The growth in medical data collection presents a new opportunity for physicians to improve patient diagnosis. In recent years, practitioners have increased the use of computer technologies to provide better decision-making support. One way to address this challenge is to build models with empirical data from large-scale health experiments, such as those that have been established in recent decades for some e-health systems, mobile applications and telemedicine. To this end, Machine learning is an analytical tool that identified patterns and relationships by learning from experience. This thesis used individual measurements from some datasets, including a heart disease dataset, a data set of pregnant women in the first trimester with hypothyroidism, and synthetic medical data (with more than 5,000 patients and 1,000,000 features). Specifically, I Last but not least… agradezco a mi familia y amigos por estar presentes en mi vida en estos

pursued the following objectives: (i) to optimize execution time and scalability of the large-scale health datasets predictions and to deploy the optimized setup; (ii) to predict whether a patient has heart disease by using classification techniques and to describe the features most correlated with the heart condition; and (iii) to use unsupervised learning models to enrich medical ontologies and generate new knowledge based on the search of similar characteristics and symptoms. After establishing the required databases, I performed different machine learning models that related the correlation of the features (i.e. hearth disease related to cholesterol, heart rate and chest pain).

Finally, I created the clusters for pregnant women in the first trimester with hypothyroidism (i.e. the cluster using thyroid pathology, risk, anthropometric, gynecological factors). My results reveled that: (i) the logistic regression presented an optimal execution time and scalability without Chapter 1 being affected by complex computational operations; (ii) cache and persist methods are powerful in reducing the consumption time; (iii) PCA outperformed the results after using chi-square, otherwise, when PCA is used directly from the raw data, the performance is poor; (iv) cholesterol, maximum heart rate, chest pain and heart vessels are the anatomically and physiologically relevant features of heart disease; and (v) cluster analysis proved to be a practical approach for the heterogeneity of the hypothyroidism risk factors in women in the first trimester of pregnancy in clinical studies, identifying three clusters: women over 30 years lacking of signs and symptoms of thyroid hypofunction, women under 30 years without signs and symptoms of thyroid hypofunction, and women under 30 years with some risk factors and signs or symptoms suggesting thyroid hypofunction. My results underline that dimensionality reduction techniques and machine learning improved the diagnosis of patients, suggesting that the models are not affected by complex operations and can be replicated for future research. 

Résumé

L'augmentation de la volumétrie des données médicales et une plus grande pénétration des technologies de l'information et des communications offrent aux médecins une nouvelle opportunité pour prévenir les décompensations et améliorer le diagnostic. Pour relever ce défi, les modèles construits avec des données empiriques issues des expériences à grande échelle, comme celles qui ont été établies au cours des dernières décennies pour certains systèmes de santé en ligne, les applications mobiles, la télémédecine ou encore l'intelligence artificielle ouvrent de nouvelles voies pour la médecine prédictive et personnalisée. L'apprentissage automatique est un outil analytique qui permet d'identifier des modèles et des relations en tirant les leçons de l'expérience.

Cette thèse a utilisé des données médicales personnelles provenant de différentes bases de données, notamment une base de données sur les maladies cardiaques, une base de données sur les femmes enceintes au premier trimestre souffrant d'hypothyroïdie ainsi que des données médicales synthétiques (avec quelques 5 000 patients et plus de 1 000 000 de caractéristiques). Plus précisément, les objectifs de la thèse sont : (i) optimiser le temps d'exécution et l'évolution de la masse de données en déployant une architecture adaptée ; (ii) détecter de manière précoce une décompensation cardiaque en utilisant des techniques de classification et en décrivant les caractéristiques les plus corrélées avec l'état du coeur ; et (iii) utiliser des modèles d'apprentissage non supervisés pour enrichir les ontologies médicales et générer de nouvelles connaissances en exploitant la similarité. Après avoir établi les bases de données nécessaires, différents modèles d'apprentissage automatique ont été proposés qui mettent en relation les pathologies aux Chapter 1 symptomes ou aux causes (c'est-à-dire les maladies cardiaques liées au cholestérol, au rythme cardiaque et aux douleurs thoraciques). Enfin, des clusters ont été créés pour identifier les femmes enceintes au premier trimestre souffrant d'hypothyroïdie (c'est-à-dire les clusters de femmes avec une pathologie thyroïdienne, avec un risque ou avec des facteurs anthropométriques et gynécologiques). Mes résultats ont permis de montrer que : (i) la régression logistique offrait un temps d'exécution et une capacité d'évolution optimaux sans pour autant être affectée par des opérations complexes ; (ii) l'utilisation du cache et de la persistance sont très performants pour réduire les temps d'exécution ; (iii) l'ACP a donné de meilleurs résultats après utilisation du chi carré ; (iv) le cholestérol, la fréquence cardiaque maximale, les douleurs thoraciques et les vaisseaux cardiaques sont des caractéristiques anatomiques et physiologiques pertinentes pour les maladies cardiaques et (v) l'analyse par cluster s'est révélée être une approche pratique pour l'hétérogénéité des facteurs de risque d'hypothyroïdie chez les femmes au cours du premier trimestre de la grossesse dans les études cliniques. Trois clusters ont été identifiés : les femmes de plus de 30 ans ne présentant pas de signes ni de symptômes d'hypofonctionnement de la thyroïde, les femmes de moins de 30 ans ne présentant pas de signes ni de symptômes d'hypofonctionnement de la thyroïde et les femmes de moins de 30 ans présentant certains facteurs de risque et des signes ou symptômes suggérant un hypofonctionnement de la thyroïde. Les résultats obtenus soulignent que les techniques de réduction de la dimensionnalité et l'apprentissage automatique permettent d'améliorer la prévention et le diagnostic sans que les modèles ne soient affectés par les opérations complexes et avec leur potentielle réutilisation pour de futurs recherches.
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Introduction The evolution of the "Healthcare data"

Today, medical data, along with advanced technologies, is the most promising area for many researchers and practitioners to develop intelligent and interactive health systems that manage large medical datasets (Fong et al., 2010;[START_REF] Rahman Bhuiyan | iHealthcare: Predictive model analysis concerning big data applications for interactive healthcare systems[END_REF]. The new healthcare system collects many patient's data using biosensors, medical notes, clinical reports, medical devices, and electronic health records [START_REF] Bajwa | Emerging 21st century medical technologies[END_REF]. Healthcare systems generate massive volume of continuous medical data that come structured, unstructured or semi-structured. By analyzing this data, healthcare system can provide a treatment option, predict diseases, improve the patient's quality of life, and reduce costs. Also, health systems can have drawbacks derived from cyber security [START_REF] Kruse | Cybersecurity in healthcare: A systematic review of modern threats and trends[END_REF][START_REF] Coventry | Cybersecurity in healthcare: A narrative review of trends, threats and ways forward[END_REF]. Considering that patient data is extremely sensitive, hospitals and healthcare organizations must improve their privacy politics [START_REF] Price | Privacy in the age of medical big data[END_REF].

In 2011, the U.S. healthcare system reaches 150 exabytes of data [START_REF] Raghupathi | Big data analytics in healthcare: promise and potential[END_REF]. In 2014, a report from EMC and research firm IDC 1 estimated a growth rate of 2,314 exabytes by 2020. Nowadays, most hospitals around the world are moving away from paper records. In the USA, at least 83.8% of hospitals had the Basic EHR system and 8 out 10 general practitioners also adopted EHR in 2015 (Henry et al., 2016). By 2016, the primary care using EMR was approximately 80% in 15 EU countries, including France (OECD, 2018).

The health system is evolving, as must be its infrastructure and technology. Although it seems like a costly change at first, the efficient use of well-designed technologies improve the patient health, time consumption, and future expenses by reducing readmissions (J. [START_REF] Lee | The impact of health information technology on hospital productivity[END_REF]. Hospitals and practitioners already rely on technology and smart devices, and the benefits 1 International Data Corporation (IDC) : https://www.idc.com/ Chapter 1 of their data are becoming quantifiable. Medical doctors can transfer a patient to a specialist or medical center from their cell phone [START_REF] Steinhubl | The emerging field of mobile health[END_REF], just as patients can make medical appointments or consult their results online. With the help of smart devices and advanced algorithms, practitioners can have more supported treatment decisions. There is a significant need to evaluate the cost and long-term risk with the use of medical devices; however, healthcare providers must trust on the collection and sharing of information [START_REF] Meetoo | Health care in a technological world[END_REF].

Healthcare with Big Data and Machine learning

As the importance of better health systems has increased among practitioners, healthcare needs intelligent systems that can deal with longer databases and provide better medical treatments [START_REF] Kankanhalli | Big data and analytics in healthcare: Introduction to the special section[END_REF]. In the healthcare industry, there are several sources for big data including hospital records, medical imaging, patient medical records, results of medical examinations, and devices that are a part of Internet of Things [START_REF] Qadri | The Future of Healthcare Internet of Things: A Survey of Emerging Technologies[END_REF][START_REF] Manogaran | Big data analytics in healthcare internet of things[END_REF]. Medical research also generates a significant portion of big data information relevant to public health [START_REF] Caliebe | Does big data require a methodological change in medical research[END_REF][START_REF] Liang | Big Data Science and Its Applications in Health and Medical Research: Challenges and Opportunities[END_REF]. The workflow of big data analytics is presented in Figure 1.1. Data warehouses store massive amount of data generate from various sources. This data is processed using analytic pipelines to obtain smarter decisions.

Data scientist propose the idea that Extraction, Transformation and Load (ETL) for massive data is the best explanation of the concept of big data [START_REF] Cuzzocrea | Data Warehousing and OLAP over Big Data: Current challenges and future research directions[END_REF][START_REF] Krishnan | Data Warehousing in the Age of Big Data[END_REF][START_REF] Dimitrov | Medical Internet of Things and Big Data in Healthcare[END_REF]. The description of big data depends on five attributes, known as the Vs, to describe the elemental characteristics: volume, variety, velocity, value, and veracity (Patgiri & Chapter 1 21 [START_REF] Patgiri | Big Data: The V's of the Game Changer Paradigm[END_REF][START_REF] Ali | Big Data Optimization: Recent Developments and Challenges[END_REF]. Data with these characteristics must be processed with advanced tools to reveal significant information.

Of all the medical data, healthcare system must predict patient illness in the future. In recent years, practitioners have described the importance of improving healthcare through: [START_REF] Parthiban | Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients[END_REF] predictive analysis [START_REF] Van Calster | Predictive analytics in health care: how can we know it works[END_REF][START_REF] Alharthi | Healthcare predictive analytics: An overview with a focus on Saudi Arabia[END_REF] and the impact of artificial intelligence [START_REF] Ahuja | The impact of artificial intelligence in medicine on the future role of the physician[END_REF] in the medical field; (2) predicting the future [START_REF] Lee | How to establish clinical prediction models[END_REF][START_REF] Hendriksen | Diagnostic and prognostic prediction models[END_REF][START_REF] Kappen | Evaluating the impact of prediction models: lessons learned, challenges, and recommendations[END_REF]; [START_REF] Lee | The impact of health information technology on hospital productivity[END_REF] minimizing treatment options and diagnostic errors (H. [START_REF] Singh | Improving diagnosis in health care -The next imperative for patient safety[END_REF]; and (4) managing cost-benefit ratio [START_REF] Hill | Cost-effectiveness analysis for clinicians[END_REF].

Medical big dataset is represented by n that stands for the sample patient numbers and p for the dimensionality (number of attributes used to describe each patient). Medical data can be classified into three forms: large n and small p; small n and large p; and large n and large p [START_REF] Sinha | Large Datasets in Biomedicine: A Discussion of Salient Analytic Issues[END_REF]. Large n and small p can be solved with classical statistical methods. When dealing with small data and sampling, as in the case of small n and large p, simple statistical analysis is Chapter 1 enough for most applications when combined with dimensionality methods and feature engineering.

However, today's medical field collect larger and more complex volume of data as presented in the case of large n and large p. Due to data size and the widely associations between the different data sources, machine learning and big data analysis techniques are the logical answers for exploring the hidden value of medical information. In conjunction, must of the medical data is: [START_REF] Parthiban | Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients[END_REF] hidden under noise, such as night-time noise that can leads an increment in the high pressure (Hurtley & World Health Organization, 2009); (2) dealing with missing values [START_REF] Groenwold | Randomized trials with missing outcome data: How to analyze and what to report[END_REF] that can be solved reducing data points or removing the cases with missing values [START_REF] Wong | Handling missing data issues in clinical trials for rheumatic diseases[END_REF], and imputing missing data [START_REF] Mongin | Imputing missing data of function and disease activity in rheumatoid arthritis registers: What is the best technique?[END_REF]Jakobsen et al., 2017); [START_REF] Lee | The impact of health information technology on hospital productivity[END_REF] addressing randomized controlled trials that lead to negative evaluation based on irrelevant features and highly selected individuals (Fitzgerald & Hurst, 2017;[START_REF] Lee | Medical big data: promise and challenges[END_REF]; (4) difficult to optimize the information in high dimensionality or have a curse of dimensionality. This may be having too many attributes compared to the number of observational patients [START_REF] Barbour | Precision medicine and the cursed dimensions[END_REF]; and (5) impossible to visualize the potential abnormalities through human expertise [START_REF] Holzinger | Interactive machine learning for health informatics: when do we need the human-in-the-loop?[END_REF].

Frameworks for health data analysis

The integration of the latest data analytics technologies and medical datasets creates a promising opportunity for enhancing health big data operations. Most of the health medical analytics follow a six-step process as shown in Figure 1.2.
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The analysis of health data starts with the data collection and cleansing. Data cleansing is a task to remove the anomalies from the datasets. Some common data-related problems in medical measurements are missing data, wrong measurements, duplicate data, poorly formatted datasets, and unsynchronized time stamps. Most anomalies can be detected using common constraints and statistical tests. Missing measurements can be filled using historical measurements and statistical methods such as multiple imputation or reducing data points. Healthcare collects massive data from many different sources, and it is important to integrate the information collected and explore its potential correlations.

The solid basis for data analysis depends on the collection, cleansing and integration of the information. Machine learning is the most common data analysis method for medical applications.

Classification can be used for medical diagnosis and prediction; regression to find a linear trend in the data; and clustering can be used to create load profiles of cancer patients based on similarities and symptoms. The final step in health data analysis is visualization and interpretation. Data visualization is often used in the exploration of new datasets and in the interpretation of the medical results.

Visualization is not necessary if the application does not involve human input. However, for most decision-making processes, the proper visualization tool is the key to facilitating analysis and interpretation of models and results.

E-care platform

E-care project2 is an intelligent platform developed by academic laboratories and industries. Its interest is the health sector, more particularly patients with heart failure. Through telemedicine and its tools, the E-care platform reduces rehospitalizations, the days of hospital stay and ensures a better quality of life for patients with heart failure in stage III. The New York Heart Association 3(NYHA) Functional Classification describes stage III patients as marked with: (1) limitation of physical activity; (2) comfort in a resting state; [START_REF] Lee | The impact of health information technology on hospital productivity[END_REF] and fatigue, palpitations and dyspnea caused by common activities. Patients with these characteristics need constant monitoring of their health in order to achieve early detection of dangerous situations.

The E-care platform uses an ontology that improves the decision support system [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF] through data, semantics coupling and an extended vocabulary with diseases, medications, symptoms and contraindications that are related to heart failure monitoring. The goal of E-care is the creation of new knowledge by the enrichment of this ontology. Ontology includes the patient profile and their associated measures, alerts and data. Also, it describes all the system users (medical doctor, administrator, patient and nurse), their tasks and equipment definitions (i.e. sensors, tablets) [START_REF] Benyahia | Adding Ontologies Based On PCG Analysis in E-Care Project[END_REF].

Research objectives

This research aims to combine the latest machine learning and big data analytics techniques with the knowledge of the health systems domain to explore the value of medical data. This thesis seeks to contribute with the proposal of a system capable of predict and enrich the knowledge related to heart disease. The specific objectives of this thesis are listed below: 1. To optimize execution time and scalability of the large-scale health datasets predictions and to deploy the optimized setup (chapter 3). 2. To predict whether a patient has heart disease by using classification techniques and to describe the features most related with the heart condition (chapter 4).

3.

To use unsupervised learning model to enrich medical ontologies and generate new knowledge based on the search of similar characteristics and symptoms (chapter 5).

Thesis outline and Contributions

The thesis is divided into General Introduction, General State of Art, three research chapters (chapters 3, 4, and 5) that have been structured as scientific manuscripts, and a Proposed System (Chapter 6). At the moment of submitting the thesis document, the manuscript corresponding to The overall organization and contributions of this thesis are outlined by describing each chapter as follows:

In Chapter 2 we provide a brief understanding on big data concept. We also highlight the Hadoop ecosystem and the computational tools (i.e. Spark, Storm, MapReduce, Flink) related massive data management. In the following, we describe the concept of benchmarking on big data using different synthetic and real workloads. The last two sections cover the machine learning models and dimensionality reduction techniques used in the next chapters. Chapter 3 benchmarks the execution time and scalability of multiple machine learning classifiers. This chapter focuses on the characteristics of big data related to V's. Therefore, we propose the reuse of information by using the optimization methods of cache and persist. The approach is based on Apache Spark, a powerful in-memory distributed application that offers extensive machine learning libraries. We also find that the literature reviews lack of common reference for scalability when it relates to machine learning classifiers. According to this, we were able to optimize the setup for deployment. 

Chapter 1

Chapter 4 validates the classification models and survey a literature review of heart disease. The goal of the classifier was to predict whether a patient has heart disease. Our proposed approach converges in the use of the feature selection technique with the principal component analysis, which behaves better than from the raw data. We compare our results with other authors, achieving the best among them. We also highlight the importance of the identification of the most related features to heart disease.

In Chapter 5, we performed a clustering model for enrich the ontology of a dataset based on pregnancy and the risk factors of thyroid pathology in a northern Mexican population. For this, we determine the number of clusters (k=2 to k=8) using the elbow method and Silhouette. K-means was the clustering model selected, and external verification was performed by random forests, the classifier with the best performance in the previous chapters. Cluster analysis was shown to be a practical approach and is easy to implement in real-life scenarios.

The culmination of this work is described in Chapter 6. In this chapter, we combine a dimensionality reduction technique with a clustering and classification approach to deal with the heart disease problematic. The architecture of this system is described with the parameters required by the models and techniques. By combining these systems, we can provide a solution that will enrich the actual heart disease ontologies and create patient profiles.

Finally, Chapter 7 concludes the thesis. In this chapter, we highlight the major conclusions of the previous chapters and related them with the contributions. We also elaborate the perspectives and our future work. In this chapter, a summary about big data and machine learning is presented. In addition, we introduced related work and introduced advanced machine learning technologies that can be applied in the healthcare system.

Big data

Big data does not have a single definition. Not only is it important for the IT industry, but it has also become relevant on different fields such as healthcare, manufacturing, transportation, and the public sector (Ivanov et al., 2014a). Big data refers to a large amount of information that flows in the organization, including video, text, sensor, and transactional records (Segall & Cook, 2018).

Big data analytics is the process involving large and different types of information that allows data miners to analyze massive records with non-traditional tools [START_REF] Mukherjee | Shared disk big data analytics with Apache Hadoop[END_REF][START_REF] Marjani | Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges[END_REF]. Big data analysis requires data mining or machine learning algorithms [START_REF] Aydin | Architecture and Implementation of a Scalable Sensor Data Storage and Analysis System Using Cloud Computing and Big Data Technologies[END_REF]. Big data analytics often evaluate and process information in Hadoop and Spark [START_REF] Omar | Big Data Analysis Using Apache Spark MLlib and Hadoop HDFS with Scala and Java[END_REF], both have advanced algorithms processes to analyze large data sets. Section 2.2 will discuss the Hadoop ecosystem and the most common analytical tools.

Big data [START_REF] Ali | Big Data Optimization: Recent Developments and Challenges[END_REF] provides valuable insights from the data analyzed, which can be transformed into real competitive advantages for the organization. Benefits may include the following (Ivanov et al., 2014a): anticipating behavioral changes, assessing competitive threats, improving marketing campaigns, and enhancing stakeholder relationship.

The first question that organizations should ask is: why leave the traditional platforms? In recent decades, organizations have used traditional platforms such as relational database (RD) and enterprise data warehouse (EDW) to store and analyze information, mostly structured data.

Companies use a traditional ETL process that extracts and analyzes data (Ivanov et al., 2014a).

The biggest challenge occurs when the data source is large and unstructured.

Most platforms deal with different types of information and the growing volume of their data. The complexity, cost, and the time-consuming to operate the system are some data characteristics that make it difficult for companies to continue using traditional platforms when dealing with massive information.

In response to the limitations of traditional platforms, Gartner 4 introduced big data characteristics, known as Vs [START_REF] Mukherjee | Shared disk big data analytics with Apache Hadoop[END_REF][START_REF] Patgiri | Big Data: The V's of the Game Changer Paradigm[END_REF][START_REF] Ali | Big Data Optimization: Recent Developments and Challenges[END_REF] to describe their primary features. The three main aspects are classified as: volume, variety, and velocity. Nowadays, the description of big data depends on more Vs, in this chapter we will highlight the two more important: value and veracity [START_REF] Patgiri | Big Data: The V's of the Game Changer Paradigm[END_REF][START_REF] Ali | Big Data Optimization: Recent Developments and Challenges[END_REF]. The definition of the five Vs and their qualities in the healthcare field are as follows (B et al., 2014):

1. Volume: represents the amount of data in terabyte or petabyte. The volume is growing considerably in the medical field due to the large amount of data generated by electronic health records, medical images (MRI, electrocardiography, scan, and XR), sensors, devices, and healthcare applications [START_REF] Marjani | Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges[END_REF][START_REF] Luo | Big Data Application in Biomedical Research and Health Care: A Literature Review[END_REF].

2. Variety: denotes types and sources of data. The information is presented in different ways, including structured, semi-structured, and unstructured data (Han et al., 2015). This is a challenge since most of the data comes from different sources such as medical notes, images, and sensors [START_REF] Luo | Big Data Application in Biomedical Research and Health Care: A Literature Review[END_REF]. 4 Gartner. https://www.gartner.com/en/information-technology/glossary/big-data Chapter 3

3. Velocity: is the speed of creating, updating, and processing the data. In many medical areas, such as public health, it is important that researchers and medical staff have time-saving tools to improve patient care. 4. Value: the ability to transform massive information into predictive value. Machine learning algorithm and artificial intelligence can extract medical information and convert it into knowledge to help make a business decision.

5. Veracity: equals the quality and reliability of the data.

Hadoop ecosystem

Apache Hadoop 5 is an open-source software for reliable, scalable, and distributed computing. It emerged as the predominant platform for big data and has been adopted by many companies: Google, Facebook, IBM, Adobe, EBay, Hulu, LinkedIn, and The New York Times. Hadoop is a big data system that includes structured, semi-structured, and unstructured data, allowing for fewer storage and processing algorithms [START_REF] Bergamaschi | From Data Integration to Big Data Integration[END_REF]. It is ideal for handling sensor data, videos and images, medical records, and geolocation information.

There advantages of the Hadoop ecosystem are multiple, such as, cost-effective management, massive large-scale platform, failure recovery, efficient use of resources, and the fact that it is designed with the assumption that the hardware will fail. The Hadoop framework is written primarily in Java language and has native C applications. There are four basic components of the Hadoop framework:

• Hadoop Common: common libraries and utilities to support other Hadoop modules. 5 Apache Hadooop. http://hadoop.apache.org Chapter 3 35 • Hadoop Distributed File System (HDFS): a distributed file system that provides high-speed access to the application. HDFS is Hadoop core and supports the framework, storing large files across multiple machines.

• Hadoop YARN: a framework responsible for IT resource management and job scheduling.

YARN was introduced as Hadoop 2.0 and grew out of the need to enable other interaction patterns for data stored in HDFS beyond MapReduce framework.

• Hadoop MapReduce: YARN-based system for parallel processing of large datasets that scales data across different processes.

The Hadoop ecosystem 6 arrives as the best solution for processing big data information.

Hadoop has different systems to meet different needs. There are different tools that are at the top of the Hadoop framework. In the ecosystem, Hadoop has a variety of vendor architectures that influence the systems performance. All applications evolved to meet the needs of businesses (e.g. Google and Facebook) and they had to process and collect all their newly generated information.

The following subsections provide a brief description of the most important tools, namely MapReduce and Spark.

MapReduce

Apache MapReduce 7 is developed by Google. It was designed to process large datasets and enable computing through two simple functions: Map and Reduce. The operation can be performed in a cluster with a parallel and distributed algorithm. Map Reduce splits job data into chunks across all the computer nodes. When the map tasks are over, the framework sorts the output, and the reduced Chapter 3 tasks will use the map sorting data as input and perform reduction operations, resulting in the output of the program.

An example is having a lot of data that is growing. Probably all the information will come from different parts of the Internet and spread out among the hard drives. It is necessary to process the data without spending time and effort on establishing links with the imminent probability of ending up with chaotic results. If a simple, non-chaotic process is needed, then it would be optimal to have a system with a framework like MapReduce that help organize the spread of data and generate an output.

Spark

Apache Spark was originally developed at UC Berkeley's AMPLab. Spark emerged as the replacement of MapReduce and solves similar issues. It runs programs 100 times faster than MapReduce in memory and 10 times faster on disk. Spark differs from MapReduce in the deployment of multiple RDDs, a collection of data blocks in a cluster, making it fast not only for task calculations, but also for the cache stored. The framework sorts the output, and the reduced tasks will use the map sorting data as input (M. [START_REF] Li | SparkBench: a spark benchmarking suite characterizing large-scale in-memory data analytics[END_REF]. If needed, Spark can run directly in HDFS, without using YARN. Spark can be integrated with Hadoop and other tools like Kafka, Shark, Spark Streaming, Cassandra, and HBase.

Spark is a flexible engine for large-scale processing. Most functions and workloads are easy to handle. It can manage cyclical data flows, which is more efficient in cases such as processing machine learning and stream algorithms. In addition, Spark can be accessed from Java, Python, Scala, and R. Spark has important extensions such as its exiting libraries that can handle machine learning, streaming applications, SQL applications, graphics, and batch applications.

Other tools

Other tools at the top of the Hadoop framework are as follows:

• Apache HBase 8 is inspired by Google BigTable and is a non-relational distributed database and the key component of the Hadoop stack. HBase goal is to host massive tables with billions of rows and columns that can be handled in real time. In addition, MapReduce has the capacity to support jobs with HBase tables. HBase has a linear and modular scalability, a database partition, and an automatic failover support.

• Apache Pig 9 provides an engine for running parallel data streams on Hadoop. Pig is a platform that analyzes a large dataset and comprises a series of high-level data operations for MapReduce. Pig includes a language called Pig Latin to express data flows with the properties of being easy to program, automatically optimize its execution, and that users can create their own functions to make special processing.

• Apache Hive 10 is data warehouse software that facilitates the querying and management of large data sets that reside in distributed file storage. Hive EDW infrastructure was developed by Facebook and employs MapReduce framework. A developer familiar with the SQL language may prefer operations with Hive even if the data is not stored in a traditional RD. Hive provides an SQL language called HiveQL.

• Apache Storm 11 is a complex event processor and a distributed computation framework.

