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Titre: Les micro-états de trous noirs: à travers et au-delà de la supersymétrie
Mots clés: Trous noirs, Théorie des cordes, AdS/CFT, Supergravité, Fuzzballs

Résumé: Près d’un siècle après avoir été théorisés,
les trous noirs ont été observés dans la nature,
d’abord indirectement par LIGO et VIRGO, puis
directement par l’EHT. Selon la relativité générale,
ils constituent l’état final de la matière suivant
l’effondrement d’objets très massifs : toute leur masse
est concentrée dans une singularité de l’espace-temps,
qui est entourée d’un horizon dont rien ne peut
s’échapper.

Les trous noirs se situent à la frontière entre la
relativité générale et la mécanique quantique, et sont
la source de nombreuses énigmes et paradoxes dont
les réponses pourraient éclairer plusieurs aspects de
la gravité quantique. Le principal d’entre eux est le
paradoxe de l’information : les trous noirs peuvent
s’évaporer sous l’effet du rayonnement de Hawking,
et il semble que toutes l’information concernant les
constituants du trou noir soit définitivement perdue
à l’issue de ce processus.

La conjecture des fuzzballs est une tentative de
résolution de ces paradoxes. Elle propose de rem-
placer les trous noirs tels que décrits par la relativité

générale, par un ensemble de micro-états ayant une
structure complexe, mais sans horizon. Ces solutions,
qui sont construites à partir du grand nombre de de-
grés de liberté de la théorie des cordes, ressemblent
et se comportent exactement comme des trous noirs
à distance, mais diffèrent près de l’horizon. Parce
qu’elles sont sans horizon, ces géométries ne sont
pas sujettes aux mêmes paradoxes que le trou noir.
En tant que théorie des champs effective, la relativ-
ité générale efface tous les détails complexes de ces
micro-états, et ne peut capturer qu’une description
moyenne : le trou noir avec un horizon.

Cette thèse a pour but de construire et d’étudier
de tels micro-états dans le cadre de la supergrav-
ité, qui est la limite à basse énergie de la théorie
des cordes. L’accent est mis sur la réponse à deux
questions principales associées à la conjecture des
fuzzballs : Peut-on construire des micro-états «typ-
iques» qui imitent les comportements que l’on attend
des trous noirs ? Peut-on trouver suffisamment de
géométries de micro-états pour retrouver l’entropie
totale des trous noirs ?

Title: Black Hole Microstates: through and beyond supersymmetry
Keywords: Black Holes, String Theory, AdS/CFT, Supergravity, Fuzzballs

Abstract: Almost a century after being theorized,
Black Holes have now been observed in nature, first
indirectly by LIGO and VIRGO, then directly by the
EHT. According to General Relativity, they are the
final state of matter after the collapse of very massive
objects: all their mass is concentrated in a spacetime
singularity, that is shrouded by a horizon from which
nothing can escape.

Black Holes lie at the frontier between Gen-
eral Relativity and Quantum Mechanics, and are the
source of many puzzles and paradoxes whose answers
could shed light on several aspects of Quantum Grav-
ity. Chief among them is the information paradox:
black holes can evaporate through Hawking radiation,
and it seems that all the information about the origi-
nal constituents of the black hole is permanently lost
at the end of this process.

The Fuzzball conjecture is an attempt to solve
these paradoxes. It proposes to replace the standard

black hole picture by an ensemble of fuzzy, horizon-
less microstates. These solutions, that are built out
of the vast number of degrees of freedom of String
Theory, look and behave exactly like black holes at
a distance, but differ close to the horizon. Because
they are horizonless, these geometries are not subject
to the same paradoxes as the black hole. As an Ef-
fective Field Theory, General Relativity washes out
all the intricate details of these microstates, and can
only capture an average description: the black hole
with a horizon.

This thesis aims to build and study such fuzzball
microstates within the framework of Supergravity, the
low-energy limit of String Theory. The focus is on ad-
dressing two main questions associated to the fuzzball
conjecture: Can one construct “typical” microstates
that mimic what is expected of black holes ? Can one
find enough microstate geometries to recover the full
entropy of black holes ?
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Chapter 0

Introduction en Français

Le 20e siècle a vu l’émergence de deux théories de la nature extrêmement fécondes. D’un
côté, la mécanique quantique, qui régit les interactions entre les particules à de très pe-
tites échelles. Son développement au fil des ans a conduit à l’établissement du modèle
standard, qui unifie toutes les particules élémentaires connues et leurs trois interactions
fondamentales dans un unique cadre. Ce modèle a été testé avec une précision étonnante
et a permis de faire de puissantes prédictions, comme celle de l’existence du boson de
Higgs quarante ans avant sa découverte au CERN. De son côté, la relativité générale a
été développée par Einstein pour décrire les interactions gravitationnelles à longue portée
entre les grands corps. La théorie a fait des prédictions qui ont depuis été rigoureuse-
ment testées, comme l’effet de retard de Shapiro ou la forme d’onde précise des signaux
gravitationnels émis lors de la fusion de trous noirs, signaux qui ont été détectés pour la
première fois par LIGO en 2016.

Poursuivant l’objectif qui a conduit à la construction du modèle standard, les physi-
ciens ont tenté de construire une théorie de la gravité quantique, unifiant la physique des
particules et la relativité générale. Ces deux théories sont cependant fondamentalement
incompatibles : toute tentative directe de quantifier la gravité pour l’intégrer dans le
modèle standard échoue inévitablement. Ce problème se pose dans deux cas majeurs, où
les deux descriptions théoriques sont en échec : les premiers instants après le big bang,
et l’intérieur des trous noirs. Dans les deux cas, la relativité générale ne parvient pas à
décrire le comportement de la matière très dense à petite échelle et voit apparaître des
singularités. Avec l’avènement de l’astronomie multi-messagers, les données expérimen-
tales sur les trous noirs abondent aujourd’hui, faisant de ces derniers le laboratoire idéal
pour tester de nouvelles physiques et théories de la gravité quantique.

Les trous noirs

Depuis Newton, on sait que les masses s’attirent, avec une force proportionnelle à leur
masse et inversement proportionnelle au carré de la distance qui les sépare. La relativité
générale, en tant que théorie de la gravitation, va plus loin : elle décrit comment les
corps massifs déforment l’espace-temps. Ces déformations ont pour effet non seulement
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Figure 1: Diagramme de Penrose d’un trou noir de Schwarzschild. Le temps évolue de bas
en haut, et les tranches horizontales sont spatiales. Les lignes bleues à 45◦ représentent
les cônes de lumière en différents points : la causalité impose que les trajectoires de
la matière et de la lumière restent toujours à l’intérieur de ces cônes. La singularité
est représentée par une ligne en dents de scie, et l’horizon est en pointillés. Notez que
lorsqu’une trajectoire traverse l’horizon, elle aboutit inévitablement à la singularité. Cette
figure est tirée de [1].

d’attirer d’autres objets massifs, mais aussi de courber la trajectoire de la lumière dans
leur voisinage. La situation extrême est celle d’un objet si massif et si compact que sa
gravité est suffisamment forte pour piéger la lumière : ces objets sont appelés « trous
noirs ».

La solution la plus simple de trou noir a été construite pour la première fois par
Schwarzschild en 1916. Toute sa masse est concentrée dans une singularité spatio-
temporelle, et celle-ci est enveloppée d’un horizon des événements sphérique, qui sert
à délimiter l’intérieur et l’extérieur du trou noir. L’horizon des événements est une hy-
persurface nulle : c’est la limite à partir de laquelle la lumière ne peut plus s’échapper
et tombe inévitablement dans la singularité. La figure 1 représente schématiquement la
géométrie d’un espace-temps de trou noir. Il est important de comprendre que cette sur-
face n’a aucune manifestation physique concrète ; une personne tombant dans un trou
noir ne remarquerait pas qu’elle traverse l’horizon. Le rayon de l’horizon est proportionnel
à la masse M du trou noir :

RS =
2GM

c2
. (1)

Les trous noirs ont d’abord été considérés comme non physiques, mais leur existence
dans la nature a maintenant été confirmée par des expériences sur les ondes gravitation-
nelles [2], et par des détections directes [3]. Ils sont entièrement caractérisés par très peu
de paramètres : leur masse, leur charge et leur moment angulaire.
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La thermodynamique des trous noirs

Les lois de la thermodynamique sont supposées régir tout système macroscopique dans
l’univers. Pour préserver ces lois, les trous noirs doivent se comporter comme tout autre
système thermodynamique ; ils doivent avoir une température et une entropie. En effet, la
deuxième loi stipule qu’aucun processus physique ne peut diminuer l’entropie de l’univers.
Le fait de jeter une masse dans un trou noir doit donc conduire à une augmentation de
l’entropie du trou noir, pour compenser la perte d’entropie due à la disparition de cette
masse.

Par un calcul classique, Bekenstein a réalisé dans les années 70 que l’entropie d’un
trou noir est proportionnelle à la surface de son horizon des événements. Cela a été
confirmé peu après, cette fois par un calcul quantique, lorsque Hawking a découvert qu’ils
se comportent comme des corps noirs : ils émettent un rayonnement thermique qui émane
de leur horizon. À partir de ce rayonnement, il est possible de calculer leur température
TH et, en utilisant la relation thermodynamique THdS = dE, leur entropie S :

TH =
ℏ c3

8πkBGM
, S =

kB c
3A

4Gℏ
, (2)

où A ≡ 4πR2
S représente l’aire de l’horizon.

Ces formules font intervenir un nombre remarquable de constantes de la nature. Pour
simplifier les calculs, il est habituel d’utiliser les unités dites naturelles, où ℏ = c = kB =

G = 1, mais nous faisons ici une exception, car la présence de ces constantes en dit long
sur les mécanismes en jeu derrière ces formules :

• La constante gravitationnelle, G, apparaît dans la relativité générale, qui est partie
intégrante de la description des trous noirs.

• La constante de Planck, ℏ, et la vitesse de la lumière, c, proviennent de la théorie
quantique des champs, qui est utilisée pour décrire les particules et les champs
entourant le trou noir et constituant le rayonnement.

• Enfin, la constante de Boltzmann, kB, est issue de la thermodynamique, qui régit
le comportement collectif de ces particules.

C’est par l’interaction entre ces théories que l’on peut découvrir l’existence du rayon-
nement et rendre compte de l’entropie. En effet, la dérivation de Hawking utilisait le fait
que le vide des champs quantiques dans le fond courbé d’un trou noir n’est pas unique,
il dépend de l’emplacement de l’observateur. Une manière plus simple de comprendre le
phénomène est de le décrire en termes de particules. Le vide comporte toujours des créa-
tions et annihilations spontanées de particules et d’antiparticules. Cependant, lorsque cela
se produit près de l’horizon, l’une de ces particules peut tomber et être piégée par le trou
noir, tandis que l’autre s’échappe à l’infini. Ce processus se doit de conserver l’énergie,
et c’est effectivement le cas : l’énergie de la particule piégée est strictement négative vue
de l’infini, et la particule virtuelle qui s’échappe devient réelle, avec une énergie positive.
Ainsi, par ce processus, la masse du trou noir se trouve amoindrie.
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Le paradoxe de l’information

La dérivation du rayonnement de Hawking a soulevé deux interrogations.
La première énigme est la question de l’origine microscopique de l’entropie des trous

noirs. L’entropie des trous noirs, donnée par (2), est énorme. Pour Sagittarius A∗, le
trou noir au centre de la Voie lactée, ce nombre est de 1090. Cette entropie devrait
correspondre à un grand nombre de micro-états, selon la formule de Boltzmann N =

exp(S). Cependant, le théorème d’unicité du trou noir prouve qu’en relativité générale,
il n’existe qu’une seule solution de trou noir. Où se trouvent donc tous ces micro-états ?
Une théorie de la gravité quantique doit être capable de reproduire avec précision ce grand
nombre.

La deuxième énigme survient lorsque l’on considère les conséquences à long terme du
rayonnement de Hawking. Par ce processus, un trou noir perd lentement de sa masse et
s’évapore, jusqu’à disparaître complètement – ou du moins jusqu’à ce que les approxima-
tions faites par Hawking dans le calcul cessent d’être valides, une fois que le trou noir est
trop petit. Ce processus est toutefois radicalement différent de la combustion d’une feuille
de papier, par exemple, et enfreint un principe fondamental de la mécanique quantique :
l’unitarité.

Dans le cas d’un morceau de papier, le rayonnement se produit par le biais de réactions
chimiques qui se produisent à la surface, et l’information sur les constituants du papier
est emportée par le rayonnement lorsque celui-ci brûle : la transformation est unitaire.
Cela signifie que si l’on rassemblait et mesurait toutes les particules émises lors de la
combustion, on pourrait théoriquement simuler l’ensemble du processus et connaître l’état
exact du papier avant qu’il ne brûle, jusqu’au texte qui y était écrit. Le rayonnement
de Hawking, quant à lui, est émis à proximité de l’horizon du trou noir. À l’horizon,
l’espace-temps est dans un vide parfait, car toute matière placée à cet endroit tomberait
immédiatement dans le trou noir. En conjonction avec le théorème d’unicité du trou noir,
cela signifie que le rayonnement est universel et ne peut pas emporter l’information des
constituants originaux du trou noir. Une fois le trou noir évaporé, l’information et l’unité
sont perdues (voir [4] pour une revue). C’est ce que l’on désigne parfois sous le nom de
« paradoxe de l’information ».

Une théorie de la gravité quantique, qui unifie la mécanique quantique et la relativité
générale, se doit d’apporter une solution à ces paradoxes. Le paradoxe de l’information,
en particulier, est un problème très épineux, car le conflit existe à l’échelle de l’horizon,
où l’espace est presque plat et où l’approximation semi-classique devrait s’appliquer. On
ne peut donc pas le résoudre par une résolution de la singularité à l’échelle de Planck : il
faut une nouvelle physique à l’échelle de l’horizon.

La conjecture des Fuzzballs

La théorie des cordes est un candidat à la gravité quantique. Elle postule que les con-
stituants primitifs de la nature ne sont pas des particules mais des cordes, ainsi que des
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objets étendus de dimension supérieure appelés membranes, sur lesquels les extrémités des
cordes ouvertes peuvent se fixer. Ce que nous considérons comme des particules distinctes
correspond alors à différents modes de vibration de ces cordes. Les interactions entre par-
ticules résultent de la division et de la fusion des cordes. Deux paramètres fondamentaux
de la théorie des cordes apparaîtront dans la discussion : la tension des cordes, α′, qui
fixe une échelle d’énergie globale, et le couplage des cordes, gs, qui contrôle la force de
l’interaction entre les cordes.

La théorie des cordes intègre naturellement la supersymétrie et, pour être cohérente,
elle requiert que le nombre de dimensions de l’espace-temps soit de 10 ou 11. Ces di-
mensions supplémentaires apparaissent dans un certain nombre d’extensions du modèle
standard et sont considérées comme un ingrédient essentiel de toute théorie de la grav-
ité quantique. Pour faire le lien avec notre espace-temps familier à quatre dimensions,
ces dimensions supplémentaires doivent être compactes. Les cordes et les membranes
peuvent alors les envelopper, de sorte que dans l’espace-temps à quatre dimensions, elles
apparaissent comme des particules ponctuelles ou des objets de faible dimension.

À basse énergie, la plupart des modes de la corde ne peuvent être excités, et la théorie
est décrite avec justesse par une théorie quantique des champs qui inclut la relativité
générale. En effet, la quantification de la corde fermée révèle l’existence d’un boson de
spin-2 sans masse, le graviton, qui est le médiateur de la force gravitationnelle. Avec les
autres champs de basse énergie, ils forment une théorie de supergravité. La constante
gravitationnelle, G, peut alors être exprimée en fonction des paramètres de la théorie :

G ∼ g2s l
d−2
s , (3)

où d est le nombre de dimensions, et ls =
√
2πα′ est la longueur de corde.

Comme nous le verrons, il est possible de répondre aux énigmes des trous noirs grâce
à la théorie des cordes. En effet, les cordes et les membranes peuvent se comporter
très différemment de la matière normale. Une sphère de matière gravitante ordinaire
suffisamment massive va nécessairement s’effondrer sur elle-même et, une fois enfermée
dans un horizon des événements, le théorème de singularité de Penrose [5] stipule que
l’état final de l’effondrement est une singularité, ou au moins un objet dont la taille
est à l’échelle de Planck. Ce n’est pas le cas pour les membranes : une collection de N
membranes peut former un état lié stable dont la taille croît avec une certaine puissance de
N [6]. Plus important encore, cette taille croît également avec le couplage gravitationnel
G [7]. Lorsque N est grand, l’échelle de l’état lié peut donc être du même ordre que le
rayon de Schwarzschild : cet objet ne forme jamais d’horizon.

Ces configurations de la théorie des cordes sont appelées fuzzballs [6, 8], et sont des
candidats de choix pour la description microscopique des trous noirs. Ces objets défient
l’intuition issue de la théorie effective des champs : s’il s’agit de micro-états de trous noirs,
la géométrie du trou noir est modifiée sur toute la distance entre le centre et l’horizon, où
la courbure est faible et où la relativité générale est censée s’appliquer. Par construction,
les fuzzballs ne sont pas sujets au paradoxe de l’information : ils rayonnent comme un
corps normal, à partir de leur surface. Comme nous le verrons, ils évitent également le
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problème de l’unicité : les fuzzballs ont un espace de configurations très riche, provenant
des nombreuses façons dont les cordes et les membranes peuvent se plier.

Les dualités en théorie des cordes, et l’énumération des fuzzballs

Le nombre de micro-états des trous noirs est extrêmement élevé. Pour que les fuzzballs
fournissent une description précise d’un micro-état de trou noir typique, il faut montrer
qu’ils ont un nombre de configurations de l’ordre de eS. Un premier pas dans cette
direction a été accompli par Sen [9], puis par Strominger et Vafa en 1996 [10], en travaillant
avec la supersymétrie et à couplage nul.

Ce dernier point mérite une explication. Dans notre univers, la valeur du couplage
des cordes gs doit être grande, nous sommes loin du régime où elle est nulle. Bien sûr, il
est possible de discuter de scénarios hypothétiques où cette constante a des valeurs très
différentes. Ces scénarios deviennent pertinents dans deux situations : les dualités de
cordes et les supersymétries. Certaines quantités sont dites « protégées » par la super-
symétrie, ce qui signifie que leur valeur ne change pas lorsque l’on fait varier la constante
de couplage. Une quantité protégée peut être calculée dans n’importe quel régime, par ex-
emple lorsque la constante de couplage est nulle, et le résultat est alors valable en général.
L’indice supersymétrique est une telle quantité, et il fournit une bonne approximation,
ainsi qu’une borne inférieure, pour le nombre de micro-états supersymétriques.

En présence d’un état lié de N D-branes, le couplage effectif des cordes ouvertes est
gsN . Nous distinguons deux régimes. Lorsque gsN ≪ 1, le secteur des cordes ouvertes
se découple de la gravité, le système est décrit par l’interaction des cordes ouvertes dans
un fond de membranes fixes. Lorsque gsN ≫ 1, les membranes rétroagissent, le secteur
des cordes fermées domine et le système peut être décrit à l’aide de la supergravité, voir
Figure 2.

Strominger et Vafa ont étudié le système supersymétrique D1-D5-P [10]. À faible
couplage, il est décrit par les excitations de cordes par-dessus un état lié de branes D1
et D5. En utilisant la formule de Cardy, ils ont pu estimer l’entropie du système. Leur
résultat correspond précisément à l’entropie du trou noir BTZ « à trois charges », obtenue
dans la limite des grands couplages.

Les géométries de micro-état

Le succès de Strominger et Vafa montre que la théorie des cordes est capable de capturer
les degrés de liberté des trous noirs, au moins dans le cas de la supersymétrie. Cependant,
ces calculs sont effectués à faible couplage : ils montrent que les micro-états des trous
noirs peuvent être décrits par la théorie des cordes, mais pas quelle forme ces micro-états
prennent à fort couplage. Pour résoudre le paradoxe de l’information, il faut également
comprendre les micro-états des trous noirs non supersymétriques.

