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centered data augmentation scheme, and demonstrate how to integrate it into a Metropolis-Hastings sampler. We show how our data augmentation scheme lends itself to the use of adaptive proposals, to speed up MCMC inference. A numerical comparison against a more classical implementation based on tree augmentation shows that our algorithm is correct, but also that it is not competitive enough.

In the fourth chapter, I discuss the problem of model nonidentifiability in infectious disease inference. Even the simplest SIR model is non-identifiable from case count data alone, if we don't know the initial condition of the system. We show that the situation is similar for viral sequence data or seroprevalence data taken alone. We argue for using these complementary sources of data together to solve the problem, and demonstrate this on simulated data and on dengue data from Ho Chi Minh City.

Résumé

L'année 2020 et la pandémie de COVID-19 ont à nouveau prouvé l'importance de mieux comprendre et controller la propagation des maladies infectieuses. L'épidémiologie des maladies infectieuses doit relever des défis difficiles : La dynamique des maladies infectieuses est à la fois non-linéaire et stochastique, et les données dont on dispose pour les étudier sont limitées, partielles, et biaisées de manière complexe. Ce manuscrit réunit trois projets distincts mais connectés, sur lesquels j'ai travaillé durant mes études doctorales dans le but d'avancer sur ces problèmes.

Dans un premier chapitre, nous fournissons un panorama général de l'épidémiologie des maladies infectieuses. Nous abordons la modélisation des épidémies, les sources de données classiques et nouvelles les concernant, et l'inférence statistique bayésienne. Nous illustrons la manière dont ces différentes thématiques se rencontrent pour faire avancer nos connaissances sur l'exemple de la dengue.

Dans le second chapitre, je présente un algorithme de Metropolis-Hastings novateur pour l'inférence bayésienne des processus de Markov de saut pur, par augmentation de données, en utilisant des mesures aléatoires de Poisson. Cet algorithme constitue une méthode efficace d'inférence des modèles épidémiques stochastiques par simulation, et fournit simultanément un diagnostic de la qualité de l'ajustement du modèle. Nous illustrons notre méthode en l'appliquant à l'épidémie de Zika de 2013 en Polynésie xi xii R ÉSUM É

Française.

Dans le troisième chapitre, nous adaptons la méthode précédente au contexte de l'inférence phylodynamique. Nous présentons un schéma d'augmentation de données non-centré original et démontrons comment l'intégrer à un algorithme de Metropolis-Hastings. Nous montrons comment le schéma choisi se prête à l'utilisation de distributions de proposition adaptatives, pour accélérer l'inférence par MCMC. Une comparaison de notre méthode avec une implémentation plus classique basée sur l'échantillonnage de phylogénies montre que notre algorithme est correct, mais également que sa vitesse et son efficacité statistique ne sont pas compétitives.

Dans le quatrième et dernier chapitre, je discute du problème de la non-identifiabilité des modèles épidémiques. Même le modèle SIR le plus simple est non-identifiable quand l'inférence est faite à partir de données de comptage de cas seules, si l'on ne connait pas l'état initial du système. Nous montrons que la situation est la même à partir de données de séquences virales ou de séroprévalence prises seules. Nous établissons qu'utiliser ces sources de données complémentaires ensemble permet de résoudre le problème, aves des données simulées, et sur des données de dengue de Hô Chi Minh-Ville.
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Abstract

The year 2020 and the COVID-19 pandemic have proven again the importance of understanding and controlling the spread of infectious diseases. Infectious disease epidemiology needs to tackle difficult challenges: the dynamics of infectious diseases are both non-linear and stochastic, and the data we have about it is always limited, partial, and biased in complex ways. This manuscript gathers three separate but related projects that I worked on during my doctoral studies to try and make progress on these issues. In a first chapter, I give a general introduction to the epidemiology of infectious diseases. We address the subjects of epidemic modelling, of classical and novel sources of epidemic data, and of Bayesian statistical inference. We illustrate the ways in which these different thematics interface to further our knowledge of dengue.

In the second chapter, I present a new generic Metropolis-Hastings sampler for the Bayesian inference of Markov pure jump processes, via Poisson Random Measure (PRM) data augmentation. The algorithm acts as an efficient simulation-based inference method for stochastic epidemic models, and simultaneously provides a diagnosis of the quality of model fit. We illustrate these features by applying the method to the Zika epidemic of 2013 in French Polynesia.

In the third chapter, we adapt the previous method to the context of phylodynamic inference. We present an original non-Chapter 1 Background

Introduction

The year 2020 will be remembered as the year of the Covid-19 pandemic. At the time of this writing, the pandemic is far from over, but it is already a historical event with far-ranging consequences. A minor one of these is its significance for the science of epidemiology. It is probably the first time that we hear journalists talking about exponential growth, reproduction numbers, seropositivity, contact networks, and more, and that it all seems so important. Epidemiologists and doctors make regular appearances in the media and advise governments, and Le Monde publishes articles about the statistical methods used to understand the pandemic [START_REF]Comment l'épidémiologie tente de cerner l'épidémie due au nouveau coronavirus[END_REF][START_REF]Coronavirus : comment sont élaborées les modélisations épidémiologiques[END_REF].

At the same time, the opinions and advice of the scientists are often contradictory, and their predictions are quickly invalidated. We might wonder then, whether epidemiological modelling and statistical inference are actually useful, or just whether they are just noise, constructed from abstract ideas that do not hold up in the real world. The methods used in modelling and statistics are complex, the results difficult to interpret, and even the specialist may easily be lost among all the articles coming out on Covid 19 -which ones to trust and which ones to discard ? However, through the major epidemics of the last two decades, the statistical modelling branch of epidemiology has only gained more weight. The reason why is that it has progressively proven its effectiveness. The complexity of the methods used is not artificial, but a product of the complexity of the underlying epidemic process. The limited results they produce correspond to the best we are able to obtain, given the advancement of inference methods, the limited data available, and the difficulties intrinsic to the underlying epidemic process.

To better frame the problem, I will give an introduction to the modelling of infectious diseases, and present some of their important features, namely non-linearity and stochasticity, that make statistical inference difficult. I will present three sources of data that are often used in epidemiology, case count data, seroprevalence data, and viral sequence data, from the most to the least traditional. Finally, to make the connection between models and data, I will give an introduction to epidemiological inference, with a focus on the Bayesian inference of mechanistic models. I will give a quick overview of the usual methods one may use to deal with non-linearity and stochasticity, and I will also spend some time on the inference methods for viral sequence data, as they are both more recent and fairly complex.

Modelling infectious diseases 1.2.1 A short history

The history of infectious diseases and public health is a field of research in its own right, and it is still evolving. I can only give a very limited account and highlight some points that are important to the rest of my discourse, and that I believe are well established. What I will say about the distant past should be taken with caution, because of important limitations. Most of the classic literature [START_REF] Rosen | A History of Public Health[END_REF][START_REF] Porter | Health, Civilization and the State: A History of Public Health from Ancient to Modern Times[END_REF] is concerned with the Western world nearly exclusively. Quantitative data about epidemics and causes of mortality before 1800 are very limited. Most of the ancient historical sources are from the point of view of the upper social class, and do not necessarily tell us very much about the point of view of the general population. Keeping these limitations in mind, there is still a lot to learn from looking at the long ecological interaction between human societies and pathogens.

Historically, infectious diseases have been the leading cause of death for humans, and especially for children [START_REF] Abdel R Omran | The Epidemiologic Transition Theory Revisited Thirty Years Later[END_REF][START_REF] Armstrong | Trends in Infectious Disease Mortality in the United States During the 20th Century[END_REF]. This likely started with agriculture and sedentism, and major epidemics may have already existed during the Neolithic [START_REF] Rascovan | Emergence and Spread of Basal Lineages of Yersinia Pestis during the Neolithic Decline[END_REF]. The Black Death (1345-1351) killed more than 25 million people in Europe, and millions more in Asia and Africa, or up to 30 to 50% of the population [START_REF] Porter | Health, Civilization and the State: A History of Public Health from Ancient to Modern Times[END_REF]. Europeans coming to America brought smallpox, measles, typhus, and more, with them, which may have killed up to 90% of the population in one or two centuries [START_REF] Koch | Earth System Impacts of the European Arrival and Great Dying in the Americas after 1492[END_REF]. The demographic growth, urbanization, globalization, and living conditions of the working class in the 19th century were also the context for large epidemics and a high burden of infectious disease, from tuberculosis, influenza, or cholera for instance. Infectious diseases were still the leading cause of death in the western world until the start of the 20th century [START_REF] Abdel R Omran | The Epidemiologic Transition Theory Revisited Thirty Years Later[END_REF][START_REF] Armstrong | Trends in Infectious Disease Mortality in the United States During the 20th Century[END_REF], and only lost their first place thanks to the improvement of sanitation and hygiene, as well as to vaccines and antibiotics [START_REF] Rosen | A History of Public Health[END_REF].

It is therefore not surprising that there has always been a strong interest in limiting the impact of infectious diseases. Infectious diseases are distinctive in that, in additition to treatment, changing our behaviour can also limit their spread. However, until the end of the 19th century, there was no clear widespread theory of the transmission of diseases through close contacts or through vectors. Depending on the place and time, individual health, divine punishment, or miasma (polluted air) were considered more serious theories. On the other hand, many rules and regulations, both from religious texts and from civil governments, have tended to restrict disease transmission. In ancient times, we can think of the regulations around human waste, the isolation of leprosy patients (Leviticus) [START_REF] Porter | Health, Civilization and the State: A History of Public Health from Ancient to Modern Times[END_REF], or the caution around rabid dogs [START_REF] Needham | Hygiene and Preventive Medicine in Ancient China[END_REF]. In the Middle-Ages, we can think of the many restrictions progressively put in place to protect against plague, from the quarantine imposed on ships before they could make port starting in Italy during the Black Death, to cities forbidding entry, the required isolation of plague patients, their contacts, or the lockdown of whole towns [START_REF] Porter | Health, Civilization and the State: A History of Public Health from Ancient to Modern Times[END_REF].

The scientific establishment of the mechanism of infection by pathogens and their transmission through different means waited until the 19th century, and the development of Germ theory. During the cholera epidemic of 1854 in London, the medical doctor John Snow studied the spatial pattern of infection, and understood that cholera was spreading via the water from one specific well [START_REF] Snow | On the Mode of Communication of Cholera[END_REF]. He then promptly prevented access to the well to stop the epidemic -even though it had probably already passed its peak. It took decades for his theory to be adopted, and for the role of the bacterium Vibrio cholerae to be recognized. As for plague, the bacteria Yersinia pestis was only discovered in 1894 [START_REF] Yersin | La Peste Bubonique à Hong-Kong[END_REF], and the role of fleas and rodents recognized by western science in 1898 [START_REF] Simond | La Propagation de La Peste[END_REF].

However the mathematical modelling of epidemics actually predated the biological understanding of transmission. As early as 1760, David Bernoulli got interested in the problem of smallpox inoculation [START_REF] Bernoulli | Essai d'une Nouvelle Analyse de La Mortalite Causee Par La Petite Verole, et Des Avantages de l'inoculation Pour La Prevenir[END_REF]. The fact that inoculation was sometimes dangerous had some doubting its well-foundedness. David Bernoulli argued that if it was generalized, then smallpox could be eradicated, which would save many lives. and evaluated what was the number of lives that would be saved using smallpox and demography data.

These early works, of David Bernoulli, John Snow, and others, ask very interesting questions, which are quite similar to the type of questions we ask nowadays in epidemiology. However, they neglect the most important property of infectious diseases: that they are infectious. Instead, the epidemic is mostly treated as if it was a linear phenomenon. The spatial analysis of John Snow would not be too different if Vibrio cholerae was replaced by a toxin. In the same way, the analysis of David Bernoulli would be similar if we replaced smallpox with smoking -but maybe it could be argued that smoking is an infectious process.

The dynamical aspect of epidemics would wait for the end of the century to be studied. Epidemic curves had been collected since the 18th century, and there was interest in finding laws to decribe these curves. As early as 1889, Dr En'ko proposed a discrete stochastic model that he fitted to measles epidemic data [START_REF] En'ko | On the Course of Epidemics of Some Infectious Diseases[END_REF], but his work remained unnoticed until a century later. One of the questions that sparked debate was the question of what was the factor that caused epidemics to end. It had long been noticed that epidemics ran out while there still remained apparently susceptible people. The bell shape of the epidemic curve was also thought to indicate that the pool of susceptibles was not exhausted ; otherwise, the curve would have to drop sharply, would it not ? This was the view held for instance by Brownlee [START_REF] Brownlee | Certain Considerations on the Causation and Course of Epidemics[END_REF]. The work of Sir Ronald Ross and Hilda Hudson in 1916 and 1917 [START_REF] Ross | An Application of the Theory of Probabilities to the Study of a Priori Pathometry.-Part I[END_REF][START_REF] Ross | An Application of the Theory of Probabilities to the Study of a Priori Pathometry.-Part II[END_REF] would bring a more formal take on the problem by introducing differential equations to describe the mechanism of transmission of the disease, instead of trying to fit rather arbitrary functions to epidemic curves.

But the real breakthrough is to be found in the work of William O. Kermack and Anderson G. McKendrick in 1927 [START_REF] Ogilvy Kermack | A Contribution to the Mathematical Theory of Epidemics[END_REF]. They showed with a simple mechanistic model of infection and recovery that there existed a threshold controlling the spread of the epidemic. They showed how this was enough to explain the wane of the epidemic while there were still susceptibles, and how the curve would be nearly symmetrical in the right conditions. Nowadays, the simple model they introduced is known as the SIR model, and is still the basis for most infectious disease models. Interestingly the SIR model is the simplest case they present in their paper, but most of the article is dedicated to more complex models where hosts are differentiated by their age of infection. The paper is still impressive today in its insights, but it stands out even more when compared with other papers of the time, in the clarity of the model and presentation.

After that point, infectious disease modelling continued to develop in a great variety of directions until today, and I will not attempt to give a panorama of all this history. I should still cite the work of Anderson and May however, and in particular [19].

An important part of these more modern developments still have the SIR model as their basis, and I will now present it in more detail, to provide a fundamental description of the process of infection.

The SIR model

Consider a population of N hosts, indistinguishable, except for their status with respect to infection. A host can be susceptible, if they have never been infected by the pathogen, infectious, if they are currently infected by the pathogen and able to transmit the disease, or removed from the epidemic, if they have become immune after recovery, or if they have died from the disease.

The SIR model corresponds to the simplest epidemic dynamics for such a population. We consider that an infectious host remains infectious for an exponential duration, of mean 1 γ . Every host comes into contact with the other hosts randomly, at a rate c. When an infectious host encounters a susceptible one, they may infect them, with probability p. We write β = pc.

If we write S for the number of susceptibles, I for the number of infectious, and R for the number of removed, then we have that the contact rate in the population is cN , and the rate of potentially infectious contacts is cI S N . Therefore the rate of infection is pcI S N . This process is a continuous-time Markov chain (or Markov pure jump process), with two events, infection and recovery, and the state space {S, I, R ∈ N, S + I + R = N }. On infection, a susceptible becomes infectious, so that the state of the system goes Figure 1.1: SIR compartmental model from (S, I, R) to (S -1, I + 1, R). On recovery, an infectious becomes removed, and the state of the system goes from (S, I, R) to (S, I -1, R + 1), and the rate of recovery is γI.

A representation of this dynamic is given by the flow diagram in Fig. 1.1.

In the appropriate limit of infinite population, this stochastic process converges to the deterministic differential equation classically designated as the SIR model (1.1).

dS dt = -β S N I dI dt = β S N I -γI dR dt = γI (1.1) 
Eq. (1.1) has no explicit closed-form solution, even though exact analytical solutions have been found [START_REF] Harko | Exact Analytical Solutions of the Susceptible-Infected-Recovered (SIR) Epidemic Model and of the SIR Model with Equal Death and Birth Rates[END_REF]. Eq. (1.1) has a single equilibrium I = 0, and its stability depends on the sign of β S N -γ. If S N ≤ γ β , then the equilibrium is stable and there can be no epidemic. In particular, if β γ < 1, then this is verified for all values of S, and there can never be an epidemic. The quantity β γ Figure 1.2: Vector field for the SIR model. The dotted line is the threshold when herd immunity is reached, and R ef f < 1. The red line is the stable equilibrium of the system. represents the expected number of secondary infections caused by a single infection in a fully susceptible population, and is called the basic reproduction number, R 0 . We also write R ef f = β γ S N , the effective reproduction number, defined for when the full population is not susceptible. If R ef f ≥ 1 then the epidemic is waxing, if R ef f < 1 then the epidemic is waning. This is summed up and illustrated by the phase diagram in Fig. 1.2.

Infection is a non-linear process ; in the SIR model, it is modeled as pairs of individuals coming into contact, so that individuals are not mutually independent. This non-linearity is also present (or exacerbated) in more complex models, and has important consequences for inference.

Non-linearity

Until now, I have used the word non-linear to talk about two different notions, and so I will clarify here.

First, I have noted in 1.2.1 that infectious disease epidemiology differs from classical epidemiology in that a linear model can not be used to explain epidemics. For instance, the number of cases at time t does not respond linearly to a variation of the contact rate in the SIR model. Indeed the first explanatory variable of new infections is in fact previous infections, so that there is a positive feedback loop of infection, and so infection is a dynamic process.

Second, I have noted in the previous section 1.2.2 that the SIR model was non-linear, because the rate of infection depended on the product of S and I, or, said another way, on interactions between individuals. This second notion implies the previous one, but it is stronger, and this is the one we will now focus on.

An autonomous linear differential equation in finite dimensions, is an equation of the form Ẋ = AX, where A is a matrix. Its only equilibrium is 0, and its stability depends on the leading eigenvalue of A. This can also be generalized to infinite dimensions and nonautonomous systems. Non-linear dynamical systems, then, are all other systems, where A is not a linear operator. They can have any number of equilibrium points and cycles, can display multistability or complex bifurcation diagrams, and the systems with a dimension larger than 3 can exhibit chaotic behaviour and strange attractors.

A chaotic attractor is characterized by a positive maximal Lyapunov exponent: the distance after a time t, between two trajectories starting close together, does not vanish to 0 as t goes to ∞, when the initial distance between them goes to 0. Written instead with a formula, this becomes

λ 0 = lim t→∞ lim δx0→0 1 t ln |δx t | |δx 0 |
where δx 0 is the initial difference, and δx t the difference at time t.

A consequence is that an initial small error quickly becomes a large error. This has important implications for inference, as it places a physical limit on our prediction ability.

The non-linear nature of fluid dynamics, and consequent chaotic behaviour of meteorological systems explains why predictions of the weather cannot be trusted one week into the future. And the issue is also present for infectious disease epidemiology. The SIR model with constant population is of dimension 2, and therefore does not exhibit chaos. However, more complex epidemiological models do exhibit chaos. For instance, adding seasonal variation to the SIR model, by making the infectivity β follow a sinusoidal function, is enough to lead to chaotic behaviour. An example of the chaotic attractor of the SIR model with seasonality, and immunity loss, as well as a bifurcation diagram, are shown in Fig. 1.3. Nevertheless, this does not mean that no prediction is ever possible. Indeed the example of meteorology shows that some predictions are very useful, but that the time scale and the spatial scale considered are of crucial importance. Local weather predictions a few days away, as in "it will rain in Paris tomorrow", or more global weather predictions a few months away, as in "it will rain in autumn in Bretagne" can both be trusted. To function, these predictions rely on a tight lattice of captors providing high quality data.

We can think that similar rules should hold for epidemiology. However, an important difference is that for infectious disease dynamics, randomness plays an important role, and interacts with non-linearity.

Stochasticity

As already noted in section 1.2.2, the differential equation for the SIR model can be seen as the limit of a stochastic process when the population goes to infinity. To make this idea more precise, we can start again from the continuous Markov chain X t = (S t , I t , R t ). To study how the process behaves as the population size N = S t + I t + R t becomes large, we introduce a rescaling factor K, so that the population size is KN . We write X * K t for the corresponding process whose size goes to infinity, and we study the process X K t = 1 K X * K t , which lives in the space S K ,

S K = {( S K , I K , R K ), S, I, R ∈ N, S + I + R = N }
This system has got two events, infection and recovery. Infection changes the state of the system from (S, I, R) to (S -1/K, I + 1/K, R), and recovery changes the state of the system from (S, I, R) to (S, I -1/K, R + 1/K).

The rate of the events for X K t is the same as for X * K t , so the rate of infection r K I is equal to:

r K I = β S * K t KN I * K t = βK S K t N I K t
Similarly for recovery, we find a rate r K R = γKI K t . We can see that as K goes to infinity, events are more and more frequent, but also less and less impactful, so that at the limit the system is deterministic.

One strategy to prove this is to write X K t as the solution of a stochastic differential equation (SDE) driven by a Poisson Random Measure (PRM), to then write the corresponding martingale problem, prove the tightness of the sequence of laws of the process, and to identify the unique limit, which in the deterministic limit case is easier, as we can show that the quadratic variation of the martingale vanishes. A good introduction to this topic can be found in [START_REF] Bansaye | Stochastic Models for Structured Populations[END_REF].

This deterministic limit would tend to indicate that stochasticity becomes negligible in big epidemics, and that we can maybe ignore it in most cases. But that is not necessarily true.

First, an epidemic can be sufficiently big only if the area of study is large enough. This means the spatial component will matter, but human society is not well mixed, and spatial heterogeneity is important, so that there is no guarantee a priori that the stochasticity present at the local scale disappears at the global scale.

Second, any big epidemic starts small, and this initial stochasticity can leave a trace in the ulterior trajectory. For instance, if the first few infections come later than expected, then the trajectory, once deterministic, can never catch up to the expected trajectory.

Last, as noted in the previous section 1.2.3, the non-linearity of the process might make it very sensitive to noise. If the system is in or near the chaotic domain, any small perturbation of the trajectory will quickly be amplified, so that noise could only be neglected at unrealistically large epidemic sizes.

Therefore, it is important to discuss how stochasticity affects the previous results. Recall that in the deterministic case, there is a sharp threshold on the behaviour of the model. If S N > 1 R0 and an infectious individual is introduced, then an epidemic happens, however small. If instead S N < 1 R0 and I > 0, then I immediately decreases. In the stochastic case, an epidemic might go extinct because of noise even when S N > 1 R0 , or conversely, an epidemic might happen because of noise, even when S N < 1 R0 . A way to study this, to a first approximation, is to consider that in the initial phase the number of infectious individuals is small compared to the number of susceptibles, so that infectious individuals never contact the same individuals. They are then independent of each other, and the system follows a branching process, up until the first time when an infectious individual makes contact with a newly removed or another infectious individual. General theory about the branching process approximation can be found in [START_REF] Ball | Strong Approximations for Epidemic Models[END_REF] for instance. In our special case where the epidemic process is Markov, the approximation is a linear birth-death process.

Among interesting properties, in this case we can compute the probability that the epidemic does not take off and goes extinct even when R 0 > 1, p = 1 R0 I0 .

More complex models

The properties that we have seen for the simple SIR model generalize to more complex models, of which the SIR model is often the cornerstone. A more complex model might include a more complex transmission cycle of the pathogen (latency, vectors), a different transmission rate, spatiality, heterogeneity among hosts (age, immune status, behaviour), or heterogeneity among pathogens.

The most simple way to include these ingredients is to increase the number of compartments of the model. For instance, to take into account a latency period before individuals become infectious, one can introduce a E class, that individuals pass through in between the S and I class. That model is commonly called the SEIR model.

To model a mosquito-borne virus, one would split the S, I and R classes into S h , I h , R h and S m , I m , R m classes, for example, with the humans on the one side, and the mosquitoes on the other. Mosquitoes I m would only infect humans S h , and conversely, humans I h would only infect mosquitoes S m . These models are designated as Ross-Macdonald models, to recognize the importance of the work of Ronald Ross, whom I have already mentioned, and George Macdonald, in their development [START_REF] Smith | Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens[END_REF].

Examples of such models are shown in Fig. 1.14, in section 1.5 about dengue. As we add more compartments and equations, the dynamics of the models become more complex, but they are still described by a system of differential equations, so that the mathematical tools to analyze them remain the same.

Another possibility to complexify the model is to consider some continuous structure. For example, I have already mentioned the seminal paper of Kermack and McKendrick [START_REF] Ogilvy Kermack | A Contribution to the Mathematical Theory of Epidemics[END_REF], where they consider that the infectious period follows a specified distribution, and that infectiousness varies during the infection. In that case, the process then becomes the solution of an integral equation. One can also make the choice to model spatial structure in a continuous way, with local and global transmission, and movements and migrations in space. In that case, the system is then described by a Partial Differential Equation, and the mathematical tools required to understand the model are more complex.

In general, any additional complexity comes at a cost. The more complex the model, the less properties we are able to derive analytically, and the less we understand it. The crux of the modelling task is therefore to find the right level of model complexity. By modelling a phenomenon, we hope to understand it better by simplifying it to its essential features. If we make the model too complex and take into account too many details, we might not be able to see the forest for the trees. Instead, if the model is too simple, it will not tell us anything important about the phenomenon, and will have no predictive power.

When our end goal is statistical inference and prediction, however, non-essential complexity might still be useful. A model that is predictive, even if we understand little about it, might still help us to take important decisions, because we are at least able to simulate it, unlike reality.

For the purpose of this manuscript, I will use only very simple models. The most complex model I will use is a SEIRS model, with host demography and seasonal variation in infectiousness. More complex models can only be justified if a biological question demands it, or if the data are informative enough. However, as we will see now, rich data are difficult to come by and to analyze.

Sources of data

Like we have seen in the previous section 1.2.1, we build a mathematical model to integrate our understanding of a natural phe-nomenon, so that the behaviour of the mathematical model might inform us about the behaviour of the natural phenomenon. In the case of infectious diseases, our understanding might come from biological experiments, like for the transmission of plague by fleas [START_REF] Simond | La Propagation de La Peste[END_REF], from clinical studies [START_REF] Vaughn | Dengue Viremia Titer, Antibody Response Pattern, and Virus Serotype Correlate with Disease Severity[END_REF], or from field studies [START_REF] Louis Molineaux | World Health Organization. The Garki Project : Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa[END_REF].

This data can help us decide the structure of our models, or help us determine some parameters of the model, but for any specific epidemic, there will remain a lot that we don't know about. For instance, with the SIR model, what is the number of contacts that people have ? What is the immunity of the population ? It will vary from setting to setting, and we typically have no direct way to know the answer. To estimate the values of these parameters, and become able to make some predictions, we need to exploit the data coming specifically from the epidemic of interest.

I will review three sources of data that can be available in large epidemic situations in different forms, and that can offer valuable insight into the epidemic process. We will see that each one of them comes with its own set of limitations and specific difficulties.

Case counts

The first source of data is that of case counts. These are the cases of the disease counted and compiled by the health system. When a patient goes to the doctor or to the hospital for treatment, their doctor makes a diagnosis, and for certain diseases, they will make a report about the case. These reports are gathered and counted by the administration, and then made available. In France, 34 diseases are required to be reported by all doctors, for example Measles and AIDS [START_REF]Liste des maladies à déclaration obligatoire[END_REF]. In addition, some more specific surveillance systems are also in place, for example the Sentinelles network which reports on influenza. When a new significant epidemic comes up, like Covid-19, dedicated systems are also put in place so that the cases will also be reported.

Case counts are the traditional epidemiological source of data, as they naturally emerge from the functioning of the health sys-tem with some coordination. The binned case counts in time are typically referred to as epidemic curves. The first epidemic curves date back to the 18th century, for instance for the Boston smallpox epidemic of 1721 [START_REF] Brownlee | Certain Considerations on the Causation and Course of Epidemics[END_REF]. They became more common during the 19th century, and at that time they were already studied by epidemiologists, as explained in section 1.2.1. This was the case for measles epidemics in Glasgow, and also famously for the Bombay plague epidemic studied by Kermack and McKendrick. For a contemporary example, the Covid-19 pandemic comes accompanied by many different kinds of counts: suspected cases, confirmed cases, hospital admissions, ICU admissions, and deaths.

This data source comes with important limitations. First, it cannot cover all cases of the disease. Among the infected hosts, not everyone will see a doctor, and not all doctors will report the cases: this is the problem of under-reporting [START_REF] Gibbons | Measuring Underreporting and Under-Ascertainment in Infectious Disease Datasets: A Comparison of Methods[END_REF]. Second, it relies on a correct diagnosis of the disease. For the reporting to be consistent, all the doctors should agree on a common case definition. When no clear diagnosis is easily available, the case definition may need to aim larger than the disease of interest. This is the case for influenza for instance, for which the case definition is the Influenza Like Illness (ILI), because its symptoms are too similar to other respiratory diseases: this is the problem of over-reporting.

As we have done with the transmission process itself, it is useful to express our hypotheses about the observation process in the form of mathematical models. The first question this leads to ask is how the observations relate to the transmission. Is a case observed when an infection happens, or when a recovery happens, for instance ? This decision will depend on the epidemic, but for the sake of illustration here, we will assume that observation happens on recovery.

The most simple hypothesis we can make about the observations, is that they are independent and identically distributed, conditionally on the transmission process. Every time a host recovers, there will be a given probability ρ, the reporting probability, that the case is observed, recorded, and reaches the epidemiologist. Conditional on the number of recoveries happening during a time interval r k , the number of cases observed then follows a binomial probability, C k ∼ B(r k , ρ).

However, if we simulate the process deterministically, we do not know the precise number of infections r k , but only the integral of the recovery flow over the time interval. For instance, for the SIR model, this would be R k = t k+1 t k γI(s) ds, which we can compute by numerical integration in practice. The actual number of recoveries r(t) is then a heterogeneous Poisson process with rate γI(s) and r k ∼ Poisson(R k ). The property of Poisson thinning then tells us that the number of observed cases C k is also a heterogeneous Poisson process, C k ∼ Poisson(ρR k ).

In practice, however, it will often be the case that the variance of the case counts is greater than expected for a Poisson distribution, and that the Poisson distribution will be too constraining for parameter estimation by MCMC.

A first explanation is that our model for the transmission process itself will most often underestimate the true variance of the process, for the sake of simplicity. For instance we may neglect spatial heterogeneities, which cause cases clustering together in space, and in time. A second explanation is that the cases may not in fact be independent, even conditionally on the transmission process. For example, we expect that some practitioners or hospitals will report more diligently than others, or that some contact tracing might take place, leading to linked cases being reported together.

A practical empirical solution to this problem is to use an equivalent of the Poisson distribution, with over-dispersion, the Negative Binomial distribution. At the cost of one additional parameter (over-dispersion), the variance of the cases is now free to be larger than for the Poisson distribution.

This also makes sense mechanistically, as the Negative Binomial distribution is the marginal distribution of the Negative Binomial process, which we can see as a Poisson process with clumping. Several constructions of the process all participate to this inter-pretation [START_REF] Tomasz | Distributional Properties of the Negative Binomial Lévy Process[END_REF][START_REF] Zhou | Negative Binomial Process Count and Mixture Modeling[END_REF]. In particular in our case, if P is a standard Poisson process, and Γ a Gamma process with rate (1 -p)/p, then t → P (Γ( t 0 (ργI(s) ds))) is a Negative Binomial process, with probability parameter p, and the marginal distribution of case counts is C k ∼ N B(ρR k , p). Mechanistically, the Gamma process noise could come from the observation process, or even from the transmission process itself, and serves to model heterogeneities of the transmission phenomenon parcimoniously. This more flexible model of negative binomial distributed case counts is the one that we will predominantly use in the rest of the thesis.

So far, we have modelled under-reporting, but not over-reporting. To model over-reporting, we can for instance consider another independent process that produces cases unrelated to the epidemic of interest, but that get wrongly diagnosed. This process could simply correspond to an independent Poisson process, or we might explicitly model another transmission process, to take into account non-linearity and correlations with the process of interest from seasonality, for instance. This could be useful in the case of Influenza Like Illness (ILI), for example, where influenza easily gets confused with other bacteria and viruses that present similar symptoms and seasonality.

A last modelling question we might ask about the observation process, is whether it is actually stationary. The Negative Binomial distribution can absorb some variation in the reporting probability, but what if it varies greatly during the epidemic ? There is indeed evidence that this often happens, as awareness of the epidemic by the public and by the health system varies during the course of the epidemic, and so does reporting [START_REF] Pullano | Underdetection of COVID-19 Cases in France in the Exit Phase Following Lockdown[END_REF]. In that situation, the case count data alone can't tell us anything about the underlying transmission process, so that in general we need to make the hypothesis that ρ is constant, or that it is well constrained in other ways.

We will not develop these questions further, but we can conclude that even though case count data are the most common source of epidemic data, they are in no way a simple source of data. As they are time series data, they can give good insight on the course of the epidemic over time. However, they are also subject to under-reporting and over-reporting, and possible nonstationarity, that cannot be neglected and can reduce the amount of information we can gain from them about the underlying transmission process.

Seroprevalence

The seroprevalence of a population is the proportion of the population that tests seropositive for a given antibody. The principle of the method is that people become seropositive after they develop an immune response to a pathogen because of infection (or vaccination). At the population scale, it can therefore give us information about previous epidemics, and also about the potential for future epidemics. Sero-epidemiology is the branch of infectious disease epidemiology that uses the seropositivity data of populations to understand infectious disease dynamics.

The seropositivity data can come in different forms. In some situations, people might get tested independently, as is the case for many sexually transmitted diseases for instance. The raw data would then be a stream of times and test outcomes. In other situations, a large transversal study might be conducted at one specific time, to assess the immune state of the population. The data reaching the epidemiologist would then often only give the total number of people tested, and out of that, the number testing positive. In some cases, this data might be stratified by sex and age. Finally, a last possibility is that of a longitudinal study, where a cohort is determined, and then tested at several timepoints. This can yield additional information about when people become seropositive, called seroconversion.

All these forms of data have been exploited in sero-epidemiology, to great effect. Age-stratified seroprevalence data have been put to good use to evaluate vaccination campaigns, and even to recon- struct the history of decades old epidemics. On their usefulness in regards to vaccination, see for instance [START_REF] Trentini | Measles Immunity Gaps and the Progress towards Elimination: A Multi-Country Modelling Analysis[END_REF] on measles ; and for the inference of past epidemics, see for example [START_REF] Ferguson | Transmission Dynamics and Epidemiology of Dengue: Insights from Agestratified Seroprevalence Surveys[END_REF] on dengue, and [START_REF] Salje | Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission[END_REF] on Chikungunya. There are now even specific tools and software accessible for inference from this data [START_REF] Hay | An Open Source Tool to Infer Epidemiological and Immunological Dynamics from Serological Data: Serosolver[END_REF]. Longitudinal data have been used to reconstruct epidemic dynamics over the short term, see for example [START_REF] Adam | Using Paired Serology and Surveillance Data to Quantify Dengue Transmission and Control during a Large Outbreak in Fiji[END_REF]. Note however that it is difficult to get sufficient power from this kind of data. As time goes on, the cohort progressively seroconverts, and holds less information about the continuing epidemic, so that the cohort might need to be quite large. Finally, in its simplest form of non-stratified data at a single timepoint, sero-prevalence data cannot tell us very much by itself, but it can become very useful when combined with other data, see [START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF][START_REF] Adam | Using Paired Serology and Surveillance Data to Quantify Dengue Transmission and Control during a Large Outbreak in Fiji[END_REF] and Chapter 4.

