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Résumé

Nous présentons la géométrie de Cartan généralisée qui est une structure géométrique localement
isomorphe au fibré principal associé à une géométrie de Cartan sur une variété différentiable et
proposons de formuler les théories de champs dans le cadre de la géométrie de Cartan généralisée.

Nous proposons une interprétation du modèle de Hélein-Vey pour la gravitation d’Einstein-
Cartan comme une géométrie de Cartan généralisée résultant d’équations variationnelles (et
vérifiant des équations de champs physiques) et abordons le modèle depuis une perspective
géométrique originale. Nous expliquons notamment le “mécanisme d’annulation” crucial pour
le modèle comme une propriété de certains composantes des équations d’Euler-Lagrange. Cette
approche nous permet d’élargir la théorie afin de coupler des spineurs de Dirac à l’espace-temps
d’Hélein-Vey-Einstein-Cartan modélisé par une géométrie de Cartan généralisée. Les solutions
satisfont les équations d’Einstein-Cartan-Dirac sur un espace-temps sous-jacent qui peut être une
variété différentielle mais peut également présenter des singularités, par exemple de type orbifold.

Nous étudions également la question de savoir si une géométrie de Cartan généralisée correspond
à une géométrie de Cartan au sens standard et par cela corrigeons une omission dans le traitement
d’Hélein et Vey de leur modèle. Il s’agit de l’occasion de fournir un nouveau traitement à la
question de l’intégration de l’action d’une algèbre de Lie en une action de groupe. Nous abordons
également le problème de la structure différentielle de l’espace quotient et de savoir si l’application
quotient définit un fibré principal. Nous définissons le “groupoïde de pseudo-action locale” qui
est un groupoïde de Lie encodant toute la structure globale associée à une action d’algèbre de Lie
sur une variété différentielle et établissons un résultat d’équivalence avec la construction de la
complétion telle que définie par Kamber et Michor.
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Generalised Cartan geometry and Field Theory

Abstract

We introduce generalised Cartan geometry as a geometrical structure which is locally isomor-
phic to the principal bundle associated with a Cartan geometry on a manifold and make the
proposal to formulate general field theories in the framework of generalised Cartan geometry.

We give an interpretation of Hélein-Vey’s model for Einstein-Cartan gravitation [HV16] as a
dynamically generated generalised Cartan geometry (which furthermore satisfies physical field
equations) and give a new geometrical perspective of the underlying mechanisms of the model. In
particular, we explain the crucial “cancellation mechanism” as a property of suitable components
of the Euler-Lagrange equation. This allows us to formulate a extension of the theory which
couples Dirac spinors to the spacetime geometry modelled as a generalised Cartan geometry. The
solutions satisfy Einstein-Cartan-Dirac equations on an underlying spacetime which can be a
smooth manifold but may also present singularities, for example of orbifold type.

We study in which case a generalised Cartan geometry comes from a honest Cartan geometry
and thereby fix an omission in the original treatment of Hélein and Vey. This is the occasion to
give a new treatment to the question of integrating the action of a Lie algebra into a Lie group
action. We also investigate when the quotient space is a smooth manifold and the quotient map
defines a principal bundle. We define the so-called “local pseudo-action groupoid” which is a Lie
groupoid encoding all the global structure associated to the action of a Lie algebra on a smooth
manifold, and prove a result of equivalence with the completion construction such as defined by
Kamber and Michor.

Keywords

Generalised Cartan geometry, Einstein-Cartan gravitation, Action of Lie algebra



Introduction (Français)

Contexte
La théorie de la Relativité Générale est une des avancées majeures du XXe siècle concernant
notre compréhension de l’univers. Son influence est difficile à quantifier tant elle est omniprésente.
Les conséquences les plus évidentes sont dans les domaines de l’astronomie et de la cosmologie :
elle supplante la théorie de la gravitation de Newton qui était restée détrônée depuis plus de deux
siècles. Elle prédit notamment l’existence et la formation de trous noirs, dont les conséquences
sont aujourd’hui bien supportées par les observations.

La Relativité Générale a également eu, et a toujours, une influence considérable dans le
domaine des mathématiques. Le domaine de la géométrie différentielle aurait-il connu un tel essor
au cours du XXe siècle s’il n’offrait pas un cadre mathématique dans lequel s’inscrit naturellement
la théorie ?

Il y a d’autres retombées plus concrètes, notamment dans le domaine de la technologie grand
public : le système des GPS, aujourd’hui accessible en quelques clics à tout un chacun, est basé
sur les prédictions de la Relativité Générale quant à l’écoulement relatif du temps.

Plus loin encore, la théorie de la Relativité Générale a de profondes implications philosophiques.
L’absence d’une notion absolue de temps, déjà présente dans la théorie de la relativité restreinte,
est une importante remise en cause de l’idée intuitive de temps.

Aujourd’hui, la théorie de la Relativité Générale fait pourtant presque partie de l’imaginaire
collectif. Une image très souvent présentée est celle d’un espace bidimensionnel semblable à une
nappe sur lequel un astre posé tel une boule de pétanque forme un creux. Le physicien Albert
Einstein qui est la figure principale derrière la théorie, est un personnage connu du grand public.
La notion d’espace-temps et le phénomène des trous noirs sont chose commune dans la littérature,
le cinéma et le jeu de science-fiction.

Pourtant, la théorie telle qu’elle est comprise aujourd’hui est en conflit avec ce qui est
généralement présenté comme l’autre avancée majeure de la physique du XXe siècle : la physique
quantique. Pour cette raison, bien que la théorie soit forte de plus d’un siècle d’approfondissements
et de confirmations, une partie de la recherche aujourd’hui s’intéresse à des approches alternatives
à la théorie d’Einstein.

L’interaction gravitationnelle forme avec les interactions électromagnétique, forte et faible les
quatre interactions fondamentales qui régissent notre compréhension actuelle du monde physique.
Les trois dernières sont comprises dans comme des théories dites “de jauge”, associées à des
groupes de symétrie, et formalisées dans le cadre de la physique quantique. En dépit de la tension
présente avec la physique quantique, il existe une approche de la théorie de la Relativité Générale
qui la présente comme une théorie de jauge associée au groupe de Poincaré, groupe de symétrie de
l’espace-temps plat et dépourvu de matière [Heh14]. Là où les autres groupes de jauge agissent sur
des degrés de liberté “internes” aux particules, l’action du groupe de Poincaré ne peut cependant
être découplée de l’espace-temps.
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vi INTRODUCTION (FRANÇAIS)

Dans [Tol78], Toller propose une approche à la théorie de la Relativité qui ne se formule non
pas sur l’espace-temps, mais sur l’espace des observateurs de l’espace-temps, modélisé par un fibré
des repères au dessus de l’espace-temps. Il s’agit d’un espace géométrique avec plus de dimensions
que l’espace-temps. Les dimensions supérieures sont associées à l’action du groupe de Lorentz qui
est un sous-groupe du groupe de Poincaré. À la même période, Regge et Ne’eman discutent de
formulations de la gravitation et de la super-gravitation sur le groupe de Poincaré [NR78c]. Ces
deux idées ne sont pas sans rappeler la proposition de Lurçat de formuler la théorie quantique
des champs des spineurs sur le fibré des repères de l’espace de Minkowski, modélisé par le groupe
de Poincaré, plutôt que sur l’espace de Minkowski [Lur64]. Il s’agit d’une tentative de donner au
spin, caractéristique intrinsèque de la matière à l’échelle quantique, une modélisation de nature
géométrique.

Cette approche fut reprise plus récemment par Hélein et Vey dans [HV16]. Ils formulent un
modèle de théorie des champs défini sur un espace de dimension 10 tel que les solutions munissent
cet espace de la structure de fibré des repères au dessus d’une espace-temps qui de plus vérifie
les équations de champs de la Relativité Générale d’Einstein. La théorie développée dans cette
article forme le point initial de la thèse présente.

Le modèle d’Hélein-Vey
Le modèle d’Hélein-Vey fut construit dans le formalisme multisymplectique et repose sur plusieurs
faits remarquables. Le premier est qu’en ajoutant au Lagrangien d’Hilbert-Einstein d’autres termes
similaires, il est possible d’obtenir des equations variationnelles dont les solutions fournissent à
une variété différentielle une structure aussi forte que celle de fibré des repères (à plusieurs réserves
près, dont nous discutons plus loin). Le second est que les contributions de ces termes dans les
équations de champs disparaissent grâce à un subtil mécanisme qui permet de les rassembler dans
un terme exact qui disparaît par intégration.

Le modèle est construit sur une variété de dimension 10, qui doit devenir un espace de repères
pseudo-orthonormés au dessus d’un espace-temps de dimension 4. On distingue deux champs :

• Un corepère à valeur dans l’algèbre de Poincaré p ' so1,3 nR1,3. La composante R1,3 est
un candidat pour une forme de soudure et la composante so1,3 un candidat pour une forme
de connexion.

• Une 8-forme à valeur dans p∗ dont une composante est fixée (et reproduit le terme d’Einstein-
Hilbert). Les composantes libres sont en un sens des variables conjuguées au corepère et
peuvent s’interpréter comme de multiplicateurs de Lagrange.

On note Q→ P le fibré dont ces champs (rassemblés en un) sont des sections. Il y a sur Q une
1-forme canonique à valeur dans p que l’on note λ ainsi qu’une 8-forme canonique à valeur dans
p∗, que l’on note p. Le modèle est décrit par la forme de Poincaré-Cartan (un intermédiaire entre
un Lagrangien et un Hamiltonien) Θ présentée dans l’encadré 1.

Le premier objet de cette thèse est d’adapter le modèle d’Hélein-Vey afin de modéliser de la
matière couplée à l’espace-temps : en l’occurrence des spineurs de Dirac. Il s’avère que le modèle
d’Hélein-Vey est plus proche d’une théorie alternative à la Relativité Générale appelée théorie
d’Einstein-Cartan [Tra06]. Alors qu’en Relativité Générale la géométrie de l’espace-temps est
déterminée par une métrique qui joue un rôle de potentiel gravitationnel, la théorie d’Einstein-
Cartan utilise à la fois une connexion linéaire sur l’espace tangent à l’espace-temps, qui modélise
le champ gravitationnel, ainsi qu’une métrique compatible, qui détermine entre autres la structure
causale de l’espace-temps. Il y a un degré de liberté supplémentaire : la torsion de la connexion
considérée. Cette torsion est notamment couplée à la “densité de spin” de la matière présente, et
interagit avec les spineurs de Dirac.
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e : TE ∼−→E × R1,3

ω : TE → so1,3

L [e, ω] = ηbb
′
e

(2)
ab′ ∧

(
dω + 1

2 [ω ∧ ω]
)a
b

Le Lagrangien d’Einstein-Hilbert sur un espace-
temps E (dans le formalisme des tétrades)

p ' so1,3 nR1,3

dimP = dim p = 10
Q ↪→ Λ8T ∗P ⊗ p∗ ×P T ∗P ⊗ p

p : Q→ Λ8T ∗P ⊗ p∗

λ : Q→ T ∗P ⊗ p

Θ = p ∧
(

dλ+ 1
2 [λ ∧ λ]

)

Figure 1: La forme de Poincaré-Cartan de
Hélein-Vey (suivant nos notations)

La géométrie de la Relativité Générale est convenablement modélisée dans le cadre de la
géométrie de Cartan [Wis10]. Il s’agit d’un cadre général dans lequel une variété différentielle
est équipée d’une structure permettant de la comparer infinitésimalement à une géométrie de
référence qui est modélisable par un espace homogène G/H. Dans le cadre de la Relativité
Générale, cette géométrie de référence est celle de l’espace de Minkowski, qui est le modèle
pour un espace-temps absolument vide. La géométrie de Cartan fournit un cadre permettant
naturellement de travailler avec de la torsion.

Ce travail mena à étudier en détail les mécanismes à l’œuvre dans [HV16]. Il est possible
d’interpréter les termes supplémentaires du modèle d’Hélein-Vey comme des termes impliquant
des multiplicateurs de Lagrange ajoutant aux équations variationnelles des équations de contrainte.
Puisque les spineurs sur l’espace-temps se représentent naturellement comme des fonctions définies
sur l’espace des repères et qui vérifient certaines équations d’invariance, cette perspective permet
d’ajouter simplement à la théorie des champs modélisant des spineurs.

Par ailleurs, le mécanisme permettant d’isoler et annuler la contribution des multiplicateurs
de Lagrange aux équations d’Einstein reste énigmatique dans l’article d’Hélein-Vey. Il est
la conclusion d’une série de calculs conséquents peu éclairants sur la situation géométrique.
En particulier ils comportent un changement de variable relativement délicat à effectuer mais
indispensable afin d’obtenir un terme exact. Dans cette thèse nous proposons une approche plus
géométrique qui clarifient l’argument. Le changement de variable en question, effectué sur les
équations d’Euler-Lagrange, peut être interprété comme les équations d’Euler-Lagrange associées
à des variations des champs d’une forme précise. Nous élucidons cette forme et expliquons les
raisons pour lesquelles cela permet d’aboutir à des termes exacts.

Il s’avère cependant que la structure géométrique définie par les solutions du modèle d’Hélein-
Vey ne définit un véritable fibré des repères que sous certaines hypothèses de nature topologiques
globales. Il s’agit d’un défaut dans l’argument de [HV16] identifié pendant l’étude de l’article. La
raison essentielle est la suivante : les équations variationnelles sont de nature purement locale,
tandis que la structure d’une fibré de repères est en partie globale. En l’occurrence, il y a une
action de groupe telle que l’espace des orbites soit une variété différentielle (l’espace-temps) et
que l’espace initial définisse par dessus un fibré principal (localement trivial).

De par leur nature locale, les équations variationnelles ne peuvent fournir qu’une action
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d’algèbre de Lie. Suivent alors les questions de l’intégration en une action de groupe de Lie puis
de la construction de l’espace des orbites et de sa régularité. Seulement alors devient-il possible
d’affirmer que l’on a bien un espace de fibrés au dessus de l’espace-temps.

Si cela semble de prime abord une limite au modèle, une étude attentive de la structure
géométrique locale obtenue dans le modèle d’Hélein-Vey revèle que, dans le cas où l’on travaille
bien avec un fibré des repères standard, elle est suffisante pour définir l’essentiel des éléments
nécessaires à la formulation d’une théorie des champs sur l’espace-temps sous-jacent. En ce sens,
une variété munie de cette structure géométrique locale devient un candidat approprié pour
formuler une théorie des champs. Nous nommons une telle variété fibré des repères généralisé
(generalised frame bundle), ce qui est une abréviation pour le terme plus précis fibré des repères
avec connexion généralisé.

1

Figure 2: Un tore déplié vu comme un fibré des repères “tordu” (Section 7.1)

Un premier exemple simple de fibré des repères généralisé est celui du tore (plein) vu comme
fibré des repères “tordu” au dessus du cône B2/(x ∼ −x), représenté dans la Figure 2. Le fibré
des repères orthonormaux directs au dessus d’un disque B2 de dimension 2 est isomorphe au tore
plein B2×SO2 (de manière SO2-équivariante). Le tore “tordu” est construit en isolant une moitié
du tore puis en en recollant les extrémités après une rotation de 180 degrés. Les orbites sous SO2
gardent la même longueur à l’exception de l’orbite centrale qui devient deux fois plus courte, et
l’espace des orbites s’identifie ainsi au cône. Dans le tore tordu, la fibre au dessus du sommet du
cône est isomorphe à PSO2 = SO2 /(Z2) mais les autres fibres sont isomorphes à SO2.

Cet exemple s’adapte directement à d’autres groupes. Nous traiterons plus particulièrement
d’un fibré des repères généralisé au dessus du cône quadridimensionnel R4/(x ∼ −x) avec une
action de Spin4 qui est libre et transitive au dessus de chaque point hormis au dessus de l’origine,
qui a une fibre isomorphe à Spin3×SO3. La conséquence est que les spineurs sur le cône ont une
composante (de chiralité spécifiée) qui s’annule nécessairement à l’origine.

Cette structure se généralise immédiatement au cadre de la géométrie de Cartan, auquel cas
nous parlons de fibré de Cartan généralisé (generalised Cartan bundle) et de géométrie de Cartan
généralisée. Le modèle local de la géométrie de Cartan généralisée est spécifié par une paire
d’algèbres de Lie h ↪→ g. Nous utiliserons le terme (g, h)-géométrie de Cartan généralisée lorsqu’il
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est souhaitable de spécifier le modèle.

Géométrie de Cartan généralisée

h ↪→ g

$A : TP ∼−→P × g

αa = TP $
∼−→
P × g→ P × g/h

d$A + 1
2 [$ ∧$]A = 1

2ΩAb,cαa ∧ αb

L’équation définissant une connexion de Cartan généralisée

Dans l’optique de mieux cerner la portée de cette généralisation, nous abordons la question
de la reconstruction de l’action de groupe et de l’espace-temps sous-jacent pour les géométries de
Cartan généralisées. Pour une (g, h)-géométrie de Cartan généralisée sur une variété P , il convient
d’abord de sélectionner un groupe de Lie connexe H intégrant h. Il y a alors deux obstructions
possibles à l’intégration de l’action de h en une action de H : la première est qu’il puisse y avoir
ambiguïté sur l’action d’un élément de H en fonction du chemin utilisé dans H pour l’atteindre.
La seconde est que les flots des éléments de h puissent ne pas être complets et n’être définis que
jusqu’à certains temps.

La solution à la seconde obstruction est la construction d’une “globalisation” de P dans
laquelle l’action de h devient complète. La première obstruction est capturée par la propriété
d’“univalence”, déjà présente dans [Pal57]. La résolution de l’obstruction est possible en passant
à un quotient adapté de la variété considéré. Chacune de ces deux opérations est cependant
susceptible de produire des singularités.

Nous construisons un “quotient univalent” de P qui est (sous certaines hypothèses) le quotient
approprié sur lequel les éléments de H agissent de manière univoque. Sa construction est effectuée
dans le cadre des groupoïdes de Lie, qui sont des structures géométriques permettant de traiter
d’action possiblement “partielle” et “multivaluée” d’un groupe de Lie sur une variété.

Nous montrons que la succession du passage au quotient univalent puis de la globalisation
coïncide avec la complétion, qui est une procédure proposée dans [KM04]. Nous proposons
également une construction alternative à la complétion : considérer le quotient univalent muni
d’une “action locale” du groupe H. Il y a équivalence en un sens précis (équivalence faible de
groupoïdes de Lie) entre le quotient univalent muni de cette action locale et la complétion munie
de l’action de H. En ce sens, travailler sur la complétion n’offre pas plus de possibilités que
travailler avec l’action locale, et il convient de choisir la structure la plus adaptée à la situation.

Portée de notre travail
Le principal point d’ombre dans le modèle d’Hélein-Vey, et par conséquent dans notre travail,
est que le mécanisme permettant d’annuler la contribution des multiplicateurs de Lagrange ne
s’applique qu’à une partie des équations d’Euler-Lagrange. Par conséquent notre analyse ne
porte que sur une partie des équations : le principe variationnel impose a priori des contraintes
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plus fortes que les seules équations de champs (standard) que nous isolons. Il est cependant à
noter que les équations restantes sont sujettes à de fortes symétries de jauge. Ces équations
supplémentaires nécessitent un travail supplémentaire et font de fait l’objet de recherches actuelles
1 – il serait possible que les multiplicateurs de Lagrange aient une influence sur la géométrie de
l’espace-temps.

Une autre “limite” à nos résultats porte sur l’intégration des géométries de Cartan généralisées.
Afin de pouvoir reconstituer un espace-temps sous-jacent qui présente un minimum de régularité,
il est souhaitable d’avoir une propriété de propreté. Il s’agit cependant d’une propriété de nature
globale et qui ne peut être obtenue par des équations variationnelles locales : il s’agit en générale
d’une propriété à établir ou supposer de manière ad hoc. La propreté peut être toutefois obtenue
comme conséquence de la compacité du groupe de Lie considéré. Les constructions de quotient et
de complétion peuvent par ailleurs aboutir à des espaces non séparés, qui sont potentiellement
pathologiques du point de vue de la géométrie différentielle.

Contributions
Voici l’essentiel des contributions originales de la présente thèse :

• La proposition d’utiliser des géométries de Cartan généralisées en théorie des champs
(Section 10.1). La géométrie de Cartan est généralement utilisée pour étudier la géométrie
de la variété de base, mais peut également s’accommoder de degrés de liberté “internes”, à
savoir une composante non-effective du groupe de structure. Cela peut s’agit d’un degré de
liberté discret comme pour le cas de R1,3 '

(
Spin+

1,3 nR1,3) / Spin1,3 ou bien de degrés de
liberté continus dans le cas d’une théorie de jauge.

• Une nouvelle interprétation du modèle d’Hélein-Vey s’appuyant sur la notion de géométrie
de Cartan généralisée (Section 10.3) ainsi qu’une explication du mécanisme d’annulation
de la contribution des multiplicateurs (Section 11.4). En particulier l’identification d’un
terme exact est justifiée par l’utilisation de certaines composantes spécifiques des équations
d’Euler-Lagrange plutôt qu’obtenue après un changement de variables.

• L’extension du modèle d’Hélein-Vey couplant la gravitation à des spineurs de Dirac
(Chapitre 11). La construction de ce modèle illustre bien la méthode par laquelle nous
proposons de formuler les théories des champs dans le cadre d’une géométrie de Cartan
généralisée. Cette extension se fait de manière assez naturelle grâce à notre analyse du
modèle d’Hélein-Vey et est plus simple dans la mesure où la géométrie de Cartan généralisée
est déjà obtenue grâce au terme original du modèle d’Hélein-Vey.
Ces trois premières contributions sont présentées dans l’article [Pie22] disponible en prépub-
lication à l’heure de la rédaction.

• Une étude détaillée de la question de l’intégration d’une algèbre de Lie en action de groupe
de Lie reposant sur des méthodes de groupoïdes de Lie (Chapitre 8). Si la question n’est
pas nouvelle [Pal57; KM04; Bla14], nous proposons quelques nouvelles constructions et
fournissons un cadre général depuis lequel il est possible de comparer les différentes approches
(Théorème 8.1.34). Ceci est l’objet d’un article en cours de préparation [Pie].

Structure de la thèse
Le travail qui suit est organisé en deux parties.

1Travail en cours par Emmanuel Vignes.
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La première partie rassemble la présentation du cadre géométrique dans lequel se situe le travail
ainsi que la définition des géométries de Cartan généralisées et la question de leur intégration. La
seconde partie rassemble les considérations qui relèvent de la théorie des champs et en particulier
la partie du travail portant sur le modèle de Hélein-Vey et son extension.

La thèse commence au Chapitre 1 par présentation des conventions et définitions générales
utilisées tout au long du texte.

La partie Geometry se décompose ainsi :

2. Le Chapitre 2 présente sans démonstration des définitions et résultats fondamentaux sur les
espaces des jets qui seront essentiellement utilisés dans les Chapitres 3 et 9.

3. Le Chapitre 3 présente les structures de fibré principal et de connexion principale, de fibré
des repères et de la généralisation des G-structures, équipés d’une forme de soudure.
Une dernière section présente des notions élémentaires de géométrie de Cartan (d’ordre
1) ainsi que certaines des propriétés élémentaires, qui seront utiles dans l’ensemble du texte.

4. Le Chapitre 4 présente dans le détail la structure des algèbres de Clifford et des nombreux
isomorphismes qui les relient, des groupes Spin+, Spin et Pin ainsi que de leurs représenta-
tions dites spinorielles. Dans une deuxième section, on présente les notions de structures
spin sur une variété et l’opérateur de Dirac ainsi que ses propriétés élémentaires, en
présence de torsion.
L’avant-dernière section discute des structures pin. Il y a en effet non-unicité du groupe
Pin et l’approche covariante des structures spin, définies de manière indépendantes de la
métrique, produit des groupes différents des groupes Pin construits à partir des algèbres de
Clifford.
La dernière section rassemble des remarques portant sur la multitude de conventions de
signes qui entourent les algèbres de Clifford et les spineurs.

5. Le Chapitre 5 établit quelques formules concernant la géométrie de Riemann-Cartan,
c’est-à-dire de variétés munis d’une métrique de signature arbitraire ainsi que d’une connexion
compatible mais pouvant présenter de la torsion. Nous nous intéressons aux relations entre
la courbure de Ricci et la torsion, ainsi que l’influence de la torsion sur l’opérateur
de Dirac. Ces résultats sont essentiellement utilisés dans la décomposition des équations
de champs dans la Section 11.4.

6. Le Chapitre 6 rassemble trois sections essentiellement indépendantes. La première présente
la notion de groupoïde de Lie en insistant sur les groupoïdes d’action comme modèle de
référence, présente plusieurs exemples ainsi que des constructions qui seront nécessaires
dans cette thèse, ou bien utiles pour mieux comprendre l’idée des groupoïdes de Lie.
La seconde section présente quelques constructions sur les variétés feuilletées qui seront
essentielles dans le Chapitre 8, notablement le groupoïde d’holonomie.
La troisième section présente succinctement la notion d’orbifold qui est une généralisation
de la notion de variété différentielle acceptant certaines classes de singularités de manière à
pouvoir considérer certains espaces quotients. Les constructions du Chapitre 8 produiront
parfois des orbifolds.

7. Le Chapitre 7 présente la notion de géométrie de Cartan généralisée, qui est une
généralisation directe de la structure locale du fibré principal d’une géométrie de Cartan
(présentée dans le Chapitre 3). Le chapitre commence avec une illustration simple de la
notion avant de procéder à une définition générale. Quelques exemples sont présentés dans
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une seconde section. Le chapitre se termine avec une section regroupant des formules qui
seront utilisées à de nombreuses reprises dans les Sections 10.3 et 11.2.

8. Le Chapitre 8 traite de la question de l’“intégration” d’une géométrie de Cartan
généralisée en une géométrie de Cartan standard. Une première section traite de
l’intégration de l’action d’une algèbre de Lie dans le détail. Il y a deux approches,
reposant toutes deux sur la construction d’un feuilletage sur la variété produit P ×H avec
l’algèbre de Lie h agissant sur P .
Dans la première on construit un groupoïde dit “de pseudo-action locale” qui décrit les
différentes manières dont les éléments de H peuvent agir sur P . Il s’agit alors de comparer
ce groupoïde à une construction standard appelée “groupoïde d’action”. Cette approche
peut-être rapprochée des travaux [Pal57] mais repose sur un formalisme différent.
Dans la seconde approche on construit directement une “complétion” de P qui est na-
turellement équipée d’une action de H. Il s’agit de la construction de [KM04]. La question
est alors d’étudier la relation entre P et cette complétion.
Enfin, ces deux approches sont mises en relations : elles sont “équivalentes” précisément
lorsque l’action de h sur P vérifie la propriété d’univalence.
La seconde section aborde la question de savoir si l’action de H sur P définit un fibré
principal au dessus de l’espace des orbites. La première sous-question est la suivante : est-ce
que l’espace des orbites est régulier ? Le cas échéant, est-ce que P forme bien un fibré
H-principal au dessus de l’espace des orbites ? La réponse repose crucialement sur une
propriété de propreté, qui est une propriété globale de nature topologique sur l’action de
groupe.
Les résultats des deux sections précédentes sont appliqués à la question de l’intégration
d’une géométrie de Cartan généralisée dans la troisième section. Dans cette situation, une
1-forme de Cartan définit une action d’algèbre de Lie, que l’on souhaite intégrer comme
action de groupe de Lie avant d’interpréter la 1-forme comme un connexion de Cartan sur
un fibré principal au dessus de l’espace des orbites.

La partie Field Theory se décompose ainsi :

9. Le Chapitre 9 présente le formalisme géométrique de l’approche covariante des théorie
des champs, essentiellement pour des théories dites du premier ordre.
Après une présentation du formalisme Lagrangien nous présentons la dérivation des équations
d’Euler-Lagrange via la forme de Poincaré-Cartan. Sous cette formulation, il est tout à
fait naturel d’arriver au formalisme (pré)-multisymplectique, dans lequel les équations
variationnelles prennent la forme des équations de Hamilton-de Donder-Weyl.
Enfin, nous présentons l’idée générale des multiplicateurs de Lagrange qui permettent
d’imposer des contraintes en tant qu’équations variationnelles additionnelles. Le formalisme
des formes différentielles permet de considérer naturellement une classe de multiplicateurs
“non-holonomes”, qui joueront un rôle essentiel dans les Chapitres 10 et 11. En particulier,
il y a une description générale d’un mécanisme par lequel il est possible d’isoler des
composantes des équations variationnelles dont les contributions des multiplicateurs peuvent
être rassemblées dans une forme différentielle exacte.
Le chapitre se termine sur une présentation très succincte de deux approches géométriques
alternatives (bien que non sans relation) à la théorie des champs.
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10. Le Chapitre 10 présente notre approche du modèle d’Hélein-Vey. Dans la première
section, nous esquissons une procédure générale par laquelle une classe large de théorie
des champs peut-être relevée à l’espace des repères. La géométrie de Cartan fournit un
formalisme adaptée pour traiter de manière unifiée les théories de jauge dites “internes”
et les théories de l’espace-temps. En conséquence, ces théories peuvent être naturellement
étendues au cadre de la géométrie de Cartan généralisée. La théorie d’Hélein-Vey va plus
loin et propose d’obtenir cette même géométrie de Cartan généralisée comme produit des
équations variationnelles.
La théorie des champs en question traitée dans [HV16] est la gravitation d’Einstein-Cartan.
Après une brève introduction à cette théorie, nous décrivons le modèle d’Hélein-Vey qui se
place sur une variété de dimension 10. Nous dérivons ensuite les équations variationnelles
associées sur la variété de dimension 10.
La question d’obtenir des équations de champs sur l’espace-temps sous-jacent et notamment
le problème de la contribution des multiplicateurs est traitée dans le chapitre suivant, dans
le modèle qui comporte également des spineurs de Dirac.

11. Le Chapitre 11 présente notre extension du modèle d’Hélein-Vey qui couple la gravitation à
des spineurs de Dirac. Après une brève présentation du Lagrangien de Dirac standard,
nous construisons la formulation dans le cadre d’une géométrie de Cartan généralisée, ce qui
permet de coupler ce modèle au modèle d’Hélein-Vey. Nous dérivons ensuite les équations
variationnelles.
La dernière section présente notre approche du mécanisme par lequel les contributions des
multiplicateurs de Lagrange sont isolables puis annulables. En considérant des composantes
spécifiques des équations d’Euler-Lagrange, il est possible de rassembler ces contributions
dans des termes exacts. Nous montrons alors que dans le cas où la géométrie de Cartan
généralisée est bien une géométrie de Cartan standard, ces termes disparaissent par inté-
gration dans lorsque le groupe de structure du fibré est compact, ce qui correspond par
exemple au cas de la gravitation Riemannienne.
Il est alors possible de dériver les équations d’Einstein-Cartan-Dirac-Sciama-Kibble décrivant
un espace-temps d’Einstein-Cartan dynamique et couplé à un champ de spineurs de Dirac.
Le chapitre se termine sur une brève analyse de la forme des équations.
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Introduction (English)

Background

The theory of General Relativity is one of the major breakthroughs of the XXth century in our
understanding of the universe. The range of its consequences can hardly be overstated. Perhaps
the most expectable implications belong to the domains of astronomy and cosmology: General
Relativity replaces Newton’s theory of universal gravitation which remained unchallenged for
almost two centuries. Its predictions include the presence and the formation of black holes, the
influence of which are nowadays well supported by observations.

In spite of all its successes, General Relativity faces a major challenge: its current formulation
is not compatible with quantum physics, which is another major breakthrough of the XXth
century. This is why alternative theories are still being investigated today.

Along with the so-called electromagnetic interaction, weak interaction and strong interaction,
gravitational interaction belongs to the few fundamental laws which rule physical phenomena
at the fundamental level, according to our current understanding. The former three belong to
the so-called “gauge theories” which are associated to specific symmetry groups and are well
formalised within quantum physics. Despite the existing conflict with quantum physics, there
is an approach to General Relativity which aims to understand it as a gauge theory associated
with the Poincaré group, symmetry group of the flat and empty Minkoswki spacetime [Heh14].
However the action of the Poincaré group cannot be dissociated from spacetime, whereas the
other gauge groups act on the “internal” degrees of freedom of particles.

One proposal is to approach the theory of Relativity not on spacetime but on the space of
observers of spacetime, modelled by a frame bundle above the manifold of spacetime [Tol78]. It is
a higher dimensional geometrical space with extra dimensions (compared to spacetime) on which
the Lorentz group, a subgroup of the Poincaré group, acts. Roughly in the same period, there are
discussions about formulating gravitation and its extension, super-gravitation, over the Poincaré
“group manifold” [NR78c]. These two ideas may echo an earlier proposal of a formulation of the
quantum theory of spinor fields on the frame bundle of the Minkowski space, modelled by the
Poincaré group, instead of formulating it on the Minkoswki space [Lur64]. The motivation behind
this proposal is to give to spin, a intrinsic property of matter at quantum level, a geometrical
modelling.

More recently, Hélein and Vey proposed a new model along similar lines [HV16]. They
construct a field theory defined over a 10-dimensional space such that the solutions endow this
space with the structure of a frame bundle over a spacetime which furthermore satisfies the field
equations of Einstein’s General Relativity. Their theory is the starting point of the present thesis.

xv
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The Hélein-Vey model
The Hélein-Vey model is constructed in the so-called multisymplectic formalism and relies on
a few remarkable facts. First, using similar terms to the Lagrangian of Hilbert-Einstein, it is
possible to obtain variational equations such that the solutions provide to the source manifold the
strong structure of a frame bundle (with a few caveats which are discussed below). Second, the
contributions of these terms in the field equations vanish by a subtle “cancellation mechanism”
which allows gathering them into an exact term which vanishes upon integration.

The model is constructed over a 10-manifold which is expected to become a pseudo-orthonormal
frame bundle above of 4-dimensional spacetime. There are two fields:

• A coframe with value in the Poincaré algebra p ' so1,3 nR1,3. The R1,3 component is
expected to become a solder form and the so1,3 component a connection form.

• A differential 8-form with value in the dual space p∗ which has some component fixed
(and which reproduces the Einstein-Hilbert term). The unrestricted components can be
interpreted as conjugated variables to the coframe and play the role of Lagrange multipliers.

Let us denote Q→ P the bundle of which these fields, gathered into one, are a section. It is
equipped with a canonical p-valued 1-form which we denote λ and a canonical p∗-valued 8-form
which we denote p. The model is encoded in the Poincaré-Cartan form Θ (it is halfway between
a Lagrangian and a Hamiltonian) which is introduced in Figure 3.

e : TE ∼−→E × R1,3

ω : TE → so1,3

L [e, ω] = ηbb
′
e

(2)
ab′ ∧

(
dω + 1

2 [ω ∧ ω]
)a
b

The Einstein-Hilbert Lagrangian (in tetradic
formalism) on a spacetime E

p ' so1,3 nR1,3

dimP = dim p = 10
Q ( Λ8T ∗P ⊗ p∗ ×P T ∗P ⊗ p

p : Q→ Λ8T ∗P ⊗ p∗

λ : Q→ T ∗P ⊗ p

Θ = p ∧
(

dλ+ 1
2 [λ ∧ λ]

)

Figure 3: Hélein-Vey’s Poincaré-Cartan form
(in our notation)

The first aim of this thesis is to extend the Hélein-Vey model in order to model matter fields
coupled to space-time: we handle the case of Dirac spinors. The Hélein-Vey model turns out to
be closer to an alternative theory to General Relativity called Einstein-Cartan theory [Tra06].
While General Relativity determines the geometry of the manifold of spacetime by a metric which
plays the role of the gravitational potential, Einstein-Cartan theory uses both a metric and and
tangent connection on spacetime, which models the gravitational field. This allows for one extra
degree of freedom: the so-called torsion of the tangent connection. In particular, this torsion
becomes coupled to the “spin density” of matter through the field equations, and interacts with
Dirac spinors.
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A suitable framework to understand the geometry of General Relativity is the so-called Cartan
geometry [Wis10]. It is a general framework in which a differentiable manifold is equipped with a
structure relating it locally to a reference geometry which is modelled by a homogeneous space
G/H. Indeed General Relativity can be understood as a “curved” version of Special Relativity
which takes place in the Minkowski space: at every point of spacetime there exists a referential in
free fall in which physics 2 should behave as in the Minkowski space.

This work led us to study the inner workings of the model of Hélein-Vey. We interpret the
extra terms in the model as Lagrange multiplier terms imposing constraints as extra variational
equations. Since spinor fields on spacetime can be naturally modelled as functions defined on the
space of frames and satisfying certain invariance properties, this perspective allows a relatively
straightforward addition of spinor fields to the model.

Moreover, the “cancellation mechanism” of the Lagrange multipliers remains somewhat obscure
in [HV16]. It is obtained through lengthy and involved calculations which do not shed much light
on the underlying geometry. In particular, they involve a rather delicate change of coordinates
which is indispensable to obtain an exact term. In this thesis we propose a more geometrical
approach which gives a more satisfying explication of the argument. The change of variable,
operated on the Euler-Lagrange equations, can be understood as selecting the Euler-Lagrange
equations corresponding to very specific variations of the fields. We investigate the form of these
specific variations and explain how they lead to exact terms.

However it turns out that the geometrical structure obtained from the solutions of the Hélein-
Vey model does not always define a frame bundle: some topological hypotheses of global nature
are required. This is a defect in [HV16] we identified when studying the article. It comes down to
the following fact: variational equations are of local nature while the structure of a frame bundle
is partly a global structure. More precisely, there is a group action such that the orbit space is
a differentiable manifold (spacetime) and the starting space defines a (locally trivial) principal
bundle above it.

Due to their local character, variational equations can only provide a Lie algebra action. This
brings the following questions: can the action be integrated into a group action ? Is the orbit
space a smooth manifold? Only then can be formulated the question of whether we obtain a
frame bundle above spacetime.

A close look at the local geometrical structure obtained in the Hélein-Vey model reveals that,
at least in the case of a standard frame bundle, it is sufficient to define the important elements
required in order to formulate a field theory over the underlying spacetime. As a consequence,
what seemed like a limit to the model can be taken as a motivation to formulate field theories
in a new geometrical framework. We call a manifold with such a local structure a generalised
frame bundle, which is an abbreviation for the more exact term of generalised frame bundle with
connection.

A first simple example of generalised frame bundle is that of a (bulk) torus seen as a “twisted”
frame bundle above the cone B2/(x ∼ −x). This is represented in Figure 4. The bundle of direct
orthonormal frames above a 2-dimensional disc B2 is isomorphic to the bulk torus B2 × SO2 (in a
SO2-equivariant manner). The “twisted” torus is obtained by isolating a half of the torus (cutting
along a horizontal plane) then gluing the two ends after a 180 degree twist. The orbits under
SO2 keep the same length at the exception of the central orbit which becomes half as long, and
the orbit space becomes a cone. In the twisted torus the fibre above the “tip” of the cone (the
singular point) is isomorphic to PSO2 = SO2 /(Z2) while the other fibres are isomorphic to SO2.

It is straightforward to adapt this example to other groups. We will be especially interested in
a generalised fibre bundle above the 4-dimensional cone R4/(x ∼ −x) that has an action of Spin4
which is free and transitive above each point but above the origin, which has a fibre isomorphic

2This is an overly simplified statement of the principle of equivalence.
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1

Figure 4: An unfolded (bulk) torus as a “twisted” frame bundle (Section 7.1)

to Spin3×SO3. As a consequence, spinors on the cone have a component (of specified chirality)
which necessarily vanishes at the origin.

This structure can be immediately generalised to the framework of Cartan geometry, in which
case we will speak of generalised Cartan bundle and generalised Cartan geometry. The local
model for generalised Cartan geometry is specified by a pair of Lie algebra h ↪→ g. We will use
the term generalised (g, h)-Cartan geometry when we want to specify the model.

Generalised Cartan geometry

h ↪→ g

$A : TP ∼−→P × g

αa = TP $
∼−→
P × g→ P × g/h

d$A + 1
2 [$ ∧$]A = 1

2ΩAb,cαa ∧ αb

The equation defining a generalised Cartan geometry

In order to better grasp the scope of this generalisation, we study the question of building a
group action and an underlying spacetime for generalised Cartan geometry. Given a generalised
(g, h)-Cartan geometry on a manifold P , one must first choose a connected Lie group H which
integrates h. There are then two kinds of obstruction to the integration of the action of h into an
action of H: the first one is that there may be ambiguity on how an element of H acts, depending



xix

on the path used in H to reach it. The second one is that the flows of the vector fields associated
to elements of h may not be complete and only be defined up to a certain time.

The first obstruction is captured by the property of “univalence”, already formulated in [Pal57].
It can be resolved by constructing a suitable quotient of the considered manifold. The solution
to the second obstruction is the construction of a “globalisation” of P in which the action of h
becomes complete. Both operations may give rise to singularities.

We introduce a “univalent quotient” of P which is, assuming suitable hypotheses, the appro-
priate quotient on which the elements of H act without ambiguity. It is constructed using Lie
groupoids, which are geometrical structures convenient for working with possibly partially defined
and multivalued actions of a Lie group on a manifold. Even in the case H is simply-connected, if
the action of h is non-complete, the univalent quotient can be smaller than P .

We show that taking the univalent quotient, followed by globalisation, coincides with com-
pletion, a procedure proposed in [KM04]. We also propose an alternative construction: working
directly with the univalent quotient endowed with a “local group action” of H. There is equiv-
alence, in a precise sense (weak equivalence of Lie groupoids), between the univalent quotient
equipped with the local action and the completion equipped with the group action of H. Accord-
ingly, working with the completion does not offer new possibilities compared to working with
the local action, and we recommend choosing the structure which is the most adequate to the
problem at hand.

Scope of our work
The main dissatisfaction point in the Hélein-Vey model, hence in our work as well, is that we
are able to cancel the contribution of the Lagrange mutipliers only in part of the Euler-Lagrange
equations. As a result, our analysis only applies to part of the equations: the variational principle
imposes a priori stronger constraints than the sole (standard) field equations we extract. However
the remaining equations have a strong gauge symmetry. The analysis of these equations requires
further work and is the subject of current research 3 – the fields we call Lagrange multipliers
might turn out to have an influence on spacetime geometry.

Another “limit” of our results concerns the integration of generalised Cartan geometries. In
order to reconstruct an underlying spacetime which presents reasonable regularity, it is desirable
to have a property of properness. It is however a global property which cannot be obtained by
local variational equations: it is a property that has to be established in the case at hand, or
assumed in an ad-hoc manner. Properness can however be obtained as a consequence of the
compactness of the considered Lie group. Moreover the quotient construction and completion
construction may result in non-Hausdorff spaces, which are potentially pathological from a
differentiable manifold perspective.

Original contributions
Let us present the main contributions of the present thesis:

• A proposal to use generalised Cartan geometries in field theory (Section 10.1). Cartan
geometry is usually used in order to study the geometry of the underlying manifold but it can
also integrate “internal” degrees of freedom, namely non-effective parts of the structure group.
It may be a discrete degree of freedom as in the case of R1,3 '

(
Spin+

1,3 nR1,3) /Spin1,3 or
continuous degrees of freedom as in the case of a gauge theory.

3Work in progress by E. Vignes.
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• An original interpretation of the Hélein-Vey model relying on the notion of generalised
Cartan geometry (Section 10.3) and an explanation of the cancelling mechanism applying
to the contribution of the Lagrange multipliers (Section 11.4). Notably, the identification of
an exact term is justified by the extraction of specific components of the Euler-Lagrange
equations rather than obtained through of change of variables.

• An extension of the Hélein-Vey model coupling gravitation to Dirac spinors (Chapter 11).
Our construction of this model provides an illustration of the method by which we propose
to formulate field theories in the framework of generalised Cartan geometry. This extension
is done in a rather straightforward manner thanks to our analysis of the Hélein-Vey model
and is simpler since the generalised Cartan geometry is already obtained with the original
term of the Hélein-Vey model.
These three contributions are presented in the article [Pie22] available in prepublication at
press time.

• A detailed study of the integration of a Lie algebra action into a Lie group action relying
on Lie groupoid methods (Chapter 8). Although the question is hardly new [Pal57; KM04;
Bla14], we propose new constructions and provide a general framework in which it is possible
to compare the different approaches (Theorem 8.1.34). This is the subject of an article in
preparation [Pie].

Outline of the thesis
This thesis is organised in two parts.

In the first part, we present the geometrical background necessary for our work, introduce
generalised Cartan geometry and handle the question of their integration.

In the second part, we introduce the general background required for field theory then present
our work on the Hélein-Vey model as well as its extension with Dirac spinors.

We start by introducing in Chapter 1 general definitions and conventions which will be used
throughout the thesis.

The Geometry Part is decomposed as follows:

2. Chapter 2 presents without demonstration definitions and basic results on jet spaces which
will be mainly used in Chapters 3 and 9.

3. Chapter 3 presents the structures of principal bundle and principal connection, frame
bundles and their generalisation as G-structures, equipped with a solder form. In a
last section we present the basic notions in (first order) Cartan geometry as well as some
elementary properties which we will be useful in the following sections.

4. Chapter 4 presents in detail the structure of Clifford algebras and the many isomorphisms
between them, the Spin+, Spin and Pin groups as well as their so-called spinor representa-
tions. In a second section we present the notions of spin structure on a manifold and the
Dirac operator as well as its basic properties in presence of torsion.
The third section discusses pin structures. There is indeed non-unicity of the Pin group
and the covariant approach to spin structures, which defines them independently of any
metric, results in groups which differ from the Pin groups constructed from Clifford algebras.
The last section gathers remarks pertaining to the various sign conventions around the
Clifford algebras and the spinors.
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5. Chapter 5 establishes a few formulas in Riemann-Cartan geometry, namely manifolds
endowed with a metric of arbitrary (non-degenerate) signature and a compatible connection
which is allowed to present torsion. Our interest is the relations between Ricci curvature
and torsion, as well as the effect of torsion on the Dirac operator. These results will
be mainly used in the decomposition of field equations done in Section 11.4.

6. Chapter 6 is made of three essentially independent sections. The first one introduces
the notion of Lie groupoids with an emphasis on action groupoids as a reference model,
provides several examples as well as constructions which will be useful for our work, or
helpful in order to get a better grasp on Lie groupoids.
In a second section we present a few constructions on foliated manifolds which will be
central in Chapter 8, especially the holonomy groupoid.
The third section is a succinct presentation of the notion of orbifold which is a generalisation
of differentiable manifolds which allows for some singularities in order to handle certain
quotient spaces. Constructions of Chapter 8 may result in orbifolds.

7. Chapter 7 introduces the notion of generalised Cartan geometry, which is a direct
generalisation of the local structure of the principal bundle of a Cartan geometry (introduced
in Chapter 3). The chapter starts with a simple illustration of the notion before moving to
a general definition. In a second section we present a few examples. The chapter ends with
a section gathering formulas which will be used in Sections 10.3 and 11.2.

8. Chapter 8 handles the question of the “integration” of a generalised Cartan geometry
into a standard Cartan geometry. A first section deals in detail with the integration of
a Lie algebra action. There are two approaches, both relying on the construction of a
foliation on the product manifold P ×H with the Lie algebra h acting on P .
In the first one we build a Lie groupoid of “local pseudo-action” which describes the
different ways elements of H can act on P . The question is then to compare this groupoid
to the standard construction called “action groupoid”. This approach can be likened to the
work in [Pal57] however it relies on a different formalism.
The second approach consists in directly constructing a “completion” of P which is
naturally endowed with an action of H. This construction can be found in [KM04]. The
question is then to study the relation between P and the completion.
Finally, we relate these two approaches: they are “equivalent” precisely when the action of
h on P satisfies the property of univalence.
The second section handles the problem of whether the action of H on P defines a principal
bundle above the orbit space. First, we need to understand under what hypotheses the orbit
space is regular. If that is the case, then one can ask whether P defines an H-principal
bundle. The answer relies in an essential way on the property of properness, which is a
global property of topological character on the group action.
The results of both sections are then applied to the integration of a generalised Cartan
geometry in a third section. In this situation, a so-called Cartan 1-form defines a Lie
algebra action, which we want to integrate into a group action then interpret the 1-form as
Cartan connection on a principal bundle over the orbit space.

The Field Theory Part is decomposed as follows:

9. Chapter 9 introduces the geometrical formalism for the covariant approach to field
theory, essentially for the so-called first order theories.
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After introducing the Lagrangian formalism, we present the derivation of the Euler-
Lagrange equations using the Poincaré-Cartan form. In this formulation, the (pre-
)multisymplectic formalism appears naturally and the variational equations take the
form of Hamilton-de Donder-Weyl equations.
Finally, we present the general idea of Lagrange multipliers which are a way to impose
constraints as additional variational equations. The formalism of differential forms allows
considering a class a “non-holonomic” multipliers which will have an essential role in
Chapters 10 and 11. Notably, we give a general description of the cancelling mechanism
according to which it is possible to isolate in the variational equations components in which
the contributions of the multipliers can be gathered in an exact differential form.
The chapter closes on a very succinct presentation of two alternative (although not unrelated)
geometrical approaches to field theory.

10. Chapter 10 presents our approach to the Hélein-Vey model. In a first section we sketch a
general procedure according to which it is possible to lift a large class of gauge field theory
to the frame bundle. Cartan geometry provides an appropriate formalism to handle in a
unified manner the usual “internal” gauge theories and theories of spacetime. Consequently,
these theories can naturally be extended to the framework of generalised Cartan geometry.
The Hélein-Vey theory goes further and proposes to obtain this generalised Cartan geometry
as a result of the variational equations.
The field theory which is handled in [HV16] is the Einstein-Cartan theory of gravitation.
After a brief introduction to this theory, we introduce the Hélein-Vey model which takes place
on a 10-manifold. We derive the corresponding variational equations on the 10-manifold.
The derivation of field equations on the underlying spacetime and in particular the handling
of the contribution of the multipliers is postponed to the following chapter, in a model
which also contains Dirac spinors.

11. Chapter 11 introduces our extension to the Hélein-Vey model which couples gravitation to
Dirac spinors. After a short presentation of the standard Dirac Lagrangian, we construct
a formulation in the framework of a generalised Cartan geometry, which allows coupling
this model to the Hélein-Vey model. We then proceed to derive the variational equations.
The last section presents our approach to the cancellation mechanism. By considering
specific components of the Euler-Lagrange equation, it is possible to gather the contributions
of the Lagrange multipliers in exact terms. We then show that in the case the generalised
Cartan geometry is a honest Cartan geometry, these term vanish by integration in the case
the structure group is compact, which corresponds to the case of Riemannian gravitation.
It is then possible to derive the Einstein-Cartan-Dirac-Sciama-Kibble equations describing
a dynamical Einstein-Cartan spacetime coupled to a Dirac spinor field. The chapter closes
with a brief analysis of the form of the field equations.
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Chapter 1

Conventions and definitions

Contents
1.1 Spaces and manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lie groups and algebras actions . . . . . . . . . . . . . . . . . . . . . 3
1.3 Superscript and subscript conventions . . . . . . . . . . . . . . . . . 6
1.4 Conventions for dual forms . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Spaces and manifolds
When not specified, we shall assume smooth manifolds to be Hausdorff paracompact.

Definition 1.1.1 (Completely regular topological space). A completely regular topological space
is a topological space X which has all points closed and such that for any closed subset C and
x ∈ X K C there exists a continuous real function such that f(C) = {0} and f(x) = 1.

Note that completely regular spaces are sometimes defined without the requirement that the
points are closed. The definition we give here is the one used in [Pal61]. With this definition
completely regular spaces are necessarily Hausdorff.

Example 1.1.2. All metrisable topological spaces are completely regular, in particular all
manifolds.

Since we will be dealing with quotients of manifolds, it will be convenient to consider more
general smooth structures than that of smooth manifolds. They will be defined by the (local)
data of smooth maps from the manifold to R.

Definition 1.1.3 (Smooth structure). A smooth structure on a topological space X is the data
for each open subset U of a subset of real maps, called “smooth maps”:

C∞X (U) ⊂ C(X,R)

which satisfies the following properties:

1. For V an open subset of U , smooth maps on U restrict to V to smooth maps:

∀u ∈ C∞X (U), u|V ∈ C∞X (V)

1
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2. Given a family of open subsets (Ui)i∈I and u ∈ C (
⋃
I Ui,R),

u ∈ C∞X

(⋃
I

Ui

)
⇔ ∀i ∈ I, u|Ui ∈ C∞X (Ui)

3. For any open subset U , any integer k and any family (uj)16j6k of smooth functions over U ,
for all C∞ maps g : Rk → R, the composite g ◦ (u1, . . . , uk) belongs to C∞X (U).

We will call a topological space equipped with a smooth structure a smooth space.

Remark. In the literature it is found under the names of “differential space” or “Mostow
space” [Mes16; Bat+17].

In this language, a smooth manifold is defined as follows:

Definition 1.1.4 (Smooth manifold). A smooth manifold M of dimension n ∈ N is a topological
space equipped with a smooth structure which is locally Euclidean in the following sense:

• M with its smooth structure is locally isomorphic to Rn.

and which satisfies the following two global topological requirements:

• M is Hausdorff.

• M is paracompact.

A smooth space which satisfies the first requirement but not the global ones will be called a
non-Hausdorff manifold1 (without mention of paracompactness).

Notice that according to this language, a manifold is not a space with a global structure (like
an atlas) but a space with a global structure which satisfies a local property. In particular, this
allows talking about a space being a manifold in the neighbourhood of one point, or on an open
subset. In this way, it will be possible to handle singular spaces, like orbifolds, which require to
omit some subset in order to obtain a manifold.

There is a corresponding notion of smooth map which is actually very practical: a map
between smooth spaces is close if its “components” are smooth:

Definition 1.1.5. Let X and Y be smooth spaces and f : X → Y a continuous map. The map
f is called smooth if

f∗C∞Y ⊆ C∞X
namely if for all open subset U ⊂ Y ,

∀u ∈ C∞Y (U), u ◦ f ∈ C∞X (f−1(U))

This formalism indeed extends the theory of smooth manifolds according to the following
theorem:

Theorem 1.1.6 ([Mos79]). Let M be and N be two smooth manifolds. Then a smooth map
M → N is exactly a C∞ map for the C∞-manifold structures.

Definition 1.1.7 (Fibre bundle). Let P be and M be two smooth manifolds. By fibre bundle
over M with fibre F we will mean a smooth manifold P with a smooth map P

p−→ M such
that there exists a basis of open subsets (U) of M such that over each U the fibre bundle is
diffeomorphic to a cartesian product:

1It is sometimes called premanifold [Bou07].
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p−1(U) F × U

U
p|p−1(U)

∼

p2

On a fibre bundle P p−→M the vertical (tangent) bundle is the vector bundle on P which is
composed at each point of the tangent vectors to the fibre:

V P := ker(dp) ⊂ TP

Vectors (and vector fields) belonging to V P are called vertical, while differential forms that
have vanishing contraction with any vertical vector are called horizontal (also semi-basic).

Definition 1.1.8 (Fibred product of manifolds). Let X, Y and Z be three manifolds with two
maps f : X → Z and g : Y → Z. Define the following subset of X × Y :

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)}

It may be written more accurately as X ×(f,g) Y .
When it is a submanifold of X × Y , it is called the fibre product of X and Y over Z. It is

part of the following commutative diagram:

X ×Z Y Y

X Z

g

f

The diagram is sometimes interpreted asymmetrically and the fibre product with its map to
X is called the pullback of Y to/over X (by/under f). In this case, the map X×Z Y is sometimes
called the pullback of g under f .

Theorem 1.1.9 ([Mic08]). The fibre product always exists when f and g are transversal, namely

∀(x, y) ∈ X ×Z Y, df(TxX) + dg(TyY ) = Tf(x)Z

In this case, dimX ×Z Y = dimX + dimY − dimZ. In particular, it exists when either f or g
is a submersion.

1.2 Lie groups and algebras actions
In this thesis Lie algebra will mean finite dimensional real Lie algebra. Let us recall that for a
Lie group G, its Lie algebra g can be identified as the tangent space at identity TeG provided
with the infinitesimal adjoint action bracket:

[ξ1, ξ2] = adξ1(ξ2)

It is naturally isomorphic to the Lie algebra of left-invariant vector fields on G (hence corresponding
to a right action on G). On the other hand right-invariant vector fields on G form a Lie algebra
which is anti-isomorphic to g in the following sense: writing Lξ for the right-invariant vector field
such that Lξ(e) = ξ, the following holds:

[Lξ1 , Lξ2 ] = L−[ξ1,ξ2]
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Definition 1.2.1 (G-space, G-manifold). Given a Lie group G, a G-space is a topological space2
M with a continuous (left) action of G: a continuous map

ρ : G×M →M such that ρ(g1g2, x) = ρ(g1, ρ(g2, x))

A G-manifold is a smooth manifold with a smooth action of G.

Definition 1.2.2 (g-manifold). Denoting by g a Lie algebra, a right g-manifold is a (smooth)
manifold with an action of g by smooth vector fields:

ξ ∈ g→ ξ̄ ∈ Γ(TX) such that [ξ̄1, ξ̄2] = [ξ1, ξ2]

The vector fields ξ̄ are called fundamental vector fields on the g-manifold.

Remark. A right smooth action of a Lie group differentiates to a right action of the associated
Lie algebra.

Similarly, a smooth group action on the left differentiates to a representation of the associated
Lie algebra which reverses the bracket.

Definition 1.2.3 (Principal G-bundle). Given a Lie group G, a principal G-bundle is a fibre
bundle P p−→M with G acting freely on P such that the fibres are the orbits under G. We will
use the usual convention that principal G-bundles have a right group action.

Definition 1.2.4 (Equivariant bundle). An equivariant bundle on a G-space M is a fibre bundle
P

p−→M endowed with an action of G which lifts the action on M :

∀(g, x) ∈ G× P, p(g · x) = g · p(x)

namely the following diagram commutes:

G× P G

G×M M

idG×p p

An equivariant section of an equivariant bundle is a section which is invariant under the action of
G:

φ : M → P, ∀x ∈M,

{
p(φ(x)) = x

φ(g · x) = g · φ(x)

Namely, the following diagram commutes:

G× P P

G×M M

idG×φ φ

We will mainly be interested about equivariant sections of bundles of the form Λ•T ∗M ⊗ V
with V a linear representation of G.

Let M be a G-space. At each point x ∈M there is an isotropy group

Gx := {g ∈ G|g · x = x}
2In particular we do not require in the definition complete regularity as [Pal61] for example.
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and an orbital map
g ∈ G 7→ g · x ∈M

which factors through a continuous (or smooth) injection G/Gx →M onto the orbit of x.
Definition 1.2.5 (Properties of actions of Lie groups and algebras). The action ρ of a group G
(resp. a Lie algebra g) on a manifold M , is said:
• effective (also faithful) if no non-trivial element acts trivially:

∀g ∈ G, ρ(g) = idM =⇒ g = e

∀ξ ∈ g, ρ(ξ) = 0TM =⇒ ξ = 0

• free if the isotropy group (resp. algebra) at each point is trivial:

∀x ∈M, g ∈ G, g · x = x =⇒ g = e

∀x ∈M,∀ξ ∈ g, ξ̄|x = 0 =⇒ ξ = 0

• transitive if the orbital maps are surjective (resp. the vectors representing the Lie algebra
span the whole tangent space at each point 3):

∀x ∈M,y ∈M, ∃g ∈ G, g · x = y

∀x ∈M,X ∈ TM, ∃ξ ∈ g, ξ · x = X

Furthermore, the action of a Lie algebra on a manifold is said complete when the flow of
every fundamental vectors fields is complete. We also say that the g-manifold is complete. These
definitions allow introducing the following notion:
Definition 1.2.6 (G-torsor). A G-torsor is a free transitive G-space.

The following notion will be useful when we will discuss the orbits of a group action.
Definition 1.2.7 (Type of an orbit). Let M be a G-space. If x and y are two points of M
belonging to the same orbit, their isotropy groups are conjugate.

The orbit type (also called isotropy type4) of an orbit of G is the conjugacy class of its isotropy
groups. We write it with brackets [O] and use the term “orbit of type G/K” for a (closed)
subgroup K ⊂ G.

Note that orbits with different types may be homeomorphic, for example different presentations
of the circle group as quotients of the real line R. On the other hand, orbits with the same type
may not be homeomorphic (see however 8.2.6).

Given two vector representations V1 and V2 of G, we will write

V1 →G V2

for a G-equivariant map and
V1 'G V2

to state their equivalence as representations of G. Similarly, for two vector representations V1
and V2 of g, we will write

V1 →g V2

3This is sometimes called locally transitive or infinitesimally transitive.
4In [Bre72] it is made a difference between orbit type and isotropy type. We are using here the isotropy type.
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for a g-equivariant map and
V1 'g V2

when they are equivalent as representations of g.

1.3 Superscript and subscript conventions
Abstract indices and summations

Let E be a finite dimensional vector space. We write E∗ for the dual vector space.
We will use the following convention: subscripts for bases (ei)i∈I of E and superscripts for

bases (εi)i∈I of the dual space E∗. This convention requires a prior choice of which space is the
base space and which is the dual. We write (e∗i)i∈I for the dual basis to the basis (ei)i∈I .

A vector x belonging to E decomposes into the basis as follows

x =
∑
i∈I

xiei

Similarly, a covector α belonging to E∗ decomposes into the dual basis as follows:

α =
∑
i∈I

αie
∗i

In this way, coordinates in a basis use the index opposite to that of the basis. Indeed, this is
justified by the following:

xi = e∗i(x), αi = α(ei)

If x and α are expressed in coordinates in dual bases, their contraction is readily computed as
follows:

α(x) =
∑
i∈I

αix
i

This formula holds independently of the basis-dual basis pair used.
This leads to the so-called “abstract index notation”: a vector x can be identified to the system

of its coordinates (xi). In the abstract index notation, rather than working in a specific basis,
superscript and subscript are used with respect to a generic basis and are simply an indication of
whether the object belongs to E or E∗ 5.

For a further formalisation, a vector x can be seen as a basis-dependent system of coordinates
(xi) which transforms contravariantly under change of basis. Correspondingly, a covector α
can be seen a a basis-dependent system of coordinates (αi) which transforms covariantly under
change of basis. This perspective ties in with the frame bundle approach to tensors on manifolds
that we will present in Section 3.2. Since contraction is a “geometrical” operation, namely it is
independent of the basis, the construction ∑

i∈I
αix

i

is well defined even without specification of a basis – as long as the indices are understood as
referring to dual bases.

5Our abstract indices differ superficially from the conventions in [Wal84]: while xi denotes for them the vector
x, it will denote for us the system of coordinates of xi which depends on a non-fixed basis
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Since contractions are omnipresent when manipulating various tensors, we will use Einstein’s
summation convention which implies an implicit summation when an identical index is repeated
above and below:

αix
i :=

∑
i∈I

αix
i

The convention does not hold when an index is repeated at the same position, since this does
not result in a basis-independent construction. In fact it is best to avoid such repetitions. When
summing expressions with a repeated index at the same position (which requires specifying a
working basis) the summation shall be explicitly written. The summation convention can also be
used with elements of the generic basis/dual basis in the following way:

x = xiei

α = αie
∗i

A tensor T ∈ E⊗r ⊗ E∗s decomposes as

T = T i1i2...ir j1j2...jsei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ e∗j2 ⊗ · · · ⊗ e∗js

and can be referred to using its system of coordinates (T i1i2...ir j1j2...js) so that contractions can
be very conveniently written using the summation convention:

xj1T i1i2...ir j1j2...js

According to these conventions, the Kronecker symbol δij represents the identity IdE ∈ E ⊗ E∗.

Antisymmetric tensors

We will be working with tensors with antisymmetric components. Since they can be represented
as elements of a tensor product or an exterior product, we record here our conventions.

We will be using the standard embedding

ΛkE ↪→ T kE

u1 ∧ · · · ∧ uk 7→
∑
σ∈Sk

sgn(σ)uσ(1) ⊗ · · · ⊗ uσ(k)

so that for example given a basis (ei) of E there is the corresponding “wedge” basis of Λ2E:

(ei ∧ ej)i<j ≡ (ei ⊗ ej − ej ⊗ ei)i<j

An element A ∈ ΛkE can then be decomposed over the tensor basis of T kE and over the
wedge basis of Λk. The convention is that the components Ai1i2...ik correspond to the tensor
basis, namely:

A = Ai1i2...ikei1 ⊗ · · · ⊗ eik ∈ ΛkE ↪→ T kE

Now the Einstein summation convention consistently sums over all possible indices, which
prevents naturally using {ei1 ∧ ei2 ∧ · · ·∧ eik}i1<i2<···<ik as a basis in implicit sums. It is therefore
used as a redundant family of generators {ei1∧ei2∧· · ·∧eik}i1,i2,...,ik∈I with suitable normalisation
factors. Accordingly, A ∈ ΛkE will be written as follows:

A = 1
k!A

i1i2...ikei1 ∧ · · · ∧ eik
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Metrics

Assume E is provided with a non-degenerate symmetric bilinear form η. We will use the following
notion throughout the text

Definition 1.3.1 (Pseudonormed vectors and pseudo-orthonormal bases). Let e be a vector. It
is pseudonormed if 〈e|e〉 = ±1.

A basis of pseudonormed vectors which are orthogonal between each other is called a pseudo-
orthonormal basis.

The bilinear form η defines an isomorphism

η :
{
E

∼−→E∗

x 7→ η(x, · )

We will also use a transposition notation tx for the image of x under η. There is an inverse
isomorphism η−1 which also defines a non-degenerate bilinear form on E∗.

As an element of E∗ ⊗E∗, the bilinear form will be represented as ηij . Similarly, the inverse
bilinear form can be represented as an element of E ⊗ E and will be represented as ηij without
−1 superscript, as is standard practice. The inverse relation between the two can be expressed as
follows:

ηijηjk = δik

ηijη
jk = δki

The bilinear form is often used to “raise and lower” indices as follows: given a vector x = (xi),
the image under η is written as

xi = ηijx
j

The inverse form can be used to lower indices as follows:

αi = ηijαj

The inverse relation between η and η−1 implies that composing raising and lowering of the same
index is consistent: lowering then raising an index results in no change and identically for raising
then lowering. The convention for the order of the indices will be to keep the relative order of
upper indices and lower indices, and place upper indices before lower indices. For example given
a tensor T abc the corresponding totally covariant and totally contravariant tensors are

Tdbc := gdaT
a
bc

T ade := gdbgecT abc

given a metric g on the space in which the indices a, b, c live.
Let us specify a basis (ei) of E. Then the dual basis and the transposed basis satisfy the

following relation:
tei = ηije

∗j

which can be reversed as follows:
e∗j = ηji

(
tei
)

Note however that using the transposition notation breaks our convention of using superscripts
for bases of the dual vector space and thus shall be done with care.
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These conventions will mainly be used on elements and sections of vector bundles throughout
the text.

1.4 Conventions for dual forms

Let E be a n-dimensional vector space of finite dimension n over R. Provide it with a volume
element vol ∈ ΛnE. The volume element defines an isomorphism ΛnE ' R. In most cases, we
will actually use a space (bundle) of linear forms as E. This section will make use of the Einstein
summation convention for repeated indices (as stated in Section 1.3).

We define here the notation for interior products between p-covectors and q-vectors. We will
write ∧i:1→qαi for the wedge product α1 ∧ α2 · · · ∧ αq. Let α ∈ ΛqE and (Xj) ∈ (E∗)p. We will
use the following convention :

(X1 ∧X2 ∧ · · · ∧Xp)yα = iX1∧X2∧···∧Xpα = iXpiXp−1 · · · iX1α (1.1)

The volume element provides isomorphisms ΛpE∗ → Λn−pE under the following contraction

X ∈ ΛpE∗ 7→ Xy vol (1.2)

In the case E is provided with an inner product, precomposing the isomorphisms by the induced
inner product on the exterior powers ΛpE → ΛpE∗ gives the Hodge duality operator ?.

Let (ei)16i6n be a direct basis of E and (ui) its dual basis. Let I be a sequence of p indices
in J1, nK. Define

eI =
∧
i:1→p

eIi

and dually
uI =

∧
i:1→p

ui

We will explicitly use the map ΛpE∗ → Λn−pE and adopt the notation

e
(n−p)
I := uIy vol (1.3)

In components, vol is represented by the Levi-Civita symbol commonly written εi1...in , inter-
preted as a completely antisymmetric rank n tensor in a basis of determinant 1. For example, the
duality between E∗ and Λn−1E is expressed, for A = Aiui ∈ E∗ as follows :

(Aiui)y vol = Ai(uiy vol) = Aie
(n−1)
i (1.4)

(Ay vol)i1...in−1 = Ai0εi0i1...in−1 (1.5)

which generalizes to the case of p-forms on E in a straightforward manner.
From now on we assume that I does not contain repeated indices of the basis so that uI and

eI are nonzero. The conventions have been chosen such that for two increasing multi-indices I
and J ,

uIy e
J = δJI (1.6)

Define Ic as the set of indices absent from I, identified with the corresponding increasing sequence.
We will write ε(I) for the sign of the permutation which has I as its 1st p values and then Ic (the
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permutation is a shuffle in the case I follows the increasing order) so that

eI ∧ eI
c

= ε(I)vol (1.7)

We can then express the contraction in the following way

e
(n−p)
I = uIy vol = uIy ε(I)eI ∧ eI

c

= (uIy eI)ε(I) ∧ eI
c

= ε(I)eI
c

(1.8)

Note that this formula can act as a definition in the case (ei) form a general family of vectors
(not assumed to be a basis). Combining (1.7,1.8) we obtain the following formula stating that
e

(n−p)
I represent a (twisted) 1-form on ΛpE : for fJeJ ∈ ΛpE

(
fJe

J
)
∧ e(n−p)

I = fIvol (1.9)

which justifies placing I as a subscript in e(n−p)
I .
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Jet Spaces
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In this section, we present the general structure of jet spaces. They are elementary constructions
of differential geometry, which will be useful for considering Cartan geometry and which are also
crucially involved in the formalism of field theory in physics. General references are [KMS93;
GMS09; KL08].

2.1 Jets of a smooth map
The idea of jets of a smooth map is the geometric (covariant) realisation of the idea of polynomial
expansion of a smooth map.

Definition 2.1.1 (Contact to the kth order). Let X and Y be two smooth manifolds and
f, g : X → Y two smooth maps. Let x be a point in X. Let k be an integer. Then f and g are
said to have contact to order k at x if f(x) = g(x) and in every chart around x and around f(x),
f and g have the same partial derivatives of order 1 to k. Contact to the k-th order holds as
soon as the partial derivatives match in one given couple of charts.

We will call equivalence classes contact elements of order k and write them jkx(f).

Remark (Omission of contact order). Let X and Y be two smooth manifolds and f, g : X → Y
two smooth maps. Let k be an integer and x a point in X. If f and g have contact to order k at
x, then for every integer l 6 k they have contact to order l.

Theorem 2.1.2 (Composition of contact elements). Let X, Y and Z be three smooth manifolds
and f : X → Y , g : Y → Z two smooth maps. Let k be an integer. Let x be a point of X.

Then jkx(g ◦ f) only depends on jkx(f) and jkf(x)(g).

13
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2.2 Jet bundles
The notion of contact element allows realising higher order differentials of a smooth map as
equivalence classes, whereas they cannot be naturally realised as tensors. These equivalence
classes are naturally organised into smooth manifolds.

We will be especially interested in the contact elements of sections of a fibre bundle.

Definition 2.2.1. Let Y π−→ X be a fibre bundle and k an integer. The jet bundle of order k
of π, also called the k-th prolongation of π, is the reunion for all x in X of the space of contact
elements to the order k of local sections of π in a neighbourhood of x. It has a natural structure
of smooth manifold which smoothly projects to Y (by taking the image of x by representatives of
the contact class). It is written

J k(π)

or sometimes more implicitly J k(Y ).
The jet spaces of increasing order form a sequence of bundles above X:

· · · → J 3(π) π3
2−→ J 2(π) π2

1−→ J 1(π) π1
0−→ J 0(π) ' Y π−→ X

We name πlk the fibration map J l(π)→ J k(π) for l > k and πl the fibration map J l(π)→ X.
In the case of a trivial bundle F ×X → X, the jet space contains exactly all contact elements

of maps from X to F . It is called the jet space of order k from X to F and we write it J k(X,F ).

Example 2.2.2. • The 0th order jet space is naturally identified to the total space of the
fibre bundle

J 0(π) ' Y

• Vectors on a manifold are often constructed as contact elements from a line. Consequently,
there is a natural diffeomorphism

J 1(R, X) ' R× TX

above R×X.

• Linear forms on a manifold are usually constructed as the dual to the tangent bundle.
They can also be constructed as contact elements of maps to a line. There is a natural
diffeomorphism as follows:

J 1(X,R) ' T ∗X × R

above X × R.

Example 2.2.3 (Connections on a fibre bundle). Jet bundles of sections provide a natural frame
to study the geometry of Ehresmann connections.

Let Y π−→ X be a fibre bundle1.
An Ehresmann connection on π is the data of a smooth tangent distribution HY on Y , called

the horizontal distribution, such that

TY = V Y ⊕HY

In particular, HY is identified through π to π∗TX:

dπ : HY ∼−→π∗TX
1The construction holds more generally for a surjective submersion.
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As a consequence, for every y in Y , HY defines a section of the projection

TY → π∗TX

Furthermore, for each such linear section, there exists for every point y ∈ Y a local section σ
of Y π−→ X defined on a neighbourhood of π(y) such that

σ(π(y)) = y

dσ(Tπ(y)X) = HY

This means that an Ehresmann connection associates to each point y of Y a 1-jet of section
of Y π−→ X sending π(y) to y. Namely, it defines a section of J 1(π)→ Y .

Conversely, a section of J 1(π)→ Y defines at each point of Y a tangent subspace supplemen-
tary to V Y which is the tangent space to the graphs of representatives of the contact element.
There is in fact a natural isomorphism

J 1(π)×Y TY
∼−→J 1(π)×Y (π∗TX ⊕ V Y )

In conclusion, there is a natural bijection between Ehresmann connections of a fibre bundle
Y

π−→ X and sections of the 1st order jet bundle

J 1(π)→ Y

Theorem 2.2.4. Let Y π−→ X be a fibre bundle and k an integer. Then J k+1(π) → J k(π) is
an affine bundle modelled on the pullback bundle of the bundle of homogeneous degree k + 1
polynomial maps from TX to the bundle of vertical tangent vectors on Y :

Symk+1 T ∗X ⊗ V Y

We give a more detailed construction for the first order jet bundles.

Theorem 2.2.5 (Space of first order jets). Let Y π−→ X be a fibre bundle. Then the space of first
order jets of sections of π is the submanifold of J 1(X,Y ) ' π∗XT ∗X ⊗X×Y π∗Y TY which satisfies
the following affine equation:

dπ ◦ σ = π∗ idTX with σ ∈ π∗XT ∗X ⊗X×Y π∗Y TY

with ⊗X×T standing for the tensor product of vector bundles above X × Y .
The structure of affine bundle under the vector bundle π∗T ∗X ⊗ V Y can be explained by the

pullback construction in the following diagram:

J 1(Y ) 1

π∗(T ∗X)⊗ V Y π∗(T ∗X)⊗ TY π∗(T ∗X ⊗ TX)

Y

y
π∗(idTX)

If X is of dimension n and Y is a bundle with fibre dimension d then J 1(π) has fibre dimension
nd over Y .
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Remark. Let Y → X be a fibre bundle equipped with an Ehresmann connection. It can be
represented as a section Y → J 1(π). In particular, it induces an affine bundle isomorphism

π∗(T ∗X)⊗ V Y ∼−→J 1(π)

fibred above Y .

Definition 2.2.6 (Prolongation of sections to order k). Let Y π−→ X be a fibre bundle and k an
integer.

Let s : X → Y be a smooth section of π. Then s admits a natural smooth lift through
J k(π) → Y which is called the prolongation of s to order k or the k-jet of s and is defined as
follows:

jk(s) : x ∈ X 7→ jkx(s) ∈ J k(π)

The following diagram commutes :

J k(π)

X Y

πk0

s

jk(s)

This construction is crucial and allows imposing differential conditions on a map by geometri-
cally requiring that its prolongations take value in a specific subset of the jet spaces.

Example 2.2.7 (Differential of a map). Let f : Rm → Rn be a smooth map. Then the 1-jet of
f can be described as follows:

x ∈ Rm 7→ (x, f(x),df(x)) ∈ J 1(Rm → Rn) ' Rm × Rn × Rm∗ ⊗ Rn

Jet spaces give the geometrical framework to work with constructions depending not only on
the value of maps but on their jet to a certain order.

Example 2.2.8 (Pullback of differential forms). Let Y π−→ X be a fibre bundle. Then for any
smooth section X s−→ Y and any differential form α ∈ Ω•(Y ), the pullback of α through s depends
at each point of X of s at the first order. More precisely, there exists a (graded) map

J 1(π)×Y Λ•T ∗Y → π∗Λ•T ∗X
(j1s, γ) 7→ s∗γ

which is fibred over Y and straightforwardly constructed as

J 1(π)×Y Λ•T ∗Y

Hom(π∗TX, TY )⊗Y Λ•T ∗Y

Hom(Λ•π∗TX,Λ•TY )⊗ (Λ•TY )∗

Λ•π∗T ∗X ' π∗Λ•T ∗X
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Then given a smooth section X s−→ Y and a differential form α ∈ Ω•(Y ), the pullback s∗α can
be constructed as follows:

X
j1s−−→ J 1(π) (id,α◦π1

Y )−−−−−−→ J 1(π)×Y Λ•T ∗Y → Λ•T ∗X

Theorem 2.2.9 (Functoriality). Let Y1
π1−→ X1 and Y2

π2−→ X2 be two fibre bundles. Let (f, φ)
be a fibre morphism, there is a commutative diagram as follows:

Y1 Y2

X1 X2

φ

π1 π2

f

Assume furthermore that f is a local diffeomorphism. Then for each integer k there is an
induced map J k(φ) : J k(π1) → J k(π2) such that for any contact element jkxσ of order k of a
section of π1, the following equation holds (and the right-hand term is well defined):

jkφ ◦ jkxσ = J k(φ)(jkxσ) ◦ jkxf (2.1)

Remark. Since f is locally invertible, its contact elements are as well so that Equation (2.1) can
be turned into a definition of the induced map.

In particular, any fibration automorphism lifts to automorphisms of the jet bundles. Similarly
to the case of general jet spaces, to an infinitesimal bundle automorphism of π is associated an
induced map on the jet bundle of section at every order. The case of first order jet spaces is
described in Example 2.2.10

Local coordinates on the first jet bundle

We write F a fibre of the locally trivial bundle Y π−→ X. Let (xi) be a local coordinate system on
an open subset U ⊂ X and y : Y → F local fibre coordinates on Y defining a local trivialisation:

Y |U U × F

U

π

∼
(π,y)

πU

The tangent bundle has the following local trivialisation

TY |U TU × TF

π∗TU TU × F

Dy

∼
(Dπ,Dy)

id×πTF

∼

and the tensor product with π∗(T ∗U) gives

π∗(T ∗U)⊗ TY |U T ∗U ⊗ (TU ⊕ TF )

π∗(T ∗U ⊗ TU) (T ∗U ⊗ TU)× F

idT∗U ⊗Dπ

∼
idT∗U ⊗(Dπ⊕Dy)

∼



18 CHAPTER 2. JET SPACES

The jet bundle corresponds to the inverse image of the section π∗ idTU : Y → π∗(T ∗U ⊗ TU)
hence we obtain

J 1Y |U T ∗U ⊗ TF

Y |U U × F

∼
id⊗Dy

∼
(π,y)

The local trivialisation is given by base space coordinates (xi), fibre coordinates (ya) and 1st
order coordinates (vai ) corresponding to the fibre of T ∗U ⊗ TF → U × F . Notice that the bundle
trivialisation gives sections of J 1Y → Y and according to the remark following Theorem 2.2.5
this identifies the affine bundle with the underlying vector bundle π∗(T ∗U)⊗ V Y → Y .

Of course, it is possible to be completely explicit by using local coordinates on F which allows
identifying the jets with jets between Euclidean spaces. They are easily described using Taylor
polynomials.

Example 2.2.10 (1st order prolongation of a projectable vector field [Olv86]). Let Y π−→ X be a
fibre bundle and u ∈ Γ(TY ) an infinitesimal bundle automorphism, namely a projectable vector
field.

Let us use local fibration coordinates (xi, ya, vai ) on J 1(π). Then if

u = ui∂xi + ua∂ya

(with ui independent of ya) the first order prolongation takes the form

j1u = ui∂xi + ua∂ya +
(
∂xiu

a + vBi ∂yBu
a
)
∂va

i

2.3 Contact structure of first order jet bundles
Beside their fibration over the bundle total space and the tower of affine bundles, jet bundles
have more structure which is a manifestation of their construction as spaces of contact elements.
We will focus in this section on the spaces of first order jets for simplicity and because it will be
the main case of interest for us.

Definition 2.3.1. Let Y π−→ X be a fibre bundle. Let φ : X → J 1(π) be a section of the first
order jet bundle. It is called holonomic (or integrable) if there exists a smooth section s : X → Y
such that φ = j1s.

The structure we will now introduce allows identifying when a section of the jet bundle is
holonomic.

Let Y π−→ X be a fibre bundle. Let us use a generic local fibration coordinates systems (xi, ya)
with xi coordinates on X and ya fibre coordinates on Y .

We can construct the following 1-forms on J 1(π):

θa = dya − vai dxi

The family (θa) depends on the coordinate system used. They can however be gathered in a
uniquely defined V Y -valued form

J 1(π)×Y TY
∼−→J 1(π)×Y (π∗TX ⊕ V Y )
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mentioned in Example 2.2.3. The V Y -valued form on J 1(π) is then the composition

TJ 1(π) dπ1
0−−→ J 1(π)×Y TY

∼−→J 1(π)×Y (π∗TX ⊕ V Y )→ (π1
0)∗V Y

The forms θa are called contact 1-forms and can be used to identify first order prolongations
of maps from X to Y as according to the following theorem.
Theorem 2.3.2.

1. The differential forms α on J 1(X,Y ) such that for all f : X → Y ,

(j1f)∗α = 0

form a differential ideal. It is called the contact ideal and its elements are called contact
forms.

2. The contact ideal is (locally) algebraically generated by the forms θa and the forms dθa in
any coordinate system.

3. A section X → J 1(X,Y ) is holonomic if and only if it pulls back every contact form to 0,
or equivalently every contact 1-form.

The differentials of the contact 1-forms are straightforward to compute:

dθa = −dvai ∧ dxi

Remark. The notion of “contact structure” of jet spaces is different from the notion of contact
structure in the so-called “contact geometry” in which a contact structure is the data of a
maximally non-integrable codimension one tangent distribution. They are however not unrelated,
as the following example shows.
Example 2.3.3 (Jet space of maps to the line). Let X be a smooth manifold. As stated earlier,
the first order jet space of maps from X to R is identified to the following space:

T ∗X × R

The line R is equipped with a tautological coordinate y : R→ R. Consequently, TR is trivialised
and the corresponding contact form can be taken with value in R:

θ = dy − pidqi

in which we changed the coordinates (xi, vai ) on X to a more familiar notation (qi, pi). This
is the standard form of (usual) contact forms in a Darboux coordinate system. If we restrict
to T ∗X × {0} ' T ∗X, we obtain a submanifold on which dpi ∧ dqi defines an exact symplectic
structure.
Example 2.3.4 (Jet space of maps from the line). Let Y be a smooth manifold. As stated
earlier, the first order jet space of maps from R to Y is identified to the following space:

R× TY

The line R is equipped with a tautological coordinate t : R→ R. Consequently, T ∗R is trivialised
and the corresponding contact forms take the following form:

θa = dya − vadt
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If we have an arbitrary path R → TY then it is the tangent path to a path R → Y if and
only if θa vanish on it. This is the “contact condition” or “holonomy condition”.