Comme nous l’avons vu, ces micro-états sont conjecturés comme étant des géométries
« crépues », sans horizon, connues sous le nom de fuzzballs. Par le mécanisme de fraction-
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Figure 2: Représentation des différents régimes de la théorie, en fonction du couplage des
cordes gs. Lorsque gsN ≪ 1, la théorie est décrite efficacement par des cordes ouvertes
dans un arrière-plan de D-branes, et la gravité est découplée. Lorsque gsN ≫ 1, tout en
gardant gs ≪ 1, la gravité domine, le système est décrit par la supergravité. Notons que
puisque N est un entier, il n’y a pas de régime de paramètres où gs > λ > 0. La figure
est extraite de [1].

nement, la taille d’un état lié de membranes croît avec la constante de couplage et peut
atteindre l’échelle de l’horizon. Notez que la solution classique du trou noir de la relativité
générale ne peut pas être un des micro-états, car les états purs ont nécessairement une
entropie nulle. La solution classique du trou noir doit donc être interprétée comme une
description moyennée de toutes ces solutions de fuzzballs, dans une théorie qui n’est pas
assez riche pour en capturer les caractéristiques.

Une description complète et précise de ces fuzzballs est cependant hors de portée : on
sait que les trous noirs sont des systèmes chaotiques, et on estime que leurs micro-états
sont des systèmes quantiques très complexes. Au lieu de cela, on peut essayer de construire
des superpositions cohérentes de ces états quantiques. Un état suffisamment cohérent peut
être décrit classiquement, comme une solution de supergravité qui est nécessairement lisse
et sans horizon, voir Figure 3. Le programme de géométrie des micro-états entreprend de
construire de telles solutions classiques (voir [1, 11,12] pour des revues récentes).

Ce programme a conduit à la construction de la totalité des géométries des micro-
états du trou noir supersymétrique à deux charges. Ces géométries sont connues sous
le nom de supertubes [14–17]. Cette construction a été étendue au trou noir à trois
charges, conduisant en 2015 à une grande famille de géométries connues sous le nom de
superstrata [18–20], qui ont été depuis largement étudiées [21–28, 28–36]. Cependant, le
nombre d’états de cette famille est en deçà de l’entropie totale du trou noir à trois charges.
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Figure 3: Représentation schématique d’une géométrie de micro-état. À gauche, la
géométrie classique du trou noir présente une longue « cavité » qui se termine par une
singularité et qui est habillée par un horizon. Dans l’image de droite de la géométrie des
micro-états, la cavité se referme avant l’horizon. La géométrie est partout lisse et sans
horizon. Cette figure est tirée de [13].

Le défi actuel est donc double. Pour les trous noirs supersymétriques, il faut construire
des familles de micro-états à trois charges plus vastes qui rendent compte de l’entropie
totale du trou noir, prouvant ainsi que les micro-états typiques peuvent être décrits avec
précision de manière classique. Mais les trous noirs qui existent dans notre univers ne sont
pas supersymétriques, et on sait très peu de choses sur leurs micro-états. Une meilleure
compréhension de ces micro-états est nécessaire pour résoudre complètement le paradoxe
de l’information.

Contribution et organisation de ce manuscrit

Cette thèse propose des avancements sur le programme de géométrie des micro-états. Je
présenterai et passerai en revue les travaux que mes collaborateurs et moi-même avons
publiés dans [37–44]. L’accent est mis sur la construction et l’étude de nouvelles géométries
de micro-états du système D1-D5-P à trois charges. En particulier, nous obtiendrons l’une
des premières classes de géométries non-BPS dans le régime des trous noirs, ainsi que
leur dictionnaire CFT. Nous explorerons également les possibilités de reproduire toute
l’entropie d’un trou noir supersymétrique avec des géométries de micro-états, et nous
proposerons des moyens de suivre les micro-états individuels depuis le régime du couplage
nul jusqu’au régime du trou noir.

La première partie introduit les concepts de base et les résultats associés au système
D1-D5. Le chapitre 2 sert d’introduction à la théorie des cordes et au système D1-D5 à
petit couplage. En particulier, nous passons en revue la construction de Strominger-Vafa
des micro-états à couplage nul. Le chapitre 3 décrit le même système D1-D5 dans le
régime opposé : nous introduisons la supergravité et le trou noir à trois charges, et nous
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vérifions que son entropie correspond au comptage des micro-états de cordes ouvertes.
Dans le chapitre 4, nous expliquons comment la situation précédente se présente dans

le cadre plus général de la correspondance AdS/CFT. Nous décrivons ensuite la CFT D1-
D5, qui constitue la limite à basse énergie du système de cordes ouvertes s’étirant entre
les D-branes.

Dans la Partie II, nous présentons la construction de nouvelles géométries de micro-
états dans le cadre d’une supergravité de jauge tridimensionnelle. Le chapitre 6 sert
d’introduction.

Dans le chapitre 7, nous présentons la théorie de la supergravité tridimensionnelle qui
sera utilisée. Après une brève introduction sur les notations et les conventions utilisées
dans ce document, nous décrivons en détail la théorie et son contenu en champs, et nous
dérivons les équations BPS. Le chapitre 8 examine ensuite comment une certaine classe
de superstrata s’intègre dans la théorie 3D susmentionnée.

Dans le chapitre 9, nous construisons des ansätze spécifiques pour les champs de la
théorie. Nous motivons ces choix en nous appuyant sur la théorie des Q-balls : les champs
sont conçus pour avoir une dépendance temporelle très spécifique, de sorte que le tenseur
énergie-impulsion, et en fin de compte les équations d’Einstein, sont indépendants du
temps. Nous expliquons comment la théorie se décompose naturellement en deux secteurs ;
le premier ansatz que nous construisons correspond à une troncation à un seul secteur,
et nous montrons comment une sous-famille de superstrata s’y intègre. Le second ansatz
est plus complexe et tire parti des deux secteurs ; il permet de décrire toute la famille des
superstrata tridimensionnelles.

Dans le chapitre 10 nous dérivons les équations BPS en termes des champs des deux
ansätze. Nous motivons le choix des projecteurs de supersymétrie en utilisant les super-
strata comme guide. Le chapitre 11 est ensuite consacré à la résolution de ces équations.
Nous construisons de nouvelles familles de solutions supersymétriques du système à trois
charges. Nous nous concentrons d’abord sur une classe de solutions particulièrement
simple : le « special locus ». Nous dérivons ensuite les solutions les plus générales des
équations dans l’ansatz à un seul secteur, et nous étudions son élévation en six dimensions.
Enfin, nous nous concentrons sur deux familles importantes de solutions : les superstrata
« pure-NS » et les géométries qui sont asymptotiquement AdS2.

Dans le chapitre 12 nous nous tournons vers la construction de géométries non-BPS.
Nous présentons d’abord une méthode perturbative pour résoudre les équations du mou-
vement. Nous expliquons en détail le processus utilisé pour construire et identifier les
solutions, à la fois dans les ansätze à un secteur et à deux secteurs, de manière pertur-
bative au-dessus du vide AdS. L’ensemble des solutions se décompose en deux classes,
que nous avons nommées « classe alpha » et « classe beta » ; ces solutions ont des por-
teurs de quantité de mouvement différents. Enfin, nous expliquons comment appliquer la
théorie des perturbations à une géométrie de micro-état déjà profonde (supersymétrique),
en utilisant l’approximation WKB.

Les chapitres 13 et 14 sont dédiés à l’interprétation CFT de ces solutions nouvellement
construites. Nous commençons par une brève revue des opérateurs de la CFT D1-D5, puis
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nous proposons une identification des solutions de supergravité en tant qu’états lourds
de la théorie conforme. Nous utilisons ensuite l’holographie pour établir le dictionnaire
entre la supergravité et la CFT. Cette tâche est compliquée par le fait que la plupart des
observables ne sont pas protégées et sont sujettes à des variations au fur et à mesure que
l’on se déplace dans l’espace des moduli. Pour les solutions dans l’ansatz à un seul mode,
nous pouvons recourir à un test non trivial pour vérifier la validité du dictionnaire.

Le chapitre 15 aborde la question de la construction de solutions non-BPS sous
l’angle des simulations numériques. Nous montrons que l’on peut construire des solu-
tions numériques aux équations du mouvement, par deux méthodes différentes, et nous
pouvons identifier et comparer ces solutions numériques avec le développement perturbatif
du chapitre précédent. Nous terminerons cette partie par quelques commentaires finaux
dans le chapitre 16.

Dans la Partie III, nous proposons une nouvelle voie pour reproduire l’entropie totale
des trous noirs avec des géométries de micro-états. Dans le Chapitre 17, nous présentons
l’idée du super-labyrinthe, une construction de membranes qui révèle l’origine de l’entropie
des trous noirs d’une manière purement géométrique. Nous expliquons comment décrire
un état lié de branes M2 et M5 avec impulsion dans la théorie M, et comment extraire sa
géométrie à partir des projecteurs de supersymétrie. L’idée centrale est que ces configu-
rations de branes préservent localement 16 supersymétries, et ne peuvent donc pas former
d’horizon après la rétroaction. Enfin, le chapitre 18 introduit le concept de themelia, que
nous conjecturons être l’élément fondamental des micro-états lisses des trous noirs. Nous
décrivons une grande famille de ces themelia, y compris le super-labyrinthe, en utilisant
des projecteurs de supersymétrie. Nous expliquons comment les themelia apparaissent na-
turellement dans plusieurs micro-états supersymétriques connus, tels que les « bubbling
geometries » et les superstrata.
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Chapter 1

Introduction

The 20th century has seen the emergence of two extremely successful theories of nature.
On one side stands quantum mechanics, which governs the interactions between particles
at very small scales. Its development throughout the years led to the establishment of the
Standard Model, which unified all known elementary particles and their three fundamental
interactions in a single framework. This model has been tested to amazing precision and
made powerful predictions, such as predicting the existence of the Higgs boson forty years
before its discovery at CERN. On the other side, General Relativity was developed by
Einstein to describe the long-range gravitational interactions between large bodies. The
theory has made predictions that have been since then been rigorously tested, such as
the Shapiro time delay effect, or the precise waveform of the gravitational signals emitted
during the merger of black holes, signals that have been first detected by LIGO in 2016.

Pursuing the goal behind the construction of the Standard Model, physicists have tried
to build a theory of quantum gravity, unifying particle physics and General Relativity.
These two theories are nevertheless fundamentally incompatible with each other: any
direct attempt to quantize gravity to incorporate it in the Standard model inevitably
fails. This issue arises in two major instances, where both theoretical descriptions break
down: the first moments after the big bang, and the interior of black holes. In both
instances, General Relativity fails to describe the behavior of very dense matter at small
scales, and sees the appearance of singularities. With the advent of multi-messenger
astronomy, experimental data on black holes now abound, making black holes the perfect
laboratory to test new physics and theories of quantum gravity.

Black holes

Since Newton, it has been known that massive bodies attract each other, with a force that
is proportional to their masses, and inversely proportional to the square of the distance
separating them. General Relativity, as a theory of gravitation, goes further: it describes
how massive bodies deform spacetime. These deformations not only causes other massive
bodies to be attracted, but it also curves the path of light in its vicinity. The extreme
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Figure 1.1: Penrose diagram of a Schwarzschild black hole. Time evolves from bottom to
top, and horizontal slices are spatial. The blue lines at 45◦ represent the light-cones at
various points: causality imposes that the trajectories of matter and light must always
stay within these cones. The singularity is represented by a saw-tooth line, and the
horizon is dotted. Note that when a trajectory crosses the horizon, it inevitably ends up
at the singularity. This figure is taken from [1].

situation is that of an object so massive and compact that its gravity is strong enough to
trap light: these objects are called black holes.

The simplest black hole solution was first constructed by Schwarzschild in 1916. All of
its mass is concentrated in a spacetime singularity, and it is dressed by a spherical event
horizon, which is used to delimit the interior and the exterior of the black hole. The event
horizon is a null hypersurface: it is the limit from which light can no longer escape and
must eventually fall to the singularity. Figure 1.1 represents schematically the geometry
of a black-hole spacetime. It is important to understand that this surface has no concrete,
physical manifestation ; a person falling into a black hole would not notice their crossing
of the horizon. The radius of the horizon is proportional to the mass M of the black hole:

RS =
2GM

c2
. (1.1)

Black holes were initially thought to be unphysical, but their existence in nature has
now been confirmed via gravitational-waves experiments [2], and via direct detection [3].
They are completely characterized by very few parameters: their mass, their charge and
their angular momentum.

Black-hole thermodynamics

The laws of thermodynamics are believed to govern any macroscopic system in the uni-
verse. To preserve these laws, black holes must behave as any other thermodynamic
system; they must have a temperature and an entropy. Indeed, the second law states that
through no physical process can the entropy of the universe decrease. Throwing a mass
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into a black hole must lead to an increase of the black hole entropy, to compensate for
the loss of entropy due to the disappearance of said mass.

By a classical computation, Bekenstein realized in the 70s that the black hole entropy
is proportional to the area of its event horizon. This was confirmed shortly after, this time
through a quantum calculation, when Hawking found that they behave as black bodies
[45]: they emit a thermal radiation that originates from their horizon. From this radiation,
it is possible to compute their temperature TH , and, using the thermodynamical relation
THdS = dE, their entropy S:

TH =
ℏc3

8πkBGM
, S =

kBc
3A

4Gℏ
, (1.2)

where A ≡ 4πR2
S is the area of the horizon.

These formulas involve a remarkable number of different constants of nature. To
simplify computations, it is usual to use the so-called natural units, where ℏ = c = kB =

G = 1, however we make an exception here, because the presence of these constants reveal
a lot about the mechanisms at play behind these formulas:

• The gravitational constant, G, appears in General Relativity, which is integral to
the description of black holes.

• The Planck constant, ℏ, and the speed of light, c, come from Quantum Field Theory,
which is used to describe the particles and fields surrounding the black hole and
constituting the radiation.

• Finally the Boltzmann constant, kB, originates from thermodynamics, which governs
the collective behavior of these particles.

This is through the interplay between these theories that one can find the existence
of the radiation and account for the entropy. Indeed, Hawking’s derivation used the fact
that the vacuum of quantum fields in the curved background of a black hole is not unique,
it depends on the location of the observer. A simpler way to understand the phenomenon
is to describe it in terms of particles. The vacuum always contains spontaneous creation
and annihilation of particle and anti-particle. When this happens close to the horizon,
however, one of these particles can fall and be trapped by the black hole, while the other
escapes at infinity. This process must, and does, conserve energy: the energy of the
trapped particle is strictly negative as seen from infinity, and the escaping virtual particle
becomes real, with a positive energy. Thus, through this process, the mass of the black
hole is decreased.

The information paradox

The derivation of the Hawking radiation led to two mysteries.
The first puzzle is the question of the microscopic origin of the black hole entropy.

The entropy of black holes, as given by (1.2), is enormous. For Sagittarius A∗, the black
hole at the center of Milky Way, this number is 1090. This entropy should correspond to
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a large number of microstates, following Boltzmann formula N = exp(S). However, the
black-hole uniqueness theorem proves that in General Relativity, there exists only one
black hole solution. Where, then, are all these microstates ? A theory of quantum gravity
must be able to accurately reproduce this large number.

The second puzzle arises as one considers the long-term effects of the Hawking ra-
diation. Through this process, a black hole slowly loses mass and evaporates, until it
completely disappears – or at least until the approximations made by Hawking in the
computation break down, once the black hole is too small. This process however is radi-
cally different from, for example, the burning of a piece of paper, and breaks a fundamental
principle of quantum mechanics: unitarity.

For the piece of paper, the radiation happens through chemical reactions at the surface
of the paper, and the information on the constituents of the paper is carried away by the
radiation as the paper burns: the transformation is unitary. This means that if one were
to gather and measure all the particles emitted through the burn, one could theoretically
simulate the whole process and learn about the exact state of the paper before it burned,
down to the text that was written on it. Hawking radiation, on the other hand, is emitted
close to the horizon of the black hole. At the horizon, the spacetime is in a perfect
vacuum, as any matter placed at this locus would fall immediately in the black hole.
In conjunction with the black hole uniqueness theorem, it means that the radiation is
universal and cannot carry away the information of the original constituents of the black
hole. Once the black hole has evaporated, the information, and unitarity, is lost (see [4]
for a review). This is sometimes called the information paradox.

A theory of quantum gravity, that unifies quantum mechanics and general relativity,
must provide a resolution to these paradoxes. The information paradox, in particular, is
a very sharp problem, because the conflict exists at the scale of the horizon, where space
is almost flat and the semi-classical approximation should hold. Hence, one cannot solve
it by a Planck-scale resolution of the singularity: there must be new physics at the scale
of the horizon.

The Fuzzball Conjecture

String theory is a candidate for quantum gravity. It postulates that the primitive con-
stituents of nature are not particles but strings, as well as higher-dimensional extended
object called branes, on which open strings can end. What we think of as distinct par-
ticles then correspond to different modes of vibration of these strings. The interaction
between particles happen because of the splitting and merging of strings. Two fundamen-
tal parameters of string theory will appear in the discussion: the string tension, α′, which
sets a global energy scale, and the string coupling, gs, which controls the strength of the
interaction between strings.

String theory naturally incorporates supersymmetry, and for its consistency, it requires
that the number of spacetime dimensions is 10 or 11. Such extra dimensions appear in
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a number of extensions of the Standard Model, and are conjectured to be an essential
ingredient of any theory of quantum gravity. To connect to our familiar four-dimensional
spacetime, these extra dimensions must be compact. Strings and branes can then wrap
them, so that in the four-dimensional spacetime they appear as point particles or low-
dimensional objects.

At low energy, most of the modes of the string cannot be excited, and the theory is
accurately described by a quantum field theory that includes General Relativity. Indeed,
quantizing the closed string reveal the existence of a massless spin-2 boson, the graviton,
that mediates the gravitational force. With the other low-energy fields, they form a
theory of supergravity. The gravitational constant, G, can then be expressed in terms of
the parameters of the theory:

G ∼ g2s l
d−2
s , (1.3)

where d is the number of dimensions, and ls =
√
2πα′ is called the string length.

As we will see, it is possible to answer the puzzles of black holes with string theory.
Indeed, strings and branes can behave very differently from normal matter. A shell of
sufficiently massive ordinary gravitating matter necessarily collapses, and, once enclosed
by an event horizon, the Penrose singularity theorem [5] states that the final state of the
collapse is a singularity, or at least to a Planck-sized object. This is not true for branes:
a collection of N branes can form a stable bound state whose size grows with some power
of N [6]. More importantly, this size also grows with the gravitational coupling G [7]. At
large N , the scale of the bound state can thus be of the same order as the Schwarzschild
radius: this object never forms a horizon.

These string theory configurations are termed fuzzballs [6,8], and are prime candidates
for the microscopic description of black holes. These objects defy the intuition from
effective field theory: if they are black-hole microstates, the geometry of the black hole
is modified all the way from the center to the horizon, where the curvature is weak
and general relativity is expected to hold. By construction, they are not subject to the
information paradox: they radiate like a normal body, from their surface. As we will
see, they also avoid the uniqueness problem: fuzzballs have a very rich phase space of
configurations from the many ways that strings and branes can bend.

String dualities and fuzzball counting

The number of black-hole microstates is extremely large. For fuzzballs to provide an
accurate description of a typical black-hole microstate, one must show that they have
a number of configurations of order eS. A first step in this direction was accomplished
by Sen [9], then Strominger and Vafa in 1996 [10], working with supersymmetry and at
vanishing coupling.

This last point deserves an explanation. In our universe, the value of the string
coupling gs must be large, we are far from the regime where it vanishes. Of course, it is
possible to discuss hypothetical scenarios where this constant has very different values.
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Figure 1.2: Representation of the different regimes of the theory, as one dials the string
coupling gs. At gsN ≪ 1, the theory is described effectively by open strings in a back-
ground of D-branes, and gravity is decoupled. At gsN ≫ 1, while keeping gs ≪ 1, gravity
dominates, the system is described by supergravity. Note that since N is an integer, there
is no regime of parameters where gs > λ > 0. The figure is taken from [1].

These scenarios become significant in two instances: string dualities and supersymmetries.
Some quantities are said to protected by supersymmetry, this means that their value does
not change as one dial the coupling constant. A protected quantity can be computed
in any regime, for example when the coupling constant vanishes, and the result then
holds in generality. The supersymmetric index is such a quantity, and it provides a good
approximation, and a lower bound, for the number of supersymmetric microstates.

In the presence of a bound state of N D-branes, the effective coupling of open strings
is gsN . We distinguish two regimes. When gsN ≪ 1, the open string sector decouples
from gravity, the system is described by the interaction of open strings in the background
of the branes. When gsN ≫ 1, the branes backreact, the closed-string sector dominates,
and the system can be described using supergravity, see Figure 1.2.

