

Gaussian-Grassmann kernel between the subspaces spanned by the CP factors

which is invariant to the scaling ambiguities of the cpd. The FTL-OGA proposed

relies on the JIRAFE method to alleviate the ”curse of dimensionality” for the

computation of the CP factors. Finally, it is shown on two real tensor datasets

the ability of the proposed method to reach high classification accuracy scores

while consuming much less computational power.
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.1 Proof of Theorem 1

The two following lemmas are required for the proofs of Theorem 1 and Theorem

2.

Lemma 1. If L is a random variable with an (N,p)-binomial distribution, then:

P(L ≡ 0[2]) =
1 + (1− 2p)n

2
.

Proof. Using the classical binomial sums:

((1− p) + p)N =
N∑
n=1

(
N
n

)
pl(1− p)N−n,

=
∑
n≡0[2]

P(L = n) +
∑
n≡1[2]

P(L = n).

((1− p)− p)N =
N∑
n=1

(
N
n

)
(−p)n(1− p)N−n,

=
∑
n≡0[2]

(
N
n

)
pl(1− p)N−n −

∑
n≡1[2]

(
N
n

)
pn(1− p)N−n,

=
∑
n≡0[2]

P(L = n)−
∑
n≡1[2]

P(L = n).

By summing the two expressions, we have:

2
∑
n≡0[2]

P(L = n) =
1 + (1− 2p)N

2
.

Hence,

P(L ≡ 0[2]) =
∑
n≡0[2]

P(L = n),

=
1 + (1− 2p)N

2
.

Recall that Qr was modelized as an (N,1/2) binomial random variable belonging
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to a truncated support, which leaves out odd values. Thus, by normalizing the

truncated distribution, we have:

P(Qr = l) =
2

1 + (1− 2p)N

(
N
l

)
pN (1− p)N−l . (12)

Lemma 2. Let N ∈ N, we have:(
N
n

)
2n−1 ≤Nn for n ∈ {1, · · · ,N }.

Proof. Let us show recursively the property :

P (n) :
(
N
n

)
2n−1 ≤Nn for n ∈ {1, · · · ,N }.

• P (0) is true for n = 0 since we have:(
N
0

)
2−1 = 1× 1

2
=

1
2
< 1 =N 0.

• P (n)⇒P (n+ 1): Assume that P (n) is true for n ∈ {1, · · · ,N − 1}. Hence,

(
N
n+ 1

)
2n =

N !
(n+ 1)!(N −n− 1)!

2n−1

︸                        ︷︷                        ︸
≤Nn

× 2(N −n)
n+ 1︸    ︷︷    ︸
≤N

,

≤Nn+1.

Proof of Theorem 1:

Let X be a rank-R tensor. Consider two cpds of the same tensor X with respective

scaling factors {βn,r}n,r and {β′n,r}n,r . Recall that αn,r = sgn
( βn,r
βn,r′

)
, we will first
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show that P (kDuSK(X ,X ) = 1) tends toward 0 by demonstrating that ∃CR > 0:

P(kDuSK(X ,X ) = 1) ≤ P

 R∏
r=1

Qr = CR

 −→N→+∞
0. (13)

Proof.

kDuSK(X ,X ) = 1, (14)

⇐⇒ exp

 R∏
r=1

−γ N∑
n=1

γ(1− βn,r)2


 = R− TN,R, (15)

⇐⇒
R∏
r=1

Qr =
ln(R− TN,R)
(−1)R(4γ)R

. (16)

Since
∏R
r=1Qr is a positive quantity, the term ln(R− TN,R)(−1)R(4γ)R should be

positive, if it is not the case, P(kDuSK(X ,X ) = 1) = 0. We suppose then that
ln(R−TN,R)
(−1)R(4γ)R ≥ 0. Hence, we have two cases: R−TN,R > 1 and R is even or R−TN,R < 1

and R is odd. In both cases, we will be able to have an upper bound of ln(R−TN,R)
(−1)R(4γ)R

that depends on R. Let us focus on the first case and the same reasoning will be

the same for the second. From eq.(16), we deduce that:

P (kDuSK(X ,X ) = 1) = P

 R∏
r=1

Nr =
ln(R− TN,R)

(4γ)R

 . (17)

Let CR = [ ln(R)
(4γ)R ]. Since TN,R > 0, we have the following inclusion property:

ln(R− TN,R)
(4γ)R

≤ CR. (18)

Thus, using eq. (18), we have the following inclusion property:

R∏
r=1

Qr =
ln(R− TN,R)

(4γ)R︸                     ︷︷                     ︸
event E

⊂
R∏
r=1

Qr ≤ CR︸        ︷︷        ︸
event F

. (19)
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Let Ec be the complementary event of E in F such as P(F) = P(E ∪ Ec). As

E and Ec are mutually exclusive events, the intersection is null and we have

P(F) = P(E) +P(Ec) ≥ P(E) or equivalently:

P

 R∏
r=1

Nr =
ln(R− TN,R)

(4γ)R

 ≤ P

 R∏
r=1

Qr ≤MR

 . (20)

• Let us first assume that
∏R
r=1Qr ≥ 1 ı.e Qr ≥ 1 for 1 ≤ r ≤ R, and the case∏R

r=1Qr = 0 will be treated just after. Hence,

R∏
r=1

Qr ≤ CR ⊂ ∀r :Qr ≤ CR. (21)

Using the same methodology for deriving eq.(20) from eq.(19), we obtain:

P

 R∏
r=1

Qr ≤ CR

 ≤ P (∀r :Qr ≤ CR) . (22)

As (Qr)1≤r≤R are assumed to be independent and identically distributed,

hence,

P (∀r :Qr ≤ CR) =
R∏
r=1

P (Qr ≤ CR) . (23)

From eq. (17), (20)-(23), we deduce that:

P (kDuSK(X ,X ) = 1) ≤
R∏
r=1

P(Nr ≤MR). (24)

Assume that Qr is an (N, 1
2 ) binomial distribution with truncated odd

values, so we have from eq. (12) of lemma 1:

P(Qr ≤ CR) =
CR∑
l=1

P (Qr = l) = 2
CR∑
l=1

(
N
l

)
1

2N
. (25)
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Using lemma 2, we have from (25):

P(Qr ≤ CR) ≤
CR∑
k=1

N l

2l
1

2N
≤ C′RN

CR
1

2N
, (26)

where C′R =
∑CR
l=1

1
2l

.

