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Abstract : Rapoport-Zink spaces are moduli spaces classifying the deformations of some p-

divisible group equipped with additional structures. Its cohomology is expected to play a role in

the local Langlands correspondences. In general, it is difficult to compute it especially outside

of the supercuspidal part, which is described by the Kottwitz conjecture and which is known in a

variety of cases. However, a certain small family of Rapoport-Zink spaces admit a Bruhat-Tits

stratification on their special fiber, such that the strata are Deligne-Lusztig varieties of Coxeter

type. It is the case in particular of the unitary PEL Rapoport-Zink spaces of signature p1, n´ 1q
with p inert or ramified. The closure of a Bruhat-Tits stratum is a generalized Deligne-Lusztig

variety associated to a finite unitary or symplectic group. In the inert case, we compute the

cohomology of an individual stratum entirely, and in the ramified case we describe a substantial

part of it. Hyperspecial level in the inert case guarantees the triviality of the nearby cycles,

allowing us to carry our computations to the analytical tubes of the closed Bruhat-Tits strata.

These tubes form an open cover of the generic fiber of the Rapoport-Zink space, inducing a

Čech spectral sequence which computes its cohomology. Exploiting this sequence, we prove that

the cohomology of this Rapoport-Zink space in the inert case fails to be admissible in general.

Eventually, via p-adic uniformization the cohomology of the Rapoport-Zink space is related to

the cohomology of the supersingular locus of the associated PEL Shimura variety at hyperspecial

level. For low values of n, we compute the cohomology of the supersingular locus through this

sequence.
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1 Introduction

1.1 Bruhat-Tits stratification in Rapoport-Zink spaces

The Langlands program is a significant collection of conjectures, expected to unveil deep and

unifying connections between different fields of mathematics. In particular, it predicts the

existence of a correspondence between Galois representations and automorphic or smooth rep-

resentations of reductive groups over a global or a local field. The first formulations of this

research project date back to Langlands in 1967, giving a far-reaching generalization of Harish-

Chandra and Gelfand’s philosophy of cusp forms. It offered exciting new perspectives to the

field of number theory, and ever since several dozen researchers contributed to expanding, deep-

ening and maturing Langlands’ intuition.

One approach to tackle Langlands conjectures is based on geometry. It is commonly expected

that the correspondence one seeks to establish should be encrypted in the properties of geomet-

ric objects, known as Shimura varieties (global case) and Rapoport-Zink spaces (local case).

In the PEL case, these are moduli spaces respectively for abelian varieties or for p-divisible

groups with extra structures. These symmetric spaces are equipped with actions of reductive

groups over a global or a local field, so that their cohomology is expected to give a geometric

incarnation of the conjectural Langlands correspondences.

Different techniques have been used by various researchers to access the cohomology in some

specific cases. In particular for the local case, the Kottwitz conjecture describes the supercus-

pidal part of the cohomology of Rapoport-Zink spaces. It has been proved in the Lubin-Tate

case by Boyer [Boy99] and by Harris and Taylor [HT01]. It was established for all unramified

Rapoport-Zink spaces of EL type by Fargues [Far04] and Shin [Shi12]. Eventually, it was proved

for the unramified unitary Rapoport-Zink spaces of PEL type in an odd number of variables

by Nguyen and Bertoloni-Meli [Ngu19] and [BMN21].

The non-supercuspidal part is more difficult to grasp, and there is no conjecture to describe it.

So far, it has only been computed in the Lubin-Tate case by Boyer [Boy09], and the case of

the Drinfeld space then followed by duality (see for instance [FGL08]). The specific geometry

of the Lubin-Tate case allowed for explicit computations, however the same approach does not

apply to more general cases, so that the non-supercuspidal part seems to be currently out of

reach.

There exists however a certain small family of Rapoport-Zink spaces whose special fiber ex-

hibits some very nice geometric properties. Such spaces are said to be “fully Hodge-Newton

decomposable” and they have been fully classified by Görtz, He and Nie in [GHN19] using a

group theoretic approach. The special fiber of a fully Hodge-Newton decomposable Rapoport-

Zink space admits a stratification by Deligne-Lusztig varieties, and the incidence relations of the

stratification is closely related to the combinatorics of the Bruhat-Tits building of an underlying

p-adic group. Consequently, this stratification is known as the Bruhat-Tits stratification. The

Rapoport-Zink space is said to be “of Coxeter type” if it is fully Hodge-Newton decomposable,

and if the Deligne-Lusztig varieties occuring in the Bruhat-Tits stratification are of Coxeter
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type. This subfamily of Rapoport-Zink space has also been entirely classified by Görtz, He and

Nie in their subsequent work [GHN22].

To our knowledge, the first time that Deligne-Lusztig varieties were explicitely mentioned in the

context of the Langlands program was in [Yos10], dealing with the Lubin-Tate tower. However,

it is the pioneering work of Vollaard and Vollaard-Wedhorn in [Vol10] and [VW11] which coined

the notion of Bruhat-Tits stratification. The authors used an approach based on Dieudonné

theory and the combinatorics of vertex lattices in a hermitian space. The corresponding space

was the GUp1, n ´ 1q PEL Rapoport-Zink space at inert p and hyperspecial level. Mimicking

their approach, Rapoport, Terstiege and Wilson dealt with the case of GUp1, n´ 1q at a rami-

fied p and level given by a selfdual lattice in [RTW14]. This paved the way to the study of the

geometry of the special fiber on a case-by-case basis by several authors, using either a similar

Dieudonné theoretic approach or a group theoretic approach:

– the case of GUp2, 2q at inert p and hyperspecial level by Howard and Pappas in [HP14],

and by Wang in [Wan21] using another method which also covers the case of split p,

– the case of GUp1, n´ 1q at ramified p and parahoric level of exotic good reduction by Wu

in [Wu16],

– the case of spinor groups GSpinpn, 2q at hyperspecial level by Howard and Pappas in

[HP17],

– the case of GpUp1, n´ 1q ˆ Up1, n´ 1qq at unramified p and hyperspecial level by Helm,

Tian and Xiao in [HTX17],

– the case of GUp1, n ´ 1q at inert p and arbitrary maximal parahoric level by Cho in

[Cho18],

– the case of spinor groups GSpinpn, 2q at certain non-hyperspecial level by Oki in [Oki20],

– the case of a quaternionic unitary space at parahoric level by Wang in [Wan20] and

[Wan22], and independently at maximal special parahoric level by Oki in [Oki22],

– the case of GUp2, 2q at ramified p and at special maximal parahoric level by Oki in [Oki21],

– the case of GUp2, n ´ 2q at inert p and hyperspecial level by Fox and Imai in [FI21],

– the case of GLp4q as well as GUp2, 2q at split p and hyperspecial level by Fox in [Fox22].

Aside from the cases studied in [Cho18] and in [FI21], all the Rapoport-Zink spaces cited above

are of Coxeter type. The spaces of [Cho18] are fully Hodge-Newton decomposable but not

of Coxeter type when the parahoric level is not special, and the space of [FI21] is not fully

Hodge-Newton decomposable when n ě 5. In particular, the strata which are built in loc. cit.

are not necessarily Deligne-Lusztig varieties.

Deligne-Lusztig varieties naturally arise in Deligne-Lusztig theory, a field of mathematics whose

aim is the classification of all irreducible complex representations of finite groups of Lie type,

ie. reductive groups over finite fields. Let G be a connected reductive group over an algebraic

closure Fp of Fp. Let q be a power of p and assume that G has an Fq-structure, induced by

a Frobenius morphism F : G Ñ G. Let G :“ GpFqq » GF be the associated finite group of

Lie type. A Levi complement L Ă G is the group of Fq-points of some rational Levi comple-

ment L of G. Such a Levi complement L is said to be split if L is the Levi complement of a

rational parabolic subgroup P of G. One way of building irreducible representations of G is

7
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to decompose representations parabolically induced from proper split Levi complements L of

G. However, this process fails to recover the cuspidal representations. To remedy this issue,

Deligne and Lusztig defined in their innovative work [DL76] new induction functors from any

(not necessarily split) Levi L of G, generalizing the usual parabolic induction. They did so

by associating a certain variety YLĂP to any parabolic subgroup P of G with rational Levi

complement L, which is naturally equipped with commuting actions of G and of L “ LF . The

alternate sum of the cohomology of YLĂP provides a virtual G´bimodule´L, which is used

to define the Deligne-Lusztig induction functor RG
L between the categories of representations

of L and of G. Reducing to the case where L “ T is a maximal torus in G and computing

explicitely the decompositions of the induced representations RG
T θ for all characters θ of T ,

Lusztig managed in [Lus84] to give a complete classification of all irreducible representations

of all simple finite groups of Lie type.

To sum up, the geometry of certain Rapoport-Zink spaces can be described in terms of Deligne-

Lusztig varieties, and cohomology plays a crucial role in both the Langlands program and

Deligne-Lusztig theory. This observation is the starting point of this PhD thesis, whose aim is

to derive the consequences of the geometric connections established by the authors cited above

for the cohomology. We brought our attention to the two cases that have been chronologically

first considered, that is the unitary PEL Rapoport-Zink space of signature p1, n ´ 1q over a

prime p which is inert, see [Vol10] and [VW11], or ramified, see [RTW14].

In the following, we first detail the general approach before stating the results reached in the

inert case. Eventually, we explain how we plan to adapt the method to the ramified case.

1.2 The case of inert or ramified PEL unitary Rapoport-Zink space
of signature p1, n ´ 1q

If E is a p-adic field where p ą 2, let OE denote its ring of integers,let π denote a uniformizer

and let κpEq be the residue field. Let NilpE be the category of OE-schemes where π is locally

nilpotent. Assume now that E{Qp is quadratic and denote by ¨ the non-trivial element of

GalpE{Qpq. If E{Qp is ramified, we may chose π so that π “ ´π. If E{Qp is unramified, then

E » Qp2 :“ W pFp2qQ, and OE » Zp2 :“ W pFp2q, where W p¨q denotes the ring of Witt vectors.

Let E 1{E be an unramified extension. For S P NilpE1 , a unitary p-divisible group of signature

p1, n ´ 1q over S is a triple pX, ιX , λXq such that

– X is a p-divisible group over S,

– ιX : OE Ñ EndpXq is a OE-action on X such that the induced action on its Lie algebra

satisfies the Kottwitz signature p1, n ´ 1q condition:

@a P OE, charpιpaq |LiepXqq “ pT ´ aq1pT ´ aqn´1,

– if E{Qp is ramified, then the induced action of ιX on LiepXq also satisfies the Pappas

condition:
2ľ

pιpπq ` π |LiepXqq “ 0 and if n ě 3,
nľ

pιpπq ´ π |LiepXqq “ 0,
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– λX : X
„ÝÑ tX is a principal polarization, where tX denotes the Serre dual of X. We

assume that the associated Rosati involution induces ¨ on OE.

Note that charpιpaq |LiepXqq is a polynomial with coefficients in OS. The Kottwitz condition

compares it with a polynomial with coefficients in OE Ă OE1 via the structure morphism

S Ñ OE1 .

Let us fix such a unitary p-divisible group pX, ιX, λXq of signature p1, n´1q over κpE 1q, such that

X is superspecial. We call the triple pX, ιX, λXq the framing object of the Rapoport-Zink space.

If E{Qp is unramified or if E » Qpr
?´ps then one may take E 1 “ E. However if E » Qpr

?
ǫps

where ǫ P Zˆ
p is such that ´ǫ is not a square in Zp, then one must take E 1 “ E bQp

W pFp2qQ in

order to define the framing object. The Rapoport-Zink space is the moduli space M classifying

the deformations of the framing object by quasi-isogenies. More precisely, for S P NilpE1 ,

MpSq is the set of isomorphism classes of tuples pX, ιX , λX , ρXq where pX, ιX , λXq is a unitary

p-divisible group of signature p1, n ´ 1q over S, and where ρX : X ˆS S Ñ X ˆκpE1q S is an

OE-linear quasi-isogeny such that tρX ˝ λX ˝ ρX “ cλX for some c P Qˆ
p . Here S is the special

fiber of S and tρX is the dual quasi-isogeny. By the work of Rapoport and Zink in [RZ96]

and of Pappas in the ramified case, the functor M is a formal scheme over SpfpOE1q which is

formally of finite type, formally smooth in the inert case, and flat in the ramified case.

Remark. In the inert case and in the ramified case with n odd, any choice of the framing object

X gives the same Rapoport-Zink space. In the ramified case with n even however, there are

essentially two choices of framing objects, giving rise to two different spaces. These two cases

are refered to as the split and non-split cases, see [RTW14] Remark 4.2.

Let Mred denote the special fiber of M. The Bruhat-Tits stratification, which is built in

[VW11] for the inert case and in [RTW14] for the ramified case, can be written as

Mred “
ğ

ΛPL

M˝
Λ,

where each stratum M˝
Λ is a locally closed subvariety which is defined over κpEq, and Λ runs

over the set L of so-called vertex lattices. More precisely, the indices Λ are almost self-dual

OE-lattices in a certain E{Qp-hermitian space of dimension n (denoted by V in the inert case,

and by C in the ramified case). Let J denote the group of unitary similitudes of this hermitian

space, so that J acts on the set of vertex lattices L. The group J can also be identified with

the group AutpX, ιX, λXq of automorphisms of the framing object. In particular, J also acts on

M by g ¨ pX, ιX , λX , ρXq :“ pX, ιX , λX , g ˝ ρXq for all g P J .
For all Λ P L let MΛ denote the closure of the stratum M˝

Λ. The J-action on the special fiber

Mred is compatible with the Bruhat-Tits stratification, in the sense that any g P J induces an

isomorphism

g : M˝
Λ

„ÝÑ M˝
gpΛq,

and thus an isomorphism between the closed strata MΛ
„ÝÑ MgpΛq as well. Let JΛ :“ FixJpΛq

be the fixator in J of Λ P L. Then JΛ is a maximal compact subgroup of J , and it admits a

finite quotient which is isomorphic to a finite group of unitary similitudes GUtpΛqpFpq in the

inert case, and to a finite group of symplectic similitudes GSptpλqpFpq is the ramified case. Here

9



Cohomology of DL varieties associated to PEL RZ spaces with signature p1, n ´ 1q

0 ď tpΛq ď n is a certain integer called the orbit type of Λ P L, and which is odd in the inert

case and even in the ramified case. It turns out that the induced action of JΛ on MΛ factors

through an action of this finite quotient.

The Bruhat-Tits stratification is very well behaved for the two following reasons.

(1) The set L of vertex lattices can be given the structure of a polysimplicial complex, whose

combinatorics describes the incidence relations between the closed Bruhat-Tits strata.

(2) Each closed Bruhat-Tits stratum, equipped with its action of the finite quotient of the

maximal compact subgroup JΛ, is naturally isomorphic to a generalized Deligne-Lusztig

variety for GUtpΛqpFpq in the inert case, and for GSptpΛqpFpq in the ramified case.

The polysimplicial complex L of (1) is closely related to the Bruhat-Tits building BT of J over

Qp. In fact, both polysimplicial complexes are equal except in the case of split ramified p with n

even. There, L is a slight modification of BT, see [RTW14] Proposition 3.4. The isomorphism

of (2) also induces an isomorphism between M˝
Λ and the Coxeter variety for GUtpΛqpFpq or for

GSptpΛqpFpq. This is in accordance with the fact that the Rapoport-Zink space M is of Coxeter

type in both the inert and the ramified cases, by [GHN22].

Let Man denote the generic fiber of the formal scheme M in the sense of Berkovich. Thus,

Man is a smooth analytical space of dimension n´1 over E 1. Let red : Man Ñ Mred denote the

reduction map. It is anticontinuous, ie. the preimage of a closed (resp. open) subset is open

(resp. closed). In order to derive the consequences of such a stratification for the cohomology,

we establish the following strategy.

(A) Understand the cohomology H‚
cpMΛ b Fp,Qℓq of an individual closed Bruhat-Tits stra-

tum by using Deligne-Lusztig theory via (2).

(B) Introduce the analytical tubes UΛ :“ red´1pMΛq, and study the cohomology of the

Rapoport-Zink space Man via the Čech spectral sequence associated to the open cover

tUΛuΛ, whose combinatorics is described by (1).

Remark. By general theory, there is a connected reductive group G over Qp, a parahoric sub-

group K0 Ă GpQpq, and a finite étale cover MK Ñ Man for every open compact subgroup

K Ă K0. Here, G is the group of unitary similitudes of some n-dimensional E{Qp-hermitian

space, and J is an inner form of G. Moreover the group K0 is maximal special, and in the inert

case it is hyperspecial. For K Ă K 1, there are transition maps ΠK,K1 : MK1 Ñ MK so that

the spaces MK fit together in a projective system M8 :“ pMKqK , called the Rapoport-Zink

tower. The action of J on M can be extended to an action on each MK which is compatible

with the transition maps. Therefore M8 is equipped with an action of GpQpqˆJ , where GpQpq
acts on the structure level by Hecke correspondences. One may define the cohomology of M8

via the formula

H‚
cpM8,Qℓq :“ limÝÑ

K

limÝÑ
UK

limÐÝ
k

H‚
cpUK pbCp,Z{ℓkZq b Qℓ,

where UK runs over all the relatively compact open subsets of MK . These cohomology groups

are representations of GpQpq ˆ J ˆ W , where W “ WE denotes the absolute Weil group of

10



Cohomology of DL varieties associated to PEL RZ spaces with signature p1, n ´ 1q

E. We note that the action of WE is induced by Rapoport and Zink’s (non effective) Weil

descent datum on M, as defined in [RZ96] 3.48. These cohomology groups are the main object

of interest in the context of the Langlands program.

In this thesis, our results only deal with the cohomology of the generic fiber Man “ MK0
.

Thus, we focus on the cohomology groups

H‚
cpMan,Qℓq “ H‚

cpM8,QℓqK0 ,

as representations of J ˆ W . The reason is that our approach is fruitful only in situations

where one may relate the cohomology of a closed Bruhat-Tits stratum MΛ in the special fiber,

to the cohomology of its analytical tube UΛ,K :“ Π´1
K,K0

red´1pMΛq in MK . In the inert case,

this can be achieved trivially when K “ K0 since the formal smoothness of M insures the

triviality of the nearby cycles. In future works, we hope to generalize our approach to more

general parahoric level structures, in which case the semi-stable reduction should allow explicit

computations of the nearby cycles. Other cases of bad reduction, such as the ramified case,

may also be manageable as we discuss in the end of the introduction.

1.3 Step (A): the cohomology of an individual closed Bruhat-Tits
stratum

As mentioned in (2), each closed Bruhat-Tits stratum is isomorphic to a generalized Deligne-

Lusztig variety. Let us explain what we mean by this. In general, letG be a connected reductive

group over Fp equipped with a Frobenius morphism F : G Ñ G inducing an Fq-structure. Let

G :“ GF be the associated finite group of Lie type. Let P be a parabolic subgroup of G. The

associated generalized Deligne-Lusztig variety is

XP :“ tgP P G{P | g´1F pgq P PF pPqu.

It is defined over Fqδ where δ ě 1 is the smallest integer such that F δpPq “ P, and it is equipped

with an action G ñ XP by left translations. We say that a generalized Deligne-Lusztig vari-

ety XP is classical if in addition, there exists a rational Levi complement L Ă P. When this

condition is satisfied, the Deligne-Lusztig variety inherits an action XP ð L :“ LF by right

translations, which commutes with the action of G. In this case, the cohomology of XP is a

G-bimodule-L, and can be used to defined the Deligne-Lusztig induction functor between the

categories of representations of L and of G. We note that the varieties denoted above by YLĂP

are in fact some L-torsor of XP.

Thus, in the context of Deligne-Lusztig theory which focuses on the study of the induction func-

tors afforded by the varieties YLĂP, one is only interested in classical Deligne-Lusztig varieties.

For this reason, to our knowledge their generalized versions have not been systematically stud-

ied in the literature, except in [BR06] where a criterion for the irreducibility of XP is proved.

It turns out that the Deligne-Lusztig variety to which a closed Bruhat-Tits stratum MΛ is

isomorphic, is not classical. Therefore, no result regarding its cohomology can be directly read

from the literature.
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However, the works of [VW11] in the inert case, and of [RTW14] in the ramified case, give

us enough geometric understanding of MΛ in order to access its cohomology. Let us write

tpΛq “ 2θ` 1 in the inert case, and tpΛq “ 2θ in the ramified case. There exists a stratification

(called the Ekedahl-Oort stratification in the inert case)

MΛ “
ğ

0ďθ1ďθ

MΛpθ1q,

where each MΛpθ1q is a locally closed subvariety, and the closure of the stratum associated to

θ1 is the union of the all the strata associated to t ď θ1. The isomorphism of (2) between MΛ

and a generalized Deligne-Lusztig variety, naturally induces an isomorphism between MΛpθ1q
and a classical Deligne-Lusztig variety which is, in some sense, parabolically induced from the

Coxeter variety for the smaller group of unitary similitudes GU2θ1`1pFpq in the inert case, and

for the smaller group of symplectic similitudes GSp2θ1pFpq in the ramified case.

In [Lus76], Lusztig has computed the cohomology of the Coxeter varieties for all finite classical

groups in terms of unipotent representations. The unipotent representations of GU2θ`1pFpq are
classified by the integer partitions λ of 2θ` 1 and we denote them ρΛ, see 2.2.1. The unipotent

representations of GSp2θpFpq are classified by Lusztig’s notion of symbols S of rank θ and of

odd defect, and we denote them ρS. In 2.4.3 and 4.3.2, we translate Lusztig’s results of [Lus76]

in terms of the classification by integer partitions or by symbols respectively. From [GM20]

and [GP00], we derive the combinatorical rules to compute parabolic induction of unipotent

representations. It allows us to entirely determine the cohomology of a stratum MΛpθ1q. Then,
we study the spectral sequence associated to the stratification

E
a,b
1 “ Ha`b

c pMΛpaq b Fp,Qℓq ùñ Ha`b
c pMΛ b Fp,Qℓq,

which degenerates on the second page thanks to the repartition of the Frobenius eigenvalues

throughout the sequence.

The variety MΛ is projective of dimension θ, and it is smooth only in the inert case, and in the

ramified case when θ ď 1. Let τ P GalpFp{κpEqq be the geometric Frobenius relative to κpEq.
In the inert case, the purity of the Frobenius on the cohomology of MΛ allows us to compute

all the E2 terms, and it leads to the following statement.

Theorem (2.5.1). In the inert case, let Λ P L and write tpΛq “ 2θ ` 1.

(1) The cohomology group Hj
cpMΛ b Fp,Qℓq is zero unless 0 ď j ď 2θ.

(2) The Frobenius τ acts like multiplication by p´pqj on Hj
cpMΛ b Fp,Qℓq.

(3) For 0 ď j ď θ we have

H2j
c pMΛ b Fp,Qℓq “

minpj,θ´jqà
s“0

ρp2θ`1´2s,2sq.

For 0 ď j ď θ ´ 1 we have

H2j`1
c pMΛ b Fp,Qℓq “

minpj,θ´1´jqà
s“0

ρp2θ´2s,2s`1q.

12
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In particular, all irreducible representations in the cohomology groups of even index belong to

the unipotent principal series, whereas all the ones in the groups of odd index have cuspidal

support determined by the unique cuspidal unipotent representation of GU3pFpq, which is de-

noted ρ∆2
with ∆2 equal to the partition p2, 1q of 3. The cohomology group Hj

cpMΛ b F,Qℓq
contains no cuspidal representation of GU2θ`1pFpq unless θ “ j “ 0 or θ “ j “ 1. If θ “ 0 then

H0
c is the trivial representation of GU1pFpq “ Fˆ

p2
, and if θ “ 1 then H1

c is the representation

ρ∆2
of GU3pFpq.

In the ramified case, unless when θ “ 0 or 1, in which case MΛ is respectively isomorphic to

a point or to P1, we do not have a full understanding of the cohomology of MΛ, but we can

still get substantial information from the spectral sequence. For 0 ď k ď 2θ the weights of

the Frobenius τ on the cohomology group Hk
c pMΛ b Fp,Qℓq form a subset of tpi,´pj`1u for

k´minpk, θq ď i ď k´ rk{2s and for k´minpk, θq ď j ď k´ rk{2s ´ 1. Among other things, if

i, j ą k´minpk, θq then we determine the eigenspaces of the Frobenius Hk
c pMΛ b Fp,Qℓqpi and

Hk
c pMΛ b Fp,Qℓq´pj`1 explicitely up to at most four irreducible representations of GSp2θpFpq.

We refer to 4.4.2 and 4.4.3 for the detailed results, as it would be too long to fit this introduction.

In particular, we note that the action of the Frobenius on the cohomology is not pure when

θ ě 3 (for θ “ 2 the non-purity is undetermined). This is in accordance with MΛ not being

smooth for θ ě 2. All irreducible representations of GSpp2θ,Fpq occuring in an eigenspace

of τ for an eigenvalue of the form pi belong to the unipotent principal series, whereas those

corresponding to an eigenvalue of the form ´pj`1 belong to the cuspidal series determined by

the unique cuspidal unipotent representation of GSpp4,Fpq which is denoted by ρS2
, where S2 is

the symbol defined in 4.2.5. We note in particular that Hk
c pMΛ b Fp,Qℓq contains no cuspidal

representation of GSp2θpFpq, unless θ “ k “ 0 or θ “ k “ 2. When θ “ 0 then H0
c is the

trivial representation of GSp0pFpq » t1u, and when θ “ 2 then the eigenspace of τ in H2
c for

the eigenvalue ´p is ρS2
.

Remark. We observe that in the inert case, the non-principal cuspidal series determined above

contributes to the cohomology of MΛ for θ ě 1, but in the ramified case it only contributes for

θ ě 2. Moreover, in the inert case the two cuspidal series contribute separately to groups of

even or odd degrees, but in the ramified case both series contribute to cohomology groups of

degrees of any parity.

1.4 Step (B): on the cohomology of the inert Rapoport-Zink space
at hyperspecial level

From now on, we consider only the inert case. Let Lmax denote the subset of all vertex

lattices Λ P L having maximal orbit type tpΛq “ tmax. We have

tmax “

$
&
%
n if n is odd,

n ´ 1 if n is even.

13
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Let us write tmax “ 2θmax `1. Then tUΛuΛPLmax forms an open cover of the generic fiber Man to

which one can associate the following J ˆW -equivariant Čech spectral sequence, concentrated

in degrees a ď 0 and 0 ď b ď 2pn ´ 1q,

E
a,b
1 :

à
γPI´a`1

Hb
cpUpγq,Qℓq ùñ Ha`b

c pMan,Qℓq.

See 3.4.1.4 for some details regarding the definition of the W -action. Here, for a ď 0 the set

I´a`1 is defined by

I´a`1 :“
#
γ “ pΛ1, . . . ,Λ´a`1q

ˇ̌
ˇ̌
ˇ@1 ď j ď ´a ` 1,Λj P Lpmq and Upγq :“

´a`1č

j“1

UΛj “ H
+
.

By the properties of the Bruhat-Tits stratification, if γ P I´a`1 then there exists a unique vertex

lattice Λpγq P L such that Upγq “ UΛpγq. Thus, we must first relate the cohomology of any

UΛ with the cohomology of its special fiber MΛ that we have investigated in step (A). Each

cohomology group Hb
cpUpγq,Qℓq is naturally a representation of pJΛ ˆ IqτZ where I Ă W is the

inertia subgroup, and τ :“ pp´1 ¨ id,Frobq P J ˆ W is called the rational Frobenius element.

Here, Frob P W is a fixed lift of the geometric Frobenius, and p´1 ¨ id is seen as an element of

the center ZpJq » Qˆ
p2

(recall that J is a group of unitary similitudes).

Proposition (3.4.1.5). Let Λ P L and let 0 ď b ď 2pn ´ 1q. Write tpΛq “ 2θ ` 1. There is a

natural pJΛ ˆ IqτZ-equivariant isomorphism

Hb
cpUΛ,Qℓq „ÝÑ Hb´2pn´1´θq

c pMΛ b Fp,Qℓqpn ´ 1 ´ θq.

On the right-hand side the inertia I acts trivially, the rational Frobenius τ acts like the geometric

Frobenius τ defined in step (A), and the JΛ-action factors through its finite unitary or symplectic

similitudes quotient.

This proposition relies on the fact that we consider the Rapoport-Zink space Man “ MK0
at

hyperspecial level, insuring the triviality of the nearby cycles between UΛ and MΛ.

It follows that τ acts like multiplication by the scalar p´pqb on any term E
a,b
1 . Thus, the spectral

sequence degenerates on the second page and the filtration on the abutment splits, ie. the k-th

cohomology group of Man is the direct sum of the Ea,b
2 terms on the diagonal a ` b “ k, see

3.4.1.7.

In order to study the J-action, we rewrite the terms Ea,b
1 in terms of compact inductions. Let

tΛ0, . . . ,Λθmax
u be a maximal simplex in L such that for all θ, tpΛθq “ 2θ ` 1. We write

Jθ :“ JΛθ
. We also define

K
pθq
´a`1 :“ tγ P Ipθq

´a`1 |Λpγq “ Λθu,
which is a finite subset of I´a`1 equipped with an action of Jθ.

Proposition (3.4.1.10). We have an equality

E
a,b
1 “

mà
θ“0

c ´ IndJJθ

´
Hb
cpUΛθ

,Qℓq b QℓrKpθq
´a`1s

¯

where QℓrKpθq
´a`1s denotes the permutation representation associated to Jθ ñ K

pθq
´a`1.
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By exploiting this spectral sequence, we are able to compute the cohomology groups of Man

of highest degree 2pn ´ 1q. We denote by J˝ the subgroup of J generated by all the compact

subgroups. It corresponds to all the unitary similitudes in J whose multipliers are a unit. We

note that J˝ is normal in J with quotient J{J˝ » Z.

Proposition (3.4.1.12). There is an isomorphism

H2pn´1q
c pMan,Qℓq » c ´ IndJJ˝ 1,

and the rational Frobenius τ acts via multiplication by p2pn´1q.

When θmax “ 1 (ie. n “ 3 or 4), the Bruhat-Tits building of J is essentially a tree. Exploiting

its combinatorics and the spectral sequence, we are also able to compute the group of degree

2pn ´ 1q ´ 1. Recall the representation ρ∆2
which we introduced in the previous section.

Theorem (3.4.3.4). Assume that θmax “ 1. We have

H2pn´1q´1
c pMan,Qℓq » c ´ IndJJ1 ρ∆2

,

with the rational Frobenius τ acting via multiplication by ´p2pn´1q´1.

In general, the terms Ea,b
2 in the second page may be difficult to compute. However, the terms

corresponding to a “ 0 and b P t2pn ´ 1 ´ θmaxq, 2pn ´ 1 ´ θmaxq ` 1u are not touched by

any non-zero differential in the alternating version of the Čech spectral sequence, making their

computations accessible.

Proposition (3.4.1.11). We have an isomorphism of J-representations

E
0,2pn´1´θmaxq
2 » c ´ IndJJθmax

1.

If n ě 3 then we also have an isomorphism

E
0,2pn´1´θmaxq`1

2 » c ´ IndJJθmax
ρp2θmax,1q.

Here 1 denotes the trivial representation, and ρp2θmax,1q denotes (the inflation to Jθmax
of) the

unipotent representation of GU2θmax
pFpq associated to the partition p2θmax, 1q.

The previous statement has important consequences for the cohomology of Man. To explain

it, let us recall a certain property of compactly induced representations.

Let χ be a continuous character of the center ZpJq » Qˆ
p2

and let V be a smooth representation

of J . Let Vχ be the maximal quotient of V on which ZpJq acts through χ. Let K be an open

compact subgroup of J and let ρ be an irreducible smooth representation of K. Assume that

χ agrees with the central character of ρ on ZpJq X K. Then

pc ´ IndJK ρqχ » c ´ IndJZpJqK χ b ρ “ Vρ,χ,0 ‘ Vρ,χ,8,

see 3.4.2.2 and 3.4.2.3. The decomposition on the right-hand side follows from a general theo-

rem in [Bus90]. The J-representation Vρ,χ,0 is the sum of all supercuspidal subrepresentations
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of c ´ IndJZpJqK χ b ρ. This is a finite sum. The space Vρ,χ,8 contains no non-zero admissible

subrepresentation, in particular it contains no irreducible subrepresentation but it may admit

many irreducible quotients and subquotients, none of which is supercuspidal. We note that

Vρ,χ,0 or Vρ,χ,8 may be zero.

Therefore, the behaviour of a compactly induced representation as above depends greatly on

whether there exists some irreducible supercuspidal subquotient in c ´ IndJK ρ. The existence

of such subquotients may be elucidated by type theory, especially in the case where ρ is inflated

from a finite quotient of K. Combining with the two previous propositions, we deduce the fol-

lowing statements. Note that we consider unramified characters of ZpJq because any unipotent

representation has trivial central character.

Proposition (3.4.2.12). Let χ be any unramified character of ZpJq » Qˆ
p2
.

– assume that n ě 3. The representation pE0,2pn´1´θmaxq
2 qχ contains no non-zero admissible

subrepresentation, and it is not J-semisimple. If n ě 5, then the same statement holds

for pE0,2pn´1´θmaxq`1

2 qχ.
– for n “ 1 (resp. n “ 3, 4), let b “ 0 (resp. b “ 3, 5). Then pE0,b

2 qχ is an irreducible

supercuspidal representation of J . If n “ 2, then pE0,2
2 qχ is the sum of two non-isomorphic

supercuspidal representations of J .

In particular, we obtain the following corollary.

Corollary. Let χ be any unramified character of ZpJq. If n ě 3 then H
2pn´1´θmaxq
c pMan,Qℓqχ

is not J-admissible. If n ě 5 then H
2pn´1´θmaxq`1
c pMan,Qℓqχ is not J-admissible.

This non-admissibility result shows a different behaviour from the cases of the Lubin-Tate tower

or of the Drinfeld space.

1.5 The cohomology of the supersingular locus of the associated
Shimura variety at an inert prime for n “ 3, 4

The Rapoport-Zink space M is related to the supersingular locus of a certain PEL Shimura

variety via the p-adic uniformization theorem, and a certain spectral sequence relates the co-

homology of both spaces. In particular, for small values of n, our results so far allow us to

compute the cohomology of the supersingular locus both in the inert case. Let us give some

more details.

Let E be an imaginary quadratic field, and let V be an n-dimensional non-degenerate E{Q-

hermitian space of signature p1, n ´ 1q at infinity, and such that V b Qp is isomorphic to the

hermitian space defining the group of unitary similitudes G. In particular Ep » Qp2 , so that

p is inert in E. Let G be the group of unitary similitudes of V, seen as a reductive group

over Q. Then GQp
“ G and GR “ GUp1, n ´ 1q. Assume that there exists a self-dual OE-

lattice Γ in V, and let StabpΓq denote the compact subgroup of GpAf q of elements g such that

gpΓbZ
pZq “ ΓbZ

pZ. Here Af denotes the ring of finite adèles. For any open compact subgroup
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Kp Ă StabpΓq X GpAp
f q which is small enough, there is an integral model SKp of the associated

PEL Shimura variety which is defined over OE. Since we have hyperspecial level structure at

p, the integral model SKp is smooth and quasi-projective. Let SKp denote the special fiber

of SKp , and let S
ss

Kp denote the supersingular locus. Let I be the inner form of G such that

IpQpq “ J , IAp
f

“ GA
p
f
and IR “ GUp0, nq. The p-adic uniformization theorem of [RZ96] gives

natural isomorphisms of analytic spaces over E 1

IpQqzpMan ˆ GpAp
f q{Kpq „ÝÑ pSss,an

Kp bE E
1,

which are compatible as the level Kp varies. Here pSss,an
Kp denotes the analytical tube of the

supersingular locus inside the analytification of the generic fiber of SKp . Associated to this

geometric identity, Fargues has built in [Far04] a spectral sequence computing the cohomology

of pSss,an
Kp . Since SKp is smooth, it amounts to the cohomology of the supersingular locus S

ss

Kp

itself. The pGpAp
f q ˆ W q-equivariant spectral sequence takes the following shape

F
a,b
2 “

à
ΠPAξpIq

ExtaJ
`
H2pn´1q´b
c pMan,Qℓqp1 ´ nq,Πp

˘
b Πp ùñ Ha`b

c pSss b Fp,Lξq,

where ξ is a finite dimensional irreducible algebraic Qℓ-representation of G of weight wpξq P Z,

Lξ is the associated local system on the Shimura variety SKp , AξpIq is the space of all automor-

phic representations of IpAq of type qξ at infinity, and H‚
cpS

ssb Fp,Lξq :“ limÝÑKp
H‚
cpS

ss

Kpb Fp,Lξq.
By [Far04] Lemme 4.4.12, we have F a,b

2 “ 0 as soon as a is strictly bigger than the semisim-

ple rank of J , which is equal to θmax. In particular, if θmax ď 1 then all the differentials are

zero and the spectral sequence is already degenerated, allowing us to compute the abutment

entirely. Since the case θmax “ 0 is kind of trivial, we now assume θmax “ 1 (ie. n “ 3 or 4). In

particular, the supersingular locus S
ss

Kp has dimension θmax “ 1. Let XunpJq denote the set of

unramified characters of J . Let StJ denote the Steinberg representation of J . If x P Qℓ
ˆ
, we

denote by Qℓrxs the 1-dimensional representation of the Weil group W where the inertia acts

trivially and Frob acts like multiplication by the scalar x.

Let τ1 :“ c ´ IndJNJ pJ1q Ąρ∆2
where NJpJ1q is the normalizer of J1, and Ąρ∆2

is an extension to

NJpJ1q of the cuspidal representation ρ∆2
of J1. Then τ1 is an irreducible supercuspidal repre-

sentation of J . If Π P AξpIq, we define δΠp
:“ ωΠp

pp´1 ¨ idqp´wpξq P Qℓ
ˆ
where ωΠp

is the central

character of Πp, and p
´1 ¨ id lies in the center of J . For any isomorphism ι : Qℓ » C we have

|ιpδΠp
q| “ 1.

Theorem (3.5.2.3). There are GpAp
f q ˆ W -equivariant isomorphisms

H0
cpSpb0q b F,Lξq »

à
ΠPAξpIq

ΠpPXunpJq

Πp b QℓrδΠp
pwpξqs,

H1
cpSpb0q b F,Lξq »

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨StJ

Πp b QℓrδΠp
pwpξqs ‘

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨τ1

Πp b Qℓr´δΠp
pwpξq`1s,

H2
cpSpb0q b F,Lξq »

à
ΠPAξpIq

Π
J1
p “0

Πp b QℓrδΠp
pwpξq`2s.
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1.6 Adapting the approach to the ramified case

As one of the rapporteur wittingly pointed out to me, an unfortunate typo can be found in

[RTW14], where the authors wrote in the course of a paragraph that Pappas’ integral model

of the unitary PEL GUp1, n ´ 1q Shimura variety, at a ramified prime and at parahoric level

given by the stabilizer of a self-dual lattice, is smooth. This is however not the case, and it

is consistent with such a parahoric subgroup being special but not hyperspecial, nor does it

correspond to a case of exotic good reduction. We note that this typo has absolutely no impact

on the contents of [RTW14], as smoothness is not needed there anyway.

In an earlier version of this thesis, I intended to apply the same approach as in the inert case to

the ramified case, and with the smoothness hypothesis it seemed like all steps described above

would work the same way. But, this hypothesis being actually wrong, the situation of the

ramified case is more complex. Therefore, regarding the ramified case, this thesis only contains

the part exploiting Deligne-Lusztig theory in order to get information on the cohomology of a

closed Bruhat-Tits stratum.

Let us explain what obstacles we face and propose a slightly unformal strategy to overcome

them.

The main issue concerns 3.4.1.5 Proposition, where one identifies the cohomology of an analyti-

cal tube UΛ with the cohomology of its special fiber MΛ. In the proof, we push the Bruhat-Tits

stratum into the associated Shimura variety via p-adic uniformization, and we apply a result

of Berkovich in [Ber96]. Since the integral model of the Shimura variety is smooth (in the inert

case), nearby cycles are trivial and we obtain an isomorphism H‚pUΛ,Qℓq » H‚pMΛ,Qℓq. In

general however, we only get an isomorphism with the cohomology of MΛ with coefficients in

the nearby cycles sheaf RΨηQℓ. In situations where these nearby cycles can not be computed,

it seems hopeless to try using the approach of this thesis.

Thus, in the ramified case, the non-smoothness of the integral model means that one must first

understand the nearby cycles on the Shimura variety. The integral model SKp over SpecpOEq
(with E{Qp quadratic ramified) has been built by Pappas in [Pap00] as a moduli space classi-

fying abelian schemes with usual additional structures, and satisfying a certain “Pappas con-

dition” similar to the one in the definition of the Rapoport-Zink space in the ramified case.

Theorem 4.5 of [Pap00] states that SKp is normal, Cohen-Macaulay and flat over SpecpOEq.
Moreover its special fiber SKp is smooth outside of a finite number of singular points, and if

n ě 3 the blow-up BLpSKpq Ñ SKp at the reduced singular locus has semistable reduction, ie.

it is regular and its special fiber is a divisor with normal crossings. If n “ 2 then SKp already

has semistable reduction.

In this context, the nearby cycles RqΨηQℓ for q ą 0 are skyscraper and concentrated on the

singular points of the special fiber SKp . For any point x P SKp , there exists a point y P M
loc

(the local model associated to the PEL datum) such that x and y have some isomorphic etale

neighborhoods. The stalk pRqΨηQℓqx may therefore be computed on the local model, which

has a much simpler linear algebraic description. In fact, from general theory the integral model
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SKp of the Shimura variety and the local model Mloc share the same geometric properties, and

it is mainly the local model which is studied in [Pap00] ; it is also described in [Krä03]. Since

the blow-up BlpMlocq Ñ Mloc at the singular points has semistable reduction, we understand

the nearby cycles on the blow-up (for instance via [Ill94]), and via proper base change we could

compute the cycles on the local model itself. Then, if one may understand the distribution of

singular points of the special fiber SKp with respect to the Bruhat-Tits stratification on the

supersingular locus, it seems reasonable to think that the cohomology groups H‚pMΛ,RΨηQℓq
could be understood, at least sufficiently enough in order to apply the approach described in

the inert case.
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Organization of the thesis

The body of the thesis consists of the two papers written during the PhD, along with the first

part of the 3rd paper. Section 2 is [Mul22b], section 3 is [Mul22a] and Section 4 is the first

part of [Mul22c]. Section 2 and 3 deal with the inert case, the former consists of step (A) and

the latter of step (B) as explained in the introduction. Section 4 deals with step (A) in the

ramified case. Each section may be read independently, however some parts of them may make

reference to previous sections as the papers have been written in this chronological order.