Whatever the kind of serological data, the complexity of the testing and immune process mean that caution is needed for its interpretation. Depending on the nature of the samples, the antibody that is being detected, and the specific testing method, both the sensitivity and specificity of the test will vary. A low sensitivity means that antibodies could be present, but not be detected by the test, so that the test would be a false-negative. A low specificity means that other antibodies than the target one might get detected by the test, so that the test would be a falsepositive. The next issue is that seropositivity is not equivalent to removed status. Two types of antibodies are typically detected, immunoglobulins IgM and IgG, the IgM appearing first in the immune reponse, and the IgG later. Depending on the pathogen, and the previous immune history of the host, the timeline for the waxing and waning of IgM and IgG will vary ; for instance, in some cases, they might appear while the infection is still ongoing [START_REF] Bryan Pier | Immunology, Infection, and Immunity[END_REF]. Additionally, antibodies might be cross-reactive to several pathogens, so their presence could indicate infection by another pathogen than the one of interest [START_REF] Mansfield | Flavivirus-Induced Antibody Cross-Reactivity[END_REF][START_REF] Hozé | Reconstructing Mayaro Virus Circulation in French Guiana Shows Frequent Spillovers[END_REF]. Lastly, depending on the pathogen, the presence of antigens does not guarantee immunity.

In some cases, they can even favour severe forms of the disease [START_REF] Scott | Neutralization and Antibody-Dependent Enhancement of Dengue Viruses[END_REF]. These difficulties justify that sero-epidemiology stands a field in its own right, that has developed specific tools and models to deal with this complex data. However, we will have some occasions to see in Chapters 2 and 4 how using this data in the simplest possible way can still bring large improvements to inference.

Viral sequence data and phylodynamics

The last source of data that I want to mention is that of viral sequence data, because it will be an important focus of the projects presented in Chapters 3 and 4. Since the sequencing revolution of the 90s, sequence data has become increasingly cheap and abundant. This rise has been so important that it is now routine to amplify and sequence genes of many viruses for diagnosis. This is most true for SARS-CoV-2, with millions of RT-PCR tests performed every day in the world. The testing is so widespread that we may even wonder if it might constitute a selective pressure for the virus to escape PCR amplification.

An important difference between this source of data and the previous ones, is that if you showed a group of viral sequences to an epidemiologist, they would be unable to tell you anything about the epidemic dynamics directly. A complex analysis is necessary before anything useful can be determined. The viral sequence data are therefore much farther removed from the transmission dynamics, and one would tend to doubt that they actually contain any information about it. Nevertheless, they can in fact yield precious information about the epidemic, which may be unrecoverable through other channels. This is because the sequences tell us about the genealogy of the samples, and the shape of the genealogy tells us about the dynamics of the population. Indeed, old mutations are common to more sequences of the sample, who shared a common ancestor at the time. A recent mutation, on the other hand, is only present on a few lineages, as the other lineages have diverged before the mutation ocurred. Said another way, sequences that are similar share a recent common ancestor, and those that are different share a distant common ancestor. This makes it possible to reconstruct the phylogeny from the sequences, and is the basis of phylogenetic inference.

The next step is to remark that the shape of the genealogy itself then depends on the dynamics of the population. To understand this, let us start from a simple model for our population, our sequences, and their genealogy, provided by the Wright-Fisher process. Consider a constant population of N individuals, that simultaneously all reproduce clonally at discrete generations. Every parent has the same number of offspring distribution, conditioned such that the total number of offspring is equal to N . Our sequences will correspond to a number k of individuals sampled in the present. To get their genealogy, we follow, for the samples that we have, the links from the children to their parents back through the generations, erasing all the rest of the unseen lineages, as is illustrated in Figure 1.6. A node of the genealogy is reached when two (or more) sampled children have the same parent. Since all parents have the same offspring distribution, the probability that two individuals have the same parent, is the probability that they are both children of parent 1, or parent 2, . . ., or parent N , that is N 1

N 1 N = 1
N . We can see that the probability of coalescence between two lineages decreases with N , or said another way, that the time to coalescence increases with N . For the same population size, if the generations are short, coalescence will happen faster, and if they are long, slower.

The impact of demography on the shape of phylogenies carries from the simple Wright-Fisher model over to more complex models. A phylogeny from a population starting small and growing exponentially, for instance, will present a star shape : long extant branches, with the coalescence events concentrated close to the root of the phylogeny, as shown in Fig. 1.7. A phylogeny from a population having undergone several bottlenecks will have its coalescence events concentrated at the exits of bottlenecks, at the times when the population size rebounds. It is not only the timing of coalescence events that is affected by population dynamics, population structure can also affect the topology of the phylogeny. In a population spread across space, with little migration, samples that are far away in space will also have their common ancestor far away in time, so that the spatial relationships will structure the phylogeny.

This link between population dynamics and sequences has been the basis of a lot of research in population genetics, to attempt to reconstruct the demographic history of human and animal populations [START_REF] Excoffier | Robust Demographic Inference from Genomic and SNP Data[END_REF]. In that case, the sequences correspond to large genomes of diploid or polyploid animals, with recombination, large noncoding regions, strands of short repeats, etc. The methods need to be adapted to the data and to the sequence evolution of the organism, so that in this case they will typically be based on allele frequency spectrums, or SNP chips. In parallel to this application, other methods have also been developed for dealing with viral genome data, which is our focus here. In that case, the ecology and the evolution happen on the same timescale, the sequences are sampled at significantly different times, and the genomes are small, nearly entirely coding, and under strong selection pressure. To adapt to this particular context, we need appropriate models.

There needs to be two parts to the model ; first, the one linking the epidemic process to the phylogeny, and second, the one linking the phylogeny to the sequences. We have seen that one way to link a population dynamic to a phylogeny is through a coalescent process. This approach is also used in phylodynamics, see for instance Erik Volz's papers [START_REF] Volz | Phylodynamics of Infectious Disease Epidemics[END_REF][START_REF] Volz | Complex Population Dynamics and the Coalescent Under Neutrality[END_REF]. This requires to make the hypothesis that the population is infinite and its dynamics continuous, but it makes it possible to use very general compartmental models for the transmission. Another possibility is to consider birth-death processes, where we directly describe the transmission tree, with pruning of unsampled lineages. See for instance Tanja Stadler's papers [START_REF] Stadler | Birth-Death Skyline Plot Reveals Temporal Changes of Epidemic Spread in HIV and Hepatitis C Virus (HCV)[END_REF][START_REF] Heath | The Fossilized Birth-Death Process for Coherent Calibration of Divergence-Time Estimates[END_REF][START_REF] Stadler | Insights into the Early Epidemic Spread of Ebola in Sierra Leone Provided by Viral Sequence Data[END_REF]. One is then more limited in the kind of model they can use, but the problem is better posed. What's more, there is progress towards making the approach more flexible and faster [START_REF] Barido-Sottani | A Multitype Birth-Death Model for Bayesian Inference of Lineage-Specific Birth and Death Rates[END_REF][START_REF] Manceau | The Probability Distribution of the Ancestral Population Size Conditioned on the Reconstructed Phylogenetic Tree with Occurrence Data[END_REF]. The other link to make is between the phylogeny and the sequences. The usual approach in phylodynamics is to consider that the sequence sites evolve independently from each other, following the same substitution model. The substitution model is a Markov process on the state space of site values (nucleotides, codons, or amino-acids), and is typically required to be reversible, to help with inference. The range of substitution models that have been studied is quite large, and comprises the JC69 model [START_REF] Jukes | Evolution of Protein Molecules[END_REF], where all nucleotides mutate to any other nucleotide with the same equal rate, and the GTR model [START_REF] Tavaré | Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences[END_REF], which is the most general nucleotide substitution model which is still time-reversible. There are also more exotic nucleotide models [START_REF] Sumner | Lie Markov Models[END_REF], and amino-acid models [START_REF] Henikoff | Amino Acid Substitution Matrices from Protein Blocks[END_REF]. These are all simplified models, which, in particular, neglect selection, even though it is ubiquitous in viral genomes. A common empirical way to account for selection to some extent, is to allow rate variation across sites [START_REF] Yang | Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods[END_REF]. In practice, the model that is most commonly used in phylodynamic studies is the GT R + Γ4 + Inv model, with sometimes different partitions (parameter values) for different genes.

These models are fitted to the data by using Maximum Likelihood estimation or Bayesian inference methods, as explained in section 1.4.5. This approach has been successfully applied to HIV [START_REF] Volz | HIV-1 Transmission during Early Infection in Men Who Have Sex with Men: A Phylodynamic Analysis[END_REF] and influenza [START_REF] Bedford | Global Circulation Patterns of Seasonal Influenza Viruses Vary with Antigenic Drift[END_REF], diseases for which abundant sequence data are available. It has also proven useful in the context of emerging epidemics, like Ebola [START_REF] Samuel Alizon | Quantifying the Epidemic Spread of Ebola Virus (EBOV) in Sierra Leone Using Phylodynamics[END_REF][START_REF] Stadler | Insights into the Early Epidemic Spread of Ebola in Sierra Leone Provided by Viral Sequence Data[END_REF], and SARS-CoV-2 [START_REF] Ragonnet-Cronin | COVID-19 Epidemic Severity Is Associated with Timing of Non-Pharmaceutical Interventions[END_REF][START_REF] Vaughan | Estimates of Outbreak-Specific SARS-CoV-2 Epidemiological Parameters from Genomic Data[END_REF]. Sequence data can also provide key insights into the spatial patterns of dispersion of epidemics, using phylogeography [START_REF] Tian | Transmission Dynamics of Re-Emerging Rabies in Domestic Dogs of Rural China[END_REF].

There are still other sources of data that we might have access to, for instance transmission chains, or transmission clusters, but they are expensive to obtain in large scale, and not made available publicly, so they are not the most representative. We have seen models that describe how data might come about from the epidemic process, but our real task in practice is to solve the inverse problem, of inferring the process from the data. This is the subject of statistical inference that I now turn to.

Statistical inference in epidemiology

What will become of the epidemic in the future, if we do nothing ? What can we do to suppress or control the epidemic ? These are some very important and practical questions of public health policy that we hope to answer by collecting data during the epidemic. To go from the data to inferring the future state of the epidemic, with or without control, we need to perform statistical inference, which is a difficult task in general. The role of statistical inference is to make the link between some real life data D and a stochastic model, with the aim of learning more about the model from studying the data.

The classical case is when our data consists of multiple samples from the same repeated experiment, D = (x i ) i≤n and we can consider that they correspond to independent draws from the same underlying distribution π(θ). The full model is then just the product distribution of the distribution for one sample, over all repetitions of the experiment, D ∼ i≤n π(θ). More complex situtations might also come up, where the experiment is repeated independently, but with some parameter value that changes across repetitions, x i ∼ π(θ i ). If the relationship between the parameter value and the outcome is thought to be linear, one can use the machinery from linear model inference, and for the other cases, many variants have been developed [START_REF] Ashworth | Generalized Linear Models[END_REF][START_REF] Mcculloch | Generalized Linear Mixed Models[END_REF].

However, for infectious disease inference, the most common task is to determine the characteristics of one particular epidemic, from some observations gathered during the course of the epidemic, like the data described in the previous section 1.3. These observations are not independent, as they arise from a single dynamic process. How can we then infer the model parameters and make predictions ?

Rough indicators

One does not necessarily need to formalize the link between the model and the data very explicitly to be able to say interesting things. Our basic understanding of the transmission process and of the data can already give us precious clues as to the progression of an epidemic. We have seen in 1.2 that in the initial phase of the epidemic, the number of infectious individuals grows exponentially. In turn, the infection rate and the recovery rate, will also grow exponentially, as long as we can consider that the proportion of susceptibles is approximately constant. According to our model for the case data in 1.3.1, this means that the number of cases counted will also itself grow exponentially.

Therefore, a simple way to monitor the epidemic, at least in the initial stages, is to plot the binary logarithm of the new recorded cases as a function of time. The relationship should be linear, and the slope will give the doubling time of the epidemic. This gives an easy way to make predictions for the near future. In addition, if you have some information about the serial interval, or the distribution of the infectious period, you can also estimate the value of R 0 . In the initial phase of the Covid-19 pandemic, when the data were scarce, and very little was known about the transmission, such graphics were presented by Our World in Data [START_REF] Ortiz-Ospina | Coronavirus Pandemic (COVID-19)[END_REF] for instance, and they were enough to show that the epidemic was progressing much faster in some countries than others, as can be seen on Fig. 1.8a. We can see that Japan controlled the epidemic from the start, and that South Korea reacted very quickly, whereas Italy and France both waited longer to act. Looking at the curves after the initial stage is also informative (Fig. 1.8b). We can clearly see the impact of the first containment in France and Germany, as well as the more heterogeneous policies at play in the United States. We also see that the situation in November, where case counts are higher in France than in Germany is partly due to the relaxation of the first lockdown at an earlier point in the dynamics, and to a slower growth of the epidemic in Germany in September.

But of course, this basic approach has many limitations. For the case of Covid, for instance, the curve from Fig. 1.8b is slightly misleading, as the case reporting probability increased a lot during the course of the epidemic [START_REF] Pullano | Underdetection of COVID-19 Cases in France in the Exit Phase Following Lockdown[END_REF]. Fundamentally, we have not well posed the problem that we are trying to solve, so we can have no guarantees about the answer. More practically, there is necessarily a close horizon on our predictions, as the susceptible proportion does in fact change. In practice that is not the biggest limitation, as we will see that even better-posed methods still hit a close prediction horizon. More importantly, we don't have a good measure of the uncertainty of our doubling time or R 0 estimates, and of our predictions, which diminishes their usefulness. To go further, we need to formalize the problem.

Frequentist and Bayesian statistics

There are two main paradigms in inferential statistics, that of frequentist statistics, and that of Bayesian statistics. There are both ideological and practical differences between these two paradigms, as well as a divide between statisticians from both schools.

The deep philosophical difference relates to the definition of a probability. The frequentist point of view is that a probability represents the equilibrium frequency of some outcome to a repeatable experiment. Therefore, no probability distribution is given to something that cannot be repeated. For an important example, consider the parameter value of some model, that we wish to estimate. The frequentist point of view is that the parameter holds some fixed, but unknown, value, so that no distribution can be given to it. On the other hand, the Bayesian point of view is that a probability represents the quantity of information or belief that we hold over something. In that view, anything can be given a probability distribution. In particular, a parameter that we are trying to estimate also follows a probability distribution. There is a prior distribution, representing our belief before we take into account the data, and a posterior distribution representing our updated belief. These differences translate in practice through the use of a different methodology.

In the frequentist view, estimating a parameter consists in designing an inference procedure and studying the uncertainty of the procedure. The inference procedure yields a result from the necessarily limited amount of data available. Since the data are seen as a limited random sample, the outcome of the procedure corresponds to the definition of a random variable, called an estimator, that would take different values depending on the different possible values for the data. The uncertainty of the estimation is typically expressed in the form of a confidence interval, which represents the range of values that the estimate would fall in x% of the time, if the data collection experiment was repeated an infinite number of times. In the Bayesian view, instead, estimating a parameter is to determine its probability distribution, conditional on the actual observed data, which is termed the posterior distribution. The bayesian view makes a distinction between the prior distribution of a parameter, which represents our a priori belief about the parameter, and its posterior distribution, which is the prior distribution updated with our knowledge of the data. To give a summary of the uncertainty of the estimation, it is common to report a x% credible interval, which is the x% interquantile range of the marginal posterior distribution for the parameter. For the same model, the confidence and credible intervals will not be the same in general, as illustrated in Fig. 1.9. This shows a fundamental practical difference in the meaning of uncertainty in the frequentist and Bayesian views, and they both can be misleading in particular situations.

Further differences relate to the (relative) split between the frequentist and Bayesian communities. Given the high degree of specialization of researchers, it is difficult to be familiar with the tools and methods developed by the two communities. These tools present a tradeoff between the amount of mathematical work needed to apply them, their transferability to different problems, and their computational cost. Good frequentist estimators should be consistent, unbiased and efficient. This can require a significant amount of mathematical derivations, and the estimator might only be good for a restricted class of problems, but in exchange the method will be fast. Instead, Bayesian methods tend to be more easily transferable to varied and complex problems, but to be more computationally expensive. To me, this constitutes the main practical difference. Where the frequentist attacks each new problem carefully, and derives a lot of mathematics before they can get a result, the Bayesian uses brute force to explore various models, but depends on an expensive sampling algorithm for the validity of their results.

If we go back to the different estimation problems we already introduced, the independent and identically distributed (i.i.d.) samples example is the canonical frequentist example, and it is easy Figure 1.9: Difference between confidence and credible intervals, depending on the observation. Intervals at 95% for the model µ ∼ N (0, 1), x ∼ N (µ, 1). The confidence interval ensures that µ is covered 95% of the time as the experiment is repeated with different x, but it might not be the case for a specific x. The credible interval ensures that for the given data x, µ has 95% probability of being covered, but it might not be the case for a specific µ.

to derive estimators, of the sample mean for instance. The linear model example is slightly more complex, but the frequentist treatment remains very straightforward. In more general cases, as with infectious diseases inference for instance, there is no generic analytical tool. What is most often used is the Maximum Likelihood Estimator, which has the advantage of being consistent and efficient. However, deriving its value is an optimization problem, which can be expensive computationally. In that case, the frequentist solution is starting to resemble some numerical Bayesian solutions. One important difference is that if the distribution that we wish to estimate is too flat, or multimodal, due to non-identifiability, then the MLE will not give a useful answer, whereas Bayesian inference could remain useful. Since non-identifiability is pervasive in infectious diseases inference, this is a strong motivation to employ Bayesian inference methods, as we argue in Chapter 4.

Among the large panel of Bayesian inference methods, I will mainly focus on the presentation of Markov Chain Monte Carlo (MCMC) methods, which is the one we use throughout this thesis.

Markov Chain Monte Carlo

In the context of Bayesian inference, our objective is to estimate the posterior distribution of the model parameters, given the data. We would like to estimate the mean and variance of the distribution, but also its quantiles. Actually, more generally, we would like be able to estimate the integrals of some functions against the distribution.

A generic way to achieve this for an arbitrary distribution is to resort to Monte Carlo methods. To estimate E f dµ, where µ is a probability measure on E, we can use a random variable X with distribution µ. E f dµ = E (f (X)), and the expected value can be estimated through the law of large numbers. Therefore, our goal is to get enough samples from the posterior distribution, so that we might estimate the mean, variance, or any other function f , using them. However, we do not know how to sample directly from the posterior distribution. For a given model, we know how to sample from the prior distribution, but how can we do it conditionally on the data ? The idea of Markov Chain Monte Carlo (MCMC) is to construct a Markov Chain that will have the posterior distribution as its stationary distribution, and that will converge to it. We can then iterate such a chain until, asymptotically, it will supply us with (correlated) samples from the posterior distribution. MCMC algorithms are thus algorithms to construct Markov transition kernels P (x, dy) so that the corresponding Markov chain converges to a target distribution π. The two most famous algorithms are the Gibbs sampling and the Metropolis-Hastings algorithm. Gibbs sampling consists in updating components of a distribution according to their full conditional distribution with respect to the other components. Here we will focus, however, on the Metropolis-Hastings (MH) algorithm which is the one applicable in the most cases, as it only requires being able to compute the density of the posterior distribution π up to a multiplicative constant.

Let (E, E) be a measurable space, and π be the target distribution on E. A transition kernel P on E is a family of probability measures on E, indexed by E, P (x, dy). Let Q be a transition kernel such that, for all x ∈ E, Q(x, .) and π share a common dominating measure ν. We have π(dx) = p(dx)ν(dx) and Q(x, dy) = q(x, y)ν(dy). We introduce the acceptance ratio α :

E 2 → [0, 1], α(x, y) = min 1, p(y)q(y,x) p(x)q(x,y) , if p(x)q(x, y) > 0 1 if p(x)q(x, y) = 0 (1.2)
We define the transition kernel P as

P (x, dy) = Q(x, dy)α(x, y) + δ x (dy) E (1 -α(x, u))Q(x, du)
By construction, the detailed balance condition for P with respect to π is satisfied. π(dx)P (x, dy) = π(dy)P (y, dx) Therefore, the target distribution π is invariant for the Markov chain with transition kernel P . If additionally, the chain is irreducible and aperiodic, then π is its unique invariant distribution, as well as the equilibrium distribution of the chain. We cannot give a condition on Q (or q) that is both simple and useful for the chain to be irreducible, because it also depends on π. It is enough that, starting from π-almost anywhere, there exists a path Q n to any set supported by π that does not pass through π-null sets. For instance, if all of E is supported by Q(x, .) for all x, then that is enough. If, instead, Q(x, .) only supports a neighbourhood of x, then the support of π needs to be connected. More general constructions, in the absence of a common dominating measure, are given in [START_REF] Tierney | A Note on Metropolis-Hastings Kernels for General State Spaces[END_REF].

An algorithmic presentation is given in Algorithm 1, and an illustration of the method to provide some intuition of why it converges to regions that are well supported by π is given in Fig. 1.11. input : The target density p, the proposal kernel Q, its density q, the initial condition x 0 , and the number of iterations n output : The trajectory (or trace) of the chain, (X k ) 1≤k≤n Initialize X 0 = x 0 ; for k = 1 to n do Draw a proposal y from Q(X k-1 , .); Compute α = p(y)q(y,x) p(x)q(x,y) ; if α ≥ 1 then

X k = y; else Draw U uniform in [0, 1]; if α ≤ U then X k = y; else X k = x; end end end Algorithm 1: Metropolis-Hastings algorithm
For the Bayesian inference problem, π is the posterior distribution. Since we only need to determine its density up to a multiplicative factor, we only need the product of the prior density and of the likelihood density, and we can ignore the normalizing constant for the density of the data. We can write π as π(dx) = µ(dx)L(dx) = m(x)l(x)ν(dx), with m the prior density and l the likelihood density.

The main selling point of the MH algorithm is its wide applicability, with no mathematical work required. However, the complexity cost that we avoid on the mathematical side must be Figure 1.11: Metropolis-Hastings proposal. If Q is symmetric, a move from x to y where p(x) < p(y) is always accepted, and a move to y where p(x) > p(y) is only accepted with probability p(y) p(x) . The chain then tends to move to highly supported regions, and at equilibrium samples space according to π. paid on the algorithmic and numerical side. The guarantee that the chain shall eventually reach the equilibrium distribution π says nothing about the speed of convergence to π, or about the autocorrelation of the chain. These two properties will greatly impact the usefulness of the method, as they directly determine the number of iterations of the chain that are needed for reliable inference. Convergence speed is important, because for any given run, we will need to discard the initial iterations before convergence has been judged sufficient. A low autocorrelation of the chain is also desirable, because for Monte Carlo estimation we want as many nearly independent samples from π as possible. If autocorrelation is low, we say that the chain mixes well. Both convergence and mixing crucially depend on the choice of Q. Two different proposals can have mixing speeds with several orders of magnitude of difference. However, the theory gives little guidance for the choice of Q, or to predict how a given Q will perform. Much of the effort in MCMC inference is therefore to assess the convergence and mixing of chains, and to find good proposals. The basic choice of an arbitrary gaussian kernel tends to perform poorly, and the problem gets worse as the dimension of the space and the irregularity of π increase.

Advanced Bayesian inference methods

The simple Metropolis-Hastings (MH) algorithm that we have seen is often not suitable for high-dimensional or stochastic models, for two main reasons. First, we might not be able to compute the density of the likelihood, for example because the dynamic model is stochastic, in which case there is an intractable integral to compute, and we need some alternative method. Second, MCMC sampling might be too slow if we don't know of a suitable proposal for the Markov Chain to converge quickly and to yield samples that are decorrelated enough. In that case, we need a systematic method to construct good proposals, and this leads to many variants of the MH algorithm.

I will give a short overview of some Bayesian inference methods that address these two difficulties. The goal here is not to present them in detail, or to give an in-depth comparison, but rather to show that, even though we will mostly focus on one specific type of MH algorithm for the remainder of the manuscript, there actually exists a wide variety of numerical methods for Bayesian inference, and they can also be used effectively for the kind of infectious disease models we study.

Some alternative methods that we can cite are Sequential Monte Carlo (SMC), Approximate Bayesian Computation (ABC), and Data Augmentation. Sequential Monte Carlo methods [START_REF] Del Moral | Sequential Monte Carlo Samplers[END_REF], also called particle filters, are useful when the problem can be formulated as a sequence of related distributions that are increasingly hard to sample from. Consider the classical example of sequential observations (y k ) k , of a stochastic process (X k ) k . We know how to simulate a trajectory of the process (x k ) k , and we know how to compute the density of the likelihood P(y k |x k ). We could therefore use importance sampling, simulate many trajectories, and then accept or reject them based on their likelihood. However, the acceptance rate would become vanishingly low as the number of observations increases. Instead, SMC methods exploit the sequential nature of the data, by iteratively rejecting bad trajectories after each new observation, so that the population of trajectories remains adapted to the observations. This is a kind of genetic algorithm, where the details of selection and reproduction can vary, with different properties. SMC can also be embedded into MCMC to form Particle MCMC (PMCMC) [START_REF] Andrieu | Particle Markov Chain Monte Carlo Methods: Particle Markov Chain Monte Carlo Methods[END_REF], where the MCMC is used to estimate the parameters of the model, with a particle filter run at every iteration to estimate the intractable likelihood. ABC methods are a variant of importance sampling where the distance to the target is used as the criterion for acceptance [START_REF] Beaumont | Approximate Bayesian Computation in Population Genetics[END_REF]. This means that a data-generating process is needed, that takes us from model parameters to simulated data. A distance between the observed data and the simulated data must then be defined, over sufficient statistics of the data. Again, there is a large variety of more elaborate ABC methods [START_REF] Toni | Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems[END_REF][START_REF] Michael | Non-Linear Regression Models for Approximate Bayesian Computation[END_REF][START_REF] Saulnier | Inferring Epidemiological Parameters from Phylogenies Using Regression-ABC: A Comparative Study[END_REF]. Last is Data Augmentation. It is not, strictly speaking, a method in its own right, as it simply consists in reparametrizing the model so that the likelihood becomes tractable, by moving some part out of the likelihood integration and into the surrounding Monte Carlo integration. Data Augmentation is a central point of Chapters 2 and 3 and is presented there, so I do not explain further here.

Concerning the methods available to design good proposal distributions, we can cite Hamiltonian Monte Carlo, adaptive Gaussian kernels, and adaptive independence samplers. With Hamiltonian Monte Carlo (HMC), a Hamiltonian system is constructed with π as its equilibrium distribution. At every iteration, the Hamiltonian system is simulated numerically for a certain duration, to produce a candidate. The candidate is then accepted or rejected with a MH ratio to correct for numerical errors, but the acceptance ratio should remain high. Simulating the Hamiltonian system requires being able to compute the derivative of the density of π. In cases where we have no explicit formula for the derivative, this can be replaced by Automatic Differentiation. This strategy is used for instance in the Stan platform [START_REF] Carpenter | Stan: A Probabilistic Programming Language[END_REF], but this can be computationally expensive.

With adaptive Gaussian kernels, the proposal is a multivariate normal distribution, whose covariance is adapted during the MCMC run to improve mixing, for example to reach a target acceptance ratio ; see for instance [START_REF] Gareth | Examples of Adaptive MCMC[END_REF][START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. If the relationships between the parameters is not linear, or if π is multimodal, the adaptive Gaussian kernel won't be able to obtain good mixing. Independence samplers might be preferable in that case. With adaptive independence samplers, the proposal is independent of the current position, Q(x, dy) = Q (dy), but is adapted during the MCMC run to approximate π as closely as possible, see for instance [START_REF] Martino | Sticky Proposal Densities for Adaptive MCMC Methods[END_REF][START_REF] Zhe | An Adaptive Independence Sampler MCMC Algorithm for Bayesian Inferences of Functions[END_REF][START_REF] Maire | Adaptive Incremental Mixture Markov Chain Monte Carlo[END_REF]. These methods are promising but quite recent and less straightforward to implement, so we stick with the adaptive Gaussian case [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF] in our analyses. It is important to note that, in these approaches, we lose the general convergence guarantees that we had for the standard MH algorithm. Some results prove that convergence still holds in well-behaved cases [START_REF] Gareth | Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms[END_REF], but this says nothing about the general cases that we are concerned with here. However, as long as one stops the adaptation after a given number of iterations, and then continues with a fixed adapted proposal, then we are back in the classical setting. Caution is still required, however, as the adaptation might cause us to get effectively trapped in a local mode of π, but with an appearance of good mixing.

The wide array of existing numerical Bayesian inference methods, as well as the continued development of new methods, can be seen as a sign that no single method has yet proven to be the best in all situations, and that further methodological research is warranted. At the same time, we must also consider the high degree of specialization of researchers. Nobody is a master of all meth-ods, and it might take a long time before an improved method is applied to a given relevant problem. For the two particular applications that interest us, infectious disease epidemiology and phylogenetics, many of these methods have not yet seen much use or are only starting to be applied.

Phylogenetic inference

We have already talked about sequence data and phylogenies in section 1.3.3. As we have seen, the sequence data is linked to the epidemic process through the phylogeny of the samples, and the sequence evolution process. This makes for a difficult inference problem because of the complexity of the space of phylogenies. A first indication of this complexity is the high number of tree topologies to explore, (2n -3)!! for a rooted tree with n labeled leaves. The problem does not stop there, because we also need to infer branch lengths. In fact, we want to estimate a posterior distribution over the space of phylogenies. Labeled trees can be characterized by how their internal edges split the leaf labels, and their lengths. This corresponds to the Billera-Holmes-Vogtmann (BHV) space [START_REF] Billera | Geometry of the Space of Phylogenetic Trees[END_REF], T n , which is a cone made by stitching together (2n -3)!! positive orthants of dimension (n -2). In addition, we also need to take into account exterior edge lengths, so that the space to explore is T n × R n .

When the computational budget was very limited, optimization procedures were the only workable solution, with for instance parsimony methods, distance methods, and Maximum Likelihood estimation. As the computational budget expanded these last two decades, Bayesian inference methods have also become increasingly popular. ML estimation and Bayesian inference both require the exploration of the tree space T n × R n , to find good candidate trees. To that end, they both make use of tree moves, to progressively improve a candidate tree. Some common moves for rooted and time-embedded trees are schematized in Fig. 1.12. The main difference between ML and Bayesian inference, is that in the case of Bayesian inference, the move must be formulated as a transition kernel, to be embedded in a MH sampler. Therefore, we also need to be able either to show that the proposal is symmetrical, or to compute the proposal density ratio.

Whether we use MLE or MCMC, we need to be able to compute the density of the likelihood of observing the alignment. If we consider that all sites evolve independently, then for each site the likelihood can be computed as the probability of observing the nucleotides at the tips, given the frequencies at the root. The computation time scales with the number of sites and the size of the tree, and is the subject of many optimizations. We can use Felsenstein's pruning algorithm [START_REF] Felsenstein | Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach[END_REF], factorize computations by site pattern, and use vectorized and parallel computations across site patterns, for instance [START_REF] Daniel | BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics[END_REF].

A recipe for MCMC

When we make the choice to use MCMC, we trade mathematical complexity for practical algorithmic complexity. The effectiveness of the inference can depend greatly on the details of the procedure, to reach good convergence and mixing. In that sense, MCMC inference is an art more than a science, akin to cooking. I therefore present here the general recipe that we use throughout the three chapters of the thesis. Our goal is to estimate multi-dimensional, possibly irregular and multimodal distributions.

A first difficulty, that gets worse with the number of dimensions, is that the density of the distribution can be very low in most regions of space. To reach a region of space with enough support, we first use an independence MH sampler using the prior distribution as proposal, for a given number n prior of iterations.

The next difficulty is the often high correlation between the different parameters of the model. This means that component-wise proposals, or gaussian proposals with no covariance will typically not mix well, and that the problem gets worse with more dimensions and more non-identifiability. To build a proposal with high (b) Uniform Subtree-Prune-and-Regrafting move. A node is chosen uniformly (except the root), and its subtree is pruned. The graft point is chosen uniformly from the rest of the tree from points older than the pruned node. (c) An interior edge is chosen uniformly, and its length is multiplied by α by moving the parent node up (if valid).

enough acceptance rate and squared jumping distance, we use Robust Adaptive Metropolis [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. We adapt the proposal during n adapt iterations, and then continue with the adapted proposal for n iter iterations.

To assess convergence of the chain qualitatively, we run several chains with different seeds to check that they converge to the same distribution, and are not trapped in local modes of the distributions. Finally, to evaluate the mixing of the chain and see whether we have obtained enough samples from the posterior distribution, we compute the single dimensional Effective Sample Sizes (ESS) [START_REF] Kass | Markov Chain Monte Carlo in Practice: A Roundtable Discussion[END_REF], and multi-dimensional ESS [START_REF] Vats | Multivariate Output Analysis for Markov Chain Monte Carlo[END_REF].

Putting all of this together, we obtain the generic algorithm 2, where the proposal might be more complex in practice depending on the problem.

In this overview of statistical inference, we have skipped over many important problems. Arguably the most important is the problem of model choice. There is a trade-off between model simplicity and model explanatory power. As the famous saying, attributed to George Box [START_REF] Box | Robustness in the Strategy of Scientific Model Building[END_REF] goes, "All models are wrong, but some are useful". Like we have already noted in 1.2.5, the more complex the model, the more difficult it is to understand it. At the same for j = 1 to n rep do for k = 1 to n prior do Sample X j k from the MH sampler with the prior distribution.; end

Y j 0 = X j nprior ; for k = 1 to n adapt do Sample Y j k from the MH sampler with a gaussian proposal Q j k .; Adapt Q j k using the RAM algorithm.; end Z j 0 = Y j n adapt ; for k = 1 to n iter do
Sample Z j k from the MH sampler with proposal Q nadapt .; end end Compare the empirical distributions of the Z j after burn-in.; If they are not similar, the inference is invalid.; If they are similar, compute the ESS and mESS for the parameters.; If the (m)ESS are high enough, use the results.

Algorithm 2: Markov Chain Monte Carlo recipe time, a more complex model can fit the data better. However, as we add more parameters, we can also decrease the predictive power of the model by overfitting. Finding the right equilibrium is a difficult task, and I will not present here all the methods that are generally used (tests for nested models, AIC, BIC, Bayes factors, cross-validation, etc), as we do not make use of them in the thesis. Now that we have finished this broad overview of the three ingredients of infectious disease epidemiology, that are modeling, data, and inference, I will illustrate how the three come together with the example of a specific disease, that of dengue.

An example of infectious disease: dengue

It is interesting to talk about dengue here, for two main reasons. First, we will talk about dengue again in the following chapters, in particular in Chapter 4, and about a related virus, Zika, in Chapters 2 and 4. Second, dengue can serve as a good real life example of how difficult it is to provide meaningful answers to important epidemiological questions. As we will see, it is a disease with complex transmission dynamics, and limited available data.

The number of dengue infections is difficult to estimate, but is probably counted in the hundreds of millions per year [START_REF] Bhatt | The Global Distribution and Burden of Dengue[END_REF], with 50 to 100 million of those being symptomatic, and 10000 to 20000 resulting in death [START_REF] Jeffrey | The Global Burden of Dengue: An Analysis from the Global Burden of Disease Study 2013[END_REF]. It is highly endemic in many low-income and tropical environments, and spreading with urbanization, deforestation, and climate change. There is no curative treatment available, and the vaccines developed so far have proven problematic in practice [START_REF] Scott | Ethics of a Partially Effective Dengue Vaccine: Lessons from the Philippines[END_REF].

Dengue pathology and life cycle

The symptoms can include high fever, headaches (retro-orbital pain), muscle and joint pains, a rash, nausea, vomiting, bleeding from the mucous membranes, low blood pressure, and internal hemorrhage. The presentation of the disease varies a lot, however. In most cases, infection is asymptomatic, or the symptoms are mild. Dengue hemorrhagic fever or dengue shock syndrome only happen in a few per cent of cases, and if hospital treatment and blood transfers are available, they are rarely lethal.

