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Abstract
With the objective of assessing flood hazard at a large scale, there is currently a growing interest
for regional to global scale flood models. However, predicting flood hazard at high resolution
and over large areas remains challenging due to (i) the recurrent lack of in situ hydrological
data, (ii) the high computing demand of accurate hydrodynamic models when applied over
large areas and (iii) the rather large model uncertainty due to physical simplifications, numer-
ical approximations and uncertainty in input and geometrical data. In this context, the PhD
focuses on one main research question: How to optimally integrate large collections of satellite
derived flood information for parameterizing and controlling large scale hydraulic models over
data scarce areas? The PhD leverages recent developements in hydrodynamic modelling and
proposes an innovative hydraulic modelling framework based on the two-dimensionnal shallow
water model with depth dependant porosity (SW2D-DDP). This model uses an unstructured
mesh and incorporates porosity concepts in combination with the traditional 2D shallow water
equations. In this model, the definition of porosity as a function of water depth allows for
a more detailed representation of the floodplain and riverbed geometry, even when adopting
comparatively large cell sizes. Thus, one of the main objectives of the thesis is the evaluation
of the developed modelling approach for large-scale applications. Moreover, the lack of input
data often required for hydraulic models, motivates the exploitation of satellite and topographic
data, which are becoming increasingly globally available. Recent studies have enabled the auto-
matic extraction of flooded areas via robust and effective algorithms. Nevertheless, automatic
and efficient algorithms for estimating spatially distributed water levels are still lacking. Thus,
a second objective is to develop an automatic water level estimation algorithm using satellite
and topographic data only. In addition, the efficient integration of this remote sensing flood
information into hydraulic models remains a crucial problem. As a matter of fact, a data assim-
ilation algorithm (of inundation extent maps) based on a tempered particle filter is exploited to
optimally combine observation and model data in order to: i) reduce the uncertainties related
to these two sources of information and ii) optimally represent the bathymetry in this hydraulic
model.

Keywords: Flood inundation, hydraulic modelling, satellite imagery, data assimilation, water
levels, topography, bathymetry, fast simulation, large scale.
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Résumé
Dans le but d’évaluer les risques d’inondation à grande échelle, il existe actuellement un intérêt
croissant pour les modèles d’inondation à l’échelle régionale et mondiale. Cependant, la car-
tographie des risques d’inondation à haute résolution et sur de grandes zones reste un défi en
raison : i) du manque récurrent de données hydrologiques in situ ; ii) des temps calcul souvent
élevés des modèles hydrodynamiques précis lorsqu’ils sont appliqués sur de grandes zones ; et
iii) de l’incertitude souvent importante des modèles en raison des simplifications physiques, des
approximations numériques et de l’incertitude des données d’entrée et géométriques. Dans ce
contexte, la thèse se concentre sur une question de recherche principale : Comment intégrer
de manière optimale de grandes collections d’informations satellitaires sur les inondations pour
paramétrer et contrôler des modèles hydrauliques à grande échelle dans des zones peu instru-
mentées ? Les travaux de thèse s’appuient d’une part, sur un cadre de modélisation hydraulique
innovant qui utilise une version de SW2D basée sur une porosité variable en fonction de la
profondeur, appelée SW2D-DDP (Shallow Water with Depth-Dependant Porosity). Ce modèle
utilise un maillage non structuré et intègre les concepts de porosité en combinaison avec les
équations traditionnelles de Barré de Saint-Venant 2D. Dans ce modèle, la définition de la po-
rosité variable en fonction de la profondeur de l’eau permet de représenter une géométrie plus
détaillée de la plaine d’inondation et du lit de la rivière, même en adoptant des tailles de cel-
lules comparativement grandes. Ainsi, l’un des objectifs principaux de la thèse est l’évaluation
de l’approche de modélisation développée pour une application à large échelle. D’autre part,
le manque de méthodes efficaces en temps de calcul pour l’estimation des niveaux d’eau dans
des zones inondées, motive l’exploitation de données satellitaires et topographiques, de plus
en plus disponibles globalement. Les études récentes ont permis l’automatisation d’algorithmes
robustes d’extraction d’étendues inondées. Néanmoins, les algorithmes d’estimation de niveaux
d’eau spatialement distribués, restent limités. Ainsi, un deuxième objectif est de développer un
algorithme automatique d’estimation de niveaux d’eau à partir de données satellitaires et topo-
graphiques uniquement. En outre, l’intégration efficace de ces informations de télédétection sur
les inondations dans les modèles hydrauliques reste un problème crucial. Ainsi, un algorithme
d’assimilation de données (de cartes d’étendues inondées) basée sur un filtre à particules à
tempérage est exploité pour combiner de manière optimale les données observées et simulées
par le modèle dans le but : i) de réduire les incertitudes liées à ces deux sources d’information
et ii) de réestimer la bathymétrie dans ce modèle hydraulique lorsque cette donnée n’est pas
disponible.

Mots clés : Inondations, modélisation hydraulique, imagerie satellitaire, assimilation de don-
nées, niveaux d’eau, topographie, bathymétrie, simulation rapide, large échelle.

ix



Résumé français étendu
Conformément au Code de l’Éducation (Article L121-3), nous proposons un résumé
étendu en français.
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Introduction

Contexte de la thèse

Cette thèse s’est déroulée du 15 Novembre 2018 jusqu’au 14 Novembre 2022, au Luxembourg
pour deux tiers du temps, et en France pour le reste, dans le cadre du projet CASCADE1 (Com-
bining earth observation with a large scale model cascade for assessing flood hazard at high
spatial resolution), financé par le Fonds National de la Recherche (FNR). La collaboration est
menée entre le Luxembourg Institute of Science and Technology (LIST), unité de recherche En-
vironmental Sensing and Modelling, au sein du groupe Remote Sensing and Natural Resources
Modelling (REMOTE), et l’Université de Montpellier (UM), unité de recherche HydroSciences
(HSM), au sein de l’équipe Hydrologie, Ecohydrologie, Climat (HEC).

1https://www.list.lu/en/environment/project/cascade/
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Résumé français étendu

Le département Environmental Research and Innovation (ERIN) au LIST compte 200 scien-
tifiques et ingénieurs spécialisés dans les domaines de l’Environnement, les Sciences de la Vie
et l’Informatique. Divisé en trois unités de recherche, ses principaux objectifs sont d’offrir des
solutions aux défis environnementaux auxquels notre société est confrontée aujourd’hui, notam-
ment l’atténuation du changement climatique, les systèmes énergétiques durables, la sécurité
maritime et la gestion efficace des ressources renouvelables. Dans le groupe Remote Sensing
and Natural Resources Modelling, plus particulièrement dans la thématique des risques natu-
rels, les projets fournissent une aide à la décision fondée sur des preuves en temps quasi réel, à
travers la télédétection et la modélisation hydrologique et hydraulique. De même, l’équipe HEC
à HSM s’implique sur des problématiques inhérentes aux grands enjeux environnementaux et
sociétaux, dont le changement climatique, l’évolution des ressources hydrologiques et végétales,
et l’aménagement du territoire sous pression démographique. Ses principaux objectifs sont de
mieux caractériser les interactions entre les processus hydrologiques, écohydrologiques et at-
mosphériques, et ensuite d’améliorer les modèles de type statistiques, conceptuels et/ou à base
physique, à échelles spatiales et temporelles variées.

Problématique de recherche

Les inondations comptent parmi les risques naturels les plus dévastateurs au monde. Avec
le changement climatique et l’urbanisation croissante, les inondations devraient devenir plus
fréquentes et plus graves à l’avenir. Afin de lutter contre ce risque, la communauté scientifique
s’intéresse de près à la cartographie d’inondation. Les études d’impact des inondations sont
très souvent menées dans les études d’aménagement des territoires et la conception d’ouvrages
hydrauliques afin de réduire les dégâts potentiels qui y sont associés. Le principal objectif de
cette thèse est de développer et d’automatiser des méthodes dans le domaine de la cartographie
des risques d’inondation à travers la télédétection et la modélisation hydraulique. Même si
la littérature et les applications développées dans ce domaine de recherche sont vastes, les
enjeux de modélisation hydraulique à large échelle ainsi que la disponibilité accrue des données
satellitaires et topographiques engendrent de nouveaux axes de recherche. Ainsi, cette thèse
vise à proposer des solutions aux problématiques suivantes :

• La modélisation à large échelle et à haute résolution. La modélisation des inon-
dations à large échelle et à haute résolution est confrontée à plusieurs défis, dont en
particulier : i) le temps de calcul qui augmente avec l’augmentation du nombre de mailles
discrétisant une surface d’intérêt assez large, et ii) le manque de données nécessaires à la
mise en place des modèles hydrauliques (ex : géométrie de la rivière).

• Le manque de méthodes efficaces et automatiques pour l’estimation des ni-
veaux d’eau dans les zones inondées. Surfaces inondées et niveaux d’eau sont deux
variables particulièrement intéressantes dans la cartographie des risques d’inondation.
Alors qu’il existe plusieurs méthodes pour extraire automatiquement les étendues inon-
dées à partir des données satellitaires et données topographiques, il reste peu d’approches
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qui ont abordé le calcul automatique des niveaux d’eau distribués spatialement pour une
zone donnée.

• Le manque général de données relatives à la bathymétrie, paramètre primor-
dial dans la modélisation hydraulique. L’information de la topographie en zones
émergées est souvent disponible grâce aux modèles numériques de terrain mais la géo-
métrie du fond des rivière (bathymétrie) est une donnée rarement disponible car pour
l’instant impossible à collecter à partir d’observations satellitaires, nécessitant ainsi de
lourdes campagnes de mesures in situ.

Contributions

Afin de répondre aux problématiques de recherche mentionnées précédemment, plusieurs mé-
thodologies s’appuyant sur des outils de traitement d’image, de chaînes de modélisation hydro-
dynamique et d’assimilation de données, sont proposées dans cette thèse. La contribution du
travail mené pendant la durée de cette thèse se divise en trois parties principales :

1. Mise en place d’une chaîne de modélisation hydrodynamique à large échelle, permettant
de préserver l’information topographique à haute résolution, tout en réduisant le temps
de calcul.

2. Amélioration des algorithmes d’extraction automatique de surfaces inondées et niveaux
d’eau à partir de la fusion d’images satellitaires et de données topographiques.

3. Assimilation d’images satellitaires dans le modèle hydraulique proposé dans une perspec-
tive d’estimation de paramètres inconnus, tels que la bathymétrie.

Zone d’étude Le site d’étude situé à la confluence des rivières Severn et Avon autour de la
zone urbaine de Tewekesbury, est d’environ 150 km2 (voir Figure 1). Cette zone d’étude a été
choisie pour son historique assez fréquent en termes d’épisodes d’inondation, et parce que l’on
possède un ensemble d’informations permettant l’évaluation des méthodes proposées.

Développement d’une chaîne de modélisation hydrodynamique à large
échelle

L’objectif principal de cette partie (présentée au chapitre 1 du document de thèse) est de relever
les défis de la modélisation hydrodynamique à grande échelle. L’inconvénient de la discrétisa-
tion d’une zone à l’aide d’un maillage fin, outre l’étape de conception du maillage, est le coût
de calcul élevé des simulations. Cependant, augmenter la taille des mailles entraîne une baisse
de la précision, parce qu’on obtient des résultats moyennées par unité de maille. Au cours des
dernières années, le développement de modèles sous-maille a suscité un intérêt croissant car
ils permettent des simulations plus rapides en utilisant des cellules plus grossières. Dans ce
chapitre, nous proposons et évaluons un cadre de modélisation basé sur un modèle Shallow
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Water 2D à porosité [50], qui résout les équations de Saint-Venant sur de grandes mailles, tout
en gardant une représentation sous-maille de la topographie de la plaine d’inondation et du lit
de la rivière à travers des fonctions de porosité. Lorsque la bathymétrie de la rivière n’est pas
disponible, elle peut devenir un paramètre de calage de la loi de porosité.

Figure 1 : Zone d’étude

Afin de permettre une évaluation spatiale du
modèle, nous mettons en place un modèle stan-
dard 2D à haute résolution et l’utilisons comme
référence. Nous exploitons également des don-
nées de terrain et des cartes d’inondations dé-
rivées de la télédétection pour évaluer le cadre
de modélisation proposé. Nous utilisons comme
cas test les inondations de 2007 et 2012 du bas-
sin de la Severn, avec des durées d’évènement
de 17 et de 12 jours, respectivement. Les don-
nées topographiques sont dérivées d’un MNT Li-
DAR à 2 m, et les données bathymétriques sont
re-construites à partir de trois profils en travers
bathymétriques de la rivière, disponibles aux li-
mites amont et aval du modèle. L’hypothèse de
forme trapézoïdale simplifiée est choisie pour re-
présenter le lit de la rivière dans les deux mo-
dèles. Le MNT est modifié en conséquence pour
inclure l’altitude du fond de la rivière. Les lois de
porosité sont alors automatiquement déduites à
partir des seules informations du tracé de la ri-
vière et du MNT. La construction des maillages
formera ainsi : 29,772 mailles pour le modèle
standard, et 1,042 mailles pour le modèle à porosité. Le paramétrage est le même pour les
deux modèles : i) des débits imposés en amont à Saxons Lode et à Bredon (voir emplacement
sur la Figure 1), et des niveaux d’eau en aval à Deerhurst, comme conditions aux limites ; ii)
un niveau d’eau uniforme égal à la condition aval à t = 0, comme condition initiale ; iii) un
coefficient Strickler uniforme Ks = 50 m1/3s−1.

Les résultats du modèle à porosité et du modèle de référence sont comparés en termes
d’étendues inondées et de niveaux d’eau. Pour cela, les résultats obtenus par maille, sont tout
d’abord convertis en images. Les indices de performance CSI (Critical Success Index) et OA
(Overall Accuracy) – calculés via une comparaison « pixel à pixel » dans les deux images –
montrent un très bon accord entre les deux modèles (OA=95%), au pic de crue. En outre, la
concordance des modèles s’affaiblit légèrement lors de la montée de la crue, lorsque le modèle à
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porosité inonde localement des zones plus grandes que le modèle standard, notamment en amont
de la rivière et dans la zone urbaine au niveau de la confluence. Cette concordance est plus
fortement affaiblie lors de la décrue, lorsque inversement, le modèle standard inonde des zones
plus larges, notamment dans la plaine d’inondation Est de la Severn et la zone urbaine. Ceci
indique, dans un premier temps, une dynamique de drainage différente pour les deux modèles.
La comparaison des niveaux d’eau simulés par les deux modèles est évaluée via des données
de station de mesure disponibles à l’intérieur du domaine du modèle, à Mythe Bridge et à
Tewkesbury (voir emplacement sur la Figure 1). D’abord, les RMSEs (racine carrée de l’erreur
quadratique moyenne) sont calculées au niveau du pixel, entre les niveaux d’eau simulés par les
deux modèles. Ces RMSEs, égales à 12.32 cm et 6.3 cm pour les évènements 2007 et 2012, sont
acceptables étant donnée la précision verticale (environ 10 à 15 cm) du MNT LiDAR utilisé. Un
très bon accord des deux modèles est alors visible lors du pic de crue, alors que les écarts les plus
élevés sont observés lors de la montée de crue et de la décrue. Par ailleurs, une sur-estimation
des niveaux par le modèle à porosité lors de la montée de crue indique que ce modèle induit un
débordement plus rapide que le modèle standard. D’autre part, la sous-estimation des niveaux
d’eau calculés par le modèle à porosité lors de la décrue, implique qu’il draine l’eau présente
dans le modèle plus rapidement que le modèle standard. Nous avons ensuite utilisé les séries
temporelles de mesures in situ à Mythe Bridge et Tewkesbury pour évaluer les niveaux d’eau
simulés par les deux modèles. L’inter-comparaison des deux modèles montre un très bon accord
général. Les plus grands écarts aux mesures sont observés juste avant le pic de crue de 2007, et
lors du premier jour de l’évènement de 2012. Par ailleurs, l’évaluation montre des écarts réduits,
notamment lors de la décrue de 2012, où le modèle à porosité présente une erreur de moins
de 5 cm environ. Ainsi, les écarts importants observés en montée de crue sont probablement
liés à la condition initiale fixée comme uniforme et correspondant au niveau aval de Deerhurst.
D’autre part, les écarts semblent être un peu diminués pour les résultats du modèle à porosité
par rapport aux résultats du modèle standard.
En conclusion, le modèle standard et le modèle à porosité atteignent une précision du même
ordre de grandeur, avec un temps de calcul beaucoup plus réduit pour le modèle à porosité,
environ 350 fois plus vite que le modèle standard.

Amélioration des algorithmes d’estimation automatique de surfaces
inondées et niveaux d’eau à partir de données satellitaires et topo-
graphiques.

L’objectif principal de cette partie (présentée au chapitre 2 du document de thèse) est de déve-
lopper une méthode automatique d’extraction de cartes d’inondation (flood extent : FE) et de
niveaux d’eau (Water Surface Elevation : WSE) spatialement distribués, à partir de données
satellitaires et topographiques. La majorité des algorithmes d’estimation développés au cours
des dernières décennies, sont conçus pour délimiter les étendues inondées sans information sur
la profondeur de l’eau. Dans ce contexte, nous présentons une méthode – automatisée et non su-
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pervisée d’estimation de la profondeur des eaux de crue, basée sur la fusion de données d’obser-
vation satellitaires et topographiques – nommée WaSER (WAter Surface Elevation Retrieval).
Dans notre étude, les observations satellitaires sont des images radars à synthèse d’ouverture
(SAR en anglais), et la topographie est présentée sous deux formes : i) le modèle numérique de
terrain (Digital elevation Model : DEM) et ii) la hauteur au-dessus du point de drainage le plus
proche (Height Above Nearest Drainage : HAND), qui en est dérivée. Ainsi, trois variantes de
WaSER sont proposées et nommées : HAND global, HAND local et DEM local. Elles reposent
toutes sur les étapes génériques suivantes : i) le seuillage de données topographiques (HAND ou
DEM) global ou local pour produire des cartes d’inondation synthétiques, ii) l’optimisation du
seuil en sélectionnant la carte synthétique qui présente le meilleur accord avec la carte d’inon-
dation satellitaire obtenue par la méthode proposée par [19], et iii) la génération de cartes de
hauteur d’eau (Water Depth ou WD) et de niveau d’eau. Ensuite, un lissage spatial au sein
d’une fenêtre mobile est effectué sur les cartes de niveaux d’eau, afin de réduire le bruit qui a
été produit lors de l’utilisation des variantes locales. Cette étude comporte ainsi une analyse
comparative de ces trois variantes afin d’évaluer leurs avantages et leurs limites. Nous utilisons
l’inondation de 2007 de la rivière Severn au Royaume-Uni comme cas test car le jeu de données
d’évaluation est conséquent. Ainsi, nous évaluons un total de 18 cartes d’inondation, issues de
la fusion entre une carte d’inondation satellitaire (Envisat ou Terrasar-X) et des données de
topographie (SRTM, CopDEM ou LiDAR), en utilisant chacune des trois variantes WaSER
proposées. De plus, nous évaluons l’effet de post-traitement (lissage) des cartes de niveaux
d’eau, d’où un total de 36 cartes.

