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ABSTRACT

Optimizing machine learning techniques for genomics clustering

Johny Matar
University of Bourgogne Franche Comté, 2021

Supervisors: Christophe Guyeux, Jean-Claude Charr, and Hicham El Khoury

In the field of bioinformatics, clustering recently appeared to be a very efficient technique

for sequence analysis. While greedy and hierarchical algorithms are used in the majority

of the available tools, spectral clustering was recently introduced as a new stakeholder in

this field. Spectral clustering is an efficient technique for well-separated sequence clus-

tering and GMM’s (Gaussian Mixture Models) are often able to cluster overlapping groups

given an adequately designed embedding. Yet, the available clustering tools, for biological

sequences, present many drawbacks especially that i- the most widely used ones require

an accurate choice of a non-obvious identity or similarity threshold, ii- most of them are

not designed to cluster potentially divergent sequences, and iii- the recent one that relies

on the spectral clustering technique, and that does not require any user intervention or

prior knowledge about the input sequences, is so slow and was not enough tested and

validated. Moreover, the performance of several well-known clustering techniques is not

assessed in the field of clustering biological sequences.

Firstly, since the recent clustering technique that relies on spectral clustering offered a

potential solution for the drawbacks of the traditional tools, its own drawbacks are be-

ing addressed and an enhancement in its computation time is achieved. This enhance-

ment is based on improving the required time for the pairwise affinity computation of the

sequences. The proposed solution is to adopt a parallel computation scheme for the

pairwise affinity computation. This solution has been implemented according to the mas-

ter/slave distributed architecture, using Message Passing Interface (MPI), and showed a

drastic improvement in the computation time. Moreover, the resulting clustering package,

named SpCLUST, was intensively evaluated on simulated and real genomic and protein

data sets. The clustering results were compared to the most known traditional tools, such
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as UCLUST, CD-HIT, and DNACLUST. The comparison showed that SpCLUST outper-

forms the other tools when clustering divergent sequences.

Secondly, further improvements to SpCLUST, speed-wise, accuracy-wise, and feature-

wise, were introduced. The implemented approach in SpCLUST results in a pipeline of

the following steps: i- sequence alignment, ii- pairwise affinity computation of the se-

quences, iii- Laplacian Eigenmap embedding of the data, and iv- GMM based clustering.

Therefore, improving the quality of the generated clustering and the performance of this

approach is directly related to the enhancement of each of these five steps: the alignment

quality, the appropriate design of the affinity, the GMM implementation, etc. Accordingly,

we have written a completely new C++ GMM library incorporating new features and op-

tions for optimizing the clustering speed and quality. This resulted in a second release,

namely SpCLUST-V2, of our package. Moreover, the impact of using different modules,

methods, implementations, and algorithms (sequence alignment modules, various clus-

tering methods, GMM implementations, and affinity matrix types) in this process pipeline

is carefully discussed.

Finally, a major improvement in the speed of the pairwise affinity computation is achieved

by adopting a new library in our package. Moreover, a novel clustering technique is

introduced. Furthermore, additional clustering techniques were explored on biological

sequences, and a qualitative study compares their performance and accuracy. The used

implementations were embedded in SpCLUST-Global, an improved cross-platform bio-

logical sequences’ clustering package. SpCLUST-Global outperforms its GMM-based

predecessors in terms of speed and handling data sets that contain large genomes. It

also outperforms the state-of-the-art tools in clustering hybrid and highly divergent data

sets. The versions of our package are freely available online.

KEYWORDS: Biological sequences clustering, Genomics, Laplacian Eigenmaps, Gaus-

sian Mixture Model, Parallel computation, Spectral clustering, Clustering quality analy-

sis, CHAINS clustering, MOTIFS-based spectral clustering, Affinity matrices, Sequences

alignment.



RÉSUMÉ

Optimisation des techniques d’apprentissage automatique pour le clustering
génomique

Johny Matar
Université de Bourgogne Franche Comté, 2021

Encadrants: Christophe Guyeux, Jean-Claude Charr et Hicham El Khoury

Dans le domaine de la bioinformatique, le clustering est une technique efficace pour

l’analyse des séquences. Le clustering spectral a récemment été introduit comme un

nouvel acteur dans ce domaine. C’est une technique efficace pour le clustering de

séquences bien séparées et les GMM sont souvent capables de partitionner des groupes

qui intersectent. Pourtant, les outils de clustering disponibles, pour les séquences bi-

ologiques, présentent de nombreux obstacles: i- les plus utilisés nécessitent un choix

précis d’un seuil d’identité ou de similarité qui n’est pas toujours évident, ii- la plupart

d’entre eux ne sont pas conçus pour regrouper des séquences assez divergentes, et iii-

une technique récente, qui repose sur le clustering spectral, et qui ne nécessite aucune

connaissance préalable des propriétés des séquences d’entrée, est assez lente et n’a

pas été suffisamment validée. De plus, les performances de plusieurs techniques de

clustering bien connues ne sont toujours pas évaluées dans le domaine du clustering de

séquences biologiques.

Tout d’abord, étant donné que la technique récente qui repose sur le clustering spectral

offre une solution aux obstacles connus des outils traditionnels, des solutions à ses pro-

pres obstacles seront visée. Cette amélioration est basée sur la réduction du temps req-

uis pour le calcul d’affinité par paires de séquences. La solution proposée est d’adopter

un schéma de calcul parallèle pour ce calcul. Cette solution a été implémentée, selon

l’architecture distribuée maı̂tre/esclave, en utilisant la MPI, et a montré une amélioration

considérable du temps de calcul. De plus, l’outil de clustering résultant, nommé Sp-

CLUST, a été intensivement évalué sur des ensembles de données génomiques et

protéiques. Les résultats du clustering ont été comparés à celui des outils traditionnels
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les plus connus, tels que UCLUST, CD-HIT et DNACLUST. La comparaison a montré que

SpCLUST surpasse les autres outils lors du regroupement de séquences divergentes.

Ensuite, d’autres améliorations de SpCLUST, en termes de vitesse, de précision et de

fonctionnalités, ont été introduites. L’approche implémentée dans SpCLUST consiste

des étapes suivantes : i- alignement de séquences, ii- calcul d’affinité par paires de

séquences, iii- intégration des données sur la Eigenmap laplacienne et iv- clustering

basé sur GMM. Par conséquent, l’amélioration de la qualité du clustering généré et

des performances de cette approche est directement liée à l’amélioration de la qualité

de l’alignement, la conception appropriée de l’affinité, l’implémentation GMM, etc. En

conséquence, nous avons écrit une bibliothèque GMM intégrant de nouvelles fonction-

nalités et options pour optimiser la vitesse et la qualité du clustering. Cela a abouti à une

deuxième version de notre outil, nommée SpCLUST-V2. De plus, l’impact de l’utilisation

de différents modules, méthodes, implémentations et algorithmes dans ce pipeline de

processus est soigneusement discuté.

Enfin, une accéleration majeure de la vitesse du calcul d’affinité par paire est obtenue en

adoptant une nouvelle bibliothèque dans notre package. De plus, une nouvelle technique

de clustering est introduite. Aussi, des techniques de clustering supplémentaires ont été

explorées sur des séquences biologiques, et une étude qualitative est présentée pour

leurs résultats. Ces résultats sont également comparés à ceux de certains outils tradi-

tionnels. Les implémentations utilisées ont été intégrées dans SpCLUST-Global, un outil

amélioré de regroupement de séquences biologiques multiplateformes. SpCLUST-Global

surpasse ses prédécesseurs qui sont basés sur GMM, en termes de vitesse et de ges-

tion des ensembles de données contenant de grands génomes. Il surpasse également

les outils traditionnels en termes de justesse de regroupement d’ensembles de données

hybrides et très divergents. Les différentes versions de notre outil sont disponibles gratu-

itement en ligne.

Mots clés: Clustering de séquences biologiques, Génomique, Eigenmaps laplaciennes,

Modèle de mélange gaussien, Calcul parallèle, Clustering spectral, Analyse de qualité

de clustering, Clustering CHAINS, Clustering spectral basé sur des MOTIFS, Matrices

d’affinité, Alignement de séquences.
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INTRODUCTION

The Machine Learning (ML) techniques in general, and the Expectation Maximization

(EM) models [Dempster et al., 1977, Wu, 1983, McLachlan et al., 2007] in particular, are

playing a paramount role in a wide variety of applications and data analysis. The scope

of usage of EM includes the analysis of networks traffic [McGregor et al., 2004], agricul-

tural production systems [Liakos et al., 2018], and medical devices production such as

the hand prothesis [Paaßen et al., 2018], among others. Yet, the wide majority of the

tools targeting the analysis of biological sequences, especially the clustering ones, still

rely on the classical greedy algorithms. Therefore, this thesis focuses on advancing the

state of the art of clustering biological sequences, with a specific focus on optimizing ma-

chine learning techniques for this purpose, handling potentially divergent sequences, and

introducing novel techniques in this field.

According to the convention of co-direction between the Bourgogne Franche-Comté uni-

versity (UBFC) and the Lebanese University (UL), the presented research was carried

out in alternation between the FEMTO-ST laboratory in Belfort, France, and the LaR-

RIS laboratory in Fanar, Lebanon. Throughout the remainder of this thesis, the writer

will be referred to as “we”, rather than “I”. This is because this thesis presents research

performed in a collaborative setting, as part of the teams in both research laboratories.

This chapter provides an introduction to the work done in this thesis. It addresses the

general context and the relevant problematics in the considered use cases. Then, it

presents briefly the contributions of this thesis.

1.1/ INTRODUCTION TO BIOLOGICAL SEQUENCES CLUSTERING

Sequence clustering refers to the act of partitioning an input group of sequences into

clusters, each containing a group of somehow related sequences. It can involve either

nucleotide or protein based sequences and is mainly used to identify sequences that are

potentially derived, by mutations or substitutions, from each others or from a common

5



6 CHAPTER 1. INTRODUCTION

ancestor. Indeed, the clustering of biological sequences is currently playing a paramount

role in the analysis of the biological sequences, by linking the huge number of newly

discovered sequences to their variants and ancestors.

One of the methods for grouping the related sequences is using some tools

or algorithms for building phylogenetic trees [Stamatakis, 2014, Guindon et al., 2009,

Lefort et al., 2017, Ronquist et al., 2012] when the evolution is assumed to be in that form.

But technically, this method might fail in some cases: for example, if the analyzed data

set contains two distinct populations of bacteria, where one of these populations have

received some genes from the other population by horizontal gene transfer, then the phy-

logenetic signal will be scrambled and lead to a poorly resolved tree. In this case, the

strains having received these genes will be wrongly positioned in the tree, while a well

done grouping should split them into two groups.

In addition, other methods resulted from a great deal of work that has been

done in this field, and many tools were made for this specific task. In

fact, many clustering tools, targeting a fast clustering of highly similar se-

quences, exist [Li et al., 2006, Edgar, 2010, Ghodsi et al., 2011, Mercier et al., 2013,

Jiang et al., 2016, Matias Rodrigues et al., 2013]. Moreover, a recent tool that targets

the clustering of potentially divergent sequences [Bruneau et al., 2018], have been pub-

lished. Yet, none of the existing clustering tools can claim its clustering superiority in all

possible cases and on all kind of sequences.

The purpose of this thesis is therefore to suggest solutions that enhance the analysis of

the biological sequences. The contributions concentrate specifically on enhancing the se-

quences clustering part, that attracted a large number of researchers. These researchers

presented many clustering approaches to perform this particular task, and the implemen-

tations of these approaches contributed in the release of a large variety of clustering

tools.

1.2/ PROBLEMATICS WITH REGARDS TO THE USE CASES

The mutations, substitutions, and gene transfers occur upon the duplications of bi-

ological sequences, e.g., viruses and bacteria, for many reasons [Duffy et al., 2008,

Wielgoss et al., 2013, Oliver et al., 2010]. These changes result in a continuous increase

in the number of the newly discovered sequences. In addition, these types of changes

occur in an unpredictable degree. Therefore, linking these discovered sequences to their

siblings or ancestors, is not an obvious task, especially that the arising degree of diver-

gence is usually unknown, and may be greater to the theoretical expectations.

Therefore, the work done in this thesis addresses numerous limitations and issues in
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the framework of biological sequences analysis in general, and in its clustering part in

particular. These limitations and issues start from the need for a non-obvious similar-

ity threshold parameter, for using the traditional tools that target the clustering of highly

similar sequences. It extends to the computation complexity and the lack of intensive vali-

dation for the introduced technique, in the first of its kind of tool that targets the potentially

divergent sequences.

While the widely used and largely tested clustering tools are those targeting the highly

similar sequences, their efficiency in clustering sequences that show a high level of di-

vergence requires to be investigated. Their need for a user-defined similarity or identity

threshold is also to be tackled. The lack of accuracy in the choice of this threshold, can

be highly relevant in the case of handling sets of newly discovered sequences.

Moreover, the tool that targets the potentially divergent sequences promotes the use of an

intervention-free technique that is new in this field, namely the Gaussian Mixture Model

(GMM) [McLachlan et al., 2004] that is calibrated by an Expectation Maximization (EM)

model. This tool also computes a global alignment for the input sequences, then it uses

the aligned sequences to compute a pairwise similarity between the input sequences.

Therefore, this scheme requires an intensive computation when a large number of se-

quences is involved, and raises a very challenging speed optimization problem.

1.3/ MAIN CONTRIBUTIONS

The main contributions in this dissertation fall within the optimization of the aforemen-

tioned clustering task for biological sequences. These contributions can be summarized

as follows:

1. First, we propose a major performance optimization scheme for the GMM-based

tool. This scheme is divided into three stages. In the first stage, we propose a

method that is based on a parallel computation design for the pairwise similarity

among the input sequences. In this method, the concerned module of this tool

was ported to a lower level programming language, the C++, where the Message

Passing Interface (MPI) was used to achieve the parallelism. This first improvement

moved the bottleneck, in the GMM-based tool, to the GMM module itself. This issue

was also addressed by porting this module to a lower level programming language.

In the final stage of the performance optimization, a performant sequence align-

ment library was adopted. Its implementation substitutes a third party tool that was

initially used to perform this task. After the implementation of each stage from this

optimization scheme, the results of our tests showed a drastic decrease in the com-

putation time that is required for each stage, while preserving a good quality of the
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clustering results. These results validated the efficiency of our proposed scheme.

2. Second, we investigate the validity of using the Gaussian Mixture Model (GMM)

for the clustering of biological sequences. The Expectation Model (EM), that was

pre-defined and coupled with the GMM by the authors of [Bruneau et al., 2018], is

applied and validated for biological sequences. For this purpose, several datasets

from real biological sequences were assembled, in addition to several simulated

datasets. These simulated sets reflect various degrees of divergence, and were

generated by a tool that was specifically developed for this purpose. The real

and the simulated datasets were used in an intensive validation process, for the

GMM clustering technique in this field. The validity of the obtained clustering re-

sults, demonstrated the efficiency of using the EM-GMM for clustering biological

sequences.

3. Alongside with the re-coding of the GMM module, that took place in the second

stage of the performance optimization, the third contribution of this thesis is intro-

duced. Three additional techniques, based on the GMM, are proposed and imple-

mented in our GMM module. These techniques rely on an iterative process that

modifies the initial and random distribution of the centroids of the clusters at each

iteration. Since this modification leads to a potentially different result at the con-

vergence of the GMM, then the best result can either be chosen via a quantitative

approach such as the number of occurrences of the final grouping, or a qualitative

approach such as finding the grouping that scores the best Bayesian Information

Criterion (BIC) or Akaike Information Criterion (AIC) [Vrieze, 2012]. Moreover, the

use of three additional types of affinity matrices1 is made available in our imple-

mentation. The proposed techniques and the added types of affinity matrices are

validated by the experiments that are made on a variety of datasets. The efficiency

of these techniques is also validated in clustering hybrid datasets, in addition to clus-

tering datasets of sequences where a horizontal gene transfer is simulated among

the involved sequences.

4. In the fourth contribution, we validate the application of three additional state of the

art clustering approaches, that were not yet used in the field of clustering biological

sequences. Two of these approaches, the DBSCAN [Khan et al., 2014] and HDB-

SCAN [Campello et al., 2013], are not recent, conversely from the third one that is

based on GMMs and uses a MOTIFS [Benson et al., 2016] scheme for clustering a

graph. Therefore, applying and validating this third approach in clustering biological

sequences, required proposing additional techniques, as part of this contribution,

in order to build the initial graph. The validity of the clusterings that were produced

by each approach, on datasets having different properties, are discussed. More-

1a transformation made to the initial similarity matrix prior the computation of the spectrum.
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over, the proposed techniques that enabled the application of the third and recent

MOTIFS-based approach were also validated.

5. Finally, we propose a novel, fast, and simple clustering approach. This approach

was named CHAINS and uses the computed pairwise similarities, among the se-

quences, to perform the clustering directly. It was compared to all the previously

tackled clustering approaches. In terms of clustering quality, and based on the re-

sults that were obtained from various experiments, our new approach outperformed

its competitors in the vast majority of our experiments and use cases. Moreover,

the results of the experiments show that the implementation of our new approach

also outperforms its competitors, speed-wise, except for the traditional biological

sequences clustering tools. The traditional tools remain the best suited for rapidly

clustering highly similar sequences, where the similarity threshold is predictable.

1.4/ DISSERTATION OUTLINE

The rest of this dissertation is organized as follow: Chapter 2 presents various state of the

art clustering techniques. Chapter 3 discusses the main differences between the state of

the art clustering tools, while highlighting their adopted clustering techniques. Chapter 4

presents and discusses various clustering validation indexes that will be later used for

validating the results of our experiments. Chapter 5 presents the first set of contributions

of this dissertation, precisely the first speed optimization stage of the initial GMM-based

tool, and the intensive validation for using the GMM in clustering the biological sequences.

Chapter 6 investigates the effect of using various novel GMM-based techniques, in addi-

tion to the achieved performance improvement in our GMM module. It further validates

the use of the GMM approach that resolves the issue of requiring an accurate similarity

threshold. Chapter 7 presents a comparative and qualitative study on various state of

the art approaches that were not yet used in the field of clustering biological sequences.

A novel and performant approach is also introduced in Chapter 7, and involved in the

qualitative study. Finally, Chapter 8 concludes the work that has been done in this thesis.





II
CLUSTERING: TECHNIQUES, TOOLS, AND

VALIDATION

11





13

This part examines the state of the art for the clustering techniques in general. Then

it highlights the techniques that are used in the existing tools for clustering biological

sequences, and the targeted use cases of these tools. Finally, it presents some state

of the art indexes for assessing the quality of a given clustering. The first chapter of

this section presents the clustering techniques. The second chapter introduces some

existing tools for clustering biological sequences and highlights the differences between

their algorithms. The third chapter discusses the validation techniques for the clustering.





2

CLUSTERING TECHNIQUES

Clustering is the act of partitioning a set of elements into groups of somehow related

ones. A wide variety of clustering algorithms are proposed and discussed in the liter-

ature [Mirkin, 2012], and some of the most popular ones are presented in the following

sections.

2.1/ HIERARCHICAL

A hierarchical [Murtagh et al., 2012] algorithm is considered as a greedy algorithm. It

starts by considering each element as a singleton cluster in its agglomerative approach.

The distances or similarities between the elements are then used in order to progressively

merge the nearest neighboring clusters. The merging stops at the point where the result-

ing clusters are well separated by a distance greater than a certain threshold, or inversely

a similarity smaller than a certain threshold. This threshold must be chosen prior to the

application of this algorithm.

2.2/ K-MEANS

K-Means [Likas et al., 2003] is an algorithm that requires the input of K, the number

of resulting clusters, before its application. It starts by arbitrary placing the centers of

the clusters, then iteratively moving them until they reach their optimal position where

spherical-shaped clusters cover all the elements. The Euclidean distances, between the

clustered elements, are usually used in this process. In a very similar algorithm, called

DP-Means [Kulis et al., 2011], a new cluster is created only when a point is sufficiently

distant from all the other centers.

15
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2.3/ GMM

The GMMs [Guo et al., 2012] are based on statistical machine learning. They use a prob-

abilistic method to determine densities and detect clusters. The set of parameters that

govern the GMMs are estimated by the Expectation Maximization (EM) algorithm. There-

fore, theses two algorithms are tightly bound together as EM-GMM. The GMMs are widely

used in spectral clustering. Although the EM-GMM is a computationally heavy algorithm,

where studies are continuously improving its speed via parallel computation, it outper-

forms K-Means by its ability in detecting random-shaped clusters.

2.4/ DBSCAN

DBSCAN [Khan et al., 2014] is an algorithm that separates random-shaped clusters

based on the spatial density of the elements in the plane. In addition to the distance

between the elements, DBSCAN takes a distance ε and a minimum cluster size minPts

as parameters. It selects a random point and forms a cluster consisting of that point

and its neighbors that are distanced less than ε from it. This process is repeated on the

unclustered elements until none is left. The singletons are classified as noise. Several

algorithms that extend DBSCAN are also discussed in [Khan et al., 2014], and aim to

successfully cluster a data with different densities among its clusters.

2.5/ HDBSCAN

HDBSCAN [Campello et al., 2013, Malzer et al., 2020] is a Hierarchical DBSCAN that

does not require an ε input and that solves the limitation of DBSCAN in the case of

variable-density datasets. Similarly to DBSCAN, HDBSCAN takes a minimum cluster

size minPts as a parameter then builds a hierarchy tree. Starting from the root of that

tree, HDBSCAN splits the children into clusters if they contain a number of elements

greater than minPts. Conversely, the elements of a child that contains less than minPts

are treated as noise.

2.6/ SPECTRAL CLUSTERING

The spectral clustering technique [Von Luxburg, 2007] takes a pairwise similarity matrix

as input and consists of a three-stages process: i- the computation of the affinity matrix

from the input similarity matrix, ii- the dimensionality reduction of the affinity matrix, ii- the

clustering. These stages will be detailed in the following sub-sections.
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2.6.1/ THE AFFINITY MATRIX

In the spectral clustering pipeline, the affinity matrix is usually com-

puted as a Random Walk Normalized Laplacian. However, other interest-

ing matrices have been proposed [Von Luxburg, 2007, Langone et al., 2011,

Saade et al., 2014, Dall’Amico et al., 2019a], such as the Non-normalized Lapla-

cian, Modularity [Langone et al., 2011] and the Bethe Hessian (Deformed Lapla-

cian) [Dall’Amico et al., 2019b]. These matrices are defined as follows:

• Non-normalized Laplacian:
L = D − A,

where A is the adjacency matrix between the sequences and D is its diagonal matrix

of degrees.

• Random Walk Normalized Laplacian:

Lrw = D−1L,

where D is the degrees matrix of the adjacency matrix and L is the Non-normalized

Laplacian matrix.

• Modularity:

M =
1
K

(
A −

1
K

kkT
)
,

where A is the adjacency matrix, k is the degrees vector of A, and K is the total

degree of A.

• Bethe Hessian:
Hr = (r2 − 1)I + D − rA

where I is the identity matrix, D is the degrees matrix of the adjacency matrix A, and

the constant r is the square root of the average degree of the graph, as suggested

in [Saade et al., 2014].

Let us remark the following points concerning these definitions. The Laplacian is a sym-

metric and positive semidefinite matrix. The Non-normalized Laplacian and the Normal-

ized Laplacian serve respectively in the approximation of the minimization of the RatioCut

and the NCut. The Modularity is a quality function whose high values reveal the possible

existence of strong communities. Finally, the Bethe Hessian, also called deformed Lapla-

cian, features a regulator constant r in addition to the previously introduced Laplacian

matrices.
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2.6.2/ THE DIMENSIONALITY REDUCTION

The spectrum, from which derives the nomination of spectral clustering, is used to achieve

the dimensionality reduction of the affinity matrix. This process consists in: i- computing

the spectrum (eigenvalues) for the square affinity matrix of dimension m×m, ii- selecting a

certain number n of the smallest eigenvalues, iii- extracting their associated eigenvectors

as being the most significant ones, iv- using the matrix formed from the most significant

eigenvectors to get the coordinates of the data points in an n-dimensional plane. The

number of the smallest eigenvalues, n, can be selected by using different techniques,

such as the log or the delta. The log technique consists in selecting the log(m) smallest

eigenvalues, while the delta technique stops the selection at the point where the difference

δ, between the next smallest eigenvalue and the current one, becomes greater than a

certain user defined value.

2.6.3/ THE CLUSTERING

The clustering part in the spectral clustering is achieved by using K-Means or GMMs,

although any one of the aforementioned clustering techniques can be technically used. In

order to use DBSCAN or HDBSCAN for example, a simple modification may be required

to the Euclidean1 or Manhattan2 distance calculator, in order to compute this distance in

an n-dimensional space according to the one provided in the extracted spectrum after the

dimension reduction.

2.7/ MOTIFS-BASED CLUSTERING

A recent and novel clustering method, for higher-order networks, introduced

in [Benson et al., 2016], achieves the clustering of a graph by performing cuts at the ar-

eas showing a minimum conductance. The conductance is the ratio of the number of

cut MOTIFS, that are identified on the graph, to the smaller number of nodes that are

involved in the MOTIFS, between either sides of the cut. The MOTIF can be chosen from

a set of 13 different triangular shapes with directed sides. But since the computation of

the conductance minimization is NP-hard, the authors in [Benson et al., 2016] proposed

a computationally efficient solution of two stages: i- computing the matrix holding the

number of MOTIFS in which each link is involved, i.e. the element (i, j) is the number

of identified MOTIFS containing the link between the nodes i and j, ii- applying spectral

clustering to this matrix. In [Benson et al., 2016], it was proved that the clustering that

was obtained in stage ii matched the clustering that reflects the optimal cuts on the initial
1calculated as the square root of the sum of the squares of the differences of the coordinates.
2calculated as the sum of the absolute values of the differences of the coordinates.
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graph, i.e., the cuts showing a minimum conductance. Therefore, the normalized Lapla-

cian of this MOTIFS-based matrix can be considered as a new type of affinity computation

for the spectral clustering.

2.8/ CONCLUSION

The presented clustering algorithms reflect major differences. An interesting one of these

differences is the shape of the detected cluster that can be spherical-shaped or random-

shaped for example. Moreover, the computation complexity and intensiveness represents

another major aspect of difference among these algorithms. Therefore, their application

fields shall be carefully selected based on these aspects of difference. Accordingly, the

properties of some state of the art clustering tools for biological sequences will be dis-

cussed in the next chapter.





3

BIOLOGICAL SEQUENCES CLUSTERING

TOOLS

Several packages for high speed clustering of nucleotide and/or protein sequences

are publicly available, such as CD-HIT [Li et al., 2006], UCLUST [Edgar, 2010],

DNACLUST [Ghodsi et al., 2011] and SUMACLUST [Mercier et al., 2013]. All these

packages rely on greedy algorithms for clustering the sequences. Con-

versely, DACE [Jiang et al., 2016] relies on the scalable Dirichlet Process means

(DP-means) algorithm, making it an algorithm similar to K-means. HPC-

CLUST [Matias Rodrigues et al., 2013], for its part, is based on a hierarchical algorithm.

Conversely, GCLUST [Bruneau et al., 2018] and AncestralClust [Pipes et al., 2021] are,

to our knowledge, the only two released packages that target potetially divergent se-

quences. These tools play a vital role in the sequence analysis because the use of

taxonomy dependent algorithms strongly rely on the completeness of existing databases,

while the majority of newly discovered sequences are unknown. The main features and

characteristics of these tools are presented the next sections.

3.1/ CLUSTERING HIGHLY SIMILAR SEQUENCES

3.1.1/ CD-HIT

CD-HIT is a suite of tools for biological sequence handling, including modules for cluster-

ing both nucleotide and protein sequences using word counting for computing the sim-

ilarities, in order to avoid costly pairwise sequences alignments. It processes the input

sequences by their order of length, starting from the longest and considers the first one

as the first cluster representative. It then classifies the following sequences subsequently,

based on the input similarity threshold, as either a new cluster representative or part of

a cluster for a previously classified representative. CD-HIT is very fast and can handle

extremely large databases [Li et al., 2006].