We warn the reader that the notations may vary slightly from one section to the other, as well

as they may vary from the introduction.
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2 Cohomology of the Bruhat-Tits strata in the unrami-

fied unitary Rapoport-Zink space of signature p1, n´1q

Notations

Throughout this section paper, we fix q a power of an odd prime number p. If k is a perfect

field extension of Fq, we denote by σ : x ÞÑ xq the q-th power Frobenius of Galpk{Fqq. We fix

an algebraic closure F of Fq. Unless specified otherwise, G will denote a connected reductive

group over F equipped with an Fq-structure, induced by a Frobenius morphism F : G Ñ G.

If H is an F -stable subgroup of G, we denote by H :“ HF » HpFqq its group of Fq-rational

points. We fix a pair pT,Bq consisting of a maximal torus T contained in a Borel subgroup B,

both of them being F -stable. Such a pair always exists up to G “ GF -conjugation. We obtain

a Coxeter system pW,Sq on which F acts, where W “ WpTq is the Weyl group attached to T

and S is the set of simple reflexions. It can be identified with the Weyl group of G as defined

in [DL76]. Let ℓ denote the length function on W relative to S. For I Ă S, we write PI ,UI ,LI

respectively for the standard parabolic subgroup of type I, for its unipotent radical and for its

unique Levi complement containing T. We also write WI for the parabolic subgroup of W

generated by the simple reflexions in I. Recall that an element w P W is said to be I-reduced

(resp. reduced-I) if for every v P WI , we have ℓpvwq “ ℓpvq ` ℓpwq (resp. ℓpwvq “ ℓpwq ` ℓpvq).
The set of I-reduced (resp. reduced-I) elements is denoted by IW (resp. WI). If I, I 1 Ă S, an

element is said to be I-reduced-I 1 if it belongs to IWI 1

:“ IW X WI 1

.

2.1 The generalized Deligne-Lusztig variety XIpidq

2.1.1 Let G be a connected reductive group over F. Let F be a Frobenius morphism defining

an Fq-structure on it. If H is an F -stable subgroup of G, we denote by H :“ HF » HpFqq its

group of Fq-rational points. We fix a pair pT,Bq consisting of a maximal torus T contained in

a Borel subgroup B, both of them being F -stable. Such a pair always exists up to G “ GF -

conjugation. We obtain a Coxeter system pW,Sq on which F acts, where W “ WpTq is the

Weyl group attached to T and S is the set of simple reflexions. It can be identified with the

Weyl group of G as defined in [DL76]. Let ℓ denote the length function on W relative to S. For

I Ă S, we write PI ,UI ,LI respectively for the standard parabolic subgroup of type I, for its

unipotent radical and for its unique Levi complement containing T. We also write WI for the

parabolic subgroup ofW generated by the simple reflexions in I. Recall that an element w P W

is said to be I-reduced (resp. reduced-I) if for every v P WI , we have ℓpvwq “ ℓpvq`ℓpwq (resp.
ℓpwvq “ ℓpwq ` ℓpvq). The set of I-reduced (resp. reduced-I) elements is denoted by IW (resp.

WI). If I, I 1 Ă S, an element is said to be I-reduced-I 1 if it belongs to IWI 1

:“ IW X WI 1

.

2.1.2 We recall the definition of Deligne-Lusztig varieties from [BR06]. If P is any parabolic

subgroup of G, the associated generalized parabolic Deligne-Lusztig variety is

XP :“ tgP P G{P | g´1F pgq P PF pPqu.
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When these varieties were first introduced in [DL76] only the case of Borel subgroups was con-

sidered, hence the adjective “parabolic”. Moreover, parabolic Deligne-Lusztig varieties have

mostly been studied with the additional assumption that P contains an F -stable Levi comple-

ment, see for instance [DM14]. This is not required by the definition above, hence the adjective

“generalized”.

Using the Coxeter system as above, one may give an equivalent description of these varieties.

For I, I 1 Ă S the generalized Bruhat decomposition is an isomorphism

PIzG{PI 1 “
ğ

wPIWI1

PIzPIwPI 1{PI 1 » WIzW{WI 1 .

For w P IWF pIq, the generalized parabolic Deligne-Lusztig varieties is defined by

XIpwq “ tgPI P G{PI | g´1F pgq P PIwF pPIqu.

The families of varieties XP and XIpwq are the same and [BR06] explains how to go from one

description to the other. The case I “ H corresponds to usual Deligne-Lusztig varieties inG{B.

Moreover, the additional assumption regarding the existence of a rational Levi complement

translates into the equation

w´1Iw “ F pIq, (˚)

which is a compatibility condition between the parameters w and I. The variety XIpwq is

defined over Fqι , where ι is the least integer such that F ιpIq “ I and F ιpwq “ w.

2.1.3 In this paragraph, we compute the dimension of a generalized Deligne-Lusztig variety

XIpwq. For any w P W, let ℓpwq denote the length of w with respect to S.

Proposition. For I Ă S and w P IWF pIq, we have

dimXIpwq “ ℓpwq ` dimG{PIXwF pIqw´1 ´ dimG{PI .

Let us introduce a few more notations. If I, I 1 Ă S, the generalized Bruhat decomposition

implies that the G-orbits for the diagonal action on G{PI ˆ G{PI 1 are given by

OI,I 1pwq :“ tpgPI , hPI 1q | g´1h P PIwPI 1u

for w P IWI 1

. The Deligne-Lusztig variety XIpwq can be seen as the intersection of OI,F pIqpwq
with the graph of the Frobenius F : G{PI Ñ G{PF pIq. This intersection is transverse, see

[DL76] 9.11 (in loc. cit. the proof deals with the case I “ H, but it generalizes to any I).

Thus, the proposition follows from the following lemma and the fact that dimPI “ dimPF pIq.

Lemma. For I, I 1 Ă S and w P IWI 1

, we have

dimOI,I 1pwq “ ℓpwq ` dimG{PIXwI 1w´1 .

Proof. Recall that for I Ă S, the standard parabolic subgroup of type I decomposes as a union

of Bruhat cells PI “ BWIB, and any Bruhat cell BwB has dimension dimB`ℓpwq. Therefore
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dimPI “ dimB ` ℓpIq where ℓpIq denotes the maximal length of elements of WI .

Let I, I 1 and w be as in the lemma. Consider the first projection OI,I 1pwq Ñ G{PI which is

a surjective morphism with fibers isomorphic to PIwPI 1{PI 1 . It is flat since G Ñ G{PI is

faithfully flat, and the pullback OI,I 1pwq ˆG{PI
G is isomorphic to G ˆ PIwPI 1{PI 1 . We have

PIwPI 1 “ BWIBwBWI 1B “ BWIwWI 1B,

therefore the dimension of a fiber is given by

dimPIwPI 1{PI 1 “ dimPIwPI 1 ´ dimPI 1 “ max
vPWIwWI1

ℓpvq ´ ℓpI 1q.

Since w is I-reduced-I 1, according to [DM20] Lemma 3.2.2, any element v P WIwWI 1 can

uniquely be written as v “ xwy such that x P WI , y P WI 1 and xw is reduced-I 1. In particular

ℓpvq “ ℓpxq ` ℓpwq ` ℓpyq. It follows that

max
vPWIwWI1

ℓpvq “ ℓpwq ` max
xPWIXWI1

w´1

ℓpxq ` ℓpI 1q.

We prove that WI X WI 1

w´1 “ WI X WIXwI 1w´1

.

Let x P WI X WI 1

w´1, we show that x is reduced-I XwI 1w´1. Let s P I XwI 1w´1, so that we

can write s “ wtw´1 for some t P I 1. Then xsw “ xwt. Since xs P WI and w is I-reduced, the

left hand side has length ℓpxsq ` ℓpwq. On the other hand, since t P I 1 and xw is reduced-I 1, the

right hand side has length ℓpxwq ` 1 “ ℓpxq ` ℓpwq ` 1. Therefore ℓpxsq “ ℓpxq ` 1 as expected.

For the other inclusion, let y P WI X WIXwI 1w´1

. We show that yw is reduced-I 1. Towards a

contradiction, assume that ℓpywtq ă ℓpywq for some t P I 1. Let y “ s1 . . . sr and w “ u1 . . . ur1

be reduced expressions respectively of y and of w, with the si in I and the uj in S. Since w is

I-reduced, the concatenation of both reduced expressions give a reduced expression of yw. By

the exchange condition (see [DM20] 2.1.2), we have

ywt “ s1 . . . psi . . . srw or yu1 . . . puj . . . ur1

for some 1 ď i ď r or 1 ď j ď r1, where p̈ denotes the product with one omitted term.

The second case is impossible, since after simplifying y it would contradict the fact that w is

reduced-I 1.

Let us write s :“ y´1s1 . . . psi . . . sr P WI , so that we have

wt “ sw.

The left hand side has length ℓpwq ` 1, and the right hand side has length ℓpsq ` ℓpwq. It

follows that s P I has length 1. Therefore s “ wtw´1 P I X wI 1w´1. Eventually, we have

ℓpysq “ ℓpyq ` 1 since y is reduced-pI X wI 1w´1q. This is absurd, because ys “ s1 . . . psi . . . sr
has length r ´ 1 “ ℓpyq ´ 1.
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To conclude the proof, we recall the following general fact. If pW,Sq is a Coxeter system and

K Ă S, then the product map WK ˆ WK
„ÝÑ W mapping pwK , wKq to wKwK is a bijection.

In particular we have

max
wPW

ℓpwq “ max
wKPWK

ℓpwKq ` max
wKPWK

ℓpwKq.

We apply this to the Coxeter system pWI , Iq and K “ I X wI 1w´1. It follows that

max
xPWIXWI1

w´1

ℓpxq “ max
xPWIXWIXwI1w´1

ℓpxq “ ℓpIq ´ ℓpI X wI 1w´1q.

Putting things together, have proved that

dimOI,I 1pwq “ dimG{PI ` dimPIwPI 1{PI 1

“ dimG ´ dimB ´ ℓpIq ` max
vPWIwWI1

ℓpvq ´ ℓpI 1q

“ dimG ´ dimB ´ ℓpIq ` ℓpwq ` max
xPWIXWI1

w´1

ℓpxq

“ dimG ´ dimB ´ ℓpI X wI 1w´1q ` ℓpwq
“ dimG{PIXwI 1w´1 ` ℓpwq.

Remark. In [VW11] 4.4, the formula given by the authors for the dimension of OI,I 1pwq, and
as a consequence for the Deligne-Lusztig variety XIpwq as well, contained a mistake.

2.1.4 Let d be a nonnegative integer and let V be a p2d ` 1q-dimensional Fq2-vector space.

Let p¨, ¨q : V ˆ V Ñ Fq2 be a non-degenerate hermitian form on V . This hermitian structure

on V is unique up to isomorphism. In particular, we may once and for all a basis B of V in

which p¨, ¨q is described by the square matrix 9w0 of size 2d ` 1, having 1 on the anti-diagonal

and 0 everywhere else. If k is a perfect field extension of Fq2 , we may extend the pairing to

Vk :“ V bF
q2
k by setting

pv b x, w b yq :“ xyσpv, wq P k
for all v, w P V and x, y P k. If U is a subspace of Vk we denote by UK its orthogonal, that is

the subspace of all vectors x P Vk such that px, Uq “ 0.

Let J denote the finite group of Lie type UpV, p¨, ¨qq. It is defined as the group of F -fixed

points of J :“ GLpV qF with F a non-split Frobenius morphism. Using the basis B, the group

J is identified with GL2d`1 with Fq-structure induced by the Frobenius morphism F pMq :“
9w0pM pqqq´t 9w0. Here, M pqq denotes the matrix M having all coefficients raised to the power q.

We may then identify J with the usual finite unitary group U2d`1pqq.
The pair pT,Bq consisting of the maximal torus of diagonal matrices and the Borel subgroup

of upper-triangular matrices is F -stable. The Weyl system of pT,Bq may be identified with

pS2d`1,Sq in the usual manner, where S is the set of simple transpositions si :“ pi i ` 1q
for 1 ď i ď 2d. Under this identification, the Frobenius acts on W as the conjugation by the

element w0, characterized for having the maximal length. It satisfies w0piq “ 2d` 2 ´ i, and a

natural representative of w0 in the normalizer of T is no other than 9w0. Since w0 has order 2,

the action of the Frobenius on W is involutive. It also preserves the simple reflexions with the

formula F psiq “ s2d`1´i.
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2.1.5 We define the following subset of S

I :“ ts1, . . . , sd, sd`2, . . . , s2du “ Sztsd`1u.

We have F pIq “ Sztsdu “ I. We consider the generalized Deligne-Lusztig variety XIpidq. It

corresponds to the variety denoted YΛ in [VW11] 4.5. It has dimension d and it does not satisfy

the compatibility condition (˚).

Proposition ([VW11] 4.4). The variety XIpidq is defined over Fq2 and it is projective, smooth,

geometrically irreducible of dimension d.

Although the proposition in loc. cit. is only stated in the case q “ p, the arguments carry over

to general q. The geometric irreducibility is a consequence of the criterion proved in [BR06].

Remark. Even though the dimension formula for generalized Deligne-Lusztig varieties in [VW11]

is wrong, it does give the correct result in the case of XIpidq. It is because for w “ id, we have

I X wF pIqw´1 “ I X F pIq. Therefore, that mistake does not change anything regarding the

validity of the authors’ work.

For example, we may consider the Deligne-Lusztig variety XIps2s1q for U3pFqq with I “ ts1u. It
is classical so that dimXIps2s1q “ ℓps2s1q “ 2. However, we have PIXF pIq “ B and dimG{B “
3 whereas dimG{PI “ 2, so that the formula of loc. cit. says that XIps2s1q would be of

dimension 2 ` 3 ´ 2 “ 3.

2.1.6 Rational points of Deligne-Lusztig varieties associated to a unitary group U over Fq

can be described in terms of vectorial flags, in a certain relative position with respect to their

image by the Frobenius. Let k be a perfect field extension of Fq2 . According to [Vol10] 2.12,

the Frobenius acts on a flag F in Vk by sending it to its orthogonal flag FK. Explicitely, we

have
F : t0u Ă F1 Ă . . . Ă Fr Ă Vk,

FK : t0u Ă FK
r Ă . . . Ă FK

1 Ă Vk.

Here, given our choice of I, a k-rational point of XIpidq corresponds to a flag of the type

F : t0u Ă U Ă Vk

with U having dimension d ` 1, and which is of relative position id with respect to FK. This

precisely means that U must contain UK.

Proposition. The k-rational points of XIpidq are given by

XIpidqpkq » tU Ă Vk | dimU “ d ` 1 and UK Ă Uu.

2.1.7 In [VW11] 5.3, the authors defined the Ekedahl-Oort stratification on the Deligne-

Lusztig variety XIpidq. By loc. cit. Corollary 5.12, it turns out that each stratum is itself

isomorphic to a parabolic Deligne-Lusztig variety which is not generalized. They are defined
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as follows.

For 0 ď t ď d, we define the subset

It :“ ts1, . . . , sd´t´1, sd`t`2, . . . , s2du Ă S.

The subset It consists of all 2d simple reflexions in S, except that we removed the 2t`2 ones in

the middle. Thus, it has cardinality 2pd´t´1q. In particular, it is empty for t “ d or d´1. We

also define the cycle wt :“ pd` t` 1 d` t . . . d` 1q. Its decomposition into simple reflexions

is wt “ sd`1 . . . sd`t. When t “ 0, it is the identity. We note that even though Id “ Id´1 “ H,

we still have wd “ wd´1.

One may check that F pItq “ It and that wt belongs to ItWIt . Moreover, the compatibility

condition (˚) is satisfied for the pair pIt, wtq. Indeed, the reduced decomposition for wt does

not use any simple reflexion that is adjacent to those in It.

Proposition ([VW11] 3.3 and 5.3). The Deligne-Lusztig variety XItpwtq is defined over Fq2

and has dimension t. There is a natural immersion XItpwtq ãÑ XIpidq inducing a stratification

XIpidq “
ğ

0ďtďd

XItpwtq.

The closure of the stratum XItpwtq is the union of all the strata XIspwsq for s ď t.

2.1.8 Following the proof of Theorem 2.15 of [Vol10], we can describe the stratification at

the level of rational points. Let k be a perfect field extension of Fq2 . Because of the choice of

It, a k-point of XItpwtq is a flag

F : t0u Ă F´t´1 Ă . . . Ă F´1 Ă F1 Ă . . . Ă Ft`1 Ă Vk

with dimpF´iq “ d ` 1 ´ i and dimpFiq “ d ` i for 1 ď i ď t ` 1, and which is in relative

position wt with respect to FK. It means that we have a diagram of the following type.

F : F´t´1 Ă . . . Ă F´1 Ă F1 Ă F2 Ă . . . Ă Ft Ă Ft`1

FK : FK
t`1 Ă . . . Ă FK

1 Ă τpF1q Ă τpF2q Ă . . . Ă τpFtq Ă τpFt`1q

{ { {

Here, τ :“ σ2 ¨ id is an Fq2-linear automorphism of Vk, and it satisfies τpUq “ pUKqK for every

subspace U Ă pVΛqk. This diagram implies that τpFiq “ Fi´1 ` τpFi´1q for all 2 ď i ď t ` 1.

This rewrites as Fi “ Fi´1 ` τ´1pFi´1q. We deduce that

Fi “
i´1ÿ

l“0

τ´lpF1q

for all 1 ď i ď t ` 1. Thus, the whole flag is determined by the subspace F1, which has

dimension d ` 1 and contains its orthogonal. The immersion XItpwtq ãÑ XIpidq maps the flag

F to F1.
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Conversely, a k-point of XIpidq is given by a subspace U Ă Vk of dimension d ` 1 containing

its orthogonal. For i ě 1 we define

Fi :“
i´1ÿ

l“0

τ´1pUq Ă Vk.

Then pFiqiě1 is a nondecreasing sequence of subspaces of Vk. Let t be the smallest integer

such that Ft`1 “ Ft`2. It follows that 0 ď t ď d and that t is also the smallest integer such

that Ft`1 “ τpFt`1q. Moreover the orthogonal UK has dimension d and we have UK Ă U ,

so that UK Ă pUKqK “ τpUq. In particular, if t ą 0 then U X τpUq “ UK. Thus, we have

dimpF2q “ d`2. Similarly, we have dimpFiq “ d` i for all 1 ď i ď t`1. By setting F´i :“ FK
i ,

we obtain a flag F that is the k-rational point of XItpwtq associated to U .

2.1.9 The Deligne-Lusztig varietiesXItpwtq are related to Coxeter varieties for smaller unitary

groups as we now explain. We define

Kt :“ ts1, . . . sd´t´1, sd´t`1, . . . , sd`t, sd`t`2, . . . , s2du “ Sztsd´t, sd`t`1u.

The setKt is obtained from It by adding the 2t simple reflexions in the middle. It has cardinality

2d ´ 2 and satisfies F pKtq “ Kt. We have It Ă Kt with equality if and only if t “ 0.

Proposition. There is a U2d`1pqq-equivariant isomorphism

XItpwtq » U2d`1pqq{UKt
ˆLKt

X
LKt

It
pwtq,

where X
LKt

It
pwtq is a Deligne-Lusztig variety for LKt

. The zero-dimensional variety U2d`1pqq{UKt

has a left action of U2d`1pqq and a right action of LKt
.

Proof. This is an application of [DM14] Proposition 7.19 which is the geometric identity behind

the transitivity of the Deligne-Lusztig functors. It applies to the varieties XItpwtq because they
satisfy the compatibility condition (˚), and satisfies the following conditions: Kt contains It, it is

stable by the Frobenius and wt belongs to the parabolic subgroupWKt
» Sd´tˆS2t`1ˆSd´t Ă

S2d`1.

2.1.10 The Levi complement LKt
is isomorphic to the product GLd´t ˆ GL2t`1 ˆ GLd´t

as a reductive group over F. Given a matrix M “ diagpA,C,Bq P LKt
, we have F pMq “

diagpF pBq, F pCq, F pAqq, where we still denote by F the Frobenius morphism for smaller linear

groups. Writing H for the product of the two GLd´t factors, we have LKt
» H ˆ GL2t`1 and

both factors inherit an Fq-structure by means of F . We have LKt
» GLd´tpq2q ˆ U2t`1pqq, the

first factor corresponding to H.

The Weyl group of LKt
is isomorphic to WH ˆ S2t`1 where WH » Sd´t ˆ Sd´t is the Weyl

group of H. Via this decomposition, the permutation wt corresponds to idˆ rwt, where rwt is the
restriction of wt to td´ t`1, . . . , d` t`1u. Similarly, the set of simple reflexions S decomposes

as SH \ rS, the second term corresponding to the simple reflexions in S2t`1. Then, we have
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It “ SH \ H.

The Deligne-Lusztig variety for LKt
decompose accordingly as the following product

X
LKt

It
pwtq “ XH

SH
pidq ˆ X

U2t`1pqq
H p rwtq.

The variety XH

SH
pidq is just a point, whereas X

U2t`1pqq
H p rwtq is a Deligne-Lusztig variety for the

unitary group of size 2t`1. We observe that the permutation rwt is aCoxeter element inS2t`1,

ie. the product of exactly one simple reflexion for each orbit of the Frobenius. Deligne-Lusztig

varieties attached to Coxeter elements are called Coxeter varieties, and their cohomology

with coefficients in Qℓ where ℓ is a prime number different from p are well understood thanks

to the work of Lusztig in [Lus76]. Before stating the results of loc. cit. we recall parts of the

representation theory of finite unitary groups.

2.2 Irreducible unipotent representations of the finite unitary group

2.2.1 In this section, we recall the classification of the irreducible unipotent representations

of the finite unitary group and we explain the underlying combinatorics.

We use the notations from 2.1.1. For w P W, let 9w be a representative of w in the normalizer

NGpTq of T. By the Lang-Steinberg theorem, one can find g P G such that 9w “ g´1F pgq.
Then gT :“ gTg´1 is another F -stable maximal torus, and w P W is said to be the type of gT

with respect to T. Every F -stable maximal torus arises in this manner. According to [DL76]

Corollary 1.14, the G-conjugacy class of gT only depends on the F -conjugacy class of the image

w of the element g´1F pgq P NGpTq in the Weyl group W. Here, two elements w and w1 in W

are said to be F -conjugates if there exists some element u P W such that w “ uw1F puq´1.

For every w P W, we fix Tw an F -stable maximal torus of type w with respect to T. The

Deligne-Lusztig induction of the trivial representation of Tw is the virtual representation of G

defined by the formula

Rw :“
ÿ

iě0

p´1qiHi
cpXHpwqq

where XHpwq is a Deligne-Lusztig variety for G as defined in 2.1.2. According to [DL76]

Theorem 1.6, the virtual representation Rw only depends on the F -conjugacy class of w in W.

An irreducible representation of G is said to be unipotent if it occurs in Rw for some w P W.

The set of isomorphism classes of unipotent representations of G is usually denoted EpG, 1q
following Lusztig’s notations.

2.2.2 Assume that the Coxeter graph of the reductive group G is a union of subgraphs of

type Am (for various m). Let |W be the set of isomorphism classes of irreducible representations

of its Weyl group W. The action of the Frobenius F on W induces an action on |W, and we

consider the fixed point set |WF . Then, the following classification theorem is well known.

Theorem ([LS77] Theorem 2.2). There is a bijection between |WF and the set of isomorphism

classes of irreducible unipotent representations of G “ GF .

28



Cohomology of DL varieties associated to PEL RZ spaces with signature p1, n ´ 1q

We recall how the bijection is constructed. If V P |WF is an irreducible F -stable representation

of W, according to loc. cit. there is a unique automorphism rF of V of finite order such that

RpV q :“ 1

|W|
ÿ

wPW

Tracepw ˝ rF |V qRw

is an irreducible representation of G. Then the map V ÞÑ RpV q is the desired bijection.

In the case G “ GLn with the Frobenius morphism F being either standard or twisted (ie.

G “ GLnpqq or Unpqq), we have an equality |WF “ |W. Moreover, the automorphism rF is

the identity in the former case and multiplication by w0 on the latter, where w0 is the element

of maximal length in W. Thus, in both cases the irreducible unipotent representations of G

are classified by the irreducible representations of the Weyl group W » Sn, which in turn are

classified by partitions of n or equivalently by Young diagrams. We now recall the underlying

combinatorics behind the representation theory of the symmetric group. A general reference is

[Jam84].

2.2.3 A partition of n is a tuple λ “ pλ1 ě . . . ě λrq with r ě 1 and the λi’s are positive

integers such that λ1 ` . . . ` λr “ n. The integer n is called the length of the partition and

it is also denoted by |λ|. If a partition has a series of repeating integers, it is common to

write it shortly with an exponent. For instance, the partition p3, 3, 2, 2, 1q of 11 will be denoted

p32, 22, 1q. Partitions of n are naturally identified with Young diagrams of size n. The diagram

attached to λ has r rows consisting successively of λ1, . . . , λr boxes.

To any partition λ of n, one can naturally associate an irreducible representation χλ of the

symmetric group Sn. An explicit construction is given, for instance, by the notion of Specht

modules as explained in [Jam84] 7.1. In particular, the character χpnq is trivial while the

character χp1nq is the signature.

2.2.4 We recall the Murnaghan-Nakayama rule which gives a recursive formula to evaluate

the characters χλ. We first need to introduce skew Young diagrams. Consider a pair λ and µ

of two partitions respectively of integers n ` k and k. Assume that the Young diagram of µ

is contained in the Young diagram of λ. By removing the boxes corresponding to µ from the

diagram of λ, one finds a shape consisting of n boxes denoted by λzµ. Any such shape is called

a skew Young diagram of size n. It is said to be connected if one can go from a given box

to any other by moving in a succession of adjacent boxes.

For example, consider the partition λ “ p32, 22, 1q and let us define the partitions µ1 “ p22q,
µ2 “ p3, 12q and µ3 “ p2, 1q. The diagrams below correspond, from left to right, to the skew

Young diagrams λzµi for i “ 1, 2, 3.
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The skew Young diagram λzµ1 is not connected, whereas the others are connected. A skew

Young diagram is said to be a border strip if it is connected and if it does not contain any

2 ˆ 2 square. The height of a border strip is defined as its number of rows minus 1. For

instance, among the three skew Young diagrams above only λzµ2 is a border strip. Its size is

6 and its height is 3.

The characters χλ are class functions, so we only need to specify their values on conjugacy

classes of the symmetric group Sn. These conjugacy classes are also naturally labelled by

partitions of n. Indeed, up to ordering any permutation σ P Sn can be uniquely decomposed

as a product of r ě 1 cycles c1, . . . , cr with disjoint supports. We denote by νi the cycle length

of ci and we order them so that ν1 ě . . . ě νr. We allow cycles to have length 1, so that the

union of the supports of all the ci’s is t1, . . . , nu. Thus, we obtain a partition ν “ pν1, . . . , νrq
of n which is called the cycle type of the permutation σ. Two permutations are conjugates in

Sn if and only if they share the same cycle type. We denote by χλpνq the value of the character
χλ on the conjugacy class labelled by ν.

Theorem (Murnaghan-Nakayama rule). Let λ and ν be two partitions of n. We have

χλpνq “
ÿ

S

p´1qhtpSqχλzSpνzν1q,

where S runs over the set of all border strips of size ν1 in the Young diagram of λ, such that

removing S from λ gives again a Young diagram. Here, the integer htpSq P Zě0 is the height of

the border stip S, the Young diagram λzS is the one obtained by removing S from λ, and νzν1
is the partition of n ´ ν1 obtained by removing ν1 from ν.

Applying the Murnaghan-Nakayama rule in successions results in the value of χλpνq. We see

in particular that χpnq is the trivial character whereas χp1nq is the signature. We illustrate the

computations with λ “ p32, 22, 1q and ν “ p42, 3q. There are only two elligible border strips of

size 4 in the diagram of λ, as marked below.

ˆ
ˆ ˆ
ˆ

and
ˆ ˆ
ˆ
ˆ

Both border strips have height 2. Thus, the formula gives

χp32,22,1qp42, 3q “ χp32,1qp4, 3q ` χp3,14qp4, 3q.

In each of the two Young diagrams obtained after removal of the border strips, there is only

one elligible strip of size 4, and eventually the three last remaining boxes form the final border

strip of size 3.
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ˆ ˆ ˆ
ˆ

ùñ ˆ ˆ ˆ
ˆ
ˆ
ˆ
ˆ

ùñ ˆ ˆ ˆ

Taking the heights of the border strips into account, we find

χp32,1qp4, 3q “ ´χp3qp3q “ ´χH “ ´1, χp3,14qp4, 3q “ ´χp3qp3q “ ´χH “ ´1.

Here, H denotes the empty partition. The computation finally gives χp32,22,1qp42, 3q “ ´2.

2.2.5 The irreducible unipotent representation of Unpqq (resp. GLnpqq) associated to χλ by

the bijection of 2.2.1 Theorem is denoted by ρUλ (resp. ρGL
λ ). The partition pnq corresponds to

the trivial representation and p1nq to the Steinberg representation in both cases. We will omit

the superscript when the group we are talking about is clear from the context.

The degrees of the representations ρGL
λ and ρUλ are given by expressions known as hook for-

mula. Given a box l in the Young diagram of λ, its hook length hplq is 1 plus the number

of boxes lying below it or on its right. For instance, in the following figure the hook length of

every box of the Young diagram of λ “ p32, 22, 1q has been written inside it.

7 5 2

6 4 1

4 2

3 1

1

Proposition ([GP00] Propositions 4.3.1 and 4.3.5). Let λ “ pλ1 ě . . . ě λrq be a partition of

n. The degrees of the irreducible unipotent representations ρGL
λ and ρUλ , respectively of GLnpqq

and Unpqq, are given by the following formulas

degpρGL
λ q “ qapλq

śn

i“1 q
i ´ 1ś

lPλ q
hplq ´ 1

, degpρUλ q “ qapλq

śn

i“1 q
i ´ p´1qiś

lPλ q
hplq ´ p´1qhplq

,

where apλq “ řr

i“1pi ´ 1qλi.

2.2.6 We recall from [GM20] 3.1 and 3.2 some definitions on classical Harish-Chandra theory.

A parabolic subgroup of G is a subgroup P Ă G such that there exists an F -stable parabolic

subgroup P of G with P “ PF . A Levi complement of G is a subgroup L Ă G such that

there exists an F -stable Levi complement L of G, contained inside some F -stable parabolic

subgroup, such that L “ LF . Any parabolic subgroup P of G has a Levi complement L.

Let L “ LF be a Levi complement of G inside a parabolic subgroup P “ PF . Let U “ UF be
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the F -fixed points of the unipotent radical U of P. The Harish-Chandra induction and

restriction functors are defined by the following formulas.

RG
LĂP : ReppLq Ñ ReppGq ˚RG

LĂP : ReppGq Ñ ReppLq
σ ÞÑ CrG{U s bCrLs σ ρ ÞÑ HomGpCrG{U s, ρq

Here, ReppGq is the category of complex representations of G, and similarily for ReppLq. These
two functors are adjoint, and up to isomorphism they do not depend on the choice of the

parabolic subgroup P containing the Levi complement L. For this reason, we will denote the

functors RG
L and ˚RG

L instead.

An irreducible representation of G is called cuspidal if its Harish-Chandra restriction to any

proper Levi complement is zero. We consider pairs pL,Xq where L is a Levi complement of

G and X is an irreducible representation of L. We define an order on the set of such pairs

by setting pL,Xq ď pM,Y q if L Ă M and if X occurs in the Harish-Chandra restriction of Y

to L. A pair is said to be cuspidal if it is minimal with respect to this order, in which case

X is a cuspidal representation of L. If pL,Xq is a cuspidal pair, we will denote by rL,Xs its

conjugacy class under G.

Given a cuspidal pair pL,Xq of G, its associated Harish-Chandra series EpG, pL,Xqq is

defined as the set of isomorphism classes of irreducible constituents in the induction of X to

G. Each series is non empty. Two of them are either disjoint or equal, the latter occuring if

and only if the two cuspidal pairs are conjugates in G. Thus, the series are indexed by the

conjugacy classes of cuspidal pairs rL,Xs. Moreover, the isomorphism class of any irreducible

representation of G belongs to some Harish-Chandra series. Thus, Harish-Chandra series form

a partition of the set of isomorphism classes of irreducible representations of G. If ρ is an

irreducible representation of G, the conjugacy class rL,Xs corresponding to the series to which

ρ belongs is called the cuspidal support of ρ. If T denotes a maximal torus in G, then the

series EpG, pT, 1qq is called the unipotent principal series of G.

2.2.7 For the general linear group GLnpqq, there is no unipotent cuspidal representation

unless n “ 1, in which case the trivial representation is cuspidal. Moreover, the unipotent

representations all belong to the principal series. The situation for the unitary group is very

different. First, by [Lus77] 9.2 and 9.4 there exists an irreducible unipotent cuspidal represen-

tation of Unpqq if and only if n is an integer of the form n “ xpx`1q
2

for some x ě 0, and when

that is the case it is the one associated to the partition ∆x :“ px, x ´ 1, . . . , 1q, whose Young

diagram has the distinctive shape of a reversed staircase. Here, as a convention U0pqq denotes

the trivial group.

For example, here are the Young diagrams of ∆1,∆2 and ∆3. Of course, the one of ∆0 the

empty diagram.
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Furthermore the unipotent representations decompose non trivially into various Harish-Chandra

series, as we recall from [GM20] 4.3.

We consider an integer x ě 0 such that n decomposes as n “ 2a ` xpx`1q
2

for some a ě 0.

We also consider the standard Levi complement Lx » GL1pq2qa ˆUxpx`1q

2

pqq which corresponds

to the choice of simple reflexions sa`1, . . . , sn´a´1. We write ρx for the inflation of ρU∆x
to an

irreducible representation of Lx. Then EpUnpqq, 1q decomposes as the disjoint union of all the

Harish-Chandra series EpUnpqq, pLx, ρxqq for all possible choices of x. With these notations, the

principal unipotent series corresponds to x “ 0 if n is even and to x “ 1 if n is odd.

2.2.8 Given an irreducible unipotent representation ρλ of Unpqq, there is a combinatorical

way of determining the Harish-Chandra series to which it belongs. We consider the Young

diagram of λ. We call domino any pair of adjacent boxes in the diagram. It may be either ver-

tical or horizontal. We remove dominoes from the rim of the diagram of λ so that the resulting

shape is again a Young diagram, until one can not proceed further. This process results in the

Young diagram of the partition ∆x for some x ě 0, and it is called the 2-core of λ. It does not

depend on the successive choices for the dominoes. Then, the representation ρλ belongs to the

series EpUnpqq, pLx, ρxqq if and only if λ has 2-core ∆x.

For instance, the diagram λ “ p32, 22, 1q has 2-core ∆1, as it can be determined by the fol-

lowing steps. We put crosses inside the successive dominoes that we remove from the dia-

gram. Thus, the unipotent representation ρλ of U11pqq belongs to the unipotent principal series

EpU11pqq, pL1, ρ1qq.

ˆ
ˆ

ùñ
ˆ ˆ

ùñ
ˆ
ˆ

ùñ
ˆ ˆ

ùñ ˆ
ˆ

ùñ

2.3 Computing Harish-Chandra induction of unipotent representa-
tions in the finite unitary group

2.3.1 In this paragraph, we recover the notations from 2.1.1. We recall from [GM20] 3.2

how Harish-Chandra induction of unipotent representations can be explicitely computed. Let

W “ WF be the Weyl group of G. It is still a Coxeter group, whose set of simple reflexions S

is identified with the set of F -orbits on S. Let pL,Xq be a cuspidal pair of G. The relative

Weyl group of L is given by WGpLq :“ NGpLqF {L Ă W . The relative Weyl group of the

pair pL,Xq, also called the ramification group of X in [HL83], is the subgroup WGpL,Xq
of WGpLq consisting of elements w such that wX » X, where wX denotes the representation

wXpgq :“ Xpwgw´1q of L. It is yet again a Coxeter group if G has a connected center or if X

is unipotent.

Theorem 3.2.5 of [GM20] establishes an isomorphism between the endomorphism algebra of the

induced representation RG
LpXq and the complex group ring of the ramification groupWGpL,Xq.
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In particular, this gives an bijection between the Harish-Chandra series EpG, pL,Xqq and the

set IrrpWGpL,Xqq of isomorphism classes of irreducible complex characters ofWGpL,Xq. These
bijections for G and for various Levi complements in G can be chosen to be compatible with

Harish-Chandra induction. This is known as Howlett and Lehrer’s comparison theorem which

was proved in [HL83].

Theorem ([GM20] Comparison Theorem 3.2.7). Let pL,Xq be a cuspidal pair for the finite

group of Lie type G. For every Levi complement M in G containing L, the bijection between

IrrpWMpL,Xqq and EpM, pL,Xqq can be taken so that the diagrams

ZEpG, pL,Xqq ZIrrpWGpL,Xqq

ZEpM, pL,Xqq ZIrrpWMpL,Xqq

„

„

RG
M Ind

ZEpG, pL,Xqq ZIrrpWGpL,Xqq

ZEpM, pL,Xqq ZIrrpWMpL,Xqq

„

˚RG
M Res

„

are commutative. Here, Ind and Res on the right-hand side of the diagrams are the classical

induction and restriction functors for representations of finite groups.

In other words, computing Harish-Chandra induction and restrictions of representations in G

can be entirely done at the level of the associated Coxeter groups. In order to use this statement

for unitary groups, we need to make the horizontal arrows explicit and to understand the

combinatorics behind induction and restriction of the irreducible representations of the relevant

Coxeter groups. This has been explained consistently in [FS90] for classical groups.

2.3.2 We focus on the case of the unitary group. Let x ě 0 such that n “ 2a ` xpx`1q
2

for

some a ě 0. We consider the cuspidal pair pLx, ρxq as in 2.2.7, with Lx “ GL1pq2qaˆUxpx`1q

2

pqq.
The relative Weyl group WUnpqqpLxq is isomorphic to the Coxeter group of type Ba, which is

usually denoted by Wa. Indeed, the Weyl group WUnpqqpLxq admits a presentation by elements

σ1, . . . , σa´1 and θ of order 2 satisfying the relations

θσ1θσ1 “ σ1θσ1θ, θσi “ σiθ, @ 2 ď i ď m ´ 1.

σiσi`1σi “ σi`1σiσi`1, σiσj “ σjσi, @ |i ´ j| ě 2.

Explicitely, the element σi is represented by the permutation matrix of the double transposition

pi i ` 1qpn ´ i n ´ i ` 1q and the element θ by the matrix of the transposition p1 nq, all
of which belong to NUnpqqpLxq. This presentation coincide with the Coxeter group Wa of type

Ba, see in [GP00] 1.4.1. Moreover, the ramification group WUnpqqpLx, ρxq is equal to the whole

of WUnpqqpLxq » Wa. The identification between the ramification group and the Coxeter group

Wa is naturally induced by the isomorphism between the absolute Weyl group W and the

symmetric group Sn. In order to proceed further, we need to explain the representation theory

of the group Wa.

2.3.3 LetWa be a Coxeter group of typeBa given with a presentation by elements σ1, . . . , σa´1

and θ satisfying equations as in 2.3.2. For 1 ď i ď a ´ 1, we define θi “ σi . . . σ1θσ1 . . . σi. In
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particular θ0 “ θ. Following [GP00] 3.4.2, we define signed blocks to be elements of the

following form. Given k ě 0 and e ě 1 such that k ` e ď a, the positive (resp. negative) block

of length e starting at k is

b`
k,e :“ σk`1σk`2 . . . σk`e´1, b´

k,e :“ θkσk`1σk`2 . . . σk`e´1.

A bipartition of a is an ordered pair pα, βq where α is a partition of some integer 0 ď j ď a

and β is a partition of a ´ j. Given a bipartition pα, βq of a and writing α “ pα1, . . . , αrq and

β “ pβ1, . . . , βsq, we define the element

wα,β :“ b´
k1,β1

. . . b´
ks,βs

b`
ks`1,α1

. . . b`
ks`r,αr

where k1 “ 0, ki`1 “ ki ` βi if 1 ď i ď s and ki`1 “ ki ` αi´s if s ` 1 ď i ď s ` r ´ 1.

In particular, we have kr`s ` αr “ a. According to [GP00] Proposition 3.4.7, the conjugacy

classes in Wa are labelled by bipartitions of a, and a representative of minimal length of the

conjugacy class corresponding to the bipartition pα, βq is given by wα,β. Thus, the irreducible

representations of Wa can be labelled by bipartitions of a as well. An explicit construction of

these irreducible representations is given in [GP00] 5.5. We will not recall it, however we may

again give a method to compute the character values, similar to the Murnaghan-Nakayama

formula. The character of the irreducible representation of Wa associated in loc. cit. to the

bipartition pα, βq of a will be denoted χα,β. If pγ, δq is another bipartition of a, we denote by

χα,βpγ, δq the value of the character χα,β on the conjugacy class of Wa labelled by pγ, δq.
One can think of a bipartition pα, βq of a as an ordered pair of two Young diagrams of combined

size a. A border strip of a bipartition pα, βq is a border strip either of the partition α or of

β. The height of a border strip is defined in the same way.

Theorem ([GP00] Theorem 10.3.1). Let pα, βq and pγ, δq be two bipartitions of a. If γ “ H,

let ǫ “ 1 and let x be the last integer in the partition γ. If γ “ H, let ǫ “ ´1 and let x be the

last integer of the partition δ. We have

χα,βpγ, δq “
ÿ

S

p´1qhtpSqǫfSχpα,βqzSppγ, δqzxq,

where S runs over the set of all border strips of size x in the bipartition pα, βq, such that re-

moving S from pα, βq gives again a pair of Young diagrams. Here, the pair of Young diagrams

pα, βqzS is the one obtained after removing S, and pγ, δqzx is the bipartition obtained by re-

moving x from pγ, δq. Eventually, the integer fS is 0 if S is a border strip of α, and it is 1 if

S is a border strip of β.

Applying this formula in successions results in the value of χpα,βqpγ, δq. In particular, one sees

that χpaq,H is the trivial character and χH,p1aq is the signature character of Wa. We illustrate

the computations with pα, βq “ pp3, 12q, p4, 2qq and pγ, dq “ pp4q, p5, 2qq. There is only elligible

border strip of size 4 in the pair of diagrams pα, βq, as marked below.

,
ˆ ˆ ˆ
ˆ
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This border strip S has height 1. It was taken in the diagram of β so fS “ 1. Since γ “ H we

have ǫ “ 1. Applying the formula, we obtain

χp3,12q,p4,2qpp4q, p5, 2qq “ ´χp3,12q,p12qpH, p5, 2qq.

We are now looking for border strips of size 2 in the pair of diagrams of the bipartition

p3, 12q, p12q. Three of them are eligible, as marked below.

,
ˆ
ˆ and

ˆ ˆ
, and ˆ

ˆ
,

These three border strips have respective heights 1, 0 and 1. The corresponding values of fS

are respectively 1, 0 and 0. Moreover, the partition γ is now empty so ǫ “ ´1. The formula

gives

χp3,12q,p12qpH, p5, 2qq “ χp3,12q,HpH, p5qq ` χp13q,p12qpH, p5qq ´ χp3q,p12qpH, p5qq.