Strominger and Vafa worked with the supersymmetric D1-D5-P system [10]. At low
coupling, it is described by the stringy excitations on top of a bound state of D1 and D5
branes. Using Cardy’s formula, they were able to estimate the entropy of the system.
Their result matched precisely with the entropy of the “three-charge” BTZ black hole,
that is obtained in the large coupling limit.
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Figure 1.3: Schematic representation of a microstate geometry. To the left, the classical
black-hole geometry features a long throat that ends with a singularity, and is dressed by
a horizon. In the microstate geometry picture to the right, the throat caps off before the
horizon. The geometry is everywhere smooth and horizonless. This figure is taken from
[13].

Microstate geometries

The success of Strominger and Vafa shows that string theory is able to capture the degrees
of freedom of black holes, at least with supersymmetry. However, these computations are
done at small coupling: they show that the black-hole microstates can be described by
string theory, but not what form these microstates take at strong coupling. To solve the
information paradox, one must also understand the microstates of non-supersymmetric
black holes.

As we discussed, these microstates are conjectured to be horizonless “fuzzy” geometries
known as fuzzballs. Through fractionation, the size of a bound state of branes grows with
the coupling constant and can reach the scale of the horizon. Note that the classical
black-hole solution of general relativity cannot be one of the microstates, as pure states
have necessarily a null entropy. The classical black-hole solution must then be understood
as an average description of all these fuzzball solutions, in a theory that is not rich enough
to capture their features.

A complete, precise description of these fuzzballs is however out of reach: black holes
are known to be chaotic systems, and their microstates are expected to be very complex,
stringy quantum systems. Instead, one can try to build coherent superpositions of these
quantum states. A sufficiently coherent state can be described classically, as a solution of
supergravity that is necessarily smooth and horizonless, see Figure 1.3. The microstate
geometry program endeavors to build such classical solutions (see [1, 11, 12] for recent
reviews).

This programme led to the construction of the full set of microstate geometries of the
two-charge supersymmetric black hole. These geometries are known as supertubes [14–17].

17



This construction has been extended to the three-charge black hole, leading in 2015 to a
large family of geometries known as superstrata [18–20], that have been since extensively
studied [21–28, 28–36]. However, the number of states in this family falls short to the
total entropy of the three-charge black hole.

The challenge nowadays is two-fold. For supersymmetric black holes, one needs to
build larger three-charge microstates families that account for the total entropy of the
black, thus proving that typical microstates can be accurately described classically. But
the black holes existing in our universe are not supersymmetric, and very little is known
of their microstates. A better understanding of these microstates is necessary to fully
resolve the information paradox.

Contribution and organization of the manuscript

This thesis proposes advances on the microstate geometry programme. I will introduce
and review the works that my collaborators and I published in [37–44]. The focus is on the
construction and study of new microstate geometries of the three-charge D1-D5-P system.
In particular, we will derive one of the first class of non-BPS geometries deep in the black
hole regime, along with their CFT dictionary. We will also explore the possibilities of
reproducing the whole entropy of supersymmetric black hole with microstate geometries,
and propose ways to track individual microstates from the regime of vanishing coupling
all the way to the black hole regime.

The first part introduces the basic concepts and results associated to the D1-D5 system.
Chapter 2 serves as an introduction to string theory and to the D1-D5 system at small
coupling. In particular, we review the Strominger-Vafa construction of the microstates
at vanishing coupling. Chapter 3 depicts the same D1-D5 system in the opposite regime:
we introduce supergravity and the three-charge black hole, and check that its entropy
matches with the counting of open-string microstates.

In Chapter 4, we explain how the previous situation takes place in the more general
framework of the AdS/CFT correspondence. We then describe the D1-D5 CFT, that arises
as the low-energy limit of the system of open strings stretching between the D-branes.

In Part II, we present the construction of new microstate geometries in the framework
of a three-dimensional gauge supergravity. First, Chapter 6 serves as an introduction.

In Chapter 7 we introduce the three-dimensional supergravity theory that will be used.
After a brief introduction on the notations and conventions used throughout this work,
we describe in details the theory and its field content, and derive the BPS equations.
Chapter 8 then reviews how a certain class of superstrata fits in the aforementioned 3D
theory.

In Chapter 9 we construct specific ansätze for the fields of the theory. We motivate
these choices from the theory of Q-balls: the fields are made to have a very specific time
dependence, so that the energy-momentum tensor, and ultimately the Einstein equations,
are time independent. We explain how the theory naturally decomposes into two “sectors”;
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the first ansatz that we construct corresponds to a single-sector truncation, and we show
how a subfamily of superstrata fits inside it. The second ansatz is more involved and takes
advantage of both sectors ; it can describe the full family of three-dimensional superstrata.

In Chapter 10 we derive the BPS equations in terms of the fields of both ansätze. We
motivate the choice of supersymmetry projectors using superstrata as a guide. Chapter 11
is then dedicated to solving these equations. We construct new families of supersymmetric
solutions of the three-charge system. We first focus on a particularly simple class of
solution: the “special locus”. We then derive the most general solutions of the equations
in the single-sector ansatz, and study its uplift in six dimensions. Finally, we focus on
two important families of solutions: the “pure-NS” superstrata and the geometries that
are asymptotically AdS2.

In Chapter 12 we turn to the construction of non-BPS geometries. We first present a
perturbative method to solving the equations of motion. We explain in detail the process
that is used to build and identify solutions, in both the single-sector and double-sector
ansätze, perturbatively around the AdS vacuum. The set of solution decomposes into
two classes, that we named “alpha-class” and “beta-class” ; these solutions have different
momentum carriers. Finally, we explain how to do perturbation theory around an already
deep (supersymmetric) microstate geometry, using a WKB approximation.

Chapter 13 and 14 are dedicated to the CFT interpretation of these newly-built solu-
tions. We start with a brief review on the operator content of the D1-D5 CFT, we then
propose an identification for the supergravity solutions as heavy states of the conformal
theory. We then use holography to establish the dictionary between bulk and boundary.
This task is complicated by the fact that most observables are not protected and subject
to variations as one moves in the moduli space. For the solutions in the single-mode
ansatz, we can use a non-trivial check to verify the validity of the dictionary.

Chapter 15 tackles the question of constructing non-BPS geometries through the lens
of numerical simulations. We show that one can build numerical solutions to the equa-
tions of motion, through two different methods, and we can identify and compare those
numerical solutions with the perturbative expansions. We will end this Part with some
final comments in Chapter 16.

In Part III, we propose a new avenue to reproduce the full entropy of black holes with
microstate geometries. In Chapter 17 we present the idea of the super-maze, an construct
of branes that shows the origin of the black hole entropy in a purely geometric manner.
We explain how to describe a bound states of M2 and M5 branes with momentum in
M-theory, and how to extract its geometry from the supersymmetry projectors. The core
idea is that these brane configurations locally preserve 16 supersymmetries, and therefore
cannot form a horizon after backreaction. Finally, Chapter 18 introduces the concept of
themelia, that we conjecture to be the fundamental building block of smooth black hole
microstates. We describe a large family of these themelia, including the super-maze, using
supersymmetry projectors. We explain how themelia naturally appears in several known
supersymmetric microstates, such as the bubbling geometries and the superstrata.
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Part I

The D1-D5 system
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Chapter 2

A corner of string theory

String theory is one of the most prominent theories of gravity. While it is not fully defined
and understood, many different “corners” (or limits) of the theory have been explored.
While these corners were first mapped out independently, it has then been realized that
can be related to each other through dualities. This is particularly useful: sometimes, a
computation that is hard to do in a particular limit can be done in another limit, and
using dualities the result can then be interpreted in the first.

The work presented in this thesis mainly takes place in one particular corner of the
theory, or more precisely, in its low-energy limit, supergravity. The aim of this Chapter is
to introduce this corner. After a brief general introduction to string theory, we describe
a specific background of branes known as the D1-D5 system. We will then see how to
reproduce the microstate counting of Strominger and Vafa.

2.1 A theory of strings and branes

String theory is a theory of strings, but also, as we will see, of other extended objects called
branes. Usually, the first approach of students to string theory is through the worldsheet
formalism. The string worldsheet, analogously to the worldline of particles, describes the
behavior of a string in a fixed background. Because a string is a one-dimensional object,
its worldsheet is two-dimensional. It is much richer than the analogy with the worldline
formalism suggests, because the worldsheet can have many topologies, and can describe
the interaction between several strings.

A fundamental ingredient of string theory is supersymmetry. Without it, the world-
sheet theory only possesses bosonic degrees of freedom, and is furthermore unstable. The
quantization of the theory also reveals that for consistency, the worldsheet must belong
to a ten-dimensional spacetime.

Strings can be either open or closed. A closed string forms a loop, it is topologically
a circle, and its worldsheet is represented by a surface with no boundaries. An open
string on the other hand has free ends, and its worldsheet has two boundaries. One thus
needs to impose boundary conditions, they can be either Dirichlet or Neumann, for each
spatial direction. An open string with Dirichlet conditions, however, inevitably break
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Figure 2.1: Strings can be open or closed, depending on boundary conditions. (a) shows
open strings, they are one-dimensional objects whose endpoints are attached to D-branes.
The two ends must not necessarily be attached to the same D-brane. (b) represents closed
strings, they form loops and move freely in spacetime. The figure has been taken from
[1].

Poincaré invariance. One can restore Poincaré invariance at the level of the theory if open
strings are forced to end on some other dynamical objects. Then Poincaré invariance is
only broken spontaneously. This is represented in Figure 2.1. These objects are called
D-branes.

Note that D-branes can come in various dimensions, depending on how many of the
string boundary conditions are Dirichlet versus Neumann. Branes with p spatial dimen-
sions are named Dp-branes, where 0 ≤ p ≤ 9. Not all dimensions can be present at once.
In fact, we can distinguish two corners of string theory, called Type IIA and Type IIB,
that differ by the way strings are quantized. In Type IIA, D-branes must have an odd
number of spatial dimensions, while in Type IIB this number must be even. These two
theories also include a different type of brane, called NS5 brane, that can be understood
as the magnetic dual of the string. The content of each theory is summarized in the next
Chapter in Table 3.1, where the coupling to the fields of supergravity is also explained.
There also exist other corners of string theory (Type I, heterotic, etc.), that we will not
detail here.

2.2 The D1-D5 system

D-branes are dynamical objects of string theory, but they are also solitons, and their
dynamics cannot be captured by string perturbations. Indeed, their tension, and thus
their mass, is proportional to the inverse string coupling:

Tp =
1

(2π)pα′(p+1)/2gs
, (2.1)

where Tp is the tension of a Dp-brane. NS5 branes are even heavier, their tension scales
like g−2

s . We will always work in the limit gs ≪ 1, and thus consider string perturbations
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in a fixed background of branes.
We focus on a very specific background in Type IIB string theory, called the D1-D5

system. The following description is valid in the limit of vanishing string coupling gs → 0,
or in other words, in the top-left corner of the diagram in figure 1.2. Consider a spacetime
with 5 compact dimensions, and 5 non-compact ones. One of the compact dimensions,
that we name y, is taken to be much larger than the other four, and so we will single
it out and write the spacetime as R1,4 × S1

y × T 4. In this spacetime we add a bound
state made of many D1 and D5 branes: the D5 branes are wrapping both the four torus
directions and the y-circle, while the D1 branes are only wrapping the y-circle, and are
smeared along the torus. All branes are placed point-like in the non-compact spacetime.
The configuration is summarized in Table 2.1.

t x1 x2 x3 x4 y x6 x7 x8 x9

D1 − • • • • − · · · · · · · · · · · ·
D5 − • • • • − − − − −

Table 2.1: Brane configuration of the D1-D5 system. The directions x1, . . . , x4 denote
the non-compact spacetime directions, while x6, . . . , x9 are the torus directions, y is the
special circle, and time is denoted by t. A dash− indicates that the branes are extended
(wrapped) along the given direction, a point • indicates that the branes are point-like,
and horizontal dots · · · indicate that the branes are smeared.

In general, each stack of identical D-branes preserves half of the 32 supersymmetries of
string theory; the exact supersymmetry projectors for several types of branes are given in
Appendix E. An arbitrary configuration of D-branes may not preserve any supersymmetry.
In the current setup, however, the supersymmetric projector of the D1 and D5 branes are
compatible, and the system preserves a quarter (8) of the supersymmetries.

One can furthermore excite this system by adding a momentum charge P along the
y-circle. This corresponds to adding strings that are boosted along the compact direc-
tion, but do not wrap it. With this additional charge, the full system still preserves 4
supersymmetries.

Before moving on to the microscopic counting of string states in this configuration,
note that the same system can be expressed in different duality frames. The use of
different duality frames can let one make computations in a simple regime of parameters
that would have been impossible in the original frame. A very commonly studied dual
to our system is the NS5-F1-P system in Type IIA string theory – it is obtained from
the D1-D5-P after taking an S duality, followed by a T duality along any of the torus
directions. This frame has the advantage of enabling a simpler worldsheet description,
since there are no longer any D-branes. In Part III we will also use the uplift in M-theory,
which is made of M2, M5 branes and momentum P.
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2.3 Microstate counting

We sketch here the results of [10, 46, 47] that provide a microscopic description of the
entropy by counting the microstates of the D1-D5-P system. As in the original paper, we
work in the regime of vanishing coupling gs → 0. It may seem restrictive, but because
the system is supersymmetric, the entropy is protected, and so the computation must be
valid in any regime of parameters.

In this regime, the D-branes are infinitely heavy, static objects, and gravity is decou-
pled. The momentum is carried (mainly) from free open strings stretching between the
D-branes. We distinguish three types of open strings, the 1-1, 5-5 and 1-5 strings, whose
endpoints are respectively on two D1-branes, on two D5-branes, or on one D1 and one
D5 branes.

Our goal is to compute the number of open strings configurations stretching between
N1 D1 branes and N5 D5 branes, with NP units of momentum. We assume that the torus
is much smaller than the y-direction, effectively reducing the problem to two-dimensions.
We will see that the large entropy of the system arises thanks to the phenomenon of
momentum fractionation.

As we said, the open strings are free, and because we look at supersymmetric config-
urations, we can restrict our attention to their zero-modes. Thus, the strings behave as
point particles, whose wavefunctions can be identified with the momentum eigenstates of
the y-circle.

Normally, such a wavefunction must be single-valued, Ψ(y) = Ψ(y + 2πR), where R
is the radius of the y-circle. It can then be decomposed as

Ψ(y) =
∑
n

αne
2iπn
R

y . (2.2)

After quantization, the constants αn become creation and annihilation operators, that
increase or decrease the momentum by n units. Thus, counting the number of states
with momentum NP corresponds to enumerating all the ways one can act with creation
operators on the ground state, to reach momentum NP .

The situation is different for open strings, however, as they also carry labels: the
D-branes on which they end. For a 1-1 string stretching between D1 branes, the zero-
modes can essentially be seen as particles belonging to the worldvolume of a D1 brane
wrapping the circle N1 times. This changes the periodicity of the wavefunction to Ψ(y) =

Ψ(y+2πN1R), and the momentum can now be distributed in units of 1/N1. This is what is
called momentum fractionation. Similarly, for 5-5 strings, the momentum is fractionated
in units of 1/N5.

The fractionation is even more important for 1-5 strings, because they inherit the pe-
riodicities of both the D1 and the D5 branes1: Ψ(y) = Ψ(y+2πN1N5R). The momentum
is fractionated in units of 1/(N1N5).

1This is exact when N1 and N5 are coprime, which we suppose to be true. Otherwise, to find the
dominant contribution to the entropy, one needs to consider a smaller number of branes n1 and n5 such
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Because of this huge fractionation, the dominant contribution to the entropy of the
system comes from 1-5 strings. Counting the number of microstates then comes down to
enumerate the partitions of NP in units of 1/(N1N5), or equivalently counting the integer
partitions of N1N5NP . At leading order, we find that the entropy (which is the logarithm
of the number of microstates) is

S0 = 2π

√
N1N5NP

6
. (2.3)

A more careful computation taking into account the possible polarizations of the string
leads to

S = 2π
√
N1N5NP , (2.4)

which, as we will see in the next Chapter, matches with the Bekenstein-Hawking entropy
computed in the supergravity regime.

that these numbers are coprime, and their product is maximal. When N1 and N5 are large, the results
are asymptotically equivalent.
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Chapter 3

The three-charge black hole in
supergravity

In the previous chapter, we studied the regime where gs → 0, and N is large but finite.
In this Chapter, we are interested in the opposite regime, where λ = gsN ≫ 1. The open
strings are strongly coupled, and the perturbative description breaks down. This regime
is however still classical if the string coupling is kept small1, gs ≪ 1. As we will see, at
low energies the theory can be described by supergravity.

Note that one can interpolate between the two regimes, λ→ 0 and λ≫ 1, by dialing
the coupling constant gs while keeping the number of branes fixed. This justifies why
index theorems can apply, and we should be able to compute the same entropy in both
theories.

3.1 The low-energy limit of string theory

The excitations of a string can be decomposed into its zero modes, and its oscillatory
modes. As for a regular classical string, the oscillations have an energy cost, and their
mass is a function of the tension of the string. Precisely, the mass of these modes is
quantized in units of the inverse string length, l−1

s . To have a good classical description,
this mass scale has to be smaller than the Planck scale2, but the gap between the Planck
scale and the typical energies of the Standard Model is extremely large. Because stringy
excitations have never been observed, the string scale must sit somewhere in between
these two scales, and it generally assumed that it is close to the Planck scale.

When working with energies much smaller than l−1
s (or equivalently at length scales

much larger than the typical string size), the harmonics of the string can’t be excited,
they thus decouple and we are left with the zero modes. In this limit, strings look like
point particles and are described by a number of quantum fields, corresponding to their

1Quantum effects come from loop diagrams that are suppressed by powers of gs.
2Indeed, the ratio between these two mass scales is equal to the string coupling constant, gs, that we

assume to be very small.
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Theories IIA IIB
Potential B2 C(1) C(3) C(5) C(7) B2 C(0) C(2) C(4) C(6) C(8)

Electric F1 D0 D2 D4 D6 F1 D(-1) D1 D3 D5 D7
Magnetic NS5 D6 D4 D2 D0 F1 D7 D5 D3 D1 D(-1)

Table 3.1: Coupling of branes to the gauge fields of Type IIA and Type IIB supergravity.
The gauge fields can be be either sourced electrically or magnetically by the branes.

zero modes. Among these fields generated by the closed strings, there is a massless spin-2
field that mediates the gravitational interaction: the graviton.

The theories that are obtained through this procedure are supergravity theories: su-
persymmetric theories of gravity. From the different corners of string theory, one obtains
different types of supergravities: Type IIA, Type IIB, eleven-dimensional supergravity,
etc. They also all have branes as solitonic solutions of the equations of motion.

We focus on Type II supergravities. Type IIA has N = (1, 1) supersymmetries, while
IIB has N = (2, 0) supersymmetries. The two theories share the same bosonic field
content in the NS-NS sector:

• A spin-2 field g, giving rise to the metric;
• An antisymmetric two-form gauge field B2;
• A scalar field field Φ, the dilaton.

The R-R sector of each theory is however different: Type IIA contains p-form gauge fields,
C(p), where p is odd, while Type IIB contains similar gauge fields where p is even. As
for standard electromagnetism, these gauge fields are sourced by objects of the theories.
While for electromagnetism these sources are point particles (or magnetic monopoles), for
the fields of supergravity the sources are branes. The couplings of branes to the gauge
fields is summarized in Table 3.1.

The actions of both theories, that we will not detail here, decompose in three parts:
the kinetic terms of the NS-NS fields, that are common for both theories, the kinetic
terms of the R-R gauge fields, and a Chern-Simons interaction term. It contains a purely
gravitational term of the form

√
−gR, similarly to the action of Einstein gravity.

3.2 A Dp-brane solution

Before delving into the D1-D5 system, it is instructive to construct the supergravity
solution corresponding to a single stack of Dp-brane3. The branes source electrically
the gauge field C(p+1), and magnetically the field C(7−p). We choose a set of Cartesian
coordinates (t, x1, . . . , x10) so that the branes are extended along the directions x1, . . . , xp,
and are located at xp=1 = · · · = x10 = 0. The presence of the branes breaks the flat space

3The solutions have the same form whether we are in Type IIA (p even) or Type IIB (p odd) super-
gravity.
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SO(1, 9) symmetry into SO(1, p) × SO(9 − p). One must then construct an ansatz that
respects these symmetries, and solve the equations of motion. The ansatz in the string
frame is:

ds2 = Z
1/2
1

(
−dt2 + dx21 + · · ·+ dx2p

)
+ Z

1/2
2

(
dxp+1 + · · ·+ dx210

)
,

e2Φ = ZΦ ,

C(p+1) = ZC dt ∧ dx1 ∧ · · · ∧ dxp .
(3.1)

where Z1, Z2, ZΦ and ZC are arbitrary functions, and all the fields but C(7−p) vanish, the
latter can be obtained via dualities. Solving the equations of motion leads to

Z−1
1 = Z2 = Z

2/(3−p)
Φ = (1− ZC)−1 = H , (3.2)

where H is harmonic in the transverse directions; and sourced by the branes at the origin:

H = 1 +
Qp

r7−p
, (3.3)

and r is the radial coordinate on the transverse space. The charge Qp is a constant, it
can be related to the number of branes by integrating the Ramond gauge field:

Qp ∼ l7−ps gsNp , (3.4)

with a constant of proportionality that can be written in terms of the volume of the
transverse spheres. Note that as we approach the brane source, at r → 0, the harmonic
function diverges and the geometry is singular.