Nous avons évalué la performance de chacune des variantes de WaSER en comparant les
cartes obtenues à celle des cartes d’inondation issues des images SAR uniquement. Les résultats
ont montré que globalement, les deux cartes d’inondation satellitaire, dérivées de TerraSAR-X et
Envisat, présentent un bon accord avec les cartes d’évaluation, malgré quelques sous-détections
principalement visibles aux extrémités des zones inondées et dans la partie nord de la zone
urbaine de Tewkesbury. L’utilisation de la variante HAND G présente l’avantage de réduire les
sous-estimations, en comblant les « trous » produits par la carte d’inondation satellitaire. Ceci
est accompagné par un risque de sur-estimation, dans d’autres zones de la carte. Ce mélange de
sous-estimation et de sur-estimation est lié à l’utilisation d’un seul seuil sur l’ensemble du do-
maine, résultant en un meilleur compromis « global ». En effet, l’optimisation d’un seuil HAND
unique global sur une image entière, entraîne des sous-estimations locales, lorsque des pixels
contigus, inondés dans la carte d’inondation satellitaire, ont des valeurs HAND très différentes.
Ceci rend difficile pour WaSER d’optimiser une valeur de seuil unique produisant une carte
d’inondation optimisée à 100% similaire à la carte d’étendues satellitaire. Ainsi, nous consta-
tons que dans la majorité des cas la carte d’inondation optimisée est plus performante que la
carte d’inondation satellitaire seule, lorsque nous utilisons les variantes locales HAND L. et
DEM L. Le seuil calibré est ainsi mieux adapté localement et reflète une meilleure classification
de l’eau, conformément à la carte d’inondation satellitaire. La variante DEM L. est la plus per-
formante de toutes les variantes en terme de carte d’inondation, notamment lors de l’utilisation

6



de topographie à plus haute précision (CopDEM et LiDAR). La sous-estimation des étendues
inondées constatée dans certaines régions est très probablement due à une sous-détection de
l’eau initialement dans la carte d’inondation satellitaire, entraînant ainsi une sous-estimation
du seuil optimisé. Dans l’ensemble, l’algorithme WaSER dans ses trois variantes fournit de
meilleures détections dans les zones rurales que dans les zones urbaines.

En terme de niveaux d’eau, la variante HAND G. présente les meilleurs résultats des racines
carrées de la déviation quadratique moyenne (RMSD) lors de la fusion des données à moyenne
résolution : SRTM et Envisat. Ceci est visible dans les cartes de différence entre les niveaux
d’eau estimés par WaSER et par le modèle hydraulique, où la distribution générale des dévia-
tions est globalement homogène. Ceci est aussi observable dans la distribution des déviations
entre estimation et référence qui varie entre -1 et 1 m. Cette distribution devient asymétrique
lorsqu’on utilise des approches locales (HAND L. et DEM L.), reflétant ainsi une sur-estimation
des niveaux d’eau par rapport aux sorties du modèle. Cependant, les médianes sont principa-
lement situées entre 0 et 1 m, ce qui reflète un bon accord entre les résultats données par
notre méthode et ceux fournies par le modèle d’évaluation. Nous observons des différences
assez importantes surtout au début et à la fin d’évènement de crue (outliers virés pour une
meilleure visualisation des valeurs autour de 0). Ceci signifie que cette sur-estimation est due
à des niveaux d’eau estimés par WaSER particulièrement élevés localement. Par ailleurs, nous
observons un mélange de sous-estimation et de sur-estimation des niveaux d’eau, généré par
la variante HAND G. en utilisant les données LiDAR/TerraSAR-X et CopDEM/TerraSAR-X.
Ceci est cohérent avec ce qui a été observé pour les cartes d’étendues inondées. Il est cependant
important de noter que la sur-estimation reste prépondérente par rapport à la sous-estimation,
notamment lors de l’utilisation du HAND L. Cela révèle clairement que l’approche basée sur
HAND souffre des discontinuités dues à de fortes variabiliés locales des valeurs de HAND,
lorsqu’on utilise des données topographiques à haute résolution. La variante DEM L. offre les
meilleurs résultats dans l’ensemble, et des écarts plus petits en utilisant l’image à plus haute
résolution (TerraSAR-X). En outre, l’analyse de l’effet du post-traitement des WSE a montré
également que les déviations minimales et maximales sont réduites après le lissage, en parti-
culier lors de l’utilisation des variantes locales. La taille de la fenêtre déterminée a priori dans
cette étude est égale à 2010 mètres, représentant donc 201 pixels avec une taille de pixel de
10 m. Ce choix a été fait en se basant sur la largeur de la plaine inondable de la Severn en aval
et a été contraint à respecter deux conditions : i) la taille de la fenêtre doit être suffisamment
petite pour garantir l’hypothèse d’un niveau d’eau plutôt constant sur toute la fenêtre, et ii) la
taille de la fenêtre doit être suffisamment grande pour inclure les pixels inondés et non inondés.
L’analyse de sensibilité menée pour évaluer la précision en termes d’estimation carte de FE et
de WSE en utilisant la variante DEM L. montre un optimum de taille de fenêtre à locws=250
pixels. Au fur et à mesure que la taille de la fenêtre augmente, les scores se stabilisent. Nous
pensons néanmoins, que des recherches supplémentaires devraient être menées pour mieux in-
vestiguer l’effet de la taille de la fenêtre, en effectuant des tests sur différents sites d’études.
En conclusion, la méthode d’estimation de niveaux d’eau développée permet de cartographier
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des étendues inondées et des niveaux d’eau, en quelques minutes et sans faire de calcul hydrau-
lique, en utilisant des données topographiques et satellitaires. L’influence du paramètre du seuil
local dans les variantes locales mérite d’être examiné.

Assimilation de cartes d’inondation satellitaires probabilistes dans un
modèle hydraulique à partir d’un filtre à particules à tempérage

L’objectif de cette partie (présentée au chapitre 3 du document de thèse) est d’intégrer des
données satellitaires dans le modèle hydraulique SW2D-DDP proposé afin de le calibrer et
d’améliorer ses prédictions dans un premier temps, et dans un deuxième temps, dans le but
d’estimer un paramètre hydraulique souvent inconnu et nécessaire en entrée des modèles hy-
drauliques : la bathymétrie. Il existe d’autres paramètres hydrauliques importants tels que le
coefficient de frottement qui peuvent être calibrés avec la bathymétrie. Basé sur une étude de
sensibilité menée par Antoine Pfefer (stagiaire à l’INRIA en 2021) en parallèle, nous avons
remarqué que la sensibilité du modèle au coefficient de frottement est beaucoup plus faible que
la sensibilité à l’altitude de fond de rivière. Permettant de aussi réduire le risque d’équifinalité,
nous choisissons donc d’effectuer la calibration de modèle à porosité via le paramètre qui semble
être le plus influant : la bathymétrie.

Dans cette étude, nous assimilons les cartes d’étendues en eau probabilistes des inondations,
en provenance des images du radar à synthèse d’ouverture (RSO), dans le modèle SW2D-
DDP, via un filtre à particules tempéré (Tempered Particle Filter : TPF). Pour réduire la
dégénérescence et l’appauvrissement de l’échantillon, les TPF utilisent une approche itérative
qui factorise la vraisemblance en utilisant des coefficients de tempérage. Cela augmente la
variance de la vraisemblance et permet une transition lisse entre la probabilité a priori et la
probabilité a posteriori. Un ré-échantillonnage (Sequential Importance Resampling : SIR) et
des mutations sont effectuées pour regagner en diversité à travers les particules. L’algorithme
d’assimilation de données est appliqué en utilisant le cas test de 2012 à la confluence des rivières
Severn et Avon, où des données in situ à l’intérieur du domaine hydraulique – à Mythe Bridge
et à Tewkesbury (voir emplacement sur Figure 1.3) – sont disponibles pour évaluation.

La calibration de toutes les mailles du lit de la rivière (au nombre de 93) peut résulter en
des paramètres qui sont contrastés tout au long de la rivière. Nous proposons ainsi de réduire
notre calibration à trois paramètres, situés aux trois limites du modèle hydrauliques (deux en
amont et une en aval), et en déduire une bathymétrie interpolée linéairement avec deux pentes
fixes correspondant à la Severn, entre Saxons Lode et Deerurst, et l’Avon, entre Bredon et
la confluence (voir emplacement sur Figure 1.3). Nous proposons de faire un autre test avec
une calibration encore plus simplifiée, où on calibre uniquement le paramètre en aval, et on en
déduit les paramètres en amont en rajoutant un delta d’élévation estimé à partir des données
topographiques. Le modèle SW2D-DDP (à calibrer) a été mis en place avec les paramètres
suivant : une hauteur d’eau constante dans le lit de la rivière comme condition initiale, et en
conditions aux limites : des hydrogrammes de débit en amont à Saxons Lode et Bredon, et une
relation hauteur débit en aval à Deerhurst (estimation du nombre de Froude à partir d’une
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simulation de contrôle effectuée dans l’étude du chapitre 1). Nous proposons d’établir un test
supplémentaire qui consiste en une calibration du ou des paramètre(s) de bathymétrie avec
une valeur de Froude fixe, et une valeur de Froude qui est calibrée. Par ailleurs, nous testons
l’utilisation d’une couche d’exclusion pour tenir en compte des erreurs possibles des données
issues des cartes RSO.

En termes de niveaux d’eau, pour la majorité des tests, les prédictions du modèle atteignent
des RMSE inférieures à 0,5 m après assimilation. Les résultats montrent que la meilleure va-
riante est celle qui repose sur la calibration des 3 paramètres distribués aux limites du modèle
hydraulique. La calibration ou non du Froude n’affecte pas les résultats de l’assimilation. L’in-
fluence de la couche d’exclusion est limitée dans les tests effectués. D’autre part, en terme de
bathymétrie calibrée, les paramètres après assimilation sont relativement éloignés des valeurs
données par les mesures disponibles de sections en travers aux 3 stations.

Conclusions et perspectives

Dans la première partie, nous avons proposé une chaîne de modélisation nouvelle, permettant
de simuler rapidement les inondations à large échelle. En effet, le modèle à porosité SW2D-DDP
[50] permet pour la première fois, une représentation précise de la bathymétrie et la topographie
au sein de grandes mailles, en utilisant la porosité dépendante de la profondeur, ainsi permettant
une réduction significative du nombre de mailles par rapport au modèle standard SW2D. La
simulation de deux cas test réels de 2007 et 2012, sur une zone de 1500 km2 autour de la
confluence des rivères Severn et Avon, a montré les résultats suivants :

• l’approche de modélisation proposée permet de simuler des cartes d’inondation similaires
à celles produites par le modèle standard SW2D, avec une précision allant jusqu’à 90 %.

• le modèle de porosité est capable de prendre en compte les petits drains dans des mailles
comparativement très grandes. En revanche, leur représentation dans un modèle standard
nécessiterait de très petites mailles, ce qui entraînerait un nombre de mailles beaucoup
plus élevé et une demande de calcul d’autant plus importante.

• l’expérience montre que les simulations du modèle à porosité sont environ 350 fois plus
rapides que celles du modèle standard, ce qui réduit considérablement les coûts de calcul
pour des résultats comparables.

L’approche de modélisation proposée dans cette partie facilite l’estimation d’une bathymé-
trie effective, car celle-ci est représentée par les paramètres de porosité. Ceci ouvre de nouvelles
perspectives à grande échelle, notamment dans des zones où les données bathymétriques ne
sont pas disponibles.

Dans la deuxième partie, nous avons proposé l’algorithme WaSER, permettant la récupé-
ration automatique de cartes d’inondation raffinées et de niveaux d’eau distribuées, grâce à la
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fusion de données satellitaires SAR et de données topographiques. Les résultats ont montré des
cartes d’inondation WaSER en très bon accord avec une carte d’évaluation dérivée d’une pho-
tographie aérienne et des résultats du modèle à porosité présentés dans la partie 1, notamment
lors de l’utilisation des approches HAND L. et DEM L. Globalement, les résultats obtenus avec
WaSER sont améliorés par rapport à ceux obtenus avec SAR exclusivement, atteignant une pré-
cision globale de l’ordre de 86-91%. La méthode proposée contribue ainsi à améliorer l’efficacité
de la détection de l’eau par rapport à la seule utilisation de la technique de cartographie des
inondations SAR. Les cartes de niveaux d’eau issues de WaSER présentent la meilleure concor-
dance avec les résultats du modèle SW2D-DDP lors de l’utilisation de l’approche DEM L. avec
des données topographiques et des images SAR à haute résolution (RMSD = 0,69 m avec le
CopDEM et RMSD = 0,52 m avec le LiDAR). Ceci est dû au fait que les ensembles de données
à haute résolution contiennent des informations précises sur une topographie complexe, ce qui
permet une bonne estimation des directions d’écoulement. Cependant, l’approche HAND G.
donne de meilleurs résultats (RMSD = 0.90 m) en utilisant les données à moyenne résolution
telles que le SRTM à 30 m et l’image Envisat à 150 m. En effet, le niveau de détail de l’infor-
mation topographique doit être compatible avec la résolution de l’image SAR afin d’éviter la
production d’artefacts. Alors que les travaux antérieurs dans la littérature [21] ont atteint une
précision de l’ordre de 0,38 m pour les cartes WSE interpolées, l’algorithme que nous proposons
a démontré des résultats légèrement moins précis mais du même ordre de grandeur, tout en
proposant une approche innovante pour produire des cartes de WSE spatialement distribuées.
Cette étude a également montré que la RMSD peut être davantage réduite, en fonction de la
résolution des données topographiques et satellitaires disponibles, ainsi que de la taille de la fe-
nêtre locale utilisée pour le lissage. La méthode WaSER proposée permet donc une cartographie
d’inondation rapide à large échelle et devrait être testée encore sur d’autres sites d’application.
Elle s’avère prometteuse pour pallier le manque de données dans les zones mal instrumentées.
De plus, les données topographiques (par exemple CopDEM, SRTM) et les images satellites à
haute résolution (par exemple Sentinel-1) sont disponibles gratuitement et à échelle globale, ce
qui rend cette méthode facilement applicable partout dans le monde.

Dans la troisième partie, nous avons proposé un algorithme d’assimilation de données qui
permet de combiner les sorties du modèle SW2D-DDP et les cartes probabilistes d’étendues
inondées issues du RSO. Bien que les erreurs retrouvées sur les niveaux d’eau sont réduites (de
l’ordre de moins de 0.5 m) grâce à l’assimilation, nous ne retrouvons pas la bathymétrie des don-
nées de profils en travers ponctuels, après assimilation. Ceci est certainement dû à l’estimation
très simplifiée de la bathymétrie à travers la loi de porosité SW2D-DDP. En effet, l’assimilation
permet avec peu de données, l’estimation d’une bathymétrie effective simplifiée (trapézoïdale)
dans laquelle les paramètres de forme peuvent se compenser : largeur au fond, au mirroir, pente
de berge dans le lit mineur et majeur, etc. De plus, l’utilisation d’images SAR disponibles
après le pic de crue uniquement, pourrait créer un manque de variabilité en terme de cartes
d’inondation. Ainsi, il serait judicieux de tester cet algorithme avec plus d’images qui offrent
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cette variabilité, pour améliorer l’estimation de la bathymétrie. En conclusion, les résultats de
cette dernière partie sont encourageants et méritent d’être examinés davantage. La calibration
de la bathymétrie et le Froude pourrait être bénéfique dans des zones peu instrumentées, ou
les paramètres hydrauliques et de géométrie du domaine sont en manque.
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General introduction
Anthropogenic activities greatly impact the dynamics of the global water cycle, which is ex-
pected to intensify with climate change and increase the risk of flooding [112]. The Floods
directive by the European Union defines the term “flood” as “the temporary covering of land
not normally covered by water”. Several types of floods can be distinguished2. Coastal flooding
is often a combination of storm surges and unusually high tides. Flash flooding is caused by
heavy and sudden rainfall that saturates the top layer of ground surfaces which can no longer
drain properly the water excess, and leads to runoff. While this type of flooding can subside
quickly, it can be fast moving and dangerous while it lasts due to the peak discharge reached
within only a few hours. Riverine (also known as fluvial) flooding is one of the most common
types of inland flood. It occurs when the river bursts its banks because it reached its maxi-
mum capacity due to increased streamflow. A flood becomes a problem for human activities
and security when it hits for example agricultural or urban areas. When that hazard carries
a potential damage and poses a threat to humans, environment, material and property assets,
the flood is identified as a risk [66]. Therefore the risk of a population to a flood is defined
through the risk triangle, where the risk is a combination of the potential magnitude of the
hazard, the exposure of the population in terms of where it is located in relation to the impact
of the hazard, and the vulnerability of the population in terms of how important the impact of
the flood will be [106]. Damages caused by floods can be devastating on many socio-economic
levels. In 2011, the Southeast Asian floods resulted in a total of 2,282 deaths and affected
nearly 9.6 million people. In Thailand alone, economic damages were estimated for nearly 40
Billion US$, and the 2011 flood event was marked as the worst in 60 years [116]. Flooding
can also occur in well developed countries that highly invest in infrastructure and flood man-
agement planning. Europe has not been immune to severe flooding in the summer of 2021,
despite its economic development and progress in science and technology. While infrastructure
was not heavily impacted and emergency response was quick to act, the event resulted in 243
deaths [84]. A recent study analysed satellite images for 913 major floods worldwide from 2000
to 2018, and estimated an increase in flood exposure for 32 countries to which will join another
25 by 2030 [115]. This means that in less than 10 years, an additional 179.2 million people will
be at risk of flooding (from floods with a 1% annual chance of occurring). Therefore, sharing
knowledge and good practice is needed to adapt to this natural hazard all around the world.
A better understanding of the flooding phenomena and its hydrological consequences is needed
to improve our flood forecasting chains, through the careful analysis of past floods and the

2https://www.envirotech-online.com/
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calibration of flood forecasting models.

Hydraulic models are popular and powerful tools for the assessment of flood hazard and
flood-induced damages. To enable an accurate representation of flood dynamics, the area of in-
terest needs to be discretized into cells in a way that high-resolution topographic data represents
well enough hydraulic structures that might affect flood dynamics. This often requires small
cells, which leads to an increase of computation times and becomes particularly problematic
when modelling large areas. Sub-grid models have tackled this challenge and gained a growing
interest as they are a good compromise between accuracy and high computational efficiency.
Indeed, they enable faster simulations as they use coarser computation cells while accounting
for small-scale topography variations within these cells. For example, Lisflood-FP [12, 89] is a
fast-running and relatively easy-to-set-up model that enables subgrid capability in the channel,
while assuming a simplified channel shape and using a 1D approach for the channel flow simu-
lation and a 2D approach for the floodplain. The adopted subgrid channel approach allows rep-
resenting any river channel size, even below the grid resolution. However, the subgrid approach
only applies to the river and the resolution in the floodplain has to be rather high to accurately
represent floodplain flows and inundation extent. Other modelling techniques that have evolved
over the past twenty years, rely on two dimensional shallow water models including the porosity
concept as a way to upscale the traditional shallow water equations [17,29,49,51,52,64,110]. In
these models, porosity is defined as the fraction of a computational cell/edge available to the
flow, and it takes into consideration small-scale features of obstacles that affect the flow, using
coarse grid cells, thus allowing the reduction of run time while preserving subgrid topography
information.

Flood forecasting models require input data that is subject to two main challenges: 1)
the lack of in situ data that provides water depth and/or flow discharges used as boundary
conditions, and 2) the lack of river channel information about hydraulic parameters such as river
width, bed friction and elevation, etc. The first issue lies in having enough spatially distributed
data across an area of interest, and is due to data being rarely available at a sufficiently high
resolution. Measurements in situ cannot be easily made because of the inaccessibility of water
courses at flood peaks, and the decline of operational gauging stations worldwide [58]. In this
context, satellite earth observation (EO) technology becomes an attractive alternative source
of information for monitoring and mapping floods at a large scale [128]. Spaceborne sensors
can acquire images for large zones, but at a coarse resolution and a usually low revisit time,
and airborne sensors provide more accurate images only at a much smaller scale [32]. Optical
imagery is often hampered by cloud cover, and can capture images only during the day. Radar
sensors and more particularly Synthetic Aperture Radars (SAR), are performing regardless
of the sun-illumination and the cloud cover. Moreover, they are popular in flood mapping
because of their straightforward ability to detect water on open and calm water bodies rather
easily, due to the specular reflection phenomena. While many efficient and automatic flood
mapping algorithms already exist, to the best of our knowledge, there are currently only few
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studies focusing on the automatic retrieval of water surface elevation maps from SAR images.
In this context, we believe making use of SAR data, which is becoming more globally and freely
available at a high spatial resolution (e.g. Sentinel-1 at 20 m spatial resolution), holds great
potential for the estimation of water depth from space, and contributes to the compensation of
the lack of in situ data and to the support of flood forecasting models.