In the bipartitions pp13q, p12qq and pp3q, p12qq there is no border strip of size 5 at all. Thus,

the formula tells us that the corresponding character values are 0. On the other hand, the

bipartition pp3, 12q,Hq consists of a single border strip of size 5 and height 2. The formula gives

χp3,12q,HpH, p5qq “ χH “ 1.

Putting things together, we deduce that χp3,12q,p4,2qpp4q, p5, 2qq “ ´1.

2.3.4 We may now describe the horizontal arrows in 2.3.1 Theorem for the unitary group.

To do this, we need an alternate labelling of the irreducible unipotent representations of the

unitary group. We refer to [FS90] for the details.

The new labelling of the irreducible unipotent representations of Unpqq involves triples of the

form p∆x, α, βq where x is a nonnegative integer such that n “ 2a` xpx`1q
2

for some integer a ě 0,

and where pα, βq is a bipartition of a. The corresponding representation will be denoted ρ∆x,α,β.

With this labelling, the unipotent Harish-Chandra series EpUnpqq, pLx, ρxqq consists precisely

of all the representations ρ∆x,α,β with pα, βq varying over all bipartitions of a. The bijection

ZEpUnpqq, pLx, ρxqq „ÝÑ ZIrrpWUnpqqpLx, ρxqq involved in the Comparison theorem simply sends

ρ∆x,α,β to χα,β. Here, we made use of the identification WUnpqqpLx, ρxq » Wa as in ??.

More generally, if M is a standard Levi complement in Unpqq containing Lx, we may write

M » Ubpqq ˆ GLa1pq2q ˆ . . . ˆ GLarpq2q where n “ 2pa1 ` . . . ` arq ` b and b ě xpx`1q
2

. The

irreducible unipotent representations of M in the Harish-Chandra series EpM, pLx, ρxqq are

those of the form ρ∆x,α,β b ρGL
λ1

b . . . b ρGL
λr

where λi is a partition of ai for 1 ď i ď r and

pα, βq is a bipartition of the integer c :“ 1
2

´
b ´ xpx`1q

2

¯
. On the other hand, the relative Weyl

group WMpLx, ρxq can be identified with the subgroup of WUnpqqpLx, ρxq » Wa isomorphic to

the product Wc ˆ Sa1 ˆ . . . ˆ Sar (note that c ` a1 ` . . . ` ar “ a). With the notations of

2.3.2, the Wc-component is generated by the elements θ, σ1, . . . σc´1, the Sa1-component by

the elements σc`1 . . . , σc`a1´1, and so on. Irreducible characters of WMpLx, ρxq have the shape
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χα,β b χλ1 b . . .b χλr where pα, βq is a bipartition of c and λi is a partition of ai for 1 ď i ď r.

Then, according to [FS90] (4.2), the bijection ZEpM, pLx, ρxqq „ÝÑ ZIrrpWMpLx, ρxqq involved in

the Comparison theorem in 2.3.1 sends ρ∆x,α,β b ρGL
λ1

b . . . b ρGL
λr

to χα,β b χλ1 b . . . b χλr .

2.3.5 We explain how the two different labellings of the irreducible unipotent representations

of Unpqq are related. To do this, one needs the notion of 2-quotient. For the following definitions,

we allow partitions to have 0 terms at the end. Thus, let us write λ “ pλ1 ě . . . ě λrq with

λr ě 0. The β-set of λ is the sequence of decreasing nonnegative integers βi :“ λi ` r ´ i for

1 ď i ď r. Mapping a partition λ to its β-set gives a bijection between the set of partitions

having r terms and the set of decreasing sequences of nonnegative integers of length r. The

inverse mapping sends a sequence pβ1 ą . . . ą βr ě 0q to the partition λ given by λi “ βi`i´r.
Let λ be a partition of n as above, and let β be its β-set. We let βeven (resp. βodd) be the

subsequence consisting of all even (resp. odd) integers of β. Then, we define the following

sequences.

β0 :“
ˆ
βi

2

ˇ̌
ˇ̌ βi P βeven

˙
β1 :“

ˆ
βi ´ 1

2

ˇ̌
ˇ̌ βi P βodd

˙

The sequences β0 and β1 are the β-sets of two partitions, which we call µ0 and µ1 respectively.

Then, the 2-quotient of λ is the bipartition pµ0, µ1q if r is odd, and pµ1, µ0q if r is even. We

note that the ordering of µ0 and µ1 in the 2-quotient may vary in the literature. Here, we

followed the conventions of [FS90] section 1. A different ordering is used in [Jam84] 2.7.29.

In loc. cit. Theorem 2.7.37, another construction of the 2-quotient using Young diagrams is

proposed.

Let λ1 be another partition which differs from λ only by 0 terms at the end. While the β-sets

of λ and λ1 are not the same, the resulting 2-quotients are equal up to 0 terms at the end of

the partitions. Thus, from now on we identify all partitions differing only from 0 terms by

removing all of them. The 2-quotient of a partition is then well-defined.

Theorem ([Jam84] Theorem 2.7.30). A partition λ is uniquely characterized by the data of its

2-core ∆x and its 2-quotient pλ0, λ1q. Moreover, the lengths of these partitions are related by

the equation

|λ| “ |∆x| ` 2p|λ0| ` |λ1|q
and |∆x| “ xpx`1q

2
.

For instance, the 2-quotient of the partition λ “ p32, 22, 1q is p22, 1q. Recall that the 2-core of λ is

∆1. Thus, the equation on the lengths of the partitions is satisfied, as we have 11 “ 1`2p4`1q.
We may now relate the two labellings tρUλ u and tρ∆x,α,βu of the irreducible unipotent represen-

tations of Unpqq together.

Proposition ([FS90] Appendix). Let λ be a partition of n. Denote by ∆y its 2-core and by

pλ0, λ1q its 2-quotient. On the other hand, let x ě 0 be such that n “ 2a ` xpx`1q
2

for some

a ě 0 and let pα, βq be a bipartition of a. Then the irreducible representations ρUλ and ρ∆x,α,β

are equivalent if and only if x “ y and pλ0, λ1q “ pα, βq if x is even or pλ0, λ1q “ pβ, αq if x is

odd.
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For instance, for λ “ p32, 22, 1q the representation ρUλ is equivalent to ρ∆1,p1q,p22q.

2.3.6 In order to apply the comparison theorem 2.3.1 for unitary groups, it remains to un-

derstand how to compute inductions in Coxeter groups of type B. Such computations are

carried out in [GP00] Section 6.1. It turns out that we will only need one specific case of such

inductions, and the corresponding method is known as the Pieri rule for groups of type B.

Proposition ([GP00] 6.1.9). Let a ě 1 and consider r, s ě 0 such that r ` s “ a. We think of

the group Wr ˆ Ss as a subgroup of Wa as in 2.3.4.

– Let pα, βq be a bipartition of r. Then the induced character

IndWa

WrˆSs

`
χpα,βq b χpsq

˘

is the multiplicity-free sum of all the characters χγ,δ such that for some 0 ď k ď s, the

Young diagram of γ (resp. δ) can be obtained from that of α (resp. β) by adding k boxes

(resp. s ´ k boxes) so that no two of them lie in the same column.

– Let pγ, δq be a bipartition of a. The restricted character

ResWa

Wr
pχγ,δq

is the multiplicity-free sum of all the characters χpα,βq such that for some 0 ď k ď s, the

Young diagram of α (resp. β) can be obtained from that of γ (resp. δ) by deleting k boxes

(resp. s ´ k boxes) so that no two of them lie in the same column.

We will use this rule on concrete examples in the sections that follow.

2.4 The cohomology of the Coxeter variety for the unitary group

2.4.1 In this section, we describe the cohomology of the Coxeter varieties for the unitary

groups in odd dimension in terms of the classification of unipotent representations that we

recalled in the previous section. The cohomology groups are entirely understood by the work

of Lusztig in [Lus76].

Let t ě 0. The Coxeter variety for U2t`1pqq is the Deligne-Lusztig variety XHpcoxq, where
cox is any Coxeter element of the Weyl group W » S2t`1. Recall that a Coxeter element is a

permutation which can be written as the product, in any order, of exactly one simple reflexion

for each F -orbit on S. The variety XHpcoxq does not depend on the choice of the Coxeter

element. It is defined over Fq2 and is equipped with commuting actions of both U2t`1pqq and

F 2.

Notation. We write X t “ XHpcoxq for the Coxeter variety attached to the unitary group

U2t`1pqq. We also write H‚
cpX tq instead of H‚

cpXHpcoxq b F,Qℓq, where ℓ “ p.

We first recall known facts on the cohomology of X t from Lusztig’s work.

Theorem ([Lus76]). The following statements hold.
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(1) The variety X t has dimension t and is affine. The cohomology group Ht`i
c pX tq is zero

unless 0 ď i ď t.

(2) The Frobenius F 2 acts in a semisimple manner on the cohomology of X t.

(3) The group H2t
c pX tq is 1-dimensional, the unitary group U2t`1pqq acts trivially whereas F 2

has a single eigenvalue q2t.

(4) The group Ht`i
c pX tq for 0 ď i ă t is the direct sum of two eigenspaces of F 2, for the

eigenvalues q2i and ´q2i`1. Each eigenspace is an irreducible unipotent representation of

U2t`1pqq.

(5) If 0 ď a ď 2t, the dimension of the eigenspace of p´qqa inside the sum
ř
iě0 H

t`i
c pX tq is

given by the formula

q
p2t´aqp2t`1´aq

2

2t´aź

j“1

qa`j ´ p´1qa`j

qj ´ p´1qj .

(6) The sum
ř
iě0 H

t`i
c pX tq is multiplicity-free as a representation of U2t`1pqq.

2.4.2 We wish to identify these unipotent representations of U2t`1pqq occuring in the coho-

mology of X t. To this purpose, we start by defining the following partitions. If 0 ď a ď 2t, we

put λta :“ p1 ` a, 12t´aq. Note that λt0 “ p12t`1q and λt2t “ p2t ` 1q.

Lemma. For 0 ď i ď t, the 2-core of λt2i is ∆1 and its 2-quotient is pp1t´iq, piqq.
For 0 ď i ă t, then the 2-core of λt2i`1 is ∆2 and its 2-quotient is ppiq, p1t´i´1qq.

In particular, according to 2.3.5 the irreducible unipotent representation ρλt
2i

of U2t`1pqq is

equivalent to the representation ρ∆1,piq,p1t´iq, and ρλt
2i`1

to ρ∆2,piq,p1t´i´1q.

Proof. The Young diagram of the partition λta has the following shape.

...

. . .

The first row has an odd number of boxes when a is even, and an even number of boxes when

a is odd. To compute the 2-core, one removes horizontal dominoes from the first row, right to

left, and vertical dominoes from the first column, bottom to top. The process results in ∆1

when a is even and ∆2 when a is odd.

The partition λta has 2t ` 1 ´ a non zero terms. Its β-set is given by the sequence

β “ p2t ` 1, 2t ´ a, 2t ´ a ´ 1, . . . , 1q.
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Assume that a “ 2i is even. Then the sequences β0 and β1 are given by

β0 “ pt ´ i, t ´ i ´ 1, . . . 1q, β1 “ pt, t ´ i ´ 1, t ´ i ´ 2, . . . , 0q.

The sequence β0 has length t ´ i while β1 has length t ´ i ` 1. The associated permutations

are then respectively µ0 “ p1t´iq and µ1 “ piq. Since 2t ` 1 ´ a is odd, the 2-quotient is given

by pµ0, µ1q as claimed.

Assume now that a “ 2i ` 1 is odd. Then the sequences β0 and β1 are given by

β0 “ pt ´ i ´ 1, t ´ i ´ 2, . . . 1q, β1 “ pt, t ´ i ´ 1, t ´ i ´ 2, . . . , 0q.

The sequence β0 has length t´ i´ 1 while β1 has length t´ i` 1. The associated permutations

are then respectively µ0 “ p1t´i´1q and µ1 “ piq. Since 2t ` 1 ´ a is even, the 2-quotient is

given by pµ1, µ0q as claimed.

2.4.3 We may now identify the irreducible unipotent representations occuring in the coho-

mology of the Coxeter variety Xk.

Proposition. For 0 ď i ă t, the cohomology group of the Coxeter variety for the finite unitary

group U2t`1pqq is given by

Ht`i
c pX tq “ ρλt

2i
‘ ρλt

2i`1

with the first summand corresponding to the eigenvalue q2i of F 2 and the second to ´q2i`1.

Moreover, H2t
c pX tq “ ρλt2t with eigenvalue q2t.

Before going to the proof, one may notice that the statement is consistent with the dimensions.

Indeed, the formula given in 2.4.1 Theorem (5) coincides with the hook formula for the degree

of the representation ρUλta given in 2.2.5 Proposition.

Proof. First, the statement on the highest cohomology group H2t
c pX tq follows from 2.4.1 The-

orem (3). It is the only cohomology group in the case t “ 0. We will prove the formula by

induction on t. Let us now assume t ě 1 and that the proposition is known for t ´ 1. If

0 ď i ď t ´ 1, we know that Ht`i
c pX tq is the sum of two irreducible unipotent representations.

So let us write

Ht`i
c pX tq “ ρµi ‘ ρνi

where µi and νi are two partitions of 2t ` 1, and so that ρµi corresponds to the eigenvalue q2i

of F 2 whereas ρνi corresponds to ´q2i`1.

We consider the standard Levi complement L » GL1pq2q ˆ U2t´1pqq Ă U2t`1pqq. Let V denote

the unipotent radical of the standard parabolic subgroup containing L. According to [Lus76]

Corollary 2.10, one can build a geometric isomorphism between the quotient variety X t{V and

the product of the Coxeter variety for L and of a copy of Gm. Even though this geometric

isomorphism is not L-equivariant, Lusztig proves that the induced map on cohomology is L-

equivariant. By a discussion similar to that in 2.1.10, the Coxeter variety for L is isomorphic

to the Coxeter variety X t´1 for U2t´1pqq. We write ˚Rt
t´1 for the composition of the Harish-

Chandra restriction from U2t`1pqq to L, with the usual restriction from L to the subgroup
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U2t´1pqq. For any nonnegative integer i, the U2t´1pqq, F 2-equivariant induced map on the

cohomology is an isomorphism

˚Rt
t´1

`
Ht`i
c pX tq

˘
» Ht´1`i

c pX t´1q ‘ Ht´1`pi´1q
c pX t´1qp1q. (˚˚)

Here, p1q denotes the Tate twist (the action of F 2 on a twist Mpnq is obtained from the action

on the space M by multiplication with q2n). The right-hand side of this identity is given by

the induction hypothesis. Let us look at the left-hand side.

We fix 0 ď i ď t´1 and we denote by p∆x, α, βq and by p∆y, γ, δq the alternative labelling of the
representations ρµi and ρνi respectively as introduced in 2.3.4 and 2.3.5. By the Howlett-Lehrer

comparison theorem for restriction in 2.3.1 and by the Pieri rule in 2.3.6, we know that the

restriction ˚Rt
t´1 pρ∆x,α,βq is the multiplicity-free sum of all the representations ρ∆x,α1,β1 where

the bipartition pα1, β1q can be obtained from pα, βq by removing exactly one box, of either α or

β. The similar description also holds for ˚Rt
t´1

`
ρ∆y ,γ,δ

˘
.

By using 2.4.2 Lemma and the induction hypothesis, we may write down the identity (˚˚)
explicitely. Moreover, as it is F 2-equivariant we can identify the components corresponding to

the same eigenvalues on both sides. We distinguish 4 different cases depending on the values

of t and i.

– Case t “ 1. We only need to consider i “ 0. On the right-hand side of (˚˚), the second

term is 0 because t´1`pi´1q “ ´1 ă 0. On the other hand, the first term is ρλ00 » ρ∆1,H,H

and it corresponds to the eigenvalue p´qq0 “ 1. By identifying the eigenspaces, we have
˚R1

0 pρ∆x,α,βq » ρ∆1,H,H and ˚R1
0

`
ρ∆y ,γ,δ

˘
“ 0. The second equation implies that there is

no box to remove from γ nor from δ. Thus, γ “ δ “ H. The value of y is given by the

relation 2t ` 1 “ 3 “ 2p0 ` 0q ` ypy`1q
2

, that is y “ 2. This corresponds to the partition

ν0 “ λ11. We notice in passing that the representation ρν0 is the unique unipotent cuspidal

representation of U3pqq.
As for µ0, the equation ˚R1

0 pρ∆x,α,βq » ρ∆1,H,H tells us that there is only one removable

box from pα, βq. After removal of this box, both partitions are empty. Thus, we deduce

that x “ 1 and pα, βq “ p1,Hq or pH, 1q. This corresponds respectively to µ0 “ λ12 or

µ0 “ λ10. That is, ρµ0 is either the trivial or the Steinberg representation of U3pqq. We can

deduce which one it is by comparing the degree of the representations with the formula of

2.4.1 Theorem (5). According to this formula, the dimension of the eigenspace for p´qq0
is q3. This is precisely the degree of the Steinberg representation ρλ10 as given by the hook

formula in 2.2.5 Proposition, and it excludes the possibility of ρµ0 being trivial. Thus, we

have µ0 “ λ10 as claimed.

From now, we assume t ě 2.

– Case i “ 0. On the right-hand side of (˚˚), the second term is 0 because t´ 1` pi´ 1q “
t ´ 2 ă t ´ 1. The first term is ρλt´1

0
‘ ρλt´1

1
» ρ∆1,H,p1t´1q ‘ ρ∆2,H,p1t´2q. Identifying the

eigenspaces, we have ˚Rt
t´1 pρ∆x,α,βq » ρ∆1,H,p1t´1q and ˚Rt

t´1

`
ρ∆y ,γ,δ

˘
» ρ∆2,H,p1t´2q. We

deduce that x “ 1 and y “ 2. Moreover, it also follows that there is only one removable

box in pα, βq and in pγ, δq. After removal, we should obtain respectively pH, p1t´1qq and
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pH, p1t´2qq. The only possibility is that pα, βq “ pH, p1tqq and pγ, δq “ pH, p1t´1qq. This
corresponds to µ0 “ λt0 and ν0 “ λt1 as claimed.

– Case i “ t ´ 1. On the right-hand side of (˚˚), the first term is ρλt´1

2pt´1q
» ρ∆1,pt´1q,H and

the second term is ρλt´1

2pt´2q
‘ρλt´1

2pt´2q`1
» ρ∆1,pt´2q,p1q‘ρ∆2,pt´2q,H. Identifying the eigenspaces

while taking the Tate twist into account, we have ˚Rt
t´1 pρ∆x,α,βq » ρ∆1,pt´1q,H‘ρ∆1,pt´2q,p1q

and ˚Rt
t´1

`
ρ∆y ,γ,δ

˘
» ρ∆2,pt´2q,H. We deduce that x “ 1 and y “ 2. Moreover, there are

two removable boxes in pα, βq and only one removable box in pγ, δq. After removal of

one of the two boxes in pα, βq, we can get either ppt ´ 1q,Hq or ppt ´ 2q, p1qq ; and

after removal of the box in pγ, δq we obtain ppt ´ 2q,Hq. The only possibility is that

pα, βq “ ppt ´ 1q, p1qq and pγ, δq “ ppt ´ 1q,Hq. This corresponds to µt´1 “ λt2pt´1q and

νt´1 “ λt2pt´1q`1 as claimed.

– Case 1 ď i ď t ´ 2. On the right-hand side of (˚˚), the first term is ρλt´1
2i

‘ ρλt´1
2i`1

»
ρ∆1,piq,p1t´1´iq ‘ ρ∆2,piq,p1t´2´iq. The second term is ρλt´1

2pi´1q
‘ ρλt´1

2pi´1q`1
» ρ∆1,pi´1q,p1t´iq ‘

ρ∆2,pi´1q,p1t´1´iq. Identifying the eigenspaces while taking the Tate twist into account, we

have ˚Rt
t´1 pρ∆x,α,βq » ρ∆1,piq,p1t´1´iq ‘ ρ∆1,pi´1q,p1t´iq and

˚Rt
t´1

`
ρ∆y ,γ,δ

˘
» ρ∆2,piq,p1t´2´iq ‘

ρ∆2,pi´1q,p1t´1´iq. We deduce that x “ 1 and y “ 2. Moreover, there are exactly two

removable boxes from pα, βq and from pγ, δq. After removal of one of the two boxes in

pα, βq, we can get either ppiq, p1t´1´iqq or ppi ´ 1q, p1t´iqq ; and after removal of one of

the two boxes in pγ, δq, we can get either ppiq, p1t´2´iqq or ppi ´ 1q, p1t´1´iqq. The only

possibility is that pα, βq “ ppiq, p1t´iqq and pγ, δq “ ppiq, p1t´1´iqq. This corresponds to

µi “ λt2i and νi “ λt2i`1 as claimed.

2.5 The cohomology of the variety XIpidq

2.5.1 We go on with the computation of the cohomology of the variety XIpidq. We use the

same notations as in section 1. We first compute the cohomology of each Ekedahl-Oort stratum

XItpwtq, before using the spectral sequence associated to the stratification to conclude.

Recall that XIpidq has dimension d, is defined over Fq2 and is equipped with an action of

J » U2d`1pqq. As before, we will write H‚
cpXIpidqq as a shortcut for H‚

cpXIpidq b F,Qℓq.

Theorem. The following statements hold.

(1) The cohomology group Hi
cpXIpidqq is zero unless 0 ď i ď 2d. There is an isomor-

phism Hi
cpXIpidqq » H2d´i

c pXIpidqq_pdq which is equivariant for the actions of F 2 and

of U2d`1pqq.

(2) The Frobenius F 2 acts like multiplication by p´qqi on Hi
cpXIpidqq.

(3) For 0 ď i ď d we have

H2i
c pXIpidqq “

minpi,d´iqà
s“0

ρp2d`1´2s,2sq.
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For 0 ď i ď d ´ 1 we have

H2i`1
c pXIpidqq “

minpi,d´1´iqà
s“0

ρp2d´2s,2s`1q.

Thus, in the cohomology of XIpidq all the representations associated to a Young diagram with

at most 2 rows occur, and there is no other. Such a diagram has the following general shape.

. . .

. . .

We may rephrase the result by using the alternative labelling of the irreducible unipotent

representations as in 2.3.5. The partition p2d`1´2s, 2sq has 2-core ∆1 and 2-quotient pH, pd´
s, sqq ; whereas the partition p2d´ 2s, 2s` 1q has 2-core ∆2 and 2-quotient ppd´ 1 ´ s, sq,Hq.
Thus, according to 2.3.5 Proposition, we have

ρp2d`1´2s,2sq » ρ∆1,pd´s,sq,H, ρp2d´2s,2s`1q » ρ∆2,pd´1´s,sq,H.

In particular, all irreducible representations in the cohomology groups of even index belong to

the unipotent principal series EpU2d`1pqq, pL1, ρ1qq, whereas all the ones in the groups of odd

index belong to the Harish-Chandra series EpU2d`1pqq, pL2, ρ2qq.

Proof. Point (1) of the statement follows from a general property of the cohomology groups,

namely Poincaré duality. It is due to the fact that XIpidq is projective and smooth. It also

implies the purity of the Frobenius F 2 on the cohomology : we know at this stage that all

eigenvalues of F 2 on Hi
cpXIpidqq have complex modulus qi under any choice of an isomorphism

Qℓ » C.

We prove the points (2) and (3) by explicit computations. As in 2.4.2, we denote by λta the

partition p1 ` a, 12t´aq of 2t ` 1. Let 0 ď t ď d. For 0 ď a ď 2t we will write

Rt
a :“ R

U2d`1pqq
LKt

`
ρGL

pd´tq b ρUλta

˘
.

Recall that 2.1.9 Proposition gives an isomorphism between the Ekedahl-Oort stratum XItpwtq
and the variety U2d`1pqq{UKt

ˆLKt
X

LKt

It
pwtq. It implies that the cohomology of the Ekedahl-

Oort stratum is the Harish-Chandra induction of the cohomology of the Deligne-Lusztig variety

X
LKt

It
pwtq. According to 2.1.10, this cohomology is related to that of the Coxeter variety for

U2t`1pqq. Combining with the formula of 2.4.3 Proposition, for 0 ď i ď t ´ 1 it follows that

Ht`i
c pXItpwtqq “ Rt

2i ‘ Rt
2i`1, H2t

c pXItpwtqq “ Rt
2t.

The representation Rt
a in this formula is associated to the eigenvalue p´qqa of F 2.

We first compute Rt
a explicitely. By the combination of the Howhlett-Lehrer comparison theo-

rem in 2.3.1 and the Pieri rule for groups of type B as in 2.3.6, one can compute the Harish-

Chandra induction Rt
a by adding d´ t boxes to the bipartition corresponding to the represen-

tation ρUλta with no two added boxes in the same column. Recall from 2.4.2 Lemma that the
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representation ρλt
2i
of U2t`1pqq is equivalent to the representation ρ∆1,piq,p1t´iq, and that ρλt

2i`1
is

equivalent to ρ∆2,piq,p1t´1´iq.

In order to illustrate the argument, let us say that we want to add N boxes to a bipartition of

the shape as in the figure below, so that no two added boxes lie in the same column.

. . . ,
...

We will add N1 boxes to the first diagram and N2 to the second, where N “ N1 ` N2. In the

first diagram, the only places where we can add boxes are in the second row from left to right,

and at the end of the first row. Because no two added boxes must be in the same column, the

number of boxes we add on the second row must be at most the number of boxes already lying

in the first row. Of course, it must also be at most N1.

In the second diagram, the only places where we can add boxes are at the bottom of the first

column and at the end of the first row. Because no two added boxes must be in the same

column, we can only put up to one box at the bottom of the first column and all the remaining

ones will align at the end of the first row.

At the end of the process, we will obtain a bipartition of the following general shape.

. . .

. . .

. . .
,

?

. . .

...

We colored in yellow the boxes that were already there before we added new ones. The box

with a question mark may or may not be placed there.

We now make the result more precise, and write down exactly what the irreducible components

of Rt
a are depending on the parity of a.

– For 0 ď i ď t, the representation Rt
2i is the multiplicity-free sum of all the representations

ρ∆1,α,β where the bipartition pα, βq satisfies, for some 0 ď x ď d ´ t,

$
&
%
α “ pi ` x ´ s, sq for some 0 ď s ď minpx, iq,
β “ pd ´ t ´ x, 1t´iq or pd ´ t ´ x ` 1, 1t´i´1q.

– For 0 ď i ď t´1, the representation Rt
2i`1 is the multiplicity-free sum of all representations
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ρ∆2,α,β where the bipartition pα, βq satisfies, for some 0 ď x ď d ´ t,

$
&
%
α “ pi ` x ´ s, sq for some 0 ď s ď minpx, iq,
β “ pd ´ t ` 1 ´ x, 1t´1´iq or pd ´ t ` 2 ´ x, 1t´2´iq.

In our notations, we used the convention that the partitions p0q and p10q are the empty partition

H. The integer x corresponds to the number of boxes we add to the first partition. We notice

that if i takes the maximal value, there is only one possibility for β that is respectively pd´t´xq
in the first case and pd ´ t ` 1 ´ xq in the second case.

Recall from 2.1.7 that the variety XIpidq is the union of the Ekedahl-Oort strata XItpwtq for

0 ď t ď d and the closure of the stratum for t is the union of all strata XIspwsq for s ď t. At the

level of cohomology, it translates into the following F 2,U2d`1pqq-equivariant spectral sequence

Et,i1 : Ht`i
c pXItpwtqq ùñ Ht`i

c pXIpidqq.

The first page of the sequence is drawn in the Figure 1, it has a triangular shape.

Rd
2d

Rd´1
2d´2 Rd

2d´2 ‘ Rd
2d´1

...
...

R2
4 . . . Rd´1

4 ‘ Rd´1
5 Rd

4 ‘ Rd
5

R1
2 R2

2 ‘ R2
3 . . . Rd´1

2 ‘ Rd´1
3 Rd

2 ‘ Rd
3

R0
0 R1

0 ‘ R1
1 R2

0 ‘ R2
1 . . . Rd´1

0 ‘ Rd´1
1 Rd

0 ‘ Rd
1

Figure 1: The first page of the spectral sequence.

The representation Rt
a corresponds to the eigenvalue p´qqa of F 2 as before. The only eigenvalues

of F 2 on the i-th row of the spectral sequence are q2i and ´q2i`1. In particular, the eigenval-

ues on two distinct rows are different. Since the differentials in deeper pages of the sequence

map terms from different rows, their F 2-equivariance implies that they vanish. Therefore, the

sequence degenerates on the second page.

Moreover, by the machinery of spectral sequences, for 0 ď k ď 2d there exists a filtration by

U2d`1pqq ˆ xF 2y-modules on Hk
c pXIpidqq whose graded components are the terms of the second

page lying on the anti-diagonal t` i “ k. Since the group algebra QℓrU2d`1pqqs is semi-simple,

the filtration splits, meaning that Hk
c pXIpidqq is actually the direct sum of the graded compo-

nents. The purity of Hk
c pXIpidqq then implies that all the terms of the second page lying on the
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anti-diagonal t` i “ k, which are associated to an eigenvalue whose modulus is not equal to qk,

must be zero. Therefore, the second page has the shape described in Figure 2. The Frobenius

F 2 acts via q2i on the term Ei,i2 , and via ´q2i`1 on the term Ei`1,i
2 . Point (2) of the Theorem

readily follows.

Ed,d2

Ed´1,d´1
2 Ed,d´1

2

...
...

E1,1
2 E2,1

2 0 . . . 0

E0,0
2 E1,0

2 0 0 . . . 0

Figure 2: The second page of the spectral sequence.

By the previous computations, we understand precisely all the terms in the first page of the

spectral sequence. The key observation to compute the second page is that two terms on the

first page which lie on the same row, but are separated by at least 2 arrows, do not have any

irreducible component in common. We make the argument more precise in the following two

paragraphs, distinguishing the cohomology groups of even and odd index.

We first compute the cohomology group H2t
c pXIpidqq for 0 ď t ď d. We look at the following

portion of the first page

Rt
2t Rt`1

2t ‘ Rt`1
2t`1 Rt`2

2t ‘ Rt`2
2t`1 .

By extracting the eigenspaces corresponding to q2t, we actually have the following sequence

Rt
2t Rt`1

2t Rt`2
2t

u v
.

The representation Rt
2t is the sum of all the representations ρ∆1,α,β where for some 0 ď x ď d´t

and for some 0 ď s ď minpx, tq, we have α “ pt ` x ´ s, sq and β “ pd ´ t ´ xq.
The representation Rt`1

2t is the sum of all the representations ρ∆1,α1,β1 where for some 0 ď x1 ď
d ´ t ´ 1 and for some 0 ď s ď minpx1, tq, we have α1 “ pt ` x1 ´ s, sq and β1 “ pd ´ t ´ x1q or

pd ´ t ´ x1 ´ 1, 1q.
The quotient space Kerpvq{Impuq is isomorphic to the eigenspace of q2t in Et`1,t

2 , which is zero.

Besides, in the representation Rt`2
2t all the irreducible components have the shape ρ∆1,α2,β2 with

β2 a partition of length 2 or 3. In particular, all the representations ρ∆1,α1,β1 of Rt`1
2t with β1 a
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partition of length 1 automatically lie inside Kerpvq “ Impuq. Such representations correspond

to all the irreducible components ρ∆1,α,β of Rt
2t having x “ d ´ t. Thus, none of them lies in

Kerpuq » E
t,t
2 .

The remaining components of Rt
2t are those having x “ d ´ t, and they do not occur in the

codomain of u so that they lie in Kerpuq. By the previous argument, they must form the whole

of Kerpuq.
Thus, we have proved that

E
t,t
2 » H2t

c pXIpidqq » Kerpuq “
minpt,d´tqà

s“0

ρ∆1,pt´s,sq,H

and it coincides with the formula of point (3).

We now compute the cohomology group H2t`1
c pXIpidqq for 0 ď t ď d ´ 1. We look at the

following portion of the first page

Rt
2t Rt`1

2t ‘ Rt`1
2t`1 Rt`2

2t ‘ Rt`2
2t`1 Rt`3

2t ‘ Rt`3
2t`1 .

By extracting the eigenspaces corresponding to ´q2t`1, we actually have the following sequence

0 Rt`1
2t`1 Rt`2

2t`1 Rt`3
2t`1

u v
.

The representation Rt`1
2t`1 is the sum of all the representations ρ∆2,α,β where for some 0 ď x ď

d ´ t ´ 1 and for some 0 ď s ď minpx, tq, we have α “ pt ` x ´ s, sq and β “ pd ´ t ´ xq.
The representation Rt`2

2t`1 is the sum of all the representations ρ∆2,α1,β1 where for some 0 ď x1 ď
d´ t´ 2 and for some 0 ď s ď minpx1, tq, we have α1 “ pt`x1 ´ s, sq and β1 “ pd´ t´ 1´x1, 1q
or pd ´ t ´ x1q.
The quotient space Kerpvq{Impuq is isomorphic to the eigenspace of ´q2t`1 in Et`2,t

2 , which is

zero. Besides, in the representation Rt`3
2t`1 all the irreducible components have the shape ρ∆2,α2,β2

with β2 a partition of length 2 or 3. In particular, all the representations ρ∆2,α1,β1 of Rt`2
2t`1 with β

1

a partition of length 1 automatically lie inside Kerpvq » Impuq. Such representations correspond

to all the irreducible components ρ∆2,α,β of Rt`1
2t`1 having x “ d´ t´ 1. Thus, none of them lies

in Kerpuq » E
t`1,t
2 .

The remaining components of Rt`1
2t`1 are those having x “ d ´ t ´ 1, and they do not occur

in the codomain of u so that they lie in Kerpuq. By the argument above, they must form the

whole of Kerpuq.
Thus, we have proved that

E
t`1,t
2 » H2t`1

c pXIpidqq » Kerpuq “
minpd´t´1,tqà

s“0

ρ∆2,pt´1´s,sq,H

and one may check that it coincides with the formula of point (3).
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3 On the cohomology of the basic unramified PEL uni-

tary Rapoport-Zink space of signature p1, n ´ 1q

Notations

Throughout this section, we fix an integer n ě 1 and we write m :“ tn´1
2

u so that n “ 2m ` 1

or 2pm ` 1q according to whether n is odd or even. We also fix an odd prime number p. If

k is a perfect field of characteristic p, we denote by W pkq the ring of Witt vectors and by

W pkqQ its fraction field, which is an unramified extension of Qp. We denote by σk : x ÞÑ xp the

Frobenius of Galpk{Fpq, and we use the same notation for its (unique) lift to GalpW pkqQ{Qpq.
If k1{k is a perfect field extension then pσk1q|k “ σk, so we can remove the subscript and write

σ unambiguously instead. If q “ pe is a power of p, we write Fq for the field with q elements.

In the special case where q “ p2, we also use the alternative notation Zp2 “ W pFp2q and

Qp2 “ W pFp2qQ. We fix an algebraic closure F of Fp.

3.1 The Bruhat-Tits stratification on the PEL unitary
Rapoport-Zink space of signature p1, n ´ 1q

3.1.1 The PEL unitary Rapoport-Zink space M of signature p1, n ´ 1q

3.1.1.1 In [VW11], the authors introduce the PEL unitary Rapoport-Zink space M of sig-

nature p1, n ´ 1q as a moduli space, classifying the deformations of a given p-divisible group

equipped with additional structures. We briefly recall the construction. Let Nilp denote the

category of schemes over Zp2 where p is locally nilpotent. For S P Nilp, a unitary p-divisible

group of signature p1, n ´ 1q over S is a triple pX, ιX , λXq where

– X is a p-divisible group over S.

– ιX : Zp2 Ñ EndpXq is a Zp2-action on X such that the induced action on its Lie alge-

bra satisfies the signature p1, n ´ 1q condition: for every a P Zp2 , the characteristic

polynomial of ιXpaq acting on LiepXq is given by

pT ´ aq1pT ´ σpaqqn´1 P Zp2rT s Ă OSrT s.

– λX : X
„ÝÑ tX is a Zp2-linear polarization where tX denotes the Serre dual of X.

The Zp2-linearity of λX is with respect to the Zp2-actions ιX and the induced action ιtX on the

dual. A specific example of unitary p-divisible group over Fp2 is given in [VW11] 2.4 by means

of covariant Dieudonné theory. We denote it by pX, ιX, λXq and call it the standard unitary

p-divisible group. The p-divisible group X is superspecial. The following set-valued functor

M defines a moduli problem classifying deformations of X by quasi-isogenies. More precisely,

for S P Nilp the set MpSq consists of all isomorphism classes of tuples pX, ιX , λX , ρXq such

that
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– pX, λX , ρXq is a unitary p-divisible group of signature p1, n ´ 1q over S.

– ρX : X ˆS S Ñ X ˆF
p2
S is a Zp2-linear quasi-isogeny compatible with the polarizations,

in the sense that tρX ˝ λX ˝ ρX is a Qˆ
p -multiple of λX .

In the second condition, S denotes the special fiber of S. By [RZ96] Corollary 3.40, this moduli

problem is represented by a separated formal scheme M over SpfpZp2q, called a Rapoport-

Zink space. It is formally locally of finite type, and because the associated PEL datum is

unramified it is also formally smooth over Zp2 . The reduced special fiber of M is the

reduced Fp2-scheme Mred defined by the maximal ideal of definition. By loc. cit. Proposition

2.32, each irreducible component of Mred is projective. The geometry of the special fiber has

been thoroughly described in [Vol10] and [VW11], and we recall some of their constructions.

3.1.1.2 Rational points of M over a perfect field extension k of Fp2 can be understood in

terms of semi-linear algebra by means of Dieudonné theory. We denote byMpXq the Dieudonné
module of X, this is a free Zp2-module of rank 2n. We denote by NpXq :“ MpXq b Qp2 its

isocrystal. By construction, the Frobenius and the Verschiebung agree on NpXq. In particular,

we have F2 “ p ¨ id on the isocrystal. The Zp2-action ιX induces a Z{2Z-grading MpXq “
MpXq0 ‘MpXq1 as a sum of two free Zp2-modules of rank n. The same goes for the isocrystal

NpXq “ NpXq0 ‘NpXq1 where NpXqi “ MpXqi bQp2 for i “ 0, 1. The polarization λX induces

a perfect σ-symplectic form on NpXq which stabilizes the lattice MpXq and for which F is self-

adjoint. Compatibility with ιX implies that the pieces NpXqi are totally isotropic for i “ 0, 1

and dual of each other. Moreover, the Frobenius F is then 1-homogeneous with respect to this

grading. As in [VW11] 2.6, it is possible to modify the symplectic pairing so that it restricts

to a non-degenerate Qp2-valued σ-hermitian form t¨, ¨u on NpXq0.

Notation. From now on, we will write V :“ NpXq0 and M :“ MpXq0.

Then V is a Qp2-hermitian space of dimension n, and M is a given Zp2-lattice, ie. a Zp2-

submodule containing a basis of V. Given two lattices M1 and M2, the notation M1

dĂ M2

means that M1 Ă M2 and the quotient module M2{M1 has length d. The integer d is called the

index ofM1 inM2, and is denoted d “ rM2 :M1s. We have 0 ď d ď n. Given a latticeM Ă V,

the dual lattice is denoted M_. It consists of all the vectors v P V such that tv,Mu Ă Zp2 .

Then, by construction the lattice M satisfies

pM_ 1Ă M
n´1Ă M_.

The existence of such a latticeM inV implies that the σ-hermitian structure onV is isomorphic

to any one described by the following two matrices

Todd :“ A2m`1, Teven :“

¨
˚̊
˚̋

Am

1 0

0 p

Am

˛
‹‹‹‚.

Here, Ak denotes the k ˆ k matrix with 1’s in the antidiagonal and 0 everywhere else.
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Proposition ([Vol10] 1.15). There exists a basis of V such that t¨, ¨u is represented by the

matrix Todd is n is odd and by Teven if n is even.

3.1.1.3 A Witt decomposition on V is a set tLiuiPI of isotropic lines in V such that the

following conditions are satisfied:

– For every i P I, there is a unique i1 P I such that tLi, Li1u “ 0.

– The sum of the Li’s is direct.

– The orthogonal in V of the direct sum of the Li’s is an anisotropic subspace of V.

Because each line Li is isotropic, in the first condition one necessarily has pi1q1 “ i and i “ i1.

As a consequence, the cardinality of the index set I is an even number #I “ 2wpVq. The

integer w “ wpVq is called the Witt index of V and it does not depend on the choice of

a Witt decomposition. We write Lan for the orthogonal of the direct sum of the Li’s. The

dimension of Lan is nan :“ n ´ 2w, therefore it is also independent on the choice of the Witt

decomposition.

Given any Witt decomposition, one may always find vectors ei P Li such that tei, eju “ δj,i1 .

Together with a choice of an orthogonal basis for Lan, these vectors define a basis of V which

is said to be adapted to the Witt decomposition. For any i P I, the direct sum Li ‘Li1 is

isometric to the hyperbolic plane H. Therefore, we obtain a decomposition

V “ wH ‘ Lan.

We may always rearrange the index set so that I “ t´w, . . . ,´1, 1, . . . , wu and for every i P I,
we have tLi, L´iu “ 0. Thus, the i1 associated to i by the first condition is ´i. Of course, this

process is not unique as it relies on a choice of an ordering for the lines tLiuiPI . In this context,

we write L0 instead of Lan.

3.1.1.4 We fix once and for all a basis e of V in which the hermitian form is represented by

the matrix Todd or Teven. In the case n “ 2m ` 1 is odd, we will denote it

e “ pe´m, . . . , e´1, e
an
0 , e1, . . . , emq,

and in the case n “ 2pm ` 1q is even we will denote it

e “ pe´m, . . . , e´1, e
an
0 , e

an
1 , e1, . . . , emq.

In this way, for every 1 ď s ď m the subspace generated by e´s and es is isomorphic to

the hyperbolic plane H. Moreover, the vectors with a superscript ¨an generate an anisotropic

subspace Van of V. The choice of such a basis gives a Witt decomposition

V “ mH ‘ Van

consisting of an orthogonal sum of m copies of H and of the anisotropic subspace Van. In

particular, the Witt index of V is m and we have nan “ 1 or 2 depending on whether n is odd

or even respectively.
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3.1.1.5 Given a perfect field extension k of Fp2 , we denote by Vk the base change V bQ
p2

W pkqQ. The form may be extended to Vk by the formula

tv b x, w b yu :“ xyσtv, wu P W pkqQ

for all v, w P V and x, y P W pkqQ. The notions of index and duality for W pkq-lattices can be

extended as well. We have the following description of the rational points of the Rapoport-Zink

space.

Proposition ([Vol10] 1.10). Let k be a perfect field extension of Fp2. There is a natural bijection

between Mpkq “ Mredpkq and the set of lattices M in Vk such that for some integer i P Z, we

have

pi`1M_ 1Ă M
n´1Ă piM_.