Storm is distributed in real time for fast processing, consisting of a master and worker nodes, coordinated by the Zookeeper. Storm is fast and can be used with any programming 8 Apache HBase. https://hbase.apache.org 9 Apache Pig. https://pig.apache.org/ 10 Apache Hive. https://hive.apache.org/ 11 Apache Storm. https://storm.apache.org/ Chapter 3 language, it is usually written in the Clojure programming language. Storm does for streaming data what Hadoop MapReduce provides for batch processing.

• Apache Flink12 is a powerful framework for Java and Scala programming and has high runtime performance. Flink appears as a data processing system alongside MapReduce and Spark, it is an alternative to MapReduce that can operate separately from the Hadoop ecosystem, having access to HDFS and YARN. Flink has distributed stream processing that is fault-tolerant, scalable and performs on a large scale.

Computational techniques

The increase in the analysis of medical information has been a relevant topic in recent decades. If the medical personnel want to have a good information management and improve the health systems, they must find the right tools to make it happen. This section addresses different studies focusing on different machine learning techniques and Apache Spark examples in the field of healthcare.

Machine learning techniques in medical field

Machine learning offers many tools that assist in the decision-making process, improve patient quality of life, and optimize costs. Studies using machine learning tools are present in many areas such as genomics, imaging, preventive medicine, cardiovascular disease, diabetes, and chronic and epidemiological diseases. Chapter 3 39 In a recent investigation [START_REF] Kalantari | Computational intelligence approaches for classification of medical data: Stateof-the-art, future challenges and research directions[END_REF], the authors reviewed the state of the art of different computational intelligence (CI) techniques used to analyze the accuracy, sensitivity, and specificity of single and hybrid (two or more methods) machine learning techniques. For both cases, they conclude that Support Vector Machine (SVM) is the algorithm with the best results in medical studies. In the case of the hybrid method, it is determined that SVM together with the techniques of artificial immune recognition system (AIRS), genetic algorithm (GA), artificial immune system (AIS), fuzzy logic (FSVM), and extreme learning machine (ELM) have the best results, highlighting the SVM-AIRS method as the remarkable of all. They also concluded that hybrid methods provide better results than the single methods. Analyzing the accuracy, sensitivity, and specificity, the following results were obtained: the most accurate hybrid methods were SVM-AIRS, SVM-GA, AIS-SVM, and FSVM; the most sensitivity hybrid methods were SVM-AIRS, GA and particle swarm optimization (GA-MLP), FSVM, AIS and GA (AIS-GA), and SVM-ELM; and the most specificity hybrid methods were SVM-AIRS, fuzzy logic and GA (FGA), FSVM, AIS-GA, GA-MLP, and wavelet packet transform and ELM (WPT-ELM). [START_REF] Nithya | Predictive analytics in health care using machine learning tools and techniques[END_REF]) also explored the literature to understand the different processes of machine learning, highlighting the techniques of decision tree, Bayesian methods, artificial neural network, instancebased learning, clustering methods, and regression algorithms. Furthermore, the author mentions the models applied to different areas of health, such as cardiovascular diseases, hepatitis disease, and cancer.

In another study [START_REF] Dai | Prediction of hospitalization due to heart diseases by supervised learning methods[END_REF], the authors used a dataset of patients from the Boston hospital to predict the rehospitalizations caused by heart diseases. The goal was to avoid a hospitalization before it happens. They test the accuracy with two indicators: the false alarm rate (false positives) and the detection rate (true positives). A matrix of correlation coefficients is used Chapter 3 for this purpose. They applied five supervised machine learning techniques, SVM, AdaBoost using decision tree, logistic regression, naïve Bayes and a similar technique of K-likelihood ratio test.

The comparison places AdaBoost as the best performing method and Naïve Bayes as the worst in the experiment. The resulting accuracy was of 82.0%. In addition, the K-likelihood ratio test helps to understand the important characteristics for the doctor's visit.

The present study (Z. [START_REF] Liang | Deep learning for healthcare decision making with EMRs[END_REF] applied a deep learning model to improve the decisionmaking process, considering the clinical features of the patients. They used two datasets: the first was personal records and disease history from an EMR, and the second dataset was retrieved from a hospital information system and was focused on hypertension. For the unsupervised learning analysis, they employed a version of deep belief network (DBN) and then use the parameters to perform the supervised analysis, using a model with DBN and SVN, a standard SVN, and a decision tree model. The best predictions were done with the DBN and SVN model. The author considered that the key features of the problem were vital to the results.

Other medical problems solved by machine learning include the detection of epidemic-focused diseases, such as influenza, dengue, and hepatitis B, among others. This is explored in [START_REF] Boonchieng | Digital disease detection: Application of machine learning in community health informatics[END_REF], the machine learning approach is to predict the forecasting process, peak time, maximum height, activities per day, and outbreak duration. The most used techniques were SVM for text processing, firefly algorithm for optimization, autoregressive moving average, and linear or non-linear regressions. The authors concluded that the best technique to predict outbreak forecasting is SVM. Epidemiological problems should be treated as quickly and efficiently as possible to assist decision-making.

Spark with machine learning techniques in medical field

The use of machine learning in Spark has become popular in different studies due to the processing speed that Spark has with RDD and its parallelism capability. Spark has replaced both traditional and Hadoop systems in the medical area. Its development and integration are considered a challenge due to the high complexity of biomedical data. Some research shows how Spark's architecture and API overcome these challenges, making it the most viable option for its machine learning purpose.

In [START_REF] Asri | Real-time Miscarriage Prediction with SPARK[END_REF], authors used real cell phones and sensors information to predict the likelihood of miscarriages using an unsupervised machine learning algorithm called K-means for clustering with Apache Spark Databricks. To create the model, they used a dataset containing 10,000 documents that had factors such as age, BMI, the number of previous miscarriages, activity, location, weight, and height. As a result, the authors believe not only that they had a low error rate, but also that the time to process the information was efficient.

In another research [START_REF] Harnie | Scaling machine learning for target prediction in drug discovery using Apache Spark[END_REF], the authors modify the Chemogenomics pipeline of a pharmaceutical that develops drugs to find the molecules of certain proteins, trying to change from a single node to a multiple parallel node with Spark. They use machine learning techniques to make predictions and discover drugs. Authors made the comparison with the original pipeline and found that Spark is 8 times faster using 8 nodes and 13 times faster using 16 nodes. They concluded that Spark solved their problem, saving time and network bandwidth, and making better predictions for protein searches. [START_REF] Dong | The elderly health monitoring platform based on spark[END_REF] improved their system by taking advantage of Spark's parallelization. They present a monitoring platform for elderly people who use Spark to cluster information with the SVM algorithm and process it in real time through Spark Streaming.
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The authors used the dataset of UCI machine learning repository 13 to perform a clustering and classification test. For this, they used 2, 4, and 12 cores with the method of K-means clustering analysis. Regardless of the number of cores, Spark always performed better results than Hadoop.

In other recent investigation (Joy & Sherly, 2016), the authors propose a mechanism to find the relationship between symptoms and diseases more efficiently with the Faster-IAPI algorithm running in Spark RDD. The data used to test the model were taken from the UCI machine learning repository and considered the factors of age, sex, chest pain type, resting blood pressure, cholesterol, fasting blood sugar, and resting electrocardiographic results. [START_REF] Nair | Applying spark based machine learning model on streaming big data for health status prediction[END_REF] develops a system that predicts the health status of a person by considering attributes in previous tweets. They processed the information with a machine learning model and Apache Spark streaming, sending back the results to the user. The information is retrieved from the Heart Disease Data Set of UCI machine learning repository and processed with a real-time decision tree algorithm. Once the prediction is complete, the user receives a direct message saying, "Your health status is OK" or "You are requested to consult a Cardiologist immediately."

Another important use of Spark with machine learning is the improvement of medical ontologies, which is one of the topics addressed by this thesis. (J. Chen et al., 2018) proposed a Disease Diagnosis and Treatment Recommendation System (DDTRS) to be more accurate in identifying a disease using a Density-Peaked Clustering Analysis (DPCA). They benefit from Spark parallelism and data mining techniques using the Apriori algorithm. With this information, the authors build a medical ontological domain with association rules for diagnosis and treatment.

13 UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/index.php For the experimental part, they considered the accuracy, quality of recommendation, and performance of the DDTRS. They compared classification algorithms (C4.5 and Random Forest) with clustering algorithm (K-means). For diseases with few treatment stages, such as influenza and diabetes mellitus, the classification algorithms are more accurate than clustering. Conversely, for diseases with more treatment stages or symptoms, the clustering algorithm is more accurate compared to the classification algorithm.

Benchmarking

Benchmarking is a tool that seeks to improve competitiveness by comparing the best systems in the industry. Michael Spendolini [START_REF] Spendolini | The Benchmarking Book[END_REF] points out one of the first definitions of benchmarking: "it is a systematic and continuous process for the evaluation of products, services and work processes of the organizations that are acknowledged as representatives of the best practices with the purpose of organization improvements". Companies adopted benchmarking for evaluation. There were no real standards, and those created were of dubious credibility. The creation of TPC (Transaction Processing Performance Council) came as a solution to this problem in the computing field. TPC 14 is a leading benchmarking nonprofit corporation. Two of its major activities are [START_REF] Parthiban | Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients[END_REF] to create good benchmarks (2) and to build a good process for the evaluation of the benchmarks. Even if TPC has been evolving slowly and presents new benchmarks and workloads (Floratou et al., 2015), recently reinvented itself and introduced a benchmark that standardizes big data systems. In July 2014, an TPCx-HS provides verifiable measurements of performance, price, availability, and energy consumption. It is also used to stress the Hadoop cluster [(Ivanov et al., 2015). TPCx-HS measurements include Hadoop runtime, Hadoop File system, API compatible systems, and MapReduce layers. TPCx-HS processing reduces the cost of TPC participation and makes it approachable to more practitioners, including academics, consumers, analysts, and computer manufactures (Floratou et al., 2015).

Benchmarking and big data

Benchmarking is the foundation of any computer system research that provides a real quantitative evaluation (Huang et al., 2012). Benchmarks are the most important tools for assessing the performance of the system, and it is vital that they are transparent and can be replicated (Floratou et al., 2015). They are designed to predict the performance of systems and reveal their weaknesses and strengths [START_REF] Spendolini | The Benchmarking Book[END_REF]. The accuracy of these predictions is what determines the quality of the benchmarking [START_REF] Obaidat | Fundamentals of performance evaluation of computer and telecommunications systems[END_REF].

Benchmarking is designed for a particular type of systems. It is important to decide what type of benchmark will be best for the system. Many benchmarks only evaluate system performance, architecture, and application protocols [START_REF] Obaidat | Fundamentals of performance evaluation of computer and telecommunications systems[END_REF]. The evaluation is difficult, as no single benchmark can have all the requirements and meet all the system standards (Han et al., 2015); even TPC standards cannot fulfill everything. In addition, it is used to compare the performance of different systems with different architectures. Chapter 3 45 Currently, with the new big data applications, the platforms have become more complex, diverse, and difficult to analyze. Big data is constantly changing and is considered a new technology that is not very well understood compared to traditional systems [START_REF] Ali | Big Data Optimization: Recent Developments and Challenges[END_REF]. One of the problems is that currently, the characteristics of big data applications are not completely defined. Without clear standards and characteristics of big data, benchmarking is relevant to the understanding of a platform. It is also used to evaluate the fault tolerance of a big data system.

Benchmarking is developed to meet different needs; some are for specific algorithms and others for multiple platforms, where they can stress the system with microbenchmarks or with multiple types of loads.

Types of benchmarking

A classification of benchmarks can be microbenchmarks, macrobenchmarks, program kernels, and application benchmarks programs [START_REF] Obaidat | Fundamentals of performance evaluation of computer and telecommunications systems[END_REF]):

• Microbenchmarks: measure a specific part of the computer system: CPU speed, memory speed, I/O speed, and network. In general, they are used to characterize the maximum performance that the system could obtain if it were limited by a single component. They tend to be a kernel.

• Macrobenchmarks: measure the performance of the complete system. These benchmarks do not show whether the system is working correctly or incorrectly.

• Program kernel: measures a small program that is usually extracted from the actual • Application programs: measure a specific application. They are usually described in terms of the functions to be performed and use almost all the resources of the program. These benchmarks are real, complete and give significant results.

A Benchmark can be a real program with real performance, or a synthetic program designed to evaluate specific functions and conditions. In the case of big data benchmark programs, benchmarks use specific workloads for an application (B et al., 2014) that provide an input to the real system under the study used [START_REF] Obaidat | Fundamentals of performance evaluation of computer and telecommunications systems[END_REF]. Workloads are important benchmarking operations that allow some optimal behavior evaluations, leading to competent and cost-effective architectures [START_REF] Obaidat | Fundamentals of performance evaluation of computer and telecommunications systems[END_REF]. They must be representative, diverse and focused on a core operation [START_REF] Quan | The implications from benchmarking three big data systems[END_REF], and specific to meet system requirements (Segall & Cook, 2018).

Workloads can be real-world data based or synthetics. Both alternatives work, the choice depends on whether real information can be obtained (concerning confidentiality issues) and whether its veracity is vital to the results, or if synthetic results can emulate real-world scenarios and the results will not be affected.

Machine Learning models

The following subsections provide an overview of the different machine learning models used to conduct the research performed in the enclosed papers.

Logistic regression

Logistic regression explains the relationship among the dependent and independent variables. The model makes predictions by applying the logistic function [START_REF] Hastie | Springer Series in Statistics The Elements of Statistical Learning Data Mining, Inference, and Prediction[END_REF])

𝑓(𝑧) = 1 1+𝑒 -𝑧 (1)
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Decision Tree

Decision tree is a ML method broadly used for its easy interpretation. Decision tree predicts the label of each leaf, which is chosen by selecting the best possible split. Each tree node is selected from 𝑎𝑟𝑔𝑚𝑎𝑥𝐼𝐺 𝑠 (𝐷, 𝑠) where 𝐼𝐺(𝐷, 𝑠) is the data obtained when a split (s) is applied to a dataset (D) [START_REF] Marsland | Machine Learning: An algorithmic perspective[END_REF].

Random Forest

Random forests (Breiman, 2001a) are a collection of decision tree predictors in which each tree depends on the value of an independent random vector. For practical problems, random forests performed a remarkable performance. Each tree is different due to the random subset of data in which the variance is reduced.

Gradient-boosted tree

Gradient-boosted trees (GBTs) are ensembles of decision trees that minimize a loss function. The mechanism used to reduce the loss function in the training data is given by [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF] 2 ∑ 𝑙𝑜𝑔 (1 + 𝑒𝑥𝑝(-2𝑦 𝑖 𝐹(𝑥 𝑖 ))) 𝑁 𝑖=1

(2)

Multilayer perceptron

Multilayer perceptron classifier is based on the feedforward artificial neural network and holds several layers of nodes that emulate the brain function. Each layer is connected to the next. The input data is represented by the nodes of the input layer. The other nodes assign the input to the output by combining the weight (w) and bias (b) of the node and layers. This is written as a matrix with 𝐾 + 1 layers as [START_REF] Hornik | Approximation Capabilities of Muitilayer Feedforward Networks[END_REF] (5)

where N corresponds to the number of classes.

One-vs-Rest

One-vs-rest generates a binary classification problem for each dependent class. One class is classified as positive and the rest of the classes are converted to negatives. The classifier with the highest score will be the output.

Naïve Bayes

The classifier with the highest score will be the output. Naïve Bayes is a classifier based on Bayes' theorem, with strong independences among features, which works with the assumption of use observations to form a prediction for the problem [START_REF] Marsland | Machine Learning: An algorithmic perspective[END_REF] 

Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of variables under consideration.

It can be used to extract latent features from raw and noisy features or to compress data while maintaining the structure. The following subsections provide an overview of the different dimensionality reduction techniques used to carry out the research performed in the enclosed papers.
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PCA

Principal component analysis (PCA) is a multivariate statistical technique that extracts valuable information from a dataset, expresses it as new orthogonal variables called principal components [START_REF] Khalaf | A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines[END_REF], and analyzes the covariance between the elements of a vector [START_REF] Shlens | A Tutorial on Principal Component Analysis[END_REF].

First, to calculate the eigenvector, it is necessary to generate a single covariance matrix, such as an X T X matrix. The matrix X has the decomposition of a single value given by

𝑋 = 𝑃∆𝑄 𝑇 (6)
where 𝑃 is the IxL matrix of left singular vectors, 𝑄 is the JxL matrix of right singular vectors, and ∆ is the diagonal matrix of singular vectors. The ∆ is equal to ∆ 2 , which is the nonzero eigenvalue of X T X and XX T .

Usually, the first components contain the most significant amount of variance. The first component explains the maximum amount of variance in the features. The second component describes the maximum variance that was not accounted in the first component, so it is correlated with other features and is uncorrelated with the first component. The first and second component correlation must be zero. The remaining components apply the same characteristics; each component represents the maximum amount of variance in the observed variables that were not accounted by the preceding components and is uncorrelated with all previous components.

Chi-square feature selector

Chi-square orders features based on a Chi-square test of independence of two elements, then filters (selects) the top features on which the class label depends the most. The formula for chi-square is represented by

𝑥 2 = ∑ (𝑂 𝑖 -𝐸 𝑖 ) 2 𝐸 𝑖 (7) 
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where 𝑂 is the observed values and 𝐸 is the expected values.

Summary

There is limited information available in the literature on the complex process of implementing big data in health care systems such as E-care. These changes aiming at maintaining the medical field at the forefront of progress and big data, especially Hadoop Ecosystems, should have the opportunity to be accomplished. In this way, the patient's quality of life will improve and the availability of knowledge about medicine will increase.

Big data can handle the volume, variety and velocity of the information, stored in a distributed, scalable and resilient database system. Big data most popular analytical tools for massive data are those found within the Hadoop Ecosystem, such as MapReduce, Spark, Flink and Storm. One way to judge the performance of E-care, with the analytical tools of Hadoop Ecosystem, is with different workloads. From these solutions, Apache Spark presents a complete ecosystem (Section 3.3.2) to achieve a remarkable result in the E-care problematic (Section 6.2) using the machine learning and dimensionality reduction models to create clusters and enrich the medical ontology in the heart disease problem.

Introduction

Today, big data has relevant applications in the industry due to improvements in system performance and its ability to convert information into knowledge. The chapter explores the time consumption and scalability of supervised suitable for massive datasets. To overcome scalability problems, it is desirable to work with distributed and parallelized architecture across multiple nodes as described in this chapter in Section 3.2. The approach is based on Apache Spark, a powerful in-memory distributed application that offers extensive machine learning libraries for regression, classification, clustering, and rule extraction. The main contribution of the study is to measure the scalability by calculating the execution time that a classifier achieves with larger workloads and to compare the execution time of different machine learning models, such as random forests, decision tree, logistic regression, linear support vector machine, multilayer perceptron and gradient-boosted tree. The application of this configuration will be exploited in Chapter 6 in our proposed heart disease detection approach and the error of the models will be validated in the next chapter (Chapter 4).

Parallel distributed systems in massive data

Over the past decade, several parallel distributed computing frameworks have been developed for efficient big data analytics (M. Chen et al., 2014;Kahanwal & Singh, 2013), which have proven to have effective applications in social media, health informatics, text mining, sensors, transactional records, and genomic data. Gartner reports 16 presented the characteristics of big data and challenges related to volume, variety, and velocity, such as supporting optimal performance, improving execution cost, and lack of storage space [START_REF] Ananthanarayanan | Effective Straggler Mitigation: Attack of the Clones[END_REF]. Hence, Chapter 3 55 traditional systems were unable to solve this new level of complexity related to big data [START_REF] Qiu | A survey of machine learning for big data processing[END_REF].

Massive data is no longer a challenge unique to the technological industry, but is now an important issue for all fields focused on information-to-knowledge conversion, such as healthcare, transport, public sector, manufacturing, finance, and marketing (Ivanov et al., 2014b;[START_REF] Zhou | Big data opportunities and challenges: Discussions from data analytics perspectives [Discussion Forum[END_REF]. For a long time, Apache Hadoop [START_REF] Ghemawat | The Google File System[END_REF] and MapReduce [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF], 2008) were the engines selected to process massive data for machine learning analysis. However, Apache Spark (M. [START_REF] Zaharia | Apache Spark[END_REF] arrives as the second generation of big data analytics with the characteristic of being 10 times faster than Hadoop. Companies prefer Spark for its fast in-memory processing, parallelization, distribution, and powerful libraries, such as Spark SQL [START_REF] Armbrust | Spark SQL: Relational data processing in spark[END_REF] and DataFrame, Spark Streaming (M. [START_REF] Zaharia | Discretized streams: Fault-tolerant streaming computation at scale[END_REF], and MLlib [START_REF] Meng | MLlib: Machine Learning in Apache Spark[END_REF] for machine learning. The successful Spark implementation and the use of multiple resources leads to higher execution speed, adequate partition data, efficient memory management, and proper cluster configuration [START_REF] Aziz | Leveraging resource management for efficient performance of Apache Spark[END_REF], Therefore, allowing massive workloads in a large parallel system is a complex process (JáJá, 1992). The details of the deployment are not well described in the literature. To assess time consumption and scalability, experiments applied different workloads and deployment setups (number of nodes) [START_REF] Medya | Towards performance and scalability analysis of distributed memory programs on large-scale clusters[END_REF]. Most of the machine learning workloads are run on parallel and distributed platforms to decrease the runtime given by a certain amount of data as in [START_REF] Ben-Nun | Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis[END_REF][START_REF] Mayer | Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools[END_REF][START_REF] Xing | Strategies and Principles of Distributed Machine Learning on Big Data[END_REF].The scalability challenge is to maintain the processing time without the need for extensive hardware [START_REF] Mutlu | Memory scaling: A systems architecture perspective[END_REF].

Due to the growth of big data, it has become a reality that machine learning models are being parallelized. Hence, the performance of the parallelized task has many challenges because Chapter 3 machine learning algorithms were considered a sequential process [START_REF] Dietterich | Machine learning for sequential data: A review[END_REF] and traditional systems were unprepared for this parallelization [START_REF] Qiu | A survey of machine learning for big data processing[END_REF]. Therefore, this chapter uses Apache Spark 2.4 to evaluate the execution time considering: (1) the optimization methods that allow faster storage in memory;

(2) the scalability of machine learning classifiers;

(3) the best machine learning models; and (4) the different deployed setups.

Machine learning models with MapReduce and Spark

MapReduce systems

In the literature, most big data research related to machine learning models was done in MapReduce, which became the standard engine for providing solutions to the execution time challenge in massive datasets. In this paper [START_REF] Del Río | On the use of MapReduce for imbalanced big data using Random Forest[END_REF], oversampling, undersampling, and cost-sensitive learning techniques were adapteded to address imbalance datasets in the context of big data using random forests classifier. The method proposed in [START_REF] Fernández | An insight into imbalanced Big Data classification: outcomes and challenges[END_REF] shows an improvement in efficiency and scalability in time consumption using C3.4 based on MapReduce. Authors [START_REF] Triguero | MRPR: A MapReduce solution for prototype reduction in big data classification[END_REF] applied the kNN algorithm in a MapReduce application with a large dataset. The objective was to speed up classification and improve storage requirements using different methods. Another research (Jesús [START_REF] Maillo | A MapReduce-based k-Nearest Neighbor Approach for Big Data Classification[END_REF] used

MapReduce to process about 1 million instances with the kNN classifier achieving a scalable model but lacking in-memory performance. Authors [START_REF] Ertekin | Nonconvex online support vector machines[END_REF] found that the support vector machine (SVM) scales linearly with the number of training examples, being an expensive operation. Therefore, non-convex online Support Vector Machine (SVM) with an outlier filtering mechanism (LASVM-I) was proposed to reduce the performance of the computational scaling.
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Spark systems

Currently, Spark (M. [START_REF] Zaharia | Apache Spark[END_REF] is the second-enhanced generation of MapReduce due to its fast in-memory processing to obtain massive data 10 times faster than its predecessor engines. Unlike MapReduce, Spark processes data in memory to the maximum, when it exceeds memory size, Java objects are deposited in secondary storages, such as disks and SSDs.

Also, Spark is faster than Flink in batch scalability [START_REF] García-Gil | A comparison on scalability for batch big data processing on Apache Spark and Apache Flink[END_REF].

Spark architecture

The Spark architecture uses a master node that manages the worker nodes, which belongs to the computer's cluster, while the driver is the application that communicates with the cluster manger.

The Spark core is a resilient distributed dataset (RDD) (M. [START_REF] Zaharia | Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing[END_REF]) that provides a parallel-operated in-memory structure. Spark is based on the Scala language, is also implemented in Java, Python, and Scala. The Spark framework can be deployed as standalone, Hadoop Yarn, Cassandra, Amazon EC2, Apache Mesos, and HBase. A representation of Spark ecosystem is

shown in Figure 3.1.
Spark MLlib is a high-level machine learning library that operates with easy and scalable implementation. The library contains common machine learning techniques such as classification, regression, and clustering. In addition, MLlib libraries are faster than ML [START_REF] García-Gil | A comparison on scalability for batch big data processing on Apache Spark and Apache Flink[END_REF].

The APIs included in MLlib are based on RDD and DataFrame. MLlib is switching to the DataFrame-based API because it is easier to use than RDDs; the RDD-based API is in maintenance mode at this time and MLlib will not add new features.
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Spark RDDs and optimization methods

The first noticeable difference between both engines is in the way each tool ingests data. Spark was originally designed to work with static data through RDDs. To deal with stream data, Spark uses Dstream, a micro-batching with a continuous series of RDDs. This approach allows to switch between streaming and batching since both have the same API. Unlike Hadoop MapReduce, Spark stores data in memory through iterations. To avoid RDD inefficiency, Spark can store RDD in memory and keep it there for future operations, eliminating intermediate results. These optimization methods are called cache and persist. Cache tells Spark that the data must be stored in memory (MEMORY_ONLY). Cache only works if there is enough space in RAM, if cache fails, Spark can use the persist method. Persist takes a storage-level type parameter and sets the values so that Spark can persist an RDD in memory, allowing it to be efficiently reused across parallel operations. 

Spark in the context of execution time

In the literature, there are only a few papers that use Spark MLlib in the big data context to measure runtime. Authors [START_REF] Hafez | Effective selection of machine learning algorithms for big data analytics using apache spark[END_REF] compered the performance of some machine learning models on massive datasets using Apache Spark. They considered accuracy and training time to be performance metrics. The best accuracy was provided by logistic regression. This article [START_REF] Dahiya | Network Intrusion Detection in Big Dataset Using Spark[END_REF] 

Spark in the context of scalability

The scalability of Big Data with Spark MLlib has been studied in the literature. [START_REF] Galicia | A novel spark-based multi-step forecasting algorithm for big data time series[END_REF] used Spark MLlib forecasting algorithm in big data time series. In the experiments, they scale the dataset to compute the time series with different threads. This article [START_REF] Mezzoudj | A parallel content-based image References retrieval system using spark and tachyon frameworks[END_REF] 

Experimental protocol

This section describes the experiments conducted to show the Spark performance using six algorithms in a massive dataset. We carried out the comparative study using logistic regression, random forests, decision tree and linear support vector machine algorithms.

Datasets

The dataset used for the experiments is the p53 Mutants [START_REF] Danziger | Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants[END_REF][START_REF] Danziger | Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants[END_REF][START_REF] Danziger | Predicting positive p53 cancer rescue regions using Most References Informative Positive (MIP) active learning[END_REF] from the UCI Machine Learning Repository 17 . The dataset was selected for its large scale and high dimensionality, which are convenient characteristics for scalability. It consists of 5,409 features (including the categorical feature) and 31,420 instances. The categorical feature is a binary classification for active or inactive. Active represents transcriptionally competent and inactive means a cancerous tumor.