The second issue faced in surface hydrology is the observation of certain hydraulic param-
eters through remote sensing derived techniques. For instance, digital elevation models do not
provide ground elevation below the water surface. Knowing that river channel morphology is
crucial as input to flood forecasting models, there is a number of studies focusing on retrieving
this information by existing means. The hydrological community awaits for the future SWOT
mission (to be launched on November 2022) to get key hydraulic variable measurements – wa-
ter surface elevation, width and slope – for open water bodies larger than 250 m × 250 m.
Meanwhile, to address the mentioned issue, some studies have relied on data assimilation – a
mathematical approach whose goal is to optimally combine uncertain model predictions with
uncertain observations – to estimate unknown parameters that are needed in forecasting mod-
els. Some of the proposed methods have been found particularly efficient in retrieving missing
data in ungauged areas e.g. [13, 36, 40, 96]. In this context, DA techniques should be further
exploited in order to retrieve unknown data that is essential for flood forecasting models.

In this context, this PhD thesis targets three main objectives:

1. Developing a fast hydraulic modelling framework applicable at a large scale while pre-
serving high-resolution information,

2. Developing an algorithm to enable the automatic retrieval of water levels using only
satellite earth observation and topographic data,

3. Developing a data assimilation framework enabling the retrieval of riverbed bathymetric
characteristics using time series of satellite earth observation data.

Chapter 1 is from an article published in Advances in Water Resources [8], Chapter 2
has been submitted to Remote Sensing of Environment in June 2021 and is currently under
review, and Chapter 3 will be submitted after the submission of the thesis. Chapter 3.5. briefly
reviews the results obtained in the three parts of the thesis and proposes perspectives for future
improvements.
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1.1. Introduction

With the increasing risk of more frequent and severe floods [7] due to climate change and
growing urbanization, there is a crucial need to make more investments in flood management.
Impacts of floods include human, socio-economical and environmental losses. Poorly conducted
hazard assessments can lead to inefficient risk management, from insufficient protective mit-

15



Chapter 1. A porosity-based flood inundation modelling approach for enabling faster large
scale simulations

igation measures to expensive rebuilding of devastated areas [10, 82]. Instead, well-conducted
flood risk assessments provide a valuable support for decision making related to urban planning
and emergency response preparedness. Therefore, it is essential to improve flood management
systems to better anticipate and further reduce potential flood risk [95, 114]. In this context,
hydrological and hydraulic models play a central role in flood forecasting as they provide pre-
dictions of water streamflows and levels across various temporal and spatial scales [59,101].

The most common flood inundation (hydraulic) models are based on the depth-averaged
Navier Stokes equations, also called de Saint-Venant or Shallow Water Equations (SWE). The
resolution of these equations can be carried out in one (1D) or two dimensions (2D). 1D models
solve the 1D formulation of the SWE [12] where the flow is assumed to be unidirectional and
water levels are assumed to be constant across sections. Although they are relatively easy to
setup and fast to run [26], these models fail to provide accurate predictions of overbanking flow
and in presence of complex topographies, especially because the momentum transfers between
the channel and the floodplain are neglected. 1D-storage area models (also often referred to as
1D+ or quasi-2D) are sometimes preferred as they include a representation of floodplain stor-
age using a series of user-defined polygonal compartments into which overbank flows can spill.
The flow between the main channel and the floodplain storage cells is modelled using stage-
discharge equations, such as weir, gate or orifice laws. These can also be used to link storage
cells to one another, and the water level is then computed using volume conservation in each
storage cell. However, these models also neglect the momentum conservation between storage
areas in floodplains. To tackle the previously described issues, 2D approaches are adopted. In
2D flood modelling, a fine discretization of the area of interest (including main channel and
floodplains) is required to accurately represent topography. Consequently, the main limitation
of accurate modelling of large scale floods is associated with a very expensive computational
cost. An alternative approach relies on the coupling of 1D and 2D models. This approach is not
completely satisfying as it only accounts for mass transfers between the two models. The actual
key for this approach to be reliable is correctly representing edges of the 1D and 2D models
making it possible to keep the spatial and temporal correlations of 1D and 2D models consis-
tent [131]. For instance, [125] represents the floodplain by fictitious river-branches for which
the calibration of friction coefficients is required to account for momentum. A precise mapping
of these branches is necessary to accurately delineate the flood extent that is otherwise often
overestimated. [38] proposed a shallow water based model for river-floodplain interactions using
1D and 2D elements in the main channel and floodplain, respectively. This allowed to improve
the portraying head loss phenomena that can happen due to channel bends or meander short-
cuts, thanks to the inclusion of lateral momentum transfer between the river and the floodplain.

To correctly capture flood dynamics there is a need to further reduce the computational
time while ensuring precise representation of river-floodplain connections. Sub-grid modelling
approaches have tackled this challenge and gained a growing interest as they are a good compro-
mise between accuracy and high computational efficiency. Indeed, they enable faster simulations
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as they use coarser computation cells while accounting for small-scale topography variations
within the cells. For example, Lisflood-FP is a fast-running and relatively easy-to-set-up model
and its standard version was introduced by [12]. It was further developed by [89] who proposed
a version enabling subgrid capability in the channel. This assumes a simplified channel shape
and uses a 1D approach for the channel flow simulation and a 2D approach for the floodplain.
The adopted subgrid channel approach allows representing any river channel size, even below
the grid resolution. However, the subgrid approach only applies to the river and the resolution
in the floodplain has to be rather high to accurately represent floodplain flows and inundation
extent.

Other modelling techniques rely on two dimensional shallow water models including the
porosity concept as a way to upscale the traditional shallow water equations. Porosity is de-
fined as the fraction of a computational cell/edge available to the flow. Porosity-based models
have evolved over the past twenty years. First, [29] introduces the shallow water model with
isotropic porosity. The formulation for partially wet/dry areas over irregular domains is later
improved by [17,30,56]. In the single porosity model [52] a differential formulation is derived us-
ing a finite volume scheme, which is further evaluated by [110]. Later, [104] shifts the focus from
isotropic to anisotropic porosity by proposing the Integral Porosity model, where connective
porosity (through edges) is distinguished from storage porosity (within cells). [49] then merges
the isotropic and anisotropic models and introduces a multiple porosity approach for applica-
tions in urban areas. [64] investigates the porosity-based model errors and show that they are
lower for anisotropic models than for isotropic approaches. This approach is further extended by
introducing a Dual Integral Porosity (DIP) model [51]. The SW2D-DDP model was presented
and evaluated in [50]. In this article, synthetic test cases (a series of dam-break configurations
and a meandering channel) and an experimental test case were used to evaluate and validate
the model results. Two closure laws (Integral Porosity and the depth-dependant Dual Integral
Porosity) were compared to a fine 2D model that solves the classical shallow water equations
with the second-order MUSCL-EVR scheme. Results show the superiority of the proposed DIP
closure model on the IP model. Moreover, the paper presented a shallow water model based on
the DIP approach, with depth-variable porosity fields: SW2D-DDP, and it has been found that
although porosity approach cannot represent details within the cells, it shows good agreement
with the average values of the fine 2D model. Moreover, the CPU ratio between DDP and
fine 2D models ranges from 310 to 2900. In this paper, we apply and validate the SW2D-DDP
model on a real large scale test case, since it was already evaluated on synthetic test cases in [50].

The provision of accurate bathymetric data is critical in hydrodynamic modelling, yet ob-
taining this information where in situ measurements are lacking is not always possible. In this
context, [58] proposes a method for retrieving effective riverbed bathymetry based on the as-
similation of water level measurements acquired by a drifting GPS buoy into a 1D hydraulic
model and many bathymetry retrieval methods have been recently developed in the frame-
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work of SWOT satellite mission preparation (e.g. [37,93,129]). In the perspective of retrieving
bathymetry that is often unknown [68] [31], we propose here to represent it via depth-dependant
porosity functions. We therefore hypothesise that bathymetry can be effectively represented
through depth-dependant porosity parameters.

In this context, the main objective of this study is to develop and evaluate a modelling
framework based on SW2D-DDP enabling fast flood inundation simulations at a large scale,
while representing for the first time both bathymetry and small-scale floodplain topography
using depth-dependant porosity within comparatively large computational cells. To evaluate
the proposed modelling framework with scrutiny, we compare the SW2D-DDP simulation re-
sult with a standard 2D shallow water model on one hand. Moreover, we evaluate both model
results using ground truth data (in situ measured and remote sensing-derived). Benchmarking
the SW2D-DDP model against a high-resolution 2D model enables the evaluation of our ap-
proach across space and time. It also helps to explore strengths and limitations of the proposed
approach in comparison with state of the art approaches. Our study site is a 1,500km2 flood-
plain located at the confluence of the Severn and Avon rivers in the United Kingdom, which has
frequently experienced flooding especially in the last decades. The 2007 and 2012 flood events
are used as test cases.

The remainder of this paper is organised as follows. In section 3.2., we present the proposed
modelling framework enabling the simplifed representation of bathymetry and topography via
porosity, and then the design of the experiment to evaluate the model performance. Next, the
study site and available data, as well as the models set up are described in section 3.3.. In
section 3.4., we evaluate the simulated flood extent and water level maps. Finally, section 1.5.
discusses the main outcomes of the study.

1.2. Methodology and experimental setup

This section first describes the proposed modelling approach based on the shallow water 2D
model with SW2D-DDP. Next, it presents the experimental setup for evaluating the model
performance using a standard 2D shallow water (SW2D) model as a reference, as well as in situ
measured and remote sensing-derived data.

1.2..1 Modelling framework

SW2D1 is a modelling suite that has been progressively developed and further improved since
2002. It solves the 2D shallow water equations with a finite volume scheme on structured or
unstructured grids. The SW2D-DDP model [50], introduces a Depth-Dependant Porosity that
accounts for small-scale effects of obstacles to the flow in a macroscopic way without the need
to detail their geometry in the mesh. Although the whole domain is represented as flat in the

1https://SW2D.inria.fr/
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mesh, a bottom elevation zb is provided inside each cell via a porosity distribution as a function
of the water depth.

Within a domain D, the model distinguishes storage (cell) porosity ϕΩ from edge (con-
nective) porosity ϕΓ. The domain-based porosity takes into account the mass and momentum
storage and the edge-based one takes into account the mass and momentum transport [70]. The
storage porosity for a given cell is the adimensional area available for water at the elevation zs.
As detailed in [50], the standard shallow water equations are multiplied by the phase function
ε, defined as:

ε(x, y, z) = 1 if z > zb, 0 otherwise (1.1)

where ε(x, y, z) is the phase indicator for the point coordinates (x, y, z) that is equal to 0 if the
point is in the solid phase (i.e. lower than the bottom elevation zb). The porosities represent
the amount of water that can be stored per unit domain and boundary for a unit variation in
the free surface elevation zs(x, y), which is assumed to be known. Thus, the porosities over cells
(Ω) and edges (Γ) are defined as:

ϕD (z) = 1
D

∫
D

ε (x, y, z) dD, D = Ω, Γ (1.2)

where D stands for either a cell (Ω) or an edge (Γ). This allows to uniquely define the volume of
water stored per unit area/length in the sub-domain D between the ground and the elevation
z as:

θD (z) =
∫ z

−∞
ϕD (ζ) dζ (1.3)

Small scale topography information is therefore taken into account via porosity laws [50].
In the SW2D-DDP software, four law types are proposed. In this model setup, we have chosen
to use only two types of porosity law (0 and 3) for the sake of simplicity and in order to show
how porosity represents and preserves high resolution topographic data.

Law 0 is used for defining storage porosity in the floodplain (Fig. 1.1). The distribution
of ground elevations zb(x, y) within each cell is first retrieved from the digital elevation model
(DEM). Next, it is discretised using a piecewise constant function of N segments with “equidis-
tant” porosity values associated to elevation values with the following relation:

ϕ(zi) = i/N, i = 1 . . . N (1.4)

where zi is the subgrid water depth associated to a porosity ϕi and N is the number of segments.

Law type 3 allows us to handle porosities inside riverbed cells. In line with the objective
of minimising the number of cells in the model mesh and therefore reducing computational
time, we propose to define cells with dimensions larger than the riverbed width. Moreover, to
avoid elongated cells that can be responsible for model instabilities, we maintain the length of
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Figure 1.1: Porosity laws: a) law type 0; b) law type 3; c) bathymetry rep-
resentation using law type 3. z: elevation, ϕ: porosity, s: abscissa along the river
cross-section.

the computational cells along the streamflow direction at maximum twice its width (Fig. 1.2).
Since bathymetric data is rarely available, we propose to represent riverbed geometry using a
simplified trapezoidal shape assumption via the porosity law type 3 (Fig. 1.1).

(a) (b)

Figure 1.2: 0.25 km2 subset of: a) the standard model mesh, b) the porosity
model mesh.

First, storage porosities are computed. Then, the porosity law type used for the edges is
selected depending on the location of their adjacent cells: law type 3 is used inside the riverbed
(cross sections, i.e. edges between two cells of type 3) and law type 0 is used in the floodplain
(between two cells of type 0) and on river banks (between a riverbed and a floodplain cells).
To accurately represent overbank flows, the nodes of the river bed cells are positioned on the
dikes in both models. Indeed, when positioning interfaces upon constrictions and obstacles,
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these latter are implicitly considered in the interface flux calculation, while the same obstacles
disappear from the numerical representation when they are located inside the cells. Moreover, to
ensure that high points are correctly taken into account without too much overloading the mesh
design process, we choose to automatically compute the edge porosity values as the minimum
of the porosities of their neighbouring cells. It is worth mentioning that the parameter retrieval
of the porosity law in each cell and edge is carried out automatically using the available DEM
and bathymetric information.

1.2..2 Experimental design

To the best of our knowledge, our modelling framework enables for the first time to represent
both riverbed and floodplain subgrid topography using porosity laws. To evaluate its advan-
tages and limitations, we compare the SW2D-DDP model with a standard fine 2D model,
namely SW2D [62], in terms of simulated water depths and inundation extents. Moreover, to
further assess our modelling approach, we evaluate it against observed flood extents from aerial
photographs and satellite images, and against observed water level time series from in situ
measurements when available.

1.2..2.1 The standard 2D shallow water model

To enable a meaningful comparison between the two approaches, the standard model has to
use exactly the same input data as the porosity model: topography, bathymetry, boundary
and initial conditions and parameters (e.g. friction coefficient, numerical scheme). The two
models differ only in the way they represent the floodplain and riverbed topography. The
standard model being based on a classical finite volume scheme, the bottom elevation inside a
computational cell has a unique value, equal to the average elevation of the cell’s nodes. As a
consequence, topography can be smoothed out within each cell, when flow obstructions, drains
or structures (e.g. dikes, roads, streams) are not intrinsically represented via cells smaller than
their dimensions. Indeed, adequately representing dikes, drains or river channels, requires to
include several mesh cells within each of these structuring elements. Therefore, in the standard
SW2D model, the mesh needs to be designed in a way that entire cells are placed explicitly on
hydraulic structures or singularities. For instance when representing a drain of 5m width, cells
have to be well-placed to capture its effect, otherwise it would be transparent for the model.
Having many of these structures in large scale areas would require a long time to represent
them in a standard SW2D model.

1.2..2.2 Evaluation method

To evaluate the porosity model performance, we propose an approach composed of several suc-
cessive steps detailed in the following paragraphs: i) post-process model results to derive flood
extent and water depth maps in the same format, ii) compare flood extent and water level maps
extracted from both models, on a daily basis; iii) evaluate flood maps extracted from both mod-
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els using remote sensing derived data; and iv) evaluate simulated water level time series against
in situ observation data. In this study we chose to evaluate the proposed modelling approach
in terms of simulated water levels first using punctual in situ water level measurements. Next,
as spatially distributed water level cannot be derived from in situ observation, we also compare
the SW2D-DDP results with those obtained using the standard SW2D model. Whether we use
the SW2D model results or the measurements provided by a camera or a gauging station to
evaluate water levels, we computed the root mean squared deviations (RMSD, eq. 1.7). When
we evaluate the model in terms of flood extents, two types of references are used : i) the flood
extent maps simulated by SW2D and ii) the ones derived from a satellite imagery.

Post-processing of model results: We aim to compare the results of the porosity and the
reference models in terms of flood extents and water levels. By definition, the bottom elevation
of the cells in the porosity and standard model meshes are taken into account differently. In
the standard SW2D model, as previously mentioned, the bottom elevation of a cell corresponds
to the average elevation of its nodes. In the porosity model, the subgrid elevation variability is
accounted for via the porosity. Since the edges of the fine and coarse grid cells do not overlay, the
flood extent maps derived from the two models are resampled to the original DEM resolution
(2m), to enable a pixel-to-pixel comparison. To do so, the cell is considered flooded when the
simulated water depth reaches a minimum value hmin i.e. when zs > zb +hmin where zb is the cell
bottom elevation for the standard model and the DEM elevation for the porosity model). The
hmin is set to 0.1 m, which corresponds approximately to the vertical accuracy of the LiDAR
DEM.

Evaluation of simulated flood extent maps: The simulated flood extents evaluation
is carried out twice, using as a reference either (i) the standard model or (ii) the available
Earth Observation data. Based on a pixel-by-pixel comparison, we compute a confusion matrix
composed of four metrics: 1) the number of pixels that are unflooded in both maps, i.e. TN:
true negatives, 2) the number of pixels flooded only in the standard model, i.e. FN: false
negatives, 3) the number of pixels flooded only in the porosity (SW2D-DDP) model, i.e. FP:
false positives, and 4) the number of pixels flooded in both maps, i.e. TP: true positives.
To compare the simulated and the reference maps, we compute contingency maps. As overall
performance metrics we use the Critical Success Index (CSI) [105] and the Overall Accuracy
(OA) that are both derived from the confusion matrix. CSI and OA quantify the goodness of fit
between the evaluated map and the reference maps (see Eqs. 2.4 and 2.3). The CSI represents
the ratio of the number of pixels correctly predicted as flooded (TP) over the number of all
flooded pixels:

CSI = TP
TP + FP + FN (1.5)

The OA takes into account the agreement of non flooded areas and is defined as follows:
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OA = TP + TN
TP + FP + FN + TN (1.6)

These scores vary between 0 and 1, with the highest value attained when the predictions
present a perfect fit with the reference.

Evaluation of simulated water level maps: To quantitatively measure discrepancies be-
tween the simulations and reference water level maps, we use the root mean square deviations
(RMSD, Eq. 1.7) between the porosity model predicted water levels zi,sim and the reference wa-
ter levels zi,ref (eq. 1.7), resampled at the DEM resolution (2m), and for each of the n inundated
pixels of the entire domain.

RMSD =
√√√√ 1

n

n∑
i=1

(zi,sim − zi,ref)2 (1.7)

Moreover, to further evaluate the distribution of the differences between the simulated and
reference water levels, we make use of boxplots showing the deviation distribution based on
statistical metrics: 1) the lower bound; 2) the first quartile, Q1=25th percentile; 3) the median,
Q2=50th percentile; 4) the third quartile, Q3=75th percentile and 5) the upper bound. The
interquartile range (IQR) goes from the 25th to the 75th percentile, and therefore represents
50% of the data values. The maximum value of the boxplot is defined as Q3 + 1.5*IQR, and
the minimum value Q1 -1.5*IQR. Outlier points are thus eliminated from the plot for the sake
of readability.

Evaluation of simulated water levels time series: Water level time series obtained from
each of the porosity and standard models are evaluated against in situ observation data. For
visual comparison, these time series are plotted. Then, to quantitatively measure the discrep-
ancies, we compute the root mean square deviations (RMSDs), as described in the previous
section.

1.3. Study area, experimental data and model setup

The Severn, the longest river in Great Britain, extends from its source at Plynlimon in the Welsh
hills to the mouth of the Bristol channel. The overall catchment area covers approximately
11,000 km2 and is predominantly rural, apart from some urban settlements like Worcester,
Tewkesbury and Evesham. Fig. 1.3 shows the model domain and river network with the location
of the available gauging stations and the camera location offering live imagery on the river
Severn. The study site is located at the confluence of rivers Severn and Avon around the city
of Tewkesbury and has been subject to frequent flooding due to intense precipitation. The area
of interest covers approximately 15 × 10 km2. Two flood events of different magnitude will be
simulated and analysed to better understand the model behaviour with changes in boundary
conditions: the July 2007 and November 2012 flood events.
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Figure 1.3: Study site: model boundaries and location of the gauging stations
and the river camera. The background colours illustrate the classification of ground
elevation.