As mentioned earlier, contact 1-forms on J 1(X,Y ) are all components of a geometrically
defined π1

Y
∗
TY -valued 1-form TJ 1(X,Y ) → π1

Y
∗
TY . As a consequence, its exterior powers

define a graded algebra map
Λ•π1

Y
∗
T ∗Y 7→ Λ•T ∗J 1(X,Y )

which takes value in the contact forms.
Remark. When the fibre bundle Y → X is trivial, or more generally is equipped with an
Ehresmann connection, there is a consistently defined projection

TY → V Y

which can be used in place of ∂ya ⊗ ∂ya and an isomorphism

J 1(π) ∼−→π∗T ∗X ⊗ V Y

which can be used in place of ∂ya ⊗ vai dxi in the construction of the V Y -valued contact form.
In particular, the connection 1-form TY → V Y can be identified with the pullback of the

V Y -valued contact form by the section Y → J 1(π).
The contact structure has an incarnation dual to the contact ideal, known as the Cartan

distribution:

Theorem 2.3.5 (Cartan distribution, [KL08; KV98]). Let Y π−→ X be a fibre bundle and k an
integer. The tangent planes to all holonomic sections of J k(π) span a distribution called the
Cartan distribution.

The Cartan distribution is non-integrable and its annihilator is the space of contact 1-forms
of J k(π).

Under the hypotheses of Theorem 2.2.9, the induced map between jet spaces sends prolonga-
tions of sections to prolongations of sections and therefore preserves the contact structure and
the Cartan distribution.

2.4 Anholonomic jets
Jet spaces can support non holonomic jets. The question of whether a given jet section is holonomic
or not can be treated using the contact structure or equivalently the Cartan distribution. This
gives a mean to construct a map satisfying given differential constraints.

In some situations, the differential data we have on a map we try to construct is not a higher
order jet, but the jet of a jet (or a higher order iteration). Thus we have to check iteratively
holonomy constraint in order to ascertain whether there exists a map with the corresponding jet
data.

Definition 2.4.1 ([Ehr54]). Let X and Y be two smooth manifolds. For an integer k, the
anholonomic space of jets of order k from X to Y is written J̃ k(X,Y ) and is inductively
constructed as follows:

J̃ 0(X,Y ) = X × Y
J̃ k+1(X,Y ) = J 1(J̃ k(X,Y )→ X) = J 1 · · · J 1︸ ︷︷ ︸

k times

π
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There is a natural inclusion
J k(X,Y ) ↪→ J̃ k(X,Y )

Nomenclature brings the following important distinction: a jet in an anholonomic jet space is
called holonomic if it belongs to the subspace of holonomic jets. In constrast, a section of the
holonomic jet space is called holonomic if it is the prolongation of a smooth map. Similarly, a
section of the anholonomic jet space is called holonomic if it takes value in the holonomic jet
space and is holonomic as such.

2.5 Jets of diffeomorphisms
As mentioned earlier, jet spaces can be used to construct smooth maps satisfying differential
conditions. In particular, differential equations correspond to subsets of jet spaces. Another
subset which will interest us is that of jets of local diffeomorphisms. Namely, these are contact
elements which have an “inverse contact element” in the sense that both left and right composition
will give the contact element of identity at the considered points.

Definition 2.5.1. Let X and Y be two smooth manifolds and k be an integer.
The manifold of invertible jets of order k or manifold of jets of diffeomorphisms of order k is

the submanifold of J k(X,Y ) of contact elements of maps which are a local diffeomorphism at
the considered point. We write it

J kdiff(X,Y )

It is empty ifX and Y are manifolds of different dimensions and an open and dense submanifold
of J k(X,Y ) if X and Y have same dimension.

The inverse function theorem implies that a contact element of J k(X,Y ) for k > 1 belongs
to J kdiff(X,Y ) if and only if the reduction at order 1 belongs to J 1

diff(X,Y ). When X and Y are
manifolds of the same dimension, J 1

diff(X,Y ) is an open and dense submanifold of J 1(X,Y ) and
as a consequence the same holds at every order k > 1.

Assume that X and Y are manifolds of the same dimension. Let x and y be two points
respectively in X and Y . Then the submanifold of invertible contact elements above (x, y) ∈ X×Y
is isomorphic to the submanifold of linear isomorphisms

TxX
∼−→TyY

It has in particular a natural right action of GL(TxX) and a natural left action of GL(TyY ). They
are both transitive and free thus make Iso(TxX,TyY ) into a GL(TxX)-torsor and a GL(TyY )-
torsor respectively.

Let us give an illustration, albeit degenerate, of how this space can be used to build maps.

Example 2.5.2 (Graphs of symplectomorphisms). Let (X,ωX) and (Y, ωY ) be two symplectic
manifolds of dimension 2n.

It is well known that a map f : X → Y is a symplectomorphism (f∗ωY = ωX) if and only if
the difference symplectic form π∗Y ωY −π∗XωX on X×Y vanishes on the graph of f . This implies in
particular that f has to be a local diffeomorphism. This problem has a geometrical generalisation:
Lagrangian submanifolds of X × Y for π∗Y ωY − π∗XωX generalise graphs of symplectomorphisms.
Around points on which they project transversally to X, they locally define a diffeomorphism
from X to Y which preserves the symplectic form.

As explained in Example 2.2.8, the pullback of ωY is a well defined section of
(
π1
X

)∗
T ∗X over

J 1(X,Y ) hence a fortiori over J 1
diff(X,Y ). We write it π1∗ωY . Thus the geometric question of
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finding Lagrangian submanifolds of X × Y amounts here to finding submanifolds of J 1
diff(X,Y )

of dimension 2n on which π1∗ωY − π1
X
∗
ωX and the contact ideal vanish.

The point is that ∆Xω := π1∗ωY − π1
X
∗
ωX is now realised as a section of (π1

X)∗T ∗X. As a
consequence, given a submanifold L ⊂ J 1(X,Y ) with a point l ∈ L at which L is transverse to
π1
XT
∗X and such that ∆Xω vanishes on TlL, necessarily ∆Xω|l = 0. Therefore the vanishing

of ∆Xω on submanifolds of J 1
diff(X,Y ) is equivalent to their inclusion in the locus of zeroes of

∆Xω, at least at points at which they are transversal to π1
X .

Since contact elements of J kdiff(X,Y ) are invertible, there is bijection

J kdiff(X,Y )→ J kdiff(Y,X)

It can even be proved to be a diffeomorphism:

Theorem 2.5.3. Let X and Y be two differentiable n-manifolds and k an integer.
Then inversion of contact elements define a diffeomorphism

J kdiff(X,Y ) ∼−→J kdiff(Y,X)

Remark. Contact forms can be defined for jet spaces of arbitrary order and inversion preserves
these contact structures. Indeed, given two manifolds X and Y , a holonomic section of J k(X,Y )
corresponds to a local diffeomorphism f : X → Y , for which a local inverse g has a prolongation
jkg to J k(Y,X) such that the following diagram commutes (on the subsets on which it is well
defined):

J kdiff(X,Y ) J kdiff(Y,X)

X Y

∼

jkf

f

jkg

We present another familiar example, which will be a relevant model when considering Cartan
geometry.

Example 2.5.4 (Frame bundles). Let X be a smooth n-manifold. Consider the space of
diffeomorphism jets J 1

diff(Rn, X).
The subspace of contact elements starting from 0 ∈ Rn is the following subset of J 1

diff(Rn, X):

{(x, u) ∈ X × T ∗0 Rn ⊗ TX | u is a linear isomorphism T0Rn
∼−→TxX}

In other words, this is isomorphic to the bundle of linear frames of TX.
There is a natural trivialisation T0Rn

∼−→Rn, and the bundle of linear frames has a right
action of GL(T0Rn) ' GLn which gives it a structure of principal GLn-bundle. According to the
embedding

J 1
diff(Rn, X) ∼−→J 1

diff(X,Rn) ↪→ T ∗X ⊗ TRn

the frame bundle is equipped with a T0Rn ' Rn-valued canonical form α, called the solder form
of the frame bundle.

Since the whole tangent bundle of Rn is naturally trivialised, α exists over the whole jet space.
Using coordinates (zi) on Rn, the Rn-valued contact form on Jdiff(X,Rn) takes the following
form:

dzi ⊗ ∂

∂zi
− α ∈ Ω1(Jdiff(X,Rn),Rn)
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2.6 Germs of smooth maps
We give a brief presentation of the more general notion of germs of maps. In our framework,
germs is a purely topological notion and does not rely on the local structure of manifolds. Let X
and Y be two topological spaces.

Definition 2.6.1. Let x be a point of X. Two maps f and g respectively defined on a neighbour-
hood Uf and Ug of x with value in Y have the same germ at x if there exists a neighbourhood U
of x which is included in Uf ∩ Ug and such that

f |U = g|U

In other words, the germ at x is a formalisation of the behaviour of a map in the neighbourhood
of x.

Theorem 2.6.2. The space of germs of maps from X to Y has natural projections to X and Y .
It can furthermore be naturally equipped with a topology, called the étale topology, such that these
projections are continuous.

Similarly to jets, germs can be composed.
Assume now that X and Y are differentiable manifolds. We can consider germs of smooth

maps. Then jets are a function of germs:

Theorem 2.6.3. Let x be a point of X and f and g two smooth maps from X to Y . If f and g
have the same germ at x, then they have contact to every order k ∈ N.

This defines a continuous map from the spaces of germs to the spaces of jets which is compatible
with composition.

In particular, this makes superfluous the distinction between k-contact elements of globally
defined maps and locally defined maps. Indeed, given a map f defined on a neighbourhood U of
x, using a smaller neighbourhood V diffeomorphic to a ball, it is possible to build a local map
which coincides with f on V but is constant outside a neighbourhood of x, and can therefore be
extended to the whole of X.
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This chapter gathers definitions and notations on frame bundles, G-structures, connections
and Cartan geometry we will be using in later chapters.

3.1 Principal bundles and connections
We start with a quick presentation of the main constructions on principal bundles which will be
relevant for us. We only give a succinct account of the structure, a detailed treatment can be
found in [KN96]. Let M be a smooth manifold and G a Lie group.

Principal bundles

Definition 3.1.1 (G-principal bundles). A G-principal bundle over M is a locally trivial fibre
bundle P → M equipped with a right action of G such that one of the following equivalent
properties is satisfied:

• G acts freely on P and transitively on the fibres above M .

25
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• The submersion P →M identifies M with the quotient space P/G.

The Lie group G is called the structure group of the principal bundle.

Local trivialisations identify P with M ×G but with G as a right G-space: fibres do not have
in general a consistently defined group structure.

There is a natural notion of morphism of G-principal bundle, but we will be interested in
relating principal bundles with different structure groups. The corresponding notion of morphism
is as follows:

Definition 3.1.2 (Reduction of structure group). Let K be a Lie group equipped with a
morphism K

φ−→ G. Let PG → M be a G-principal bundle. A reduction of structure group
to K (along K φ−→ G) of PG is the data of an K-principal bundle PK → M equipped with
a (K → G)-intertwining bundle map f : PK → PG, in the sense that the following diagram
commutes:

PK ×K PG ×G

PK PG

M

f×φ

(p,h)7→p·h (p,h) 7→p·h
f

Remark. The name “reduction” comes from the case in which K is an embedded subgroup of G.
When K → G is surjective (thus a quotient map), they are often called lifting of structure group.
Often the morphism K → G will be left implicit when there is no risk of confusion.

Example 3.1.3 (Orthonormal frames). Let E →M be a vector bundle of rank k over M . The
linear frames of each one of its fibres can be gathered into a smooth fibre bundle above M . The
group GLk acts from the right on the linear frames of each fibre of E, in a free and transitive
fashion. As a consequence, the bundle of linear frames of E has the structure of a GLk-principal
bundle over M . We write it GL(E).

If E is equipped with a positive inner product, this defines a notion of orthonormal frames. The
orthonormal frames of E form a sub-fibre bundle of GL(E). Similarly to GL(E), the orthonormal
frames of E form an Ok-principal bundle over M . Furthermore, the embedding into GL(E) is Ok

equivariant: the inner product induces a reduction of structure group of GL(E) to Ok.
The converse holds as well: indeed specifying even a single orthonormal frame on each fibre of

E is enough to specify the associated inner product.

Associated bundles

Let P →M be a G-principal bundle and X a left G-manifold.

Definition 3.1.4 (Associated bundle). The space

P [X] := P ×G X = P ×X/
(
(pg, x) ∼ (p, gx)

)
is a smooth manifold which forms a fibre bundle over M with fibres diffeomorphic to X. It is
called the associated bundle to P of fibre X.

When X is a vector space and the action of G is linear, P [X] has the structure of a vector
bundle above M .
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Remark. The definition involves X not as a smooth manifold but as a G-manifold: the action of
G on X is part of the data.

The fibres of an associated bundle of fibre X can be identified with X, but this identification
is only defined up to elements of G. Depending on the structure preserved by G the associated
bundle can have different kind of structures, for example being itself a principal bundle over a
Lie group, or a vector bundle.

Example 3.1.5. Let E →M be a vector bundle of dimension k over M . Recall that the frame
bundle GL(E) is a GLk-principal bundle above M . Since GLk naturally acts on Rk, there exists
an associated bundle GL(E)[Rk]. We now prove that it is naturally isomorphic to E.

Since there is a natural embedding GL(E) ↪→ Hom(Rk, E), there is a natural bundle map

GL(E)× Rk → E

The inverse image of any set vector u ∈ Em is given by a frame p ∈ GL(E)m and the components
u|p ∈ Rk of u in p. Since for any g in GLk, u|pg = g−1 · u|p, one concludes that the inverse image
of u is exactly an equivalence class for the equivalence relation

∀g ∈ GLk, (pg, x) ∼ (p, g · x)

Namely, the bundle map factorises to a bundle isomorphism

GL(E)[Rk] ∼−→E

which can furthermore be proven to be linear.

Example 3.1.6 (Reduction of structure group). Let K be a closed subgroup of G and PK ↪→
PG = P a reduction of structure group to K. Then the action map

PK ×G→ PG

(p, g) 7→ pg

factors through a bundle isomorphism

PK ×K G
∼−→PG

(p, g) 7→ pg

Namely, a reduction of structure group exhibits PG as an associated K-principal bundle.
Conversely, given a K-principal bundle PK → M , the G-manifold PK ×K G always form a

G-principal bundle over M which is naturally equipped with the reduction of structure group to
K:

PK ↪→ PK ×K G

In summary, there is an equivalence between reductions of structure group of PG to K and
G-principal bundle isomorphisms from PG to a G-principal bundle associated to an K-principal
bundle.

Theorem 3.1.7 (Trivialisation of associated bundles). We call π the fibration map P → M .
There is a natural trivialisation of fibre bundle above P :

π∗P [X] ' P ×M P [X] ∼−→P ×X
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which is G-intertwining in the sense that the following diagram commutes:

π∗P [X]×G P ×X ×G

π∗P [X] P ×X

∼ (p,x,g)7→(pg,g−1x)

with π∗P [X] × G → π∗P [X] the natural identification between P [X]π(p) and P [X]π(pg) for all
p ∈ P .

Corollary 3.1.8 (Sections of an associated bundle, [KMS93], Section III.11.14). Let Γ(P,X)G
denote the subset of G-equivariant maps P → X.

The following map

Γ(M,P [X])→ Γ(P,X)G

σ 7→ π∗σ

is a bijection.
Assume now that X is a linear representation V of G. The above map is a C∞(M)-linear

isomorphism and extends to a graded Ω•(M)-module isomorphism between P [V ]-valued differential
forms on M and V -valued differential forms on P which are

• horizontal.

• G-equivariant.

Such forms on P are called basic or tensorial ; we write their space Ω•hor(P, V )G:

Ω•(M,P [V ]) ' Ω•hor(P, V )G

Given a reduction of structure group PK ↪→ PG and a G-manifold X, there is a bijection

Γ(PG, X)G ↔ Γ(PK , X)K

A 7→ A|PK

which induces a bijection between the sections of the associated bundles. For a vector space V
which has a group action of G, there is similarly a bijection between V -valued basic forms:

Ω•(PG, V )G ↔ Ω•(PK , V )K

α 7→ α|PK

Theorem 3.1.9. Let K be a closed subgroup of G. Then P → P/K has a structure of K-principal
bundle. There is a natural associated bundle isomorphism

P [G/K] ∼−→P/K

There is a bijection between reductions of structure group of P to K and the set of global
sections of P/K:

Γ(M,P/K) ∼−→{Reductions of structure group of P to K}
σ 7→ (σ∗P → P/K)
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Example 3.1.10 (Inner products). Let E be a k-dimensional vector bundle over M . It is
associated to GL(E). Since GLk /Ok is naturally identified to the set of inner products on Rk,
the associated bundle GL(E)[GLk /Ok] is identified to the bundle of inner products on E. This
gives a new perspective on the correspondence between inner products on E, namely sections of
GL(E)[GLk /Ok], and reductions of structure group of GL(E) to Ok.

Principal connections

The action of G on P induces an action of the associated Lie algebra g by differentiation of the
1-parameter subgroups of diffeomorphisms. For ξ ∈ g we write ξ̄ the corresponding vector field
on P . Note that the vector fields ξ̄ are vertical (they project to 0 in TM) and they span all the
vertical directions.

Definition 3.1.11 (Principal Ehresmann connection on a principal bundle). Recall the notion
of Ehresmann connection on P (Example 2.2.3) : it is the data of a smooth tangent distribution
HP which is at every point of P a supplementary distribution to the vertical distribution V P 1:

TP = V P ⊕HP

called the horizontal distribution.
An Ehresmann connection is called principal if it is invariant under the right action of G on

P .

Hence an Ehresmann connection defines projections of a vector on P to horizontal and vertical
components.

There is a natural notion of pullback of an Ehresmann connection to a pullback fibre bundle:

Lemma 3.1.12. Let E → M be a fibre bundle equipped with an Ehresmann connection
HE ⊂ TE and f : X →M a smooth map. Then the pullback bundle f∗E → X admits a unique
Ehresmann connection f∗HE ⊂ Tf∗E which can be constructed as follows: writing φ : f∗E → E
the natural bundle map,

f∗HE = {u ∈ Tf∗E |Dφ(u) ∈ HE}

Proof. Uniqueness follows once we know the above set defines an Ehresmann connection. Let us
call d the fibre dimension of E. The essential argument is that φ is transverse to the distribution
HE:

imDφ+ φ∗HE = φ∗TE

Therefore f∗HE is at every point of f∗E of codimension d in Tf∗E. As a consequence, f∗HE
is a vector subbundle of Tf∗E of corank d. Since Dφ sends V f∗E to V E, f∗HE ∩ V f∗E = 0
which allows concluding that f∗HE is supplementary to V f∗E.

Principal connections are usually handled through the means of a 1-form, as we now introduce:

Definition 3.1.13 (Principal connections on a principal bundle). A G-principal connection
1-form on P is given by a g-valued 1-form ω on P such that:

• It is normalised for the action of g:

∀ξ ∈ g, ω(ξ̄) = ξ

1Some authors ([KMS93; Mic08]) require an extra completude property related to parallel transport which we
introduce below.



30 CHAPTER 3. FRAME BUNDLES AND CARTAN GEOMETRY

• It is G-equivariant as a g-valued 1-form:

R∗gω = Ad−1
g ω

The adjective “G-principal” will most often be omitted.

Theorem 3.1.14. There is a bijection between principal Ehresmann connections and principal
connection 1-forms on P :

ω 7→ HP = ker(ω)

We say that a connection 1-form on P defines a connection on P .

A principal connection ω allows defining derivatives of sections of associated vector bundles
on M .

Lemma 3.1.15. Let V be a linear representation of G and ω a connection 1-form on P . Let
ψ ∈ Ω•hor(P, V ), in particular we do not assume it is equivariant.

Then ψ is g-equivariant if and only if the V -valued form

dψ + ω · ψ

is horizontal, with ω·ψ the V -valued form recursively defined such that iX(ω·ψ) = ω(X)·ψ−ω·iXψ.
In this case, dψ + ω · ψ is g-equivariant, and is G-equivariant when ψ is.

Since part of this lemma is not standard and will be crucial in the following sections, we
provide a proof

Proof. Equivariance of ψ under g is equivalent to the following: for all ξ in g,

Lξ̄ψ + ξ · ψ = 0

We simply need to reexpress each term, using the horizontality of ψ:

Lξ̄ψ =
(
iξ̄d + diξ̄

)
ψ

= iξ̄dψ + 0

and
ξ · ψ = ω(ξ̄) · ψ = iξ̄ (ω · ψ)

Therefore we obtain the following equation:

Lξ̄ψ + ξ · ψ = iξ̄ (dψ + ω · ψ) (3.1)

The form ψ is g-equivariant if and only the right hand side of (3.1) vanishes for every ξ in
g, which is equivalent to asserting that dψ + ω · ψ has vanishing contraction with every vertical
vector field. Namely, it is a horizontal V -valued form.

Since ω is G-equivariant and a fortiori g-equivariant and d commutes with Lie derivatives
and pullbacks, equivariance properties of ψ are naturally transferred to both dψ and ω · ψ and
therefore to dψ + ω · ψ.

We obtain a differential operator of degree 1 which preserves basic forms on P :
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Definition 3.1.16 (Covariant derivative). Let V be a linear representation of G. Assume P is
equipped with a principal connection with connection 1-form ω.

Let Ψ be a section of P [V ] and ψ the associated element of Γ(P, V )G. The covariant derivative
of ψ is defined as follows:

dωψ := dψ + ω · ψ ∈ Ω1(P, V )

The 1-form dωψ is basic thus is associated to a P [V ]-valued 1-form on M . We write it

∇ωΨ

and call it the covariant derivative of Ψ. The superscript ω is usually omitted when there is no
risk of confusion.

This construction extends to V -valued basic forms: let ψ be in Ωk
hor(P, V )G. We define the

following product

Ω1(P, g)⊗ Ωk(P, V ) Ω1+k(P, g⊗ V ) Ωk+1(P, V )

ω ⊗ ψ ω ∧ ψ ω · ψ

It is used in the following definition of the covariant exterior derivative of ψ:

dωψ = dψ + ω · ψ (3.2)

It can be shown to correspond to the precomposition of dψ with the projection

Λk+1TP → Λk+1HP ⊂ Λk+1TP

The (k + 1)-form dωψ is then a horizontal V -valued (k + 1)-form which can be proved to be
equivariant: as an element of Ωk+1

hor (P, V )G it is associated to a P ×G V -valued (k + 1)-form on
M . In this way a connection allows to define derivatives of sections of vector bundles on M .

If Ψ is the associated P [V ]-valued k-form on M , we write the associated P [V ]-valued (k + 1)-
form as follows:

d∇Ψ

Theorem 3.1.17 (Induced principal connection, [KN96]). Let K be a closed subgroup of G and
PK ↪→ PG = P a reduction of structure group to P . Then there is a natural bijection between
K-principal connections on PK and G-principal connections on PG such that HPG|PK ⊂ TPK :

{K-principal connection on PK} ↔ {G-principal connection on PG tangent to PK}
HPK 7→ HPG|pg = dRg(HPK |p) for p ∈ PK

HPG|PK ←[ HPG
ω|PK ←[ ω

If the connection on PK is given by a 1-form ωK then the corresponding connection 1-form
on PG is the factorisation to PG ' PK ×K G of the following 1-form:

Ad−1
g ωK + ωMC

G ∈ Ω1(PK ×G, g)

with ωMC
G the right Maurer-Cartan form on G (defined below in Example 3.3.5).

There is a direct correspondence between covariant derivatives on vector bundles and principal
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connections on their frame bundles. The bridge can be given by the following notion of linear
connection on a vector bundle:

Definition 3.1.18 (Linear connections). Let E →M be a vector bundle.
An Ehresmann connection HE on E is called a linear connection if it is stable by addition

and by dilation. Let us define the fibrewise addition map Add : E ×M E → E and for all λ ∈ R,
the multiplication map Dilλ : E → E. The Ehresmann connection has to satisfy the following2:

T Add(HE,HE) ⊆ HE
∀λ ∈ R, T Dilλ(HE) ⊆ HE

Theorem 3.1.19 ([Mic08; Pau]). Let E → M be a vector bundle with a linear frame bundle
P = GL(E)→M . There are natural bijections as follows:

{GLn -principal connections on P} HP

{Linear connections on E} HE = HP ×GLn E

{Covariant derivatives on E} ∇HE

Curvature of a principal connection

The obstruction to the integrability of the horizontal distribution HP is contained in the curvature
2-form associated to the connection, defined as follows:

Ω := dω + 1
2 [ω ∧ ω] ∈ Ω2

hor(P, g)G (3.3)

with
[β ∧ γ] (X,Y ) := [β(X), γ(Y )]− [β(Y ), γ(X)]

The curvature 2-form vanishes if and only if HP is integrable, in which case its leaves project
to M by surjective local diffeomorphisms. A connection with vanishing curvature is said to be
flat [Mic08].

The curvature 2-form is also involved in the square of the covariant exterior derivative operator
through the following Ricci identity:

∀Ψ ∈ Ωkhor(P, V )G dωdωψ = Ω · ψ (3.4)

using a similar notation to ω · ψ for the product

Ω2(P, g)⊗ Ωk(P, V )→ Ωk+2(P, V )

It furthermore satisfies the Bianchi identity

dωΩ = 0 (3.5)

2In fact any of the condition implies the other one, for similar reasons that additive continuous maps between
vector spaces and 1-homogeneous maps between vector spaces which are differentiable at 0 are linear, respectively.
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Parallel transport

Let P →M be a G-principal bundle equipped with a principal connection. We explained how
it defines a covariant derivatives on sections of associated vector bundles. The corresponding
integral structure, which does not need to consider vector bundle or even associated bundle, is
called parallel transport.
Definition 3.1.20. Let E → M be a fibre bundle equipped with an Ehresmann connection.
Let c : I → M be a smooth curve starting from m. The fibre bundle E can be “restricted to
c” by constructing the pullback fibre bundle Ec := c∗E → I. The pullback of the Ehresmann
connection to Ec defines an Ehresmann connection HEc over Ec

π−→ I which is effectively a
smooth distribution of rank 1.

The parallel transport associated to c is the flow of the horizontal vector field Xc ∈ Γ(Ec, TEc)
uniquely defined by the two following conditions:

Xc ∈ Γ(Ec, HEc)

dπ(Xc) = ∂

∂t
∈ π∗TI

with ∂
∂t the positively oriented normalised vector field on I.

As we defined it, parallel transport is merely the solution of a geometrically constructed
differential equation on a fibre bundle. As such, it may not exist globally. However in the
G-principal case, equivariance gives enough homogeneity to the differential equation to ensure
that global solutions always exist.
Theorem 3.1.21 (Completude of principal connections, [Mic08]). If P →M is a G-principal
bundle equipped with a principal connection, then parallel transport is always globally defined.
Namely, any curve in M has a globally defined parallel transport starting from any point in the
fibre above the initial point of the curve.

Furthermore, parallel transport commutes with the action of G on P .
Hence given a smooth path in M from m1 to m2 parallel transport gives an element PTc in

HomG(Pm1 , Pm2). The concatenation of two paths is easily proved to give the composition of the
corresponding parallel transports. Parallel transport along loops is called holonomy. Holonomies
of any fibre of P form a group, called the holonomy group of the connection at the corresponding
point of M .

Parallel transport acts as well on associated bundles. Let X be a G-manifold and consider
the associated bundle P [X]. Given a smooth path c from m1 to m2 there is a mapping

Pm1
∼−−−→

PTc
Pm2

which commutes with the action on G. Therefore we can construct a map

Pm1 ×X
∼−−−−−−→

PTc× idX
Pm2 ×X

which is G-equivariant for the action (p, x) · g = (p · g, g−1 · x). This induces a map between the
quotients

P [X]m1 = Pm1 ×G X
∼−→Pm2 ×G X = P [X]m2

Thus we associated to the principal connection on P a parallel transport on the associated bundle
P [X]. This associated parallel transport can in fact be associated with an Ehresmann connection
on the associated bundle [KMS93].
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We conclude this section on principal bundles with a characterisation of flat connections.

Theorem 3.1.22 (Flat connections and parallel transport). The parallel transport of a smooth
path is invariant under homotopy (with fixed endpoints) of the path if and only if the connection
is flat.

3.2 Frame bundles
We now turn our attention to frame bundles, which are principal bundles with more structure
which ties them to the local geometry of the base manifold. Let M be a differentiable n-manifold.

3.2.1 The linear frame bundle of a manifold
At each point m ∈ M the tangent space TmM is a n-dimensional vector space and has a n2-
dimensional manifold of linear frames. They can be gathered into a fibre bundle over M which is
called the (linear) frame bundle of M and which we write GL(M).

Since the set of frames of TmM has a natural right action of GLn which is both transitive
and effective, GL(M) has the structure of a GLn-principal bundle over M (Example 3.1.3).
Furthermore it is provided with a natural Rn-valued 1-form which we now construct.

The canonical solder form

Let π : GL(M)→M be the fibration map. According to the examples of the previous section,
we know that GL(M)[Rn] ' TM . In particular, there is a natural “tautological” isomorphism of
vector bundles

u : π∗TM ∼−→ GL(M)× Rn

Furthermore u is equivariant under the right action of GLn: writing Rg for the right action of
g ∈ GLn on GL(M), the following diagram commutes

π∗TM Rn

π∗TM Rn

uRn

Rg∗ g−1

uRn

The differential of π can be represented as a map

dπ : T GL(M)→ π∗TM

so that composition gives a linear map

T GL(M) π∗TM Rndπ

θ

uRn

The fibration map π is invariant under the action of GLn:

π ◦Rg = π

thus for all p ∈ GL(M), the follows holds:

dπ ◦ dRg = Rg∗dπ
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with Rg∗ : π∗TM ∼−→Rg∗π
∗TM the natural identification. Finally

θ ◦ dRg|p = u ◦ dπ ◦ dRg = u ◦Rg∗dπ = g · u ◦ dπ = g · θ

The linear map θ can be understood as a (horizontal) R-valued 1-form on GL(M) and is
called the canonical solder form of GL(M). As we just proved, it is equivariant under the action
of GLn.

Vectors, tensor fields and differential forms

Since TM is the associated bundle to GL(M) with fibre Rn, there is a natural C∞(M)-linear
isomorphism

Γ(TM) ∼−→Γ(GL(M),Rn)GLn

according to 3.1.8. The same goes for tensor bundles TM⊗r ⊗ T ∗⊗s which are associated to
Rn⊗r ⊗ Rn∗⊗s

Differential forms on M can be represented on GL(M) in two different ways, corresponding
to whether they are considered as R-valued differential forms on M or sections of Λ•T ∗M .
Correspondingly, there are graded C∞(M)-algebra isomorphisms

Ωhor(GL(M))GLn ' Ω•(M) ' Γ(GL(M),Λ•Rn∗)GLn

Due to this multiplicity of representations of differential forms on the frame bundle, manipulation
on the frame bundle sometimes require a lot of care, as will be the case in Chapter 5.

As was illustrated in examples in the previous section, geometric structures can be defined
on M by specifying a restricted class of linear bundles. The corresponding structures, called
G-structures, are presented in the next section.

3.2.2 G-structures
When M has an orientation, it is possible to define a notion of “direct” frames. Conversely, given
the class of direct frames, it is possible to identify a corresponding orientation. The same is true
in pseudo-Riemannian geometry: it is equivalent to specify a metric or to specify the class of
(pseudo)-orthonormal frames (with a specified ordered signature). The notion of G-structure sets
the focus on the class of frames structured by the group relating all the frames of the specified
class. More concretely:

Definition 3.2.1 (G-structure). Let M be an n-manifold. Let G be a Lie group equipped with
an action on Rn:

G→ GLn
A G-structure on M is the data of a G-principal bundle P πP−−→M which has a G-equivariant

bundle map to GL(M), namely, the following diagram commutes:

P ×G GL(M)×GLn

P GL(M)

M
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Namely, it is a reduction of structure group of the linear frame bundle along G→ GLn.

Although the usual denomination is “G-structure”, the action of G on Rn is also an essential
part of the defining data. As is standard, the action will often be left implicit. Note that the
action does not have to be faithful, which will be especially relevant in Section 3.2.3.

Example 3.2.2. GL(M) defines a canonical GLn-structure onM , which is part of the differential
manifold structure.

Solder forms

The data of an equivariant map P → GL(M) can be encoded in a Rn-valued 1-form α on P
which satisfies the following two requirements:

• The kernel is the vertical tangent bundle

V P := ker(dπP : TP → π∗PTM) ⊂ TP

• It is equivariant under the action of G on Rn.

Such a 1-form is called a solder form (sometimes soldering form).
Stating that the kernel is V P is equivalent to asserting that α factors to an injective bundle

mapping
π∗PTM ↪→ P × Rn

which is then necessarily an isomorphism for dimension reasons. Equivariance of the 1-form is
equivalent to the equivariance of this mapping, so that such a 1-form indeed gives a mapping

P → GL(M)

It is then easily shown that the solder form on P is the pull back of θ by the obtained map
P → GL(M), and conversely the pullback of θ by an equivariant bundle map is always a solder
form on P .

Furthermore, α inducing an equivariant bundle isomorphism

π∗PTM
∼−→P × Rn

implies that it further factors to a vector bundle isomorphism over M :

TM ' π∗PTM/G
∼−→P ×G Rn ' P [Rn]

From this perspective, a solder form on P is associated to a P [Rn]-valued 1-form on M which is
“non-degenerate”. Indeed this gives another characterisation of G-structures: they are G-principal
bundles equipped with a vector bundle isomorphism

TM ' P [Rn]

(G,V )-structures

For a basis-independent formulation of G-structures, it is possible to work with an n-dimensional
representation V of G and to define a (G,V )-structure on M as a G-principal bundle with a
map to the bundle of “V -valued frames”, namely the bundle of isomorphisms between TM and
V ×M :
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Definition 3.2.3. Let G be a Lie group acting on a real vector space V of dimension n. A
(G,V )-structure on a n-manifold M is a reduction of the structure group of the frame bundle of
M to G acting on V . Namely, it is given by a G-principal bundle P and a soldering form which
is equivalently given by any of the following structures:

• An isomorphism between the tangent bundle of M and the associated vector bundle:

α : TM ∼−→ P [V ]

• A G-equivariant V -valued horizontal 1-form α ∈ Ω1
hor(P ;V )G which is nondegenerate on

horizontal directions.

• A G-equivariant bundle morphism from P to the V -indexed frames of M

P → Iso(V, TM)

When G acts effectively on V , the mapping P → Iso(V, TM) is an embedding.

Change of structure group

Very similarly to associated principal bundles, it is possible to change the structure group of a
G-structure along a group morphism which is compatible with the action on Rn.

Theorem 3.2.4. Let G be a Lie group acting on Rn and M a differentiable manifold equipped
with a G-structure P → GL(M)→M .

Let K be another Lie group acting on Rn equipped with a morphism from G compatible with
the action on Rn: namely, the following diagram commutes:

G K

GLn

Then the associated K-principal bundle

P [K] = P ×G K

is naturally equipped with an K-equivariant bundle map to GL(M) hence it defines an K-structure
over M .

For example, for an embedding G ↪→ K, this corresponds to forgetting part of the G-structure.
Conversely, it is possible to construct further reductions of the structure group with sections of
quotient bundles of P .

Associated tensor fields

Tensor fields and tensor-valued differential forms can be defined using the principal bundle of
a G-structure: by the same construction as for GL(M), G-equivariant Rn-valued forms can be
identified with G-invariant π∗PTM -valued forms. The same goes for the tensor bundles.

Furthemore, given any finite dimensional linear representation V of G it is possible to consider
G-equivariant V -valued fields (and differential forms). They are in natural bijection with section



38 CHAPTER 3. FRAME BUNDLES AND CARTAN GEOMETRY

of the associated bundle P [V ] on M which is a vector bundle over M with typical fibre V , as
stated in Section 3.1

Similarly, there is an isomorphism

Ωkhor(P, V )G ' Ωk(M,P [V ])

Curvature and torsion of a connection on a G-structure

A connection on a G-structure is simply a G-principal connection on the underlying G-principal
bundle P . As such it can be defined by a connection 1-form ω. The connection has a curvature
2-form Ω ∈ Ω2

hor(P, g)G. It is therefore associated to an element of Ω2(M,P [g]).
The action adg : g→ End(Rn) is G-equivariant and as such defines a G-invariant element of

Hom(g,End(Rn)). Therefore there is a corresponding element

P [adg] ∈ Γ(M,P [Hom(g,End(Rn))]) ' Γ(M,Hom(P [g],End(P [Rn])))
' Γ(M,Hom(P [g],End(TM)))

The conclusion is that there is a natural bundle representation P [g]→ End(TM) and therefore a
End(TM)-valued 2-form “curvature endomorphism”.

Furthermore, the G-structure equips P with a solder form α. Its covariant exterior derivative
is called the torsion of ω:

Θ := dωα ∈ Ω2
hor(P,Rn) (3.6)

It is associated to an element T ∈ Ω2(M,TM) also called the torsion of the connection. The
Ricci identity (3.4) applied to the soldering form is often called the algebraic Ricci identity:

dωΘ = Ω ∧ α ∈ Ω3
hor(P,Rn) (3.7)

3.2.3 Pulling back principal bundles

Let M be a manifold with a G-structure given by a principal bundle P → M equipped with
a solder form α. Assume furthermore that there is another principal bundle Q → M with a
structure group K. We are looking for a way to characterise the structure of the principal bundle
Q as a structure on P .

The principal bundle Q can be pulled back through πP to an K-principal bundle π∗PQ on P .
The fact that the principal bundle on P is a pullback bundle can be characterised by the structure
of G-equivariant K-principal bundle: the action of G on P lifts to morphisms of principal bundle
of π∗PQ (which are identified with the identity on the spaces QπP (p)). Namely, the following
diagram commutes for every g in G:

π∗PQ π∗PQ

P P

(p,q)7→(p·g,q)

·g
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The structure of π∗PQ is clear when it is viewed as a fibred product of bundles:

P ×M Q ' π∗PQ Q

P M

K-principal
G-equivariant φP

G-principal
K-equivariant

φQy
K-principal

G-principal
πP

In particular the symmetry between the roles of P and Q is made manifest. The space P ×M Q
has a structure of K-principal bundle over P , of G-principal bundle over Q and of G×K-principal
bundle over M . In particular, the actions of G and K commute which implies that the bundle
fibration over Q is K-equivariant.

Such structures have been explored in physics [KNR87] and generalised in mathematical
studies [LLL21].

Principal connections

Assume now that Q is equipped with a principal connection with a connection form A ∈ Ω1(Q, k)K .
The connection pulls back under the projection P ×M Q

φQ−−→ Q into an K-principal connection
on P ×M Q which we write φ∗QA . Since φQ is invariant under precomposition by the action of
elements of G:

φQ ◦Rg = φQ

the same goes for φ∗QA:
R∗gφ

∗
QA = φ∗QA

Thus the pullback connection on P ×M Q is G-invariant, or G-equivariant for the trivial adjoint
action of G on k ⊂ g× k. Similarly, a principal connection on P can be pulled back to P ×M Q to
a Q-invariant connection.

Thus a principal connection on P and a principal connection on Q can be pulled back to
P ×M Q and summed into a g⊕ k-valued 1-form which is G×K-equivariant and normalised on
g⊕k: this is exactly a G×K-principal connection on P×MQ. Conversely, given a G×K-principal
connection on P ×M Q, its respective g and k components are G-equivariant and K-invariant,
respectively K-equivariant and G-equivariant, and induce principal connections on P and Q.
This is summed up in the following theorem

Theorem 3.2.5. Let P →M be a G-principal bundle and Q→M a K-principal bundle. There
is a natural bijection between G×K-principal connections on P ×M Q and couples of principal
connections on P and Q.

If P is equipped with a solder form α, it can also be pulled back to P ×M Q into a horizontal
1-form which is equivariant under G and invariant under K. Considering the trivial action of K
on Rn, φ∗Pα is equivariant under G×K. Furthermore its kernel is made of the vectors of P ×M Q
mapped to vertical vectors on P : this is exactly the vertical vectors of P ×M Q→M . Thus we
conclude:

Theorem 3.2.6. If P →M with a solder form α defines a (G→ GLn)-structure and Q πQ−−→M
is an K-principal bundle, then φ∗Qα defines a solder form on P ×M Q→M for the representation
G

pG−−→ K → G→ GLn.
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More generally, given a representation V of G or K, it can be extended to a representation of
G×K by a trivial action of the other factor. An equivariant V -valued field on P or Q can then
be pulled back to P ×M Q to an equivariant V -valued field. Conversely, when K (resp. G) acts
trivially on V , every G×K-equivariant field on P ×M Q factors to a G-equivariant field on P
(resp. a K-equivariant field on Q).

3.3 Cartan geometry
In this section we discuss Cartan geometry which gives a general geometrical framework to
understand the specifics of connections on G-structures and allows for broad generalisation. In
this framework, a G-structure is interpreted as “contact configurations” with an affine model
space and a connection gives a notion of “rolling without sliding” of the affine model space along
paths. The general notion for suitable model spaces, not necessarily affine, is given by Klein
geometry.

3.3.1 Klein geometries
We start with the definition of Klein geometries. These are the geometries of differentiable
(connected) homogeneous spaces under specified symmetry groups.

Definition 3.3.1 (Klein Geometries).
A (smooth) homogeneous space is a smooth manifold equipped with a transitive (smooth Lie)

group action.
A (smooth) Klein space is a (smooth) homogeneous space which is connected.
Let (M1, G1) and (M2, G2) be two Klein spaces (the second component represents the group

action). A (geometric) isomorphism between (M1, G1) and (M2, G2) is a diffeomorphism M1
φ−→

M2 with a group isomorphism G1
∼−→ G2 such that φ is equivariant in the sense that the following

diagram commutes [Sha97]:

G1 G2

Diff(M1) Diff(M2)

∼

Adφ

A Klein geometry is defined as an isomorphism class of Klein spaces.

Let G be a Lie group and H a closed subgroup such that the coset space G/H is connected.
The Klein geometry associated to H ⊂ G is the space G/H, provided with the symmetry group
G ⊂ Aut(G/H).

An isomorphism of Klein geometries specified by two pairs (G1/H1, G1) and (G2/H2, G2) is
given by a group isomorphism G1

φ−→ G2 such that φ(H1) = H2:

H1 H2

G1 G2

φ

φ

In particular, adjoint actions of elements of G on H do not change the Klein geometry of G/H.
Conversely, all Klein geometries can be presented by such a coset space: choosing a basepoint

x0 in (M,G), the orbital map establishes an isomorphism G/Gx0
∼−→M , with Gx0 the isotropy (or
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stabiliser) subgroup. The isotropy group is defined up to (at least) conjugacy, which corresponds
to changing the base point. The Klein geometry associated to (G/H,G) is often written as
(H ↪→ G) or (G,H), we will use the latter notation (not to be confused with the notation (M,G)
which we will not use anymore).

In this way, we see an equivalence between coset spaces and pointed Klein geometries.
Here are a few examples of Klein geometries – the first one will be of particular interest to us.

Example 3.3.2.

• The Euclidean n-plane Rn with symmetry group SOnnRn and isotropy groups SOn.

• The oriented n-sphere Sn with symmetry group SOn+1 and isotropy groups SOn.

• The unoriented n-sphere Sn with symmetry group On+1 and isotropy groups On.

• The (orthogonal) Grassmannian of k planes of Rn with symmetry group On and isotropy
groups Ok ×On−k.

• The space of inner products on Rn with symmetry group GLn and isotropy groups On.

• The Riemann sphere CP 1 with symmetry group PSL2(C) and isotropy groups AffC(C).

• The conformal sphere which is the reunion of the isotropic lines in P(Rn+1,1) with sym-
metry group POn+1,1 and isotropy groups conjugated to the so-called Poincaré conformal
group [CS09].

We bring to attention the fact that the tangent spaces to a Klein geometry (G,H) are naturally
modelled by g/h, as a quotient of TeG. The coset space G/H being homogeneous all tangent
spaces can be identified with g/h. There is an H worth of ambiguity however, which we come
back to in Section 3.3.4 and Example 3.3.10. All linear structures on g/h (e.g. an inner product)
which are invariant under H can be extended to a tangent structure on G/H. This motivates the
following definition for “infinitesimal Klein spaces”:

Definition 3.3.3 (Klein pair). A Klein pair is a Lie algebra g provided with a given Lie
subalgebra h ⊂ g [Sha97].

Not all Klein pairs can be integrated into Klein spaces because h can integrate into a nonclosed
subgroup (they are called “virtual Lie subgroups” [CS09]).

Klein geometries serve as the reference models for Cartan geometries, introduced in the next
section.

3.3.2 Cartan geometries
In Cartan geometry one wants to “tie together” parts of identical Klein geometries, in a similar
fashion to how affine spaces are glued into differentiable manifolds. One main difference as we
will see is that the identification with the reference geometry only occurs infinitesimally at each
point, in many cases at first order, which allows Cartan geometries to have an intrinsic curvature.

Let M be a Hausdorff paracompact smooth manifold and (G,H) a reference Klein geometry.

Definition 3.3.4. A (G,H)-Cartan geometry on M is given by the data of:

• A (right) H-principal bundle P on M , which we will call the Cartan principal bundle,
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• A non-degenerate g-valued 1-form $ on P which is normalized on the vertical action of h:
for ξ̄ representing ξ ∈ h on P ,

$(ξ̄) = ξ

and equivariant under H, which we will call the Cartan connection form.

Note that the definition only depends on H and its action on g but not directly on the
choice of the group G. This leads to the concept of model mutation which we will touch upon in
Section 3.3.6.

Example 3.3.5 (Klein geometries as Cartan geometries). Let G be a Lie group and g its Lie
algebra, identified with the tangent space at identity TeG.

Write Lg for the left translation by any element g of G. The following map defines a parallelism:

$G :
{
TG→ TeG

∼−→ g

(g,X) 7→ (g, (dLg)|−1
e X)

The map can be seen as a g-valued 1-form on G: $G ∈ Ω1(G, g). It is called the Maurer-Cartan
form of G and satisfies the following Maurer-Cartan equation:

d$G + 1
2 [$G ∧$G] = 0 (3.8)

Vector fields with a constant image by $G are the left-invariant vector fields on G. They are
the vector fields by which g acts on G on the right.

The fibration G→ G/H can then be viewed as an H-principal bundle provided with a Cartan
1-form $G. 3

Correspondingly, it is possible to define a “left” Maurer-Cartan form $L
G on G using the

right action of G (the previous one can be called right Maurer-Cartan form and we will use the
notation $R

G to avoid confusion when needed). It satisfies a different Maurer-Cartan equation 4:

d$L
G −

1
2
[
$L
G ∧$L

G

]
= 0

The two Maurer-Cartan forms can be related in two ways. First, let X ∈ Tgg. Then

$L
G(X) = DR−1

g (X) = D
(
Autg ◦L−1

g

)
(X) = Adg$R

G(X) (3.9)

Next, let us write i : G→ G for the group inversion. Then ∀ξ ∈ g,∀g ∈ G,

Di(g · ξ) = −ξ · g−1

Therefore
i∗$L

G = −$R
G (3.10)

3Note that the construction of the H-principal bundle over the homogeneous space is dependent of the choice
of an origin point of the homogeneous space: the elements of G above a given point m are the elements sending
the origin point to m. The group acting on the bundle’s fibres is the isotropy group of the chosen origin point.

4It can be seen as the usual Maurer-Cartan equation for the opposite Lie bracket.
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3.3.3 Curvature
On a principal bundle, equivariant horizontal forms are naturally identified with differential forms
on the base manifold:

Ω•hor(P )H ' Ω•(M)

More generally, for any representation E of H, equivariant horizontal E-valued forms are identified
with differential forms on the basis manifold with value in the associated vector bundle:

Ω•hor(P ;E)H ' Ω•(M ;P [E])

Definition 3.3.6. Let M be a manifold provided with a (G,H)-Cartan geometry (P,$).
Its (total, or Cartan) curvature 2-form is the equivariant horizontal g-valued 2-form on P

defined by
Ω = d$ + 1

2 [$ ∧$] (3.11)

The projection of Ω to g/h is called the torsion of the Cartan geometry (or of the Cartan
connection). The Cartan geometry is said to be (locally) flat when the total curvature identically
vanishes [CS09].

Example 3.3.7. Riemannian geometry with affine metric connections is the Cartan geometry
associated to the standard action of the Euclidean group OnnRn on Rn (G = OnnRn, H = On).
The reduced curvature and torsion constructions match with the usual curvature and torsion
associated to the connection. In particular the Riemannian curvature corresponds to the reduced
curvature of a torsionless Cartan connection.

Example 3.3.8. The Maurer-Cartan equation (3.8) implies that the canonical Cartan geometries
on the (connected) coset spaces are flat. Beware that this is usually a different notion of flatness
than the commonly used one in (pseudo-)Riemannian geometry.

Conversely, when a (G,H)-Cartan geometry is flat, the Cartan 1-form satisfies the Maurer-
Cartan equation (in the Lie algebra g). We will prove in Section 7.2.1 that this defines on P a
structure of a free transitive g-manifold which is compatible over h with the existing action of H.

Example 3.3.9 (Affine manifolds). An affine structure on a n-manifold is equivalently a flat
(GLnnRn,GLn)-Cartan geometry structure on the manifold.

Next section introduces the notion of mutation which is helpful to relate Cartan geometry
modelled on different but close Klein geometries.

3.3.4 (H, g/h)-structure and reductive Cartan geometries
To a (G,H)-Cartan geometry on a manifold it is associated an (H, g/h)-structure, in a way we
describe now.

On the total space P of a fibre bundle P →M , we call horizontal forms (also called semi-basic
forms) the differential forms that have a vanishing contraction with any vertical vector fields.
Recall the notation for the algebra of horizontal differential forms:

Ω•hor(P ) := {α ∈ Ω•(P ) | ∀X ∈ ker(dp : TP → TM), Xyα = 0}

A Cartan principal bundle has an H-principal fibration P p−→M with an equivariant 1-form
$ which is non-degenerate with value in g. Furthermore, $ is normalised so that it provides an
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identification between the vertical tangent bundle and h. Its projection α to g/h hence provides
an equivariant identification

p∗TM ' TP/V P α:=$g/h

−−−−−−→ g/h× P

The 1-form α can as well be interpreted as an H-equivariant mapping to the bundle of
g/h-indexed (co-)frames of TM :

P → Iso(TM, g/h) ' Iso(g/h, TM)

hence P is identified with an (H, g/h)-structure onM . The frames can be identified with standard
Rn-frames by choosing a reference frame in g/h. The archetypical example is the following:

Example 3.3.10 (Canonical (H, g/h)-structure on G/H). As mentioned the Lie group G forms
an H-principal fibre bundle G p−→ G/H. The Maurer-Cartan 1-form induces an associated
(H, g/h)-structure, which we now describe by the bundle mapping from G to the bundle of
g/h-indexed frames Iso(g/h, T (G/H)).

Write by L the left action of G on itself:

Lg : x ∈ G 7→ g · x

The projection p is invariant under right action by H and equivariant under left action by G. Its
kernel can be written as G · TeH by which we mean the image of the following map:

G× TeH → TG

(g, ξ) 7→ dLg(ξ)

or in other words the left-invariant distribution generated by TeH ⊂ TeG. It is then possible to
use an element g of G to map g/h to T[g](G/H): the map

G× TeG→ T (G/H)
(g, u) 7→ dp ◦ dLg(u)

vanishes on G × TeH hence factorises to G × (TeG/TeH) ' G × g/h. The partial applications
(with fixed g ∈ G) on g/h are linear isomorphisms g/h ∼−→ T[g](G/H). It thus gives a bundle map
G→ Iso(g/h, T (G/H)).

The bundle map commutes with the action of H according to the following computation:

dp (dLgh(u)) = dp (dRh ◦ dLgh(u)) = dp (DLg(Adh(u)))

With extra structure on the Klein geometry it is possible to produce from $ an H-principal
connection on the (H, g/h)-structure:

Definition 3.3.11. A Klein geometry (G,H) is reductive when h has a supplementary (adjoint)
subrepresentation of H in g:

g 'H h⊕m

We will consider this supplementary subrepresentation, isomorphic to g/h, fixed as part of the
reductive Klein geometry structure.

A Klein pair (g, h) is reductive when h has a supplementary subrepresentation of h in g:

g 'h h⊕m
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A reductive structure on a Klein geometry (G,H) can equivalently be represented as an
H-equivariant projection g→H h: the supplementary subspace m corresponds to the kernel.

Example 3.3.12 (Reductive structure on affine Klein geometries). Let V be a finite dimensional
real vector space and H a Lie group acting on V . The associated affine Klein geometry on V can
be presented as (H n V, V ). It has the natural following reductive structure:

hn V 'H h⊕ V

In particular, this applies to Euclidean Geometry.
As a principal H-bundle above V , H n V is trivialisable but one has to be careful. The

projection to V identified as a the coset space H n V/H differs from the manifold-level factor
projection on V :

H n V → (H n V )/H ' {0} × V ' V
(h, v) 7→ h · v

so that the corresponding trivialisation of the principal bundle H × V is

H n V → H × V
(h, v)→ (h, h · v)

which intertwines the right action of H on H n V with the right action of H on the H factor of
H × V .

When the reference geometry is reductive, the Cartan curvature decomposes into a “reduced”
curvature Ωh and a torsion Θ components:

Ω = Ωh︸︷︷︸
h

⊕ Θ︸︷︷︸
g/h

(3.12)

Theorem 3.3.13 ([CS09]). Let (G,H) be a Klein geometry. Then there is a bijection between
left G-equivariant H-principal connections on

G→ G/H

and reductive structures
g 'H h⊕m

on (G,H). This bijection is affine when the reductive structure is represented by the projection

g
ph−→ h

Furthermore, the curvature 2-form of the corresponding connection is the left-invariant tensor
on G corresponding to the following map at identity:

g⊗ g
pm⊗pm−−−−−→ m⊗m

−[ · , · ]−−−−→ g
ph−→ h

In particular, the connection is flat if and only m is an ideal of g.

If (G,H) is a reductive Klein geometry, all (G,H)-Cartan geometries inherit a (H Ad−−→
End(g/h))-structure with principal connection: the Cartan one-form $ on P decomposes (H-
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equivariantly) into
$ = ω︸︷︷︸

h

⊕ αm︸︷︷︸
m

' ω︸︷︷︸
h

⊕ α︸︷︷︸
g/h

with ω defining an H-principal connection 1-form on P and α a non-degenerate equivariant
horizontal form with value in g/h. The 1-form α can be interpreted as a soldering form: it factors
on M to an isomorphism TM

∼−→ P ×H (g/h).
One geometrically simple case is when the adjoint action of H on g/h is faithful:

Definition 3.3.14. A Klein geometry (G,H) is said to be of first order if the adjoint action of
H on g/h is faithful. It is of higher order otherwise [Sha97].

When a Klein geometry (G,H) is of first order and effective (that is to say the action of G
on G/H is effective), (H, g/h)-structures are given by subbundles of the frame bundles. If it is
of higher order, (H, g/h)-structures are given in a similar way by subbundles of higher frame
bundles [Slo96].

3.3.5 Associated bundles and tractor connections
Associated G-principal bundle

Let M be a smooth manifold equipped with a (G,H)-Cartan geometry defined by a principal
bundle P →M and a connection form $.

Considering the left action of H on G, it is possible to construct the associated G-principal
bundle

Q := P [G] = P ×H G

called extended principal bundle [CS09].
As explained earlier, since the left action of H commutes with the right action on G, we obtain

a right G-space which forms indeed a G-principal bundle over M . Furthemore, there is a natural
G-principal connection on P [G] which we now construct [CS09]. Define the following 1-form on
P ×G:

Ad−1
g $ +$G ∈ Ω1(P ×G, g) (3.13)

with $G the right Maurer-Cartan form on G. In order for it to factor into a G-principal connection
1-form on P ×H G, it needs to satisfy the following properties:

1. It is of maximal rank.

2. It vanishes on vectors (p · ξ,−ξ · g) ∈ T (P ×G) for ξ ∈ h.

3. It is invariant under the “diagonal” right action of H given as follows : ∆h(p, g) =
(p · h, h−1 · g).

4. It is equivariant under the right action of G on the factor G.

The first condition is naturally satisfied since the 1-form coincides with $G on P × TG which is
already of maximal rank. For the second condition, we will need the following equation relating
the left and right Maurer-Cartan forms on G (Equation (3.9)):

$L
G|g = Adg ◦$G|g

The condition then follows from the following computation:

Ad−1
g ϕ+$G(p · ξ̄,−ξ · g) = Ad−1

g (ξ) + Ad−1
g ($L

G(−ξ · g)) = Ad−1
g (ξ − ξ) = 0
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The third condition results from the following:

∆∗h(Ad−1
g $ +$G) = Ad−1

h−1g ∆∗h$ + ∆∗h$G

= Ad−1
g Adh Adh−1 $ +$G

= Ad−1
g $ +$G

As for the fourth condition, it is straightforward from Expression (3.13).
Note furthermore that, differently from the situation of principal connections, the G-principal

connection 1-form on Q restricts to a non-degenerate 1-form on P , or equivalently HQ|P ⊕ TP =
TG|P . We can thus formulate the following theorem:

Theorem 3.3.15. Cartan geometries on M modelled over (G,H) can be equivalently represented
as G-principal bundles Q→M equipped with a G-principal connection and a reduction of structure
group to H such that the horizontal distribution is transverse to the H-principal subbundle (this
is called the Cartan condition).

In particular, this implies that the curvature of the Cartan connection 1-form satisfies a
Bianchi identity over Q, therefore over P as well:

dΩ + 1
3 [$ ∧ Ω] = 0 ∈ Ω3

hor(Q, g)G ' Ω3(P, g)H

For the same reason, there is a Ricci identity similar to Equation 3.4.

Jet space interpretation

In this section we assume for simplicity that (G,H) models a Klein geometry of order 1. In
particular the natural bundle G→ G/H is isomorphic to a frame bundle. In this section, it will
be convenient to use left coset spaces as well – everything done with homogeneous spaces and
principal bundles is true as well for left group actions. Consequently, we will consider G→ H\G,
equipped with the opposite left Maurer-Cartan form −$L

G, image of the right Maurer-Cartan
form under inversion (Equation 3.10).5

Let M be a smooth manifold equipped with a (G,H)-Cartan geometry (P → M,$). As
mentioned in Section 3.3.4, the Cartan geometry defines an (H, g/h)-structure on M : a class of
identifications of g/h with TM at each point, or in other words a class of invertible 1-jets of maps
g/h → M from the origin of g/h to each point of M . Naturally, it is the same for G → H\G.
Therefore, the extended principal bundle

Q = P ×H G

can be understood as follows: it is the space of invertible 1-jets of maps from M to H\G
which preserve the (H, g/h)-structure, namely which send g/h-valued frames belonging to P to
g/h-valued frames belonging to G (as a (H, g/h)-structure over H\G). Indeed this gives us an
embedding

P ×H G ↪→ J 1
diff(M,G)

5It is possible to avoid resorting to left coset spaces by rewriting the construction of P ×H G accordingly, but
we think the construction is clearer this way, with a different presentation of the Klein geometry.
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and P ×H G naturally projects to both M and H\G:

P ×H G

M H\G
πM

πH\G

with a fibre above M ×G which is diffeomorphic to H.

From this perspective, the reduction of structure group to H corresponds to restricting to the
fibre above {e} ∈ H\G.

The Cartan connection is given by an Ehresmann connection over Q→ M and is required
to satisfy both the Cartan condition and equivariance. Equivariance states that the horizontal
distribution is equivariant over H\G: it respects completely the symmetry of H\G. The Cartan
connection means that the horizontal distribution is transverse to the fibre above {e} ∈ H\G, and
under equivariance, this is equivalent to the horizontal distribution being transverse to all fibres
above H\G. Furthermore the horizontal distribution has the same dimension as M and H\G.
As a consequence: the tangent projection TQ

πH\G−−−→ T (H\G) establishes linear isomorphisms

HQ
∼−→π∗H\GT (H\G)

Of course, since it is an Ehresmann connection over M , the same goes for the projection to M :

HQ
∼−→π∗MTM

In particular, this gives an isomorphism

HQ

π∗MTM π∗H\GT (H\G)

∼∼

∼

which is constructed from the Cartan connection. The natural question is how this relates to the
embedding P ×H G ↪→ J 1

diff(M,G) which is not dependent on the Cartan connection.

To approach the question, we need to look at the contact forms. Let (p, g) ∈ P ×G. As stated
earlier, p defines a g/h-valued coframe

TπM (p)M
∼−→g/h

and g as well:
T[g]H\G

∼−→g/h

In fact, we know explicit expressions: the g/h-valued coframes correspond exactly to the g/h-valued
soldering forms:

π∗MTM ' TP/V P
α=$ mod h−−−−−−−→ g/h

π∗H\GT (H\G) ' TG/V G
−ωLg/h=$LG mod h
−−−−−−−−−−−−→ g/h

Therefore at the point (p, g) ∈ P ×G, using an arbitary coframe ea at T[g](H\G), the pullback
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to P ×G of the contact forms on P ×H G take the form

ea − ea ◦ (−ωLg/h)−1 ◦ α : T(p,g)P ×G→ Rn

or using ωLg/h as a more natural g/h-valued coframe on T[g](H\G) we obtain the g/h-valued
contact form

ωLg/h + α : T(p,g)P ×G→ g/h

This is, up to a Autg automorphism of g/h, the g/h component of the pullback to P ×G of the
principal connection 1-form on Q (3.13). Therefore, the contact 1-forms on Q are generated by
the g/h component of the principal connection 1-form. In particular, the horizontal distribution is
included in the Cartan distribution (the distribution of vectors annihilated by all contact 1-forms).

To summarise, we showed that the isomorphism

HQ

π∗MTM π∗H\GT (H\G)

∼∼

∼

matches with the one defined by the embedding into the jet space P ×H G ↪→ J 1
diff(M,G),

independently of the Cartan connection.
Since the curvature of the Cartan connection is identified with the curvature of the horizontal

distribution on Q, the Cartan connection is flat if and only if the horizontal distribution is
locally integrable. In this case, since a leaf of HQ locally projects diffeomorphically both on
M and on H\G, it defines a local diffeomorphism between M and H\G which preserves the
g/h-structure. Furthermore, since the contact 1-forms vanish on a leaf, the whole contact ideal
necessarily vanishes as well. This implies that the leaf is the 1st order prolongation of a n-
dimensional submanifold of M ×H\G which is locally the graph of a diffeomorphism preserving
the g/h-structure.

In this way, integral manifolds of the horizontal distribution give (possibly partial) maps
between M and H\G which preserve the g/h-structure. Another common example is that of
distinguished curves inM [CS09]. They are specific class of curves defined onM in correspondence
with a specific class of curves on the Klein model H\G. A simple example for a reductive Klein
geometry g ' h ⊕ m is that of m-canonical curves: these are curves on H\G which are the
projections of integral curves on G of left-invariant vectors ξ̄R for ξ ∈ m. The corresponding
notion of canonical curves on M is that of curves which correspond to m-canonical curves under
the following procedure: lift the curve to a horizontal curve in Q and project it to H\G.

From this perspective, M and H\G essentially have a symmetrical role, however (G,H) being
the model geometry we see this construction as a construction over M . Nonetheless, this point of
view allows studying the problem of equivalence of Cartan geometry in generality and not only
the equivalence with the “flat” geometry that the Klein model is. Of course, if H\G is replaced
with a less symmetrical space, the construction draws away from the convenient framework of
principal bundles.

Tractor connections

As mentioned earlier, the G-principal bundle Q has a natural G-principal connection. This implies
that for any G-manifold X, there is an associated connection on the associated fibre bundle Q[X].
When X is a linear representation of G ,these associated bundles are called tractor bundles and
the associated linear connections are called tractor connections. Since the tractor connections are
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associated to a principal connection on Q, they satisfy the Ricci identity
Notice that Q[X] can be constructed from P as follows:

Q[X] = Q×G X ' P ×H G×G X ' P ×H X

In particular, even if for a generic H-manifold Y the associated bundle P [Y ] is not naturally
equipped with a connection, when Y is the restriction to H of a G-manifold then P [Y ] has a
natural connection. However, when (G,H) has a reductive structure, P obtains an H-principal
connection, hence every associated bundle P [Y ] has a natural connection. In this situation, the
bundle associated to a G-manifold X can be equipped with a connection as a bundle associated
to P or as a bundle associated to Q. These connections are different in general.

Example 3.3.16 (Vector bundle associated to an affine Cartan geometry [Bry]). Let M be an
n-manifold equipped with a (GLnnRn,GLn)-Cartan geometry, which is exactly the structure of
a principal connection on the bundle of linear frames. The group GLnnRn is isomorphic to the
affine group of Rn. It has a linear representation of dimension Rn+1 as follows:

GLnnRn → GLn+1

(g, v) 7→
[

1 0
g · v g

]
There is a corresponding tractor bundle Q[Rn+1]. Since under GLn, Rn+1 decomposes as

R︸︷︷︸
triv.

⊕GLnRn, there is an isomorphism of vector bundle

Q[Rn+1] ' P [R⊕ Rn] ' R× TM

The tractor bundle has a natural connection induced from the connection on GLnnRn. The action
of the curvature on Q[Rn+1] can be expressed in terms of the “linear” curvature endomorphism
R ∈ Ω2(M,End(TM)) and the torsion T ∈ Ω2(M,TM) as follows:[

0 0
T R

]
∈ Ω2(M,End(R× TM))

Example 3.3.17 (Tractor bundles for affine Cartan geometries). Let (H n V, V ) be an affine
Klein geometry with V a linear representation of H. Then there is a retract of H n V to the
subgroup H:

H H n V H ' (H n V )/V

id
∼

As a consequence, every representation of H can be seen as a representation of H n V with a
trivial action of V . In particular, for a representationW of H, there are both a tractor bundle and
a bundle associated to the H-principal bundle. It turns out that in this case, both connections
match. In fact, every affine Klein geometry is equipped with a reductive structure:

hn V 'h h⊕ V

and the H-principal bundle PH can be constructed from the (H n V )-principal bundle Q as
follows:

PH ' Q[H n V/V ] ' Q/V



3.3. CARTAN GEOMETRY 51

There is one specific associated bundle which is useful in the study of Cartan geometries: the
so-called Cartan space S [CS09]:

S = Q[G/H]

Its fibres can be identified with the homogeneous space G/H up to the left action of an element
of H. The reduction of structure group P ↪→ Q defines a canonical global section e ∈ Γ(M,S).

Let c : I →M be a smooth curve starting from a point m. We will construct its development,
which is a Cartan-geometrical “horizontal” equivalent to holonomy and parallel transport. Since
Cartan connections, in contrary to principal connections, do take into account horizontal directions
it is possible to obtain transport which is sensitive to horizontal directions in the principal bundle.

There is a time-parametrised parallel transport associated to c:

t ∈ I 7→ PTc|[0,t] ∈ HomG(Qm, Qc(t))

It acts on S to give parallel transports

t ∈ I 7→ PTSc|[0,t] ∈ HomG(Sm,Sc(t))

The development of c is defined as the following curve in Sm6:I → Sm
t 7→

(
PTSc|[0,t]

)−1
(e(c(t)))

(3.14)

In other words, it is the “trace” of the section of S in Sm under parallel transport along c. Since
Sm is identified with G/H up to an element of H, the development of c can be identified with a
curve in G/H which starts from the origin, up to the global left action of a (constant) element of
H.

Example 3.3.18 (Development in affine Cartan geometries). Let (H n V,H) be an affine
Klein geometry (V is a finite dimensional real vector space on which H acts linearly) and M
a differentiable manifold with an (H n V,H)-Cartan geometry. The Klein model H n V/H is
an affine space isomorphic to V . In particular, the Cartan space is naturally isomorphic to the
tangent space of M :

S = Q[V ] ' P [V ] ' TM

and the canonical section is identified with the zero section.
As a consequence, developments of curves on M take values in TM . They can be represented

in Rn with ambiguity up to the linear action of an element of H.

The adjoint tractor bundle

One very useful natural tractor bundle is the so-called adjoint tractor bundle. On P , the
Cartan connection 1-form $ defines an H-equivariant g-valued coframe. Namely, it defines an
H-equivariant isomorphism

$ : TP ∼−→ HP × g

(recall that →H denotes an H-equivariant map). In particular, H-equivariant vector fields on P
correspond to H-equivariant g-valued fields.

6[Sha97] defines a development with value in G/H but the treatment is inexact due to an ambiguity over the
starting point of the developments.
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The adjoint tractor bundle is the tractor bundle associated to the adjoint action AdG : G→
GL(g):

P [g] = P ×H g ' Q×G g

It is a bundle of Lie algebras over M .
We just explained that sections of P [g] correspond to H-equivariant vector fields on P . This

can be equivalently formulated as the following isomorphism:

P [g] = P ×H g
∼−−−→
$−1

TP/H

Similarly, $ induces an equivariant isomorphism between vertical vector fields on P and
h-valued fields:

$|V P : V P ∼−→H P × h

Accordingly, the associated bundle to AdH : H → GL(h) admits a representation as a quotient
bundle:

P [h] = P ×H h
∼−−−→
$−1

V P/H

Like the adjoint tractor bundle, P [h] is a bundle of Lie algebras.
Since there is a natural short sequence of representations of H:

h ↪→ g� g/h

there is a corresponding short sequence of associated bundles:

P [h] P [AdG] P [g/h]

V P/H TP/H TM

∼ ∼ ∼

Let V be a vector space with an action of G. There is in particular a Lie algebra action
of g → gl(V ) which defines a G-invariant element of HomLie(g, gl(V )). Accordingly, there is
a section of HomLie(P [g], P [gl(V )]) ' HomLie(P [g],End(P [V ])). In other words, the adjoint
tractor bundle is a bundle of Lie algebras which has a natural action on every tractor bundle.
This construction actually still holds when V is replaced by a non-linear representation of G (a
G-manifold).

The curvature 2-form Ω of the Cartan connection can be constructed as an element of
Ω2(P, g)H . Therefore, it can be naturally interpreted as a P [g]-valued 2-form. In particular, this
implies that it has an action on all tractor bundles.

The fundamental derivative

Let M be a smooth manifold equipped with a (G,H)-Cartan geometry (P →M,$). Let V be a
representation of H. In general the Cartan connection does not induce a covariant derivative
on P [V ]: a vector on M does not have enough data to act on a section in a uniquely defined
manner. Instead, there is what is called the fundamental derivative which uses vectors in the
adjoint tractor bundle [CS09].

Let S ∈ Γ(P, V )H correspond to a section σ ∈ Γ(M,P [V ]). Then dS is an H-equivariant
V -valued 1-form on P . We define the fundamental derivative of S

dS ∈ Ω1(P, V )H ∼−→
$−1

Γ(P,HomR(g, V ))H
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It corresponds to an associated section

Dσ ∈ Γ((TP/H)∗ ⊗ P [V ])) ' Γ(Hom(P [g], P [V ]))

This definition can be directly generalised to sections of
⊗k

TP/H∗ ⊗ P [V ] by replacing V with⊗k
g∗ ⊗ V
Let us write D2 : Γ(P [V ])→ Γ(Λ2P [g]∗⊗V ) the square of the fundamental derivative, which is

reminiscent of the covariant second derivative from Definition 4.2.12. The fundamental derivative
satisfies Ricci and Bianchi identities as follows: let A1, A2, 13 be sections of the adjoint tractor
bundle which respectively project to vector fields X1, X1, X3 and σ a section of an tractor bundle
P [V ].

D2
A1,A2

σ −D2
A2,A1

σ = DΩ(X1,X2)σ +D[A1,A2]P [g]

+ [A1,Ω(X2, X3)]− Ω([X1, X2], A3) + Ω (dπ (Ω(X1, X2)) , X3) +DA1Ω(X2, X3)
+ [A2,Ω(X3, X1)]− Ω([X2, X3], A1) + Ω (dπ (Ω(X2, X3)) , X1) +DA2Ω(X3, X1)

+ [A3,Ω(X1, X2)]− Ω([X3, X1], A2) + Ω (dπ (Ω(X3, X1)) , X2) +DA3Ω(X1, X2)

For tractor bundles P [V ] ' Q[V ], the fundamental derivative can be related to the tractor
connection and the action of the adjoint tractor bundle on vector adjoint bundles [CS09].

3.3.6 Relating different Cartan geometries

There is an obvious notion of morphism between Cartan geometries of the same type: a morphism
of principal bundles which preserves the connection 1-form. The underlying map between basis
manifolds is necessarily a local diffeomorphism.

There are however more ways to related Cartan geometries. In this section we describe two
ways one can create new Cartan geometries from an existing one. General references are [CS09;
Žád19].

Model mutations

The definition of a (H ↪→ G)-Cartan geometry on a manifold M does not actually involve
the group structure of G but only the Lie group structure of H and the structure of g as a
representation of H. It is thus possible to establish a correspondence between Cartan geometries
modelled over (G1, H) and (G2, H) if g1 'H g2 as representations of H [Sha97]. Formally, given
an (H ↪→ G1)-Cartan geometry (P,$) on a manifold M and an H-equivariant vector space
isomorphism µ : g1

∼−→Hg2, the g2-valued form µ∗$ on P defines an (H ↪→ G2)-Cartan connection
on P hence an (H ↪→ G2)-Cartan geometry on M .

Definition 3.3.19 (Model mutations). Let (G1, H1) and (G2, H2) be two Klein geometries. A
mutation from (G1, H1) to (G2, H2) is the data of a Lie group isomorphism

H1
∼−→
f
H2

and an f -equivariant linear isomorphism g1 → g2 extending the induced isomorphism between
the subalgebras h1

∼−→
df

h2:
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h1 h1

g1 g2

∼
df

∼
µ

such that
∀(u, v) ∈ g1, µ([u, v]) = [µ(u), µ(v)] mod h2 (3.15)

Mutations are invertible and two Klein geometries which are related by a mutation are called
mutants of each other.

Example 3.3.20 (Geometric isomorphisms). The geometric isomorphisms (Definition 3.3.1)
form a class of auto-mutations which are “trivial” in the sense that the Lie algebra structure of g,
and even the Lie group structure of G does not change. This confirms that the notion of model
mutation indeed depends on the underlying Klein geometry and not on the specific representative
coset space chosen.

If Cartan geometries modelled on mutant Klein geometries are defined by equivalent geometrical
data, namely a principal bundle with a Cartan connection, the choice of model Klein geometry
matters in the geometric interpretation of the data. In particular, the Cartan curvature does
actually depend on the Lie algebra structure of g:

Ω = d$ + 1
2 [$ ∧$] ∈ Ω2(P, g)

so that flatness depends on the chosen Klein model. Condition 3.15 however implies that the
torsion component does not change under mutation.

Example 3.3.21 (Mutant models of Riemannian geometry, [Sha97]). The three following Rie-
mannian Klein geometries of dimension n are mutant of each other:

• Euclidean geometry: (OnnRn,On)

• Spherical geometry: (On+1,On)

• Hyperbolic geometry: (SOn,1,On)

According to Example 3.3.8, the sphere and the hyperbolic space have flat canonical Cartan
geometries, although they are obviously curved from the point of view of Riemannian geometry.
Mutation allows us to compare curvature between mutant models: although the sphere has a
flat spherical geometry, mutation to a Euclidean geometry gives the sphere a curved Euclidean
(Cartan) geometry.

Homotheties (dilations of the Rn component by a fixed factor in Rn∗) form automutations of
Euclidean geometry, hence correspond to automutations of all these three geometries. In the case
of Euclidean geometry they can be integrated into Klein space automorphisms. In dimension
n > 4 these are the only automutations.

Some reductive structures on Klein geometries can be understood under the perspective of
model mutations. A reductive structure on a Klein geometry (G,H) can be identified with a
section

g
∼−→H h⊕ g/h

of the projection g→ g/h. The supplementary h-subrepresentation m to h is the inverse image of
g/h. They form mutations when Condition 3.15 is satisfied. Note that auto-mutations of hn g/h
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which preserve the reductive decomposition are necessarily Lie algebra automorphisms [Sha97]
(Lemma 5.6.4).

We explained in Section 3.3.4 how an (H ↪→ G)-Cartan geometry on a manifold M determines
an (H, g/h)-structure. When the Klein geometry has a reductive structure, the (H, g/h)-structure
inherits a principal connection. Conversely, given a group H and a representation V , an (H,V )-
structure on the manifold equipped with a principal connection defines an (H,H n V )-Cartan
geometry. On the H-principal bundle P → M associated to the (H,V )-structure, the solder
form α defines an equivariant horizontal V -valued 1-form while the connection 1-form defines an
h-normalized equivariant h-valued 1 form, so that they combine into an hn V -valued 1-form:

$ = ω ⊕ α ∈ Ω1(P, hn V )H

which is non-degenerate and defines a Cartan connection on P .
Note that the Cartan geometries thus obtained are necessarily modelled over “affine” reductive

Klein geometries of the type (H n V,H) with V a representation of H. In other words, V has to
be a torsionless abelian normal subgroup of H n V . Starting from a reductive Klein geometry:
g =H h⊕m a Cartan geometry induces an (H, g/h)-structure with connection, from which one
can construct back an (H n g/h, H)-Cartan geometry in which g/h is to be understood as a
vector space representation of h. One can say that the (H, g/h)-structure loses the data of the
component m×m

[·;·]−−→ g of the bracket. In this way, the (H,V )-structures with connection on M
are identified with (H n V,H)-Cartan geometries on M .

This is summed up in the following diagram for a given reference Klein geometry (G,H):

{(G,H)-Cartan geometries} {(H, g/h)-structures with connection}

{(H n g/h, H)-Cartan geometries}

α=$g/h

ω=$h

maps
g
∼−→Hh⊕g/h

in which the morphisms commute when the same reductive structure is chosen for the map
g
∼−→ h⊕ g/h and to define the component $h.
When (G,H) admits a reductive structure h⊕m with [m,m] ⊂ h, the Klein geometry is said

to be of symmetric type [Lot04]. In this case such a reductive structure seen as a morphism

g
∼−→ h⊕ g/h

actually forms a mutation. Gathering all Cartan geometries in a given mutation class H n V on
a manifold M with the same dimension as V , we obtain the following diagram

{(G,H)-Cartan geometries on M} {(H,V )-structures on M with connection}

{(H n V,H)-Cartan geometries on M}

g/h
∼−→HV

mutations
g
∼−→Hh⊕V

in which horizontal and vertical arrows are not unique but labelled by the reductive structures on
the Klein geometries (G,H) such that [m,m] ⊂ h.

Model mutations fit into the more general framework of Cartan extension in which one
considers certain maps between infinitesimal Klein geometries.
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Correspondence spaces

Let M be a differentiable manifold with P →M a H-principal bundle equipped with an (G,H)-
Cartan connection $. On P the form $ defines a g-valued coframe. The data of H is involved in
two related geometric properties:
• H acts freely on P and P/H 'M is a differentiable manifold.

• $ is equivariant with respect to the action of H.
In particular these properties hold for every (closed) Lie subgroup K of H as well.

Definition 3.3.22 (Correspondence space). Let (G,H) be a Klein geometry. Let M be a
differentiable manifold equipped with a (G,H)-Cartan geometry (P →M,$). Let K be a closed
Lie subgroup of H.

Then the correspondence space associated to (G,K) is the differentiable manifold P/K
equipped with the (G,K)-Cartan geometry specified by (P → P/K,$).

The structure of correspondence spaces can be represented in the following commutative
diagram:

K H

P

P/K

M ' P/H

K−orbits
H−orbits

K−principal

H−principal

Since the Cartan connection 1-forms over M and P/K are the same, the curvature 2-forms
are the same as well.

A section of P/K → M is equivalent to a reduction of structure group of P to K: it is
equivalent to specifying above each point of M a K-orbit of P :

K-orbits P P/K

M ' P/H
K−principal

H−principal

Let us call PK such a K-principal bundle over M which is a reduction of P . The question of
whether it defines a Cartan geometry over M is hard to answer without further structure. There
is however a case in which the question becomes simple: the case of affine Klein geometry, or
H-structures.
Theorem 3.3.23 ([RS17]). Let (g ' H n V,H) be an affine Klein geometry with V a finite
dimensional real representation of H. Let M be a differentiable manifold with a (G,H)-Cartan
geometry (P,$). Let K be a closed subgroup of H and PK

i
↪→ P a reduction of structure group of

G to K.
Assume that $(TPK) = (k n V ) × PK . Then the pullback i∗$ of $ to PK defines a K-

equivariant g-valued 1-form which splits as follows, according to

g 'K kn V ⊕K h/k
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1. A (K n V,K)-Cartan connection $K on PK

2. A h/k-valued basic 1-form on PK .

Example 3.3.24. LetM be a differentiable n-manifold with its canonical GLn-structure, endowed
with linear connection which has an associated affine connection. Assume M is furthermore
equipped with a positive metric g, which defines a reduction of structure to On of the frame
bundle.

The (GLnnRn,GLn)-Cartan connection is compatible with the reduction to OnnRn if and
only if the linear connection is compatible with the reduction to On, which can be proved [RS17] to
be equivalent to the metric g being parallel. Therefore, there is an induced (OnnRn,On)-Cartan
connection if and only if the connection is metric, as can be expected.

Another property of interest regarding reduction of structure groups is variation of the
reduction of the structure group. Let us assume the Klein pair (g, k) is equipped with a reductive
structure. Then P → P/k has an induced K-principal connection. Let σ : [0, 1] ×M → P/K
be a smoothly parametrised section of P/K →M . Consider the following pullback K-principal
bundle:

σ∗P P

[0, 1]×M P/Kσ

The pullback bundle σ∗P can be equipped with the pullback K-principal connection. Then the
vector field ∂

∂t lifts to an horizontal vector field on σ∗P . As a consequence we obtain identifications
between σ∗t1P and σ∗t2P for any two instants of [0, 1].
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Chapter 4

Spinors and Clifford algebras
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In this Section we will present the main features of spinors. Spinors are defined as objects
on which a Clifford algebra acts, which allows defining a Dirac operator which is a first-order
differential operator which squares to the D’Alembertian (or a Laplacian of any signature),
according to the Weitzenböck-Lichnerowicz-Schrödinger formula.

We first define the Clifford algebras and introduce their main structures. All the algebras we
consider are unital but are not supposed to be commutative. General references for this chapter
are [Mei13; Var04; LS19].

4.1 Algebra
4.1.1 Clifford algebras
In this section, K is either the field of real numbers or the field of complex numbers, and V is a
K-vector space of finite dimension n equipped with a non-degenerate symmetric bilinear form
η = 〈·|·〉 and an associated quadratic form q.

Definition 4.1.1 (Clifford algebra). The Clifford algebra of (V, q) is the unital K-algebra spanned
by elements v of V subject to the anti-commutation relation

uv + vu = 2 〈u|v〉 1

59
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We write it Cl(V, q), sometimes omitting the mention of q.
It has dimension 2n and can be constructed as the quotient of the tensor algebra of V by the

ideal generated by the following elements: for (v1, v2) ∈ V 2

v1 ⊗ v2 + v2 ⊗ v1 − 2 〈u|v〉 1

As such it satisfies the following universal property: for any linear map from V to a K-algebra
A such that

∀(u, v) ∈ V × V, f(u)f(v) + f(v)f(u) = 2 〈u|v〉 1

there exists a unique algebra morphism Cl(V, q)→ A such that the following diagram commutes:

V

A

Cl(V, q)

f

Remark. Some authors use the following anti-commutation relation instead:

uv + vu = −2 〈u|v〉 1

We discuss these considerations of convention in Section 4.3.