21
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3.1.2/ UCLUST

UCLUST uses a module named USEARCH for assigning the sequences to their clusters,

based on a given identity threshold and, optionally, an input of the centroid units. In con-

trast with CD-HIT, UCLUST does not sort the input sequences by length prior to clustering

them, thus the order of the sequences can impact the result since most clusters repre-

sentatives (or centroids) are chosen from the first sequences. UCLUST can also cluster

both nucleotide and protein sequences, and is able to produce a better clustering quality

than its competitor CD-HIT [Edgar, 2010] while consuming less memory.

3.1.3/ DNACLUST

DNACLUST was designed for quick clustering of highly similar DNA sequences, but it

does not handle protein sequences. Similarly to CD-HIT, it first sorts the sequences in

their decreasing order of length. If the sequences have equal length, they are sorted in

their decreasing order of abundance. The first sequence is considered as the current

cluster centroid and all the input sequences having a distance with the centroid inferior

than the user input distance threshold are added to that cluster. This procedure is re-

peated until all the sequences are clustered. Based on its authors study, DNACLUST

outperforms UCLUST when high similarity thresholds, above 0.95, are chosen.

3.1.4/ SUMACLUST

SUMACLUST, along with SUMATRA, is a package aiming for a fast and exact DNA se-

quences comparison. It first compares the pairwise similarities between sequences using

SUMATRA, then sorts the sequences by abundance, and finally it clusters the sequences

with a greedy algorithm similar to CD-HIT and UCLUST. The main difference between

SUMACLUST and its competitors, CD-HIT and UCLUST, is that it uses a pairwise se-

quence alignment algorithm before clustering the sequences. Moreover, the alignment

step is preceded by a filtering step which enables to only align couples of sequences that

potentially have an identity greater than the chosen threshold. Finally to improve the per-

formance of the package, the filtering and the alignment steps are parallelized according

to the SIMD model.

3.1.5/ DACE

DACE is a parallel high performance clustering tool for very large data sets. It itera-

tively partitions the input data set into several non intersecting subsets before using the

DP-means algorithm for clustering the subsets in parallel. Based on [Jiang et al., 2016],
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DACE runs up to 80 times faster than its competitors including CD-HIT and UCLUST.

However, this is only valid for very large data sets while for small data sets it might per-

form slower than the mentioned competitors.

3.1.6/ HPC-CLUST

HPC-CLUST is a tool featuring a distributed hierarchical clustering algorithm. It enables

HPC-CLUST to cluster large data nucleotide sequences at high speed. In contrast with

the previously described tools, HPC-CLUST takes aligned sequences as input, thus sav-

ing the computation time of the alignment task. The hierarchical algorithm starts by

grouping close sequences, then it forms larger clusters by iteratively merging the clos-

est groups.

3.2/ CLUSTERING POTENTIALLY DIVERGENT SEQUENCES

3.2.1/ GCLUST

In [Bruneau et al., 2018], a clustering Python module that uses Laplacian Eigenmaps

and a Gaussian Mixture Model, was presented. Unlike most clustering packages, that

largely utilize greedy approaches and just aim to improve the speed of clustering highly

similar sequences, this one focuses mainly on improving the accuracy of the cluster-

ing for nucleotide sequences. Only few intelligent clustering tools use machine learning

approaches. For instance, MeShClust [Girgis et al., 2018] is a multi-threading enabled

package based on a mean shift algorithm. But based on its usage instructions, the input

identity of the sequences parameter is the most important parameter. To our knowledge,

the proposed package, namely GCLUST, is the first clustering method that uses unsu-

pervised learning [Hastie et al., 2001] and does not require any sequences identity or

centroid sequences user input. Such methods can help researchers make progress in

a field where good balance between accuracy in clustering, even for potentially distant

and divergent biological sequences, and high computational speed is required. Reaching

this balance is unfortunately very difficult in practice. In particular, although the com-

putational speed of the method proposed in [Bruneau et al., 2018] was demonstrated to

be only moderately worse than the competitors on the ND3 test set of 100 sequences,

its performance is significantly degraded when applied to larger sets composed of a few

hundreds of sequences.

GCLUST is made of three main stages:

1. Sequences alignment using MUSCLE [Edgar, 2004]: in this phase, the input se-
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quences are sent to the MUSCLE package in order to obtain an aligned set. MUS-

CLE is available as an external and independent executable module, in addition to

its existence as a function in Python’s COmparative GENomics Toolkit [cog, ] (co-

gent). (See [Bruneau et al., 2018]for more details on how MUSCLE can be called

from a Python package.)

2. Similarity matrix calculation: this phase relies on pairwise sequence comparison.

For a set of N sequences, a NxN square matrix is computed. The value of the (i, j)

element in this matrix is the similarity index between the pair of sequences i and j.

This similarity index is based on the distance between these two sequences, which

is calculated using the scoring matrix EDNAFULL.

3. Sequences clustering: this last stage is the core of the clustering method. It takes

the similarity matrix as input, and clusters the sequences using the Laplacian Eigen-

maps and the Gaussian Mixture Modelling.

The first and third stages depend on third party modules and existing libraries’ functions,

whereas the second stage, is an internally developed code to construct the similarity

matrix. This latter is an intensive computation step with a complexity of order O( N2−N
2 ),

where N is the number of input sequences1.

3.2.2/ ANCESTRALCLUST

AncestralClust [Pipes et al., 2021] is a recently released tool that is developed for cluster-

ing divergent nucleotide sequences. It uses an iterative hierarchical method. Based on a

recent research [Pipes et al., 2021], AncestralClust proceeds as follows: i- a user defined

number of sequences are randomly selected from the input dataset, ii- a neighbor-joining

phylogenetic tree is constructed for each one of the selected sequences (the number of

sequences in this tree can be optionally defined by the user), iii- based on the branch

lengths, the constructed trees are split into initial clusters, iv- the ancestral sequence

of each initial cluster is inferred after aligning its sequences, v- the genetic distance is

calculated between the remaining sequences and the ancestral sequences of the initial

clusters, and based on this distance, each sequence is either assigned or not to one

of these clusters. The algorithm iterates over these 5 steps until all the sequences are

assigned to clusters.

1This matrix is symmetric and thus only the upper or lower diagonal must be computed.
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3.3/ CONCLUSION

The description of the aforementioned tools shows that some of them use similar al-

gorithms. For instance, the main difference between three of the tools that target highly

similar sequences, is a minor change in the initial sorting process for the input sequences.

These tools commonly implement a hierarchical algorithm except DACE. Moreover, a pre-

vious study [Chen et al., 2013] concluded that the estimation of the number of operational

taxonomic units (OTUs)2 is severely affected by the choice of the choice of the similarity

threshold. This study compared the results of various clustering tools, including some of

the ones presented above, in clustering 16S rRNA sequences.

Conversely, the tools that are designed to handle potentially divergent sequences do

not require the choice of a similarity threshold, and implement two completely different

algorithms. One of these tools hierarchically builds subsets of phylogenetic trees and

detects the clusters based on the length of the branches, while the other tool suggests

an interesting unsupervised ML algorithm that uses EM-GMM. The latter can also avoid

the inconveniences of using phylogenetic trees where the phylogenetic signal can be

scrambled in some cases, e.g. horizontal genes transfer. It also leaves enough room

for improvements. The next chapter of this thesis presents various clustering validation

indexes that will be useful later in assessing the quality of the clusterings obtained during

our experiments.

2Clusters of closely related organisms grouped by DNA sequence similarity
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CLUSTERING VALIDATION

In this chapter a few methods for evaluating the quality of a clustering are presented.

These methods consist of calculating certain metrics that indicate if an obtained cluster-

ing is accurate or not. Based on [Schütze et al., 2008, clu, ], a clustering can be evaluated

either internally or externally. Although these two types of validation can be complemen-

tary in a qualitative study, they are not both always applicable; for instance, an external

validation requires a previous knowledge of the correct clustering, conversely from the

internal validation that do not have such a requirement.

4.1/ INTERNAL VALIDATION

An internal evaluation focuses on the intra-clusters and inter-clusters similarities, i.e.,

a good clustering should have a high intra-cluster similarity and a low inter-cluster

one. These similarities are used in the computation of many internal clustering in-

dexes [Wang et al., 2019, Guyeux et al., 2019, Somashekara et al., 2014, clu, ] such as

Silhouette, Davies-Bouldin, and Calinski Harabasz among others. A brief description

about these indexes will be presented in the following subsections.

4.1.1/ SILHOUETTE

This index relies on two distances for each element i of the clustered dataset: a(i) which is

the mean distance between this element and the other elements belonging to the same

cluster, and b(i) which is the minimum distance between this element and all the other

elements of the other clusters. If the size of i’s cluster is equal to 1, the Silhouette value

s(i) for this element i is equal to 0, otherwise, this value is defined by the following formula:

s(i) =
b(i) − a(i)

max{a(i), b(i)}
.
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The Silhouette index for a given clustering is the average of the Silhouette indexes of all

its elements. This index ranges between -1 (indicating an inappropriate clustering) and 1

(for an appropriate one).

4.1.2/ DAVIES-BOULDIN

This index is equal to the mean similarity between each cluster Ci and its most similar one

C j. The similarity Ri, j between two clusters i and j is the sum of their diameters divided by

the distance between their centroids. Let k be the number of clusters in a given clustering.

The Davies-Bouldin index is calculated as follows:

DB =
1
k

k∑
i=1

maxi, jRi, j.

The DB index is a positive decimal. A small value for this index indicates that the clusters

are well separated and thus, the quality of the clustering is good.

4.1.3/ CALINSKY-HARABASZ

Also known as the variance ratio criterion, this index relies on two variances: the overall

within-Cluster variance S S W and the overall between cluster variance S S B [cal, ]. Let N

be the number of the clustered elements (observations) and k the number of clusters in

the obtained clustering. The Calinski-Harabasz index is calculated as follows:

CH =
S S B

S S W
×

N − k
k − 1

.

The CH index is a positive decimal. Contrary to the DB index, a higher value of the CH

index indicates a better clustering.

4.2/ EXTERNAL VALIDATION

The external validation indexes are also used for the quality assessment of a certain clus-

tering, in the cases where they are applicable. Conversely from the internal clustering

validation indexes, the external validation indexes require both the true1 and the resulting

clusterings. These indexes provide a better assessment of a resulting clustering since

they compare it to a human defined truth. Two major aspects are assessed when com-

puting the external indexes:

1also called gold standard or golden truth
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• The existence in a resulting cluster items that should be in another cluster.

• Obtaining a correct number of resulting clusters.

4.2.1/ PURITY

The purity metric can either be computed for each cluster individually or for the whole

clustering. The purity of a cluster [Schulte im Walde, 2003] can be computed as defined

in equation 4.1. The purity of a given cluster has a value in the interval ]0, 1]. It will be

close to zero if the cluster’s elements are found in different clusters in the perfect cluster-

ing and on the other hand it will increase up to 1, if the cluster have all its elements from

the same cluster in the perfect clustering. The quality of a single cluster Ci is computed

according to the maximum of pi
j which is the number of elements that Ci has in common

with the cluster j in the perfect clustering.

purity(Ci) =
1
|Ci|
∗ max j(pi

j) (4.1)

In addition, as defined in [Schütze et al., 2008] and [clu, ], for a dataset of N elements,

the purity of a certain clustering K, formed by n clusters ki (1 ≤ i ≤ n), with regards to a

reference clustering C, formed by m clusters c j (1 ≤ j ≤ m), is calculated as follows:

purity(K) =
1
N
∗

n∑
i=1

maxm
j=1|ki ∩ c j| (4.2)

The purity of a clustering ranges from a value close to 0, for randomly mixed items, to 1

for a pure clustering. Although it is able to penalize the existence of items that are wrongly

classified together, this index presents two major drawbacks.

1. It is not suitable for imbalanced clusters. For example, the worst purity will score

0.970 in a case where a true clustering consists of 2 clusters, with the first cluster

containing 100 elements and the second cluster containing only 3 elements.

2. It does not penalize the division of a certain cluster into sub-clusters. Indeed, if all

the items are clustered as singletons, then a perfect purity score of 1 is obtained.

4.2.2/ ADJUSTED RAND INDEX

Beside the purity, the Adjusted Rand Index (ARI) is another external validation index

that is frequently used [Santos et al., 2009]. This index tests the clustered items by pairs

and checks if the items in this pair are correctly clustered together or apart. Contrary to

the purity index, a wrong resulting number of clusters is also penalized in this method.
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Therefore, the ARI overcomes the limitations of the purity and better reflects the quality

of the clustering. This index ranges between 0 for two completely different clusterings

to 1 for identical clusterings. The compared clusterings do not have to have the same

number of clusters. Moreover, the ARI is symmetric: swapping or changing the clusters’

labels, in a certain set, does not affect the calculation, e.g. the sets [a,a,a,b,b,c,c] and

[c,c,c,a,a,d,d] are still detected identical although the labelling of the clusters’ elements

was changed. But the ARI and the Purity indexes are complementary and should be

computed together to determine if a non-perfect ARI score is related to impurities or

wrong number of resulting clusters or both. Purity and ARI were both used to assess the

results of the experiments presented in the subsequent chapters.

4.3/ CONCLUSION

The internal and the external validation indexes both play a crucial role in the analysis of

the clustering quality. The internal validation indexes can be computed for any resulting

clustering, without the need of any additional knowledge about the clustered data. Con-

versely, although they require an a priori knowledge of the true clustering, the use of the

external validation indexes remains unavoidable because a good score in an internal val-

idation index does not necessarily infer a good quality clustering in a real application as

shown in [Schütze et al., 2008]. Therefore, the choice of using either one or both of the

validation indexes types, depends on the available data for their computation. The pre-

sented validation indexes will be used to assess the quality of the produced clusterings.

In the next chapters, the main contributions of this thesis are presented.
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This part examines the main contributions in this thesis. As previously discussed, the pro-

posed approaches and methods are designed to solve different challenges, starting from

assuring a reliable clustering for potentially divergent biological sequences. It extends to

improve the performance and accuracy of the GMM-based tools for clustering biological

sequences, in addition to validating and proposing additional and novel algorithms for this

clustering purpose.





5

CLUSTERING POTENTIALLY

DIVERGENT SEQUENCES

5.1/ INTRODUCTION

Mutations and substitutions, in the nucleotide sequences, happens in different rates and

for many reasons [Duffy et al., 2008, Wielgoss et al., 2013, Oliver et al., 2010]. While

some substitutions and mutations happen as a natural environment adaptation pro-

cess, e.g. the crisis-causing bacterial adaptation to antibiotics [Gullberg et al., 2011,

Ventola, 2015] that is emerging as a reason of excess of mortality [Lim et al., 2016], oth-

ers might be linked to some artifacts, such as the exposure to some pollutants, and result

in diseases and anomalies [Sørensen et al., 2003], e.g. cancerous cells.

As a result of the increasing number of mutations’ causes and the large number of new

sequences discoveries, linking these sequences to their siblings and ancestors becomes

more complex and the use of clustering tools is essential to tackle this problem. Many

clustering tools, based on hierarchical or greedy algorithms, relying on a user input simi-

larity threshold, and targeting high speed clustering of highly similar sequences, currently

exist and some of them became widely used. Some of these tools use parallel com-

puting to provide even higher clustering speeds. In [Bruneau et al., 2018], an innovative

clustering module for genomic sequences that uses Laplacian Eigenmaps and a Gaus-

sian Mixture Model, was presented. The first implementation of the algorithm gave very

promising results when compared to other existing tools, especially in terms of clustering

accuracy of potentially divergent sequences. However, since it computes the similarity

matrix between all the input sequences which is a computationally intensive operation,

its execution time significantly increases when clustering large sets of input sequences.

Therefore, reaching a good speed and accuracy in nucleotide or protein sequences clus-

tering, involving large numbers of divergent sequences, is a very challenging problem.

In the present chapter, a new implementation of the clustering algorithm is presented. A

35
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special attention was given to improve the overall performance and scalability of this new

version. The new hybrid C++/Python clustering package, called SpCLUST, computes

in parallel the similarity matrix using the Message Passing Interface (MPI) which drasti-

cally reduces the execution time of this stage. This new package was integrated into a

GALAXY platform [Afgan et al., 2018] and is freely available online. Many experiments

were conducted to evaluate the accuracy and the performance of SpCLUST while using

simulated and real data sets. It was also compared to other clustering packages, such as

UCLUST, CD-HIT and DNACLUST.

The rest of this chapter is organized as follows. In Section 5.2, the improvements added

to the initial Python package are detailed. In Section 5.3, a performance comparison

between the different versions of the package is presented. It is followed by a comparative

study between SpCLUST and other packages. The chapter ends with a discussion that

recapitulates the presented contributions.

5.2/ SPCLUST: AN IMPROVED CLUSTERING PACKAGE

In this section, we recall the main ideas underlying the construction of the Python mod-

ule in [Bruneau et al., 2018] and describe the main proposed changes for improving its

performance and expanding its functionality. We also present a description of each sub-

module of the code.

5.2.1/ ANALYSIS OF THE ORIGINAL PYTHON PACKAGE

The main objective of the original package was to provide a good clustering method.

For a given relatively divergent sets of sequences and without a previous knowledge

of the number of clusters, it should produce high quality clusters with high intra-class

similarity and low inter-class similarity. It solely focused on the quality of the clusters

and little measures were taken to improve the performance of the method. Therefore, in

this chapter, great emphasis was placed on improving the performance of this clustering

method. A thorough analysis of the execution time of each stage of the package was

performed in order to detect the main bottlenecks.

This analysis was done using two data sets consisting of 100 and 1024 sequences re-

spectively, and using two computers equipped with different processors: an i3-5005U

2.0GHz dual-core (4 core threads) processor and an i7-6700 3.4GHz quad-core (8 core

threads) processor. The profiling results are displayed in Table 5.1.

As shown in Table 5.1, the similarity matrix calculation, which is mostly composed of

the distance matrix computation, is by far the most time consuming task in the overall
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i3-5005U 2.0GHz processor i7-6700 3.4GHz processor

100 sequences 1049 sequences 100 sequences 1049 sequences

Alignment phase 8 seconds 73 minutes 5 seconds 36 minutes

Similarity matrix calculation phase 18 minutes 5696 minutes 9 minutes 2848 minutes

Clustering phase 7 seconds 33 minutes 4 seconds 15 minutes

Total 18 minutes 5802 minutes 9 minutes 2899 minutes

Table 5.1: Execution time of the original Python package.

pipeline. Therefore, optimizing the computation of the similarity matrix should drastically

reduce the overall execution time of the clustering package.

In consequence, most of the modifications presented in this chapter concern this stage.

In particular, it was re-implemented in the C++ programming language which, although

it is a more complex programming language than Python [Oliphant, 2007], is clearly

faster [Fourment et al., 2008]. Moreover, to furthermore reduce the execution time of the

computation of the similarity matrix which computes independently the similarity indexes

between all the sequences, it was parallelized using MPI according to the Master/Slave

model. The content of each phase of the package and the added modifications to each

one of them are detailed in the next subsections

5.2.2/ ALIGNMENT PHASE

This phase consists of obtaining an aligned version of the input sequences. Many

alignment packages, such as MUSCLE [Edgar, 2004], T-Coffee [Notredame et al., 2000],

MAFFT [Katoh et al., 2013], PASTA [Mirarab et al., 2015], and

ClustalW [Thompson et al., 2002], are available but have different accuracy and

performance. Notredame states in [Notredame et al., 2000] that T-Coffee provides a

dramatic improvement in accuracy with a modest sacrifice in speed. On the other hand,

ClustalW is widely used, has cross-platform releases and offers both command line and

a graphical user interface version. Kuo-Bin Li also worked on improving its performance

by introducing in [Li, 2003] a parallel version, called ClustalW-MPI.

However, MUSCLE remains better supported than ClustalW for command line calls, re-

quiring no user intervention, and can on average achieve both higher accuracy and lower

execution time than ClustalW or T-Coffee, depending on the chosen options [MUS, ]. For

instance, in the case of aligning large data sets which is an extremely time consuming

task, after just two iterations, MUSCLE gives an alignment with a precision equal to the

one computed by T-Coffee and takes less time than ClustalW [MUS, ]. Moreover a study,

published in [Deng et al., 2006], proposes a parallel computation version of MUSCLE that

should theoretically improve further its performance. However, the implementation of the

proposed parallel version of MUSCLE was not found online.



38 CHAPTER 5. CLUSTERING POTENTIALLY DIVERGENT SEQUENCES

Further benchmarks [Wilm et al., 2006, Ahola et al., 2006, Nuin et al., 2006] showed that

MAFFT outperforms the other tools, including MUSCLE, in terms of alignment’s speed

and quality. Moreover, MAFTT has a multi-threaded version where the alignment can

be computed in parallel using all the available core threads in a workstation. However,

unlike the results presented in [Wilm et al., 2006, Ahola et al., 2006, Nuin et al., 2006],

our alignment test, performed on a set of random nucleotides sequences and conducted

over a workstation equipped with a dual-core (4 core threads) 2.0GHz processor, gave the

following results: MUSCLE’s official and sequential module computed the alignment in 11

seconds while the multi-threaded version of MAFFT took 13 seconds and the sequential

one required 18 seconds. Moreover, MUSCLE had the following advantages:

• It is a single 4MB executable file, whereas MAFFT’s module is a package containing

over 100 files with a total size higher than 60MB after extraction.

• It does not generate any interfering outputs when called with the “-quiet” parameter,

unlike MAFFT that only omits the alignment progress output using this parameter.

For these reasons, the proposed SpCLUST package continues on using MUSCLE for

aligning the sequences.

5.2.3/ SIMILARITY MATRIX COMPUTATION PHASE

In the original package, for each pair of aligned sequences, the distance between them

is computed using the EDNAFULL [EDN, ] scoring matrix. They are stored in the dis-

tance matrix, where the element of index (i, j) contains the distance between the ith and

jth sequences. The similarity matrix is then computed from the distance matrix. In the

new version, this procedure was re-coded in C++ to reduce its execution time and it was

extended to use two additional scoring matrices: BLOSUM62 and PAM250 [Sub, ] which

can be specified as a parameter. The added scoring matrices extends SpCLUST’s oper-

ational scope to include protein sequences clustering.

Since the computation of the distance matrix is the most time consuming phase of the

clustering package and it is quadratically proportional to the size of the input sequences,

it was also parallelized to reduce its execution time. The parallel version uses MPI to

distribute the computations. For each available core thread on the used workstation, a

slave process is created and the master process assigns to each slave process an equal

number of sequences pairs. The distances between the assigned pairs of sequences are

computed in parallel on P slave processes and sent back to the master which stores them

in the distance matrix. This inter-process interactions are illustrated in Figure 5.1. Since

the computed distance between two sequences is a commutative operation, the resulting
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distance matrix is symmetric. Therefore, only the upper triangular matrix is computed and

the lower one is the transpose of the upper triangular matrix, such as d(i, j) = d( j,i) for j < i.

Figure 5.1: Processes Master-Slave architecture.

5.2.4/ CLUSTERING PHASE

This phase uses the previously calculated similarity matrix to cluster the sequences. It

also relies on the use of the Laplacian Eigenmaps and the Gaussian Mixture Model,

as a machine learning model, in order to produce the clustering. In the new version,
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obsolete functions were replaced and some parameter calibration were necessary to get

the same clusters as in [Bruneau et al., 2018], for 100 DNA sequences taken from the

mitochondrially encoded NADH dehydrogenase 3 (ND3) gene.

5.2.5/ PACKAGE AVAILABILITY

SpCLUST is available in command line versions for both Windows and Linux. A basic

graphical user interface allows the user to browse input and output files, and to view the

obtained clustering. The source code and the executable files of the SpCLUST package

are available online1. They could be customized by passing parameters that can modify

the quality and the execution time of the alignment performed by MUSCLE. The latest

version is also integrated to a publicly accessible GALAXY server2. It can be found under

the menu item “SpCLUST”.

5.3/ PERFORMANCE EVALUATION OF SPCLUST

After describing the workflow and the improvements offered in the new clustering module,

the performance of the different versions will be investigated. The following experiments

will detail the performance of each phase in the proposed module.

5.3.1/ ALIGNMENT PHASE

In this section, the execution time of the alignment phase, performed by MUSCLE, is pre-

sented for different sizes of data sets, different number of iterations, and while running on

different workstations. Figures 5.2 and 5.3 show the time taken to align, in different num-

bers of iterations, two data sets using the 2.0GHz i3-5005U processor and the 3.4GHz

i7-6700 processor.

For large data sets, the choice of the number of iterations drastically impacts the align-

ment time. Therefore, a trade-off between the quality of the alignment and its execution

time should be considered. The impact of this choice on the clustering quality will be

discussed in Section 5.4.2.3.

5.3.2/ SIMILARITY MATRIX CALCULATION PHASE

As mentioned in Section 5.2, the similarity matrix calculation was re-implemented in C++

then parallelized using MPI to reduce its execution time. Figure 5.4 illustrates the execu-
1https://github.com/johnymatar/SpCLUST
2http://galaxy.ul.edu.lb
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Figure 5.2: Alignment time for the 100-sequences ND3 set.

Figure 5.3: Alignment time for the 1049-sequences set.

tion times taken by each version to compute the similarity matrix of the 1049-sequences

set with the three scoring matrices. These experiments were conducted on a workstation

equipped with the I3-5005U 2.0GHz dual-core Intel processor. The parallel version was

using the four core threads of that processor.

The results in Table 5.1 show a huge performance improvement when compared to the

execution time needed by the initial Python module. The modulated version is a C++

version where the main module and the sequence pairwise distance calculation module

were two separate executables. It took 342 minutes to compute the similarity matrix

using the EDNAFULL scoring matrix while the original Python module required 5696
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Figure 5.4: Similarity matrix calculation time using the I3-5005U 2.0GHz dual-core (4 core
threads) processor.

minutes, resulting in around 16.6X speed-up. The serial one executable version took

just 99 minutes, showing a speed-up of 57.5X. Finally, the parallel version, running on 4

core threads, took 34 minutes, a 167.5X speed-up over the Python package and a 2.91X

speed-up over the serial C++ version.

The results also show that for all the versions, the similarity matrix calculation time is

nearly the same, regardless of the chosen scoring matrix: the use of the newly integrated

matrices does not affect the performance of the package.

Moreover, to study the scalability of the parallel similarity matrix computation, its normal-

ized execution time and its strong scaling efficiency3 were measured. Figure 5.5 shows

the normalized execution time and the strong scaling efficiency of this matrix computa-

tion using different number of slave processes running on the 3.4GHz I7-6700 quad-core

(8 core threads) processor for the same data set. As shown in Figure 5.5, the strong

scaling efficiencies with 2, 4 and 8 slave processes were equal to 96%, 80% and 59%

respectively. Those numbers demonstrate that although the parallel version do not scale

linearly due to communication and I/O overheads, its execution time is continuously re-

duced while increasing the number of used slave processes up to the number of available

core threads.

A similar experiment was conducted on a workstation equipped with 4 slower 1.87GHz

quad-core XEON E7520 processors and using up to 16 core threads. Figure 5.6 shows

the normalized execution time and the strong scaling efficiency of the parallel similarity

3If the amount of time to complete a work unit with 1 processing element is t1, and the amount of time to
complete the same unit of work with N processing elements is tN, the normalized execution time is (tN/t1) ∗
100 and the strong scaling efficiency is t1/(N ∗ tN) ∗ 100
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Figure 5.5: Scalability on a 3.4GHz processor with 8 core threads.

matrix computation. As in the previous experiment, and as shown in Figure 5.6, it can

be noticed that the strong scaling efficiency of this parallel application slowly decreases

from 99% with 8 slave processes to 59% with 16. It can also be noticed that the optimal

number of slave processes to use is 8, and beyond this number the IO overhead from

reading sequences in parallel significantly reduces, on this workstation, the scalability of

the parallel similarity matrix computation. This second workstation is currently hosting the

publicly accessible GALAXY server with the latest SpCLUST version.