The original dataset has been increased to 128 times to measure the scalability performance of Spark's framework: 1x, 2x, 4x, 8x, 16x, 32x, 64x and 128x. Tables 3.1 gives a brief summary of these datasets. For each one, the name of the dataset (Dataset), the number of samples (instances), the total number of features (Features), the total number of values (Total), and the size in Gigabytes (Size) are shown. The numbers obtained by multiplying the dataset 128 times are 4,021,760 instances, 21,753,699,840 values, and 168.0 GB.

Classifiers propose and parameter selection

Here are the details of the four MLlib algorithms implemented in Spark. Random forests (RF), decision tree (DT), logistic regression (LOG), linear support vector machine (LSVM), multilayer perceptron (MPC), and gradient-boosted tree (GBT) were the selected classifiers. The models were fit with default parameters to obtain a yield reference point as shown in Table 3.2.

The tree models, DT, RF and GBT, changed the MaxDepth to 10 trees, 20 trees and 30 trees. The increased depth means higher computational cost and overfitting. This parameter test whether Spark has a significant difference in model execution time. LOG basic parameters were the maximum number of iterations of 10, the regularization parameter (corresponding to λ) of 0.3 and the elastic-net of 0.8. RF was tuned to a maximum depth of 10 and a Gini impurity. LSVM basic parameters were the maximum number of iterations of 10 and the regularization parameter of 0.3.

The parameters of MPC were set at a maximum iteration of 100. MPC had two hidden layers, the first with 5 neurons and the second with 4 neurons. The dataset was divided into two: (1) training dataset with 70% of the information and (2) testing dataset with 30% of the information.

Computational resources

For all experiments we have used Spark 2.4.0 in a standalone cluster mode at the top of Hadoop Distributed File System (HDFS) with the default 128 MB configuration block, and the versions of Hadoop 2.8, Scala 2.11, and MLlib 2.4.0. The computing node hold the following characteristics:

Intel Xeon E5-2630 (2.40 GHz) processor, 32 processors, 8 cores per processor, 2 MB cache, 32 GB RAM.

Evaluation criteria

This section describes the experiments carried out to show the performance of Spark using ML algorithms over the massive dataset.

As evaluation criteria, we have employed the overall learning runtime (in minutes) for the classifiers. Each experiment considered the total time spent by the classifiers, taking intermediate times such as data reading, map phase, training, and testing processes. The main purpose of the 

MPC

Layers=" number of features, 2"; BlockSize=128; Seed=1234L; MaxIter=100; two hidden layers, the first with 5 neurons and the second with 4 neurons GBT numClasses=2; maxDepth=10, 20, or 30; Loss="Log Loss"; numIterations="auto"; learningRate="auto"; algo="Classification"

analysis was the execution time; accuracy performance was not the aim of this study. Spark provides a web-based application user interface (UI) to debug performance using the execution time for different jobs and tasks.

We perform execution time and scalability analysis of Spark ML classifiers. Scalability refers to the ability of a system to adapt to the growth of computing resources, such as incrementing nodes or workloads [START_REF] Özsu | Principles of distributed database systems[END_REF]. The dataset is a real workload, we generate multiple synthetic workloads representing different scenarios to perform the execution time and scalability analysis.

Experiments

Experiment 1: execution time of the real workload

We measure the execution time of all the classifiers using 4 and 8 cores. In addition, we compared these results with the optimization methods, cache and persist. For the tree models, we monitored the computational cost by changing the maximum depth of each tree to 10, 20, and 30. We selected the best to models, RF and LOG, for the next Experiment 2.

Experiment 2: scalability varying workload

We doubled the number of instances of the real dataset up to 128 times and measured the execution time using 4, 8, 16 and 32 cores. Ideally when the workload increases proportionally, the computational cost should remain constant. In addition, we computed the workloads with the optimization methods, cache and persist.

Chapter 3

Results and discussion

Execution time original data

The execution time of classification methods, such as DT, RF, LOG, LSVM, MPC, and GBT, was applied for massive data analysis to find out the most efficient one. The execution time differs from the algorithm type due to the different computing requirements shown in Table 3.3.

In tree models, MaxDepth is represented by the classifier name with the plus symbol, followed by the maximum depth number (i.e. RF+10). In all tests, the use of optimization methods, cache and persist, greatly improved the execution time (in minutes) of classifiers by: 5.3±1.0 with 4 cores and 4.7±0.6 with 8 cores using RF; 5.0±0.3 with 4 and 8 cores using DT; 2.9 using LOG;

26.0 using LSVM; 2.3 with 4 cores and 2.6 with 8 cores using MPC; and 2.1±0.3 with 4 cores 1.6±0.1 with 8 cores using GBT. The improved cache and persist are similar across all classifiers except LSVM which obtained the highest value. It should be noted that the execution time without the LSVM optimization methods was longer than other classifiers, being 5 times slower than RF, and DT, and 8 times slower than LOG.

In addition, the performance of cache and persist did not differ significantly from each other for most classifiers. The exception was LSVM, MPC and GBT. For 8 clusters, LSVM was GBT had twice the time using 4 cores and the triple using 8 cores when compared with RF, DT and LOG. The shortest time was presented by RF, while GBT had the highest times using optimization methods. When comparing the MaxDepth optimization times of the tree models, RF, and DT computed equivalent results around 25±1.5 minutes, which means that there is no execution time difference when increasing the maximum depth number.

The execution time of classifiers without optimization methods depends on the specific classifier and the number of cores as shown in Table 3.4. The classifier with the best execution time was LOG with 88.3 minutes using 4 cores and 53.4 minutes using 8 cores. The worst classifier was LSVM with 697.7 minutes using 4 cores and 744.6 using 8 cores. For all other classifiers, using 4 cores the execution time was 147.2±7.5 minutes for RF and DT, 113 minutes for MPC, and 122.0±3.0 minutes for GBT. For 8 cores, the results were 83.6±2.5 minutes for RF and DT, 63.1 minutes for MPC, and 86.7±5.2 minutes for GBT. The results showed that the number of MaxDepth did not affected the execution time of DT and GBT. In addition, in all cases the classifiers were slower using 4 cores than 8 cores. The best RF results were using a MaxDepth of 10. The increase of the computed tree depth can lead to an overfitting that reduces accuracy, an unnecessary calculation cost considering that there is no improvement in the execution time (Table 3.

3).

Spark read the input file and spread it across multiple simultaneous jobs, incurring a local shuffle that dropped the performance. Table 3.5 shows the results of the executor of the classifiers.

The smaller the task time and shuffle read, the better the performance time of the classifiers. The shuffled LOG read the least amount of data and task time and had the best execution time. As [START_REF] Souza | Spark Scalability Analysis in a Scientific Workflow[END_REF], we found that the number of tasks does not affect the performance of the Chapter 3 models.

Scaling synthetic data

We carried out a series of experiments to validate the execution time and the scalability of the proposed models, RF and LOG, using the optimization methods, cache and persist. The execution time of classification methods, such as RF and LOG, was applied for massive data analysis to find out the most efficient one. The execution time differs from the algorithm type due to different computing needs. The results obtained for all methods using different datasets length for time scalability are shown in Table 3.6, where the results are expressed in minutes. The algorithms were analyzed in less time as the optimization methods were applied. In addition, the models are more sensitive to the decrease in the number of cores, the smaller the core, the longer the execution time. However, the difference in computing time differs little from 8 to 16 cores when the optimization methods were applied, and models with more parameters benefit more from using more cores. In addition, the scalability behavior of each model is non-linear, with each length decreasing in less time, demonstrating the effectiveness of the proposed models for large-scale datasets. Other works optimize the execution time cost using multiple cores [START_REF] Barthels | Distributed Join Algorithms on Thousands of Cores[END_REF][START_REF] Baumann | Psychological and physiological predictors of angina during exercise-induced ischemia in patients with coronary artery disease[END_REF][START_REF] Boyd-Wickizer | An Analysis of Linux Scalability to Many Cores[END_REF]Dean et al., 2012). Chapter 3

In all tests, the use of optimization methods, cache and persist, greatly improved the execution time of the classifiers, with RF being faster than LOG models in all cases. In previous works, there were several attempts to reuse the data to make efficient the memory management [START_REF] Dursun | Revisiting Reuse in Main Memory Database Systems[END_REF][START_REF] Issenin | DRDU: A data reuse analysis technique for efficient scratch-pad memory management[END_REF][START_REF] Li | An efficient data reuse strategy for multi-pattern data access[END_REF][START_REF] Liu | Combining data reuse with data-level parallelization for FPGA-targeted hardware compilation: A geometric programming framework[END_REF][START_REF] Liu | Automatic on-chip References 179 memory minimization for data reuse[END_REF]. Increasing the length of the dataset reduced the difference between models with optimization methods. Optimization methods using RF were 5.6 ±0.6 faster in the original dataset; when increased to 128 times (128x), the optimization methods decreased, being only 3.8±0.4 times faster. For LOG the difference was less than RF. In the original dataset, the optimization methods were about 3.1±0.2 times faster.

Furthermore, the datasets (2x, 4x, 8x, 16x, 32x, 64x, 128x) computed around 2.8±0.3 using the optimization methods, which was not a significative difference.

In Figure 3.2, the behavior of each model is represented by the size of the dataset length and the number of processing cores increased. It also shows the rise in execution time required to build the model when Spark scales from 4 to 32 cores. Regardless of the model used, this time increment becomes more noticeable compared to the original dataset. This behavior shows a clear dependency on the dataset length. In all cases LOG performed better than RF. Comparing the difference in the cores, LOG achieved similar scalability and in all cases 16 cores was the fastest, while 4 cores achieved the worst results for both LOG and RF. The first datasets show the similarity in the execution time among the optimization methods and the number of implemented cores, except for 4 cores, which result in a slower time. The gap increases when the dataset length is larger, this is imminent when the dataset is 32 times bigger (32x). In Figure 3.3, RF obtained the fastest time using 16 cores and the slowest time using 4 cores.

After the dataset was multiply by 8x, the configuration of 32 cores start to be faster than the 8 cores configuration, before both cores were similar. The same behavior of 4 cores, 8 cores, 16

cores and 32 cores is also observed in LOG (Figure 3.4). In addition, there was no significant difference between cache and persist in most core configurations.

Comparing all the models by optimization methods, RF outperformed LOG, obtaining a faster execution time as shown in Figure 3.5 and Figure 3.6. RF execution time with cache using 32 cores (Figure 3.5) was practically greater in all the datasets in terms of length, while using 4 cores was Chapter 3

the lowest for both RF and LOG. In Figure 3.6, RF persist performed better than LOG, obtaining results similar to those of persist considering: length, configuration core, and classifier.

The information of all the proposed linear algorithms is shown graphically in Figure 3.7. Time increases linearly as the length of the dataset grows, indicating the expected behavior of all models with respect to scalability. In addition, the scalability factor of each model when the length of time increases by a factor of 2x, 4x, 8x, 16x, 32x, 64x and 128x is less than 2, which implies that it is better than a linear scalability. The positive slope of the function is smaller in LOG models, which means that the reason of the change in the model is slower. However, considering the intervals between the datasets, the execution time increased considerably after the 32x dataset, suggesting that Spark suffers a significant performance penalty. A poor scaling was performed by increasing the dataset 32x, incurring in a minor performance penalty due a bottleneck's in application or hardware resource, as occurs in [START_REF] Barthels | Distributed Join Algorithms on Thousands of Cores[END_REF][START_REF] Garate-Escamilla | Big data scalability based on Spark Machine Learning Libraries[END_REF][START_REF] Thiruvathukal | A Benchmarking Study to Evaluate Apache Spark on Large-Scale Supercomputers[END_REF].

The computation between the original dataset and the scaling up to 128 times, calculates that the models were faster than a linear system, proving to have a strong scaling attempt to solve a massive problem faster by keeping the dataset constant while increasing the number of cores. The configuration of 4 cores was least increased, with only 7 times faster using RF and 6 times faster using LOG. The biggest increment was with the configuration of 16 cores, being 13 times faster using RF and 10 times faster using LOG. Similar was the configuration of 32 cores, achieving 12 times and 11 times faster for RF and LOG, respectively. The authors recommend logistic regression due to quicker computation time in training models [START_REF] Ruiz | Storms prediction : Logistic regression vs random forest for unbalanced data STORMS PREDICTION: LOGISTIC REGRESSION VS RANDOM FOREST FOR UNBALANCED DATA[END_REF], regardless of the error rate that varies depending on data characteristics [START_REF] Cushman | Landscape applications of machine learning: Comparing random forests and logistic regression in multi-scale optimized predictive modeling of American marten occurrence in northern Idaho[END_REF][START_REF] Yoo | A Comparison of Logistic Regression, Logic Regression, Classification Tree, and Random Forests to Identify Effective Gene-Gene and Gene-Environmental Interactions[END_REF], such as variance and noise [START_REF] Kaitlin | Random Forest vs Logistic Regression: Binary Classification for Heterogeneous Datasets[END_REF][START_REF] Wolpert | No free lunch theorems for optimization[END_REF] and inclusion criteria [START_REF] Boulesteix | Towards evidence-based computational statistics: Lessons from clinical research on the role and design of real-data benchmark studies[END_REF][START_REF] Couronné | Random forest versus logistic regression: A large-scale benchmark experiment[END_REF].

Conclusion

In this chapter, we have performed a comparative study for batch data processing of the scalability of Apache Spark framework for processing and storing imbalanced Big Data with logistic regression and random forests classifiers. These algorithms were executed on a single virtual machine. The work demonstrates that logistic regression is the fastest classifier and has the best scalability, as it requires the minimum amount of time to build the complete model. The execution time of the tree models was not significantly affected by the computational cost of the maximum depth tree.

The comparison between cache and persist was similar using the classifiers, improving the performance of the standalone deployment. In general, RF works best with optimization methods, especially when using Spark's cache method, while LOG outshine the performance without optimization methods. The results show that the model is not affected by complex computational operations. The model's success in addressing strong scaling to solve the massive problem faster when the number of cores is increased. Finally, the models described in this chapter are easy to implement in real-life with a massive medical data. In fact, the configuration will be applied to our proposal system described in Chapter 6.

Introduction

The prediction of cardiac disease helps practitioners make more accurate decisions regarding patients' health. Therefore, the use of machine learning (ML) is a solution to reduce and understand the symptoms related to heart disease. The aim of this chapter is to propose a dimensionality reduction method and finding the features of heart disease by applying a feature selection technique. The dataset used is described in Section 4.3.1 and the algorithms description are in Section 2.5, the explanation of their parameters is mentioned in Section 4.3.5 of this chapter. The different performance metrics for validating the models are defined in Section 4.3.6. The results of this classifiers will be used to determine the algorithm for our proposal system for the diagnosis of heart disease in Section 6.

Cardiovascular disease prediction

The World Health Organization (WHO) 18 lists cardiovascular diseases as the leading cause of death globally with 17.9 million people dying every year. The risk of heart disease increases due to harmful behavior that leads to overweight and obesity, hypertension, hyperglycemia, and high cholesterol. Furthermore, the American Heart Association 19 complements symptoms with weight gain (1-2 kg per day), sleep problems, leg swelling, chronic cough and high heart rate [START_REF] Lee | The impact of health information technology on hospital productivity[END_REF].

Diagnosis is a problem for practitioners due the symptoms' nature of being common to other conditions or confused with signs of aging. Chapter 4

Understanding machine learning classification in heart disease

The growth in medical data collection presents a new opportunity for physicians to improve patient diagnosis. In recent years, practitioners have increased their usage of computer technologies to improve decision-making support. In the health care industry, machine learning is becoming an important solution to aid the diagnosis of patients. Machine learning is an analytical tool used when a task is large and difficult to program, such as transforming medical record into knowledge, pandemic predictions, and genomic data analysis [START_REF] Marsland | Machine Learning: An algorithmic perspective[END_REF][START_REF] Shalev-Shwartz | Understanding machine learning: From theory to algorithms[END_REF][START_REF] Hastie | Springer Series in Statistics The Elements of Statistical Learning Data Mining, Inference, and Prediction[END_REF].

Recent studies have used machine learning techniques to diagnose different cardiac problems and make a prediction. [START_REF] Melillo | Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability[END_REF] 

High dimensionality in machine learning

A major problem of machine learning is the high dimensionality of the dataset [START_REF] Domingos | A few useful things to know about machine learning[END_REF].

The analysis of many features requires a large amount of memory and leads to an overfitting, so the weighting features decrease redundant data and processing time, thus improving the performance of the algorithm (R. Chen et al., 2018;[START_REF] Imani | Feature Extraction Using Weighted Training Samples[END_REF][START_REF] Wettschereck | A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms[END_REF][START_REF] Wettschereck | Weighting features[END_REF][START_REF] Wettschereck | An Experimental Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms[END_REF][START_REF] Yang | A Feature-Reduction Fuzzy Clustering Algorithm Based on Feature-Weighted Entropy[END_REF]. Finding a small set of features characterizes different diseases of health management, genome expression, medical images, and IoT. Dimensionality reduction uses feature extraction to transform and simplify data, while feature selection reduces the dataset by removing useless features (H. [START_REF] Liu | Feature extraction, construction and selection : a data mining perspective[END_REF].

Feature selection techniques in heart disease prediction

In the literature, the use of feature selection techniques improved the prediction of heart disease. [START_REF] Dun | Heart disease diagnosis on medical data using ensemble learning[END_REF] GDA reduced the features to five and computed 100% precision using SVM.
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Principal component analysis in heart disease prediction

Principal component analysis (PCA) creates new components that store the most valuable information of the features by capturing a high variance [START_REF] Guyon | Feature Extraction, Foundations and Applications: An introduction to feature extraction[END_REF] The presence of heart disease combined the values 1, 2, 3, and 4 from the original datasets.

For the examination, patients supplied historical data and were physically examined by practitioners [START_REF] Detrano | Cardiac cinefluoroscopy as an inexpensive aid in the diagnosis of coronary artery disease[END_REF]. Three non-invasive tests were part of the protocol: exercise electrocardiogram, exercise thallium scintigraphy, and coronary calcium fluoroscopy. The cardiologist interpreted the coronary angiogram results without knowing the non-invasive results.

Previous research [START_REF] Detrano | International application of a new probability algorithm for the diagnosis of coronary artery disease[END_REF] has explained some features as well as the complete protocol.

The datasets used for the analysis were Cleveland, Hungarian, and a combination of both called CH (Cleveland-Hungarian). Table 4.2 displays the data distribution. Cleveland had a more uniform distribution than Hungarian and CH for both healthy individuals and patients with heart disease.

Previous results using a subset

In the literature, a subset of 13 features was used to create an algorithm relevant to clinical situations. The clinical variables considered relevant were AGE, SEX, CP, and TRESTBPS; the routine test data CHOL, FBS, and RESTECG; the exercise electrocardiography test with the features THALACH, EXANG, SLOPE, and OLDPEAK; and the non-invasive test, THAL, and CA. In addition, the label was NUM. For comparison, we call this set of 13 features as "Subset-A".

Earlier studies worked with this Subset-A. Some remarkable results were presented:

decision tree with an accuracy of 89.1% [START_REF] Sen | Predicting and Diagnosing of Heart Disease Using Machine Learning Algorithms[END_REF], random forests with an accuracy of 89.2% Chapter 4 [START_REF] Khan | Prediction of Angiographic Disease Status using Rule Based Data Mining Techniques Prediction of Angiographic Disease Status using Rule Based Data Mining Techniques[END_REF], artificial neural network with an accuracy of 92.7% [START_REF] Khan | Prediction of Angiographic Disease Status using Rule Based Data Mining Techniques Prediction of Angiographic Disease Status using Rule Based Data Mining Techniques[END_REF], 89.0% [START_REF] Das | Effective diagnosis of heart disease through neural networks ensembles[END_REF], and 89.7% [START_REF] Srinivas | Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques[END_REF], and SVM with an accuracy of 88.0% [START_REF] Srinivas | Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques[END_REF]. GA+NN [START_REF] Amma | Cardiovascular disease prediction system using genetic algorithm and neural network[END_REF] computed the most notable hybrid model with 94.2% accuracy.

PCA+regression and PCA1+NN [START_REF] Santhanam | Heart disease classification using PCA and feed forward neural networks[END_REF] obtained the best PCA models with an accuracy of 92.0% and 95.2%, respectively.

Proposed approach for the dimensionality reduction and classification

The proposed approach was applied to the three datasets referred in Section 4.3.1. We preprocessed and cleaned the datasets from Cleveland, Hungarian, and CH, as mentioned in Section 4.3.3. In addition, some of the features were not considered for the analysis, as stated in Table 4. 

Cleaning considerations

The datasets had irrelevant, unexplained, null, or repeated features. Chapter 4 THALTIME had a value greater than THALDUR, the response was removed; (6) THALACH could not be lower than THALREST; (7) if OLDPEAK had a value of 0, THALTIME was changed to 0; and (8) DUMMY was the same feature as TRESTBPS, so it was eliminated.

Dimensionality reduction

Dimensionality reduction [START_REF] Domingos | A few useful things to know about machine learning[END_REF] is the process of reducing the number of variables 

Principal components

To determine the number of meaningful components to be retained, we select the eigenvalue-one criterion for the analysis. With this, we kept all the components with an eigenvalue greater than 1.00. As individual variables, each component counts for one unit of variance. Therefore, components with an eigenvalue greater than 1.00 stood for a higher variance than their contribution as individual variables. In contrast, components with eigenvalues less than 1.00 contributed less than their individual value and were removed from analysis.

The first 13 components of Cleveland had a variance greater than 1. Chapter 4

Evaluation process

The confusion matrix helps practitioners to form a clear idea of whether the results have a high performance. The confusion matrix elements were: (1) true positive (TP), which were patients who had heart disease and were correctly diagnosed;

(2) true negative (TN), which were patients who did not have heart disease and were correctly diagnosed; (3) false negative (FN), which were patients who had heart disease and were misdiagnosed; and (4) false positive (FP), which were patients who did not have heart disease and were misdiagnosed. In the medical field, false negatives are the most dangerous predictions.

The different performance metrics were calculated using a confusion matrix. Accuracy (Acc) measured the properly classified instances. The formula for calculating accuracy was given by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁 (1) 
Precision was the positive predictive value defined by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 𝑇𝑃+𝐹𝑃 (2) 
Recall identified the proportion of patients with heart disease given by 

MPC

Layers="number of features, 2"; BlockSize=128; Seed=1234L; MaxIter=100; two hidden layers, the first with 5 neurons and the second with 4 neurons.

NB

Lambda="false"; ModelType="false" RF numClasses=2; numTrees="auto"; featureSubsetStrategy="false"; subsamblingRate="auto"; impurity="gini"; seed="false"

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃+𝐹𝑁 (3) 
The F1 score considered a harmonic average between precision in Eq. ( 2) and recall in Eq.

(3) defined by

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 ) (4) 
Matthews correlation coefficient (MCC) was introduced by Brian W. Matthews to predict the performance of protein secondary structure [START_REF] Matthews | Comparison of the predicted and observed secondary structure of T4 phage lysozyme[END_REF]. The results of MCC are in percentage. Therefore, MCC becomes a widely used performance metric in medical research for imbalanced data expressed by

𝑀𝐶𝐶 = 𝑇𝑃×𝑇𝑁-𝐹𝑃×𝐹𝑁 √(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁) (5) 
Cohen's Kappa coefficient (ĸ) was introduced by J. Cohen [START_REF] Cohen | A Coefficient of Agreement for Nominal Scales[END_REF] in 1960 to correlate the measurement of inter-rater reliability. Kappa measures the percentage of agreement between two raters. The formula to calculate Kappa is represented by

ĸ = 𝑝 0 -𝑝 𝑐 1-𝑝 𝑐 (6)
where p_0 is the percent of agreement among raters, as in Eq. ( 1), and p_c is the chance agreement.

Results

Significant observations revealed that the use of the selected features of CHI with PCA had the best results with the classifiers across all three datasets in most cases. All performance metrics are in percentage.
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Comparison between raw data with chi-pca

In this section, we will compare the best results of the raw data with CHI and PCA. For CHI, we selected 13 features, as shown in Likewise, GBT, LOG, and RF calculated greater results than raw data with CHI features. Chapter 4 85 PCA were LOG with accuracy increase of 4.5%, F1 score of 4.8%, MCC of 7.5%, and Kappa of 7.5%, respectively. In addition, the values of MCC and Kappa using CHI and CHI-PCA are similar in some cases. Chapter 4

Results of PCA using raw data and CHI

Table 4.7 displays a comparison between PCA performance using the features of CHI and the raw data. The use of PCA in raw data had poor results in Cleveland and CH. The performance of the classifiers was reduced to around 30% except for NB and MPC. NB was 3.4% higher in Cleveland and 2.7% higher in Hungarian; MPC computed an accuracy 1.5% greater in Hungarian. Although

Hungarian computed lower results in raw data, they were closer to CHI-PCA. Except for MPC, the classifiers were between 4% and 9% lower in accuracy and 6% and 15% inferior in F1 score. As can be seen, PCA retained enough information from the raw data when k was adequate and became less competitive when k was too low or too high. For a large number of features and instances, PCA performance was superior when using CHI features.

Classification of non-invasive test features

We tested the results obtained by the non-invasive test in Table 4.8. The features involved were the thallium heart scan (THAL), the number of major vessels colored by fluoroscopy (CA), and whether exercise-induced angina (EXANG).

In the case of Cleveland, these features had high data quality. If the results are compared to the Subset-A of Cleveland, some classifiers computed greater values than logistic regression, NB, and SVM. For Hungarian, CA did not exist, and THAL had a weak representation with only 9.5% completed. As a result, a deficient performance is reasonable considering the lack of information.

In the case of CH, the representation of CA and THAL was 48.6% and 53.5%, respectively. Some Chapter 4 classifiers, such as DT, GBT, and NB, achieved competitive results.

Discussion

Comparison between raw data with CHI-PCA

Promising results were obtained with the use of CHI and PCA. In the first part of Section 4.5, only DT and GBT lacked improvement in some of the tests. This suggests that tree performance improves when using a large number of features due to supplying more options for the trees. NB dropped the worst results in all the tests. The classifiers LOG had remarkable results when using CHI-PCA. The MPC classifier obtained better results with CHI than CHI-PCA, however the performance was below the rest of the classifiers in most tests due to a network overfit on the training dataset. When we increased the layers or neurons, the performance of the metrics decreased, suggesting that for a small input, such as the datasets in this study, MPC is more stable when using a smaller number of layers. Despite Cleveland, RF made an improvement using CHI-PCA. CHI obtained a remarkable result, and the 13 features selected were prominent for heart disease detection. Significant observations revealed that PCA works best using LOG and CHI using MPC. Overall, LOG, and RF were the classifiers with the best performance and improvement with a smaller number of features.

In most models, the precision value exceeded the recall. Thus, the classifiers computed models that were more sensible to false negatives than false positives. As false positives are examined by practitioners, it is more dangerous to have false negatives. Even so, the value of precision should not be diminished, so it is important to use the F1 score to obtain the optimal balance between precision and recall.