Example 4.1.2 (Clifford algebras of one-dimensional spaces). The Clifford algebra of R with a
negative inner product is isomorphic to C, since a normed vector i of R satisfies

i2 = −1

in Cl(R).
The Clifford algebra of R with a positive inner product has an element e such that

e2 = 1

As a consequence, there is a decomposition of the identity into central idempotents:

1 = 1 + e

2 + 1− e
2

and
Cl(R, (−)) ' 1 + e

2 Cl(R, (−))⊕ 1− e
2 Cl(R, (−)) ' R⊕ R

Since the Clifford algebra of V is generated by elements of V , it has further structure:

Theorem 4.1.3. The canonical filtration of the tensor algebra of V

K ⊂ K⊕ V ⊂ K⊕ V ⊕ V ⊗ V ⊂
⊕

06k63
T kV ⊂ · · ·

induces an N-filtration on the Clifford algebra.
The N-grading of the tensor algebra of V induces a Z2-grading on the Clifford algebra, giving

it the structure of a superalgebra.
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Alternatively, the grading can be defined by requiring that the generators v ∈ V → Cl(V ) are
of odd degree and the filtration by requiring that the subspace of filtration degree 1 is R⊕ V .

We will be using the notations Cl+(V ) and Cl−(V ) respectively for the even part and the
odd part of the Clifford algebra.

Theorem 4.1.4. Let us write Cl(k)(V ) for the subspace of elements of filtration degree k or less.
The (Z-)graded algebra associated to the filtration of Cl(V ) is defined as follows. Construct the
following graded vector space:

gr(Cl(V )) = ⊕k∈N Cl(k)(V )/Cl(k−1)(V )

Then the product of Cl(V ) induces a graded product on gr(Cl(V )).
There is an isomorphism of graded algebra from the associated graded algebra to the exterior

algebra of V :
gr(Cl(V )) ∼−→Λ•V

In particular, given any basis (ei) of V , the family of elements
∏
i∈I

increasing order

ei

∣∣∣∣∣ I ⊂ J1, nK


defines a vector basis of Cl(V ).

In particular, V embeds linearly into Cl(V ) and can be identified with Cl(1)(V ) ∩ Cl−(V ).
We define the following notations: write Rp,q for Rp+q equipped with the inner product for

which the canonical basis is orthogonal, the first p vectors have squared norm 1 and the last q
vectors have squared norm −1. Their Clifford algebras are written as follows:

Clp,q := Cl(Rp,q)

Every real Clifford algebra is isomorphic to such one, according to the following theorem:

Theorem 4.1.5 (Functoriality). Let W be a finite dimensional K-vector space equipped with a
nondegenerate symmetric bilinear form.

Let f : V → W be a (possibly non-surjective) isometry. Then there exists a unique (graded
and filtered) algebra morphism Cl(V )→ Cl(W ) such that the following diagram commutes:

V W

Cl(V ) Cl(W )

f

Cl(f)

In particular, the sign change automorphism v ∈ V 7→ −v induces an algebra automorphism
of Cl(V ), which acts as −1 on Cl−(V ) and as identity on Cl+(V ). We will call it the grading
isomorphism and write it α:

α :


Cl(V )→ Cl(V )
Cl+(V ) id−→ Cl+(V )
Cl−(V ) − id−−→ Cl−(V )
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On Cn, any two nondegenerate symmetric bilinear form are isomorphic, since multiplying
vectors by i multiply their squared norm by −1. As a consequence, Clifford algebras of complex
spaces of the same dimension are isomorphic. We write Cln for the Clifford algebra of Cn equipped
with the (complexified) canonical real inner product.

Theorem 4.1.6 (Monoidal structure). Let W be a finite dimensional K-vector space equipped
with a nondegenerate symmetric bilinear form.

There is a unique graded and filtered algebra isomorphism between Cl(V ⊕W ) with the sum
bilinear form, and the graded tensor product algebra1 Cl(V )⊗̂Cl(W ) such that the following
diagram commutes:

V ⊕W

Cl(V ⊕W ) Cl(V )⊗̂Cl(W )

(v,w)7→v⊗1+1⊗w

∼

Example 4.1.7 (Clifford algebras of real 2-dimensional spaces).

• Cl2,0
Let (e1, e2) be an orthonormal basis of (R2,++). We are going to build a more convenient
albeit non-homogeneous presentation of the Clifford algebra. Define

E+ = 1 + e1

2
E− = 1− e1

2

We know that they satisfy the following relations:

E+ + E− = 1
E2

+ = E+

E2
− = E−

E+E− = E−E+ = 0

Since
e2e1 = −e1e2

the products of E+ and E− with e2 behave as follows:

e2E+ = E−e2

e2E− = E+e2

As a consequence, e2 decomposes as follows:

e2 = (E+ + E−)e2(E+ + E−) = E+e2E− + E−e2E+ = e2E− + e2E+

with
(e2E−)2 = (e2E+)2 = 0

1We write ⊗̂ for the tensor product of graded algebras, while we use ⊗ for the ungraded tensor products.
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We have obtained a vector basis (E+, E−, e2E−, e2E+) of Cl2,0 which exactly satisfies the
relations of M2(R) according to the linear morphism defined as follows:

E+ 7→
(

1 0
0 0

)
E− 7→

(
0 0
0 1

)
E+e2 7→

(
0 1
0 0

)
E−e2 7→

(
0 0
1 0

)
• Cl0,2
It is generated by i and j such that

i2 = j2 = −1
ij = −ij

Furthermore, defining k = ij, we have

k2 = ijij = −i2j2 = −1

and k anticommutes with both i and j. One recognises the quaternion algebra H.

• Cl1,1
It is generated by i and c such that

i2 = −1
c2 = 1
ci = −ic

Left multiplication by i defines a structure of complex vector space on Cl1,1, for which c
defines a real (conjugation) structure. As a consequence, we obtain an injective morphism
Cl1,1 → EndR(C) ' M2(R) which is necessarily an algebra isomorphism for dimension
reasons.

Theorem 4.1.8 (Complexification). Assume that V is a real vector space. Then there is a
natural graded and filtered algebra isomorphism between the complexification of the Clifford algebra
of V and the Clifford algebra of the complexified vector space associated with V , equipped with the
bilinear form extended by C-bilinearity:

C⊗R Cl(V ) ∼−→Cl(C⊗R V )

Principal antiautomorphism and opposite algebras

Definition 4.1.9 (Principal antiautomorphism). There is a uniquely defined (graded, filtered)
algebra antiautomorphism x 7→ Tx defined on Cl(V ) such that for every family of vectors
(v1, · · · , vk) the following holds in Cl(V ):

T (v1 · · · vk) = vk · · · v1
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It is called the principal antiautomorphism, or canonical antiautomorphism, or transposition
(which we already use with a different meaning).

The ungraded opposite algebra of Cl(V ) which we write Cl(V )opp is defined as the same vector
space with the following bilinear product:

a�b = b · a

The principal antiautomorphism of Cl(V ): a 7→ Ta defines a graded and filtered isomorphism

Clopp(V ) ∼−→Cl(V )

Since it is a graded algebra anti-automorphism, the principal antiautomorphism commutes
with the gradation automorphism α and with inversion on invertible elements.

Using the graded structure it is possible to relate Cl(V ) and Cl(−V ):

Theorem 4.1.10 (Opposite Clifford superalgebra, [Del99]). The opposite superalgebra to Cl(V )
is defined as the same vector space with a bilinear product which behaves as follows between
homogeneous elements a and b:

a�̂b = (−1)|b||a|b · a

The identity of V induces a graded and filtered algebra isomorphism between Cl(−V ) and the
opposite superalgebra to Cl(V )

Cl(−V ) ' Cl(V )sopp

In particular, since Cl+(V ) is an even subalgebra of Cl(V ), there is the following chain of
isomorphisms:

Cl+(−V ) ' Cl+(V )sopp ' Cl+(V )opp ' Cl+(V )

If (ei) is a pseudo-orthonormal basis of V , this isomorphism takes the following form [Ber+01]:

Cl+(−V ) ∼−→Cl+(V )

ei1 . . . ei2k 7→ (−1)
2k(2k−1)

2 ei2k . . . ei1 = (−1)kei2k . . . ei1

Clifford algebra of the dual vector space

The inner product on V defines a linear isomorphism

v ∈ V ∼−→
η

tv ∈ V ∗

The inner product itself is transported to V ∗ to the inverse inner product

η−1 ∈ HomK(V ∗, V ) ' V ⊗ V

as described in Section 1.3. Therefore the inner product defines an isometry

(V, η) ∼−→
(
V ∗, η−1)

which induces an isomorphism of Clifford algebras

Cl(V, η) ∼−→Cl
(
V ∗, η−1)
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Let (ei) be a pseudo-orthonormal basis of V and (e∗i) the dual basis. We have the relation

e∗i = ηij
(
tej
)

Therefore the isomorphism between the two Clifford algebras takes the following form:

Cl(V ) ej ei = ηijej

Cl(V ∗) tej e∗i = ηijt(ej)

Cl(η) Cl(η−1)

: ,

: ,

(4.1)

The notation (ei) for elements of V and not of the dual V ∗ breaks our convention but we shall
understand them as representations in Cl(V, η) of covectors of the dual basis. In particular, we
have the following relation:

eiej + eje
i = 2δij

which, assuming (ei) is pseudo-orthonormal, relates the dual basis with the inverses of the basis
vectors:

ei = ‖ei‖(ei)−1

There is no summation implied since this formula breaks the covariance of indices.
There is a natural framework for working with both vectors and covectors in a common

Clifford algebra: one can consider the Clifford algebra of V ⊕ V ∗ equipped with the natural split
product [Mei13]

〈(x1, α1)|(x2, α2)〉 = 1
2 (α1(x2) + α2(x1))

Then the relation
eiej + eje

i = δij

is naturally satisfied – we now expound on the differing factor of 2. In order to account for the
product η however, one wants to identify vectors x with the associated linear form tx. The most
natural way to do this is to use isometric embeddings of V and V ∗ into V ⊕ V ∗:

V → V ⊕ V ∗

v 7→ (v, tv)

V ∗ → V ⊕ V ∗

α 7→ (η−1(α), α)

Then the images in Cl(V ⊕ V ∗) of ej ∈ V and ei ∈ V ∗ satisfy the expected anti-commutation
relations with the correct factor.

4.1.2 Classification of the Clifford algebras

Clifford algebras as filtered superalgebras are readily classified thanks to Theorem 4.1.6 which
allows decomposing any Clifford algebra into a graded tensor product of copies of Cl1,0 and Cl0,1.
It is however of interest to identify their structure as ungraded algebras. Theorem 4.1.6 does not
allow concluding for the ungraded structure.
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For dealing with the ungraded structure, the so-called “chirality element” will be very
convenient.

Definition 4.1.11 (Chirality element). Equip V with an orientation. Along with the inner
product, the orientation specifies a nonzero volume element vol ∈ ΛnV such that for every direct
(pseudo-)orthonormal basis (ei),

e1 ∧ · · · ∧ en = vol

Then there is a unique element ω ∈ Cl(V ) such that in Cl(V ) for every direct (pseu-
do-)orthonormal basis (ei),

e1 · · · · · en = ω

It is called the chirality element of Cl(V ) and satisfies, with (p, q) the signature of V ,

ω2 = (−1)
n(n−1)

2 (−1)q ∈ R ⊂ Cl(V )

Furthermore

• If V is even-dimensional, ω belongs to the supercenter of Cl(V ).

• If V is odd-dimensional, ω belongs to the ungraded center of Cl(V ).

Remark. Depending on conventions, signature and choice of field of scalars, the chirality element
is sometimes multiplied by i in order to obtain an element which squares to 1. This amounts to
using a non-real volume element in the complex(ified) vector space. We choose not to do this in
order to have a treatment which does not rely on the complex structure and stays valid in all
signatures and dimensions. This furthermore allows representing the Hodge operator on Λ•V by
the action of the chirality operator (via the isomorphism gr(Cl(V )) ' Λ•V ).

In dimension 4 the chirality element is often written γ5 and since it anti-commutes with all
vectors it can be used to define a morphism from the Clifford algebra of a 5-dimensional space
(see Corollary 4.1.19).

Corollary 4.1.12. Assume V is odd-dimensional: ω belongs to the ungraded center of Cl(V ).

1. If V is a complex vector space, there is an integer s such that isω squares to 1. As a
consequence Cl(V ) decomposes as a direct sum of algebras

Cl(V ) ' 1 + isω

2 Cl(V )⊕ 1− isω
2 Cl(V )

2. If n−1
2 + q is even, ω squares to 1 and Cl(V ) decomposes as a direct sum of algebras

Cl(V ) ' 1 + ω

2 Cl(V )⊕ 1− ω
2 Cl(V )

3. If n−1
2 + q is odd, ω squares to −1 and defines a complex structure on Cl(V ) (which

commutes with the existing scalar action of K).

This chirality element is very helpful to build morphisms with ungraded tensor products of
Clifford algebras. It allows expressing Clifford algebras of direct sums as an ungraded tensor
product, at the cost of omitting part of the grading or filtration structure. Reducing down to
low dimensional Clifford algebras will give a classification, but having a direct expression for
the isomorphism can prove to be useful in itself. It is also the underlying principle behind most
isomorphism theorems between Clifford algebras of close signatures.
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Theorem 4.1.13. Let V1, V2 be finite dimensional vector spaces of respective dimensions n1
and n2. Assume they are respectively equipped with a non-degenerate inner product of respective
signatures (p1, q1) and (p2, q2). Assume furthermore that V1 is oriented and thus equipped with a
positive normed volume element. Write ω1 for the corresponding chirality element in Cl(V ).

• If V1 is of even dimension, there is a graded algebra isomorphism

Cl(V1 ⊕ ω2
1V2) ∼−→ Cl(V1)⊗ Cl(V2)

a ∈ V1 7→ a⊗ 1
b ∈ V2 7→ ω1 ⊗ b

with ω2
1V2 being V2 equipped with the inner product multiplied by the scalar ω2

1. The signature
can be changed on the right-side of the isomorphism:

Cl(V1 ⊕ V2) ∼−→ Cl(V1)⊗ Cl(ω2
1V2)

The morphism preserves the grading but not the natural filtration of Clifford algebras.

• If V1 is of odd dimension, there is an algebra isomorphism

Cl(V1 ⊕−ω2
1V2) ∼−→ Cl(V1)⊗̂Cl(V2)

a ∈ V1 7→ a⊗ 1
b ∈ V2 7→ ω1 ⊗ b

Here as well the signature can be changed on the right-side of the isomorphism:

Cl(V1 ⊕ V2) ∼−→ Cl(V1)⊗̂Cl(−ω2
1V2)

The morphism does not preserve the Clifford algebra grading but intertwines the grading of
Cl(V1 ⊕−ω2

1V2) with that induced by the Cl(V1) factor:

Cl+(V1 ⊕−ω2
1V2) Cl+(V1)⊗̂Cl(V2)

⊕ ⊕

Cl−(V1 ⊕−ω2
1V2) Cl−(V1)⊗̂Cl(V2)

Proof. All the identities are proved in a similar way so we only prove the first one. Assume V1 is
of even dimension n1. Consider the application

V1 ⊕ V2 → Cl(V1)⊗ Cl(V2)
a ∈ V1 7→ a⊗ 1
b ∈ V2 7→ ω1 ⊗ b

The images of elements of V1 and V2 satisfy the following anticommutation relations ({ · , · } is
the ungraded anticommutator):

{a1 ⊗ 1, a2 ⊗ 1} = {a1, a2}1⊗ 1 = 2 〈a1|a2〉 1⊗ 1
{ω1 ⊗ b1, ω1 ⊗ b2} = ω2

1 ⊗ {b1, b2} = ω2
12 〈b1|b2〉 1⊗ 1

{a⊗ 1, ω1 ⊗ b} = {a, ω1} ⊗ b = 0
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Therefore, according to the universal property of the Clifford algebras, the linear maps extends
to an algebra homomorphism

Cl(V1 ⊕ ω2
1V2)→ Cl(V1)⊗ Cl(V2)

Since the image of ω1b is ω2
1b ∈ Cl(V2), the image contains both Cl(V1) and Cl(V2) so the algebra

morphism is surjective. Since both algebras have dimension 2dimV1+dimV2 , the homomorphism is
an algebra isomorphism. Furthermore, the image of V1 ⊕ V2 in Cl(V1)⊕ Cl(V2) is odd and since
V1 ⊕ V2 generates Cl(V1 ⊕ ω2

1V2), the morphism preserves the grading.

As a consequence, we obtain the usual factorisation properties of Clifford algebras:

Corollary 4.1.14. Let (p, q) be a signature. On R2,0, ω2 = −1 thus there is an ungraded algebra
isomorphism

Clp+2,q ' Cl2,0⊗Clq,p ' M2(Clq,p)

On R1,1, ω2 = 1 thus there is an ungraded algebra isomorphism

Clp+1,q+1 ' Cl1,1⊗Clp,q ' M2(Clp,q)

On R0,2, ω2 = −1 thus there is an ungraded algebra isomorphism

Clp,q+2 ' Cl0,2⊗Clp,q ' H⊗ Clp,q

These rules allow identifying the ungraded (and unfiltered) algebra isomorphism classes of all
real Clifford algebras.

Another corollary concerns the even part of the Clifford algebra of an odd-dimensional vector
space: it is a subalgebra and is isomorphic to a Clifford algebra.

Corollary 4.1.15 (Even parts of odd Clifford algebras are isomorphic to Clifford algebras). Let
V be a vector space of odd dimension equipped with a non-degenerate inner product. Assume V
has an element e such that 〈e|e〉 = 1. Then

V ' Ke⊕ e⊥

and there is an ungraded algebra isomorphism

Cl+(V ) ' Cl+(Ke)⊗̂Cl(e⊥) ' Cl(e⊥,−〈·|·〉)

Assume now that V instead has an element f such that 〈f |f〉 = −1. Then

V ' Kf ⊕ f⊥

and there is an ungraded algebra isomorphism

Cl+(V ) ' Cl+(Kf)⊗̂Cl(f⊥) ' Cl(f⊥)

When ω is an (ungraded-)central idempotent (of odd degree) and decomposes Cl(V ) into a
product of two subalgebras, each of these subalgebras can be identified with Cl+(V ). Indeed, the
ungraded morphisms

Cl+(V )→ 1± ω
2 Cl(V )

x 7→ 1± ω
2 x
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are injective, since their respective kernel ideals are Cl+(V ) ∩ 1±ω
2 Cl(V ) which both are the zero

ideal. This allows us to deduce the following corollary:

Corollary 4.1.16. Assume that V is odd-dimensional and that its chirality element ω squares
to 1.

Then there is an ungraded algebra isomorphism:

Cl+(V )⊕ Cl+(V ) 1+ω
2 Cl(V )⊕ 1−ω

2 Cl(V ) Cl(V )

(x1, x2) 1+ω
2 x1 ⊕ 1−ω

2 x2
1+ω

2 x1 + 1−ω
2 x2

∼ ∼

We explained that acting with the chirality element on the Clifford algebra represents Hodge
duality on the Clifford algebra. However in even dimension there is another way to act with the
chirality element on vectors so as to define an algebra isomorphism:

Theorem 4.1.17 ([LS19], Prop 1.6). Assume that V is of even dimension and oriented so that
Cl(V ) has a super-central chirality element ω. Consider the following map:

fω : v ∈ V 7→ ωv ∈ Cl(V )

• If ω2 = −1 then fω extends to a graded unfiltered algebra automorphism

β : Cl(V ) ∼−→Cl(V )
a+ ∈ Cl+(V ) 7→ a+ ∈ Cl+(V )
a− ∈ Cl−(V ) 7→ ωa− ∈ Cl−(V )

The automorphism β squares to the grading automorphism α = idCl+(V )− idCl−(V ).

• If ω2 = 1 then fω extends to a graded unfiltered algebra isomorphism

β : Cl(−V ) ∼−→Cl(V )

with −V representing V equipped with the opposite bilinear product.

The automorphism β squares to the identity.

Example 4.1.18. In Lorentzian signature (1, 3), ω2 = −1 and β defines a graded automorphism
of the Clifford algebra.

These automorphisms allow us to relate several isomorphisms we presented so far:

Corollary 4.1.19. Let V be an oriented even-dimensional vector space and ω ∈ Cl(V ) the
corresponding chirality element. We define ε = ω2 ∈ {±1}. Consider the vector space

V ⊕⊥ εR

with εR denoting R equipped with an inner product of signature (ε). Let e ∈ εR be a pseudonormed
vector. Then ωe is an (ungraded)-central idempotent of Cl(V ⊕⊥ εR) and

Cl(V ⊕ εR)/ (e−±ω) = Cl(V ⊕ εR)/ (ωe−±ε) ' ωe+±ε
2 Cl(V ⊕ εR)
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so that there is a commutative square of ungraded algebra isomorphisms:

Cl+(V ⊕ εR) Cl(−εV )

Cl(V ⊕ εR)/ (e−±ω) Cl(V )

∼

∼

β

∼

v 7→v
e 7→±ω

∼

with the top morphism being induced from the ungraded isomorphism

Cl(V ⊕ εR) ' Cl(−εV )⊗̂Cl(εR)

Remark. The morphism Cl(V ⊕ εR)→ Cl(V ⊕ εR)/ (e−±ω)→ Cl(V ) justifies the notation γ5
often used in physics literature for the chirality element of the Clifford algebra in Lorentzian
signature. Indeed if the elements corresponding to a basis are named e1, e2, e3, e4 then the chirality
element can be used as the image of a fifth vector from a pseudo orthonormal basis of Cl1,4.

There is another isomorphism theorem which is important in many applications of Clifford
algebras:

Theorem 4.1.20 (Bott periodicity of real Clifford algebras). The following two real Clifford
algebras have a super-central chirality element which squares to 1:

Cl1,1 ' M2(R)
Cl8 ' M16(R)

As a consequence, for integers p > q, there are ungraded isomorphisms

Clp,q ' M2q (R)⊗ Clp−q
Clq,p ' M2q (R)⊗ Cl0,p−q

and for integers p, q, r, s there is an ungraded isomorphism

Clp+8r,q+8s ' M16r+s(R)⊗ Clp,q

A similar albeit simpler theorem holds for complex Clifford algebras:

Theorem 4.1.21 (Bott periodicity of complex Clifford algebras). The Clifford algebra Cl2 is
isomorphic to M2(C) and has a super-central chirality element which after multiplication by i
squares to 1. As a consequence, for integers p, s, there is an ungraded isomorphism:

Clp+2s ' M2s(C)⊗C Clp

In particular, for n = 2k the (ungraded) complex Clifford algebra of C2k takes the form

Cl2k ' M2k(C)

and for n = 2k + 1 the (ungraded) complex Clifford algebra of C2k+1 takes the form

Cl2k+1 ' M2k(C)⊕M2k(C)

We close the section by presenting a variation of Theorem 4.1.13 with two chiral elements:
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Theorem 4.1.22. Let V1, V2 be finite dimensional spaces of respective dimensions n1 and n2.
Assume they are respectively equipped with a non-degenerate inner product of respective signatures
(p1, q1) and (p2, q2). Assume furthermore that they are oriented and thus equipped with positive
normed volume elements ωi ∈ Cl(Vi).

If V1 ⊕ V2 is of odd dimension, there is an algebra isomorphism

Cl(ω2
2V1 ⊕ ω2

1V2) ∼−→ Cl(V1)⊗ Cl(V2)
a ∈ V1 7→ a⊗ ω2

b ∈ V2 7→ ω1 ⊗ b

with ω2
1V2 being V2 equipped with the inner product multiplied by the scalar ω2

1. It is possible to
change the signature on the right-side of the isomorphism:

Cl(V1 ⊕ V2) ∼−→ Cl(ω2V1)⊗ Cl(ω2
1V2)

The morphism does not preserve the Clifford algebra grading but it intertwines the grading of
Cl(ω2

2V1 ⊕ ω2
1V2) with the grading induced on the tensor product by the Clifford algebra of the

odd-dimensional vector space.
If V1 and V2 are both of even dimension, there is a graded algebra isomorphism

Cl(−ω2
2V1 ⊕−ω2

1V2) ∼−→ Cl(V1)⊗̂Cl(V2)
a ∈ V1 7→ a⊗ ω2

b ∈ V2 7→ ω1 ⊗ b

Here as well the signature can be changed on the right-side of the isomorphism:

Cl(V1 ⊕ V2) ∼−→ Cl(−ω2
2V1)⊗̂Cl(−ω2

1V2)

The morphism preserves the grading but does not preserve the natural filtration.

4.1.3 Spin groups

Specific subgroups of the Clifford algebra will be of particular relevance for working with spinors.
Let V be a K-vector space of finite dimension n equipped with a nondegenerate symmetric bilinear
form.

Definition 4.1.23 (Norm of an element). The norm of an element x of Cl(V ) is defined as
follows:

N(x) = Txx

In particular, for every family of vectors (v1, · · · , vk) it takes the following real value:

N(v1 · · · vk) = 〈v1|v1〉 〈v2|v2〉 · · · 〈vk|vk〉

Definition 4.1.24 (Twisted adjoint action of invertible elements). Let a be a homogeneous
invertible element of Cl(V ). Its twisted adjoint action on an element x of Cl(V ) is defined as
follows:

Ãda(x) = α(a)xa−1

It defines a group action of the homogeneous invertible elements of Cl(V ) on Cl(V ).
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Remark. Contrary to the standard conjugation action, twisted conjugation action does not always
act by algebra automorphisms:

α(a)xya−1 = α(a)xα(a−1)α(a)ya−1 = α(aα(x)a−1) Ãda(y)

Non-isotropic vectors of V act by reflection along their orthogonal hyperplane.

Definition 4.1.25 (Clifford group). The Clifford group of a Clifford algebra is the group of
homogeneous elements such that the twisted adjoint action preserves the subspace V :

Γ(V ) = {a ∈ Cl×(V ) ∩ (Cl+(V ) ∪ Cl−(V )) | Ãda(V ) ⊆ V }

It even subgroup will be denoted Γ+(V ).

Given an element a of Γ(V ) and a vector v of V , the following relation holds

α(a)va−1 = T
(
α(a)va−1) = T (a−1)vT (α(a)) = α(Tα(a)−1)v

(
Tα(a)−1)−1 = ÃdTα(a)−1(v)

therefore ÃdTα(a)−1 = Ãda. Furthermore, Γ(V ) is stable under α, since all its elements are
homogeneous. As a consequence, Γ(V ) is stable under transposition and

∀a ∈ Γ(V ), ÃdT a = Ãdα(a)−1

Theorem 4.1.26. The twisted adjoint action of the Clifford group on V defines a group morphism:

Γ(V )→ O(V )

Its kernel is the group of invertible scalars K× ⊂ Cl(V ).

Remark. When V has even dimension and has a chirality element ω which squares to −1, the
twisted adjoint action can be related to the standard adjoint action using the automorphism β

defined in Theorem 4.1.17. Indeed, for a ∈ Cl+(V ) and invertible, β(a) = a and Ãdβ(a) = Ãda =
Ada. For a ∈ Cl−(V ) invertible and v ∈ V , the following holds:

ωavα (ωa)−1 = ωavα(a)−1α(ω)−1 = ωavα(a)−1 (−ω) = ω(−1)2ωavα(a)−1 = −avα(a)−1

This proves that for a in Γ(V ), ωa ∈ Γ(V ) and that Ãdβ(a)(v) = Ada(v). Namely, the following
diagram commutes:

Γ(V )

O(V )

Γ(V )

β

Ãd

Ad

The degree of freedom K× is often unneeded and one wishes to work with smaller groups.

Definition 4.1.27 (Pin and Spin groups). The Pin group associated with V is the subgroup of
Γ(V ) on which N is worth ±1:

Pin(V ) = N−1{±1} ∩ Γ(V )
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The induced representation
Pin(V )→ O(V )

has {±1} as kernel.
Similarly, we define the spin group associated with V [Var04] as

Spin(V ) = N−1{±1} ∩ Γ+(V )

It is the inverse image of SO(V ) under the representation of Γ(V ) on V
Last, we define the orthochronous spin group associated with V as

Spin+(V ) = Ad−1(SO+(V )) ∩ Pin(V )

It differs from the spin group in the case V has mixed signature (neither positive nor negative).

Remark. Some authors call Spin+(V ) the spin group. It is the simply-connected Lie group
integrating the Lie algebra spin(V ) and as such there is a correspondence (Cartan-Lie theorem)
between Spin+(V ) and spin(V ) (as well as between their representations).
Remark. Elements of Spin(V ) are even so that their twisted adjoint action coincide with their
standard adjoint action.

Theorem 4.1.28.

• Every element of Γ(V ) can be written as the product in Cl(V ) of non-isotropic vectors of V .

• Every element of Pin(V ) can be written as the product in Cl(V ) of vectors of V of norm
±1.

• Every element of Spin(V ) can be written as the product in Cl(V ) of an even number of
vectors of V of norm ±1.

• Every element of Spin+(V ) can be written as the product in Cl(V ) of an even number of
vectors of V of norm 1 and an even number of vectors of V of norm −1.

Theorem 4.1.29. The groups Pin(V ), Spin(V ) and Spin+(V ) are natural twofold coverings of
subgroups of O(V ):

Z2 ↪→Pin(V )� O(V )
Z2 ↪→Spin(V )� SO(V )
Z2 ↪→Spin+(V )� SO+(V )

with SO+(V ) standing for the proper orthochronous orthogonal group of V .

We will use the following notations:

Spin+
p,q := Spin+(Rp,q)

Spinn := Spinn,0

and similarly for the Pin and Spinp,q groups.

Theorem 4.1.30. The fundamental group of Spin+
p,q = Spin+(Rp,q) can be computed as follows:

π1
(
Spin+

p,q

)
' π1

(
Spinp×Spinq

)
' π1

(
Spinp

)
× π1

(
Spinq

)
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with

π1(Spin1) ' 1
π1(Spin2) ' Z
π1(Spinn) ' 1 for n > 3

Spin Lie algebra and sigma matrices

The Spin group defines a Lie subgroup of the group of invertible elements of Cl(V ). Therefore
its Lie algebra, constructed as the tangent space at 0, can be represented inside Cl(V ), which is
naturally isomorphic to its own tangent space at 0. Since the composition law of Spin(V ) comes
from the product of Cl(V ), the Lie algebra bracket will be represented as the commutator of the
associative algebra, similarly to the case of matrix groups.

First, the Lie algebra is constructed from Spin+(V ) thus we can restrict our consideration to
the even Clifford algebra Cl+(V ).

Theorem 4.1.31 ([Var04]). Assume dim(V ) > 3. Define the following subspace of Cl+(V ):

Cl2(V ) = span ({ab− ba}a,b∈V )

It is a Lie subalgebra of Cl+(V ) for the ungraded commutator

[a, b] = ab− ba

Furthermore the Lie group (non-exact) sequence

Spin+(V ) ↪→ Γ+(V )� SO(V )

which differentiates to
spin(V ) ↪→ Lie(Γ+(V ))� so(V )

restricts to isomorphisms:
spin(V ) ∼−→Cl2(V ) ∼−→ so(V )

In particular, the morphism Cl2(V )→ so(V ) can be constructed by restriction to V ⊂ Cl(V )
of the infinitesimal adjoint representation

ad |Cl2(V ) : Cl2(V )→ EndK(Cl(V ))

Let e1, e2 be two vectors of norm ±1. We are looking for the image in so(V ) of [e1, e2]. First,

[e1, e2] = 2e1e2

so we only need to compute [e1e2, · ]. Next, for v⊥ ∈ Vect(e1, e2)⊥, we compute

e1e2v
⊥ = v⊥e1e2

thus
[e1e2, v

⊥] = 0
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hence [e1e2, · ] vanishes on Vect(e1, e2)⊥. We only need to compute

[e1e2, e1] = e1e2e1 − e1e1e2 = −2N(e1)e2

[e1e2, e2] = e1e2e2 − e2e1e2 = 2N(e2)e1

Notice the factor 2 which is related to the Z2-extension Spin+(V )→ SO+(V ).
Therefore we conclude that the correspondence is

Cl2(V )↔ so(V )
1
4 [e1, e2]↔ e1 ⊗ te2 − e2 ⊗ te1

(4.2)

with tei : v ∈ V 7→ 〈ei|v〉. Using the so(V )-module isomorphism so(V ) ' Λ2V given by the inner
product, we can also write

Cl2(V )↔ Λ2V

1
4 [e1, e2]↔ e1 ∧ e2 = e1 ⊗ e2 − e2 ⊗ e1

Accordingly, when using indices i for so(V ) and a, b for V , we will be using both notations
1/2σi and 1/2σab for a basis of spin(V ) embedded in Cl(V ). The notation is meant to be
reminiscent of the Pauli matrices (which represent a 3-dimensional Clifford algebra), using the
1/2 factor but not the i factor common in the physics literature (used to turn the sigma elements
into hermitian operators). Explicitly, writing in components ρabi the morphism so(V ) ∼−→Λ2V the
two notations are related by

1
2ρ

ab
i σab = σi (4.3)

4.1.4 Clifford modules
Spinors are elements of a Clifford module, namely a representation of a Clifford algebra. In order
to work with them, we need to understand their structure.

Theorem 4.1.32. Let V be an n-dimensional vector space equipped with a nondegenerate sym-
metric bilinear form.

If n is even, then the Clifford algebra Cl(V ) is a simple algebra.
If n is odd, then

• If there exists a chirality element (ungraded central, since n is odd) which squares to 1
(namely, when q−p = 3 mod 4), Cl(V ) is the direct sum of two isomorphic simple algebras.

• Otherwise Cl(V ) is a simple algebra.

Remark. The Wedderburn-Artin Theorem ([Pro07] Section 6.1.9) states in our particular case
that finite-dimensional simple real algebras are matrix rings over a real division algebra.

We have already identified the ungraded structure of the complex Clifford algebras. There is
a finer structure in the real case:

Theorem 4.1.33 ([Del99]). Let (p, q) be a signature. Depending on p− q mod 8, the real Clifford
algebra Clp,q is a matrix algebra or the sum of two matrix algebras over the following real division
algebras:

q − p mod 8 0, 6 1, 5 2, 4 3 7
Division algebra R C H H R
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Notice the symmetry: couples of signatures q1 − p1 mod 8 and q2 − p2 mod 8 which sum to
6 = −2 mod 8 have the same division algebra since

Clp+2,q ' M2(R)⊗ Clq,p

Definition 4.1.34. Let Cl(V ) be a Clifford algebra over the field K.
A Clifford module over Cl(V ) is a (finite-dimensional) K-linear representation of Cl(V ).
A spinorial module over Cl(V ) is a (finite-dimensional) K-linear representation of Cl+(V ).

Equivalently, it is a (finite-dimensional) K-linear representation of Spin+(V ) such that −1 ∈
Spin+(V ) acts as the scalar −1 ∈ K ([LM89], Section I.5).

Remark. This definition differs from [Var04] which defines Clifford modules as Cl+(V )-modules.
Remark. Since Γ(V ), Pin(V ), Spin(V ) and Spin+(V ) are groups, their representations have
natural tensor products. However algebras such as Cl(V ) and Cl+(V ) need a coproduct Cl(V )→
Cl(V )⊗ Cl(V ) in order to define a general tensor product between modules. It is reasonable to
furthermore require that the two tensor products coincide. However this is impossible since the
linearity of a coproduct

−1 ∈ Γ(V ) ⊂ Cl+(V ) 7→ −1 ∈ Cl+(V )⊗ Cl+(V )

is incompatible with the diagonal embedding

−1 ∈ Γ(V )→ (−1,−1) ∈ Γ(V )× Γ(V )

used to construct tensor products of group representations.

Example 4.1.35. Consider the underlying vector space to the even Clifford algebra Cl+(V ).
It has a structure of spinorial module, corresponding to the left action of Spin+(V ) ⊂ Cl+(V ).
On another hand, there is a natural action of O(V ) on Cl+(V ) (according to Theorem 4.1.5).

It induces an action of Spin+(V ) on Cl+(V ) but this action does not give a structure of spinorial
module, for example −1 ∈ ker(Spin+(V )→ O(V )) acts trivially.

We now have all that is needed to talk about the structure of spin modules.

Theorem 4.1.36 ([Var04]). Equip V with a volume element and call the corresponding chirality
element ω ∈ Cl(V ). We call (p, q) the signature of V . The algebras Cl(V ) and Cl+(V ) have one
or two classes of irreducible modules depending on the residue of q − p modulo 4. We call them
respectively ΣV or Σ±V and SV or S±V :

q − p mod 4 0 1 2 3
Cl(V )-modules ΣV ΣV ΣV Σ+

V ,Σ
−
V

Cl+(V )-modules S+
V , S

−
V SV SV SV

In the complex case, the structure is more straightforward:

Theorem 4.1.37 ([Del99]). For any integer n there is an ungraded isomorphism

Cl+n+1 ' Cln

For even n, Cln is a simple algebra and has a unique irreducible module ΣC
n. It decomposes

under Cl+n as the sum of two irreducible “semi-spin” modules:

ΣC
n 'Cl+n -mod S

C+
n ⊕ SC−

n
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with SC±
n being eigenspaces of any idempotent chirality element. Defining a Z2-grading on ΣC

n

such that the homogeneous components are SC+
n and SC−

n (there are two possibilities), ΣC
n forms

a graded module over Cln.

We will need hermitian structures on the complex Clifford modules, which for us will be
of arbitrary signature (not always definite positive). We can obtain them using the following
theorem:

Theorem 4.1.38 ([Rob88]). Assume V is real of even dimension n = 2k and signature (p, q).
Consider the complex Clifford algebra Cl(V ) := Cl(C ⊗ V ): it is a complex matrix algebra
isomorphic to EndC(ΣV ).

Every hermitian form (of arbitrary signature) on ΣV defines an adjoint operation on Cl(V )
which is an involutive anti-linear anti-automorphism. Conversely, every such involutive anti-linear
anti-automorphism of algebra of Cl(V ) is the adjoint operation associated to an hermitian form
on ΣV defined up to a (nonzero) real factor.

Theorem 4.1.39. Assume V is real. Let S be a Cl+(V )-module equipped with a hermitian
form h. The form h is invariant under the action of Spin(V ) if and only if the adjoint of the
endomorphism representing a ∈ Cl+(V ) is the endomorphism representing Ta.

Theorem 4.1.40 ([Rob88]). Assume V is real, of even dimension and signature (p, q). Consider
the complex Clifford algebra Cl(V ) := Cl(C⊗R V ). Consider the antilinear anti-automorphism
defined on vectors as follows:

v ∈ C⊗ V 7→ −v̄

It takes on a generic element a on Cl(V ) the form a 7→ tα(a).
The irreducible complex Clifford module ΣC

V decomposes under Cl+(V ) as a sum of two
“semi-spin” modules:

ΣC
V 'Cl+

V
SC+
V ⊕ SC−

V

Any hermitian form h on ΣC
V associated to the antiautomorphism defined above is invariant

under Spin(V ) and behaves as follows:

• If p and q are odd then SC+
V and SC−

V are both isotropic for h and are as consequence in
(hermitian) duality.

• If p and q are even then SC+
V and SC−

V are orthogonal for h.

– If 〈 · | · 〉 is positive definite then h is definite on SC+
V and on SC+

V with opposite
signatures.

– If 〈 · | · 〉 is negative definite then h is definite on ΣC
V .

– If 〈 · | · 〉 is indefinite then the restrictions of h on both SC+
V and SC−

V have split
signature.

Definition 4.1.41 (Spinorial product). Let V be a real vector space. Let Σ be a Clifford module
over Cl(V ). We will call a spinorial product on Σ a hermitian product such that vectors of V act
on Σ by anti-selfadjoint endomorphisms:

∀(s1, s2) ∈ Σ× Σ, ∀v ∈ V, 〈s1|v · s2〉 = −〈v · s1|s2〉

Remark. Our spinorial product are not to be confused with what is called “spinorial metric”
in [Bou+15], which is equivalent to the data of a metric over the manifold M along with a
so-called Spin structure, which we introduce in the next section.
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The compatibility requirement of the spinorial product with the action of the Clifford algebra
can be reformulated as follows: the spinorial product, interpreted as a C-linear morphism

Σ→ Σ∗

is required to be intertwining with the previously defined antilinear anti-automorphism of the
complex Clifford algebra: the following diagram commutes:

Cl(V )⊗C Σ Cl(V )⊗C Σ∗

Σ Σ∗

(a,s)7→(Tα(a),〈s|)

〈 · |

Alternatively, the spinorial product is also naturally interpreted as a linear map

Σ⊗C Σ∗ 〈 · | · 〉−−−−−→ C

As stated earlier, there is no natural tensor product action of the Clifford algebra but there is
an action of the Clifford group. The compatibility condition can then be written as another
intertwining requirement, namely the following diagram commutes:

Γ(C⊗R V )× Σ⊗C Σ∗ C∗ × C

Σ⊗C Σ∗ C

(g,s̄1⊗s2)7→(g·s̄1⊗g·s2)

N×〈 · | · 〉

(λ,z) 7→λz

〈 · | · 〉

4.2 Spinors on manifolds
4.2.1 Spin structures
In general relativity spacetime does not have a vector space structure, but it is a differentiable
4-manifold equipped with a metric of signature (1, 3) (see Section 4.3 for a discussion about the
signature). The considered vector space will be replaced by the family of tangent spaces at every
point.

Definition 4.2.1. Let M be a differentiable manifold. A Lorentzian structure on M is an
SO+

1,3-structure on M . Namely, it is the data of a metric g of signature (1, 3) and a compatible
space and time-orientation.

Definition 4.2.2 (Clifford algebra bundle). The real Clifford algebras of all tangents spaces of
M equipped with the metric gather into a locally trivial bundle in Z2-graded filtered algebras
which we call Cl(M). There is a linear embedding

TM ↪→ Cl(M)

We will write Cl(M) for the bundle of complexified Clifford algebras.

We want to construct a vector bundle over M which has an action of the Clifford algebra
bundle which is on each fibre a Clifford module. This will require extra structure on M called a
Spin structure.
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Definition 4.2.3 (Spin structure). Let M be an oriented n-manifold and let GL+(M) be its
GL+

n -principal bundle of positive linear tangent frames. Let G̃L
+
n → GL+

n be the non-trivial
twofold covering of GL+

n .
A Spin-structure on M is a lift of structure group of GL+(M) through G̃L

+
n → GL+

n (Sec-
tion 3.2.2). Namely, it is a G̃L

+
n -principal bundle P →M equipped with one of the two following

equivalent structures:

• A smooth bundle map P → GL+(M) which is G̃L
+
n → GL+

n -intertwining in the sense that
the following action diagram commutes:

P × G̃L
+
n P

GL+(M)×GL+
n GL+(M)

• A solder form: an Rn-valued 1-form α on P which is

1. of maximal rank and vanishes on vertical vectors (vectors which project to 0 in TP )

2. equivariant for the action G̃L
+
n → GL+

n ↪→ End(Rn).

We will call P the “spinor frame bundle”. A (4-)manifold equipped with a spin structure is
called a spin (4-)manifold.
Theorem 4.2.4. Let M be a spin 4-manifold. Given any metric g of signature (p, q) and
compatible space and time-orientation of M , we denote SO+(g) the corresponding bundle of
space and time-oriented orthonormal frames of M . Then the following pullback defines a Spin+

p,q-
principal bundle P on M equipped with a solder form for the natural action of Spin+

p,q on Rp,q:

P G̃L
+

(M)

SO+(g) GL+(M)

y (4.4)

Conversely, equip M with a metric g of siganture (p, q) and a compatible space and time
orientation. Assume furthermore that there exists a Spin+

p,q-principal bundle P on M equipped
with a Spin+

p,q-equivariant solder form and a Spin+
p,q → SO+

p,q-equivariant bundle map

P → SO+(g)

Then one can construct a G̃L
+
4 -principal bundle as the following associated bundle:

G̃L
+

(M) := P ×Spin+
1,3

G̃L
+
4

which can be equipped with a G̃L
+
4 -equivariant solder form such that P is identified with the

pullback described in Diagram (4.4).
Remark. We use the most common name in the literature, but calling such a structure Spin-
structure would be more consistent if we called Spin(V ) the connected groups we call Spin+(V ).
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We will call a manifold equipped with both a Lorentzian structure and a Spin structure a
Lorentzian spin manifold.

Spin structures allow defining the spinor bundles in which spinor fields take value.

Definition 4.2.5. Let M be a Lorentzian spin 4-manifold with metric g. Let Σ be a real or
complex module over Cl1,3.

The associated spinor bundle
P [Σ] := P ×Spin+

1,3
Σ

is a vector bundle over M with fibre Σ and a natural action of the Clifford algebra bundle Cl(M).
If Σ is equipped with a bilinear or sesquilinear product then so does P [Σ]. If R1,3 acts by

selfadjoint operators (resp. antiselfadjoint operators) on Σ then so does TM ⊂ Cl(M) on P [Σ].

Definition 4.2.6 (Universal spinor bundle, [GMS09]). Let M be a spin 4-manifold and Σ a
Cl1,3-module. Define the universal Σ-bundle constructed as follows:

G̃L
+

(M)×Spin+
1,3

Σ

Then the Σ-bundle associated to any Lorentzian structure can be constructed as the following
pullback:

P [Σ] G̃L
+

(M)×Spin+
1,3

Σ

SO+(g) GL+(M)

y

Theorem 4.2.7 (Universal Clifford module bundle). Let M be a Lorentzian spin 4-manifold
equipped with metric g. Define the universal Clifford module bundle constructed as follows [LM89]:

P [Cl1,3] = P ×Spin+
1,3

Cl1,3

It is the associated bundle to P for the left action of Spin+
1,3 on Cl1,3. It is not an algebra bundle

but it is a Z2-graded vector bundle with a right action of Cl1,3 and a left action of Cl(M) which
are both graded, faithful and transitive on each fibre.

Given a Cl1,3-module Σ, the associated Σ-bundle can be constructed as follows:

P [Σ] ' P [Cl1,3]⊗Cl1,3 Σ

Remark.

• One should not confuse the universal Clifford module bundle with the associated bundle for
the adjoint action of Spin+

1,3 on Cl1,3:

P ×AdSpin+
1,3

Cl1,3 ' SO(g)×SO+
1,3

Cl1,3 ' Cl(M)

In what follows P [Cl1,3] shall always denote the universal Clifford module bundle.

• The Clifford algebra bundle does not have the structure of an associated bundle P [Cl1,3]⊗Cl1,3
Σ but has nonetheless the structure of a left Clifford module bundle. This is due to the fact
that although it can be constructed from P as an associated bundle of fibre Cl1,3, the action
of Spin+

1,3 differs from the restriction to Spin+
1,3 of the left action of the Clifford algebra. In
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other terms, the considered action of Spin+
1,3 is extra structure on top of the Cl1,3-module

structure of the fibre.

• The two “universal” bundles are universal in different senses: the universal Σ-bundle is
universal with respect to all Lorentzian structures, while the universal Clifford module
bundle is universal with respect to all Cl1,3-modules.

The second part of the theorem comes from the following associativity-like chain of isomor-
phisms:

P [Cl1,3]⊗Cl1,3 Σ ' P ×Spin+
1,3

Cl1,3⊗Cl1,3Σ ' P ×Spin+
1,3

Σ = P [Σ]

Definition 4.2.6 and Theorem 4.2.7 can be used in general dimension and signature.

Theorem 4.2.8 (Topological obstruction and classification, [LM89; Bou+15; Ger68]). Let M be
a 4-manifold. Assume it is orientable, namely its first Stiefel-Whiteney class vanishes:

w1(TM) = 0

Then M admits spin structures if and only if its second Stiefel-Whitney class vanishes as well:

w2(TM) = 0

If M is noncompact, this is equivalent to M being parallelisable.
In this case, spin structures up to isomorphism have a free and transitive action of each of

the following equivalent structures, classified up to isomorphism by H(M,Z2) ;

1. principal Z2-bundles over M

2. 2-sheeted (surjective) covering spaces over M

3. real line bundles over M .

The action of a Z2-bundle Q→M on G̃L
+

(M) is as follows:

Q⊗ G̃L
+

(M) := Q×Z2 G̃L
+

(M)

with the subgroup Z2 = ker(G̃L
+
4 → GLp4) ⊂ G̃L

+
4 .

4.2.2 The Dirac operator
One major feature of spinors on a Lorentzian spin manifold is the Dirac operator, which we now
introduce. It is in particular involved in the Dirac equation governing the relativistic spinor fields.

Theorem 4.2.9 (Spin connection). Let M be a spin manifold equipped with a metric g of
signature (p, q). Assume furthermore that M is equipped with a metric connection ∇.

Then there is a unique principal connection on the spinor frame bundle P →M such that the
associated connection on

TM ' P [Rp,q]

coincides with ∇. It is called the spin connection (sometimes spinor connection) associated with
∇.

For any module Σ over Clp,q, there is an associated connection on the associated spinor bundle
P [Σ]. It can be related to the associated connection on the universal Clifford module bundle as
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follows: let a be a local section of P [Clp,q] and ψ a local map from M to Σ. Then the associated
connection on P [Σ] ' P [Clp,q]⊗Clp,q Σ satisfies the following Leibniz rule:

∇P [Σ](a⊗ ψ) = ∇P [Clp,q ]a⊗ ψ + a⊗ dψ

with ds the trivial flat derivative on the trivial vector bundle Σ×M →M .

Proof. We prove the Leibniz rule. Let A ∈ Γ(P,Cl1,3)Spin+
1,3 and Ψ ∈ Γ(P,Σ)Spin+

1,3 -invariant be
Spin+

1,3-equivariant (resp. invariant) fields on P , corresponding respectively to the associated
section a and the Σ-valued field ψ on M . Let ω be the connection 1-form on P .

The essential point is that the action of Spin+
1,3 on Cl1,3⊗Cl1,3Σ corresponding to the isomor-

phism Cl1,3⊗Cl1,3Σ ' Σ is simply the left action on the factor Cl1,3.
The covariant derivative of a⊗ ψ is associated to

dω (A⊗Ψ) = d (1⊗Ψ) +ω · (A⊗Ψ) = (dA)⊗Ψ +A⊗ dΨ + (ω ·A)⊗Ψ = (dωA)⊗Ψ +A⊗ dΨ

The former term corresponds on M to (∇a) ⊗ ψ and the latter to a ⊗ dψ, which proves the
Leibniz rule.

When there is no mention of ∇, we will implicitly be working with the Levi-Civita connection
associated with g.

Definition 4.2.10 (Dirac operator). Let M be a manifold equipped with a metric g of signature
(p, q) and a compatible connection ∇. Let E → M be a vector bundle which is a module over
Cl(M) equipped with a connection.

The Dirac operator /∇ is a first-order differential operator acting on sections ψ of E as follows:

Γ(E)

Γ(T ∗M ⊗ E)

Γ(TM ⊗ E)

Γ(Cl(M)⊗ E)

Γ(E)

∇

/∇

g−1×id

If we use the so-called covariant “gamma matrices” associated with E:

γ : T ∗M g−1

−−→ TM → End(E)

the Dirac operator acting on a section ψ takes the following form:

/∇ψ = γi∇iψ

Remark. The Dirac operator is sometimes restricted to complex Clifford modules and has an
extra i factor. Such considerations of conventions are discussed in Section 4.3.
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Theorem 4.2.11 ([LM89], II.5.3). Let M be an oriented spin manifold equipped with a metric g
of signature (p, q) and a compatible connection ∇. Let vol be the positive (pseudo-)Riemannian
volume. Let E →M be a vector bundle which is a module over Cl(M) and which is equipped with
a hermitian inner product for which TM acts by anti-selfadjoint operators.

Then the Dirac operator on P [Σ] is formally self-adjoint, namely

∀ψ1, ψ2 ∈ Γ0(P [Σ]),
∫
M

(〈
/∇ψ1|ψ2

〉
+
〈
ψ1| /∇ψ2

〉)
vol = 0

with Γ0 standing for the space of compactly supported sections.

Remark. The Dirac operator uses multiplication by odd elements and therefore requires the
structure of a Clifford bundle. However the equation

/∇ψ = 0

can be written in an equivalent way using any non vanishing and nowhere isotropic vector field u,
for example a global nonvanishing timelike vector field. It gives an invertible section of Cl(M)
and

u /∇ψ = uei∇iψ

with (uei) ∈ Cl+(V ). As such, the equation can be written on spinor bundles, which only have
an action of Cl+(V ).

However the Dirac equation used in physics usually has a “mass parameter”, namely one
considers the eigenvalue equation

( /∇−m)ψ = 0

which does change when /∇ is replaced by u /∇. Only the massless case, called the Weyl equation
can be formulated in spinor bundles 2 . Sections of (usually complex) spinor bundles are sometimes
accordingly called “Weyl spinors”, while sections of a (complex) Clifford bundle are called “Dirac
spinors”.

The Bochner formula
The crucial property of the Dirac operator is that it is a first-order differential operator whose
square has the symbol of a Laplacian. We will establish the formulas in presence of torsion. We
first define the connection Laplacian.

Definition 4.2.12 (Covariant second derivative, [LM89], II.8). Let M be a manifold with a
tangent connection ∇. Let E →M be a vector bundle equipped with a linear connection ∇E .

The covariant second derivative on E associated to ∇E is the following second-order differential
operator:

∇2 : Γ(E) Γ(T ∗M ⊗ E) Γ(T ∗M ⊗ T ∗M ⊗ E)
∇E ∇T

∗M⊗E

On a section A of E, ∇2 acts as follows:

∇2
X,YA = ∇X∇YA−∇∇XYA

2There exists however a variant for real spinors in which the mass is not a scalar [Del+00].
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In particular, the curvature of ∇ on E can be expressed using the following formula:

∇2
X,Y −∇2

Y,X = R(X,Y )−∇T (X,Y )

with T the torsion of ∇.

Definition 4.2.13 (Connection Laplacian, [LM89] Section II.8). Let M be a manifold with a
metric g and a connection ∇. Let E →M be a vector bundle equipped with a linear connection
∇E .

The connection Laplacian on E is a differential operator on E defined as follows:

∇∗∇ = −
〈
g−1|∇2〉

with g−1 the inverse metric.
On a section A of E, using a local frame (ei) the connection Laplacian takes the following

form:
∇∗∇A = −gij

(
∇ei∇ejA−∇∇eiejA

)
Remark. As the notation suggests, ∇ has a formal adjoint ∇∗ on the space of compact supported
sections Γ0(E) such that the connection Laplacian indeed takes the form ∇∗∇.

We can now state the so-called Bochner formula relating the squared Dirac operator to the
connection Laplacian.

Theorem 4.2.14 (Bochner formula, [LM89], II.8.2). Let M be a manifold with a metric g of
signature (p, q) and a compatible connection ∇.

Let E → M be a vector bundle with an action of Cl(M) and a connection ∇E which is
compatible with the action of Cl(M) in the following sense:

∀ψ ∈ Γ(E), ∀X ∈ Γ(TM), ∇E(X · ψ) = (∇X) · ψ +X · ∇Eψ

Then the square of the Dirac operator on E differs from the connection Laplacian as follows,
with (ei) a local orthonormal frame:

/∇2 = −∇∗∇+ R̃−1
2eiej · ∇T (ei,ej)

with R̃ ∈ Cl(M) taking the following form:

R̃
E

= 1
2eiej ·R

E(ei, ej)

Proof. Let (ei) be a local orthonormal frame.

/∇2 = ei∇eiej∇ej

Let us write for a local section ψ of P [Σ]:

c( · )∇( · )ψ : (u, v) ∈ TM ⊗ TM 7→ u · ∇vψ

Then
ej∇ejψ =

〈
g−1|c( · )∇( · ψ

〉
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and
∇ei

(
ej∇ejψ

)
= ∇ei

〈
g−1|c( · )∇( · )ψ

〉
=
〈
g−1|∇eic( · )∇( · )ψ

〉
=
〈
g−1|c( · )∇ei∇( · )ψ

〉
= ej∇2

ei,( · )ψ

using the compatibility of the spin connection with the action of the Clifford module to obtain
the third line.

As a consequence

ei∇eiej∇ej = eiej∇2
ei,ej

= 1
2 ({ei, ej}+ eiej − ejei)∇2

ei,ej

= gij∇2
ei,ej + 1

2eiej
(
∇2
ei,ej −∇

2
ej ,ei

)
= −∇∗∇+ 1

2eiej
(
RE
ij −∇Tij

)
= −∇∗∇+ R̃−1

2eiej∇Tij

Example 4.2.15 (Dirac operator over the Minkowski space). Consider the Minkowski space
with its flat (affine) structure, its constant metric η and the trivial spin structure. Using the
gamma matrices introduced earlier, the Dirac operator takes the following form:

/∂ = γi∂i

and squares to
/∂

2 = 1
2{γ

i, γj}∂i∂j = ηij∂i∂j

Therefore the Dirac operator gives a first order differential operator square root of the
D’Alembertian, although not acting on scalar-valued fields but spinor fields.

The operator R̃ has a very simple expression when working with spinorial bundles. In order
to establish such a formula, we need a generic formula for specific contractions of the curvature
happening when working with spinor bundles.

Lemma 4.2.16 ([Bou+15]). Let M be a manifold with a metric g of signature (p, q) and a
compatible connection ∇. Let us write R the curvature endomorphism of ∇ and use it both as
an End(TM)-valued 2-form and a 4-tensor:

R(X,Y, Z, T ) = 〈R(X,Y )Z|T 〉

Let us define the spinorial curvature R associated with ∇ as follows: for (ei) a local pseudo-
orthonormal frame of M , then

∀X,Y ∈ Γ(TM), R(X,Y ) := 1
4η

ij (R(X,Y )ei) · ej = −1
4 R(X,Y, ei, ej)eiej

For any spinor bundle P [Σ] equipped with the spin connection, the tensor RP [Σ] matches with
the action of R on P [Σ].
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The following identity holds:∑
i,j

eiej R(ei, ej) = −1
2 Scal +1

2 Ricmn (emen − enem)− 1
4 R[ijkl] e

iejekel

with Scal the scalar curvature of ∇, Ric its Ricci curvature and R[ijkl] the purely antisymmetric
part of its total curvature. When ∇ is the Levi-Civita connection, the following identity holds for
any vector field X: ∑

j

ej · R(X, ej) = −1
2g
−1(Ric(X)) ∈ Γ(Cl(M))

Remark. The covariant vectors (ei) suggest an interpretation using the (isomorphic) Clifford
algebra of the cotangent bundle.

Proof. Let Σ be a Clifford module and let Ω ∈ Ω2
hor(P, spinp,q)Spin+

p,q be the curvature of the spin
connection. Since Σ is a Clifford module, Spin+

p,q acts through its embedding in Clp,q, therefore
we are interested in the image in Ω2

hor(P,Clp,q)Spin+
p,q of Ω. Let us write

(ρi)ab : spinp,q ' sop,q ↪→ gl(Rp,q)

the Lie algebra action of spinp,q on Rp,q. Then the curvature endomorphism R ∈ Ω2(M, so(TM))
is associated to the equivariant form (ρi)abΩi ∈ Ω2

hor(M, sop,q)Spin+
p,q . Recall that the Lie algebra

isomorphism spinp,q ' sop,q sends the product 1
4e1e2 with e1, e2 orthogonal pseudo-normed

vectors to the following element of sop,q ↪→ gl(Rp,q):

1
2e1e2 7→ e1 ⊗ te2 − e2 ⊗ te1

Let (ea) be a pseudo-orthonormal basis of Rp,q. Then

ρiΩi = 1
2ρi

a
bΩiηbb

′ (
ea ⊗ teb′ − eb′ ⊗ tea

)
Therefore the corresponding element in Ω2

hor(P,Clp,q)Spin+
p,q is

1
4ρi

a
bΩiηbb

′
eaeb′ = 1

4(Ωi · eb)ηbb
′
eb′ ∈ Ω2

hor(P,Clp,q)Spin+
p,q

The associated form in Ω2(M,Cl(M)) is exactly R. The second expression derives from the
identity

el = 〈el|el〉 e−1
l

and the fact that ek and el anticommute for k 6= l.
Let X be a vector field on M and (ei) a local orthonormal frame. The crucial arguments will

be the Bianchi identity 3.7:
d∇T = R ∧ Id

namely in components

d∇T (ei, ej , ek) = 2
(
R(ei, ej)ek + R(ej , ek)ei + R(ek, ei)ej

)
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and the following identity for 3-vectors in the Clifford algebra:

3eiejek = eiejek + ejekei + ekeiej + 2
(
gijek − 2gikej + gjkei

)
as well as the following identity [For12]:

1
4
(
eiej − ejei

) (
ekel − elek

)
= εijklω + 1

2ε
ij
m
oεklno(γmγn − γnγm) + gjkgil − gikgjl

= εijklω + 1
2δ

[ijm]
[k′l′n]g

k′kgl
′l(γmγn − γnγm) + gjkgil − gikgjl

with δ[ijm]
[k′l′n] the normalised totally antisymmetric Kronecker symbol.

We can now compute

eiej R(ei, ej) = −1
4 Rijkl e

iejekel

= −1
4 Rijkl

1
4
(
eiej − ejei

) (
ekel − elek

)
= −1

4 Rijkl

(
εijklω + 1

2δ
[ijm]
[k′l′n]g

k′kgl
′l(emen − enem) + gjkgil − gikgjl

)
= −1

4 R[ijkl] e
iejekel

− 1
8 Rij

k′l′
(
−δik′δjnδml′ + δil′δ

j
nδ
m
k′ − δinδ

j
k′δ

m
l′ + δinδ

j
l′δ

m
k′

)
(emen − enem)− 1

2 Scal

= −1
4 R[ijkl] e

iejekel + 1
2 Ricmn (emen − enem)− 1

2 Scal

Now assume that torsion vanishes. The Bianchi identity then implies the following equations:

Rijkl = Rklij

Rijlk = −Rklji

Ricji = −Ricij

Using these, we can perform the following computation:

ej R(X, ej) = −1
4 R(X, ej , ek, el)ejekel

= 1
4 R(ek, el, ej , X)1

3
(
ejekel + ekelej + elejek + 2

(
gjkel − 2gjlek + gklej

))
= 1

12

((
R(ek, el, ej , X) + R(ej , ek, el, X) + R(el, ej , ek, X)

)
ejekel

+ 2
(
−Ric(el, X)el − 2 Ric(ek, X)ek + 0

) )
= −1

2 Ric(X, ei)ei = −1
2g
−1 Ric(X)

Remark. The various antisymmetrical parts of R and Ric can be expressed in term of the covariant
exterior derivative of the torsion.

Theorem 4.2.17 (Bochner-Weitzenböck-Lichnerowicz-Schrödinger formula). Let M be a spin
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manifold with a metric g of signature (p, q) and a compatible connection ∇. Then for any spinor
bundle P [Σ] equipped with the associated spin connection, the Bochner formula takes the following
form in a local orthonormal frame (ei):

/∇2 = −∇∗∇− 1
4 Scal +1

4e
iej
(
Ricij −Ricji−2∇Tij

)
− 1

8e
iejekel R[ijkl]

In particular, when the connection is torsionless, only the scalar curvature term is left.
Considering the Clifford module structure of Cl(M) with the Levi-Civita connection, the Dirac

operator satisfies on TM ⊂ Cl(M) the following Bochner formula:

∀X ∈ Γ(TM), /∇2
X = −∇∗∇X − g−1(Ric(X))

Furthermore, when M is oriented, Cl(M) equipped with the Levi-Civita Dirac operator is isomor-
phic to Λ•T ∗M equipped with the following operator d+ d∗.

Proof. The first assertion is a straightforward conclusion from Theorem 4.2.14 and 4.2.16.
Let us now assume ∇ is torsionless. We do not show the correspondence with Λ•T ∗M with

the operator d+ d∗. We need to compute the action of eiej Rij on TM ⊂ Cl(M). We will use
the following property: for all sections A of Cl(M),

R(ei, ej) ·A =
[
−1

4 R(ei, ej , ek, el)ekel, A
]

This allows expressing the action of eiej Rij using R. Let X be a vector field seen as a section of
Cl(M).

eiej Rij X = eiej [Rij , X]
= [eiej Rij , X]− [eiej , X]Rij

=
[
−1

2 Scal, X
]
− (ei{ej , X} − {ei, X}ej)Rij

= 0− 2 (〈ej |X〉 ei − 〈ei|X〉 ej)Rij
= −2

(
eiRei,X −ej RX,ej

)
= −2g−1 Ric(X)

according to Lemma 4.2.16. Thus we obtain the formula

/∇2
X = −∇∗∇X − g−1 Ric(X)

4.2.3 Lie Derivative of Spinors
Background

In this section with illustrate the idea of correspondence spaces (Section 3.3.6) by giving a
geometric description of the so-called Lie derivative of spinors [Kos72; GM05]. Let us first present
the physical motivation. It comes from the variational formulation of fields theories. In General
Relativity, spacetime is modelled by a Lorentzian spin 4-manifold M with a Spin+

1,3-structure
P → M . Let Σ be a Cl1,3-module. A spinor field is a section on M of the associated spinor
bundle P [Σ].
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The common formulation of field theories use a variational principle, namely the field equations
amount to the field being critical points of a functional called action. In particular, they are
derived and usually studied using independent variations of every dynamical field of the theory.
This brings us to the following problem: in General Relativity the metric g is a dynamical field.
However when it is varied, the bundle of orthonormal frame necessarily changes. As a consequence,
the spin frame bundle needs to change as well. This means that the very bundle in which the
spinor fields live cannot stay unvaried, so that we cannot consider “variations of the metric with
fixed matter fields”.

This technicality is made more manifest when considering diffeomorphisms of spacetime. In-
variance under diffeomorphism is an essential principle of General Relativity, and diffeomorphisms
generally act non-trivially on the metric. In particular, identifying the so-called “stress-energy
tensor” requires defining an action of the infinitesimal diffeomorphisms (which may not preserve
the Lorentzian structure) on matter fields such as spinor fields.

The usual solution [Heh+76; Tra06; Pop20] is as follows. One fixes an auxiliary vector bundle
V →M which is isomorphic to TM – but one does not fix such an isomorphism. It is equipped
with a Lorentzian metric η, a space and time-orientation and its orthonormal frame bundle is
equipped with a lift of the structure group from SO+

1,3 to Spin+
1,3. Spinor fields on spacetime are

then sections of the associated spinor bundle. The metric is replaced by a “tetrad” e, which is
a linear bundle isomorphism TM

∼−→V , inducing the metric g = e∗η. In this way, spinor fields
live in a bundles independent of g, and the tetrad relates the spinor bundles to the geometry of
spacetime. The idea is that a tetrad keep track of more data than the metric: they have an extra
SO+

1,3 degree of freedom, which makes it easier to define a transformation law for spinors. We
will expound on this approach in Section 11.1, within the formalism of Sciama-Kibble theory.

However effective this approach may be, it is arguably roundabout. In particular, the matter
fields living in an arbitrary bundle adds a layer of complexity to the geometrical framework.

An alternative approach to the issue is to define some kind of “connection” which allows the
spinor fields to vary following a variation in the Lorentzian structure of spacetime. It is put to
use in the so-called “spinor Lie derivative”, pioneered by Kosmann [Kos72]. The idea comes from
the observation that Killing vector fields, namely those who preserve the metric, act naturally
on the spinor fields. It is possible to define an action of vector fields on spinors by isolating a
“Killing part” in every vector field. The underlying geometry is beautifully exposed in [BG92]: it
is related to a “transport” of orthonormal bases between different inner products which already
exists at the linear level.

We now present the construction using the structure of correspondence spaces.

The covariant approach to spinors on manifolds

Let M be a spin 4-manifold with a G̃L
+
4 -structure G̃L

+
(M)→ GL(M). A Lorentzian structure,

namely a Lorentzian metric with a space and time-orientation, is exactly a section of GL(M)/ SO+
1,3,

in other words a reduction of the structure group to SO+
1,3. If we require it to be compatible with

the orientation of M , it has to be a section of the subbundle GL+(M)/ SO+
1,3.

In order to define spinor fields, we need spin structures. They are defined consistently for all
Lorentzian structures according to the following bundle isomorphism

GL+(M)/ SO+
1,3
∼−→G̃L

+
(M)/Spin+

1,3

the sections of which are exactly Lorentzian structures.
Any (space and time-oriented) Lorentzian structure σ : M → G̃L

+
(M)/Spin+

1,3 thus defines a
Spin+

1,3-structure through pullback. Similarly, spinor bundles associated to a spinor module Σ
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can be constructed as pullbacks of the universal spinor bundle (Definition 4.2.6).
Let

σ : [0, 1]×M → G̃L
+

(M)/ Spin+
1,3

be a parametrised Lorentzian structure. For every value of t ∈ [0, 1] it defines a Lorentzian
structure on M . We now explain how it can also define an identification between each of them,
namely a principal bundle isomorphism between Lorentzian structures corresponding to different
parameters. Before this, let us explain how it addresses the problem of identifying spinor bundles
along σ. This is due to the following general fact: an isomorphism between G-principal bundles
induces isomorphisms between associated bundles for any G-space. In our case, an (equivariant)
identification between the Lorentzian structures σ∗t1G̃L

+
(M) and σ∗t2G̃L

+
(M) for two parameters

t1, t2 ∈ [0, 1] induces an identification between associated bundles

σ∗t1G̃L
+

(M)×Spin+
1,3

Σ ∼−→σ∗t2G̃L
+

(M)×Spin+
1,3

Σ

This allows transporting spinor fields above σt1 to spinor fields above σt2 in a smooth and
transitive fashion.

As explained in Section 3.3.6, a reductive structure on the Klein pair (gl4, spin1,3) would
define a Spin+

1,3-principal connection on

G̃L
+

(M)→ G̃L
+

(M)/ Spin+
1,3

which would allow identifying the different Lorentzian structures along σ. It is essentially what is
presented in [BG92]. The reductive structure is the following:

gl4 'spin1,3 spin1,3⊕S2

with S2 standing for the self-adjoint elements of gl4 for the Lorentzian inner product.
This construction brings the following question: do we obtain a consistent identification

between all pullback spin structures? Unfortunately this is not the case, as is explained in [BG92].
The reason is that the Spin+

1,3-principal connection on G̃L
+
4 → G̃L

+
4 /Spin+

1,3 associated to the
reductive structure is not flat. The identification between two sets of direct orthonormal frames
is therefore generally dependent on the path used.

Is it possible to find alternative reductive structures with different geometrical properties?
Reductive structures are identified with spin1,3-equivariant sections of gl4 → gl4 / spin1,3. We
know that gl4 decomposes into irreducible spin1,3-modules as follows:

gl4
∼−→spin1,3 spin1,3⊕R⊕ S2 /R

We are looking for sections
R⊕ S2 /R→spin1,3 gl4

They form an affine space over

Homspin1,3(R⊕ S2 /R, spin1,3)

However there is no such spin1,3-equivariant map since the irreducible representation spin1,3 is
not present in R⊕ S2/R. As a consequence, the reductive structure is unique.

Having defined a way to transport spinor fields along a path of Lorentzian structures, we can
now construct the Lie derivative of spinor fields. Let X be a complete (for simplicity) vector field
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on M . Its flow gives a 1-parameter group of diffeomorphisms of M which can be used to pull
back a fixed Lorentzian structure: σt = (φt)∗σ0. Let

ψ ∈ Γ
(
M,σ∗0G̃L

+
(M)×Spin+

1,3
Σ
)

be a spinor field associated to the Lorentzian structure σ0. Then ψt = φt
∗ψ is a spinor field

associated to the Lorentzian structure σt. Namely at every point m ∈ M , t 7→ σt(m) traces a
smooth path in G̃L

+
(M)/ Spin+

1,3 and ψt(m) is a lift of σt(m) to G̃L
+
4 (M)×Spin+

1,3
Σ. The Spin+

1,3-

principal connection on G̃L
+

(M)→ G̃L
+

(M)/ Spin+
1,3 allows defining a covariant derivative of

the field ψt(m) in the direction ∂tσt(m) at t = 0. The covariant derivative is an element of
G̃L

+
(M)×Spin+

1,3
Σ|σ(m), hence an element of the spinor bundle associated to σ at the point m.

Constructed over the whole manifold M , these sections form the Lie derivative of ψ along X.

4.2.4 Pin structures in Lorentzian signature
When working with field theory, it is often required to have an action of spatial parity and time
reversal. In particular, this implies working with the full bundle of orthonormal frames which
are not necessarily compatible with a time or a space orientation. Regarding spinor fields, this
requires working with twofold covers not of the proper orthochronous orthogonal group SO+

p,q,
but twofold covers of the whole orthogonal group Op,q (or possibly of an intermediate group,
depending on the considered orientation structure).

In order to simplify the discussion, we will only discuss the case of Lorentzian signature (1, 3)
in this section and will refer to R1,3 as “spacetime”. General references for this Section are [Tra05;
Jan20].

The full orthogonal group

Let us first discuss about the whole orthogonal group O1,3. It is the total isometry group of an
inner product of signature (1, 3) on R4. Since all (nonzero) proportional metrics have the same
isometry group, it is also the isometry group of an inner product of signature (3, 1):

O1,3
∼−→O3,1

The isometry group has four connected components. Its neutral component is SO+
1,3. In

particular, this gives a group isomorphism (compatible with the natural action on R4):

SO+
1,3
∼−→SO+

3,1

The isometry group fits into the following short exact sequence [Ser13; MT86]:

SO+
1,3 ↪→ O1,3 � π0(O1,3) ' Z2 × Z2

For any decomposition of R1,3 into timelike line R and spacelike 3-plane R3, elements of O1,3 sent
in Z2 × Z2 to the sign (±) of the determinants of their diagonal blocks End(R1) and End(R3)
(this is independent of the chosen splitting of R1,3) [MT86].

Furthermore, composing with the product {±1} × {±1} → {±1} gives the spacetime determi-
nant of elements of O1,3.

In addition, the short exact sequence splits as follows, with T the time reversal and P the
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space parity operator associated to the 3 + 1 decomposition R1,3 = R1 ⊕⊥ R3:

Z2 × Z2 → O1,3

(a mod 2, b mod 2) 7→ T aP b

As a consequence, O1,3 has the structure of a semi-direct product

O1,3 ' (Z2 × Z2) n SO+
1,3

Orientation structures

The set of space and time-orientations on R1,3 can be identified as the following homogeneous
space:

O1,3 / SO+
1,3

on which the action of O1,3 factors through the quotient O1,3 /SO+
1,3 ' Z2 ×Z2 and gives the set

of orientations a structure of free homogeneous Z2 × Z2-space.
Let M be a 4-manifold equipped with a metric g of signature (1, 3). It defines a frame

bundle O(g) of orthonormal frames, which is a principal O1,3-bundle. The bundle of space and
time-orientations on M can be constructed as the quotient bundle

O(g)/ SO+
1,3

It is a Z2 × Z2-principal bundle over M . In particular, it is a fourfold covering of M , and
fits into the following diagram (with a similar structure to that of correspondence spaces, see
Section 3.3.6):

SO+
1,3 O1,3

O(g)

O(g)/SO+
1,3

M

SO+
1,3−orbits

O1,3−orbits

SO+
1,3−principal

O1,3−principal

Z2×Z2-principal

A space and time-orientation of M is equivalent to a global section of O(g)/ SO+
1,3 → M

(which is subject to topological obstruction). Alternatively, it is possible to work directly on
the fourfold cover O(g)/ SO+

1,3 on which Z2 × Z2 acts: time reversal and space parity then take
a more geometrical character. Constructions on M become Z2 × Z2-invariant (or equivariant)
constructions but working on O(g)/ SO+

1,3 allows for non-invariant constructions as well.

Pin coverings

The group Spin+
1,3 was constructed from Cl1,3. It is a specific connected twofold cover of SO+

1,3.
In particular, the isomorphism SO+

1,3 ' SO+
3,1 induces an isomorphism

Spin+
1,3 ' Spin+

3,1
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The group Pin1,3 was constructed as well from Cl1,3. It is a Z2-extension of O1,3. In fact,
there are two different natural covering maps to O1,3: the twisted adjoint action map and the
adjoint action map. However, according to the remark following Theorem 4.1.26, the two covering
maps are isomorphic in the following sense: there exists a group isomorphism β : Pin1,3 → Pin1,3
such that the following diagram commutes:

Pin1,3

Z2 O1,3

Pin1,3

β

Ãd

Ad

As a consequence, it is equivalent to consider any of the two covering maps Pin1,3 → O1,3.

The subtlety about Pin groups is the following fact: Pin1,3 is not isomorphic to Pin3,1. This
means that Pin1,3 and Pin3,1 are two different Z2-extensions of O1,3 and there is room for the
choice of Z2-extension. This raises the question of possible Z2-extensions of O1,3.

There are 16 central Z2-extensions of O1,3 [Tra05], half of which restrict to the connected
covering

Spin+
1,3 → SO+

1,3

They can be classified as follows: according to the decomposition R1,3 = R1 ⊕⊥ R3 there is a
time reversal T and a space parity P in O1,3 such that {1, P, T, PT} each belongs to a different
connected component of O1,3. Let P̃ and T̃ be arbitrary lifts in the considered central Z2-extension
of O1,3. Then the Z2-extension is classified by the following three signs:

P̃ T̃ = ±1︸︷︷︸
λ

T̃ P̃ P̃ 2 = ±1︸︷︷︸
µ

, T̃ 2 = ±1︸︷︷︸
ν

,

The elements {±1,±P̃ ,±T̃ ,±P̃ T̃} form a subgroup Hλµν such that the Z2-extension can be
constructed as (

H n Spin+
1,3
)
/{(1, 1), (−1,−1)}

The extension is generally called Pinλµν and fits into the following diagram of group extensions:

Spin+
1,3 Pinλµν Hλµν

SO+
1,3 Op,q Z2 × Z2

Ad detR1 × detR3

The Pin groups constructed from the Clifford algebras, namely Pin1,3 and Pin3,1 are identified
as follows:

Pin1,3 ' Pin−++

Pin3,1 ' Pin−−−

We now discuss how this ties in with the Spin structures introduced in Section 4.2.1.
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Spin structures

We recall the definition of a Spin structure on an 4-manifold: it is the data of a G̃L
+
-principal

bundle GL+(M) with a G̃L
+
4 → GL4 intertwining bundle map to the bundle of linear frames

GL+(M)→ GL(M)

We explained how it induces for each choice of Lorentzian structure a Spin+
1,3-structure. The

point of this notion of spin structure is that it is independent of the Lorentzian structure and
allows the induced Spin+

1,3-structure to follow the variations of the Lorentzian structure.
Let us mention first that given an actual Spin+

1,3-structure, therefore a metric and a space
and time-orientation beside the Spin structure, then for any Pinλµν group it is possible to build
a corresponding Pin-structure. Namely, if P →M is the Spin+

1,3-principal spinor frame bundle,
one can consider

P ×Spin+
1,3

Pinλµν

which defines a Pinλµν-structure over M . In other words, when the manifold has enough
orientation structure, the used Pin group can be freely chosen.

We wish to work without orientation structure on M . Therefore we need to work with a
Z2-central extension of the whole linear group GL4. However it is not unique: there are exactly
two such central extensions which coincide with G̃L

+
4 over GL+

4 . They can be classified using the
value of the square of any inverse image of an involution of negative determinant, namely the
square of an inverse image in G̃L

+
4 of a section of the following short exact sequence:

GL+
4 ↪→ GL4

det−−→ Z2

Let us call T̃ an element of the central extension mapping to T ∈ O1,3 ⊂ GL4 and −1 the
nontrivial element mapped to Id4 in GL4. Then

• If T̃ 2 = 1 then the central extension is isomorphic to

Z2 nAd(T̃ ) G̃L
+
4

The central extension is called Gin+
4 .

• If T̃ 2 = −1 then the central extension is isomorphic to(
Z/4Z nAd(T̃ ) G̃L

+
4

)
/{(0 mod 4, 1), (2 mod 4,−1)}

The central extension is called Gin−4 .

Assume M is equipped with a Gin+ or a Gin− structure, namely a Gin+
4 -principal (resp.

Gin−4 -principal) bundle Gin±(M) with a Gin±4 → GL4-intertwining bundle map to the linear
frame bundle:

Gin±(M)→ GL(M)

Applying the same construction as with spin structures, one defines a putative Pin-structure
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as the following pullback:
Pin(g) Gin±(M)

O(g) GL(M)

They form principal bundles overM for the group Pin± defined as the similar group-level pullback:

Pin+ Gin±4

O1,3 GL4

The remaining question is to identify the groups Pin± among the central Z2-extensions of
O1,3. We know that in Pin±, T̃ 2 = ±1. The idea in order to compute the other signs is to use a
“Wick rotation” thanks to the embedding

{±1,±PT} ⊂ O(R1)×O(R3) ∩ SL4 ⊂ SO(R4)

because we know that the Z2-extensions restricted to SO4 form a connected covering which has
to be Spin4. In particular in Spin4 we now that PT can be represented as a chirality element ω
which squares to 1: (

P̃ T̃
)2

= 1

Once we know the sign λ, this equation will allow us to obtain the last sign µ. Before this, notice
that in both Cl1,3 and Cl3,1, the chirality element squares to −1:(

P̃ T̃
)2

= −1

which means that the Pin-structures induced by Gin± structure do not correspond to Pin1,3 or
Pin3,1-structures. This justifies enlarging the spectrum of considered “Pin” structures beside the
Pin1,3 and the Pin3,1 groups.

We now compute λ. It is computed using the following formula:

T̃ P̃ = Ad
T̃
P̃ T̃

Since P̃ T̃ belongs to Spin4 and Ad
T̃
|Spin4 is the lift of time reversal AdT : SO4 → SO4 which

preserves the identity element of Spin4, it necessarily corresponds to the restriction to Spin4 of
the action of T on Cl4. As such it multiplies chirality elements by −1 hence

T̃ P̃ = −P̃ T̃

It follows that in Gin±
P 2 = ∓1

Let us summarise the results:

Theorem 4.2.18. The Pin groups constructed from the Clifford algebras Cl1,3 and Cl3,1 and the
Pin± groups constructed from the Gin±4 groups belong to four different classes of isomorphism.
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They fit in the Pinλµν classification as follows:

Pin1,3 ' Pin++−

Pin3,1 ' Pin−−−
Pin+ ' Pin+−+

Pin− ' Pin−++

They are characterised among the Pinλµν by the property that

(P̃ T̃ )2 = −1

In particular, the choice of a Pin group affects the nature of the spinor bundles.

Theorem 4.2.19 ([Tra05]). The four identified Pin groups each admit an irreducible faithful
real representation such that:

• for Pin1,3, the representation admits a quaternionic structure of dimension 2 commuting
with Pin1,3.

• for Pin3,1, the representation is of real dimension 4.

• for Pin±, the representation admits a complex structure of dimension 4 commuting with
Pin±.