3.1.1.6 There is a decomposition M “ Ů
iPZ Mi into formal connected subschemes which are

open and closed. The rational points of Mi are those lattices M satisfying the relation above

with the given integer i. Similarly, we have a decomposition into open and closed connected

subschemes Mred “ Ů
iPZ Mi,red. In particular, the lattice M defined in the previous paragraph

is an element of M0pFp2q. Not all integers i can occur though, as a parity condition must be

satisfied by the following lemma.

Lemma ([Vol10] 1.7). The formal scheme Mi is empty if ni is odd.

3.1.1.7 Let J “ GUpVq be the group of unitary similitudes attached to V. It consists of

all linear transformations g which preserve the hermitian form up to a unit cpgq P Qˆ
p , called

the multiplier. One may think of J as the group of Qp-rational point of a reductive algebraic

group. The space M is endowed with a natural action of J . At the level of points, the element

g acts by sending a lattice M to gpMq.
By [Vol10] 1.16, the action of g P J induces, for every integer i, an isomorphism Mi

„ÝÑ
Mi`αpgq where αpgq is the p-adic valuation of the multiplier cpgq. This defines a continous

homomorphism

α : J Ñ Z

where Z is given the discrete topology. According to 1.17 in loc. cit. the image of α is Z

if n is even, and it is 2Z if n is odd. The center ZpJq of J consists of all the multiple of the

identity. Therefore it can be identified with Qˆ
p2
. If λ P Qˆ

p2
, then cpλ ¨ idq “ λσpλq “ Normpλq P

Qˆ
p , where Norm is the norm map relative to the quadratic extension Qp2{Qp. In particular,

αpZpJqq “ 2Z. Thus, the restriction of α to the center of J is surjective onto the image of α

only when n is odd. When n is even, we define the following element

g0 :“

¨
˚̊
˚̋

Im

0 p

1 0

pIm

˛
‹‹‹‚
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where Im denotes the m ˆ m identity matrix. Then g0 P J and cpg0q “ p so that αpg0q “ 1.

Moreover g20 “ p ¨ id belongs to ZpJq.
Let i and i1 be two integers such that ni and ni1 are even. Following [Vol10] Proposition 1.18,

we define a morphism ψi,i1 : Mi Ñ Mi1 by sending, for any perfect field extension k{Fp2 , a
point M P Mi to

ψi,i1pMq “

$
&
%
p

i1´i
2 ¨ M if i ” i1 mod 2.

p
i1´i´1

2 g0 ¨ M if i ı i1 mod 2.

This is well defined as the second case may only happen when n is even. We obtain the following

proposition.

Proposition ([Vol10] 1.18). The map ψi,i1 is an isomorphism between Mi and Mi1. Moreover

they are compatible with each other in the sense that if i, i1 and i2 are three integers such that

ni, ni1 and ni2 are even, then we have ψi1,i2 ˝ ψi,i1 “ ψi,i2.

The same statement also holds for the special fiber Mred. In particular, we have Mi “ H if

and only if ni is even.

3.1.2 The Bruhat-Tits stratification of the special fiber Mred

3.1.2.1 We now recall the construction of the Bruhat-Tits stratification on Mred as in

[VW11]. Let i be an integer such that ni is even. We define

Li :“ tΛ Ă V a lattice | pi`1Λ_ Ĺ Λ Ă piΛ_u.

If Λ P Li, we define its orbit type tpΛq :“ rΛ : pi`1Λ_s. We also call it the type of Λ. In

particular, the lattices in Li of type 1 are precisely the Fp2-rational points of Mi,red. By sending

Λ to gpΛq, an element g P J defines a map Li Ñ Li`αpgq.

Proposition ([Vol10] Remark 2.3 and [VW11] Remark 4.1). Let i be an integer such that ni

is even and let Λ P Li.

– The map Li Ñ Li`αpgq induced by an element g P J is an inclusion preserving, type

preserving bijection.

– We have 1 ď tpΛq ď n. Furthermore tpΛq is odd.

– The sets Li’s for various i’s are pairwise disjoint.

Moreover, two lattices Λ,Λ1 P Ů
niP2Z Li are in the same orbit under the action of J if and only

if tpΛq “ tpΛ1q.

Proof. The first three points are proved in [Vol10]. Thus, we only explain the last statement.

If Λ and Λ1 are in the same J-orbit, because the action of J preserves the type we have

tpΛq “ tpΛ1q.
For the converse, assume that Λ and Λ1 have the same type. Let i and i1 be the integers such

that Λ P Li and Λ1 P Li1 . According to 3.1.1.7, we can always find g P J such that αpgq “ i´ i1.

Hence, replacing Λ1 by g ¨ Λ1 we may assume that i “ i1. Then the statement follows from

[VW11] Remark 4.1.
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We write L :“ Ů
niP2Z Li. For any integer i such that ni is even and any odd number t between

1 and n, there exists a lattice Λ P Li of orbit type t. Indeed, by fixing a bijection Li
„ÝÑ L0 it is

enough to find such a lattice for i “ 0. Then, examples of lattices in L0 of any type are given

in 3.1.2.6 below.

3.1.2.2 Write tmax :“ 2m`1, so that the orbit type t of any lattice in L satisfies 1 ď t ď tmax.

The following lemma will be useful later.

Lemma. Let i P Z such that ni is even, and let Λ P L. We have Λ_ P L if and only if either

n is even, either n is odd and tpΛq “ tmax.

If this condition is satisfied and n is even, then Λ_ P L´i´1 and tpΛ_q “ n ´ tpΛq. If on the

contrary n is odd, then Λ_ P L´i and tpΛ_q “ tpΛq.

Proof. First we prove the converse. We have the following chain of inclusions

p´iΛ
n´tpΛqĂ Λ_ tpΛqĂ p´i´1Λ.

If n is even, then ´npi ` 1q is also even and n ´ tpΛq “ 0. Since pΛ_q_ “ Λ, we deduce that

Λ_ P L´i´1 with orbit type n ´ tpΛq. Assume now that n is odd and that tpΛq “ tmax “ n.

Then Λ_ “ p´iΛ P L´i.

Let us now assume that Λ_ P L and that n is odd. Let i1 P 2Z such that Λ_ P Li1 . We have

Λ_ n´tpΛ_qĂ pi
1

Λ
n´tpΛqĂ pi

1`iΛ_, Λ_ tpΛqĂ p´i´1Λ
tpΛ_qĂ p´i´i1´2Λ_,

therefore ´2 ď i`i1 ď 0. Since i`i1 is even it is either ´2 or 0. If it were ´2, then we would have

tpΛq “ tpΛ_q “ 0 which is absurd. Therefore i`i1 “ 0, and we have n´tpΛq “ n´tpΛ_q “ 0.

3.1.2.3 With the help of Li, one may construct an abstract simplicial complex Bi. For s ě 0,

an s-simplex of Bi is a subset S Ă Li of cardinality s`1 such that for some ordering Λ0, . . . ,Λs

of its elements, we have a chain of inclusions pi`1Λ_
s Ĺ Λ0 Ĺ Λ1 Ĺ . . . Ĺ Λs. We must have

0 ď s ď m for such a simplex to exist.

We introduce J̃ “ SUpVq, the derived group of J . We consider the abstract simplicial complex

BTpJ̃ ,Qpq of the Bruhat-Tits building of J̃ over Qp. A concrete description of this complex is

given in [Vol10], while proving the following theorem.

Theorem ([Vol10] 3.5). The abstract simplicial complex BTpJ̃ ,Qpq of the Bruhat-Tits building

of J̃ is naturally identified with Bi for any fixed integer i such that ni is even. There is in

particular an identification of Li with the set of vertices of BTpJ̃ ,Qpq. The identification is

J̃-equivariant.

Apartments in the Bruhat-Tits building BTpJ̃ ,Qpq are in 1 to 1 correspondence with Witt

decompositions of V. Let L “ tLjuiPI be a Witt decomposition of V and let f “ pfiqiPI \Ban

be a basis of V adapted to the decomposition, where Ban is an orthogonal basis of Lan. Under

the identification of BTpJ̃ ,Qpq with Bi, the vertices inside the apartment associated to L
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correspond to the lattices Λ P Li which are equal to the direct sum of Λ X Lan and of the

modules priZp2fi for some integers priqiPI . The subset of Li consisting of all such lattices will

be denoted AL
i or, with an abuse of notations, Af

i . We call such a set AL
i the apartment

associated to L in Li.

Remark. The set of vertices of the Bruhat-Tits building of J “ GUpVq may then be identified

with the disjoint union L of the Li’s. The subsets of lattices in a common apartment correspond

to the sets AL :“ Ů
niP2Z A

L
i where L is some Witt decomposition of V. The set AL will be

called the apartment associated to L.

We recall a general result regarding Bruhat-Tits buildings.

Proposition. Let i be an integer such that ni is even. Any two lattices Λ and Λ1 in Li (resp.

L) lie inside a common apartment AL
i (resp. AL) for some Witt decomposition L.

Moreover, the action of the group J̃ sends apartments to apartments. It acts transitively on the

set tAL
i uL. The same is true for J acting on the set tALuL.

3.1.2.4 Recall the basis e of V that we fixed in 1.4. We will denote by

Λpr´m, . . . , r´1, s, r1, . . . , rmq

the Zp2-lattice generated by the vectors prjej for all j “ ˘1, . . . ,˘m, by ps0ean0 and if n is even,

by ps1ean1 too. Here, the rj’s are integers and s denotes either the integer s0 if n is odd or the

pair of integers ps0, s1q if n is even.

Proposition. Let i be an integer such that ni is even. Let prj, sq be a family of integers as

above. The corresponding lattice Λ “ Λpr´m, . . . , r´1, s, r1, . . . , rmq belongs to Li if and only if

the following conditions are satisfied

– for all 1 ď j ď m, we have r´j ` rj P ti, i ` 1u,
– s0 “ t i`1

2
u,

– if n is even, then s1 “ t i
2
u.

Moreover, when that is the case the type of Λ is given by

tpΛq “ 1 ` 2#t1 ď j ď m | r´j ` rj “ iu.

Proof. The lattice Λ belongs to Li if and only if the following chain of inclusions holds:

pi`1Λ_ Ĺ Λ Ă piΛ_.

The dual lattice Λ_ is equal to the lattice Λp´rm, . . . ,´r1, s1,´r´1, . . . ,´r´mq, where s1 “ ´s0
when n is odd, and s1 “ p´s0,´s1´1q when n is even. Thus, the inclusions above are equivalent

to the following inequalities:

i ´ r´j ď rj ď i ` 1 ´ r´j, i ´ s0 ď s0 ď i ` 1 ´ s0,

i ´ 1 ´ s1 ď s1 ď i ´ s1 (if n is even).
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This proves the desired condition on the integers rj’s and on s.

Let us now assume that Λ P Li. Its orbit type is equal to the index rΛ, pi`1Λ_s. This corresponds
to the number of times equality occurs with the left-hand side in all the inequalities above. Of

course, if the equality i´ r´j “ rj occurs for some j, then it occurs also for ´j. Moreover, if i

is even then the equality i´ s0 “ s0 occurs whereas i´ 1´ s1 “ s1. On the contrary if i is odd,

then the equality i ´ 1 ´ s1 “ s1 occurs whereas i ´ s0 “ s0. Thus in all cases, only one of s0

and s1 contributes to the index. Putting things together, we deduce the desired formula.

3.1.2.5 We deduce the following corollary.

Corollary. The apartment Aei (resp. A
e) consists of all the lattices of the form

Λ “ Λpr´m, . . . , r´1, s, r1, . . . , rmq

which belong to Li (resp. to L).

Proof. According to the previous proposition, it is clear that all lattices which belong to Li and

are of the form Λpr´m, . . . , r´1, s, r1, . . . , rmq are elements of Ae
i . We shall prove the converse.

Let Λ P Ae
i . By definition, there exists integers prjq such that

Λ “ Λ X Van ‘
à

1ďjďm

ppr´jZp2e´j ‘ prjZp2ejq .

Write Λ1 “ Λ X Van. This is a lattice in Van which satisfies the chain of inclusions

pi`1Λ1 _ Ă Λ1 Ă piΛ1 _,

where the duals are taken with respect to the restriction of t¨, ¨u toVan. SinceVan is anisotropic,

there is only a single lattice satisfying the chain of inclusions above. If we write a :“ t i`1
2

u and

b :“ t i
2
u, it is given by paZp2e

an
0 if n is odd, and by paZp2e

an
0 ‘ pbZp2e

an
1 if n is even. Thus, it

must be equal to Λ1 and it concludes the proof.

3.1.2.6 We fix a maximal simplex in L0 lying inside the apartment Ae
0. For 0 ď θ ď m we

define

Λθ :“ Λp0, . . . , 0l jh n
m

, 0, 0, . . . , 0l jh n
θ

, 1, . . . , 1l jh n
m´θ

q.

Here, the 0 in the middle stands for p0, 0q in case n is even. The lattice Λθ belongs to L0, its

orbit type is 2θ ` 1 and together they fit inside the following chain of inclusions

pΛ_
0 Ĺ Λ0 Ă . . . Ă Λm.

Thus, they form an m-simplex in L0.
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3.1.2.7 Given a lattice Λ P Li, the authors of [VW11] define a subfunctor MΛ of Mi,red

classifying those p-divisible groups for which a certain quasi-isogeny, depending on Λ, is in fact

an actual isogeny. In Lemma 4.2, they prove that it is representable by a projective scheme

over Fp2 , and that the natural morphism MΛ ãÑ Mi,red is a closed immersion. The schemes

MΛ are called the closed Bruhat-Tits strata of M. Their rational points are described as

follows.

Proposition ([VW11] Lemma 4.3). Let k be a perfect field extension of Fp2, and let M P
Mi,redpkq. Then we have the equivalence

M P MΛpkq ðñ M Ă Λk :“ Λ bZ
p2
W pkq.

The set of lattices satisfying the condition above was conjectured in [Vol10] to be the set of

points of a subscheme of Mi,red, and it was proved in the special cases n “ 2, 3. In [VW11],

the general argument is given by the construction of MΛ. The action of an element g P J on

Mred induces an isomorphism MΛ
„ÝÑ Mg¨Λ.

3.1.2.8 Let Λ P L, we denote by JΛ the fixator of Λ under the action of J . If Λ “ Λθ for

some 0 ď θ ď m, we will write Jθ instead. These are maximal parahoric subgroups of J .

In unramified unitary similitude groups, maximal parahoric subgroups and maximal compact

subgroups are the same. A general parahoric subgroup is an intersection JΛ1
X . . . X JΛs

where tΛ1, . . . ,Λsu is an s-simplex in Li for some i. Any parahoric subgroup is compact and

open in J .

Let i be the integer such that Λ P Li. We define V 0
Λ :“ Λ{pi`1Λ_ and V 1

Λ :“ piΛ_{Λ. Since

pΛ Ă p ¨ piΛ_ and p ¨ piΛ_ Ă Λ, these are both Fp2-vector space of dimensions respectively tpΛq
and n ´ tpΛq. Both spaces come together with a non-degenerate σ-hermitian form p¨, ¨q0 and

p¨, ¨q1 with values in Fp2 , respectively induced by p´it¨, ¨u and by p´i`1t¨, ¨u. If k is a perfect

field extension of Fp2 and if ǫ P t0, 1u, we may extend the pairings to pV ǫ
Λqk “ V ǫ

Λ bF
p2
k by

setting

pv b x, w b yqǫ :“ xyσpv, wqǫ P k

for all v, w P V ǫ
Λ and x, y P k. If U is a subspace of pV ǫ

Λqk we denote by UK its orthogonal, that

is the subspace of all vectors x P pV ǫ
Λqk such that px, Uqǫ “ 0.

Denote by J`
Λ the pro-unipotent radical of JΛ and write JΛ :“ JΛ{J`

Λ . This is a finite group

of Lie type, called the maximal reductive quotient of JΛ. We have an identification JΛ »
GpUpV 0

Λ q ˆ UpV 1
Λ qq, that is the group of pairs pg0, g1q where for ǫ P t0, 1u we have gǫ P GUpV ǫ

Λq
and cpg0q “ cpg1q. Here, cpgǫq P Fˆ

p denotes the multiplier of gǫ.

For 0 ď θ ď m and ǫ P t0, 1u, we will write V ǫ
θ and Jθ instead of V ǫ

Λθ
and JΛθ

. A basis of V 0
θ is

given by the images of the 2θ ` 1 vectors e´θ . . . , e´1, e
an
0 , e1, . . . , eθ. As for V

1
θ , a basis is given

by the images of the n ´ 2θ ´ 1 vectors p´1e´m, . . . , p
´1e´θ´1, eθ`1, . . . , em when n is odd, and

in case n is even one must add the image of p´1ean1 to the basis.
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3.1.2.9 Let Λ P Li where ni is even. We write tpΛq “ 2θ ` 1. Let k be a perfect field

extension of Fp2 . Let T be any W pkq-lattice in Vk such that

pi`1T_ 2θ1`1Ă T Ă Λk

where 0 ď θ1 ď θ. Then T must contain pi`1Λ_
k and rΛk : T s “ θ ´ θ1. We may consider

T :“ T {pi`1Λ_
k the image of T in V

p0q
Λ . Then T is an Fp2-subspace of dimension θ ` θ1 ` 1.

Moreover, one may check that pi`1T_ “ T
K
, therefore the subspace T contains its orthogonal.

These observations lead to the following proposition.

Proposition ([Vol10] 2.7). The mapping T ÞÑ T defines a bijection between the set of W pkq-
lattices T in Vk such that pi`1T_ 2θ1`1Ă T Ă Λk and the set

tU Ă pV 0
Λ qk | dimU “ θ ` θ1 ` 1 and UK Ă Uu.

In particular taking θ1 “ 0, this set is in bijection with MΛpkq.

Remark. Similarly, the set of W pkq-lattices T such that Λk Ă T
n´2θ1´1Ă piT_ for some θ ď θ1 ď

m is in bijection with

tU Ă pV 1
Λ qk | dimU “ n ´ θ1 ´ θ ´ 1 and UK Ă Uu.

The bijection is given by T ÞÑ T
K
where T :“ T {Λk Ă V

p1q
k . These sets can be seen as the

k-rational points of some flag variety for GUpV p0q
Λ q and GUpV p1q

Λ q, which are special instances

of Deligne-Lusztig varieties. This is accounted for in the next paragraph.

3.1.2.10 Let Λ P L. The action of J on the Rapoport-Zink space M restricts to an action of

the parahoric subgroup JΛ on the closed Bruhat-Tits stratum MΛ. This action factors through

the maximal reductive quotient JΛ » GpUpV 0
Λ q ˆ UpV 1

Λ qq. This action is trivial on the normal

subgroup tidu ˆUpV 1
Λ q Ă JΛ, thus it factors again through the quotient which is isomorphic to

GUpV 0
Λ q.

Theorem ([VW11] Theorem 4.8). There is an isomorphism between MΛ and a certain “gen-

eralized” parabolic Deligne-Lusztig variety for the finite group of Lie type GUpV 0
Λ q, compatible

with the actions. In particular, if tpΛq “ 2θ ` 1 then the scheme MΛ is projective, smooth,

geometrically irreducible of dimension θ.

We refer to [Mul22a] Section 1 for the definition of Deligne-Lusztig varieties. In particular,

the adjective “generalized” is understood according to loc. cit. The Deligne-Lusztig variety

isomorphic to MΛ is introduced in [VW11] 4.5, and it is denoted by YΛ there.

3.1.2.11 We now explain how the different closed Bruhat-Tits strata behave together.

Theorem ([VW11] Theorem 5.1). Let i P Z such that ni is even. Consider Λ and Λ1 two

lattices in Li. The following statements hold.

57



Cohomology of DL varieties associated to PEL RZ spaces with signature p1, n ´ 1q

(1) The inclusion Λ Ă Λ1 is equivalent to the scheme-theoretic inclusion MΛ Ă MΛ1. It also

implies tpΛq ď tpΛ1q and there is equality if and only if Λ “ Λ1.

(2) The three following assertions are equivalent.

piq Λ X Λ1 P Li. piiq Λ X Λ1 contains a lattice of Li. piiiq MΛ X MΛ1 “ H.

If these conditions are satisfied, then MΛ XMΛ1 “ MΛXΛ1, where we understand the left

hand side as the scheme theoretic intersection inside Mi,red.

(3) The three following assertions are equivalent

piq Λ ` Λ1 P Li. piiq Λ ` Λ1 is contained in a lattice of Li.

piiiq MΛ,MΛ1 Ă MrΛ for some rΛ in Li.

If these conditions are satisfied, then MΛ`Λ1 is the smallest subscheme of the form MrΛ
containing both MΛ and MΛ1.

(4) If k is a perfect field field extension of Fp2 then Mipkq “ Ť
ΛPLi

MΛpkq.

In essence, the previous statements explain how the stratification given by the MΛ mimics the

combinatorics of the Bruhat-Tits building of J̃ , hence the name.

3.1.3 On the maximal parahoric subgroups of J

3.1.3.1 In this section we give a few results that will be useful later regarding the maximal

parahoric subgroups JΛ. First, we study their conjugacy classes. It starts with the following

lemma.

Lemma. Let Λ,Λ1 P L.

(i) The parahoric subgroup JΛ acts transitively on the set of apartments containing Λ.

(ii) We have JΛ “ JΛ1 if and only if there exists k P Z such that Λ “ pkΛ1 or Λ “ pkΛ1 _.

Proof. The first point is a general fact from the theory of Bruhat-Tits buildings.

For the second point, the converse is clear. Indeed, if x P Qˆ
p2

then JxΛ “ JΛ, and an element

g P J fixes a lattice Λ if and only if it fixes its dual Λ_.

Now, let Λ,Λ1 P L such that JΛ “ JΛ1 . Up to replacing Λ1 by an appropriate lattice g ¨ Λ1, it

is enough to treat the case Λ1 “ Λθ for some 0 ď θ ď m. By 3.1.2.3 Proposition, we can find

an apartment AL containing both Λθ and Λ. By the first point, we can find g P Jθ “ JΛ which

sends AL to Ae. Therefore g ¨ Λ “ Λ belongs to Ae. According to 3.1.2.5, we may write

Λ “ Λpr´m, . . . , r´1, s, r1, . . . , rmq

for some integers prj, sq. Let i be the integer such that Λ P Li. Then according to 3.1.2.4 we

have

– @1 ď j ď m, r´j ` rj P ti, i ` 1u.
– s0 “ t i`1

2
u.
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– if n is even then s1 “ t i
2
u.

For 1 ď j ď θ, let gj be the automorphism of V which exchanges e´j and ej while fixing all the

other vectors in the basis e. Then, from the definition of Λθ we have gj P Jθ. Therefore gj must

fix Λ too, which implies that r´j “ rj. And for θ ` 1 ď j ď m, let gj be the automorphism

sending ej to p
´1e´j and e´j to pej while fixing all the other vectors in the basis e. Then again

we have gj P Jθ “ JΛ which implies that r´j “ rj ´ 1.

Assume first that i “ 2i1 is even. Combining the previous observations, we have rj “ i1 for all

1 ď j ď θ and rj “ i1 ` 1 for all θ ` 1 ď j ď m. Moreover we have s0 “ i1 and if n is even, we

have s1 “ i1. In other words, we have Λ “ pi
1

Λθ.

Assume now that i “ 2i1 ` 1 is odd. This implies that n is even. Combining the previous

observations, we have rj “ i1 ` 1 for all 1 ď j ď m. Moreover we have s0 “ i1 ` 1 and if n is

even, we have s1 “ i1. In other words, we have Λ “ pi
1`1Λ_

θ .

3.1.3.2 We may now describe the conjugacy classes of these maximal parahoric subgroups.

Corollary. Let Λ,Λ1 P L.

(i) If n is odd, then tpΛq “ tpΛ1q if and only if the associated maximal parahoric subgroups JΛ

and JΛ1 are conjugate in J . Each such subgroup is conjugate to Jθ for a unique 0 ď θ ď m.

(ii) If n is even, then tpΛq P ttpΛ1q, n´ tpΛ1qu if and only if the associated maximal parahoric

subgroups JΛ and JΛ1 are conjugate in J . Each such subgroup is conjugate to Jθ for a

unique 0 ď θ ď tm
2

u.

Thus, there are m ` 1 conjugacy classes of maximal parahoric subgroups when n is odd, and

only tm
2

u ` 1 when n is even. If n is odd the subgroups Jθ are pairwise non conjugate, whereas

Jθ is conjugate to Jm´θ when n is even.

Remark. The special maximal compact subgroups are the conjugates of J0 and of Jm. When n

is odd, the conjugates of Jm are hyperspecial.

Proof. For the first point, assume that tpΛq “ tpΛ1q. By 3.1.2.1 Proposition, we can find g P J
such that g ¨ Λ “ Λ1. Therefore JΛ1 “ Jg¨Λ “ gJΛ, the two parahoric subgroups are conjugate.

For the converse, assume that JΛ1 “ gJΛ for some g P J . Then JΛ1 “ Jg¨Λ. By 3.1.3.1 there is

some k P Z such that Λ1 “ pkg ¨ Λ or pΛ1q_ “ pkg ¨ Λ. This implies that tpΛq “ tpΛ1q. Indeed,

it is clear in the first case, and in the second case we have in particular pΛ1q_ P L. Since n is

odd, by 3.1.2.2 we have tpΛ1q “ tppΛ1q_q, so that we are done.

For the second point, if tpΛ1q “ tpΛq then we reason the same way as above. If tpΛ1q “ n´ tpΛq
then Λ1 and Λ_ have the same type. By the first case, we know that JΛ1 and JΛ_ “ JΛ are

conjugate. The converse goes the same way as above, except that the case pΛ1q_ “ pkg ¨Λ now

implies that tpΛ1q “ n ´ tpΛq therefore we are done.

3.1.3.3 As another corollary of 3.1.3.1 we may also describe the normalizers of the maximal

parahoric subgroups.
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Corollary. Let Λ P L. If tpΛq “ n´ tpΛq then the normalizer of JΛ in J is NJpJΛq “ ZpJqJΛ.
Otherwise, n is even and there exists an element h0 P J such that h20 “ p ¨ id and NJpJλq is the

subgroup generated by JΛ and h0. In particular, ZpJqJΛ is a subgroup of index 2 in NJpJΛq.

Remark. The condition tpΛq “ n´ tpΛq is automatically satisfied if n is odd. If n is even, it is

satisfied when tpΛq “ m ` 1, this is the case in particular when m is odd.

Proof. It is clear that ZpJqJΛ Ă NJpJΛq. Conversely, let g P NJpJΛq, so that we have JΛ “
gJΛ “ Jg¨Λ. We apply 3.1.3.1 to deduce the existence of k P Z such that g ¨ Λ “ pkΛ (case 1)

or g ¨ Λ “ pkΛ_ (case 2). If we are in case 1, then g P pkJΛ Ă ZpJqJΛ and we are done. If n is

even, the assumption that tpΛq “ n´ tpΛq makes the case 2 impossible. If n is odd and we are

in case 2, then in particular Λ_ P L. By 3.1.2.2, we must have Λ “ piΛ_ for some even i P Z.

In particular, we are also in case 1. Therefore, no matter the parity of n, we are always in case

1.

Assume now that tpΛq “ n´ tpΛq, in particular n and m are both even. We write m “ 2m1 so

that tpΛq “ 2m1 `1 and we solve the case Λ “ Λm1 first. Recall the element g0 that was defined

in 3.1.1.7. By direct computation, we see that g0 ¨ Λm1 “ pΛ_
m1 . Therefore g0Jm1 “ JpΛ_

m1
“ Jm1

so that g0 P NJpJm1q. Now let g be any element normalizing Jm, so that Jm1 “ gJm1 “ Jg¨Λm1 .

According to 3.1.3.1 there exists k P Z such that g¨Λm1 “ pkΛm1 or g¨Λm1 “ pkΛ_
m1 “ pk´1g0¨Λm1 .

In the first case we have g P pkJm1 and in the second case we have g P pk´1g0Jm1 . Because

g20 “ p ¨ id, the claim is proved with h0 “ g0.

In the general case, we have tpΛq “ 2m1 ` 1 “ tpΛm1q. By 3.1.2.1 there exists some g P J such

that Λ “ g ¨ Λm1 . Then NJpΛq “ gNJpΛm1q so that the claim follows with h0 :“ gg0g
´1.

3.1.3.4 Let J˝ be the kernel of α : J Ñ Z. In other words, J˝ is the subgroup of J consisting

of all g P J whose multiplier cpgq is a unit in Zˆ
p . We have an isomorphism J{J˝ » Z induced by

α when n is even, and by 1
2
α when n is odd. Note that J˝ contains all the compact subgroups

of J , in particular JΛ Ă J˝ for every Λ P L. Let K be the subgroup generated by all the JΛ for

Λ P L having maximal orbit type tpΛq “ 2m ` 1. We will prove the following result.

Proposition. We have K “ J˝.

The proof requires the following lemma.

Lemma. Let i P Z such that ni is even and let Λ P Li be a lattice of maximal orbit type. Let

Λ1,Λ2 P Li such that Λ1 X Λ and Λ2 X Λ belong to Li. There exists g P JΛ such that g ¨ Λ1 “ Λ2

if and only if tpΛ1q “ tpΛ2q and tpΛ1 X Λq “ tpΛ2 X Λq.

Proof. The forward direction is clear because the action of J preserves the types of the lattices.

We prove the converse. Since J acts transitively on L while preserving types and inclusions, it

is enough to look at the case i “ 0 and Λ “ Λm “ Λp0, . . . , 0q. Let 0 ď θ´ ď θ` ď m. We fix

a certain Λ1 P L0 such that tpΛ1q “ 2θ` ` 1 and tpΛ1 X Λq “ 2θ´ ` 1, and we prove that any

Λ2 P L0 satisfying the hypotheses of the lemma is in the Jm-orbit of Λ
1. We define

Λ1 “ Λp0θ´ , 1θ`´θ´ , 1m´θ` , 0, 0m´θ` ,´1θ`´θ´ , 0θ´q
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where the 0 in the middle stands for 0 when n is odd and the pair p0, 0q when n is even. Then,

we have

Λ1 X Λ “ Λp0θ´ , 1m´θ´ , 0, 0m´θ´ , 0θ´q

so that Λ1 satisfies the required conditions. Let Λ2 be as in the lemma. Let L be a Witt

decomposition of V such that the corresponding apartment AL contains both Λ and Λ2. Since

Jm acts transitively on the set of apartments containing Λm, we can find some g P Jm such that

g ¨ AL “ Ae. Up to replacing Λ2 by g ¨ Λ2, we may then assume that Λ2 P Ae. Therefore, there

exists integers r´m, . . . , rm, s such that

Λ2 “ Λpr´m, . . . , r´1, s, r1, . . . , rmq.

Since Λ2 P L0, by 3.1.2.4 we have s “ 0 and rj ` r´j P t0, 1u for all 1 ď j ď m. Let us write

r´j “ rj`ǫj where ǫj P t0, 1u. Since tpΛ2q “ 2θ``1, there are θ` indices 1 ď j1 ď . . . ď jθ`
ď m

such that ǫj “ 0 if and only if j is one of the jk’s. Moreover, we have

Λ2 X Λ “ Λ pmaxp´rm ` ǫm, 0q, . . . ,maxp´r1 ` ǫ1, 0q, 0,maxpr1, 0q, . . . ,maxprm, 0qq .

This lattice is in L0, thus for every 1 ď j ď m we have 0 ď maxp´rj ` ǫj, 0q ` maxprj, 0q ď 1.

Hence, if j “ jk for some k then ǫj “ 0 and

maxp´rj ` ǫj, 0q ` maxprj, 0q “ maxp´rj, 0q ` maxprj, 0q “ |rj|.

Thus, |rj| “ 0 or 1. If j “ jk for all k, then ǫj “ 1 and

maxp´rj ` ǫj, 0q ` maxprj, 0q “ maxp´rj ` 1, 0q ` maxprj, 0q “ 1

2
` |rj| ` |rj ´ 1|

2
.

This sum is a positive integer between 0 and 1, therefore it is always 1. It means that |rj| `
|rj ´ 1| “ 1 and as a consequence, rj “ 0 or 1.

Lastly, we have tpΛ2 X Λq “ 2θ´ ` 1 so there are exactly θ´ indices j for which the sum

maxp´rj ` ǫj, 0q ` maxprj, 0q is zero. As we have just seen, this may only happen when j is

one of the jk’s. Thus, among the indices j “ j1, . . . , jθ`
, there are exactly θ´ of them for which

pr´j, rjq “ p0, 0q, and for the others we have pr´j, rjq “ p1,´1q or p´1, 1q. If j is not one of the
jk’s, we have pr´j, rjq “ p0, 1q or p1, 0q. In other words, the pairs of indices pr´j, rjq are, up to

shifts and ordering, the same as the corresponding pairs of indices defining Λ1. By considering

appropriate permutation matrices, we may change a pair pr´j, rjq into prj, r´jq and we may

change the order so that Λ2 is sent to Λ1. This transformation defines an element of J which

stabilizes Λ “ Λp0, . . . , 0q.

3.1.3.5 We may now prove the proposition.

Proof. It is clear that K Ă Kerpαq, so we prove the reverse inclusion. Let g0 P J˝. We will

write g0 as a product of elements in J , each of which fixes some lattice of maximal orbit type in

the Bruhat-Tits building. We write Λ :“ Λm “ Λp0, . . . , 0q and Λ0 :“ g0 ¨ Λ. Since g0 P J˝, we

have Λ0 P L0. We would like to send Λ0 back to Λ by using elements of K only. Let L be some
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Witt decomposition of V such that the corresponding apartment AL contains both Λ and Λ0.

We can find some g1 P JΛ which sends AL to Ae. We define g1 :“ g1g
0 and Λ1 :“ g1 ¨ Λ. Then

Λ1 P L0 and it belongs to the apartment Ae. Therefore, there exists integers r´m, . . . , rm, s

such that

Λ1 “ Λpr´m, . . . , r´1, s, r1, . . . , rmq.

Since Λ1 P L0 and its orbit type is maximal, we have s “ 0 and r´j “ ´rj for all 1 ď j ď m.

Let 1 ď j1 ă . . . ă ja ď m be the indices j for which rj is odd. We have 0 ď a ď m. For

1 ď j ď m we write rj “ 2r1
j ` 1 if j is some of the j1

ks and rj “ 2r1
j otherwise. We also write

r1
´j “ ´r1

j, so that we have r´j “ 2r1
´j ´ 1 if j is some of the jk’s and r´j “ 2r1

´j otherwise. We

define g2 the endomorphism of V sending e´j to p
2r1

jej for ´m ď j ď m and j “ 0, and which

acts like identity on Van. Then g2 is an element of J with multiplier equal to 1. Moreover, g2

stabilizes the lattice Λpr1
´m, . . . , r

1
´1, 0, r

1
1, . . . , r

1
mq P L0 whose orbit type is maximal, therefore

g2 P K. We define g2 :“ g2g
1 and Λ2 :“ g2 ¨ Λ P L0. Concretely, the lattice Λ2 still lies in the

apartment Ae and its coefficients are obtained from those of Λ1 by replacing each pair pr´jk , rjkq
by p1,´1q and the other pairs pr´j, rjq by p0, 0q. Let us note that if a “ 0 then we already have

Λ2 “ Λ.

Let us now assume that a ą 0. The intersection of the lattices Λ2 and Λ has the following

shape.

Λ2 X Λ “ Λp 0 or 1, . . . , 0 or 1l jh n
a times 1 and m´a times 0

, 0, 0mq.

The coefficient takes the value 1 if and only if its index is one of the ´jk’s. This is a lattice

in L0 of orbit type 2pm ´ aq ` 1. We will use 3.1.3.4 Lemma in order to send Λ2 to Λ while

fixing some lattice of maximal orbit type. In order to find this lattice, we need to leave the

apartment Ae. Let δ P Zˆ
p2

such that σpδq “ ´δ. We define the following vectors

fj “

$
’&
’%

ej if j is not one of the ˘ jk’s.

pe´jk if j “ ´jk.
p´1ejk ` δe´jk if j “ jk.

We also define f an
i “ eani for i P t0, 1u (the case i “ 1 only occurs if n is even). All together,

these vectors form a basis f of V. We write Λf for the Zp2-lattice generated by the basis f . One

may check that xfj, fj1y “ δj1,´j for every j and j1. It follows that Λf P L0 and it has maximal

orbit type. It turns out that both intersections Λ2 X Λf and Λ X Λf are equal to Λ2 X Λ, as we

prove in the following two points.

– Λ2 X Λf : The lattice Λ2XΛf contains all the vectors ej where j is not of the ˘jk’s. It also
contains the vectors pe´jk and p¨pp´1ejk`δe´jkq “ ejk`δpe´jk for all 1 ď k ď a. Therefore,

it must contain the vectors ejk ’s as well. This gives the inclusion Λ2 X Λ Ă Λ2 X Λf . For
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the converse, if x P Λf then we may write

x “
ÿ

j “˘jk

µjej `
sÿ

k“1

λkpe´jk ` λ1
kpp´1ejk ` δe´jkq

“
ÿ

j “˘jk

µjej `
sÿ

k“1

pλkp ` λ1
kδqe´jk ` λ1

kp
´1ejk

with the scalars µj, λk and λ
1
k in Zp2 . If moreover x P Λ2 then in the last formula, we must

have λkp` λ1
kδ P pZp2 . It follows that the scalars λ1

k belong to pZp2 and thus x P Λ2 X Λ.

– Λ X Λf : By the same arguments as above, we prove that Λ2 X Λ Ă Λ X Λf . For the

converse, let x P Λf as above. If moreover x P Λ then the scalars λ1
k are elements of pZp2 .

It implies that λkp ` λ1
kδ P pZp2 , whence x P Λ2 X Λ.

Eventually we may apply 3.1.3.4 Lemma to the lattices Λf ,Λ
2 and Λ. It gives the existence of

an element g3 P J which stabilizes Λf and sends Λ2 to Λ. We write g3 :“ g3g
2. It follows that

g3 ¨ Λ “ Λ, therefore g3 P JΛ Ă K. But g3 “ g3g2g1g
0 and each of the elements g1, g2 and g3

also lies in K. Therefore g0 P K as well.

3.1.4 Counting the closed Bruhat-Tits strata

3.1.4.1 In this section we count the number of closed Bruhat-Tits strata which contain or

which are contained in another given one. Let d ě 0 and consider V a d-dimensional Fp2-vector

space equipped with a non degenerate hermitian form. This structure is uniquely determined

up to isomorphism as we are working over a finite field. As in [VW11], for
P
d
2

T
ď r ď d, we

define

Npr, V q :“ tU |U is an r-dimensional subspace of V such that UK Ă Uu,
νpr, dq :“ #Npr, V q,

where UK denotes the orthogonal of U with respect to the hermitian form on V . As remarked

in [VW11], the set Npr, V q can be seen as the set of rational points of a certain flag variety for

the unitary group of V .

Proposition ([VW11] Corollary 5.7). Let Λ P L. Write tpΛq “ 2θ ` 1 for some 0 ď θ ď m.

– Let θ1 be an integer such that 0 ď θ1 ď θ. The number of closed Bruhat-Tits strata of

dimension θ1 contained in MΛ is νpθ ` θ1 ` 1, 2θ ` 1q.
– Let θ1 be an integer such that θ ď θ1 ď m. The number of closed Bruhat-Tits strata of

dimension θ1 containing MΛ is νpn ´ θ ´ θ1 ´ 1, n ´ 2θ ´ 1q.

These follows from 3.1.2.9 Proposition and Remark. Another way to formulate the proposition

is to say that νpθ` θ1 ` 1, 2θ` 1q (resp. νpn´ θ´ θ1 ´ 1, n´ 2θ´ 1q) is the number of vertices

of type 2θ1 ` 1 in the Bruhat-Tits building of J̃ which are neighbors of a given vertex of type

2θ ` 1 for θ1 ď θ (resp. θ1 ě θ).
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3.1.4.2 In [VW11], an explicit formula is given for νpd´ 1, dq. The next proposition gives a

formula to compute νpr, dq for general r and d.

Proposition. Let d ě 0 and let
P
d
2

T
ď r ď d. We have

νpr, dq “
ś2pd´rq

j“1

`
p2r´d`j ´ p´1q2r´d`j

˘
śd´r

j“1 pp2j ´ 1q

Proof. Recall that for any integer k, we denote by Ak the k ˆ k matrix having 1 in the an-

tidiagonal and 0 everywhere else. We fix a basis pe1, . . . , edq of V in which the hermitian form

is represented by the matrix Ad. We denote by U0 the subspace generated by the vectors

e1, . . . , er. Then the orthogonal of U0 is generated by e1, . . . , ed´r. Since r is an integer betweenP
d
2

T
and d, we have 0 ď d ´ r ď r and therefore U0 contains its orthogonal. Thus, U0 defines

an element of Npr, V q. The unitary group UpV q » UdpFpq acts on the set Npr, V q: an element

g P UpV q sends the subspace U to gpUq. This action is transitive. Indeed, any U P Npr, V q can
be sent to U0 by using an equivalent of the Gram-Schmidt orthogonalization process over Fp2

(note that p “ 2q. The stabilizer of U0 in UdpFpq is the standard parabolic subgroup

P0 :“

$
’&
’%

¨
˚̋
B ˚ ˚
0 M ˚
0 0 F pBq

˛
‹‚P UdpFpq

ˇ̌
ˇ̌
ˇ̌
ˇ
B P GLd´rpFp2q,M P U2r´dpFpq

,
/.
/-
.

Here, F pBq “ Ad´rpBppqq´TAd´r where B
ppq is the matrix B with all coefficients raised to the

power p. Therefore, the set Npr, V q is in bijection with the quotient UdpFpq{P0. The order of

UdpFpq is well known and given by the formula

#UdpFpq “ p
dpd´1q

2

dź

j“1

`
pj ´ p´1qj

˘
.

It remains to compute the order of P0. We have a Levi decomposition P0 “ L0N0 with

L0 X N0 “ t1u where

L0 :“

$
’&
’%

¨
˚̋
B 0 0

0 M 0

0 0 F pBq

˛
‹‚P UdpFpq

ˇ̌
ˇ̌
ˇ̌
ˇ
B P GLd´rpFp2q,M P U2r´dpFpq

,
/.
/-
,

N0 :“

$
’&
’%

¨
˚̋
1 X Z

0 1 Y

0 0 1

˛
‹‚P UdpFpq

ˇ̌
ˇ̌
ˇ̌
ˇ
X P Md´r,2r´dpFp2q, Y P M2r´d,d´rpFp2q, Z P Md´rpFp2q

,
/.
/-
.

The order of L0 is given by

#L0 “ #GLd´rpFp2q#U2r´dpFpq “ ppd´rqpd´r´1q` p2r´dqp2r´d´1q

2

d´rź

j“1

`
p2j ´ 1

˘ 2r´dź

j“1

`
pj ´ p´1qj

˘
.