Hydrometric data: Two suitable gauging stations are located at Saxons Lode (along the
Severn River) and Evesham (along the Avon River) upstream of the confluence. Due to the
backwater effect observed at Bredon, the streamflow time series is estimated there from that
recorded at Evesham gauging station (located upstream of Bredon) and delayed in time based
on an estimated wave travel time. Mythe Bridge is situated upstream the confluence of the
Severn-Avon rivers and Deerhurst is situated downstream. Hydrometric data are provided by
the UK Environmental Agency (EA) at 15 min-intervals. Moreover, the Tewkesbury stationary
camera (Fig. 1.3) mounted on the wall of a building in March 2011, provided a view on the
Avon river, which allowed taking hourly daylight images during the 2012 flood event. This
camera enabled the estimation of water levels in the river [122], which are used to evaluate the
hydraulic model performance inside the domain.

Earth observation data: The flood event of July 2007 is particularly interesting because an
airborne campaign imaged the flood at a very high resolution (50 cm) on July 24, close to the
flood peak [44]. Flood extents were manually digitised on this imagery. This extracted flood map
allows evaluating the simulated flood extents at the same date (24 July). The hierarchical split-
based approach proposed by [19] is used to derive flood extent maps from the Cosmos-SkyMed
images acquired on the following dates: 27, 28, 29, 30 November and 01, 02, 04 December 2012.
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These flood maps are considered for evaluating synchronous flood extent maps simulated by
the porosity and the standard models.

Topographic and bathymetric data: A LiDAR DEM at 2m-spatial resolution with a ver-
tical accuracy of 0.10 m provided by the UK Environmental Agency (EA) [126] is used to
provide the model with ground elevation. Bathymetric data is reconstructed using three river
cross section measurements at the upstream (Saxons Lode and Bredon) and downstream (Deer-
hurst) boundaries of the model. To do so, first, we approximate the observed cross sections using
a trapezoidal shape. The bank lines are manually digitized along the Avon and Severn river
streams and river stream bottom lines are automatically generated as parallels to the bank lines
(using a distance estimated based on the observed cross sections). Next, the bank elevations are
estimated by extracting ground elevation (provided by the Lidar DEM) along the bank lines.
Then, the river bottom elevation is linearly interpolated between the three trapezoidal cross
sections along the Avon and Severn bottom lines. Based on the river banks and bottom lines
(with associated elevation values) we interpolate river bathymetry. Finally, the interpolated
bathymetric data is merged with topographic data to form a single model input.

1.3..1 Model setup

While the standard model mesh is composed of 29,772 cells, the porosity model mesh contains
only 1,042 cells. Concerning the mesh design in the SW2D-DDP model, just like in any other
hydraulic model, the cell including the river should not be too large as the porosity law used
in river cells considers the flood plain as horizontal (rectangular above trapezoidal shape). For
other cells, no brutal variations in terms of surface should be found between adjacent cells. The
influence of the number of tabulations N inside a cell has been investigated in [50]. Since the
spatial information is lost within a coarse grid cell, it is essential to ensure that obstacles are
captured by the 5 tabulation levels.

Discharge time series are imposed as upstream boundary conditions of the hydraulic model
(Severn at Saxons Lode and Avon at Bredon). The streamflow time series in Saxons Lode are
derived from water surface elevation records using a rating curve. Water level time series are
used as downstream boundary condition at Deerhurst (fig.1.4). The initial condition is a fixed
water level equal to the downstream condition. A uniform Strickler coefficient Ks = 50 m1/3s−1

is used for the riverbed and the floodplain. Spatially distributed parameters could easily be
prescribed but a sensitivity analysis (not shown in this paper) showed that the influence of the
friction coefficient was limited for the studied flood event. The durations of 2007 and 2012 flood
event simulations are 17 days (18 July - 04 August) and 15 days (21 November - 06 december),
respectively.
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(a)

(b)

Figure 1.4: Model boundary conditions for the 2007 (a) and the 2012 (b) flood
events: Upstream streamflow (Saxons Lode and Bredon) and downstream water level
(Deerhurst) time series.
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(a) 2007 (b) 2012

Figure 1.5: CSI and OA scores time series showing agreement between simulated
(porosity) and “reference” (standard) flood extent maps, CSI: Critical Success Index
& OA: Overall Accuracy.

1.4. Results

1.4..1 Evaluation of simulated flood extent maps

Fig. 1.5 shows the CSI and OA time series computed on a daily frequency for evaluating the
SW2D-DDP simulated flood maps using the SW2D simulated flood maps as reference. It can
be seen that both simulated flood extent maps are most of the time in agreement for both flood
events. At the flood peak, in Fig. 1.6b and 1.7b, there is a very good agreement between the
two models (accuracy of 95%). The model agreement is slightly lower in the rising limb, and
decreases more in the falling limb. This implies that the draining dynamic in the SW2D-DDP
model is different from that in the SW2D model. Fig. 1.6 and 1.7 show a series of contingency
maps obtained by comparing the simulated flood extent maps (by the SW2D-DDP and SW2D
models) during the 2007 and 2012 flood events. During the rising limbs (Fig. 1.6a and 1.7a) the
porosity model exhibits a good agreement with the standard model, while locally inundating
slightly larger areas especially in the upstream part as well as in little drains in the urban
zone, at the Severn-Avon confluence (see box in Fig. 1.6a). This indicates the porosity model
induces overbanking earlier than the standard model. Oppositely, a smaller inundation extent
is visible locally nearby the Avon river. Fig. 1.6c and 1.7c show a substantially larger flood
extent simulated by SW2D. This indicates that almost all floodplain water came back to the
stream in the SW2D-DDP simulation while a substantial volume of water remains present in
the floodplain in the SW2D simulation. This effect is dominant in the eastern Severn floodplain
and around the urban settlements. Overall, Fig. 1.6c and 1.7c suggest that the porosity model
fills in and drains floodplain water faster than the standard model. To better understand and
assess this aspect, we also compare both model results to remote-sensing derived data.
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(a) Day 3 - 2007 (b) Day 7 - 2007 (c) Day 16 - 2007

Figure 1.6: Contingency maps between porosity and fine models for simulation
days 3, 7 and 16 of the 2007 flood event

(a) Day 1 - 2012 (b) Day 5 - 2012 (c) Day 15 - 2012

Figure 1.7: Contingency maps between porosity and fine models for simulation
days 1, 7 and 15 of the 2012 flood event
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Table 1.1: Performance of the flood inundation extents simulated by the porosity
(SW2D-DDP) and standard (SW2D) models computed using as a reference the
satellite flood extent maps available for the 2007 and 2012 events. CSI: Critical
Success Index; OA: Overall Accuracy.

Year 2007 2012
Day 25-07 27-11 28-11 29-11 30-11 01-12 02-12 04-12
CSI (SW2D) 0.9 0.691 0.677 0.687 0.649 0.658 0.657 0.453
CSI (SW2D-DDP) 0.92 0.699 0.687 0.698 0.655 0.665 0.667 0.506
OA (SW2D) 0.94 0.852 0.847 0.855 0.843 0.848 0.853 0.866
OA (SW2D-DDP) 0.95 0.856 0.851 0.86 0.844 0.851 0.857 0.894

For the 2007 event, the porosity and standard model-derived flood maps were evaluated
against the flood map extracted from aerial photography, and showed similar levels of agreement
(CSI=0.92; OA=0.95 and CSI=0.9; OA=0.94 respectively for SW2D-DDP and SW2D). During
the 2012 flood simulation, both models are in good agreement, with lower scores for the last
satellite image (04 December, see Table 1.1). CSI and OA are rather similar for the two models
but it is worth highlighting that the metrics of the porosity model are always exceeding those
of the standard model. Fig. 1.8 shows the contingency maps computed by each of the models
using as a reference the satellite flood map acquired on December 04. The most important
differences between the two simulated flood extent maps are exhibited close to Tewkesbury
where SW2D-DDP drains water faster than SW2D. The flood extent map derived from SW2D
therefore exhibit in Fig. 1.8a a substantial overestimation when compared to the flood extent
map derived from a Cosmo-SkyMed image. However, this overestimation has to be interpreted
carefully as SAR backscatter images do not enable floodwater detection in dense urban areas
[20]. Moreover, [44] showed for the same study area that part of the floodwater was detectable
during the 2007 flood event inside Tewkesbury using a high resolution SAR backscatter image
(i.e. a Terrassar-X image). As a consequence, one can argue that the absence of floodwater
within Tewkesbury in the Cosmo-SkyMed images acquired in 2012 lends more weight to the
SW2D-DDP flood extent map reliability.

1.4..2 Evaluation of simulated water level maps

Fig. 1.9 shows time series of root mean square deviations (RMSD) calculated between the
porosity and standard model-derived water levels at a daily frequency, across the inundated
areas. The corresponding time-averaged RMSDs are equal to 12.32 cm and 6.3 cm for the 2007
and the 2012 flood events respectively. The highest deviations are observed in the falling and
rising limbs. During the flood, peaks are reduced and vary between 3 and 9 cm. From a practical
point of view, depth deviations ranging from 10 to 15 cm in flood predictions can arguably be
considered as acceptable given the vertical accuracy of the LiDAR used: ±10 cm [75, 103].
Furthermore, boxplots are used to assess the distribution of differences between water levels
simulated by the porosity and the standard models at a daily time step (Fig. 1.10). At first
sight, it is found that the model results present a very good agreement at the flood peak

29



Chapter 1. A porosity-based flood inundation modelling approach for enabling faster large
scale simulations

(a) (b)

Figure 1.8: Contingency maps computed from the satellite and each of the stan-
dard (a) and porosity (b) model flood maps, on December 04, 2012.

(a) RMSD 2007 (b) RMSD 2012

Figure 1.9: Root mean square deviations (RMSD) in meters, between SW2D-
DDP and SW2D simulated water level maps (resampled at DTM resolution): a)
2007 and b) 2012 flood events.
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(a) 2007 (b) 2012

Figure 1.10: Boxplots drawn from the simulated water level deviations using as a
reference the standard model - orange line: median; triangle: mean; box: interquartile
range; whisker ends: the lower and upper bounds: (a) 2007 and (b) 2012 flood events.

since the boxplot height is very small. Positive values in the boxplots refer to higher water
levels simulated by the porosity model. This is mainly observed during the rising limb and at
the flood peak. This indicates that the porosity model simulates the overbanking earlier. This
result is in agreement with the larger water extent simulated by the porosity model (see Fig. 1.6a
and 1.7a). During the falling limb, lower values of water levels simulated by the porosity model
express a larger inundation extent computed by the standard model, as obtained in (Fig. 1.6c
and 1.7c).

1.4..3 Evaluation of simulated water levels time series

Simulated (porosity and standard model) water level time series are first evaluated using in situ
observations at the Mythe Bridge hydrometric station and second using water levels estimated
from the Tewkesbury camera images. When inter-comparing the two models, the results present
a very good agreement (Fig. 1.11a, 1.11b and 1.11c). The highest discrepancies of simulated
water levels compared to the gauge observations (0.90 and 0.60 m) are reached just before
the 2007 flood peak (Fig. 1.11a) and on the first day of the 2012 flood simulation (Fig. 1.11b),
respectively. The evaluation further shows reduced model errors during the falling limb of the
2012 flood event where the porosity model exhibit an error of less than 5 cm approximately.
This is probably related to the initial condition fixed in the simulation that is set as uniform and
fits the downstream level (Deerhurst). On another note, RMSDs are slightly improved, albeit
not significantly, in the porosity model (Fig. 1.9). Both model results are also assessed using
the camera images at Tewkesbury (see location in Fig. 1.3). The highest discrepancies with the
gauge data are found in the rising limb. They are reduced when approaching the flood peak
and almost fit the model results at the falling limb. Table 1.2 shows the porosity and standard
model scores, using the RMSD metrics computed on water level time series. The considered
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Table 1.2: RMSDs computed between the water level time series simulated by the
porosity (SW2D-DDP) and standard (SW2D) models and Mythe Bridge gauge data
for both flood events and Tewkesbury camera data of the 2012 flood event; RMSD:
root mean square deviation.

Mythe Bridge Mythe Bridge Tewkesbury
(2007) (2012) (2012)

RMSD (SW2D) 0.388 0.255 0.444
RMSD (SW2D-DDP) 0.371 0.237 0.425

reference is the data observed at Mythe Bridge for the 2007 and 2012 events and at Tewkesbury
for the 2012 event.

1.5. Discussion

As described in section 1.4..2, the water depth deviations of the porosity-based model with
respect to the standard SW2D model, are acceptable given the vertical accuracy of the LiDAR
used (c.a. 10 cm). The average flow depth in the rivers estimated over the entirety of the flood
event, is about 7 m. Generally speaking, the average errors (c.a. 6 to 12 cm) are not substantial.
High errors - reaching a maximum of 25cm - are observed in the rising and the falling limb,
where the porosity model seems to fill in and evacuate faster than the standard model. On the
other hand, errors with respect to the gauge/camera data reach a maximum of 60 to 90 cm
respectively. Since the real bathymetry and bed-shape of the river are unknown, this potentially
affects the simulation results in general, and can be further improved.

In Fig.1.11, the simulated levels at Mythe Bridge are lower than the observed ones, especially
during the rising limb and the flood peak. This is arguably due to the simplified representation
of the bathymetry in the models and to an underestimated upstream inflow for the Severn
River at Saxon’s Lode under high flow conditions. Indeed, as the river burst its banks around
Saxon’s Lode, the floodplain starts conveying a part of the flow that is not accounted for in the
corresponding model boundary condition derived from the riverstream gauging station.

In terms of flood extents, results show the porosity model fills in and drains floodplain wa-
ter faster than the standard model. To better assess this behaviour, we compared both model
results to a series of remote sensing derived flood maps. It was shown that, during the falling
limb, the observed inundation extent is closer to the one simulated with the porosity model,
especially in the areas around Tewkesbury. This faster flooding and receding dynamic in the
porosity model is mainly related to its ability to represent small scale topography and drains
via porosity. As mentioned in section 1.2..2.1, representing small drains in the standard model
requires cells with dimensions smaller than that of the drains. This means that drains should in
theory be finely discretised by very small cells (Fig. 1.12) in the SW2D model. These drains are
visible in the LiDAR topographic data (Fig. 1.3), but they are not captured by our standard
model mesh, because the mesh cells are comparatively large. For example, the size of a cell
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(a)

(b)

(c)

Figure 1.11: Water level time series evaluation using data at Mythe Bridge for
the 2007 event (a), 2012 event (b) and at Tewkesbury for the 2012 event (c).
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capturing a drain would have dimensions smaller than 5 m, which would increase the number
of computational cells along the drainage network. The standard mesh designed in this study
consists of 29,772 cells, representing approximately 28 times more cells than that in the porosity
mesh (1,042 cells). Moreover, the simulation run time in that case would escalate drastically
with the decrease of the simulation time step becoming inconvenient for large scale applica-
tions. Table 1.3 summarizes the CPU times necessary for the standard and the porosity model
simulations, carried out on a computer with an i7-4770 CPU processor and a memory of 16 GB
RAM. For an area of 1500km2 and in both test cases, the CPU time required for the model
simulation is 13 min vs. 3.2 days for the standard model for a 17 days flood simulation, and
12 min vs. 2.9 days for a 15 flood day event. The porosity model therefore offers the advantage
of a fast model setup, while preserving high resolution data by using coarse grid cells, thus
enabling reduced computational efforts. This paves the way for real time applications and long
terms simulations over large areas.

All singularities and types of cross-section can be taken into account in the porosity laws as
long as they are visible in the DTM. However, the spatial localisation of the singularity inside
a coarse grid cell is lost, this is why it is preferable to place the interfaces on the singularities so
as not to create artificial links between the cells. Since cross-sections are rarely available along
the entire river and only punctual measurements are provided, a riverbed shape approxima-
tion must be made, which is facilitated by the use of porosity laws. The interpolation of river
bathymetry between observed cross sections certainly has an influence on the model results,
but it is the only available information. In this study we compared both models using the
same bathymetric data. The linear interpolation of these profiles along the river appeared to be
reasonable since no brutal variations of the slopes were observed while examining longitudinal
profiles. However, further improvements are expected when having more precise bathymetry
data. In this study the topography information is derived from a high resolution LiDar DTM
originally at 2m resolution and resampled at 10m. With increasing availability of global DEMs
(e.g. SRTM 30m at a global scale), the modelling approach can be applied in poorly gauged
areas. For the specific case of urban areas, the building location map could be used to im-
prove the DEM, based on widely available databases such as OpenStreetMap. The vegetation
remains more complex to be accounted for and for the moment we may consider vegetation
effects through an increased friction coefficient, as usually done in hydrodynamic modelling. In
the SW2D software (classical or DDP), all parameters such as infiltration rates and friction,
can be spatially distributed (e.g. based on land use maps).

As discussed in [50], one main limitation of the porosity modelling approach is the definition
of a unique water level per computational cell, which is equivalent to considering a horizontal
free surface elevation in each cell. Although the consequences of such an assumption are limited
when dealing with large-scale and slow floods, they may not be negligible and should be assessed.
The porosity-based approach also leads to a loss of spatial information inside coarse grids.
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Figure 1.12: Drains representation by computational cells in the SW2D (orange)
and SW2D-DDP (blue) models.

This can potentially create artificial links between cells unless the edges are carefully placed
upon local highest points. However, one should keep in mind that this is also true for other
hydrodynamic models, such as classical 2D ones. Moreover as seen before, it is possible to
recover spatial information by resampling the results on the DTM as proposed in this paper,
therefore preserving the original DTM data at its original resolution.

Table 1.3: Simulation run time for the porosity (SW2D-DDP) and standard
(SW2D) models, with the run time reduction factor

Flood event Simulation period SW2D SW2D-DDP Reduction factor
2007 17 days 3.2 days 13 min 354 times
2012 15 days 2.9 days 12 min 348 times

1.6. Conclusion

In this paper, we proposed an innovative modelling framework based on porosity to rapidly sim-
ulate flood inundations. This framework enables, for the first time, to represent both bathymetry
and small-scale floodplain topography using depth-dependant porosity within comparatively
large computational cells. Simulating two real test case floods over a 1500 km2 area around the
Severn and Avon confluence, has shown the following:

1. The proposed modelling approach enable to simulate flood extent maps very similar to
the one simulated by the standard SW2D model with 90 % agreement.
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2. The evaluation based on in situ measurements indicates that the porosity model is ex-
hibiting levels of performance comparable to and even higher than those of a standard
model.

3. It is found that the porosity model is able to account for small drains within comparatively
very large cells. Representing these small drains in a standard model would require very
small cells, therefore leading to a much higher number of cells and a large computational
demand.

4. Our experiment shows that the SW2D-DDP model simulations are c.a. 350 times faster
than that of the standard model, thereby substantially reducing computational costs.

In perspective, the proposed modelling framework facilitates the retrieval of an effective
bathymetry as this is represented via the porosity parameters. This opens up new perspectives
for large scale applications over areas where bathymetric data are not available.
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2.1. Introduction

Floods are among the most common and devastating weather-related natural phenomena and
it is predicted that global change will lead to more frequent and severe floods in the future.
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Hydrodynamic modelling is recognised as the best option to assess flood hazard and how it
may change from now and into the future. However, to reduce the uncertainty associated
with their predictions, models need to be calibrated and controlled using independent data
sources. With floods becoming more frequent and severe due to global change [24,83,112], there
is a crucial need to continuously improve flood management systems. Floods cause damages
on many levels, including human, socio-economical and environmental losses. Risk assessment
makes sure that resources are allocated optimally in the prevention and emergency phases [3,63].
When mitigation measures are properly identified, the cost of rebuilding areas after a flood event
can be significantly reduced. Flood forecasting and monitoring tools are necessary for defining
and implementing adequate mitigation measures enabling the reduction of disaster risk [33].
In this context, it is fundamental to have access to accurate and reliable observations of flood
extent (FE) and water surface elevation (WSE) in order to calibrate and periodically control
numerical modelling-based predictions.

