
HAL Id: tel-04132636
https://theses.hal.science/tel-04132636v1

Submitted on 19 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automates implicites en logique linéaire et théorie
catégorique des transducteurs

Le Thanh Dung Nguyen

To cite this version:
Le Thanh Dung Nguyen. Automates implicites en logique linéaire et théorie catégorique des trans-
ducteurs. Other [cs.OH]. Université Paris-Nord - Paris XIII, 2021. English. �NNT : 2021PA131100�.
�tel-04132636�

https://theses.hal.science/tel-04132636v1
https://hal.archives-ouvertes.fr

Université Paris XIII (dite Sorbonne Paris Nord)
École Doctorale Sciences, Technologies, Santé Galilée

Implicit automata in linear logic
and categorical transducer theory

Automates implicites en logique linéaire
et théorie catégorique des transducteurs

Thèse de doctorat présentée par

Lê Thành Dũng (Tito) Nguyễn
Laboratoire d’Informatique de Paris Nord

pour l’obtention du grade de Docteur en Informatique

soutenue le 3 décembre 2021 devant le jury composé de :

Patrick Baillot Directeur de recherche CNRS Examinateur
Université de Lille

Stefano Guerrini Professeur Directeur de thèse
Université Paris XIII

Anca Muscholl Professeure Examinatrice
Université de Bordeaux

Daniela Petrişan Maîtresse de conférences Examinatrice
Université Paris Cité

Damien Pous Directeur de recherche CNRS Rapporteur
École normale supérieure de Lyon

Thomas Seiller Chargé de recherche CNRS Co-encadrant
Université Paris XIII

Igor Walukiewicz Directeur de recherche CNRS Rapporteur
Université de Bordeaux

Ce document est mis à disposition selon les termes de la licence
Creative Commons “Attribution 4.0 International”.

https://creativecommons.org/licenses/by/4.0/deed.fr
https://creativecommons.org/licenses/by/4.0/deed.fr

2

Abstract. This thesis aims to establish new connections between two distinct fields within
theoretical computer science. The first is automata theory, whose objects of study are models
of computation with limited memory. The second is the theory of programming languages,
in particular of the λ-calculus upon which the functional paradigm is based.

It is known that the functions from strings to booleans definable by programs written
in the simply typed λ-calculus, using Church encodings, correspond exactly to regular
languages. Taking this as our starting point, we give several other characterizations of
automata-theoretic classes of languages and string-to-string (or even tree-to-tree) functions
using λ-calculi with linear types. To prove those results, we develop some connections
between denotational semantics – which we use to evaluate λ-terms – and categorical
automata theory; in particular, we show that monoidal closed categories, which appear in the
semantics of linear logic, also provide a basis to generalize some constructions on automata
that morally involve function spaces. Our investigations into linear λ-calculi also lead us to
introduce and study a new transducer model that computes string-to-string functions with
polynomial growth.

The results presented in this dissertation are all joint work with Cécilia Pradic.

Résumé. Cette thèse cherche à établir de nouveaux liens entre deux domaines distincts
au sein de l’informatique théorique : d’une part la théorie des automates, dont les objets
d’étude sont des modèles de calcul à mémoire limitée, et d’autre part celle des langages de
programmation, en particulier du λ-calcul qui sert de base au paradigme fonctionnel.

Il est connu que les fonctions des mots vers les booléens définissables par des programmes
écrits en λ-calcul simplement typé, en utilisant les codages de Church, correspondent
exactement aux langages rationnels. Partant de là, nous employons des λ-calculs à types
linéaires pour caractériser plusieurs autres classes de langages et de fonctions sur les mots
(voire sur les arbres) provenant de la théorie des automates. Afin de démontrer ces résultats,
nous tissons des liens entre les sémantiques dénotationnelles – qui nous servent à évaluer
les λ-termes – et la théorie catégorique des automates ; en particulier, nous montrons que
les catégories monoïdales closes, qui apparaissent en sémantique de la logique linéaire,
fournissent également une base pour généraliser quelques constructions sur les automates
qui font moralement intervenir des espaces de fonctions. Nos recherches sur les λ-calculs
linéaires nous mènent également à introduire et étudier un nouveau modèle de transducteurs
qui calcule des fonctions sur les mots à croissance polynomiale.

Les résultats présentés ici sont tous issus d’une collaboration avec Cécilia Pradic.

Un jour vous verrez la serveuse automate
S’en aller cultiver ses tomates
Au soleil…

Starmania on semigrape varieties

When Randolph Carter was thirty he lost the key of the
gate of dreams. Prior to that time he had made up for the
prosiness of life by nightly excursions to strange and ancient
cities beyond space, and lovely, unbelievable garden lands
across ethereal seas […]
He had read much of things as they are, and talked with too
many people. Well-meaning philosophers had taught him to
look into the logical relations of things, and analyse the
processes which shaped his thoughts and fancies.

H. P. Lovecraft, The Silver Key

Il en est qui, face à cela, se contentent de hausser les épaules
d’un air désabusé et de parier qu’il n’y a rien à tirer de tout
cela, sauf des rêves. Ils oublient, ou ignorent, que notre
science, et toute science, serait bien peu de chose, si depuis
ses origines elle n’avait été nourrie des rêves et des visions
de ceux qui s’y adonnent avec passion.

Alexander Grothendieck, Esquisse d’un programme

Preface to the revised version (March 2023)

This new version of my PhD thesis finally incorporates the corrections suggested by the
reviewers (most notably an overhaul of Chapter 7), after I massively procrastinated doing so.
It also updates a few references to papers that were announced as “in preparation”. Most
importantly, I have taken the opportunity to purge my main coauthor’s deadname from
the document, after she made her coming-out in academic circles in January 2023 – thus
removing my last excuse for delaying this revision. Which brings me to…1

Credits

… Cécilia Pradic’s status as my collaborator on all the results presented here – in the
original version, this was only mentioned at the start of the “Contributions” section (§1.2),
so after 17 pages of preliminary background. While this is officially my dissertation, the
scientific substance that it contains is clearly also hers; I cannot overemphasize how crucial
Cécilia’s exceptional breadth and depth of technical knowledge was for embarking on this
research programme. She also convinced me by her actions that scientific collaborations
could be happy and fruitful, at a time where I was deeply cynical2 about the possibility of
working with other researchers in an environment that encourages people to obsess over
filling their resumes at the expense of (rigor | honesty | climate responsibility | …). Ideally, I
would like this paragraph to serve as sufficient proof for bureaucrats to consider that her
involvement in this thesis counts as some kind of supervision / advising activity.

It is also thanks to Cécilia’s familiarity with the automata group in Warsaw – where
she had spent half of her PhD – that I was put in contact with Mikołaj Bojańczyk, whose
work has exerted a considerable influence over mine. I am grateful to Mikołaj and to the
rest of the “polyregular gang” for making me feel part of a collective enterprise. I should
also acknowledge my intellectual debt to the French-Italian linear logic community, who
warmly welcomed me at the TLLA 2017 workshop when I presented my solitary work on
proof nets [Ngu20] – which led me to becoming a PhD student in Paris XIII.

Finally, I may have given insufficient credit in the first version of this thesis to the work
of Gallot, Lemay and Salvati [GLS20]. Their characterization of regular tree functions, when
read properly (i.e. in the light of the top-down states vs bottom-up registers duality of
Remark 6.0.1), is in fact very close3 to our characterization using “L-BRTTs” in Chapter 6,
which is key to obtaining the corresponding “implicit automata” result (third row of
Theorem 1.2.3). More generally, while working on this thesis, I found Sylvain Salvati’s
numerous works relating automata and λ-calculi [Sal15] to be very inspiring.

1In these credits, I am omitting the people whose names appear in the frontpage; their contribution goes
without saying. This is not meant to be an exhaustive acknowledgments section: it would not possible to
mention all of the many researchers with whom I have had inspiring and informative discussions (see the
acknowledgments of [NP20] for a small sample); and I do not wish to perpetuate the practice of showing off
one’s strong family ties, rich social life and connections to famous people (you also have to wonder how many
messy breakups have followed heartfelt declarations of love in thesis acknowledgments…).

2To quote a colleague who shall remain anonymous: “most people are doing their best, but sometimes
that’s observationally equivalent to dishonesty”.

3The main differences are discussed at the end of this preface.

4

WHAT’S NEW CONCERNING THE RELATED AND “FUTURE” WORK 5

Updated references and errata

• One result first claimed in this dissertation, without proof, is that pebble minimization
fails for general polyregular functions (refuting the central claim of [Lho20]), a discovery
made in Summer 2021 (so, at a time when I was supposed to be writing this manuscript…).
Proofs have now finally been made available, first in a rather technical paper by Mikołaj
Bojańczyk [Boj22a], followed shortly by a draft by Sandra Kiefer, Cécilia Pradic and
I [KNP23] where we propose simpler approaches. Both papers also prove the dimension
minimization theorem for MSO interpretations (a characterization of polyregular functions
that does not appear in this thesis, outside of a mention in the introduction).
– In Chapter 3, we reused Nathan Lhote’s techniques and ideas from [Lho20] to get a

(hopefully) correct proof of comparison-free pebble minimization. This has been reproved
in a shorter way using factorization forests by Gaëtan Douéneau-Tabot [Dou22b], who
also extends the result to a more permissive subclass of pebble transducers.

– Concerning polyregular functions, see also Bojańczyk’s recent survey [Boj22b].
• Another claim without proof in Chapter 1 was the P-completeness of normalization for

planar λ-terms – a joint work [Das+21] with Anupam Das, Damiano Mazza and Noam
Zeilberger. It turns out that our proofs were subtly wrong. At the time of writing, the
problem is still open – we are seriously considering the possibility that planar normalization
could in fact be sub-polynomial – but we know that in the planar λ-calculus extended with
multiplicative pair types σ ⊗ τ (that is, in Intuitionistic Non-Commutative Multiplicative
Linear Logic), normalization is indeed P-complete.
• I have also updated the reference concerning my work with Lutz Straßburger [NS22] –

which is far from the topic of this thesis, and thus appears only in two footnotes of the
introduction – to point to a significantly extended preprint, invited for a special issue of
Logical Methods in Computer Science, instead of the conference version. Our hope is that
this preprint can serve as a general introduction to pomset logic and BV; it also ends with
a survey of many related works.

What’s new concerning the related and “future” work

• We have mentioned in Section 1.2.3 that composition of copyless streaming string trans-
ducers is highly non-trivial. Yet a seemingly simple and short proof was given in the
original paper [AČ10, Proposition 1]. Actually, it was known for a while among experts
in transducer theory that this proof is wrong. (Morally, in the categorical language of
Chapter 4, they proceed as if SR⊕ was monoidal closed, which is not the case, although
their ideas suffice to establish the weaker Lemma 4.3.14.) This piece of folklore has now
been made public in the preprint [ADT22], which shares a coauthor with [AČ10]; the
discovery of the bug is attributed to Joost Engelfriet. A correct construction for composing
copyless SSTs is also provided in [ADT22], but techniques to do so were also already
known (in fact, this dissertation contains a proof of closure under composition, cf. §1.2.3).
• Mikołaj Bojańczyk and I have a new categorical take on regular string functions [BN23].

We are also working together (with Clovis Eberhart, Cécilia Pradic and Rafał Stefański)
on monoidal closed categories of single-use functions on atoms; it turns out, however, that
the ideas put forth in Section 1.4.4 for generalizing this to trees were excessively optimistic
(already the notion of regular language of trees with atoms is less robust than for strings).
• After delving into the literature on collapsible pushdown automata, I have convinced

myself that I could prove Conjecture 1.4.3, concerning the expressiveness of the simply
typed λ-calculus, and presented this in seminars in Warsaw and Lyon; however, the proof
is not yet written, so beware… A key ingredient is a result of Gordon Plotkin dating back
to 1982, which became public 40 years later [Plo22].

WHAT’S NEW CONCERNING THE RELATED AND “FUTURE” WORK 6

• In my discussion on complexity in the simply typed λ-calculus (Section 1.3.6), I did not
mention the precise complexity of β-convertibility for this system (which I didn’t know
at the time): it is Tower-complete. In an upcoming4 paper [Ngu23], I plan to clarify
this folklore fact and extend the Tower-hardness result to the safe (cf. §1.3.4) λ-calculus.
Blum and Ong [BO09] had only managed to prove PSpace-hardness in the safe case; it is
by using automata-theoretic techniques, inspired by the work presented in this dissertation,
than I could establish Tower-hardness by reduction from star-free expression emptiness.
• In several papers [Dou21; Dou22a; Dou22b], Gaëtan Douéneau-Tabot has pushed for

renaming “comparison-free pebble transducers” (Section 1.2.4 / Chapter 3) to “blind
pebble transducers”, and “comparison-free polyregular functions” to “polyblind functions”.
The latter has an undeniable advantage in brevity, so I am inclined to go along with this
terminological change.
– Gaëtan’s also has a preprint with Thomas Colcombet and Aliaume Lopez [CDL22]

on “Z-polyregular functions” – their new name for the class of Z-rational series of
polynomial growth (cf. Remark 2.3.15).

• The study of recognizable languages of simply typed λ-terms (mentioned in Section 1.3.3)
is being revived in Vincent Moreau’s ongoing PhD (see the recent preprint [GMM23] on
“profinite λ-terms”). Amina Doumane and I have started looking at the order 3 case,
which corresponds to syntax trees with binders modulo α-renaming.
• We mentioned in Section 1.4.1 a class E of tree functions studied by Engelfriet et al.,

and Géraud Sénizergues’s claim [Sén07] that the string-to-string functions in E can be
characterized as compositions of HDT0L transductions. He has now uploaded to arXiv a
proof of the “order 2” case5 of this claim [Sén23], and a preprint with the general case
should appear in the coming months.
• In Section 1.4.5 I mentioned a failed attempt by Damiano Mazza, Gabriele Vanoni and I

to use some variant of the Interaction Abstract Machine to relate polyregular functions
and the parsimonious λ-calculus. There have been two developments on that front:
– A recent preprint by Bojańczyk [Boj23] uses a system with a parsimonious type discipline

in order to characterize polyregular functions.
– Gabriele and I have abandoned parsimony for now, and are working on using the IAM

to prove other connections between automata and λ-calculi:
∗ To prove Claim 1.4.8 on tree-walking automata – we claimed in Section 1.4.3 that

this could be done with a semantic evaluation argument based on the geometry of
interaction (GoI), but attempting to apply this to affine rather than linear λ-terms
leads to bureaucratic complications (the Int-construction produces monoidal closed
categories which are not (quasi-)affine) that could perhaps be sidestepped by the
more operational version of the GoI given by the IAM.
∗ To characterize the functions computed by invisible pebble tree transducers [EHS21]

by a λ-transducer in the style of Gallot et al. [GLS20] with a limited amount of
non-linearity. One main difference between [GLS20] and our characterization of
regular tree functions (Theorem 1.2.3) is the use of regular lookaround vs additive
connectives (another is that our characterization of polyblind functions does not fit
into the setting of [GLS20]). GoI-based approaches such as the IAM do not handle
additives very well (though see [CM19] for an exception), so we are led to use regular
lookaround instead in this upcoming work.

4Sadly, my list of upcoming papers tends to grow faster than my list of written papers… In this specific case,
I first wanted to solve another related problem – see https://cstheory.stackexchange.com/questions/
52128/complexity-of-convertibility-in-simply-typed-%CE%BB-calculus-with-sums – and combine
the two into a single paper. It ended up more technical than expected, so I’ve abandoned it for now.

5Our “order 2” corresponds to Sénizergues’s “level 3”.

https://cstheory.stackexchange.com/questions/52128/complexity-of-convertibility-in-simply-typed-%CE%BB-calculus-with-sums
https://cstheory.stackexchange.com/questions/52128/complexity-of-convertibility-in-simply-typed-%CE%BB-calculus-with-sums

Contents

Preface to the revised version (March 2023) 4
Credits 4
Updated references and errata 5
What’s new concerning the related and “future” work 5

Chapter 1. Introduction 10
1.1. Background 11

1.1.1. On the landscape of TCS today: algorithms/complexity vs “logic in CS” 11
1.1.2. Automata on strings and monoids 12
1.1.3. Transducers, trees, etc 14
1.1.4. From proofs-as-programs to implicit complexity 17
1.1.5. Linearity in types and in automata 18
1.1.6. Towards implicit automata: computation on Church encodings 19
1.1.7. Implicit complexity meets denotational semantics 21
1.1.8. Categorical semantics 23
1.1.9. Automata and categories 25

1.2. Contributions 26
1.2.1. A research programme: implicit automata in typed λ-calculi 27
1.2.2. Equivalences in expressive power 28
1.2.3. Semantic evaluation and contributions to categorical transducer theory 29
1.2.4. Benefits for pure automata theory: a new class of transductions 31
1.2.5. A methodological commitment: naturality 33

1.3. Further related themes 33
1.3.1. Monadic second-order logic 34
1.3.2. Descriptive vs implicit complexity and their legacies 35
1.3.3. Previous work on implicit automata and adjacent topics 39
1.3.4. Higher-order recursion schemes 41
1.3.5. Simply typed λ-definability over Church encodings 42
1.3.6. Remarks on complexity in the simply typed λ-calculus and light logics 42

1.4. Work in progress 43
1.4.1. Tree transducers in the simply typed (or safe) λ-calculus 44
1.4.2. Affine types without additives, FO transductions & tree-walking automata 45
1.4.3. Geometry of interaction, categorical tree automata and planar transducers 47
1.4.4. Automata and transducers over infinite alphabets (nominal sets) 48
1.4.5. Polyregular functions in a parsimonious λ-calculus 49
1.4.6. Maximality of (poly)regular functions 50
1.4.7. Automata and complexity in the polymorphic elementary affine λ-calculus 51

1.5. Chapter-by-chapter outline 53

Chapter 2. Preliminaries: notations and automata models 54
2.1. Notations & elementary definitions 54

2.1.1. Sets 54
7

CONTENTS 8

2.1.2. Strings (a.k.a. words) 55
2.1.3. Ranked trees 55

2.2. Sequential transducers 55
2.2.1. The Krohn–Rhodes decomposition and wreath products of monoids 56

2.3. Streaming string transducers (SSTs) 59
2.3.1. Copyful SSTs 59
2.3.2. Copyless SSTs and regular functions 60
2.3.3. Layered SSTs 61
2.3.4. Transition monoids of (copyless) SSTs 63

2.4. HDT0L transductions 64
2.4.1. Layered HDT0L systems 65

2.5. Polyregular functions 67
2.5.1. Layered SSTs vs polyregular functions 68
2.5.2. Polynomial list functions 69
2.5.3. More on the “map” combinator 70

2.6. Tree transducers 70
2.6.1. Trees as output 71
2.6.2. Trees as input 71
2.6.3. Bottom-up (ranked|register) tree transducers 72

Chapter 3. Comparison-free polyregular functions 75
3.1. Composition by substitution 76
3.2. Comparison-free pebble transducers 77
3.3. Key properties of comparison-free polyregular functions 80

3.3.1. Closure under composition 81
3.3.2. A lower bound on growth from the rank 85
3.3.3. Proofs of Theorems 3.3.1 and 3.3.2 93

3.4. Comparison-free polyregular sequences 95
3.4.1. Proof of Lemma 3.4.3 95
3.4.2. Proof of Theorem 3.4.2 96
3.4.3. Proof of Corollary 3.4.4 97

3.5. Separation results 98
3.5.1. Proof of Theorem 3.5.1 99
3.5.2. Proof of Theorem 3.5.3 item (ii) 100

Chapter 4. Streaming transducers meet categorical semantics 103
4.1. Categorical preliminaries 103

4.1.1. Notations on categories 104
4.1.2. Monoidal categories, symmetry and functors 104
4.1.3. Function spaces and monoidal closure 106
4.1.4. Affineness and quasi-affineness 107
4.1.5. Monoids 107

4.2. A categorical framework for automata: streaming settings 108
4.2.1. The category SR(Γ) of Γ-register transitions 110

4.3. The free coproduct completion (or finite states) 111
4.3.1. Conservativity over affine monoidal settings 113
4.3.2. State-dependent memory SSTs 115
4.3.3. Some function spaces in SR⊕ 116

4.4. The product completion (or non-determinism) 117
4.4.1. Relationship with non-determinism 118

4.5. The ⊕&-completion (a Dialectica-like construction) 120

CONTENTS 9

4.5.1. The monoidal closure theorem 123
4.5.2. Summary of equivalences between C-SSTs for completions of SR 126

4.6. Half of a universal property for SR 126
4.6.1. Reminders on coherence for symmetric monoidal categories 128
4.6.2. Proof of Theorem 4.6.1 129

4.7. On closure under precomposition by regular functions 135
4.8. Uniformization through monoidal closure 138

4.8.1. Transformation forests and their semantics 139
4.8.2. Reducing transformation forests 141
4.8.3. Putting everything together 142

Chapter 5. String transductions in a linear λ-calculus 145
5.1. The λ`⊕&-calculus, Church encodings, and definability of functions 146

5.1.1. Types & terms 146
5.1.2. Church encodings of strings and trees 148
5.1.3. Two ways to define functions over Church encodings 149

5.2. Regularity equals λ`⊕&-definability 151
5.2.1. The syntactic category L of purely linear λ`⊕&-terms 151
5.2.2. L-SSTs compute regular functions 153

5.3. Comparison-free polyregularity equals (λ`⊕&,→)-definability 154
5.3.1. Extensional completeness 154
5.3.2. Outline of a semantic evaluation argument 155
5.3.3. Proof of Lemma 5.3.7 157
5.3.4. Proof of Lemma 5.3.8 159

5.4. Syntactic bureaucracy 159
5.4.1. Normalization of the λ`⊕&-calculus 159
5.4.2. More useful syntactic properties 165
5.4.3. Proof of Proposition 5.1.7 167
5.4.4. Proof of Lemma 5.2.5 168
5.4.5. Focusing 170
5.4.6. Proof of Lemma 5.3.9 172

Chapter 6. Regular tree functions 175
6.1. Tree streaming settings and C-BRTTs 176
6.2. Multicategorical preliminaries 178
6.3. The combinatorial multicategory T Rm 180
6.4. TR&-BRTTs coincide with regular functions, via coherence spaces 184
6.5. T R⊕& is monoidal closed 189
6.6. Preservation properties of finite completions 192
6.7. λ`⊕&-definable tree functions are regular 193

Chapter 7. Star-free languages in non-commutative linear logic 195
7.1. The λ`℘-calculus 196

7.1.1. Non-commutative booleans 197
7.1.2. Strings and λ`℘-definable languages 197

7.2. An upper bound via aperiodicity of purely linear λ`℘-monoids 198
7.3. Expressiveness of the λ`℘-calculus 199

7.3.1. Encoding aperiodic sequential transducers 200

Bibliography 203

CHAPTER 1

Introduction

Theoretical computer science (TCS) was born in the 1930s when several formalisms for
general-purpose computation were introduced. Arguably the two most important ones were:
• Turing machines, idealized mechanical devices arising from Alan Turing’s conceptual

analysis of how human beings carry out concrete pen-and-paper calculations,1
• and Alonzo Church’s λ-calculus, a somewhat more abstract formal system which is

recognized today as the first (high-level) programming language, that is, a means of
specifying algorithms while abstracting away from the details of the hardware meant to
execute them.

It turns out that a function (i.e. a deterministic input-output relation) can be computed
by a Turing machine if, and only if, it can be defined in the λ-calculus; and other models
of computation were also shown to be equivalent in this sense. This led to a rigorous way
to capture the intuitive concept of “which tasks can be solved by computers”: a function
is computable2 when it can be defined in any of those equivalent models. That two starkly
different approaches – through “machines” and through “programs” – converge to the same
definition of computability is a testament to the robustness of this definition.

But this also planted the seeds of the diversity of contemporary TCS. This manuscript
deals with two subfields that are on different sides of the machine/program dichotomy:
• Automata theory is concerned with a wide variety of machine models which often be

seen as restricted variants of Turing machines, with far less computational power. The
most famous example, covered in most undergraduate computer science curricula, is finite
automata (also known as finite state machines) which can find patterns in text using a low
amount of memory (they are used for instance to implement the Unix grep command).
• Programming language theory is an area aptly described by its name. Among its objects

of study are certain languages similar to the λ-calculus, called typed λ-calculi. They are
statically typed functional languages, like the “real world” languages Haskell and OCaml.

The work that we present here contains a modest contribution to “pure” automata theory,
but it is mostly about drawing connections between those two areas. At an impressionistic
level, the main ideas that we defend – or, to be pedantic, the thesis of the dissertation that
you are reading – are the following:
• Automata are relevant to natural questions on the expressive power of typed λ-calculi; we

demonstrate this by proving equivalences in the same sense as above.
• Conversely, the tools of programming language theory (in particular categorical semantics)

can provide conceptual insights on automata.
1Turing’s seminal paper [Tur37] uses the word “computer” to refer to a person performing calculations, as

was the historical usage. Indeed, computer science precedes the construction of computers in the modern sense
(Konrad Zuse’s Z3 was finished in 1941), although there are some precursors, for instance the 18th century
Jacquard looms that could be “programmed” using punch cards. The first design for a general-purpose
computer is Charles Babbage’s Analytical Engine from the 19th century – for which Ada Lovelace wrote the
first computer program in history – but it was not built at the time.

2Or historically, recursive, although this can be a bit misleading with respect to the current usage in
programming practice. Likewise, computability theory is also called recursion theory.

10

1.1. BACKGROUND 11

Before we can explain the precise contributions behind those slogans, we must first recall
some more background in order to explain what distinguishes our work from related topics
such as higher-order model checking or implicit computational complexity.

1.1. Background

1.1.1. On the landscape of TCS today: algorithms/complexity vs “logic in CS”.
The two themes that we have mentioned until now are both part of what is sometimes

called “Volume B” of theoretical computer science, or “European” TCS. The other half
of the subject, “Volume A”, is concerned essentially with algorithmics and computational
complexity – and it is often called simply “theory” in North American computer science
departments (despite the fact that a lot of interesting work on Volume B subjects is done
in the programming language research groups of some of those departments). To give
an illustration of this cultural divide, consider for instance Boaz Barak’s Introduction to
Theoretical Computer Science (https://introtcs.org): at the time of writing, out of 23
chapters, a single one is dedicated to finite automata, and the λ-calculus only takes up two
sections in the chapter on computability, while most other chapters are focused on complexity.
For further historical discussion and an explanation of the “Volume A/B” terminology, we
refer to Moshe Vardi’s column in Communications of the ACM [Var15] and to the interesting
comments at https://archive.md/v6iYu that it elicited in response.

Complexity theory focuses mainly on the “resources” necessary to carry out computations.
Two central examples are time complexity and space complexity: how long does it take for an
algorithm to execute, and how much memory does it need to consume during that execution,
depending on the size of its input? Typically, the Millennium Prize problem “P vs NP”
(see [Aar17] for a comprehensive survey) is about time complexity: roughly speaking, a
function is in P if there exists an algorithm that solves it “reasonably quickly” (to be precise,
the running time must be bounded by some polynomial function of the input size).

To define formally what this means, one must fix a model of computation with a measure
of execution time. There is an invariance thesis due to Slot and van Emde Boas [SE88]
which claims that all “reasonable” models of computation can simulate each other with a
low overhead in time and space complexity (polynomial in time and constant in space). As
a consequence, the aforementioned class P of tractable problems should not depend on the
considered model, which is an argument in favor of its canonicity, similarly to the multiple
equivalent definitions of computability. But those “reasonable” models tend to be ultimately
machines (in fact, theoreticians customarily use Turing machines for this purpose): it is
difficult to define the running time of a program in a high-level language without referring
to an (idealized) machine that executes it.3

So, in our earlier machines vs programs dichotomy, complexity theory and automata
theory are arguably on the same side, with the difference being the kind of restrictions

3 In the λ-calculus, there is a seemingly natural intrinsic measure of time complexity, namely the number
of β-reduction steps. But there are two issues: first, this number depends on the reduction strategy chosen,
and second, it is far from clear whether each β-reduction step can be simulated efficiently, since a naive
implementation would need to duplicate arbitrarily large data for a single step. A surprising positive result –
that a certain reduction strategy satisfies the time invariance thesis – was proved a few years ago [AL16]; we
refer to that paper for further discussion of the questions related to complexity invariance for the λ-calculus.

We should also mention that complexity theory papers do not describe their algorithms directly as
Turing machines, but as pseudocode that could in principle be complied into a machine. (In the same
way most mathematics could “in principle” be translated into Bourbaki’s foundational system, though this
would be completely intractable in practice [Mat02].) By sticking to an imperative programming paradigm
and a limited feature set, the complexity cost of each primitive operation in such pseudocode can be easily
understood, circumventing the second problem mentioned for the λ-calculus.

https://introtcs.org
https://archive.md/v6iYu

1.1. BACKGROUND 12

considered on machine models (quantitative vs qualitative). Furthermore, questions con-
cerning “what can be computed by given means” play an important role in both fields. For
instance, P vs NP is about whether two classes of functions are equal – in other words,
whether polynomial time algorithms are “powerful enough” to compute all NP functions.
Most people expect the answer to be negative, so the problem is to separate those classes.
Separation results are also fundamental for automata; the main difference is that while such
results for complexity classes tend to be either trivial or utterly out of reach of current
mathematics (P 6= NP is the latter), proving non-trivial separations is something ordinary in
automata theory – and we will do this in Chapter 3. And sometimes a qualitative constraint
and a quantitative bound yield the same class: for instance, multi-head finite automata are
equivalent to logarithmic space Turing machines (see [HKM11] for a survey).

All this to say that the Volume A/B distinction, grouping automata with programming
languages rather than with complexity, is not entirely self-evident from a purely technical
point of view. In order to give an impression of unity, Volume B is sometimes called “logic
in computer science”; it corresponds indeed to the scope of various CS conferences4 with
“logic” in their name, and of the journal Logical Methods in Computer Science. However,
we shall be mostly uninterested5 in the logical aspects here, although we will explain them
briefly in this introduction for the sake of broad cultural interest. Instead, we will emphasize
another commonality of both main currents of Volume B which, we believe, explains to a
large extent the success of the research programme presented in this dissertation:

their algebraic and compositional perspective on computation.

1.1.2. Automata on strings and monoids. We limit our presentation of automata theory
here to the kind that lends itself to such algebraic methods. For instance, we exclude the
above-mentioned multi-head automata from our scope, precisely because of their equivalence
with a standard space complexity class, which signals to us that their study is better left
to complexity theory.6 The spirit of what lies within our scope, though, is perhaps best
illustrated, at an elementary level, on the well-known regular languages.

What is called a language7 in TCS is a set of strings (or finite words); a string is a finite
sequence of letters taken in a finite alphabet. Given an alphabet Σ, we write Σ∗ for the set
of all strings over Σ; thus, a language is a subset of Σ∗ (for instance, {aa, abb, ba} ⊆ {a, b}∗).
A language L ⊆ Σ∗ can also be presented a function that maps each string in Σ∗ to either
“yes” or “no” (L is the set of strings mapped to “yes” by the corresponding function); such
functions are called decision problems in computability theory and complexity theory (and
decidability is sometimes used as a synonym for computability for such problems).

4Of course, the mere existence of those conferences confirms the sociological reality of “Volume B”. But
this should be nuanced by the observation that their audience generally consists of two clusters that rarely
attend each other’s talks.

5Not to say that these connections with logic are uninteresting per se – quite the contrary! – but they
simply fall out of the scope of this dissertation. The “linear logic” part of the title has been chosen to avoid
including a Greek letter: “linear λ-calculi” would have been more accurate. This is why no mention of
Aristotle, Frege or the crisis of foundations and Gödel’s incompleteness theorems had been made before the
present sentence. (Nor did we talk about the Ariane 5 maiden flight, a common argument for the necessity of
certified software and thus of logic; by the way, the final sequence in Koyaanisqatsi draws from a similar
incident something quite different, namely a statement against industrial civilization.)

6Thus, we are narrowing our focus to ignore the uses of automata as a qualitative approach to usual
time/space complexity classes, advocated in e.g. [Aub15].

7A different use of “language” that will sometimes occur in this manuscript is as an abbreviation for
“programming language” when the context makes this clear. The connection is that the set of source codes
without syntax errors in a given programming language is a set of strings. This is why some old textbooks
on compilers dedicate several chapters to the kind of formal language theory that uses automata.

1.1. BACKGROUND 13

For instance, P and NP are classes of decision problems, that is, any element of P or NP
is a function Σ∗ → {yes,no} for some finite alphabet Σ; equivalently, they can be defined as
classes of languages. Therefore, formally speaking, the class of regular languages is the same
type of object as P or NP; more than that, a language is regular if and only if it is recognized8

by some constant-space Turing machine.9 But it is arguably not very well-behaved as a
complexity class.10 Still, the notion of regularity can be said to be canonical, just like
computability and polynomial time complexity: there are many automata models that can
recognize exactly the regular languages.

The algebraic point of view on these equivalent machine models starts from the following
observation: many of them have a notion of “behavior of an automaton on a string”, which
determines whether the automaton returns “yes” when given that string as input, but
contains more information. We give some examples below; prior knowledge of the keywords
is not necessary to get the rough idea.
• The behavior of a deterministic finite automaton (DFA) on a word describes how its

internal memory is updated when it reads this word from left to right. The possible
values for the contents stored in memory are represented by a finite set of states Q, and a
behavior of the automaton is described by a function Q→ Q.
• Just like DFA, non-deterministic finite automata (NFA) process their input from left to

right, but they can “choose” between different updates, so that each initial state may lead
to multiple final states. Therefore, their behavior is best represented by a binary relation
on their finite set of states.
• Two-way deterministic finite automata (2DFA) – which are mostly the same thing as

constant-space Turing machines – can move their reading head back and forth over the
input, but they still admit a well-known notion of behavior which is a bit more complicated
to describe (see e.g. [Bir89]). We will not describe it formally here, but Figure 1.1.1 should
give a vague impression of the combinatorics involved.

The second crucial observation is that these behaviors enjoy a compositionality property.
Compositionality is the idea that “the parts determine the whole”; its concrete incarnation
here is that if we know the behaviors of an automaton on two strings (say, abb and aa), then
we can deduce its behavior on their concatenation (abbaa in this example). For DFA and
NFA, input concatenation is reflected at the level of behaviors by composition of functions
and of relations, respectively; there is also an associative composition operation for 2DFA
behaviors, illustrated in Figure 1.1.1. To put it succinctly: for a fixed automaton,
• the set of possible behaviors admits a monoid structure;
• the map from input strings in Σ∗ to the corresponding behaviors is a monoid morphism.

8To recognize a language is to compute the corresponding yes/no function.
9Some more results along these lines: Turing machines using o(log logn) space can only recognize regular

languages, but there are non-regular languages that can be recognized with O(log logn) space [SJL65].
Concerning time complexity, every single-tape Turing machine that runs in time o(n logn) recognizes a
regular language [Kob85].

10To go below logarithmic space complexity, the usual approach is to use circuit complexity. From
its point of view, regular languages are strange: they are not closed under uniform AC0 (i.e. ALOGTIME)
reductions, but there exist NC1-complete regular languages. That said, there is a substantial body of research
at the intersection of algebraic automata theory and circuit complexity, see [Pin21a, Chapter 14].

There are also parts of automata theory that do not fit neatly into either algebraic language theory or
complexity theory. An important example is pushdown automata which recognize context-free languages. In
theory, the syntax of most real-world programming languages (cf. Footnote 7) is context-free (an (in)famous
counterexample is that parsing Perl is undecidable [Keg08]), and students are taught to write compilers
using parser generators based on context-free grammars. In practice… well, to quote [Bes+10]: “Parsing
is considered a solved problem. Unfortunately, this view is naïve, rooted in the widely believed myth that
programming languages exist.”

1.1. BACKGROUND 14

a b

q→1

q←2

q←3

q→1

q←2

q←3

q→1

q←2

q←3

ab

q→1

q←2

q←3

q→1

q←2

q←3

Figure 1.1.1. The behavior of a 2DFA with 3 states on the inputs a and b
determines, by monoid multiplication, its behavior on the concatenation ab.

The third and last important point is that a fixed automaton has finitely many possible
behaviors (despite having infinitely many potential inputs). This strong limitation finally
brings us to the remarkably concise algebraic definition of regular languages:

Definition 1.1.1. A language L ⊆ Σ∗ is regular when there exist a finite monoid M , a
subset P ⊆M and a morphism ϕ : Σ∗ →M such that L = ϕ−1(P).

(Σ∗ endowed with concatenation is the so-called free monoid on the set Σ, with the
empty string as its identity element.) For example, the set of words in {a, b}∗ that contain an
even number of as and an odd number of bs is regular: take M = (Z/(2))2 and P = {(0, 1)}.

Let us forget about machine models for a moment and focus on the above definition
in itself. It opens up the possibility of studying correspondences between subclasses of
regular languages and classes of finite monoids: what languages can one define when the
possible values for the target monoid (M above) are limited? This is part of the field of
algebraic language theory, and a lot of research has been dedicated to such correspondences11

since the 1960s. The initial and most famous is Schützenberger’s theorem, whose history is
recapitulated in [Str18], and which we shall take as the definition of star-free languages.12

Definition 1.1.2. A monoid M is said to be aperiodic when for every x ∈M there is some
n ∈ N such that xn = xn+1. A language L ⊆ Σ∗ is star-free if and only if there exist a finite
aperiodic monoid M , a subset P ⊆M and a morphism ϕ : Σ∗ →M such that L = ϕ−1(P).

As an example, the monoid (Z/(2))2 is not aperiodic because n 6≡ n+ 1 (mod 2). This
is consistent with (but not sufficient by itself to imply) the fact that the aforementioned
language defined via parity conditions is not star-free.

In this dissertation, the only classes of languages that we consider are regular and
star-free languages. But they are by no means the only sensible possibilities: for instance,
there are recent results on a concrete algorithmic problem [AJP21] whose statements involve
somewhat exotic classes of finite monoids, and whose proofs required new developments in
algebraic language theory of potential independent interest [AP21].

1.1.3. Transducers, trees, etc. Coming back to machine models now, we have seen that
the “monoid of behaviors” philosophy allows one to prove that various automata only
recognize regular languages. This implies for instance that 2DFA are no more expressive

11A fundamental meta-result indicating what kind of correspondences to look for is Eilenberg’s variety
theorem. It states that varieties of regular languages correspond to pseudovarieties of finite monoids (here
“(pseudo)variety” means “well-behaved class” in a precise technical sense).

12What Schützenberger proved is that the algebraic definition we give is equivalent to regular expressions
without iteration star (hence “star-free”) but with complementation. Regular expressions are originally
a syntactic means to describe regular languages; they have been extended into a powerful tool for text
processing tasks, supported in the standard libraries of many general-purpose programming languages.

1.1. BACKGROUND 15

than (one-way) DFA, a result that would be non-trivial without this algebraic point of view.
But we will now discuss an extension that makes them no longer equivalent: instead of
merely returning a yes/no answer, we allow them to produce an output string, so that they
compute string functions Σ∗ → Γ∗ instead of languages. Such automata with output are
called transducers. The respective transducer counterparts to the three automata models
mentioned previously are:
• deterministic finite transducers, which compute sequential functions;
• (functional) non-deterministic finite transducers, which compute rational functions;
• two-way deterministic finite transducers, which compute regular functions;
and there is a strict hierarchy of function classes (surveyed in [FR16; MP19])

sequential functions (rational functions (regular functions
Those classical transduction classes have linear growth: input strings of length n are mapped
to output strings of length O(n). In this manuscript, we will also encounter the exponentially
growing HDT0L transductions (see [FMS14; FR21]) and various recently investigated classes
with polynomial growth [Boj18; DFG20] – including a new one that we introduce and study
in detail in Chapter 3. All those transductions also collapse to regular languages if we ask
them to produce a single output bit. In fact, a slightly stronger property satisfied by all
functions under consideration is the following:

Definition 1.1.3. We say that f : Σ∗ → Γ∗ preserves regular languages (by preimage) when
f−1(L) ⊆ Σ∗ is regular for every regular L ⊆ Γ∗.

This preservation property hints that those function classes and the devices that compute
them can be studied algebraically. Indeed, while the monoids of behaviors of transducers
tend to be infinite (since they have to record enough information to determine an output
string of unbounded length), they generally admit finite quotients on which we may apply the
powerful tools of finite monoid theory13 such as Ramsey’s theorem for additive colorings14

(used in Chapter 3) and the somewhat related15 Factorization Forest Theorem [Sim90]. Let
us also mention that a fundamental theorem called the Krohn–Rhodes decomposition [KR65]
can equivalently be stated either on sequential transducers – this is the version applied in
Chapter 7 – or on finite monoids.

The differences in expressive power between the transducer models listed above are
orthogonal to the considerations of algebraic language theory. One can combine both: there
exist suitable notions of aperiodic sequential/rational/regular functions. Another name for
aperiodic regular functions is first-order transductions; we will explain the “first-order” part
in the subsection on logic-automata connections (§1.3.1).

But before that, there is another source of diversity in automata theory that cannot
go unmentioned: the choice of input structure. For instance, there exist tree automata

13The area is generally called finite semigroup theory instead – a semigroup is like a monoid, but does
not necessarily have an identity element. There is not much technical difference since an identity can be
adjoined freely to a semigroup. (However, subsemigroups are often more useful than submonoids.)

14Ramsey’s theorem is a celebrated result from the early history of combinatorics on monochromatic
cliques in edge-colored complete graphs. It has spawned a whole subfield called Ramsey theory, with many
ties to other areas of mathematics (for instance set theory and the geometry of infinite-dimensional vector
spaces, as can be seen in the recent PhD thesis [Ran18]). The special case useful for automata theory
considers edge colors taken in a finite monoid and required to be “additive” i.e. compatible in some way with
a given order on the vertices. This “additive Ramsey theorem” turns out to be equivalent in logical strength
(in the sense of reverse mathematics) to fundamental results on automata over infinite words [Koł+19].

15It is said to be analogous to Ramsey’s theorem in both [Sim90] and [Pin21a, Chapter 18] but there is
no consensus on whether the analogy is truly relevant (according to personal communication from Charles
Paperman). Unlike in Ramsey’s theorem, the monoid structure is essential for factorization forests.

1.1. BACKGROUND 16

Figure 1.1.2. The Holy Trinity of JavaScript (widespread Internet meme).

taking trees as input. The main “practical” motivation for such devices is to process
hierarchically structured data, such as HTML documents.16 Here we must note a difference
with computability and complexity, which are mostly indifferent to input encodings: all
data is ultimately serialized as string of bits in real computers, and in particular a tree
could very well be given as text with matching delimiters (such as HTML tags). The issue
with automata is that they are too weak to recover the structure of a tree from its string
representation.17 Therefore, tree automata do not reduce to string automata; furthermore,
they have a rich algebraic theory of their own (the structures involved are more complicated
than monoids, see e.g. [Pin21a, Chapter 22]). And of course, there are also tree transducers.

There is a more radical departure from computability/complexity in the theory of
automata taking infinite structures as inputs [Pin21a, Chapters 6 and 8]. While there exist
meaningful notions of computability over infinite data, the languages of infinite words or
trees recognized by automata models are generally uncomputable.18 One major impetus
for studying such seemingly strange devices is their connection with logic, that we shall
describe in §1.3.1. For now, let us just say that logic provides alternative characterizations of
various classes of languages and transductions, demonstrating that those classes are somehow
natural. One could even say that logic, computation and algebra are three tightly entangled
aspects of the kind of automata theory featured in this dissertation.

The other half of “logic in CS” or “Volume B” has a celebrated logic/computation/algebra
trinity19 of its own, and it is finally time for us to properly introduce this topic. We shall
start by focusing on the logical and computational sides, and cover the algebra later.

16In the 2000s, many tree automata papers purported to be motivated by XML processing. At the time,
XML seemed poised to take over the Web, with the standardization of various formats (XHTML, SVG, …)
and technologies (XSLT, XPath/XQuery, …). But the trend faded away: HTML5 renounced the rigidity of
XHTML and JSON emerged as a more lightweight alternative for most data serialization purposes.

17As a famous StackOverlow answer puts it: “Parsing HTML with regex summons tainted souls into the
realm of the living” (regex = regular expressions, cf. Footnote 12 – though “regex” is sometimes used (e.g.
in [Sch19]) to refer to the extended regular expressions with backreferences supported by Perl and by the
PCRE library). Formally speaking, the Dyck language of well-bracketed words using the letters ‘(’ and ‘)’ is
not regular. It is also TC0-complete (see [BC89] for membership; completeness is folklore), so these format
conversions are not completely innocuous either from the point of view of circuit complexity.

18It is worth noting that several questions around computability for transductions between infinite words
have been tackled by recent research [Dav+20; FW21].

19Robert Harper, a programming languages researcher, coined the term “computational trinitarianism” in
a 2011 blog post; see https://ncatlab.org/nlab/show/computational+trinitarianism (and for another
trinity in computing, see Figure 1.1.2; tip: use the strict equality operator === instead!).

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454
https://ncatlab.org/nlab/show/computational+trinitarianism

1.1. BACKGROUND 17

1.1.4. From proofs-as-programs to implicit complexity. An influential principle in
contemporary programming language theory is the proofs-as-programs correspondence. The
idea is that, in certain logical systems, formal proofs admit a “normalization procedure” that
can be seen as the execution of a program – or, perhaps more accurately, as the evaluation
of an expression, i.e. a piece of code that denotes a value. According to this analogy, a proof
is thus a expression20 and the formula that it proves is the type of the expression: a label
that tells us what kind of result its evaluation yields. A remarkable empirical fact is that
this manifests as several concrete isomorphisms between proof systems and (theoretical)
programming languages that were originally designed independently.

The first instance of this correspondence, due to Howard21 [How80], was the relation
between intuitionistic propositional logic22 and the simply typed λ-calculus. The latter is
obtained by adding a type system23 on top of the (untyped) λ-calculus that we mentioned in
the very beginning. To illustrate this, consider two λ-terms (i.e. expressions in the λ-calculus)
t and u. One can always combine them into a new λ-term t u, the application of t to u,
whose intended intuitive meaning is that the function t is fed the argument u. But even if
this is allowed, it might not make sense: can you expect to get a meaningful result if you
give a string as argument to a function that expects an integer?24 Type systems classify
λ-terms to avoid such situations. In this example, the simply typed λ-calculus requires t to
have a type of the form σ → τ (notation: t : σ → τ) and u to have the type σ in order for
the application to be well-typed; moreover, in this case, t u : τ . The logical counterpart of
this typed application is the deduction rule “if A⇒ B and A then B” (whose traditional
name is modus ponens); application can be seen as a way to combine a proof of A⇒ B with
a proof of A to get a proof of B.25

Here it is important to understand that the λ-term t u is just a piece of source code that
says “apply t to u”; it is not in itself the result of this application. To get the result, one must

20The usual slogan is “a proof is a program” but in real-world programming languages, expressions are
merely parts of programs and can almost never constitute whole programs by themselves. Arguably, a Haskell
program could be seen as ultimately being an expression of type IO () but even then, this is too narrow for
us: we want to state a correspondence with logic that works for all formulas/types.

21Since Howard was inspired by an earlier remark by Curry, the proofs-as-programs correspondence is also
known as the Curry–Howard correspondence; another name is formulae-as-types (from the title of [How80]).

22Intuitionistic logic is a variant of classical logic that rejects the law of excluded middle “A or (not A)”.
What this restriction achieves is that intuitionistic logic is constructive; this means that, for instance, in
intuitionistic arithmetic, a proof of ∀x ∈ N. ∃y ∈ N. P (x, y) (implicitly) provides a way to “construct”, given
some x, a y such that P (x, y). The notion of construction is not precisely defined, but concretely, the function
that maps x to y is computable. More generally, the Brouwer–Heyting–Kolmogorov interpretation, introduced
in the 1930s, informally explains the meaning of intuitionistic formulas in terms of constructions; and long
before the proofs-as-programs correspondence, the theory of realizability gave this idea a formal incarnation
with computable functions as constructions. (Another famous computational interpretation of intuitionistic
arithmetic, Gödel’s Dialectica intepretation [Göd58], also predates proofs-as-programs; it will be discussed
again in §1.1.8 and Footnote 59.) Therefore, Howard’s contribution was not the mere idea of relating proofs
and computation; it was the stronger observation that syntactic proofs are isomorphic to typed λ-terms,
while the BHK interpretation only saw them as indirect linguistic descriptions of “constructions”.

23In this manuscript, type systems are always static: the type of each expression is determined without
evaluating it. This is an usual meaning of “type system” in academic circles. However, programmers often
speak of “dynamically typed” languages; “types” in this context are labels attached to values during program
execution. (There is also a somewhat orthogonal “strongly typed” vs “weakly typed” distinction, referring to
the type-casts allowed or implicitly performed: the type system of C is often considered static but weak.)
For a discussion of this polysemy of the word “type” in computing, see [Pet15].

24In some weakly typed languages, you might get a result using implicit conversions, whose behavior
might be unexpected: see https://www.destroyallsoftware.com/talks/wat and Figure 1.1.2.

25Observe that this is very close to the BHK interpretation (Footnote 22) of implication: “a proof of
A⇒ B is a construction that turns proofs of A into proofs of B”.

https://www.destroyallsoftware.com/talks/wat

1.1. BACKGROUND 18

execute this code. In the untyped λ-calculus, the execution might get stuck in an infinite
loop, but this never happens for λ-terms that are well-typed according to the simply typed
λ-calculus. Thus, the type system ensures termination by ruling out all non-terminating
λ-terms; but it also excludes some well-behaved λ-terms along the way, and the price to
pay is the loss of Turing-completeness26 (i.e. the ability to express all computable functions).
From a logical point of view, this is an acceptable price: termination is highly desirable
since it entails consistency, that is, the absence of contradiction in a logic.27

Such a termination guarantee might even come with quantitative time complexity bounds.
For instance, Hillebrand et al. [HKM96] show that simply typed λ-terms operating over
certain data encodings and returning booleans can compute all functions28 in the complexity
class ELEMENTARY (i.e. those with a time complexity bounded by a tower of exponentials),
and only those. This result illustrates the type-theoretic approach to implicit computational
complexity (ICC), a well-established field concerned with machine-free characterizations of
complexity classes via high-level programming languages.

1.1.5. Linearity in types and in automata. Many works in implicit computational
complexity have taken inspiration from linear logic [Gir87] to design more sophisticated
type systems; see [Péc20, §1.2.4] for a survey. The key concept of linear logic is that a proof
that “A linearly implies B” must use A “exactly once” to deduce B. From a computational
point of view, this has a clear meaning: a function is linear when it does not duplicate nor
discard its argument. Since duplication is a major source of complexity in the λ-calculus,
controlling it can lead to complexity bounds, hence the relevance to ICC.

An important point for us is that linearity has a counterpart in the old theme of
restricting the copying power of automata models (see e.g. [ERS80]). The latter is manifested
in one of the alternative definitions of regular functions (recall from §1.1.3 that these are
the functions computed by two-way transducers): copyless29 streaming string transducers
(SSTs) [AČ10]. An SST is roughly speaking an automaton whose internal memory consists
of a state (in a finite set) and some string-valued registers, and its transitions are copyless
when they compute new register values without duplicating the old ones. The term “linear”
itself has been used to describe this condition, e.g. “updates should make a linear use of
registers” [FR16, §5], although strictly speaking one should speak of affineness: duplication
is forbidden, but not erasure. One also finds the terminology single use restriction in
various tree transducer models [EM99; BE00; BD20] where it sometimes stands for more
sophisticated restrictions that mere copylessness. And more recently, copylessness has been
shown to play an important role in the theory of automata over infinite alphabets [BS20].

26A programming language whose programs always terminate cannot be Turing-complete – in particular,
it cannot define its own interpreter ! (See [BP16b], which also counter-intuitively exhibits a self-interpreter for
a terminating language that operates on typed representations of programs; the impossibility result assumes
that the interpreter takes a string containing raw source code as input.) Most real-world statically typed
languages choose to be Turing-complete and to allow non-termination; the type system is still useful in that
case, e.g. to detect whole classes of bugs during compilation, following Milner’s dictum that “well-typed
programs do not go wrong” [Mil78] (but one could argue that infinite loops are one way of “going wrong”…).

27Normalization of proofs, the logical counterpart of program execution, was first investigated by Gentzen
in the 1930s for the purpose of proving the consistency of Peano arithmetic, and his main result (the so-called
Hauptsatz) was a termination guarantee. Nowadays, terminating programming languages can be found in
proof assistants based on the proofs-as-programs paradigm.

28This does not mean that a given algorithm with elementary complexity must admit a direct implemen-
tation in the simply typed λ-calculus. Instead, what must exist is a λ-term computing the same function
from inputs to outputs, with potentially different inner workings. (The nuance is admittedly vague since the
notion of “equality of algorithms” does not have a proper mathematical definition.)

29The adjective “copyless” does not appear in the original paper [AČ10] but is nowadays commonly used
to distinguish them from the later copyful SSTs [FR21].

1.1. BACKGROUND 19

Let us briefly digress to review some other uses for linear logic. For theoreticians, it has
proved to be an invaluable tool in the fine-grained study30 of the (non-linear) λ-calculus
and its variants, thanks to translations of intuitionistic logic into linear logic. It also led to
the invention of proof nets – graph-like representations of proofs first introduced in Girard’s
seminal paper on linear logic [Gir87] – and inspired another way to build proofs known as
deep inference [Gug07]; both are innovative approaches to structural proof theory.31 On
the programming side, linear types are especially useful for resource management.32 The
last application that we will mention – our list is far from exhaustive – concerns neither
proofs nor programs, but linguistics; the relevant keyword for this line of work is “categorial
grammar” (not “categorical”!), see [MR12]. It started out with the Lambek calculus [Lam58],
which is actually a linear λ-calculus ante litteram, predating the official birth of linear logic
by three decades. An interesting feature of the Lambek calculus is that its type system
enforces not only linearity but also non-commutativity: roughly speaking, functions must
use their arguments in the same order that they are given in.33 As we shall see later, one of
the main results of this dissertation involves a non-commutative λ-calculus.34

1.1.6. Towards implicit automata: computation on Church encodings. We have
now given enough background to explain one of the main ambitions of this manuscript: to
provide for automata what (type-theoretic) implicit complexity has done for complexity
classes. One expected benefit would be, typically, to turn the analogy between linear types
and copyless / single use automata into precise technical connections. There are some
previous works tackling this theme of “implicit automata”, but not many (see §1.3.3). Our
main inspiration is a remarkable yet little-known35 result by Hillebrand and Kanellakis:
a language can be defined by a simply typed λ-term taking Church-encoded strings as inputs
if and only if it is regular [HK96, Theorem 3.4].

30Melliès has coined the term “micrologic” [Mel17b] to describe the quest for the “elementary particles”
of logic. This stated ambition should perhaps not be taken too literally, but linear logic sometimes feels like
a significant step in that direction, e.g. intuitionistic connectives are broken into “more primitive” linear
connectives. Let us give a concrete example of a technical breakthrough achieved through this approach:
the proof of the time invariance thesis for the (untyped) λ-calculus (cf. Footnote 3) in [AL16] relies on the
linear substitution calculus, which is heavily inspired by linear logic, and whose role is roughly to decompose
evaluation (β-reduction) into finer steps.

31Actually, both have forerunners in category theory: proof nets are related to the free compact closed
categories from [KL80], as explained in e.g. [Mel18, §1]; and for deep inference vs categorical logic, see [Hug04].

32The most noteworthy industrial success in this vein is perhaps the Rust systems programming language,
whose notion of ownership depends on linearity: each value can only have one “owner” at a time. The
academically-minded reader might want to read the recent column [Jun+21] on Rust. It also covers the
formalization efforts surrounding it, taking place in a framework for program verification called separation logic;
and separation logic itself is based on a variant of linear logic (namely the logic of bunched implications [OP99]).
Other applications of linearity to resource management can be found in [Bak92; Mun18] (with a historical
overview in [Mun18, §3]). Finally, let us note that version 9.0.1 of the Glasgow Haskell Compiler, released in
February 2021, added support for the LinearTypes extension (based on [Ber+18]).

33 In versions of linear logic that admit a tensor product, this makes the formulas/types A ⊗ B and
B ⊗A non-isomorphic in general, hence “non-commutativity”. On λ-terms or proof nets, non-commutativity
corresponds to a topological planarity condition; to our knowledge, this was first remarked in [Gir89b, §II.9].
For more recent works pursuing this idea, see e.g. [APR05; Abr07; Mel18]; there is an especially noteworthy
connection with bijective and enumerative combinatorics [ZG15]. Finally, there is another tradition that
studies extensions of commutative linear logic with a self-dual non-commutative connective, starting with
pomset logic [Ret97] (defined using proof nets) and continuing with BV [Gug07] (whose proof system was the
first based on deep inference); see [NS22] for a recent overview.

34Non-commutative types have also been used to restrict the expressive power of a domain-specific
programming language in [KSK08].

35At least this was the case when I started my PhD, see e.g. Damiano Mazza’s answer to this MathOverflow
question: https://mathoverflow.net/q/296879 – maybe this theorem has become more famous since then!

https://mathoverflow.net/q/296879

1.1. BACKGROUND 20

To explain this statement, we must first remark that many λ-calculi, including Church’s
original λ-calculus, do not feature integers or strings as primitive data types. But such
data can still be represented indirectly as functions,36 and one standard way to do so is by
using Church encodings. For instance, n ∈ N is represented, morally, as the n-fold iterator
f 7→ f ◦ · · · (n times) · · · ◦ f (this is a higher-order function: a function that takes another
function as its argument). This encoding of natural numbers was used by Church to define
computable functions N→ N in the λ-calculus; the idea was later generalized by Böhm and
Berarducci [BB85] to encodings of all “algebraic data types” (to use functional programming
jargon), a class that includes strings and trees.

In some terminating typed λ-calculi, most conceivable functions can still be programmed
over these encodings.37 This is very far from being the case for the simply typed λ-calculus,
as Hillebrand and Kanellakis’s theorem shows. Consistently with this, the characterization
of ELEMENTARY in the simply typed λ-calculus [HKM96] that we mentioned earlier uses a
somewhat unusual (though entirely justified) representation for the inputs: in this perspective,
the fact that Church encodings only allow regular languages to be recognized is an obstruction
to be overcome in order to capture an interesting complexity class. We prefer to see this
fact as a feature rather than a bug: it is our starting point to relate λ-calculi to automata.
(Church encodings also play an important role in another well-established topic at the
interface between λ-calculi and automata, higher-order model checking, see §1.3.4.)

Since “λ-term taking Church encodings as inputs” can be ambiguous, let us give a more
technical statement (which is not necessary to follow most of the rest of the introduction).
Theorem 1.1.4 (Hillebrand & Kanellakis [HK96, Theorem 3.4]). A language L ⊆ Σ∗ can
be defined by a simply typed λ-term38 of type StrΣ[τ]→ Bool for some simple type τ (that
may depend on L) if and only if it is a regular language.

Some explanations are in order. A type of the simply typed λ-calculus, or simple type
for short, is either the base type o or a function type σ → τ where σ and τ are types; in other
words, types are syntax trees with binary nodes → and leaves o. We write Bool and StrΣ
to denote the types for the Church encodings of booleans and strings respectively: they
have the property that the values39 of type Bool (resp. StrΣ) are in canonical bijection with
{true, false} (resp. Σ∗). We use the notation σ[τ] for the substitution of all occurrences of
o in σ by τ ; since the base type o is morally “generic” – it is not a primitive data type! –
every λ-term of type σ can also be given the type σ[τ]. In particular, each string w ∈ Σ∗

has an encoding w : StrΣ (recall that t : τ means “t has type τ”); according to the previous
remark, w : StrΣ[τ] for every simple type τ . Thus, any λ-term t : StrΣ[τ]→ Bool defines a
function Σ∗ → {true, false}, that corresponds to a language: given an input w ∈ Σ∗, the
application t w has type Bool and thus evaluates to either true or false.

The main ambiguity in our initial informal statement is that it could be interpreted
without the type substitution in the input. We discuss this, as well as some open questions
related to definability over Church encodings, in Section 1.3.5. But the results of this
dissertation will always involve this kind of substitution.

36For practical programming, it can sometimes be useful to represent data as functions. For instance,
difference lists are a functional representation of lists used by Haskell programmers, that supports a more
efficient concatenation operation than usual linked lists. More philosophically, this idea of “data as functions”
is also a sort of converse to “code is data”, one of the pillars of computing since the universal Turing machine
and the von Neumann stored-program architecture. (Or, as a pithy soundbite: Lisp is dual to Haskell.)

37For example, this is the case for the polymorphic λ-calculus a.k.a. System F, see e.g. [Wad07].
38A technical detail: one must consider a closed λ-term, i.e. without free variables. This also applies to

the following paragraph: “any closed λ-term t : StrΣ[τ]→ Bool defines a function Σ∗ → {true, false}”.
39The precise technical meaning of “value” here is “β-normal η-long term”; the important point is that

every simply typed λ-term evaluates to exactly one value.

1.1. BACKGROUND 21

1.1.7. Implicit complexity meets denotational semantics. We will now introduce an
important tool used to prove Theorem 1.1.4: the naive reading of the simply typed λ-calculus
as a way to define set-theoretic functions. One can assign to each simple type τ a set JτK
called its denotation, and to each term t : τ a denotation JtK ∈ JτK, in such a way that
(among other properties) Jσ → τK = JτKJσK and Jt uK = JtK(JuK). The second equation makes
sense because when t u : τ is well-typed, there must exist (according to the type system)
some σ such that t : σ → τ and u : σ, and then JtK ∈ JτKJσK is a function from JσK to JτK
while JuK ∈ JσK so JtK(JuK) is a well-defined element of JτK.

This set-theoretic interpretation obeys an important invariance property: if two λ-terms
evaluate to the same value, then they have the same denotation. This means that computing
the denotation of a term is somewhat related to evaluating it; what is particularly useful
for us is that when the type of a term t is simple enough, one can “read” the value of t
from JtK. Thus, a conceivable strategy to compute this value is to compute JtK by operating
on functions between sets. This is made possible by the compositionality of the interpretation
(compare with our discussion of monoids of behaviors in §1.1.2): the denotation of the
application t u is determined by the denotation of its subterms t and u (plus some other
similar properties, since application is not the only way to build λ-terms).

The readers who followed the technical details in the statement of Hillebrand and
Kanellakis’s theorem may be interested in the proof sketch that we give below leveraging
the above ideas; others can safely skip to the subsequent discussion.

Proof idea for Theorem 1.1.4. We prove the non-trivial direction (“only if”): the
language L defined by a simply typed λ-term t : StrΣ[τ]→ Bool must be regular.

The idea is that JStrΣ[τ]K can be given a monoid structure, by using as monoid multipli-
cation the denotation of a λ-term that computes the concatenation of two encoded strings.
One then checks that ϕ : w ∈ Σ∗ 7→ JwK ∈ JStrΣ[τ]K is a monoid morphism by composition-
ality. We have L = ϕ−1({x | JtK(x) = JtrueK}), assuming that JtrueK 6= JfalseK; this can
be shown to hold when the denotation of the base type is of cardinality at least 2. (We
are free to choose the set JoK, and this determines inductively, by Jσ → κK = JκKJσK, the
denotation of all other types.) Finally, in order to apply Definition 1.1.1 and deduce the
regularity of L, we want JStrΣ[τ]K to be finite, which is the case when JoK is finite. �

The same paper [HK96] contains a more sophisticated application of this set-theoretic
interpretation: characterizations of k-EXPTIME and k-EXPSPACE for all k ∈ N (including
P = 0-EXPTIME) in an extension of the simply typed λ-calculus with constants. In general,
one can also use other denotational semantics – interpretations of terms and types that
satisfies the invariance and compositionality properties mentioned previously – for this
kind of strategy. The technique using denotations to compute values40 is called semantic
evaluation. It has also been succesfully applied, for example, to study the complexity of
evaluating simply typed λ-terms [Ter12] and to implicit computational complexity in other
typed λ-calculi such as System T or PCF41 (see e.g. [Kri12] and the references therein).

However, it should be noted that most of the works in ICC based on linear logic do not
use denotational semantics. The influential methodology introduced by Girard’s Light Linear
Logic [Gir98] is to control the complexity of syntactic evaluation thanks to combinatorial

40There is a loosely related idea in type theory, applied in very different contexts, called normalization
by evaluation; see for example [Abe13]. In this broad family of ideas, we should also mention the application
to ICC of realizability semantics with bounded-complexity programs as realizers [DH11; HL21].

41Both are extensions of the simply typed λ-calculus (though System T was originally formulated as
an axiomatic theory in [Göd58]), supporting natural numbers as a primitive data type. But PCF does not
correspond to a consistent constructive logic: it is Turing-complete, and therefore necessarily non-terminating.

1.1. BACKGROUND 22

invariants (deemed “geometric”42) that do not depend on types. This means that those
works take place in settings where untyped proofs/terms terminate;43 in fact, the underlying
untyped language may suffice to get an ICC result, as in [Lau20] for instance. This is rather
uncommon in the world of proofs-as-programs: usually, types are the reason for termination
and thus the primary cause of any complexity bound. And semantic evaluation is a way to
study this causation, since semantic interpretations are made possible by typing.

Denotational semantics is not just useful for its application to ICC: it is also, in itself, an
important subfield of programming language theory. Originally, its goal was to provide a way
to rigorously define the meaning of programs, but these days, for “big” enough programming
languages, one generally prefers to specify what a program formally means by describing (a
mathematical model for) its execution – an approach named operational semantics.44 Still,
the denotational approach is well-suited to study minimalistic languages such as the typed
λ-calculi considered in this dissertation, and interpreting programs in rich mathematical
structures can yield valuable insights. Those insights may then sometimes inform the design
of new logical systems. Linear logic itself is a famous historical example, since Girard came
up with it by analyzing denotational models45 for λ-calculi that he had built earlier.46 More
recently, Voevodsky’s investigations into topological semantics of dependent type theory
(published in [KL21] posthumously) inspired homotopy type theory [Uni13]; it is completely
unrelated to our work, but still worth mentioning as undoubtedly one of the most significant

42French and Italian proof theorists who are familiar with linear logic are fond of speaking of “geometry
of computation” (or similar expressions) to describe this kind of analysis of proofs/programs. The choice of
words might be influenced by the visual intuitions associated with proof nets, but it is unclear whether pure
mathematicians would consider this to be truly geometric. Why not “combinatorics of interaction” instead?
The initial aim of “geometry” was to suggest something less ad hoc than operational semantics [Gir89b, §III.1];
one should perhaps be careful not to reenact Bourbaki’s historical contempt towards discrete math… (the
problem was not just French: Whitehead allegedly said that “combinatorics is the slums of topology” [Cam11]).

43 Recalling that termination implies consistency, when we put types on top of such an untyped language,
the logic that we get is consistent no matter what the type system looks like. Light Linear Logic was indeed
designed to avoid a logical inconsistency, to wit, Russell’s paradox in naive set theory (see also [Ter04]).

44Most real-world programming languages do not have any mathematically precise specification at all:
either there is no specification except for how the reference implementation behaves, or there is a standard
written in natural language that can be ambiguous. (For instance, you can test your knowledge of fine details
in the C++17 standard on https://cppquiz.org/.) Standard ML was the first “realistic” programming
language designed directly with a formal semantics [MTH90], and it was very influential for this reason.
From [MHR20, §6.3]: “While Michael Gordon and Milner had written, but not published, a denotational
semantics for LCF/ML in the late 1970s, that approach was abandoned for the definition of Standard ML –
instead, an operational approach was adopted. […] These operational approaches had several advantages
over denotational techniques” (a list of such advantages follows). A major application of formal semantics
of real-world languages in the 21st century is certified compilation: to convince a proof assistant that a
compiler is correct, the meaning of the source code that it takes must be rigorously specified. Some examples
of certified compilers are CakeML [Kum+14] (for a subset of Standard ML) and CompCert [Ler09] (for the
C language – see also [Kre15] for a formalized version of the C standard).

45We use “model” as a synonym for “semantics” when there is no risk of confusion (e.g. with the relational
structures of §1.3.1 which are models in the traditional sense i.e. Tarskian (6= denotational) semantics).

46To quote [Gir87, §III]: “For logic, computer science is the first real field of application since the
applications to general mathematics have been too isolated. The applications have a feedback to the domain
of pure logic by stressing neglected points, shedding new light on subjects that one could think of as frozen
into desperate staticism […]. Linear logic is an illustration of this point: everything has been available to
produce it since a very long time; in particular, retrospectively, the syntactic restriction on structural rules
seems so obviously of interest that one can hardly understand the delay of fifty years in its study. Computer
science prompted this subject through semantics: […]”. For a firsthand account of the birth of linear logic and
its very early history, see [Gir87, §V] where the curious idea of a “Taylor expansion” of λ-terms is mentioned.
This, together with further semantic motivations (in particular vector space semantics, see [Ker18] for recent
developments on the subject), would later give rise to differential linear logic [ER03; Ehr18] where one can
take “derivatives” of proofs/terms extending the analogy between linear types and linear algebra.

https://cppquiz.org/

1.1. BACKGROUND 23

developments in type theory since the start of the millennium (it includes in particular a
new logical treatment of equality47 and a proposal for new foundations of mathematics).

1.1.8. Categorical semantics. But how to define precisely what is a denotational semantics
for, say, the simply typed λ-calculus? A first attempt could be to consider that the denotation
of a type τ should be a set JτK equipped with some additional structure, while a λ-term
t : τ would have as its denotation an element JtK ∈ JτK. For the interpretation of types to be
compositional, Jσ → τK should be determined by JσK and JτK; the natural option would be to
take the set of structure-preserving functions between them. This fits with the set-theoretic
semantics that we saw previously, as well as with several important denotational models,
such as the partially ordered sets48 used for semantic evaluation in [Ter12; Kri12]. However,
some semantics do not fit into this mould: their interpretation of function types does not
consist of mere input-output maps. For example, in game semantics49 (see e.g. [CC21] for a
modern account), a denotation JtK ∈ Jσ → τK records some information on how the term t
processes an input of type σ to yield an output of type τ .

This echoes earlier developments in structuralist mathematics (told for instance in the
book [Cor04]). In the early-mid 20th century, the Bourbaki group had the ambition to
rebuild mathematics with a notion of structure at its center. They conceived structures
as collections of sets with auxiliary data, plus maps between those sets compatible with
the data; this encompassed various algebraic structures (monoids, groups, rings, …) and
morphisms between them, topological spaces and continuous functions, etc.50 But it turned
out later to be extremely fruitful to generalize this further: a category consists of a collection
of objects that are not necessarily sets51, and of a collection of morphisms that are not
necessarily set-theoretic maps. Instead, the desirable properties of sets and maps become
axioms included in the definition of categories (each morphism has a source and a target
that are both objects, two morphisms whose source and target match can be composed, …).

It makes sense, then, to use categories (with additional properties) for the denotational
semantics of typed λ-calculi. Hence the “computational trinity” of programming languages:

formulas ←→ types ←→ objects
proofs ←→ programs ←→ morphisms

47 The key to this new perspective on equality is the Univalence Axiom; the very vague idea is that this
makes equality the same thing as a certain notion of “equivalence” so that, for example, two isomorphic
algebraic structures are equal. It is validated by Voevodsky’s semantics, but at first, there was no known way
of computing with this new axiom. This problem was solved by cubical type theories (see [Mör21]), which,
interestingly, were also reverse-engineered from a constructive (cf. Footnote 22) denotational semantics! By
the way, these semantics have a reasonable claim at being “geometric” (cf. Footnote 42) since they are close
to topological spaces up to homotopy. (Some would argue that the recent normalization proof for cartesian
cubical type theory [SA21] is also geometric for different reasons, namely its reliance on Grothendieck topoi.)

48More precisely, we are speaking of a kind of posets called Scott domains (that can also be seen as
exotic topological spaces); morphisms between them are not just monotone, but also commute with directed
suprema. Domains are famous for providing the first non-trivial model for the untyped λ-calculus [Sco70];
the same paper also presents a conceptual analysis of computation that led to their definition. Hyland has
argued that in retrospect, Scott domains are not at all the simplest conceivable such model [Hyl10, §3].

49An important historical precursor to game semantics is Berry and Curien’s model of sequential
algorithms [BC82]. It led Berry to argue against set-based definitions of denotational models proposed by
previous authors and in favor of Lambek’s categorical proposal [Ber81].

50Algebraic structures are the product of an axiomatic approach to algebra pursued in the early 20th
century by German algebraists (the central figure being Emmy Noether) – which we now take for granted
when we work e.g. with arbitrary monoids defined as sets endowed with an associative binary operation and
a unit. Point-set topology was also invented around the same time.

51Well, if one uses ZF(C) as a foundation of mathematics, everything is technically a set (e.g. the natural
number 42 is a set!). But morally, one is not interested in the set-theoretic elements of an object in a category.

1.1. BACKGROUND 24

Figure 1.1.3. A commutative diagram hand-drawn by A. Grothendieck.
Translation of the letter: “Witches’ Kitchen 1971. Riemann–Roch Theorem: The final cry:
The diagram […] is commutative! To give an approximate sense to the statement about
f : X → Y , I had to abuse the listeners’ patience for almost two hours. Black on white (in
Springer lecture notes) it probably takes about 400, 500 pages. A gripping example of how
our thirst for knowledge and discovery indulges itself more and more in a logical delirium
far removed from life, while life itself is going to Hell in a thousand ways and is under the
threat of final extermination. High time to change our course!”
(Image and translation both from http://math.stanford.edu/~vakil/11-245/)

The idea was first advocated by Lambek52 [Lam72], who showed that cartesian closed
categories provide denotational models for the simply typed λ-calculus (with product types53);
it has been widely adopted as the “right” way to conceive of denotational semantics, despite
the frightening reputation of category theory as an esoteric subject full of scary diagrams
(aptly surrounded by the flames of Hell in Figure 1.1.3).54

From a modern point of view, a semantics is thus primarily understood as a category that
supports internal operations reflecting those of the programming language being interpreted
– for example, the application of a λ-term to another is modeled as (a special case of)
composition of morphisms. The mapping J−K from types/terms to denotations comes later:

52This is why computational trinitarianism is also called the Curry–Howard–Lambek correspondence.
53Here there is a slight historical mismatch between syntax and semantics: “cartesian” refers to a

categorical interpretation of product types σ × τ , which are not present in the most common version of the
simply typed λ-calculus. Multicategories (also known as colored operads) can be used to provide a semantics
for simple types without products: they handle “multimorphisms” with multiple arguments A1, . . . , An

directly, instead of turning them into morphisms with a single argument A1 × · · · × An using products
(see [Hyl17] or [Pel17, Chapter 1]). We will use multicategories in Chapter 6.

54This has not prevented some categorical concepts – most famously monads, see e.g. [Pet18, §2.1] – from
being incorporated into programming practice, especially in the Haskell language and its library ecosystem.

http://math.stanford.edu/~vakil/11-245/

1.1. BACKGROUND 25

it is the only map55 that “preserves” the aforementioned operations, e.g. Jt uK = JtK ◦ JuK
– this corresponds to compositionality of the semantics. To ensure the other important
property, invariance (if t and u evaluate to the same value, then JtK = JuK), one asks that
certain equations hold inside the category (for example, composition must be associative56).

This means that a category may turn out to provide denotational models for some
programming language despite having been defined and studied for a priori unrelated
reasons; it suffices to exhibit the appropriate structure on the category. Valeria de Paiva’s
Dialectica categories [Pai89] are an example of this (whose application in our work58 will
be discussed in §1.2.3). They originated as a categorical account of Gödel’s “Dialectica”
functional interpretation [Göd58], a kind of translation from one logical system to another
with a computational flavor.59 It was then noticed that Dialectica categories form a semantics
of linear logic – and at a time when linear logic was still very young, this provided an argument
in favor of its relevance (no pun intended [Avr14]).

1.1.9. Automata and categories. An emphasis on intrinsic algebraic structure is present
both in semantics and in the approach to automata behaviors we saw in §1.1.2. In the latter,
one starts by coming up with the target monoid; the morphism from strings to behaviors is
then uniquely determined by the images of the input alphabet letters (this is what “free
monoid” (§1.1.2) means). We could even argue that this is an instance of denotational
semantics if the letters are seen as instructions – strings would then be simple sequential
programs. Indeed, monoids and categories with a single object are the same thing!60

More generally, for an object X in a category C, the set HomC (X,X) of morphisms from
X to X has a canonical monoid structure (given by composition of morphisms in C). This
is particularly relevant to us: thanks to this, our descriptions of the behaviors of various
automata models in §1.1.2 can be recast in categorical terms. (By FinSet (resp. FinRel) we
mean the category of finite sets and functions (resp. relations) between them.)
• Monoids of behaviors of deterministic finite automata are of the form HomFinSet (X,X).

55Up to natural isomorphism, if J−K is seen as a functor from the syntactic category (whose objects and
morphisms are types and terms respectively) to the category of denotations.

56This is part of the definition of a category. But programming languages with side effects (mutable
state, exceptions, input/output…) have a non-associative composition that reflects their sensitivity to the
order of evaluation. A major focus of the “French school” has been to gain a subtle understanding of such
situations using the notion of polarity, starting with Girard’s work on classical logic [Gir91]. Indeed, one
widespread proofs-as-programs counterpart of classical logic (though not the only possible one57) is a family
of λ-calculi with the side effect of non-local control flow (using “call with current continuation” or similar
operators) [Gri90; Par92; CH00]. For modern accounts of polarity and non-associativity, see [Zei09; Mun13].
Let us also mention classical realizablity [Kri09] which attempts to give a computational content to axioms in
set theory (e.g. the Axiom of Choice [FG20; Kri20]) using side effects.

57For radically different alternatives, see e.g. [Alc19, Part II] or [Str11, Chapter 2].
58In fact Dialectica-like categorical structures have already appeared in quite varied and unexpected

contexts. In “applied category theory”, a recent example is [DLP21]; we also highly recommend reading Jules
Hedges’s Lenses for philosophers (https://archive.md/R72aj) for an explanation of the connections with
lenses from functional programming (see e.g. [Cla+20]) and with categorical approaches to game theory and
microeconomics [Gha+18]. More in line with the topic of this dissertation, Dialectica-like semantics of linear
logic have also been built out of automata on infinite words [PR19] and infinite trees [Rib20].

59For a modern account of the Dialectica translation in terms of side effects, following the paradigm
described in Footnote 56, see [Péd15] (as well as [KP21] for a connection with differential LL (cf. Footnote 46)).

60This observation leads to working with finite categories as a generalization of finite monoids, which
can be useful in the context of algebraic language theory, as demonstrated in the (very long) paper [Til87].
The recent work [AP21] that we cited at the end of §1.1.2 relies on the Delay Theorem from [Til87], whose
statement involves categories. However, all this is quite different from the kind of connections between
category theory and automata that we investigate in this manuscript. Also, feel free to add “locally small” in
front of “categories” if you want to be pedantic about sets vs proper classes.

https://archive.md/R72aj

1.2. CONTRIBUTIONS 26

• Monoids of behaviors of nondeterministic finite automata are of the form HomFinRel (X,X).
• For two-way automata (2DFA), Hines [Hin03] has shown that this pattern can be continued

by considering the category Int(PFSet) (PFSet = partial functions on finite sets), defined
using the generic Int-construction on traced monoidal categories [JSV96]. It is noteworthy
that the not-quite-trivial combinatorics of this automata model can be recovered from
categorical “abstract nonsense”, which moreover is also related to the so-called geometry
of interaction semantics of linear logic – we will say more about this connection in §1.4.3.

This observation almost suffices by itself to establish category theory as a language to
uniformly describe these different kinds of automata. (Such unification and generalization is
typical of the role played by categories in mathematics.) There remains to take care of a few
details, such as the fact that automata have initial and final states – here, morphisms whose
source and target do not coincide have a role to play. This has been done by Colcombet and
Petrişan [CP17a; CP20], who provide a suitable framework in which one can say that a DFA
(resp. NFA, 2DFA) is an automaton over the category FinSet (resp. FinRel, Int(PFSet)).

One benefit of this framework is that it allows one to relate the expressive power of various
automata models using functors, i.e. “morphisms between categories”. Let us illustrate this
with an example from [CP20, §3.3]. There is a functor P : FinRel→ FinSet that sends any
object (finite set) X to its powerset P(X) and any morphism (relation) R ⊆ X × Y to the
function S ∈ P(X) 7→ {y ∈ Y | ∃x ∈ S. (x, y) ∈ R} ∈ P(Y). It induces a translation between
the corresponding automata, that is, from NFA to DFA: a determinization procedure. As
the reader might already have guessed, this is none other than the “powerset construction”
covered in undergraduate theory of computation courses! (It is a bit more efficient, in terms
of state space explosion, than the determinization through monoids sketched in §1.1.2.)

A large focus of [CP20] is on developing a general automata minimization theorem that
can be instantiated on various categories (applications may be found in [CP17b; CPS21]).
This kind of use of category theory to understand the essence of various constructions on
automata – such as determinization or minimization – and to generalize them to other
settings has a long history, see for instance [Hee+19] and the many references therein; it is
also among the main interests of the “coalgebra community” (https://www.coalg.org/).

1.2. Contributions

Since this document is a PhD thesis, in order to fulfill one of its functions, there must
come a moment (much to my chagrin) when I – the author of these lines – argue that I
have made some modest contribution to the sum of human knowledge. In this section, I will
therefore summarize the portion of my research that I have included in this dissertation.61 It
has been carried out in collaboration with Cécilia Pradic, and all chapters except for this
introduction are based on jointly written material (either published papers62 [NP20; NNP21]
or unpublished drafts) that I have slightly reworked for the sake of a consistent narrative.

61I have also been working during my PhD on a mostly unrelated topic, which will not be covered here:
applying graph algorithms to tackle old questions on proof nets and deep inference [Ngu20; NS22].

62One of the authors of [NNP21], C. Noûs (https://www.cogitamus.fr/camilleen.html), is fictional
(see also [PS20]). They symbolize the fundamental dependence of any piece of research on the wider community
of scientists beyond its handful of coauthors, as well as an opposition to metrics devised by bureaucrats,
among other things. It is because of this distaste for bean-counting that I will not guesstimate here which
percentage of the work presented here is mine, or worse, indicate which theorems I have personally proven and
which ones are due to my coauthor in this manuscript; in any case, since many ideas exposed here emerged
from our conversations, this would not be very meaningful. That said, it can sometimes be appropriate to
delineate individual contributions in a joint work – for instance, in case of significant differences in seniority
between coauthors, or to counteract bias against (or the invisibilization of) under-represented minorities. An
example of such authorship statements done right, in my opinion, can be found in [Rin21] (that PhD thesis
is also interesting scientifically: it applies univalence (Footnote 47) to practical proof engineering).

https://www.coalg.org/
https://www.cogitamus.fr/camilleen.html

1.2. CONTRIBUTIONS 27

Without further ado, let me drop the first-person pronoun and get back to the actual
scientific content.63 (Henceforth, “we” stands for either “Pradic and I” or “the narrator and
you, dear reader, together on a wonderful(?) journey” depending on the context.) We do
not indicate in this section where our claims are supported in the body of the dissertation;
this will be the role of the outline (§1.5).

1.2.1. A research programme: implicit automata in typed λ-calculi. As already
announced in §1.1.6, a substantial portion of the results of this dissertation consists of
characterizing automata-theoretic classes of languages and functions using typed λ-calculi,
in the same way that implicit computational complexity (ICC) characterizes complexity
classes. There have previously been a few results of this kind, or more than a few if one
considers a broad definition of ICC (cf. §1.3.2) that includes non-type-theoretic approaches;
we cover this related work in §1.3.3. However, it seems that most of the previous papers on
“implicit automata” do not mention the connection with ICC (with the exception of [Sei18]),
and therefore that we are the first to give this topic the name that it deserves.

Beyond such superficial naming considerations, our awareness of this historical context
inspired us to put forth a new recipe for type-theoretic implicit automata results: consider
functions operating on Church encodings in a λ-calculus with a substructural (e.g. linear
/ affine / non-commutative / …) and monomorphic type system. For the reader who
is unfamiliar with this technical term, “monomorphic” can be replaced by “admitting a
translation into the simply typed λ-calculus (with product and sum types)” in this context
while preserving most of the intended meaning; thanks to Hillebrand and Kanellakis’s
Theorem 1.1.4 (cf. §1.1.6) this condition ensures that we are more likely to get something
corresponding to an automata model than a complexity class. This draws upon two distinct
traditions within implicit complexity: while Theorem 1.1.4 comes from the study of the
simply typed λ-calculus and its extensions by semantic means, previous works on ICC taking
inspiration from linear logic mostly did not use semantic evaluation (as we said in §1.1.7).

There are many possible variations on this theme: one can obviously vary the typed
λ-calculus under consideration, but the same type system can also be used to impose different
constraints. Given the diversity of automata-theoretic function classes (especially concerning
transducers, cf. §1.1.3), one could expect these variations to yield characterizations of many
different classes. This is why we believe our approach to implicit automata to be worthy64 of
a systematic investigation that the present manuscript has merely begun. Our first results,
described in §1.2.2, have not even exhausted the low-hanging fruits! The work-in-progress
section (§1.4) should hopefully convince the reader that much remains to be done.

Furthermore, we have come to consider some of our equivalence results about definability
of languages or functions as surface-level manifestations of deeper structural connections.
As we announced from the start, this is made possible by the emphasis on compositionality,
embodied by algebraic tools, that is prevalent in both automata theory and programming
languages. What this means concretely is that we express these connections in the language
of category theory, which leads us to bring ideas from denotational semantics into categorical
automata theory along the way (§1.2.3). Our exploration of the expressive power of typed
λ-calculi has also fed back into “pure” automata theory, suggesting relevant objects of study
for the latter (§1.2.4). All this has been a welcome surprise: ICC has not had much influence
on (nor structural insight about) “mainstream” complexity theory (cf. the end of §1.3.2).

63Adrien Douady, former member of the Bourbaki group : “Le but de ce travail est de munir son auteur
du grade de docteur ès-sciences mathématiques et l’ensemble H(X) des sous-espaces analytiques compacts
de X d’une structure d’espace analytique” (from the introduction to [Dou66]).

64Such a turn of phrase implicitly assumes that research in pure mathematics – or scientific research in
general – is something worthwhile, which is of course highly debatable (see Figure 1.1.3 and [Gro16]).

1.2. CONTRIBUTIONS 28

1.2.2. Equivalences in expressive power. Let us now present our concrete results,
starting with one that concerns languages. It takes place in a fragment – that we call the
λ`℘-calculus – of Intuitionistic Non-Commutative Linear Logic [Pol01] (‘℘’ as in “planar”,
see e.g. [Abr07; ZG15]). As the name indicates, it features non-commutative linear types in
the vein of the Lambek calculus (cf. §1.1.5). We have the following:
Theorem 1.2.1 (variant of [NP20, Theorem 1.7]). A language L ⊆ Σ∗ can be defined by a
λ`℘-term of type StrΣ[τ](NBool for some purely linear type τ (that may depend on L) if
and only if it is a star-free language (cf. Definition 1.1.2 in §1.1.2).

This mirrors Theorem 1.1.4, with several additional linearity conditions. First of all,
observe that the type StrΣ[τ](NBool uses a linear function arrow ‘(’, indicating that
the argument StrΣ[τ] is “used only once”, rather than the non-linear arrow ‘→’. We also
have a linearity requirement on τ :
Definition 1.2.2. A type is purely linear when it does not contain ‘→’.

In the case of the λ`℘-calculus, purely linear types are generated by ‘(’ from the base
type o. There are also other less visible amendments to the pattern of Theorem 1.1.4 in order
to take linearity into account: StrΣ now denotes the type of linearized Church-encoded
strings [Gir87, §5.3.3], while NBool is a purely linear type of booleans that works in a linear
non-commutative setting. Writing the types with a left-associative convention for function
arrows (σ(τ (κ = σ((τ (κ)) as usual, we have

StrΣ = (o(o)→ · · · → (o(o)︸ ︷︷ ︸
|Σ| times

→ o→ o

NBool = ((o(o)((o(o)(o)((o(o)(o

(how these encodings work will be explained in Chapter 5 and Chapter 7 respectively).
Aside from the connection to algebraic language theory, let us point out two less obvious

novelties compared to previous work in ICC. First, star-free languages might be, as far as we
know, the smallest class of languages ever characterized in ICC: they are a strict subclass
of both regular languages and uniform AC0. Second, our proof for the “if” direction of
Theorem 1.2.1 is somewhat deeper than the “programming exercise of limited theoretical
interest” [Maz17, §4.2.1] that is common for analogous proofs in ICC: we had to use the
Krohn–Rhodes decomposition theorem (mentioned in §1.1.3).

We also show that when the λ`℘-calculus is replaced by its commutative counterpart
in Theorem 1.2.1, we get regular languages instead of star-free languages. This shows that
non-commutative types are crucial to get the upper bound on computational power that we
want. The key lemma for this upper bound is a property of the planar λ-calculus, that is,
the purely linear fragment of the λ`℘-calculus. It seems to be the first result exhibiting this
kind of difference between the planar λ-calculus and its commutative version, namely the
linear λ-calculus. (This may be contrasted with the fact that65 normalizing planar λ-terms
with multiplicative pair types σ ⊗ τ is P-complete, just like for general linear λ-terms.)

The linearity restriction, by itself (without non-commutativity), does not make any
difference compared to the simply typed λ-calculus concerning definable languages over
Church encodings. However, if we look at functions, there is much more to say. While
characterizing the class of string-to-string functions corresponding to StrΓ[τ]→ StrΣ is still
an open problem in the simply typed λ-calculus (we shall come back to this in §1.3.5), we
have managed to prove several equivalences with transduction classes for the λ`⊕&-calculus.

65A recent discovery by Anupam Das, Damiano Mazza, Noam Zeilberger and me [Das+21]. Warning
(added in March 2023): these slides claim P-completeness for the “usual” planar λ-calculus, without ⊗, with
a proof strategy using NBool; but that proof attempt turned out to be subtly wrong.

1.2. CONTRIBUTIONS 29

The latter is basically a version of Dual Intuitionistic Linear Logic [Bar96] incorporating
additive connectives (i.e. categorical products and coproducts).
Theorem 1.2.3. We have the following implicit characterizations of transductions in the
λ`⊕&-calculus, in the style of Theorems 1.1.4 and 1.2.1:

StrΓ[τ](StrΣ regular string functions
StrΓ[τ]→ StrΣ comparison-free polyregular functions

TreeΓ[τ](TreeΣ regular tree functions

where Γ and Σ are finite alphabets, Γ and Σ are ranked alphabets and τ is a purely linear
type that may be chosen depending on the function that one wants to define.

The first row above is not too surprising, given the resemblance between copyless
streaming string transducers – that compute regular functions – and linear types that we
already discussed in §1.1.5. (Although, as we shall see in §1.2.3, there is slightly more than
meets the eye.) Comparison-free polyregular functions will be the subject of Section 1.2.4.
As for the class of regular tree functions, it is is obtained by generalizing the definition for
strings based on monadic second-order logic (cf. §1.3.1).

There is also an automata model adapting copyless SSTs to trees, namely bottom-up
ranked tree transducers (BRTTs) [AD17].66 However, it is conjectured that some regular
functions cannot be computed by copyless BRTTs. Instead, a more sophisticated linearity
condition, called the single use restriction in [AD17], is imposed on BRTTs in order to
characterize the regular tree functions. The additional flexibility thus afforded, compared
to copyless BRTTs, turns out to correspond directly to an important feature of linear type
systems: the additive conjunction or categorical product, denoted by the ‘&’ in λ`⊕&.

This is one reason for working in a calculus with additive connectives. What happens if
we drop them? We prove that in this case, Theorem 1.2.3 stops working even for strings, but
it does so for uninteresting reasons which do not apply anymore if we consider affine instead
of linear types.67 This leaves many questions as to the expressiveness of affine λ-calculi
without additives; another natural question in line with Theorem 1.2.3 is the possibility of
characterizing first-order transductions (recall from §1.1.3 that those are to regular functions
what star-free languages are to regular languages). We have tentative answers to all those
questions; we do not develop them in this manuscript because they have not yet been
written up rigorously, but we will state our claims in §1.4.2. Let us say for now that we
have found a situation where, if our claims are correct, the presence or absence of additive
connectives makes a true difference concerning expressive power for meaningful reasons;
such a phenomenon has not been observed before in implicit complexity to our knowledge
(though it is known that additives increase the complexity of proof normalization [MT03]).

1.2.3. Semantic evaluation and contributions to categorical transducer theory.
Our proof of Theorem 1.2.1 uses purely syntactic methods, i.e. combinatorial manipulations of
λ`℘-terms. We could perhaps tackle Theorem 1.2.3 syntactically as well, by taking inspiration
from the proof techniques used in a recent work by Gallot, Lemay and Salvati [GLS20]: they
show that a tree transducer model containing linear λ-terms computes regular tree functions.

But the strategy that we present here for the characterization of regular string functions
in Theorem 1.2.3 – which we developed while being unaware of [GLS20] – is arguably more
conceptual. (The price to pay is that there are more technical prerequisites.) It is expressed

66As we shall explain in the beginning of Chapter 6, a better choice in hindsight would have been to
work with macro tree transducers [EV85; EM99].

67In general, ICC results using affine types tend to also work with linear types if one dedicates part of the
output to collect the “garbage” that could not be discarded during the computation; see for example [Lau20].

1.2. CONTRIBUTIONS 30

in a categorical framework for automata, the same as the one introduced by Colcombet and
Petrişan (§1.1.9) up to insignificant details. Consider:
• some category C corresponding to a transducer model, such that the functions computed

by C-automata are exactly the regular functions;
• a “syntactic category” L whose objects are purely linear types and whose morphisms are
λ`⊕&-terms, such that L-automata can be shown to be equally expressive as λ`⊕&-terms
of type StrΓ[τ](StrΣ (for purely linear τ) through syntactic means.

Our goal is to show that L-automata are at most as expressive as C-automata by exhibiting
a functor L → C (with a few additional properties). This would mean that λ`⊕&-definable
string functions are regular, the converse being easier. According to the discussion in §1.1.5
and §1.2.2, the natural choice would be to take C to be the category corresponding to
copyless streaming string transducers. We can decompose the latter as SR⊕ where
• SR corresponds to single-state copyless streaming string transducers: objects are finite

sets of register names and morphisms are copyless assignments. (We will also characterize
the category SR through an universal property.)
• (−)⊕ is the free coproduct completion, a standard construction on categories whose

automata-theoretic meaning is to add finite states. (Similar completions by certain colimits
have been previously exploited [CP17b] within Colcombet and Petrişan’s framework.)

At the same time, we would like C to be a categorical semantics (§1.1.8) of the purely
linear fragment of the λ`⊕&-calculus – also known as a symmetric monoidal closed category
(SMCC), see [Mel09, §4.7]. The functor that we seek would then be the functor J−K : L → C
that maps each λ`⊕&-term (i.e. morphism in L) to its denotation, in the spirit of the semantic
evaluation technique described in §1.1.7. Unfortunately, SR⊕ is not an SMCC.

To fix this, instead of working with SR⊕-automata i.e. copyless SSTs, we consider a
transducer model that is close (although not identical) to single-use-restricted SSTs (in
the same sense as the so-called single-use-restricted BRTTs mentioned in §1.2.2). Since
copylessness and the single use restriction morally differ by the presence of the additive
conjunction ‘&’ of linear logic, we “add ‘&’ freely” to achieve a similar effect. Thus, we are
led to work with (SR&)⊕-automata, where (−)& denotes the free product completion (the
dual operation to (−)⊕). We then get the missing piece of our aforementioned strategy:
Theorem 1.2.4. (SR&)⊕ is a symmetric monoidal closed category.

The double completion ((−)&)⊕ is reminiscent of a factorization into free sums and
free products of a fibrational Dialectica (§1.1.8) construction [Hof11]. Thanks to this,
generic considerations similar to the monoidal closure proof of Dialectica categories can be
used to reduce the above theorem to properties of SR that can then be proved by simple
combinatorics on strings.

Theorem 1.2.4 is also meaningful from the point of view of categorical automata theory,
independently of any connection with the λ`⊕&-calculus. Indeed, an SMCC provides a
setting in which constructions relying on function spaces (i.e. internal homsets) can be
carried out in a generic way; this generalizes the kind of proofs where one exploits the
finiteness of the set of functions Q→ Q for any finite set of states Q. (A symmetric monoidal
category is closed when all internal homsets exist.) To illustrate this, we prove two generic
theorems on automata over categories that rely on monoidal closure:
• We show that (C&)⊕-automata are equivalent to functional non-determinstic C-automata

with states.68 We also provide a (somewhat intricate) construction that, assuming that
certain internal homsets exist, turns (C&)⊕-automata into C⊕-automata. It can be seen as a

68That additive connectives in linear logic have something to do with non-determinism has previously
been observed in other settings, for instance in [MT03].

1.2. CONTRIBUTIONS 31

categorical determinization procedure, whose main technical ingredient is a data structure
called “transformation forest”, reminiscent of the Muller–Schupp determinization [MS95]
for automata over infinite words (see also [BC18, Chapter 1]). For C = SR, we get that
functional non-deterministic copyless SSTs can be determinized; this was already known,
with an indirect proof [AD11] via monadic second-order logic (§1.3.1).
• We give sufficient conditions on C for the class of functions computed by C-automata to

be closed under precomposition by regular functions: if f is regular and g is defined by
a C-automaton, then there exists a C-automaton that computes g ◦ f . Those conditions
include asking for C to be an SMCC. For instance, taking C = FinSet, we recover the fact
that regular functions preserve regular languages by preimage (Definition 1.1.3 in §1.1.3).
Using Theorem 1.2.4, we can also apply this to C = (SR&)⊕.

These two results jointly entail that (the functions computed by) copyless SSTs are closed
under precomposition by regular functions. And since we have defined the latter using
copyless SSTs, we have actually reproved69 the fact that the composition of two copyless
SSTs can also be computed by a copyless SST. This composition property was previously
known, but it is highly non-trivial (in [BC18, Chapter 13], a special case is proved using
the aforementioned “transformation forests”, and this already requires some efforts); in the
light of the second item above, the difficulty can be explained by the fact that SR⊕ is not
monoidal closed. By contrast, composing two λ`⊕&-terms of types StrΓ[σ] (StrΣ and
StrΣ[τ] (StrΠ is completely trivial (the result having type StrΓ[σ[τ]] (StrΠ). Thus,
it was to be expected that the same tools used to prove our characterization of regular
functions in the λ`⊕&-calculus could be used to compose copyless SSTs.

Concerning the rest of Theorem 1.2.3, the result on regular tree functions follows
similarly from the monoidal closure of a category (T R&)⊕ for trees. As for comparison-
free polyregular functions, we do not know how to express them directly as the functions
computed by automata over some category, but we were able to devise a more ad-hoc semantic
evaluation argument that also leverages Theorem 1.2.4 to establish their characterization.

1.2.4. Benefits for pure automata theory: a new class of transductions. The class
of comparison-free polyregular functions is itself a byproduct of our research on “implicit
automata”: we discovered it by studying the functions definable by λ`⊕&-terms of type
StrΓ[τ]→ StrΣ (for purely linear τ). It turned out that they were included in the class of
polyregular functions, defined in [Boj18] by four equivalent computational models (and a
fifth characterization using logic is mentioned in §1.3.1).

One of those models, the pebble transducers, is the specialization to strings of a tree
transducer model that existed previously in the literature [MSV03; EM03a]. They can also
be seen as multi-head automata (with output) that obey a “stack discipline” on their heads.
This restriction ensures that polyregular functions preserve regular languages by preimage,
suggesting that they belong to the kind of automata theory amenable to algebraic methods,
unlike general multi-head automata (see the beginning of §1.1.2, as well as the discussion
following Definition 1.1.3). This partially explains the “regular” part of the name, which
also hints at the fact that every regular string function is polyregular. As for the prefix
“poly”, it comes from the polynomial growth property of these functions: |f(w)| = |w|O(1)

(where |w| denotes the length of the string w).
Just like multi-head automata, pebble transducers are allowed to compare the positions

of their reading heads. We discovered that those without such comparisons had precisely

69We claim that our new proof is “honest” in the following sense: we do not use previous non-trivial results
on SSTs as black boxes to establish our categorical theorems, so there are no hidden formal dependencies.
But we do largely take inspiration from the preexisting proofs of previous results. Thus, in a way, it is a
proof using old techniques, rephrased and factorized through a new abstract apparatus.