3.3 The D1-D5-P black hole

The D1-D5-P brane solution can also be constructed in supergravity, through the same
procedure of building a suitable ansatz and solving the equations of motion. The resulting
geometry is the commonly named three-charge black hole:

ds2 =
2√
H1H5

[
−dt2 + dy2 + (HP − 1)(dy − dt)2

]
+
√
H1H5 ds

2
(
R4
)
+

√
H1

H5

ds2
(
T 4
)
,

e2Φ =
H1

H5

,

C2 = H−1
1 dt ∧ dy ,

(3.5)
where ds2(R4) and ds2(T 4) are the flat metrics on their respective spaces, and H1,5,P are
harmonic functions on the R4, sourced by the branes at the origin:

H1,5,P = 1 +
Q1,5,P

r2
. (3.6)

The metric can also be understood as the uplift of a BMPV black hole with no angular
momentum. A solution including angular momentum can be constructed in a similar way.
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Once again, the supergravity charges can be expressed in terms of microscopic quantities:
the number of branes and the units of momentum:

Q1 =
(2π)4gs(α

′)3

V4
N1 , Q5 = gsα

′N5 , QP =
(2π)4g2s(α

′)4

V4R2
y

NP , (3.7)

where V4 is the volume of the four-torus and Ry is the radius of the y-circle.
Because of the 1’s in the harmonic functions, the geometry is that of flat space at

infinity. In the IR, the near-horizon geometry can be determined by “dropping the 1’s”.
The resulting metric can be written as

ds2 =
√
Q1Q5

[
dr̂2

r̂2
− r̂2dt2 + r̂2dy2 +QP (dt− dy)2

]
+
√
Q1Q5 ds

2
(
S3
)
+

√
Q1

Q5

ds2
(
T 4
)
,

(3.8)
where we can recognize an extremal BTZ black hole in AdS3, trivially fibered with an
S3 and a T 4. The AdS radius is given by lAdS =

√
Q1Q5. To summarize, the global

geometry of the three-charge black hole is made of three parts: far away, the space is flat,
asymptotic to R4,1 × S1. As one gets closer to the black hole, the geometry changes and
becomes locally AdS3 × S3. Decreasing the radius further, the AdS circle stabilizes, and
a throat forms: the geometry is locally AdS2 × S1 × S3.

The horizon is given by the locus where grr = 0, it lies at r = 0 and its topology is
S3 × S1

v × T 4 where v = (t− y)/
√
2 is a null direction. To compute its area, we need to

integrate the Einstein metric, gEµν ≡ e−ϕ/2gµν , on the horizon:

AH ≡
∫
S3×S1

v×T 4

√
gE|r=0 = e−2ϕ|r=0

∫
S3×S1

v×T 4

√
g|r=0 . (3.9)

It is straightforward to integrate on each circle and the 3-sphere individually to obtain:

AH =
Q5

Q1

·
(
2π2(Q1Q5)

3/4
)
·

(
2πRy

√
QP

(Q1Q5)1/2

)
·
(
Q1

Q5

V4

)
= 4π3RyV4

√
Q1Q5QP ,

(3.10)

then, using the Bekenstein-Hawking formula and the expression of the ten-dimensional
gravitational constant 16πG = (2π)7g2sα

′4, we obtain the entropy

S =
AH
4G

=
π3RyV4
G

√
Q1Q5QP = 2π

√
N1N5NP . (3.11)

This expression matches exactly with the one computed from the excitations of open
strings (2.4). This is one of the great successes of string theory: the entropy of the
supersymmetric black hole emerges as a microscopic counting of string states.
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Chapter 4

D1-D5 CFT

4.1 The AdS/CFT correspondence

The AdS/CFT correspondence is the statement that a theory of quantum gravity in
a (D+1)-dimensional AdS spacetime is dual to a conformal field theory (CFT) living
on the boundary of the spacetime, which is D-dimensional. By duality, we mean that
there is a one-to-one mapping between the states, operators and correlation functions of
both theories. In effect, any calculation done in one theory has the same result in the
other. The AdS/CFT correspondence is also a weak/strong duality, which means that
the computations that are done in the perturbative regime of one side of the duality will
be valid in the strongly-coupled regime on the other side.

The first realization of this concept was the idea of open-closed string duality: for
example, the vacuum loop diagram of an open string stretching between two branes is
exactly dual to the tree-level diagram of a closed string being emitted by one brane, and
absorbed by the other. The low-energy limit of a theory of open strings at small coupling
is a CFT, while the low-energy limit of a theory of closed strings at large effective coupling
is supergravity.

Many manifestations of AdS/CFT emerged over the years. The most famous manifes-
tation of the correspondence is the duality between string theory in AdS5 × S5, with the
N = 4 SU(N) Super-Yang-Mills theory in four dimensions. This duality appears when
one considers a stack of N coincident D3 branes in Type IIB string theory. For example,
one can match the couplings of both theories:

2πgs ↔ g2YM ,

(
R

ls

)4

↔ λ = g2YMN , (4.1)

where R is the AdS radius, gYM is the Yang-Mills coupling and λ is the ’t Hooft coupling.
Note that the duality works in both ways: one can learn about quantum gravity by using
CFT techniques, but one can also learn about the CFT in the non-perturbative regime
by studying supergravity. This is especially relevant for the SYM theory, since it can
act as a toy model for the strong interaction, and thus help explain phenomena such as
confinement.
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The duality can also be used to give a precise definition of quantum gravity. While
string theory has only been defined perturbatively using worldsheet description, we know
how to define a conformal field theory non-perturbatively. The AdS/CFT correspondence
provides a clear non-perturbative formulation of quantum gravity in AdS backgrounds:
one can simply define quantum gravity to be the bulk theory dual to the CFT.

4.2 A two-dimensional CFT

We now focus on the D1-D5 system described in Section 2.2. We already saw an example
of the AdS/CFT duality in this system: we computed the entropy in two limits: gsN ≪ 1,
where the system can be described by open strings stretching between the branes, and
gsN ≫ 1, where the system is well approximated at low energies by supergravity in
AdS3 × S3.

The aim of this Section is to introduce the CFT dual to the D1-D5 theory, Type IIB
string theory in AdS3 × S3 × T 4. This CFT lives on the boundary of AdS3 × S3 × T 4,
and so it must be a two-dimensional theory. It can be obtained by flowing to the IR fixed
point of string theory in the D1-D5 background. Its simplest description is in terms of the
gauge theory living on the branes, which results from the open-string zero modes. But
there is another description, with a larger regime of validity, where the D1’s are realized
as instantons within the worldvolume theory of the D-branes. While we are not going to
delve into the details of this derivation, we present the main results that are relevant for
the work presented in this thesis. For a full review see for example [48].

The two-dimensional D1-D5 CFT is a N = (4, 4) sigma model with target spaceWinst,
the moduli space of instantonic excitations living on the D5 branevolume. The central
charge of the theory is c = c̄ = 6N1N5. The target space of the CFT depends on the
string moduli, and it has be shown that on one point of the moduli space, the target space
takes a simple form:

SymN1N5
(T 4) ≡

(
T 4
)N1N5/SN1N5 , (4.2)

where Sn is the symmetric group of degree n. The theory with this symmetric product as
moduli space is called the orbifold theory. It has been argued that, away from the orbifold
point, the space of instantons should still be a smooth deformation of the symmetric
product. Another remarkable point of the moduli space corresponds to the supergravity
limit, it is far away from the orbifold point, in the strong coupling regime.

The CFT derives its symmetries from the symmetries of the supergravity background:
an SL(2,R)L × SL(2,R)R from the isometries of AdS3, an SO(4)E ≈ SU(2)L × SU(2)R
from the isometries of S3 and an SO(4)I ≈ SU(2)1 × SU(2)2 from the rotations of
the four-torus. In the CFT, the first group, SL(2,R)L × SL(2,R)R, manifests itself
as the group of symmetries generated by the sub-algebra of Virasoro operators Ln, L̄n,
with n = −1, 0, 1. The second group, SO(4)E is identified with the R-symmetry of the
superconformal algebra, while the third, SO(4)I , is an internal global symmetry. The
CFT also has two sectors, Neveu-Schwarz and Ramond, depending on the periodicities of
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the fermions.

4.3 The orbifold model

Here we give a brief description of the orbifold model and outline the parts that will be
relevant for the work of this thesis. For a more thorough introduction to this model, see
[48]. We first describe the theory in the NS sector, then explain how to obtain the R
sector from a spectral flow.

As we mentioned, the orbifold model is an N = (4, 4) sigma model with target space
SymN1N5

(T 4). It thus consists of N = N1N5 copies of a base CFT, that are then sym-
metrized. The CFT is two-dimensional, the base space is S1

y ×Rt, but it can be mapped
to the complex plane, parametrized by (z, z̄), through the exponential map. The theory
has global symmetries SO(4)E×SO(4)I ≈ SU(2)L×SU(2)R×SU(2)1×SU(2)2, and the
fields transform in representations of these symmetries. By convention, indices correspond
to the following representations:

α, β ↔ doublet of SU(2)L , α̇, β̇ ↔ doublet of SU(2)R ,

A,B ↔ doublet of SU(2)1 , Ȧ, Ḃ ↔ doublet of SU(2)2 ,

i, j ↔ vector of SO(4)I .

(4.3)

The field content of each copy consists consists of a vector of bosons, X i(z, z̄), and
two fermionic spinors, ψαȦ(z) and ψα̇Ȧ(z̄). From these fields one can build holomorphic
currents, that form a closed OPE algebra: in the left-moving sector they are the SU(2)L
current Ja(z), the supersymmetry currents GαA(z), and the stress-energy tensor T (z).
The currents can then be expanded in modes:

O(z) =
∑
m

Omz−(∆+m) (4.4)

where O is any operator and ∆ is its weight. From the modes of the current algebra, we
find an extension of the superconformal Virasoro algebra:

[Jam, J
b
n] =

c

12
mδabδm+n,0 + iϵabcJ

c
m+n ,

[Jam, G
αA
n ] =

1

2
(σ⋆a)αβG

βA
m+n ,

{GαA
m , GβB

n } = − c

6

(
m2 − 1

4

)
ϵABϵαβδm+n,0 + (m− n)ϵABϵβγ(σ⋆a)αγJam+n − ϵABϵαβLm+n ,

[Lm, J
a
n] = − nJam+n ,

[Lm, G
αA
n ] =

(m
2
− n

)
GαA
m+n ,

[Lm, Ln] = c
m(m2 − 1)

12
δm+n,0 + (m− n)Lm+n ,

(4.5)
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h̄ = ȷ̄ = m̄

h = j = m
0 1/2 1

0 (1) |∅⟩NS (2) ψ+Ȧ
−1/2 |∅⟩NS (1) J+

−1 |∅⟩NS
1/2 (2) ψ−Ȧ

−1/2 |∅⟩NS (4) ψ+Ȧ
−1/2ψ

−Ḃ
−1/2 |∅⟩NS (2) J+

−1ψ
−Ȧ
−1/2 |∅⟩NS

1 (1) J−
−1 |∅⟩NS (2) ψ+Ȧ

−1/2J
−
−1 |∅⟩NS (1) J+

−1J
−
−1 |∅⟩NS

Table 4.1: The 16 chiral primary operators in the singly twisted sector, classified by their
dimensions. The indices Ȧ and Ḃ run from 1 to 2.

where σa are the Pauli matrices. There is an equivalent algebra in the right-moving sector.
These generators exist in each copy of the CFT, but because the full theory is symmetrized
over all the copies, only the diagonal sum survives as a symmetry. The algebra has a finite
sub-algebra, spanned by

{
Ja0 , G

αA
±1/2, L0, L±1

}
, they are the generators that annihilate the

NS vacuum, and they correspond in AdS to the conformal transformations leaving the
vacuum (global AdS3) invariant. This sub-algebra plays an important role in the duality,
it is usually named the “small algebra”.

4.3.1 Representation theory

Because the algebra (4.5) represents the symmetries of the theory, all the states of the
theory lie in different representations of this algebra. We will explain how to construct
these representations. The Cartan sub-algebra, spanned by {L0, J

3
0} and {L̄0, J̄

3
0}, is used

to label the states. The eigenvalues of L0 and L̄0 are the conformal weights of the states,
often denoted by h and h̄. The eigenvalues of J3

0 and J̄3
0 are the spins, m and m̄, of the

state. Because these two operators are generators of SU(2) groups, we can also use the
usual SU(2) representation theory and label states by their Casimir, j and ȷ̄, and we have
−j ≤ m ≤ j and −ȷ̄ ≤ m̄ ≤ ȷ̄. One can also check that physical states have necessarily
h ≥ j.

To construct a representation, one starts with a chiral primary operator (CPO) |ϕ⟩,
this is a state that is annihilated by all the positive modes of the algebra, plus the fermionic
generator G+A

−1/2 (and the right moving equivalent). Such a state verifies h = j = m and
h̄ = ȷ̄ = m̄. One then forms the descendants of |ϕ⟩ by acting on it with the negative
modes1.

The simplest CPO is the NS vacuum |∅⟩NS, it is dual in the bulk to empty global AdS.
From this, one can build a family of 16 CPOs, by acting either once or twice with each of
the fermionic modes ψ±Ȧ

−1/2. Acting more than twice with the same mode annihilates the
state. We summarize them in Table 4.1.

One can also find other chiral primaries in the twist sectors of the theory. Because we
quotient out the N copies of the CFT by the symmetric group, the theory contain twist

1Note that the descendants formed by acting with G−A
−1/2 are still primaries from the point of view of

the Virasoro algebra, but they are not chiral.

36



operators, σl+1, whose action is to mix the boundary conditions on l + 1 copies of the
CFT. In effect, if we add an index (i) to the fields denoting their copy, the twist operator
makes it so that, every time one circles the operator insertion, the fields get mapped to
each other according to2

X i
(1) → X i

(2) → · · · → X i
(l+1) → X i

(1) . (4.6)

In each twist sector l, there is a specific chiral primary with dimensions

h = h̄ =
l

2
. (4.7)

where ĉ = 6 is the central charge of a single copy of the CFT. Once again, acting with
each of the fermionic modes ψ±Ȧ

−1/2, we construct 16 chiral primaries, in each twist sector l.

4.3.2 Spectral flow and R sector

So far we have discussed the states of the CFT in the NS sector, with periodic boundary
conditions for the fermions in the complex plane. There is only one ground state, dual to
empty global AdS. However, the states that are of interest for black hole physics are in
the R sector, they are the states whose dual can be connected to flat space. Fortunately,
a spectral flow can map the NS sector to the R sector.

A generic spectral flow depends on a parameter α ∈ R, it maps the charges of the
states as3:

h′ = h+ αj +
ĉα2

24
, m′ = m+

ĉα

12
. (4.8)

Setting α = −1 exchanges the NS and R sectors of the theory. The NS vacuum is mapped
to a state with charges h = h̄ = 1/4,m = m̄ = 1/2. This is an R ground state, called
|∅⟩++

R . All Ramond ground states have dimensions 1/4.
Note that, following (4.8), all chiral primaries in the NS sector (with h = j) are mapped

to Ramond ground states. In particular, the R sector has 16 vacua in the singly-twisted
sector, in one-to-one mapping with the chiral primaries of the NS sector:

|∅⟩αα̇R , |∅⟩Ȧα̇R , |∅⟩αȦR , |∅⟩ȦḂR . (4.9)

Of particular note are five ground states that are appearing in the construction of super-
tubes and superstrata, for which we give special names:

|±±⟩ = |∅⟩±±
R , |00⟩ =

1

2
ϵȦḂ |∅⟩

ȦḂ
R . (4.10)

We will denote the equivalent ground states in the twist sector k by |±±⟩k and |00⟩k.

2The relation here is schematic, in practice one also has to symmetrize the action of the operator over
all the copies.

3In the left sector, the right sector is similar, with a second parameter ᾱ.
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Chapter 5

Supersymmetric microstates in six
dimensions

In this Chapter we construct families of microstates of the three-charge black hole. This
supersymmetric black hole has a large entropy that has been computed in 3.3, and we
saw in Chapter 2 that this entropy could be reproduced by counting the microstates of
the open strings at zero coupling. It is then natural to wonder what happens to these
microstates at large coupling. As we will see, some of the microstates can be constructed
within supergravity, as smooth and horizonless solutions of the BPS equations.

We focus on solutions with invariances in all the torus directions. The theory can be
reduced on the T 4, and we get a six-dimensional theory of supergravity. We describe this
theory in the next Section. We then present a family of microstates of the black hole
with no momentum charge, called supertubes. In the last Section, we sketch how to add
a momentum charge to supertubes, this leads to a family of solutions named superstrata.

5.1 Six-dimensional supergravity

The microstates we are building are solutions ofN = (1, 0) supergravity in six-dimensions,
coupled to nT tensor multiplets. This theory can be obtained from the reduction of
Type IIB theory on a four-torus or a K3, followed by a truncation that cuts all but one
supersymmetry. Its field content comprises:

• A graviton multiplet, containing a gravitational field g, two left-handed spin-3/2
gravitini, and one self-dual tensor B+

µν .

• nT tensor multiplets, each containing one anti-self-dual tensor gauge field B−
iµν , two

right-handed spinors and one scalar.

The scalars can be regrouped in a coset:

SO(1, nT )

SO(nT )
. (5.1)
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We can parametrize this coset by a vector vI and a matrix xAI , I = 0, . . . , nT , A =

1, . . . , nT , subject to

S =

(
vI
xAI

)
∈ SO(1, nT )

SO(nT )

vIv
I = 1 , vIvJ − xAI xAJ = ηIJ , vIxAI = 0 ,

(5.2)

where the indices are raised and lowered by the following metric

η =


0 1 0 · · · 0

1 0 0 · · · 0

0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

 . (5.3)

The field strength of the gauge potentials can be regrouped in a vector subject to a
self-duality relation:

MIJG
J = ηIJ ⋆6 G

J where M = ηSTSη . (5.4)

5.1.1 BPS equations

The gravitini and tensorini variations lead to the following BPS equations:

∇µϵ
i +

1

4
vIG

I
µνρΓ

νρϵi = 0 , (5.5)

xAI ∂µv
IΓµϵi +

1

6
xAI G

I
µνρΓ

µνρϵi = 0 . (5.6)

The BPS solutions have been classified in [49], and the system has been shown to have a
linear structure: it can be rewritten as a “triangular system” of linear equations [50,51].

The Killing vector Kµ = ϵiΓµϵi is shown to be null, and can be used to define a null
coordinate u. The most general ansatz for the metric is

ds26 = − 2√
P
(dv + β)

(
du+ ω +

1

2
F(dv + β)

)
+
√
Pds24 , (5.7)

where ds24 is the metric on a four-dimensional hyper-Kähler base space, P and F are
scalars, and ω and β are one-forms with legs on the base space. These quantites can a
priori depend on all directions but u. The BPS equations can be rewritten in several
layers of BPS equations. We are going to assume in the following that the base metric
is flat, ds24 = δmndx

mdxn. For a general metric, the final system of equations is more
complicated, but conserves a linear structure, except for the zeroth layer.

To express the equations in a linear structure, we introduce new notations. First, we
define potentials as:

ZI ≡ −
√
2ηIJv

J
√
P . (5.8)
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For historical reasons and compatibility with the five-dimensional BPS equations, we now
relabel the index I so that it jumps index 3: I = 1, 2, 4, . . . , nT + 2. Note that the scalar
constraint, vIvI = 1, leads to

P =
1

2
ηIJZIZJ = Z1Z2 − Z2

4 − · · · − Z2
nT+2. (5.9)

Furthermore, the field strengths GI can be encoded in a vector of magnetic two-forms ΘI .
We also define the following derivatives

DΦ ≡ d4Φ− β̇ ∧ Φ , Φ̇ ≡ ∂vΦ , (5.10)

and d4 is the exterior derivative on the four-dimensional base space.
The “zeroth layer” of BPS equations states that the base is hyper-Kähler, and that the

two-form Dβ is self-dual: ⋆4Dβ = Dβ. These equations are in general non-linear, however
we chose the base space to be flat, and we can furthermore assume β to be v-independent,
to make this layer linear1.