The disease is caused by the dengue virus, an RNA virus of the Flavivirus genus. There are four main serotypes of the virus circulating in humans, and it is transmitted through a mosquito vector, mainly Aedes aegypti, but also Aedes albopictus. The virus infects female mosquitoes through blood meals. It crosses out of their gut and disseminates to their salivary glands, and is then transmitted to new hosts through the saliva on subsequent blood meals [START_REF] Novelo | Intra-Host Growth Kinetics of Dengue Virus in the Mosquito Aedes Aegypti[END_REF]. On infecting a human, there is a latency period, after which the host becomes infectious and might show symptoms. The human immune response is quite complex, and the antibodies produced are subtype specific to some extent, but also bind to antigens from other serotypes, with lower affinity. This immune response is believed to lead to lifelong serotype-specific immunity, but only short-term heterotypic immunity at best. Instead, it is thought to lead to antibody-dependent enhancement [START_REF] Scott | Neutralization and Antibody-Dependent Enhancement of Dengue Viruses[END_REF], where infection from a second subtype can lead to a more severe presentation of the disease, because of antibodies from the previous infection. The mosquitoes latency and infectious periods depend on the temperature [START_REF] Chan | The Incubation Periods of Dengue Viruses[END_REF], and the virus transmits better at high temperature ranges, of 26 -32 • C.

Dengue epidemiology

We now address the epidemiology of the disease. It can only be studied through the collection of epidemiological data. Dengue often presents mild symptoms, and is mostly prevalent in lowincome countries, with rudimentary health and surveillance systems, therefore it is difficult to obtain good quality data concerning it. I summarize here some facts about dengue epidemiology that Looking at the distribution of dengue cases in the world 1.13, we see that it is prevalent in tropical and equatorial climates. This is due to the ecology of the mosquito vectors, which are well adapted to the warm wet climate. It is believed to be most prevalent in South and South-East Asia, but also in Central and South America. We can see that there are comparatively few reported cases in West or Central Africa, despite the presence of the mosquito vector, and the suitability of the climate. This could be due to deficiencies in reporting [START_REF] Bhatt | The Global Distribution and Burden of Dengue[END_REF], as well as differences in human genetics [START_REF] Coffey | Human Genetic Determinants of Dengue Virus Susceptibility[END_REF], which influence disease severity. Also of note is the well-adaptedness of Aedes aegypti to urban environments, which explains increasing dengue prevalence. The importance of climate also means that the disease is seasonal in many regions, with the dengue season matching with the wet season [START_REF] Phanitchat | Spatial and Temporal Patterns of Dengue Incidence in Northeastern Thailand 2006-2016[END_REF]. Serology and sequencing show that the four dengue serotypes tend to replace one another over time, with recurrence after long periods [START_REF] Nisalak | Forty Years of Dengue Surveillance at a Tertiary Pediatric Hospital in Bangkok, Thailand, 1973-2012[END_REF]. The pattern of co-circulation, time to replacement, and time before recurrence, all depend on the particular setting and on the intensity and seasonality of dengue transmission. In highly endemic settings, children might often have been infected once or twice by the age of 10, with an attack rate reaching 10%. The disease is often most severe on the second infection, and then mostly asymptomatic on the third and fourth infections [START_REF] Bhoomiboonchoo | Sequential Dengue Virus Infections Detected in Active and Passive Surveillance Programs in Thailand, 1994-2010[END_REF]. This supports the thesis of Antibody Dependent Enhancement. These facts form the basis for the recent research on dengue.

Dengue recent data and findings

Dengue research is still developing, and we will review some recent findings made possible using recent epidemiological data and methods. The first question is that of choosing an appropriate model for the dynamics of dengue transmission. We have already noted that dengue is an arthropod-borne virus (arbovirus), that transmission is often seasonal, that a latent period precedes infectiousness, and that four serotypes of dengue exist, with complex immune relationships between them, which are not totally understood. Which of these factors should be taken into account ?

Taking into account the latent period adds one additional compartment, and one additional parameter, which is not too costly. In the simplest case, seasonality can be accounted for by having one of the parameters follow a sinusoidal function, for instance the effective contact rate β. This may add up to three parameters, a period, a phase, and a measure of amplitude. However, in most cases, we would take a period of one year, and we would be able to choose a value for the phase, which leaves only one additional parameter. For the vector, we can choose to explicitly take into account the mosquito population, which might add up to 4 compartments, for mosquito larvae, adults, latent infected females, and infectious females. It is also possible to be more phenomenological about the mosquito population, and to represent it through a delay compartment in between human infections [START_REF] Laneri | Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India[END_REF]. As to the dengue serotypes, depending on the degree of refinement wanted, one can choose to simply track the number of past infections, to track explicitly every possible sequence of infections, or any complexity level in between. Schematics for some of these models are plotted in Fig. 1.14 Of course, it would also be possible to consider a model that would take into account all of these elements at the same time.

However, it can only ever be interesting to take these refinements of the model into account if two conditions are met. The first condition is that the added complexity should help us answer new questions, that we cannot answer without it. The mosquitoes are an important element, because they are the main element of control of dengue transmission. In many countries, when a dengue case is detected, larvicides or insecticides are applied in and around the home of the patient. More ambitious control strategies include the release of mosquitoes that have been infected with Wolbachia, sterilised with radiation, or genetically modified [START_REF] Achee | Alternative Strategies for Mosquito-Borne Arbovirus Control[END_REF]. Evaluating or predicting the impact of such interventions requires us to take the mosquito vector into account in the model. Is the relationship between infectious mosquito population and human dengue infection rate linear, or saturating, for example ? The virus serotypes are also a crucial element for any question about the impact of vaccination, for example. Indeed, a vaccine that would imperfectly immunize against dengue, administered to people that are naive to dengue, could cause more severe presentations of the disease on future dengue infections in some of those patients (This is not simply a theoretical concern, see [START_REF] Scott | Ethics of a Partially Effective Dengue Vaccine: Lessons from the Philippines[END_REF]). How should we then design a vaccination campaign ?

The second condition is that we need to have information available about the new elements that we add. This information might come from independent experiments, and be integrated in the model via an informative prior, or it might be present in the epidemiological data. This is where the difficulties begin. In most cases, we have no external information about these important elements, and they are non-identifiable from the epidemiological data alone. We might have some idea about latency and infectious periods, for humans and for mosquitoes, from previous studies and experiments, but what about the mosquito population size, and contact rate ? We can only estimate these parameters if we have data specifically about the mosquito population, which is very rare. The situation is similar for the dengue serotypes. We do not have a good understanding of the interaction between serotypes, and if we have in some cases a partial understanding of the circulation of the different serotypes, we don't know enough about the immune history of the hosts to fit and identify the parameters of the complex models of serotype interaction. An example of statistical comparison of different models for the study of dengue was conducted in [START_REF] Champagne | Dengue Modeling in Rural Cambodia: Statistical Performance versus Epidemiological Relevance[END_REF].

However, as we have seen previously in section 1.3, diverse sources of data are becoming increasingly available, and have made new important discoveries possible. One such discovery is that the large proportion of asymptomatic dengue infections are probably the source of a majority of infections. Infection of mosquitoes by asymptomatic human hosts was previously observed [START_REF] Duong | Asymptomatic Humans Transmit Dengue Virus to Mosquitoes[END_REF], however a more quantitative assessment required more data and models [START_REF] Quirine | Contributions from the Silent Majority Dominate Dengue Virus Transmission[END_REF]. This study relied on clinical and experimental data of viral load and antibody titers through time as well as infectiousness to mosquitoes. Using within-host models of dengue infection, calibrated to this data, the authors estimated that asymptomatic human hosts were 80% as infectious as symptomatic hosts. This would correspond to 86% of dengue infections being caused by asymptomatic hosts, which has important consequences for dengue surveillance and control. Other important recent findings relate to the use of dengue virus sequence data and serology data, which were rare until recently, but are now more routinely obtained. It was shown that inside a season of dengue, infections were spatially very localized [START_REF] Salje | Dengue Diversity across Spatial and Temporal Scales: Local Structure and the Effect of Host Population Size[END_REF], with 60% of dengue cases living less that 200 meters apart coming from the same transmission chain, while this structure disappeared from one year to the next. This is compatible with a scenario where infections spread locally during the season due to the short range of the Aedes mosquitoes and of human mobility patterns, and where only a few lineages survive and spread more globally from season to season. A large scale longitudinal serology study in Thailand also enabled a number of important discoveries [START_REF] Salje | Reconstruction of Antibody Dynamics and Infection Histories to Evaluate Dengue Risk[END_REF]. First, it gives a very compelling quantitative proof of Antibody Dependent Enhancement, by showing that low to intermediate antigenic titers are associated with hospitalization and dengue hemorrhagic fever. Second, it shows quantitatively that all dengue subtypes do not have the same behaviour with respect to disease and immune response. In particular, it is shown that DENV4 tends to cause asymptomatic cases more often than the other subtypes. These findings were only made possible by the large size of the cohort that was followed as well as the frequent sampling and long duration of the study.

In conclusion, the example of dengue shows that recent discoveries are made possible by two parallel and linked developments. First, these discoveries are only possible because new types of data are collected, on a larger scale, through novel epidemiological studies. Second, new methods are necessary to make sense of these data, and in particular mechanistic models are used to build a coherent picture of our understanding of the phenomenon at play.

Objectives of the Thesis

From its infancy in the 19th century, infectious disease epidemiology has expanded into a vast field which draws from many different disciplines. In particular, we have tried to provide a clear picture of a methodology combining mechanistic mathematical models and Bayesian inference methods, with the aim of understanding infectious disease dynamics from various types of data. We have seen how, applied to dengue, this methodology has allowed new insights into complex subjects. However, we have also pointed out some specific difficulties that render infectious disease epidemiology inherently hard, notably stochasticity, non-identifiability, and the computational cost of inference. This thesis reports in publication format the results of three research projects that I conducted to make progress on these issues. All these projects have in common the use of MCMC for Bayesian inference, and of epidemiological compartmental models, which we have already presented.

The objectives of the first project, presented in Chapter 2, were to facilitate the use of stochastic models in epidemiological inference. Ideally, the computational cost should be reasonable, and it should be easy to switch between different models. To that end, we present a novel Data Augmentation method that we developed for the inference of Markov Jump Processes, and apply it to the infectious disease setting. We present two related exact and approximate inference schemes, and compare these schemes with two other methods, one based on tracking individual infection histories, and one using Particle MCMC. We also show how our method enables a useful model evaluation strategy, and demonstrate its utility on simulated data as well as Zika data from French Polynesia. This chapter has been submitted to Mathematical Biosciences (and ArXiv [START_REF] Nguyen-Van-Yen | Stochastic Epidemic Models Inference and Diagnosis with Poisson Random Measure Data Augmentation[END_REF]), received positive reviews, and is ready to be resubmitted, with the same contents that are presented here.

The objective of the second project, presented in Chapter 3, was to explore possibilities to speed up phylodynamic inference. We continue with this idea of inference of a Markov Jump process, via the inference of an associated Poisson Random Measure, and apply it to the more complex setting of coalescent processes. We present a possible Poisson-driven SDE for a coalescent process, and associated simulation algorithms, then compare the resulting inference scheme to a more traditional method based on tree augmentation. We see that our method has some interesting properties, but that it cannot compete with the traditional method in terms of computational performance, because of the cost of simulation, and of the increased dimensionality of the augmented space.

The objectives of the last project, presented in Chapter 4, were twofold: first, to bring the issue of non-identifiability to wider at-tention, as it is so often neglected in infectious disease inference, and second, to evaluate the benefits of combining different popular sources of data. We take a very simple approach for assessing practical non-identifiability, by looking at the joint posterior distribution of the parameters, taken pairwise, as inferred by MCMC. We show on very simple models that non-identifiability is the rule for case count data, but also for seroprevalence and sequence data, but that it can be resolved by combining the sources of data. We also show how the degree of information brought by sequence data depends on the amount of data considered. Reanalyzing dengue data from Ho Chi Minh City, we are able to provide estimates of the dengue attack rate, case reporting probability and population immunity. We hope to submit this part of the thesis in the next weeks.

These three projects necessitated consequent algoritmic and implementation background work, which presented their own challenges. Considering that this aspect of the work deserved some discussion, I included some appendices on these subjects. Appendix A and appendix B give some background about our OCaml implementation for the different algorithms presented, and the tools we used for its development. Appendix C presents our tree-augmented MCMC algorithm, that includes some common sequence likelihood optimizations, as well as two novel Subtree-Prune-and-Regraft moves. Supplementary material about the projects are also provided in appendix D for chapter 2, appendix E for chapter 3, and appendix F for chapter 4. respect to a Poisson Random Measure (PRM), and how to simulate the process trajectory deterministically from a parameter value and a PRM realisation. This forms the basis of our Data Augmented MCMC, which consists of augmenting parameter space with the unobserved PRM value. The resulting simple Metropolis-Hastings sampler acts as an efficient simulation-based inference method, that can easily be transferred from model to model. Compared with a recent Data Augmentation method based on Gibbs sampling of individual infection histories, PRM-augmented MCMC scales much better with epidemic size and is far more flexible. It is also found to be competitive with Particle MCMC for moderate epidemics when using approximate simulations. PRM-augmented MCMC also yields a posteriori estimates of the PRM, that represent process stochasticity, and which can be used to validate the model. If the model is good, the posterior distribution should exhibit no pattern and be close to the PRM prior distribution. We illustrate this by fitting a non-seasonal model to some simulated seasonal case count data. Applied to the Zika epidemic of 2013 in French Polynesia, our approach shows that a simple SEIR model cannot correctly reproduce both the initial sharp increase in the number of cases as well as the final proportion of seropositive. PRM-augmentation thus provides a coherent story for Stochastic Epidemic Model inference, where explicitly inferring process stochasticity helps with model validation.

Introduction

Stochasticity plays an important role in infectious disease dynamics, but statistical inference of stochastic models is difficult. When trying to estimate the parameters θ of a complex stochastic epidemic model from some data D, the data D are typically an incomplete observation of the process, and the observed data like-lihood P(D | θ) is intractable [START_REF] Philip | A Tutorial Introduction to Bayesian Inference for Stochastic Epidemic Models Using Markov Chain Monte Carlo Methods[END_REF]. To work around this problem, one can decide to not use the likelihood (ABC, deep learning), to approximate the model (linear noise approximations [START_REF] Wallace | Linear Noise Approximation Is Valid over Limited Times for Any Chemical System That Is Sufficiently Large[END_REF][START_REF] Fearnhead | Inference for Reaction Networks Using the Linear Noise Approximation[END_REF]), to estimate the likelihood (PMCMC [START_REF] Andrieu | Particle Markov Chain Monte Carlo Methods: Particle Markov Chain Monte Carlo Methods[END_REF][START_REF] Del | The Alive Particle Filter and Its Use in Particle Markov Chain Monte Carlo[END_REF]), or to rephrase the problem.

Data Augmentation (DA) introduces the alternative problem of estimating the joint posterior

P(θ, ν | D), instead of P(θ | D),
where ν is some latent variable chosen so that the joint likelihood P(D | θ, ν) is tractable. The original problem then finds its solution by marginalizing over ν, P(θ

| D) = P(θ, ν | D) dν.
Data Augmentation has proven effective with MCMC [START_REF] Cauchemez | A Bayesian MCMC Approach to Study Transmission of Influenza: Application to Household Longitudinal Data[END_REF][START_REF] Drummond | BEAST: Bayesian Evolutionary Analysis by Sampling Trees[END_REF][START_REF] Jewell | Bayesian Analysis for Emerging Infectious Diseases[END_REF], for dealing with granular, subject-level data, and complex models.

An important difficulty with DA is to explore the resulting high dimensional augmented state space effectively with MCMC. Each class of model requires designing specific proposals, and typically it is necessary to manually tune the proposal for the specific problem at hand. For instance in phylogenetic inference softwares like BEAST [START_REF] Drummond | BEAST: Bayesian Evolutionary Analysis by Sampling Trees[END_REF][START_REF] Bouckaert | BEAST 2: A Software Platform for Bayesian Evolutionary Analysis[END_REF], the latent state is the phylogeny to reconstruct. Many different tree moves are implemented to explore tree space effectively, and at every iteration, one is chosen randomly following certain probabilities. For a given model and dataset, it is necessary to manually tune those probabilities to achieve good mixing. Additionally, it is challenging to design a proposal such that mixing speed scales well with population size, which becomes necessary when dealing with even moderately large epidemics.

We propose a new data augmentation scheme to fit simple models to low granularity data -like incidence or prevalence data. This scheme is directly applicable to the large class of Markov jump processes.

Pure jump Markov processes are widely used for modelling infectious diseases, ecological and evolutionary systems. It is possible to represent them as solutions of Poisson-driven stochastic differential equations, which are integral equations with respect to a Poisson Random Measure (PRM) [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF]. This indicates a natural data augmentation parametrization (θ, ν) with θ the parameters of the process, and ν the discrete measure that the process is integrated against. A value of θ and a realisation ν of the PRM are enough to deterministically simulate the trajectory X of the process, and so the joint likelihood of θ and ν is easily computed as the probability of observing D given the trajectory X. Throughout the article, we will call this method PRM augmentation.

Different methods have already been proposed for the inference of Markov jump processes, some specific to epidemic models [START_REF] Cauchemez | A Bayesian MCMC Approach to Study Transmission of Influenza: Application to Household Longitudinal Data[END_REF][START_REF] Neal | A Case Study in Non-Centering for Data Augmentation: Stochastic Epidemics[END_REF][START_REF] Xiang | Efficient MCMC for Temporal Epidemics via Parameter Reduction[END_REF][START_REF] Neal | Forward Simulation Markov Chain Monte Carlo with Applications to Stochastic Epidemic Models[END_REF][START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF], and some more general [START_REF] Rao | Fast MCMC Sampling for Markov Jump Processes and Extensions[END_REF][START_REF] Golightly | Bayesian Inference for Markov Jump Processes with Informative Observations[END_REF][START_REF] Zhang | Efficient Parameter Sampling for Markov Jump Processes[END_REF]. In this article, we present PRM augmentation, used with Metropolis-Hastings sampling [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF][START_REF] Hastings | Monte Carlo Sampling Methods Using Markov Chains and Their Applications[END_REF], and discuss its advantages and drawbacks, in terms of ease of use, speed, and insights, and illustrate this on some synthetic and real datasets.

PRM augmentation relies on a generalization of uniformization [START_REF] Jensen | Markoff Chains as an Aid in the Study of Markoff Processes[END_REF][START_REF] Rao | Fast MCMC Sampling for Markov Jump Processes and Extensions[END_REF][START_REF] Zhang | Efficient Parameter Sampling for Markov Jump Processes[END_REF] that is directly applicable to any Markov jump process, with writing the Stochastic Differential Equation (SDE) being the only mathematical work needed. As such, it is a simulation-based method, which can be used easily to compare different models. We present two simulation algorithms that can be used in MCMC: an exact but slow scheme, and an approximate simulation schemes that scales better with the number of events to infer.

We show how PRM augmentation compares to a recent data augmentation method [START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF], and exhibits better complexity with respect to epidemic size. We also compare it to Particle MCMC as implemented in the R package pomp [START_REF] King | Statistical Inference for Partially Observed Markov Processes via the R Package Pomp[END_REF], and find that PRM augmentation is competitive for moderate epidemic sizes.

Additionally, the natural distinction that is made between the mechanistic part, estimated through θ, and the stochastic part, estimated through ν, provides a way to evaluate model fit and to propose model improvements, similarly to bayesian latent residuals [START_REF] Lau | New Model Diagnostics for Spatio-Temporal Systems in Epidemiology and Ecology[END_REF], via the posterior ν estimates. To demonstrate this, we apply the method to simulated data, and to 2013-2014 Zika data from French Polynesia.

Theory

We show how a Markov pure jump process X on Z d with a fixed number of events K is solution to a Poisson-driven Stochastic Differential Equation (SDE), that is a SDE with integration with respect to a Poisson Random Measure (PRM). This equation indicates a natural algorithm to simulate the process X given a realisation of the PRM ν, and we explain how we implement this algorithm. A parameter value θ and a discrete measure ν uniquely determine a trajectory of the process, and are therefore enough to compute the likelihood of observing the data, P(D|θ, ν). Finally, we explain how we use this to build a Metropolis-Hastings sampler, with proposals on the parameters and on the discrete measure, and give an example for the SIR model with prevalence data.

Poisson driven Stochastic Differential Equations

Continuous time Markov chains, or Markov pure jump processes (MJP), are stochastic processes whose state is constant in between jumps, and jump only at exponential times, and that have the Markov property. The trajectories of such processes are right continuous, left limit, and piecewise constant. A complete presentation can be found in [START_REF] Stewart | Markov Processes: Characterization and Convergence[END_REF]. Such processes are widely used in stochastic modelling and for statistical inference. In that context, they are typically associated to an observation process, and designated as State Space Models or Partially Observed Markov processes, see SSM [START_REF] Dureau | SSM: Inference for Time Series Analysis with State Space Models[END_REF] or the R package pomp [START_REF] King | Statistical Inference for Partially Observed Markov Processes via the R Package Pomp[END_REF].

A Poisson random measure (PRM) is a generalization of Poisson processes to more general spaces, as a random variable that take discrete measure values. For a PRM, the number of points found in any measurable subset A follows a Poisson distribution, and the number of points found in two disjoint measurable subsets are independent. More precise definitions are given in the appendix D.1. An integral with respect to a PRM is again a random variable, and integration can be understood pointwise,

Z(ω) = f dν(ω) = i f (x i ), where ν(ω) = δ xi .
The idea is then to build a differential equation with respect to a PRM, where the PRM will indicate (a superset of) the jump times of the MJP, and the integrand will perform the events of the process, with the right rates. Many different such Poisson-driven Stochastic Differential Equations (SDE) could be written that would have the right solution, but we present here one of those (established) solutions.

We consider a MJP X with a state space E = Z d , and a finite number of events K. The k-th event happens with a rate r k : E → R + , and when it happens, the state of the system changes from x to x+µ k . Let (ν k ) k≤K be standard PRMs on R + ×R + . The equation (2.1) is a Poisson-driven Stochastic Differential Equation (SDE), and its solution, if it exists, is a MJP with the same probability distribution as X.

X t = X 0 + k≤K t 0 R+ 1 u≤r k (X s -) µ k ν k (ds, du) (2.1) 
We provide a proof in the appendix D.2 that solutions to (2.1) are càdlàg and Markov, and have the right infinitesimal generator. This is an established result that also extends to much more general settings, as Poisson-driven SDEs are well studied [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF]. The only difficulty in our case is that the process might possibly lead to explosion. But in the particular case of epidemic models, explosion is never possible as the process is constrained by the available susceptible population, as we develop in the appendix.

Simulation of a Markov Jump Process

The equation (2.1) specifies a way to simulate the process. Each point of the (ν k ) is a potential event point. Consider all points of the (ν k ) k ordered by time, (t n , u n , k n ), where t n is the time of the point, u n is its value, and k n is its color. For each point in turn, compare the event rate r kn to the value u n of the point. If the point is below the rate, then the event happens, and we update the state of the system and the rates. Otherwise nothing happens, and we continue on to the next point. This yields the simplified algorithm 3, and is illustrated in Fig. 2.1.

input : The discrete measures (ν k ) k≤K , the rates (r k ), the increments (µ k ), and the initial condition

X 0 ∈ E output : Trajectory (X t ) t Initialize t 0 = 0, X t0 = X 0 Iterate over the points of (ν) ordered by time, (t n , u n , k n ) n for n = 1 to ∞ do if u n ≤ r kn (X tn-1 ) then X tn = µ kn (X tn-1 ) else
X tn = X tn-1 end end Algorithm 3: Simplified algorithm for the exact simulation of a MJP There is an obvious problem with algorithm 3 however. The (ν k ) have an infinite number of points on every time interval, so we cannot order all of their points by time. Instead we split R + × R + into rectangles A i,j , and define C i = j A i,j = [t i , t i+1 ] each time column. In each rectangle A i,j , the number of points N k i,j of ν k is finite almost surely, and ν k can be written

ν k = n≤N k i,j δ ( t i,j,k n , u i,j,k n ), with the points (t i,j,k n , u i,j,k n ) ordered by time. Equation (2.
2) is equivalent to (2.1)

X t = X 0 + K k=1 ∞ i=1 ∞ j=1 N k i,j n=1 
1 t i,j,k n ≤t 1 un≤r k (X t i,j,k n -) µ k (2.2)
We never need the rectangles that are above the rate. We can use this fact to simulate the process with finite memory, by lazily drawing points for the rectangles only when they are needed. This exact algorithm is developed in the appendix D.4, as algorithm 8.

This exact algorithm is O(n) in the number n of points that are considered. As a consequence, an important factor in its efficiency is the proportion of points that are considered but rejected. This is also true of classical uniformization, for which a constant upper bound must be chosen in advance. In contrast, here, the algorithm automatically adapts the upper bound to the variations of the rates, so that the rejection rate can be kept small.

What is more, we can further reduce the complexity by using an approximate simulation algorithm X = f (θ, ν). To do that, we take inspiration from tau-leaping algorithms, and treat the rates as if they were constant on each time interval [t i , t i+1 ], r i k = r k (X ti ). We then count the points below the rate r i k in each interval. We store the number of points present in each A i,j for each event to make this faster. The only points left to consider one by one are the ones from the single A i,j such that r i k is in [u j , u j+1 ]. This approximate algorithm is written out in the appendix D.4, as algorithm 9.

Once equipped with efficient simulations, we can use this PRM augmentation scheme for parameter inference with MCMC. The black crosses are the points of the infection and recovery measures respectively. The orange curves are the rates of infection and recovery respectively. When a point is under the rate curve, then the event happens. When an infection happens, I (and the rates) increase, and when a recovery happens, I (and the rates) decrease. Initially there is one infected and the whole population is susceptible.

PRM-augmented MCMC

We want to estimate the posterior distribution of the parameter values θ and of the discrete measure ν of the model (X t ) = f (θ, ν), given the data D, that is P(θ, ν|D) ∝ P(D|(X t ))P(θ)P(ν) P(θ) is the prior distribution placed on θ, and P(ν) is the PRM distribution. This is a non-centered data augmentation scheme [START_REF] Papaspiliopoulos | A General Framework for the Parametrization of Hierarchical Models[END_REF], meaning that θ and ν are a priori independent. We can use the Metropolis-Hastings algorithm [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF][START_REF] Hastings | Monte Carlo Sampling Methods Using Markov Chains and Their Applications[END_REF], in the same way as for a deterministic system. At every iteration of the MCMC, one draws new values θ and ν from the proposal, simulates the corresponding trajectory with f or f , (X t ) = f (θ , ν ), computes the likelihood to observe the data P(D|(X t ) ), then accepts or rejects the move according to the Metropolis-Hastings ratio.

Since this parametrization is non-centered, we can use independent proposals for θ and ν and still hope to obtain good mixing, as long as the data is weakly informative about ν. For the parameters θ, we can use any proposal Q θ that we would use with a deterministic model, like an adaptive Gaussian kernel. The novelty is for the discrete measure ν, and we explain here a possible proposal. The points of a PRM from disjoint subsets are independent. Thus, if ν is a PRM sample, we can choose a subset of ν, erase its points, redraw new points from the PRM process, and obtain a new (correlated) PRM sample. The support space of ν is already split into time slices C i for simulation purposes, so we reuse these slices for proposals. Our proposal therefore consists in choosing a fixed number of time slices randomly and then redrawing them. This proposal Q ν is reversible with respect to the PRM prior, and thus can be used for MCMC, as we detail in the appendix D.3.

If Q θ is the proposal for the parameters, with density q θ , then Q ν and Q θ can be used jointly to form a Metropolis-Hastings proposal, as shown in algorithm 4.

input : Parameter θ, discrete measure ν output : θ, ν Propose θ ∼ Q θ (.|θ) Propose ν ∼ Q ν (.|ν) Simulate X = f (θ , ν ) (or X = f (θ , ν ))
Compute the acceptance ratio α = P(D|X ) P(D|X)

P(θ ) P(θ) q(θ|θ ) q(θ |θ) Simulate u ∼ U ([0, 1]) if u < α then
The move is accepted return X else

The move is rejected return X end Algorithm 4: PRM Metropolis-Hastings proposal

Stochastic differential equation for a SIR model

To illustrate our method, we show how to apply it to the classical SIR model with case count data, and give both the deterministic (2.3) and stochastic (2.4) formulations of the model here, to show the correspondence between them.

S is the number of susceptible hosts, I the number of infected hosts, R the number of removed hosts, and C(t) the total number of cases, observed upon infection, up to time t. β is the effective contact rate, and γ is the rate of recovery (inverse duration of infection), while ρ is the reporting probability, that is the probability that when an infection happens, we observe it.

dS dt = -β S N I dI dt = β S N I -γI dR dt = γI dC dt = ρβ S N I N = S + I + R (2.3)
To make the notations less heavy in the SDE, we define the total rate of infection λ(s) = β Ss Ns I s . Also let ν I and ν R be independent PRMs on R + × R + with intensity the Lebesgue measure, for the events of infections and recoveries respectively.

The equations in (2.3) and (2.4) and their terms are written in the same order so as to show the correspondence between them.

S t = S 0 + t 0 R+
-1 u≤λ(s -) ν I (ds, du)

I t = I 0 + t 0 R+ 1 u≤λ(s -) ν I (ds, du) -1 u≤γI s -ν R (ds, du) R t = R 0 + t 0 R+ 1 u≤γI s -ν R (ds, du) C t = t 0 R+ 1 u≤ρλ(s -) ν I (ds, du) N t = S t + I t + R t (2.
4) We also use more complex versions of the SIR model, by making the effective contact rate seasonal, by adding host demography, immigration, immunity loss (SIRS) or a latent class (SEIR). To obtain the corresponding SDE, we only need to add a new PRM for every event, and adapt the event rates.

For example, to add host demography, we add the four events of birth of susceptible, death of susceptible, death of infectious, and death of removed, with rates BN * , DS, DI, and DR, and the four independent PRMs, ν B , ν DS , ν DI respectively.

To make the model seasonal, we would replace β by

β(t) = β m + β v sin(2π + φ).
The equations for these different models are given in the appendix D.5.

To perform inference on the model, we need an observation model to define the likelihood. For incidence data, the observations are the number of cases in each time interval C(t i ) -C(t i-1 ), and for inference we consider that the case count in each interval follows a negative binomial distribution. The overdispersion parameter allows more variance, and an additional degree of freedom, which tends to make inference by MCMC easier compared with the more natural Poisson distribution. For prevalence data, we consider that the prevalence observed at time t i follows the binomial distribution B (I(t i ), ρ). In both cases, the observations are independent conditionally on the trajectory, and the full likelihood is simply the product of the likelihoods.

Materials and Methods

OCaml implementation

The algorithm is implemented in the OCaml language [START_REF] Leroy | OCaml, an Industrial Strength Programming Language[END_REF], and the project repository is at: https://gitlab.com/bnguyenvanyen/ocamlecoevo

Metropolis-Hastings proposal

The proposal Q ν that we use in practice for ν consists in choosing n redraw slices of time from the simulation scheme, and in redrawing all points of these slices for all events. The proposal that we use for θ is a multivariate normal proposal adapted following Robust Adaptive Metropolis [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF].

The full proposal P is obtained by mixing three MH proposals, one that only updates ν, δ θ ⊗ Q ν , one that only updates θ, Q θ ⊗ δ ν , and one that updates both ν and θ jointly, Q θ ⊗ Q ν , given weights β ν , β θ and β θ,ν respectively. The number of time slices that are redrawn in Q ν , n redraw , as well as the proposal weights β ν , β θ , and β θ,ν , are important hyper-parameters that need to be optimized for the problem at hand.

Comparison of inference methods

For the comparisons, we simulate daily prevalence data with the simple SIR model over a one month duration, with a population size N taking values 500, 1000, 2000, 4000 and 8000. The precise parameter values are given in Appendix D.5.1.

We compare our PRM-augmented MCMC scheme with exact simulations to a subject-level data augmentation MCMC with Gibbs sampling, presented in [START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF]. We also compare our PRMaugmented MCMC scheme with approximate simulations to Particle MCMC (PMCMC), implemented with the R package pomp [START_REF] King | Statistical Inference for Partially Observed Markov Processes via the R Package Pomp[END_REF]. For PRM-augmented MCMC, we use the prior as proposal for ν for 100 iterations, then continue with our custom proposal Q for 2000000 iterations. In all cases, we start the chains from the target parameter values, to not take into account possible differences in the speed of convergence to a High Posterior Density (HPD) region.

For the comparison with subject-level augmentation, we estimate the base effective contact rate β under a Gamma prior, and the initial condition under a Dirichlet-Multinomial prior. We perform 10000 iterations of the Gibbs sampler. Its moves in process space consist of redrawing the infectious history of one subject, conditional on the data and of the histories of the other subjects. To maintain mixing as N increases, we keep the number of histo-ries redrawn per iteration proportional to N -10 for 500 and 160 for 8000.

For the comparison with PMCMC, we only estimate the base effective contact rate β, under the same Gamma prior as before. The number of particles to use for the filter is chosen so that the estimated likelihood distribution has visibly converged.

As a measure of computational complexity for the different estimation procedures, we compute the amount of computational time it takes to obtain one effective sample from the posterior.

The multi-dimensional effective sample size [START_REF] Vats | Multivariate Output Analysis for Markov Chain Monte Carlo[END_REF] is defined as

mESS(n) = n |Λ| |Σ| 1 p
where n is the number of samples, p the number of dimensions estimated, |.| the determinant, Λ the covariance structure of the posterior, and Σ the asymptotic covariance matrix of the Markov chain. Λ can be estimated with the sample covariance matrix, and Σ with the batch means covariance matrix. We evaluate the mESS over the parameter dimensions, either β alone, or β plus the initial proportions pS 0 , pI 0 and pR 0 , when they are inferred. Note that the comparison with PMCMC through mESS cannot be fully quantitative, since the MCMC is not over the same space. We do not compare how well we integrate over the space of possible trajectories or discrete measures, integrated via SMC in the case of PMCMC, but MCMC in the case of PRM-augmented MCMC.

SEIRS seasonal model simulation and inference

5 years of data are generated with a deterministic SEIRS model with seasonality and vitality. On infection, the hosts go through the Susceptible, Exposed, Infectious, Removed, and then back to the Susceptible class. The equations of the model and the parameter values used are given in the appendix D.5.2. The parameter values are chosen so that the infectious curve displays a clear periodic signal of period 1 year, from the attractor of the system. We also use the same SEIRS model but without seasonality for inference, that is, where β(t) is constant (β m = 0), designated the constant SEIRS model.

The data is then inferred with the stochastic seasonal model, and with the stochastic constant model, by PRM-augmented MCMC. The data are the cases counted on infection, given a Poisson distribution. The parameter prior distributions are detailed in the appendix D.5.2.

French Polynesia Zika data

The French Polynesia Zika dataset is composed of the weekly case counts for Moorea island, and of seroprevalence data from a cohort of 196 people from the archipelago. The case count data has been made available in [START_REF] Mallet | Bilan de l'epidemie a Virus Zika En Polynesie Francaise, 2013-2014[END_REF][START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF], and the seroprevalence data in [START_REF] Aubry | Zika Virus Seroprevalence, French Polynesia, 2014-2015[END_REF][START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF].

We fit a SEIR model with immigration to the data, with PRMaugmented MCMC. We model the cases as counted on infection (E → I), with a Poisson distribution of observation. We model seroprevalence as the removed proportion of the population, with a binomial distribution of observation. The two sources of data are considered as independent, so the full likelihood is the product of the two components. The details of the model and the prior distributions are given in the appendix D.5.3.

The PRM-augmented MCMC is run for 200000 iterations for convergence and adaptation of the covariance matrix [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF], then for 10 6 iterations, from which 1000 samples are kept.