Spin groups

In fact we shall prove that the disconnected groups Spin1,3 and Spin3,1 are isomorphic [Ber+01]:
recall the isomorphism

Cl+3,1
∼−→Cl+1,3

ei1 . . . ei2k 7→ (−1)
2k(2k−1)

2 ei2k . . . ei1 = (−1)kei2k . . . ei1

with (ei) a pseudo-orthonormal basis of R1,3, coming from Clsopp1,3 ' Cl3,1. The (graded-anti-)isomorphism
between the Clifford algebras preserves the subspace R1,3 ' R3,1 as well as sends Ada to
Ad±T a = Adα(a)−1 = Ad−1

a . Therefore the isomorphism also preserves the Clifford group and its
intersection with the even part of the algebra: we obtain a group isomorphism [Ber+01]

Spin3,1
∼−→Spin1,3

The group Spin1,3 fits into the following group extension

Spin+
1,3 ↪→ Spin1,3 → Z2

Chirality elements ω belong to Spin1,3 K Spin+
1,3, square to −1 and are super-central, hence in

the centre of Spin1,3. Therefore Spin1,3 can be constructed from Spin+
1,3 and the subgroup Z/4Z

generated by a chirality element as follows:

Spin1,3 '
(
Z/4Z× Spin+

1,3
)
/{(0 mod 4, 1), (2 mod 4,−1)}
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Since Adω = PT , we proved the following: the pullback group

Spinλµν Pinλµν

SO1,3 O1,3

is isomorphic to Spin1,3 if and only if
(
P̃ T̃
)2

= −1. This is the case for the two groups Pin1,3,
Pin3,1 but not for the groups Pin+ and Pin+.

Furthermore, the groups Pin1,3 and Pin3,1 are also easily decomposed as semi-direct products
using Spin1,3 [Ber+01]:

Pin1,3 ' Z2 nT Spin1,3

Pin3,1 ' Z2 nAd(e1) Spin1,3

with e1 any vector in R3,1 which has norm 1.
In conclusion, in Lorentzian signature, there are several possibilities for “pinors”, that is

fields taking value in vector bundles associated to Pin-structures. The covariant approach to
Spin-structures is only compatible with two of them which are notably not the Pin groups
constructed from the Clifford algebras.

4.3 Sign conventions
In this section, we discuss briefly the different coexisting sign conventions for Clifford algebra
and spinors in Lorentzian signature. There are mostly related and incoherent changes in the
conventions can lead to a change in algebraic properties.

Clifford algebra conventions

We consider the vector space V equipped with the nondegenerate quadratic form q and the
associated bilinear product 〈 · | · 〉.

There are two conventions for the Clifford algebra of (V, q): imposing either the equation

uv + vu = 2 〈u|v〉 1

like we did or the opposite convention

uv + vu = −2 〈u|v〉 1

which is used for example in [LM89; Bou+15]. Obviously, changing the convention is equivalent
to replacing q by −q. In particular according to Theorem 4.1.10 there is an isomorphism
Cl(−V ) ' Cl(V )sopp which can be used to relate the two conventions; especially, the even
subalgebras are isomorphic as filtered algebra.

Changing conventions implies changing signs in many formulas. Recall that for two orthogonal
pseudo-normed vectors (e1, e2) in V , the infinitesimal adjoint action of 1

2e1e2

ad
(

1
2e1e2

)
: a ∈ Cl(V ) 7→ e1e2a− ae1e2

2
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corresponds to the endomorphism

e1 ⊗ te2 − e2 ⊗ te1 ∈ so(V )

As a consequence changing the metric sign changes tei by a sign and changes the image in so(V )
of 1

2e1e2 by a sign as well. Therefore the identification Cl(V )sopp ' Cl(−V ) restricted to the spin
Lie algebras fits into the following commutative diagram:

spin1,3 spin3,1

so1,3 so3,1

ad ad

A 7→−A

with the bottom morphism reversing the Lie algebra bracket.
In fact the graded antiautomorphism between the Clifford algebras, restricted to the spin

groups, fits into the following commutative diagram

Spin1,3 Spin3,1

SO1,3 SO3,1

Ad Ad

g 7→g−1

with the bottom morphism corresponding to the inversion of elements in GL(R4).
When working over C, a global multiplication by i (akin to a Wick rotation) gives an isometry

between q and −q = i2q so that it defines a Clifford algebra isomorphism Cl(V ) ∼−→Cl(−V ).

Lorentzian signature

The phrase “Lorentzian signature” is often used to refer to two different signatures: (+−−−) (the
“mostly minus” convention) [Del+00; IZ80] and (−+ ++) (the “mostly plus” convention) [Car19b;
MTW73; Wei95]. The former tends to be found in the literature of high-energy physics and the
latter in the literature on general relativity.

Changing the signature amounts to changing the sign of the considered metric and is therefore
subject to the same considerations. It may change the structure of the real Clifford algebra but
does not change the structure of complex Clifford algebras.

Notice that in the two cases the even parts of the Clifford algebra are isomorphic:

Cl+1,3 ' Cl3,0
Cl+3,1 ' Cl3,0

with the isomorphism depending on the choice of a chirality element. In particular, there are the
“same” spinorial modules in the two different signatures.

On the other hand, Pinp,q groups do depend on the used signature. However as discussed
earlier the choice of a Pin group is a consideration which has to be made independently of
signature choice.
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Dirac operator

There are two (formally) different differential operators which are called Dirac operator. Using a
local orthonormal frame (ei), the first acts on sections σ of real Clifford modules:

/∇ = ej∇ejσ

The second acts on sections σ of complex Clifford modules (more generally of Spinc modules):

iej∇ejσ

with i the distinguished square root of −1.
The real convention allows working with real Clifford modules, in which the so-called “Majorana

spinors” take value. When working with complex Clifford modules, adding an i factor ∇ is
equivalent to multiplying the real vector space by i:

iV R ⊂ V C ' C⊗R V
R

In other words, it can be interpreted as performing a Wick rotation Cl(V R) ' Cl(−V R) before
constructing the Dirac operator.

The factor of i changes the sign of the square of the Dirac operator:

(i /∇)2 = − /∇2

It also affects the formal selfadjointness of the Dirac operator, which is required in order to obtain
the masses as real eigenvalues of the Dirac operator. Since given a vector X the operator ∇X is
formally anti-selfadjoint, the metric on the spinor bundle P [Σ] has to make the action on P [Σ] of
X anti-selfadjoint in order for /∇ to be formally selfadjoint.

On the other hand, if vectors act on P [Σ] by selfadjoint operators, /∇ is formally anti-selfadjoint
and i /∇ becomes formally selfadjoint. Both possibilities are consistent with so(TM) acting with
infinitesimal isometries of the metric. Here again the two possibilities can be related by the
global Wick rotation: it changes the action of real vectors from selfadjoint to anti-selfadjoint and
conversely. It is also possible to work with a non-(formally) self-adjoint Dirac operator, in which
case one will often consider the symmetric square

/∇∗ /∇

instead of the usual square /∇2.
Finally, when working in Riemannian signature it is often convenient to have /∇2 being a

positive operator. In this case, signature is usually taken as (n, 0) and with the convention
uv + vu = 2 〈u|v〉 the suitable Dirac operator has no i factor while it does with the opposite
convention for the Clifford algebra.
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Chapter 5

A few formulas in
Riemann-Cartan Geometry
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Riemann-Cartan geometry is the geometry of manifolds equipped with a metric and a metric
connection. While (pseudo-)Riemannian geometry deals with manifold equipped with only
a metric, which specifies uniquely a torsionless connection called the Levi-Civita connection,
Riemann-Cartan geometry allows for the extra degree of freedom that is torsion. As a consequence,
many equations of Riemannian geometry acquire a torsion contribution. In this section, we
present a few of these formulas which we will need in later parts.

Since standard differential geometry cursus often involves Riemannian geometry but rarely get
students used to deal with connections presenting torsion, one has to be very careful when using
differential geometry formulas and make sure they do not rely on a torsionlessness assumption.
These formulas include

Ricµν = Ricνµ
and

d(iXvol) = tr(∇X)vol

for X a vector field and vol the riemannian volume. The latter reveals an ambiguity1 in the
definition of covariant divergence in presence of torsion and is often involved in integrations by
parts.

Throughout this section we will consider an oriented n-manifold M equipped with a metric
g of signature (p, q) and a metric connection ∇. Orientation defines a Riemannian volume vol
and g defines a bundle of proper (pseudo-)orthonormal frames SO+(M)→M , which is equipped
with a soldering form α ∈ Ω1(SO+(M),Rp,q)SO+

p,q and connection 1-form ω ∈ Ω1(SO+(M), sop,q).
Calculations in this section will not use the Cartan geometry point of view therefore “curvature”
will mean curvature of the principal connection 1-form ω and torsion will be considered as a
distinct object.

1Arguably the more geometric definition is the one relying on the volume form and the exterior differential.
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The Ricci curvature

The Ricci curvature is a component of the curvature of the connection which can be defined for
any linear tangent connection – it is easy in our definition below to replace SO+

p,q by another Lie
group acting on Rn. On the frame bundle, it is represented by the Ricci curvature form which is
a tensorial covector-valued 1-form:

Ric ∈ Ω1(SO+(M),Rp,q∗)

It is obtained from Ω by representing sop,q in End(Rp,q) then taking the trace with respect to the
first 2-form index, using the connection to identify Rp,q with the horizontal space.

Let us write
ρ : sop,q → End(Rp,q)

the natural representation of sop,q and

u : Rp,q → Γ(T SO+(M))

the horizontal vector fields such that at each point of SO+(M) (frames of TxM for x ∈M), ua is
the horizontal lift to T SO+(M) of the vector in TxM corresponding to ea ∈ Rp,q. In other words,

〈α|u〉 : Rp,q → Γ(SO+(M),Rp,q)

is the natural embedding into constant sections.
Then the Ricci curvature form can be expressed by the following formula, using I, J for

coordinates of SO+(M), i for indices in sop,q and a, b for indices in Rp,q:

RicJ,b = ΩiIJρai,buIa (5.1)

As a tensorial Rp,q∗-valued 1-form on SO+(M), it is associated to an (a priori non-symmetric)
bilinear form on M .

5.1 The Bianchi identity
The curvature obeys the so-called (algebraic, or first) Bianchi identity:

dΘ + ω ·Θ = Ω · α (5.2)

We are interested in its consequences for the Ricci curvature, so we compute the contraction

(Ω · α)aIJKuIa = (Ωiρaib ∧ αb)IJKuIa
= uIa

(
ΩiIJρaib ∧ αbK + ΩiJKρaib ∧ αbI + ΩiKIρaib ∧ αbJ

)
= RicJ,b ∧αbK + ΩiJKρaia − RicK,b ∧αbJ

(Ω · α)aIJKuIa = RicJ,b ∧αbK − RicK,b ∧αbJ

(5.3)

in which Ωiρaia vanished because sop,q acts by traceless endomorphisms; this term corresponds to
the action of Ω on the determinant line bundle of M . Applying the same contraction to the left
side of (5.2) we obtain

(dΘ + ω ·Θ)aIJK u
I
a = RicJ,b ∧αbK − RicK,b ∧αbJ (5.4)
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which can be read as: the antisymmetric part of the Ricci curvature is equal to the covariant
exterior divergence of the torsion.

We want to express the left hand term with a covariant divergence, working in the vector
bundle trivializing vector-valued 2-forms. Let us state the final formula beforehand. We write it
over the base manifold, using tr(T )µ = T ννµ and div∇ Tµν = ∇ρT ρµν :

Ricµν −Ricνµ = div∇(T )µν − d tr(T ) (5.5)

Preliminary definitions

We need to introduce a somewhat cumbersome notation in order to differentiate between horizontal
forms and Λ•Rp,q∗-valued forms on the frame bundle. This is because although they are identified
through the solder form, the covariant exterior differential acts differently on each of them. This
distinction is harder to keep track of when working on the base manifold, but working on the
frame bundle makes it clearer.

We now define the morphism relating forms of both kind. Let E be an arbitrary (finite-
dimensional) representation of sop,q. Let σ be an equivariant horizontal k-form with values in
E. We define σ̂ the equivariant section of ΛkRp,q∗ ⊗ E defined by the isomorphism that the
connection establishes between the horizontal distribution and Rp,q:

σ̂Aab...k := σAI1I2...Iku
I1
a u

I2
b . . . uIkk (5.6)

We introduce two avatars of the covariant differential: the first one is the standard covariant
exterior differential

dωA = dA+ ω ·A

for A an equivariant horizontal differential form with values in a representation E of sop,q. For
example the definition of the torsion can be written as:

Θ = dωα (5.7)

The second one is an antisymmetrised covariant derivative. We write it dω∧ and only applies
to equivariant sections of representations ΛkRp,q∗ ⊗ E of sop,q (0-forms) with E a representation
of sop,q. Let σ̂ be an equivariant section of ΛkRp,q∗ ⊗E (corresponding to an equivariant section
σ ∈ Ωk(SO+(M), E)). We consider

dωσ̂ ∈ Ω1(SO+(M),ΛkRp,q∗ ⊗ E) ∼−−→
·7→·̂

Γ(SO+(M),Rp,q∗ ⊗ ΛkRp,q∗ ⊗ E)

and compose with the antisymmetrisation Rp,q∗ ⊗ ΛkRp,q∗ → Λk+1Rp,q∗ to obtain

dω∧ : Γ(SO+(M),ΛkRp,q∗ ⊗ E)→ Γ(SO+(M),Λk+1Rp,q∗ ⊗ E) (5.8)

We denote ∧̂ for the product in the exterior algebra Λ∗Rp,q∗, to distinguish it from the wedge
product ∧ of Ω∗(SO+(M)). We also introduce the following trace of vector-valued horizontal
k-forms:

tr(σ)JK... := uIaσ
a
IJK... ∈ Ωk−1(SO+(M)) (5.9)

and will also use the natural trace on ΛkRp,q∗ ⊗Rp,q. The contracted Bianchi identity (5.4) takes
the form

̂tr (dωΘ)ab = R̂icab − R̂icba (5.10)

The last definition we need is that of the contraction of an E-valued k-form with the Rp,q-valued
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2-form Θ. Let A ∈ Ωk(SO+(M), E). We define the following equivariant E-valued (k + 1)-form

(ΘyA)I0···Ik :=
∑

06i<j6k
(−1)i+jΘb

Ii,Iju
J
bAJ,I0,···Îi···Îj ···Ik

Alternatively, the contraction can be defined using the trace:

Θ̂y Â = tr
(

Θ̂∧̂Â
)
− tr(Θ̂)∧̂Â

The contracted Bianchi identity

We want to re-express tr ◦dω in

tr (dωΘ)JK = uIa (dΘIJK + ω ·Θ) (5.11)

We will need the following formula

Lemma 5.1.1. Let A be a E-valued equivariant horizontal k-form. Then

d̂ωA = dω ∧ Â+ Θ̂y Â

The proof simply uses the fact that uayω = 0 and one computes the components of the
exterior differential:

dωA(ua0 , ua1 . . . uak) = dA(ua0 , ua1 . . . uak)

=
∑
i

(−1)iuai(A(ua0 . . . ûai . . . uak))

+
∑
i<j

(−1)i+jA([uai , uaj ], ua0 . . . ûai . . . ûaj . . . uak)

=
∑
i

(−1)iuai(Âa0...âi...ak)

+
∑
i<j

(−1)i+jA(ubΘb(uai , uaj ), ua0 . . . ûai . . . ûaj . . . uak)

=
∑
i

(−1)idωÂa0...âi...ak(uai) +
∑
i<j

(−1)i+jΘb(uai , uaj )Âb,a0...âi...âj ...ak

which we write as
d̂ωA = dω ∧ Â+ Θ̂y Â (5.12)

We can now rewrite (5.10):

tr(dω ∧ Θ̂ + Θ̂yΘ)ab = R̂icab − R̂icba (5.13)

We extract a divergence term with the help of the following lemma:

Lemma 5.1.2. Let Â be an equivariant section of Rp,q⊗ΛkRp,q∗. Then tr
(

dω ∧ Â
)
decomposes

as follows
tr
(

dω ∧ Â
)

= tr dωÂ− dω ∧ tr Â
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It follows from decomposing the indices over which the trace is taken:

tr
(

dω ∧ Â
)
a1...ak

= δa0
b

(∑
i

(−1)idωÂba0...âi...ak
(uai)

)
tr
(

dω ∧ Â
)
a1...ak

= dωÂba1...âiak
(ub)−

∑
i

(−1)i−1dωÂbba1...âi...ak
(uai)

(5.14)

Using Lemma 5.1.2 then once again Lemma 5.1.1, we perform the following computation:

tr(dω ∧ Θ̂) = tr dωΘ̂− dω ∧ tr Θ̂

= tr dωΘ̂−
(

d̂ω tr Θ− Θ̂y tr Θ
)

but tr Θ is simply an (equivariant) 1-form so that

dω tr Θ = d tr Θ

and Equation (5.10) now takes the form:(
tr(dωΘ̂)− d̂ tr Θ + ̂tr(ΘyΘ) + Θ̂y tr Θ

)
ab

= R̂icab − R̂icba (5.15)

with tr dωΘ̂ corresponding to the usual covariant divergence2. Finally we prove that the quadratic
term in Θ vanishes:

Lemma 5.1.3.
tr(Θ̂y Θ̂) + Θ̂y tr Θ = 0

The computation is straightforward:

tr(Θ̂y Θ̂)ab = δce

(
Θ̂e
dcΘ̂d

ab + Θ̂e
daΘ̂d

bc + Θ̂e
dbΘ̂d

ca

)
= Θ̂c

dcΘ̂d
ab + Θ̂c

daΘ̂d
bc + Θ̂c

dbΘ̂d
ca

= − tr(Θ̂)dΘ̂d
ab + Θ̂c

daΘ̂d
bc − Θ̂d

caΘ̂c
bd

= −Θ̂y tr Θ̂ + 0

Our final rewriting of (5.10) is

tr(dωΘ̂)ab − d(tr Θ̂)ab = R̂icab − R̂icba (5.16)

which corresponds on M to Equation (5.5).

5.2 Variation of the Ricci curvature
We want to compare the Ricci curvature of two connections. Let ω and ω + τ be two connection
1-forms: τ ∈ Ω1

hor(SO+(M), sop,q)SO+
p,q . We denote their respective curvature 2-forms Ω and Ωτ .

2It corresponds to the quantity ∇µTµνρ on M but it can be argued that covariant divergence should have an
additional term when ∇ has torsion.
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They are related by the following equation

Ωτ = dω + dτ + 1
2 [ω ∧ ω] + [ω ∧ τ ] + 1

2 [τ ∧ τ ] = Ω + dωτ + 1
2 [τ ∧ τ ] (5.17)

Using the representation embedding: sop,q ↪→ Rp,q ⊗ Rp,q∗, we can take the trace and we obtain

Ric(ω + τ)J,b = ρai,bu
I
a

(
Ω + dωτ + 1

2 [τ ∧ τ ]
)i
I,J

= Ric(ω)J,b + tr
(

dωτ + 1
2 [τ ∧ τ ]

)
J,b

or in terms of Rp,q∗ ⊗ Rp,q-valued field on the frame bundle

R̂ic(ω + τ) = R̂ic(ω) +
̂

tr
(

dωτ + 1
2 [τ ∧ τ ]

)
(5.18)

Using the lemmas, it is also possible to reformulate it in a similar way to Equation (5.16):

R̂ic(ω + τ) = R̂ic(ω) + tr dω τ̂ − dω t̂r τ + tr
(

Θ̂ωy τ + 1
2 [̂τ ∧ τ ]

)
(5.19)

5.3 The torsion contribution to the Dirac operator

We want to compare the Dirac operator of a connection with the Dirac operator associated to
the Levi-Civita connection. For this reason, we have to change the setting from a SO+-principal
frame bundle to a Spin+-principal frame bundle.

The Dirac operator on the spin frame bundle

In this section, the spin frame bundle is equipped with a principal connection ω. We consider a
Clifford module Σ and ψ : Spin+(M)→ Σ an equivariant map. We write

γ : Rp,q∗ → End(Σ)

the “gamma matrices”. The Dirac operator applied to ψ can be identified with

/dωψ := γauay dωψ = γaLuaψ

The torsion contribution

Let us call ωLC the connection 1-form of the Levi-Civita connection. There is an equivariant
horizontal spinp,q-valued 1-form κ such that

ωLC = ω + κ

The form κ is called contorsion. It will be useful to decompose it as a horizontal 1-form with
values in Rp,q ⊗ Rp,q∗:

κab = κacbα
c
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Since the Levi-Civita connection is by definition torsion-free, the torsion of ω is readily computed
as

Θa = − [κ ∧ α]a

= −κab ∧ αb

= −κacbαc ∧ αb

= 1
2 (κabc − κacb)αb ∧ αc

Thus
Θa

bc = κabc − κacb
This relation is readily reversed to obtain, using the metric ηab to freely lower indices [Sha02;
Ham02]:

κabc = 1
2 (Θabc −Θcab + Θbca)

Note that the vectors ua associated to ω are no longer horizontal for the Levi-Civita connection
but they satisfy

α(ua) = ea

which is independent of the connection 1-form. Recall the embedding from Section 4.1.3:

(xab) ∈ sop,q 7→
1
4x

a
b[γa, γb] = 1

2x
a
bγaγ

b ∈ spinp,q ⊂ Clp,q

We can thus compute the Dirac operator applied to ψ as follows:

/dωψ = γauay dωψ
= γauay (dωLC − κ·)ψ

= /dωLCψ − γa
1
2κ

b
ac

1
2γbγ

cψ

We are interested in computing the extra term

−γa 1
2κ

b
ac

1
2γbγ

c = −1
4κbacγ

aγbγc

We proceed to the following decomposition of the components

2κbac = Θbac −Θcba + Θacb

= 1
3 (Θbac + Θcba + Θacb) + 4

3 (Θbac + Θcab)−
2
3 (Θbac + Θabc)

= 1
6 (Θbac + Θcba + Θacb −Θbca −Θcab −Θabc) + 4

3 (Θbac + Θcab)−
2
3 (Θbac + Θabc)

= Θ[bac] −
8
3Θ(bc)a −

4
3Θ(ab)c

where the brackets [ · ] stand for the normalised antisymmetrised tensor and the parentheses ( · )
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for the normalised symmetrised tensor. The contraction with the gamma matrices gives

2κbacγaγbγc =
(

Θ[bac] −
8
3Θ(bc)a −

4
3Θ(ab)c

)
γaγbγc

= Θ[abc]γ
aγbγc − 8

3Θbcaγ
aγ(bγcc)− 4

3Θabcγ
(aγb)γc

= Θ[abc]γ
aγbγc − 8

3Θbcaγ
aηbc − 4

3Θabcη
abγc

= Θ[abc]γ
aγbγc − 4Θabcη

abγc

and
− 1

4κbacγ
aγbγc = −1

8Θ[abc]γ
aγbγc + 1

2Θabcη
abγc (5.20)

is the contribution of the torsion to the Dirac operator:

/dωψ = /dωLCψ +
(

1
2Θabcη

abγc − 1
8Θ[abc]γ

aγbγc
)
ψ (5.21)
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In this section, we define Lie groupoids and foliations and present essential results and
examples.

6.1 Lie Groupoids
Lie groupoids are sometimes presented as structures encompassing the geometry of differentiable
manifolds and the structure of Lie groups. We will present a somewhat different perspective.
General references for this section are [Mac05; MM03].

Let us first discuss groupoids more generally. They can be thought of as a generalisation of
groups. Most groups arise as groups of transformations: a set of invertible transformations of some
space. Elements of the group correspond to “global”, or “rigid”, transformations of the space: this
rigidity is vividly illustrated by the example of the group of rotations of a three-dimensional solid.
One could say that this picture relies on the finite dimensionality of the group of rotations. We
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will see below how some infinite-dimensional groups can be naturally constructed as a byproduct
of a Lie groupoid structure.

Seen along similar lines, a groupoid contains both the data of the transformations and of the
“space” being acted on. An element, or a morphism, of a groupoid consists in the data of a starting
point and an ending point, both belonging to the space, and “morphism data” describing in a way
how the points are related. One can say that while a group acts globally on one single object, a
groupoid acts between points. From this perspective, a group G acting on a set X can be readily
represented as a groupoid: rather than interpreting an element g of G as a global transformations
of X, one would consider a copy of g for each point of x, as a “morphism” connecting x to g · x.
We will describe in more detail this construction called action groupoid below.

More abstractly, a group is the abstract algebraic structure of a group of transformation of
some object. As such, it can be made to “act” on various spaces. Comparatively, a groupoid is
the abstract algebraic structure of transformations and isomorphisms of a family of objects. This
idea will be formalised with the notion of action of a Lie groupoid defined in Section 6.1.5. This
should give a more precise picture of what is meant by “the geometry of differentiable manifolds
and the structure of Lie groups”: in a groupoid, morphisms have a “spatial”, sometimes called
“horizontal”, extension, which is supported by an underlying space (a manifold, in the case of Lie
groupoids).

Definition 6.1.1 (Groupoids). A groupoid Γ is defined by:

• A set Γ0 with elements called objects, or points

• A set Γ1 with elements called morphisms.

• A source map s and a target map t: Γ1
s

⇒
t

Γ0. For (a, b) ∈ (Γ0)2 we define

Γ(a, b) = {γ ∈ Γ1 | (s(γ), t(γ)) = (a, b)}

• An identity section:

e :
{

Γ0 → Γ1

a 7→ ea

which is a section of both s and t:

s ◦ e = t ◦ e = idΓ0

• Composition maps for all (a, b, c) ∈ (Γ0)3 which are maps

◦ : Γ(b, c)× Γ(a, b)→ Γ(a, c)

such that the following associativity diagram commutes for all points a, b, c, d:

Γ(c, d)× Γ(b, c)× Γ(a, b)

Γ(b, d)× Γ(a, b) Γ(c, d)× Γ(a, c)

Γ(a, d)

◦×id
id×◦

◦
◦
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and such that the identity section satisfies the following:

( · ) ◦ e(a) = idΓ(a,b)

e(a) ◦ ( · ) = idΓ(c,a)

• Inversion maps for all (a, b) ∈ (Γ0)2:

i :
{

Γ(a, b) ∼−→Γ(b, a)
γ 7→ γ−1

such that for all γ ∈ Γ(a, b),

γ ◦ γ−1 = eb

γ−1 ◦ γ = ea

This abstract definition is very general: for example there is a groupoid formed by all the
(small enough sets) and bijections between them. Indeed a groupoid is exactly a category whose
arrows are all invertible and therefore given any (small enough) category there is a groupoid
composed of all invertible arrows.

The groupoids that will be of interest to us will be “concrete” in the following sense: they
represent morphisms between objects living in a common “geometrical context”. In particular,
the groupoid we will consider will have a manifold of objects, and the morphisms between objects
will also have a structure of manifold. A convenient framework which will be suitable for our
purposes is that of Lie groupoids.
Definition 6.1.2 (Lie groupoids). A Lie groupoid Γ is a groupoid (Γ0,Γ1, s, t, i, ◦) such that:

1. Γ0 has a structure of smooth manifold

2. Γ1 has a structure of possibly non-Hausdorff, possibily non-paracompact smooth manifold.

3. s, t, i, ◦ are all smooth maps.

4. s and t are (surjective) submersions.
We may allow Γ0 to be non-Hausdorff, in which case we will talk of a non-Hausdorff Lie

groupoid.
A Lie groupoid over a manifold M is a Lie groupoid which has M as object manifold.
In particular, each pair of points of the groupoid has a manifold of morphisms between them.

For the sake of convenience, we will sometimes talk indistinctly of Lie groupoids and of their
morphism manifolds when there is no risk of confusion about the structure maps.

We now introduce some general terminology useful for working with groupoids:
Definition 6.1.3. Let Γ be a Lie groupoid.

1. An automorphism is a morphism from a point to itself. The automorphisms at a point
a ∈ Γ0 form the automorphism group of a, or isotropy group of a, written AutΓ(a) or Aut(a).
They have natural structures of Lie groups.

2. The orbit of a point a ∈ Γ0 is the set of points b ∈ Γ0 such that there exists a morphism
between a and b. They form a partition of Γ0 into (immersed) submanifolds and the
corresponding quotient space is called the orbit space of Γ. A groupoid with only one orbit
is called transitive.



112 CHAPTER 6. FOLIATIONS, LIE GROUPOIDS AND ORBIFOLDS

3. Given a point a, the set of morphisms between points of the orbit of a is a submanifold
of Γ1 and defines a transitive Lie groupoid over the orbit of a. It is called the transitive
component of a. A groupoid is partitioned into its transitive components.

There is a natural notion of morphism between Lie groupoids which is very strict but still
very useful:

Definition 6.1.4 (Strict morphisms of Lie groupoids). Let Γ and Γ′ be two Lie groupoids. A
(strict)1 morphism is the data of two smooth maps φ0 : Γ0 → Γ′0 and φ1 : Γ1 → Γ′1 which preserve
the groupoid structure in the sense that the following diagrams commute:

Γ1 Γ′1

Γ0 Γ′0

φ1

s s′

φ0

Γ1 Γ′1

Γ0 Γ′0

φ1

t t′

φ0

Γ1 Γ′1

Γ0 Γ′0

φ1

φ0

e e′

Γ1 ×(s,t) Γ1 Γ′1 ×(s′,t′) Γ′1

Γ1 Γ′1

φ1×(s,t)φ1

◦ ◦

φ1

Morphisms of Lie groupoids can be naturally composed in an associative manner.

We now present a few examples.

6.1.1 Examples
Pair groupoid and discrete groupoid

Let M be a smooth manifold. There are two natural ways in which it can be understood as a Lie
groupoid.

First, the discrete groupoid over M is the Lie groupoid with M as manifold of points, no
morphism between two different points and only the identity morphism from each point to itself.
The manifold M corresponds to the space of orbits of the groupoid; no morphism of the groupoid
relate points of the manifold in a non-trivial way.

On the other hand, the pair groupoid over M is the Lie groupoid with

M ×M
π1
⇒
π2

M

as source and target maps. Since there is exactly one morphism between two points, identity,
composition and inversion can be defined in only one way. Here, the manifold is seen as one
cohesive, symmetric object: there is exactly one orbit. For any point m ∈ M , the manifold of
morphisms starting from M is diffeomorphic to M . In other words, the degrees of freedom of M
appear in the “direction” of morphisms and not in the orbit space. There is however no isotropy:
all isotropy groups are trivial.

1In opposition to the homotopical notions of generalised morphism or of anafunctor.
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Lie groupoids over M all come with a Lie groupoid morphism to the pair groupoid, given on
the morphism space by (s, t). In fact, a Lie groupoid can be “decomposed” into its subgroupoid
of automorphisms (the “internal part”) and its image in the pair groupoid:

Aut(Γ) ↪→ Γ→ Pair(M)

Jet groupoids

Let M be a smooth manifold and k an integer. The pair groupoid can be straightforwardly
generalised to include “k-contact data” on how the points of M are related. Indeed the space
of k-jets of diffeomorphisms of M , which we wrote J kdiff(M), has naturally a structure of Lie
groupoid above M : we explained in Section 2.5 and the previous sections how they can be
composed and inverted.

Disjoint union of Lie groups

Let (Gi)i∈I a finite set of Lie groups. Within the group framework, there are two standard ways
to “combine” them:

• The direct product in which elements from groups with different indices commute.

• The free product in which the only relation between elements of groups with different indices
is that all neutral elements are made equal.

However, in the framework of Lie groupoids, there is another alternative, which preserves the
individuality of each group. This is made possible because groupoids allow for “spatial” extension.
The Lie groups can be organised into a Lie groupoid

∐
i∈I Gi

s

⇒
t
I with no morphism between

distinct elements of I and a group Gi of automorphisms above each point i ∈ I.
The transitive components of the disjoint union are exactly the groups Gi.

Action groupoids

Let G be a Lie group and M a G-manifold. The action of G on M can be described with a Lie
groupoid, which is one of our model cases for Lie groupoids. The idea is that an element g in G
can be interpreted as morphisms starting from each point m and ending on the point g ·m. In
other words, the action map G×M →M can be interpreted as the target map of a Lie groupoid:

Example 6.1.5 (Action groupoids). Let M be a smooth manifold with an action of a Lie group
G. There is an associated groupoid with Γ1 = G×M and Γ0 = M and as structure maps:

s : (g,m) ∈ G×M 7→ m e : m ∈M 7→ (e,m)
t : (g,m) ∈ G×M 7→ g ·m i : (g,m) ∈ G×M 7→ (g−1,m)

◦ : [(g2, g1 ·m), (g1,m)] 7→ (g2 · g1,m)

It is called the action groupoid and is sometimes written GnM .

From the groupoid perspective on the action groupoid, morphisms starting from different
points are unrelated but “happen” to have a component living in G which allows for comparison
between morphisms with unrelated endpoints. Indeed, the Lie groupoid structure of the action
groupoid in itself does not have enough internal structure to identify it as an action groupoid.
One need to work with extra structure, the analysis of which will be carried in Section 8.1.1.
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In particular, G as a group acting on M can be interpreted as a group of “global sections” of
the groupoid, namely sections of s : G×M → M . It is then natural to consider more general
sections of the form m 7→ g(m) and therefore actions of the form

m ∈M 7→ g(m) ·m

possibly only locally defined. This is very reminiscent of actions of gauge groups and we will see
below how it is related.

A simple generalisation of action groupoids is groupoids associated with a “local group action”,
in that only “small” elements of a group are allowed to act on the points of a manifold. A common
example is the local flow of a vector field on a manifold, understood as a local action of the group
R. In particular, Lie groupoids allow for the group elements acting to depend on the point of the
manifold.

From the perspective of action groupoids, one could say that rather than a generalisation of
Lie groups, Lie groupoids are a generalisation of G-manifolds, with “the acting group allows to
vary depending on the initial point”. They can include “non-effective” data in the sense that
there may exist different morphisms between the same pair of points of M .

Let us also record the action groupoid for a right group action, since it will be useful for our
considerations:

Example 6.1.6 (Action groupoids). Let P a smooth manifold with a right action of a Lie group
H. There is an associated groupoid with Γ1 = P ×H and Γ0 = P and as structure maps:

s : (p, h) ∈ P ×H 7→ p e : p ∈ P 7→ (p, e)
t : (p, h) ∈ P ×H 7→ p · h i : (p, h) ∈ P ×H 7→ (p, h−1)

◦ : [(p · h1, h2), (p, h1)] 7→ (p, h1 · h2)

It is called the action groupoid and is sometimes written P oH.

Atiyah-Lie groupoids

Let M be a smooth manifold and P →M a G-principal bundle with G a Lie group. It can be
interpreted as a “manifold of G-torsors”. The Atiyah-Lie groupoid associated with P , written
At(P ), is a groupoid over M defined as follows: the morphisms from a point a to a point b are
the G-equivariant diffeomorphisms Pa

∼−→GPb. There is a construction which gives it a manifest
structure of smooth manifold:

At(P ) ' (P × P ) /{(p1g, p2g) ∼ (p1, p2)}g∈G

with a Cartesian product (and not a fibred product over M). Identities, compositions and
inversions are their natural realisations for diffeomorphisms.

The Atiyah-Lie groupoid is an example of an “internal” groupoid over M in the following
sense: there is no restriction on which points are related by a morphism, but given two points
there is a remaining degree of freedom on the morphisms between the points. The extra degree of
freedom does not manifest on M itself but can be seen on (associated) bundles over M .

Example 6.1.7 (Atiyah-Lie groupoid of the frame bundle). Assume M is an n-dimensional
manifold. Consider its frame bundle GL(M).

The morphisms of the associated Atiyah-Lie groupoid consists in GLn-equivariant diffeomor-
phisms between fibres. But a GLn-equivariant diffeomorphism between the linear frames of Tm1M
and the linear frames of Tm2M is exactly the same as a linear isomorphism Tm1M

∼−→Tm2M .
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Furthermore, such a linear isomorphism is exactly the same as an invertible 1st order contact
element from m1 to m2.

From this, we can conclude (we omit checking the correspondence of the structure maps) that
there is a Lie groupoid diffeomorphism

At(GLn(M)) ' J 1
diff(M)

We define another groupoid on M which is closer to the idea of “points of the space with a
data of how they are related”. It will however not be a Lie groupoid. The morphisms from a
point a to b are the classes of smooth paths from a to b with sitting instants up to thin homotopy.
A path is said to have sitting instants if it is locally constant in the neighbourhood of each end.
A thin homotopy is a smooth homotopy such that the two-parameter map has rank at most one
at every point; they are furthermore required to have sitting instants at every time. Composition
is given by the concatenation, which is seamlessly possible since the path have sitting instants.
Identities are given by constant paths and inversion is given by reversing the parametrisation.

We call it the (smooth) path groupoid of M2 and write it P(M).
The path groupoid gives a convenient framework to work with parallel transport: given a

G-principal connection on P → M , the corresponding parallel transport along paths defines a
groupoid morphism

P(M) PT−−→ At(P )

In fact, any such groupoid morphism has to be the parallel transport associated with a smooth
G-principal connection [Dum09; SW07]. Therefore the groupoid language allow handling the
whole parallel transport as an algebraic structure, instead of restricting to holonomy groups, for
example: the holonomy groups are the isotropy groups of the image groupoid in At(P ).

6.1.2 Étale groupoids
Before defining étale groupoids, let us introduce a familiar example.

Let M be a smooth manifold and M̃ a covering space. Given a point m in M and two points
x, y in the fibre M̃m, there is a smooth map defined in a neighbourhood of x which sends x to y
and preserves the fibration over M . According to covering space theory this map extends to a
global covering automorphism iff π1(M̃, x) and π1(M̃, y) have the same image in π1(M,m).

This can be encoded in a groupoid over M̃ : M̃ ×M M̃
π1
⇒
π2

M̃ . The property described above
means that to each element of the groupoid of source x and target y is associated a germ of
diffeomorphisms which sends x to y.

Note that this germ of diffeomorphisms can be directly obtained from the groupoid itself.
Indeed both source and target maps

M̃ ×M M̃
s

⇒
t
M̃

are themselves covering maps. As such they may locally be inverted. Given (x, y) ∈ M̃ ×M M̃ ,
one can choose a neighbourhood on which both s and t are diffeomorphisms. Considering the
map t ◦ s−1 between the images give a representative of the germ of covering automorphisms.

Note that the action groupoid of AutM (M̃) has a natural embedding into M̃ ×M M̃ but this
is an isomorphism only when the covering is Galois: the groupoid M̃ ×M M̃ has more morphisms
in the general case. Here again, groupoids appear has a generalisation of group actions, with the

2This is a different definition than in [SW07].
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acting manifolds over each point which are not always related to one absolute global manifold
(an acting Lie group).

This is an example of the so-called étale Lie groupoids:

Definition 6.1.8 (Étale Lie groupoids). A Lie groupoid is étale when its source map, or
equivalently its target map, is a local diffeomorphism.

Note that étale Lie groupoids have a morphism manifold and a base manifold of same
dimension.

The mechanism described for covering manifolds works more generally for étale groupoids,
which usually also have morphisms between different points. The construction is totally similar:
let Γ be an étale Lie groupoid over a manifold M and γ a morphism from m1 to m2. There is a
neigbourhood U of γ on which the restrictions of s and t are diffeomorphisms. Therefore one can
construct a local diffeomorphism from s(U) to t(U):

U

s(U) t(U)
m1 m2

s|U
∼

t|U
∼

∼

Two different choices of U will give local diffeomorphism which coincide on a smaller neighbourhood
so that they have the same germ atm1. This construction is naturally compatible with composition
and inversion, and on identity morphisms the germ can be represented by identities.

Although it is not of finite dimension, there is a tautological example of étale groupoid
over a manifold M : the groupoid of differentiable germs, or Haefliger groupoid [Car12], of M :
Diffgerms(M). Its space of morphisms between m1 and m2 is the space of germs of locally defined
diffeomorphisms sending m1 to m2.

The mechanism we described above implies that all étale groupoids above M come with a
natural map to Diff(M). They also come with natural maps to the Lie groupoids of jets of
diffeomorphisms J kdiff(M).

6.1.3 Proper Lie groupoids
Properness is a regularity property of groupoids, akin to properness of group actions. It will be
recurrent throughout the text.

We first recall the definition of a proper map between topological spaces.

Definition 6.1.9 (Proper map). Let f : X → Y be a continuous map between topological
spaces.

The map f is said to be proper if for all compact subsets K of Y the inverse image f−1(K) is
compact.

A proper map is a map that “tends to infinity” when its argument “goes to infinity”. This can
be formalised for example using one point compactifications.

The following properties will be useful:

Theorem 6.1.10 ([Lee03], Appendix A).

• A continuous closed map with compact fibres is proper.

• A continuous proper map to a locally compact Hausdorff space is closed (and has compact
fibres).
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Informally speaking, a proper Lie groupoid is a Lie groupoid such that as a morphism goes to
infinity, either its source or its target as to go to infinity as well. Here is a proper definition:

Definition 6.1.11 (Proper Lie groupoid, [MM03; Mes16]). A Lie groupoid Γ
s
⇒
t
M is called

proper if 3 the map
Γ (s,t)−−−→M ×M

is a proper map.
If M is Hausdorff (which we usually assume), this to equivalent to requiring that (s, t) be

closed and have compact fibres.

Since the composition with any given morphism from y to x gives a diffeomorphism Γ(x, y) ∼−→Γ(x, x),
for (s, t) to have compact fibres is equivalent to require that the isotropy group of each point is
compact.

Example 6.1.12 (Proper group action). Let G be a Lie group acting continuously on a smooth
manifold X. Then the action is proper if and only if the action groupoid GnX is proper.

6.1.4 Sections and bisections of a groupoid
If a Lie groupoid is a space of morphisms between points, in order to consider morphisms defined
over the whole base manifold, one needs to look at sections of the Lie groupoid:

Definition 6.1.13 (Global section of a Lie groupoid). A global section of a Lie groupoid is a
global section of its source map. We write Sect(Γ) the space of (smooth) sections of the Lie
groupoid Γ.

In other words, a section attaches to each point a morphism starting from that point. Let us
assume Γ is a groupoid over a manifold M . In particular, to a section σ ∈ Sect(Γ) is associated a
map

t ◦ σ : M →M

Furthermore, sections can be associatively composed as follows:

σ2 ◦ σ1 : m 7→ σ2 [t(σ1(m))] ◦ σ1(m)

The identity section defines a neutral element for the composition so that Sect(Γ) forms a monoid,
or semi-group with identity.

The monoid of sections fits into a short exact sequence:

Theorem 6.1.14. Let Γ be a Lie groupoid over a manifold M . Then the monoid of sections of
Γ fits into the following short exact sequence of monoids:

Sect(Aut(Γ)) ↪→ Sect(Γ)� C∞(M,M)

Notice that sections belonging to Sect(Aut(Γ)) are invertible. In fact, a global section σ is
invertible as soon as t ◦ σ is. Such invertible sections are called (global) bisections:

Theorem 6.1.15. Let Γ be a Lie groupoid over a manifold M . Invertible sections form a group
Bisect(Γ), called the group of global bisections of Γ. It fits into the following short exact sequence
of groups:

Sect(Aut(Γ)) ↪→ Bisect(Γ)� Diff(M)
3Some authors require furthermore that the manifold of morphisms be Hausdorff.
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We now illustrate this construction with a few examples of Lie groupoids previously introduced:

Example 6.1.16. Let M be a smooth manifold.

• Global sections of the pair groupoid Pair(M) are exactly smooth maps M →M . Global
bisections are diffeomorphisms of M . The image of a section is the graph of the map in
M ×M : the pair groupoid gives algebraic structure to this space. In particular, this space
is the natural support for working with kernels and their convolution is naturally associated
with the composition law of the pair groupoid.

• Let G be a Lie group acting on M . Global sections of the action groupoid G nM are
identified with smooth maps M → G, but the composition depends on the action of G.
There is an embedding G ↪→ Bisect(GnM). In the Lie groupoid framework, it is “natural”
to consider the action of an element g(m) which is dependent on points of the base manifold.

• Let P be a G-principal bundle over M and consider the associated Atiyah-Lie groupoid
At(P ). Global bisections can be identified with diffeomorphisms of M equipped with a
G-equivariant lift to P . The group of global bisections is often called the gauge group of P .
Bisections can be shown to act on every associated bundle to P .

In particular, notice that the group of bisections is in general of infinite dimension. Lie
groupoids provide a finite-dimensional support to these infinite-dimensional groups which allows
working with these infinite-dimensional groups with finite-dimensional methods.

6.1.5 Action of a Lie Groupoid
An action of a group G is given by the data of an object X and a family of transformations
of X which satisfy the same composition relations as the elements of G. This generalises to
a groupoid as follows: an action of a groupoid Γ is given by a family of objects (Xa)a∈Γ0 and
families of transformations between the objects which satisfy the same composition relations as
the morphisms of Γ. In a way, it may be more appropriate here to think of elements of Γ0 as
objects, possibly gathered in a geometrical context, than “atomic” points.

In the case of Lie groupoids, we want the objects of the Lie groupoid to be represented
by manifolds, gathered in a “manifold of manifolds”, namely a (non-necessarily locally trivial)
bundled manifold. The morphisms are represented by diffeomorphisms between the fibre manifolds
indexed by points of the groupoid:

Definition 6.1.17 (Action of a Lie groupoid [MM03]). Let Γ : Γ1
s
⇒
t

Γ0 be a Lie groupoid. A
(left) action of Γ on a manifold M along a map φ : M → Γ0 is given by a map

µ : Γ1 ×(s,φ) M →M

(γ,m) 7→ γ ·m

such that

1. ∀(γ,m) ∈ Γ1 ×(s,φ) M, φ(γ ·m) = t(γ)

2. ∀m ∈M, eφ(m) ·m = m

3. ∀(γ′, γ,m) ∈ Γ1 ×(s,t) Γ1 ×(s,φ) M, (γ′ ◦ γ) ·m = γ′ · (γ ·m)
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In other words, µ defines a Lie groupoid structure on

Γ1 ×(s,φ) M
πM
⇒
µ
M

with the composition and neutral elements given by the corresponding structure maps in Γ.

This definition may seem very abstract, but we have already introduced a few examples:

Example 6.1.18. • Let M be a G-manifold and X → M a fibre bundle. Then an action
of G nM on X → M is equivalent to an action of G on X which gives it a structure of
G-equivariant bundle.

• Let P →M be a G-principal bundle. The Atiyah-Lie groupoid At(P ) naturally acts on P
along the fibration map P →M . Furthermore this action commutes with the action of G:
the map µ is G-equivariant. In fact, this allows constructing an action of At(P ) on all the
associated bundles.

• If P is equipped with a principal connection, its parallel transport induces an action of the
path groupoid of M on P . This action is associated with the Lie groupoid morphism from
the path groupoid to At(P ) defined by the parallel transport. Recall however that the path
groupoid is not a Lie groupoid.

• Let M be a foliated manifold (all terms will be introduced in Section 6.2). Linear holonomy
defines an action of the holonomy groupoid on the normal bundle to the foliation.

6.1.6 Weak equivalence of Lie groupoids

Lie groupoids have a notion of strict morphism, and correspondingly of strict isomorphisms.
There are more general notions of equivalences between Lie groupoids, which are essential

in the homotopical theory of Lie groupoids. Here we will simply present the notion of weak
equivalence, which will rely on two notions we define now.

Definition 6.1.19 (Full and faithful Lie groupoid morphism). Let Γ and Γ′ be two Lie groupoids
and Φ : Γ→ Γ′ be a strict Lie groupoid morphism. Then there is a commutative diagram

Γ1 Γ′1

Γ0 × Γ0 Γ′0 × Γ′0

(s,t)

Φ1

(s′,t′)

Φ0×Φ0

Then Φ is full and faithful if this diagram defines a pullback:

Γ1
∼−−→
Φ1

(Γ0 × Γ0)×Γ′0×Γ′0 Γ′1

In particular this implies that the fibres of (s, t) are sent by diffeomorphisms to fibres of (s′, t′).

Definition 6.1.20 (Essentially surjective Lie groupoid morphism). Let Γ and Γ′ be two Lie
groupoids and Φ : Γ→ Γ′ be a strict Lie groupoid morphism.
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It is possible to pullback through Φ0 outgoing morphisms in Γ′ as follows:

Γ0 ×Φ0,t Γ′1 Γ′1

Γ0 Γ′0

s

Φ0

Elements of the space Γ0 ×(Φ0,t) Γ′1 are points a of Γ0 along with a morphism in Γ′1 starting from
Φ1(a).

Then Φ is essentially surjective if the target map on Γ0 ×(Φ0,t) Γ′1:

Γ0 ×(Φ0,t) Γ′1 → Γ′1
t−→ Γ′0

is a surjective submersion. Surjectivity means that Φ0(Γ0) crosses all orbits of Γ′.

Definition 6.1.21 (Weak equivalence of Lie groupoids). A weak equivalence of Lie groupoids is
a strict Lie groupoid morphism which is both full and faithful and essentially surjective.

Example 6.1.22. Let G be a Lie group and H a closed subgroup. Then G acts transitively on
the coset space G/H. In the corresponding action groupoid G n G/H, the isotropy group of
[e] ∈ G/H is identified to H.

Then the inclusion (
Aut([e])

s

⇒
t

[e]
)
'
(
H × [e]⇒ [e]

)
↪→ GnG/H

is a weak equivalence of Lie groupoids. Indeed, fullness and faithfulness are straightforward since
the diagram

H GnG/H

[e]× [e] G/H ×G/H

Φ1

is nothing more than the inclusion of the fibre above [e] × [e], which is a pullback. Essential
surjectivity is a consequence of the transitivity of the action of G on G/H: the map

[e]×G→ G/H

([e], g) 7→ g · [e]

is manifestly a submersion.

Theorem 6.1.23 (Morita equivalence of Lie groupoids). The equivalence relation on Lie groupoids
generated by the relation “There exists a weak equivalence from Γ to Γ′” is called Morita equivalence.
A Morita equivalence from a Lie groupoid Γ to a Lie groupoid Γ′ is the data of a Lie groupoid Γ′′
with two weak equivalences:

Γ′′

Γ Γ′
∼ ∼

Two Lie groupoids are Morita equivalent if and only if there exists a Morita equivalence
between them.
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Morita equivalence is the suitable notion of equivalence when working with Lie groupoids as
presentations of their “orbit spaces”, effectively understood as differentiable stacks [Mes16].

6.2 Foliated manifolds
In this section we present fundamental notions and constructions related to foliated manifolds.
We will only consider regular foliations. In this whole section, M will be a differentiable manifold
of dimension n.

The notion of immersed submanifold will be relevant:

Definition 6.2.1 (Embedded and immersed submanifolds [Mic08; RS13]). An embedded sub-
manifold of M is the data of a subset N of M equipped with a structure of manifold such that
the inclusion is a smooth topological embedding.

An immersed submanifold of M is the data of a differentiable manifold N and of an injective
immersion into M :

iN : N →M

Two immersed submanifolds are identified if they have the same image and the corresponding
bijection is a diffeomorphism.

The notion of embedded submanifolds is stronger in that the image of an immersed submanifold
can have different immersed submanifold structures. If an embedded submanifold admits an
equations locally with respect to the topology of the ambient manifold, immersed submanifolds
i(N) may only admit local equations that identify open subsets of the immersed submanifolds
with respect to the finer topology of N .

Example 6.2.2. Consider an irrational action of R on the 2-torus T2. Then the orbits are
immersed submanifolds diffeomorphic to R, but they are not locally closed and therefore cannot
be embedded submanifolds.

6.2.1 Regular foliations
We first define regular foliations of codimension k on M :

Definition 6.2.3 (Foliations [Mic08]). A regular foliation on M of codimension k ∈ N is a
partition of M into connected immersed submanifolds (Li)i∈I of codimension k, called the leaves
of the foliation, which satisfy one of the two following equivalent properties:

• M admits a local basis of open subsets (Uj) on which there exists submersions ϕj : Uj → Rk
such that fibres of φj are exactly connected components of the intersections of leaves with
Uj : connected components of Li ∩ Uj for any i ∈ I.

• M admits a local basis of open subsets (Uj) on which there exists diffeomorphisms φj :
Uj
∼−→Rn−k×Rk such that inverse images of submanifolds Rn−k×{x} are exactly connected

components of Li ∩ Uj for any i ∈ I. Such a chart is called a foliation chart.

In both cases, given such an open subset Uj , a connected component of the intersection of a
leaf with Uj is called a plaque.

A manifold equipped with a foliation is called a foliated manifold. Since we will only work
with regular foliations, we will most often omit the qualifier regular.
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Remark. Since each leaf is an immersed submanifold, a foliation of codimension k defines an
immersed submanifold of codimension k ∐

i∈I
Li →M

such that the immersion is a bijection [Mic08]. From this perspective, a k-codimensional foliated
n-manifold can be understood as a (n−k)-manifold (which is paracompact although it usually has
an uncountable number of connected components) with additional transversal structure relating
different connected components. This manifold will be written MF .

Up to now, the definition could have been done without the requiring that the leaves are
connected. However, Frobenius’s theorem gives an equivalence between such foliations and local
structure on M . Before stating the theorem, we need a couple of definitions:

Definition 6.2.4 (Involutive distributions).

• A (smooth) distribution of codimension k on M is a vector subbundle of TM of codimension
k.

• A (smooth) distribution is called involutive if the Lie bracket of two sections is another
section of the distribution.

Theorem 6.2.5 (Frobenius Theorem [Mic08]). There is a bijection between foliations of codi-
mension k on M and (smooth) involutive distributions of codimension k on M which can be
constructed as follows:

{Foliation of codimension k} ↔ {Involutive distribution of codimension k}(∐
i∈I

Li

)
7→

(∐
i∈I

TLi ↪→ TM

)

The simplest example of foliations, which also somewhat plays the role of standard model, are
the so-called simple foliations.

Definition 6.2.6 (Simple foliations). Let f : M → X be a submersion. Then the connected
components of the fibres of f form a foliation on M , which has for codimension dimX.

When the fibres of f are all connected, X gives a very convenient model for the “space of
leaves” of the foliation. A central question in foliation theory is to characterise the structure of
the space of leaves of given foliations. In the following section, we describe its naive topological
structure.

6.2.2 Topological leaf space of a foliation
The leaf space is defined as the space of leaves of the foliation on M . As such, it is a set of
equivalence classes for the equivalence relation of belonging to a common leaf. Thus is can
be constructed as a quotient of M by an equivalence relation, and can be equipped with the
quotient topology. We will write F for the foliation structure and TF for the tangent involutive
distribution.

Let us write M/F for the space of leaves. It has a quotient map M π−→M/F . The quotient
topology is defined so that a map M/F → X to any topological space is continuous if and only if
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its pullback to M :
M X

M/F

is continuous.
In fact, the same approach allows defining a quotient smooth structure (Section 1.1) on M/F :

Definition 6.2.7 (Quotient smooth structure). Let P be a topological space with a smooth
structure (e.g. a smooth manifold) and π : P → Q a quotient map (a continuous surjection which
induces the topology of Q as a final topology).

Then the quotient smooth structure on Q is defined as follows: let U be an open subset of Q.
Then a map defined on U is smooth if and only if its pullback under π to π−1(U) is smooth.

It satisfies the following universal property: for every smooth space X, any smooth map
P → X which is constant on equivalence classes factors uniquely to a map Q → X which is
smooth. In particular a map f : Q→ X is smooth if and only if its pullback f ◦ π : P → X is a
smooth map.

This smooth structure is not necessarily locally Euclidean: the quotient space may not be
a manifold, even locally. Open subsets of M/F are in correspondence with open subsets of M
which are “saturated” in the following sense: they contain the leaf of any element they contain

{Open subsets of M/F} → {Saturated open subsets of M}
U 7→ π−1{U}

Smooth functions on U are exactly smooth functions on π−1(U) which are constant on leaves.
This raises the question of what does the set of these functions look like. Such questions can

be approached using the notion of transversal:
Definition 6.2.8. Let m be a point of M and k the codimension of the foliation. A transversal
to the foliation at x is any submanifold Sx of dimension k which contains x which is transversal
to the foliation in the following sense:

TSx ⊕ T |SxF = T |SxM

In other words, S is transversal to every leaf of the foliation it intersects.
Note that with this definition a transversal at x contains x but needs to be transversal to the

foliation at every point. The idea is that when a transversal crosses at most once each leaf, it can
be used as a model for part of the leaf space. In order to justify this, we will need the following
result:
Theorem 6.2.9. Let S be a submanifold of M which is at every point transversal to F . Then
projection map to the leaf space

π : S →M →M/F

is an open map.
The proofs makes use of holonomy, which will be introduced in Section 6.2.3.

Proof. We need to prove the following: for all open subsets U of S, the subset Ū = π−1 (π(U)) is
an open subset. By definition, Ū is the following subset:

{m ∈M | ∃s ∈ S, s and m belong to the same leaf.}
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Namely, if we write Lx for the leaf x belongs to,

Ū =
⋃
s∈U

Ls

We will prove the following: if T is a transversal to F at a point x, then x admits a
neighbourhood basis of open subsets (Ux) such that all points of Ux belong to leaves of elements
of Ux ∩ T . Let us first justify why it implies the theorem.

Let x be a point in Ū . There exists a point s in S belong to the same leaf. As a consequence,
there exists a subtransversal S′ at s and a holonomy from (s, S′) to a transversal Q at x. In
particular, Q ⊂ Ū . Now applying the assumed result we know that x has a neighbourhood Vx
such that all elements belong to leaves of elements of Q. Therefore they belong to leaves of
elements of Ū hence they belong to Ū . We have shown that x has a neighbourhood included in Ū ,
and since this holds for every x, Ū is an open subset of X.

We now prove the claimed result. Let T be a transversal to F at a point x. Let ϕ : Ux ⊂
X → Rk be a submersion on a neighbourhood of x such that fibres are the plaques of Ux (k is
the codimension of F).

The restricted map
T ∩ Ux → Rk

is by hypothesis a local diffeomorphism at x therefore it is open. Let W be a neighbourhood of
ϕ(x) included in ϕ(T ∩ Ux). Then ϕ−1(W) is an open neighbourhood of x such that all elements
belong to leaves of elements of T . Since the supports of foliated charts form a basis of open
subsets of X, we obtain the claimed result.

We can now assert the following:

Theorem 6.2.10. Let S be a submanifold of M which is transversal to F at every point. Then
the restriction to S of the quotient map

S →M/F

is open and continuous and defines an embedding of S/F in M/F such that the smooth structure
of S/F is the restriction of that of M/F . In particular, if S crosses at most once each leaf, then
we obtain a smooth embedding

S ↪→M/F

In this way, transversals are candidates to build charts on the leaf space. This brings us to
the following criterion on the simplicity of foliations:

Theorem 6.2.11 (Simple foliations, [Fer21]). The quotient smooth space structure on the leaf
space is locally Euclidean if and only if the foliation is proper in the following sense: around every
point m, M admits a foliated chart such that plaques are the intersections of the support with the
leaves. In other words the intersections of leaves with the support of the chart are connected.

Such foliated charts give transversals which define charts on the leaf space, since the transversals
are openly embedded.

This theorem is strongly tied to Godement’s criterion for quotient manifolds, which we record
here:

Theorem 6.2.12 (Godement’s criterion, [Fer21], 9.3, [Bou07], 5.9.5, p.51). Let M be a manifold
(non necessarily Hausdorff or paracompact). Let R ⊂ M ×M be the graph of an equivalence
relation. There exists at most one manifold structure on M/R such that the quotient map
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M →M/R is a submersion. The quotient manifold structure exists if and only if the following
two conditions are satisfied:

1. R is an (embedded) submanifold of M ×M

2. The projection on the first factor R→M is a submersion

In this case, the quotient manifold is Hausdorff if and only if R is closed in M ×M .

The proof is very close to the construction for proper foliations, but equivalence relations allow
for non-connected equivalence classes. In particular, the quotient manifold structure matches
with the quotient smooth structure as a smooth space.

However, many naturally occurring foliations do not satisfy the properness property, as the
following example shows:

Example 6.2.13 (A singular leaf space). Consider a constant vector field (1, α) on the 2-torus
T2 with α irrational. The orbits form a foliation of T2 since they are integral manifold of the
vector field generating the action. This foliation is far from being proper: in fact each leaf is
dense in T2.

As a consequence, any smooth map on T2 which is constant on leaves is globally constant. In
particular, smooth maps on the leaf space are constant.

This example suggests that the structure of smooth space is not fine enough to capture the
structure of the leaf space in some cases. Note however that “structure of the leaf space” is very
vague. A more precise wording is as follows: the quotient smooth structure of the leaf space may
fail to distinguish the orbit spaces of transitive actions and non-transitive actions.

Finer structure of the leaf space is captured by the holonomy groupoid which we introduce in
the next section. Although we will use the holonomy groupoid for different purposes, it gives a
Lie groupoid model for the leaf space which, along with the suitable notion of weak equivalences
(and suitable morphisms), allows dealing with leaf spaces in a more practical manner.

6.2.3 Holonomy of a regular foliation
Holonomy of a foliated path

In this section, M is equipped with a regular foliation F of codimension k. Holonomy is a
structure of transport along leaves of foliation. It requires foliated paths in order to be defined:

Definition 6.2.14 (Foliated paths). A foliated path in M is a continuous path which is included
inside a leaf of F . When the path is smooth, it is equivalently a path which is tangent to TF at
all times. It is equivalently a continuous path for the topology of MF .

When not specified, the paths we use shall be parametrised by [0, 1].
In order to work with concatenation of smooth paths and homotopy, we will be using the

following notion:

Definition 6.2.15 (Homotopy with sitting instants). Let X and Y be topological spaces and
h : X × [0, 1] → Y a continuous map. The map h is said to have sitting instants if there
exists ε ∈]0, 1] such that h|X×[0,ε] and h|X×[1−ε,ε] are constant maps with respect to the second
argument.

The point of this notion is that the concatenation of two smooth homotopies is smooth (and
has sitting instants) as soon as they both have sitting instants. The following simple result makes
it easy to convert homotopies into homotopies with sitting instants:
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Lemma 6.2.16. Any smooth homotopy is (smoothly) homotopic, with fixed end maps, to a
smooth homotopy with sitting instants.

In other words, homotopy classes of homotopies are all representable by smooth homotopies
with sitting instants.

We will be using the following notation for germs of maps (Section 2.6): the germ of a smooth
map from a neighbourhood of a point x in X to Y which sends x to y will be written as follows:

(x,X)→ (y, Y )

and (x,X) ∼−→(y, Y ) in case of a germ of local diffeomorphism.
We now describe the fundamental local principle behind holonomy. Let φ : U ∼−→L× Rk be a

foliation chart with Rk-component ϕ. Let m1 and m2 be any two points belonging to the same
plaque, namely the same fibre above Rk. Let S1 and S2 be any two transversals to F respectively
at m1 and m2. Since S1 and S2 are transversal to the fibres of ϕ, ϕ restricts on each to a local
diffeomorphism, which we call respectively ϕ1 and ϕ2.

In particular there exist a neighbourhood V1 of m1 in S1 and a neighbourhood V2 of m2 in S2
such that ϕi is a diffeomorphism on Vi and ϕ1(V1) = ϕ2(V2). This implies that no two elements
of V1 (resp. V2) belong to the same plaque. This allows constructing a diffeomorphism between
V1 and V2 such that corresponding elements in V1 and V2 are in the same plaque:

V = ϕi(Vi)

V1 V2
m1 m2

ϕ1|V1
∼

ϕ2|V2
∼

∼

Since the diffeomorphism between V1 and V2 matches elements of the same plaques, it is
uniquely defined as soon as V1 and V2 are small enough: it does not depend on the choice of
ϕ. In particular, the germ (Section 2.6) of the diffeomorphism between m1 and m2 is uniquely
defined. Furthermore, if one considers a third point m3, equipped with a transversal S3, since the
germ of diffeomorphism between two transversals is uniquely defined, the composition of germs of
diffeomorphisms from S1 to S2 to S3 coincides with the germ of diffeomorphism from S1 to S3:

(m1, S1) ∼−→(m2, S2) ∼−→(m3, S3) = (m1, S1) ∼−→(m3, S3)

One consequence is that changing the transversal at m1 results in a uniquely defined change in
the germ of diffeomorphism: if S′1 is another transversal at m1, there is an identification of germs

(m1, S
′
1) ∼−→(m2, S2) = (m1, S

′
1) ∼−→(m1, S1) ∼−→(m3, S3)

Furthermore for any two points m1 and m2 of U , even belonging to different leaves, it is
possible to consider the transversals Si = φ−1(φL(m1)×Rk). They satisfy the following property:
they both are projected diffeomorphically to S under ϕ, which induces a diffeomorphism

Rk

S1 S2
m1 m2

φ1|V1
∼

φ2|V2∼
∼
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The conclusion is that even for two points in U belonging to different leaves, it is possible to find
transversals at those points which are in global diffeomorphism under a map which sends a point
to a point of the same plaque.

Let c be a possibly non-smooth continuous foliated path starting from a point m1 and ending
on a point m2. Let S1 and S2 be respectively transversals to the foliation at m1 and m2. We
will construct a uniquely defined germ of diffeomorphism from (m1, S1) to (m2, S2) which maps
points of (an open subset of) S1 to elements of S2 belonging to the same leaf. It will be called
the holonomy of c between S1 and S2.

Since the image of c is compact it can be covered by a finite number of foliated charts

φj : (Uj)→ L× Rk

(and ϕj = (φj)Rk) for 1 6 j 6 N . The role of c essentially stops there: the remaining of the
construction purely depend on the string of foliated charts. It is possible to decompose the segment
I over which c is defined in subsegments Ij = [tj , tj+1] such that c(IJ) ⊂ Uj . Let us choose a
transversal Sj at each point c(tj), with S0 = S1 and SN+1 = S2. The construction previously
described gives germs of diffeomorphisms:

(c(tj), Sj)
∼−→(c(tj+1), Sj+1)

which can be composed together to construct a germ of diffeomorphism:

(m1 = c(t0), S0) ∼−→(m2 = c(tN+1), SN+1)

This diffeomorphism can be represented by a local diffeomorphism which matches elements of the
same leaves.

Let Vj ⊂ Sj be open subsets such that the germs of diffeomorphisms can be represented by
diffeomorphisms Vj ∼−→Vj+1. Since the foliated charts project Vj diffeomorphically in Rk, it is
possible to restrict the open subsets U j to

U ′j = φ−1
j (ϕj(Vj))

on which the foliated charts take the form

φ′j : U ′j ∼−→L× Vj

The point is that this allows to extend c|Ij into a foliated homotopy starting from Vj and ending
on Vj+1:

hj :
{
Vj × Ij → Uj

(s, t) 7→ (φ′j)−1 ((φ′j)L(c(t)), s
)

It satisfies the following properties:

• For every s ∈ Vj , hj(s, · ) defines a foliated path in U ′j .

• hj(c(tj), · ) = c|Ij

• hj( · , tj+1) is the diffeomorphism Vj ∼−→Vj+1 matching together elements in the same plaque
of U ′j .

Concatenating these homotopies, we obtain a foliated homotopy h : S0 × I →M which satisfies
the following properties:
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• For every s ∈ V0, h(s, · ) defines a foliated path.

• h(c(m1), · ) = c

• h( · , 1) is the previously constructed diffeomorphism V0 ∼−→VN+1.

Now, the germ of diffeomorphism (m1, S1) ∼−→(m2, S2) is independent of the chosen transversals
at each c(tj). If one were to change the transversal at c(tj) (neither the first of the last), then due
to the following commutative diagram of germs of diffeomorphisms, the germ of diffeomorphism
(m1, S1) ∼−→(m2, S2) would not change: (

c(tj), Sj
)

· · ·
(
c(tj−1), Sj−1) (

c(tj+1), Sj+1) · · ·

(
c(tj), S′j

)

∼

∼

∼

∼

∼

∼

Let us prove this construction is independent from the chosen charts. If there are two systems
of charts covering the image of c, there exists another system of charts refining both which still
covers c. It is therefore enough to prove that the construction is invariant under refinement of
the system of charts. Let U be the support of a foliated chart which is covered by more foliated
charts (Ui) and assume c is contained inside U . Then the germ of diffeomorphism

(m1, S1) ∼−→(m2, S2)

can be represented by a local diffeomorphism which matches elements of the leaves for the foliation
of U , namely elements of the same plaque in U . This diffeomorphism thus necessarily has the
same germ that the one directly constructed from the chart supported by U .

This proves that the obtained germ of diffeomorphism is invariant under refined of the covering
of c and thus only depends on c: it is called the holonomy of c between S1 and S2 and will we
written

HolS2
S1

(c)

Remark. As asserted earlier, the holonomy of c can be defined as a pure function of the covering
string of foliated charts. But it is actually independent of the choice of string of foliated charts
covering c. This justifies talking of the holonomy of the path c.

Unicity of holonomy proves the following: given an open subset U ⊂ S1, if there exists a
foliated homotopy h : S1 × I →M such that

• For every s ∈ S1, h(s, · ) defines a foliated path.

• h(c(m1), · ) = c

• h( · , 1) defines a smooth injection of S1 into S2.

then HolS2
S1

(c) can be represented by h( · , 1) : S1 → h(S1, 1) ⊂ S2.
We now show a stability property of holonomy. Let c be a foliated path parametrised by I

and let us use the U ′j constructed in the construction of h: there are sub-segments Ij = [tj , tj+1]
of I such that c(Ij) ⊂ U ′j and there are transversals Vj to F at c(tj) such that the holonomy of
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c|Ij is represented by a diffeomorphism V j
∼−→V j+1. Let d be another foliated path parametrised

by I such that d(Ij) ⊂ U ′j . We define at d(tj) the following transversal:

T j = φ′j
−1 ((φ′j)L(d(tj))× Rk

)
Then inside U ′j matching elements of the same plaques gives the following commutative

diagram of holonomies:
T j T j+1

Vj Vj+1

∼

∼

∼

∼

By concatenation, we obtain a commutative diagram with the holonomies of d and c:

T 0 TN+1

S1 S2

∼

∼
HolT

N+1
T0 (d)

∼

∼

HolS2
S1

(c)

(6.1)

with holonomies in U ′0 and in U ′N as vertical legs.
In particular, we obtain the following theorem:

Theorem 6.2.17. Let c be a foliated path from m1 to m2 with S1 and S2 respective transversals
at m1 and m2 such that the holonomy of c can be represented as a diffeomorphism S1

∼−→S2. Then
there exists a neighbourhood of c in the compact open topology on C(I,M) in which any foliated
path starting from S1 and ending on S2 has an holonomy which can be represented by

HolS2
S1

(c) : S1 → S2

Since homotopies of paths are parametrised by a connected interval, we obtain the particularly
important corollary:
Corollary 6.2.18. The holonomy of a foliated path is invariant under homotopy of foliated
paths (with fixed ends).

In particular, this implies that
• Holonomy is invariant under oriented reparametrisation of the path.

• Holonomy of the reversed path of c (t ∈ [a, b] 7→ c(b+ a− t)) is the inverse of the holonomy
of c between the same transversals.

Furthermore, we defined holonomy of continuous foliated paths, but every continuous path is
homotopic to a smooth path [Hir12] (Chapter 5, Lemma 1.5). As a consequence, all holonomies
can be constructed from smooth paths. Further homotopies can be used to ensure they have
sitting instants, so that they have smooth concatenations.

From the construction of holonomy, it is manifest that it behaves well with respect to
concatenation, which we write with the symbol �:
Theorem 6.2.19. Let m1,m2 and m3 be three points of the same leaf of F and S1, S2, S3
respectively transversals at m1, m2 and m3. Let c1 be a foliated path from m1 to m2 and c2 a
foliated path from m2 to m3. Then the following relation holds:

HolS3
S1

(c2 � c1) = HolS3
S2

(c2) ◦HolS2
S1

(c1)
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Let us now deal with the question of the dependency on the transversals. If S and S′ are two
transversals at m, then the holonomy of a sitting path at m, which we write [m], defines a germ
of diffeomorphism (m,S) ∼−→(m,S′). Therefore, if one changes the transversal at the end point of
the foliated path, the germ of diffeomorphism changes according to the following relation:

HolS
′
2
S1

(c) = HolS
′
2
S2

([m2]) ◦HolS2
S1

(c)

Naturally, if S′2 matches with S2 in a neighbourhood of m2 then the holonomy of the sitting path
can be represented by the identity on a (transversal) neighbourhood of m2. There is a similar
law for changing the transversal at the starting point. In particular, the question of whether two
foliated paths have the same holonomy is independent of the choice of transversals: it is possible
to talk of the holonomy class of a foliated path.

Linear holonomy and Bott connection

Let m1 and m2 be two points belonging to the same leaf with a transversal S1 (resp. S2) at
m1 (resp. S2). Let c be a foliated path from m1 to m2. Its holonomy defines the germ of a
diffeomorphism

(m1, S1) ∼−→(m2, S2)

As such it can be differentiated to obtain the linear holonomy of c [MM03]:

d HolS2
S1

(c)|m1 : Tm1S1
∼−→Tm2S2

Definition 6.2.20 (Normal bundle). The normal bundle of the foliation is the following quotient
vector bundle:

N = TM/TF

Its vectors are “transverse” vectors to the foliation, in the sense that they only have a
component transverse to the foliation. The normal bundle is very convenient since it gives a
unique model for the tangent space to the transversals: if S is a transversal at a point m, then
the projection TM → N restricts to an isomorphism on TmS:

TmS

TmM Nm

∼

These isomorphisms are all consistent with the holonomy of sitting paths as we now prove. Let
φ : (m,U)→ (0,Rk) be a submersion on a foliated neighbourhood of m such that its fibres are
the plaques. Its differential vanishes on TF and therefore factors through N . Restricted to TmSi,
the differential gives isomorphisms:

TmSi
∼−→T0Rk

But these are the differential at m of the maps to Rk used to defined the holonomy from S1 to
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S2. This is summed up in the following commutative diagram:

TmS1

TmM Nm T0Rk

TmS2

∼
∼

∼d Hol([m])|m ∼

∼
∼

As a consequence, the linear holonomy of c can be uniquely represented on the normal bundle
as a map

Nm1
∼−→Nm2

This defines a parallel transport on the normal bundle Nm →MF . It is associated with a covariant
derivative, called the Bott connection, which is simply constructed as follows. Let X be a vector
field onMF and YN a section of Γ(MF ,N ). It can be represented by an element Y ∈ Γ(MF , TM).
The covariant derivative of YN can be constructed as follows:

∇Bott
X Y = LXY mod TF

The parallel transport along a path can be constructed using linear holonomy; the parallel
transport along flow lines of a vector field on MF can be constructed using the differential of the
flow on a representative of XN in TM [Mor76]. The property that linear holonomy is invariant
under homotopy means that the Bott connection is flat.

When F is a simple foliation with a submersion π : M → M/F , there is a vector bundle
isomorphism

N dπ−−→ π∗T (M/F)

It turns out that this defines a bijection between vectors on M/F and Bott-parallel sections of N
over leaves of F [Vit18; BW97]. In terms of fields, the following holds:

Γ(M/F , T (M/F)) ' Γ(M,N )Bott-parallel

This suggests using Bott-parallel normal vector fields to model vector fields on the leaf space even
when it does not have a quotient manifold structure.

Definition 6.2.21 (Basic vector fields). A basic vector field on M is a vector field X such that

LXTF ⊂ TF

This is equivalent to its normal component being Bott-parallel.
A basic normal field on M is a Bott-parallel section of N .

The Bott parallelism can be used similarly to define basic (normal) differential forms on M ,
which are pullbacks of differential forms on M/F when it is a quotient smooth manifold.

The holonomy groupoid

Holonomy of foliated paths is very suggestive of a groupoid formalism: it is compatible with
concatenation and reversion of paths, and invariant under reparametrisation which allows for
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associate concatenation of paths. Indeed it can be organised into the so-called holonomy groupoid
of F :

Definition 6.2.22 (Holonomy groupoid of a foliation). Let M be a smooth manifold equipped
with a foliation F . The holonomy groupoid of F , written HolF , is defined as follows:

• (HolF )0 = M .

• (HolF )1 is the set of holonomy classes4 of (smooth) paths contained in any leaf, with as
source map the initial point and as target map the final point of the path.

• The identity section is given by the identity map on the transversals, which is the holonomy
of sitting paths.

• Composition is given by the composition of germs of diffeomorphisms which corresponds to
the holonomy class of the concatenation of paths.

• Inversion is given by the inversion of diffeomorphism germs, which are the holonomy of
reversed paths.

It is given a smooth structure generated by the smoothly parametrised smooth foliated path.
Namely, for every smoothly parametrised smooth foliated path c : N×[0, 1] 7→M (parametrisation
is smooth with respect to the n-dimensional structure of M), its parametrised holonomy is a
smooth map N → HolF and a map on (HolF )1 is smooth if and only if its composition with all
these smoothly parametrised holonomies is smooth.

We now prove that this defines a Lie groupoid structure with dim (HolF )1 = dimM + dimF .
First, the source and target maps are manifestly smooth, since smoothly parametrised paths have
smoothly parametrised endpoints.

Charts can be constructed as follows: let c be a smooth foliated path from m1 to m2. Consider
two foliated charts around m1 and m2. They can be reduced so that

1. Each of them has a transverse Si which crosses each plaque exactly once.

2. The supports each have a smooth foliated retract by deformation to the transverse:

ri : Ui × [0, 1]→ Si

It may furthermore be assumed to have sitting instants, i.e. it is stationary at small enough
and high enough times.

3. The holonomy of c can be represented as a diffeomorphism between the transverses S1
∼−→S2

with a smooth foliated homotopy h : [0, 1]× S1 →M such that

• h( · , 0) = idS1 .
• h(s1, · ) are smooth foliated paths.
• h( · , 1) = HolS2

S1
(c).

It may furthermore be assumed to have sitting instants.

4Namely we omit the details of the path and only keep the holonomy data.
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The foliated charts take the form

mi ∈ Ui
∼−→
φi

(s0, 0) ∈ L× S ⊂ L× Rk

with φ−1
i (L×{0}) the transversals respectively at mi and S

∼−→S1
∼−→S2 parametrising the plaques

of U1 and U2. Given a point s ∈ S, the plaques φ−1
i (L × {s}) are matching under HolS2

S1
(c).

Consider the subset

R = {(x1, x2) ∈ U1 × U2 | x1 and x2 belong to plaques matching under HolS2
S1

(c)}

It is the image of the following smooth embedding:

L× L× S → U1 × U1

(l1, l2, s) 7→
(
φ−1

1 (l1, s), φ−1
2 (l2, s)

)
and as such, it is a submanifold of U1 × U2.

This allows us to define a smoothly parametrised foliated path for each l1, l2 ∈ L and S ∈ L,
from ϕ−1

1 (l1, s) to ϕ−1
2 (l2, s), using ř for the reverse homotopy:

ř(ϕ−1
2 (l2, s), · )� h(s, · )� r(ϕ−1

1 (l1, s), · )

Their holonomies give a smooth injection

R ' L× L× S i
↪→ (HolF )1

Furthermore, this injection is a section over R of (s, t), which is smooth:

i(R) (HolF )1

R M ×M

(s,t) (s,t)i

There is thus a diffeomorphism i : R ∼−→i(R).
However, we still need to prove that the image in (HolF )1 is open, in order to use i as

a chart. Namely, we need to prove that for any smoothly parametrised smooth foliated path
H : N×I →M , the subset Hol(H)−1 (i(R)) ⊂ N is open. Let there be such an H ; we can assume
without loss of generality that H(n0, · ) = c and we want to show that, on a neighbourhood of
n0, Hol(H) takes value in R.

According to the stability result 6.2.17 (more precisely Diagram 6.1), there exists in N a
neighbourhood UN of n0 such that there exist transversals Tn0 and Tn1 respectively at H(n, 0)
and at H(n, 1) for all n ∈ N and there are commutative diagrams

Tn0 Tn1

S0 S1

∼

∼
Hol(H(n, · ))

∼

∼
Hol(H(n0, · ))

with the holonomies inside U1 and U2 as vertical legs.
In particular for n ∈ UN ,H(n, 0) andH(n, 1) belong to matching plaques under Hol(H(n0, · )) =
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Hol(c). In other words
∀n ∈ UN , (H(n, 0), H(n, 1)) ∈ R

But there is a similar commutative diagram for images of i so that for every n ∈ UN we have
the following commutative diagram:

Tn0 Tn1

S0 S1

Tn0 Tn1

∼

∼
Hol(H(n, · ))

∼

∼
Hol(c)

∼
i(H(n,0),H(n,1))

∼

∼

id

∼

∼ id

We thus proved that for all n in a neighbourhood UN of n0, Hol(H(n, · )) takes value in i(R),
which allows concluding that i(R) is open.

Under the product map
(HolF )1

(s,t)−−−→M ×M

the chart described above is sent to
R ↪→ U1 × U2

so that (s, t) is an immersion. In fact, the smooth structure could be defined from this immersion,
once the topology of (HolF )1 is well established: smooth functions are continuous functions which
restrict to smooth functions on the charts for the smooth structure defined by the embedding in
M ×M .

Functoriality of the Holonomy groupoid

A natural question about the holonomy groupoid construction is that of its functoriality: does
a map between foliated manifolds induces a Lie groupoid morphism between the holonomy
groupoids? This raises the prior question: what is a suitable notion of map between foliated
manifolds. One answer is given by the following functoriality theorem:

Theorem 6.2.23. Let f : M → N be a smooth map between foliated manifolds which is a
submersion. Assume that it is “foliated” in the following sense: the image of the leaves of M
are included in leaves of N . Equivalently, the image tangent distribution to the leaves of M is
included in that of N .

Then for any foliated path c in M from x to y the holonomy of f∗c only depends on Hol(c).
Furthermore for small enough transversals at x (resp. y) Sx (resp. Sy) it is possible to find
submanifolds S′x ⊂ Sx, S′y ⊂ Sy on which f is an embedding and such that the images f(S′x) and
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f(S′y) respectively form transversals at f(x) and f(y) and the following diagram commutes:

Sx Sy

S′x S′y

f(Sx) f(Sy)

Hol(c)

Hol(c)|S′x

f |S′x

∼

f |S′y

∼

Hol(f∗c)

As a consequence, f lifts from f : M → N to a Lie groupoid morphism between the holonomy
groupoids Hol(M)→ Hol(N).

Proof. We will call FM (resp. FN ) the foliation of the manifold FM (resp. FN ) and TFM (resp.
TFN ) its tangent distribution. Let c be a foliated path in M from a point x to a point y. It has
an associated holonomy in M from x to y, and its image f∗c under f is a foliated path and has
an associated holonomy from f(x) to f(y).

Let us first show the existence of transversals such as asserted. Let Sx be a transversal to FM
at x such that the holonomy of c can be represented as a foliated holonomy starting from Sx.
Namely, we require the existence of a smooth map

φ0 : Sx × [0, 1]→M

such that

• φ0(x, · ) = c.

• ∀a ∈ Sx, φ0(a, 0) = a.

• φ0( · , 1) is a diffeomorphism of Sx onto a transverse to FM at x.

• For all a ∈ Sx, the path
t ∈ [0, 1] 7→ φ0(a, t)

is a foliated path.

Since Df(TxM) = Tf(x)N and Df(TxFM ) ⊂ Tf(x)FN , we conclude that Df(TxS) has to
contain a supplementary subspace to Tf(x)FN . As a consequence, there exists a submanifold
S′x ⊂ Sx which contains x, on which f is injective and which is embedded through f into a
transversal to FN at f(x).

Since it may be the case that f is not an embedding on φ(S′, 1), we need to construct similarly
a transversal Sy to FM at y with a submanifold S′y which is embedded under f into a transversal
to FN at f(y). Reducing Sx and Sy (as well as S′x and S′y) if need be, the holonomy of c can be
represented as a smooth map

φ1 : Sx × [0, 1]→M

such that

• φ1(x, · ) = c.

• ∀a ∈ Sx, φ1(a, 0) = a.
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• φ1( · , 1) is a diffeomorphism of Sx onto Sy.

• φ1(S′x, 1) = S′y.

• For all a ∈ Sx, the path
t ∈ [0, 1] 7→ φ1(a, t)

is a foliated path.