Figure 5.6: Scalability on four 1.87GHz processors using 16 core threads.

To conclude the scalability study, the similarity matrix computation time was recorded for
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five larger sets of sequences. These sets contained 2000, 5000, 10000, 20000 or 30000

sequences, extracted form a set of aligned archaea nucleotide sequences that was re-

trieved from the Linux package of HPC-CLUST4. These experiments were performed

over a cluster of 34 nodes, where each node has a 3.4GHz processor with 4 cores and

2GB RAM. Figure 5.7 shows the recorded computation time for each input number of

sequences, ranging from 0.66 minutes for the 2000-sequence set to 42 minutes for the

30000-sequence set. As previously shown, the complexity of the similarity matrix com-

putation is of order O( N2−N
2 ), where N is the number of input sequences. Therefore, the

number of operations should scale quadratically to N. However, the experiments show

that the computation time of the similarity matrix scales on a slower rate. For example,

between the 5k and the 10k sets the computation time scales by a ratio of 3 while the

number of operations was multiplied by 4. Similarly, between the 10k and the 20k sets,

the computation time only scales by a ratio of 3.5. These ratios show that the proposed

solution is indeed scalable and the difference of proportionality comes from communica-

tion time needed to distribute the increasing data set to the cluster’s slave processes over

the network.

Figure 5.7: Scalability on a cluster of 34 nodes having 3.4GHz processors.

5.3.3/ CLUSTERING PHASE AND OVERALL PERFORMANCE

The clustering phase’s sub-module, as stated in Section 5.2, was updated and uses the

latest Gaussian Mixture model package [Gau, a]. The recorded runtime values reflect the

clustering phase’s performance after the replacement of the obsolete functions. These

4https://www.meringlab.org/software/hpc-clust/hpc-clust-1.2.1-bin.tar.gz
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tests allow us to conclude the profiling analysis and assess the overall performance im-

provement of the full package. Figure 5.8 shows the detailed profiling results of SpCLUST

while running on the 2.0GHz dual-core (4 core threads) i3-5005U processor and for a set

of 1049 sequences. It took 153 minutes while using a maximum precision alignment and

just 67 minutes with a fast alignment. These values show a speed-up of 37.9X and 86.5X,

respectively, when compared to the original Python module. Moreover, the total runtime,

on the quad-core (8 core threads) i7-6700 3.4GHz and for the same set of 1049 se-

quences, was equal to 65 minutes using a maximum precision alignment and 23 minutes

using a fast alignment, giving a 44.6X and 126X speed-up, respectively.

Figure 5.8: Run time for all phases execution.

5.4/ A COMPARATIVE STUDY BETWEEN SPCLUST AND COMPET-

ING TOOLS

This section presents a comparative study between SpCLUST and four competing clus-

tering tools. The experimental protocol is first described, then the clustering results are

compared in terms of number of clusters and their contents. Finally, the effect of the

alignment quality on the clustering is discussed.

5.4.1/ EXPERIMENTAL PROTOCOL

The comparative study, interpreted in this section, used eighteen sets of simulated data

(12 genomic sets and 6 protein sets) and eight sets of real data (4 genomic sets and 4

protein ones). The simulated data sets derive from the following reference sequences:
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• four different NADH dehydrogenase 3 (ND3) sequences, extracted from a collection

of Platyhelminthes and Nematoda species. The mutated sequences, generated

from these four reference sequences, should produce four clusters.

• five different protein sequences (should produce five clusters).

• six different gene sequences extracted from chloroplastic genomes (should produce

six clusters).

From each group of reference sequences, new mutated sets which contains 30 mutations

from each initial sequence, were generated. Each set had different properties in terms

of mutation criteria and divergence rate between its sequences. The mutated sets were

divided into two categories based on the used transition. The transition is performed in

either of the following two ways:

1. the nucleotide or protein transition is performed on a random base.

2. the nucleotide transition is performed according to a real computed rate for URA3,

published in [Lang et al., 2008], whereas the protein transition is performed accord-

ing to the rates of the PAM1 substitution matrix.

Each category includes three mutated sets from each group of reference sequences,

namely {S1, S2, S3} and {S’1, S’2, S’3} for each group. The mutation is performed

using the following criteria:

• the S1 and S’1 are the result of four generations of mutation with 15% mutation rate,

10 maximum random insertions of size inferior to 9 nucleotides or proteins and a

gap rate equal to 30% of the number of insertions with a maximum gap size of 10.

• the S2 and S’2 are the result of four generations of mutation with 10% mutation

rate, 7 maximum random insertions of size inferior to 6 nucleotides or proteins, and

a gap rate equal to 20% of the number of insertions with a maximum gap size of 7.

• the S3 and S’3 are the result of two generations of mutation with 5% mutation rate,

4 maximum random insertions of size inferior to 4 nucleotides or proteins, and a

gap rate equal to 10% of the number of insertions with a maximum gap size of 4.

Based on the mentioned criteria, the sets S1 and S’1 contain the most divergent se-

quences when compared to the initial ones, whereas S3 and S’3 contain the least di-

vergent ones. Figure 5.9 shows part of a ND3 sequence on which four generations of

simulated mutations were performed. The first row contains the original sequence con-

tent and the next four rows show the added mutations, gaps and insertions from one

generation to the other.
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Figure 5.9: ND3 simulated mutation

The real data sets were formed from mixes of genomic or protein sequences gathered

and downloaded using NCBI’s HomoloGene online tool5 and NCBI’s virus resources6,7.

The starting genomic or protein sequences are from:

• homologous genes to the human genes FCER1G, S100A1, S100A6, S100A8,

S100A12 and SH3BGRL3 which all belong to the first chromosome, and to the

human gene MC1R which belongs to the 16th chromosome. These homologous

genes are extracted from a collection of mammal species.

• variants for segments PB2 and PB1 from the most fatal type A influenza’s

serotypes [Inf, ]. These serotypes are H1N1, H2N2, H3N2, H5N1, and H7N9.

• variants for the C-E genome region of the Zika virus.

The sequences in each data set were randomly shuffled. The following describes the

content of each data set and how many clusters are expected in the clustering results:

• Set 1 consists of six series of homologous genes to the FCER1G, S100A1, S100A6,

S100A8, S100A12, and SH3BGRL3 genes which belong to the human’s first chro-

mosome. The sequences should be separated into six clusters.

• Set 2 contains a series of homologous genes to the MC1R gene, found in the hu-

man’s sixteenth chromosome, in addition to the series in the first set. The clustering

of set 2 should therefore produce seven clusters.

• Set 3 contains variants of the segment PB2 of the influenza type A serotype and

should produce five clusters.

• Set 4 contains variants of the Zika’s C-E segment, influenza’s AH1N1 PB2 segment,

and influenza’s AH2N2 PB1 segment and should produce three clusters.

All these data sets are available on SpCLUST’s GitHub repository8.

In this comparative study, besides SpCLUST, six other clustering tools were considered:

CD-HIT, UCLUST, DNACLUST, SUMACLUST, DACE, and HPC-CLUST. However, since
5https://www.ncbi.nlm.nih.gov/homologene
6https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi#mainform
7https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi
8https://github.com/johnymatar/SpCLUST
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SUMACLUST failed to run correctly on many data sets and HPC-CLUST generated clus-

ters containing only singletons on most of the data sets, only the remaining four tools

were evaluated and compared to SpCLUST.

To cover multiple levels of sequence divergence, we used 3 similarity thresholds: 0.9,

0.6, and 0.4. These values have been chosen according to [Pearson, 2013], an article

investigating homologous sequences similarity for a wide range of organisms. According

to this research work, 0.9 identity allows to identify highly similar groups of sequences,

while identities ranging from 0.4 to 0.6 cover the majority of highly to moderately divergent

groups of sequences.

5.4.2/ RESULTS COMPARISON AND INTERPRETATION

The interpretation of the experiment’s results is organized in three tracks. The number

of clusters, in each clustering, is discussed in the first track, the clusters’ contents are

assessed in the second one, whereas SpCLUST’s results, using a high quality (slow) or

fast alignment, are compared in the third track.

5.4.2.1/ ANALYSIS OF THE NUMBER OF RETURNED CLUSTERS

The number of clusters in the clustering results of each evaluated tool, reflects a first

aspect of the clustering accuracy. Obtaining a number of clusters equal or relatively very

close to the real value, is an essential but not a sufficient condition for considering it to be

a good quality clustering. The content of the clusters must corresponds to the reality too.

The data presented in Table 5.2 show the resulting clusters’ numbers for the simulated

sets that were produced from the sequences previously mentioned in the experimental

protocol. In Table 5.2, “Prot.” and “Clp” are the abbreviations of “Protein” and “Chloro-

plast”. On the other hand, an “E” value indicates that the concerned tool was not able to

cluster the specified data set with the given options, e.g. DNACLUST and DACE failed to

handle the large chloroplast sequence sets while CD-HIT-Est failed to run with similarity

thresholds equal to 0.6 or 0.4. Moreover, a “-” indicates that the current tool or parameter

is not designed to handle this type of sequences, i.e. this tool is designed for genomic

sequences while the set contains protein sequences, or vice versa. Finally, two tools of

CD-HIT were used: for the genomic sets CD-HIT-Est was used whereas for the protein

sets it was replaced by CD-HIT-Protein.

As described in the experimental protocol, the expected number of clusters for each data

set are:

• 4 clusters for the ND3 simulated sets.
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CD-HIT DNACLUST UCLUST DACE SpCLUST
Similarity threshold
or scoring matrix 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.6 0.4 0.6 0.4 DNAF. PAM. BLOS.

ND3 simul. set S1 124 E E 124 36 1 124 30 13 E E 2 - -

ND3 simul. set S2 94 E E 110 23 1 106 18 10 E E 5 - -

ND3 simul. set S3 76 E E 99 4 1 65 4 3 8 8 4 - -

ND3 simul. set S’1 124 E E 124 36 1 124 31 20 E E 2 - -

ND3 simul. set S’2 85 E E 109 18 1 110 14 13 E E 4 - -

ND3 simul. set S’3 68 E E 97 4 1 74 5 4 22 22 5 - -

Prot. simul. set S1 155 54 26 - - - 155 66 40 E E - 4 5

Prot. simul. set S2 110 36 13 - - - 151 46 17 E E - 6 6

Prot. simul. set S3 89 5 4 - - - 114 8 4 40 22 - 6 6

Prot. simul. set S’1 155 58 34 - - - 155 51 34 E E - 5 5

Prot. simul. set S’2 113 34 15 - - - 150 36 13 E 18 - 6 5

Prot. simul. set S’3 102 5 4 - - - 112 7 4 21 E - 5 5

Clp. simul. set S1 186 E E E E E 186 63 32 E E 6 - -

Clp. simul. set S2 133 E E E E E 142 40 24 E E 5 - -

Clp. simul. set S3 78 E E E E E 86 6 6 E E 4 - -

Clp. simul. set S’1 186 E E E E E 186 65 43 E E 5 - -

Clp. simul. set S’2 133 E E E E E 146 45 33 E E 5 - -

Clp. simul. set S’3 72 E E E E E 89 6 6 E E 5 - -

Table 5.2: The number of clusters returned by each clustering tool for the simulated sets.

• 5 clusters for the protein simulated sets.

• 6 clusters for the simulated sets derived from chloroplast genes.

A general overview of Table 5.2 shows that in the cases of the highly and moderately

divergent sets, S1, S’1, S2 and S’2, all the tools except SpCLUST returned a number of

clusters far from what was expected. Conversely, for the least divergent sets, S3 and S’3,

these same tools, except DACE, gave the exact number of clusters or a close number to

the expected one. In particular, it can be noticed that DNACLUST, while using a similarity

threshold equal to 0.6, returned the expected number of clusters for the ND3 simulated

sets, S3 and S’3. Moreover, UCLUST, while using a similarity threshold equal to either

0.6 or 0.4, produced the expected number of clusters for the ND3 and chloroplast genes

simulated sets, S3 and S’3. In addition, CD-HIT-Protein, while using a similarity threshold

equal to 0.6, was able to find the expected number of clusters for the protein simulated

sets, S3 and S’3. Finally, SpCLUST gave either the exact number of clusters or a close

one for all the simulated sets, including the most divergent ones.

The above observation shows that CD-HIT, DNACLUST and UCLUST are efficient in

determining a correct or closely correct number of clusters in the case where the clusters’

member sequences are convergent. For instance, for the least divergent simulated sets,

these tools were efficient in most cases when applied with a similarity threshold equal to

0.6 or 0.4. But, unlike SpCLUST, these tools failed to cluster the relatively divergent sets.

Table 5.3 shows the numbers of clusters, produced by each tool while clustering the real
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data sets. The expected numbers of clusters are equal to 6 clusters for the first set, 7 for

the second set, 5 for the third set and 3 for the fourth set. CD-HIT-Est, and similarly to the

experiments performed on the simulated sets, failed to run using the similarity thresholds

0.6 or 0.4. CD-HIT-Protein also failed while processing the protein sequences of the third

set. DNACLUST failed to process the genomic sequences of the first and second sets,

while DACE failed to process all the genomic sets. DACE also failed processing three out

of the four protein sets using the similarity thresholds 0.9 or 0.6.

It is important to highlight that both High Performance Computing tools, DACE and HPC-

CLUST, were successfully tested using a data set provided by one of their authors and

containing tens of thousands of sequences. The main difference between this data set

and ours is the length of the sequences. Therefore, although these tools might be well

optimized to cluster large number of sequences, it seems they cannot handle lengthy

sequences which are very common in real life cases.

CD-HIT DNACLUST UCLUST DACE SpCLUST
Similarity threshold
or scoring matrix 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.6 0.4 DNAF. PAM. BLOS.

Set 1 genomic 33 E E E E E 33 17 8 E E E 4 - -

Set 2 genomic 40 E E E E E 40 19 6 E E E 4 - -

Set 3 genomic 5 E E 10 43 44 5 1 1 E E E 5 - -

Set 4 genomic 3 E E 10 10 24 3 3 1 E E E 4 - -

Set 1 protein 19 7 6 - - - 19 7 6 E E 5 - 4 4

Set 2 protein 25 9 7 - - - 25 9 7 E E 5 - 3 4

Set 3 protein 1 E E - - - 1 1 1 3 1 1 - 3 4

Set 4 protein 3 3 3 - - - 3 3 3 E E 1 - 4 4

Table 5.3: The number of clusters returned by each clustering tool for the real data sets.

The results displayed in Table 5.3 show that, for the genomic sets, SpCLUST succeeded

in producing the exact number of clusters for the third set and a close number for the

others. CD-HIT-Est and UCLUST produced the exact number for the third and fourth

sets while using a similarity threshold equal to 0.9, and UCLUST returned close numbers

of clusters for the first and second sets while using a similarity threshold of 0.4. For

the protein sets, the results displayed in Table 5.3 show that SpCLUST, for all the sets,

only returned close number of clusters to the expected ones while CD-HIT-Protein and

UCLUST produced the exact number for the first, second, and fourth sets with a similarity

threshold equal to 0.4, while DACE produced close numbers for the first three sets only.

Given these results, it can be noticed that for the real data sets some tools in some cases

give equal or better quality clustering than SpCLUST. However, it is also important to

highlight the high impact of the similarity threshold’s choice on the quality of the cluster-

ing. For example, for the genomic sequences of the second set, UCLUST returned 6

clusters instead of 7 when given a similarity threshold equal to 0.4. On the other hand,

it returned 19 and 40 clusters for similarity thresholds equal to 0.6 and 0.9 respectively.
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Therefore, for sequence sets with an unknown degree of similarity and an unknown ex-

pected number of clusters, SpCLUST remains a better choice because it returns exact

or close number of clusters in all cases and without any prior knowledge about the input

sequences. Moreover, for the highly similar protein sequences of the third set SpCLUST

returned 4 clusters instead of 5, using BLOSUM62’s matrix while CD-HIT-Protein and

UCLUST put all the sequences in one cluster even with a similarity threshold equal to

0.9.

In summary, for the most divergent sets of the artificially mutated data sets, only Sp-

CLUST gave the exact or close number of clusters, the results of the other tools were

very far from the expected ones. In the less divergent simulated and real sets, SpCLUST

gave better or at least good results when compared to the other tools. In the next section,

the clusters’ contents in these experiments are compared and discussed.

5.4.2.2/ ANALYSIS OF THE CLUSTERS’ CONTENTS

In this section, the contents of the clusters, returned by the selected clustering tools, are

compared in order to evaluate their accuracy. To evaluate the degree of similarity between

a given clustering and the expected one, the ARI metric was selected. We recall that the

ARI computes a similarity measure between two clusterings, the predicted and the true

clusterings, by considering all pairs of samples and counting pairs that are assigned in

the same or different clusters. It requires the knowledge of the correct cluster which is the

case in the previous described experiments. Therefore, the ARI is a good fit in our case

since it only requires, for its calculation, the labeling of the clusters’ elements according

to which cluster they belong in the perfect clustering.

Table 5.4 displays for each simulated data set, the Adjusted Rand Index calculated be-

tween the known exact clustering and the one returned by each tool. Only the clusterings

that had the correct number of clusters or a very close one are considered because the

remaining clusterings have an Adjusted Rand Index close to 0. Based on the values of the

computed Adjusted Rand Index, and beside the fact that SpCLUST was the only tool to

cluster well all the data sets, the average Adjusted Rand Index for the clustering of the 16

sets was equal to 0.805. Therefore, it can be stated that the proposed module, SpCLUST,

performed well, compared to the other tools, and delivered a good overall clustering qual-

ity. In contrast, the other clustering tools returned good results in only 1/3 of the studied

cases. Therefore, Even if for 1/3 of the cases the average of the displayed Adjusted Rand

Indexes for certain tools is better than SpCLUST’s average index, when considering the

remaining 2/3 cases, where this index falls to nearly zero for the other tools, their overall

index averages are way below SpCLUST’s average index.

In addition, it can be noticed, from the data in Table 5.4, that CD-HIT-Protein was the
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CD-HIT DNACLUST UCLUST SpCLUST
Similarity threshold
or scoring matrix 0.6 0.4 0.6 0.6 0.4 DNAFULL PAM250 BLOSUM62

ND3 simul. set S1 - - - - - 0.082 - -

ND3 simul. set S2 - - - - - 0.637 - -

ND3 simul. set S3 - - 1 1 0.476 1 - -

ND3 simul. set S’1 - - - - - 0.282 - -

ND3 simul. set S’2 - - - - - 0.734 - -

ND3 simul. set S’3 - - 1 0.778 0.741 0.913 - -

Prot. simul. set S1 - - - - - - 0.406 0.7

Prot. simul. set S2 - - - - - - 0.933 0.933

Prot. simul. set S3 1 0.778 - 0.876 0.778 - 0.992 0.992

Prot. simul. set S’1 - - - - - - 0.438 0.984

Prot. simul. set S’2 - - - - - - 0.933 0.643

Prot. simul. set S’3 1 0.778 - 0.945 0.778 - 0.968 1

Clp. simul. set S1 - - - - - 0.406 - -

Clp. simul. set S2 - - - - - 0.797 - -

Clp. simul. set S3 - - - 1 1 0.783 - -

Clp. simul. set S’1 - - - - - 0.368 - -

Clp. simul. set S’2 - - - - - 0.517 - -

Clp. simul. set S’3 - - - 1 0.987 0.82 - -

Table 5.4: Adjusted Rand index for simulated data sets clustering

only tool to return the exact clustering for one of the least divergent sequences’ sets

of protein, S3. However SpCLUST gave a nearly perfect clustering for this set, with a

scored Adjusted Rand Index of 0.992, and using either scoring matrices. As for the other

proteins sets, SpCLUST returned the exact clustering for one of them and for the rest

of the data sets it gave good quality clustering results having an Adjusted Rand Index

varying between 0.7 and 0.992 using either PAM250 or BLOSUM62.

For the genomic sets, on the one hand, DNACLUST and UCLUST succeeded in returning

a perfect clustering for the least divergent sets, S3 and S’3. But on the other hand, Sp-

CLUST also performed well and returned clusterings with Adjusted Rand Indexes varying

between 0.783 and 1 for these same sets. But although the tools returned very good

results, in the case of the least divergent genomic or protein sets they require a user

intervention to choose the adequate similarity threshold.

Moreover, since SpCLUST does not rely on any user input identity parameter, it outper-

forms the other tools in the case of clustering highly divergent data sets. Conversely, the

other tools proved to be highly accurate in clustering convergent sets, and at least one

of these tools succeeded in finding the true clustering for each one of the least divergent

sets.

The mentioned sequence divergence is illustrated in Table 5.5, using Levenshtein dis-

tance [lev, ] which counts the number of characters insertions or substitutions between

two strings. A random starting sequence was chosen from each group of reference se-

quences and the Levenshtein distance was calculated between this sequence and a ran-
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domly chosen mutation of this same sequence from each set, S1 to S’3. The values

displayed in Table 5.5 show how the Levenshtein distance decreases from sets S1 and

S’1 to sets S3 and S’3. The distances for the other reference sequences in each set

should be close to the calculated ones since they were generated using the same muta-

tion criteria.

S1 S’1 S2 S’2 S3 S’3

ND3 167 178 147 119 41 38

Prot 186 167 158 137 36 44

Clp 120 81 77 56 20 17

Table 5.5: Levenshtein distance between the original and mutated sequences

Finally, although SpCLUST’s results do not seem good in the case of the ND3 sets S1

and S’1 (Adjusted Rand Indexes equal to 0.082 and 0.282), a logical reason might explain

this phenomenon: in fact, contrary to the other sets which originate from sequences of

different genes, the ND3 sets derive from 4 initially divergent sequences of the same

ND3 gene. Therefore, the simulated mutations might randomly cause the descendent

sequences to converge or make some of the descendent sets highly diverge from the

others. In this last case, the distance between the resulting mutated genes might make

them look like being, more likely, part of two different clusters instead of four: one cluster

containing the descendents that either re-converged towards each other or reached a

closely equal distance between each other, and another cluster containing the remainder

of the sequences that diverged more from the others. Indeed, the clusters contents, of

the clustering of ND3’s S1 and S’1, supports the presented theory: for both sets, one

cluster contains a certain number of descendants from the same original sequence and

the other cluster contains all the remaining sequences.

Table 5.6 presents, for each real data set, the Adjusted Rand Index calculated between

the true and the predicted clusterings. SpCLUST was the only tool that was able to return

acceptable clusterings for all the real data sets. It produced good overall clustering quality

for all the real data sets whereas the other clustering tools failed to return acceptable

results for at least one of the sets. Moreover, it can be noticed that SpCLUST outperforms

CD-HIT and UCLUST in the first 3 genomic sets and returns better quality clusterings. For

the protein sets, CD-HIT and UCLUST gave better quality clusterings than SpCLUST and

DACE gave the lowest quality clusterings. Another remarkable phenomenon is that, in

contrary to the tests results on the simulated data sets, CD-HIT and UCLUST performed,

in general, better than SpCLUST on the real data sets. In fact, a closer look at the data

sets shows that 2 out of the 4 sets are very convergent. In fact, CD-HIT and UCLUST

both delivered either a perfect or a good clustering for the genomic sets 3 and 4 as well

as the protein set 4 with a similarity threshold equal to 0.9. Moreover, for the protein sets

1 and 2, CD-HIT and UCLUST also produced better results than SpCLUST, and for a

similarity threshold of 0.6. This shows that the first couple of sets’ clusters contents are
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CD-HIT UCLUST DACE SpCLUST
Similarity threshold
or scoring matrix 0.9 0.6 0.4 0.9 0.6 0.4 0.9 0.4 DNA. PAM. BLOS.

Set 1 genomic - - - - - 0.359 - - 0.386 - -

Set 2 genomic - - - - - 0.356 - - 0.47 - -

Set 3 genomic 0.68 - - 0.68 - - - - 0.786 - -

Set 4 genomic 1 - - 1 1 - - - 0.869 - -

Set 1 protein - 0.974 0.58 - 0.958 0.712 - 0.409 - 0.625 0.493

Set 2 protein - 0.928 0.658 - 0.914 0.772 - 0.327 - 0.241 0.354

Set 3 protein - - - - - - 0.205 - - 0.206 0.456

Set 4 protein 1 1 1 1 1 1 - - - 0.869 0.869

Table 5.6: Adjusted Rand index for real data sets clustering

also not very divergent like it was the case in most of the simulated data sets.

Appendix V presents some tables illustrating SpCLUST’s clustering contents. Tables 1

and 2 show SpCLUST’s clustering contents for the genomic real data sets 2 and 4 that

scored Adjusted Rand Indexes equal to 0.47 and 0.869 respectively. Each column in

these tables holds an SpCLUST cluster’s content. The cells sharing the same color hold

sequences that should be in the same cluster. Thus, looking to Table 1 shows that Sp-

CLUST successfully isolated in one cluster, the MC1R sequences that belongs to a gene

coming from a different chromosome than all the other sequences is this set. The other

clusters contain mainly a mix of 2 or 3 true clusters, and not a random shuffle of ele-

ments. This is caused by the fact that elements of these clusters may share by chance a

certain percentage of similarity, without presenting the same characteristics or reflecting

a real homology. Similarly, looking to Table 2 shows that SpCLUST perfectly isolated Zika

virus’ sequences from Influenza’s. The other clusters also tend to be perfect and only 3

Influenza’s H2N2 sequences, that might be a bit too divergent from their other relatives,

were clustered separately. It is the same for the set of protein sequences, as shown in

Table 3.

Since SpCLUST scored the lowest indexes, 0.386 and 0.354, thus the worst clustering

quality, for the first real genomic set and the second real protein set, a further investigation

was undertaken for these two sets. The quality of their clustering was evaluated again

using another metric: the purity of a cluster [Schulte im Walde, 2003]. Table 5.7 shows

the purity of the clusters obtained for the first real genomic set and the second real protein

set: the clustering of the first set had three pure clusters out of four and the clustering

of the second one had two pure clusters out of four and a third cluster with a high purity.

Therefore, the resulting low adjusted Rand Indexes do not come from having a bad quality

clustering but rather from the merger of two or three clusters with similar elements from

the perfect clustering. These results are consistent with the previous analysis of the

clustering results of these sets.

Finally, it can be concluded that based on the clusters’ contents quality interpreted in
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C1 C2 C3 C4

Set 1 Genomic 1 0.38 1 1

Set 2 Protein 1 1 0.32 0.82

Table 5.7: Clusters purity

this section, SpCLUST presents a better tool for clustering highly divergent data sets,

while the other tested tools remain a good choice for more convergent sets, but only

in the case of a good similarity threshold choice. However, choosing a good similarity

threshold is usually not trivial and requires some knowledge about the data set contents,

or the expected number of clusters, which is almost never available in practice for newly

discovered sequences. Meanwhile, SpCLUST does not need any user intervention and

it offers an innovative tool for clustering new or unknown, genomic or protein, sequence

sets.

5.4.2.3/ EFFECT OF SEQUENCES ALIGNMENT QUALITY ON CLUSTERING RESULTS

Since, in the proposed module, the result of the input sequences alignment represents

the starting point of the clustering process pipeline, the quality of that alignment, as men-

tioned in Section 5.3, might impact both the process running time and the clustering

accuracy. In this section, the effect of the alignment quality on SpCLUST’s results is

analyzed on the previously described real data sets.

The Levenshtein distance will be used to compute the distance between the same se-

quence in two alignments: a fast and a normal one. The ratio between the computed

Levenshtein distance and the length of the sequence represents a normalized distance

value going from 0 (for exactly similar sequences) to 1 (for completely distinct sequences).

Thus, the distance between two alignments can be defined as the average of the dis-

tances ratios for all the sequences in the alignment. Table 5.8 shows the distance be-

tween the normal alignment and the fast alignment for the genomic and protein mixes

of the real data sets. While the second genomic set has the biggest distance, the third

genomic and protein sets have identical alignments with the fast and normal alignment.