Flood inundation (hydraulic) models numerically solve the Shallow Water Equations (SWE),
also called de Saint-Venant equations. They simulate surface water dynamics accurately but
are often associated with a high computational cost, especially when applied at a large scale
[8, 88, 118]. Moreover, to be reliable, these models need to be calibrated and periodically con-
trolled, ideally with spatially distributed in situ measurements of streamflows and/or WSE.
However, this kind of data is rarely available and the decline of operational gauging stations
worldwide has led to an increased scarcity of spatially distributed data [4,111]. In this context,
satellite Earth Observation (EO)-derived data are a relevant and complementary source of in-
formation [27, 59]. Indeed, as the number of satellites and EO missions is increasing rapidly,
attractive opportunities await for the effective integration of such information into flood inun-
dation models.

Since the 1970s, many studies have shown that flood mapping from space is feasible with
“good accuracy” [87]. Both optical and microwave sensors can be used for inundation mapping,
offering different potentials for water detection. Among satellite EO sensors, Synthetic Aperture
Radars (SARs) tend to be the first choice for flood mapping applications due to their all-
weather and day-and-night image acquisition capability, and their straightforward detection of
smooth open water areas [61,123]. Various methods have been proposed in the state-of-the-art
to delineate water from SAR data, either using a singular process or a combination of several
processes (e.g. [73,117]). In these papers, recorded backscatter values are used to classify pixels
as flooded and non-flooded. In the literature, classification methods include thresholding, region
growing, change detection, active contour models [55,57], graph-based techniques [15,74], fuzzy
theory [47, 97], supervised machine-learning techniques [92, 94] and SAR time series analysis
[107]. However, while many efficient and automatic flood mapping algorithms already exist,
to the best of our knowledge, there are currently only few studies focusing on the automatic
retrieval of WSE maps from SAR images.

Like FE, WSE is a very important piece of information in risk assessment studies, since it
provides further information on flood-prone areas and helps estimating socio-economic flood
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damages and risk [113]. Currently, WSE can be estimated from space via radar or LiDAR
altimetry techniques [14,39]. The main limitation of this approach is the limited Earth coverage,
only along hundred kilometre-spaced profiles. The SWOT mission - to be launched in December
2022 and based on radar interferometry [53] - promises to provide a larger coverage allowing
up to 65% of water surfaces of the world to be measured. The need for global coverage to be
able to monitor floods all around the world has indeed triggered the launching of the Sentinel-1
mission, which provides enhanced revisit frequency and global coverage every few days.

An indirect estimation of WSE is also possible by combining satellite EO-derived FE maps
and topographic data [109]. This is usually carried out by intersecting the flood extent shoreline
with a Digital Elevation Model (DEM). In this respect, a small number of studies have targeted
the conversion of inundation extent into inundation depth, by applying constraining protocols to
guarantee the hydraulic coherence of the water depth (WD) estimates [61,77,98]. Other methods
have suggested segmenting the floodplain using river-floodplain cross-sections, perpendicularly
placed with respect to the river course, in which WSE are assumed to be horizontal [80,108,135].
Apart from these initial studies, several works e.g. [18,76,77] focused on improving the accuracy
of the estimated WSE. Cohen et al. [21] have recently developed a water-depth assessment
algorithm using a flood extent and a DEM, to provide spatially distributed WSE based on an
interpolation of flood boundary WSE. In the remote sensing derived inundation map, two types
of cells are distinguished: the boundary cells (at flood shorelines) and the domain cells (inside
the flooded area). The algorithm is first based on computing a raster of the flooded area, with
all cell values equal to “No Data” except for flood boundary cells which receive the value of
the underlying DEM. Then, for the domain cells, each cell is assigned with the elevation of
its nearest boundary cell, using a focal statistics loop. The iterative loop is conditioned in a
way that the value of a cell in the new raster layer will be assigned the elevation value of the
smallest neighbourhood size, i.e., the nearest boundary cell. Finally, the water depth is obtained
by deducting this final iteration of the focal statistics loop and the DEM. A post-processing
step smoothes sharp changes in floodwater depths and assigns an average value for each cell
based on its 3 × 3 neighbourhood. Results of this method have shown that the differences in
predictions of WSE compared to hydraulic modelling simulations were small (< 0.5 m) for
a large part of the inundated area. However, some zones at flood boundaries, urban areas
or steep terrain, exhibited errors greater than 5 m. While flood delineation methods are fast
and fully automated, the estimation of WSE from SAR images still encounters important
limitations: i) information is generally only obtained at the flood extent shorelines, ii) the
estimation methods are often not straightforward or automatic, iii) they typically require high-
resolution topographic data (e.g. Lidar DEM) that are not available globally, iv) some of the
methods are based on hydraulic assumptions that cannot always be validated, and v) they
require hydraulic expertise for interpretation [61,78,126].

In this context, with the increasing availability of global and free EO and DEM datasets, our
main objective is to develop an unsupervised and automatic algorithm enabling WD retrieval
and FE map refinement using satellite EO-derived FE maps and topography data. To do
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this, the proposed algorithm uses a FESAR map and a topography map as inputs. For the
second input, two types of topographic data are proposed and compared: the DEM, representing
the altitude of the terrain, and the Height Above Nearest Drainage (HAND) that normalises
terrain elevations with respect to the drainage network [91,130]. An additional objective of this
study is to allow for the computation of spatially distributed WSE, while most of the previous
state-of-the-art studies estimated WSE at the FE shorelines only. To fulfil these objectives, we
propose comparing the three variants of an algorithm, all based on the following generic steps:
i) generating synthetic flood maps from topography data (DEM or HAND) via iterative global
or local thresholding, ii) comparing these synthetic flood maps with the EO-derived ones to
identify optimal threshold(s), and iii) generating a refined FE map, a WSE map and a WD map
using the optimised threshold values and the topography data. To evaluate the accuracy of the
refined FE maps and the WSE estimates, we use flood maps derived from high-resolution aerial
photographs and hydraulic model simulation results. We use a flood event that took place in
summer 2007 in the Severn basin (United Kingdom) as our test case.

The remainder of this paper is organised as follows: First, in Section 2.2., we present the
three proposed variants of the algorithm. Next, we describe the evaluation approach making
use of high-resolution remote sensing-derived data and of hydraulic model results. Then, the
study site and available data are described in Section 2.3.. Section 3.4. presents the results of
our study and Section 3.5. discusses and concludes its main outcomes.

2.2. Materials and methods

This section presents the proposed algorithm, referred to as WaSER (Water Surface Elevation
Retrieval). As previously mentioned, WaSER is presented and tested in three variants, namely
HAND G. (Global), HAND L. (Local) and DEM L. (Local), all relying on the same rationale,
and based on the steps described hereafter.

2.2..1 Flood extent mapping from SAR imagery

To derive FE maps from SAR imagery, we adopted the method proposed by [19]. This algorithm
classifies flooded and non-flooded pixels into four main steps: i) image histogram parameteri-
sation based on the distribution of backscatter values, ii) thresholding, iii) region growing and
iv) change detection. As water often covers a limited fraction of the image, it is very difficult to
reliably parameterise the image histogram. To circumvent this limitation, the method includes
a fully automated Hierarchical Split Based Approach (HSBA) that identifies, within the entire
flood image, tiles of variable size, covered by a substantial amount of water that enable a more
robust parameterisation of the image histogram. The advantage of this SAR-based flood map-
ping technique is that it is automated, unsupervised and easily applicable to large datasets. In
the WaSER algorithm, the FESAR is used to globally (G.) or locally (L.) optimise the threshold
applied to the topographic data, as detailed hereafter.
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2.2..2 Pre-processing of topographic data

In this study, two types of competing topographic data are used and compared as inputs: i) the
DEM and ii) the HAND. If we consider a pixel with (x, y) coordinates, the DEM(x, y) map is
the digital representation of elevation data. The HAND(x, y) is a relief descriptor originally used
for terrain classification [91,100], which has been used in previous studies for flood mapping at
the regional and continental scales [2]. When deriving a HAND map from a DEM, the height
reference to sea level is removed and the topography is normalised with respect to the drainage
network. In other words, pixels belonging to this drainage network have a zero HAND value.

From a technical point of view, the required inputs for generating a HAND map are the DEM
and the river network rasters. If not available, the drainage network can be extracted from the
DEM, following a sequence of four steps [11]: i) creating a hydrologically coherent DEM through
depression filling, ii) defining flow paths by directing flow from a pixel to the neighbouring pixels
using a d8 approach following the steepest slope, iii) computing a flow accumulation raster using
the flow direction raster as a source data, and, iv) fixing a flow accumulation threshold above
which the drainage/river channels start. The HAND thus represents the difference in elevation
for each pixel and its nearest draining point in the drainage network.

Figure 2.1 shows how the HAND(x, y) grid is obtained, using a DEM(x, y) and flow direction
rasters. The pixels belonging to the drainage network are represented in blue. For example, if
we look at the red-framed pixels in the grids, the upstream cell in the DEM with an elevation
of 40 m, will drain into the cell with an elevation of 32 m following the steepest slope direction,
and will have a corresponding HAND value of 40-32=8 m.

Figure 2.1: Computing HAND values using a DEM and a flow direction rasters.
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2.2..3 WaSER: Water Surface Elevation Retrieval algorithm

The three variants of the WaSER algorithm we propose rely on the following steps: i) applying a
thresholding procedure on topographic data (HAND or DEM) iteratively to generate synthetic
flood maps, ii) optimising the (global or local) threshold (Thropt) by making use of the FESAR

map, and iii) deriving a refined FEWaSER map along with WD and WSE maps with the optimised
threshold(s). Figures 2.2a and 2.2b outline the WaSER algorithm if using the HAND(x, y) map
(i.e. variants HAND G. and HAND L.), and the DEM(x, y) map (i.e. variant DEM L.), resp.,
as thresholded topographic data.

(a)

(b)

Figure 2.2: WaSER HAND G. and HAND L. (a), DEM L. (b) algorithm variant
flowcharts.
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The first step of the WaSER algorithm is the iterative thresholding of the topography data:
either HAND(x, y) or DEM(x, y) (see Figure 2.2). At each iteration, a threshold is applied to
the topography data and a synthetic flood map (i.e FETopo) is therefore generated. Depending
on the variant of the algorithm that is considered, the threshold is applied globally (on the
whole image) or locally. Each pixel with topography values (HAND or DEM depending on the
WaSER variant) lower (resp. higher) than the considered threshold value is classified as flooded
resp. non-flooded) in the synthetic FE map. At each iteration, the threshold value is increased
by a constant amount (e.g. 10 cm). This iterative process generates a stack of synthetically
generated FE maps, each one associated with a specific threshold value.

The second step of WaSER is the threshold optimisation (see Figure 2.2). FETopo maps
obtained at the first step are compared to the FESAR. The comparison is carried out using the
overall accuracy (OA) (Eq. 2.3), over the thresholding area (i.e, globally or locally). In the three
variants, the thresholds yielding the best fit between the FESAR and the FETopo are selected as
optimal thresholds (Thropt(x, y)), as explained below. In the HAND G. and HAND L. variants,
the optimised threshold(s) refers to the water level above the drainage network and is denoted
ThrHAND

opt (x, y) in the following. In the DEM L. variant, the optimised threshold(s) refers directly
to the WSE (i.e. with respect to sea level) and is denoted ThrDEM

opt (x, y). In the HAND G. variant,
the optimisation is carried out globally, meaning that the OA is computed over the whole area
of interest (AOI) and that the threshold value yielding the best OA is selected as the optimal
value. As a consequence, ThrHAND

opt (x, y) is a map with a uniform value in the HAND G. variant.
In HAND L. and DEM L., the optimisation is done locally using a n × n sliding window. More
precisely, the OA is computed iteratively and the threshold value yielding the best OA over
this sliding window is selected as the optimal value and associated with the central pixel of
the sliding window. As a consequence, ThrHAND

opt (x, y) (resp. ThrDEM
opt (x, y)) is a map with a non

uniform value in the HAND L. (resp. DEM L.) variant.
The third step of the WaSER algorithm is the generation of a refined FE map, along with

the WD and WSE maps. In the HAND G. and HAND L. approaches, WaSER first computes
the WD map h(x, y) as the difference between the ThrHAND

opt (x, y) map and the HAND(x, y)
map (Eq. 2.1a). From this, a refined FEWaSER is obtained while keeping only positive values
which correspond to flooded pixels. Next, the WSE map z(x, y) is computed by adding the
ground elevation DEM(x, y) to h(x, y) (see Figure 2.2a and Eq. (2.1b)).

h(x, y) = ThrHAND
opt (x, y) − HAND(x, y) (2.1a)

z(x, y) = DEM(x, y) + h(x, y) (2.1b)

In the DEM L. variant, the WSE map z(x, y) is directly obtained when the optimal threshold
map, ThrDEM

opt (x,y), is computed as in Eq. (2.1b). The WD map h(x, y) is subsequently derived
as the difference between z(x, y) and DEM(x, y). In the refined FEWaSER, flooded pixels have
positive water depths (see Figure 2.2b and Eq. (2.2b)).

z(x, y) = ThrDEM
opt (x, y) (2.2a)
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h(x, y) = z(x, y) − DEM(x, y) (2.2b)

The overall accuracy metric is defined as follows:

OA = TP + TN
TP + FP + FN + TN (2.3)

where: TP stands for true positives (i.e. flooded in both maps), FP for false positives (i.e. flooded
in the synthetic map but not flooded in the SAR-derived map), FN for false negatives (i.e. not
flooded in the synthetic map but flooded in the SAR-derived map) and TN for true negatives
(i.e. not flooded in either map). By making use of this metric, a pixel-to-pixel comparison is
conducted between the SAR-derived and the synthetic flood maps.

In the HAND G. approach, a unique threshold is applied to the entire image, presupposing
a water level that is parallel to that of the drainage network. This assumption relies on a
uniform flow hypothesis and is suitable for rivers with smooth and limited variations of river
characteristics (e.g. slope, shape, roughness). This can also be valid when applied to small
areas where, for example, along river cross-sections, wetted area change is neglected. However,
these conditions may become unrealistic in some areas. In particular, meanders and confluences
introduce water slope discontinuities, thus requiring the HAND G. approach assumptions to
be relaxed. In this context, the calibrated threshold should be computed locally rather than
globally. Therefore, in the HAND L. approach, we propose the same concept while applying
the thresholding in a localised manner, over n × n pixels sliding windows. Moreover, as HAND
might also induce deviations related to the nearest drainage identification due to deviations or
inaccuracies in the DEM, we propose a third variant of WaSER using DEM(x, y), instead of
HAND(x, y). In addition, using the altitudes of pixels (DEM) removes the burden of computing
HAND from the DEM. Consequently, in this variant (DEM L.), the thresholding is applied to
the DEM(x, y) map in a localised way. Therefore, this last variant approximates the WSE as a
plane surface over a sliding window.

To enable a meaningful comparison and evaluation of the local thresholding methods, we use
the same fixed window size for all tests. This size is a parameter that might affect the accuracy
of the results. We argue here that the window size should be large enough to include both dry
and wet pixels at any point. If it contains only wet pixels, the computed optimal threshold will
be equal to the highest elevation in DEM(x, y) or the highest HAND(x, y) value within the
window. This would not reflect the WSE as it could be substantially above the terrain in the
considered window. Moreover, the window size should be small enough that the hypothesis of
a constant WSE over the sliding window is reasonable. In Section 2.4..4, a sensitivity analysis
is conducted to better understand the influence of this parameter, and outcomes are discussed
later in the Results section.

2.2..4 Post-processing

In the local variants of WaSER, the threshold is calibrated using a sliding window, which
potentially leads to highly variable WSE locally. Therefore, it is essential to post-process the
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WSE maps to reduce the noise that can originate from a spatial mismatch between the DEM
and the flood extent map. In this study, we propose the use of a moving average in the x and y

directions. This means that the z(x, y) value of each pixel is replaced by the mean of all z(x, y)
values over the sliding window. In the HAND G. and HAND L. variants, the post-processing
step is done after obtaining the initial WSE map (i.e. z(x, y)), as in Eq. (2.1b). Then, the WD
map h(x, y) is deducted by subtracting z(x, y) and DEM(x, y), as in Eq. (2.1a). In the DEM L.
variant, the post-processing step is done after obtaining the initial WSE map z(x, y), as in
Eq. (2.2a).

2.2..5 Evaluation approach

In this section, we describe how we evaluated the estimated FE and WSE maps. The three
WaSER variants are tested using the different combinations of available SAR flood maps (i.e.
FESAR) and topographic datasets with different spatial resolutions.

Flood extent evaluation The estimated flood maps are evaluated using the following as
references: i) a FE map simulated by a hydraulic model (SW2D-DDP) [9] and ii) a FE map
extracted from aerial photography. First, a pixel-to-pixel comparison is carried out to determine
whether there is agreement or disagreement on whether the area is flooded or not between the
two paired maps. The confusion matrix used for the evaluation includes four values, defined as
follows: 1) number of pixels correctly estimated as flooded (TP), 2) number of pixels associ-
ated with the overestimation of the flooding extent, (FP), 3) number of pixels associated with
underestimation, (FN), and 4) number of pixels correctly estimated as non-flooded (TN).

Second, performance metrics are computed to quantify how well the maps fit to the reference.
The Overall Accuracy (Eq. 2.3) and Critical Success Index (CSI) (Eq. 2.4, [105]) are used in
this respect.

CSI = TP
TP + FP + FN (2.4)

In contrary to OA, CSI does not take true negatives into account. These two scores attain their
highest value of 1 at best, indicating a perfect skill.

Moreover, to better understand the spatial distribution of discrepancies between the maps,
we derive contingency maps. They represent the agreement and disagreement between the
evaluated maps and the reference maps with four different values indicating resp. TP, TN, FP
and FN. We evaluate the various estimated maps (SAR, HAND G., HAND L., DEM L.) using
the flood maps derived from aerial photography and hydraulic modelling as references.

Water surface elevation evaluation To compare the WSEWaSER map zi,est with the refer-
ence (hydraulic model) map, zi,ref , we compute the Root Mean Square Deviations (RMSD) as
follows:

RMSD =
√√√√ 1

n

n∑
i=1

(zi,est − zi,ref)2 (2.5)
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where n is the number of pixels over the entire domain. Deviations are computed in a manner
that takes into account areas that are flooded either in the estimation or in the reference. When
the pixel is flooded in the WaSER map only, the deviation is equal to the water depth computed
and vice versa, if the pixel is flooded according to the reference only, the water depth computed
by the hydraulic model is considered as the deviation value.

To spatially evaluate the differences, we compute difference maps between the WaSER and
the reference WSE maps, where WSE overestimation is reflected by positive values. To further
evaluate the distribution of the differences, we make use of boxplots showing the statistics of the
deviation distribution in a graphical way: 1) the lower boundary, 2) the first quartile, Q1=25th
percentile, 3) the median, Q2=50th percentile, 4) the third quartile, Q3=75th percentile, and
5) the upper boundary. The interquartile range (IQR) goes from the 25th to the 75th percentile,
and therefore represents 50% of the data values. The maximum value of the boxplot is defined
as Q3 + 1.5*IQR, and the minimum value Q1 -1.5*IQR. Outlier points are thus eliminated
from the plots for the sake of readability.

2.3. Study site and available data

The study site is located around Tewkesbury, United Kingdom, at the confluence of Rivers
Severn and Avon. Figure 2.3 illustrates the 15×10 km2 study area. This area was chosen because
it has often been subject to widespread flooding in recent decades. Moreover, the SW2D-DDP
hydraulic model simulations (FE and WSE maps) are available from a previous study [9], which
enables us to perform a comprehensive evaluation of the results obtained over this study area.