Hence P(Qr ≤ CR) converges toward 0 with N .

• In the case where
∏R
r=1Qr = 0 then (17) becomes:

P (kDuSK (X ,X ) = 1) = P

 R∏
r=1

Qr = 0

 . (27)

Since we have,

R∏
r=1

Qr = 0 ⊂ ∃r0 :Qr0 = 0, (28)

Using (28) and lemma 1, we have:

P

 R∏
r=1

Qr = 0

 ≤ P
(
Qr0 = 0

)
=

1
2N−1 ,

which also converges towards 0 with N .

So far, we have demonstrated that P (kDuSK (X ,X ) = 1) tends toward 0. To see

that P(XkDuSK
, ∅) tends toward 0, consider a tensor Y that is similar to X but

different from X . From the properties of a kernel function, we can derive:

k(X ,Y ) ≤ k(X ,X ). (29)

Since P (kDuSK (X ,X ) = 1) tends towards 0, the quantity P (kDuSK (X ,Y ) = 1) will

also tend towards 0. Hence, P(XkDuSK
,∅) tends towards 0.
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.2 Proof of Theorem 2

Let us demonstrate the first part of for Theorem 2 given by:

P(XkDuSK
,∅) = P(Q1 = 0) =

1
2N−1 . (30)

Proof. Similarly to .1, we show that P (kDuSK (X ,X ) = 1) tends towards 0. Let X a

rank-one tensor where two cpds are computed with respective scaling factors

{βn,1}n,1 and {β′n,1}n,1. Then, we have:

P (kDuSK (X ,X ) = 1) = P

 N∑
n=1

(1− sgn(αn))2

4
= 0

 .

Assuming that Q1 is a binomial distribution with parameter p = 1/2 with trun-

cated support by removing all odd values, we have from eq.(12):

P (Q1 = 0) =
1

2N−1 . (31)

The second part of this proof will demonstrate that the expectation E
[
kDuSK(X ,X )

]
converges towards 0 with respect to the order N .

The expectation for kDuSK can be written as:
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E [kDuSK(X ,X )] = E

exp

−γ N∑
n=1

(1− sgn(αn))2


 ,

=
N∑
k=0

e−4γkP

 N∑
n=1

(1− sgn(αn))2

4
= k

 ,
=

∑
k≡0[2]

e−4γk 1
2n−1

(
N
k

)
,

≤
N∑
k=0

e−4γk 1
2N−1

(
N
k

)
,

= 2
(

1 + e−4γ

2

)N
.

Therefore, for any fixed γ > 0, the expectation converges towards 0 with

respect to N .
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TTD is one of the simplest tensor networks that is capable of mitigating the

curse of dimensionality. It has been introduced in the numerical mathematics

community in [43] and under the name ’Matrix Product States’ in the particle

physics community [121]. TTD decomposes a tensor into lower-order tensors

called TT-cores.

In this chapter, a kernel function on the tensor space will be defined based on

the TTD. The similarity between two tensors will be determined by evaluating

the similarities between their respective TT-cores. The non-unicity of the TT-

cores could, however, adversely affects this measure. In order to overcome this

problem, similarities between the subspaces spanned by the TT-cores will be

87
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Vertical:
X (:, j, :)

Horizontal:
X (i, :, :)

Frontal:
X (:, :, k)

Tubal:
X (i, j, :)

Figure 5.1 – Slices of a tensor X of order-3.

considered. To characterize these subspaces, tools from the algebra of third order

tensors known as tensor-linear algebra (t-algebra) will be used. This chapter

is organized as follows. To begin with, we present some preliminary remarks

concerning t-algebra in section 5.1. We then present the TTD in section 5.2.

Lastly, in section 5.3, the proposed method is described, and its validity is

demonstrated in section 5.4.

5.1 Background in t-algebra

A number of algebraic tools are presented in this section that generalize linear

algebra for tensors of order 3 proposed in [84, 85]. First of all, some notations

are introduced. Tensor slices are two-dimensional sections of a tensor. They

are defined by all indices except two must. A third order tensor X has vertical,

horizontal, and frontal slices, which are denoted by X (i1, :, :), X (:, i2, :), and X (:, :

, i3). We will refer to this later as Xi3 .

Figure 5.1 illustrates the different slices and tubes of a 3-order tensor.

To define the tensor product between two tensors of order 3 which preserves

the order of the tensor, we will first define some neccesary tools.

The block circulant matrix circ(X ) of a tensor X is of size I1×I2×I3 and is defined
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using its frontal slices Xi3 :

circ(X ) =


X1 XI3 XI3−1 · · · X2

X2 X1 XI3 · · · X3
...

. . . . . . . . .
...

XI3 XI3−1
. . . X2 X1


.

The MatVec operation takes a 3-rd order tensor as input X of size I1 × I2 × I3 and

returns a block matrix of size I1I3 × I2:

MatVec(X ) =


X1

X2
...

XI3


, fold(MatVec(X )) = X ,

where the fold is the inverse operation of MatVec(X ) that takes back to the tensor

X . Finally, the t-product is defined by the following:

Definition 17. Let X be a tensor of size I1 × I2 × I3 and Y of size I2 × I × I3. Then,
the t-product X ∗Y is a tensor of size I1 × I × I3 defined as:

X ∗Y = fold(circ(X ) .MatVec(Y )). (5.1)

It shall be noted that the computation of the t-product in (5.1) demands

O(I1I2I
2
3 I) operations. In practice, the t-product is realised in the Fourier domain.

Computation of the t-product in the Fourier domain

To illustrate how computations are performed in the Fourier domain, we first

define the Discret Fourier Transform (DFT) of a tensor.