1.2. CONTRIBUTIONS 32

the same expressive power as the aforementioned λ`⊕&-terms, hence “comparison-free”.
And since comparison-free polyregular functions did not already exist in the literature, we
undertook a purely automata-theoretic study of those functions. (The machine model is
quite natural, and some colleagues had thought of it, but they had not yet pushed it further.)

In particular, one insight that the λ`⊕&-calculus characterization immediately gave us
is that comparison-free polyregular functions are closed under composition. This is indeed
a trivial observation on λ`⊕&-terms (just as in the case of regular functions), but it is far
from obvious when looking at comparison-free pebble transducers. To convince an audience
unfamiliar with programming language theory, we devised an alternative proof70 that does
not involve any λ`⊕&-term or category. But it is nonetheless morally related to our semantic
machinery: we use a standard technique for manipulating copyless assignments in SSTs71

(a decomposition into “shape” plus “labels”) which is, in fact, the domain-specific core (as
opposed to the Dialectica-like generalities involved) of the proof of Theorem 1.2.4.

Our results on this function class also include:
• alternative characterizations, one of which is the composition closure of regular functions

plus some other “basic” functions;
• a relation between the growth rate of a function and the number of pebbles (i.e. reading

heads) required to compute it using a comparison-free pebble transducer;
• separation results: we give concrete examples of functions demonstrating that

– some polyregular functions are not comparison-free;
– comparison-free polyregular functions and polynomially bounded HDT0L transductions

are incomparable classes, in other words, neither is included in the other.
To explain the last item above, HDT0L transductions are the functions computed by copyful
streaming string transducers [FR21], and they also admit several other equivalent definitions
(e.g. [FMS14; DFG20]). They also preserve regular languages by preimage, and may have
exponential growth. Recently, two machine models corresponding to polynomially growing
HDT0L transductions were introduced by Douéneau-Tabot, Filiot and Gastin [DFG20]:
• marble transducers, that can be seen as pebble transducers with a further restriction –

this means that every HDT0L transduction with polynomial growth is polyregular;
• layered streaming string transducers, that lie in-between copyless and copyful SSTs.
This idea of allowing a limited form of duplication to control expressive power is very
similar to the usual approach to implicit complexity using variants of linear logic. In this
specific case, we even independently reinvented the “layering” condition by transposing the
intuition behind its linear type system to SSTs! The type system in question was that of
the parsimonious λ-calculus [Maz15; MT15; HMP20], and we will come back to it in §1.4.5.

A few months before the paper [DFG20] appeared on arXiv, we had privately circulated
a note on this “new” transducer model. We did not suspect at the time any alternative
characterization of the functions computed by layered SSTs, and the main result in this
note was that any polyregular function can be realized by a composition of layered SSTs.
Since this last property does not appear in [DFG20], we ended up including its elementary
proof in our paper [NNP21], and it will also appear in this manuscript. And while we later
learned that Douéneau-Tabot et al. had started investigating layered SSTs before us,72 this

70“Alternative” because the detour through the λ`⊕&-calculus is a legitimate proof: we do not rely on
the fact that comparison-free polyregular functions are closed under composition to show Theorem 1.2.3.

71We are able to use SSTs thanks to a reformulation of comparison-free pebble transducers as the closure
of 2DFTs under a “composition by substitution” operation, in which 2DFTs can be replaced by any machine
model for regular functions (in particular copyless SSTs).

72Personal communication from Gaëtan Douéneau-Tabot. Furthermore, we recently found out about a
precursor to layered SSTs dating back to the 1960s, see Remark 2.3.15.

1.3. FURTHER RELATED THEMES 33

anecdote still serves as an additional example of how looking at λ-calculi can lead to new
ideas in automata theory. (We will give yet another example in §1.4.3.)

1.2.5. A methodological commitment: naturality. Having now exposed our concrete
results, let us return briefly to the “programmatic” dimension of this dissertation. We wish
to stress that the work presented here has been guided by a desire for natural statements
and constructions.

Admittedly, it is an inherently subjective notion, devoid of precise technical meaning.73

But what it means for us is that we explore the expressive power of typed λ-calculi that
already existed before, perhaps up to a few minor details – in any case, that are designed
according to standard recipes – and whose features have original motivations that are entirely
unrelated to complexity or automata. (For example, we mentioned the applications of non-
commutative types to linguistics in §1.1.5.) This is unlike a system such as Light Linear
Logic [Gir98] (cf. §1.1.7) which is engineered in an ad-hoc fashion in order to get a desired
complexity bound74 – as is often the case, but not always, for ICC results based on linear
logic.75 It is also the same mindset that led us to account for usual features of automata
models (finite states and nondeterminism) using simple and classical category-theoretic
constructions; our reward for this has been to discover a connection with previous work
on denotational semantics. One more example: the Church encodings that we use are
completely standard as well.

As a consequence, some of our results have a satisfying feeling of inevitability. For
example, in retrospect, Theorem 1.2.1 could have been discovered two decades ago! A more
negative take would be to point out that we study old objects using old techniques. But the
relationships between the objects are new, and so are the contexts in which the techniques
are applied; and those novelties only look inevitable with the benefit of hindsight and the
specific background knowledge that we have attempted to impart in §1.1.

1.3. Further related themes

In this section, we will cover some more related work, as well as some background that
our research does not directly depend on but which is important to fully grasp its context.

73In category theory, natural transformation is a technical term (from which “natural isomorphism” – as
in Footnote 55 – is derived). In the end notes to [Mac98, Chapter 1], Mac Lane speaks of “the pleasure of
purloining words from the philosophers: ‘Category’ from Aristotle and Kant, ‘Functor’ from Carnap (Logische
Syntax der Sprache), and ‘natural transformation’ from then current informal parlance”.

74Girard himself has pointed this out in [Gir03, §5.3.2]: “Several systems with ‘light exponentials’ have
been produced; my favourite being LLL, light linear logic, which has a polytime normalisation algorithm and
can harbour all polytime functions. Unfortunately these systems are good for nothing, they all come from
bondage: artificial restrictions on the rules which achieve certain effects, but are not justified by use, not
even by some natural ‘semantic’ considerations.”

75For instance, Elementary Linear Logic (ELL), introduced in the same paper as Light Linear Logic [Gir98]
(the latter is ELL with further restrictions), is somewhat better justified: as mentioned in [DJ03], ELL can be
motivated both from modal logic considerations (as heretical as this might be76) and from the geometry of
interaction. It also rules out Russell’s paradox (Footnote 43). The parsimonious λ-calculus (cf. §1.2.4) is also
not just motivated by complexity, but by the study of affine approximations [Maz17] as well. Moreover, my
opinion is that its typing discipline captures quite well – with a better fit than LLL or ELL – the intuition
conveyed by Girard’s metaphor for restricted non-linearity [Gir11b, §15.1.2]: “[…] the image of this glass of
water that one can indefinitely dip from the sea. It is a modest perenniality, which does not allow one to
nibble a sea from the sea – at least not indefinitely”. In the parsimonious λ-calculus, we indeed have terms of
type !τ (!τ ⊗ τ , but not of type !τ (!τ ⊗ !τ – think of τ as the glass and !τ as the sea.

76While Girard harshly criticizes the modal logic S5 for its lack of cut-elimination [Gir11b, §4.E], it turns
out that this can be remediated in modern proof-theoretic frameworks, for instance deep inference [GT07].
For more on the contemporary proof theory of modal logics, see e.g. [Mar18].

1.3. FURTHER RELATED THEMES 34

1.3.1. Monadic second-order logic. As promised in §1.1.3, let us discuss the logical
aspects of automata theory. It involves classical logic, usual first-order quantifiers, and
truth-value semantics (also known as “Tarskian semantics”): a side of mathematical logic
which could be seen as somewhat old-fashioned – yet no less important – compared to the
proof theory of constructive logics that is related to programming languages (§1.1.4).

For our exposition of this topic, we first need to recall the usual notion of interpreting a
logical formula (or sentence) in a structure. Consider for instance the formula ∃x. ∀y. x ≤ y.
It is meaningless to speak of its truth or falsity in absolute terms, since it is true over N and
false over Z. One must specify:
• a set called a domain over which the quantifiers ∃x and ∀y range;
• a binary relation over this domain that tells us the meaning of ≤ (in our example, we took

the canonical ordering relations over N and Z respectively).
More generally, a set D equipped with several relations is known as a relational structure.
By representing strings over an alphabet Σ as relational structures, a formula that can be
interpreted in these structures induces a map Σ∗ → {true, false}, which is the same thing
as what we called earlier a “decision problem” or a “language”; hence the connection with
computation. The classical representation of a string w ∈ Σ∗ is as follows:
• the domain is the set {1, 2, . . . , |w|} of positions in w (where |w| is its length);
• there is a binary relation ≤ that gives us the left-to-right ordering of positions;
• for each letter c ∈ Σ, we have a unary relation (i.e. subset of the domain) which is the set

of positions in w that contain the letter c.
For instance, if we interpret the formula ∀x. ∀y. (a(x) and b(y))⇒ x ≤ y in the structure
corresponding to w ∈ {a, b}∗, the result will be true if and only if w = a . . . ab . . . b.

The fundamental discovery independently made in the early 1960s by Büchi, Elgot
and Trakhtenbrot [Büc60; Elg61; Tra61] is that a language is regular if and only if it can
be defined by a formula in monadic77 second-order logic (MSO) – the latter is a logic in
which one can quantify not just over elements of the domain (positions in a string), but
also over subsets. This was quickly followed by an extension of this equivalence to infinite
words [Büc62] (to represent them as relational structures, use N as the domain). Nowadays,
correspondences with MSO are a central motivation for automata models over various kinds
of data, infinite or not, all of which can be encoded as relational structures.

The case of infinite words and infinite trees is especially important for the theoretical
underpinnings of (automated) formal verification of hardware or software systems: MSO over
such structures subsumes many logics used to specify system behaviors (e.g. by considering
N as an ordered set of discrete time steps, linear-time temporal logic can be translated into
MSO over (N,≤) which corresponds to the aforementioned [Büc62], though it is more efficient
to directly translate temporal logics to automata, see [Pin21a, Chapter 38]). This is mostly
out of scope for this manuscript, but see §1.3.4 for a brief discussion of something in this
spirit. Even ignoring applications to formal verification, connections with logic are pervasive
in automata theory, justifying its classification as part of “logic in computer science”.
• In algebraic language theory, there are many correspondences between algebraically defined

subclasses of regular languages and subsystems of MSO, providing further evidence that
those classes are natural. The most famous case is, again, star-free languages: they are
exactly those definable in first-order logic (FO). (Although often attributed to McNaughton
and Papert, this result is due to Schützenberger, as discussed in [Str18].)

77“Monadic” in MSO just means “unary” – full second order logic allows quantifying over relations of
arbitrary arity on the domain, not just subsets. It does not have anything to do with monads from category
theory (though monads and MSO can be combined in categorical automata theory [BKS22]).

1.3. FURTHER RELATED THEMES 35

• Concerning transducers, there are various ways to define string-to-string functions (rather
than just languages) using MSO. They give rise to characterizations of rational [Fil15, §5.3],
regular [EH01] and polyregular [BKL19] functions. And Schützenberger’s theorem lifts
to transducers as one might hope: in all three cases, replacing MSO by FO leads to a
characterization of the corresponding aperiodic transduction class [FGL16; CD15; BKL19]
(this explains why aperiodic regular functions are called “FO transductions”).

The last thing concerning MSO whose mention is almost mandatory is that it has a celebrated
application to computational complexity. To formulate it, we must first remark that a
graph can be represented as a relational structure using its vertex set as the domain, and
an adjacency relation to encode edges. Given any MSO formula over graphs, Courcelle’s
theorem says that for any k ∈ N, the decision problem that this formula defines can be solved
in linear time over graphs of treewidth at most k.78 Fixed-parameter tractability results
involving treewidth are a major theme in graph algorithms, a firmly “Volume A” (§1.1.1)
topic, and Courcelle’s theorem implies many such results at once. There is a lot more to say
about MSO over graphs (e.g. about graph-to-graph transductions), see the book [CE12].79

1.3.2. Descriptive vs implicit complexity and their legacies. Monadic Second-Order
Logic over graphs is not the only point of contact between model theory80 – the area
of mathematical logic that focuses on the interpretation of formulas in structures – and
computational complexity. By considering a logic that is not included in MSO, one could
hope to characterize some complexity class – rather than an automata-theoretic class of
languages – as the set of decision problems (over strings) that are defined by the formulas in
this logic. This is indeed the basic conceit of an entire field called descriptive complexity81.
For example, Fagin’s theorem [Fag73] says that a problem is in NP if and only if it can be
expressed in existential second-order logic. This is considered to be the first main result of
the field (coming a decade after the connection between MSO and regular languages), and
many other complexity classes have been described in this way since then (see e.g. [Imm99]).

A logic used this way can be seen as a kind of programming language offering a very high
level of abstraction, in which one directly82 expresses what one wants to compute, rather than
how to compute it: a declarative language. Thus, strictly speaking, descriptive complexity
fits our previous definition of implicit computational complexity (§1.1.4): “machine-free
characterizations of complexity classes via high-level programming languages” (and similarly,
the MSO-based characterizations from §1.3.1 are arguably a kind of “implicit automata”.)

But the common usage of those words does not consider descriptive complexity as a part
of ICC. The latter is used as an umbrella term encompassing basically all approaches to
“machine-independent complexity” that do not fit in the specific model-theoretic approach
of descriptive complexity. The type-theoretic characterizations of complexity classes that we
already saw are merely a part of ICC; the field also includes tools such as recursive function

78See [CE12, Chapter 6] for a modern exposition. An early statement can be found in [Cou88] with
a quadratic rather than linear bound; the result was also independently rediscovered in [BPT92]. The
complexity bottleneck was the tree decomposition step, concerning which many further works offered
algorithmic improvements, see [CE12, §6.2].

79One recent development that it does not cover is the proof of an old conjecture of Courcelle concerning
an automata-MSO connection for graphs of bounded treewidth [BP16a].

80To explain the terminology, a structure is said to be a model of a set of formulas when all of them
are true in the structure. Traditional model theory focuses mostly on infinite structures, but the needs of
computer science prompted the study of finite model theory.

81Beware: “descriptive complexity” has a different meaning in the context of descriptive set theory.
82Relatively speaking… Intuitively straightforward properties are sometimes expressed as unavoidably

convoluted formulas in a given logic. But the point is that even then, the formula reads like a description of
some property of the input, rather than an algorithm that computes and then returns a boolean at the end.

1.3. FURTHER RELATED THEMES 36

algebras or term rewriting. For example, a result published by Gurevich in 1983 [Gur83]
captures logarithmic space complexity using a form of primitive recursion over finite relational
structures. It can be considered part of the “prehistory” of ICC, as it is often considered that
the latter only really took off starting from the early 1990s, with [GSS92; BC92; LM93]; for
an overview of the past 30 years of research in the area, we recommend the survey [Péc20].

Oversimplifying a bit, since all our examples of implicit complexity techniques have a
“functional programming” flavor, we could summarize what we just said like this:

programming paradigm declarative functional
complexity classes Descriptive Complexity Implicit Computational Complexity
automata theory subsystems of MSO our work! + §1.3.3

However, this actually gives a misleading impression of what contemporary developments
in descriptive complexity look like. Since the picture for implicit complexity is, for its
part, relatively faithful (though it neglects the more practical applications of ideas derived
from ICC to static analysis of programs,83 just as we did not mention the historical ties of
finite model theory to databases84), this explains why the descriptive complexity and ICC
communities are separate: they are mostly not interested in the same questions.

Descriptive complexity today is mainly concerned with what happens if one considers
(finite) relational structures that are not strings as inputs, for instance graphs (cf. the end of
§1.3.1). Since one can choose any reasonable encoding of graphs as strings without making
any difference for usual complexity theory,85 it is tempting to think that the choice of input
structure does not matter much. This initial intuition is completely wrong.

What must be taken into account is symmetry: the fact that some structures may have
automorphisms, i.e. permutations of the domain that fix all relations. This symmetry is
broken when one serializes a structure as a string: for instance, for graphs, the vertices might
be numbered in some arbitrary order. And the execution of a program that takes graphs as
inputs can depend on this order, e.g. to loop over all vertices successively, even when the
end result is invariant under automorphism (example: a depth-first search to decide whether
a graph is connected). Logical formulas cannot do that sort of thing:86 if two vertices can be

83For instance, techniques from ICC have been applied to compiler optimizations [Rub17]. Automated
analyses of the computational complexity of functional programs are also close to ICC, with some overlap
between the people working on those two topics; one manifestation of this was the (now defunct) DICE-
FOPARA joint workshops. The more general area of formal methods for time complexity analysis is surveyed
in [Gué19, §9.2], as part of a PhD thesis [Gué19] whose main subject is to formally prove complexity bounds
using separation logic; and recall from Footnote 32 that separation logic relies on a variant of linear logic.

84An important real-world example of declarative programming language is SQL, the usual language for
querying relational databases. The latter remain the most common kind of database despite some hype in
the 2010s around key-value stores (the “NoSQL” movement). Their name comes from the fact that they
can be seen as relational structures: think of a k-ary relation as a table with k columns, and of each k-tuple
that it contains as a row. The expressivity of SQL can be characterized using an extension of first-order
logic [Imm99, Chapter 14] (and the same goes for Datalog, another database query language).

85The reader familiar with graph algorithms might object that, for example, finding a path between two
vertices in a graph with n vertices and m edges takes O(n2) time on the adjacency matrix representation
but O(n +m) time on the adjacency list representation. But here we mean the kind of complexity that
is concerned with “robust” classes such as P, NP, … whose definition should not depend on the choice of
“reasonable” model; and “reasonable” is defined by the invariance thesis (§1.1.1) which allows for polynomial
overhead in time. In this example, both representations put the problem in P. Nevertheless, there is a
recent and active area of research named fine-grained complexity that applies the philosophy of complexity
theory (e.g. look for conditional lower bounds via reductions) in a way that is sensitive to some (but not all)
distinctions within P made by traditional analysis of algorithms; see [Vas19].

86To circumvent this limitation of logic, one can add an arbitrary total order to the relational structures
considered, and allow formulas that syntactically refer to this order but whose truth value is independent
from it. The established keyword for this idea is “order-invariant logics”, see e.g. [Gra20].

1.3. FURTHER RELATED THEMES 37

exchanged by an automorphism, then a formula necessarily treats them the same way. This
is why descriptive characterizations of standard complexity classes often apply only to a
class of structures that do not admit non-trivial automorphisms: totally ordered structures,
in which one of the provided relations is a total order on the domain. This is the case for
strings, with their order on positions, but not for graphs.

For example, there is no known “logic for polynomial time” over arbitrary finite relational
structures. In fact, Gurevich has even conjectured that such a logic does not exist, in a
precise sense, and this has been called “the perhaps most fundamental and challenging open
problem of finite model theory” [GG15]. Since Fagin’s theorem actually provides a logic
for NP over all structures, the conjecture implies P 6= NP. By contrast, a logic for P has
been known for a long time for totally ordered structures [Var82; Imm86]. Currently, the
main candidate for a “logic for P”, which would refute the conjecture since it fits Gurevich’s
definition,87 is choiceless polynomial time, introduced in [BGS99]. It is defined using a
non-declarative programming language, so nominally, it should arguably belong to implicit
complexity. The fact that it is much better known among descriptive complexity theorists
than in the ICC community is more evidence towards their true difference in focus today.

There is an important former candidate logic for P that looks more like the kind of “logic”
usually considered in descriptive complexity (it is an extension of first-order logic, with
a notion of truth-value semantics in relational structures): fixed-point logic with counting
(FPC). It was first suggested in the 1980s [Imm86, §5], and it is still relevant today,88 even
though a decision problem in P that it cannot express was found in the same decade [CFI92].
The modern understanding of FPC is that it “can be seen as capturing a natural class
of symmetric algorithms inside P, with equivalent formulations in circuit complexity and
linear programming” – the quote (emphasis included) is taken from the survey [Daw20].
Intuitively, an algorithm is symmetric when its execution – not just its result – is preserved
by automorphisms; a logician would say that this is an intensional property.

This recently discovered connection with circuits (see [Wil19]) shows that logic is not
required to define this notion of symmetric computation; it is a convincing argument for
considering the latter as part of complexity theory properly speaking. (On top of that,
the idea shares some commonalities with monotone complexity,89 a topic which definitely
belongs to “Volume A”.) That descriptive complexity, by investigating its internal questions,
has been able to come up with such a natural and interesting concept in complexity theory
is a remarkable achievement.

It is unmatched by implicit complexity as far as we know, but the thing that comes
closest, perhaps, is that programming language theory and denotational semantics provide
tools to study the computational complexity of higher-order functions,90 though this is not

87Therefore, it is widely believed that choiceless polynomial time cannot compute all functions in P, but
this remains an open problem. For recent progress on this question, see [Pag21].

88A notable recent achievement is the very long proof, published as a book [Gro17], that FPC captures
polynomial time on every minor-closed class of graphs; it involves deep combinatorics related to the graph
isomorphism problem. See also Sandra Kiefer’s PhD thesis [Kie20a] (or her introductory paper [Kie20b]) for
more recent developments in this vein; its focus is on the Weisfeiler–Leman algorithm for graph isomorphism,
which is closely related to FPC over graphs (as already remarked in [CFI92]).

89Extensional: a function {0, 1}∗ → {0, 1} is monotone when flipping some input bits from 0 to 1 cannot
decrease the output from 1 to 0. Intensional: an algorithm is monotone when it “does not use negations”.
For more information, we refer to the introduction of [DO18] (a paper concerned with ICC for monotone
complexity). Let us also cite [Kup21] as an example of work on a very similar theme in automata theory.

90In particular, game semantics (previously mentioned in §1.1.8) are the basis of two recent works of this
kind: a proposal for a time complexity measure on higher-order functions [Fér17], and an exploratory work
on notions of higher-order cryptographic primitives [BCL20] (the theoretical foundations of cryptography
depend on complexity theory to bound the computational power of adversaries).

1.3. FURTHER RELATED THEMES 38

part of ICC per se. Non-type-theoretic forms of ICC have also served to characterize the
basic feasible functionals, a canonical counterpart to P for functions (Γ∗ → Σ∗)→ Π∗, called
“second-order” or “type-2” functions, cf. [Péc20, §4.2].91

And yet, a limitation of both descriptive and implicit complexity (pointed out for instance
in [Maz17, §4.2.1]) is that they have provided no major ideas for the main questions concerning
the most basic complexity classes such as P or NP, especially when it comes to separations
between them. To be fair, two major results (namely NL = coNL and PARITY /∈ AC0) of
classical complexity theory were discovered through descriptive complexity; but in both
cases, they were also independently proved around the same time in other ways, and the
essence of the descriptive proofs turned out not to depend on logic on a fundamental
level (cf. [Aar17, §3]). Concerning the proofs-as-programs approach to ICC, the somewhat
related idea that separation results in complexity could reflect foundational issues concerning
“infinity as reuse” best expressed in linear logic (see e.g. [Gir03, §5] and [Gir12]93) has stayed
at the level of speculation.94 ICC results often teach us about the programming languages
involved much more than about the complexity classes that they capture – but the former
are sometimes contrived for the sake of the result, as we say in §1.2.5.

On the contrary, as we argued in §1.2, we feel that our work on implicit automata has
provided us with a better understanding of transducers,95 by uncovering some categorical
structure. Throughout this introduction, we have indeed attributed our successes to the
deeply algebraic nature of modern automata theory. Conversely, one might wonder whether
the limitations of ICC until now are due to a lack of compositional methods for fundamental
complexity theory.96 If the toolset of programming language theorists has any role to play

91As a cultural remark, let us mention that computability for such functions sometimes goes under the
name “type-2 theory of effectivity”; it is part of the computability theory of higher-order functions, for which
the standard reference is [LN15]. To get a taste of the field, Martín Escardó’s very accessible blog post
Seemingly impossible functional programs92 explains a spectacular phenomenon. A major application of type-2
effectivity is to study computability and complexity for functions between separable topological spaces, see the
books [Wei00; BH21]. For instance one can define what it means for the integration map

∫
: C([0, 1],R)→ R

to be computable, by representing arbitrary real numbers (resp. continuous functions) by convergent sequences
(that need not be computable!) in QN (resp. Q[X]N). See also [Ste17] for complexity-theoretic aspects of
computable analysis; finally, we should mention that an implicit characterization of the polynomial time
functions R→ R has been given using a parsimonious λ-calculus in [HMP20].

92Available at https://archive.md/rUGpG. The ideas behind this have been unexpectedly applied to
prove that in intuitionistic set theory (cf. Footnote 22), the Cantor–Schröder–Bernstein theorem is equivalent
to the law of excluded middle [PB19] (see also [Esc21] for an extension to homotopy type theory).

93Girard’s paper [Gir12] sketches a characterization of non-deterministic logarithmic space using von
Neumann algebras. It actually led to quite a few subsequent works, which however abandoned the original
foundational and philosophical ambitions that initially motivated [Gir12]: Aubert and Seiller clarified and
extended Girard’s technical ideas [AS16a; AS16b], and with Bagnol and Pistone, they also adapted their
techniques to more down-to-earth settings to characterize various complexity classes [AB18; Aub+14; ABS16].
Finally, Seiller obtained similar results [Sei18] in the setting of his interaction graphings semantics [Sei19].
(Furthermore, those interaction graphings and the aforementioned [Gir12] share the same main inspiration: a
version of the geometry of interaction using von Neumann algebras [Gir11a].)

94It must be said, however, that the work mentioned above in Footnote 93 has led Seiller to consider
graphings as a mathematical abstraction of programs whose structure might help to prove separation results
in complexity theory. As a first demonstration of this idea, Pellissier and Seiller [PS21] have rephrased various
proofs of complexity lower bounds in a unified way within the framework of graphings, reformulating the
key arguments of those proofs using the notion of topological entropy. Thus, [Gir12] ended up indirectly
inspiring, through a long and winding path, a promising approach to separation results – even though no
trace of logic remains in this approach.

95There might be a personal bias here: I embarked on this project not knowing much about automata
theory, and my grasp of the field increased alongside the discovery of new results.

96There are exceptions in some sub-areas, such as constraint satisfaction problems [Bul21]: the recent
proofs of the CSP Dichotomy Conjecture [Zhu20; Bul20] both use an algebraic approach to leverage symmetries.

https://archive.md/rUGpG

1.3. FURTHER RELATED THEMES 39

in the future of computational complexity, it is perhaps in providing those missing methods
(or serving as their inspiration), rather than giving yet another implicit characterization
of, say, polynomial time.97 For an example of very speculative exploration towards this
direction, see [Maz17, §4.2.3]. Finally, let us note that the “categorification” of descriptive
complexity and finite model theory has been a very active research topic recently; the journal
paper [AS21]98 contains references to most of the work on this at the time of writing.

1.3.3. Previous work on implicit automata and adjacent topics. After these broad
discussions of subfields of TCS, let us focus more narrowly on direct precursors of our work.
If we consider non-type-theoretic approaches to ICC (as defined towards the beginning
of the previous subsection), then there are several recent formalisms for regular string
functions using combinators [AFR14; DGK18; BDK18] that arguably belong to “implicit
automata”. Recent results of this kind include characterizations of first-order transductions
on strings [DGK21] and on trees [BD20].

We also mentioned earlier (§1.2.4) that Bojańczyk gave four different characterizations of
polyregular functions in [Boj18]. One of them is a successor to the aforementioned [BDK18].
Interestingly, while the functional language of [BDK18] did not support λ-abstraction, its
extension in [Boj18] uses a simply typed λ-calculus enriched with a ground type of lists
and several primitive functions on lists. Strings are represented as lists of characters, which
differs from our use of functional encodings in a λ-calculus without any primitive data type.

We will now restrict our attention to works that involve typed λ-calculi.

Automata as circular proofs. Aside from Hillebrand and Kanellakis’s Theorem 1.1.4 and
the above-mentioned characterization of polyregular functions, perhaps the only previous
works that completely fit the theme of “implicit automata via proofs-as-programs” are those
by DeYoung and Pfenning [DP16] on sequential transducers and by Kuperberg, Pinault
and Pous [KPP19] (see also [Pin21b, Chapter 3]) characterizing regular languages and
deterministic logarithmic space complexity. Both rely on a proofs-as-programs interpretation
of circular proof systems for some variants of linear logic with fixed points. Circular proofs
allow some amount of controlled self-referentiality to handle recursive definitions; they are
sometimes called “cyclic” proofs, but in our context, this would create a confusion with an
unrelated non-commutative logic, cyclic linear logic [Yet90].

The Church encoding of strings is obtained by a systematic procedure [BB85] from the
inductive definition s ::= ε | c1 · s | . . . | c|Σ| · s (Σ = {c1, . . . , c|Σ|}). Using fixed points of
formulas, one can instead turn it into the recursive type99 StrµΣ = 1⊕ StrµΣ ⊕ . . .⊕ StrµΣ;
this is the definition of the type of strings in [DP16], and it is also implicit in100 [KPP19].

97But it would be unfair to reduce current developments in ICC to this: several research perspectives
such as probabilistic and quantum computation are outlined in [Péc20, Chapter 5], and there are other recent
works covering new ground such as parallel complexity bounds for process algebras [Ghy21].

98The introduction to [AS21] mentions a “structure vs power” dichotomy further discussed in [Abr20]
which partially correlates with the “machines vs programs” and “Volume A/B” distinctions from §1.1.1.
Interpreted literally, “structure” is what we call algebra/compositionality while “power” refers to expressiveness;
but the actual intended meaning is that “structure” covers programming language theory and semantics,
while “power” contains basically the rest of theoretical computer science (including complexity, automata
and finite model theory). I would slightly object to this terminology: in my opinion, automata theory is
a field in which algebra can be fruitfully applied to study expressiveness today (this is one of the points I
tried to make in Section 1.1.3). In any case, the three aforementioned dichotomies agree on the gap between
computational complexity and programming languages and the disjointness of their research communities.

99Formally, this is expressed as the least fixed point Strµ
Σ = µα. 1⊕ α⊕ . . .⊕ α.

100The left rules given in [KPP19, Figure 1] for A and A∗ correspond respectively to A = 1⊕ . . .⊕ 1
and A∗ = 1⊕ (A⊗A∗).

1.3. FURTHER RELATED THEMES 40

So both our approach and those using fixed point logics morally work because the
consumption of strings represented as inductive data types is similar to their traversal by
automata. However, while the use of the “right fold” provided by a Church-encoded string
involves an “inversion of control” (in programming jargon) that, in the case of the simply
typed λ-calculus, has drastic effects on expressive power (contrast Theorem 1.1.4 with the
much larger computational power of the simply typed λ-calculus in other contexts, cf. §1.3.6),
circular proofs seem to give the programmer more degrees of freedom: Kuperberg et al. do
not need to add polymorphism to go beyond regular languages. In fact it was shown later
in [Pin21b, Chapter 4]101 (which is refined in [Das20a]) that much higher complexities (above
primitive recursion) can be reached using other monomorphic circular proof systems.102

Automata characterizations with a semantic flavor. Using a computational model inspired
by103 denotational semantics of linear logic, Seiller [Sei18] has given a characterization of
each level of the k-head two-way non-deterministic automata hierarchy. The lowest level
(k = 1) corresponds to regular languages, while the union over k ∈ N≥1 gives the complexity
class NL (non-deterministic logarithmic space). Something in common with our work is that
the representation of strings used by [Sei18] is more or less a semantic version of Church
encodings (see [Sei18, §3.2]). There is one main difference with what one usually calls implicit
complexity: Seiller’s result does not take place inside a syntactically defined programming
language (and it is far from obvious how to turn this model into a similarly expressive syntax,
because of the previously mentioned inversion of control).104

Terui’s investigations [Ter11] on a form of game semantics for (polarized105) linear logic
called ludics [Gir03] also include a characterization of regular languages.

Recognizable languages of λ-terms. We have emphasized in §1.1.7 the use of evaluation in
a finite denotational semantics used to prove Theorem 1.1.4. Along these lines, general
notions of recognizable languages of closed λ-terms of a given type (specializing to regular
languages for the type of Church-encoded strings) have been proposed, based on finite
semantics, in the simply-typed λ-calculus by Salvati [Sal09] and in an infinitary λ-calculus
by Melliès [Mel17a]. It is plausible that Theorem 1.1.4 can be extended to give an equivalent
syntactic definition for Salvati’s recognizable languages: for a simple type τ they would be
the languages definable by τ [σ]→ Bool. An interesting question would be whether one can
give an encoding of higher-dimensional trees in the simply typed λ-calculus so that this
notion of recognizability coincides with Rogers’s automata for those trees [Rog03; GK07].

101Following what we said in §1.3.2, “descriptive” should be replaced by “implicit” in the title of [Pin21b]!
102The theory of circular proofs is also connected to automata over infinite structures for reasons that

are orthogonal to these “implicit automata” results: circular proofs are subject to “correctness criteria” that
correspond to acceptance conditions for such automata. For instance the aforementioned [Das20a] relies on a
study of circular arithmetic [Das20b] which in turns applies results on the reverse mathematics of MSO over
(N,≤) [Koł+19] (that were already mentioned in Footnote 14). We will not attempt to survey the growing
field of circular proofs here; let us just mention one application that has garnered significant attention: the
solution of an old problem concerning automata and formal verification [Dou17, Part II].

103This inspiration has already been discussed at length in Footnote 93.
104A personal digression: my first steps in implicit complexity took place during an internship with

Thomas Seiller whose initial subject was to design a syntactic counterpart to this result. In retrospect there
are major obstructions to doing so, but a discussion with Damiano Mazza during this internship led us
to rediscover Theorem 1.1.4, thus planting the first seeds for the “implicit automata in typed λ-calculi”
research programme! I first applied Hillebrand and Kanellakis’s ideas to explain a puzzling phenomenon in
the elementary affine λ-calculus (§1.4.7), and the work on implicit automata properly began one year later
after Mikołaj Bojańczyk went around at ETAPS’19 suggesting to a few people (including Cécilia Pradic, who
relayed this to me) that there could be some connection between polyregular functions and linear logic.

105See Footnote 56 and [Lau02]. The polarities of linear logic are also closely related to the focusing
used in Chapter 5; both were first discovered in the context of proof search for linear logic [And92].

1.3. FURTHER RELATED THEMES 41

As for Melliès’s notion of recognizability for simply typed infinitary λ-terms [Mel17a], it is
mainly inspired from his work with Grellois (compiled in the latter’s PhD dissertation [Gre16])
on higher-order model checking. Let us explain that topic now.

1.3.4. Higher-order recursion schemes. Let Σ be a ranked alphabet and TreeΣ be the
type of Church-encoded trees over Σ. The simply typed λ-terms of type TreeΣ correspond
to finite trees. Now, consider the λY-calculus, which extends the simply typed λ-calculus
with general recursion (concretely, it adds a fixed point operator Y). Because the recursion
may be non-terminating, some λY-terms t : TreeΣ represent infinite trees106 (though only
countably many infinite trees over Σ – so not all of them – can be generated this way).

One can then ask, given t and a formula ϕ of MSO (§1.3.1) over infinite trees, whether
the tree defined by t satisfies ϕ. This is the higher-order model checking problem, whose
decidability was first proved in [Ong06] using game semantics, and then reproved several
times with various different tools and stronger conclusions (e.g. in [Bro+21; Par21]). The
point is that t may represent the possible behaviors of some code written in a functional
programming language. It is shown in [Kob13, §3] that several examples of formal verification
tasks on functional programs reduce to higher-order model checking, and this has led to
actual implementations of verification tools for subsets of the OCaml language, cf. [Kob19].

But the idea is much older than that, going back to the 1970s. Initially, it was formulated
in terms of tree-generating grammars called (higher-order) recursion schemes;107 for a survey
of the early history of recursion schemes, we refer the reader to [Mir06, §2.6]. This point of
view is equivalent to the one we started our exposition with: an infinite tree can be generated
by a recursion scheme if and only if it can be defined by a λY-term (see e.g. [SW16, §3]).

A third equivalent way to define infinite trees is using an automaton model (with no input
and a tree output): collapsible pushdown automata (see e.g. [Pin21a, Chapter 35]). They were
designed by adding a “collapse” operation to higher-order pushdown automata (HOPDA) –
automata with stacks of stacks … of stacks (with a bounded nesting) – which were already
known to correspond to the recursion schemes enjoying a certain safety property [KNU02].
Completing this picture, there is also a “safe λY-calculus” [SW16, §4.4] whose terms of
type TreeΣ correspond to trees over Σ generated by HOPDA. Its type system imposes
constraints on the allowed applications and λ-abstractions depending on the (functionality)
order of simple types – a notion that will also appear in §1.3.6, defined as

ord(o) = 0 ord(σ → τ) = max(ord(σ) + 1, ord(τ))

Going back to the aforementioned work of Grellois and Melliès, it is also related to
another major theme of this dissertation, viz. linear logic: one of the results presented
in [Gre16] is a decision procedure for higher-order model checking that uses evaluation in a
finite semantics of the λY-calculus derived from denotational models of linear logic (in fact,
a variant of the semantics used by [Ter12], cf. §1.1.7). The complexity of model checking for
variants of the λY-calculus with linear types has also been studied recently [CGM17; CM19].

106This is similar to how infinite lists can be defined recursively in Haskell thanks to lazy evaluation.
For example, different ways to code the list of all prime numbers in increasing order are given in [ONe09].

107One should be aware of a naming collision here: what Haskell programmers call “recursion schemes”
are higher-order functions that abstract common patterns for recursive function definitions. For example, the
“fold” function on lists captures such a pattern (f([x0, x1, . . .]) = g(x0, f([x1, . . .]))); its generalizations to
other algebraic data types are called “catamorphisms” (and the principle of Church encodings is to represent
a datum by a catamorphism over it!). (Another terminological clash: in the title of the founding paper on
this kind of recursion scheme [MFP91], the word “lens” refers to a piece of notation, which differs from the
current usage of “lens” in the Haskell community – see Footnote 58 for the latter.)

1.3. FURTHER RELATED THEMES 42

1.3.5. Simply typed λ-definability over Church encodings. We did not mention all
those notions – recursion schemes, pushdown automata and the safety restriction – merely
because they are part of a topic involving both automata and λ-calculi. They have an
actual direct relevance to our work in progress on the simply typed λ-calculus which will be
discussed in §1.4.1. To give some context for this work, we recall here some classical facts.

It is well-known that there exists a simply typed λ-term exp : Nat[o → o] → Nat –
where Nat is the type of the Church encoding of natural numbers, or equivalently, of the
Church encoding of unary strings – that codes the function n 7→ 2n. Since the composition
of a term of type Nat[σ] → Nat and another of type Nat[τ] → Nat can be given the type
Nat[σ[τ]]→ Nat, towers of exponentials of any fixed height h can be expressed by a term of
type Nat[τh]→ Nat (where the type τh becomes increasingly complicated as h→ +∞).

Remark 1.3.1. However, the heterogeneity of its input and output types prevents exp from
being iterated by a Church numeral (recall that the Church encoding of n ∈ N is morally
the iterator f 7→ f ◦ . . . (n times) · · · ◦ f). Iterating n 7→ 2n would indeed give rise to a tower
of exponentials of variable height, which is known to be inexpressible by any Nat[τ]→ Nat.

By contrast, without type substitutions:

Theorem 1.3.2 (Schwichtenberg [Sch75]). The functions Nk → N defined by closed simply
typed λ-terms of type Nat→ · · · → Nat are exactly the extended (multivariate) polynomials,
generated from 0, 1, +, × and a conditional if n = 0 then p else q.

The above theorem can be suitably generalized to strings [Zai87] and trees [Zai91; Lei93]
(both as inputs and outputs). However, no analogous result is known for Nat[τ]→ Nat:

Question 1.3.3. Characterize (without reference to the λ-calculus) the functions N→ N
definable by closed simply typed λ-terms of type Nat[τ]→ Nat for some type τ .

There are well-known negative results (attributed to Statman in the discussion that
follows [FLO83, Theorem 4.4.3]) suggesting at first sight that there might be no satisfying
answer (though, of course, it will be our goal in §1.4.1 to argue that this pessimism is
unwarranted): while towers of exponentials are expressible, many simple functions of tame
growth are not, for example n 7→ b

√
nc. If we look at functions of two variables, there

is a striking example: subtraction cannot be defined by any simply typed λ-term of type
Nat[σ]→ (Nat[τ]→ Nat), no matter what types σ, τ are chosen.

When it comes to predicates, however, the situation is better understood: a subset of
Nk can be defined by a simply typed λ-term of type Nat[τ1]→ · · · → Nat[τk]→ Bool if and
only if it is ultimately periodic. This has been shown by Joly108 [Jol01, Proposition 5], and
the case k = 1 is a special case of Theorem 1.1.4 since unary regular languages correspond
to ultimately periodic subsets of N via N ∼= {a}∗. The λ-undefinability of equality and of
subtraction follow immediately from this characterization.

1.3.6. Remarks on complexity in the simply typed λ-calculus and light logics. We
wrap up this “related themes” section with something that has no relation to automata.
As our last clarification concerning the state of the art on the computational power of the
simply typed λ-calculus, we wish to drive home the following slogan: it is a “calculus of
elementary complexity” in the same way that Light Linear Logic is often said to be a “logic of

108The same paper [Jol01] contains a result that explains the parenthetical clause in Question 1.3.3: a
characterization of the functions defined by terms of type Nat[τ] → Nat (which applies more generally to
arbitrary free algebras, not just N). It is formulated using untyped λ-terms subject to a kind of complexity
constraint in an unrealistic (by Joly’s own admission) cost model.

1.4. WORK IN PROGRESS 43

polynomial time”.109 In fact the closest comparison would be with LLL’s cousin, Elementary
Linear Logic,110 which is also considered to be a “logic of ELEMENTARY”.

Of course, we have already mentioned Hillebrand et al.’s use of simply typed λ-terms to
characterize ELEMENTARY in §1.1.4, so what we are saying is just that it realizes the full
potential of this type system in terms of expressive power. But some readers might wonder:
an old result of Statman [Sta79] says that normalization in the simply typed λ-calculus is
non-elementary; is that not a sign that it should be able to express non-elementary functions,
and that we are still being bridled by our input representations, just as we were with
Church encodings and Theorem 1.1.4? The truth is that Hillebrand et al.’s result implies
Statman’s theorem. To see why, suppose for the sake of contradiction that there were a
normalization algorithm with elementary complexity. Then its time complexity would be
a tower of exponentials of height h ∈ N. This would entail algorithms in time “tower of
height h” for all functions that are definable according to the specification of [HKM96]: take
the λ-term defining the function, apply it to the representation of the input, and normalize.
But the time hierarchy theorem implies that there are functions in ELEMENTARY whose
complexity is higher than this tower of fixed height!

In fact, one key to the result of [HKM96] is that any simply typed λ-term t has an
associated parameter f(t) ∈ N such that the complexity of normalizing t is a tower of
exponentials whose height depends only on f(t). This parameter f(t) is the maximum order
of a subterm of t, where the order of a term is the order of its type (§1.3.4). This is also the
parameter that is controlled in order to capture each level of the k-EXPTIME / k-EXPSPACE
hierarchy in [HK96] (cf. §1.1.7). And the results of [Ter12] (also mentioned in §1.1.7) state
that, for any o ∈ N, the normalization problem for simply typed λ-terms of type Bool whose
subterms have order at most o is complete for one of the classes in the same k-EXPTIME /
k-EXPSPACE hierarchy.

To substantiate our comparison with ELL and LLL, note that they also have a parameter
– the box depth – which is used to bound the time complexity of normalization.111 Moreover,
a unification is realized by Linear Logic by Levels (L3) [BM10], another system which
characterizes ELEMENTARY: it is an extension of ELL, admits a translation from the simply
typed λ-calculus [GRV09], and both ELL box depth and simply typed order are mapped to
L3 “levels”.112 (This observation on unified phenomena does not seem to have been explicitly
written in [BM10; GRV09].)

A final remark: the aforementioned implicit complexity results of [HKM96; HK96] use
encodings of relational structures (cf. Sections 1.3.1 and 1.3.2) as inputs. Further connections
with database theory are discussed in [HKM96].

1.4. Work in progress

We now outline several ideas for further research. Those are mostly in the form of
concrete mathematical statements, of two kinds: “Claims” are assertions for which we
already have plausible proof strategies, and believe that only routine details remain to be
worked out and properly written up; “Conjectures” are more challenging open problems.

109This usual motto for LLL is subject to some subtleties, see [MM02]. The “moral of the story”
concerning input encodings could also apply to ELL and to the simply typed λ-calculus.

110First mentioned in Footnote 75.
111It controls the height of a tower of exponentials for ELL and the degree of a polynomial for LLL.
112More precisely, the paper [GRV09] gives a translation of the multiplicative-exponential fragment of

linear logic (meLL) into L3, which sends the !-depth of meLL formulas to the level in L3. We compose this with
the standard call-by-name translation of the simply typed λ-calculus into meLL (T (σ → τ) = !T (σ)(T (τ))
which maps the order to the !-depth.

1.4. WORK IN PROGRESS 44

1.4.1. Tree transducers in the simply typed (or safe) λ-calculus. Let us continue
discussing Question 1.3.3 on Nat[τ] → Nat right where we left off in Section 1.3.5. We
have seen that the classical limitations of simply typed λ-definable functions N → N
on Church encodings can be explained by a special case of Hillebrand and Kanellakis’s
Theorem 1.1.4. This suggests that to gain more insight into the question, we should generalize
it to StrΓ → StrΣ. In fact, we will even consider Church-encoded ranked trees. From the
obvious extension of Theorem 1.1.4 to trees, a simple necessary condition can be deduced:

Corollary 1.4.1. Any function Tree(Γ)→ Tree(Σ) definable by a simply typed λ-term of
type TreeΓ[τ]→ TreeΣ preserves regular tree languages by preimage (cf. Definition 1.1.3).

This suggests looking into classes of regularity-preserving tree transductions, especially
ones with hyperexponential growth since towers of exponentials can be defined by terms of
type Nat[τ] → Nat. There is a function class E113 that fits these requirements and seems
particularly robust. Its equivalent definitions include:
• two machine models whose equivalence is proved in [EV88]:

– high level tree transducers;
– iterated pushdown tree transducers;
• three characterizations of the form “the composition closure of the functions computed by

the transducer model T ”, shown to be equivalent in [EM03a]:
– T = macro tree transducers;114

– T = tree-walking transducers;
– T = pebble tree transducers.

(The equivalence between iterated pushdown tree transducers and the composition closure
of macro tree transducers is one of the results of [EV86] which is the earliest paper that we
know of to consider this class E .) The restriction of E to unary alphabets (which is relevant
to our Question 1.3.3 on functions N → N), called the k-computable sequences, has been
studied in detail by Fratani and Sénizergues [FS06], who show that they generalize some
integer sequences of interest (e.g. polynomial recurrence equations). Sénizergues has also
claimed in an invited paper without proofs115 [Sén07] that the restriction of E to strings
– which he calls the “k-computable mappings” – can be characterized as the composition
closure of HDT0L transductions (cf. §1.2.4).

It is not hard to translate, say, macro tree transducers into simply typed λ-terms. In
fact the range of the translation is included in the safe λ-calculus116 [BO09], which is to the
simply typed λ-calculus what the safe λY-calculus of [SW16] is to the λY-calculus (cf. §1.3.4).
Since the “safely λ-definable tree functions” are closed under composition, they contain the
class E . We have strong reasons to believe that the converse also holds:

Claim 1.4.2. E is the class of functions definable by some safe λ-term t : TreeΓ[τ]→ TreeΣ.

The conceptual reason for the claim requires some background on higher-order model
checking (which was recalled in §1.3.4). Iterated pushdown transducers are very close to
HOPDA, while high level transducers are presented in [EV88] as safe recursion schemes

113I am not aware of a standard name for this class, so I am calling it E here in honor of Joost Engelfriet
who is the common coauthor of [EV88; EV86; EM03a].

114Already mentioned in Footnote 66, and discussed further at the start of Chapter 6.
115Some of the claims in [Sén07] were proved in subsequent papers [FMS14; Cad+21], but as far as we

know, it is not yet the case for those concerning compositions of HDT0L transductions.
116One result of [BO09] characterizes the functions definable by safe λ-terms of type StrΓ → StrΣ, that

is, without type substitution in the input. In the case of natural numbers, the functions Nk → N definable in
this way are exactly the multivariate polynomials in N[X1, . . . , Xk]; compare with Theorem 1.3.2.

1.4. WORK IN PROGRESS 45

where the application of rules is controlled by117 an input tree. We therefore believe that we
should be able to translate safe λ-terms defining tree functions to high level tree transducers
by adapting the usual translation from safe λY-terms to safe recursion schemes.118

The analogy with higher-order model checking then suggests the following “unsafe”
counterpart of the above claim: tree functions definable in the simply typed λ-calculus
using Church encodings should correspond to high level tree transducers without the safety
restriction. We expect this to be routine, but a more interesting result would be to prove
the unsafe version of the equivalence from [EV88]; combining the two would give:

Conjecture 1.4.3. There exists a tree transducer counterpart of collapsible pushdown
automata (whose stack is initialized with the input tree) that can compute exactly the
functions definable by simply typed λ-terms of type TreeΓ[τ]→ TreeΣ for some τ .

Note that this would provide an answer to Question 1.3.3. If this works out, the next
step would be to seek alternative characterizations of this function class – typically, as
the composition closure of a nice basis of simple enough transducers – and to understand
whether the inclusion of E in it is strict.

More anecdotally, while the functions defined in the simply typed λ-calculus without type
substitution (i.e. by some t : StrΓ → StrΣ) are already well-understood (again, see [Zai87]),
we make the following observation which is new as far as we know:

Claim 1.4.4. A language can be defined by a simply typed λ-term of type StrΣ → Bool if
and only if it can be expressed as a boolean combination of languages of the form ϕ−1(P)
for ϕ ∈ Hom(Σ∗,U2) and P ⊆ U2 where119 U2 = {1, a, b} with 1x = x, ax = a and bx = b.

For a fixed Σ, there are finitely many such languages. The argument for “only if” is
semantic evaluation in Scott domains, with JoK = {⊥,>} where ⊥ < > so that Jo→ oK ∼= U2.

Note that all our results on the simply typed λ-calculus also apply to the λ`⊕&-calculus
where we use the simple type of Church-encoded strings

Str!
Σ = (o→ o)→ · · · → (o→ o)→ o→ o

rather than its linearized variant StrΣ, and do not impose any constraint on the type sub-
stitution in the input. We propose the following speculation on something that sits between
those hyperexponential λ-definable functions and the regular functions in Theorem 1.2.3:

Conjecture 1.4.5. A function can be defined by a λ`⊕&-term of type Str!
Γ[τ](StrΣ for

some purely linear τ if and only if it is an HDT0L transduction.

The mismatch between the input and output types would correspond to the fact that
HDT0L transductions are not closed under composition. As for Str!

Γ[τ] → StrΣ with τ
purely linear, we have no idea as to what that would correspond to.

1.4.2. Affine types without additives, FO transductions & tree-walking automata.
As we said towards the end of §1.2.2, a natural question is whether all regular functions are
still expressible if we remove the additive connectives ⊕/& from the λ`⊕&-calculus. We also
explained that to compensate, the linearity condition should be relaxed to affineness.

117In fact, each rule application “consumes” an input node, so the recursion scheme cannot be unfolded
indefinitely. This is why such transducers map finite input trees to finite output trees, whereas trees generated
by recursion schemes can be infinite.

118The recursion schemes used in [EV88] actually obey a slightly stronger restriction than safety coming
from [Dam82] and called “Damm-safety” in modern terminology, cf. [Par18]. (The Damm-safe λ-calculus
arises naturally from iterating the “clone” operation in universal algebra, see [Sal15, §2.3].) But safe schemes
and Damm-safe schemes have the same expressive power (a direct translation is given in [Par18, §4]).

119U2 is called the flip-flop monoid. It appears in the algebraic version of Krohn–Rhodes (Theorem 2.2.10).

1.4. WORK IN PROGRESS 46

Claim 1.4.6. We have the following implicit characterizations of transduction classes in
λ-calculi without additives (where τ is a purely affine type that may be chosen depending
on the string-to-string functions that we want to express):

StrΓ[τ](StrΣ StrΓ[τ]→ StrΣ
affine commutative regular functions comparison-free polyregular functions

affine non-commutative FO transductions first-order cfp functions120

In other words, our claim is that we get the same characterizations of string transductions
as in the λ`⊕&-calculus, and that we also capture the corresponding first-order/aperiodic
function classes by adding non-commutativity. By contrast, Theorem 1.2.1 does not hold if
additives are added to the λ`℘-calculus, as we will see at the start of Chapter 7.

In [NP20, §4], we showed how to use the Krohn–Rhodes decomposition to code all
sequential functions (our proof of Theorem 1.2.1 here involves something very similar) as
affine λ-terms of type StrΓ[τ] (StrΣ, and we also showed how to express all aperiodic
sequential functions in an affine non-commutative λ-calculus. To extend this to regular
functions, one possible strategy is to use the following decomposition theorem:

Theorem 1.4.7 (Bojańczyk et al.121). The composition closure of the class composed of
• sequential functions (resp. aperiodic sequential functions)
• and mapReverseΣ, mapDuplicateΣ : (Σ ∪ {#})∗ → (Σ ∪ {#})∗ for # /∈ Σ, defined as

∀w1, . . . , wn ∈ Σ∗,
mapReverseΣ(w1# . . .#wn) = rev(w1)# · · ·#rev(wn)

mapDuplicateΣ(w1# . . .#wn) = w1w1# · · ·#wnwn
is exactly the class of regular functions (resp. first-order transductions).

As for functions taking trees as input, we claim that the removal of additive connectives
hurts expressivity. This could be suspected for tree transductions given the fact that the
additive conjunction corresponds to an important feature of BRTTs (as we said in §1.2.2),
but we have a stronger argument that also applies to languages:

Claim 1.4.8. Any tree language defined by an affine λ-term of type TreeΣ[τ] (Bool
without additive connectives can be recognized by some tree-walking automaton.

Tree-walking automata are a natural extension to trees of two-way automata, that can
recognize a strict subclass of regular tree languages, which does not even contain all the
first-order tree languages (the difficult proof of the separation result can be found in [BC08]).
We do not have a proof of the converse, nor do we have strong reasons to believe that it
holds for now, so the following is an open-ended problem:

Question 1.4.9. What is the class of tree languages definable by such λ-terms?

One thing we can already claim, however, is that the output languages of the affine
λ-terms of type TreeΓ[τ] (StrΣ are the same as those of tree-walking tree-to-string
transducers. This should follow from the results of [Sal06].

To explain our argument for Claim 1.4.8, we need to talk about geometry of interaction
and its relationship with tree-walking automata.

120While this notion has not been defined properly in this dissertation, its definition is simple: replace
regular functions by first-order transductions in the definition of comparison-free polyregular functions that
uses “composition by substitution” (cf. Footnote 71). This definition was suggested in [NNP21, §10] as part
of a model-theoretic conjecture that has since then been refuted (see the start of Chapter 3).

121The non-aperiodic case is a special case of a published result [BS20, Theorem 18] on automata over
nominal sets (cf. §1.4.4). The aperiodic case is not entirely explicit in the literature, but it can be recovered
from the results of [BDK18] (mentioned in §1.3.3).

1.4. WORK IN PROGRESS 47

1.4.3. Geometry of interaction, categorical tree automata and planar transducers.
Recall from Section 1.1.9 that the central idea of a paper of Hines [Hin03] can be reformulated
as follows: automata over the category Int(PFSet) are the same thing as two-way automata
(2DFA). It turns out that tree automata over the same category correspond to none other than
tree-walking automata. Furthermore, 2DFTs and tree-walking tree-to-string transducers can
be rephrased as (tree) automata over a certain category Int(PFSetΣ).122 Finally, reversible
2DFA (resp. 2DFT) [Dar+17] are automata over Int(PFInj) (resp. Int(PFInjΣ)) where PFInj
is the category of partial injections between finite sets.

The Int-construction is also a general way to build denotational models of the purely linear
λ-calculus [Abr96]. Those models belong to a family of works grouped under the umbrella of
“geometry of interaction” (GoI), sharing a common origin in Girard’s attempts to give a sort
of “dynamic semantics” for linear logic that would reflect the process of computation while
being more mathematically structured123 than usual operational semantics [Gir89b; Gir89a].
The task of summarizing the wide variety of GoI-related lines of work124 (such as context
semantics (cf. [Mai02]), token machines (see [CVV21] for a recent example), etc.) and their
diverging points of view is daunting, and we will not attempt it here.

The point is that this allows us to prove Claim 1.4.8 for linear λ-terms using a semantic
evaluation argument. However this does not work immediately in the affine case. Fortunately,
there are known ways to overcome this technical obstacle. One of them is to leverage the close
connection between GoI and the history-free game semantics of the purely affine λ-calculus;
this is done for instance in [CM19] for an affine version of the λY-calculus (cf. §1.3.4).

It is also worth noting that the purely linear non-commutative λ-calculus admits a
GoI-style semantics in a category of planar125 diagrams [Abr07], with “planarity” defined as
the lack of crossings in a standard graphical representation of PFSet-morphisms (§1.1.9).
This representation coincides with the drawings for 2DFA behaviors that often appear in
the literature (e.g. [Boj18, p. 45], see also Figure 1.1.1 in this manuscript). Hines [Hin06]
has suggested looking at the corresponding “two-way automata with planar behaviors” but
he did not have any result on their expressive power. In an upcoming paper, we will show:

Claim 1.4.10 ([Ngu21]). The languages (resp. functions) recognized by planar two-way
automata (resp. transducers) are exactly the star-free languages (resp. FO transductions).
Moreover, adding a reversibility restriction keeps their expressive power intact.

These are the obvious conjectures given Theorem 1.2.1 and Claim 1.4.6; we establish
along the way that monoids of planar behaviors are aperiodic, which gives us an alternative
semantic proof for one direction of Theorem 1.2.1.126 A semantic evaluation argument could
perhaps to applied to the bottom row of Claim 1.4.6 as well by devising a corresponding
“planar game semantics” for the purely affine non-commutative λ-calculus (also called the
“λ℘-calculus” in [NP20]); Aurore Alcolei, Cécilia Pradic and I had begun to think about this
but we have not had the time to delve seriously into it.

122Obj(PFSetΣ) consists of finite sets, HomPFSetΣ (X,Y) = (Y × Σ∗)X , and composition of morphisms
concatenates the “annotations” in Σ∗.

123About this (ab)use of the word “geometry” to conjure this connotation, see Footnote 42.
124While Girard’s first results [Gir89a] took place in operator algebras (from functional analysis), most

later works transferred the insights gained from [Gir89a] to much more mathematically elementary settings,
involving mainly finite combinatorics. In fact a folklore observation is that the operators on a separable
Hilbert space H that appear in [Gir89a] are just partial injections N⇀ N on a fixed basis of H. But Girard
later returned to more sophisticated operator-algebraic GoI semantics [Gir11a], cf. Footnote 93.

125The relationship between planarity and non-commutativity was first discussed in Footnote 33.
126Our proof of the former is also more conceptually satisfying than the brute-force syntactic argument

we gave for the latter in [NP20]: we characterize Green’s relations ≤L and ≤R in the monoid of all planar
behaviors over a given finite set of states, from which we quickly deduce its H-triviality i.e. aperiodicity.

1.4. WORK IN PROGRESS 48

We conclude this subsection with two remarks on the equivalence between 2DFTs and
copyless SSTs in the light of the geometry of interaction. The first one is a technical claim:
there is a functor127 PFSetΣ → (SR˚)⊕ where SR˚ is the counterpart for strings of the
category T R˚ from Chapter 6, which induces a translation from 2DFTs to a machine model
which resembles single-use-restricted BRTTs but for strings. (Indeed, (SR˚)⊕ and (SR&)⊕
are quite close.) Thus we can give a categorical account of one direction of the equivalence.

The second remark is more high-level: morally, 2DFTs and copyless SSTs make different
space-time tradeoffs (no registers vs single-pass processing). This should be compared
with the effectiveness of GoI techniques for space-bounded evaluation of λ-terms,128 as
demonstrated for instance in implicit characterizations of logarithmic space complexity based
on linear logic [Sch07; DS16; Maz15].

1.4.4. Automata and transducers over infinite alphabets (nominal sets). One
extension that we can consider to our characterization of regular string functions is to work
over an infinite alphabet. Following [CLP15], let us work with alphabets of the form Σ× A
where Σ is finite and A is a countable infinite set of “atoms”. A string in (Σ× A)∗ will then
be represented by a term of type

StrAΣ = (Atom→ (o(o))→ · · · → (Atom→ (o(o))︸ ︷︷ ︸
|Σ| times

→ o→ o

in some λ-calculus with both unrestricted and affine function arrows, as well as a primitive
type Atom and, for each a ∈ A, a corresponding constant a : Atom.

The next question is: what operations will be allowed on the type Atom within our
chosen λ-calculus? A simple possibility is to have as the only primitive operation an equality
test129 eqτ : Atom(Atom((τ & τ)(τ : the only kind of information on atoms that we
can inspect is whether two given atoms are equal. Then definable languages in P((Σ× A)∗)
are invariant under the natural action of the permutation group S(A) of A, and definable
functions (Γ× A)∗ → (Σ× A)∗ “commute” with this action.

There is a whole theory of nominal sets concerned with certain sets endowed with an
action of S(A). Interestingly, it comes from programming language theory. The initial
motivation was to handle syntax with variable renaming (see e.g. [Pit16])130 so the idea
was not to add atoms to a λ-calculus as we do above, but to manipulate variables in usual
λ-terms as permutable atoms. Later on, there has been a lot of work on computability and
automata over nominal sets, see [Boj19].

As we said in Section 1.1.5, the notion of copylessness131 has recently been demonstrated
to be important for automata over nominal sets [BS20]: copyless register automata (with
finitely many atom-valued registers) recognize a robust class of languages, and copyless
SSTs with atoms have good properties such as a decomposition theorem in the style of
Krohn–Rhodes and Theorem 1.4.7. Thus one could expect that working in a linear or affine

127In fact this functor arises from the fact that PFSetΣ can be built from an (SR˚)⊕-enriched category
through the change of base induced by Hom(I,−) : (SR˚)⊕ → Set. This encapsulates in a precise technical
way the idea that 2DFT behaviors are composed of a finite state plus finitely many labels; the precise choice
of category (SR˚)⊕ reflects the linearity properties of composition of morphisms with respect to those labels.

128It was also conjectured for a long time that a GoI token machine for the untyped λ-calculus could
satisfy the invariance thesis (Footnote 3) for space, but it now seems that this is probably wrong [ADV21].

129We do not take the obvious choice eq : Atom(Atom(I⊕ I because we want to restrict to negative
connectives in order to make syntactic manipulations easier – see the discussion at the start of Chapter 5.

130Pitts and Gabbay were given the 2019 Alonzo Church Award for Outstanding Contributions to Logic
and Computation for introducing nominal sets, see https://archive.md/DLWbA.

131The paper [BS20] uses “single use” to mean “copyless”; this should not be confused with the more
permissive “single use restrictions” found in [EM99; AD17].

https://archive.md/DLWbA

1.4. WORK IN PROGRESS 49

λ-calculus, we could extend our implicit characterization of regular functions to infinite
alphabets. Clovis Eberhart, Cécilia Pradic and I have indeed convinced ourselves that:

Claim 1.4.11. The languages (resp. functions) definable by affine λ-terms (with additives)
of type StrAΣ[τ](Bool (resp. StrAΓ [τ](StrAΣ) for some purely affine τ (where Atom counts
as affine) correspond to those studied in [BS20].

When we want to generalize to a broader class of alphabets treated in [BS20]: the
“polynomial orbit-finite sets”, which have the form An1 + · · · + Ank (we recover the case
Σ× A for n1 = · · · = nk = 1 and k = |Σ|), the situation becomes less satisfying. While the
Church-like encoding StrAΣ admits a straightforward generalization, we have only managed
to get a characterization where the input and output types do not quite match; specializing
it to the case of functions (Γ× A)∗ → (Σ× A)∗, we would characterize those definable by
copyless SSTs with atoms by terms of type

StrAΓ (
(
(Atom((o(o))→ · · · → (Atom((o(o))︸ ︷︷ ︸

|Σ| times, note the use of (instead of →

→ o→ o
)

This is a consequence of the details of the copylessness policy in SSTs with atoms, and it
might be inevitable.

An open question is whether Claim 1.4.11 can be generalized to trees. For instance, one
of the equivalent characterizations of recognizability by copyless register automata involves
the “rigid MSO” logic from [CLP15]. Since this logic does not depend much on the relational
structure, and trees with atoms also admit a Church-like encoding, we can ask:

Question 1.4.12. For tree languages, is definability in rigid MSO equivalent to expressibility
by an affine λ-term of type TreeAΣ[τ](Bool for some purely linear τ?

Before tackling this, it might seem prudent to first develop the theory of copyless tree
automata and tree transducers with atoms, which does not exist yet at the time of writing.
But if we keep in mind that copylessness is too restrictive to capture regular tree functions
(§1.2), we can expect the extension of register automata to trees to require more permissive
notions of single use restriction. And there is a new difficulty in designing such a notion,
compared to usual SSTs over finite (ranked) alphabets: while the contents of registers in SSTs
without atoms does not influence the control flow (in other words, they are just potential
output pieces that are shuffled around blindly), the whole point of atom-valued registers is
to be subjected to equality tests that select conditional branches. This is incompatible with
the idea of the ⊕-completion (§1.2.3) that adds a layer of finite-state control on top of a
base category that cannot influence this control. So maybe it could be better to start from
λ-terms and only later try to devise equivalent automata models.

Let us also mention that the above-mentioned issue with the ⊕-completion has so far
prevented us from finding a suitable denotational model132 of the purely affine λ-calculus
with atoms which would yield Claim 1.4.11 by semantic evaluation. Our current proof idea
for this claim uses somewhat ad-hoc syntactic methods.

1.4.5. Polyregular functions in a parsimonious λ-calculus. One of the ICC results
capturing logarithmic space that were mentioned at the end of §1.4.3 takes place in Mazza’s
parsimonious λ-calculus [Maz15] and uses Church-encoded strings as input. The type system
introduced in [Maz15] is monomorphic, so according to the general principle outlined in
Section 1.2.1, one would expect to get the regular languages instead. What allows the

132But the category of nominal sets, without any “single use” or “orbit-finiteness” condition (the
languages studied in [BS20] are recognized by orbit-finite monoids), is a semantics of the simply typed
λ-calculus, and even of higher-order intuitionistic logic, called the Schanuel topos [Pit16, §3].

1.4. WORK IN PROGRESS 50

parsimonious λ-calculus to escape this limitation is that unlike the calculi considered in this
dissertation, it does not admit a forgetful functor to the simply typed λ-calculus, because
of a non-standard feature133 that it supports. (Another contrasting example is that Light
Linear Logic admits a forgetful functor to usual linear logic.)

The most salient property of the parsimonious λ-calculus, a kind of restriction on non-
linearity that Mazza calls “parsimony”, is orthogonal to the above-mentioned non-standard
feature. Therefore, if we remove the latter, the resulting system might still be interesting; let
us call it the “fully uniform”134 parsimonious λ-calculus. Its definable languages are indeed
the regular languages, with the consequence that the definable string-to-string functions
preserve regular languages by preimage. Thus, those functions probably correspond to some
transduction class. At this point, let us remind the reader of two facts from §1.2.4:
• parsimony is very similar to layering in SSTs (which led to our reinvention of the latter);
• the class of polyregular functions is the composition closure of layered SSTs.
Thanks to this, we can easily translate layered SSTs into fully uniform parsimonious λ-terms
and compose those terms to express any polyregular function. The converse seems plausible
but it appears to be a difficult problem, which Damiano Mazza, Gabriele Vanoni and I tried
unsuccessfully to attack with GoI-like token machines (cf. §1.4.3, see also [ALV21]).

Conjecture 1.4.13. A function f : Γ∗ → Σ∗ is polyregular if and only if it can be expressed
by a fully uniform parsimonious λ-term of type StrΓ[τ](StrΣ for some arbitrary type τ .

Note that we do not impose any linearity condition on τ in the above statement. In the
λ`⊕&-calculus, if we did not have such a restriction, then we would have access to the full
power of the simply typed λ-calculus since linearity only applies when the linear function
arrow (is used. However, in the parsimonious λ-calculus, all non-linear functions must
obey the parsimony condition, which is imposed globally by the type system.

1.4.6. Maximality of (poly)regular functions. Perhaps the right way to see the unproven
part (“if”) of the above conjecture is not as a property specific to the parsimonious λ-calculus,
but as a consequence of something much stronger:

Conjecture 1.4.14. If a string function is definable in the simply typed λ-calculus (in the
sense of Conjecture 1.4.3) and has polynomial growth, then it is polyregular.

(The connection with Conjecture 1.4.13 is that since the “parsimoniously λ-definable”
functions are computable in logarithmic space, they have polynomial growth.) Our main
reason for believing this conjecture is that the polyregular functions are the largest “seemingly
canonical” class of polynomial growth transductions known today. Similarly, among the
existing well-studied string transduction classes with linear growth, regular functions are
the largest one. In fact, concerning regular functions, the following property is known:

Theorem 1.4.15 ([EIM21]). Every string function in E (cf. Section 1.4.1) with linear
growth is regular.

133A first-class type !τ of “ultimately constant streams of elements of type τ” thanks to which n ∈ N can
be represented as the stream [true, . . . , true, false, false, . . .] : !Bool with n times true. In usual linear
λ-calculi where the exponential modality ‘!’ appears, !τ is the type of “duplicable data of type τ”, so an
inhabitant of type !τ is morally not too different from “infinitely many copies of some inhabitant of τ” or in
other words a constant stream. (Such λ-calculi would encode σ → τ as !σ(τ , cf. Footnote 112.)

134The Taylor expansion (Footnote 46) of parsimonious λ-terms with non-constant streams (Footnote 133)
is “non-uniform” in the sense of [ER08]. However “non-uniform parsimonious λ-calculus” refers to another
system which is “even less uniform” in this sense: streams do not even need to be ultimately constant. It
was introduced in [MT15] and the actual reason for its name is that it serves to characterize the circuit
complexity class L/poly which is considered the “non-uniform” version of logarithmic space in complexity
theory. There are two notions of uniformity involved here, which are morally related but not identical.

1.4. WORK IN PROGRESS 51

It is similar to the above conjecture, especially if Claim 1.4.2 is taken into account. It
also entails, as a special case, that polyregular functions with linear growth are regular –
this non-trivial fact can also be derived from the MSO dimension minimization theorem
of135 [Boj22a; KNP23], and the comparison-free case will be proved in Chapter 3. This
means that our conjecture would imply that string functions definable in the simply typed
λ-calculus with linear growth are regular.

1.4.7. Automata and complexity in the polymorphic elementary affine λ-calculus.
Coming back to typed λ-calculi, my first application136 of the ideas from Hillebrand and
Kanellakis’s Theorem 1.1.4 was to solve a minor open problem from “standard” implicit
complexity, concerning a characterization of polynomial time by Baillot et al.137 [BDR18]
that makes use of Church encodings. It takes place in a variant of Elementary Linear Logic
which they call the elementary affine λ-calculus; we will refer to it as µEAλ here, following
my paper [Ngu19]. The µ stands for a fixed point operator on types, which means that
µEAλ supports recursive types.138 The question was whether this feature was necessary for
the result of [BDR18]; it turns out that it is, for similar reasons to the necessity of something
non-standard in the parsimonious characterization of logarithmic space (see §1.4.5).139 We
call EAλ the system defined by removing recursive types from µEAλ, again following [Ngu19].
In the statement below, the shape of the first item corresponds to the result on polynomial
time in µEAλ.

Theorem 1.4.16 ([Ngu19]). Let L ⊆ Σ∗. The following are equivalent:
• L is definable by an EAλ-term of type !StrEAλ

Σ (!!BoolEAλ.
• L is definable by an EAλ-term of type StrEAλ

Σ (!BoolEAλ.
• L is regular.

Here ‘!’ denotes an “exponential modality”140 which plays a key role in controlling
complexity in variants of Elementary Linear Logic. The type StrEAλ

Σ differs from our usual
linearized Church encoding in two ways. First, it uses ‘!’ in a way that is compatible with a
certain “stratification” property of EAλ. Second, it incorporates a quantification over types
which allows us to state the above without any type substitution in the input; the type
system of EAλ indeed supports polymorphism. The above theorem is proved by combining
the syntactic stratification property with a semantic evaluation argument. The latter relies
on the following fact (compare with our proof sketch for Theorem 1.1.4):

Claim 1.4.17. There exists a finite denotational semantics of the purely affine polymorphic
λ-calculus which is non-trivial in the sense that JtrueK 6= JfalseK.

Such a semantics has also been sketched by Laird [Lai13], as a stepping stone towards
another game semantics for an extension of the usual (non-linear) polymorphic λ-calculus.141

The finiteness property is explicitly noted at the beginning of [Lai13, §7] (without proof,
but it is not hard to check).

135References edited in March 2023, as explained in the preface.
136Previously alluded to in Footnote 104.
137Reformulating the earlier [Bai15] that took place in a slightly less user-friendly system.
138We already saw recursive types / fixed points appear in §1.3.3 in relation with circular proofs. But

there is a difference: µEAλ supports arbitrary recursive types, whereas logics with fixed points that admit
circular proof systems generally have positivity restrictions on recursion (one can define τ = τ ⊕ σ but not
τ = τ (σ because the left of a function arrow is a “negative” position).

139Once again, this is evidence for our point that connections with automata sometimes arise more
“naturally” than with complexity when studying typed λ-calculi.

140See also Footnote 133.
141Also known as System F and previously mentioned in Footnote 37.

1.4. WORK IN PROGRESS 52

Baillot et al. [BDR18] also give a characterization of string-to-string functions computable
in polynomial time in µEAλ, which I simplified in [Ngu19] to the type !StrEAλ

Γ (!StrEAλ
Γ .

(The nice thing is that it reflects the fact that polynomial time functions are closed under
composition.) The obvious question is: what happens without recursive types? The situation,
we claim, is analogous to what happens in the λ`⊕&-calculus:
Claim 1.4.18. A function Γ∗ → Σ∗ is regular (resp. comparison-free polyregular) if it can
be defined by an EAλ-term of type StrEAλ

Γ (StrEAλ
Σ (resp. !StrEAλ

Γ (!StrEAλ
Σ).

(We can even formulate for k ∈ N a characterization of cfp functions of rank k, i.e. using
k + 1 pebbles.142) The proof idea is to extend Laird’s game semantics by annotating each
move in a strategy with a string in Σ∗. This should give a category admitting a functor to
the category (SR˚)⊕ mentioned in §1.4.3.143

I also discovered that the properties stated in Claim 1.4.17 are also fulfilled by a semantics
based on coherence spaces (combining the treatment of affineness in [Mel09, §8.1] and that
of polymorphism in [GTL89, Appendix A]). This work has not yet been written up in a
satisfactory way due to foundational issues,144 but it has been applied to sub-polynomial
ICC in a prematurely published146 joint work with Pradic [NP19]. Since EAλ only recognizes
regular languages over Church-encoded strings, we took the idea to take relational structures
as inputs instead from [HKM96; HK96] (cf. §1.3.6). We gathered some evidence suggesting

142They are those definable by EAλ-terms of type !StrEAλ
Γ (!StrEAλ

Σ that “use their argument k + 1
times”, i.e. that are obtained by promotion and contraction from a term of type

StrEAλ
Γ (. . .(StrEAλ

Γ︸ ︷︷ ︸
k+1 times

(StrEAλ
Σ

What makes this work is that the type StrEAλ
Γ is similar to a call-by-value translation of the non-linear

Church encoding, this choice being imposed by the stratification property of EAλ. The λ`⊕&-calculus cannot
do this because the typing rules for its non-linear function arrow ‘→’ correspond to a call-by-name translation
(see Footnote 112 and Footnote 133).

143Just as for Int(PFSetΣ), we expect this functor to be induced by an underlying enriched category
structure over (SR˚)⊕ (see Footnote 127).

144For instance there is no precise definition of a categorical semantics of the purely affine (or linear)
polymorphic λ-calculus in the literature. Such a definition, and the accompanying soundness result for
its interpretation of λ-terms, is expected to be routine, but this work should still be done as a matter
of principle!145 Then there is the question of whether the above-mentioned semantics really do satisfy
the categorical axioms. In the case of the coherence space semantics of the polymorphic λ-calculus, this
verification has been carried out in [Mai96], and it is known that Girard’s original paper [Gir86] contains
a major gap: it does not check that a certain uniformity condition required on morphisms is closed under
composition, which is non-trivial (I first rediscovered this for myself, and then learned from Thomas Ehrhard
that this was folklore). In general I tend to believe that categorical axiomatics is an important hygienic
precaution for anything that pretends to be a denotational semantics; for instance, the axioms for the
exponentials of linear logic sometimes fail surprisingly, see [Mel09, §8.7] for a discussion of a historical
example and [Rib20, §1.3] for a more recent one. Another important example of a “semantics” that isn’t an
actual semantics is the so-called “Blass problem” [Abr03].

145More generally, the “obviousness” of this kind of metatheoretic result relating syntax and semantics
has been heavily disputed in the dependent type theory community, particularly by Voevodsky, as discussed
in the introduction to [Boe20].

146Its reliance on an unfinished preprint is not the only issue with rigor in this paper; I take full
responsibility for this (it really was my fault, not Cécilia’s!). I will not dwell on the details of those
mistakes of youth here, but my present thoughts on the general phenomenon of “premature publishing”
are well reflected by the following quote from Katrin Wehrheim’s MIT Women in Mathematics profile
(https://archive.md/xwYVr): “‘We don’t write good papers anymore’, she says. Many proofs are published
with gaps or unnecessarily complicated logic, as if the author didn’t have the time or patience to explain
the idea. She likes to use a mountain metaphor: ‘It’s like if some really well trained climber made it to the
mountain top. But they didn’t leave any hooks along the way, so someone with less training will have no way
of following it without having to find the route for themselves.’”

https://archive.md/xwYVr

1.5. CHAPTER-BY-CHAPTER OUTLINE 53

that this gives a characterization of deterministic logarithmic space, though the upper
bound that we manage to “prove” in [NP19] is weaker (but still strictly below P assuming
widely believed complexity-theoretic conjectures). Unfortunately, the GoI approach used
for previous ICC results [Sch07; DS16; Maz15] on logarithmic space using linear types
(mentioned at the end of §1.4.3) does not appear to apply to our setting; instead, we have
been exploring an approach using hypercoherences [Ehr93], but its success might require
some difficult algorithmics.147

1.5. Chapter-by-chapter outline

The last role that this introduction needs to fulfill is to explain the plan of the manuscript.
The order of chapters is different from the order of exposition of results in this introduction,
since it follows logical dependencies. Each chapter starts with a plan detailing its division into
sections. Chapters 3 and 7 are based on the publications [NNP21] and [NP20] respectively,
while Chapter 2 draws from both of them; those papers were published in the proceedings
of the International Colloquium on Automata, Languages and Programming (ICALP). The
rest has not yet been subject to peer review.148

The notations used throughout the dissertation are recapitulated in Section 2.1. In the
rest of Chapter 2, we recall all the preexisting material on automata and transducers that
will be useful in subsequent chapters, and we prove a few results that did not appear before
in the literature149 (such as the one concerning layered SSTs mentioned in §1.2.4).

The next two chapters contain almost no trace of λ-terms. In Chapter 3 we introduce
and study the class of comparison-free polyregular functions (§1.2.4) from a purely automata-
theoretic perspective. This is followed by Chapter 4, which is dedicated to the constructions
and results in categorical automata theory announced in §1.2.3.

The remainder of the dissertation is concerned with “implicit automata”. Chapter 5
defines the λ`⊕&-calculus and uses the aforementioned category-theoretic material to prove
the part of Theorem 1.2.3 that concerns string-to-string functions. In Chapter 6, we extend
some results of Chapter 4 to trees in order to finish proving Theorem 1.2.3. Finally, the
main subject of Chapter 7 is Theorem 1.2.1 on star-free languages in the λ`℘-calculus, but
it also explains why linear (as opposed to affine) λ-calculi without additives are not suitable
to characterize transduction classes.

147See the slides https://nguyentito.eu/2021-01-cgcafe.pdf.
148Some of it comes from a submission to a journal that was desk-rejected for excessive length.
149Excluding our own paper [NNP21] from which most of this material is lifted.

https://nguyentito.eu/2021-01-cgcafe.pdf

CHAPTER 2

Preliminaries: notations and automata models

This chapter starts with some notations used throughout the entire dissertation, which
we put in Section 2.1 for ease of lookup. (Since categories does not appear until Chapter 4
(except for the informal overview in Chapter 1), we have delayed the introduction of their
dedicated notation to Section 4.1.1.) After that, it covers many of the function classes and
transducer models that we will encounter:
• Sequential transducers (§2.2) are a very simple machine model whose purpose is mostly

illustrative… until Chapter 7 where their Krohn–Rhodes decomposition (§2.2.1) will play
an important technical role.
• Streaming string transducers (SSTs), introduced in Section 2.3, are more important since

their copyless version (§2.3.2) define regular functions, one of the classes that we will later
characterize using the λ`⊕&-calculus. We introduce some technical tools to work with
SSTs in Section 2.3.4, where a special case of the wreath product construction (also used
in Krohn–Rhodes) makes an appearance.
• Copyful (§2.3.1) and layered (§2.3.3) SSTs also admit alternative characterizations in

terms of HDT0L systems, which we present in Section 2.4.
• Section 2.5 introduces polyregular functions.
• Finally, in Section 2.6, we start with a high-level discussion of how to extend copyless

SSTs in order to handle trees, then recall a machine model for regular tree functions.
Almost none of this is an original contribution; the definition of “layered HDT0L system”

and the associated Theorem 2.4.5 might be an exception, though it is neither hard nor
surprising. We also give some proofs that we could not find in the literature, but which
might be folklore.

2.1. Notations & elementary definitions

2.1.1. Sets. We follow the convention that natural numbers start at 0, that is, N = {0, 1, . . . }.
The cardinality of a set X is written |X|. We sometimes consider a family (xi)i∈I as a map
i 7→ xi, which amounts to treating

∏
i∈I Xi as a dependent product. Consistently with this,

we make use of the dependent sum operation∑
i∈I

Xi = {(i, x) | i ∈ I, x ∈ Xi}

Recall also that the binary coproduct of sets is the tagged union

X + Y = {in1(x) | x ∈ X} ∪ {in2(y) | y ∈ Y }

The injection in1/in2 may be omitted by abuse of notation when it is clear from the context,
that is, for x ∈ X, we allow ourselves to write x for in1(x) when it is understood that this
refers to an element of X + Y .

We also write πi : X1 ×X2 → Xi for the i-th projection of a product (i ∈ {1, 2}).
54

2.2. SEQUENTIAL TRANSDUCERS 55

a

a c

bc

c

a

a

b

ε

0

0

0

1

1

Figure 2.1.1. Graphical representations of the tree a(a(c, b(c)), c) over the
ranked alphabet {a : {0, 1}, b : {0}, c : ∅} (left) and of the word aab ∈ {a, b}∗
seen as an element of Tree({a, b}) = Tree({a : {∗}, b : {∗}, ε : ∅}) (right).

2.1.2. Strings (a.k.a. words). Alphabets designate finite sets and are written using the
variable names Σ,Γ,Π. The set of strings over an alphabet Σ is denoted by Σ∗. We write
|w| for the length of a word w ∈ Σ∗ and either wi or w[i] for its i-th letter (i ∈ {1, . . . , |w|});
given a letter c ∈ Σ, the notation |w|c refers to the number of occurrences of c in w.

The concatenation of two strings u, v ∈ Σ∗ is written uv (or sometimes u · v for clarity);
recall that Σ∗ endowed with this operation is the free monoid over the set of generators Σ,
and its identity element is the empty string ε. Given monoids M and N , Hom(M,N) is the
set of monoid morphisms.

Finally, we write Σ = {a | a ∈ Σ} for a disjoint copy of the alphabet Σ made of
“underlined” letters.

2.1.3. Ranked trees. Ranked alphabets are pairs (Σ, ar) such that Σ is an alphabet and
the arity ar is a family of finite sets1 indexed by Σ; they are written using Σ,Γ. We may
write {a1 : A1, . . . , an : An} for the ranked alphabet ({a1, . . . , an}, ar) with ar(ai) = Ai.

Given a ranked alphabet Σ, the set Tree(Σ) of trees/terms over a ranked alphabet Σ is
defined as usual: if a is a letter of arity X in Σ and t a family of Σ-trees, we write a(t) for
the corresponding tree. Examples of such trees are pictured in Figure 2.1.1.
Remark 2.1.1. Given an alphabet Σ, define Σ to be the ranked alphabet (Σ + {ε}, ar)
such that ar(in1(a)) = {∗} and ar(in2(ε)) = ∅. This gives a isomorphism Tree(Σ) ' Σ∗,
illustrated on the right of Figure 2.1.1.

2.2. Sequential transducers

Sequential transducers are among the simplest models of automata with output. They
are deterministic finite automata which can append a word to their output at each transition,
and at the end, they can add a suffix to the output depending on the final state. A possible
reference is [Sak09, Chapter V].
Definition 2.2.1. A sequential transducer with input alphabet Σ and output alphabet Π
consists of a set of states Q, a transition function δ : Q×Σ→ Q×Π∗, an initial state qI ∈ Q,
and a final output function F : Q→ Π∗. We abbreviate δst = π1 ◦ δ and δout = π1 ◦ δ.

Given an input string w = w[1] . . . w[n] ∈ Σ∗, the run of the transducer over w is the
sequence of states q0 = qI , q1 = δst(q0, w[1]), …, qn = δst(qn−1, w[n]). Its output is obtained
as the concatenation δout(q0, w[1]) · . . . · δout(qn−1, w[n]) · F (qn).

1This is slightly non-standard; the more usual notion would be that ar be only a family of numbers
Σ→ N. Our choice will be more convenient to describe some constructions in Chapter 6.

2.2. SEQUENTIAL TRANSDUCERS 56

qa qb

end|ab end|bbb

a|a b|a

a|bb

b|bb

Figure 2.2.1. A schematic representation of a sequential transducer whose
formal definition is Q = {qa, qb}, δ(q, a) = (qa, a) and δ(q, b) = (qb, bb) for
q ∈ Q, qI = qa, F (qa) = ab and F (qb) = bbb.

A sequential function is a function Σ∗ → Π∗ computed as described above by some
sequential transducer.

Definition 2.2.2. The transition monoid of a sequential transducer is the submonoid of
Q → Q (endowed with reverse function composition: fg = g ◦ f) generated by the maps
{δst(−, c) | c ∈ Σ} (where δst(−, c) stands for q 7→ δst(q, c)).

A sequential transducer is said to be aperiodic when its transition monoid is aperiodic
(cf. Definition 1.1.2 in §1.1.2). A function that can be computed by such a transducer is
called an aperiodic sequential function.

Example 2.2.3. The transducer in Figure 2.2.1 computes f : w ∈ {a, b}∗ 7→ a · ψ(w) · b
where ψ is the monoid morphism that doubles every b: ψ(a) = a and ψ(b) = bb. Its transition
monoid T is generated by G = {(δst(−, a) : q 7→ qa), (δst(−, b) : q 7→ qb)}; one can verify that
T = G ∪ {id} and therefore ∀h ∈ T, h ◦ h = h. Thus, f is an aperiodic sequential function.

2.2.1. The Krohn–Rhodes decomposition and wreath products of monoids. One
of the fundamental results of automata theory is a kind of “prime factorization” of sequential
functions, which we state below. (Such factorization theorems are also important for larger
classes of transductions, see e.g. [BD20], Theorem 1.4.7 and Definition 2.5.1.)

Theorem 2.2.4 (Krohn–Rhodes). Any sequential function f : Γ∗ → Σ∗ can be realized
as a composition f = f1 ◦ . . . ◦ fn (with fi : Π

∗
i → Π∗i−1, Π0 = Σ and Πn = Γ) where each

function fi is computed by:
• either a flip-flop transducer, i.e. an aperiodic sequential transducer with 2 states;
• or a sequential transducer whose transition monoid is a group.

Note that the example of sequential transducer in Figure 2.2.1 has two states. It is also
aperiodic (Example 2.2.3), so it is a flip-flop.

Theorem 2.2.4 is not the standard way to state the Krohn–Rhodes decomposition, though
one may find it in the literature, usually without proof (e.g. [Boj18, §1.1]). Usual statements
involve either a special case of sequential transducers called Mealy machines (Remark 2.3.10)
or, more often, finite monoids (both appear in the original paper2 [KR65]). Here we show how
the algebraic formulation can be shown to imply Theorem 2.2.4; this material is well-known
among practitioners of automata theory.

Definition 2.2.5. A transformation monoid (X,M) consists of a set X, a monoid M and a
right action of M on X (kept implicit in the notation (X,M), and denoted by (x,m) 7→ x·m).
It is finite when both X and M are finite.

2What is called a “sequential machine” in [KR65] is in fact a Mealy machine.

2.2. SEQUENTIAL TRANSDUCERS 57

Typical transformation monoids are obtained by considering pairs (Q,T) such that Q
is the state space of some transducer (Q, δ, qI , F) and T is its transition monoid, acting on
Q via function application. Next, we recall the algebraic construction that corresponds to
composition of sequential functions.

Definition 2.2.6. Let (X,M) and (Y,N) be two transformation monoids. Their wreath
product is a transformation monoid (X,M) o (Y,N) = (X × Y,W) where:
• the underlying set of the monoid W is MY ×N ;
• the right action of (f, n) ∈W =MY ×N on (x, y) ∈ X×Y is (x, y)·(f, n) = (x·f(y), y ·n);
• the multiplication on W is (f, n)(g, k) = ((y 7→ f(y)g(y ·n)), nk) – it is chosen so that the

above item is a legitimate monoid action.

Proposition 2.2.7. The wreath product of transformation monoids is associative up to
canonical3 isomorphism.

Proof sketch. We give a direct description of (X,M)o(Y,N)o(Z,P) = (X×Y ×Z,W):
• the underlying set of the monoid W is MY×Z × NZ × P – note that it is canonically

isomorphic to (MY ×N)Z × P ;
• the right action is (x, y, z) · (f, g, p) = (x · f(y, z), y · g(z), z · p);
• the multiplication on W is
(f, g, p)(f ′, g′, p′) = (((y, z) 7→ f(y, z)f ′(y · n, z · p)), (z 7→ g(z)g′(z · p)), pp′). �

Definition 2.2.8. A transformation monoid (X,M) strongly divides (Y,N) if there exists a
submonoid N ′ ≤ N , a surjective morphism ϕ : N ′ � M and a surjection s : Y � X such
that for all y ∈ Y and n′ ∈ N ′, s(y · n′) = s(y) · ϕ(n′).

A monoid M divides N if M is the homomorphic image of a submonoid of N .

Proposition 2.2.9. A finite monoid is aperiodic if and only if there are no non-trivial
groups that divide it.

Proof. Let M be a finite monoid. Suppose that for x ∈M , there is no n ∈ N such that
xn = xn+1; then by finiteness, (xi)i∈N must be ultimately periodic with period k ≥ 2, and
one can define a surjective morphism from the submonoid generated by x to the cyclic group
of order k by sending x to the latter’s generator. The converse follows a similar reasoning
(recall that every non-trivial group contains a non-trivial cyclic subgroup). �

Theorem 2.2.10 (Krohn–Rhodes with strong divisors [DKS12, Theorem 4.1]). Every finite
transformation monoid (X,M) strongly divides some wreath product (Y1, N1) o . . . o (Yn, Nn)
where each (Yk, Nk) is either:
• the flip-flop (Yk, Nk) = ({1, 2}, {id{1,2}, (x 7→ 1), (x 7→ 2)}) (with the action x · f = f(x)

and the monoid multiplication fg = g ◦ f);
• a finite group G dividing M acting on itself by right multiplication.
In particular, if M is aperiodic, (X,M) strongly divides a wreath product of several copies
of the flip-flop transformation monoid.

Remark 2.2.11. The flip-flop transformation monoid is precisely the transition monoid of
the transducer of Example 2.2.3 endowed with its action on the set of states.

Remark 2.2.12. We can also require G above to be a simple group. This is the statement
given in [DKS12], but group simplicity is not needed for our purposes. (To be more precise,
every finite group divides a wreath product of its Jordan–Hölder factors.)

3This word is used here in an informal sense.

2.2. SEQUENTIAL TRANSDUCERS 58

Remark 2.2.13. Let (Y,N) = (Y1, N1) o . . . o (Yn, Nn). In both the flip-flop and group cases,
the action of Nk on Yk is faithful, i.e. two distinct elements of Nk act differently on at least
one element of Yk. Furthermore, the wreath product of faithful transformation monoids is
faithful. Therefore, one can safely identify N with a submonoid of Y → Y .

Now let us relate this wreath product operation to sequential functions. This is sufficient
to derive Theorem 2.2.4 as a corollary of Theorem 2.2.10.

Proposition 2.2.14. Let (Q, δ, qI , F) be a sequential transducter with transition monoid
T describing a function f : Γ∗ → Σ∗. Suppose that (Q,T) strongly divides some faithful
transformation monoid (X,M) o (Y,N). Then there is an alphabet Π and transducers

(X, δX , xI , FX) : Γ
∗ → Π∗ and (Y, δY , yI , FY) : Π

∗ → Σ∗

such that
• the sequential functions fX : Γ∗ → Π∗ and fY : Π∗ → Σ∗ that they respectively compute

verify f = fX ◦ fY ;
• there are injective homomorphisms TX ↪→M and TY ↪→ N from their respective transition

monoids.

Proof. Let (Q, δ, qI , F) be the transducer under scrutiny. Let K ⊆ MY × N such
that ϕ : K � T , s : X × Y � Q be the maps witnessing that (Q,T) strongly divides
(X,M) o (Y,N). We choose a pair (xI , yI) such that s(xI , yI) = qI and, for each a ∈ Γ,
we choose an element (ga, na) ∈ MY × N which is mapped by ϕ to δst(−, a) ∈ T . Set
Π = (Γ] {∗})× Y , (xI , yI) = s−1(x, y) and

FY (y) = (∗, y) FX(x) = ε

δY (y, a) = (y ·ma, y) δX(x, (a, y)) = (x · ga(y), δout(s(x), a))

δX(x, (∗, y)) = (x, F (s(x, y)))

We leave checking that this defines transducers with the expected properties to the reader. �

This generalizes to n-fold wreath products in the expected way.

Proposition 2.2.15. Let T be the transition monoid of a sequential transducer with state
space Q computing the function f : Γ∗ → Σ∗. Suppose that (Q,T) strongly divides some
wreath product (X,M) = (X1,M1) o . . . o (Xn,Mn) of faithful transformation monoids. Then
f admits a decomposition f = f1 ◦ . . . ◦ fn (with fi : Π∗i → Π∗i−1, Π0 = Σ and Πn = Γ) such
that for each i ∈ {1, . . . , n}, fi is computed by a sequential transducer whose transformation
monoid embeds in Mi and with state space Xi.

Proof. By induction starting from n = 1.
• For n = 1, let ϕ : K � T and s : X � Q be the maps witnessing that (Q,T) strongly

divides (X,M). Let xI be such that s(xI) = qI , and, for each a ∈ Γ, pick an element
ma ∈ K such that ϕ(ma) = δst(−, a). Then, letting (Q, δ, qI , F) being the transducer
under scrutiny, a suitable transducer (X, δ′, xI , F

′) is defined by setting δ′(x, a) = (x ·
ma, δout(s(x), a)) and F ′(x) = F (s(x)).
• For n > 1, use Proposition 2.2.14 and the induction hypothesis. �

Proof of Theorem 2.2.4. Let (Q, δ, qI , F) be a transducter computing a certain se-
quential function f : Γ∗ → Σ∗ and let T be its transition monoid. By Theorem 2.2.10,
there is a transformation monoid (Y,N) which can be written as a wreath product (Y,N) =
(Y1, N1) o . . . o(Yk, Nk) such that (Q,T) strongly divides (Y,N), and the (Yi, Ni) are either flip-
flops or groups. By applying Proposition 2.2.15, we may obtain transducers Ti implementing
sequential functions fi : Π∗i → Π∗i+1 such that Π0 = Γ, Πk = Σ and f = fk−1 ◦ . . . ◦ f0.

2.3. STREAMING STRING TRANSDUCERS (SSTS) 59

Furthermore, we know that the state space of Ti is Yi and that the corresponding transition
monoid Ti embeds into Ni. Recalling that “being aperiodic” and “being a finite subgroup”
are properties stable under homomorphic embeddings, we know that either Yi has cardinality
2 and Ti is aperiodic with two states or Ti is a group (a trivial group if T was aperiodic,
according to Proposition 2.2.9), thus we may conclude. �

2.3. Streaming string transducers (SSTs)

Following Section 1.1.3, the next classical transduction class after sequential functions
would be rational functions. However, we do not have any use for them in this manuscript,
so we will skip directly to regular functions. As we have said many times in Chapter 1, we
take copyless streaming string transducers (SSTs) as their reference definition. Let us start
by recalling the copyful version; the copylessness restriction will be defined later. (This is
a bit anachronistic: Alur and Černý first introduced copyless SSTs [AČ10], and only later
were copyful SSTs studied by Filiot and Reynier [FR21].)

2.3.1. Copyful SSTs. An SST is an automaton whose internal memory contains, in addition
to its control state, a finite number of string-valued registers. It processes its input in a
single left-to-right pass. Each time a letter is read, the contents of the registers may be
recombined by concatenation to determine the new register values. Formally:

Definition 2.3.1. Fix a finite alphabet Σ. Let R and S be two finite sets disjoint from Σ;
we shall consider their elements to be “register variables”.

For any word ω ∈ (Σ ∪R)∗, we write ω† : (Σ∗)R → Σ∗ for the map that sends (ur)r∈R
to ω in which every occurrence of a register variable r ∈ R is replaced by ur – formally, we
apply to ω the morphism (Σ ∪R)∗ → Σ∗ that maps c ∈ Σ to itself and r ∈ R to ur.

A register assignment α from R to S (over Σ) is a map α : S → (Σ ∪ R)∗. It induces
the action α† : ~u ∈ (Σ∗)R 7→ (α(s)†(~u))s∈S ∈ (Σ∗)S (which indeed goes “from R to S”).

For instance, t : Z 7→ aXbY is a register assignment from {X,Y } to {Z} over the
alphabet {a, b} and t†(X 7→ b, Y 7→ aa) = (Z 7→ abbaa).

Remark 2.3.2. Some papers e.g. [AFT12; DJR18] call register assignments substitutions.
We avoid this name since it differs from its meaning in the context of our “composition by
substitution” operation (next chapter) or of the λ-calculus (in the rest of the manuscript).

We will also use the name register transition later for a slight variant of the above
definition that is more convenient for our category-theoretic developments (Definition 4.2.10).

Definition 2.3.3 ([FR21]). A (deterministic copyful) streaming string transducer (SST)
with input alphabet Γ and output alphabet Σ is a tuple T = (Q, q0, R, δ, ~uI , F) where
• Q is a finite set of states and q0 ∈ Q is the initial state;
• R is a finite set of register variables, that we require to be disjoint from Σ;
• δ : Q× Γ→ Q× (R→ (Σ ∪R)∗) is the transition function – we abbreviate δst = π1 ◦ δ

and δreg = π2 ◦ δ;
• ~uI ∈ (Σ∗)R describes the initial register values;
• F : Q→ (Σ ∪R)∗ describes how to recombine the final values of the registers, depending

on the final state, to produce the output.
The function Γ∗ → Σ∗ computed by T is

w1 . . . wn 7→ F (qn)
† ◦ δreg(qn−1, wn)

† ◦ . . . ◦ δreg(q0, w1)
†(~uI)

where the sequence of states (qi)0≤i≤n (sometimes called the run of the transducer over the
input word) is inductively defined, starting from the fixed initial state q0, by qi = δst(qi−1, wi).

2.3. STREAMING STRING TRANSDUCERS (SSTS) 60

X ← ε

Y ← ε

Y ε

‖

∣∣∣∣∣ X ← ε

Y ← Y X

a ∈ Σ

∣∣∣∣∣ X ← aX

Y ← Y

‖

∣∣∣∣∣ X ← ε

Y ← XY

a ∈ Σ

∣∣∣∣∣ X ← Xa

Y ← Y

(Σ t {‖})∗ → Σ∗ (wi ∈ Σ∗, (Σ t {‖})∗ ∼= Σ∗(‖Σ∗)∗)

w0 7→ ε

w0‖ . . . ‖w2k 7→ reverse(w2k−1)reverse(w2k−3) . . . reverse(w1)w0w2 . . . w2k−2

w0‖ . . . ‖w2k+1 7→ ε

Figure 2.3.1. An informal depiction of a streaming string transducer and
the induced map (Σ t {‖})∗ → Σ∗.