In order to relate with the holonomy in N , consider the map

φN :
{
S′x × [0, 1]→ N

(a, t) 7→ φ1(a, t)

By assumption, φN ( · , 0) (resp. φN ( · , 1)) coincides with the isomorphism S′x
∼−→f(S′x) with

the transversal to FN at x (resp. with the isomorphism S′y
∼−→f(S′y) with the transversal at y).

Furthermore for all a ∈ S′x the path

t ∈ [0, 1] 7→ φN (a, t)

is a foliated path and φN (·, f(x)) = f∗c. As a consequence, the holonomy of f∗c can be represented
as in the following commutative diagram:

S′x S′y

f(S′x) f(S′y)

f |S′x

∼

HolFM (c)|S′x

f |S′y

∼

HolFN (f∗c)
∼

Let us now show that the holonomy class of f∗c only depends on the holonomy class of c. It
is equivalent to show the following: if c is a loop and has trivial holonomy, then f∗c has trivial
holonomy. From now, assume that c is a loop based at x with trivial holonomy.

Let S be a transversal to FM at x such that the trivial holonomy of c can be represented on
S. Namely, we require the existence of a smooth map

φ : S × [0, 1]→M

such that

• φ(x, · ) = c.

• ∀a ∈ S, f(a, 0) = f(a, 1) = a.

• For all a ∈ S, the path
t ∈ [0, 1] 7→ φ(a, t)

is a foliated path.

Similarly to previously, we consider a submanifold S′ ⊂ S on which f is an embedding onto a
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transversal to FN at f(x). Then the commutative diagram takes the following form:

S′

f(S′) f(S′)

f |V
∼

f |V
∼

HolFN (f∗c)
∼

Therefore, the holonomy of f∗c is trivial and c 7→ f∗c factors to a map between the holonomy
groupoids.

Smoothness of the morphism is a direct consequence of the following observation: the image
under f of a smoothly parametrised smooth foliated path on M is a smoothly parametrised
smooth foliated path on N .

Remark. One may hope that the image under a foliated submersion of a transversal be a
transversal, or that the inverse image is a transversal. This is however not the case without
stronger assumptions. Indeed according to the definition we gave, nothing prevents a foliated
map from sending transversal directions to directions tangent to the foliation. Similarly, the
submersion may have invariant directions (directions in which the map is constant) along the
fibration, which implies that inverse images will contain these directions which are tangent to the
foliation.

When the map is a local diffeomorphism, it induces bijections between directions tangent
to the foliations and bijections between directions non-tangent to the foliation, so that it sends
transversals to transversals.

6.3 Orbifolds
Let M be a smooth manifold and G a Lie group acting smoothly on M . A recurring question is
studying the equivariant geometry of M , that is to say G-equivariant geometrical properties and
constructions on M . As in very common in geometry, it is very convenient to have a “geometrical
space” such that its geometry correspond in a sense to the equivariant geometry of M . This is
the idea behind orbit spaces. The following theorem gives a reference case in which the orbit
space has a natural smooth manifold structure:

Theorem. If the action of G is free and proper, then the quotient topological space M/G has a
smooth manifold structure such that the quotient map

M →M/G

is a G-principal bundle fibration map.

Note in particular that the orbit space comes with the geometric structure of a G-principal
bundle. The hypotheses are however restrictive, in particular freeness prevents the orbits from
having different types.

(Smooth) orbifolds are a generalisation of smooth manifolds which is meant to encompass
“nice” orbit spaces. In particular they are allowed “singularities” corresponding to quotients under
finite isotropy groups. We first give a definition which involves atlases and is very similar to that
of smooth manifolds. We next present an alternative approach which uses Lie groupoids. General
references are [Car19a; ALR07; Moe02].



138 CHAPTER 6. FOLIATIONS, LIE GROUPOIDS AND ORBIFOLDS

6.3.1 Classical orbifolds and atlases
Smooth manifolds are spaces provided with a smooth structure which are locally isomorphic to
open subsets of the Euclidean spaces Rn. Orbifolds are meant to extend the notion of manifold
to spaces which are locally isomorphic to quotients of open subsets of Rn by finite groups.

Definition 6.3.1 ([Mes16]). Let X be a topological space equipped with a smooth structure. It
is called an n-dimensional (classical, or effective) orbifold if it satisfies the following local property:

• It is locally diffeomorphic to quotients of open subset Rn by actions of finite groups.

as well as the following two global topological requirements:

• It is Hausdorff.

• It is paracompact.

A smooth map φ : U → X from an open subset of Rn with a finite group GU acting effectively
on U which is G-invariant and induces a diffeomorphism from U/GU

∼−→φ(U) is called an (orbifold)
chart. A family of orbifold charts which cover X is called a (classical) orbifold atlas.

If connected smooth manifolds are homogeneous under their automorphism group, it is not the
case for orbifolds. Similarly to manifolds with boundaries or corners or disconnected manifolds,
orbifolds have a natural “decomposition” which is inherent to their orbifold structure hence is
necessarily preserved by automorphisms.

Lemma 6.3.2 ([ALR07]). Let X be an orbifold and x ∈ X. Let (φ1, G1) and (φ2, G2) be two
orbifold charts around x. Then for x1 ∈ U1 and x2 ∈ U2 such that φ1(x1) = φ2(x2) = x, the
isotropy groups of x1 and x2 respectively under G1 and G2 are isomorphic.

Definition 6.3.3 (Local group at a point). Let X be an orbifold and x ∈ X. Then the
isomorphism class of isotropy groups of inverse images of x in orbifold charts is called the local
group at x. It is usually written Γx.

Theorem 6.3.4 (Canonical Stratification of an orbifold, [Car19a; Mes16]). Let X be an orbifold.
It is partitioned into ⋃

G

ΣG with ΣG = {x ∈ X, | Γx ' G}

The connected components of the ΣG are manifolds called strata. The decomposition of X
into strata is called the canonical stratification of X. The closure of each stratum is a reunion of
strata of lower dimensions. Σe is a connected and dense open submanifold called regular stratum.
Its complementary subset is called the singular set or singular locus of X.

Example 6.3.5 (Conical singularity of degree two). Consider a linear plane M = R2 with the
action of parity

P : m ∈M 7→ −m

Then the quotient M/P has a smooth structure of orbifold. Globally, it is Hausdorff and
second-countable. Furthermore, the quotient map R2 → M/P defines a global orbifold chart.
Smooth functions onM/P are exactly even smooth functions onM . In particular, they necessarily
have vanishing derivatives of odd order at the origin.
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6.3.2 Orbifold groupoids
Another approach to orbifolds is possible using groupoids. The local groups are replaced by a
cleaner transitive Lie groupoid and this allows for a geometrical notion of morphism, which we
will however not touch upon. A more important feature is that the groupoid data allows for
non-effective local groups.

The suitable class of groupoids is the so-called orbifold groupoids:

Definition 6.3.6. An orbifold groupoid is a Lie groupoid which is both proper and étale 5 .

An orbifold groupoid has finite isotropy groups, since they have to be both compact and
discrete. The term is justified by the following result:

Theorem 6.3.7 ([Moe02]). The orbit space of an orbifold groupoid is a Hausdorff space and has
a natural structure of orbifold, namely it admits an atlas identifying open subsets with quotients
of Euclidean spaces by the isotropy groups of the orbifold.

The restriction to an orbit of the orbifold groupoid is a transitive groupoid. As such all
isotropy groups are isomorphic. However using groupoids allows using the isotropy groups as
local groups. Let Γ

s
⇒
t
M be an orbifold groupoid. The action of the isotropy groups on charts is

essentially constructed from the groupoid morphism Γ→ Diffgerms(M). In particular, it need not
be effective.

Furthermore, the notion of weak equivalence of orbifold groupoids is adapted to the underlying
orbifold geometry. We say that an orbifold groupoid is effectiveif at every point m ∈ M the
morphism Γ(m,m) → Diffgerms(M)(m,m) is injective. In this case the associated orbifold
structure on the orbit space is effective: the local groups defined using charts are isomorphic to
the isotropy groups of the orbit in the groupoid.

Theorem 6.3.8 ([ALR07]). Let Φ : Γ→ Γ′ be a weak equivalence of effective orbifold groupoids.
Then the induced map between the orbit spaces is a isomorphism of effective orbifolds.

Conversely, if the orbit spaces of effective orbifold groupoids are isomorphic then there exists
a Morita equivalence between the orbifold groupoids.

Accordingly, this suggests the following definition of orbifolds:

Theorem 6.3.9 (Orbifold structure,[ALR07; Mes16]). Let X be a paracompact Hausdorff topo-
logical space. An orbifold structure, or orbifold atlas on X is an orbifold groupoid Γ with a
homeomorphism between its orbit space and X.

5This definition is a bit more restrictive than the one in [Moe02].
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Generalised Cartan geometries
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7.1 A toy model
This chapter deals with the structure of “generalised Cartan bundle” which is a generalisation of
principal bundles equipped with a Cartan connection. We depict in this brief section a simple and
amenable case of this kind of structure constructed by performing a “twist” on a frame bundle.

The orthonormal direct frame bundle of R2

We will consider the plane as a smooth manifold M = R2 which we will represent as an open
disk. It is equipped with its standard oriented Euclidean structure. This allows us to define
its (orthonormal direct) frame bundle P , which is the space of direct orthonormal bases of the
tangent space at each point. It forms a smooth SO2-principal bundle over M :

SO2 ↪→ P
π
�M

This bundle turns out to be trivialisable in many ways (for example because M is contractile)
and can thus be represented as an open solid torus M × SO2, generated by the revolution of M .
Since P is a space of frames, each point p defines a frame of Tπ(p)M . Different frames above
π(p) are related by the action of SO2. This is represented as a cylinder in Figure 7.1: the top
and bottom face should be identified. In particular, the trivialised frame bundle comes with a
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parallelisation, namely smooth vector fields which constitute at each point a linear frame of P .
At each point, its first two vectors are the two frame vectors along the section (in red and green
in Figure 7.1), we call them e1 and e2. The third vector is the normalised vector transverse to
the section, generator of the revolution action of SO2 (in purple on Figure 7.1). We will call it ξ.

1

Figure 7.1: The frame bundle of R2 as
an (unfolded) bulk torus

The structure of the frame bundle imposes that the
frame (e1, e2) is equivariant under rotation around the
revolution axis. If we call R(θ) the revolution of angle
θ ∈ R this means:

{
R(θ)∗e1 = cos(θ)e1 + sin(θ)e2

R(θ)∗e2 = − sin(θ)e1 + cos(θ)e2

(7.1a)
(7.1b)

Effectively, the frame of M is rotating when progress-
ing along the revolution. Since ξ generates the action of
SO2, there is an infinitesimal version of the equivariance
equations: {[ξ, e1] = e2

[ξ, e2] = −e1

(7.2a)
(7.2b)

The two sets of equations are equivalent since R(θ) =
exp(θξ). Now, we want to present a different repre-
sentation of this situation. The frame rotation can be
“untwisted” by applying a diffeomorphism of the solid
torus (with nontrivial mapping class). Using the stan-
dard coordinates (x, y) on the section M and a cyclic
coordinate z on SO2, the diffeomorphism takes the fol-
lowing form:

M × SO2 →M × SO2xy
z

 7→
 cos(z)x+ sin(z)y
− sin(z)x+ cos(z)y

z


In this representation the fibre above a given point m ∈
M is no longer a straight circle but twists around the torus. This is depicted in Figure 7.2.

The equivariance equations still hold, but in this representation they do not express the
rotation of the frame vector but rather the “twist” of the action of SO2. What we are interested
in are spaces which locally present the same structure as a frame bundle, thus we will focus on
Equations (7.2). We ask the following question: if we have a solid torus P with a frame field
(e1, e2, ξ) satisfying Equations (7.2), can it always be identified with the frame bundle of a smooth
manifold?
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A twisted frame bundle

1

Figure 7.2: The frame bundle of R2 as
a twisted torus

Counterexamples are readily found: it is possible that the action of ξ does not integrate to an
action of SO2 which is free (all isotropy groups are trivial). More precisely it is possible for the
orbits under the action of ξ to have different lengths (finite or not). A simple example is depicted
in Figure 7.3 – the top and the bottom face should be identified here as well. It can be seen as a
(2 + 1)-dimensional version of the Möbius strip. Here the infinitesimal equivariance holds with a
factor 1

2 for the generator ξ 1: 
[ξ, e1] = 1

2e2

[ξ, e2] = −1
2e1

The orbit of the center of M closes over one revolution, but the other orbits (in purple on
Figure 7.3) require two revolutions to close. Although the action of ξ can be integrated into a
group action of R on M × SO2, since points have different isotropy groups is it not possible to
factor the action to a quotient SO2 of R such that all isotropy groups are trivial.

In this example if P were to be interpreted as a frame bundle, it would be over its orbit space,
which can be identified as R2/(x ∼ −x). This is a singular space, with a conic singularity at
origin (which is a manifestation of the varying size of the orbits). Therefore in this example P
equipped with the transverse vectors (e1, e2) and the generator ξ, although it cannot be identified
with the frame bundle of a smooth manifold, may still be interpreted as a frame bundle over a

1It may seem as though any real factor could be used but 1
2 is of specific relevance as it can be generalised to

the projective quotients of the higher dimension orthogonal groups. This is discussed in Section 7.3
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singular space.

1

Figure 7.3: The torus as a “twisted”
frame bundle

This example is “proper” in a technical sense, which
ensures the singularities are tame. One could study cases
in which the “twist” of the orbits under ξ is irrational
so that the orbits do not close (except the central orbit)
but are dense on the surface of smaller tori. These cases
have harsher singularities.

In the upcoming sections we want to investigate
such “generalised frame bundles” which have the local
structure of frame bundles but are not a priori actual
frame bundles over smooth manifolds. Our study will
generalise the case of the solid torus to a more general
Lie group with a linear representation of any dimension.
In particular we will have to deal with the problems of
properness of the action of a Lie group, of completude
of the action of a Lie algebra as well as a property
pertaining to the integration of an infinitesimal action
of a Lie group which is called univalence.

The structure of a connection

The astute reader will have noticed that the trivialisation
of the orthonormal frame bundle is not uniquely defined
by the frame bundle structure. It is equivalent to the
additional structure of a (metric and torsionless) flat
connection. The Euclidean plane inherits one induced
by its affine space structure. In particular, the frame
field with which P is equipped depends on this choice
of a connection. The structure we want to study on P
is more properly called “generalised frame bundle with

connection” but we will use “generalised frame bundle” as a shorthand.

Indeed a more convenient way to encode the parallelisation (e1, e2, ξ) of P is by using the
dual coframe, which is a family of three 1-forms ($1, $2, $ξ). If P has the structure of an actual
frame bundle, the forms $1 and $2 correspond to the so-called “solder form” of the frame bundle
and the form $ξ is a connection 1-form. They are gathered in what is called a Cartan connection
(1-)form. Using this 3-components 1-form $ is very convenient to formulate the infinitesimal
equivariance equations (7.2) (this is detailed in Section 7.2.1).

Because the frame bundle is the space supporting tangent connections on the base space,
this implies that covariant physical field theories can be formulated on the frame bundle. By
extension, it is possible to formulate them on generalised frame bundles: they have all the required
geometrical structure. This is of particular interest as a mean to formulate field theories on
singular spaces. For example in higher dimension, given the Cartan connection form $ it is very
easy to construct the associated Riemann curvature tensor or the Einstein tensor, so that one
can study Einstein’s field equations (see our example Section 7.3.3).
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7.2 Generalised Cartan geometries
7.2.1 Definition and basic constructions
Definition

Let P → M be an H-principal bundle equipped with a solder form α and a connection form
ω. Gathering the two forms in a h ⊕ Rn-valued 1-form gives a coframe on P , which we write
$ := ω ⊕ α. The coframe $ is H-equivariant.

As a coframe, $ can be used to find the vector fields representing the action of h: if ξ ∈ h is
represented by ξ̄, the following holds:

ξ̄ = $−1(ξ, 0)

The idea can be straightforwardly generalised to a (G,H)-Cartan geometry with Cartan
connection 1-form $.

From there, the idea of generalised Cartan geometry is to start from the object $ and use it
to define the action of h and the vertical and horizontal tangent spaces. The base manifold M
is to be reconstructed as an orbit space. Of course, $ cannot be any arbitrary coframe: it has
to be H-equivariant, and the vector fields ξ̄ have to form a representation of h. As we will see,
equivariance is already a stronger requirement than compatibility with the bracket. The coframe
$ only defines an action of the Lie algebra h so we will be looking at equivariance under the Lie
algebra action.

Let us now derive an intrinsic characterisation of the h-equivariance of $.

Cartan 1-forms

First, given ξ ∈ h ⊂ g we define the following vector field

ξ̄ = $−1(ξ) ∈ Γ(TP )

For a general ζ ∈ g we will use the same notation:

ζ̄ = $−1(ζ) ∈ Γ(TP )

Recall the solder form α associated with $:

α : TP $−→ g→ g/h

We will use indices i, j . . . for vectors of h, a, b . . . for vectors of g/h and A,B . . . for vectors of g.
Equivariance under h can be stated as:

Lξ̄$ + adξ$ = 0 (7.4)

The left hand term can be reformulated as follows:

Lξ̄$ + adξ$ = (iξ̄d + diξ̄)$ + [ξ,$] = iξ̄d$ + dξ + [$(ξ̄), $] = iξ̄

(
d$ + 1

2 [$ ∧$]
)

Thus Equation (7.4) can be reformulated as

∀ξ ∈ h, iξ̄

(
d$ + 1

2 [$ ∧$]
)

= 0 (7.5)
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Since the vectors (ξ̄)ξ∈h span the vertical directions and the forms αa form a basis of the
horizontal 1-forms, this is also equivalent to the existence of variables coefficients ΩAbc such that

d$A + 1
2 [$ ∧$]A = 1

2ΩAbcαb ∧ αc (7.6)

Another reformulation of (7.5) is obtained by contraction with ζ̄ for ζ ∈ g:

∀ξ ∈ h, ∀ζ ∈ g, d$(ξ̄, ζ̄) + [$(ξ̄), $(ζ̄)] = 0

As $(ζ̄) = ζ is a constant g-valued field, the equation can be rephrased as

[ξ̄, ζ̄] = [ξ, ζ] (7.7)

Thus Equation (7.6) equivalent to a bracket compatibility condition on the vector fields ζ̄ which
in particular implies that the vector fields ξ̄ form a free representation of h on P .

This motivates the following definition:

Definition 7.2.1 (Cartan 1-forms). Let P be a manifold and (G,H) a Klein geometry with G
of the same dimension as P .

A (g, h)-Cartan 1-form (or Cartan form) on P is a g-valued coframe $A such that there exists
(variable) coefficients ΩAbc such that:

d$A + 1
2 [$ ∧$]A = 1

2ΩAbcαb ∧ αc (7.8)

with αa the projection of ωA to g/h.
We will say that a (g, h)-Cartan form on P defines a generalised (g, h)-Cartan geometry on P

and a manifold equipped with a generalised (g, h)-Cartan geometry will be called a generalised
Cartan bundle.

The notion appeared in [AM95] as “Cartan connection”; they propose a notion of “generalized
Cartan connection” which requires a pre-existing action of the Lie algebra but allows for a
degenerate 1-form $. Indeed a good part of our formal manipulation will not require vector fields
and will apply to degenerate forms as well but in this case $ is not sufficient to define the action
of h, which we want to be able to do. Cartan 1-forms are also a case of what would be called
h-flatness of $ in [GW13] (with K = 1).

As justified above, a Cartan 1-form defines on the manifold an action of h for which it
is equivariant. A familiar example of the phenomenon is the case of Maurer-Cartan forms,
introduced in Example 3.3.5. It generalises directly to manifolds:

Example 7.2.2 (Maurer-Cartan forms on manifolds). Let P be an m-dimensional manifold and
g an m-dimensional Lie algebra. A g-valued Maurer-Cartan form on P is a g-valued coframe $
satisfying the following Maurer-Cartan equation:

d$ + 1
2 [$ ∧$] = 0 (7.9)

It can be interpreted as a (g, g)-Cartan 1-form on P .
Such a coframe defines a transitive action of h on P , and conversely transitive Lie algebra

actions are associated to such coframes.

Remark (Curvature form and symmetry breaking). As is suggested by the Maurer-Cartan forms,
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the curvature form d$ + 1
2 [$ ∧$] quantifies how far the vector fields ζ̄ are from forming a

representation of the Lie algebra g.
The structure discussed here can be approached starting from Ω rather than the fixed Klein

geometry (G,H): we have an abstract Lie algebra g and we are looking for a subalgebra h ⊂ g such
that Ω is horizontal in the sense of having only components along the g/h directions. From this
perspective, the corresponding Cartan geometry can be understood as geometry with symmetry
broken down from g to h [Wis12; Wis10; GW13] .

We will call a manifold equipped with a (g, h)-Cartan 1-form a generalised Cartan bundle
modelled over (G,H). In the case of an affine Klein geometry (HnRn, H), we talk of a generalised
frame bundle with connection, often shortened to generalised frame bundle. One benefit of using
the structure of Cartan bundle is that is it a purely local structure. This fact is used in a recent
paper by the author [Pie22] to obtain this structure from solutions to differential equations
coming from a variational principle. We come back to this in Section 7.3.3. We have justified the
following result:

Theorem 7.2.3. Let P be a generalised Cartan bundle with a (g, h)-Cartan 1-form $. Then the
map

ξ ∈ h 7→ $−1(ξ, 0) ∈ Γ(TP )

defines a free action of the Lie algebra h on P for which $ is an equivariant g-valued 1-form.

We now extend the constructions used in the previous sections to the case of generalised frame
bundles.

Basic fields on Generalised Cartan Bundles

Let P be a generalised Cartan bundle with Cartan 1-form $. The coframe defines an h-equivariant
identification

TP ' P × g

We define the horizontal and vertical distributions:

V P := kerα = $−1(h) (7.10)

Vectors will be called vertical if they belong to V P . Conversely, differential forms will be
called horizontal if they have vanishing contraction with vectors of V P . The space of horizontal
differential forms on P will be written Ω•hor.

The structure equation
dαa + [$ ∧ α]a = 1

2Ωabcαb ∧ αc

implies that the ideal spanned by the (αa) is a differential ideal and as a consequence the vertical
distribution V P is involutive: it integrates to a foliation on P .

The Lie algebra h acts on P and the action naturally lifts to natural vector bundles such as
TP or Λ•TP . The action on T ∗P preserves the horizontal forms:

Lξ̄α = − adξ α

is a horizontal form for all ξ ∈ h. Indeed this is equivalent to the action of h preserving V P , which
is a consequence of the involutivity of V P since the fundamental vector fields of h span V P .

Definition 7.2.4 (Basic fields). Corresponding to the vertical foliation, there is a notion of basic
tensors and basic differential forms (Section 6.2.3).
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We define (local) basic vector fields on P as local sections of TP/V P which are h-invariant.
Note that a horizontal vector field is identified through $ to a g/h-valued field. Since $ is
equivariant, it is equivalent to ask for the horizontal vector field to be invariant or the g/h-valued
field to be equivariant.

Similarly we define basic tensor fields, respectively basic differential forms, as fields with value
in a tensor product of g/h and g/h∗, resp. horizontal differential forms, which are h-equivariant.
Similarly to the situation of standard frame bundles, a horizontal differential form can be identified
with a Λ•g/h∗-valued field.

Finally, given a representation V of g, a basic section of V is an h-equivariant V -valued field.
They generalise the sections of tractor bundles. We denote as follows the space of basic V -valued
differential forms:

Ω•bas(P, V ) := Ω•hor(P, V )h (7.11)

Covariant derivation

One important remark is that Lemma 3.1.15 generalises to this generalised Cartan geometry
framework:

Theorem 7.2.5. Let V be a representation of g. A V -valued horizontal k-form ψ is basic if and
only if the following form

d$ψ = dψ +$ · ψ

is a horizontal (k + 1)-form, with $ · ψ denoting an action of the g component as well as a wedge
product.

The proof is identical:

Lξ̄ψ + ξ · ψ =
(
iξ̄d + diξ̄

)
ψ +$(ξ̄) · ψ

= iξ̄dψ + 0 + iξ̄ ($ · ψ)
= iξ̄ (dψ +$ · ψ)

Definition 7.2.6 (Covariant derivation). Let V be a representation of g and ψ a basic section
of V . Its covariant derivative, or tractor derivative is defined as

d$ψ = dψ +$ · ψ ∈ Ω1
bas(P, V ) (7.12)

which is a basic V -valued 1-form. More generally for a basic V -valued k-form ψ, its covariant
exterior differential, or tractor exterior differential is defined as

d$ψ = dψ + ω · ψ ∈ Ωk+1
bas (P, V ) (7.13)

which is a basic V -valued (k + 1)-form.

It is important to note that although horizontal differential forms are identified with Λ•g/h∗-
valued maps, horizontal differential forms and Λ•g/h∗ have different exterior covariant differentials.

Reductive geometry

When (g, h) has a reductive structure, namely an h-equivariant splitting

g 'h h⊕m
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it is possible to split the coframe $ into a g/h part α and an h part which we write ω. In this
situation, the tangent bundle is split into a horizontal part and a vertical part:

TP = HP ⊕ V P

with
HP := kerω = $−1(m) (7.14)

A vector belonging to HP will be called horizontal and a differential form will be called vertical
if they have vanishing contraction with all vectors of HP .

By hypothesis, the action of h preserves the decomposition h⊕m, therefore the action of h on
T ∗P preserves vertical forms:

Lξ̄ω = − adξ ω

is a vertical form. As a consequence, h also preserves the horizontality of vectors.
The horizontal distribution defines an h-equivariant section TP/V P

∼−→HP ↪→ TP and as
such, it allows a simpler definition of basic tensors fields: a basic tensor field is an h-invariant
section of some tensor product of HP and HP ∗.

Curvature and torsion forms

The curvature 2-form of the Cartan 1-form is defined similarly to the frame bundle case:

Ω = dω + 1
2 [ω ∧ ω] ∈ Ω2

bas(P, g) (7.15)

The torsion is defined in a similar fashion:

Θ = dα+ [ω ∧ α] ∈ Ω2
bas(P, g/h) (7.16)

Let ψ be a basic V -valued k-form. The following Ricci-type identity holds:

d$d$ψ = Ω · ψ (7.17)

The curvature satisfies a Bianchi identity:

d$Ω = 0 (7.18)

7.2.2 Principal bundles
Let P be a generalised Cartan bundle with a Cartan form $. We want to generalise the structure
of principal bundles with a structure Lie group K to the framework of generalised Cartan bundles.
There are two approaches.

The first is to generalise H-equivariant K-principal bundles on P . Of course, P does not have
a group action but a Lie algebra action of h so that we can only consider h-equivariant bundles.

Definition 7.2.7 (h-equivariant K-principal bundles). An h-equivariant K-principal bundle on
P is a fibre bundle E φ−→ P with a lift of the action of h to K-invariant vector fields on E.

Let E be such a bundle. We shall assume it is provided with an h-invariant K-principal
connection 1-form which we call A (which is always possible for a pullback principal bundle
as described in Section 3.2.3). The connection form A defines on E horizontal and vertical
distributions; A defines a k-valued coframe on the vertical distribution, while the Cartan form $
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pulls back to a coframe φ∗$ of the horizontal distribution of E. They can be gathered into a
k⊕ g-valued coframe on:

A⊕ φ∗$ ∈ Ω1(E, k⊕ g)

which is both K-equivariant and h-equivariant.

For ξ ∈ h we define
ξ̂ := (A⊕ φ∗$)−1 (0⊕ ξ)

which represents ξ on E. The invariance of A under the fields ξ̂ for ξ ∈ h is formulated as

0 = Lξ̂A =
(

diξ̂ + iξ̂d
)
A = d0 + iξ̂dA

Since A(ξ̂) = 0, this is equivalent to

iξ̂

(
dA+ 1

2 [A ∧A]
)

= 0

We also define for u ∈ k the vector fields û by which k acts on E. Similarly to Equation (7.5),
equivariance of A is equivalent to

∀u ∈ k, iû

(
dA+ 1

2 [A ∧A]
)

= 0

The conclusion is that the equivariance of A under k ⊕ h is equivalent to the existence of
coefficients F Iab, with I superscripts associated to the space k, such that

dAI + 1
2 [A ∧A]I = 1

2F
I
bcα

b ∧ αc (7.19)

The h-equivariant K-principal connection thus satisfies an equation similar to (7.8), and the
k⊕ g-valued coframe is a Cartan 1 form: using a superscript B for k⊕ g, we have

d(A⊕$)B + 1
2 [A⊕$ ∧A⊕$]B = 1

2ΩBbcαb ∧ αc (7.20)

To sum up, the h-equivariant K-principal bundle E has the structure of a generalised Cartan
bundle modelled on (K ×G,K ×H).

This brings us to the second approach, which is to consider the K-principal fibration as
directions in a generalised bundle instead of an actual K-principal bundle. This requires the
generalised bundle to have the data of a K-principal connection which will be integrated into a
coframe used to define the generalised Cartan bundle structure. A generalised Cartan bundle
modelled on k ⊕ g is equipped with commuting actions of k and h. If k only acts trivially on
g/h, it can be used to define basic sections of vector bundle associated to representations of k.
In this sense, such a generalised Cartan bundle can support “internal degrees of freedom” with
infinitesimal variations corresponding to k.

From this perspective, principal bundles are readily integrated in the formalism of generalised
frame bundles: they correspond to a Lie-subalgebra direct factor k ⊂ k⊕ g which acts trivially on
g/h.



7.2. GENERALISED CARTAN GEOMETRIES 151

7.2.3 Isotropy groups
Contrary to standard Cartan bundles, generalised Cartan bundles do not a priori have a group
action. Indeed, in our definition the group H is not even specified, there is only a Lie algebra h.
In this section we give a first approach to the construction of isotropy groups.

Let P be a (right) h-manifold. All paths we will consider are smooth, parametrised by [0, 1]
with sitting instants, that is to say they are locally constant around their ends. This will allow for
seamless concatenation of smooth paths.

Let H be a connected Lie group integrating h; we write ωH its Maurer-Cartan form (Exam-
ple 3.3.5). We want to act with an element h ∈ H on a point p ∈ P . Let γ be a path on H from
e to h. A natural construction is to try to integrate the following differential equation:

c′(t) = c(t) · ωH(γ′(t)) (7.21)
c(0) = p (7.22)

The equation does not always have a complete solution but when it does the final end of c provides
a candidate for x · h. We will write such a complete solution cγp . Of course, for this to hold as a
definition we have to make sure that the final end is independent of the choice of γ. We will set
up the general geometric approach to this question in Section 8.1.1 while the constructions in the
present section are more hands-on. Let us define the following concatenation between paths in H
starting from e (notice the unusual order!):

γ0 ? γ1 :
{
t ∈ [0, 1/2] 7→ γ0(2t)
t ∈ [1/2, 1] 7→ γ0(1) · γ1(2t− 1)

The path γ0 ?γ1 is a path from e to γ0(1) ·γ1(1). Concatenation is only associative up to homotopy
but it will not matter for our purposes. Then cγ0?γ1

p exists if and only if cγ0
p exists and cγ1

[cγ0
p (1)]

exists, in which case
cγ0?γ1
p = cγ1

[cγ0
p (1)] � c

γ0
p

with � denoting the standard concatenation of smooth paths at a coinciding end. Notice the
opposite orders of the two concatenations.

We also define the following path reversion:

γ̌ : t ∈ [0, 1]→ γ(1)−1 · γ(1− t)

which is a path from e to γ(1)−1. It is defined such that cγ̌p exists if and only if there exists p0
and cγp0

with cγp0
(1) = p. In this case

cγ̌p(t) = cγp0
(1− t)

Even if H does not have a defined action on P , it is possible to have an idea of the type of
the hypothetical orbit of p by considering its H-isotropy group, which we now define:

ΓH(p) :=

h ∈ H | ∃γ ∈ C∞([0, 1], H),


γ(0) = e

γ(1) = h

cγp exists and cγp(1) = p

 (7.23)

It is a subgroup of H: the constant path on e shows that e ∈ ΓH(p), concatenation of paths with
final ends h1 and h2 gives a path with final end h1 · h2, and the reverse of a path with final end h
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gives a path with final end h−1.
When the action of h integrates to a Lie group action of H then ΓH(p) is exactly the isotropy

group of p under the action of H. In this case all paths γ have associated solutions cγp starting
from every point p.

Let H̃ be the simply-connected integration of h: there is a unique covering map H̃
f−→ H,

which is associated with the identity on h. It can be used to lift and project paths starting from
the neutral elements, establishing a bijection

{Paths in H starting from eH}
f∗

�
f∗

{Paths in H̃ starting from eH̃}

In particular, given γ ∈ C∞([0, 1], H̃) with a tangent vector field γ′,

∀t ∈ [0, 1], ωH(f∗γ′(t)) = ωH̃(γ′(t))

so that given p ∈ P a solution cpγ is equivalently a solution cpf∗γ . One concludes that h0 is in ΓH̃(p)
if and only if f(h0) is in ΓH(p). Thus all isotropy groups can be determined from the H̃-isotropy
groups, as their projections under the natural covering map. Conversely the H̃-isotropy group is
the inverse image under the covering map of the H-isotropy group for any Lie group integration
H. We have thus proved the following:

Theorem 7.2.8. Let P be an h-manifold and H̃ the simply-connected Lie group integration of h.
Then for any connected Lie group integration H of h with a covering map and H̃ f−→ H and any
point p in P, the following holds:

f−1(ΓH(p)) = ΓH̃(p)

As a direct consequence

ΓH(p) = f(ΓH̃(p))

The H-isotropy groups share with the usual isotropy groups the following property: they are
all conjugated along orbits. Let p0, p1 ∈ P connected by a cγ0

p0
for γ0 a smooth path in H from e

to g0 with sitting instants. Let cγp1
which is a loop based at p1. There is a conjugated loop based

at p0 constructed by concatenation
(
cγ0
p0

)−1 � cγp1
� cγ0

p0
. It is associated with a path γ0 ? γ ? γ

−1
0

from e to γ0(1) · γ(1) · γ0(1)−1. Thus we have the following inclusion

Adγ0(1) ΓH(p1) ⊂ ΓH(p0)

Finally, as γ0 can be reversed the opposite inclusion holds and we have the following theorem:

Theorem 7.2.9. Let P be an h-manifold and H a Lie group integration of h. Let p0, p1 be two
points of P with γ a smooth path in H starting from e such that cγp0

(1) = p1. Then2

ΓH(p1) = Adγ(1)−1 ΓH(p0) (7.24)

Another property is that the H-isotropy groups are preserved by equivariant maps between
h-manifold:

2The unusual conjugation is due to the Lie algebra acting on the right.
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Theorem 7.2.10. Let P and Q be two h-manifolds and H a Lie group integration of h. Let
φ : P → Q be a h-equivariant smooth map.

Then for all p in P ,
ΓH(p) ⊂ ΓH(φ(p))

The proof is straightforward: if cγp is a complete solution in P then φ(cγp) is a complete solution
for the same path γ starting from φ(p):

φ(cγp) = cγφ(p)

In particular for a vector space V with a representation of H, the following corollary holds:

Corollary 7.2.11. Let P be an h-manifold, H a Lie group integration of h and V a representation
of H.

Let φ : P → V be an h-equivariant field. Then at each point p of P , φ(p) is invariant under
ΓH(p).

Example 7.2.12. Consider a special orthochronous orthogonal group SO+
p,q. Its 2-covering by

the corresponding spin group induces a Lie algebra isomorphism:

spinp,q
∼−→ sop,q

The Spinp,q-isotropy groups are

ΓSpin+
p,q (x) = ker(Spin+

p,q → SO+
p,q) ' Z/2Z

Let Σ be an irreducible spinor representation of Spin+
p,q. Let ψ : SO+

p,q → Σ be a field which
is equivariant under spinp,q ' sop,q. Then the values of ψ have to be invariant under Z/2Z which
acts as −1 on spinor representations: ψ is necessarily identically zero.

This fact will be used in the examples presented in Section 7.3.

Recurrence orbits

Let γ be a path in H from e to e and p ∈ P such that cγp exists. The path cγp may not be a
loop. When this property holds for all paths γ and starting points p, the h-manifold is called
H-univalent (more in Section 8.1.1). A simple example is a nontrivial connected covering H1 → H:
there are loops based at e in H which lift to non-loops.

The points of P which can be connected to p by paths integrating the action of loops of H
based at e form the recurrence orbit 3 of p. More formally, it is the set defined as follows:

p ·IH :=
{
p′ ∈ P | ∃γ ∈ C∞([0, 1], H),

{
γ(0) = γ(1) = e

cγp exists and cγp(1) = p′

}
(7.25)

We call these sets recurrence orbits because they define an equivalence relation on P : for all
p, p′ and p′′ in P ,

• p ∈ p ·IH

• p′ ∈ p ·IH ⇔ p ∈ p′ ·IH

3It is adapted from recurrence set suggested in [MK22].
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•

{
p′ ∈ p ·IH

p′′ ∈ p′ ·IH
=⇒ p′′ ∈ p ·IH

as can be proved using a sitting path at e, concatenation and inversion of paths. In a way, the
recurrence orbits can be understood as the orbits under the neutral element of H.

The recurrence orbits p ·IH are dependent on the choice of the Lie group integration H: for
a covering H1 → H, the orbit p ·IH can be identified as the points connected to p by paths cγp
integrating paths γ going from e ∈ H1 to any element of the discrete subgroup ker (H1 → H).

The recurrence orbits are all trivial when the action of h integrates to an action of the Lie
group H. We will see in Section 8.1.2 to what extent the converse holds.

Here again there is a functoriality property:

Theorem 7.2.13. Let P and Q be two h-manifolds and H a Lie group integration of h. Let
φ : P → Q be an h-equivariant smooth map.

Then for all p in P ,
φ(p ·IH) ⊂ φ(p) ·IH

In particular, the following corollary holds:

Corollary 7.2.14. Let P be an h-manifold, H a Lie group integration of h and V a representation
of H.

Let φ : P → V be a h-equivariant field defined on P . Then at each point p of P ,

∀p′ ∈ p ·IH , φ(p′) = φ(p)

7.3 Examples of Generalised Frame Bundles
In this section we list a few examples in which the structure of generalised frame bundle with
connection becomes relevant. A first class of examples actually have a group action but with
varying orbit types.

7.3.1 Conical singularity with restricted chirality
Consider the group Spin4. It can be decomposed as a direct product of groups:

Spin4 ' Spin3×Spin3 ' Sp1×Sp1

with Sp1 the group of unitary quaternions. The action of Spin4 on R4 by projection to SO4 can
be represented using the quaternionic structure: Sp1×Sp1 acts on the quaternion space H by:

Spin4×H ' Sp1×Sp1×H→ H
(g, z) ' (p, q, z) 7→ p̄zq

Indeed the Clifford algebra Cl4 is isomorphic to M2(H) and the subspace of vectors R4 can be
identified with a quaternionic line within Cl4 on which Spin4 has the described action.

Consider now the semi-direct product Spin4 nR4: it is the product manifold equipped with
the following product structure:

(g1, x1) · (g2, x2) = (g1g2, g
−1
2 · x1 + x2)



7.3. EXAMPLES OF GENERALISED FRAME BUNDLES 155

It can be interpreted as the space of “spinorial frames” above the affine (coset) space(
Spin4 nR4) / Spin4 ' R4

[g, x] 7→ g · x

Let γ5 be a fixed chirality element of Spin4: it is the (ordered) product in the Clifford algebra
Cl4 of vectors of an orthonormed direct basis (its sign depends on the chosen orientation). It
squares to identity and takes the form

Spin4 ' Sp1×Sp1

γ5 ↔ (1,−1)

The chirality element generates a central Z2 subgroup of Spin4:

{(1, 1), (1,−1)} ⊂ Sp1×Sp1 ' Spin4

Let us consider the quotient of Spin4 nR4 under the corresponding left action of Z2:

P := (Z2) \
(
Spin4 nR4)

with the generator of Z2 acting as

γ5 · (g, x) = (γ5g, x)

The quotient map
Spin4 nR4 → (Z2) \

(
Spin4 nR4)

is a 2-fold covering map.
As a subgroup of Spin4 nR4, it is no longer central and not even a normal subgroup so that

P is not a quotient group but it still has a left action of Spin4.
The Maurer-Cartan form $ on Spin4 nR4 is invariant under left action by Spin4 nR4 hence

factors to P . The manifold P is naturally fibred above (Z/2Z) \R4 which has a conical singularity
at the origin.

The perspective of generalised frame bundles suggests defining spinor fields on (Z/2Z) \R4 as
basic spinor fields on (Z2) \(Spin4 nR4).

Computing the isotropy groups, one finds that for x in R4 K {0}, [e, x] ∈ P has orbits of
type Spin4 but (e, 0) has an orbit of type Spin3×SO3. That is, the Spin4-isotropy groups
of the orbit of [e, 0] correspond to the subgroup 1 × Z2 ⊂ Spin3×Spin3. The decomposition
Spin4 ' Spin3×Spin3 corresponds to the decomposition of Dirac spinors under respectively
left-handed and right-handed spinors. For a spinor, being invariant under 1× Z2 is equivalent to
having a vanishing right-handed part. As a consequence, basic spinor fields on (Z2) \(Spin4 nR4)
necessarily have a vanishing right-handed component above the origin of (Z2)\R4.

In other words, the geometry of the generalised frame bundle P requires the spinor fields on
(Z2)\R4 to have a right-handed part which vanishes at the origin.

7.3.2 Locally Klein geometries
This example generalises the previous one and gives a large family of flat frame bundles above
singular spaces.

Let H be a Lie group acting on a vector space V . Consider the Lie group H n V : it has a
(right) Maurer-Cartan form $ (Example 3.3.5). The action of the group H on the left on H n V
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preserves $ while it is equivariant under the right action of H.
The group H n V can be seen as a frame bundle as follows:

H n V (H n V ) /H V

(h, v) [h, v] h · v

∼

The diffeomorphism (H n V ) /H ' V is a consequence of the following section:

v ∈ V 7→ (e, v) ∈ H n V

with {e}×V crossing exactly once each (right) orbit under H. Since H is not a normal subgroup,
the isomorphism (H n V ) /H ' V is not a group homomorphism. Furthermore the splitting gives
a section of the frame bundle over V so that the frame bundle is trivialisable:

H n V H × V

V
(h,v)7→h·v

∼
(h,v) 7→(h,h·v)

(h,v)7→v

with the trivial right action of h1 ∈ H on H × V :

(h, v) · h1 = (hh1, v)

On the trivialised bundle, the Maurer-Cartan form takes the form

ωH ⊕ h−1 · ωV

Now let K be a discrete subgroup of H. It defines a left coset manifold

P := K\ (H n V )

of which H n V is a covering. Furthermore the left action of K commutes with the right action
of H so that H has an induced right action on P .

Since $ is invariant under the left action of H, it factors to P to a 1-form $P which still
satisfies the Maurer-Cartan equation:

d$P + 1
2 [$P ∧$P ] = 0

To understand the underlying manifold, let us construct the orbit space of P under the right
action of P : it is the double coset space

K\ (H n V ) /H

Since we know (H n V ) /H is isomorphic to V as a left H-space, we can conclude the following:

K\ (H n V ) /H ' K\V

As a conclusion, K\ (H n V ) models a H-structure above the quotient space K\V . These
examples are generalisations of what is called a locally Klein geometry, which are (connected,
regular) quotients of homogeneous spaces by discrete groups [Sha97].
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The example presented in the introductory section 7.1 can be interpreted as a case of this
construction. The torus is a representation of the frame bundle SO2 nR2. Dually to the so2 nR2-
valued coframe there is a frame (Z, e1, e2). The construction of the twisted frame bundle is akin
to considering the quotient under the left action of {±1} ⊂ SO2 and renormalising Z as 1

2Z. The
underlying manifold can be constructed as

{±1}\
(
SO2 nR2)→ {±1}\R2

[h, v] 7→ [h · v]

There is an exceptional PSO2 fibre above the origin of {±1}\R2 but the other fibres are of
type SO2.

7.3.3 Dynamical generalised frame bundle structures
Generalised frame bundles with connections are spaces with the same local structure as frame
bundles with connection. Therefore they serve as a useful generalisation when one expects to
produce a frame bundle structure or more generally a Cartan geometry structure from local
equations. In General Relativity the causal and gravitational structure of spacetime are encoded
in a Lorentzian structure on a four-dimensional spacetime. Depending on the variant, the metric
may be supplanted by a coframe field (a so-called tetrad) and the metric connection may have
supplementary degrees of freedom. The point is that this geometry corresponds to a G-structure
with connection over the spacetime. Generalised frame bundles with connection provide a new
frame for dynamically defined G-structures, more precisely a generalisation thereof. In particular,
the solder form is the frame bundle equivalent of the tetrad field.

Generalised frame bundles have sufficient structure to define curvature, torsion and matter
fields which are all basic fields. This was already put to use in [NR78a] for the specific case of
“group manifolds”. For example, the Einstein tensor can be defined as follows. We write ηab
for a g-invariant metric on R4 and ρbia for the components of the representation (the i index
corresponds to so4)

ρ : g→ so(R4, η)

Recall the curvature 2-form:

Ω = dω + 1
2 [ω ∧ ω] ∈ Ω2

bas(P, g)

The curvature tensor is constructed as

R = Ωiρi ∈ Ω2
bas(P, so(R4, η))

The associated Ricci tensor is a basic R4∗-valued 1-form:

Ricd = Ωibcρbidαc ∈ Ω1
bas(P,R4∗)

and the scalar curvature is a basic scalar:

Scal = Rica(ζa) ∈ Ω0
bas(P )

The (tetradic) Einstein tensor is defined as

Eina = Rica−
1
2 Scal ηabαb ∈ Ω1

bas(P,R4∗)
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and with a matter field ψ on which a stress-energy tensor T ∈ Ω1
bas(P,R4∗) depends, Einstein’s

field equations can be formulated as

Ein = T ∈ Ω1
bas(P,R4∗) (7.26)

Following an idea from [Tol78] and revisited in [HV16] along lines described in Section 10.3, we
construct in Chapter 11 a Lagrangian field theory on a 10-dimensional manifold with an so4 nR4-
valued coframe $ and a field ψ with value in a spinor representation of Spin4 as dynamical fields.
The theory uses a kind of generalised Lagrange multipliers, and the equations of motion constrain
$ to be a Cartan 1-form and impose equations of Einstein-Cartan type and Dirac type on $
and ψ, which also involve the Lagrange multipliers. We proceed to show that in the case the
generalised so4-structure is a standard Spin4-structure the field equations can be decoupled from
the Lagrange multipliers and the usual Einstein-Cartan-Dirac field equations are recovered on
the underlying spacetime.

7.4 Universal Formulas for g-valued 1-forms

In this section we establish general formulas which hold for spaces equipped with a Lie algebra-
valued 1-form. Let P be a differentiable manifold and g a unimodular Lie algebra (i.e. the adjoint
action is traceless), for example a semisimple Lie algebra. We consider the space

Q := T ∗P ⊗ g

of g-valued covectors on P. A g-valued 1-form is exactly a section of Q π−→ P, hence equations
holding on Q will be true when pulled back to P by any g-valued 1-form.

The standard situation is the case in which P is an H-principal bundle over some base
manifold and it is equipped with a g-valued coframe which is a Cartan 1-form for some Klein
model (G,H). A direct generalisation is the situation of generalised Cartan geometries. However
the computations we present here require no assumption on the g-valued 1-form.

We require that g is equipped with a volume form volg, which then induces linear isomorphisms

Λkg ∼−→Λn−kg∗

τ 7→ iτvolg

with n = dim g, as detailed in Section 1.4. In particular we will be using superscripts A,B,C . . .
for vectors of g and the aforementioned morphisms can be written

(vol(n−k))AB...K : Λkg→ Λn−kg∗

The space Q has a canonical g-valued 1-form which we call λ. It can be constructed as follows:

λ : T (T ∗P ⊗ g) π∗TP ' TP ×P T ∗P ⊗ g gdπ (u,φ)7→φ(u)

As an element of Ω1(Q, g), λ induces a graded algebra morphism

Λ•g∗ → Ω•(Q)
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and in particular this defines (n− k)-forms which are parametrised by Λkg∗:

λ
(n−k)
AB...K

We define the following quantity

Λ := dλ+ 1
2 [λ ∧ λ]

which represents a “universal curvature 2-form”: when P is a principal bundle with a Cartan
connection 1-form, the pullback to P of Λ is the curvature 2-form.

Our formulas will also involve maps with value in a representation of g: let Σ be a g-module
and Σ∗ the dual module. We will consider the trivial bundle

Σ×Q→ Q

as well as its dual trivial bundle, and define the fibre coordinates

s : Σ×Q→ Σ

and
s̄ : Σ∗ ×Q→ Σ∗

We define the corresponding universal covariant differential

dλs = ds+ λ · s

which are simply the second factor projections. Let ψ be a Σ-valued k-form on Q. We define the
following exterior covariant differential:

dλψ = dψ + λ · ψ

with an implicit wedge product in the notation λ · ψ.

We will show that in this “universal” framework, the following formulas hold:

dλ(10) = ΛA ∧ λ(9)
A (7.27a)

dλ(9)
A = ΛC ∧ dλ(8)

AC = dλλ(9)
A (7.27b)

dλ(8)
AB = ΛC ∧ dλ(7)

ABC − c
C
ABλ

(9)
C (7.27c)

d (s̄αsα) = (dλs̄)αsα + s̄αdλsα (7.27d)

dλ(ψα ∧ µ) =
(

dλψα
)
∧ µ+ (−1)kψα ∧ dµ (7.27e)

dλΛ = 0 (7.27f)
dλ(dλs)α = Λ · sα (7.27g)

with µ an arbitrary differential form on Q.



160 CHAPTER 7. GENERALISED CARTAN GEOMETRIES

The first computation goes as follows:

dλ(10) = (dλA) ∧ λ(9)
A

=
(

Λ− 1
2 [λ ∧ λ]

)A
∧ λ(9)

A

= ΛA ∧ λ(9)
A

In a similar fashion
dλ(9)

A = (dλB) ∧ λ(8)
AB

=
(

Λ− 1
2 [λ ∧ λ]

)B
∧ λ(8)

AB

= ΛB ∧ λ(8)
AB −

1
2c
B
CDλ

C ∧ λD ∧ λ(8)
AB

= ΛB ∧ λ(8)
AB − c

B
ABλ

(10)

= ΛB ∧ λ(8)
AB

with cBAB = 0 by unimodularity of the Lie algebra. To relate dλ(9)
A to dλλ(9)

A one just has to notice
that

λ · λ(9)
A = −cCBAλB ∧ λ

(9)
C = −cBBAλ(10) = 0

according to the same argument, so that

dλλ(9)
A = dλ(9)

A

The next computation is similar:

dλ(8)
AB = (dλC) ∧ λ(7)

ABC

=
(

Λ− 1
2 [λ ∧ λ]

)C
∧ λ(7)

ABC

= ΛC ∧ λ(7)
ABC −

1
2c
C
DEλ

D ∧ λE ∧ λ(7)
ABC

= ΛC ∧ λ(7)
ABC −

(
cCBCλ

(9)
A − c

C
ACλ

(9)
B + cCABλ

(9)
C

)
= ΛC ∧ λ(7)

ABC − c
C
ABλ

(9)
C

Next we check the compatibility with equivariant contractions:

d(s̄αsα) = (ds̄α)sα + s̄αdsα

= (dλs̄− λ · s̄)αsα + s̄α(dλs− λ · s)α

= (dλs̄α)sα + s̄α(dλs)α − (λ · s̄)αsα) + s̄α(dλs− λ · s)α

= (dλs̄α)sα + s̄α(dλs)α

In particular, for ψ a Σ-valued k-form over Q and ψ̄ a Σ∗-valued l-form, the following holds

d(ψ̄α ∧ ψα) = (dλψ̄α) ∧ ψα + (−1)lψ̄α ∧ (dλψ)α (7.28)
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For µ a differential form, we obtain the following

dλ(ψα ∧ µ) = d (ψα ∧ µ) + λ · ψα ∧ µ =
(

dλψα
)
∧ µ+ (−1)kψα ∧ dµ

Next is the Bianchi identity, which will make use of the Jacobi identity [[λ ∧ λ] ∧ λ] = 0:

dλΛA = d
(

dλ+ 1
2 [λ ∧ λ]

)A
+
[
λ ∧

(
dλ+ 1

2 [λ ∧ λ]
)]A

= 1
2 ([dλ ∧ λ]− [λ ∧ dλ])A + [λ ∧ dλ]A

= 0

And finally,
dλ(dλs)α = (d + λ·)(ds+ λ · s)α

= (d(λ · s) + λ · ds+ λ ∧ λ · s)α

=
(

(dλ) · s+ 1
2 [λ ∧ λ] · s

)α
= Λ · sα

Note that the two last equations can as well be written using d:

dΛ = [Λ ∧ λ]
d(dλs)α = (Λ · s− λ · dλs)α
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Chapter 8

Integration of Generalised Cartan
geometries
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8.1 Integration of a Lie algebra action
Generalised Cartan bundles have the action of a Lie algebra, but no group action. We want to
study how a generalised Cartan bundle can be related to a standard principal bundle with a
Cartan connection, and get a more precise idea of the possibilities offered by this generalisation.

In this section we deal with the question of integrating the action of a finite dimensional (real)
Lie algebra h on a manifold P into a group action. The general theory (on non-Hausdorff nor
paracompact manifolds)1 is presented in detail in [Pal57], see also [KM04] for a more concise
presentation. We introduce a Lie groupoid perspective on the question and show its relevance for
dealing with Lie algebra actions, bringing the study in a different direction as was done in [Bla14].
The question we study can be phrased as followed, in terms of Lie groupoid theory: we want to
integrate the action Lie algebroid (or transformation Lie algebroid) [FC06; MM00] associated to
the action of a Lie algebra, and study the resulting structure. In particular, we prove a result

1What they call differentiable manifolds are in our language smooth spaces which are locally isomorphic to a
manifold.
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of weak equivalence between the Lie groupoid approach and a different completion approach
(Theorem 8.1.34).

8.1.1 Integration of a Lie algebra action into a local group action

The action foliation on P ×H

Let P be a manifold on which a Lie algebra h of dimension r acts on the right, i.e. a right h-
manifold [KM04]. The vector fields representing the Lie algebra are commonly called fundamental
vector fields (also: Killing vector fields). We want to integrate the action into a Lie group action.
In other words given a connected Lie group H integrating h, we want to define an action of H
such that the associated infinitesimal action corresponds with the existing h action. Lie’s third
theorem ensures us we can always find a connected Lie group integrating h:

Theorem 8.1.1 (Third theorem of Lie, [Ser92]). Any finite-dimensional real Lie algebra is
isomorphic to the Lie algebra of a real simply-connected Lie group.

A first obstruction is that the vector fields may not be complete. An immediate example is H
minus any point. In this case the problem will be to globalise the Lie algebra action, by which we
mean embedding P into a larger manifold on which the group H acts, such that the Lie algebra
actions correspond.

The property identified as necessary and sufficient for a globalisation to exist, in a sufficiently
general setting, is called univalence of the infinitesimal action [Pal57]. It formalises the idea that
the action of an element h of H on a point of P can be constructed by integrating the infinitesimal
action along a smooth path in H from e to h and is independent from the chosen path. We now
define it in more detail.

Consider the product P ×H, we will write pH : P ×H → H the factor projection which is
a fibration over H. The Lie algebra h acts on the right on both P and H thus on the product
manifold P ×H. It acts by a Lie subalgebra h ↪→ Γ(T (P ×H)) of constant rank r:

(x, h) · ξ = (x · ξ, h · ξ)

Indeed the TH component is already of rank r. Furthermore, as a Lie subalgebra, it is closed
under vector bracket, so that it defines an involutive distribution, which we call D. Invoking the
Frobenius theorem, D integrates into a foliation, which we call the action foliation and write F
(or FD to avoid ambiguities). Its leaves project to H under pH by local diffeomorphisms: naming
a leaf L the differential of the projection is the parallelism

h× L ' TL T (P ×H) TH h×H

idh×pH

dpH ωH
∼

However the projections of the leaves on H do not have to be onto or one-to-one. The following
property will be central in our considerations.

Definition 8.1.2 (Univalence). The action of h on P is called univalent (for H) if on each leaf
L of D the restriction of projection pH : L ↪→ P ×H → H is injective.
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Note that the projection

D T (P ×H) TH

being by linear isomorphisms, the distribution D can also be interpreted as a connection on the
product fibre bundle P ×H → H. Integrability of D is then equivalent to the flatness of the
connection and univalence is equivalent to having trivial holonomy. Given a path γ in H, the
procedure of solving the differential equation

c′(t) = c(t) · ωH(γ′(t))

amounts to building a parallel lift of the path γ in P ×H.
Furthermore, since the distribution D is invariant under the left action of H, the same goes

for the action foliation. We now turn to building a “local group action” for a given connected Lie
group H integrating h.

Local group actions

In order to build a group action from a Lie algebra action, we want to build a structure which
can encode the action of certain elements of the group, typically built by integrating along a
smooth path in the group starting from e.

Definition 8.1.3. Let H be a Lie group. A (right) local group action of H on a manifold P is
the data of an open subset U of P ×H provided with a map{

P ×H → P

(p, h) 7→ p · h

such that

• P × {e} ⊂ U and ∀p ∈ P, p · e = p

• ∀(p, h1, h2) ∈ P ×H ×H,{
(p, h1) ∈ U
(p · h1, h2) ∈ U

=⇒ (p, h1h2) ∈ U

and
(p · h1) · h2 = p · (h1h2)

Remark. There are two perspectives on how a local group action is “local”. First, only a
neighbourhood of the identity element of the group may act on a specified point of P . Second,
given an element of the group, it may only act on part of the manifold. In this sense a local
group action is local with respects to both the base manifold and the Lie group.
Remark. This notion is related but different from the notion of “local group of transformations”
which can be found in [Pal57; Olv86], also called “local action of H” in [Bla14]. In fact it is very
close to the notion of “maximum local group of transformations” 2. The essential difference is

2An additional hypothesis on local groups of transformations is that the subset of group elements acting on
each point of P has to be connected.



166 CHAPTER 8. INTEGRATION OF GENERALISED CARTAN GEOMETRIES

that in local action groups as we defined, composition of morphisms is always defined. A local
group of transformations may only capture the action of “small” elements of the group, while
larger elements may be build as composition of smaller elements possibly in multiple ways.

Definition 8.1.3 can be rephrased concisely using the notion of Lie groupoids (Section 6.1): a
local group action of H on P is exactly the data of a Lie groupoid on an open subset Γ1 ⊂ P ×H
and Γ0 = P with

• As source map (p, h) 7→ p.

• As target map (p, h) 7→ p · h.

• As identity section p 7→ (p, e).

• As composition [(p′, h2), (p, h1)] 7→ (p, h1h2).

These definitions rely on the fact that the space of morphisms is a subset of P ×H. It is more
convenient to develop a more intrisic characterisation, which we do in the subsequent section.

Action groupoids and local pseudo-actions

We start by recalling the definition of action groupoids:

Definition 8.1.4. Let P be a smooth manifold with an action of a Lie group H. The corre-
sponding action hroupoid has a manifold of points Γ0 = P , a manifold of morphisms Γ1 = P ×H
and as structure maps:

s : (p, h) ∈ P ×H 7→ p e : p ∈ P 7→ (p, e)
t : (p, h) ∈ P ×H 7→ p · h i : (p, h) ∈ P ×H 7→ (p, h−1)

◦ : [(p · h1, h2), (p, h1)] 7→ (p, h1 · h2)

It is called the action groupoid and is sometimes written P oH.

This construction gives an embedding of the notion of group action into the theory of groupoids:
a map t : P ×H → P such that P ×H equipped with the supplementary structure maps (s, e, i, ◦)
defined as in the definition forms a groupoid is exactly a (right) action of H on P .

We want to characterise the structure of action groupoid as extra structure on a Lie groupoid.
The action groupoid of an H-manifold comes with a (projection) map Γ1 → H which is compatible
with identity, inversion and composition and which is a diffeomorphism on each fibre of s (or t):

{s = p} ' {p} ×H ∼−→H

Such a map gives a diffeomorphism Γ1
∼−→P ×H which is compatible with the fibration over P by

s and the factor projection P ×H → P . Namely, the following diagram commutes

Γ1 P ×H

P

∼

s p1

The hypotheses ensure that if we transport the Lie groupoid structure from Γ to P ×H → P
its structure maps (s, e, i, ◦) are of the form described in Example 6.1.6, so that the target map
defines an action of H on P and P ×H ⇒ P is an action groupoid which is isomorphic to Γ.
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Seeing the Lie group H as a Lie groupoid with a point 1 = {∗} as base manifold and H as
manifold of morphisms, the map from Γ1 to H defines a morphism of Lie groupoids and we can
formulate the following theorem, essentially inspired from [Arm07]:

Theorem 8.1.5. Let Γ = Γ1
s
⇒
t
P be a Lie groupoid over a manifold P and H a Lie group.

There is an equivalence between the two following structures:

1. An isomorphism of Lie groupoids between Γ1 and the action groupoid associated to an action
of H on P .

2. A Lie groupoid morphism Γ→
(
H

s
⇒
t

1
)

such that for all x ∈ P the partial maps

{s = x} 7→ H

are diffeomorphisms.

The following example shows that not only group actions are entirely captured by their action
groupoids, but the morphisms between them are as well:

Example 8.1.6. Let P and Q be two manifold with a smooth action of a Lie group H.
Then a Lie groupoid morphism between the corresponding action groupoids which preserves

the H component of the morphisms is necessarily of the form

P oH QoH

P Q

φ×idH

πP πQ

φ

with φ an H-equivariant map from P to Q.

We reformulate the notion a local group action from this perspective:

Theorem 8.1.7. Let P be a smooth manifold and H a Lie group acting (on the right) on P . A
local group action of H on P is equivalent to the data of a Lie groupoid with Γ0 = P and a Lie
groupoid morphism

Γ→
(
H

s

⇒
t

1
)

such that it defines an open embedding on each fibre for p in P :

{s = p} ↪→ {p} ×H ∼−→H

This perspective suggests a generalisation which will be useful in the following sections:

Definition 8.1.8. A (right) local group pseudo-action of H on P is the data of a Lie groupoid
over P : Γ

s

⇒
t
P equipped with a morphism τ to the Lie groupoid H

s

⇒
t

1 such that the map

Γ (s,τ)−−−→ P ×H

is locally a diffeomorphism. Equivalently, this is a morphism τ such that the restricted maps

{s = p} → H
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are local diffeomorphisms for every p in P .

In this generalised structure, different morphisms starting from a given point p in P can
be mapped to the same element h in H. In other words, a given element h of H may “act” in
multiple ways on the same point p in P . Given a specific element γ of Γ from p1 = s(γ) to
p2 = t(γ) with τ(γ) = h, it is possible to construct the “local action” of γ on a neighbourhood of
p1 as we now describe.

First, notice that Γ (t,τ)−−−→ P × H is a local diffeomorphism as well, since inversion is a
diffeomorphism of Γ. As a consequence, when restricted to {τ = h} ⊂ Γ, both maps {τ = h}

s

⇒
t
P

are local diffeomorphisms. Thus given an open neighbourhood U of γ in {τ = h} on which s and t
are injective, we obtain diffeomorphisms with respective neighbourhoods of p1 and p2. Therefore
one can construct a local diffeomorphism from s(U) to t(U):

U

s(U) t(U)
p1 p2

s|U
∼

t|U
∼

∼

In this way a local group pseudo-action allows to define the action of an element h of H on the
neighbourhood of a point p of P by selecting a morphism in {τ = h} starting from p. As stated
earlier there may be different germs of diffeomorphisms associated to the same h and the same p.
Remark. This name comes from the notion of pseudoaction of a groupoid defined in [Bla14] as a
multiplicative foliation on the manifold of morphisms such that the leaves are projected by local
diffeomorphisms under the source and target maps. In other words, there exists locally a notion of
“constant” element of the groupoid acting on a neighbourhood of any given starting point, which
is furthermore compatible with the groupoid composition. It allows associating locally defined
diffeomorphisms to elements of the groupoid, similarly to the construction we just presented.
Remark. Let us emphasise here the difference with the approach from [Pal57], which will illustrate
the purpose of the structure we just defined. Their approach is to try to complete the manifold in
order to obtain a well defined group action. They relate the existence of such a completion with
the existence of a “maximum local group of transformations” which is very close to what we call
local group actions.

Our approach in this section looks to directly build the local group action, without considering
for now the problem of completion (which will be discussed in Section 8.1.2). A similar idea is
presented in [Bla14] in which they start from (or build from the action of the Lie algebra) the
action of “small” group elements and use chains of such small elements. In our approach we
build the action of paths in the group H (starting from e), so that composition is an internal
composition law between paths. In order to obtain a local group action there will be a consistency
condition which boils down to ensuring that the action of a path is uniquely determined by its
end.

Put in another way, “local” means that only specific elements of the group may act on a
given point of the space (the maps {s = p} → H fail to be surjective) while “pseudo” means that
an element of the group may act on a given point in several distinct ways (the maps fail to be
injective).

With these tools in hand, we will look to build a Lie groupoid integration of a Lie algebra
action. We present in the next section the construction, which will rely on the holonomy groupoid
introduced in Section 6.2.3.
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Integration of the Lie algebra action into a local group pseudo-action

In this section we construct a groupoid integrating the action of a Lie algebra h on a manifold P .
We present a construction different from that which can be found in [Pal57; Bla14]. The former is
interested in “maximal local group of transformations” (see the remark following Definition 8.1.3)
and the latter uses chains of “small” group elements. In contrast, we use holonomy which exactly
embodies the data we are interested in. Our approach is also very specific to the structure at
hand compared to the general construction detailed in [FC06]. The construction was tersely
mentioned in [Daz97], without proof. We give an detailed analysis of the structure we obtain.

Let H be a Lie group integration of h. There is a holonomy groupoid (Section 6.2.3) associated
to the action foliation F on P ×H, we call it HolF . The subspaces P ×{h} give local transverses
to the foliation, so that holonomy can be represented as a germ of diffeomorphism between open
subsets of P . The left action of H preserves the action foliation so that by functoriality of the
holonomy groupoid construction (Theorem 6.2.23) H has a left action on HolF by Lie groupoid
automorphisms.

Let p1 and p2 be two points of P and (cγ , γ) a foliated path in P ×H from (p1, h1) to (p2, h2).
Let U1 and U2 be two respective neighbourhoods of p1 and p2 in P such that Hol(cγ , γ) can be
represented as a diffeomorphism from U1 × {h1} to U2 × {h2}. Then invariance under H implies
that for all h in H the holonomy Hol(ch·γ , h · γ) is defined from U1 ×{h · h1} to U2 ×{h · h2} and
the following diagram of diffeomorphisms is commutative:

U1 × {h1} U2 × {h2}

U1 × {h · h1} U2 × {h · h2}

Hol(cγ ,γ)
∼

h·
∼

h·

∼

Hol(ch·γ ,h·γ)
∼

As a consequence the diffeomorphism U1
∼−→U2 remains unchanged when γ is replaced with h · γ.

The construction described in 7.2.3 using the paths cγp can be conveniently described using
the holonomy groupoid. A candidate for the action of an element h ∈ H on a point p1 ∈ P was
constructed using a path γ in H from e to h and trying to integrate the following differential
equation

c′(t) = c(t) · ωH(γ′(t))

with initial condition c(0) = p1. Building such a path c amounts to lifting the path γ under the
projection

P ×H → H

into a path (c, γ) tangent to the action foliation F starting from (p1, e). To such a path (c, γ) it
is associated an element of HolF with source (p1, e) and target (p2, h). The component p2 of the
target is the candidate for p1 · h. The holonomy between open subsets of P is the candidate for
the corresponding action of h on a neighbourhood of p1.

The holonomy groupoid contains the holonomy of paths starting from every (p, h) in P ×H
but we only need paths starting from points (p, e) in order to build an action on P . Indeed given
any path γ in H which has a parallel lift (cγ , γ) in P ×H starting from a point (p, γ(0)), then
for all h in H, the path (cγ , h · γ) is a parallel lift of γ starting from (p, h · γ(0)). An alternative
perspective is the observation that the differential equation

c′(t) = c(t) · ωH(γ′(t))

purely depends on γ′(t). The conclusion is that the groupoid HolF contains a redundancy in
describing the construction of paths on P . Let us define the objects (paths) we will be interested
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in, before organising them into a Lie groupoid.

Definition 8.1.9. Let H be a connected Lie group with Lie algebra h and P an h-manifold.

• An H-path on P is the data of a smooth path c on P and a smooth path γ on H starting
from e such that the differential equation

c′(t) = c(t) · ωH(γ′(t))

is satisfied at all times. The γ component will sometimes be omitted.

• An H-loop on P is an H-path (c, γ) on P such that c is a loop (γ need not be a loop).

• When the differential equation has a complete solution c starting at a point p1 ∈ P
and ending at a point p2, there are complete solutions for each initial condition in a
neighbourhood of p1. The germ of the corresponding flow between neighbourhoods of p1
and p2 will be called the local action of the H-path c.

Remark. • The data of an H-path can be defined using only the structure of h and the
derivative path γ′ with value in h. Specifying the Lie group H suggests keeping in mind
the endpoint of γ which does live in H.

• As explained above, the local action of an H-path represents the holonomy of the corre-
sponding foliated path in P ×H.

The local actions of H-paths are structured into a Lie groupoid above P , which can be
constructed from the holonomy groupoid of the action foliation F :

Definition 8.1.10 (Local pseudo-action groupoid associated to a Lie algebra action). Let P be
a (right) h-manifold and H a Lie group integration of h. The local pseudo-action groupoid of H
on P will be written P oHloc and is defined as follows:

• The base manifold is P .

• The morphism manifold is the submanifold of (HolF )1 of holonomies starting from a point
of P × {e}:

s−1 (P × {e}) ⊂ (HolF )1

It has dimension dimP + dimH.

• The source and target maps are respectively the P components of the starting and ending
point of the holonomy.

• Composition of the holonomy of two paths (c1, γ1) and (c2, γ2) such that c1(1) = c2(0) is
defined as the holonomy of the following foliated path(

c2 � c1 , [γ1(1) · γ2]� γ1
)

• The identity section is the class of germs of the identity diffeomorphisms.

• The inversion map maps the holonomy of a path (c, γ) to that of the reversed path(
č, γ(1)−1 · γ̌

)
.
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A thorough definition would also require checking that composition and inversion are well
defined on holonomy classes. Fixing the H component of the starting point of the holonomies
allows eliminating the redundancy due to considering arbitrary paths in H. Another way to
eliminate the redundancy which is equivalent is to construct a quotient of the holonomy groupoid
which is tailor-made to get rid of the superfluous degrees of freedom. The previous construction
can then be understood as a section from the quotient to the holonomy groupoid, effectively a
kind of gauge fixing.

Definition 8.1.11 (Local pseudo-action groupoid associated to a Lie algebra action, quotient
construction). Let P be a (right) h-manifold and H a Lie group integration of h. The local
pseudo-action groupoid of H on P can be constructed as follows:

• The base manifold is P .

• The morphism manifold is the free quotient H\HolF .

• The source and target maps are the factorisations to H\HolF of the projection to P of the
source and target maps of HolF :

(HolF )1 P ×H

H\ (HolF )1 P

s

t

s

t

• Composition is defined as the class in H\ (HolF )1 of the composition in HolF of representa-
tives. Since the composition of HolF is H-equivariant it factors to H\ (HolF )1.

• The identity section is the class of germs of the identity diffeomorphisms.

• The inversion map is the factorisation to H\ (HolF )1 of the inversion map of HolF , which
is H-equivariant.

Since the projection P×H → P can be identified with the quotient map P×H → H\ (P ×H),
the local pseudo-action groupoid can be understood as the quotient of HolF under the left action
of H.

Theorem 8.1.12. The two constructions of the local pseudo-action groupoid associated to a Lie
algebra action yield isomorphic Lie groupoids: the isomorphism is given by the following maps

s−1 (P × {e}) H\ (HolF )1

P

[c,γ]7→[c,γ] mod H

s

t t

s

The proof is a matter of checking that s−1 (P × {e}) indeed crosses each coset exactly once
so that there is a diffeomorphism

(HolF )1
∼−→s−1 (P × {e})×H

which intertwines the left action of H on (HolF )1 with the left action on the factor H and that
the map is compatible with the groupoid structure maps.

Let us present an example which illustrates the purpose of the construction:
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Example 8.1.13. Let H be a connected Lie group with Lie algebra h and P a right H-manifold.
Then the action of H on P differentiates to an action of h.

Let γ be a smooth path in H starting from e and ending on an element h. Let p be any point
of P . Then the differential equation{

c′(t) = c(t) · ωH(γ′(t))
c(0) = p

is solved by the path
c(t) = p · γ(t)

ending on p · h. Thus it corresponds in the local pseudo-action groupoid to a morphism from p to
p · h.

Since what precedes holds for any point of P , we have foliated lifts of γ starting from any
point of P . Consider the product space P ×H. We can choose P × {e} as a transversal to F at
the point (p, e) and P × {h} as a transversal at the point (p, h). Then the holonomy of (c, γ) is
given by

P × {e} id×·h−−−−→ P × {h}

In particular, given a starting point p there is exactly one morphism for each element h in H,
which ends on p · h. This can be used to construct a Lie groupoid isomorphism with the action
Lie groupoid P nH for the action of H on P .

We now describe a system of charts for the smooth structure of (P oHloc)1. Let (c, γ) be an
H-path with sitting instants in P parametrised from 0 to 1 and [c, γ] the associated element of
(P oHloc)1. Define p0 = c(0) and h0 = γ(0)−1γ(1).

Consider the following parametrised path in H for ξ ∈ h:

t ∈ [0, 1] 7→ exp(tξ)

We define eξ as this path reparametrised in order to have sitting instants. We define γh the
concatenation

(
γ(1) · eξ

)
� γ, reparametrised in order to have a parameter varying from 0 to 1.

Then the differential equation

c′(t) = c(t) · ωH(γ′ξ(t))
c(0) = p

admits a global solution (on [0, 1]) for ξ = 0 and p = p0. As a consequence, there are open
neighbourhoods U ⊂ P of p0 and V ⊂ h of 0 such that for all p in U and ξ in V the equations
admit a complete solution ([Mic08] Section I.3.7). We write cξp these solutions. We can reduce V
to a subneighbourhood of 0 if needed in order to ensure that the exponential map is injective
over V.

The associated chart around [c, γ] is the map

U × V ⊂ P × h→ (P oHloc)1

(p, ξ) 7→ [cξp, γξ]
(8.1)

We will prove that this map is
1. smooth for the submanifold structure

2. open
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3. an embedding
which will prove that it is a chart for the smooth structure.

First, it is naturally smooth as a map into HolF since it is the holonomy of a smoothly
parametrised foliated path. Furthermore, we know that the map

U × V ×H → s (HolF )1

(p, ξ, h) 7→ [cξp, h · γξ]
(8.2)

defines a chart on (HolF )1 (Section 6.2.3). Considering (P oHloc)1 as an embedded submanifold,
the image of U × V × {e} is exactly the intersection of (P oHloc)1 with the image of the chart of
(HolF )1. As a consequence the map (p, ξ) 7→ [cξp, γξ] is an open embedding in (P oHloc)1. Thus
we proved that we have charts for the smooth structure of (P oHloc)1.

The local pseudo-action groupoid of H comes with a natural Lie groupoid morphism to H
s
⇒
t

1:
it is constructed by the following factorisation

HolF

H

Hloc n P

[γ,cγ ] 7→γ(0)−1γ(1)

τ

and associates to a holonomy from a pair (p0, h0) to a pair (p1, h1) the element h−1
0 h1 such that

the right translation in H relates h0 to h1.
With this map to H, the local pseudo-action groupoid has the structure of a local group

pseudo-action of H:
Theorem 8.1.14. Let H be a connected Lie group with Lie algebra h and P an h-manifold.

Then the local pseudo-action groupoid P oHloc equipped with the above defined map τ to H
defines a local group pseudo-action of H on P .

This implies in particular that τ is a submersion.

Proof. Consider the charts as defined in Expression (8.1), associated to an H-path (c, γ). The
map (P oHloc)1

(s,τ)−−−→ takes the following form in the local coordinates (p, ξ):

(p, ξ) ∈ U × V 7→
(
p, γ(1) exp(ξ)

)
∈ P ×H

It is manifestly a local diffeomorphism.

Remark. A careful examination of the construction of the charts shows that the smooth structure
of (P oHloc)1 is essentially defined by requiring that the map

(P oHloc)1
(s,τ)−−−→ P ×H

is a local diffeomorphism. In this way all the charts can be gathered into one geometrical map
(which however does not encode the topology of (P oHloc)1).

Recall that a neighbourhood U of a point p in P defines transversals U × {h} to F at the
points (p, h). The holonomy between such transversals corresponds to the local action of elements
of P oHloc in the following sense:
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Theorem 8.1.15. Let [c, γ] be an element of P oHloc going from a point p1 in P to a point p2.
Let h = τ([c, γ]).
Let U1 be a neighbourhood of p1 in P and U2 a neighbourhood of p2 such that the holonomy of
(c, γ) can be realised as a diffeomorphism

U1 × {e}
Hol(c,γ)−−−−−→
∼

U2 × {h}

In other words, assume there is a smooth map

φ : U1 × {e} × [0, 1]→ P ×H

such that

• φ(·, 0) = idU1×{e}

• φ(·, 1) is the holonomy of (c, γ) from U1 × {e} to U2 × {h}

• For all x in U1, the path
t ∈ [0, 1] 7→ φ(x, t)

is a foliated path.

Then there exists an open neighbourhood V of [c, γ] in the submanifold {τ = h} such that the
following diagram of local diffeomorphisms commutes:

V

U1 U2

s|V
∼

t|V
∼

Hol(c,γ)
∼

with U1 and U2 respectively identified with their embeddings U1 × {e} and U2 × {h}.

Proof. Let there be such a map φ. Consider the following map:

σ : x ∈ U1 7→ [φ(x, · )] ∈ P oHloc

It satisfies the following properties:

• s(σ(x)) = x

• t(σ(x)) = φ(x, 1) = Hol(c, γ)(x)

• τ(σ(x)) = h

Furthermore, it is straightforward to prove that it is continuous using an atlas associated with
the transversal U1 × {e}.

Since (s, τ)◦σ is smooth, σ is a smooth section of s. As a consequence its image is a submanifold
of (P oHloc)1 of dimension n, which is furthermore contained inside the n-submanifold {τ = h}.
It is thus an open neighbourhood of [c, γ] in {τ = h} satisfying the properties asserted in the
theorem.
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The recurrence groupoid

Univalence for H can be formulated as follows: given any starting point p ∈ P , the restriction

τ |{s=p} : {s = p} → H

has to be injective. A formulation closer to the idea that loops in H should have trivial action on
P is the triviality of the kernel subgroupoid ker(τ) = {τ = e}:

ker(τ) = idPoHloc

s
⇒
t
P

This should make it clear why we started with the data of holonomy: the kernel subgroupoid
ker(τ) contains the holonomy of foliated lifts to P ×H of loops in H based at e. They correspond
to local actions of the loops of H on P . For such an H-path starting from a point p to have
trivial local action, it is not sufficient to be a loop: all H-paths with the same H component
(the γ path) starting in a neighbourhood of p need to be loops. The subgroupoid ker(τ) will be
called the recurrence groupoid. Since τ is a submersion, it is a Lie subgroupoid of the local action
groupoid.

Now recall that the morphisms of the local action groupoid are holonomy classes of paths.
Requiring that every loop in H has foliated lifts to P ×H which only have trivial holonomy, a
condition on the whole holonomy germs, is equivalent to requiring that all the foliated lifts are
loops, a 0-order condition on the lifts. Therefore univalence can be formulated as follows: the
recurrence groupoid ker(τ) has no morphism between distinct points. This 0-order condition is
indeed very close to the original Definition 8.1.2 cited from [Pal57].

Theorem 8.1.16 (Characterisation of univalence). Let H be a connected Lie group with Lie
algebra h and P an h-manifold. Then the action of h on P is univalent for H if and only if one
of the following equivalent conditions is satisfied:

• The recurrence groupoid ker(τ) is trivial, namely it only contains identity morphisms.

• The recurrence groupoid ker(τ) only contains automorphisms.

• The map τ is injective on all submanifolds of morphisms with fixed source.

The obstruction to univalence is readily quantified in the recurrence orbits introduced in
Section 7.2.3. They are naturally defined using the local pseudo-action groupoid:

Definition 8.1.17. Let p ∈ P . We introduce the following notation for the recurrence groupoid:

P o IH :=
(
IH

s

⇒
t
P

)
= ker(τ) ⊂ P oHloc

It can be realised as the following subgroupoid of HolFD :

IH = (s, t)−1(P × {e} × P × {e}) ⊂ (HolFD )1

Its orbits are called recurrence orbits (under H) and we write them p ·IH for points p in P .

The previous theorem can be reformulated as follows: the action of h is univalent for H if and
only if all the recurrence orbits are trivial.

We can formulate the following theorem, which is a consequence of the definition and the
remarks in Section 8.1.1:
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Theorem 8.1.18. Let H be a connected Lie group with Lie algebra h and P an h-manifold.
Then the local pseudo-action groupoid P oHloc defines a local group action of H if and only if
the action of h is univalent for H.

The theorem is very close to part of Theorem 3.X in [Pal57], although in a different language.
Since (s, τ) : (P oHloc)1 → P×H is a local diffeomorphism and PoIH is the inverse image of

e under τ , we conclude that the source map of the recurrence groupoid defines a (surjective) local
diffeomorphism onto P . The same goes for the target map, as can be proved by precomposing the
source map with the inversion diffeomorphism of (P oHloc)1. Using the notion of étale groupoid
defined in Section 6.1, we can state the following:

Theorem 8.1.19. The recurrence groupoid is an étale Lie groupoid.

In particular, this implies that to each morphism in P o IH it is associated a germ of
diffeomorphism of P . We reproduce here the argument. Given any morphism [c, γ] in P oIH from
a point p1 to a point p2, there is a neighbourhood U ⊂ IH on which the restrictions of the source
and the target maps are diffeomorphisms. Therefore one can construct a local diffeomorphism
from s(U) to t(U):

U

s(U) t(U)
p1 p2

s|U
∼

t|U
∼

∼

Since
P o IH = {τ = e} ⊂ (P oHloc)1

this indeed corresponds to the local action of elements of {τ = e}. As a consequence, the local
diffeomorphism obtained is a representative of the holonomy of [c, γ] between tranversals of F in
P ×H corresponding to open subsets of P .

In a similar way, the H-isotropy groups are naturally defined using the local pseudo-action
groupoid:

Definition 8.1.20. Let p ∈ P . Its H-isotropy group is defined as

ΓH(p) = τ
(
AutP×hH(p)

)
Remark. More generally, given k ∈ N, is it possible to define an H-isotropy group of order k
constructed as the image under τ of the subgroup of automorphisms of p with holonomy trivial
to the order k.

Non-functoriality of the local action groupoid construction

One may expect the local action groupoid construction to behave functorially with respect to
h-equivariant maps between h-manifolds. Indeed Theorem 6.2.23 is a positive result in this
direction and functorially holds under similar conditions. However we present here a simple
example showing that an arbitrary equivariant map does not always induce a map between
holonomy classes.

Consider the twisted torus T ' R2 × S1 introduced in Section 7.1 (one could consider instead
a lower dimensional Moebius strip).