The flood event of interest occurred in summer 2007. Envisat (150 m spatial resolution) and
TerraSar-X (3 m spatial resolution) images were acquired on 23 July and 25 July 2007, resp..
Both SAR images were used to extract FE maps using the approach described in section 2.2..1.
The high-resolution photograph comes from an airborne campaign that imaged the flood at a
very high-resolution (50 cm) on 24 July 2007, close to the flood peak [44]. The FE was obtained
through manual photo-interpretation. The derived flood map allowed the FE estimated by our
three proposed variants to be evaluated. Moreover, the numerical model-derived maps are used
to evaluate each of the estimated maps at the equivalent time step. The SW2D-DDP hydraulic
model used discharge time series as upstream boundary conditions (Severn at Saxons Lode
and Avon at Bredon), and WSE time series as a downstream boundary condition at Deerhurst.
The initial condition was a fixed WSE equal to the downstream condition. A uniform Strickler
coefficient Ks = 50 m1/3s−1 was used for the riverbed and the floodplain. This model is evaluated
and presented in more detail in [9].

The topographic datasets are derived from the globally available Shuttle Radar Topography
Mission (SRTM) of 30 m spatial resolution and absolute height accuracy of ca. 16 m [130,134]),
the Copernicus DEM (CopDEM) of 10 m spatial resolution and absolute height accuracy of
ca. 4 m available for Europe, and the Light Detection and Ranging (LiDAR) of 2m spatial
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resolution (re-sampled at 10m) and 0.1 m height accuracy. It is worth mentioning that the
SRTM provides topographic data at 0.5 m intervals.

Figure 2.3: Study area showing the area of interest (AOI), Rivers Severn and
Avon, and the urban area of Tewkesbury. 1) CopDEM topographic data (DEM), 2)
HAND map derived from CopDEM, 3) Extent indicator.

Figure 2.3 shows the CopDEM original data (i.e. DEM(x, y)) and the HAND data derived
from it (i.e. HAND(x, y)). It can be seen that in the HAND(x, y) map, lower values are at-
tributed to the Rivers Severn and Avon floodplains.

2.4. Results and discussions

The WaSER maps are derived from 18 different combinations of SAR-derived flood extent,
topographic dataset and variant used. The total number of FEWaSER maps to evaluate is thus
18. As we also investigate the effect of the spatial smoothing (i.e. post-processing), we evaluate
a total of 36 WSEWaSER maps. To enable a meaningful comparison between datasets of different
spatial resolutions, all output maps are resampled at a 10 m resolution. The results evaluation is
carried out in two steps: i) FEWaSER are assessed using the aerial photography and SW2D-DDP-
derived FE maps as references, ii) WSEWaSER maps are evaluated using the SW2D-DDP-derived
WSE maps as references.

2.4..1 Evaluation of SAR-derived flood extent maps

Table 2.1 shows the CSI and OA scores computed by comparing the two FESAR (from TerraSAR-
X and Envisat) with the aerial photograph (P.) and the hydraulic model (M.) flood maps. As
expected, both FESAR maps are in good agreement with the evaluation maps. Figure 2.4 shows
contingency maps obtained by comparing the two FESAR maps to the aerial photography-
derived flood map, where correct estimation (i.e, TP) appears in blue, underestimation (i.e,
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FN) in red and overestimation (i.e, FP) in green. As can be seen in Figure 2.4a, the river
stream is not considered as flooded in the FESAR map as this is derived using a change de-
tection approach (there is no change of backscatter in the river stream). Adding permanent
waters in this TerraSAR-X-derived flood map is possible. However, we preferred to use the raw
information in the WaSER algorithm to keep the method independent from ancillary data.
In Figure 2.4b, we can clearly see the effect of the spatial resolution with larger pixel-shaped
patches in the Envisat-derived flood map (150 m). This figure shows an overall good agreement
in the river and floodplains. Moreover, underestimation (FN in red) is predominantly observed
close to the flood extent shorelines and in the northern part of Tewkesbury’s urban area.

Table 2.1: Goodness of fit metrics between the FESAR map (TerraSAR-X (TSX.)
and Envisat (Env.)) and i) the aerial photograph (P.), ii) the model simulations
(M.)-derived flood maps. OA: Overall Accuracy, CSI: Critical Success Index.

TSX Env.
OA (M.) 0.845 0.821

(P.) 0.839 0.839
CSI (M.) 0.684 0.677

(P.) 0.678 0.698

(a) TerraSar-X (b) Envisat

Figure 2.4: Contingency maps between the SAR and the aerial photography-
derived flood maps: left: TerraSAR-X; right: Envisat.
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Table 2.2: Performance metrics evaluating the FEWaSER and WSEWaSER maps
using as a reference: i) the aerial photograph (P.), ii) the model results (M.). OA:
Overall Accuracy, CSI: Critical Success Index, RMSD: Root Mean Square Devia-
tions, Sm.: Smoothing, No sm.: No smoothing, TSX: TerraSAR-X, Env.: Envisat.
Values in pink and orange correspond to the best results in terms of OA(P.) and
RMSD, respectively.

SRTM CopDEM LiDAR
TSX Env. TSX Env. TSX Env.

H
A

N
D

G
.

OA M. 0.827 0.845 0.770 0.808 0.815 0.762
P. 0.821 0.852 0.776 0.814 0.805 0.781

CSI M. 0.665 0.725 0.562 0.676 0.635 0.554
P. 0.658 0.729 0.575 0.676 0.622 0.570

RMSD No sm. 1.19 1.18 1.67 1.85 1.59 1.78
Sm. 0.93 0.90 1.20 1.5 1.09 1.18

H
A

N
D

L.

OA M. 0.866 0.853 0.884 0.867 0.930 0.882
P. 0.860 0.870 0.879 0.883 0.906 0.893

CSI M. 0.732 0.733 0.769 0.753 0.858 0.785
P. 0.724 0.753 0.762 0.773 0.816 0.797

RMSD No sm. 2.59 3.73 1.55 2.64 1.72 2.39
Sm. 1.96 3.01 0.69 1.46 0.96 1.45

D
EM

L.

OA M. 0.865 0.853 0.899 0.880 0.945 0.906
P. 0.860 0.871 0.890 0.900 0.918 0.917

CSI M. 0.730 0.731 0.795 0.776 0.888 0.823
P. 0.723 0.753 0.781 0.805 0.838 0.838

RMSD No sm. 1.71 2.42 0.73 1.49 0.56 1.21
Sm. 1.35 1.97 0.69 0.83 0.52 0.81

2.4..2 Evaluation of the WaSER flood extent maps

Table 2.2 summarises the FEWaSER evaluation scores (OA and CSI) computed using the aerial
photography (P.) and the hydraulic modelling-derived (M.) FE as references, quantifying the
performance of each scenario. Figures 2.5, 2.6 and 2.7 show a series of contingency maps com-
puted between the WaSER and the aerial photography-derived FE. In these figures, FEWaSER

uses respectively the SRTM, the CopDEM and the LiDAR individually with the SAR-derived
data (Envisat in the first row and TerraSAR-X in the second row). It can be seen that the
FEWaSER is generally able to correctly capture flooded areas. The comparison between Ta-
bles 2.1 and 3.1 clearly shows that the FEWaSER outperforms the FESAR when generated using
the HAND L. and the DEM L. approaches, reaching OA of 86% and up to 91%. The DEM L.
variant outperforms the HAND L. variant when using high-resolution datasets (i.e. CopDEM
and LiDAR). Moreover, Table 3.1 shows that the HAND G. variant exhibits the best results
when using the medium-resolution topographic (SRTM) and SAR (Envisat) datasets. We ex-
amine maps reflecting these scores in Figure 2.5a and 2.5d, where a correct estimation of flood
extent is predominant (TP in blue). In these figures, the underestimation reflected by red
patches is due to higher HAND values in these areas in comparison to those of the surrounding
areas, appearing in blue (TP). In fact, optimising the HAND threshold ThrHAND

opt globally when
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(a) HAND G. (b) HAND L. (c) DEM L.

(d) HAND G. (e) HAND L. (f) DEM L.

Figure 2.5: Contingency maps between the WaSER and the aerial photography-
derived flood maps: (a,d) HAND G., (b,e) HAND L. and (c,f) DEM L. variants, 1st
row: SRTM/Envisat; 2nd row: SRTM/TerraSAR-X.

contiguous flooded pixels have markedly different HAND values results in such location-specific
underestimations. It makes it impossible for WaSER to retrieve a unique ThrHAND

opt value pro-
ducing a FEWaSER 100% similar to the FESAR one. When the HAND value of a pixel is above
the calibrated threshold it is classified as non inundated. This greatly depends on whether the
area is considered as flooded or not, according to the FESAR map. If it is seen as non flooded
in the observation, even if the corresponding HAND values of the area are high, this wouldn’t
cause any problem to correctly estimate a non flooded area. However, if the area is flooded
according to the observation, and the HAND map presents markedly different values for con-
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(a) HAND G. (b) HAND L. (c) DEM L.

(d) HAND G. (e) HAND L. (f) DEM L.

Figure 2.6: Contingency maps between the WaSER and the aerial photography-
derived flood maps: (a,d) HAND G., (b,e) HAND L. and (c,f) DEM L. variants, 1st
row: CopDEM/Envisat; 2nd row: CopDEM/TerraSAR-X.

tiguous pixels, this could lead to a substantial underestimation at a local level. And this is
directly related to the resolution of the DEM used to compute the HAND map. It seems that
using a coarse resolution DEM to derive a HAND data, allows adequatly taking into account
the general flow directions. Conversely, this global approach (i.e, HAND G.) is not optimal
when using higher-accuracy datasets such as CopDEM and the LiDAR DEM, as it appears in
large underestimated areas in Figure 2.6a, 2.6d, 2.7a and 2.7d. For instance in Figures 2.6a and
2.6d, this underestimation is located in a large area of the floodplain in the downstream part.
This can also be seen at the eastern upstream part of the Severn floodplain in Figures 2.7a
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(a) HAND G. (b) HAND L. (c) DEM L.

(d) HAND G. (e) HAND L. (f) DEM L.

Figure 2.7: Contingency maps between the WaSER and the aerial photography-
derived flood maps: (a) HAND G., (b) HAND L. and (c) DEM L. variants, 1st row:
LiDAR/Envisat; 2nd row: LiDAR/TerraSAR-X.

and 2.7d. These areas exhibit, as previously explained, rather high HAND values which are
very quite different of the surrounding areas HAND values.

With the advantage of reducing underestimations by the FESAR, by filling the gaps by the
HAND G., comes a risk of overestimation (FP in green). A mix of under and over-estimation
is due to the use of a single threshold over the entire domain resulting in the best “global”
compromise. This is particularly visible in Figures 2.5a, 2.5d, 2.6a and 2.6d, where flood extent
is underestimated in the southern part of Tewkesbury, and overestimated in its northern part.

52



2.4.. Results and discussions

When optimising the HAND (resp. DEM) threshold value locally (HAND L. or DEM L.),
we observe a significant improvement when comparing the resulting flood maps (table 3.1 and
Figures 2.5, 2.6 and 2.7) to the maps obtained with the SAR only and HAND G. approaches,
respectively. The DEM L. variant is the best performing of all variants in terms of flood extent
mapping. It is worth mentioning that the underestimation found in the northern region of
Tewkesbury in Figures 2.5b, 2.5c, 2.6b, 2.6c, 2.7b and 2.7c, is most likely due to the Envisat
FESAR underestimating flood extent in this area (see Figure 2.4b). This is also the case at the
boundaries of the urban area of Tewkesbury that is already underdetected by SAR (FN in red)
in Figure 2.4b and 2.4a. Although the same input HAND map is used for generating the results
showed in Figure 2.6d and 2.6e using the CopDEM and 2.7d and 2.7e using the LiDAR, the
underestimation seen in red patches when using the HAND G. variant is reduced when using
the HAND L. variant as the calibrated threshold is adapted locally, to better reflect the water
classification in the FESAR. This step enables WaSER to improve the correct estimation of
inundated areas, as we overcome the drawback of the best “global” compromise effect when we
apply the local approaches.

Overall, the WaSER algorithm in its three variants provides better predictions in rural areas
than urban ones.

2.4..3 Evaluation of the WaSER water surface elevation maps

Table 3.1 shows the WSEWaSER map evaluation (before and after post-processing) with respect
to the hydraulic model results. Figure 2.8 shows boxplots of the deviations between the WaSER
(before and after post-processing) and the hydraulic model-derived WSE maps.

First, in Figures 2.8a and 2.8b, we observe that the distribution of deviations of SRTM-
derived WSE varies between -1 and 1 m for the HAND G. variant and presents the smallest
spreads, compared to other scenario derived data. The distribution becomes positively skewed
when using local approaches (i.e. HAND L. and DEM L.). This reflects an overestimation with
respect to the model outputs. Although means (represented by diamonds) are skewed, medians
(represented by white horizontal segments) are mostly located between 0 and 1 m. This means
that the overestimation by the local variants, is driven by WSEWaSER that are particularly high
at some specific location level. Examining the effect of post-processing WSE, we also observe
that minimum and maximum deviations are reduced after smoothing, especially when using
local variants. Overall, when the WaSER uses the medium-resolution dataset (i.e. SRTM), the
HAND G. approach exhibits the lowest deviations and means which are close to zero.

In Figures 2.8c and 2.8d showing results obtained with CopDEM, we can see at a first glance
that the DEM L. approach shows the best results overall. Indeed, with Envisat (Figure 2.8c),
the mean values of the WSE deviations are closer to zero, but the boxplots are larger than in
Figure 2.8d. Moreover, medians are mostly between 0 and -1, reflecting a general underestima-
tion of the HAND G.- and DEM-derived WSE particularly when using the TerraSAR-X flood
map.
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Figures 2.8e and 2.8f, show results obtained with the LiDAR DEM. Here, the smallest
deviations are yielded by the Dem L. variant. Results are pretty similar to those derived with
the CopDEM, except with more underestimation of WaSER-derived WSE when using the
LiDAR and the Envisat data.

Overall, we notice for the three graphs that the spreads are smaller when using the higher
resolution image (i.e. TerraSar-X). Figure 2.9 shows boxplots of deviation between the SRTM
(resp. the CopDEM) and the LiDAR DEMs. It can be seen that the CopDEM exhibits better
agreement with the LiDAR, with a mean of 0.2 m and a standard deviation of ca. 2 m. The
SRTM shows a mean of 1.3 m and a higher standard deviation of 3.5 m. RMSDs and large
spreads obtained when using the SRTM and the CopDEM datasets are very likely correlated
to the higher uncertainties of SRTM and CopDEM compared to the LiDAR DEM. Moreover,
one can notice in Table 3.1 and Figure 2.8 that RMSDs significantly improve as a result of the
smoothing, especially when using the local approaches.

To further investigate the spatial distribution of WSE deviation, we next propose to examine
difference maps. Figure 2.10 shows a set of WSE deviation maps computed as the difference be-
tween the WSEWaSER and their synchronous hydraulic model outputs. The WaSER maps used
for this comparison are the: SRTM/Envisat (first row inFigure 2.10) and the LiDAR/TerraSAR-
X (second row in Figure 2.10) using the 1) HAND G., 2) HAND L. and 3) DEM L. variants.
The maps are displayed with deviations ranging from -2 m (i.e, underestimation in red) to 2 m
(i.e, overestimation in green). In Figure 2.10a (i.e, using the SRTM/Envisat for WaSER), one
can notice a general homogeneous distribution of the deviations overall. A further observation
shows a global underestimation in the Severn floodplain. Underestimated WSE are especially
found at the downstream part of the Severn floodplain, and in the southern part of Tewkes-
bury. Moreover, overestimation is observed in the northern part of the urban zone, globally
at the River Avon and at an affluent coming from the upstream western part of the Severn.
This under and over-estimation mix using the HAND G. variant, is consistent with what was
observed in the contingency maps (e.g: Figure 2.5a). When using local approaches, it is clear
that overestimation is predominant (Figures 2.10b and 2.10c) while underestimation is more
localised. We also observe some important local deviations, like in the east downstream part
of the River Severn. This result is in agreement with what we observed in Figure 2.8d. In the
second set of difference maps computed using LiDAR/TerraSAR-X results, a global overesti-
mation is observed in the Avon and in some parts of the upstream the River Severn when using
the HAND G. variant (Figure 2.10d). This clearly reveals the HAND presents discontinuities
due to contrasted pixel values, when it is generated using high-resolution datasets. While the
overestimation is accentuated in the upstream part of the Severn and River Avon when testing
the HAND G. variant, as seen in Figure 2.10d, it becomes reduced while using the HAND L.
variant (Figure 2.10e), as the the capability of adaptation increases with this optimisation
method. Finally, the DEM L. outperforms the other variants and shows the most homogeneous
distributed deviations (around zero) in Figure 2.10f.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Boxplots of WSE deviations of the WaSER with respect to the hy-
draulic model outputs (a-f). White horizontal segments and red diamonds represent
the median and mean, respectively.
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Figure 2.9: boxplot of the SRTM/CopDEM deviations with respect to the LiDAR
(g). White horizontal segments and red diamonds represent the median and mean,
respectively.

2.4..4 Window size sensitivity analysis

The window size determined a priori in this study is equal to locws=2010 meters, therefore
representing 10 pixels with a pixel size of 10 m. The choice was made based on the width of the
downstream Severn floodplain and it was constrained to respect two conditions: i) the window
size has to be sufficiently small to ensure the hypothesis of a rather constant water level over
the entire window, and ii) the window size has to be large enough to include inundated and non-
inundated pixel (so that the OA include all types of errors and agreement over the window).
To better understand the effect of the local window size in the proposed method, a twofold
sensitivity analysis was conducted to assess accuracy in terms of FE and WSE estimation in
the DEM L. variant. Figure 2.11 shows respectively the CSI and OA performance metrics and
the RMSD variation with respect to the local window size (i.e, Locws) variation. As we can
see, the optimum local window size is found at locws=250 pixels. As the window size increases,
the scores are stabilised. The RMSD reaches its minimum at locws=250.

We believe that further investigation should be conducted to verify and refine rules defining
the optimal window size over various test sites. If the sliding window size is either too big to
capture any detail, or too small to capture dry and wet pixels, this can generate errors. For
example, in the event all pixels in the window are flooded, the optimised threshold would be
equal to the maximum HAND or the DEM pixel values over the window.
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(a) HAND G. (b) HAND L. (c) DEM L.

(d) HAND G. (e) HAND L. (f) DEM L.

Figure 2.10: WSE deviation maps between the WaSER (after post-processing)
and the hydraulic model WSE maps. From left to right, 1st row: Srtm/Envisat
HAND G., HAND L., DEM L., 2nd row: LiDAR/TerraSAR-X HAND G., HAND L.,
DEM L.

2.5. Conclusion

In this paper, we proposed the WaSER algorithm, allowing for the automatic retrieval of refined
flood extent and distributed water surface elevation maps using satellite EO-derived data and
topographic data. Three different variants of the algorithm were tested: HAND G., HAND L.
and DEM L., based on the same concept and rationale but making use of different input
topographic data requiring different intermediate steps.
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Figure 2.11: CSI, OA and RMSD scores using the DEM L. variant with Li-
DAR/TSX.

The WaSER flood extent maps were in very good agreement with the evaluation maps
derived from an aerial photograph and the shallow water model results, especially when using
the HAND L. and the DEM L. approaches. The obtained results outperformed the SAR-derived
flood extent maps, reaching an overall accuracy in the range of 86-91%. The proposed method
generally provides better results using its local variants, thus helping to improve the efficiency of
water detection with respect to the sole use of the SAR flood mapping technique. The WaSER
water surface elevation maps show the best agreement with the model results when using the
DEM L. approach with high-resolution topographic datasets and SAR images, i.e. TerraSAR-
X. However, the HAND G. approach yields better results with medium-resolution datasets
such as the SRTM (30m resolution) and the Envisat image. Indeed, the level of topographic
information detail should be compatible with the resolution of the SAR image in order to
prevent the production of artifacts. The best average RMSDs are found using the HAND G.
with medium-resolution datasets (i.e, SRTM/Envisat) with a medium-resolution SAR image
(i.e, Envisat): RMSD = 0.90 m; DEM L. using high-resolution datasets (i.e, CopDEM and
LiDAR) with high-resolution SAR image (i.e, TerraSAR-X): RMSD = 0.69 m and RMSD =
0.52 m, respectively. This is due to the fact that high-resolution datasets contain sufficiently
accurate information in the form of a DEM. With the availability of a high-resolution image,
the level of information detail in these inputs is compatible and leads to accurate results.
While previous works in the literature such as [21], have reached an accuracy of the order
0.38 m for interpolated WSE maps, our proposed algorithm demonstrated slightly less accurate
results but in the same numerical range, while proposing an innovative approach to produce
distributed WSE maps. This study also showed that RMSD may be further reduced, depending
on the topographic dataset and the size of the local window used. In perspective, the proposed
method should be further tested on other application sites.