Definition 18. (DFT of a tensor) For X ∈ RI1×I2×I3 , its DFT is denoted by X̄ and it
is the result of applying the Fast Fourier Tansform (FFT) on X on the tube fibers of X .

As stated in [84], block circulant matrices can be block diagonalized just as

circulant matrices can be diagonalized by the DFT. Specifically, if FI3 is the I3×I3
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DFT matrix, then:

(FI3 ⊗ II1) .circ(X ) . (F ∗I3 ⊗ II2) = X̄ , (5.2)

where X̄ is a block diagonal matrix where its i-th block on the diagonal is the

frontal slice Xi3 :

X̄ = bdiag(X̄ ) =


X̄1

X̄2
. . .

X̄I3


. (5.3)

To compute the t-product in eq. (5.1) in the Fourier domain, X̄ and Ȳ which are

respectively the DFTs of X and Y are computed then it remains to multiply each

frontal slice of X̄ with each frontal slice of Ȳ . Specifically, we have [84]:

Z = X ∗Y ⇐⇒ Z̄ = X̄Ȳ . (5.4)

In the Fourier domain, the t-product will cost O(I1I2I3I log2(I3)) [84].

Other definitions from tensor linear algebra

Definition 19. (t-transpose) For a tensor X of size I1× I2× I3, its transpose X T is a
tensor of size I2 × I1 × I3 obtained by transposing the frontal slices Xi3 and reversing
their order from 2 through I3.

Definition 20. (Identity tensor): The identity tensor II1I1I3 is a tensor whose first
frontal slice is the identity matrix II1 and whose all other frontal slices are zeros.

Definition (Tensor inverse) : A tensor X of size I1 × I1 × I3 has an inverse X −1 if:

X ∗X −1 = X −1 ∗ X = II1I1I3 .

Definition 21. (Orthogonal tensor): A real tensor of size I1 × I1 × I3 is orthogonal
if:

X T ∗ X = X ∗X T = II1I1I3 .
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Definition 22. (f-diagonal tensor): A tensor X of size I1 × I1 × I3 is f-diagonal if
each of its frontal slices Xi3 is a diagonal matrix.

Definition 23. (Tubal scalar): An element c ∈ R1×1×I3 is called a tubal scalar of
length I3.

Definition 24. (Range) The range of a tensor X ∈ RI1×I2×I3 denoted by span(X ) is
the t-linear span of its lateral slices:

span(X ) =

X ∗ C =
I2∑
i2=1

X (:, i2, :) ∗ ci2 , C ∈ R
I2×1×I3

 , (5.5)

where ci2 = C(i2, i2, :) are the tube fibers of C.

Tensor Singluar Value Decomponistion (t-SVD):

Based on the framework of t-linear algebra, the SVD has been generalized to a

tensor of order 3 as follows:

Theorem 3. [84] Let X a I1 × I2 × I3 be a real-tensor. Then, X can be decomposed as:

X = U ∗S ∗ VT , (5.6)

where U and V are orthogonal tensors of size I1×I1×I3 and I2×I2×I3 respectively and
S is a tensor f-diagonal. The entries of the diagonal of the first frontal slice S(:, :,1)

have the decreasing property:

S(1,1,1) ≥ S(2,2,1) ≥ · · · ≥ S(Imin, Imin,1) ≥ 0. (5.7)

where Imin = min(I1, I2).
The entries of the diagonal od S(:, :,1) are called the singular values X .

Computation of the t-SVD:

In order to compute the t-SVD of X , X̄ is first computed, followed by SVDs of

its frontal slices X̄i3 = Ūi3 S̄i3V̄i3 , each of which constitutes the frontal slices of Ū ,
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S̄ and V̄ . The tensors U , S , and V are obtained by computing the inverse fourier

transform along the third dimension of Ū , S̄ , and V̄ , respectively.

If I2 < I1, The reduced t-SVD can be computed rather than the full t-SVD, in

which case, Ūi3 are no longer orthognal but has I2 < I1 orthonormal columns. As

a result, U will be partially orthogonal of size I1 × I2 × I3, rather than orthogonal.

Definition 25. (Tensor tubal rank) For X ∈ RI1×I2×I3 , the tensor tubal rank denoted
by Rt is defined as the number of non-zero tubes of S and can be determined by the
first frontal slice S(:, :,1), i.e.,

Rt = #{i,S(i, i,1) , 0 1 ≤ i ≤min(I1, I2)}. (5.8)

Orthonormal basis for the range of a tensor:

The t-SVD in eq. (5.6) can also be written as:

X =
Imin∑
i=1

U (:, i, :) ∗ S(i, i, :) ∗ V (:, i, :)T . (5.9)

In this sense, the t-SVD in eq. (5.9) can be viewed as a sum of outer products of

matrices that generalizes the SVD obtained through a sum of outer products of

vectors.

Furthermore, using eq. (5.9), for every C ∈ RI2×1×I3 , we have:

X ∗ C =
Imin∑
i=1

U (:, i, :) ∗
(
S(i, i, :) ∗ V (:, i, :)T ∗ C

)
. (5.10)

The term in parenthesis is a tubal scalar, thus the lateral slices of U provide an

orthonormal basis for span(X ) and its dimension is equal to the tubal rank.

One of the most interesting features of the t-SVD is that it can be used to find an

optimal approximation of a tensor in the following sense:

Theorem 4. [84] Let X be given by its t-SVD form eq.(5.9). Then, for rt < min(I1, I2),
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define:

Xrt =
rt∑
i=1

U (:, i, :) ∗ S(i, i, :) ∗ V (:, i, :)T ,

Then,

Xrt = argminX̃ ∈S ||X − X̃ ||F , (5.11)

where S = {C = X ∗Y , X ∈ RI1×I×I3 , Y ∈ RI×I2×I3}.

Xrt is then the best tubal-rank-rt approximation to X .

Definition 26. (Pseudo-inverse) P is a projector if P 2 = P ∗ P = P . If X ∈ span(P ),
then P ∗X = X .

For a tensor X ∈ RI1×I2×I3 whose frontal slices are full column rank with

I2 < I1, its pseudo-inverse is defined as :

X † = (X T ∗ X )−1 ∗ X T .