An example of SST with 2 states is given in Figure 2.3.1. We also provide below an
example of a single-state SST (recall the underlined alphabet notation from Section 2.1).

Example 2.3.4. Let Σ = Γ ∪ Γ. We consider a SST T with Q = {q}, R = {X,Y } and

~uI = (ε)r∈R F (q) = Y ∀c ∈ Γ, δ(q, c) = (q, (X 7→ cX, Y 7→ cXY))

If we write (v, w) for the family (ur)r∈R with uX = v and uY = w, then the action of the
register assignments may be described as (X 7→ cX, Y 7→ cXY)†(v, w) = (c · v, c · v · w).

Let 1, 2, 3, 4 ∈ Γ. After reading 1234 ∈ Γ∗, the values stored in the registers of T are

(X 7→ 4X, Y 7→ 4XY)† ◦ . . . ◦ (X 7→ 1X, Y 7→ 1XY)†(ε, ε) = (4321, 4321321211)

Since F (q) = Y , the function defined by T maps 1234 to 4321321211 ∈ (Γ ∪ Γ)∗ = Σ∗.

2.3.2. Copyless SSTs and regular functions. The streaming string transducer of Fig-
ure 2.3.1 is in fact copyless; let us say precisely what this means.

Definition 2.3.5 ([AČ10]). A register assignment α : S → (Σ ∪R)∗ from R to S is said to
be copyless when each r ∈ R occurs at most once among all the strings α(s) for s ∈ S, i.e. it
does not occur at least twice in some α(s), nor at least once in α(s) and at least once in
α(s′) for some s 6= s′. (This restriction does not apply to the letters in Σ.)

A streaming string transducer is copyless if all the assignments in the image of its
transition function are copyless. In this dissertation, we take computability by copyless SSTs
as the definition of regular functions (but see Theorem 3.2.3 for another standard definition).

Remark 2.3.6. The SST of Example 2.3.4 is not copyless: in a transition α = δreg(q, c),
the register X appears twice, once in α(X) = cX and once in α(Y) = cXY ; in other words,
its value is duplicated by the action α†. In fact, it computes a function whose output size is
quadratic in the input size, while regular functions have linearly bounded output.

Example 2.3.7 (Iterated reverse). The following single-state SST is copyless:

Γ = Σ with # ∈ Σ Q = {q} R = {X,Y } ~uI = (ε)r∈R F (q) = XY

δ(q,#) = (q, (X 7→ XY#, Y 7→ ε)) ∀c ∈ Σ \ {#}, δ(q, c) = (q, (X 7→ X, Y 7→ cY))

2.3. STREAMING STRING TRANSDUCERS (SSTS) 61

For u1, . . . , un ∈ (Σ\{#})∗, it maps u1# . . .#un to reverse(u1)# . . .#reverse(un). (This
function is taken from [Boj18, p. 1].)

The concrete SSTs (copyless or not) that we have seen for now are all single-state, except
for Figure 2.3.1. A source of stateful copyless SSTs is the following:

Proposition 2.3.8. Every sequential function is regular.

Proof idea. Any sequential transducer can be translated into a copyless SST with the
same set of states and a single register. �

In fact, states are strictly necessary for this, as the example below shows.

Proposition 2.3.9. The sequential (and therefore regular) function defined by the aperiodic
sequential transducer below cannot be computed by a single-state copyless SST.

1 2

a|a, c|a b|a b|b, c|b

a|a

We did not find Proposition 2.3.9 stated the literature, though it is probably well-known
among experts; we will give a proof at the end of Section 2.3.4 once we have recalled the
necessary algebraic machinery.

Remark 2.3.10. Compared to Figure 2.2.1, the transducer of Proposition 2.3.9 has the
particularity of being letter-to-letter : each transition outputs exactly one letter, and the
final output word is empty. Letter-to-letter sequential transducers are also known as a Mealy
machines, and the functions computed by aperiodic Mealy machines form one of the weakest
classical transduction classes.

Finally, let us recall some basic properties of regular functions:

Proposition 2.3.11 (folklore, e.g. [AČ10, Proposition 2]). Let f, g : Γ∗ → Σ∗ be regular
functions and L ⊆ Γ∗ be a regular language. The function that coincides with f on L and
with g on Γ∗ \ L is regular, and so is w 7→ f(w) · g(w).

Proof. Both are easy exercises involving a “product construction” on SSTs: if f and
g are computed by copyless SSTs with states Qf , Qg and register variables Rf , Rg, and L
is recognized by some finite monoid M , then the “regular conditional” is computed by a
copyless SST with states Qf ×Qg ×M and registers Rf +Rg, while the concatenation is
computed by an SST with states Qf ×Qg and registers Rf +Rg. �

Proposition 2.3.12 (special case of Theorem 2.3.14(i)). Every regular function f has a
linearly bounded output length: |f(w)| = O(|w|).

2.3.3. Layered SSTs. An intermediate machine model between copyful and copyless SSTs
– where duplication is controlled, but not outright forbidden – has been recently introduced
by Douéneau-Tabot et al. [DFG20]. Its interest is justified by Theorem 2.3.14 below; for
now let us recall its definition.

Definition 2.3.13 ([DFG20]). Let k ∈ N and α : R→ (Σ∪R)∗. The register assignment α
is k-layered with respect to a partition R = R0 t . . . tRk when for 0 ≤ i ≤ k,
• for r ∈ Ri, we have α(r) ∈ (Σ ∪R0 ∪ . . . ∪Ri)∗;
• each register variable in Ri appears at most once among all the α(r) for r ∈ Ri (however,

those from R0 t . . . tRi−1 may appear an arbitrary number of times).

2.3. STREAMING STRING TRANSDUCERS (SSTS) 62

A streaming string transducer is k-layered if its registers can be partitioned in such a way
that all assignments in the transitions of the SST are k-layered w.r.t. that partition.

Beware: with this definition, the registers of a k-layered SST are actually divided into
k+1 layers, not k. For instance, the transducer of Example 2.3.4 is 1-layered with R0 = {X}
and R1 = {Y }, and copyless SSTs are the same thing as 0-layered SSTs.

There also exist register assignments that cannot be made k-layered no matter the choice
of partition, such as X 7→ XX. Using such assignments, one can indeed build SSTs that
compute functions f such that e.g. |f(w)| = 2|w|. This kind of superpolynomial growth
turns out to be the only obstruction to the existence of an equivalent layered SST, according
to the following result.

Theorem 2.3.14 ([DFG20]). Let f : Γ∗ → Σ∗ and k ∈ N. The following are equivalent:
(i) f is computed by a copyful SST and |f(w)| = O(|w|k+1);
(ii) f is computed by some k-layered SST;
(iii) f is computed by some k-marble transducer – an automata model introduced in [DFG20]

and mentioned in §1.2.4, that we will not use it in the rest of this dissertation.

Remark 2.3.15. This use of a syntactic “layering” condition to characterize the polynomially
growing functions computable by SSTs arguably has an old precursor: Schützenberger’s
theorem on polynomially bounded Z-rational series, which dates back to the 1960s (see for
instance [BR10, Chapter 9, Section 2] – the preface of the same book describes this theorem
as “one of the most difficult results in the area”). Let us give a brief exposition.

For a semiring S, a function f : Σ∗ → S is sometimes called a “series” because it can be
seen as formal power series in several non-commuting indeterminates (or variables). Indeed,
each letter of Σ can be seen as an indeterminate, and a word in Σ∗ is then considered as a
formal product, i.e. a monomial. Then the function f corresponds to the coefficients of∑

w∈Σ∗

f(w) · w

A Z-rational series f : Σ∗ → Z is a function of the form f : w ∈ Σ∗ 7→ XT · Φ(w) · Y where
X,Y ∈ ZR and Φ is a morphism from Σ∗ to the multiplicative monoid of R-indexed square
matrices over Z, for some finite set R. (For more on rational series over any semiring, and
how they can be seen as generalizations of regular languages, see [Sak09, Chapter III].)
This data (X,Φ, Y) has a clear interpretation as a “simple SST” (a single-state SST with
an additional condition, cf. Remark 2.4.3) with register set R, whose register values are
integers rather than strings. Schützenberger’s theorem says that any Z-rational series f with
polynomial growth (i.e. |f(w)| = |w|O(1) where | · | on the left is the absolute value) can be
written as f : w 7→ XT · Φ(w) · Y where

(i) the image of Φ has a block triangular structure;
(ii) the projection of this image on each diagonal block is a finite monoid.

The first item gives us a partition of the register into layers where each layer “depends”
only on the ones below them. The finiteness condition in the second item is equivalent to
having bounded coefficients, which means that the register assignments within each layer are
bounded-copy, while in a layered SST, they would be copyless instead – but bounded-copy
SSTs are known to be equivalent to copyless SSTs4 (see e.g. [AFT12; DJR18]). The theorem
also states a relationship between the number of blocks and the growth rate.

4This is a consequence of the older and stronger fact that macro tree transducers with linearly bounded
growth compute regular tree functions [EM03b].

2.3. STREAMING STRING TRANSDUCERS (SSTS) 63

Via the canonical isomorphism {a}∗ ∼= N, streaming string transducers with unary
output alphabet compute N-rational series. The counterpart of Schützenberger’s theorem
over N is thus a corollary of the results of [DFG20] on layered SSTs.

2.3.4. Transition monoids of (copyless) SSTs. We now recall a central tool to study
streaming string transducers, that also prefigures their category-theoretic treatment: the
monoid structure on register assignments (see e.g. [AFT12, §III.C]).

Definition 2.3.16. Let MR,Σ = R → (Σ ∪ R)∗ for R ∩ Σ = ∅. We endow it with the
following composition operation, that makes it into a monoid:

α • β = α? ◦ β where α? ∈ Hom((Σ ∪R)∗, (Σ ∪R)∗), α?(x) =

{
α(x) for x ∈ R
x for x ∈ Σ

The monoidMR,Σ thus defined is isomorphic to a submonoid of Hom((Σ∪R)∗, (Σ∪R)∗)
with function composition. It admits a submonoid of copyless assignments.

Definition 2.3.17. We writeMcl
R,Σ for the set of all α ∈MR,Σ such that each letter r ∈ R

occurs at most once among all the α(r′) for r′ ∈ R.

Proposition 2.3.18. Mcl
R,Σ is a submonoid of MR,Σ. In other words, copylessness is

preserved by composition (and the identity assignment is copyless).

The following proposition ensures that this composition does what we expect. Recall
from Definition 2.3.1 that (−)† interprets register assignments as functions on tuples of
strings, i.e. it sendsMR,Σ to (Σ∗)R → (Σ∗)R.

Proposition 2.3.19. For all α, β ∈ MR,Σ, we have (α • β)† = β† ◦ α†. In other words,
(−)† is a monoid morphism if we endow (Σ∗)R → (Σ∗)R with reverse function composition
(just as we did for Q→ Q in Definition 2.2.2).

To incorporate information concerning the states of an SST, we use a construction that
can be seen as special case of the wreath product of transformation monoids (Definition 2.2.6):
the reader may check that the monoid denoted by M oQ below is canonically isomorphic to
the wreath product (M,M) o (Q, Q→ Q) (which justifies our notation for the former).

Definition 2.3.20. Let M be a monoid; let m ·m′ denote the multiplication of m,m′ ∈M .
We define M oQ as the monoid whose set of elements is Q→ Q×M and whose multiplication
is, for µ, µ′ : Q→ Q×M , (writing π1 : Q×M → Q and π2 : Q×M →M for the projections)

(µ • µ′) : q 7→ (π1 ◦ µ′ ◦ π1 ◦ µ(q), (π2 ◦ µ(q)) · (π2 ◦ µ′ ◦ π1 ◦ µ(q)))

Proposition 2.3.21. Let (Q, q0, R, δ, ~uI , F) be an SST that computes f : Γ∗ → Σ∗ (using
the notations of Definition 2.3.3). For all c ∈ Γ, we have δ(−, c) ∈MR,Σ oQ, and the SST
is copyless if and only if {δ(−, c) | c ∈ Γ} ⊆ Mcl

R,Σ oQ. Furthermore, for all w1 . . . wn ∈ Γ∗,

f(w1 . . . wn) = F (g(q0))
†(α†(~v)) where (g, α) = δ(−, w1) • · · · • δ(−, wn)

Finally, it can be useful to consider assignments over an empty output alphabet. This
allows us to keep track of how the registers are shuffled around by transitions.

Proposition 2.3.22. Let R and Σ be disjoint finite sets. There is a monoid morphism
MR,Σ →MR,∅, that sends the submonoid Mcl

R,Σ to Mcl
R,∅. For any Q, this extends to a

morphism MR,Σ oQ→MR,∅ oQ that sends Mcl
R,Σ oQ to Mcl

R,∅ oQ. We shall use the name
eraseΣ for both morphisms (R and Q being inferred from the context).

2.4. HDT0L TRANSDUCTIONS 64

Remark 2.3.23. Consider an SST with a transition function δ. Let ϕδ ∈ Hom(Γ∗,Mcl
R,∅ oQ)

be defined by ϕδ(c) = eraseΣ(δ(−, c)) for c ∈ Γ. The range ϕδ(Γ
∗) is precisely the

substitution transition monoid (STM) defined in [DJR18, Section 3].

Proposition 2.3.24. For any finite R, the monoid Mcl
R,∅ is finite. As a consequence, the

substitution transition monoid of any copyless SST is finite.

Proof idea. For all α ∈Mcl
R,∅ and r ∈ R, observe that |α(r)| ≤ |R|. �

Let us now show how these tools can be applied to prove an earlier claim from §2.3.2.

Proof of Proposition 2.3.9. Consider any single-state copyless SST computing some
g : {a, b, c}∗ → {a, b}∗ with a set of registers R. We wish to show g does not coincide with
the function computed by the sequential transducer of Proposition 2.3.9.

Let ω ∈ ({a, b} ∪ R)∗ be the image of the single state by the output function, and for
each letter x ∈ {a, b, c}, let αx : R → ({a, b} ∪ R)∗ be the copyless assignment performed
by the SST when it reads x (that is, using the notations of Definition 2.3.3, ω = F (q) and
αx = δreg(q, x) with Q = {q}). Let ~u be the initial register contents. Then

∀x ∈ {a, b, c}∗, ∀n ∈ N, g(x · cn) = ω† ◦ (α†c)n ◦ α†x(~u)
Let ωn = (α?c)

n (ω), using the notation (−)? from Definition 2.3.16; in particular ω0 = ω.
One can check that, for all n ∈ N:
• ω†n = ω† ◦ (α†c)n;
• since αc is copyless, |ωn|r ≤ |ω|r for all r ∈ R, writing |w|x for the number of occurrences

of x in w ∈ Σ∗ for x ∈ Σ.
Let (vx,r)r∈R = α†x(~u) for x ∈ {a, b, c}; that is, vx,r the value stored in the register r ∈ R
after the SST has read the single letter x. We can rewrite the above equation as

∀x ∈ {a, b, c}∗, ∀n ∈ N, g(x · cn) = ω†n((vx,r)r∈R)

and derive a numerical (in)equality

∀x ∈ {a, b, c}∗, ∀n ∈ N, |g(x · cn)|a = |ωn|a +
∑
r∈R
|ωn|r|vx,r|a =

n→+∞
|ωn|a +O(1)

using the fact that |ωn|r, as a non-negative quantity lower than the constant |ω|r, is O(1).
From this, it follows that as n increases, the difference between |g(a · cn)|a and |g(b · cn)|a

stays bounded. This property distinguishes g from the f : {a, b, c}∗ → {a, b}∗ computed by
the transducer given in Proposition 2.3.9, since

∀n ∈ N, |f(a · cn)|a =
∣∣an+1

∣∣
a
= n+ 1 and |f(b · cn)|a =

∣∣bn+1
∣∣
a
= 0 �

2.4. HDT0L transductions

Filiot and Reynier [FR21] characterized the expressive power of copyful SSTs using some
kind of L-systems. The latter were originally introduced by Lindenmayer [Lin68] in the
1960s as a way to generate formal languages, with motivations from biology. While this
language-centric view is still predominant, the idea of considering variants of L-systems as
specifications for string-to-string functions – whose range are the corresponding languages –
seems to be old. For instance, in a paper from 1980 [ERS80], one can find (multi-valued)
string functions defined by some flavor of L-systems called “ET0L”. For SSTs, the right
notion is the following:

Definition 2.4.1 (following [FR21]). A HDT0L system consists of:
• an input alphabet Γ, an output alphabet Σ, and a working alphabet ∆ (all finite);
• an initial word d ∈ ∆∗;

2.4. HDT0L TRANSDUCTIONS 65

• for each c ∈ Γ, a monoid morphism hc ∈ Hom(∆∗,∆∗);
• a final morphism h′ ∈ Hom(∆∗,Σ∗).
It defines the transduction taking w = w1 . . . wn ∈ Γ∗ to h′ ◦ hw1 ◦ . . . ◦ hwn(d) ∈ Σ∗.

Theorem 2.4.2 ([FR21]). A function Γ∗ → Σ∗ can be computed by a copyful streaming
string transducer (§2.3.1) if and only if it can be specified by an HDT0L system.

Other equivalent ways to define this class of functions, which we call HDT0L transductions,
include catenative recurrent equations, higher-order pushdown transducers of level 2 (both
by Ferté, Marin and Sénizergues [FMS14]5) and unbounded marble transducers [DFG20].

Remark 2.4.3. As observed in [FR21, Lemma 3.3], there is a natural translation from
HDT0L systems to SSTs whose range is composed precisely of the single-state SSTs whose
transitions and final output function do not access the letters of their output alphabet – those
are called simple SSTs in [DFG20, §5.1]. This involves a kind of reversal: the initial register
values correspond to the final morphisms, while the final output function corresponds to the
initial word. Thus, Theorem 2.4.2 is essentially a state elimination result; a direct translation
from SSTs to single-state SSTs6 has also been given in Benedikt et al.’s paper on polynomial
automata7 [Ben+17, Proposition 8]. However, it does not preserve the subclass of copyless
SSTs (this would contradict Proposition 2.3.9).

In more detail, an HDT0L system (Γ,Σ,∆, d, (hc)c∈Γ, h
′) is equivalent to the streaming

string transducer specified by the following data:
• a singleton set of states: Q = {q};
• the working alphabet as the set of registers: R = ∆ (minor technicality: if ∆ ∩ Σ 6= ∅,

one should take R to be a copy of ∆ that is disjoint from Σ);
• hc ∈ Hom(∆∗,∆∗) ∼= (∆→ ∆∗) ⊆ (∆→ (Σ ∪∆)∗) as the register assignment associated

to an input letter c ∈ Γ – in other words, the transition function is δ : (q, c) 7→ (q, (hc)�∆);
• (h′(r))r∈∆ ∈ (Σ∗)R as the initial register values;
• F : q 7→ d as the final output function (d ∈ ∆∗ ⊆ (Σ ∪∆)∗).
The cases of the transition and output functions involve a codomain extension from ∆∗

to (Σ ∪∆)∗. This reflects the intuition that a HDT0L system “cannot access the output
alphabet” (except in the initial register contents).

To prove the equivalence, the key observation is that hc is turned into δ(−, c) by
a morphism from Hom(∆∗,∆∗) to M∆,∅ o {q} ⊂ M∆,Σ o {q}, using the notations from
Section 2.3.4. We leave the details to the reader.

2.4.1. Layered HDT0L systems. Let us transpose the layering condition (§2.3.3) from
streaming string transducers to HDT0L systems. The hierarchy of models that we get
corresponds with an offset to layered SSTs.

Definition 2.4.4. A HDT0L system (Γ,Σ,∆, d, (hc)c∈Γ, h
′) is k-layered if its working

alphabet can be partitioned as ∆ = ∆0 t · · · t∆k such that, for all c ∈ Γ and i ∈ {0, . . . , k}:
• for r ∈ ∆i, we have hc(r) ∈ (∆0 t · · · t∆i)

∗;

5Those characterizations had previously been announced in an invited paper by Sénizergues [Sén07].
Some other results announced in [Sén07] are proved in [Cad+21]. Moreover, the definition of HDT0L systems
given in [Sén07; FMS14] makes slightly different choices of presentation: the family (hc)c∈Γ is presented as
a morphism H : Γ∗ → Hom(∆∗,∆∗), and an initial letter is used instead of an initial word; this is of no
consequence regarding the functions that can be expressed.

6The lookahead elimination theorem for macro tree transducers [EV85, Theorem 4.21] arguably generalizes
this to trees. Indeed, lookahead in MTTs corresponds to bottom-up states in register transducers according
to the duality sketched at the beginning of Chapter 6.

7See Example 4.2.6 for a definition of polynomial automata.

2.4. HDT0L TRANSDUCTIONS 66

• each letter in ∆i appears at most once among all the hc(r) for r ∈ ∆i (but those in
∆0 t · · · t∆i−1 may appear an arbitrary number of times).

Theorem 2.4.5. For k ∈ N, a function can be computed by a k-layered SST if and only if
it can be specified by a (k + 1)-layered HDT0L system.

In particular, regular functions correspond to 1-layered HDT0L systems.

Proof of (⇒). The translation from SSTs to HDT0L systems in [FR21, Lemma 3.5]
turns out to work. It is also formulated in terms of “simple SSTs” (isomorphic to HDT0L
systems, cf. Remark 2.4.3) in [DFG20, §5.1], where the authors remark that it “does not
preserve copylessness nor k-layeredness”: indeed, what we show is that it increments the
number of layers by one! For the sake of clarity, we give an alternative presentation that
decomposes it into two steps.

Let Γ be the input alphabet and Σ be the output alphabet. Let T be a streaming string
transducer with a k-layered set of register variables R = R0 t · · · t Rk. First, we build a
(k + 1)-layered SST T ′ that computes the same function, with the set of registers

R′ = Σ ∪R = R′0 t · · · tR′k+1 R′0 = Σ ∀i ∈ {1, . . . , k + 1}, R′i = Ri−1

assuming Σ ∩R = ∅, and whose register assignments are without fresh letters: the range of
every α′ : R′ → (Σ ∪ R′)∗ is included in R′∗, which allows us to write α′ : R′ → R′∗. This
already brings us closer to the definition of HDT0L systems, since (R→ R∗) ∼= Hom(R∗, R∗).
Similarly, we will ensure that the range of the output function of T ′ is included in R′.

Let underlineΣ ∈ Hom((Σ ∪R)∗, (Σ ∪R)∗) be defined in the expected way, and note
that its codomain is equal to R′∗. We specify T ′ as follows (and leave it to the reader to
check that this works):
• the state space Q, initial state and state transitions are the same as those of T ;
• the initial value of r′ ∈ R′ is the same as for T if r′ ∈ R, or the single letter c if r′ = c ∈ Σ;
• every assignment α : R→ (Σ ∪R) that appears in some transition of T becomes, in T ′,

α′ : R′∗ → R′∗ α′ : c ∈ Σ 7→ c α′ : r ∈ R 7→ underlineΣ(α(r))

• its output function is F ′ = underlineΣ ◦ F where F is the output function of T .
Thus, the idea is to store a copy of c ∈ Σ in the register c. Since this register may feed in
a copyful way all other registers (in a SST, there are no restrictions on the use of output
alphabet letters), it must sit at the lowest layer, hence R′0 = Σ and the resulting offset.

Next, we turn T ′ into an equivalent HDT0L system with (k+1)-layered working alphabet

∆ = R′ ×Q = ∆0 t . . . t∆k+1 ∀i ∈ {0, . . . , k + 1}, ∆i = R′i ×Q

For q ∈ Q, let pairq ∈ Hom(R′∗,∆∗) be such that pairq(r
′) = (r′, q) for r′ ∈ R′.

Let Q = {q(1), . . . , q(n)} be the states of T ′ (which are also those of T), with q(1) being
its initial state8. Using the fact that T ′ is without fresh letters, let F ′ : Q→ R′∗ be its final
output function. The initial word of our HDT0L system is then

d = pairq(1)
(
F ′
(
q(1)
))
· . . . · pairq(n)

(
F ′
(
q(n)

))
∈ ∆∗

From the initial register values (uI,r′)r′∈R′ ∈ (Σ∗)R
′ of T ′, we define the final morphism:

h′ ∈ Hom(∆∗,Σ∗) ∀r′ ∈ R′,
[
h′
(
r′, q(1)

)
= uI,r′ and ∀q 6= q(1), h′(r′, q) = ε

]
8Except for that, this enumeration of Q is arbitrary. We write q(i) instead of qi to avoid confusion with

the run of an automaton.

2.5. POLYREGULAR FUNCTIONS 67

Finally, let δ′st : Q → Q and δ′reg : Q → (R′ → R′∗) be the components of the transition
function of T ′. The morphisms hc ∈ Hom(∆∗,∆∗) for c ∈ Γ send (r′, q) ∈ ∆ to

hc(r
′, q) = pairq(i1)(δ

′
reg(q

(i1), c)(r′)) · . . . · pairq(im)(δ′reg(q
(im), c)(r′))

where i1 < . . . < im and {q(i1), . . . , q(im)} = {q(?) ∈ Q | δ′st(q(?), c) = q}.
Checking that this HDT0L system computes the right function is a matter of mechanical

verification, that has already been carried out in [FR21]. To wrap up the proof, we must
justify that it is (k + 1)-layered. To do so, let us fix a letter c ∈ Γ and two layer indices
i, j ∈ {0, . . . , k+1}, and count the number Nr′,q of occurrences of (r′, q) ∈ ∆i among all the
hc(r̃

′, q̃) for (r̃′, q̃) ∈ ∆j . The letter (r′, q) can only appear in hc(r̃′, q̃) when q̃ = δ(q, c), and
in that case, its occurrences (if any) are in the substring pairq(δ

′
reg(q, c)(r̃

′)). So Nr′,q counts
the occurrences of r ∈ R′i among the δ′reg(q, c)(r̃

′) for r̃′ ∈ R′j . Since T ′ is a (k + 1)-layered
SST, we are done. �

Proof of (⇐). The translation from HDT0L systems to single-state SSTs mentioned
in Remark 2.4.3 is not enough: starting from a (k + 1)-layered HDT0L system, it gives us a
(k + 1)-layered SST. But we can bring this down to k layers by adding states.

Let (Γ,Σ,∆, d, (hc)c∈Γ, h
′) be a HDT0L system (d ∈ ∆∗, hc ∈ Hom(∆∗,∆∗) for c ∈ Γ,

and h ∈ Hom(∆∗,Σ∗)). Suppose that it is (k + 1)-layered with ∆ = ∆0 t · · · t∆k+1. This
entails that hc(∆0) ⊆ ∆∗0, and furthermore that (hc)�∆0 : ∆0 → ∆∗0 satisfies a copylessness
condition, that may succinctly be written as (hc)�∆0 ∈Mcl

∆0,∅ (cf. Definition 2.3.17).
We define a k-layered SST with:

• Mcl
∆0,∅ as the set of states (finite by Proposition 2.3.24), with the identity element of the

monoid as its initial state;
• the set of registers R = ∆ \∆0 = ∆1 t · · · t∆k+1, whose i-th layer is the (i+ 1)-th layer

of the original HDT0L system (0 ≤ i ≤ k);
• the initial register contents (h′(r))r∈R – recall that h′ is the final morphism;
• the transition function (α, c) 7→ (α • (hc)�∆0 , (h

′
�∆∗

0
◦ α)? ◦ (hc)�R) where (−)? extends

functions ∆0 → Σ∗ into morphisms in Hom((∆ ∪ Σ)∗, (R ∪ Σ)∗) that map each letter in
R ∪ Σ to itself (since ∆ = ∆0 tR, the domain of these morphisms is (∆0 tR t Σ)∗);
• the final output function α 7→ (h′�∆∗

0
◦ α)?(d).

The layering condition for this SST is inherited from the layering of the original HDT0L
system, and one can check the functions computed by the two are the same. �

Corollary 2.4.6. Every regular function can be computed by a single-state 1-layered SST.

Proof. Any regular function is definable by some copyless SST, i.e. 0-layered SST.
By Theorem 2.4.5, it can be turned into a 1-layered HDT0L system. The latter can be
translated to a single-state SST by the naive construction of Remark 2.4.3. As can readily
be seen from the definitions, this construction preserves the 1-layered property. �

The converse does not hold: the single-state 1-layered SST of Example 2.3.4 computes a
function which is not regular (cf. Remark 2.3.6). However, 1-layered HDT0L systems – or
equivalently 1-layered “simple SSTs”, cf. Remark 2.4.3 – do characterize regular functions
according to Theorem 2.4.5. Thus, there is a one-way transducer model for regular functions
that does not use an explicit control state. This is in contrast with copyless SSTs, whose
expressivity critically depends on the states (unlike copyful SSTs), cf. Proposition 2.3.9.

2.5. Polyregular functions

Let us now recall the penultimate class of string transductions that we will consider –
the last one will be, of course, the new one that we will introduce in Chapter 3.

2.5. POLYREGULAR FUNCTIONS 68

Definition 2.5.1 (Bojańczyk [Boj18]). The class of polyregular functions is the smallest
class of string-to-string functions closed under composition containing:
• the sequential functions (§2.2);
• the “iterated reverse” function of Example 2.3.7, over any finite alphabet containing #;
• the “squaring with underlining” functions squaringΓ : Γ∗ → (Γ ∪ Γ)∗, for any finite

alphabet Γ, illustrated by squaringΓ(1234) = 1234123412341234.

We can state a variant of Definition 2.5.1 which is a bit more convenient for us.

Proposition 2.5.2. Polyregular functions are the smallest class closed under composition
that contains the regular functions and the squaring with underlining functions squaringΓ.

Proof. One direction of the equivalence follows from the fact that all regular functions
are polyregular. This is stated in the introduction to [Boj18] and can also be recovered from
Proposition 2.5.4 below (since copyless SST are 0-layered). For the converse, observe that:
• sequential functions are regular (Proposition 2.3.8);
• since the SST of Example 2.3.7 is copyless, the iterated reverse function is regular. �

The name “polyregular” is justified by:

Proposition 2.5.3. Every polyregular function f has a polynomially bounded output:

|f(w)| = |w|O(1)

Proof. This property is preserved by composition and satisfied by both regular functions
(that are linearly bounded) and squaring (which has quadratic growth). �

2.5.1. Layered SSTs vs polyregular functions. Let us compare this function class with
the transducer model that we have already seen in Section 2.3.3, which also computes
functions with polynomial growth.

Proposition 2.5.4. Every function computed by a layered SST is polyregular.

Proof. We have already alluded to the simplest way to see this in §1.2.4, and it goes
through machine models that we have not properly introduced: it is asserted in [DFG20, §6]
– and the reader familiar with the definitions can easily check this – that k-marble transducers
(mentioned in Theorem 2.3.14), which are equivalent to k-layered SSTs, can be seen as a
special case of pebble transducers [Boj18, §6] (see also Section 3.2), a device that computes
polyregular functions. �

Combining this with Theorem 2.3.14(i) and Proposition 2.5.3, we have:

Corollary 2.5.5. A string-to-string function can be computed by a layered SST if and only
if it is both a polyregular function and an HDT0L transduction.

The two conditions are not redundant: we have already seen that there exist exponentially
growing HDT0L transductions, that cannot be polyregular; conversely, we shall see in the
next chapter (to be precise, in Theorem 3.5.1) that some polyregular functions are not
HDT0L. Thus, the functions computed by layered SST do not coincide with either of those
classes. However, if we take their composition closure, then we get:

Theorem 2.5.6. Let f : Γ∗ → Σ∗. The following are equivalent:
(i) f is polyregular;
(ii) f can be obtained as a composition of layered SSTs;
(iii) f can be obtained as a composition of single-state 1-layered SSTs.

As an immediate consequence:

2.5. POLYREGULAR FUNCTIONS 69

Corollary 2.5.7 (claimed in [DFG20, §6]). Layered SSTs are not closed under composition.

Proof of Theorem 2.5.6 (i) ⇒ (iii). Thanks to Proposition 2.5.2, we know that any
polyregular functions can be written as a composition of a sequence of functions, each of
which is either regular or equal to squaringΓ for some finite alphabet Γ. It suffices to show
that each function in the sequence can in turn be expressed as a composition of single-state
1-layered SSTs. We decompose squaringΓ as

1234 7→ 4321321211 7→ 1234123412341234

The first step is performed by the SST of Example 2.3.4, which has a single state and, as
mentioned in Section 2.5, is 1-layered. The second step can be implemented using a SST
with a single state q (that we omit below for readability), two registers X (at layer 0) and
Y (at layer 1) with empty initial values, an output function F (q) = Y , and

∀c ∈ Γ, δ(c) = (X 7→ X, Y 7→ cY) and δ(c) = (X 7→ cX, Y 7→ cXY)

As for regular functions, Corollary 2.4.6 takes care of them. �

Proof of Theorem 2.5.6 (iii) ⇒ (ii). Immediate by definition. �

Proof of Theorem 2.5.6 (ii) ⇒ (i). Proposition 2.5.4 applies in particular to single-
state 1-layered SSTs. Therefore, their composition is also polyregular (indeed, according to
Definition 2.5.1, polyregular functions are closed under composition). �

2.5.2. Polynomial list functions. Let us also report briefly on the functional formalism for
polyregular functions [Boj18, Section 4] that we mentioned in Section 1.3.3. The explanation
is geared towards a reader familiar with typed λ-calculi.

The λ-terms defining the polynomial list functions are generated by the grammar of
simply typed λ-terms enriched with constants, whose meaning can be specified by extending
the naive set-theoretic semantics from Section 1.1.7 (one can also extend the β-reduction
rules correspondingly). For instance, given a finite set S and a ∈ S, every element of S can
be used as a constant, another allowed constant is isSa and we have

JisSa tK = true if a = JtK Jisa tK = false if JtK ∈ S \ {a}

The grammar of simple types and the typing rules are also extended accordingly. For
instance, any finite set S induces a type also written S, such that every element a ∈ S
corresponds to a term a : S of this type with JaK = a. There are also operations expressing
the cartesian product (×) and disjoint union (+) of two types; and, for any type τ , there is
a type τ∗ of lists whose elements are in τ . So the constant isSa receives the type

isSa : S → {true}+ {false} for any finite set S

See [Boj18, §4] for the other primitive operations that are added to the simply typed
λ-calculus in order to define polynomial list functions; we make use of is, case, map and
concat here. The map combinator, whose name follows the usual functional programming
conventions,9 expresses the functoriality of the type constructor (−)∗ as follows:

Jmap f tK = [JfK(x1), . . . , JfK(xn)] when JtK = [x1, . . . , xn]

Bojańczyk’s result is that if Γ and Σ are finite sets, then the polynomial list functions of
type Γ∗ → Σ∗ correspond exactly the polyregular functions.

9In the case of “map”, the Lisp and ML traditions agree, which is not the case for “reduce” vs “fold”.

2.6. TREE TRANSDUCERS 70

2.5.3. More on the “map” combinator. The higher-order function map above also admits
an obvious counterpart as an operator on string-to-string functions. First, note that given a
word w ∈ (Γ ∪ {#})∗ and assuming that # /∈ Γ, there exists a unique decomposition

w = w1# . . .#wn where w1, . . . , wn ∈ Γ∗

Definition 2.5.8. Let f : Γ∗ → Σ∗ and suppose that # /∈ Γ ∪ Σ. We define the function
map(f) : w1# . . .#wn ∈ (Γ ∪ {#})∗ 7→ f(w1)# . . .#f(wn) ∈ (Σ ∪ {#})∗

Proposition 2.5.9. If f is an HDT0L transduction, then so is map(f). For each k ≥ 1,
the functions that can be computed by k-layered HDT0L systems are also closed under map.

Proof. Let (Γ,Σ,∆, d, (hc)c∈Γ, h
′) be a HDT0L system computing f : Γ∗ → Σ∗. We

define below a HDT0L system that computes map(f) : (Γ ∪ {#})∗ → (Σ ∪ {#})∗.
• The intermediate alphabet is ∆̂ = ∆ ∪ Σ ∪ {#, X}, assuming w.l.o.g. that # /∈ ∆ ∪ Σ,

where X /∈ ∆ ∪ Σ ∪ {#} is an arbitrarily chosen fresh letter.
• The starting word is Xd ∈ ∆̂∗.
• For c ∈ Γ, we extend hc into ĥc ∈ Hom(∆∗,∆∗) by setting ĥc(x) = x for x ∈ Σ ∪ {#, X}.

Since the input alphabet is now Γ∪{#}, we also define the morphism ĥ# as the extension
of h′ (using Σ ⊂ ∆̂) such that ĥ#(X) = Xd# and ĥ#(x) = x for x ∈ Σ ∪ {#}.
• The final morphism ĥ′ extends h′ with ĥ′(X) = ε and ĥ′(x) = x for x ∈ Σ ∪ {#}.
This shows that HDT0L transductions are closed under map.

We now prove that for any k ∈ N≥1, this closure property holds for k-layered HDT0L
transductions (so, in particular, for regular functions by taking k = 1). Suppose that f is
computed by a k-layered HDT0L system with intermediate alphabet ∆ and initial word
d ∈ ∆∗. One can build a k-layered HDT0L system which computes the same function f
and such that the initial word contains at most one occurrence of each letter ; the idea is
to replace ∆ and d = d1 . . . dn by ∆× {1, . . . , n} and (d1, 1), . . . , (dn, n) where n = |d|, and
to adapt the morphisms accordingly. Applying the above construction then results in a
k-layered HDT0L system that computes map(f); note that if we did not have this property
for the inital word, we would get a (k + 1)-layering instead. �

Corollary 2.5.10. Regular and polyregular functions are both closed under map.

Proof. For regular functions, apply Proposition 2.5.9 with k = 0. For polyregular
functions, use Theorem 2.5.6 and the elementary property map(f ◦g) = map(f)◦map(g). �

Of course, this is also a consequence of the fact that the map combinator appears in
polynomial list functions (§2.5.2) as well as in the regular list functions [BDK18]. Conversely,
if a class of string-to-string functions is not closed under map, then this means that one
probably cannot hope to capture it using this kind of list functions formalism. We will see
in the next chapter that this will be the case for comparison-free polyregular functions.

2.6. Tree transducers

The notion of regular tree-to-tree function is defined by generalizing the characterization
of regular string functions by Monadic Second-Order Logic [EM99; BE00; EH01], in a
way that is compatible with the isomorphism of Remark 2.1.1. There are two orthogonal
difficulties that have to be overcome to extend copyless streaming string transducers (§2.3.2)
to a machine model for regular tree functions: one comes from producing trees as output,
while the other comes from taking trees as input.

BRTTs [AD17] (and the similar model of register tree transducers in [BD20, §4]) provide
solutions for both. To explain the acronym: the name “streaming tree transducer” is used

2.6. TREE TRANSDUCERS 71

in [AD17] for a transducer model operating over unranked trees (in which the number of
children of a node is not determined by its label, and might in fact be arbitrarily large);
bottom-up ranked tree transducers are proposed in the same paper as a simpler, equally
expressive variant for the special case of ranked trees. In this dissertation it might be more
fitting to think of “BRTT” as standing for “bottom-up register tree transducer”, as the title
of Section 2.6.3 suggests.

In the next two subsections, we give a high-level overview of the challenges posed by
trees, while Section 2.6.3 describes BRTTs more formally.

2.6.1. Trees as output. String-to-tree regular functions require a modification of the kind of
data stored in the registers of an SST. Tree-valued registers are not enough, for the following
reasons: to recover the flexibility of string concatenation, one should be able to perform
operations such as grafting the root of some tree to a leaf of another tree; but then the latter
should be a tree with a distinguished leaf, serving as a “hole” waiting to be substituted
by a tree. (This is fundamental in the theory of forest algebras, which proposes various
counterparts for trees to the monoid of strings with concatenation, see [Pin21a, Chapter 22].)
By allowing both trees and “one-hole trees” as register values, with the appropriate notion of
copyless register assignment, one gets the copyless streaming string-to-tree transducers, whose
expressive power corresponds exactly to the regular tree functions [AD17, Theorem 3.16].

2.6.2. Trees as input. To compute tree-to-tree regular functions, the first idea would be
to blend the notion of copyless SST with the classical bottom-up tree automata. One would
then get copyless bottom-up ranked tree transducers. However, this model is believed to be
too weak to express all regular tree functions (even in the case of tree-to-string functions).
An explicit counterexample is conjectured in [AD17, §2.3], in the case of regular functions
on unranked trees; we adapt it here into a function from ranked trees to strings.

In the example below, for a ranked letter a of arity 2 = {/, .}, we use the abbreviation
a(t, u) for a(/ 7→ t, . 7→ u).

Example 2.6.1 (“Conditional swap”). Define f : Tree({a : 2, b : 2, c : ∅})→ {a, b, c}∗ by
f(a(t, u)) = f(u) · a · f(t) f(t) = inorder(t) if t doesn’t match the previous pattern

where inorder prints the nodes of t following a depth-first in-order traversal. In other words,
f = inorder ◦ g where g(a(t, u)) = a(g(u), g(t)) and g(t) = t otherwise (i.e. when the root
of t is either b or c).

Conjecture 2.6.2 (adapted from [AD17, §2.3]). The above f cannot be computed by a
copyless BRTT.

One must then allow more register assignments than the copyless ones. This cannot be
done haphazardly, for arbitrary assignments would lead to a much larger class of functions
than regular tree functions (as the case of copyful SST already witnesses, cf. §2.3.1). Alur
and D’Antoni call their relaxed condition [AD17] the single use restriction; the following
single-state BRTT for f provides a typical example of the new possibilities allowed.

Example 2.6.3 (Non-copyless BRTT for conditional swap). Take R = {x, y}, initialized
at the c-labeled leaves with (x 7→ c, y 7→ c). At a subtree a(u, v), we need to combine the
registers x/, y/ (resp. x., y.) coming from the left (resp. right) child u (resp. v) to produce
the values of the registers x, y at this node: this is performed by a register assignment

ta ∈ [{x/, y/, x., y.} →SR {x, y}] ta(x) = x.ax/ ta(y) = y/ay.

The idea is that the register values produced by processing a subtree u are f(u) for x and
inorder(u) for y. The register transition for a b-labeled node is then tb(x) = tb(y) = y/by.,
reflecting the fact that f(b(u, v)) = inorder(b(u, v)).

2.6. TREE TRANSDUCERS 72

This tb is not copyless since y/ occurs twice: once in tb(x) and once in tb(y). The
observation at the heart of the single use restriction is that the values of x and y for a given
subtree can never be combined in the same expression in the remainder of the BRTT’s run,
so that allowing this duplication of y/ will never lead to having two copies of y/ inside the
value of a single register.

2.6.3. Bottom-up (ranked|register) tree transducers. We give here a self-contained
definition of the notion of BRTT corresponding to regular tree functions, as they were
designed in [AD17]. Since the paper [AD17] is mainly concerned with transducers over
unranked trees, the information concerning the definition of BRTTs is spread over its sections
2.1, 3.7 and 3.8. There is also a difference with our general formalism for ranked trees:
BRTTs are only defined over binary trees in [AD17] – but the extension to ranked trees is
obvious, and we will perform it in Chapter 6 when we give a categorical account of BRTTs.
For now, we stay faithful to our source by working with binary trees.

Definition 2.6.4 ([AD17, p. 31:36]). The set BinTree(Σ) of binary trees over the alphabet Σ,
and the set ∂BinTree(Σ) of one-hole binary trees are generated by the respective grammars

T,U ::= d·e | adT,Ue (a ∈ Σ) T ′, U ′ ::= � | adT ′, Ue | adT,U ′e (a ∈ Σ)

That is, BinTree(Σ) consists of binary trees whose leaves are all equal to 〈〉 and whose
nodes are labeled with letters in Σ. As for ∂BinTree(Σ), it contains trees with exactly one
leaf labeled � instead of d·e. This “hole” � is intended to be substituted by a tree: for
T ′ ∈ ∂BinTree(Σ) and U ∈ BinTree(Σ), T ′[U] denotes T ′ where � has been replaced by U .

Definition 2.6.5 ([AD17, p. 31:40]). The binary tree expressions (E,F below, forming the
set ExprBT(Σ, V, V ′)) and one-hole binary tree expressions (E′, F ′ below, forming the set
Expr∂BT(Σ, V, V ′)) over the variable sets V and V ′ are generated by the grammar (with
x ∈ V , x′ ∈ V ′ and a ∈ Σ)

E,F ::= d·e | x | adE,F e | E′[F] E′, F ′ := � | x′ | adE′, F e | adE,F ′e | E′[F ′]
Given ρ : V → BinTree(Σ) and ρ′ : V ′ → ∂BinTree(Σ), one defines E(ρ, ρ′) ∈ BinTree(Σ)
for E ∈ ExprBT(Σ) and E′(ρ, ρ′) ∈ ∂BinTree(Σ) for E ∈ Expr∂BT(Σ) in the obvious way.

Definition 2.6.6 ([AD17, §3.7]). Let us fix an input alphabet Γ and output alphabet
Σ. The set of register assignments over two disjoint sets R,R′, whose elements are called
registers, is
A(Σ, R,R′) = ExprBT(Σ, R/., R

′
/.)

R × Expr∂BT(Σ, R/., R
′
/.)

R′ where R/. = R× {/, .}
A register tree transducer consists of a finite set Q of states with an initial state qI ∈ Q, two
disjoint finite sets R,R′ of registers, a transition function δ : Q×Q×Γ→ Q×A(Σ, R,R′) and
an output function F : Q→ ExprBT(Σ, R,R′). To each tree T ∈ BinTree(Γ), it associates
inductively a configuration Conf(T) ∈ Q× BinTree(Σ)R × ∂BinTree(Σ)R′ :
• The base case is Conf(d·e) = (qI , (r 7→ d·e), (r′ 7→ �)).
• When Conf(T) = (q/, ρ/, ρ

′
/), Conf(U) = (q., ρ., ρ

′
.) and δ(c, q/, q.) = (q, (ε, ε′)), we

set Conf(cdT,Ue) = (q, (r 7→ ε(r)(ρ, ρ′)), (r′ 7→ ε′(r′)(ρ, ρ′))) where ρ(r, d) = ρd(r) for
(r, d) ∈ R× {/, .} and similarly for ρ′.

The function defined by the transducer is T ∈ BinTree(Γ) 7→ F (qfin(T))(ρfin(T), ρ
′
fin(T))

where (qfin(T), ρfin(T), ρ
′
fin(T)) = Conf(T) (recall that F is the output function).

Example 2.6.7 (illustrated by Figure 2.6.1). Let us consider a transducer over the alphabets
Γ = Σ = {a, b}, with a single state (|Q| = 1) and two registers, both tree-valued (so
R = {r1, r2} and R′ = ∅). This simplifies the transition function δ into a function
Γ→ ExprBT(Σ, R/.,∅)R – equivalently, we will consider δ : Γ×R→ ExprBT(Σ, R/.,∅).

2.6. TREE TRANSDUCERS 73

Figure 2.6.1. Two consecutive steps of the run of the bottom-up ranked
tree transducer of Example 2.6.7 over a tree whose alphabet of node labels is
Σ = {•, •} ∼= {a, b}.
The configuration at each subtree is represented by two boxes; the top (resp.
bottom) box displays the contents of r1 (resp. r2). (The single state is omitted
from the visual representation of the configuration.)

We take δ(c, r1) = cd(r1)/, (r1).e and δ(c, r2) = cd(r2)., (r2)/e for c ∈ {a, b}, where r/ is
a notation for (r, /) ∈ R/. = R×{/, .}. If we write r̂i(T) (i ∈ {1, 2}) for the contents of the
register ri at the end of a run of the transducer on T ∈ BT(Γ), then this δ translates into:

r̂1(cdT,Ue) = cdr̂1(T), r̂1(U)e r̂2(cdT,Ue) = cdr̂2(U), r̂2(T)e (c ∈ {a, b})

And the initial condition is r̂1(d·e) = r̂2(d·e) = d·e. Therefore r̂1(T) = T and r̂2(T) is T
“mirrored” by exchanging left and right; let us write r̂2(T) = reverse(T).

The output function F is also simplified into an expression in ExprBT(Σ, R,∅). By taking
F = adr1, r2e, we define a transducer computing the regular function T 7→ adT, reverse(T)e.

The “single use restriction” that must be imposed on the register assignments is not
intrinsic: it depends on an additional piece of data, namely a binary relation between the
registers called conflict.

Definition 2.6.8 ([AD17, §2.1]). A conflict relation is a reflexive and symmetric relation.

2.6. TREE TRANSDUCERS 74

An expression E ∈ ExprBT(Σ, V, V ′) ∪ Expr∂BT(Σ, V, V ′) is said to be consistent with
a conflict relation ˚ over V ∪ V ′ when each variable in V ∪ V ′ appears at most once in E,
and for all x, y ∈ V ∪ V ′, if x 6= y and x ˚ y, then E does not contain both x and y.

A register assignment (ε, ε′) ∈ A(Σ, R,R′) is single use restricted with respect to a
conflict relation ˚ over R ∪R′ when:
• all ε(r) for r ∈ R and all ε′(r′) for r′ ∈ R′ are consistent with ˚;
• if x1, x2, y1, y2 ∈ R ∪R′, x1 ˚ x2 and, for some d ∈ {/, .}, (x1, d) appears in10 (ε ∪ ε′)(y1)

and (x2, d) appears in (ε∪ ε′)(y2), then y1 ˚ y2 (note that this includes the case x1 = x2).

Definition 2.6.9. A bottom-up ranked tree transducer (BRTT) is a register tree transducer
(Q, qI , R,R

′, δ, F) endowed with a conflict relation ˚ on R∪R′, such that F (q) is consistent
with ˚ and all register assignments in the image of δ are single use restricted w.r.t. ˚.

A regular tree function is a function computed by a BRTT.
When the conflict relation is trivial (i.e. coincides with equality), we say that the BRTT

is copyless. We also say that a register tree transducer is copyless if it becomes a BRTT
when endowed with a trivial conflict relation.

10By ε ∪ ε′ we mean the map on the disjoint union R ∪R′ induced in the obvious way by ε and ε′.

CHAPTER 3

Comparison-free polyregular functions

We shall now introduce the new class of comparison-free string-to-string functions (or, for
short, “cfp functions”). As we said in Section 1.2.4, it first appeared to us through the study
of linear λ-calculi, but can retrospectively be motivated by pedestrian automata-theoretic
considerations; there will be no λ-terms in this chapter.

The simplest way to define cfp functions is to start from the regular functions and
combine them using a “composition by substitution” (CbS) operation (§3.1). In order to
relate this to the preexisting literature, we give a machine model for this function class
(§3.2), obtained by putting a restriction on pebble transducers which compute polyregular
functions (cf. §2.5).

After this, we give two more difficult characterizations of cfp functions in Section 3.3.
The first one is analogous to Proposition 2.5.2, and part of the statement is that cfp functions
are closed under composition – a property that was a major focus of the discussion in §1.2.4.)
The second one characterizes comparison-free polyregular functions of growth O(nk) for each
k ∈ N with k ≥ 1; we will say more about this below. We also prove in Section 3.4 a “closed
form” description of cfp functions with unary inputs.

Finally, we apply many of those previous results to obtain separation results between cfp
functions and some other transduction classes described in Chapter 2. With those results,
the known relationships between the function classes with superlinear growth studied in this
manuscript are as follows:1

comparison-free

polyregular

polyregular

⊂layered HDT0L

(layered HDT0L)*

HDT0L

=

⊂

⊂

⊃⊂
=

comparison-free

pebble

= (regular + cfsq)*

One of the properties that we prove on cfp functions of growth O(nk) is that they can
always be computed by comparison-free pebble transducers with k pebbles. This is a pebble
minimization result, in the vein of those proved by Douéneau-Tabot et al. [DFG20] for
marble transducers (cf. Theorem 2.3.14) and by Lhote [Lho20] for general pebble transducers.
But the latter is actually wrong; counterexamples with proofs may be found in2 [Boj22a;
KNP23]. That said, Lhote’s approach is far from worthless: we were able to reuse it for our
proof of the comparison-free pebble minimization theorem. In fact, the familiarity that we

1We write C∗ for the composition closure of the class C. Inclusions denoted by ⊂ are strict, and ⊃⊂
means that there is no inclusion either way.

2Edited in March 2023, as explained in the preface, where we also mentioned that the name “polyblind”
has become the common way to refer to comparison-free polyregular functions.

75

3.1. COMPOSITION BY SUBSTITUTION 76

acquired with [Lho20] in the process of adapting its arguments later helped us discover this
mistake. Incidentally, the counterexample to pebble minimization also refutes the logical
characterization of cfp functions conjectured in [NNP21, §10], as explained in [KNP23].
(Since the conjecture turned out to be false, we do not reproduce its statement here.)

3.1. Composition by substitution

Definition 3.1.1. Let f : Γ∗ → I∗, and for each i ∈ I, let gi : Γ∗ → Σ∗. The composition
by substitution of f with the family (gi)i∈I is the function

CbS(f, (gi)i∈I) : w 7→ gi1(w) . . . gik(w) where i1 . . . ik = f(w)

That is, we first apply f to the input, then every letter i in the result of f is substituted by
the image of the original input by gi. Thus, CbS(f, (gi)i∈I) is a function Γ∗ → Σ∗.

Definition 3.1.2. The smallest class of string-to-string functions closed under CbS and
containing all regular functions is called the class of comparison-free polyregular functions.

Example 3.1.3. The following variant of “squaring with underlining” (cf. Definition 2.5.1)
is comparison-free polyregular: cfsquaringΓ : 123 ∈ Γ∗ 7→ 112321233123 ∈ (Γ ∪ Γ)∗.

Indeed, it can be expressed as cfsquaringΓ = CbS(f, (gi)i∈I) where I = Γ ∪ {#}, the
function f : w1 . . . wn 7→ w1# . . . wn# is regular (more than that, a morphism between free
monoids) and g# = id, gc : w 7→ c for c ∈ Γ are also regular. Its growth rate is quadratic,
while regular functions have at most linear growth. Other examples that also require a single
composition by substitution are given in Theorem 3.5.1.

We can already justify the latter half of the name of our new class.

Proposition 3.1.4. Polyregular functions are closed under composition by substitution.

Corollary 3.1.5. Every comparison-free polyregular function is, indeed, polyregular.

Proof of Proposition 3.1.4. We use polynomial list functions (Section 2.5.2), though
for-transducers [Boj18, §3] could also be used for an easy proof.

First, we claim that for any I = {i1, . . . , i|I|}, there exists a polynomial list function
matchI,τ : I → τ → . . .→ τ → τ that returns its (k+1)-th argument when its first argument
is ik. This can be shown by induction on |I|, using isIi (i ∈ I) and case{true},{false},τ .

Next, let f : Γ∗ → I∗, and for i ∈ I, gi : Γ∗ → Σ∗ be polyregular functions. Assuming
that f and gi (i ∈ I) are defined by polynomial list functions of the same name, the λ-term

λw. concatΣ (mapI,Σ
∗
(λi. matchI,Σ

∗
i (gi1 w) . . . (gi|I| w)) (f w))

computes CbS(f, (gi)i∈I). �

Fundamentally, Definition 3.1.2 is inductive: it considers the functions generated from
the base case of regular functions by applying compositions by substitution. The variant
below with more restricted generators is sometimes convenient.3

Definition 3.1.6. A string-to-string function is said to be:
• of rank at most 0 if it is regular;
• of rank at most k+1 (for k ∈ N) if it can be written as CbS(f, (gi)i∈I) where f : Γ∗ → I∗

is regular and each gi : Γ∗ → Σ∗ is of rank at most k.

3This discussion does not use any of the property of regular functions; the same would apply to any
class of function defined as a closure under CbS.

3.2. COMPARISON-FREE PEBBLE TRANSDUCERS 77

Proposition 3.1.7. A function f is comparison-free polyregular if and only if there exists
some k ∈ N such that f has rank at most k. In that case, we write rk(f) for the least such k
and call it the rank of f . If (gi)i∈I is a family of comparison-free polyregular functions,

rk(CbS(f, (gi)i∈I)) ≤ 1 + rk(f) + max
i∈I

rk(gi)

Proof. This is equivalent to claiming that the smallest class C of functions such that
• every regular function is in C,
• and CbS(f, (gi)i∈I) ∈ C for any regular f : Γ∗ → I∗ and any (gi : Γ

∗ → Σ∗)i∈I ∈ CI ,
contains all comparison-free polyregular functions. It suffices to show that C is closed under
composition by substitution, which can be done by induction using the equation

CbS(CbS(f, (gi)i), (hj)j) = CbS(f, (CbS(gi, (hj)j))i)

The same equation explains the inequality on the rank that we claim in the proposition. �

A straightforward consequence of this definition is that, just like regular functions (see
Proposition 2.3.11), cfp functions are closed under regular conditionals and concatenation.

Proposition 3.1.8. Let f, g : Γ∗ → Σ∗ be comparison-free polyregular functions and L ⊆ Γ∗

be a regular language. The function that coincides with f on L and with g on Γ∗ \ L is cfp,
and so is w ∈ Γ∗ 7→ f(w) · g(w); both have rank at most max(rk(f), rk(g)).

Proof. Let f, g : Γ∗ → Σ∗ be cfp with max(rk(f), rk(g)) = k ≥ 1 (otherwise, we just
apply Proposition 2.3.11). It means that we have regular functions f ′ and g′, as well as
families of functions (f ′′i)i∈I and (g′′j)j∈J of rank at most k − 1 such that

f = CbS(f ′, (f ′′i)i∈I) and g = CbS(g′, (g′′j)j∈J)

Assume without loss of generality that I ∩ J = ∅.
Let us first treat regular conditionals. Using Proposition 2.3.11 applied to the functions

f ′, g′ : Γ∗ → (I ∪ J)∗, the function h′ : Γ∗ → (I ∪ J)∗ that coincides with f ′ over L and g′

over L \ Γ∗ is regular. Setting (h′′k)k∈I∪J to be the family of functions such that h′′i = f ′′i for
i ∈ I and h′′j = g′′j for j ∈ J , we obtain a cfp function h = CbS(h′, (h′′k)k∈I∪J) corresponding
to the desired conditional. Since all the h′′k are of rank at most k − 1, we also get the result
on the rank.

Concerning concatenation, one check that the pointwise concatenation f · g is equal to
CbS(f ′ · g′, (h′′k)k∈I∪J), which is cfp since f ′ · g′ is regular (by Proposition 2.3.11 again). �

3.2. Comparison-free pebble transducers

We now characterize our function class by a machine model that will explain our choice
of the adjective “comparison-free”, as well as the operational meaning of the notion of rank
we just defined. However, the definition using composition by substitution will remain our
tool of choice to prove further properties, so the next sections do not depend on this one.

Definition 3.2.1. Let k ∈ N with k ≥ 1. Let Γ,Σ be finite alphabets and ., / /∈ Γ.
A k-pebble stack on an input string w ∈ Γ∗ consists of a list of p positions in the string

.w/ (i.e. of p integers between 1 and |w|+ 2) for some p ∈ {1, . . . , k}. We therefore write
Stackk = N0 ∪N1 ∪ · · · ∪Nk, keeping in mind that given an input w, we will be interested in
“legal” values bounded by |w|+ 2.

A comparison-free k-pebble transducer (k-CFPT) consists of a finite set of states Q, an
initial state qI ∈ Q and a family of transition functions

Q× (Γ ∪ {., /})p → Q× (Np → Stackk)× Σ∗ for 1 ≤ p ≤ k

3.2. COMPARISON-FREE PEBBLE TRANSDUCERS 78

where the Np on the left is considered as a subset of Stackk. For a given state and given letters
(c1, . . . , cp) ∈ (Γ ∪ {., /})p, the allowed values for the stack update function Np → Stackk
returned by the transition function are:

(identity) (i1, . . . , ip) 7→ (i1, . . . , ip) ∈ Np

(move left, only allowed when cp 6= .) (i1, . . . , ip) 7→ (i1, . . . , ip − 1) ∈ Np

(move right, only allowed when cp 6= /) (i1, . . . , ip) 7→ (i1, . . . , ip + 1) ∈ Np

(push, only allowed when p ≤ k − 1) (i1, . . . , ip) 7→ (i1, . . . , ip, 1) ∈ Np+1

(pop, only allowed when p ≥ 1) (i1, . . . , ip) 7→ (i1, . . . , ip−1) ∈ Np−1
(Note that the codomains of all these functions are indeed subsets of Stackk.)

The run of a CFPT over an input string w ∈ Γ∗ starts in the initial configuration
comprising the initial state qI , the initial k-pebble stack (1) ∈ N1, and the empty string
as an initial output log. As long as the current stack is non-empty, a new configuration is
computed by applying the transition function to q and to ((.w/)[i1], . . . , (.w/)[ip]) where
(i1, . . . , ip) is the current stack; the resulting stack update function is applied to (i1, . . . , ip)
to get the new stack, and the resulting output string in Σ∗ is appended to the right of the
current output log. If the CFPT ever terminates by producing an empty stack, the output
associated to w is the final value of the output log.

This amounts to restricting in two ways4 the pebble transducers from [Boj18, §2]:
• in a general pebble transducer, one can compare positions, i.e. given a stack (i1, . . . , ip),

the choice of transition can take into account whether5 ij ≤ ij′ (for any 1 ≤ j, j′ ≤ p);
• in a “push”, new pebbles are initialized to the leftmost position (.) for a CFPT, instead

of starting at the same position as the previous top of the stack (the latter would ensure
the equality of two positions at some point; it is therefore an implicit comparison that we
must relinquish to be truly “comparison-free”).

This limitation is similar to (but goes a bit further than) the “invisibility” of pebbles in a
transducer model introduced by Engelfriet et al. [EHS21] (another difference, unrelated to
comparisons, is that their transducers use an unbounded number of invisible pebbles).
Remark 3.2.2. Our definition guarantees that “out-of-bounds errors” cannot happen during
the run of a comparison-free pebble transducer. The sequence of successive configurations is
therefore always well-defined. But it may be infinite, that is, it may happen that the final
state is never reached. Thus, a CFPT defines a partial function.

That said, the set of inputs for which a given pebble tree transducer does not terminate
is always a regular language [MSV03, Theorem 4.7]. This applies a fortiori to CFPTs. Using
this, it is possible6 to extend any partial function f : Γ∗ ⇀ Σ∗ computed by a k-CFPT
into a total function f ′ : Γ∗ → Σ∗ computed by another k-CFPT for the same k ∈ N, such
that f ′(x) = f(x) for x in the domain of f and f ′(x) = ε otherwise. This allows us to only
consider CFPTs computing total functions in the remainder of the paper.

A special case of particular interest is k = 1: the transducer has a single reading head,
push and pop are always disallowed.

4There is also an inessential difference: the definition given in [Boj18] does not involve end markers and
handles the edge case of an empty input string separately. This has no influence on the expressiveness of the
transducer model. Our use of end markers follows [EH01; Lho20].

5One would get the same computational power, with the same stack size, by only testing whether ij = ip
for j ≤ p− 1 as in [MSV03] (this is also essentially what happens in the nested transducers of [Lho20]).

6Proof idea: do a first left-to-right pass to determine whether the input leads to non-termination of the
original CFPT; if so, terminate immediately with an empty output; otherwise, move the first pebble back to
the leftmost position and execute the original CFPT’s behavior. This can be implemented by adding finitely
many states, including those for a DFA recognizing non-terminating inputs.

3.2. COMPARISON-FREE PEBBLE TRANSDUCERS 79

Theorem 3.2.3 ([AČ10]). Copyless SSTs and 1-CFPTs – which are more commonly called
two-way (deterministic) finite transducers (2DFTs) – are equally expressive.

Since we took copyless SSTs as our reference definition of regular functions, this means
that 2DFTs characterize regular functions. But putting it this way is historically backwards:
the equivalence between 2DFTs and MSO transductions came first [EH01] and made this
class deserving of the name “regular functions” before the introduction of copyless SSTs.

Let us now show the equivalence with Definition 3.1.2. The reason for this is similar to
the reason why k-pebble transducers are equivalent to the k-nested transducers7 of [Lho20],
which is deemed “trivial” and left to the reader in [Lho20, Remark 6].

Proposition 3.2.4. If f is computed by a k-CFPT, and the gi are computed by l-CFPTs,
then CbS(f, (gi)i∈I) is computed by a (k + l)-CFPT.

Proof. First note that any k-CFPT can be transformed into an equivalent k-CFPT
whose transition functions δ : Q× (Γ ∪ {., /})p → Q× (Np → Stackk)× Σ∗ are such that,
for every input (q,~b), we have either π3(δ(q,~b)) = ε (in which case we call δ(q,~b) a silent
transition) or π3(δ(q,~b)) ∈ Σ and π2(δ(q,~b)) is the identity. So, without loss of generality,
suppose that we have a k-CFPT Tf implementing f is of this shape, with state space Qf and
transition function δf Similarly, we may assume without loss of generality that the current
height of the stack is tracked by the state of CFPTs if we allow multiple final states; assume
that we have such height-tracking l-CFPT and that we have l-CFPTs Ti implementing gi
with state spaces Qi and transition functions δi.

We combine these CFPTs into a single k + l CFPT T ′ with state space

Q′ = Qf t Qf ×
⊔
i∈I

Qi

The initial and final states are those of Tf . The high-level idea is that T ′ behaves as Tf
until it produces an output i ∈ I; in such a case it “performs a call” to Ti that might spawn
additional heads to perform its computations. At the end of the execution of Ti, we return
the control to Tf . Formally speaking, the transition function δ′ of T ′ behaves as follows:
• δ′(q,~b) = δf (q,~b) if q ∈ Qf and δf (q,~b) is silent.
• otherwise we take, we have π3(δf (q,~b)) = i for some i ∈ I. Calling ri the initial state of
Ti, we set π1(δ′(q,~b)) = (q, ri) and π2(δ′(q,~b)) corresponds to push a new pebble onto the
stack. We make δ′(q,~b) silent in such a case.
• δ′((q, r),~b~b′) then corresponds to δi(r,~b′) if we are not in the situation where the stack

height is 1 and the stack update function is pop.
• otherwise we take π1(δ′((q, r),~bb′)) = π1(δf (q,~b)), π2(δ′(q, n+ 1,~bb′)) to be a pop action

and π3(δ′((q, r),~bb′)) = π3(δi((q, r),~bb
′)). �

Theorem 3.2.5. If f : Γ∗ → Σ∗ is computed by a k-CFPT, for k ≥ 2, then there exist a finite
alphabet I, a regular function h : Γ∗ → I∗ and a family (gi)i∈I computed by (k − 1)-CFPTs
such that f = CbS(h, (gi)i∈I).

Proof. Assume we have f : Γ∗ → Σ∗ computed by a k-CFPT T with state space Q
and transition function δ that we assume to be disjoint from Σ. For each q ∈ Q, we describe
a k − 1 CFPT Tq with the same state space, initial state q and transition function δq such
that, for every b′ ∈ N, ~b ∈ Stackl for l ≤ k − 1 and q′ ∈ Q, δ(q′, b′~b) and δq(q

′,~b) coincide
on the first and last component; on the second component, we require they also coincide

7Remark: nested transducers should yield a machine-independent definition of polyregular functions as
the closure of regular functions under a CbS-like operation that relies on origin semantics [MP19, §5].

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 80

up to the difference in stack size. If we fix r ∈ Q, by [MSV03, Theorem 4.7], the language
consisting of those w ∈ Γ∗ such that Tq halts on r is regular. Since regular languages are
closed under intersection, for any map γ ∈ QQ, the language Lγ ⊆ Γ∗ of those words w such
that Tq halts on γ(q) is regular.

Now fix γ ∈ QQ and let us describe a 1-CFPT transducer Tγ intended to implement the
restriction of a function h : Γ∗ → (Σ ∪Q)∗ to Lγ . Tγ has the same state space and initial
state as T , but has a transition function δγ defined by

δγ(q, b) =

{
δ(q, b) if π2(δ(q, b)) is not a push
(γ(r), (p 7→ p), r) otherwise, for r = π1(δ(q, b))

Since Γ∗ =
⋃
γ∈QQ Lγ , by applying repeatedly Proposition 2.3.11, this determines the regular

function h : Γ∗ → (Σ ∪ Q)∗. We can then check that f = CbS(h, (gi)i∈Σ∪Q) where ga is
the constant function outputting the one-letter word a for a ∈ Σ (certainly, some 1-CFPT
implements it) and gq is the function Γ∗ → Σ∗ implemented by the (k − 1)-CFPT Tq. �

Corollary 3.2.6. For all k ∈ N, the functions computed by (k + 1)-CFPTs are exactly the
comparison-free polyregular functions of rank at most k.

Proof. The proof goes by induction over k ∈ N. The result holds for k = 0 by
Theorem 3.2.3; let us detail each direction of the inductive case k > 0:
• for the left-to-right inclusion, assume we are given a (k+1)-CFPT computing f and apply

Theorem 3.2.5 to obtain h and gis such that f = CbS(h, (gi)i∈I) with h regular and the
gis computable by k-CFPTs. The induction hypothesis implies that the gis have rank < k,
and thus f has rank ≤ k.
• conversely, if f has rank k, it can be written as CbS(h, (gi)i∈I) with h regular and the
gis with rank < k; the induction hypothesis implies that the gis can be computed by
k-CFPTs. By Theorem 3.2.3, h is computable by a 1-CFPT, so by Proposition 3.2.4, f is
computed by a (k + 1)-CFPT. �

3.3. Key properties of comparison-free polyregular functions

Now that we have both a technically workable definition of cfp functions and a natural
model for them, let us study some of their properties. Those that we cover in this section
arguably have the most complicated proofs in this chapter.

The first important property is that this function class is closed under composition
(Theorem 3.3.3). This is the hard part in establishing the third equivalent definition of
cfp functions, which consists in swapping out squaringΓ for some other function in the
characterization of polyregular functions from Proposition 2.5.2:

Theorem 3.3.1. The class of comparison-free polyregular functions is the smallest class
closed under usual function composition and containing both all regular functions and the
functions cfsquaringΓ (cf. Example 3.1.3) for all finite alphabets Γ.

Our next result incorporates the comparison-free pebble minimization theorem announced
at the beginning of this chapter. Our proof techniques mainly draw inspiration from [Lho20];
in particular, one classical tool that we use is Ramsey’s theorem specialized to monoid-valued
colorings.

Theorem 3.3.2. Let f : Γ∗ → Σ∗ and k ∈ N. The following are equivalent:
(i) f is comparison-free polyregular with rank at most k;
(ii) f is comparison-free polyregular and |f(w)| = O(|w|k+1);

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 81

(iii) there exists a regular function g : ({0, . . . , k}×Γ)∗ → Σ∗ such that f = g ◦cfpow(k+1)
Γ ,

with the following inductive definition: cfpow(0)Γ : w ∈ Γ∗ 7→ ε ∈ (∅× Γ)∗ and

cfpow(n+1)
Γ : w 7→ (n,w1) · cfpow(n)Γ (w) · . . . · (n,w|w|) · cfpow(n)Γ (w)

To make (ii) =⇒ (i) more precise, if f is cfp with rk(f) ≥ 1, then it admits a sequence of
inputs w0, w1, . . . ∈ Γ∗ such that |wn| → +∞ and |f(wn)| = Ω(|wn|rk(f)+1).

Note that cfpow(2)Γ and cfsquaringΓ are the same up to a bijection {0, 1} × Γ ∼= Γ ∪ Γ.
We have combined those two theorems into the same section because we have found a way to
conveniently share some work between their respective proofs – though this sharing concerns
only the easier parts. In Section 3.3.1 we show most of Theorem 3.3.1, and in Section 3.3.2
we show most of Theorem 3.3.2. Finally in Section 3.3.3 we finish proving both.

3.3.1. Closure under composition. Let us prove the following.

Theorem 3.3.3. Comparison-free polyregular functions are closed under composition.

Remark 3.3.4. As mentioned in the introduction, this will also be an immediate consequence
(cf. Proposition 5.1.16) of our characterization of these functions in the λ`⊕&-calculus. But
we give here a direct proof without this detour outside automata theory.

Consider the composition of two cfp functions. First, by induction on the rank of the
left-hand side of the composition, we can reduce to the case where that side is a mere regular
function, using the straightforward identity

CbS(f, (gi)i∈I) ◦ h = CbS(f ◦ h, (gi ◦ h)i∈I)

We then treat this case by another induction, this time on the rank of the right-hand side.
The base case is handled by invoking the closure under composition of regular functions
(for which we shall give a self-contained proof using our category-theoretic technology in
Section 4.7). Therefore, what remains is the following inductive case.

Lemma 3.3.5. Let f : Γ∗ → I∗ be a regular function and let (gi)i∈I be a family of
comparison-free polyregular functions Γ∗ → Σ∗. Suppose that for all regular h : Σ∗ → ∆∗

and all i ∈ I, the composite h ◦ gi is comparison-free polyregular.
Then, for all regular h : Σ∗ → ∆∗, h ◦ CbS(f, (gi)i∈I) is comparison-free polyregular.

Our proof of this lemma relies on some properties of the transition monoids introduced
in §2.3.4. At a high level, the idea is to exploit the following combinatorial phenomenon: in
a copyless SST, a transition acting on the state and registers can be specified by
• a “shape” described the finite monoidMcl

R,∅ (Proposition 2.3.24);
• plus finitely many “labels” in Σ∗ (where Σ is the output alphabet) describing the constant

factors that will be concatenated with the old register contents to give the new ones.
This technique is often applied to the study of copyless SSTs (see [BC18, Chapter 13]
for instance). It will also be central to our later categorical developments (cf. §4.3.3).
Not coincidentally, those categorical tools also appear in our proof of the aforementioned
λ`⊕&-calculus characterization of cfp functions.

Proposition 3.3.6. Let β ∈Mcl
R,∆. For each r ∈ R, one can write β(r) = w0r

′
1w1 . . . r

′
nwn

with w0, . . . , wn ∈ ∆∗ and r′1 . . . r′n = erase∆(β)(r) ∈ R∗ (cf. Proposition 2.3.22). Hence

Mcl
R,∆

∼=

{(
α, ~̀
) ∣∣∣∣∣ α ∈Mcl

R,∅,
~̀ ∈

∏
r∈R

(∆∗)|α(r)|+1

}

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 82

In other words, register assignments in Mcl
R,∆ can be decomposed into a “shape” in Mcl

R,∅
plus finitely many string labels. Through this bijection, erase∆ ∈ Hom(Mcl

R,∆ oQ,Mcl
R,∅ oQ)

can be seen as simply removing the labels, i.e. the ~̀ component.

Lemma 3.3.7. Let δ be the transition function of some copyless SST Σ∗ → ∆∗ whose sets
of states and registers are Q and R respectively, so that δ(−, c) ∈Mcl

R,∆ oQ for c ∈ Σ. Let

ψδ ∈ Hom(Σ∗,Mcl
R,∆ oQ) such that ∀c ∈ Σ, ψδ(c) = δ(−, c)

and ϕδ = erase∆ ◦ψδ as in Remark 2.3.23, q ∈ Q, r ∈ R, α ∈Mcl
R,∅ and j ∈ {0, . . . , |α(r)|}.

Then the following function Σ∗ → ∆∗, defined thanks to Proposition 3.3.6, is regular:

s 7→

{
wj where π2(ψδ(s)(q))(r) = w0r

′
1w1 . . . r

′
nw
′
n if π2(ϕδ(s)(q)) = α

ε otherwise

(recall that π2 : Q×M →M is the second projection and M oQ = Q→ Q×M).

Proof. We consider during this proof that the names q, r, α and j introduced in the
above statement are not in scope, so that we can use those variable names for generic
elements of Q, R, Mcl

R,∅ and N instead. Those data will be given other names when we
need them.

We build a copyless SST whose set of states is Q×Mcl
R,∅. This is made possible by the

finiteness of Mcl
R,∅ (Proposition 2.3.24). As for the set of registers, we would like it to vary

depending on the current state for the sake of conceptual clarity, i.e. to have a family of
finite sets indexed by Q×Mcl

R,∅; when the SST moves from state (q, α) to (q′, α′), it would
perform a register assignment from Rq,α to Rq′,α′ (described by a map Rq′,α′ → (∆∪Rq,α)∗).
Such devices will be called state-dependent memory copyless SSTs later (§4.3.2) and they
are clearly equivalent in expressive power to usual copyless SSTs.

The idea is that we want the configuration (current state plus register contents) of our
new SST, after reading s = s1 . . . sn, to faithfully represent

ψδ(s)(q0) = (δ(−, s1) • · · · • δ(−, sn))(q0) ∈ Q×Mcl
R,∆

where δ and ψδ are given in the lemma statement, and q0 is the given state that was called
q in that statement. Following Proposition 3.3.6, since we already have the “shape” stored
in the second componentMcl

∆,∅ of the set Q×Mcl
∆,∅ of new states, it makes sense to use

the register to store the “labels”, hence Rq,α = Rα with

Rα = {(r, j) | r ∈ R, j ∈ {0, . . . , |α(r)|}} so that (∆∗)Rα ∼=
∏
r∈R

(∆∗)|α(r)|+1

The configurations of our SST are thus in bijection with Q×Mcl
R,∆ via Proposition 3.3.6,

and we would like the transition performed when reading c ∈ Σ to correspond through this
bijection to (using the notations of Definition 2.3.3)

(q, β) ∈ Q×Mcl
R,∆ 7→ (δst(q), β • δreg(q))

For a fixed β′ ∈Mcl
R,∆, let us consider the right multiplication β 7→ β • β′ inMcl

R,∆. Since
erase∆ :Mcl

R,∆ →Mcl
R,∅ is a morphism, the “shape” of β • β′ can be obtained from the

“shape” of β by multiplying by α′ = erase∆(β′). The important point is to show that we
can obtain the new labels from the old ones by a copyless assignment – formally speaking,
that for any α ∈Mcl

R,∆ there exists a copyless

γα,β′ : Rα•α′ → (∆ ∪Rα)∗

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 83

such that for any β ∈Mcl
R,∆ such that erase∆(β) = α, which therefore corresponds to(

α, ~̀
)

for some ~̀ ∈ (∆∗)Rα ∼=
∏
r∈R

(∆∗)|α(r)|+1

the shape-label pair that corresponds to β • β′ is (α • α′, γ†α,β′(~̀)) (cf. Definition 2.3.1).
Our next task is to analyze the composite assignment β • β′ in order to derive a γα,β′

that works. Let r′′ ∈ R. First, if α′(r′′) = r′1 . . . r
′
n ∈ R∗, then

β′(r′′) = w′0r
′
1w
′
1 . . . r

′
nw
′
n for some w′0, . . . , w

′
n ∈ ∆∗

and by applying the unique morphism β? ∈ Hom((∆ ∪R)∗, (∆ ∪R)∗) that extends β and
sends letters of ∆ to themselves, we have

(β • β′)(r′′) = β?(β′(r)) = w′0 · β(r′1) · w′1 · . . . · β(r′n) · w′n
Let us decompose further, for i ∈ {1, . . . , n}:

β(r′i) = wi,0ri,1wi,1 . . . wi,nirni for some wi,0, . . . , wi,ni ∈ ∆∗

By plugging this into the previous equation, we have (β • β′)(r′′) = w0r1w1 . . . rmwm where

{r1, . . . , rm} =
n⋃
i=1

{ri,1, . . . , ri,ni}

Furthermore, each wk for k ∈ {0, . . . ,m} is a concatenation of some w′i and some wi,j , and
from the formal expression of wk depending on these w′i and wi,j – which only depends on
the shape α and α′ – we can derive a definition of γα,β′(r′′, k). For instance,

w42 = w3,2w
′
3w4,0 γ(r′′, 42) = (r′3, 2) · w′3 · (r′4, 0) ∈ (∆ ∪Rα•α′)∗

Observe that this does not refer to the wi,j ; therefore, γα,β′ does not depend on β, as required.
One can check that defined this way, γα,β′ is indeed a copyless assignment and that the
desired property of γ†α,β′ holds.

What we have just seen is the heart of the proof. We leave it to the reader to finish the
construction of the copyless SST. �

With this done, we can move on to proving Lemma 3.3.5, which suffices to finish the
proof of Theorem 3.3.3.

Proof of Lemma 3.3.5. Let w ∈ Γ∗ be an input string. In the composition, we feed
to a copyless SST Th that computes h the word CbS(f, (gi)i∈I)(w) = gi1(w) . . . gik(w) where
f(w) = i1 . . . ik. A first idea is therefore to tweak Th into a new copyless SST that takes
I∗ as input and which executes, when it reads i ∈ I, the transition of Th induced by
gi(w). If we call h′w the regular function computed by this new SST, we would then have
h′w(f(w)) = h ◦ CbS(f, (gi)i∈I)(w). The issue is of course that h′w depends on the input w.

More precisely, the data that h′w depends on is the family of transitions
(ψδ ◦ gi(w))i∈I ∈ (Mcl

R,∆ oQ)I (see Lemma 3.3.7 for ψδ)
where Q, R and δ are respectively the set of states, the set of registers and the transition
function of Th. We will be able to disentangle this dependency by working with

(ϕδ ◦ gi(w))i∈I = (erase∆ ◦ ψδ ◦ gi(w))i∈I ∈ (Mcl
R,∅ oQ)I

Concretely:

Claim 3.3.8. For each ~µ ∈ (Mcl
R,∅ oQ)I , there exist:

• a finite alphabet Λ~µ equipped with a function ι~µ : Λ~µ → I;
• a regular function h′′~µ : I∗ → (∆ ∪ Λ~µ)

∗;

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 84

• and regular functions lλ : Σ∗ → ∆∗ for λ ∈ Λ;
such that for i1 . . . in ∈ I∗ and w ∈ Γ∗, if (ϕδ ◦ gi(w))i∈I = ~µ, then

h(gi1(w) · . . . · gin(w)) = replace each λ ∈ Λ~µ in h′′~µ(i1 . . . in) by lλ ◦ gι(λ)(w)

Subproof of the claim. Proposition 3.3.6 says that every β = ψδ(gi(w)) ∈ Mcl
R,∆

can be decomposed into a shape α = erase∆(β) ∈Mcl
R,∅ and a finite family ~̀ of strings in

∆∗. Each β(r) for r ∈ R can then be reconstituted as an interleaving of letters in α(r) with
labels in ~̀, a process that can be decomposed into two steps:
• first, interleave the letters of α(r) with placeholder letters, taken from an alphabet disjoint

from both ∆ and R;
• then substitute the labels for those letters.
Roughly speaking, this will allow us to manipulate an assignment with placeholders without
knowing the labels, and then add the labels afterwards.

Let ~µ ∈ (Mcl
R,∅ o Q)I . We define a copyless SST T~µ with the same sets of states and

registers as Th, namely Q and R. Its initial register values and final output function are also
the same. It computes a function I∗ → (∆ ∪ Λ~µ)

∗, and its transition function is

δ~µ : (q, i) 7→
(
π1 ◦ µi(q),

(
r 7→ interleave

(
λq,i,r0 . . . λq,i,r|π2(µi(q))(r)|, π2(µi(q))(r)

)))
where interleave(u0 . . . un, v1 . . . vn) = u0v1u1 . . . vnun for letters u0, . . . , un, v1, . . . , vn over
some alphabet (recall also that µi : Q→ Q×Mcl

R,∅ for i ∈ I). Thus, we take

Λ~µ =
{
λq,i,rj

∣∣∣ q ∈ Q, i ∈ I, r ∈ R, j ∈ {0, . . . , |π2(µi(q))(r)|}} ι(λq,i,rj) = i

and h′′~µ to be the function computed by T~µ. (Note that although δ~µ does not involve letters
from ∆, the final output function and the initial register contents do.) Finally, given
λ = λq,i,rj ∈ Λ~µ, we define lλ to be the regular function provided by Lemma 3.3.7 for the
transition function δ of Th, the state q0 (which is the initial state of both Th and T~µ), the
register r, the assignment shape α = π2(µi(q)) and the position j ∈ {0, . . . , |α(r)|}.

Let w ∈ Γ∗ be such that (ϕδ ◦ gi(w))i∈I = ~µ. Consider χw ∈ Hom((∆ ∪Λ~µ)∗,∆∗) which
maps each letter of ∆ to itself and each λ ∈ Λ~µ to lλ ◦ gι(λ)(w). It lifts to a morphism
χ̂w ∈ Hom(Mcl

R,∆∪Λ~µ
,Mcl

R,∆), and we have χ̂w(δ~µ(−, i)) = ψδ ◦ gi(w). This leads to the
following invariant: the configuration of Th after reading gi1(w) · . . . · gin(w) is, in a suitable
sense, the “image by χw” of the configuration of T~µ after reading i1 . . . in. (In other words,
the “image of the SST T~µ by χw” is the copyless SST computing h′w that we sketched at the
very beginning of this proof of Lemma 3.3.5.) This directly implies the property relating h,
h′′~µ and (lλ)λ∈Λ~µ

that we wanted. (End of subproof.) �

Let us finish proving Lemma 3.3.5 using the fact we just proved. First of all, since the
letters of Λ~µ only serve as placeholders to be eventually substituted, they can be renamed
at our convenience. That means that we can take the Λ~µ to be disjoint for ~µ ∈ (Mcl

R,∅ oQ)I ,
and define Λ to be their disjoint union. We also take ι : Λ→ I to be the unique common
extension of the ι~µ. In the same spirit, we glue together the functions h′′~µ ◦ f into

H : w ∈ Γ∗ 7→ h′′(ϕδ◦gi(w)|i∈I)(f(w)) ∈ (∆ ∪ Λ)∗

From the above equation on h′′~µ, one can then deduce for all w ∈ Γ∗ without condition that

h(CbS(f, (gi)i∈I)(w)) = CbS(H, (lλ ◦ gι(λ))λ∈Λ)(w)
(strictly speaking, one should have a family indexed by ∆ ∪ Λ on the right-hand side – to
comply with that, just extend the family with constant functions equal to x for each x ∈ ∆).

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 85

Using the above equation, we can rephrase our goal: we want to prove that the function
CbS(H, (lλ◦gι(λ))λ∈Λ) is comparison-free polyregular. This class of functions is – by definition
– closed under composition by substitution, so we can reduce this to the following subgoals:
• H is comparison-free polyregular: in fact, it is regular, because regular functions are closed

under composition and regular conditionals (Proposition 2.3.11). This argument relies on
the finiteness of the indexing set (Mcl

R,∅ oQ)I – a consequence of Proposition 2.3.24 – and
on the regularity of the language {w ∈ Γ∗ | (ϕδ ◦ gi(w))i∈I = ~µ} for any ~µ. The reasons
for the latter are as follows:
– ϕδ is a morphism whose codomainMcl

R,∅ oQ is finite, so ϕ−1δ ({µi}) is regular for i ∈ I;
– the functions gi for i ∈ I are assumed to be cfp, so they preserve regular languages by

inverse image, as all polyregular functions do [Boj18];
– regular languages are closed under finite intersections, and I is finite.
• lλ ◦ gι(λ) is comparison-free polyregular for all λ ∈ Λ: because our main existence claim

states that lλ is regular for all λ ∈ Λ, and one of our assumptions is that any gi (for i ∈ I)
postcomposed with any regular function gives us a cfp function. �

3.3.2. A lower bound on growth from the rank. In this section, we prove a statement
that directly implies the last claim of Theorem 3.3.2:

Theorem 3.3.9. Let f : Γ∗ → Σ∗ be comparison-free polyregular of rank at least 1. Then
there exists a sequence of inputs (sn)n∈N ∈ (Γ∗)N such that |sn| = O(n) and |f(sn)| ≥ nrk(f)+1.

Let us recall a few tools inspired from [Lho20]. First, a notation: for s ∈ Σ∗ and Π ⊆ Σ,
we shall write |s|Π for the number of occurrences of letters from Π in s.

Lhote’s paper [Lho20] also makes a heavy use of factorizations of strings that depend on
a morphism to a finite monoid. This is the case for our proof as well, but we use a slightly
different kind of factorization in order to fix what seems to be a bug in [Lho20].

An 1-split of a string s ∈ Γ∗ according to a morphism ϕ : Γ∗ → M is a factorization
s = uvw with the middle factor v nonempty, such that ϕ(u) = ϕ(uv) and ϕ(vw) = ϕ(w).
We shall also work with a more general notion (though the case r = 1 will often occur):

Definition 3.3.10. An r-split of a string s ∈ Γ∗ according to a morphism ϕ : Γ∗ →M is a
tuple (u, v1, . . . , vr, w) ∈ (Γ∗)r+2 such that:
• s = uv1 . . . vrw with vi non-empty for all i ∈ {1, . . . , r};
• ϕ(u) = ϕ(uv1) = · · · = ϕ(uv1 . . . vr);
• ϕ(w) = ϕ(vrw) = · · · = ϕ(v1 . . . vrw).

Proposition 3.3.11 (immediate from the definition). (u, v1, . . . , vr, w) is an r-split if and
only if, for all i ∈ {1, . . . , r}, (uv1 . . . vi−1, vi, vi+1 . . . vrw) is a 1-split.

Remark 3.3.12. The difference with the (1, r)-factorizations of [Lho20, Definition 19] is
that we have replaced the equality and idempotency requirements on ϕ(v1), . . . , ϕ(vn) by
the “boundary conditions” involving ϕ(u) and ϕ(w) (actually, (1, r+2)-factorizations induce
r-splits). We will see in Remark 3.3.17 how this change is helpful.

The point of r-splits is that given a split of an input string according to the morphism
that sends it to the corresponding transition in a SST, we have some control over what
happens to the output of the SST if we pump a middle factor in the split. Furthermore,
it suffices to consider a quotient of the transition monoid which is finite when the SST is
copyless (this is similar to Proposition 2.3.24). More precisely, we have the key lemma below,
which is used pervasively throughout our proof of Theorem 3.3.9:

Lemma 3.3.13. Let f : Γ∗ → Σ∗ be a regular function. There exist a morphism to a finite
monoid νf : Γ∗ → N (f) and, for each c ∈ Σ, a set of producing triples P (f, c) ⊆ N (f)3

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 86

such that, for any 1-split according to νf composed of u, v, w ∈ Γ∗ – i.e. νf (uv) = νf (u) and
νf (vw) = νf (w) – we have:
• if (νf (u), νf (v), νf (w)) ∈ P (f, c), then |f(uvw)|c > |f(uw)|c;
• otherwise (when the triple is not producing), |f(uvw)|c = |f(uw)|c.
Furthermore, in the producing case, we get as a consequence that ∀n ∈ N, |f(uvnw)|c ≥ n.

Something like this (but not exactly) appears in the proof of [Lho20, Lemma 18].

Proof idea. We reuse an idea from [Lho20], but instead of using transition monoids of
two-way transducers, we rely on monoids of copyless register assignments. We shall use the
notations introduced in Section 2.3.4 for these monoids and the operations they support.

Let R and Σ be finite alphabets. First, we factor eraseΣ :Mcl
R,Σ → Mcl

R,∅ into two
surjective morphismsMcl

R,Σ →Mcl01
R,Σ →Mcl

R,∅, going through a new monoid which keeps
some information about the letters of Σ but is still finite. To do so, we define an equivalence
relation on register assignments as follows: for α, β ∈Mcl

R,Σ, we say that α ∼ β when
• eraseΣ(α) = eraseΣ(β);
• for each r ∈ R, the sets of letters from Σ that appear in α(r) and β(r) are equal.
One can show that ∼ is a congruence, so we may form the quotient monoidMcl01

R,Σ =Mcl
R,Σ/∼.

Thanks to the first clause in the definition of ∼, the morphism eraseΣ factors through the
canonical projection. The quotient is finite since each equivalence class has a representative
α such that |α(r)| ≤ |R| + |Σ| for all r ∈ R: essentially, ∼ only takes into account the
presence or absence of each letter in Σ, not their multiplicity (hence the notation “01”).

Next, let f : Γ∗ → Σ∗ be computed by some copyless SST (Q, q0, R, δ, ~uI , F). We take
N (f) =Mcl01

R,Σ oQ and define νf as a composition Γ∗ →Mcl
R,Σ oQ→ N (f) where the first

morphism – which we may call ψδ, as in Lemma 3.3.7 – maps c ∈ Γ to δ(−, c) and the second
morphism is the canonical projection.

What we need to show now is that, given a 1-split (u, v, w) ∈ (Γ∗)3 with respect to νf ,
the comparison between |f(uvw)| and |f(uw)| depends only on νf (x) for x ∈ {u, v, w}.

Let q′ and ~u′I be the state and register values of the SST after reading u; to be more
formal, ψδ(u)(q0) = (q′, α) and α†(~uI) = ~u′I . Note that q′ is also the first component of the
pair νf (u)(q0); since νf (uv) = νf (u) (by definition of 1-split), the SST reaches the state q′
after reading uv as well: ψδ(q′, v) = (q′, β) for some β ∈Mcl

R,Σ.
Let ψδ(w)(q′) = (q′′, γ). Then

f(uvw) = F (q′′)† ◦ (β • γ)†(~u′I) f(uw) = F (q′′)† ◦ γ†(~u′I)

Since νf (vw) = νf (w), we have eraseΣ(β • γ) = eraseΣ(γ). Therefore, ω = (β • γ)?(F (q′′))
and ω′ = γ?(F (q′′)) have the same letters from R with the same multiplicities (and appearing
in the same order, although this does not matter for us here): |ω|r = |ω′|r for all r ∈ R. This
is why the two sums over R cancel out in the following computation (writing ~u′I = (u′r)r∈R):

∀c ∈ Σ, |f(uvw)|c − |f(uw)|c = |ω†(~u′I)|c − |(ω′)†(~u′I)|c
= |ω|c +

∑
r∈R
|ω|r · |u′r|c − |ω′|c −

∑
r∈R
|ω′|r · |u′r|c

= |ω|c − |ω′|c
From now on, let c ∈ Σ. From the definition of β?, we have

|ω|c = |β?(ω′)|c = |ω′|c +
∑
r∈R
|ω′|r · |β(r)|c

So we get the dichotomy of the lemma statement:

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 87

• if there exists some r ∈ R such that |ω′|r > 0 and |β(r)|c > 0, then |f(uvw)| > |f(uw)|;
• otherwise, |f(uvw)| = |f(uw)|.

For each r ∈ R, the condition |ω′|r > 0 can be checked from q′ and νf (w); in turn, q′ depends
only on νf (u). As for |β(r)|c > 0, since it is a condition on the presence or not of a certain
letter from Σ in β(r), without considering its precise multiplicity, it depends only on νf (v):
this is the information that νf was designed to encode. This gives us the definition of the
set of producing triples P (f, c).

There remains a final claim to prove in the lemma statement, concerning |f(uvnw)|c
when (u, v, w) ∈ P (f, c) and n ∈ N. Using µ(uv) = µ(u), one can show that for all m ∈ N,
the triple (uvm, v, w) is also a producing 1-split. So we have

|f(uvnw)|c > |f(uvn−1w)|c > · · · > |f(uw)|c

and since all elements of this sequence are natural numbers, |f(uvnw)|c ≥ n. �

Definition 3.3.14. We fix once and for all a choice of N (f), νf and P (f, c) for each regular
function f : Γ∗ → Σ∗ and letter c ∈ Σ. We say that a 1-split (u, v, w) is producing with
respect to (f, c) when (νf (u), νf (v), νf (w)) ∈ P (f, c). For Π ⊆ Σ, we also set

P (f,Π) =
⋃
c∈Π

P (f, c)

Lemma 3.3.15 (Rank 0 dichotomy). Let f : Γ∗ → Σ∗ be a regular function, M be a finite
monoid and ϕ : Γ∗ → M be a morphism. Suppose that there exists another morphism
π :M → N (f) such that π ◦ ϕ = νf . Let r ≥ 1 and Π ⊆ Σ.

We define L(f,Π, ϕ, r) to be the set of strings that admit an r-split s = uv1 . . . vrw
according to ϕ such that all the triples (uv1 . . . vi−1, vi, vi+1 . . . vrw) are producing with
respect to (f,Π) – let us call this a producing r-split with respect to (f,Π, ϕ).

Then L(f,Π, ϕ, r) is a regular language, and sup{|f(s)|Π | s ∈ Γ∗ \ L(f,Π, ϕ, r)} <∞.

To prove this, we first recall a standard Ramsey argument. The statement below is a bit
stronger than necessary for the purpose of showing the above lemma, but it will be reused
in the proof of Theorem 3.5.3.

Proposition 3.3.16 (analogous to [Lho20, Claim 20]). Let Γ be an alphabet, M be a finite
monoid, ϕ : Γ∗ → M be a morphism and r ≥ 1. There exists N ∈ N such that any string
s = uvw ∈ Γ∗ such that |v| ≥ N admits an r-split s = u′v′1 . . . v

′
rw
′ according to ϕ in which

u is a prefix of u′ and w is a suffix of w′.

Proof. By the finite Ramsey theorem for pairs, there exists R ∈ N such that every
complete undirected graph with at least R vertices whose edges are colored using |M | colors
contains a monochromatic clique with r + 3 vertices. We take N = R− 1.

Let s = uvw ∈ Γ∗ with |v| ≥ N . Let us write s[i . . . j] for the substring of s between
two positions i, j ∈ {0, . . . , |s|}. Those indices are considered as positions in-between letters,
so, for instance, s = s[0 . . . |s|], while s[(i − 1) . . . i] is the i-th letter of s; note also that
s[i . . . j] · s[j . . . k] = s[i . . . k]. In particular, we have v = s[|u| . . . |uv|].

Consider the following coloring of the complete graph over V = {|u|, . . . , |uv|}: the edge
(i, j) ∈ V 2 with i < j is given the color ϕ(s[i . . . j]). Since |V | ≥ N + 1 = R, there exists a
monochromatic clique {i0, . . . , ir+2} ⊆ V with i0 < · · · < ir+2.

We now define u′ = s[0 . . . i1] and w′ = s[ir+1 . . . |s|], which ensures that u is a prefix of
u′ and w is a suffix of w′ since i1 and ir+1 are positions in v. For m ∈ {1, . . . , r}, we also

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 88

take v′m = s[im . . . im+1] 6= ε (because |v′m| = im+1 − im ≥ 1). Then s = u′v′1 . . . v
′
rw
′, and

ϕ(u′v′1 . . . v
′
m) = ϕ(s[0 . . . im+1]) = ϕ(s[0 . . . i0])ϕ(s[i0 . . . im+1])

= ϕ(s[0 . . . i0])ϕ(s[i0 . . . i1]) by monochromaticity
= ϕ(s[0 . . . i1]) = ϕ(u′)

and similarly, ϕ(v′m . . . v′1w′) = ϕ(w′). Thus, by definition, we have an r-split of s. �

Proof of Lemma 3.3.15. L(f,Π, ϕ, r) can be recognized by a non-deterministic au-
tomaton that guesses an adequate r-split and computes ϕ(u), ϕ(v1), . . . , ϕ(vr), ϕ(w). The
hard part is showing that |f(−)|Π is bounded on the complement of this language.

By the previous proposition, there exists some N ∈ N such that any string s ∈ Γ∗ of
length at least N admits an r-split according to ϕ. Thanks to the existence of π, it is also
an r-split according to νf . So if this long string is in Γ∗ \L(f,Π, ϕ, r), then it is of the form
s = uv1 . . . vrw where, for some i ∈ {1, . . . , r}, (uv1 . . . vi−1, vi, vi+1 . . . vrw) is not producing.
Therefore, |f(uv1 . . . vi−1vi+1 . . . vrw)|Π = |f(uv1 . . . vrw)|Π. The important part is that the
argument in the left-hand side is strictly shorter (the definition of r-split contains vi 6= ε).
Furthermore, we claim that s′ = uv1 . . . vi−1vi+1 . . . vrw ∈ Γ∗ \ L(f,Π, ϕ, r). Once this is
established, a strong induction on the length suffices to show that |f(−)|Π restricted to
Γ∗ \ L(f,Π, ϕ, r) reaches its maximum at some string of length smaller than N , and thus to
conclude the proof.

It remains to show that s′ /∈ L(f,Π, ϕ, r). If this were false, then by definition we
would have a producing r-split s′ = u′v′1 . . . v

′
rw
′. Assuming this, we will lift this split to

a producing r-split of s in order to contradict s /∈ L(f,Π, ϕ, r). We give notations to the
components of our non-producing triple: û = uv1 . . . vi−1, v̂ = vi, ŵ = vi+1 . . . vrw.