Contrary to accuracy and F1 score, MCC and Kappa show the susceptibility of imbalanced Chapter 4 89 data. In addition, the results were similar between MCC and Kappa in each classifier. LOG computed the best results using CHI-PCA. The Hungarian and CH datasets presented an imbalanced classification problem in which the rate of healthy patients was higher. The raw data in the imbalanced datasets had a greater difference in performance between accuracy and F1 score than the dimensionality reduction results (Table 4.9). The performance between accuracy and F1 score decreased in the datasets. The difference in Cleveland was not noted in the raw data due to the balance between the two classes. The greatest difference on average was when CHI was used.

Even so, each result was lower than the overall average of 0.9%. Hungarian had the biggest difference between accuracy and F1 score due to an imbalance. The CHI and CHI-PCA averages decreased by 0.5% compared to the raw data. CH computed a 1.2% difference in raw data, which was higher than the average. The CHI and CHI-PCA values were 0.5% and 0.7%, respectively.

MPC performed better on a balanced dataset such as Cleveland with an average of 0.4%, while Hungarian and CH had the worst performances with 2.0% and 2.7%, respectively. The models with the smallest differences between accuracy and F1 score were GBT, MPC, and RF. NB obtained the poorest results and was excluded from the average results. 

Features selected by CHI and the PCA results

As in other studies [START_REF] Anindita | A Combination of multiple imputation and principal component analysis to handle missing value with arbitrary pattern[END_REF][START_REF] Guyon | Feature Extraction, Foundations and Applications: An introduction to feature extraction[END_REF][START_REF] Van Deventer | Reducing Leaf-Level Hyperspectral Data to 22 Components of Biochemical and Biophysical Bands Optimizes Tree Species Discrimination[END_REF][START_REF] Wang | Neural incremental attribute learning based on principal component analysis[END_REF], the use of PCA after a reduction technique improved the results. The raw dataset produced poorer results in most of the cases (Table 4.7). The experiment in Section 4.4.2 compared the performance of raw data with our method. Like the other results, RF improved the computation when using raw data, while MPC was completely superior using CHI. CHI-PCA outperformed most experiments, especially with LOG as seen in Section 4.4.1 and Section 4.4.2.

NB did not present a competitive performance for any of the tests given.

The top 13 features selected by CHI had a great validation for the compilers. The datasets had five vessels. Of these, four of the vessels were part of the left main coronary artery (LAD), considered the most important because it supplies more than half of the blood to the heart. The vessels were the proximal left anterior descending artery (LADPROX), the distal left anterior descending artery (LADDIST), the first obtuse marginal branch (OM1), and the circumflex (CXMAIN). Remaining was the proximal right coronary artery (RCAPROX), which is part of the right coronary artery (RCA). For the non-invasive, the selector considered THAL and CA with a high ranking. Features related to risk factors were not highly ranked by the selector, except for cholesterol. Physicians obtained other features that are part of the exercise test and correlated with heart disease and ST segment values. Taken together, the information obtained by the different tests aided in the diagnosis of heart disease and must be considered for model prediction.

The risk factors that performed best in this study and that are cited by WHO and the American Heart Association were high blood cholesterol, chest discomfort, inadequate physical activity (seen by the exercise electrocardiogram features). Other features, such as history of hypertension, the smoking and the fasting blood sugar, were not complete and were difficult to Chapter 4 91 compare with WHO and American Heart Association standards.

Discussion of the invasive and non-invasive tests

The vessels' models were enough to achieve a great result. The invasive test's limitation was its exclusive use in patients with a previous heart attack, severe chest pain, abnormal electrocardiogram or stress test.

The non-invasive features performed poorly, so they must be completed with more information. In the literature, other studies worked with the non-invasive testing. This study [START_REF] Baumann | Psychological and physiological predictors of angina during exercise-induced ischemia in patients with coronary artery disease[END_REF] compared psychological and physiological factors to predict angina on an exercise treadmill test (ETT), concluding that these factors are important in the prediction of exercise angina. Another study [START_REF] D'antono | Sex differences in chest pain and prediction of exercise-induced ischemia[END_REF] concluded that there are sex differences in the experience of chest pain (pain features) and the prediction of exercise-induced angina, while [START_REF] D'antono | Detection of exerciseinduced myocardial ischemia from symptomatology experienced during testing in men and women[END_REF] included some painful and non-painful sensations in the relationship with exercise-induced ischemia in women but not in men. [START_REF] Landesberg | A clinical survival score predicts the likelihood to benefit from preoperative thallium scanning and coronary revascularization before major vascular surgery[END_REF] concluded that patients are more prone to have long-term survival from preoperative thallium scanning and coronary revascularization before major vascular surgery. Further studies should be conducted with the non-invasive variables.

Discussion of the results with the literature

We compared our results with earlier studies in Table 4.10 using Cleveland dataset. Our approach achieved greater results with raw data and the use of CHI with PCA. The accuracy, precision, and recall are used for the comparison. [START_REF] Le | AUTOMATIC HEART DISEASE PREDICTION USING FEATURE SELECTION AND DATA MINING TECHNIQUE[END_REF] classified the data using linear support vector machine (SVM), Naïve Bayes, and logistic regression. The best result was SVM obtaining 89.98%

Chapter 4 accuracy for raw data. Compared to our results, the values are lower than our classifiers, except for NB and MPC.

Each of the classifiers that used CHI-PCA outperformed the literature. Using a dimensionality reduction technique, CHI with PCA and RF classifier computed the best result using 13 features. [START_REF] Shamsollahi | Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach[END_REF] used clustering to determine the k number. After, they performed decision tree and artificial neural network (a hidden layer with 3 nodes). The best result was the C&RT decision tree with an accuracy of 92.6%, and neural networks computing 90.4% accuracy. [START_REF] Naidup | DETECTION OF HEALTH CARE USING DATAMINING CONCEPTS THROUGH WEB[END_REF] proposed the use of K-mean based on Maximal Frequent Itemset Algorithm (MAFIA) with ID3. The data was clustered using K-means algorithm with k value as 2, then MAFIA used the relevant cluster of 13 features and the ID3. The result of the experimentation was 85.0% accuracy. (H. et al., 2016) used an adaptative Boosting algorithm with an accuracy of 80.14% on Cleveland dataset. In addition, the authors computed on the Hungarian dataset an accuracy of 89.12%, which is below our models, except NB. The results of Cleveland were superior in all the metrics in the literature. we must consider that most used only accuracy, and metrics such as precision, recall, and F1 score were not used for evaluation. Furthermore, the dataset division was not mentioned in the article [START_REF] Santhanam | Heart disease classification using PCA and feed forward neural networks[END_REF][START_REF] Sarangam Kodati | Analysis of Heart Disease using in Data Mining Tools Orange and Weka Sri Satya Sai University Analysis of Heart Disease using in Data Mining Tools Orange and Weka[END_REF] or the testing data set was small, as in [START_REF] Uyar | Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks[END_REF] with only 45 test instances. According to the model comparison, when the dimensionality reduction was used, a better prediction was obtained for heart disease. Based on these results, our model outperformed those in the literature. It is important when practitioners can only work with three or four times less than the given number of features and achieve competitive results compared to full features. Our method helps to reduce unnecessary patients' attributes and reduce the amount of data.

Conclusion

In this chapter, we discussed the use of a chi-square (CHI) with PCA to improve the prediction of machine learning models. The goal for the classifier was to predict whether a patient has heart disease. The use of complete features is not feasible when the system resources need to be considered. We successfully applied dimensionality reduction techniques to improve the raw data results. The usage of PCA directly from the raw data computed lower results and would require greater dimensionality to improve the results. For the 74 features given, we selected three groups of features and achieved the best performance. It was found that among the classifiers, CHI-PCA with RF had the maximum performance, with 98.7% accuracy for Cleveland, 99.0% accuracy for Hungarian, and 99.4% accuracy for CH. From the analysis, chi-square derived features of anatomical and physiological relevance, such as cholesterol, maximum heart rate, chest pain, features related to ST depression, and heart vessels. RF optimization methods, cache and persist, obtained the best time performance and scalability among the classifiers in Chapter 3. The time performance among the low error rate makes RF the classifier to use for the proposal system to diagnose heart disease in Section 6. Our method can be employed in many real-life applications or in other medical diagnoses to analyze great amounts of data and identify the risk factors involved in different diseases. Our main limitation is the difficulty to extend these findings on heart disease due to small sample size. For future developments, we plan to apply our method to a larger heart disease dataset.

CHAPTER 5 Cluster analysis: a new approach for identification of underlying risk factors and demographic features of first trimester pregnancy women

Introduction

A challenge in medicine is to discover a medical pathology. Clustering is a powerful machine learning unsupervised tool for detecting subgroups of individuals with similar attributes than the other subgroups. A new medical dataset was selected to perform a cluster analysis that will be replicated for our proposed system in Section 6. We have chosen to use this dataset rather than the data set used in the previous chapter for the amount of data available and for the parallel that can be made with heart failure. This case is also interesting because it is not dealt with in the literature.

The general aim of this chapter was to determine the prevalence of subclinical hypothyroidism during the first trimester screening in a Mexican patient's sample. 306 patient files were included who attended a prenatal control consultation between January 2016 and December 2017 at the Women's Institute in Monterrey, Mexico.

Cluster analysis in medical field

Cluster analysis is an unsupervised machine learning technique that aims to define subgroups of homogeneous individuals with attributes more similar to those of other groups or clusters [START_REF] Everitt | An R and S-PLUS® Companion to Multivariate Analysis[END_REF][START_REF] Wardlaw | Multi-dimensional phenotyping: towards a new taxonomy for airway disease. Clinical <html_ent Glyph="@amp;" Ascii="&amp[END_REF]. Clustering is necessary to handle the interaction of multiple variables and has been used in the medical field for image processing, document classification and group creation [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]. Studies in other medical areas suggest that cluster analysis leads to a better understanding of the disease, as happens in the risk factors of coronary disease [START_REF] Ahmad | Clinical implications of chronic heart failure phenotypes defined by cluster analysis[END_REF][START_REF] Andersson | Risk factor-based subphenotyping of heart failure in the community[END_REF][START_REF] Guo | Cluster analysis: A new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients[END_REF], chronic obstructive pulmonary disease (COPD) [START_REF] Kim | A cluster analysis of chronic obstructive pulmonary disease in dusty areas cohort identified three subgroups[END_REF][START_REF] Vazquez Guillamet | Chronic obstructive pulmonary disease phenotypes using cluster analysis of electronic medical records[END_REF][START_REF] Weatherall | Use of cluster analysis to define COPD phenotypes[END_REF][START_REF] Yoon | Prediction of first acute exacerbation using COPD subtypes identified by cluster analysis[END_REF], asthma [START_REF] Deliu | Identification of Asthma Subtypes Using Clustering Methodologies[END_REF][START_REF] Ghebre | Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles[END_REF][START_REF] Haldar | Cluster analysis and clinical asthma phenotypes[END_REF][START_REF] Moore | Identification of asthma phenotypes using cluster analysis in the severe asthma research program[END_REF], tinnitus [START_REF] Tyler | Identifying tinnitus subgroups with cluster analysis[END_REF][START_REF] Van Den Berge | Cluster Analysis to Identify Possible Subgroups in Tinnitus Patients[END_REF], insulin resistance in obese Chapter 5

patients [START_REF] Gandasi | Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes[END_REF][START_REF] Schmidt | Clustering of dyslipidemia, hyperuricemia, diabetes, and hypertension and its association with fasting insulin and central and overall obesity in a general population. Atherosclerosis Risk in Communities Study Investigators[END_REF], diabetes [START_REF] Ahlqvist | Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables[END_REF][START_REF] Dennis | Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data[END_REF][START_REF] Zaharia | Diabetes clusters and risk of diabetes-associated diseases -Authors' reply[END_REF], low back pain [START_REF] Dunn | Long-term trajectories of back pain: Cohort study with 7-year follow-up[END_REF][START_REF] Macedo | Nature and Determinants of the Course of Chronic Low Back Pain Over a 12-Month Period: A Cluster Analysis[END_REF][START_REF] Rabey | Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: A cluster analysis[END_REF][START_REF] Rabey | Differing Psychologically Derived Clusters in People with Chronic Low Back Pain are Associated with Different Multidimensional Profiles[END_REF][START_REF] Viniol | Chronic low back pain patient groups in primary care -A cross sectional cluster analysis[END_REF], and osteoarthritis [START_REF] Murphy | Subgroups of older adults with osteoarthritis based upon differing comorbid symptom presentations and potential underlying pain mechanisms[END_REF][START_REF] Seok | The association between osteoarthritis and occupational clusters in the Korean population: A nationwide study[END_REF][START_REF] Van Spil | Clusters within a wide spectrum of biochemical markers for osteoarthritis: Data from CHECK, a large cohort of individuals with very early symptomatic osteoarthritis[END_REF].

Some groups found in the pregnancy-related literature are associated with hypertension [START_REF] Lei | Prehypertension During Normotensive Pregnancy and Postpartum Clustering of Cardiometabolic Risk Factors: A Prospective Cohort Study[END_REF][START_REF] Mclaughlin | Phenotypes of pregnant women who subsequently develop hypertension in pregnancy[END_REF], preeclampsia [START_REF] Thadhani | First Trimester Placental Growth Factor and Soluble Fms-Like Tyrosine Kinase 1 and Risk for Preeclampsia[END_REF][START_REF] Villa | Cluster analysis to estimate the risk of preeclampsia in the high-risk Prediction and References Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study[END_REF], fetal growth restriction [START_REF] Gibbs | Placental transcriptional and histologic subtypes of normotensive fetal growth restriction are comparable to&nbsp;preeclampsia[END_REF], miscarriage [START_REF] Asri | Real-time Miscarriage Prediction with SPARK[END_REF], incidence of pregnancy termination related to demographics [START_REF] Sánchez-Páez | Reported patterns of pregnancy termination from Demographic and Health Surveys[END_REF], dietary patterns [START_REF] Freitas-Vilela | Dietary patterns by cluster analysis in pregnant women: relationship with nutrient intakes and dietary patterns in 7year-old offspring[END_REF], and birth control related to maternal education, hygiene and nutrients (Park et al., 2019). There are some studies related to cluster analysis and thyroid disease, such as the prevalence of thyroid diseases in children and adolescents [START_REF] Segni | Clustering of autoimmune thyroid diseases in children and adolescents: A study of 66 families[END_REF], spatial distribution and risk factors related to thyroid cancer [START_REF] Amin | Clusters of adolescent and young adult thyroid cancer in Florida counties[END_REF][START_REF] Fei | The spatio-temporal distribution and risk factors of thyroid cancer during rapid urbanization-A case study in China[END_REF][START_REF] Nakaya | Spatial analysis of the geographical distribution of thyroid cancer cases from the first-round thyroid ultrasound examination in Fukushima Prefecture Following the Fukushima Daiichi Nuclear Power Plant[END_REF], and finding the optimal number of thyroid disease clusters [START_REF] Azar | Fuzzy and hard clustering analysis for thyroid disease[END_REF][START_REF] Azar | Expert system based on neural-fuzzy rules for thyroid diseases diagnosis[END_REF].

However, there are few reports on clustering to better classify hypothyroidism during the first trimester of pregnancy, especially with risk factors and pregnancy complications. In Section 5.6, we applied cluster analysis to explore possible subgroups within a well-characterized population of first trimester pregnant women with hypothyroidism. The results would also help to identify potential risk factors for hypothyroidism in pregnant patients.

Pregnancy with thyroid pathology

Pregnancy has a profound impact on the thyroid gland and its function, making it the second most common endocrine disorder during pregnancy, after diabetes mellitus. Thyroid pathology has a variable incidence and depends on the series consulted; internationally, thyroid disorders are reported between 5-10% of all pregnancies [START_REF] Krassas | Thyroid function and human reproductive health[END_REF]. The prevalence of subclinical hypothyroidism during pregnancy is 0.3 to 0.5% (Negro & Mestman, 2011). The normal upper limit range of Thyroid Stimulating Hormone (TSH) during the first trimester is 2.5 mIU/L and 3.0 mIU/L for the second and third trimester [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF]. Numerous risk factors for pregnancy have been reported to be associated with thyroid disease disorders, including overweigh (Kahr et al., 2016), excessive salt intake [START_REF] García-Solís | Iodine Nutrition Status in Pregnant Women in Mexico[END_REF][START_REF] Glinoer | The importance of iodine nutrition during pregnancy[END_REF][START_REF] Pearce | Consequences of iodine deficiency and excess in pregnant women: an overview of current knowns and unknowns[END_REF], and high cholesterol levels [START_REF] Mehta | Association of Thyroid Stimulating Hormone and Lipid Profile in Pregnancy[END_REF].

Complications during pregnancy related to TSH

Multiple prospective and retrospective studies have demonstrated an increased risk of complications during pregnancy associated with a slight increase in maternal TSH levels, especially in women with positive Anti-TPO antibodies. Some risks are miscarriage, preeclampsia, hypertension, baby's brain development, hemorrhages, premature delivery, postpartum depression, low birth weight [START_REF] Benhadi | Higher maternal TSH levels in pregnancy are associated with increased risk for miscarriage, fetal or neonatal death[END_REF][START_REF] Carney | Thyroid Disease in Pregnancy[END_REF]S. Chen et al., 2017;[START_REF] Nazarpour | Thyroid dysfunction and pregnancy outcomes[END_REF][START_REF] Smallridge | Hypothyroidism in Pregnancy: Consequences to Neonatal Health[END_REF][START_REF] Tan | Are women who are treated for hypothyroidism at risk for pregnancy complications[END_REF][START_REF] Taylor | TSH Levels and Risk of Miscarriage in Women on Long-Term Levothyroxine: A Community-Based Study[END_REF][START_REF] Tudosa | Maternal and fetal complications of the hypothyroidism-related pregnancy[END_REF]. Only a limited number of studies have investigated the impact of levothyroxine treatment in patients with Anti-TPO antibodies [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF]. The randomized controlled study of [START_REF] Negro | Universal Screening Versus Case Finding for Detection and Treatment of Thyroid Hormonal Dysfunction During Pregnancy[END_REF] has shown a potential benefit of levothyroxine intervention at 9 weeks gestation. Importantly, this study documented a reduction in adverse pregnancy outcomes only in patients with positive Anti-TPO antibodies and mild hypothyroidism (defined as TSH> 2.mU/L). This did not provide treatment to patients with negative antibodies. It was concluded that universal screening of high TSH concentrations does not improve the results compared to a strategy focused on high-risk patients. However, despite the limitations of the [START_REF] Negro | Universal Screening Versus Case Finding for Detection and Treatment of Thyroid Hormonal Dysfunction During Pregnancy[END_REF][START_REF] Vaidya | Detection of thyroid dysfunction in early pregnancy: Universal screening or targeted highrisk case finding[END_REF].

Thyroid dysfunction during pregnancy can lead to serious maternal-fetal complications Women with a family history of thyroid disease.

Women with autoimmune thyroid disease or hypothyroidism.

Presence of goiter.

Women with thyroid antibodies, mainly thyroid peroxidase.

Symptoms or clinical signs suggestive of thyroid hypofunction.

Women with type 1 DM or any autoimmune disorder.

Infertile women.

Women with a previous history of pregnancy loss abortion or preterm birth.

Women with a history of therapeutic radiation in the neck or head.

History of thyroid surgery.

Patient in current replacement treatment with levothyroxine.

Women living in a region with suspected iodine deficiency.

Chapter 5 101 [START_REF] Abalovich | Overt and subclinical hypothyroidism complicating pregnancy[END_REF][START_REF] Negro | Universal Screening Versus Case Finding for Detection and Treatment of Thyroid Hormonal Dysfunction During Pregnancy[END_REF]. For women with undiagnosed thyroid disease, early screening may be the ideal opportunity to allow adequate treatment. The multitude of adverse effects associated with untreated thyroid disease leads to consider the potential benefits of screening during preconception and pregnancy [START_REF] De Groot | Management of Thyroid Dysfunction during Pregnancy and Postpartum: An Endocrine Society Clinical Practice Guideline[END_REF][START_REF] Stagnaro-Green | Guidelines of the References 191 American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum[END_REF].

First trimester women with thyroid diseases

Considering the research on pregnant women in the first trimester with thyroid diseases, studies in the literature are limited. (J. [START_REF] Li | Maternal TSH levels at first trimester and subsequent spontaneous miscarriage: A nested case-control study[END_REF] evaluated the relationship between miscarriage and first trimester thyroid function, finding that a TSH higher than 2.5 mIU/L increased the risk for miscarriage. [START_REF] Hernández | Impact of TSH during the first trimester of pregnancy on obstetric and foetal complications: Usefulness of 2.5 mIU/L cut-off value[END_REF] found an increased risk of perinatal loss, miscarriage and premature birth for patients between 2.5 mIU/L and 4.0 mIU/L. In some countries, the authors concluded that 2.5 mIU/L is a low upper limit for first trimester pregnancy, with suggestions of an increase in the Indian population [START_REF] Khadilkar | Thyroid-Stimulating Hormone Values in Pregnancy: Cutoff Controversy Continues[END_REF], the Chinese population (C. [START_REF] Li | Assessment of Thyroid Function During First-Trimester Pregnancy: What Is the Rational Upper Limit of Serum TSH During the First Trimester in Chinese Pregnant Women[END_REF], the Brazilian population (2.7 mIU/L) [START_REF] Rosario | TSH reference values in the first trimester of gestation and correlation between maternal TSH and obstetric and neonatal outcomes: A prospective Brazilian study[END_REF], and the Spanish population (4.72 mIU/L) [START_REF] Castillo Lara | Hypothyroidism screening during first trimester of pregnancy[END_REF]. Given the lack of information about the first trimester of pregnancy, this study addresses the creation of groups considering thyroid risk factors through clustering.

Hypothyroidism

Pregnancy has a profound impact on the thyroid gland and its function. The gland increases by 10% in size in countries without iodine deficiency such as Mexico. Thyroxine (T4) and triiodothyronine (T3) production increase by 50%. These physiological changes can lead to Chapter 5 hypothyroidism in the advanced stages of pregnancy in patients with iodine deficiency who were euthyroid in early pregnancy [START_REF] Stagnaro-Green | Guidelines of the References 191 American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum[END_REF].

Hypothyroidism is an endocrinopathy characterized by an inappropriate action of thyroid hormones in the body, whose main cause is a lack of production by the thyroid gland. In countries without iodine deficiency, the most common cause is autoimmune. However, we are still far from a global understanding of the problem, such as the relationship of maternal thyroid hormones with the fetus [START_REF] De Escobar | Maternal thyroid hormones early in prenancy and fetal brain development[END_REF][START_REF] Patel | Delivery of maternal thyroid hormones to the fetus[END_REF], the way the product develops its metabolic system from the iodine in the maternal diet (E. N. [START_REF] Pearce | Monitoring and effects of iodine deficiency in pregnancy: Still an unsolved problem?[END_REF][START_REF] Pearce | Consequences of iodine deficiency and excess in pregnant women: an overview of current knowns and unknowns[END_REF], the influence this has on neuronal development [START_REF] De Escobar | Maternal thyroid hormones early in prenancy and fetal brain development[END_REF][START_REF] Moog | Influence of maternal thyroid hormones during gestation on fetal brain development[END_REF] and, finally, the behavior of antithyroid antibodies during pregnancy [START_REF] Yoshihara | Treatment of Graves' disease with antithyroid drugs in the first trimester of pregnancy and the prevalence of congenital malformation[END_REF], especially in the puerperium [START_REF] Serrano | Alteraciones de tiroides y embarazo: resultados perinatales[END_REF] .

According to guidelines published by the American Thyroid Association [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF][START_REF] Stagnaro-Green | Guidelines of the References 191 American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum[END_REF] for a screening program to be useful, the condition must be prevalent in asymptomatic individuals, there must be a reliable and available test to identify it, and the treatment must generate a clear benefit. Finally, the strategy must be cost-effective. Serum TSH determination is relatively inexpensive, widely available and reliable in pregnancy, assuming that the specific reference ranges per trimester are applied. Subclinical hypothyroidism has not been clearly associated with adverse maternal-fetal outcomes such as overt hypothyroidism. The consequences of the former have been poorly defined, although most studies report an association between them and adverse pregnancy outcomes [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF][START_REF] Stagnaro-Green | Guidelines of the References 191 American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum[END_REF]. [START_REF] Abalovich | Overt and subclinical hypothyroidism complicating pregnancy[END_REF] reported that inadequate management with levothyroxine in women with manifest or subclinical hypothyroidism is associated with significant risks of Chapter 5 103 miscarriage or preterm birth. However, studies have not been consistent in demonstrating these relationships. A retrospective study by [START_REF] Casey | Subclinical Hypothyroidism and Pregnancy Outcomes[END_REF] showed that the risk of placental abruption and preterm delivery increased 2-3 times before 34 weeks of gestation in women without treatment for subclinical hypothyroidism, compared to euthyroid controls. [START_REF] Cleary-Goldman | Maternal thyroid hypofunction and pregnancy outcome[END_REF] found no association between subclinical hypothyroidism and adverse perinatal outcomes in a cohort analysis of 10,990 women. Similarly, [START_REF] Männistö | Perinatal Outcome of Children Born to Mothers with Thyroid Dysfunction or Antibodies: A Prospective Population-Based Cohort Study[END_REF][START_REF] Männistö | Thyroid dysfunction and autoantibodies during pregnancy as predictive factors of pregnancy complications and maternal morbidity in later life[END_REF] also found no association in a large and retrospective cohort study.

An observational and descriptive research by the National Institute of Perinatology, in Mexico, [START_REF] Cruz-Cruz | Prevalencia de hipotiroidismo clínico y subclínico durante la gestación en una población de mujeres embarazadas[END_REF] determined the prevalence of thyroid disease during pregnancy in a sample of first-income patients from October 2012 to March 2013 (n=123). All gestational ages were included, and a thyroid profile was obtained that determined the prevalence of thyroid disease at 33.9%, of which 12.8% resulted in clinical hypothyroidism and 21.1% in subclinical hypothyroidism. Eleven cases were excluded and results were distributed per trimester, resulting in 6 patients in the first trimester (only 1 case with subclinical hypothyroidism), 66 in the second trimester (13.6% with clinical hypothyroidism, 19.6% with subclinical hypothyroidism and 15.1% with isolated hypothyroxinemia) and 37 in the third trimester (51.3% euthyroid). Given the high prevalence of endocrine disorders reported in this pilot study compared to what was reported worldwide, it demonstrates the need to expand research on this topic and restudy with a larger sample of patients.

Experimental protocol

Dataset

In this section, we describe the dataset used in the empirical testing of the first trimester pregnant Chapter 5 women with thyroid disease (Table 5.2). This is a replicative, observational, cross-sectional, descriptive, retrospective study to determine the prevalence of hypothyroidism during screening of Mexican patients during the first trimester of pregnancy between January 2016 and December 2017, with and without risk factors, in a private Women's Institute in Monterrey, Mexico. This study is the first to be conducted in Mexican population of northern Mexico that seeks to determine the prevalence of thyroid disease during the first trimester of pregnancy screening. The inclusion criteria was the records reporting TSH values during the first trimester of pregnancy. We excluded records of patients who initiated prenatal control in the second and third trimesters, incomplete records (not having all the variables to be analyzed) and foreign patient, resulting in 306 patients with 55 features.