Set 1 Set 2 Set 3 Set 4

Genomic 0.1352 0.3 0 0.1473

Protein 0.1424 0.0878 0 0.0368

Table 5.8: Distance between normal and fast alignments

Starting with the cases where the distance between the alignments did not affect the

clustering results. In the case of the third mix from the real data sets, containing se-

quences from Influenza viruses variants, the fast and the normal alignment were identical

and they both produced the same clustering. In the case of the fourth mix from the real
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data sets, containing mixed sequences from Influenza and Zika viruses, the fast and the

normal alignments were slightly different, their normalized distance was equal to 0.1473.

However, the SpCLUST’s clustering result, using a fast alignment, was similar to the one

using a normal alignment, for both genomic and protein sets of this mix. This shows that

even with a small normalized distance between two alignments, the quality of the clus-

tering was not affected for these sets. Conversely, for the other sets, and although some

distances between their alignments were smaller than 0.1473, it made a difference in the

clustering quality.

Set 1 gen. Set 1 prot. Set 2 gen. Set 2 prot.

SpCLUST normal align. 0.053 0.568 0.41 0.38

Perfect clustering 0.289 0.404 0.383 0.386

Table 5.9: Adjusted Rand Index - Fast alignment

Table 5.9 displays the Adjusted Rand Index between the clustering produced from a fast

alignment and those produced from a normal alignment. It also shows the Adjusted Rand

Index between the clustering produced from a fast alignment and the true clustering.

Fast alignment produced a moderately dissimilar clustering in 3 out of 4 cases when

compared to the clustering produced using a normal alignment. Moreover, the calculated

Adjusted Rand Index between the clustering, produced from a fast alignment, and the

true clustering reflects, in 3 cases out of 4, a slight deterioration in this clustering quality,

compared to the one done with a normal clustering. This can be seen by comparing the

current values of the Adjusted Rand Index with those in Table 5.6. Appendix V, Table 4

shows, for the second genomic real data set, the SpCLUST clustering produced from a

fast alignment and can be compared to the clustering produced from a normal alignment

and displayed in Table 1.

Based on the presented results, and knowing that the used viruses’ genes sequences (in

sets 3 and 4) are much smaller in size than the used mammals genes sequences (in sets

1 and 2), it can be said that a small distance, between a normal alignment and a fast one,

does not affect the clustering results in the case of relatively small sequences. Conversely

this distance, although being small, slightly impacts the quality of the clustering for larger

sequences.

5.5/ CONCLUSION

In this chapter, an efficient and fast clustering package for potentially divergent nu-

cleotide sequences is proposed. This package is based on the Python module presented

in [Bruneau et al., 2018] which uses an unsupervised learning method to produce the

clustering. However, the new package offers many improvements over the old one such
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as enhanced performance due to its implementation in C++ and its parallelization with

MPI. A performance comparison between the original package and the new one shown a

speed-up ranging from 37.9X to 44.6X when performing a high quality alignment and up

to 126X when performing a fast alignment. Moreover, two additional substitution matrices

for the distance matrix calculation, PAM250 and BLOSUM62, were added to the package

which extends its capabilities to cluster protein sequences. The proposed package com-

piles and runs on both Linux and Windows and can be easily integrated to a GALAXY

server.

A comparative study between SpCLUST and some existing and widely used

clustering tools, such as UCLUST [Edgar, 2010], CD-HIT [Li et al., 2006], DNA-

CLUST [Ghodsi et al., 2011] and DACE [Jiang et al., 2016], was conducted over differ-

ent sets of simulated and real, genomic and protein, sequences. In contrast with these

state of the art tools, SpCLUST does not mainly aim for higher clustering speeds, of

highly similar sequences, than its competitors. SpCLUST aims for fast clustering of data

sets containing potentially divergent elements, and without any a priori knowledge of the

similarity threshold or the number of clusters. The experiments shown that in the most

cases SpCLUST gave better or fairly good results, compared to the other tools, in terms

of number of clusters and their contents. Moreover, for highly divergent sequences that

the other tools were not able to cluster, SpCLUST gave good clustering quality compared

to the expected clustering. Finally, unlike the other tools that need a highly influencing

similarity threshold parameter input, SpCLUST does not require any user intervention.

Further improvements to this GMM-based package are presented in the next chapter.
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OPTIMIZED SPECTRAL CLUSTERING

METHODS

6.1/ INTRODUCTION

Clustering of biological sequences is currently playing a paramount role in linking the

huge number of newly discovered sequences to their variants and ancestors. How-

ever, current methods can only partially tackle this problem due to its scale and com-

plexity. Recent research has concluded that spectral clustering may represent an effi-

cient tool for biological sequence clustering [Pentney et al., 2005, Paccanaro et al., 2006,

Hu et al., 2004] and, to our knowledge, the only tool has been publicly released is our Sp-

CLUST [Matar et al., 2019] that has been introduced in Chapter 5. In Chapter 5, the

relevance of using GMM’s (Gaussian Mixture Models) for unsupervised clustering of bio-

logical sequences was demonstrated through various numerical validation experiments.

Contrarily to most of the widely used clustering tools, GMM-based approaches require no

user intervention and is well adapted to clustering divergent sequences as well.

One of the main difficulties in studying newly discovered biological sequences resides

in that, due to their unknown degree of divergence, neither an accurate selection of

the similarity threshold nor the selection of the clusters’ centroids are trivial. In such

cases, traditional tools, requiring a user-defined similarity threshold, cannot be consid-

ered reliable. On the other hand, GMM-based alternatives which do not require any a

priori knowledge of an arbitrary similarity threshold, seem to be well adapted to efficiently

tackle such problems. GMM’s and other finite mixture models [McLachlan et al., 2004] are

usually calibrated using an Expectation Maximum (EM) algorithm [Dempster et al., 1977,

Wu, 1983, McLachlan et al., 2007] or one of its accelerations [Chrétien et al., 1998,

Chrétien et al., 2000, Celeux et al., 2001]. As a reason for its success, GMM offers im-

proved classification performances in several applications where clusters overlap, which

has proved key in such fields as biological sequence clustering [Matar et al., 2019],

age and gender recognition [Bocklet et al., 2008], real-time segmentation of HD

59
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video [Genovese et al., 2013], etc. However, the use of EM-type algorithms requires ex-

pertise due to the well known drawbacks [Biernacki et al., 2016, Biernacki et al., 2003]

and computational issues for large and high dimensional data [Shi et al., 2006], and one

should always give its preference to reliable packages which carefully address these sub-

tle technical issues.

We recall that the tool presented in Chapter 5 implements the following operations for

clustering a set of biological sequences: i- sequences’ alignment, ii- pairwise affinity com-

putation of the sequences, iii- Laplacian Eigenmap embedding of the data, and iv- GMM

based clustering. The quality of the generated clustering and the performance of this ap-

proach is often greatly impacted by the implementation choices made at each stage: the

alignment quality, the type of affinity between sequences, the GMM implementation which

succeeds or fails to address some of the drawbacks described in [Biernacki et al., 2016],

etc. The present chapter investigates how the use of different techniques and their im-

plementation at each stage of the pipeline contributes in accelerating the clustering or

improving its quality. The main studied factors are:

• the GMM implementation;

• the sequence alignment tool;

• the calculation of the affinity matrix between the sequences.

Our contribution in this chapter is a new clustering package, called SpCLUST-V2, which

improves on its predecessor in many directions 1. This package is able to accurately

cluster biological sequences with various degrees of divergence, and its use does not

require any a priori knowledge of an arbitrary similarity threshold. Our package incor-

porates several new model selection criteria and its better performance is illustrated via

several numerical experiments.

The remainder of this chapter is organized as follows. In Section 6.2, our contributions

are presented. The experimental protocol is detailed and the numerical evaluations are

presented in Section 6.3. Finally, Section 6.4 concludes this chapter by recapitulating our

new findings.

1and whose latest release can be found at the address https://github.com/johnymatar/SpCLUST-V2 or
http://galaxy.ul.edu.lb



6.2. APPROACH AND METHOD 61

6.2/ APPROACH AND METHOD

6.2.1/ THREE WAYS OF IMPROVEMENT

The biological sequences clustering method, presented in [Matar et al., 2019], led to the

release of a publicly available package named SpCLUST. This package does not require

any identity threshold or centroids as user input. However, further enhancements to its

first release remained possible. These enhancements mainly fit into three categories:

1. Performance-wise: an intensive part of the proposed method, i.e. the computation

of the GMM, remained in Python. But if this programming language is well suited

for fast prototyping, its use is less relevant when targeting the final version of the

program, which should be fast and efficient [Müller et al., 2011]. Other GMM im-

plementations, based on lower level programming languages such as C++, might

perform faster and significantly improve the overall performance of the method. The

alignment stage is another time-costly part, to improve in the case where long se-

quences or a large amount of data are submitted.

2. Features-wise: SpCLUST allows the user to customize the sequences alignment

quality. For instance, it is possible to set the maximum number of iterations in MUS-

CLE, which affects both the alignment quality and speed, and to choose the de-

sired substitution matrix for pairwise distance calculations. Additional options and

features can be added to the package, like some user-customizable statistical pa-

rameters for model selection in clustering, or to offer the possibility to input aligned

sequences.

3. Algorithmic-wise: the Laplacian Eigenmap, in SpCLUST, is computed from a Ran-

dom Walk Normalized Laplacian matrix. Studying the effect of using different types

of matrices, and offering to the user the ability of choosing between these matrices,

is interesting: the Non-normalized Laplacian, the Modularity, and the Bethe Hessian

(also called Deformed Laplacian), for instance, are other types of relevant matrices

that exist in the literature. Each choice may potentially lead to a different clustering.

The proposed enhancement methods, options, and algorithms are discussed in the next

subsections. And since the main objective of SpCLUST remains enhancing the clustering

quality, the impact of the implemented options on this latter is discussed in Section 6.3.

6.2.2/ IMPROVEMENTS IN THE GMM PART

The GaussianMixture() function [Gau, b] is the successor of the obsolete GMM() func-

tion [GMM, ] provided in Python’s scikit-learn package [Pedregosa et al., 2011]. It gave
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similar results as GMM() when integrated to SpCLUST. This function takes an m × n

matrix as input, where m is the number of features and n is the number of samples. It

includes methods that calculate indices, such as the BIC and AIC, that reflect the quality

of the GMM. It also allows the user to manually input several parameters including the co-

variance type among full (default), tied, diagonal and spherical, together with a seed that

affects the initial random distribution. But a detailed profiling of SpCLUST shows that the

GMM clustering stage, using the GaussianMixture() function, is the most time consuming

stage in the pipeline [Matar et al., 2019].

Another Python scikit-learn function, the spectral embedding(), implements the spectral

decomposition in a different manner [Spe, ]. It merges the dimensionality reduction and

the sequence clustering phases and takes an n × n pairwise similarity matrix as input,

where n is the number of samples. The (normalized or not) Laplacian matrix computation

is embedded in the spectral embedding() function. But contrary to the GaussianMixture()

function, the spectral embedding() one does not provide any method to compute statistical

indices of quality.

By comparison, few C++ implementations of the GMM are freely available, but they

do not offer as many features and options as the GaussianMixture() function intro-

duced earlier. For instance, a multi-threaded and open source implementation, fea-

turing the diagonal and full co-variance types, is included in the Armadillo C++ li-

brary [Sanderson et al., 2016, Sanderson et al., 2017]. But this implementation does not

offer any statistical indices for evaluating the quality of the GMM [arm, ]. It also requires

having the Armadillo library installed as a prerequisite. Another GMM implementation,

namely the paperrune one [pep, ], only uses the standard C++ libraries, and it also in-

cludes the Likelihood model evaluation index.

As can be seen, BIC and AIC indices are missing in the previously mentioned C++ im-

plementations. Thus, to get the same capabilities than the GaussianMixture() or GMM()

Python functions while improving performance, the latter have been translated to C++.

And to save more computation time, a freely available C++ implementation of the K-

Means algorithm [kme, ] has been used as part of the GMM pipeline. As the C++ pseudo-

random number generator, used in K-Means, is not cross-platform consistent (the rand()

function is not the same depending on the platform, and using the same seed will gener-

ate different numbers on different operating systems), and in order to preserve the con-

sistency of the results, a custom pseudorandom numbers generation function has been

implemented. It is based on Microsoft’s rand formula: (a ∗ seed + c)%m with a = 214013,

c = 2531011, and m = 231. And if no seed is provided by the user, the seed variable is

equal to its default value, that is, 0.

The improvements on the GMM part having been presented, we will now discuss the

other improvements of the SpCLUST package, by starting with the ones related to the
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dimensionality reduction.

6.2.3/ IMPROVEMENTS RELATED TO THE AFFINITY MATRIX AND THE EIGENMAP

CALCULATION

In the clustering pipeline, the affinity matrix was until now computed as a Ran-

dom Walk Normalized Laplacian, which has been proven in [Bruneau et al., 2018]

and [Matar et al., 2019] to be relevant for the clustering of biological sequences. However,

other interesting matrices have been proposed for spectral clustering [Von Luxburg, 2007,

Langone et al., 2011, Saade et al., 2014, Dall’Amico et al., 2019a], such as the Non-

normalized Laplacian, Modularity [Langone et al., 2011] and the Bethe Hessian (De-

formed Laplacian) [Dall’Amico et al., 2019b]. These matrices are defined as follows:

• Non-normalized Laplacian:
L = D − A,

where A is the adjacency matrix between the sequences and D is its diagonal matrix

of degrees.

• Random Walk Normalized Laplacian:

Lrw = D−1L,

where D is the degrees matrix of the adjacency matrix and L is the Non-normalized

Laplacian matrix.

• Modularity:

M =
1
K

(
A −

1
K

kkT
)
,

where A is the adjacency matrix, k is the degrees vector of A, and K is the total

degree of A.

• Bethe Hessian:
Hr = (r2 − 1)I + D − rA

where I is the identity matrix, D is the degrees matrix of the adjacency matrix A, and

the constant r is the square root of the average degree of the graph, as suggested

in [Saade et al., 2014].

Let us remark the following points concerning these definitions. The Laplacian is a sym-

metric and positive semidefinite matrix. The Non-normalized Laplacian and the Normal-

ized Laplacian serve respectively in the approximation of the minimization of the RatioCut
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and the NCut. The Modularity is a quality function whose high values reveal the possi-

ble existence of strong communities. Finally, the Bethe Hessian, also called deformed

Laplacian, features a regulator constant r in addition to the previously introduced Lapla-

cian matrices. The performances of all these matrices for clustering will be compared in

Section 6.3.

6.2.4/ FURTHER ADDITIONAL FEATURES

In Python’s spectral embedding() function, the user can choose either the normalized or

the non-normalized Laplacian matrix. The former is used by default. Moreover, the di-

mension of the projection subspace, reflecting the number of resulting clusters can be

specified; by default, this parameter is set to 8. Since the spectral embedding() function

does not offer further exploitable parameters, we did not propose further features inher-

ited from this function.

The paperrune’s GMM implementation includes a method to compute the likelihood of the

model. Therefore, it is possible to automatically choose the best clustering by maximizing

this likelihood. This is achieved by performing several iterations as illustrated in Figure 6.1.

The given number of clusters is modified at each iteration, and it ranges between 1 and

the number of sequences.

Figure 6.1: Choosing the best clustering based on maximum likelihood.

By comparison, our porting of Python’s GMM function to C++ can compute the BIC and

AIC criteria which assess the quality of the model. Three different algorithms are pro-

posed to exploit both criteria:
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1. The first one is similar to the previously presented algorithm in Figure 6.1. It is

applicable by simply substituting the maximum likelihood by the lowest BIC (or AIC).

2. The second approach consists of iterating the first one a user-defined number of

times, with a different random seed at each iteration. Let us recall that the random

seed impacts the initial random distribution of the centroids, leading to a poten-

tially different clustering for each seed. Following these iterations, the clustering

that scores the maximum number of occurrences is selected. The counting proce-

dure of the occurrences of each clustering distinguishes between same clustering

with different labelling and different clustering. Figure 6.2 illustrates this method.

Its computation time, compared to the previous one, is proportional to the chosen

number of iterations. Moreover, this algorithm requires a larger amount of memory,

since it saves the labels vector for the resulting clustering at each iteration. There-

fore, it requires a certain memory size if the input dataset and the chosen number

of iterations are both large.

Figure 6.2: Choosing the best clustering based on the occurrence frequency.

3. The third algorithm is similar to the second one. It successively clusters the se-

quences using different seeds, but just keeps in memory the designated best clus-

tering (e.g., the one that scores the best BIC). Moreover, in order to reduce the

execution time of this algorithm, an additional parameter can be defined to stop the

iterative process before reaching the chosen number of iterations, if no BIC improve-

ment is detected after a certain number noImp of consecutive iterations. Figure 6.3

illustrates this algorithm that requires less computation in the case where the stop
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condition is fulfilled prior to reaching the chosen number of iterations.

Figure 6.3: Choosing the best clustering based on the best reached BIC.

The user can choose any of the three proposed algorithms to cluster a given set of bio-

logical sequences.

6.3/ EVALUATION OF THE NEW PACKAGE

The proposal is evaluated in this section, according to its three main parameters: the

GMM variation, the alignment tool, and the affinity matrix. The experimental protocol is

first described, then the clustering results are detailed and discussed, by using external

and internal validation methods or indices.

6.3.1/ EXPERIMENTAL PROTOCOL

6.3.1.1/ THE DATASETS

Three real biological sequence dataset have been considered to evaluate the proposal:

• A first set of 78 complete genome sequences, belonging to HIV − 1 type B virus

samples identified in Cyprus, and downloaded from the Los Alamos National Labo-

ratory’s website2.

2https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html
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• A second set of 100 genomic sequences, belonging to the NADH dehydrogenase

3 (ND3) mitochondrial gene, from a collection of Platyhelminthes and Nematoda

species.

• A third set of 24 different nucleoprotein (NP) sequences, belonging to the strain

A/H1N1 of the In f luenza virus, and downloaded from NCBI’s Influenza Virus

Database3.

Table 6.1 shows a brief description of the first three datasets which contain each a single

type of sequences. The statistics on the sequences were retrieved from the output of

MUSCLE [Edgar, 2004]. The pairwise similarity, between the sequences of each dataset,

was computed using MatGAT [Campanella et al., 2003] which calculates the similarity

after using the Myers and Miller global alignment algorithm [Myers et al., 1988].

Dataset Seqs count Max length Avg length Min similarity % Max similarity % Avg similarity %

HIV 78 8272 8167 86 99.4 89.6

NADH 100 369 341 46.2 99.7 62.8

Influenza 24 498 498 97.4 99.8 98.8

Table 6.1: Statistical description of the datasets.

Moreover, additional datasets were considered in order to evaluate the capability of the

tool to: i- correctly group different pathogens that could be collected from a similar region

of infection or from different regions, ii- accurately identify and group viral genomes

that could have received a gene segment by horizontal gene transfer (HGT), following

the occurrence of a common host cell incubation. For these purposes, a SARS-COV

complete genome along with the complete set of segments belonging to the genomes of

Influenza strains A and D were retrieved from viruSITE4. Then, five additional SARS-COV

genomes were generated by simulating the mutation of 2% of the original genome and

by artificially inducing a similar ratio of random gaps and insertions. Similarly, nine

additional genomes were obtained from each one of the complete genomes of Influenza

A and Influenza D that were assembled using the retrieved segments.

In order to simulate a horizontal gene transfer: i- two random gene segments were ex-

tracted from an HIV genome (from the first dataset), ii- two Influenza A, two Influenza D,

and two SARS-COV genomes (among the previously generated ones) were selected: the

root sequence and one of its direct descendants, iii- both extracted HIV gene segments

were inserted in between segments 1 and 2, and segments 6 and 7 in the selected In-

fluenza A and Influenza D genomes, iv- both HIV genes segments were also inserted at

two random locations in the selected SARS-COV sequences. The six newly generated

3https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi
4http://www.virusite.org/archive/2021.1/genomes.fasta.zip
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genomes replaced the original ones in the Influenza and SARS-COV datasets. Although

a similar gene transfer is unlikely to happen in-vivo, yet it remains theoretically possible

in-vitro, for example in [Khurana et al., 2007], it was shown that a human HeLa cell can

simultaneously incubate and produce both Influenza and HIV-1 viruses.

The 26 resulting genomes from the previous simulations (10 Influenza A, 10 Influenza D

and 6 SARS-COV), in addition to 9 HIV genomes randomly selected from the first dataset,

have been used to assemble four additional biological datasets, containing each a mix of

different genomes:

• A fourth set of 20 complete genomes, consisting of the 10 Influenza A and the 10

Influenza D genomes.

• A fifth set of 26 genomes, including the 20 Influenza genomes from the fourth set

and the 6 SARS-COV genomes. This set and the fourth one contain pathogens that

infect the same area.

• A sixth set of 29 genomes, including the 20 Influenza genomes from the fourth set

and the 9 HIV genomes that were randomly picked from the first set.

• A last set of 35 genomes, including all the genomes of the two previous sets. This

set and the sixth one contain pathogens that have different zones of infection.

All these datasets are also available on the SpCLUST-V2 GitHub repository5.

6.3.1.2/ THE REFERENCE CLUSTERING

Since a clustering golden truth is not available for the first three sets of sequences, a

phylogenetic tree, showing the evolutionary relationship among the sequences of each

set, is used for assessing the validity of the clustering results. Indeed, there are many

tools that, given an aligned set of sequences, can build the phylogenetic tree of these

sequences. In this work, the tree for each set of data was built according to the following

procedure:

1. MUSCLE [Edgar, 2004] computed the sequences’ alignment.

2. PhyML 3.0 [Guindon et al., 2010] generated the phylogenetic tree. The automatic

model selection, based on the likelihood criteria, was selected. This selection, pro-

vided by SMS [Lefort et al., 2017], was set to use the BIC (Bayesian Information

Criterion).

5https://github.com/johnymatar/SpCLUST-V2
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3. The resulting phylogenetic tree was visualized using PRESTO (Phylogenetic tReE

viSualisaTiOn)6.

Based on the previously generated phylogenetic trees, each clustering, produced in the

next experiments, is assessed individually. Since it is possible in each clustering to iden-

tify valid subclusters, it is not fair to assess all the clustering methods by using a single

unified reference per set. Therefore, we have defined a custom algorithm for assigning

a reference for each produced clustering. The algorithm takes as input the considered

clustering and the phylogenetic tree and produces the reference clustering. It consists of

the following steps:

1. From the given clustering, the elements of the phylogenetic tree are assigned labels

as illustrated in Figure 6.4. The labels indicate to which cluster each sequence

belongs in the given clustering. For example, in Figure 6.4, the clustering produced

four clusters: cluster 1 to 4 are represented by the labels *, #, - and + respectively.

2. The depth of the phylogenetic tree (TD) is computed, a counter is initialized to T D−1

and at each iteration it is decremented by 1 till 0.

3. On each iteration, for each inner node that has a depth equal to the counter, the

following cases are possible:

1. if all the first level descendants of the node are leaves, a cluster consisting of

these leaves is formed. The newly formed cluster is labelled according to the

dominant label, the label that occurs the most among the cluster elements. If

no dominant label was found, i.e. two labels have the same high number of

occurrences, the undefined label is attributed to the cluster.

2. if the first level descendants of the node include a leaf and at least one already

formed cluster, the leaf is added to the cluster that is the closest to it. The

cluster is relabelled according to the dominant label between its elements.

3. if the first level descendants of the node include at least two clusters and: a-

two adjacent clusters have the same label, they are merged. b- one of the

clusters is labelled as “undefined”, it is merged with an adjacent cluster and

the resulting cluster is relabelled according to the dominant label between its

elements. c- two clusters have different labels, they are not modified. d- one of

these clusters is small (less than 4 elements) and is surrounded by two larger

clusters having the same label, the small cluster is merged with its surrounding

clusters because it is considered to be just noise in the cluster.

6http://www.atgc-montpellier.fr/presto/
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4. After the final iteration, if there is still clusters with undefined labels, they are as-

signed new labels. If two or more clusters have the same label, they are also as-

signed new labels.

Figures 6.4 and 6.5 illustrate how a reference clustering is generated according to the

algorithm described above. In the first sub-figure of Figure 6.4 the elements of the

phylogenetic tree are assigned labels (*, #, - or +) which indicate to which cluster each

sequence belongs in the given clustering. The depth of each node in the tree is also

displayed. In this example, the depth of the tree (T D) is equal to 6. After this initialization

step, the iterative process starts with the inner nodes at depth = T D− 1. The second sub-

figure of 6.4 illustrates the first iteration of the algorithm. In this example, there is only one

inner node with a depth = 5. It contains two leaves/sequences (Elt 11 and Elt 12). Both

sequences belong to the third cluster. Therefore, a cluster containing both sequences is

formed and labeled as “Cluster 3” in the reference clustering. This new cluster is repre-

sented by a red rectangle in Figure 6.4. Figure 6.5 illustrates the remaining iterations.

At the second iteration with inner nodes of depth = 4, three new clusters are created. The

first one consists of Elt 1 and Elt 2 and is labeled as “Cluster 1” because both of its se-

quences belong to the first cluster. The second cluster is created in the same way as the

previous one. The third new cluster consists of Elt 14 and Elt 15 which belong to different

clusters and thus there is no dominant label in this cluster. For this reason this cluster

is labeled as “Undefined”. It can also be noticed that Elt 3 was added to “Cluster 3” and

since “Cluster 3” is still the dominant label in this cluster, its label was not changed. Figure

6.5 displays the next three iterations and then the iterative process stops at the root node

(depth = 0). In this example, the resulting reference clustering consists of three clusters:

the first two are homogeneous but the third one contains sequences belonging to three

different clusters in the given clustering. However, six of its nine sequences belong to the

same cluster and thus their dominant label is assigned to this cluster.

6.3.1.3/ THE EXPERIMENTS

The first set of experiments aims to compare the GMM implementations presented in

Section 6.2. The three first data were used for this set of experiments. In this evaluation,

after the alignment stage using MUSCLE, the similarity matrices and the Eigenmaps are

calculated using the same algorithms used in SpCLUST. The clustering is then computed

using one of the following methods:

• Python’s GaussianMixture() function that is embedded in the former version of Sp-

CLUST.

• The algorithm introduced in Figure 6.1, which uses paperrunes’s C++ GMM imple-
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Figure 6.4: Initial state and first iteration.

mentation.

• Python’s spectral embedding() function using the Normalized Laplacian matrix, as in

SpCLUST.

• The three algorithms presented in Section 6.2 that use the C++ GMM implemen-

tation we translated from Python’s GMM() function. The method described in Fig-

ure 6.1, in which the maximum likelihood is replaced by the best BIC, will be named

“Fast”. The one from Figure 6.2 will be referred as “MostFreq”, and will be tested

during 500 iterations. Finally, the algorithm from Figure 6.3 will be named “Best-

BIC”. It will be tested during 100 iterations, with a “no improvement” stop parameter

set to 70 consecutive iterations.

The used datasets will also be clustered using UCLUST and CD-HIT, which are the best

competitors to SpCLUST [Matar et al., 2019].

The goal of the second set of experiments is to measure the impact of the alignment

tool, by replacing MUSCLE with other popular software. This assessment covers both

the clustering quality and the efficiency of the resulting pipeline. These experiments were

conducted as follows:

1. The three first sets of sequences are aligned using the following pack-

ages: MUSCLE, MAFFT [Katoh et al., 2013], DECIPHER [Wright, 2015], and

CLUSTALX [Larking et al., 2007].

2. The resulting aligned sets are clustered using the GMM implementation of
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Figure 6.5: Clusters identification and final state.

SpCLUST-V2.

The third set of experiments in this protocol consists in evaluating the clustering quality

with different types of affinity matrices. The Non-normalized Laplacian, Modularity, and

Bethe Hessian will be compared to the Normalized Laplacian already used in SpCLUST.