Suppose that for some j ∈ {1, . . . , r} and x ∈ Γ∗, we have û = u′v′1 . . . v
′
j−1x and

|x| ≤ |v′j |. Then there must exist a unique y ∈ Γ∗ such that v′j = xy and ŵ = yv′j+1 . . . v
′
rw
′.

What we want to show now is that (u′, v′1, . . . , v
′
j−1, xv̂y, v

′
j+1, . . . , v

′
r, w

′) is a producing
r-split of s.
• First, the concatenation of this sequence of length r + 2 is indeed equal to ûv̂ŵ = s.
• Next, we have ϕ(u′v′1 . . . vj−1(xv̂y)) = ϕ(ûv̂y) = ϕ(ûv̂)ϕ(y) = ϕ(û)ϕ(y) since (û, v̂, ŵ)

is a 1-split of s, and ϕ(û)ϕ(y) = ϕ(ûy) = ϕ(u′v′1 . . . v
′
j). For k ≥ j, by multiplying

by ϕ(v′j+1 . . . v
′
k) on the right, we get ϕ(u′v′1 . . . v′j−1(xv̂y)v′j+1 . . . v

′
k) = ϕ(u′v′1 . . . v

′
k).

Similarly, for k ≤ j, we have ϕ(v′k . . . v′j−1(xv̂y)v′j+1 . . . v
′
rw
′) = ϕ(v′k . . . v

′
rw
′).

• Combining the above with the fact that (u′, v′1, . . . , v
′
r, w

′) is an r-split of s′ gives us
directly from the definitions that our new (r + 2)-tuple with xv̂y is an r-split of s.
• Finally, we must check that it is producing.

– Let k ≤ j − 1. We must show that (u′v′1 . . . v
′
k−1, vk, v

′
k+1 . . . v

′
j−1(xv̂y)vj+1 . . . v

′
rw
′) is

producing with respect to (f,Π). We have seen previously that the componentwise
image by ϕ of this triple is the same as the one for (u′v′1 . . . v′k−1, v′k, v′k+1 . . . v

′
rw
′). The

latter is producing (since it comes from an r-split chosen to be producing), and therefore
so is the former, because thanks to νf = π ◦ ϕ, the image by ϕ suffices to determine
whether a triple is producing.

– The case k ≥ j + 1 is symmetrical.
– The remaining case is (u′v′1 . . . v

′
j−1, xv̂y, v

′
j+1 . . . v

′
rw
′). It would be convenient if xv̂y

and v′j had the same image by ϕ, but this is not guaranteed. Instead, we come back to
the dichotomy concerning what happens when we remove the substring xv̂y in s. This
can be done in two steps: first remove v̂ in s, which gives us s′, then remove xy = v′j
from s′, resulting in s′′ = u′v′1 . . . v

′
j−1v

′
j+1 . . . v

′
rw
′. Using the fact that the r-split of s′

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 89

is producing while (û, v̂, ŵ) is not, we have |f(s)|Π = |f(s′)|Π > |f(s′′)|Π. This means
that the 1-split containing xv̂y must be producing.

If the (j, x) chosen previously does not exist, then either u′ is a prefix of û or w′ is a suffix
of ŵ. In those cases, there is an analogous lifting procedure, and its proof of correctness is
simpler; we leave this to the reader. �

Remark 3.3.17. It is not clear whether the above reasoning can be made to work if we
require idempotency in the definition of r-split, as is the case for the (k, r)-factorizations
in [Lho20] (cf. Remark 3.3.12). An analogous argument is made in the first paragraph of
the proof of the original Dichotomy Lemma in [Lho20], but we were unable to check that
s′ /∈ L(f,Π, ϕ, r) when forcing the central elements of producing triples to be idempotent.
(This is an arguably minor bug and does not constitute the main reason for the failure
of the proof strategy of [Lho20] in the case of general pebble transducers.) Thankfully,
idempotency does not seem to be required to carry out further arguments leading to a proof
of Theorem 3.3.9.
Lemma 3.3.18. Let f : Γ∗ → Σ∗ be comparison-free polyregular. There exist a morphism
to a finite monoid ν ′f : Γ∗ → N ′(f) such that, for any 1-split according to ν ′f composed of
u, v, w ∈ Γ∗ and any c ∈ Σ∗, the sequence (|f(uvnw)|c)n∈N is non-decreasing.

Proof. By straightforward induction on rk(f), using Lemma 3.3.13: for g regular and
hi comparison-free, we take N ′(CbS(g, (hi)i∈I)) = N (g)×

∏
i∈I
N ′(hi). �

Lemma 3.3.19. Let g : Γ∗ → I∗ be a regular function and, for each i ∈ I, let hi : Γ∗ → Σ∗

be comparison-free polyregular of rank at most k. Suppose that sup
s∈Γ∗
|g(s)|J <∞ where

J =

{
{i ∈ I | rk(hi) = k} when k ≥ 1

{i ∈ I | |hi(Γ∗)| =∞} when k = 0

(Morally, regular functions with finite range play the role of “comparison-free polyregular
functions of rank −1”.) Then rk(CbS(g, (hi)i∈I)) ≤ k.
Remark 3.3.20. This is analogous to [Lho20, Claim 22], but it also seems to be related
to the way the “nested transducer” Rk+1 is defined in the proof of the dichotomy lemma
in [Lho20]: indeed, Rk+1 can call either a k-nested subroutine or a (k − 1)-nested one.

Proof. We write f = CbS(g, (hi)i∈I).

First, let us consider the case k = 0. For convenience, we assume w.l.o.g. that I ∩ Σ = ∅.
Let N = sup{|g(s)|J | s ∈ Γ∗} – in the degenerate case J = ∅, this leads to N = 0 –
and ιn(s) be the n-th letter of J in g(s) if it exists, or else ε. Then we use the equation
g(s) = ρ0(s)ι1(s)ρ1(s) . . . ιN (s)ρN (s) to define uniquely ρ0, . . . , ρN : Γ∗ → (I \ J)∗. One can
build for each n ∈ {0, . . . , N} a sequential transducer whose composition with g yields ρn;
therefore, since g is regular, so is ρn. We define ψn(s) next as hιn(s)(s) when ιn(s) ∈ J , and
ε otherwise. For any n ∈ {1, . . . , N}, since the languages g−1(((I \ J)∗J)n−1(I \ J)∗iI∗) are
regular for all i ∈ J , this defines ψn as a combination of {s 7→ ε} ∪ {hi | i ∈ J} by regular
conditionals, so ψn is regular. Finally, we set f ′(s) = ρ0(s)ψ1(s)ρ1(s) . . . ψN (s)ρN (s) ∈
(Σ ∪ I \ J)∗; the function f ′ thus defined is regular by closure under concatenation (use a
product construction on copyless SSTs). Observe that f ′(s) is obtained by substituting each
occurrence of a letter i ∈ J in g(s) by hi(s) (thus, it is equal to g(s) when J = ∅, and to
f(s) when J = I).

What remains to do is to substitute the letters of I \ J to get f . To do so, let us define
L~w = {s ∈ Γ∗ | ∀i ∈ I \ J, hi(s) = wi} for ~w = (wi)i∈I\J ∈

∏
i∈I\J hi(Γ

∗). The function f

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 90

coincides on L~w with f ′ postcomposed with the morphism that replaces each i ∈ I \ J by
wi; this is regular by closure under composition. Furthermore, the factors of

∏
i∈I\J hi(Γ

∗)

are finite by definition of J , and I \ J itself is a subset of the finite alphabet I. So there are
finitely many L~w, and they partition Σ∗; they are also all regular, as finite intersections of
preimages of singletons by regular functions. Therefore, f is obtained by combining regular
functions by a regular conditional, so it is regular, i.e. rk(f) = 0 as we wanted.

This being done, let us move on to the case k ≥ 1. For i ∈ J , let hi = CbS(g′i, (h′i,x)x∈Xi)

where all the g′i are regular and the h′i,x are of rank at most k − 1, choosing the Xi to be
pairwise disjoint as well as disjoint from I. Let f ′(s) be obtained from g(s) by substituting
each occurrence of a letter i ∈ J by g′i(s). For the same reasons as those exposed in the first
paragraph of the case k = 0, this defines a regular function f ′. By taking its composition
by substitution with the disjoint union of the families (hi)i∈I\J and (h′i,x)x∈Xi for i ∈ J , we
recover f . Since the functions involved in this union family are all of rank at most k − 1 (by
definition of J), this means that rk(f) ≤ k. �

Lemma 3.3.21. Let f : Γ∗ → Σ∗ be a comparison-free polyregular function. Let ϕ : Γ∗ →M
be a morphism to a finite monoid and let r ≥ 1. Then there exists a regular language
L̂(f, ϕ, r) ⊆ Γ∗ such that:
• the function which maps L̂(f, ϕ, r) to ε and coincides with f on Γ∗ \ L̂(f, ϕ, r)

– is regular and takes finitely many values if rk(f) = 0 i.e. f is regular;
– is comparison-free polyregular with rank strictly lower than rk(f) otherwise;
• for any s ∈ L̂(f, ϕ, r), there exist k = rk(f) + 1 r-splits according to ϕ – let us write

them as s = u(m)v
(m)
1 . . . v

(m)
r w(m) for m ∈ {1, . . . , k} – such that, for any factorization

s = α0β1α1 . . . βkαk where, for some permutation σ of {1, . . . , k}, each βm coincides with
some v(σ(m))

l (in the sense that their positions as substrings of s are equal), we have

∀n ∈ N, |f(α0β
n
1α1 . . . β

n
kαk)| ≥ nk

(note that in general, such factorizations s = α0β1α1 . . . βkαk might not exist, for instance
when r = 1 and all the substrings v(m)

1 overlap)

Proof. We proceed by induction on rk(f).

Base case: rk(f) = 0. In this case, f is regular. Let ψ : Γ∗ →M ×N (f) be the monoid mor-
phism obtained by pairing ϕ (given in the lemma statement) with νf (given in Lemma 3.3.15).
Then, using Lemma 3.3.15, one can see that taking L̂(f, ϕ, r) = L(f,Σ, ψ, r) works.

Inductive case: rk(f) ≥ 1. In this case, f = CbS(g, (hi)i∈I) for some regular g : Γ∗ → I∗

and some comparison-free polyregular hi : Γ∗ → Σ∗ with rk(hi) ≤ rk(f) − 1 for all i ∈ I.
Let ϕ and r be as given in the lemma statement. Let J be defined as in Lemma 3.3.19:

J =

{
{i ∈ I | rk(hi) = rk(f)− 1} when rk(f) ≥ 2

{i ∈ I | |hi(Γ∗)| =∞} when rk(f) = 1

For i ∈ J , let ψi : Γ∗ →M ×N (g)×N ′(hi) be obtained by combining ϕ with the morphisms
given by Lemmas 3.3.13 and 3.3.18. We shall consider the regular languages L̂(hi, ψi, r)
provided by the inductive hypothesis.

Let us take a copy J = {i | i ∈ J} of J such that J ∩ I = ∅. We define the regular
function g′ : Γ∗ → (I ∪ J)∗ as follows: for any input s ∈ Γ∗, to build the output g′(s),
we start from g(s) and then, for each i ∈ J such that s /∈ L̂(hi, ψi, r), we replace all the

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 91

occurrences of i by i. For i ∈ J , we also define hi to be the function which maps L̂(hi, ψi, r)
to ε and coincides with hi on Γ∗ \ L̂(hi, ψi, r). By construction, f = CbS(g′, (hi)i∈I∪J).

Note that g′ is regular: it is indeed generated from g using regular conditionals and
postcomposition by letter-to-letter morphisms. We can therefore build a morphism

χ : Γ∗ →M ×N (g′)×
∏
i∈J
N ′(hi)

in the expected way, and define the language provided by the lemma statement as

L̂(f, ϕ, r) = L(g′, J, χ, r)

According to Lemma 3.3.15, it is indeed a regular language. Concerning the first item of the
lemma statement, the function that it considers can be expressed as

CbS(g′′, (hi)i∈I∪J) where g′′ : s 7→

{
ε when s ∈ L(g′, J, χ, r)
g′(s) otherwise

We want to show that rk(CbS(g′′, (hi)i∈I∪J)) ≤ rk(f)− 1. The shape of this statement fits
with the conclusion of Lemma 3.3.19, so we just have to check the corresponding assumptions.
• g′′ is regular, by closure of regular functions under regular conditionals.
• for i ∈ I ∪ J , the function hi is comparison-free polyregular of rank at most rk(f)− 1:

– for i ∈ I, this was required in our choice of expression for f = CbS(g, (hi)i∈I) (and such
a choice was possible by definition of rank);

– for i = j ∈ J , we get this by applying the first item of the inductive hypothesis to hj
(indeed, the function introduced by this item is none other than hj = hi).

• We also get that, with the same J as before,

J =

{
{i ∈ I ∪ J | rk(hi) = rk(f)− 1} when rk(f) ≥ 2 i.e. ∀i ∈ J, rk(hi) ≥ 1

{i ∈ I ∪ J | |hi(Γ∗)| =∞} when rk(f) = 1 i.e. ∀i ∈ J, rk(hi) = 0

using again the first item of the inductive hypothesis to handle the case of indices in J .
• Finally, by definition of g′′ and by Lemma 3.3.15, using the convention sup∅ = 0,

sup
s∈Γ∗
|g′′(s)|J = sup{|g′(s)|J | s ∈ Γ∗ \ L(g′, J, χ, r)} <∞

Let us now check the second item concerning splits and factorizations. Let s ∈ L̂(f, ϕ, r).
By definition, there exists i ∈ J such that s ∈ L(g′, i, χ, r). In particular, |g′(s)|i ≥ 1, which
entails that s ∈ L̂(hi, ψi, r) by definition of g′. The inductive hypothesis gives us a family
of r-splits s = u(m)v

(m)
1 . . . v

(m)
r w(m) according to ψ for m ∈ {1, . . . , k − 1} – recall that

rk(hi) + 1 = rk(f) = k − 1. We complete it by taking (u(k), v
(k)
1 , . . . , v

(k)
r , w(k)) to be a

producing r-split of s with respect to (g′, i, χ), whose existence is guaranteed by definition
of L(g′, i, χ, r). Since ϕ factors through both ψi and χ by construction, this indeed gives us
a family of k r-splits according to ϕ.

Now, let s = α0β1α1 . . . βkαk be a factorization and σ be a permutation of {1, . . . , k}
such each βm coincides with some v(σ(m))

l for some l. Note that from the original expression
of f as a composition by substitution, we have

∀s′ ∈ Γ∗, |f(s′)| ≥ |g(s′)|i · |hi(s′)|

Therefore, our desired inequality will follow once we prove the ones below:

∀n ∈ N, |g(α0β
n
1α1 . . . β

n
kαk)|i ≥ n and |hi(α0β

n
1α1 . . . β

n
kαk)| ≥ nk−1

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 92

To illustrate the idea, we assume σ(k) = k, so that βk = v
(k)
l for some l, and we invite the

reader to convince themself that this is merely a matter of notational convenience for the
rest of the proof.

Let us start with hi. Since ν ′hi factors through χ, the triple

(α0β1 . . . βk−1αk−1, βk, αk) = (u(k)v
(k)
1 . . . v

(k)
l−1, v

(k)
l , v

(k)
l+1 . . . v

(k)
r w(k))

is a 1-split according to ν ′hi . Using the fact that ν ′hi factors through ψi, one can show that
(α0β

n
1 . . . β

n
k−1αk−1, βk, αk) is still a 1-split according to ν ′hi . Therefore, for n ∈ N,

|hi(α0β
n
1 . . . β

n
k−1αk−1β

n
kαk)| ≥ |hi(α0β

n
1 . . . β

n
k−1αk−1βkαk)| ≥ nk−1

where βk is not raised to the n-th power in the middle; the left inequality comes from
Lemma 3.3.18, while the right inequality is part of the induction hypothesis applied to hi.

The case of g requires an additional step. We know that (α0β1 . . . βk−1αk−1, βk, αk) is a
producing triple with respect to (g′, i, χ); therefore, by Lemma 3.3.13,

∀n ∈ N, |g′(α0β1 . . . βk−1αk−1β
n
kαk)|i ≥ n

To replace g′ by g in the above inequality, recall that by definition of g′, since i ∈ J ,
∀s′ ∈ Γ∗,

(
|g′(s′)|i 6= 0 =⇒ |g′(s′)|i = |g(s′)|i

)
One can then conclude by Proposition 3.3.22 below, taking l = k − 1. There is a subtlety
here: our definitions ensure that νg factors through ψi, but this might not be the case for
νg′ (because ψi had to be defined before g′). So for this final step, we must work with the
function g, whereas to leverage the producing triple, we had to use g′. �

The following proposition, which we used at the end of the above proof, will also be
useful to prove Theorem 3.5.3.

Proposition 3.3.22. Let g : Γ∗ → Σ∗ be a regular function and s = α0β1α1 . . . βlαl ∈ Γ∗

such that every triple (α0β1 . . . αm, βm+1, αm+1βm+2 . . . αl) is a 1-split according to νg. Then
for every c ∈ Σ, the function

(n1, . . . , nl) 7→ |g(α0β
n1
1 α1 . . . β

nl
l αl)|c

is monotone according to the product partial order on Nl.

Proof idea. In order to apply Lemma 3.3.15, the key observation is that the triple
(α0β

n1
1 . . . αmβ

nm+1

m+1 , βm+1, αm+1β
nm+2

m+2 . . . αl)

is also a 1-split. This is because we have, by definition of 1-split, νg(α0β
n1
1) = νg(α0β1),

then νg(α0β1α1β
n2
2) = νg(α0β1α1β2), etc., and similarly on the right side. �

After having established Lemma 3.3.21, we can use it to finally wrap up this section.

Proof of Theorem 3.3.9. We apply Lemma 3.3.21 to get a language L̂(f, ϕ, rk(f)+1)
where ϕ does not matter (take for instance the morphism from Γ∗ to the trivial monoid).
It must be non-empty (or else we would have the contradiction rk(f) < rk(f)), so we can
choose an arbitrary element s ∈ L̂(f, ϕ, rk(f) + 1).

Let k = rk(f) + 1. Lemma 3.3.21 gives us k factorizations s = u(m)v
(m)
1 . . . v

(m)
k w(m)

satisfying certain properties. Note that k plays two roles here that were distinct in the lemma.
We claim that thanks to this, there exists a factorization s = α0β1α1 . . . βkαk as described
in Lemma 3.3.21. This entails that setting sn = α0β

n
1α1 . . . β

n
kαk proves the theorem.

Our task is therefore to select one element in each of the k sets {v(m)
l | l ∈ {1, . . . , k}}

of substrings of s for m ∈ {1, . . . , k}, such that the selected substrings are pairwise non-
overlapping. There is a strategy for this which is similar to the classical greedy algorithm for

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 93

computing a maximum independent set in an interval graph. We take β1 to be the substring
of s among the v(m)

1 whose right endpoint is leftmost. One can check that β1 cannot overlap
with any v(m)

l for l ≥ 2. Thus, by discarding the set to which β1 belongs, as well as each
v
(m)
1 in the other sets, we reduce the remainder of the task to our original goal with k being

decremented by 1. At this stage, an induction suffices to conclude the proof. �

3.3.3. Proofs of Theorems 3.3.1 and 3.3.2. Now that we have shown that cfp functions
are closed under composition and that their asymptotic growth are tightly linked to their
ranks, we have the essential ingredients to prove Theorems 3.3.1 and 3.3.2. There are a
couple of preliminary lemmas helpful for both that we first prove here.

Lemma 3.3.23. For any comparison-free polyregular function f : Γ∗ → Σ∗ and k ≥ rk(f),
there exists a regular function f ′ : ({0, . . . , rk(f)} × Γ)∗ → Σ∗ such that f = f ′ ◦ cfpow(k+1)

Γ .

Proof. By induction on rk(f) (with an inductive hypothesis that quantifies over k).

Base case (f regular). Consider the unique ϕ ∈ Hom(({0, . . . , rk(f)} × Γ)∗,Γ∗) such that
for every c ∈ Γ, ϕ(k, c) = c and ϕ(m, c) = ε when m < k. Since regular functions are closed
under composition, f ′ = f ◦ ϕ is regular, and the desired equation follows from the fact that
ϕ ◦ cfpow(k+1)

Γ = idΓ∗ .

Inductive case. Let f = CbS(g, (hi)i∈I) with g : Γ∗ → I∗ regular and hi : Γ
∗ → Σ∗ cfp

such that rk(hi) ≤ rk(f) − 1 for all i ∈ I. Using the inductive hypothesis, we know that
hi = h′i ◦ cfpow(k)Γ for some family of regular functions (h′i)i∈I . Thus, let us assume we are
given 2DFTs T and (T ′i)i∈I corresponding to g and the family (h′i)i∈I . Without loss of
generality, let us assume further that T always output at most one letter at each transition,
never outputs a letter upon reading /, and that the Ti always terminate on the marker . by
a transition that does not move the reading head. With these assumptions, let us describe
informally a 2DFT T ′′ corresponding to the function f ′ such that

CbS(g, (h′i ◦ cfpow(k)Γ)i∈I) = f ′ ◦ CbS(g, (h′i)i∈I) ◦ cfpow(k+1)
Γ

Assuming that the state space of T is Q and the state space of T ′i is Q′i, with Q and the
Q′is all pairwise disjoint, we take the state space of T ′′ to be

Q′′ = Q× {L,R,S} ×
(
{•} t

⋃
i∈I

Q′i × {L,R,S}
)

with initial state (q0,R, •), if q0 is the initial state of T and final states the triples (qf ,M, •)
such that qf is a final state of T . To guide intuitions, the elements L, R and S should be
respectively read as “left”, “right” and “stay”. With this in mind, the high-level description
of computations carried out by T ′′ over words pow(k)Γ is as follows.
• When in a state (q0,M, •), T ′′ essentially acts as T on letters of the shape (k, a) or

end-markers and ignores letters (l, a) for l < k; the central component M then determines
whether to seek the next relevant position to the left or to the right when reading such
an irrelevant letter. This continues up until upon reading a letter (k, a) in state (q,M, •)
such that T would ouput i when reading a in q, T ′′ moves into the state (r,M′, (q′0,i,R))
where q′0,i is the initial state of T ′i and (r,M′) is determined by the transition in T .
• When in a state (q,M, (q′i,M′)) for q′i ∈ Q′i, T behaves exactly as Ti as long as the current

transition does not reach the final state, treating letters outside of its input alphabets as
end markers; this is possible because of the component M′ of the state, that we use to
keep track of the last move of the reading head. Meanwhile the components q ∈ Q and M

3.3. KEY PROPERTIES OF COMPARISON-FREE POLYREGULAR FUNCTIONS 94

are untouched. When a final transition is taken, by our assumption we return control to
T by going to state (q,M, •) and moving in the direction prescribed by M (recall that,
by assumption, we are moving away from (or staying in) the position at which Ti started
running).

We leave formalizing this definition and checking that T ′′ has a desirable behaviour to the
reader. �

Lemma 3.3.24. For every k ∈ N, cfpow(k)Γ is equal to a a composition of sequential functions
and squaring functions cfsquaring∆.

Proof. We proceed by induction over k. The cases of k = 0, 1, 2 are immediate as
cfpow(k)Γ then corresponds, up to isomorphism of output alphabet, to a constant function,
the identity and cfsquaringΓ respectively, so we focus on the inductive step. To achieve
the desired result, it suffices to show that there exists a sequential function

f : (({0, . . . , k} × Γ) ∪ ({0, . . . , k} × Γ))∗ → ({0, . . . , k + 1} × Γ)∗

such that cfpow(k+1)
Γ = f ◦ cfsquaring{0,...,k}×Γ ◦ cfpow(k+1)

Γ . In fact, the sequential trans-
ducer pictured below computes such an f :

o i

(k, a) | (k + 1, a)

(k, a) | (k, a)

(m,a) | (m,a)

(m,a) | ε

(m,a) | ε
(k, a) | ε
(m,a) | ε

(k, a) | (k + 1, a)
ε ε

where m designates any element of {0, . . . , k − 1}. �

Now we turn to the proofs of our main theorems.

Proof of Theorem 3.3.1. The direct implication is obtained by combining the two
lemmas above: every cfp function can be written as a composition f ◦ cfpow(k)Γ for some
k ∈ N and f regular by Lemma 3.3.23, and Lemma 3.3.24 guarantees that in turn, cfpow(k)Γ
is a composition of sequential (and a fortiori regular) functions and squarings. Conversely,
that cfp functions are closed under composition is proven in Section 3.3.1, which is enough
to conclude as regular functions and cfsquaringΓ are cfp. �

Proof of Theorem 3.3.2. We prove the circle of implications (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
(The claim after this equivalence has already been established in Theorem 3.3.9.)

The first implication (i) ⇒ (iii) corresponds exactly to Lemma 3.3.23 we just proved.
The implication (iii)⇒ (ii) is also relatively easy: cfpow(k)Γ is comparison-free polyregular

(this is a consequence of Lemma 3.3.24 and Theorem 3.3.1, although cfpow(k)Γ can also
be shown to fit Definition 3.1.2 in a more elementary way) and so is f ◦ cfpow(k+1)

Γ by
Theorem 3.3.1 for f regular. Furthermore, |cfpow(k+1)

Γ (w)| = O(|w|k+1) and, since f is
regular, |f(u)| = O(|u|), so we have, as expected, |(f ◦ cfpow(k+1)

Γ)(w)| = O(|w|k+1).
The final implication (ii) ⇒ (i) is technically the hardest as it relies on Theorem 3.3.9.

Let f : Γ∗ → Σ∗ be cfp and k ∈ N such that |f(w)| = O(|w|k+1). If f is regular, then
rk(f) = 0 ≤ k. Otherwise, by Theorem 3.3.9, there exists a sequence (wn)n∈N of inputs such
that |wn| = O(n) and |f(wn)| ≥ nrk(f)+1. So nrk(f)+1 = O(nk+1), hence rk(f) ≤ k. �

3.4. COMPARISON-FREE POLYREGULAR SEQUENCES 95

3.4. Comparison-free polyregular sequences

Now that we have given general characterizations of cfp functions, it can be interesting
to consider degenerate cases. We shall look here at functions with unary input alphabet.
(Dually, Douéneau-Tabot has recently studied polynomial growth transductions – including
cfp functions – with unary output [Dou21].) By identifying N with the set of words {a}∗,
via the canonical isomorphism n 7→ an, functions {a}∗ → Γ∗ can be seen as sequences.

We shall perform this identification implicitly and speak freely, for instance, of word
sequences N→ Γ∗ that are comparison-free polyregular. It turns out that the latter admit a
characterization as finite combinations of what we call “poly-pumping sequences”.

Definition 3.4.1. A poly-pumping sequence is a function of the form JeK : N→ Σ∗ where
• e is a polynomial word expression generated by e ::= w | e · e′ | e∗ where w ∈ Σ∗;
• JwK(n) = w, Je · e′K(n) = JeK(n)Je′K(n) and Je∗K(n) = (JeK(n))n.
The star-height of a polynomial word expression is defined in the usual way.

Theorem 3.4.2. Let s : N→ Σ∗ and k ∈ N. The sequence s is comparison-free polyregular
with rk(s) ≤ k if and only if there exists p > 0 such that, for any m < p, there is a polynomial
word expression e of star-height at most k + 1 such that ∀n ∈ N, s((n+ 1)p+m) = JeK(n).

In short, the comparison-free polyregular sequences are exactly the ultimately periodic
combinations of poly-pumping sequences. Our proof strategy is an induction on k. The base
case k = 0 characterizes regular sequences as ultimately periodic combinations:

Lemma 3.4.3. A sequence of words s : N→ Σ∗ is regular if and only if there is m > 0 such
that for every k < m, there are words u0, . . . , vl, v1, . . . , vl such that for every n ∈ N, we have

∀n ∈ N, s((n+ 1)m+ k) = u0(v1)
n . . . (vl)

nul

A result that is essentially equivalent to the above lemma is stated with a proof sketch
using 2DFTs by Choffrut in [Cho17, p. 90];8 we propose an alternative proof using copyless
SSTs. (Non-deterministic two-way transducers (2NFTs) taking unary inputs have also been
studied [Gui16]; furthermore, the notion of “k-iterative language” that appears in a pumping
lemma for general 2NFTs [Smi14] (which actually dates back to [Roz86]) is related to the
shape of the above pumping sequences.)

The proof of the base case of Theorem 3.4.2 concentrates the bulk of the reasoning. To
make the inductive step go through, it is enough to synchronize the periods of the different
poly-pumping sequences involved and to observe that CbS(JeK, (Je′iK)i∈I) is realized by an
expression obtained by substituting the e′i for i in e.

Thanks to Theorem 3.4.2, we can perform induction over expressions to work with cfp
sequences. One example of application, involving the map operation from §2.5.3, is the
following (contrast with our later Corollary 3.5.5):

Corollary 3.4.4. If f : Γ∗ → Σ∗ and s : N→ (Γ ∪ {#})∗ are cfp, so is map(f) ◦ s.

Theorem 3.4.2 will also be applied later in §3.5 to prove a separation result. Before that,
the next 3 subsections prove Lemma 3.4.3, Theorem 3.4.2 and Corollary 3.4.4 respectively.

3.4.1. Proof of Lemma 3.4.3. The “if” direction is straightforward, so we only prove the
“only if” part of the statement. To keep notations harmonized, let us work with f : {a}∗ → Σ∗

such that s(n) = f(an) for every n ∈ N and fix a copyless SST computing f whose set
of states, set of registers and transition function we call Q, R and δ respectively. We use

8In [Cho17], the result is attributed to “Eugenia”, a hobbyist Italian researcher with a day job at a
software company. Disappointingly, she is actually a fictional character (personal communication from
Christian Choffrut, relayed by Charles Paperman).

3.4. COMPARISON-FREE POLYREGULAR SEQUENCES 96

the monoid Mcl
R,∅ o Q introduced in Section 2.3.4, which contains µ = eraseΣ(δ(−, a)).

Since Mcl
R,∅ oQ is finite (Proposition 2.3.24), there is an exponent m ∈ N \ {0} such that

µ•m = µ • . . . (m times) . . . • µ is idempotent, i.e. µ•m = µ•2m. This m is the one put forth
in the lemma statement.

Let us fix k < m. Let (q, α) = µ•m(q0) where q0 is the initial state of the SST. We
have µ•(m+k) • µ•m = µ•(2m+k) = µ•k • µ•2m = µ•k • µ•m = µ•(m+k) as usual. Therefore,
µ•m(q) = (q, β) with α • β = α and β • β = β (the latter is because of µ•2m = µ•m). Thus,
q is the state reached by the SST after reading am(n+1)+k for any n ∈ N. We also have
(δ(−, a))•m(q) = (q, γ) with γ ∈Mcl

R,Σ and eraseΣ(γ) = β.
Given r ∈ R, we distinguish two cases.

• First, suppose that β(r) = ε or equivalently that γ(r) ∈ Σ∗ (in general, the codomain of
γ is (Σ ∪R)∗). When the SST is in state q and reads am, it executes the assignment γ;
when β(r) = ε, the new value of the register r is this γ(r) ∈ Σ∗ which does not depend on
the old value of any register. Therefore, for all n ∈ N, the content of the register r after
having read am(n+1)+k (starting from the initial configuration) is the constant γ(r).
• We now treat the case where β(r) is non-empty. By definition, β • β = β∗ ◦ β where
β∗ ∈ Hom(R∗, R∗) extends β : R → R∗. Since we know, as a consequence of the
idempotency of µ•m, that β • β = β, we have β∗(β(r)) = β(r) 6= ε.

Let us study in general the situation β∗(ρ) = β(r) 6= ε for ρ ∈ R∗. A first observation
is that the letters in β(r) cannot be found in any other β(r′) for r′ ∈ R \ {r} because
β is copyless, so ρ /∈ (R \ {r})∗. We therefore have n ≥ 1 occurrences of r in ρ, so
ρ = ρ0r . . . rρn with ρ0, . . . , ρn /∈ (R \ {r})∗. By coming back to β∗(ρ) = β(r), into which
we plug this expression for ρ, and using the fact that β(r) has non-zero length, we can see
that n = 1 and β∗(ρ0) = β∗(ρ1) = ε.

Let us apply this to ρ = β(r) = eraseΣ(γ)(r) and lift the result to γ(r):

γ(r) = urrvr for some ur, vr ∈ (Σ ∪ β−1({ε}))∗

In the previous case (β(r′) = ε for r′ ∈ R), we saw that γ(β−1({ε})) ⊆ Σ∗. Therefore
γ?(ur), γ

?(vr) ∈ Σ∗, where γ? ∈ Hom((Σ ∪ R)∗, (Σ ∪ R)∗) extends γ : R → (Σ ∪ R)∗ by
being the identity on Σ. Since Σ∗ is fixed by γ?, when we iterate, we obtain

γ•(n+1)(r) = (γ?)n ◦ γ(r) = (γ?(ur))
n · urrvr · (γ?(vr))n

Now, let F be the final output function of the SST that computes f , and ~wm+k be the
register values after it has read a prefix am+k. Then after reading am(n+1)+k, the new register
values are (γ•(n+1))†(~wm+k). More precisely, the register r contains:
• γ(r) ∈ Σ∗ if β(r) = ε;
• (γ?(ur))

n · ((urrvr)†(~wm+k)) · (γ?(vr))n otherwise.
These values are combined by F (q)† – where q is the recurrent state we have been working
with all along, and F is the final output function – to produce the output f(am(n+1)+k).
This yields the desired shape: an interleaved concatenation of finitely many factors that are
either constant, (γ?(ur))n or (γ?(vr))

n for some r ∈ R.

3.4.2. Proof of Theorem 3.4.2. We proceed by induction on the rank of the sequence
s : N→ Σ∗ under consideration. If the rank of s is 0, it is regular and we apply Lemma 3.4.3
and the desired polynomial word expression is of the shape u0 · (v1)∗ . . . (vl)∗ · ul.

If the rank of s is k + 1, thanks to the induction hypothesis and the base case above,
it can be written as CbS(JeK, (Je′iK)i∈I) where e is an expression over the alphabet I with
star-height at most one and the e′is expressions over Σ with star-height at most k. Without
loss of generality, we may assume that that terminal nodes of polynomial word expressions

3.4. COMPARISON-FREE POLYREGULAR SEQUENCES 97

are words of length at most one. For such an expression over alphabet I, one may define
inductively the following substitution operation to obtain an expression of Σ∗:

j[(e′i)i∈I] = e′j ε[(e′i)i∈I] = ε

(f · f ′)[(e′i)i∈I] = f [(e′i)i∈I] · f ′[(e′i)i∈I] f∗[(e′i)i∈I] = (f [(e′i)i∈I])
∗

One can then check by induction on the structure of e that Je[(e′i)i∈I]K = CbS(JeK, (Je′iK)i∈I)
and that e[(e′i)i∈I] has star-height bounded by k + 1.

3.4.3. Proof of Corollary 3.4.4. We first prove the result for poly-pumping sequences.

Lemma 3.4.5. If JeK : N → (Γ ∪ {#})∗ is a poly-pumping sequence and f : Γ∗ → Σ∗ is
comparison-free polyregular, then map(f) ◦ JeK is a cfp sequence.

For the rest of this subsection, we write S for the successor function n 7→ n+ 1 over N.
We will use the fact that s is a cfp sequence iff s ◦ S also is.

Proof. We first note that if the separator # does not occur at any leaf of e, then the
result is immediate as we would have map(f) ◦ JeK = f ◦ JeK. We thus focus on the cases
when it does occur, and proceed inductively over e.
• If e = w ∈ (Γ ∪ {#})∗, then map(f) ◦ JeK is a constant sequence, which is obviously cfp.
• If e = (e′)∗, with # occuring in e′, let hl, hr : N → Γ∗ and hc : N → (Γ t {#})∗ be the

sequences such that
Je′K ◦ S ◦ S = hl ·# · hc ·# · hr

with hl(n) being the largest #-free prefix of Je′K(n+ 2) and hr(n) the largest #-free suffix
of Je′K(n+ 2). There is a regular function

f ′ : (Γ t {#})∗ → (Γ t {#})∗

w0#w1# . . . wn−1#wn 7→ w1# . . . wn−1 (w0, . . . , wn ∈ (Γ t Γ)∗)

stripping away the first and last component of its input, so that it satisfies

f ′ ◦map(f) ◦ Je′K ◦ S ◦ S = map(f) ◦ hc

By the inductive hypothesis, we know that map(f) ◦ Je′K is comparison-free polyregular.
We may therefore conclude by composition (cf. Theorem 3.3.1) that map(f) ◦ hc is cfp.
One can check analogously that hl and hr are also cfp. Then observe that

(JeK ◦ S ◦ S)(n) = (hl ·# · hc ·# · hr)(n)
n+2

= (hl · (# · hc ·# · hr · hl)
n+1 ·# · hc ·# · hr)(n)

which means that map(f) ◦ JeK ◦ S ◦ S =



(f ◦ hl)

·
(# · (map(f) ◦ hc) ·# · (f ◦ (hr · hl)))

∗

·
· (map(f) ◦ hc) ·# · (f ◦ (hr · hl))

·
· (map(f) ◦ hc) ·# · (f ◦ hr)

Thanks again to the closure under composition, each component of this expression is cfp,
so map(f) ◦ JeK ◦ S ◦ S is also cfp. Hence, so is map(f) ◦ JeK.
• The last case where e = e′ · e′′ is handled similarly after a case analysis determining

whether # occurs only in e′, e′′ or in both; we leave it to the reader. �

3.5. SEPARATION RESULTS 98

To finish proving Corollary 3.4.4, suppose that we are given cfp functions f : Γ∗ → Σ∗ and
s : N→ (Γ ∪ {#})∗. By Theorem 3.4.2, there are m > 0 and some expressions e0, . . . , em−1
such that s(m(n+ 1)+ k) = JekK(n) for every k < m. By Lemma 3.4.5, every map(f) ◦ JekK
is cfp. The set Lk = {m(n + 1) + k | n ∈ N} is semi-linear, i.e., corresponds to a regular
language, and there are regular sequences rk : N → N such that rk(m(n + 1) + k) = n.
Further, N = {n | n < m} ∪

⋃
k<m Lk, so we may use the regular conditional provided by

Proposition 3.1.8 to show that the combination of the map(f) ◦ JekK ◦ rk and the first m
values of map(f) ◦ s, which corresponds exactly to map(f) ◦ s, is indeed cfp.

3.5. Separation results

Let us now give concrete functions that witness the separations claimed at the beginning
of the chapter: the class of comparison-free polyregular functions is incomparable with the
class of HDT0L transductions and is a strict subclass of polyregular functions.

Theorem 3.5.1. There exist comparison-free polyregular functions which are not HDT0L:
(i) an ∈ {a}∗ 7→ (anb)n+1 ∈ {a, b}∗ for a 6= b;
(ii) w ∈ Σ∗ 7→ w|w| for |Σ| ≥ 2 (a simplification of Example 3.1.3);
(iii) an#w ∈ Σ∗ 7→ (w#)n for a,# ∈ Σ, a 6= # (from [DFG20, Section 6])

Note that in the last example, we have not fully specified the function, but we claim
that a function that obeys this condition cannot be an HDT0L transduction, and that there
exists a cfp function that satisfies it.

Remark 3.5.2. The first example in [DFG20, §5] shows that an 7→ an×n is HDT0L (via
the equivalent model of marble transducers), hence the necessity of |Σ| ≥ 2 above. More
generally, Douéneau-Tabot has shown very recently that every polyregular function with
unary output is HDT0L [Dou21]. So polyregular functions with unary output coincide
with polynomial growth N-rational series (cf. Remark 2.3.15), and the latter admit several
algebraic characterizations in the literature (see [Reu79] and [BR10, Chapter 9, Exercise 1.2]).

Theorem 3.5.3. Some HDT0L transductions are polyregular but not comparison-free:
(i) f : an ∈ {a}∗ 7→ ban−1b . . . baabab (with f(ε) = ε and f(a) = b);
(ii) map(an 7→ an×n) : an1# . . .#ank 7→ an1×n1# . . .#ank×nk (cf. Definition 2.5.8).

Remark 3.5.4. The function an1# . . .#ank 7→ an1×n1+···+nk×nk obtained by erasing the #s
in the output of map(an 7→ an×n) is also not comparison-free. This result implies the second
item of Theorem 3.5.3 by composition with the erasing morphism; we do not prove it here,
but it appears in Douéneau-Tabot’s aforementioned paper [Dou21]. Therefore, according
to [Dou21], not every polyregular function with unary output is comparison-free.

To see why the first of the two functions in Theorem 3.5.3 is HDT0L, observe that it is
Example 2.3.4 for Γ = {a} (taking b = a); as for the second one, combine Remark 3.5.2 and
Proposition 2.5.9.

The non-membership parts of Theorems 3.5.1 and 3.5.3 require more work. For the former,
we use pumping arguments on HDT0L systems; the proofs are detailed in Section 3.5.1.
Item (ii) of Theorem 3.5.3 is handled in §3.5.2 by first appealing to Theorem 3.3.2 to
reduce to showing that map(an 7→ an×n) 6= CbS(g, (hi)i∈I) when g and all the hi are regular
functions; a combination of pumping and of a combinatorial argument then shows that
inputs with |I| occurrences of # suffice to discriminate the two sides of the inequality. This
result also has the following immediate consequence:

Corollary 3.5.5. Comparison-free polyregular functions are not closed under map.

3.5. SEPARATION RESULTS 99

Compare with Corollary 3.4.4, and see the end of Section 2.5.3 for a discussion of the
significance of this fact.

As for item (i) of Theorem 3.5.3, we apply our characterization of cfp sequences from
the previous section. We show that an 7→ ban−1b . . . bab is not comparison-free polyregular
by proving that its subsequences are not poly-pumping: for every poly-pumping sequence
s : N→ {a, b}∗, there is a uniform bound on the number of distinct contiguous subwords of
the shape baa . . . ab occuring in each s(n) for n ∈ N. Let us formalize this.

Definition 3.5.6. Let Σ be a finite alphabet and c ∈ Σ. Call βc : Σ∗ → P(N) the function
assigning to a word w the set of lengths of its maximal factors lying in {c}∗ (including ε):

βc(w) = {k ∈ N | w ∈ (Σ∗ \ (Σ∗ · c)) · ck · (Σ∗ \ (c · Σ∗))}

We say that a sequence s : N→ Σ∗ is poly-uniform if for every c ∈ Σ there exists a finite set
of polynomials As,c ⊆ Q[X] such that, for every n ∈ N,

βc(s(n)) ⊆ As,c(n) = {P (n) | P ∈ As,c}

Lemma 3.5.7. Every comparison-free polyregular sequence is poly-uniform.

Proof. First, observe that any ultimately periodic combination of poly-uniform se-
quences is poly-uniform. Indeed, assume that we have such a sequence s and m > 0 so
that n 7→ s(m(n+ 1) + k) is poly-uniform for every k, and finite sets Ak,c ⊆ Q[X] so that
βc(s(m(n+ 1) + k)) ⊆ Ak,c(n). Then the poly-uniformity of s is witnessed by

As,c =
⋃
l<m

{
P

(
X − l
m

)
| P ∈ Ak,c

}
∪ βc(s(l))

Hence, by Theorem 3.4.2, it suffices to show that poly-pumping sequences are all poly-
uniform. We proceed by induction over polynomial word expressions e, defining suitable
finite sets of polynomials Ae,c for c ∈ Σ such that βc(JeK(n)) ⊆ Ae,c(n) and 0 ∈ Ae,c:

Ae·e′,c = {P +Q | (P,Q) ∈ Ae,c ×Ae′,c} Aw,c = βc(w) ∪ {0}
Ae∗,c = Ae,c ∪ {XP | P ∈ Ae,c} �

Proof of Theorem 3.5.3 item (i). Observe that for f : an 7→ ban−1b . . . bab, the
sequence of sets βc(f(an)) = {0, . . . , n− 1} had unbounded cardinality, and thus cannot be
covered by a finite set of functions, let alone polynomials in Q[X]. �

As announced before, the rest of this section gives the remaning proofs.

3.5.1. Proof of Theorem 3.5.1.

These examples are comparison-free. We have seen in Example 3.1.3 that w 7→ w|w| is a
comparison-free polyregular function. For the other examples:
• (an 7→ (anb)n+1) = CbS((an 7→ an+1), (an 7→ anb)i∈{a}) is obtained as a composition by

substitution of sequential functions (cf. Section 2.2), which are in particular regular;
• for an alphabet Σ with a,# ∈ Σ, there exist sequential functions f : Σ∗ → {a}∗ and
g : Σ∗ → Σ∗ such that f(an#w) = an and g(an#w) = w# for n ∈ N and w ∈ Σ∗, so that
CbS(f, (g)i∈{a})(an#w) = (w#)n.

3.5. SEPARATION RESULTS 100

(i) is not HDT0L. Let us fix a HDT0L system ({a}, {a, b},∆, d, (h)i∈{a}, h′) and show that
it does not compute an 7→ (anb)n+1. Let letters(w) be the set of letters occurring in the
string w at least once. By the infinite pigeonhole principle, there exists an infinite X ⊆ N
such that letters(hn(d)) has the same value ∆′ for all n ∈ X. Let us do a case analysis:
• Suppose first that for some r ∈ ∆′ and some m ∈ N, the letter b appears twice in h′◦hm(r);

in other words, that the latter contains a factor bakb for some k ∈ N. Then for all n ∈ X,
h′ ◦ hm+n(d) ∈ Σ∗bakbΣ∗. Since X is infinite, this holds for some n such that m+ n > k,
so that this word – i.e. the output of the HDT0L system for am+n – is different from
(am+nb)m+n+1 /∈ Σ∗bakbΣ∗.
• Otherwise, for all r ∈ ∆′ (that includes the degenerate case ∆′ = ∅) and all m ∈ N, there

is at most one occurrence of b in h′ ◦ hm(r). Then for all m ∈ N, the length of hmin(X)(d)

bounds the number of occurrences of b in h′ ◦hm+min(X)(d), and this bound is independent
of m. On the contrary, in the sequence ((anb)n+1)n≥m+min(X), the number of occurrences
of b is unbounded.

(ii) is not HDT0L. The second counterexample, namely w 7→ w|w|, reduces to the first one:
indeed, (anb)n+1 = (anb)|a

nb| for all n ∈ N, which can also be expressed as

(w 7→ w|w|) ◦ (u ∈ {a}∗ 7→ ub) = (an 7→ (anb)n+1)

Suppose for the sake of contradiction that there is a HDT0L system (Σ,Σ,∆, d, (hc)c∈Σ, h
′)

that computes w 7→ w|w| with |Σ| ≥ 2; we may assume without loss of generality that
a, b ∈ Σ. Then ({a}, {a, b},∆, hb(d), (ha)c∈{a}, h′) computes an 7→ (anb)n+1.

(iii) is not HDT0L. (This is claimed without proof in [DFG20, Section 6].)
Let Σ ⊇ {a,#} be an alphabet and let (Σ,Σ,∆, d, (hc)c∈Σ, h

′) be a HDT0L system. We
reuse a similar argument to our treatment of the counterexample (i). Let the sets ∆′ ⊆ ∆
and X ⊆ N with X infinite be such that letters(hna(d)) = ∆′ for all n ∈ X.
• Suppose first that for some r ∈ ∆′ and some m ∈ N, the string h′ ◦ hma ◦ h#(r); contains

a factor # · ak ·# for some k ∈ N. Then for all n ∈ X, the given HDT0L system maps
am#an to a string in Σ∗ ·# ·ak ·# ·Σ∗. For n > k, this language does not contain (an#)m;
such a n ∈ X exists because X is infinite.
• Otherwise, for any m ∈ N, since # occurs at most once in h′ ◦ hma ◦ h#(r) for r ∈ ∆′,

the output of the HDT0L system has at most |hmin(X)(d)| occurrences of # on input
am#amin(X). Therefore, for large enough m, this output is different from (amin(X)#)m.

3.5.2. Proof of Theorem 3.5.3 item (ii). Suppose for the sake of contradiction that
f = map(an 7→ an×n) is comparison-free. Using Theorem 3.3.2, it must then have rank 1
since |f(w)| = O(|w|2). Thus, we may write f = CbS(g, (hi)i∈I) where g : {a,#}∗ → I∗ and
all the hi : {a,#}∗ → {a,#}∗ are regular.

For each J ⊆ I and k ∈ {0, . . . , |I|} (though the definition would make sense for k ∈ N),
let ρJ,k : {a∗} → (I \ J)∗ be uniquely defined by the condition

∀w ∈ {a,#}∗, ρJ,k(w) =

{
s when g(w) ∈ ((I \ J)∗J)k · s · ({ε} ∪ JI∗)
ε when |g(w)|J < k

(recall from Section 3.3.2 the notation | · |J). To put it plainly, ρJ,k(w) is the k-th block
of letters from I \ J that appears in g(w) (the block may be the empty string if there
are consecutive letters from J), or the empty string if this k-th block does not exist. The
function ρJ,k is regular because it is the composition of a sequential function with g.

3.5. SEPARATION RESULTS 101

We reuse some tools from Section 3.3.2, especially the notion of producing 1-split from
Lemma 3.3.15. There is a unique sensible way to combine the morphisms νf ′ : {a,#}∗ →
N (f ′) given by this lemma into a morphism

ϕ : {a,#}∗ →
∏
f ′∈F

N (f ′) for F = {g} ∪ {hi | i ∈ I} ∪ {ρJ,k | J ⊆ I, k ∈ {0, . . . , |I|}}

Note that the codomain above is a finite monoid: this allows us to apply Proposition 3.3.16
to this morphism ϕ and r = 1, which gives us some N ∈ N. Let s = aN (#aN)|I|. For
each m ∈ {0, . . . , |I|}, we apply the proposition to the factorization s = ukvkwk with
uk = (aN#)k, vk = aN and wk = (#aN)|I|−k to get a 1-split s = u′kv

′
kw
′
k according to ϕ

where uk is a prefix of u′k and wk is a suffix of w′k. Let pk = |vk| 6= 0 and qk = N − |vk|.
For f ′ ∈ F (the finite set of functions introduced above), we then define

f̃ ′ : (n0, . . . , n|I|) ∈ N|I|+1 7→ f ′
(
an0p0+q0# . . .#an|I|p|I|+q|I|

)
Thanks to Proposition 3.3.22 and to the 1-split conditions that we made sure to get

previously, we see that for each letter c in the codomain of f ′ (either {a,#} or I), the map
|f̃ ′|c : N|I|+1 → N is monotone for the product partial order. Since f = map(a 7→ an×n) =
CbS(g, (hi)i∈I),

∀x ∈ N|I|+1,
∑
i∈I
|g̃(x)|i · |h̃i(x)|# = |f̃(x)|# = |I|

where f̃ : (n0, . . . , n|I|) ∈ N|I|+1 7→ f
(
an0p0+q0# . . .#an|I|p|I|+q|I|

)
= a(n0p0+q0)2# . . .#a(n|I|p|I|+q|I|)

2

Since |g̃|i and |h̃i|# are monotone for all i ∈ I, and N|I|+1 admits a minimum (0, . . . , 0), the
fact that the above sum is constant means that, for each i ∈ I,
• either one of |g̃|i and |h̃i|# is constant equal to 0,
• or both are non-zero constant.
Let J# ⊆ I be the set of indices that fit the second case. We claim that for i ∈ J#, the
constant value taken by |h̃i|# must be 1. If this were not the case, then for all n ∈ N, there
would be a substring of the form #a . . . a# in |h̃i(n, . . . , n)|#, and since f = CbS(g, (hi)i∈I)
and |g̃(n, . . . , n)|i 6= 0, it would also be a substring of f̃(n, . . . , n) with length at most
|h̃i(n, . . . , n)|# = O(n) (since hi is regular). This is impossible: for k ∈ {0, . . . , |I|}, the k-th
substring of this form in f̃(n, . . . , n) has length (npk + qk)

2 + 2 = Θ(n2).
Combining this with the above equation for |f̃ |#, we see that |g̃|J# is the constant

function equal to |I|. Let us abbreviate ρk = ρJ#,k ∈ F (recall that we defined it at the
beginning of this proof) for k ∈ {0, . . . , |I|}; then

∀x ∈ N|I|+1, ∃!ι1(x), . . . , ι|I|(x) ∈ J# : g̃(x) = ρ̃0(x)ι1(x)ρ̃1(x) . . . ι|I|(x)ρ̃|I|(x)

Using this, we define h′k(x) = h̃ιk(x)(x) for x ∈ N|I|+1 and k ∈ {1, . . . , |I|}, plus two edge
cases h′0 : x 7→ ε and h′|I|+1 : x 7→ ε.

Let k ∈ {0, . . . , |I|}. Write ~ek = (0, . . . , 0, 1, 0, . . . , 0) ∈ N|I|+1 for the k-th vector of the
canonical basis of Q|I|+1. By looking again at the k-th substring of the form #a . . . a# in
f̃(x), with x = n~ek here, we get

∀n ∈ N, (npk + qk)
2 + 2 ≤ |h′k(n~ek)|+

∑
i∈I
|ρ̃k(n~ek)|i · |h̃i(n~ek)|+ |h

′
k+1(n~ek)|

Note that all the lengths involved in the right-hand side above are linearly bounded in n
because of the regularity of the functions involved. So there must exist ik ∈ I such that

3.5. SEPARATION RESULTS 102

both |ρ̃k(n~ek)|ik and |h̃ik(n~ek)| are unbounded: otherwise, the whole RHS would be O(n),
contradicting the Ω(n2) lower bound induced by the above inequality.

We thus get a finite sequence of indices i0, . . . , i|I| ∈ I. By the pigeonhole principle,
there must exist k, l ∈ {0, . . . , |I|} such that k 6= l and ik = il; we call i this common value.
Let m ∈ N be such that |ρ̃k(m~ek)|i ≥ 1. By monotonicity (since ρk, hi ∈ F):
• |ρ̃k(m~ek + n~el)|i ≥ 1 for all n ∈ N;
• |h̃i(m~ek + n~el)| is unbounded when n→ +∞.
The product of those two quantities is a lower bound for the length of the k-th substring of
the form #a . . . a# in f̃(m~ek + n~el), which contradicts the fact that this length does not
depend on n (it is equal to (mpk + qk)

2 + 2).

CHAPTER 4

Streaming transducers meet categorical semantics

This chapter is devoted to the material on categorical automata theory for which we
gave a high-level overview in Section 1.2.3 of the introduction. Since it is the first place
where category theory appears, it also contains some preliminaries on the topic (§4.1).

We start by introducing in Section 4.2 a general notion of automaton over strings
parameterized by a structure C that we call a (string) streaming setting and whose main
component is a category C. From the point of view of expressiveness, C can be thought of as
a gadget delimiting a class of transition monoids which may be used for computations on
top of finite structure of what we call a C-SST – a name meant to1 emphasize an intuition
of these categorical automata as generalizations of streaming string transducers (C should
then be thought of as the collection of possible memory updates). We give a few examples
of streaming settings, including in §4.2.1 the one that corresponds to usual copyless SSTs,
which we name SR (and we call SR its underlying category of string-valued registers).

Then, in Section 4.3, we study the free finite coproduct completion of categories (−)⊕,
which readily extends to streaming settings. In particular, properties of SR⊕ are explored.
Section 4.4 deals with the dual construction (−)&, the free product completion. A tight
link between the expressiveness of C&-SSTs and non-deterministic C-SSTs is established.
Section 4.5 then combines those results to study the composition ((−)&)⊕ of those two
completions (which we describe as a direct construction (−)⊕& – the order ⊕& rather than
&⊕ in the notation is deliberate). In particular, it is shown that the underlying category of
SR⊕& is monoidal closed; as already said in the introduction, this last property will turn
out in the next chapter to be crucial to prove the characterizations of string transduction
classes in the λ`⊕&-calculus.

The rest of this chapter deals with more technical material that our “implicit automata”
results do not depend on, but which is interesting in itself from the standpoint of categorical
automata theory. First, in Section 4.6 we give a kind of categorical justification of the
definition of SR, by claiming a universal property and proving the existence part of this
claim. The latter is a convenient technical tool that we apply in Section 4.7 to establish a
general theorem on preservation by precomposition by regular functions. This was one of
the two main illustrations of the relevance of monoidal closure for automata explained in
Chapter 1 (see §1.2.3); the other one, a determinization (or more precisely uniformization)
result, is the topic of the last section of the present chapter (§4.8).

4.1. Categorical preliminaries

Our use of category theory, while absolutely essential, stays at a fairly elementary
level. We assume familiarity with the notions of category, functor, natural transformation,
(cartesian) product and coproduct (and their nullary cases, terminal and initial objects),

1In retrospect, it would have been wiser to speak of C-automata and to make our definitions fully
compatible with the previous work of Colcombet and Petrisan (cf. §1.1.9), which we were unaware of when
we started working on this; see Remark 4.2.3 for the slight differences. Since this is merely a cosmetic
concern, I have chosen here not to perform this harmonization in the limited time available to me to write
this manuscript, but a future journal version of this chapter will probably incorporate this modification.

103

4.1. CATEGORICAL PRELIMINARIES 104

but not much more than that; the remaining categorical prerequisites are summed up here
for convenience. The reader familiar with monoidal closed categories can safely skip directly
to Section 4.1.4. We also wish to stress that while we motivate some definitions by referring
to the λ`⊕&-calculus, which will only be formally introduced in Chapter 5, all the technical
content can be followed while ignoring those justifications.

4.1.1. Notations on categories. Given a category C, we write Obj(C) for its class of objects
and HomC (A,B) for the set of arrows (or morphisms) from A to B (for A,B ∈ Obj(C)).
The composition of two morphisms f ∈ HomC (A,B) and g ∈ HomC (B,C) is denoted by
g ◦ f . Following the traditional notations of linear logic, products and coproducts will be
customarily written using ‘&’ and ‘⊕’ respectively – except in the category of sets where
we use the notations ‘×’ and ‘+’ as usual – and we reserve > for the terminal object.
We sometimes use basic combinators such as 〈−〉/[−] for pairing/copairing and πi/ini for
projections/coprojections.

Finally, if we are given a binary operation � over the objects of a category, we freely
use the corresponding “I-ary” operation, with a notation of the form

e
i∈I Ai, over families

indexed by a finite set I. Concretely speaking, this depends on a fixed total order over
I = {i1 < . . . < i|I|} to unfold as Ai1 � (Ai2 � (. . . �Ai|I|) . . .) – for convenience, the reader
may consider that a choice of such an order for every finite set is fixed once and for all for the
rest of the manuscript. In practice, the particular order does not matter since we will deal
with operations � ∈ {⊕,&,⊗, . . . } that are symmetric in a suitable sense. Those operations
also have units (i.e. identity elements), giving a canonical meaning to

⊕
i∈∅

Ai,
¯
i∈∅

Ai, etc.

Finally, as is usual when dealing with categories, we sometimes allow ourselves to
implicitly use the axiom of choice for classes to pick objects determined by their universal
properties to build functors (for instance, given an object A in a category C with cartesian
products, we shall speak of the functor − & A without first mentioning that a choice of
cartesian products X &A exists for for every X in C). This is merely for convenience; the
reader may check that in all of our concrete examples of interest, canonical choices can be
made without appealing to choice.

4.1.2. Monoidal categories, symmetry and functors. The idea of categorical semantics
is to interpret the types of a programming language – in our case, the purely linear fragment
of the λ`⊕&-calculus – as objects, and the programs (terms) as morphisms. (A formal
statement tailored to our purposes will be given later in Lemma 5.2.6.) In this perspective,
the additive conjunction ‘&’ of the λ`⊕&-calculus is interpreted as a categorical cartesian
product, while the additive disjunction ‘⊕’ corresponds to a coproduct; this justifies our use
of the notations &/⊕ for products/coproducts. We now define monoidal products, which
are meant to interpret the multiplicative conjunction ‘⊗’.

Definition 4.1.1 ([Mel09, Sections 4.1 to 4.4]). Let C be a category. A monoidal product ⊗
over C is given by the combination of
• a bifunctor −⊗− : C × C → C
• a distinguished object I
• natural isomorphisms

– λA : I⊗A→ A (left unitor),
– ρA : A⊗ I→ A (right unitor),
– and αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) (associator)
such that the diagrams in Figure 4.1.1 commute.

Such a monoidal product is said to be symmetric if it comes with a natural isomorphism
(called the symmetry) γA,B : A⊗B → B ⊗A subject to the conditions of Figure 4.1.2.

4.1. CATEGORICAL PRELIMINARIES 105

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

++
((A⊗B)⊗ C)⊗D

αA⊗B,C,D

33

αA,B,C⊗idD ''

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D αA,B⊗C,D

// A⊗ ((B ⊗ C)⊗D)

idA⊗αB,C,D

77

(A⊗ I)⊗B

ρA⊗idB &&

αA,I,B // A⊗ (I⊗B)

idA⊗λBxx
A⊗B

Figure 4.1.1. Coherence conditions for monoidal categories

A⊗ (B ⊗ C)
γA,B⊗C // (B ⊗ C)⊗A αB,C,A

""
(A⊗B)⊗ C

αA,B,C 22

γA,B⊗idC
,,

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
αB,A,C // B ⊗ (A⊗ C) idB⊗γA,C

<<

A⊗B
γA,B // B ⊗A

γB,A

��
A⊗B

Figure 4.1.2. Coherence conditions for symmetries

In the sequel, we use the name (symmetric) monoidal category for a category C that
comes equipped with a (symmetric) monoidal structure ⊗, I, . . . and write it (C,⊗, I) for
short.2 Of course, if a category C has binary products & and a terminal object >, then
(C,&,>) is a symmetric monoidal category, and similarly for coproducts and initial objects.

We shall sometimes need to refer to morphisms between monoidal categories, which
are essentially functors together with natural transformations witnessing that the monoidal
structure is preserved.

Definition 4.1.2 ([Mel09, Section 5.1]). Let (C,⊗, I) and (D, ⊗̂, Î) be two monoidal cat-
egories. A lax monoidal functor is given by a functor F : C → D together with natural
transformations

m0 : Î→ F (I) mA,B : F (A) ⊗̂ F (B)→ F (A⊗B)

making the following diagrams commute.

2This is slightly abusive, as λ, ρ, α and γ are also part of the structure and not uniquely determined
from the triple (C,⊗, I).

4.1. CATEGORICAL PRELIMINARIES 106

(F (A) ⊗̂ F (B)) ⊗̂ F (C)
αF (A),F (B),F (C) //

mA,B⊗̂idF (C)

��

F (A) ⊗̂ (F (B) ⊗̂ F (C))

idF (A)⊗̂mB,C

��
F (A⊗B) ⊗̂ F (C)

mA⊗B,C

��

F (A) ⊗̂ F (B ⊗ C)

mA,B⊗C

��
F ((A⊗B)⊗ C)

F (αA,B,C)
// F (A⊗ (B ⊗ C))

F (A) ⊗̂ Î
ρF (A) //

idF (A)⊗̂m0

��

F (A)

F (A) ⊗̂ F (I)
mA,I // F (A⊗ I)

F (ρA)

OO
Î ⊗̂ F (A)

λF (A) //

m0⊗̂idF (A)

��

F (A)

F (I) ⊗̂ F (A)
mI,A // F (I⊗A)

F (λA)

OO

A lax monoidal functor is called strong monoidal if the natural transformations m0 and
mA,B are isomorphisms.

Let us note that while every concrete instance of monoidal functor in the paper is
also going to be a symmetric monoidal functor (i.e., satisfy additional coherence diagrams
involving γ), we do not make use of that fact.

4.1.3. Function spaces and monoidal closure. Our next definition serves to interpret
the linear function arrow ‘(’. (Since we will only need a semantics for the purely linear
fragment of the λ`⊕&-calculus, we do not discuss the non-linear arrow ‘→’ here.)

Definition 4.1.3 ([Mel09, Sections 4.5 to 4.7]). Let (C,⊗, I) be a (symmetric) monoidal
category and A,B ∈ Obj(C). An internal homset from A to B is an object A(B ∈ Obj(C)
with a prescribed arrow evA,B : (A (B) ⊗ A → B (the evaluation map) such that, for
every other arrow f : C ⊗A→ B, there is a unique map Λ(f) (called the curryfication of f)
making the following diagram commute:

(A(B)⊗A
evA,B // B

C ⊗A

Λ(f)⊗id
OO

f

55

When there exists an internal homset for every pair objects in C, we say that (C,⊗, I) is a
(symmetric) monoidal closed category.

As for (co)products, internal homsets are determined up to unique isomorphism, so we
may talk somewhat loosely about the internal homset later on. While we work with the
universal property given in Definition 4.1.3 when the construction of an internal homset
involves a bit of combinatorics, we will also sometimes use the following characterization.

Proposition 4.1.4. The object A(B is an internal homset for A,B ∈ Obj(C) if and only
if there is a family of isomorphisms

HomC (C ⊗A, B) ∼= HomC (C, A(B)

which is natural in the parameter C varying contravariantly over C (in other words, if
HomC (−⊗A, B) and HomC (−, A(B) are naturally isomorphic as functors Cop → Set).

Proof. This is an instance of [Mac98, Chapter III, Section 2, Proposition 1]. �

4.1. CATEGORICAL PRELIMINARIES 107

4.1.4. Affineness and quasi-affineness. Given a monoidal product ⊗, morphisms from A
to A⊗A need not exist in general; this accounts for the linearity constraints in λ`⊕&. But
monoidal categories do not incorporate the ability of register transitions in SSTs to discard
the content of a register, a behavior more aligned with the affine λ-calculi. This notion thus
plays a role in our development, so we discuss its incarnation in categorical semantics.

Definition 4.1.5. A (symmetric) monoidal category (C,⊗, I) is called affine if I is a terminal
object of C. (Such categories are also sometimes called semi-cartesian [nLa20].)

Most symmetric monoidal categories are not affine. However, there is a generic way of
building an affine monoidal category from a monoidal category. Recall that if C is a category
and X is an object of C, one may consider the slice category C

/
X

• whose objects are morphisms A→ X (A ∈ Obj(C)),
• and such that HomC/X (f : A→ X, g : B → X) = {h ∈ HomC (A,B) | g ◦ h = f}.

If C has a monoidal structure (⊗, I), this structure can be lifted to C
/

I by taking the identity
I→ I as the unit and(

A
f // I

)
⊗
(
B

g // I
)

=

(
A⊗B

f⊗g // I⊗ I
λI = ρI // I

)
as the monoidal product. This gives rise to an affine monoidal structure over C

/
I , and a

strong monoidal structure for the forgetful functor dom : C
/

I → C.
In the converse direction, one can sometimes turn an object A from C into one of C

/
I .

This is the case when A admits a cartesian product with I, which may be written A & I
(note that if C is affine, A itself is such a cartesian product). We are then led to consider the
projection π2 : A& I→ I as an object of the slice category.

Definition 4.1.6. A (symmetric) monoidal category (C,⊗, I) is called quasi-affine if every
A ∈ Obj(C) has a cartesian product A& I with the monoidal unit.

Remark 4.1.7. We have a map A ∈ Obj(C) 7→
(
A& I π2−−→ I

)
∈ Obj

(C/I
)

in any quasi-
affine category, according to the above discussion. It turns out that it extends to a functor
J which embeds C into this affine slice category; moreover, J is right adjoint to the forgetful
functor dom. The interested reader may even check (although we will not make use of this)
that the existence of a right adjoint to dom is equivalent to quasi-affineness.

4.1.5. Monoids. Since we are interested in string transductions, the free monoids Σ∗ are
going to make an appearance. Let us thus conclude this section by recalling the notion of
monoid internal to a monoidal category.

Definition 4.1.8 ([Mel09, Section 6.1]). Given a monoidal category (C,⊗, I), an internal
monoid (or a monoid object) is a triple (M,µ, η) where M ∈ Obj(C) and µ :M ⊗M →M ,
η : I→M are morphisms making the following unitality and associativity diagrams commute

I⊗M
η⊗id

��

λI // M M ⊗ I
ρIoo

id⊗η
��

M ⊗M
µ

::

M ⊗M
µ

dd (M ⊗M)⊗M

µ⊗id
��

αM,M,M // M ⊗ (M ⊗M)
id⊗µ // M ⊗M

µ

��
M ⊗M µ

// M

A useful example of this notion is the “internalization” of the monoid of endomorphisms
of A when A is part of a monoidal closed category.

4.2. A CATEGORICAL FRAMEWORK FOR AUTOMATA: STREAMING SETTINGS 108

Proposition 4.1.9. Let (C,⊗, I) be a monoidal category. Any internal homset A(A (with
A ∈ Obj(C)) that exists in C has an internal monoid structure (A(A, η, µ) such that

η = Λ′(idA) µ ◦ (Λ′(f)⊗ Λ′(g)) ◦ λI = Λ′(f ◦ g) for f, g ∈ HomC (A,A)
where Λ′ : HomC (A,A)

∼−→ HomC (I, A(A) is defined as Λ′ : h 7→ Λ(h ◦ λA) from the
curryfication Λ and the left unitor λA.

Proof sketch. One can define the monoid multiplication
µ : (A(A)⊗ (A(A)→ (A(A)

as the curryfication µ = Λ(app2) of the morphism app2 built by composing the sequence

((A(A)⊗ (A(A))⊗A α−→ (A(A)⊗ ((A(A)⊗A) id⊗ev−−−→ (A(A)⊗A ev−→ A

and check that it satisfies the coherence diagrams for internal monoids (that also involve the
unit η defined in the proposition statement) and the equation relating µ to Λ′. �

Let us conclude our categorical preliminaries on the following.

Proposition 4.1.10. Let (C,⊗, I) be a monoidal category and let M & I ∈ Obj(C) be a
cartesian product of some M ∈ Obj(C) with the monoidal unit I. Suppose that (M,µ, η) is a
monoid object. Then M & I has an internal monoid structure defined by
〈µ ◦ (π1 ⊗ π1), λI ◦ (π2 ⊗ π2)〉 : (M & I)⊗ (M & I)→M & I 〈η, idI〉 : I→M & I

where π1 : M & I → M and π2 : M & I → I are the projections and 〈−,−〉 is the pairing
given by the universal property of the cartesian product.

Furthermore, this makes
(
M & I π2−−→ I

)
∈ Obj

(C/I
)

into a monoid object of C
/

I .

The routine verification of the required commutations of diagrams is left to the reader.

Remark 4.1.11. Our applications of this proposition will take place in quasi-affine monoidal
categories. For those, it admits a more conceptual proof: the right adjoint J : C

/
I → C to

the forgetful functor dom (cf. Remark 4.1.7) is lax monoidal, and therefore so is dom ◦ J
which maps A to A & I on objects; furthemore, the image of a monoid object by a lax
monoidal functor is itself a monoid object in a canonical way [Mel09, Section 6.2].

4.2. A categorical framework for automata: streaming settings

We now introduce string streaming settings, which can be understood for our purposes
as a sort of memory framework for transducers performing a single left-to-right pass over a
word. (As we argued in the introduction (§1.1.9), they are in fact more general than that
since they can express two-way automata, but this is beyond our scope here.) This is the
abstract notion that will allow us to generalize streaming string transducers:

Definition 4.2.1. Let X be a set. A string streaming setting with output X is a tuple
C = (C,

‚
,‚, L−M) where

• C is a category
•
‚

and ‚ are arbitrary objects of C
• L−M is a set-theoretic map HomC (

‚
,‚)→ X

Since the properties of the underlying category of a streaming setting will turn out to be
the most crucial thing in the sequel, we shall abusively apply adjectives befitting categories
(such as “affine symmetric monoidal”) to streaming settings in the sequel.

The notion of streaming setting is a convenient tool motivated by our subsequent
development rather than our primary object of study. A closely related framework in which
some of our abstract results can be formulated is defined in [CP20] (see Remark 4.2.3).

4.2. A CATEGORICAL FRAMEWORK FOR AUTOMATA: STREAMING SETTINGS 109

For the rest of this section, we will refer to string streaming setting simply as streaming
settings; we also fix two alphabets Σ and Γ for the rest of this section.

Definition 4.2.2. Let C = (C,
‚
,‚, L−M) be a streaming setting with output X. A C-SST

with input alphabet Σ and output X is a tuple (Q, q0, R, δ, i, o) where
• Q is a finite set of states and q0 ∈ Q
• R is an object of C
• δ is a function Σ×Q→ Q× HomC (R,R)
• i ∈ HomC (

‚
, R) is an initialization morphism

• (oq)q∈Q ∈ HomC (R,‚)Q is a family of output morphisms – alternatively, we will sometimes
consider it as a map o : Q→ HomC (R,‚).

We write T : Σ∗ →C-SST X to mean that T is a C-SST with input alphabet Σ and output X
(the latter depends only on C).

The corresponding function JT K : Σ∗ → X is then computed as for standard SSTs (cf.
Definition 2.3.3): an input word w generates a sequence of states q0, . . . , q|w| ∈ Q and a
sequence of morphisms fi : R→ R in C, and the output is then Loq|w| ◦ f|w| ◦ · · · ◦ f1 ◦ iM ∈ X.

An important class of C-SSTs are those for which the set of states Q is a singleton,
significantly simplifying the above data. They are called single-state C-SSTs.

Remark 4.2.3. Single-state C-SSTs are very close to the C-automata over words defined
by Colcombet and Petrişan [CP20, Section 3], or more precisely (C,

‚
,‚)-automata with

our notations. The main difference is that the latter’s output would just be an element of
HomC (

‚
,‚): there is no post-processing L−M to produce an output.

As for the addition of finite states, ultimately, it does not increase the framework’s
expressive power: we shall see in Remark 4.3.13 that C-SSTs are equivalent to single-state
SSTs over a modified category. We chose to incorporate states into our definition for
convenience.

Example 4.2.4. Let SetX = (Set, {•}, X, L−M) where L−M is the canonical isomorphism
between HomSet ({•}, X) = X{•} and X. Then any function Σ∗ → X can be “computed”
by a single-state SetX -SST by taking R = Σ∗.

Example 4.2.5. Let Finset2 = (FinSet, {•}, {0, 1}, L−M) with L−M the canonical isomorphism
HomFinSet ({•}, {0, 1}) ∼= {0, 1}. Single-state Finset2-SST are essentially the usual notion of
deterministic finite automata3. Therefore, the functions they compute are none other than
the indicator functions of regular languages.

Example 4.2.6. Consider the category POLQ whose objects are natural numbers, whose
morphisms are tuples of multivariate polynomials over Q with matching arities (so that
HomPOLQ (n, k) = (Q[X1, . . . , Xn])

k) and where composition is lifted from the composition
of polynomials in the usual way, making POLQ into a category with (strict) cartesian
products. Then, taking PolQ = (POLQ, 0, 1, L−M) where L−M is the isomorphism identifying
Q and polynomials without variables (n = 0), we can recover the definition of polynomial
automata from [Ben+17] as single-state PolQ-SSTs.

Given two streaming settings C and D with a common output set X, C-SSTs are said to
subsume D-SSTs if for every D-SST T there is a C-SST T ′ with JT K = JT ′K. We say that
C-SSTs and D-SSTs are equivalent if both classes subsume one another. There is also a
straightforward notion of morphism of streaming settings with common output.

3Actually, complete DFA, i.e. DFA with total transition functions.

4.2. A CATEGORICAL FRAMEWORK FOR AUTOMATA: STREAMING SETTINGS 110

Definition 4.2.7. Let C = (C,
‚

C,‚C, L−MC) and D = (D,
‚

D,‚D, L−MD) be streaming
settings with the same output set X. A morphism of streaming settings is given by a functor
F : C → D and D-arrows i :

‚
D → F (

‚
C) and o : F (‚C)→‚D such that

∀f ∈ HomC (
‚

C,‚C) , Lo ◦ F (f) ◦ iMD = LfMC
This notion is useful to compare the expressiveness of classes of generalized SSTs because

of the following lemma.

Lemma 4.2.8. If there is a morphism of streaming settings C→ D, then D-SSTs subsume
C-SSTs and single-state D-SSTs subsume single-state C-SSTs.

Proof sketch. Given a C-SST (Q, q0, R, δ, i, (oq)q∈Q) (where we use the notations of
Definition 4.2.2) and a morphism (F : C → D, i′ :

‚
D → F (

‚
C), o

′ : F (‚C) → ‚D) of
streaming settings, one builds a D-SST that computes the same function as follows. The
set of states and initial state are unchanged (so our proof applies both to the stateful and
the single-state case). The memory object becomes F (R), and the HomC (R,R) component
of the transition function δ is passed through the functor F to yield a D-endomorphism
of F (R). The new initialization morphism is F (i) ◦ i′ and the new output morphisms are
(o′ ◦ F (oq))q∈Q. �

Remark 4.2.9. For any streaming setting C, the functor HomC (
‚
,−) is a morphism of

streaming settings C→ Set with i = id and o = L−MC.

In the sequel, we will omit giving the morphisms i :
‚
D → F (

‚
C) and o : F (‚C)→‚D

most of the time, as they will be isomorphisms deducible from the context.

4.2.1. The category SR(Γ) of Γ-register transitions. We shall now formulate copyless
streaming string transducers in our framework, using a category whose morphisms we call
register transitions. Those are a variant of copyless register assignments (cf. §2.3) where
we use a coproduct rather than a union in the formalism. This choice would have been
more cumbersome for the proofs of Chapters 2 and 3, but it is better if we want to build a
category whose objects are all finite sets.

Definition 4.2.10. Fix a finite alphabet Γ and let R and S be finite sets.
A Γ-register transition from R to S is a function t : S → (Γ+R)∗ satisfying the following

copylessness condition: for every r ∈ R, there is at most one occurrence of in2(r) among all
the words t(s) for s ∈ S. (Compare with Definitions 2.3.1 and 2.3.5.)

We write [R→SR(Γ) S] for the set of Γ-register transitions from R to S, or [R→SR S]
when Γ is clear from context. For any t ∈ [R →SR(Γ) S], we define t† : (Σ∗)R → (Σ∗)S by
transposing the definition of (−)† in Definition 2.3.1 in the only sensible way.

To arrange register transitions into a category, we must be able to compose any two
of them. Moreover, this composition should be compatible with the action of register
transitions on tuples of strings, i.e. the latter should be functorial: for t ∈ [R →SR(Γ) S]

and t′ ∈ [S →SR(Γ) T], we expect that (t′ ◦SR t)† = t′† ◦ t†. In fact, we have already seen
how to do this in Section 2.3.4 for the case R = S: composition then corresponds to the
monoid multiplication of Definition 2.3.16, while functoriality is stated in Proposition 2.3.19.
All this is extended below to an arbitrary choice of finite R and S.

Definition 4.2.11. Let t ∈ [R →SR(Γ) S] and t′ ∈ [S →SR(Γ) T]; recall that t and t′ are
defined as maps between sets t : S → (Γ +R)∗ and t′ : T → (Γ + S)∗.

We define the composition of register transitions t′ ◦SR t : T → (Γ +R)∗ to be the set-
theoretic composition t? ◦ t′ where t? : (Γ + S)∗ → (Γ +R)∗ is the unique monoid morphism
extending the copairing of in1 and t (i.e. (in1(c) 7→ in1(c), in2(s) 7→ t(s)) : Γ+S → (Γ+R)∗).

4.3. THE FREE COPRODUCT COMPLETION (OR FINITE STATES) 111

(The notation (−)? is consistent with the one used throughout previous chapters, see for
instance Definition 2.3.16.)

Proposition 4.2.12. There is a category SR(Γ) (given a finite alphabet Γ which we will
often omit in the notation) whose objects are finite sets of registers, whose morphisms
are register transitions – HomSR(Γ) (R,S) = [R →SR(Γ) S] – and whose composition is
given by the above definition. This means in particular that, with the above notations,
t′ ◦SR(Γ) t ∈ [R→SR(Γ) T], i.e. copylessness is preserved by composition. Furthermore:
• This category admits the empty set of registers as the terminal object: > = ∅.
• The action of register transitions on tuples of strings gives rise to a functor (−)† : SR → Set,

with X† = (Γ∗)X on objects.

This can be verified purely mechanically from the definitions; basically, nothing new
happens compared to what already appeared in the literature on usual SSTs (again, we refer
to §2.3.4). Let us now introduce the streaming setting for copyless SSTs.

Definition 4.2.13. We write SR(Γ) for (SR(Γ),
‚

= > = ∅,‚ = {•}, L−M) where the
map L−M : [∅→SR(Γ) {•}]→ Γ∗ is the canonical isomorphism ((Γ +∅)∗){•} ∼= Γ∗.

Fact 4.2.14. Standard copyless SSTs Σ∗ →SST Γ∗ are the same thing as SR-SSTs Σ∗ → Γ∗.

Remark 4.2.15. The functor HomC (
‚
,−) mentioned in Remark 4.2.9 is, in the case

C = SR, naturally isomorphic to (−)†. Therefore, the latter can be extended to a morphism
SR→ Set of string streaming settings.

Proposition 4.2.16. The category SR can be endowed with a symmetric monoidal structure,
where the monoidal product R⊗ S is the disjoint union of register sets R+ S and the unit is
the empty set of registers. Since the latter is also the terminal object of SR, this defines an
affine symmetric monoidal category.

Note that given t ∈ [R →SR(Γ) S] and t′ ∈ [T →SR(Γ) U], there is only one sensible
way to define a set-theoretic map t⊗ t′ : U + S → (Γ + (R+ T))∗. The above proposition
means, among other things, that t⊗ t′ ∈ [R+ T →SR(Γ) S + U]. Checking this, as well as
the requisite coherence diagrams for monoidal categories, is left to the reader.

This wraps up our initial presentation of SR(Γ). The next few sections will study the
categories obtained from it by applying various completions, but we will return to the “naked”
SR(Γ) in Section 4.6 where its definition will be motivated by intrinsic category-theoretic
considerations (in other words, we shall argue that the connection with transducers is not
strictly necessary to justify its existence).

4.3. The free coproduct completion (or finite states)

We give here an elementary definition of the free finite coproduct completion C⊕ of
a category C and some of its basic properties. We have said in the introduction that it
amounts to adding finite states, but the true way to “freely add states” would actually be to
consider a certain full subcategory of C⊕ (cf. Remark 4.3.13). However, we will see that the
coproduct completion leads to equivalently expressive streaming settings in most cases, while
being better behaved – for instance, our monoidal closure result (Theorem 1.2.4) depends
on having all finite coproducts.

The (−)⊕ construction consists essentially in considering finite families of objects of C as
“formal coproducts”. (Alternatively, one could use finite lists as in e.g. [Gal20, Definition 3]
to get an equivalent category.)

Definition 4.3.1. Let C be a category. The free finite coproduct completion C⊕ is the
category defined as follows.

4.3. THE FREE COPRODUCT COMPLETION (OR FINITE STATES) 112

• An object of C⊕ is a pair (U, (Cu)u∈U) consisting of a finite set U and a family of objects
of C over U . We write those as formal sums

⊕
u∈U Cu in the sequel.

• A morphism
⊕

u∈U Cu →
⊕

v∈V Cv is a U -indexed family of pairs (vu, gu)u∈U with vu ∈ V
and gu : Cu → Cvu in C. In short,

HomC⊕

(⊕
u∈U

Cu, ⊕
v∈V

Cv

)
=
∏
u∈U

∑
v∈V

HomC (Cu, Cv)

• The identity at object
⊕

u∈U Cu is the family (u, idCu)u∈U . Given two composable maps

(wv, hv)v∈V :
⊕
v∈V

Cv →
⊕
w∈W

Cw and (vu, gu)u∈U :
⊕
u∈U

Cu →
⊕
v∈V

Cv

the composite is defined to be the family

(wvu , hvu ◦ gu) :
⊕
u∈U

Cu →
⊕
w∈W

Cw

There is a full and faithful functor ι⊕ : C → C⊕ taking an object C ∈ Obj(C) to the
one-element family

⊕
1C ∈ Obj(C⊕). Objects lying in the image of this functor will be called

basic objects of C⊕. The formal sum notation reflects that families
⊕

u∈U Cu should really
be understood as coproducts of those basic objects Cu. More generally, it is straightforward
to check that, for any finite set I and family

⊕
u∈Ui

Cu over i ∈ I, canonical coproducts in
C⊕ can be computed as follows⊕

i∈I

⊕
u∈Ui

Ci,u =
⊕

(i,u)∈
∑

i∈I Ui

Ci,u

Remark 4.3.2. Observe that here, we have two slightly different meanings for the
⊕

operator:
⊕

u∈Ui
Ci,u is a notation for a finite family of objects, and thus unambiguously

refers to an object of C⊕, while
⊕

i∈I(. . .) is a coproduct in the usual sense, which is therefore
defined only up to unique isomorphism. We will freely mix both uses in the rest of this
chapter, as there is no harm risked by confusing the two.

As advertised, this is a free finite coproduct completion in the following sense: for any
functor F : C → D to a category D with finite coproducts, there is an extension F̃ : C⊕ → D
preserving finite coproducts making the following diagram commute:

C
ι⊕
��

F // D

C⊕
F̃

>>

and it is unique up to unique natural isomorphism under those conditions.
Finally, suppose that we have a monoidal structure on C. Then, it is possible to extend

it to a monoidal structure over C⊕ in a rather canonical way: we require that ⊗ distributes
over ⊕, i.e., that A⊗ (B ⊕ C) ∼= (A⊗B)⊕ (A⊗ C). Formally speaking, we set(⊕

u∈U
Cu

)
⊗

(⊕
v∈V

Cv

)
=

⊕
(u,v)∈U×V

Cu ⊗ Cv

If I is the unit of the tensor product in C, then the basic object
⊕

1 I is taken to be the unit
of the tensor product in C⊕. An affine symmetric monoidal structure on C can be lifted in a
satisfactory manner to this new tensor product (in particular ι⊕(>) is still terminal).

4.3. THE FREE COPRODUCT COMPLETION (OR FINITE STATES) 113

Remark 4.3.3. For readers more familiar with the free cocompletion SetCop
of C, note that

the coproduct-preserving functor E determined by
C

ι⊕

zz
y
&&

C⊕
E

// SetCop

is full and faithful, as well as strong monoidal when SetCop
is equipped with the Day

convolution as monoidal product.
The following property, which is arguably obvious from the definition of C⊕, will turn

out to be quite important later.
Proposition 4.3.4. For any A,B ∈ Obj(C⊕), there is a natural isomorphism

HomC⊕ (ι⊕(−), A⊕B) ∼= HomC⊕ (ι⊕(−), A) + HomC⊕ (ι⊕(−), B)

Remark 4.3.5. The above is a sort of dual, in a restricted case, to the following natural
isomorphism which holds for any category D and A,B ∈ Obj(D):

HomD (A⊕B,−) ∼= HomD (A,−)× HomD (B,−)
In fact, this characterizes the coproduct of A and B. Just like Proposition 4.1.4, this is
an instance of a general equivalence between universal properties and natural bijections
involving homsets.
4.3.1. Conservativity over affine monoidal settings. First, note that the coproduct
completion can be lifted at the level of streaming settings.
Definition 4.3.6. Given a streaming setting C = (C,

‚
,‚, L−MC), define C⊕ as the tuple

(C⊕, ι⊕(
‚
), ι⊕(‚), L−MC⊕)

where L−MC⊕ is obtained by precomposing the canonical isomorphism (recalling that ι⊕ is
full and faithful)

HomC⊕ (ι⊕(
‚
), ι⊕(‚)) ∼= HomC (

‚
,‚)

Before moving on, let us make the following definition: an object A in a monoidal
category (C,⊗, I) is said to have unitary support4 if there exists a map I→ A. This is quite
useful in affine categories for transductions, as it ensures the following.
Lemma 4.3.7. Let C be a symmetric affine monoidal category. Then, for any pair of finite
families (Cu)u∈U and (Cv)v∈V of objects of C such that all Cu and Cv have unitary support,
we have a U × V -indexed family of embeddings

padwithjunku,v : HomC (Cu, Cv) → HomC

(⊗
u∈U

Cu, ⊗
v∈V

Cv

)
The basic idea behind Lemma 4.3.7 can be pictured using string diagrams as in Fig-

ure 4.3.1: a morphism Cu → Cv can be pictured as a single string, which is to be embedded
in a diagram with U -many inputs and V -many outputs. The fact that C is affine allows us
to cut all input strings for u′ 6= u using a weakening node, and unitary support allow us
to create some “junk” strings with no input to connect to those v′ 6= v. This might fail for
arbitrary symmetric affine monoidal categories: take for instance the category of finite sets
and surjections between them, with the coproduct as a monoidal product.

We are now ready to state our first theorem asserting that, in those favorable circum-
stances, coproduct completions do not give rise to more expressive SSTs.

4Original terminology, hopefully there is no clash with the literature and the reader will find it adequate.

4.3. THE FREE COPRODUCT COMPLETION (OR FINITE STATES) 114

D

B

f 7→

>

>

>

>

>

>A

B

C

D

A

B

C

D

weaken

weaken

weaken

junk

junk

junk

f

Figure 4.3.1. padwithjunkD,B : HomC (D,C)→ HomC (A⊗B ⊗ C ⊗D,A⊗B ⊗ C ⊗D)

Theorem 4.3.8. Let C be an affine symmetric monoidal streaming setting where all objects
C such that HomC (

‚
, C) 6= ∅ 6= HomC (C,‚) have unitary support.

C-SSTs are equivalent to C⊕-SSTs.

Proof. Since ι⊕ extends to a morphism of streaming settings, C⊕-SSTs subsume C-SSTs.
Conversely, let T =

(
Q, q0,

⊕
u∈U Cu, δ, i, o

)
be a C⊕-SST with input Σ∗ and Cu basic

objects. Then, we construct a C-SST

T ′ =

(
Q× U, (q0, u0),

⊗
u∈U

Cu, δ
′, iu0 , o

′

)
such that JT K = JT ′K. We define successively (u0, iu0), δ′ and o′.
• We have i ∈ HomC⊕

(
ι⊕(>),

⊕
i∈I Ci

)
which can be rewritten as a factorization

ι⊕(>) =
⊕
1

‚ (inu0 ,∗7→id)
//
⊕
U

‚ (id,u 7→iu) //
⊕
u∈U

Cu

for some u0 ∈ U (the iu for u 6= u0 are taken arbitrarily thanks to the assumption that
the Cu have unitary support). This u0 is the second component of the initial state of T ′.
• We set δ′(a, (q, u)) = (q′, αu(f

′)) if δ(a, q) = (q′, f ′), where

(αu)u∈U :
∏
u∈U

[
HomC⊕

(⊕
u∈U

Cu, ⊕
u∈U

Cu

)
→ HomC⊕

(⊗
u∈U

Cu, ⊗
u∈U

Cu

)]
is defined by taking the pointwise composite of

α̃u : HomC⊕

(⊕
u∈U

Cu, ⊕
u′∈U

Cu′

)
→

∑
u′∈U

HomC⊕ (Cu, Cu′)

βu :
∑
u′∈U

HomC⊕ (Cu, Cu′) → U × HomC⊕

(⊗
u∈U

Cu, ⊗
u∈U

Cu

)

π : U × HomC⊕

(⊗
u∈U

Cu, ⊗
u∈U

Cu

)
→ HomC⊕

(⊗
u∈U

Cu, ⊗
u∈U

Cu

)
where α̃u is obtained by evaluating its input f ∈

∏
u∈U

∑
u′∈U HomC⊕ (Cu, Cu′) at u,

βu =
∑

u′ padwithjunku,u′ (with padwithjunk given as per Lemma 4.3.7) and π taken to
be the second projection.
• Finally, we set o′(q, u) ∈ HomC

(⊗
v∈U Cv,‚

)
to õu ∈ HomC (Cu,‚) precomposed with

the projection πu ∈ HomC
(⊗

v∈U Cv, Cu
)
.

To conclude, one can check by induction that JT K(w) = JT ′K(w) for every w ∈ Σ∗. �

Corollary 4.3.9. SR⊕-SSTs are equivalent to SR-SSTs.

4.3. THE FREE COPRODUCT COMPLETION (OR FINITE STATES) 115

Proof. All objects of SR have unitary support via an induction: tensor with the map
ε : I→ Γ∗ corresponding to the empty word at the recursive step. �

4.3.2. State-dependent memory SSTs. The free coproduct completion encourages us
to define the notion of state-dependent memory SST, generalizing usual copyless SSTs as
follows: instead of taking a single object C ∈ Obj(C) as an abstract infinitary memory, we
allow to take a family (Cq)q∈Q ∈ Obj(C)Q indexed by the states of the SST.

Definition 4.3.10. Let C = (C,
‚
,‚, L−M) be a streaming setting with output X. A

state-dependent memory C-SST (henceforth abbreviated sdm-C-SST or sdmSST when C is
clear form context) with input Σ∗ is a tuple (Q, q0, (Cq)q∈Q, δ, i, o) where
• Q is a finite set of states
• q0 ∈ Q is some initial state
• (Cq)q∈Q is a family of objects of C
• δ : Σ→

∏
q∈Q

∑
r∈Q

HomC (Cq, Cr) is a transition function

• i ∈ HomC (
‚
, Cq0) is the initialization morphism

• o ∈
∏
q∈Q HomC (Cq,‚) is the output family of morphism

It defines a function Σ∗ → X analogously to Definition 4.2.2.

In the sequel, we shall often use sdmSSTs because we find them convenient to give
more elegant constructions that produce little “junk”, as is encoded in Lemma 4.3.7. They
essentially give the full power of coproducts in any given situation as shown below.

Lemma 4.3.11. Let C be a streaming setting. State-dependent memory C-SSTs are exactly
as expressive as C⊕-SSTs.

Proof sketch. Given a C⊕-SST
(
Q, q0,

⊕
u∈U Cu, δ, i, o

)
where i(∗) = inu0(i′) one may

check that the following sdm-C-SST computes the same function:(
Q× U, (q0, u0), (Cu)(q,u)∈Q×U , δ′, i′, (o(q)u)(q,u)∈Q×U

)
where δ′(a)q,u = ((r, u′), f) if and only if δ(a, q) = (r, v) and vu = (u′, f).

Conversely, letting (Q, q0, (Cq)q∈Q, δ, i, o) be a sdm-C-SST, an equivalent C⊕-SST is given
by (Q, q0,

⊕
q∈QCq, δ

′, inq0(i), o′), where it is sufficient to define o′(q) as (oq)q and to ensure
that if δ′(a, q) = (r, (rq′ , fq′)q′∈Q), then δ(a)q = (r, fq) and rq = r. This can be done. �

Finally, let us remark that the notions of single-state, “normal” and state-dependent
memory C-SSTs coincide if C has all coproducts.

Lemma 4.3.12. If C is a streaming setting with coproducts, single-state C-SSTs are as
expressive as general C-SSTs and sdm-C-SSTs.

Proof. Take a sdmSST (Q, q0, (Cq)q∈Q, δ, i, o) to the single-state SST{•}, •,⊕
q∈Q

Cq, δ
′, inq0 ◦ i, [o(q)]q∈Q


where δ′ is defined from δ through the maps∏
q∈Q

∑
r∈Q

HomC (Cq, Cr)

Σ

//

∏
q∈Q

HomC

Cq,⊕
r∈Q

Cr

Σ

∼ //

HomC

⊕
q∈Q

Cq,
⊕
r∈Q

Cr

Σ

�

4.3. THE FREE COPRODUCT COMPLETION (OR FINITE STATES) 116

Remark 4.3.13. The comparison between single-state, standard and state-dependent
memory C-SSTs can be summed up in terms of completion with the following “equalities”:

C-SSTs = single-state C⊕const-SSTs sdm-C-SSTs = single-state C⊕-SSTs

where C⊕const designates the following restriction of C⊕: the category C⊕ is restricted to the
full subcategory C⊕const whose objects are constant formal sums

⊕
i∈I C for some C ∈ Obj(C).

4.3.3. Some function spaces in SR⊕. Now we study SR⊕ in some more detail. This
category is unfortunately not able to interpret even the ⊗/(fragment of λ`⊕&, because,
like SR, it lacks internal homsets A (B for every pair (A,B) ∈ Obj(SR⊕)2. However,
they exist when A lies in the image of ι⊕. This will turn out to be very useful later on.

The reason this works is already present in the proof of Lemma 3.3.7: copyless register
assignments may be effectively coded using a combination of finite state – given by the
coproduct completion – and a larger set of registers, in such a way that certain operations
on those assignments can be represented themselves as a copyless assignment combined
with a function on states. What follows can be seen as a slight extension, using categorical
terminology, of the arguments that we gave to prove Lemma 3.3.7.

Lemma 4.3.14. Let R ∈ Obj(SR) and B ∈ Obj(SR⊕).
There is an internal homset ι⊕(R)(B in SR⊕.

In Example 4.3.15, we work through the proof below in a concrete case.

Proof. First, note that it suffices to treat the case B = ι⊕(S) for S ∈ Obj(SR): this
can be extended to arbitrary B through the natural isomorphism of Proposition 4.3.4.

Recalling that ι⊕ is full and faithful, it is thus pertinent to focus our preliminary analysis
on morphisms in SR. Recall that a register transition f : R→ S, which is a set-theoretical
map S → (Γ+R)∗ where for every r ≤ R,

∑
s∈S |f(s)|in2(r) ≤ 1 (i.e., it is copyless). Consider

the map (Γ + R)∗ → R∗ erasing the letters of Γ. Then, the image of the induced map
p : HomSR (R,S)→ [S → R∗] is clearly finite because of copylessness. In fact, letting LO(X)
be the set of all total orders over some set X, we have an isomorphism between the image of
HomSR (R,S) under p and the following dependent sum

O(R,S) =
∑

f̂ :R⇀S

∏
s∈S

LO(f̂−1(s))

The intuition is that f̂ tracks where register variables in R get affected and the additional data
encode in which order they appear in an affectation. Once this crucial finitary information
(f̂, (<s)s∈S) is encoded in the internal homset using coproducts, it only remains to recover
the information we erased with p, i.e. what words in Γ∗ located between occurrences of
register variables. This information cannot be bounded by the size of R and S, but the
number of intermediate words can; we may index them by S + dom(f̂).

Putting everything together, it means that we take

ι⊕(R)(ι⊕(S) =
⊕

(f̂,<)∈O(R,S)

ι⊕(S + dom(f̂))

Now, we need to define the evaluation map evR,S : [ι⊕(R) (ι⊕(S)] ⊗ ι⊕(R) → ι⊕(S).
Recall that the tensor distributes over ⊕, so we really need to exhibit evR,S in

HomSR⊕

⊕
(f̂,<)

ι⊕(S + dom(f̂) +R), ι⊕(S)
 ∼=

∏
(f̂,<)

HomSR
(
S + dom(f̂) +R, S)

4.4. THE PRODUCT COMPLETION (OR NON-DETERMINISM) 117

where the indices (f̂, <) ranges over O(R,S) on both sides. Call evR,S,f̂,< the corresponding
family of SR-morphisms, whose members are set-theoretic maps S → (S + dom(f̂) +R)∗.
Calling {r1, . . . , rk} the subset of dom(f̂) ordered by r1 < . . . < rk, we set

evR,S,f̂,<(s) = in0(s)in2(r1)in1(r1) . . . in2(rk)in1(rk)

This concludes the definition of ev. We now leave checking that this satisfies the required
universal property to the reader. �

Example 4.3.15. Let us illustrate this construction in a simple case. Consider the following
register transition for the concrete base alphabet {a, b} and register names x, y, z, u, r, s:

r ← zaxabyaa

s ← bab

Up to the evident isomorphism {x, y, z, u} ∼= {x} ⊗ {y, z, u}, this determines a morphism
f ∈ HomSR ({x} ⊗ {y, z, u}, {r, s}). Let us describe the unique map Λ(f) in

HomSR⊕ (ι⊕({x}), ι⊕({y, z, u})(ι⊕({r, s})) ∼=
∑
f̂,<

HomSR
(
{x}, {r, s}+ dom(f̂)

)
such that ev ◦ (Λ(f)⊗ id) = f . On its first component, we set f̂(y) = f̂(z) = r and leave
it undefined on u; as for the order, we set z <r y. The last component corresponds to the
register transition h depicted below on the left, where, for legibility, we write r, s, z and y
for in1(r), in1(s), in2(z) and in2(y). Using the same notations, we also display on the right
the relevant component of ev{y,z,u},{r,s},f̂,< ∈ HomSR (({r, s}+ {z, y}) + {z, y}, {r, s}), so
that the reader may convince themself that the composite ev{y,z,u},{r,s},f̂,< ◦ (h⊗ id{y,z,u})
is indeed f .

r ← ε

z ← axab

y ← aa

s ← bab

r ← in1(r) z in1(z) y in1(y)
s ← in1(s)

4.4. The product completion (or non-determinism)

Extending Lemma 4.3.14 to all homsets (i.e. allowing any object of SR⊕ in the left-hand
side) seems impossible: the lack of products prevents us from doing so. This point (among
others) leads us to study the free finite product completion of streaming settings. As for
coproducts, we first discuss the categorical construction before turning to the expressiveness.
Here, the situation is more intricate as it turns out that sdm-C&-SSTs of interest will roughly
have the power of non-deterministic sdm-C-SSTs. We make that connection precise.