The thyroid profiles requested during this consultation were reviewed, specifically the TSH and T4L values. From this, the patient was classified as euthyroid, with subclinical or frank hypothyroidism, or hyperthyroid according to the guidelines of the American Thyroid Association of 2017 [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF]. TSH values during the first trimester are between 0.1-2.5mU/L in normal patients. Values with TSH greater than 2.5mU/L without T4L alteration are diagnosed with subclinical hypothyroidism while those with decreased T4L have frank hypothyroidism. In opposite cases, decreased TSH values would indicate thyrotoxicosis. Additional variables to analyze in each patient record will be the presence of hypertensive disease in previous pregnancies, type II diabetes and chronic hypertension. This study combined the classification of subclinical and frank hypothyroidism, additional, no patients presented thyrotoxicosis. Method of the product. This study also included the presence or absence of maternal complications, such as the development of hypertensive diseases associated with pregnancy, gestational diabetes, membranes rupture and preterm delivery. We attempted to correlate these data to determine if there are differences between patients with hypothyroidism and the rest of the population studied.

After identifying a dossier that met the inclusion criteria, it was assigned an identification number within the database and it was necessary to fill in the different variables that conform the pathological history, risk factors for the development of thyroid diseases, thyroid pathology, pregnancy complications, and perinatal results. The 70% of patients were over 30 years, all patients had complete clinical data and had tested TSH.

One of the main limitations during the implementation of the protocol was the inclusion rate of 71.6%, in most cases as a result of incomplete records of relevant information, such as TSH values and perinatal results. The features that were mostly incomplete, and later removed from the study, are T4 Total, T4L, T3 Total, and Capurro. Chronical arterial hypertension and hair loss, variables associated with thyroid disease, had only one class and were also excluded from the study. A total of 49 features remained.

Application on the dataset

Given a cohort of patients diagnosed with a certain disease, unsupervised machine learning models allow us to identify comorbidity clusters for that disease, which helps to define new possible risk fields. The proposed k-means model represent diseases in the feature space [START_REF] Bahmani | Scalable K-Means++[END_REF].
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We theorize that the disease with similar characteristics would be clustered in the feature space.

To verify the effectiveness of k-means in identifying disease clusters, we qualitatively visualize the disease representation in the dimensional projection using centroid-based clustering.

In doing so, we evaluate the potential of unsupervised machine learning in the discovery of clusters. We tested different combination and chose the ones that generated the best visualization results for the feature space. To determine which k instances in the training dataset are most similar to a new entry, a Euclidean distance measure is used (A. [START_REF] Singh | K-means with Three different Distance Metrics[END_REF]. In addition, data must be standardized to make features comparable with the same scale. Standardization consist of transforming the features so that they have mean zero and standard deviation one [START_REF] Kaufman | Finding groups in data : an introduction to cluster analysis[END_REF]. We use average and standard deviation for the standardization.

Discovering patient subgroup

One question that arises in the field of gynecology is whether patients can be stratified into subgroups in which they share similar medical characteristics and risks. To discover patient subgroups, we could leverage clustering analysis on the patient feature vectors by using the rows of patient-disease. In our experiments, we tested k-means clustering with seven different numbers of subgroups, ranging from 2 to 8 subgroups. To evaluate these subgroups, we carried out the Within Cluster Sum of Squares (WCSS) and Silhouette with squared Euclidean distance to compare the patient subgroup results. In addition to SSE and Euclidian distance, we conducted statistical analysis on the demographics and number of patient subgroups diagnoses. Our goal is to evaluate whether the patient subgroups discovered by k-means model could differentiate patients into a defined cohort.
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Cluster analysis

We used Apache Spark 4.3 for cluster analysis. A k-means analysis was performed to find different clusters using the patient data. Feature selection, mapping features from high-dimension to lowdimension, was used to reduce the primary data. The cluster analysis carried out did not have any missing values. The main steps in k-means algorithm are: (1) randomly select initial cluster centers with the k-number to assign the centroids;

(2) all the closest data points to the centroids will create a cluster; (3) and compute new centers for the clusters. We calculate the distance between the points and the center using the Euclidean distance. The steps 2 and 3 will be repeated until the centroids stop moving. The decision of the number of k is through the elbow method [START_REF] Kodinariya | Review on determining number of Cluster in K-Means Clustering[END_REF] and Silhouette, and verified by random forests (RF) classifier [START_REF] Breiman | Random forests[END_REF]. RF was the classifier that achieved the best performance results in Chapters 3 and 4.

Statistical analysis

All statistical analyses were performed using the SPSS software package version 23.0 (SPSS Inc., Chicago, IL, USA). An analysis of each specific risk factor was performed as part of the screening for thyroid disease to determine if it was statistically significant in the sample. On the other hand, multiple comparisons were made between patients with subclinical hypothyroidism and patients without this pathology, assessing each variable within the study to determine if there is a statistically significant correlation of any of them with the pathology. Results were analyzed using descriptive statistics, means and ranges, Chi square for the crossing of nominal variables and t de Student for differences in group means. A calculated difference of P>0.05 was statistically significant. Chi-squared was performed to check the significance of the binary and continuous variables respectively between different clusters.
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Experiments

To find the right cohort for women in the first trimester of pregnancy, we conducted 4 experiments using different set of features with k-means: (1) we used the remaining 49 features and selected a k=2;

(2) we performed the analysis of all features without perinatal results (SDS at Unpacking, Birth Route, Product Weight, Product size and Capurro) and pregnancy complications (HD with Pregnancy, Gestational Diabetes, Premature Rupture of Membrane and Preterm Delivery) with a k=2 and k=3;

(3) we exclusively used the thyroid pathology to create new clusters using k=2; and

(4) finally, we used the risk factors to determine the new clusters with a k=2.

For each test a classification analysis is made with RF considering the next set of features:

(1) all features;

(2) risk factors; (3) thyroid features; (4) symptoms or signs suggesting thyroid hypofunction;

(5) all features without thyroid data; (6) all features without perinatal, pregnancy and thyroid data; and (7) all features without perinatal data and pregnancy complications.

Results

Determining number of clusters

K-means requires that the number of clusters is determined in advance and supplied to the algorithm as a parameter. To measure the quality of the clusters, Figure 5.1 shows the elbow method and the average silhouette approach. The goal is to choose a small k-value that still has a low within-cluster sum of squares and a high Silhouette. The results of the elbow method, the total within-cluster sum of squares, are ambiguous for (a) all features, and (b) all features without perinatal and pregnancy results. For (c) thyroid pathology the best cluster is k=3 and for (d) risk factors is k=4. The highest value for the average Silhouette is (a) k=2 at 0.31, (b) k=2 at 0.34, (c) k=8 at 0.93 and (d) k=6 at 0.58. Table 5.3 shows the clusters, from 2 to 8, with the number of women in each one. In the case of (a) all features, after four clusters, the number of patients is small in some of the subgroups (i.e. Cluster 5 with 15 women in group 2). Based on the results provided by the Silhouette, the best cluster number is k=2. Similar to (a) all features, after four clusters, the (b) features without perinatal and pregnancy results start to present clusters with small values (i.e. Cluster 6 with seven women in group 5) and the best cluster number should be k=2. Taking out clusters two and three, (c) thyroid pathology has small number of women in the rest of them (i.e. Cluster 4 with 28 women in group 0 and 26 in group 2). The silhouette method has great results due to the small size of the subsets of the different clusters and is not reliable, based on this, we selected k=2 and k=3. After two clusters, (d) risk factors has a small number of women (i.e. Cluster 3 with five women in group 1). According to these observations, we defined k=2 as the optimal number of clusters in the data.

Cluster analysis

The cluster analysis identified groups that were significantly different from each other. The anthropometric, gynecological, pathological history, risk factors, thyroid pathology and perinatal results were stratified according to phenogroup (Table 5.2). Key cohorts of each first-trimester pregnant women are as follows.

All features with k=2

The cluster analysis identified two women clusters. Table 5.4 shows the complete baseline data for the 49 prespecified features according to the cluster.

Cluster 0 (n=69) was the smallest cluster and mainly involved patients with risk factors.

Women were likely to have at least one symptom or sign suggestive of thyroid hypofunction

Chapter 5 113 (average of 1.74), fatigue (0.48 ± 0.50) and constipation (0.41 ± 0.49) were the most prevalent features. In addition, all subjects had some risk factor involved and the presence of positive antibodies (0.06). These women had the lowest TSH level (0.06) and the highest number of diagnoses based on the thyroid profile (0.32). Furthermore, they did not present autoimmune disease, AD I, or previous irradiation to the neck or head. Cluster 1 (n=237) was the largest, with >2 times more women than the other cluster.

Significantly, all patients in this cluster had not symptoms or signs suggesting thyroid hypofunction. They have the highest rate of women with TSH reported (0.6) and the healthiest thyroid profile (0.14). Additionally, this cluster had lowest levels of women with infertility (0.02)

and IVF/ICSI treatments (0.01). No positive antibodies were present.

All features without perinatal and pregnancy complications results with k=2

The cluster analysis identified two women clusters. Table 5.5 shows the complete baseline data for the 40 prespecified features according to the cluster.

Cluster 0 (n=65) was the smallest cluster and consisted mainly of women with risk factors.

It is likely that all subjects in the cluster had almost one symptom or sign suggesting thyroid hypofunction (0.85). Fatigue (0.22 ± 0.41) was the predominant feature in the presence of signs or symptoms and more than half of the women had some risk factor. They had the highest number of diagnoses based on the thyroid profile (0.38). Furthermore, cluster 0 women were overweight (BMI of 25.96), had a higher number of miscarriages (0.29) and did not present ectopic pregnancies.

Cluster 1 (n=242) was the largest, with two-thirds more women of our study. It is important to note that most subjects did not present with symptoms or signs suggestive of thyroid hypofunction and only one-third of the women had any risk factor present. Women had fewer number of diagnoses based on the thyroid profile (0.12). Moreover, this cluster had the lowest levels of patients with infertility (0.02) and IVF/ICSI (0.02).
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All features without perinatal and pregnancy complications results with k=3

The cluster analysis identified three women clusters. Table 5.6 shows the complete baseline data for the 40 prespecified features according to the cluster.

Cluster 0 (n=68) was the smallest and all the women had one or more risk factors. The women had almost two symptoms or signs suggestive of thyroid hypofunction, with an average of 1.75 and a standard deviation of 1.32. Fatigue (0.47) and constipation (0.41) were the predominant features in the presence of signs or symptoms, with dry skin being the least common factor (0.04).

Among the clusters, more women were diagnosed with thyroid profile (0.32) and are on TX treatment (0.32). This cluster was the only one with cases of positive antibodies (0.06).

Cluster 1 (n=161) was the largest, with less than half of all subjects in our study and had normal weight (BMI=23.84). Importantly, all patients in this cluster presented no symptoms or signs suggesting thyroid hypofunction and the 95% had no risk factors. Moreover, this cluster had the lowest number of women diagnosed with thyroid profile (0.09) and on TX treatment (0.08).

Cluster 2 (n=77) were mainly overweight (BMI of 26.04) 

Thyroid pathology features with k=2

The cluster analysis identified two women clusters. Table 5.7 shows the complete baseline data for the three prespecified features according to the cluster.

Cluster 0 (n=56) had the lowest number of women and were mainly with higher risk factor values. These patients had the highest number of symptoms or signs suggestive a thyroid profile (0.75 ± 1.39). Furthermore, cluster 0 women are more likely to be overweight (BMI of 25.43 ± 4.81), and half have presence of risk factors (0.52). Among the clusters, more women were diagnosed with a thyroid profile (0.39) and are on TX treatment (0.38).

Cluster 1 (n=250) was the largest, with more than three-quarters of all subjects in our study. The women in this cluster had fewer number of symptoms or signs suggestive of thyroid hypofunction (0.31). Less women tended to be diagnosed with a thyroid profile (0.13) and to take TX treatment (0.12).

Risk factors with k=2

The cluster analysis identified two women clusters. Table 5.8 shows the complete baseline data for the 22 prespecified features according to the cluster.

Cluster 0 (n=69) had the lowest number of women and all presented risk factors. Most of the subjects were likely to have almost two symptom or sign suggestive of thyroid hypofunction (1.74 ± 1.31). The highest risk factors were fatigue (0.48) and constipation (0.41). Moreover, all patients had risk factors, such as goiter (0.03) and positive antibodies (0.06). These patients had the highest number of women with thyroid profile (0.32 ± 0.47) and followed a TX treatment (0.32 ± 0.47).
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Importantly, all women in this cluster did not present symptoms or signs suggestive of thyroid hypofunction and the presence of risk factor was low (0.22 ± 0.41). They had a small number of diagnoses based on the thyroid profile (0.14 ± 0.35) and TX treatment (0.12 ± 0.33).

Cluster prediction using RF

To further investigate predictability in the current patient population, random forest classifier was carried out after cluster analysis. We performed the validation of different clusters using seven sets of features: i) all features; ii) risk factors; iii) thyroid features; iv) symptoms or signs suggestive of thyroid hypofunction; v) all features without thyroid data; vi) all features without perinatal, pregnancy and thyroid data; and vii) all features without perinatal data and pregnancy. The RF accuracy is shown in Table 5.9.

Table 5.9. RF accuracy using seven sets of features There was a tendency to higher accuracy when using all the features, and observing the results, the risk value has a high weight in the subgroups of features. (e) Risk factors computed 100.00% in all the sets beside the one composed for the thyroid features. In the case of (a) all Chapter 5 123 features, the accuracy was perfect using the set of risk factors and computed the worst result using the thyroid features. For the features without perinatal and pregnancy features, (b) and (c), the computation differs depending on the number of clusters, k=2 or k=3. The error in the accuracy of (b) was due to a misclassification, Cluster 0 was computed as Cluster 1. (c) depends on the set of features, similar to the 2 Clusters scenario, risk factors and all features, the misclassification was due to Cluster 0 computed as Cluster 1. The rest of the sets misclassify in different clusters (i.e.

Cluster 1 predicted as Cluster 2 in four occasions; Cluster 2 predicted as Cluster 0 in twelve occasions). (d) Thyroid pathology had a high accuracy when used all features, the thyroid features and all features without perinatal and pregnancy data.

Discussion

We applied a k-means clustering approach to a dataset from a recent, large, controlled trial of women in the first trimester of pregnancy to identify relevant phenotypes of thyroid pathology and risk factors. Women in each cluster varied considerably among several variables: risk factors, age, weight, and some pregnancy complications. We noted differential associations with risk factors and hypothyroidism (Figure 5.2). These finding underscore the significant heterogeneity that exists within first trimester of pregnancy and the need for improved symptomatic phenotyping.

To our knowledge, this is the first application of cluster analysis to identify distinct risk factors and demographic features in a cohort of first-trimester pregnant women with a thyroid profile, a disorder believed to involve multiple disease subtypes [START_REF] Carlé | Epidemiology of subtypes of hypothyroidism in Denmark[END_REF][START_REF] Fountoulakis | Thyroid function in clinical subtypes of major depression: An exploratory study[END_REF][START_REF] Kitahara | Benign Thyroid Diseases and Risk of Thyroid Cancer: A Nationwide Cohort Study[END_REF][START_REF] Luiz | Tireoidite de Hashimoto associada a IgG4 -Uma nova variante de uma doença bem conhecida[END_REF][START_REF] Slatosky | Thyroiditis: differential diagnosis and management[END_REF]. Several previous studies have analyzed the clinical relevant features and maternal outcomes of hypothyroid and euthyroid pregnancy, leading to new insights about the classification of women with similar patterns (Frank Chapter 5 et al., 2018;[START_REF] Horacek | Universal screening detects two-times more thyroid disorders in early pregnancy than targeted high-risk case finding[END_REF][START_REF] Kiran | Maternal characteristics and outcomes affected by hypothyroidism during pregnancy (maternal hypothyroidism on pregnancy outcomes, MHPO-1)[END_REF]. Although the impact of these studies contributes to the literature, none of them focus on first trimester pregnancy or risk factor of thyroid pathology.

The findings presented here are important for several reasons, especially considering that there are only a handful of statistically identical characteristics in all subgroups; this emphasizes the need to improve descriptions of hypothyroidism in pregnancy subtypes. We identified 2 clusters of women using all features, features without perinatal results and pregnancy, thyroid with the diagnosis and treatment of hypothyroidism. Previous studies found a higher rate of 20-40% positive antibodies in hypothyroid pregnancy [START_REF] Dhanwal | Prevalence of hypothyroidism in pregnancy: An epidemiological study from 11 cities in 9 states of India[END_REF][START_REF] Kiran | Maternal characteristics and outcomes affected by hypothyroidism during pregnancy (maternal hypothyroidism on pregnancy outcomes, MHPO-1)[END_REF][START_REF] Reh | What is a normal thyroid-stimulating hormone (TSH) level? Effects of stricter TSH thresholds on pregnancy outcomes after in vitro fertilization[END_REF]. Despite the low rate of positive antibodies, new Mexican studies should be conduct to comparison. Treatment of overt hypothyroidism is recommended during pregnancy [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF]. In this study, the positive autoimmune tests were not applied to all the women.

The use of the features without perinatal results and pregnancy with k=3 gave additional information. Cluster 0 is represented by nearly 2 signs or symptoms related to hypothyroidism, have at least one risk factor, low pregnancy complications, a small TSH (6%) and a higher number of women diagnosed with hypothyroidism (32%). Cluster 1 was characterized by no symptoms or signs suggesting hypothyroidism and having low risk factors (5%), TSH is the same as the average population (12%) and the diagnosis of hypothyroidism is the lowest (9%). Cluster 2 had more women (16%) with TSH> 2.5 mU/L even with 25% previously diagnosed and in treated. There
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are changes in thyroid function during pregnancy and usually previous doses are not enough to maintain optimal hormone levels. It is a changing hormonal system, so patients need to be monitored every few weeks and adjusted accordingly. In this study, a TSH blood test was performed during the first trimester to all pregnant patients that came for a prenatal care appointment (with and without treatment for hypothyroidism). Another reason is an increase in the TSH during pregnancy. The guidelines of the American Thyroid Association recommend to monitor TSH every 4 weeks until midgestational and at least once more around week 30 [START_REF] Alexander | 2017 References Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and the Postpartum[END_REF]. Subgroup analysis of maternal outcomes revealed a significant association of patients in this cluster with increased pregnancy complications, as the increase in patients with gestational diabetes (22%), premature membrane rupture (21%) preterm delivery (16%), and women with overweight. Previous studies have associated hypothyroidism with preterm delivery [START_REF] Karakosta | Thyroid dysfunction and References 175 autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes[END_REF][START_REF] Schneuer | Association and predictive accuracy of high TSH serum levels in first trimester and adverse pregnancy outcomes[END_REF][START_REF] Stagnaro-Ǵreen | The thyroid and pregnancy: A novel risk factor for very preterm delivery[END_REF]. [START_REF] Su | Maternal thyroid function in the first twenty weeks of pregnancy and subsequent fetal and infant development: A prospective population-based cohort study in China[END_REF]) associated subclinical hypothyroidism with premature delivery at <20 weeks and [START_REF] Casey | Perinatal significance of isolated maternal hypothyroxinemia identified in the first half of pregnancy[END_REF] at <34 weeks. A high TSH in early pregnancy was associate with a risk of gestational diabetes [START_REF] Gong | Relationship between hypothyroidism and the References incidence of gestational diabetes: A meta-analysis[END_REF][START_REF] Karakosta | Thyroid dysfunction and References 175 autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes[END_REF] and premature membrane rupture (L.-M. Chen et al., 2014;[START_REF] Männistö | Thyroid diseases and adverse pregnancy outcomes in a contemporary US cohort[END_REF]. A high TSH increased the risk of low birth weight [START_REF] Karakosta | Thyroid dysfunction and References 175 autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes[END_REF][START_REF] Ozdemir | Clinical Study Maternal Thyroid Dysfunction and Neonatal Thyroid Problems[END_REF][START_REF] Su | Maternal thyroid function in the first twenty weeks of pregnancy and subsequent fetal and infant development: A prospective population-based cohort study in China[END_REF]. In our study, this cluster birth weight was at least 100 grams less than the others. Another study [START_REF] Andersen | Low Birth Weight in Children Born to Mothers with Hyperthyroidism and High Birth Weight in Hypothyroidism, whereas Preterm Birth Is Common in Both Conditions: A Danish National Hospital Register Study[END_REF] concluded otherwise, for hypothyroidism they found higher weight at birth.

No significant association was found between baseline characteristics and preconception TSH clusters with most anthropometric, gynecological and perinatal outcomes. Although untreated hypothyroidism can negatively affect pregnancy, there are no data suggesting that women with properly treated hypothyroidism are at increased risk for any obstetric complication (Alexander Several limitations of this analysis require consideration. First and foremost, the present study was a retrospective analysis with T4 TOTAL, T4L and T3 not measured according to general recommendations, despite adequate diagnosis and treatment. Furthermore, the results of this study cannot be generalized to all pregnant populations as it was done in the northern Mexico. Likewise, the positive autoimmune test was not applied to the entire pregnant population since anti-TPO antibodies are not regularly requested due to their high cost to the patient. However, this study can be regarded as a baseline of Mexican population and these results serve to major emphasize the need for novel multidimensional classification of first trimester pregnant women with higher risk of thyroid disease, in order to improve patient care. We therefore recommend, larger prospective to assess the associations between maternal hypothyroidism and outcome features.

Conclusion

This chapter was carried out to explore the features in women during first trimester of pregnancy using cluster analysis. This study recruited 306 patients during the first trimester of pregnancy reporting TSH values. Three distinct groups were identified using cluster analysis: (1) overweight women more than 30 years that lack of signs or symptoms suggestive of thyroid hypofunction and relatively low number of patients with some risk factors and increased pregnancy complications;

(2) women less than 30 years without any sign or symptom suggestive of thyroid hypofunction, and with a low both risk factor presence and patients diagnosed of hypothyroidism; (3) women less than 30 years with a higher diagnosed of hypothyroidism that presents some risk factors and signs or symptoms suggestive of thyroid hypofunction, this groups lacks of autoimmune disease and previous neck or head irradiation.
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Cluster analysis was shown to be a practical approach for investigating the heterogeneity of the hypothyroidism risk factors in women in the first trimester of pregnancy in clinical studies.

Risk factors and pregnancy complications might be valuable for prediction of hypothyroidism in pregnancy when compared with healthy patients. However, large-scales prospective trials with more information of pathological history, risk factors, thyroid pathology, and pregnancy complications are necessary to further analysis.

Finally, the method described in this chapter is easy to implement in real-life cardiology data. In fact, clustering is vital for understanding the heart disease problematic and providing health-care practitioners with tools for better diagnosis, including the classification of the patient in relation to heart risks. In the following chapter, we will propose a system for predicting heart disease using the clustering method in this chapter, and the classifiers in previous chapters.
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Introduction

Telemedicine, mobile applications and electronic health systems, have changed medical rules.

High-quality equipment and facilities are no longer adequate and must be connected to enhance their management and obtain better results. From a medical standpoint, it is vital to improve medical care with aspects such as: the integration of medical records with technology and medical devices interconnected through the Internet. This helps medical staff collect information and adjust With all the dataset extracted from different sensors and the increase of IoT in the medical field, the only alternative for E-care is to migrate to a big data system to make a real integration of medical information, process the data, and improve the patient's quality of life. The goal of E-care is to create a better decision support system using an existing ontology. The system must be able Chapter 6 to help to move from patients' generic information to personalized data, with the intention of having a learning process by searching for similar patterns in each patient group. Big data algorithms can handle and process this large, different and changing information with Hadoop Ecosystem tools.

E-care platform

E-care project is an intelligent platform developed by academic laboratories and industries. Its interest is the health sector, specially patients with heart failure. Through telemedicine and its tools, the E-care platform reduces rehospitalizations, the days of stay in the hospital and guarantees a better quality of life for patients with heart failure in stage III. The New York Heart Association (NYHA) Functional Classification describes stage III patients as marked with: (1) limitation of physical activity; (2) comfort in a resting state; and (3) fatigue, palpitations and dyspnea caused by common activities. Patients with these characteristics need constant monitoring of their health in order to achieve early detection of dangerous situations. Figure 6.1 present the four classes of the NYHA.

In 2011, the E-care project was selected among the "Health and autonomy at home through digital technology" projects of the Investissements d'Avenir program [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF]. This is a French national program with 22 million euros to be spent in higher education and research in e-health (Investissements d'Avenir -Ministère de l'Enseignement supérieur, de la Recherche et de l' Innovation, n.d.). E-care started as a prototype deployed at the Strasbourg CHRU in October 2013 (Andres & Talha, 2016). Clinical experiments were carried out and the concept was tested with 20 beds within the internal medicine unit. Since 2015, it has been deployed at homes, where it aids medical staff with the help of non-invasive sensors that communicate via Chapter 6 133 Bluetooth with tablets applications. E-care processeses data from multiple sources, including, weight, blood pressure, pulse-oximetry (monitoring of oxygen saturation), patient ergonomics, and diet, combined with notes and comments from patients and medical staff, mostly nurses and physicians [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF]. The integration and processing of this information allows the platform to generate alerts in case of risky situations related to cardiovascular diseases and their underlying pathologies. It is understood that the concept of underlying pathology refers to the way a disease manifest itself (i.e. a person who bleeds and the underlying cause is leukemia; or a person who has a yellow skin and the underlying cause is hepatitis). In addition, alerts are generated by related chronic pathologies such as diabetes mellitus, fatigue, renal failure and respiratory insufficiency. This information reaches a data repository where physicians can access the data at any time; this helps the medical staff to better understand the clinical picture, as it enhances existing ontologies. 

E-care: creation of new information

The E-care platform uses an ontology that improves the decision support system through data, semantics coupling and an extended vocabulary with diseases, medicines, symptoms and contraindications related to heart failure monitoring [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF].

Ontologies provide a common semantics that improves the quality of the diagnosis, the decision making process, the accuracy of the information and the level of daily workflow abstraction [START_REF] Benyahia | Adding Ontologies Based On PCG Analysis in E-Care Project[END_REF](Benyahia et al., , 2012)). For every patient, the data collected by the sensors is processed in real time, and then analyzed with the ontologies. This will provide the first learning process by adding new data to the patient information. Then, E-care consolidates the information and improves the system by looking for similar patterns in critical events [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF]. The goal of E-care is the creation of new knowledge by the enrichment of this ontology. This enrichment generates an assessment that will consider quality aspects and consistency validation (Andres & Talha, 2016). The rules are generic and evolve with the patient. If an abnormal condition is detected, the system should send an alert to the medical staff. An example of this is the weight measurements retrieved from the ontologies. If the weight increases two or three days in a row, an alert will be sent to medical staff to review the cause. In addition, there are cases in which it is important to have all the patient's information connected to make the system reliable (i.e. if the heart rate of 70 beats per minute is not dangerous for a normal patient, it can be if we know that the patient is alcohol-dependent) [START_REF] Benyahia | Adding Ontologies Based On PCG Analysis in E-Care Project[END_REF]. Ontology includes the patient profile and its associated measures, alerts and data. It also describes all the system users (medical doctor, administrator, patient and nurse), their tasks and equipment definitions (sensors, tablets, etc.) [START_REF] Benyahia | Adding Ontologies Based On PCG Analysis in E-Care Project[END_REF].
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Architecture of E-care

The E-care architecture illustrated in Figure 6.2 is based on ontologies for telemonitoring elderly persons suffering from chronic diseases [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF]. The architecture is generic and relies on three main components: (1) physiological, environmental and behavioral sensors; (2) a communication medium to transmit the data; and (3) an institutional information system where data are stored and processed. Finally, there is a patient-medical staff interaction through a call center, a tablet and a website. Some projects have educational tools.