This set of experiments was conducted on the three previously used datasets.

The release version of SpCLUST-V2 will be based on the results in the aforementioned

experiments. Moreover, additional internal clustering validation methods that do not rely

on a ground truth clustering, will be also considered. The main advantage of the internal

validation methods is that they avoid any potential artifacts related to the generation of

the reference clustering.

Finally, a last set of experiments that evaluate the capability of SpCLUST-V2 to cluster a

set consisting of different pathogens, was conducted over the last four datasets.
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6.3.2/ THE EXPERIMENTAL RESULTS

6.3.2.1/ THE GMM IMPLEMENTATION IMPACT ON THE CLUSTERING

In the first set of experiments, the presented GMM implementations and the proposed

algorithms detailed in Section 6.2 are evaluated. We recall that the computation of the

Laplacian Eigenmap is embedded in the spectral embedding() function. Conversely, for

SpCLUST-V1, the Eigenmap is computed using functions from the numpy linear alge-

bra library. For the remaining C++ implementations of the GMM, an implementation7 of

Jacobi’s Eigen solving algorithm is used. The datasets are also clustered using state-of-

the-art UCLUST and CD-HIT. In order to cover a wide range of similarities, the identity

thresholds chosen for UCLUST and CD-HIT ranged between 0.5 and 0.99, with a step of

0.1 in the [0.5 − 0.8[ interval and a step of 0.01 in the [0.8 − 0.99[ one. For any identity

threshold lower than 0.8, CD-HIT failed to cluster the data. For the sake of comparison,

only produced results having a number of clusters close to the ones from SpCLUST were

considered.

Figures 6.6, 6.7, 6.8, 6.9, and 6.10 show the labeled elements on the phylogenetic trees.

To improve the legibility of the large HIV and NADH phylogenetic trees, each one of them

was split into 2 sub-trees. Next to each sequence in the tree, there are labels. Each one of

these labels indicate to which cluster this sequence belonged in the clustering obtained

with a given method. For example, in 6.6, the first element (JF683743) belonged to

the fifth cluster in the clustering obtained with SpCLUST, to the second cluster in the

clustering obtained with paperrune, etc. The colors of the labels indicate with which tool

they were obtained.

To evaluate the quality of each clustering, the degree of similarity between it and the

reference must be computed using a relevant metric. Many clustering quality metrics

are available in the literature [Wagner et al., 2007, Guyeux et al., 2019]. In this work, the

Adjusted Rand Index (ARI) was selected to compute the degree of similarity, because

it only requires the labels, and it is able to compare clusterings with different number of

clusters. This index ranges between 0 for two completely different clusterings and 1 for

two identical ones.

Table 6.2 displays, for each dataset and each clustering returned from the considered

methods, the number of clusters in both generated and reference clusterings, and the

ARI between them. Note that ARI is omitted in the following three special cases:

1. when a clustering consists of only one cluster;

2. when the number of clusters, formed of singletons, is greater than the half of the

7https://github.com/edwardlfh/testv2/tree/master/jacobi
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Figure 6.6: HIV sequences clustering using different GMM or tools (1/2).

number of sequences (most of the sequences are clustered as one sequence per

cluster);

3. when the labels of adjacent leaves on the phylogenetic tree are very heterogeneous

and the resulting clustering does not reflect any correct grouping on the tree.

The clusterings, matching the first special case, will be discussed later according to the

properties of the involved dataset. Conversely, those matching the second case are not

significant, because the sequences belonging to a same dataset are a priori known to be

related.

The MostFreq algorithm scored the best ARI in the case of clustering the HIV set of

sequences. The BestBIC version obtained the second rank, followed by the Fast algo-

rithm. The matching between the number of clusters in the reference clustering and the

generated clustering shows a better accuracy for the used algorithms. By comparison,
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Figure 6.7: HIV sequences clustering using different GMM or tools (2/2).

HIV NADH Influenza

Nb. Clusters Nb. Clusters Nb. Clusters

ref. gen. ARI ref. gen. ARI ref. gen. ARI

SpCLUST 4 5 0.777 5 4 0.957 4 5 0.932

Paperrune’s GMM 6 6 0.236 11 8 0.838 3 3 0.847

sklearn.manifold.spectral embedding() 7 3 0.119 7 4 0.694 4 3 0.653

Our GMM - Fast 3 3 0.801 4 2 0.804 - 1 -

Our GMM - MostFreq 2 2 0.941 4 2 0.841 - 1 -

Our GMM - BestBIC 3 3 0.828 4 3 0.839 2 2 1

UCLUST (id 0.5) - 78 - 5 6 0.374 - 1 -

UCLUST (id 0.88) - 78 - - 83 - - 1 -

UCLUST (id 0.89-0.94) - 78 - - 86-95 - 2 2 1

UCLUST (id 0.95-0.96) - 78 - - 97 - 3 3 1

CD-HIT (id 0.91) - 66 - - 90 - - 1 -

CD-HIT (id 0.92) - 69 - - 92 - 1 2 -

CD-HIT (id 0.93-94) - 71-72 - - 94-95 - 2 2 1

CD-HIT (id 0.95-0.97) - 73-75 - - 97-98 - 3 3 1

Table 6.2: External clustering validation using the Adjusted Rand Index.

SpCLUST produced one additional cluster than the reference clustering, which penalized

its score. Conversely, Python’s spectral embedding() implementation produced three clus-

ters less than the reference because in the reference clustering non-adjacent clusters on
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Figure 6.8: NADH sequences clustering using different GMM or tools (1/2).

the tree are not merged. Finally, UCLUST and CD-HIT both failed to cluster this set, al-

though its sequences show a minimum similarity of 86% (cf. Table 6.1). Indeed, CD-HIT

produced 5 clusters when the similarity parameter was set to 0.8, but these clusters do

not reflect any meaningful grouping on the phylogenetic tree, as illustrated in Figures 6.6

and 6.7.
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Figure 6.9: NADH sequences clustering using different GMM or tools (2/2).

Figure 6.10: In f luenza sequences clustering using different GMM or tools.

SpCLUST GMM scored the highest ARI values for the NADH dataset, followed by our

GMM implementation with the MostFreq and BestBIC approaches respectively. Most-



78 CHAPTER 6. OPTIMIZED SPECTRAL CLUSTERING METHODS

Freq and Fast approaches produced two highly similar clusterings: only one element

was labelled differently, as illustrated in Figures 6.8 and 6.9. MostFreq and BestBIC

approaches both merged a four-elements cluster with its neighbor. Paperrune’s GMM

detected the largest number of accurate clusters, while the MostFreq produced the most

accurate clustering among our GMM implementations. Similarly to the observation made

when clustering the HIV set, UCLUST and CD-HIT both failed to cluster this divergent

dataset: although UCLUST returned a reasonable number of 6 clusters when the identity

parameter was set to 0.5, this result scored a very low ARI when compared to the other

approaches.

Let us recall that the “Fast” method is similar to the one used in SpCLUST, except that

the K-Means implementation and the random number generator are different, leading to

small differences in the results. In the case of NADH, the chosen seed used in SpCLUST

resulted in a better score than using BestBIC. Indeed, the BestBIC is expected to produce

a better clustering than both SpCLUST and Fast. But this may not be respected when the

seed of the Fast algorithm is not part of the ones considered in the BestBIC, and when

this particular seed leads definitively to a better BIC. This situation can be corrected by

increasing the set of possible seeds in the BestBIC approach (100 different seeds are

basically considered).

In the In f luenza nucleoprotein dataset where the sequences are highly similar, BestBIC

scored a perfect ARI, similarly to UCLUST, and CD-HIT. UCLUST and CD-HIT produced

equally accurate clusterings, consisting of 3 clusters, when the range of identity thresh-

olds was set to 0.95 or higher. However, the BestBIC approach produced a more bal-

anced clustering consisting of 2 clusters, that is similar to the one produced by UCLUST

and CD-HIT for a range of thresholds lower than 0.95. Fast and MostFreq, for their parts,

produced only a single cluster. This result is not absurd because the sequences in this

dataset are considered very similar for a tool that targets clustering potentially divergent

datasets. Applying UCLUST and CD-HIT on this dataset, with identities inferior to 0.88

and 0.91 respectively, also produced a single cluster.

As shown in the previous experiments, traditional tools failed to cluster divergent se-

quences, while GMM based approaches have been successful. For instance, even

though CD-HIT produced a reasonable number of clusters for the HIV dataset (5, with an

identity threshold of 0.8, see Figures 6.6 and 6.7), the labels are randomly shuffled, and a

reference clustering cannot be deducted to calculate an ARI. Conversely, if UCLUST and

CD-HIT succeeded in clustering very similar sequences, like the ones of the In f luenza nu-

cleoprotein set, this is too the case for the BestBIC approach: GMM is always interesting,

whatever the degree of similarity.

The average Adjusted Rand Index for the clustering of the three sets using our GMM

implementation with the BestBIC algorithm is equal to 0.889, followed by SpCLUST and
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Paperrune’s GMM implementation that scored an average ARI equal to 0.888 and 0.640

respectively. Therefore, on average, the proposed algorithm, relying on the best BIC

criterion and using our C++ GMM implementation, outperforms the other evaluated tools,

in terms of clustering quality, on the chosen datasets. The algorithm featuring the best

BIC, in addition to its good results on the potentially divergent datasets, performs as good

as the traditional tools on highly similar sequences. For all these reasons, the algorithms

using our C++ GMM implementation are the potential ones to be adopted in SpCLUST-

V2, especially if they outperform the Python’s original implementation that was adopted

in SpCLUST-V1.

A performance comparison between the two versions of SpCLUST has been conducted,

by considering the datasets introduced in this article and the 1049 sequences previously

used for profiling SpCLUST-V1 [Matar et al., 2019]. This experiment was run over a ma-

chine equipped with an i7-6700 3.4GHz processor. Table 6.3 shows the execution times

for clustering these data, which includes the computation time of the Eigenmap, using

Python’s GMM implementation and the new C++ GMM one.

Python’s GMM Fast MostFreq BestBIC

HIV 2,025ms <1ms 4,039ms 1,005ms

NADH 5,046ms 1ms 6,063ms 1,010ms

Influenza 1,008ms <1ms 1,013ms 3ms

1049 sequences 2,280,816ms 53,531ms 82,837ms 60,612ms

Table 6.3: Clustering time using the different implementations.

As can be seen, the new C++ GMM implementation (that is, the Fast approach) achieved

up to 42× speed up when compared to the Python’s GMM – and so to SpCLUST-V1 – on

the large set of 1049 sequences. The MostFreq and BestBIC also recorded impressive

speedups with this dataset, when compared to the Python’s GMM. Moreover, the Fast

approach achieved much higher levels of speed up on the three smaller datasets where

the the Python’s GMM performed closely to our most complex approach; the MostFreq.

Therefore, the proposed algorithms using this C++ GMM implementation outperforms the

Python’s GMM of SpCLUST, and it will be adopted in SpCLUST-V2.

6.3.2.2/ SEQUENCES ALIGNMENT IMPACT ON THE CLUSTERING

In this section, the potential influence of the sequence alignment method on the clustering

is investigated. The considered sets of sequences have been aligned using four state-

of-the-art alignment tools, namely: ClustalX, Biostarts Decipher, MAFFT, and MUSCLE.

Then the aligned sequences have been clustered with SpCLUST-V2, BestBIC criterion.

Obtained results are presented in Figures 6.11, 6.12, 6.13, 6.14, and 6.15.

Table 6.4 shows the ARI for each clustering, with number of obtained clusters compared
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Figure 6.11: HIV sequences clustering using different alignment modules (1/2).

to the ones in the reference.

HIV NADH Influenza

Nb. Clusters Nb. Clusters Nb. Clusters

ref. gen. ARI ref. gen. ARI ref. gen. ARI

CLUSTALX 4 3 0.690 4 3 0.955 2 2 1

DECIPHER 3 3 0.759 4 3 0.982 2 2 0.833

MAFFT 1 2 0 2 2 0.960 2 2 1

MUSCLE 3 3 0.828 4 3 0.839 2 2 1

Table 6.4: External clustering validation with regards to the alignment tools.

MUSCLE obtained the largest average ARI (0.889), followed by ClustalX (0.881), Deci-

pher (0.858), and MAFFT (0.653). MAFFT produced less clusters in the HIV and NADH
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Figure 6.12: HIV sequences clustering using different alignment modules (2/2).

set, while Decipher was at the origin of the most parsimonious clustering for the In f luenza

nucleoproteins. Therefore, MUSCLE generally outperforms its competitors. A closer look

at the alignment of the In f luenza proteins set where all the sequences have the same

length, shows that DECIPHER was unable to detect SNPs. It considered the mutations

between the sequences as insertions and deletions.

The alignment speed is another important aspect for assessing the performance of the

alignment tools. To study this, the HIV dataset has been selected, as it has the largest

size (631 KB). Table 6.5 displays the recorded alignment times on a machine equipped

with an Intel core i7-6700 3.4GHz processor and 8GB of RAM8.

Alignment tool MUSCLE CLUSTALX MAFFT @ 1 thread MAFFT @ 4 threads DECIPHER

Alignment duration (seconds) 844 8027 1753 735 115

Table 6.5: Alignment duration for HIV sequences using i7-6700 3.4GHz processor.

8We have tried to evaluate those tools on a larger dataset of 7MB, but only Decipher was able to perform
the alignment, while the other tools required more than 8GB of memory.
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Figure 6.13: NADH sequences clustering using different alignment modules (1/2).

As can be seen, Decipher is the fastest alignment tool. It is followed by MUSCLE when

using a single-threaded process; but MAFFT outperforms it with 4 threads. The use of
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Figure 6.14: NADH sequences clustering using different alignment modules (2/2).

8 threads has not been considered in the evaluation of MAFFT, as it required more than

8GB of memory. Finally, ClustalX is by far the slowest software. To sum up, although

Decipher is the fastest tool, its use is problematic, as:

1. the clusters it provides lead to a lower average ARI than the other methods;

2. this is function from an R-language library, i.e., not a standalone executable easily

integrated into another C++ package.

Concerning MAFFT, on the one hand, a standalone package exists for both Linux and

Windows, and on the other hand, the clustering was fast. However, the clusters it pro-

duced scored the lowest average ARI and its package is large, with a size exceeding

60MB, while MUSCLE scored the highest average ARI and consists of a single and small

executable. Therefore, MUSCLE was kept as the alignment tool embedded in SpCLUST-

V2 and used when no alignment is provided. But the following clarifications can be de-

duced from the experiments presented:

• MUSCLE is the best suited for small datasets and it delivers the most accurate
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Figure 6.15: In f luenza sequences clustering using different alignment modules.

results;

• MAFFT with a multi-threaded execution is faster for medium-sized datasets, but it

potentially produces less clusters;

• Decipher is the best for large datasets, requiring significantly less resources.

6.3.2.3/ IMPACT OF THE AFFINITY MATRIX

As introduced previously, Non-normalized Laplacian, Modularity, and Bethe Hessian

types of affinity matrices have been added to SpCLUST-V2. They are compared in this

section, in which BestBIC is used as clustering method. Obtained results are provided in

Figures 6.16, 6.17, 6.18, 6.19, 6.20, with a similar external validation than in the previous

experiments.

Table 6.6 shows the ARIs indicating, on the one hand, that the Non-normalized Laplacian

matrix produced a bad clustering quality, in the case of the HIV dataset, with a very low

ARI equal to 0.057 and only a few clusters. On the other hand, the use of the Modularity

and Bethe Hessian matrices produced the best clustering for this dataset, with an ARI

equal to 0.831. The Normalized Lapacian matrix also produced a good clustering, scoring

an ARI equal to 0.828.
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Figure 6.16: HIV sequences clustering using different affinity matrices (1/2).

HIV NADH Influenza

Nb. Clusters Nb. Clusters Nb. Clusters

ref. gen. ARI ref. gen. ARI ref. gen. ARI

Non-normalized Laplacian 7 2 0.057 1 1 - 2 2 1

Modularity 4 3 0.831 4 3 0.968 3 3 0.857

Bethe Hessian 4 3 0.831 4 3 0.968 2 2 1

Normalized Laplacian 3 3 0.828 4 3 0.839 2 2 1

Table 6.6: Adjusted Rand Index with regards to the used affinity matrix.

In the NADH case, the best ARI (0.968) were obtained with the Modularity and Bethe

Hessian matrices. The Normalized Laplacian scored 0.839 while the Non-normalized

Laplacian produced a single cluster. This last one caused a failure in detecting the dif-

ferent communities of this set. Finally, the lowest (yet good) ARI was obtained with the
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Figure 6.17: HIV sequences clustering using different affinity matrices (2/2).

Modularity matrix in the In f luenza nucleoprotein set. The other matrices all produced

highly similar clusterings that scored a perfect ARI. The clustering in the Modularity case

also had a larger number of clusters than the others, with only a single misplaced element,

leading to the detection of more hidden communities in this case.

The results shown in Table 6.6 are consistent with Figures 6.16, 6.17, 6.18, 6.19, and

6.20. As can be seen in Figures 6.16 and 6.17, the Non-normalized Laplacian clustering

identifies seven noisy clusters containing 75 elements, and another small cluster of only

3 elements. Conversely, the clusterings produced by using the Modularity and Bethe

Hessian matrices identify 4 clusters each, and are similar. The use of the Normalized

Laplacian leads to three clusters with a maximum of 2 wrongly labeled elements in the

largest one.

Moreover, by using the Non-normalized Laplacian, highly divergent elements of the

NADH dataset were grouped into one cluster, see Figures 6.18 and 6.19. Therefore,

the use of this matrix is not suitable for too divergent sequences. The cases of Modularity
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Figure 6.18: NADH sequences clustering using different affinity matrices (1/2).

and Bethe Hessian lead to pure clusters (all the elements of the cluster hold a similar

label) and thus outperform the Normalized Laplacian in this case. Finally, Figure 6.20
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Figure 6.19: NADH sequences clustering using different affinity matrices (2/2).

shows that the use of any of the four matrices returns a good quality clustering. Indeed,

the clustering, produced by using the Modularity, contained 3 clusters versus 2 for the

others. We recall that these 3 clusters isolated three visually identifiable sub-trees in this

figure with a single wrongly clustered sequence: the Modularity matrix allowed a higher

detection sensitivity in the case of clustering highly similar data. Conversely, the other

types of matrices scored a perfect ARI with a lower detection sensitivity.

To summarize, the Non-normalized Laplacian is only suitable in the case of clustering

highly similar sets. The other matrices produce good and similar results in the case of

clustering divergent data, and among the latter, the Modularity leads to the detection of

a higher number of clusters for highly similar set. Further assessment of SpCLUST-V2 is

conducted in the next section.
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Figure 6.20: In f luenza sequences clustering using different affinity matrices.

6.3.3/ INTERNAL CLUSTERING VALIDATION FOR SPCLUST-V2

The external clustering validation methods mainly rely on the comparison between two

clusterings: the computed clustering and a reference that should be known a priori. We

recall that, as described in the experimental protocol, the reference of each dataset was

created based on its phylogenetic tree. These trees were generated using PhyML, thus

their exactitude remains questionable. In order to provide an independent assessment of

the obtained clusterings with SpCLUST-V2, an internal clustering validation is presented

in this section. Several internal clustering validation methods and indices were proposed

in the literature, and three indices were selected for validating the results of SpCLUST-V2:

Silhouette, Davies-Bouldin, and Calinski-Harabasz.

These three internal validation indices are applied to the clusterings obtained from

SpCLUST-V2 to evaluate two choices: the clustering method (Fast, MostFreq, and Best-

BIC) and the affinity matrix (Non-normalized Laplacian, Normalized Laplacian, Modularity,

and Bethe Hessian). Since the use of the Normalized Laplacian matrix scored the best

ARI for two out of three sets (Table 6.6), this type of affinity matrix is selected for the

internal validation of the proposed clustering algorithms. Table 6.7 shows the recorded

internal validation indices for the results of SpCLUST-V2.

Similarly to what has been previously applied for the ARI computation, any clustering
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dataset HIV NADH Influenza

Clustering criterion Fast MostFreq BestBIC Fast MostFreq BestBIC Fast MostFreq BestBIC

Silhouette 0.625 0.674 0.654 0.330 0.423 0.420 - - 0.355

Davies-Bouldin 0.691 0.810 2.207 1.307 1.227 1.031 - - 1.356

Calinski-Harabasz 30.720 24.261 36.447 39.241 11.431 32.472 - - 19.790

Table 6.7: Internal clustering validation with regards to the algorithms.

containing a single cluster is omitted, which applies to the clustering of the In f luenza

nucleoproteins using both Fast and MostFreq criteria. For the remaining clusterings over

the three sets, SpCLUST-V2 scored a S ilhouette ranging between 0.330 and 0.674. These

values fall in the upper third interval of this index range. The DB indices for the same

clusterings were mostly small and ranged between 0.691 and 2.207, while the CH indices

were relatively high and ranged between 11.431 and 39.241.

The calculated indices for the clustering of the HIV set gave conflicting results with equal

credibility to the three assessed algorithms. Indeed, the Fast algorithm scored the best

(lowest) DB and the worst (lowest) Silhouette, while the MostFreq algorithm scored the

best (highest) Silhouette and the worst (lowest) CH, and the BestBIC scored the best

(highest) CH and worst (highest) DB. A close inspection to the clusterings, illustrated

in Figures 6.6 and 6.7, shows that only 3 to 5 elements out of the 78 sequences are

differently labelled by using these three algorithms. Therefore, the clustering results in

this case are highly similar. Similarly, for the NADH set, the Fast algorithm was favored by

the CH index, while the MostFreq was favoured by the Silhouette, and the BestBIC was

favored by DB. The high similarity of the results can be examined in Figures 6.8 and 6.9.

Finally, we recall that the Fast and MostFreq algorithms produced a single cluster for the

Influenza set, therefore the indices were computed for the BestBIC algorithm only.

By disqualifying the algorithms that produced clusterings containing a single cluster,

the BestBIC algorithm is the only one that returned valid clusterings (by detecting sub-

communities) for the three datasets. So this algorithm was selected for the internal val-

idation of the results with regards to the chosen affinity matrix. Table 6.8 shows the re-

sults of these experiments where the Non-normalized Laplacian, Normalized Laplacian,

Modularity, and Bethe Hessian matrices are referred to as “UL”, “NL”, “Mod”, and “BH”

respectively. The single cluster result for NADH using Non-normalized Laplacian matrix

was discarded.

dataset HIV NADH Influenza

Affinity matrix UL NL Mod BH UL NL Mod BH UL NL Mod BH

Silhouette 0.505 0.654 0.592 0.555 - 0.420 0.390 0.575 0.654 0.355 0.555 0.778

Davies-Bouldin 1.514 2.207 0.999 1.073 - 1.031 1.492 0.905 0.816 1.356 0.689 0.253

Calinski-Harabasz 0 36.447 3.965 4.180 - 32.472 30.493 63.110 17.685 19.790 9.081 148.491

Table 6.8: Internal clustering validation with regards to the affinity matrix type.

The internal validation indices confirmed the validity of the previous assessments based
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on the external ones. More precisely, we have previously established that the Normalized

Laplacian matrix gave the best clusterings for the HIV while the Modularity or the Bethe

Hessian matrices returned the best ones for the NADH sequences. The Normalized

Laplacian or the Bethe Hessian matrices returned the best clustering for the Influenza

nucleoprotein sequences. Conversely, the clustering of the HIV sequences using the

Non-normalized Laplacian was the worst one. According to the three internal validation

indices, the clustering of NADH and Influenza datasets using Bethe Hessian, got the best

scores among the other clusterings. The clustering of the Influenza proteins using the

Normalized Laplacian and the Non-normalized Laplacian scored the second and third

best CH index. The HIV clustering, using the Normalized Laplacian, obtained the best

scores for two out of the three indices, while it got the worst scores for two out of the three

indices when using the Non-normalized Laplacian.

The results presented in this section provide further validity for the interpretations that

were made following the external validation process. Indeed, the calculated internal val-

idation indices mostly reflected the clustering validity similarly to the external validation

ones. The capability of SpCLUST-V2, in dealing with real-life scenarios, is investigated in

the next section.

6.3.4/ CLUSTERING HETEROGENEOUS DATASETS

In the previous experiments, all the three datasets contained different sequences of the

same pathogen or gene. In this last experiment, we evaluate the capability of SpCLUST-

V2 in clustering the last four heterogeneous datasets consisting of genomes belonging to

different pathogens affecting either the same or different regions of the human body, and

simulating the case of occurrence of horizontal genes transfer. SpCLUST-V2 was not pro-

vided with any a priori knowledge on the number and the characteristics of the pathogens

included in the datasets. The BestBIC algorithm of SpCLUST-V2, that detected the high-

est number of clusters in the previous sets of experiments, was used in this experiment.

Since the fifth and seventh sets consist of complete medium size genomes, MAFFT was

used for the alignment of these sequences. The Normalized Laplacian (NL), Bethe Hes-

sian (BH), and Modularity (Mod) affinity matrices, embedded in SpCLUST-V2 were also

used in this set of experiments. To compare SpCLUST-V2 to its state of the art com-

petitors, we tried to cluster the same four datasets with CD-HIT and UCLUST. Table 6.9

shows the number of expected clusters (known a priori), the number of generated clus-

ters, and the Adjusted Rand Index calculated for each produced clustering.

A closer look to Table 6.9 shows that SpCLUST-V2 accurately clustered all the datasets

when using any affinity matrix. The involved genomes were grouped as a single cluster

per pathogen type. With CD-HIT, the minimum supported similarity threshold was set to
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dataset 4 dataset 5 dataset 6 dataset 7

Nb. Clusters Nb. Clusters Nb. Clusters Nb. Clusters

exp. gen. ARI exp. gen. ARI exp. gen. ARI exp. gen. ARI

SpCLUST-V2 (NL) 2 2 1 3 3 1 3 3 1 4 4 1

SpCLUST-V2 (BH) 2 2 1 3 3 1 3 3 1 4 4 1

SpCLUST-V2 (Mod) 2 2 1 3 3 1 3 3 1 4 4 1

CD-HIT (id=0.8) 2 4 0.479 3 6 0.570 3 6 0.587 4 8 0.627

UCLUST (id=0.5 till 0.9) 2 2 1 3 3 1 3 11 0.775 4 12 0.816

Table 6.9: Adjusted Rand Index with regards to the used clustering tool.

0.8 and it produced clusterings where the sequences of each pathogen were split into 2

clusters. UCLUST was evaluated with different identity thresholds, starting with an identity

threshold equal to 0.9 and at each next experiment it was decremented by 0.1. However,

the best results, were obtained with the threshold range of 0.5 till 0.9, which are displayed

in Table 6.9. At this threshold range, UCLUST successfully grouped the sequences of the

fourth and fifth datasets. Conversely, the HIV sequences that are present in the sixth and

seventh sets were clustered as singletons. On the other hand, the Influenza sequences

were wrongly grouped when using thresholds lower than 0.5: at a threshold of 0.4 three

sequences of Influenza D were grouped in the cluster of Influenza A, and at a threshold

of 0.3 all the Influenza sequences were clustered together except one sequence that was

classified in the SARS-COV cluster. With higher identities (≥ 0.91) the correct clusters

were split.