Thankfully, a determinization theorem for usual copyless SSTs, i.e. SR-SSTs, exists in
the literature [AD11] (the proof in the given reference is indirect and goes through monadic
second-order logic). It could be applied without difficulty to show that non-determinism
does not increase the power of sdm-SR-SSTs. Nevertheless, to keep the exposition self-
contained and illustrate our framework, we give in Section 4.8 a direct determinization
argument generalized to our setting by using, crucially, the concept of internal homsets (and
Lemma 4.3.14 for the desired application).

Without further ado, let us formally introduce the product completion.

Definition 4.4.1. Let C be a category. Its free finite product completion is C& = ((Cop)⊕)
op.

4.4. THE PRODUCT COMPLETION (OR NON-DETERMINISM) 118

In other words, it is the “dual” of the coproduct completion. While conceptually
immaculate, this definition merits a bit of unfolding. The objects of C& are still finite families
(Cx)x∈X – in this context, we write them as formal products

˘
x∈X Cx. As for homsets, we

have the dualized situation:

HomC&

(¯
x∈X

Cx, ¯
y∈Y

Cy

)
∼=

∏
y∈Y

∑
x∈X

HomC& (Cx, Cy)

We also have a full and faithful functor ι& : C → C& with a similar universal property as for
the coproduct completion.

As with the coproduct completion, one may want to produce a tensor product in C⊕
if the underlying category C has one. The very same recipe can be applied: we define the
tensor so that the distributivity A⊗ (B & C) ∼= (A⊗B) & (A⊗ C) holds.(¯

x∈X
Cx

)
⊗

(¯
y∈Y

Cy

)
=

¯
(x,y)∈X×Y

Cx ⊗ Cy

Remark 4.4.2. One might be disturbed by this distributivity of ⊗ over &, which goes
against the non-linear intuition of thinking of & and ⊗ as “morally the same” This feeling
may also be exacerbated by the familiar iso

HomSR⊕ (>, R⊗ S) ∼= HomSR⊕ (>, R)× HomSR⊕ (>, S)
This indeed becomes false when going from SR to SR&.

Remark 4.4.3. While C& inherits a monoidal product from C much like with the coproduct
completion, it does not preserve the affineness of monoidal products. The product completion
indeed adds a new terminal object, namely the empty family, which can never be isomorphic
to the singleton family ι&(>). More generally, ι& preserves colimits rather than limits.

It is also straightforward to extend the product completion to streaming settings.

4.4.1. Relationship with non-determinism. At this juncture, our goal is to prove the
equivalence between sdm-SR&-SSTs and sdm-SR-SSTs. One direction is trivial; for the
other, we actually prove that sdm-SR&-SSTs are subsumed by sdm-SR⊕-SSTs.

This result involves some non-trivial combinatorics. We prove it via uniformization of
non-deterministic sdm-SR-SSTs, a mild generalization of determinization5.

Our non-deterministic devices make finitely branching choices, following the case of the
usual non-deterministic SSTs [AD11, Section 2.2]. To express this, we use the notation
P<∞(X) for the set of finite subsets of a set X. (Note that if Q is some finite set of states,
we have the simplification P(Q) = P<∞(Q).)

Definition 4.4.4. Let C be streaming setting with output X. A non-deterministic sdm-C-
SST with input Σ∗ and output X is a tuple (Q, I, (Cq)q∈Q,∆, i, o) where
• Q is a finite set of states and I ⊆ Q
• (Cq)q∈Q is a family of objects of C

• ∆ is a finite transition relation: ∆ ∈ P<∞

Σ×
∑

(q,r)∈Q2

HomC (Cq, Cr)


• i ∈

∏
q0∈I

HomC (
‚
, Cq0) is a family of input morphisms

5We work with uniformization here because we find it slightly more convenient to handle. This choice of
uniformization over determinization is rather inessential.

4.4. THE PRODUCT COMPLETION (OR NON-DETERMINISM) 119

• o ∈
∏
q∈Q

(HomC (Cq,‚) + 1) is a family of partial output morphisms

A partial sdm-C-SST (Q, q0, (Cq)q∈Q, δ, i, o) has the same definition as a (deterministic)
sdm-C-SST (Definition 4.3.10), except for the output o, which is allowed to be partial, just
as in the last item above.

By transposing the usual notion of run of a non-deterministic finite automaton, one sees
that a non-deterministic sdm-C-SST T gives rise to a function JT K : Σ∗ → P<∞(X) (for an
input alphabet Σ and output set X). Similarly, a partial sdm-C-SST T ′ is interpreted as a
partial function JT K : Σ∗ ⇀ X.
Remark 4.4.5. In line with Remark 4.3.13, we may describe non-deterministic sdm-C-SSTs
as single-state (deterministic) SSTs over an enriched streaming setting.

Let C = (C,
‚

C,‚C, L−MC), with output X. We first define the category NFA(C):
• its objects consist of a finite set Q with a family (Cq)q∈Q ∈ Obj(C)Q;

• its morphisms are HomNFA(C)
(
(Cq)q∈Q, (C

′
r)r∈R

)
= P<∞

 ∑
(q,r)∈Q×R

HomC (Cq, Cr)


• the composition of morphisms extends that of binary relations:

ϕ ◦ ψ = {(q, s, f ◦ g) | (q, r, f : Cq → C ′r) ∈ ϕ, (r, s, g : C ′r → C ′′s) ∈ ψ}
To lift this to a construction NFA(C) on streaming settings, we take:
•
‚

NFA(C) and ‚NFA(C) are the {•}-indexed families containing respectively
‚

C and ‚C, so
that HomNFA(C)

(‚
NFA(C),‚NFA(C)

)
= P<∞ ({(•, •)} × HomC (

‚
C,‚C))

• LϕMNFA(C) = {LfMC | (•, •, f) ∈ ϕ} ⊆ X, so that the output set of a NFA(C)-SST is
P<∞(X).

There is a slight mismatch between the above definition of non-deterministic sdm-C-SSTs
and single-state NFA(C)-SSTs: in the latter, two distinct input (resp. output) morphisms
may correspond to the same initial (resp. final) state. However, the former can encode
such situations by enlarging the set of states (to keep it finite, the use of P<∞(−) in the
definitions is crucial).

One can also give an analogous account of partial sdm-C-SSTs; we leave the interested
reader to work out the details.

Coming back to our main point, we now state the slight variation of the determinization
theorem for copyless SSTs [AD11] that fits our purposes.
Definition 4.4.6. Given an arbitrary function F : X → P(Y), we say that f : X ⇀ Y
uniformizes F if and only if dom(f) = X \ F−1(∅) and ∀x ∈ dom(f). f(x) ∈ F (x).
Theorem 4.4.7 (variant of [AD11] for state-dependent-memory copyless SSTs). For every
non-derministic sdm-SR-SSTs T , there exists a partial deterministic sdm-SR-SST T ′ such
that JT ′K uniformizes JT K.

We now show that studying the uniformization property between classes of sdmSSTs
parameterized by streaming setting C and D is morally the same as comparing the expres-
siveness of sdm-C&-SSTs and sdm-D-SSTs.
Lemma 4.4.8. Non-deterministic sdm-C-SSTs are uniformizable by partial sdm-D-SSTs if
and only if sdm-D-SSTs subsume sdm-C&-SSTs.

Proof. First, let us assume that sdm-C-SSTs uniformize sdm-D-SSTs and let
T = (Q, q0, (Aq)q∈Q, δ, i, o) with Aq =

¯
x∈Xq

Cq,x

4.5. THE ⊕&-COMPLETION (A DIALECTICA-LIKE CONSTRUCTION) 120

be a C&-SST with input Σ. We first define a non-deterministic sdm-C-SST T ′ by setting

T ′ =
(
I +Q′, I, (Cp(m))m∈I+Q′ ,∆, i′, o′

)
where

Q′ =
∑

q∈QXq

I =
∑

x∈Xq0
{f | i∗ = (x, f)}

p : I +Q′ → Q′

in1(x, f) 7→ (q0, x)

in2(q, x) 7→ (q, x)

i′in1(x,f)
= f o′m = in1

(
π2
(
(oπ1(p(m)))π2(p(m))

))
∆ =

(a, ((m, in2(r, y)), f)m)

∣∣∣∣∣∣∣
∀(x, q) ∈ Q′.∀m ∈ p−1(x, q).

π1(δ(a)q) = r

∧ π2(δ(a)q)y = (x, f)


Taking T ′′ to be a sdm-D-SST uniformizing T ′, we have {−} ◦ JT ′′K = JT ′K = {−} ◦ JT K, so
we are done.

For the converse, assume that sdm-D-SSTs subsume sdm-C&-SSTs and suppose we have
some non-deterministic sdm-C-SST T = (Q, I, (Aq)q∈Q,∆, i, o) to uniformize. Fix a total
order � over the morphisms of C occurring in ∆ (recall that there are finitely many of them).
Consider a partial deterministic sdm-C&-SST T ′ obtained from T by a powerset construction

T ′ =

P(Q), I,

(¯
r∈R

Ar

)
R⊆Q

, δ, i, o′


where δ(a)R = (S, (rs, fs)s∈S) if and only if ∀s ∈ S

[
(a, ((rs, s), fs)) ∈ ∆

∀g.(a, ((rs, s), g)) ∈ ∆⇒ fs � g
and o′R = o � r for some arbitrary r such that the right hand-side is defined; if there is no
such r, o′R is undefined and we call R a dead set of states. By padding o′ with some arbitrary
values on such dead states, we may extend T ′ to a non-partial deterministic C-SST T ′′ so
that JT ′K ⊆ JT ′′K. We may then consider a sdm-D-SST T ′′′ = (Q′, q0, (Dq)q∈Q′ , δ, i′′, o′′) such
that JT ′K(w) = JT ′′K(w) = JT ′′′K(w) for w ∈ dom(JT ′K). This T ′′′ is almost our uniformizer;
we only need to restrict the domain of its output function. This can be achieved by adding
a P(Q) component to the state space corresponding to the set of states reached by T
and forcing the output function to be undefined if this component contains a dead set of
states. �

Putting Lemma 4.4.8 together with Theorem 4.4.7 yields the desired result.

Theorem 4.4.9. sdm-SR&-SSTs are subsumed by sdm-SR-SSTs.

Note that, conversely, Theorem 4.4.9 also implies Theorem 4.4.7 through Lemma 4.4.8.
We will provide a direct self-contained proof of a categorical generalization of Theorem 4.4.9
in Section 4.8.

4.5. The ⊕&-completion (a Dialectica-like construction)

We now consider the composition C 7→ (C&)⊕ of the coproduct completion with the
product completion. Unraveling the formal definition and distributing sums and products at
the right spots, we define an isomorphic category C⊕& which is a bit less cumbersome to
manipulate in practice. (The proof is by mechanical unfolding of the definitions).

Theorem 4.5.1. Given an arbitrary category C, there is an isomorphism of categories (not
just an equivalence) between (C&)⊕ and the category C⊕& defined below.

4.5. THE ⊕&-COMPLETION (A DIALECTICA-LIKE CONSTRUCTION) 121

• The objects of C⊕& are triples (U, (Xu)u, (Cu,x)(u,x)) where U is a finite set, (Xu)u∈U is
a family of finite sets and Cu,x is a family of objects of C indexed by (u, x) ∈

∑
u∈U Xu.

We drop the first index u when it is determined by x ∈ Xu from context and write those
objects

⊕
u∈U

˘
x∈Xu

Cx for short.

• HomC⊕&

(⊕
u∈U

¯
x∈Xu

Cx, ⊕
v∈V

¯
y∈Yv

Cy

)
=

∏
u∈U

∑
v∈V

∏
y∈Yv

∑
x∈Xu

HomC (Cx, Cy)

• Its identities are maps

∏
u∈U

∑
u′∈U

∏
x′∈Xu

∑
x∈Xu′

HomC (Cx, Cx′)

u 7→
[
u ,

(
x 7→ (x , idCx)

)]
• Composition is defined as in Figure 4.5.1. The interesting steps of this computation are

those involving v and y; since they are similar, let us focus on v. A map of the form∏
v∈V

Av ×
∑
v∈V

Bv −→
∑
v∈V

Av × Bv

(av)v∈V , (v′, b) 7→ (v′, (av′ , b))

is applied. This makes the two C⊕&-morphisms interact (an interaction represented in
Remark 4.5.2 below as a move in a game): the v′ provided by the right one selects av′
among all the possibilities (av)v proposed by the left one.

The reader may notice that composition in C⊕& is very similar to the interpretation of cuts
in Gödel’s Dialectica interpretation [Göd58] and/or composition in categories of polynomial
functors [GK13; MG18]. This intuition can be made formal. In particular, see [Hof11] for
a decomposition of a general version of the categorical Dialectica construction into free
completions with simple sums and products. In our context, the completion with simple
coproducts would be the (−)⊕const of Remark 4.3.13; conversely, a “dependent Dialectica”
could be defined in the fibrational setting of [Hof11] analogously to our (−)⊕&-completion
by removing the simplicity restriction.
Remark 4.5.2. For the uninitiated, it can be helpful to compute this completion on the
trivial category 1 with one object and only its identity morphism. In this case, objects
consists of a pair of a finite set U together with a family (Xu)u∈U of finite sets that can be
regarded as a two-move sequential game (with no outcome) between player ⊕ and &: first ⊕
plays some u ∈ U and then & plays some x ∈ Xu. One can then consider simulation games
between (U, (Xu)u) (the “left hand-side”) and (V, (Yv)v) (the “right hand-side”) proceeding
as follows:

• first, & plays some u ∈ U on the left
• then, ⊕ plays some v ∈ V on the right
• & answers with some y ∈ Yv on the right
• finally ⊕ answers with x ∈ Xu on the left.

U , (Xu)u → V, (Yv)v

& u

⊕ v

& y

⊕ x

Morphisms in 1⊕& are ⊕-strategies in such games. Identities correspond to copycat strategies
and composition is (a simple version) of an usual scheme in game semantics. As for C⊕&,
one may consider that once this simulation game is played, ⊕ needs to provide a datum in
some HomC (Cx, Cy) which depends on the outcome of the game.

As the coproduct completion preserves limits, C⊕& always boasts both binary cartesian
products and coproducts. Concretely, products are computed by distributivity:¯

i∈I

⊕
j∈Ji

Aj ∼=
⊕

f∈
∏

i∈I Ji

¯
i∈I

Af(i)

4.5. THE ⊕&-COMPLETION (A DIALECTICA-LIKE CONSTRUCTION) 122

Hom
(⊕

v

¯
y

Cy, ⊕
w

¯
z

Cz

)
× Hom

(⊕
u

¯
x

Cx, ⊕
v

¯
y

Cy

)

∏
v

∑
w

∏
z

∑
y

HomC (Cy, Cz) ×
∏
u

∑
v

∏
y

∑
x

HomC (Cx, Cy)

��∏
u

(∏
v

∑
w

∏
z

∑
y

HomC (Cy, Cz) ×
∑
v

∏
y

∑
x

HomC (Cx, Cy)
)

��∏
u

∑
v

(∑
w

∏
z

∑
y

HomC (Cy, Cz) ×
∏
y

∑
x

HomC (Cx, Cy)
)

∼
��∏

u

∑
v,w

(∏
z

∑
y

HomC (Cy, Cz) ×
∏
y

∑
x

HomC (Cx, Cy)
)

��∏
u

∑
v,w

∏
z

(∑
y

HomC (Cy, Cz) ×
∏
y

∑
x

HomC (Cx, Cy)
)

��∏
u

∑
v,w

∏
z

∑
y

(
HomC (Cy, Cz) ×

∑
x

HomC (Cx, Cy)
)

∼
��∏

u

∑
v,w

∏
z

∑
y,x

(HomC (Cy, Cz)× HomC (Cx, Cy))

composition in C
��∏

u

∑
v,w

∏
z

∑
y,x

HomC (Cx, Cz)

project away v, y
��∏

u

∑
w

∏
z

∑
x

HomC (Cx, Cz)

HomC⊕&

(⊕
u

¯
x

Cx, ⊕
w

¯
z

Cz

)

Figure 4.5.1. Composition in C⊕& (− ∈ − are omitted from indices)

4.5. THE ⊕&-COMPLETION (A DIALECTICA-LIKE CONSTRUCTION) 123

If C has a symmetric monoidal structure (⊗, I), the lifting is computed in C⊕& as(⊕
u∈U

¯
x∈Xu

Cx

)
⊗

(⊕
v∈V

¯
y∈Yv

Dy

)
=

⊕
(u,v)∈U×V

¯
(x,y)∈Xu×Yv

Cx ⊗Dy

This reflects the distributivity of ⊗ over & in SR& (Remark 4.4.2) – which however does
not hold in general in SR⊕&, unlike the distribuvity of ⊗ over ⊕.

Finally, we write ι⊕& : C → C⊕& for the functor sending an object C to
⊕

1

˘
1C (it is

a full and faithful embedding).

4.5.1. The monoidal closure theorem. Recall from the introduction (§1.2.3) that a result
of central importance in this dissertation is the fact that the category (SR&)⊕ is symmetric
monoidal closed (Theorem 1.2.4). This will be a consequence of the general property below.

Theorem 4.5.3. Let (C,⊗, I) be a symmetric monoidal category. Assume that its coproduct
completion C⊕ admits internal homsets ι⊕(A)(ι⊕(B) for every A,B ∈ Obj(C). Then its
Dialectica-like completion C⊕& is monoidal closed.

Indeed, since Lemma 4.3.14 gives us precisely the assumption on internal homsets in the
above statement for C = SR, we immediately get:

Corollary 4.5.4 (equivalent to Theorem 1.2.4). SR⊕& is monoidal closed.

To prove Theorem 4.5.3, our strategy is to establish some isomorphism of the form
HomC⊕& (C ⊗A,B) ∼= HomC⊕& (C, . . .) which is natural in C. While we will not devote too
much space to checking naturality down to low-level details, we have attempted to break
down this verification into manageable chunks. In particular, our notations are going to
stress the functoriality of the various intermediate expressions in our computation. Some
lemmas will be useful for this.

Lemma 4.5.5. We can lift every functor F : Cop → Set to a functor 〈&〉F : (C&)
op → Set

such that for (Ci) ∈ Obj(C)I ,

〈&〉F

(¯
i∈I

Ci

)
=

∑
i∈I

F (Ci)

and in such a way that if F,G : Cop → Set are naturally isomorphic, so are 〈&〉F and 〈&〉G.

Proof. Since (C&)
op = (Cop)⊕ by duality, the existence of 〈&〉F is simply the universal

property of the coproduct completion! Concretely, consider a morphism

f =
(
ϕf : I → J,

(
fi : C

′
ϕf (i)

→ Ci

)
i∈I

)
∈ HomC&

(¯
j∈J

C ′j, ¯
i∈I

Ci

)
Its functorial image is given by

〈&〉F (f) : (i, x) ∈
∑
i∈I

F (Ci) 7→ (ϕf (i), F (fi)(x)) ∈
∑
j∈J

F (C ′j)

Using this explicit expression, one can check that if ηX : F (X)
∼−−→ G(X) is a natural

isomorphism (for X varying over Cop), then

(i, x) ∈
∑
i∈I

F (Ci) 7→ (i, ηCi(x)) ∈
∑
i∈I

G(Ci)

defines a natural isomorphism between 〈&〉F and 〈&〉G. �

4.5. THE ⊕&-COMPLETION (A DIALECTICA-LIKE CONSTRUCTION) 124

Lemma 4.5.6. We can lift every functor F : (C&)
op → Set to 〈⊕〉F : (C⊕&)

op → Set in
such a way that if F,G : (C&)

op → Set are naturally isomorphic, so are 〈⊕〉F and 〈⊕〉G,
and with the action on objects

〈⊕〉F

(⊕
u∈U

¯
x∈Xu

Cx

)
=

∏
u∈U

F

(¯
x∈Xu

Cx

)
Proof. Write C⊕& ∼= D⊕ with D = C&. The statement is a special case of a property

that works for any category D; analogously (and dually) to the previous lemma, it corresponds
to the universal property of the product completion. �

Before we can state the next lemma, we first need a few definitions. Let

ι⊕& : C⊕ → C⊕& such that ι⊕& = ι⊕& ◦ ι⊕
be the full and faithful embedding be obtained by applying the universal property of C⊕ to
the coproduct-preserving functor ι⊕&. Furthermore, the isomorphism C⊕& ∼= (C&)⊕ entails
the existence of another full and faithful functor

ι′⊕ : C& → C⊕& such that ι⊕& = ι′⊕ ◦ ι&
corresponding to the canonical embedding D → D⊕ for D = C&. Both those functors have
straightforward explicit constructions, whose actions on objects are

ι⊕&

(⊕
i∈I

Ci

)
=

⊕
i∈I

¯
j∈{∗}

Ci ι′⊕

(¯
i∈I

Ci

)
=

⊕
j∈{∗}

¯
i∈I

Ci

(where the (co)product notation is syntactic sugar for indexed families).

Lemma 4.5.7. For any D ∈ Obj(C⊕), there is a natural isomorphism (with domain C&)

HomC⊕&

(
ι′⊕(−), ι⊕&(D)

) ∼= 〈&〉
[
HomC⊕ (ι⊕(−), D)

]
Proof. Let C =

¯
i∈I

Ci and D =
⊕
k∈K

Dk for Ci, Dk ∈ Obj(C). By definition,

HomC⊕
(
ι′⊕(C), ι

⊕
&(D)

)
=
∏
p∈{∗}

∑
k∈K

∏
q∈{∗}

∑
i∈I

HomC (Ci, Dk)

∼=
∑
i∈I

∑
k∈K

HomC (Ci, Dk)

∼=
∑
i∈I

HomC⊕ (ι⊕(Ci), D)

This establishes the isomorphism for each object of C&. The naturality condition can be
recast as the commutation of the following diagram:

HomC⊕&

(
ι′⊕(C), ι

⊕
&(D)

)
−◦f

��

∑
i,k

HomC (Ci, Dk)
∼oo ∼ //

∑
i∈I

HomC⊕ (ι⊕(Ci), D)

(i,g) 7→(ϕf (i),g◦fi)

��

HomC⊕&

(
ι′⊕(C

′), ι⊕&(D)
) ∼ //

∑
j,k

HomC
(
C ′j , Dk

) ∑
j∈J

HomC⊕
(
ι⊕(C

′
j), D

)∼oo

Fortunately, it can be checked from the definition of composition in C⊕ and C⊕& that both
paths in this diagrams denote the same map, namely (i, k, h) 7→ (ϕf (i), k, h ◦ fi). �

4.5. THE ⊕&-COMPLETION (A DIALECTICA-LIKE CONSTRUCTION) 125

Proof of Theorem 4.5.3. Let A,B,C ∈ Obj(C⊕&). By definition, we can write

A =
⊕
u∈U

¯
x∈Xu

Ax B =
⊕
v∈V

¯
y∈Yv

By C =
⊕
w∈W

¯
z∈Zw

Cz

where Ax, By, Cz ∈ Obj(C). Using the definition of ⊗ in C⊕& and of HomC⊕& (−,−),

HomC⊕& (C ⊗A,B) = HomC⊕&

 ⊕
(w,u)∈W×U

¯
(z,x)∈Zw×Xu

Cz ⊗Ax, ⊕
v∈V

¯
y∈Yv

By


=
∏
w,u

∑
v∈V

∏
y∈Yv

∑
z,x

HomC (Cz ⊗Ax, By)

∼=
∏
w∈W

∏
u∈U

∑
v∈V

∏
y∈Yv

∑
x∈Xu

∑
z∈Zw

HomC (Cz ⊗Ax, By)

Using the operators from Lemmas 4.5.5 and 4.5.6, the last expression above can be turned
into a functor in C, and the isomorphism is then natural in C, that is:

HomC⊕& (−⊗A,B) ∼= 〈⊕〉

∏
u∈U

∑
v∈V

∏
y∈Yv

∑
x∈Xu

〈&〉 [HomC (−⊗Ax, By)]


(Any reader who is not convinced that rearranging the indexing of sums/products is innocuous
with respect to the morphisms in C⊕& can check the naturality by a brute-force computation.)

For any A′, B′ ∈ Obj(C), we have a sequence of natural isomorphisms
HomC

(
−⊗A′, B′

) ∼= HomC⊕
(
ι⊕(−⊗A′), ι⊕(B′)

)
∼= HomC⊕

(
ι⊕(−)⊗ ι⊕(A′), ι⊕(B′)

)
∼= HomC⊕

(
ι⊕(−), ι⊕(A′)(ι⊕(B

′)
)

by using the strong monoidality and full faithfulness of ι⊕ as well as the assumption on
internal homsets in C⊕. Lemma 4.5.5 allows us to lift natural isomorphisms through 〈&〉;
combined with Lemma 4.5.7, this gives us

〈&〉
[
HomC

(
−⊗A′, B′

)] ∼= 〈&〉 [HomC⊕
(
ι⊕(−), ι⊕(A′)(ι⊕(B

′)
)]

∼= HomC⊕&

(
ι′⊕(−), ι⊕&(ι⊕(A

′)(ι⊕(B
′))
)

Let us introduce the abbreviation A′ ⇒ B′ = ι⊕&(ι⊕(A
′)(ι⊕(B

′)). Using Proposition 4.3.4
and the dual of Remark 4.3.5 for products, we have

HomC⊕& (−⊗A,B) ∼= 〈⊕〉

∏
u∈U

∑
v∈V

∏
y∈Yv

∑
x∈Xu

HomC⊕&

(
ι′⊕(−), Ax ⇒ By

)
∼= 〈⊕〉

∏
u∈U

∑
v∈V

∏
y∈Yv

HomC⊕&

(
ι′⊕(−), ⊕

x∈Xu

Ax ⇒ By

)
∼= · · ·

∼= 〈⊕〉

HomC⊕&

ι′⊕(−),
call this A(B︷ ︸︸ ︷¯

u∈U

⊕
v∈V

¯
y∈Yv

⊕
x∈Xu

Ax ⇒ By




Note that we get an expression for A(B that mirrors the definition of HomC⊕& (−,−)!

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 126

To conclude, it suffices to show that the last functor in the above computation is
naturally isomorphic to HomC⊕& (−, A(B). The isomorphism can be seen as an instance
of the universal property of the coproduct, cf. Remark 4.3.5 which unfortunately only states
naturality in the “wrong” argument for our purposes. The remaining naturality condition
can be verified routinely; we leave it to the reader. �

4.5.2. Summary of equivalences between C-SSTs for completions of SR. As a
finishing touch on the last three sections on free completions, we compile here different
characterizations of regular functions.

single-state SR⊕&-SSTs
Lemma 4.3.12

↓
= SR⊕&-SSTs

Lemma 4.3.11
↓
= sdm-SR&-SSTs

Theorem 4.4.9
↓
= sdm-SR-SSTs

sdm-SR-SSTs =
↑

Corollary 4.3.9

SR⊕-SSTs =
↑

Lemma 4.3.12

SR-SSTs =
↑

Fact 4.2.14

regular functions

4.6. Half of a universal property for SR

Before covering the applications of Theorem 1.2.4 / Corollary 4.5.4 to the λ`⊕&-calculus
in the next chapter, let us return to categorical automata theory for its own sake.

In this section, we fix a finite alphabet Γ and study the category SR(Γ) further. Observe
that {•} ∈ Obj(SR(Γ)), representing a single register, can be equipped with the structure
of an internal monoid ({•}, µ•, η•) by setting

η•(•) = ε and µ•(•) = in2(l)in2(r) where l = in1(•) and r = in2(•)
so that µ• ∈ [{•} →SR(Γ) {•} ⊗ {•}] has the codomain Γ + ({•}+ {•}) = Γ + {l, r} when
considered as a map between sets. This internal monoid is the key to giving an inductive
characterization of SR (see Remark 4.6.2 below for an explanation of what we mean by
“inductive”). Given a string w = w1 . . . wn ∈ Γ∗, let us write ŵ ∈ [∅ →SR(Γ) {•}] for the
register transition defined by the map ŵ : • 7→ in1(w1) . . . in1(wn) ∈ (Γ +∅)∗.

Theorem 4.6.1. Let (C,⊗, I) be an affine symmetric monoidal category.
For any internal monoid (M,µ, η) of C and any family (mc)c∈Γ ∈ HomC (I,M) of

morphisms, there exists a strong monoidal functor F : SR(Γ)→ C such that:
• F (∅) = I, F ({•}) =M and F (ĉ) = mc for every c ∈ Γ;
• F (µ•) = µ and F (η•) = η with the above definitions (implying that F ({l, r}) =M ⊗M);
• the isomorphisms I → F (∅) and F ({•}) ⊗ F ({•}) → F ({•} + {•}) that are part of the

strong monoidal structure for F are equal to idI and idM⊗M respectively.

Note that since F is a monoidal functor, it transports the monoid object ({•}, µ•, η•)
to a structure of internal monoid over F ({•}) =M in a canonical way [Mel09, Section 6.2].
A fact that encapsulates the idea of the second item above – but which, strictly speaking,
also depends on the third one – is that the result of this transport is precisely (M,µ, η).

Remark 4.6.2. Informally speaking, we think of SR(Γ) as the affine symmetric monoidal
category freely generated by an internalization of the free monoid Γ∗. To truly express this,
one would need to add to Theorem 4.6.1 the uniqueness of F up to natural isomorphism.
This would imply, among other things, that the morphisms of SR are inductively given by
• the identities id
• the compositions
• the structural morphisms associated to the tensor product
• the unique morphism {•} → ∅

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 127

• canonical morphisms ĉ : > → {•} for every individual letter c ∈ Γ
• a canonical morphism η : > → {•} corresponding to the empty word
• a multiplication morphism µ : {•} ⊗ {•} → {•} corresponding to string concatenation.

However, we do not prove this inductive presentation, nor the uniqueness property, since
they are not necessary for our purposes.

Handwaving argument for Theorem 4.6.1. Although the intuition of the proof
is simple, its execution involves a significant amount of bureaucracy; in particular, it
manipulates various canonical isomorphisms given by Mac Lane’s coherence theorem for
symmetric monoidal categories (cf. §4.6.1). For this reason, we will only illustrate the idea
here in the concrete case of the cartesian category of sets; the full proof can be found in
Section 4.6.2.

For (C,⊗, I) = (Set,×, {∗}), we can reformulate the data given in the statement as a
monoid M with a family of elements (mc)c∈Γ ∈MΓ, that can be identified with functions
mc : {∗} → M for c ∈ Γ. The functor that we build then maps an object R – a finite
set of registers – to the set MR. The action on morphisms is best illustrated through an
example: (t : z 7→ axby) ∈ [{x, y} →SR({a,b}) {z}] (where in1/in2 are omitted) becomes
the map (ux, uy) ∈ M{x,y} 7→ mauxmbuy ∈ M ∼= M{z}. Note that when we apply this
construction to M = Γ∗ with mc = c, we recover the functor (−)† : SR(Γ) → Set from
Proposition 4.2.12. �

Since the monoid object structure of internal homsets (Proposition 4.1.9) has a somewhat
explicit description, Theorem 4.6.1 admits a specialized and simplified formulation for affine
symmetric monoidal closed categories. For our applications (in particular the general
preservation theorem of Section 4.7), it will be useful to give a version that also applies in
the quasi-affine case.

Corollary 4.6.3. Let (C,⊗, I) be a quasi-affine symmetric monoidal closed category and A
be an object in C. For any family (fc)c∈Γ ∈ HomC (A,A)Γ of endomorphisms, there exists a
strong monoidal functor F : SR(Γ)→ C such that

F (∅) = I F ({•}) = (A(A) & I ∀w ∈ Γ∗, F (ŵ) =
〈
Λ′
(
fw[1] ◦ · · · ◦ fw[n]

)
, idI

〉
where we use the notations (̂−) from Theorem 4.6.1 and Λ′(−) from Proposition 4.1.9.

Proof. Proposition 4.1.9 gives a canonical internal monoid structure to A (A,
which by Proposition 4.1.10 can be lifted to a monoid object ((A (A) & I, µ, η). For
f ∈ HomC (A,A), let Λ′′(f) = 〈Λ′(f), idI〉 : I→ (A(A) & I.

We apply Theorem 4.6.1 to the slice category C
/

I – which satisfies the affineness
assumption – with the internal monoid π2 : (A (A) & I → I (cf. Proposition 4.1.10
again) and the family (Λ′′(fc))c∈Γ (each Λ′′(f) is a morphism in the slice category from its
unit idI to this π2 since π2 ◦ Λ′′(f) = idI). We compose the resulting functor SR → C

/
I

with the forgetful functor dom : C
/

I → C to get F : SR → C such that F (∅) = I and
F ({•}) = (A (A) & I. As a composition of strong monoidal functors, F is also strong
monoidal. This takes care of all but one of the corollary’s conclusions.

For the remaining one, we need to do some preliminary work. First, let us recall
two commuting diagrams below. The left one comes from the naturality of the family of
(iso)morphisms mR,S : F (R)⊗ F (S)→ F (R+ S) that make F a (strong) monoidal functor,

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 128

while the right one is among the coherence conditions in Definition 4.1.2.

I⊗ I
m∅,∅ //

F (û)⊗F (v̂)
��

F (∅+∅)

F (û⊗v̂)
��

F ({•})⊗ F ({•})
m{•},{•} // F ({•}+ {•})

I⊗ F (∅)
λF (∅) //

m0⊗idF (∅)

��

F (∅)

F (∅)⊗ F (∅)
m∅,∅ // F (∅+∅)

F (λ∅)

OO

Here, m0 : I→ F (∅) is also part of the strong monoidal structure of F and u, v ∈ Γ∗. The
construction of Theorem 4.6.1 gives us m0 = idI and m{•},{•} = idF ({•}+{•}); furthermore,
we have ∅ + ∅ = ∅ and λ∅ = id∅ in SR. Thus, in the end, we can combine the two
equalities expressed by the above diagrams and simplify them to get

∀u, v ∈ Γ∗, F (û)⊗ F (v̂) = F (û⊗ v̂) ◦ λI

Theorem 4.6.1 also guarantees that F (µ•) = µ, F (η•) = η and F (ĉ) = Λ′′(fc) for all c ∈ Γ.
At the same time, by combining Propositions 4.1.9 and 4.1.10, one can derive

η = Λ′′(idA) µ ◦ (Λ′′(f)⊗ Λ′′(g)) ◦ λI = Λ′′(f ◦ g) for f, g ∈ HomC (A,A)

We use all the above in a proof by induction of the desired conclusion.
• The base case is F (ε̂) = F (η•) = η = Λ′′(idA) (indeed, ε̂ = η• = (• 7→ ε) by definition).
• For the inductive case, write any word of length n + 1 in Γ∗ as wc for w ∈ Γ∗ with
|w| = n and c ∈ Γ, and suppose that by induction hypothesis F (ŵ) = Λ′′ (w). A direct
computation of register transitions suffices to check that ŵc = µ• ◦ (ŵ ⊗ ĉ). Then

F (ŵc) = F (µ•) ◦ F (ŵ ⊗ ĉ) = µ ◦ (F (ŵ)⊗ F (ĉ)) ◦ λI

= µ ◦
(
Λ′′
(
fw[n] ◦ · · · ◦ fw[1]

)
⊗ Λ′′ (fc)

)
◦ λI = Λ′′

(
fw[1] ◦ · · · ◦ fw[n] ◦ fc

)
�

4.6.1. Reminders on coherence for symmetric monoidal categories. We now recall
an important tool for the proof of Theorem 4.6.1. Let us fix a an symmetric monoidal
category (C,⊗, I) with an internal monoid (M,µ, η). We call the functors built from the
monoidal structure on C “tensorial functors” since the monoidal product ⊗ is sometimes
called a tensor product. They are more precisely defined as follows.

Definition 4.6.4. The tensorial expressions over a finite indexing set I are freely inductively
generated as follows:
• I is a tensorial expression over ∅;
• i is a tensorial expression over {i};
• if e, e′ are tensorial expressions over I and I ′ respectively, with I ∩ I ′ = ∅, then (e⊗ e′) is

a tensorial expression over I ∪ I ′.
In other words, a tensorial expression over I is a binary tree whose leaves are labeled either
by I or by i ∈ I, such that each element i appears exactly once.

A tensorial expression e over I induces a functor Fe : CI → C in an obvious way. The
functors thus obtained are called tensorial functors. A tensorial functor Fe : CI → C is
ordered when I is endowed with the total order that corresponds to the infix order on the
I-labeled leaves of the expression e.

Of course, the basic intuition is that over a given totally ordered indexing set, two
ordered tensorial functors express “the same thing” up to inessential bracketing, while two
unordered tensorial functors should be morally the same “up to permutation”. This is
expressed formally as a natural isomorphism between functors, but Mac Lane’s coherence
theorem gives us something stronger: the natural isomorphisms can be chosen canonically.

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 129

Theorem 4.6.5 (Coherence for SMCs [Mac98, §XI.1 (Theorem 1)]). There exists a map
that sends each triple (I, e, e′), where e, e′ are tensorial expressions over the finite set I,
to a natural isomorphism from the tensorial functor Fe to Fe′, which we call a canonical
isomorphism, such that:
• identities, associators, unitors and symmetries are canonical isomorphisms;
• composing the image of (I, e, e′) by this map with the image of (I, e′, e′′) yields the image

of (I, e, e′′) – in other words, canonical isomorphisms are closed under composition;
• canonical isomorphisms are also closed under monoidal product.

If F,G : CI → C are ordered tensorial functors for the same total order on I, the
construction of the canonical isomorphism between F and G works in any monoidal category,
not necessarily symmetric. Indeed, general monoidal categories enjoy a coherence theorem
of their own [Mac98, §VII.2], which involves its own canonical isomorphisms; thanks to the
uniqueness clauses in the coherence theorems with and without symmetry, one can check
that the two notions of canonical isomorphism coincide for ordered tensorial functors. The
ordered case is important for us because even though our monoidal category is symmetric,
the internal monoid (M,µ, η) that we are given need not be commutative. What the axioms
for monoid objects do state, however, is a suitable form of associativity, a consequence of
which is that n-ary products are somehow “independent of bracketing”. Formally speaking:

Definition 4.6.6. To any tensorial expression e, we inductively associate a C-morphism
µ(e) : Fe((M)i∈I)→M (meant to represent “e-fold monoid multiplication”):

µ(I) = η µ(i) = id for I = {i} µ(e⊗e
′) = µ ◦

(
µ(e) ⊗ µ(e′)

)
Theorem 4.6.7 (General associativity law [Mac98, §VII.3]). Let I be a totally ordered finite
set, Fe, Fe′ : CI → C be two ordered tensorial functors and Ξ : Fe ⇒ Fe′ be their canonical
natural isomorphism. Then µ(e) = µ(e

′) ◦ Ξ ~M where ~M = (M)i∈I .

We find it convenient to work directly with tensorial functors in the rest of this section,
leaving the tensorial expressions that define them implicit. Therefore, we write µ(F) instead
of µ(e) when F = Fe; strictly speaking, two expressions could define the same functor for
accidental reasons, but for our purposes, the right choice of e can always be inferred from
the context. Similarly, we shall speak of the canonical isomorphism between two tensorial
functors CI → C. In accordance with Section 4.1.1, we write

n⊗
i=1

Yi = (. . . (Y1 ⊗ Y2)⊗ . . .)⊗ Yn M⊗n =

n⊗
i=1

M

and this will be used to define ordered tensorial functors. Furthermore, for each finite set I,
we fix an arbitrary choice of tensorial functor

⊗
i∈I(−) : CI → C, and denote by

⊗
i∈I Yi the

image of (Yi)i∈I by this functor.

4.6.2. Proof of Theorem 4.6.1. After these general preliminaries, let us focus on the
specific study of the symmetric monoidal category SR(Γ) for a fixed finite alphabet Γ.

Definition 4.6.8. For t ∈ [R →SR R′] – recall that this implies t : R′ → (Γ + R)∗, let
∂(t) ⊆ R be the set of register variables that do not occur in any t(r′) for r′ ∈ R′.

Definition 4.6.9. Given w ∈ (Γ +R)∗, we write

⊗
r"w

Yr =

|w|⊗
i=1

{
I when w[i] ∈ in1(Γ)
Yr when w[i] = in2(r) for r ∈ R

and M"w =
⊗
r"w

M

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 130

Lemma 4.6.10. For t ∈ [R→SR R′], we have a canonical isomorphism⊗
r∈R

Yr ∼=
⊗
r∈∂(t)

Yr ⊗
⊗
r′∈R′

⊗
r"t(r′)

Yr

Proof. To apply Mac Lane’s coherence theorem, we just have to check that the right-
hand side defines a tensorial functor with indexing set R. This amounts to the equality

R = ∂(t) ∪
⋃
r′∈R′

{r | ∃i. t(r′)[i] = in2(r)}

where, to ensure that no index in R is repeated, the union must be disjoint and the letters
of t(r′) that are in in2(R) must all be distinct. Those conditions are consequences of
copylessness, while the equality itself is essentially the definition of ∂(t). �

We are now in a position to build the functor promised in Theorem 4.6.1. Following the
statement of this theorem, we fix a family of morphisms (mc) ∈ HomC (I,M)Γ, and assume
that (C,⊗, I) is affine. Thus, we may write 〈〉A : A→ I for the terminal morphism from A,
omiting the subscript A when it can be inferred from the context.

Definition 4.6.11. We define a map on objects F : R ∈ Obj(SR) 7→M⊗R ∈ Obj(C).
As for morphisms, given a register transition t ∈ [R→SR R′], we set F (t) to be

F (R) =M⊗R
∼−−→M⊗∂(t) ⊗

⊗
r′∈R′

|t(r′)|⊗
i=1

Xr′,i
〈〉⊗F̃ (t)−−−−−→ I⊗M⊗R′ ∼−−→M⊗R

′
= F ′(R)

where the left arrow instantiates the canonical isomorphism of Lemma 4.6.10, with

Xr′,i =

{
I when t(r′)[i] ∈ in1(Γ)
M otherwise, i.e. t(r′)[i] ∈ in2(R)

so that
|t(r′)|⊗
i=1

Xr′,i =M"t(r′)

and in the middle arrow, 〈〉 :M⊗∂(t) → I is the terminal morphism and

F̃ (t) =
⊗
r′∈R′

F̃ (t)r′ : |t(r′)|⊗
i=1

Xr′,i

⊗
i fr′,i−−−−−−→

|t(r′)|⊗
i=1

M =M⊗|t(r
′)| µ(|t(r

′)|)
−−−−−−→M


where for i ∈ {1, . . . , |t(r′)|}, we pick

fr′,i =

{
mc when t(r′)[i] = in1(c) for c ∈ Γ

idM otherwise, i.e. t(r′)[i] ∈ in2(R)

(recall that mc : I→M is the prescribed functorial image, by the F that we are defining, of
the register transition ĉ ∈ [∅→SR {•}]).

The tedious part in proving Theorem 4.6.1 is checking that the above definition works.
This fills the several pages remaining in this section.

Proposition 4.6.12. The operation F introduced in Definition 4.6.11 is a functor.

Proof. Let t ∈ [R →SR R′] and t′ ∈ [R′ →SR R′′]; we want to reason on F (t′) ◦ F (t)
to show that it is equal to F (t′ ◦ t). Beware: we write t′ ◦ t for composition of (copyless)
register transitions in the category SR, and will employ the notation t(r′) for set-theoretic
application (t : R′ → (Γ +R)∗), but we do not have (t′ ◦ t)(r′) = t′(t(r′)) – indeed, the two
sides of the equality are not even well-defined for r′ ∈ R′! Since t′ ◦ t is in [R→SR R′′], it is
a set-theoretic map R′′ → (Γ +R)∗.

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 131

M⊗R
F (t)

//

∼
��

definition of F (t)

M⊗R
′ F (t′)

//

naturality

M⊗R
′′

M⊗∂(t) ⊗
⊗
r′∈R′

M"t(r′)

bifunctoriality of ⊗

〈〉 ⊗ F̃ (t)
// I⊗M⊗R′ I⊗ F (t′)

//

∼

OO

I⊗M⊗R′′

∼

OO

M⊗∂(t) ⊗
⊗
r′∈R′

M"t(r′)

∼
��

〈〉 ⊗ (Lemma 4.6.13 / Figure 4.6.2)

〈〉 ⊗ (F (t′) ◦ F̃ (t))
// I⊗M⊗R′′

M⊗∂(t) ⊗

(
N ⊗

⊗
r′′∈R′′

M"(t◦t′)(r′′)

)

∼
��

naturality of the associator

〈〉 ⊗ (〈〉 ⊗ F̃ (t′ ◦ t))
// I⊗

(
I⊗M⊗R′′

)
∼

OO

(
M⊗∂(t) ⊗N

)
⊗
⊗
r′′∈R′′

M"(t◦t′)(r′′)

∼
��

I⊗ I and I are terminal (affineness assumption)

(〈〉 ⊗ 〈〉)⊗ F̃ (t′ ◦ t)
// (I⊗ I)⊗M⊗R′′

∼

OO

M⊗∂(t
′◦t) ⊗

⊗
r′′∈R′′

M"(t◦t′)(r′′) 〈〉 ⊗ F̃ (t′ ◦ t)
// I⊗M⊗R′′

∼

OO

Figure 4.6.1. The commutativity of the outer square of this diagram
establishes Proposition 4.6.12. The text in the inner squares explains why they
commute; the proof text for Proposition 4.6.12 defines N and gives further
justifications (in particular for the existence of the canonical isomorphisms
denoted by ∼−−→).

To prove this, we first reduce our goal to Lemma 4.6.13, and then prove that lemma.
The reduction is given by the commutative diagram of Figure 4.6.1 (with N to be defined
later). Indeed, while the morphism on the top is F (t′) ◦ F (t), the one defined by the three
other sides of the outermost square is

M⊗R
∼−−→M⊗∂(t

′◦t) ⊗
⊗
r′′∈R′′

M"(t′◦t)(r′′) 〈〉⊗F̃ (t′◦t)−−−−−−−→ I⊗M⊗R′′ ∼−−→M⊗R
′′

thanks to the closure of canonical isomorphisms of tensorial functors under composition.
Since these canonical isomorphisms are also unique, we can equate that with the expression
for F (t′ ◦ t) given in Definition 4.6.11, hence F (t′) ◦ F (t) = F (t′ ◦ t).

The main justifications that are missing from Figure 4.6.1 are the commutation of one
square treated in Lemma 4.6.13, and the existence of the various canonical isomorphisms
involved. The ones in the right column are just unitors, so let us focus on the left column.

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 132

• The top left isomorphism is an instance of Lemma 4.6.10.
• The next one (skipping the equality) is provided by Lemma 4.6.13.
• Then the penultimate one is just the inverse of an associator (see §4.1.2), of the form

α−1A,B,C : A⊗ (B ⊗ C) → (A⊗B)⊗ C

• Finally, the last one reduces to M⊗∂(t) ⊗N ∼=M⊗∂(t
′◦t).

To prove the latter, we must first clarify it by defining N consistently with Lemma 4.6.13:

N =
⊗

r′∈∂(t′)

M"t(r′)

We then see that the canonical isomorphism that we are looking for is the instantiation to
the constant family (M)r∈∂(t′◦t) of the following natural isomorphism in Yr for r ∈ ∂(t′ ◦ t):⊗

r∈∂(t)

Yr ⊗
⊗

r′∈∂(t′)

⊗
r"t(r′)

Yr ∼=
⊗

r∈∂(t′◦t)

Yr

This is a consequence of an elementary combinatorial fact:

∂(t) ∪
⋃

r′∈∂(t′)

{r | ∃i ∈ {1, . . . , |t(r′)|}. t(r′)[i] = in2(r)} = ∂(t′ ◦ t)

Informally speaking, this means that a register is thrown away by t′ ◦ t if and only if is either
thrown away by t, or used by t to compute a value that is then discarded by t′. Furthermore,
thanks to copylessness, the union is disjoint and for each r in the union over r′ ∈ ∂(t′), there
is a single (r′, i) such that t(r′)[i] = in2(r); those properties are necessary to get the natural
isomorphism. We leave a formal proof of this combinatorial identity to the reader.

This being done, all that remains to conclude our proof is to show Lemma 4.6.13
below. �

Lemma 4.6.13. The diagram of Figure 4.6.2 commutes, with the following definitions:

N =
⊗

r′∈∂(t′)

M"t(r′) Or′′ =
⊗

r′"t′(r′′)

M"t(r′) ψr′′ =
⊗

r′"t′(r′′)

F̃ (t)r′

Proof. In addition to the information already given in Figure 4.6.2, there are two
things to justify about this figure: the top-left naturality square, and the commutativity
of the bottom square. Let us tackle the former. Recall that Lemma 4.6.10 gives us the
canonical isomorphism⊗

r′∈R′

Yr′ ∼=
⊗

r′∈∂(t′)

Yr′ ⊗
⊗
r′′∈R′′

⊗
r′"t′(r′′)

Yr′

which is natural in Yr′ for r′ ∈ R′. By instantiating with Yr′ =M"t(r′), we get⊗
r′∈R′

M"t(r′) ∼=
⊗

r′∈∂(t′)

M"t(r′) ⊗
⊗
r′′∈R′′

⊗
r′"t′(r′′)

M"t(r′) = N ⊗
⊗
r′′∈R′′

Or′′

by definition of N and Or′′ . Hence the vertical canonical isomorphism at the top left of
Figure 4.6.2; as for the top middle, it is the instantiation of the same natural isomorphism
with Yr′ = M , as already observed in Definition 4.6.11. To make the top-left square a
naturality square, we should then have

(. . .)⊗
⊗
r′′∈R′′

ψr′′ =
⊗

r′∈∂(t′)

F̃ (t)r′ ⊗
⊗
r′′∈R′′

⊗
r′"t′(r′′)

F̃ (t)r′

which is indeed the case with our definition of ψr′′ .

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 133

⊗
r′∈R′

M"t(r′)

∼

��

F̃ (t) =
⊗

r′∈R′ F̃ (t)r′ //

naturality / Lemma 4.6.10

M⊗R
′

∼

��

F (t′)
//

definition of F (t′)

M⊗R
′′

N ⊗
⊗
r′′∈R′′

Or′′
(. . .)⊗

⊗
r′′ ψr′′ //

⊗ is a bifunctor and I is a terminal object

M⊗∂(t
′) ⊗

⊗
r′′∈R′′

M"t′(r′′) 〈〉 ⊗ F̃ (t′)
// I⊗M⊗R′′

∼

OO

N ⊗
⊗
r′′∈R′′

Or′′

∼

��

〈〉 ⊗
⊗

r′′∈R′′(F̃ (t′)r′′ ◦ ψr′′) //

manipulations on monoid objects, explained in main text

I⊗M⊗R′′

N ⊗
⊗
r′′∈R′′

M"(t◦t′)(r′′) 〈〉 ⊗
⊗

r′′∈R′′ F̃ (t′ ◦ t)r′′ = 〈〉 ⊗ F (t′ ◦ t)
// I⊗M⊗R′′

Figure 4.6.2. Lemma 4.6.13 defines N , Or′′ , and ψr′′ , and proves that this
diagram commutes.

Our next and final task is the commutativity of the bottom square of Figure 4.6.2.
Thanks to the bifunctoriality of ⊗, it reduces to a simpler commutative diagram:

Or′′ =
⊗

r′"t′(r′′)

M"t(r′)

∼
��

F̃ (t′)r′′ ◦ ψr′′ // M

M"(t◦t′)(r′′)

F̃ (t′ ◦ t)r′′

55 for r′′ ∈ R′′

Let r′′ ∈ R′′. To show that this indeed commutes, we start by writing out F̃ (t′)r′′ ◦ ψr′′ as

⊗
r′"t′(r′′)

M"t(r′)
⊗

r′ F̃ (t)r′−−−−−−−→M"t′(r′′) =

|t′(r′′)|⊗
j=1

X ′r′′,j

⊗
j f

′
r′′,j−−−−−−→M⊗|t

′(r′′)| µ(|t
′(r′′)|)

−−−−−−→M

where, analogously to the Xr′,i and fr′,i involved in the definition of F̃ (t)r′ , we take

(X ′r′′,j , (f
′
r′′,j : X

′
r′′,j →M)) =

{
(I, mc) when t′(r′′)[j] = in1(c) for c ∈ Γ

(M, idM) otherwise, i.e. t′(r′′)[j] ∈ in2(R′)

The leftmost arrow in the above sequence is how we defined ψr′′ in the lemma statement,
while the composition of the two others equals F̃ (t′)r′′ by definition.

To manipulate this, let us introduce a new notation:
foldMap⊗

w

f =

|w|⊗
i=1

f(wi) for w = w1 . . . wn and f a function

4.6. HALF OF A UNIVERSAL PROPERTY FOR SR 134

Note that in general, this may lead to monoidal products with repeated factors: there is
no a priori guarantee that this defines a tensorial functor. The function f will often be
expressed as a copairing using the following notation:

f :

{
in1(y) 7→ f1(y)

in2(z) 7→ f2(z)
⇐⇒ f : x ∈ Y + Z 7→

{
f1(y) when x = in1(y) for y ∈ Y
f2(z) when x = in2(z) for z ∈ Z

In the case that we are interested in right now, we have by functoriality of ⊗:

F̃ (t′)r′′ ◦ ψr′′ = µ(|t
′(r′′)|) ◦

foldMap⊗
t′(r′′)


in1(c) 7→ mc

in2(r′) 7→ F̃ (t)r′ = µ(|t(r
′)|) ◦

foldMap⊗
t(r′)

{
in1(a) 7→ ma

in2(r) 7→ idM

To simplify this, we introduce the following tensorial functor:

Lr′′((Yp)p∈Pr′′) =

|t′(r′′)|⊗
j=1


Yj,1 when t′(r′′)[j] ∈ in1(Γ)

|t(r′)|⊗
i=1

Yj,i when t′(r′′)[j] = in2(r′)

where Pr′′ =

|t′(r′′)|∑
j=1

{
{1} when t′(r′′)[j] ∈ in1(Γ)
{1, . . . , |t(r′)|} when t′(r′′)[j] = in2(r′)

(using the dependent sum operation, cf. §2.1.1, so that Pr′′ ⊂ N2). There is a unique total
order on Pr′′ that makes Lr′′ into an ordered tensorial functor: the lexicographical order
inherited from N2. Thus, we may meaningfully speak of µ(Lr′′) : Lr′′((M)p∈Pr′′)→M , the
Lr′′-ary monoid multiplication, whose inductive definition leads to:

µ(Lr′′) = µ(|t
′(r′′)|) ◦

foldMap⊗
t′(r′′)

{
in1(c) 7→ µ(1) = idM
in2(r′) 7→ µ(|t(r

′)|)

Now that this is defined, we can state the following equation, that directly follows by
functoriality from the previous expressions of F̃ (t′)r′′ ◦ ψr′′ and of µ(Lr′′):

F̃ (t′)r′′ ◦ ψr′′ = µ(Lr′′) ◦
foldMap⊗
t′(r′′)


in1(c) 7→ mc

in2(r′) 7→
foldMap⊗
t(r′)

{
in1(a) 7→ ma

in2(r) 7→ idM

For the next step, recall that by Definition 4.2.11, (t′ ◦ t)(r′′) = t?(t′(r′′)) (which is not
t′(t(r′′)), as previously emphasized, since this ‘◦’ is composition in SR(Γ)), where t? is the
morphism of free monoids such that t†(in1(c)) = in1(c) and t†(in2(r′)) = t(r′). Thus, the j-th
term of the dependent sum above is equal to {1, . . . , |t†(t′(r′′)[j])|}, and from the morphism
property

(t′ ◦ t)(r′′) = t?(t′(r′′)) = t?(t′(r′′)[1]) · . . . · t?(t′(r′′)[|t′(r′′)|])
we obtain an bijection ξr′′ : Pr′′

∼−→ {1, . . . , (t′ ◦ t)(r′′)} such that for all (j, i) ∈ Pr′′ ,

(t′ ◦ t)(r′′)[ξ(j, i)] = t?(t′(r′′)[j])[i] =

{
in1(c) when t′(r′′)[j] = in1(c)
t(r′)[i] when t′(r′′)[j] = in2(r′)

Thanks to this, we have

F̃ (t′)r′′ ◦ ψr′′ = µ(Lr′′) ◦ Lr′′

({mc when (t′ ◦ t)(r′′)[ξ(p)] = in1(c) for c ∈ Γ

idM otherwise, i.e. (t′ ◦ t)(r′′)[ξ(p)] ∈ in2(R)

)
p∈Pr′′



4.7. ON CLOSURE UNDER PRECOMPOSITION BY REGULAR FUNCTIONS 135

It is not hard to see that the bijection ξ is monotone (taking the lexicographical order on
Pr′′ as we did earlier). Therefore, the natural isomorphism

Ξ(Yp)p∈Pr′′
: L
(
(Yp)p∈Pr′′

) ∼−−→
|(t′◦t)(r′′)|⊗

k=1

Yξ−1(k)

induced by ξ is a canonical isomorphism of ordered tensorial functors (i.e. it only uses
associators and unitors, not symmetries). Thus, we may apply the general associativity law
for internal monoids (Theorem 4.6.7): µ(Lr′′) = µ(|(t

′◦t)(r′′)|) ◦ Ξ (we omit the subscript of Ξ
for convenience). By naturality of Ξ, we then have

F̃ (t′)r′′ ◦ ψr′′ = µ(|(t
′◦t)(r′′)|) ◦

 foldMap⊗
(t′◦t)(r′′)

{
in1(c) 7→ mc

in2(r) 7→ idM

 ◦ Ξ

By definition, this is equal to F̃ (t′ ◦ t)◦Ξ, which is what we needed to conclude the proof. �

Proposition 4.6.14. The functor F is strong monoidal.

Proof. From the definition, we immediately get

F (R+R′) =M⊗(R+R′) ∼=M⊗R ⊗M⊗R′
= F (R)⊗ F (R′)

as an instance of a canonical isomorphism⊗
x∈R+R′

Yx ∼=
⊗
r∈R

Yin1(r) ⊗
⊗
r′∈R′

Yin2(r′)

which is natural in Yx for x ∈ R+R′. One can then verify that this family of isomorphisms
F (R+R′) ∼= F (R)⊗ F (R′) is natural in R and R′. �

To finish proving Theorem 4.6.1, it suffices to carry out some short explicit computations
to check that this functor F satisfies the claimed equalities. We leave this to the reader.

4.7. On closure under precomposition by regular functions

Our next categorical automata result is our first application of monoidal closure:

Theorem 4.7.1. Let C be a string streaming setting with output set X. Suppose that the
underlying category C is symmetric monoidal closed and quasi-affine. Furthermore, let us
assume that

‚
C is equal to the monoidal unit I.

Then for any f : Γ∗ → X computed by some C-SST, and any regular g : Σ∗ → Γ∗, the
function f ◦ g : Σ∗ → X is computed by some (stateful) C-SST. In other words, the class of
functions defined by C-SSTs is closed under precomposition by regular functions.

Before proving the above theorem, let us check that it entails known preservation and
composition properties.

Corollary 4.7.2. Let L ⊆ Γ∗ be a regular language and g : Σ∗ → Γ∗ be a regular function.
Then the language g−1(L) ⊆ Σ∗ is regular.

Proof. That L is regular is equivalent to its indicator function χL : Γ∗ → {0, 1} being
computed by some single-state Finset2-SST, see Example 4.2.5. The underlying category of
finite sets is cartesian closed, and the monoidal structure given by a cartesian product is
automatically symmetric and affine. According to Theorem 4.7.1, χL ◦ g can therefore be
computed by some Finset2-SST. Observing that the category of finite sets has coproducts,
and applying Lemma 4.3.12, we even have a single-state Finset2-SST for χL ◦ g. Finally, the
latter is none other than the indicator function of g−1(L). �

4.7. ON CLOSURE UNDER PRECOMPOSITION BY REGULAR FUNCTIONS 136

Corollary 4.7.3. Let f : Γ∗ → ∆∗ and g : Σ∗ → Γ∗ be regular functions. Then f ◦ g is also
a regular function.

Proof. This is just the application of Theorem 4.7.1 to SR⊕&-SSTs. The functions
that they can compute are exactly the regular functions (cf. §4.5.2). By Theorem 1.2.4
/ Corollary 4.5.4, the underlying category SR⊕& is symmetric monoidal closed. Finally,
SR⊕& is quasi-affine since it has all cartesian products by construction. �

Remark 4.7.4. As we shall see in Proposition 5.1.16, the closure under composition of
regular functions also follows from our λ`⊕&-calculus characterization (Theorem 1.2.3).
However, note that the latter relies on some non-trivial syntactic analysis of λ`⊕&-terms,
as discussed at the start of Chapter 5. The argument we give in this section circumvents
that difficulty. That said, it still shares some (non-syntactic) ingredients with our proof of
Theorem 1.2.3, namely:
• the monoidal closure and quasi-affineness of SR⊕&;
• the fact that SR⊕&-SSTs are no more expressive than SR-SSTs.
These results still require substantial developments – indeed, this composition property is
quite non-trivial as mentioned in the introduction – but bypass the need of mentioning the
λ`⊕&-calculus. Beyond this simplification, the main advantage of our approach here is that
we get a more general theorem, that applies to many streaming settings; in particular, the
final output does not have to be a string.

We now come to the proof of this generalized preservation theorem, which uses the
universal property from the previous section (more specifically, its Corollary 4.6.3).

Proof of Theorem 4.7.1. We give below a proof assuming that f is defined by some
single-state C-SST (but beware: the C-SST computing f ◦ g will still be stateful!). The
general case can be applied by considering the streaming setting C⊕const-SST, as was briefly
mentioned in Remark 4.3.13, and using the fact that single-state C⊕const-SSTs, stateful
C⊕const-SSTs and stateful C-SSTs are equally expressive. We leave it to the reader to check
that the symmetric monoidal structure and the cartesian products in C can be lifted to
C⊕const, making this generalization possible.

Therefore, we may assume without loss of generality that f is computed by a single-state
C-SST Tf = ({•}, Af , δf , if , of) where Af is an object of C and

δf : Γ→ HomC (Af , Af) if ∈ HomC (
‚
, Af) of ∈ HomC (Af ,‚)

Let Tg = (Q, q0, Rg, δg, ig, og) be an usual copyless SST (i.e., a SR-SST) computing the
regular function g, where Q and Rg are finite sets and

q0 ∈ Q δg : Σ×Q→ Q× [Rg →SR Rg]

ig ∈ [∅→SR Rg] og : Q→ [Rg →SR {•}]
We will write A = Af and R = Rg for short.

We want to build from this data a C-SST T defining f ◦ g. Since C is quasi-affine and
symmetric monoidal closed, we can apply Corollary 4.6.3 to the object A(A and to a
family of morphisms (δ̃f (c))c∈Γ ∈ HomC (A(A, A(A)Γ that will be defined later. This
gives us a functor Fδf : SR → C, enjoying various properties that will be progressively
recalled, which is at the heart of our construction.

The set of states of our new C-SST T is Q, with initial state q0, and its memory object is
Fδf (R). The initialization morphism is defined as i = Fδf (ig) ∈ HomC

(
I, Fδf (R)

)
– we use

the assumption
‚

= I, and the fact that Fδf (∅) = I (by Corollary 4.6.3). The transition

4.7. ON CLOSURE UNDER PRECOMPOSITION BY REGULAR FUNCTIONS 137

function is
δ : Σ × Q −→ Q × HomC

(
Fδf (R), Fδf (R)

)
c , q 7→ π1(δg(c, q)) , Fδf (π2(δg(c, q)))

Finally, using jf : Fδf ({•})→ A to be defined later, we take as our new output function

o : q ∈ Q 7→ of ◦ jf ◦ Fδf (og(q)) ∈ HomC
(
Fδf (R),‚

)
Let us now sketch the verification that this defines the intended function f ◦ g : Σ∗ → X.

In the process, we will fill the missing definitions to make everything work out.
Let w = w1 . . . wn ∈ Σ∗ be an input string. The sequence q0, . . . , qn ∈ Q of states visited

by both Tg and T when fed this input is obtained by qi+1 = π1(δg(wi, qi)) from the initial
q0. By definition of the output of Tg, we have:

ĝ(w) = og(qn) ◦ π2(δg(wn, qn−1)) ◦ · · · ◦ π2(δg(w1, q0)) ◦ ig

where ĝ(w) ∈ [∅ →SR(Γ) {•}] corresponds to g(w) ∈ Γ∗ (cf. Theorem 4.6.1) and the ‘◦’
denotes a composition of register transitions (i.e. of SR-morphisms). Similarly, the output
T (w) of the C-SST T that we built on the input w is defined as

T (w) = Lo(qn) ◦ Fδf (π2(δg(wn, qn−1))) ◦ · · · ◦ Fδf (π2(δg(w1, q0))) ◦ iM

which, by unfolding the definitions of o and i, applying the functoriality of Fδf and comparing
with the previous equality, one can simplify into

T (w) = Lof ◦ jf ◦ Fδf
(
ĝ(w)

)
M

It is now time to define jf ∈ HomC
(
Fδf ({•}), A

)
. To do so, let us first introduce

appto(ϕ) : B(C
∼−−→ (B(C)⊗ I id⊗ϕ−−−−→ (B(C)⊗B ev−−→ C

where the last arrow is the evaluation map evB,C , for any B,C ∈ Obj(C) and ϕ : I→ B. An
useful property, whose verification we leave to the reader, is

appto(ϕ) ◦ Λ′(ψ) = ψ ◦ ϕ for any ψ : B → C

where Λ′ : HomC (B,C)
∼−→ HomC (I, B(C) is defined in Proposition 4.1.9. We then take

jf : Fδf ({•})
π1−−→ (A(A)((A(A)

appto(Λ′(idA))−−−−−−−−−→ A(A
appto(if)−−−−−−→ A

where π1 is the left projection from Fδf ({•}) = ((A(A)((A(A)) & I (this equality
is guaranteed by Corollary 4.6.3) and if is the initialization morphism of Tf . Using the
equation

Fδf

(
ĝ(w)

)
=

〈
Λ′
(
δ̃f (g(w)1) ◦ · · · ◦ δ̃f (g(w)m)

)
, idI

〉
where m = |g(w)|

coming from Corollary 4.6.3, we then have

jf ◦ Fδf
(
ĝ(w)

)
= appto(if) ◦ δ̃f (g(w)1) ◦ · · · ◦ δ̃f (g(w)m) ◦ Λ′(idA)

Next, we define δ̃f (c) = Λ(evA,A ◦ (idA(A⊗ δf (c))) ∈ HomC (A(A, A(A) for c ∈ Γ.
In other words, δ̃f (c) is the curryfication of

(A(A)⊗A
id⊗δf (c)−−−−−−→ (A(A)⊗A ev−−→ A

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 138

One can then check that δ̃f (c) ◦ Λ′(ψ) = Λ′(ψ ◦ (δf (c))) for any ψ : A → A. Putting
everything together, we finally have

T (w) = Lof ◦ appto(if) ◦ δ̃f (g(w)1) ◦ · · · ◦ δ̃f (g(w)m) ◦ Λ′(idA)M
= Lof ◦ appto(if) ◦ Λ′(δf (g(w)m) ◦ · · · ◦ δf (g(w)1))M
= Lof ◦ δf (g(w)m) ◦ · · · ◦ δf (g(w)1) ◦ if M

and this final expression is precisely the definition of the output of Tf on g(w). Since Tf
computes f , we end up with T (w) = f(g(w)), as we wanted. �

To conclude this section, let us note that an analogous result for precomposition by
regular tree functions can be shown by leveraging the results of Chapter 6; we leave it as an
exercise. An important subtlety: since the presence of the additive conjunction is important
to compute regular tree functions (as we stressed in the introduction), one must consider
tree streaming settings whose underlying categories have finite cartesian products (which
entails quasi-affineness).

4.8. Uniformization through monoidal closure

Let us wrap up this chapter by recalling below the categorical uniformization theorem that
we mentioned in Section 4.4 and providing its proof. (Recall that according to Lemma 4.4.8,
the conclusion amounts to saying that non-deterministic sdm-C-SSTs are uniformizable by
partial sdm-D-SSTs.)

Theorem 4.8.1. Let C and D be streaming settings such that there is a morphism of
streaming settings C→ D, whose underlying functor is F : C → D. Assume further that D
carries a symmetric monoidal affine structure and has internal homsets F (C)(F (C ′) for
every pair of objects C,C ′ ∈ Obj(C).

Then, sdm-C&-SSTs are subsumed by sdm-D-SSTs.

As promised at the end of Section 4.4, our technical development until now allows us to
derive the equivalence between sdm-SR&-SSTs and sdm-SR-SSTs from the above result.

Proof of Theorem 4.4.9. We instantiate Theorem 4.8.1 with C = SR, D = SR⊕,
and the functor ι⊕ : SR → SR⊕. We have already seen that SR⊕ is a symmetric monoidal
affine category. The assumption on internal homsets is exactly Lemma 4.3.14. The theorem
then tells us that sdm-SR&-SSTs are subsumed by sdm-SR⊕-SSTs, and the latter are no
more expressive than sdm-SR-SSTs by Corollary 4.3.9. �

Not coincidentally, the idea for our proof of Theorem 4.8.1 is extracted from a direct
determinization proof for copyless SSTs. Our main contribution is in recognizing that
the latter implicitly involves internal homsets as one of its key components. (While the
determinization argument in [AD11] goes through MSO, the direct proof might be folklore,
see e.g. [BC18, Problem 139 (p. 226)].)

We do not prove the statement in excruciating details, but provide key formal definitions
so that a reader familiar with a modicum of automata theory and category theory should be
able to reconstitute a fully formal argument with ease. Let us stress once again that all of
the combinatorics may be regarded as adaptation of known arguments.

Our approach relies on a notion of transformation forest, a name that we borrow
from [BC18, Chapter 13] for an extremely similar concept6. This gadget is also reminiscent

6There are two formal differences between our notions, which are not very big but worth mentioning for
readers of [BC18]. First, edges of a transformation forest are intended to be associated with (elements of) a
monoid, while ours should be associated with (“elements of”) internal homsets F (Cu)(F (Cv). Were we
trying to prove D-uniformization for C-SSTs, we would have necessarily Cu = Cv and the aforementioned

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 139

of trees used in determinization procedures like the Muller-Schupp construction for automata
over ω-words [MS95] (another exposition can be found in [BC18, Chapter 1]), and of the
sharing techniques used in the original paper on SSTs [AČ10, §5.2]. In determinization
procedures, this constitutes an elaboration of powerset constructions recalling not only
reachable states, but also crucial information on how those states are reached. Here, the
vertices v of such forests will be labelled by objects Cv of C and each edge (u, v) will be
correspond to a “register containing a value of type F (Cu)(F (Cv)”.

We decompose this proof sketch in three parts: first, we introduce transformation forests,
their semantic interpretation as families of maps in D; we explain how they may be composed
and that maps in C& may be regarded as depth-1 transformation forests. Then, we explain
how to reduce the size of transformation forests in a sound way (this is the crucial part
ensuring that the resulting sdm-D-SSTs will have finitely many states). Finally, we explain
how to put all of this together to uniformize sdm-C-SSTs.

4.8.1. Transformation forests and their semantics. A transformation forest is defined
as a tuple F = (V,E,O, (Cv)v∈V) where
• V is a non-empty finite set of vertices
• E ⊆ V 2 is a set of directed edges, pointing from parents to children, such that (V,E) is a

directed forest
• O is a non-empty subset of V which we cal the set of output nodes
• every Cv is an object of C

When a transformation forest F is fixed, we call IF its set of roots (which we may
sometimes call input nodes; we drop the subscript when there is no ambiguity). Given a
transformation forest F = (V,E, (vo)o∈O, (Cv)v∈V), we assign the following object of D:

Ty(F) =
⊗

(u,v)∈E

F (Cu)(F (Cv)

An example of a transformation forest F and a computation of its type Ty(F) is pictured
in Figure 4.8.1. To guide the intuition, one may note that there is an embedding7 of a set of
suitable labellings of the forest F into HomD (>,Ty(F)).∏

(u,v)∈E

HomD (F (Cu), F (Cv)) // HomD (>,Ty(F))

We will now call abusively the input of F the object A =
˘

i∈I Ci and the output
B =

˘
o∈O Co; we write F : A→ B in the sequel. The justification for this notation is that

there is a family of maps

JFK ∈
∏
o∈O

∑
i∈I

HomD (Ty(F), F (Ci)(F (Co))

obtained by internalizing the composition of morphisms along branches of F , which we call
the semantics of F .

We also note that this allows to interpret arbitrary C&-morphisms: such a morphism
f : A→ B can be mapped to a pair (Grph(f), f̂) consisting of

object would have a monoid structure internal to D, so this distinction is more an artefact of our settings
rather than an essential one. Second, what [BC18] calls transformation forests refers to a class of forest with
“no junk”, such as dangling leaves not referring to an intended output or spurious internal nodes, while we
allow those in an initial definition; we add the adjective “normalized” for those containing “no junk” as we
shall see later, so this is merely a terminological detail.

7This becomes an isomorphism when HomD (>, A⊗B) ∼= HomD (>, A)× HomD (>, B); this is the case
for our intended application D = SR⊕.

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 140

C0

U C2

C3

C1

V

C4

T

↧

S

F (T) ⊸ F (C0)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F (S) ⊸ F (U)

⊗

F (U) ⊸ F (C1)

⊗

F (U) ⊸ F (V) ⊗ F (V) ⊸ F (C2) ⊗ F (V) ⊸ F (C3)

⊗

F (U) ⊸ F (C4)

Ty

Figure 4.8.1. A transformation forest F : T & S →
4̄

i=0

Ci.

C0

C2

C3

C1

C4

D0

D2

D1

D3

D4

Figure 4.8.2. A depth-1 transformation forest.

• a depth-1 transformation forest Grph(f) :
¯
i∈I

Ci →
¯
o∈O

Co (cf. Figure 4.8.2)

• a morphism f̂ ∈ HomD (>,Ty(F))
so that, if f = (io, αo)o∈O, we have JGrph(f)Ko ◦ f̂ = (io,Λ(αo ◦ ρ−1)).

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 141

Given two forests F : A→ B and F ′ : B → C, there is a composition F ′ ◦ F obtained
by gluing the input nodes of F ′ along the output nodes of F . A crucial point is that the
semantics of the composite J−K may be computed as follows

JF ′ ◦ FK(o) =
(
JFK1(JF

′K1(o
′)), JF ′K2(o

′) ◦ JFK2(JF
′K1)
)

4.8.2. Reducing transformation forests. We now introduce two elementary trans-
formations F 7→ F ′ over transformation forests, together with associated morphisms
Ty(F)→ Ty(F ′):
• Pruning: if v ∈ VF is a leaf which is not an output node in the forest F : A→ B, call

prune(F , v) : A→ B the forest obtained by removing v and adjacent edges from F .
This induces a canonical map

prune(v) : Ty(F)→ Ty(prune(F , v))

by using the weakening maps on the components corresponding to the deleted edges.
• Contraction: If there is a vertex v with a unique child c and a (unique) parent p in the

forest F : A→ B, call contract(F , v) : A→ B the forest obtained by replacing the edges
(p, v) and (v, c) with a single edge (p, c) and removing v.

There is a canonical map

contract(v) : Ty(F)→ Ty(contract(F , v))

induced by the internal composition map

HomD ([F (Cp)(F (Cv)]⊗ [F (Cv)(F (Cc)], F (Cp)(F (Cc))

The auxiliary maps prune and contract operations are compatible with the semantic
map J·K in the sense that for every o ∈ O and suitable vertices u, v of F , we have

i = π1(JFK(o)) = π1(Jprune(F , u)K(o)) = π1(Jcontract(F , v)K(o))

and the following diagrams (using the above i) commute in D

Ty(F)
JFK(o) //

prune(v)
��

F (Ci)(F (Co)

Ty(prune(F , v))
Jprune(F ,v)K(o)

44
Ty(F)

JFK(o) //

contract(v)
��

F (Ci)(F (Co)

Ty(contract(F , v))
Jcontract(F ,v)K(o)

44

Consider the rewrite system over forests F : A→ B induced by those two operations,
and call = its reflexive closure and ∗ the transitive closure of =. It can be shown
that the reflexive closure = satisfies the diamond lemma, i.e., that for every F ,F ′ and F ′′
such that F = F ′ and F = F ′′, there exists F ′′′ such that F ′ = F ′′′ and F ′′ = F ′′′.
This ensures that is confluent. Furthermore, given a rewrite F ∗ F ′, there is a map
Ty(F)→ Ty(F ′) obtained by composing maps prune(v) and contract(v) (and identities for
trivial rewrites F ∗ F). It can be shown that this map does not depend on the rewrite
path. This is done first by arguing that if we have a rewrite square for =, the associated
diagram in D is commutative, and then proceed by induction over the rewrite paths using
the diamond lemma.

F //

��

F ′

��
F ′′ // F ′′′

7−→
Ty(F) //

��

Ty(F ′)

��
Ty(F ′′) // Ty(F ′′′)

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 142

Defining the size of a forest as its number of vertices, it is clear that prune(F , u) and
contract(F , v) have size strictly less than F , so the rewrite system is also terminating.
With confluence, it means that for every forest F : A → B, there is a unique forest
reduce(F) : A→ B such that F ∗ reduce(F) and there is no F ′ such that reduce(F) F ′.
We call reduce(F) the normal form of F ; a forest F is called normal if reduce(F) = F . By
the discussion above, there are canonical maps reduceF : Ty(F)→ Ty(reduce(F)) coming
from rewrites.

The last important thing to note is that, if the input A =
˘

i∈I Ci and output B =˘
o∈O Co are fixed, up to isomorphism, there are finitely many normal forests F : A→ B as

their size is bounded by 2(|I|+ |O|). We write NF (A,B) for a finite set of representative for
all normal forests A→ B, and given F ∈ NF (B,C) and F ′ ∈ NF (A,B), we write F ◦N F ′
for the unique forest in NF (A,C) which is isomorphic to reduce(F ◦ F ′); an example of
the full computation of a F ◦N F ′ is given in Figure 4.8.3. Similarly, we assume that
Grph(f) ∈ NF (A,B) for every morphism f ∈ HomC& (A,B).

4.8.3. Putting everything together. Let T =
(
Q, q0, (Aq)q∈Q , δ, i, o

)
be a sdm-C&-SST

with input Σ∗. We define the sdm-D-SST

T ′ =

∑
q∈Q

NF (Aq0 , Aq) , (q0,Grph(id)), (Ty(F))q,F , δ′, i′o′


where
δ′ : Σ→

∏
q,F

∑
r,F ′

HomD
(
Ty(F),Ty(F ′)

)

i′ ∈ HomD (
‚
,Grph(id)) o′ ∈

∏
q,F

HomD (Ty(F),‚)

are given as follows, assuming that Aq =
¯
x∈Xq

Cq,x

• Notice that Ty(Grph(id)) =
⊗

x∈Xq0
F (Cq0,x)(F (Cq0,x); we simply take the constant

map corresponding to the Xq0-fold tensor of Λ(idCq0,x
) for i′.

• Fix a ∈ Σ and recall that δ(a) is a family of pairs

(δQ(a)q, δ
C&(a)q)q∈Q ∈

∏
q∈Q

∑
r∈Q

HomC& (Aq, Ar)

δ′ is then defined by the equation

δ′(a)q,F =
((
δQ(a)q, δ

NF(a)q,F
)
, δD(a)q,F

)
where we set δNF(a)q,F = Grph(δC&(a)q) ◦N F and δD(a)q,F is obtained as in Figure 4.8.4
• Finally, for q,F ranging over states of T ′, we define o′q,F . Recall that F determines a

canonical family

JFK ∈
∏
x∈Xq

∑
x0∈Xq0

HomD (Ty(F), F (Cq0,x0)(F (Cq,x))

First, as ‚C& = ι&(‚C), note that there is a unique x ∈ Xq such that oq = (x, oC)∗
for some oC ∈ HomC

(
Cq,x,‚C

)
. Writing the pair JFKx as (x0, f), o′q,F is depicted in

Figure 4.8.4.

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 143

C0

U C2

C3

C1

V

C4

T

S

C0

C2

C3

C1

C4

D0

D2

D1

U
V

T

S

D0

D2

D3

D1

D4

C0

C1

C2

C3

C4

U

T

S

D0

D2

D1

C0

C4

D3

D4

D3

D4

T

S

D0

D2

D1

C0

C4

D3

D4

↧

↧

↧

Figure 4.8.3. An example of composing normal transformation forests,
where first the usual composition and then two big steps of reduction (that
are respectively pruning and contracting) are carried out in succession.

4.8. UNIFORMIZATION THROUGH MONOIDAL CLOSURE 144

δD(a)q,F o′q,F

Ty(F)

∼
��

>⊗ Ty(F)

̂δC& (a)q⊗id
��

Ty(Grph(δC&(a)q))⊗ Ty(F)

∼
��

Ty(Grph(δC&(a)q) ◦ F)

reduce
��

Ty(reduce(Grph(δC&(a)q) ◦ F))

Ty(δNF(a)q,F)

Ty(F)

f

��
F (Cq0,x0)(F (Cq,x)

∼
��

(F (Cq0,x0)(F (Cq,x))⊗
‚

��
(F (Cq0,x0)(F (Cq,x))⊗ F (

‚
)

id⊗F (ix0)

��
(F (Cq0,x0)(F (Cq,x))⊗ F (Cq0,x0)

ev
��

F (Cq,x)

F (oC)
��

F (‚)

��‚

Figure 4.8.4. Definition of δD(a)q,F and o′q,F .

We omit the proof that JT K = JT ′K by induction over the length of an input word. While
spelling it out may be a bit notation-heavy, there is no particular difficulty considering
the remarks above linking J−K, the composition of transformation forests and their normal
forms.

CHAPTER 5

String transductions in a linear λ-calculus

Now that we are equipped with the categorical tools developed in the previous chapter,
we can prove the parts of Theorem 1.2.3 pertaining to string functions, that is, the first
two rows. That is the goal of this chapter. Some of our developments will also apply more
generally to ranked trees, as a preparation for the next chapter where the final row of
Theorem 1.2.3 (concerning regular tree functions) will be shown.

In Section 5.1, we introduce the equational theory and typing rules of the λ`⊕&-calculus,
and explain how it can be used to define functions on strings and trees thanks to Church
encodings, with a few examples. Section 5.2 uses a syntactic lemma to reframe our implicit
characterization of regular functions as the equivalence between SR-SSTs and single-state
L-SSTs – where L is a streaming setting made of purely linear λ`⊕&-terms – and then proves
this categorical reformulation as an immediate application of Theorem 1.2.4 / Corollary 4.5.4.
As for the part of Theorem 1.2.3 about comparison-free polyregular functions, it is tackled
with a more ad-hoc argument in Section 5.3.

Both sections 5.2 and 5.3 depend on an analysis of the syntax of the λ`⊕&-calculus to
prepare the groundwork for their semantic evaluation arguments. The required syntactic
properties are encapsulated in concise lemmas whose proofs are deferred to the final section
of this chapter (§5.4). We expend considerable effort on those proofs – most of it spent
on routine yet cumbersome bureaucracy, and some on actual technical subtleties – but the
obstacles are unrelated to the various conceptual points concerning automata and semantics
that we wished to stress. As we already summarized those points in the introduction (§1.2),
let us say a few words now about syntax. (This discussion can be safely skipped.)

The idea is that, since the string/tree function defined by a λ`⊕&-term depends only on
its βη-equivalence class, we will pick a representative of this class whose shape is restricted
(and thus can be exhaustively analyzed) depending on its type, called a normal form. Much
of Section 5.4 is devoted to normalization results, i.e. “every λ`⊕&-term is βη-equivalent
to a normal form”. We prove this first for an “old-school” definition of normal and neutral
terms, and then for a more refined notion of focused normal forms.

For our purposes, the naive notion of β-normal form is inadequate because of the positive
connectives ⊗/⊕. (A term is β-normal if it does not admit any β-reduction, and the
β-reduction relation is obtained by orienting some equations from Figure 5.1.2.) Our better
notions of normal form can be reached by combining β-reductions with applications of
well-chosen η-conversions (called extrusions) whose role to unlock new β-redexes. Similar
issues arise in the literature concerned with deciding βη-equivalence in λ-calculi with positive
connectives, e.g. [Lin07; Alt+01]; we refer to [Sch16] for a comprehensive and pedagogical
overview of this subject, including the application of focusing to canonical normal forms
for simply typed λ-terms with sums. In our case, we are interested in normal forms only
because they lend themselves to (lengthy) case analyses to understand the closed inhabitants
of the types TreeΓ[τ](TreeΣ and StrΓ[τ]→ StrΣ. Our normal forms are not meant to
serve as canonical representatives of βη-equivalence classes, nor do they provide a decision
procedure for equivalence.

145

5.1. THE λ`⊕&-CALCULUS, CHURCH ENCODINGS, AND DEFINABILITY OF FUNCTIONS 146

All these complications could have been avoided by restricting to the fragment of the
λ`⊕&-calculus containing only the negative connectives → /(/& and the corresponding
type constructors, for which β-normal forms would have been sufficient – in fact, we might
choose to do so in an upcoming journal version to avoid frightening readers. (Additionally,
normalization for this negative fragment is immediate by a reduction-preserving translation
to the simply typed λ-calculus with surjective pairing.) However, it was tempting to include
those positive connectives in our work since our semantic tools can handle them without
difficulty (our category SR⊕& from the previous chapter can interpret ⊗/⊕). The choice
made in this thesis is also an opportunity to demonstrate that the existing tools for working
with the syntactic metatheory of typed λ-calculi are perfectly adequate for the job.

5.1. The λ`⊕&-calculus, Church encodings, and definability of functions

5.1.1. Types & terms. We consider a linear λ-calculus which we dub the λ`⊕&-calculus,
based (via the proofs-as-programs correspondence) on propositional intuitionistic linear logic
with both multiplicative and additive connectives (IMALL) together with a base type o.
The grammar of types is as follows:

τ, σ ::= o | τ (σ | τ ⊗ σ | I | τ → σ | τ & σ | τ ⊕ σ | > | 0

A typing context Ψ is a finite set of declarations x1 : τi, . . . , xk : τk where the xi are pairwise
distinct variables (which constitute the set of free variables of Ψ) and the τi are types.
Typed λ`⊕&-terms are given in Figure 5.1.1 along with the inductive definition of the typing
judgment Ψ; ∆ ` t : τ , where Ψ and ∆ are contexts (with disjoint sets of free variables), τ
is a type and t is a term. In such a judgment, Ψ is called the non-linear context and ∆ the
linear context; the basic idea is that variables in Ψ may be “used” arbitrarily many times,
while those in ∆ must be “used” exactly once (for a notion of usage such that the additive
pair 〈x, x〉 uses x once, whereas the multiplicative pair x⊗ x uses x twice).

In the rules of Figure 5.1.1, a comma between linear contexts stands for a disjoint union:
∆ and ∆′ must have no variable name in common to form the linear context ∆,∆′. This is
required to ensure that the variables are used once.

Remark 5.1.1. This is formally more restrictive than an affineness condition, i.e. than
requiring variables in ∆ to be used at most once. In practice, λ`⊕& is not less expressive
than its affine variant, which would be obtained by adjoining the following weakening rule:

Ψ; ∆ ` t : τ
Ψ; ∆, ∆′ ` t : τ

The basic idea is that the affineness can be encoded at the level of types by using the linear
type τ & I instead of the affine type τ (as argued for instance in [Gir95, §1.2.1]).

The simply typed λ-calculus admits an embedding into λ`⊕&. Conversely, there is a
mapping from λ`⊕& to the simply typed λ-calculus with products and sums by “forgetting
linearity” (and replacing the tensorial product eliminator let x⊗ y = t in u by the variant
based on projections u[π1(t)/x, π2(t)/y]).

As usual, we identify λ`⊕&-terms up to renaming of bound variables (α-equivalence)
and admit the standard definition of the capture-avoiding substitution. The computational
meaning of terms is specified by their βη-equivalence (denoted by =βη), generated by closing
under contexts the equations in Figure 5.1.2. Note that those equations are implicitly typed
and that typing is invariant under βη-equivalence.

As usual, a λ`⊕&-term is said to be closed when it does not contain any free variables,
that is, when it is typed in the empty context. Finally, we isolate an important class of
types and terms for the sequel.

5.1. THE λ`⊕&-CALCULUS, CHURCH ENCODINGS, AND DEFINABILITY OF FUNCTIONS 147

Ψ; x : τ ` x : τ Ψ, x : τ ; · ` x : τ

Ψ; ∆, x : τ ` t : σ
Ψ; ∆ ` λx.t : τ (σ

Ψ; ∆ ` t : τ (σ Ψ; ∆′′ ` u : τ

Ψ; ∆, ∆′ ` t u : σ

Ψ, x : τ ; ∆ ` t : σ
Ψ; ∆ ` λ!x.t : τ → σ

Ψ; ∆ ` t : τ → σ Ψ; · ` u : τ

Ψ; ∆ ` t u : σ

Ψ; ∆ ` t : τ Ψ; ∆′ ` u : σ

Ψ; ∆, ∆′ ` t⊗ u : τ ⊗ σ
Ψ; ∆′ ` u : τ ⊗ σ Ψ; ∆, x : τ, y : σ ` t : κ

Ψ; ∆, ∆′ ` let x⊗ y = u in t : κ

Ψ; · ` () : I
Ψ; ∆ ` t : I Ψ; ∆′ ` u : τ

Ψ; ∆, ∆′ ` let () = t in u : τ

Ψ; ∆ ` t : τ Ψ; ∆ ` u : σ

Ψ; ∆ ` 〈t, u〉 : τ & σ

Ψ; ∆ ` t : τ & σ

Ψ; ∆ ` π1(t) : τ
Ψ; ∆ ` t : τ & σ

Ψ; ∆ ` π2(t) : σ

Ψ; ∆ ` t : τ
Ψ; ∆ ` in1(t) : τ ⊕ σ

Ψ; ∆ ` t : σ
Ψ; ∆ ` in2(t) : τ ⊕ σ

Ψ; ∆, x : τ ` u : κ Ψ; ∆, x : τ ` v : κ Ψ; ∆′ ` t : τ ⊕ σ
Ψ; ∆,∆′ ` case(t, x.u, x.v) : κ

Ψ; ∆ ` 〈〉 : >
Ψ; ∆′ ` t : 0

Ψ; ∆, ∆′ ` abort(t) : τ

Figure 5.1.1. Typing rules of λ`⊕&.

β: (λx.t) u =β t[u/x] (λ!x.t) u =β t[u/x]

case(in1(t), x.u, x.v) =β u[t/x] π1(〈t, u〉) =β t

case(in2(t), x.u, x.v) =β v[t/x] π2(〈t, u〉) =β u

let x⊗ y = t⊗ u in v =β v[t/x][u/y] let () = () in t =β t

η: λx.t x =η t λ!x.t x =η t

let x⊗ y = t in u[x⊗ y/z] =η u[t/z] 〈π1(t), π2(t)〉 =η t

let x⊗ y = t in v[u/z] =η v[let x⊗ y = t in u/z] x =η 〈〉
let () = t in u[()/z] =η u[t/z]

let () = t in v[u/z] =η v[let () = t in u/z]
case(t, x.u[in1(x)/z], y.u[in2(y)/z]) =η u[t/z] abort(t) =η u

Figure 5.1.2. Equations for λ`⊕&-terms (relating terms that have matching types).

5.1. THE λ`⊕&-CALCULUS, CHURCH ENCODINGS, AND DEFINABILITY OF FUNCTIONS 148

Definition 5.1.2. Recall from the introduction (Definition 1.2.2) that we call a type purely
linear if it does not have any occurrence of the ‘→’ connective. A λ`⊕&-term t is also said
to be purely linear if the typing judgment Ψ; ∆ ` t : τ admits a derivation where all the
types that occur are purely linear.

Remark 5.1.3. For any derivable typing judgment Ψ; ∆ ` t : τ , if the types occurring
in Ψ and ∆, as well as τ , are purely linear, then t is βη-equivalent to some purely linear
λ`⊕&-term. (This is a consequence of normalization.)

5.1.2. Church encodings of strings and trees. In order to discuss string-to-string (and
tree-to-tree) functions in the λ`⊕&-calculus, we need to discuss how they are encoded. Recall
from Section 1.1.6 that Church encodings provide a canonical way to encode algebraic data
types in the simply typed λ-calculus. For instance, for natural numbers and strings over
{a, b}, writing w for the Church encoding of w, we have

Nat! = (o→ o)→ o→ o Str!
{a,b} = (o→ o)→ (o→ o)→ o→ o

3 = λ!s.λ!z.s (s (s z)) aab = λ!a.λ!b.λ!ε.a (a (b ε))

Conversely, one may show that any closed simply typed λ-term of type Nat! (resp. Str!
{a,b})

is βη-equivalent to the Church encoding of some number (resp. string). In the rest of this
dissertation, we will use a less common, but more precise λ`⊕&-type for Church encodings
of strings of trees, first introduced in [Gir87, §5.3.3].

Definition 5.1.4. Let Σ be an alphabet. As already announced in §1.2.2, we define StrΣ
as (o (o) → . . . → (o (o) → o → o where there are |Σ| occurrences of o (o. Note
in particular that thanks to the isomorphism1 (A& B) → C ∼= A → B → C (non-linear
currying), we have

StrΣ ∼=

(¯
a∈Σ

(o(o)

)
→ o→ o

It can be checked that StrΣ has the same closed inhabitants (up to βη-equivalence) as
the usual Str!

Σ presented above, but one should keep in mind that this choice is not entirely
innocuous. It is in large part motivated by our main results, which might no longer hold
when taking Str!

Σ instead of StrΣ.
This situation generalizes to trees. For instance, the Church encoding of the tree depicted

in Figure 2.1.1 is λ!a.λ!b.λ!c. a (a c (b c)) c : (o→ o→ o)→ (o→ o)→ o→ o.

Definition 5.1.5. Given a ranked alphabet Σ = (Σ, ar), the λ`⊕& type TreeΣ is defined as
TreeΣ = (o(. . .(o)→ . . .→ (o(. . .(o)→ o

where there are |Σ| top-level arguments, and, within the component corresponding to the
letter a ∈ Σ, there are |ar(a)|. In other words, we have the isomorphism

TreeΣ ∼=

(¯
a∈Σ

(o⊗ar(a)(o)

)
→ o

Remark 5.1.6. The isomorphism of Remark 2.1.1 translates to an equality StrΣ = TreeΣ.

The fundamental property of Church encodings is that they induce not just a map
from trees in Tree(Σ) to λ`⊕&-terms of type TreeΣ in the empty context, but a bijective
correspondence when the latter are considered up to βη-equivalence:

1We keep this notion informal, but suffices to say that this is intended to be definable internally to λ`⊕&.

5.1. THE λ`⊕&-CALCULUS, CHURCH ENCODINGS, AND DEFINABILITY OF FUNCTIONS 149

δ = λa z. let (b, z′) = z in
let (x, y) = z′ in
if b then
(tt, 〈λu. π1(x) (a u), let () = π2(y) in π2(x)〉 , y)

else
(ff, 〈λu. a (π1(x) u), let () = π2(y) in π2(x)〉 , y)

δ‖ = λz. let (b, z′) = z in
let (x, y) = z′ in
if b then
(ff, 〈λu.u, let () = π2(y) in π2(x)〉 , 〈λv.π1(y) (π1(x) u), let () = π1(x) in π2(y)〉)

else
(tt, 〈λu.u, let () = π2(y) in π2(x)〉 , 〈λv.π1(x) (π1(y) u), let () = π1(x) in π2(y)〉)

o = λε z. let (b, z′) = z (tt, 〈λu.u, ()〉 , 〈λu.u〉) in
let (x, y) = z′ in
let () = π2(x) in
if b then
π1(y) ε

else
let () = π2(y) in ε

Figure 5.1.3. Auxiliary λ`⊕&-terms for Example 5.1.12, where tt = in1(()),
ff = in2(()), if t then u else v = case(t, x.let () = x in u, y.let () = y in v)).

Proposition 5.1.7. Fix a ranked alphabet Σ. The map t 7→ t taking trees t ∈ Tree(Σ) to
their Church encodings modulo =βη is a bijection.

The surjectivity part of this statement is a consequence of normalization. For this reason,
we shall prove this in Section 5.4.3 after our normalization result.

5.1.3. Two ways to define functions over Church encodings. We are now ready to
give our notions of computation for our string (and tree) functions. First, we need an
operation of type substitution in λ`⊕&, which allow to substitute an arbitrary type κ for o.

o[κ] = κ (τ (σ)[κ] = τ [κ](σ[κ] . . .

(This already made an appearance in Chapter 1, in particular §1.1.6.)

Remark 5.1.8. Type substitution extends in the obvious way to typing contexts as well,
and even to typing derivations, so that

Ψ; ∆ ` t : τ ⇒ Ψ[κ]; ∆[κ] ` t : τ [κ]
In particular, it means that every t : TreeΣ is also of type TreeΣ[κ] for any type κ.

This remark ensures that the following notion of definable tree functions (strings being
a special case) in the λ`⊕&-calculus makes sense.

Definition 5.1.9. A function f : Tree(Σ)→ Tree(Γ) is called λ`⊕&-definable when there
exists a purely linear type κ together with a closed λ`⊕&-term

f : TreeΣ[κ](TreeΓ

5.1. THE λ`⊕&-CALCULUS, CHURCH ENCODINGS, AND DEFINABILITY OF FUNCTIONS 150

such that f and f coincide up to Church encoding; i.e., for every tree t ∈ Tree(Σ)

f(t) =βη f t

In particular, a string function Σ∗ → Γ∗ is λ`⊕&-definable when the corresponding unary
tree function Tree(Σ)→ Tree(Γ) (cf. Remark 2.1.1) is. Note that by Remark 5.1.6,

TreeΣ[κ](TreeΓ = StrΣ[κ](StrΓ

Remark 5.1.10. Proposition 5.1.7 has an important consequence: every closed λ`⊕&-term
of type TreeΣ[κ](TreeΓ defines some function Tree(Σ)→ Tree(Γ).

We will give another notion of definable string function in the λ`⊕&-calculus soon, but
first, let us give some concrete examples of λ`⊕&-definable functions. They should illustrate
a claim from Theorem 1.2.3 (that we will establish later): over both strings and trees,
λ`⊕&-definable functions coincide with regular functions.
Example 5.1.11. The reverse function Σ∗ → Σ∗ is λ`⊕&-definable. (It was used previously
for instance to define the “iterated reverse” in Example 2.3.7.) Supposing that we have
Σ = {a1, . . . , ak}, one λ`⊕&-term that implements it is
λs.λ!a1. . . . λ

!ak.λ
!ε. s (λx.λz.x (a1 z)) . . . (λx. (ak z)) (λx.x) ε : StrΣ[o(o](StrΣ

Example 5.1.12. The copyless SST of Figure 2.3.1 is computed by a λ`⊕&-term of type
StrΣt{‖} [τ] (StrΣ with τ = Bool ⊗ ((o (o) & I) ⊗ ((o (o) & I). Intuitively, Bool
corresponds to the current state of the SST while each component (o(o) & I corresponds
to a register. Supposing that we have Σ = {a1, . . . , ak}, and that the letter ‖ corresponds to
the first constructor in the input string, the λ`⊕&-definition is given by

λs.λ!a1. . . . λ
!ak.λ

!ε. o (s δ‖ (δ a1) . . . (δ ak))

where the terms δ : (o (o) (τ (τ , δ‖ : o (τ (τ and o : o ((τ (τ) (o are
defined in Figure 5.1.3.
Example 5.1.13. Consider the ranked alphabet Σ = {a : 2, b : 2, c : ∅} (where 2 = {/, .})
and the alphabet Γ = {a, b, c}. The conditional swap of Example 2.6.1 is λ`⊕&-definable
as a term of type TreeΣ[(o (o) & (o (o)] → StrΓ reminiscent of the BRTT given in
Example 2.6.3. Observe the use of an additive conjunction ‘&’ (that is not of the form (−& I)
meant to make data discardable), reflecting the fact that this BRTT is single-use-restricted
but not copyless. To wit, setting τ = (o (o) & (o (o) and assuming free variables
a, b : o(o, define the auxiliary terms

δa = λl.λr. 〈π1(l) ◦ a ◦ π1(r), π1(r) ◦ a ◦ π1(l)〉 : τ (τ (o(o

δb = λl.λr. (λx. 〈x, x〉) (π1(l) ◦ b ◦ π1(r)) : τ (τ (o(o

where f ◦ g stands for the composition λz. f (g z). The conditional swap is then coded as
λt.λ!a.λ!b.λ!c.λ!ε. π2 (t δa δb (λx. c x)) ε

Remark 5.1.14. Once again, our set-up, summarized in Definition 5.1.9, is biased toward
characterizing regular functions; there are many non-equivalent alternatives which also make
perfect sense. For instance, changing the following would be reasonable:
• allow κ to be arbitrary (i.e. to contain ‘→’) or with some restrictions;
• change the type of Church encodings (recall the distinction Str!