In this case, P = X ∗X † is an orthogonal projector onto the range of X . Using the

reduced t-SVD, X = U ∗S ∗ V , where U ∈ RI1×I2×I3 , then P = U ∗UT .

Next, we present generalization of Stiefel and Grassmann manifold for third

order tensors under the t-product defined in [59]. First, we begin with a defini-

tion of the t-orthogonal group.

Definition 27. (t-Orthogonal Group) The t-orthogonal group of tubal rank Rt is
defined as:

O(Rt,Rt, I3) =
{
R ∈ RRt×Rt×I3 :RT ∗R =R∗RT = IRtRtI3

}
. (5.12)

Definition 28. (t-Grassmann manifold) The t-Grassmann manifold G(I1,Rt, I3) is
defined as follows:

G(I1,Rt, I3) =
{
span(U ) : U ∈ RI1×Rt×I3 , UT ∗ U = IRtRtI3

}
, (5.13)
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Each element of G(I1,Rt, I3) can be identified with an equivalence class of

orthonormal basis that span the same subspace. Theses orthonormal basis are

elements of the so-called t-Stiefel manifold defined by:

S(I1,Rt, I3) =
{
U ∈ RI1×Rt×I3 : UT ∗ U = IRtRtI3

}
. (5.14)

5.2 Tensor train decomposition (TTD)

We first begin with the definition of the tensor contraction product that will be

used in the reprsentation of the TTD. The contraction product ×nq of two tensors

X of size I1 × · · · × IN and Y of size J1 × · · · × JQ with In = Jq is a tensor of order

Q+N − 2 defined by [4]:

(X ×qn Y )(i1, . . . , in−1, in+1, . . . , iN1
, j1, . . . , jn−1, jn+1, . . . , jQ)

=
In∑
i=1

X (i1, . . . , in−1, i, in+1, . . . , iN )Y (j1, . . . , jn−1, i, jn+1, . . . , jQ). (5.15)

Definition 1. A tensor X admits a TTD with TT-ranks (R′1, . . . ,R
′
N−1) if it can be

expressed as:

X (i1, · · · , iN ) =
R′1,...,R

′
N−1∑

r1,··· ,rN

G1(i1, r1)G2(r1, i2, r2) · · ·GN−1(rn−1, in, rn)GN (rN−1, iN ),

(5.16)

where the size of each core is:

• G1 ∈ RI1×R
′
1 ,

• Gn ∈ RR
′
n−1×In×R

′
n , ∀n : 2 ≤ n ≤N ,

• GN ∈ RR
′
N−1×IN .

A tensor entry is evaluated by the product of the core tensors at the indices (rn−1, in, rn),
for n ≥ 1. Thereafter, the summation over the TT-ranks is performed.
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Figure 5.2 – TTD of a Q-order tensor with TT-ranks (R′1, · · · ,R
′
Q−1).

Eq. (1) can be expressed in a compact tensor form using the contraction product as
follows:

X =G1 ×1
2 G2 ×1

3 ×· · · ×
1
N−1 GN−1 ×1

N GN . (5.17)

The number of parameters of the TTD is estimated as O(NIR′2max + (N −
2)R′3max) where R′max is the maximal TT-rank. The complexity of TTD is linear

in N as well as the cpd. The advantage of TTD is that it has stable (non iterative)

algorithm as we will describe thereafter.

Computation of TTD:

The TTD can be computed through a sequence of SVDs using the TT-SVD

algorithm [43]. First, the R′1-truncated SVD of X(1): X(1) = U1S1V
T

1 . The core G1

is obtained by reshaping the matrix U1. Next, the matrix S1V
T

1 is reshaped and

its R′2-truncated SVD is calculated. Following this, the left singular matrix of

the last SVD will be reshaped in order to obtain G2, and the product of its right

singular vector by the matrix of its singular values will be reshaped for the next

step. The computation of the next cores is carried out in a similar manner until

all cores have been computed.

It shall be noted that there is always a best approximation to a tensor X in the

Frobenius norm with TT-ranks bounded by R′k, and the TT-approximation using

the TT-SVD is quasi-optimal [43].
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Non uniqueness of TTD:

It shall be noted that TTD is not unique. In fact, X can be written in a TTD

format using different cores than those in eq. (5.17) as follows [151]:

X = A1 ×1
2A2 ×1

3 · · · ×
1
N−1AN−1 ×1

N AN , (5.18)

whith,

A1 =G1M
−1
1 , (5.19)

AN =G−1
N−1GN , (5.20)

An =Mn−1 ×1
2 Gn ×

1
3M

−1
n , (5.21)

where Mn are nonsingular matrices of dimension R′n ×R′n.

5.3 Proposed method

In this section, we describe the approach considered to define a tensorial kernel

using TTD. This later will be given based on sub-kernels defined on TT-cores.

Sepecifically, the similarity between two tensors will be given based on similari-

ties between TT-cores. However, as TTD is not unique (see eq. (5.18)), comparing

two tensors via their non-unique decomposition will lead to compare cores that

are not similar. To overcome this problem, learning on the subspaces spanned

by the TT-cores will be considered.

Let X ,X ′ ∈ RI1×···×IN with {G1,G2 . . .GN−1,GN } and {G′1,G
′
2 . . .G

′
N−1,G

′
N } being re-

spectively the sets of TT-cores of X and X ′.
Since subspaces spanned by the first core and the transpose of the last core

are invariant to the non-unicity involved by the TTD in eq. (5.19) and (5.20),

learning on Grassmann manifold will be considered using the following gaussian
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subkernels:

k1(span(G1), span(G′1)) = exp
(
−γ ||U1U

T
1 −U

′
1U
′T
1 ||2F

)
, (5.22)

kN
(
span(GT

N ), span(G′TN )
)

= exp
(
−γ ||UNU T

N −U
′
NU

′T
N ||2F

)
, (5.23)

where,

• span(G1), span(G′1) ∈G(I1,R′1),

• span(GT
N ), span(G′TN ) ∈G(IN ,R′N ),

• U1,U
′
1 are othonormal bases of span(G1), span(G′1),

• UN ,U
′
N are othonormal bases of span(GN ), span(G′N ).