Finally, the effect of the simulated horizontal gene transfer on the phylogenetic signal, in

the last set, is illustrated in Figure 6.21. For a better legibility, the sequences were re-

named as follows: the names starting with FA refer to the Influenza A sequences and,

similarly, those starting with FD, Co, and HIV refer to the Influenza D, SARS-COV, and

HIV sequences respectively. The numbers that are separated by hyphens, in the remain-

der of the name, refer to the parent sequences, e.g., the sequence named FA1 3 5 7 is a

descendant of FA00 1 3 5, that is in its turn a descendant of FA0000 1 3, etc... Each kind

of the highlighted sequences, that received such gene transfer, and marked by an addi-

tional M in their names, were positioned as leafs in the same subtree. This positioning

is not absurd because the transferred genes are identical and are inserted in the same

positions, therefore they increase the similarity between the affected sequences. Con-

versely, the phylogenetic tree clearly does not position the sequences as expected: four

large subtrees where each one of them consisting of just one kind of sequences, HIV,

SARS-COV, Influenza A or Influenza D, while the Influenza subtrees are close to each

other or have the same parent node. In the obtained phylogenetic tree, the Influenza

D sequences are separated into three distant subtrees while the Influenza A sequences

are in the same subtree as the HIV and SARS-COV sequences which could lead to be-

lieve that Influenza A sequences are closer to the HIV and SARS-COV sequences than

to the Influenza D sequences. Therefore, accurately identifying the correct clusters and
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their number became visually impossible while using this tree. This fact demonstrates

that our tool successfully handles the cases of horizontal gene transfer in its clustering,

conversely from the use of phylogenetic trees. Moreover, building the phylogenetic tree9

of Figure 6.21 took 9 hours and 18 minutes, compared to a few seconds for clustering the

concerned set with SpCLUST-V2.

Figure 6.21: Phylogenetic tree of the last hybrid set.

This last assessment demonstrated that SpCLUST-V2 is more capable than the state of

the art tools in clustering datasets containing different types of genomes. The experi-

9by using PhyML with the same parameters that were used for generating the previous trees
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ments also showed that all the embedded affinity matrices are well suited in the case of

clustering datasets containing different types of sequences, including those containing

sequences that are subject to horizontal gene transfers.

6.4/ CONCLUSION

In this chapter, SpCLUST-V2, an efficient clustering package for both highly similar and di-

vergent biological sequences, is proposed. This package presents major enhancements

when compared to its predecessor, SpCLUST presented in Chapter 5. It relies on new

algorithms and a new Gaussian Mixture Model (GMM) implementation in C++. The use of

the new GMM implementation greatly enhances the performance of the proposed pack-

age, when compared with its predecessor that used a Python GMM implementation. A

performance comparison for the clustering phase, between the previous package and the

new one, shows a speed-up ranging from 9.78× to 15×.

The effects of using four different alignment tools were discussed. The alignment speed

of these tools, along with their capacity in handling large sequences, was briefly tackled.

Moreover, three added criteria enable the user to choose between a fast single random

seed run, the most frequent clustering over several iterations with different seeds, or the

clustering scoring the best BIC from a user-defined number of iterations. For a better

performance in the last criterion choice, it is possible to stop iterating if no improvement is

detected after a certain user-defined number of consecutive iterations. Three additional

affinity matrices are also available in SpCLUST-V2.

A comparative study between SpCLUST-V2, SpCLUST [Matar et al., 2019],

UCLUST [Edgar, 2010], and CD-HIT [Li et al., 2006] was conducted over three dif-

ferent sets of real genomic and protein sequences. In contrast with most of the state of

the art tools, SpCLUST-V2 aims for a fast spectral clustering of datasets, regardless of

the level of similarity or divergence of their elements. Similarly to its predecessor, an a

priori knowledge of the similarity threshold or the number of clusters is not required. The

results of the experiments show that SpCLUST-V2 produced similar or better clusters

contents than the other tested tools for both highly similar and highly divergent datasets,

in addition to successfully handling horizontal genes transfer. This comparison was

based on an external clustering validation index. Three additional internal clustering

validation indices further supported the results validity. The ability of SpCLUST-V2 in

clustering datasets containing different types of sequences was also proved.

In the next chapter, an additional improvement in the computation of the pairwise sim-

ilarities is achieved. Moreover, additional clustering techniques will be exploited in the

biological sequences clustering field. Finally, a novel clustering algorithm is introduced.
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NOVEL CLUSTERING APPROACHES: A

COMPARATIVE STUDY

7.1/ INTRODUCTION

The tools presented in [Bruneau et al., 2018] and the previous chapters of this thesis,

use GMMs (Gaussian Mixture Models) for performing an unsupervised clustering of bi-

ological sequences. Although they returned good quality clusterings for highly divergent

sequences and overlapping clusters, they are not adapted to process large datasets be-

cause they include two computationally intensive tasks in their pipeline: i- the pairwise

affinity computation of the sequences, ii- the clustering using the GMM itself. We re-

call that this issue has been addressed in Chapters 5 and 6, by using a MPI (Message

Passing Interface) parallel computation scheme and re-coding some parts in a lower level

programming language in order to accelerate the process, but the computation time of the

affinity matrix remained problematic.

Moreover, to our knowledge, many clustering techniques among the ones presented

in our state of the art, are being used in other fields and have never been ex-

perimented in the biological sequences clustering field. These techniques are DB-

SCAN [Khan et al., 2014], HDBSCAN [Campello et al., 2013], and a recent technique

that relies on connectivity patterns [Benson et al., 2016], called MOTIFS. A common ad-

vantage for these techniques is there ability of detecting random shaped clusters, which

is the case for clustering biological sequences in an n-dimensional space by using the

spectrum (eigenvalues). Therefore, they present potential solutions for clustering biologi-

cal sequences.

The contributions presented in this chapter are thus threefold: 1- assuring an enhanced

affinity computation time compared to the packages introduced in the previous chapters,

2- presenting a qualitative study for the results of three additional and not experimented

clustering algorithms in the field of biological sequences, 3- proposing and assessing a

95
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novel and lightweight clustering algorithm. The experimented methods and algorithms

were integrated to an improved and full featured clustering package1.

The remainder of this chapter is organized as follows. In Section 7.2, the datasets that

are used in these experiments are presented. Section 7.3 presents the achieved improve-

ment in the alignment and affinity computation time. Section 7.4 contains a qualitative

study, of some existing clustering techniques, in the field of biological sequences cluster-

ing. The novel CHAINS clustering technique is introduced and evaluated in Section 7.5.

An additional numerical evaluation and comparison, between the results of the explored

clustering techniques and those of some existing biological sequences’ clustering tools,

is presented in Section 7.6. Finally, Section 7.7 concludes this chapter.

7.2/ THE EXPERIMENTAL DATASETS

The datasets that were used for the assessment of the clustering quality, are composed

of some of the following subsets of sequences:

• 4 genomic sequences, belonging to the NADH dehydrogenase 3 (ND3) mitochon-

drial gene.

• 48 complete genomes of SARS-COV2 collected in the UK and belonging to the

B.1.1.7 lineage.

• 50 complete genomes of SARS-COV2 collected in South Africa and belonging to

the B.1.351 lineage.

• 21 complete genomes of SARS-COV2 collected in Europe and belonging to the

B.1.525 lineage.

• 8 spike protein sequences extracted from SARS-COV2 samples belonging to the

B.1.177 lineage.

• 3 spike protein sequences extracted from SARS-COV2 samples belonging to the

B.1.1 lineage.

• 9 spike protein sequences extracted from SARS-COV2 samples belonging to the

B.1.1.7 lineage.

• 5 spike protein sequences extracted from SARS-COV samples.

• And finally, 3 spike protein sequences extracted from MERS samples.

1The source code is available on https://github.com/johnymatar/SpCLUST-Global
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A detailed list showing the sourcing organisms of the sequences, their accession ID, and

the collection date of samples can be found in Appendix V.

Using the NADH genomic sequences, 4 simulated datasets were generated as follows:

2 datasets of 1000 sequences each and 2 larger data sets of 2004 sequences each,

following the 2 mutation scenarios presented in Table 7.1. These scenarios involve the

following criteria:

1. The mutation rate with regards to the number of bases in the considered sequence.

2. The rate in which the possibility of random gaps can occur.

3. The maximum size of a produced gap.

4. The maximum number of random insertions.

5. The maximum size (number of bases) in an insertion.

6. The number of generations produced during the simulated mutations, i.e. the depth

of the produced tree.

Scenario Mut. rate Gaps rate Max. gap size Max. nb. ins. Max. ins. size Nb. gens.

S1 5% 2% 10 3 10 3

S2 10% 5% 20 10 20 5

Table 7.1: Scenarios for simulated mutations.

The produced datasets, using the previously described scenarios, have 2 different sizes

and 2 different divergence rates. The data sets produced according to the second sce-

nario S 2, presented in Table 7.1, naturally have a higher rate of divergence compared

to those produced according to S 1. The 1000-sequences dataset, generated according

to S 1, will be referred to as NADH − S 1 while the 2004-sequences dataset, generated

using the same scenario, will be referred to as NADH − S 1L. Similarly, the datasets gen-

erated using S 2 will be named NADH−S 2 and NADH−S 2L. Since all these datasets are

generated from 4 source sequences, they should all produce a clustering of 4 clusters,

containing each the descendants of a same source sequence, with either 250 or 501

elements per cluster.

Four additional real datasets were formed as the following:

• A dataset called COV2−Vars that contains the 109 collected SARS-COV2 genomes.

This dataset has 3 clusters of the different collected variants (lineages) of SARS-

COV2.

• A dataset called COV2−S pike−UK where the 20 spike protein sequences, extracted

from the SARS-COV2 samples collected in the UK, are grouped together. This
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dataset should also be divided into 3 clusters, where each cluster consists of the

spike proteins of a different lineage of the virus.

• COV − S pike − 4 is a dataset that contains the sequences of COV2 − S pike − UK in

addition to the 5 collected spike protein sequences of the SARS-COV virus. A typ-

ical clustering of this set should contain 4 clusters, while a less sensitive clustering

could produce just 2 clusters containing either the sequences belonging to COV2

or COV.

• Finally, COV−S pike−5 is a dataset that contains the sequences of COV−S pike−4 in

addition to the 3 collected spike protein sequences of the MERS virus. Similarly to

the interpretation of the previous dataset, this set should be either ideally partitioned

into 5 clusters or a less sensitive clustering could produce just 3 clusters.

Data set Nb. seqs. Avg. length Max. simil. Min. simil. Avg. simil. Nb. clusters

NADH-S1 1000 380 0.9096 0.3660 0.5295 4

NADH-S1L 2004 379 0.9571 0.4720 0.5906 4

NADH-S2 1000 584 0.9173 0.3851 0.5302 4

NADH-S2L 2004 586 0.9126 0.3663 0.5285 4

COV2-Vars 119 29780 0.9999 0.9769 0.9916 3

COV2-Spike-UK 20 1271 0.9992 0.9096 0.9860 3

COV-Spike-4 25 1268 0.9992 0.7059 0.9123 4

COV-Spike-5 28 1277 0.9992 0.3366 0.8040 5

Table 7.2: Properties of the datasets.

The properties of the simulated and the real datasets are presented in Table 7.2. In

addition to the number of sequences in each dataset and its expected number of clusters,

the average length of the sequences, and the maximum, minimum, and average similarity,

among the sequences of each set, are also shown in Table 7.2. The difference in the

average length, between the datasets generated using the simulation scenarios S 1 and

S 2, clearly shows the higher rate of random insertions in the sequences produced by

S 2. These data sets will be used to evaluate the clustering accuracy resulting from the

improvements and techniques that are introduced in the next sections.

7.3/ IMPROVING THE COMPUTATION SPEED OF THE SIMILARITY

MATRIX

In the previous GMM-based clustering tools, namely the GCLUST, SpCLUST, and

SpCLUST-V2 packages, the pairwise similarities are computed by comparing pairs of

the aligned sequences. A global alignment is performed before the computation of these

similarities and MUSCLE [Edgar, 2004] is used by default in these three packages. How-

ever, in [Matar et al., 2019] it was shown that MAFFT [Katoh et al., 2013] outperforms
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MUSCLE in some cases, in terms of alignment speed and quality of the produced clus-

tering when using its global alignment. Moreover, in [Matar et al., 2021], aligning a set of

78 genomic sequences, having a length of about 1000 bases each, using either MUS-

CLE or MAFFT, took between 735 and 844 seconds. In order to avoid realigning an

already aligned dataset, the ability of providing aligned sequences as input was added to

SpCLUST-V2.

Since a good alignment of the sequences remains a fundamental and unavoidable step

for the analysis of the biological sequences and the calculation of an accurate pairwise

similarity between them, accelerating this process while preserving the quality of the re-

sulting alignment is still the subject of ongoing research. A recent algorithm for pairwise

alignment that uses Needleman-Wunsch and is implemented in c/c++ in the EDLIB li-

brary, was proposed in [Šošić et al., 2017]. It was shown in [Šošić et al., 2017] that this

algorithm has an optimal memory usage and is able to handle very large sequences

while outperforming the state of the art libraries. Therefore, we propose using this library

to accelerate the computation time of the sequence alignment in SpCLUST.

In order to evaluate the alignment speed and quality of the EDLIB library, the largest

datasets, in terms of number of sequences or length of the sequences, were selected.

NADH − S 1L and NADH − S 2L fulfill the first criterion and COV2 − Vars the second. In

the SpCLUST version that uses EDLIB, the pairwise similarity of the aligned sequences

is computed along with the alignment of each pair of sequences as follows:

1 −
Levenshtein distance

length o f the aligned sequences
.

For the sake of comparison, the alignment of the selected data sets was also generated

using the state of the art tools, MUSCLE and MAFFT, that were evaluated as being the

best among others in [Matar et al., 2021]. The required time for computing the similarity

matrix, by using the aligned datasets, was also recorded. To ensure a fair comparison,

all the experiments were conducted on the same machine equipped with an Intel i7-6700

- 3.4GHz Quad-Core (8 Threads) processor and 8GB of RAM. Table 7.3 displays the pa-

rameters that were used for the alignment and the recorded observations that include the

recorded times for aligning the sequences and calculating the similarity matrix, in addition

to the average and maximum lengths of the aligned sequences that were produced.

In the case of MUSCLE, the limit in the iterations number, imposed by the large number

of sequences or the large size of the sequences, caused a potential deterioration in the

quality of the alignment. A closer look at the aligned sequences of the simulated NADH

datasets, reveals a significant increase in the size of these sequences when compared

to the size of the original ones. Moreover, the smaller the number of iterations is set, the

larger the size of the aligned sequences becomes: indeed, a two-iterations alignment for

the NADH − S 1L data set caused a 3.96 times (7528 vs. 1900) larger aligned sequences
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Data set Alig. tool Alig. parameters Alig. + Simil. calc. time (s) Avg. length Max. length

NADH-S1L MUSCLE 2 iterations 102 + 35361 = 35463 7528 7528

NADH-S1L MUSCLE 4 iterations 11200 + 2105 = 13305 1900 1900

NADH-S1L MAFFT Auto / 1 thread 27 + 19680 = 19707 5758 5758

NADH-S1L MAFFT Auto / 8 threads 14 + 19680 = 19694 5758 5758

NADH-S1L EDLIB NW / 1 process 423 420 475

NADH-S1L EDLIB NW / 8 processes 86 420 475

NADH-S2L MUSCLE 2 iterations 235 + 137750 = 137985 15206 15206

NADH-S2L MAFFT Auto / 1 thread 79 + 192490 = 192569 17841 17841

NADH-S2L MAFFT Auto / 8 threads 52 + 192490 = 192542 17841 17841

NADH-S2L EDLIB NW / 1 process 805 675 934

NADH-S2L EDLIB NW / 8 processes 157 675 934

COV2-Vars MAFFT Auto / 1 thread 30 + 56 = 86 29893 29893

COV2-Vars MAFFT Auto / 8 threads 16 + 56 = 72 29893 29893

COV2-Vars EDLIB NW / 1 process 248 29805 29883

COV2-Vars EDLIB NW / 8 processes 52 29805 29883

Table 7.3: Observation of the alignments

compared to a four-iterations alignment. This could be possibly caused by an increased

number of identification of false-insertions and false-gaps instead of identifying mutations.

In addition to what preceded, while using MUSCLE, the alignment fails if the number of

iterations is set respectively to greater than 4 and 2 for the datasets NADH − S 1L and

NADH − S 2L. In order to successfully perform more iterations to refine the alignment

quality of these sets, MUSCLE requires a higher memory size than the available one.

For this same reason, even a single iteration limit could not produce an alignment in the

case of the COV2 − Vars data set. Finally, a comparison between a two-iterations and a

four-iterations alignment attempt on the NADH − S 1L dataset with MUSCLE shows that

the four-iteration alignment required 109.8 times more time when compared to the two-

iterations attempt, besides the significant difference in the size of the produced aligned

sequences. This observation further supports the idea of potential quality deterioration

when using less iterations and clearly shows how much a good alignment can become

time-consuming with MUSCLE.

For these same sets of sequences, the automatically selected algorithm in MAFFT per-

forms faster than MUSCLE, but produces a closely similar size for the aligned sequences.

This similarity leads to thinking that the alignment quality is also potentially close to the

one produced by MUSCLE. Indeed, a closer look at the recorded values in Table 7.3

shows that, in the alignment results for the NADH − S 1L and NADH − S 2L datasets, the

size of the sequences that were aligned using MAFFT is close to the size of the ones

produced by a two-iterations alignment by MUSCLE. As a result, the similarity matrix

computation time showed a drastic raise since it scales quadratically2 with the size of the

aligned sequences. MAFFT took 1226.38 more time than EDLIB (192542s vs. 157s) to

perform the same computation on the NADH-S2L dataset. 8 threads and/or 8 processes

2The order of the computation of similarities is O( N2−N
2 ), where N is the number of sequences, and each

similarity computation time is proportional to the size of the aligned sequences.
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were used by both tools for this computation.

Another aspect of comparison is the scaling efficiency of both tools: our parallel algorithm

that uses EDLIB (for computing the pairwise alignment and the similarity altogether) and

the multi-thread algorithm implemented in MAFFT (for computing the global alignment):

• In the experiments on the NADH − S 1L dataset, our implementation scored a time

improvement of 79.66% in its parallel computation when compared to its serial one,

while MAFFT scored a 48.14% time improvement in similar conditions. These

recorded time improvements correspond to a 61.48% and 24.10% strong scaling

efficiencies3 respectively.

• In the experiments on NADH − S 2L data set, an 80.49% time improvement and

64.09% strong scaling efficiency was achieved by our implementation compared to

a 34.17% time improvement and 18.99% strong scaling efficiency for MAFFT.

• Finally in the case of COV2 − Vars, our implementation also achieved better time

improvement (79.03% vs. 46.66%) and better strong scaling efficiency (59.61% vs.

23.43%).

These values show a significantly better scaling efficiency for our implementation when

compared to MAFFT.

Technically, it is normal that EDLIB produces a significantly smaller size of aligned se-

quences because it does a local pairwise alignment while a global one is done with MUS-

CLE and MAFFT. For the sake of comparison, a pair of sequences from the NADH − S 2L

dataset was randomly chosen to compare the size of a local alignment using MUSCLE,

MAFFT, and EDLIB with the same parameters that were used for this data set and pre-

sented in Table 7.3: the size of the aligned sequences was equal to 910 for MUSCLE, 880

for MAFFT, and 879 for EDLIB. Although the size of the aligned sequences are close in

this case, performing a local pairwise alignment with MUSCLE and MAFFT is not practical

because the huge number of calls for an external tool will naturally produce a significant

time consumption, and this was experimented in [Matar et al., 2019] when an external

module was called for the similarity computation of each pair of sequences. Moreover,

it was not possible to produce a local pairwise alignment for any pair or COV2 − Vars

sequences, using MUSCLE, on the same experimentation machine.

A further investigation of the obtained alignments consists in evaluating the quality of the

clusterings that are produced using these aligned datasets. The evaluation was done on

all of the datasets that were presented in Table 7.2. The obtained number of clusters in

the resulting clusterings, along with the computed purity and ARI of these clusterings, are

presented in Table 7.4.
3The strong scaling efficiency is computed as t1

tN∗N
∗ 100% where ti is the computation time required when
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Data set Alig. method Alig. param. Nb. clusters Purity ARI

NADH-S1 MUSCLE Maximum iterations 5 0.589 0.235

NADH-S1 MAFFT Auto 4 0.750 0.637

NADH-S1 EDLIB - 3 0.677 0.513

NADH-S1L MUSCLE 4 iterations 1 - -

NADH-S1L MAFFT Auto 3 0.322 0.009

NADH-S1L EDLIB - 2 0.286 0.005

NADH-S2 MUSCLE 2 iterations 3 0.492 0.213

NADH-S2 MAFFT Auto 4 0.879 0.763

NADH-S2 EDLIB - 2 0.440 0.181

NADH-S2L MUSCLE 2 iterations 2 0.290 0.006

NADH-S2L MAFFT Auto 1 - -

NADH-S2L EDLIB - 1 - -

COV2-Vars MAFFT Auto 4 0.991 0.820

COV2-Vars EDLIB - 5 1 0.718

COV2-Spike-UK MUSCLE Maximum iterations 2 0.850 0.744

COV2-Spike-UK MAFFT Auto 2 0.850 0.744

COV2-Spike-UK EDLIB - 3 0.850 0.691

COV-Spike-4 MUSCLE Maximum iterations 3 0.840 0.733

COV-Spike-4 MAFFT Auto 3 0.840 0.733

COV-Spike-4 EDLIB - 3 0.840 0.733

COV-Spike-5 MUSCLE Maximum iterations 4 0.892 0.828

COV-Spike-5 MAFFT Auto 4 0.892 0.828

COV-Spike-5 EDLIB - 3 0.607 0.355

Table 7.4: Clustering results using the different alignment methods.

In the case of the simulated datasets, where the sequences present a high level of diver-

gence, the produced number of clusters and the computed ARI show that the GMM could

hardly produce acceptable results for the two smaller datasets. The use of the sequences

that were aligned by MAFFT produced the best results for NADH − S 1 and NADH − S 2.

The scored ARI also shows that the use of EDLIB for NADH − S 1 also produces accept-

able results, while the remaining results on the simulated datasets score a very low ARI,

thus a bad clustering. This ARI also shows that the GMM failed to produce a valid clus-

tering for the larger data sets. Because of the high divergence, and subsequently greater

distance, between these sequences, their inferred data points became very dispersed

in the plane, while producing random shapes. Therefore, the discovery of their correct

clusters became harder for the GMM. The large number of sequences causes even more

noise and complexity which leads to a single cluster grouping, by the GMM, as shown in

3 out of the 6 clusterings produced for the large datasets.

Conversely, the clustering results of the real datasets demonstrate the validity of the clus-

terings produced using either one of the alignment tools. The use of EDLIB allowed the

GMM to detect more sub-clusters in the case of COV2 − Vars and COV2 − S pike − UK.

Sub-grouping a same cluster is penalized when computing the ARI for this clustering. It

led to a lower ARI for EDLIB when compared to the other results of these two datasets.

However, this same sub-grouping obtained a perfect purity score for EDLIB in the case

of clustering the COV2 − Vars sequences. The clusterings of the COV − S pike − 4 se-

using i processes or threads and N is the number of processes or threads.
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quences obtained the same scores with the three tools, while EDLIB scored lower results

for the COV − S pike − 5 sequences. However, a closer inspection of that last clustering

shows that the three species of sequences (SARS-COV2, SARS-COV, and MERS) were

correctly separated into three clusters. However, the clustering failed to differentiate the

three lineages of SARS-COV2.

Finally, based on the important gain in performance coupled with the ability to handle very

large sequences and since there was no significant deterioration in the clustering quality,

the implementation of EDLIB was considered as the most interesting alignment solution.

EDLIB was also used in the rest of this chapter’s experiments.

7.4/ EVALUATING SOME STATE OF THE ART CLUSTERING METH-

ODS

In the present section, the clustering results of the state of the art approaches or algo-

rithms, that were not previously exploited in the field of clustering biological sequences,

are evaluated.

7.4.1/ THE MOTIFS APPROACH

This novel clustering method for clustering higher order networks [Benson et al., 2016]

computes a kind of affinity matrix via MOTIFS-counting, then uses the EM-GMM for clus-

tering. This algorithm was initially introduced for clustering large graphs with directed

links, that represent the relations, among its nodes, and where the MOTIFS are a set of

13 triangular shapes having each a different combination of directions on its sides. Since

the relation between the biological sequences is bidirectional, then only two MOTIFS may

be used in this case. Figure 7.1 illustrates the different MOTIFS and highlights the usable

ones for clustering biological sequences, precisely the M4 and M13.

Figure 7.1: MOTIFS.

To cluster biological sequences through this approach it is mandatory to define when
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two sequences are considered to be linked. Indeed, there is no pair of sequences that

scores a zero-valued similarity. Therefore, a certain similarity threshold should be set

and two sequences with a similarity score below this threshold are considered as unre-

lated. Therefore, in order to set such a threshold, we propose the following experimental

techniques:

• Deltas is a semi-manual technique that consists in computing the dissimilarity ∆

between each sequence i, and its closest one as follows:

∆i = 1 − the highest similarity with the sequence i.

Then, using a user-input threshold th > 1, the minimum acceptable similarity to

establish a link between the sequence i and another sequence is computed as

follows:

minS imili = 1 − (∆i ∗ th)

This technique avoids the possibility of keeping links between potentially distant

sequences that might be within a certain constant threshold.

• AVG is another simple automatic technique where the average of the computed

similarities among the input sequences is calculated. Only the links between se-

quences having a pairwise similarity greater than the average are kept. This tech-

nique can be extended to keeping the similarities higher than the average multiplied

by an user-defined threshold.

• Finally, Auto is an iterative technique where at each iteration, a graph is generated

as follows: each sequence keeps a certain x percentage of the links with the other

sequences. For example, each sequence will keep its links with the x% of the

remaining sequences that score the highest similarity with it. The resulting graph is

used to produce a clustering, then the internal clustering validation index, Calinski

Harabasz (CH), is computed. Between iterations, the value of x varies from 0.05

to 0.8 with a step equal to 0.05. Finally, the clustering with the highest CH index is

selected. This iterative technique is highly compute intensive because the data is

clustered at each iteration.

In the experiments, on the eight previously described datasets in Section 7.2, multiple

trials were performed for the Deltas technique with different threshold values. The tested

thresholds ranged from 1.5 to 9 with a step equal to 0.5. The details of the resulting

clusterings that scored the best ARI are presented in Tables 7.5 and 7.6.

An overview of the presented results in Tables 7.5 and 7.6 shows that the use of both

MOTIFS (M4 and M13) produces highly similar results. These results are also not very

different from the ones produced using the traditional GMM scheme with an alignment
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Data set T. tech Threshold Nb. clusters Purity ARI

NADH-S1 Deltas 3.0 4 0.445 0.043

NADH-S1 AVG - 2 0.257 1.7e-4

NADH-S1 Auto - 3 0.542 0.341

NADH-S1L Deltas 3.0 5 0.385 0.018

NADH-S1L AVG - 3 0.278 0.001

NADH-S1L Auto - 3 0.285 0.004

NADH-S2 Deltas 2.5 3 0.297 0.005

NADH-S2 AVG - 2 0.252 5.2e-6

NADH-S2 Auto - 3 0.485 0.288

NADH-S2L Deltas 2.0 4 0.272 8.1e-4

NADH-S2L AVG - 2 0.251 6.0e-6

NADH-S2L Auto - 2 0.250 0.000

COV2-Vars Deltas 5.5 3 0.789 0.522

COV2-Vars AVG - 3 0.571 0.041

COV2-Vars Auto - 4 0.941 0.667

COV2-Spike-UK Deltas 3.0-6.0 3 0.850 0.691

COV2-Spike-UK AVG - 2 0.500 0.005

COV2-Spike-UK Auto - 2 0.850 0.744

COV-Spike-4 Deltas 4.0-6.0 3 0.840 0.733

COV-Spike-4 AVG - 3 0.600 0.285

COV-Spike-4 Auto - 3 0.720 0.548

COV-Spike-5 Deltas 4.0-6.0 3 0.750 0.654

COV-Spike-5 AVG - 3 0.607 0.375

COV-Spike-5 Auto - 3 0.500 0.251

Table 7.5: Clustering results using the M4 MOTIF.