The “first layer” of equations are linear equations on the potentials ZI and the two-
forms ΘI , sourced by β:

⋆4Θ
I = ΘI ,

ηIJD ⋆4
(
DZJ + ZJ β̇

)
= −ΘI ∧ Dβ ,

DΘI − β̇ ∧ΘI = ηIJ ⋆4 ∂v

(
DZJ + ZJ β̇

)
.

(5.11)

The last two equations constitute the “second layer”, they are linear equations on ω

and F , sourced by all the other functions:

Dω + ⋆4Dω + FDβ = ηJI ZJΘ
I ,

⋆4D ⋆4
(
2ω̇ + F β̇ −DF

)
= − 2

(
2ω̇ + F β̇ −DF

)m
∂vβm − ηIJ ⋆4

(
ΘI ∧ΘJ

)
+ ηIJ

[
∂2v(ZIZJ)− ŻIŻJ

]
.

(5.12)

5.1.2 Uplifting to IIB supergravity

We now fix the number of tensor multiplets, nT = 2, and we restrict to the case of a flat
base space and of a v-independent one-form β. In Type IIB supergravity, the ansatz takes

1We present the rest of the BPS equations without assuming the v-independence, but the solutions
that we study next will all verify it.
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the form:

ds210 =

√
Z1Z2

P
ds26 +

√
Z1

Z2

ds2(T 4) ,

e2Φ =
Z2

1

P
,

B2 = − Z4

P
(du+ ω)(dv + β) + a4 ∧ (dv + β) + δ4 ,

C(0) =
Z4

Z1

,

C(2) = − Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + δ1 ,

C(4) = − Z4

Z2

vol(T 4)− Z4

P
δ1 ∧ (du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + x3 ∧ (dv + β) ,

C(6) = vol(T 4) ∧
[
−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + δ2

]
,

(5.13)
where vol(T 4) is the volume form of the four-torus, and we have introduced forms on the
base space: a1,2,4 are one-forms, δ1,2,4 are two-forms and x3 is a three-form. The forms aI
and δI are fixed such that the magnetic two-forms are expressed as

ΘI = DaI + δ̇I , (5.14)

and the three-form x3 is fixed by the self-duality condition of C(4).

As a first example of solution, it is instructive to determine how the supersymmetric
three-charge black hole described in Section 3.3 is embedded in this ansatz. Identifying
(3.5) with (5.7) and (5.13) leads to

Z1,5 = H1,5 = 1 +
Q1,5

r2
, Z4 = 0 , ω = β = 0

F = −2(HP − 1) = −2QP

r2
, ΘI = 0 .

(5.15)

Adding (left) angular momentum is also simple, by replacing

ω =

√
2JL
r2

(
sin2 θ dϕ1 + cos2 θ dϕ2

)
, (5.16)

where the flat base space is expressed in spherical coordinates (r, θ, ϕ1, ϕ2).

5.2 The two-charge supertube

The two-charge geometries are best understood in a different duality frame, the F1-P
system, which can be obtained from the D1-D5 by a chain of S and T dualities [52, 53].
In this frame, a stack of N5 strings (or equivalently a long string with winding N5) are

42



wrapping the y-circle, and there is N1 units of left-moving momentum along the same
circle. Each specific geometry is encoded by a curve gA(v′) describing the profile of the
string in spacetime, where the coordinate v′ is the null direction ∼ t + y, with enhanced
periodicity: v′ ≡ v′ + 2πR̂ with2 R̂ = Q5/Ry. The entropy is then recovered from all the
possible ways the string can move.

To follow the dualities back to the D1-D5 frame, we are going to assume that the
four-torus is rigid, which implies gi(v′) = 0 in all but one torus direction, that we name
5, so the string only moves in the four non-compact spacetime directions and in direction
5. The full solution can be expressed in the fields of the BPS ansatz in the following way:

Z1 = 1 +
Q5

2πR̂

∫ 2πR̂

0

|ġm(v′)|2 + |ġ5(v′)|2

|xm − gm(v′)|2
dv′ , Z2 = 1 +

Q5

2πR̂

∫ 2πR̂

0

1

|xm − gm(v′)|2
dv′ ,

Z4 = − Q5

2πR̂

∫ 2πR̂

0

ġm(v
′)

|xm − gm(v′)|2
dv′ , d4γ2 = ⋆4 d4Z2 , d4δ2 = ⋆4 d4Z4 ,

A = − Q5

2πR̂

∫ 2πR̂

0

ġn(v
′)dxn

|xm − gm(v′)|2
dv′ , d4B = − ⋆4d4A ,

β =
−A+B√

2
, ω =

−A−B√
2

, F = 0 , ΘI = 0 .

(5.17)
Note that the non-zero values of β and ω correspond to a deformation of the D1-D5 black
hole with a KKm dipolar charge and angular momentum. This is a crucial ingredient to
“puffing up” the branes and resolving the singularity. In Part III we explain what makes
this resolution possible: the brane system along with the dipolar charges preserve locally
16 supersymmetries.

5.2.1 The round supertube

The round supertube is the simplest example of two-charge solutions. We consider a
circular string profile in a plane (x1, x2) of the flat base space:

g1(v
′) = a cos

(
v′

R̂

)
, g2(v

′) = a sin

(
v′

R̂

)
, (5.18)

where a is the radius of the supertube. This solution has a very simple expression in
spherical bipolar coordinates. Define coordinates (r, θ, ϕ1, ϕ2) such that:

x1 + ix2 =
√
r2 + a2 sin θeiϕ1 , x3 + ix4 = r cos θeiϕ2 . (5.19)

In these coordinates, the locus r = 0 describes a disk of radius a. The origin of space is
at the center of this disk, θ = 0, while the supertube is located on the edge, θ = π/2. The
flat metric is expressed as

ds24 = Σ

(
dr2

r2 + a2
+ dθ2

)
+
(
r2 + a2

)
sin2 θdϕ2

1 + r2 cos2 θdϕ2
2 , (5.20)

2R̂ is indeed proportional to 1/Ry, this is because the chain of dualities between the F1-P frame and
the D1-D5 frame involves a T-duality along y, inverting the radius.
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where
Σ ≡ r2 + a2 cos2 θ . (5.21)

The fields of the ansatz are then given by:

Z1 = 1 +
Q1

Σ
, Z2 = 1 +

Q5

Σ
, Z4 = F = 0 , ΘI = 0 ,

ω = ω0 =
Rya

2

√
2Σ

(
sin2 θ dϕ1 + cos2 θ dϕ2

)
, β =

Rya
2

√
2Σ

(
sin2 θ dϕ1 − cos2 θ dϕ2

)
.

(5.22)
Note that 1/Σ is indeed a harmonic function, with a source that is smeared on the
supertube locus. Imposing the regularity of the metric at the supertube locus leads to a
relation between the radius of the y-circle, the charges and the radius of the supertube:

Q1Q5 = R2
ya

2 . (5.23)

In the decoupling limit, when one drops the 1’s in the harmonic functions, the metric is
that of global AdS3 × S3, with AdS radius (lAdS)

2 =
√
Q1Q5. This solution is horizonless

and smooth everywhere.:

ds26 =
√
Q1Q5

[
− r2 + a2

a2Ry

dt2 +
dr2

r2 + a2
+

r2

a2Ry

dy2

+ dθ2 + sin2 θ
(
dϕ1 −R−1

y dt
)2

+ cos2 θ
(
dϕ2 −R−1

y dy
)2]

.

(5.24)

One can also generalize the solution to a round supertube wrapping the circle k times:

g1(v
′) =

a

k
cos

(
kv′

R̂

)
, g2(v

′) =
a

k
sin

(
kv′

R̂

)
, (5.25)

The decoupling limit of these solutions is an orbifolded global AdS3 × S3/Zk space.

5.2.2 The CFT description

In the decoupling limit, all the supertube solutions presented here possess AdS3 × S3

asymptotics, with a rigid torus, and according to the AdS/CFT correspondence, they must
be dual to states in the D1-D5 CFT. Since they do not have a momentum charge, they
must be dual to R-R ground states. These ground states were described in Section 4.3.2,
there are five such ground states in the seed T 4 theory of the orbifold: |±,±⟩ and |00⟩.
The precise dictionary between these ground states and the harmonics of the string profile
has been established in [18,53,54]:

g1 + ig2 =
a

k
e±ikv

′/R̂ ←→
∏
N±,±

|±,±⟩k

g3 + ig4 =
a

k
e±ikv

′/R̂ ←→
∏
N±,∓

|±,∓⟩k

g5 =
b

k
sin
(
k v′/R̂

)
←→

∏
Nk

|00⟩k

(5.26)
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where a and b are the amplitudes of the harmonics, k is the mode number, and
N±,±, N±,∓ ∼ a2 and Nk ∼ b2 are respectively the number of strands of type
|±,±⟩k , |±,∓⟩k and |00⟩k in the complete state of the orbifold theory.

As an example, the dual of the round supertube (5.25) is∏
N/k

|++⟩k , (5.27)

where N = N1N5.
This dictionary has been tested extensively: on both sides of the correspondence,

three-point and four-point correlators have been computed and shown to match.

5.3 Superstrata

Superstrata are are solutions of six-dimensional supergravity with three global charges,
D1, D5, and P, preserving four supersymmetries [18–22]. They are constructed in an
asymptotically AdS3 space, their coupling to flat space will not be discussed here. Starting
from a supertube seen as a “seed solution”, one can construct superstrata by adding left-
moving momentum waves to the solution. We will present the superstrata construction
where the seed is a round supertube3 This requires adding modes to the supertube shape,
that have the phase dependence:

vk,m,n = (m+ n)

√
2v

Ry

+ (k −m)ϕ1 −mϕ2 , (5.28)

where (k,m, n) are non-negative integers, and m ≤ k. To fully obtain the superstrata
solution, one need to solve the three layers of BPS equations. The zeroth layer of BPS
equations is trivially solved, as the four-dimensional base is kept flat, and the self-dual β
is left unchanged:

β =
Rya

2

√
2Σ

(
sin2 θ dϕ1 − cos2 θ dϕ2

)
. (5.29)

5.3.1 First layer

To solve the first layer of equations (5.11), we make the following ansatz:

Z1 =
Q1

Σ
+
∑
i

bki,mi,ni1 z̃ki,mi,ni , Z2 =
Q5

Σ
+
∑
i

bki,mi,ni2 z̃ki,mi,ni ,

Z4 = −
∑
i

bki,mi,ni4 z̃ki,mi,ni , ΘI =
∑
i

ηIJbki,mi,niJ ϑ̃ki,mi,ni ,
(5.30)

3The superstrata construction on generic supertube backgrounds is still an open problem. In Part II
we construct a new family of superstrata, whose supertube base is ellipsoidal, but our method allows only
for a very restricted set of modes, namely (1, 0, n).
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where the bk,m,nI are Fourier coefficients, and z̃k,m,n and ϑ̃k,m,n are functions with quantum
numbers (k,m, n). The first layer of BPS equations then becomes:

⋆4D ˙̃zk,m,n = Dϑ̃k,m,n , D ⋆4 Dz̃k,m,n = − ϑ̃k,m,n ∧ dβ , ϑ̃k,m,n = ⋆4 ϑ̃k,m,n . (5.31)

It is possible to solve these equations using a so-called momentum generating technique
[18], that we will only sketch here. Besides providing us with explicit solutions to the
BPS equations, these methods are very powerful because they let us readily construct the
holographic dictionary of the geometries we are constructing.

First note that linearizing the generic supertube solution (5.17) around the round
supertube leads to solutions with mode numbers (k, k, 0). Starting from these solutions,
one can generate left-moving excitations by acting with some of the generators of the small
algebra of the CFT (specifically L−1 and J+

0 in the NS sector), whose action on the bulk
geometry is known and corresponds to global coordinate transformations of AdS3 × S3.
This way, one obtains the original superstrata modes:

z̃k,m,n = Ry
∆k,m,n

Σ
cos vk,m,n ,

ϑ̃k,m,n = −
√
2∆k,m,n

[(
(m+ n)r sin θ + n

(m
k
− 1
) Σ

r sin θ

)
Ω(1) sin vk,m,n

+
(
m
(n
k
+ 1
)
Ω(2) + n

(m
k
− 1
)
Ω(3)

)
cos vk,m,n

]
,

(5.32)

where we have defined a set of mode functions

∆k,m,n =

(
a√

r2 + a2

)k(
r√

r2 + a2

)n
sink−m θ cosm θ , (5.33)

and where Ω(I) are a basis of self-dual two-forms.

5.3.2 Second layer

Solving the second layer of BPS equations, (5.12), is much more involved. The sources
of these equations are quadratic in ZI and ΘI and therefore mix the Fourier modes of
the first-layer solutions. The question of whether the solutions constructed that way are
smooth geometries is also non-trivial, and the task of finding the generic solutions for
multi-mode superstrata is still in progress. For the purposes of this manuscript, we are
going to put our focus on a subfamily of solutions for which these equations are simpler
to solve: the multi-mode solutions with k = 1. This means that only the Fourier modes
(1, 0, n) and (1, 1, n) can be activated.

With this hypothesis, the first layer of solution can be rewritten in terms of holomor-
phic functions [26,27]. Define the following complex coordinates:

χ =
a√

r2 + a2
sin θeiϕ1 , µ = cot θei(

√
2v/Ry−ϕ1−ϕ2) , ξ =

r√
r2 + a2

ei
√
2v/Ry . (5.34)
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We then introduce two holomorphic functions of ξ, F0(ξ) and F1(ξ), and define

F (χ, µ, ξ) = χ[F0(ξ) + µF1(ξ)].

The holomorphic functions can be expanded at the origin

F0(ξ) =
∑
n

bnξ
n , F1(ξ) =

∑
n

dnξ
n , (5.35)

and the coefficients bn and dn are respectively going to be the amplitudes of the Fourier
modes (1, 0, n) and (1, 1, n). We also need to define auxiliary functions

A = χµ(1 + ξ∂ξ)F1 , and B = χξ∂ξF0 , (5.36)

and self-dual forms

Ωy =
1√
2

(
Ω(2) + ir sin θΩ(1)

)
, Ωz =

1√
2

(
Ω(3) + i

(
r sin θ − Σ

r sin θ

)
Ω(1)

)
. (5.37)

With these definitions, the fields of the first layer can be written as

Z1 =
Q1

Σ
+

R2
y

4Q5Σ

(
F 2 + F̄ 2

)
, Z2 =

Q5

Σ
, Z4 =

Ry

2Σ

(
F + F̄

)
,

Θ1 = 0 , Θ2 =
Ry

Q5

F (AΩy +BΩz) + c.c. , Θ4 = − 2(AΩy +BΩz) + c.c. .
(5.38)

Note that, compared to (5.30), we did not merely restrict to the Fourier modes with
k = 1. We also suppressed the modes in Z2, and fixed the relative amplitudes of the
Fourier modes bk,m,n1 and bk,m,n4 : the amplitudes appearing in Z1 are the square of those
in Z4. This is because the quadratic sources of the equations of the second layer contain
both non-oscillating “RMS” components and oscillating components, and the presence of
RMS values generically lead to singularities in the final solution. These singularities can
be eliminated by fixing the amplitudes as we did; this process is known as “coiffuring”.

Having done these simplifications, the equations of the second layer can be solved, and
the fields are given by

F =
1

a2
(
|F0|2 + |ξ|2|F1|2 − c2

)
ω = ω0 −

Ry

2
√
2a2(1− |χ|2)

[(
χ̄F̄0F + χF0F̄ − c2|χ|2

)
dϕ1

+
(
χ̄µ̄F̄1F + χµF1F̄

)
dϕ2

]
− iRy|χ|2√

2a2 sin(2θ)

(
µF̄0F1 − µ̄F0F̄1

)
dθ

(5.39)

where c is a constant of integration, that is going to be fixed to ensure the regularity and
the asymptotics of the solution. Note that we recover the round supertube solution by
fixing all the amplitudes and the integration constant to zero, F0 = F1 = c = 0.
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5.3.3 Regularity and asymptotics

The coiffuring procedure that we applied on the first layer of fields already removed most
of the singular behaviors of the solutions. One still need to ensure that the solutions are
regular, and have the correct asymptotics.

The first condition the metric (5.7) must meet is to have the correct AdS3×S3 asymp-
totics. This implies that both F and ω must decay at infinity, at least as quickly as r−2.
This can be achieved by fixing the integration constant c as:

c2 =
∑
n

(
b2n + d2n

)
, (5.40)

and by applying a large coordinate transformation, u → u + f(v), where f is suitably
chosen4 so as to have

F = − 1

r2

(∑
n

d2n +
∑
n

n(b2n + d2n) + oscillations

)
+ . . . ,

ω = ω0 +
Ry√
2r2

(∑
n

d2n

)(
sin2 dϕ1 + cos2 dϕ2 + oscillations

)
+ . . . .

(5.41)

The then need to impose the smoothness of the metric at the special locus. As for the
supertube, it leads to a condition relating the charges with the radius of the y-circle, the
radius of the supertube, and also the amplitude of the momentum wave:

Q1Q5 = R2
y

(
a2 +

c2

2

)
. (5.42)

Once this is fixed, one can prove that the metric is smooth everywhere and has no
closed time-like curves. A schematic depiction of the superstrata geometry is given in
Figure 5.1.

5.3.4 Conserved charges

The superstrata solutions have five conserved charges. There is of course the three global
charges of the D1-D5-P black hole, Q1, Q5, QP . But the solutions also have dipolar charges
corresponding to the smeared KKm along the supertube locus. The charges are left and
right angular momenta JL, JR.

From a given solution, the conserved charges can be read from the fall off of the fields
at infinity. The D1 and D5 brane charges, Q1, Q5, are given by the r−2 term in the large
r expansion of respectively Z1, Z2. The momentum charge is given by the RMS value of
the expansion of F :

F = − 1

r2
(2QP + oscillations) + . . . , (5.43)

4It was necessary to fix the constant c first, to ensure that f is a periodic function of v.
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Figure 5.1: A depiction of the superstrata geometry. The geometry is like that of extremal
BTZ, but contrary to the black hole solution, the geometry caps off at a finite redshift
parametrized by a, the radius of the supertube. The scale that is named b in the figure is
such that QP ∼ nb2. The figure was taken from [21].

and the angular momenta are obtained from the asymptotic expansion of ω and β:

βϕ1 + βϕ2 + ωϕ1 + ωϕ2 =

√
2

r2
[(JR − JL cos 2θ) + oscillations] + . . . . (5.44)

For the (1,m, n) superstrata solutions, these charges are given by

JL =
a2Ry

2
, JR =

Ry

2

(
a2 +

∑
n

d2n

)
, QP =

1

2

[∑
n

d2n +
∑
n

n(b2n + d2n)

]
. (5.45)

5.3.5 The CFT description

Once again, the superstrata constructed here must have a dual description as states within
the D1-D5 CFT. The momentum-generating technique provides an invaluable guide to de-
termine these states. Indeed, the original superstrata construction took the reverse path:
the CFT state was first constructed and used as a guide for determining the bulk solu-
tion. To find the solutions to the first layer of BPS equations, the momentum-generating
technique consists in using the (k, k, 0) solution, corresponding to a supertube with g5 ̸= 0

linearized around the round supertube, and apply large gauge transformations to obtain
the generic (k,m, n) solutions. These large gauge transformations correspond, in the
CFT, to the application of specific operators of the small algebra. In the NS-NS sector,
one has:

L0 =
iRy

2
(∂t + ∂y) ,

L±1 = ie
± i
Ry

(t+y)

[
−Ry

2

(
r√

r2 + a2
∂t +

√
r2 + a2

r
∂y

)
± i

2

√
r2 + a2∂r

]
,

J3
0 = − i

2

(
∂ϕ̃1 + ∂ϕ̃2

)
, J±

0 =
i

2
e±i(ϕ̃1+ϕ̃2)

(
∓i∂θ + cot θ∂ϕ̃1 − tan θ∂ϕ̃2

)
,

(5.46)
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where the coordinates ϕ̃1 and ϕ̃2 are the result of the spectral flow that transforms the
supertube metric to the global AdS3 × S3 metric (5.24):

ϕ̃1 = ϕ1 −
t

Ry

, ϕ̃2 = ϕ2 −
y

Ry

. (5.47)

The superstrata construction uses the operators J+
0 and L1. To obtain the description

in the R-R sector, one reverses the spectral flow, these two operators are then mapped
respectively to J+

−1 and L−1 − J3
−1.