The ontological architecture (Benyahia et al., 2012) [START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF] Chapter 6

The architecture contains two types of ontologies, Application and Domain ontologies.

Application ontologies describe the system components such as users, sensors, measurements, input data and generated alerts. They also define the tasks of the different system actors. Domain ontologies provide a controlled vocabulary. These ontologies can provide a language to facilitate data sharing between the different system actors, so that they can easily interact with other systems.

These ontologies are built by medical experts, aided by engineers' knowledge to formalize them.

In addition, domain ontologies can be linked to other elements, for example, a disease with its symptoms.

Figure 6.3 E-care ontology architecture (Benyahia et al., 2012) Chapter 6 137

E-care solution based on Spark

For E-care, Apache Spark is the closest option to satisfy its needs. It performs well in both batch and streaming applications (lambda architecture), and studies show Spark to have outstanding machine learning performance. It has a large library for machine learning and iteration performance. Although Spark has low latency process, its other qualities compensate it. Knowing Spark's features will help to accomplish the best algorithms for the E-care system at the time of migration and for the data mining analysis that will be necessary to improve the ontology. It will benefit the E-care's personal staff by making the data easy to use and the system resilient to any error. The proposed machine learning techniques are:

• Classification: E-care already knew, from the previous ontology, the patients' characteristics (antecedents, clinical history, chronic diseases, etc.). For supervised learning we can take the known patients with the target heart diseases to make a prediction.

• Clustering: even if E-care uses an existing ontology, it will learn new information from patients who can make a new group arrangement. An example of clustering consists of predicting if a patient with certain characteristics will have a heart attack two months later or will develop a sinus arrhythmia without a previous examination. The model use for clustering is k-means.

Proposed System

Architecture of Proposed System

Our interactive healthcare system architecture proposal focuses on three phases: data layer, which is the data collection with the interaction of smart biosensors and wearable devices, storage layer Chapter 6 with massive volume analysis of individual patient data for the prediction of future heart disease, and application layer that discovers patterns within similar group patients Within this thesis, we have proposed a medical system that can take the patient's medical information (i.e. sex, age, id, health state, hospital, reference values, thresholds, civil information, questionnaire, normal patient values), daily measurements (weight, oxygen saturation, arterial pressure and cardiac frequency), medical notes (non-structural data), and medical history: risk factors (i.e. smoking, hypertension, obesity, dyslipidemia, sedentary lifestyle), medical pathologies (i.e. asthma, acute renal failure, scoliosis, atrial fibrillation, diabetic retinopathy, ischemic heart disease with lower myocardial infarction, pacemaker, hypothyroidism, cardio-renal decompensation, pulmonary embolism), surgical procedures (i.e. appendectomy, cholecystectomy, mitral valve replacement, pleurectomy, thyroidectomy), allergies and treatments. These data will be gathered from the E-care server (Figure 6.4) and then sent for evaluation to a high-performance computer (HPC) server. This constitute the data layer.

The next segment is the storage layer. The data-collected from the data layer will be the input to this layer and will classify the structured and unstructured data. After the log file and dataset is created, they will be incorporated and sent to a data warehouse.

In the application layer, the data warehouse sends the database to the data center of Spark core. Then this system can analyze the data-collected, diagnose and predict future heart condition diseases, and give the visualization of those data to the users (practitioners). Based on the heart prediction disease, the system can provide the appropriate treatment, the clustering of the patient, and set an alarm for the critical condition. Accomplishing this can reduce redundant and extensive testing and prevent deaths. 

Data definition

In our proposed system, the definition of the multiple data sources is provided in this subsection.

All the features are transformed into categories. We have defined three definitions that will be used for further analysis: the use of all the features, the use of features by the type of source data (Figure 6.4) and the dataset from the feature selection (subsection 6. 3.4.3).

Consider the E-care system where all patients are in the set P = {P1, P2, …, Pn} and the total number of patients is t = |P|. These patients are mostly individually monitored through biosensors and wearable devices. E-care medical system takes four major types of data sources: patient medical information (M), daily measurements (D), medical notes (N) and medical history (H). We consider all the features produced by a patient as a set F = {M, D, N, H} and the number of features produced by each patient in a set Z = {Z1, Z2, …, Zn}.

The medical information (M) contains all general patient information and is kept constant over periods of time. The questionnaire is the only part that can add additional information when is required by the practitioners. The focus is to know the patient's emotional state during a period or when an event occurs (i.e. surgery). Considering that each questionnaire has the same features, we define it as the set Q = {Q1, Q2, …, Qn} where the set Q represents the total number of questionnaires. The rest of the features are represented by m = {m1, m2…}. The set of the patient's medical information is represented by M = m⋃Q.

The patients take daily measurements (D) each morning with wearable devices and sensors.

The data retrieved are weight (d1), oxygen saturation (d2), diastolic pressure (d3), systolic pressure(d4) and cardiac frequency (d5). Our system will process the change in each feature Chapter 6 141 between two days. Suppose a patient weight 70 kg yesterday and 71.5 kg today. As a biomedical factor, an abrupt change of weight in the time domain affects the patient's health. For the daily measurements, we take the change of behavior over time (ΔD) and assign it to a category (c). In the example above, the Δd1 was 1.5 kg, and can be assigned to a category that considers Δd1 between 1-2 kg for the given day (v). We consider the change of each feature as the set Definition 2. The data generated by patient medical information (M), daily measurements (D), medical notes (N) and medical history (H) can be described by each type of feature or a combination. For example, describing the features of the medical notes is represented by F = {N}, and features from the daily measurements and medical history are described as the set F = {D, H}.

Definition 3. The data generated by certain mayor types of features can be described as the features selected by chi-square and later used for principal component analysis. This equation is described in the Equation (6.3) (subsection 6. 3.4.3). This analysis can be applied after Definition 1 and Definition 2.

Storage Layer

The massive amount of E-care data needs to be stored before analyzed, this will be done in the storage layer. For machine learning analysis, the data must be structured, so our proposed system applied the Apache Spark framework on structured and unstructured data. A Hadoop cluster is developed to configure the files. The storage will be in HDFS and YARN. To communicate with YARN, Spark needs to have the configuration of Hadoop via HADOOP_CONF_DIR or YARN_CONF_DIR environment variable. The architecture is shown in Figure 6.5 and has been adapted from the Spark Architecture. The cluster manager is going to use YARN, which is the responsible to setting up the Executor. In addition, we need to create the folders for HDFS to store the files with E-care information.

Chapter 6 143 6.3.4 Application Layer

Data preparation

Our main data are the patient's history, daily measurements and physicians' notes. In our proposed system, we analyze all the data after a cleansing process already performed by E-care and a subsequent data standardization to make features comparable with the same scale. Patients with missing values and outliers must be removed from the analysis.

Prediction Target

We apply the concept of prediction target from the study by [START_REF] Rahman Bhuiyan | iHealthcare: Predictive model analysis concerning big data applications for interactive healthcare systems[END_REF], in which the objective of the prediction target is the intersection of the diseases set of interest and the possible disease set. Assume that I = {I1, I2, …, In} is the interest set of heart disease that is For prediction modeling, we use Apache Spark algorithm to analyze E-care medical data and find the possible heart diseases. To construct the cohort, we take the data from the total population (all existing cases from E-care database). We will identify the target prediction of patients with a heart disease, such as Heart failure. We take this new subset of data to train and test it.

Dimensionality reduction

Feature selection is an important factor to predict a disease. A feature must be correlated (depending on the feature selection technique) with heart disease. A smaller set of features responsible for a specific heart disease is represented as f = {f1, f2, …, fn}. In all cases, the number of the set of features related to a disease must be less that the total of features, this is represented as f < F. The feature selection gives a clear idea of the features that have more weight in the disease, from there we can create further sets of features with more relevance. An example is the comparison of a set of features (fn) with a second set of features (fn+1), and discovering the optimal though this comparison, thus we can say fn < fn+1.

Chi-square selector can also be used for feature selection to rank the features as Equation 1.7. However, previous studies demonstrated better results using PCA after a feature selection technique. PCA will use the features selected by chi-square, then select the principal components Chapter 6

145 with the highest variance. We assume PCA as a set PC = {PC1, PC2, …, PCn}. The input of the PCA is the set of data fn. We considered before Z as the set that represents the number of features produced for a patient. Therefore, the dataset used for prediction is defined as Equation (6.2) 𝑆 = 𝑃𝐶(𝑍 𝑓 𝑛 ) (6.2)

where S is the dataset used for prediction, 𝑍 𝑓 𝑛 is the set of features extracted for each patient.

Predictive classification model

The predictive input model is a function of input principal component (PC) created by the set of features (f) defined as S and an output, which is represented by Equation (6.3) as

𝑇 = 𝐶(𝑆) (6.3)
where T is the predicted disease target, and C is the classifier that predicts heart disease using the dataset S. By knowing the proposed features by E-care, we can predict a heart disease and identify the features most correlated with the specific disease. The prediction model is a supervised classification analysis, for E-care, we selected random forests (RF). Other methods applied in this thesis (Chapter 3 and Chapter 4) were decision tree (DT), logistic regression (LOG), linear support vector machine (LSVM), multilayer perceptron (MPC), and gradient-boosted tree (GBT).

Center for E-care Analytics System (CEAS)

The proposed method is called the Center for E-care Analytics System (CEAS). CEAS is prepared as the solution to heart disease problematic considering massive patient data. Practitioners attempt to indicate patients who may be at risk based on an analysis of features collected from the patients Chapter 6 existing records. CEAS contemplates the three layers discuss in this section and proposes a solution based on machine learning as shown in Figure 6.6. The aim of CEAS is to personalize the patient content with the results of the cohorts and the predictive analysis from a big data medical environment.

Conclusion

CEAS was proposed to deal with symptoms of heart diseases using exiting patient data from Ecare. Our proposed solution was learned from previous chapters and aims to achieve significant data analysis, a predictive model that can predict heart disease faster, and improve medical ontologies related to heart disease. Underlying these and many other potentials used by CEAS, a number of legal and ethical challenged related to privacy, intellectual property and informed consent must be reviewed. In addition, for further work, a streaming process must be proposed for E-care (CEAS v2.0) using Spark Streaming and Apache Kafka. 

Thesis summary and Conclusions

In this thesis, I took a new look at some of the classic problems in machine learning with a fresh perspective on big data and healthcare. These developed machine learning algorithms have not only demonstrated a remarkable performance in large-scale real world experiments and synthetic datasets, but are also solving problems in healthcare, particularly heart disease, which is the motivation of the development of these algorithms and the proposal Center for E-care Analytics System (CEAS). Heart disease is the leading cause of death worldwide, several symptoms have been studied in the past by health organization (WHO, American Heart Association), researchers and practitioners, machine learning is a solution to understand the known symptoms related to heart disease and create new knowledge to understand its cause. The causes are related to lifestyle, comorbidities, risk factors and genetics. Heart disease complications lead to hospitalization and deterioration of quality of life if no action is taken. However, early diagnosis improves the patient's prognosis and reduces the likelihood of a rapid degeneration, especially regarding to end of life decisions.

Chapter 2 provided a general state of art on the complex process of implementing big data in healthcare systems. We focused on the importance of the computational systems and techniques that can be implemented to improve patient's quality of life. The highlight is Hadoop Ecosystem, in particular Spark, with a notable result in the big data and machine learning problematics. The systems and techniques in this chapter were later applied in Chapter 3, Chapter 4, Chapter 5, and Chapter 6.

One way to judge the performance of remote monitoring platform, such as E-care, is by using different workloads, and grater stress should be placed on the model selection and the parameters to be specified. In Chapter 3 we provided the time consumption and scalability of Chapter 6 different classifiers suitable for massive datasets. The selected big data technology to implement for this thesis was Apache Spark. This chapter has presented the Spark's implementation of a distributed random forests algorithm validated by a real dataset that was subsequently used to create the scalable synthetic dataset. The big data problems have shown benefit from the use of optimization methods, cache and persist. Because the flexibility introduced in the optimization, we were able to incorporate larger workloads in shorter periods of time.

The customized approach of heart disease prediction in Chapter 4 showed the power of dimensionality reduction techniques combined with machine learning classifiers. In our simulated model, by fitting chi-square with the principal component analysis (PCA), we demonstrated an improvement in the prediction. Most importantly, when using the chi-square (feature selector) we find clinical and anatomical relevant features related to heart disease, such as cholesterol, maximum heart rate, chest pain, features related to ST depression, and heart vessels. The usage of PCA directly from the raw data computed lower results and would require greater dimensionality to improve the results. Similar to Chapter 3, the classifier with the best performance, considering the error, was the random forests classifier, which was applied to our proposed system. Our method can be used in many real-life applications or in other medical diagnostics to analyze great amounts of data and identify risk factors involved in different diseases.

The main objective of E-care is the creation of new information and the improvement of the medical ontologies. Clustering a cohort of patients was used in Chapter 5 to address this vital aim. The dataset of first trimester pregnant women was selected for being replicative, dynamic, and observational, which are the same characteristics we look for in E-care heart disease datasets.

Two and three clusters were identified, depending of the set of features used, in which patients varied considerably among risk factors, symptoms and pregnancy complications. Compared to Chapter 6 151 Cluster 0, one or more symptoms or signs of hypothyroidism occurred, while Cluster 1 was characterized for healthier patients. When three clusters were used, Cluster 2 had a higher value of TSH and pregnancy complications. There were no significant differences in perinatal variables between patients with subclinical, frank and euthyroid hypothyroidism. In addition, high TSH levels in first trimester pregnancy is characterized by pregnancy complications and a decrease of newborn weight. Our findings underline the high degree of disease heterogeneity with existing pregnant hypothyroid patients and the need to improve the phenotyping of the syndrome in Mexican population.

From the scientific perspective, the problem of healthcare analysis is being addressed according to two research points: Big Data and Machine Learning. Researchers and practitioners are putting efforts to develop systems that are capable to predicting and personalizing medical content. When Spark recognizes the suitable algorithm, it can implement it in remote data analysis, this means that E-care application can contact the data analyzed by Spark and get some feedback.

Chapter 6 describes a new healthcare system, which deals with a massive volume of patient data related to patient medical information, medical history, medical notes and daily measurements. As a prototype, we present an interactive model in which practitioners can have an additional tool to obtain the risk of a patient with a heart disease. We developed a machine learning system to predict heart diseases and create cohorts that improve existing ontologies. From these results, the CEAS is able to create an alarm for patients in critical condition or the practitioners can identify them.

Combined with medical judgment, CEAS will be able to take medical monitoring to the next level, improving the healthcare. We hope that this thesis will encourage more medical researchers to continue developing personalized content with the application of machine learning and big data tools, such as Hadoop and Spark. Chapter 6

Limitations, perspectives, and future research

Our study is based on a limited set of features and instances, which may restrict the scope of our results that we considered at the beginning of this thesis. Although, the data were real (Chapter 4 and Chapter 5), more instances (patients) must be used to extend these findings on heart disease and cluster analysis in thyroid pathology on first trimester pregnancy. The heart disease prediction (dataset) performed the models 74 features for the outcome, while clustering in the first trimester pregnancy women used 49 features. As for the classification, for future development, we plan to apply our method to the massive data generated by E-care, in order to generalize our findings related to heart disease. The future work of clustering must be performed in a large-scale prospective trial with more information on pathological history, risk factors, and general pathology information that is necessary for further analysis.

From the scalability point of view, an analysis of the feature that increases the most must be performed to know its behavior. In addition, the limited set of instances and the homogeneity of the features are particularly limiting in the case of big data, where we consider scalability only from syntactic workloads, hence the results reflect that same uniform behavior. For future work, a comparison between a multi-node cluster and a single cluster will be performed. A proposal for future research is to validate the error in a balanced dataset. Finally, the behavior of the methods must be verified with other datasets of different length and nature.

The proposed system, CEAS, was not tested in a real scenario, therefore the prediction and clustering of the heart diseases outcome cannot yet be determined. There are also some limitations in the architecture, especially in the storage layer. The proposal model provides only a batch solution for electronic information for entry. Further work will involve analysis of the streaming system with the aim of Apache Streaming and Kafka, and hopefully we can introduce more Chapter 6 153 features to our proposed system (CEAS). The next steps for CEAS will be to start a large-scale simulation with real patients to pass from theoretical development to the real scenario.

Although this thesis finishes with the contributions presented, new methods and applications will be proposed in the same research line, as new challenging computing problems arise as the workload increases over time. Dealing with real field data is not an easy task due to the difficulty derived from the nature of the features, the pre-processing and understanding of the data, and the model behavior towards them. There is always space for improvement, and almost all the times the simplest solution is always the best. Finally, the methods proposed in this paper have not only been developed theoretically, but also implemented and deployed in real scenarios to provide medical solutions.

Chapter 7

1 7

 1 Key words: heart failure, machine learning, dimensionality reduction, performance prediction model, execution time prediction. Chapter Titre : Big Data et apprentissage automatique pour améliorer le suivi médical et la surveillance à distance.

FUNDING

  This PhD was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT-Mexico; grant number: 568729), by the Institute of Innovation and Technology Transfer of

Figure 1 . 1 .

 11 Figure 1.1. Workflow of Big data Analytics.

Figure 1 .

 1 Figure 1.2. Health data analytics process.

Chapter 3 1 '

 31 has been published in 'ICBDR 2019: The 3rd International Conference on Big Data Research' and '2019 3rd International Conference on Cloud and Big Data Computing', the manuscript corresponding to Chapter 4 is published in the book 'Machine Learning Paradigms', Chapter The 8th International Conference on Pattern Recognition Applications and Methods' and 'Journal of Informatics in Medicine Unlocked', and the manuscript corresponding to Chapter 5 is under review in the 'Journal of Clinical Medicine'. The overview of the research chapters in Table 1.1. Chapter 6 proposed a model for E-care system based on the models and techniques applied in chapters 3, 4, and 5. Finally, the General Conclusion integrates the contributions of the three research chapters in the context of big data and e-health. The contextual relationship between the papers and objectives (OBJ) is shown in Figure 1.3.

Figure 1 . 3 .

 13 Figure 1.3. Contextual relationship between papers.

  TPCx-HS was developed. The first TPC standard was designed to benchmark the Hadoop ecosystem 15 .

  program. It is used to characterize the main part of a specific type of program. Program kernel makes an accurate comparison and prediction of the performance.
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  performed an intrusion detection based on dimension reduction using different classifiers. Based on the tests, random tree obtained the best results using linear discriminant analysis (LDA) for performance and faster training time. Another research (Jesus Maillo et al., 2016) studied the difference between Hadoop and Spark implementations using kNN classifier with datasets of 11 million instances, achieving a runtime 10 times faster than Hadoop. (Assefi et al., 2017) compared different classifiers of Apache Spark MLlib 2.0 with those of Weka. In all tests, Spark classifiers obtained better run-time results than Weka sorters.

  processed images using the MapReduce distributed model in Apache Spark and k-Nearest Neighbors (kNN). Through several results, processing time was reduced with and without the use of cache. Similarly, (Gonzalez-Lopez et al., 2018) proposed a distributed kNN implementation based on MapReduce to scale the algorithm, using the function cache according to the number of instances, features, and labels. Other research (Kleerekoper et al., 2015) applied dimensionality reduction techniques, such as Manchester AnalyticS Toolkit (MAST) to reduce memory usage and Chapter 3 execution time.
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 41 Figure 4.1. Schematic Diagram of Proposed Approach

  considered. It can be used to extract latent features from raw datasets or to reduce the data while maintaining the structure. Experimental results have shown that PCA delivers a better prediction concerning the high dimensional classification problem by setting the features provided by chisquare, as seen when comparing PCA with raw data. Therefore, this chapter proposed two different dimensionality reduction methods, for feature selection was selected the chi-square test of independence and for feature extraction, the principal component analysis (PCA).Chi-square test (CHI) sorts features based on the class and filters out the top features on which depends the class label. ChiSqSelector (CHI) of Apache Spark MLlib is used for feature selection

  of selected features; LF=List of Features; %DC=# of data complete; Corr= correlation Chapter 4

  00 and an accumulated proportion of 0.678. The first two components had a cumulative proportion of 0.246; the amount of variance in component 1 was 5.445 and 4.396 in component 2. The principal components of Hungarian were represented in the first 14 components and had a variance greater than 1.00 and an accumulated proportion of 0.694. The amount of variance in component 1 was 6.340 and in component 2 was 4.451, with a cumulative of 0.240. The first 11 components of CH contained a variance of more than 1.00 and a cumulative proportion of 0.729 of the information. The first two components had an accumulated proportion of 0.399; the amount of variance in component 1 was 14.614 and in component 2 was 4.547. Hence, selecting components with an eigenvalue greater than 1.00 was the best choice, so we selected 13 components for Cleveland, 14 components for Hungarian, and 11 components for CH.4.3.5 Classifiers proposedFor this research, ML Spark libraries were selected for feature validation. The version of Apache Spark used was 2.2.0 in Java language. MLlib has tools for preprocessing, basic statistics, dimensionality reduction, classification, regression, clustering, and association rules. This work Chapter 4 79 used the CHI for feature selection and PCA for feature extraction. The most important parameter was the "Selection method", which chose the main features according to CHI as shown in Table4.5. The other settings were the default ones.The classification models use the default value for most of the hyperparameters. The models were: (1) decision tree (DT); (2) gradient-boosted tree (GBT); (3) logistic regression (LOG); (4) multilayer perceptron (MPC); (5) Naïve Bayes (NB); and (6) random forests (RF). Table4.6 describes the parameter settings for each classifier. The GBT and RF trees used several DT parameters as default values, except for Gini impurity. DT hyperparameters are the maximum depth of a tree equal to 5, and the maximum number of bins used when the discretization of continuous features was 32. In addition, LOG had an elasticity of 0.8 and a binomial family parameter. The parameters of MPC were set at a maximum iteration of 100. MPC had two hidden layers, the first with 5 neurons and the second with 4 neurons. The model type selected for NB was multinomial.The 6 classifiers were run 10 times, the best result was added for this research, and the performance of the label evaluated, in compliance with the percentage of the correct classification.For the experiment, the Heart Disease datasets were divided into two datasets:[START_REF] Parthiban | Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients[END_REF] training dataset with the 70% of the information (80% for training and 20% for validation); and (2) testing dataset with 30% of the information.
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 51 Figure 5.1. Elbow method and the average silhouette
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 52 Figure 5.2. Cluster associations of women in first trimester of pregnancy with risk factors of thyroid pathology.

  treatments and patient care. Internet of things (IoT) is the interconnection of devices through the web. The development of this concept is what makes it possible to deliver better healthcare with the help of telemedicine. E-care project is an intelligent platform with interest in the health sector. Through telemedicine and tools, it allows to reduce rehospitalizations, improve the patients' quality of life, control remote health monitoring and an improve management. With the large-scale deployment of the E-care platform under the framework of the PRADO program of the French healthcare system (CPAM), E-care will have a massive data from different sources. It is important to keep the patient information in a low-cost cloud storage to help with remote information monitoring and better data management. In fact, this is what brings big data to E-care. Big data can handle the volume, variety and velocity of the information, storing it in a distributed, scalable and resilient database system. Big data most famous analytical tools are those found within Hadoop Ecosystem, such as MapReduce, Spark, Flink and Storm.
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 61 Figure 6.1 Heart Failure Classification from New York Heart Association

  presented in Figure 6.3 is a Patient Center. Patient data is collected using a sensor (structured data) and other information can be entered by medical staff and the patients themselves (unstructured data). The two-principal actors involved are medical experts and system experts. The most important part of the internal architecture is Data Management. Its main tasks are to: (1) receive data from external systems like sensors; (2) communicate with other systems; (3) receive the alert recommendations and the rules provided for the inference engine and data reception; and (4) manage the database and ontologies.
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 6 Figure 6.2 E-care architecture. Figure modified from[START_REF] Andrès | Monitoring Patients with Chronic Heart Failure Using a Telemedicine Platform: Contribution of the E-Care and INCADO Projects[END_REF] 

  Medical healthcare produces a massive volume of big data from different sources shown in Figure6.4. Our proposed data collection scheme focuses on data generated by the individual patient and stored by E-care. An interaction between patient and smart device can provide a better outcome for the new healthcare system and explore more information to diagnose heart disease. E-care has biosensors and wearable devices developed to measure the patient's heart rate, temperature, and weight. Another important health-related fact is the patient's emotional state, measured by a survey. The patient's medical history, treatments, allergies, and risk factors are available in the system and are updated by the physician.
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 6 Figure 6.4 E-care's source of medical data

Definition 1 .

 1 𝑑𝑛 = ∑ Δ𝑑𝑛 𝑣𝑐 , where c = {1,2,3…} and v = {1, 2, 3, …, n}. For example, Δd2 15 1 refers to the 15 th daily measurement of oxygen saturation resulting in category 1. The daily measurements are defined by D = d1⋃d2⋃d3⋃d4⋃d5.Although there are not many medical notes (N) in E-care, it is valuable information to consider for analysis. We use the Spark filter () and contains () to pre-process the data. Later, we use Tokenization and StopWordsRemover to select keywords to be added to a category (c) where c = {1,2,3…}. Medical notes are the words added to a category represented by N = {N1, N2, …, Nn}. The medical history (H) is distributed into risk factors (h1), medical pathologies (h2), surgical procedures (h3), allergies (h4) and treatments (h5). H can change over time and the patient can modify the number and type of categories (c) for each feature where c = {1,2,3…}. E-care contains the start and finish date for each feature H, our system counts the number of years the patient lives with the feature. This is represented by the set y = {1,2,3…}. If the patient continues with risk factor, allergies and treatment, it has the symbol (+) next to the category (c), if the patient stops, it has the symbol (-). We consider the features of medical history as the set ℎ𝑛 = ∑ Δℎ𝑛 𝑦 𝑐(𝑠𝑦𝑚𝑏𝑜𝑙) . For example, Δℎ1 5 3(-) refers to a patient who smokes (category 3) for 5 years, but currently stops. Medical history (H) is represented by the set H = h1⋃h2⋃h3⋃h4⋃h5.Chapter 6 The data generated by all features can be described as the equation F = {M, D, N, H}.
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 31 Summary description for p53 Mutants dataset

	Dataset	Features	Instances	Total records	Size (GB)
	P53-1x	5,409	31,420	169,950,780	1.3
	P53-2x	5,409	62,840	339,901,560	2.6
	P53-4x	5,409	125,680	679,803,120	5.3
	P53-8x	5,409	251,360	1,359,606,240	10.5
	P53-16x	5,409	502,720	2,719,212,480	21.0
	P53-32x	5,409	1,005,440	5,438,424,960	42.0
	P53-64x	5,409	2,010,880	10,876,849,920	84.0
	P53-128x	5,409	4,021,760	21,753,699,840	168.0

Table 3 .

 3 2. Parameters tuning for classifier in Apache Spark

	Classifier Basic Parameters
	DT	algo="Classification"; numClasses=2; maxDepth=10, 20, or 30;
		maxMemoryInMB= 256 MB; subsamlingRate= "auto"; impurity "gini"
		minInstancesPerNode="auto"; minInfoGain="auto"; maxBins=32
	LOG	numClasses=2; MaxIter=10; RegParam=0.3; ElasticNetParam=0.8;
		Family="binomial"
	LSVM	MaxIter=10; RegParam=0.3
	RF	numClasses=2; numTrees="auto"; maxDepth=10, 20, or 30;
		featureSubsetStrategy="false"; subsamblingRate="auto"; impurity="gini";
		seed="false"

Table 3 . 3 .