As for N0, we need some more conditions on the matrices X, Y and Z. By direct computations,

one checks that such a matrix belongs to UdpFpq if and only if

Y “ ´A2r´dpXppqqTAd´r, Z ` Ad´rpZppqqTAd´r “ XY P Md´rpFp2q.
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Thus, X is any matrix of size pd ´ rq ˆ p2d ´ rq and Y is determined by X. Let us look at

the second equation. The matrix Ad´rpZppqqTAd´r is the reflexion of Zppq with respect to the

antidiagonal. The equation implies that the coefficients below the antidiagonal of Z determine

those above the antidiagonal. Furthermore, if z is a coefficient in the antidiagonal then the

equation determines the value of Trpzq “ z ` zp, where Tr : Fp2 Ñ Fp is the trace relative to

the extension Fp2{Fp. The trace is surjective and its kernel has order p. Thus, there are only p

possibilities for each antidiagonal coefficient. Putting things together, the order of N0 is given

by

#N0 “ p2pd´rqp2r´dq ¨ p2 pd´rqpd´r´1q

2 ¨ pd´r “ ppd´rqp3r´dq

where the three terms take account respectively of the choice of X, the choice of the coefficients

below the antidiagonal of Z and the choice of the coefficients in the antidiagonal of Z.

Hence the order of P0 is given by

#P0 “ #L0#N0 “ p
dpd´1q

2

d´rź

j“1

`
p2j ´ 1

˘ 2r´dź

j“1

`
pj ´ p´1qj

˘
.

Upon taking the quotient νpr, dq “ #UdpFpq{#P0, the result follows.

In particular with r “ d ´ 1, we obtain

νpd ´ 1, dq “ ppd´1 ´ p´1qd´1qppd ´ p´1qdq
p2 ´ 1

.

If d “ 2δ is even, it is equal to ppd´1 ` 1qřδ´1

j“0 p
2j, and if d “ 2δ ` 1 is odd, it is equal to

ppd ` 1qřδ´1

j“0 p
2j. This coincides with the formula given in [VW11] Example 5.6.

3.2 The cohomology of a closed Bruhat-Tits stratum

3.2.1 In [Mul22a], we computed the cohomology groups H‚
cpMΛbF,Qℓq of the closed Bruhat-

Tits strata (recall that F denotes an algebraic closure of Fp). The computation relies on

the Ekedahl-Oort stratification on MΛ which, in the language of Deligne-Lusztig varieties,

translates into a stratification by Coxeter varieties for unitary groups of smaller sizes. The

cohomology of Coxeter varieties is well known thanks to the work of Lusztig in [Lus76]. In

order to state our results, we recall the classification of unipotent representations of the finite

unitary group over Qℓ.

3.2.2 Let q be a power of prime number p, and let G be a reductive connected group over

an algebraic closure F of Fp. Assume that G is equipped with an Fq-structure induced by a

Frobenius morphism F . Let G “ GF be the associated finite group of Lie type. Let pT,Bq be

a pair consisting of an F -stable maximal torus T and an F -stable Borel subgroup B containing

T. Let W “ WpTq denote the Weyl group of G. The Frobenius F induces an action on W.

For w P W, let 9w be a representative of w in the normalizer NGpTq of T. By the Lang-Steinberg

theorem, one can find g P G such that 9w “ g´1F pgq. Then gT :“ gTg´1 is another F -stable
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maximal torus, and w P W is said to be the type of gT with respect to T. Every F -stable

maximal torus arises in this manner. According to [DL76] Corollary 1.14, the G-conjugacy

class of gT only depends on the F -conjugacy class of w in the Weyl group W. Here, two

elements w and w1 in W are said to be F -conjugates if there exists some element τ P W such

that w “ τw1F pτq´1. For every w P W, we fix Tw an F -stable maximal torus of type w with

respect to T. The Deligne-Lusztig induction of the trivial representation of Tw is the virtual

representation of G defined by the formula

Rw :“
ÿ

iě0

p´1qiHi
cpXHpwq b F,Qℓq,

where XHpwq is the Deligne-Lusztig variety for G given by

XHpwq :“ tgB P G{B | g´1F pgq P BwBu.

According to [DL76] Theorem 1.6, the virtual representation Rw only depends on the F -

conjugacy class of w in W. An irreducible representation of G is said to be unipotent if

it occurs in Rw for some w P W. The set of isomorphism classes of unipotent representations

of G is usually denoted EpG, 1q following Lusztig’s notations.

Remark. Since the center ZpGq acts trivially on the variety XHpwq, any irreducible unipotent

representation of G has trivial central character.

3.2.3 Let G and G1 be two reductive connected group over F both equipped with an Fq-

structure. We denote by F and F 1 the respective Frobenius morphisms. Let f : G Ñ G1 be an

Fq-isotypy, that is a homomorphism defined over Fq whose kernel is contained in the center of G

and whose image contains the derived subgroup of G1. Then, according to [DM14] Proposition

11.3.8, we have an equality

EpG, 1q “ tρ ˝ f | ρ P EpG1, 1qu.

Thus, the irreducible unipotent representations of G and of G1 can be identified. We will use

this observation in the case G “ UkpFqq and G1 “ GUkpFqq. The corresponding reductive

groups are G “ GLk and G1 “ GLk ˆ GL1. The Frobenius morphisms can be defined as

F pMq “ 9w0pM pqqq´T 9w0, F 1pM, cq “ pcq 9w0pM pqqq´T 9w0, c
qq.

Here, 9w0 is the kˆ k matrix with only 1’s in the antidiagonal and M pqq is the matrix M whose

entries are all raised to the power q. The isotypy f : G Ñ G1 is defined by fpMq “ pM, 1q. It
satisfies F 1˝f “ f ˝F , it is injective and its image contains the derived subgroup SLnˆt1u Ă G1.

Hence, we obtain the following result.

Proposition. The irreducible unipotent representations of the finite groups of Lie type UkpFqq
and GUkpFqq can be naturally identified.

3.2.4 Assume that the Coxeter graph of the reductive group G is a union of subgraphs of

type Am (for various m). Let |W be the set of isomorphism classes of irreducible representations
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of its Weyl group W. The action of the Frobenius F on W induces an action on |W, and we

consider the fixed point set |WF . The following theorem classifies the irreducible unipotent

representations of G.

Theorem ([LS77] Theorem 2.2). There is a bijection between |WF and the set of isomorphism

classes of irreducible unipotent representations of G.

We recall how the bijection is constructed. According to loc. cit. if V P |WF there is a unique

automorphism rF of V of finite order such that

RpV q :“ 1

|W|
ÿ

wPW

Tracepw ˝ rF |V qRw

is an irreducible representation of G. Then the map V ÞÑ RpV q is the desired bijection. In the

case of UkpFqq or GUkpFqq, the Weyl group W is identified with the symmetric group Sk and

we have an equality |WF “ |W. Moreover, the automorphism rF is the multiplication by w0,

where w0 is the element of maximal length in W. Thus, in both cases the irreducible unipotent

representations of G are classified by the irreducible representations of the Weyl groupW » Sk,

which in turn are classified by partitions of k or equivalently by Young diagrams, as we briefly

recall in the next paragraph.

3.2.5 A partition of k is a tuple λ “ pλ1 ě . . . ě λrq with r ě 1 and each λi is a positive

integer, such that λ1 ` . . . ` λr “ k. The integer k is called the length of the partition, and

it is denoted by |λ|. A Young diagram of size k is a top left justified collection of k boxes,

arranged in rows and columns. There is a correspondance between Young diagrams of size k

and partitions of k, by associating to a partition λ “ pλ1, . . . , λrq the Young diagram having

r rows consisting successively of λ1, . . . , λr boxes. We will often identify a partition with its

Young diagram, and conversely. For example, the Young diagram associated to λ “ p32, 22, 1q
is the following one.

To any partition λ of k, one can naturally associate an irreducible character χλ of the symmetric

group Sk. An explicit construction is given, for instance, by the notion of Specht modules as

explained in [Jam84] 7.1. We will not recall their definition.

3.2.6 The irreducible unipotent representation of UkpFqq (resp. GUkpFqq) associated to χλ

by the bijection of 3.2.4 is denoted by ρUλ (resp. ρGU
λ ). In virtue of 3.2.3, for every λ we

have ρUλ “ ρGU
λ ˝ f , where f : UkpFqq Ñ GUkpFqq is the inclusion. Thus, it is harmless to

identify ρUλ and ρGU
λ so that from now on, we will omit the superscript. The partition pkq
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corresponds to the trivial representation and p1kq to the Steinberg representation. The degree

of the representations ρλ is given by expressions known as hook formula. Given a box l in

the Young diagram of λ, its hook length hplq is 1 plus the number of boxes lying below it

or on its right. For instance, in the following figure the hook length of every box of the Young

diagram of λ “ p32, 22, 1q has been written inside it.

7 5 2

6 4 1

4 2

3 1

1

Proposition ([GP00] Propositions 4.3.5). Let λ “ pλ1 ě . . . ě λrq be a partition of n. The

degree of the irreducible unipotent representation ρλ is given by the following formula

degpρλq “ qapλq

śk

i“1 q
i ´ p´1qiś

lPλ q
hplq ´ p´1qhplq

where apλq “ řr

i“1pi ´ 1qλi.

3.2.7 We may describe the cuspidal support of the unipotent representations ρλ. According

to [Lus77] 9.2 and 9.4 there exists an irreducible unipotent cuspidal character of UkpFqq (or

GUkpFqq) if and only if k is an integer of the form k “ tpt`1q
2

for some t ě 0, and when that is

the case it is the one associated to the partition ∆t :“ pt, t´1, . . . , 1q, whose Young diagram has

the distinctive shape of a reversed staircase. Here, as a convention U0pFqq “ GU0pFqq denotes

the trivial group. For example, here are the Young diagrams of ∆1,∆2 and ∆3. Of course, the

one of ∆0 the empty diagram.

We consider an integer t ě 0 such that k decomposes as k “ 2e ` tpt`1q
2

for some e ě 0. Let G

denote UkpFqq or GUkpFqq, and consider Lt the subgroup consisting of block-diagonal matrices

having one middle block of size tpt`1q
2

and all other blocks of size 1. This is a standard Levi

subgroup of G. For UkpFqq, it is isomorphic to GL1pFq2qe ˆ U tpt`1q

2

pFqq whereas in the case of

GUkpFqq it is isomorphic to G
´
U1pFqqe ˆ U tpt`1q

2

pFqq
¯
. In both cases, Lt admits a quotient

which is isomorphic to a group of the same type as G but of size tpt`1q
2

. We write ρt for the

inflation to Lt of the unipotent cuspidal representation ρ∆t
of this quotient. If λ is a partition

of k, the cuspidal support of the representation ρλ is given by exactly one of the pair pLt, ρtq
up to conjugacy, where t ě 0 is an integer such that for some e ě 0 we have k “ 2e ` tpt`1q

2
.

Note that in particular k and tpt`1q
2

must have the same parity. With these notations, the

irreducible unipotent representations belonging to the principal series are those with cuspidal

support pL0, ρ0q if k is even and pL1, ρ1q is k is odd.
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3.2.8 Given an irreducible unipotent representation ρλ, there is a combinatorical way to

determine the Harish-Chandra series to which it belongs, as we recalled in [Mul22a] Section

2. We consider the Young diagram of λ. We call domino any pair of adjacent boxes in the

diagram. It may be either vertical or horizontal. We remove dominoes from the diagram of

λ so that the resulting shape is again a Young diagram, until one can not proceed further.

This process results in the Young diagram of the partition ∆t for some t ě 0, and it is called

the 2-core of λ. It does not depend on the successive choices for the dominoes. Then, the

representation ρλ has cuspidal support pLt, ρtq if and only if λ has 2-core ∆t. For instance, the

diagram λ “ p32, 22, 1q given in 3.2.5 has 2-core ∆1, as it can be determined by the following

steps. We put crosses inside the successive dominoes that we remove from the diagram. Thus,

the unipotent representation ρλ of U11pFqq or GU11pFqq has cuspidal support pL1, ρ1q, so in

particular it is a principal series representation.

ˆ
ˆ

ùñ
ˆ ˆ

ùñ
ˆ
ˆ

ùñ
ˆ ˆ

ùñ ˆ
ˆ

ùñ

3.2.9 From now on, we take q “ p. We consider the ℓ-adic cohomology with compact support

of a closed Bruhat-Tits stratum MΛ bF, where ℓ is a prime number different from p and Λ P L

has orbit type tpΛq “ 2θ ` 1, 0 ď θ ď m. Recall from 3.1.2.10 that the stratum MΛ is

equipped with an action of the finite group of Lie type GUpV 0
Λ q » GU2θ`1pFpq, and as such it

is isomorphic to a Deligne-Lusztig variety. Let F be the Frobenius morphism of GU2θ`1pFpq as
defined in 3.2.3. Then F 2 induces a geometric Frobenius morphism MΛ bF Ñ MΛ bF relative

to the Fp2-structure of MΛ. Because it is a finite morphism, it induces a linear endomorphism

on the cohomology groups, and it is in fact an automorphism. In [Mul22a], we computed these

cohomology groups in terms of a GU2θ`1pFpq ˆ xF 2y-representation.

Theorem. Let Λ P L and write tpΛq “ 2θ ` 1 for some 0 ď θ ď m.

(1) The cohomology group Hj
cpMΛbF,Qℓq is zero unless 0 ď j ď 2θ. There is an isomorphism

Hj
cpMΛ b F,Qℓq » H2θ´j

c pMΛ b F,Qℓq_pθq

which is equivariant for the action of GU2θ`1pFpq ˆ xF 2y.
(2) The Frobenius F 2 acts like multiplication by p´pqj on Hj

cpMΛ b F,Qℓq.
(3) For 0 ď j ď θ we have

H2j
c pMΛ b F,Qℓq “

minpj,θ´jqà
s“0

ρp2θ`1´2s,2sq.

For 0 ď j ď θ ´ 1 we have

H2j`1
c pMΛ b F,Qℓq “

minpj,θ´1´jqà
s“0

ρp2θ´2s,2s`1q.
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Thus, in the cohomology of MΛ all the representations associated to a Young diagram with at

most 2 rows occur, and there is no other. Such a diagram has the following general shape.

. . .

. . .

Remarks. Let us make a few comments.

– Part p1q of the theorem follows from general theory of etale cohomology given that the

variety MΛ is smooth and projective over Fp2 . The identity is a consequence of Poincaré

duality. The notation pθq is a Tate twist, it modifies the action of F 2 by multiplying it

with p2θ.

– The cohomology groups of index 0 and 2θ are the trivial representation of GU2θ`1pFpq.
– All irreducible representations in the cohomology groups of even index belong to the

unipotent principal series, whereas all the ones in the groups of odd index have cuspidal

support pL2, ρ2q.
– The cohomology group Hj

cpMΛbF,Qℓq contains no cuspidal representation of GU2θ`1pFpq
unless θ “ j “ 0 or θ “ j “ 1. If θ “ 0 then H0

c is the trivial representation of

GU1pFpq “ Fˆ
p2
, and if θ “ 1 then H1

c is the representation ρ∆2
of GU3pFpq. Both of them

are cuspidal.

3.3 Shimura variety and p-adic uniformization of the basic stratum

3.3.1 In this section, we introduce the PEL unitary Shimura variety with signature p1, n´1q
as in [VW11] 6.1 and 6.2, and we recall the p-adic uniformization theorem of its basic (or su-

persingular) locus. The Shimura variety can be defined as a moduli problem classifying abelian

varieties with additional structures, as follows. Let E be a quadratic imaginary extension of Q

in which p is inert. Let B{F be a simple central algebra of degree d ě 1 which splits over p

and at infinity. Let ˚ be a positive involution of the second kind on B, and let V be a non-zero

finitely generated left B-module equipped with a non-degenerate ˚-alternating form x¨, ¨y taking
values in Q. Assume also that dimEpVq “ nd. Let G be the connected reductive group over Q

whose points over a Q-algebra R are given by

GpRq :“ tg P GLEbRpV b Rq | Dc P Rˆ such that for all v, w P V b R, xgv, gwy “ cxv, wyu.

We denote by c : G Ñ Gm the multiplier character. The base change GR is isomorphic to a

group of unitary similitudes GUpr, sq of a hermitian space with signature pr, sq where r`s “ n.

We assume that r “ 1 and s “ n´ 1. We consider a Shimura datum of the form pG,Xq, where
X denotes the unique GpRq-conjugacy class of homorphisms h : Cˆ Ñ GR such that for all

z P Cˆ we have xhpzq¨, ¨y “ x¨, hpzq¨y, and such that the R-pairing x¨, hpiq¨y is positive definite.

Such a homomorphism h induces a decomposition VbC “ V1 ‘V2. Concretely, V1 (resp. V2)

is the subspace where hpzq acts like z (resp. like z). The reflex field associated to this PEL

data, that is the field of definition of V1 as a complex representation of B, is E unless n “ 2 in
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which case it is Q. Nonetheless, for simplicity we will consider the associated Shimura varieties

over E even in the case n “ 2.

Remark. As remarked in [Vol10] Section 6, the group G satisfies the Hasse principle, ie.

ker1pQ, Gq is a singleton. Therefore, the Shimura variety associated to the Shimura datum

pG,Xq coincides with the moduli space of abelian varieties that we are going to define.

3.3.2 Let Af denote the ring of finite adèles over Q and let K Ă GpAf q be an open compact

subgroup. We define a functor ShK by associating to an E-scheme S the set of isomorphism

classes of tuples pA, λ, ι, ηq where

– A is an abelian scheme over S.

– λ : A Ñ pA is a polarization.

– ι : B Ñ EndpAq b Q is a morphism of algebras such that ιpb˚q “ ιpbq: where ¨: denotes

the Rosati involution associated to λ, and such that the Kottwitz determinant condition

is satisfied:

@b P B, detpιpbqq “ detpb |V1q.

– η is aK-level structure, that is aK-orbit of isomorphisms of BbAf -modules H1pA,Af q „ÝÑ
V b Af that is compatible with the other data.

The Kottwitz condition in the third point is independent on the choice of h P X. If K is

sufficiently small, this moduli problem is represented by a smooth quasi-projective scheme ShK

over E. When the level K varies, the Shimura varieties form a projective system pShKqK
equipped with an action of GpAf q by Hecke correspondences.

3.3.3 We assume the existence of a Zppq-order OB in B, stable under the involution ˚, such
that its p-adic completion is a maximal order in BQp

. We also assume that there is a Zp-lattice

Γ in V b Qp, invariant under OB and self-dual for x¨, ¨y. We may fix isomorphisms Ep » Qp2

and BQp
» MdpQp2q such that OB b Zp is identified with MdpZp2q.

As a consequence of the existence of Γ, the group GQp
is unramified. Let K0 :“ FixpΓq be

the subgroup of GpQpq consisting of all g such that g ¨ Γ “ Γ. It is a hyperspecial maximal

compact subgroup of GpQpq. We will consider levels of the form K “ K0K
p where Kp is an

open compact subgroup of GpAp
f q. Note that K is sufficiently small as soon as Kp is sufficiently

small. By the work of Kottwitz in [kottwitzpoints], the Shimura varieties ShK0Kp admit

integral models over OE,ppq which have the following moduli interpretation. We define a functor

SKp by associating to an OE,ppq-scheme S the set of isomorphism classes of tuples pA, λ, ι, ηpq
where

– A is an abelian scheme over S.

– λ : A Ñ pA is a polarization whose order is prime to p.

– ι : OB Ñ EndpAqbZppq is a morphism of algebras such that ιpb˚q “ ιpbq: where ¨: denotes

the Rosati involution associated to λ, and such that the Kottwitz determinant condition

is satisfied:

@b P OB, detpιpbqq “ detpb |V1q.
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– ηp is aKp-level structure, that is aKp-orbit of isomorphisms ofBbA
p
f -modules H1pA,Ap

f q „ÝÑ
V b A

p
f that is compatible with the other data.

IfKp is sufficiently small, this moduli problem is also representable by a smooth quasi-projective

scheme over OE,ppq. When the level Kp varies, these integral Shimura varieties form a projective

system pSKpqKp equipped with an action of GpAp
f q by Hecke correspondences. We have a family

of isomorphisms

ShK0Kp » SKp bOE,ppq
E

which are compatible as the level Kp varies.

Notation. Unless explicitly mentioned, from now on the notation SKp will refer to the smooth

quasi-projective Zp2-scheme SKp bOE,ppq
Zp2 . Here, we implicitly use the identification of Ep

with Qp2 .

Therefore, with this convention we have isomorphisms ShK0Kp bEQp2 » SKp bZ
p2
Qp2 compatible

as the level Kp varies.

3.3.4 Let SKp :“ SKp bZ
p2
Fp2 denote the special fiber of the Shimura variety. It is a smooth

quasi-projective variety over Fp2 . Its geometry can be described in terms of the Newton strat-

ification as follows. Recall the Shimura datum introduced in 3.3.1. To any homomorphism

h P X, we can associate the cocharacter

µh : C
ˆ Ñ GC “

ğ

GalpC{Rq

GR

which is given by h : Cˆ Ñ GR into the summand corresponding to the identity in GalpC{Rq.
The conjugacy class µ of µh is well-determined by X. The field of definition of µ is by definition

the reflex field of the Shimura datum, that is E when n “ 2 and Q otherwise. We fix an

algebraic closure Q (resp. Qp) containing E (resp. Qp2). We also fix an embedding ν : Q ãÑ Qp

compatible with the identification Ep » Qp2 . We may then consider the local datum pGQp
, µQp

q
where µQp

is the conjugacy class of cocharacters Qp
ˆ Ñ GQp

induced by µ and ν. Let BpGQp
q

denote the set of σ-conjugacy classes in GpqQpq where qQp :“ {W pFqQ is the completion of the

maximal unramified extension of Qp. As in [kottwitziso], we may associate the Kottwitz

set BpGQp
, µQp

q Ă BpGQp
q. It is a finite set equipped with a partial order. An element

b P BpGQp
q is said to be µQp

´admissible when it belongs to BpGQp
, µQp

q. The set BpGQp
q

(resp. BpGQp
, µQp

q) canonically classifies the isomorphism classes of isocrystals with a GQp
-

structure (resp. compatible µQp
, GQp

-structures).

Let AKp denote the universal abelian scheme over SKp , and let AKp denote its reduction

modulo p. The associated p-divisible group AKprp8s is denoted by XKp . For any geometric

point x P SKp , the p-divisible group pXKpqx is equipped with compatible µQp
, GQp

-structures

therefore it determines an element bx P BpGQp
, µQp

q. For b P BpGQp
, µQp

q, the set

SKppbq :“ tx P SKp | bx “ bu

is locally closed in SKp . It is the underlying topological space of a reduced subscheme which we

still denote by SKppbq. They are called the Newton strata of the special fiber of the Shimura
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variety. For a fixed b, as the level Kp varies the strata form a projective tower pSKppbqqKp

equipped with an action of GpAp
f q by Hecke correspondences.

3.3.5 In [BW05], the combinatorics of the Newton stratification is described in the case of

a PEL unitary Shimura variety of signature p1, n ´ 1q. The set BpGQp
, µQp

q contains tn
2
u ` 1

elements b0 ă b1 ă . . . ă btn
2

u and we have

SKp “
tn
2

uğ

i“0

SKppbiq.

The stratification is linear, that is the closure of a stratum SKppbiq is the union of all the strata

SKppbjq for j ď i. The stratum corresponding to bi has dimension m ` i. The element btn
2

u is

µ-ordinary, and the corresponding stratum SKppbtn
2

uq is called the µ-ordinary locus. It is open

and dense in SKp . The unique basic element is b0, and the corresponding stratum SKppb0q is

called the basic stratum. It coincides with the supersingular locus. It is a closed subscheme

of SKp .

3.3.6 The geometry of the basic stratum can be described using the Rapoport-Zink space

M in a process called p-adic uniformization, see [RZ96] and [Far04]. Let x be a geometric

point of SKppb0q. Since G satisfies the Hasse principle, according to [Far04] Proposition 3.1.8

the isogeny class of the triple pAx, λ, ιq, consisting of the abelian variety Ax together with its

additional structures, does not depend on the choice of x. We define

I :“ AutpAx, λ, ιq.

It is a reductive group over Q. In fact, since we are considering the basic stratum, according to

loc. cit. the group I is the inner form of G such that IpAf q “ J ˆGpAp
f q and IpRq » GUp0, nq,

that is the unique inner form of GpRq which is compact modulo center. In particular, one can

think of IpQq as a subgroup both of J and of GpAp
f q. Let ppSKpq|b0 denote the formal completion

of SKp along the basic stratum.

Theorem ([RZ96] Theorem 6.24). There is an isomorphism of formal schemes over SpfpZp2q

ΘKp : IpQqz
`
M ˆ GpAp

f q{Kp
˘ „ÝÑ ppSKpq|b0

which is compatible with the GpAp
f q-action by Hecke correspondences as the level Kp varies.

This isomorphism is known as the p-adic uniformization of the basic stratum. The induced

map on the special fiber is an isomorphism

pΘKpqs : IpQqz
`
Mred ˆ GpAp

f q{Kp
˘ „ÝÑ SKppb0q

of schemes over SpecpFp2q. We denote by Man (resp. ppSKpqan|b0
) the smooth analytic space over

Qp2 associated to the formal scheme M (resp. ppSKpq|b0) by the Berkovich functor as defined in

[Ber96]. Note that both formal schemes are special in the sense of loc. cit. so that we may
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use Berkovich’s constructions. These analytic spaces play the role of the generic fibers of the

formal schemes over SpfpZp2q. By [Far04] Théorème 3.2.6, p-adic uniformization induces an

isomorphism

Θan
Kp : IpQqz

`
Man ˆ GpAp

f q{Kp
˘ „ÝÑ ppSKpqan|b0

of analytic spaces over Qp2 . We denote by red the reduction map from the generic fiber to the

special fiber. It is an anticontinuous map of topological spaces, which means that the preimage

of an open subset is closed and the preimage of a closed subet is open. Then, the uniformization

on the generic and special fibers are compatible in the sense that the diagram

IpQqz
`
Man ˆ GpAp

f q{Kp
˘

ppSKpqan|b0

IpQqz
`
Mred ˆ GpAp

f q{Kp
˘

SKppb0q

Θan
Kp

red red

pΘKp qs

is commutative.

3.3.7 The double coset space IpQqzGpAp
f q{Kp is finite, so that we may fix a system of rep-

resentatives g1, . . . , gs P GpAp
f q. For every 1 ď k ď s, we define Γk :“ IpQq X gkK

pg´1
k , which

we see as a discrete subgroup of J that is cocompact modulo the center. The left hand side of

the p-adic uniformization theorem is isomorphic to the disjoint union of the various quotients

of M (or Mred or Man) by the subgroups Γk Ă J . In particular for the special fiber, it is an

isomorphism

pΘKpqs :
sğ

k“1

ΓkzMred
„ÝÑ SKppb0q.

Let Φk
Kp be the composition Mred Ñ ΓkzMred Ñ Sh

ss

Cp and let ΦKp be the disjoint union of the

Φk
Kp . The map ΦKp is surjective onto SKppb0q. According to [VW11] Section 6.4, it is a local

isomorphism which can be used in order to transport the Bruhat-Tits stratification from Mred

to SKppb0q. Recall the notations of 3.1.2.3.

Proposition ([VW11] Proof of Proposition 6.5). Let Λ P L. For any 1 ď k ď s, the restriction

of Φk
Kp to MΛ is an isomorphism onto its image.

We will denote by SKp,Λ,k the scheme theoretic image of MΛ through Φk. A subscheme of the

form SKp,Λ,k is called a closed Bruhat-Tits stratum of the Shimura variety. Together, they

form the Bruhat-Tits stratification of the basic stratum, whose combinatorics is described by

the union of the complexes ΓkzL.

3.4 The cohomology of the Rapoport-Zink space at maximal level

3.4.1 The spectral sequence associated to an open cover of Man

3.4.1.1 As in 3.3.6, we consider the generic fiber Man of the Rapoport-Zink space as a

smooth Berkovich analytic space over Qp2 . Let red : Man Ñ Mred be the reduction map. If Z
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is a locally closed subset of Mred, then the preimage red´1pZq is called the analytical tube

over Z. It is an analytic domain in Man and it coincides with the generic fiber of the formal

completion of Mred along Z. If i P Z such that ni is even, then the tube red´1pMiq “ Man
i is

open and closed in Man and we have

Man “
ğ

niP2Z

Man
i .

If Λ P L, we define

UΛ :“ red´1pMΛq

the tube over MΛ. The action of J on M induces an action on the generic fiber Man such

that red is J-equivariant. By restriction it induces an action of JΛ on UΛ. The analytic space

Man and each of the open subspaces UΛ have dimension n ´ 1.

3.4.1.2 We fix a prime number ℓ “ p. In [Ber93], Berkovich developped a theory of étale

cohomology for his analytic spaces. Using it we may define the cohomology of the Rapoport-

Zink space Man by the formula

H‚
cpManpbCp,Qℓq :“ limÝÑ

U

H‚
cpU pbCp,Qℓq

“ limÝÑ
U

limÐÝ
n

H‚
cpU pbCp,Z{ℓnZq b Qℓ

where U goes over all relatively compact open of Man. These cohomology groups are equipped

with commuting actions of J and ofW , the Weyl group of Qp2 . The J-action causes no problem

of interpretation, but the W -action needs explanations. Let τ :“ σ2 be the Frobenius relative

to Fp2 . We fix a lift Frob P W of the geometric Frobenius τ´1 P GalpF{Fp2q. The inertia

subgroup I Ă W acts on H‚
cpManpbCp,Qℓq via the coefficients Cp, whereas Frob acts via the

Weil descent datum defined by Rapoport and Zink in [RZ96] 3.48, as we explain now.

Recall the standard unitary p-divisible group X introduced in 3.1.1.1. Let

FX : X b F Ñ τ˚pX b Fq

denote the Frobenius morphism relative to Fp2 . Let pMpbOqQp
qτ be the functor defined by

pMpbOqQp
qτ pSq :“ MpSτ q

for all OqQp
-scheme S where p is locally nilpotent. Here, Sτ denotes the scheme S but with

structure morphism the composition S Ñ SpecpOqQp
q τÝÑ SpecpOqQp

q. The Weil descent datum is

the isomorphism αRZ : MpbOqQp

„ÝÑ pMpbOqQp
qτ given by pX, ι, λ, ρq P MpSq ÞÑ pX, ι, λ,FX˝ρq.

We may describe this in terms of k-rational points, where k is a perfect field extension of F. Since

we use covariant Dieudonné theory, the relative Frobenius FX corresponds to the Verschiebung

V2 in the Dieudonné module. By construction of X, we have V2 “ pτ´1. Therefore, if

S “ Specpkq with k{Fp2 perfect, then αRZ sends a Dieudonné module M P Mpkq to pτ´1pMq.
Since Frob P W is a geometric Frobenius element, its action on the cohomology of Man is

induced by the inverse α´1
RZ.
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Remark. The Rapoport-Zink space is defined over Zp2 and this rational structure is induced by

the effective descent datum pα´1
RZ, with p “ p ¨ id seen as an element of the center of J . It sends

a point M to τpMq. Consequently, in the following we will write τ :“ pp´1 ¨ id,Frobq P J ˆW ,

and we refer to it as the rational Frobenius. We note that p´1 ¨ id comes from contravariance of

cohomology with compact support: the action of g P J on the cohomology of Man is induced

by the action of g´1 on the space Man.

Notation. In order to shorten the notations, we will omit the coefficients Cp. Thefore we write

H‚
cpMan,Qℓq and similarly for subspaces of Man.

3.4.1.3 The cohomology groups H‚
cpMan,Qℓq are concentrated in degrees 0 to 2 dimpManq “

2pn ´ 1q. According to [Far04] Corollaire 4.4.7, these groups are smooth for the J-action and

continous for the I-action. In a similar way as for Man, we can also define the cohomology

groups H‚
cpMan

i ,Qℓq for every i P Z such that ni is even. The action of an element g P J induces

an isomorphism

g : H‚
cpMan

i ,Qℓq „ÝÑ H‚
cpMan

i`αpgq,Qℓq.

In particular, the action of Frob gives an isomorphism from the cohomology of Man
i to that of

Man
i`2. Let pJˆW q˝ be the subgroup of JˆW consisting of all elements of the form pg, uFrobjq

with u P I and αpgq “ ´2j. In fact, we have pJ ˆ W q˝ “ pJ˝ ˆ IqτZ where J˝ Ă J is the

subgroup introduced in 3.1.3.4. Each group H‚
cpMan

i ,Qℓq is a pJ ˆW q˝-representation, and we

have an isomorphism

H‚
cpMan,Qℓq » c ´ IndJˆW

pJˆW q˝ H
‚
cpMan

0 ,Qℓq.

In particular, when Hk
c pMan,Qℓq is non-zero it is infinite dimensional. However, by loc. cit.

Proposition 4.4.13, these cohomology groups are always of finite type as J-modules.

3.4.1.4 In order to obtain information on the cohomology of Man, we study the spectral

sequence associated to the covering by the open subspaces UΛ for Λ P L. The spaces UΛ satisfy

the same incidence relations as the MΛ, as described in 3.1.2.11 Theorem (1), (2) and (3). As

a consequence, the open covering of Man by the tUΛu is locally finite. For i P Z such that ni is

even and for 0 ď θ ď m, we denote by L
pθq
i the subset of Li whose elements are those lattices

of orbit type 2θ ` 1. We also write Lpθq for the union of the L
pθq
i . Then tUΛuΛPLpmq is an open

cover of Man. We may apply [Far04] Proposition 4.2.2 to deduce the existence of the following

Čech spectral sequence computing the cohomology of the Rapoport-Zink space, concentrated

in degrees a ď 0 and 0 ď b ď 2pn ´ 1q,

E
a,b
1 :

à
γPI´a`1

Hb
cpUpγq,Qℓq ùñ Ha`b

c pMan,Qℓq.

Here, for s ě 1 the set Is is defined by

Is :“
#
γ “ pΛ1, . . . ,Λsq

ˇ̌
ˇ̌
ˇ@1 ď j ď s,Λj P Lpmq and Upγq :“

sč

j“1

UΛj “ H
+
.
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Necessarily, if γ “ pΛ1, . . . ,Λsq P Is then there exists a unique i such that ni is even and

Λj P L
pmq
i for all j. We then define

Λpγq :“
sč

j“1

Λj P Li,

so that Upγq “ UΛpγq. In particular, the open subspace Upγq depends only on the intersection

Λpγq of the elements in the s-tuple γ.

For s ě 2 and γ “ pΛ1, . . . ,Λsq P Is, define γj :“ pΛ1, . . . ,xΛj, . . . ,Λsq P Is´1 for the ps´1q-tuple
obtained from γ by removing the j-th term. Besides, for Λ,Λ1 P Li with Λ1 Ă Λ, we write f bΛ1,Λ

for the natural map Hb
cpUΛ1 ,Qℓq Ñ Hb

cpUΛ,Qℓq induced by the inclusion UΛ1 Ă UΛ.

For a ď ´1, the differential Ea,b
1 Ñ E

a`1,b
1 is denoted by ϕb´a. It is the direct sum over all

γ P I´a`1 of the maps

Hb
cpUpγq,Qℓq Ñ

à
δPtγ1,...γ´a`1u

Hb
cpUpδq,Qℓq

v ÞÑ
´a`1ÿ

j“1

γj ¨ p´1qj`1f bΛpγq,Λpγjqpvq.

Here, the notation γj ¨ p´1qj`1f bΛpγq,Λpγjqpvq means the vector p´1qj`1f bΛpγq,Λpγjqpvq considered

inside the summand Hb
cpUpδq,Qℓq corresponding to δ “ γj. We observe that we may have

Λpγjq “ Λpγj1q even though γj “ γj1 . In such a case, the vectors f bΛpγq,Λpγjqpvq and f bΛpγq,Λpγj1 qpvq
are equal in Hb

cpUpγjq,Qℓq “ Hb
cpUpγj1q,Qℓq, but they contribute to two distinct summands in

the codomain, namely associated to δ “ γj and δ “ γj1 .

An element g P J acts on the set Is by sending γ to g ¨ γ :“ pgΛ1, . . . , gΛsq. The action of g´1

induces an isomorphism

Hb
cpUpγq,Qℓq „ÝÑ Hb

cpUpg ¨ γq,Qℓq.

This defines a natural J-action on the terms Ea,b
1 , with respect to which the spectral sequence

is equivariant.

Remark. The map pα´1
RZ defines a Weil descent datum onMΛbF which is effective, and coincides

with the natural Fp2-structure. Hence, the same holds for the analytical tube UΛpbCp. The

descent datum pα´1
RZ induces the action of τ on the cohomology of UΛ. If γ P I´a`1 then

p ¨ γ P I´a`1. It follows that each term E
a,b
1 is equipped with an action of W . The spectral

sequence E is in fact J ˆ W -equivariant.

3.4.1.5 First we relate the cohomology of a tube UΛ to the cohomology of the corresponding

closed Bruhat-Tits stratum MΛ. We observe that H‚
cpUΛ,Qℓq is naturally a representation of

the subgroup pJΛ ˆ IqτZ Ă J ˆ W .

Proposition. Let Λ P L and let 0 ď b ď 2pn ´ 1q. There is a pJΛ ˆ IqτZ-equivariant isomor-

phism

HbpMΛ b F,Qℓq „ÝÑ HbpUΛ,Qℓq
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where, on the left-hand side, the inertia I acts trivially and τ acts like the geometric Frobenius

F 2.

In particular, the inertia acts trivially on the cohomology of UΛ.

Proof. Recall the notations of 3.3.7 regarding the Bruhat-Tits stratification on the Shimura

variety SKp , where Kp is any open compact subgroup of GpAp
f q that is small enough. Fix an

integer 1 ď k ď s and consider the closed Bruhat-Tits stratum SKp,Λ,k, that is the isomorphic

image of MΛ through Φk
Kp . Let ShKp,Λ,k be the analytic tube of SKp,Λ,k inside ppSKpqan|b0

. By

compatibility of the p-adic uniformization, the tube ShKp,Λ,k is the isomorphic image of UΛ

through pΦk
Kpqan, which is the composition Man Ñ ΓkzMan Ñ ppSKpqan|b0

. Thus, the following

diagram is commutative.

UΛ ShKp,Λ,k

MΛ SKp,Λ,k

„

red red

„

Berkovich’s comparison theorem gives the desired isomorphism. More precisely, let pSKp denote

the formal completion of the Shimura variety SKp along its special fiber. Since it is a smooth

formal scheme over SpfpZp2q, we may apply [Ber96] Corollary 3.7 to deduce the existence of a

natural isomorphism

HbpSKp,Λ,k b F,Qℓq „ÝÑ HbpShKp,Λ,k,Qℓq.
This isomorphism is equivariant for the action of pJΛ ˆ IqτZ, with the rational Frobenius τ on

the right-hand side corresponding to F 2 on the left-hand side.

Remark. It is a priori not possible to use Berkovich’s result directly on the Rapoport-Zink space

because M is not a smooth formal scheme over SpfpZ2
pq. In fact, it is not adic unless n “ 1 or

2, see [Far04] Remarque 2.3.5. It is the reason why we have to introduce the Shimura variety

in the proof.

Corollary. Let Λ P L and let 0 ď b ď 2pn´1q. There is a pJΛ ˆ IqτZ-equivariant isomorphism

Hb
cpUΛ,Qℓq „ÝÑ Hb´2pn´1´θq

c pMΛ b F,Qℓqpn ´ 1 ´ θq

where tpΛq “ 2θ ` 1.

Proof. This is a consequence of algebraic and analytic Poincaré duality, respectively for UΛ and

for MΛ. Indeed, we have

Hb
cpUΛ,Qℓq » H2pn´1q´bpUΛ,Qℓq_pn ´ 1q

» H2pn´1q´bpMΛ b F,Qℓq_pn ´ 1q
» Hb´2pn´1´θq

c pMΛ b F,Qℓqpn ´ 1 ´ θq.
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3.4.1.6 Let Λ P L and write tpΛq “ 2θ ` 1. If λ is a partition of 2θ ` 1, recall the unipotent

irreducible representation ρλ of GUpV 0
Λ q » GU2θ`1pFpq that we introduced in 3.2.6. It can be

inflated to the maximal reductive quotient JΛ » GpUpV 0
Λ q ˆ UpV 1

Λ qq, and then to the maximal

parahoric subgroup JΛ. With an abuse of notation, we still denote this inflated representation

by ρλ. In virtue of 3.2.9, the isomorphism in the last paragraph translates into the following

result.

Proposition. Let Λ P L and write tpΛq “ 2θ ` 1. The following statements hold.

(1) The cohomology group Hb
cpUΛ,Qℓq is zero unless 2pn ´ 1 ´ θq ď b ď 2pn ´ 1q.

(2) The action of JΛ on the cohomology factors through an action of the finite group of Lie

type GUpV 0
Λ q. The rational Frobenius τ acts like multiplication by p´pqb on Hb

cpUΛ,Qℓq.
(3) For 0 ď b ď θ we have

H2b`2pn´1´θq
c pUΛ,Qℓq “

minpj,θ´jqà
s“0

ρp2θ`1´2s,2sq.

For 0 ď b ď θ ´ 1 we have

H2b`1`2pn´1´θq
c pUΛ,Qℓq “

minpj,θ´1´jqà
s“0

ρp2δ´2s,2s`1q.

3.4.1.7 The description of the rational Frobenius action yields the following result.

Corollary. The spectral sequence degenerates on the second page E2. For 0 ď b ď 2pn ´ 1q,
the induced filtration on Hb

cpMan,Qℓq splits, ie. we have an isomorphism

Hb
cpMan,Qℓq »

à
bďb1ď2pn´1q

E
b´b1,b1

2 .

The action of W on Hb
cpMan,Qℓq is trivial on the inertia subgroup and the action of the rational

Frobenius element τ is semisimple. The subspace Eb´b1,b1

2 is identified with the eigenspace of τ

associated to the eigenvalue p´pqb1

.

Remark. In the previous statement, the terms Eb´b1,b1

2 may be zero.