Results

Correctness of PRM-augmented MCMC

To prove that our implementation of PRM-augmented MCMC is correct, we checked that it yielded the same posterior estimates as a subject-level data augmentation method with Gibbs sampling, presented in [START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF]. Figure 2.2 shows that after enough MCMC iterations, the parameter marginal and pairwise posterior estimates with the two methods cannot be distinguished.

Efficiency of PRM-augmented MCMC

The comparison between exact and approximate simulations in Fig. 2.3 shows that both simulation schemes scale in the same order on population size, but that the approximate scheme is much less costly. In this example, for a population of 8000, a million iterations took a bit less than 4 hours with the approximate method, but close to 11 hours with the exact method. As population size increases, stochasticity plays a less important role, and it becomes increasingly advantageous to use the approximate simulations. For small populations and with high time resolution however, it might be better to use exact simulations to avoid the bias caused by approximation. As both schemes rely on the same data structure for ν, it is easy to switch from one to the other, and would be straightforward to implement switching between them when required during estimation.

The PRM-augmented MCMC also proved much more efficient than the subject level data augmentation method described in [START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF], as is shown in Fig. 2.4a. The Gibbs sampler from [START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF] is more statistically efficient in terms of iterations, as it yields around 1 effective sample every 100 iterations, against 1 every 6000 iterations for PRM augmentation. However, every one of its iterations is much more costly. In theory, the complexity for an iteration of subject level augmentation scales with the square of the MCMC samples from the joint posterior distributions for β the effective contact rate, pS 0 the initial proportion of susceptibles and pI 0 the initial proportion of infectious. pS 0 and pI 0 are parameters of the multinomial prior on the initial conditions. In blue, PRM augmentation, and in orange, subject-level augmentation. 2250 samples kept from respectively 900 (9) thousand iterations, after 100 (1) thousand iterations of burn-in for PRM augmentation, and subject-level augmentation. Complexity, in number of seconds of run time (wall clock) per iteration, as a function of host population size. On a binary logarithm scale for the population size, and on a decimal logarithm scale for the complexity. In blue, the exact simulation algorithm, and in orange, the exact simulation algorithm. To read the graph, lower is better, and a linear curve indicates a power-law relationship. The grey lines are reference relationships for exponents 0 (constant complexity), and 1 (linear complexity). population size. The cost of resampling a subject's history grows linearly with the number of events, and the number of histories to redraw per iteration also grows linearly with population size to maintain mixing. This quickly becomes problematic, even with moderate population sizes. In contrast, the mixing in the case of PRM-augmentation doesn't vary much with population size, only the cost of an iteration does. In practice, a linear regression indicates an exponent of 2.5 for subject level augmentation, and 0.5 for PRM-augmentation.

We also compared PRM augmentation with approximate simulations to Particle MCMC (PMCMC) with approximate simulations, to evaluate the possibilities for larger populations. The comparison is not fully quantitative, as the choice of number of particles of the filter for PMCMC is partly arbitrary, and not captured in the ESS measure. On this specific example, we saw no large difference in estimation between 200 particles and 400 or more, for all population sizes, so we report the results for 200 particles. Figure 2.4b indicates that the cost of the two methods is similar for small populations, but that PMCMC then gains the advantage. This is because the cost of the Euler-multinomial simulations used in the PMCMC method does not scale with population size, whereas the approximate PRM simulations cost does.

The expected run time of PRM-augmented MCMC inference for a given analysis cannot be easily estimated, but it will scale with the total number of events of the system. This will scale with the population size, but also the time period of the data, the magnitude of the epidemics, and the number of different events (model complexity). For the specific analysis presented here, of a short epidemic and a SIR model, with a population of 64 thousand, one effective sample required around 20 seconds (on a X230 Thinkpad laptop). Therefore, this analysis could be run for a population of several hundred thousand, but several millions would be too costly.

Model diagnosis

To see the Markov jump process as the solution of an SDE with respect to a PRM is to create a separation between the noise driving the process, contained in the PRM, and the mechanism of the process, described by the parameters of the process. By inferring θ and ν jointly, then, we are hoping to capture the mechanistic part in θ, and the noise part in ν, provided that the process explains the data well.

In fact, the variables ν act as Bayesian latent residuals [START_REF] Lau | New Model Diagnostics for Spatio-Temporal Systems in Epidemiology and Ecology[END_REF]. If the posterior distribution of ν is very different from its prior distribution of a standard PRM (intensity one), then our hypotheses about the noise in the model are wrong. A pattern found in the posterior for ν means that the pattern in the data is not entirely captured by the mechanism proposed, or said another way, that the model is underfitting the data. The nature of the pattern in the posterior for ν can then provide clues to improve the model to capture the pattern. The posterior samples for ν can thus be used both to evaluate model fit, and to improve the model.

We illustrate this with an example on the SEIRS model, in a seasonal and a constant version (see 2.3.4, page 73). We generate some data with the seasonal model, then compare the fit of this true seasonal model to the data, to the fit of the constant model to the data. We can see in F ig. 2.5, (a) that we are able to fit the constant model to the seasonal data. To evaluate the fit, we can look at the posterior samples of ν. We define the point density of ν for event k and for a time slice i as the number of points by unit of volume,

d k i = ν(C k i ) |C k i | .
The posterior ν estimates (Fig. 2.5, (b)) for the true seasonal model are very similar to the prior. However for the constant model, the infection point density rises at the start of every epidemic season, and falls at the ends. For the constant model to reproduce the data, it is necessary to have more infections than expected at the start of the epidemic season, and less than expected at the end. That is, the seasonal signal (Fig. 2.5, (c)) is captured in the posterior for ν, for us to notice and then include The average effective contact rate β m , the initial conditions (S 0 , I 0 , R 0 ), and the discrete measure ν are estimated. For both models, 250 ν samples are kept for estimation, out of 500000 iterations after convergence. into the model.

In this example, the seasonal signal is already obvious in the data, and would be included in the model from the start. Even though that is a bit artificial, it leads to two interesting remarks. First, even though the constant model explains the seasonal data very badly, we are still able to fit it to the seasonal data. This shows that the MCMC is able to reach a priori very unlikely discrete measure values, and so that we are able to explore the discrete measure space well. Second, if we look at the estimates for the other events, we can see that recovery is nearly the symmetric of infection. The model doesn't really make a difference between more infections and less recoveries, or variation in infection rate, and variation in recovery rate. This shows that this procedure is not a replacement for actually including time-varying parameters [START_REF] Cazelles | Accounting for Non-Stationarity in Epidemiology by Embedding Time-Varying Parameters in Stochastic Models[END_REF], with a prior chosen to reflect how likely we expect those variations to be.

French Polynesia Zika epidemic

The Zika epidemic from 2013-2014 in French Polynesia was an early epidemic, preceding the big wave of Zika in the Americas. It has already been the subject of several modelling and inference studies [START_REF] Kucharski | Transmission Dynamics of Zika Virus in Island Populations: A Modelling Analysis of the 2013-14 French Polynesia Outbreak[END_REF][START_REF] Cauchemez | Association between Zika Virus and Microcephaly in French Polynesia, 2013-15: A Retrospective Study[END_REF][START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF]]. An interesting feature of the epidemic, that has been previously noticed [START_REF] Kucharski | Transmission Dynamics of Zika Virus in Island Populations: A Modelling Analysis of the 2013-14 French Polynesia Outbreak[END_REF][START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF], is that the case count data and seroprevalence data seem to tell a different story. The case counts indicate that the epidemic progressed very fast. When considered alone, it is inferred that the whole population was infected, but seroprevalence studies show that only around 50% of the population got infected in reality. In [START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF], an additional parameter was introduced to limit the epidemic to a portion of the population, so as to fit the model to both sources of data simultaneously. We use PRM-augmented MCMC to fit a simple SEIR model to the data, to better understand the incompatibility between case counts and seroprevalence.

The fit with PRM-augmented MCMC shows that the model cannot correctly capture the data, if we restrict ourselves to realistic incubation and infectious periods, as shown in Fig. 2.5. The posterior ν distribution displays peaks in point density at the beginning of the epidemic, most notably for the event of becoming infectious, and for the event of infection. This means that trajectories of the model that fit to the data have more infections and shorter incubation periods than expected by intrinsic noise, but only at the start of the epidemic. There is no reason to expect that this could happen. Said another way, in the initial period, cases happen faster than the model can follow. More realistically, this could also be explained by an increase in the reporting probability as the epidemic becomes noticed, or also by population structure [START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF][START_REF] Kucharski | Transmission Dynamics of Zika Virus in Island Populations: A Modelling Analysis of the 2013-14 French Polynesia Outbreak[END_REF].

Discussion

Epidemiological data is ever more abundant and complex, and can help us better understand the dynamics of infectious diseases, answer important theoretical questions and address public health problems. Existing inference methods, however, are quickly becoming a limiting factor, because of a prohibitive computational cost, a difficulty in applying the method to arbitrary models, or both.

The search for new methods has progressed in different directions, to build methods that are both faster and more easily transferable to different models.

For MCMC, one such advance has been the development of adaptive methods [START_REF] Haario | An Adaptive Metropolis Algorithm[END_REF][START_REF] Gareth | Examples of Adaptive MCMC[END_REF][START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. They can relieve the user from the burden of designing proposals taking into account the particular structure of the model, as the adaptive method aims to discover that structure automatically. The adoption of these methods for complex models takes time. In the case of stochastic processes, the problem is complicated by the very large (infinite dimensional) latent variable space to explore. As a consequence, a large part of the data augmentation methods for stochastic processes tend to concern themselves with Gibbs sampling, or Metropolis-Hastings component-wise updates when Gibbs sampling cannot be achieved.

For Markov jump processes, an efficient sampler based on uniformization [START_REF] Jensen | Markoff Chains as an Aid in the Study of Markoff Processes[END_REF] was proposed in [START_REF] Rao | Fast MCMC Sampling for Markov Jump Processes and Extensions[END_REF][START_REF] Zhang | Efficient Parameter Sampling for Markov Jump Processes[END_REF]. They make a clever use of uniformization to apply a method from Markov chains to MJPs. This method does not scale well to large state spaces however, and so it is not practical in the case of stochastic epidemic models.

Instead, data augmentation methods targeted specifically at stochastic epidemic models have also been developed these last 20 years [START_REF] Cauchemez | A Bayesian MCMC Approach to Study Transmission of Influenza: Application to Household Longitudinal Data[END_REF][START_REF] Neal | A Case Study in Non-Centering for Data Augmentation: Stochastic Epidemics[END_REF][START_REF] Jewell | Bayesian Analysis for Emerging Infectious Diseases[END_REF][START_REF] Neal | Forward Simulation Markov Chain Monte Carlo with Applications to Stochastic Epidemic Models[END_REF][START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF]. They typically use componentwise updates, the effectiveness of which depends crucially on the degree of posterior independence of the different components. In these methods, the latent variables represent the subject-level disease histories. This is a centered parametrization [START_REF] Papaspiliopoulos | A General Framework for the Parametrization of Hierarchical Models[END_REF], as the latent variables ν are a sufficient statistic for θ. By opposition, one can also use a non-centered parametrization, in which the latent variables ν and θ are a priori independent, or phrased another way, ν is an ancillary statistic for θ.

In the centered case, when the data brings little information, θ and ν are very correlated and separate updates for θ and ν must be very conservative. In that case, non-centering can be much more effective, as θ and ν will be nearly independent. If instead the data is very informative, then the reverse is true, and the centered parametrization will mix better than the non-centered one. This question of centering and non-centering is crucial for mixing speed in the case of component-wise updates, and has already been discussed in the literature around stochastic epidemic models [START_REF] Neal | A Case Study in Non-Centering for Data Augmentation: Stochastic Epidemics[END_REF].

For typical stochastic epidemic models, it is often possible to re-parametrize the model in terms of uniform random variates, for instance, and thus to obtain a non-centered parametrization. This can be the basis for non-centered simulation-based MCMC [START_REF] Neal | Forward Simulation Markov Chain Monte Carlo with Applications to Stochastic Epidemic Models[END_REF]. However, the parametrization is ad hoc and must be found by the modeller. In constrast, we believe PRM-augmentation provides a canonical non-centered parametrization, and thus it is a good choice for low-granularity data like we have shown here. For the case when the data is more informative, it should be possible to design joint adaptive proposals that could move reasonably far in trajectory space.

Indeed, the increased efficiency compared with the subjectlevel data augmentation method from [START_REF] Fintzi | Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data[END_REF] can be in part attributed to this. The subject-level augmentation is a centered parametrization, and the cost of using Gibbs sampling to obtain new histories is that only one history can be resampled at a time. Another method of conditional resimulation that should scale better with population size is however presented in [START_REF] Pooley | Using Model-Based Proposals for Fast Parameter Inference on Discrete State Space, Continuous-Time Markov Processes[END_REF]. The use of approximate simulations enables PRM-augmented inference of epidemics in sizable populations of several hundred thousands. The current implementation, however, does not permit its application to large populations, and PMCMC (with appproximate simulations) proved more efficient for increasing population sizes. PRM-augmented MCMC presents an interesting tradeoff for moderately large population sizes, and a possible alternative to linear noise approximations [START_REF] Fintzi | A Linear Noise Approximation for Stochastic Epidemic Models Fit to Partially Observed Incidence Counts[END_REF] or PMCMC [START_REF] Andrieu | Particle Markov Chain Monte Carlo Methods: Particle Markov Chain Monte Carlo Methods[END_REF]. Further research on simulations and proposals for PRM-augmentation may still provide large efficiency gains. At the same time, the method is easily used in practice, as it is akin to a simulation-based method, that one can directly transpose to new models, with no lengthy and error-prone mathematical derivations or implementation.

However, we would like to argue that the main advantage of PRM-augmentation is that it is in a sense a natural parametrization of the model, which makes our assumptions about the nature of the stochasticity very clear. It leads to a clear separation between the process mechanism, desribed by θ, and the process noise, described by ν, that facilitates interpretation and is very useful for model diagnosis (section 2.4.3). The procedure is identical to the one presented in [START_REF] Lau | New Model Diagnostics for Spatio-Temporal Systems in Epidemiology and Ecology[END_REF][START_REF] Max | Model Diagnostics and Refinement for Phylodynamic Models[END_REF], with two differences. First, the ν samples are obtained as part of the inference, and not after. That way, we don't need to be able to compute ν = f -1 (θ, X) (and in our case, f is not injective). Second, and most importantly, we have a clear meaning for what the latent residuals ν represent, so that it is easy to interpret deviations from the prior.

In conclusion, PRM-augmented MCMC is a practical method for the inference of moderate epidemics where stochasticity cannot be ignored. As a simulation-based method, one can easily apply it to many different models, and the PRM samples obtained make it possible to diagnose, compare, and propose better models.

Chapter 3

Non-centered phylodynamic inference with PRM-augmented MCMC

Introduction

Gene and genome sequencing have revolutionized phylogenetics. Following successive technology upgrades, the datasets have increased in size very fast, from hundreds of base pairs in the seventies, to nowadays sometimes millions of base pairs or thousands of genomes. Inference methods have needed to adapt as well, to be able to handle the increasingly large trees and long sequences.

New fields of research have sprung up following this revolution, including viral phylodynamics, which aims at reconstructing the population dynamics of viral infectious diseases from viral genome sequences [START_REF] Grenfell | Unifying the Epidemiological and Evolutionary Dynamics of Pathogens[END_REF]. These methods have already proven very useful for pathogens for which data are abundant, like HIV [START_REF] Volz | HIV-1 Transmission during Early Infection in Men Who Have Sex with Men: A Phylodynamic Analysis[END_REF] and the influenza virus [START_REF] Bedford | Global Circulation Patterns of Seasonal Influenza Viruses Vary with Antigenic Drift[END_REF]. However, bayesian inference of a complex structured population model with hundreds of full genomes is very challenging in practice, and can take up to several weeks of computation even with parallel implementations [START_REF] Volz | Bayesian Phylodynamic Inference with Complex Models[END_REF][START_REF] Mandev | Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction[END_REF]. This is a very serious limiting factor in phylodynamic research [START_REF] Simon | Eight Challenges in Phylodynamic Inference[END_REF], and it is a high wall to climb over, and therefore, there is a strong need to develop more efficient methods. In this chapter, I will present a method that I developed. The method is novel and ambitious, as it proceeds very differently from classical phylogenetic inference, and I believe it introduces interesting ideas. However, the method also has severe shortcomings that remain to be overcome for it to become efficient enough.

In classical phylogenetic maximum likelihood inference or posterior distribution inference, one explores the space of trees by progressively modifying the tree using tree moves, like the subtreeprune-and-regraft moves for instance [START_REF] Guindon | New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0[END_REF].

In the case of Bayesian inference, we can use a Metropolis-Hastings sampler, if we compute the prior tree density and likelihood of the tree, given the observed sequence alignment, at every iteration. There is an extensive literature on these subjects, discussing tree moves [START_REF] Lakner | Efficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics[END_REF], and optimizations in likelihood computations [START_REF] Daniel | BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics[END_REF]. This approach is used for example in MrBayes [START_REF] Huelsenbeck | MRBAYES: Bayesian Inference of Phylogenetic Trees[END_REF], in BEAST 1 [START_REF] Drummond | BEAST: Bayesian Evolutionary Analysis by Sampling Trees[END_REF] and 2 [START_REF] Bouckaert | BEAST 2: A Software Platform for Bayesian Evolutionary Analysis[END_REF], and in many others.

The difficulty in this approach lies in proposing good trees, that will score well under the prior and likelihood distribution. The proposal distribution is the challenging part in any MCMC sampler, and the sampling efficiency can vary by several orders of magnitude depending on its choice. Hopefully, this means that there is still room for major improvements in phylogenetic inference. For instance, recent research shows that using guided proposals instead of uniform proposals provides a major boost to sampling efficiency [START_REF] Zhang | Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference[END_REF].

An additional difficulty in the particular case of phylodynamic inference with mechanistic population models is to sample from the population process prior correctly. This conditioning of the phylogeny requires either the integration of differential equations along the lineages of the phylogeny at every iteration [START_REF] Volz | Bayesian Phylodynamic Inference with Complex Models[END_REF], or an additional level of data augmentation for the lineage states [START_REF] Vaughan | Efficient Bayesian Inference under the Structured Coalescent[END_REF]. The two approaches are costly, and approximations or numerical errors can be misleading [START_REF] De | New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation[END_REF][START_REF] Volz | Bayesian Phylodynamic Inference with Complex Models[END_REF].

From the point of view of parameter estimation, the simultaneous estimation of the tree is a data augmentation strategy.

Here, we explore a different and novel data augmentation strategy, for the inference of coalescent processes. We can write the coalescent process as the solution of a Poisson-driven Stochastic Differential Equation (SDE), that is, a differential equation with an integration with respect to a Poisson Random Measure (PRM). The Poisson-driven SDE indicates an algorithm to simulate the process deterministically from a PRM realisation. This can be used for data augmentation, following the principles exposed in Chapter refchp:prm, and in the present chapter, we evaluate this strategy for coalescent processes.

An advantage of this approach is that at every iteration, we directly sample from the coalescent process prior space, instead of having to do the correction in the Hastings ratio. In particular, in the case of a structured coalescent process, a lineage can be in different states, that we will call colors. If the data are informative about lineage colors, we avoid an expensive integration over the space of possible colors in the computation of the prior density. We have replaced the problem of designing a good proposal on the space of trees with that of designing a good proposal on a space of discrete measures. This space of discrete measures is much bigger: In the simplest case, with our encoding, for a tree with n leaves, n different discrete measures lead to the same tree. This can only be offset if our proposal on discrete measures is efficient enough compared to the tree proposals.

After explaining our data augmentation scheme, I will present a MH sampler that makes use of it, and show its results and performance on simulated data, in comparison with a traditional treeaugmentation MH sampler. We will see that PRM-augmentation yields similar results to tree-augmentation, but that in the current state of affairs, its speed is not competitive with tree-augmentation.

Theory

Coalescent processes

In the scope of this article, we will define a coalescent process as a continuous time Markov process where the state space is that of a population of lineages, where each lineage corresponds to one or several samples, and holds a certain color. The process can undergo three types of events, sampling, migration, and coalescence. When a sampling event happens, a new lineage of one sample is introduced in the population. When a migration event happens, a lineage changes its color. Finally, when a coalescence event happens, two lineages merge, so that the new lineage holds the union of their samples. The inference method we present can theoretically be applied to this class of processes, but for the scope of this article, we will focus on the most simple case of the unstructured coalescent process, as this simplifies the explanations and the algorithm. The unstructured coalescent process has only one color, which we can therefore neglect, and only two types of events, sampling and coalescence. Furthermore, we will only consider the case where the total number of samples is finite, and where the sampling times are known, so that the only random event is coalescence. Some considerations about the structured case are exposed in the appendix E, page 217.

Let [n] = {1, . . . , n}. Let C n be the state space of the process, defined in 3.1.

C n = { {B 1 , . . . , B m }, m ≤ n, ∀k ≤ m, ∅ = B k ⊂ [n], ∀k, k ≤ m, B k ∩ B k = ∅ } (3.1)
In this definition, each lineage B k is simply the set of all samples having already merged into this lineage. The number of lin-eages is m. Not all samples are necessarily present, so the (B k ) k do not form a partition of [n], but the intersection of the samples of two lineages is empty, as a sample belongs to only one lineage. Let C -k n the subset of C n for which k is not sampled.

C -k n =    {B 1 , . . . , B m } ∈ C n , k / ∈ 1≤i≤m B i   
When the lineage k is sampled, the number of lineages is increased by 1, and the new lineage contains only k. We write µ k s : C -k n → C n for the function which samples k.

µ k s ({B 1 , . . . , B m }) = {B 1 , . . . , B m , {k}} . 
When two lineages j and j coalesce, the number of lineages is decreased by 1, the lineage indices are adjusted, and the lineage resulting from the coalescence contains the union of B j and B j . We write µ c : N * × N * × C n → C n for the function which coalesces the two lineages j and j .

To illustrate, in the case where j and j are different from 1 and m, we can write (3.2). µ c (j, j , {B 1 , . . . , B j , . . . , B j , . . . , B m }) = {B 1 , . . . , B j , . . . , B m-1 } = {B 1 , . . . , B j ∪ B j , . . . , B m } (3.2) We now describe the Markov processes X of interest in more detail. Let n be the number of samples. We order the samples by their increasing sampling times (t k ) k≤n , that is if k < k , then t k ≤ t k . The process is determined by its sampling times and its pairwise coalescence rate function r c : C n → R + . The infinitesimal generator of the process X (away from sampling events) is denoted by L. For f :

C n → R a real function, L f (x) = 1≤k<k ≤|x| r c (x)µ c (k, k , x).

Naive PRM parametrization

For the purpose of inference, we are interested in the formulation of a coalescent process as the solution of a SDE driven by a PRM. One first such formulation relies on using the PRM to represent hypothetical events, with their time, and lineage indices. The PRM points are then thinned depending on the coalescence rate. In that case, the PRM ν is defined on R + × R + × N * × N * , and has standard intensity measure ds⊗du⊗dj ⊗dj . For a point (s, u, j, j ) of the PRM, s represents the time of the event if accepted, u the rate thinning criterion (see the SDE), and j and j the indices of the lineages to coalesce. We assume that all sampling times are distinct, and that the population is initially empty, X 0 = ∅. Let f be a real-valued function on C n . The SDE for the process is then (3.3).

f (X t ) = f (X 0 ) + 1≤k≤n 1 t k ≤t f • µ k s • X t k --f • X t k - + t 0 R+ N * N * 1 j<j ≤|X s -| 1 u≤rc(X s -) (f (µ c (j, j , X s -)) -f (X s -)) ν(ds, du, dj, dj ) (3.3)
To understand (3.3), consider the coalescent population at time t. It consists in all the samples having been sampled before time t, represented in the first sum. These samples have coalesced following the points of ν up to time t, corresponding to the integral. The only points that are taken into account are those where the lineages exist, with each pair counted only once, j < j ≤ |X s -|. Additionally, the event only happens if u ≤ r c (X s -), so that the pairwise coalescence rate is r c (X s -). Using (3.3), we can simulate the process from a PRM realisation, and so this equation could be used as the basis for Data Augmentation and inference by MCMC. However, this does not yield good results, for a simple reason. This parametrization is not amenable to building a proposal that will easily conserve phylogenetic information from one iteration to the next. We start from a parameter value θ, a PRM realisation ν, and a corresponding coalescent trajectory X. Now let us consider a new parameter value θ , which gives us a new trajectory X , because the coalescence rate r c (θ, .) has changed. Even if θ is very close to θ, X can be very different from X. It is enough that one point of ν have a u very close to the coalescence rate at that time for an event to appear or disappear after the change. The lineage indexing then changes as a consequence, and this is enough to totally change the coalescent trajectory and corresponding genealogy. Instead, we are looking for a parametrization of the problem whereby small continuous perturbations of θ and ν also lead to a small change of X. To make these notions more precise, we would need to define a distance for trajectories and to explicitize what our criterion of a "small change" of trajectory is. We could for instance use the Skorokhod distance on the space of trajectories D(R + , C n ), and require the function F (θ, ν) = X to be continuous in θ. For simplicity, we will avoid this level of precision, and simply rely on intuition.

Alternative parametrization

To obtain a more appropriate SDE, we will modify two elements of the parametrization. As we have seen, the main problem is that a slight change of the coalescence rate can make points appear or disappear, because of the relation between u ≤ r c (X s -). To address this problem, our first modification is to remove the u dimension from the PRM, and use a change of variable on the time. Instead of obtaining the right coalescence rate by acceptance or rejection of points, we will do so by moving the points backward or forward in time appropriately. This construction is analogous to that of an heterogeneous Poisson process N t of intensity r, from a homogeneous one P , as N t = P ( t 0 r(s -) ds). In this equation, time flows differently for P and N ; the "internal" time of P is consumed at a rate r by N . For integration with respect to a PRM, we can do the same thing with a pushforward measure. Let g # π be the pushforward of π by f . In our case, we need the pushforward of ν by the integral of the coalescence rate r c along the trajectory.

The second problem with (3.3) comes from the fact that a change early in the trajectory can lead to all subsequent events being different, because of changes in lineage indices. To alleviate this problem, we want coalescence events to hold a stable, unequivocal meaning in terms of the simulated genealogy. Instead of associating a coalescence event to a pair of lineages, we will associate it to a pair of samples. In this parametrization, many sample coalescence events correspond to the same lineage coalescence event. For example, for x = {{1, 2}, {3, 4 }}, the sample coalescence events for [START_REF]Comment l'épidémiologie tente de cerner l'épidémie due au nouveau coronavirus[END_REF][START_REF] Rosen | A History of Public Health[END_REF] or [START_REF]Coronavirus : comment sont élaborées les modélisations épidémiologiques[END_REF][START_REF] Porter | Health, Civilization and the State: A History of Public Health from Ancient to Modern Times[END_REF] have the same effect. In consequence, we also need to rescale the event rates so that coalescence still happens at the same rate. Let l(x, k) be the index of the lineage containing the sample k in x. If k is absent from x, then l(x, k) = 0. Let h(x, k) be the number of samples of the lineage containing k, h(x, k) = |B l(x,k) |. The sample coalescence rate r c (k, k , x) is the lineage coalescence rate divided by the number of sample pairs for those lineages, if the samples have been sampled, and they have not yet coalesced.

r c (k, k , x) = 1 l(x,k) =0 1 l(x,k ) =0 1 l(x,k) =l(x,k ) r c (x) h(x, k)h(x, k ) We also introduce the function µ c (k, k , x) = µ c (l(x, k), l(x, k ), x).
With this second modification, coalescence events do not all have the same rate. So that every event occurs with the correct rate, it needs to go through a different change of variable. This means that every coalescent event corresponds to a different time referential. In consequence, we split the PRM into one PRM for every sample pair, (ν k,k ) 1≤k<k ≤n , defined on R + , with intensity measure ds. A particularity of the coalescence events is that they can happen at most once. After that, the rate of the event becomes 0. Therefore, we need at most one point from any of the PRMs, and we can replace ν k,k by e k,k ∼ E(1), a standard exponential variable, which simplifies the SDE considerably. We define Y (k, k , u) := X t -, t = min t, t 0 r c (k,k ,X s -) ds≥u , the value of X at the first time such that the integral of the coalescence rate for the sample pair (k, k ) becomes greater than u. We can now write the SDE as (3.4).

f (X t ) = f (X 0 ) + 1≤k≤n 1 t k ≤t f • µ k s • X t k --f • X t k - + 1≤k<k ≤n 1 t 0 r c (k,k ,X s -) ds≥e k,k (f (µ c (k, k , Y (k, k , e k,k ))) -f (Y (k, k , e k,k ))) (3.4)
The solution of (3.4) is a Markov process with the same probability distribution as the solution of (3.3). To understand (3.4), consider the process at time t. As with (3.3), we take into account all the sampling events that take place before time t. Then, we take into account every coalescence event for which the integral of the rate has reached e k,k before time t. The event then happens at the time when e k,k is hit. This also indicates an algorithm to simulate the process, illustrated in Fig. 3.1, which we explain in more detail in the next section, and use as a basis for inference.

If we now imagine that we perturb the process by changing the coalescence rates very slightly, this simply changes the coalescence times, but not the topology of the phylogeny. The topology of the phylogeny only changes if the order between the hitting times for the different events changes. For instance, we can imagine that we progressively decrease the fuel e k1,k2 of an event (k 1 , k 2 ) that is never hit. This is illustrated in Fig. 3.2. Initially, nothing changes as we decrease e k1,k2 , because the event is never hit. At some The orangecurves show the fuel consumed for each event in time.

(a) Initially all coalescence events have the same rate. The first event reached is the coalescence between samples 1 and 2.

(b) After the first event, h(1, X) = 2 and h(2, X) = 2, so the coalescence rates decrease. After the second event, all rates are null, because l(1, X) = l(2, X) = l(3, X).

point, the hitting time for (k 1 , k 2 ) becomes equal to some other event (k 3 , k 4 ), and the two events become simultaneous, which corresponds to a multifurcation in the phylogeny. As we continue to decrease e k1,k2 , the coalescence for (k 1 , k 2 ) now occurs first, and the topology of the phylogeny has changed. At the same time, the coalescence for (k 3 , k 4 ) still happens, but at a later time. This is a continuous transformation of the process, as the (e k,k ) or θ are changed. This parametrization is therefore a promising basis for inference via Data Augmentation, and we now present a MH sampler to achieve this.

Methods

We want to perform inference of a coalescent process parametrized by θ through Data Augmentation with the parametrization of (3.4). We want to perform Monte Carlo integration over the joint space of parameters and process noise (θ, (e k,k )). To achieve this, we first need an algorithm to simulate the coalescent process given θ and the (e k,k ). We present two such algorithms in 3.3.1. We then need a proposal kernel to obtain new values of θ and (e k,k ) with, and we discuss such proposals in 3.3.2.

Simulation of a coalescent process

The SDE (3.4) indicates a generic algorithm to simulate the unstructured coalescent process, given the exponential variables (e k,k ). Each e k,k is the fuel of the corresponding event, consumed according to the rate of the event. To start with, for each possible event, we determine the time at which it would occur, if it was the first among all events to occur. We treat the sampling events the same as other events, but their occurrence time is fixed and will not change depending on the state of the system. The next event that happens is the sampling or coalescence event with the smallest projected occurrence time. We update the system according to the event, then recompute all event projected occurrence time. We then continue recursively, selecting each time the event with the smallest time, until the final time t f has been reached. At the start of the simulation, no lineage has been sampled yet, so that all coalescence events have a rate of 0. After two sampling events have happened, one of the coalescence events has a non-zero rate, and as more sampling events and coalescences happen, the rates change. At t f , a maximum of n sampling events and n -1 coalescence events will have occurred.

To implement this algorithm, for each event we need to keep track of the projected occurrence time of the event, of the last time we computed this quantity, as well as of the amount of fuel this corresponded to. We also need functions to update the amount of fuel, to project the occurrence time, and to update the system state. Updating the fuel corresponds to integrating the rate of the event between the last update time and current update time, while projecting the time is done with the inverse of the primitive of the event rate. Pseudo-code for this algorithm is given in 5.

This algorithm is not very efficient, because at every event that happens, we need to update all events to determine which one will happen next. If there are n samples, then we have O(n) events that do happen, and O(n 2 ) possible events, so that the full simulation is O(n 3 ).

In certain cases that we describe now, we can use a more efficient algorithm. After an event happens, we need to update all events for two reasons: because they might be the next event to occur, and because we need to keep track of the fuels consumed correctly. If we can be sure that a given event will not be next to occur, we can avoid updating, provided we have an efficient way to compute the total fuel consumed the next time we need to. This is possible if we can provide an upper bound on the future rate of the event. In particular, this is the case for the unstructured coalescent process we have talked about until now,even if non-autonomous.

The updated algorithm starts by projecting the minimum time input : The number of samples n, the final time t f , the sampling times (s i ) 1≤i≤n , the coalescence fuels (e i,j ) 1≤i<j≤n , the primitive of the coalescence rate prim and its inverse inv output : The trajectory (X t ) t≤t f Set up the sampling events from the sampling times (s i ). Set up the coalescence events from the fuels (e i,j ). Set up the ordered list of projected occurrence times (t k ). while min{t k } < t f do Pop the min element of (t k ) to get the next event e and its time t . Update the fuel consumed by time t for all other events. Update the last update time of all other events to t . Update the state of the system according to e, X t . Update the projected times (t k ). end Algorithm 5: Algorithm for the simulation of a single color coalescent process is put back in the list. In the best case scenario, every event is seen only once and then consumed, and the algorithm scales as O(n 2 ). However, if our upper bound on the rate of events (and lower bound on occurence time) is too lax, we might need to process every event many times. Another factor to consider is that computing the quantity of fuel consumed might be expensive. In practice, in our experiments, Algorithm 6 was more efficient.

Proposals for the process noise

We present some methods to propose new values for the (e k,k ) that represent the noise of the process. There are many ways that we could go about this. Currently, we have implemented five adaptive Gaussian proposals, that are randomly chosen according to relative weights.

For adaptation, we use Robust Adaptive Metropolis [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF], with the difference that we authorize the proposals to be random. This might affect convergence of the MCMC, but we do not rely on it: we stop adaptation after a number of iterations, so that the subsequent samples come from a standard MCMC, with the usual convergence properties.

The first proposal we use is a one-dimensional proposal. It consists in drawing a normal variable v with adaptive variance, and then picking a random e k,k uniformly, to add v to it. The second proposal is of dimension n the number of samples. It consists in drawing a normal variable v of dimension n with adaptive covariance, and then adding v i to all of the (e i,i+1 , . . . , e i,n ). The third proposal is like the second one, but for each i, we add v i only to a random subset of the (e i,i+1 , . . . , e i,n ). The fourth proposal is one-dimensional, with the normal variable v being added to all (e k,k ). The fifth and last proposal is like the fourth, but it is a joint proposal with the parameters of the model, so that correlations might be taken into account.

PRM-augmented MCMC

The simulation algorithm and proposals are enough to build a MH sampler for MCMC inference. To be concrete, consider the coalescent process with constant coalescence rate λ. Our observations are sequences sampled at times (t k ), and that we consider to arise from the Jukes-Cantor model of nucleotide evolution [START_REF] Jukes | Evolution of Protein Molecules[END_REF]. The two parameters of the model are therefore the pairwise coalescence rate λ and the nucleotide substitution rate µ, θ = (λ, µ).

The prior density p on θ is arbitrary and given, and the prior density r on the ν = (e k,k ) corresponds to a product of densities for standard exponential variables. The likelihood density l of the model corresponds to the Jukes-Cantor likelihood for the phylogeny simulated using Algorithm 6. The acceptance ratio for the Metropolis-Hastings transition kernel for a proposal with density q is then α(θ, ν, θ , ν ),

α(θ, ν, θ , ν ) = p(θ )r(θ )l(X )q(θ, ν, θ , ν ) p(θ)r(θ)l(X)q(θ , ν , θ, ν)
The proposal we use is the mixture proposal of 6 MH kernels, corresponding to the 5 proposals on ν presented in 3.3.2, and to an adaptive proposal on θ. Each of the 6 kernels is picked randomly with a given weight, which is tunable by the user.