Data set T. tech Threshold Nb. clusters Purity ARI

NADH-S1 Deltas 3.0 5 0.406 0.027

NADH-S1 AVG - 3 0.467 0.200

NADH-S1 Auto - 2 0.252 2.7e-6

NADH-S1L Deltas 3.0 5 0.385 0.017

NADH-S1L AVG - 2 0.318 0.020

NADH-S1L Auto - 3 0.284 0.004

NADH-S2 Deltas 2.5 3 0.277 0.002

NADH-S2 AVG - 2 0.252 5.2e-6

NADH-S2 Auto - 2 0.484 0.287

NADH-S2L Deltas 2.5 3 0.262 4.0e-4

NADH-S2L AVG - 2 0.251 6.0e-6

NADH-S2L Auto - 2 0.250 0.000

COV2-Vars Deltas 6.0 3 0.789 0.524

COV2-Vars AVG - 3 0.571 0.041

COV2-Vars Auto - 4 0.932 0.654

COV2-Spike-UK Deltas 3.0-6.0 3 0.850 0.691

COV2-Spike-UK AVG - 2 0.500 0.005

COV2-Spike-UK Auto - 2 0.850 0.744

COV-Spike-4 Deltas 4.0-6.0 3 0.840 0.733

COV-Spike-4 AVG - 2 0.560 0.294

COV-Spike-4 Auto - 3 0.720 0.548

COV-Spike-5 Deltas 4.0-6.0 4 0.785 0.617

COV-Spike-5 AVG - 3 0.607 0.375

COV-Spike-5 Auto - 3 0.535 0.330

Table 7.6: Clustering results using the M13 MOTIF.

by EDLIB and presented in Table 7.4. In the following, a discussion of the experiment’s

results:
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• The best clustering for the NADH−S 1 dataset scored an ARI of 0.341 and a purity of

0.542 when using the Auto technique and the M4 MOTIF compared to 0.2 and 0.467

respectively when using the M13 MOTIF. These results are the only ones that show

a significant difference and highlight how much the choice of the MOTIF could im-

pact the quality of the clustering. The traditional GMM based clustering also scored

a fairly better ARI and purity, 0.513 and 0.677 respectively, and outperformed the

MOTIFS technique in the clustering of this data set.

• The produced clusterings for NADH − S 1L and NADH − S 2L are all invalid, and for

both MOTIFS, since the scored ARI is close to 0. The results were also similar to

the ones produced with the traditional GMM. Indeed, these two datasets contain a

significantly larger number of sequences when compared to the remaining experi-

mental sets. This larger number of sequences could possibly infer a higher degree

of overlapping among the clusters of these divergent datasets, and this could be

leading to the failed GMM clustering. Moreover, the last computation step of the

MOTIFS based technique uses the GMM to predict the optimal cuts. Therefore, it

seems to inherit the deficiencies of the traditional GMM.

• The clustering results of the COV2−S pike−UK data sets were perfectly identical for

both M4 and M13 MOTIFS. When using the Auto technique, these results matched

the ones produced by the traditional GMM using MUSCLE or MAFFT for the align-

ment. Conversely, they slightly outperformed the ones achieved by the traditional

GMM with EDLIB. Indeed, the MOTIFS approach with the Auto technique produced

a clustering with an ARI of 0.744 while the the GMM with EDLIB just obtained 0.691

that matches the results of the MOTIFS approach with the Deltas technique. The

clusterings with the best ARI also got the highest purity level of 0.85.

• When clustering the COV − S pike − 4 dataset, the Deltas technique for the MOTIFS

approach with either the M4 or M13 MOTIF, and the traditional GMM gave the best

clusterings. The clustering that was produced using the AVG technique, grouped

the COV and COV2 sequences into two pure clusters and produced a third cluster

containing a singleton. Moreover, the advantage of the Deltas technique that uses

a non constant threshold, is highlighted by its superior results in the case of hybrid

data sets.

• Finally, the Deltas technique with the M4 MOTIF scored the best ARI of 0.654 and

the highest purity of 0.750 for this last hybrid COV − S pike − 5 dataset, followed

by the same approach with the M13 MOTIF and in the third place the traditional

GMM with EDLIB. The latter only scored a slightly better ARI and purity of 0.828

and 0.892 when the sequences were aligned with MUSCLE or MAFFT. Similarly

to the clustering results of the previous dataset, the MOTIFS approach successfully
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grouped the COV, COV2, and MERS sequences into 3 clusters when using the AVG

technique for both M4 and M13 MOTIFS.

These results present an additional proof of validity for the MOTIFS approach. They also

show that our novel idea of establishing the graph links, based on a certain threshold,

presents an effective solution for applying the MOTIFS approach in clustering biological

sequences. Moreover, the results show that this method competes well with the tradi-

tional EM-GMM based approach, and might outperform it if a further enhancement is

introduced in the selection of the threshold. Indeed, the correct choice of the threshold

plays a crucial role in the MOTIFS approach and a wrong choice can drastically deteri-

orate the results as shown in the experiments. Conversely, a lightweight and automatic

technique for an accurate choice of the threshold is necessary, because the presented

algorithms in [Matar et al., 2019] and [Matar et al., 2021] fully automates the computation

of the optimal parameters for the traditional GMM.

7.4.2/ DBSCAN

DBSCAN in another algorithm that enables the detection of randomly-shaped clusters.

This feature makes it a potential concurrent to the state of the art algorithms that are

used for clustering biological sequences. Several implementations of DBSCAN are avail-

able online, therefore, we adopted one of the freely available ones4 for our experiments.

Similarly to what was done with the threshold choices in the MOTIFS approach, a range

of Epsilons between 0.01 and 0.10, with a step equal to 0.01, was used in DBSCAN’s

experiments. Table 7.7 presents the parameters that gave the best ARI when clustering

the different datasets with DBSCAN.

Data set Epsilon Nb. clusters 1 < ‖Cluster‖ < 5 Singletons Purity ARI

NADH-S1 0.07 4 0 0 1 1

NADH-S1L 0.04-0.05 5 0 0 1 0.957

NADH-S2 0.02 82 21 54 1 0.697

NADH-S2L 0.02 49 14 29 0.834 0.534

COV2-Vars 0.03 12 2 4 1 0.609

COV2-Spike-UK 0.04-0.05 3 0 1 0.850 0.691

COV-Spike-4 0.04-0.05 4 0 1 0.880 0.769

COV-Spike-5 0.04 5 0 1 0.892 0.791

Table 7.7: Clustering results using DBSCAN.

The computed ARI and purity indexes in Table 7.7 show that DBSCAN produced good

clustering results for all the datasets. Conversely from the previously obtained results by

using the GMM-based approaches, DBSCAN successfully clustered the simulated NADH

datasets that present a very high level of divergence. The produced clusters for these

4that can be downloaded from https://github.com/james-yoo/DBSCAN
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datasets were all perfectly pure except for the clustering of the NADH − S 2L dataset

that presented a reduced purity of 0.834 compared to the other results. An additional

aspect of observation is the number of small clusters and the number of singletons (noise)

in the results of DBSCAN. While there is no small clusters and singletons detected in

the clustering results of NADH − S 1 and NADH − S 1L, a significant amount exists in

the clustering results of NADH − S 2 and NADH − S 2L, that present a higher degree of

gaps, insertions, and mutations. Indeed, this higher degree of changes in the sequences

inferred the detection of micro clusters around the initial ones in addition to the noise-

classified sequences. In the case of NADH−S 2, and out of the 82 produced clusters, there

was only 7 large clusters and 75 micro-clusters and noisy ones. A similar observation can

be made to the best clustering result of NADH − S 2L where only 16 large clusters exist

out of the 49 that were produced. The larger number of sequences in NADH − S 2L also

generated a significantly higher number of clusters when compared to the expected four

clusters.

In the case of the highly similar datasets COV2−Vars and COV2− S pike−UK, the GMM-

based approaches outperformed DBSCAN by scoring a slightly higher ARI. The best

clustering results of COV2 − Vars scored an ARI of 0.718 for the traditional GMM, and

0.667 for the M4 MOTIFS-based GMM, compared to 0.609 for DBSCAN that produced

a total of 6 small clusters or singletons out of its 12-clusters result. For this same data

set, a perfect purity is observed for the best results that were produced by the traditional

GMM or DBSCAN, compared to 0.941 for the result of the MOTIFS approach with the M4

MOTIF. Concerning the COV2 − S pike − UK dataset, DBSCAN scored an ARI of 0.691

as the traditional GMM, but slightly lower than the M4 and the M13 MOTIF-based GMMs

that scored a 0.744 ARI. The results with the highest ARI all scored an equal purity of

0.850, that implies a better resulting number of clusters for a better ARI. Indeed, the

perfect number of clusters (3 for COV2−S pike−UK), that was produced by the traditional

GMM, did not reflect a perfect grouping. It was rather composed of a cluster, consisting

of the merger of two clusters from the perfect clustering, and two other clusters split

from another cluster from the perfect clustering. Conversely, the MOTIFS-based GMM

produced 2 clusters: a perfect one and another one merging two clusters from the prefect

clustering, and containing the spike proteins of 2 close lineages.

Conversely, in the case of the hybrid datasets COV − S pike − 4 and COV − S pike − 5, DB-

SCAN outperformed the GMM-based approaches (using EDLIB) in both ARI and purity

metrics. For COV − S pike − 4, the clustering produced by DBSCAN scored an ARI and a

purity equal to 0.769 and 0.880 respectively. The GMM-based approaches scored slightly

lower ARI and purity indexes, 0.733 and 0.840. Concerning the COV − S pike − 5 dataset,

the clustering with DBSCAN gave the highest ARI and purity indexes of 0.791 and 0.892

respectively. It was followed by the MOTIFS approach with the M4 and the M13 MOTIFS.

The traditional GMM scored a significantly worse ARI of 0.355 and a slightly worse purity
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of 0.607. Therefore, it can be concluded that DBSCAN outperformed the GMM for the

very highly divergent datasets and the hybrid ones, while the GMM preserved the upper

hand for the highly similar ones. But similarly to the MOTIFS-based approach that re-

quires a delicate choice of threshold, DBSCAN also requires a delicate choice of Epsilon

to produce a good quality clustering.

7.4.3/ HDBSCAN

With a variable and dynamically computed Epsilon, HDBSCAN suppresses the need of a

user input Epsilon when compared to its predecessor DBSCAN. HDBSCAN also has the

ability of detecting random-shaped clusters in addition to detecting clusters with variable

densities. These properties are advantageous for clustering biological sequences where

the degree of mutations is unpredictable. Similarly to DBSCAN, many implementations

of HDBSCAN exist. We also adopted a freely available implementation5 for our next

experiments.

Since HDBSCAN requires a user-input of the minimum number of elements in a cluster,

i.e., the minimum cluster size below which the elements will be considered as noise, this

parameter is set in our experiments as follows:

• For the 4 simulated NADH datasets, the minimum cluster size is set to 150, then

100, and finally 50. If the scored ARI remains at its maximum upon reaching 50,

then we keep reducing the minimum cluster size by 10 at each step until a lower

ARI is scored.

• For the COV2 − Vars dataset, the minimum cluster size is initially set to 21, the size

of the smaller cluster in the reference clustering. It is then decreased by 1 at each

step until a lower ARI is recorded.

• The minimum cluster size is set to 3 for the remaining datasets since this is the size

of the smaller cluster (the one grouping the COV2 spike protein sequences of the

B.1.1 lineage).

It should be noticed that the large step of 50 in the choice of the minimum cluster size, that

is used in the first 3 experiments on the NADH data sets, does not cause a drastic impact

on the results; for example, the choice of 100 instead of 150 in the case of NADH − S 1L

only produces 1 additional cluster that is reflected in a slight decrease of 0.074 in the ARI,

and without affecting the purity. The clusterings that scored the highest ARI are presented

in Table 7.8.

5downloadable at https://github.com/rohanmohapatra/hdbscan-cpp
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Data set Min. clust. size Nb. clusters 1 < ‖Cluster‖ < 5 Singletons Purity ARI

NADH-S1 100 4 0 0 1 1

NADH-S1L 150 77 0 73 1 0.953

NADH-S2 150 286 0 283 1 0.766

NADH-S2L 30-150 47 0 40 1 0.734

COV2-Vars 20 10 0 6 1 0.712

COV2-Spike-UK 3 6 3 2 1 0.725

COV-Spike-4 3 7 3 2 1 0.787

COV-Spike-5 3 7 4 1 1 0.835

Table 7.8: Clustering results using HDBSCAN.

The clusterings generated by HDBSCAN are largely similar to the ones returned by DB-

SCAN. HDBSCAN outperforms the GMM-based approaches when applied on the highly

divergent datasets and on the hybrid ones, while it is less efficient in the case of the

highly similar datasets. Moreover, HDBSCAN slightly outperforms its predecessor DB-

SCAN in all the results except the one of NADH − S 1L for the ARI score. In this case,

where DBSCAN scored an ARI of 0.957 vs. 0.953 for HDBSCAN, this index penalized

HDBSCAN for its high number of identified noise points, 73 besides the 4 correct clus-

ters. Conversely, DBSCAN was penalized for splitting a cluster in two and producing 5

large clusters, but without any noise. Moreover, HDBSCAN produced significantly more

singletons (noise) in its experiments, when compared to DBSCAN. The highest number

of singletons, 283, was obtained in the clustering result of NADH − S 2.

An additional and remarkable property in the results of HDBSCAN is that all the clus-

terings that gave the best ARI also obtained a perfect purity. This observation was not

encountered with the previous techniques. In addition, HDBSCAN is so far the only algo-

rithm in the experiments that succeeded in correctly grouping the COV2 spike protein, of

the B.1.1 lineage, into a separate cluster.

7.5/ INTRODUCING THE CHAINS CLUSTERING TECHNIQUE

After evaluating the state of the art clustering techniques, in this section, we introduce the

CHAINS technique, a novel, easy to implement, and computation-efficient technique for

clustering biological sequences.

CHAINS is a single linkage technique that performs the following two steps in its basic

version:

1. Progressively visit each sequence and link it to its closest sequence (the one that

has the highest pairwise similarity with it).

2. After visiting all the sequences, group the linked sequences, that became members

of a same formed CHAIN, ending with a two-sequences loop, into a separate cluster.
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Figure 7.2 illustrates the above steps for producing a clustering.

Figure 7.2: CHAINS with ending loop of 2 elements.

The first and simplest version, of our CHAINS technique, tends to naturally produce clus-

ters that can be very close (see clusters 1 and 2, and clusters 3 and 4 in Figure 7.2).

These close clusters should be merged in order to produce a better clustering, and avoid

producing small sub-clusters of a same cluster. Therefore, we propose an enhanced ver-

sion, that solves the previously highlighted potential anomaly. It consists of the following

steps:

1. Input a user-defined minimum size for the ending loop mls, that should be less or

equal to the number of input sequences.

2. For each sequence, establish a list of the neighboring sequences, of size mls − 1,

and sort the list by descending similarity with the source sequence.

3. Progressively visit each sequence and link it to its closest neighbor (the one at index

0 in the neighbors list)

4. If a loop is formed following the established link in the previous step then:

1. Count the number of sequences in the formed loop

2. If this number is less than mls then delete the last established link and move

it to the next closer neighbor (at the index i + 1 where i is the index of the

previously linked neighbor in the list).

3. Repeat the previous two steps if a new loop is formed.

5. When all the sequences were visited, group the linked sequences, that became

members of the same CHAIN, that ends with a loop consisting of minimum mls-

sequences, into a separate cluster.
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Figure 7.3 illustrates the enhanced version of the CHAINS technique, with an mls equal

to 4. The same cloud of points, that was used in the Figure 7.2, is preserved in order to

illustrate the behavior change with the second version.

Figure 7.3: CHAINS with ending loop of 4 elements.

Visually, the two produced clusters, illustrated in Figure 7.3, are better formed and sep-

arated than the ones produced by the initial version of our algorithm and illustrated in

Figure 7.2. The numbers beside the arrows in Figure 7.3 show the linkage order that was

done using the enhanced CHAINS algorithm with mls = 4. The pink arrows illustrate the

established, then deleted links, while the green arrows illustrate the last established links

that led to the formation of an ending loop that fulfills the minimum required loop size.

Finally, a number of clusters, matching the number of formed loops, are identified and

produced. This novel chains technique allows the identification of random sized clusters,

similarly to DBSCAN and HDBSCAN.

In order to compare the CHAINS technique to the previously tested ones, it was applied

on the same datasets as in the previous experiments. The choice of the minimum loop

size parameter was initially set to 2 and then incremented by 1 until obtaining three con-

secutive clusterings with decreasing ARI indexes or until the size of the smallest cluster in

the reference clustering is reached. Table 7.9 presents the clusterings that were produced

by the CHAINS technique and that scored the best ARI.

After analysing the minimum loop sizes that produced the best clusterings, we suspect a

potential correlation between the best loop size and the divergence degree of the target

dataset can be found. In fact, for the highly similar datasets, the optimal loop sizes were

small, between 2 and 5. Conversely, it was big, between 14 and 22, for the simulated

highly divergent datasets.
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Data set Min. loop size Nb. clusters Purity ARI

NADH-S1 14-15 4 1 1

NADH-S1L 19-20 4 1 1

NADH-S2 18 6 1 0.893

NADH-S2L 22 7 1 0.818

COV2-Vars 4-5 7 0.991 0.596

COV2-Spike-UK 2-3 3 1 1

COV-Spike-4 3 3 0.880 0.809

COV-Spike-5 3 4 0.892 0.828

Table 7.9: Clustering results using the CHAINS approach.

According to the computed purities and ARI indexes, the CHAINS technique outper-

formed its competitors in clustering all the considered datasets except for the COV2−Vars

and COV − S pike − 5 datasets. In addition, CHAINS is the only tested technique that per-

fectly clustered the NADH − S 1L and the COV2 − S pike − UK datasets. Only the best

clustering of HDBSCAN scored a slightly higher ARI of 0.835, compared to 0.828 for

CHAINS, in the case of COV − S pike − 5. For the COV2 − Vars dataset, despite scoring

the lowest ARI among the other techniques, the best clustering result produced using

CHAINS has a high purity 0.991 and produced 7 clusters instead of the expected 3 clus-

ters, therefore this result shows that the CHAINS technique mainly divided the perfect

clusters into multiple sub-clusters in this case.

7.6/ COMPARISON WITH SOME STATE OF THE ART CLUSTERING

TOOLS

In this section, we present a comparative study between the previously assessed tech-

niques (GMM, DBSCAN, HDBSCAN and CHAINS) with some of the state of the art bio-

logical clustering tools such as CD-HIT, UCLUST and AncestralClust.

7.6.1/ QUALITATIVE COMPARISON

CD-HIT, UCLUST and AncestralClust are the three main competitors to SpCLUST in the

field of clustering divergent sequences. To compare them to the previously assessed

techniques, they were applied to the same eight datasets described in Section 7.2. CD-

HIT and UCLUST require a sensitive choice of a similarity or identity threshold, while

AncestralClust takes an user-defined number of initial sequences for creating the initial

neighbor joining trees. If this parameter is not user defined for AncestralClust, it takes the

default value, 10. Moreover, this parameter influences the number of resulting clusters.

Therefore, the parameters of CD-HIT and UCLUST were chosen for each dataset by trial

and error with a threshold precision of 0.001. On the other hand, AncestralClust was
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tested using the default value (10), then with an input of the actual correct number of

clusters in the reference clustering.

Although AncestralClust is intended to cluster nucleotide sequences, the experiments

showed that it is not designed to handle non-ATCG bases. Therefore, as a workaround,

the rare occurrences of K, Y, R, S and M bases, existing in the sequences of the COV2-

Vars dataset, were replaced with N6 in order to perform the clustering with AncestralClust.

In addition, conversely from the other state of the art tools, the sequences in the datasets

have to be formatted as a single line per sequence in order to be accepted by Ancestral-

Clust. Table 7.10 presents the clusterings produced by the three considered tools and

that scores the highest ARI indexes.

Data set Clustering tool Threshold/Init. c. nb. Nb. clusters Singletons Purity ARI

NADH-S1 CD-HIT 0.800 148 6 - -

NADH-S1L CD-HIT 0.800 234 8 - -

NADH-S2 CD-HIT 0.800 760 543 - -

NADH-S2L CD-HIT 0.800 1551 1285 - -

COV2-Vars CD-HIT 0.995 7 3 0.815 0.414

COV2-Spike-UK CD-HIT 0.995 3 1 0.850 0.691

COV-Spike-4 CD-HIT 0.995 5 2 0.880 0.731

COV-Spike-5 CD-HIT 0.995 7 3 0.892 0.739

NADH-S1 UCLUST 0.650 4 0 1 1

NADH-S1L UCLUST 0.700 4 0 1 1

NADH-S2 UCLUST 0.360 66 2 - -

NADH-S2L UCLUST 0.370 84 1 - -

COV2-Vars UCLUST 0.999 5 2 1 0.979

COV2-Spike-UK UCLUST 0.997 3 1 0.900 0.801

COV-Spike-4 UCLUST 0.994 3 0 0.880 0.809

COV-Spike-5 UCLUST 0.994 5 1 0.892 0.812

NADH-S1 AncestralClust Default 6 0 1 0.905

NADH-S1 AncestralClust 4 4 0 1 1

NADH-S1L AncestralClust Default 7 0 1 0.945

NADH-S1L AncestralClust 4 3 0 0.750 0.627

NADH-S2 AncestralClust Default 9 0 0.577 0.158

NADH-S2 AncestralClust 4 8 0 0.579 0.177

NADH-S2L AncestralClust Default 7 0 0.481 0.091

NADH-S2L AncestralClust 4 5 0 0.413 0.074

COV2-Vars AncestralClust Default 10 2 1 0.599

COV2-Vars AncestralClust 3 3 0 1 1

Table 7.10: Clustering results using CD-HIT, UCLUST, and AncestralClust.

The followings are the main observations obtained from the results presented in Ta-

ble 7.10:

• Although its minimum supported similarity threshold was selected, CD-HIT failed to

produce any significant clustering results for the highly divergent NADH datasets.

The sequences of these sets were in majority clustered in very small clusters or as

singletons.

• Since UCLUST supports lower identity threshold values, it successfully clustered
6N is treated by AncestralClust as an unidentified base.



7.6. COMPARISON WITH SOME STATE OF THE ART CLUSTERING TOOLS 115

the divergent sets NADH − S 1 and NADH − S 1L, but it failed to cluster NADH − S 2

and NADH − S 2L that present a higher frequency and sizes of insertions and gaps.

The used thresholds, for clustering the NADH − S 2 and NADH − S 2L sets, are

the ones that produced the smaller number of clusters. Below these thresholds,

UCLUST unexpectedly produced a higher number of clusters.

• UCLUST outperformed CD-HIT in all the experiments. It outperformed Ancestral-

Clust as well except for the experiments on the following datasets:

– NADH − S 1 where both UCLUST and AncestralClust produced a perfect clus-

tering.

– COV2 − Vars where AncestralClust produced a perfect clustering compared to

a closely perfect one that was produced by UCLUST, and that contained only

2 wrongly clustered sequences as singletons.

– NADH − S 2 and NADH − S 2L where UCLUST produced a very high number

of clusters compared to the expected one. AncestralClust also produced a

clustering that scored a maximum ARI as low as 0.177 for NADH − S 2, and an

invalid clustering scoring a maximum ARI close to zero for NADH − S 2L.

• AncestralClust produced a number of clusters that is equal or closely equal to the

expected one, when this number was manually provided as its initial number of

clusters. Conversely, the purity of its clustering declined in some cases following

this choice. In these cases, the scored ARI was also lower than the one scored by

using its default setting.

A comparison between the results in Table 7.10, and the best ones produced by the

previously assessed techniques shows the following:

• In the case of NADH − S 1, UCLUST and AncestralClust compete well with the

DBSCAN, HDBSCAN, and CHAINS techniques, by producing a perfect clustering.

• Only UCLUST produces a perfect clustering, similarly to the CHAINS technique, in

clustering NADH − S 1L.

• A good clustering of the NADH−S 2 and NADH−S 2L is only attainable by using the

DBSCAN, HDBSCAN, and CHAINS techniques. The best clustering is obtained by

using the CHAINS’.

• The recent tool AncestralClust was the only tool that could perfectly cluster the

COV2 − Vars dataset. Moreover, UCLUST was not so far from producing such a

perfect clustering. The use of the traditional EM-GMM in SpCLUST also produced

a fairly good clustering that scored a 0.718 ARI for this dataset, when aligning the

sequences with EDLIB.
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• Although UCLUST and CD-HIT produced a fairly good clustering for COV2−S pike−

UK, all the other techniques were able to produce similar or even better results. Fur-

thermore, only the CHAINS technique produced a perfect clustering for this dataset.

• Fairly good clustering results for COV−S pike−4 were produced by CD-HIT, UCLUST,

in addition to any one of the previously assessed techniques. For this data set, both

UCLUST and the CHAINS technique produced the best clustering that scored the

highest ARI.

• Finally, the clustering experiments on COV−S pike−5 also show good results from all

the parties. The highest quality results were recorded by the HDBSCAN technique,

closely followed by the CHAINS’.

While multiple techniques or tools could compete in clustering a single dataset, this com-

parative study further supports our claim that none of these techniques can claim its

superiority in all possible cases. Indeed, UCLUST and AncestralClust along with DB-

SCAN, HDBSCAN, and CHAINS are all able to produce valid clusterings in the case of

moderately divergent datasets, regardless of the number of input sequences. Conversely,

UCLUST and AncestralClust fail in clustering highly divergent datasets. Yet, all the as-

sessed tools and techniques were able to produce valid clusterings for the highly similar

datasets. The CHAINS technique proved to be superior than the other considered tools

in most of the studied cases.

Beside the quality of the produced clustering, the clustering speed is another important

aspect when comparing clustering tools. In the next section, the clustering speed of all

these tools is compared.

7.6.2/ CLUSTERING SPEED COMPARISON

The experiments show that, for all the datasets that were used, the clustering time does

not exceed a few seconds when the traditional tools CD-HIT and UCLUST are used.

Similarly, when using the rest of the considered clustering techniques, the total processing

time, for all the phases that are involved in the clustering pipeline, is less than 1 second

for the COV2−S pike−UK, COV −S pike−4, and the COV −S pike5 datasets. However, for

the remaining datasets, AncestralClust took the least amount of time to cluster them. The

traditional GMM and the MOTIFS approaches both recorded highly similar times. The

best recorded one among both techniques is listed under GMM. Table 7.11 displays the

observed clustering times and Figure 7.4 illustrates them.

The results show that the traditional tools, namely CD-HIT and UCLUST, remain faster

than the other ones. The performance comparison over the large data sets, shows the

following:
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Clustering tech. COV2-Vars NADH-S1 NADH-S2 NADH-S1L NADH-S2L

GMM 54 115 134 1040 1072

DBSCAN 52 118 125 936 981

HDBSCAN 56 109 199 1038 1171

CHAINS 52 22 38 87 158

AncestralClust 378 2 4 3 10

UCLUST 1 1 1 1 1

Table 7.11: Processing time in seconds (using an Intel i7-6700 CPU).

Figure 7.4: Processing time chart.

• AncestralClust requires significantly more time to cluster the datasets that contain

very large sequences, such as the COV2−Vars that contains full genomes of S ARS−

COV2. Conversely, AncestralClust outperforms the assessed clustering techniques,

speed-wise, if the clustered sequences are smaller, and regardless of their number.

This may be due to the alignment algorithm that is used in AncestralClust.

• The GMM-based techniques along with DBSCAN and HDBSCAN require similar

execution times because they mainly share the same initial phases that are signifi-

cantly more time consuming that the clustering phase itself.

• The CHAINS technique outperforms the other ones with a speed up reaching up

to 11.95× in the case of clustering the NADH − S 1L dataset. The DBSCAN and

the CHAINS techniques outperformed AncestralClust in clustering the COV2−Vars

dataset with a speed up of 7.26×.