Proof. The pa, bq-term in the first page of the spectral sequence is the direct sum of the co-

homology groups Hb
c pUpγq,Qℓq for all γ P I´a`1. On each of these cohomology groups, the

rational Frobenius τ acts like multiplication by p´pqb. This action is in particular independant

of γ and of a. Thus, on the b-th row of the first page of the sequence, the Frobenius acts

everywhere as multiplication by p´pqb. Starting from the second page, the differentials in the

sequence connect two terms lying in different rows. Since the differentials are equivariant for

the τ -action, they must all be zero. Thus, the sequence degenerates on the second page. By

the machinery of spectral sequences, there is a filtration on Hb
cpMan,Qℓq whose graded factors

are given by the terms Eb´b1,b1

2 of the second page. Only a finite number of these terms are

non-zero, and since they all lie on different rows, the Frobenius τ acts like multiplication by a

different scalar on each graded factor of the filtration. It follows that the filtration splits, ie.

the abutment is the direct sum of the graded pieces of the filtration, as they correspond to the

eigenspaces of τ . Consequently, its action is semisimple.
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3.4.1.8 The spectral sequence Ea,b
1 has non-zero terms extending indefinitely in the range

a ď 0. For instance, if Λ P Lpmq then pΛ, . . . ,Λq P I´a`1 so that Ea,b
1 “ 0 for all a ď 0 and

2pn ´ 1 ´ mq ď b ď 2pn ´ 1q. To rectify this, we introduce the alternating Čech spectral

sequence. If v P Ea,b
1 and γ P I´a`1, we denote by vγ P Hb

cpUpγq,Qℓq the component of v in the

summand of Ea,b
1 indexed by γ. Besides, if γ “ pΛ1, . . . ,Λ´a`1q P I´a`1 and if σ P S´a`1 then

we write σpγq :“ pΛσp1q, . . . ,Λσp´a`1qq P I´a`1. For all a, b we define

E
a,b
1,alt :“ tv P Ea,b

1 | @γ P I´a`1, @σ P S´a`1, vσpγq “ sgnpσqvγu.

In particular, if γ “ pΛ1, . . . ,Λ´a`1q with Λj “ Λj
1

for some j “ j1 then v P Ea,b
1,alt ùñ vγ “ 0.

The subspace Ea,b
1,alt Ă E

a,b
1 is stable under the action of JˆW , and the differential ϕb´a : E

a,b
1 Ñ

E
a`1,b
1 sends Ea,b

1,alt to E
a`1,b
1,alt . Thus, for all b we have a chain complex E‚,b

1,alt and the following

proposition is well-known.

Proposition ([Sta23] Lemma 01FM). The inclusion map E‚,b
1,alt ãÑ E

‚,b
1 is a homotopy equiva-

lence. In particular we have canonical isomorphisms Ea,b
2,alt » E

a,b
2 for all a, b.

The advantage of the alternating Čech spectral sequence is that it is concentrated in a finite

strip. Indeed, if γ “ pΛ1, . . . ,Λ´a`1q P I´a`1, let i P Z such that Λpγq P Li. Then all the

Λj’s belong to the set of lattices in L
pmq
i containing Λpγq. This set is finite of cardinality

νpn´ θ´m´ 1, n´ 2θ´ 1q where tpΛpγqq “ 2θ` 1 according to 3.1.4.1. Thus, if ´a` 1 is big

enough then all the γ’s in I´a`1 will have some repetition, so that Ea,b
1,alt “ 0.

Remark. The Lemma 01FM of [Sta23] is stated in the context of Čech cohomology of an abelian

presheaf F on a topological space X. However, the proof may be adapted to Čech homology

of precosheaves such as U ÞÑ Hb
cpU,Qℓq.

3.4.1.9 For a “ 0, we have E0,b
1,alt “ E

0,b
1 by definition. Let us consider the cases b “

2pn´1´mq and b “ 2pn´1´mq `1. For such b, it follows from 3.4.1.6 that Hb
cpUΛ,Qℓq “ 0 if

tpΛq ă tmax. If a ď ´1, we have ´a` 1 ě 2 so that for all γ “ pΛ1, . . . ,Λ´a`1q P I´a`1, if there

exists j “ j1 such that Λj “ Λj
1

, then tpΛpγqq ă tmax and Hb
cpUpγq,Qℓq “ 0. It follows that

E
a,b
1,alt “ 0 for all a ď ´1 and b as above. This observation, along with the previous paragraph,

yields the following proposition.

Proposition. We have E
0,2pn´1´mq
2 » E

0,2pn´1´mq
1 . If moreover m ě 1 (ie. n ě 3), then we

have E
0,2pn´1´mq`1

2 » E
0,2pn´1´mq`1

1 as well.

3.4.1.10 In order to study the action of J , we may rewrite Ea,b
1 conveniently in terms of

compactly induced representations. To do this, let us introduce a few more notations. For

0 ď θ ď m and s ě 1, we define

Ipθq
s :“ tγ P Is | tpΛpγqq “ 2θ ` 1u.

The subset I
pθq
s Ă Is is stable under the action of J . We denote by NpΛθq the finite set

Npn ´ θ ´ m ´ 1, V 1
θ q as defined in paragraph 3.1.4.1. It corresponds to the set of lattices

Λ P L0 of maximal orbit type tpΛq “ 2m ` 1 containing Λθ. For s ě 1 we define

Kpθq
s :“ tδ “ pΛ1, . . . ,Λsq | @1 ď j ď s,Λj P NpΛθq and Λpδq “ Λθu.
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Then K
pθq
s is a finite subset of I

pθq
s and it is stable under the action of Jθ. If γ P Ipθq

s , there exists

some g P J such that g ¨ Λpγq “ Λθ because both lattices share the same orbit type. Moreover,

the coset Jθ ¨ g is uniquely determined, and g ¨ γ is an element of K
pθq
s . This mapping results in

a natural bijection between the orbit sets

JzIpθq
s

„ÝÑ JθzKpθq
s .

The bijection sends the orbit J ¨ α to the orbit Jθ ¨ pg ¨ αq where g is chosen as above. The

inverse sends an orbit Jθ ¨ β to J ¨ β. We note that both orbit sets are finite.

We may now rearrange the terms in the spectral sequence.

Proposition. We have an isomorphism

E
a,b
1 »

mà
θ“0

à

rδsPJθzK
pθq
´a`1

c ´ IndJFixpδq H
b
cpUΛθ

,Qℓq|Fixpδq

»
mà
θ“0

c ´ IndJJθ

´
Hb
cpUΛθ

,Qℓq b QℓrKpθq
´a`1s

¯
,

where QℓrKpθq
´a`1s is the permutation representation associated to the action of Jθ on the finite

set K
pθq
´a`1.

Remark. For δ P Kpθq
s , the group Fixpδq consists of the elements g P J such that g ¨ δ “ δ. Any

such g satisfies gΛpδq “ Λpδq, and since Λpδq “ Λθ we have Fixpδq Ă Jθ. If δ “ pΛ1, . . . ,Λsq
then Fixpδq is the intersection of the maximal parahoric subgroups JΛ1 , . . . , JΛs . We note that

in general, Fixpδq is itself not a parahoric subgroup of J since the lattices Λ1, . . . ,Λs need not

form a simplex in L, as they all share the same orbit type. If however Λ1 “ . . . “ Λs then

Fixpδq “ JΛ1 is a conjugate of the maximal parahoric subgroup Jm.

Proof. First, by decomposing I´a`1 as the disjoint union of the I
pθq
´a`1 for 0 ď θ ď m, we may

write

E
a,b
1 “

mà
θ“0

à

γPI
pθq
´a`1

Hb
cpUpγq,Qℓq.

For each orbit X P JzIpθq
´a`1, we fix a representative δX which lies in K

pθq
´a`1. We may write

E
a,b
1 “

mà
θ“0

à

XPJzI
pθq
´a`1

à
γPX

Hb
cpUpγq,Qℓq “

mà
θ“0

à

XPJzI
pθq
´a`1

à
gPJ{FixpδXq

g ¨ Hb
cpUpδXq,Qℓq.

The rightmost sum can be identified with a compact induction from FixpδXq to J . Identifying

the orbit sets JzIpθq
´a`1

„ÝÑ JθzKpθq
´a`1, we have

E
a,b
1 »

mà
θ“0

à

rδsPJθzK
pθq
´a`1

c ´ IndJFixpδq H
b
cpUΛθ

,Qℓq|Fixpδq.

By transitivity of compact induction, we have

c ´ IndJFixpδq H
b
cpUΛθ

,Qℓq|Fixpδq “ c ´ IndJJθ c ´ IndJθ
Fixpδq H

b
cpUΛθ

,Qℓq|Fixpδq.
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Since Hb
c pUΛθ

,Qℓq|Fixpδq is the restriction of a representation of Jθ to Fixpδq, applying com-

pact induction from Fixpδq to Jθ results in tensoring with the permutation representation of

Jθ{Fixpδq. Thus

E
a,b
1 »

mà
θ“0

à

rδsPJθzK
pθq
´a`1

c ´ IndJJθ
`
Hb
cpUΛθ

,Qℓq b QℓrJθ{Fixpδqs
˘

»
mà
θ“0

c ´ IndJJθ

¨
˝Hb

cpUΛθ
,Qℓq b

à

rδsPJθzK
pθq
´a`1

QℓrJθ{Fixpδqs

˛
‚,

where on the second line we used additivity of compact induction. Now, Jθ{Fixpδq is identified
with the Jθ-orbit Jθ ¨ δ of δ in K

pθq
´a`1, so that

à

rδsPJθzK
pθq
´a`1

QℓrJθ{Fixpδqs » Qℓr
ğ

rδsPJθzK
pθq
´a`1

Jθ ¨ δs » QℓrKpθq
´a`1s,

which concludes the proof.

3.4.1.11 By 3.1.2.9, we may identify NpΛθq with the set

NpΛθq :“ tU Ă V 1
θ | dimU “ m ´ θ and U Ă UKu.

Thus, for s ě 1, K
pθq
s is naturally identified with

K
pθq

s »
#
δ “ pU1, . . . , U sq

ˇ̌
ˇ̌
ˇ@1 ď j ď s, U j P NpΛθq and

sč

j“1

U j “ t0u
+
.

The action of Jθ on K
pθq
s corresponds to the natural action of GUpV 1

θ q on K
pθq

s , which fac-

tors through an action of the finite projective unitary group PUpV 1
θ q :“ UpV 1

θ q{ZpUpV 1
θ qq »

GUpV 1
θ q{ZpGUpV 1

θ qq. Thus, the representation QℓrKpθq
´a`1s of Jθ is the inflation, via the maximal

reductive quotient as in 3.1.2.8, of the representation QℓrK
pθq

´a`1s of the finite projective unitary
group PUpV 1

θ q.
When θ “ m or when s “ 1, we trivially have the following proposition.

Proposition. For s ě 1, we have QℓrKpmq
s s “ 1.

For 0 ď θ ď m ´ 1, we have QℓrKpθq
1 s “ 0.

Proof. If δ “ pΛ1, . . . ,Λsq P Kpmq
s then Λpδq “ Λm has maximal orbit type tmax “ 2m ` 1. For

any 1 ď j ď s we have Λm Ă Λj, therefore Λ1 “ . . . “ Λs “ Λm. Thus K
pmq
s is a singleton and

so QℓrKpmq
s s is trivial. Besides, if θ ă m then K

pθq
s is clearly empty.

Recall 3.4.1.9 Proposition. We obtain the following corollary.

Corollary. We have

E
0,b
1 » c ´ IndJJm Hb

cpUΛm
,Qℓq.

In particular, we have

E
0,b
2 »

$
&
%
c ´ IndJJm ρp2m`1q if b “ 2pn ´ 1 ´ mq,
c ´ IndJJm ρp2m,1q if m ě 1 and b “ 2pn ´ 1 ´ mq ` 1.
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Remark. The representation ρp2m`1q “ 1 is the trivial representation of Jm.

3.4.1.12 Let us now consider the top row of the spectral sequence, corresponding to b “
2pn´ 1q. For Λ1 Ă Λ, recall the map f

2pn´1q
Λ1,Λ : H

2pn´1q
c pUΛ1 ,Qℓq Ñ H

2pn´1q
c pUΛ,Qℓq. By Poincaré

duality, it is the dual map of the restriction morphism H0pUΛ,Qℓq Ñ H0pUΛ1 ,Qℓq. Since UΛ is

connected for every Λ P L, we have H0pUΛ,Qℓq » Qℓ and the restriction maps for Λ1 Ă Λ are all

identity. Thus, E
a,2pn´1q
1 is the Qℓ-vector space generated by I´a`1, and the differential ϕ

2pn´1q
´a

is given by

γ P I´a`1 ÞÑ
´a`1ÿ

j“1

p´1qj`1γj.

Using this description, we may compute the highest cohomology group H
2pn´1q
c pMan,Qℓq ex-

plicitely.

Proposition. There is an isomorphism

H2pn´1q
c pMan,Qℓq » c ´ IndJJ˝ 1,

and the rational Frobenius τ acts via multiplication by p2pn´1q.

Proof. The statement on the Frobenius action is already known by 3.4.1.7 Corollary. Besides,

we have H
2pn´1q
c pMan,Qℓq » E

0,2pn´1q
2 “ Cokerpϕ2pn´1q

1 q. The differential ϕ
2pn´1q
1 is described

by

pΛ,Λq ÞÑ 0, @Λ P Lpmq,

pΛ,Λ1q ÞÑ pΛ1q ´ pΛq, @Λ,Λ1 P Lpmq such that UΛ X UΛ1 “ H.

Let i P Z such that ni is even, and let Λ,Λ1 P L
pmq
i . Since the Bruhat-Tits building BTp rJ,Qpq »

Li is connected, there exists a sequence Λ “ Λ0, . . . ,Λd “ Λ1 of lattices in Li such that for all

0 ď j ď d ´ 1, tΛj,Λj`1u is an edge in Li. Assume that d ě 0 is minimal satisfying this

property. Since tpΛq “ tpΛ1q “ tmax, the integer d is even and we may assume that tpΛjq is

equal to tmax when j is even, and equal to 1 when j is odd. In particular, for all 0 ď j ď d
2

´ 1

we have Λ2j,Λ2j`2 P L
pmq
i and UΛ2j X UΛ2j`2 “ H. Consider the vector

w :“
d
2

´1ÿ

j“0

pΛ2j,Λ2j`2q P E´1,2pn´1q
1 .

Then we compute ϕ
2pn´1q
1 pwq “ pΛ1q ´ pΛq. Thus, Cokerpϕ2pn´1q

1 q consists of one copy of Qℓ

for each i P Z such that ni is even. Considering the action of J as well, it readily follows that

Cokerpϕ2pn´1q
1 q » c ´ IndJJ˝ 1.

Remark. The cohomology group H
2pn´1q
c pMan,Qℓq can also be computed in another way which

does not require the spectral sequence. Indeed, we have an isomorphism

H2pn´1q
c pMan,Qℓq » c ´ IndJJ˝ H2pn´1q

c pMan
0 ,Qℓq.
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By definition, we have

H2pn´1q
c pMan

0 ,Qℓq “ limÝÑ
U

H2pn´1q
c pU pbCp,Qℓq,

where U runs over the relatively compact open subspaces of Man
0 . Since U is smooth, Poincaré

duality gives

H2pn´1q
c pU pbCp,Qℓq » H0pU pbCp,Qℓq_.

And since Man
0 is connected, we can insure that all the U ’s involved are connected as well.

Therefore H0pU pbCp,Qℓq » Qℓ, and all the transition maps in the direct limit are identity. It

follows that H
2pn´1q
c pMan

0 ,Qℓq is trivial.

3.4.2 Compactly induced representations and type theory

3.4.2.1 Let ReppJq denote the category of smooth Qℓ-representations of G. Let χ be a

continuous character of the center ZpJq » Qˆ
p2

and let V P ReppJq. We define the maximal

quotient of V on which the center acts like χ as follows. Let us consider the set

Ω :“ tW |W is a subrepresentation of V and ZpJq acts like χ on V {W u.

The set Ω is stable under arbitrary intersection, so that W˝ :“ Ş
WPΩW P Ω. The maximal

quotient is defined by

Vχ :“ V {W˝.

It satisfies the following universal property.

Proposition. Let χ be a continuous character of ZpJq and let V, V 1 P ReppJq. Assume that

ZpJq acts like χ on V 1. Then any morphism V Ñ V 1 factors through Vχ.

Proof. Let f : V Ñ V 1 be a morphism of J-representations. Since V {Kerpfq » Impfq Ă V 1,

the center ZpJq acts like χ on the quotient V {Kerpfq. Therefore Kerpfq P Ω. It follows that

Kerpfq contains W˝ and as a consequence, f factors through Vχ.

3.4.2.2 As representations of J , the terms Ea,b
1 of the spectral sequence 3.4.1.4 consist of

representations of the form

c ´ IndJJθ ρ,

where ρ is the inflation to Jθ of a representation of the finite group of Lie type Jθ. We

note that such a compactly induced representation does not contain any smooth irreducible

subrepresentation of J . Indeed, the center ZpJq » Qˆ
p2

does not fix any finite dimensional

subspace. In order to rectify this, it is customary to fix a continuous character χ of ZpJq
which agrees with the central character of ρ on ZpJq X Jθ » Zˆ

p2
, and to describe the space

pc ´ IndJJθ ρqχ instead.

Lemma. We have pc ´ IndJJθ ρqχ » c ´ IndJZpJqJθ
χ b ρ.
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Proof. By Frobenius reciprocity, the identity map on c ´ IndJZpJqJθ
χ b ρ gives a morphism

χ b ρ Ñ
`
c ´ IndJZpJqJθ

χ b ρ
˘

|ZpJqJθ
of ZpJqJθ-representations. Restricting further to Jθ, we

obtain a morphism ρ Ñ
`
c ´ IndJZpJqJθ

χ b ρ
˘

|Jθ
. By Frobenius reciprocity, this corresponds

to a morphism c ´ IndJJθ ρ Ñ c ´ IndJZpJqJθ
χ b ρ of J-representations. Because ZpJq acts via

the character χ on the target space, this morphism factors through a map pc ´ IndJJθ ρqχ Ñ
c ´ IndJZpJqJθ

χbρ. In order to prove that this is an isomorphism, we build its inverse. The quo-

tient morphism c ´ IndJJθ ρ Ñ pc ´ IndJJθ ρqχ corresponds, via Frobenius reciprocity, to a mor-

phism ρ Ñ pc ´ IndJJθ ρqχ |Jθ of Jθ-representations. Because ZpJq acts via the character χ on the

target space, this arrow may be extended to a morphism χbρ Ñ pc ´ IndJJθ ρqχ |ZpJqJθ of ZpJqJθ-
representations. By Frobenius reciprocity, this corresponds to a morphism c ´ IndJZpJqJθ

χbρ Ñ
pc ´ IndJJθ ρqχ, and this is our desired inverse.

3.4.2.3 We recall a general theorem from [Bus90] describing certain compactly induced rep-

resentations. In this paragraph only, let G be any p-adic group, and let L be an open subgroup

of G which contains the center ZpGq and which is compact modulo ZpGq.

Theorem ([Bus90] Theorem 2 (supp)). Let pσ, V q be an irreducible smooth representation of

L. There is a canonical decomposition

c ´ IndGL σ » V0 ‘ V8,

where V0 is the sum of all supercuspidal subrepresentations of c ´ IndGL σ, and where V8 con-

tains no non-zero admissible subrepresentation. Moreover, V0 is a finite sum of irreducible

supercuspidal subrepresentations of G.

The spaces V0 or V8 could be zero. Note also that since G is p-adic, any irreducible represen-

tation is admissible. So in particular, V8 does not contain any irreducible subrepresentation.

However, it may have many irreducible quotients and subquotients. Thus, the space V8 is

in general not G-semisimple. Hence, the structure of the compactly induced representation

c ´ IndGL σ heavily depends on the supercuspidal supports of its irreducible subquotients.

We go back to our previous notations. Let 0 ď θ ď m, let ρ be a smooth irreducible repre-

sentation of Jθ and let χ be a character of ZpJq agreeing with the central character of ρ on

ZpJq X Jθ. Since the group ZpJqJθ contains the center and is compact modulo the center, we

have a canonical decomposition

pc ´ IndJJθ ρqχ » Vρ,χ,0 ‘ Vρ,χ,8.

In order to describe the spaces Vρ,χ,0 and Vρ,χ,8, we determine the supercuspidal supports of

the irreducible subquotients of c ´ IndJJθ ρ through type theory, with the assumption that ρ is

inflated from Jθ. For our purpose, it will be enough to analyze only the case θ “ m. In this

case, dimV 1
m is equal to 0 or 1 so that GUpV 1

mq “ t1u or Fˆ
p2

has no proper parabolic subgroup.

In particular, if ρ is a cuspidal representation of GUpV 0
mq, then its inflation to the reductive

quotient

Jm » GpUpV 0
mq ˆ UpV 1

mqq
is also cuspidal.
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3.4.2.4 In the following paragraphs, we recall a few general facts from type theory. For more

details, we refer to [BK98] and [Mor99]. Let G be the group of F -rational points of a reductive

connected group G over a p-adic field F . A parabolic subgroup P (resp. Levi complement L)

of G is defined as the group of F -rational points of an F -rational parabolic subgroup P Ă G

(resp. an F -rational Levi complement L Ă G). Every parabolic subgroup P admits a Levi

decomposition P “ LU where U is the unipotent radical of P . We denote by XF pGq the set

of F -rational Qℓ-characters of G, and by XunpGq the set of unramified characters of G,

ie. the continuous characters of G which are trivial on all compact subgroups. We consider

pairs pL, τq where L is a Levi complement of G and τ is a supercuspidal representation of

L. Two pairs pL, τq and pL1, τ 1q are said to be inertially equivalent if for some g P G and

χ P XunpGq we have L1 “ Lg and τ 1 » τ g b χ where τ g is the representation of Lg defined

by τ gplq :“ τpg´1lgq. This is an equivalence relation, and we denote by rL, τ sG or rL, τ s the

inertial equivalence class of pL, τq in G. The set of all inertial equivalence classes is denoted

ICpGq. If P is a parabolic subgroup of G, we write ιGP for the normalised parabolic induction

functor. Any smooth irreducible representation π of G is isomorphic to a subquotient of some

parabolically induced representation ιGP pτq where P “ LU for some Levi complement L and

τ is a supercuspidal representation of L. We denote by ℓpπq P ICpGq the inertial equivalence

class rL, τ s. This is uniquely determined by π and it is called the inertial support of π.

3.4.2.5 Let s P ICpGq. We denote by RepspGq the full subcategory of ReppGq whose objects

are the smooth representations of G all of whose irreducible subquotients have inertial support

s. This definition corresponds to the one given in [BD84] 2.8. If S Ă ICpGq, we write RepSpGq
for the direct product of the categories RepspGq where s runs over S. We recall the main results

from loc. cit.

Theorem ([BD84] 2.8 and 2.10). The category ReppGq decomposes as the direct product of the

subcategories RepspGq where s runs over ICpGq. Moreover, if S Ă ICpGq then the category

RepSpGq is stable under direct sums and subquotients.

Type theory was then introduced in [BK98] in order to describe the categories RepspGq which

are called the Bernstein blocks.

3.4.2.6 Let S be a subset of ICpGq. A S-type in G is a pair pK, ρq where K is an open

compact subgroup of G and ρ is a smooth irreducible representation of K, such that for every

smooth irreducible representation π of G we have

π|K contains ρ ðñ ℓpπq P S.

When S is a singleton tsu, we call it an s-type instead.

Remark. By Frobenius reciprocity, the condition that π|K contains ρ is equivalent to π being

isomorphic to an irreducible quotient of c ´ IndGK ρ. In fact, we can say a little bit more. Let K

be an open compact subgroup of G and let ρ be an irreducible smooth representation of K. Let

RepρpGq denote the full subcategory of ReppGq whose objects are those representations which
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are generated by their ρ-isotypic component. If pK, ρq is an S-type, then [BK98] Theorem 4.3

establishes the equality of categories RepρpGq “ RepSpGq. By definition of compact induction,

the representation c ´ IndGK ρ is generated by its ρ-isotypic vectors. Therefore any irreducible

subquotient of c ´ IndGK ρ has inertial support in S.

3.4.2.7 An important class of types are those of depth zero, and they are the only ones we

shall encounter. First, we recall the following result. If K is a parahoric subgroup of G, we

denote by K its maximal reductive quotient. It is a finite group of Lie type over the residue

field of F .

Proposition ([Mor99] 4.1). Let K be a maximal parahoric subgroup of G and let ρ be an

irreducible cuspidal representation of K. We see ρ as a representation of K by inflation. Let

π be an irreducible smooth representation of G and assume that π|K contains ρ. Then π is

supercuspidal and there exists an irreducible smooth representation ρ̃ of the normalizer NGpKq
such that ρ̃|K contains ρ and π » c ´ IndGNGpKqρ̃.

Such representations π are called depth-0 supercupidal representations of G. More gener-

ally, a smooth irreducible representation π of G is said to be of depth-0 if it contains a non-zero

vector that is fixed by the pro-unipotent radical of some parahoric subgroup of G. A depth-0

type in G is a pair pK, ρq where K is a parahoric subgroup of G and ρ is an irreducible cuspidal

representation of K, inflated to K. The name is justified by the following theorem.

Theorem ([Mor99] 4.8). Let pK, ρq be a depth-0 type. Then there exists a (unique) finite set

S Ă ICpGq such that pK, ρq is an S-type of G.

In loc. cit. it is also proved that any depth-0 supercuspidal representation of G contains a

unique conjugacy class of depth-0 types. Let K be a parahoric subgroup of G. Using the

Bruhat-Tits building of G, one may canonically associate a Levi complement L of G such that

KL :“ L X K is a maximal parahoric subgroup of L, whose maximal reductive quotient KL

is naturally identified with K. This is precisely described in [Mor99] 2.1. Moreover, we have

L “ G if and only if K is a maximal parahoric subgroup of G. Now, let pK, ρq be a depth-0

type of G and denote by S the finite subset of ICpGq such that it is an S-type of G. Since ρ

is a cuspidal representation of K » KL, we may inflate it to KL. Then, the pair pKL, ρq is a

depth-0 type of L. We say that pK, ρq is a G-cover of pKL, ρq. By the previous theorem, there

is a finite set SL Ă ICpLq such that pKL, ρq is an SL-type of L. Then the proof of Theorem

4.8 in [Mor99] shows that we have the relation

S “
 

rM, τ sG
ˇ̌
rM, τ sL P SL

(
.

In this set,M is some Levi complement of L, therefore it may also be seen as a Levi complement

in G. Thus, an inertial equivalence class rM, τ sL in L gives rise to a class rM, τ sG in G.

Since KL is maximal in L, in virtue of the proposition above any element of SL has the form

rL, πsL for some supercuspidal representation π of L. In particular, every smooth irreducible

representation of G containing the type pK, ρq has a conjugate of L as cuspidal support. We

deduce the following corollary.
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Corollary. Let pK, ρq be a depth-0 type in G and assume that K is not a maximal parahoric

subgroup. Then no smooth irreducible representation π of G containing the type pK, ρq is

supercuspidal.

3.4.2.8 Thus, up to replacing G with a Levi complement, the study of any depth-0 type

pK, ρq can be reduced to the case where K is a maximal parahoric subgroup. Let us assume

that it is the case, and let S be the associated finite subset of ICpGq. While S is in general not

a singleton, it becomes one once we modify the pair pK, ρq a little bit. Let pK be the maximal

open compact subgroup of NGpKq. We have K Ă pK but in general this inclusion may be strict.

Let ρ̃ be a smooth irreducible representation of NGpKq such that ρ̃|K contains ρ. Let pρ be

any irreducible component of the restriction ρ̃| pK . Eventually, let π :“ c ´ IndGNGpKq ρ̃ be the

associated depth-0 supercuspidal representation of G.

Theorem ([Mor99] Variant 4.7). The pair p pK, pρq is a rG, πs-type.

The conclusion does not depend on the choice of pρ as an irreducible component of ρ̃| pK . Any

one of them affords a type for the same singleton s “ rG, πs.

3.4.2.9 Let us now consider a parahoric subgroup K along with an irreducible representation

ρ of its maximal reductive quotient K “ K{K`, where K` is the pro-unipotent radical of

K. Assume that ρ is not cuspidal. Thus, there exists a proper parabolic subgroup P Ă K

with Levi complement L, and a cuspidal irreducible representation τ of L, such that ρ is

an irreducible component of the Harish-Chandra induction ιKP τ . The preimage of P via the

quotient map K ։ K is a parahoric subgroup K 1 Ĺ K, whose maximal reductive quotient

K1 :“ K 1{K 1` is naturally identified with L. We have K` Ă K 1` Ă K 1 and the intermediate

quotient K 1`{K` is identified with the unipotent radical N of P » K 1{K`. Consider ρ as an

irreducible representation of K inflated from K. The invariants ρK
1`

form a representation of

K 1 which coincides with the inflation of the Harish-Chandra restriction of ρ (as a representation

of K) to L. Thus, ρK
1`

contains the inflation of τ to a representation of K 1. In other words,

we have a K 1-equivariant map

τ Ñ ρ|K1 .

By Frobenius reciprocity, it gives a map

c ´ IndKK1 τ Ñ ρ,

which is surjective by irreducibility of ρ. Applying the functor c ´ IndGK : ReppKq Ñ ReppGq,
which is exact, and using transitivity of compact induction, we deduce the existence of a natural

surjection

c ´ IndGK1 τ ։ c ´ IndGK ρ.

Now, pK 1, τq is a depth-0 type in G. Let S Ă ICpGq be the subset such that pK 1, τq is an

S-type, and let L be the (proper) Levi complement of G associated to K 1 as in the previous

paragraph. By 3.4.2.6 Remark, it follows that any irreducible subquotient of c ´ IndGK ρ has

inertial support in S. Since all elements of S are of the form rL, πs for some supercuspidal

representation π of L, we reach the following conclusion.
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Proposition. Let K be a parahoric subgroup of G and let ρ be a non cuspidal irreducible rep-

resentation of its maximal reductive quotient K. Then no irreducible subquotient of c ´ IndGK ρ

is supercuspidal.

3.4.2.10 We go back to the context of the unitary similitude group J . We may now determine

the inertial support of any irreducible subquotient of a representation of the form c ´ IndJJm ρ

with ρ inflated from a unipotent representation of GUpV 0
mq. In particular, all the terms E0,b

1

are of this form according to 3.4.1.11 Corollary. More precisely, let λ be a partition of 2m ` 1

and let ∆t be its 2-core (see 3.2.8). Thus 2m ` 1 “ tpt`1q
2

` 2e for some e ě 0. The integer
tpt`1q

2
is odd, so it can be written as 2f ` 1 for some f ě 0, and we have m “ f ` e. Using

the basis of V 0
m fixed in 3.1.2.8, we identify GUpV 0

mq with the matrix group GU2m`1pFpq. The

cuspidal support of ρλ is pLt, ρtq according to 3.2.8. Let Pt be the standard parabolic subgroup

with Levi complement Lt. By direct computation, one may check that the preimage of Pt in

Jm is the parahoric subgroup Jf,...,m :“ Jf X Jf`1 X . . . X Jm. Let Lf be the Levi complement

of J that is associated to the parahoric subgroup Jf,...,m. Using the basis of V fixed in 3.1.1.4,

let Vf be the subspace of V generated by Van and by the vectors e˘1, . . . , e˘f . It is equipped

with the restriction of the hermitian form of V. Then Lf » GpUpVf q ˆ U1pQpqeq.
The group Lf X Jf,...,m is a maximal parahoric subgroup of Lf , and ρt can be inflated to it. In

particular, the pair pLf X Jf,...,m, ρtq is a level-0 type in Lf . Since we work with unitary groups

over an unramified quadratic extension, Lf XJf,...,m is also a maximal compact subgroup of Lf .

In particular, pLf X Jf,...,m, ρtq is a type for a singleton of the form rLf , τf sLf
. Then τf has the

form

τf “ c ´ Ind
Lf

NLf
pLfXJf,...,mq rρt,

where rρt is some smooth irreducible representation of NLf
pLf X Jf,...,mq containing ρt upon

restriction. It follows that if we inflate ρt to Jf,...,m then pJf,...,m, ρtq is a rLf , τf s-type in J .

Moreover the compactly induced representation c ´ IndJJm ρλ is a quotient of c ´ IndJJf,...,m ρt.

In particular, we reach the following conclusion.

Proposition. Let λ be a partition of 2m ` 1 with 2-core ∆t. Write tpt`1q
2

“ 2f ` 1 for some

f ě 0. Any irreducible subquotient of c ´ IndJJm ρλ has inertial support rLf , τf s.

In particular, if f ă m then none of these irreducible subquotients are supercuspidal.

3.4.2.11 Let us keep the notations of the previous paragraph. Since unipotent representa-

tions of finite groups of Lie type have trivial central characters, if χ is an unramified character

of ZpJq then χZpJqXJm coincides with the central character of ρλ inflated to Jm. As in 3.4.2.3,

we have `
c ´ IndJJm ρλ

˘
χ

» Vρλ,χ,0 ‘ Vρλ,χ,8.

If f ă m, then no irreducible supercuspidal representation can occur. Thus Vρλ,χ,0 “ 0.

On the other hand, assume now that f “ m so that Lf “ J and ρλ is equal to the cuspidal

representation ρ∆m
. As seen in 3.1.3.3, we have NJpJmq “ ZpJqJm unless n “ 2 (thus m “ 0) in
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which case J0 “ J˝ and ZpJqJ0 is of index 2 in NJpJ0q “ J . A representative of the non-trivial

coset is given by g0 as defined in 3.1.1.7. If n “ 2, define

τm,χ :“ c ´ IndJZpJqJm χ b ρλ.

Then τm,χ is an irreducible supercuspidal representation of J , and we have

`
c ´ IndJJm ρλ

˘
χ

» c ´ IndJZpJqJm χ b ρλ “ τm,χ.

Thus Vρλ,χ,8 “ 0 and Vρλ,χ8 “ τm,χ in this case.

When n “ 2, ρλ “ ρ∆0
“ 1 is the trivial representation of J0 “ J˝. Let χ0 : J Ñ Qℓ

ˆ
be

the unique non-trivial character of J which is trivial on ZpJqJ0. Then
`
c ´ IndJJ0 1

˘
χ
is the

sum of an unramified character τ0,χ of J whose central character is χ, and of the character

χ0τ0,χ. Both characters are supercuspidal, and they are the only unramified characters of J

with central character χ.

3.4.2.12 According to 3.4.1.6 and 3.4.1.11, the terms E0,b
1 are a sum of representations of the

form

c ´ IndJJm ρλ,

with λ a partition of 2m ` 1 having 2-core ∆0 if b is even, and ∆1 if b is odd. Moreover, by

3.4.1.11 we have

E
0,2pn´1´mq
2 » c ´ IndJJm 1, E

0,2pn´1´mq`1

2 » c ´ IndJJm ρp2m,1q.

In particular, summing up the discussion of the previous paragraph, we have reached the

following statement.

Proposition. Let χ be an unramified character of ZpJq.

– Assume that n ě 3. The representation pE0,2pn´1´mq
2 qχ contains no non-zero admissible

subrepresentation, and it is not J-semisimple. Moreover, any irreducible subquotient has

inertial support rL0, τ0s. If n ě 5, then the same statement holds for pE0,2pn´1´mq`1

2 qχ
with the inertial support being rL1, τ1s.

– For n “ 1, 2, 3, 4, let b “ 0, 2, 3, 5 respectively. Then m “ 0 when 1, 2 and m “ 1 when

n “ 3, 4. Let χ be an unramified character of ZpJq. The representation τm,χ is irreducible

supercuspidal, and we have

pE0,b
2 qχ »

$
&
%
τm,χ if n “ 1, 3, 4,

τm,χ ‘ χ0τm,χ if n “ 2.

In particular, we deduce the following important corollary.

Corollary. Let χ be an unramified character of ZpJq. If n ě 3 then H
2pn´1´mq
c pMan,Qℓqχ is

not J-admissible. If n ě 5 then the same holds for H
2pn´1´mq`1
c pMan,Qℓqχ.
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3.4.3 The case n “ 3, 4

3.4.3.1 Let us focus on the case m “ 1, that is n “ 3 or 4. Recall that NpΛ0q denotes the set
of lattices Λ P L0 with type tpΛq “ tmax “ 3 containing Λ0. It has cardinality νp1, 2q “ p ` 1

when n “ 3 and νp2, 3q “ p3 ` 1 when n “ 4. In particular, we may locate the non zero terms

E
a,b
1,alt of the alternating Čech spectral sequence as follows.

E
a,b
1,alt “ 0 ðñ

$
&
%

pa, bq P tp0, 2q; p0, 3q; p´k, 4q | 0 ď k ď pu if n “ 3,

pa, bq P tp0, 4q; p0, 5q; p´k, 6q | 0 ď k ď p3u if n “ 4.

In Figure 3 below, we draw the shape of the first page E1,alt for n “ 3. The case of n “ 4 is

similar, except that two more 0 rows should be added at the bottom. To alleviate the notations,

we write ϕ´a for the differential ϕ
2pn´1q
´a .

. . . E
´3,4
1,alt E

´2,4
1,alt E

´1,4
1,alt c ´ IndJJ11

c ´ IndJJ1 ρ∆2

c ´ IndJJ1 1

0

0

ϕ4 ϕ3 ϕ2 ϕ1

Figure 3: The first page E1,alt of the alternating Čech spectral sequence when n “ 3.

3.4.3.2 Let i P Z such that ni is even. For Λ,Λ1 P Li, recall that the distance dpΛ,Λ1q is the

smallest integer d ě 0 such that there exists a sequence Λ “ Λ0, . . . ,Λd “ Λ1 of lattices of Li

with tΛj,Λj`1u being an edge for all 0 ď j ď d ´ 1. When m “ 1, any lattice Λ P Li has type

1 or 3, and two lattices forming an edge can not have the same type. Therefore, the value of

tpΛjq alternates between 1 and 3. In particular, if tpΛq “ tpΛ1q then dpΛ,Λ1q is even. According
to [Vol10] Proposition 3.7, the simplicial complex Li is in fact a tree. We will use this to prove

the following proposition.

Proposition. Let b “ 4 when n “ 3, and b “ 6 when n “ 4. We have E´1,b
2 “ 0.

By 3.4.1.8 Proposition, we may use the alternating Čech spectral sequence to show that E´1,b
2 “

Kerpϕ1q{Impϕ2q vanishes. As we have observed in 3.4.1.12, the term E
a,b
1 is the Qℓ-vector

space generated by the set I´a`1, and E
a,b
1,alt is the subspace consisting of all the vectors v “ř

γPI´a`1
λγγ such that for all σ P S´a`1 we have λσpγq “ sgnpσqλγ. Here the λγ’s are scalars
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which are almost all zero. To prove the proposition, let us look at the differential ϕ2. It acts

on the basis vectors in the following way.

pΛ,Λ,Λq
pΛ,Λ,Λ1q
pΛ1,Λ,Λq

,
/.
/-

ÞÑ pΛ,Λq, @Λ,Λ1 P Lp1q such that UΛ X UΛ1 “ H,

pΛ,Λ1,Λq ÞÑ pΛ1,Λq ` pΛ,Λ1q ´ pΛ,Λq, @Λ,Λ1 P Lp1q such that UΛ X UΛ1 “ H,

pΛ,Λ1,Λ2q ÞÑ pΛ,Λ1q ` pΛ1,Λ2q ´ pΛ,Λ2q, @Λ,Λ1,Λ2 P Lp1q such that UΛ X UΛ1 X UΛ2 “ H.

We note that for a collection of lattices Λ1, . . . ,Λs P L
p1q
i , the condition UΛ1 X . . .XUΛs “ H is

equivalent to dpΛj,Λj1q “ 2 for all 1 ď j “ j1 ď s.

Towards a contradiction, we assume that Impϕ2q Ĺ Kerpϕ1q. Let v P Kerpϕ1qzImpϕ2q. Since

v P E´1,b
1,alt , it decomposes under the form

v “
rÿ

j“1

λjpγj ´ τpγjqq,

where r ě 1, the γj’s are of the form pΛ,Λ1q with Λ “ Λ1 and UΛ X UΛ1 “ H, the scalars λj’s

are non zero and τ P S2 is the transposition. We may assume that r is minimal among all the

vectors in the complement Kerpϕ1qzImpϕ2q. In particular, there exists a single i P Z such that

ni is even, and for all j the lattices in γj belong to L
p1q
i . We may further assume i “ 0 without

loss of generality.

We say that an element γ P I2 occurs in v if γ “ γj or τpγjq for some j. Similarly, we say that

a lattice Λ P L
p1q
0 occurs in v if it is a constituent of some γj.

Lemma. Let γ “ pΛ1,Λq P I2 be an element occuring in v. Then there exists Λ2 P L
p1q
0 such

that pΛ2,Λq P I2 occurs in v and dpΛ1,Λ2q “ 4.

Proof. Let us write pΛj,Λq P I2, 1 ď j ď s for the various elements occuring in v whose first

component is Λ. Up to reordering the γj’s and swapping them with τpγjq if necessary, we may

assume that pΛj,Λq “ γj for all 1 ď j ď s, and that Λ1 “ Λ1. The coordinate of ϕ1pvq along

the basis vector pΛq is equal to 2
řs

j“1 λj. Since ϕ1pvq “ 0, the sum of the λj’s from 1 to s is

zero. In particular, we have s ě 2.

For all 2 ď j ď s, we have 2 ď dpΛ1,Λjq ď 4 by the triangular inequality. Towards a contra-

diction, assume that dpΛ1,Λjq “ 2 for all 2 ď j ď s. In particular, δj :“ pΛj,Λ1,Λq P I3 for all

2 ď j ď s. Consider the vector

w :“ 1

3

sÿ

j“2

ÿ

σPS6

sgnpσqλjσpδjq P E´2,b
1,alt .

Then we compute

ϕ2pwq “ ´λ1ppΛ1,Λq ´ pΛ,Λ1qq ´
sÿ

j“2

λjppΛj,Λq ´ pΛ,Λjqq `
sÿ

j“2

λjppΛj,Λ1q ´ pΛ1,Λjqq.
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In particular, we get

v ` ϕ2pwq “
rÿ

j“s`1

λjpγj ´ τpγjqq `
sÿ

j“2

λjppΛj,Λ1q ´ pΛ1,Λjqq P Kerpϕ1qzImpϕ2q,

which contradicts the minimality of r.

3.4.3.3 To conclude the proof of the proposition, let us pick Λ “ Λ0 P L
p1q
0 which occurs in

v, say in a pair pΛ1,Λq P I2. Write Λ1 :“ Λ1. By induction, we build a sequence pΛkqkě0 of

lattices in L
p1q
0 such that for all k, the pair pΛk`1,Λkq occurs in v and we have dpΛ0,Λkq “ 2k.

It follows that the Λk’s are pairwise distinct, and it leads to a contradiction since only a finite

number of such lattices can occur in v.

Let us assume that Λ0, . . . ,Λk are already built for some k ě 1. By the Lemma applied to Λk,

there exists Λk`1 P L
p1q
0 such that the pair pΛk`1,Λkq occurs in v and dpΛk´1,Λk`1q “ 4. By

the triangular inequality, we have

dpΛ0,Λk`1q ě |dpΛ0,Λkq ´ dpΛk,Λk`1q| “ 2k ´ 2 “ 2pk ´ 1q.

Thus dpΛ0,Λk`1q “ 2pk ´ 1q, 2k or 2pk ` 1q. We prove that it must be equal to the latter.