The momentum perturbations associated to the Fourier mode (k,m, n) are obtained
by applying m times the operator J+

−1, and n times L−1 − J3
−1, on each supertube strand

|00⟩k. The complete state dual to a multi-mode (k,m, n) superstrata is

(|++⟩1)
N++

∏
ki,mi,ni

[
(J+

−1)
mi

mi!

(
L−1 − J3

−1

)ni
ni!

|00⟩ki

]Nki,mi,ni
, (5.48)

where the integers N++ and Nk,m,n are functions of the amplitudes of each mode.
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Part II

New microstate geometries of the
D1-D5 system
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Chapter 6

Introduction to Part II

The work that is presented in this Part is based on [37–42].
Superstrata have provided some of the most remarkable and broad families of mi-

crostate geometries. They approximate the exterior regions of black-holes to high preci-
sion, and yet cap off smoothly, at arbitrarily high red-shift, yielding smooth, BPS hori-
zonless geometries. What makes superstrata all the more remarkable is that they have
a precisely-known holographic dictionary in which the magnetic fluxes that support the
superstrata can be directly related to coherent excitations in the dual conformal field
theory. Indeed, this holographic dictionary has undergone highly non-trivial tests us-
ing precision holography in which the structure of the supergravity background has been
checked against correlation functions in the CFT.

From the perspective of the black-hole information problem and for holography, it is
very important to move beyond supersymmetry and construct non-extremal microstate
geometries and map out the CFT states that they capture. A priori, this seems an
impossible challenge. Superstrata are constructed in six-dimensional supergravity, and
even the simplest of BPS superstrata depend on four variables, and the most general
depend on five variables. It is, therefore, to be expected that non-trivial, non-extremal
superstrata will be time-dependent and so will depend on, at least, five variables. At the
technical level, one has to solve the full non-linear equations of the supergravity, and at
the conceptual level, these states will no longer be “protected” by supersymmetry, and will
be inherently more complicated and potentially unstable. Indeed, one ultimately expects
to see them decay into some analog of Hawking radiation.

However, a new family of consistent truncations [27] has shown how to reduce a non-
trivial “superstratum” sector of six-dimensional (1, 0) supergravity, to a family of gauged
supergravities in three-dimensions. We use this as a new approach to the challenge of
finding non-extremal superstrata.

There are many examples in which gauged supergravity in low dimensions represent
consistent truncations of higher dimensional supergravity theories. A consistent trun-
cation is much more than having a low-dimensional effective field theory: A consistent
truncation means that solving the dynamics in the lower dimension provides an exact
solution to the higher dimensional theory. This means that any dependence of a solu-
tion on the compactification manifold is handled through the machinery of the consistent
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truncation and does not need to be solved directly. A consistent truncation can therefore
dramatically simplify the BPS equations and, even more importantly, the equations of
motion.

The significance of this consistent truncation is that it shows how particular families
of BPS superstrata, depending on four variables in six dimensions, reduce to a three-
dimensional solution that depends on only two variables. Moreover, we find that the
three-dimensional theory can encode the collisions of BPS and anti-BPS superstratum
waves, and thus can capture a whole range of non-extremal, non-BPS microstate geome-
tries. Such non-extremal solutions can be described in terms of functions of, at most, three
variables. To simplify further the problem we seek time-independent solutions with AdS3

boundary conditions: this effectively puts the system in a box, and time-independence
means that the open string collisions will be in equilibrium with the radiation they pro-
duce. We build ansätze inspired from the Q-ball solutions, that is often used for the
construction of bose star solutions, to reduce the problem to only one dimension. Us-
ing these tools, we are able to build perturbatively non-BPS superstrata, or microstrata.
Microstrata are the non-supersymmetric geometries created by combining left-moving su-
perstrata excitations with right-moving “anti-superstrata” excitations. The truncation
and ansätze also brings the problem within striking distance of numerical methods, and
we use those to confirm the results of the pertubration theory, and probe the solutions in
the very deep regime. As an added bonus, we also know the precise holographic dictionary
for such solutions and can therefore study, and thoroughly test, such microstrata in the
dual CFT.

Apart from the motivation of microstrata, we also analyse the BPS solutions in this
particular three-dimensional gauged supergravity theory. Some supersymmetric solutions
of this theory have already been found, they are the (1,m, n) superstrata. As we will see,
one can build other BPS solutions in this theory, using new momentum carriers. When
uplifted in six-dimensions, these solutions correspond to superstrata with a non-flat base ;
while standard superstrata are constructed on top of a round supertube, we find that these
new solutions add elliptical deformations to the supertube.
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Chapter 7

A three-dimensional gauge theory

The simplest way to construct of microstata is to work with a particular three-dimensional
theory of gauged supergravity. This Chapter mostly reviews the work of [37], and aims to
give a full and complete description of this theory, as well as an introduction to its super-
symmetries. It serves as a basis for the next Chapters to build upon, and as an introduc-
tion to the various notations and conventions that are used throughout this manuscript.

We provide a translation between the supergravity theory in which the supersymme-
tries were analyzed [55,56] and the more recent discussions that involve the purely bosonic
actions [27,57,58] for which the uplift formulae have been derived. All of these references
use different conventions and, in testing the supersymmetry, a significant effort goes into
making the translation between the various formulations. We therefore try to spell out
many of the explicit details.

Initially, we will work with the N =8 (16 supersymmetries) theory that was analyzed
in [56]. The theory we ultimately seek to analyze is the N =4 (8 supersymmetries) theory
that underlies the D1-D5 system and that was used in [27,57,58].

7.1 A summary of notation and conventions

7.1.1 Group theory

We work with the group G = SO(8, n), and its subgroup H = SO(8)×SO(n). Following
[56], we use calligraphic indices as adjoint labels of G = SO(8, n). We use barred, capital
Latin indices, Ī , J̄ , . . . to denote the vector of SO(8, n), unbarred capital Latin indices,
I, J, . . . , to denote the vector of SO(8), and small Latin indices, r, s, . . . to denote the
vector of SO(n). In the standard way, the adjoint indices of G = SO(8, n), SO(8) and
SO(n) can be written as skew pairs Ī J̄ , IJ and rs. Such a labeling double counts the
adjoint but when we use this notation we will always sum over all indices without any
implicit factors of 1

2
. Later in the discussion we will restrict to G = SO(4, n), and its

subgroup H = SO(4)×SO(n), and this will result in the obvious restrictions on the index
ranges.
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We define the G = SO(8, n) invariant matrix in its canonical form:

ηĪJ̄ = ηĪJ̄ ≡ diag
(
1, 1, . . . , 1,−1,−1, · · ·−1

)
, ηIJ = ηIJ = δIJ , ηrs = ηrs = −δrs

(7.1)
Later, when we restrict to G = SO(4, n), we will introduce η̂ĪJ̄ = η̂ĪJ̄ , which will be
adapted to the GL(4,R) basis (see (7.37)).

The matrices, tM, will denote generators of the adjoint of G. In the obvious manner,
it will be convenient to define{

tM
}
≡
{
X ĪJ̄ = −X J̄ Ī

}
≡
{
XIJ = −XJI , Xrs = −Xsr, Y Ir = −Y rI

}
(7.2)

The structure constants are defined, as usual, via
[
tM , tN

]
= fMN

P t
P , which we write

as [
X ĪJ̄ , XK̄L̄

]
= f ĪJ̄ K̄L̄M̄N̄ X

M̄N̄

= − ηĪK̄X J̄L̄ + ηĪL̄X J̄K̄ + ηJ̄K̄X ĪL̄ − ηJ̄L̄X ĪK̄ .
(7.3)

which leads to:

f ĪJ̄ K̄L̄M̄N̄ = − 1

2
ηĪK̄

(
δJ̄M̄ δL̄N̄ − δ

J̄
N̄ δ

L̄
M̄

)
+

1

2
ηĪL̄
(
δJ̄M̄ δK̄N̄ − δ

J̄
N̄ δ

K̄
M̄

)
+

1

2
ηJ̄K̄

(
δĪM̄ δL̄N̄ − δ

Ī
N̄ δ

L̄
M̄

)
− 1

2
ηJ̄L̄

(
δĪM̄ δK̄N̄ − δ

Ī
N̄ δ

K̄
M̄

)
.

(7.4)

Note that the factors of 1
2

appear because we are summing over all values of M̄N̄ and so
this leads to a double counting of the generators.

In terms of explicit matrix representations, (7.3) and (7.4) correspond to using the
matrix generators: (

X ĪJ̄
)
K̄
L̄ = δĪK̄ η

J̄L̄ − δJ̄K̄ η
ĪL̄ . (7.5)

One should note that these choices are the same as the conventions used in equation
(A.3) of [59]1, and equation (2.4) in [58]2 but have the opposite signs to those of [27],
equations (2.13) and (2.14). The conventions we use here appear to be the use used in
[56], and match those of equation (3.9) of [60]3. While the gauge matrices and structure
constants that we use here have the opposite sign to those of [27], we will eventually arrive
at the same formulation as [27] through the choice of the sign of a gauge coupling, or the
ultimate sign of the embedding tensor. As we will see, the signs of these generators are
crucial to showing that the supersymmetric solutions in [27] are indeed consistent with the
supersymmetry variations of [56]. This provides many non-trivial tests of all the details
we are cataloging here4.

1However, in this reference, equation (A.3) is inconsistent with (A.1)!
2However, as noted in [27], there are inconsistencies in the gauge action of [58], and these suggest an

inconsistent usage of the structure constants or gauge matrices. The gauge action in [27] is correct and
consistent.

3This requires a small correction explained below.
4These results therefore provide detailed confirmation (and the occasional correction or clarification)

of the conventions and results in the literature over the last 20 years.
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While it is not directly relevant to our discussion here, to match our conventions
to those of the commutators in equation (3.9) of [60] one must reverse the signs of the
generators, Xrs. This sign reversal is natural because the metric (7.1) is negative definite
on SO(n) and this passes into (7.3) and (7.5): Reversing the signs of the Xrs give them
commutators for a positive definite metric on SO(n). Our computations are not sensitive
to this sign and we will stay with the conventions above.

7.1.2 SO(8) spinors

The N =8 theory has an SO(8) R-symmetry, and the fermions transform in the spinor
representations. Thus we will need 16× 16, SO(8) Γ-matrices that satisfy:{

ΓI , ΓJ
}

= 2 δIJ 116×16 . (7.6)

We use capital Latin indices I, J,K, . . . to denote vector indices, capital Latin indices
A,B,C, . . . to denote spinors in the 8+ Weyl representation and dotted capital Latin
indices Ȧ, Ḃ, Ċ, . . . to denote spinors in the 8− Weyl representation. We use a represen-
tation of the Γ-matrices where they are real and symmetric and in which the non-trivial,
8× 8 blocks are the off-diagonal pieces: ΓJ

AȦ
and ΓJ

ȦA
. The helicity projector is:

(Γ12345678)AB = δAB , (Γ12345678)ȦḂ = − δȦḂ . (7.7)

7.1.3 Space-time metric and spinors

Much of the literature on three-dimensional gauged supergravity uses the conventions set
up in [61], and we will follow suit. This means that the metric has signature (+ − −).
The 2× 2 space-time gamma matrices are:

γ0 = σ2 =

(
0 −i
i 0

)
, γ1 = i σ3 =

(
i 0

0 −i

)
, γ3 = i σ1 =

(
0 i

i 0

)
. (7.8)

and we have γ012 = −i12×2.
The orientation is set by taking (in frames)5:

ϵ012 = ϵ012 = + 1 . (7.9)

We will use ϵabc and ϵabc to denote the permutation signature that takes values 0,±1. The
covariant ε-symbol will be denoted

εµνρ = e ϵµνρ , εµνρ = e−1 ϵµνρ , (7.10)

where e =
√
|g| is the frame determinant.

5Note that because the metric has signature (+ − −), the sign of the ϵ tensor does not depend on
whether the indices are up or down.
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7.1.4 The three-dimensional metric

The most general, three-dimensional metric will depend on three arbitrary functions: six
metric components minus three functions from coordinate transformations. One way to
realize this is to fix two of the coordinate transformations to arrive at a conformally-flat
spatial base. The time direction can also have its own scale factor, and there can also be
two-component, angular-momentum vector, k. One can use the coordinate re-definition
of t to gauge k so that it only has one spatial component. We therefore claim that, at
least locally, the most general three-dimensional metric can be re-cast in the form:

ds23 = Ω̂2
1 (dt+ kv dv)

2 − Ω̂2
0

|dζ|2

(1− |ζ|2)2

= Ω̂2
1 (dt+ kv dv)

2 − Ω̂2
0

(
dr2

r2 + a2
+

2

R2
y a

4
r2 (r2 + a2) dv2

)
,

(7.11)

where
ζ ≡ ξ e

i
√

2v
Ry , and ξ =

r√
r2 + a2

. (7.12)

The three arbitrary functions are Ω̂0, Ω̂1 and kv. We are using here the coordinates
(t, r, v) because they are well adapted to the discussion of asymptotically AdS3 space, and
superstrata. Indeed, the metric on global AdS3 of radius R, can be written as:

ds23 = R2

(
R−2
y

(
dt+Ry A

)2 − |dζ|2

(1− |ζ|2)2

)
, (7.13)

where

A ≡ i

2

(
ζ dζ̄ − ζ̄ dζ
1− |ζ|2

)
. (7.14)

As usual on AdS3, we interchange between (t, y) coordinates, and null coordinates
(u, v) via:

u ≡ 1√
2
(t− y) , v ≡ 1√

2
(t+ y) , (7.15)

The parameter Ry, is the radius of the y-circle:

y ∼= y + 2πRy . (7.16)

It is also convenient to write to write the metric using the compactified coordinate ξ,
and use the scale-free coordinates

τ =
t

Ry

, ψ =

√
2v

Ry

, (7.17)

where ψ inherits the periodicity ψ ≡ ψ + 2π. In these coordinates, we write

ds23 = R2
AdS

[
Ω2

1

(
dτ +

k

(1− ξ2)
dψ

)2

− Ω2
0

(1− ξ2)2
(
dξ2 + ξ2 dψ2

) ]
, (7.18)
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for three arbitrary scale-free functions Ω0, Ω1 and k of the three coordinates, (τ, ξ, ψ).
This is the parametrization we will mostly use throughout the rest of this manuscript.

We will return to these metrics later, but here we will fix our frame orientations. We
will take frames with

e0 ∼ (dt+ kv dv) , e1 ∼ dr , e2 ∼ dv . (7.19)

and use the ϵ-symbols defined in (7.9), or (7.10). This means that our volume form has
the orientation:

vol3 ∼ dt ∧ dr ∧ dv ∼ du ∧ dr ∧ dv . (7.20)

The orientation in [27] was given as:

e−1εuvr = − ε ⇒ vol3 ∼ − ε du ∧ dv ∧ dr = ε du ∧ dr ∧ dv , (7.21)

where ε = ±1 is a parameter introduced in [27]. We will take ε = −1, and so, on the
face of it, we seem to be using different orientations to that of [27]. However, one should
remember that [27] uses the opposite of our metric signature and so raising all the indices
to create εµνρ flips the sign in [27] but does not change the sign here. Thus the tensors,
εµνρ, have:

e εurv = ϵ012 = − ε , (7.22)

and are therefore the same as those of [27] (once we take ε = −1). This is the important
convention because it is (7.22) that enters the expressions for the Chern-Simons terms
and their kindred.

7.2 The N =8 theory

Our presentation will closely follow that of [56]. Apart from the graviton, this theory has
eight gravitini, ψAµ , the gauge connections, Bµ

M, 8n fermions, χȦr, and 8n bosons. The
supersymmetries, ϵA, and the gravitini transform in the, 8+, representation of SO(8) and
the fermions, χȦr, transform in the opposite helicity, 8−, representation of SO(8).

As with most gauged supergravity theories, the starting point is the scalar manifold
and its coupling to gauge fields. The scalar coset is

G

H
≡ SO(8, n)

SO(8)× SO(n)
. (7.23)

The scalar fields are then parametrized by a coset representative, L(x), that is viewed
as transforming on the left under a global action of g ∈ G, and on the right under a
composite, local symmetry h(x) ∈ H: L(x)→ gL(x)h(x)−1. The gauge group, G0, which
we will specify later, is a subgroup of G and the gauging promotes G0 to a local action
on L(x):

L(x) −→ g0(x)L(x)h
−1(x) , g0(x) ∈ G0 , h(x) ∈ H , (7.24)
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The gauge subgroup and its coupling are defined by an embedding tensor, ΘMN :

D̂µ ≡ ∂µ + gΘMN Bµ
MtN , (7.25)

where Bµ
M are the gauge connections.

The covariant derivative of L(x) is then used to define various connection components
via a Lie algebra decomposition6:

L−1
(
∂µ + gΘMN Bµ

MtN
)
L ≡ 1

2
QIJµ XIJ +

1

2
Qrsµ Xrs + PIrµ XIr , (7.26)

The tensor PIrµ will define the bosonic kinetic term and the Qµ’s are used to define
covariant derivatives on fermions:

Dµ ψ
A
ν ≡ ∂µψ

A
ν − Γ̂ρµν ψ

A
ρ +

1

4
ωµ

ab γab ψ
A
ν +

1

4
QIJµ ΓIJABψ

B
ν ,

Dµχ
Ȧr ≡ ∂µχ

Ȧr +
1

4
ωµ

ab γab χ
Ȧr +

1

4
QIJµ ΓIJ

ȦḂ
χḂr + Qrsµ χȦs .

Here Γ̂ρµν is the Christofflel connection and should not be confused with the Γ-matrices.
This term is omitted in [56], but this omission is harmless because only the skew derivative
D[µ ψ

A
ν] appears in the action and so the Christoffel connection disappears.

The scalar fields enter the action and supersymmetry variations in several non-trivial
ways, and these are characterized by various A-tensors that are derived from the T -tensor.
To define the latter one needs to decompose the adjoint action of the scalar matrix:

L−1tML ≡ VM
A t

A =
1

2
VM

IJ X
IJ +

1

2
VM

rsX
rs + VM

IrX
Ir , (7.27)

and then the T -tensor is defined by:

TA|B ≡ ΘMN VM
A VN

B . (7.28)

The A-tensors are then constructed from various pieces of the T -tensor:

AAB1 = − δAB θ − 1

48
ΓIJKLAB TIJ |KL ,

AAȦr2 = − 1

12
ΓIJK
AȦ

TIJ |Kr ,

AȦr Ḃs3 = 2δȦḂδrs θ +
1

48
δrs ΓIJKL

ȦḂ
TIJ |KL +

1

2
ΓIJ
ȦḂ

TIJ |rs .

(7.29)

where θ ≡ 2
(8+n)(7+n)

ηMNΘMN , and ηMN is the Cartan-Killing form on G. For more
details, see [56]. In the gauging we consider here, one has θ = 0.

The Lagrangian is then given by:

6This is where the signs of the generators are critical.

60



L = − 1

4
eR +

1

2
ϵµνρ ψ

A

µDνψ
A
ρ +

1

4
ePIrµ Pµ Ir −

1

2
ie χȦrγµDµχ

Ȧr

− 1

4
ϵµνρ gΘMN Bµ

M
(
∂νBρ

N +
1

3
gΘKL f

NK
P Bν

LBρ
P
)

− 1

2
ePIrµ χȦr ΓI

AȦ
γνγµψAν +

1

2
g eAAB1 ψAµγ

µνψBν

+ i g eAAȦr2 χȦrγµψAµ +
1

2
g eAȦr Ḃs3 χȦrχḂs − e V ,

where the potential is defined by:

V = − 1

4
g2
(
AAB1 AAB1 − 1

2
AAȦr2 AAȦr2

)
. (7.30)

One should note that we have replaced the potential W of [56] by −V as we wish to avoid
confusion with the superpotential that will be defined later.

This action is then invariant under the supersymmetry transformations [56]:

L−1δL = XIr ϵA ΓI
AȦ
χȦr , δχȦr =

1

2
iΓI

AȦ
γµϵAPIrµ + g AAȦr2 ϵA , (7.31)

δeµ
α = i ϵA γαψAµ , δψAµ = Dµϵ

A + i g AAB1 γµϵ
B , (7.32)

δBµ
M = − 1

2
VM

IJ ϵ
A ΓIJAB ψ

B
µ + iVM

Ir ϵ
A ΓI

AȦ
γµ χ

Ȧr . (7.33)

As usual there are also four-fermion terms in the action and higher fermion terms in the
supersymmetry variations. According to the arguments in [56], these terms are the same
as those given in [61]. Since we are interested in the BPS equations of supersymmetric
bosonic backgrounds, we will not need any of these higher fermion terms.