Moreover, a detailed profiling for the implementation of the CHAINS technique shows

that the processing time of the final clustering phase of its pipeline, using the CHAINS

algorithm, did not exceed 1 second for all the datasets. In this case, the recorded total

processing time is mainly consumed by the alignment and the similarity matrix calculation

phase. Conversely, for the other options, the required time for this same phase changes

depending on the input parameters, such as the Epsilon for DBSCAN and the minimum
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cluster size for HDBSCAN, but did not exceed the ceil of 10 seconds. This proves that

CHAINS, our newly introduced technique, outperforms the other ones in this phase.

7.7/ CONCLUSION

In this chapter, a qualitative study of several clustering techniques and tools for biological

sequences was presented. Novel algorithms were proposed to produce faster and higher

quality clusterings for potentially divergent sequences.

First of all, a new library that enables performing a fast and memory efficient pairwise

sequences alignment, was suggested for boosting the overall clustering speed of GMM

based tools. This new library also enables them to handle very large sequences, such

as full genomes. Performance-wise, the experiments on large data sets show that this

library allowed a speed up reaching 1226.38× in the computation of the similarity matrix,

when compared to MUSCLE and MAFTT.

Second, the MOTIFS-based clustering approach was adapted to the biological se-

quences clustering context and novel threshold selection techniques were proposed to

generate the graph connecting close sequences. The experiments demonstrated that the

MOTIFS approach is a serious competitor to the traditional EM-GMM.

Third, a new clustering technique called CHAINS was proposed and it allowed a speed

up of up to 11.95×, when compared to the other clustering techniques and it scales

well when clustering large datasets. Its main drawback is that it cannot detect singleton

clusters. The experiments showed that HDBSCAN and CHAINS were the only techniques

able to successfully cluster datasets containing highly mutated sequences.

Finally, a comparative study between various clustering techniques and tools was con-

ducted. It was discovered that many clustering techniques or tools are valid for each one

of the different assessed levels of insertions and mutations. Yet, few are the ones that

produce the best clustering quality in each case. Our novel CHAINS technique proved

its efficiency in all the studied cases and shared the top ranking with a couple of different

techniques in particular cases. Conversely, the traditional tools remain the fastest and

the best suited options for clustering highly and moderately similar sequences, especially

when the time factor overweight any small quality improvements.

The following part of this thesis concludes our work by further elaborating our findings. It

also presents our future perspectives.
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CONCLUSION & PERSPECTIVES

8.1/ CONCLUSION

In this thesis, clustering approaches as well as processing speed optimization techniques

have been proposed and assessed in order to ensure a fast and reliable clustering for bio-

logical sequences, having an unknown degree of similarity. This dissertation is composed

of two parts: the first part covers a brief review of the state of the art clustering methods

and tools, and their application to biological sequences, along with the clustering valida-

tion metrics, whereas the second part presents the contributions that have been made in

this thesis.

The first part began by presenting some existing clustering techniques that are used in

a wide diversity of applications in the literature. Some of the technical aspects of these

techniques were considered such as their required input parameters, the shapes of the

clusters that they can possibly detect, etc. These aspects serve as the basic criteria for

the choice of their suitable application fields.

In the next chapter, several existing tools, designed for clustering biological sequences,

were presented. The required input parameters and the targets of these tools were dis-

cussed. Moreover, their main drawbacks that need to be addressed, were also identified.

Given that the main goal of this thesis is the advancement of the biological sequences

clustering, assessing the resulting clusterings in our experiments is crucial. Therefore,

several clustering validation techniques and indexes were presented at the end of this

first part. The advantages and drawbacks of the most common internal and external

validation indexes were described.

The second part of this dissertation presented the contributions. The first research work

focused on the optimization of a recently proposed pipeline that uses GMM for clustering

potentially divergent sequences. An efficient and fast clustering package for divergent

biological sequences, called SpCLUST, was proposed. This hybrid package uses differ-

ent modules in its pipeline, which involves a third-party tool for aligning the sequences,
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a C++ module for computing an affinity matrix, and a Python module for implementing

the unsupervised learning method, namely the EM-GMM. The C++ module uses MPI to

compute in parallel the affinity matrix. The performance tests showed that this module

offers a 167.5X speed-up over the original Python module. Subsequently, the new hy-

brid package delivered a speed-up ranging from 37.9X to 44.6X when compared to the

original one. Moreover, by including two additional substitution matrices for the distance

computation, PAM250 and BLOSUM62, the scope of usage for this new package was

also extended to handle protein sequences.

SpCLUST was intensively tested by using 26 different datasets, including real sequences

and simulated sequences that represented various degrees of similarity or divergence. In

both categories of the sequences, genomic and protein sets were included to cover the

two scopes. The results of our experiments showed that SpCLUST successfully clustered

these sets without any a priori knowledge of the number of clusters and without requiring

a similarity threshold. Conversely, a comparative study between SpCLUST and some

widely used clustering tools demonstrated that these tools require a delicate choice of

the similarity or identity threshold in order to produce a valid clustering.

Despite proving that the use of the GMM along with the BIC provides a good clustering

tool for potentially divergent sequences that does not require any user intervention, and

despite the huge performance improvement introduced in SpCLUST when compared to

the previous implementation of the algorithm, the complexity of this model remains by

far higher than the complexity of the traditional greedy or hierarchical ones. Therefore,

the proposed parallel tool remains much slower than the traditional High Performance

Computing tools based on hierarchical algorithms.

The second research that was done in this thesis focused on introducing further en-

hancements to the GMM-based approach that was adopted in SpCLUST, in addition to

presenting a comparative study between SpCLUST and some sequence alignment tools.

The efficiency of using the GMM in clustering hybrid sequences, in addition to sets of

sequences that were subject to horizontal gene transfers, is also tackled. The introduced

enhancements included a technical part for the speed optimization, by porting the re-

maining Python module to C++. Alongside with this technical part, three GMM-based

algorithms were proposed and implemented, in addition to three additional types of affin-

ity matrices. These algorithms and matrices introduce new options for the user in the new

package called SpCLUST-V2.

The introduced GMM-based algorithms focus on an iterative process that uses the GMM

and changes its initial seed at each iteration. Because the choice of this seed can lead to

a different convergence state of the GMM, the user can choose between using a single

and random seed, or iterating with a defined number of different seeds. In the iterative

approach, the user can finally choose either the clustering scoring the best BIC or the
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clustering that scores the highest number of occurrences in the iterations. A performance

comparison between SpCLUST and SpCLUST-V2 on a large dataset showed that the

new version offered a speed-up reaching 42X in the clustering phase, and based on the

chosen algorithm.

Our conducted experiments involved 7 different datasets, in which four sets are hybrid and

present a simulation of horizontal gene transfer. These experiments were used to assess

the newly introduced algorithms, along with the newly embedded types of affinity matri-

ces. The results of the experiments proved that our new package successfully clusters

the selected datasets, and is more capable than the state of the art tools in clustering the

ones containing different types of genomes. Contrary to phylogenetic trees, SpCLUST-V2

is also capable of successfully handling the cases of horizontal gene transfer. In general,

the best clustering results are mainly obtained when using the best BIC algorithm with at

least one of the embedded affinity matrices.

Finally, the comparative study between the selected alignment tools, concluded that the

alignment produced by these tools does not have any significant effect on the quality of

the clustering, in the case where the involved sequences are small and highly similar.

Conversely, MUSCLE and MAFFT are the best suited for aligning divergent sequences,

while MAFFT keeps the upper hand in handling large ones where MUSCLE fails or re-

quires huge memory resources.

In the third research, a comparative study between various clustering techniques and

tools was conducted and a further improvement is introduced to the sequences alignment

stage. Starting with the alignment, the adoption and implementation of a new library

enabled a fast and memory efficient alignment that tremendously boosts the overall speed

of the GMM-based tools, without any significant degradation of the clustering quality. The

adoption of this library also enabled the handling of very large sequences, where the

previously used alignment tools either failed to align large sequences or took a lot of time.

In addition, we highlight that the alignment and the pairwise similarity computation phases

are essential in our clustering pipeline, regardless of the chosen clustering technique.

The comparative study included some carefully selected clustering techniques, namely

the DBSCAN, HDBSCAN, and MOTIFS, in addition to our novel one, the CHAINS. The

selection was made based on the shape of the clusters these techniques can detect, in

order to judge if they are suitable for clustering biological sequences in terms of clustering

quality and speed:

• Quality-wise, it was discovered that the DBSCAN, HDBSCAN, and AncestralClust

cluster well sequences that undergone a moderate level of insertions and muta-

tions, but UCLUST and the CHAINS technique are more suited for such datasets.

Conversely, CHAINS is the recommended technique to be used where a high level
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of insertions and mutations exist, although the DBSCAN and HDBSCAN are also

applicable in this case. All the GMM-based techniques, in addition to UCLUST and

AncestralClust, are capable of handling highly similar nucleotide sequences, but the

use of AncestralClust is advised for clustering such sequences. Except for Ances-

tralClust that only handles nucleotide sequences, our experiments showed that all

the tested tools and techniques are useful for clustering the highly similar protein

sequences, yet the CHAINS technique is more recommended. For the datasets

consisting of sequences from different species, all the tested tools and algorithms

performed well in our experiments. However, the HDBSCAN and CHAINS tech-

niques, in addition to UCLUST, proved to be the best suited to this variable density

case: they detected better the different lineages in the same species in addition to

correctly splitting sequences from different species.

• Speed-wise, the traditional tools CD-HIT and UCLUST remain the fastest, although

the newly introduced CHAINS technique outperforms the rest of the considered

techniques. Despite the performance improvement that was achieved in the align-

ment stage, the GMM based clustering approaches remain more complex and com-

pute intensive than the traditional tools. Therefore, the traditional tools are the best

option for clustering highly and moderately similar sequences, with a well known

similarity threshold, especially when the time factor overweight any small quality

improvements.

8.2/ PERSPECTIVES

This thesis tackled an important and ongoing research challenge: the analysis of bio-

logical sequences. Therefore, it proposed novel solutions for clustering the biological

sequences in general and the potentially divergent ones in particular. The results ob-

tained in this thesis led us to the discovery of multiple perspectives that we would like to

pursue and develop in the near future. Moreover, multiple steps of the clustering pipeline

could be further optimized, starting form the similarity computation techniques, the eigen-

solvers, the implementation of the GMM, the threshold computation algorithms for the

MOTIFS approach, and the automation of the selection of the optimal parameters for

the clustering techniques. A visual representation of the clustering result should also be

added to the package.

The pairwise similarity computation among the sequences is an essential part for their

analysis and clustering. This part is still a serious obstacle for improving the scalability of

our presented approaches because it requires the alignment of the sequences. Indeed,

only few algorithms are proposed for an alignment-free sequence comparison, and a sin-

gle one only is claimed producing biologically relevant scores [Girgis et al., 2021]. There-
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fore, investigating the accuracy of these proposed algorithms, or defining novel ones for

calculating the pairwise similarities, without the need of aligned sequences, can further

enhance the speed and the scalability of the clustering.

Moreover, the eigensolvers are essential for computing the data embedding (eigen-

map) for the spectral clustering techniques. Therefore, an additional possible exten-

sion to our work could be the assessment of the speed and accuracy of the state of

the art eigensolvers [Demmel, 1991, Sanderson et al., 2016, Guennebaud et al., 2010].

Beside the existing parallel schemes for computing the general eigenvalues prob-

lem [Auslander et al., 1992], proposing an enhanced parallel eigensolver based on Ja-

cobi’s algorithm [Sameh, 1971] would also improve the speed of the overall process of

spectral clustering and increase the scalability of our proposed tool. These propositions

are also valid for the implementation of the GMM that was proved being an efficient clus-

tering technique in the spectral approaches.

Furthermore, it is essential to find a more efficient and intervention-free algorithm for

computing and applying the adequate thresholds in the MOTIFS approach. This recent

GMM-based approach presents a promising solution for clustering large graphs. In this

same track of eliminating the user intervention, automated algorithms are required for

finding the appropriate parameters for the HDBSCAN and CHAINS methods. Moreover, a

further enhancement to CHAINS should enable the detection of correct singleton clusters.

Finally, beyond the clustering of biological sequences, applying a certain distance thresh-

old for eliminating some links, prior to clustering other types of graphs, could possibly

enhance the results of the MOTIFS approach. Moreover, the new CHAINS clustering

approach should be applied in other fields where it might prove to be very efficient.
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[Šošić et al., 2017] Šošić, M., et Šikić, M. (2017). Edlib: a c/c++ library for fast, exact
sequence alignment using edit distance. Bioinformatics, 33(9):1394–1395.

[Stamatakis, 2014] Stamatakis, A. (2014). Raxml version 8: a tool for phylogenetic
analysis and post-analysis of large phylogenies. Bioinformatics, 30(9):1312–1313.

[Thompson et al., 2002] Thompson, J. D., Gibson, T. J., et Higgins, D. G. (2002). Multiple
sequence alignment using clustalw and clustalx. Current Protocols in Bioinformat-

ics, 00(1):2.3.1–2.3.22.

[Ventola, 2015] Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes
and threats. Pharmacy and Therapeutics, 40(4):277.

[Von Luxburg, 2007] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statis-

tics and computing, 17(4):395–416.

[Vrieze, 2012] Vrieze, S. I. (2012). Model selection and psychological theory: a dis-
cussion of the differences between the akaike information criterion (aic) and the
bayesian information criterion (bic). Psychological methods, 17(2):228.

[Wagner et al., 2007] Wagner, S., et Wagner, D. (2007). Comparing clusterings: an
overview. Universität Karlsruhe, Fakultät für Informatik Karlsruhe.

[Wang et al., 2019] Wang, X., et Xu, Y. (2019). An improved index for clustering vali-
dation based on silhouette index and calinski-harabasz index. In IOP Conference

Series: Materials Science and Engineering, volume 569, page 052024. IOP Publishing.

[Wielgoss et al., 2013] Wielgoss, S., Barrick, J. E., Tenaillon, O., Wiser, M. J., Dittmar,

W. J., Cruveiller, S., Chane-Woon-Ming, B., Médigue, C., Lenski, R. E., et Schneider, D.
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CLUSTERS CONTENTS

C1 C2 C3 C4

H.sapiens MC1R H.sapiens SH3BGRL3 H.sapiens S100A6 G.gallus S100A6

P.troglodytes MC1R C.lupus SH3BGRL3 P.troglodytes S100A6 H.sapiens S100A8

C.lupus MC1R B.taurus SH3BGRL3 M.mulatta S100A6 M.mulatta S100A8

B.taurus MC1R M.musculus Sh3bgrl3 C.lupus S100A6 C.lupus S100A8

M.musculus Mc1r R.norvegicus Sh3bgrl3 B.taurus S100A6 B.taurus S100A8

R.norvegicus Mc1r M.musculus S100a6 M.musculus S100a8

G.gallus MC1R R.norvegicus S100a6 R.norvegicus S100a8

D.rerio mc1r G.gallus SH3BGRL3 H.sapiens S100A1

H.sapiens FCER1G P.troglodytes S100A1

P.troglodytes FCER1G M.mulatta S100A1

C.lupus FCER1G C.lupus S100A1

B.taurus FCER1G B.taurus S100A1

M.musculus Fcer1g M.musculus S100a1

R.norvegicus Fcer1g R.norvegicus S100a1

G.gallus S100A1

D.rerio s100a1

H.sapiens S100A12

P.troglodytes S100A12

C.lupus S100A12

B.taurus S100A12

Table 1: Clustering - Real data genomic set 2

C1 C2 C3 C4

KU758869 ZIKA CY083917 H1N1 PB2 CY021939 H2N2 PB1 CY021027 H2N2 PB1

KU312313 ZIKA CY063613 H1N1 PB2 CY020323 H2N2 PB1 AY210016 H2N2 PB1

KU758873 ZIKA CY083782 H1N1 PB2 CY022019 H2N2 PB1 CY020419 H2N2 PB1

KU758868 ZIKA CY073732 H1N1 PB2 CY021811 H2N2 PB1

KU312314 ZIKA CY062698 H1N1 PB2 CY021795 H2N2 PB1

KU758872 ZIKA CY062706 H1N1 PB2

KU758876 ZIKA

KU758871 ZIKA

KU758870 ZIKA

KU758875 ZIKA

Table 2: Clustering - Real data genomic set 4
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C1 C2 C3 C4

AML81020 ZIKA ADX98969 H1N1 PB2 ABQ01363 H2N2 PB1 ABO52255 H2N2 PB1

ALX35660 ZIKA ADH01967 H1N1 PB2 ABO38106 H2N2 PB1 AAO46332 H2N2 PB1

AML81024 ZIKA ADX98798 H1N1 PB2 ABQ44468 H2N2 PB1 ABO38742 H2N2 PB1

AML81019 ZIKA ADN05235 H1N1 PB2 ABP49467 H2N2 PB1

ALX35661 ZIKA ADG42162 H1N1 PB2 ABP49445 H2N2 PB1

AML81023 ZIKA ADG42172 H1N1 PB2

AML81027 ZIKA

AML81022 ZIKA

AML81021 ZIKA

AML81026 ZIKA

Table 3: Clustering - Real data protein set 4

C1 C2 C3 C4

H.sapiens MC1R H.sapiens SH3BGRL3 H.sapiens S100A6 H.sapiens S100A8

P.troglodytes MC1R C.lupus SH3BGRL3 P.troglodytes S100A6 M.mulatta S100A8

C.lupus MC1R B.taurus SH3BGRL3 M.mulatta S100A6 C.lupus S100A8

B.taurus MC1R M.musculus Sh3bgrl3 C.lupus S100A6 B.taurus S100A8

M.musculus Mc1r R.norvegicus Sh3bgrl3 B.taurus S100A6 M.musculus S100a8

R.norvegicus Mc1r M.musculus S100a6

G.gallus MC1R R.norvegicus S100a6

D.rerio mc1r G.gallus S100A6

G.gallus SH3BGRL3

R.norvegicus S100a8

H.sapiens S100A1

P.troglodytes S100A1

M.mulatta S100A1

C.lupus S100A1

B.taurus S100A1

M.musculus S100a1

R.norvegicus S100a1

G.gallus S100A1

D.rerio s100a1

H.sapiens FCER1G

P.troglodytes FCER1G

C.lupus FCER1G

B.taurus FCER1G

M.musculus Fcer1g

R.norvegicus Fcer1g

H.sapiens S100A12

P.troglodytes S100A12

C.lupus S100A12

B.taurus S100A12

Table 4: Clustering - Real data genomic set 2 - Fast alignment
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GISAID EPI ISL 1057973 2021-02-09 B.1.1.7 Lighthouse Lab in Milton Keynes

GISAID EPI ISL 1057974 2021-02-13 B.1.1.7 Lighthouse Lab in Cambridge

GISAID EPI ISL 1057975 2021-02-09 B.1.1.7 Lighthouse Lab in Milton Keynes

GISAID EPI ISL 1057976 2021-02-13 B.1.1.7 Lighthouse Lab in Cambridge

GISAID EPI ISL 1057977 2021-02-13 B.1.1.7 Lighthouse Lab in Cambridge

GISAID EPI ISL 1057978 2021-02-13 B.1.1.7 Lighthouse Lab in Cambridge

GISAID EPI ISL 1058003 2021-02-11 B.1.1.7 Lighthouse Lab in Alderley Park

Table 5: SARS-COV2 complete genome samples collected in the UK.
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Source Accession ID Collection date Lineage Originating organism

GISAID EPI ISL 1048460 2021-01-04 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048461 2021-01-04 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048462 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048463 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048466 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048469 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048470 2021-01-09 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048471 2021-01-08 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048473 2021-01-09 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048474 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048475 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048482 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048487 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048489 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048490 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048491 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048492 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048493 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048497 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048500 2021-01-12 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048503 2021-01-16 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048504 2021-01-17 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048507 2021-01-15 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048512 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048514 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048515 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048516 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048517 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048519 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048523 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048524 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048526 2021-01-19 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048527 2021-01-19 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048528 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048529 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048532 2021-01-18 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048533 2021-01-19 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048534 2021-01-20 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048535 2021-01-11 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048541 2021-01-31 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048547 2021-01-30 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048550 2021-01-31 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048553 2021-02-02 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048554 2021-02-02 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048557 2021-01-31 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048558 2021-01-29 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048559 2021-01-26 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048560 2021-01-29 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048562 2021-02-01 B.1.351 National Health Laboratory Service

GISAID EPI ISL 1048568 2021-01-29 B.1.351 National Health Laboratory Service

Table 6: SARS-COV2 complete genome samples collected in South Africa.
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Source Accession ID Collection date Lineage Originating organism

GISAID EPI ISL 855634 2021-01-11 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 928281 2021-01-11 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 954180 2021-01-25 B.1.525 Vall d’Hebron Institut de Recerca - Spain

GISAID EPI ISL 973299 2021-01-25 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 973450 2021-01-25 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1009673 2021-01-27 B.1.525 CHI Andre Gregoire - France

GISAID EPI ISL 1022477 2021-02-08 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1023333 2021-02-08 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1023711 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1023945 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1023997 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1024134 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1024295 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1024510 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1024746 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1024750 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1024816 2021-02-01 B.1.525 Statens Serum Institut - Denmark

GISAID EPI ISL 1036755 2021-02-03 B.1.525 Universitaria di Bologna - Italy

GISAID EPI ISL 1049122 2021-01-28 B.1.525 Rega Institute - Belgium

GISAID EPI ISL 1049260 2021-02-03 B.1.525 Universitaria di Bologna - Italy

GISAID EPI ISL 1059438 2021-01-22 B.1.525 Viollier AG - Switzerland

Table 7: SARS-COV2 complete genome samples collected in Europe.

Source Org. seq. acc. ID Collection date Lineage Originating organism

GISAID EPI ISL 664324 2020-11-11 B.1.177 Department of Pathology

GISAID EPI ISL 608089 2020-10-14 B.1.177 Lighthouse Lab in Alderley Park

GISAID EPI ISL 535182 2020-08-31 B.1.177 West of Scotland Specialist Virology Centre

GISAID EPI ISL 588703 2020-09-24 B.1.177 Lighthouse Lab in Glasgow

GISAID EPI ISL 593810 2020-10-04 B.1.177 Respiratory Virus Unit

GISAID EPI ISL 727954 2020-12-17 B.1.177 Virology Department

GISAID EPI ISL 612112 2020-10-02 B.1.177 Liverpool Clinical Laboratories

GISAID EPI ISL 627978 2020-10-16 B.1.177 Wales Specialist Virology Centre Sequencing lab

GISAID EPI ISL 551308 2020-06-10 B.1.1 Lighthouse Lab in Alderley Park

GISAID EPI ISL 597366 2020-10-07 B.1.1 Lighthouse Lab in Cambridge

GISAID EPI ISL 464300 2020-03-03 B.1.1 Respiratory Virus Unit

GISAID EPI ISL 874479 2021-01-12 B.1.1.7 Lighthouse Lab in Alderley Park

GISAID EPI ISL 835855 2021-01-03 B.1.1.7 Lighthouse Lab in Milton Keynes

GISAID EPI ISL 881967 2021-01-10 B.1.1.7 Lighthouse Lab in Alderley Park

GISAID EPI ISL 811123 2021-01-08 B.1.1.7 Respiratory Virus Unit

GISAID EPI ISL 863167 2021-01-11 B.1.1.7 Lighthouse Lab in Alderley Park

GISAID EPI ISL 874727 2021-01-12 B.1.1.7 Lighthouse Lab in Alderley Park

GISAID EPI ISL 867779 2021-01-07 B.1.1.7 Wales Specialist Virology Centre

GISAID EPI ISL 863383 2021-01-12 B.1.1.7 Lighthouse Lab in Alderley Park

GISAID EPI ISL 846090 2021-01-09 B.1.1.7 Lighthouse Lab in Cambridge

Table 8: Spike protein from SARS-COV2 samples collected in the UK.

Source Accession ID Collection date Sample origin Originating organism

NCBI AYV99817.1 2018-10-17 USA University of North Carolina at Chapel Hill - USA

NCBI ABA02260.1 2003-04-21 China Zhejiang CDC - China

NCBI AAR86775.1 China Key Lab of Medical Molecular Virology - China

NCBI AAT74874.1 China Institute of Microbiology - China

NCBI BAE93401.1 Research Institute of Microbial Diseases - Japan

Table 9: Spike protein from SARS-COV samples.

Source Accession ID Collection date Sample origin Originating organism

NCBI QBM11748.1 2017-08-24 Ethiopia National Institute of Infectious Diseases - Japan

NCBI QBM11737.1 2017-08-24 Ethiopia National Institute of Infectious Diseases - Japan

NCBI AHX00711.1 2013-12-30 Saudi Arabia The University of Hong Kong - Hong Kong

Table 10: Spike protein from MERS samples.
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Abstract:

In the field of bioinformatics, clustering recently
appeared to be a very efficient technique for
sequence analysis. While greedy and hierarchical
algorithms are used in the majority of the available
tools, spectral clustering was recently introduced as
a new stakeholder in this field. Spectral clustering is
an efficient technique for well separated sequence
clustering and GMM’s are often able to cluster
overlapping groups given an adequately designed
embedding. Yet, the traditional clustering tools
present many drawbacks such as the need for non-
obvious parameters and the lack of optimization for
handling potentially divergent sequences. Moreover,
a newly introduced technique that targets the
clustering of potentially divergent sequences, was
only experimented on a single dataset. Furthermore,
the performance of several well-known clustering

techniques is not assessed in the field of clustering
biological sequences.
This dissertation mainly focuses on validating and
optimizing novel techniques for clustering biological
sequences, which present unknown and possibly
high levels of divergence. To do so, two main
axes have been considered, namely, the clustering
techniques, and the processing speed. In the
first axis, novel clustering techniques have been
proposed and evaluated in the sequence clustering
field, to solve the limitations imposed by the
traditional techniques. While the second axis tackled
the speed optimization of the valid techniques,
by offering more efficient implementation schemes
such as substituting external modules, porting some
modules to lower level programming languages, and
using parallel computation.

Titre : Optimisation des techniques d’apprentissage automatique pour le clustering génomique

Mots-clés : Clustering de séquences biologiques, Génomique, Eigenmaps laplaciennes, Modèle de
mélange gaussien, Calcul parallèle, Clustering spectral, Analyse de qualité de clustering.

Résumé :

Dans le domaine de la bioinformatique, le clustering
est récemment apparu comme une technique très
efficace pour l’analyse des séquences. Alors
que des algorithmes gloutons et hiérarchiques sont
utilisés dans la majorité des outils disponibles,
le clustering spectral a récemment été introduit
comme un nouvel acteur dans ce domaine. Le
clustering spectral est une technique efficace pour
le clustering de séquences bien séparées et les
GMM sont souvent capables de partitionner des
groupes qui intersectent, étant donné une intégration
adéquatement conçue. Pourtant, les outils de
clustering traditionnels présentent de nombreux
obstacles tels que le besoin de paramètres non
évidents et le manque d’optimisation pour gérer
des séquences potentiellement divergentes. De
plus, une technique nouvellement introduite, qui
cible le regroupement de séquences potentiellement
divergentes, n’a été expérimentée que sur un seul
ensemble de données. De plus, les performances
de plusieurs techniques de clustering, bien connues,

ne sont pas évaluées dans le domaine du clustering
de séquences biologiques.
Cette thèse se focalise principalement sur la
validation et l’optimisation de nouvelles techniques
de regroupement de séquences biologiques, qui
présentent des niveaux de divergence inconnus et
éventuellement élevés. Afin de realiser ce but, deux
axes principaux ont été considérés, à savoir, les
techniques de clustering et la vitesse de traitement.
Dans le premier axe, de nouvelles techniques de
clustering ont été proposées et évaluées dans
le domaine du clustering de séquences, pour
résoudre les limitations imposées par les techniques
traditionnelles. Alors que le deuxième axe s’est
attaqué à l’optimisation de la vitesse des techniques
valides, en proposant des schémas de mise en
œuvre plus efficaces, tels que la substitution
de modules externes, le recodage de certaines
modules dans des langages de programmation bas-
niveau et l’utilisation de la technique de calcul
parallèle.
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