For the third-order TT-cores, if the matrixMn defined in eq.(5.21)) is reduced

to the identity matrix, An and Gn will define the same projectors and hence span

the same subspaces. In this case, subspaces spanned by the TT-cores of order 3

will be invariant to the multiplication of Gn from the left by Mn−1 as involved

in eq.(5.21). Hence for each 2 ≤ n ≤N − 1, a subkernel kn will be defined on the

t-Grassmannien manifold G(In,R′n−1,R
′
n). The subkernel kn can be considered

as a generalization of a Grassmannien kernel. To define a Gaussian kernel on

the t-Grassmann manifold, a metric between elements of this space should be

defined. To do this, elements of the t-Grassmann manifold are first embedded in

the space of I1× I1× I3 symmetric tensors and the Frobenius norm is taken as the

distance in the embedding space. Using this metric, the Gaussian kernel can be

generalized on t-Grassmannien manifolds as follows:

kn(span(Gn),span(G′n)) = exp
(
−γ

∣∣∣∣∣∣Un ∗ UTn −U ′n ∗ Un′T ∣∣∣∣∣∣2F) 2 ≤ n ≤N − 1, (5.24)

where Un, U ′n ∈ RIn×R
′
n−1×R

′
n are orthonormal basis of span(Gn) and span(G′n) that

can be found using the t-SVD.

The kernel kn is a valid Gaussian-Grassmann (GG) kernel since it is equal to a

traditional Gaussian kernel with a Euclidean distance on the flattened projectors.

Finally, the tensorial kernel proposed will be defined as the product of subkernels



98 CHAPTER 5. Kernel based on Tubal-Singular Space of Tensor Train Cores

defined on subspaces spanned by the TT-cores. Specifically, the kernel between

X and X ′ is defined as follows:

k(X ,Y ) =
N−1∏
n=1

exp
(
−γ

∣∣∣∣∣∣∣∣Un ∗ UTn −U ′n ∗ U ′Tn ∣∣∣∣∣∣∣∣2
F

)
.

exp
(
−γ

∣∣∣∣∣∣∣∣U1U
T
1 −U

′
1U
′T
1

∣∣∣∣∣∣∣∣2
F

)
.exp

(
−γ

∣∣∣∣∣∣∣∣UNU T
N −U

′
NU

′T
N

∣∣∣∣∣∣∣∣2
F

)
, (5.25)

where γ > 0.

5.4 Experiments

In this section we conduct numerical experiments to validate the proposed

approach which will be compared to the KSTTM approach [21]. This approach

defines the similarity between two tensors by evaluating the similarities between

the row fibers of their respective TT-cores.

Datasets:

We evaluate the proposed approach on three real datasets. We use the UCF11

and Extended Yale datasets defined in section 4.3 as well as the Faces96 dataset.

This latter contains images of 119 subjects in Joint Photographic Group (JPG)

format. There are 119 persons. Three subjects are randomly chosen for image

recognition. This is a classification problem with three classes being the subjects.

For every subject, there are 48 images of size 196× 196× 3 taken under different

positions from the camera. We can arrange the images of each subject into a

4th order tensor with dimensions 196× 196× 3× 48. The training and the test

sets are constructed by breaking the tensor of each subject into tensors of size

196× 196× 3× 16.

Classification performance:

• The procedure for fitting the hyperparameters of the STM, the split of the

dataset as well as the accuracy score metric used in this section are the

same as the ones described in section 4.3.
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• Table 5.1 shows the classification results of the considered approaches.

Here, a grid search has been realized using different values for the TT-ranks.

It is clear that the proposed approach achieves the highest performance.

This can be explained by the fact that the kernel proposed reduces the

ambiguities caused by the non-unicity of TTD.

Parameter sensitivity:

Across different values of TT-ranks, the proposed approach consistently achieves

high accuracy scores. Thus, small TT-ranks can be used for reducing calculation

costs while remaining effective in terms of classification performance. We note,

however, that the choice of TT-ranks has a significant impact on the performance

of KSTTM. The highest accuracy scores of this latter are achieved for higher

TT-ranks as shown in table 5.1 .

Computation time:

Table 5.2 shows the computation time of the kernel matrix for of the KSTTM

method and for the proposed approach. KSTTM approach [21] gives the low-

est cost while the proposed approach achieves reasonable results in terms of

complexity because of additionnal cost of the projectors.

Dataset TT-ranks Our approach [21]

UCF11
[1,1,1,1,1] 0.98(10−2) 0.67(10−1)
[1,1,1,2,1] 0.99(10−2) 0.68(10−1)
[1,1,1,3,1] 0.98(10−2) 0.86(10−1)
[1,1,2,2,1] 0.99(10−2) 0.88(10−1)
[1,2,2,2,1] 1(0) 0.96(10−2)

Faces96
[1,1,1,1,1] 0.99(10−2) 0.73(10−1)
[1,1,2,1,1] 0.86(10−2) 0.71(10−2)
[1,1,2,2,1] 0.87(10−2) 0.75(10−2)
[1,2,2,2,1] 0.97(10−2) 0.91(10−2)

Table 5.1 – Accuracy scores (Mean accuracy (standard deviation)) for different
TT-ranks.
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Dataset/Method KSTTM Our approach
UCF11 130 148
Faces96 0.32 0.32

Table 5.2 – Computational time on seconds of different methods on the three
real-world datasets considered.