7.3 Truncating to the N =4 gauged supergravity

The N =4 theory has half the supersymmetries and, at a minimum, this means removing
half the gravitini and their superpartners. In six dimensions, the superpartners of the
truncated gravitini are four of the self-dual tensors, whose removal translates, in three
dimensions, to reducing the SO(8, n) global symmetry of the ungauged theory to SO(4, n).
This reduction also reduces the number of scalars from 8n to 4n, which means halving
the number of fermions, χȦr. The coset (7.23) is thus reduced to:

Ĝ

Ĥ
≡ SO(4, n)

SO(4)× SO(n)
. (7.34)

The SO(4, n) embeds in the obvious manner into SO(8, n) and indeed, here we will
simply view the N =4 theory as embedded in the larger N =8 theory. We will therefore
consider the scalar matrix to be that of the SO(8, n) theory but non-trivial only in the
SO(4, n) block defined by I, J, . . . = 1, 2, 3, 4.
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The corresponding truncation of the fermions is easily implemented: One must require(
1 − Γ5678

)
Φ = 0 , (7.35)

where Φ is any fermion, including the supersymmetries. Because the SO(8) helicity
projector is Γ12345678, this condition translates to:(
1− Γ1234

)
AB

ϵB = 0 ,
(
1− Γ1234

)
AB

ψBµ = 0 ,
(
1+ Γ1234

)
ȦḂ

χḂr = 0 . (7.36)

This cuts the supersymmetries, and all the fermionic degrees of freedom, in half.
It is easy to see that this truncation is consistent with the supersymmetry variations.

Because of the restriction on the scalars, the Lie algebra matrices in (7.27) must live in
SO(4, n). This means that all the indices on the T -tensor and on QIJµ and PIrµ must lie in
the Lie algebra of SO(4, n). It follows that QIJµ ΓIJ , PIrµ ΓI , and all the A-tensors commute
with Γ5678. This implies that the supersymmetry variations of the fermions respect the
projection (7.35). The variation L−1δL is easily seen to vanish along XIr, I = 5, . . . , 8

as a consequence of (7.35). Finally, the fact that VM
A lies in SO(4, n) means that it

is consistent with the supersymmetry variations to restrict the gauge fields, Bµ
M, to a

sub-algebra of SO(4, n).
There is a simple way to characterize this truncation in terms of a group invariant

sector of the N =8 theory. There is an (SU(2))4 subgroup of SO(8). One of these SU(2)
rotations is characterized as the self-dual rotations on the indices 5, 6, 7, 8. The projection
condition (7.35) requires all the fermions to be singlets under this SU(2). Moreover, the
centralizer of this SU(2) in SO(8, n) is precisely SO(4, n). Thus the truncation of the
N =8 theory to the N =4 theory may be defined as reducing to the singlet sector of this
SU(2).

While the N = 4 theory was the starting point of [27], and can be directly related
to superstrata, nothing prevents us from considering the three-dimensional solutions pre-
sented in [27] as being part of the larger N =8 theory and analyzing the supersymmetry
from that perspective. We will take this approach and find that the projection condition
(7.36) emerges from the analysis of the supersymmetry of the solution.

7.4 The minimal couplings of N =4 gauged supergrav-
ity

The three-dimensional theory that underlies the superstrata is the SO(4, 5) theory de-
scribed in [27]. Here we will summarize the essential features of that theory. Our pre-
sentation will differ slightly from [27] because of our conventions and because we will fix
some of the parameters7 that appeared in [27].

7This is not a restriction because these parameters were ultimately fixed in [27] by requiring that the
superstratum data solved the equations of motion.
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First, it is most convenient to express the embedding tensor details in terms of the
GL(4 ,R) basis of SO(4, 5) in which the invariant matrix takes the form:

η̂ ≡

04×4 14×4 0

14×4 04×4 0

0 0 −1

 . (7.37)

Note that we have fixed the parameter ε of [27] by taking:

ε = − 1 . (7.38)

This is merely a choice of convention. The change of basis matrices to go back to canonical
SO(4, 5) conventions with η of the form (7.1) may be found in the Appendix.

Following [27], a vector of SO(4, 5) will be denoted by

XM̄ ≡ (XI ,X I ,X0) , X M̄ ≡ (X I ,XI , εX0) , (7.39)

where the indices are raised and lowered using (7.37). The components, XI and X I ,
transform, respectively, in the 4 and 4 of GL(4,R).

The embedding tensor, Θ, is totally anti-symmetric8:

ΘK̄L̄,M̄N̄ = θK̄L̄M̄N̄ = θ[K̄L̄M̄N̄ ] , (7.40)

and the only non-vanishing pieces are [27,57,58,60]:

θIJKL = − g0 ϵIJKL , θIJK
L =

1

2
g0 ϵIJKM δLM , (7.41)

One should note that we have replaced the parameters α and γ0 in [27] according to:

α = γ0 =
1

2
g0 (7.42)

These replacements follow from equations (3.7) and (4.5) of [27] with ε = −1, as in (7.38).
We also note the g0 is related to the supergravity charges of the D1-D5 compactification
via:

g0 ≡ (Q1Q5)
− 1

4 . (7.43)

(See equation (4.5) of [27].)
The gauge group is SO(4)⋉ T6 and the connection AµK̄L̄ has the following 12 fields:

Aµ
IJ = − AµJI , Aµ

J
I = − AµJI . (7.44)

Because of the ϵ-symbols in the embedding tensor, it is convenient to define:

Ãµ
IJ ≡ 1

2
ϵIJKLAµ

KL , Âµ
IJ ≡ 1

2
ϵIJKLAµ

K
L , (7.45)

8This is why θ in (7.29) vanishes.
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As in [27], we introduce:
Bµ

IJ ≡ 4 g0
(
Ãµ

IJ − ÂµIJ
)
. (7.46)

The gauge connection acts according to (7.25), which we now write as:

D̂µXP̄ ≡ ∂µXP̄ + g Aµ
K̄L̄ΘK̄L̄,M̄N̄

(
XM̄N̄

)
P̄
Q̄(XQ̄)

= ∂µXP̄ + g Aµ
K̄L̄
(
ΘK̄L̄,P̄ N̄ η̂

N̄Q̄XQ̄ −ΘK̄L̄,M̄P̄ η̂
M̄Q̄XQ̄

)
,

(7.47)

where we have used (7.5). There are several things to note at this point. Because we have
replaced adjoint indices by doubled indices like, K̄L̄, we are double summing over the
adjoint representation. One can take this to be part of the definition and normalization
of the components of the embedding tensor, ΘK̄L̄,M̄N̄ . Indeed one can compensate for the
double sums by sending Θ → 1

4
Θ. Next, compared to [27], we have introduced another

gauge coupling, g, (inherited from (7.25)) and we are using the opposite signs for the
group generators and structure constants. In principle, this will change the signs of the
gauge couplings throughout the action. However we are now going to choose

g = − 1 . (7.48)

This will compensate for all the opposite signs compared to [27], and lead to precisely the
same covariant derivatives and actions. Indeed, exactly as in [27], our covariant derivative
on a SO(4, 5) vector, (7.39), in the GL(4,R) basis becomes

D̂µXI = ∂µXI + Bµ
IJ X J − 2 g0 Ãµ

IJ XJ ,
D̂µX I = ∂µX I − 2 g0 Ãµ

IJ X J , D̂µX0 = ∂µX0 .
(7.49)

It may seem circuitous to have used the opposite-sign generators for SO(4, 5) only
to undo this choice through (7.48). However, the signs of the generators are also crucial
to the definition of all the tensors in Section 7.2 and so we have taken this apparently
circuitous route so as to arrive at the action of [27] while respecting the conventions
essential to [56].

The connections, Bµ
IJ , lie in the upper triangular part of the SO(4, 5) matrices:

Bµ ≡

0 Bµ
IJ 0

0 0 0

0 0 0

 . (7.50)

These are the gauge fields of T6 and will ultimately be integrated out of the action. The
vector fields AµIJ are those of SO(4) but they act with their duals, and with a gauge
coupling of −2g0. It is therefore useful to introduce the SO(4) covariant derivatives:

DµXI = ∂µXI − 2 g0 Ãµ
IJ XJ ,

DµX I = ∂µX I − 2 g0 Ãµ
IJ X J , DµX0 = ∂µX0 .

(7.51)
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7.5 The Maxwell fields

The connections, (7.51), lead to the Maxwell fields

Fµν
IJ =

1

2
ϵIJKL F̃µν

KL = ∂µAν
IJ − ∂νAµ

IJ − 2 g0
(
Aµ

IL Ãν
LJ − Aµ

JL Ãν
LI
)
. (7.52)

The Chern-Simons action appearing in (7.30) is:

− 1

4
ϵµνρ gΘMN Bµ

M
(
∂νBρ

N +
1

3
gΘKL f

NK
P Bν

LBρ
P
)

= +
1

4
ϵµνρΘMN Bµ

M
(
∂νBρ

N − 1

3
ΘKL f

NK
P Bν

LBρ
P
)
,

(7.53)

where we have set g = −1. Using the double sum conventions, this translates into:

LCS =
1

4
εµνρAµ

K̄L̄ΘK̄L̄,M̄N̄

(
∂νAρ

M̄N̄ − 1

3
f M̄N̄,P̄ Q̄

R̄S̄ ΘP̄ Q̄,Ū V̄ Aν
ŪV̄Aρ

R̄S̄
)
. (7.54)

To compensate for the double sums one can rescale Θ → 1
4
Θ, as one does in going from

(7.25) to (7.47). This leads to the correct normalization in the first term, however this
introduces a factor of 1

16
in the second term whereas there are five double sums. The

extra factor of 1
2

is, however, built in through our definition of the structure constants in
(7.3) and the resulting factors of 1

2
in (7.4). One should also note that the second term in

(7.54) has the opposite sign to that of [27]. This is because our structure constants also
have the opposite sign.

Using (7.4), (7.41) and (7.46) we arrive at

LCS =
1

2
εµνρ

[
g0
(
Aµ

IJ ∂νÃρ
IJ +

4

3
g0Aµ

IJ Aν
JK Aρ

KI
)
− 1

4
Bµ

IJ F IJ
νρ

]
, (7.55)

which exactly matches9 (2.33) of [27].

7.6 The scalar fields

Following [27], our scalar matrix will be defined by:

LM̄
K̄ =

PIJ 1
2
χI
(
(P−1)J

K
χK
)

χI
0 (P−1)J

I
0

0 (P−1)J
K
χK 1

 , (7.56)

where P = P T is a symmetric GL(4,R) matrix. The matrix, P , can be chosen to be
symmetric because of the composite local symmetry, H, in (7.24). We also have a local
SO(4) gauge symmetry, this symmetry can be used to diagonalize P , or in some other
form, as we will see later.

9We have re-ordered some of the indices relative to the expression in [27].
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One should remember that the gauge symmetry only acts on the left of L in (7.24),
and this translates into the purely left action of the gauge fields in (7.26), which, in turn,
means that the covariant derivative, Dµ, only acts on the left of P .

It is also convenient to define the scalar matrix mIJ and its inverse, mIJ :

mIJ ≡
(
P P T

)
IJ
, mIJ =

(
(P−1)T P−1

)IJ
. (7.57)

One should note that the covariant derivative of m is therefore given by:

DµmIJ = ∂µmIJ − 2 g0 Ãµ
IKmKJ − 2 g0 Ãµ

JKmIK . (7.58)

We will also define the following combinations of fields:

Yµ IJ ≡ χJ DµχI − χI DµχJ ,

CIJ
µ ≡ Bµ

IJ +
1

2
Yµ IJ , C IJ

µ ≡ P−1
I
K P−1

J
LCKL

µ .
(7.59)

Note that these objects break the GL(4 ,R) covariance and are to be considered only as
SO(4) tensors. This means that we will not distinguish raised and lowered indices for
such objects.

The various pieces of the Lie algebra element (7.26) are then given by:

QIJµ =
1

2

[ (
P−1Dµ P

)
I
J −

(
P−1Dµ P

)
J
I + C IJ

µ

]
,

PIrµ =
1

2

[ (
P−1Dµ P

)
I
r +

(
P−1Dµ P

)
r
I − C Ir

µ

]
, 1 ≤ r ≤ 4 ,

Qrsµ = − 1

2

[ (
P−1Dµ P

)
r
s −

(
P−1Dµ P

)
s
r + C rs

µ

]
, 1 ≤ r, s ≤ 4 ,

Qr5µ =
1√
2

(
P−1

)
r
J DµχJ , PI5µ = − 1√

2

(
P−1

)
I
J DµχJ , 1 ≤ r ≤ 4 .

(7.60)

Note that in defining Qrsµ we are using the generators, Xrs, defined by (7.3) or (7.5), and
not those of [60].

Next, we need to define the A-tensors appearing in the supersymmetry variations
(7.29). An explicit form can be computed in the gauge where the matrix P is diagonal:

P = diag
(
ex1 , ex2 , ex3 , ex4

)
. (7.61)

We introduce the superpotential:

W ≡ 1

4
g0 (det(P ))

−1
[
2
(
1− 1

4
(χAχA)

)
− Tr

(
P P T

) ]
=

1

4
g0 e

−x1−x2−x3−x4
[
2
(
1− 1

4
(χAχA)

)
−
(
e2x1 + e2x2 + e2x3 + e2x4

) ]
,

(7.62)

Then we find:

AAB1 = W (Γ1234
)
AB

, AAȦ r2 =
∂W

∂xr
(Γ1234 Γr

)
AȦ
, 1 ≤ r ≤ 4 ,

AAȦ 5
2 = −

√
2

4∑
j=1

exj
∂W

∂χj
(Γ1234 Γj

)
AȦ
,

(7.63)
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where there is no sum on r in the expression for AAȦ r2 . While we will not need it, we also
find:

AȦr Ḃs3 = −W δrs (Γ1234
)
ȦḂ
− ϵIJrs

∂2W

∂xr ∂xs
(ΓIJ

)
ȦḂ

, 1 ≤ r, s ≤ 4 ,

AȦr Ḃ5
3 =

√
2

4∑
j=1

exj (ΓIJ
)
ȦḂ

ϵIJrj e
xj

∂2W

∂xr ∂χj
, 1 ≤ r ≤ 4 ,

AȦ5 Ḃ5
3 = −W (Γ1234

)
ȦḂ

.

(7.64)

where there is no sum on r or s.
Using these expressions we find that the potential (7.30) is given by:

V = δij
∂W

∂xi

∂W

∂xj
+ 2mIJ ∂W

∂χI

∂W

∂χJ
− 2W 2 . (7.65)

Thus the scalar sector of the theory, and its role in the supersymmetries, are determined
entirely by the superpotential (7.62).

Using the explicit forms of P , or m, and then restoring the SO(4) gauge symmetry,
we find

V =
1

4
g20 det

(
mIJ

) [
2
(
1− 1

4
(χIχI)

)2
+ mIJmIJ +

1

2
mIJχIχJ −

1

2
mII mJJ

]
.

(7.66)
Using (7.61) and (7.60), the scalar kinetic term can be written

PIrµ Pµ Ir = gµν
[ 1
4

(
mIK DµmKJ

)(
mJLDνmLI

)
+

1

2
mIJ (Dµ χI) (Dν χJ) +

1

4

(
mIJ mKLCIK

µ CJL
ν

) ]
.

(7.67)

Thus the expressions (7.66) and (7.67) precisely match the corresponding quantities in
[27,58].

7.7 The three-dimensional supergravity action

Putting all the pieces together, the three-dimensional action (7.30) becomes:

L = − 1

4
eR − 1

2
ie χȦrγµDµχ

Ȧr +
1

2
ϵµνρ ψ

A

µDνψ
A
ρ +

1

8
e gµνmIJ (Dµ χI) (Dν χJ)

+
1

16
e gµν

(
mIK DµmKJ

)(
mJLDνmLI

)
+

1

16
e gµν

(
mIJ mKLCIK

µ CJL
ν

)
+

1

2
e εµνρ

[
g0
(
Aµ

IJ ∂νÃρ
IJ +

4

3
g0Aµ

IJ Aν
JK Aρ

KI
)
− 1

4
Bµ

IJ F IJ
νρ

]
− 1

2
ePIrµ χȦr ΓI

AȦ
γνγµψAν +

1

2
g eAAB1 ψAµγ

µνψBν

+ i g eAAȦr2 χȦrγµψAµ +
1

2
g eAȦr Ḃs3 χȦrχḂs − e V .

(7.68)

67



One now completes the square in all the terms that involve Bµ
IJ , to arrive at the action:

L = − 1

4
eR − 1

2
ie χȦrγµDµχ

Ȧr +
1

2
ϵµνρ ψ

A

µDνψ
A
ρ +

1

8
e gµνmIJ (Dµ χI) (Dν χJ)

+
1

16
e gµν

(
mIK DµmKJ

)(
mJLDνmLI

)
− 1

8
e gµρ gνσmIKmJL F

IJ
µν F

KL
ρσ

+
1

2
e εµνρ

[
g0
(
Aµ

IJ ∂νÃρ
IJ +

4

3
g0Aµ

IJ Aν
JK Aρ

KI
)

+
1

8
Yµ

IJ F IJ
νρ

]
− 1

2
ePIrµ χȦr ΓI

AȦ
γνγµψAν +

1

2
g eAAB1 ψAµγ

µνψBν

+ i g eAAȦr2 χȦrγµψAµ +
1

2
g eAȦr Ḃs3 χȦrχḂs − e V + LB ,

(7.69)
where

LB ≡
1

16
e gµνmIKmJL

(
Bµ

IJ +
1

2
Yµ IJ − gµσ1 εσ1ρ1ρ2 mIP1mJP2 F

P1P2
ρ1ρ2

)
×
(
Bν

KL +
1

2
Yν KL − gνσ2 εσ2ρ3ρ4 mKP3 mLP4 F

P3P4
ρ3ρ4

)
.

(7.70)
The action for the Bν leads to the constraint:

Cµ
IJ ≡ Bµ

IJ +
1

2
Yµ IJ = gµρ ε

ρσνmIKmJL F
KL
σν . (7.71)

These actions, and the constraint, are exactly consistent with the bosonic action given
in [27]. One should note that here we are using a metric signature of (+−−), whereas [27]
uses (−++). One can convert from one convention to the other by mapping gµν → −gµν .
This reverses the sign of the Ricci scalar and, in (7.68) and (7.70), we have written the
metric contractions explicitly so as to facilitate comparison. One should remember that
e εµνρ is actually independent of the metric and so such terms remain unchanged under
gµν → −gµν .

7.8 An executive summary of the BPS equations

For supersymmetric backgrounds we must require δψAµ = δχȦr = 0. These are the “BPS
equations”:

δψAµ = Dµϵ
A − i AAB1 γµϵ

B = 0 , δχȦr =
1

2
iΓI

AȦ
γµϵAPIrµ − AAȦr2 ϵA = 0 . (7.72)

where we have taken g = −1 in accordance with (7.48). Here we will simply summarize
the pertinent details needed to set up and solve these equations.

First, the covariant derivative on ϵA is defined by:

Dµ ϵ
A = ∂µϵ

A +
1

4
ωµ

ab γab ϵ
A +

1

4
QIJµ ΓIJAB ϵ

B , (7.73)

where
QIJµ =

1

2

[ (
P−1Dµ P

)
I
J −

(
P−1Dµ P

)
J
I + C IJ

µ

]
. (7.74)
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and P = P T is a symmetric GL(4,R) matrix. The gauge covariant derivative is:

DµXI = ∂µXI − 2 g0 Ãµ
IJ XJ . (7.75)

and it acts only on the left-hand side of P . The Chern-Simons vector fields are determined
by:

C IJ
µ ≡ P−1

I
K P−1

J
LCKL

µ , Cµ
IJ = gµρ ε

ρσνmIKmJL F
KL
σν . (7.76)

The scalar kinetic terms, PIrµ , are given by:

PIrµ =
1

2

[ (
P−1Dµ P

)
I
r +

(
P−1Dµ P

)
r
I − C Ir

µ

]
, 1 ≤ r ≤ 4 ,

PI5µ = − 1√
2

(
P−1

)
I
ADµχA , 1 ≤ r ≤ 4 .