8.1. INTEGRATION OF A LIE ALGEBRA ACTION 177

Figure 8.1: The torus as a “twisted”
frame bundle

It is equipped with a vector field Z which acts by
torus translations “twisted” by a rotation (in purple
on the figure). Using (e1, e2) as basis of the R2 slices
transversal to Z we had:

[Z, e1] = 1
2e2

[Z, e2] = −1
2e1

The vector field Z defines an action of the Lie algebra
so2 on T . As mentioned in Section 8.1.1, the holonomy
classes of foliated paths in T×SO2 correspond to germs of
diffeomorphisms on T . Consider now the 1-dimensional
subspace Q = {0} × S1 represented as a black circle on
the figure. It is stable under the action of Z thus is a

so2-submanifold. We shall exhibit a SO2-loop in Q with trivial local action in Q but non-trivial
local action in T .

Now, as a so2-manifold, Q is isomorphic to SO2 therefore the local action of SO2-paths is
very rigid. The local action of loops of SO2 is always trivial.

Going back to T , consider a SO2-loop in Q of winding number 1, for example

θ ∈ [0, 2π] 7→ exp(θZ)(0, 0)

By the bracket relation with e1 and e2, we know that
exp(2πZ)∗e1 = −e1

exp(2πZ)∗e2 = − e2

exp(2πZ)∗Z = Z

thus the local action of the loop corresponds to the following map:

(x, z) ∈ R2 × S1 7→ (−x, z)

which is not trivial.
There exists another Lie groupoid very similar to the holonomy groupoid which is called the

monodromy groupoid. Instead of holonomy classes of paths it contains the additional data of the
homotopy classes of foliated paths. Homotopy classes behave more conveniently with respect to
smooth maps thus the construction has better functoriality properties. However, although the
holonomy class of a path only depends on its foliated holonomy class, several homotopy classes
may have the same holonomy class (even when H is simply connected). Since we want to identify
the groupoid elements with the corresponding element in the Lie group H and their holonomy,
elements we want to identify may not be identical in the monodromy groupoid (even in the case
H is simply connected).

When both h-manifolds are univalent for H, the local action of an H-path is uniquely specified
by the corresponding element of H so that an h-equivariant map induces a map between H-paths
which indeed factors to the holonomy groupoid and to the local action groupoid. More precisely,
the following theorem holds:

Theorem 8.1.21. Let H be a connected Lie group with Lie algebra h. Let P and Q be two
h-manifolds and f : P → Q an h-equivariant map. Assume that Q is univalent for H.
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Then f induces a Lie groupoid morphism

P oHloc QoHloc

P Q
f

which is compatible with the τ maps.

Proof. First, to prove that f induces a morphism HolF (P ) → HolF (Q) it is sufficient to show that
any foliated loop in P × H with trivial holonomy is sent under f × idH to a foliated loop in
Q×H with trivial holonomy. Since f is equivariant, the image is a foliated loop. But any foliated
loop of Q×H has holonomy in the recurrence subgroupoid which is trivial as a consequence of
univalence (Theorem 8.1.16). Thus f induces a morphism between the holonomy groupoids. It
is readily proved to be equivariant under the left action of H so that it factors to a morphism
between the local action groupoids.

Since f × idH preserves the H component, the induced map preserves the image under τ of
the morphisms.

As mentioned, when the equivariant map is a local diffeomorphism there is an induced map
between the local action groupoids, along the lines of Theorem 6.2.23:

Theorem 8.1.22. Let H be a connected Lie group with Lie algebra h. Let P and Q be two
h-manifolds and f : P → Q an h-equivariant map. Assume that f is a local diffeomorphism.

Then f induces a Lie groupoid morphism

P oHloc QoHloc

P Q
f

such that the map between the manifolds of morphisms is a local diffeomorphism which is compatible
with the τ maps.

Proof. The map f × idH : P ×H → Q×H is a local diffeomorphism which preserves the action
foliation and which is left H-equivariant. Therefore according to Theorem 6.2.23 there is an
induced map between the holonomy groupoids of P ×H and Q×H:

Hol(f) : HolF (P×H) → HolF (Q×H)

This map is equivariant under the left action of H hence factors to a map between the local
action groupoids.

The obtained map is compatible with τ since f × idH preserves the H component. The
obtained map fits into the following commutative diagram

P oHloc QoHloc

P ×H Q×H

(sP ,τ) (sQ,τ)
f×idH

in which the three morphisms written with solid arrows are local diffeomorphism. Therefore so
does the remaining morphism.
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We now study the question of completing the manifold P into a manifold with a global group
action of H. We first deal with the simpler case of a complete h-manifold.

8.1.2 Completion of an h-manifold
Univalence in the complete case

If the fundamental vector fields on P are complete then so do the fundamental vector fields on
P ×H. In this case, starting from each point (p, h) ∈ P ×H belonging to a leaf L, the flows of
the fundamental fields of P ×H define a mapping h→ L ⊂ P ×H. Its image projects under pH
to the neighbourhood h exp(h) of h. Hence the image of the projection of L to H is invariant
under (right) multiplication by exp h. But the subset exp h ⊂ H generates the whole (connected)
group so that any non-empty subset which is invariant under multiplication by exp h has to be H.
Thus the projection is onto. It is actually a covering map, and there is an equivalence:

Lemma 8.1.23 ([Pal57], Lemma IV.2.d, Theorem III.6.XVII). Let H be a connected Lie group
and h its Lie algebra. Let P be a Hausdorff h-manifold. Let D be the integrable distribution on
P ×H spanned by the vectors

(p, h) · ξ = (p · ξ, h · ξ)

Then the action of h is complete if and only if for each leaf L ofD the projection L ⊂ P×H → H
is a smooth covering map.

In [Pal57] only the following implication is stated: if the action is complete then it is “uniform”
which is proved to be equivalent to the smooth covering condition. The converse is readily proved
since H is a complete h-manifold and the flows of fundamental vector fields lift under equivariant
covering maps.

Recall that the distribution D can be interpreted as a connection on the bundle fibration
P ×H → H. Completeness of the action of h means that the connection is complete: parallel
transport exists above any path starting from any point in the fibre. From the point of view
of the local pseudo-action groupoid, it means that the map P oHloc → H is surjective on each
subspace of morphisms with fixed source {s = p}. If the action is furthermore univalent, these
maps are diffeomorphisms

{s = p} ∼−→H

which are bundled together in a mapping

(P oHloc)1
∼−→P ×H

The target map P oHloc
t−→ P thus defines a map P×H → P which gives to P×H a structure

of Lie groupoid with (p, h) 7→ p as source map and (p2, h2) · (p1, h1) 7→ (p, h1h2) (restricted to
composable pairs) as composition map. This is exactly the data of a group action of H on P , as
explained in Theorem 8.1.5.

Theorem 8.1.24. Let H be a connected Lie group with Lie algebra h and P an h-manifold.
The action of h on P integrates to a group action of H on P if and only if it is complete and

univalent for H.

This theorem is essentially contained in [Pal57], although not stated as such (equivalence
between “properness” and “uniformity and univalence”).

If we choose H to be the simply-connected Lie group integration of h then each leaf of F
has to be diffeomorphic to H under the projection P ×H → H. The Lie algebra action is then
necessarily H-univalent and it is readily globalisable on P to a group action of H.
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For an arbitrary (connected) group integration H of h, univalence does not necessarily hold:
the projection of each leaf to H is only a covering map. The non-univalent case will be more
generally discussed in the next section.

Example 8.1.25 (Complete but non-univalent action). Let P be a smooth manifold with a
complete vector field X. X can be interpreted as an action of the Lie algebra u1 for example for
the infinitesimal generator i of U1 with period 2π. But the action of X is univalent for u1 if and
only if 2π is a period for the flow of X.
For example, the vector field ∂x on R defines a non-univalent action of u1 on R.

An example with a compact Lie group and a compact manifold can be constructed using the
Lie group U1 itself as manifold. Consider the generator i ∈ u1 with s ∈ R 7→ exp(si) ∈ U1 of
period 2π. There is a linear map:

i ∈ u1 →
1
2∂θ ∈ Γ(T U1)

It defines an action of u1 on U1 which has period 4π and is therefore non-univalent for the
integration U1 of u1 with a generator of period 2π (or any period which is not a multiple of 4π).

Writing H̃ for the simply-connected integration group of h, a general (connected) group
integration of h is a quotient H̃/K by a discrete normal subgroup:

K ↪→ H̃ � H

It is possible to relate the groupoid P oHloc to the groupoid P o H̃loc as we now explain.
Let us consider the respective action foliations F on P ×H and F̃ on P × H̃. The projection
P × H̃ → P ×H is h-equivariant, namely the following diagram commutes:

P × H̃ × h P ×H × h

T
(
P × H̃

)
T (P ×H)

(p,h̃,ξ)7→(p·ξ,h̃·ξ) (p,h,ξ)7→(p·ξ,h·ξ)

As a consequence, it preserves the foliation. Since it is a local diffeomorphism, it induces a map
between the holonomy groupoids (Theorem 6.2.23). It fits in the following commutative diagram:

HolF̃ H̃

HolF H

τ̃ :[c,γ] 7→γ(0)−1γ(1)

τ :[c,γ] 7→γ(0)−1γ(1)

The morphism HolF̃ → HolF is a surjection, since any H-path in P can be lifted to an H̃-path
by lifting the γ component from H to H̃ (starting from the identity element of H̃).

The morphism HolF̃ → HolF is (H̃ → H)-intertwining for the action on the left, so that it
factors to the local action groupoids:

HolF̃ P o H̃loc H̃

HolF P oHloc H

τ̃

τ
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The condition to obtain an action of H is H-univalence: the kernel of τ should consist only of
identity morphisms. But the kernel of τ is exactly the image in P oHloc of τ̃−1(K). Therefore
we can assert the following:
Theorem 8.1.26. Let H̃ be a simply connected Lie group and h its Lie algebra. Let P be a
complete h-manifold.

Let K be a discrete normal subgroup of H̃. Then P is H̃/K-univalent if and only if τ̃−1(K)
is reduced to the identity subgroupoid. Namely, it is the case if and only if for any path γ in H̃
from e to an element k of K and any point p ∈ P , the solution of the time-dependent differential
equation

c′ = c · ωRH(γ′)

starting from p is a loop: c(1) = c(0) = p.

Combining with Theorem 8.1.24 we obtain the following result:
Theorem 8.1.27. Let H̃ be a simply connected Lie group and h its Lie algebra. Let P be a
complete h-manifold.

For any discrete normal subgroup K of H̃, the action of h can be integrated to a smooth group
action of H̃/K if and only if for each point p ∈ P and any smooth path γ in H̃ from e to an
element k of K, the solution of the time dependent differential equation

c′ = ωLH(γ′) · c

starting from p is a loop: c(1) = c(0) = p.
In particular, the Lie algebra action always integrates to a group action of H̃.

When the action of h is not free, there can be yet smaller quotients of H̃ to which the group
action would factorise.

When the Lie algebra action integrates to a group action, Theorem 8.1.21 takes the following
form:
Theorem 8.1.28. Let H be a connected Lie group with Lie algebra h. Let P and Q be two
complete h-manifolds univalent for H.

Then every map f : P → Q which is h-equivariant is H-equivariant as well.

The induced morphism between local action groupoids preserves the map τ to H. It is thus
equivalent to a morphism between the corresponding action groupoids which preserves the H
component and defines an H-equivariant map (Example 8.1.6).

As a particular case, consider a representation V of the connected group H. If an h-manifold
P is equipped with a V -valued field φ equivariant under the Lie algebra action, and if the action
of h on P integrates to an action of H, φ is naturally equivariant under the action of H.

Completion in the general case

Now when the fundamental vector fields are not complete, it is to be expected that the h-manifold
P needs to be extended in order to have a well defined action of each element of the group H.
We thus want to build such an extension in a similar way to associated (right) G-spaces X ×H G
or induced (right) representations M ⊗k[H] k[G]. We will construct a quotient of P ×H along
the direction given by h: this direction is given by an integrable distribution and the space we
are looking for is the leaf space.

Consider the product manifold P ×H. There is a right action of h defined as follows:

(p, h) · ξ = (p · ξ,−ξ · h), ξ ∈ h (8.5)
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Of course, it is isomorphic to the product right action used in Section 8.1.1: the intertwining
isomorphism is (p, h) 7→ (p, h−1). However it will be useful to consider them as distinct foliations.
Geometrically, this expression of the action of h makes it more explicit that the corresponding
vector fields on P ×H are directions in which p · h ought to be constant. Furthermore note that
this action commutes with the natural right action of H on the factor H.

We call ∆ the distribution spanned by the fundamental vector fields defined in (8.5). It is
involutive therefore integrable and invariant under the right action of H. The corresponding
foliation is called the graph foliation ([KM04]) and is denoted F∆. Recall the left Maurer-Cartan
form on H written ωLH (Example 3.3.5). Two points (p1, h1) and (p2, h2) belong to the same leaf
of F∆ when there is a smooth path γ in H from h1 to h2 and a path c in P from p1 to p2 such
that

∀t, c′(t) = c(t) ·
(
−ωLH(γ′(t))

)
or in terms of the opposite path γ−1 from h−1

1 to h−2
2 :

∀t, c′(t) = c(t) · ωRH
(
γ−1′(t)

)
As was the case for the action foliation, the distribution ∆ defines an H-equivariant connection

on the product bundle P ×H → H. Let us write P ×hH for the leaf space. It is provided with a
quotient smooth structure (Definition 6.2.7). In the case at hand, a locally defined function on
P ×h H is smooth if and only if its natural pullback to P ×H is. This smooth structure may fail
to correspond to a smooth manifold structure.

The leaf space is furthermore naturally equipped with an action of H since the graph foliation
is stable under the right action of H. Since the action of H on P ×H is smooth, the induced
action on P ×h H can be proved to be smooth as follows. The following diagram is commutative:

P ×H ×H P ×H

P ×h H ×H P ×h H

(P×H→P×hH)×idH

idP ×mH

with mH : H ×H → H the product law of H. Since the diagonal morphism is smooth, according
to the universal property of quotient smooth structures, the lower horizontal map is smooth.

The manifold P can be embedded in P ×H as the fibre above e ∈ H:

p ∈ P 7→ (p, e) ∈ P ×H

and can be further projected to P ×h H:

P → P ×H → P ×h H

Since P × {e} generates the whole of P ×H under the right action of H, the same goes for its
image in P ×h H.

Univalence means that for every h in H, P ×{h} intersects each leaf of F∆ at most once (this
is a direct translation of Definition 8.1.2). Since F∆ is invariant under the right action of H, the
property for h = e is equivalent to the property for every h in H. As a consequence the action of
h on P is H-univalent if and only if the composition

P → P ×H → P ×h H



8.1. INTEGRATION OF A LIE ALGEBRA ACTION 183

is injective.
The map P → P ×h H can be proved to be open (Theorem 6.2.9) so that when univalence

holds P embeds into P ×h H. Since P ×h H can be covered with such embeddings of P × {h}
and P is a manifold, we obtain the following theorem:

Theorem 8.1.29. Let H be a connected Lie group with Lie algebra h. Let P be a (Hausdorff)
h-manifold which is univalent for H.

Then the smooth structure of the H-completion P ×h H of P is locally isomorphic to that of
a manifold. It may however not be Hausdorff nor paracompact as a topological space.

When P fails to be univalent, the open maps P p 7→[p,h]−−−−−→ P ×h H are not injective, so that
we obtain “charts” which identify open subsets of P ×h H with a quotient of P , as explained
in [KM04]. In fact the points of P × {h} with the same image in P ×h H are those such that
there exists a foliated path (for the graph foliation) connecting them. Recall the aforementioned
intertwining isomorphism between the action foliation and the graph foliation:

(p, h) ∈ P ×H 7→ (p, h−1) ∈ P ×H

Then there exists a foliated path between two points (p1, h) and (p2, h) if and only if there is a
morphism from p1 to p2 in the recurrence groupoid. Therefore the suitable quotient of P with
which the open subsets of P ×hH are identified is the orbit space of the recurrence groupoid. For
example when it is a groupoid orbifold (Section 6.3), P ×h H locally has the smooth structure of
an orbifold, a possibility already envisioned in [KM04] (see also Section 8.1.2 below).

The H-completion satisfies the following universal property:

Theorem 8.1.30 ([Pal57], Theorem III.4.X and [KM04], Theorem 5.3). Let H be a Lie group
and h its Lie algebra. Let P be a (Hausdorff) h-manifold. Assume that the action of h is univalent
for H.

Then there exists a smooth H-space PH , such that P embeds h-equivariantly as a smooth open
subspace of PH :

P ↪→h PH

and which satisfies the following universal property:
for any (non necessarily Hausdorff) H-manifold X and h-equivariant mapping P → X there is a
unique smooth H-equivariant extension to PH :

P X

PH

∀

∃!

The space PH is locally isomorphic to a smooth manifold. It may not be Hausdorff nor paracompact,
but it always has closed points (it is a T1 space). We will call the embedding P ↪→h PH the
(H-)completion map.

Remark. As stated, the H-completion of a univalent h-manifold is not always Hausdorff. As a
quotient of a topological space under an equivalence relation, there is a simple criterion for its
Hausdorffness: P ×h H is Hausdorff if and only if the graph of the equivalence relation, as a
subset of P ×h H × P ×h H, is closed (see Theorem 6.2.12 stated later). In our case, it boils
down to the following: two pairs (p1, h1) and (p2, h2) which do not belong to the same leaf need
to have neighbourhoods such that there is no leaf intersecting both neighbourhoods.



184 CHAPTER 8. INTEGRATION OF GENERALISED CARTAN GEOMETRIES

Without loss of generality, it is sufficient to consider the case with h1 = e. Then given a small
enough neighbourhood V of p1 in P , it is possible to construct a neighbourhood UP ×UH of (p1, e)
such that any leaf intersecting UP × UH has to intersect V × {e}. In other words, Hausdorffness
of the H-completion is equivalent to the following: for all p1, p2 in P and h in H such that there
exists no smooth path γ in H from e to h such that there exists a complete solution cγp2

to{
c′(t) = c(t) · ωLH(−γ′(t))
c(0) = p2

ending on p1, there exists a neighbourhood V1 of p1 and V2 of p2 such that there exists no smooth
path γ in H from e to h such that there exists a complete solution starting from a point in V2
and ending in V1.

We now present a simple example in which the H-completion is not Hausdorff.
Example 8.1.31 (Non-Hausdorff R-completion). Consider the space P = R2 K{0} with an action

of the Lie algebra h = R given on the generator by the vector field X =
(

0
1

)
. The action is

incomplete. Let H = R.
The diagonal action of h which generates the graph foliation is as follows:

(p, t) · u = (uX|p,−u|t) ∈ P ×H

As a consequence the leaves of the graph foliation are as follows:
1. {(p− tX, tX)}t∈R for p ∈ R∗ × R

2. {(p− tX, tX)}−∞6t<y for p = (0, y) with y > 0

3. {(p− tX, tX)}−y<t6∞ for p = (0,−y) with y > 0.
In particular, the action is univalent for H.

Now consider the two smooth curves in P ×H:

a : t ∈ R 7→
((
−t
1

)
, 0
)

b : t ∈ R 7→
((
−t
−1

)
, 2
)

At any time t 6= 0 they belong to the same leaf, but at t = 0 they belong to different leaves. As
a consequence, the graph of equivalence relation associated to the graph foliation is not closed
inside (P ×H)× (P ×H) and the leaf space is not Hausdorff.
Remark. This example suggest that it may be relevant to consider the quotient of P ×H under
the closure of the leaves. This is equivalent to consider the Hausdorff quotient of P ×h H. In the
case of Example 8.1.31 one would obtain R2 with R acting by upwards vertical translations. This
alternative completion has already been proposed in [KM04], but more work is required to assess
in which cases it is relevant.

In [Pal57] (Section III.8) it is presented a similar univalent counterexample on R2 K {0}, with
the difference that the vector field X has fixed points and does not admit a smooth (or continuous)
extension to R2.

These examples illustrate well one of the obstructions to the Hausdorffness of the H-completion:
the completion of incomplete orbits may be ill-separated when they are next to orbits which are
“less incomplete”.
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The second global property usually required from manifolds is paracompactness. It can
sometimes be inherited from P ×H to P ×h H, according to the following lemma:

Lemma 8.1.32 ([Bou98] Theorem 9.10.5). Let X be a locally compact (Hausdorff) topological
space. Then X is paracompact if and only if X is the disjoint union of locally compact σ-compact
topological spaces.

The point is that the continuous image of a σ-compact space is σ-compact. If P is σ-compact
(for example paracompact and connected) then P ×h H is σ-compact (possibly non-Hausdorff).
If it is furthermore Hausdorff and P is H-univalent, so that P ×h H is locally Euclidean, P ×h H
is in particular locally compact and it is paracompact.

Let H̃ be the simply-connected integration group of h. A general (connected) group integration
of h is a quotient H = H̃/K by a discrete normal subgroup. There is a smooth covering map
P × H̃ → P ×H. It is equivariant with respect to the diagonal action of h hence it sends the
graph foliation of P × H̃ to that of P ×H. Therefore it induces a smooth map between the leaf
spaces:

P × H̃ P ×H

P ×h H̃ P ×h H

If an h-manifold P is not H̃-univalent it cannot be H̃/K-univalent. Indeed in the following
commutative diagram

P

P nh H̃ P ×h H

p 7→[p,e] p 7→[p,e]

if the left morphism is not injective, the right one cannot be injective. As stated earlier, injectivity
of the completion map is equivalent to univalence.

When the action of h is complete, any path in H can be lifted to P × H along F∆. As a
consequence, the projection L ↪→ P × H → H of any leaf L is surjective, and every leaf has
a point of the form (p, e). Thus when the action of h is complete and H-univalent, the map
P ↪→ P ×h H is a diffeomorphism.

Assume now that P is an H̃-univalent h-manifold. Translating the criterion given in The-
orem 8.1.26 in terms of the graph foliation using the inversion, we obtain the following: P is
H-univalent if and only if for all (p1, p2, k) in P × P ×K,

(p1, e) ∈ P × H̃  
F∆

(p2, k) =⇒ p1 = p2

When P is furthermore complete, so that the leaves of the graph foliation of P × H̃ project by
diffeomorphisms to P , this is equivalent to requiring that

∀(p, h) ∈ P × H̃, ∀k ∈ K, (p, h)  
F∆

(p, hk)

Namely, P is H̃/K-univalent if and only if the right action of K preserves the leaves of the
action foliation. In this case, the induced action of K ⊂ H̃ on P ×h H̃ is trivial and the action
of H̃ factors to H. This is to be expected, since for a complete H-univalent h-manifold, the
H-completion of P is identified with P itself.

Notice how the approach described here is different from the one in Section 8.1.2 in which we
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constructed the action of H using paths in H: here we construct from P a new space which has
a natural action of H but which is not always identified with P .

Relation between the local action and the completion constructions

As can be expected, the two constructions can be related. Since the groupoid structure on P oHloc
describes a local action, the right object to compare it to is the action groupoid (P ×h H) oH.
When univalence holds, P ×hH is a possibly non-Hausdorff manifold, so that the action groupoid
is a possibly non-Hausdorff Lie groupoid. We shall assume univalence in this section.

Recall the natural completion map

P ↪
p7→[p,e]−−−−−→ P ×h H

The map can be extended as a morphism between Lie groupoids as according to the following
diagram, with (c, γ) a path from (p0, h0) to (p1, h1) foliated for the action foliation FD:

HolFD

H n (P ×h H)

P oHloc

[c,γ] 7→(τ([c,γ]),[p0,e])

More precisely, the map
(HolFD )1 → (P ×h H) oH

[c, γ] 7→ ((p0, e), τ([c, γ]))

is smooth and manifestly invariant under the left action of H, therefore it factors to (P oHloc)1.
Consider the completion map P ↪→ P ×hH. The following diagram with source maps is manifestly
commutative:

P oHloc (P ×h H) oH

P P ×h H

s

[c,γ]7→((p0,e),τ([c,γ]))

s

Let us prove it is compatible with the target maps as well. We can actually prove more:

Lemma 8.1.33. The points (p1, h) and (p2, e) of P ×H belong to the same leaf of the graph
foliation F∆ if and only if there exists in P ×H a path from (p1, e) to (p2, h) which is foliated
for the action foliation FD.

Proof. Indeed the aforementioned foliated isomorphism:

P ×H → P ×H
(p, h) 7→ (p, h−1)
F∆ → FD

sends (p1, e) to (p1, e) and (p2, h) to (p2, h
−1). Since FD is stable under the left action of H, the

following chain of equivalences holds, with x 
F∆
y (resp. x 

FD
y) standing for the existence of an
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F∆-foliated (resp. FD-foliated) path from x to y:

(p1, e) 
F∆

(p2, h) (p,h)7→(p,h−1)⇔ (p1, e) 
FD

(p2, h
−1) h·⇔ (p1, h) 

FD
(p2, e)

As a consequence, given an FD-foliated path (c, γ) from (p1, e) to (p2, h), the points (p1, h) and
(p2, e) belong to the same leaf of F∆ thus are projected to the same point in P ×h H. Therefore,
the following diagram with the target maps commutes:

P oHloc (P ×h H) oH

P P ×h H

t : [c, γ] 7→ p2

[c, γ] 7→ ((p1, e), h = τ([c, γ]))

t : ([p, h1], h2) 7→ [p, h1h2]

p 7→ [p, e]

The compatibility with the identity and the composition maps is straightforward, using the
morphism property of τ . Thus we constructed a Lie groupoid morphism:

P oHloc → (P ×h H) oH

Lemma 8.1.33 has one further implication: let p1 and p2 be two points in P and [p1, e] and
[p2, e] their respective images in P ×h H. Assume they are related by the action of an element h
of H:

[p2] = [p1] · h

This means that (p1, h) ∈ P ×H belongs to the same leaf as (p2, e). The lemma then implies the
existence of a morphism in P oHloc from p1 to p2 with image h under τ . In other words: given
p1 and p2 in P , the groupoid morphism P oHloc → H n (P ×h H) gives a surjection from the
morphisms between p1 and p2 to the morphisms between [p1, e] and [p2, e].

Injectivity of the map from the space of morphisms between p0 and p1 to the space of
morphisms between [p1, e] and [p0, e] is equivalent to the injectivity of τ on the submanifolds of
morphisms in P oHloc with fixed source and target. This is equivalent to the injectivity of τ
of submanifolds of morphisms from each point to itself. According to Theorem 8.1.16, this is
equivalent to the univalence of the action of h on P for the Lie group H.

To sum up, the restricted maps between the submanifolds of morphisms with fixed source and
target

P oHloc(p1, p2)→ (P ×h H) oH([p1, e], [p2, e])

are smooth bijections. It turns out that this defines a pullback diagram of smooth manifolds:

(P oHloc)1 (P ×h H)×H

P × P P ×h H × P ×h H

(s,t) (s,t)

This is a consequence of the fact that the product of the completion maps P×P ↪→ P×hH×P×hH
is a submersion [Mic08]. Such a Lie groupoid morphism is said to be full and faithful 6.1.6.

The image of P in P×hH meets each orbit under H (every point is of the form [p, h] = [p, e]·h).
The charts

P
∼−→P × {h} 7→ P ×h H
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are diffeomorphisms onto their images thus are submersions. As a consequence, the map

(P oHloc)0 ×H ' P ×H → P ×h H

is a surjective submersion. This fact is formulated in the language of Lie groupoids by saying
that the morphism P oHloc → (P ×h H) oH is “essentially surjective” 6.1.6.

A morphism of Lie groupoids which is essentially surjective, full and faithful is called a weak
equivalence of Lie groupoids 6.1.6. We obtain a new consequence of univalence:

Theorem 8.1.34. Let P be an h-manifold and H a Lie group integration of h. If the action
of h is univalent for H then the Lie groupoid morphism P oHloc → (P ×h H) oH is a weak
equivalence of Lie groupoids.

A careful analysis of the argument shows that univalence is only involved at two points
of the discussion. First, it was needed in order for P oHloc to be a (possibly non-Hausdorff
manifold), so that we could talk about Lie groupoids. Second, it was essentially equivalent to the
property that the map between morphism manifolds be injective, at fixed source and target. In a
framework with a more general notion of Lie groupoids, one should be able to state an equivalence
between H-univalence and the property that the morphism P oHloc → (P ×h H) oH is a weak
equivalence.

Non-univalent actions

Even in the case of a non-univalent action, the leaf space construction produces an H-space,
whether the h-manifold P is complete or not. However, when forming the leaf space, the manifold
P will be reduced to a suitable quotient such that the action becomes univalent (effectively
identifying points that are connected by a loop based at identity in H). This construction can be
applied with any Lie group integration of h – in particular non-simply connected ones – but the
larger the fundamental group is, the smaller (and possibly more singular) the quotient of P will
be. The leaf space of P ×H is called the H-completion of P and satisfies a universal property:

Theorem 8.1.35 ([KM04], Theorem 5.3). Let H be a Lie group and h its Lie algebra. Let P be
a Hausdorff h-manifold.

There exists an H-space PH provided with a smooth structure but which is not necessarily a
smooth manifold nor Hausdorff, with a smooth h-equivariant map from P :

P →h PH

and which has the following universal property:
For any (possibly non-Hausdorff) H-manifold X and h-equivariant mapping P → X there is a
unique smooth H-equivariant “extension” to PH :

P X

PH

∀

∃!

Even when H is simply connected, it is possible for H-univalence to fail:

Example 8.1.36 (Non-univalence with simply-connected groups, [Pal57] Section III.9). Let
H be a simply-connected (non-necessary hypothesis) Lie group of dimension n > 2. Consider
a neighbourhood of e diffeomorphic to Rn, and extract an open sub-neighbourhood U of e
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diffeomorphic to S1 × Rn−1. U has an infinitesimal action of h, so does its universal covering Ū .
But a non-contractile smooth loop of U based at e lifts to Ū to a non-closed path so that the
action of h on Ū is not univalent.

For H simply-connected non-univalence cannot be solved by considering a further covering of
H, so in order to integrate the action of h on Ū into a group action it is unavoidable to take a
quotient of Ū (which will be U if H is chosen as the Lie group integration).

The role of simply-connectedness of H can be understood as follows: two H-paths starting
from the same point p ∈ P with an identical image h under τ can be proven to end on the same
point of P if they are homotopical as H-paths. Simply-connectedness of H implies that there is
no homotopical obstruction to this argument on H, but there may still be obstruction due to the
incompleteness of P as a h-manifold.

The univalent quotient

The considered quotient of P can also be understood from the point of view of the local action
groupoid. Recall that the groupoid P oHloc comes with a map τ : P oHloc → H. The action
of h is univalent when the kernel of this map, the recurrence groupoid, is a discrete groupoid
(namely it has no nontrivial morphisms). When it is nontrivial, one wants to use the quotient of
P by the recurrence groupoid. Since it is in a sense a normal subgroupoid, it is possible to build
a quotient groupoid which will have univalence for H. However the quotient groupoid may be
singular.

Recall that the maps IH
s

⇒
t
P are local diffeomorphisms. As a consequence, taken together

they define an immersion
IH

(s,t)→ P × P

The image C is the graph of the equivalence relation on P under which we wish to take the
quotient. Using Godement’s criterion (Theorem 6.2.12) for quotient manifolds, we have to check
the following:

1. C is an (embedded) submanifold of P × P

2. The projection on the first factor C → P is a submersion

Remark. In the case P/C is a quotient manifold, the quotient map π : P → P/C is a submersion
and the submanifold C can be constructed as the following pullback

C P/C

P × P P/C × P/C

x7→(x,x)

π×π

Assuming that P is connected, P/C is as well and has a global dimension. Since the map π × π
is a surjective submersion, C has the same codimension in P × P as the diagonal ∆P/C does in
P/C × P/C, namely the dimension of P/C. Thus we derived the following identity:

dim(P/C) = codimP (C) (8.6)

In our case, C is the image of IH in P × P . The composition

IH → P × P p1−→ P
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is a submersion (this is one of the Lie groupoid axioms). The restrictive condition is the first
one. Suppose the map IH → P × P is injective, namely that there is at most one morphism
between two points, or equivalently no non-trivial morphism from a point to itself. Then the
embedded (and closed) submanifold requirement holds in particular when the map IH → P × P
is proper ([Lee03] Theorem 4.22). In this case the recurrence orbit is then said to be proper, see
Section 6.1.3. One simple case is when IH is compact.

When the map IH → P × P is not injective but is nonetheless a proper immersion, the
recurrence groupoid has the structure of an orbifold groupoid (presented in Section 6.3). In this
case, the quotient space P/IH has the smooth structure of an orbifold: it is locally isomorphic to
a quotient of a Euclidean space by the action of a finite group.

The remark following Lemma 8.1.32 regarding paracompactness holds here as well: if P is
σ-compact and P/IH is Hausdorff and locally compact, P/IH is paracompact.

Example 8.1.37. Recall Example 8.1.36 of non-univalent h-manifolds for a simply-connected
Lie group H. In these examples, P is a nontrivial connected covering of an open subset U of
H. The action of h on P is transitive and the recurrence orbits are the fibres above U . As a
consequence, the quotient map of P → P/IH is identified with the covering map to U .

In [KM04] (Section 6) it is constructed an exemple of action of the Lie algebra R2 on(
R2 K {(0, 0)}

)
×R which is non-univalent and presents a different type of pathology from the one

illustrated in Example 8.1.31. Orbits in
(
R2 K {(0, 0)}

)
× R accumulate around the (punctured)

plane z = 0 and the corresponding leaves in
((
R2 K {(0, 0)}

)
× R

)
×R2 accumulate around specific

leaves contained in the plane z = 0. As a consequence, the leaf space is not Hausdorff.
In fact in this example the recurrence orbits are not closed. As explained in Section 8.1.2, the

leaf space is covered by open subsets smoothly identified with the orbit space
((
R2 K {(0, 0)}

)
× R

)
/IR

2 .
Theorem 6.2.12 shows that if the recurrence orbits are not closed, the orbit space

((
R2 K {(0, 0)}

)
× R

)
/IR

2

is not closed so the quotient topology of
((
R2 K {(0, 0)}

)
× R

)
×Lie(R2) R2 is not Hausdorff.

We call the quotient space P/IH the H-univalent quotient of P . When it is a Hausdorff
differentiable manifold, it is an H-univalent h-manifold, as can be expected:

Theorem 8.1.38. Let H be a connected Lie group with Lie algebra h. Let P be an h-manifold
such that its H-univalent quotient is a Hausdorff 3 manifold.

Then the quotient map
P → P/IH

is a local diffeomorphism and the H-univalent quotient of P has a unique structure of h-manifold
such that the quotient map is h-equivariant. This action of h on P/IH is furthermore H-univalent.

Proof. We first prove that the quotient map is a local diffeomorphism. We know that s : IH → P

is a local diffeomorphism so that IH has the same dimension as P . The map IH (s,t)−−−→ P × P is
an immersion. By assumption it can be expressed as a surjective immersion to its image R. This
implies that (s, t) is necessarily a submersion ([Lee03], Theorem 4.14). As a consequence, R is of
the same dimension as P . Using Equation (8.6) we conclude that

dim(P/IH) = dimP

Therefore the quotient map P → P/IH which is a submersion between manifolds of the same
dimension, is a local diffeomorphism.

We now construct the action of the Lie algebra h on P/IH . Since we wish to avoid describing
explicit charts, we will construct the vectors fields on P/IH through their action on the smooth

3We do not wish to tackle the question of foliations and differential equations on non-Hausdorff manifolds.
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functions. Let f be a smooth function on P/IH . It corresponds to a smooth function f̄ = π∗f on
P which is constant on recurrence orbits. Let ξ ∈ h and ξ̄ the corresponding fundamental vector
field on P .

Let us prove that Lξ̄ f̄ is constant on the recurrence orbits. Since Lξ̄ clearly satisfies the
Leibniz relation with respect to functions constant on recurrence orbits, this will define a vector
field on P/IH which is related to ξ̄ on P through π : P → P/IH . Furthermore since the vectors
fields ξ̄ satisfy the commutation relation of the Lie algebra h, the same will hold for the vector
fields on P/IH .

Let p1 and p2 be two point in P belonging to the same recurrence orbit. Then for small
enough times the flow of ξ̄ is simultaneously defined starting from p1 and p2. The derivative of f̄
along ξ̄ at p1 (resp. p2) is then defined as

Lξ̄ f̄(p1) = ∂t|t=0f̄
(
exp(tξ̄)(p1)

)
respectively

Lξ̄ f̄(p2) = ∂t|t=0f̄
(
exp(tξ̄)(p2)

)
But since p1 and p2 belong to the same recurrence orbit, when defined exp(tξ̄)(p1) and exp(tξ̄)(p2)
belong to the same recurrence orbit, so that at small enough times

f̄
(
exp(tξ̄)(p1)

)
= f̄

(
exp(tξ̄)(p2)

)
As a consequence

Lξ̄ f̄(p1) = Lξ̄ f̄(p2)

which proves that Lξ̄f is constant on recurrence orbits.
Uniqueness of the action of h on P/IH is a direct consequence of the quotient map P → IH

being a surjective submersion with the requirement that it is h-equivariant.

As a consequence the local action groupoid of H on P/IH defines a local group action of H
on P/IH .

The H-univalent quotient satisfies the following universal property:

Theorem 8.1.39. Let H be a connected Lie group with Lie algebra h. Let P be an h-manifold
and Q an H-univalent h-manifold. Then any smooth h-equivariant map P → Q factors through
P/IH .

Indeed any h-equivariant map preserves the recurrence orbits as asserted in Theorem 7.2.13,
thus factors as a set-theoretical map from P/IH :

P Q

P/IH

h-equivariant

Since the pullback of the map to P is smooth by hypothesis, the factored map P/IH → Q is
smooth by definition of the quotient smooth structure.
Remark. The construction of the univalent quotient can be proved to be functorial with a proof
along the same lines.

A direct consequence of Theorem 8.1.39 is that any h-equivariant smooth map to anH-manifold,
for example a linear representation of V , factors through the H-univalent quotient.
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As stated earlier, it is this univalent quotient which is identified with patches of the H-
completion P ×h H. Since we have an h-equivariant map from P to P/IH which is a local
diffeomorphism, Theorem 8.1.22 ensures that it induces a morphism between the local action
groupoids with the map between morphism manifolds a local diffeomorphism:

Theorem 8.1.40. Let H be a connected Lie group with Lie algebra h. Let P be an h-manifold
such that its H-univalent quotient is a Hausdorff manifold.

Then the quotient map to the H-univalent quotient lifts to a morphism of local action groupoids:

(P oHloc)1
((
P/IH

)
oHloc

)
1

P P/IH

st st

such that both maps between base manifolds and morphism manifolds are local diffeomorphisms.
It is the quotient of P oHloc by the subgroupoid IH in the following sense: given any Lie

groupoid Γ : Γ1
s

⇒
t
M with a morphism φ from P oHloc such that all morphisms of IH are sent

to identities, there exists a unique Lie groupoid morphism from (P oHloc)1 to Γ such that the
following diagram commutes:

P oHloc Γ

(
P/IH

)
oHloc

φ

The proof of the universal property will rely on the following lemma:

Lemma 8.1.41. Let be [c, γ] a morphism in
(
P/IH

)
oHloc. Then it is the image of a morphism

from P oHloc. Furthermore given two morphisms [c1, γ] and [c2, γ] in the preimage of [c, γ] in
P oHloc, there exist morphisms [η1, `1] and [η2, `2] in P o IH such that the following equation is
well defined and holds:

[η1, `1] ◦ [c1, γ] = [c2, γ] ◦ [η2, `2]

Proof. We name π the quotient map P π−→ P/IH .
Let (c, γ) be an H-path in P/IH , parametrised on [0, 1]. Since π is an h-equivariant local

diffeomorphism, at every point t of [0, 1] there exists a connected open neighbourhood Ut on
which (c, γ) can be lifted to an H-path in P . By compactness of the segment we can cover
[0, 1] by a finite family of such open subsets (Uti)16i6n. We furthermore assume without loss
of generality that there is no inclusion of one of the open subsets into another one. We order
them by increasing order of lower bound. Since the higher bounds are also in increasing order, we
conclude that for each i in J1, n− 1K there is an si ∈ Uti ∩ Uti+1 . We define s0 = 0 and sn = 1.

By hypothesis for all i in J1, nK there exists a path in P which lifts c|Uti . It does so in an
h-equivariant manner so that it is an H-path associated with γ|Uti . We call ci the restriction of
this lift to [si−1, si]. Then for all i in J1, n− 1K, we know that

π(ci(si)) = π(ci+1(si))

so that ci(si) and ci+1(si) belong to the same recurrence orbit. As a consequence there exist
H-paths (di, `i) in P from the points ci(si) to ci+1(si) which define morphisms of the recurrence
groupoid. Since they belong to the recurrence groupoid, the morphisms in

(
P/IH

)
oHloc
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associated with (π∗`i) are the identities of the c(si). We furthermore require that the paths
(di, `i) have sitting instants.

We replace the paths (ci, γ|[si−1,si]) with reparametrised paths which have sitting instants.
Thus in

(
P/IH

)
oHloc the following identities hold:[

π∗(c1 ◦ d1 ◦ c2 ◦ · · · ◦ dn−1 ◦ cn), γ|[0,s1] ◦ `1 ◦ γ|[s1,s2] ◦ · · · ◦ `n−1 ◦ γ|[sn−1,1]
]

= [π∗c1, γ|[0,s1]] ◦ [π∗d1, `1] ◦ [π∗c2, γ|[s1,s2]] ◦ · · · ◦ [π∗dn−1, `n−1] ◦ [π∗cn, γ|[sn−1,1]]
= [c[0,s1], γ|[0,s1]] ◦ idc(s1) ◦ [c[s1,s2], γ|[s1,s2]] ◦ · · · ◦ idc(sn−1) ◦ [c[sn−1,1], γ|[sn−1,1]]
= [c, γ]

We now prove the second part of the lemma. Let [c1, γ] and [c2, γ] be two such lifts. Then
π(c1(0)) = π(c2(0)) so there exists a morphism [η1, `1] in the recurrence groupoid from c2(0) to
c1(0). Now the morphism

[c1, γ] ◦ [η1, `1] ◦ [c2, γ]−1 = [c1 ◦ η1 ◦ č2, γ ◦ `1 ◦ γ̌]

belongs to the recurrence groupoid since γ ◦ `1 ◦ γ̌ is a loop in H.

We now prove the theorem.

Proof. Let φ be a Lie groupoid morphism from P oHloc to a Lie groupoid Γ = Γ1
s

⇒
t

Γ0 which

sends morphisms of IH to identities. In particular φ0 sends recurrence orbits to points of Γ0 and
factors through P/IH by a map we call f0.

We now show that the image of a morphism of
(
P/IH

)
oHloc in Γ can be uniquely defined

using a lift in P . Let [c, γ] be a morphism in
(
P/IH

)
oHloc and [c1, γ] and [c2, γ] the classes of

two lifts in P . Then there exist morphisms [η1, `1] and [η2, `2] in P o IH such that

[η1, `1] ◦ [c1, γ] = [c2, γ] ◦ [η2, `2]

As a consequence, [c1, γ] and [c2, γ] have the same image under φ1. Therefore all the morphisms
in the preimage of [c, γ] have the same image under φ1: we define f1([c, γ]) as this image. This is
the only choice possible to factor φ1 through

((
P/IH

)
oHloc

)
1 which justifies uniqueness.

Since f1 fits into the following commutative diagram

(P oHloc)1 Γ1

(
P/IH

)
oHloc

φ1

f1

with the vertical map being a local diffeomorphism and the horizontal map being smooth, f1 is
necessarily smooth.

As a consequence, under the hypotheses of the theorem, there is a factorisation of the natural
morphism

P oHloc → (P ×h H) oH

through
(
P/IH

)
oHloc:

P oHloc
(
P/IH

)
oHloc (P ×h H) oH
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To summarize, when the action is not univalent, the h-manifold needs to be quotiented, and
when the Lie algebra action is not complete, the h-manifold needs to be extended in order to
obtain an H-space. In any case, the resulting H-space is constructed as a leaf space and may be
singular, in particular it may not be a manifold or may not be Hausdorff, but it does satisfy a
universal property (it is however always a differentiable stack).

The local action groupoid construction gives a unified approach to h-manifolds and carries more
information than the H-completion: this information is captured by the recurrence subgroupoid
which describes the possible actions of the identity element of H. When univalence holds, there
is a natural weak equivalence map between the two constructions. When univalence does not
hold, the univalent quotient embodies the data of P which is left in the H-completion.

Isotropy subgroups

In order to understand the structure of the H-completion of an h-manifold P , it is useful to look
at its isotropy groups, which we will write H[p,h].

Let H be a connected Lie group with Lie algebra h. Let P be an h-manifold, and P ×h H
its H-completion. First, recall that P spans the whole of P ×h H under the (right) action of
H. Since along a group orbit the isotropy groups are conjugated, the question of the isotropy
groups of points of P ×hH is reduced to that of the points of the image of P . More precisely, the
following holds:

H[p,h] = H[p,e]·h = hH[p,e]h
−1

Let us adopt the notation Lp,h for the leaf of the graph foliation FD containing a point (p, h): it
corresponds to a point [p, h] in the H-completion.

Let p be a point in P . Its image in P ×h H corresponds the leaf Lp,e, so its isotropy group in
P ×h H is simply

{h ∈ H|Lp,e · h = Lp,e}

Since the action of H preserves the graph foliation, we know that

∀p ∈ P,∀h ∈ H, Lp,e · h = Lp,h

Therefore H[p,e] is the set of elements h of H such that

Lp,h = Lp,e

Namely, with ωLH the left Maurer-Cartan form of H (Example 3.3.5), there exists in H a smooth
path γ from e to h such that the time dependent differential equation

c′ = ωLH(γ′) · c

has a global solution starting from p which is a loop: c(1) = c(0) = p.
Recall the morphism P oHloc → (P ×h H) oH which gives the element of H corresponding

to each morphism in P oHloc. It naturally induces a morphism from the isotropy group of a
point p in P to the isotropy group of its image [p, e] in P ×h H:

(P oHloc) (p, p)→ H[p,e]

Moreover, we proved the fullness of the groupoid morphism: this map is a surjection. The image
is, by definition, the groups ΓH(p) defined in Section 7.2.3. We thus identified the isotropy groups
of the H-completion, which are the image under τ of the isotropy groups of P oHloc. When
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univalence holds for H, the groupoid morphism is faithful as well: the isotropy groups of the local
action groupoid are in bijection with those of the H-completion.

Let V be a representation of H. As justified in Corollary 7.2.11, in the presence of a V -valued
field φ which is equivariant under the Lie algebra action, there is the obvious condition on the
isotropy groups of the points of P that, at each point, φ has to be invariant under the isotropy
group:

∀p ∈ P,∀h ∈ H[p,e], φ(p) · h = φ(p) (8.7)

Non-connected Lie groups

The construction discussed up to now only gives an action of a connected Lie group integration
H0 of the Lie algebra h. A general Lie group is an extension of its group of connected components
by its neutral component subgroup:

H0 ↪→ H � H/H0 ' π0(H)

with H/H0 having the topology of a discrete group. The Lie algebra of H is naturally identified
with that of H0:

he
∼−→h

Hence in general a Lie group with h as a Lie algebra will be an extension of a discrete group by a
connected Lie group integrating h.

Let P be an H-space. In order to construct the action of a non-connected Lie group H one
has to take a representative of each class of H/H0, then find for each a diffeomorphism of P
such that the composition between them and with the action of elements of H0 respects the
composition in H.

More concretely, let us consider a semi-direct product, which amounts to choosing representa-
tives which form a splitting of the exact sequence4:

H0 ↪→ H0 o C � C

The adjoint action of C on H0 is written

β : c ∈ C 7→ βc ∈ Aut(H0)

To extend the action of H0 to H0 n C one needs to find an action of the discrete group C on P
such that

∀(h, c) ∈ H0 × C, ∀p ∈ P, p · c · h = p · βc(h) · c

Example 8.1.42 (Extension from SO2n+1 to O2n+1). Let P be an SO2n+1-manifold. The
element − Id in O2n+1 generates a central subgroup of order 2 which defines a splitting of the
exact sequence

SO2n+1 ↪→ O2n+1 � Z/2Z

Thus extending the action of SO2n+1 to an action of O2n+1 is equivalent to finding an involutive
diffeomorphism of P which commutes to the action of SO2n+1.

In even dimension there is no central splitting so that one has to take into account the
semi-direct product structure.

4Not every (second-countable) Lie group is a semi-direct product of its identity component by its group of
connected components.
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If there is a field φ on P with value in a representation V of H0 which is equivariant under
H0, one may wish for equivariance under the non-connected group H. In this case one has to
make sure the action of H0 can be extended to an action of H on V . Then H-equivariance of φ
amounts to equivariance under the action of elements of each connected component.

Extending equivariant fields to the completion

When the manifold P is equipped with an equivariant field under the Lie algebra action, for
example a k-form φ with value in a representation V of H, we want to “extend” it to the
completion of P (recall that the completion map may not be injective). We are interested in
objects on P ×H which correspond to differential forms on P ×h H when the leaf space has a
quotient manifold structure. We will use a general construction, which allows talking about vector
fields and differential forms on the leaf space even when it does not have a natural manifold
structure.

Forms on the leaf space correspond to forms of P ×H which are normal to the leaves of FD
and parallel under the Bott connection (see Section 6.2.3). Furthermore, we are looking for forms
which are equivariant under the right action of H on P ×h H so we will be considering forms on
P ×H which are equivariant under the right action of H on P ×H.

The Bott connection is a natural connection on the normal bundle to the leaves of the
integrable distribution D:

ND := T (P ×H)/D

The associated parallel transport along a vector field tangent to a leaf can be computed using
the differentiable flow of the vector field on any representative vector in T (H × P ), so that the
covariant derivative is given by the Lie derivative:

∀X ∈ Γ(D), Y ∈ Γ(TP ), ∇Bott
X [Y ] = [LX(Y )] mod D

In our case, there is a preferred generating family of vector fields tangent to the leaves given
by the following diagonal fundamental vector fields on P :

Xξ|(p,h) = (p, h) · ξ = (p · ξ,−ξ · h)

for ξ ∈ h. We want to extend φ to P ×H into a k-form which is normal to D and invariant under
the diagonal action of h.

Write
πP : P ×H → P

for the second factor projection. The pullback tangent bundle π∗PTP is naturally identified to a
subbundle of T (P ×H):

π∗PTP ' TP ×H ⊂ T (P ×H)

We will make implicit use of this identification. We want to relate ND to π∗PTP .
The field φ is defined over P which is embedded in P × H as P × {e}. Now π∗PTP is a

supplementary distribution to D so that there is a natural vector bundle isomorphism

π∗PTP ⊕D ' T (P ×H)

The first factor projection πH : P ×H → H intertwines the diagonal action of h on P ×H
with the inverse action on the left on H: namely

ξL|h := −ξ · h
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for ξ ∈ h. Since the subbundle π∗PTP is the kernel of the differential dπH , one concludes that
π∗PTP is equivariant with respect to the diagonal action of h. This also holds for the involutive
distribution D thus the decomposition π∗PTP ⊕D is equivariant with respect to the diagonal
action of h and we obtain a H-equivariant bundle isomorphism:

π∗PTP 'h ND

We want to use π∗PTP as representing ND and then extend φ by defining its value on Λkπ∗PTP .
In order to make sure it corresponds to a Bott-parallel form we need to identify the connection on
π∗PTP corresponding to the Bott connection on ND. Recall that the Bott parallel transport on
ND along the fundamental vector fields Xξ is simply the action of their flows on representative
vectors. Since the subbundle π∗PTP ⊂ T (P ×H) is preserved under the action of h, the parallel
transport along fundamental vector fields in π∗PTP associated to the Bott connection can thus
be identified to the natural flow action of h on π∗PTP . This can be summed up in the following
diagram, with exp(Xξ) the locally defined flow of a fundamental vector field and eξ : t 7→ exp(tXξ)
the associated flow lines:

π∗PTP T (P ×H) ND

π∗PTP T (P ×H) ND

D exp(Xξ)

∼

D exp(Xξ)

mod D

PTBott
eξ

∼

mod D

For ξ ∈ h we write ξ̄ ∈ Γ(TP ) for the corresponding fundamental vector field on P . We write

nD :
{
T (P ×H)→ π∗PTP

(u, ξL)|(p,h) 7→ (u− ξ̄|p, 0)

for the linear projection to π∗PTP along D. Then nD is invariant under the diagonal action of h.
The adjoint operator

n∗D : π∗PT ∗P → T ∗(P ×H)

extends to graded algebra morphisms between the exterior algebras:

n∗D : Λ•π∗PT ∗P → Λ•T ∗(P ×H)

We want to extend φ to P ×H into a V -valued k-form which is at the same time normal to
D, Bott-parallel and right H-equivariant. Let us extend φ from P to P ×H as follows:

φH :
{
P ×H → ΛkT ∗pP ⊗ V ⊂ ΛkT ∗(p,h)(P ×H)⊗ V
(p, h) 7→ h−1 · (n∗Dφ)|p

The extended φH has vanishing contraction with vectors of D:

∀X ∈ D, iXφH = 0

spanned by the diagonal action of h by definition of nD and is clearly equivariant under the right
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action of H. Bott-parallelism is equivalent to invariance under the Lie derivative of the diagonal
fundamental vector fields (ξ̄, ξL). The following calculation shows why it is satisfied:

L(ξ̄,ξL)(φH)(p, h) = h−1 · ξ · (n∗Dφ)|(p,h) + h−1 · L(ξ̄,−ξL)(nD)∗φ|(p,h) + h−1 ·
(
n∗DLξ̄φ

)
|(p,h)

= h−1 · n∗D
(
ξ · φ+ 0 + Lξ̄φ

)
|(p,h)

= 0

under the assumption of equivariance of φ under the right action of h, with the middle term
vanishing because nD is invariant under the diagonal action of h.

In this way equivariant k-forms on P can be extended to the completion:

Theorem 8.1.43. Let P be an h-manifold and H a Lie group integration of h. Let V be a
representation of H and φ ∈ Ωk(P, V ) equivariant under h. Assume that the H-completion PH of
P has the quotient structure of a smooth manifold.

Then there exists on PH an H-equivariant V -valued k-form φH which pulls back to φ under
the completion map P → PH :

P → PH

Ω•(P, V )← Ω•(PH , V )
φ← [ φH

We can then extend our previous remark on the action of isotropy group on equivariant
fields. In the presence of an equivariant k-form φ with value in a representation V of H, there is
the obvious condition on the isotropy groups of the points of P that at each point φ has to be
invariant under the isotropy group as an element of ΛkT ∗P ⊗ V :

∀p ∈ P, ∀h ∈ H[p,e], φ(p) · h = φ(p) (8.8)

This extension procedure preserves H-invariant equations. In particular, the following result
will be of interest to us:

Theorem 8.1.44. Let P be a generalised Cartan bundle equipped with a (g, h)-valued Cartan
1-form $. P has an associated Lie algebra action of h. Let H be a Lie group integration of h
such that the H-completion of P is a smooth manifold.

Then the H-equivariant extension of $ to P ×h H is a (G,H)-Cartan 1-form.

Proof. Notice that Theorem 8.1.43 implies that φH pulls back to h · φ under the map

p ∈ P 7→ [p, h] ∈ P ×h H

Since these maps are open, φH is a Cartan 1-form on the image of each of these maps. But for h
going through H, these maps cover P ×h H. Therefore φH is a Cartan 1-form on the whole of
P ×h H.

A corollary of Theorem 8.1.43 is that equivariant vector-valued differential forms factor to the
recurrence quotient:

Corollary 8.1.45. Let P be an h-manifold and H a Lie group integration of h. Let V be a
representation of H and φ ∈ Ωk(P, V ) equivariant under h. Assume that the H-univalent quotient
P/IH of P has the quotient structure of a smooth manifold.
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Then there exists on P/IH an h-equivariant V -valued k-form φrec which pulls back to φ under
the quotient map P → P/IH :

P → P/IH

Ω•(P, V )← Ω•(P/IH , V )
φ←[ φrec

The corollary is immediate since P/IH embeds as an open submanifold of the H-completion.

8.2 The structure of H-spaces
8.2.1 Slices and Cartan property
In this section, we consider a Hausdorff manifold P on which a Lie group H acts smoothly on
the right. We discuss sufficient properties for the action to have slices (defined below). The main
references will be [Pal61] which discuss the existence of slices for action of non compact groups,
and [Bre72] which discuss the structure of compact group actions but mainly uses the existence
of slices for many results. We state some of the results in a more general setting, mainly the case
of (Hausdorff) completely regular spaces.

We will be interested in the existence of a special type of charts on H-manifolds called tubes.
If charts on a smooth manifold are local identifications with Euclidean spaces, tubes are local
identifications with G-manifolds of a specific type:
Definition 8.2.1 (Tubes). A tube about an orbit O of type K\H is an H-equivariant embedding

A×K H → U ⊃ O

onto an open neighbourhood of O with A some K-space.
If A is a Euclidean space with isometric action, the tube is said to be linear. An action (or an

H-space) which has linear tubes around each orbit is called locally smooth [Bre72] (note that it
needs not be differentiable).
Definition 8.2.2 (Tubular Neighbourhoods). Assume the action is smooth and let O be an
orbit of type K\H. An open invariant tubular neighbourhood about O is the data of a smooth
H-equivariant vector bundle EO over the coset manifold K\H with an equivariant diffeomorphism
χ from an open H-invariant neighbourhood UE of the zero section of EO to an open H-invariant
neighbourhood of O [Bre72; RS13]:

K\H O

UE χ(UE)

EO P

h 7→h·p

∼
χ

A simple image to have in mind is the case H = R and K = Z ⊂ R acting on some space
A by some homeomorphism f . The tube can be represented by a cylinder A × [0, 1] to which
the two ends are glued according to f . For example with f the parity on A = R, the tube is a
(non-compact) Möbius band.

We now define the strongly related notion of slice:
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Definition 8.2.3 (Slices). A slice for H at a point p of P is an Hp-stable subset S of P containing
p such that S ·H is an open subset and has an equivariant mapping f : S ·H → Hp\H such that
f−1([e]) = S. Such an f is necessarily unique [Pal61].

When S is an Hp-space isomorphic to a Euclidean space with isometric action, the slice is
said to be linear [Bre72].

The relation between tubes and slices is given by the following lemma:

Lemma 8.2.4 ([Bre72], Theorem 2.4.2). Let p ∈ S ⊂ P with S stable under Hp, then S is a
slice at p if and only if the map

S ×Hp H → P

[h, s] 7→ s · h

is a tube about p ·H.

In a way, a slice contains the data of a tube augmented with a specific kind of section, fixing
some “gauge ambiguity” in the identification of the tube with a space of the form A×K H.

For smooth Lie group actions, smooth linear tubes provide open invariant tubular neighbour-
hoods, since

A×K H → H

is naturally a smooth vector bundle above K\H. The converse holds with A the intersection of
the neighbourhood of the zero section with any given fibre of the vector bundle.

Definition 8.2.5 (Cartan action). The action of H on P has the Cartan property, or is a Cartan
action if every point admits a neighbourhood U such that

{h ∈ H | U · h ∩ U 6= ∅}

has compact closure in H. Such a subset U is called thin [Pal61].

The Cartan property prevents orbits “accumulation” so that their subset topology matches
that of the suitable coset spaces:

Theorem 8.2.6 ([Pal61], Proposition 1.1.5). Let P be a completely regular Cartan H-space and
p ∈ P . Then the orbital map h ∈ Hp\H → h · p is a homeomorphism onto the orbit p ·H of p (in
particular the induced topology on the quotient matches the coset topology).

When P is furthermore a differentiable manifold and H is a Lie group acting smoothly, the
orbital map gives the orbit the structure of an embedded submanifold.

The Cartan property is strongly related to the existence of slices as the following characterisa-
tion shows:

Theorem 8.2.7 (Characterisation of Cartan actions, [Pal61] Theorem 2.3.3). The action of a
Lie group H on a completely regular space P has the Cartan property if and only if it admits a
slice at each point and all isotropy groups are compact.

Theorem 8.2.8 ([Pal61], Proposition 2.2.2). A differentiable Cartan action on a differentiable
manifold admits open invariant tubular neighbourhoods about each orbit.

We give a rough sketch of the proof adapted from [Pal61], Sections 2.2, 2.3:
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Proof. Let p be a point in P and call O its orbit. Its isotropy group Hp is compact according to
Theorem 8.2.7. Therefore one can build a Riemannian metric on P which is invariant under Hp.
Let us call5 TO the distribution

TpO := TO|p = p · h

and NO its normal bundle, which can be embedded in TP|O as TO⊥ which is a supplementary
subbundle to TO.

The point is to build a transversal S to the orbit O through p in the following way: the
geodesic exponential map on TpP restricted to a small enough neighbourhood of the origin is a
diffeomorphism. It is Hp-equivariant because the metric is Hp-invariant. When further restricted
to NpO its image is a submanifold transversal to TpO, which we call S0.

It can then be proved that there exists a local section χ : U ⊂ Hp\H → H on an open
neighbourhood of [e] in Hp\H and an open submanifold S1 of S0 such that

S1 × U → P

(s, u) 7→ s · χ(u)

is a local diffeomorphism onto an open neighbourhood of p in P . Such an S1 is called a near-slice,
and it is proved in [Pal61] (Proposition 2.1.7) that for a Cartan action any near-slice at p contains
a slice S2 as a sub-transversal to TpO. The inverse image U2 := exp−1

p (S2) of S2 by the geodesic
exponential in Np ⊂ TpP is an open neighbourhood of the origin which is stable under the
compact group Hp. Hence S2, or at least a sub-slice of it, is a linear slice.

A tubular neighbourhood is built by replacing the metric on the tube by an H-equivariant
extension of the metric on S2 and using the geodesic exponential map on U2 ·H ⊂ NO ⊂ T|OP .

Definition 8.2.9 (Proper actions in the sense of Palais, [Pal61]). The action of H on P is
proper if each point p of P admits a neighbourhood U such that every point y of P admits a
neighbourhood Uy such that

{h ∈ H | Uy · h ∩ U 6= ∅}

has compact closure in H.

As long as P is locally compact (and Hausdorff) this is equivalent to the usual definition
(Example 6.1.12), namely the following map is proper ([Kar16], Remark 5.2.4):

P ×H → P × P
(p, h) 7→ (p · h, p)

In particular, in this case, proper group actions on P have closed orbits since they are the image
of the closed subsets {p} ×H (this can be proved under weaker hypotheses, see [Pal61]).

We gather in the following theorem results relating properness and the Cartan property.

Theorem 8.2.10 (Properness and Cartan property, [Pal61] Theorems 1.2.3, 1.2.9, [Kar16]
Remark 5.2.4).

• All actions of compact groups on completely regular spaces are proper.

• A proper action has the Cartan property.

• If P is a locally compact and completely regular topological space, the action of H is proper
if and only if it has the Cartan property and the quotient topology on P/H is Hausdorff.

5We do not know yet whether O is a submanifold of P .



202 CHAPTER 8. INTEGRATION OF GENERALISED CARTAN GEOMETRIES

• An H-space P is Cartan if and only if each point admits a neighbourhood U such that G · U
is a proper H-space.

8.2.2 Principal orbits
Let P be an Hausdorff differentiable manifold on which a Lie group H acts smoothly. In this
section we assume that P is connected and has linear slices at each point.

Note that when an action does not have the Cartan property, the induced topology (or smooth
structure) on an orbit does not necessarily match with the quotient structure on the coset space
associated to the isotropy groups. A standard example is the orbits of an action of R of irrational
slope on the 2-torus, which are not locally connected.

Orbit types form a pre-ordered set: we define for two orbits O1 and O2 the following pre-order6
relation:

[O1] 6 [O2]

if and only if for any p1 ∈ O1, p2 ∈ O2, Hp2 is conjugated to a subgroup of Hp1 . Roughly speaking,
an orbit is larger when its isotropy group is smaller.

This relation may or may not be antisymmetric. The following lemma justifies it is under
some assumptions we state below.

Lemma 8.2.11 ([Mes16], Lemma 3.15). Let H be a Lie group and K a closed subgroup which
has a finite number of connected components (e.g. compact).

For any h in H, hKh−1 ⊂ K implies that hKh−1 = K.

Proof. Let h be an element of H such that AdhK ⊂ K.
At the level of the Lie algebra, since Adh is a linear automorphism, dimension considerations

imply that Adh k ⊂ k =⇒ Adh k = k. The subgroups AdhK and K thus have the same neutral
component which we call K0 and which is preserved by Adh. The action of h thus factors to the
quotient group K/K0, which is finite by assumption.

As an injection of the finite set K/K0 into the subset

Adh(K/K0) = (AdhK)/K0 ⊂ K/K0

the map Adh necessarily defines a bijection of K/K0. One concludes that AdhK has a point in
each connected component of K, thus is equal to K.

A consequence of this lemma is that when H is compact, so that all its closed subgroups are
compact, the pre-order relation on orbit types is antisymmetric hence an order relation. More
generally, when the action of H on P is proper, so that all isotropy groups are compact, the
pre-order relation on the orbit types of P is antisymmetric.

Borrowing the terminology from representation theory, we make the following definition:

Definition 8.2.12 (Isotypic components). An H-space which has a unique orbit type is called
isotypic.

Let [O] be an orbit type under H and P an H-space. The reunion of the orbits in P of type
[O] is called the (isotypic) part of type [O] of P , we write it P[O]. We call isotypic components
their connected components.

When an action is locally smooth, isotypic parts are submanifolds:
6A transitive and reflexive relation.
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Theorem 8.2.13 ([Bre72], Theorem IV.3.3). Let P be a locally smooth H-manifold. Let [O] be
an orbit type present in P .
Then the part of P of type [O], P[O], is an embedded submanifold of P .

The partition of a proper H-space P into the isotypic components is called the stratification by
orbit types. It satisfies the following property, which already appeared in the section on orbifolds
(Section 6.3):

Theorem 8.2.14 (Frontier condition, [Mes16]). The closure of an isotypic component X is the
reunion of X with isotypic components of strictly lower dimension.

A dense part of the manifold belongs to one isotypic part, which is called the principal part of
the manifold:

Theorem 8.2.15 (Principal orbit type, [Bre72] Theorem 3.1). If P has linear slices at each point
then it has a maximal orbit type for the partial order relation.
The isotypic part of maximal type is a dense open subset of P and its image in the orbit space is
connected.
The maximal orbit type is called the principal orbit type, the orbits are called principal orbits and
the isotropy groups principal isotropy groups.

Principal orbits are easily characterized by the trivial transversal action of their isotropy
groups:

Theorem 8.2.16 (Characterisation of the principal orbits, [Bre72] Theorem 3.2.iii). Let p be a
point of P with a linear slice S and compact isotropy group.
The orbit through p is a principal orbit if and only if Hp acts trivially on S. In particular, the
linear tube generated by S is naturally isomorphic to Hp\H × S.

In particular at any point of a principal orbit, the infinitesimal action of the isotropy group
on the normal space to the orbit is trivial.

An orbit is principal when its isotropy type is maximal, but at every point of a slice at p the
isotropy groups are subgroups of Hp. Lemma 8.2.11 ensures they are all equal to Hp.

8.2.3 Principal H-spaces
In this section, we state necessary conditions for a free H-space to have an H-principal bundle
structure over its orbit space.

We are interested by how P fibrates over its orbit space P/H – in particular, when is it a
principal bundle fibration? A first condition is to have a unique orbit type. It is not enough, as
shown for example by irrational quotients of the 2-torus.

When the action is locally smooth, a manifold with unique orbit type has a structure of
principal bundle above its orbit space:

Theorem 8.2.17 ([Bre72] Theorems IV.3.3, VI.2.5). Let H be a Lie group and P a connected
Cartan H-manifold which is isotypic with isotropy groups conjugated to K ⊂ H.
Then the orbit space has a (non-necessarily Hausdorff) quotient manifold structure, and the quotient
map P → P/H is a fibre bundle with fibre k\H and structure group AutH(K\H) ' Norm(K)/K.

We reproduce here the proof from [Bre72] which is stated for H compact but directly applies
to a Cartan action.
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Proof. Let us write
P

π−→ P/H

the projection to the orbit space.
We first endow P/H with the following smooth structure (as defined in Section 1.1): a function

U ⊂ P/H → R is smooth if and only its pullback to π−1(U) is a smooth functions. We want to
prove that it is locally isomorphic to that of a (finite dimensional) vector space (using a global
structure saves us from having to check compatibility conditions).

Consider an open linear tube S ×K H ⊂ P . Isotropy groups are all compact (Theorem 8.2.7)
so applying Theorem 8.2.16 isotropy groups of elements of S are all identical to K. Hence the
tube is diffeomorphic to H/K × S.

Composing the tube embedding

S ×K H 'H S ×K\H → P

with the orbit space projection P → P/H we obtain a continuous bijection from S and the subset
U = π(S ×K H) = π(S) ⊂ P/H it projects onto. Because π−1(U) = S ×K H is open in P , U is
open in P/H for the quotient topology. Since the smooth (local) functions on P/H are the local
functions which pullback to P to smooth functions, smooth functions on U are exactly smooth
functions on S ×K H which are H-invariant, which are identified with smooth functions on S.
Since S is a local slice the smooth structure on P/H is locally isomorphic to that of a Euclidian
vector space i.e. P/H is a quotient smooth (possibly non-Hausdorff) manifold.7

Such open subsets π(S) ⊂ P/H cover the orbit space (and form a topology basis as S can be
arbitrarily reduced). The inverse image of π(S) is by construction diffeomorphic to S ×K\H
as an H-space, hence P → P/H forms a principal bundle with fibre K\H with the action of H.
The structure group of the principal bundle is the group of diffeomorphisms of K\H commuting
with the action of H, AutH(K\H), which is readily shown to be identified with the quotient of
the normaliser of K by K itself: Norm(K)/K.

The structure we are looking for is that of a principal fibre bundle. In this case the Cartan
property characterises exactly principal bundle actions:

Theorem 8.2.18 (Locally trivial H-spaces, [Pal61] Section 4.1). Let H be a Lie group and P a
completely regular connected free H-space. Then P is a locally trivial principal H-bundle over its
orbit space if and only if the action of H has the Cartan property.

In particular, for a subspace Q ⊂ P that is a reunion of orbits of the same type, Q is a Cartan
H-space and fibrates locally trivially above its orbit space. In particular, for Pprin the principal
isotypic component we obtain the H-principal fibration of a dense subset of P over its orbit space.

Part of the theorem can be slightly generalised in the following manner:

Theorem 8.2.19. Let H be a Lie group and P a completely regular connected H-space. If the
action admits linear slices and is isotypic with normal isotropy groups, then P is a locally trivial
H/K-principal bundle over its orbit space, for K the isotropy group of the action.

8.2.4 Manifold structure on the orbit space
When there are several orbit types, one cannot hope to have a principal bundle fibration over the
whole orbit space. Here we are interested in the local structure of the orbit space. According

7Alternatively it is possible to use the transition functions between two open subsets of P/H which are the
image of two tubes in P to build an atlas on P/H.
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to Ehresmann’s fibration theorem [Dun18], when H is compact if P/H is a smooth quotient
manifold then all orbits are necessarily H-equivariantly diffeomorphic, hence have the same type.

First, the orbit space of a proper H-manifold is stratified in a similar way as the H-manifold
itself is:
Theorem 8.2.20 (Stratification of the orbit space by orbit types, [Mes16; Mei03]). Let H be a
Lie group and P a proper H-manifold.

For a compact subgroup K ⊂ H, define the subset

(P/H)[K] : P[H/K]/H

the orbit space of orbits of type H/K.
Then the connected components of the subsets (P/H)K satisfy the frontier condition 8.2.14.
Furthermore the quotient smooth structures on the connected components of (P/H)[K] give

them the structure of smooth quotient manifolds.
Thus even when the orbit space is singular, it decomposes as a reunion of smooth manifolds.
If we allow for manifold with boundaries, a large part of the orbit space has a quotient manifold

structure.
Theorem 8.2.21 ([Bre72] Theorems IV.4.3, 4.6, [Mei03]). Let H be a Lie group and P a
connected proper H-manifold. Then there exists a closed subset C ⊂ P/H of empty interior such
that (P/H) K C is a manifold (of the same dimension as the linear slices) with boundary.
In general C can be chosen with (covering) codimension at least 3. If the orbits are connected
and H1(P,Z2) = 0 then C can be chosen with (covering) codimension at least 4.

Globally, the structure of the orbit space of a proper H-manifold is captured by the notion of
orbispace [Mes16]. Let us simply describe what is the considered local structure on P/H. Tubes
and slices on P are directly related with charts on P/H. Let A×K H ↪→ P be a linear tube in P .
The projection to the orbit space identify its image with

(A×K H) /H ' A/K

Since the projection to the orbit space is an open map ([Bre72] Section I.3), the image is an open
subset of P/H identified with A/K. Since A is a linear slice, K a compact group and P can
be covered with linear tubes, the smooth structure of P/H is locally identified with that of a
quotient of a Euclidean space by a compact group (with specific properties). In the case the
action is infinitesimal and the isotropy groups are discrete thus finite, P/H has a structure of
orbifold.

We close this section with a remark about compactness. Lemma 8.1.32 asserts that a locally
compact Hausdorff σ-compact space is paracompact. As soon as P is σ-compact, P/H is as well.
When P is proper so that it admits linear tubes around every orbit, P/H is covered by quotients
of Euclidean spaces by compact groups. Let A be a finite dimensional real vector space with
the action of a compact group K. Since the quotient map A→ A/K is open and the Euclidean
space A is locally compact, A/K is locally compact as well. This proves that P/H is locally
compact and as a consequence paracompact. This gives a simple sufficient condition for P/H to
be paracompact.

8.3 Integration of a Cartan 1-form
In this section we finally deal with the question of building a principal bundle structure starting
from a manifold P with a Cartan 1-form $ with value in a Lie algebra g. Recall the following
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Maurer-Cartan-like equation the Cartan form $ is required to satisfy:

d$ + 1
2 [$ ∧$] = 1

2Ωbcαa ∧ αb (8.9)

with α = $g/h the g/h component of $ and Ωbc unconstrained coefficients.

8.3.1 Integration of a Cartan 1-form
Cartan 1-forms

We showed in Section 7.2.1 that P is equipped with an action of the Lie algebra h and that $ is
equivariant under this action.

If the vector fields are complete the Lie algebra action is readily integrated into a Lie group
action of the simply connected Lie group integration H̃ of h. If not, one needs to complete the
manifold P as described in Section 8.1.2. According to Theorem 8.1.44, the Cartan form extends
to a Cartan form on the completion. As the isotropy algebras are trivial, the isotropy groups are
necessarily discrete subgroups.

Let us introduce the following intermediary notion between Cartan 1-form and actual Cartan
connection 1-forms on principal bundles:
Definition 8.3.1 (Generalised Cartan connections). Let (g, h) be a Klein geometry. Let P be
an h-manifold. A generalised (g, h)-Cartan connection on P is a nondegenerate g-valued 1-form
$ which is normalised for the action of h and satisfies the equivariance equation:

∀ξ ∈ h,

{
$
(
ξ̄
)

= ξ

Lξ̄$ + adξ$ = 0
(8.10)
(8.11)

Remark. Note that our definition differs from the one in [AM95], as theirs does not impose that
the form is nondegenerate, but is close to their definition of principal Cartan connection (which
requires a structure of principal bundle).

Our construction is summed up in the following theorem:
Theorem 8.3.2. Let P be a Hausdorff smooth manifold equipped with a g-valued Cartan 1-form
$. The fundamental vector fields defined by

ξ ∈ h 7→ ξ̄ := $−1(ξ, 0)

form a free action of the Lie algebra h. Let H be a (connected) Lie group integration of h such
that the H-completion PH of P is a smooth manifold.
Then there exists a generalised Cartan connection $H on PH which pulls back to $ on P .
Furthermore, PH has discrete isotropy groups.

Principal orbits and bundle fibration

In this section, P is a connected Hausdorff manifold with a Cartan form $, which defines a (free)
infinitesimal action of h. We now assume that the infinitesimal action integrates to a group action
of H. Namely we require univalence and completeness, according to Theorem 8.1.24. We want to
construct from P a principal bundle with a Cartan connection. For this we need the action to
have suitable isotropy groups, as described in Theorem 8.2.19

We further require the action to be Cartan, so that it has linear slices. Note that when g is
provided with an AdH -invariant inner product, the non-degenerate coframe $ which is equivariant
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allows us to pull it back to TP into a global H-invariant metric. Since the action is Cartan the
isotropy groups are compact, and the action of h being free they are discrete, hence finite:

Lemma 8.3.3. Let H be a Lie group and P a Cartan H-manifold. If the infinitesimal action of
h is free then the isotropy groups of P are finite.

We restrict our attention to the principal isotypic component of P , Pprin, which is a dense
open subspace (see Theorem 8.2.13).

We want an effective group action on Pprin in order to construct a principal fibre bundle. For
this, the necessary condition is to have all isotropy groups identical, so that there is one uniquely
defined quotient group of H acting on Pprin. In particular, the isotropy groups have to be normal
subgroups of H, although this is no sufficient condition.

Theorem 8.3.4. Let P be a connected manifold equipped with a g-valued generalised Cartan
connection to which the associated action of h integrates to an action of a Lie group H. Assume
that the action of H on P is isotypic and that the action is Cartan. The isotropy groups are then
finite.

Assume furthermore that the isotropy groups are normal subgroups of H. They are then all
identical. Let us call K the isotropy group. The manifold P has a free and effective action of K\H
and forms a principal K\H-bundle over the quotient P/(K\H) which has a quotient differentiable
manifold structure (Hausdorff when the action of H is proper). The principal bundle is equipped
with a solder form and a (K\H)-principal connection.

Proof. The action naturally factors to a free action of K\H. Theorem 8.2.17 applies and the orbit
space P/(K\H) ' P/H is a manifold over which P forms a principal K\H-bundle. Since K is
discrete, the respective Lie algebras of K\G and K\H are identified with g (resp. h). The vertical
distribution integrates to the fibres of the principal bundle fibration. The g/h component of the
generalised Cartan connection on P defines a solder form and the h component a K\H-principal
connection on P .

The Cartan connection imposes constraints on the isotropy subgroups. Because we restrict
to the principal isotypic component, isotropy groups act trivially on the normal tangent bundle
to the orbits (Theorem 8.2.16). The tangent spaces to the orbits constitute the (integrable)
distribution (kerα), so αa forms a coframe of the normal bundle to the orbits. Furthermore α is
by hypothesis equivariant under H so that it is equivariant, hence invariant, under the isotropy
groups of the principal orbits (Equation (8.7)). One concludes that the principal isotropy groups
act trivially on g/h:

Lemma 8.3.5. Let P be a Cartan H-manifold with a generalised (g, h)-Cartan connection $.
The principal isotropy groups of P are subgroups of the kernel of the action

H
Ad−−→ EndR(g/h)

In particular, when the action of h on g/h is faithful, the principal isotropy groups have to be
trivial.

Example 8.3.6. Let P be a differentiable manifold.
Assume P has a smooth action of SOn with a generalised sonnRn-valued Cartan connection

$. Then the action is both proper and free over the principal isotypic component Pprin (due to
Lemma 8.3.5). It thus defines a principal bundle Pprin → Pprin/SOn over the orbit space which
is a smooth Hausdorff manifold, and $ defines an SOn-principal connection.
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The examples of locally Klein geometries introduced in Section 7.3 are examples of this
construction. In particular, Example 7.3.1 as an action of Spin4 which is free except on one single
exceptional orbit which induces a localised singularity on the orbit space.

8.3.2 (g, h)-Cartan 1-form on a compact manifold with compact H

Under compactness assumptions, many hypotheses of the construction become automatically
satisfied. Let P be a compact (Hausdorff) manifold. Let (G,H) be a reductive Klein geometry
with H compact and simply-connected. Assume P is equipped with a (g, h)-valued Cartan 1-form
$.

The Cartan 1-form defines a free action of h on P according to Theorem 7.2.3. Since the
manifold P is compact, the action of h is complete. Hence the infinitesimal action integrates to a
Lie group action of the simply-connected integration H̃ of h, as stated in Section 8.1.2.

In the case H̃ is compact, the action is then necessarily proper, in particular it has the Cartan
property (see Section 8.2.1 for more detail). Hence it has linear slices and a principal orbit type. If
we consider the principal isotypic component of P , which is a dense open subset (Theorem 8.2.15),
it is a fibre bundle above its orbit space, which is a smooth manifold according to Theorem 8.2.17.
All the isotropy groups are necessarily finite (Lemma 8.3.3).

Lemma 8.3.7. Let H be a simply connected compact Lie group with Lie algebra h and P a
compact h-manifold. Then the action integrates into a group action of H and there is a finite
subgroup K ⊂ H and a dense open subset U ⊂ P stable under H such that

U → U/H

is a fibre bundle with typical fibre K\H which is an homogeneous H-space covered by H.

When the action of h on g/h is faithful, Lemma 8.3.5 implies that the principal isotropy groups
are necessarily trivial.

Theorem 8.3.8. Let P be a compact (Hausdorff) manifold. Let H be a simply connected compact
Lie group with a Lie algebra h and an action on g/h. Let $ ∈ Ω1(P, g) be a Cartan 1-form on P
and α ∈ Ω1(P, g/h) its projection to g/h.

Then there exists a dense open subset U ⊂ P stable under H such that U → U/H is a smooth
manifold,

U → U/H

is an H-principal bundle and $ defines a (G,H)-Cartan connection on the fibre bundle.

Example 8.3.9. Let P be a differentiable manifold.
Assume P is compact and has a smooth action of spinn with a spinnnΣn-valued generalised

Cartan connection $, with Σn a faithful spinorial representation of spinn. The action of spinn is
complete and integrates to a group action of Spinn, under which $ is equivariant. The group
action is proper and since Σn is a faithful representation of Spinn the principal isotypic component
Pprin is free under the group action.

One concludes that Pprin defines a principal bundle Pprin → Pprin/ Spinn over its orbit
space, which is a smooth Hausdorff manifold, and $ defines a solder form and a Spin4-principal
connection.

Now, in the general case, the total orbit space is an orbifold (Section 8.2.4). Even in this case,
the structure we obtain can be understood as a principal connection on the frame bundle. The
theory of frame bundles and connections on orbifolds is exposed in [Alf21].
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Covariant formalism for first
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We discuss the general geometrical framework in which classical field theories are formulated.
The different formulations are centered around different geometrical structures. We explain in
particular how the pre-multisymplectic geometry naturally emerges in the study of variational
theories. General references are [GIM97; RW19; Hél11; Gie21].

9.1 Variational field theories
Let us first define what we mean by field theories. We want a source space E and a target bundle
Q→ E . Throughout the whole section, E will be a smooth manifold of dimension n. Fields will
be sections of Q, usually subject to “boundary conditions” defining a subset Γb.c.(Q) ⊂ Γ(Q).
When E is one-dimensional and represents a time coordinate, fields are trajectories and the field
theory is usually referred to as “mechanics”. The field theory will then specify a subspace of the
space of fields Γb.c.(Q) which will be the space of solutions of a system of equations, or the space
of classical trajectories. Realistic field theories have much more structure, for example they have
a specified symmetry group, or should satisfy physical principles such as locality or determinism.

A variational field theory is defined by a source space E , a target bundle Q, boundary conditions

211
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defining a subset of sections Γb.c. and an action

S : Γb.c. → R

More generally, a local variational field theory is defined by

1. A source space E

2. A target bundle Q π−→ E

3. A subsheaf of the local sections of E : that is above any open subset U ⊂ E a space of local
sections satisfying the boundary conditions which we write

Γb.c.(U , Q)

such that the question of whether σ ∈ Γ(U , Q) belongs to Γb.c. can be answered locally.