5.5 Conclusion

A new kernel function on the tensor space is proposed in this chapter to address

non linear classification problems in the context of supervised learning of higher

order tensors. In particular, the similarity of two tensors is defined by evaluating

similarities between their respective TT-cores using TTD. The kernel function

proposed in this chapter is defined on the t-Grassmann manifold of the span of

TT-cores in order to overcome the non-unicity of the TT-cores. In addition, the

proposed approach improves the classification performance, even for small TT-

ranks, on the different real-world datasets considered. The approach proposed

in this chapter mitigates only a part of the ambiguities associated with TTD,

and in the following chapter, a different approach is proposed to deal with the

remaining ambiguities.
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The objective of this chapter is to propose a tensorial kernel function that mit-

igates the ambiguities associated with TTD. In this context, it will be demon-

strated that the subspaces spanned by the second unfoldings of the TT-cores

are invariant to the non-unicity of the TT-cores. Based on these subspaces, a

tensorial kernel function will be defined. In addition, it will be shown that the

kernel proposed in [90] which is based on the subspaces spanned by the HOSVD

101
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factors can be equivalently computed using the proposed kernel in this work.

It is due to the equivalence between the TD and the TTD introduced in [151]

that this equivalence occurs. The HOSVD used in [90], however, suffers from the

curse of dimensionality. Using TTD, the curse of dimensionality can be broken

and the same subspaces can be retrieved.

6.1 Kernel on Grassmann manifold

6.1.1 Invariant subspaces to the non-unicity of the TTD

Recall from the previous chapter in section 5.2 that the TTD of a tensor X could

be derived from different sets of TT-cores as follows:

X =G1 ×1
2 G2 ×1

3 · · · ×
1
N−1 GN−1 ×1

N GN ,

X = A1 ×1
2A2 ×1

3 · · · ×
1
N−1AN−1 ×1

N AN ,

with,

A1 =G1M
−1
1 , (6.1)

AN =M−1
N−1GN , (6.2)

An =Mn−1 ×1
2 Gn ×

1
3M

−1
n . (6.3)

To see that the second unfoldings of An and Gn span the same subspaces, one

can write eq.(6.3) in its following equivalent form :

An = Gn ×1Mn−1 ×2 I2 ×3 (MT
n )−1. (6.4)

Thus,

An(2) =Gn(2)

(
Mn−1 ⊗M−1

n

)T
. (6.5)

Therefore, An(2) and Gn(2) span the same subspaces which will be invariant to

any pre-multiplication and post-multiplication ambiguities involved in eq. (6.3).
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6.1.2 Tensorial kernel-based on TTD

Consider the TTD of two tensors X ,X ′ ∈ RI1×···×IN :

X =G1 ×1
2 G2 ×1

3 · · · ×
1
N−1 GN−1 ×1

N GN , (6.6)

X ′ =G′1 ×
1
2 G
′
2 ×

1
3 · · · ×

1
N−1 G

′
N−1 ×

1
N G

′
N , (6.7)

Since the subspaces of the second unfoldings are invariant to the non-unicity

of the TT-cores as shown in setion 6.1.1, learning on these subspaces can be

considered. The following Grassmannien Gaussian kernel can be used as a

similarity measure with the chordal distance defined in eq. (3.28) as follows:

kn
(
span

(
Gn(2)

)
, span

(
G′n(2)

))
= exp

(
−γ ||sin(θ)||2

)
, 2 ≤ n ≤N − 1, (6.8)

where kn is defined on the Grasmmann manifold G(I2,R′nR
′
n−1) given sufficient

small TT-ranks and θ is the vector of principal angles bewteen span(Gn(2))

between span(G′n(2)).

The kernel projection metric in the kernel kn can also be computed using the

projectors as follows (see eq. (3.28)):

kn
(
span

(
Gn(2)

)
, span

(
G′n(2)

))
= exp

(
−γ

∣∣∣∣∣∣∣∣UnU T
n −U ′nU ′

T
n

∣∣∣∣∣∣∣∣2
F

)
, 2 ≤ n ≤N − 1,

(6.9)

where Un,U ′n ∈ RIn×R
′
nR
′
n−1 are respectively the left singular matrices of Gn(2) and

G′n(2).

For the first and the last cores, the subspaces spanned byG1 andGT
N are invariant

to the post-multiplication by any non singular matrix and thus the following

subkernels will be used:

k1 (span(G1), span(G′1)) = exp
(
−γ ||U1U

T
1 −U

′
1U
′T
1 ||2F

)
, (6.10)

kN
(
span(GT

N ), span(G′TN )
)

= exp
(
−γ ||UNU T

N −U
′
NU

′T
N ||2F

)
, (6.11)
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where,

• span(G1), span(G′1) ∈G(I1,R′1),

• span(GT
N ), span(G′TN ) ∈G(IN ,R′N ),

• U1,U
′
1 ∈ R

I1×R′1 and UN ,U ′N ∈ R
IN×R′N are respectively the left singular ma-

trices of G1,G
′
1,G

T
N ,G

′T
N .

The final expression of the kernel function is then given by:

k(X ,X ′) =
N∏
n=1

exp
(
−γ

∣∣∣∣∣∣∣∣UnU T
n −U ′nU ′

T
n

∣∣∣∣∣∣∣∣2
F

)
. (6.12)

6.2 Kernel based on HOSVD factors

In this section, we present the tensorial kernel proposed in eq.(6.12) which is

based on HOSVD and then it will be shown that it can be derived using the

second unfoldings of the TT-cores. We first define the TD and the HOSVD

decompositions.

6.2.1 Higher-order Singular Value Decomposition (HOSVD)

The TD has a constrained format known as HOSVD. In the latter, the factors

Tn are orthonormal and the core tensor G is all-orthogonal [65]. To compute

the n-th HOSVD factor, [90] considers the Rn left dominant singular vectors

of the n-th unfolding of X . The complexity of the HOSVD for a cubic N -order

tensor of size I1 × · · · × IN is evaluated to O(NRmaxI
N ) where Imax = maxn{In} and

Rmax = maxn{Rn} is the maximal multilinear rank. We can see that the HOSVD

complexity grows linearly and exponentially with respect to the order N . For

low-order tensor [136, 61], this complexity remains acceptable but this limitation

becomes rapidly severe for high-order tensors (N > 3).
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6.2.2 Tensor based Kernel on HOSVD factors

Consider the HOSVD of two tensors X ,X ′ ∈ RI1×···×IN with multilinear ranks

(R1, . . . ,RN ):

X = G ×1 T1 ×2 ...×N TN , (6.13)

X ′ =H×1 T
′

1 ×2 ...×N T ′N , (6.14)

where Tn,T ′n are of size In ×Rn, 1 ≤ n ≤ N and G,H are the core tensors of size

R1 × · · · ×RN .