 33 Comparison of classifiers execution time

	Configuration	RF	RF	RF	DT	DT	DT	LOG LSVM MPC GBT	GBT	GBT
		+	+	+	+	+	+			+	+	+
		10	20	30	10	20	30			10	20	30
	4 Cores	139.8 151.0 154.7 143.1 139.7 151.9 88.3 697.7	113.4 119.5 125.3 125.4
	4 Cores with	26.5	29.9	29.7	29.6	29.3	29.4	30.9 26.8	50.3	54.0	55.1	57.9
	Cache											
	4 Cores with	28.3	30.2	28.0	30.2	28.0	30.3	30.0 26.8	49.4	67.4	58.4	52.5
	Persist											
	8 cores	81.1	87.1	86.1	89.9	94.2	87.5	53.4 744.6	63.1	71.2	75.7	82.2
	8 Cores with	16.3	18.3	20.3	18.6	18.0	18.2	19.3 29.0	24.1	54.0	53.9	53.5
	Cache											
	8 Cores with	16.2	18.1	18.1	17.8	17.9	18.6	18.7 29.0	24.3	53.7	53.5	55.4
	Persist											

65 8-12 minutes slower than RF, DT and LOG. MPC and GBT performed the highest time. Overall,
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 3 

	Model	Complete	Task Time (GC	Input	Shuffle	Shuffle	Completed	Completed
		Tasks	Time)		Read	Write	Stages	Jobs
	RF+10 (4 Cores)	6276	9.5 h (20 min)	8.3 GB	726.8 MB 539.1 MB 51	
	RF+10 (8 Cores)	6276	20.7 h (44 min)	8.3 GB	717.9 MB 530.2 MB 51	
	RF+20 (4 Cores)	7476	9.4 h (20 min)	8.3 GB	712.7 MB 525 MB	57	
	RF+20 (8 Cores)	7476	20.8 h (45 min)	8.3 GB	722.7 MB 535.6 MB 57	
	RF+30 (4 Cores)	7876	9.7 h (20 min)	8.3 GB	733.2 MB 545.4 MB 59	
	RF+30 (8 Cores)	7076	21.4 h (44 min)	8.3 GB	727.8 MB 540.1 MB 55	
	DT+10 (4 Cores)	6275	9.3 h (19 min)	8.2 GB	767.8 MB 580.8 MB 50	
	DT+10 (8 Cores)	6275	21.2 h (46 min)	8.2 GB	777.2 MB 590.3 MB 50	
	DT+20 (4 Cores)	7075	9.5 h (20 min)	8.3 GB	823.5 MB 636.6 MB 54	
	DT+20 (8 Cores)	7875	20.8 h (44 min)	8.3 GB	891.2 MB 704.3 MB 58	
	DT+30 (4 Cores)	6675	9.5 h (19 min)	8.3 GB	811.4 MB 624.5 MB 52	
	DT+30 (8 Cores)	6675	21.4 h (46 min)	8.3 GB	810.4 MB 623.5 MB 52	
	LOG (4 Cores)	11262	5.8 h (12 min)	8.4 GB	673.6 MB 611.6 MB 115	
	LOG (8 Cores)	12966	12.5 h (30 min)	8.7 GB	687.7 MB 625.7 MB 131	
	LSVM (4 Cores)	8706	46.0 h (1.5 h)	6.9 GB	2.5 GB	386.3 MB 91	
	LSVM (8 Cores)	8493	98.1 h (3.3 h)	6.9 GB	2.4 GB	365.4 MB 89	

5. Executor of classifiers
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	4. Time difference between 8 cores and 4 cores
	Model	4 cores 8 cores Time difference
	RF+10	139.8	81.1	58.7
	RF+20	151.0	87.1	63.9
	RF+30	154.7	86.1	68.6
	DT+10	143.1	89.9	45.5
	DT+20	139.7	94.2	45.5
	DT+30	151.9	87.5	64.4
	GBT+10 119.5	71.2	48.3
	GBT+20 125.3	75.7	49.6
	GBT+30 125.4	82.2	43.2
	LOG	88.3	53.4	34.9
	LSVM	697.7	744.6	46.9
	MPC	113.4	63.1	50.3
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				6. Time scalability for all methods using different datasets length	
		Original		2x		4x		8x		16x		32x		64x	128x
	Conf	RF	LOG RF	LOG RF	LOG RF	LOG RF	LOG RF	LOG RF	LOG RF	LOG
	4 Cores	139.8 88.3	171.3 112.5 199.6 142.0 280.6 200.7 393.0 255.5 636.1 483.3 830.3 772.7 1996.5 1482.0
	4 Cores with	26.5	30.9	35.4	46.4	43.9	53.8	62.7	78.6	89.0	100.2 159.5 158.2 271.8 276.6 487.5	505.3
	Cache														
	4 Cores with	28.3	30.0	34.4	46.2	43.4	58.2	64.7	73.2	88.9	102.7 146.0 167.9 271.9 283.5 499.3	504.9
	Persist														
	8 cores	81.1	53.4	100.4 66.0	116.9 81.8	159.2 114.9 218.2 153.3 363.0 269.8 487.8 455.0 1163.2 833.4
	8 Cores with	16.3	19.3	19.5	27.0	23.7	30.2	35.8	43.3	52.9	56.2	88.7	96.2	162.7 168.9 292.5	299.3
	Cache														
	8 Cores with	16.2	18.7	20.8	29.5	23.8	31.2	36.1	42.9	51.3	55.7	89.7	96.1	161.8 170.4 291.4	305.4
	Persist														
	16 Cores	78.5	45.2	84.1	55.3	100.5 64.6	123.2 88.3	148.6 117.8 266.5 189.2 433.6 322.9 764.6	565.0
	16 Cores with	13.4	14.4	15.4	19.7	19.8	24.1	28.1	33.1	36.4	39.0	70.8	73.9	115.8 125.2 216.7	223.6
	Cache														
	16 Cores with	12.5	15.4	15.1	20.6	19.8	25.0	27.1	33.3	35.9	41.0	68.4	74.8	120.8 129.0 188.7	221.0
	Persist														
	32 cores	93.2	62.7	103.5 67.5	120.8 82.7	144.0 104.8 211.9 144.4 339.8 237.2 544.9 396.6 978.1	734.0
	32 Cores with	16.5	18.9	20.4	25.4	23.3	28.9	29.6	37.0	43.4	41.2	77.5	83.5	135.3 139.9 241.4	236.9
	Cache														
	32 Cores with	17.3	19.4	19.1	26.4	24.4	30.6	29.6	34.7	42.5	52.3	75.4	85.3	134.3 135.3 234.4	240.6
	Persist														
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 41 Features of the Heart Disease Data set

	N°	Group	Feature	Features Descriptions
	Serial		Names	
			ID	Patient identification number
			CCF	Social security number (replaces this with a dummy value of 0)
		Patient record data	AGE	Age in years
		Patient record data	SEX	1=male; 0 =female
		Patient record data	PAINLOC	Chest pain location (1=substernal; 0=otherwise)
		Patient record data	PAINEXER	1=provoked by exertion; 0=otherwise
		Patient record data	RELREST	1= relieved after rest; 0=otherwise
		Patient record data	PNCADEN	Sum of 5, 6, and 7
		Patient record data	CP	Chest pain type: 1= typical angina; 2=atypical angina; 3=non-angina pain;
				4=asymptomatic
		Patient record data	TRESTBPS	Systolic blood pressure at rest (in mm Hg on admission to the hospital)
		Patient record data	HTN	History of hypertension
		Patient record data	CHOL	Serum cholesterol in mg/dl
		Patient record data	SMOKE	1=yes; 0=no (is or is not a smoker)
		Patient record data	CIGS	Cigarettes per day
		Patient record data	YEARS	Number of years as a smoker
		Patient record data	FBS	Fasting blood sugar > 120 mg/dl (1=true; 0= false)
		Patient record data	DM	1=history of diabetes; 0=no such history
		Patient record data	FAMHIST	Family history of coronary artery disease (1=yes; 0=no)
		Patient record data	RESTECG	Resting electrocardiographic results: 0=normal; 1=having ST-T wave
				abnormality (T wave inversions and/or ST elevation or depression of >
				0.05 mV); 2=showing probable or definite left ventricular hypertrophy by
				Estes' criteria
		Patient record data	EKGMO	Month of exercise ECG reading
		Patient record data	EKGDAY	Day of exercise ECG reading
		Patient record data	EKGYR	Year of exercise ECG reading
		Medication during	DIG	Digitalis is used during exercise ECG (1=yes; 0=no)
		exercise test		
		Medication during	PROP	Beta blocker used during exercise ECG (1=yes; 0=no)
		exercise test		
		Medication during	NITR	Nitrates used during exercise ECG (1=yes; 0=no)
		exercise test		
		Medication during	PRO	Calcium channel blocker used during exercise ECG (1=yes; 0=no)
		exercise test		
		Medication during	DIURETIC	Diuretic used during exercise ECG (1=yes; 0=no)
		exercise test		
		Exercise test	PROTO	Exercise protocol: 1=Bruce; 2=Kottus; 3=McHenry; 4=Fast Balke;
				5=Balke; 6=Noughton; 7=bike 150 kpa min/min; 8=bike 125 kpa min/min;
				9=bike 100 kpa min/min; 10=bike 75 kpa min/min; 11=bike 50 kpa
				min/min; 12=arm ergometer
		Exercise	THALDUR	Duration of exercise test in minutes
		electrocardiogram		
		Exercise	THALTIME	Time when ST measure depression was noted
		electrocardiogram		
		Exercise	MET	Mets achieved
		electrocardiogram		
		Exercise	THALACH	Maximum heart rate achieved
		electrocardiogram		
		Exercise	THALREST	Resting heart rate
		electrocardiogram		
		Exercise	TPEAKBPS	Peak exercise systolic blood pressure (first of 2 parts)
		electrocardiogram		
		Exercise	TPEAKBPD	Peak exercise systolic blood pressure (second of 2 parts)
		electrocardiogram		
		Exercise	DUMMY	The same value as trestbps
		electrocardiogram		
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 41 Features of the Heart Disease Data set (continuation)

	N°	Group	Feature Names	Features Descriptions
	Serial			
		Exercise	TRESTBPD	Resting blood pressure
		electrocardiogram		
		Exercise	EXANG	Exercise-induced angina (1=yes; 0=no)
		electrocardiogram		
		Exercise	XHYPO	Exercise-induced hypotension (1=yes; 0=no)
		electrocardiogram		
		Exercise	OLDPEAK	E'xercise-induced ST depression relative to rest
		electrocardiogram		
		Exercise	SLOPE	The slope of the peak exercise ST segment: 1=upsloping; 2=flat;
		electrocardiogram		3=downsloping
		Exercise	RLDV5	Height at rest
		electrocardiogram		
		Exercise	RLDV5E	Height at peak exercise
		electrocardiogram		
		Cardiac fluoroscopy	CA	Number of major vessels (0-3) colored by fluoroscopy
		Cardiac fluoroscopy	RESTCKM	Irrelevant
		Cardiac fluoroscopy	EXERCKM	Irrelevant
		Cardiac fluoroscopy	RESTEF	Rest radionuclide ejection fraction
		Cardiac fluoroscopy	RESTWM	Rest wall motion abnormality: 0=none; 1=mild of moderate;
				2= moderate or severe; 3=akinesis or dyskinesis
		Cardiac fluoroscopy	EXEREF	Exercise-induce radionuclide ejection fraction
		Cardiac fluoroscopy	EXERWM	Exercise-induce wall motion abnormalities
		Exercise thallium	THAL	Exercise Thallium heart scan: 3=normal; 6= fixed defect;
		scintigraphy		7=reversible defect
		Exercise thallium	THALSEV	Not used
		scintigraphy		
		Exercise thallium	THALPUL	Not used
		scintigraphy		
		Exercise thallium	EARLPUL	Not used
		scintigraphy		
		Coronary	CMO	Month of cardiac cath
		angiograms		
		Coronary	CDAY	Day of cardiac cath
		angiograms		
		Coronary	CYR	Year of cardiac cath
		angiograms		
		Coronary	NUM	Diagnosis of heart disease (angiographic disease status):
		angiograms		-0= <50% diameter narrowing
				-1= >50% diameter narrowing
				(in any major epicardial vessel attributes 59 through 68 are vessels)
		Blood Vessels	LMT	Left main truck
		Blood Vessels	LADPROX	Proximal left anterior descending artery
		Blood Vessels	LADDIST	Distal left anterior descending artery
		Blood Vessels	DIAG	Diagonal branches
		Blood Vessels	CXMAIN	Circumflex
		Blood Vessels	RAMUS	Ramus intermedius
		Blood Vessels	OM1	First obtuse marginal branch
		Blood Vessels	OM2	Second obtuse marginal branch
		Blood Vessels	RCAPROX	Proximal right coronary artery
		Blood Vessels	RCADIST	Distal right coronary artery
			LVX1	Not used
			LVX2	Not used
			LVX3	Not used
			LVX4	Not used
			LVF	Not used
			CATHEF	Not used
			JUNK	Not used
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		.2. Datasets distribution	
	Dataset	Total # of instances	Presence HF	Absence HF
	Cleveland	283	157 (55%)	126 (45%)
	Hungarian	294	188 (64.9%)	106 (35.1%)
	CH	577	345 (59.8%)	232 (40.2%)

Table 4

 4 If this occurs, the value will be changed to the 'null value' category.

	The complete considerations of the cleaning process were: (1) classes 1, 2, 3, and 4 were
	converted to the same class (patient with heart disease); (2) null values were replaced by a unique

.3 shows the features not included in the analysis. For this investigation, Cleveland contained 41 features, Hungarian contained 45 features, and CH contained 38 features. The most important considerations for cleansing were to assign a single category for missing values called 'null value' and to create rules that consider data consistency. An example of this is that a patient cannot have cholesterol or age equal to zero. label; (3) zero was unacceptable in continuous results, therefore it was changed as null; (4) if SMOKE was unanswered but CIGS or YEARS were, SMOKE was changed from null to number 1 (patient is a smoker). If CIGS and YEARS had a value of 0, SMOKE was converted to 0; (5) if
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 4 CHI filters the features and sorts them, through repeated iterations, for selection. For this study, we selected the top 13 features using CHI to make a comparison with the literature. Table4.4 contemplates the amount of complete data and the correlation between the features and the label. Of the first 13, Cleveland and Hungarian selected 4 vessel features, while CH selected 5; the vessels were LADDIST, RCAPROX, OM1, CXMAIN, and LADPROX. Cleveland used the non-invasive test features, THAL, and CA, while Hungarian selected EXANG. Chest pain values included CP, RELREST, and PAINEXER. The patient records incorporated only CHOL. Exercise electrocardiogram features indicated THALACH, THALDUR, and ST segment values such as THALTIME, OLDPEAK, and SLOPE. The uncorrelated features involved medications during exercise test, PAINLOC, HTN, SMOKE, FBS, DM, FAMHIST, RESTECG,

		3. Features not included
	Category	Features not included in the model
	Irrelevant	ID (patient identification number), social security number (CCF), PNCADEN (sum
		of PAINLOC, PAINEXER and RELREST), EKGMO (month of exercise ECG
		reading), EKGDAY (day of exercise ECG reading), EKGYR (year of exercise
		ECG reading), CMO (month of cardiac cath), CDAY (day of cardiac cath), CYR
		(year of cardiac cath)
	Repeated	DUMMY (same as TRESTBPS)
	Unexplained RESTCKM, EXERCKM, THALSEV, THALPUL, EARLOBE, LVX1, LVX,2
		LVX3, LVX4, LVF, CATHEF, JUNK, NAME
	Null data	RESTCKM, EXERCKM, RESTEF (rest raidonuclide ejection fraction), RESTWM
		(rest wall motion abnormality), EXEREF (exercise radinalid ejection fraction),
		EXERWM (exercise-induce wall motion abnormalities), THALSEV, THALPUL,
		EARLOBE

RAMUS, and OM2. Overall, the common features across the three datasets should be considered as risk factors for heart disease, including CHOL, THALACH, LADDIST, OLDPEAK, THALTIME, RCAPROX, CP, and CXMAIN.
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	#SF	LF	%DC Corr	LF	%DC Corr	LF	%DC Corr
		Cleveland Dataset	Hungarian Dataset	CH Dataset
	1	CHOL	100.0 0.12	CHOL	93.2 0.20	CHOL	96.5 0.17

4. Features selected by CHI from raw data

Table 4
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	.5. Parameter for feature selection techniques
	Feature selection technique	Basic Hyperarameters
	ChiSqSelector	Selection method=numTopFeatures;
		Top features= default set to 50
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		.6. Parameters tuning for classifier in Apache Spark
	Classifier	Basic Parameters
	DT	algo="Classification"; numClasses=2; maxDepth=5;
		minInstancesPerNode="auto"; minInfoGain="auto"; maxBins=32; maxMemoryInMB=
		256 MB; subsamlingRate= "auto"; impurity "gini"
	GBT	Loss="Log Loss"; numIterations="auto"; learningRate="auto";
		algo="Classification"
	LOG	numClasses=2; MaxIter=10; RegParam=0.3; ElasticNetParam=0.8;
		Family="binomial"

  Table4.4. PCA created the principal components using the same CHI features. Overall, Cleveland dataset obtained the best results using CHI-PCA(Figure 4.2 and Figure 4.3). Nevertheless, DT and GBT presented better results using raw data. Compared to the raw data, CHI and CHI-PCA improved in the computations of LOG, MPC, NB. However, the performance decreased with DT, and GBT. The greatest improvement was in MPC using the features of CHI-PCA. MPC had an 8.1% accuracy increase, and an F1 score of 9.1%, respectively.RF behavior was the same with raw data and CHI, computing a recall of 100%, an accuracy of 98.9%, an F1 score of 98.8%, an MCC of 97.7%, and a Kappa of 97.7%. CHI-PCA-NB presented

the worst value, with an accuracy of 68.4%, an F1 score of 75.7%, an MCC of 37.7%, and a Kappa of 33.7%. GBT presented a pattern when applied with CHI and PCA as shown in Figure

4

.2. The values of MCC and Kappa are consistent among them.
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		.7. Performance of the raw data and CHI-PCA
		Performance	DT	GBT LOG MPC NB	RF
			Cleveland
	CHI-PCA	Accuracy (%) 97.3 96.1 97.6 92.1 68.4 98.7
		Precision (%) 100.0 97.1 100.0 95.2 65.0 100.0
		Recall (%)	92.3 94.3 94.1 88.9 90.7 97.1
		F1 (%)	96.0 95.7 97.0 92.0 75.7 98.6
	Raw Data-PCA Accuracy (%) 62.8 74.7 73.3 74.0 70.7 67.9
		Precision (%) 57.1 59.5 60.0 74.2 67.9 77.1
		Recall (%)	66.7 73.3 77.8 65.7 55.9 58.7
		F1 (%)	61.5 65.7 67.7 69.7 61.3 66.7
			Hungarian
	CHI-PCA	Accuracy (%) 95.5 98.8 98.8 94.0 82.8 99.0
		Precision (%) 90.3 97.0 100.0 88.9 84.4 100.0
		Recall (%)	96.6 100.0 96.6 94.1 71.1 96.8
		F1 (%)	93.3 98.5 98.2 91.4 77.1 98.4
	Raw Data-PCA Accuracy (%) 88.8 89.7 94.9 95.5 78.0 93.2
		Precision (%) 88.0 87.0 91.4 92.6 63.6 93.1
		Recall (%)	78.6 80.0 94.1 92.6 72.4 87.1
		F1 (%)	83.0 83.3 92.8 92.6 67.7 90.0
			CH	
	CHI-PCA	Accuracy (%) 98.4 98.9 99.4 88.6 68.8 99.4
		Precision (%) 100.0 97.3 100.0 87.1 70.8 100.0
		Recall (%)	96.3 100.0 98.6 83.6 55.3 98.6
		F1 (%)	98.1 98.6 99.3 85.3 62.1 99.3
	Raw Data-PCA Accuracy (%) 73.7 74.3 78.6 80.5 71.5 75.1
		Precision (%) 70.8 63.6 71.4 74.6 62.7 66.2
		Recall (%)	52.3 60.3 70.4 72.3 88.1 70.8
		F1 (%)	60.2 61.9 70.9 73.4 73.2 68.5
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		.8. Performance of non-invasive test values
	Dataset	Performance DT GBT LOG MPC NB	RF
	Cleveland	Acc (%)	86.6 87.7 88.0 86.8 76.1 86.2
		Precision (%) 88.9 85.0 90.6 92.7 68.0 87.8
		Recall (%)	82.1 85.0 82.9 80.9 85.0 81.8
		F1 (%)	85.3 85.0 86.6 86.4 75.6 84.7
		MCC (%)	73.8 78.5 79.0 73.4 52.0 79.9
		Kappa (%)	72.7 77.9 78.7 71.4 80.8 78.8
	Hungarian	Acc (%)	82.9 82.3 81.9 81.5 78.7 81.3
		Precision (%) 81.5 75.0 75.0 68.0 68.8 80.0
		Recall (%)	71.0 72.3 67.7 73.9 71.0 68.6
		F1 (%)	75.9 73.8 71.2 70.8 69.8 73.8
		MCC (%)	63.1 60.5 58.2 57.3 55.3 59.9
		Kappa (%)	62.8 60.5 58.1 57.1 55.2 59.4
	CH	Acc (%)	87.3 85.6 80.2 80.5 74.9 86.4
		Precision (%) 84.9 90.0 81.4 80.9 100.0 86.5
		Recall (%)	78.9 76.1 66.7 63.3 40.5 81.0
		F1 (%)	81.8 82.0 73.3 71.0 57.7 84.0
		MCC (%)	68.6 71.1 57.4 57.6 44.0 72.2
		Kappa (%)	68.6 70.4 56.8 56.7 32.5 72.1
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 49 Comparison of the difference in performance between accuracy and F1score

	Dataset	Method	DT GBT LOG MPC RF Average
	Cleveland Raw data % 0.3	0.0	1.2	1.1	0.1	0.54
		CHI %	0.5	2.1	1.0	0.1	0.1	0.76
		CHI-PCA % 1.3	0.4	0.6	0.1	0.5	0.58
	Hungarian Raw data % 1.3	1.1	2.5	2.5	1.6	1.8
		CHI %	1.6	0.6	1.7	1.0	0.8	1.14
		CHI-PCA % 2.2	0.3	0.6	2.6	0.6	1.26
	CH	Raw data % 0.3	0.0	1.4	2.7	1.3	1.14
		CHI %	0.1	0.1	0.3	2.0	0.4	0.58
		CHI-PCA % 0.3	0.3	0.1	3.3	0.1	0.82
	Average	0.87 0.54 1.04 1.71 0.61	0.96
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 4 11 shows the comparative performance of CH with the literature.[START_REF] Le | AUTOMATIC HEART DISEASE PREDICTION USING FEATURE SELECTION AND DATA MINING TECHNIQUE[END_REF] 

	performed the feature selection techniques of Infinite Latent Feature Selection (ILFS), Sort features
	according to pairwise correlations (CFS), Feature Selection and Kernel Learning for Local Learning-Based
	Clustering (LLCFS), and PCA. ILFS performed the best computation with 90.65% accuracy and was the

classifier that used the least number of features. CFS, LLCFS, and PCA computed 89.93% accuracy, but they need at least 55 features to achieve that result. They used the datasets of Cleveland, Hungarian, and
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 4 10. Comparison with other studies using the Cleveland dataset

	Author	Method	Accuracy Precision Recall Features
	Our study	ChiSqSelector+PCA and RF	98.7%	100.0% 97.1%	13
	Shamsollahi et al.,	C&RT	92.6%	92.6%	90.4%	20
	2019					
	Shamsollahi et al.,	ANN	90.4%	97.1%	80.8%	20
	2019					
	NaiduP & Rajendra,	K-mean based MAFIA with	85.0%	80.0%	85.0%	NA
	2012	ID3				
	H. et al., 2016	Adaptative	80.14%	81.5%	71.0%	29
		Boosting				

Table
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.12 contains the best models in the literature considering different methods with the features of Subset-A. Some studies had a high accuracy

[START_REF] Santhanam | Heart disease classification using PCA and feed forward neural networks[END_REF][START_REF] Uyar | Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks[END_REF]

, but
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		.11. Comparison with other studies using CH dataset		
	Author	Method	Accuracy Precision Recall Features
	Our study	Gradient-boosted Tree (GBT)	99.4%	100.0%	98.7%	Raw
						data
	Our study	ChiSqSelector+PCA and Logistic	99.4%	97.6%	100.0%	13
		Regression				
	Le et al.,	Linear SVM	89.9%	NA	87.0%	Raw
	2018					data
	Le et al.,	Infinite Latent	90.7%	NA	91.0%	39
	2018	Feature Selection (ILFS)				

  Chapter 5 available studies on levothyroxine treatment in patients with subclinical hypothyroidism, the data appear to suggest a benefit in reducing the rate of miscarriages in patients with positive Anti-TPO antibodies. It is reasonable to consider levothyroxine treatment for specific subgroups of patients with subclinical hypothyroidism.Currently, universal screening for thyroid diseases by measuring serum TSH in a patient with early pregnancy is controversial. Some authors are in favor (level C recommendation according to the system proposed by the US Preventive Service Task Force) and others are neither in favor nor against, but propose the intentional search for cases at risk at 9 weeks of gestation or during the first prenatal control visit. The recommendation level is shown in Table5.1. This screening unfortunately does not detect 30% or more of the cases of hypothyroidism or subclinical hypothyroidism
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 51 Dataset Risk profiles for thyroid disease screening

	Recommended profiles for thyroid disease screening in patients seeking pregnancy
	or recently pregnant
	Women over 30 years.
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 52 Women in first trimester of pregnancy dataset