Σ/StrΣ).
These alternatives share many good structural properties with our choice. Giving more
automata-theoretic characterizations for those and comparing them lies beyond the scope of
this dissertation, but would be interesting. In particular, arbitrary κ would correspond to
definability in the simply typed λ-calculus; see Section 1.4.1.

5.2. REGULARITY EQUALS λ`⊕&-DEFINABILITY 151

(Let us mention that the pure linearity constraint on the type κ actually has a clear
operational meaning: as mentioned in the introduction, it corresponds to single-use-restricted
assignments.)

Another parameter that can be tweaked, and for which we do investigate the effects of
the change, is the use of the linear arrow (at the top level of the type TreeΣ[κ](TreeΓ.
Morally, this corresponds to the fact that a streaming string transducer or bottom-up
tree transducer traverses its input in a single pass. We shall consider replacing (by the
non-linear function arrow → in the case of strings:

Definition 5.1.15. A function f : Σ∗ → Γ∗ is called (λ`⊕&,→)-definable when there exists
a purely linear type κ together with a closed λ`⊕&-term

f : StrΣ[κ]→ StrΓ
such that for every string s ∈ Σ∗,

f(s) =βη f s

According to Theorem 1.2.3, this will provide our characterization of comparison-free
polyregular functions. But even without knowing their relationship to automata theory yet,
we can already deduce the following property of the above-defined function classes:

Proposition 5.1.16. The class of λ`⊕&-definable is closed under composition, and so is
the class of (λ`⊕&,→)-definable functions.

Proof. We prove the case of λ`⊕&-definitions; for (λ`⊕&,→)-definitions, the same
argument where(is replaced by → everywhere applies.

Let t1 : TreeΓ[κ1] (TreeΠ and t2 : TreeΣ[κ2] (TreeΓ where κ1 and κ2 are both
purely linear. Using Remark 5.1.8, we then have t2 : (TreeΣ[κ2](TreeΓ)[κ1] and the result
of this type substitution is equal to TreeΣ[κ2[κ1]](TreeΓ[κ1]. Therefore, u = λx. t1 (t2 x)
is a well-typed λ`⊕&-term, with type TreeΣ[κ2[κ1]](TreeΠ. The function computed by
u is λ`⊕&-definable by definition since κ2[κ1] is purely linear, and it is the composition of
those computed by the λ`⊕&-terms t1 and t2. �

5.2. Regularity equals λ`⊕&-definability

Now we prove the first row of Theorem 1.2.3.

5.2.1. The syntactic category L of purely linear λ`⊕&-terms. First, we relate our
notion of generalized SSTs from Chapter 4 to the λ`⊕&-calculus. If Γ = {b1, . . . , bn} is an
alphabet, call Γ̃ the non-linear typing context

Γ̃ = (b1 : o(o, . . . , bn : o(o, ε : o)

Definition 5.2.1. We call L(Γ̃) (or just L when Γ is clear from the context) the category
• whose objects are purely linear types;
• whose morphisms from τ to σ are λ`⊕&-terms t such that Γ̃; · ` t : τ (σ, considered up

to βη-equivalence;
• whose identity is given by λx.x and composition of f and g by λx. f (g x).

Remark 5.2.2. In the definition of morphisms, represented by λ`⊕&-terms, we only impose
the pure linearity restriction on the types of the terms. Because λ`⊕& is normalizing
(Theorem 5.4.1), we could have further assumed the λ`⊕&-terms to be normal and thus, to
only contain subterms whose types are also purely linear (cf. Remark 5.1.3). Therefore, it
makes sense to say that L(Γ̃) is about the purely linear fragment of λ`⊕& augmented with
(inert) constants from Γ̃.

5.2. REGULARITY EQUALS λ`⊕&-DEFINABILITY 152

Similarly, for the equivalence relation we use to actually define the homsets, we use the
full βη-equivalence, which could, on the face of it, require to go oustide of the purely linear
fragment of λ`⊕& to establish certain equalities (for instance, consider the rather artificial
derivation λx.x =βη λx.(λ

!y.y) x =βη λx.x). This is also unnecessary as it can be checked
that the normalization argument relies on a reduction relation →βε which is confluent up to
commutative conversions ≈c (Theorem 5.4.4); since both →βε and ≈c preserve the purely
linear fragment, this is enough to conclude that we could ignore non-purely linear terms
when defining =βη for the purely linear fragment. (This is a kind of conservativity property.)

L is a monoidal closed category with products and coproducts, which captures the
expressiveness of purely linear λ`⊕&-terms enriched with constants for the “empty word”
and prepending letters of Γ to the left of a “word” when regarding the type o being regarded
as the type of such words. This leads to the expected notion of streaming setting (cf. §4.2).

Definition 5.2.3. L is the streaming setting (L, I, o, L−ML) with output Γ∗ such that LtML = w

if and only if λ!b1. . . . λ
!bn. λ

!ε. t () is βη-equivalent to the Church encoding of w (this defines
a total function because of Proposition 5.1.7).

Our interest in L lies in the following lemma. (Recall that a C-SST is said to be
single-state if its set of states is a singleton.)

Lemma 5.2.4. A function Σ∗ → Γ∗ is computable by a single-state L-SSTs if and only if it
is λ`⊕&-definable in the sense of Definition 5.1.9.

To prove one direction of this equivalence, we need a technical lemma on λ`⊕&-terms
defining string functions. In order to state the lemma in the more general case of tree
functions, so that it may be reused in Chapter 6, we extend the notation Γ̃ above as follows:
given a ranked alphabet Σ = {a1 : A1, . . . , an : An} (recall the notation from §2.1), let

Σ̃ = (a1 : o(. . .(o, . . . , an : o(. . .(o)

where the type of ai has |Ai| arguments (thus, it contains |Ai|+ 1 occurrences of o).

Lemma 5.2.5. Let Σ = {a1 : A1, . . . , an : An} and Γ = {b1 : B1, . . . , bk : Bk} be ranked
alphabets such that there is some Ai = ∅ (i.e., Tree(Σ) 6= ∅). Up to βη-equivalence, every
term of type TreeΣ[κ](TreeΓ is of the shape

λs.λ!b1. . . . λ
!bk. o (s d1 . . . dn)

such that o and the di are purely linear λ`⊕&-terms with no occurrence of s. In particular:
Γ̃; · ` o : κ(o Γ̃; · ` di : κ(. . .(κ

(with the type of di having |Bi| arguments).

The proof, by case analysis of the λ`⊕&-terms in normal form of type TreeΣ[κ](TreeΓ,
will be provided in Section 5.4.4. For now, let us use this to establish the equivalence between
λ`⊕&-definability and L-SSTs.

Proof of Lemma 5.2.4. Before beginning the proof, it should be noted that SSTs
process strings from left to right while Church encodings work rather from right to left. This
is not a big issue in the presence of higher-order functions.(

L-SST ⊆ λ`⊕&) Given a L-SST T = ({∗}, ∗, τ, δ, i, o), δ may be regarded as family
of λ`⊕& terms (ta)a∈Σ (with free variables in Γ̃). Suppose that Σ = {a1, . . . , ak} and recall
that Example 5.1.11 provides a λ`⊕&-term rev : StrΣ[o (o] (StrΣ implementing the
reversal of its input string. JT K is implemented by the following λ`⊕&-term:

λs. λ!b1. . . . λ
!bn. λ

!ε. o (rev s ta1 . . . tak (i ())) : StrΣ[τ (τ](StrΓ

5.2. REGULARITY EQUALS λ`⊕&-DEFINABILITY 153(
λ`⊕& ⊆ L-SST

)
Any λ`⊕&-term of type StrΣ[τ](StrΓ is βη-equivalent to

λs. λ!b1. . . . λ
!bn. λ

!ε. t (s u1 . . . uk v)

by Lemma 5.2.5, where t, v and the ui are some terms typable in Γ̃. The L-SST
T = ({∗}, ∗, τ (τ, δ, λx. x, λf. o (f i)) where δ(ai, ∗) = (∗, λg.λx. ai (g x))

computes the same string function. �

Lemma 5.2.4 therefore enables us to reframe the part of Theorem 1.2.3 about regular
functions as a statement comparing the expressiveness of single-state L-SSTs and stateful
SR-SSTs (indeed, the latter correspond to usual copyless SSTs which compute regular
functions, cf. Section 4.2.1). This motivates our abstract development focused on comparing
the expressiveness of various C-SSTs. In order to build morphisms from L to other streaming
settings, we shall make use of the following fundamental property.

Lemma 5.2.6. Let C be a streaming setting (C,
‚
,‚, L−M) with output Γ∗ whose underlying

category C is symmetric monoidal closed with
‚

= I and has finite products and coproducts.
Let (fb)b∈Γ ∈ HomC (‚,‚)Γ and e ∈ HomC (

‚
,‚) be such that LeM = ε and, for every

g ∈ HomC (
‚
,‚), we have Lfb ◦ gM = bLgM (that is, fb acts by concatenating the single-letter

word b on the left).
Then there is a canonical morphism J−K : L→ C of streaming settings such that JoK = ‚.

Moreover the underlying functor is strong monoidal for ⊕, &, ⊗ and preserves (.

Without spelling out the details, this lemma essentially states that L is initial among
symmetric monoidal closed categories with products and coproducts (thought the uniqueness
part of initiality has not been included in our statement). We do not offer a proof of this
lemma, which we consider folklore. The interested reader may find a detailed treatment in
[Bie94, Chapter 4] for the case of L(∅) (i.e., where the λ`⊕&-terms have no free variables).
Let us note that, because of the specific way we defined L, the first step in this proof should
invoke the conservativity of the congruence =βη over the purely linear fragment of the
λ`⊕&-calculus (Remark 5.2.2). This is because the notion of symmetric monoidal closed
category does not require the existence of an exponential modality ‘!’ (that would allow
encoding τ → σ as !τ (σ), and thus, all the equations in the initial symmetic monoidal
closed category with products and coproducts should only satisfy those equations mentioning
those constructs.

5.2.2. L-SSTs compute regular functions. We can now give the proof of the first implicit
characterization stated in Theorem 1.2.3. Thanks to Lemma 5.2.4 this amounts to the
equivalence between single-state L-SSTs and regular functions.

The technically more difficult part is soundness: every single-state L-SST computes a
regular function. But almost all the work has been done for this already. According to
§4.5.2, single-state SR⊕&-SSTs compute regular functions. Thanks to Lemma 4.2.8, this
means we just have to build a morphism of streaming settings L → SR⊕&. This is done
by combining the initiality of the syntactic category (as stated for our specific purposes in
Lemma 5.2.6) with the fact that SR⊕& is monoidal closed (Corollary 4.5.4).

For the converse inclusion, we use the characterization of regular functions by stateful
SR-SSTs. Since L has coproducts (given by the ⊕ type constructor), L-SSTs are equivalent
to single-state L-SSTs. We then conclude using the following result.

Lemma 5.2.7. There is a morphism of streaming settings SR→ L.

We build this morphism using the generic construction of Corollary 4.6.3 (which has
already been applied in Section 4.7.). This is not strictly necessary; see Lemma 6.7.2 for a

5.3. COMPARISON-FREE POLYREGULARITY EQUALS (λ`⊕&,→)-DEFINABILITY 154

sketch of a “manual” definition of such a morphism in the case of trees. In fact, to prove
that all λ`⊕&-definable string functions are regular, the level of abstraction that we are
working with is largely overkill: it would suffice to encode copyless SSTs as λ`⊕&-terms, a
programming exercise that is not particularly difficult.

Proof of Lemma 5.2.7. We first give the construction of the underlying functor. First,
note that L has all cartesian products and internal homsets, given by the syntactic connectives
on types with the same notations. Thus, it is symmetric monoidal closed and quasi-affine;
we can therefore apply Corollary 4.6.3 to the base type o, regarded as an object of L, and to
the family of endomorphisms (Γ̃; · ` c : o(o)c∈Γ ∈ HomL (o, o)Γ. (Indeed, by definition,
every letter c ∈ Γ serves as a variable c given the type o(o in the typing context Γ̃.) This
gives us F : SR → L such that F (∅) = I, F ({•}) = (o(o) & I and

∀w ∈ Γ∗, F (ŵ) =βη λz. let () = z in 〈(λx.w1 (w2 . . . (wn x) . . .)), ()〉
Since

‚
SR = ∅ and

‚
L = I, we can simply take i = idI :

‚
L → F (

‚
SR) as part of our

morphism of streaming settings. The map o : F (‚SR) → ‚L is more interesting. Since
‚SR = {•} and ‚L = o, we can see that o must be a λ`⊕&-term of type ((o(o) & I)(o
in the context Γ̃. The choice that works is o = λp. π1(p) ε (recalling that (ε : o) ∈ Γ̃ stands
for the empty string). Proving that Lo ◦ F (ŵ) ◦ iML = LŵMSR for any w ∈ Γ∗ is merely a
matter of performing βη-conversions starting from the above equation on F (ŵ); we leave
this to the reader. Since every f ∈ HomSR (

‚
,‚) is of the form f = ŵ for some w ∈ Γ∗,

this suffices to show that (F, i, o) fits the definition of a morphism of streaming settings. �

5.3. Comparison-free polyregularity equals (λ`⊕&,→)-definability

Having just proved the first result on strings claimed in Theorem 1.2.3, we now move on
to the second one.

5.3.1. Extensional completeness. The easier direction, i.e., the fact that every comparison-
free polyregular function is (λ`⊕&,→)-definable (Definition 5.1.15), is established via the
definition of the former as the smallest class of string-to-string functions containing all
regular functions and closed under composition by substitution (Definition 3.1.2):
• As a consequence of what we just saw in the previous section, every regular function

is (λ`⊕&,→)-definable. Indeed, the function computed by t : StrΣ[τ] (StrΠ is also
implemented by λ!x. t x : StrΣ[τ]→ StrΠ.
• The class of (λ`⊕&,→)-definable functions is closed under CbS, as the lemma below states.

Lemma 5.3.1. Let f : Σ∗ → I∗ be computed by t : StrΣ[τ] → StrI and gi : Σ
∗ → Π∗ be

defined by ui : StrΣ[σi]→ StrΠ for each i ∈ I. Assume that τ and every σi are purely linear
types. Then CbS(f, (gi)i∈I) is computed by some λ`⊕&-term of type StrΣ[κ]→ StrΠ where
κ is purely linear.

Proof. Let the type κ and the following λ`⊕&-terms be given by Lemma 5.3.2 below:
cast0 : StrΣ[κ](StrΣ[τ] casti : StrΣ[κ](StrΣ[σi[o(o]] for i ∈ I

By Remark 5.1.8, we have ui : StrΣ[σi[o(o]]→ StrΠ[o(o] for i ∈ I. This allows us to
define the following λ`⊕&-term that implements CbS(f, (gi)i∈I):

λ!s.λ!h1 . . . λ
!h|Π|.λ

!x. t (cast0 s) û1 . . . û|I| x : StrΣ[κ]→ StrΠ
(to make things clear, h1, . . . , h|Π| : o(o and x : o) where, for each i ∈ I, we take

ûi = ui (casti s) (λf.λy. h1 (f y)) . . . (λf.λy. h|Π| (f y)) (λy. y)

(thus, s : Str[κ], h1 : o(o, . . . , h|Π| : o(o; · ` ûi : o(o). �

5.3. COMPARISON-FREE POLYREGULARITY EQUALS (λ`⊕&,→)-DEFINABILITY 155

Lemma 5.3.2. Let Σ be a finite alphabet, J be a finite set of indices, and (τj)j∈J be a
family of purely linear types. Then there exist a purely linear type κ and closed λ`⊕&-terms
castj : StrΣ[κ](StrΣ[τj] such that, for every w ∈ Σ∗, we have castj w =βη w.

Proof. For the sake of simplicity, let us demonstrate the idea for J = {1, 2}. Take
κ = ((τ1(τ1) & I)⊗ ((τ2(τ2) & I)

and define cast1 as the λ`⊕&-term
λ!s.λ!h1 . . . λ

!h|Σ|.λ
!x. let f ⊗ g = s u1 . . . u|Σ| (v ⊗ v) in let () = π2 g in (π1 f) x

where v = 〈(λy. y), ()〉 and ui = λz. let f ⊗ g = z in 〈(λy. hi ((π1 f) y)), ()〉 ⊗ g. �

5.3.2. Outline of a semantic evaluation argument. We would now like to prove the
converse: every (λ`⊕&,→)-definable function is comparison-free polyregular. Again, this
will be done using a combination of a syntactic analysis of normal forms for λ`⊕&-terms
and semantic evaluation in the monoidal closed category SR⊕& (cf. Section 4.5). We start
here by presenting the general setup and how the pieces fit together to reach the desired
conclusion; the semantic lemmas will be proved in the next subsections, while the syntactic
aspects will be properly treated only towards the end of the chapter (§5.4.6).

Let Σ be a finite alphabet. Recall that any A ∈ Obj(SR(Σ)⊕&) has the form

A =
⊕

q∈Q(A)

¯
x∈X(A)q

R(A)q,x

where ⊕ and & do not merely denote (co)products determined only up to isomorphism:
the objects of SR(Σ)⊕& are defined as formal coproducts of products of finite register sets.
Therefore, A is uniquely identified by the data (Q(A), (X(A)q)q∈Q, (R(A)q,x)q∈Q,x∈X(A)q),
and we shall use the notations Q(A), X(A) and R(A) for the components of this triple in
the rest of this section.

Since SR(Σ)⊕& is isomorphic to a coproduct completion, it admits a canonical coproduct-
preserving forgetful functor to FinSet. We denote this functor by Q since the image of an
object A in SR⊕& is none other than the above-defined Q(A). We also write

A→Σ B = HomSR⊕&(Σ) (A,B) bAcΣ = I→Σ A

Proposition 5.3.3. Using the dependent sum operation on sets (§2.1.1), we have

∀A ∈ Obj(SR⊕&), bAcΣ ∼=
∑

q∈Q(A)

(Σ∗)R(A)q where R(A)q =
∑

x∈X(A)q

R(A)q,x

Proof. First, by definition of (−)⊕&,

bAcΣ ∼=
∑

q∈Q(A)

∏
x∈X(A)q

HomSR (I, R(A)q,x) ∼=
∑

q∈Q(A)

∏
x∈X(A)q

(Σ∗)R(A)q,x

To justify the last step, recall that in SR, the monoidal unit is I = ∅, and HomSR (I, R(A)q,x)
consists of all the functions R(A)q,x → (Σ+∅)∗ (the copylessness condition is vacuous when
the source is ∅). We then conclude using the canonical bijection ST × SU ∼= ST+U . �

Definition 5.3.4. Let q ∈ Q(A), r ∈ R(A)q and f : Γ∗ → bAcΣ. We define L[f]q ⊆ Γ∗ and
ρ[f]q,r : Γ

∗ → Σ∗ as follows. Let w ∈ Γ∗ and let (q′, (sr′)r′∈R(A)q′
) correspond to f(w) by

the bijection of the previous proposition. Then

w ∈ L[f]q ⇐⇒ q = q′ ρ[f]q,r =

{
sr if q = q′

ε otherwise

We say that f is comparison-free polyregular when:

5.3. COMPARISON-FREE POLYREGULARITY EQUALS (λ`⊕&,→)-DEFINABILITY 156

• L[f]q is a regular language for all q ∈ Q(A);
• ρ[f]q,r is a comparison-free polyregular function for all q, r.

We will apply this semantic notion of cfp function to denotations of λ`⊕&-terms. First,
let J−K : L(Σ)→ SR⊕Σ(Σ) be the functor given by Lemma 5.2.6. For any λ`⊕&-term t such
that Σ̃; · ` t : A (where the typing context Σ̃ is defined at the beginning of §5.2.1), write

λ().t = λx. let () = x in t and JtK′ = Jλ().tK ∈ bAcΣ
(indeed, λ().t ∈ HomL (I, A)). This is not sufficient to interpret terms of type StrΓ[τ]→ StrΣ,
however, so we introduce the following ad-hoc notion.

Definition 5.3.5. Suppose we are given a λ`⊕&-term t with Σ̃, s : StrΓ[τ]; · ` t : σ where
σ and τ are purely linear. We define the interpretation 〈|t|〉 : w ∈ Γ∗ 7→ Jt[w/s]K′ ∈ bJσKcΣ.

With these definitions in mind, we can state the suitable semantic generalization of our
desired soundness result.

Theorem 5.3.6. Let t be a λ`⊕&-term such that Σ̃, s : StrΓ[τ]; · ` t : σ with σ and τ
purely linear. Then the map between sets 〈|t|〉 : Γ∗ → bJσKcΣ is comparison-free polyregular.

Let us show that this indeed implies what we want.

Proof that (λ`⊕&,→)-definable =⇒ comparison-free polyregular.
Let t : StrΓ[τ]→ StrΣ be a closed λ`⊕&-term defining the function f : Γ∗ → Σ∗. According
to the above theorem, the interpretation g =

〈∣∣t s b1 . . . b|Σ| ε
∣∣〉 : Γ∗ → bocΣ (of t applied

to the free variables in the context Σ̃, s : StrΓ[τ]) is cfp. For any w ∈ Γ∗,〈∣∣t s b1 . . . b|Σ| ε
∣∣〉 (w) = Jt w b1 . . . b|Σ| εK

′ = Jf(w) b1 . . . b|Σ| εK
′

By Definition 5.2.3 and using the η-conversion rules, Lf(w) b1 . . . b|Σ| εML = f(w). The fact
that J−K is a morphism of streaming settings (Lemma 5.2.6), combined with the observation
that the bijection L−MSR⊕&

: bocΣ
∼−−→ Σ∗ is an instance of Proposition 5.3.3, leads to

f(w) = ρ[g]q,r(w) where q, r are such that {q} = Q(JoK) and {r} = R(JoK)q (note that by
Lemma 5.2.6, JoK = ‚SR⊕& = ι⊕&({•})). Since g is comparison-free polyregular, so is
f = ρ[g]q,r by definition. �

We now intend to prove Theorem 5.3.6. The heart of the argument is contained in the
following lemma involving a semantic counterpart to composition by substitution (§3.1).

Lemma 5.3.7. Let fc : Γ∗ → bA(AcΣ for c ∈ Γ and g : Γ∗ → bAcΣ be comparison-free
polyregular. Then the map h : Γ∗ → bAcΣ defined below is also cfp:

h : w = w[1] . . . w[n] 7−→ Λ−(fw[n](w)) ◦ · · · ◦ Λ−(fw[1](w)) ◦ (g(w))

where, for ϕ ∈ bA(AcΣ, we write Λ−(ϕ) for the corresponding morphism A→Σ A (to be
precise, Λ− is the inverse of the bijection Λ′ defined in Proposition 4.1.9).

A couple of further properties stating that comparison-free polyregular functions play well
with the categorical structure of SR(Σ)⊕& are also helpful. The first one allows to combine
two functions f : Γ∗ → bAcΣ and g : Γ∗ → bBcΣ into a single function Γ∗ → bA⊗BcΣ. The
second one pertains to the action of SR(Σ)⊕& on bAcΣ.

Lemma 5.3.8. If f : Γ∗ → bAcΣ and g : Γ∗ → bBcΣ are comparison-free polyregular, so
are the following:
• w 7→ (f(w)⊗ g(w)) ◦ λ−1I ∈ bA⊗BcΣ (where λI is the unitor I⊗ I→Σ I)
• w 7→ h ◦ f(w) ∈ bCcΣ for any h : A→Σ C.

5.3. COMPARISON-FREE POLYREGULARITY EQUALS (λ`⊕&,→)-DEFINABILITY 157

Finally, our last tool for proving Theorem 5.3.6 is a syntactic lemma whose proof is
deferred to Section 5.4.6.

Lemma 5.3.9. Let τ be a purely linear type. The set of βη-equivalence classes of λ`⊕&-terms
t such that Σ̃, s : StrΓ[τ]; · ` t : σ for some purely linear σ can be exhaustively generated
by the following inductive rules:
• base case: any term t such that Σ̃; · ` t : σ;
• inductive case: o

〈
s d1 . . . d|Σ| dε, ()

〉
for any dε, d1, . . . , d|σ|, o in this set, with respective

types σ, σ(σ, . . . , σ(σ, (σ & I)(σ′ (thus, the new term has type σ′).

Proof of Theorem 5.3.6. Using the above lemma, we proceed by structural induction.
In the base case, we have a term t such that the function 〈|t|〉 is constant, and therefore
comparison-free polyregular. In the inductive case, we have

Σ̃, s : StrΓ[τ]; · ` t = o
〈
s d1 . . . d|Σ| dε, ()

〉
: σ′

and the induction hypothesis is that 〈|dε|〉 , 〈|d1|〉 , . . . ,
〈∣∣d|σ|∣∣〉 , 〈|o|〉 are cfp. For w ∈ Γ∗,〈∣∣s d1 . . . d|Σ| dε∣∣〉 (w) = Jw d1[w/s] . . . d|Σ|[w/s] dε[w/s]K

′

= Jλ(). w d1[w/s] . . . d|Σ|[w/s] dε[w/s]K
= Jdw[1][w/s] ◦ · · · ◦ dw[|w|][w/s] ◦ (λ(). dε[w/s])K
= Jdw[1][w/s]K ◦ · · · ◦ Jdw[|w|][w/s]K ◦ Jλ(). dε[w/s]K

= Λ−(Jdw[1][w/s]K
′) ◦ · · · ◦ Λ−(Jdw[|w|][w/s]K′) ◦ Jdε[w/s]K′

= Λ−(
〈∣∣dw[1]∣∣〉 (w)) ◦ · · · ◦ Λ−(〈∣∣dw[|w|]∣∣〉 (w)) ◦ 〈|dε|〉 (w)

The penultimate step is the preservation of the monoidal closed structure by the functor
J−K; indeed, the canonical bijection HomL (σ, σ)

∼−−→ HomL (I, σ(σ) sends t to λ().t, just
as in the definition of J−K′ from J−K. By Lemma 5.3.7,

〈∣∣s d1 . . . d|Σ| dε∣∣〉 (w) is therefore
comparison-free polyregular. Now, it can be checked that for w ∈ Γ∗,〈∣∣o 〈s d1 . . . d|Σ| dε, ()〉∣∣〉 (w) = ev ◦

(
〈|o|〉 (w)⊗

(
p ◦
〈∣∣s d1 . . . d|Σ| dε∣∣〉 (w))) ◦ λ−1I

where ev comes from the universal property of (JτK & I)(JσK and p : JτK →Σ JτK & I is
the canonical morphism pairing its input with (). We may thus conclude the argument by
applying Lemma 5.3.8 three times. �

5.3.3. Proof of Lemma 5.3.7. Let us fix q ∈ Q(A) and r ∈ R(A)q. First, we show that
the language L[h]q is regular.

Proof. We have L[h]q = {w ∈ Γ∗ | Q(h(w))(•) = q} by definition. Unraveling the
definition of h and applying the functoriality of Q, we also have

Q(h(w)) = Q(Λ−(fw[n](w))) ◦ · · · ◦Q(Λ−(fw[1](w))) ◦Q(g(w))

from which we can deduce that
L[h]q =

⋃
q′∈Q(A)

⋃
δ

{w1 . . . wn | δ(−, wn) ◦ · · · ◦ δ(−, w1)(q
′) = q}︸ ︷︷ ︸

recognized by a DFA with transition function δ

∩L[g]q′ ∩
⋂
c∈Γ

Lc,δ(−,c)

where δ ranges over functions Q(A)× Γ→ Q(A) and
Lc,η = {w | Q(Λ−(fc(w))) = η}

Since g was assumed to be cfp, L[g]q′ is regular for each q′ ∈ Q(A). For every c ∈ Γ and
η : Q(A)→ Q(A), we also have (using evA,A : (A(A)⊗A→Σ A from Definition 4.1.3)

Lc,η =
⋃{

L[fc]q′′
∣∣ q′′ ∈ Q(A(A) such that η = Q(evA,A)(q′′,−)

}

5.3. COMPARISON-FREE POLYREGULARITY EQUALS (λ`⊕&,→)-DEFINABILITY 158

and each L[fc]q′′ is regular by assumption, so Lc,η is also regular. Since regular languages
are closed under finite boolean operations, we are done. �

This being done, we will now show the following claim, which entails the lemma statement
by definition: the function ρ[h]q,r : Γ∗ → Σ∗ can be written as a composition by substitution
CbS(h′q,r, (γi)i∈I) where

• I =
∑

q′∈Q(A)

R(A)q′ t Γ×

 ∑
q′′∈Q(A(A)

R(A(A)q′′

;

• h′q,r : Γ∗ → I∗ is a regular function;
• γq′,r′ = ρ[g]q′,r′ for q′ ∈ Q(A) and r′ ∈ R(A)q′ ;
• γc,q′′,r′′ = ρ[fc]q′′,r′′ for c ∈ Γ, q′′ ∈ Q(A(A) and r′′ ∈ R(A(A)q′′ .

Proof. We will show that for any q0 ∈ Q(A) and (qc)c∈Γ ∈ Q(A(A)Γ, we can define
using such a composition by substitution a function that coincides with ρ[h]q,r on the regular
language L ⊆ Γ∗ defined as

L = L[g]q0 ∩
⋂
c∈Γ

L[fc]qc

From this, one can derive the desired conclusion concerning ρ[h]q,r using the closure of
regular functions under regular conditionals (Proposition 2.3.11): combine the functions
obtained for every combinations of q0 and (qc)c, leveraging the fact that

CbS

((
w 7→

{
α(w) if w ∈ L′

β(w) otherwise

)
, (γi)i∈I

)
=

(
w 7→

{
CbS(α, (γi)i∈I)(w) if w ∈ L′

CbS(β, (γi)i∈I)(w) otherwise

)
We now fix q0 and (qc)c∈Γ. For w ∈ Γ∗, let Fw : SR(I)⊕& → SR(Σ)⊕& be the letter
substitution functor induced by i 7→ γi(w) (this functor is the identity on objects). Let
ζ ∈ bAcI correspond to

(q0, ((q0, r
′))r′∈R(A)q′

) ∈
∑

q′∈Q(A)

(I∗)R(A)q′

We claim that if w ∈ L[g]q0 , then Fw(ζ) = g(w). This is because Fw(ζ) corresponds to

(q0, (γq0,r′(w))r′∈R(A)q′
) = (q0, (ρ[g]q0,r′(w))r′∈R(A)q′

) ∈
∑

q′∈Q(A)

(Σ∗)R(A)q′

Similarly, for each c ∈ Γ, there exists ξc ∈ bA (AcI that depends on qc but not w
such that for any w ∈ L[f]qc , we have Fw(ξc) = fc(w). The functor Fw also preserves the
monoidal closed structure on the nose, so we have Fw(Λ−(ξc)) = Λ−(fc(w)).

By definition of L, all those conditions on w are implied by w ∈ L. By functoriality,

∀w = w[1] . . . w[n] ∈ L, Fw(Λ
−(ξw[n]) ◦ · · · ◦ Λ−(ξw[1]) ◦ ζ) = h(w)

The action of Fw on the “register contents” of an element of bAcI is to replace every i ∈ I
by γi(w). Comparing this with the definition of composition by substitution, we get:

∀w ∈ L, CbS
(
ρ[w[1] . . . w[n] 7→ Λ−(ξw[n]) ◦ · · · ◦ Λ−(ξw[1]) ◦ ζ]q,r, (γi)i∈I

)
(w) = ρ[h]q,r(w)

Call h′ : Γ∗ → I∗ the first argument of the CbS in the left-hand side. It has the shape of a
function computed by a single-state SR⊕&-SST. As shown in Section 4.5.2, such devices
only compute regular functions. Thus, h′ is regular, which concludes the proof. �

5.4. SYNTACTIC BUREAUCRACY 159

5.3.4. Proof of Lemma 5.3.8.

Proof of the first item. Since ⊗ is defined in SR⊕& by distributivity over formal
coproducts, we have Q(A ⊗ B) = Q(A) × Q(B). To check that L[f ⊗ g](q,q′) is regular,
observe that it is equal to L[f]q ∩ L[g]q′ . For r ∈ R(A)q, we have ρ[f ⊗ g](q,q′),r = ρ[f]q,r
and for r′ ∈ R(B)q, we have ρ[f ⊗ g](q,q′),r′ = ρ[g]q′,r′ ; hence, for every r ∈ R(A ⊗ B), we
know that ρ[f ⊗ g](q,q′),r is comparison-free polyregular, so we may conclude. �

Proof sketch for the second item. Fix q ∈ Q(B). The following equality shows
that L[h◦ ◦ f]q is regular:

L[h◦ ◦ f]q =
⋃{

L[f]q′
∣∣ q′ ∈ Q(A) such that Q(h)(q′) = q

}
Next, given r ∈ R(B)q, we wish to show that ρ[h◦ ◦ f]q,r is comparison-free polyregular.

To do so, we rely on Proposition 3.1.8: cfp functions are closed under both concatenation
and regular conditionals. The idea is as follows: for q′ ∈ Q(h)−1(q), one can build a function
that coincides with ρ[h◦ ◦ f]q,r on L[f]q′ by concatenating a finite sequence of functions
that are either constant or equal to ρ[f]q′,r′ for some r′ ∈ R(A)q′ . (Without entering into
cumbersome details, let us give a hint as to the provenance of the concatenation pattern: it
comes from applying to r some register transition, i.e. SR-morphism, that is bundled as
part of the SR⊕&-morphism h.) A regular conditional can then be used to combine the
finitely many possibilities for q′ and thus conclude the proof. �

5.4. Syntactic bureaucracy

This section, which concludes the current chapter on string functions in the λ`⊕&-calculus,
proves the boring syntactic lemmas that have been delayed until now. Recall that we have
already discussed the high-level considerations regarding these syntactic aspects at the
beginning of the chapter.

In Section 5.4.1 we show a first normalisation result. We then apply it in the three
subsequent subsections to prove our claims on the structure of Church encodings and of
λ`⊕&-terms of type StrΣ[τ](StrΓ (where τ is purely linear). For StrΣ[τ]→ StrΓ, it is
more convenient to use a refined notion of normal forms, which does not only eliminate
all β-redexes, but also orders the use of eliminators (term applications t u, case, …) in a
principled way according to a notion of polarity. In proof theory, this is called focusing. We
establish the corresponding focused normalization theorem in Section 5.4.5 and then use it
for the proof of our last syntactic lemma in Section 5.4.6.

5.4.1. Normalization of the λ`⊕&-calculus. We are going to prove that the λ`⊕&-calculus
is normalizing. What it means is that any λ`⊕&-term t admitting a typing derivation
Ψ; ∆ ` t : A can be shown to be βη-equivalent to a normal term u. The notion of
normal (NF) and neutral (NE) are defined via the typing system presented in Figure 5.4.1.
The intuition is that a normal term cannot be β-reduced further, and that neutral terms
substituted in normal terms produce terms that stay normal. Our proof proceeds along
the lines of [RR97, Appendix A.1], using reducibility candidates. All this is completely
unsurprising; our only reason for including this routine material is that we are not aware of
a text treating exactly λ`⊕& (e.g., incorporating additives, a native ⊗ and units).

To describe said reducibility candidates, we first need to give an oriented version of
βη-equality. The β-reduction relation →β is obtained by closing the relations given in
Figure 5.4.2 under contexts. We write →∗β for the reflexive transitive closure relation. Much
like with =β , we assume that terms related by →β have the same type in the same context.

As it is not the case that every typable term β-reduces to a normal form, we need
to describe another set of reduction rules which involve =η. Those extrusion rules are

5.4. SYNTACTIC BUREAUCRACY 160

Ψ; ∆ `NE t : τ

Ψ; ∆ `NF t : τ

Ψ; x : τ `NE x : τ Ψ, x : τ ; · `NE x : τ

Ψ; ∆, x : τ `NF t : σ

Ψ; ∆ `NF λx.t : τ (σ

Ψ, x : τ ; ∆ `NF t : σ

Ψ; ∆ `NF λ!x.t : τ → σ

Ψ; ∆ `NE t : τ (σ Ψ; ∆′ `NF u : τ

Ψ; ∆, ∆′ `NE t u : σ

Ψ; ∆ `NF t : τ Ψ; ∆′ `NF u : σ

Ψ; ∆, ∆′ `NF t⊗ u : τ ⊗ σ
Ψ; ∆′ `NE t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `X u : κ

Ψ; ∆, ∆′ `X let x⊗ y = t in u : κ

Ψ; · `NF () : I
Ψ; ∆′ `NE t : I Ψ; ∆ `X u : κ

Ψ; ∆, ∆′ `X let () = t in u : κ

Ψ; ∆ `NF t : τ Ψ; ∆ `NF u : σ

Ψ; ∆ `NF 〈t, u〉 : τ & σ

Ψ; ∆ `NE t : τ & σ

Ψ; ∆ `NE π1(t) : τ

Ψ; ∆ `NE t : τ & σ

Ψ; ∆ `NE π2(t) : σ

Ψ; ∆ `NF t : τ

Ψ; ∆ `NF in1(t) : τ ⊕ σ
Ψ; ∆ `NF t : σ

Ψ; ∆ `NF in2(t) : τ ⊕ σ

Ψ; ∆ `NE t : σ ⊕ τ Ψ; ∆′, x : σ `X u : κ Ψ; ∆′, y : τ `X v : κ

Ψ; ∆, ∆′ `X case(t, x.u, y.v) : κ

Ψ; ∆ `NF 〈〉 : >
Ψ; ∆ `NE t : 0

Ψ; ∆, ∆′ `NE abort(t) : τ

Figure 5.4.1. Normal forms for λ`⊕&-terms (`NF for normal forms and
`NE for neutral forms and X ∈ {NE,NF}).

β-redexes (λx.t) u →β t[u/x] (λ!x.t) u →β t[u/x]

π1(〈t, u〉) →β t π2(〈t, u〉) →β u

case(in1(t), x.u, x.v) →β u[t/x] case(in2(t), x.u, x.v) →β v[t/x]

let x⊗ y = t⊗ u in v →β v[t/x][u/y] let () = () in t →β t

Figure 5.4.2. β-redexes.

5.4. SYNTACTIC BUREAUCRACY 161

listed in Figure 5.4.3; we also write →ε for the context closure of the relation described
there. While the number of cases is daunting, it should be remarked that these rules are
obtained mechanically by considering the nesting of an eliminator for a positive type (i.e.,
the let · = · in · constructions (⊗, I), case (⊕) and abort (0)) within another eliminator (the
aforementioned constructions plus function application (→,() and projections π1, π2 (&)).
For a more careful discussion of (a subset) of these rules, we point the reader to [Sch16,
Section 3.3]. We write →∗ε for the reflexive transitive closure of →ε, →βε for the union of
→ε and →β and →ε, and →∗βε for its reflexive transitive closure. With these notations, we
can state the finer version of the normalization theorem for λ`⊕&.

Theorem 5.4.1. For every term t such that Ψ; ∆ ` t : τ , there exists t′ such that t→∗βε t′
and Ψ; ∆ `NF t

′ : τ .

Before embarking on the definitions of the reducibility candidates and the proof of
Theorem 5.4.1 itself, we first make a couple of observations relating →∗βε and =βη, which
are both proved by straightforward induction on the relations →β and →βε.

Lemma 5.4.2. Suppose that we have terms t and t′ with matching types and that t→βε t
′.

Then, we have t =βη t
′. Furthermore if t is normal, so is t′. Similarly, if t is neutral, so is

t′.

Lemma 5.4.3. If t is normal, then there is no t′ such that t→β t
′.

Another crucial ingredient is the confluence of the reduction relation →βε (or Church-
Rosser property). Alas, this does not hold for syntactic equality (up to α-equivalence).
However, it holds up to commuting conversions, an equivalence relation ≈c inductively
defined by the clauses in Figure 5.4.4 and closure under contexts. We merely state the
confluence property that we will use.

Theorem 5.4.4. If we have t →∗βε u and t →∗βε v, then there exists u′ and v′ such that
u→∗βε u′, v →∗βε v′ and u′ ≈c v′.

A first observation is that these are compatible with =βη and that neutral and normal
term are preserved by commutative conversions.

Lemma 5.4.5. If t ≈c t′, then t =βη t
′.

Lemma 5.4.6. If t is neutral (resp. normal) and t ≈c t′, then t′ is also neutral (resp.
normal).

We can now turn to the definition of the reducibility candidates, where we write
t→∗βε≈c t′ when there is some t′′ such that t→∗βε t′′ and t′′ ≈c t′ hold.

Definition 5.4.7. Define a judgment Ψ; ∆ |= t : τ by induction over the type τ as follows:
• for τ = o, I, 0 or >, we have Ψ; ∆ |= t : τ if and only if there is t′ such that t→∗βε t′ and
Ψ; ∆ `NE t

′ : τ
• Ψ; ∆ |= t : τ (σ holds if and only if

– there is t′ such that t→∗βε t′ and Ψ; ∆ `NF t
′ : τ (σ

– for every u,∆′ such that Ψ; ∆′ |= u : τ , we have Ψ; ∆, ∆′ |= t u : σ
• Ψ; ∆ |= t : τ → σ holds if and only if

– there is t′ such that t→∗βε t′ and Ψ; ∆ `NF t
′ : τ → σ

– for every u such that Ψ; · |= u : τ , we have Ψ; ∆ |= t u : σ
• Ψ; ∆ |= t : τ ⊗ σ holds if and only if

– there is t′ such that t→∗βε t′ and Ψ; ∆ `NF t
′ : τ ⊗ σ

5.4. SYNTACTIC BUREAUCRACY 162

Nested ⊗/I eliminator

(let p = t in u) v →ε let p = t in (u v)

πi(let p = t in u) →ε let p = t in πi(u)
let q = let p = t in u in v →ε let p = t in let q = u in v

abort(let p = t in u) →ε let p = t in abort(u)
case(let p = t in u, x.v, y.w) →ε let p = t in case(u, x.v, y.w)

Nested 0 eliminator

abort(t) u →ε abort(t)
πi(abort(t)) →ε abort(t)

let p = abort(t) in u →ε abort(t)
abort(abort(t)) →ε abort(t)

case(abort(t), x.u, y.v) →ε abort(t)

Nested ⊕ eliminator

case(t, x.u, y.v) w →ε case(t, x.u w, y.v w)
πi(case(t, x.u, y.v)) →ε case(t, x.πi(u), y.πi(v))

let p = case(t, x.u, y.v) in w →ε case(t, x.let p = u in w, y.let p = v in w)
abort(case(t, x.u, y.v)) →ε case(t, x.abort(u), y.abort(v))

case(case(t, x.u, y.v), x′.u′, y′.v′) →ε case(t, x.case(u, x′.u′, y′.v′), y.case(v, x′.u′, y′.v′))

Figure 5.4.3. The extrusion relation →ε (i = 1, 2 and p, q are patterns ()
or z ⊗ z′).

let q = u in let p = t in v ≈c let p = t in let q = u in v
let p = t in abort(u) ≈c abort(let p = t in u)

let p = t in case(u, x.v, y.w) ≈c case(u, x.let p = t in v, y.let p = t in w)
case(u, x.abort(t), y.abort(v)) ≈c abort(case(u, x.t, y.v))

case(t, x.case(u, x′.v, y′.w), y.case(u, x′.v′, y′.w′))
≈c

case(u, x′.case(t, x.v, y.v′), y′.case(t, x.w, y.w′))

Figure 5.4.4. Commutative conversions ≈c (p, q are patterns () or z ⊗ z′
and both sides are assumed to be well-scoped).

5.4. SYNTACTIC BUREAUCRACY 163

– if there are t1, t2 such that and t →∗βε t1 ⊗ t2, then there are ∆1 and ∆2 such that
∆ = ∆1,∆2 and

Ψ; ∆1 |= t1 : τ and Ψ; ∆2 |= t2 : σ

• Ψ; ∆ |= t : τ & σ holds if and only if
– there is t′ such that t→∗βε t′ and Ψ; ∆ `NF t

′ : τ & σ

– Ψ; ∆ |= π1(t) : τ
– Ψ; ∆ |= π2(t) : σ
• Ψ; ∆ |= t : τ ⊕ σ holds if and only if

– there is t′ such that t→∗βε t′ and Ψ; ∆ `NF t
′ : τ ⊕ σ

– if there is u such that t→∗βε≈c in1(u), then Ψ; ∆ |= u : τ

– if there is v such that t→∗βε≈c in2(v), then Ψ; ∆ |= v : σ

The set of terms t such that Ψ; ∆ |= t : τ constitutes our set of reducibility candidates
at type τ in the context Ψ; ∆. They are defined in such a way that if Ψ; ∆ |= t : τ , then
there is t′ such that t→∗βε t′ and Ψ; ∆ `NF t

′ : τ . We shall be able to conclude this section if
we show an adequacy lemma stating that every typable term lies in a reducibility candidate.
Before doing that, we first need a couple of stability properties: closure under anti-reduction,
and the fact that every neutral term lies in a reducibility candidate.

Lemma 5.4.8. If t is a neutral term, then t cannot be βη-equivalent to one of the following
λx.u λ!x.u (u, v) u⊗ v 〈〉 () in1(u) in2(u)

Proof. Trivial case-analysis. �

Theorem 5.4.9. Suppose that Ψ; ∆ |= t′ : τ . Then the following hold:
• There exists t′′ such that t′ →∗βε t′′ and Ψ; ∆ `NF t

′′ : τ .
• If we have t→∗βε t′, then we also have Ψ; ∆ |= t : τ .
• If Ψ; ∆ `NE t : τ , then Ψ; ∆ |= t : τ .
• If t′ ≈c t′′, then Ψ; ∆ |= t′′ : τ .
• If t′ →∗βε t′′, then we also have Ψ; ∆ |= t′′ : τ .

Proof. The first point can be proven via an easy case analysis on τ that we skip. The
second point we may prove by induction over τ ; let us sketch a few representative cases:
• If τ is o, 0, I or >, this is immediate.
• Suppose that τ = σ (κ and that t →∗βε t′. By definition of |= at τ (κ, there

is some normal t′′ such that t′ →∗βε t′′, so we also have t →∗βε t′′ by transitivity. Now
suppose that we are given some u and ∆′ such that Ψ; ∆′ |= u : τ . By definition, we have
Ψ; ∆, ∆′ |= t′ u : κ. Using the induction hypothesis at κ and the fact that t u→∗βε t′ u,
we thus have that Ψ; ∆, ∆′ |= t u : κ. We can thus conclude that Ψ; ∆ |= t : κ.
• Suppose that τ = σ ⊕ κ and that t→∗βε t′. By definition of |=, there is some normal t′′

such that t′ →∗βε t′′, so we also have t→∗βε t′′ by transitivity. Now if we have u (resp. v)
such that t→∗βε≈c in1(u) (resp. in2(v)), then, thanks to confluence (Theorem 5.4.4) we
also have t′ →∗βε≈c in1(u) (resp. in2(v)), so we have Ψ; ∆ |= u : σ (resp. Ψ; ∆ |= u : κ)
by definition. Therefore, we may conclude that Ψ; ∆ |= t : σ ⊕ κ.

The third point is also proved via a straightforward induction over τ by leveraging Lemma 5.4.8.
The last two points follow from induction over τ combined with Theorem 5.4.4 and
Lemma 5.4.6. �

Corollary 5.4.10. If x is a variable of type τ in either Ψ or ∆, we have Ψ; ∆ |= x : τ .

Proof. Immediate as variables are neutral. �

5.4. SYNTACTIC BUREAUCRACY 164

Lemma 5.4.11. Suppose that we have Ψ; ∆ `NE t : τ ⊗ σ and Ψ; ∆′, x : τ, y : σ |= u : κ.
Then Ψ; ∆, ∆′ |= let x⊗ y = t in u : κ.

Similarly, if Ψ; ∆ `NE t : τ ⊕ σ, Ψ; ∆′, x : τ |= u : κ and Ψ; ∆′, y : σ |= u′ : κ, we have
Ψ; ∆,∆′ |= case(t, x.u, y.u′) : κ.

Finally, if Ψ; ∆ `NE t : I and Ψ; ∆′ |= u : κ, then Ψ; ∆, ∆′ |= let () = t in u : κ.

Proof. By induction over κ. �

Theorem 5.4.12 (Adequacy). Suppose that we have a non-linear context Ψ = x1 :
σ1, . . . , xk : σk, a linear context ∆ = a1 : τ1, . . . , an : τn and a term v such that
Ψ; ∆ ` v : κ for some type κ. Further, assume Ψ′,∆′1, . . . ,∆

′
n and terms t1, . . . tk, u1, . . . , un

such that Ψ′; · |= ti : σi for 1 ≤ i ≤ k and Ψ′; ∆′j |= uj : τj for 1 ≤ j ≤ n. Then we have

Ψ′; ∆′1, . . . , ∆
′
n |= v[t1/x1, . . . , tk/xk, u1/a1, . . . , un/an] : κ

Proof. The proof goes by induction over the typing derivation Ψ; ∆ ` v : κ; we sketch
a few representative subcases below. To keep notations short, we write γ (respectively δ)
instead of the sequence of assignments t1/x1, . . . , tk/xk (respectively u1/a1, . . . , un/an) and
∆′ = ∆′1, . . . , ∆

′
n.

• If the last rule used in an axiom, the conclusion is immediate.
• If the last rule used is a linear function application

Ψ; ∆1 ` v : κ(κ′ Ψ; ∆2 ` v′ : κ
Ψ; ∆1, ∆2 ` v v′ : κ′

with δ1, δ2 and ∆′′1, ∆
′′
2 the obvious decomposition of δ and ∆′, the induction hypothesis

yields
Ψ′; ∆′′1 |= v[γ, δ1] : κ(κ′ and Ψ′; ∆′′2 |= v′[γ, δ2] : κ

By definition of |= for type κ(κ′, we thus have Ψ′; ∆′ |= v[γ, δ1] v
′[γ, δ2] : κ

′, so we may
conclude.
• The case of non-linear function application is entirely analogous.
• If the last rule is the typing of a linear λ-abstraction

Ψ; ∆, c : κ ` v : κ′

Ψ; ∆ ` λc.v : κ(κ′

by the inductive hypothesis, we have Ψ′; ∆′,∆′′ ` v[γ, δ, v′/c] : κ′ for any v′ and ∆′′ such
that Ψ′; ∆′′ |= v′ : κ. We can prove the conjunct defining Ψ′; ∆′ |= (λc.v)[γ, δ] : κ(κ′

as follows:
– First, by taking ∆′′ = c : κ (Corollary 5.4.10), we obtain that there exists some v′′ such

that v[γ, δ]→∗βε v′′ and Ψ; ∆, c : κ `NF v
′′ : κ′. Therefore we have λc.v[γ, δ]→∗βε λc.v′

and Ψ; ∆ `NF λc.v
′ : κ(κ′.

– Then, assume we have some v′ and Ψ; ∆′′ |= v′ : κ, so that we have Ψ′; ∆′,∆′′ `
v[γ, δ, v′/c] : κ′ by the inductive hypothesis. Because

(λc.v)[γ, δ] v′ = (λc.v[γ, δ]) v′ →β v[γ, δ, v
′/c]

we may apply Theorem 5.4.9 to conclude that Ψ′; ∆′, ∆′′ |= (λc.v)[γ, δ] v′ : κ′

• The case of the non-linear λ-abstraction for → is similar.
• If the last rule applied is an introduction of ⊗,

Ψ; ∆1 ` t : τ Ψ; ∆2 ` u : σ

Ψ; ∆1, ∆2 ` t⊗ u : τ ⊗ σ
call δ1, δ2 the splitting of δ according to the decomposition ∆ = ∆1, ∆2. The induction
hypothesis yields

Ψ′; ∆′1 |= t[γ, δ1] : τ and Ψ′; ∆′2 |= u[γ, δ2] : σ

5.4. SYNTACTIC BUREAUCRACY 165

By definition it means that we have normal terms t′ and u′ such that t[γ, δ1]→∗βε t′ and
u[γ, δ2]→∗βε u′, so (t⊗ u)[γ, δ]→∗βε t⊗ u′. Now suppose that we have (t⊗ u)[γ, δ]→∗βε≈c
t′′ ⊗ u′′. It is not difficult to check (by induction over the length of the reductions →∗βε
and derivation of ≈c) that we have t[γ, δ1] →∗βε≈c t′′ and u[γ, δ2] →∗βε≈c u′′. So by
Theorem 5.4.9, we have that Ψ; ∆1 |= t′′ : τ and Ψ; ∆2 |= u′′ : σ,so we may conclude.
• If the last rule applied is an elimination of ⊗

Ψ; ∆1 ` u : τ ⊗ σ Ψ; ∆2, x : τ, y : σ ` t : κ
Ψ; ∆1, ∆2 ` let x⊗ y = u in t : κ

with δ1, δ2 the obvious decomposition of δ along ∆1, ∆2, the induction hypothesis applied
to the first premise yields Ψ′; ∆′1 |= u[γ, δ1] : τ ⊗ σ. In particular, this means we have
u[γ, δ1] →∗βε u′ such that Ψ′; ∆′1 `NF u′ : τ ⊗ σ. By Theorem 5.4.9, it suffices to show
that let x⊗ y = u′ in t[γ, δ2]→∗βε v such that Ψ′; ∆′1, ∆

′
2 |= v : κ to conclude. We do so

by going by induction over the judgment Ψ′; ∆′1 `NF u
′ : τ ⊗ σ.

– If we have Ψ′; ∆′1 `NE u′ : τ ⊗ σ, then we may use the outer inductive hypothesis
Ψ′; ∆′2, x : τ, y : σ |= t[γ, δ2] : κ and apply Lemma 5.4.11.

– If we have u′ = let x′ ⊗ y′ = u′′ in u′′′, applying the induction hypothesis, we have
some v such that

let x⊗ y = u′′′ in t[γ, δ2]→∗βε v and Ψ′; ∆′, x′ : τ ′, y′ : σ′ |= v : κ

We may thus conclude using the sequence of reductions below and Lemma 5.4.11
let x⊗ y = let x′ ⊗ y′ = u′′ in u′′′ in t[γ, δ2]

→ε let x′ ⊗ y′ = u′′ in let x⊗ y = u′′′ in t[γ, δ2]

→∗βε let x′ ⊗ y′ = u′′ in v

– We proceed similarly if u′ = case(u′′, x′.u′′′, y′.u′′′′), let () = u′′ in u′′′ or πi(u′′).
– Finally, if u′ = u′′ ⊗ u′′′, we apply the outer induction hypothesis with the substitution
γ, δ2, u

′′/x, u′′′/y to conclude. �

To finish proving our normalization result (Theorem 5.4.1), instantiate Theorem 5.4.12
in the case of a trivial substitution (ti = xi and uj = aj) using Corollary 5.4.10 and conclude
with Theorem 5.4.9.

5.4.2. More useful syntactic properties. The material presented here will be useful for
the proofs of Proposition 5.1.7 and Lemma 5.2.5.

Definition 5.4.13. Write v+ for the least preorder relation over λ`⊕& types satisfying the
following for every types τ and σ

τ, σ v+ τ ⊗ σ τ, σ v+ τ ⊕ σ τ, σ v+ τ & σ σ v+ τ (σ σ v+ τ → σ

We say that τ is a strictly positive subtype of σ whenever τ v+ σ.

Definition 5.4.14. A context Ψ; ∆ is called consistent if there is no term t such that
Ψ; ∆ ` t : 0.

Lemma 5.4.15. A context Ψ; ∆ is inconsistent if and only if there is a neutral term t such
that Ψ; ∆ `NE t : 0. Furthermore, if Ψ; ∆ `NE t : τ , the last typing rule applied has one
premise Ψ′; ∆′ `NE u : τ ′ and Ψ; ∆ is consistent, then so is Ψ′; ∆′.

Proof. The first point is an easy corollary of Theorem 5.4.1. The second point follows
from a case analysis, using the following facts:
• If Ψ, Ψ′; ∆, ∆′ is consistent, then so is Ψ; ∆.
• If Ψ; ∆, ∆′ is consistent and Ψ; ∆′ ` t : τ , then Ψ; ∆, x : τ is consistent. �

5.4. SYNTACTIC BUREAUCRACY 166

Lemma 5.4.16. If Ψ; ∆ is consistent and Ψ; ∆ `NE t : τ , then there is a variable in Ψ; ∆
of type σ with τ v+ σ.

Proof. By induction on the judgement Ψ; ∆ `NE t : τ .
• If the last rule applied was a variable lookup.

Ψ; x : τ `NE x : τ Ψ, x : τ ; · `NE x : τ

then the conclusion immediately follows.
• The more interesting cases are those of the elimination rules for(, ⊗ and &.

Ψ; ∆ `NE t : τ (σ Ψ; ∆′ `NF u : τ

Ψ; ∆, ∆′ `NE t u : σ

Ψ; ∆′ `NE t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `NE u : κ

Ψ; ∆, ∆′ `NE let x⊗ y = t in u : κ

Ψ; ∆ `NE t : τ & σ

Ψ; ∆ `NE π1(t) : τ

Ψ; ∆ `NE t : τ & σ

Ψ; ∆ `NE π2(t) : σ

Ψ; ∆ `NE t : σ ⊕ τ Ψ; ∆′, x : σ `NE u : κ Ψ; ∆′, y : τ `NE v : κ

Ψ; ∆, ∆′ `NE case(t, x.u, y.v) : κ

Ψ; ∆′ `NE t : I Ψ; ∆ `X u : κ

Ψ; ∆, ∆′ `X let () = t in u : κ

Ψ; ∆ `NE t : 0

Ψ ∆ `NE abort(t) : τ
The treatment of & and I is rather straightforward and 0 is ruled out because Ψ; ∆ is
assumed to be consistent, so we only explain the inductive step for(, ⊗ and ⊕.
– If the last rule applied is the elimination of a linear arrow

Ψ; ∆ `NE t : τ (σ Ψ; ∆′ `NF u : τ

Ψ; ∆, ∆′ `NE t u : σ

then the induction hypothesis applied to the first premise means that there is a variable
x in Ψ; ∆ of type κ such that τ (σ v+ κ, and we may conclude since σ v+ τ (σ.

– If the last rule applied is the elimination of a tensor product
Ψ; ∆′ `NE t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `NE u : κ

Ψ; ∆, ∆′ `NE let x⊗ y = t in u : κ

then the induction hypothesis applied to the first premise yields a variable z in Ψ; ∆, x :
τ, y : σ of type ζ with κ v+ ζ. If z /∈ {x, y}, then z occurs in Ψ; ∆ and we may
conclude. Otherwise, suppose that z = x; applying the induction hypothesis to the
second premise, we know that τ ⊗σ v+ τ v+ ζ ′ for a ζ ′ being the type of some variable
in ∆′ or a ζ ′ = !ζ ′′ with ζ ′′ being the type of some variable in Ψ. Therefore, we may
conclude since κ v+ τ v+ τ ⊗ σ v+ ζ ′. The case of z = y is treated similarly.

• If the last rule applied is the elimination of a coproduct
Ψ; ∆ `NE t : σ ⊕ τ Ψ; ∆′, x : σ `NE u : κ Ψ; ∆′, y : τ `NE v : κ

Ψ; ∆, ∆′ `NE case(t, x.u, y.v) : κ
then, by the inductive hypothesis applied to the second premise, there is ζ with κ v+ ζ
such that
(1) either there is a variable in Ψ; ∆′ with type ζ
(2) or ζ = σ.
In the first case, we may directly conclude. Otherwise, the induction hypothesis applied
to the first premise states that there is ζ ′′ with σ ⊕ τ v+ ζ ′′ so that ζ ′′ is a type of some
variable in Ψ or ∆. Hence, we have κ v+ σ v+ σ ⊕ τ v+ ζ ′′ and we may conclude. �

5.4. SYNTACTIC BUREAUCRACY 167

5.4.3. Proof of Proposition 5.1.7. Let us show that the Church encoding provides a
bijection between ranked trees over Σ and closed inhabitants of TreeΣ.

For the sake of this proof, let us assume that ranked alphabets Σ are ordered. Recall
that if t ∈ Tree(Σ), we write t : TreeΣ for its Church encoding. When Σ = {a1, . . . , ak},
t has shape λ!a1.λ

!ak.t
◦. for some neutral term t◦. Let us adopt this notation for a

map t 7→ t◦, mapping trees t to terms Σ̃; · ` t◦ : o, and let us abbreviate the sequence of
λ-abstractions λ!a1.λ

!ak. as λ!Σ for arbitrary (ordered) ranked alphabets Σ.
We use those conventions to show that the map t 7→ t is surjective (where it is understood

that the codomain consists of terms up to βη-equivalence.

Lemma 5.4.17. Fix a ranked alphabet Σ̃. For every typed normal term u, we have
(1) if Σ̃; · `NF u : o, then there is t ∈ Tree(Σ) such that u = t◦.
(2) if Σ̃; · `NE u : o (. . . (o where the type of u has k arguments, then there exists

a ∈ Σ, a list of trees t1, . . . , t|ar(a)|−k ∈ Tree(Σ) such that u = a t◦1 . . . t
◦
|ar(a)|−k.

Proof. We proceed by induction over the typing judgment of the normal form u.
Many cases are easily seen to not arise (typically, constructor for various datatypes).
Most eliminators can also be ignored because of Lemma 5.4.16. For instance, suppose
u = case(v, x.w, y.w′). Then it would means that we had some Σ̃; · `NE v : τ ⊕ σ for
some τ, σ, but that cannot be the case as τ ⊕ σ is never a strictly positive subtype of some
o(. . .(o.

As a consequence, there are only two cases of interest: the variable case and (linear)
function application.
• If u is a variable of type o, then the first result (and, as a consequence, the second) result

is immediate: u is the Church encoding of a tree with a single leaf. If it is a variable of
type o(. . .(o, the first claim is vacuously true and the second is also immediate.
• If u is a function application v w, then we have that Σ̃; · `NE v : o(. . .(o in both

cases. So we may apply the inductive hypothesis to obtain some a ∈ Σ and trees t1, . . . , tl
such that v = a t◦1 . . . t

◦
l . We also have that Σ̃; · `NF: w : o, so we have some tree tl+1

such that w =βη t
◦
l+1. Altogether, we thus have u = a t◦1 . . . t◦l+1 as expected of the

second item. If the first item is not vacuously true, we have that l + 1 = |A|, and thus,
a t◦1 . . . t

◦
l+1 = (a(t1, . . . , tl+1))

◦ as required. �

Given two ordered ranked alphabets Σ and Γ, write Σ ⊗ Γ for the ordered ranked
alphabet with letters Σ + Γ determined by in1(a) < in2(b) for a ∈ Σ, b ∈ Γ and where the
order is lifted from Σ and Γ otherwise.

Lemma 5.4.18. Fix ranked alphabets Σ,Γ. If we have Σ̃; · ` u : TreeΓ, then there exists
some t ∈ Tree(Σ⊗ Γ) such that u =βη λ

!Γ.t◦.

Proof. First, we use Theorem 5.4.1 to suppose that u is under normal form, and we
proceed by induction over the size of Γ. If it is empty, then the result follows from the first
item of Lemma 5.4.17. Otherwise Γ = S⊗ Γ′ for some singleton alphabet S with letter b.
Then, a quick case analysis shows that, as in Lemma 5.4.17, most cases can be ignored due
to the typing of u, and because of considerations based on Lemma 5.4.16. There is only one
interesting case which is the non-linear λ-abstraction.

Σ̃, S̃; · ` v : TreeΓ
Σ̃; · ` λ!b.v : TreeS⊗Γ

We may apply the induction hypothesis as Σ̃⊗ S = Σ̃, S̃ and get that u =βη λ!b.v =

λ!b.λ!Γ.t◦ = λ!S⊗ Γ.t◦. �

5.4. SYNTACTIC BUREAUCRACY 168

By instantiating this latest lemma with Γ empty, we can thus deduce that the map t 7→ t
is surjective. We may also show that it is injective by exhibiting a left-inverse map, using a
semantic interpretation of λ`⊕& into Set: with Σ fixed, use the cartesian-closed structure
and coproducts to interpret λ`⊕& with the interpretation of o being Tree(Σ). This yields
a map from terms t : TreeΣ to (Tree(Σ) → . . . → Tree(Σ)) → . . . → Tree(Σ), where the
arguments correspond to the arity of tree constructors; feed the actual constructors to this
function to recover a tree in Tree(Σ).

It is straightforward to check that this map is indeed a left inverse of t 7→ t, by induction
over t. Hence the map t 7→ t is bijective.

5.4.4. Proof of Lemma 5.2.5. We now analyse the terms of type TreeΣ[σ](TreeΓ.

Lemma 5.4.19. Let τ = κ1 → . . .→ κk → κ′ be a type and s a distinguished variable of
type τ . Let Σ be a ranked alphabet such that Σ̃; s : τ is consistent. Then, if there is k′ < k

such that Σ̃; s : τ `NE t : κk′+1 → . . .→ κk → κ, there are also terms d1, . . . , dk′ such that

t =βη s d1 . . . dk′ and Σ̃; · `NF di : κi for i ∈ {1, . . . , k′}

Proof. By induction over k′. Note that t being neutral is essential here. �

Lemma 5.4.20. Let τ = κ1 → . . . → κk → κ′ be a type with κ′ purely linear and s a
distinguished variable of type τ . Let Σ̃ be a ranked alphabet such that Σ̃; s : τ is consistent
and t be a term such that Σ̃; s : τ `NE t : σ for some σ such that σ v+ κ′ or of the shape
o(. . .(o. Then, there are terms o, d1, …, dk such that t =βη o (s d1 . . . dk) and

Σ̃; · ` o : κ′(σ Σ̃; · `NF di : κi for i ∈ {1, . . . , k}

Proof. We proceed by induction over a derivation of Σ̃; s : τ `NE t : σ. Note that to
apply the induction hypothesis, we need to ensure that every context under consideration is
consistent. We keep this check implicit as it always follows from Lemma 5.4.15.
• If the last rule applied is a variable lookup, then the term in question must be s itself.

Furthermore, we must have k = 0, so we may simply take o = λx.x to conclude.
• If the last rule considered is the following instance of the application rule

Σ̃; s : τ `NE t : σ
′(σ Σ̃; · `NF u : σ′

Σ̃; s : τ `NE t u : σ

then, by Lemma 5.4.16 (applied on the first premise), it means that we have

either σ′(σ v+ τ or σ(σ′ = o(. . .(o

In the first case, we can further see that σ′ (σ v+ κ′, so in both cases the induction
hypothesis can be applied to the first premise to yield some o′ and d1, . . . , dk such that
o′ (s d1 . . . dk) =βη t, and we may set o = λs. o′ s u to conclude.
• If the last rule considered is the following instance of the application rule

Σ̃; s : τ `NE t : σ
′ → σ Σ̃; · `NF u : σ′

Σ̃; s : τ `NE t u : σ

then, by Lemma 5.4.16 (applied on the first premise), it means that we have

either σ′ → σ v+ τ or σ → σ′ = o(. . .(o

The second alternative is absurd, and the first leads to σ = κ′ and σ′ = κk. Therefore,
we may apply Lemma 5.4.19 to get terms d1, . . . , dk−1 in normal form such that t =βη

s d1 . . . dk−1. We then set dk to be u and o to be the identity to conclude.

5.4. SYNTACTIC BUREAUCRACY 169

• If the last rule considered is the other instance of the application rule

Σ̃; ∆ `NE t : σ
′(σ Σ̃; ∆′, s : τ `NF u : σ′

Σ̃; ∆, ∆′, s : τ `NE t u : σ

by Lemma 5.4.16 applied to the first premise, we know that σ′ = o. Therefore, we may
apply the induction hypothesis to the second premise to obtain d1, . . . , dk and o′ such that
u =βη o

′ (s d1 . . . dk), in which case, t u =βη (λx. t (o x)) (s d1 . . . dk). We conclude by
setting o = λz. t (o′ z).
• If the last rule considered is the following instance of the elimination of tensor products

Σ̃; s : τ `NE t : ζ1 ⊗ ζ2 Σ̃; x1 : ζ1, x2 : ζ2 `NE u : σ

Σ̃; s : τ `NE let x⊗ y = t in u : σ

then, by the induction hypothesis (which is applicable because of Lemma 5.4.16), there are
d1, . . . , dk and o′ such that t =βη o

′ (s d1 . . . dk), in which case, we conclude by setting
o = λz. let x⊗ y = o′ z in u.
• The last rule considered cannot be the following instance of the elimination of tensor

products
Σ̃; · `NE t : ζ1 ⊗ ζ2 Σ̃; s : τ, x1 : ζ1, x2 : ζ2 `NE u : σ

Σ̃; s : τ `NE let x⊗ y = t in u : σ
as Lemma 5.4.16 would require that ζ1 ⊗ ζ2 be a strictly positive subtype of some
o(. . .(o.
• If the last rule considered types a projection

Σ̃; s : τ `NE t : σ1 & σ2

Σ̃; s : τ `NE πi(t) : σi

then the induction hypothesis yields terms o′ and d1, . . . , dk such that t =βη o
′ (s d1 . . . dk).

We may set o = λz. πi(o
′ z) to conclude.

• If the last rule applied is an elimination of a coproduct

Σ̃; s : τ `NE t : ζ1 ⊕ ζ2 Σ̃; x : ζ1 `NE u : σ Σ̃; y : ζ2 `NE v : σ

Σ̃; · `NE case(t, x.u, y.v) : σ
then, the induction hypothesis (applicable because of Lemma 5.4.16) yields terms o′ and
d1, . . . , dk such that t =βη o

′ (s d1 . . . dk). We may set o = λz. case(o′ z, x.u, y.v) to
conclude.
• The last rule applied cannot be one of the following instances of the elimination of a

coproduct because of Lemma 5.4.16 applied to the first premise:

Σ̃; · `NE t : ζ1 ⊕ ζ2 Σ̃; s : τ, x : ζ1 `X u : σ Σ̃; y : ζ2 `X v : σ

Σ̃; s : τ `X case(t, x.u, y.v) : σ

Σ̃; · `NE t : ζ1 ⊕ ζ2 Σ̃; x : ζ1 `X u : σ Σ̃; s : τ, y : ζ2 `X v : σ

Σ̃; s : τ `X case(t, x.u, y.v) : σ
• If the last rule applied is an elimination of I

Σ̃; s : τ `NE t : I Σ̃; · `NE u : σ

Σ̃; · `NE let () = t in u : σ

then, the induction hypothesis (applicable because of Lemma 5.4.16) yields terms o′ and
d1, . . . , dk such that t =βη o

′ (s d1 . . . dk). We may set o = λz. let () = o′ z in u to
conclude.
• The last rule applied cannot be one of the other instances of I because of Lemma 5.4.16.

5.4. SYNTACTIC BUREAUCRACY 170

• Finally, since the context under consideration are assumed to be consistent, the last rule
applied cannot be an elimination of 0. �

Lemma 5.4.21. Let Σ and Γ be ranked alphabets. If the context Γ̃; s : TreeΣ[κ] is
inconsistent, then Tree(Σ) = ∅.

Proof. Let us write J−K for a semantic interpretation of λ`⊕& types as (classical)
propositions following the usual type/proposition mapping (i.e., Jτ (σK = Jτ → σK =
JτK⇒ JσK, Jτ ⊗ σK = Jτ & σK = JτK ∧ JσK, J0K = ⊥, …) and such that

JoK ⇔ Tree(Γ) 6= ∅

It is easy to check that, under the usual conjunctive interpretation of contexts, if Ψ; ∆ ` t : τ ,
then JΨK ∧ J∆K ⇒ JτK holds. Further, our choice for JoK means that JΓ̃K holds, so, if our
context Γ̃; s : TreeΣ[κ] is inconsistent, ¬JTreeΣ[κ]K holds. Now, assume that Tree(Σ) has
an inhabitant t. There is a corresponding Church encoding t of type TreeΣ, which has also
type TreeΣ[κ]. Hence, JTreeΣ[κ]K also holds, leading to a contradiction. �

We can now prove Lemma 5.2.5. Assume that we have a closed λ`⊕&-term t of type
TreeΣ[κ](TreeΓ with Tree(Σ) 6= ∅, so that we may safely assume Γ̃; s : TreeΣ[κ] to be
consistent. By η-expansion, t is of the shape

t =βη λw.λ
!b1. . . . λ

!bk.t w b1 . . . bk

and Γ̃; s : TreeΣ[κ] ` t w b1 . . . bk : o. By normalization of λ`⊕&, there is t′ such that

t′ =βη t w b1 . . . bk and Γ̃; s : TreeΣ[κ] `NF t
′ : o

For the latter, note that an easy case analysis shows that every (open) term of type o is
in fact neutral, so we may conclude by applying Lemma 5.4.20 and the fact that =βη is a
congruence over terms.

5.4.5. Focusing. We now introduce (partially) focused normal forms. These terms are split
into three categories defined by mutual recursion:
• the general focused normal forms (NFf). We write Ψ; ∆ `NFf

t : A to say that t is a
focused normal form such that Ψ; ∆ ` t : A.
• the focused neutral terms (NEf). We write Ψ; ∆ `NEf

t : A to say that t is a focused
neutral form such that Ψ; ∆ ` t : A.
• the focused negative neutral terms (NE−f). We write Ψ; ∆ `NE−

f
t : A to say that t is a

negative focused neutral form such that Ψ; ∆ ` t : A.
The inductive rules for building those normal forms are presented in Figure 5.4.5.

Theorem 5.4.22. Any typed term t is βη-equivalent to a term in focused normal form.

Proof sketch. We must prove that for every term t such that Ψ; ∆ ` t : τ , we have
some βη-equivalent t′ such that Ψ; ∆ `NFf

t′ : τ .
Focusing and normalization can be done simultaneously, but let us sketch how to get

focused forms from our previous notion of normal forms (§5.4.1); this allows to conclude
using the normalization theorem that we already have (Theorem 5.4.1). Suppose that we
have Ψ; ∆ `NF t : τ . We first claim that we have t′ such that t→∗ε t′ and t′ 6→ε; this can be
shown by noticing that the following N-valued complexity measure ‖ − ‖ on λ`⊕&-terms is

5.4. SYNTACTIC BUREAUCRACY 171

Ψ; ∆ `NEf
t : τ

Ψ; ∆ `NFf
t : τ

Ψ; ∆, x : τ `NFf
t : σ

Ψ; ∆ `NFf
λx.t : τ (σ

Ψ, x : τ ; ∆ `NFf
t : σ

Ψ; ∆ `NFf
λ!x.t : τ → σ

Ψ; ∆ `NFf
t : τ Ψ; ∆′ `NFf

u : σ

Ψ; ∆, ∆′ `NFf
t⊗ u : τ ⊗ σ

Ψ; ∆′ `NE−
f
t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `NFf

u : κ

Ψ; ∆, ∆′ `NFf
let x⊗ y = t in u : κ Ψ; · `NFf

() : I

Ψ; ∆′ `NE−
f
t : I Ψ; ∆ `NFf

u : κ

Ψ; ∆, ∆′ `NFf
let () = t in u : κ

Ψ; ∆ `NFf
t : τ Ψ; ∆ `NFf

u : σ

Ψ; ∆ `NFf
〈t, u〉 : τ & σ

Ψ; ∆ `NFf
t : τ

Ψ; ∆ `NFf
in1(t) : τ ⊕ σ

Ψ; ∆ `NFf
t : σ

Ψ; ∆ `NFf
in2(t) : τ ⊕ σ

Ψ; ∆ `NE−
f
t : σ ⊕ τ Ψ; ∆′, x : σ `NFf

u : κ Ψ; ∆′, y : τ `NFf
v : κ

Ψ; ∆, ∆′ `NFf
case(t, x.u, y.v) : κ

Ψ; ∆ `NFf
〈〉 : >

Ψ; ∆ `NE−
f
t : τ

Ψ; ∆ `NEf
t : τ

Ψ; ∆′ `NE−
f
t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `NEf

u : κ

Ψ; ∆, ∆′ `NEf
let x⊗ y = t in u : κ

Ψ; ∆ `NE−
f
t : σ ⊕ τ Ψ; ∆′, x : σ `NEf

u : κ Ψ; ∆′, y : τ `NEf
v : κ

Ψ; ∆, ∆′ `NEf
case(t, x.u, y.v) : κ

Ψ; ∆ `NE−
f
t : 0

Ψ; ∆, ∆′ `NEf
abort(t) : σ

Ψ; ∆, x : τ `NE−
f
x : τ Ψ, x : τ ; ∆ `NE−

f
x : τ

Ψ; ∆ `NE−
f
t : τ & σ

Ψ; ∆ `NE−
f
π1(t) : τ

Ψ; ∆ `NE−
f
t : τ & σ

Ψ; ∆ `NE−
f
π2(t) : σ

Ψ; ∆ `NE−
f
t : τ (σ Ψ; ∆′ `NFf

u : τ

Ψ; ∆, ∆′ `NE−
f
t u : σ

Ψ; ∆ `NE−
f
t : τ → σ Ψ; · `NFf

u : τ

Ψ; ∆ `NE−
f
t u : σ

Figure 5.4.5. Focused normal forms (top) / neutral forms (middle) /
negative neutral forms (bottom) for λ`⊕&-terms.

5.4. SYNTACTIC BUREAUCRACY 172

strictly decreasing along →ε:

‖x‖ = 0 ‖()‖ = 0

‖ 〈〉 ‖ = 0 ‖in1(t)‖ = ‖t‖
‖in2(t)‖ = ‖t‖ ‖π1(t)‖ = ‖t‖
‖π2(t)‖ = ‖t‖ ‖t u‖ = ‖t‖+ ‖u‖
‖t⊗ u‖ = ‖t‖+ ‖u‖ ‖ 〈t, u〉 ‖ = ‖t‖+ ‖u‖
‖abort(t)‖ = 1 + 2‖t‖ ‖let x⊗ y = t in u‖ = 1 + 2‖t‖+ ‖u‖
‖case(t, x.u, y.v)‖ = 1 + 2‖t‖+ ‖u‖+ ‖v‖

By Lemma 5.4.2, we have that Ψ; ∆ `NF t
′ : τ . This combined with the fact that we have

t′ 6→ε allows to show that we have Ψ; ∆ `NFf
t′ : τ by induction on the derivation. �

5.4.6. Proof of Lemma 5.3.9. This is the last thing that needs to be proved before we can
be done with this chapter. Let t be a λ`⊕&-term with Σ̃, s : StrΓ[σ]; · ` t : σ′ for σ and
σ′ purely linear. Since Lemma 5.3.9 depends only on the βη-equivalence class of t, we may
replace it with a focused normal form. The following result shows that Lemma 5.3.9 can be
established by a straightforward induction on the number of occurrences of s : StrΓ[σ] in t –
a parameter which is not invariant under =βη.

Lemma 5.4.23. Let τ = κ1 → . . . → κk → κ′ be a type with κ′ purely linear and s a
distinguished variable of type τ . Let ∆ and Ψ be purely linear contexts and t be a term such
that Ψ, s : τ ;∆ `NFf

t : σ for some purely linear σ. Suppose further that there is at least one
occurrence of s in t. Then, there are terms o, d1, …, dk such that t =βη o 〈s d1 . . . dk, ()〉
and

Ψ, s : τ ; ∆ `NFf
o : (κ′ & I)(σ Ψ, s : τ ; · `NFf

di : κi for i ∈ {1, . . . , k}

Furthermore, there are no more occurrences of s in o 〈s d1 . . . dk, ()〉 than in t.

(For our intended application, take κ1 = · · · = κ|Σ| = (σ(σ) and κ|Σ|+1 = κ′ = σ.)
To prove Lemma 5.4.23 we will need two additional observations, for which we do not

provide detailed proofs. Recall that the strictly positive subtype relation v+ has been
introduced in Section 5.4.2.

Lemma 5.4.24. If Ψ; ∆ `NE−
f
t : τ , then there is a variable in Ψ; ∆ of type σ with τ v+ σ.

Proof idea. By induction over the derivation, much like Lemma 5.4.16. Note that
we need not to assume that the context be consistent as the abort(t) is excluded by our
restricting to negative neutral forms. �

Lemma 5.4.25. Let τ = κ1 → . . .→ κk → κ′ be a type and s a distinguished variable of
type τ and l < k. Let Ψ; ∆ be a purely linear contexts such that and t be a term such that
Ψ, s : τ ;∆ `NE−

f
t : σl+1 → . . . → σk → σ′ for some purely linear σ′. Then σ′ = κ′ and

σi = κi for i ≥ l there are d1, . . . , dl such that

t =βη s d1 . . . dk−1 and Ψ; · `NFf
di : κi for i ∈ {1, . . . , k − 1}

Furthermore, there are no more occurrences of s in s d1 . . . dk−1 than in t.

Proof idea. By induction on the judgment Ψ, s : τ ; ∆ `NE−
f
t : σl+1 → . . . → σ′.

This is a simplification of Lemma 5.4.19; the hypotheses can be simplified since we restrict
to negative neutral forms. �

5.4. SYNTACTIC BUREAUCRACY 173

Proof of Lemma 5.4.23. We proceed by induction over the derivation of the typing
judgment Ψ, s : τ ; ∆ `NFf

t : σ to produce

Ψ, s : τ ;∆, α : κ′ & I `NFf
o : σ Ψ, s : τ ; · `NFf

di : κi

such that o[〈s d1 . . . dk), ()〉 /α] =βη t and that there be the same number of occurrences of
s in both t and (λα.o) 〈s d1 . . . dk, ()〉. Since we shall need to often emulate the weakening
of the variable α, we write wα(u) for the term let () = π2(α) in u, noting that it is focused
normal as long as u is either NFf or NE−f . For brevity, we use the notations o′, d1 . . .
throughout for data obtained by applying the induction hypotheses without recalling all of
the relevant property and merely explain how to build a suitable o.
• If the last rule applied is a variable lookup, then the term in question must be s itself.

Furthermore, we must have k = 0, so we may simply take o = α to conclude.
• If the last rule considered is the following instance of the application rule

Ψ, s : τ ; ∆ `NE−
f
t : σ′(σ Ψ, s : τ ; ∆′ `NFf

u : σ′

Ψ, s : τ ; ∆, ∆′ `NE−
f
t u : σ

then, we have two subcases, according to whether there is an occurrence of s in t or not.
– If there is an occurrence of s in t, we apply the induction hypothesis to t to obtain some
o′ and dis and set o = o′ u to conclude.

– Otherwise, we may apply the induction hypothesis to u to obtain some o′ and dis and
set o = t o′ to conclude.

• If the last rule considered is the following instance of the application rule
Ψ, s : τ ; ∆ `NE−

f
t : σ′ → σ Ψ, s : τ ; · `NFf

u : σ′

Ψ, s : τ ; ∆ `NE−
f
t u : σ

then, we use Lemma 5.4.25 to obtain d1, . . . , dk−1, set dk = u and o = α to conclude.
• If the last rule applied is a linear λ-abstraction

Ψ; ∆, x : σ′ `NFf
t : σ

Ψ; ∆ `NFf
λx.t

we may apply the induction hypothesis to obtain o′, d1, . . . such that t = o′[s d1 . . .]. Note
that x does not occur in any of the di and that we have Ψ; ∆, x : σ′ ` o′ : κ′(σ. So we
may set o = λx.o′ to conclude.
• t cannot be non-linear λ-abstraction as σ′ is assumed to be purely linear.
• If the last rule applied is a ⊗-introduction

Ψ, s : τ ; ∆ `NFf
t : σ Ψ, s : τ ; ∆′ `NFf

t′ : σ′

Ψ, s : τ ; ∆, ∆′ `NFf
t⊗ t′ : σ ⊗ σ′

then apply the induction hypothesis to the first premise if possible to get o′, d1, . . . and
set o = o′ ⊗ t′; otherwise, do the analogous operation with the second premise.
• If the last rule applied is a ⊗-elimination

Ψ, s : τ ; ∆ `NE−
f
t : σ ⊗ σ′ Ψ, s : τ ; ∆′, x : σ, y : σ′ `NFf

u : σ′′

Ψ, s : τ ; ∆ `NFf
let x⊗ y = t in u : σ′′

first note that we have we have σ and σ′ purely linear because of Lemma 5.4.24 applied
to the first premise. We have then two subcases, according to whether s occurs in t
or not. If it does, apply the induction hypothesis to the first premise to get o′, d1, . . .
and set o = let x⊗ y = o′ in u, otherwise apply it to the second premise and set
o = let x⊗ y = t in o′.

5.4. SYNTACTIC BUREAUCRACY 174

• If the last rule applied is a pairing
Ψ, s : τ ; ∆ `NFf

t : σ Ψ, s : τ ; ∆ `NFf
t′ : σ′

Ψ, s : τ ; ∆ `NFf
〈t, t′〉 : σ & σ′

then apply the induction hypothesis to the first premise o′, d1, . . . and set o = 〈o′, wα(t′)〉.
If not possible because there is no occurrences of s in t, do the analogous thing with t′.
• If the last rule applied is a projection

Ψ, s : τ ; ∆ `NE−
f
t : σ1 & σ2

Ψ, s : τ ; ∆ `NE−
f
t : σi

we apply the induction hypothesis to obtain o′, d1, . . . and set o = πi o
′.

• The last rule applied cannot be an introduction of > because we need an occurrence of s.
• If the last rule applied is an introduction of ⊕

Ψ, s : τ ; ∆ `NFf
t : σi

Ψ, s : τ ; ∆ `NFf
ini(t) : σ1 ⊕ σ2

we may simply apply the induction hypothesis to get o′ and set o = ini(o′).
• If the last rule applied is an elimination of ⊕

Ψ; ∆ `NE−
f
t : σ ⊕ σ′ Ψ; ∆′, x : σ `NF u : σ′′ Ψ; ∆′, y : σ′ `NF v : σ′′

Ψ; ∆, ∆′ `NF case(t, x.u, y.v) : σ′′

first note that σ and σ′ are necessarily purely linear because of Lemma 5.4.24. We then
try to apply the induction hypothesis to one of the premise (at least one of them has an
occurrence of s) to get some o′, d1, . . .
– If we can apply it to the first premise so that t =βη o′[〈s d1 . . . dk, ()〉 /α], we can

conclude by setting o = case(o′, x.u, y.v).
– If it is applicable to the second premise so that u =βη o

′[〈s d1 . . . dk, ()〉 /α], we set
o = case(t, x.o′, y.wα(v)).

– Otherwise, v =βη o
′[〈s d1 . . . dk, ()〉 /α] and we set o = case(t, x.wα(u), y.o′). �

CHAPTER 6

Regular tree functions

The goal of this chapter is now to prove the last remaining item in Theorem 1.2.3: a
tree-to-tree function is λ`⊕&-definable (cf. Definition 5.1.9) if and only if it is regular. To do
so, we follow a similar approach to Chapter 5 – which, in turn, relied on the material of
Chapter 4. A lot of similar notions and theorems reappear, so we take the liberty of eliding
certain proofs adapting statements proven in those previous chapters.

The obvious starting point is to extend the notion of “automaton parameterized by a
category” to tree automata (§6.1); this increased generality in inputs, however, requires some
additional conditions on the category. We then present in Section 6.3 a basic multicategory
(cf. §6.2) of registers T Rm containing “trees with holes”, and the corresponding streaming
setting TR on top of a category T R. The usual restriction to registers containing “trees
with at most one hole” is also discussed and shown to be no less expressive thanks to our
basic results on the coproduct completion. This is followed by Section 6.4, which explains
how the notion of single-use-restricted bottom-up (ranked|register) tree transducer (BRTT)
introduced in [AD17] – cf. §2.6 – can be shown to have the same expressiveness as “stateful
tree automata over TR&”. We shall call the latter TR&-BRTTs. Finally, in Section 6.5, we
show that T R⊕ has internal homsets ι⊕(R)(ι⊕(S) and conclude that T R⊕& is monoidal
closed. After a few more general categorical considerations (§6.6), we conclude the proof of
our main theorem on trees in Section 6.7.

For the rest of this chapter, we fix a ranked alphabet Γ so that we may focus on outputs
contained in Tree(Γ).

Remark 6.0.1. We were drawn to work with BRTTs because of our previous success
with SSTs and the title “Streaming tree transducers” of [AD17] (we already recalled the
explanation for this title at the beginning of Section 2.6). But the much older model of
macro tree transducers (MTTs) [EV85] can also be seen as a version of streaming string
transducers for trees; it is actually rather similar to BRTTs. In fact, single-use-restricted
MTTs with regular lookahead [EM99], which compute regular tree functions, are much closer
than single-use-restricted BRTTs to our categorical TR⊕&-BRTTs! Had we worked with
MTTs from the beginning, we would therefore have saved some efforts. But we had already
written up a technical development relying on BRTTs before this realization; it still contains
some interesting categorical constructions involving coherence spaces.

It was not immediately apparent to us that MTTs generalize SSTs to trees for the
following reason: while MTTs can be reformulated as an isomorphic register-based machine
model, they were originally introduced with rather different intuitions. What is called a
“register” in an SST/BRTT corresponds, counterintuitively, to a “state” in an MTT, and
the bottom-up recombination of registers is described instead as a top-down propagation of
states. Furthermore, copyless MTTs (called “strongly single use restricted” in [EM99]) over
unary trees (i.e. strings) actually do not compute all regular functions [EM99, Theorem 5.6],
while copyless SSTs compute all regular string functions; this is due to a small detail (with
dramatic consequences) regarding how the output is produced (an MTT has an initial state,
not an initial combination of states, while the output function of an SST can combine
multiple registers).

175

6.1. TREE STREAMING SETTINGS AND C-BRTTS 176

6.1. Tree streaming settings and C-BRTTs

We first define a generalized notion of BRTT parameterized by a category plus some
auxiliary data, analogously to the C-SSTs for strings. To work with trees, a monoidal product
will be necessary.

Definition 6.1.1. Let X be a set. A tree streaming setting with output X is a tuple
C = (C,⊗, I,‚, L−M) where
• (C,⊗, I) is a symmetric monoidal category
• ‚ is an object of C
• L−M is a set-theoretic map HomC (I,‚)→ X

In the rest of this chapter, we may omit the “tree” in when discussing streaming settings.
This notion essentially differs by asking that the underlying category be equipped with

a symmetric monoidal product, which is used in defining the semantics of C-BRTTs. The
tensor product is used to fit the branching structure of trees and I is used for terminal nodes
(so there is no need of a distinguished initial object

‚
as in string streaming settings).

Definition 6.1.2. Let C = (C,⊗, I,‚, L−M) be a tree streaming setting with output X. A
C-BRTT with input (ranked) alphabet Σ and output X is a tuple (Q,R, δ, o) where
• Q is a finite set of states
• R is an object of C

• δ is a function
∏
a∈Σ

Qar(a) → Q× HomC

⊗
ar(a)

R, R


• o ∈ HomC (R,‚) is an output morphism
Its semantics is a set-theoretic map Tree(Σ)→ X defined as follows: writing δQ(a, (ti)i∈ar(a))
for π1(δ(a, (ti)i∈ar(a))) and δC(a, (ti)i∈ar(a)) for π2(δ(a, (ti)i∈ar(a))), define auxiliary functions
δ∗Q : Tree(Σ)→ Q and δ∗C : Tree(Σ)→ HomC (I, R) by iterating δ:

δ∗Q
(
a
(
(ti)i∈ar(a)

))
= δQ

(
a, (δ∗Q(ti))i∈ar(a)

)
δ∗C
(
a
(
(ti)i∈ar(a)

))
= δC

(
a, (δ∗Q(ti))i∈ar(a)

)
◦

 ⊗
i∈ar(a)

δ∗C(ti)

 ◦ ϕar(a)

where ϕar(a) is the unique isomorphism I ∼−→
⊗

i∈ar(a) I generated by the associator and
unitors of (C,⊗, I). The output function JT K : Tree(Σ)→ X is defined as JT K = Lo ◦ δ∗CM.

Remark 6.1.3. Strictly speaking, we do not need the monoidal product to be symmetric
for the notion to make sense, but it would require using a fixed order over the input
ranked alphabet Σ. Although one could choose an arbitrary total order over Σ, different
orders might define different classes of functions Tree(Σ) when the monoidal product is not
symmetric. This is why we work in symmetric monoidal categories.

As with string streaming settings, it is convenient to define a notion of morphism of tree
streaming settings to compare the expressiveness of classes of BRTTs.

Definition 6.1.4. Let C = (C, IC ,⊗C ,‚C , L−MC) and D = (D, ID,⊗C ,‚D, L−MD) be tree
streaming settings with output X. A morphism of tree streaming settings is given by a lax
monoidal functor F : (C,⊗C , IC)→ (D,⊗D, ID) and a D-arrow o : F (‚C)→‚D such that,
for every f ∈ HomC (

‚
C ,‚C), we have

Lo ◦ F (f) ◦ iMD = LfMC
where i : ID → F (IC) is obtained as part of the lax monoidal functor structure over F .

6.1. TREE STREAMING SETTINGS AND C-BRTTS 177

Observe that we do not require those functors to commute with the symmetry morphisms
for the monoidal products, as promised in Section 4.1. This is consistent with the fact that
the symmetries are not really involved in computing the image of a tree by a C-BRTT,
according to Remark 6.1.3: it is only their mere existence that matters. The point of the
above definition is, of course:

Lemma 6.1.5. If there is a morphism of tree streaming settings C→ D, then D-BRTTs
subsume C-BRTTs and single-state D-BRTTs subsume single-state C-BRTTs.

Proof. Let us give the proof for single-state BRTTs; the proof for general BRTTs
would be notationally heavier but not much more insightful. Suppose that we have some
single-state C-BRTT T = (R, δ, o) – where we leave the only state implicit and regard the
transition function δ and output function o as elements of

∏
a∈Σ HomC

(⊗
ar(a)R, R) and

HomC (R,‚) respectively – and that the morphism under consideration is composed of a
lax monoidal functor F : C → D and a D-arrow o′ : F (‚C)→‚D.

Since F is lax monoidal, we have a family of natural transformations

mI,A :
⊗
I

F (A) −→ F

(⊗
I

A

)
where I ranges over all finite sets1 and A over objects of C; this family is compatible with
the associators and unitors in C and D. Furthermore, m∅,A : I→ F (I) is the same for all
A ∈ Obj(C), so we shall abbreviate it as m∅.

We claim that JT K = JT ′K, where T ′ is the single-state D-BRTT (F (R), δ′, o′ ◦ F (o))
with the same typing conventions and δ′a = F (δa) ◦mar(a),R. Let us prove this. To do so we
first consider the iterations of the transition functions

δ∗ : Tree(Σ)→ HomC (I, R) and δ′∗ : Tree(Σ)→ HomD (I, F (R))

and show that δ′∗(t) = F (δ(t)) ◦ m∅ by induction over t ∈ Tree(Σ). So suppose that
t = a((ux)x∈ar(a)) and that the inductive hypothesis holds (this also takes care of the base
case: when ar(a) = ∅, the inductive hypothesis is vacuous). In such a case, let us show that
each face in the following diagram commutes (where all tensor products have arity ar(a)):

I

(b)

m∅

��

∼

''

δ′∗(t)

!!

(a)⊗
I

⊗
m∅

��

⊗
x
δ′∗(ux)

((⊗
F (I)

(c)

⊗
x
F (δ∗(ux))

//

mar(a),I

��

⊗
F (R)

δ′a //

mar(a),R

��

(e)

F (R)

F (
⊗

I)

(d)

F

(⊗
x
δ∗(ux)

) // F (
⊗
R)

F (δa)

77

F (I)

(f)F (∼)

OO

F (δ∗(t))

DD

1Recall from Section 2.1 that an operation
⊗

i∈I(−) – here, a functor – is associated to every finite
indexing set I by choosing an arbitrary total order over I.

6.2. MULTICATEGORICAL PRELIMINARIES 178

Faces (a) and (f) commute by definition of iterated transition functions and face (e)
corresponds to the definition of δ′. Face (d) commutes because of the naturality of m−,−
and face (b) because of its compatibility with associators. Finally, face (c) corresponds to
the inductive hypothesis. Therefore, the topmost and bottommost paths coincide, so we
have δ′∗(t) = F (δ(t)) ◦m∅, which concludes our inductive argument. We can then conclude
since we have, for every tree t,

JT ′K(t) = Lo′ ◦ F (o) ◦ (δ′∗(t))MD by definition
= Lo′ ◦ F (o) ◦ F (δ∗(t)) ◦m∅MD inductive argument
= Lo′ ◦ F (o ◦ δ∗(t)) ◦m∅MD by functoriality
= Lo ◦ (δ∗(t))MC since (F, o′) is part of a morphism C→ D

= JT K(t) by definition �

Similarly as for strings, the coproduct completion of a category induces a morphism of
tree streaming settings C 7→ C⊕. Furthermore, the expressiveness of C and C⊕ remain the
same under similar hypotheses as Theorem 4.3.8.

Theorem 6.1.6. Let C be a tree streaming setting whose monoidal product is affine and such
that all objects of the underlying category have unitary support. Then C-BRTTs, C⊕-BRTTs
and single-state C⊕-BRTTs are equi-expressive.

The proof is an unsurprising adaptation of the one of Theorem 4.3.8 and of the material
on state-dependent memory SSTs (Section 4.3.2). We leave it to the interested reader.

6.2. Multicategorical preliminaries

Rather than starting from the category corresponding exactly to the BRTTs from [AD17],
we will first study a more convenient streaming setting based on the idea of trees with
multiple holes. For this, it will be convenient to introduce the notion of multicategory, which
is essentially a notion of category where morphisms are allowed to have multiple input
objects.

This section is therefore devoted to spelling out the formal definition of the notion
of multicategory that we use, and to describing how to (freely) generate affine monoidal
categories from multicategories. This material is rather dry and should maybe only be
skimmed over at first reading.

Definition 6.2.1. A (weak symmetric) multicategoryM consists of
• a class of objects Obj(M)
• a class of multimorphisms going from pairs (I, (Ai)i∈I) of a finite index set I and a family
(Ai)i∈I of objects to objects B. We omit the first component of the source and write
HomM ((Ai)i∈I , B) for the set of these multimorphisms.
• for every object A, a distinguished identity multimorphism idA ∈ HomM ((A)∗∈1, A).
• for every set-theoretic map f : I → J , families (Ai)i∈I , (Bj)j∈J and object C, a composition

operation

HomM ((Bj)j∈J , C) ×
[∏

j∈J HomM
(
(Ai)i∈f−1(j), Bj

)]
−→ HomM ((Ai)i∈I , C)

α , (βj)j∈J 7−→ α ∗f β
• for every bijection σ : I ′ → I between finite sets, a family of actions

σ∗ : HomM ((Ai)i∈I , B)→ HomM
(
(Aσ(i′))i′∈I′ , B

)
correspond to reindexing along symmetries.

Furthermore, the above data is required to obey the following laws.

6.2. MULTICATEGORICAL PRELIMINARIES 179

• The identity morphism be a neutral for composition: for any α ∈ HomM ((Ai)i∈I , B),
idB ∗! (α)∗∈1 = α = α ∗idI

(idAi)i∈I

• Composition is associative: for any finite sets I, J and K, functions f : K → J and
g : J → I, families of objects (Ak)k∈K , (Bj)j∈J , (Ci)i∈I , D and families of morphisms

α ∈
∏
j∈J HomM

(
(Ak)k∈f−1(j), Bj

)
β ∈

∏
i∈I HomM

(
(Bj)j∈g−1(i), Ci

)
γ ∈ HomM ((Ci)i∈I , D)

the following equation holds
γ ∗g (β ∗f α) =

(
γ ∗g�f−1(j) β

)
j
∗f α

• Permutations act functorially: for any (Ai)i∈I , B and bijections σ : I ′ → I and σ′ : I ′′ → I ′,
the following commute

HomM ((Ai)i∈I , B)

**

// HomM
(
(Aσ(i′))i′∈I′ , B

)
��

HomM
(
(Aσ(σ′(i′′)))i′′∈I′′ , B

)
and id∗I : HomM ((Ai)i∈I , B)→ HomM ((Ai)i∈I , B) is the identity.
• Composition is compatible with permutations: for every commuting square

J ′

��

g // I ′

σ
��

J
f

// I

in FinSet such that the vertical arrows be bijections, note in particular that for every i ∈ I,
there is a bijection σi : g−1(I ′)→ f−1(I); we thus require that

α ∗f
(
βj∈f−1(i)

)
i∈I = σ∗(α) ∗g

(
σ∗i
(
βj∈f−1(i)

))
i∈I

for every suitable α and βjs.