The kernel-based part of the proposed method in [90] is given by:

k(X ,X ′) =
N∏
n=1

kn (span(Tn), span(T ′n)) , (6.15)

where kn is a Grassmann kernel defined on G(In,Rn).

6.2.3 Equivalent tensorial kernels

Recall the equivalence between TD and TTD presented in [151]. In fact, each

tensor core extracted from the TTD follows a 3-order Tucker model with two

latent matrices in its first and third dimensions. In the second dimension,

there is the interesting property that the Rn left dominant singular vectors from

the second unfolding span the same subspace as Tn. Furthermore, span(T1) =

span(G1), span(TN ) = span(GT
N ).

In addition, the TT-ranks are related to the multlinear ranks by the following

relation:

R′n = min

 n∏
p=1

Rp,
N∏

p=n+1

Rp

 .
Thus, the TTD allows to recover the same subspaces spanned by the HOSVD

factors. As a result, the kernel in eq.(6.15) could be derived using the kernel pro-

posed in eq.(6.12) when considering the Rn left dominant singular basis vectors

from the second unfoldings of TT-cores. However, while the complexity of TTD
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is linear with the order of the tensor, the complexity of HOSVD is exponential.

This kernel will speed up the approach based on HOSVD so that it will be de-

signed by Fast Kernel Subspace Estimation based on Tensor Train decomposition

(FAKSETT). The pseudocode is given by Algorithm 2 for use in the context of

classification using STM.

Algorithme 2 : FAKSETT Algorithm

Input: Training dataset {Xm ∈ RI1×···×IN , ym ∈ {−1,1}}Mm=1, TT-ranks
{R′1, · · · ,R

′
N }, performance trade-off C, width parameter γ .

Output: The learning parameters of the decision function in eq.(3.38).

1: Compute the TTD of training samples {Xm}Mm=1:

[G(m)
1 ,G(m)

2 , · · · ,G(m)
N−1,G

(m)
N ] = T T − SVD(Xm;R′1, · · · ,R

′
N ).

2: Compute the orthonormal factors for each training sample Xm:
3: for n = 2, · · · ,N − 1 do
4: U

(m)
n ←Matrix of the left singular vectors of G(m)

n (2).
5: end for
6: Construct the kernel matrix K(m1,m2) = k(Xm1

,Xm2
) using eq.(6.12).

7: Determine the decision function by solving the dual of the optimisation
problem in eq.(3.37) using the kernel matrix K.

6.3 Numerical Experiments

In the context of classification using STM, we will first be comparing FAKSETT

and the proposed approach in the previous chapter [105] to see the effect of

completely mitigating the non-unicity of TT-cores on the classification perfor-

mance. Next, we compare FAKSETT and [90] to see if they have equivalent

performances.

Datasets:

The UCF11 and Extended Yale datasets defined in section 4.3 are used to perform

binary classification and multiclass classification, respectively.
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The procedure for fitting the hyperparameters of the STM, the split of the dataset

as well as the accuracy score metric used in this section are the same as the ones

described in section 4.3.

Classification performance:

• Table 6.2 shows the accuracy scores of FAKSETT as well as the one pro-

posed in the precedent chapter [105] using the kernel defined in eq.(5.25).

FAKSETT ameliorated the one proposed in [105]. This can be explained

by the fact that FAKSETT completely mitigates the non-unicity of the TT-

cores and thus the kernel proposed reflects well the similarity between the

TT-cores. Both FAKSETT and [105] outperform [21] which does note take

into account the non-uniqueness of the TT-cores into account in the kernel

function.

• Table 6.1 show very close accuracy scores between FAKSETT and the

method of [90] for classification tasks on both real datasets. This indicates

that the FAKSETT method operates as efficiently as the state-of-art method.

• From table 6.1, it is clear that FAKSETT and [105] are robust to the choice

of the TT-ranks while KSTTM achieves its highest scores for high-values of

TT-ranks.

Computation time:

It is noticeable from Table 6.3 that FAKSETT reduces significantly the running

time for the computation of the factors, despite working with only Q = 4 order

tensors. Higher orders would lead to an even higher running time gain between

the two methods.

6.4 Conclusion

Based on TTD, a tensorial kernel function is proposed which considers similari-

ties between the subspaces spanned by the second unfoldings of the TT-cores. As

a result, the non-unicity of the TT-cores is completely mitigated. By using this
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Dataset n-ranks TT-ranks [104] [90]

UCF11
[1,1,1,1] [1,1,1,1,1] 0.98(10−2) 0.98(10−2)
[2,2,2,2] [1,2,4,2,1] 0.99(10−2) 0.99(10−2)
[3,3,3,3] [1,3,9,3,1] 0.99(10−2) 0.99(10−2)

Extended Yale
[1,1,1,1] [1,1,1,1,1] 0.99(10−2) 0.99(10−2)
[2,2,2,2] [1,2,4,2,1] 1(0) 1(0)
[3,3,3,3] [1,3,9,3,1] 1(0) 1(0)

Table 6.1 – Accuracy scores (Mean accuracy (standard deviation)) for different
multi-linear ranks varying the size of the training set on the UCF11 database.

Dataset TT-ranks [105] [104] [21]

UCF11
[1,1,1,1,1] 0.98(10−2) 0.98(10−2) 0.67(10−1)
[1,1,1,2,1] 0.99(10−2) 0.99(10−3) 0.68(10−1)
[1,1,1,3,1] 0.98(10−2) 0.99(10−2) 0.86(10−1)
[1,1,2,2,1] 0.99(10−2) 0.99(10−3) 0.88(10−1)
[1,2,2,2,1] 1(0) 1(0) 0.96(10−2)

Faces96
[1,1,1,1,1] 0.99(10−2) 0.97(10−2) 0.73(10−1)
[1,1,2,1,1] 0.86(10−2) 0.95(10−2) 0.71(10−2)
[1,1,2,2,1] 0.87(10−2) 0.96(10−2) 0.75(10−2)
[1,2,2,2,1] 0.97(10−2) 0.97(10−2) 0.91(10−2)

Table 6.2 – Accuracy scores (Mean accuracy (standard deviation)) for different
TT-ranks.