Although the proposed WaSER algorithm is not meant to replace hydraulic models that
embrace both the time and space dimensions of the flood dynamic, it constitutes a relevant
tool for rapidly estimating large-scale flood depth and extent maps. This can complement
in-situ data, and hold promises for ungauged areas. Moreover, with topographic datasets (e.g.
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CopDEM, SRTM) and high-resolution satellite images (e.g. Sentinel-1) being globally and freely
available, this method can be easily implemented anywhere across the globe.
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3.1. Introduction

As climate change worsens, intensified natural events are expected to happen in the future [112].
Among these events, floods can be the most destructive and can cause significant damages
on many levels. According to new data from World Resources Institute’s Aqueduct Floods
Tool [133], by 2030 the number of people impacted by floods will double worldwide, from 65
million to 132 million, which could lead to an increase of urban property damage from 157
billion US$ to 535 billion US$1. This strengthens the need for improving cost-effective flood
forecasting models in order to obtain accurate dynamic simulations for flood risk assessment.
However, current models are affected with high uncertainties and need to be constrained with
independent data that must be acquired from in situ measurements or remote sensing derived
observations [48,60]. If the network of hydrometric stations was well developed, flow rate and/or

1https://www.wri.org/research/aqueduct-floods-methodology
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stage time series would be provided at a relatively sufficient spatial and temporal coverages, and
used as inputs for flood models. However, in many areas around the world, stream gauges are
sparcely distributed and can be lacking in ungauged basins [86]. To compensate the lack of in
situ data, we propose to exploit earth observation (EO) and particularly make use of Synthetic
Aperture Radar (SAR) imagery due to its ability to provide frequent updates of flooded areas
at a large scale, regardless of atmospheric conditions. Moreover, the specular reflection of the
emitted backscatter on open water bodies allows a relatively straightforward detection of water
on the SAR image. Thus, these images hold an added value and a potential to improve the
predictive accuracy of flood forecasting models through data assimilation (DA).

Widely used in the fields of hydrology, hydraulics and geosciences [16,25,99,102,119], DA is a
mathematical discipline that aims to optimally combine uncertain model predictions and uncer-
tain observations. This relies on the estimation of optimal model states and/or parameters and
allows thereby for the reduction of model uncertainties. DA can be carried out sequentially, for
example in near-real time, by updating model states and/or parameters using observations as
they become available, or in a reanalysis by assimilating all observations at once, i.e, retrospec-
tively. Among the various available DA methods, the ensemble Kalman filter (EnKF) and the
particle filter (PF) are found to be the most popular in hydrological applications [35,124,127].
Among other DA methods based on variational assimilation, the most common is the 4DVar,
which comes from the optimal theory control of partial differential equations [69]. This approach
allows the retrieval of the initial and boundary conditions as well as the optimal parameters,
but often requires a complex implementation of the adjoint code to compute the derivatives of
a pre-defined cost function e.g. [71, 72]. EnKFs and its variants are usually relatively easier to
set up but can be computationally demanding especially when computing a large number of
covariance matrices corresponding to the number of observations available for the assimilation.
Moreover, EnKFs assume the observation uncertainties are normally distributed [78], which is
seldom the case when tackling real-world problems [120]. This encouraged the hydrologists to
look into other DA techniques, such as Particle Filters (PFs), which are non linear and present
the advantage of not requiring a gaussian distribution of the data. Moreover, their performance
is not reliant on a good representation of the error covariance of the model state [120].

Among the various types of observations that can be assimilated in hydrodynamic models,
flood extent (FE) and water surface elevation (WSE) are key variables that retain a particu-
lar attention since they help identifying flood-prone areas and estimate socio-economic flood
damages and risks [113]. The SWOT mission (CNES-NASA) scheduled for launch in November
2022 will provide observations of FE, WSE, width and slope of 90% of the world’s water bodies
that are wider than 50-100 m, with unprecedented resolutions for a remote sensing tool (one
to four revisits every 21 days) [13]. With the collection of consistent and spatially distributed
information, inverse modelling can be used to estimate discharge, slope and geometry within
a DA framework e.g. [40, 65, 85, 93, 129]. Using existing technology, many studies have used in
situ or EO-derived WSEs, obtained by merging EO-derived FE with a digital elevation model
(DEM), to improve flood forecasts [5,22,23,42,45,58,60,79,102,129]. While assimilating WSE
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may be straightforward since it is a state variable, the downside of this approach is the require-
ment of precise flood contour maps and high-resolution topographic datasets [78], which are not
always available. Furthermore, several studies have shown that the assimilation of EO-derived
FE maps improves flood forecasts, and enables the retrieval of model parameters or boundary
conditions e.g. [34, 59, 81, 126]. [43] proposed to take into account observation related uncer-
tainties through the use of probabilistic flood maps (PFMs) that are derived from SAR images.
The principle of this approach is based on the Bayes theorem, which assigns a probability of
a pixel to be flooded depending on its backscatter value. The assimilation of PFMs strongly
rely on their precision and on the quality of the hydrodynamic model [90]. In this context,
more investigation on this topic needs to be carried out in order to complete relevant literature
studies e.g. [22, 23,28,67,101].

Another major challenge tied to the hydrodynamic modelling is the lack of hydraulic pa-
rameter data that are needed as inputs, such as the river bed shape and elevation. While the
knowledge of such information is critical for the good functioning of flood models, it can rarely
be available from remote sensing observations, digital elevation models (DEMs), or ground
data measurements. Most studies have estimated river discharges and depths assuming the
bathymetry and bed roughness to be known a priori (see e.g. [6,13]). [129] estimated bathymetry
assuming the bed roughness to be known, while [58] gave an estimation knowing the slope in-
formation, using a drifting GPS buoy. The complexity of implementing DA to estimate these
hydraulic parameters all together have led to the use of simplified models derived from the
Saint-Venant equations, proposed in [36,37,41]. The methods were assessed on 14 non-braided
rivers and at least one of the approaches has shown an improvement of 35% on relative root
mean square errors with respect to observed discharges [93].

In this study, we propose to calibrate the SW2D-DDP model, a 2 dimensional shallow water
equations model with depth-dependent porosity, in order to retrieve the unknown bathymetry
of a river. The porosity functions in this model, enable an easy representation of the bathymetry
by a parameter. We assume the bed shape to be trapezoidal, and the bed roughness to be known
a priori. The DA framework is thus based on integrating PFMs into the SW2D-DDP model
via a Tempered Particle Filter (TPF), and takes into account the SAR observation and the
SW2D-DDP model related uncertainties. The remainder of this paper is organised as follows:
first, in Section 3.2., we present the probabilistic flood extent mapping algorithm, the shallow
water porosity-based model and the proposed DA framework. Next, we describe the study site
and available data in Section 3.3.. Section 3.4. reports and evaluates the results of our study
and Section 3.5. discusses our findings and concludes the paper.

3.2. Method

3.2..1 Probabilistic flood mapping

As observational uncertainty is an important information in DA, we propose here to assimi-
late probabilistic flood maps (PFMs) because they take into account this uncertainty. These
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maps are obtained based on a method previously introduced and developed by [43, 45, 79]. To
generate the PFMs, we use SAR images and assume that their backscatter histogram can be
approximated using a mixture of two distributions: i) a class of flooded (i.e. wet area including
permanent water) pixels (f) with low backscatter and ii) a class of non flooded pixels (f) with
higher backscatter both approximated by Gaussian distributions. The Hierarchical Split Based
Approach (HSBA) proposed by [19] is used to parameterize the two separate distributions, as
flooded area often represents a small fraction of the entire image: the SAR image is iteratively
splitted into decreasing size tiles that identify well enough a bimodal histogram, allowing an
automatic calibration of the open water bodies distribution. The output is a PFM where each
pixel is assigned a probability p ∈ [0, 1] of being flooded given its backscatter value σ0:

p(f |σ0) = p(f)p(σ0|f)
p(σ0) (3.1)

where p(σ0) is the probability of recording the backscatter for any pixel, whether it is flooded
or not:

p(σ0) = p(σ0|f)p(f) + p(σ0|f)p(f) (3.2)

p(f) and p(f) are the prior probabilities of a pixel being flooded and a pixel not being flooded,
respectively. In this study, as this information is unknown, we set p(f) = p(f) = 0.5, as
suggested in [43]. p(σ0|f) is the conditional probability of recording the backscatter if the pixel
is flooded, and p(σ0|f) is the probability distribution of backscatter values of a pixel not being
flooded. These two probability distributions are derived from the image histogram, as previously
described. More details can be found in [43].

3.2..2 The shallow water modelling framework

SW2D2 is a 2-Dimensional Shallow Water modelling software, that has been continuously de-
veloped since 2002. It uses the finite volume method to solve the 2D shallow water equations on
unstructured grids. In the standard version of this model, the bottom elevation inside each com-
putational cell holds a unique value obtained by averaging the elevations of the cell’s nodes,
which means that hydraulic structures affecting water flow can only be represented by cells
which are smaller than their dimensions. The Depth Dependant Porosity version of the model
(SW2D-DDP) upscales the 2D shallow water equations and introduces a porosity concept that
represents the fraction of the cell (or interface) available to the water flow. This allows taking
into account small-scale topography variations and hydraulic structures, without the need of
detailing their geometry in the mesh. The representation of topographic and bathymetric data
is done through coarse grid cells, where each cell is associated with a porosity distribution as
a function of the water elevation. As described in [8], the porosity law of the cells located in
the floodplain can be retrieved directly from the DEM. “Riverbed cells” – which contain both
topographic and bathymetric data – are represented by cells larger than the river width. As

2https://SW2D.inria.fr/
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the DEM does not provide information below water, a simplified trapezoidal shape is defined
using a porosity law of “type 3”, as shown in Figure 3.1. In this figure, z1 refers to the minimum
bottom elevation of the riverbed, z2 to the maximum riverbed elevation, extracted from the
DEM, and d the river depth, defined as d = z2−z1. The porosity is therefore variable with water
depth (or elevation) and represents the fraction of the cell available for water storage or flow.
ϕ1 corresponds to the ratio L1 over L3, the former being the river bottom width, and the latter
being the cell width. When the cell is entirely available to the flow, ϕ reaches ϕ3, taken equal to
1. The SW2D-DDP model simulates water depth maps. Thresholding these maps above 10 cm
allows us to generate FE maps, which will be used as input in our DA framework.

Figure 3.1: Riverbed porosity law: Left: Law type 3 attributed to riverbed cells in
the mesh; Right: bathymetry representation; z: elevation, ϕ: porosity, d: river depth,
s: abscissa along the river cross-section. L1: Bottom width; L2: River width, L3:
Riverbed cell width.

3.2..3 The data assimilation framework

The goal of this study is to estimate bathymetry, i.e. z1, the lowest elevation in the trapezoidal
cross section of riverbed cells, as defined in Figure 3.1, via the assimilation of SAR-derived
PFMs into the shallow water model SW2D-DDP. The proposed DA framework is based on a
particle filter variant call tempered particle filter (TPF) [54, 121]. Particle filters are based on
Bayes theorem:

p(θ|o) = p(θ)p(o|θ)
p(o) (3.3)

where observations o are assimilated and represent the probability to be flooded knowing the
backscatter, given by the PFM (see Eq. 3.1). The SAR-derived information o is combined with
the prediction of the hydraulic model θ. p(o|θ) is the likelihood, i.e. the probability of the
observation knowing the model prediction. p(θ) is the prior probability of the model before
any observation is taken into account. As usual in a particle filter, the prior (see Eq. 3.4) and
posterior probabilities (see Eq. 3.5) are approximated by an ensemble of model realisations
called particles:

p(θ) ≈
J∑

j=1

1
J

δ(θ − θj) (3.4)

where δ is the Dirac delta function and θj is the model prediction for the jth particle.
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Combining Eq. 3.4 and Eq. 3.3 gives the posterior probability:

p(θ|o) ≈
J∑

j=1
Wjδ(θ − θj) (3.5)

where Wj = p(o|θ)
p(o) .

In this study, the likelihood (p(o|θ)) is obtained by multiplying the local weights associated
with the individual pixels k across the simulated area according to the formula used in [59]
and [34]. The local weight represents the adequacy between the probability of a pixel being
flooded given from the PFM, and the prediction of the hydraulic model that is equal to 1
if the area is predicted as flooded, and 0 otherwise. The main underlying assumption is that
observations are independent from each other across time and space.

Ensemble collapse, also known as degeneracy, occurs when only a few high weight particles
remains as a result of the assimilation while other particles get a negligible weight. In order
to circumvent this limitation, [54] proposed the factorization of the likelihood (see Eq. 3.6) in
the application of the Bayes theorem iteratively. This factorization is carried out through an
iterative process enabling to smooth out the transition from the prior to the posterior prob-
ability, which makes it particularly interesting for calibration purposes. With the inflation of
the likelihood variance and the reduction of the weight variance, more particles with significant
weights are kept. [34] demonstrated through a synthetic test case assimilation of FE, that this
factorization helps reducing degeneracy.

p(o|θ)
p(o) =

I∏
i=1

(
p(o|θ)
p(o)

)αi

(3.6)

where 0 < αi < 1 for each iteration i, and
I∑

i=1
αi = 1.

The DA framework consists of the following steps:

• We first make a random guess of the parameter sets z1 with the same initial weight. The
random guess will be referred to as Open Loop (OL) in the remainder of the study; it
represents the results before the assimilation.

• The sampled particles representing the parameters, are then assigned a likelihood weight
that represents their probability being sampled from the posterior density function.

• At each iteration i, the model is run and provides predictions θi, the observation data is
assimilated, and the likelihood of the model output p(o|θi) is computed.

The tempering coefficient value αi is optimized so that the ensemble inefficiency ratio Ineffα

equals a target value r∗:

Ineff(αi) = 1
J

J∑
j=1

(W i
j (αi))2 (3.7)

Ineffαi
gives an indication of how many particles keep a significant weight. For instance

when Ineff(αi) = 2, it means that half of the particles have significant weights. These particles
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with the highest weights are used to carry out a sequential importance re-sampling (SIR) [46],
in order to get replicated particles. The number of replicas of each particle directly relates to its
importance weight. The particles with low weights are therefore replaced by replicas of particles
with higher weights, so that the total number of particles remains unchanged. Replicating
particles with the highest weight iteratively, will make particles equally weighted after re-
sampling. Even though it is a powerful tool in reducing the degeneracy, SIR potentially comes
with sample impoverishment. This occurs quite often when particles with high weights are likely
to be drawn multiple times during re-sampling, which may result in a loss of diversity among
particles [1]. In order to circumvent this limitation and re-gain diversity across the particles, a
mutation is applied to the particles by perturbing the parameters, using a Metropolis-Hastings
(MH) [54]; we add to the parameter values (z1) or the re-sampled particles a random number
taken from a gaussian distribution of zero mean value and a low variance. Then the ratio between
the perturbed (after mutation) and re-sampled (before mutation) likelihoods is compared to
a randomly generated number u ∈ [0, 1] to accept or reject new particles. If the ratio of the
likelihoods is greater than u, we accept the new particle, and if not we reject it and keep the
particle as before its mutation. This ensures the best particles with the higher likelihoods are
kept. The accepted particles then replace the corresponding replicates. The mutation procedure
is repeated twice. Next the sequence of SIR and two mutations is carried out again, using a new
value of αi+1. This sequence is repeated until the αi values sum up to one so that the likelihood
factorization is completed and the bayes theorem is respected.

3.3. Study site, available data and experimental design

3.3..1 Study site and available data

The study site, covering an area of 1,50 km2, is located at the confluence of the Severn and
Avon Rivers in the United Kingdom, around the urban area of Tewkesbury. Figure 3.2 shows
the model domain, the available gauging stations and river camera, and the riverbed cells in
the two considered reaches separated by the confluence: the Severn River and the Avon River.
Stations upstream, at Saxons Lode and Bredon provide flow rates and water levels and the
station downstream at Deerhurst provides water levels. Mythe Bridge, an internal gauging
station, and Tewkesbury with a river camera view (detailed description in [122]), provide water
surface elevation (WSE) measurement data which are used for evaluation purpose. Topography
data is derived from a LiDAR DEM at 2 m spatial resolution, and re-sampled at 10 m, with a
vertical accuracy of 0.10 m. Moreover, river cross-sections (see Figure 3.4) are available at the
stations of Saxons Lode, Bredon, and Deerhurst. Hydrometric and topography data have been
provided by the UK Environment Agency, and will be used in this study for the purpose of
evaluation. Furthermore, a previous study [8] (hereby referred to as ADWR in the remainder of
the study) is a control simulation considered as a reference for the evaluation. In this simulation,
discharge time series were imposed as upstream boundary conditions of the hydraulic model
(Severn at Saxons Lode and Avon at Bredon). The streamflow time series in Saxons Lode were
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derived from water surface elevation records using a rating curve. Water level time series were
used as downstream boundary condition at Deerhurst. The initial condition is a fixed water
level equal to the downstream condition. A uniform Strickler coefficient Ks = 50 m1/3s−1 was
used for the river course.

In our study, we use the flood event of July 2012 as a test case because it has been well
observed in a time series Cosmo-SkyMed images. These images with HH polarization and a
spatial resolution of 5m are further detailed in [78]. They are used to derive out PFMs on
the following dates: 27 November; 28 November; 29 November; 30 November; 01 December;
02 December (see Figure 3.3). The images were mainly acquired just after the flood peak and
during the falling limb of the hydrograph. As the SAR has some limitations for detecting water
under vegetation and around buildings an exclusion layer is used to mask areas of vegetation,
permanent waters and buildings in the map. It was derived using the method proposed in [132]
from Sentinel 1 images acquired between 2016 and 2018.

Figure 3.2: Study site showing the three river reaches and the available gauging
stations and river camera.

3.3..2 Experimental design

Streamflow time series at Saxons Lode and Bredon are used as upstream boundary conditions
of the SW2D-DDP model. The initial condition is defined as a fixed uniform water depth in the
riverbed. The downstream boundary condition is set as a Froude number (see Eq. 3.8) to have
a more “free” condition in comparison to a prescribed water elevation. The Froude number is
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(a) Image 1: 27 November (b) Image 2: 28 November (c) Image 3: 29 November

(d) Image 4: 30 November (e) Image 5: 01 November (f) Image 6: 02 November

Figure 3.3: CosmoSky-Med probabilistic flood maps for the 2012 event.
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Figure 3.4: Cross sections at Saxons Lode, Bredon and Deerhurst.

computed as:
Fr = u√

gh
(3.8)

where u is the water velocity, h water height and g=9.81 the gravitational constant. In SW2D-
DDP, one WSE is computed by cell. However, bathymetry information is available on a sub-grid
level, at the spatial resolution of the DEM used. Therefore, there is a spatial distribution of
water heights computed as h = z−zb, in a unique cell. In equation 3.8 the maximum water height
in the cell is used, yielding artificially small values of the Froude number. In this application,
the downstream Froude value was set to increase linearly from 0 to reach a “steady value” (SV)
of 0.04 after four days. This estimation comes from a control simulation that used a water level
hydrograph as a downstream boundary condition. Since this information is not always available
due to the lack of streamflow data, we choose to further investigate the calibration of “steady
value” of the Froude number along with the bathymetry.