Simulated phylogeny and sequence data

We simulated synthetic phylogeny and sequence datasets from a logistic birth and death process, chosen so as to quickly resemble a population with a constant coalescence rate. Each individual carries a sequence, which mutates following the Jukes-Cantor process, meaning that every nucleotide mutates into any other nucleotide with the same rate. Individuals transmit their sequence to their offspring, and can be randomly sampled upon death.

Individuals give birth at a rate b = 100 years -1 , and die from competition at a rate c(n -1), with c = 0.1 years -1 . This corresponds to an equilibrium population n = 1 + b c = 1001, a lifespan at equilibrium of 1 c(n-1) = 0.01 years, and an equilibrium pair coalescence rate of b n = 0.1. We simulated a population starting from one individual with a random sequence of 10000 nucleotides, then simulated the population for a duration of 10 years. Only a sub-phylogeny of 256 sequences fully coalescing after t = 0.1 years was kept as data. Successive random subsamples of sizes 64, 32, 16, 8 and 4 leaves were used for inference.

Assessing convergence and efficiency

We compare our PRM-augmented MCMC with a more classical tree-augmented MCMC that we implemented in OCaml. The two implementations are written in the same language, share a large part of the implementation, and in particular the computations for the sequence alignment likelihood. Similar efforts have been made to optimize both programs, so they should be mostly comparable.

Since the convergence on the space of trees is difficult to assess, we also compute the Kendall-Colijn distance between the sampled phylogeny and target phylogeny, and use the distance value as a summary for tree space. The Kendall-Colijn distance [START_REF] Kendall | A Tree Metric Using Structure and Length to Capture Distinct Phylogenetic Signals[END_REF] was chosen because it is easy to implement and interpret, and because it seems related to our encoding of coalescence events, as it is based around the times between the root and the different most recent common ancestors of pairs of samples.

Convergence is evaluated from the MCMC traces for the parameters, log-likelihood, and Kendall-Colijn distance to the target tree. To check that the PRM-augmentation method is correct, we compare the posterior distributions that we obtain with PRMaugmentation and tree-augmentation.

To evaluate the performance of the methods, we measure the clock run time, and we compute the multi-dimensional Effective Sample Size (mESS) [START_REF] Vats | Multivariate Output Analysis for Markov Chain Monte Carlo[END_REF] of the MCMC runs. We then compare 

Results

Correctness of PRM-augmented MCMC

To evaluate our new method, we first check whether the estimated phylogeny is close to the true phylogeny. On a very simple example with 8 leaves, we can see in Fig. 3.3 that the Maximum A Posteriori (MAP) phylogeny that was estimated is very similar to the target.

We can also see in Fig. 3.4 that the Kendall-Colijn distance [START_REF] Kendall | A Tree Metric Using Structure and Length to Capture Distinct Phylogenetic Signals[END_REF] between the estimated phylogeny and the target phylogeny decreases rapidly at the start of the inference, which starts from a random point. As the number of sequences increases, the convergence slows down, which is also to be expected. Note that the For the first 100 thousand iterations of the chains, for sequence numbers 4 (blue), 8 (orange) and 16 (green). The datasets 32 and 64 show the same convergence, but on a much longer timescale. distance never reaches 0, presumably because the MAP estimate is biased. This can come from the coalescent prior assumption, which does not truly correspond to the generating process of the data, or to a bias due to random nature of mutations.

To evaluate the correctness of the method, we compare the posterior distribution estimated with our method, to the posterior distribution with a classical tree-augmentation method. We see in Fig. 3.5 that with 8 sequences, the posterior distributions obtained match very closely.

The fact that the distributions for the coalescence rate λ match closely is good evidence that the method is correct (as well as correctly implemented), since the relationship between λ and the phylogeny is what differs most between the two methods. In the classical method, the link is made through a direct computation of the density of the coalescent prior distribution, as a product over all event intervals (see [START_REF] Volz | Sampling through Time and Phylodynamic Inference with Coalescent and Birth-Death Models[END_REF]), which is then taken into account in the acceptance ratio. Instead, with PRM-augmentation, the link is made through the simulation of the coalescent process, and through the density ratio for the PRM. This indirectly validates that the simulations and PRM space sampling are both correct. The estimated posterior distributions for higher number of sequences do not match up as closely, as shown in the appendix, presumably because of a lack of convergence of the MCMC. Indeed, the joint convergence over the PRM ν, the mutation rate µ and the coalescence rate λ proved difficult, because they are correlated, as we can partly see in Fig. 3.6.

Efficiency of inference

The last important point to consider is the efficiency of this novel PRM-augmentation algorithm, in comparison with the more classical tree-augmentation method. We recorded the (wall clock) run time of the MCMC inference runs for different numbers of sequences. We then measured the complexity of the algorithm as the number of seconds of run time per multi-dimensional Effective Sample, s/mESS. As we can see in Fig. 3.7, the complexity increases sharply with the number of sequences, for both methods. For 4 sequences, with the classical method, it takes around 30 seconds to obtain 1000 effective samples, but around 7 minutes for 32 sequences. With our PRM-augmentation method, the run time for 1000 effective samples goes from around 1 minute for 4 sequences, to more than 11 hours for 32 sequences. We can see that PRMaugmentation is all around more costly than tree-augmentation, but also that the numerical complexity scales more sharply with the number of sequences. With n the number of sequences, the scaling is approximately O(n 2 ) for tree-augmentation and O(n 3 ) for PRM-augmentation.

The complexity in terms of the run time per effective sample is the product of two factors, the run time per iteration, and the number of iterations per effective sample. The run time per iteration is a measure of the computational cost of an iteration, which mostly comes from simulating the model, computing the alignment likelihood, and proposing new values. The number of iterations per effective sample is a measure of the statistical efficiency of the MCMC algorithm, which mostly depends on the The complexity is measured as the number of seconds of run time (wall clock) per effective sample (see 3.3.5). On a binary logarithm scale for the number of sequences, and on a decimal logarithm scale for the complexity. In blue, complexity for the PRM-augmented MCMC, and in orange, complexity for the classical tree-augmented MCMC. To read the graph, lower is better, and a linear curve indicates a power-law relationship. The grey solid and dotted lines are references for power laws with exponents of 1 (linear complexity), 2 and 3. proposals we use. To elucidate how the scaling of the complexity is split between these two factors, we also represent complexity curves for these two factors in Fig. 3.8.

This shows that PRM-augmentation is more expensive on both counts. First, the run time per iteration scales as O(n 2 ) for PRM-augmentation, and O(n) for tree-augmentation (Fig. 3.8a). Considering our analysis in section 3.3.1, this indicates that the lazy algorithm is indeed more efficient than the eager algorithm, and in this case we are close to the best case scenario, which brings us from O(n 3 ) to O(n 2 ). Second, the statistical efficiency scales as O(n) for both PRM-augmentation and tree-augmentation (Fig. 3.8b). Together, this indicates that the biggest issue to make PRM-augmented inference practical comes from the run time per iteration Profiling shows that as the number of sequences increases, the execution time becomes dominated by the coalescent process simulation time. This indicates that even our lazy simulation algorithm is still too slow, relatively. However, the results of statistical efficiency deserve some caution. Convergence was not absolutely reached for 32 and 64 sequences, and our ESS measure does not sufficienlty take into account the phylogeny component, so the results might be misleading.

Discussion

We have proposed a novel data augmentation scheme, and an associated Metropolis-Hastings sampler, for the inference of coalescent processes from genetic sequence data. In contrast to the classical approach of directly sampling the phylogeny by MCMC, we proposed to instead sample a PRM to simulate the coalescent trajectory with. This is what is called a non-centered parametrization, where the PRM ν and parameters θ are independent a priori. This is an attractive property for MCMC, especially in the case when the data are not very informative about ν. In that case, ν and θ remain little correlated a posteriori, and separate proposals for ν and θ can lead to efficient mixing of the MCMC. In the context of phylogenetic inference, this means we expect our method and variants to be most useful when the sequence data does not allow the phylogeny to be resolved very well, so that a large region of tree space must be explored by the MCMC even after convergence. Additionally, such a parametrization can prove advantageous in comparison with the classical one when the dependence between the phylogeny and parameters is high even a priori. In particular, this appears particularly attractive for structured coalescent models, where the dynamics of the process can strongly constrain the phylogeny. With the classical method, with those models, the usual strategy is to directly compute the density of the phylogeny under the coalescent model, which typically requires the numerical integration of the Kolmogorov forward equations of the coalescent process, along each branch of the phylogeny, which can prove computationally expensive and prone to numerical errors. The higher the number of colors (states, demes, etc) of the process, the more serious the issues become. This has led to the development of a number of cheaper approximations for phylogeography [START_REF] Lemey | Bayesian Phylogeography Finds Its Roots[END_REF], but this comes at the cost of more errors in the inference [START_REF] De | New Routes to Phylogeography: A Bayesian Structured Coalescent Approximation[END_REF]. In contrast, our method replaces the computation of the density by the simulation of the coalescent process, which is also expensive, but has the advantage of being exact.

The next issue is the proposal of new parameter and phylogeny values. The classical strategy with tree-augmentation is to use separate MH proposals for the parameters and phylogeny. Most kernels for the phylogeny are uniform, and do not take into account the shape of the coalescent process prior, which can lead to high rejection rate. When a more elaborate proposal is used (see [START_REF] Zhang | Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference[END_REF] or C), the focus is placed on the alignment likelihood. On the other hand, an important advantage of our method is that, thanks to the non-centering, the phylogenies that are proposed are naturally well supported by the coalescent process. If we do need to sample phylogenies with very low coalescent prior density, because the sequence data and coalescent process do not agree, our algorithm would still explore the space naturally, by sampling extreme values of the PRM.

Despite these theoretical advantages, in its present state, our method did not prove competitive with the classical method, mainly because of the cost of simulation of the process, and of the O(n 2 ) scaling of this cost with the number of sequences. Since the cost per iteration is high, we need to reduce the number of iterations, by increasing the statistical efficiency of the MCMC. In this paper, we used a simple MH sampler, with some adaptive kernels, which did not prove more efficient than the corresponding MH sampler in tree-augmented space. It would therefore be interesting to test more elaborate and expensive proposal kernels, for example by using Hamiltonian Monte Carlo (HMC).

The work we presented constitutes an early exploration of a highly novel method. With more research into alternate parametrizations, and work into algorithms for simulation and proposal, data augmentation relying on Poisson-driven SDEs could become a powerful inference tool for coalescent processes. It would then be interesting to test the method with highly structured and nonlinear processes, which could particularly benefit from this kind of approach.

the identifiability issues become, if no other outside information is added. The problem has been studied for numerous epidemic models [START_REF] Neil | The Structural Identifiability of the Susceptible Infected Recovered Model with Seasonal Forcing[END_REF][START_REF] Chapman | The Structural Identifiability of Susceptible-Infective-Recovered Type Epidemic Models with Incomplete Immunity and Birth Targeted Vaccination[END_REF][START_REF] Eisenberg | Identifiability and Estimation of Multiple Transmission Pathways in Cholera and Waterborne Disease[END_REF], and it appears that non-identifiability is more often the rule than not.

Identifiability issues arise when different parameter values have equal or very close likelihoods under the model. This might correspond to separate peaks in the likelihood surface, or to ridges along the surface. In the context of Bayesian inference, informative prior distributions over the parameters can solve the problem, but only if the informative prior can be justified by outside information. Artificially fixing some parameters to arbitrary values can not be considered a fix for the problem, as it only masks the issue, and the resulting confidence intervals would be greatly misleading. Additional outside data can be used to indirectly constrain the parameter prior distributions, but it can also be directly incorporated into the inference procedure, by changing the observation model and the resulting likelihood. In this paper, we show on simple models that combining different sources of data can solve non-identifiability, even if each leads to non-identifiability when taken on their own.

Traditionally, epidemiological data have come in the form of case reports -physicians identify cases of the disease, which are then centralized, and counted over time periods. Depending on the situation, these data can be considered as incidence or prevalence data, but throughout this paper, we will talk about case count data, as this accurately describes what we get, and makes no confusion with the true incidence or prevalence of the disease. Since these data are the most commonly collected, they have been the basis for most epidemic inference. However, case count data are often either under-reported [START_REF] Kiang | Force of Infection and True Infection Rate of Dengue in Singapore: Implications for Dengue Control and Management[END_REF], over-reported [START_REF] Randremanana | Epidemiological Characteristics of an Urban Plague Epidemic in Madagascar, August-November, 2017: An Outbreak Report[END_REF], or both, and it is difficult to estimate the reporting probability, which may additionally vary in time [START_REF] Pullano | Underdetection of COVID-19 Cases in France in the Exit Phase Following Lockdown[END_REF]. The quantity of information it provides might also be limited if the sampling frequency is too low.

In the last decades, other sources of data have become more common and have proven useful for inference. First, cross-sectional seroprevalence studies have been developed, to evaluate the immune status of a population from a representative sample. The field of sero-epidemiology performs inference from these data, to great effect. Using the age-distribution of seropositivity, it is possible to infer the intensity of past epidemics [START_REF] Grenfell | The Estimation of Age-Related Rates of Infection from Case Notifications and Serological Data[END_REF][START_REF] Ferguson | Transmission Dynamics and Epidemiology of Dengue: Insights from Agestratified Seroprevalence Surveys[END_REF][START_REF] Salje | Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission[END_REF]. Longitudinal serological studies, where we follow a cohort and take several serological samples through time, can tell us about seroconversions and give a more dynamic view of the epidemic [START_REF] Adam | Using Paired Serology and Surveillance Data to Quantify Dengue Transmission and Control during a Large Outbreak in Fiji[END_REF].

Second, virus genomes constitute a promising new source of information. Pathogen genomes are sequenced increasingly often, from blood samples taken during epidemics. For fast-evolving pathogens like viruses for instance, ecology and evolution happen on the same time-scale, and a significant number of neutral mutations can accumulate during an epidemic. The sequence data can then be used to help reconstruct the virus population dynamics during the epidemic. This has given rise to the field of phylodynamics [START_REF] Grenfell | Unifying the Epidemiological and Evolutionary Dynamics of Pathogens[END_REF][START_REF] Brittany | Phylodynamic Applications in 21st Century Global Infectious Disease Research[END_REF], which has already shown its effectiveness for studying viruses where abundant data are available over a long period of time, like HIV [START_REF] Lewis | Episodic Sexual Transmission of HIV Revealed by Molecular Phylodynamics[END_REF][START_REF] Nuno | Phylodynamics of the HIV-1 CRF02 AG Clade in Cameroon[END_REF] and influenza virus [START_REF] Bedford | Global Circulation Patterns of Seasonal Influenza Viruses Vary with Antigenic Drift[END_REF], but has also shown some success with emerging viruses, like EBOV [START_REF] Samuel Alizon | Quantifying the Epidemic Spread of Ebola Virus (EBOV) in Sierra Leone Using Phylodynamics[END_REF] or Sars-COV2 [START_REF] Vaughan | Estimates of Outbreak-Specific SARS-CoV-2 Epidemiological Parameters from Genomic Data[END_REF]. However, phylodynamic inference is still not that common, because phylogenetic reconstruction from sequence data is challenging. There are many methods to choose from, the implementation is error-prone, and the inference is computationally demanding.

There have been previous studies where case count data and sequence data were combined [START_REF] Rasmussen | Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series[END_REF][START_REF] Magiorkinis | Integrating Phylodynamics and Epidemiology to Estimate Transmission Diversity in Viral Epidemics[END_REF][START_REF] Li | Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series[END_REF][START_REF] Baele | Emerging Concepts of Data Integration in Pathogen Phylodynamics[END_REF], as well as studies where case count data and seroprevalence data were combined [START_REF] Champagne | Structure in the Variability of the Basic Reproductive Number (R0) for Zika Epidemics in the Pacific Islands[END_REF][START_REF] Adam | Using Paired Serology and Surveillance Data to Quantify Dengue Transmission and Control during a Large Outbreak in Fiji[END_REF]. These studies support the well-accepted idea that data integration can improve the quality of estimates. They do not, however, give a clear picture of what source of data brings what information. When and how does combining two sources of data lift ambiguity between credible parameter values ? This is fundamentally a problem of identifiability. Two notions of identifiability are usually differentiated, that of structural identifiability, and of practical identifiability, where the first one implies the second one, but the converse is not true. A model is said to be structurally non-identifiable when several different parameter values produce equal outputs. Structural identifiability is therefore a property of the mathematical model matching parameter values to (deterministic) observations. Instead, practical non-identifiability is a property of the inference procedure, which is applied to noisy data. A model is practically non-identifiable when the inference procedure cannot give parameter estimates with confidence, for example because the likelihood or posterior distribution appears flat. Increasing the amount of data can be enough to reach practical identifiability. If the problem is structural, however, then new kind of observations are needed. When a model is non-identifiable, Maximum Likelihood (ML) inference breaks down, as confidence intervals become infinite. Bayesian inference can still yield useful results and predictions, but it is necessary to carefully examine the results to not draw any erroneous conclusions.

In the current paper, we show on simple models that case count data, aggregate seroprevalence data and sequence data can reduce or eliminate practical non-identifiability when combined. We illustrate this for the simple SIR model as well as the seasonal SIRS model, and show how the results depend on the setting, as well as on the quality of the data available. We present a simple graphical method to understand the structure of non-identifiability for Bayesian inference. By plotting the posterior distribution for parameters jointly, we show clearly the problematic relationships between parameters, as well as how non-identifiability is resolved when sources of data are combined. Using this method, we reanalyze a dengue dataset from Ho Chi Minh City, already studied in [START_REF] Rasmussen | Reconciling Phylodynamics with Epidemiology: The Case of Dengue Virus in Southern Vietnam[END_REF], that includes hospital case counts and DENV1 sequences. Thanks to the combination of both sources of data, nonidentifiability is again solved, and we are able to obtain estimates of the immunity of the population and of the reporting probability.

Materials and Methods

Epidemic processes

We consider a basic SIR and a seasonal SIRS model. The SIR model parameters are β the effective contact rate, γ the recovery rate, ρ the case reporting probability on infection, and S(0), I(0) and R(0) the initial numbers of susceptible, infected, and removed, that sum to N .

The SIRS model we use is similar to the SIR model, but with demography, and seasonality of the effective contact rate, and loss of immunity. The population size N now varies, and the total population birth rate is constant and equal to B • N * , while the total population death rate varies and is equal to D • N . Immunity is lost at rate ν, and the variable effective contact rate is sinusoidal,

β(t) = β m + β v sin(2π + φ)
The ordinary differential equations (ODE) for both models, and the different prior distributions we use are detailed in the supplementary material, in appendix F.1, page 223. For inference, we simulate the ODEs using the LSODA routine from the ODEPACK library.

Observation processes

We consider four different sources of data: case count data, seroprevalence data, sequence data, and phylogeny data.

The case count data correspond to the number of observed cases, binned over regular intervals. We keep the observation model as simple as possible: when an infection happens, it is observed and recorded with a certain probability ρ. We consider that the probability of observing a given number of cases in a given interval is negative binomial with parameter the total number of infections over the interval times ρ, and overdispersion ω.

C k ∼ N B t k+1 t k β(s)I(s) S(s) N (s) ds, ω
The seroprevalence data correspond to the number of people who tested seropositive out of the pool that got tested at time t.

To keep the observation model as simple as possible, we consider that the sensitivity and specificity of the test are perfect, and that immune status exactly corresponds to removed status. We also consider that the sample of hosts is uniform in the population. We consider that the probability of observing k seropositive out of n people tested is binomial,

B t ∼ B(n, R(t) N (t) )
The phylogeny data correspond to the phylogeny of a sample of pathogens, collected during the course of the epidemic. These data are never truly available in practice, but reconstructed from the sampled sequences. We consider that the epidemic is large enough to be considered deterministic, and so that the number of infectious is always much greater than the number of lineages ancestral to our samples alive at that time. Therefore we use a structured coalescent model [START_REF] Volz | Complex Population Dynamics and the Coalescent Under Neutrality[END_REF]. For the SIR and SIRS model, there is only one infected class, I, so that the likelihood is straightforward to compute, and only depends on the inter-events durations. The inter-events durations are independent conditional on the parameter values and epidemic trajectory. There are two kinds of intervals, those which, going back in time, end with a sampling event, and those which end with a coalescence event. The coalescent events are the points of a non-homogeneous Poisson process, of rate λ(t), the total coalescence rate. For the SIR model, the total coalescence rate is λ = A(A -1)β S N I , where A is the number of lineages. The density for a coalescent interval [t , t] is λ(t )e -t t λ(s) ds , and the density for a sampling interval [t , t] is e -t t λ(s) ds . The likelihood is then the product of these densities over all intervals (see [START_REF] Volz | Sampling through Time and Phylodynamic Inference with Coalescent and Birth-Death Models[END_REF] for more details).

Phylodynamic inference with MCMC

We use Metropolis-Hastings (MH) sampling [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF]. For the parameters of the model, we use joint adaptive Gaussian proposals, one for the transmission parameters, and one for the evolution parameters, when they are inferred. The adaptation of the covariance matrices is achieved using Robust Adaptive Metropolis [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. We use both adaptive Gaussian proposals, and adaptive Lognormal proposals. This second proposal rescales the different parameters together, which is useful when only the product of some parameters can be identified.

To infer the phylogeny when necessary, we use a mix of tree moves, that include scaling the tree, sliding a node, and three kinds of Subtree-Prune-and-Regraft (SPR) moves. We give a more detailed description of these proposals in the appendix F.2, page 225. The full proposal is a mix between the MH kernels for the two gaussian proposals for parameters, and for the tree moves.

We first adapt the covariance matrices for n adapt iterations, then continue sampling with the adapted proposal for n iter iterations, which ensures convergence to the posterior, once adaptation has finished.

Datasets

The simulated dataset is obtained with a stochastic version of the SIR model. The individuals are given unique identifiers and their parents and offspring are tracked. Every individual carries a viral sequence, that evolves according to the Jukes-Cantor model. Cases are counted with a probability ρ on infection, then the counts are summed by sampling interval. For the seroprevalence data, at the time of observation, we simulate B t ∼ B(n, R(t) N (t) ). Finally, an individual is sampled with probability p keep on recovery from infection. When an individual is sampled, we record its ancestry, as well as its viral sequence. The parameter values of the simulation are given in the appendix F.1, page 223. The dataset we obtained consists of 51 sequences of 10000 nucleotides.

The dengue dataset from Ho Chi Minh City (HCMC), was already presented and analyzed in [START_REF] Rasmussen | Reconciling Phylodynamics with Epidemiology: The Case of Dengue Virus in Southern Vietnam[END_REF], and more details are available there. The case counts are monthly admission data between 2003 and 2008, compiled from the Hospital for Tropical Diseases and Children's Hospitals 1 and 2 in HCMC [START_REF] Anders | Epidemiological Factors Associated with Dengue Shock Syndrome and Mortality in Hospitalized Dengue Patients in Ho Chi Minh City, Vietnam[END_REF]. These case counts are rescaled to reflect Dengue 1 cases, using RT-PCR data on relative serotype frequencies, from [START_REF] Ty | Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia[END_REF]. The sequences consist of 237 DENV1 sequences subsampled randomly from the dataset from [START_REF] Ty | Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia[END_REF].

Results

Isolated data and the SIR model

First we evaluated the practical non-identifiability of the SIR model, for the different sources of data taken in isolation. Only the recovery rate γ is assumed to be known, and we infer all other parameters, β, ρ, S(0), I(0) and R(0). In Figure 4.1, we represent the MCMC samples from the joint posterior distribution for the parameters β and S(0). We can see that in all three cases, the samples cover a large region of space, which shows that the model is non-identifiable. For the incidence data, the result has already been studied analytically [START_REF] Neil | The Structural Identifiability of the Susceptible Infected Recovered Model with Seasonal Forcing[END_REF][START_REF] Tuncer | Structural and Practical Identifiability Analysis of Outbreak Models[END_REF], and can be considered well-known. Researchers are maybe less aware that aggregate seroprevalence data also leads to non-identifiability, but it is not that surprising with only one datapoint. The non-identifiability is maybe the most surprising for the phylogenetic data, as it is often seen as the richest source of data.

We can further see that the shape of the high posterior density region occupied by the MCMC samples depends on the source of data, which indicates that the structure of non-identifiability is different, because every source of data brings different information. The functional relationship between the parameters for the case count and phylogenetic data is very similar, and shows that we cannot distinguish between an increase of β or and increase of S(0) as the total infection rate remains the same in both cases. With the seroprevalence data, we can estimate the initial proportion of removed R(0), which also yields an estimate of S(0), but we cannot say anything about β.

Data integration for the SIR model

The next step is to use these sources of data in combination, two-by-two. In every instance, we make the hypothesis that the various sources are independent of each other, conditional on the parameter values.

The Figure 4.2 shows MCMC samples from the posterior distributions for various combinations. The diagonal of the matrices display kernel density estimates of the marginal distributions for the different parameters, and the off-diagonal panels display the parameter values on the corresponding row and column of the samples. This gives us a good idea of the relationship between the different parameters. If we look at the combination of case count and seroprevalence data, in Fig. 4.2a, the two colors, blue and orange, correspond to the distributions for the two sources of data isolated, and the third color, green, to the combined data. The panel for the column β and row S 0 shows the distributions we have already seen in Fig. 4.1a and Fig. 4.1b, but superimposed. The green color shows the combined distribution, which lies roughly at the intersection between the other colors, and is well concentrated for every parameters pair. This shows that the SIR model with the combined case count and seroprevalence data is identifiable in this case. Looking at the pair distributions in more detail allows us to understand why. The case counts scale with ρβ S N I. Since we have counts for the whole epidemic, we expect to also have information about the relationship between S, I, and case counts, as individuals flow from S to I. This explains the positive correlation between S(0) and I(0), the negative correlation between I(0) and ρ, and the negative correlation between β and S(0), so that I(0) S(0) , ρI(0), and βS(0) are well estimated. On the other hand, the seroprevalence data essentially allows to estimate the initial proportion of removed R(0), which is enough, with the case counts, to estimate S(0), β, I(0), and finally ρ, from the previous relationships.

The situation is similar with the phylogenetic data. The information it gives is comparable to the case counts information, with two differences. First, the phylogenetic data does not depend on the case reporting probability ρ. Combined with case count data, this allows to estimate ρ, as Fig. 4.2b demonstrates. A direct consequence is that the phylogenetic data allows to estimate the magnitude of the epidemic well. Looking at the posterior estimates of the state variables (Fig. 4.3), we can see that the number of infectious at the epidemic peak is well estimated for phylogenetic data, whereas it is not the case for the case count data. Second, the phylogenetic data carries less temporal resolution than the case count data. The timing of the epidemic peak is therefore not well estimated with the phylogenetic data, compared with the case count data. This can be understood by looking at the likelihood Parameter posterior distribution for β, the effective contact rate, ρ, the reporting probability, S(0) the initial number of susceptibles, and I(0) the initial number of infectious. On the diagonal panels, kernel density estimates of the parameter marginal posterior distributions, and in the lower triangle panels, MCMC samples from the pair distributions. 1500 MCMC samples, out of 3 million iterations, after 1 million iterations of burn-in. (a) Posterior distribution for the case count data (blue), seroprevalence data (orange), and combined case counts and seroprevalence data (green). (b) Posterior distribution for the sequence data (blue), case count data (orange), and combined case count and sequence data (green). density which makes the link between an epidemic trajectory and a phylogeny. The link is made through the coalescence rate on the one side, and the timing of the coalescence events, on the other. The coalescence rate varies with β S N I , where we find again the product βS, as for the case count data. However, the timing of the coalescence events is not directly known, it is only estimated. The temporal resolution for the phylogenetic data therefore depends on how well we can place the coalescence events, and on how many we have available, but this is degraded information, compared with the case counts.

Putting together the case counts and phylogenetic data, nonidentifiability is solved, and both the magnitude and temporality of the epidemic are well estimated (Fig. 4.3). Similarly, a combination of phylogenetic and seroprevalence data can again solve identifiability, and the three sources of data taken together can too. Second column, in orange, posterior distribution for the case count data (150 samples). Third column, in green, posterior distribution for the combined case counts and sequence data (1500 samples).

Importance of the quality and amount of data

To make our results about identifiability more general, we need to study what happens when the amount and quality of data vary. The source of data for which this seems most interesting is the phylogenetic data. How important is it to integrate over the space of trees ? When is it useful to put in more samples for inference, despite the increased computational cost ? To offer some insight into these questions, we compare the inference results for different data. In the current version, the results of this section must be considered to be preliminary and incomplete.

First, we compare the results obtained from the sequence data and from the phylogeny data, in Fig. 4.4a. The results are similar, but the sequence data places less confidence on the initial infectious population I(0). The consequence is that the estimate of I(0) is pulled towards slightly higher values, because of the influence of the case count data. In turn, the estimate for β is tighter, and closer to the truth.

Then, we compare the results obtained from two sequence datasets with different mutation rates: one (studied in previous sections) with a high substitution rate of 2 × 10 -3 year -1 , and another dataset with a lower substitution rate of 6 × 10 -4 year -1 . The results are shown in Fig. 4.4b. With the smaller mutation rate, the estimates for I(0) are pulled towards lower values, and for the case count data to still fit, this requires very high values for β. As the phylogeny becomes less well resolved, the prior distribution over phylogenies that is the SIR coalescent process becomes more informative, and here favours small I(0) values, and we attempt to explain this surprising result further in the appendix refapp:nonid. 

Joint inference from DENV-1 data

Does the identifiability observed for the SIR model with simulated data carry over to a more complex model and real data ? We test our method on dengue data from Ho Chi Minh City, introduced in [START_REF] Ty | Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia[END_REF] and [START_REF] Anders | Epidemiological Factors Associated with Dengue Shock Syndrome and Mortality in Hospitalized Dengue Patients in Ho Chi Minh City, Vietnam[END_REF], and already studied in [START_REF] Rasmussen | Reconciling Phylodynamics with Epidemiology: The Case of Dengue Virus in Southern Vietnam[END_REF]. In [START_REF] Rasmussen | Reconciling Phylodynamics with Epidemiology: The Case of Dengue Virus in Southern Vietnam[END_REF], they study what kind of model is able to reproduce the pattern observed in the hospital case count data, when inferring the model from the sequences. They find that a clear seasonal pattern only emerges if the model used is complex enough, that is if a mosquito population is included, or if migrations between HCMC and outside are included. In particular, estimates with a seasonal SIR model yielded low amplitude of seasonal variation, and a difficulty in identifying the seasonal phase.

Here, our approach is instead to combine the sources of data, for a direct inference of the parameters, and state variable trajectories, with a seasonal SIRS model. In the current temporary version, we present results using a fixed inferred phylogeny, because we have not yet confirmed the results with the sequences sufficiently. Some preliminary results with the sequence data are displayed in appendix F.4. Using the phylogenetic data alone, we observe that if the parameter for the amplitude of seasonal variations β v is inferred, it is estimated that there is very low seasonal variation (Fig. 4.6). If instead, it is fixed to fairly high seasonal variations, with β v = 0.4, then the phase is estimated, but with a wide credible interval (see appendix F, Fig. F. 4 and Fig. F.5). This is in alignment with what is found by Rasmussen et al, that there is no strong signal for seasonal variations to recover from the phylogenetic data, when using a SIRS model.

When combining the phylogenetic and case counts data, the seasonal phase and amplitude are both estimated with a small credible interval (Fig. 4.4), and the case counts pattern is closely reproduced (Fig. 4.6b). The other parameters also become identifiable, and we obtain an estimate of 3.1 ([2.5, 3.7]) for R 0 , and of 0.11 ([0.09, 0.13]) for the case reporting probability ρ. The posterior Figure 4.4: Inference of a seasonal SIRS model with vitality, from HCMC dengue 1 hospital cases and DENV-1 phylogeny. 9000 posterior MCMC samples kept from a run of 20 million iterations, with the first 2 million iterations discarded as burn-in. In blue, inference from the estimated DENV-1 phylogeny. In orange, inference from the hospital dengue case counts, rescaled for dengue 1. In green, inference from both sources of data combined. Violin plots of the marginal posterior parameter estimates. β m is the mean effective contact rate (years -1 ), β v is the amplitude of the seasonal variations, φ is the phase of the seasonal variations (years), ρ is the reporting probability for cases, S(0) is the initial number of susceptibles, and I(0) of infectious hosts.

estimates of the state variables trajectories indicate that the proportion of susceptibility to DENV1 went from 0.31 ([0.25, 0.37]) to 0.33 ([0.26, 0.40]) between 2003 and 2009, where the intervals are the 95% credible intervals. These results are however subject to some caution. In particular, DENV-1 susceptibility in our model is not equivalent to the reality. We neglect all other serotypes, even though serotype 1 was replacing serotype 2 at the time, and the interplay between serotypes probably plays an important role in the observed dynamic.

Discussion

The problem of non-identifiability is well-known in infectious disease epidemiology, but studies where it is not addressed abound. In practice, non-identifiability is ubiquitous with mechanistic transmission models, even the most simple. It is therefore important to use methods that can still work even in the presence of nonidentifiability, and to evaluate whether the model is identifiable or not. Analytical methods are important because they make it possible to obtain a general answer for a model, but they can be challenging to apply, and give only limited answers. We show how Bayesian inference by MCMC, and plotting the posterior distribution for each pair of parameters gives a very useful evaluation of the identifiability of the model, and, when the model is non-identifiable, what relationships between parameters there are. A similar method was presented in [START_REF] Raue | Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models by Exploiting the Profile Likelihood[END_REF], but in the context of Maximum Likelihood inference, where inference breaks down in the presence of non-identifiability. In the context of Bayesian inference, pair-wise scatterplots of the posterior distribution are used across a range of disciplines to evaluate non-identifiability [START_REF] Raue | Joining Forces of Bayesian and Frequentist Methodology: A Study for Inference in the Presence of Non-Identifiability[END_REF], and for example in biophysics [START_REF] Keegan | Determination of Parameter Identifiability in Nonlinear Biophysical Models: A Bayesian Approach[END_REF], systems biology [START_REF] Liepe | A Framework for Parameter Estimation and Model Selection from Experimental Data in Systems Biology Using Approximate Bayesian Computation[END_REF], or glaciology [START_REF] Brinkerhoff | Inversion of a Glacier Hydrology Model[END_REF]. However, their use remains rare in infectious disease inference.

Non-identifiability is an important obstacle to inference. If a parameter of interest is non-identifiable, we are not able to obtain a well constrained estimate. ML estimates can also not be trusted. It is still possible to use Bayesian inference, but with serious limitations. Non-identifiability can lead to an increased variance of predictions, or prevent us from providing conclusions about control strategies. In the presence of non-identifiability, prior distributions have a much larger impact on the inference, and can lead to unexpected results, even with apparently non-informative priors [START_REF] Rannala | Tail Paradox, Partial Identifiability, and Influential Priors in Bayesian Branch Length Inference[END_REF]. We have also witnessed this with the dataset with low mutation rate, where the inadequacies of the SIR coalescent prior model become problematic when the phylogeny is not well resolved. This should serve as a cautionary tale for phylodynamic inference, in which we deal with complex objects (phylogenies), and complex models, through a complex inference procedure, and things can go wrong in many unexpected ways. More generally, this applies to any inference setting with non-identifiability, so that solutions to identifiability are necessary.