Every symmetric monoidal category C can be mapped to a multicategory Cmcat by taking

HomCmcat ((Ai)i∈I , B) = HomC

(⊗
i∈I

Ai, B
)

We may make this map functorial, provided we equip the class of multicategories and the
class of symmetric monoidal categories with categorical structures.

Definition 6.2.2. Given two weak multicategories M and N , a functor F : M → N
consists of maps of objects F : Obj(M)→ Obj(N) and of multimorphisms

F : HomM ((Ai)i∈I , B) −→ HomN ((F (Ai))i∈I , F (B))

such that F (idA) = idF (A), F
(
α ∗f (βj)j∈f−1(i)

)
= F (α)∗f (F (βj))j∈f−1(i) and F (σ∗(α)) =

σ∗(F (α)) for all suitable objects, index sets, set-theoretic functions and morphisms.

Definition 6.2.2 gives a class of arrows for a large category MCat of multicategories. Calling
Aff the category whose objects are symmetric affine monoidal categories and morphisms are
strong monoidal functors, the map C → Cmcat extends to a functor Aff→ MCat. We are now

6.3. THE COMBINATORIAL MULTICATEGORY T Rm 180

interested in the inverse process of generating freely a symmetric affine monoidal category
out of a weak multicategory.

Definition 6.2.3. Let M be a weak multicategory. The free affine symmetric monoidal
category generated byM is the categoryMaff such that
• objects are pairs (I, (Ai)i∈I) of a finite set I and a family of objects of M; write

⊗
i∈I Ai

for such objects.
• morphisms

⊗
i∈I Ai →

⊗
j∈J Bj are pairs (f, (αj)j∈J) where f is a partial function I ⇀ J

and αj is aM multimorphism (Ai)i∈f−1(J) → Bj .
• identities

⊗
i∈I Ai →

⊗
i∈I Ai are the pairs (idI , (idAi)i∈I).

• the composition of

(f, (αj)j∈J) :
⊗
i∈I

Ai →
⊗
j∈J

Bj and (g, (βk)k∈K) :
⊗
j∈J

Bj →
⊗
k∈K

Ck

is
(
g ◦ f,

(
βk ∗ (αj)j∈g−1(k)

)
k∈K

)
.

For any bijection σ : I ′ → I, we have canonical isomorphisms
⊗

i∈I Ai →
⊗

i∈I Aσ(i).
We take the binary tensor product to be(⊗

i∈I
Ai

)
⊗

⊗
j∈J

Bj

 =
⊗
x∈I+J

{
Ai if x = in1(i)
Bj if x = in2(j)

and the unit to be the terminal object, which is the nullary family
⊗

∅. The associator and
symmetries are induced by the isomorphisms (I + J) +K ∼= I + (J +K) and I + J ∼= J + I
respectively, and the units by I + ∅ ∼= I ∼= ∅ + I. The axioms of weak symmetric
multicategories then imply that this indeed endows Maff with a symmetric affine monoidal
structure. We skip checking the details.

6.3. The combinatorial multicategory T Rm

We are now ready to give a smooth definition of a category of register transitions for
trees, generalizing Proposition 4.2.12. As announced, we find it more convenient to first give
a multicategory T Rm and then move to monoidal categories by taking T R = (T Rm)aff. We
then discuss the restriction consisting of limiting the number of holes in the tree expressions
stored in register to at most one and show that it is not limiting.
Notations Recall that we regard ranked alphabets R as pairs (R, ar) where R is a finite set
of letters and (ar(a))a∈R is a family R→ FinSet of arities. Given two ranked alphabets R
and S, we suggestively write R⊗ S for the ranked alphabet (R+ S, [ar, ar]). Given a finite
set U , call O(U) the ranked alphabet (U, (∅)u∈U) consisting of |U |-many terminal letters
and I(U) for the ranked alphabet consisting of a single letter of arity U . Given a ranked
alphabet Σ = (Σ, ar) and a subset X ⊆ Σ, we write Σ � X for the restriction (X, ar � X).

Before giving the definition of T Rm, we first need to make formal a notion of trees with
linearly many occurrences of certain constructors.

Definition 6.3.1. Let R be a ranked alphabet. We define the set LTreeΓ(R) of R-linear
trees as the subset of Tree(Γ⊗R) comprising the trees where all constructors of R appear
exactly once.

Definition 6.3.2. Define T Rm(Γ) (abbreviated T Rm in the sequel) as the multicategory
• whose class of objects Obj(T Rm) is FinSet.

6.3. THE COMBINATORIAL MULTICATEGORY T Rm 181

a

x y

bp

q

z

c cr

t

a c

u ∗

c

∗f

{t ∶ 2, u ∶ 1} → {∗}

{x ∶ 2, y ∶ 0} → {p, q}

{z ∶ 3} → {r}

⎛
⎜
⎝

f ∶ {p, q, r} → {t, u}
p, q ↦ t
r ↦ u

⎞
⎟
⎠

a

x y

b

c

a

∗z

c cc

{x ∶ 2, y ∶ 0, z ∶ 3} → {∗}

=

Figure 6.3.1. Composition of some multimorphisms of T Rm.

• whose class of multimorphisms from (Ai)i∈I to B is the set of linear trees over the joint
alphabet (I, A)⊗O(B) (recall that (I, A) can formally be regarded as a ranked alphabet:
its set of letters is I and the arity of i ∈ I is A(i) = Ai).

HomT Rm ((Ai)i∈I , B) = LTreeΓ((I, A)⊗O(B))

• whose composition operations are given by substitution: given a map f : I → J and
multimorphisms

t ∈ LTreeΓ((J,B)⊗O(C)) and u ∈
∏
j∈J

LTreeΓ((f−1(j), (Ai)i)⊗O(Bj))

the composite t ∗f u is defined by recursion over t:
– if t = a((t′k)k) for some a = in1(b) with b ∈ Γ or a = in2(in2(c)) for c ∈ C, then

t ∗f u = a((t′k ∗f u)k)

– otherwise t = in2(in1(j))((t′b)b∈Bj
) with j ∈ J and t′b in some LTreeΓ((Jb, Bb)⊗O(Cj))

for
⋃
b∈Bj

Jb = J \ {j}, Bb = B � Jb and
⋃
b∈Bj

Cb = C. In such a case, we set

t ∗f u = uj [(t
′
b ∗idJb

(uj′)j′∈Jb)/b]b∈Bj

where [−/−]−∈− denotes the more usual substitution of leaves by subtrees (recall that
every b ∈ B, and a fortiori Bj has arity ∅).

While the definition of composition of multimorphisms in T Rm looks daunting, we claim
it is rather natural. Figure 6.3.1 depicts the composition α ∗f (βx)x∈{t,u} with

α = t(a(u(c()), ∗()), c()) βt = a(x(p(), b(q())), y()) and βu = z(c(), r(), c())

We now set T R = (T Rm)aff; while objects of (T Rm)aff are supposed to be families of
finite sets (Ai)i∈I , in the sequel, we sometimes identify them with the ranked alphabets
(I, A) in T R for notational convenience. As such, the notation R ⊗ S corresponds to the
expected tensorial product in T R.

We are now ready to define our first tree streaming setting.

6.3. THE COMBINATORIAL MULTICATEGORY T Rm 182

Definition 6.3.3. TR is the tree streaming setting (T R,⊗,>, I(∅), L−M), where L−M is
the canonical isomorphism HomT R (>, I(∅)) ∼= HomT Rm (()∅,∅) ∼= LTree(∅) ∼= Tree(Γ)
(where ()∅ is the empty family).

Call T Rm,≤1 the full submulticategory of T Rm whose objects are empty or singleton
sets, and T R≤1 ∼= T Rm,≤1

aff to be the corresponding full subcategory of T R. The monoidal
structure of T R restricts to T R≤1 without any difficulty, and I(∅) is an object of T R≤1.
This means that TR has a restriction to a streaming setting TR≤1.

While TR≤1 turns out to be more elementary and a good building block toward the
definition of usual BRTTs, it is easier to show the monoidal closure of TR⊕& than TR≤1.
Thankfully, it turns out that the expressiveness of BRTTs over TR and TR≤1 is the same.

For one direction, there is a morphism TR≤1 → TR corresponding to the embedding
T R≤1 → T R. For the other direction, we exploit Theorem 6.1.6. The proof involves
some combinatorics, but nothing surprising as it amounts to the classical decomposition of
multi-hole trees into families of single-hole trees as found in e.g. [AD17, §3.5].

Lemma 6.3.4. There is a morphism of streaming settings TR→ TR≤1⊕ .

Proof sketch. We focus on giving enough ingredients to define the underlying (strong)
monoidal functor F : T R → T R≤1⊕ , which is going to preserve ‚ (i.e., we will have
F (I(∅)) ∼= ι⊕(I(∅))).

Rather than giving a direct explicit construction of F (which is rather tedious over
morphisms), we obtain it as a composition of two strong monoidal functors: the strong
monoidal embedding ι⊕ : T R → T R⊕ and a functor R : T R⊕ → T R≤1⊕ right adjoint to the
inclusion I : T R≤1⊕ → T R⊕.

T R
ι⊕ // T R⊕

R
**

> T R≤1⊕
I

jj

I is strong symmetric monoidal. Therefore, by [Mel09, Proposition 14, Section 5.17], once
we construct R right adjoint to I, it comes equipped with a canonical lax monoidal structure.
Furthermore, since we want I a R, we can use the implicit characterization of adjoints
given in [Mac98, item (iv), Theorem 2, Section IV.1]: to define R, it suffices to give the
value of R (A) for every object A ∈ Obj(T R⊕) and counit maps εA : I(R(A)) → A such
that, for every object B ∈ Obj(T R≤1⊕) and map h ∈ HomT R⊕ (I(B), A), there is a unique
h̃ ∈ HomT R≤1

⊕
(R(A), B) such that the following diagram commutes

I(B)

h
((

I(h̃) // I(R(A))

εA
��
A

So we only need to define R(A) and εA to obtain our functor R; once those are defined, we
leave checking that the universal property holds to the reader. We first focus on the case
where A = ι⊕(I(U)) for some finite set U . Recall that a single-letter alphabet I(U), when
seen as an object of T R, should be should be intuitively regarded as a register containing
a tree with U -many holes. If |U | ≤ 1, we may simply take R(ι⊕(I(U))) = ι⊕(I(U)).
Otherwise, |U | ≥ 2 and I(U) is not an object T R≤1; in that case, we use the following

6.3. THE COMBINATORIAL MULTICATEGORY T Rm 183

recursive definition
R(ι⊕(I(U))) = I(1) ⊗

⊕
b∈Γ

⊕
f :U→ar(b)

nonconstant

⊗
x∈ar(b)

R(ι⊕(I(f−1(x))))

Note that this definition is well-founded because the function f in the second sum is taken
to be non constant, so that |f−1(x)| < |U | for every x. While this suffices as a definition
of R(ι⊕(I(U))), this might be a bit opaque without having the definition of εR(ι⊕(I(U))).
Before giving that, let us attempt to give an intuitive rationale behind this definition: there
is an isomorphism2

HomT R≤1
⊕

(>, R(ι⊕(I(U)))) ∼= LTreeΓ(U)

which can be nicely pictured, provided we actually compute recursively R(ι⊕(I(U))) and
spell out a normal form

R(ι⊕(I(U))) ∼=
⊕

t∈PT(U)

⊗
n∈N(t)

An

with all An = I(∅) or An ∼= I(1). It is always possible to build a suitable set PT(U)

simply because all objects of T R≤1⊕ have this shape, but an intuitive definition of what one
might call a set of partitioning trees over U is also possible for PT, and N(t) would then
correspond to the nodes of the trees. We skip defining this notion formally, but note that
the announced bijection would then match trees with U -many holes with pairs (t, (ui)i∈N(t))
of a partitioning tree t and a family of trees with at most one-hole (ui)i∈N(t). This bijective
correspondence is pictured in Figure 6.3.2.

Now, we define εR(ι⊕(I(U))) ∈ HomT R≤1
⊕

(I(R(ι⊕(I(U)))), ι⊕(I(U))), by induction over
the size of U . If |U | ≤ 1, we take εR(ι⊕(I(U))) : ι⊕(I(U)) → ι⊕(I(U)) to be the identity.
Otherwise, we need to define a map

gU : I

⊕
b∈Γ

⊕
f :U→ar(b)

nonconstant

⊗
x∈ar(b)

R(ι⊕(I(f−1(x))))

 −→ ι⊕(I(U))

or, equivalently, a family of T R⊕-maps indexed by b ∈ Γ and f : U → ar(b) non-constant

gb,f :
⊗

x∈ar(b)

I(R(ι⊕(I(f−1(x))))) −→ ι⊕(I(U))

By the induction hypothesis, we have a family of T R⊕-maps (gx)x∈ar(b)

gx : I(R(ι⊕(I(f−1(x))))) −→ ι⊕(I(f−1(x)))
We define gb,f as the composite⊗

x∈ar(b)

I(R(ι⊕(I(f−1(x)))))
⊗

x gx−−−−−→
⊗

x∈ar(b)

ι⊕(I(f−1(x)))
b−−→ ι⊕(I(U))

where b is obtained from the map of T Rm which intuitively takes a family (tx)x∈ar(b) of trees
into a single tree b((tx)x∈ar(b)) (officially, the tree b((∗)x∈ar(b)) ∈ LTreeΓ(O(U)).

Now, R is defined on objects of the shape ι⊕(I(U)), as well as ε, so we need to extend
this to the whole category T R⊕. Recall that every object A of T R⊕ can be written as

2Which we may later on define formally as a composite

HomT R≤1
⊕

(>, R(ι⊕(I(U))))
I−→ HomT R⊕ (>, R(ι⊕(I(U))))→ HomT R⊕ (>, I(U))

∼−−→ LTreeΓ(U)

where the mediating arrow is the post-composition by ει⊕(I(U)).

6.4. TR&-BRTTS COINCIDE WITH REGULAR FUNCTIONS, VIA COHERENCE SPACES 184

a

a

b

c

a

b

c

a

t{x, y, z}
a

U

zd
{x, y}

∅0yx

d

b

a

c

a

c

x, y, z

t

∅0 c

(a,{x, y, z})
a

b

c

(d,{x, y})

b

b

↦

↦

↦

↦

↦

↦

t

z

x y

(U,a) ↦

Figure 6.3.2. Decomposition of a multi-hole tree LTreeΣ({x, y, z, t}) (where
Σ = {a : 2, b : 1, c : 0, d : 3}) as a tuple consisting of a partitioning tree and
trees with at most one hole.

A =
⊕

v∈V
⊗

j∈Ju ι⊕(I(Uj)). In the end, the functor R is expected to be strong monoidal,
and we may force it to preserve coproducts, so we set

R(A) =
⊕
v∈V

⊗
j∈Ju

R(ι⊕(I(Uj))) εA =
⊕
v∈V

⊗
j∈Ju

ει⊕(I(Uj))

�

6.4. TR&-BRTTs coincide with regular functions, via coherence spaces

We define a streaming setting TR˚ and its restriction TR˚,≤1 (with respective underlying
categories T R˚, T R˚,≤1) so that TR˚,≤1-BRTTs coincide with Alur and D’Antoni’s notion
of single-use-restricted BRTT [AD17], which they showed to characterize regular tree
functions. We then show that there are morphisms TR& → TR˚ → TR& of streaming
settings and thus establish that TR&-BRTTs capture exactly regular tree functions.

Much like T R, the category T R˚ is obtained by applying a generic construction to
T Rm, taking weak symmetric multicategories to symmetric affine monoidal categories. In
particular, objects of T R˚ will consist of formal tensor products of objects of T Rm. The
main difference is that morphisms of T R˚ will induce a dependency relation D ⊆ I × J
over indexing sets, rather than a partial function J ⇀ I. This corresponds to a relaxation of
the copylessness condition. However, objects of T R˚ will also be equipped with a conflict
relation ˚ over their indexed sets, and D will be required to satisfy a linearity constraint.
Calling ¨ the dual coherence relation such that x ¨ y is equivalent to x = y ∨ ¬(x ˚ y), if

6.4. TR&-BRTTS COINCIDE WITH REGULAR FUNCTIONS, VIA COHERENCE SPACES 185

we have (i, j) ∈ D and (i′, j′) ∈ D, the linearity constraint enforces

j ¨J j
′ ⇒ i ¨I i

′ and i ˚I i
′ ⇒ j ˚J j

′

This corresponds to the single use restriction imposed on BRTTs [AD17, §2.1], whose
introduction was motivated in Section 2.6.2.

Example 6.4.1. The BRTT that we gave in for the “conditional swap” function is single-
use-restricted according to the above by taking its two registers (i.e. objects of T Rm) to be
in conflict.

But as our choice of notation and vocabulary suggests, this is also related to the category
of (finite) coherence spaces, the first denotational model of linear logic [Gir87] (predated by
a similar semantics for system F [GTL89, Appendix A]). As far as we know, this observation
is new (the conflict relation is denoted by η in [AD17], while ˚ comes from the linear logic
literature). The coherence semantics of the linear λ-calculus has been used in particular
in [GLS20] to analyze a top-down tree transducer model containing linear λ-terms. Unlike
them, we do not use coherence spaces as a semantics here; what happens here is much
closer to the use of a coherence/conflict relation to handle additive connectives – we will
indeed show a connection with the &-completion – in proof nets, see [Gir96, Appendix A.1]
and [HH16].

Definition 6.4.2 (see e.g. [Gir95, §2.2.3]). A coherence space I is a pair (‖I‖,¨I) of a
set ‖I‖, called the web, and a binary reflexive symmetric relation ¨I over ‖I‖ called the
coherence relation. As usual, given a coherence relation ¨, we write ˚ for the dual defined
by i ˚ i′ ⇔ (i = i′ ∨ ¬(i ¨ i′)). Finite coherence spaces are those coherence spaces whose
webs are finite. A linear map of coherence spaces f : I → J is a relation f ⊆ ‖I‖× ‖J‖ such
that, whenever (i, j) ∈ f and (i′, j′) ∈ f , we have

i ¨I i
′ ⇒ j ¨J j

′ and j ˚J j
′ ⇒ i ˚I i

′

Note that these are the converse implications of those stated above for BRTTs.
The diagonal {(i, i) | i ∈ ‖I‖} is a linear map I → I and the relational composition of

two linear maps I → J → K is again a linear map, so that we have a category FinCoh whose
objects are coherence spaces and morphisms are linear maps.

FinCoh, equipped with the tensorial product

(‖I‖,¨I)⊗ (‖J‖,¨J) = (‖I‖ × ‖J‖,¨I × ¨J)

and dualizing object (1, 1 × 1), is a well-studied ∗-autonomous category with cartesian
products and coproducts. The latter may be defined pointwise as

(‖I‖,¨I)⊕ (‖J‖,¨J) = (‖I‖+ ‖J‖, ¨I⊕J)

where ¨I⊕J is the smallest relation such that

in1(i) ¨I⊕J in1(i′) when i ¨I i
′ and in2(j) ¨I⊕J in2(j′) when j ¨J j

′

Dualizing an object corresponds to moving from ¨ to ˚, i.e. (‖I‖,¨I)
⊥ = (‖I‖,˚I), and

the product is I & J = (I⊥ ⊕ J⊥)⊥.
With this in mind, we can describe how to turn a multicategory into an affine monoidal

category where monoidal products may be indexed by coherence spaces. The construction
has a vague family resemblance with the coherence completion of categories introduced by
Hu and Joyal [HJ99], but appears to have quite different properties.

Definition 6.4.3. LetM be a weak symmetric multicategory. We defineMcoh to be the
category

6.4. TR&-BRTTS COINCIDE WITH REGULAR FUNCTIONS, VIA COHERENCE SPACES 186

• whose objects are pairs (X, (Rx)x∈‖X‖) where X is a finite coherence space and (Rx)x∈‖X‖
a family of objects ofM. We suggestively write them

⊙
x∈X Rx.

• whose morphisms

(f, (αy)y∈‖Y ‖) ∈ HomMcoh

⊙
x∈X

Rx,
⊙
y∈Y

Sy


are pairs consisting of a linear map f ∈ HomFinCoh (Y,X) and a family of multimorphisms
αy ∈ HomM

(
(Rx)x∈f(y), Sy

)
.

• whose identities are pairs (idX , (idRx)x∈‖X‖).
• where the composition of

(f, (αy)y∈‖Y ‖) ∈ Hom

⊙
x∈X

Rx,
⊙
y∈Y

Sy

 and (g, (βz)z∈‖Z‖) ∈ Hom

⊙
y∈Y

Sy,
⊙
z∈Z

Tz


is (f ◦ g, (βz ∗ (αy)y∈g(z))z∈Z).

Definition 6.4.4. We set T R˚ = (T Rm)coh and T R˚,≤1 to be its full subcategory consisting
of objects

⊙
x∈X Ax where each Ax is either empty or a singleton (so that T R˚,≤1 is

isomorphic to (T Rm,≤1)coh).

Proposition 6.4.5. BRTTs over the restricted tree streaming setting TR˚,≤1 compute
exactly the regular tree functions.

Proof. By virtue of being equivalent to Alur and D’Antoni’s notion of single-use-
restricted BRTT [AD17]. We point the reader to Section 2.6.3 for a self-contained definition
of those not involving categories, and leave it as an exercise to formally match those two
descriptions. Although [AD17] and our Section 2.6.3 only consider BRTTs over binary trees,
the proof of equivalence between the latter and regular tree functions goes through macro
tree transducers (with regular look-ahead and single use restriction) which are known to
compute regular functions for trees over arbitrary ranked alphabets [EM99], so everything
can be made to work out with arbitrary arities in the end. (See also Remark 6.0.1.) �

This being done, the remainder of this section does not depend on T Rm; the arguments
apply to any weak symmetric multicategoryM and designated object ‚ ∈ Obj(M).

Accordingly, fix such an M and a ‚ for the remainder of this section. Fix also a set O
and a map L−M : HomM ((·)∅,‚)→ O.

Proposition 6.4.6. Mcoh has a terminal object, given by the unique family over the empty
coherence space, and can be equipped with a symmetric monoidal affine structure (⊗,>)
where (⊙

i∈I
Ai

)
⊗

⊙
j∈J

Bj

 =
⊙
x∈I&J

{
Ai if x = in1(i)
Bj if x = in2(j)

and I & J designates the cartesian product in FinCoh.

Proof. Left to the reader. Strictly speaking, later developments will depend on the
precise structure itself and not merely on its existence, but there is a single sensible choice
of bifunctorial action and structural morphisms making the above a monoidal product. �

Remark 6.4.7. To start making sense of the use of the cartesian product of FinCoh, there
is a useful analogy with Maff here. There is a projection functor Maff → PartFinSet where
PartFinSet is the category of finite sets and partial functions. The tensorial product of
Maff required a coproduct at the level of indices. Here, we have a projection functor

6.4. TR&-BRTTS COINCIDE WITH REGULAR FUNCTIONS, VIA COHERENCE SPACES 187

Mcoh → FinCohop, and we again use a coproduct at the level of indices (which becomes a
product due to the contravariance).

We call Maff the tree streaming setting based on Maff, ‚ and L−M), and Mcoh the
corresponding tree streaming setting based onMcoh.

Proposition 6.4.8. There is a full and faithful strong monoidal functor Maff → Mcoh
extending to a morphism of streaming setting Maff →Mcoh.

Proof. Call F this functor, and, for any set I, write ∆ for the functor PartFinSet→
FinCoh taking a set I to the discrete coherence space ∆(I) = (I, {(i, i) | i ∈ I}). Note
that we have ∆(I)⊥ = (I, I × I), which may be regarded as the codiscrete coherence space
generated by I. On objects ofMaff, we define F as

F

(⊗
i∈I

Ai

)
=

⊙
i∈∆(I)⊥

Ai

For morphisms (f, (αj)j∈J) ∈ HomMaff

(⊗
i∈I Ai,

⊗
j∈J Bj

)
, we set

F (f, (αj)j∈J) = ({(j, i) | j = f(i)}, (αj)j∈J)

It is rather straightforward to check that F is indeed full, faithful and strong monoidal, and
the extension to a morphism Maff →Mcoh is immediate. �

Proposition 6.4.9. Mcoh also has cartesian products, which may be defined as(⊙
i∈I

Ai

)
&

⊙
j∈J

Bj

 =
⊙
x∈I⊕J

{
Ai if x = in1(i)
Bj if x = in2(j)

(The proof is left to the reader.) Therefore, we can extend Proposition 6.4.8:

Corollary 6.4.10. There is a functor E : (Maff)& → Mcoh that is full, faithful and lax
(but not strong) monoidal, extending to a morphism of streaming settings (Maff)& →Mcoh.

In the following proof and the rest of this section, we write explicitly Icoh for the monoidal
unit of ⊗ inMcoh and Iaff& for the unit in (Maff)&.

Proof idea. The universal property of the free product completion defines E as the
unique product-preserving functor extending the functor of Proposition 6.4.8. It remains to
equip it with a lax monoidal functor structure. The map m0 : Icoh → E(Iaff&) is an obvious
isomorphism, while the natural transformation m2

A,B : E(A)⊗ E(B)→ E(A⊗ B) can be
obtained via the canonical map(¯

i∈I
Ai

)
⊗

(¯
j∈J

Bj

)
→

¯
(i,j)∈I×J

Ai ⊗Bj

inMcoh (it exists in all monoidal categories with products). �

We can now go the other way around.

Lemma 6.4.11. There is a strong monoidal functor Mcoh → (Maff)&, which extends to a
morphism of streaming settings Mcoh → (Maff)&.

Proof. For a coherence space (‖X‖,¨X), write Cl(X) ⊆ P(X) the set of cliques of X

Cl(X) = {S ∈ P(X) | ∀x y ∈ S. x ¨X y}

6.4. TR&-BRTTS COINCIDE WITH REGULAR FUNCTIONS, VIA COHERENCE SPACES 188

We now define the functor F :Mcoh → (Maff)& on objects as

F

(⊙
x∈X

Ax

)
=

¯
S∈Cl(X)

⊗
x∈S

Ax

As for morphisms, first recall that a morphism (R,α) ∈ HomMcoh

(⊙
x∈X Ax,

⊙
y∈Y By

)
consists of a linear map R ∈ HomFinCoh (Y,X) and a family

(αy)y∈‖Y ‖ ∈
∏

y∈‖Y ‖

HomM
(
(Ax)(y,x)∈R, By

)
We set out to define

F (R,α) ∈ Hom(Maff)&

F (⊗
x∈S

Ax

)
, F

⊗
y∈S′

By


recalling that

Hom(Maff)&

F (⊗
x∈S

Ax

)
, F

⊗
y∈S′

By


=

∏
S′∈Cl(Y)

∑
S∈Cl(X)

∑
f :S⇀S′

∏
y∈S′

HomM
(
(Ax)x∈f−1(x), By

)
So fixing S′ ∈ Cl(Y) and recall that R being linear means that we have

(y, x) ∈ R ∧ (y′, x) ∈ R ⇒

{
y ¨Y y′ ⇒ x ¨X x′ (1)

x = x′ ⇒ y ˚Y y′ (2)

In particular, (1) implies that {x ∈ ‖X‖ | (y, x) ∈ R} is a clique; we take that to be S. (2),
and the fact that y ¨Y y′ ∧ y ˚Y y′ ⇒ y = y′, imply that R determines a (total) function
S ⇀ S′, which we take to be f . Finally, once y ∈ S′ is fixed, we pick the component αy to
complete the definition, which makes sense as f−1(y) = {x ∈ S | (y, x) ∈ R} = {x ∈ ‖X‖ |
(y, x) ∈ R)}. This completes the definition of F (R,α); we leave checking functoriality to the
reader.

Now, we turn to defining a morphism Mcoh → (Maff)& from F . To this end, we first
equip F with a strong monoidal structure (though a lax one would suffice for our definition
of morphism of tree streaming settings). The key computation that allows this is as follows:

F

(⊙
x∈X

Ax

)
⊗ F

⊙
y∈Y

By

 ∼=

 ¯
S∈Cl(X)

⊗
x∈S

Ax

⊗
 ¯
S′∈Cl(Y)

⊗
y∈S′

By


∼=

¯
S∈Cl(X)
S′∈Cl(Y)

(⊗
x∈X

Ax

)
⊗

⊗
y∈Y

By


∼=

¯
S∈Cl(X&Y)

⊗
z∈S

Cz where Cin1(x) = Ax, Cin2(y) = By

∼= F

(⊙
z∈X&Y

Cz

)
∼= F

(⊙
x∈X

Ax

)
⊗

⊙
y∈Y

By



6.5. T R⊕& IS MONOIDAL CLOSED 189

Finally, there is a canonical isomorphism F (‚) ∼= ‚ which completes the definition of our
morphism Mcoh → (Maff)&. �

We thus conclude this section by first specializing the above to the case M = T R≤1,
and then making a final tangential observation.

Lemma 6.4.12. There are morphisms of streaming settings TR≤1& → TR˚,≤1 → TR≤1& . In
particular, TR≤1& -BRTTs compute exactly the regular functions.

Remark 6.4.13. One idea that one could take from Hu and Joyal’s “coherence completion”
of categories [HJ99] – but that we do not explore further here – is to look at objects whose
indexing coherence spaces are (up to isomorphism) generated from singletons by the &/⊕
operations of FinCoh. (Those are called “contractible” in [HJ99, Section 4], and considering
coherence spaces as undirected graphs, this corresponds to the classical notion of cograph in
combinatorics.)

In the case of the coherence completion of some category C, the full subcategory spanned
by such objects turns out to be the free completion of C under finite products and coproducts
(which differs from our (−)⊕& in not making ‘&’ distribute over ‘⊕’); this is formalized as a
universal property in [HJ99, Theorem 4.3]. In the same vein, we conjecture that the full
subcategory of Mcoh consisting of cograph-indexed objects – that is, of objects that are
generated from those of M by means of the operations ⊗/& in Mcoh – is in some way the
free affine symmetric monoidal category with products generated by the multicategory M.

6.5. T R⊕& is monoidal closed

Now, we consider the category T R⊕&. Much like for SR⊕& (§4.5), we have:

Theorem 6.5.1. The category T R⊕& has cartesian products, coproducts and a symmetric
monoidal closed structure.

Remark 6.5.2. Given the close relationship between the constructions ((−)aff)& and (−)coh,
it seems plausible that (T Rcoh)⊕ could be monoidal closed (we know that it has products,
coproducts and a symmetric monoidal structure). We leave this question to further work.

This structure over T R⊕& is obtained in the same way as for strings: the monoidal
product over T R is defined as distributing over formal sums and products and the usual
products and coproducts are created by the (−)⊕& completion. Similarly, monoidal closure
can be obtained by applying the generic Theorem 4.5.3 once we show that the objects coming
from T R have internal homsets T R⊕ (echoing Lemma 4.3.14):

Lemma 6.5.3. For any R, S ∈ Obj(T R), there is an internal hom ι⊕(R)(ι⊕(S) in T R⊕.

The rest of this section is dedicated to proving this fact, whose proof relies on decomposing
linear trees in a similar way as in Lemma 6.3.4.

Proof. First, we treat the special case where S = I(U) for some finite set U . To make
sense of the definition of ι⊕(R) (ι⊕(I(U)) it is helpful to notice that it will ultimately
induce an isomorphism

HomT R⊕ (>, ι⊕(R)(ι⊕(I(U))) ∼= HomT R (R, I(U)) ∼= LTree(R⊗O(U))

so, recalling that objects of T R⊕ are of the shape
⊕

i∈I
⊗

j∈Ji I(Vj) for Vj being finite
sets, the operational intuition is that one may code trees with “holes with arity” into some
bounded finitary data (which we may informally call a partitioning tree) plus finitely many
trees containing holes “without arity”; this bijection is pictured in Figure 6.5.1. As with
Lemma 6.3.4, we will not use this as our official definition for the internal homset, but rather
use the following recursive definition:

6.5. T R⊕& IS MONOIDAL CLOSED 190

↦
a0 ↦

a

a

y

b

a

x c

a0

x y

l0 l1 l2 l3 l4 l5

a

x ↦
a

y ↦ l0, l1, l2, l3 ↦

l4 ↦ b

l5 ↦ c

Figure 6.5.1. Decomposition of a map of HomT R(Σ) ({x : 3, y : 3}, I(7))
(which is defined as LTreeΣ({x : 3, y : 3} ⊗O(7)), for Σ = {a : 2, b : 1, c : 0})
as a tuple consisting of a partitioning tree and trees without the letters x
and y.

• If R = >, set ι⊕(R)(ι⊕(I(U)) = ι⊕(I(U)).
• Otherwise, define ι⊕(R)(ι⊕(I(U)) as

⊕
U=V]W

ι⊕(I(V + 1))⊗

(⊕
b∈Γ

(R(b I(W))⊕
⊕
r∈R

(R(r I(W))

)

where R (r I(W) and R (b I(W) are auxiliary definitions which correspond to the
following situations (recalling that morphisms can be regarded as trees):
– ι⊕(I(V + 1)) ⊗ (R(r I(W)) correspond to morphisms such that there is a unique

minimal path leading from the root to a node labelled by a letter in R, and that letter
is r. The second component R(r I(W) is meant to include the immediate subtrees of
that node while the first ι⊕(I(V + 1)) contains the tree where a nullary node labeled
is inserted instead of that node. The combination of both these data and r allows to
recover the original morphism.

–
⊕

b∈Γ ι⊕(I(V + 1)) ⊗ R (b I(W) correspond to all the other morphisms. In such a
case there is a topmost node labelled by some letter b of Γ with which has at least
two distinct immediate subtrees which have at least one node of R each. Similarly to
the first subcase, R (b I(W) is intended to include the immediate subtrees of that
node labeled by b while ι⊕(I(V + 1)) contains the tree where a nullary node labeled is
inserted instead of that node. The combination of these data and b allows to recover
the original morphism.

6.5. T R⊕& IS MONOIDAL CLOSED 191

Their formal definition is as follows:

R(b I(W) =
⊕

f :W→ar(b)
g:R→ar(b)

g nonconstant

⊗
x∈ar(Γ)

ι⊕(R � g−1(x))(ι⊕(f
−1(x))

R(r I(W) =
⊕

f :W→ar(r)
g:R\{r}→ar(r)

⊗
x∈ar(r)

ι⊕(R � g−1(x))(ι⊕(f
−1(x))

Note that the definitions of ι⊕(R)(ι⊕(I(U)), R(b I(W) and R(r I(W) mutually
depend on one another. Still this is is well-defined as the definitions of R(b I(W) and
R(r I(W) only require ι⊕(S)(ι⊕(I(V)) for S strictly smaller than R.

We now describe the associated evaluation map

evR,I(U) : (ι⊕(R)(ι⊕(I(U)))⊗R −→ I(U)

also by recursion over R.
• If R = >, it is the identity.
• Otherwise, we need to provide maps(

I(V + 1)⊗

(⊕
b∈Γ

(R(b I(W))⊕
⊕
r∈R

(R(r I(W))

))
⊗R −→ I(U)

for every decomposition U = V] W , the intuition being that I(V + 1) is a context
containing the top of the tree corresponding to the function we want to apply. Therefore,
once we provide a map(⊕

b∈Γ
(R(b I(W))⊕

⊕
r∈R

(R(r I(W))

)
⊗R −→ I(W)

we may post-compose it with I(V + 1) ⊗ I(W) → I(V +W) ∼= I(V]W) = I(U) to
define evR(I(U). Recalling that ⊗ distributes over ⊕, it suffices to provide specialized
maps

evbR,I(W) : R(b I(W)⊗R→ I(W) and evrR,I(W) : R(r I(W)⊗R→ I(W)

for b ∈ Γ and r ∈ R, which we describe now.
– For evbR,I(W), it suffices to define a family of T R-maps indexed by f :W → ar(b) and
g : R→ ar(b) with g non-constant ⊗

x∈ar(Γ)

(R � g−1(x))(I(f−1(x))

⊗R −→ I(W)

Recall that b can be seen as tree constructor and induces a canonical map

b :
⊗

x∈ar(b)

I(f−1(x)) −→ I(W)

Using the induction hypothesis, we have evaluation maps(
(R � g−1(x))(I(f−1(x))

)
⊗ (R � g−1(x)) −→ I(W)

We can then compose b with the product of those maps over x ∈ ar(b) and then the
isomorphism R ∼=

⊗
x∈ar(b) R � f−1(x) to conclude the definition of evbR,I(W).

6.6. PRESERVATION PROPERTIES OF FINITE COMPLETIONS 192

– For evrR,I(W), it suffices to define a family of T R-maps indexed by f :W → ar(r) and
g : R \ {r} → ar(r) ⊗

x∈ar(Γ)

(R � g−1(x))(I(f−1(x))

⊗R −→ I(W)

By exploiting the isomorphism R ∼= I(ar(r)) ⊗
⊗

x∈ar(r)(R � g−1(x)) and using the
inductive hypothesis as in the previous case, we obtain a map ⊗

x∈ar(Γ)

(R � g−1(x))(I(f−1(x))

⊗R −→ I(ar(r))⊗
⊗

x∈ar(r)

I(f−1(x))

and we may conclude by post-composing by the map

I(ar(r))⊗
⊗

x∈ar(r)

I(f−1(x))→ I(W)

which is induced by the depth-2 tree whose root corresponds to the first component,
whose children correspond to the successive elements of

⊗
x∈ar(r) I(f−1(x)) and other

leaves are in W .
While the definition is a bit wordy, there is then little difficulty in checking that this yields
the expected universal property.

ι⊕(R(I(U))⊗ ι⊕(I(U)) // ι⊕(I(U))

A⊗ ι⊕(R)

Λ(h)⊗id

OO

h

33

One needs then to extend the definition for the general case where S is not necessarily I(U);
this is done using a similar approach as for strings, by using a coproduct over partial maps
R ⇀ S tracking which letter of the input participates in which letter of the output, and
employing the particular case where there is one letter in the output3

ι⊕(R)(ι⊕(S) =
⊕

f :R⇀S

⊗
s∈S

ι⊕(R � f−1(s))(ι⊕(I(ar(s)))

The evaluation function can then be extended and the universal property accordingly lifted
to the more general case. �

6.6. Preservation properties of finite completions

We have now proven all of the combinatorial results leading to the main theorem for trees.
At this stage, we only need to make explicit a few preservation properties of the completions
(−)⊕ and (−)&. We only state the minimal requirements that we need to proceed4.

Lemma 6.6.1. Let � ∈ {⊕,&,⊕&} and C,D be streaming settings. Then if there is a
morphism C→ D, there is also a morphism C� → C�.

3This could be factored out as a more general result concerning the existence of internal homsets in
categories of the shape Maff for multicategories M.

4The following, which would entail these requirements, should hold (but we have not checked it): the
completions (−)⊕ and (−)& should behave as pseudo-monads over the 2-category of tree streaming settings,
admitting a pseudo-distributive law ((−)⊕)& → ((−)&)⊕ giving rise to the pseudo-monad (−)⊕&.

6.7. λ`⊕&-DEFINABLE TREE FUNCTIONS ARE REGULAR 193

Proof idea. Let us only discuss the case � = ⊕ and assume that we have a streaming
setting morphism whose underlying lax monoidal functor is F : C → D. Then we consider
F⊕ : C⊕ → D⊕ defined using the universal property of C⊕ from the functor ι⊕ ◦ F : C → D⊕
such that

F⊕

(⊕
u∈U

ι⊕(Cu)

)
=
⊕
u∈U

ι⊕(F (Cu))

so that F⊕ inherits a lax monoidal structure from F by lifting the relevant maps functorially.
For instance, we have ι⊕(I) → ι⊕(F (I)) = F⊕(I) for the unit. We leave checking the
coherence diagram, the case of the binary tensor to the reader, as well as checking that the
rest of the structure of morphisms of streaming settings lift accordingly. �

Lemma 6.6.2. Let C be a streaming setting. Then there are morphisms of streaming settings
C⊕& → (C⊕)⊕& and (C⊕)⊕& → C⊕&.

Proof idea. The first morphism can be obtained using Lemma 6.6.1 with the morphism
of streaming setting C→ C⊕ corresponding to ι⊕. The second morphism can be written as
a composite

(C⊕)⊕& ∼= ((C⊕)&)⊕
(DistC)⊕ // ((C&)⊕)⊕

MuC& // (C&)⊕ ∼= C⊕&

where (DistC)⊕ is obtained from a morphism DistC : (C⊕)& → (C&)⊕ by Lemma 6.6.1. DistC
itself is built from a functor DC : (C⊕)& → (C&)⊕ defined on object following the mantra
“products distribute over coproducts”.

DC

(¯
x∈X

ι&

(⊕
u∈Ux

ι⊕(Cx,u)

))
=

⊕
F∈

∏
x Ux

ι⊕

(¯
x∈X

ι&(Cx,u)

)
On the other hand, the functor M : C which is part of MuC is obtained by using the universal
property of (−)⊕ so that

M

(⊕
u∈U

ι⊕

(⊕
v∈V

ι⊕(Cu,v)

))
=
⊕
(u,v)

ι⊕(Cu,v)

�

6.7. λ`⊕&-definable tree functions are regular

We will now finally prove our last result on the λ`⊕&-calculus, that is, the third row in
Theorem 1.2.3 whose statement is recalled in the section title.

First, recall from Section 5.2.1 that if Γ = {a1 : A1, . . . , ak : Ak} is an output alphabet,
we call Γ̃ the context a1 : o(. . .(o, . . . , ak : o(. . .(o where the type of ai has |Ai|
arguments. Let L(Γ̃) (or L for short when Γ̃ is clear from context) be the syntactic category
defined by replacing the alphabet Γ by a ranked alphabet Γ in Definition 5.2.1. Since L
monoidal product, we may easily adapt Definition 5.2.3 to get a tree streaming setting L(Γ).
Then we may relate λ`⊕&-definability to (single-state) L-BRTT.

Lemma 6.7.1. Computability by single-state L-BRTTs and λ`⊕&-definability (Defini-
tion 5.1.9) are equivalent for functions Tree(Σ)→ Tree(Γ).

Proof idea. Similar to Lemma 5.2.4, based on the syntactic Lemma 5.2.5. The proof
is even more straightforward as there is no mismatch between the processing of trees by
BRTTs and λ`⊕&-terms working with Church encodings, whereas SSTs operate top-down
rather than bottom-up when regarding strings as unary trees. �

6.7. λ`⊕&-DEFINABLE TREE FUNCTIONS ARE REGULAR 194

We can now notice that L-BRTTs are more expressive than T R≤1-BRTTs, much like
with strings (this generalizes Lemma 5.2.7).
Lemma 6.7.2. There is a morphism of streaming settings TR→ L.

Proof sketch. Let us focus on the underlying functor F : T R → L. For objects
(which are finite sets), we put

F

(⊗
i∈I

Ui

)
=
⊗
i∈I

((
o⊗Ui (o

)
& I
)

A multimorphism f ∈ HomT Rm ((Ui)i∈I , V) is an element of LTreeΓ
((⊗

i∈I I(Ui)
)
⊗O(V)

)
which has a Church encoding f which has a type isomorphic to

⊗
i∈I
(
o⊗Ui (o

)
(o, and

thus embeds into F
(⊗

i∈I Ui
)

through well-typed term ι. We take F (faff) = λx.ι f , and
extend this definition to arbitrary morphisms (f, (αj)j) :

⊗
i∈I Ui →

⊗
j∈J Vj in T R by first

using the second projection π2 to restrict to the case where dom(f) = I, and then by piecing
together the F ((αj)aff). �

Corollary 6.7.3. There is a morphism of streaming settings TR⊕& → L.
Proof idea. Starting from Lemma 6.7.2, we have a functor T R → L. Since L has all

products and coproducts, the universal properties of the (−)& and (−)⊕ completion yield
a functor F : T R⊕& → L. The monoidal structure of the initial functor T R → L can be
lifted accordingly. For any finite family of objects (((Ak)k∈Kj

)j∈Ji)i∈I sitting in a symmetric
monoidal closed category with products and coproducts, there are canonical morphisms(⊕

u∈U

¯
x∈Xu

Ax

)
⊗

(⊕
v∈V

¯
v∈Yv

By

)
−→

⊕
(u,v)∈U×V

¯
(x,y)∈Xu×Yv

Ax ⊗By

which are not isomorphisms in general, but constitute the non-trivial part of the lax monoidal
structure of F ; m0 : I→ F (I) is actually the identity. �

For the converse, we use Theorem 6.5.1, according to which T R⊕& has all the categorical
structure needed to model the purely linear fragment of the λ`⊕&-calculus. By a suitable
adaptation of Lemma 5.2.6 to tree streaming settings, we then have:
Corollary 6.7.4. There is a morphism of streaming settings L→ TR⊕&.

The proof of our main theorem for trees can now be summarized as
λ`⊕& = single-state L-BRTTs by Lemma 6.7.1

= single-state TR˚,≤1
⊕ -BRTTs (†)

= TR˚,≤1-BRTTs by Theorem 6.1.6
= regular tree functions by Proposition 6.4.5

Note that applying Theorem 6.1.6 in the last step requires that objects of T R˚,≤1 have
unitary support, which is easily checked for output alphabets Γ containing at least one letter
of arity ∅. It remains to justify step (†), i.e., that single-state L-BRTTs and TR˚,≤1

⊕ -BRTTs
are equi-expressive. By Lemma 6.1.5, it suffices to have morphisms of streaming settings
both ways L ↔ TR˚,≤1

⊕ to conclude. They may be obtained as the following composites
(where we leave implicit the uses of Lemma 6.6.1 and some easily inferrable steps).

L

Cor. 6.7.4
&&
TR⊕&

Lem. 6.6.2
))

Cor. 6.7.3

dd (TR⊕)⊕&

Lem 6.3.4,,

ii
(TR≤1⊕)⊕&

Lem. 6.6.2--

jj
TR≤1⊕&

∼= (TR≤1&)⊕ll

Lem. 6.4.12
++
TR˚,≤1
⊕ll

CHAPTER 7

Star-free languages in non-commutative linear logic

This is the final technical chapter of this dissertation, and it is devoted to Theorem 1.2.1:
our characterization of star-free languages using a non-commutative linear λ-calculus. But
whence comes non-commutativity? Consider the λ-terms

id = λf. f =η λf. λx. λy. f x y flip = λf. λx. λy. f y x

Then iterating flip yields flip, id, flip, id, . . . up to βη-equivalence. In other words, the
sequence defined by the recurrence flipn+1 = λf. flip (flipn f) is described by the closed
forms flip2n+1 =βη flip and flip2n+2 =βη id; it has period two since flip 6=βη id. To
enforce the aperiodicity (Definition 1.1.2) of certain monoids of λ-terms, we must therefore
exclude flip, whose only action is to exchange the two arguments of its input f .

Thus, we are led to require that functions use their arguments in the same order that
they are given in. It is well-known that in order to make such a restriction behave well, one
needs to restrict duplication in some way. Indeed, consider the β-reduction

λf. λx. λy. (λa. f a a) (x y) −→β λf. λx. λy. f (x y) (x y)

While the term on the left-hand side satisfies the non-commutativity condition, its reduct
on the right-hand side does not, and this is due to the two copies of the subterm (x y). This
led us to use a non-commutative affine λ-calculus in the paper [NP20], upon which this
chapter is largely based.

However, instead of merely copy-pasting the contents of [NP20], we have chosen here to
work with linear rather than affine types. While this choice did not make much difference
in the case of the λ`⊕&-calculus of the two previous chapters (cf. Remark 5.1.1), this was
because the λ`⊕&-calculus features additive connectives ⊕/&. The latter must also be
excluded to capture star-free languages: it is not hard to check that any regular language
can be defined by a “non-commutative λ`⊕&-term” of type StrΣ[I⊕ · · · ⊕ I](I⊕ I (see
also [NP20, §5.2] for an encoding using ‘&’). And without additives, it is much less obvious
that the absence of weakening (the ability for functions to discard their arguments) does no
harm to the expressive power.

In fact, we will show right now that this is wrong concerning string-to-string functions.
In what follows, we speak of the λ`-calculus to refer to the fragment of the λ`⊕&-calculus
containing only the connectives1 ‘(’ and ‘→’ on types, and the corresponding term con-
structors. It is shown in [NP20, §5.1] that the affine variant of the λ`-calculus can express
all sequential functions (§2.2); in fact, we will see in upcoming work that the functions that
are “affine λ`-definable” (in the sense of Definition 5.1.9, mutatis mutandis) are exactly the
regular functions, as announced in Section 1.4.2 of the introduction. However:

Proposition 7.0.1. The example of letter-to-letter aperiodic sequential function given in
Proposition 2.3.9 is not λ`-definable.

1The exclusion of the tensor product has no effect on expressiveness here: we discuss at the end of
Section 7.2 how to prove an upper bound in a way that accomodates ⊗; conversely, σ ⊗ τ can sometimes be
simulated by (σ(τ (κ)(κ for a judicious choice of κ (a trick that occurs in our definition of NBool).
But only sometimes: see the discussion on P-completeness of normalization in the preface and in Section 1.2.2.

195

7.1. THE λ`℘-CALCULUS 196

Proof. It does not satisfy the conclusion of the theorem below. �

Theorem 7.0.2. Let f : Γ∗ → Σ∗ be defined by a λ`-term t : StrΓ[τ](StrΣ where τ is
purely linear. The Parikh vector (containing the number of occurrences of each letter) of
f(w) is entirely determined by the Parikh vector of w ∈ Γ∗. Moreover, the relationship is
given by an affine map (in the sense of linear algebra) with integer coefficients.

Proof sketch. First, we claim that an analogous property to Lemma 5.2.5 holds in
the λ`-calculus: t =βη λs.λ

!a1. . . . λ
!a|Σ|.λ

!aε. o (s d1 . . . d|Γ| dε) where o and the di are
purely linear λ`-terms with no occurrence of s. Since we only have negative connectives –
see the discussion at the beginning of Chapter 5 – in this fragment, this can be established
much more easily than Lemma 5.2.5, by examining β-normal η-long forms.

The idea is then to work with the following “measure” on purely linear λ`-terms with
the non-linear free variables a1, . . . , a|Σ|, aε: JtKc is the number of occurrences in t of ac (i.e.
ai when c is the i-th letter of Σ). In fact this is a denotational semantics: it is not hard to
check invariance by =βη manually, but more conceptually, it corresponds to the commutative
monoid (N,+) seen as a one-object monoidal closed (and even compact closed) category.

If x ∈ NΓ and y ∈ NΣ are the Parikh vectors of w and f(w) respectively, we then have
y = Ax+b where A ∈ NΣ×Γ and b ∈ NΣ are defined by Ac,c′ = Jdc′Kc and bc = JdεKc+JoKc. �

Despite this, moving from affineness to linearity does not affect the expressive power of
our non-commutative λ-calculus – which we call the λ`℘-calculus – concerning languages.
In other words, one can express all star-free languages without weakening. Since linearity is
more restrictive than affineness, the fact that λ`℘-definable languages are regular – i.e. the
“only if” part of Theorem 1.2.1 – is already a consequence of the work done in [NP20]; we
shall recall briefly the key ideas in §7.2, and discuss (vaguely) an alternative approach to
establishing the central property. Most of our focus in this chapter is on the converse (§7.3):
we show how to encode star-free languages as λ`℘-terms.

7.1. The λ`℘-calculus

The terms and types of the λ`℘-calculus are defined by the respective grammars
σ, τ ::= o | σ → τ | σ(τ t, u ::= x | t u | λ!x. t | λx. t

There are two rules for β-reduction (closed under contexts)
(λ!x. t)u −→β t{x := u} (λx. t)u −→β t{x := u}

and the remaining conversion rules are the expected η-reduction/η-expansion rules.
Just as in the case of the λ`⊕&-calculus (cf. §5.1), the typing judgements make use

of dual contexts (it is indeed a common feature, originating in [Bar96]): they are of the
form Ψ; ∆ ` t : τ . The key difference with the λ`⊕&-calculus is that ∆ is an ordered list
of bindings – this order is essential for non-commutativity. The typing rules are as follows,
where ∆ ·∆′ denotes the concatenation of the ordered lists ∆ and ∆′:

Ψ, x : τ ; ∅ ` x : τ

Ψ; ∆ ` t : σ → τ Ψ; ∅ ` u : σ

Ψ; ∆ ` t u : τ

Ψ, x : σ; ∆ ` t : τ
Ψ; ∆ ` λ!x. t : σ → τ

Ψ; x : τ ` x : τ

Ψ; ∆ ` t : σ(τ Ψ; ∆′ ` u : σ

Ψ; ∆ ·∆′ ` t u : τ

Ψ; ∆ · (x : σ) ` t : τ
Ψ; ∆ ` λx. t : σ(τ

This coresponds to the fragment of Polakow and Pfenning’s Intuitionistic Non-Commutative
Linear Logic [PP99a; PP99b] that contains only and ‘(’ are called “intuitionistic functions”
(→) and “right ordered functions” (() in the terminology of [PP99a]. (Their system
additionally contains “linear [commutative] functions” and “left ordered functions”.)

7.1. THE λ`℘-CALCULUS 197

Remark 7.1.1. Morally, the non-affine variables “commute with everything”. More formally,
one could translate the λ`℘-calculus into a non-commutative version of Intuitionistic Affine
Logic whose exponential modality ‘!’ incorporates the customary rules (see e.g. [Yet90])

Γ, !A,B,∆ ` C
Γ, B, !A,∆ ` C

Γ, B, !A,∆ ` C
Γ, !A,B,∆ ` C

The following property is analogous to the argument in the proof of Proposition 5.1.16.
We write u ◦ t = λx. u (t x) – this composition is associative modulo =βη.

Lemma 7.1.2. If ` t : σ1[τ](σ2 and ` u : σ2[τ
′](σ3, then ` u ◦ t : σ1[τ [τ ′]](σ3.

Now we must explain what the types involved in the definition of λ`℘-definability are.

7.1.1. Non-commutative booleans. The conventional linear boolean types do not work
in the λ`℘-calculus because of non-commutativity and of the lack of additive connectives.
But the following choice of type

NBool = ((o(o)((o(o)(o)((o(o)(o

admits exactly two closed inhabitants (this would not be the case in an affine setting!):
true = λk. λf. k (λx. x) f false = λk. λf. k f (λx. x)

It is a sort of continuation-passing-style [Rey93] transformed version of the boolean type
(o (o) ((o (o) ⊗ (o (o) introduced by Matsuoka [Mat15]. (Interestingly, while
Matsuoka works in commutative multiplicative linear logic, he mentions the potential
relevance of planarity, i.e. non-commutativity, to expressivity questions.)

Let us show that a few pseudo-weakening functions are definable:
cstt = λb. λk. λf. b (λ.g. λh. k id (f ◦ g ◦ h)) id : NBool(NBool

cstf = λb. λk. λf. b (λ.g. λh. k (f ◦ g ◦ h) id) id : NBool(NBool
proj2 = λb. b (λg. λh. g (h id)) id : NBool[o(o](o(o

For b ∈ {true, false}, we have cstt b =βη true, cstf b =βη false and proj2 b =βη id.
We also have the following boolean operations:

not′ = λb. b (λg. λh. g (cstt (h true))) cstf : NBool[NBool](NBool

and = λb1. λb2. λk. b1 (λf1. b2 (λf2.λf3. k (f1 ◦ f2) f3))
(this definition of and was found by Noam Zeilberger). One could wonder whether, just like
for conjunction, there is some definition of negation that does not require a substitution in
the input type. We shall see in Example 7.1.3 that this is not the case.

7.1.2. Strings and λ`℘-definable languages. The linear Church encodings of strings are
defined as in Section 5.1.2. This works in the λ`℘-calculus, with all the expected properties,
e.g. the bijection between Σ∗ and the terms of type StrΣ up to βη-equivalence. Proving
this is, again, just a matter of examining β-normal η-long forms, thanks to the fact that
the λ`℘-calculus only has negative connectives. Note that while our type of strings – which
specializes the encodings of ranked trees – is slightly different from the one in [NP20], the
two are interconvertible (one of the directions is similar to what happens in Lemma 7.3.1)
so this has no significant effect (cf. [NP20, Remark 5.7]).

Example 7.1.3 (λ`℘-definable languages). Given two closed λ`℘-terms ta and tb of type
NBool(NBool, one can define the term g = λs. s ta tb false : Str{a,b}[NBool](NBool.
Then for any w = w[1] . . . w[n] ∈ {a, b}∗, we have g w −→∗β tw[1] (. . . (tw[n] false)).
• For ta = cstt and tb = λx. x, g decides the language of words in {a, b}∗ that contain at

least one a; this language is indeed star-free as it can be expressed as ∅ca∅c.

7.2. AN UPPER BOUND VIA APERIODICITY OF PURELY LINEAR λ`℘-MONOIDS 198

• If negation were definable by a λ`℘-term not : NBool(NBool, then for ta = tb = not,
the language decided by g would consist of words of odd length: a standard example of
regular language that is not star-free. Thus, a corollary of Theorem 1.2.1 is that there is
no such term not such that not true =βη false and not false =βη true.

Remark 7.1.4. A point of utmost importance is that because of the heterogeneity of the
input and output types, the term not′ : NBool[NBool](NBool from the previous subsection
does not contradict our above observation and cannot be iterated by a Church-encoded string.
Monomorphism is therefore crucial for us: if our type system had actual polymorphism, one
could give not′ the type (∀α. NBool[α])((∀α. NBool[α]), whose input and output types
are equal, and then the words of odd length would be λ`℘-definable. (This is analogous to
Remark 1.3.1 concerning the simply typed λ-calculus.) Yet our ersatz of polymorphism still
allows for some form of compositionality (Lemma 7.1.2) that will prove useful in several
places in our proof of expressiveness.

7.2. An upper bound via aperiodicity of purely linear λ`℘-monoids

A λ`℘-term not : NBool (NBool defining boolean negation would generate the non-
aperiodic monoid Z/(2) – similarly to the term flip discussed at the beginning of the
chapter, which motivated the non-commutativity constraint. So, generalizing the inexistence
of such a λ`℘-term not, we would like to make sure that certain monoids in the λ`℘-calculus
are aperiodic. It turns out that aperiodicity is indeed a consequence of non-commutativity
in the purely linear fragment of the λ`℘-calculus.

Theorem 7.2.1. For any purely linear type τ , the set of closed λ`℘-terms of type τ (τ
quotiented by βη-convertibility and endowed with function composition, is a finite and
aperiodic monoid.

Let us comment on the role of the features of the type system here:
• The existence of finitely many closed inhabitants of a purely linear type σ (considered

here in the special case σ = τ (τ) still works in the commutative case; it is a well-known
consequence of linearity (even of affineness, see [NP20, Proposition 3.1]).
• On the other hand, the term flip = λf. λx. λy. f y x : (o(o(o)((o(o(o) is

linear, so aperiodicity truly depends on non-commutativity.
As promised in Section 1.2.2, our upper bound on the expressiveness of the λ`℘-calculus

(the “only if” part of Theorem 1.2.1) reduces to this property of the purely linear fragment:

Corollary 7.2.2. A language L ⊆ Σ∗ can be defined by a λ`℘-term of type StrΣ[τ](NBool
for some purely linear type τ (that may depend on L) only if it is a star-free language.

Proof sketch. By performing an analysis of β-normal η-long forms (similar to what
is done in Lemma 5.2.5, but again, simplified by the absence of positive connectives), one
shows that such a λ`℘-definable language L is recognized by a morphism to the monoid of
λ`℘-terms of type τ (τ – see [NP20, Lemma 3.6]. This monoid being finite and aperiodic
according to the above theorem, L is star-free (cf. Definition 1.1.2). �

There remains to prove Theorem 7.2.1. Here, there are two approaches:
• In [NP20, §3], we give an elementary and purely syntactic proof by induction on the

type τ and examination of the “flow of variables” in η-long forms. In the end, the main
combinatorial component is that the monoid of non-decreasing functions from {1, . . . , k} to
itself is aperiodic. This has the advantage of working for affine non-commutative λ-terms,
see [NP20, Theorem 1.8] (one then needs to consider partial non-decreasing functions).

7.3. EXPRESSIVENESS OF THE λ`℘-CALCULUS 199

• Alternatively, we may use a semantic evaluation argument – similarly to Hillebrand and
Kanellakis’s [HK96] proof of Theorem 1.1.4. The idea – mentioned in Section 1.4.3 of the
introduction – is that the purely linear fragment of the λ`℘-calculus can be interpreted
in a non-symmetric monoidal closed category of “planar diagrams” [Abr07]; and the
monoids of endomorphisms in this category are finite and aperiodic (a result of [Ngu21],
which is key to proving Claim 1.4.10). As mentioned in Section 1.4.3, a drawback of
this approach is that it does not extend immediately to the affine case (one would want
to use a “planar game semantics” for this purpose). However, the proof of aperiodicity
is arguably nicer, and one advantage is that it also works for non-commutative linear
λ-terms with a multiplicative pair type ⊗ (cf. Footnote 1 in this chapter). It might be
possible to extend the aforementioned syntactic proof of Theorem 7.2.1 to cover ⊗, but
this would probably be cumbersome, since it is a positive connective.

7.3. Expressiveness of the λ`℘-calculus

Our goal is now to prove the remaining direction of Theorem 1.2.1, i.e. the converse of
Theorem 7.2.1. In other words, we want to construct, for any star-free language, a closed
λ`℘-term that defines this language, of type StrΣ[τ](NBool for some purely linear τ . To
do so, we take a detour through string-to-string transducers.

The λ`℘-calculus, which embeds into the strictly linear λ`-calculus, does not allow us
to do much with the type StrΣ[τ] (StrΓ according to Theorem 7.0.2. This is why, in
addition to the type Str, we will use a type of almost-strings as a helper:

StrWΣ = ((o(o)(o(o)→ (o(o)→ · · · → (o(o)︸ ︷︷ ︸
|Σ| times

→ (

we chose (instead of → here which makes no difference︷ ︸︸ ︷
o(o)

A closed inhabitant of StrW η-expands into λ!e. λ!f1. . . . λ
!f|Σ|. t. The idea is that:

• When the context Ψ of non-linear variables contains fi, . . . , f|Σ| : o(o, any string w ∈ Σ∗

can be represented as the open λ`℘-term Ψ; . . . ` fw[1] ◦ · · ·◦fw[|w|] : o(o in that context,
and such strings can even be concatenated by function composition. The point is that
this gives us a kind of purely linear type of strings.
• The variable e : (o(o)(o(o therefore is a function from strings to strings, which

one should interpret as a sort of admissible weakening: “erase my argument and return
the empty string” (the latter is encoded as λy. y : o(o) – the idea will be to feed an
argument for e that will actually have this behavior in a function StrWΣ[τ](NBool, or,
in a function StrWΣ[τ](StrWΠ, to lift an eraser of type (o(o)(o(o to an eraser
of type (τ (τ)(τ (τ .

StrWΣ is of course not an adequate type of strings in general, since with the above inter-
pretation of its first argument as an eraser, there are infinitely many terms of this type
corresponding to a single string. But it will prove to be a useful trick here.
Lemma 7.3.1. There is a type-cast function castW : StrΣ[o(o](StrWΣ.

Proof. λs. λ!e. λ!f1. . . . λ
!f|Σ|. s (λg. f1 ◦ g) . . . (λg. f|Σ| ◦ g) (λx. x). �

Following [NP20], we shall encode aperiodic sequential functions (cf. Definition 2.2.1)
in the λ`℘-calculus. The difference is that [NP20, Theorem 4.1] is stated for the type
StrΣ[τ](StrΓ; this is not possible here because of Proposition 7.0.1.
Theorem 7.3.2. Any aperiodic sequential function f : Σ∗ → Γ∗ can be “expressed” by
a closed λ`℘-term t : StrWΣ[τ] (StrWΓ for some purely linear type τ , in the following
sense: if the term uw : StrWΣ corresponds to the string w ∈ Σ∗ (note that uw is not uniquely
determined by w), then t uw : StrWΓ corresponds to f(w) ∈ Γ∗.

7.3. EXPRESSIVENESS OF THE λ`℘-CALCULUS 200

Remark 7.3.3. Trying to characterize string-to-string function classes (first-order transduc-
tions?) using StrWΣ[τ](StrWΓ would be rather abusive: terms of this type are not even
guaranteed a priori to give, for two representations of the same string, two outputs that also
represent a common string (but we will build terms for which this property holds).

The advantage of working with aperiodic sequential functions is that they can be
assembled from small “building blocks” by function composition, as the Krohn–Rhodes
decomposition (Theorem 2.2.4) tells us. Our proof strategy for the above theorem will consist
in encoding these blocks (Lemma 7.3.7) and composing them together (Lemma 7.1.2). To
deduce the desired result, we rely on two lemmas:

Lemma 7.3.4 (classical). If a language L ⊆ Σ∗ is star-free, then its (string-valued) indicator
function χL : Σ∗ → {1}∗, defined by χL(w) = 1 if w ∈ L and χL(w) = ε otherwise, is
aperiodic sequential.

Remark 7.3.5. The converse is also true; more generally, the preimage of a star-free
language by an aperiodic sequential function is star-free, and the preimage of a regular
language is regular. But we will not need this here.

Lemma 7.3.6. There exists a λ`℘-term nonempty : StrW{1}[NBool[o(o]](NBool that
tests whether its input string is non-empty.

Proof. This is less obvious than the corresponding [NP20, Lemma 4.3]: we use
• the “constant to true” function, already seen previously – although its principal type is

NBool(NBool, we shall instantiate it here to NBool[o(o](NBool[o(o];
• an “eraser” erb : (NBool[o (o] (NBool[o (o]) ((NBool[o (o] (NBool[o (o])

defined by erb = λg. λb. λk. λf. λx. proj2 (g true) (b k f x);
Then the λ`℘-term nonempty = λs. s erb cstt false works. �

Let L be a star-free language. Combining Lemma 7.3.4 and Theorem 7.3.2, χL is
definable by some λ`℘-term indicL : StrWΣ[τ] (StrW{1} where τ is purely linear. To
compose this with the non-emptiness test of Lemma 7.3.6 and castW from Lemma 7.3.1, we
use Lemma 7.1.2 again to get a λ`℘-term of type StrΣ[τ [NBool]](NBool defining L; and
since τ and NBool are purely linear, so is τ [NBool].

7.3.1. Encoding aperiodic sequential transducers. Thanks to the Krohn–Rhodes
decomposition (§2.2.1) and to Lemma 7.1.2, the following entails Theorem 7.3.2, thus
concluding our proof that all star-free languages are λ`℘-definable.

Lemma 7.3.7. Any function Σ∗ → Γ∗ computed by some aperiodic sequential transducer
with 2 states can be “expressed” by some λ`℘-term of type StrWΣ[τ](StrWΓ, for a purely
linear type τ depending on the function.

Let us start by exposing the rough idea of the encoding’s trick using set-theoretic maps.
This part is the same as in [NP20]. We reuse the notations of Definition 2.2.1 and
assume w.l.o.g. that the set of states is Q = {1, 2}.

Suppose that at some point, after processing a prefix of the input, the transducer has
arrived in state 1 (resp. 2) and in the meantime has outputted w ∈ Γ∗. We can represent
this “history” by the pair (κw, ζ) (resp. (ζ, κw)) where

ζ, κw : Γ∗ → Γ∗ ζ : x 7→ ε κw : x 7→ w · x

7.3. EXPRESSIVENESS OF THE λ`℘-CALCULUS 201

For instance, in the case of Example 2.2.3, after reading a string s = s′b, the transducer
is in the state qb and has outputted2 w = a ·ψ(s′), which we represent as (ζ, κa·ψ(s′)) (taking
qa = 1 and qb = 2; ψ is described in Example 2.2.3). In general, some key observations are

ζ ◦ κw = ζ κw ◦ κw′ = κww′ κw(w
′)ζ(w′′) = ζ(w′′)κw(w

′) = ww′

Now, consider an input letter c ∈ Σ; how to encode the corresponding transition δ(−, c) as
a transformation on the pair encoding the current state and output history? It depends on
the state transition δst(−, c); we have thanks to the above identities:
• (h, g) 7→ (h ◦ κδout(1,c), g ◦ κδout(2,c)) when δst(−, c) = id;
• (h, g) 7→ (κh(δout(1,c))g(δout(2,c)), ζ) when δst(−, c) : q′ 7→ 1 (note that h = ζ xor g = ζ);
• (h, g) 7→ (ζ, κh(δout(1,c))g(δout(2,c))) when δst(−, c) : q′ 7→ 2;
• The remaining case δst(−, c) : q 7→ 3− q is excluded by aperiodicity. This point is crucial:

this case would correspond to (h, g) 7→ (g ◦ κδout(2,c), h ◦ κδout(1,c)) which morally “uses its
arguments h, g in the wrong order”.

Coming back to Example 2.2.3, let us say that after the transducer has read a prefix s = s′b
of its input string as we previously described, the next letter is a. Then the expression
h(δout(1, c))g(δout(2, c)) above is in this case ζ(a)κa·ψ(s′)(bb) = ε ·a ·ψ(s′) ·bb = a ·ψ(s) which
is indeed the output that the transducer produces after reading the input prefix sa = s′ba.

Next, we must transpose these ideas to the setting of the λ`℘-calculus. This is where
new ideas compared to [NP20] come into play.

Proof of Lemma 7.3.7. We define the λ`℘-term meant to compute our sequential
function as

λs. λ!e. λ!fa1 λ
!fa|Γ| . out (s elift transc1 . . . transc|Σ|) : StrΣ[τ](StrΓ

where Σ = {c1, . . . , c|Σ|}, Γ = {a1, . . . , a|Γ|} and, writing Ψ = {fa : o(o | a ∈ Γ} ∪ {e : T}
(with T = (o(o)(o(o as we shall see),

Ψ; ∅ ` transc : τ (τ (for all c ∈ Σ) Ψ; ∅ ` out : (τ (τ)((o(o)

(new!) Ψ; ∅ ` elift : (τ (τ)((τ (τ)

In the presence of this non-linear context Ψ, the type S = o(o morally serves as a purely
linear type of strings, as mentioned before. Moreover this “contextual encoding of strings”
supports concatenation (by function composition), leading us to represent the maps ζ and
κw as open terms of type T = S (S that use non-linearly the variables fa for a ∈ Γ.

We shall take the type τ , at which the input StrΣ is instantiated, to be τ = T (T (S,
which is indeed purely linear as required by the theorem statement. This can be seen morally
as a type of continuations taking pairs of type T ⊗ T (although our λ`℘-calculus has no
actual ⊗ connective). Without further ado, let us program; the key new cases to handle
strict linearity (as opposed to affineness) are given by:
• to implement ζ, we just use the “eraser” that the StrWΓ takes as the argument e:

zeta = e : (o(o)(o(o = S (S = T

• the new term to implement is the eraser for StrWΣ[τ] using the e given to StrWΓ:

elift = λg. λh. λl. λl′. λx. e junk (h l l′ x)

2This is indeed a · ψ(s′) and not a · ψ(s) = a · ψ(s′) · bb. If the input turns out to end there, the final
output function will provide the missing suffix F (qb) = bbb to obtain f(s) = a · ψ(s) · b = a · ψ(s′) · bbb.

7.3. EXPRESSIVENESS OF THE λ`℘-CALCULUS 202

(it would become a fully η-expanded identity function if λg. and (e junk) were removed
– note that h l l′ x : o), where one can take for junk any expression of type S = o(o
using g : τ (τ exactly once e.g.

junk = g (λj. λj′. j (j′ (λy. y))) (λz. z) (λz. z)

The remaining cases were already strictly linear in [NP20], so are left unchanged:
• cat = λw. λw′. λx. w (w′ x) : S (S (o(o = S (S (S = S (T plays the roles of

both the concatenation operator and of w 7→ κw (thanks to currying)
• uq : o(o is the representation of the output word δout(q, c) that corresponds to a given

input letter c ∈ Σ and state q ∈ Q = {1, 2}
• case δst(q, c) = q: transc = λk. λh. λg. k (λy. h (catu1 y)) (λz. g (catu2 z))

(if we wanted to handle the excluded case δst(q, c) = 3− q, we would write a similar term
with the occurrences of h and g exchanged (λk. λh. λg. k (λy. g . . .) (λz. h . . .)), violating
the non-commutativity requirement)
• case δst(q, c) = 1: transc = λk. λh. λg. k (cat (cat (hu1) (g u2))) zeta
• case δst(q, c) = 2: transc = λk. λh. λg. k zeta (cat (cat (hu1) (g u2)))
• out = λj. j (λh. λg. cat (h v1) (g v2)) (λx. x) zeta, where vq represents the output suffix
F (q) for state q ∈ {1, 2}, assuming w.l.o.g. that the initial state is 1 (also, here λx. x
represents κε since the latter is the identity on Γ∗)

We leave it to the reader to check that these λ`℘-terms have the expected computational
behavior. �

You’re still here? Oh, I guess I should tell you math papers
generally don’t have what you or I might call a “conclusion”.
They just sort of stop.
So, yeah, you can, um, go now. But, cheers!

Piper H [H16, p. 127]

Bibliography

[Aar17] Scott Aaronson. “P=?NP.” In: Electronic Colloquium on Computational Complexity 24
(2017), p. 4. url: https://eccc.weizmann.ac.il/report/2017/004 (cit. on pp. 11,
38).

[AB18] Clément Aubert and Marc Bagnol. “Unification and Logarithmic Space.” In: Logical
Methods in Computer Science 14.3 (2018). doi: 10.23638/LMCS-14(3:6)2018 (cit. on
p. 38).

[Abe13] Andreas Abel. “Normalization by Evaluation: Dependent Types and Impredicativity.”
Habilitationsschrift. Ludwig-Maximilians-University Munich, May 2013. url: http:
//www.cse.chalmers.se/~abela/habil.pdf (cit. on p. 21).

[Abr03] Samson Abramsky. “Sequentiality vs. Concurrency In Games And Logic.” In: Math-
ematical Structures in Computer Science 13.4 (2003), pp. 531–565. doi: 10.1017/
S0960129503003980 (cit. on p. 52).

[Abr07] Samson Abramsky. “Temperley–Lieb Algebra: From Knot Theory to Logic and Com-
putation via Quantum Mechanics.” en. In: Mathematics of Quantum Computation and
Quantum Technology. Ed. by Goong Chen, Louis Kauffman, and Samuel Lomonaco.
Vol. 20074453. Chapman and Hall/CRC, Sept. 2007, pp. 515–558. doi: 10. 1201 /
9781584889007.ch15 (cit. on pp. 19, 28, 47, 199).

[Abr20] Samson Abramsky. “Whither semantics?” In: Theoretical Computer Science 807 (2020).
In the special issue of TCS in honor of Maurice Nivat, pp. 3–14. doi: 10.1016/j.tcs.
2019.06.029 (cit. on p. 39).

[Abr96] Samson Abramsky. “Retracing Some Paths in Process Algebra.” In: CONCUR ’96,
Concurrency Theory, 7th International Conference, Pisa, Italy, August 26-29, 1996,
Proceedings. Ed. by Ugo Montanari and Vladimiro Sassone. Vol. 1119. Lecture Notes in
Computer Science. Springer, 1996, pp. 1–17. doi: 10.1007/3-540-61604-7_44 (cit. on
p. 47).

[ABS16] Clément Aubert, Marc Bagnol, and Thomas Seiller. “Unary Resolution: Characterizing
Ptime.” In: Foundations of Software Science and Computation Structures - 19th Interna-
tional Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings. Ed. by Bart Jacobs and Christof Löding. Vol. 9634. Lecture Notes in
Computer Science. Springer, 2016, pp. 373–389. doi: 10.1007/978-3-662-49630-5_22
(cit. on p. 38).

[AČ10] Rajeev Alur and Pavol Černý. “Expressiveness of streaming string transducers.” In:
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India. Ed. by Kamal
Lodaya and Meena Mahajan. Vol. 8. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010, pp. 1–12. doi: 10.4230/LIPIcs.FSTTCS.2010.1 (cit. on pp. 5, 18,
59–61, 79, 139).

[AD11] Rajeev Alur and Jyotirmoy V. Deshmukh. “Nondeterministic Streaming String Trans-
ducers.” In: Automata, Languages and Programming - 38th International Colloquium,
ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II. Ed. by Luca
Aceto, Monika Henzinger, and Jirı́ Sgall. Vol. 6756. Lecture Notes in Computer Science.
Springer, 2011, pp. 1–20. doi: 10.1007/978-3-642-22012-8_1 (cit. on pp. 31, 117–119,
138).

203

https://eccc.weizmann.ac.il/report/2017/004
https://doi.org/10.23638/LMCS-14(3:6)2018
http://www.cse.chalmers.se/~abela/habil.pdf
http://www.cse.chalmers.se/~abela/habil.pdf
https://doi.org/10.1017/S0960129503003980
https://doi.org/10.1017/S0960129503003980
https://doi.org/10.1201/9781584889007.ch15
https://doi.org/10.1201/9781584889007.ch15
https://doi.org/10.1016/j.tcs.2019.06.029
https://doi.org/10.1016/j.tcs.2019.06.029
https://doi.org/10.1007/3-540-61604-7_44
https://doi.org/10.1007/978-3-662-49630-5_22
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.1007/978-3-642-22012-8_1

BIBLIOGRAPHY 204

[AD17] Rajeev Alur and Loris D’Antoni. “Streaming Tree Transducers.” en. In: Journal of the
ACM 64.5 (Aug. 2017), pp. 1–55. issn: 00045411. doi: 10.1145/3092842 (cit. on pp. 29,
48, 70–73, 175, 178, 182, 184–186).

[ADT22] Rajeev Alur, Taylor Dohmen, and Ashutosh Trivedi. Composing Copyless Streaming
String Transducers. 2022. arXiv: arXiv:2209.05448 [cs.FL] (cit. on p. 5).

[ADV21] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Interacting Seems Unreason-
able, in Time and Space. Extended abstract of a talk given at the ITRS’21 workshop.
2021. url: http://www.di.unito.it/~deligu/ITRS2021/ITRS_2021_paper_3.pdf
(cit. on p. 48).

[AFR14] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. “Regular combinators for
string transformations.” en. In: Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) - CSL-LICS ’14.
Vienna, Austria: ACM Press, 2014, pp. 1–10. isbn: 978-1-4503-2886-9. doi: 10.1145/
2603088.2603151 (cit. on p. 39).

[AFT12] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. “Regular Transformations of
Infinite Strings.” en. In: 2012 27th Annual IEEE Symposium on Logic in Computer
Science. Dubrovnik, Croatia: IEEE, June 2012, pp. 65–74. doi: 10.1109/LICS.2012.18
(cit. on pp. 59, 62, 63).

[AJP21] Antoine Amarilli, Louis Jachiet, and Charles Paperman. “Dynamic Membership for
Regular Languages.” In: 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference).
Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell. Vol. 198. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 116:1–116:17. doi: 10.4230/LIPIcs.
ICALP.2021.116 (cit. on p. 14).

[AL16] Beniamino Accattoli and Ugo Dal Lago. “(Leftmost-Outermost) Beta Reduction is
Invariant, Indeed.” In: Logical Methods in Computer Science 12.1 (2016). doi: 10.2168/
LMCS-12(1:4)2016 (cit. on pp. 11, 19).

[Alc19] Aurore Alcolei. “Enriched concurrent games: witnesses for proofs and resource analysis.”
PhD thesis. École normale supérieure de Lyon, France, Oct. 2019. url: https://tel.
archives-ouvertes.fr/tel-02448974 (cit. on p. 25).

[Alt+01] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. “Normalization
by Evaluation for Typed Lambda Calculus with Coproducts.” In: 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19,
2001, Proceedings. IEEE Computer Society, 2001, pp. 303–310. doi: 10.1109/LICS.
2001.932506 (cit. on p. 145).

[ALV21] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. “The (In)Efficiency of interac-
tion.” In: Proceedings of the ACM on Programming Languages 5.POPL (2021), pp. 1–33.
doi: 10.1145/3434332 (cit. on p. 50).

[And92] Jean-Marc Andreoli. “Logic Programming with Focusing Proofs in Linear Logic.” In:
Journal of Logic and Computation 2.3 (1992), pp. 297–347. doi: 10.1093/logcom/2.3.
297 (cit. on p. 40).

[AP21] Antoine Amarilli and Charles Paperman. “Locality and Centrality: The Variety ZG.” In:
CoRR abs/2102.07724 (2021). arXiv: 2102.07724 (cit. on pp. 14, 25).

[APR05] Jean-Marc Andreoli, Gabriele Pulcini, and Paul Ruet. “Permutative Logic.” In: Computer
Science Logic, 19th International Workshop, CSL 2005, 14th Annual Conference of
the EACSL, Oxford, UK, August 22-25, 2005, Proceedings. Ed. by C.-H. Luke Ong.
Vol. 3634. Lecture Notes in Computer Science. Springer, 2005, pp. 184–199. doi: 10.
1007/11538363_14 (cit. on p. 19).

[AS16a] Clément Aubert and Thomas Seiller. “Characterizing co-NL by a group action.” en.
In: Mathematical Structures in Computer Science 26.4 (May 2016), pp. 606–638. issn:
0960-1295, 1469-8072. doi: 10.1017/S0960129514000267 (cit. on p. 38).

https://doi.org/10.1145/3092842
https://arxiv.org/abs/arXiv:2209.05448
http://www.di.unito.it/~deligu/ITRS2021/ITRS_2021_paper_3.pdf
https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.4230/LIPIcs.ICALP.2021.116
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.2168/LMCS-12(1:4)2016
https://tel.archives-ouvertes.fr/tel-02448974
https://tel.archives-ouvertes.fr/tel-02448974
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1145/3434332
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1093/logcom/2.3.297
https://arxiv.org/abs/2102.07724
https://doi.org/10.1007/11538363_14
https://doi.org/10.1007/11538363_14
https://doi.org/10.1017/S0960129514000267

BIBLIOGRAPHY 205

[AS16b] Clément Aubert and Thomas Seiller. “Logarithmic Space and Permutations.” In: In-
formation and Computation 248 (2016), pp. 2–21. doi: 10.1016/j.ic.2014.01.018
(cit. on p. 38).

[AS21] Samson Abramsky and Nihil Shah. “Relating structure and power: Comonadic semantics
for computational resources.” In: Journal of Logic and Computation 31.6 (2021). Long
version of a CSL’18 paper, pp. 1390–1428. doi: 10.1093/logcom/exab048 (cit. on
p. 39).

[Aub+14] Clément Aubert, Marc Bagnol, Paolo Pistone, and Thomas Seiller. “Logic Programming
and Logarithmic Space.” In: Programming Languages and Systems - 12th Asian Sym-
posium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings. Ed. by Jacques
Garrigue. Vol. 8858. Lecture Notes in Computer Science. Springer, 2014, pp. 39–57. doi:
10.1007/978-3-319-12736-1_3 (cit. on p. 38).

[Aub15] Clément Aubert. “An in-between ‘implicit’ and ‘explicit’ complexity: Automata.” In:
DICE 2015 – Developments in Implicit Computational Complexity. London, United
Kingdom, Apr. 2015. url: https://hal.archives-ouvertes.fr/hal-01111737
(cit. on p. 12).

[Avr14] Arnon Avron. “What is relevance logic?” In: Annals of Pure and Applied Logic 165.1
(2014), pp. 26–48. doi: 10.1016/j.apal.2013.07.004 (cit. on p. 25).

[Bai15] Patrick Baillot. “On the expressivity of elementary linear logic: Characterizing Ptime
and an exponential time hierarchy.” In: Information and Computation 241 (Apr. 2015),
pp. 3–31. issn: 0890-5401. doi: 10.1016/j.ic.2014.10.005 (cit. on p. 51).

[Bak92] Henry G. Baker. “Lively linear Lisp: ‘look ma, no garbage!’” In: ACM SIGPLAN Notices
27.8 (1992), pp. 89–98. doi: 10.1145/142137.142162 (cit. on p. 19).

[Bar96] Andrew Barber. Dual Intuitionistic Linear Logic. en. Technical report ECS-LFCS-96-347.
LFCS, University of Edinburgh, 1996. url: http://www.lfcs.inf.ed.ac.uk/reports/
96/ECS-LFCS-96-347/ (cit. on pp. 29, 196).

[BB85] Corrado Böhm and Alessandro Berarducci. “Automatic synthesis of typed Λ-programs
on term algebras.” In: Theoretical Computer Science. Third Conference on Foundations
of Software Technology and Theoretical Computer Science 39 (Jan. 1985), pp. 135–154.
issn: 0304-3975. doi: 10.1016/0304-3975(85)90135-5 (cit. on pp. 20, 39).

[BC08] Mikołaj Bojańczyk and Thomas Colcombet. “Tree-walking automata do not recognize
all regular languages.” In: SIAM Journal on Computing 38.2 (2008), pp. 658–701. doi:
10.1137/050645427 (cit. on p. 46).

[BC18] Mikołaj Bojańczyk and Wojciech Czerwiński. “An automata toolbox.” Lecture notes
for a course at the University of Warsaw (version of February 6, 2018). 2018. url:
https://www.mimuw.edu.pl/~bojan/paper/automata-toolbox-book (cit. on pp. 31,
81, 138, 139).

[BC82] Gérard Berry and Pierre-Louis Curien. “Sequential Algorithms on Concrete Data Struc-
tures.” In: Theoretical Computer Science 20 (1982), pp. 265–321. doi: 10.1016/S0304-
3975(82)80002-9 (cit. on p. 23).

[BC89] David A. Mix Barrington and James C. Corbett. “On the Relative Complexity of Some
Languages in NC.” In: Information Processing Letters 32.5 (1989), pp. 251–256. doi:
10.1016/0020-0190(89)90052-5 (cit. on p. 16).

[BC92] Stephen Bellantoni and Stephen A. Cook. “A New Recursion-Theoretic Characterization
of the Polytime Functions.” In: Computational Complexity 2 (1992), pp. 97–110. doi:
10.1007/BF01201998 (cit. on p. 36).

[BCL20] Boaz Barak, Raphaëlle Crubillé, and Ugo Dal Lago. “On Higher-Order Cryptography.” In:
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). Ed. by Artur Czumaj,
Anuj Dawar, and Emanuela Merelli. Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020, 108:1–108:16. doi: 10.4230/LIPIcs.ICALP.2020.108 (cit. on
p. 37).

[BD20] Mikołaj Bojańczyk and Amina Doumane. “First-order tree-to-tree functions.” In: LICS
’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,

https://doi.org/10.1016/j.ic.2014.01.018
https://doi.org/10.1093/logcom/exab048
https://doi.org/10.1007/978-3-319-12736-1_3
https://hal.archives-ouvertes.fr/hal-01111737
https://doi.org/10.1016/j.apal.2013.07.004
https://doi.org/10.1016/j.ic.2014.10.005
https://doi.org/10.1145/142137.142162
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1137/050645427
https://www.mimuw.edu.pl/~bojan/paper/automata-toolbox-book
https://doi.org/10.1016/S0304-3975(82)80002-9
https://doi.org/10.1016/S0304-3975(82)80002-9
https://doi.org/10.1016/0020-0190(89)90052-5
https://doi.org/10.1007/BF01201998
https://doi.org/10.4230/LIPIcs.ICALP.2020.108

BIBLIOGRAPHY 206

Germany (online conference), July 8-11, 2020. Ed. by Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller. ACM, 2020, pp. 252–265. doi: 10.1145/3373718.
3394785 (cit. on pp. 18, 39, 56, 70).

[BDK18] Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. “Regular and
First-Order List Functions.” en. In: Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science - LICS ’18. Oxford, United Kingdom: ACM Press,
2018, pp. 125–134. isbn: 978-1-4503-5583-4. doi: 10.1145/3209108.3209163 (cit. on
pp. 39, 46, 70).

[BDR18] Patrick Baillot, Erika De Benedetti, and Simona Ronchi Della Rocca. “Characterizing
polynomial and exponential complexity classes in elementary lambda-calculus.” In:
Information and Computation. Developments in Implicit Computational Complexity
(DICE) 2014 and 2015 261 (Aug. 2018), pp. 55–77. issn: 0890-5401. doi: 10.1016/j.ic.
2018.05.005 (cit. on pp. 51, 52).

[BE00] Roderick Bloem and Joost Engelfriet. “A Comparison of Tree Transductions Defined by
Monadic Second Order Logic and by Attribute Grammars.” In: Journal of Computer
and System Sciences 61.1 (Aug. 2000), pp. 1–50. issn: 0022-0000. doi: 10.1006/jcss.
1999.1684 (cit. on pp. 18, 70).

[Ben+17] Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. “Polynomial
automata: Zeroness and applications.” en. In: 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). Reykjavik, Iceland: IEEE, June 2017, pp. 1–12.
isbn: 978-1-5090-3018-7. doi: 10.1109/LICS.2017.8005101 (cit. on pp. 65, 109).

[Ber+18] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones,
and Arnaud Spiwack. “Linear Haskell: practical linearity in a higher-order polymorphic
language.” In: Proceedings of the ACM on Programming Languages 2.POPL (2018),
5:1–5:29. doi: 10.1145/3158093 (cit. on p. 19).

[Ber81] Gérard Berry. “On the Definition of Lambda-Calculus Models.” In: Formalization of
Programming Concepts, International Colloquium, Peniscola, Spain, April 19-25, 1981,
Proceedings. Ed. by Josep Dı́az and Isidro Ramos. Vol. 107. Lecture Notes in Computer
Science. Springer, 1981, pp. 218–230. doi: 10.1007/3-540-10699-5_99 (cit. on p. 23).

[Bes+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. “A Few Billion Lines of Code
Later: Using Static Analysis to Find Bugs in the Real World.” In: Communications of
the ACM 53.2 (Feb. 2010), pp. 66–75. issn: 0001-0782. doi: 10.1145/1646353.1646374
(cit. on p. 13).

[BGS99] Andreas Blass, Yuri Gurevich, and Saharon Shelah. “Choiceless Polynomial Time.” In:
Annals of Pure and Applied Logic 100.1-3 (1999), pp. 141–187. doi: 10.1016/S0168-
0072(99)00005-6 (cit. on p. 37).

[BH21] Vasco Brattka and Peter Hertling, eds. Handbook of Computability and Complexity in
Analysis. Theory and Applications of Computability. Springer, 2021. isbn: 978-3-030-
59233-2. doi: 10.1007/978-3-030-59234-9 (cit. on p. 38).

[Bie94] Gavin M. Bierman. On Intuitionistic Linear Logic. en. Technical report UCAM-CL-
TR-346. University of Cambridge, Computer Laboratory, Aug. 1994. url: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.588&rep=rep1&type=
pdf (cit. on p. 153).

[Bir89] Jean-Camille Birget. “Concatenation of Inputs in a Two-Way Automaton.” In: Theoretical
Computer Science 63.2 (1989), pp. 141–156. doi: 10.1016/0304-3975(89)90075-3
(cit. on p. 13).

[BKL19] Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. “String-to-String Interpretations
With Polynomial-Size Output.” In: 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019). Ed. by Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi. Vol. 132. Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 106:1–
106:14. isbn: 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.106 (cit. on p. 35).

https://doi.org/10.1145/3373718.3394785
https://doi.org/10.1145/3373718.3394785
https://doi.org/10.1145/3209108.3209163
https://doi.org/10.1016/j.ic.2018.05.005
https://doi.org/10.1016/j.ic.2018.05.005
https://doi.org/10.1006/jcss.1999.1684
https://doi.org/10.1006/jcss.1999.1684
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1145/3158093
https://doi.org/10.1007/3-540-10699-5_99
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1016/S0168-0072(99)00005-6
https://doi.org/10.1016/S0168-0072(99)00005-6
https://doi.org/10.1007/978-3-030-59234-9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.588&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.588&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.588&rep=rep1&type=pdf
https://doi.org/10.1016/0304-3975(89)90075-3
https://doi.org/10.4230/LIPIcs.ICALP.2019.106

BIBLIOGRAPHY 207

[BKS22] Mikołaj Bojańczyk, Bartek Klin, and Julian Salamanca. Monadic Monadic Second Order
Logic. 2022. arXiv: 2201.09969 [cs.LO] (cit. on p. 34).

[BM10] Patrick Baillot and Damiano Mazza. “Linear Logic by Levels and Bounded Time
Complexity.” In: Theoretical Computer Science 411.2 (Jan. 2010), pp. 470–503. issn:
03043975. doi: 10.1016/j.tcs.2009.09.015 (cit. on p. 43).

[BN23] Mikołaj Bojańczyk and Lê Thành Dũng Nguyễn. “Algebraic Recognition of Regular
Functions.” working paper or preprint. Feb. 2023. url: https://hal.science/hal-
03985883 (cit. on p. 5).

[BO09] William Blum and C.-H. Luke Ong. “The Safe Lambda Calculus.” en. In: Logical Methods
in Computer Science 5.1 (Feb. 2009). doi: 10.2168/LMCS-5(1:3)2009 (cit. on pp. 6,
44).

[Boe20] Menno de Boer. A Proof and Formalization of the Initiality Conjecture of Dependent Type
Theory. 2020. url: http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181640
(cit. on p. 52).

[Boj18] Mikołaj Bojańczyk. “Polyregular Functions.” In: CoRR abs/1810.08760 (Oct. 2018).
arXiv: 1810.08760 (cit. on pp. 15, 31, 39, 47, 56, 61, 68, 69, 76, 78, 85).

[Boj19] Mikołaj Bojańczyk. “Slightly Infinite Sets.” 2019. url: https://www.mimuw.edu.pl/
~bojan/paper/atom-book (cit. on p. 48).

[Boj22a] Mikołaj Bojańczyk. On the growth rate of polyregular functions. 2022. arXiv: 2212.11631
[cs.LO] (cit. on pp. 5, 51, 75).

[Boj22b] Mikołaj Bojańczyk. “Transducers of polynomial growth.” In: LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022.
Ed. by Christel Baier and Dana Fisman. ACM, 2022, 1:1–1:27. doi: 10.1145/3531130.
3533326 (cit. on p. 5).

[Boj23] Mikołaj Bojańczyk. Folding Interpretations. 2023. arXiv: 2301.05101 [cs.LO] (cit. on
p. 6).

[BP16a] Mikołaj Bojańczyk and Michał Pilipczuk. “Definability equals recognizability for graphs
of bounded treewidth.” In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. Ed. by
Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM, 2016, pp. 407–416. doi:
10.1145/2933575.2934508 (cit. on p. 35).

[BP16b] Matt Brown and Jens Palsberg. “Breaking through the normalization barrier: a self-
interpreter for F-omega.” In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016. Ed. by Rastislav Bodı́k and Rupak Majumdar. ACM, 2016,
pp. 5–17. doi: 10.1145/2837614.2837623 (cit. on p. 18).

[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. “Automatic Generation of Linear-
Time Algorithms from Predicate Calculus Descriptions of Problems on Recursively
Constructed Graph Families.” In: Algorithmica 7.5&6 (1992), pp. 555–581. doi: 10.
1007/BF01758777 (cit. on p. 35).

[BR10] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with Applica-
tions. Vol. 137. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Oct. 2010, p. 248 (cit. on pp. 62, 98).

[Bro+21] Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. “Higher-
order Recursion Schemes and Collapsible Pushdown Automata: Logical Properties.”
In: ACM Transactions on Computational Logic 22.2 (2021), 12:1–12:37. doi: 10.1145/
3452917 (cit. on p. 41).

[BS20] Mikołaj Bojańczyk and Rafał Stefański. “Single-Use Automata and Transducers for
Infinite Alphabets.” In: 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference).
Ed. by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Vol. 168. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 113:1–113:14. doi: 10.4230/LIPIcs.
ICALP.2020.113 (cit. on pp. 18, 46, 48, 49).

https://arxiv.org/abs/2201.09969
https://doi.org/10.1016/j.tcs.2009.09.015
https://hal.science/hal-03985883
https://hal.science/hal-03985883
https://doi.org/10.2168/LMCS-5(1:3)2009
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181640
https://arxiv.org/abs/1810.08760
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://arxiv.org/abs/2212.11631
https://arxiv.org/abs/2212.11631
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.1145/3531130.3533326
https://arxiv.org/abs/2301.05101
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2837614.2837623
https://doi.org/10.1007/BF01758777
https://doi.org/10.1007/BF01758777
https://doi.org/10.1145/3452917
https://doi.org/10.1145/3452917
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.4230/LIPIcs.ICALP.2020.113

BIBLIOGRAPHY 208

[Büc60] J. Richard Büchi. “Weak Second-Order Arithmetic and Finite Automata.” In: Math-
ematical Logic Quarterly 6.1‐-6 (1960), pp. 66–92. doi: 10.1002/malq.19600060105
(cit. on p. 34).

[Büc62] J. Richard Büchi. “Symposium on Decision Problems: On a Decision Method in Restricted
Second Order Arithmetic.” In: Logic, Methodology and Philosophy of Science: Proceedings
of the 1960 International Congress. Ed. by Ernest Nagel, Patrick Suppes, and Alfred
Tarski. Stanford University Press, 1962, pp. 1–11. doi: 10.1016/S0049-237X(09)70564-
6 (cit. on p. 34).

[Bul20] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs simplified. Updated and
improved version of a FOCS’17 paper. 2020. arXiv: 2007.09099 [cs.CC] (cit. on p. 38).

[Bul21] Andrei A. Bulatov. “Symmetries and Complexity (Invited Talk).” In: 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference). Ed. by Nikhil Bansal, Emanuela Merelli, and
James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, 2:1–2:17. doi: 10.4230/LIPIcs.ICALP.2021.2 (cit. on p. 38).

[Cad+21] Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and Géraud
Sénizergues. “On Polynomial Recursive Sequences.” In: Theory of Computing Systems
(June 2021). doi: 10.1007/s00224-021-10046-9 (cit. on pp. 44, 65).

[Cam11] Peter J. Cameron. Aftermath. 2011. arXiv: 1111.4050 [math.HO] (cit. on p. 22).
[CC21] Simon Castellan and Pierre Clairambault. Disentangling Parallelism and Interference in

Game Semantics. 2021. arXiv: 2103.15453 [cs.LO] (cit. on p. 23).
[CD15] Olivier Carton and Luc Dartois. “Aperiodic Two-way Transducers and FO-Transductions.”

In: 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September
7-10, 2015, Berlin, Germany. Ed. by Stephan Kreutzer. Vol. 41. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2015, pp. 160–174. doi: 10.4230/LIPIcs.CSL.2015.
160 (cit. on p. 35).

[CDL22] Thomas Colcombet, Gaëtan Douéneau-Tabot, and Aliaume Lopez. Z-polyregular func-
tions. 2022. arXiv: 2207.07450 [cs.FL] (cit. on p. 6).

[CE12] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic.
A language-theoretic approach. Encyclopedia of Mathematics and its applications, Vol.
138. Collection Encyclopedia of Mathematics and Applications, Vol. 138. Cambridge
University Press, June 2012, p. 728. url: https://hal.archives-ouvertes.fr/hal-
00646514 (cit. on p. 35).

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. “An optimal lower bound on the number
of variables for graph identifications.” In: Combinatorica 12.4 (1992). Long version of a
FOCS’89 paper, pp. 389–410. doi: 10.1007/BF01305232 (cit. on p. 37).

[CGM17] Pierre Clairambault, Charles Grellois, and Andrzej Murawski. “Linearity in Higher-order
Recursion Schemes.” In: Proceedings of the ACM on Programming Languages 2.POPL
(Dec. 2017), 39:1–39:29. issn: 2475-1421. doi: 10.1145/3158127 (cit. on p. 41).

[CH00] Pierre-Louis Curien and Hugo Herbelin. “The duality of computation.” In: Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-21, 2000. Ed. by Martin Odersky and
Philip Wadler. ACM, 2000, pp. 233–243. doi: 10.1145/351240.351262 (cit. on p. 25).

[Cho17] Christian Choffrut. “Sequences of words defined by two-way transducers.” In: Theoretical
Computer Science 658 (2017), pp. 85–96. doi: 10.1016/j.tcs.2016.05.004 (cit. on
p. 95).