	CODE	FEATURE	CONCEPTUAL DEFINITION	OPERACIONAL	DATA
				DEFINITION	TYPE
			ANTHROPOMETRIC		
	Age	Age	Years born Patient age at the first trimester	1=30>; 2=30-35;	Continuous
			prenatal control consultation date	3= 35-40; 4= 40<	
	Wt	Weight	Weight measurement in kilograms (kg)	40.1-115.0	Continuous
	Height	Height	Height in meters (m)	1.43-1.79	Continuous
	BMI	BMI	It is defined as the weight of a person in	15.4-43.8	Continuous
			kilograms divided by the square of his height in		
			meters (k/m 2 )		
	BMI-	Body mass index -	1=Underweight if <18.5; 2=normal weight if	1, 2, 3, 4, 5, 6	Categorical
	WHO	WHO classification	18.5-24.9; 3=overweight if 25-29.9; 4=obese		
		(WHO, 2014)	class I if 30-34.9; 5=obese class II if 35-39.9;		
			6=obese class III if >=40 (k/m 2 )		
			GYNECOLOGICAL		
	PG	Pregnancies	Number of pregnancies	1,2,3…,9	Discrete
	Del	Vaginal Deliveries	Number of vaginal deliveries	0,1,2,3	Discrete
	Cs	Caesarean	Number of caesarean deliveries	0,1,2,3,4	Discrete
		Deliveries			
	Ab	Abortions	Number of abortions	0,1,2,3,4,5	Discrete
	Ect	Ectopic	Number of ectopic pregnancies	0,1	Discrete
	GW	Gestation weeks	It is calculated using the LMP and the first	4,5,6, …,13	Discrete
			ultrasound		
	+ DAYS	More days	More days	0-9	Discrete
	Total	Gestation weeks	It is calculated using the LMP and the first	4.0-13.86	Continuous
	GW	TOTAL	ultrasound		
			PATHOLOGICAL HISTORY		
	CAH	Chronic Arterial	Presence of chronic arterial hypertension	1=yes; 0= no	Binary
		Hypertension			
	AD II	AD type II	Presence of autoimmune disorder (AD) type II	1=yes; 0= no	Binary
	Previous	Hypertensive	Presence hypertensive disease in previous	1=yes; 0= no	Binary
	HTN	Disease in Previous	pregnancies		
		Pregnancies			
			RISK FACTORS		
	Age>30	>30 Years	Patients over 30 years	1=yes; 0= no	Binary
	FHxTh	Family history of	Patients with a 1 st family history of thyroid	1=yes; 0= no	Binary
		Thyroid Disease	disease		
	ATD or	Autoimmune	Patients with autoimmune thyroid disease or	1=yes; 0= no	Binary
	Hypo T	Thyroid Disease or	hypothyroidism		
		Hypothyroidism			
	Goiter +	Presence of Goiter	Presence of goiter	1=yes; 0= no	Binary
	T+Anti	T + (Anti TPO)	Presence of previous positive antibodies: anti-	0=not performed,	Categorical
	TPO	antibodies	TPO, TRAb, and / or anti-thyroglobulin	1=negative,	
				2=positive	
	SxHypoT	Presence of	Patients with symptoms or signs suggestive of	1=yes; 0= no	Binary
		Symptoms or Signs	thyroid hypofunction.		
	Num Sx	Number of	Number of Symptoms or Signs Suggestive of	0,1,2,3,4,5	Discrete
		Symptoms	Thyroid Hypofunction		
	FI	Fatigue	Symptom or Sign Suggestive of Th Hypofunction	1=yes; 0= no	Binary
	CNST	Constipation	Symptom or Sign Suggestive of Th Hypofunction	1=yes; 0= no	Binary
	Cold	Cold	Symptom or Sign Suggestive of Th Hypofunction	1=yes; 0= no	Binary
	Myalgia	Myalgia	Symptom or Sign Suggestive of Th Hypofunction	1=yes; 0= no	Binary
	+ weight	+ Weight	Symptom or Sign Suggestive of Th Hypofunction	1=yes; 0= no	Binary

DX Th Diagnosis Thyroid Profile Diagnosis based on the TSH and T4L values of the 2017 American Thyroid Association guidelines 1=hypothyroidism; 0= healthy

  As a secondary information, the perinatal results of each patient were collected in retrospective: gestational age at delivery, birth route, weight, height and gestational age by Capurro

					Chapter 5
					Binary
	TX	TX Treatment	If treatment is indicated after obtaining thyroid	1=yes; 0= no	Binary
			profile results		
			PREGNANCY COMPLICATIONS		
	HD with	HTN with	Development of hypertensive disease from after the	1=yes; 0= no	Binary
	PG	Pregnancy	20th week of pregnancy		
	GD	Gestational	Impaired glucose levels detected during pregnancy	1=yes; 0= no	Binary
		Diabetes	according to the American Diabetes Association 2016		
	PROM	Premature	Rupture of amniotic membranes before the start of	1=yes; 0= no	Binary
		Rupture of	labor		
		Membrane			
	PTD	Preterm	Childbirth that occurs before 37 weeks of gestation	1=yes; 0= no	Binary
		Delivery			
			PERINATAL RESULTS		
	SDS	SDS at	Weeks of Unemployment Gestation. It is calculated	29.1-41.2	Continuous
		Unpacking	using the LMP and the first ultrasound.		
	Birth	Birth Route	Birth Route	1= delivery; 2=	Binary
				caesarean section	
	PW	Product Weight	Measurement of the bodies in kilograms (kg)	1.190-4.385	Continuous
	Ps	Product size	Height in centimeters (cm)	30-54	Continuous
	Capurro	Capurro	Method to estimate the gestational age of a newborn	38-41	Discrete
					107
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			3. Number of women in the first trimester pregnancy clusters	
					(a) All features			
		0	1	2	3	4	5	6	7
	Cluster 2	69	237						
	Cluster 3	71	167	68					
	Cluster 4	61	162	40	43				
	Cluster 5	47	45	15	161	38			
	Cluster 6	36	81	59	89	39	2		
	Cluster 7	51	78	47	3	14	33	80	
	Cluster 8	48	90	11	3	46	36	68	4
		(b) All features without perinatal results and pregnancy complications	
		0	1	2	3	4	5	6	7
	Cluster 2	65	241						
	Cluster 3	77	161	68					
	Cluster 4	62	107	42	95				
	Cluster 5	45	51	43	160	7			
	Cluster 6	63	122	62	3	23	33		
	Cluster 7	49	99	19	3	98	2	36	
	Cluster 8	41	156	17	8	6	33	41	4
				(c) Thyroid pathology			
		0	1	2	3	4	5	6	7
	Cluster 2	56	250						
	Cluster 3	56	28	222					
	Cluster 4	28	56	26	196				
	Cluster 5	27	196	9	48	26			
	Cluster 6	27	196	9	32	26	16		
	Cluster 7	27	188	16	31	26	9	9	
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					(d) Risk factors				
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Table 5 .

 5 4. Characteristics stratified by all features. Features are presented as mean ± SD

	Variable	All Data	Cluster0 (n=65) Cluster1 (n=241)
		ANTHROPOMETRIC		
	Age	1.88 ± 0.73	1.80 ± 0.73	1.90 ± 0.73
	Weight	64.53 ± 11.55	68.40 ± 13.50	63.49 ± 10.76
	Size	1.62 ± 0.06	1.62 ± 0.05	1.62 ± 0.06
	BMI	24.65 ± 4.13	25.96 ± 4.91	24.30 ± 3.83
	BMI-WHO	2.51 ± 0.79	2.74 ± 0.96	2.45 ± 0.73
		GYNECOLOGICAL		
	P	2.14 ± 1.26	2.26 ± 1.50	2.12 ± 1.20
	D	0.19 ± 0.39	0.12 ± 0.33	0.21 ± 0.41
	C	0.42 ± 0.49	0.52 ± 0.50	0.39 ± 0.49
	A	0.22 ± 0.41	0.29 ± 0.46	0.20 ± 0.40
	E	0.02 ± 0.15	0.00 ± 0.00	0.03 ± 0.17
	GW	8.29 ± 2.44	9.03 ± 2.60	8.09 ± 2.37
	+ DAYS	2.17 ± 2.09	2.32 ± 2.16	2.13 ± 2.07
	Total GW	8.60 ± 2.45	9.36 ± 2.60	8.39 ± 2.37
	PATHOLOGICAL HISTORY		
	AD II	0.02 ± 0.13	0.03 ± 0.17	0.01 ± 0.11
	Previous HTN	0.02 ± 0.15	0.05 ± 0.21	0.02 ± 0.13
		RISK FACTORS		
	>30	0.70 ± 0.46	0.65 ± 0.48	0.71 ± 0.45
	Family history of Thyroid Disease	0.03 ± 0.16	0.03 ± 0.17	0.02 ± 0.16
	Autoimmune Thyroid Disease or Hypothyroidism	0.02 ± 0.13	0.05 ± 0.21	0.01 ± 0.09
	Goiter +	0.01 ± 0.08	0.03 ± 0.17	0.00 ± 0.00
	T+Anti TPO	0.01 ± 0.11	0.03 ± 0.17	0.01 ± 0.09
	SxHipoT	0.22 ± 0.42	0.42 ± 0.50	0.17 ± 0.38
	NumSymptoms	0.39 ± 0.96	0.85 ± 1.35	0.27 ± 0.78
	Fatigue	0.11 ± 0.31	0.22 ± 0.41	0.08 ± 0.27
	Constipation	0.09 ± 0.29	0.12 ± 0.33	0.08 ± 0.28
	Cold	0.02 ± 0.13	0.05 ± 0.21	0.01 ± 0.09
	Myalgia	0.02 ± 0.14	0.06 ± 0.24	0.01 ± 0.09
	+ weight	0.03 ± 0.16	0.09 ± 0.29	0.01 ± 0.09
	Edema	0.04 ± 0.19	0.09 ± 0.29	0.02 ± 0.14
	Dry skin	0.01 ± 0.10	0.05 ± 0.21	0.00 ± 0.00
	AD I	0.01 ± 0.08	0.02 ± 0.12	0.00 ± 0.06
	Autoimmune disease	0.03 ± 0.16	0.03 ± 0.17	0.02 ± 0.16
	Infertile	0.03 ± 0.18	0.09 ± 0.29	0.02 ± 0.13
	IVF/ICSI	0.02 ± 0.15	0.05 ± 0.21	0.02 ± 0.13
	History of Abortion or Preterm Birth	0.17 ± 0.37	0.18 ± 0.39	0.16 ± 0.37
	Prev. Irradiation neck or head	0.01 ± 0.08	0.00 ± 0.00	0.01 ± 0.09
	Ant. Thyroid Surgery	0.01 ± 0.10	0.03 ± 0.17	0.00 ± 0.06
	Current Tx with T4L	0.02 ± 0.14	0.06 ± 0.24	0.01 ± 0.09
	Presence of some Risk Factor	0.39 ± 0.49	0.58 ± 0.50	0.34 ± 0.47
	THYROID PATHOLOGY		
	TSH	0.12 ± 0.32	0.12 ± 0.33	0.12 ± 0.32
	DX Thyroid Profile	0.18 ± 0.38	0.38 ± 0.49	0.12 ± 0.33
	TX	0.17 ± 0.37	0.37 ± 0.49	0.11 ± 0.32
	PREGNANCY COMPLICATIONS		
	Hypertensive Disease Associated with Pregnancy	0.03 ± 0.16	0.05 ± 0.21	0.02 ± 0.14
	Gestational Diabetes	0.14 ± 0.34	0.12 ± 0.33	0.14 ± 0.35
	Premature Membrane Rupture	0.07 ± 0.25	0.05 ± 0.21	0.07 ± 0.26
	Preterm Delivery	0.06 ± 0.23	0.08 ± 0.27	0.05 ± 0.22
	PERINATAL RESULTS		
	SDS at Unpacking	38.43 ± 1.46	38.21 ± 1.29	38.49 ± 1.49
	Birth Route	1.73 ± 0.45	1.72 ± 0.45	1.73 ± 0.45
	Product Weight	3135.50 ± 457.01 3144.89 ± 420.96 3132.96 ± 467.06
	Product size	48.81 ± 2.26	48.57 ± 2.16	48.88 ± 2.29

Table 5 .

 5 5.Characteristics stratified by all the features without perinatal and pregnancy complication results. Features are presented as mean ± SD

	Variable	All Data	Cluster0 (n=69)	Cluster1 (n=237)
		ANTHROPOMETRIC		
	Age	1.88 ± 0.73	1.90 ± 0.73	1.87 ± 0.74
	Weight	64.53 ± 11.55	64.99 ± 11.57	64.40 ± 11.56
	Size	1.62 ± 0.06	1.61 ± 0.05	1.62 ± 0.06
	BMI	24.65 ± 4.13	24.99 ± 4.27	24.56 ±4.09
	BMI-WHO	2.51 ± 0.79	2.62 ± 0.79	2.48 ± 0.79
		GYNECOLOGICAL		
	P	2.14 ± 1.26	1.94 ± 1.04	2.19 ± 1.32
	D	0.19 ± 0.39	0.10 ± 0.30	0.22 ± 0.41
	C	0.42 ± 0.49	0.43 ± 0.50	0.42 ± 0.49
	A	0.22 ± 0.41	0.22 ± 0.42	0.22 ± 0.41
	E	0.02 ± 0.15	0.01 ± 0.12	0.03 ± 0.16
	GW	8.29 ± 2.44	8.57 ± 2.65	8.21 ± 2.38
	+ DAYS	2.17 ± 2.09	2.43 ± 2.06	2.09 ± 2.10
	Total GW	8.60 ± 2.45	8.91 ± 2.68	8.51 ± 2.37
	PATHOLOGICAL HISTORY		
	AD II	0.02 ± 0.13	0.03 ± 0.17	0.01 ± 0.11
	Previous HTN	0.02 ± 0.15	0.01 ± 0.12	0.03 ± 0.16
		RISK FACTORS		
	>30	0.70 ± 0.46	0.71 ± 0.46	0.70 ± 0.46
	Family history of Thyroid Disease	0.03 ± 0.16	0.03 ± 0.17	0.03 ± 0.16
	Autoimmune Thyroid Disease or Hypothyroidism	0.02 ± 0.13	0.03 ± 0.17	0.01 ± 0.11
	Goiter +	0.01 ± 0.08	0.03 ± 0.17	0.00 ± 0.00
	T+Anti TPO	0.01 ± 0.11	0.06 ± 0.24	0.00 ± 0.00
	SxHipoT	0.22 ± 0.42	0.99 ± 0.12	0.00 ± 0.00
	NumSymptoms	0.39 ± 0.96	1.74 ± 1.31	0.00 ± 0.00
	Fatigue	0.11 ± 0.31	0.48 ± 0.50	0.00 ± 0.00
	Constipation	0.09 ± 0.29	0.41 ± 0.49	0.00 ± 0.00
	Cold	0.02 ± 0.13	0.07 ± 0.26	0.00 ± 0.00
	Myalgia	0.02 ± 0.14	0.09 ± 0.28	0.00 ± 0.00
	+ weight	0.03 ± 0.16	0.12 ± 0.32	0.00 ± 0.00
	Edema	0.04 ± 0.19	0.16 ± 0.37	0.00 ± 0.00
	Dry skin	0.01 ± 0.10	0.04 ± 0.21	0.00 ± 0.00
	AD I	0.01 ± 0.08	0.00 ± 0.00	0.01 ± 0.09
	Autoimmune disease	0.03 ± 0.16	0.00 ± 0.00	0.03 ± 0.18
	Infertile	0.03 ± 0.18	0.09 ± 0.28	0.02 ± 0.13
	IVF/ICSI	0.02 ± 0.15	0.06 ± 0.24	0.01 ± 0.11
	History of Abortion or Preterm Birth	0.17 ± 0.37	0.17 ± 0.38	0.16 ± 0.37
	Prev. Irradiation neck or head	0.01 ± 0.08	0.00 ± 0.00	0.01 ± 0.09
	Ant. Thyroid Surgery	0.01 ± 0.10	0.01 ± 0.12	0.01 ± 0.09
	Current Tx with T4L	0.02 ± 0.14	0.04 ± 0.21	0.01 ± 0.11
	Presence of some Risk Factor	0.39 ± 0.49	1.00 ± 0.00	0.22 ± 0.41
		THYROID PATHOLOGY		
	TSH	0.12 ± 0.32	0.06 ± 0.24	0.14 ± 0.34
	DX Thyroid Profile	0.18 ± 0.38	0.32 ± 0.47	0.14 ± 0.35
	TX	0.17 ± 0.37	0.32 ± 0.47	0.12 ± 0.33
	PREGNANCY COMPLICATIONS		
	Hypertensive Disease Associated with Pregnancy	0.03 ± 0.16	0.06 ± 0.24	0.02 ± 0.13
	Gestational Diabetes	0.14 ± 0.34	0.10 ± 0.30	0.15 ± 0.36
	Premature Membrane Rupture	0.07 ± 0.25	0.03 ± 0.17	0.08 ± 0.27
	Preterm Delivery	0.06 ± 0.23	0.04 ± 0.21	0.06 ± 0.24
		PERINATAL RESULTS		
	SDS at Unpacking	38.43 ± 1.46	38.54 ± 1.31	38.40 ± 1.50
	Birth Route	1.73 ± 0.45	1.70 ± 0.46	1.73 ± 0.44
	Product Weight	3135.50 ± 457.01	3150.42 ± 487.36	3131.15 ± 448.78
	Product size	48.81 ± 2.26	48.96 ± 1.77	48.77 ± 2.39

Table 5 .

 5 6. Characteristics stratified by all features without perinatal results and pregnancy complications. Features are presented as mean ± SD

	women between 30 and 35 years

gestational diabetes (0.22), premature membrane rupture (0.21) and preterm delivery (0.16).

Table 5 .

 5 7. Characteristics stratified by the thyroid pathology features. Features are presented as mean ± SD

	Variable	All Data	Cluster0 (n=56)	Cluster1 (n=250)
		ANTHROPOMETRIC		
	Age	1.88 ± 0.73	1.84 ± 0.73	1.89 ± 0.74
	Weight	64.53 ± 11.55	66.95 ± 13.35	63.99 ± 11.06
	Size	1.62 ± 0.06	1.62 ± 0.05	1.62 ± 0.06
	BMI	24.65 ± 4.13	25.43 ± 4.81	24.48 ± 3.95
	BMI-WHO	2.51 ± 0.79	2.64 ± 0.92	2.48 ± 0.76
		GYNECOLOGICAL		
	P	2.14 ± 1.26	2.38 ± 1.58	2.08 ± 1.18
	D	0.19 ± 0.39	0.14 ± 0.35	0.20 ± 0.40
	C	0.42 ± 0.49	0.54 ± 0.50	0.40 ± 0.49
	A	0.22 ± 0.41	0.32 ± 0.47	0.19 ± 0.39
	E	0.02 ± 0.15	0.00 ± 0.00	0.03 ± 0.17
	GW	8.29 ± 2.44	9.02 ± 2.54	8.12 ± 2.40
	+ DAYS	2.17 ± 2.09	2.39 ± 2.21	2.12 ± 2.06
	Total GW	8.60 ± 2.45	9.36 ± 2.53	8.43 ± 2.40
	PATHOLOGICAL HISTORY		
	AD II	0.02 ± 0.13	0.04 ± 0.19	0.01 ± 0.11
	Previous HTN	0.02 ± 0.15	0.04 ± 0.19	0.02 ± 0.14
		RISK FACTORS		
	>30	0.70 ± 0.46	0.68 ± 0.47	0.70 ± 0.46
	Family history of Thyroid Disease	0.03 ± 0.16	0.04 ± 0.19	0.02 ± 0.15
	Autoimmune Thyroid Disease or Hypothyroidism	0.02 ± 0.13	0.05 ± 0.23	0.01 ± 0.09
	Goiter +	0.01 ± 0.08	0.02 ± 0.13	0.00 ± 0.06
	T+Anti TPO	0.01 ± 0.11	0.02 ± 0.13	0.01 ± 0.11
	SxHipoT	0.22 ± 0.42	0.32 ± 0.47	0.20 ± 0.40
	NumSymptoms	0.39 ± 0.96	0.75 ± 1.39	0.31 ± 0.81
	Fatigue	0.11 ± 0.31	0.16 ± 0.37	0.10 ± 0.30
	Constipation	0.09 ± 0.29	0.13 ± 0.33	0.08 ± 0.28
	Cold	0.02 ± 0.13	0.05 ± 0.23	0.01 ± 0.09
	Myalgia	0.02 ± 0.14	0.04 ± 0.19	0.02 ± 0.13
	+ weight	0.03 ± 0.16	0.05 ± 0.23	0.02 ± 0.14
	Edema	0.04 ± 0.19	0.05 ± 0.23	0.03 ± 0.18
	Dry skin	0.01 ± 0.10	0.05 ± 0.23	0.00 ± 0.00
	AD I	0.01 ± 0.08	0.02 ± 0.13	0.00 ± 0.06
	Autoimmune disease	0.03 ± 0.16	0.04 ± 0.19	0.02 ± 0.15
	Infertile	0.03 ± 0.18	0.07 ± 0.26	0.02 ± 0.15
	IVF/ICSI	0.02 ± 0.15	0.04 ± 0.19	0.02 ± 0.14
	History of Abortion or Preterm Birth	0.17 ± 0.37	0.20 ± 0.40	0.16 ± 0.37
	Prev. Irradiation neck or head	0.01 ± 0.08	0.00 ± 0.00	0.01 ± 0.09
	Ant. Thyroid Surgery	0.01 ± 0.10	0.02 ± 0.13	0.01 ± 0.09
	Current Tx with T4L	0.02 ± 0.14	0.07 ± 0.26	0.01 ± 0.09
	Presence of some Risk Factor	0.39 ± 0.49	0.52 ± 0.50	0.36 ± 0.48
		THYROID PATHOLOGY		
	TSH	0.12 ± 0.32	0.14 ± 0.35	0.11 ± 0.32
	DX Thyroid Profile	0.18 ± 0.38	0.39 ± 0.49	0.13 ± 0.34
	TX	0.17 ± 0.37	0.38 0.49	0.12 ± 0.33
	PREGNANCY COMPLICATIONS		
	Hypertensive Disease Associated with Pregnancy	0.03 ± 0.16	0.05 ± 0.23	0.02 ± 0.14
	Gestational Diabetes	0.14 ± 0.34	0.09 ± 0.29	0.15 ± 0.36
	Premature Membrane Rupture	0.07 ± 0.25	0.05 ± 0.23	0.07 ± 0.26
	Preterm Delivery	0.06 ± 0.23	0.07 ± 0.26	0.05 ± 0.22
		PERINATAL RESULTS		
	SDS at Unpacking	38.43 ± 1.46	38.21 ± 1.33	38.48 ± 1.48
	Birth Route	1.73 ± 0.45	1.70 ± 0.46	1.73 ± 0.44
	Product Weight	3135.50 ± 457.01	3137.59 ± 408.52	3135.03 ± 467.94
	Product size	48.81 ± 2.26	48.58 ± 2.32	48.86 ± 2.25
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 5 8. Characteristics stratified by risk factors. Features are presented as mean ± SD

	Variable	All Data	Cluster0 (n=69)	Cluster1 (n=237)
		ANTHROPOMETRIC		
	Age	1.88 ± 0.73	1.90 ± 0.73	1.87 ± 0.74
	Weight	64.53 ± 11.55	64.99 ± 11.57	64.40 ± 11.56
	Size	1.62 ± 0.06	1.61 ± 0.05	1.62 ± 0.06
	BMI	24.65 ± 4.13	24.99 ± 4.27	24.56 ±4.09
	BMI-WHO	2.51 ± 0.79	2.62 ± 0.79	2.48 ± 0.79
		GYNECOLOGICAL		
	P	2.14 ± 1.26	1.94 ± 1.04	2.19 ± 1.32
	D	0.19 ± 0.39	0.10 ± 0.30	0.22 ± 0.41
	C	0.42 ± 0.49	0.43 ± 0.50	0.42 ± 0.49
	A	0.22 ± 0.41	0.22 ± 0.42	0.22 ± 0.41
	E	0.02 ± 0.15	0.01 ± 0.12	0.03 ± 0.16
	GW	8.29 ± 2.44	8.57 ± 2.65	8.21 ± 2.38
	+ DAYS	2.17 ± 2.09	2.43 ± 2.06	2.09 ± 2.10
	Total GW	8.60 ± 2.45	8.91 ± 2.68	8.51 ± 2.37
	PATHOLOGICAL HISTORY		
	AD II	0.02 ± 0.13	0.03 ± 0.17	0.01 ± 0.11
	Previous HTN	0.02 ± 0.15	0.01 ± 0.12	0.03 ± 0.16
		RISK FACTORS		
	>30	0.70 ± 0.46	0.71 ± 0.46	0.70 ± 0.46
	Family history of Thyroid Disease	0.03 ± 0.16	0.03 ± 0.17	0.03 ± 0.16
	Autoimmune Thyroid Disease or Hypothyroidism	0.02 ± 0.13	0.03 ± 0.17	0.01 ± 0.11
	Goiter +	0.01 ± 0.08	0.03 ± 0.17	0.00 ± 0.00
	T+Anti TPO	0.01 ± 0.11	0.06 ± 0.24	0.00 ± 0.00
	SxHipoT	0.22 ± 0.42	0.99 ± 0.12	0.00 ± 0.00
	NumSymptoms	0.39 ± 0.96	1.74 ± 1.31	0.00 ± 0.00
	Fatigue	0.11 ± 0.31	0.48 ± 0.50	0.00 ± 0.00
	Constipation	0.09 ± 0.29	0.41 ± 0.49	0.00 ± 0.00
	Cold	0.02 ± 0.13	0.07 ± 0.26	0.00 ± 0.00
	Myalgia	0.02 ± 0.14	0.09 ± 0.28	0.00 ± 0.00
	+ weight	0.03 ± 0.16	0.12 ± 0.32	0.00 ± 0.00
	Edema	0.04 ± 0.19	0.16 ± 0.37	0.00 ± 0.00
	Dry skin	0.01 ± 0.10	0.04 ± 0.21	0.00 ± 0.00
	AD I	0.01 ± 0.08	0.00 ± 0.00	0.01 ± 0.09
	Autoimmune disease	0.03 ± 0.16	0.00 ± 0.00	0.03 ± 0.18
	Infertile	0.03 ± 0.18	0.09 ± 0.28	0.02 ± 0.13
	IVF/ICSI	0.02 ± 0.15	0.06 ± 0.24	0.01 ± 0.11
	History of Abortion or Preterm Birth	0.17 ± 0.37	0.17 ± 0.38	0.16 ± 0.37
	Prev. Irradiation neck or head	0.01 ± 0.08	0.00 ± 0.00	0.01 ± 0.09
	Ant. Thyroid Surgery	0.01 ± 0.10	0.01 ± 0.12	0.01 ± 0.09
	Current Tx with T4L	0.02 ± 0.14	0.04 ± 0.21	0.01 ± 0.11
	Presence of some Risk Factor	0.39 ± 0.49	1.00 ± 0.00	0.22 ± 0.41
		THYROID PATHOLOGY		
	TSH	0.12 ± 0.32	0.06 ± 0.24	0.14 ± 0.34
	DX Thyroid Profile	0.18 ± 0.38	0.32 ± 0.47	0.14 ± 0.35
	TX	0.17 ± 0.37	0.32 ± 0.47	0.12 ± 0.33
	PREGNANCY COMPLICATIONS		
	Hypertensive Disease Associated with Pregnancy	0.03 ± 0.16	0.06 ± 0.24	0.02 ± 0.13
	Gestational Diabetes	0.14 ± 0.34	0.10 ± 0.30	0.15 ± 0.36
	Premature Membrane Rupture	0.07 ± 0.25	0.03 ± 0.17	0.08 ± 0.27
	Preterm Delivery	0.06 ± 0.23	0.04 ± 0.21	0.06 ± 0.24
		PERINATAL RESULTS		
	SDS at Unpacking	38.43 ± 1.46	38.54 ± 1.31	38.40 ± 1.50
	Birth Route	1.73 ± 0.45	1.70 ± 0.46	1.73 ± 0.44
	Product Weight	3135.50 ± 457.01	3150.42 ± 487.36	3131.15 ± 448.78
	Product size	48.81 ± 2.26	48.96 ± 1.77	48.77 ± 2.39
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CHAPTER 4

Classification models based on heart disease prediction using feature selection and PCA Increasing maternal obesity is associated with alterations in both maternal and neonatal thyroid hormone levels. Clinical Endocrinology, 84(4), 551-557.