There are several possibilities to solve or circumvent non-identifiability. First, it is possible to use a non-identifiable model, but only report identifiable outputs of the model. This is sometimes done with R 0 estimates that are identifiable, even when the un-derlying contact rates and infection durations are not. Second, it is possible to simplify the structure of the model, to obtain an identifiable model. These are not satisfactory solutions, however, when precisely the feature of the model that we want to study is subject to non-identifiability. Third, it is possible to feed more information into the model. If we have some outside information about a parameter, this can be represented by an informative prior. Another possibility is to include other sources of data, and modify the observation model in consequence. Our graphical method gives a useful rule of thumb for what to expect when combining sources of data. If the two non-identifiable regions where posterior density is nearly maximal for the two isolated sources of data intersect, then the posterior high density region for the combined sources of data will lie at the intersection of both regions. If the regions are different enough, and their intersection is small, then the combined model can be identifiable. If the two regions do not intersect, however, then that is a sign of incompatibility between the sources of data.

We now come to our different results on case counts, seroprevalence, and phylogenetic data. A first important conclusion we can draw from our results is that sequence data does not make the SIR model practically identifiable by itself, and that actually the information it brings is quite similar to the information brought by case counts data. A second conclusion is that there is a clear difference between using a MLE phylogeny as data and integrating over the space of trees. In the first case, we under-estimate the variance of the estimates, and possibly introduce bias. A third conclusion is that combining case count data and seroprevalence data, or case count data and sequence data can be enough to solve non-identifiability, depending on the amount of data we have.

The first conclusion is also supported by a number of previous studies that have also combined sequence or phylogeny data with case counts data [START_REF] Rasmussen | Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series[END_REF][START_REF] Magiorkinis | Integrating Phylodynamics and Epidemiology to Estimate Transmission Diversity in Viral Epidemics[END_REF][START_REF] Marc | Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10[END_REF][START_REF] Baele | Emerging Concepts of Data Integration in Pathogen Phylodynamics[END_REF][START_REF] Li | Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series[END_REF] , in different ways, because of the deficiencies of sequence data taken alone. The approaches to case counts data also vary. In [START_REF] Magiorkinis | Integrating Phylodynamics and Epidemiology to Estimate Transmission Diversity in Viral Epidemics[END_REF] and [START_REF] Marc | Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10[END_REF], for example, the epidemiological data act as covariates for the coalescence rate, which is a more phenomenological approach than the one we follow. In [START_REF] Rasmussen | Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series[END_REF] and [START_REF] Li | Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series[END_REF], however, the approach is similar to the one we have followed here. In both these cases [START_REF] Rasmussen | Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series[END_REF][START_REF] Li | Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series[END_REF], the integration of both sources of data is shown to improve the confidence of the estimates, but the case counts data alone is better than the phylogenetic data alone. There is no discussion of identifiability, even though we can see signs of these phenomena happening in the posterior estimates shown in [START_REF] Li | Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series[END_REF].

To elaborate on the second conclusion, many phylodynamic studies using mechanistic epidemiological models do not integrate over the space of trees, see for instance [START_REF] Rasmussen | Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series[END_REF][START_REF] Saulnier | Inferring Epidemiological Parameters from Phylogenies Using Regression-ABC: A Comparative Study[END_REF]. This is probably due in part to the fact that methods which integrate over trees were not readily available until recently for structured coalescent models [START_REF] Volz | Bayesian Phylodynamic Inference with Complex Models[END_REF]. Software where it is possible to jointly use sequence and case count or serology data only allow to use them as covariates of the model [START_REF] Marc | Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10[END_REF], and this is recent. The present study is one of the first experiments with mechanistic integration of these sources of data. Another deeper reason is that the joint posterior estimation of parameters and phylogeny for a nonlinear model by MCMC can quickly become prohibitively expensive. If there are many parameters to estimate and non-identifiability, the high posterior density region is large and difficult to explore with common transition kernels. We also noticed this in the case of the dengue HCMC dataset, where weeks of computations were needed to obtain passable MCMC traces. In particular, gaussian kernels are not appropriate to explore the parameter space when only the product of two parameters is identifiable, like βS 0 for instance. In this study, we have additionally used an adaptive lognormal proposal, which greatly improves mixing, and is presented in the Methods 4.2.3 and supplementary material F.2.

Seroprevalence data does not present the same difficulties for implementation and integration, but in the examples shown here, it still provides important information. We think this is a strong argument for first trying to include serological data in inference when it is available, and also to put a priority on the collection of more serological data. We believe that it is justified to use sequence data despite the inherent difficulties for more complex models, where no other source of data may give the necessary information. This can typically be the case for spatialized models and phylogeographic studies. In the example of dengue in HCMC, where we had no seroprevalence data, however, the sequence data proved useful, and allowed us to estimate both the dengue cases reporting rate and the number of susceptibles at the start and the end of the period. The reporting probability is always difficult to estimate, but this estimate of 0.11 is in line with other previous estimates for similar settings.

In conclusion, in this study, we use no complicated technical tools, but we believe that our simple graphical method can be useful to others. We have shown that non-identifiability can not be neglected, and that increasingly common sources of data can be combined to great effect to resolve identifiability. These are preliminary results on the features of non-identifiability of different sources of data, and we hope to generalize these results to different settings and more complex models.

Chapter 5 Discussion

The last few decades have been witness to many technological revolutions, in terms of informatics, sequencing, big data, and inference methods, and the effects are still being felt in infectious disease epidemiology. The transformation is not yet finished, but has already been very striking in the Covid-19 crisis. The amount and diversity of data that are available about epidemics are increasing steadily, and this has led to the appearance of new research fields, like sero-epidemiology and phylodynamics. The increase in computational resources has also led to more complex models and more demanding inference methods being used, including Bayesian inference, and stochastic models.

My thesis project came about within this context. The initial project was to analyze diverse sources of dengue data, collected through the PANIC and ECOMORE 2 projects. These projects investigated the potential hub role played by schools on rural dengue transmission in Cambodia, through the analysis of the effect of vector control in schools. During the two years that the study lasted, a cohort of schoolchildren was followed, and saliva samples were taken periodically. When there was a suspected case of dengue in one of the health centers, a blood sample was taken, then sequenced for dengue virus. The goal was then to combine these data, as well as surveillance data, to be able to estimate elaborate models and understand the local dynamics of dengue. As the data was not initially available, I started by researching what methods could be available to deal with the data, and in particular the viral sequences, and what we could expect from their combination. No solution was readily available for phylodynamic data integration with mechanistic models, so I started to look into the effects of combining sequence and case count data by using fairly ad hoc methods. This served as a prototype for Chapter 4, but the methods were not satisfactory, which led me to take a deeper look into other better founded solutions. Reading through articles, attending seminars, and taking part in discussions with other researchers in the field made me realize that the phylodynamic methods that did exist struggled with the amount of data and the complexity of models to analyze, and that there was a computational hurdle to overcome. My exposure to Poisson Random Measures (PRMs) and Poisson-driven Stochastic Differential Equations (SDE) during my master's degree and an internship made me think that they could be a useful tool for phylodynamic inference. Before applying the idea to coalescent processes, it made sense to test it on simpler models like compartmental models. This led to Chapter 2 of the thesis, which showed that the method was well founded, had some attractive statistical properties (non-centering), and some additional benefits for model diagnosis. The application to coalescent processes, which is presented in Chapter 3 was more challenging. Several algorithms were investigated in succession, but did not yield the results that we had hoped for. Since at that point, I had already implemented MCMC with Robust Adaptive Metropolis for a number of compartmental models and sources of data, it made sense to implement tree-augmented phylogenetic inference in the same framework. This meant implementing a variety of tree moves, as well as a caching mechanism to limit recomputations of the alignment likelihood, which was again challenging and time-consuming to get right, and is presented in appendix C. I could then turn back to the problem of model identifiability and data integration, as a preliminary to the work on the PANIC data, and this is presented in Chapter 4. Around that same time, the Covid-19 pandemic came to the forefront of our concerns, and I started thinking of how I could contribute. I worked towards applying my methods to the pandemic, but they were not mature enough. Instead, I helped Bernard, however little, to apply his PMCMC method with a variable effective contact rate to the pandemic, which was initially presented in [START_REF] Cazelles | Accounting for Non-Stationarity in Epidemiology by Embedding Time-Varying Parameters in Stochastic Models[END_REF]. With its association of the rigidity of a mechanistic model and the fluidity of the non-parametric Brownian process prior for the effective contact rate, it was a good basis to exploit the different case count data coming in from the pandemic in a well-founded manner, while still allowing for the many heterogeneities, variability and uncertainty in the process. As it is, this work led to a paper about Ireland, and a paper about the correlation between the reproduction number and mobility patterns. This work is not presented as part of the thesis, as I had a very minor part in it. In the end, I have not yet had the time to explore the PANIC dataset, so the end of the story is not part of the thesis. After this short chronology, I believe that it is useful to discuss the conclusions of each chapter in more detail.

Looking back

Each of the chapters already came with its own discussion, but that remained focused on the impact of the chapter in relation with other studies, treating them as if they were finished pieces of work. To complete this point of view, it is also important to discuss in more detail what next steps I would take to continue this work in all three instances.

Poisson Random Measure Data Augmentation

The main contribution of Chapter 2 is to provide a generic data augmentation scheme for "simple" Markov jump processes. We would like to say that the scheme is itself simple and accessible, but PRMs and Poisson-driven SDEs are not well-known among statisticians, and even less among infectious disease epidemiologists. Actually, a number of previous papers, that we cited in the chapter, already presented augmentation methods that can be seen as more restricted versions of PRM-augmentation, using Poisson uniformization or Poisson thinning. This chapter and article-to-be, is now being submitted again to Mathematical Biosciences after revision. The reviews were positive about the novelty and possible impact of the work, but among other things, they also pointed out the fact that it was important to make the work as accessible as possible. To that end, we have tried to provide some intuition about the Poisson-driven SDEs by focusing on the simulations, applied to a simple well-known model like the SIR model. On the whole, we believe our work provides a clear and coherent story, both for faster Markov Jump Process inference, and for model diagnosis.

However, there are still many further directions to develop this work in. First, the model diagnosis method we present is only qualitative, and applied to a single model. It would be worthwhile to develop a more quantitative method, for example as a Bayesian hypothesis test, and see how it could be used for model comparison and choice. Second, there are a number of possibilities to explore to make the inference faster, along two main separate avenues: first, by making simulation faster, and second, by making the proposals more effective.

For the first item, the goal is to allow the method to be used with systems with a higher number of event occurrences, for example an epidemic in a large population. The approximate simulations already make a large difference on that count, but the simulation time still scales with the number of events. A number of optimizations are already in place for the handling of PRM points. For each time slice, the points are grouped by slice of value u. There is a trade-off between the number of points by u-slice, and the number of u-slices, and so we progressively increase the height of the u-slices with increasing u, so that they include more points. However, that means that for large systems, we are left with a large u-slice for which we need to examine whether to accept or reject the event for every point. A possible simple optimisation that would make a difference, would be to add a second level of u-slicing for large slices, under the first one. For all but one usubslice, we could then decide in one check for the whole subslice whether to accept or reject the points. The points of only one u-subslice would then need to be examined individually.

For the second item, the goal is to improve the mixing of the chains in difficult cases. The PRM proposal we present in the chapter is the most simple that we can think of. With such a non-centered data augmentation scheme, we can expect that this proposal will be effective as long as the parameters θ and the PRM ν are nearly independent a posteriori. In practice, however, we do expect θ and ν to be correlated. For a SIR model that is identifiable, for instance, the number of infections in a given time interval is well estimated, but depends both on β and on the density of points in the infection measure, so that when we increase one, we should decrease the other. It would therefore be useful to have a joint proposal on θ and ν that could take these correlations into account. We tried to design a joint Gaussian adaptive proposal that would add or remove points from ν, but so far we did not manage to obtain a proposal that was both efficient and correctly reversible. Going further, let us note that the different time slices of ν can correlate with θ differently. For instance, the initial conditions would probably be more correlated with the time slices for the beginning of the time period than for the end. To take that into account, we tried to exploit our knowledge of the SDE. If we look at how the state of the system changes from one MCMC iteration to the next, at a given time, as we simulate it, we can propose a more coherent new value for the next time slice of ν . However, we have so far not completed the experiments in this direction.

As a last point, the research into improving PRM-augmented MCMC simulation and proposals should also take into account the much more abundant research on the inference of Brownian-driven SDEs [START_REF] Papaspiliopoulos | Data Augmentation for Diffusions[END_REF][START_REF] Särkkä | Posterior Inference on Parameters of Stochastic Differential Equations via Non-Linear Gaussian Filtering and Adaptive MCMC[END_REF]. Non-centered schemes are also used there, and an important thematic is to maintain MCMC efficiency as the time resolution, and therefore the dimension of the approximation is increased [START_REF] Cui | Dimension-Independent Likelihood-Informed MCMC[END_REF]. The link with the Poisson-driven SDEs is strong, as the Brownian-type SDE is a limit when the event rates go to infinity and the magnitude of jumps go to zero in an appropriate manner. We could even imagine hybrid approximate inference schemes that would be able to switch between PRM, Brownian and deterministic simulation for different time ranges. A last important item would be to contribute a PRM-augmentation implementation to some popular inference platform like STAN, to make the method more accessible to others.

Phylodynamic inference with PRM-augmented MCMC

The main contribution of Chapter 3 was to explore the possibilities offered by non-centered Data Augmentation for the inference of coalescent processes. As explained in the chapter, this is an attractive possibility for phylodynamic inference, as structured coalescent processes are challenging for inference, and the current methods struggle with the size of the current datasets. The scheme we studied was the most "continuous" we could design, so that incremental modifications of the process trajectory could be realized without discarding important information about the phylogeny. However, the resulting scheme uses n(n -1)/2 random variables for n samples even in the unstructured case. The consequence is that simulation is too costly, and inference too slow, so that the scheme already becomes unusable with 100 sequences. We should not, however, throw the baby out with the bathwater. The current limitations to phylodynamic inference are very real, and the scheme we presented was only one possibility amongst many. To take the work further, we would therefore explore other schemes, to try and find one that does not have the issues we encountered. The goal is to design a scheme with a lower dimension, that can be simulated fast, while still maintaining attractive features of "continuity" for inference. The main factor to explain the simulation cost of the current scheme, is that every event color corresponds to its own referential, and that we must constantly compare these referentials to decide which events happen and when. The lazy simulation scheme can reduce this cost, but is only usable with particular models. Instead if we can keep all events in the same referential, simulation can be much faster, as in Chapter 2. For this, events should refer to lineages instead of samples, so that all coalescence events with positive rate have an equal rate. The problem is that there is no stable ordering of lineages along and across simulations. The identifier of a lineage will change during a simulation or from iteration to the next, so that an event will change its target in terms of samples. This would probably make inference more difficult, but maybe it can be overcome. It could also be interesting with such a different scheme to look into possibilities for using Sequential Monte Carlo (SMC) or Particle MCMC (PMCMC) instead. With the current scheme, if some other way was found to make simulations fast enough, neural MCMC with an adaptive independence sampler could be a good option to exploit the structure of the model.

Solving non-identifiability with data integration

Chapter 4 was the least technical, but despite being the most simple, it is also maybe the one with the most impactful results. Its main contribution is to explicitly link non-identifiability and data integration together. Infectious disease epidemiology studies that address the problem of non-identifiability directly are quite rare, and those that combine sources of data even more so ; when they do, they do not show how this helps identifiability. Our graphical representation allows us to understand what is going on for the different sources of data as well as their combinations quite well, and is simple to use. The main limitation of the work we presented is its lack of generality. A more systematic exploration of parameter values, models, and sources of data would certainly be valuable, but is difficult since inference with MCMC is fairly expensive. The inference time might be counted in minutes or hours if no sequence data is included, but days, or even weeks, if it is. In particular, it would be interesting to look at richer kinds of serological data, like age-stratified or longitudinal data. Our next step would be to apply to apply the method to more datasets and issues. First is the French Polynesia Zika dataset already analyzed in Chapter 2, to which we could adjoin published Zika sequences. Of course, we would also like to analyze the PANIC dataset, which might allow to use a model with more structure. Last, it would be very valuable to apply the method to Covid-19 data, to raise awareness among the new researchers coming to the field about the issue of non-identifiability. Additionally, for a research project with a greater scope, data integration of the many different sources of data that are collected for the Covid-19 pandemic would certainly be powerful to defend against the many heterogeneities in the data. In particular, it seems that so far the very abundant sequence data is somewhat under-utilized, even though some interesting studies are coming out [START_REF] Vaughan | Estimates of Outbreak-Specific SARS-CoV-2 Epidemiological Parameters from Genomic Data[END_REF][START_REF] Ragonnet-Cronin | COVID-19 Epidemic Severity Is Associated with Timing of Non-Pharmaceutical Interventions[END_REF].

General remarks

The three chapters I presented rely on Metropolis-Hastings samplers, using local proposals, for inference. In all three cases, the mixing of the chains was a difficulty. The main tool we used to alleviate this problem were adaptive Gaussian transition kernels.

In Chapter 2, we used these in combination with a uniform kernel for the PRM, and tried to develop adaptive kernels for the PRM, but did not manage it. For phylogenetic inference, we also used some adaptive proposals for sliding nodes, scaling the tree, and controlling the magnitude of SPR moves, as well as a novel guided SPR proposal. The inference in Chapter 4 was also challenging because of the large regions supported by the posterior distributions with non-identifiability. To solve this, we used a Lognormal variant of the Gaussian transition kernel, which gave very large improvements for this particular case. More generally, the adaptive Gaussian kernel provides a large improvement compared to a fixed, arbitrarily chosen Gaussian kernel. However, it can only be really efficient for linear targets. As we have seen, the lognormal variant can save us in some cases, but it cannot be enough for more complex targets, for instance multi-modal ones. In the same way, in our phylogenetic inference, we also noticed issues due to the correlation between parameters and phylogeny. For instance, with an unstructured, Kingman coalescent model, the coalescence rate λ and substitution rate µ are correlated a posteriori, but only through the phylogeny. We can use a joint proposal that changes both λ and µ, and rescales the phylogeny, but the magnitude of the moves is limited by the changes on the tree, so that no large move is possible. Due to these difficulties, given more time, I would take a more serious look at other methods that seem to remain underused in phylogenetic and infectious disease inference. One of these is Hamiltonian Monte Carlo (HMC), which can deal much more easily with non-linear unimodal targets, as we also mentioned in the introduction chapter. Until recently, it was not used in infectious disease inference, because it requires to be able to compute the derivative of the density, for which we have no expression when we must simulate a mechanistic model. However, automatic differentiation has made it possible to compute the derivative corresponding to the computation graph used by the program. Thanks to that, it is possible to use HMC with generic compartmental models, through a platform like STAN [START_REF] Carpenter | Stan: A Probabilistic Programming Language[END_REF], for instance [START_REF] Chatzilena | Contemporary Statistical Inference for Infectious Disease Models Using Stan[END_REF], and even for phylogenetics, like [START_REF] Vu Dinh | Probabilistic Path Hamiltonian Monte Carlo[END_REF] showed. However, HMC offers no solution for multimodal targets, where regions of high support are separated by potentially large regions of very low support.

To deal with such targets, non-local methods are necessary. A possibility is to run several chains in parallel, for instance with Metropolis Coupling, which has been the strategy of MrBayes for a long time, or to switch to Sequential Monte Carlo, as in [START_REF] Wang | An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics[END_REF] or [START_REF] Ronquist | Universal Probabilistic Programming: A Powerful New Approach to Statistical Phylogenetics[END_REF]. Another possibility, that seems to be gaining in popularity, is to use Metropolis-Hastings sampling, but with an adaptive independence proposal. An early experiment for phylogenetics can be found in [START_REF] Aberer | An Efficient Independence Sampler for Updating Branches in Bayesian Markov Chain Monte Carlo Sampling of Phylogenetic Trees[END_REF]. An independence proposal proposes new values independently of the previous one. The ideal independence proposal is equal to the posterior distribution itself. A good adaptation scheme therefore tries to build an approximation of the posterior distribution, to use as a proposal. This is a challenging task, but promising methods have been invented in the last years, and are starting to provide general solutions. In particular, neural MCMC, where a neural network is used to propose new values, is making great improvements [START_REF] Spanbauer | Deep Involutive Generative Models for Neural MCMC[END_REF], and has even been applied to compartmental models and the Covid-19 pandemic [START_REF] Radev | Model-Based Bayesian Inference of Disease Outbreak with Invertible Neural Networks[END_REF]. This is one of the ways that deep learning might revolutionize Bayesian inference, and infectious disease epidemiology, as it has already done for many other fields.

Looking forward

We hope that the work presented in this thesis can participate in a humble way to a future for statistical epidemiology where more performant methods would allow researchers to use models and data more flexibly, so as to tackle the issues of stochasticity and non-identifiability, to be able to provide more realistic predictions and more effective control strategies.

Taking a step back, it is interesting to take a look at what the future might hold for epidemiology. As with society more generally, the field of epidemiology is expecting to see big changes with the growth of "Big Data", "Data Science", and "Deep learning". As we have discussed in section 1.3, traditional infectious disease epidemiological data were collected or compiled by epidemiologists, from hospital records. Serological data are typically collected through the organization of specific studies, to obtain a representative sample of the population. Statistical epidemiologists are thus always in need of more data, and have an important role to play by cooperating with public health agencies to explain what data can be useful what we can hope to gain from them. We have seen that new sources of data are becoming more common, like viral sequence data, and that is already changing the way that epidemiologists work when faced with emerging epidemics. However, the changes will probably go much farther than that. In France, a plan was launched in 2018 by the Villani report on Artificial Intelligence, to centralize the different databases of health data, from the Social Security and hospitals. The goal is to make it a tool for France to both help medical and epidemiological research, and to boost artificial intelligence research, which is seen as being of strategic importance. The plan was greatly accelerated by the pandemic, and has now taken the form of the "Health Data Hub", which is hosted on Microsoft servers, and to which access is granted for research purposes, public or private. Indeed, this avalanche of data goes hand in hand with the development of adapted statistical methods collectively designated as Machine Learning. Among these, the recent field of Deep Learning, which has allowed astonishing progress towards Artificial Intelligence, is the most transformative. Besides the applications in image recognition and synthesis, in voice recognition and synthesis, or in player AI, there are also applications to Bayesian inference, for example neural MCMC, as we have already mentioned [START_REF] Radev | Model-Based Bayesian Inference of Disease Outbreak with Invertible Neural Networks[END_REF][START_REF] Spanbauer | Deep Involutive Generative Models for Neural MCMC[END_REF]. Since deep learning functions mostly as a black box, it is sometimes perceived as somewhat magical in nature. As long as enough training data is available, and as long as the network is big enough, then it should be able to learn, and give us an answer. One might even think that any problem is solvable with enough data. Of course, taking a closer look at neural network research is enough to see that things are not that simple. More fundamentally, it is important to understand that however much the research progresses, there are inherent limits that cannot be surpassed. In infectious disease epidemiology, the most difficult and important tasks relate to prediction. As we explained in the introduction, section 1.2, the non-linearity and the stochasticity of epidemic processes places a limit on the possibility of prediction. More generally, there is a limit to the level of control we can exert on the world. When we include human behavioural elements in our models, it is easy to start imagining the human elements as variables like any others, that we can manipulate to optimize some function of our own choosing. This reasoning reflects a view of science as a tool for control. In a way, a lot of the history of science can be seen as a quest for control over our environment, through advancing knowledge and understanding. This control has helped humanity greatly, and improved life expectancy and comfort, to cite two important items among many others. Every higher degree of control, however, requires heavier infrastructure, technology, and expertise. The society as a whole is able to exert control, but the individual can be left to feel insecure. If the knowledge, power, and control are concentrated in the hands of the few, there is a serious danger of a fracture between the world of the "citizens" and that of the "decision takers".

Nowadays, in the information age, control reaches increasingly into every aspect of our lives, with intelligent sensors, facial recognition, artificial intelligence, and more. We can continue on this path, and let people be progressively reduced to blobs of data to be consumed by algorithms in the hands of opportunistic companies or control states, or we can look for another path. We can collectively decide to relinquish some amount of control, and to find ways to better share the control between everyone. As public servants, researchers need to think about how they can help enact this change, to ensure that the citizens have a power of informed decision over their lives. If we come back to the example of the epidemic models with behaviour, these should not be treated from the angle of an optimization problem with many variables to control, but from the angle of a many-player game where the players need to cooperate together in an informed manner. An example of a concrete step in this direction can be seen in vector control strategies. If traditionally they followed a top-down approach, efforts are now being made to build policies with the participation of the local communities [START_REF] Devine | Global Vector Control Guidelines -The Need For Co-Creation[END_REF]. More generally, efforts to engage in more scientific popularization, but also to invent more participative and collaborative scientific practices will need to be taken much more seriously.

Looking up

These three years-and-then-some were very interesting on many counts. I am very grateful to Bernard and Rick for giving me this chance to explore new research directions on my own, even when they diverged from what was initially planned. They were real mentors, that gave me both trust and support, as needed. I feel like I was lucky enough to experience to some extent what it was to do a thesis in the old style, which has become more rare with the model of the Principal Investigator and their many PhD students, and the increasing competition that comes with it. In the current academic world, the two objectives of the thesis, the learning and the production of research output, can sometimes come in conflict.

I feel that this is particularly true in France, with the progressive dislocation of the public research domain. The only perspective offered to a PhD graduate is to undertake a series of precarious short term contracts, with the vague hope of getting a permanent position one day, but only if they played the game well enough, and ticked all the boxes of a long list of arbitrary criteria. Even if they are offended by the absurdity of the whole process, they still fight to conform to it, because, what else can they do ? When a large part of research is carried out by people in this situation, what should we expect from it ? That is not to say that those that do manage to tick all the boxes and answer all expectations will be bad researchers. Far from it, they will be great at research, at communication, and at setting up effective collaborations. But I also believe that science as a whole suffers from this situation, as well as from the grant funding and publication situations, which hamper collegiality, creativity, and scientific integrity.

If you are a permanent researcher, you have probably already heard all of this from many PhD students, and post-docs, and you are aware of all these different problems, but I am not trying to bring something new to the discussion, or to present an argumentation. I am just trying to share my feelings, which I believe correspond to the feelings of a good proportion of PhD students and post-docs. The only ones who can do something about this are the permanent researchers. For the temp workers, the only answer is to leave.

As a parting note, I wish to warmly thank the reader that will have had the patience to get to this point, and if they are still interested to learn more about my thesis, I would encourage them to turn the page, and continue on to read about the behind the scenes of my research, contained in the appendices.

Introduction

The three chapters that I presented in the thesis are the three pieces of research that were completed during the duration of the thesis and that can stand on their own. However, these pieces of work need more details and background to be completely understood. First, each of them comes with some supplementary material, which we present in appendix D for Chapter 2, appendix E for Chapter 3, and appendix F for Chapter 4. Second, the three chapters rely on the same collection of OCaml libraries, which deserve to be discussed. In appendix A, I discuss the OCaml language, and some details of the implementation, and in appendix B, I discuss the programming tools I used to make the implementation more robust and performant. Finally, Chapter 3 and Chapter 4 both use a Bayesian phylogenetic MCMC based on tree-augmentation like other classical softwares. However, this was not the focus there, so we present this algorithm in appendix C, that includes some common sequence likelihood optimizations, and two novel Subtree-Prune-and-Regraft moves. seems that progressively, as code is reviewed and published more and more along articles, code quality improves, but the incentives remain low to invest time in producing and maintaining quality code.

This probably explains in part the rising popularity of Python in among bioinformatics or modelling, as it is a productive language to write in. A common choice is to use Python for most of the logic of a program, and switch to C or C++ for speed critical sections of the code. On the other hand, the choice of OCaml [START_REF] Leroy | OCaml, an Industrial Strength Programming Language[END_REF], an obscure language developped at INRIA in the 90s, is not common, even though I believe it to be a good fit, as I will try to explain.

To start with, there are two obvious and important drawbacks to using a niche language that need to be mentioned. First, the OCaml ecosystem is fairly small, so one cannot count on external dependencies as much, which means possibly more work for the programmer. Second, the non-popularity of a language can also limit the impact of a publication or published software.

However, I believe that it is worth it to pay this price for the many advantages offered by OCaml. OCaml is a functional language with a rich static type system and type inference. It is also a compiled language with an efficient garbage collector that can get it close to C speed. This means OCaml makes it easy to write code that is both fast and correct. The functional nature of the language, with its emphasis on immutable data structures and purity, helps reduce the number of bugs and the need for tests. The type system and module system help with the design of modular interfaces, while algebraic data types, exhaustiveness checking, and type inference help with refactorings and extensibility.

It is difficult to understand the importance of these features without experiencing them oneself in practice, but I will take some examples from my implementation to try and showcase them.

A.2 An introduction to OCaml syntax I will first introduce the basic OCaml syntax, and its basic features. In OCaml, a value is bound to a given name in a given scope, introduced by a let-binding.

let x = 2.

in expr

This introduces x as a value of type float and of value 2. in expr. A let-binding is closed by the end of an enclosing scope, or at the highest level, by a ;;. Each variable in a scope has got a type, which is inferred by the compiler through unification, and must be compatible with all of its uses. When types are incompatible, for example if a value is defined as a float, but then used as an int, then the compiler will throw an error.

> let x = 2. in x + 3;; ^^Ê rror: This expression has type float but an expression was expected of type int

We see here one of the syntactic peculiarities of OCaml, which is that operators on integers and on floating point values are distinct, which is due to its type inference, as well as its preference for explicitness.

A function is also defined through a let-binding, but with free parameters, for instance we can define the function f that adds 3 to its integer argument as

let f x = x + 3
A function value also has a type associated to it. The type of f is int -> int. We have also seen another syntactic peculiarity of OCaml, which is to avoid delimiters around function arguments. This is because functions are automatically curried on partial application. If we have let g x y = y + x

Then g is a function of type int -> int -> int, which sums both of its arguments. The expression g 3 is also a function, of type int -> int, and is in fact equal to the previous function f.

Functions are values like any other, and in particular they can be passed as arguments to other functions. Their type will then be inferred depending on their uses in the function body, like for any other value. For instance, we can define the function that applies its first function argument twice to its second argument.

let h f x = f (f x)
But what is the type of h in this case ? If we ask the compiler the type that it infers, it will tell us that h has type ('a -> 'a) -> 'a -> 'a. This is an example of a polymorphic type: 'a is a type parameter, meaning that the function h can be used with any specific type. For instance, h f is a function of type int -> int that adds 6 to its argument.

> h f 1 7

We have seen the first important features of a functional language like OCaml, which is to treat functions as first-class values, and which is great for modularity. I will not do a full presentation of OCaml's features, and the interested reader should refer themselves to this introductory book [START_REF] Minsky | Real World OCaml[END_REF], or to the OCaml manual [START_REF] Leroy | The OCaml System[END_REF]. I will however still illustrate OCaml's rich type system and powerful module system.

A very important feature is the possibility for the user to define their own types, which will then be used in inference like the base types. One interesting kind of type is that of Algebraic Data Type (ADT), to represent an union of types. The option type is for instance defined as type 'a option = | None | Some of 'a meaning that a value of type 'a option can either hold some value, of type 'a when the constructor Some is used, or hold no value, when the constructor None is used. These types can be recursive and are therefore quite powerful ; they can for example be used to define lists or trees.

A very important feature is that they come with patternmatching, and exhaustivity checking. What this means is that we can deconstruct the value and take different actions depending on the constructor, and that the compiler will warn us if we forget some cases. When in Python, we would tend to pass a configuration option around as a string taking several different values, and we would need to be careful to check all the possible values at all use-sites correctly, in OCaml we would create a custom type, and the compiler will check for us that we check all possible values correctly. Additionnally, future refactorings of the code where we add a case are greatly facilitated, thanks to the exhaustivity check. In practice this is a very nice feature to model the problem more cleanly, and it also helps with readability.

The last feature I will touch on is the module system. In OCaml, a module is a collection of types and values. An OCaml '.ml' source file defines a module, and a '.mli' file with the same name defines the signature of the module. This allows to provide abstraction and encapsulation. The module signature provides an abstraction boundary between the implementation of the module and the users of the module. If no '.mli' file is created, the signature exposes all the types and values of the module, and if a '.mli' file is created, but left empty, then none of the types or values from the module can be accessed from outside. Often, the signature will expose only some of the values of the module, and will hide some implementation details on the types. Now that we have seen some basic OCaml features and that we have gotten accustomed to the syntax, I will present some of the uses of these features that I made in my project.

A.3 Statically checking the sign of floats

In scientific software, we perform many computations on floating point values. To ensure correctness, reusability and ease of maintenance, it is beneficial to split the computations into small pure functions. However, it is very often the case that a function will require specific inputs, for example only positive values. If we don't check the input sign, we might get weird results that will be hard to track down, and if we check the sign dynamically at every function call, we will pay a performance cost. A possible solution, present in C, Python, OCaml, etc, is to use assert calls, that are only run in debug mode, but skipped in production mode. However, they are useful only if the testing is sufficient, and if they are actually added everywhere where they are necessary. Instead, in this project, I encoded the sign information in the type system, so that the sign gets checked by the compiler as much as possible. An additional benefit is that a function can now clearly advertise in its type what sign it expects, which reduces programmer error.

To achieve this with minimal runtime cost, I need to present two additional advanced type system features that I used. The first one is open variants. As their name says, they are like regular variants (ADTs), except that they are open, meaning that they represent an open union of types. For example, we might want to represent the possibility for a floating point value, to be, either positive, negative, or between 0 and 1. This means that a floating point value is always float ([> `Float]), and can be positive, negative, a probability, or maybe even all three.

In particular, zero is an example of a value that is all four. The second one is the use of phantom type parameters. In the type definition type 'a t = float GThe type parameter 'a is not used anywhere. Therefore, in principle, it should remain free and polymorphic in all uses of the type. However, we can add type annotations by hand to constrain this value. This way, we can force the type parameter to carry information for us, at no runtime cost. In our case, this will be sign information, represented through open variants.

Through open variant types combining the previous types, we are able to prescribe a type for positive input values 'a anypos, positive return values 'a pos, etc. The subtyping relations between these types make it possible to use a positive return type as the input to another function expecting a positive value or a float of any sign, with no conversion.

We can then give the appropriate types to common functions. The function add for positive values is given the type 'a anypos t -> 'b anypos t -> 'c pos t If we remove the names of the unused type parameters, this can also be written

_ anypos t -> _ anypos t -> _ pos t

We organize functions into different modules depending on the types they manipulate, Pos for positive values, Proba for probability values, and Neg for negative values. The function Pos.log for positive values has a type _ anypos t -> _float t, meaning that it returns a float that we don't know the sign of, whereas the function Proba.log for probability values has a type anyproba t -> _ neg t, because we know that the log of a probability is negative.

We also need functions to convert between normal floats and our signed types, and in between our signed types.

val to_float : _ t -> float val of_float : float -> _ t val narrow : _ anyfloat t -> _float t module Pos : sig val to_float : _ anypos t -> float val of_float : float -> _ pos t val of_anyfloat : _ anyfloat t -> _ pos t val narrow : _ anypos t -> _ pos t end

When the conversion requires it, for example for Pos.of_float, we do run the corresponding dynamic check that the value is positive.

The safety is enforced for outside users of the module, because in the signature of the module, the equality between the type 'a t and float is hidden. From outside, then, everything happens as if the type 'a t was abstract, with only the subtyping relations and the functions exposed by the interface, to manipulate it. Thanks to this system, we can for instance specify that parameters of a model are positive. We only need to check them at the boundary of the program, and they can then be used throughout the program safely.

This system has several limitations in practice. Fundamentally, the problem is that the type system features we use are not strictly the right tool for the job. Open variants and phantom types can not replace the correct algebra. There is no automatic way for the compiler to know, for example, that a positive value multiplied by a negative value is negative. We can only obtain this property by writing a dedicated function. Each new rule needs a new function, and they don't combine naturally.