The objective of the proposed data assimilation framework is to calibrate the river bottom
elevation z1, i.e. bathymetry. Since the mesh is composed of 93 riverbed cells, the calibration of
z1 independently for each cell could potentially lead to contrasted and spatially inconsistent z1

values along the river channel. We therefore choose to use uniform longitudinal river slope values
between the three boundaries of the hydraulic model: Saxons Lode, Bredon and Deerhurst (see
Figure 3.2). Two slopes are obtained: one for the Severn River and another for the Avon River.
Our calibration is thus limited to three parameters, corresponding to the bottom elevations
of the riverbed cells located at at the three above mentionned gauging stations. We further
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simplify and test the calibration of a unique parameter: the bottom elevation downstream,
while imposing uniform slopes. The bottom elevations upstream are then deducted by adding
an estimated “delta elevation” of 1.5 m for Saxons Lode and 2 m for Bredon. This estimation
comes from the DEM and holds the assumption of the river channel slope being equal to the
floodplain slope.

Therefore in total, we have four tests in which we calibrate one or more parameters:

• 1param (z1ds): in this scenario, we calibrate z1 downstream, impose slopes, and deduct the
two others z1 values in the upstream boundaries. The SV Froude number at downstream
boundary is fixed to 0.04;

• 2param (z1ds , Fr): in this scenario, we calibrate z1 downstream and the SV Froude number
at downstream boundary;

• 3param (z1ds , z1up1 , z1up2): in this scenario, we calibrate the two z1 values upstream along
with the downstream value. The SV Froude number downstream is fixed to 0.04;

• 4param (z1ds , z1up1 , z1up2 , Fr): in this scenario, we calibrate the three z1 values and the SV
Froude number at downstream boundary.

In our application, the ensemble is composed of 16 particles. The six available CosmoSky-
Med images are assimilated using the TPF all at once.

3.4. Results

To investigate the TPF assimilation performance, we evaluate the assimilation results in terms
of WSE predictions, against WSE observations at two gauging stations that are located in-
side the hydraulic domain: Mythe Bridge and Tewkesbury (see Figure 3.2). We first visually
evaluate discrepancies between the simulated and the observed WSEs, by plotting the time
series of WSEs for all particles for the OL (before the assimilation), and the posterior (after
the assimilation), see Figure 3.5 to 3.12.

WSE time series show the OL ensemble (black) encompasses the observation (red) most
of the time, in all scenario tests. The posterior particles are very similar and close to the
observation, while slightly underestimating WSE at Mythe Bridge and Tewkesbury. This might
be related to an overestimation of the river width, or underestimation of the calibrated bottom
elevation z1.

We also compute root mean square errors as:

RMSE =

√√√√ 1
K

K∑
k=1

(zOL − zo)2 (3.9)

In Table 3.1, performances in terms of RMSEs are presented for the OL- and the posterior-
derived WSEs, at Mythe Bridge and Tewkebsbury. Moreover, in Table 3.2, we present the
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(a) (b)

(c) (d)

Figure 3.5: Test 1param daily time series of the water surface elevations, for a)
the OL and b) the last iteration. Black lines correspond to the particle ensemble
and the red line to the observation, at Mythe Bridge.

mean and standard deviation of the particles’ z1, for the OL and the posterior, at Saxons
Lode, Bredon and Deerhurst where observed cross sections are available (see Figure 3.2 for
the stations’ location). Table 3.1 shows that in all tests performed, the low values of standard
deviations of the posterior RMSEs indicate that the convergence of the TPF is reached. Results
at Mythe Bridge show that the posterior RMSE does not reach the precision obtained with the
ADWR simulation. However, for Tewkesbury, tests that calibrated 3 or 4 parameters showed
an improvement of the posterior, not only with respect to the OL, but also with respect to
ADWR values. This means that the calibration of the three z1 parameters on the boundaries of
the hydraulic domain leads to the most accurate results. The calibration of the Froude number
along with bathymetry does not seem to significantly affect the assimilation results. However,
it is interesting to calibrate both Froude and bathymetry, since they are often unknown a
priori. On another note, in all tests, the use of the exclusion layer does not seem to have a
marked effect on the improvement of the assimilation results. Table 3.2 shows the calibrated
z1 values, i.e. posterior, have lower standard deviations than those of the OL. However, they
do not correspond to the observed values, for the three locations. This might be linked to
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Table 3.1: RMSE performances (± standard deviation) for the OL and the poste-
rior derived WSEs, for the different scenario tests. Performances obtained with the
ADWR control simulation: RMSE(Mythe Bridge)=0.24; RMSE(Tewkesbury)=0.43.

Mythe Bridge Tewkesbury
OL Posterior OL Posterior

1param 0.82±0.46 0.51±0.02 0.82±0.47 0.46±0.02
1param + ExLay 0.97±0.45 0.52±0.006 0.98±0.45 0.48±0.01
2param 0.8±0.43 0.49±0.04 0.8±0.44 0.45±0.04
2param + ExLay 0.79±0.45 0.51±0.02 0.8±0.45 0.47±0.02
3param 0.91±1.06 0.41±0.02 0.92±1.17 0.33±0.02
3param + ExLay 1.10±0.77 0.42±0.005 1.14±0.90 0.33±0.005
4param 0.88±0.72 0.41±0.01 0.90±0.86 0.33±0.01
4param + ExLay 1.22±0.77 0.42±0.01 1.28±0.87 0.34±0.01

Table 3.2: z1 Parameter means and standard deviations obtained for the OL
and the posterior, for the different scenarios. Observed river bottom values on ob-
served cross sections: Saxons Lode: z1=4.39±0.9; Bredon: z1=6.43±0.44; Deerhurst:
z1=3.8±0.17.

Saxons Lode Bredon Deerhurst
OL Posterior OL Posterior OL Posterior

1param 5.47±2.04 2.43±0.22 6.47±2.00 3.43±0.22 3.97±2.04 1.06±0.08
1param + ExLay 6.25±1.78 2.32±0.15 7.27±1.84 3.31±0.17 4.75±1.78 1±0.00
2param 5.32±2.03 2.49±0.30 6.32±2 3.47±0.35 3.82±2.02 1.13±0.16
2param + ExLay 5.60±1.76 2.37±0.21 6.59±1.75 3.35±0.25 4.09±1.75 1.03±0.06
3param 7.54±1.43 6.33±0.57 8.14±0.98 7.22±0.46 6.19±2.17 1.04±0.07
3param + ExLay 6.53±2.23 6.69±0.26 7.93±1.36 7.31±0.24 4.69±2.49 1.00±0.01
4param 6.33±1.86 6.74±0.40 7.47±1.54 7.28±0.34 3.86±2.78 1.03±0.05
4param + ExLay 7.13±1.61 6.33±0.4 8.15±0.84 6.93±0.51 5.27±2.18 1.03±0.06
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(a) (b)

(c) (d)

Figure 3.6: Test 1param + ExLay daily time series of the water surface elevations,
for a) the OL and b) the last iteration. Black lines correspond to the particle ensemble
and the red line to the observation, at Mythe Bridge and Tewkesbury.

the fact that the calibration of a simplified effective bathymetry also relies on many other
hydraulic parameters such as: the river bank slopes, the river width, the shape of the river we
have assumed. The simplified bathymetry estimated in SW2D-DDP, is trapezoidal, and was
characterized with a river width wider, than that observed. This might explain that calibrated
parameters obtained for Bredon, are slightly higher, than the observed z1. On another note, the
calibration of z1 downstream at Deerhurst, seems to lead to the same results no matter which
calibration scenario is considered. We notice a strong variability of model calibration results
between the first two tests where we calibrate the z1 downstream and the other two tests where
we calibrate the z1 for the three locations: calibrated z1 values vary between approximately 2 to
6 m in Saxons Lode, and 3 to 7 m in Bredon. This is related to the estimated “delta elevation”
used in the first two calibration tests.
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(a) (b)

(c) (d)

Figure 3.7: Test 2param daily time series of the water surface elevations, for a)
the OL and b) the last iteration. Black lines correspond to the particle ensemble
and the red line to the observation, at Mythe Bridge and Tewkesbury.

3.5. Discussion and conclusion

In this study, we have proposed a framework to assimilate Earth Observation (EO)-derived
flood extents (FE) into a shallow water model, namely SW2D-DDP, using a tempered parti-
cle filter (TPF). The objective of this framework is to estimate an unknown parameter that
is often required as input information in flood forecasting models: bathymetry. The assimila-
tion has shown that the estimation of the bathymetry is efficient, with rather satisfying root
mean squared errors (RMSE) of less than 0.5 m, using the calibration of bottom elevations
distributed across the hydraulic domain, assuming the Froude number is known. The calibra-
tion of the effective bathymetry along with the Froude number delivered very similar results.
The accuracy of a controled simulation with known bathymetry is not reached for the Severn
reach. The calibration of distributed bottom elevations was therefore more accurate than the
simple calibration of a single parameter, in one location. The exclusion layer use did not seem
to impact the assimilation results. The calibrated parameters obtained were not equal to the
observed punctual values. This is likely because bathymetry in SW2D-DDP was estimated with
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(a) (b)

(c) (d)

Figure 3.8: Test 2param + ExLay daily time series of the water surface elevations,
for a) the OL and b) the last iteration. Black lines correspond to the particle ensemble
and the red line to the observation, at Mythe Bridge and Tewkesbury.

punctual cross-sections, and based on many assumptions that could have made the river width
over-estimated for instance. In fact, calibrating the effective bathymetry with only a few infor-
mation, makes a compromise between the different hydraulic paramaters that are missing as
an input.

Another factor that might be influential in this DA framework, is the timing of available
observations to assimilate. In our case, all images were available after the flood peak, which tells
us about flow dynamics mainly happening in the floodplain. This might hamper the calibration
of bathymetry, since the sensitivity of the bathymetry to the flood extent is more limited in this
phase of the flood event. In future tests, the availability of images providing a higher variability
of flood extents across the time series, may be beneficial for the bathymetry retrieval.

In conclusion, the preliminary results of this study are quite interesting but deserve to be
further analysed, and tested with different types of data and on different site areas. A main
outcome of the study shows that we are able to calibrate the Froude number with bathymetry,
if both these data are not available, which opens up new perspectives of model calibration via
the proposed DA algorithm, namely in data scarce areas but where SAR images are available.
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(a) (b)

(c) (d)

Figure 3.9: Test 3param daily time series of the water surface elevations, for a)
the OL and b) the last iteration. Black lines correspond to the particle ensemble
and the red line to the observation, at Mythe Bridge and Tewkesbury.
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(a) (b)

(c) (d)

Figure 3.10: Test 3param + ExLay daily time series of the water surface eleva-
tions, for a) the OL and b) the last iteration. Black lines correspond to the particle
ensemble and the red line to the observation, at Mythe Bridge and Tewkesbury.
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(a) (b)

(c) (d)

Figure 3.11: Test 4param daily time series of the water surface elevations, for
a) the OL and b) the last iteration. Black lines correspond to the particle ensemble
and the red line to the observation, at Mythe Bridge and Tewkesbury.
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(a) (b)

(c) (d)

Figure 3.12: Test 4param + ExLay daily time series of the water surface eleva-
tions, for a) the OL and b) the last iteration. Black lines correspond to the particle
ensemble and the red line to the observation, at Mythe Bridge and Tewkesbury.
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General Conclusions and Perspectives
Do not say a little in many words but a great deal in a few!

Pythagoras of Samos

This research study has examined several novel methodologies that have the potential to
improve flood forecasting systems. The contributions of this PhD thesis to advance research
can be summarised as follows:

1. we proposed a hydrodynamic modelling framework enabling fast flood simulations at high
accuracy and applicable at large scales,

2. we developped an unsupervised automatic algorithm for water level estimation using only
a satellite-derived flood extent map and a digital elevation model,

3. We proposed and evaluated a data assimilation framework that aims to retrieve unknown
parameters such as bathymetry of a shallow water model.

In the first part of this thesis, we proposed a flood modelling framework based on a 2 dimen-
sional shallow water model with depth dependant porosity (SW2D-DDP [50]) and evaluated
it with respect to the standard version of the model (SW2D), considered as a benchmark. As
porosity models were mostly developped for urban flood mapping, a special feature is that they
enable to represent buildings within comparatively larger cells via porosity laws. The novelty
of our work lies in the representation of small scale topography within large cells not only in
the floodplain but also the riverbed. For the first time, the DDP model is applied over ar-
eas larger than urban settlements, with an automatic estimation of the porosity parameters
from the DTM and river shape information only. The evaluation of water surface elevations
at gauging stations has shown the porosity-based model (SW2D-DDP) performs as good as a
standard shallow water model (SW2D), with average RMSDs lower than 15 cm. In terms of
flood mapping, the proposed model had a similar performance to the benchmark model with
approximately 90 % agreement during the flood peak. Discrepencies between the two model-
derived flood maps were observed during the rising and the falling limbs. This was probably
related to a faster flooding and receding dynamic in the porosity model due to its ability to
represent small scale topography and drains via porosity. SW2D-DDP was found to run with
a computational time reduced by a factor of 350, and was much easier to set up than SW2D
(particularly when it comes to the discretization of the study area). The proposed modelling
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approach therefore enabled us to treat bathymetry as a model calibration parameter in the
third part of the thesis.

In the second part, we proposed the WaSER (WAter Surface Elevation Retrieval) algorithm
enabling the automatic generation of refined water extent and depth maps using the fusion of
satellite and topography data only. Datasets of various spatial resolutions were available to test:
DEMs (LiDAR at 2 m, CopDEM at 10 m and SRTM at 30 m) and SAR images (TerraSAR-X
at 3 m and Envisat at 150 m). Three variants of this algorithm based on the same rationale
but using different intermediate steps were tested and inter-compared. The algorithm steps are
based on: i) thresholding topographic data (HAND or DEM) at global or local scale to produce
synthetic flood extent (FE) maps, ii) optimising the threshold by selecting the synthetic map
that presents the best agreement with the satellite EO-FE map, and iii) generating water depth
(WD) and water surface elevation (WSE) maps. One of the goals was to evaluate, using an aerial
photograph and the results of SW2D-DDP, which variant was the best performing, depending
on the resolution of the data used. It has been found that in terms of flood mapping, the two
local variants of WaSER presented similar extents to those observed in the SW2D-DDP maps.
Moreover, these variants outperformed the exclusive use of SAR flood mapping, reaching an
accuracy of 86-91%. In terms of water surface elevation mapping, the local variants were the
most performing with the combination of high resolution images (e.g. TerraSAR-X at 3 m) and
topographic datasets (e.g. LiDAR at 2 m). With these approaches and data, the the difference
with SW2D-DDP results reached 0.69 and 0.52 m respectively. The accuracy of the results
is highly related to the precision of the DEM used. The HAND global variant was found to
be the best performing, reaching errors of approximately 0.90 m compared to SW2D-DDP
results, while combining low to medium resolution images (e.g. Envisat at 150 m) and DEMs
(e.g. SRTM at 3 m). In that scenario, the level of precision of the DEM used was not able to
predict well the directions of water flow; in order to obtain accurate results, the compatibility
of the level of information detail brought by the topography and satellite data is essential. The
proposed method enables an accurate estimation of spatially distributed water surface levels,
and while it is not meant to replace hydraulic models, it constitutes a relevant tools for a rapid
flood mapping without implementing any hydraulic calculations.

In the third part, we proposed a data assimilation algorithm based on a tempered particle
filter to calibrate the SW2D-DDP model using probabilistic flood maps. One of the goals was
to calibrate the bathymetry using the porosity parameters. To do so, we proposed a calibra-
tion using three parameters in the “riverbed cells” located on the boundaries of the hydraulic
model. A simpler configuration suggested the calibration of a single parameter located in the
downstream, and deducting the two remaining parameters by approximating a “delta eleva-
tion” estimated from topography data. We also chose to test the calibration of the downstream
elevation-discharge boundary condition via the Froude number along with bathymetry. Results
have shown that the calibration of the bathymetry using three parameters yielded good results
in terms of water surface elevations with RMSEs less than 0.5 m after assimilation, compared to
the observed water levels at gauging stations inside the hydraulic model domain. However, the
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calibrated parameters obtained were not equal to the observed punctual values. This is probably
due to the fact that the SW2D-DDP bathymetry was estimated based on many assumptions
that might have overestimated river width, for example. In fact, the assimilation enabled the
retrieval of an effective bathymetry that compensated the errors in river bank slopes, widths,
etc. Moreover, it has been found that the calibration of the Froude number does not greatly
impact the assimilation results, but can be of great benefit to retrieve unknown data for site
applications where in situ data and hydraulic parameter information are missing.

Potential future research that may follow up this thesis are given next:

1. Apply of the porosity-based shallow water model on large and ungauged rivers such as
the Mozambique and the Amazon rivers, to enable the automatic estimation of sub-grid
topography/bathymetry and use it as input in flood forecasting models;

2. Conduct a sensitivity study on the effect of the local window size (parameter in WaSER)
used in the local variants.

3. Further test the WaSER algorithm with different types of data of various resolutions, and
on different areas characterized with complex topographies.

4. Flood mapping using the HAND global variant of WaSER is applicable anywhere in the
world with the availability of free topography and satellite datasets.

5. Flood extent and depth maps coming from the WaSER algorithm can also be used as
time series observations for the calibration of a hydraulic model, via the proposed data
assimilation algorithm;

6. The data assimilation framework should be further tested with multi-event data and on
different study areas, where more evaluation data is available.
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A B S T R A C T

Floods are among the most devastating natural hazards in the world. With climate change and growing
urbanisation, floods are expected to become more frequent and severe in the future. Hydrodynamic models are
powerful tools for flood hazard assessment but face numerous challenges, especially when operating at a large
scale. The downside of discretising an area using a fine mesh yielding more accurate results, is the expensive
computational cost of simulations. Moreover, critical input information such as bathymetry (i.e, riverbed
geometry) are required but cannot be easily collected by field measurements or remote sensing observations.
During the past few years, the development of sub grid models has gained a growing interest as these enable
faster simulations by using coarser cells and, at the same time, preserve small-scale topography variations
within the cell. In this study, we propose and evaluate a modelling framework based on the shallow water
2D model with depth-dependent porosity enabling to represent floodplain and riverbed topography through
porosity functions. To enable a careful and meaningful evaluation of the model, we set up a 2D classical model
and use it as a benchmark. We also exploit ground truth data and remote sensing derived flood inundation
maps to evaluate the proposed modelling framework and use as test cases the 2007 and 2012 flood events
of the river Severn. Our empirical results demonstrate a high performance and low computational cost of the
proposed model for fast flood simulations at a large scale.

1. Introduction

With the increasing risk of more frequent and severe floods (Arnell
and Gosling, 2016) due to climate change and growing urbanisation,
there is a crucial need to make more investments in flood management.
Impacts of floods include human, socio-economical and environmental
losses. Poorly conducted hazard assessments can lead to inefficient
risk management, from insufficient protective mitigation measures to
expensive rebuilding of devastated areas (Baan and Klijn, 2004; Meyer
et al., 2009). Instead, well-conducted flood risk assessments provide
a valuable support for decision making related to urban planning and
emergency response preparedness. Therefore, it is essential to improve
flood management systems to better anticipate and further reduce
potential flood risk (Pradhan et al., 2014; Tehrany et al., 2014). In this
context, hydrological and hydraulic models play a central role in flood
forecasting as they provide predictions of water streamflows and levels

∗ Corresponding author at: Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Esch-sur-Alzette,
Luxembourg.

E-mail address: vitaayoub@outlook.com (V. Ayoub).

across various temporal and spatial scales (Revilla-Romero et al., 2016;
Hostache et al., 2018).

The most common flood inundation (hydraulic) models are based
on the depth-averaged Navier Stokes equations, also called de Saint-
Venant or Shallow Water Equations (SWE). The resolution of these
equations can be carried out in one (1D) or two dimensions (2D). 1D
models solve the 1D formulation of the SWE (Bates and De Roo, 2000)
where the flow is assumed to be unidirectional and water levels are
assumed to be constant across sections. Although they are relatively
easy to setup and fast to run (Cunge, 1980), these models fail to provide
accurate predictions of overbanking flow and in presence of complex
topographies, especially because the momentum transfers between the
channel and the floodplain are neglected. 1D-storage area models (also
often referred to as 1D+ or quasi-2D) are sometimes preferred as they

https://doi.org/10.1016/j.advwatres.2022.104141
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