4. A local action S well defined on compactly supported fields:

S : Γc(E , Q)→ R

which is differentiable in some sense.

The solution fields are the ones at which the differential of S vanishes:

δS|σ = 0

This is called the equation of motion.

9.2 Lagrangian field theories
A local Lagrangian is a map from the stalks of sections of Q, gathered in the bundle Ét(Q)→ E ,
to the bundle of densities over E :

L : Ét(Q)→ Dens(E)

To a local section σ ∈ Γ(U , Q) it is associated the local section σ̄ of Ét(Q) defined by

σ̄x = germx(s)

The local Lagrangian defines a local action functional

SU [σ] =
∫
U

L ◦ σ̄

under general integrability conditions. A section is said to satisfy the equations of motion when it
is locally an extremum of the local action functional among sections of E . A local variational
theory is called Lagrangian when it can be expressed with a Lagrangian.

In the physically relevant cases, the Lagrangian will be of finite order, namely it depends on
the k-order jet of the sections:

L : J k(Q)→ Dens(E)

for some integer k and does so in a smooth manner. In this case, given a (local) section σ, one can
find around each point on which it is defined a neighbourhood U such that the Lagrangian density
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is integrable on U for sections in a neighbourhood of σU . The Lagrangian being assumed smooth,
one can then differentiate SU at σU . In this framework, the variational principle is modified in
the following way: a section s defined on an open subset W is said to satisfy the equations of
motion if it is locally a critical point of the action functional among sections of E satisfying the
boundary conditions:

∀x ∈ W,∃U ∈ V(x), δSU [sU ] = 0 (9.1)

with δ denoting the “functional” derivative of the local action SU and V(x) the set of open
neighbourhoods of x (included in W). From now on we will assume all Lagrangians to be of finite
order.

If one were interested in finding critical points among all sections of the jet space, the
corresponding equations of motion would simply be the vanishing of the vertical differential of L ,
but the so-called holonomic sections, namely the ones that are associated to a section of Q, are
only a subspace of these sections. The different components of their jets are related in a local way
so that the equations of motion are weaker than the vanishing of the whole vertical differential of
L .

The local Lagrangian densities we will consider will be n-forms on a n-manifold, either initially
oriented or provided with an orientation by the fields.

Since the central question of classical field theories is to study the solutions and the space they
form, we can consider different field theories to be equivalent: two variational field theories with
the same space of fields and boundary conditions will be called equivalent when the difference
of the local actions is independent of the chosen local field. Two Lagrangian field theories with
the same space of fields and boundary conditions will be called equivalent when over any local
field, the Lagrangian densities differ by an exact term. In particular equivalent Lagrangian field
theories define equivalent variational field theories.

9.3 Variational principle

The variational principle associated to a local action is the equation of motion stating that the
field is a critical point for the local action. The boundary conditions usually imposed on the
accepted field configurations consequently restrict the allowed variations. The local actions are
differentiated with respect to variations with compact support, which ensures the integrability of
the local action and its differentiability on the variation support as well as preserve all kinds of
boundary conditions. From now on we will restrict our attention to Lagrangian theories of first
order. In particular, we will use the notation

J (Q) π1

−→ Q

for the bundle J 1(Q)→ Q, with the jet order left implicit. Let us recall the notation for local
coordinates we will use: xi are local coordinates on Q, yA are fibre coordinates on P and vAi are
the associated 1st order coordinates on J (Q) (fibre coordinates with respect to J (Q)→ Q).

Let U be the interior of a codimension 0 submanifold with boundary – there exists a topology
basis of such open subsets. Let σ ∈ Γ(U , Q) be a local section and X ∈ Γ(U , σ∗V Q) a compactly
supported (vertical) variation. X is extended arbitrarily to a neighbourhood of σ(U) in Q|U and
the corresponding flow lifted to J (Q|U ) to a flow generated by vector we write jX, it is the
so-called prolongation of X (introduced in Section 2). Using the flow of the extended X we define
a one-parameter family of sections (σt) for t in a neighbourhood of 0 in R coinciding with σ in 0.
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The variational principle on U takes the form:

∂t

(∫
x∈U

L (x, jσt(x))
)
|t=0 = 0 (9.2)

which can be expressed with a vertical derivative which we write ∂V :∫
x∈U

(∂V L )(x, jσ(x))(X)dx

We will use a formulation with the Lie derivative. Post-composing the Lagrangian

J (Q) L−→ π∗ΛnT ∗E

with the pullback map
π∗ΛnT ∗E π∗−→ ΛnT ∗Q

the Lagrangian can be represented as a π∗ΛnT ∗E ⊂ ΛnT ∗Q-valued map and can as such be pulled
back along jσ. In this way, the application x 7→ L (x, jσ(x)) is identified with jσ∗(L ) and the
variational principal can be written

∂t|t=0

(∫
U
jσ∗tL

)
= 0

which is expressed with the Lie derivative as:∫
U
jσ∗(LjXL ) = 0 (9.3)

Furthermore the local flow of jX on J (Q) projects to the flow of X on Q hence to 0 on E ,
which means that the Lie derivative can be simplified to

LjXL = (dijX + ijXd)L = d0 + ijXdL = ijXdL

Thus the equation of motion is ∫
U
jσ∗ (ijXdL ) = 0 (9.4)

for all variations X of s. But jX|jσ does not take all (vertical) values for varying X, moreover it
is not a C∞(E)-linear function of X so we cannot conclude that the integrand jσ∗ (ijXdL ) has
to vanish for all X. The prolongation of X can be expressed in local coordinates [Olv86]:

jσ∗(jX) = σ∗XA∂yA + ∂xi(σ∗X)A∂vA
i

(9.5)

which shows that jσ∗(jX) is independent of the extension outside of the image of σ. Notice that
the non-linearity with respect to C∞(E) is due to the term ∂xi(σ∗X)A∂vA

i
.

Since the considered field variations are compactly supported, any exact term in the Lagrangian
has no influence on the variational equations (although it may affect the global action value
depending on the boundary conditions). It is then seamless to perform an integration by part to
obtain an integrand C∞(E)-linear in σ∗X. The geometric realisation of this integration by part
leads to the Poincaré-Cartan form.
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9.4 The Poincaré-Cartan form
We considered a Lagrangian that is purely horizontal, namely a section of π∗(ΛnT ∗E)→ J (Q).
Now the local action does not change if we add any contact term to the Lagrangian form. The
idea is then to add a suitable contact term θB ∧ pB such that

∂vA
i
yd(L + θB ∧ pB) ∈ I

Using the following two properties of the local contact 1-form

∂vA
i
y θB = ∂vA

i
y (dyB − vBi dxi) = 0

∂vA
i
y dθB = ∂vA

i
y (−dvBi ∧ dxi) = −δBAdxi

the computation goes

∂vA
i
y d(L + θBpB) = ∂vA

i
y dL + (∂vA

i
y dθ)B ∧ pB − (∂vA

i
y θB) ∧ dpB

+ dθB ∧ ∂vA
i
y pB + θB ∧ ∂vA

i
y dpB

= L∂
vA
i

L − dxi ∧ pA +
(

dθB ∧ ∂vA
i
y pB − θB ∧ ∂vA

i
y dpB

) (9.6)

(we used ∂vA
i
y dL = L∂

vA
i

). The local coordinates xi define a local volume form dx(n) =
dx1 ∧ · · · ∧ dxn and the Lagrangian can be decomposed as L = Ldx(n). Using the dual form
convention (Section 1.4)

dxj ∧ dx(n−1)
i = δji dx(10)

we decompose
pA = piAdx(n−1)

i + dyB ∧ pB,A + dvBj ∧ p
j
B,A

The term (9.6) is a contact term when

∂vA
i
Ldx(n) ≡ piAdx(n) + dxi ∧

(
dyB ∧ pB,A + dvBj ∧ p

j
B,A

)
mod I

which is solved by
pA ≡ ∂vA

i
Ldx(n−1)

i mod I (9.7)

There is only one solution if we require pA to be horizontal forms:

pA = ∂vA
i
Ldx(n−1)

i (9.8)

Contact terms in p have no influence on the variational equation (9.4) since adding a term
from I2 to L yields only an extra contact term in ijXdL 1.

The Poincaré-Cartan form associated to L is locally defined as

ΘPC = L + θA ∧ ∂vA
i
Ldx(n−1)

i ∈ Λnπ1∗T ∗Q (9.9)

This definition is shown to be coordinate independent, since the second term in the right hand
side can be constructed from the coordinate independent tensor θA ⊗ ∂xi ⊗ ∂vAi and L , with θA
composed with the exterior product, ∂xi with the interior product, and ∂vA

i
with the vertical

1However they may affect the symplectic form on the solution space, which is constructed by the integration on
a Cauchy surface of the contraction of dΘPC with two variation fields.
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derivative. We already stated that θ is a geometrically defined 1-form with value in (π1)∗V (Q/E).
Vectors ∂xi are elements of (π ◦ π1)∗TE and ∂vA

i
correspond to the (pulled back) affine action of

π∗T ∗E ⊗ V Q on J (Q)→ Q.
The tensor product θA ⊗ ∂xi ⊗ ∂vAi can be interpreted as the linear mapping

TJ (Q)

π∗(V (Q/E))

(π1)∗(V (Q/E))⊗ (π ◦ π1)∗T ∗E︸ ︷︷ ︸
(π1)∗(π∗T∗E⊗V Q)

⊗(π ◦ π1)∗TE

V (J (Q)/Q)⊗ (π ◦ π1)∗TE

θ

·⊗idTE

∼

Hence the element is geometrically defined and the term θA ∧ ∂vA
i
Ldx(n−1)

i is as well.

Remark. The uniqueness of the Poincaré-Cartan is guaranteed for first order theories but it is
not the case for higher order theories ([Vit10]).

The variational equation becomes∫
U
jσ∗(LjXΘPC) = 0 (9.10)

The Lie derivative is decomposed using the homotopy formula:

LjXΘPC = dijXΘPC + ijXdΘPC

The integral of the first term vanishes as X and jX extend smoothly by 0 on ∂U :∫
U
jσ∗ (dijXΘPC) =

∫
U

djσ∗ (ijXΘPC) =
∫
∂U
jσ∗ (ijXΘPC) = 0

The second term ijXdΘPC is C∞(E)-linear in X by construction since in the contraction the
component ∂xi(σ∗X)A∂vA

i
vanishes (see (9.5)). We conclude that the variational equation is

equivalent to
jσ∗ (ijXdΘPC) = 0 (9.11)

Given the Poincaré-Cartan form, L can be obtained back by identifying the purely horizontal
part of ΘPC modulo contact terms. In this sense, the Lagrangian form and the Poincaré-Cartan
form can be thought of as two realisations of the same object: the Lagrangian form is the purely
horizontal component (with respect to J (Q)→ E) and the Poincaré-Cartan form is a realisation
convenient for expressing the variational equations.

In a local trivialisation the differential of the Poincaré-Cartan form is

dΘPC = dL + dθA ∧ ∂vA
i
Ldx(n−1)

i − θA ∧ d
(
∂vA

i
Ldx(n−1)

i

)
(9.12)
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so the interior product with jX = jXA∂yA + jXA
i ∂vAi gives

ijXdΘPC = ijXdL + ijXdθA ∧ ∂vA
i
Ldx(n−1)

i + dθA ∧ ijX∂vA
i
Ldx(n−1)

i

− ijXθAd
(
∂vA

i
Ldx(n−1)

i

)
+ θA ∧ ijXd

(
∂vA

i
Ldx(n−1)

i

)
≡ ijXdL + ijXdθA ∧ ∂vA

i
Ldx(n−1)

i − ijXθAd
(
∂vA

i
Ldx(n−1)

i

)
mod I

≡ jXA∂yAL + jXA
j ∂vAj L − jXA

j dxj ∧ ∂vA
i
Ldx(n−1)

i − jXAd
(
∂vA

i
Ldx(n−1)

i

)
mod I

≡ jXA
(
∂yAL − d

(
∂vA

i
Ldx(n−1)

i

))
mod I

(9.13)
with jXA = XA taking all possible values.

The variational equation takes the form of the Euler-Lagrange equation:

σ∗
(
∂yAL

)
− ∂iσ∗

(
∂vA

i
L
)

= 0 (9.14)

9.5 The Noether theorems
The Noether theorems provide explicit structure to Lagrangian field theories with infinitesimal
symmetries. Let there be a Lagrangian field theory with a target bundle Q π−→ E and a first-order
Lagrangian L . Let X be a vector field on J (Q) and J a differential form on J (Q) such that

LXΘPC = dJ mod I

Then the homotopy formula implies that

iXdΘPC = d (J − iXΘPC) mod I

therefore for any solution σ of the Euler-Lagrange equation,

d(jσ)∗ (J − iXΘPC) = 0

Hence to a symmetry of the Poincaré-Cartan form is associated a conserved current J − iXΘPC .
This is the principle behind Noether’s first theorem.

In certain cases,X is part of a gauge symmetry. This implies that there is a family of symmetries
X which can be constructed from sections of a vector bundle over E using a differential operator
of finite order. In other words, the symmetries can be (locally) parametrised by a finite family of
real functions over E . In this case, the second Noether theorem asserts that the conserved currents
associated to the symmetries are already exact on solutions of the Euler-Lagrange equations.
Furthermore, the existence of symmetries which admit continuous parameters (with compact
support) shows that the Euler-Lagrange equations are underdetermined, and the Noether theorem
gives a differential relation between the Euler-Lagrange equations [Gie21].

9.6 The covariant pre-multisymplectic formalism
Non-holonomic sections

The contact term omitted in the computation (9.13) becomes involved if we try to apply the
variational principle to non-holonomic (rigorously: non-necessarily holonomic) sections of J (Q)→
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E . Naturally the corresponding variations would not need to preserve the contact ideal. Let us
compute exactly the term ijXdΘPC for a generic vertical jet variation jX = jXA∂yA + jXA

i ∂vAi .
We keep the notation pA for the purpose of conciseness – recalling it is a purely horizontal form:

ijXdΘPC = jXA
(
∂yAL − dpA

)
+ dθA ∧ ijXpA + θA ∧ ijXdpA

= jXA
(
∂yAL − dpA

)
+ θA ∧ ijXdpA

= jXA
(
∂yAL − dpA

)
+ θA ∧

(
jXB∂yBpA + jXB

j ∂vBj pA

)
= jXA

(
∂yAL − dpA + θB ∧ ∂Y ApB

)
+ jXA

j θ
B ∧ ∂vA

j
pB

(9.15)

As stated earlier, the vector fields ∂vA
j

express the affine action of V Q ⊗ T ∗E . The form
∂vA

j
pB can be interpreted as an element of (V Q⊗ T ∗E)∗︸ ︷︷ ︸

(A,j)

⊗ V Q︸︷︷︸
B

⊗Λ(n−1)T ∗E . The Lagrangian

L is said regular or non-degenerate if at every point of J (Q) it induces a bijective mapping
V Q⊗ T ∗E → V Q⊗ Λ(n−1)T ∗E . In this case, the variational principle applied to a non-holonomic
section σ : E → J (Q) gives the following set of equations:{

σ∗θB = 0
σ∗
(
∂yAL − dpA + θB ∧ ∂Y ApB

)
≡ φ∗

(
∂yAL − dpA

)
= 0

(9.16)
(9.17)

But since the vanishing of the pullback of the contact forms is equivalent to the jet section
being holonomic, (9.16) is equivalent to φ being the 1st jet of a section of Q→ E satisfying the
Euler-Lagrange equations (9.11).

To summarize: if L is a non-degenerate Lagrangian, the associated Poincaré-Cartan form
defines a variational principle over all sections of J (Q)→ E the solutions to which are exactly
jets of sections of Q→ E which are critical points of the local actions.

As a consequence, one can omit the contact structure of the jet space and simply consider J (Q)
as the target bundle of the field theory, with variational equations defined by ΘPC . One advantage
of this point of view is that less structure on the target bundle allows for more transformations
hence larger symmetry groups and isomorphisms between more geometries – we will briefly say
more about it later in 9.10.

In particular, the Poincaré-Cartan form itself defines a bundle mapping J (Q) ΘPC−−−→ ΛnT ∗Q.
The forms are of a specific form: recall the local definition

ΘPC = L + (dyA − vAj dxj) ∧ ∂vA
i
Ldx(n−1)

i (9.9)

We define for a vector space E with a “vertical” subspace V ⊂ E the subspace of n-forms
that are “at most k times vertical”:

ΛnkE∗ := {ω ∈ ΛnE∗/(Λk+1V )yω = 0} (9.18)

Then ΘPC takes value in Λn1T ∗Q (with the vertical direction given by the vertical tangent subspace
V Q ⊂ TQ). We wish to formulate the field theory with Λn1T ∗Q as target bundle. A local basis for
(π1)∗ (Λn1T ∗Q) is given by (dx(10), θA): we see that for a non-degenerate Lagrangian the mapping
J (Q) ΘPC−−−→ Λn1T ∗Q is of maximal rank but its (local) image has codimension one since Λn1T ∗Q is
a dimension n+ 1 bundle.
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The Legendre transformation

The forms pA are called momenta. For a non-degenerate Lagrangian they locally define (by
definition) a complete system of fibre coordinates of J (Q) → Q. Therefore we obtain a local
diffeomorphism J (Q)→ Λn1T ∗Q/Λn0T ∗Q:

J (Q) Λn1T ∗Q/Λn0T ∗Q

Λn1T ∗Q
ΘPC

Let us use finite dimensional vector spaces in order to set definitions: V ⊂ E with a quotient
we write B. V is the vertical vector space while B is the base vector space, of dimension n.
The space of linear sections B → E which we write Γ(B,E) is an affine space with underlying
vector space Hom(E, V ). We are interested in maps from the space of sections to the vector
line of volume elements ΛnB∗. We write Aff(Γ(B,E),ΛnE∗) the linear space of affine mapping
Γ(B,E) → ΛnB∗. The twisted affine dual of Γ(B,E) is the quotient of Aff(Γ(B,E),ΛnE∗) by
the subspace of constant maps: we write Γ(B,E)∗ (the construction can be done with any vector
line, which is implicit in this notation).

These spaces are related to the ΛnkE∗ spaces: to begin with, Λn0E∗ ' ΛnB∗. Then one can
prove that the pullback operation

Γ(B,E)⊗ ΛnE∗ → ΛnB∗

(σ,Θ)→ σ∗Θ
(9.19)

gives an isomorphism Λn1E∗ ' Aff(Γ(B,E),ΛnE∗), so that Γ(B,E)∗ ' Λn1E∗/Λn0E∗ [RW19;
Vit13].

In the case at hand we consider V Q ↪→ TQ� TE . The vector line bundle is ΛnT ∗E , the fibre
of J (Q) above y ∈ Q can be identified with the space of sections Tπ(y)E → TyQ and Λn1T ∗Q can
be interpreted as the bundle of affine maps from J (Q) to π∗ΛnTE . The quotient Λn1T ∗E/Λnπ∗T ∗E
is the (twisted) affine dual jet bundle. From what precedes the Poincaré-Cartan form defines a
mapping from the jet space to the space of horizontal n-forms depending affinely on the 1-jet.
Taking the quotient by the bundle Λnπ∗T ∗E of forms constant with respect to the 1-jet, we obtain
a local diffeomorphism to the affine dual jet bundle, which we write J ∗(Q) π̄1

−→ Q. These maps are
respectively called (extended) Legendre transformation and restricted Legendre transformation.

J (Q) Λn1T ∗Q

J ∗(Q)

F̃L

FL

In a way dependent on the used fibre coordinates, the Poincaré-Cartan form, hence the
Legendre transformation, can be written as follows:

ΘPC =
(
L− vAj ∂vAj L

)
dx(n) + ∂vA

j
L ∧ dyA ∧ dx(n−1)

j

One identifies the canonical Hamiltonian −
(
L− vAj ∂vAjL

)
here defined over the first order jet

space (and dependent on the choice of coordinates yA).
The space Λn1T ∗Q has a structure of affine line bundle above J ∗(Q). A section h such that
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the composed map
J (Q)→ J ∗(Q) h−→ Λn1T ∗Q

is equal to the extended Legendre transformation is called a Hamiltonian section. In local
coordinates, if we write the tautological form of Λn1T ∗Q as follows:

Θ = −edx(n) + piAdyA ∧ dx(n−1)
i

then a Hamiltonian section takes the form

−h(p, y, x)dx(n) + piAdyA ∧ dx(n−1)
i

9.7 Hamilton-de Donder-Weyl equations
We are close to a formulation of the variational equations on J ∗(Q). The Legendre transfor-
mation pulls back by definition the tautological form of Λn1T ∗Q to ΘPC hence the variational
equation (9.11) can be transported to Λn1T ∗Q however one has to require that the vector fields
involved are tangent to the image of the Legendre transformation.

Assume given a Hamiltonian section h. Using it to pull back the tautological form of Λn1T ∗Q
defines an n-form (called “presymplectic potential current” in [Sch]) which we denote Θh. It is
pulled back under the Legendre transformation to ΘPC . Given a section ψ of J (Q) π◦π1

−−−→ E there
is a corresponding section ϕ = FL ◦ψ of Λn1T ∗Q and for each variation jX of ψ (prolongation of
a vector field X on Q) there is a corresponding variation FL∗jX of FL ◦ψ. Then ψ satisfies the
variational equation

∀jX, ψ∗(ijXdΘPC) = 0

if and only if FL ◦ψ satisfies the corresponding equation for Θh. The Hamiltonian section defines
a premultisymplectic form 2 :

Ω = dΘh (9.20)

The equation satisfied by the Legendre transform ϕ of a section satisfying the variational
equation is

∀K ∈ ϕ∗V (J (Q)∗/E), ϕ∗(iKΩ) = 0

which can also be written
(ϕ∗ΛnTE)yΩ ⊂ (π ◦ π̄1)∗T ∗E (9.21)

This is the Hamilton-de Donder-Weyl equation. Using local coordinates (xi, yA, vAi ), it takes the
following form:

∂xiy
A = −∂pi

A
h

∂xiv
A
i = ∂yAh

Furthermore, given a vector K in ϕ∗TE , the equation

ϕ∗ (iKΩ) = iϕ∗Kϕ
∗Ω = 0

holds since E is of dimension n and ϕ∗Ω is an (n + 1)-form. Since ϕ∗TE is a supplementary
tangent subspace to V (J ∗(Q)/E), the Hamilton-de Donder-Weyl equation is equivalent to the

2There are varying sign conventions, see [Wen15] for a discussion in the case of the canonical symplectic form
on the cotangent bundle.
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following equation:
∀K ∈ TJ ∗(Q), ϕ∗(iKΩ) = 0

As long as the Lagrangian is non-degenerate the restricted Legendre transformation is a local
diffeomorphism, and the variational equations are local. This means that even when the Legendre
transformation is not a global diffeomorphism, sections of J ∗(Q)→ E which satisfy the variational
equation have as local inverse images in J (Q) local sections which satisfy the (non-holonomic)
variational equation. As such these local inverse images are necessarily holonomic, hence the
1-jet of the projection of the section to Q. In conclusion, for a section ϕ of J ∗(Q), ϕ satisfies the
Hamilton-de Donder-Weyl equation if and only if π̄1 ◦ ϕ ∈ Γ(E , Q) satisfies the Euler-Lagrange
equation.

9.8 Covariant Hamiltonian field theories

A Hamiltonian field theory is defined by a target bundle Q π−→ E and a further fibre bundle

E
π̄1

−→ Q

which is equipped with a closed (n+ 1)-form Ω, called the pre-multisymplectic form.

The space of fields is a subspace of Γ(E , E). The associated Hamilton-de Donder-Weyl equation
on a field ϕ is

(ϕ∗ΛnTE)yΩ ⊂ (π ◦ π̄1)∗T ∗E

An equivalence between two Hamiltonian field theories with the same space of fields is a
bundle isomorphism which preserves the pre-multisymplectic form.

Hamiltonian field theories have a Noether theory which is structured by a homotopy Poisson
bracket which we introduce now [Rog11; Mit21].

Definition 9.8.1 (Observables). Let E be a smooth manifold equipped with a closed (n+1)-form
Ω. The set of observables is defined as follows:

Ham0(Ω) = {(X,F ) ∈ Γ(TE)× Ωn−1(E) | − Ω(X, · ) = dF}

An element of Ham0(Ω) corresponds to an observable in the following sense: given an (oriented)
hypersurface Σ of E , an observable (X,F ) can be evaluated on a section ϕ : E → E as follows
(under suitable integrability properties): ∫

Σ
ϕ∗F

Assume now that ϕ is a solution to the Hamilon-de Donder-Weyl equation. Let Σ+ and Σ−
be two hypersurfaces which form (with suitable orientations) the boundary of a codimension 0
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submanifold K. Then the observable can be indifferently evaluated over Σ+ or Σ−:∫
Σ+

φ∗F −
∫

Σ−
φ∗F =

∫
K

φ∗dF

=
∫
K

−φ∗ (iXΩ)

=
∫
K

0

= 0

In particular when Σ is a Cauchy surface, the (admissible) initial conditions at Σ can be taken
as a representation of the solution space, hence to every observable it is associated a function
on the solution space. In this sense, observables are “geometrically” defined quantities over the
space of solutions to the field equations. 3

Observables are structured in a homotopy Lie algebra Hami as follows:

Ham0(Ω)
Hami(Ω) = Ωn−1+i(E) for − (n− 1) 6 i 6 −1

Hami6−n(Ω) = 0

equipped with the following differential:

d :
{
Ham0 → 0
Hami6−1 ddR−−→ Hami+1

and the following brackets for each integer k between 2 and n+ 1:

[. . . ]2 :

(Ham0)⊗2 → Ham0

(X1, F1)⊗ (X2, F2) 7→
(

[X1, X2],−Ω (X1, X2, · )
)

for k > 3, [. . . ]k :
{

(Ham0)⊗k → Ham−(k−2)

(X1, F1)⊗ (X2, F2)⊗ · · · ⊗ (Xk, Fk) 7→ (−1)k−1Ω (X1, X2, · · · , Xk, · )

They satisfy a homotopical version of the Jacobi identity.

9.9 Lagrange multipliers
In Lagrangian field theory, Lagrange multipliers are a practical way to impose constraints on
a system. Let Q → E be a fibre bundle with a 1st order Lagrangian L 0. We write Θ0

PC the
associated Poincaré-Cartan form. Assume for convenience that E is equipped with a closed volume
form vol (this is always locally possible).

Holonomic Lagrange multipliers

Let f be a real function on Q such that 0 is not a singular value. We want to restrict the
Lagrangian field theory associated to L 0 to the submanifold {f = 0}. Of course it is possible

3There are approaches allowing for a dependence in higher coordinates, see e.g. [Vit09].
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to arbitrarily restrict allowed fields to this submanifold. However Lagrange multipliers allow to
formulate a restricted theory as an unrestricted theory with fields taking value in a larger target
bundle, with an additional field.

Let us replace the target bundle Q by Q × R︸︷︷︸
τ

. We define the following Lagrangian on

J (Q× R):
L = L 0 − τfvol

with vol an arbitrary volume form on E . Note that the dependency with respect to τ is only at
first order, so that L can be formulated on the bundle J (Q)× R. Notably, the term τfvol does
not depend on 1st order coordinates and since the Legendre transform is linear, the associated
Poincaré-Cartan form is

Θ0
PC − τfvol

Therefore the Euler-Lagrange terms of this new Lagrangian are

i∂YAd
(
Θ0
PC − τfvol

)
= i∂YAdΘ0

PC − τ∂Y Afvol

and
i∂τd

(
Θ0
PC − τfvol

)
= fvol

Namely, the Euler-Lagrange equations on a section φ = (σ, T ) ∈ Γ(E , Q× R) take the following
form: {

jσ∗i∂YAdΘ0
PC = Tσ∗∂Y Afvol

σ∗fvol = 0

In other words, solutions of the Euler-Lagrange equations are required to take value in {f = 0}
and the Euler-Lagrange equations associated with Θ0

PC are relaxed. For variations not respecting
the equation f = 0, the Euler-Lagrange term associated with Θ0

PC need not be 0, it can be
proportional to ∂Y Af with a single factor common to all directions given by T . For variations
preserving the equation f = 0, the Euler-Lagrange equation is left unchanged.

If we want to impose more than one constraint, we need one multiplier τa for each constrained
degree of freedom. Namely, we add a term

τaf
avol

to the Lagrangian. It can be geometrically modelled by a dynamical section τ of a vector bundle
Qcons (for example Rm × E → E) and a fixed constraint favol which is a differential form-valued
section of the dual vector bundle, namely an element of Γ(Q,Q∗cons ⊗ π∗ΛnT ∗E).

When a Lagrangian theory has Lagrange multipliers, the Legendre transform is degenerate:
the momenta dual to the multipliers τa vanish since they are only involved in the Lagrangian at
order 0. Indeed we know that the Poincaré-Cartan form takes the form

Θ0
PC − τafavol
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Therefore the Legendre transform takes value in J ∗(Q)× Rn:

J (Q× Rm) J ∗(Q)× Rm

J (Q)× Rm J ∗(Q× Rm)

F̃L

The canonical Hamiltonian receives a term τaf
a:

H(xi, yA, vAi , τa) = H0(xi, yA, vAi ) + τaf
a

while the momenta are not affected by the Lagrange multipliers. The corresponding Hamiltonian
field theory is thus naturally formulated on J (Q)× Rm. In particular, if the original Lagrangian
theory is non-degenerate, the Euler-Lagrange equations are equivalent to the Hamilton-de Donder-
Weyl equations on J (Q)× Rm with two subtleties:

• Since the momenta dual to τa are restricted to zero, there is no dτa ∧ voli term in the
premultisymplectic form hence no Hamilton-de Donder-Weyl equation on the variations of
τ .

• The constraints equations {fa = 0} correspond to the components τa of the Hamilton-de
Donder-Weyl equations, which would involve the momenta dual to τa if they were free.
Alternatively, these equations define the subspace of J (Q × Rm) which is stable under
evolution according to the Hamilton-de Donder-Weyl equations: such equations are called
“secondary constraints” in opposition to the primary constraint of restricting of J ∗(Q×Rm)
to the subspace J ∗(Q)× Rm with vanishing momenta dual to τa [HT92].

It is also possible to use Lagrange multipliers directly starting from a Hamiltonian field theory.
As observed earlier, the multiplier term −τafavol is added as such to the Poincaré-Cartan form.
For a Hamiltonian theory constructed from a Hamiltonian section h, it can be naturally shifted
to a Hamiltonian section

h(x, y, p)vol 7→ (h(x, y, p)− τafa)vol

(beware that this writing depends on the choice of coordinates yA). More generally, adding
multipliers amounts to adding an Rm degree of freedom to the fields and a d(τfa) ∧ vol term to
the premultisymplectic form.

Non-holonomic Lagrange multipliers

The same computations are still valid when favol are replaced by more general n-forms (F a) –
we will consider elements of Ωn(Q), which will be sufficient for our purposes. One can consider
the Euler-Lagrange term associated to

L cons = TaF
a(z, y)

with (Ta)16a6m being additional free scalar-valued fields (or one field with value in a suitable
vector bundle). We write τa for the corresponding added coordinate in the configuration space:
Q × Rm. Note that L cons may be a “Lagrangian” of a more general type than defined in
Section 9.2 since it may not be purely horizontal. A more precise definition would be to define
L cons as the purely horizontal part of TaF a modulo contact forms. In any case we will use the
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corresponding Poincaré-Cartan form:

Θcons = τaF
a (9.22)

which satisfies the equation
∂vA

j
y dΘcons = 0

If F a does not belong to Λn1T ∗Q then dΘcons may fall outside of Λn1 (π1)∗T ∗Q but since the
contacts terms of higher degree have no influence on the variational equations, this poses no
problem. In fact only the class of F a modulo I2 matters, any I2 part may be changed or cut out
without consequence on the Euler-Lagrange equation (on holonomic sections).

Remark. This is the very reason for which we chose F a in Ωn(Q): by not allowing for further
dependency on the first order coordinate, the Legendre transformation is a trivial operation.
However as mentioned, up to contact terms, F a can be represented in Γ(J (Q), π1∗ΛnT ∗E) with a
possibly non-trivial albeit very specific (antisymmetric) dependency in the coordinates vAi . Using
such horizontal forms instead of forms in Ωn(Q) would give similar results after the Legendre
transformation.

The corresponding premultisymplectic form is

dΘcons = dτa ∧ F a + τadF a (9.23)

The contribution to the Euler-Lagrange forms is

ELcons,a = ∂τay dΘcons = F a (9.24)
ELconsA = ∂yAy dΘcons = −dτa ∧ i∂AF a + τai∂AdF a (9.25)

hence for a field φ = (σ, T ) : E → Q× Rm the Euler-Lagrange equations associated to the whole
Lagrangian L0 −Lcons are{

σ∗F a = 0
σ∗ EL0

A = φ∗ (τai∂AdF a − dτa ∧ i∂AF a)
(9.26)
(9.27)

with EL0 the Euler-Lagrange form associated to L 0.
The first equation gives the constraints one intends to impose on the fields. In the second

equation τa can compensate for some nonzero components of EL0
A. Indeed in the case F a = favol,

the right-hand term is Taσ∗
(
∂yAf

avol
)
. In the case the fa have independent differentials (in the

vertical yA directions), Ta parametrise non-trivial components of σ∗ EL0
A along the dyfa that

are allowed by the variational principle restricted to sections satisfying the constraint condition
σ∗fa = 0.

We dealt with n-forms so far, we now explain how to use Lagrange multipliers with lower
degree forms. For any form f ∈ Ωk(Q) with k 6 n, assuming we are given a local frame of Q, we
can consider the forms

FI = f ∧ vol(k)
I (9.28)

for I a multi-index of size k parametrising the basis of (n − k)-forms vol(k)
I (as described in

Section 1.4). We consider free multiplier fields T I which we gather in a term

T IFI = f ∧ T Ivol(k)
I = f ∧ T
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with T ∈ Ωn−k(Q). The term encodes the constraints

(σ∗f) ∧ vol(k)
I = 0

for all multi-indices I hence
σ∗f = 0

which is very similar to the mechanism we will use in our application with the term (10.10). The
difference is that we only required specific components of dλ+ 1

2 [λ ∧ λ] to vanish, by selecting
specific values for the multi-index I.

Such constraints can be of non-holonomic nature: consider Fi = df ∧ voli for f ∈ Ω0(Q).
Coupling them to Lagrange multipliers τ i we obtain a term

τ idf ∧ voli = df ∧ τ

with τ ∈ Λn−1(T ∗Q). Considering the Lagrangian L0 − df ∧ τ we obtain the following Euler-
Lagrange equations on a field (σ, τ) with vertical variations X ∈ jσ∗V (J 1(Q)/E){

σ∗df = 0
jσ∗(EL0

X) + σ∗(LX(f)) ∧ dT = 0
(9.29)
(9.30)

which is to compare with the equations associated with a single holonomic Lagrange multiplier
τf(z, y)vol: {

σ∗f = 0
jσ∗(EL0

X)− Tσ∗(LX(f))vol = 0
(9.31)
(9.32)

The constraint enforced by the term df ∧ τ is

dσ∗f = 0 (9.33)

or in another words σ∗f has to be (locally) constant. The difference with the holonomic constraint
is that we do not specify the constant. Indeed we only require σ to be tangent to the leaves of the
foliation defined by df , namely the level hypersurfaces of f . Hence the leaf is allowed to change
between the fields, however this is a non-local variation.

Here again, the term f∧T is invariant under Legendre transformation, although the momentum
component of the Legendre transform can be affected by the term f ∧ T . Therefore it is possible
to perform a similar Legendre transformation on a Hamiltonian field theory. One needs to extend
the field configuration space from E → Q→ E to

E ×Q
m∏
a=1

Λn−kaπ∗T ∗E︸ ︷︷ ︸
τa=τIavolI

→ Q→ E

and add the term
−d (F a ∧ τa)

to the pre-multisymplectic form. Doing so, the obtain pre-multisymplectic field theory will have

φ∗ (F a) = 0

as components of the Hamilton-de Donder-Weyl equations which are dual to τa.
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Exact Euler-Lagrange terms

We now explain how, using specific non-local variations of the dynamic fields, it is possible to
gather Lagrange multiplier contributions in an exact term. By performing an integration it is
then possible to obtain a non-local Euler-Lagrange equation which has no multiplier contribution.
Let us start with a simple example.

We consider a real line bundle Q = R×Q→ Q with a fibre coordinate y and provided with a
Lagrangian L 0. We enforce the constraint dy = 0 by adding a term −dy ∧ τ to the Lagrangian
with τ a free variable in Λn−1T ∗Q:

L = L 0 − dy ∧ τ

Equation (9.27) on a field φ = (σ, T ) : Q → Λn−1T ∗Q × R associated to the variation field ∂y
becomes

σ∗ EL0
y = dT (9.34)

asserting that φ∗ EL0
y is an exact form of primitive T . In a similar fashion enforcing a constraint

dy ∧ voli = 0 with a term τdy ∧ voli, the Euler-Lagrange term would be “exact in the i direction”,
in the sense that φ∗ EL0 = ∂iTvol.

In the case Q is a compact manifold, the variation of the action
∫
Q
φ∗L under a global

translation of φ by a constant value δφ is(∫
Q

φ∗ EL0
y

)
δφ

so that asserting that φ∗ EL0
y is exact is equivalent to asserting that the action has a trivial

variation under this non-local field variation.
In order to formalise this observation let (F a) be a family of homogeneous forms on Q of

respective degrees ka: F a ∈ Ωka(Q) and consider Lagrange multipliers τa ∈ Λn−kaT ∗Q. We
therefore have a Lagrangian

L = L0 − F a ∧ τa
Now let X be a vector field on Q (hence which does not act on the multipliers) such that LX
preserves the ideal generated by the F a. Beware that this ideal of constraints is not necessarily
generated in degree one, hence is not necessarily generated by the annihilator of a plane distribution.
Consider the Euler-Lagrange term corresponding to X:

ELX = ijXd(Θ0 − F a ∧ τa) = EL0
X −d(iXF a ∧ τa) + LX(F a ∧ τa)

= EL0
X −d(F a ∧ τa) + LX(F a) ∧ τa

(9.35)

so that, under the constraint Euler-Lagrange equations (9.24)

φ∗LXF a ≡ 0

and the Euler-Lagrange equation corresponding to X is equivalent to

σ∗ EL0
X ≡ d(σ∗iXF a ∧ Ta) mod (F a) (9.36)

in a process very reminiscent of Noether’s theorem on conserved currents. The degrees of freedom
τa then take the role of coefficients parametrising a differential primitive of EL0

X . Suppose that
it is possible to find a set of such vector fields (XI) preserving the constraints (which is a local
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property of the first order prolongations of XI) which spans the vertical directions of Q. Then
we can express the whole Euler-Lagrange equation system as{

φ∗F a = 0
φ∗ EL0

XI ≡ d(F aI ∧ Ta)
(9.37)
(9.38)

in which we wrote F aI := iXIF
a. Note a possible gauge freedom since F aI ∧ Ta is only involved

through its exterior differential, so that variations of Ta inducing closed variations of all the
F aI ∧ Ta are symmetries of the equations.

Now if the source space Q is compact, it is possible to integrate over Q to obtain non-local
equations ∫

Q

σ∗ EL0
XI = 0 (9.39)

When Q is not compact, one may try to find lower dimension compact submanifolds and to
build from the Euler-Lagrange lower degree forms which are exact. This will be our approach in
Section 11.4. We will integrate along 6-dimensional orbits, and for that purpose we will need to
factor out a closed 4-form from both σ∗ EL0

X and the exact multiplier term.

9.10 More geometrical perspectives on Lagrangian field
theory

Variational problem and exterior differential systems

An approach to Euler-Lagrange equations, developed by Bryant and Griffiths [BGG02], does
away with the fibration over the base space and focuses on the internal structure of the jet space
itself. The data is then the contact ideal I and the Lagrangian as well as a second ideal J
spanned by the horizontal forms V (J (Q)/Q)⊥ which contains the information corresponding to
the fibration over Q. A Lagrangian is a section of ΛnV (J (Q)/Q)⊥. It generalises the definition
from Section 9.2 by allowing for Q/E-vertical factors – indeed this framework is based on the
total space of the Grassmannian Grn(TQ) which extends the jet space by forgetting the section
(transversality) condition on the n-dimensional planes.

The Poincaré-Cartan form (their Poincaré-Cartan form is the exterior differential of ours,
which they call Betounes form) is defined by requiring that

d(L − θA ∧ βA) ∈ I (9.40)

with θA ∧ βA the local decomposition of a term belonging to the algebraic ideal generated by the
contact 1-forms. Eliminating the ambiguity in the definition takes some work but the result is
that using ΘPC = L − θA ∧ βA the differential can be written

dΘPC = θA ∧ΨA

so that the forms ΨA can be identified with our ∂yAydΘPC mod I and the Euler-Lagrange
equations are gathered in a differential system generated by

EL := (θA,dθA,ΨA,dΨA)

which turns out to be independent of the choice of βA (as long as (9.40) is satisfied).
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This approach uses a stronger geometrical structure than the pre-multisymplectic approaches
however omitting the fibration over the source space E allows for more equivalences than keeping
the whole jet bundle fibrations. As a consequence there can be more symmetries as well as
equivalences between relatively different geometrical situations.

Local Lagrangian field theory as a higher abelian gauge theory

In Schreiber’s prequantum field theory [Sch], the action functional is back at the center of the
stage. It is the geometrically meaningful quantity, and the (local) Lagrangians are only means to
define it. The action functional is geometrically understood as the parallel transport of a higher
line bundle with connection on the configuration space. The variation of the action is related to
the curvature of the connection by a higher equivalent of the Ambrose-Singer theorem so that the
(higher) curvature defines the premultisymplectic form.

With an eye toward quantization, one can consider an action which has U1 values instead of
real values. The higher line bundle then has to be complex and can be topologically nontrivial,
which enables one to use a global action in some situations in which the Lagrangians can only be
defined locally. Since the Lagrangians are connection coefficients (components of a de Rham-Čech
cocyle) they are only defined up to gauge transformation, which embodies the fact that to a given
variational principle can correspond different local Lagrangians. In this sense, the “homotopy”
equivalence of Lagrangian systems acquire a geometrical meaning in this framework. In particular
the homotopy Lie algebra of observables is naturally associated with the homotopical structure of
the higher line bundle with connection.

The case of mechanics is particularly simple to present 4 since the action takes value in a real
or complex line bundle (more accurately: in the associated Atiyah-Lie groupoid) – this perspective
can already be found in [Del+00]. A (local) trivialisation of the line bundle gives a representation
of the connection as a 1-form: this is a Lagrangian representation of the action so that

St1t0 [σ] =
∫

[t0,t1]
σ∗L

Adding an extra term to L is akin to changing the selected gauge. Given a vector field X
preserving the curvature ω on E, a lift to an infinitesimal automorphism of the line bundle with
connection is exactly the data of a real-valued function f such that

iXω + df = 0

and the standard Poisson bracket corresponds to the Lie bracket of infinitesimal automorphisms.
When computing the finite flow of such an infinitesimal automorphism in a trivialisation, the
Legendre transform of f appears in a path integral over the line flows of X [Bla92].

In this approach, the natural symplectic manifold (for mechanics and field theory) is the
space of solutions of the field equations, the so-called covariant phase space [CW87; Zuc86;
Kha14]. The structure of this covariant phase space has also been formalised using more algebraic
methods [And92; Vit09]

4We proceed on a heuristic level: a careful exposition would need to discuss contact terms, or be formulated on
the space of solutions.
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Chapter 10

Hélein-Vey’s generalisation of the
Einstein-Cartan gravitation
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10.1 Cartan geometry and field theories
Gauge theories are geometrically modelled by principal bundles, principal connections and
associated bundles. For example, in Maxwell’s theory of electromagnetism, the electromagnetic
field can be understood as the curvature of a U1-principal connection. When working in a quantum
mechanical framework, this interpretation becomes inevitable as Dirac’s quantization condition
requires the electromagnetic field to be an “integral 2-form” (with respect to a dimensioned unity
charge). More practically, the standard model is a gauge theory with a gauge group isomorphic
to U1×SU2×SU3.

On another hand, covariant formulations of field theories, incentivised by the relativistic per-
spective, are sometimes considered as “gauge theories with respect to groups of diffeomorphisms”.
A much celebrated example is the covariant modelling of spacetime by a smooth manifold, and
of the gravitational field by the Levi-Civita connection associated to a metric. The connection
is associated with a covariant derivative which is essential in order to manipulate differential
operations in a coordinate-independent fashion. Actually in a covariant framework, gauge field
theories as well use covariant derivatives in order to build gauge-independent and coordinate
independent differential expressions.

Systems of coordinates define a lot of structure on manifolds so that coordinate independence
can be realised in different frameworks according to the type of dependence on the coordinates.

231
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In particular, constructions depending on a (co)frame data can generally be realised “covariantly”
on frame bundles as is illustrated in the example of Section 7.3.3. The takeaway is that gauge
fields as well as matter field with gauge degrees of freedom can be modelled on principal bundles
and/or frame bundles. As explained in 3.2.3, an H-principal bundle can be combined with a
G-structure into an H ×G-structure. The same mechanism was described in Section 7.2.2 for
Cartan geometries: a K-principal bundle can be combined with the H-principal bundle of a
(G,H)-Cartan geometry into a (K ×G,K ×H)-Cartan geometry. In this sense, Cartan geometry
can support both spacetime geometry and the geometry of internal gauge symmetries.

Gauge field theories lifted to the principal bundle

Let us illustrate concretely what we mean by formulating a field theory in terms of the Cartan
geometry. We first freeze the gauge fields, namely the connections, in order to consider them as
part of the fixed Cartan geometry.

Let M be an n-manifold with a static (G,H)-Cartan geometry PH
π−→M with Cartan 1-form

$ ∈ Ω1(PH , g) and a K-principal bundle K →M with a static connection 1-form A ∈ Ω1(P, k).
Assume given a field theory specified by:

1. A linear representation VK of K and a field ψ1 ∈ Γ(M,PK [VK ]).

2. A linear representation VG of G and a field ψ2 ∈ Γ(M,PH [VG]).

3. A first order Lagrangian density LA,$ ∈ Γ
(
Λn1
(
J 1(PK [VK ]×M PH [VG])

))
with an associ-

ated Poincaré-Cartan form ΘA,$.

Using ∂Y A as basis of variations of ψ1 and ∂ZB as basis of variations of ψ2, the Euler-Lagrange
equations are: {

j1(ψ1, ψ2)∗
(
i∂YAΘA,$

)
= 0

j1(ψ1, ψ2)∗
(
i∂ZBΘA,$

)
= 0

Gathering both principal bundles into a product principal bundle, we obtain a K×H-principal
bundle

PK×H := PK ×M PH

which is naturally equipped with a (K ×G,K ×H)-Cartan connection 1-form $K×G; it is the
sum of the pullbacks of A and $. The vector bundle PK [VK ]× PH [VG] can then be constructed
using the action of K ×G on VK × VG with G acting trivially on VK and conversely:

PK [VK ]× PH [VG] ' PK×H [VK × VG]

Therefore, there is no loss of generality in considering uniquely the bundle PH with its (G,H)-
Cartan geometry and a field taking value in the associated vector bundle with fibre VG. Thus we
hereon assume our field theory only depends on the Cartan geometry of M and there is only a
field taking value in PH [VG].

We want to lift the field theory to PH . It is straightforward to lift ψ: it is a section naturally
associated with an H-equivariant VG-valued function Ψ. Similarly, LA,$[ψ] can be lifted into a
π∗ΛnT ∗M -valued function depending on the 1-jet of Ψ: we call it L PH

A,$. In order to formulate
the field theory on PH , we need to turn it into a top form on PH . To this aim, we equip h with a
volume form. It can be pulled back to a k-form $(k) with k the dimension of H so that

L PH
A,$ ∧$

(k)
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is a top form on PH . Since L PH
A,$ is a horizontal form of maximum degree and $ is vertical, the

mapping L PH
A,$ 7→ L PH

A,$ ∧$(k) is injective.
It is therefore possible to formulate a Lagrangian field theory on PH with an H-equivariant

VG-valued field Ψ and the Lagrangian form L PH
A,$ ∧$(k). The natural question is whether the

theory is still equivalent to the initial theory. It brings the following difficulty: variations of Ψ
which preserve H-equivariance are not compactly supported when G is not compact. Even when
G is compact, they are not local, which invalidates the standard derivation of the Euler-Lagrange
equations.

One solution is not to turn the pulled back Lagrangian into a (k + n)-degree form but to keep
it as an n-form, and to integrate over a variable section of PH → M , which is a method used
in the group manifold approach to supergravity [Cas18; DAu20]. The solution we will pursue is
using Lagrange multipliers, like described in Section 9.9, as we now explain.

Let us assume the group H is connected, so that H-equivariance is equivalent to h-equivariance.
Let us furthermore equip (G,H) with a reductive structure: there is an H-equivariant splitting

g 'H h⊕ g/h

Let us correspondingly split $ into an h-valued part ωi and a g/h-valued part αa. Then according
to Theorem 7.2.5, equivariance of Ψ is equivalent to the existence of coefficients Da with value in
VG ⊗ (g/h)∗ such that

dΨ +$ ·Ψ = Daα
a ∈ Ω1(PH , VG)

Since these are local equations, we can use Lagrange multipliers in order to impose them. We
add a V ∗G-valued (n+ k− 1)-form P to the field. Using indices β for VG, we can construct a term

Pβ ∧ (dΨ +$ ·Ψ)β

to add to the Lagrangian L PH
A,$. It is not per se an element of Λn+kT ∗PH parametrised by the

jet of Ψ and P but it is the pullback under (P,Ψ) of an element of the following bundle:

Λn+k−1 (T ∗PH ⊗ V ∗G)︸ ︷︷ ︸
P

× VG︸︷︷︸
Ψ

×PHΛn+kT ∗PH

which can be naturally added to the Poincaré-Cartan form corresponding to the initial Lagrangian.
If we call

v : Λn+k−1T ∗PH ⊗ V ∗G × VG → VG

the projection on the VG component and

p : Λn+k−1T ∗PH ⊗ V ∗G × VG → Λn+k−1T ∗PH ⊗ V ∗G

the tautological (n+ k − 1)-form, we can add the following term to the Poincaré-Cartan form:

pβ ∧ (dv +$ · v)β

It is then straightforward to check that for the Euler-Lagrange equations corresponding to
variations δpβ of pβ are

δpβ ∧Ψ∗ (dv +$ · v)β = 0

which should hold for all δpβ , whence

Ψ∗ (dv +$ · v) = 0
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Now, the Euler-Lagrange equations corresponding to variations of Ψ gain a contribution of
pβ , dealing with which will take more work. However, we want to bring attention to another
point: the field theory obtained on PH only uses the Cartan 1-form and not the global action of
H. This means that it can be straightforwardly generalised to generalised Cartan geometries!
The formulas can be used without any change.

The last trick, which is already at work in [HV16], is that these generalised Cartan geometries
can be obtained as solutions of Euler-Lagrange equations. The mechanism is very similar to what
we did for Ψ: a (G,H)-Cartan 1-form is nothing more than a g-valued coframe $ which satisfies
the following property: there exist coefficients ΩAab in g⊗ Λ2g/h∗ such that

d$A + 1
2 [$ ∧$]A = 1

2ΩAabαa ∧ αb

These can be imposed using Lagrange multipliers too. Another point which will be relevant when
studying the application to gravitation, is that this quantity is exactly the total curvature tensor
of the Cartan connection. This means that on one hand we can impose the vanishing of certain
components with Lagrange multipliers, and on the other hand include a scalar curvature term in
the action with the same kind of term.

The mechanism will be explained in detail in Section 10.3.

10.2 The Einstein-Cartan theory of gravitation
We start with a very succinct presentation of the Einstein-Cartan theory of gravitation. In
Einstein’s original theory of gravitation, gravitation is modelled by the curvature of a Lorentzian
metric on the differentiable manifold modelling the spacetime. More accurately, the Newtonian
gravitational field is replaced by the torsion-free Levi-Civita connection associated to the metric,
which defines the geodesic equation governing inertial trajectories. Newton’s formula for the
interaction between massive bodies and Poisson’s equation for the gravitational potential are
replaced by Einstein’s field equation, which is a second order differential equation, and the
geodesic equation. It was then realised that a first order formulation is possible if one was to
consider as possible field a couple gathering the metric itself and an a priori independent affine
connection. This is called the Palatini formalism and exist in several variations, requiring the
connection to be metric or not (see [HK78; HLS81; DP12]). In the case the connection is neither
assumed to be metric nor torsion-free an extra gauge freedom appears, the so-called projective
symmetry [HK78; DP12].

Within the Palatini formalism, it is possible to make explicit a Lorentzian gauge symmetry:
this is the so-called tetradic Palatini formalism, in which the metric field is replaced by a field
of linear frames, or equivalently (in our case) coframes. The linear frame is called a tetrad, or
vierbein (vielbein in general dimension). The Einstein-Cartan theory (more precisely Einstein-
Cartan-Sciama-Kibble) is the case in which the connection is assumed to be metric but not
torsion-free.

The tetrad will be particularly useful when dealing with spinors on dynamical spacetimes
in Section 11. This will be discussed in Section 11.1. We will also discuss in Section 11.4 how
torsion is involved in the dynamics of spinors in a curved spacetime.

We start with a differentiable 4-manifold E that is meant to embody spacetime. The fields
will be :

• A generalized tetrad e : TE → V which identifies the tangent bundle with a reference space
and time-oriented lorentzian vector bundle (V, η). We do not assume V to be a trivialisable
vector bundle as may implicitly be the case in standard tetrad formalism.
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• A dynamic metric connection ∇ on V , or equivalently the tangent connection ∇̃ = e∗∇ on
TE , which is compatible with the inverse pullback metric e∗η.

The tetrad is a (nondegenerate) V -valued 1-form written locally as (ea)06a63 in which the a
superscript corresponds to any reference basis of V . With (xµ) a local coordinate system of E the
vielbein decomposes with components ea = eaµdxµ.

The (adimensional)1 Einstein-Cartan action (hereafter EC action) with vanishing cosmological
constant is then given by [HV16; Yoo18] :

SEC [e,∇] =
∫
E

LEC [e,∇] =
∫
E

Ra
cη
cb ∧ e(2)

ab (10.1)

with R the endomorphism curvature 2-form of ∇, ηac representing the inverse metric and e(2)
ab

the dual exterior 2-forms as described in Section 1.4. In the case E is noncompact, so that the
integral can be ill-defined, the action has to be understood as a motivation for the corresponding
variational (Euler-Lagrange) equation, which is a local equation on the fields: even when the
action is not globally defined it is locally, as well as its first variation.

10.3 Hélein-Vey’s model
We now introduce the model due to Hélein and Vey in [HV16]. It is a model defined on a 10-
dimensional space, which is meant to acquire the structure of the Lorentzian frame bundle under
the field equation. Fields then define a principal connection which has to satisfy Einstein-Cartan’s
field equation in vacuum. In order to explain the construction of the Lagrangian, we lift the usual
Einstein-Cartan Lagrangian over the frame bundle of spacetime. In a second step, we explain
how it is possible to then omit the frame bundle structure and generalise the field theory thus
obtained to all 10-dimensional manifolds.

Although the theory we study originates from [HV16], the language and the approach we
present is original (and was presented in [Pie22]). The point is to clarify the structure of the
theory in order to better understand the extent to which it is a generalisation of Einstein-Cartan’s
theory as well as to make it clear how to adapt the theory in order to allow for matter fields.
Indeed in Chapter 11 we will explain how to handle spinor fields within the same formalism. In
this section we only derive the Euler-Lagrange terms but we postpone the study of the solutions
to Section 11.4 in which we will deal at once with gravitational terms and spinor terms.

Conventions and notations

We will write ηab for the Minkowski metric on the Minkowski space m, used at the same time
as a pseudo-Euclidean affine space, as an abelian Lie group and as an abelian Lie algebra. Our
convention for the Lorentzian signature is (+−−−) and for the Clifford algebras u · v + v · u =
−2 〈u|v〉 (more detail in Section 4.3).

We will be working with the connected proper orthochronous Lorentz group L = SO+
1,3 which

we will just call Lorentz group. Its Lie algebra is l = so1,3. The Poincaré group is isomorphic to
the semi-direct product of m with L:

P ' Lnm

and there is an isomorphism between the associated Lie algebras:

p ' lnm

1The properly dimensioned action has a factor 1
2κ with κ = 8πG.
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A Lorentzian structure on a 4-manifold is an SO+-structure, namely the data of:

1. A metric g of Lorentzian signature.

2. A space and time-orientation compatible with g.

10.3.1 Formulating gravitation on the frame bundle

We wish to formulate the Einstein-Cartan theory on the frame bundle of V , or to be precise on
the proper orthochronous orthonormal frame bundle of V , which we write SO+(V ) (hereafter
referred to as the frame bundle). The tetrad field on spacetime is represented by a solder form
on SO+(V ) (defined below). In this way the tetrad data is integrated in the geometrical setting
and we consider all coframes in an equivariant manner. Anticipating on Section 11.2, working
on a frame bundle will allow us to consider spinor fields with value in a trivialised bundle, in
the same way the tetrad does. For this purpose, we will lift the Lagrangian form defining the
action (10.1) to the frame bundle, according to the procedure described in 10.1.

The space of fields

The frame bundle of V depends on the metric and space and time-orientation structures on V ;
the connection is then an extra structure on the frame bundle. Write

π : SO+(V )→ E

the principal fibration. Vectors in the kernel of dπ are called vertical and differential forms which
have a trivial contraction with all vertical vectors are called horizontal.

The frame bundle has the structure of an L-principal bundle on E . The tetrad field is replaced
by a solder form α: a nondegenerate L-equivariant horizontal 1-form with values in m (more
detail is to be found in Section 3.2). The solder form establishes an isomorphism between V
which is the associated vector bundle of fibre m and TE , or a injection of SO+(V ) into the frame
bundles of TE . Hence choosing an isomorphism class for V amounts to selecting a frame bundle
and it is in this sense that α plays the role of the tetrad e. The Lorentz gauge symmetry on e is
geometrically realised as the action on α of the (equivariant) automorphisms of the frame bundle.

The (right) action of elements of L on SO+(V ) induces an action of the Lie algebra l as follows:
to an element ξ in l is associated a vector field

ξ̄ = ∂t
(
Rexp(tξ)

)
|t=0 ∈ Γ(T SO+(V ))

A metric connection on V corresponds to a nondegenerate L-equivariant l-valued 1-form ω on
SO+(V ) which is normalized with respect to the action of the Lorentz algebra l. Normalisation
means that the following holds:

∀ξ ∈ l, ω(ξ̄) = ξ

Its kernel is a horizontal distribution which is the corresponding Ehresmann connection. The
data of a metric connection together with the solder form gives rise to a Cartan connection
ω ⊕ α ∈ Ω1(SO+(V ), lnm)L (the superscript L denotes the subset of the L-equivariant forms).
The space of fields introduced in Section 10.2 can then be described as the set of (Lnm,L)-Cartan
connection forms on the principal bundle SO+(V ).
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Lifting the Lagrangian

We want to express the action (10.1) lifted to SO+(V ) as a function of the Cartan connection.
Since the signature is non-Riemannian, the structure group L = SO+

1,3 is noncompact hence
so is the bundle space. We shall consider the action as a formal integral and a motivation to
derive variational equations over local variations, and forget about any domain of integration.
As a remark note that a structure group reduction to maximal compact subgroups SO3 always
exists but would involve extra physical data (although topologically trivial): a nowhere vanishing
timelike vector field (it is called a field of observers in [GW13]).

The curvature 2-form associated with the connection is expressed as

Ω = dω + 1
2 [ω ∧ ω]

It takes value in the Lie algebra l. Since l acts on m, we will allow ourself to consider the associated
End(m)-valued 2-form without changing the notation. We write π∗ for the pullback to SO+(V )
of any tensorial-valued differential form, which is then identified with a (horizontal) differential
form of the same degree with values in a trivial bundle and which is equivariant.

In order to relate the curvature 2-form to the curvature tensor, for a basis ξi of l we introduce
the components ρbi,d of the action l→ End(m) so that

(ξi · x)b = ρbi,dx
d

for x ∈ m. They satisfy the antisymmetry relation

ρbi,dη
dc + ρci,dη

db = 0

Then the curvature tensor R is defined on E so that e∗R = R̃ and

(π∗R)ac = Ωiρai,c

as explained in Section 3.2, using implicitly the identification

π∗ End(TM) ' Rp,q ⊗ Rp,q∗ × SO+(V )

We equip the Minkowski vector space m with a space and time orientation in addition to its
metric structure, so that a duality operator Λk m ' Λ4−k m∗ is defined (as in Section 1.4). We
can then lift the EC Lagrangian form (10.1):

π∗
(
Ra
cη
cb ∧ e(2)

ab

)
= Ωiρai,cηcb ∧ α

(2)
ab (10.2)

which gives a horizontal (scalar-valued) 4-form on the frame bundle. It is not a top form on the
bundle space yet. In order to turn it into an L-invariant top form it has to be wedge-multiplied
with a (right-)invariant volume form on L. Such a volume form is not unique, but we can specify
it in a consistent way for all fibres using the Lie algebra action, as we explain now.

As an l-valued 1-form, ω establishes a map l∗ → Ω1
vert(SO+(V ))L which extends to a graded

algebra morphism
ω∗ : Λ•l∗ → Ω•vert(SO+(V ))L (10.3)

so that specifying a volume element in Λ6l∗ gives a vertical 6-form on SO+(V ), which we will
write ω(6). Although ω(6) effectively depends on the connection, detailed computations show that
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h ∧ ω(6) does not for h any specified horizontal 4-form. We thus define the following Lagrangian
10-form on SO+(V ):

L = Ωiρai,cηcb ∧ α
(2)
ab ∧ ω

(6) (10.4)

Even if we do not explicitly specify the volume element of l∗, it is still possible to discuss about
coupling constants and relative signs when considering a Lagrangian with matter components as
long as the same volume element is used for all terms. These considerations remain however out
of the scope of this paper.

Using the whole Cartan connection form we can in a similar way consider the morphism

(ω ⊕ α)∗ : Λ•(l⊕m)∗ → Ω•(SO+(V ))L (10.5)

and providing l with an arbitrary volume element we use the vector-forms duality (as described
in Section 1.4) on lnm so that we can write

L = Ωiρai,cηcb ∧ (ω ⊕ α)(8)
ab (10.6)

We can now formulate the variational problem on SO+(V ): the field is a Cartan connection
1-form ω⊕α, in other words a 1-form with value in l⊕m, more precisely in the Lie algebra lnm,
which is a nondegenerate 1-form, (i.e. of constant rank 10), equivariant and normalised for the
principal action of l in the following sense:

∀ξ ∈ l, (ω ⊕ α) (ξ̄) = ξ ⊕ 0

It has to be an extremal point of the locally defined action

SEC [α, ω] =
∫

Ωiρai,cηcb ∧ (ω ⊕ α)(8)
ab (10.7)

for compactly-supported variations. The integral is taken with respect to the orientation given by
α(4) ∧ ω(6). There is a problem however: the fibre of SO+(V ) are noncompact, and ω is required
to be equivariant. A compactly supported variation which preserves equivariance is necessarily
trivial. This calls for a different treatment of the constraints on the field ω. The constraint on
ω ⊕ α of being a Cartan connection 1-form can be written in the following way, writing ξ̄ for the
(left-invariant) vector field representing ξ ∈ l and Rg for the action of g ∈ L:

α(4) ∧ ω(6)is nowhere vanishing
iξ̄(ω ⊕ α) = ξ ⊕ 0

R∗g(ω ⊕ α) + g · (ω ⊕ α) = 0

Now since the group L is connected, l-equivariance is equivalent to L-equivariance so that the
constraint can be written as local equations as follows:

α(4) ∧ ω(6)is nowhere vanishing
iξ̄(ω ⊕ α) = ξ ⊕ 0

Lξ̄(ω ⊕ α) + ξ · (ω ⊕ α) = 0

(10.8a)
(10.8b)
(10.8c)

We want to derive the variational Euler-Lagrange equation for (10.7) under the constraints (10.8a-
10.8c) but because the equivariance constraint (10.8c) is non-holonomic, and in a sense non-local,
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the usual derivation does not directly apply. Moreover, the action (10.7) cannot be used as
such since the domain is non compact (and requiring equivariance along the noncompact fibres
definitely prevents any nontrivial field variation from having a compact support, or even from
decaying at infinity). The central question of the present Section is the derivation and the
treatment of the variational equations under such constraints. This will involve translating the
constraints into Lagrange multipliers terms (as presented in Section 9.9) in the Lagrangian as is
explained in the following discussion.

10.3.2 Generalised frame bundle structure with connection as a dy-
namical field

In Section 10.3.1 we described a formulation of Einstein-Cartan gravitation with one field $ which
is defined over the frame bundle of spacetime. The idea of the model proposed by Hélein and Vey
in [HV16] is to forget any a priori structure of frame bundle and simply study the field $ defined
over a structure-less 10-dimensional manifold P. Indeed, turning around the constraints (10.8b,
10.8c), they can be seen as defining a “generalised frame bundle structure” from $, as presented
in Section 7.2. A similar mechanism assuming only part of the fibration structure is studied
in [GW13].

As a consequence, the structure of generalised frame bundle, namely the generalised Cartan
connection $ is what we wish to obtain from the Euler-Lagrange equations.

Lagrange multiplier terms

The previous discussion motivated dropping the constraint (10.8b) so as to take it as a definition
of the fields ξ̄ instead. Constraint (10.8a) is an open (and algebraic) condition so we will simply
keep it as restraining the configuration space to an open subset.

However Equation (10.8c) is different. It is both a differential constraint and a (topologically)
closed constraint. We want to incorporate it into the Lagrangian by means of Lagrange multipliers.
For this, the convenient formulation of (10.8c) is

d$A + 1
2 [$ ∧$]A = 1

2ΩAbcαb ∧ αc

with ΩAbc arbitrary (non-constant) coefficients which are antisymmetric in b, c (the derivation is
given in Section 7.2.1). As the coefficients ΩA

bc are arbitrary, the equation only means that the
components along ω ∧ ω and along α ∧ ω vanish. According to Section 1.4 if we use again the
notation $(8)

BC for the 8-form which is dual to $B ∧$C , we can rewrite the equation as(
d$ + 1

2 [$ ∧$]
)
∧$(8)

jk = 0 (10.9a)(
d$ + 1

2 [$ ∧$]
)
∧$(8)

bk = 0 (10.9b)

with the index b corresponding to a basis of m and indices j, k corresponding to a basis of l.
Under this form, it is straightforward to impose the conditions (10.9) using Lagrange multipliers:

we add to the theory free fields P jkA and P bkA and consider the following term to add to the
Lagrangian: (

d$ + 1
2 [$ ∧$]

)A
∧ 1

2P
jk
A $

(8)
jk +

(
d$ + 1

2 [$ ∧$]
)A
∧ P bkA $

(8)
bk (10.10)
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which would impose the constraint (10.9) through the equations of motion corresponding to
variations of P jkA and P bkA . Note the fundamental difference with holonomic Lagrange multipliers
which would be coupled to a term such as f($, v)$(10). The Lagrange multipliers we use serve
to impose an (exterior) differential constraint. Such Lagrange multipliers are presented in more
detail in Section 9.9, which explains how to use the variational terms derived from them.

The $(8)
BC forms being antisymmetric in BC, only the antisymmetric part of PBCA is involved

in the term (10.10). We thus constrain the multipliers PBCA (with BC = bk or BC = jk) to be
antisymmetric in BC, effectively using the 8-forms

1
2P

BC
A

(
d$ + 1

2 [$ ∧$]
)A
∧$(8)

BC

as Lagrange multiplier fields. If one wanted to impose a torsion-freeness constraint on the
connection, one could in a similar fashion use a free pbca term, as is for example done in three
dimensions in [DOS10].

The Lagrangian

The Lagrangian (10.6) is

L [$] = Ωiρbi,dηdc ∧ (ω ⊕ α)(8)
bc = Ωiρbi,dηdc ∧$

(8)
bc

and can be written under the following form:

L [$] =
(

d$ + 1
2 [$ ∧$]

)i
ρbi,dη

dc ∧$(8)
bc

Note how as a linear function of the curvature 2-form it is very similar to the terms (10.10).
Let P a 10-manifold and p ' lnm the Poincaré Lie algebra. Let us denote Iso(TP, p) ⊂ T ∗P⊗p

the subbundle of p-valued coframes. 2 Note that it is an L-principal bundle above P, although
this structure will not be relevant for our considerations. We consider the following configuration
bundle over P:

Q = Iso(TP, p)︸ ︷︷ ︸
$A

×
(
m ∧ l⊕ Λ2l

)
⊗ p∗︸ ︷︷ ︸

P bk
A
, P jk
A

with m ∧ l ⊂ Λ2p the image of m⊗ l ⊂ p⊗2.
On T ∗P ⊗ p there is a tautological section: writing f : T ∗P ⊗ p → P the fibration map, it

takes the form of a diagonal section

T ∗P ⊗ p→ T ∗P ⊗ p×P T ∗P ⊗ p ' f∗ (T ∗P ⊗ p)

Dual to the tangent projection T (T ∗P ⊗ p) Tf−−→ TP there is a pullback map T ∗P → T ∗ (T ∗P ⊗ p)
so that the tautological section can be pulled back to a p-valued 1-form on T ∗P ⊗ p:

T ∗P ⊗ p→ f∗ (T ∗P ⊗ p) ' (f∗T ∗P)⊗ p
f∗−→ T ∗ (T ∗P ⊗ p)⊗ p

We call it the canonical p-valued 1-form on T ∗P ⊗ p and write it λ. On Iso(TP, p) it can be

2Our manipulations will actually be meaningful on all of T ∗P ⊗ p including degenerated points, with due
adjustments since TP and p are no longer identified.
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identified with a solder form (defined in Section 3.2). We will use the notation λ(10−k)
A1···Ak for the

dual (10− k)-forms defined according to Section 1.4. We also use the notations pbkA and pjkA for
the (trivial) fibre coordinates of the component in

(
m ∧ l⊕ Λ2l

)
⊗ p∗, in order to establish a clear

distinction with the corresponding components P bkA and P jkA of sections on Q:

Q
(
m ∧ l⊕ Λ2l

)
⊗ p∗

P

pbkA ,p
jk
A

ϕ

P bkA ,P jk
A

The explicit expression is P bkA = ϕ∗pbkA , P jkA = ϕ∗pjkA .

The Lagrangian form gathering both the lifted Einstein-Cartan Lagrangian and the Lagrange
multiplier fields is

L [$,P ] = ρbi,dη
dc

(
d$ + 1

2 [$ ∧$]
)i
∧$(8)

bc

+ 1
2P

jk
A

(
d$ + 1

2 [$ ∧$]
)A
∧$(8)

jk + P bkA

(
d$ + 1

2 [$ ∧$]
)A
∧$(8)

bk (10.11)

To obtain a local expression in terms of coordinates, let (zI) be a local system of coordinates on
P. It induces local coordinates (zI , λAI ) on T ∗P ⊗ p and fibre coordinates on the 1-jet bundle
J 1(T ∗P ⊗ p): we write them vAI,J , defined so that

vAI,J($) = ∂J
(
λAI ($)

)
Then the Lagrangian (10.11) can be expressed as a 10-form on J 1(Q) in terms of the local
coordinates (there is no 1st order contribution from P ):

L = ρbi,dη
dc

(
vI,JdzJ ∧ dzI + 1

2 [λ ∧ λ]
)i
∧ λ(8)

bc

+ 1
2p

jk
A

(
vI,JdzJ ∧ dzI + 1

2 [λ ∧ λ]
)A
∧ λ(8)

jk + pbkA

(
vI,JdzJ ∧ dzI + 1

2 [λ ∧ λ]
)A
∧ λ(8)

bk

(10.12)

such that L [$,P ] = ($,P )∗L . In this form, there is no constraint extraneous to the Lagrangian
other than the open constraint of nondegeneracy of $. Hence we can use the usual Legendre
transform formula (9.8) (described in Section 9.4) to compute the Poincaré-Cartan form. If we
define

pbcA = 2δiAρbi,dηdc (10.13)

then L takes the concise form

L = 1
2p

BC
A

(
vI,JdzJ ∧ dzI + 1

2 [λ ∧ λ]
)A
∧ λ(8)

BC (10.14)

We can thus consider that we have a field pA = pBCA λ
(8)
BC which is subject to the holonomic

constraint (10.13).



242 CHAPTER 10. HÉLEIN-VEY-EINSTEIN-CARTAN GRAVIATION

The Poincaré-Cartan form

Introduce the following notation: for a p-form u on T ∗P ⊗ p with values in a p-module we will
write

dλu := du+ λ ∧ u (10.15)

with λ ∧ u including the action of p (in our discussion it will mainly be about products of adjoint
and coadjoint representations of l ' p/m). Define also

Λ := dλ+ 1
2 [λ ∧ λ] = dλλ− 1

2 [λ ∧ λ] (10.16)

The operator dλ is meant to model a covariant differential while Λ models a universal curvature
2-form. They satisfy the expected equations (proved in Section 7.4)

dλdλu = Λ ∧ u (10.17)
dλΛ = 0 (10.18)

dλ(uA ∧ vA) = (dλuA) ∧ vA + (−1)|u|uA ∧ dλvA (10.19)

for uA and vA homogeneous differential forms with values in dual p-modules.

To compute the Poincaré-Cartan form we will use the following formula from Section 9.4:

∂vA
I,J
yd
(
L + πJB ∧ χBJ

)
= 0 mod [θAJ ]

with πJB 9-form fields on P and χAJ = dλAJ −vAI,JdzI . Using this formula rather than Formula (9.8)
will save us some back and forth between the coframes dzI and λA. We determine the value of
πJB as a function of pBCA :

∂vA
I,J
y d
(
L + πJD ∧ χDJ

)
= ∂vA

I,J
y d
(

1
2p

BC
D

(
vK,LdzL ∧ dzK + 1

2 [λ ∧ λ]
)D
∧ λ(8)

BC + πKD ∧ χDK

)

= 1
2p

BC
A

(
dzJ ∧ dzI − dzI ∧ dzJ

)
∧ λ(8)

BC

+
(
∂vA

I,J
ydπJD

)
∧ χDJ − πKD ∧ ∂vA

I,J
y
(
−dvDK,L ∧ dzL

)
= pBCA dzJ ∧ dzI ∧ λ(8)

BC + πIA ∧ dzJ +
(
∂vA

I,J
ydπJD

)
∧ χDJ

= dzJ ∧ (−pBCA dzI ∧ λ(8)
BC + πIA) +

(
∂vA

I,J
y dπJD

)
∧ χDJ

Since the term
(
∂vA

I,J
y dπJD

)
∧ χDJ is a contact term the momentum forms πIA are defined by

dzJ ∧ (−pBCA dzI ∧ λ(8)
BC + πIA) = 0

Since dzJ form a basis of 1-forms on P, we conclude that the momenta forms are directly
parameterised by the Lagrange multipliers pBCA

πIA = pBCA dzI ∧ λ(8)
BC
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and the corresponding contact term in the Poincaré-Cartan form is

pBCA dzI ∧ λ(8)
BC ∧

(
dλAI − vAJ,IdzJ

)
= pBCA ∧ λ(8)

BC ∧
(
dλA − vAJ,IdzI ∧ dzJ

)
(10.20)

The Poincaré-Cartan form is

L + pBCA ∧ λ(8)
BC ∧

(
dλA − vAJ,IdzI ∧ dzJ

)
= 1

2p
BC
A

(
vI,JdzJ ∧ dzI + 1

2 [λ ∧ λ]
)A
∧ λ(8)

BC

+ pBCA ∧ λ(8)
BC ∧

(
dλA − vAJ,IdzI ∧ dzJ

)
= 1

2p
BC
A

(
dλ+ 1

2 [λ ∧ λ]
)A
∧ λ(8)

BC

We write the Poincaré-Cartan form as follows:

ΘEC = 1
2p

BC
A ΛA ∧ λ(8)

BC (10.21)

It goes with the holonomic constraint (10.13) on the pbcA . We identify two components:

ΘEC = 1
22ρbi,dηdcΛi ∧ λ

(8)
bc (10.22)

Θcons
EC = 1

2p
jk
A ΛA ∧ λ(8)

jk + pbkA ΛA ∧ λ(8)
bk (10.23)

Note that since
1
2 [λ ∧ λ]i ∧ λ(8)

ab = 1
2c
i
DEλ

D ∧ λEλ(8)
ab = ciabλ

(10) = 0

the form ΘEC can also be expressed with dλ replacing Λ. However the expression Λ has an
interpretation as the curvature, furthermore if we generalise from p ' lnm to other Lie algebras
then 1

2 [λ ∧ λ]i ∧ λ(8)
ab may not vanish.

We introduce the notation B̂C for pairs of indices of p except pairs which correspond to m⊗m
(i.e. only pairs which correspond to (l⊗ l)⊕ (m⊗ l)⊕ (l⊗m)). The Poincaré-Cartan form can
then be expressed as

ΘEC = δiAρ
a
i,cη

bcΛA ∧ λ(8)
ab︸ ︷︷ ︸

ΘEC

+ 1
2p

B̂C
A ΛA ∧ λ(8)

B̂C︸ ︷︷ ︸
Θcons
EC

(10.24)

The Poincaré-Cartan form takes value in the affine dual of J 1(Q) (described in Section 9.6).
It is the fibre bundle of 10-forms on Q that have a vanishing contraction with all 2-vectors of Q
that are purely vertical with respect to the fibration above the source space P . This affine dual is
usually written:

Λ10
1 T
∗Q

Note that the coefficients of the Poincaré-Cartan form have no dependency on the first order
component of the 1-jet, so that the only dependency comes from the factor

ΛA = dλA + 1
2 [λ ∧ λ]A

We can therefore restrict the momentum space from the whole affine dual to Q itself, on which
ΘEC can still be expressed as a 10-form, along with the supplementary constraint (10.13) (for
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details on the equivalence between the Lagrangian and the Hamiltonian formulations see the
last section of [De +05] on affine Lagrangians). One can also say that 1

2p
B̂C
A λ

(8)
B̂C

correspond

to specific elements of the linear dual space of J 1(Q) of the form ΛA ∧ 1
2p
B̂C
A λ

(8)
B̂C

, according
to (10.10). In fact, the Lagrange multiplier terms are derived in [HV16] as free momenta obtained
by a Legendre transformation under constraint.

In fact it could be argued that (10.21) is the natural formulation on Λ8T ∗P ⊗ p∗ ×P Q of the
Lagrangian given in (10.11), rather than (10.12). We chose to go for the “naive” formulation
of the Lagrangian on the 1-jet bundle to illustrate the systematic approach to the Legendre
transformation.

We derive the variational equations in the next section.

10.3.3 Variational equations for gravitation

In this section we compute the variational equations corresponding to the Poincaré-Cartan
form (10.21). The Euler-Lagrange form is defined for vertical vector fields X on Q as

ELX := iXdΘEC (10.25)

Since the Poincaré-Cartan form is defined on Q there is no need to use the 1st prolongation of X
as described in Section 9.4.

The Euler-Lagrange equations consist in the vanishing of all the components of the Euler-
Lagrange form with respect to X under the pullback by a field ($,P ) : P → Iso(TP, p) ×
(m ∧ l⊕ l ∧ l)⊗ p∗. Namely,

∀X, ($,P )∗ ELX = 0

A local basis of the vertical vector fields is given by the fields ∂λA
I

and ∂
pB̂C
A

dual to fibre

coordinates. For convenience, we define ∂λA
B

= λBI ∂λAI so that

∂λA
B
yΛC = ∂λA

B
y dλC + ∂λA

B
y

1
2 [λ ∧ λ]C

= (λBI ∂λA
I

)y dλC + 1
2c
C
DE∂λA

B
yλD ∧ λE = δCAλ

B
I dz

I + 0

= δCAλ
B

(10.26)

We impose on the field space that (λA) form a nondegenerate family (coframe) at each point
of P, consequently we can substitute ∂λA

B
for ∂λA

I
in the basis of vertical vector fields. One can

interpret ∂λA
B
as representing the infinitesimal action of End(p) on Iso(TP, p).

We will make use of the following identities, proved in Section 7.4 :

dλ(10) = ΛD ∧ λ(9)
D

dλ(9)
A = ΛD ∧ λ(8)

AD

dλ(8)
AB = ΛD ∧ dλ(7)

ABD − c
D
ABλ

(9)
D

dλΛA = 0
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10.3.4 Variation of the multiplier P B̂C
A

We check that the variation of the Lagrange multipliers yields the expected constraint equations.
Recall that we do not allow BC to take the form bc in ∂

pB̂C
A

. We use the notation (ELEC)ABC for
(ELEC)∂BC

A
:

(ELEC)A
B̂C

= ∂
pB̂C
A

yd
(

1
2p

EF
D ΛD ∧ λ(8)

EF

)
= 1

2

(
∂
pB̂C
A

ydpEFD
)

ΛD ∧ λ(8)
EF = 1

2ΛA ∧ λ(8)
B̂C

(10.27)
We write Ω := $∗Λ ∈ Ω2(P, p) which has as components

ΩA = 1
2ΩABC$B ∧$C

A critical field (P,$) satisfies
ΩA
B̂C

= 0 (10.28)

which is equivalent to Equations (10.9). Thus a solution $ of the Euler-Lagrange equations
defines a Cartan 1-form therefore a generalised frame bundle structure on P.

10.3.5 Variation of the coframe $

Instead of using ∂λA
B
, it will be convenient to use a vertical vector field X on Iso(TP, p) which

has variable coefficients εAB as follows:

X = εAB∂λA
B

These coefficients are gathered into a p-valued 1-form:

εA = εABλ
B

so that
Xy dλA = LXλA = εA (10.29)

The correspondence X ↔ ε corresponds to the usual identification between the vertical tangent
bundle to a vector bundle and the Whitney sum of the vector bundle with itself.

We mention one more identity from Section 7.4:

d
(
s̄[A]s

[A]
)

= (dλs̄)α ∧ s[A] + s̄αdλs[A]

for [A] any index, or index list, in a l-module. We now compute ELX :

Xy d
(

1
2p

BC
A ΛA ∧ λ(8)

BC

)
= Xy

(
dλΛD ∧ 1

2p
BC
A λ

(8)
BC + ΛA ∧ dλ

(
1
2p

BC
A λ

(8)
BC

))
= Xy

(
0 + ΛA ∧ dλ

(
1
2p

BC
A λ

(8)
BC

))
=
(
XyΛA

)
∧ dλ

(
1
2p

BC
A λ

(8)
BC

)
+ ΛA ∧Xy dλ

(
1
2p

BC
A λ

(8)
BC

)
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On one hand
XyΛ = Xy

(
dλ+ 1

2 [λ ∧ λ]
)

= ε+ 0

and on the other hand

Xy

(
dλ
(

1
2p

BC
D λ

(8)
BC

))
= Xy

((
dλ12p

BC
D

)
∧ λ(8)

BC

)
+Xy

1
2p

BC
D

(
dλλ(8)

BC

)
= 0 +Xy

1
2p

BC
D

(
ΛA ∧ λ(7)

BCA

)
= εA ∧ 1

2p
BC
D λ

(7)
BCA

Gathering the two terms, we obtain

ELX = εA ∧
(

ΛD ∧ 1
2p

BC
D λ

(7)
BCA + dλ

(
1
2p

BC
A λ

(8)
BC

))
(10.30)

The corresponding Euler-Lagrange equations on a field ($,P ) ∈ Γ(P, Q) are then:

∀ε ∈ Ω1(P, p), εA ∧
(

ΩD ∧ 1
2P

BC
D $

(7)
ABC + d$

(
1
2P

BC
A $

(8)
BC

))
= 0

where εAB are now defined over P since the X we consider here are variations of the field $.
The Euler-Lagrange equation corresponding to variations of $ are equivalent to the following
equation:

ΩD ∧ 1
2P

BC
D $

(7)
ABC + d$

(
1
2P

BC
A $

(8)
BC

)
= 0 (10.31)

The Einstein term

We now explain how the usual Einstein tensor can be identified in (10.31). First, we assume
that Equation (10.28) is satisfied, so that $ defines a generalised frame bundle structure. We
will identify tensors built out of $ which correspond to the various curvature and the torsion
tensors in the standard frame bundle case. For more detail on curvature on the frame bundle, see
Section 3.2.