Similarly, type unification often gets in our way. The functions that we expose ourselves instantiate distinct type variables at every use. For instance, we can write the signature of the function add, which takes two positive values to produce a new one, in the following way.

val add : 'a anypos t -> 'b anypos t -> 'c pos t Here, 'a, 'b, and 'c can be different. But when we use a value in a recursive function for instance, all the (infinite) uses of the variable have to be the same, which forces the type to be closed, which is not what we want. This also sometimes gives rise to type errors that are hard to understand. We are thus forced to sprinkle the code with calls to narrow functions, to make the type variables distinct.

Last, and most simply, we need to convert from floats and back to floats, depending on the area of the code, even for values with unspecified sign, and this also adds syntactic noise to the code.

These three limitations make the system quite heavy syntactically in practice. Still, in theory, the system costs nothing in performance, as the compiler knows that most added functions calls (of_float, narrow, to_float) are in fact the identity function, and it can remove them, if they have been inlined correctly.

In conclusion, I think the experiment is interesting, and useful in many places, but also feels too syntactically heavy at other times.

A.4 Modular algorithms with functors

As I have already noted, the OCaml module system is very powerful, and probably the most striking feature of ML languages, in comparison with other popular functional languages like Haskell. The module system allows to enforce abstraction boundaries between components, and can for example be used to ensure that a particular datastructure is only used in the correct way. The module system is accompanied by a parallel type system that lives on top of the basic type system, where values are replaced by modules, types are replaced by module types, and functions are replaced by functors. A functor is therefore a function which constructs a new module, with a specified output module type, from an input module with a valid specified module type. As an example, consider the functor Pair. In this example, the type t of the output module is abstract, so the only thing we can do with it is to use the function add implemented in Pair. The main benefit of functors compared with polymorphic functions is that in a functor, the types can be accompanied by functions. If there is only one type, and one function, then a polymorphic function can be used for lighter syntax, and more readability.

let add_pair f (x1, x2) (y1, y2) = (f x1 y1), f x2 y2)
However, if we want to define several functions, that all depend on the same set of functions, then a functor becomes a lighter and clearer mechanism. A good example is for the definition of a datastructure, and the many functions to manipulate it. For intance, in the OCaml standard library, functors are used to provide an interface to ordered sets and maps, through Set.Make and Map.Make. The input module type consists of a type t and a compare function, to order the set elements and map keys with. Using this custom compare function, the ordered sets and maps are represented as binary trees. This is a powerful mechanism that provides both abstraction and composability, and that I used extensively to create generic building blocks for different datastructures and algorithms, that are then safely composed together. A first layer exists in the sim library, responsible for the simulation of processes, both deterministic and stochastic. Everywhere that polymorphic functions are enough, that is what we use, because the syntax is lighter than for functors. That is the case for the Dormand-Prince implementation, the binding to odepack, or the Gillespie algorithm implementation. When the algorithm relies on specific datastructures, and associated functions, however, we use functors. This is the case for our Poisson-driven SDE simulations, which require a Poisson Random Measure input (see chapter 2 and chapter 3). The Poisson Random Measure datastructure contains points, organized by time slice, by color and by value slice, and ordered inside slices, as well as capabilities for hiding points, revealing points, or grafting new points. The color of a point corresponds to a type of event, for instance infection, or recovery. This depends on the model, so the PRM datastructure is also produced by a functor, parameterized over the type of point. The PRM datastructure is reasonably complex, with close to 2000 lines of code for the main functor, and is mutable in places. But thanks to module abstraction, the implementation details are hidden from the users, and the user can only manipulate the datastructure in a safe way, through the exposed functions, while preserving the invariants of the datastructure. As an example, in a "graftable" PRM, new points are simulated as required by the simulation when it reaches new u value slices. As explained in the appendix D, this is only correct if distinct time slices use distinct PRNGs to simulate new points. The PRNG instances are therefore a hidden part of the datastructure, and used as needed.

Module interfaces are also a powerful tool to think abstractly about the problem that we model, independently of the implementation. As an example, the pop library is tasked with defining populations of individuals, that can then be simulated. The goal is to perform efficient stochastic simulation of Markov jump processes for ecological and/or evolutionary processes. The simulation algorithm is not new, even though it is apparently not that well known, and it can be found for instance in [START_REF] Champagnat | Unifying Evolutionary Dynamics: From Individual Stochastic Processes to Macroscopic Models[END_REF] or [START_REF] Voliotis | Stochastic Simulation of Biomolecular Networks in Dynamic Environments[END_REF]. The idea is to use Poisson thinning, or acceptance-rejection, to treat different events together. If a group of individuals can all undergo the same event, but with slightly different rates, because of their different trait values, then as long as you can compute an upper bound on the individual rate, then the individual events can be replaced by a group event followed by a choice of individual and a possible rejection. If r(x) is the rate for an individual with trait x, then the group event for the group G is given a rate |G| max i∈G r(x i ), then an individual k is chosen uniformly, and the event is not rejected with a rate r(x k ) max i∈G r(xi) . This allows to not compute one rate per individual, but only one rate for the whole group, which saves a lot of computations when there are many individuals.

To implement this algorithm in OCaml, we first define module types for traits, individuals, and populations. Individuals are defined by trait values, and we impose no restriction on what a trait might be. It might be a float for a quantitative phenotype, or an ADT for a discrete phenotype, or a sequence, for instance. This will correspond to a type 'a t. We then ask that the user define a splitting of trait values into groups. Therefore, we also ask for a type 'a group, and a function val group_of : 'a t -> 'a group. The type parameter 'a for traits and groups indicates whether the trait values of this group should be tracked with unique identifiers, or not. A id group is an identified group, and a nonid group is a non-identified group. To recover this information, the user needs to supply a function val isid : 'a group -> 'a isid. Last, in the case when trait values from a group are not to be identified, then they should be indistinguishable, meaning that their group holds all the information about them. So the user must also be able to supply a function val of_group : nonid group -> nonid t. All of this together is enough to define an interface for a trait. Using this, we then define individuals, which holds trait values, and when they are identified, also holds a unique identifier. Specialized functions nonid and id, are used to create non-identified and identified individuals, a polymorphic function trait_of recovers the trait value of any individual, and a specialized function ident gives us the identifier only of identified individuals, all of this in a type safe way with respect to individuals being identified or not. Writing the interface already allows us to think about how the code should behave before writing any concrete implementation.

Finally, a population will be a collection of individuals, with counting of groups, and tracking of identified individuals, as well as the possibility to randomly choose from them. We create several variants of populations. The simplest type of population has no identifiers, and all individuals and groups should be nonid. We can then have a population where we have identified individuals, and we provide a function to randomly choose an identified individual of a given group. Then, in addition, we might want to keep track of maximum trait values present in the population according to some metric, to compute maximum rates for simulation. Last, we might want to track the genealogy of individuals. These different possibilities are implemented through different functors, that are combined with each other.

As an example, we can consider our implementation for the SIR model, with viral sequences. In this case, the groups of Susceptibles and Removed are non identified, while the group of Infectious is identified, and each individual carries a sequence. The corresponding Trait module might be implemented like the following -but note that this is a simplified version of our real implementation. Where seq is a sequence of nucleotides, defined in the module seqs, type seq = Seqs.t. In this code, the types 'a trait and 'a group are defined as General Algebraic Data Types (GADT), which are like ADTs except that different constructors can inhabit different types. This way, we can indicate which groups are identified or not. This explains the new syntax in the type and function definitions, which I will not explain here.

The corresponding population module can then be instantiated through the functor call module P = Pop.With_events.Make (Trait)

Where With_events is a functor that includes identifiers, maxium trait tracking, genealogy tracking, as well as convenience functions for birth and death events.

With this mechanism, the pop library can implement populations in a general way, and the epi library does not need to know about the internal details of the pop library, it just needs to respect the interface of the pop library, apply the desired functors, then use the provided functions. We also use this mechanism of abstraction through functors in the coal library to simulate coalescent processes, or the phylo library to perform phylodynamic inference, from a pair of an ecological model and an evolutionary model.

In conclusion, using OCaml for my PhD project was a pleasant experience, and it allowed me to write a large program with many functionalities alone. The functionalities live together, and depend on each other, but we avoid weird interferences between them, thanks to immutability and abstraction. The program went through a number of refactorings in three years, which touched the sim, pop, or epi libraries, for example, extensively, but this was relatively painless thanks to type inference. We think that as the OCaml community grows, and as the libraries and tooling for OCaml develop, OCaml will become a great choice for scientific and numerical code. Otherwise, we believe that scientists have a lot to gain in using functional languages, rather than languages like C or Python, for which the maintenance and refactoring costs are higher. To keep close to these languages, Rust is a safer alternative for C, and Julia for Python. collaborative coding platforms like Github (https://github.com/) and Gitlab (https://about.gitlab.com/). For this project, I used git and Gitlab. Obviously, the first advantage offered by version control is memory. You do not loose code, as long as you properly commit it. Second, version control, and git in particular gives you the ability to experiment easily. You can add a new feature, or implement a variant of some code path, in an isolated way, without copying code around an instantly entering a maintenance nightmare. Third, git gives you ease of deployment over several machines, by just pushing and pulling from the remote. If some machine needs some adaptation, this can be done in a dedicated branch, reserved to that machine, with rebases pulled in from the remote master branch as needed. If there is more than one developer working on the project, it is pretty much unthinkable to do anything without version control. As a last point, I kept a slightly more advanced, but very useful feature. git can also help a lot with maintenance and debugging. One can easily go back through history to find where a bug was introduced, and how some behaviour changed unexpectedly. This is slightly more advanced because it requires the git commits to be suitable. Typically, the code should build, and the testsuite should pass at every commit (pushed to the remote), otherwise it will be hard to examine the commits a posteriori. If this is the case, then one can go over the commits one by one using git rebase -i, or use git bisect to gain time. When a specific line of code is thought to be the source of a bug, one can also use git blame to find in which commit the line originated.

B.2 Dune and expect tests for testing

The second tool I think worth mentioning is testing, which is an essential element to ensure correctness of the code. Three important features of OCaml free us from most bugs, especially the stupid kind of bug. The use of immutable data-structures by default avoids many bugs coming from values mutating in unexpected places. The Garbage Collector frees us from bugs coming from accessing memory after it was freed, or forgetting to free memory. The rich type system and type inference allow us to encode many invariants of the code through types, so that they are checked by the compiler. Despite these features, the speed-critical sections of the code will often need to use mutable data-structures, and intricate algorithms, so that bugs cannot be avoided. Testing is therefore still necessary to check these critical parts of the code. A common strategy is to perform unit-testing: a test block is a self-contained block of code that checks some condition and returns a boolean. The test passes if the code returns true. A variation that is easy to use in OCaml, thanks to its build system Dune, is expect-style tests. The difference with traditional unit tests is that instead of checking that some condition is fulfilled, we check that the text output is exactly as it should be. If the output is not as recorded in the test block, then a special mechanism is given to replace (promote) the recorded output to the new output. In particular, no output need initially be written down manually when writing the test: one can just run the test a first time, then promote the output after checking that the output is as expected. This makes expect tests more flexible than unit tests, as more precise properties of the code can be easily tested. They are particularly suitable to regression testing, where one checks that changes to the code do not change the previous behaviour of the code unexpectedly. I used them for example to record the trajectories and traces of simple simulations and MCMC runs, to stay aware of when they changed. This helped me a lot to avoid inadvertently introducing new bugs when optimizing performance, for instance.

The next items are linked to the tooling around the code itself, as text.

B.3 Vim and Merlin for writing

When we write code, we write text, but structured text, which must then be parsed by the compiler (or interpreter). Writing the code without any feedback about how it will be parsed by the compiler can be quite painful. The right editor support however can help make the feedback loop between writing the code and checking its correctness much faster, so that the code can be correct on the first try. The OCaml compiler performs type inference, which assigns types to expressions (see appendix A), and checks that expressions are used at valid types. Merlin runs the compiler in a special way so as to keep track of the types of code. By interacting with Merlin, a text editor can then indicate the inferred type of expressions, and report errors. This can be used with Vim, Emacs, or VSCode, for example. In my case, I use Neovim, which is a rewritten version of Vim, a light editor with different modes for insertion or editing, and powerful shortcuts and scripting.

B.4 perf and speedscope for optimization

Performance is the last important item on the list. Optimization should not be performed too early during code development, as premature micro-optimizations will tend to make the code less readable for negligible benefits in performance.

The most important factor towards good performance is the use of efficient algorithms in critical parts of the code, using an algorithm with lower complexity can drastically affect runtime.

The next important factor is the language. The same algorithm might run 10 times faster when implemented in C than in Python. OCaml, with its static typing and efficient GC, produces code that runs close to C speed. Without any effort, code might run 2 or 3 times slower than in C.

We then come to actual optimization. Profiling is a great tool to help in that endeavour. It consists in recording the function call graph and the time the program spends in each function, as it runs.

The profile can then be examined with graphical tools to reveal where the program spends its time. Functions that take up a lot of time are good targets for optimization. For this project, I used the Linux tool perf, and the web-hosted flamegraph visualizer speedscope (https://www.speedscope.app), because of their ease of use.

An example of how it turned out useful was for the ODE simulations used throughout. I initially implemented an OCaml version of the Dormand-Prince method, that used BLAS behind the scenes. Profiling showed that MCMC spent too much time on simulations, so I replaced the implementation by bindings to the FORTRAN library odepack, to good results. Many optimizations for the Poisson Random Measures in Chapter 2, the coalescent simulations in Chapter 3, or the phylogenetic likelihood computations in appendix C, were also guided by profiling.

B.5 Reproducibility with Git and Docker

The last tool I will talk about is Docker. Docker images and containers allow to create reproducible environments of small size. Docker images are layered, and images that share common initial layers take no additional space, which is a good basis for the creation of a large diversity of configurable and reproducible environments.

We used a Docker image and a dedicated Git repository in our submission to Mathematical Biosciences of Chapter 2, to provide reproducibility in a strong sense. The data, simulated data, MCMC traces, figures, and all scripts to produce all of this are in a Git repository, and the OCaml package is also provided as a Docker image:

• https://gitlab.com/bnguyenvanyen/ article_prm_augmented_mcmc

• https://hub.docker.com/repository/docker/ bnguyenvanyen/ocamlecoevo This makes it possible to work in an environment where ocamlecoevo is already installed, to rerun the analyses. One can therefore check that the different scripts do generate the included data. For the scripts that would run too long, for example the MCMC runs, one can run a small number of iterations, and check that the start of the output is identical.

An additional benefit is that the Docker image gives us a "frozen" version of the program, that will keep running the same way in the following years, which increases the lifespan of the article.

In conclusion, those are some of the tools that scientists can take hold of to improve the quality of the code that they are writing. Scientists' coding practices will continue to increase in quality as more incentives are developed in that direction.

discrete and continuous optimization problem.

A classical tree move is the Subtree-Prune-and-Regraft (SPR) move, which consists in choosing a subtree from the phylogeny, pruning it, and then regrafting it at some other location on the tree. The uniform SPR move is the most simple SPR move, and consists in choosing the pruned subtree uniformly, and then grafting it uniformly among all valid locations. However, this simple move is typically not very efficient. It tends to change the likelihood of the tree by a lot, and a large proportion of the time, because of the dimension of the space, in a bad way. Instead, the extending SPR move (eSPR) [START_REF] Lakner | Efficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics[END_REF] tends to be more efficient. The pruning point is still chosen uniformly, but the grafting point is chosen by moving away from the pruning point by a geometric number of nodes. This is a much more conservative proposal, so that a higher proportion of moves can be accepted. At the same time, since the proposal is very local, it will not be able to move between two equally likely but significantly different phylogenies. Another kind of SPR move which can be more effective in that respect is a guided SPR move, which chooses pruning and grafting points according to some measure of how much this would improve the phylogeny. An important example of such a guided SPR move is the parsimony guided SPR move, described in [START_REF] Zhang | Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference[END_REF]. The authors report that this guided proposal can be an order of magnitude more efficient than the eSPR move.

Taking inspiration from these two proposals, we developed two new SPR proposals, which we use as part of a mix of proposals for Bayesian phylogenetic and phylodynamic inference. I will present these two novel proposals, as well as some other elements of the implementation, like the full proposal we employ, as well as how we compute the sequence alignment likelihood. The first novel proposal is akin to the eSPR proposal, but the grafting point is put an adaptive gaussian distance away from the pruning point, instead of a geometric number of nodes. The second novel proposal is a type of guided SPR proposal, where we take information from the node sequence site probabilities, that we obtain as part of the 

C.2 An adaptive SPR proposal

The now classical eSPR move [START_REF] Lakner | Efficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics[END_REF] has two disadvantages. A first limitation is the fact that the grafting point is picked uniformly along the chosen edge. In many cases in practice, the proposal will most often propose a graft to the sibling edge of the pruned subtree, or one node farther. The points along each of these edges are therefore not differentiated by the eSPR proposal, even though arguably closer points should be preferred. A second difficulty is the need to tune the value for the parameter e p , that controls the number of nodes that the subtree is moved, which is not done automatically. To remedy these limitations, we present an adaptive Gaussian proposal, where the grafting point is a Gaussian distance away from the pruning point along the tree edges.

C.2.1 Drawing from the proposal

In the same way as for the uniform or extending SPR proposals, the pruning node is picked uniformly. We then draw a normal variable d ∼ N (0, σ), which gives us the distance d between the pruning and grafting points. We check which directions from the starting point are valid, that is in which directions we can move by a distance d before hitting a leaf or the root. If there is no valid direction, then the move is rejected. If there are valid directions (one or two), then a direction is chosen randomly. At every new node that we cross, we check again which directions are valid to move by an updated distance d , and then choose a new direction among those randomly. When the initial distance d has been exhausted, the pruned subtree is regrafted, randomly to the left or right of the terminal point. The Algorithm 7 explains this procedure in pseudo-code.

C.2.2 Computing the proposal density ratio

Contrary to a Gaussian proposal on R n , this proposal is not symmetric, and so we must compute and include the ratio of proposal densities for the MH transition kernel to be reversible. The source of the asymmetry between moving a subtree from point A to point B and from B to A lies in the fact that different directions can be valid on the A to B path compared with the reverse B to A path. If the path from A to B is valid, then the reverse path is also necessarily valid. However, the other unpicked directions can be valid or not, so that the probabilities of taking specifically the forward and reverse A to B paths instead of some other path can be different. Therefore, to compute the proposal ratio, we keep track of which directions are valid along the path, and of the information needed to verify which directions are valid on the reverse path. We then compute the reverse and forward path probabilities, and the proposal density ratio is then the ratio of these quantities. At the end of the proposal, the standard deviation σ of the proposal is adapted using RAM [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF] to reach a target acceptance ratio. 

C.3 A SPR proposal guided by the site probability distributions

The section should be short and to the point :

• Explain the proposal and prove that it is correct

• Compare the proposal with others, for correctness and speed A recent parsimony-guided SPR proposal was described in [START_REF] Zhang | Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference[END_REF], and was shown to improve convergence and mixing by an order of magnitude compared to uniform or extending SPR moves. Some limitations of this proposal are that it requires to compute parsimony scores, that parsimony alone ignores branch length, and that the pruning point is still chosen uniformly.

Here we follow the same idea of guiding the SPR proposal towards better moves, but instead of using parsimony scores, we use the site probability distributions at every node of the tree, computed as a byproduct of Felsenstein's algorithm for the likelihood of the tree given the sequence alignment [START_REF] Felsenstein | Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach[END_REF]. We will only concern ourselves with rooted trees and heterochronous samples, and will describe the proposals for this setting.

First, let us recall Felsenstein's algorithm [START_REF] Felsenstein | Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach[END_REF]. The likelihood of a phylogeny for a given alignment is considered to be the probability that each site of the alignment is at the model equilibrium frequency at the root of the phylogeny, given the states of the sites, observed at the leaves of the alignment. To compute the likelihood, we assign a vector of probability distributions for each node of the tree. For n nucleotide sequences, this is a matrix of 4 rows and n columns, where the element p i,j is the probability that the j-th site is in state i. We fill in the matrices for the leaves according to our knowledge of the sequences, with either a 1 for the observed states, and 0 for the rest, or with some probability distribution taking into account the probability of error. We then go up the branches of the tree, and let the probabilities evolve under Kolmogorov's equations for the chosen reversible nucleotide substitution model. At every internal node of the binary tree, where two branches merge, the probability to have a given state, is the probability that both branches are in that state. During our MCMC, we hold a matrix for each node of the tree, which we update as needed, either when a relevant parameter changes, or when a descendant subtree of the node changes.

If we follow the ideas from parsimony and distance methods, a good phylogeny is one that coalesces lineages corresponding to sequences that are more similar before those corresponding to sequences that are less similar. Looking at the site probability distributions, this suggests that in a good phylogeny, the two distributions under a node should tend to be similar. This also makes sense from the point of view of the likelihood formula, which takes the probability distribution at a node to be the product of that of the children. We therefore aim to design a SPR proposal that preferentially prunes a subtree that is very different from its sibling node, and grafts it next to a sibling that is very similar to it.

As a simple measure of the similarity of nodes, we take the sum of the square of the differences of probabilities. We write p k i,j the probability that site number j of the node number k is in state i, and P k the matrix of probabilities for node k. The distance between two nodes k and k is therefore taken to be

d(k, k ) = i,j p k i,j -p k i,j 2 

C.3.1 Drawing from the proposal

We want the probability to choose a node to increase with the distance to its sibling. For a node k with a sibling node k , we assign a weight of

w p (k) = exp d(k, k ) σ 2 192APPENDIX C. BAYESIAN PHYLOGENETIC INFERENCE
The probability of choosing the node k for pruning is then wp(k)

k wp(k ) . The parameter σ is a tunable parameter to control the "normal" distance between sibling nodes.

Then, for grafting, we want the probability for a point to be chosen to increase with the similarity to the pruned subtree. To decide on a graft point, we first choose a new sibling node k with probability p g (k), then graft uniformly along the edge over node k. Some nodes are invalid for grafting because their parent node is younger that the prune node k p , and are therefore given a weight w g (i) = 0. Otherwise, the weight for a node k, with an incoming edge of length dt, is

w g (k) = dt exp - d(k p , k) σ 2
The probability of choosing the node k for grafting along the edge over k is then wg(k)

k wg(k ) . It then remains to choose a graft point along the edge uniformly, and then whether to graft the subtree on the left or the right.

C.3.2 Computing the proposal density ratio

Once again, this proposal is obviously not symmetric. The density of the move from the tree T to the tree T , with a prune node k p , and a graft sibling node k g , with an edge for grafting of length dt, is

w T p (k p ) k w T p (k ) w T g (k g ) k w T g (k ) 1 2dt
The density of the reverse move from T to T is different, since all the weights are different, but is computed in the same way. We have already talked about the uniform SPR proposal. Note that the total branch length of the tree changes under the uniform SPR proposal, so that it is also not symmetric, and the proposal density ratio is the ratio of tree branch lengths.

C.4 Phylogenetic inference in OCaml

The adaptive tree rescaling proposal is an adaptive lognormal proposal. We draw dx ∼ N (0, σ), then multiply the distance from every internal node to the tip of the tree by exp dx (see Fig.

C.2).

The proposal density ratio is exp dx. σ is adapted using RAM [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. In the event that the rescaling is invalid because an edge length to a leaf becomes negative, then the move is rejected.

In our representation of trees, the root of the tree still has an ancestral node over it. This unary node does not matter for the alignment likelihood, but matters for the SPR proposal. This way, they can change the root of the tree, by grafting some subtree on the edge leading to the ancestral node. To fully explore the length of this ancestral edge must be allowed to vary, which is what the root sliding proposal does, by adding a normal variable to its length.

The adaptive node sliding proposal is a symmetric move where we randomly choose an internal node, then add a normal variable to the time of the node. The standard deviation of the normal variable is adapted using RAM [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. In the event that the move is invalid, it is rejected.

The full proposal is a mix of the MH transition kernels for each of these proposals. Each proposal is chosen randomly according to some weights, that are tunable by the user. The efficiency of the MCMC depends on the chosen weights, and we give small weights to the uniform SPR move, the scaling move, or the root sliding move, and larger weights to the adaptive and guided SPR moves, and to the node sliding move. We do not optimize the weights, but reason that including a proposal, even with a small weight, is better than to not include it, as it can help "unstuck" the chain in some difficult cases, while not costing us too much time if the weight is small.:

C.4.2 Computing the alignment likelihood

Our implementation for computing the alignment likelihood density is quite basic, and several established optimizations are lacking. Our code is not parallelized, but it is vectorized and calls to BLAS, which can decide to run some routines in parallel. We do not factorize by general "site pattern", but we do treat the constant site pattern specially, because that is the most important optimization. We also implement variation across sites (not vectorized), and implement in particular Gamma rate variation, and invariant proportions.

Our implementation combines functional and imperative programming features, to strike a trade-off between reliability and speed. The tree is represented by a functional, persistent datastructure, and the likelihood computation corresponds to a recursive function over this datastructure. The node site probabilities are BLAS matrices, or lists of matrices associated with probabilities in the variation-across-sites case, and they are stored in a persistent map, by node label. The probabilities are either taken from the map, or recomputed and updated in the map, as needed. The need to recompute or not is both an argument and a return value of the recursive function, which makes it easier to not forget to update a node.

C.4.3 OCaml implementation

The program was implemented in OCaml, as part of my package for ecological and evolutionary modelling and inference, at https://gitlab.com/bnguyenvanyen/ocamlecoevo . The phylogenetic inference code is mostly contained in the libraries seqsim for the sequence alignment likelihood, treefit, for the tree proposals, and phylo, for putting it all together, for phylogenetic and phylodynamic inference. The correctness of the proposal was tested by checking that the equilibrium posterior distribution of the alignment likelihood did not change when any of the proposals was removed, or used alone. The correctness of the alignment likelihood computation was checked by a comparison with Biocaml, which itself compares with bppml. The correctness of the caching mechanism for partial likelihoods, which ensures that the likelihood is updated as needed, was asserted by checking that the MCMC output captured by an expect test (see appendix refapp:tools) did not change when the caching was introduced.

In conclusion, our implementation of phylogenetic Bayesian inference using tree-augmentation and MCMC introduces some new tree proposals that would deserve more study. We introduced adaptive variants of usual tree proposals, for Subtree Pruning and Regrafting, tree scaling, and node sliding, which reduces the amount of hand-tuning necessary for the user. We also introduced a new guided SPR proposal, using the information contained in the computed internal node site probabilities. This last proposal would deserve more study, to invent better formulas for the pruning and grafting probabilities, from this same principle.

In consequence, integration against a discrete measure reduces to summation

E f dν = n∈N a n f (x n )
Let (Ω, F, (F t ) t≥0 , P) be a filtered probability space. Let (E, B) be an euclidean space equipped with its canonical Borel σ-field, Let λ be a Lebesgue dominated measure. A Poisson random measure (PRM) on E, with intensity measure λ is a random counting measure such that the number of points in a measurable subset A is Poisson distributed with parameter λ(A). Additionally, the numbers of points in disjoint measurable subsets are independent. A succint presentation is given in [START_REF] Jacod | Characteristics of Semimartingales and Processes with Independent Increments[END_REF].

A Markov pure jump process X is a stochastic process X : Ω × R + → E, whose paths are càdlàg and constant in between jumps. An extensive presentation can be found in [START_REF] Stewart | Markov Processes: Characterization and Convergence[END_REF].

D.2

Reformulation of a Markov jump process as a stochastic differential equation

Markov pure jump processes are characterized by events, which happen at exponential times with a certain rate, and which modify the system. We will limit ourselves here to the simple case of processes taking values in Z d , but the results are more general and the reader can refer themselves to the literature, for example [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF] or [START_REF] Barczy | Yamada-Watanabe Results for Stochastic Differential Equations with Jumps[END_REF]. We consider a process taking values in E = Z d , with a finite number of events K. The k-th event happens with a rate r k : Z d → R + , and when it happens, the state changes from x to x + µ k .

Let (ν k ) k≤K be independent standard PRMs, of intensity the Lebesgue measure on R + × R + . Let X 0 be a random variable on Proof. The problems of existence and uniqueness of the solution are not easy, and classically require the integrand to satisfy the linear growth and local Lipschitz conditions ( [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF], Theorem IV.9.1), which are not verified in our case, as the integrand is not continuous. The weaker conditions of [START_REF] Xi | Jump Type Stochastic Differential Equations with Non-Lipschitz Coefficients: Non-Confluence, Feller and Strong Feller Properties, and Exponential Ergodicity[END_REF] also do not hold.

Here we simply show that the equation does describe solutions that correspond to the typical continuous time Markov chain as simulated by Gillespie's algorithm.

Let us make the hypothesis that a solution X exists and let us study its properties. The solution can only change value at atoms of the (ν k ), of which there are finitely many in a compact, almost surely. So the paths are constant by part. The solution is also continuous on the right almost surely, from the definition of Lebesgue integration. Thus the solution is a pure jump process.

We can show that X is Markov by showing that the waiting time to the next jump is exponential. First, in the case with a single event (r, µ). Let us write ν = n∈N δ (tn,un) . The next jump time after time t is the time of the first atom of ν, (t n , u n ), such that u n is below the rate r(X t ). s = min{t n , n ∈ N, t n ≥ t, u n ≤ r(X t )} The process s → N (s -t) = ν ([t, s] × [0, r(X t )]) , s ≥ t is a homogeneous Poisson process of intensity r(X t ). Thus the waiting time to the first event after t is exponential, with rate r(X t ), and the process has the Markov property. Similarly, with K events, by superposition of independent Poisson random measures, the process s → N (s -t) = k≤K ν k ([t, s] × [0, r k (X t )]) , s ≥ t is a homogeneous Poisson process of intensity k≤K r k (X t ). Thus the waiting time to the first event after t is exponential, with rate k≤K r k (X t ), and the event i happens with probability ri(Xt) k≤K r k (Xt) . Let C b (E, R + ) be the space of continuous bounded measurable functions from E to R + . Let (X x t ) t be a solution of (D.1) starting from x. We now determine the infinitesimal generator L of the process, defined by

∀φ ∈ C b (E, R + ), ∀x ∈ E, L φ(x) = lim t→0 + E [φ(X x t )] -φ(x) t
Let φ be a continuous bounded measurable function, and x ∈ E. The expected value for the PRM is the intensity measure, so we obtain for E(φ(X x t )),

E(φ(X x t )) = φ(x) + k≤K t 0 R+ E 1 u≤r k (X x s -) (φ(X x s -+ µ k ) -φ(X x s -)) ds du (D.2)
Dividing by t and taking the limit as t → 0 + , we find lim

t→0 + E(φ(X x t )) -φ(x) t = k≤K E [r k (X x 0 ) (φ(X x 0 + µ k ) -φ(X x 0 ))] ⇐⇒ L φ(x) = k≤K r k (x) (φ(x + µ k ) -φ(x))
This corresponds to the usual notion of a continuous time Markov chain, with event k happening at rate r k and changing the state by µ k .

Additionnally, note that for the specific case of SIR type models, like the ones we have used as examples, there can be no explosion.

The only non-linear event that might cause problems is infection, which consumes susceptibles S. S thus bounds the total number of infections that might happen, and S < N the total population. The infection rate is proportional to S and I, which are both bounded by N .

So the solution could explode only if the total population exploded. But the only events that change the total population are host births and host deaths, which happen respectively at a constant rate and at a linear rate. Therefore there can be no explosion.

D.3 Reversibility of the MCMC proposal

MCMC relies on the ability to evaluate the posterior density. Discrete measures do not live in a Euclidean space, so we need to be explicit about what measure dominates the probability distribution for ν.

We assume the parameters θ are indeed defined on a Euclidean space, and only concern ourselves with the problem of the posterior ν density. Let π be the probability measure of a standard Poisson Random Measure, the prior density for ν. By Bayes's theorem, P(ν|D) is dominated by π, and thus it has a density with respect to π.

Then to define a valid proposal for ν, we need to show that it is reversible with respect to π. Our proposal Q ν consists in redrawing a given slice of time from the standard PRM process. The points in disjoint measurable sets of a PRM are independent, both their number and their position. As a consequence, the proposal Q ν is reversible with respect to π, since it transforms a PRM sample into another (correlated) PRM sample.

For any two measures ν and v, and for any measurable set C, we define the measure As already noted in the main text, the algorithm given in 3 is a simplification, as it considers that all the points of ν can be ordered by time, which is not the case, as ν has got an infinite number of points on any time interval. To simulate the process in finite time and memory, we need to be able to not look at the points of ν above some maximum rate.

If we had a upper bound on the event rates, we could just use that bound, and the algorithm 3 would be correct. In the absence of such a bound, we reuse our reformulation of the equation (2.2), and the division of R + × R + into rectangles A i,j . 

D.5.2 Inference for the simulated seasonal data

In the results section 2.4.3, the data is simulated from a SEIRS model with vitality and seasonality.

The ODE for the model is given in equation (D.3), and the corresponding SDE in equation (D.4). ν E , ν I , ν R , ν S , ν B , ν SD , ν ED , ν ID , ν RD are independent standard PRMs corresponding to the events of infection, becoming infectious, recovery, immunity loss, birth of a susceptible host, death of a susceptible host, death of an exposed host, death of an infectious host, and death of a removed host, respectively.

The parameter values are reproduced in Table D.1 for completeness. The system is simulated for 10 years and the last 5 years of bi-weekly data are kept for inference. -1 u≤λ(s -) ν E (ds, du) 

+
(D.4)
Two versions of the model are used for inference. A seasonal version, where β v is fixed to its true value, and a constant version, where β v is fixed to 0. The parameters that are inferred are the mean effective contact rate β m , and the initial compartment sizes S 0 , E 0 , I 0 , R 0 . β m is given a base 10 Lognormal prior. The initial population size N 0 = S 0 + E 0 + I 0 + R 0 is given a normal distribution with mean N * = 10000, and variance 1. The initial proportions ( S0 N , E0+I0 N , R0 N ) are given a Dirichlet prior, with intensities 1, 0.0001 and 1. The values E 0 and I 0 are fixed from E 0 + I 0 to their equilibrium value for the current parameter values in the constant model. 

D.5.3 Inference for the Zika dataset

The model fit to the data is a SEIR model with immigration. It is the same as the previous SEIRS model (D.3), but without seasonality, host vitality, or immunity loss, which are not needed as the epidemic lasted only a few months. We estimate the parameters β, σ, γ, and ρ. The prior distributions are in Table D 

D.6 Correctness and reproducibility

The repository at https://gitlab.com/bnguyenvanyen/ocamlecoevo contains 30000 lines of OCaml code relevant to the present paper.

Our results rely on that code being bug-free. The choice of OCaml as programming language makes this easier than in C, C++, or python for example, thanks to the safety offered by type inference, as well as the use of immutability in most places, and the module system which enforces abstraction boundaries.

Mutability is still used in some performance-critical sections of the code, most notably the Poisson Random Measure implementation, in prm.ml , so unit testing was also used.

It is difficult to test that the behaviour of random programs is correct, but we checked that the distribution of trajectories when simulating with PRM integration or with Gillespie's algorithm were very similar.

To facilitate reproducibility of the results, a Docker image of the OCaml package and a repository with all the data, simulations, and MCMC outputs, as well as scripts to reproduce them, are available at:

• https://hub.docker.com/repository/docker/ bnguyenvanyen/ocamlecoevo • https://gitlab.com/bnguyenvanyen/ article_prm_augmented_mcmc

The scripts to run the MCMC were adapted from the ones used in practice to run with Condor on the computing cluster at IBENS. which we call migration, and the different events of migration and coalescence can have their rate depend on the colors.