Assume dpΛ0,Λk`1q “ 2pk ´ 1q. There exists a path Λ0 “ L0, . . . , L2pk´1q “ Λk`1. We obtain a

cycle

Λ0 X Λ1 Λ1 . . . Λk´1 Λk´1 X Λk

Λ0 Λk

L1 L2 . . . L2pk´1q “ Λk`1 Λk X Λk`1

Since L0 is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of

the same length, are the same. In particular, we have Λk´1 “ Λk`1, which is absurd since

dpΛk´1,Λk`1q “ 4.

Assume dpΛ0,Λk`1q “ 2k. There exists a path Λ0 “ L0, . . . , L
2k “ Λk`1. We obtain a cycle

Λ0 X Λ1 Λ1 . . . Λk´1 X Λk Λk

Λ0 Λk X Λk`1

L1 L2 . . . L2k´1 L2k “ Λk`1

Since L0 is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of the same

length, are the same. In particular, we have Λk “ Λk`1, which is absurd since dpΛk,Λk`1q “ 2.

Thus, we have dpΛ0,Λk`1q “ 2pk` 1q so that Λk`1 meets all the requirements. It concludes the

proof.
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3.4.3.4 In particular, we obtain the following statement.

Theorem. Assume that n “ 3 or 4. Let b “ 3 if n “ 3, and let b “ 5 if n “ 4. We have

Hb
cpMan,Qℓq » c ´ IndJJ1 ρ∆2

,

with the rational Frobenius τ acting like multiplication by ´pb.

3.5 The cohomology of the basic stratum of the Shimura variety for
n “ 3, 4

3.5.1 The Hochschild-Serre spectral sequence induced by p-adic uniformization

3.5.1.1 In this section, we still assume that n is any integer ě 1. We recover the notations

of Part 3.3 regarding Shimura varieties. As we have seen in 3.3.6, p-adic uniformization is a

geometric identity relating the Rapoport-Zink space M with the basic stratum SKppb0q. In

[Far04], Fargues constructed a Hochschild-Serre spectral sequence using the uniformization

theorem on the generic fibers, which we introduce in the following paragraphs.

Recall the PEL datum introduced in 3.3.1. Let ξ : G Ñ Wξ be a finite-dimensional irreducible

algebraic Qℓ-representation of G. Such representations have been classified in [HT01] III.2.

We look at VQℓ
:“ V b Qℓ as a representation of G, whose dual is denoted by V0. Using

the alternating form x¨, ¨y, we have an isomorphism V0 » VQℓ
b c´1, where c is the multiplier

character of G.

Proposition ([HT01] III.2). There exists unique integers tpξq,mpξq ě 0 and an idempotent

ǫpξq P EndpVbmpξq
0 q such that

Wξ » ctpξq b ǫpξqpVbmpξq
0 q.

The weight wpξq is defined by

wpξq :“ mpξq ´ 2tpξq.

To any ξ as above, we can associate a local system Lξ which is defined on the tower pSKpqKp

of Shimura varieties. We still write Lξ for its restriction to the generic fiber ShK0Kp bE Zp2 ,

and we denote by Lξ its restriction to the special fiber SKp . Let AKp be the universal abelian

scheme over SKp . We write πmKp : Am
Kp Ñ SKp for the structure morphism of the m-fold product

of AKp with itself over SKp . If m “ 0 it is just the identity on SKp . According to [HT01] III.2,

we have an isomorphism

Lξ » ǫpξqǫmpξq

´
Rmpξqpπmpξq

Kp q˚Qℓptpξqq
¯
,

where ǫmpξq is some idempotent. In particular, if ξ is the trivial representation of G then

Lξ “ Qℓ.
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3.5.1.2 We fix an irreducible algebraic representation ξ : G Ñ Wξ as above. We associate

the space Aξ of automorphic forms of I of type ξ at infinity. Explicitly, it is given by

Aξ “ tf : IpAf q Ñ Wξ | f is IpAf q-smooth by right translations and @γ P IpQq, fpγ ¨q “ ξpγqfp¨qu .

We denote by Lan
ξ the analytification of Lξ to Shan

K0Kp , as well as for its restriction to any open

subspace.

Notation. We write H‚pppSKpqan|b0
,Lan

ξ q for the cohomology of ppSKpqan|b0
pbCp with coefficients in

Lan
ξ .

Theorem ([Far04] 4.5.12). There is a W -equivariant spectral sequence

F
a,b
2 pKpq : ExtaJ

`
H2pn´1q´b
c pMan,Qℓqp1 ´ nq,AKp

ξ

˘
ùñ Ha`bpppSKpqan|b0

,Lan
ξ q.

These spectral sequences are compatible as the open compact subgroup Kp varies in GpAp
f q.

The W -action on F a,b
2 pKpq is inherited from the cohomology group H

2pn´1q´b
c pMan,Qℓqp1 ´ nq.

By the compatibility withKp, we may take the limit limÝÑKp
for all terms and obtain aGpAp

f qˆW -

equivariant spectral sequence. Since m is the semisimple rank of J , the terms F a,b
2 pKpq are zero

for a ą m according to [Far04] Lemme 4.4.12. Therefore, the non-zero terms F a,b
2 are located

in the finite strip delimited by 0 ď a ď m and 0 ď b ď 2pn ´ 1q.
Let us look at the abutment of the sequence. Since the formal completion pSKp of SKp along

its special fiber is a smooth formal scheme, Berkovich’s comparison theorem ([Ber96] Corollary

3.7) gives an isomorphism

Ha`b
c pSKppb0q b F,Lξq “ Ha`bpSKppb0q b F,Lξq „ÝÑ Ha`bpppSKpqan|b0

,Lan
ξ q.

The first equality follows from SKppb0q being a proper variety. Since this variety has dimension

m, the cohomology H‚pppSKpqan|b0
,Lan

ξ q is concentrated in degrees 0 to 2m.

3.5.1.3 Let ApIq denote the set of all automorphic representations of I counted with multi-

plicities. We write qξ for the dual of ξ. We also define

AξpIq :“ tΠ P ApIq |Π8 “ qξu.

According to [Far04] 4.6, we have an identification

A
Kp

ξ »
à

ΠPAξpIq

Πp b pΠpqKp .

It yields, for every a and b, an isomorphism

F
a,b
2 pKpq »

à
ΠPAξpIq

ExtaJ
`
H2pn´1q´b
c pMan,Qℓqp1 ´ nq,Πp

˘
b pΠpqKp .

Taking the limit over Kp, we deduce that

F
a,b
2 :“ limÝÑ

Kp

F
a,b
2 pKpq »

à
ΠPAξpIq

ExtaJ
`
H2pn´1q´b
c pMan,Qℓqp1 ´ nq,Πp

˘
b Πp.

The spectral sequence defined by the terms F a,b
2 computes Ha`bppS an

|b0
,Lan

ξ q :“ limÝÑKp
Ha`bpppSKpqan|b0

,Lan
ξ q.

It is isomorphic to Ha`b
c pSpb0q b F,Lξq :“ limÝÑKp

Ha`b
c pSKppb0q b F,Lξq.
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3.5.1.4 Recall from 3.4.1.7 that we have a decomposition

Hb
cpMan,Qℓq »

à
bďb1ď2pn´1q

E
b´b1,b1

2 ,

and Eb´b1,b1

2 corresponds to the eigenspace of τ associated to the eigenvalue p´pqb. Accordingly,
we have a decomposition

F
a,b
2 »

à
2pn´1q´bď
b1ď 2pn´1q

à
ΠPAξpIq

ExtaJ

´
E

2pn´1q´b´b1,b1

2 p1 ´ nq,Πp

¯
b Πp.

For Π P AξpIq, we denote by ωΠ the central character. We define

δΠp
:“ ωΠp

pp´1 ¨ idqp´wpξq P Qℓ
ˆ
.

Let ι be any isomorphism Qℓ » C, and write | ¨ |ι :“ |ιp¨q|. Since I is a group of unitary

similitudes of an E{Q-hermitian space, its center is Eˆ ¨ id. The element p´1 ¨ id P ZpJq can

be seen as the image of p´1 ¨ id P ZpIpQqq. We have ωΠpp´1 ¨ idq “ 1. Moreover, for any finite

place q “ p, the element p´1 ¨ id lies inside the maximal compact subgroup of ZpIpQqqq, so
|ωΠq

pp´1idq|ι “ 1. Besides Π8 “ qξ, so we have

|ωΠp
pp´1 ¨ idq|ι “ |ωqξpp´1 ¨ idq|´1

ι “ |ωξpp´1 ¨ idq|ι “ |pwpξq|ι “ pwpξq.

The last equality comes from the isomorphism Wξ » ctpξq b ǫpξqpVbmpξq
0 q, see 3.5.1.1. In partic-

ular |δΠp
|ι “ 1 for any isomorphism ι.

Proposition. The W -action on ExtaJpE2pn´1q´b´b1,b1

2 p1´ nq,Πpq is trivial on the inertia I, and

the Frobenius element Frob acts like multiplication by p´1q´b1

δΠp
p´b1`2pn´1q`wpξq.

Proof. Let us write X :“ E
2pn´1q´b´b1,b1

2 p1 ´ nq. By convention, the action of Frob on a space

ExtaJpX,Πpq is induced by functoriality of Ext applied to Frob´1 : X Ñ X. Let us consider a

projective resolution of X in the category of smooth representations of J

. . . P2 P1 P0 X 0.
u3 u2 u1 u0

Since Frob´1 commutes with the action of J , we can choose a lift F “ pFiqiě0 of Frob´1 to a

morphism of chain complexes.

. . . P2 P1 P0 X 0

. . . P2 P1 P0 X 0

u3 u2

F2

u1

F1

u0

F0 Frob´1

u3 u2 u1 u0

After applying HomJp¨,Πpq and forgetting about the first term, we obtain a morphism F˚ of

chain complexes.

0 HomJpP0,Πpq HomJpP1,Πpq HomJpP2,Πpq . . .

0 HomJpP0,Πpq HomJpP1,Πpq HomJpP2,Πpq . . .

F
˚
0 F

˚
1 F

˚
2
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Here F˚
i fpvq :“ fpFipvqq. It induces morphisms on the cohomology

F˚
i : ExtiJpX,Πpq Ñ ExtiJpX,Πpq,

which do not depend on the choice of the lift F . Recall that Frob is the composition of τ and

p ¨ id P J . Since τ is multiplication by the scalar p´1qb1

pb
1´2pn´1q on X, we may choose the lift

Fi :“ p´1q´b1

p´b1`2pn´1qpp´1 ¨ idq for all i.

Consider an element of ExtiJpX,Πpq represented by a morphism f : Pi Ñ Πp. For any v P Pi
we have

F˚
i fpvq “ fpFipvqq “ p´1q´b1

p´b1`2pn´1qfppp´1 ¨ idq ¨ vq “ p´1q´b1

p´b1`2pn´1qωΠp
pp´1 ¨ idqfpvq.

It follows that Frob acts on ExtiJpX,Πpq via multiplication by the scalar p´1q´b1

δΠp
p´b1`2pn´1q`wpξq.

3.5.1.5 In general, the Hochschild-Serre spectral sequence has many differentials between

non-zero terms. However, focusing on the diagonal defined by a ` b “ 0, it is possible to

compute H0
cpSpb0q b F,Lξq. Recall that XunpJq denotes the set of unramified characters of J .

If x P Qℓ
ˆ
is any non-zero scalar, we denote by Qℓrxs the 1-dimensional representation of W

where the inertia I acts trivially and the geometric Frobenius Frob acts like x ¨ id.

Proposition. We have an isomorphism of GpAp
f q ˆ W -representations

H0
cpSpb0q b F,Lξq »

à
ΠPAξpIq

ΠpPXunpJq

Πp b QℓrδΠp
pwpξqs.

Proof. The only non-zero term F
a,b
2 on the diagonal defined by a` b “ 0 is F 0,0

2 . Since there is

no non-zero arrow pointing at nor coming from this term, it is untouched in all the successive

pages of the sequence. Therefore we have an isomorphism

F
0,0
2 » H0

cpSpb0q b F,Lξq.

Using 3.4.1.12, we also have isomorphisms

F
0,0
2 »

à
ΠPAξpIq

HomJ

`
H2pn´1q
c pMan,Qℓqp1 ´ nq,Πp

˘
b Πp

»
à

ΠPAξpIq

HomJ

`
pc ´ IndJJ˝ 1qp1 ´ nq,Πp

˘
b Πp

»
à

ΠPAξpIq

HomJ˝

`
1p1 ´ nq,Πp|J˝

˘
b Πp.

Thus, only the automorphic representations Π P AξpIq with ΠJ˝

p “ 0 contribute to the sum.

Consider such a Π. The irreducible representation Πp is generated by a J˝-invariant vector.

Since J˝ is normal in J , the whole representation Πp is trivial on J
˝. Thus, it is an irreducible

representation of J{J˝ » Z. Therefore, it is one-dimensional. Since J˝ is generated by all

compact subgroups of J , it follows that ΠJ˝

p “ 0 ðñ Πp P XunpJq. When it is satisfied, the

W -representation V 0
Π :“ HomJ˝ p1p1 ´ nq,Πpq has dimension one and the Frobenius action was

described in 3.5.1.4.
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3.5.2 The case n “ 3, 4

3.5.2.1 In this section, we assume that m “ 1, ie. n “ 3 or 4. We recover the notations of

3.4.3.1. We use our knowledge so far on the cohomology of the Rapoport-Zink space to entirely

compute the cohomology of the basic locus of the Shimura variety via p-adic uniformization.

Let ξ be an irreducible finite dimensional algebraic representation of G as in 3.5.1.1. When

n “ 3 or 4, the semisimple rank of J is m “ 1, therefore the terms F a,b
2 are zero for a ą 1.

In particular, the spectral sequence degenerates on the second page. Since it computes the

cohomology of the basic locus Spb0q which is 1-dimensional, we also have F 0,b
2 “ 0 for b ě 3,

and F 1,b
2 “ 0 for b ě 2. In Figure 4, we draw the second page F2 and we write between brackets

the complex modulus of the possible eigenvalues of Frob on each term under any isomorphism

ι : Qℓ » C, as computed in 3.5.1.4.

Remark. The fact that no eigenvalue of complex modulus pwpξq appears in F
0,1
2 nor in F

1,1
2

follows from 3.4.3.2 Proposition, where we proved that E´1,b
2 “ 0 for b “ 4 (resp. 6) when

n “ 3 (resp. 4).

F
0,2
2 rpwpξq`2, pwpξqs 0

F
0,1
2 rpwpξq`1s F

1,1
2 rpwpξq`1s

F
0,0
2 rpwpξqs F

1,0
2 rpwpξqs

Figure 4: The second page F2 with the complex modulus of possible eigenvalues of Frob on
each term.

Proposition. We have F 1,1
2 “ 0 and the eigenspaces of Frob on F 0,2

2 attached to any eigenvalue

of complex modulus pwpξq are zero.

Proof. By the machinery of spectral sequences, there is a GpAp
f q ˆ W -subspace of H2

cpSpb0q b
F,Lξq isomorphic to F 1,1

2 , and the quotient by this subspace is isomorphic to F 0,2
2 . We prove

that all eigenvalues of Frob on H2
cpSpb0qb F,Lξq have complex modulus pwpξq`2. The proposition

then readily follows.

We need the Ekedahl-Oort stratification on the basic stratum of the Shimura variety. Let

Kp Ă GpAp
f q be small enough. In [VW11] 3.3 and 6.3, the authors define the Ekedahl-Oort

stratification on Mred and on SKppb0q respectively, and they are compatible via the p-adic

uniformization isomorphism. For n “ 3 or 4, the stratification on the basic stratum take the

following form

SKppb0q “ SKpr1s \ SKpr3s.
The stratum SKpr1s is closed and 0-dimensional, whereas the other stratum SKpr3s is open,

dense and 1-dimensional. In particular, we have a Frobenius equivariant isomorphism between

the cohomology groups of highest degree

H2
cpSKppb0q b F,Lξq » H2

cpSKpr3s b F,Lξq.
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According the [VW11] 5.3, the closed Bruhat-Tits strataMΛ and SKp,Λ,k also admit an Ekedahl-

Oort stratification of a similar form, and we have a decomposition

SKpr3s “
ğ

Λ,k

SKp,Λ,kr3s

into a finite disjoint union of open and closed subvarieties. As a consequence, we have the

following Frobenius equivariant isomorphisms

H2
cpSKpr3s b F,Lξq »

à
Λ,k

H2
cpSKp,Λ,kr3s b F,Lξq »

à
Λ,k

H2
cpSKp,Λ,k b F,Lξq

where the last isomorphism between cohomology groups of highest degree follows from the

stratification on the closed Bruhat-Tits strata SKp,Λ,k. Now, recall from 3.5.1.1 that the local

system Lξ is given by

Lξ » ǫpξqǫmpξq

´
Rmpξqpπmpξq

Kp q˚Qℓptpξqq
¯
.

It implies that Lξ is pure of weight wpξq. Since the variety SKp,Λ,k is smooth and projective,

it follows that all eigenvalues of Frob on the cohomology group H2
cpSKp,Λ,k b F,Lξq must have

complex modulus pwpξq`2 under any isomorphism ι : Qℓ » C. The result follows by taking the

limit over Kp.

3.5.2.2 In this paragraph, let us compute the term

F
1,0
2 »

à
ΠPAξpIq

Ext1J
`
H2pn´1q
c pMan,Qℓqp1 ´ nq,Πp

˘
b Πp

»
à

ΠPAξpIq

Ext1J
`
c ´ IndJJ˝ 1p1 ´ nq,Πp

˘
b Πp.

Let StJ denote the Steinberg representation of J , and recall that XunpJq denotes the set of

unramified characters of J .

Proposition. Let π be an irreducible smooth representation of J . Then

Ext1Jpc ´ IndJJ˝ 1, πq “

$
&
%
Qℓ if Dχ P XunpJq, π » χ ¨ StJ ,
0 otherwise.

In order to prove this proposition, we need a few general facts about restriction of smooth

representations to normal subgroups. Let G be a locally profinite group and let H be a closed

normal subgroup. If pσ,W q is a representation of H, for g P G we define the representation

pσg,W q by σg : h ÞÑ σpg´1hgq. The representation σ is irreducible if and only if σg is for any

(or for all) g P G.
Lemma. Assume that ZpGqH has finite index in G.

(1) Let π be a smooth irreducible admissible representation of G. There exists a smooth

irreducible representation σ of H, an integer r ě 1 and g1, . . . , gr P G such that

π|H » σg1 ‘ . . . ‘ σgr .

Moreover r ď rZpGqH : Gs, and for any g P G there exists some 1 ď i ď r such that

σg » σgi.
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(2) Assume furthermore that G{H is abelian. Let π1 and π2 be two smooth admissible irre-

ducible representations of G. The three following statements are equivalent.

– pπ1q|H » pπ2q|H .

– There exists a smooth character χ of G which is trivial on H such that π2 » χ ¨ π1.
– HomHpπ1, π2q “ 0.

(3) Assume that G{H is abelian and that rZpGqH : Gs “ 2. Let g0 P GzZpGqH and let

π be a smooth admissible irreducible representation of G. If there exists an irreducible

representation σ of H such that π|H » σ ‘ σg0, then σ fi σg0.

Proof. For (1) and (2), we refer to [Ren09] VI.3.2 Proposition. The result there is stated in

the context of a p-adic group G with normal subgroup H “ 0G such that G{0G » Zd for some

d ě 0, but the same arguments work as verbatim in the generality of the lemma. Admissibility

of the representations involved is assumed only in order to apply Schur’s lemma, insuring for

instance the existence of central characters of smooth irreducible representations. In particular,

if G{K is at most countable for any open compact subgroup K of G, then it is not necessary

to assume admissibility.

Let us prove (3). Assume towards a contradiction that π|H » σ ‘ σg0 and that σ » σg0 . We

build a smooth admissible irreducible representation Π of G such that Π|H “ σ, which results

in a contradiction in regards to (2) since HomHpΠ, πq “ 0 but Π|H fi π|H . Let χ be the central

character of π. Then χ|ZpGqXH coincides with the central character of σ.

Let W denote the underlying vector space of σ. By hypothesis, there exists a linear automor-

phism f : W Ñ W such that for every h P H and w P W ,

fpσpg´1
0 hg0q ¨ wq “ σphq ˝ fpwq.

Let us write g20 “ z0h0 for some z0 P ZpGq and h0 P H. We define ϕ :“ f 2 ˝ σph0q´1. Then for

all h P H and w P W , we have

ϕpσphq ¨ wq “ f 2pσph´1
0 hq ¨ wq “ f 2pσph´1

0 hh0qσph´1
0 q ¨ wq

“ f 2pσpg´2
0 hg20qσph´1

0 q ¨ wq
“ σphq ˝ f 2pσph0q´1 ¨ wq
“ σphq ˝ ϕpwq.

Thus ϕ : σ
„ÝÑ σ. By Schur’s lemma we have ϕ “ λ ¨ id for some λ P Qℓ. Up to replacing f by

pχpz0qλ´1q1{2f , we may assume that ϕ “ χpz0q ¨ id, ie. f 2 “ χpz0qσph0q.
We build a G-representation Π on W which extends σ. Let g P G and define

Πpgq “

$
&
%
χpzqσphq if g “ zh P ZpGqH,
χpzqf ˝ σphq if g “ g0zh P g0ZpGqH.

Then one may check that Π is a well defined group morphism G Ñ GLpW q. The fact that it is
smooth irreducible and admissible follows from Π|H » σ by construction, and it concludes the

proof.
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Remark. Under the hypotheses of (3), as long as σ is a smooth irreducible admissible repre-

sentation of H such that σg0 » σ and whose central character χ|ZpGqXH can be extended to a

character of ZpGq, then one may build Π as in the proof of the lemma.

We may now move on to the proof of the proposition.

Proof. By Frobenius reciprocity we have

Ext1Jpc ´ IndJJ˝ 1, πq » Ext1J˝p1, π|J˝q.

By functoriality of Ext, we have Ext1J˝p1, π|J˝q “ 0 if the central character of π is not unramified.

Thus, let us now assume that it is unramified. According to 3.1.3.4, we have J{J˝ » Z, and

ZpJqJ˝ “ J when n is odd, and is of index 2 in J when n is even. Thus, π|J˝ is irreducible

when n is odd, and can either be irreducible, either decompose as σ ‘ σg0 for some irreducible

representation σ of J˝ such that σg0 fi σ when n is even. Here, g0 may be defined as in 3.1.1.7.

Thus, we are reduced to computing Ext1J˝p1, σq for any irreducible representation σ of J˝

with trivial central character. Let J1 “ UpVq denote the unitary group of V (recall that

J “ GUpVq is the group of unitary similitudes). Then J1 is a normal subgroup both of J˝ and

of J . Moreover, J˝{J1 is isomorphic to the image of the multiplier c|J˝ : J˝ Ñ Zˆ
p , in particular

it is compact. Thus, we have

Ext1J˝p1, σq » Ext1J1p1, σ|J1qJ˝{J1

.

Since σ has trivial central character, the J˝-action on Ext1J1p1, σ|J1q is actually trivial on

ZpJ˝qJ1. But this group is equal to the whole of J˝. Indeed, let g P J˝. Since Qp2{Qp is

unramified, there exists some λ P Zˆ
p2

such that Normpλq “ cpgq. Thus cpλ´1gq “ 1 so that g is

the product of λ ¨ id P ZpJ˝q and of an element of J1. Hence, J˝ acts trivially on Ext1J1p1, σ|J1q.
Since J1 is an algebraic group, we may use Theorem 2 of [NP20], a generalization of a duality

theorem of Schneider and Stühler, to finish the computation. Namely, we have

Ext1J1p1, σ|J1q » HomJ1pσ|J1 , Dp1qq_,

where D denotes the Aubert-Zelevinsky involution in J1. We note that Dp1q “ StJ1 is the

Steinberg representation of J1.

Let us justify that the restriction of StJ to J1 is equal to StJ1 . The Steinberg representation

StJ (resp. StJ1) can be characterized as the unique irreducible representation ρ of J (resp. of

J1) such that Ext2Jp1, ρq “ 0 (resp. Ext1J1p1, ρq “ 0). The gap between the degrees of the Ext

groups for J and for J1 is explained by the non-compactness of the center of J . Since StJ has

trivial central character, by [NP20] Proposition 3.4 we have

Ext2Jp1, StJq » Ext1J,1p1, StJq ‘ Ext2J,1p1, StJq,

where the Ext groups on the right-hand side are taken in the category of smooth representations

of J on which the center acts trivially. Equivalently, this is the category of smooth representa-

tions of J{ZpJq. Consider the normal subgroup ZpJqJ1{ZpJq » J1{ZpJq XJ1 “ J1{ZpJ1q, with
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quotient isomorphic to J{ZpJqJ1, which is trivial if n is odd and Z{2Z is n is even. Thus, we

have

Ext‚
J,1p1, StJq » Ext‚

J{ZpJqp1, StJq
» Ext‚

J1{ZpJ1qp1, pStJq|J1qJ{ZpJqJ1

» Ext‚
J1,1p1, pStJq|J1qJ{ZpJqJ1

» Ext‚
J1p1, pStJq|J1qJ{ZpJqJ1

,

the last line following from the same Proposition 3.4 as above, but applied to J1. In [Far04]

Lemme 4.4.12, it is explained that ExtiJ1pπ1, π2q vanishes for any smooth representations π1, π2

of J1 as soon as i is greater than the semisimple rank of J , that is 1 in our case. Hence,

Ext2J,1p1, StJq “ 0 and we have

Ext2Jp1, StJq » Ext1J,1p1, StJq » Ext1J1p1, pStJq|J1qJ{ZpJqJ1

.

In particular, the right-hand side is non zero, which proves that pStJq|J1 contains StJ1 . If n is

odd so that ZpJqJ1 “ J , it follows that pStJq|J1 “ StJ1 . If n is even, in virtue of point (3) of

the lemma, it remains to justify that for any g P J we have Stg
J1 » StJ1 . This follows from the

following computation

Ext1J1p1, Stg
J1q “ Ext1J1p1g´1

, StJ1q “ Ext1J1p1, StJ1q “ 0.

Let us go back to the irreducible representation π of J with unramified central character.

Summing up the previous paragraphs, we have that π|J1 contains StJ1 if and only if π » χ ¨ StJ
for some character χ of J that is trivial on J1 (and thus trivial on ZpJ˝qJ1 “ J˝ by the

unramifiedness of the central character), and

Ext1Jpc ´ IndJJ˝ 1, πq » HomJ1pσ|J1 , StJ1q_ »

$
&
%
Qℓ if π|J1 » StJ1 ,

0 otherwise.

3.5.2.3 We may now compute the cohomology of the basic stratum. Recall the supercuspidal

representation τ1 of the Levi complement M1 Ă J that we defined in ??. When n “ 3 or 4, we

actually have M1 “ J and

τ1 “ c ´ IndJNJ pJ1q Ąρ∆2

is a supercuspidal representation of J , where NJpJ1q “ ZpJqJ1 (see 3.1.3.3) and Ąρ∆2
is the

inflation of ρ∆2
to NJpJ1q “ ZpJqJ1 (see 3.1.3.3) obtained by letting the center act trivially.

We use the same notations as in 3.5.1.5.
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Theorem. There are GpAp
f q ˆ W -equivariant isomorphisms

H0
cpSpb0q b F,Lξq »

à
ΠPAξpIq

ΠpPXunpJq

Πp b QℓrδΠp
pwpξqs,

H1
cpSpb0q b F,Lξq »

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨StJ

Πp b QℓrδΠp
pwpξqs ‘

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨τ1

Πp b Qℓr´δΠp
pwpξq`1s,

H2
cpSpb0q b F,Lξq »

à
ΠPAξpIq

Π
J1
p “0

Πp b QℓrδΠp
pwpξq`2s.

Proof. The statement regarding H0
cpSpb0q b F,Lξq was already proved in 3.5.1.5.

Let us prove the statement regarding H2
cpSpb0q b F,Lξq first. By 3.5.2.1, we have

H2
cpSpb0q b F,Lξq » F

0,2
2 »

à
ΠPAξpIq

HomJ

´
E

0,b
2 p1 ´ nq,Πp

¯
b Πp,

where b “ 2 if n “ 3 and b “ 4 if n “ 4. The term E
0,b
2 is isomorphic to c ´ IndJJ1 1. Therefore,

by Frobenius reciprocity we have

HomJ

´
E

0,b
2 p1 ´ nq,Πp

¯
» HomJ1 p1p1 ´ nq,Πpq .

Hence, only the automorphic representations Π P AξpIq with ΠJ1
p “ 0 contribute to F 0,2

2 . Such

a representation Πp is said to be J1-spherical. Since J1 is a special maximal compact sub-

group of J , according to [minguez] 2.1, we have dimpπJ1q “ 1 for every smooth irreducible

J1-spherical representation π of J . The result follows using 3.5.1.4 to describe the eigenvalues

of Frob.

We now prove the statement regarding H1
cpSpb0q b F,Lξq. By the Hochschild-Serre spectral

sequence, there exists a GpAp
f q ˆ W -subspace V 1 of this cohomology group such that

V 1 » F
1,0
2 and H1

cpSpb0q b F,Lξq{V 1 » F
0,1
2 .

We have

F
1,0
2 »

à
ΠPAξpIq

Ext1J
`
H2pn´1q
c pMan,Qℓqp1 ´ nq,Πp

˘
b Πp

»
à

ΠPAξpIq

Ext1J
`
c ´ IndJJ˝ 1p1 ´ nq,Πp

˘
b Πp

»
à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp b QℓrδΠp
pwpξqs,

according to 3.5.2.2, and with the eigenvalues of Frob being given by 3.5.1.4.

On the other hand, we have

F
0,1
2 »

à
ΠPAξpIq

HomJ

´
E

0,2pn´1q´1

2 p1 ´ nq,Πp

¯
b Πp.
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By 3.5.1.4, Frob acts on a summand of F 0,1
2 by the scalar ´δΠp

pwpξq`1. Since Frob|V 1 has no

eigenvalue of complex modulus pwpξq`1, the quotient actually splits so that F 0,1
2 is naturally a

subspace of H1
cpSpb0q b F,Lξq. It remains to compute it.

We have

E
0,2pn´1q´1

2 » c ´ IndJJ1 ρ∆2
,

with τ acting like multiplication by ´p3 when n “ 3 and by ´p5 when n “ 4, and ∆2 “ p2, 1q
is the partition of 2m ` 1 “ 3 defined in 3.2.7. Hence, we have an isomorphism

F
0,1
2 »

à
ΠPAξpIq

HomJ

`
c ´ IndJJ1 ρ∆2

p1 ´ nq,Πp

˘
b Πp

»
à

ΠPAξpIq

HomJ1

`
ρ∆2

p1 ´ nq,Πp|J1

˘
b Πp.

It follows that only the automorphic representations Π P AξpIq whose p-component Πp contains

the supercuspidal representation ρ∆2
when restricted to J1, contribute to the sum. According

to 3.4.2.7, such Πp are precisely those of the form χ ¨ τ1 for some χ P XunpJq. By the Mackey

formula we have

HomJ

`
c ´ IndJJ1 ρ∆2

, χ ¨ τ1
˘

» HomJ1

`
ρ∆2

, τ1|J1

˘

» HomJ1

`
ρ∆2

, pc ´ IndJNJ pJ1q Ąρ∆2
q|J1

˘

»
à

hPJ1zJ{NJ pJ1q

HomJ1XhNJ pJ1qpρ∆2
, hĄρ∆2

q,

where in the last formula we omitted to write the restrictions to J1 XhNJpJ1q. We used the fact

that χ|J1 is trivial. Since Ąρ∆2
is just the inflation of ρ∆2

from J1 to NJpJ1q “ ZpJqJ1 obtained

by letting ZpJq act trivially, we have a bijection

HomJ1XhNJ pJ1qpρ∆2
, hĄρ∆2

q » HomNJ pJ1qXhNJ pJ1qpĄρ∆2
, hĄρ∆2

q.

Now, NJpJ1q contains the center, is compact modulo the center, and τ1 “ c ´ IndJNJ pJ1q Ąρ∆2
is

supercuspidal. It follows that an element h P J intertwines Ąρ∆2
if and only if h P NJpJ1q (see

for instance [bushnellbook] 11.4 Theorem along with Remarks 1 and 2). Therefore, only the

trivial double coset contributes to the sum and we have

HomJ

`
c ´ IndJJ1 ρ∆2

, χ ¨ τ1
˘

» HomJ1pρ∆2
, ρ∆2

q » Qℓ.

To sum up, we have

F
0,1
2 »

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨τ1

Πp b Qℓr´δΠp
pwpξq`1s.

It concludes the proof.

3.5.3 On the cohomology of the ordinary locus when n “ 3

3.5.3.1 In this section, we assume that the Shimura variety is of Kottwitz-Harris-Taylor type.

According to [HT01] I.7, it amounts to assuming that the algebra B from 3.3.1 is a division
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algebra satisfying a few additional conditions. In particular, Bv is either split either a division

algebra for every place v of Q, and there must be at least one prime number p1 (different from

p) which splits in E and such that B splits over p1. In this situation, the Shimura variety is

compact.

According to 3.3.5, when n “ 3 there is a single Newton stratum other than the basic one. It

is the µ-ordinary locus SKppb1q, and it is an open dense subscheme of the special fiber of the

Shimura variety. Moreover, since the Shimura variety is compact, the ordinary locus is also an

affine scheme according to [goldringnicole] and [koskivirtawedhorn]. By using the spectral

sequence associated to the stratification

SKp “ SKppb0q \ SKppb1q,

we may deduce information on the cohomology of the ordinary locus. The spectral sequence is

given by

G
a,b
1 : Hb

cpSKppbaq b F,Qℓq ùñ Ha`b
c pSKp b F,Qℓq.

In figure 5, we draw the first page of this sequence.

H4
cpSKppb1q b F,Qℓq

H2
cpSKppb0q b F,Qℓq H3

cpSKppb1q b F,Qℓq

H1
cpSKppb0q b F,Qℓq H2

cpSKppb1q b F,Qℓq

H0
cpSKppb0q b F,Qℓq

φ

ψ

Figure 5: The first page G1.

3.5.3.2 Let v be a place of E above p1. The cohomology of the Shimura variety ShC0Kp bEEv

has been entirely computed in [Boy10]. Note that as GpAp
f q-representations, the cohomology of

ShC0Kp bE Ev is isomorphic to the cohomology of ShC0Kp bE Qp2 , which in turn is isomorphic

to the cohomology of the special fiber SKp using nearby cycles. In particular, we understand

perfectly the abutment of the spectral sequence Ga,b
1 . Since SKp is smooth and projective, its

cohomology admits a symmetry with respect to the middle degree 2. Moreover, by the results

of loc. cit. the groups of degree 1 and 3 are zero. It follows that φ is surjective and ψ is

injective. Combining with our computations, we deduce the following proposition.

Proposition. There is a GpAp
f q ˆ W -equivariant isomorphism

H4
cpSpb1q b F,Lξq »

à
ΠPAξpIq

ΠpPXunpJq

Πp b QℓrδΠp
pwpξq`4s.
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There is a GpAp
f q ˆ W -equivariant monomorphism

H3
cpSpb1q b F,Lξq ãÑ

à
ΠPAξpIq

Π
J1
p “0

Πp b QℓrδΠp
pwpξq`2s.

There is a GpAp
f q ˆ W -equivariant monomorphism

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨StJ

Πp b QℓrδΠp
pwpξqs ‘

à
ΠPAξpIq

DχPXunpJq,
Πp“χ¨τ1

Πp b Qℓr´δΠp
pwpξq`1s ãÑ H2

cpSpb1q b F,Lξq.
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4 On the cohomology of a closed Bruhat-Tits stratum

in the ramified PEL unitary Rapoport-Zink space of

signature p1, n ´ 1q

Notations

Throughout the chapter, we fix an integer n ě 1 and an odd prime number p. If k is a perfect

field of characteristic p, we denote by σ : x ÞÑ xp the Frobenius of Autpk{Fpq. If q “ pe is a

power of p, we write Fq for the field with q elements. We fix an algebraic closure F of Fp.

4.1 The closed Deligne-Lusztig variety isomorphic to a closed Bruhat-
Tits stratum

4.1.1 Let q be a power of p and let G be a connected reductive group over F, together with a

split Fq-structure given by a geometric Frobenius morphism F . For H any F -stable subgroup

of G, we write H :“ HF for its group of Fq-rational points. Let pT,Bq be a pair consisting

of a maximal F -stable torus T contained in an F -stable Borel subgroup B. Let pW,Sq be

the associated Coxeter system, where W “ NGpTq{T. Since the Fq-structure on G is split,

the Frobenius F acts trivially on W. For I Ă S, let PI ,UI ,LI be respectively the standard

parabolic subgroup of type I, its unipotent radical and its unique Levi complement containing

T. Let WI be the subgroup of W generated by I.

For P any parabolic subgroup of G, the associated generalized parabolic Deligne-Lusztig

variety is

XP :“ tgP P G{P | g´1F pgq P PF pPqu.

We say that the variety is classical (as opposed to generalized) when in addition the parabolic

subgroup P contains an F -stable Levi complement. Note that P itself needs not be F -stable.

We may give an equivalent definition using the Coxeter system pW,Sq. For I Ă S, let IWI be

the set of elements w P W which are I-reduced-I. For w P IWI , the associated generalized

parabolic Deligne-Lusztig variety is

XIpwq :“ tgPI P G{PI | g´1F pgq P PIwF pPIqu.

The variety XIpwq is classical when w´1Iw “ I, and it is defined over Fq. The dimension is

given by dimXIpwq “ lpwq where lpwq denotes the length of w with respect to S.

4.1.2 Let G and G1 be two reductive connected group over F both equipped with an Fq-

structure. We denote by F and F 1 the respective Frobenius morphisms. Let f : G Ñ G1 be

an Fq-isotypy, that is a homomorphism defined over Fq whose kernel is contained in the center

of G and whose image contains the derived subgroup of G1. Then, according to [DM14] proof

of Proposition 11.3.8, we have G1 “ fpGqZpG1q0, where ZpG1q0 is the connected component of

unity of the center of G1. Thus intersecting with fpGq defines a bijection between parabolic
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subgroups of G1 and those of fpGq. Let P be a parabolic subgroup of G and let P1 “
fpPqZpG1q0 be the corresponding parabolic of G1. Then the map gP ÞÑ fpgPq induces an

isomorphism f : XP

„ÝÑ XP1 which is compatible with the actions of G and G1 via f . Therefore

G and G1 generate the same Deligne-Lusztig varieties.

4.1.3 Let θ ě 0 and let V be a 2θ-dimensional Fq-vector space equipped with a non-

degenerate symplectic form p¨, ¨q : V ˆ V Ñ Fq. Fix a basis pe1, . . . , e2θq in which p¨, ¨q is

described by the matrix ˜
0 Aθ

´Aθ 0

¸
,

where Aθ denotes the matrix having 1 on the anti-diagonal and 0 everywhere else. If k is a

perfect field extension of Fq, let Vk :“ V bFq
k denote the scalar extension to k equipped with

its induced k-symplectic form p¨, ¨q. Let τ : Vk
„ÝÑ Vk denote the map id b σ. If U Ă Vk, let U

K

denote its orthogonal.

We consider the finite symplectic group SppV, p¨, ¨qq » Spp2θ,Fqq. It can be identified with

G “ GF where G is the symplectic group SppVF, p¨, ¨qq » Spp2θ,Fq and F is the Frobenius

raising the entries of a matrix to their q-th power. Let T Ă G be the maximal torus of diagonal

symplectic matrices and let B Ă G be the Borel subgroup of upper-triangular symplectic

matrices. The Weyl system of pT,Bq is identified with pWθ,Sq where Wθ is the finite Coxeter

group of type Bθ and S “ ts1, . . . , sθu is the set of simple reflexions. They satisfy the following

relations

sθsθ´1sθsθ´1 “ sθ´1sθsθ´1sθ, sisi´1si “ si´1sisi´1, @ 2 ď i ď θ ´ 1,

sisj “ sjsi, @ |i ´ j| ě 2.

Concretely, the simple reflexion si acts on V by exchanging ei and ei`1 as well as e2θ´i and

e2θ´i`1 for 1 ď i ď θ ´ 1, whereas sθ exchanges eθ and eθ`1. The Frobenius F acts trivially on

Wθ.

4.1.4 We define the following subset of S

I :“ ts1, . . . , sθ´1u “ Sztsθu.

We consider the generalized Deligne-Lusztig variety XIpsθq. Since sθsθ´1sθ R I, it is not a clas-

sical Deligne-Lusztig variety. Let Sθ :“ XIpsθq be its closure in G{PI . This normal projective

variety occurs as a closed Bruhat-Tits stratum in the special fiber of the ramified unitary PEL

Rapoport-Zink space of signature p1, n´1q, as established in [RTW14]. In loc. cit. the authors

describe the geometry of Sθ. We summarize their analysis.

Proposition ([RTW14] 5.3, 5.4). Let k be a perfect field extension of Fq. The k-rational points

of Sθ are given by

Sθpkq » tU Ă Vk |UK “ U and U
ď1Ă U ` τpUqu,

where
ď1Ă denotes an inclusion of subspaces with index at most 1. There is a decomposition

Sθ “ XIpidq \ XIpsθq,
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where XIpidq is closed and of dimension 0, and XIpsθq is open, dense of dimension θ. They

correspond respectively to points U having U “ τpUq and U Ĺ U ` τpUq.
If θ ě 2 then Sθ is singular at the points of XIpidq. When θ “ 1, we have S1 » P1.

4.1.5 For 0 ď θ1 ď θ, define

Iθ1 :“ ts1, . . . , sθ´θ1´1u,

and wθ1 :“ sθ`1´θ1 . . . sθ. In particular I0 “ I, Iθ´1 “ Iθ “ H, w0 “ id and w1 “ sθ.

Proposition ([RTW14] 5.5). There is a stratification into locally closed subvarieties

Sθ “
θğ

θ1“0

XIθ1 pwθ1q.

The stratum XIθ1 pwθ1q corresponds to points U such that dimpU`τpUq` . . .`τ θ1`1pUqq “ θ`θ1.

The closure in Sθ of a stratum XIθ1 pwθ1q is the union of all the strata XItpwtq for t ď θ1. The

stratum XIθ1 pwθ1q is of dimension θ1, and XIθpwθq is open, dense and irreducible. In particular

Sθ is irreducible.

Remark. This stratification plays the role of the Ekedahl-Oort stratification MΛ “ Ů
tMΛptq

of the closed Bruhat-Tits strata in the unramified case, see [VW11].

4.1.6 It turns out that the strata XIθ1 pwθ1q are related to Coxeter varieties for symplectic

groups of smaller sizes. For 0 ď θ1 ď θ, define

Kθ1 :“ ts1, . . . sθ´θ1´1, sθ´θ1`1, . . . , sθu “ Sztsθ´θ1u.

Note that K0 “ I0 “ I and Kθ “ S. We have Iθ1 Ă Kθ1 with equality if and only if θ1 “ 0.