Let us isolate the part depending on the fixed momenta pbcD = 2δlDρbl,eηec: we obtain

Ωl ∧ 1
2p

bc
l $

(7)
Abc + δiAd$

(
1
2p

bc
i $

(8)
bc

)
= Ωl ∧ 1

2p
bc
l $

(7)
Abc + δiA

1
2p

bc
i d$

(
$

(8)
bc

)
= Ωi ∧ 1

2p
bc
i $

(7)
Abc + δiA

1
2p

bc
i ΩD ∧$(7)

bcD

=
(
δDAΩi + δiAΩD

)
∧ 1

2p
bc
i $

(7)
bcD

Now assuming that Equation (10.28) is satisfied so that ΩA = 1
2ΩA

bcα
a ∧ αb, we compute the
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wedge product:(
δDAΩi + δiAΩD

)
∧ 1

2p
bc
i $

(7)
bcD

= 1
2p

bc
i

(
δDA

(
ΩicD$

(9)
b − ΩibD$(9)

c + Ωibc$
(9)
D

)
+ δiA

(
ΩDcD$

(9)
b − ΩDbD$(9)

c + ΩDbc$
(9)
D

))
= 1

2p
bc
i

(
2ΩiAb$(9)

c + Ωibc$
(9)
A + δiA

(
2Ωddb$(9)

c + ΩDbc$
(9)
D

))
We want to separate the terms according to their dependency on A (of type a or i) and $(9)

(with a subscript c or j):

(
δDAΩi + δiAΩD

)
∧ 1

2p
bc
i $

(7)
bcD =

(
δaAp

bc
i Ωiab + δcA

1
2p

de
i Ωide

)
$(9)
c

+ δiA

((
pbci Ωddb + 1

2p
de
i Ωcde

)
$(9)
c +

(
1
2p

de
i Ωjde + 1

2p
bc
k Ωkbcδ

j
i

)
$

(9)
j

)
Now we just have to rewrite the factors in front of $(9)

c so as to get rid of p. Recall the definition

pbci = 2ρbi,dηdc

The first term is δaA contracted with the following expression:

pbci Ωiab + δca
1
2p

de
i Ωide = 2ρbi,fηfcΩiab + δcaρ

d
i,fη

feΩide

We recognize the contractions of Ωi: these are the components of the tensor

− 2 Rica,f ηfc + δca Scal (10.32)

which is (minus twice) the Einstein tensor.
For the second term, we will use the following property: for any tensor field A and any list of

indices [D], we have
pbci AbcD = 0⇔ Abc[D] −Acb[D] = 0

This is a consequence of the definition pbci = 2ρbi,eηec interpreted as an isomorphism l
∼−→ Λ2 m.

We have

pbci Ωddb + 1
2p

de
i Ωcde = pdei

(
δceΩ

f
fd + 1

2Ωcde
)

= 1
2p

de
i

(
Ωcde + δceΩ

f
fd − δ

c
dΩ

f
fe

)
in which the antisymmetric term

Ωcde + δceΩ
f
fd − δ

c
dΩ

f
fe

corresponds to the components of the tensor field

T + tr(T ) ∧ Id (10.33)

This is a contraction of the torsion which is quite similar to the Ricci curvature. Its divergence is
non zero and actually equates (twice) the antisymmetric part of the Ricci tensor.

These tensors are to be equated in (10.31) with quantities dependent on the multipliers P B̂CA .
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We will see in Section 11.4 how to get rid of the multipliers in order to extract meaningful field
equations building on Section 9.9.

Comparison with gravitation on “soft Poincaré manifolds”

In [NR78b; Cas18] it is presented a very similar term for the so-called gravitation on “soft Poincaré
manifolds”. In our language, they take the following form:

1
2p

ab
i

(
δcAΩi ∧ α(1)

cab + δiAΩc ∧ α(1)
cab

)
and its vanishing is equivalent to {

1
2p
ab
i Ωi ∧ α(1)

cab = 0
1
2p
ab
i Ωc ∧ α(1)

cab = 0

These equations imply the Einstein field equation, the vanishing of the term (10.33) as well as
Equation (10.28). However, as our theory is formulated with 10-forms, there are in our equations
factors of ωi due to the term λ

(7)
bcD in (10.31). They weaken the constraint imposed by the equation

on the non-horizontal components ΩA
bk,ΩA

jk. For this reason, we needed to add the Lagrange
multipliers pB̂CA in Section 10.3.2 in order to enforce Equation (10.28).
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In this chapter, we present a model similar to the one from Section 10.3 which includes a
coupling with Dirac spinors.

11.1 The Dirac Lagrangian
Let us first present the standard Dirac Lagrangian as well as the tetrad approach to spinor fields
on a dynamical spacetime.

The Dirac Lagrangian

We start with a discussion on the standard framework for Dirac spinors on a curved spacetime.
Let M be a 4-manifold equipped with a Lorentzian structure, in particular a metric g. In order
to work with spinors, we equip it with a spin structure as defined in Section 4.2.1. Therefore M
has a Spin+

1,3-structure representable by a principal bundle P → GL(M).

249
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Assume furthermore that M is equipped with a spinorial connection, which can be represented
by a Spin+

1,3-principal connection over P . It may be induced from the Levi-Civita connection
or may present torsion. We also choose an irreducible Cl1,3-module Σ (which is unique up to
isomorphism), which will be the model for our spinor bundle. To keep in line with the traditional
treatment of spinors, we will make use of the “holomorphic” and “anti-holomorphic” directions in
Σ. We equip Σ with a spinorial metric (Definition 4.1.41) which maps Σ to the dual space Σ∗ in
an anti-linear fashion and we will be writing the spinor contraction implicitly:

ψ̄1ψ2 := ψ̄1αψ
α
2

We will be using freely the gamma matrices, in their covariant

γ : T ∗M g−1

−−→ TM → End(Σ)

and their contravariant
γ : TM → End(Σ)

incarnations. We will use a right (transposed) action of gamma matrices on Σ∗ as follows:

ψ̄γ := −γ · ψ̄

such that
ψ̄1(γψ2) = (ψ̄1γ)ψ2

A spinor field ψ is a section of the associated bundle P [Σ]. There is a Dirac operator (more
in Section 4.2.2) /∇ which acts on sections of P [Σ] in a formally self-adjoint way. Given a real
scalar m ∈ R, called the mass, the Dirac Equation is the following eigenvalue equation:

/∇ψ −mψ = 0

It can be derived as the Euler-Lagrange equation associated to a Lagrangian on M , called the
Dirac Lagrangian. Its real version uses the symmetrized Dirac operator

←→
/∇ , defined as follows:

ψ̄1
←→
/∇ψ2 = ψ̄1γ

µ∇µψ2 − (∇µψ̄1)γµψ2 = 2<
(
ψ̄1 /∇ψ2

)
The (adimensional)1 Dirac Lagrangian [Wei95; FR03] is

L[ψ] = 1
2 ψ̄
←→
/∇ψ −mψ̄ψ (11.1)

It corresponds to the Lagrangian form

L [ψ] =
(

1
2 ψ̄
←→
/∇ψ −mψ̄ψ

)
vol (11.2)

with vol the positive Lorentzian volume form.
The absence of an i factor is due to our conventions for Clifford algebra, Lorentzian signature

and spinorial metric (see Section 4.3 for a discussion).

1The dimensioned Lagrangian has a factor ~c in front of the kinetic term and a factor c2 in front of the mass
term.
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Tetrads and Sciama-Kibble Theory

We have explained the Lagrangian formulation of Dirac spinors in a nondynamical spacetime.
When the Lorentzian structure and the connection are dynamical fields however there are
complications: the spinor bundle P [Σ] varies accordingly to the Lorentzian structure! If the
Lorentzian structure, the spin connection and the spinor field are all gathered in a single field,
this does not pose any real problem: variational equations still correspond to criticality of the
action. It is however a problem when one wants to consider variations of the Lorentzian structure
distinct from the variations of the spinor field.

One solution is given by using a principal connection over the correspondence space G̃L
+

(M)→
G̃L

+
(M)/Spin+

1,3 (Section 4.2.3). It associates to a change in the metric a morphism between
the corresponding spin structures, which induces a morphism between the spinor bundles. The
identification between the spin structures is however dependent on a path used to join the metrics.
In particular, computing the transformed spinor field under a change of metric requires solving a
differential equation.

The solution used by the Sciama-Kibble theory is the following: Lorentzian structures are
replaced by (co)frame fields, called vierbein or tetrad. We already introduced them in Section 10.2
but here we expound more on their role in handling spinors. There are two immediate consequences
to using a tetrad field:

• There is an extra SO+
1,3 gauge degree of freedom (when the action only depends on the

induced Lorentzian structure).

• Two frames at one point are related by a unique linear transformation, which acts on the
frames as a GL4-equivariant automorphism.

This solves part of the problem: two tetrads are related by a unique GL4-equivariant automorphism
of GL(M). However, the spin structures corresponding to the tetrads only get identified with an
ambiguity of Z2, which is the kernel of Spin+

1,3 → SO+
1,3.

A standard global tetrad field can be understood as a global parallelism of M

GL(M) ∼−→M ×GL(Rn)

This suggests two solutions:

• It is possible to omit the prior spin structure on M and transport through the tetrad a
trivial spin structure

M × Spin+
1,3 →M ×GL(Rn) ' GL(M)

• The tetrad may be supplanted by a “spinorial tetrad” which is not a trivialisation of GL(M)
but a trivialisation of G̃L

+
(M) thus adding the needed bit of information to identify the

corresponding structures.

It is the first option which is used in the Sciama-Kibble approach.
The set of global tetrad fields is non-empty if and only if the spacetime is parallelisable,

which is a stronger condition than admitting spin structures. There is however a straightforward
geometrical generalisation: one can consider an auxiliary oriented Lorentzian vector bundle
V → M equipped with a lift of structure group Spin+(V ) → SO+(V ). A V -valued tetrad is
then an isomorphism e : TM ∼−→V . Each such tetrad induces a Lorentzian spin structure on M
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and between two such tetrads there is a well defined morphism between the spin structures as
according to the following commutative diagram:

e∗ Spin+(V ) Spin+(V ) (e′)∗ Spin+(V )

e∗ SO+(V ) SO+(V ) (e′)∗ SO+(V )

GL(M) GL(V ) GL(M)

∼

∼∼

∼ ∼

e
∼

e
∼

As a consequence, a section of Spin+(V )×Spin+
1,3

Σ can be naturally interpreted as a spinor field
over M for both Spin structures e∗ Spin+(V ) and (e′)∗ Spin+(V ).

Recall that not only the tetrad, but also the metric connection is to be a dynamical field. They
can be gathered into an (SO+

1,3 nR1,3,SO+
1,3)-Cartan connection over SO+(V ), or equivalently a

(Spin+
1,3 nR1,3,Spin+

1,3)-Cartan connection over Spin+(V ). This remark will play an important
role later.

Using an auxiliary vector bundle V requires adapting the expressions which rely on the
soldering of the tangent bundle. There are two approaches: either transporting everything on
M using the tetrad field or expressing as much as possible over V and associated bundles to
Spin+(V ), using the tetrad field only when unavoidable. The latter approach, which we followed
in Section 10.2, makes clearer the respective dependencies with respect to the tetrad and the
other fields. For example, using indices µ, ν for TM and a, b for V , given a tetrad (eµa), a section
ψ of Spin+(V )[Σ] and a linear connection ∇ on V , the Dirac operator acting on ψ takes the
following form:

/∇ψ = γaeµa∇µψ

with γa : V ∗ → End
(
Spin+(V )[Σ]

)
. If we want to express it over e∗ Spin+(V ) → M then we

need to use the image spinor field ψ̃ = e∗ψ and the image connection ∇̃ = e∗∇:

/̃∇ψ̃ = γµ∇̃µψ̃

with γµ : T ∗M → End
(
e∗ Spin+(V )[Σ]

)
. We will opt for formulations similar to the first type.

Using the same language, it is possible to reformulate the Dirac Lagrangian form. We use the
conventions from Section 1.4. The volume form takes the form e(4) and the Lagrangian can be
expressed as follows:

L [ψ, e,∇] = 1
2
(
ψ̄γa∇ψ −∇ψ̄γaψ

)
∧ e(3)

a −mψ̄ψe(4) (11.3)

In Sciama-Kibble theory, this is added to the Einstein-Cartan Lagrangian formulated in
terms of the tetrad, namely the Lagrangian from Expression 10.1, in order to have a theory with
dynamical spacetime along with the dynamical spinor fields.

The role of torsion The Sciama-Kibble theory fits into the framework of Einstein-Cartan
gravitation. It departs from Einstein’s General Relativity by allowing for torsion in the connection
over spacetime. This has many geometrical implications some of which are presented in Section 5.

From the physical perspective, the two main implications are:
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• The Ricci tensor may have an antisymmetrical part, which is coupled to antisymmetrical
terms in the energy-momentum tensor.

• There is a variational equation corresponding to variations of the torsion, which couples the
torsion to a spin density tensor [Tra06].

Replacing the Levi-Civita connection with a metric connection presenting torsion implies a
“geometrical” coupling between the torsion and the fields on which the covariant derivative is
made to act.

The impact of torsion on the field equations for our model for Dirac spinors in a dynamical
spacetime in briefly analysed in Section 11.4.3.

11.2 The Dirac Lagrangian in the Hélein-Vey formalism

11.2.1 Building the spinor Lagrangian

Lift to the spin frame bundle

On the spin frame bundle, spinors are represented by Spin+
1,3-equivariant Σ-valued fields so that

the configuration space of the spinor field is Σ×Spin+(E). We will use s = (sα) as coordinates on
the factor Σ and (s̄α) for dual coordinates; the latter can be read as the spinor metric s̄ : Σ→ Σ∗.

We write γa ∈ End(Σ) for the action of vectors ea ∈ R1,3, use σi ∈ End(Σ) for the action of
ξi ∈ l ' spin1,3 (resp. σ̄i ∈ End(Σ∗)) and ψ : Spin+(E) → Σ. More detail on the notation and
the action of the Spin group on Clifford modules will be found in Section 4.1. Given a system
(zI) of local coordinates on Spin+(E), we call ζαI the associated coordinates on the 1-jet bundle
J 1(Spin+(E),Σ):

ζαI ◦ ψ = ∂Iψ
α

The covariant derivative of the spinor field formulated on the frame bundle takes the form

dωψ = dψ + ωiσi · ψ

Therefore the Dirac Lagrangian pulled back to J 1(Spin+(E ,Σ)) can be expressed as:

1
2
(
ψ̄γadωψ − (dωψ̄)γaψ

)
∧ λm(3)

a −mψ̄ψλm

where λm (resp. λl) denotes the pullbacks of volume elements of m (resp. l) by the canonical
form λ and λm(3)

a is the 3-form dual to λa in m.
Adding a factor λl in order to obtain a volume form, the pulled back Dirac Lagrangian

corresponds to jφ∗LDirac with:

LDirac =
(

1
2
(
s̄γa(ζJdzJ + λiσis)− (ζ̄JdzJ + λiσ̄is̄)γas

)
∧ λm(3)

a −ms̄sλm
)
∧ λl (11.4)

Note that in this expression the contribution of the term λiσi (resp. λiσ̄i) actually vanishes due
to the λm(3)

a ∧ λl = λ
(9)
a factor which already selects the horizontal directions in ζα,JdzJ (resp.

ζ̄αJ dzJ).
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Omitting the frame bundle structure and Lagrange multipliers

As in the previous section, we consider as source space for the fields a differentiable 10-manifold
P. We will consider a total Lagrangian composed of LDirac, LEC and Legendre multipliers
terms in order to make the Spin+

1,3 structure emerge dynamically on the space P. As mentioned
earlier, the structure obtained from Equations (10.9) on $ induces an action of the Lie algebra
so1,3, which is naturally isomorphic to spin1,3.

In particular, it is enough to define the equivariance of the spinor fields under spin1,3. Indeed,
the difference between the usual linear frame bundle and spinor frame bundles only appears at
the “global” level, when there are complete orbits under the group action. Thus we do not have
to adapt the notion of generalised frame bundle in order to accommodate for spin structures.

A spinor field ψ : P → Σ will have to satisfy the equivariance condition

∀ξ ∈ l, Lξ̄ψ + ξ · ψ = 0 (11.5)

with l acting via σ : l→ End(Σ), we write ξi · ψ = σiψ. We will formulate the equivariance in a
similar way to previously: recall the notation

dλs := ds+ λiσis (11.6a)
dλs̄ := ds̄+ λiσ̄is̄ (11.6b)

with the operators σi being anti-selfadjoint. This notation allows us to write the condition (11.5)
(writing separately C-linear and C-antilinear directions although they correspond to the same
degree of freedom) 

ψ∗
(

dλs ∧ λ(9)
i

)
= 0

ψ∗
(

dλs̄ ∧ λ(9)
i

)
= 0

(11.7a)

(11.7b)

We consider the following Lagrange multiplier term (using a similar notation dλs̄)

i

2

(
κ̄iαdλsα − καidλs̄α

)
∧ λ(9)

i

with κ̄i conjugate to κi (so that the constraint term is real), which added to LDirac makes up
the following Lagrangian

LDirac =
(

1
2
(
s̄γa(ζJdzJ + λiσis)− (ζ̄JdzJ + λiσ̄is̄)γas

)
∧ λm(3)

a −ms̄sλm
)
∧ λl

+ i

2
(
κ̄i(ζJdzJ + λjσjs)− κi(ζJdzJ + λj σ̄j s̄)

)
∧ λ(9)

i (11.8)

defined over  Σ︸︷︷︸
sα

⊕Σ⊗ l︸ ︷︷ ︸
καi

× Iso(TP, p)︸ ︷︷ ︸
λA
I

11.2.2 The Poincaré-Cartan form
We now compute the Poincaré-Cartan form. The Lagrangian (11.8) being affine in the 1st-order
jets, the Legendre transformation is straightforward. The image of the Legendre transform,
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namely the momentum space, is a subspace of

Λ10
1 T
∗ [(Σ⊕ Σ⊗ l)× Iso(TP, p)]

' (Σ⊕ Σ⊗ l)×
[
(Σ∗ ⊕ Σ∗ ⊗ l∗)⊗ Λ9T ∗P ⊕P Λ10T ∗P

]
×P Λ10

1 T
∗ Iso(TP, p)

We use the Legendre transformation formula (9.8) (see Section 9.4):

ΘDirac = LDirac + ∂LDirac

∂vAI,J
(dλAI − vAI,LdzL) ∧ dz(9)

J

+ ∂LDirac

∂ζαJ
(dsα − ζαLdzL) ∧ dz(9)

J + ∂LDirac

∂ζα,J
(ds̄α − ζα,LdzL) ∧ dz(9)

J

= 1
2

(
s̄γa(dλs)− (dλs̄)γas

)
∧ λ(9)

a + i
1
2

(
κ̄i(dλs)− (dλs̄)κi

)
∧ λ(9)

i −ms̄sλ
(10) (11.9)

The momentum dual to κ vanishes as κ only appears in the Lagrangian at order 0 so that the
momenta have trivial component in (l∗ ⊗ Σ)⊗ Λ9T ∗P.

We are interested in a model coupling the Dirac spinor with the Einstein-Cartan gravitational
fields. We thus consider a Lagrangian which is the sum of the two Lagrangians and is defined over

Q = Iso(TP, p)× Σ×
[

(m ∧ l⊕ l ∧ l)⊗ p∗ ⊕ (Σ⊗ l)
]

the whole Poincaré-Cartan form decomposes as follows

Θ̄ = ΘEC + ΘDirac + Θcons
EC + Θcons

Dirac = ΘEC + ΘDirac (11.10)

with

ΘEC = 1
2p

BC
A ΛAλ(8)

BC (11.11)

ΘDirac = 1
2

(
s̄γa(dλs)− (dλs̄)γas

)
λ(9)
a + i

1
2

(
κ̄i(dλs)− (dλs̄)κi

)
λ

(9)
i −ms̄sλ

(10) (11.12)

with the line over Θ denoting the inclusion of the Lagrange multiplier terms.

Here as well, the Poincaré-Cartan form is defined on the configuration space to which we
added the Lagrange multipliers (the pullback by a section only depends on the 0-order jet). In
accordance with the results from Section 10.3.3 the momenta dual to λAI are restricted to the
subspace Λ8T ∗P ⊗ p∗ ×P Iso(TP, p) of Λ10

1 T
∗P ⊗ p. For convenience, we will work with complex

spinor indices and we therefore enlarge the component Σ⊗ Λ9T ∗P to a factor (Σ⊕Σ∗)⊗ Λ9T ∗P .
We define fibre coordinates on the momentum space using the components of the canonical
10-form:

jBCA ΛA ∧ λ(8)
BC + Φ̄Aαdλsα ∧ λ(9)

A + ΦαAdλs̄α ∧ λ(9)
A − hλ

(10)

Each coordinate corresponds to a factor of the momentum space, as follows:(
Iso(TP, p)︸ ︷︷ ︸

λA
I

× Σ︸︷︷︸
sα

⊕Σ⊗ l︸ ︷︷ ︸
καj

)
×P Λ8T ∗P ⊗ p∗︸ ︷︷ ︸

jBC
A

×P
[

(Σ⊕ Σ∗)⊗ Λ9T ∗P︸ ︷︷ ︸
ΦαA,Φ̄Aα

⊕P Λ10T ∗P︸ ︷︷ ︸
h

]

The image of the Legendre transform is a subspace defined by (holonomic) constraints, which
take the following form
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jbca = 0 (11.13a) jbci = 2ρbidηdc (11.13b)

jbjA = pbjA (11.13c) jijA = pijA (11.13d)

Φαa = −1
2(γas)α (11.13e) Φαj = − i2κ

αj (11.13f)

Φ̄aα = −1
2(γ̄as̄)α (11.13g) Φ̄jα = i

2 κ̄
j
α (11.13h)

h = ms̄αs
α (11.13i)

The momentum space can hence be identified as[
Iso(TP, p)︸ ︷︷ ︸

λA
I

× Σ︸︷︷︸
sα

]
×
[

(m ∧ l⊕ l ∧ l)⊗ p∗︸ ︷︷ ︸
pB̂C
A

⊕ (Σ⊗ l)︸ ︷︷ ︸
καi

]
= Q (11.14)

We compute the variational equations in the next section.

11.3 Variational equations for a spinor on a generalised
frame bundle

We already have the Euler-Lagrange forms corresponding to ΘEC , we have to compute the term
corresponding to ΘDirac. Recall its expression

ΘDirac = 1
2

(
s̄γa(dλs)− (dλs̄)γas

)
∧ λ(9)

a + i

2

(
κ̄i(dλs)− (dλs̄)κi

)
∧ λ(9)

i −ms̄sλ
(10) (11.15)

We will make use of the following identities, proven in Section 7.4:

dλ(dλs)α = (Λ · s)α

dλ(dλs̄)α = (Λ · s̄)α
(10.17)

Let φ be a section of the phase space. We denote its different components as follows:[
T ∗P ⊗ p︸ ︷︷ ︸

$A
I

× Σ︸︷︷︸
ψα

]
×P

[
(Λ8T ∗P ⊗ l)︸ ︷︷ ︸

PBC
A

⊕ (Λ9T ∗P ⊗ Σ⊗ l)︸ ︷︷ ︸
Kαi

]
(11.16)

11.3.1 Variation of the multipliers Kαi

We check here that the variation of the Lagrange multipliers Ki
α yields the expected constraint

equations. There are independent variations in holomorphic directions corresponding to the index
α, and in the anti-holomorphic direction corresponding to K̄αi.
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(ELDirac)αi

= ∂καiy d
(

1
2

(
s̄βγ

a(dλs)β − (dλs̄)βγasβ
)
∧ λ(9)

a

+ i

2

(
κ̄jβ(dλs)β − (dλs̄)βκβj

)
∧ λ(9)

j −ms̄sλ
(10)
)

= − i2dλs̄α ∧ λ(9)
i

(11.17)

Since ΘDirac is real the two Euler-Lagrange terms are conjugate under the antilinear corre-
spondence Σ→ Σ∗:

(ELDirac)αi = i

2dλsα ∧ λ(9)
i (11.18)

From now on we will only use the Euler-Lagrange terms coupled to anti-holomorphic ∂καi
variations. The corresponding Euler-Lagrange equations on a field φ are thus:

φ∗
(

dλsα ∧ λ(9)
i

)
= dωψα ∧$(9)

i = 0 (11.19)

Therefore, the vanishing of the pullback of the Euler-Lagrange form φ∗ELαi is equivalent to
requiring the equivariance of the corresponding section ψ of Σ with respect to the action of l
defined by $. Namely, in the case there is a the spin frame bundle structure derived from the
variational equations derived in Section 10.3.3, it means that ψ is associated to a section of the
associated spinor bundle.

11.3.2 Variation of the spinor field and of the coframe

We start with the variational equations with respect to the variation on the spinor fields. We
have to compute dΘDirac. For the sake of clarity we will compute

d
(
s̄γa(dλs) ∧ λ(9)

a + iκ̄i(dλs) ∧ λ(9)
i −ms̄sλ

(10)
)

and obtain dΘDirac as the real part. Let us start with the term dependent of κi:

d
(
κ̄i(dλs) ∧ λ(9)

i

)
=
(

dλκ̄i ∧ (dλs) + κ̄idλ(dλs)
)
∧ λ(9)

i − κ̄
i(dλs) ∧ dλλ(9)

i

=
(

dλκ̄i ∧ (dλs) + κ̄iΛ · s
)
∧ λ(9)

i − κ̄
i(dλs) ∧ ΛB ∧ λ(8)

iB

= dλκ̄i ∧ dλs ∧ λ(9)
i + κ̄i(σjs) ∧ Λj ∧ λ(9)

i − κ̄
i(dλs) ∧ ΛB ∧ λ(8)

iB

An identical calculation replacing καiλ(9)
i with γasαλ(9)

a gives

d
(
s̄γa(dλs) ∧ λ(9)

a

)
=
(

dλ(s̄γa) ∧ dλs+ s̄γa(σjs)Λj
)
∧ λ(9)

a − s̄γa(dλs) ∧ ΛB ∧ λ(8)
aB

Recall that γa is parallel in the following sense:

(dλγa) ∧ λ(9)
b =

(
dγa + λj [σj , γa]

)
∧ λ(9)

b = 0 + 0
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We can then compute

d
(
s̄γa(dλs) ∧ λ(9)

a

)
=
(

(dλs̄)γa + s̄dλγa
)
∧ dλs ∧ λ(9)

a

+ s̄γa(σjs)Λj ∧ λ(9)
a − s̄γa(dλs) ∧ ΛB ∧ λ(8)

aB

=
(

dλs̄γa ∧ dλs+ s̄γaσjsΛj
)
∧ λ(9)

a − s̄γa(dλs) ∧ ΛB ∧ λ(8)
aB

Last, corresponding to the mass term

d
(
ms̄αs

αλ(10)
)

= md(s̄αsα) ∧ λ(10) +ms̄sdλ(10)

= m
(

(dλs̄)αsα + s̄αdλsα
)
∧ λ(10) +ms̄sΛB ∧ λ(9)

B

(11.20)

Recall that both γa and σi are anti-selfadjoint:

γass = −s̄γas
s̄σ̄is = −s̄σis

We obtain the total exterior differential by taking the real part of the sum of the three terms. We
use curly braces {·, ·} for anticommutators :

dΘDirac = 1
2

((
2dλs̄ ∧ γadλs+ s̄{σj , γa}sΛj

)
∧ λ(9)

a −
(
s̄γa(dλs)− (dλs̄)γas

)
∧ ΛB ∧ λ(8)

aB

)
+ i

2

[(
dλκ̄i ∧ dλs+ (dλs̄) ∧ dλκi

)
∧ λ(9)

i +
(
κ̄i(σjs)− (s̄σ̄j)κi

)
Λj ∧ λ(9)

i

−
(
κ̄i(dλs)− (dλs̄)κi

)
∧ ΛB ∧ λ(8)

iB

]
−m

(
(dλs̄)s+ s̄dλs

)
∧ λ(10) −ms̄sΛB ∧ λ(9)

B (11.21)

Here too we adopt the notation

ELα := EL∂s̄α (11.22)

Start with the Euler-Lagrange terms corresponding to variations of the spinor field:

ELαDirac = ∂s̄αydΘDirac

= 1
2

(
2(γa(dλs))α ∧ λ(9)

a + (γas)αΛB ∧ λ(8)
aB

)
+ i

2

(
dλκαi ∧ λ(9)

i + καiΛB ∧ λ(8)
iB

)
−msαλ(10)

We introduce the notation ≡ for equality which holds up to “constraint” terms (10.27, 11.17).
This is justified by the fact that the analysis in Section 11.4 will proceed by first assuming these
contraint equations satisfied.

ELαDirac ≡
1
2

(
2(γadλs)α ∧ λ(9)

a + (γas)αΛc ∧ λ(8)
ac + idλ

(
κiλ

(9)
i

)α)
−msαλ(10) (11.23)

We now compute the Euler-Lagrange terms corresponding to variations of the coframe $,
which will govern the interaction of the spinors with the spacetime geometry. Recall the notation

X = εAB∂λA
B
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and
εA = εABλ

B

We obtain

(ELDirac)X = Xy dΘDirac

= 1
2

(
s̄{σj , γa}sεj ∧ λ(9)

a +
(
s̄γa(dλs)− (dλs̄)γas

)
∧ εB ∧ λ(8)

aB

)
+ i

2

((
κ̄i(σjs)− (s̄σ̄j)κi

)
εj ∧ λ(9)

i +
(
κ̄i(dλs)− (dλs̄)κi

)
∧ εB ∧ λ(8)

iB

)
−ms̄sεB ∧ λ(9)

B

= −εB ∧
(

1
2

(
s̄γa(dλs)− (dλs̄)γas

)
∧ λ(8)

aB + i

2

(
κ̄i(dλs)− (dλs̄)κi

)
∧ λ(8)

iB +ms̄sλ
(9)
B

)
+ εj ∧ 1

2

(
s̄{σj , γa}sλ(9)

a + i
(
κ̄i(σjs)− (s̄σ̄j)κi

)
λ

(9)
i

)
(11.24)

11.3.3 The total Euler-Lagrange terms
Gathering the expressions (10.27,11.17,10.30,11.24), the total Euler-Lagrange terms corresponding
to the Poincaré-Cartan form (11.10) are then, using again a vertical vector field X = εAB∂λAB ,

(EL)A
B̂C

= 1
2ΛA ∧ λ(8)

B̂C
(11.25a)

(EL)αi = i

2dλsα ∧ λ(9)
i (11.25b)

ELX = εA ∧
[
ΛD ∧ 1

2p
BC
D λ

(7)
BCA + dλ

(
1
2p

BC
A λ

(8)
BC

)
−1

2

(
s̄γb(dλs)− (dλs̄)γbs

)
∧ λ(8)

bA −
i

2

(
κ̄j(dλs)− (dλs̄)κj

)
∧ λ(8)

jA −ms̄sλ
(9)
A

]
+ εj ∧ 1

2

(
s̄{σj , γa}sλ(9)

a + i
(
κ̄i(σjs)− (s̄σ̄j)κi

)
λ

(9)
i

)
(11.25c)

ELα = (γadλs)α ∧ λ(9)
a + 1

2(γas)αΛc ∧ λ(8)
ac −msαλ(10) + i

2dλ
(
κiλ

(9)
i

)α
(11.25d)

The term ELX can be decomposed according to the different components of ε: εab , εib, εaj ,
εij . Each one corresponds to a variation of a different part of the structure of generalised frame
bundle:

• εab corresponds to variations of the tetrad

• εib corresponds to variations of the connection

• εaj corresponds to variations of the orbits

• εij corresponds to variations of the action of l.

Unfortunately, the very presence of the Lagrange multipliers pB̂CA and (καi, κ̄iα) makes the
corresponding differential equations φ∗ EL = 0 hard to study beyond the geometric structure of
a Cartan 1-form and a section of the associated spinor bundle. Since the Lagrange multipliers
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need not be equivariant, they have to be studied on the total bundle space. Note however the
dependency on the multipliers: they appear in dλ-exact terms

dλ
(

1
2p

BC
A λ

(8)
BC

)
dλ
(
κiλ

(9)
i

)α
and in the following three terms:

εA ∧ ΛD ∧ 1
2p

B̂C
D λ

(7)
B̂CA

εA ∧
(
κ̄j(dλs)− (dλs̄)κj

)
∧ λ(8)

jA

εj ∧
(
κ̄i(σjs)− (s̄σ̄j)κi

)
λ

(9)
i

If we assume that (11.25a,11.25b) vanish, these three terms are shown to be dependent only on the
vertical component εAk λk. This will be useful in the treatment of the Euler-Lagrange equations in
Section 11.4. We close this section with a diagram describing the different coordinates introduced
and the corresponding fields, with the hypothetical underlying spacetime E .

Q
[

Iso(TP, p) Σ
] [

(m ∧ l⊕ l ∧ l)⊗ p∗ (Λ9T ∗P ⊗ Σ⊗ l)
]

λA sα pB̂CA καi

P zI

E

= × ×P ⊕

φ

$A
P B̂CA

ψα

Kαi

11.4 Derivation of the Einstein-Cartan-Dirac equations on
spacetime in Riemannian signature

So far we have derived the following Euler-Lagrange terms:

(EL)A
B̂C

= 1
2ΛA ∧ λ(8)

B̂C
(11.25a)

(EL)αi = i

2dλsα ∧ λ(9)
i (11.25b)
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which constrain the coframe $ to define a generalised frame bundle structure and the field ψ to
define a basic spinor field, as well as the following Euler-Lagrange terms:

ELX = εA ∧
[
ΛD ∧ 1

2p
BC
D λ

(7)
BCA + dλ

(
1
2p

BC
A λ

(8)
BC

)
−1

2

(
s̄γb(dλs)− (dλs̄)γbs

)
∧ λ(8)

bA −
i

2

(
κ̄j(dλs)− (dλs̄)κj

)
∧ λ(8)

jA −ms̄sλ
(9)
A

]
+ εj ∧ 1

2

(
s̄{σj , γa}sλ(9)

a + i
(
κ̄i(σjs)− (s̄σ̄j)κi

)
λ

(9)
i

) (11.25c)

ELα = (γadλs)α ∧ λ(9)
a + 1

2(γas)αΛc ∧ λ(8)
ac −msαλ(10) + i

2dλ
(
κiλ

(9)
i

)α
(11.25d)

relating geometric quantities depending on $, matter quantities depending on ψ and the Lagrange
multipliers pbci and καi.

We assume in this section that the generalised frame bundle structure is an actual frame
bundle structure, that is

1. The Lie algebra action on P integrates into a Lie group action

2. The orbit space E has a Hausdorff quotient manifold structure

3. The fibration P → E forms a principal bundle over the orthogonal group or over the spin
group.

We will further need to modify our problem by replacing the Lorentzian signature with a
Riemannian signature. In this case, we show that the Euler-Lagrange equations on P imply field
equations on E which match with the usual Einstein-Cartan-Dirac field equations.

The generalised frame bundle structure cannot always be identified with an actual frame
bundle. In order to make it possible, two global properties are required, according to the results
pf Chapter 8. Let us briefly recall them.

First, the Lie algebra action has to integrate to a group action. If the Lie algebra acts by
non-complete vector fields, the manifold needs to be completed. The problem cannot always
be circumvented by restricting to “maximal solutions”. The necessary condition is univalence
which means that the action of an element of the group does not depend on the path leading
from identity to the element used to construct it (so that orbital mappings x 7→ g · x can be
unambiguously defined, although partially). The Lie algebra action is then “globalisable”, which
means the manifold can be embedded into a larger (possibly non-Hausdorff) manifold on which
the Lie group acts, with an embedding equivariant under the infinitesimal action. On a compact
manifold the vector fields are complete and the action readily integrates into a group action of
the simply-connected Lie group integration of the Lie algebra.

The second property is properness of the group action which ensures sufficient separation of
the orbit space. In particular, it holds for all compact Lie group actions.

When these two properties are satisfied, there is a dense open subset of P which can be
identified with an orthonormal frame bundle, or a spin frame bundle, over its orbit space. In
particular, all orbits on this open subset are either isomorphic to the Spin group or to the SO+

group.
The derivation of the spacetime equations will proceed as follows. First we assume that

the “constraint” Equations (11.25a,11.25b) are satisfied and that they define a frame bundle
structure with a spinor field on the underlying spacetime. Next, we identify variations of the
field which preserve the constraints, so that by the mechanism introduced in Section 9.9 we
obtain Euler-Lagrange equations with all Lagrange multiplier contributions gathered in an exact
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term. This is to be compared with the approach in [HV16] in which they perform an explicit
change of coordinates depending on the choice of a local section on the frame bundle and after
some algebraic manipulations manage to identify exact divergence terms in the Euler-Lagrange
equations. In particular, the use of explicit coordinate systems make the computations quite
heavy.

We want to get rid of the exact term by integrating over the orbits under the Spin group,
which are compact in Riemannian signature. For this purpose we need an extra step in order to
obtain equations on 6-forms along the orbits such that all the Lagrange multipliers are gathered
in an exact 6-form. Only then we can proceed to integration. Identifying an integrand which
is invariant under the action of Spin4 and has a vanishing integral, we conclude that it must
identically vanish. We thus obtain an equivariant equation on P which we interpret as an equation
on the underlying spacetime E , equation from which the Lagrange multipliers are absent. We
conclude the section with a brief analysis of the field equations, which can already be found in
the literature.

As we replace the Lorentzian signature with the Riemannian signature, we need to replace
the Poincaré algebra with the Lie algebra of the Euclidean group iso4 = so4 nR4 as well as the
metric η by the Euclidean metric on R4. The corresponding spin group is Spin4,0, usually denoted
Spin4. The algebraic manipulations involving the spinors we made in Section 11.3 still hold,
see Section 4.1 for more detail. For the sake of brevity we will assume we have a spin frame
bundle and will write about the action of Spin4 but when the spinor field ψ is identically zero the
principal bundle can be a mere metric SO4-structure.

We keep the indices conventions corresponding to the decomposition iso4 = so4 nR4. We will
make implicit use of the isomorphism so4 ' spin4.

11.4.1 Exact terms in the Euler-Lagrange equations
Given a Lagrangian involving general Lagrange multipliers, we explained in Section 9.9 how it
is possible, using suitable vector fields, to obtain Euler-Lagrange equations which have all the
dependency in Lagrange multipliers gathered in an exact term. In our case, we have Lagrange
multipliers pB̂CA involved in a Lagrangian term

pB̂CA ΛA ∧ λ(8)
B̂C

as well as Lagrange multipliers καi involved in a term

i

2

(
κ̄idλs− dλs̄κi

)
∧ λ(9)

i

We want to study solutions to Equations (11.25). For this we want to get rid of the non-physical
Lagrange multipliers fields. The solution is to gather them in an exact term and to make it
vanish by integration. The integration cannot be made on the total space P which is not assumed
to be compact. We need to find suitable compact submanifolds on which the Euler-Lagrange
Equations (11.25c,11.25d) can be “restricted” in a meaningful way while preserving the exactness
of the Lagrange multipliers term. First, let us present the general idea we use in this section with
a focus on only the Euler-Lagrange equation corresponding to the Dirac equation.

The Dirac term

As an illustration of the general phenomenon with a simple case, let us focus first on the Euler-
Lagrange equation coming from the variation of the spinor fields. Recall the corresponding
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Euler-Lagrange form:

ELβ = (γadλs)β ∧ λ(9)
a + 1

2(γas)βΛc ∧ λ(8)
ac −msβλ(10) + i

2dλ
(
κiλ

(9)
i

)β
(11.25d)

We assumed that P has a structure of Spin4-principal bundle over a base manifold on which
$ defines a Cartan connection 1-form.

We focus on one orbit which we will call O. It is by hypothesis isomorphic to Spin4 (as a
Spin4-space). We want to study the consequences of the equation φ∗(ELβ) = 0 on O. First, we
need to obtain an equation on a vertical 6-form. To this aim, we want to factor out a 4-form α(4).
We handle each term separately:

φ∗
(

(γadλs)β ∧ λ(9)
a

)
= (γa∂aψ)βω(6) ∧ α(4)

φ∗
(

1
2(γas)βΛc ∧ λ(8)

ac

)
= 1

2(γaψ)βΩcacω(6) ∧ α(4)

φ∗
(
msβλ(10)

)
= mψβω(6) ∧ α(4)

φ∗
(
i

2dλ
(
κiλ

(9)
i

)β)
= i

2dω
(
Ki$

(9)
i

)β
= i

2dω
(
Kiω

(5)
i

)β
∧ α(4) − i

2K
αiω

(5)
i ∧ dα(4)

= i

2dω
(
Kiω

(5)
i

)β
∧ α(4)

with ∂a standing for the derivation on P in the direction dual to αa. In the last computation we
used Formula (7.27e)

dω(uβ ∧ µ) = dωuβ ∧ µ+ (−1)|u|uβ ∧ dµ

for µ a real valued differential form. All together, we obtain

φ∗ ELβ =
(

(γa∂aψ)βω(6) + 1
2(γaψ)βΩcacω(6) +mψβω(6) + i

2dω
(
Kiω

(5)
i

)β)
∧ α(4)

Thus the equation
φ∗ ELβ = 0

is equivalent to

(γa∂aψ)βω(6) + 1
2(γaψ)βΩcacω(6) +mψβω(6) + i

2dω
(
Kiω

(5)
i

)β
= 0 mod [αa]

Now, the structure of a solder form on a frame bundle ensures that the orbits are exactly the
leaves of the vertical distribution, which is the subset of tangent vectors annihilated by all αa.
Therefore the previous equation implies that

(γa∂aψ)βω(6) + 1
2(γaψ)βΩcacω(6) +mψβω(6) + i

2dω
(
Kiω

(5)
i

)β
(11.26)

has a vanishing restriction to any orbit. We now explain how this equation can be decoupled in
two separate equations: one on ψ, the other one on K.

Since the orbit O is by assumption isomorphic to Spin4, there exists Spin4-equivariant Σ∗-



264 CHAPTER 11. COUPLING DIRAC SPINORS WITH HÉLEIN-VEY’S MODEL

valued fields on O. In fact they are uniquely specified by their value at any given point of the
orbit. There is no further constraint on the value at the chosen point. Let χ̄ be such a field:
χ̄ ∈ Ω0(O,Σ∗). Since the αa vanish on O, equivariance of χ̄ implies that

dωχ̄β = 0

on O, according to Theorem 7.2.5. We can thus contract the expression (11.26) with χ̄ to obtain

χ̄

(
(γa∂aψ)ω(6) + 1

2(γaψ)βΩcacω(6) +mψβω(6)
)

+ i

2 χ̄dω
(
Kiω

(5)
i

)β
= χ̄

(
(γa∂aψ) + 1

2(γaψ)βΩcac +mψβ
)
ω(6) + i

2d
(
χ̄Kiω

(5)
i

)
− i

2dωχ̄dω ∧Kiω
(5)
i

= χ̄

(
(γa∂aψ) + 1

2(γaψ)βΩcac +mψβ
)
ω(6) + i

2d
(
χ̄Kiω

(5)
i

)
− 0

The Euler-Lagrange equation χ̄βφ∗ ELβ = 0 now takes the form

χ̄

(
(γa∂aψ) + 1

2(γaψ)βΩcac +mψβ
)
ω(6) = − i2d

(
χ̄Kiω

(5)
i

)
Notice that the left hand term is manifestly invariant under the action of Spin4, as a (real-

valued) contraction of equivariant forms. On the other hand, the right hand term is manifestly
exact, so that integrating over the (compact) orbit O, we obtain∫

O

χ̄

(
(γa∂aψ) + 1

2(γaψ)βΩcac +mψβ
)
ω(6) = 0

Since the integrand is an invariant 6-form, it is in particular a volume form on O, so that a
vanishing integral implies

χ̄
(
(γa∂aψ) + (γaψ)βΩcac +mψβ

)
ω(6) = 0

Now, such an equation has to hold at each point of O, and this for each choice of equivariant
χ̄. Since for each given point of O the values of χ̄ at this point are unrestricted, we obtain the
following field equation:

(γa∂aψ) + 1
2(γaψ)βΩcac +mψβ = 0 (11.27)

Finally, since the directions ∂a are the horizontal vectors such that αb(∂a) = δba, the term

γa∂aψ

corresponds exactly to the Dirac operator applied to ψ. Since Ωcab represents the torsion tensor,
Ωc
ac is a trace of the torsion tensor. Above all, all the terms in this equation are equivariant,

which means that this equation can be interpreted on the underlying spacetime E . Writing T for
the torsion tensor and keeping the notation ψ for the spinor field on E , the corresponding field
equation is the Cartan-Dirac equation:

/∇ψ − 1
2T

µ
µνγ

νψ +mψ = 0 (11.28)
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Recall the Euler-Lagrange term

(γa∂aψ)βω(6) + 1
2(γaψ)βΩcacω(6) +mψβω(6) + i

2dω
(
Kiω

(5)
i

)β
We now know that the sum of the first three terms has to vanish. As a consequence the same
goes for the last term:

dω
(
Kiω

(5)
i

)
= 0

which is an equation on K decoupled from the field ψ.
Hopefully this section illustrated the mechanism under which the equations on ψ decouple from

the Lagrange multipliers K and induce equivariant field equations which can then be interpreted
on the underlying spacetime manifold.

One key step in the calculation was to consider the Euler-Lagrange equation χ̄βφ∗ ELβ = 0.
This term can be interpreted as the Euler-Lagrange equation associated with a variation of φ
directed by the vector field χ̄. In other words, it was crucial to find appropriate variations of the
fields. In order to proceed similarly with the other Euler-Lagrange term, let us find those suitable
vector fields. We want vertical variations of the field which preserve the constraints (11.25a,11.25b)
on-shell.

Infinitesimal variations preserving the constraints

Once a frame bundle structure is given by a field φ = ($,P, ψ,K) : P → Q satisfying the
constraint equation (11.25a), it is natural to consider variations of the structure corresponding
to variations of the tetrad or of the connection in the usual spacetime formalism. These are
given by equivariant variations of ωi = φ∗λi and αa = φ∗λa as we will show. This is similar to
the equivariant variations of the spinor field ψα = φ∗sα discussed in the previous section. Note
however the difference with the situation described in Section 9.9: equivariance is formulated
using the principal bundle structure hence only makes sense on P and is a notion dependent
on the field φ. Instead of assuming our variations equivariant from the start we will derive this
condition.

Variations of the coframe

Let us start with variations of the coframe $A. The field φ provides us with a nondegenerate
equivariant 1-form: the coframe itself $A = φ∗λA. The variation of $ will be given by a vertical
vector field X on the image of $:

X ∈ Γ (P, $∗ [V (Iso(TP, p))])

Using here again the isomorphism

V (T ∗P ⊗ iso4) ' T ∗P ⊗ iso4×PT ∗P ⊗ iso4

a vertical variation of $A is equivalent to a 1-form εA ∈ Ω1(P, iso4). We will use for convenience
Lie derivatives LX but they will not depend on the chosen 1st order extension of X since we will
work on the image of φ. The main property we will use is

φ∗LXλA = εA (11.29)
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Let us decompose εA into a so4-valued component τ i ∈ Ω(P, so4) and a R4-valued component βa:

ε = τ ⊕ β

To study the action of X on the constraints, we will have it act on
(
dλ+ 1

2 [λ ∧ λ]
)
λ

(8)
BC . We

can then compute

φ∗LX
(

dλ+ 1
2 [λ ∧ λ]

)i
= dφ∗LXλi + 2φ∗ 1

2 [LXλ ∧ λ]i = dτ i + [ω ∧ τ ]i

φ∗LX
(

dλ+ 1
2 [λ ∧ λ]

)a
= dφ∗LXλa + 2φ∗ 1

2 [LXλ ∧ λ]a = dβa + [ω ∧ β]a + [τ ∧ α]a

and
φ∗LXλ(8)

BC = φ∗
(

(LXλD) ∧ λ(7)
BCD

)
= εD ∧$(7)

BCD (11.30)

which gather to give

φ∗LX

((
dλ+ 1

2 [λ ∧ λ]
)i
∧ λ(8)

B̂C

)
=
(

dτ i + [ω ∧ τ ]i
)
∧ λ(8)

B̂C
+ Ωi ∧ εD ∧$(7)

B̂CD
(11.31a)

φ∗LX
((

dλ+ 1
2 [λ ∧ λ]

)a
∧ λ(8)

B̂C

)
= (dβa + [ω ∧ β]a + [τ ∧ α]a) ∧ λ(8)

B̂C
+ Ωa ∧ εD ∧$(7)

B̂CD

(11.31b)

In order for these terms to vanish under the constraint equation (11.25a), we will require the
following three conditions on ε:

1. ε to be purely horizontal: εA = εAb α
b. This will prevent εD ∧$(7)

B̂CD
from having purely

horizontal components (of type λ(8)
bc ) so that the term

ΩA ∧ εD ∧$(7)
B̂CD

necessarily vanishes.

2. There exist coefficients ribc such that

dτ i + [ω ∧ τ ]i = 1
2r

i
bcα

b ∧ αc (11.32a)

Namely, the term
(

dτ i + [ω ∧ τ ]i
)
∧ λ(8)

B̂C
vanishes. But now that we assumed that τ is

horizontal, this equation exactly means that τ is equivariant

3. There exist coefficients tabc such that

dβa + [ω ∧ β]a = 1
2 t
a
bcα

b ∧ αc (11.32b)

Since [τ ∧ α] is now assumed to be purely horizontal, the term (dβa + [ω ∧ β]a + [τ ∧ α]a)∧
λ

(8)
B̂C

vanishes. But this is exactly requiring that βa is equivariant.

Under these three conditions, each term of the right hand sides of (11.31) vanish.



11.4. DERIVATION OF THE EINSTEIN-CARTAN-DIRAC EQUATIONS 267

We also need to check whether such variations preserve the constraint (11.25b):

LX
((

ds+ ωiσis
)
∧ λ(9)

i

)
=
(
ds+ ωiσis

)
∧ LXλB ∧ λ(8)

iB =
(
ds+ ωiσis

)
εBc λ

c ∧ λ(8)
iB

=
(
ds+ ωiσis

)
εccλ

(9)
i

(11.33)

Therefore the constraint is preserved without condition.
As a conclusion, any equivariant horizontal 1-form ε represents a variation preserving the

constraints (11.25a,11.25b). They can be identified with families of equivariant coefficients εAb on
P with value in R4∗ ⊗ iso4.

Unfortunately, we cannot find coefficients εAi such that the right hand sides of (11.31) vanish
in a similar manner for two reasons. First, to a nonzero εi it will correspond a term

ΩA ∧ εDi $i ∧$(7)
B̂CD

= ΩA ∧
(
εii$

(8)
BC − δ

i
Cε

D
i $

(8)
BD + δiBε

D
i $

(8)
CD

)
which can contain nonzero components of ΩA when there are non-vanishing components εdi .

Second, for a non-horizontal 1-form ε, equivariance is no longer equivalent to

dεA + [ω ∧ ε]A = 1
2E

A
bcα

b ∧ αc

because the following equation holds, with εi = ε(ξi) ∈ p:(
Lξ̄i + ξi·

)
ε = iξi (dε+ [ω ∧ ε]) + dεi + [ω ∧ εi]

Thus arbitrary equivariant 1-forms are not necessarily solutions of iξi (dε+ [ω ∧ ε]) = 0. Indeed,
ω itself is equivariant but satisfies a different equation:

dωi + [ω ∧ ω]i = Ωi + 1
2 [ω ∧ ω]i = 1

2Ωibcαa ∧ αb + 1
2c
i
jkω

j ∧ ωk

We therefore proceed only with the horizontal variations of $ and general variations of
ψ. Insofar as the fibration above the spacetime does not vary, these variations can be viewed
as moving the direct orthonormal frame bundle inside the general linear frame bundle of the
spacetime. Note however that beside metric and connection variations, there is an extra gauge
freedom due to the action of the spin group Spin4 on T ∗P ⊗ iso4 by bundle automorphisms [Hél].

Variations of the spinor field

If the structure group is Spin4, the same computation can be done with variations X of ψ,
identified with Σ-valued fields χ over P (while keeping the generalised frame structure unvaried).
In this case, the compatibility with the constraint (11.25b) requires

LX(ds+ ωiσi · s) = dχ+ ωiσiχ = ςaα
a (11.34)

which here again expresses the local equivariance of χ over P.
It is obvious that variations of ψ preserve the constraint term

(
dλ+ 1

2 [λ ∧ λ]
)
λ

(8)
BC .

A basis for the constraint-preserving variations

We want to construct a local basis of equivariant so4-valued horizontal forms, as well as equivariant
Σ-valued fields. Here we will make use of the structure of principal bundle of P, or more exactly
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the existence of slices. A slice S is the image of a local section P/Spin4 → P. Thus equivariant
fields on Spin4 ·S are uniquely identified by their value on S.

We write βa,µ (resp. τ i,µ) for a basis of horizontal R4-valued forms (resp. horizontal so4-valued
forms) on S: the superscript µ corresponds to a basis of horizontal scalar 1-forms on S, while a
and i correspond to a basis of so4 (resp. R4)-valued maps on S (basis under C∞(S)). Similarly
we index equivariant spinor variations by their value on S and write χ̄α for a basis of such vectors
(variations of the adjoint spinor giving the spinor field equation), which can be identified with
Σ∗-valued maps over S.

Euler-Lagrange terms corresponding to the variations

Recall the decomposition of the Poincaré-Cartan form Θ̄ = Θ + Θcons:

Θ = 1
22ρai,cηcbΛi ∧ λ

(8)
ab + 1

2

(
s̄γa(dλs)− (dλs̄)γas

)
∧ λ(9)

a −ms̄sλ(10) (11.35)

Θcons = 1
2p

B̂C
D ΛD ∧ λ(8)

B̂C
+ i

2

(
κ̄i(dλs)− (dλs̄)κi

)
∧ λ(9)

i (11.36)

Let X be a vertical variation of φ which consists in an equivariant horizontal variation ε of
$ and an equivariant variation χ of ψ. According to the principle presented in Section 9.9, the
Euler-Lagrange term corresponding to a variation X and Poincaré-Cartan form Θcons is exact up
to a term which vanish under the constraint:

iXdΘcons = LX(Θcons)− diXΘcons ≡ −diXΘcons ≡ 0 (11.37)

We define the unconstrained Euler-Lagrange forms:

(EL0)X = iXdΘ (11.38)

The form EL0 has no dependency in P B̂CA nor in Kαi.
A field φ satisfying the Euler-Lagrange equations (11.25a,11.25b) satisfies the following:

φ∗(EL0)X = −φ∗diXΘcons (11.39)

The dependency in P B̂CA and in Kαi is gathered in the exact term. In order to make use of the
exactness, we want to perform an integral.

11.4.2 Integration into variational equations on the spacetime
Unconstrained Euler-Lagrange terms

The unconstrained Euler-Lagrange form corresponds to the terms in (11.25a-11.25d) not involving
the Lagrange multipliers P B̂CA , Kαi:

φ∗ EL0
X =εA ∧ φ∗

[
Λi ∧ 1

2p
bc
i λ

(7)
bcA −

1
2

(
s̄γb(dλs)− (dλs̄)γbs

)
∧ λ(8)

bA −ms̄sλ
(9)
A

]
+ εj ∧ φ∗ 1

2

(
pbcj ΛD ∧ λ(7)

bcD + s̄{σj , γa}sλ(9)
a

)
+ χ̄αφ

∗
(

1
2

(
2(γadλs)α ∧ λ(9)

a + (γas)αΛc ∧ λ(8)
ac

)
−msαλ(10)

) (11.40)
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The idea is to perform a “partial integration”, or fibre integration, of these Euler-Lagrange
equations over the orbits under Spin4. Since they are compact, the exact terms will vanish and
the resulting equations will only involve EL0. Furthermore, Spin4-equivariance of the variation
X implies Spin4-invariance of the form φ∗ EL0

X , so that a vanishing integral over orbits implies
that φ∗ EL0

X vanishes at each point. To this aim, we need to transform (11.40) into an equation
on 6-forms so that it can be integrated along the 6-dimensional orbits of Spin4.

To this end we want to “factor out” a factor α(4) while keeping the exactness of the right-hand
term in (11.39). The computation will be easier if we use explicit 10-forms on P. Doing so we
will not need to keep track of contact terms and constraint terms.

Let us thus reexpress the different terms in (11.40):

φ∗
(

Λi ∧ εA ∧ λ(7)
bcA

)
= Ωi ∧ εA ∧$(7)

bcA = 1
2Ωideαd ∧ αe ∧ εAf αf ∧$

(7)
bcA = 1

2Ωideεafδ
[def ]
bca $(10)

(11.41a)

φ∗
(
εA ∧

(
s̄γb(dλs)− (dλs̄)γbs

)
∧ λ(8)

bA

)
= −

(
ψ̄γbdωψ − dωψ̄γbψ

)
εA ∧$(8)

bA

= −
(
ψ̄γbdωψ − dωψ̄γbψ

)
εAc ∧

(
δcA$

(9)
b − δ

c
b$

(9)
A

)
= −εac

(
ψ̄γb∂dψ − ∂dψ̄γbψ

) (
δcaδ

d
b − δcbδda

)
$(10)

(11.41b)

φ∗
(
εA ∧ s̄sλ(9)

A

)
= εAAψ̄ψ$

(10) = εaaψ̄ψ$
(10) (11.41c)

φ∗
(
εj ∧ ΛD ∧ λ(7)

bcD

)
= 1

2ε
j
eΩdfgδ

[efg]
bcd $(10) (11.41d)

φ∗
(
εj ∧ s̄{σj , γa}sλ(9)

a

)
= εjaψ̄{σj , γa}ψ$(10) (11.41e)

χ̄αφ
∗
(

(γadλs)α ∧ λ(9)
a + 1

2(γas)αΛc ∧ λ(8)
ac

)
= χ̄α

(
γa∂aψ

α + 1
2γ

aψαΩcac
)
$(10) (11.41f)

The non-normalised antisymmetric Kronecker symbol δ[efg]
bcd is defined as follows:

δ
[efg]
bcd = δeb

(
δfc δ

g
d − δ

f
d δ
g
c

)
+ δec

(
δfd δ

g
b − δ

f
b δ
g
d

)
+ δed

(
δfb δ

g
c − δfc δ

g
b

)

From these it is straightforward to factor out α(4) in each term. We will write

φ∗ EL0
X = φ∗EX ∧ α(4)

with EX defined as a purely horizontal 6-form on the image of φ (but it can also be expressed as
a form on the jet bundle: EX ∈ Γ(J 1(Q), π∗Λ6T ∗P)).
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Factorisation and exactness of the constraint terms

We need to factorise the exact term φ∗ (diXΘcons). Extracting the relevant terms from Equa-
tions (11.25) we have

iXΘcons = iX

(
1
2p

B̂C
D ΛD ∧ λ(8)

B̂C
+ i

2

(
κ̄i(dλs)− (dλs̄)κi

)
∧ λ(9)

i

)
= 1

2p
B̂C
D εD ∧ λ(8)

B̂C
− i

2 χ̄ακ
αi ∧ λ(9)

i

= pjcD ε
D
c λ

(9)
j −

i

2 χ̄ακ
αi ∧ λ(9)

i

=
(
pjcD ε

D
c λ

so4(5)
j − i

2 χ̄ακ
αiλ

so4(5)
i

)
∧ λm(4)

Note how essential it is here again that ε is a purely horizontal form. This is what allows us to
factor εD ∧ λ(8)

B̂C
by λm(4).

Considering the exterior differential of the pullback, we obtain

φ∗diXΘcons = dφ∗iXΘcons

= d
((

P jcD ε
D
c ω

(5)
j −

i

2 χ̄αK
αiω

(5)
i

)
∧ α(4)

)
= d

(
P jcD ε

D
c ω

(5)
j −

i

2 χ̄αK
αiω

(5)
i

)
∧ α(4) +

(
P jcD ε

D
c ω

(5)
j −

i

2 χ̄αK
αiω

(5)
i

)
∧ dα(4)

= d
(
P jcD ε

D
c ω

(5)
j −

i

2 χ̄αK
αiω

(5)
i

)
∧ α(4) + 0

We used dα(4) = 0 which is a consequence of Equation (11.25a):

dαa + [ω ∧ α]a = 1
2Ωabcαb ∧ αc

We call EconsX the term which is differentiated:

φ∗EconsX := P jcD ε
D
c ω

(5)
j −

i

2 χ̄αK
αiω

(5)
i (11.42)

We finally obtain the following equation, which holds for each X vertical variation of φ which
is equivariant:

φ∗ EL0
X ∧α(4) = dφ∗EconsX ∧ α(4) (11.43)

Integration along the orbits

The tangent space to the orbits under Spin4 is exactly the kernel of α(4). This means that on any
orbit Spin4 ·x ⊂ Spin4 ·S, Equation (11.43) implies

φ∗E0
X |Spin4 ·x = dφ∗EconsX |Spin4 ·x (11.44)



11.4. DERIVATION OF THE EINSTEIN-CARTAN-DIRAC EQUATIONS 271

The orbit being compact, we can integrate along the orbit:∫
Spin4 ·x

φ∗E0
X |Spin4 ·x =

∫
Spin4 ·x

dφ∗EconsX |Spin4 ·x = 0 (11.45)

by virtue of the Stokes theorem.
We want to conclude that φ∗EX |Spin4 ·x = 0. It will follow if we can show that φ∗EX is Spin4-

invariant on P. Indeed since Spin4 preserves the orientation of the orbit and acts transitively,
any invariant form with vanishing integral is necessarily identically zero.

But Equations (11.41) express φ∗EX as the product of $(10), which is Spin4-invariant by
construction, and a factor which is Spin4-invariant as a complete contraction of equivariant
quantities (including ε and χ̄). Thus factoring out an equivariant α(4) lefts us with an equivariant
φ∗E0

X .
Thus we proved that

φ∗ EL0
X = 0 (11.46)

for X which are variations of ψ which are equivariant and variations of $ which are horizontal
and equivariant, over Spin4 ·x for any orbit. Therefore it holds at each point.

Equation (11.46) a priori only holds for 1-forms ε which are constant linear combinations
of the fields βa,µ, τ i,µ and χ̄α. However it is a tensorial equation which holds at each point.
Thus it still holds if X was multiplied by any real function on Spin4 ·S. One concludes that
Equation (11.46) holds for X which is any variation of ψ and any horizontal variation of $. Let
us recall the coefficient of ω(6) in φ∗E0

X , as expressed in (11.41):

εab

(
1
2p

cd
i

1
2Ωiefδ

[bef ]
cda + 1

2
(
δbaδ

d
c − δbcδda

) (
ψ̄γc∂dψ − ∂dψ̄γcψ

)
−mδbaψ̄ψ

)
+εib

(
1
2p

ef
i

1
2Ωgcdδ

[bcd]
efg + ψ̄{σi, γb}ψ

)
+ χ̄α

(
γa∂aψ

α + 1
2γ

aψαΩcac −mψα
) (11.47)

Since it has to vanish for any εAb and χ̄α, it means that each coefficient vanishes:

1
4p

cd
i Ωiefδ

[bef ]
cda + 1

2
(
δbaδ

d
c − δbcδda

) (
ψ̄γc∂dψ − ∂dψ̄γcψ

)
−mδbaψ̄ψ = 0 (11.48a)

1
4p

ef
i Ωgcdδ

[bcd]
efg + ψ̄{σi, γb}ψ = 0 (11.48b)

γa∂aψ
α + 1

2γ
aψαΩcac −mψα = 0 (11.48c)

We obtained tensorial equations on P. By assumption, P is a (spin) frame bundle above a
spacetime E . We now express these tensorial equations on E .

Expression in spacetime coordinates

Since all fields involved in Equations (11.48) are equivariant, they are all associated to sections of
the associated principal bundles on spacetime. As a consequence, the equations can be formulated
on spacetime. For this purpose, we need a local system of coordinates, with a local trivialisation
of the spinor frame bundle. We use greek indices µ, ν . . . for coordinates. We keep the notation
ψ for the spinor field as well as the superscript α for spinor fields. On E there is a metric g
corresponding to ηabαa ⊗ αb; it is compatible with the Spin4-structure defined by P → E .
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Dealing with the factors pabi requires care. Let us recall their definition:

pbci = 2ρbi,dηdc

We also stated that they correspond to an isomorphism

iso4
∼−→ Λ2R4∗

First,
1
2p

de
i Ωiab corresponds to Ro

µνπg
πχ

(with indices corresponding in alphabetic order) as explained in Chapter 5.
The Ω term in Equation (11.48a) becomes:

1
2 Rχ

πρυg
υoδ[νστ ]

χoµ = Rν
oµυg

uo −Rχ
χµυg

uν + Rχ
χoυg

uoδνµ = δνµ Scal−2gνπ Ricµπ

For Equation (11.48b) we recall as well that σi can be written as a function of γa in the following
way:

σi = 1
4p

ab
i γaγb = 1

8p
ab
i [γa, γb]

as explained in Section 4.1.3 (p is twice the map ρ described there). Equation (11.48b) is thus
equivalent to

0 = 1
2Ωgcdδ

[bcd]
efg + 1

4 ψ̄
{

[γe, γf ], γb
}
ψ = Ωgfgδ

b
e + Ωgefδ

b
g − Ωgegδbf + 1

4 ψ̄
{

[γe, γf ], γb
}
ψ

The spacetime tensor corresponding to Ωabc is the torsion tensor Tµνχ. We define its trace

tr(T )χ = Tσσχ

The equation on spacetime corresponding to (11.48b) is:

− tr(T )χδµν + tr(T )νδµχ + Tµνχ + 1
4 ψ̄{[γν , γχ], γµ}ψ = 0 (11.49)

Last, the horizontal derivatives ∂a turn to covariant derivatives on spacetime, as they cor-
respond to deriving the fields on the frame bundle along the horizontal directions defined by
the connection 1-form. In particular, γa∂a corresponds to the (covariant) Dirac operator. We
summarize the correspondence in a table:

Frame bundle Spacetime
∂a ∇a
γa∂a /∇
ηab gµν

pcdi Ωief Rχ
µν
o

Ωabc Tµνχ
ψα ψα

For convenience, we convert (11.48a) to a totally covariant equation. Separating geometry
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terms and matter terms in Equations (11.48), we obtain:

2 Ricµν −gµν Scal = gµν

(
1
2 ψ̄
←→
/∇ψ −mψ̄ψ

)
− 1

2 ψ̄γµ
←→
∇ νψ

Tµνχ − tr(T )χδµν + tr(T )νδµχ = −1
4 ψ̄ {[γν , γχ], γµ}ψ

/∇ψ − 1
2 tr(T )µγµψ −mψ = 0

(11.50a)

(11.50b)

(11.50c)

These are the Einstein-Cartan-Dirac field equations (Equation (11.50a) is usually presented
with an extra factor 1/2). Equation (11.50b) defines algebraically the tensor T−Id∧ trT as a func-
tion of the spinor field, hence the torsion as well (because tr(T − Id∧ trT ) = (1− 4 + 1) tr(T )).

Untreated variational equations

We obtained equations which correspond to the Euler-Lagrange equations for equivariant variations
of ψ and horizontal equivariant variations of $. We proved that in this case the term φ∗ EL0

X

has to vanish. This is only a consequence of the Euler-Lagrange equations and is by no means
equivalent to those. There are two parts of the Euler-Lagrange which we do not use.

First, for non-equivariant variations of ψ and non-equivariant horizontal variations of $, we
proved that φ∗EX = 0. But the Euler-Lagrange equation (11.39) is

φ∗(EL0
X +iXdΘcons) = 0

Thus the Euler-Lagrange equation is equivalent to

φ∗(iXdΘcons) = 0 (11.51)

which is an equation involving the Lagrange multipliers pabi and καi as well as the fields $A and
ψα.

Second, we did not consider at all vertical variations of $. This is because we could not
find such variations which preserve the constraints. Furthermore, vertical components would
also prevent factoring an α(4) factor out of the exact term in (11.43). Vertical variations of αa
correspond to variations of the vertical distribution which integrates into the orbits. Vertical
variations of ωi correspond to variations of the vectors fields representing the Lie algebra spin4.

We only note that these equations are subject to some degeneracy, according to Noether’s
second theorem. Indeed the Poincaré-Cartan form (11.35,11.36) is invariant by diffeomorphisms
of P [Hél].

Since the method that allowed us to obtain variational equations on spacetime does not apply
to these equation, their study falls outside of the scope of our work.

11.4.3 Decomposing the field equations
For completion, we present a brief mathematical analysis of the structure of the Einstein-Cartan-
Dirac equations. It is classical and can be found in the literature, as well as its physical
implications [HD71; Tra06; Sha02].

We first present a couple formulas we will need to carry to analysis. We will use the parenthesis
(µν) notation for symmetrisation and bracket notation [µν] for antisymmetrisation (normalized
by a 1/2 factor, or 1/n! if n indices are involved).
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Chiral current

Seen as a morphism Rp,q → End(Σp,q), γ is Spinp,q-equivariant (Spinp,q being represented by
SOp,q). The hermitian metric allows us to define a “dual” Γ : Σp,q ⊗ Σp,q → Rp,q∗ which is
equivariant as well:

(a, s1, s2) ∈ Rp,q ⊗ Σp,q ⊗ Σp,q 7→ 〈s1|γ(a) · s2〉 (11.52)

Notice how the action of the Pinp,q group is twisted under the morphism, as γ takes antihermitian
values. In a similar way, one can define tensor-valued hermitian forms by using products of γ.

We are interested in the element {σµν , γτ} as it appears in the Equation (11.72). By definition
σµν = 1

2 [γµ, γν ]. Since the commutator bracket is a Poisson bracket, one has a Jacobi-like
(derivation) identity with the anti-commutator, so that

{[γµ, γν ], γτ} = [γµ, {γν , γτ}]− {γν , [γµ, γτ ]} = {γν , [γτ , γµ]} (11.53)

hence the End(Σp,q)-valued 3-form {σµν , γτ} is antisymmetric in two pairs of indices, there-
fore totally antisymmetric because two transpositions span the whole symmetric group. As a
consequence it is equal to its antisymmetric part:

{[γµ, γν ], γτ} = {[γ[µ, γν ], γτ ]} = 4γ[µγνγτ ]

where the bracket between indices It can be expressed using the chirality element and the Levi-
Civita symbol (see Section 1.4), using the method described in [Pal07] (with a chirality element
different by an i factor):

1
2{σµν , γτ} = γ[µγνγτ ] = ευµντγ

υγ5 (11.73)

Since γµ have antihermitian values, 1
2{σµν , γτ} takes value in hermitian operators.

Let us also record the following formula, also proved (using the Lorentzian signature) in
[Pal07]:

1
2εχντχε

υτχµ = (−1)q
(
δυχδ

µ
ν − δµχδυν

)
(11.74)

with (−1)q corresponding to the norm of the positive volume element vol.
In order to carry out the analysis, we want to decompose the tensor equations into components

with different index symmetries (sub-representations under SO4).

Pure axiality of the torsion

Starting with torsion, it is convenient to set all indices to have the same type (covariant): we
write Tτµν = gτπT

π
µν . Let us define the trace of the torsion as follows:

tr(T )µ = T ννµ = gτµTτµν

The torsion can be decomposed as [Sha02; AP12; Ham02]

Tτµν = 1
3 (tr(T )νgτµ − tr(T )µgτν) +Aτµν + Tτµν (11.54)

with tr(T ) = 0, the component A purely antisymmetric and Tτµν + Tµντ + Tντµ = 0 (T is called
the pure torsion part). We then express the torsion term of (11.50b) in terms of these components:

Tτµν − (gτµ tr(T )ν − gτν tr(T )µ) = −2
3 (tr(T )νgτµ − tr(T )µgτν) +Aτµν + Tτµν (11.55)
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Now the matter term − 1
2 ψ̄{σµν , γτ}ψ is totally antisymmetric (see Section 11.4.3). Equa-

tion (11.50b) hence decomposes into the following three equations

tr(T ) = 0 (11.56a)

Aτµν = −1
4 ψ̄{σµν , γτ}ψ (11.56b)

T = 0 (11.56c)

The equations require the torsion to be reduced to its so-called axial part. Notably, the trace
term appearing in (11.50c) has to vanish [Ham02] so that

Tµνχ = −1
4 ψ̄ {[γν , γχ], γµ}ψ (11.57)

The 3-form A which is part of the spacetime geometry is (algebraically) coupled to the spinor field
– one can say that this degree of freedom is what separates Einstein-Cartan theory from Einstein’s
theory of General Relativity. Equation (11.50b) corresponds to variations of the connection and
as such the matter term (the ψ part) is identified with the angular momentum current [FR03].
Torsion hence couples the angular momentum current with the various fields of the theory (ψ in
the present case).

As a purely antisymmetric 3-form, we can express A by its dual (pseudo-)vector A, also called
axial vector :

Aτµν = (Ay vol)τµν = Aχεχτµν

with εχτµν the Levi-Civita symbol, which is the components of a volume form in a basis of
determinant 1. Equation (11.56b) can be reexpressed using the chirality operator

γ5 = γ0γ1γ2γ3

defined in Section 11.4.3:
Aχεχτµν = −1

2εχµντ ψ̄γ
χγ5ψ

from which we obtain
Aχ = −1

2 ψ̄γ
χγ5ψ (11.58)

The equation of motion of the spinor (11.50c) and its conjugate then take the form(
/∇−m

)
ψ = 0 (11.59a)(

/̄∇−m
)
ψ̄ = 0 (11.59b)

and one concludes that the term −gµνψ̄( 1
2
←→
/∇ −m)ψ in (11.50a) has to vanish. This is a general

property of homogeneous Lagrangians (as is the Dirac Lagrangian): they take the value zero
on-shell.

Symmetric and antisymmetric parts of the curvature-energy relation

The first equation (11.50a) corresponds to Equation (11.48a) hence to the coefficient εab in
variations, that is to say it is the Euler-Lagrange term corresponding to horizontal variations of



276 CHAPTER 11. COUPLING DIRAC SPINORS WITH HÉLEIN-VEY’S MODEL

α. It can be decomposed into a symmetric and an antisymmetric parts:

2 Ric(µν)−gµν Scal = gµν

(
1
2 ψ̄
←→
/∇ψ −mψ̄ψ

)
− 1

2 ψ̄γ(µ
←→
∇ ν)ψ (11.60a)

2 Ric[µν] = −1
2 ψ̄γ[µ

←→
∇ ν]ψ (11.60b)

We first look at Equation (11.60b). It is the variational term corresponding to “antisymmetric”
variations in the solder form, that it to say variations which preserve the metric. In other words,
they correspond to infinitesimal automorphisms of the frame bundle.

The Bianchi identity on the Ricci curvature (5.5) (in Section 5.1) relates the antisymmetric
part of the Ricci curvature to the exterior divergence of the torsion

2 Ric[µν] = ∇πTπµν − d tr(T )µν = ∇πTπµν (11.61)

This allows to rewrite (11.60b) as an equation on torsion:

∇πTπµν = −1
2 ψ̄γ[µ

←→
∇ ν]ψ (11.62)

The right-hand term, which corresponds to (twice) the antisymmetric part of the “canonical
energy-momentum tensor” (the terms in ψ in (11.50a)), is the so-called Belinfante (improvement)
tensor [Wei95; HLS81; Pop20].

The Cartan geometry, through the Bianchi identity, then imposes the following equation

1
2 ψ̄γ[µ

←→
∇ ν]ψ = 1

4∇π
(
ψ̄{σµν , γπ}ψ

)
(11.63)

which relates the Belinfante tensor to the covariant divergence of the angular momentum current
(also called spin density [Tra06] or spin current [HK78]). In theories without torsion, the
connection has to follow the solder form variations, so that Equation (11.63) would directly take
the place of (11.60b) as in [Wei95] (as variational equation for variations of the solder form which
preserve the metric).

The symmetric component (11.60a) corresponds to complementary variations of the solder
form hence to variations of the metric (symmetric variations of a frame have been considered
as the natural complement to isometric variations [BG92]). The corresponding matter term is
then identified with the symmetric energy-momentum tensor [FR03; HK78]. It is Einstein’s field
equation binding spacetime’s (Ricci symmetric) curvature to the distribution of energy-momentum.

Taking into account the fact that the term corresponding to the Dirac Lagrangian vanishes
due to (11.59), Equations (11.60a) simplifies to

2 Ric(µν)−gµν Scal = 1
2 ψ̄γ(µ

←→
∇ ν)ψ (11.64)

11.4.4 Expression in terms of the Levi-Civita connection
To compare the Einstein-Cartan theory with Einstein’s General Relativity, we relate the connection
to the Levi-Civita connection by means of its contorsion, which is defined as its difference with
the Levi-Civita connection:

∇ = ∇LC +K (11.65)
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with K a 1-form on P with values in so(TP). According to the previous section, the field
equations (11.50b) require the torsion to be purely axial. Since contorsion is uniquely defined by
the torsion (assuming metricity) (see Section 5.3 or [AP12; Sha02]), in our case K has to be 1

2T :

Kπ
µν = 1

2T
π
µν

Ricci and scalar curvatures

According to Equation (5.18) from Section 5.2, the Ricci curvature of the connection can be
related to the Ricci curvature of the Levi-Civita connection by the following equation:

Ricµν = RicLCµν +δτπ
(
∇LCτ Kπ

µν −∇LCµ Kπ
τν +Kπ

τκK
κ
µν −Kπ

µκK
κ
τν

)
= RicLCµν +1

2

(
divLC T

)
µν
− 0 + 0− 1

4T
π
µκT

κ
πν

(11.66)

We see that the difference between the Ricci curvatures difference has an antisymmetric term(
divLC T

)
µν

and a symmetric term − 1
4T

τ
µκT

κ
τν , because the torsion is purely axial. Since the

Ricci curvature of the Levi-Civita connection is symmetric (due to the Bianchi identity (11.61) for
a torsion-free connection), the antisymmetric difference between the Ricci curvatures is exactly
the antisymmetric part of the Ricci curvature of the connection, as expressed in the Bianchi
identity.

We express the Ricci curvature difference in term of the axial vector. Start with the quadratic
term:

TπµκT
κ
πν = gπτgκρTτµκTρπν = gπτgκρAχAυεχτµκευρπν

= AχAυ(gχυgµν − gχνgµυ)
= AχAχgµν −AνAµ

The change in scalar curvature is directly derived:

gµν
(
−1

4T
π
µκT

κ
πν

)
= −3

4A
χAχ (11.67)

Identifying the totally antisymmetric torsion with a 3-form, its divergence for the torsion-free
Levi-Civita connection corresponds to (minus) the codifferential for the Hodge duality structure
[Pet06]. It can hence be identified with the Hodge dual of the exterior differential of the axial
1-form Aπ = gπχA

χ: (
divLC T

)
µν

= −(?dA)µν (11.68)

The left-hand terms of (11.60a-11.60b) are expressed as

2 Ric(µν)−gµν Scal = 2 RicLCµν −gµν ScalLC −2
4(AχAχgµν −AµAν) + gµν

3
4A

χAχ

= 2 RicLCµν −gµν ScalLC +1
4 (AχAχgµν + 2AµAν)

(11.69)

and
2 Ric[µν] = −(?dA)µν (11.70)
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The spin connection

We also need to express the covariant derivative of spinor fields in terms of K. It is straightforward
from (11.65):

∇µψ = ∇LCµ ψ + 1
2K

π
µν

1
2σπ

νψ = ∇LCµ ψ + 1
8Tτµνσ

τνψ (11.71)

We can re-express the kinetic term ψ̄γµ
←→
∇ νψ:

ψ̄γµ
←→
∇ νψ = ψ̄γµ

(
∇LCν + 1

8Tνπτσ
τπ

)
ψ −

(
∇LCν + 1

8Tνπτ σ̄
τπ

)
ψ̄γµψ

= ψ̄

(
γµ
←→
∇
LC

ν + 1
8Tνπτ{σ

πτ , γµ}
)
ψ

(11.72)

and in terms of the axial (pseudo)-vector, using the formulae (11.73-11.74) from Section 11.4.3:

1
2{σπτ , γµ} = ευπτµγ

υγ5 (11.73)
1
2ε

χνπτευπτµ =
(
δχυ δ

ν
µ − δχµδνυ

)
(11.74)

to obtain:
ψ̄γµ
←→
∇ νψ = ψ̄

(
γµ
←→
∇
LC

ν + 1
4Tντκε

υτκ
µγυγ5

)
ψ

= ψ̄

(
γµ
←→
∇
LC

ν + 1
4A

χεχντκε
υτκ

µγυγ5

)
ψ

= ψ̄

(
γµ
←→
∇
LC

ν + 1
2 (Aχγχgµν −Aµγν) γ5

)
ψ

(11.75)

The Dirac operator is readily rewritten as well, using (11.73) and the total antisymmetry mentioned
right above. We directly quote Section 5.3:

/∇ = /∇LC + 1
4γ

µKπµνσ
πν

= /∇LC + 1
2 tr(T )µγµ −

1
8Aτµνγ

τγµγν

= /∇LC − 1
8A

χεχτµνγ
τγµγν

= /∇LC − 1
8A

χ3!γχγ5

= /∇LC − 3
4A

χγχγ5

(11.76)

As a side note, in the general case the (vanishing here) trace term exactly compensates the
trace term of the Cartan-Dirac Equation (11.50c) so that the difference between the two Dirac
equations is always a contribution of the purely axial part of the torsion [Sha02].

The field equations (11.50a-11.50c) can then be reformulated as a Levi-Civita connection +
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axial (pseudo)-vector theory:

2 RicLCµν −gµν ScalLC + 1
4 (AχAχgµν + 2AµAν)

= 1
2 ψ̄
(
γ(µ
←→
∇
LC

ν) + 1
2
(
Aχγχgµν −A(µγν)

)
γ5

)
ψ

(?dA)µν = 1
2 ψ̄
(
γ[µ
←→
∇
LC

ν] −A[µγν]γ5

)
ψ

Aχ = −1
2 ψ̄γ

χγ5ψ

/∇LCψ − 3
4A

χγχγ5ψ −mψ = 0

(11.77a)

(11.77b)

(11.77c)

(11.77d)

The axial pseudo-vector is algebraically defined by (11.77c) according to which it corresponds the
chiral currents. It can be integrated away from the field equations, giving for example in (11.77d)
a cubic interaction term

+3
8
(
ψ̄γχγ5ψ

)
γχγ5ψ

This being said, bringing back the dimensional constants in the equations, one notice that the
right-hand side of (11.77a) has the gravitational constant as a factor [Heh14]. Hence the cubic
term tends to be very weak in standard matter. In (11.77a), the (axial) torsion has a contribution
to both the Einstein curvature term and the (matter) energy-momentum term.
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