The first difference is with the state space of the process. Let C n,c be the set of c-tuples, where each element k ≤ c represents the lineages of color k. c is the number of colors of the process. Each element is a set of sets of integers, each one denoting samples having coalesced together. C n,c is a finite discrete space like C n , so in theory this change does not impact much. The SDEs can still be written as before, but we need to additionally take colors and migrations into account. The coalescence rate now depends on the pair of colors and destination colors, so a model will correspond to a set of pairs of rate and modification functions, (r i c , µ i c ) i≤nc , for the different color combinations that do exist in the model. Similarly for migrations, a model corresponds to a set (r i m , µ i m ) i≤nm , where r i m : N * × C n,c → R + is a rate, and µ i m : N * × C n,c → C n,c performs the migration with the appropriate colors.

When switching to the time-change representation, we also switch to migration events which refer to samples, and we must therefore rescale the migration rate, r i m (k, x) = 1 l(x,k) =0 r i m (x) h(x,k) . The main difference is that in the time-change representation, the PRM for the migrations does not reduce to one point per sample, as any lineage can change colors any number of times. Let (ν i,k m ) i≤nm,k≤n be standard independent PRMs on R + . Let u i m (k, f, t) = t 0 r i m (k, f (s -)) ds, the fuel which has been expended for the i-th migration after a time t, and t i m (k, f, u) = min t,u i m (k,f,t)≥u its inverse. For migrations, we need to integrate with respect to the pushforward of ν i,k m by u → t i m (k, X, u), which we write ν i,k m . This could be problematic, since t i m depends on X, which itself depends on ν i,k m , and so we have a circular dependency. However, we don't need to be able to exhibit ν i,k m from the get-go, the pushforward simply serves as a notation simplification, and is only used for the change of variable formula in the integration. This is proven by the fact that we can still propose a simulation algorithm.

f (X t ) = f (X 0 )

+ 1≤k≤n 1 t k ≤t f • µ k s • X t k --f • X t k - + 1≤i≤nc 1≤k<k ≤n 1 t 0 r i c (k,k ,X s -) ds≥e i k,k f (µ i c (k, k , Y (k, k , e i k,k ))) -f (Y (k, k , e i k,k )) + 1≤i≤nm 1≤k≤n 
u i m (k,X,t) 0 f (µ i m (k, Y u )) -f (Y u ) ν i,k m (du) 
(E.1) For simulations, an important difference is that the lazy algorithm might not be available with migrations, as we might not be able to give a suitable bound on event times. Otherwise, not much changes, we simply add the migration events to the list of events to examine, and replace by the next point when the migration event occurs.

The main difficulty of the generalization to structured coalescent processes is for inference. We now also need to propose new values for the migration points. We have not experimented with the possibilities much, but we propose to use the realisation of a real continuous stochastic process to map the event times to new times. We expect that this would complexify the inference even more.

E.2 Additional results

For completeness, we present some additional figures about the results. First, we show the full traces for 32 sequences in After 1 million iterations, the PRM-augmented chain is still far from convergence. If we sample 6 million iterations (data not shown), then we can have reasonable results, but the estimated distribution does not fully match the one obtained with tree augmentation. We see the same pattern with 16 sequences, with less iterations, as we show in The substitution rate for the low mutation rate dataset was 6 • 10 -4 , the seed 987, and the number of sequences 40.

The prior distributions for the Ho Chi Minh City dengue analysis are in Table F.2. The values for the initial population size N * , the relative total birth rate B, and the individual death rate D, are chosen so that the life expectancy is 70 years, and the population goes from 6 million in 2003 to around 7 million in 2009, to match with census data.

For the inference with the case count data, the observations are considered to be negative binomial, with a fixed over-dispersion of 0.1.

When the sequence data is used, the nucleotide substitution model we consider is GT R + Γ + I, with four discretized gamma classes. The prior distributions for the additional parameters to infer in this case are given in Table F.3.

F.2 Metropolis-Hastings proposals

The proposal we use is a mix of randomly chosen Metropolis-Hastings transition kernels.

For exploring the space of trees, we use 6 different proposals, including Subtree-Prune-and-Regraft (SPR) moves. The first proposal is a full rescaling tree move. Given dx ∼ N (0, σ), scale the time from every interior node to the tip (most recent leaf) of the tree by expdx. The leaves do not move, as their position corresponds to fixed sampling times, so the move might fail if some edge length becomes too small. The value of σ is adapted using RAM [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. The second proposal moves the parent of the root of the tree. This ancestral node does not matter for the likelihood, but is useful for the SPR moves. The third proposal moves a node by dt ∼ N (0, σ), which can also fail, and is also adapted using RAM. The fourth proposal is the uniform SPR move. Choose an interior node uniformly, detach (prune) the corresponding subtree and re-attach (regraft) it uniformly at any valid point along the tree. A grafting point is valid if it is older than the root of the pruned subtree. The fifth proposal is akin to the "extending" SPR move [START_REF] Lakner | Efficiency of Markov Chain Monte Carlo Tree Proposals in Bayesian Phylogenetics[END_REF], but instead of moving the subtree by a geometric number of nodes, we move the subtree by a gaussian distance along the tree. This distance is adapted using RAM, and the move is made reversible by carefully keeping track of which moves are possible or not. The sixth and final proposal is a guided SPR move, following the principle of [START_REF] Zhang | Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference[END_REF]. Instead of choosing the grafting point using parsimony scores, we choose both the pruning point and the grafting points according to nodes site state probabilities, computed as part of the alignment likelihood. These moves are presented in more detail in appendix C, page 185.

To explore the parameter space, we use adaptive Gaussian proposals, and adaptive Lognormal proposals, adapted using RAM [START_REF] Vihola | Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate[END_REF]. We don't know of another study using the lognormal proposal like this, so we give a quick presentation here. To propose a new parameter value θ , first draw dx from a normal distribution with covariance matrix Σ, adapted with RAM, and multiply each component of θ by exp(dx i ). This corresponds to a lognormal distribution, so the proposal is not symmetrical, and we need to take the ratio of proposal densities into account in the acceptance ratio, which is exp( i dx i ).

dx ∼ N (0, Σ)

θ i = θ i * expdx i q(θ| θ ) q(θ | θ) = i θ i θ i = exp( i dx i ) (F.3)

F.3 More details on the simulated SIR dataset

First, to check that the MCMC has converged for the analysis of the simulated SIR dataset, we provide some traces for the parameters, in Fig. 

F.4 More details on the dengue dataset

In the current temporary version, we display some results with inference from a fixed estimated phylogeny. In this appendix, we also show some unfinished results using the sequence data.

We performed an additional analysis where β v was fixed to a value of 0.4 to see whether the phase of the seasonal variations could be recovered from the phylogenetic data. We can see in Fig. F.4 that the true phase is recovered, but with a large confidence interval. Notably, there is a correlation between the estimates of the phase φ, and of I(0), which indicates that there is some information about the phase. 
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 13 Figure 1.3: Chaotic behaviour of the seasonal SIR model with immunity loss and immigration. (a) Attractor of the model in the Uniform Phase Chaotic Amplitude domain. (b) Bifurcation diagram of epidemic peak size (log 10 ) as a function of immigration intensity (log 10 ).
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 14 Figure 1.4: Case counts of plague in Bombay in 1905-1906. Figure reproduced from Kermack, McKendrick, and Walker, Proc. Royal Soc. A, 1927 [18]. The ordinate represents the number of deaths per week, and the abscissa denotes the time in weeks. The black dots are the data, the curve and circled dots correspond to Kermack and McKendrick's adjusted model.
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 15 Figure 1.5: Seroprevalence of Chikungunya by age in Cebu, Philippines. Reproduced from Salje et al., J Infect Dis, 2016 [33], Figure 1. Two studies were conducted, in 1973, and in 2012. In 2012, two blood samples were collected at an interval of one year, giving the proportion of seroconversion during the year.
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 16 Figure 1.6: Example of a genealogy in the Wright-Fisher model. Every individual has a geometric number of offspring, conditional on the population size staying constant (light green). The genealogy of alive individuals is then traced back from the present (orange).
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 17 Figure 1.7: Dependence of the shape of genealogies on population dynamics. Figure reproduced from Volz, Koelle, and Bedford, 2013 [41]. Idealized illustrations showing the dependence of coalescence times on population size, for a constant population, and an exponentially growing population.

Figure 1 . 8 :

 18 Figure 1.8: Covid19 daily cases per million people on a decimal logarithm scale, generated from Our World in Data [63]. (a) Comparison at the start of the pandemic, for Italy, France, Japan and South Korea. (b) Comparison up to November, for France, the United States and Germany.
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 1 Figure 1.10: Monte Carlo methods. The discrete samples (red bars) allow us to construct an empirical distribution approximating the real distribution, here as an histogram.
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 112 Figure 1.12: Examples of tree moves. (a) Nearest-Neighbour Interchange move. An interior edge is chosen uniformly (3 possibilities), then two connected subtrees are exchanged in a valid manner.(b) Uniform Subtree-Prune-and-Regrafting move. A node is chosen uniformly (except the root), and its subtree is pruned. The graft point is chosen uniformly from the rest of the tree from points older than the pruned node. (c) An interior edge is chosen uniformly, and its length is multiplied by α by moving the parent node up (if valid).
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 113 Figure 1.13: Cartogram of the relative annual number of dengue infections. Figure reproduced from Bhatt et al., 2013 [84]. The number is relative to the national or subnational (China) geographical area.
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 114 Figure 1.14: Schematics of some models to study dengue. The solid black lines are flows between compartments, the dotted lines are birth and death flows, and the red lines are interactions. (a) SEIRS model with seasonality and demography. It can model the annual return of dengue, but not the serotype replacements, mosquito dynamics, or immune status of the population. (b) SEIR-LSEI model, with host and vector populations. The human population goes through susceptible, exposed, infectious, and removed classes, and the mosquito vector, through a larval stage, and adult susceptible, exposed and infectious classes. The model could be used to study the importance of climate and spatial variability. (c) SEIR2 model, with two interacting serotypes. The serotypes can be equivalent or have different dynamics. The model could be used to study serotype replacement, if serotype-specific data is available.
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 21 Figure 2.1: Exact simulation of a SIR process with respect to an infection and a recovery measures.The black crosses are the points of the infection and recovery measures respectively. The orange curves are the rates of infection and recovery respectively. When a point is under the rate curve, then the event happens. When an infection happens, I (and the rates) increase, and when a recovery happens, I (and the rates) decrease. Initially there is one infected and the whole population is susceptible.
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 22 Figure 2.2: Posterior estimates for the simulated dataset with 500 individuals.MCMC samples from the joint posterior distributions for β the effective contact rate, pS 0 the initial proportion of susceptibles and pI 0 the initial proportion of infectious. pS 0 and pI 0 are parameters of the multinomial prior on the initial conditions. In blue, PRM augmentation, and in orange, subject-level augmentation. 2250 samples kept from respectively 900 (9) thousand iterations, after 100 (1) thousand iterations of burn-in for PRM augmentation, and subject-level augmentation.
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 23 Figure 2.3: Comparison of the time complexity for exact and approximate simulations.Complexity, in number of seconds of run time (wall clock) per iteration, as a function of host population size. On a binary logarithm scale for the population size, and on a decimal logarithm scale for the complexity. In blue, the exact simulation algorithm, and in orange, the exact simulation algorithm. To read the graph, lower is better, and a linear curve indicates a power-law relationship. The grey lines are reference relationships for exponents 0 (constant complexity), and 1 (linear complexity).
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 24 Figure 2.4: Complexity of PRM-augmentation, subject-level augmentation and Particle MCMC. Complexity, in number of seconds of run time (wall clock) per effective sample (see 2.3.3), as a function of population size. To read the graph, lower is better, and a linear curve indicates a power-law relationship. (a) Comparison of exact PRM-augmentation (blue) and subjectlevel augmentation (orange). The grey lines are reference relationships for exponents 1 (linear complexity), 2 and 3. (b) Comparison of approximate PRM-augmentation (blue) and Particle MCMC (orange). The grey lines are reference relationships for constant (0) and linear (1) complexity.

  Figure 2.4: Complexity of PRM-augmentation, subject-level augmentation and Particle MCMC. Complexity, in number of seconds of run time (wall clock) per effective sample (see 2.3.3), as a function of population size. To read the graph, lower is better, and a linear curve indicates a power-law relationship. (a) Comparison of exact PRM-augmentation (blue) and subjectlevel augmentation (orange). The grey lines are reference relationships for exponents 1 (linear complexity), 2 and 3. (b) Comparison of approximate PRM-augmentation (blue) and Particle MCMC (orange). The grey lines are reference relationships for constant (0) and linear (1) complexity.
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 25 Figure 2.5: Comparison of the fit of the seasonal and the constant model to simulated seasonal data. In black, the simulated daily case count data. In blue, in the first column, simulations with the true θ value, and ν sampled from its prior distribution. In orange, in the second column, posterior samples for the seasonal model. In green, in the last column, posterior samples for the constant model. (a) Daily case counts in the data (black), and from MCMC samples. (b) Number of points by unit volume by slice of time for infection events in the posterior samples for ν. The solid line is the mean, and the envelope the square deviation of the distribution. (c) Auto-correlation function of the function in (b) (Mean, and square deviation envelope).The average effective contact rate β m , the initial conditions (S 0 , I 0 , R 0 ), and the discrete measure ν are estimated. For both models, 250 ν samples are kept for estimation, out of 500000 iterations after convergence.
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 25 Figure 2.5: Fit of the SEIR model to the Zika data from Moorea island, 2013-2014.In black, the data. In blue, posterior samples for the stochastic model. The first panel represents the weekly number of cases, in the data, and in the posterior samples. The following panels represent the average and standard deviation of the density of points by unit of volume, in the ν posterior samples, for the events of infection, S → E, leaving the exposed class, E → I, and recovery, I → R. 1000 samples were kept from 10 6 iterations after convergence.
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 31 Figure 3.1: Simulation of Kingman's coalescent following (3.4). The orangecurves show the fuel consumed for each event in time. (a) Initially all coalescence events have the same rate. The first event reached is the coalescence between samples 1 and 2.(b) After the first event, h(1, X) = 2 and h(2, X) = 2, so the coalescence rates decrease. After the second event, all rates are null, because l(1, X) = l(2, X) = l(3, X).
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 32 Figure 3.2: Transformation of the coalescent trajectory as e 1,3 is decreased. Starting from the trajectory from Fig. 3.1 in (a), the fuel for event (1, 3) is decreased. Consequently, in (b), the time of coalescence between {1, 2} and {3} is decreased. Decreasing the fuel e 1,3 further, {1} and {3} then coalesce first, followed by {1, 3} and {2}, in (c).
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 33 Figure 3.3: Comparison between the target tree and the Maximum A Posteriori sampled tree, out of 6.4 million MCMC iterations.
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 34 Figure 3.4: Trace of the Kendall-Colijn distance to the target tree.For the first 100 thousand iterations of the chains, for sequence numbers 4 (blue), 8 (orange) and 16 (green). The datasets 32 and 64 show the same convergence, but on a much longer timescale.
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 35 Figure 3.5: Posterior estimates for the simulated dataset with 8 sequences. Violin plots of the posterior distributions for the Kendall-Colijn distance to the true phylogeny, for the substitution rate µ, and the pair coalescence rate λ. In blue, estimation with PRM-augmented MCMC, and in orange, estimation with classical tree-augmented MCMC. Estimation from 4 thousand samples taken along chains of 800 thousand iterations, after 200 thousand iterations of burnin.
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 36 Figure 3.6: Joint posterior estimates for the simulated dataset with 8 sequences. Analysis, parameters and columns as in Fig. 3.5. On the diagonal panels, kernel density estimates of the parameter marginal posterior distributions, in the lower triangle panels, MCMC samples from the pair distributions, and in the upper triangle panels, contour plots for the corresponding pair kernel density estimates.
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 37 Figure 3.7: Complexity (s/mESS) of MCMC algorithms depending on the number of sequences.The complexity is measured as the number of seconds of run time (wall clock) per effective sample (see 3.3.5). On a binary logarithm scale for the number of sequences, and on a decimal logarithm scale for the complexity. In blue, complexity for the PRM-augmented MCMC, and in orange, complexity for the classical tree-augmented MCMC. To read the graph, lower is better, and a linear curve indicates a power-law relationship. The grey solid and dotted lines are references for power laws with exponents of 1 (linear complexity), 2 and 3.
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 38 Figure 3.8: Complexity of the MCMC algorithms in terms of run time per iteration, and statistical efficiency. Scales and colors as in Fig. 3.7. (a) Run time (wall clock) per MCMC iteration. (b) Number of iterations per effective sample.
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 41 Figure 4.1: Posterior estimation of the SIR model from isolated sources of data. MCMC samples from the joint posterior distributions for β the effective contact rate, and S(0), the initial number of susceptibles. Inference on simulated SIR data, where β, ρ, S(0), I(0) and R(0) were allowed to vary, from 1500 samples taken from 3 million iterations after 1 million iterations of burn-in. (a) Posterior distribution for the case count data. (b) Posterior distribution for the seroprevalence data. (c) Posterior distribution for the sequence data.
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 42 Figure 4.2: Posterior estimation of the SIR model from combined sources of data.Parameter posterior distribution for β, the effective contact rate, ρ, the reporting probability, S(0) the initial number of susceptibles, and I(0) the initial number of infectious. On the diagonal panels, kernel density estimates of the parameter marginal posterior distributions, and in the lower triangle panels, MCMC samples from the pair distributions. 1500 MCMC samples, out of 3 million iterations, after 1 million iterations of burn-in. (a) Posterior distribution for the case count data (blue), seroprevalence data (orange), and combined case counts and seroprevalence data (green). (b) Posterior distribution for the sequence data (blue), case count data (orange), and combined case count and sequence data (green).
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 43 Figure 4.3: SIR state variables posterior estimates from combined sources of data. MCMC posterior samples of trajectories for S and I, First column, in blue, posterior distribution for the sequence data (1500 samples).Second column, in orange, posterior distribution for the case count data (150 samples). Third column, in green, posterior distribution for the combined case counts and sequence data (1500 samples).
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 44 Figure 4.4: Posterior estimates for different kinds of phylogenetic data. Estimates for β and I(0) on the simulated SIR datasets. In the current version, these results are preliminary, and some are missing. (a) Inference from sequences (blue) and phylogeny (orange) data, joint with case count data, for the dataset with 51 samples, and µ = 2 × 10 -3 . (b) Inference from combined case count and sequences data for the data with µ = 2 × 10 -3 (blue) and with µ = 6 × 10 -4 (orange).
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 45 Figure 4.5: HCMC posteriors pair plots. Inference, samples, and colors as in Fig. 4.4. On the diagonal panels, kernel density estimates of the parameter marginal posterior distributions, and in the lower triangle panels, MCMC samples from the pair distributions.
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 46 Figure 4.6: HCMC posterior estimates of the infectious population and expected case counts. Inference, samples, and colors as in Fig. 4.4. The three panels and colors correspond to estimates from phylogenetic data (blue), case count data (orange), and both combined (green), respectively. The colored lines correspond to 150 samples from the MCMC chains. (a) Estimates of the infectious population. (b) Estimates of the expected case counts. The solid black line is the data.
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 1 Figure C.1: Drawing from the adaptive SPR proposal.The subtree under 7 is chosen uniformly and pruned. The subtree can be moved down, with probability 1/2, and up, with probability 1/2. The move up is chosen, and node 9 is reached, then the move left.

input: 7 :

 7 The tree T , with leaves numbered 1 to n, and internal nodes numbered n + 1 to 2n -1. the standard deviation σ output : The proposed tree T , the proposal ratio log qq Choose an interior node k uniformly from T .; Prune the subtree with root k from T .; Draw d ∼ N (0, σ).; Place a cursor c at the parent node of the pruned subtree.; while d > 0 do Make a list of all valid directions to move a distance d from the cursor.; Choose a direction from the list uniformly.; Let k be the next node in the chosen direction.; if D(c, k ) > d then Move c to k , and update d in consequence.; else Move c by d in the chosen direction.; end end Choose a direction (left or right) for grafting.; Graft the pruned subtree at the current position c.; Algorithm Drawing from the adaptive SPR proposal

C. 4 . 1

 41 Full proposalThe adaptive and guided SPR proposals are used as part of a mix of tree proposals. The other proposals we use are 1. The uniform SPR proposal 2. An adaptive tree rescaling proposal 3. A root sliding proposal 4. An adaptive node sliding proposal

Figure C. 2 :

 2 Figure C.2: Drawing from the adaptive scaling proposal. The distance between the root and the tip of the tree is multiplied by exp(dx). All internal nodes are then moved to reflect the change.

1

 1 u≤r k (X s -) µ k ν k (ds, du) (D.1) Solutions to the Poisson driven stochastic differential equation (D.1) are Markov pure jump processes, and their infinitesimal generator L is such that for φ : E → R + continuous, bounded and measurable, L φ(x) = k≤K r k (x) (φ(x + µ k ) -φ(x))

•

  g C (ν, v)(A) = ν(A \ C) + v(A ∩ C) let ν(A, B, K) = k∈K ν k (A, B), and let C k i = C i × {k}. The algorithm to draw from Q ν (.| ν) then consists in: • Drawing C k i uniformly Drawing v a standard PRM • Setting ν = g C k i (ν, v)
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 1 Figure D.1: Posterior distribution of β for 4000 individuals, with PRM-augmented MCMC in blue, and PMCMC in orange.

N( 1

 1 η) + νR + BN * -DS dE dt = β(t) S N (I + η) -σE -DE dI dt = σE -γI -DI dR dt = γI -νR -= S + E + I + R β(t) = β m + β v sin(2πt + φ) u≤νR s -ν S (ds, du)

5 )

 5 The results of the parameter estimation are given in Fig. D.2.

. 2 .

 2 The results of the parameter estimation are shown in Fig. D.3 for completeness, but as explained in the main text 2.4.4, page 82, the model does not describe the data well. Non-identifiability of the parameters and conflicts between the two sources of data hinders the mixing of the chain, and pushes the parameters β, σ and γ towards unrealistically high values. Indeed, without the upper bounds placed a priori on them, σ and γ reach values in the thousands, corresponding to incubation and infectious periods of a few hours. Initial population of susceptibles Fixed at 17000 E 0 Initial population of exposed Fixed at 0 I 0 Initial population of infectious Fixed at 0 R 0 Initial population of removed Fixed at 0 Table D.2: Prior distributions for the Zika inference
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 2 Figure D.2: Parameter estimates for the simulated SEIRS seasonal data. In blue, the prior distribution of the constant model. In orange, the posterior distribution of the seasonal model. In green, the posterior distribution of the constant model. For the log-likelihood, and for the parameters β, S 0 and I 0 . See Table D.1 and Equation (D.3) for more details. (a) MCMC traces for log-likelihood and parameters. (b) MCMC samples pair scatter-plots for log-likelihood and parameters.

Figure D. 3 :

 3 Figure D.3: Parameter estimates for the French Polynesia Zika epidemic In blue, the posterior distribution with the deterministic model. In orange, the posterior distribution with the stochastic model. For the log-likelihood ("loglik"), and for the parameters β, γ, σ, and ρ. See Table D.1 and Equation (D.3) for more details. (a) MCMC traces for the log-likelihood and parameters. (b) MCMC samples pair scatter-plots for the log-likelihood and parameters.
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Figure E. 1 :

 1 Figure E.1: Trace of 1 million iterations for the inference with 32 sequences. Using PRM-augmentation in blue, and tree augmentation in orange. With PRM-augmentation, the chain is still far from convergence.

Figure E. 2 :

 2 Figure E.2: Joint posterior estimates for 16 sequences, from 1 million iterations, including 200 thousand of burn-in, and 4 thousand samples plotted.

F. 1 .

 1 For completeness of the results on the simulated SIR data, we also provide plots of the estimates when serology and sequences are combined (Fig. F.2), and when all three sources of data are combined (Fig. F.3).

Figure F. 1 :

 1 Figure F.1: Traces for the MCMC chains for the SIR simulated dataset. The chains were run for 4 million iterations when the data did not include sequences, and 40 million iterations with sequences. One million iterations were discarded as burn-in. (a) Trace for the case counts and seroprevalence data. For case counts (blue), seroprevalence (orange), and combined case counts and seroprevalence (green). (b) Trace for the case counts and phylogenetic data. For sequences (blue), case counts (orange), and combined case counts and sequences (green).

Figure F. 2 :

 2 Figure F.2: Posterior estimation of the SIR model for combined phylogenetic and seroprevalence data.

Figure F. 3 :

 3 Figure F.3: Posterior estimation of the SIR model for all three sources of data combined.

Figure F. 5 :

 5 Figure F.5: HCMC posterior estimates of the infectious population, when the seasonal amplitude is forced to be high, β v = 0.4. Phylogenetic data (blue), case count data (orange), and both combined (green).

Figure F. 6 :

 6 Figure F.6: MCMC trace of the parameters for the HCMC dataset. Temporary figure showing that the chain converges and mixes reasonably well.

Figure F. 7 :

 7 Figure F.7: Posterior estimates of the GT R + Γ + I model parameters for the HCMC dataset.

Figure F. 8 :

 8 Figure F.8: Posterior marginal and pairwise parameter distributions for the HCMC dataset. Temporary figure showing the difference between inference from the phylogeny and sequence data. In blue, combined case count and sequence data. In orange, combined case count and phylogeny data.

  

  

  1 u≤BN * ν B (ds, du) -1 u≤DS s -ν SD (ds, du) ) E t = E 0 + u≤λ(s -) ν E (ds, du) -1 u≤σE s -ν I (ds, du) -1 u≤DE s -ν ED (ds, du) ) I t = I 0 + = S t + E t + I t + R t

	t			
	0 ( 1 β(t) = R+ β m + β v sin(2πt + φ)
	λ(t) =	β(t)	S(t) N (t)	(I(t) + η)

t 0 R+ ( 1 u≤σE s -ν I (ds, du) -1 u≤γI s -ν R (ds, du) -1 u≤DI s -ν ID (ds, du) ) R t = R 0 + t 0 R+ ( 1 u≤γI s -ν R (ds, du) -1 u≤νR s -ν S (ds, du) -1 u≤DR s -ν RD (ds, du) ) C t = t 0 R+ 1 u≤ρλ(s -) ν I (ds, du) N t

Table F .

 F 1: Parameter values and prior distributions for the SIR inference

	β	Effective contact rate	78 year -1
	γ	Recovery rate	52 year -1
	ρ	Case reporting probability	0.1
	S 0	Initial number of susceptibles	90000
	I 0	Initial number of infectious	1
	R 0	Initial number of removed	9999
	µ	Nucleotide substitution rate	2 • 10 -3
	p keep Sequence sampling probability 10 -3
	seed PRNG seed	3333
	t f	Simulation duration	2year

(a) (b)
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Chapter 2

Stochastic Epidemic Models inference and diagnosis with Poisson Random Measure Data Augmentation

This chapter of the thesis was written in collaboration with Pierre del Moral and Bernard Cazelles, and was submitted to Mathematical Biosciences. It is in revision and will be submitted again in a few days. It is also readable on ArXiv [START_REF] Nguyen-Van-Yen | Stochastic Epidemic Models Inference and Diagnosis with Poisson Random Measure Data Augmentation[END_REF].

Abstract

We present a new Bayesian inference method for compartmental models that takes into account the intrinsic stochasticity of the process. We show how to formulate a SIR-type Markov jump process as the solution of a stochastic differential equation with
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The authors declare no conflict of interest. that each event might occur at, at the earliest. We then go down the list of ordered times, and check for each event whether the event occurs. If the event happens, we update the state of the system, remove the event from the list, and continue to the next event in the list. Otherwise, if all the fuel of the event has not been consumed, the event is pushed back to a later time: we compute a new later minimum time of occurrence for the event, which we place at the new appropriate position in the list, and continue going down the list. Pseudo-code for this algorithm is given in 6.

input : The number of samples n, the final time t f , the sampling times (s i ) 1≤i≤n , the coalescence fuels (e i,j ) 1≤i<j≤n , the primitive of the coalescence rate prim and its inverse inv output : The trajectory (X t ) t≤t f Set up the sampling events from the sampling times (s i ). Set up the coalescence events from the fuels (e i,j ). Set up the ordered list of minimal occurrence times (t k ). while min{t k } < t f do Get the min element of (t k ) to get the next event e and its time t .

Check whether e has consumed all its fuel at t , or whether the new projected time The two algorithms 5 and 6 are fully equivalent: given the same input, they produce the same output. The complexity of the lazy algorithm will depend on the number of times that an event

Chapter 4

Solving non-identifiability in infectious disease models through the use of case data, seroprevalence data, and sequence data

Introduction

Infectious disease epidemiology aims to infer complex non-linear stochastic phenomena from limited and biased data. This is a very challenging problem, with one of the difficulties being the possible non-identifiability of models from the available data. We say that a model is non-identifiable when the inference procedure is not able to separate confidently between different possible parameter estimates. Even the ubiquitous SIR model is non-identifiable, when it is fitted to under-reported incidence data, and we don't know the reporting probability, transmission rate, and initial conditions [START_REF] Neil | The Structural Identifiability of the Susceptible Infected Recovered Model with Seasonal Forcing[END_REF]. The more complex the model, and the more serious Appendix A

Scientific functional programming with OCaml

A.1 Introduction

Scientists are evaluated on their research results rather than on the code that they write, when they do write code. All the same, most of the time of my PhD was spent writing more than 50000 lines of OCaml code for my research, and it seemed only fair to take a bit of space in the appendix to talk about this aspect of my work.

In biology or mathematics, scientists often have little formal training in software programming, and programming skills are seldom discussed and shared. Everyone learns on their own and does their best, but most of scientific software is written quickly by single researchers for a project, with few tests or comments, and then abandoned.

At the same time, a few projects, like numpy or scipy for instance, are very popular, thanks to their usefulnessand of course, but also because their code is kept to a high standard. It is collaboratively developed, heavily tested and actively maintained. It

Appendix B

Software programming tools for writing better code

As already explained in appendix A, the use of a language like OCaml is already a big help towards writing good code. But the language can be complemented by a battery of tools to make the programmer's job easier and the result better. Some important goals in writing software are readability, correctness, robustness, and performance. The goal of this short appendix is therefore to give praise to the tools that helped me in achieving these goals, to advertise them as I can, and to show that I put some work into these issues to promote trust in my program.

B.1 Git for version control

The first tool is essential, and it is version control. It is perhaps not worth it to spend too much time on this one, as thankfully it has become increasingly common in biology. The undisputed champion at this point is undoubtedly git, and it is also the basis of

Appendix C Bayesian Phylogenetic inference, and two new tree proposals C.1 Introduction

To study the potential of PRM-augmentation for coalescent process inference (see Chapter 3), and to study the potential of data integration for infectious disease inference (see Chapter 4), we needed our own implementation of Bayesian phylogenetic inference. Bayesian phylogenetic inference is typically achieved via MCMC, like in the popular packages MrBayes [START_REF] Huelsenbeck | MRBAYES: Bayesian Inference of Phylogenetic Trees[END_REF], and BEAST 1 [START_REF] Drummond | BEAST: Bayesian Evolutionary Analysis by Sampling Trees[END_REF] and 2 [START_REF] Bouckaert | BEAST 2: A Software Platform for Bayesian Evolutionary Analysis[END_REF]. The phylogeny is progressively modified with local tree moves, to sample the posterior distribution given the sequence data. However, the space of phylogenies is complex. For n contemporaenous sequences, the number of possible rooted tree topologies is (2n-3)!!. One way to understand the space of trees is to look at the isomorphic Billera-Holmes-Vogtmann (BHV) space [START_REF] Billera | Geometry of the Space of Phylogenetic Trees[END_REF], which is a cone made by stitching together (2n -3)!! positive orthants of dimension (n -2). This is therefore a mix between a

Appendix D Stochastic Epidemic Models inference and diagnosis with Poisson

Random Measure Data Augmentation Supplementary Material

D.1 Mathematical definitions

A discrete measure on the measurable space (E, A) is a measure ν that puts mass on an at most countable subset of E,

It can be written as a linear combination of dirac measures on E.

For each event k, and each time column i, we will keep track of the index j i,k max of the highest rectangle that we need to take into account. When we recompute the rates, we also update j i,k max if the rate increases above the upper bound u i,k max . For each time column i, we also need to order all the points of the (ν k ) in the column up to the (u i,k max ) by time, and we will write (t i n , u i n , k i n ) for this ordered set, where k i n is the index of the event that the point belongs to. We can now write the more complex Algorithm 8, which remains exact as long as j i,k max remains finite, that is as long as the solution does not explode.

A further refinement to Algorithm 8 that we use in practice is to also reduce u i,k max when r k (X ti ) becomes low enough, br k (X ti ) < u i,k max .

Note further that to be consistent, when we draw points for a rectangle, everything should be as if those points had already been drawn. In particular, the points that we draw in one rectangle should not depend on what happens in some other column of ν, because this would break independence. To ensure this, each column of ν uses its own pseudorandom number generator.

The approximate algorithm shortly described in the main text, that we use most often in practice, is given as algorithm 9.

D.4.2 Source code

The implementation is in the folder sim/lib/ of the repository D.6, in the files:

• prm.ml

• ctmjp/ctmjp Prm.ml

• ctmjp/ctmjp Prm approx.ml input : The discrete measures (ν k ) k≤K , the rates (r k ), the increments (µ k ), and the initial condition

max , and order them by time

end Compute the new rates r k (X t i n ) Update the remaining set of points to consider

max as required, and update S i end end end end Algorithm 8: Exact simulation of a MJP from a PRM realisation input : The discrete measures (ν k ) k≤K , the rates (r k ), the increments (µ k ), and the initial condition

Approximate simulation of a MJP from a PRM realisation

D.5 Additional details on the results

D.5.1 Methods comparison

We provide here more details about the method comparison presented in section 2.4.2, page 75.

The target data is simulated with the parameter values β = 240 year -1 , ν = 80 year -1 , ρ = 0.9, S0 N = 0.9, I0 N = 0.02, R0 N = 0.08, and with a population size N taking values 500, 1000, 2000, 4000 and 8000.

β is given a Gamma prior with shape 0.1 and rate 0.001. When they are inferred, the initial conditions are given a Dirichlet-Multinomial prior. That is, the initial proportions pS 0 , pI 0 and pR 0 are given a Dirichlet prior, with intensities 90, 2, and 8, and conditionally on pS 0 , pI 0 , pR 0 , the initial conditions S 0 , I 0 and R 0 follow a multinomial distribution.

B

Host birth rate This appendix presents some additional details for Chapter 3. We first expose some explanations describing the use of the method with structured processes. We also present some additional figures to give a more complete view of the results.

E.1 Structured coalescent processes

To the difference of the processes in 3.2.1, page 92, we will define a structured coalescent process as a coalescent process where a lineage holds a color, out of a finite set of possible colors. There is an additional type of event for the change of lineage color,

Appendix F

Solving non-identifiability in infectious disease models through the use of case data, seroprevalence data, and sequence data Supplementary material

This appendix contains some additional details on Chapter 4, page 117, both on the methodological aspects, as well as some supplementary results.

F.1 Epidemic models

We use two models, for simulations and inference. The SIR model is used for both the simulation of the dataset, and then its inference. The simulation is stochastic and also simulates genealogy and 

The parameter values for the simulated SIR dataset are in Table F.1. The parameters that were inferred were β, ρ, and the initial conditions S(0), I(0) and R(0). All the other parameters were fixed (γ, µ, t f ), or were absent from the inference model (p keep , seed). The prior for β was lognormal, with a mean log 70, and a variance 0.1. The prior for ρ was uniform in [0, 1]. The prior for ( S(0) N , I(0) N , R(0) N ) was Dirichlet with concentrations (0. We then show some results about the inference from the sequence data. These results are preliminary, and so not a part of the main text, because there might still be problems in the inference at this stage. A MCMC trace of some model parameters is shown in Fig.