Database n-ranks TT-ranks FAKSETT [90]

UCF11
[1,1,1,1] [1,1,1,1,1] 24 63
[2,2,2,2] [1,2,4,2,1] 14 69
[3,3,3,3] [1,3,9,3,1] 15 104

Extended Yale
[1,1,1,1] [1,1,1,1,1] 3 9
[1,2,2,1] [1,2,4,2,1] 2.56 9.47
[1,2,3,1] [1,3,9,3,1] 2.58 9.34

Table 6.3 – Computational time in seconds for computing the factors using the
HOSVD and TTD on the UCF11 and Extended Yale datasets.
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kernel, it is possible to speed up the kernel-based approach on HOSVD factors

which has been proposed in [90]. This is because the TTD allows to recover the

subspaces spanned by the HOSVD. As a result, the curse of dimensionnality

can be avoided, particularly for datasets associated with N -order tensors when

N > 3. The two methods have been compared numerically. As a result, both

methods exhibit approximately the same classification scores, but the method

based on the TTD method mitigates the curse of dimensionnality and thus is

more computationally efficient.
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7.1 Tensor canonical rank estimation

In the first part of this thesis, we addressed the joint estimation of the canonical

rank and the CP factors for high-order tensors. Since the cpd is a special case

of the TD, our proposed approach is modeled as a constrained TD with a first

constraint to minimize the number of superdialgonal elements, and a 2-norm

on the offdiagonals is used to find the diagonal structure of the CP core. Based

on different simulations and on three real data sets, the proposed approach is

found to be efficient in estimating the cannonical rank.

Perspectives

• Although the proposed approach estimates the true canonical rank , it is

subject to the curse of dimensionnality in its computation. The curse of

dimensionnality may be broken by designing an equivalent method which

111
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estimates the canonical rank efficiently while breaking the curse of dimen-

sionnality. This can be achieved by applying the TTD-cpd equivalence to a

tensor, and then estimating the canonical rank from the TT-cores, since, as

demonstrated in [151], the TT-cores have cannonical rank equal to R.

• farac assumes that a rank-R tensor is disturbed by a normally distributed

noise, but from another perspective, other cost functions could be used

when specific noise affects the rank-R tensor.

• Tensors that are real nonnegative may require rank-one tensors in their cpd

to also be nonnegative. Further, for many signal processing applications, it

is required that the CP factors have a particular structure [49]. The tensor

rank in such cases may increase, just as in the nonnegative case [110], so

estimating the canonical rank in these cases may be of interest.

• farac is robust to thresholding parameter choice, but it was not demon-

strated how to specify it clearly. Thus, it is possible to deal with this issue.

Since the Tucker core elements show interactions between the factors, us-

ing the norm of the offdiagonals is a promising method for estimating the

goodness of the threshold parameter.

7.2 Tensor kernels and ambiguities of tensor decom-

positions

The second part of this thesis discusses kernel methods for tensorial data. Specif-

ically, it is discussed how the scaling ambiguity of the cpd and the TTD affect

the evaluation of the Gaussian radial basis function (rbf) kernel between factors

of the decomposition used. Chapter 3 demonstrated that evaluating similarities

between CP factors degraded the properties of the tensorial kernel function

used in the state-of-the-art method. Due to the ambiguities of scaling of the

cpd, the inherent similarity measure of the kernel function does not hold. It

was shown theoretically that the kernel value of two cpds of the same tensor

tends toward zero as the order of the tensor increases. Therefore, the kernel

matrix constructed based on similarities between data is affected, resulting in



7.2. Tensor kernels and ambiguities of tensor decompositions 113

difficulties when predicting labels for new data. Chapter 4 provides a tensorial

kernel function using TTD. This study aims to assess the similarity between

two tensors by comparing the TT cores of the two tensors. To minimize the

impact of TTD’s non-unicity on the evaluation of the kernel function, similarity

between subspaces spanned by TT-cores is considered. These subspaces lie on

a t-Grassmann manifold that can be seen as a generalization of the Grassmann

manifold for third-order tensors. The tensor algebra of third-order tensors was

used to define the metric that enables the use of rbf kernels in this space.

Since the subspaces spanned by the TT-cores are not invariant to right ambi-

guity, so the approach proposed in Chapter 4 minimizes the effect of ambiguities

associated with TTD but does not mitigate all of them. This problem can be

mitigated by taking into account the subspaces spanned by the second unfolding

of the TT-cores which are completely invariant to the non-unicity of the TT-cores.

As a result, the similarity of two tensors is defined as the similarity between

the subspaces of their second unfoldings. Moreover, by using this kernel, the

tensorial kernel function proposed in [90], which is based on factors of HOSVD,

can be speeded up. When TTD is used, the same subspaces can be recovered as

with HOSVD, while being computationally more efficient because TTD breaks

the curse of dimensionality.

Perspectives

• In spite of the fact that kernel methods are very efficient, their complex-

ity depends on the number of training examples and therefore can be

extremely high when training data are large. In light of this, it would be

beneficial to see how these methods can be sped up for large datasets

• Computing low-rank decompositions using the cpd in section 4.3 can

be ill-posed. It is known that adding constraints such as nonnegativity

converts ill-posed optimization problems into well-posed ones [141]. Thus,

non-negative tensor factorizations can be considered since the datsets

used naturally have nonnegative entries. Algorithms for computing non-
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negative cpd can be found in [55].

• Computation of the tensor decompositions can be very expensive especially

for large datasets with higher-order, one way to deal with that is to consider

methods for reducing this cost, randomized SVDs for the TT-svd, HOSVD

and T-SVD may be used.

• Another perspective could be to see how can the proposed algorithms

proposed be adapted for online learning, i.e., how can we avoid having to

retrain all datasets when new data is obtained.
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