[Cla+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregian, Bartosz Milewski, Emily
Pillmore, and Mario Román. Profunctor optics, a categorical update. 2020. arXiv:
2001.07488 [cs.PL] (cit. on p. 25).

[CLP15] Thomas Colcombet, Clemens Ley, and Gabriele Puppis. “Logics with rigidly guarded
data tests.” In: Logical Methods in Computer Science 11.3 (2015). doi: 10.2168/LMCS-
11(3:10)2015 (cit. on pp. 48, 49).

[CM19] Pierre Clairambault and Andrzej S. Murawski. “On the Expressivity of Linear Recursion
Schemes.” In: 44th International Symposium on Mathematical Foundations of Computer

https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://arxiv.org/abs/2007.09099
https://doi.org/10.4230/LIPIcs.ICALP.2021.2
https://doi.org/10.1007/s00224-021-10046-9
https://arxiv.org/abs/1111.4050
https://arxiv.org/abs/2103.15453
https://doi.org/10.4230/LIPIcs.CSL.2015.160
https://doi.org/10.4230/LIPIcs.CSL.2015.160
https://arxiv.org/abs/2207.07450
https://hal.archives-ouvertes.fr/hal-00646514
https://hal.archives-ouvertes.fr/hal-00646514
https://doi.org/10.1007/BF01305232
https://doi.org/10.1145/3158127
https://doi.org/10.1145/351240.351262
https://doi.org/10.1016/j.tcs.2016.05.004
https://arxiv.org/abs/2001.07488
https://doi.org/10.2168/LMCS-11(3:10)2015
https://doi.org/10.2168/LMCS-11(3:10)2015

BIBLIOGRAPHY 209

Science (MFCS 2019). Ed. by Peter Rossmanith, Pinar Heggernes, and Joost-Pieter
Katoen. Vol. 138. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 50:1–50:14. isbn: 978-3-95977-117-7.
doi: 10.4230/LIPIcs.MFCS.2019.50 (cit. on pp. 6, 41, 47).

[Cor04] Leo Corry. Modern Algebra and the Rise of Mathematical Structures. 2nd. Birkhäuser
Verlag, 2004. isbn: 978-3-0348-7917-0. doi: 10.1007/978-3-0348-7917-0 (cit. on
p. 23).

[Cou88] Bruno Courcelle. “The Monadic Second-Order Logic of Graphs: Definable Sets of
Finite Graphs.” In: Graph-Theoretic Concepts in Computer Science, 14th International
Workshop, WG ’88, Amsterdam, The Netherlands, June 15-17, 1988, Proceedings. Ed. by
Jan van Leeuwen. Vol. 344. Lecture Notes in Computer Science. Springer, 1988, pp. 30–53.
doi: 10.1007/3-540-50728-0_34 (cit. on p. 35).

[CP17a] Thomas Colcombet and Daniela Petrişan. “Automata and minimization.” In: ACM
SIGLOG News 4.2 (May 2017), pp. 4–27. doi: 10.1145/3090064.3090066 (cit. on
p. 26).

[CP17b] Thomas Colcombet and Daniela Petrişan. “Automata in the Category of Glued Vector
Spaces.” In: 42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2017). Ed. by Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois
Raskin. Vol. 83. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 52:1–52:14. isbn: 978-3-95977-046-0.
doi: 10.4230/LIPIcs.MFCS.2017.52 (cit. on pp. 26, 30).

[CP20] Thomas Colcombet and Daniela Petrişan. “Automata Minimization: a Functorial Ap-
proach.” en. In: Logical Methods in Computer Science 16.1 (Mar. 2020). doi: 10.23638/
LMCS-16(1:32)2020 (cit. on pp. 26, 108, 109).

[CPS21] Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile. “Learning Automata and
Transducers: A Categorical Approach.” In: 29th EACSL Annual Conference on Computer
Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference).
Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 15:1–15:17. doi: 10.4230/LIPIcs.CSL.2021.15
(cit. on p. 26).

[CVV21] Kostia Chardonnet, Benoît Valiron, and Renaud Vilmart. “Geometry of Interaction
for ZX-Diagrams.” In: 46th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia. Ed. by Filippo
Bonchi and Simon J. Puglisi. Vol. 202. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, 30:1–30:16. doi: 10.4230/LIPIcs.MFCS.2021.30 (cit. on p. 47).

[Dam82] Werner Damm. “The IO- and OI-Hierarchies.” In: Theoretical Computer Science 20
(1982), pp. 95–207. doi: 10.1016/0304-3975(82)90009-3 (cit. on p. 45).

[Dar+17] Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. “On Reversible Trans-
ducers.” In: 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland. Ed. by Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl. Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017, 113:1–113:12. doi: 10.4230/LIPIcs.ICALP.2017.113
(cit. on p. 47).

[Das+21] Anupam Das, Damiano Mazza, Lê Thành Dũng Nguyễn, and Noam Zeilberger. Com-
plexity of normalization for subsystems of untyped linear lambda calculus. In preparation.
Slides available at http://noamz.org/talks/smp.2021.06.28.pdf. 2021 (cit. on pp. 5,
28).

[Das20a] Anupam Das. “A circular version of Gödel’s T and its abstraction complexity.” In: CoRR
abs/2012.14421 (2020). arXiv: 2012.14421 (cit. on p. 40).

[Das20b] Anupam Das. “On the logical complexity of cyclic arithmetic.” In: Logical Methods in
Computer Science 16.1 (2020). doi: 10.23638/LMCS-16(1:1)2020 (cit. on p. 40).

[Dav+20] Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, and Nathan Lhote.
“Synthesis of Computable Regular Functions of Infinite Words.” In: 31st International
Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna,

https://doi.org/10.4230/LIPIcs.MFCS.2019.50
https://doi.org/10.1007/978-3-0348-7917-0
https://doi.org/10.1007/3-540-50728-0_34
https://doi.org/10.1145/3090064.3090066
https://doi.org/10.4230/LIPIcs.MFCS.2017.52
https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.4230/LIPIcs.CSL.2021.15
https://doi.org/10.4230/LIPIcs.MFCS.2021.30
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.4230/LIPIcs.ICALP.2017.113
http://noamz.org/talks/smp.2021.06.28.pdf
https://arxiv.org/abs/2012.14421
https://doi.org/10.23638/LMCS-16(1:1)2020

BIBLIOGRAPHY 210

Austria (Virtual Conference). Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 43:1–43:17. doi: 10.4230/
LIPIcs.CONCUR.2020.43 (cit. on p. 16).

[Daw20] Anuj Dawar. “Symmetric Computation (Invited Talk).” In: 28th EACSL Annual Confer-
ence on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain.
Ed. by Maribel Fernández and Anca Muscholl. Vol. 152. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 2:1–2:12. doi: 10.4230/LIPIcs.CSL.2020.2
(cit. on p. 37).

[DFG20] Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. “Register Transducers Are
Marble Transducers.” In: 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2020). Ed. by Javier Esparza and Daniel Kráľ. Vol. 170.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 29:1–29:14. isbn: 978-3-95977-159-7.
doi: 10.4230/LIPIcs.MFCS.2020.29 (cit. on pp. 15, 32, 61–63, 65, 66, 68, 69, 75, 98,
100).

[DGK18] Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. “Regular Transducer
Expressions for Regular Transformations.” en. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science - LICS ’18. Oxford, United
Kingdom: ACM Press, 2018, pp. 315–324. isbn: 978-1-4503-5583-4. doi: 10.1145/
3209108.3209182 (cit. on p. 39).

[DGK21] Luc Dartois, Paul Gastin, and Shankara Narayanan Krishna. “SD-Regular Transducer
Expressions for Aperiodic Transformations.” In: 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE,
2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470738 (cit. on p. 39).

[DH11] Ugo Dal Lago and Martin Hofmann. “Realizability models and implicit complexity.” In:
Theoretical Computer Science. Girard’s Festschrift 412.20 (Apr. 2011), pp. 2029–2047.
issn: 0304-3975. doi: 10.1016/j.tcs.2010.12.025 (cit. on p. 21).

[DJ03] Vincent Danos and Jean-Baptiste Joinet. “Linear logic and elementary time.” In: In-
formation and Computation. International Workshop on Implicit Computational Com-
plexity (ICC’99) 183.1 (May 2003), pp. 123–137. issn: 0890-5401. doi: 10.1016/S0890-
5401(03)00010-5 (cit. on p. 33).

[DJR18] Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. “Aperiodic String Transducers.”
en. In: International Journal of Foundations of Computer Science 29.05 (Aug. 2018),
pp. 801–824. issn: 0129-0541, 1793-6373. doi: 10.1142/S0129054118420054 (cit. on
pp. 59, 62, 64).

[DKS12] Volker Diekert, Manfred Kufleitner, and Benjamin Steinberg. “The Krohn-Rhodes
Theorem and Local Divisors.” In: Fundamenta Informaticae 116.1-4 (2012), pp. 65–77.
doi: 10.3233/FI-2012-669 (cit. on p. 57).

[DLP21] Elena Di Lavore, Wilmer Leal, and Valeria de Paiva. Dialectica Petri nets. 2021. arXiv:
2105.12801 [math.CT] (cit. on p. 25).

[DO18] Anupam Das and Isabel Oitavem. “A Recursion-Theoretic Characterisation of the
Positive Polynomial-Time Functions.” In: 27th EACSL Annual Conference on Computer
Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK. Ed. by Dan R. Ghica
and Achim Jung. Vol. 119. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 18:1–18:17. doi: 10.4230/LIPIcs.CSL.2018.18 (cit. on p. 37).

[Dou17] Amina Doumane. “On the infinitary proof theory of logics with fixed points.” PhD
thesis. Université Paris 7, June 2017. url: https://hal.archives-ouvertes.fr/tel-
01676953 (cit. on p. 40).

[Dou21] Gaëtan Douéneau-Tabot. “Pebble Transducers with Unary Output.” In: 46th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Ed.
by Filippo Bonchi and Simon J. Puglisi. Vol. 202. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2021, 40:1–40:17. isbn: 978-3-95977-201-3. doi: 10.4230/LIPIcs.MFCS.2021.40
(cit. on pp. 6, 95, 98).

https://doi.org/10.4230/LIPIcs.CONCUR.2020.43
https://doi.org/10.4230/LIPIcs.CONCUR.2020.43
https://doi.org/10.4230/LIPIcs.CSL.2020.2
https://doi.org/10.4230/LIPIcs.MFCS.2020.29
https://doi.org/10.1145/3209108.3209182
https://doi.org/10.1145/3209108.3209182
https://doi.org/10.1109/LICS52264.2021.9470738
https://doi.org/10.1016/j.tcs.2010.12.025
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.1142/S0129054118420054
https://doi.org/10.3233/FI-2012-669
https://arxiv.org/abs/2105.12801
https://doi.org/10.4230/LIPIcs.CSL.2018.18
https://hal.archives-ouvertes.fr/tel-01676953
https://hal.archives-ouvertes.fr/tel-01676953
https://doi.org/10.4230/LIPIcs.MFCS.2021.40

BIBLIOGRAPHY 211

[Dou22a] Gaëtan Douéneau-Tabot. “Hiding Pebbles When the Output Alphabet Is Unary.” In:
49th International Colloquium on Automata, Languages, and Programming (ICALP
2022). Ed. by Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff. Vol. 229.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 120:1–120:17. isbn: 978-3-95977-235-8.
doi: 10.4230/LIPIcs.ICALP.2022.120 (cit. on p. 6).

[Dou22b] Gaëtan Douéneau-Tabot. Pebble minimization: the last theorems. 2022. arXiv: 2210.
02426 [cs.FL] (cit. on pp. 5, 6).

[Dou66] Adrien Douady. “Le problème des modules pour les sous-espaces analytiques compacts
d’un espace analytique donné.” fr. In: Annales de l’Institut Fourier 16.1 (1966), pp. 1–95.
doi: 10.5802/aif.226 (cit. on p. 27).

[DP16] Henry DeYoung and Frank Pfenning. “Substructural Proofs as Automata.” In: Program-
ming Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
November 21-23, 2016, Proceedings. Ed. by Atsushi Igarashi. Vol. 10017. Lecture Notes
in Computer Science. 2016, pp. 3–22. doi: 10.1007/978-3-319-47958-3_1 (cit. on
p. 39).

[DS16] Ugo Dal Lago and Ulrich Schöpp. “Computation by interaction for space-bounded
functional programming.” In: Information and Computation. Development on Implicit
Computational Complexity (DICE 2013) 248 (June 2016), pp. 150–194. issn: 0890-5401.
doi: 10.1016/j.ic.2015.04.006 (cit. on pp. 48, 53).

[EH01] Joost Engelfriet and Hendrik Jan Hoogeboom. “MSO definable string transductions and
two-way finite-state transducers.” en. In: ACM Transactions on Computational Logic 2.2
(Apr. 2001), pp. 216–254. issn: 15293785. doi: 10.1145/371316.371512 (cit. on pp. 35,
70, 78, 79).

[Ehr18] Thomas Ehrhard. “An introduction to differential linear logic: proof-nets, models and
antiderivatives.” In: Mathematical Structures in Computer Science 28.7 (2018), pp. 995–
1060. doi: 10.1017/S0960129516000372 (cit. on p. 22).

[Ehr93] Thomas Ehrhard. “Hypercoherences: A Strongly Stable Model of Linear Logic.” In:
Mathematical Structures in Computer Science 3.4 (1993), pp. 365–385. doi: 10.1017/
S0960129500000281 (cit. on p. 53).

[EHS21] Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. “XML navigation and
transformation by tree-walking automata and transducers with visible and invisible
pebbles.” In: Theoretical Computer Science 850 (Jan. 2021), pp. 40–97. doi: 10.1016/j.
tcs.2020.10.030 (cit. on pp. 6, 78).

[EIM21] Joost Engelfriet, Kazuhiro Inaba, and Sebastian Maneth. “Linear-bounded composition
of tree-walking tree transducers: linear size increase and complexity.” In: Acta Informatica
58.1-2 (2021), pp. 95–152. doi: 10.1007/s00236-019-00360-8 (cit. on p. 50).

[Elg61] Calvin C. Elgot. “Decision Problems of Finite Automata Design and Related Arith-
metics.” In: Transactions of the American Mathematical Society 98.1 (1961), pp. 21–51.
issn: 00029947. doi: 10.2307/1993511 (cit. on p. 34).

[EM03a] Joost Engelfriet and Sebastian Maneth. “A comparison of pebble tree transducers
with macro tree transducers.” In: Acta Informatica 39.9 (2003), pp. 613–698. doi:
10.1007/s00236-003-0120-0 (cit. on pp. 31, 44).

[EM03b] Joost Engelfriet and Sebastian Maneth. “Macro Tree Translations of Linear Size Increase
are MSO Definable.” In: SIAM Journal on Computing 32.4 (2003), pp. 950–1006. doi:
10.1137/S0097539701394511 (cit. on p. 62).

[EM99] Joost Engelfriet and Sebastian Maneth. “Macro Tree Transducers, Attribute Grammars,
and MSO Definable Tree Translations.” In: Information and Computation 154.1 (Oct.
1999), pp. 34–91. issn: 0890-5401. doi: 10.1006/inco.1999.2807 (cit. on pp. 18, 29,
48, 70, 175, 186).

[ER03] Thomas Ehrhard and Laurent Regnier. “The differential lambda-calculus.” In: Theoretical
Computer Science 309.1-3 (2003), pp. 1–41. doi: 10.1016/S0304-3975(03)00392-X
(cit. on p. 22).

https://doi.org/10.4230/LIPIcs.ICALP.2022.120
https://arxiv.org/abs/2210.02426
https://arxiv.org/abs/2210.02426
https://doi.org/10.5802/aif.226
https://doi.org/10.1007/978-3-319-47958-3_1
https://doi.org/10.1016/j.ic.2015.04.006
https://doi.org/10.1145/371316.371512
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1017/S0960129500000281
https://doi.org/10.1017/S0960129500000281
https://doi.org/10.1016/j.tcs.2020.10.030
https://doi.org/10.1016/j.tcs.2020.10.030
https://doi.org/10.1007/s00236-019-00360-8
https://doi.org/10.2307/1993511
https://doi.org/10.1007/s00236-003-0120-0
https://doi.org/10.1137/S0097539701394511
https://doi.org/10.1006/inco.1999.2807
https://doi.org/10.1016/S0304-3975(03)00392-X

BIBLIOGRAPHY 212

[ER08] Thomas Ehrhard and Laurent Regnier. “Uniformity and the Taylor expansion of ordinary
lambda-terms.” In: Theoretical Computer Science 403.2-3 (2008), pp. 347–372. doi:
10.1016/j.tcs.2008.06.001 (cit. on p. 50).

[ERS80] Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. “Tree Transducers, L Systems,
and Two-Way Machines.” In: Journal of Computer and System Sciences 20.2 (1980),
pp. 150–202. doi: 10.1016/0022-0000(80)90058-6 (cit. on pp. 18, 64).

[Esc21] Martín Hötzel Escardó. “The Cantor–Schröder–Bernstein Theorem for ∞-groupoids.”
In: Journal of Homotopy and Related Structures 16 (2021), pp. 363–366. doi: 10.1007/
s40062-021-00284-6 (cit. on p. 38).

[EV85] Joost Engelfriet and Heiko Vogler. “Macro Tree Transducers.” In: Journal of Computer
and System Sciences 31.1 (1985), pp. 71–146. doi: 10.1016/0022-0000(85)90066-2
(cit. on pp. 29, 65, 175).

[EV86] Joost Engelfriet and Heiko Vogler. “Pushdown Machines for the Macro Tree Transducer.”
In: Theoretical Computer Science 42 (1986), pp. 251–368. doi: 10.1016/0304-3975(86)
90052-6 (cit. on p. 44).

[EV88] Joost Engelfriet and Heiko Vogler. “High Level Tree Transducers and Iterated Pushdown
Tree Transducers.” In: Acta Informatica 26.1/2 (1988), pp. 131–192. doi: 10.1007/
BF02915449 (cit. on pp. 44, 45).

[Fag73] Ronald Fagin. “Contributions to the model theory of finite structures.” PhD thesis.
University of California, Berkeley, 1973 (cit. on p. 35).

[Fér17] Hugo Férée. “Game semantics approach to higher-order complexity.” In: Journal of
Computer and System Sciences 87 (2017), pp. 1–15. doi: 10.1016/j.jcss.2017.02.003
(cit. on p. 37).

[FG20] Laura Fontanella and Guillaume Geoffroy. “Preserving cardinals and weak forms of
Zorn’s lemma in realizability models.” In: Mathematical Structures in Computer Science
30.9 (2020), pp. 976–996. doi: 10.1017/S0960129521000013 (cit. on p. 25).

[FGL16] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. “First-order definability of rational
transductions: An algebraic approach.” In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-
8, 2016. Ed. by Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM, 2016,
pp. 387–396. doi: 10.1145/2933575.2934520 (cit. on p. 35).

[Fil15] Emmanuel Filiot. “Logic-Automata Connections for Transformations.” In: Logic and
Its Applications - 6th Indian Conference, ICLA 2015, Mumbai, India, January 8-10,
2015. Proceedings. Ed. by Mohua Banerjee and Shankara Narayanan Krishna. Vol. 8923.
Lecture Notes in Computer Science. Springer, 2015, pp. 30–57. doi: 10.1007/978-3-
662-45824-2_3 (cit. on p. 35).

[FLO83] Steven Fortune, Daniel Leivant, and Michael O’Donnell. “The Expressiveness of Simple
and Second-Order Type Structures.” In: Journal of the ACM 30.1 (Jan. 1983), pp. 151–
185. issn: 0004-5411. doi: 10.1145/322358.322370 (cit. on p. 42).

[FMS14] Julien Ferté, Nathalie Marin, and Géraud Sénizergues. “Word-Mappings of Level 2.” en.
In: Theory of Computing Systems 54.1 (Jan. 2014), pp. 111–148. issn: 1433-0490. doi:
10.1007/s00224-013-9489-5 (cit. on pp. 15, 32, 44, 65).

[FR16] Emmanuel Filiot and Pierre-Alain Reynier. “Transducers, Logic and Algebra for Func-
tions of Finite Words.” In: ACM SIGLOG News 3.3 (Aug. 2016), pp. 4–19. issn: 2372-3491.
doi: 10.1145/2984450.2984453 (cit. on pp. 15, 18).

[FR21] Emmanuel Filiot and Pierre-Alain Reynier. “Copyful Streaming String Transducers.”
In: Fundamenta Informaticae 178.1-2 (Jan. 2021). Journal version of a RP’17 paper,
pp. 59–76. doi: 10.3233/FI-2021-1998 (cit. on pp. 15, 18, 32, 59, 64–67).

[FS06] Séverine Fratani and Géraud Sénizergues. “Iterated pushdown automata and sequences of
rational numbers.” In: Annals of Pure and Applied Logic 141.3 (Sept. 2006), pp. 363–411.
issn: 0168-0072. doi: 10.1016/j.apal.2005.12.004 (cit. on p. 44).

[FW21] Emmanuel Filiot and Sarah Winter. “Synthesizing Computable Functions from Rational
Specifications over Infinite Words.” In: 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2021). Ed. by

https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/0022-0000(80)90058-6
https://doi.org/10.1007/s40062-021-00284-6
https://doi.org/10.1007/s40062-021-00284-6
https://doi.org/10.1016/0022-0000(85)90066-2
https://doi.org/10.1016/0304-3975(86)90052-6
https://doi.org/10.1016/0304-3975(86)90052-6
https://doi.org/10.1007/BF02915449
https://doi.org/10.1007/BF02915449
https://doi.org/10.1016/j.jcss.2017.02.003
https://doi.org/10.1017/S0960129521000013
https://doi.org/10.1145/2933575.2934520
https://doi.org/10.1007/978-3-662-45824-2_3
https://doi.org/10.1007/978-3-662-45824-2_3
https://doi.org/10.1145/322358.322370
https://doi.org/10.1007/s00224-013-9489-5
https://doi.org/10.1145/2984450.2984453
https://doi.org/10.3233/FI-2021-1998
https://doi.org/10.1016/j.apal.2005.12.004

BIBLIOGRAPHY 213

Mikołaj Bojańczyk and Chandra Chekuri. Vol. 213. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, 43:1–43:16. isbn: 978-3-95977-215-0. doi: 10.4230/LIPIcs.FSTTCS.
2021.43 (cit. on p. 16).

[Gal20] Zeinab Galal. “A Profunctorial Scott Semantics.” In: 5th International Conference on
Formal Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020,
Paris, France (Virtual Conference). Ed. by Zena M. Ariola. Vol. 167. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 16:1–16:18. doi: 10.4230/LIPIcs.
FSCD.2020.16 (cit. on p. 111).

[GG15] Erich Grädel and Martin Grohe. “Is Polynomial Time Choiceless?” In: Fields of Logic and
Computation II – Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday.
Ed. by Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner,
and Wolfram Schulte. Vol. 9300. Lecture Notes in Computer Science. Springer, 2015,
pp. 193–209. doi: 10.1007/978-3-319-23534-9_11 (cit. on p. 37).

[Gha+18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. “Compositional Game
Theory.” In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich Grädel.
ACM, 2018, pp. 472–481. doi: 10.1145/3209108.3209165 (cit. on p. 25).

[Ghy21] Alexis Ghyselen. “Sized Types Methods and their Applications to Complexity Analysis
in Pi-Calculus.” PhD thesis. École normale supérieure de Lyon, Sept. 2021. url: https:
//tel.archives-ouvertes.fr/tel-03405961 (cit. on p. 39).

[Gir03] Jean-Yves Girard. “From foundations to ludics.” In: Bulletin of Symbolic Logic 9.2 (2003),
pp. 131–168. doi: 10.2178/bsl/1052669286 (cit. on pp. 33, 38, 40).

[Gir11a] Jean-Yves Girard. “Geometry of Interaction V: Logic in the hyperfinite factor.” In:
Theoretical Computer Science 412.20 (2011), pp. 1860–1883. doi: 10.1016/j.tcs.2010.
12.016 (cit. on pp. 38, 47).

[Gir11b] Jean-Yves Girard. The Blind Spot: Lectures on logic. European Mathematical Society,
Sept. 2011. isbn: 978-3-03719-088-3. doi: 10.4171/088 (cit. on p. 33).

[Gir12] Jean-Yves Girard. “Normativity in Logic.” en. In: Epistemology versus Ontology: Essays
on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. Logic,
Epistemology, and the Unity of Science. Springer, Dordrecht, 2012, pp. 243–263. doi:
10.1007/978-94-007-4435-6_12 (cit. on p. 38).

[Gir86] Jean-Yves Girard. “The system F of variable types, fifteen years later.” In: Theoretical
Computer Science 45 (Jan. 1986), pp. 159–192. issn: 0304-3975. doi: 10.1016/0304-
3975(86)90044-7 (cit. on p. 52).

[Gir87] Jean-Yves Girard. “Linear logic.” In: Theoretical Computer Science 50.1 (Jan. 1987),
pp. 1–101. issn: 0304-3975. doi: 10.1016/0304-3975(87)90045-4 (cit. on pp. 18, 19,
22, 28, 148, 185).

[Gir89a] Jean-Yves Girard. “Geometry of Interaction 1: Interpretation of System F.” In: Studies
in Logic and the Foundations of Mathematics. Ed. by R. Ferro, C. Bonotto, S. Valentini,
and A. Zanardo. Vol. 127. Logic Colloquium ’88. Elsevier, Jan. 1989, pp. 221–260 (cit. on
p. 47).

[Gir89b] Jean-Yves Girard. “Towards a Geometry of Interaction.” In: Categories in Computer
Science and Logic. Ed. by John W. Gray and Andre Scedrov. Vol. 92. Contemporary
Mathematics. Proceedings of a Summer Research Conference held June 14–20, 1987.
Providence, RI: American Mathematical Society, 1989, pp. 69–108. doi: 10.1090/conm/
092/1003197 (cit. on pp. 19, 22, 47).

[Gir91] Jean-Yves Girard. “A New Constructive Logic: Classical Logic.” In: Mathematical Struc-
tures in Computer Science 1.3 (1991), pp. 255–296. doi: 10.1017/S0960129500001328
(cit. on p. 25).

[Gir95] Jean-Yves Girard. “Linear logic: its syntax and semantics.” In: Advances in Linear
Logic. Ed. by Jean-Yves Girard, Yves Lafont, and Laurent Regnier. Vol. 222. London
Mathematical Society Lecture Notes. Cambridge University Press, 1995, pp. 1–42. doi:
10.1017/CBO9780511629150.002 (cit. on pp. 146, 185).

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.43
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.43
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.4230/LIPIcs.FSCD.2020.16
https://doi.org/10.1007/978-3-319-23534-9_11
https://doi.org/10.1145/3209108.3209165
https://tel.archives-ouvertes.fr/tel-03405961
https://tel.archives-ouvertes.fr/tel-03405961
https://doi.org/10.2178/bsl/1052669286
https://doi.org/10.1016/j.tcs.2010.12.016
https://doi.org/10.1016/j.tcs.2010.12.016
https://doi.org/10.4171/088
https://doi.org/10.1007/978-94-007-4435-6_12
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1090/conm/092/1003197
https://doi.org/10.1090/conm/092/1003197
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1017/CBO9780511629150.002

BIBLIOGRAPHY 214

[Gir96] Jean-Yves Girard. “Proof-nets: The parallel syntax for proof-theory.” In: Logic and
Algebra. Ed. by Aldo Ursini and Paolo Aglianó. Vol. 180. Lecture Notes in Pure and
Applied Mathematics. Marcel Dekker, 1996, pp. 97–124. doi: 10.1201/9780203748671-4
(cit. on p. 185).

[Gir98] Jean-Yves Girard. “Light Linear Logic.” In: Information and Computation 143.2 (June
1998), pp. 175–204. issn: 0890-5401. doi: 10.1006/inco.1998.2700 (cit. on pp. 21, 33).

[GK07] Neil Ghani and Alexander Kurz. “Higher Dimensional Trees, Algebraically.” In: Algebra
and Coalgebra in Computer Science, Second International Conference, CALCO 2007,
Bergen, Norway, August 20-24, 2007, Proceedings. Ed. by Till Mossakowski, Ugo Monta-
nari, and Magne Haveraaen. Vol. 4624. Lecture Notes in Computer Science. Springer,
2007, pp. 226–241. doi: 10.1007/978-3-540-73859-6_16 (cit. on p. 40).

[GK13] Nicola Gambino and Joachim Kock. “Polynomial functors and polynomial monads.” In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 154. Cambridge
University Press. 2013, pp. 153–192. doi: 10.1017/S0305004112000394 (cit. on p. 121).

[GLS20] Paul Gallot, Aurélien Lemay, and Sylvain Salvati. “Linear High-Order Deterministic
Tree Transducers with Regular Look-Ahead.” In: 45th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020,
Prague, Czech Republic. Ed. by Javier Esparza and Daniel Král’. Vol. 170. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 38:1–38:13. doi: 10.4230/
LIPIcs.MFCS.2020.38 (cit. on pp. 4, 6, 29, 185).

[GMM23] Sam van Gool, Paul-André Melliès, and Vincent Moreau. Profinite lambda-terms and
parametricity. 2023. arXiv: 2301.12475 [cs.LO] (cit. on p. 6).

[Göd58] Kurt Gödel. “Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.”
In: Dialectica 12.3-4 (1958). English translation in [Göd80], pp. 280–287. doi: 10.1111/
j.1746-8361.1958.tb01464.x (cit. on pp. 17, 21, 25, 121, 214).

[Göd80] Kurt Gödel. “On a hitherto unexploited extension of the finitary standpoint.” In: Journal
of Philosophical Logic 9 (May 1980). Annotated translation of [Göd58] by Wilfrid Hodges
and Bruce Watson, pp. 133–142. doi: 10.1007/BF00247744 (cit. on p. 214).

[Gra20] Julien Grange. “On the Expressive Power of Invariant Logics over Sparse Classes of
Structures. (Sur le pouvoir d’expression des logiques définies par invariance).” PhD
thesis. École Normale Supérieure, Paris, France, 2020. url: https://tel.archives-
ouvertes.fr/tel-02947853 (cit. on p. 36).

[Gre16] Charles Grellois. “Semantics of linear logic and higher-order model-checking.” en. PhD
thesis. Université Paris 7, Apr. 2016. url: https://tel.archives-ouvertes.fr/tel-
01311150/ (cit. on p. 41).

[Gri90] Timothy Griffin. “A Formulae-as-Types Notion of Control.” In: Conference Record of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 1990. Ed. by Frances E. Allen. ACM Press, 1990,
pp. 47–58. doi: 10.1145/96709.96714 (cit. on p. 25).

[Gro16] Alexander Grothendieck. “Allons-nous continuer la recherche scientifique ?” fr. In:
Écologie & politique 52.1 (2016). Transcription of a talk at CERN on January 27th, 1972,
with a foreword by Céline Pessis, pp. 159–169. doi: 10.3917/ecopo1.052.0159 (cit. on
p. 27).

[Gro17] Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Struc-
ture Theory. Vol. 47. Lecture Notes in Logic. Cambridge University Press, 2017. isbn:
9781139028868. doi: 10.1017/9781139028868 (cit. on p. 37).

[GRV09] Marco Gaboardi, Luca Roversi, and Luca Vercelli. “A By-Level Analysis of Multiplicative
Exponential Linear Logic.” en. In: Mathematical Foundations of Computer Science 2009.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Aug. 2009, pp. 344–355.
doi: 10.1007/978-3-642-03816-7_30 (cit. on p. 43).

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. “Bounded linear logic: a modular
approach to polynomial-time computability.” In: Theoretical Computer Science 97.1 (Apr.
1992), pp. 1–66. issn: 0304-3975. doi: 10.1016/0304-3975(92)90386-T (cit. on p. 36).

https://doi.org/10.1201/9780203748671-4
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1007/978-3-540-73859-6_16
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.4230/LIPIcs.MFCS.2020.38
https://doi.org/10.4230/LIPIcs.MFCS.2020.38
https://arxiv.org/abs/2301.12475
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1007/BF00247744
https://tel.archives-ouvertes.fr/tel-02947853
https://tel.archives-ouvertes.fr/tel-02947853
https://tel.archives-ouvertes.fr/tel-01311150/
https://tel.archives-ouvertes.fr/tel-01311150/
https://doi.org/10.1145/96709.96714
https://doi.org/10.3917/ecopo1.052.0159
https://doi.org/10.1017/9781139028868
https://doi.org/10.1007/978-3-642-03816-7_30
https://doi.org/10.1016/0304-3975(92)90386-T

BIBLIOGRAPHY 215

[GT07] Rajeev Goré and Alwen Tiu. “Classical Modal Display Logic in the Calculus of Struc-
tures and Minimal Cut-free Deep Inference Calculi for S5.” In: Journal of Logic and
Computation 17.4 (2007), pp. 767–794. doi: 10.1093/logcom/exm026 (cit. on p. 33).

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. USA: Cambridge
University Press, 1989. isbn: 0521371813 (cit. on pp. 52, 185).

[Gué19] Armaël Guéneau. “Mechanized Verification of the Correctness and Asymptotic Com-
plexity of Programs.” PhD thesis. Université de Paris, Dec. 2019. url: https://hal.
inria.fr/tel-02437532 (cit. on p. 36).

[Gug07] Alessio Guglielmi. “A system of interaction and structure.” en. In: ACM Transactions on
Computational Logic 8.1 (Jan. 2007). issn: 15293785. doi: 10.1145/1182613.1182614
(cit. on p. 19).

[Gui16] Bruno Guillon. “Input- or output-unary sweeping transducers are weaker than their
2-way counterparts.” In: RAIRO – Theoretical Informatics and Applications 50.4 (2016),
pp. 275–294. doi: 10.1051/ita/2016028 (cit. on p. 95).

[Gur83] Yuri Gurevich. “Algebras of feasible functions.” en. In: 24th Annual Symposium on
Foundations of Computer Science (FOCS 1983). Tucson, AZ, USA, Nov. 1983, pp. 210–
214. isbn: 978-0-8186-0508-6. doi: 10.1109/SFCS.1983.5 (cit. on p. 36).

[H16] Piper H. “The Equidistribution of Lattice Shapes of Rings of Integers of Cubic, Quartic,
and Quintic Number Fields: An Artist’s Rendering.” en. The author was previously
known as Piper Alexis Harron. PhD thesis. Princeton University, 2016. url: http:
//arks.princeton.edu/ark:/88435/dsp01ws859j05g (cit. on p. 202).

[Hee+19] Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino, and Alexandra Silva.
“Tree Automata as Algebras: Minimisation and Determinisation.” In: 8th Conference on
Algebra and Coalgebra in Computer Science, CALCO 2019, June 3-6, 2019, London,
United Kingdom. Ed. by Markus Roggenbach and Ana Sokolova. Vol. 139. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 6:1–6:22. doi: 10.4230/LIPIcs.CALCO.
2019.6 (cit. on p. 26).

[HH16] Dominic Hughes and Willem Heijltjes. “Conflict nets: Efficient locally canonical MALL
proof nets.” In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), 2016. New York, U. S. A.: ACM, July 2016, pp. 437–446.
isbn: 978-1-4503-4391-6. doi: 10.1145/2933575.2934559 (cit. on p. 185).

[Hin03] Peter Hines. “A Categorical Framework For Finite State Machines.” In: Mathematical
Structures in Computer Science 13.3 (2003), pp. 451–480. doi: 10.1017/S0960129503003931
(cit. on pp. 26, 47).

[Hin06] Peter Hines. Temperley-Lieb Algebras as two-way automata. Slides of a talk given at the
QNET Workshop 2006. 2006. url: http://www.dcs.gla.ac.uk/~simon/qnet/talks/
Hines.pdf (cit. on p. 47).

[HJ99] Hongde Hu and André Joyal. “Coherence completions of categories.” In: Theoretical
Computer Science 227.1 (Sept. 1999), pp. 153–184. issn: 0304-3975. doi: 10.1016/S0304-
3975(99)00051-1 (cit. on pp. 185, 189).

[HK96] Gerd G. Hillebrand and Paris C. Kanellakis. “On the Expressive Power of Simply
Typed and Let-Polymorphic Lambda Calculi.” In: Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer Society, 1996, pp. 253–263.
isbn: 978-0-8186-7463-1. doi: 10.1109/LICS.1996.561337 (cit. on pp. 19–21, 43, 52,
199).

[HKM11] Markus Holzer, Martin Kutrib, and Andreas Malcher. “Complexity of multi-head finite
automata: Origins and directions.” In: Theoretical Computer Science 412.1-2 (2011),
pp. 83–96. doi: 10.1016/j.tcs.2010.08.024 (cit. on p. 12).

[HKM96] Gerd G. Hillebrand, Paris C. Kanellakis, and Harry G. Mairson. “Database Query
Languages Embedded in the Typed Lambda Calculus.” In: Information and Computation
127.2 (June 1996), pp. 117–144. issn: 0890-5401. doi: 10.1006/inco.1996.0055 (cit. on
pp. 18, 20, 43, 52).

https://doi.org/10.1093/logcom/exm026
https://hal.inria.fr/tel-02437532
https://hal.inria.fr/tel-02437532
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1051/ita/2016028
https://doi.org/10.1109/SFCS.1983.5
http://arks.princeton.edu/ark:/88435/dsp01ws859j05g
http://arks.princeton.edu/ark:/88435/dsp01ws859j05g
https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://doi.org/10.1145/2933575.2934559
https://doi.org/10.1017/S0960129503003931
http://www.dcs.gla.ac.uk/~simon/qnet/talks/Hines.pdf
http://www.dcs.gla.ac.uk/~simon/qnet/talks/Hines.pdf
https://doi.org/10.1016/S0304-3975(99)00051-1
https://doi.org/10.1016/S0304-3975(99)00051-1
https://doi.org/10.1109/LICS.1996.561337
https://doi.org/10.1016/j.tcs.2010.08.024
https://doi.org/10.1006/inco.1996.0055

BIBLIOGRAPHY 216

[HL21] Martin Hofmann and Jérémy Ledent. “A quantitative model for simply typed λ-calculus.”
In: Mathematical Structures in Computer Science (2021), pp. 1–17. doi: 10.1017/
S0960129521000256 (cit. on p. 21).

[HMP20] Emmanuel Hainry, Damiano Mazza, and Romain Péchoux. “Polynomial Time over the
Reals with Parsimony.” In: Functional and Logic Programming - 15th International
Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings. Ed. by
Keisuke Nakano and Konstantinos Sagonas. Vol. 12073. Lecture Notes in Computer
Science. Springer, 2020, pp. 50–65. doi: 10.1007/978-3-030-59025-3_4 (cit. on pp. 32,
38).

[Hof11] Pieter Hofstra. “The dialectica monad and its cousins.” en. In: Models, Logics, and
Higher-Dimensional Categories: A Tribute to the Work of Mihály Makkai. Ed. by Bradd
Hart, Thomas Kucera, Anand Pillay, Philip Scott, and Robert Seely. Vol. 53. CRM
Proceedings and Lecture Notes. Providence, Rhode Island: American Mathematical
Society, Sept. 2011. doi: 10.1090/crmp/053 (cit. on pp. 30, 121).

[How80] William Alvin Howard. “The Formulae-as-Types Notion of Construction.” In: To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Reprint
of an informally circulated paper written in 1969. Academic Press, 1980 (cit. on p. 17).

[Hug04] Dominic J.D. Hughes. “Deep inference proof theory equals categorical proof theory minus
coherence.” Unfinished draft. 2004. url: http://boole.stanford.edu/~dominic/
papers/di/di.pdf (cit. on p. 19).

[Hyl10] Martin Hyland. “Some reasons for generalising domain theory.” In: Mathematical Struc-
tures in Computer Science 20.2 (2010), pp. 239–265. doi: 10.1017/S0960129509990375
(cit. on p. 23).

[Hyl17] Martin Hyland. “Classical lambda calculus in modern dress.” In: Mathematical Structures
in Computer Science 27.5 (2017), pp. 762–781. doi: 10.1017/S0960129515000377 (cit.
on p. 24).

[Imm86] Neil Immerman. “Relational Queries Computable in Polynomial Time.” In: Information
and Control 68.1-3 (1986). Long version of a STOC’82 paper, pp. 86–104. doi: 10.1016/
S0019-9958(86)80029-8 (cit. on p. 37).

[Imm99] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer Ccience. Springer,
1999. isbn: 978-1-4612-6809-3. doi: 10.1007/978-1-4612-0539-5 (cit. on pp. 35, 36).

[Jol01] Thierry Joly. “Constant time parallel computations in λ-calculus.” In: Theoretical Com-
puter Science 266.1 (Sept. 2001), pp. 975–985. issn: 0304-3975. doi: 10.1016/S0304-
3975(00)00380-7 (cit. on p. 42).

[JSV96] André Joyal, Ross Street, and Dominic Verity. “Traced monoidal categories.” In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 119.3 (1996), pp. 447–468.
doi: 10.1017/S0305004100074338 (cit. on p. 26).

[Jun+21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Safe systems
programming in Rust.” In: Communications of the ACM 64.4 (2021), pp. 144–152. doi:
10.1145/3418295 (cit. on p. 19).

[Keg08] Jeffrey Kegler . “Perl and Undecidability, Part III.” In: The Perl Review 5.0 (2008). url:
http://www.jeffreykegler.com/Home/perl-and-undecidability (cit. on p. 13).

[Ker18] Marie Kerjean. “Reflexive spaces of smooth functions: a logical account of linear partial
differential equations.” PhD thesis. Université Sorbonne Paris Cité, Oct. 2018. url:
https://tel.archives-ouvertes.fr/tel-02386294 (cit. on p. 22).

[Kie20a] Sandra Kiefer. “Power and limits of the Weisfeiler-Leman algorithm.” PhD thesis. RWTH
Aachen University, 2020. doi: 10.18154/RWTH-2020-03508 (cit. on p. 37).

[Kie20b] Sandra Kiefer. “The Weisfeiler-Leman algorithm: an exploration of its power.” In: ACM
SIGLOG News 7.3 (2020), pp. 5–27. doi: 10.1145/3436980.3436982 (cit. on p. 37).

[KL21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model of Univalent
Foundations (after Voevodsky).” In: Journal of the European Mathematical Society 23 (6
2021), pp. 2071–2126. doi: 10.4171/JEMS/1050 (cit. on p. 22).

https://doi.org/10.1017/S0960129521000256
https://doi.org/10.1017/S0960129521000256
https://doi.org/10.1007/978-3-030-59025-3_4
https://doi.org/10.1090/crmp/053
http://boole.stanford.edu/~dominic/papers/di/di.pdf
http://boole.stanford.edu/~dominic/papers/di/di.pdf
https://doi.org/10.1017/S0960129509990375
https://doi.org/10.1017/S0960129515000377
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1016/S0304-3975(00)00380-7
https://doi.org/10.1016/S0304-3975(00)00380-7
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1145/3418295
http://www.jeffreykegler.com/Home/perl-and-undecidability
https://tel.archives-ouvertes.fr/tel-02386294
https://doi.org/10.18154/RWTH-2020-03508
https://doi.org/10.1145/3436980.3436982
https://doi.org/10.4171/JEMS/1050

BIBLIOGRAPHY 217

[KL80] Gregory M. Kelly and Miguel L. Laplaza. “Coherence for compact closed categories.”
In: Journal of pure and applied algebra 19 (1980), pp. 193–213. doi: 10.1016/0022-
4049(80)90101-2 (cit. on p. 19).

[KNP23] Sandra Kiefer, Lê Thành Dũng Nguyễn, and Cécilia Pradic. Revisiting the growth of
polyregular functions: output languages, weighted automata and unary inputs. 2023.
arXiv: 2301.09234 [cs.FL] (cit. on pp. 5, 51, 75, 76).

[KNU02] Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. “Higher-Order Pushdown
Trees Are Easy.” In: Foundations of Software Science and Computation Structures,
5th International Conference, FOSSACS 2002. Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-
12, 2002, Proceedings. Ed. by Mogens Nielsen and Uffe Engberg. Vol. 2303. Lecture Notes
in Computer Science. Springer, 2002, pp. 205–222. doi: 10.1007/3-540-45931-6_15
(cit. on p. 41).

[Kob13] Naoki Kobayashi. “Model Checking Higher-Order Programs.” en. In: Journal of the ACM
60.3 (June 2013), pp. 1–62. issn: 00045411. doi: 10.1145/2487241.2487246 (cit. on
p. 41).

[Kob19] Naoki Kobayashi. “10 Years of the Higher-Order Model Checking Project (Extended
Abstract).” In: Proceedings of the 21st International Symposium on Principles and
Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019. Ed.
by Ekaterina Komendantskaya. ACM, 2019, 2:1–2:2. doi: 10.1145/3354166.3354167
(cit. on p. 41).

[Kob85] Kojiro Kobayashi. “On the structure of one-tape nondeterministic Turing machine time
hierarchy.” In: Theoretical Computer Science 40 (1985), pp. 175–193. doi: 10.1016/0304-
3975(85)90165-3 (cit. on p. 13).

[Koł+19] Leszek Aleksander Kołodziejczyk, Henryk Michalewski, Cécilia Pradic, and Michał
Skrzypczak. “The logical strength of Büchi’s decidability theorem.” In: Logical Methods
in Computer Science 15.2 (2019). doi: 10.23638/LMCS-15(2:16)2019 (cit. on pp. 15,
40).

[KP21] Marie Kerjean and Pierre-Marie Pédrot. “∂ is for Dialectica: Typing Differentiable
Programming.” working paper or preprint. Feb. 2021. url: https://hal.archives-
ouvertes.fr/hal-03123968 (cit. on p. 25).

[KPP19] Denis Kuperberg, Laureline Pinault, and Damien Pous. “Cyclic Proofs and Jumping
Automata.” In: 39th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2019). Ed. by Arkadev Chattopadhyay and
Paul Gastin. Vol. 150. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 45:1–45:14. isbn: 978-3-95977-131-3.
doi: 10.4230/LIPIcs.FSTTCS.2019.45 (cit. on p. 39).

[KR65] Kenneth Krohn and John Rhodes. “Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines.” en. In: Transactions of the American
Mathematical Society 116 (1965), pp. 450–464. issn: 0002-9947, 1088-6850. doi: 10.
1090/S0002-9947-1965-0188316-1 (cit. on pp. 15, 56).

[Kre15] Robbert Krebbers. “The C standard formalized in Coq.” en. PhD thesis. Radboud
Universiteit Nijmegen, Dec. 2015. isbn: 9789462599031. url: http://hdl.handle.net/
2066/147182 (cit. on p. 22).

[Kri09] Jean-Louis Krivine. “Realizability in classical logic.” In: Interactive models of computation
and program behaviour. Vol. 27. Panoramas et Synthèses. Société Mathématique de
France, 2009, pp. 197–229. url: https://hal.archives-ouvertes.fr/hal-00154500
(cit. on p. 25).

[Kri12] Lars Kristiansen. “Higher Types, Finite Domains and Resource-bounded Turing Ma-
chines.” en. In: Journal of Logic and Computation 22.2 (Apr. 2012), pp. 281–304. issn:
0955-792X, 1465-363X. doi: 10.1093/logcom/exq009 (cit. on pp. 21, 23).

[Kri20] Jean-Louis Krivine. “A program for the full axiom of choice.” In: CoRR abs/2006.05433
(2020). arXiv: 2006.05433 (cit. on p. 25).

https://doi.org/10.1016/0022-4049(80)90101-2
https://doi.org/10.1016/0022-4049(80)90101-2
https://arxiv.org/abs/2301.09234
https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/3354166.3354167
https://doi.org/10.1016/0304-3975(85)90165-3
https://doi.org/10.1016/0304-3975(85)90165-3
https://doi.org/10.23638/LMCS-15(2:16)2019
https://hal.archives-ouvertes.fr/hal-03123968
https://hal.archives-ouvertes.fr/hal-03123968
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.45
https://doi.org/10.1090/S0002-9947-1965-0188316-1
https://doi.org/10.1090/S0002-9947-1965-0188316-1
http://hdl.handle.net/2066/147182
http://hdl.handle.net/2066/147182
https://hal.archives-ouvertes.fr/hal-00154500
https://doi.org/10.1093/logcom/exq009
https://arxiv.org/abs/2006.05433

BIBLIOGRAPHY 218

[KSK08] Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. “Translation of tree-processing
programs into stream-processing programs based on ordered linear type.” In: Journal of
Functional Programming 18.3 (2008), pp. 333–371. doi: 10.1017/S0956796807006570
(cit. on p. 19).

[Kum+14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. “CakeML:
a verified implementation of ML.” In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. Ed. by Suresh Jagannathan and Peter Sewell. ACM, 2014, pp. 179–
192. doi: 10.1145/2535838.2535841 (cit. on p. 22).

[Kup21] Denis Kuperberg. “Positive First-order Logic on Words.” In: 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2,
2021. IEEE, 2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470602 (cit. on p. 37).

[Lai13] James Laird. “Game semantics for a polymorphic programming language.” In: Journal
of the ACM 60.4 (2013), 29:1–29:27. doi: 10.1145/2505986 (cit. on p. 51).

[Lam58] Joachim Lambek. “The Mathematics of Sentence Structure.” In: The American Math-
ematical Monthly 65.3 (1958), pp. 154–170. issn: 00029890, 19300972. url: http :
//www.jstor.org/stable/2310058 (cit. on p. 19).

[Lam72] Joachim Lambek. “Deductive systems and categories III. Cartesian closed categories,
intuitionist propositional calculus, and combinatory logic.” In: Toposes, Algebraic Geom-
etry and Logic. Ed. by F. W. Lawvere. Berlin, Heidelberg: Springer, 1972, pp. 57–82.
isbn: 978-3-540-37609-5. doi: 10.1007/BFb0073965 (cit. on p. 24).

[Lau02] Olivier Laurent. “Étude de la polarisation en logique.” PhD thesis. Université de la
Méditerranée – Aix-Marseille II, Mar. 2002. url: https://tel.archives-ouvertes.
fr/tel-00007884 (cit. on p. 40).

[Lau20] Olivier Laurent. “Polynomial time in untyped elementary linear logic.” en. In: Theoretical
Computer Science 813 (Apr. 2020), pp. 117–142. issn: 0304-3975. doi: 10.1016/j.tcs.
2019.10.002 (cit. on pp. 22, 29).

[Lei93] Daniel Leivant. “Functions over free algebras definable in the simply typed lambda
calculus.” In: Theoretical Computer Science 121.1 (Dec. 1993), pp. 309–321. issn: 0304-
3975. doi: 10.1016/0304-3975(93)90092-8 (cit. on p. 42).

[Ler09] Xavier Leroy. “Formal verification of a realistic compiler.” In: Communications of the
ACM 52.7 (2009), pp. 107–115. doi: 10.1145/1538788.1538814 (cit. on p. 22).

[Lho20] Nathan Lhote. “Pebble Minimization of Polyregular Functions.” In: LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany,
July 8-11, 2020. Ed. by Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale
Miller. ACM, 2020, pp. 703–712. doi: 10.1145/3373718.3394804 (cit. on pp. 5, 75, 76,
78–80, 85–87, 89).

[Lin07] Sam Lindley. “Extensional Rewriting with Sums.” In: Typed Lambda Calculi and Appli-
cations, 8th International Conference, TLCA 2007, Paris, France, June 26-28, 2007,
Proceedings. Ed. by Simona Ronchi Della Rocca. Vol. 4583. Lecture Notes in Computer
Science. Springer, 2007, pp. 255–271. doi: 10.1007/978-3-540-73228-0_19 (cit. on
p. 145).

[Lin68] Aristid Lindenmayer. “Mathematical models for cellular interactions in development II.
Simple and branching filaments with two-sided inputs.” en. In: Journal of Theoretical
Biology 18.3 (Mar. 1968), pp. 300–315. issn: 00225193. doi: 10.1016/0022-5193(68)
90080-5 (cit. on p. 64).

[LM93] Daniel Leivant and Jean-Yves Marion. “Lambda Calculus Characterizations of Poly-
time.” In: Fundamenta Informaticae 19.1-2 (Sept. 1993), pp. 167–184. issn: 0169-2968.
doi: 10.3233/FI-1993-191-207 (cit. on p. 36).

[LN15] John Longley and Dag Normann. Higher-Order Computability. Theory and Applications
of Computability. Springer, 2015. doi: 10.1007/978-3-662-47992-6 (cit. on p. 38).

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Second edition. Graduate
Texts in Mathematics. Springer, 1998. isbn: 9780387984032. doi: 10.1007/978-1-4757-
4721-8 (cit. on pp. 33, 106, 129, 182).

https://doi.org/10.1017/S0956796807006570
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1109/LICS52264.2021.9470602
https://doi.org/10.1145/2505986
http://www.jstor.org/stable/2310058
http://www.jstor.org/stable/2310058
https://doi.org/10.1007/BFb0073965
https://tel.archives-ouvertes.fr/tel-00007884
https://tel.archives-ouvertes.fr/tel-00007884
https://doi.org/10.1016/j.tcs.2019.10.002
https://doi.org/10.1016/j.tcs.2019.10.002
https://doi.org/10.1016/0304-3975(93)90092-8
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3373718.3394804
https://doi.org/10.1007/978-3-540-73228-0_19
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.3233/FI-1993-191-207
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8

BIBLIOGRAPHY 219

[Mai02] Harry G. Mairson. “From Hilbert Spaces to Dilbert Spaces: Context Semantics Made
Simple.” In: FST TCS 2002: Foundations of Software Technology and Theoretical
Computer Science, 22nd Conference Kanpur, India, December 12-14, 2002, Proceedings.
Ed. by Manindra Agrawal and Anil Seth. Vol. 2556. Lecture Notes in Computer Science.
Springer, 2002, pp. 2–17. doi: 10.1007/3-540-36206-1_2 (cit. on p. 47).

[Mai96] Maria Emilia Maietti. “Some aspects of the categorical semantics for the polymorphic
λ-calculus.” In: Logic and algebra. Ed. by Aldo Ursini and Paolo Aglianó. Vol. 180.
Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, 1996, pp. 589–602.
doi: 10.1201/9780203748671-26 (cit. on p. 52).

[Mar18] Sonia Marin. “Modal proof theory through a focused telescope.” PhD thesis. Université
Paris Saclay, Jan. 2018. url: https://hal.archives-ouvertes.fr/tel-01951291
(cit. on p. 33).

[Mat02] A. R. D. Mathias. “A Term of Length 4 523 659 424 929.” In: Synthese 133 (2002),
pp. 75–86. issn: 00397857, 15730964. doi: 10.1023/A:1020827725055 (cit. on p. 11).

[Mat15] Satoshi Matsuoka. “A New Proof of P-time Completeness of Linear Lambda Calculus.”
In: 20th International Conferences on Logic for Programming, Artificial Intelligence
and Reasoning - Short Presentations, LPAR 2015, Suva, Fiji, November 24-28, 2015.
Ed. by Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov. Vol. 35.
EPiC Series in Computing. EasyChair, 2015, pp. 119–130. doi: 10.29007/svwc (cit. on
p. 197).

[Maz15] Damiano Mazza. “Simple Parsimonious Types and Logarithmic Space.” In: 24th EACSL
Annual Conference on Computer Science Logic (CSL 2015). 2015, pp. 24–40. isbn:
978-3-939897-90-3. doi: 10.4230/LIPIcs.CSL.2015.24 (cit. on pp. 32, 48, 49, 53).

[Maz17] Damiano Mazza. “Polyadic Approximations in Logic and Computation.” Habilitation à
diriger des recherches. Université Paris 13, Nov. 2017. url: https://lipn.fr/~mazza/
papers/Habilitation.pdf (cit. on pp. 28, 33, 38, 39).

[Mel09] Paul-André Melliès. “Categorical semantics of linear logic.” In: Interactive models of
computation and program behaviour. Vol. 27. Panoramas et Synthèses. Société Mathé-
matique de France, 2009, pp. 1–196. url: https://www.irif.fr/~mellies/papers/
panorama.pdf (cit. on pp. 30, 52, 104–108, 126, 182).

[Mel17a] Paul-André Melliès. “Higher-order parity automata.” en. In: 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). Reykjavik, Iceland: IEEE, June 2017,
pp. 1–12. isbn: 978-1-5090-3018-7. doi: 10.1109/LICS.2017.8005077 (cit. on pp. 40,
41).

[Mel17b] Paul-André Melliès. “Une étude micrologique de la négation.” Habilitation à diriger des
recherches. Université Paris VII, Nov. 2017. url: https://www.irif.fr/~mellies/
/hdr-mellies.pdf (cit. on p. 19).

[Mel18] Paul-André Melliès. “Ribbon Tensorial Logic.” en. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science - LICS ’18. Oxford, United
Kingdom: ACM Press, 2018, pp. 689–698. isbn: 978-1-4503-5583-4. doi: 10.1145/
3209108.3209129 (cit. on p. 19).

[MFP91] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. “Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire.” In: Functional Programming Languages
and Computer Architecture, 5th ACM Conference, Cambridge, MA, USA, August 26-30,
1991, Proceedings. Ed. by John Hughes. Vol. 523. Lecture Notes in Computer Science.
Springer, 1991, pp. 124–144. doi: 10.1007/3540543961_7 (cit. on p. 41).

[MG18] Sean K. Moss and Tamara von Glehn. “Dialectica models of type theory.” en. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018. ACM Press, 2018, pp. 739–748. isbn: 978-1-
4503-5583-4. doi: 10.1145/3209108.3209207 (cit. on p. 121).

[MHR20] David MacQueen, Robert Harper, and John H. Reppy. “The history of Standard ML.”
In: Proceedings of the ACM on Programming Languages 4.HOPL (2020), 86:1–86:100.
doi: 10.1145/3386336 (cit. on p. 22).

https://doi.org/10.1007/3-540-36206-1_2
https://doi.org/10.1201/9780203748671-26
https://hal.archives-ouvertes.fr/tel-01951291
https://doi.org/10.1023/A:1020827725055
https://doi.org/10.29007/svwc
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://lipn.fr/~mazza/papers/Habilitation.pdf
https://lipn.fr/~mazza/papers/Habilitation.pdf
https://www.irif.fr/~mellies/papers/panorama.pdf
https://www.irif.fr/~mellies/papers/panorama.pdf
https://doi.org/10.1109/LICS.2017.8005077
https://www.irif.fr/~mellies//hdr-mellies.pdf
https://www.irif.fr/~mellies//hdr-mellies.pdf
https://doi.org/10.1145/3209108.3209129
https://doi.org/10.1145/3209108.3209129
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1145/3209108.3209207
https://doi.org/10.1145/3386336

BIBLIOGRAPHY 220

[Mil78] Robin Milner. “A Theory of Type Polymorphism in Programming.” In: Journal of
Computer and System Sciences 17.3 (1978), pp. 348–375. doi: 10.1016/0022-0000(78)
90014-4 (cit. on p. 18).

[Mir06] Jolie G. de Miranda. “Structures generated by higher-order grammars and the safety
constraint.” PhD thesis. University of Oxford, 2006. url: http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.442397 (cit. on p. 41).

[MM02] Peter Møller Neergaard and Harry Mairson. “LAL is square: representation and expres-
siveness in light affine logic.” Presented at the 2002 Workshop on Implicit Computational
Complexity, Copenhagen. 2002. url: https://www.cs.brandeis.edu/~mairson/
Papers/LAL-is-square.pdf (cit. on p. 43).

[Mör21] Anders Mörtberg. “Cubical methods in homotopy type theory and univalent foundations.”
In: Mathematical Structures in Computer Science (2021), pp. 1–38. doi: 10.1017/
S0960129521000311 (cit. on p. 23).

[MP19] Anca Muscholl and Gabriele Puppis. “The Many Facets of String Transducers.” In:
36th International Symposium on Theoretical Aspects of Computer Science (STACS
2019). Ed. by Rolf Niedermeier and Christophe Paul. Vol. 126. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, 2:1–2:21. isbn: 978-3-95977-100-9. doi: 10.4230/LIPIcs.STACS.2019.2 (cit. on
pp. 15, 79).

[MR12] Richard Moot and Christian Retoré. The Logic of Categorial Grammars. A Deductive
Account of Natural Language Syntax and Semantics. Vol. 6850. Lecture Notes in Computer
Science. Springer, 2012. isbn: 978-3-642-31554-1. doi: 10.1007/978-3-642-31555-8
(cit. on p. 19).

[MS95] David E. Muller and Paul E. Schupp. “Simulating alternating tree automata by nondeter-
ministic automata: New results and new proofs of the theorems of Rabin, McNaughton
and Safra.” In: Theoretical Computer Science 141.1–2 (1995), pp. 69–107. issn: 0304-3975.
doi: 10.1016/0304-3975(94)00214-4 (cit. on pp. 31, 139).

[MSV03] Tova Milo, Dan Suciu, and Victor Vianu. “Typechecking for XML transformers.” In:
Journal of Computer and System Sciences 66.1 (2003). Journal version of a PODS 2000
paper, pp. 66–97. doi: 10.1016/S0022-0000(02)00030-2 (cit. on pp. 31, 78, 80).

[MT03] Harry G. Mairson and Kazushige Terui. “On the Computational Complexity of Cut-
Elimination in Linear Logic.” In: Theoretical Computer Science, 8th Italian Conference,
ICTCS 2003, Bertinoro, Italy, October 13-15, 2003, Proceedings. Ed. by Carlo Blundo
and Cosimo Laneve. Vol. 2841. Lecture Notes in Computer Science. Springer, 2003,
pp. 23–36. doi: 10.1007/978-3-540-45208-9_4 (cit. on pp. 29, 30).

[MT15] Damiano Mazza and Kazushige Terui. “Parsimonious Types and Non-uniform Compu-
tation.” en. In: Automata, Languages, and Programming. Lecture Notes in Computer
Science. July 2015, pp. 350–361. doi: 10.1007/978-3-662-47666-6_28 (cit. on pp. 32,
50).

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990. isbn: 978-0-262-63132-7 (cit. on p. 22).

[Mun13] Guillaume Munch-Maccagnoni. “Syntax and Models of a non-Associative Composition
of Programs and Proofs.” PhD thesis. Université Paris-Diderot - Paris VII, 2013. url:
https://tel.archives-ouvertes.fr/tel-00918642 (cit. on p. 25).

[Mun18] Guillaume Munch-Maccagnoni. Resource Polymorphism. 2018. arXiv: 1803 . 02796
[cs.PL] (cit. on p. 19).

[Ngu19] Lê Thành Dũng Nguyễn. “On the Elementary Affine Lambda-Calculus with and Without
Fixed Points.” In: Electronic Proceedings in Theoretical Computer Science 298 (Aug.
2019). In Proceedings DICE-FOPARA 2019, pp. 15–29. issn: 2075-2180. doi: 10.4204/
EPTCS.298.2 (cit. on pp. 51, 52).

[Ngu20] Lê Thành Dũng Nguyễn. “Unique perfect matchings, forbidden transitions and proof
nets for linear logic with Mix.” In: Logical Methods in Computer Science 16.27 (Feb.
2020). doi: 10.23638/LMCS-16(1:27)2020 (cit. on pp. 4, 26).

https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442397
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442397
https://www.cs.brandeis.edu/~mairson/Papers/LAL-is-square.pdf
https://www.cs.brandeis.edu/~mairson/Papers/LAL-is-square.pdf
https://doi.org/10.1017/S0960129521000311
https://doi.org/10.1017/S0960129521000311
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1016/0304-3975(94)00214-4
https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.1007/978-3-540-45208-9_4
https://doi.org/10.1007/978-3-662-47666-6_28
https://tel.archives-ouvertes.fr/tel-00918642
https://arxiv.org/abs/1803.02796
https://arxiv.org/abs/1803.02796
https://doi.org/10.4204/EPTCS.298.2
https://doi.org/10.4204/EPTCS.298.2
https://doi.org/10.23638/LMCS-16(1:27)2020

BIBLIOGRAPHY 221

[Ngu21] Lê Thành Dũng Nguyễn. “The planar geometry of first-order transductions.” In prepara-
tion. Slides available at https://nguyentito.eu/updated-planar.pdf. 2021 (cit. on
pp. 47, 199).

[Ngu23] Lê Thành Dũng Nguyễn. Simply typed β-convertibility is Tower-complete even for safe
λ-terms. In preparation. Slides available at https://nguyentito.eu/2023-01-cla.pdf.
2023 (cit. on p. 6).

[nLa20] nLab authors. Semicartesian monoidal category. http://ncatlab.org/nlab/show/
semicartesian%20monoidal%20category. Revision 24. Mar. 2020 (cit. on p. 107).

[NNP21] Lê Thành Dũng Nguyễn, Camille Noûs, and Cécilia Pradic. “Comparison-Free Polyregular
Functions.” In: 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021). Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell. Vol. 198.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 139:1–139:20. isbn: 978-3-95977-195-5.
doi: 10.4230/LIPIcs.ICALP.2021.139 (cit. on pp. 26, 32, 46, 53, 76).

[NP19] Lê Thành Dũng Nguyễn and Cécilia Pradic. “From normal functors to logarithmic space
queries.” In: 46th International Colloquium on Automata, Languages and Programming
(ICALP 2019). Ed. by Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi. Vol. 132. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 123:1–123:15. isbn: 978-3-
95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.123 (cit. on pp. 52, 53).

[NP20] Lê Thành Dũng Nguyễn and Cécilia Pradic. “Implicit automata in typed λ-calculi I:
aperiodicity in a non-commutative logic.” In: 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference). Ed. by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Vol. 168.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 135:1–135:20. doi:
10.4230/LIPIcs.ICALP.2020.135 (cit. on pp. 4, 26, 28, 46, 47, 53, 195–202).

[NS22] Lê Thành Dũng Nguyễn and Lutz Straßburger. A System of Interaction and Structure
III: The Complexity of BV and Pomset Logic. Significantly extended journal version of
the CSL 2022 paper “BV and Pomset Logic are not the same”. 2022. arXiv: 2209.07825
[cs.LO] (cit. on pp. 5, 19, 26).

[ONe09] Melissa E. O’Neill. “The Genuine Sieve of Eratosthenes.” In: Journal of Functional
Programming 19.1 (2009), pp. 95–106. doi: 10.1017/S0956796808007004 (cit. on p. 41).

[Ong06] C.-H. Luke Ong. “On Model-Checking Trees Generated by Higher-Order Recursion
Schemes.” en. In: 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06).
Seattle, WA, USA: IEEE, 2006, pp. 81–90. isbn: 978-0-7695-2631-7. doi: 10.1109/LICS.
2006.38 (cit. on p. 41).

[OP99] Peter W. O’Hearn and David J. Pym. “The logic of bunched implications.” In: Bulletin
of Symbolic Logic 5.2 (1999), pp. 215–244. doi: 10.2307/421090 (cit. on p. 19).

[Pag21] Benedikt Pago. “Choiceless Computation and Symmetry: Limitations of Definability.”
In: 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January
25-28, 2021, Ljubljana, Slovenia (Virtual Conference). Ed. by Christel Baier and Jean
Goubault-Larrecq. Vol. 183. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, 33:1–33:21. doi: 10.4230/LIPIcs.CSL.2021.33 (cit. on p. 37).

[Pai89] Valeria C. V. de Paiva. “The Dialectica categories.” In: Categories in Computer Science
and Logic. Ed. by John W. Gray and Andre Scedrov. Vol. 92. Contemporary Mathematics.
Proceedings of a Summer Research Conference held June 14–20, 1987. Providence, Rhode
Island: American Mathematical Society, 1989, pp. 47–62. doi: 10.1090/conm/092/
1003194 (cit. on p. 25).

[Par18] Paweł Parys. “Homogeneity Without Loss of Generality.” In: 3rd International Conference
on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018,
Oxford, UK. Ed. by Hélène Kirchner. Vol. 108. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018, 27:1–27:15. doi: 10.4230/LIPIcs.FSCD.2018.27 (cit. on
p. 45).

https://nguyentito.eu/updated-planar.pdf
https://nguyentito.eu/2023-01-cla.pdf
http://ncatlab.org/nlab/show/semicartesian%20monoidal%20category
http://ncatlab.org/nlab/show/semicartesian%20monoidal%20category
http://ncatlab.org/nlab/revision/semicartesian%20monoidal%20category/24
https://doi.org/10.4230/LIPIcs.ICALP.2021.139
https://doi.org/10.4230/LIPIcs.ICALP.2019.123
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://arxiv.org/abs/2209.07825
https://arxiv.org/abs/2209.07825
https://doi.org/10.1017/S0956796808007004
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.2307/421090
https://doi.org/10.4230/LIPIcs.CSL.2021.33
https://doi.org/10.1090/conm/092/1003194
https://doi.org/10.1090/conm/092/1003194
https://doi.org/10.4230/LIPIcs.FSCD.2018.27

BIBLIOGRAPHY 222

[Par21] Paweł Parys. “Higher-Order Model Checking Step by Step.” In: 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference). Ed. by Nikhil Bansal, Emanuela Merelli, and
James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, 140:1–140:16. doi: 10.4230/LIPIcs.ICALP.2021.140 (cit. on p. 41).

[Par92] Michel Parigot. “Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical
Natural Deduction.” In: Logic Programming and Automated Reasoning,International
Conference LPAR’92, St. Petersburg, Russia, July 15-20, 1992, Proceedings. Ed. by
Andrei Voronkov. Vol. 624. Lecture Notes in Computer Science. Springer, 1992, pp. 190–
201. doi: 10.1007/BFb0013061 (cit. on p. 25).

[PB19] Cécilia Pradic and Chad E. Brown. Cantor-Bernstein implies Excluded Middle. 2019.
arXiv: 1904.09193 [math.LO] (cit. on p. 38).

[Péc20] Romain Péchoux. “Implicit Computational Complexity: past and future (Complexité
implicite : bilan et perspectives).” Habilitation à diriger des recherches. Université de
Lorraine, Oct. 2020. url: https://hal.univ-lorraine.fr/tel-02978986 (cit. on
pp. 18, 36, 38, 39).

[Péd15] Pierre-Marie Pédrot. “A Materialist Dialectica.” PhD thesis. Université Paris Diderot
- Paris VII, 2015. url: https://tel.archives-ouvertes.fr/tel-01247085 (cit. on
p. 25).

[Pel17] Luc Pellissier. “Reductions and linear approximations.” PhD thesis. Université Sorbonne
Paris Cité, Dec. 2017. url: https://tel.archives-ouvertes.fr/tel-02465653
(cit. on p. 24).

[Pet15] Tomas Petricek. “Against a universal definition of ‘Type’.” In: 2015 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2015, Pittsburgh, PA, USA, October 25-30, 2015. Ed. by Gail C. Murphy and
Guy L. Steele Jr. Paper and talk recording available at http://tomasp.net/academic/
papers/against-types/. ACM, 2015, pp. 254–266. doi: 10.1145/2814228.2814249
(cit. on p. 17).

[Pet18] Tomas Petricek. “What we talk about when we talk about monads.” In: The Art, Science,
and Engineering of Programming 2.3 (2018), p. 12. doi: 10.22152/programming-
journal.org/2018/2/12 (cit. on p. 24).

[Pin21a] Jean-Éric Pin, ed. Handbook of Automata Theory. European Mathematical Society
Publishing House, 2021. isbn: 978-3-98547-006-8. doi: 10.4171/Automata (cit. on
pp. 13, 15, 16, 34, 41, 71).

[Pin21b] Laureline Pinault. “From automata to cyclic proofs: equivalence algorithms and de-
scriptive complexity.” PhD thesis. École normale supérieure de Lyon, July 2021. url:
https://tel.archives-ouvertes.fr/tel-03412556 (cit. on pp. 39, 40).

[Pit16] Andrew M. Pitts. “Nominal techniques.” In: ACM SIGLOG News 3.1 (2016), pp. 57–72.
doi: 10.1145/2893582.2893594 (cit. on pp. 48, 49).

[Plo22] Gordon Plotkin. Recursion does not always help. 2022. arXiv: 2206.08413 [cs.LO]
(cit. on p. 5).

[Pol01] Jeff Polakow. “Ordered linear logic and applications.” PhD thesis. Pittsburgh, PA:
Carnegie Mellon University, 2001. url: http://reports-archive.adm.cs.cmu.edu/
anon/2001/CMU-CS-01-152.pdf (cit. on p. 28).

[PP99a] Jeff Polakow and Frank Pfenning. “Natural Deduction for Intuitionistic Non-communicative
Linear Logic.” In: Typed Lambda Calculi and Applications, 4th International Confer-
ence, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings. Ed. by Jean-Yves Gi-
rard. Vol. 1581. Lecture Notes in Computer Science. Springer, 1999, pp. 295–309. doi:
10.1007/3-540-48959-2_21 (cit. on p. 196).

[PP99b] Jeff Polakow and Frank Pfenning. “Relating Natural Deduction and Sequent Calculus
for Intuitionistic Non-Commutative Linear Logic.” en. In: Electronic Notes in Theoretical
Computer Science. MFPS XV, Mathematical Foundations of Progamming Semantics,
Fifteenth Conference 20 (Jan. 1999), pp. 449–466. issn: 1571-0661. doi: 10.1016/S1571-
0661(04)80088-4 (cit. on p. 196).

https://doi.org/10.4230/LIPIcs.ICALP.2021.140
https://doi.org/10.1007/BFb0013061
https://arxiv.org/abs/1904.09193
https://hal.univ-lorraine.fr/tel-02978986
https://tel.archives-ouvertes.fr/tel-01247085
https://tel.archives-ouvertes.fr/tel-02465653
http://tomasp.net/academic/papers/against-types/
http://tomasp.net/academic/papers/against-types/
https://doi.org/10.1145/2814228.2814249
https://doi.org/10.22152/programming-journal.org/2018/2/12
https://doi.org/10.22152/programming-journal.org/2018/2/12
https://doi.org/10.4171/Automata
https://tel.archives-ouvertes.fr/tel-03412556
https://doi.org/10.1145/2893582.2893594
https://arxiv.org/abs/2206.08413
http://reports-archive.adm.cs.cmu.edu/anon/2001/CMU-CS-01-152.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2001/CMU-CS-01-152.pdf
https://doi.org/10.1007/3-540-48959-2_21
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.1016/S1571-0661(04)80088-4

BIBLIOGRAPHY 223

[PR19] Cécilia Pradic and Colin Riba. “A Dialectica-Like Interpretation of a Linear MSO on
Infinite Words.” In: Foundations of Software Science and Computation Structures - 22nd
International Conference, FOSSACS 2019. Ed. by Mikołaj Bojańczyk and Alex Simpson.
Vol. 11425. Lecture Notes in Computer Science. Springer, 2019, pp. 470–487. isbn:
978-3-030-17126-1. doi: 10.1007/978-3-030-17127-8_27 (cit. on p. 25).

[PS20] Bart Penders and David M. Shaw. “Civil disobedience in scientific authorship: Resistance
and insubordination in science.” In: Accountability in Research 27.6 (2020). PMID:
32299255, pp. 347–371. doi: 10.1080/08989621.2020.1756787 (cit. on p. 26).

[PS21] Luc Pellissier and Thomas Seiller. “PRAMs over integers do not compute maxflow
efficiently.” working paper or preprint. Jan. 2021. url: https : / / hal . archives -
ouvertes.fr/hal-01921942v2 (cit. on p. 38).

[Ran18] Noé de Rancourt. “Ramsey theory without pigeonhole principle and applications to the
proof of Banach-space dichotomies.” PhD thesis. Université Sorbonne Paris Cité, June
2018. url: https://tel.archives-ouvertes.fr/tel-02464512 (cit. on p. 15).

[Ret97] Christian Retoré. “Pomset Logic: A Non-commutative Extension of Classical Linear
Logic.” In: Typed Lambda Calculi and Applications, Third International Conference on
Typed Lambda Calculi and Applications, TLCA ’97, Nancy, France, April 2-4, 1997,
Proceedings. Ed. by Philippe de Groote. Vol. 1210. Lecture Notes in Computer Science.
Springer, 1997, pp. 300–318. doi: 10.1007/3-540-62688-3_43 (cit. on p. 19).

[Reu79] Christophe Reutenauer. “Sur les séries associées à certains systèmes de Lindenmayer.”
In: Theoretical Computer Science 9 (1979), pp. 363–375. doi: 10.1016/0304-3975(79)
90036-7 (cit. on p. 98).

[Rey93] John C. Reynolds. “The discoveries of continuations.” In: LISP and Symbolic Computation
6.3 (Nov. 1993), pp. 233–247. issn: 1573-0557. doi: 10.1007/BF01019459 (cit. on p. 197).

[Rib20] Colin Riba. “Monoidal-closed categories of tree automata.” en. In: Mathematical Struc-
tures in Computer Science 30.1 (Jan. 2020), pp. 62–117. issn: 0960-1295, 1469-8072.
doi: 10.1017/S0960129519000173 (cit. on pp. 25, 52).

[Rin21] Talia Ringer. “Proof Repair.” PhD thesis. University of Washington, 2021. url: https:
//dependenttyp.es/pdf/thesis.pdf (cit. on p. 26).

[Rog03] James Rogers. “Syntactic Structures as Multi-dimensional Trees.” en. In: Research
on Language and Computation 1.3 (Sept. 2003), pp. 265–305. issn: 1572-8706. doi:
10.1023/A:1024695608419 (cit. on p. 40).

[Roz86] Brigitte Rozoy. “Outils et résultats pour les transducteurs boustrophédons.” In: RAIRO
– Theoretical Informatics and Applications 20.3 (1986), pp. 221–249. doi: 10.1051/ita/
1986200302211 (cit. on p. 95).

[RR97] Simona Ronchi Della Rocca and Luca Roversi. “Lambda Calculus and Intuitionistic Lin-
ear Logic.” In: Studia Logica 59.3 (1997), pp. 417–448. doi: 10.1023/A:1005092630115
(cit. on p. 159).

[Rub17] Thomas Rubiano. “Implicit Computational Complexity and Compilers.” PhD thesis.
Université Sorbonne Paris Cité, Dec. 2017. url: https://tel.archives-ouvertes.
fr/tel-02362912 (cit. on p. 36).

[SA21] Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type Theory.” In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021. IEEE, 2021, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719
(cit. on p. 23).

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Translated by Reuben Thomas.
Cambridge University Press, 2009. doi: 10.1017/CBO9781139195218 (cit. on pp. 55,
62).

[Sal06] Sylvain Salvati. “Encoding second order string ACG with Deterministic Tree Walking
Transducers.” In: The 11th conference on Formal Grammar. Ed. by Shuly Wintner.
FG Online Proceedings. Paola Monachesi; Gerald Penn; Giorgio Satta; Shuly Wintner.
Malaga, Spain: CSLI Publications, 2006, pp. 143–156. url: https://web.stanford.
edu/group/cslipublications/cslipublications/FG/2006/salvati.pdf (cit. on
p. 46).

https://doi.org/10.1007/978-3-030-17127-8_27
https://doi.org/10.1080/08989621.2020.1756787
https://hal.archives-ouvertes.fr/hal-01921942v2
https://hal.archives-ouvertes.fr/hal-01921942v2
https://tel.archives-ouvertes.fr/tel-02464512
https://doi.org/10.1007/3-540-62688-3_43
https://doi.org/10.1016/0304-3975(79)90036-7
https://doi.org/10.1016/0304-3975(79)90036-7
https://doi.org/10.1007/BF01019459
https://doi.org/10.1017/S0960129519000173
https://dependenttyp.es/pdf/thesis.pdf
https://dependenttyp.es/pdf/thesis.pdf
https://doi.org/10.1023/A:1024695608419
https://doi.org/10.1051/ita/1986200302211
https://doi.org/10.1051/ita/1986200302211
https://doi.org/10.1023/A:1005092630115
https://tel.archives-ouvertes.fr/tel-02362912
https://tel.archives-ouvertes.fr/tel-02362912
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1017/CBO9781139195218
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2006/salvati.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2006/salvati.pdf

BIBLIOGRAPHY 224

[Sal09] Sylvain Salvati. “Recognizability in the Simply Typed Lambda-Calculus.” In: Logic,
Language, Information and Computation, 16th International Workshop, WoLLIC 2009,
Tokyo, Japan, June 21-24, 2009. Proceedings. Ed. by Hiroakira Ono, Makoto Kanazawa,
and Ruy J. G. B. de Queiroz. Vol. 5514. Lecture Notes in Computer Science. Springer,
2009, pp. 48–60. doi: 10.1007/978-3-642-02261-6_5 (cit. on p. 40).

[Sal15] Sylvain Salvati. “Lambda-calculus and formal language theory.” Habilitation à diriger
des recherches. Université de Bordeaux, Dec. 2015. url: https://tel.archives-
ouvertes.fr/tel-01253426 (cit. on pp. 4, 45).

[Sch07] Ulrich Schöpp. “Stratified Bounded Affine Logic for Logarithmic Space.” In: 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007). July 2007, pp. 411–420.
doi: 10.1109/LICS.2007.45 (cit. on pp. 48, 53).

[Sch16] Gabriel Scherer. “Which types have a unique inhabitant? : Focusing on pure program
equivalence.” PhD thesis. Paris Diderot University, France, 2016. url: https://tel.
archives-ouvertes.fr/tel-01309712 (cit. on pp. 145, 161).

[Sch19] Markus L. Schmid. “Regular Expressions with Backreferences: Polynomial-Time Match-
ing Techniques.” In: CoRR abs/1903.05896 (2019). arXiv: 1903.05896 (cit. on p. 16).

[Sch75] Helmut Schwichtenberg. “Definierbare Funktionen im λ-Kalkül mit Typen.” de. In:
Archiv für mathematische Logik und Grundlagenforschung 17.3 (Sept. 1975), pp. 113–114.
issn: 1432-0665. doi: 10.1007/BF02276799 (cit. on p. 42).

[Sco70] Dana Scott. Outline of a mathematical theory of computation. Tech. rep. PRG02. Oxford
University Computing Laboratory, Nov. 1970, p. 30. url: https://www.cs.ox.ac.uk/
publications/publication3720-abstract.html (cit. on p. 23).

[SE88] Cees F. Slot and Peter van Emde Boas. “The Problem of Space Invariance for Sequential
Machines.” In: Information and Computation 77.2 (1988), pp. 93–122. doi: 10.1016/
0890-5401(88)90052-1 (cit. on p. 11).

[Sei18] Thomas Seiller. “Interaction Graphs: Non-Deterministic Automata.” In: ACM Trans-
actions on Computational Logic 19.3 (Aug. 2018), 21:1–21:24. issn: 1529-3785. doi:
10.1145/3226594 (cit. on pp. 27, 38, 40).

[Sei19] Thomas Seiller. “Interaction Graphs: Exponentials.” In: Logical Methods in Computer
Science 15.3 (Aug. 2019). doi: 10.23638/LMCS-15(3:25)2019 (cit. on p. 38).

[Sén07] Géraud Sénizergues. “Sequences of Level 1, 2, 3, ..., k , ..” In: Computer Science - Theory
and Applications, Second International Symposium on Computer Science in Russia, CSR
2007, Ekaterinburg, Russia, September 3-7, 2007, Proceedings. Ed. by Volker Diekert,
Mikhail V. Volkov, and Andrei Voronkov. Vol. 4649. Lecture Notes in Computer Science.
Springer, 2007, pp. 24–32. isbn: 978-3-540-74509-9. doi: 10.1007/978-3-540-74510-
5_6 (cit. on pp. 6, 44, 65).

[Sén23] Géraud Sénizergues. Word-Mappings of level 3. 2023. arXiv: 2301.09966 [cs.FL] (cit.
on p. 6).

[Sim90] Imre Simon. “Factorization Forests of Finite Height.” In: Theoretical Computer Science
72.1 (1990), pp. 65–94. doi: 10.1016/0304-3975(90)90047-L (cit. on p. 15).

[SJL65] Richard Edwin Stearns, Hartmanis Juris, and Philip M. Lewis. “Hierarchies of memory
limited computations.” In: 6th Annual Symposium on Switching Circuit Theory and
Logical Design, Ann Arbor, Michigan, USA, October 6-8, 1965. IEEE Computer Society,
1965, pp. 179–190. doi: 10.1109/FOCS.1965.11 (cit. on p. 13).

[Smi14] Tim Smith. “A Pumping Lemma for Two-Way Finite Transducers.” In: Mathematical
Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014,
Budapest, Hungary, August 25-29, 2014. Proceedings, Part I. Ed. by Erzsébet Csuhaj-
Varjú, Martin Dietzfelbinger, and Zoltán Ésik. Vol. 8634. Lecture Notes in Computer
Science. Springer, 2014, pp. 523–534. doi: 10.1007/978-3-662-44522-8_44 (cit. on
p. 95).

[Sta79] Richard Statman. “The typed λ-calculus is not elementary recursive.” In: Theoretical
Computer Science 9.1 (July 1979), pp. 73–81. issn: 0304-3975. doi: 10.1016/0304-
3975(79)90007-0 (cit. on p. 43).

https://doi.org/10.1007/978-3-642-02261-6_5
https://tel.archives-ouvertes.fr/tel-01253426
https://tel.archives-ouvertes.fr/tel-01253426
https://doi.org/10.1109/LICS.2007.45
https://tel.archives-ouvertes.fr/tel-01309712
https://tel.archives-ouvertes.fr/tel-01309712
https://arxiv.org/abs/1903.05896
https://doi.org/10.1007/BF02276799
https://www.cs.ox.ac.uk/publications/publication3720-abstract.html
https://www.cs.ox.ac.uk/publications/publication3720-abstract.html
https://doi.org/10.1016/0890-5401(88)90052-1
https://doi.org/10.1016/0890-5401(88)90052-1
https://doi.org/10.1145/3226594
https://doi.org/10.23638/LMCS-15(3:25)2019
https://doi.org/10.1007/978-3-540-74510-5_6
https://doi.org/10.1007/978-3-540-74510-5_6
https://arxiv.org/abs/2301.09966
https://doi.org/10.1016/0304-3975(90)90047-L
https://doi.org/10.1109/FOCS.1965.11
https://doi.org/10.1007/978-3-662-44522-8_44
https://doi.org/10.1016/0304-3975(79)90007-0
https://doi.org/10.1016/0304-3975(79)90007-0

BIBLIOGRAPHY 225

[Ste17] Florian Steinberg. “Computational Complexity Theory for Advanced Function Spaces
in Analysis.” PhD thesis. Darmstadt: Technische Universität, Feb. 2017. url: http:
//tuprints.ulb.tu-darmstadt.de/6096/ (cit. on p. 38).

[Str11] Lutz Straßburger. “Towards a Theory of Proofs of Classical Logic.” Habilitation à diriger
des recherches. Université Paris-Diderot - Paris VII, 2011. url: https://tel.archives-
ouvertes.fr/tel-00772590 (cit. on p. 25).

[Str18] Howard Straubing. “First-order logic and aperiodic languages: a revisionist history.”
In: ACM SIGLOG News 5.3 (2018), pp. 4–20. doi: 10.1145/3242953.3242956 (cit. on
pp. 14, 34).

[SW16] Sylvain Salvati and Igor Walukiewicz. “Simply typed fixpoint calculus and collapsible
pushdown automata.” en. In: Mathematical Structures in Computer Science 26.7 (Oct.
2016), pp. 1304–1350. issn: 0960-1295, 1469-8072. doi: 10.1017/S0960129514000590
(cit. on pp. 41, 44).

[Ter04] Kazushige Terui. “Light Affine Set Theory: A Naive Set Theory of Polynomial Time.”
In: Studia Logica 77.1 (2004), pp. 9–40. doi: 10.1023/B:STUD.0000034183.33333.6f
(cit. on p. 22).

[Ter11] Kazushige Terui. “Computational ludics.” In: Theoretical Computer Science 412.20
(2011), pp. 2048–2071. doi: 10.1016/j.tcs.2010.12.026 (cit. on p. 40).

[Ter12] Kazushige Terui. “Semantic Evaluation, Intersection Types and Complexity of Simply
Typed Lambda Calculus.” In: 23rd International Conference on Rewriting Techniques
and Applications (RTA’12). 2012, pp. 323–338. isbn: 978-3-939897-38-5. doi: 10.4230/
LIPIcs.RTA.2012.323 (cit. on pp. 21, 23, 41, 43).

[Til87] Bret Tilson. “Categories as algebra: An essential ingredient in the theory of monoids.” en.
In: Journal of Pure and Applied Algebra 48.1 (Sept. 1987), pp. 83–198. issn: 0022-4049.
doi: 10.1016/0022-4049(87)90108-3 (cit. on p. 25).

[Tra61] Boris A. Trakhtenbrot. “Finite automata and the logic of single-place predicates.” In:
Doklady Akademii Nauk SSSR 140 (2 1961), pp. 326–329. url: http://mi.mathnet.
ru/eng/dan25511 (cit. on p. 34).

[Tur37] Alan Mathison Turing. “On Computable Numbers, with an Application to the Entschei-
dungsproblem.” In: Proceedings of the London Mathematical Society s2-42.1 (Jan. 1937),
pp. 230–265. issn: 0024-6115. doi: 10.1112/plms/s2-42.1.230 (cit. on p. 10).

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study, 2013. url: https://homotopytypetheory.
org/book (cit. on p. 22).

[Var15] Moshe Y. Vardi. “Why Doesn’t ACM Have a SIG for Theoretical Computer Science?”
In: Communications of the ACM 58.8 (July 2015), p. 5. issn: 0001-0782. doi: 10.1145/
2791388 (cit. on p. 11).

[Var82] Moshe Y. Vardi. “The Complexity of Relational Query Languages (Extended Abstract).”
In: Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May
5-7, 1982, San Francisco, California, USA. Ed. by Harry R. Lewis, Barbara B. Simons,
Walter A. Burkhard, and Lawrence H. Landweber. ACM, 1982, pp. 137–146. doi:
10.1145/800070.802186 (cit. on p. 37).

[Vas19] Virginia Vassilevska Williams. “On some fine-grained questions in algorithms and
complexity.” In: Proceedings of the International Congress of Mathematicians (ICM 2018).
World Scientific Publishing, Apr. 2019, pp. 3447–3487. doi: 10.1142/9789813272880_
0188 (cit. on p. 36).

[Wad07] Philip Wadler. “The Girard–Reynolds isomorphism (second edition).” en. In: Theoretical
Computer Science 375.1-3 (May 2007), pp. 201–226. issn: 03043975. doi: 10.1016/j.
tcs.2006.12.042 (cit. on p. 20).

[Wei00] Klaus Weihrauch. Computable Analysis – An Introduction. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2000. isbn: 978-3-540-66817-6. doi: 10.1007/978-
3-642-56999-9 (cit. on p. 38).

[Wil19] Gregory Wilsenach. “Symmetric Circuits and Model-Theoretic Logics.” PhD thesis.
University of Cambridge, 2019. doi: 10.17863/CAM.44848 (cit. on p. 37).

http://tuprints.ulb.tu-darmstadt.de/6096/
http://tuprints.ulb.tu-darmstadt.de/6096/
https://tel.archives-ouvertes.fr/tel-00772590
https://tel.archives-ouvertes.fr/tel-00772590
https://doi.org/10.1145/3242953.3242956
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1023/B:STUD.0000034183.33333.6f
https://doi.org/10.1016/j.tcs.2010.12.026
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.4230/LIPIcs.RTA.2012.323
https://doi.org/10.1016/0022-4049(87)90108-3
http://mi.mathnet.ru/eng/dan25511
http://mi.mathnet.ru/eng/dan25511
https://doi.org/10.1112/plms/s2-42.1.230
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/2791388
https://doi.org/10.1145/2791388
https://doi.org/10.1145/800070.802186
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1016/j.tcs.2006.12.042
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.17863/CAM.44848

BIBLIOGRAPHY 226

[Yet90] David N. Yetter. “Quantales and (noncommutative) linear logic.” In: The Journal of
Symbolic Logic 55.1 (Mar. 1990), pp. 41–64. issn: 0022-4812, 1943-5886. doi: 10.2307/
2274953 (cit. on pp. 39, 197).

[Zai87] Marek Zaionc. “Word operation definable in the typed λ-calculus.” In: Theoretical
Computer Science 52.1 (Jan. 1987), pp. 1–14. issn: 0304-3975. doi: 10.1016/0304-
3975(87)90077-6 (cit. on pp. 42, 45).

[Zai91] Marek Zaionc. “λ-Definability on free algebras.” In: Annals of Pure and Applied Logic
51.3 (Mar. 1991), pp. 279–300. issn: 0168-0072. doi: 10.1016/0168-0072(91)90019-I
(cit. on p. 42).

[Zei09] Noam Zeilberger. “The Logical Basis of Evaluation Order and Pattern-Matching.” PhD
thesis. Pittsburgh, PA: Carnegie Mellon University, 2009. url: http://noamz.org/
thesis.pdf (cit. on p. 25).

[ZG15] Noam Zeilberger and Alain Giorgetti. “A correspondence between rooted planar maps
and normal planar lambda terms.” In: Logical Methods in Computer Science 11.3 (Sept.
2015). issn: 18605974. doi: 10.2168/LMCS-11(3:22)2015 (cit. on pp. 19, 28).

[Zhu20] Dmitriy Zhuk. “A Proof of the CSP Dichotomy Conjecture.” In: Journal of the ACM
67.5 (2020). Journal version of a FOCS’17 paper, 30:1–30:78. doi: 10.1145/3402029
(cit. on p. 38).

Mes Révérends Pères, mes Lettres n’avaient pas accoutumé
de se suivre de si près, ni d’être si étendues. Le peu de
temps que j’ai eu a été cause de l’un et de l’autre. Je n’ai
fait celle-ci plus longue que parce que je n’ai pas eu le loisir
de la faire plus courte.

Blaise Pascal on why this manuscript is awful

Jestem tylko przechodniem […]
Mam […] plan albo brak planu

Raz, Dwa, Trzy on doing a PhD

https://doi.org/10.2307/2274953
https://doi.org/10.2307/2274953
https://doi.org/10.1016/0304-3975(87)90077-6
https://doi.org/10.1016/0304-3975(87)90077-6
https://doi.org/10.1016/0168-0072(91)90019-I
http://noamz.org/thesis.pdf
http://noamz.org/thesis.pdf
https://doi.org/10.2168/LMCS-11(3:22)2015
https://doi.org/10.1145/3402029

	Preface to the revised version (March 2023)
	Credits
	Updated references and errata
	What's new concerning the related and "future" work

	Chapter 1. Introduction
	1.1. Background
	1.1.1. On the landscape of TCS today: algorithms/complexity vs "logic in CS"
	1.1.2. Automata on strings and monoids
	1.1.3. Transducers, trees, etc
	1.1.4. From proofs-as-programs to implicit complexity
	1.1.5. Linearity in types and in automata
	1.1.6. Towards implicit automata: computation on Church encodings
	1.1.7. Implicit complexity meets denotational semantics
	1.1.8. Categorical semantics
	1.1.9. Automata and categories

	1.2. Contributions
	1.2.1. A research programme: implicit automata in typed -calculi
	1.2.2. Equivalences in expressive power
	1.2.3. Semantic evaluation and contributions to categorical transducer theory
	1.2.4. Benefits for pure automata theory: a new class of transductions
	1.2.5. A methodological commitment: naturality

	1.3. Further related themes
	1.3.1. Monadic second-order logic
	1.3.2. Descriptive vs implicit complexity and their legacies
	1.3.3. Previous work on implicit automata and adjacent topics
	1.3.4. Higher-order recursion schemes
	1.3.5. Simply typed -definability over Church encodings
	1.3.6. Remarks on complexity in the simply typed -calculus and light logics

	1.4. Work in progress
	1.4.1. Tree transducers in the simply typed (or safe) -calculus
	1.4.2. Affine types without additives, FO transductions & tree-walking automata
	1.4.3. Geometry of interaction, categorical tree automata and planar transducers
	1.4.4. Automata and transducers over infinite alphabets (nominal sets)
	1.4.5. Polyregular functions in a parsimonious -calculus
	1.4.6. Maximality of (poly)regular functions
	1.4.7. Automata and complexity in the polymorphic elementary affine -calculus

	1.5. Chapter-by-chapter outline

	Chapter 2. Preliminaries: notations and automata models
	2.1. Notations & elementary definitions
	2.1.1. Sets
	2.1.2. Strings (a.k.a. words)
	2.1.3. Ranked trees

	2.2. Sequential transducers
	2.2.1. The Krohn–Rhodes decomposition and wreath products of monoids

	2.3. Streaming string transducers (SSTs)
	2.3.1. Copyful SSTs
	2.3.2. Copyless SSTs and regular functions
	2.3.3. Layered SSTs
	2.3.4. Transition monoids of (copyless) SSTs

	2.4. HDT0L transductions
	2.4.1. Layered HDT0L systems

	2.5. Polyregular functions
	2.5.1. Layered SSTs vs polyregular functions
	2.5.2. Polynomial list functions
	2.5.3. More on the "map" combinator

	2.6. Tree transducers
	2.6.1. Trees as output
	2.6.2. Trees as input
	2.6.3. Bottom-up (ranked|register) tree transducers

	Chapter 3. Comparison-free polyregular functions
	3.1. Composition by substitution
	3.2. Comparison-free pebble transducers
	3.3. Key properties of comparison-free polyregular functions
	3.3.1. Closure under composition
	3.3.2. A lower bound on growth from the rank
	3.3.3. Proofs of Theorems 3.3.1 and 3.3.2

	3.4. Comparison-free polyregular sequences
	3.4.1. Proof of lem:reg-seq
	3.4.2. Proof of thm:cfp-seq
	3.4.3. Proof of cor:cfp-map-seq

	3.5. Separation results
	3.5.1. Proof of thm:cf-not-hdt0l
	3.5.2. Proof of thm:polyreg-not-cf item (ii)

	Chapter 4. Streaming transducers meet categorical semantics
	4.1. Categorical preliminaries
	4.1.1. Notations on categories
	4.1.2. Monoidal categories, symmetry and functors
	4.1.3. Function spaces and monoidal closure
	4.1.4. Affineness and quasi-affineness
	4.1.5. Monoids

	4.2. A categorical framework for automata: streaming settings
	4.2.1. The category SR() of -register transitions

	4.3. The free coproduct completion (or finite states)
	4.3.1. Conservativity over affine monoidal settings
	4.3.2. State-dependent memory SSTs
	4.3.3. Some function spaces in SR

	4.4. The product completion (or non-determinism)
	4.4.1. Relationship with non-determinism

	4.5. The -completion (a Dialectica-like construction)
	4.5.1. The monoidal closure theorem
	4.5.2. Summary of equivalences between C-SSTs for completions of SR

	4.6. Half of a universal property for SR
	4.6.1. Reminders on coherence for symmetric monoidal categories
	4.6.2. Proof of thm:functor-from-sr

	4.7. On closure under precomposition by regular functions
	4.8. Uniformization through monoidal closure
	4.8.1. Transformation forests and their semantics
	4.8.2. Reducing transformation forests
	4.8.3. Putting everything together

	Chapter 5. String transductions in a linear -calculus
	5.1. The -calculus, Church encodings, and definability of functions
	5.1.1. Types & terms
	5.1.2. Church encodings of strings and trees
	5.1.3. Two ways to define functions over Church encodings

	5.2. Regularity equals -definability
	5.2.1. The syntactic category L of purely linear -terms
	5.2.2. L-SSTs compute regular functions

	5.3. Comparison-free polyregularity equals (,)-definability
	5.3.1. Extensional completeness
	5.3.2. Outline of a semantic evaluation argument
	5.3.3. Proof of lem:laml-ind-cbs
	5.3.4. Proof of lem:laml-ind-tensor-postsr

	5.4. Syntactic bureaucracy
	5.4.1. Normalization of the -calculus
	5.4.2. More useful syntactic properties
	5.4.3. Proof of Proposition 5.1.7
	5.4.4. Proof of lem:laml-niceshape
	5.4.5. Focusing
	5.4.6. Proof of lem:cf-syntactic

	Chapter 6. Regular tree functions
	6.1. Tree streaming settings and C-BRTTs
	6.2. Multicategorical preliminaries
	6.3. The combinatorial multicategory TRm
	6.4. TR-BRTTs coincide with regular functions, via coherence spaces
	6.5. TR is monoidal closed
	6.6. Preservation properties of finite completions
	6.7. -definable tree functions are regular

	Chapter 7. Star-free languages in non-commutative linear logic
	7.1. The -calculus
	7.1.1. Non-commutative booleans
	7.1.2. Strings and -definable languages

	7.2. An upper bound via aperiodicity of purely linear -monoids
	7.3. Expressiveness of the -calculus
	7.3.1. Encoding aperiodic sequential transducers

	Bibliography