Proposition. There is an Spp2θ,Fpq-equivariant isomorphism

XIθ1 pwθ1q » Spp2θ,Fqq{UKθ1 ˆLK
θ1
X

LK
θ1

Iθ1
pwθ1q,

where X
LK

θ1

Iθ1
pwθ1q is a Deligne-Lusztig variety for LKθ1 . The zero-dimensional variety Spp2θ,Fqq{UKθ1

has a left action of Spp2θ,Fqq and a right action of LKθ1 .

Proof. It is similar to [Mul22b] Proposition 8.

4.1.7 The Levi complement LKθ1 is isomorphic to GLpθ´ θ1q ˆSpp2θ1q, and its Weyl group is

isomorphic to Sθ´θ1 ˆWθ1 . Via this decomposition, the permutation wθ1 corresponds to idˆwθ1 .

The Deligne-Lusztig variety X
LK

θ1

Iθ1
pwθ1q decomposes as a product

X
LK

θ1

Iθ1
pwθ1q “ X

GLpθ´θ1q
Iθ1

pidq ˆ X
Spp2θ1q
H pwθ1q.

The variety X
GLpθ´θ1q
Iθ1

pidq is just a single point, but X
Spp2θ1q
H pwθ1q is the Coxeter variety for the

symplectic group of size 2θ1. Indeed, wθ1 is a Coxeter element, ie. the product of all the simple

reflexions of the Weyl group of Spp2θ1q.
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4.2 Unipotent representations of the finite symplectic group

4.2.1 Recall that a (complex) irreducible representation of a finite group of Lie type G “ GF

is said to be unipotent, if it occurs in the Deligne-Lusztig induction of the trivial representation

of some maximal rational torus. Equivalently, it is unipotent if it occurs in the cohomology

(with coefficient in Qℓ with ℓ “ p) of some Deligne-Lusztig variety of the form XB, with B a

Borel subgroup of G containing a maximal rational torus.

Let G,G1 and let f : G Ñ G1 be an Fq-isotypy as in 4.1.2. If B is such a Borel in G, then

B1 :“ fpBqZpG1q0 is such a Borel in B1, and f induces an isomorphism XB

„ÝÑ XB1 compatible

with the actions. As a consequence, the map

ρ ÞÑ f ˝ ρ

defines a bijection between the sets of equivalence classes of unipotent representations of G1

and of G. We will use this observation later in the case G “ Spp2θq and G1 “ GSpp2θq, the
symplectic group and the group of symplectic similitudes, the morphism f being the inclusion.

4.2.2 In this section, we recall the classification of the unipotent representations of the finite

symplectic groups. The underlying combinatorics is described by Lusztig’s notion of symbols.

Our reference is [GM20] Section 4.4.

Definition. Let θ ě 1 and let d be an odd positive integer. The set of symbols of rank θ

and defect d is

Y1
d,θ :“

#
S “ pX, Y q

ˇ̌
ˇ̌ X “ px1, . . . , xr`dq
Y “ py1, . . . , yrq

with xi, yj P Zě0,
xi`1 ´ xi ě 1,

yj`1 ´ yj ě 1,
rkpSq “ θ

+N
pshiftq,

where the shift operation is defined by shiftpX, Y q :“ pt0u \ pX ` 1q, t0u \ pY ` 1qq, and where

the rank of S is given by

rkpSq :“
ÿ

sPS

s ´
Zp#S ´ 1q2

4

^
.

Note that the formula defining the rank is invariant under the shift operation, therefore it is

well defined. By [Lus77], we have rkpSq ě
Y
d2

4

]
so in particular Y1

d,θ is empty for d big enough.

We write Y1
θ for the union of the Y1

d,θ with d odd, this is a finite set.

Example. In general, a symbol S “ pX, Y q will be written

S “
˜
x1 . . . xr . . . xr`d

y1 . . . yr

¸
.

We refer to X and Y as the first and second rows of S. The 6 elements of Y1
2 are given by

˜
2
¸
,

˜
0 1

2

¸
,

˜
0 2

1

¸
,

˜
1 2

0

¸
,

˜
0 1 2

1 2

¸
,

˜
0 1 2

¸
.

The last symbol has defect 3 whereas all the other symbols have defect 1.
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4.2.3 The symbols can be used to classify the unipotent representations of the finite sym-

plectic group.

Theorem ([Lus77] Theorem 8.2). There is a natural bijection between Y1
θ and the set of equiv-

alence classes of unipotent representations of Spp2θ,Fqq.

If S P Y1
θ we write ρS for the associated unipotent representation of Spp2θ,Fqq. The classifica-

tion is done so that the symbols

˜
θ
¸
,

˜
0 . . . θ ´ 1 θ

1 . . . θ

¸
,

correspond respectively to the trivial and the Steinberg representations.

4.2.4 Let S “ pX, Y q be a symbol and let k ě 1. A k-hook h in S is an integer z ě k such

that z P X, z ´ k R X or z P Y, z ´ k R Y . A k-cohook c in S is an integer z ě k such that

z P X, z ´ k R Y or z P Y, z ´ k R X. The integer k is referred to as the length of the hook h

or the cohook c, it is denoted ℓphq or ℓpcq. The hook formula gives an expression of dimpρSq
in terms of hooks and cohooks.

Proposition ([GM20] Proposition 4.4.17). We have

dimpρSq “ qapSq

śθ

i“1 pq2i ´ 1q
2b1pSq

ś
h pqℓphq ´ 1qśc pqℓpcq ` 1q ,

where the products in the denominator run over all the hooks h and all the cohooks c in S, and

the numbers apSq and b1pSq are given by

apSq “
ÿ

ts,tuĂS

minps, tq ´
ÿ

iě1

ˆ
#S ´ 2i

2

˙
, b1pSq “

Z
#S ´ 1

2

^
´ # pX X Y q .

4.2.5 For δ ě 0, we define the symbol

Sδ :“
˜
0 . . . 2δ

¸
P Y1

2δ`1,δpδ`1q.

Definition. The core of a symbol S P Y1
d,θ is defined by corepSq :“ Sδ where d “ 2δ ` 1. We

say that S is cuspidal if S “ corepSq.

Remark. In general, we have rkpcorepSqq ď rkpSq with equality if and only if S is cuspidal.

The next theorem states that cuspidal unipotent representations correspond to cuspidal sym-

bols.

Theorem ([GM20] Theorem 4.4.28). The group Spp2θ,Fqq admits a cuspidal unipotent rep-

resentation if and only if θ “ δpδ ` 1q for some δ ě 0. When this is the case, the cuspidal

unipotent representation is unique and given by ρSδ
.
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4.2.6 The determination of the cuspidal unipotent representations leads to a description of

the unipotent Harish-Chandra series.

Definition. Let δ ě 0 such that θ “ δpδ ` 1q ` a for some a ě 0. We write

Lδ » GLp1,Fqqa ˆ Spp2δpδ ` 1q,Fqq

for the block-diagonal Levi complement in Spp2θ,Fqq, with one middle block of size 2δpδ ` 1q
and other blocks of size 1. We write ρδ :“ p1qa b ρSδ

, which is a cuspidal representation of Lδ.

Proposition ([GM20] Proposition 4.4.29). Let S P Y1
θ,d. The cuspidal support of ρS is pLδ, ρδq

where d “ 2δ ` 1.

In particular, the defect of the symbol S of rank θ classifies the unipotent Harish-Chandra

series of Spp2θ,Fpq.

4.2.7 As it will be needed later, we explain how to compute a Harish-Chandra induction of

the form

RG
L 1 b ρS1 ,

where G “ Spp2θ,Fqq, L is a block-diagonal Levi complement of the form L » GLpa,Fqq ˆ
Spp2θ1,Fqq and S 1 P Y1

d,θ1 is a symbol.

Definition. Let S “ pX, Y q P Y1
d,θ and let h be a k-hook of S given by some integer z. Assume

that z P X and z ´ k R X (resp. z P Y and z ´ k R Y ). The leg length of h is given by the

number of integers s P X (resp. Y ) such that z ´ k ă s ă z.

Consider the symbol S 1 “ pX 1, Y 1q obtained by deleting z and replacing it with z ´ k in the

same row. We say that S 1 is obtained from S by removing a k-hook, or equivalently that S

is obtained from S 1 by adding a k-hook.

Theorem ([FS90] Statement 4.B’). Let S 1 “ pX 1, Y 1q P Y1
d,θ1. We have

RG
L 1 b ρS1 “

ÿ

S

ρS

where S runs over all the symbols in Y1
d,θ such that, for some a1, a2 ě 0 with a “ a1 ` a2, S

is obtained from S 1 by adding an a1-hook of leg length 0 to its first row and an a2-hook of leg

length 0 to its second row.

This computation is a consequence of the Howlett-Lehrer comparison theorem [HL83] as well

as the Pieri rule for Coxeter groups of type B, see [GP00] 6.1.9. We will use it in concrete

examples in the following sections.

4.2.8 There is a similar rule to compute Harish-Chandra restrictions. Let 0 ď θ1 ď θ and

consider the embedding G1 ãÑ L ãÑ G where G1 “ Spp2θ1,Fqq, G “ Spp2θ,Fqq and L is the

block diagonal Levi complement GLpa,Fqq ˆ Spp2θ1,Fqq where a “ θ ´ θ1. We write ˚RG
G1 for

the composition of the Harish-Chandra restriction functor ˚RG
L with the usual restriction from

L to G1.
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Theorem. Let S “ pX, Y q P Y1
d,θ. We have

˚RG
G1 ρS “

ÿ

S1

ρS1

where S 1 runs over all the symbols in Y1
d,θ1 such that, for some a1, a2 ě 0 with a “ a1 ` a2, S

1

is obtained from S by removing an a1-hook of leg length 0 to its first row and an a2-hook of leg

length 0 to its second row.

4.3 The cohomology of the Coxeter variety for the symplectic group

4.3.1 In this section we compute the cohomology of Coxeter varieties of finite symplectic

groups, in terms of the classification of the unipotent characters that we recalled in 4.2.3.

Notation. We write Xk :“ XHpcoxq for the Coxeter variety attached to the symplectic group

Spp2k,Fqq, and H‚
cpXkq instead of H‚

cpXk b F,Qℓq where ℓ “ p.

We first recall known facts on the cohomology of Xk from Lusztig’s work.

Theorem ([Lus76]). The following statements hold.

(1) The variety Xk has dimension k and is affine. The cohomology group Hi
cpXkq is zero

unless k ď i ď 2k.

(2) The Frobenius F acts in a semisimple manner on the cohomology of Xk.

(3) The groups H2k´1
c pXkq and H2k

c pXkq are irreducible as Spp2k,Fqq-representations, and the

latter is the trivial representation. The Frobenius F acts with eigenvalues respectively qk´1

and qk.

(4) The group Hk`i
c pXkq for 0 ď i ď k ´ 2 is the direct sum of two eigenspaces of F , for the

eigenvalues qi and ´qi`1. Each eigenspace is an irreducible unipotent representation of

Spp2k,Fqq.
(5) The sum

À
iě0 H

i
cpXkq is multiplicity-free as a representation of Spp2k,Fqq.

In other words, there exists a uniquely determined family of pairwise distinct symbols Sk0 , . . . , S
k
k

and T k0 , . . . , T
k
k´2 in Y1

k such that

@0 ď i ď k ´ 2, Hk`i
c pXkq » ρSk

i
‘ ρTk

i
,

@k ´ 1 ď i ď k, Hk`1
c pXkq » ρSk

i
.

The representation ρSk
i
(resp. ρTk

i
) corresponds to the eigenspace of the Frobenius F onÀ

iě0 H
i
cpXkq attached to pi (resp. to ´pi`1). Moreover, we know that ρSk

k
is the trivial

representation, therefore

Skk “
˜
k
¸
.

Lusztig also gives a formula computing the dimension of the eigenspaces. Specializing to the

case of the symplectic group, it reduces to the following statement.
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Proposition ([Lus76]). For 0 ď i ď k we have

degpρSk
i
q “ qpk´iq2

k´iź

s“1

qs`i ´ 1

qs ´ 1

k´i´1ź

s“0

qs`i ` 1

qs ` 1
.

For 0 ď j ď k ´ 2 we have

degpρTk
j

q “ qpk´j´1q2 pqk´1 ´ 1qpqk ´ 1q
2pq ` 1q

k´j´2ź

s“1

qs`j ´ 1

qs ´ 1

k´j´1ź

s“2

qs`j ` 1

qs ` 1
.

4.3.2 Our goal in this section is to determine the symbols Ski and T kj explicitly. This is done

in the following proposition.

Proposition. For 0 ď i ď k and 0 ď j ď k ´ 2, we have

Ski “
˜
0 . . . k ´ i ´ 1 k

1 . . . k ´ i

¸
, T kj “

˜
0 . . . k ´ j ´ 3 k ´ j ´ 2 k ´ j ´ 1 k

1 . . . k ´ j ´ 2

¸
.

We note that the statement is coherent with the two dimension formulae that we provided

earlier. That is, the degree of ρSk
i
(resp. of ρTk

j
) computed with the hook formula 4.2.4, agrees

with the dimension of the eigenspace of pi (resp. of ´pj`1) in the cohomology of Xk as given

in the previous paragraph.

Proof. We use induction on k ě 0. Since we already know that Skk is the symbol corresponding

to the trivial representation, the proposition is proved for k “ 0. Thus we may assume k ě 1.

We consider the block diagonal Levi complement L » GLp1,Fqq ˆ Spp2pk ´ 1q,Fqq, and we

write ˚Rk
k´1 for the composition of the Harish-Chandra restriction from Spp2k,Fqq to L, with

the usual restriction from L to Spp2pk ´ 1q,Fqq. As in the proof of [Mul22b] Proposition 19,

for all 0 ď i ď k we have an Spp2pk ´ 1q,Fqq ˆ xF y-equivariant isomorphism

˚Rk
k´1

`
Hk`i
c pXkq

˘
» Hk´1`i

c pXk´1q ‘ Hk´1`pi´1q
c pXk´1qp1q. (˚)

Here, p1q denotes the Tate twist. This recursive formula is established by Lusztig in [Lus76]

Corollary 2.10. The right-hand side is known by induction hypothesis whereas the left-hand

side can be computed using 4.2.8 Theorem. We establish the proposition by comparing the

different eigenspaces of F on both sides.

If S P Y1
d,k is any symbol, the restriction ˚Rk

k´1 ρS is the sum of all the representations ρS1 where

S 1 is obtained from S by removing a 1-hook from any of its rows.

We distinguish different cases depending on the values of k and i.

– Case k “ 1. We only need to determine S1
0 . For i “ 0, the right-hand side of (˚) is ρS0

0

with eigenvalue 1. Thus, the symbol S1
0 P Y1

1 has defect 1 and admits only one 1-hook.

If we remove this hook we obtain S0
0 . Therefore, S1

0 must be one of the two following

symbols
˜
0 1

1

¸
,

˜
1
¸
.

By 4.3.1, we know that ρS1
0
has degree q, thus S1

0 must be equal to the former symbol.
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From now, we assume k ě 2 and we determine Ski for 0 ď i ă k.

– Case k “ 2 and i “ 0. The eigenspace attached to 1 on the right-hand side of (˚) is

ρS1
0
. Thus, the symbol S2

0 P Y1
k has defect 1 and admits only one 1-hook. If we remove

this hook we obtain S1
0 . Therefore, S

2
0 must be one of the two following symbols

˜
0 1 2

1 2

¸
,

˜
0 1

2

¸
.

By 4.3.1, we know that ρS2
0
has degree q4, thus S2

0 must be equal to the former symbol.

– Case k ą 2 and i “ 0. The eigenspace attached to 1 on the right-hand side of (˚) is

ρSk´1
0

. Thus, the symbol Sk0 P Y1
k has defect 1 and admits only one 1-hook. If we remove

this hook we obtain Sk´1
0 . The only such symbol is

Sk0 “
˜
0 . . . k ´ 1 k

1 . . . k

¸
.

– Case 1 ď i ď k ´ 1. The eigenspace attached to pi on the right-hand side of (˚) is

ρSk´1
i

‘ ρSk´1
i´1

. Thus, the symbol Ski P Y1
k has defect 1 and admits only two 1-hooks. If we

remove one of these hooks we obtain either Sk´1
i or Sk´1

i´1 . The only such symbol is

Ski “
˜
0 . . . k ´ i ´ 1 k

1 . . . k ´ i

¸
.

It remains to determine T kj for 0 ď j ď k ´ 2.

– Case k “ 2. The eigenspace attached to ´p on the right-hand side of (˚) is 0. Thus,

the symbol T 2
0 P Y1

2 has no hook at all, implying that it is cuspidal in the sense of 4.2.5.

Since Spp4,Fqq admits only 1 unipotent cuspidal representation, we deduce that

T 2
0 “

˜
0 1 2

¸
.

– Case k “ 3. First when j “ 0, the eigenspace attached to ´p on the right-hand side of

(˚) is ρT 2
0
. Thus, the symbol T 3

0 P Y1
3 has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T 2
0 . Therefore, T

3
0 must be one of the two following symbols

˜
0 1 2 3

1

¸
,

˜
0 1 3

¸
.

By 4.3.1, we know that ρT 3
0
has degree q4 pq2´1qpq3´1q

2pq`1q
, thus T 3

0 must be equal to the former

symbol.

Then when j “ 1, the eigenspace attached to ´p2 on the right-hand side of (˚) is ρT 2
0
.

Thus, the symbol T 3
1 P Y1

3 has defect 3 and admits only one 1-hook. If we remove this

hook we obtain T 2
0 . Thus T

3
1 is also one of the two symbols above. We can deduce that it

is equal to the latter by comparing the dimensions or by using the fact that the symbols

T kj are pairwise distinct.
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From now, we assume k ě 4 and we determine T kj for 0 ď j ď k ´ 2.

– Case k “ 4 and j “ 0. The eigenspace attached to ´p on the right-hand side of (˚) is
ρT 3

0
. Thus, the symbol T 4

0 P Y1
k has defect 3 and admits only one 1-hook. If we remove

this hook we obtain T 3
0 . Therefore, T

4
0 must be one of the two following symbols

˜
0 1 2 3 4

1 2

¸
,

˜
0 1 2 3

2

¸
.

By 4.3.1, we know that ρT 4
0
has degree q9 pq3´1qpq4´1q

2pq`1q
, thus T 4

0 must be equal to the former

symbol.

– Case k ą 4 and j “ 0. The eigenspace attached to ´p on the right-hand side of (˚) is
ρTk´1

0
. Thus, the symbol T k0 P Y1

k has defect 3 and admits only one 1-hook. If we remove

this hook we obtain T k´1
0 . The only such symbol is

T k0 “
˜
0 . . . k ´ 3 k ´ 2 k ´ 1 k

1 . . . k ´ 2

¸
.

– Case k “ 4 and j “ k ´ 2. The eigenspace attached to ´p3 on the right-hand side of

(˚) is ρT 3
1
. Thus, the symbol T 4

2 P Y1
k has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T 3
1 . Therefore, T

4
2 must be one of the two following symbols

˜
0 1 4

¸
,

˜
0 2 3

¸
.

By 4.3.1, we know that ρT 4
2
has degree q pq3´1qpq4´1q

2pq`1q
, thus T 4

2 must be equal to the former

symbol.

– Case k ą 4 and j “ k ´ 2. The eigenspace attached to ´pk´1 on the right-hand side of

(˚) is ρTk´1
k´3

. Thus, the symbol T kk´2 P Y1
k has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T k´1
k´3 . The only such symbol is

T kk´2 “
˜
0 1 k

¸
.

– Case 1 ď j ď k ´ 3. The eigenspace attached to ´pj`1 on the right-hand side of (˚) is
ρTk´1

j
‘ ρTk´1

j´1
. Thus, the symbol T kj P Y1

k has defect 3 and admits only two 1-hooks. If

we remove one of these hooks we obtain either T k´1
j or T k´1

j´1 . The only such symbol is

T kj “
˜
0 . . . k ´ j ´ 3 k ´ j ´ 2 k ´ j ´ 1 k

1 . . . k ´ j ´ 2

¸
.

4.4 On the cohomology of a closed Bruhat-Tits stratum

4.4.1 Recall from 4.1.4 the θ-dimensional normal projective variety Sθ :“ XIpsθq defined

over Fq. It is equipped with an action of the finite symplectic group Spp2θ,Fqq. We use the
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stratification of 4.1.5 Proposition to study its cohomology over Qℓ. If λ is a scalar, we write

H‚
cpSθqλ to denote the eigenspace of the Frobenius F associated to λ (we do not in principle

assume the eigenspace to be non zero). We give a series of statements before proving all of

them at once in the remaining of this section.

Proposition. The Frobenius F acts semi-simply on H‚
cpSθq. Its eigenvalues form a subset of

tqi | 0 ď i ď θu Y t´qj`1 | 0 ď j ď θ ´ 2u.

4.4.2 In a first statement, we give our results regarding the eigenspaces attached to a scalar of

the form qi for some i. Recall from 4.2.6 the cuspidal supports pLδ, ρδq for the finite symplectic

group Spp2θ,Fqq.
Theorem. Let 0 ď i ď θ and θ1 P Z.

(1) The eigenspace Hθ1`i
c pSθqqi is zero when θ1 ă i or θ1 ą θ.

We now assume that 0 ď i ď θ1 ď θ.

(2) All the irreducible representations of Spp2θ,Fqq in the eigenspace Hθ1`i
c pSθqqi belong to the

unipotent principal series, ie. they have cuspidal support pL0, ρ0q.
(3) We have

H0
cpSθq “ H0

cpSθq1 » ρ˜θ
¸, H2θ

c pSθq “ H2θ
c pSθqqθ » ρ˜θ

¸.

(4) If i ` 2 ď θ1 then
à

0ďdďθ´θ1´1

ρ˜
0 . . . θ1 ´ i ´ 2 θ1 ´ i ´ 1 θ1 ` d

1 . . . θ1 ´ i ´ 1 θ ´ i ´ d

¸‘

à
1ďdď

minpi,θ´θ1´1q

ρ˜
0 . . . θ1 ´ i ´ 2 θ1 ´ i ´ 1 ` d θ1

1 . . . θ1 ´ i ´ 1 θ ´ i ´ d

¸ ãÑ Hθ1`i
c pSθqqi .

The cokernel of this map consists of at most 4 irreducible representations of Spp2θ,Fqq.
(5) When i “ θ1 “ θ, we have

ρ˜θ
¸ ãÑ H2i

c pSθqqi if 2i ă θ, ρ˜θ
¸ ‘ ρ˜θ ´ i i ` 1

0

¸ ãÑ H2i
c pSθqqi if 2i ě θ.

(6) When θ1 “ θ we have

Hθ`i
c pSθqqi » 0 or ρ˜

0 . . . θ ´ i ´ 1 θ

1 . . . θ ´ i

¸.

(7) When θ1 “ 1 and i “ 0, we have

H1
cpS1q “ 0, H1

cpSθq “ H1
cpSθq1 » 0 or ρ˜

0 1 θ

1 2

¸ when θ ě 2.

We note that when θ1 “ θ, the formula of p4q does not say anything about the eigenspace

Hθ`i
c pSθqqi since the sums are empty. However, by p6q we understand that this eigenspace is

either 0 either irreducible.

We note also that the theorem does not give any information in the case i ` 1 “ θ1, except

when θ1 “ 1 and i “ 0 which corresponds to p7q.
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4.4.3 In a second statement, we give our results regarding the eigenspaces attached to a

scalar of the form ´qj`1 for some j.

Theorem. Let 0 ď j ď θ ´ 2 and θ1 P Z.

(1) The eigenspace Hθ1`j
c pSθq´qj`1 is zero when θ1 ă j ` 2 or θ1 ą θ.

We now assume that 2 ď j ` 2 ď θ1 ď θ.

(2) All the irreducible representations of Spp2θ,Fqq in the eigenspace Hθ1`j
c pSθq´qj`1 are unipo-

tent with cuspidal support pL1, ρ1q.
(3) We have

H2θ´2
c pSθq´qθ´1 » ρ˜

0 1 θ
¸.

(4) If j ` 4 ď θ1 ď θ then

à
0ďdďθ´θ1´1

ρ˜
0 . . . θ1 ´ i ´ 4 θ1 ´ i ´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ1 ` d

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2 ´ d

¸‘

à
1ďdď

minpi,θ´θ1´1q

ρ˜
0 . . . θ1 ´ i ´ 4 θ1 ´ i ´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1 ` d θ1

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2 ´ d

¸ ãÑ Hθ1`j
c pSθq´qj`1 .

The cokernel of this map consists of at most 4 irreducible representations of Spp2θ,Fqq.
(5) When j ` 2 “ θ1 “ θ, we have

ρ˜
0 1 θ

¸ ãÑ H2pj`1q
c pSθq´qj`1 if 2pj ` 1q ă θ,

ρ˜
0 1 θ

¸ ‘ ρ˜
0 θ ´ i ´ 1 i ` 2

¸ ãÑ H2pj`1q
c pSθq´qj`1 if 2pj ` 1q ě θ.

(6) When θ1 “ θ we have

Hθ`j
c pSθq´qj`1 » 0 or ρ˜

0 . . . θ ´ j ´ 3 θ ´ j ´ 2 θ ´ j ´ 1 θ

1 . . . θ ´ j ´ 2

¸.

We note that when θ1 “ θ, the formula of p4q does not say anything about the eigenspace

Hθ`j
c pSθq´qj`1 since the sums are empty. However, by p6q we understand that this eigenspace

is either 0 either irreducible.

We note also that the theorem does not give any information in the case j ` 3 “ θ1.

Remark. A cuspidal representation occurs in the cohomology of Sθ only in the cases θ “ 0 and

θ “ 2. When θ “ 0 it corresponds to H0
cpS0q which is trivial. When θ “ 2 it corresponds to

H2
cpS2q´q as described by p3q in the theorem above.

4.4.4 The remaining of this section is dedicated to proving the theorems stated above. Recall

from 4.1.5 that we have a stratification Sθ “ Ůθ

θ1“0XIθ1 pwθ1q. It induces a spectral sequence on

the cohomology whose first page is given by

E
a,b
1 “ Ha`b

c pXIapwaqq ùñ Ha`b
c pSθq. (E)
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Now, recall that the strata XIθ1 pwθ1q are related to Coxeter varieties for the finite symplectic

group Spp2θ1,Fqq. Using 4.1.7, the geometric isomorphism given in 4.1.6 Proposition induces

an isomorphism on the cohomology

H‚
cpXIθ1 pwθ1qq » R

Spp2θ,Fqq
LK

θ1
1 b H‚

cpXSpp2θ1qpwθ1qq, (˚˚)

where LKθ1 denotes the block-diagonal Levi complement isomorphic to GLpθ´θ1,FqqˆSpp2θ1,Fqq.
The variety XSpp2θ1qpwθ1q is nothing but the Coxeter variety that we denoted by Xk1

in 4.3.1,

and whose cohomology we have described. For 0 ď i ď θ1 and 0 ď j ď θ1 ´ 2, recall from 4.3.2

the symbols Sθ
1

i and T θ
1

j . We define

RS
i,θ1 :“ R

Spp2θ,Fqq
LK

θ1
1 b ρSθ1

i
, RT

j,θ1 :“ R
Spp2θ,Fqq
LK

θ1
1 b ρT θ1

j
.

Then by (˚˚), we have

Hθ1`i
c pXIθ1 pwθ1qq » RS

i,θ1 ‘ RT
i,θ1 @0 ď i ď θ1 ´ 2,

Hθ1`i
c pXIθ1 pwθ1qq » RS

i,θ1 @θ1 ´ 1 ď i ď θ1.

The cohomology groups of other degrees vanish. The representation RS
i,θ1 corresponds to the

eigenvalue qi of F , whereas RT
j,θ1 corresponds to ´qj`1.

Lemma. Let 0 ď θ1 ď θ, 0 ď i ď θ1 and 0 ď j ď θ1 ´ 2.

– If i ă θ1, the representation RS
i,θ1 is the multiplicity-free sum of the unipotent representations

ρS where S P Y1
1,θ runs over the following 4 distinct families of symbols

(S1)

˜
0 . . . θ1 ´ i ´ 2 θ1 ´ i ´ 1 θ1 ` d

1 . . . θ1 ´ i ´ 1 θ ´ i ´ d

¸
@0 ď d ď θ ´ θ1,

(S2)

˜
0 . . . θ1 ´ i ´ 2 θ1 ´ i ´ 1 ` d θ1

1 . . . θ1 ´ i ´ 1 θ ´ i ´ d

¸
@1 ď d ď minpi, θ ´ θ1q,

(S Exc 1)

˜
0 . . . θ1 ´ i ´ 1 θ1 ´ i θ

1 . . . θ1 ´ i θ1 ´ i ` 1

¸
if θ1 “ θ,

(S Exc 2)

˜
0 . . . θ1 ´ i ´ 1 θ ´ i ´ 1 θ1 ` 1

1 . . . θ1 ´ i θ1 ´ i ` 1

¸
if θ1 “ θ, θ ´ 1 and θ ď θ1 ` i ` 1.

– The representation RS
θ1,θ1 is the multiplicity-free sum of the unipotent representations ρS where

S P Y1
1,θ runs over the following 2 distinct families of symbols

(S1’)

˜
0 θ1 ` 1 ` d

θ ´ θ1 ´ d

¸
@0 ď d ď θ ´ θ1,

(S2’)

˜
d θ1 ` 1

θ ´ θ1 ´ d

¸
@1 ď d ď minpθ1, θ ´ θ1q.
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– If j`2 ă θ1, the representation RT
j,θ1 is the multiplicity-free sum of the unipotent representations

ρT where T P Y1
3,θ runs over the following 4 distinct families of symbols

(T1)

˜
0 . . . θ1 ´ j ´ 4 θ1 ´ j ´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ1 ` d

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2 ´ d

¸
@0 ď d ď θ ´ θ1,

(T2)

˜
0 . . . θ1 ´ j ´ 4 θ1 ´ j ´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1 ` d θ1

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2 ´ d

¸
@1 ď d ď
minpj, θ ´ θ1q,

(T Exc 1)

˜
0 . . . θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ1 ´ j θ

1 . . . θ1 ´ j ´ 1

¸
if θ1 “ θ,

(T Exc 2)

˜
0 . . . θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ ´ j ´ 1 θ1 ` 1

1 . . . θ1 ´ j ´ 1

¸
if θ1 “ θ, θ ´ 1

and θ ď θ1 ` j ` 1.

– The representation RT
θ1´2,θ1 is the multiplicity-free sum of the unipotent representations ρT where

T P Y1
3,θ runs over the following 2 distinct families of symbols

(T1’)

˜
0 1 2 θ1 ` 1 ` d

θ ´ θ1 ´ d

¸
@0 ď d ď θ ´ θ1,

(T2’)

˜
0 1 2 ` d θ1 ` 1

θ ´ θ1 ´ d

¸
@1 ď d ď minpθ1 ´ 2, θ ´ θ1q.

This lemma results directly from the computational rule explained in 4.2.7. In concrete terms,

an induction of the form

R
Spp2θ,Fqq
LK

θ1
1 b ρS1

is the sum of all the representations ρS where S is obtained from S 1 by adding a hook of leg

length 0 to both rows, whose lengths sum to θ ´ θ1. We illustrate the arguments by looking at

a concrete example.

With θ “ 6, θ1 “ 3 and i “ 2 let us explain the computation of

RS
2,3 “ R

Spp12,Fqq
LK3

1 b ρS3
2
.

Recall that

S3
2 “

˜
0 3

1

¸
.

For 0 ď d ď θ´θ1 “ 3, we add a d-hook of leg length 0 to the first row of S3
2 , and a p3´dq-hook

of leg length 0 to its second row.

We may always add the hooks to the last entries of each row. By doing so we obtain the

representations corresponding to the family of symbols (S1):
˜
0 3

4

¸
,

˜
0 4

3

¸
,

˜
0 5

2

¸
,

˜
0 6

1

¸
.
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When d ď minpθ ´ θ1, iq “ minp3, 2q “ 2, we may also add the first hook to the penultimate

entry of the first row. Note that since i ă θ1, the first row of Sθ
1

i has at least 2 entries. By

doing so, we obtain the representations corresponding to the family of symbols (S2):

˜
1 3

3

¸
,

˜
2 3

2

¸
.

Now, recall that symbols are equal up to shifts. Therefore, one may rewrite S3
2 as

S3
2 “ shiftpS3

2q “
˜
0 1 4

0 2

¸
.

Written this way, we notice that a 1-hook can be added to the first entry of the second row,

which is a 0. Then one must add to the first row a hook of length d “ θ´ θ1 ´ 1 “ 2. One may

always add it to the last entry, which results in the first “exceptional” representation (S Exc

1). Moreover if d ď i, which is the case here, one may also add this hook to the penultimate

entry of the first row, which leads to the second “exceptional” representation (S Exc 2):

˜
0 1 6

1 2

¸
,

˜
0 3 4

1 2

¸
.

The sum of the representations attached to all the 8 symbols written above is isomorphic to RS
2,3.

We also explain in detail the special case i “ θ. Thus we compute

RS
θ,θ “ R

Spp2θ,Fqq
LK

θ1
1 b ρSθ1

θ1
.

Recall that

Sθ
1

θ1 “
˜
θ1
¸

corresponds to the trivial representation of Spp2θ1,Fqq. In order to compute this induction, we

shift the symbol Sθ
1

θ1 first:

Sθ
1

θ1 “
˜
0 θ1 ` 1

0

¸
.

For 0 ď d ď θ ´ θ1, we add a d-hook of leg length 0 to the first row and a pθ ´ θ1 ´ dq-hook
of leg length 0 to the second row. We may always add the hooks to the last entries of each

row. By doing so, we obtain the representations corresponding to the family of symbols pS11q.
Moreover when d ď minpθ1, θ ´ θ1q, we may also add the first hook to the 0 in the first row. It

leads to the representations corresponding to the family of symbols pS21q.
In particular, we notice that the symbol of pS11q with d “ θ ´ θ1 corresponds to the trivial

representation of Spp2θ,Fqq.
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RS
θ,θ

RS
θ´1,θ´1 RS

θ´1,θ

RS
θ´2,θ´2 RS

θ´2,θ´1 RS
θ´2,θ ‘ RT

θ´2,θ

...
...

RS
2,2 . . . RS

2,θ´2 ‘ RT
2,θ´2 RS

2,θ´1 ‘ RT
2,θ´1 RS

2,θ ‘ RT
2,θ

RS
1,1 RS

1,2 . . . RS
1,θ´2 ‘ RT

1,θ´2 RS
1,θ´1 ‘ RT

1,θ´1 RS
1,θ ‘ RT

1,θ

RS
0,0 RS

0,1 RS
0,2 ‘ RT

0,2 . . . RS
0,θ´2 ‘ RT

0,θ´2 RS
0,θ´1 ‘ RT

0,θ´1 RS
0,θ ‘ RT

0,θ

Figure 6: The first page of the spectral sequence.

4.4.5 Now, we have an explicit description of the terms Ea,b
1 in the first page of the spectral

sequence (E). In the Figure 6, we draw the shape of the first page.

First, since the Frobenius F acts with the eigenvalue qi (resp. ´qj`1) on the representations

RS
i,θ1 (resp. RT

j,θ1), 4.4.1 Proposition as well as point p1q of 4.4.2 and 4.4.3 Theorems follow from

the triangular shape of the spectral sequence. Point p2q also follows from 4.4.4 Lemma.

Next, we notice that on the b-th row of the first page E1, the eigenvalues of F which occur are

qb and ´qb`1. In particular, the eigenvalues on different rows are all distinct. It follows that all

the arrows in the deeper pages of the sequence are zero, therefore it degenerates on the second

page. Moreover, the filtration induced by the spectral sequence on the abutment splits, so that

Hk
c pSθq is isomorphic to the direct sum of the terms Ek´b,b

2 on the k-th diagonal of the second

page.

We prove point p3q of 4.4.2 and 4.4.3 Theorems. By the shape of the spectral sequence, we see

that

H2θ
c pSθq “ H2θ

c pSθqqθ » RS
θ,θ » ρ˜θ

¸, H2θ´2
c pSθq´qθ´1 » RT

θ´2,θ » ρ˜
0 1 θ

¸.

Moreover, by the spectral sequence we know that H0
cpSθq is a subspace of RS

0,0, thus the Frobe-

nius F acts like the identity. Since Sθ is projective and irreducible, the cohomology group

H0
cpSθq “ H0pSθq is trivial.

We now prove point p4q of 4.4.2 and 4.4.3 Theorems. Let 2 ď i` 2 ď θ1 ď θ´ 1. By extracting

the eigenvalue qi in the spectral sequence, we have a chain
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. . . RS
i,θ1´1 RS

i,θ1 RS
i,θ1`1 . . .

u v

The quotient Kerpvq{Impuq is isomorphic to the eigenspace Hθ1`i
c pSθqqi .

The middle term RS
i,θ1 is the sum of the representations ρS where S runs over the families of

symbols (S1), (S2), (S Exc 1) and (S Exc 2) as in 4.4.4 Lemma. All these symbols are written

in their “reduced” form, meaning that they can not be written as the shift of another symbol.

Let us look at the length of the second row of these symbols. If S belongs to (S1) or (S2), then

the second row has length θ1 ´ i. If S belongs to (S Exc 1) or (S Exc 2), then the second row

has length θ1 ´ i ` 1.

We may do a similar analysis for the left term (resp. the right term) by replacing θ1 with θ1 ´ 1

(resp. θ1 `1). In the left term RS
i,θ1´1, all the representations corresponding to the families (S1)

and (S2) have second row of length θ1 ´ i´1. No such representation occurs in the middle term,

therefore they all automatically lie in the Kerpuq. Then, in the left term the representation

corresponding to (S Exc 1) occurs since θ1 ´ 1 “ θ. We observe that it is equivalent to the

representation ρS occuring in RS
i,θ1 with S in the family (S1) and d “ θ ´ θ1. Further, assume

that θ ď θ1 ` i so that the representation corresponding to (S Exc 2) occurs in RS
i,θ1´1. Then we

observe that it is equivalent to the representation ρS occuring in RS
i,θ1 with S in the family (S2)

and d “ θ ´ θ1 “ minpi, θ ´ θ1q. Hence, it follows that Impuq consists of at most 2 irreducible

subrepresentations of RS
i,θ1 , and they correspond to the symbols of (S1) and (S2) with d “ θ´θ1.

Next, all the subrepresentations ρS of RS
i,θ1 with S in (S1) or (S2) belong to Kerpvq, since no

component of RS
i,θ1`1 correspond to a symbol whose second row has length θ1 ´ i. Since θ1 “ θ,

the represensation corresponding to (S Exc 1) occurs in RS
i,θ1 . We observe that it is equivalent

to the representation ρS occuring in RS
i,θ1`1 with S in the family (S1) and d “ θ´θ1 ´1. Assume

that θ1 ď θ´ 2 and θ ď θ1 ` i` 1, so that the representation corresponding to (S Exc 2) occurs

in RS
i,θ1 . Then we observe that it is equivalent to the representation ρS occuring in RS

i,θ1`1 with

S in the family (S2) and d “ θ´ θ1 ´ 1 “ minpi, θ´ θ1 ´ 1q. Therefore, it is not possible to tell

whether the components of RS
i,θ1 corresponding to (S Exc 1) and (S Exc 2) are in Kerpvq or not.

In all cases, we conclude that Kerpvq{Impuq contains at least all the representations correspond-
ing to the symbols S in (S1) and (S2) with d ă θ ´ θ1. With this description we miss up to

four irreducible representations, which correspond to (S1) and (S2) with d “ θ ´ θ1, (S Exc 1)

and (S Exc 2). This proves point (4) of 4.4.2 Theorem.

The point (4) of 4.4.3 Theorem is proved by identical arguments.

We now prove point p5q of 4.4.2 and 4.4.3 Theorems. We consider i “ θ1 “ θ. By extracting

the eigenvalue qi in the spectral sequence, we have a chain

RS
i,i RS

i,i`1 . . .
u

The kernel Kerpuq is isomorphic to the eigenspace H2i
c pSθqqi . The left term RS

i,i is the sum of the

representations ρS1 where S 1 runs over the families of symbols (S1’) and (S2’). We observe that

the representation ρS1 with S 1 in (S1’) corresponding to some 0 ď d1 ď θ ´ i ´ 1 is equivalent

to the component ρS of RS
i,i`1 with S in (S1) corresponding to d “ d1. Similarly, we observe
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that the representation ρS1 with S 1 in (S2’) corresponding to some 1 ď d1 ď minpi, θ ´ i´ 1q is

equivalent to the component ρS of RS
i,i`1 with S in (S2) corresponding to d “ d1.

Therefore, the representation ρS corresponding to S in (S1’) with d1 “ θ´ i belongs to Kerpuq.
This is no other than the trivial representation. Moreover, if minpi, θ ´ i ´ 1q “ minpi, θ ´ iq,
ie. if 2i ě θ, then the representation ρS corresponding to S in (S2’) with d1 “ θ´ i also belongs

to Kerpuq. This proves point (5) of 4.4.2 Theorem.

The point (5) of 4.4.3 Theorem is proved by identical arguments.

Points (6) of 4.4.2 and 4.4.3 Theorems follows easily from the shape of the spectral sequence.

Indeed, it suffices to notice that all the terms RS
i,θ and RT

j,θ in the rightmost column of the

sequence are irreducible. Thus, they may either vanish, either remain the same in the second

page.

Lastly we prove point (7) of 4.4.2. Assume first that θ “ 1. The 0-th row of the spectral

sequence is given by

ρ˜
1
¸ ‘ ρ˜

0 1

1

¸ ρ˜
0 1

1

¸u

We have H1
cpS1q » Cokerpuq. Since we already know that H0

cpS1q » Kerpuq is the trivial repre-

sentation of Spp2,Fqq, we see that u must be surjective. Therefore H1
cpS1q “ 0.

Remark. The vanishing of H1
cpS1q also follows directly from the fact that S1 » P1.

Let us now assume θ ě 2. The first terms of the 0-th row of the spectral sequence are

RS
0,0 RS

0,1 RS
0,2 . . .

u v

We have H1
cpSθq “ H1

cpSθq1 » Kerpvq{Impuq. The middle term RS
0,1 is the sum of all the

representations corresponding to the following symbols
˜
0 1 θ

1 2

¸
,

˜
0 1 ` d

θ ´ d

¸
, @0 ď d ď θ ´ 1.

On the other hand, the left term RS
0,0 is the sum of all the representations corresponding to the

following symbols
˜

0 1 ` d

θ ´ d

¸
, @0 ď d ď θ.

Since we already know that H0
cpSθq » Kerpuq is the trivial representation of Spp2θ,Fqq, we see

that Impuq contains all the components of RS
0,1 associated to a symbol whose second row has

length 1. Therefore, H1
cpSθq is either 0 either irreducible, depending on whether the remaining

component ˜
0 1 θ

1 2

¸
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is in Kerpvq or not. This proves point (7) and concludes the proof of 4.4.2 and 4.4.3 Theorems.
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