(7.77)

We take the scalar matrix to be diagonal:

P = diag
(
eκ1 , eκ2 , eκ3 , eκ4

)
. (7.78)

The superpotential is defined by:

W ≡ 1

4
g0 (det(P ))

−1
[
2
(
1− 1

4
(χAχA)

)
− Tr

(
P P T

) ]
=

1

4
g0 e

−κ1−κ2−κ3−κ4
[
2
(
1− 1

4
(χAχA)

)
−
(
e2κ1 + e2κ2 + e2κ3 + e2κ4

) ]
,

(7.79)

and the A-tensors are given by:

AAB1 = W (Γ1234
)
AB

, AAȦ r2 =
∂W

∂κr
(Γ1234 Γr

)
AȦ
, 1 ≤ r ≤ 4 ,

AAȦ 5
2 = −

√
2

4∑
j=1

eκj
∂W

∂χj
(Γ1234 Γj

)
AȦ
,

(7.80)

where there is no sum on r in the expression for AAȦ r2 .
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Chapter 8

Superstrata in three dimensions

In [27], it was shown how to reduce the (1,m, n) family of superstrata to an entirely three-
dimensional description. In this Chapter we will summarize these results and use them
to compute all the individual terms that go into the three-dimensional BPS equations.

The content of this Chapter is based on the work of [37]. It aims to provide a foothold
on the way to constructing non-BPS geometries, by understanding how the well-known
superstrata solutions fit inside the three-dimensional theory. It also serves as an indirect
check of the uplift formulae of [27], by providing the means to verify that the 3D embedding
of superstrata is indeed supersymmetric. This check will be done in Chapter 11.

8.1 The metric

Following on from Section 7.1.4, and for the rest of this Chapter, we use the coordinates
(u, v, r) and work with asymptotically AdS geometries and use ζ defined in (7.12). For
the superstrata, the three dimensional metric has the form [27]:

ds23 =
a4R2

yg
6
0

2

(
du+ dv +

√
2

a2Ryg40
A

)2

− Λ2

g20
ds22 , (8.1)

where

ds22 =
|dζ|2(

1− |ζ|2
)2 and A =

i

2

ζdζ̄ − ζ̄dζ
1− |ζ|2

=

√
2 r2

a2Ry

dv . (8.2)

Note that, compared to (7.11), there is only one arbitrary function, Λ, in this metric. In
particular, the “time fibration” part of the metric is a scaled version of that of the AdS
metric.

For future reference, we note that the metric, ds22, has a Kähler potential

K ≡ − log
(
1− |ζ|2

)
(8.3)

and that A is the potential for the Kähler form. Thus the three-dimensional metric has
the form of a canonical time-like Kähler fibration.
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As we will see, supersymmetry requires that this warp factor be fixed in terms of the
scalars:

Λ2 = 1 − 1

4

(
χ2
1 + χ2

2 + χ2
3 + χ2

4

)
. (8.4)

We will use the frames:

e0 =
a2Ryg

3
0√

2
(du+ dv)+

1

g0
A , e1 =

Λ

g0

1√
r2 + a2

dr , e2 =
Λ

g0

√
2 r
√
r2 + a2

a2Ry

dv ,

(8.5)
such that

ds23 =
(
e0
)2 − (e1)2 − (e2)2 . (8.6)

The spin connection is then given by

ω0
1 = ω1

0 =
g0
Λ2

e2 , ω0
2 = ω2

0 = − g0
Λ2

e1 ,

ω1
2 = − ω2

1 =
g0
Λ2

e0 +
λ2
2Λ2

e1 − λ1
2Λ2

e2 − g0
Λ

2 r2 + a2

r
√
r2 + a2

e2 ,
(8.7)

where λ1 and λ2 are defined by:

d
(
Λ2
)
≡ λ1 e

1 + λ2 e
2 . (8.8)

8.2 The scalars

The fundamental scalars that determine the superstratum fluxes are parameterized by
two holomorphic functions, F0 and F1, of ζ:

χ1 + iχ2 = − 2
√
2 aRy g0√
r2 + a2

i F0(ζ) = − 2
√
2 aRyg0 i

(
e−

1
2

K F0(ζ)
)
,

χ3 − iχ4 =
2
√
2 aRy g0√
r2 + a2

i F1(ζ) = 2
√
2 aRyg0 i

(
e−

1
2

K F1(ζ)
)
.

(8.9)

where we have written these scalars in a more canonical form using the Kähler potential
(8.3).

One should note that our expression for χ3 − iχ4 differs by a phase from that of [27].
We have performed a U(1) gauge transformation so as to make χ3 − iχ4 have the same
form as χ1+iχ2. As we will see, this gauge transformation also makes slight modifications
elsewhere. One should also note the difference of sign in the two left-hand sides of (8.9):
this will play a crucial role in the supersymmetry.

For future reference we note that the (1, 0, n) family of superstrata is defined by taking
χ3 − iχ4 = 0 and the (1, 1, n) family is defined by taking χ1 + iχ2 = 0.

To describe the scalar sector, it is convenient to introduce the shorthand:

ρ21 = χ2
1 + χ2

2 , ρ22 = χ2
3 + χ2

4 , ρ20 = ρ21 + ρ22 and Λ2 = 1− 1

4
ρ20 . (8.10)
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The scalar matrix m, with components mIJ , which descends from the shape modes on
S3, is given by:

m = 1 − 1

4


ρ21 0 χ1χ3 − χ2χ4 χ1χ4 + χ2χ3

0 ρ21 χ1χ4 + χ2χ3 −(χ1χ3 − χ2χ4)

χ1χ3 − χ2χ4 χ1χ4 + χ2χ3 ρ22 0

χ1χ4 + χ2χ3 −(χ1χ3 − χ2χ4) 0 ρ22

 . (8.11)

Note that this matrix is diagonal for the (1, 0, n) and (1, 1, n) sub-families separately. We
also note that, while this matrix has exactly the same functional form as that of [27], it
is, in fact, different. This is because we have made a gauge transformation to remove a
phase from χ3 − iχ4. This gauge transformation also acts on the matrix m and preserves
its functional form despite the non-trivial change in χ3 − iχ4.

8.3 The gauge fields

The gauge fields live in an SU(2) × U(1) subgroup of SO(4) and so we introduce the
matrices:

η1 ≡


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , η2 ≡


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , η3 ≡


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 ,

(8.12)

η̄1 ≡


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 , η̄2 ≡


0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0

 , η̄3 ≡


0 1 0 0

−1 0 0 0

0 0 0 −1
0 0 1 0

 .

(8.13)
The triplet (η1, η2, η3) generates one of su(2) algebra, while the triplet (η̄1, η̄2, η̄3) generates
the other commuting su(2) algebra.

The gauge fields are then given by:

ÃIJ =
1√

2a2Ryg0

(
C1η

IJ
1 + C2η

IJ
2 + C3η

IJ
3 + C̄3η̄

IJ
3

)
(8.14)

where

C1 =
1

4

(
χ1χ3 − χ2χ4

)
κ C2 =

1

4

(
χ1χ4 + χ2χ3

)
κ C3 = − 1

8

(
ρ21 − ρ22

)
κ ,

(8.15)

C̄3 = − r2 dv +
(
1− 1

8

(
ρ21 + ρ22

))
κ , (8.16)

and

κ ≡ 1

Λ2

(
a4R2

y g
4
0

2
(du+ dv) + r2 dv

)
=

a2Ry g0√
2Λ2

e0 . (8.17)
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Once again, these gauge fields are slightly different from those given in [27] because we
have made a gauge transformation to remove a phase from χ3 − iχ4.

8.4 The fields for the (1, 0, n) superstratum

It is extremely instructive to consider the pure (1, 0, n) superstratum in which one has
χ3 = χ4 = 0. The scalar matrix reduces to:

m =


Λ2

Λ2

1

1

 ⇒ P =


Λ

Λ

1

1

 , (8.18)

and the gauge fields (8.14) become

Ã12 =
a2Ry g

3
0

2
√
2

(du+ dv) =
e0

2
− r√

r2 + a2
e2

2Λ
,

Ã34 = − a2Ry g
3
0

2
√
2Λ2

(du+ dv) +
Λ2 − 1

Λ2

r2√
2a2Ryg0

dv = − e0

2Λ2
+

r√
r2 + a2

e2

2Λ
.

(8.19)

Since this connection is abelian, the field strength is simply F = dA and its components
are given by:

F 12 = − 1

Λ4

[
g0 (1− Λ2) e1 ∧ e2 +

1

2
e0 ∧

(
λ1e

1 + λ2e
2
) ]
, F 34 = 0 . (8.20)

We then find that the components of the Chern-Simons terms, (7.59), are given by:

C 12 = − 1

Λ2

[
2g0 (1− Λ2) e0 + λ2 e

1 − λ1 e
2
]
, C 34 = 0 . (8.21)

Finally, the scalar kinetic terms (7.77) are:

PIr =
1

2Λ2

(
λ1 e

1 + λ2 e
2
)
δrI −

1

2
C Ir , 1 ≤ r ≤ 2 ,

PI3µ = PI4µ = 0 , PI5µ = − 1√
2Λ

(Dµχ)I .
(8.22)

and the connection QIJµ , defined in (7.74), becomes

QIJµ = − 2 g0A
IJ
µ +

1

2
C IJ
µ . (8.23)

8.5 A gauge transformation of the full (1,m, n) super-
stratum

We have written the supersymmetry transformations in terms of the “diagonal gauge” for
P , (7.78), however (8.11) is not in that gauge. One can either recast the supersymmetry
transformations in a general gauge, or one can diagonalize m. We choose the latter option.
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Define

U ≡


ρ1
ρ0

0 1
ρ0 ρ1

(χ1χ3 − χ2χ4)
1

ρ0 ρ1
(χ1χ4 + χ2χ3)

0 ρ1
ρ0

1
ρ0 ρ1

(χ1χ4 + χ2χ3) − 1
ρ0 ρ1

(χ1χ3 − χ2χ4)

0 ρ2
ρ0
− 1
ρ0 ρ2

(χ1χ4 + χ2χ3)
1

ρ0 ρ2
(χ1χ3 − χ2χ4)

ρ2
ρ0

0 − 1
ρ0 ρ2

(χ1χ3 − χ2χ4) − 1
ρ0 ρ2

(χ1χ4 + χ2χ3)

 , (8.24)

This is an SO(4) matrix. Indeed, it commutes with η̄AB3 , and so lies in the same SU(2)×
U(1) as the gauge connection (8.14). By construction, one has:

m̂ ≡ U mU −1 =


Λ2

Λ2

1

1

 ⇒ P̂ =


Λ

Λ

1

1

 , (8.25)

where Λ is defined by (8.4). One also finds that

(χ̂1, χ̂2, χ̂3, χ̂4) ≡ U (χ1, χ2, χ3, χ4) =
ρ0
ρ1

(χ1, χ2, 0, 0) . (8.26)

Observe that, up to an overall factor, χ̂i is the same as for of the (1, 0, n) superstratum.
For future analysis, it is useful to separate out this factor and define:

χ̃I ≡
ρ1
ρ0
χ̂I , ⇒ χ̃ = (χ1, χ2, 0, 0) . (8.27)

One should also note that

Λ̂2 ≡ 1 − 1

4

(
χ̂2
1 + χ̂2

2 + χ̂2
3 + χ̂2

4

)
= Λ2 , (8.28)

is gauge invariant.
The gauge transformation also significantly simplifies the gauge field:

U ÃU −1 =
1

2
√
2Rya2g0

[ (
Λ2 (η3+ η̄3)+ (η̄3− η3))κ− 2 r2 η̄3 dv

]
≡ ÃAbelian . (8.29)

In terms of components, this implies that the only non-zero components are:

Ã12
Abelian =

(
U ÃU −1

)12
=

e0

2
− r√

r2 + a2
e2

2Λ
,

Ã34
Abelian =

(
U ÃU −1

)34
= − e0

2Λ2
+

r√
r2 + a2

e2

2Λ
,

(8.30)

which exactly matches the gauge connection (8.19) for the (1, 0, n) superstratum. We
have thus almost mapped the complete superstratum back onto the (1, 0, n) superstratum
using the local SU(2) × U(1) gauge transformation defined by U . There are, however,
two important differences. First, the functional dependence of (8.26) is a little more
complicated than that of (8.9), and second, the transformed gauge potential is, of course:

ˆ̃A = ÃAbelian +
1

2 g0

(
dU

)
U −1 . (8.31)
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To write the last term in (8.31), we define:

K1 ≡
1

ρ21
(χ2 dχ1 − χ1 dχ2) = d arctan

(
χ1

χ2

)
,

K2 ≡
1

ρ22
(χ4 dχ3 − χ3 dχ4) = d arctan

(
χ3

χ4

)
,

L1 ≡ d log(ρ1) , L2 ≡ d log(ρ2) ,

(8.32)

and then one has(
dU

)
U −1 =

1

2 ρ20
(K1+K2)

[
(ρ22−ρ21) η3+ρ20 η̄3 + 2 ρ1ρ2 η2

]
+
ρ1ρ2
ρ20

(
L1−L2

)
η1 . (8.33)

The field strength is then given by:

ˆ̃F = F̃Abelian +
ρ1ρ2
8Λ2

e0 ∧
(
(K1 +K2) η1 − (L1 − L2) η2

)
(8.34)

where F̃Abelian = dÃAbelian and ÃAbelian is defined in (8.29), or (8.19). After taking the
SO(4) dual, FAbelian can be read off from (8.20).

To compute the Chern-Simons terms we need the frame components of the K’s and
L’s, and so we write

(K1 +K2) = K1 e
1 + K2 e

2 , (L1 − L2) = L1 e
1 + L2 e

2 . (8.35)

We then obtain:

Ĉ = − 1

2Λ2

[
2g0 (1− Λ2) e0 + λ2 e

1 − λ1 e
2
]
(η3 + η̄3)

+
ρ1ρ2
4Λ

[ (
K2 e

1 − K1 e
2
)
η1 −

(
L2 e

1 − L1 e
2
)
η2

]
.

(8.36)

It is convenient to define the “Abelian” piece of this connection:

CAbelian ≡ − 1

2Λ2

[
2g0 (1− Λ2) e0 + λ2 e

1 − λ1 e
2
]
(η3 + η̄3) , (8.37)

and we note that this is exactly the Chern-Simons connection (8.21) for the (1, 0, n)

superstratum.
Finally, the scalar kinetic terms are a little more complicated than those of (8.22). We

must use P̂ , defined in (8.25), which is identical to P in (8.18), in (7.60). The difference
now is that the gauge field, Ã, is no longer U(1) × U(1) invariant and so PIr and QIJ
have new gauge terms. We find:

PIr = d log(Λ) δrI −
ρ1ρ2
8Λ

[
(L1 − L2) η1 + (K1 +K2) η2

]
− 1

2
C Ir , 1 ≤ r ≤ 2 ,

PIr = +
ρ1ρ2
8Λ

[
(L1 − L2) η1 + (K1 +K2) η2

]
− 1

2
C Ir , 3 ≤ r ≤ 4 ,

PI5µ = − 1√
2Λ

(Dµχ)I .

(8.38)

76



and the connection QIJµ , defined in (7.74), becomes

QIJµ =

{
−2 g0 ÃIJµ + 1

2
C IJ
µ I, J ∈ {1, 2} or I, J ∈ {3, 4}

−2 g0 1+Λ2

Λ
ÃIJµ + 1

2
C IJ
µ I ∈ {1, 2} , J ∈ {3, 4} or I ∈ {3, 4} , J ∈ {1, 2}

.

(8.39)
Observe how the signs in front of the η-matrix terms flip between the first and second line
of (8.38). This happens because because the covariant derivatives of P are symmetrized
in PIr.

8.6 Holomorphy

There are many significant aspects to holomorphy in the structure of the superstrata, but
for now we focus on how this influences the solution of the BPS equations. In particular,
we first observe that all the scalar fields, χi, in (8.9) involve a common, non-holomorphic
pre-factor of (r2 + a2)−

1
2 . (As we saw in (8.9), this factor has a natural interpretation in

terms of the Kähler potential.) The derivatives of this factor cancel out in (K1+K2) and
(L1 − L2), leaving only the derivatives of the holomorphic functions, F0 and F1.

Since we are working in real coordinates, it is simplest to express the holomorphy
properties in terms of the Cauchy-Riemann equations, which take a very simple form
when expressed in terms of the frames, e1 and e2. In particular, because the χi’s are
holomorphic up to a common pre-factor, we find that the Cauchy-Riemann equations
imply:

K1 = L2 , K2 = − L1 . (8.40)

One consequence of this is that the Chern-Simons term (8.36) can be re-written as:

Ĉ = CAbelian −
ρ1ρ2
4Λ

[
(L1 − L2) η1 + (K1 +K2) η2

]
, (8.41)

where CAbelian is defined in (8.37).
As a result, we find that various pieces of the gauge connection and the Chern-Simons

connection either cancel, or reinforce, in the 4× 4 block of the scalar kinetic term:

PIJ =



d log(Λ) δIJ − 1
2
C IJ I, J ∈ {1, 2}

0 I ∈ {1, 2} , J ∈ {3, 4}
−C IJ I ∈ {3, 4} , J ∈ {1, 2}
0 I, J ∈ {3, 4}

, (8.42)

and PI5µ is unmodified:

PI5µ = − 1√
2Λ

(Dµχ)I . (8.43)

Holomorphy thus plays a critical role in the cancellation that produces the second row
of (8.42), and, as we will see, this is essential to the supersymmetry.
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Holomorphy also leads to another important identity. Observe that if χ1 and χ2 have
the form (8.9) then (d− iA)(χ1+ iχ2) is a holomorphic differential, and thus proportional
to e1 + ie2. This follows because the anti-holomorphic differentials cancel between A and
dK . If one writes the differentials in terms of the real frame components:

dχ1 +Aχ2 ≡ (dχ1 +Aχ2)1 e
1 + (dχ1 +Aχ2)2 e

2 ,

dχ2 −Aχ1 ≡ (dχ2 −Aχ1)1 e
1 + (dχ2 −Aχ1)2 e

2 ,
(8.44)

then holomorphy implies the Cauchy-Riemann conditions:

(dχ1 +Aχ2)1 = (dχ2 −Aχ1)2 , (dχ1 +Aχ2)2 = − (dχ2 −Aχ1)1 . (8.45)

Note that (8.5) and (8.30) imply

Ã12
Abelian =

e0

2
− r√

r2 + a2
e2

2Λ
=

1

2
e0 − 1

2 g0
A , (8.46)

which means that the covariant derivatives of χ1 and χ2 contain precisely the terms that
are related by (8.45).

There is a parallel story for χ3 − iχ4 if this also has the form given in (8.9).
Finally, we note that while the scalar matrix, m, generically lies in GL(4,R), we have

seen that we can use an SU(2)×U(1) gauge transformation to write it in terms of a simpler
matrix, m̂, in (8.25). This means that m actually lies in GL(2,C). Similarly, the gauge
fields are those of SU(2) × U(1) and the scalars, χI , should be thought of as a complex
doublet, (χ1+iχ2, χ3−iχ4), transforming under these global and local symmetries. Indeed,
it might be natural to recast all the scalars in terms an element of GL(3,C), or perhaps
SU(2, 1). Either way, the BPS sector that we are studying can be recast in terms of the
unitary gauge group acting on complex fields with precise holomorphy properties.
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Chapter 9

Q-ball Ansätze

We now turn to the construction of new microstate geometries using the power of the three-
dimensional consistent truncation. The first step, and the aim of the present Chapter,
is to introduce ansätze for the fields of the theory that are generic enough to capture
interesting new solutions, while being simple enough to be amenable to computations. In
particular, we will show how these ansätze include the standard superstrata discussed in
the previous Chapter.

This Chapter is based on the works of [38, 39] for the first two Sections, and on [42]
for the last Section. We make use of a mechanism previously utilized for the construction
of Q-balls, as well as for Bose stars. The core of the “Q-ball trick” is to isolate one or
several complex scalar fields and give them a phase dependence of the form eiωt, while
arranging that these phases cancel in the currents and in the energy-momentum tensor.
The result is to produce a background in which some of the scalars oscillate in time while
the gauge fields and the metric are completely independent of t. The important effect of
such time-dependent scalars is that they produce an effective shift in the scalar potential,
changing the energetics.

9.1 A first ansatz with explicit time-dependence

There are several sectors of the three-dimensional supergravity in which the “Q-ball trick”
can be implemented. In this Section, we start by describing a simple ansatz preserving
the same U(1) global symmetry as the (1, 0, n) superstrata. We aim to generalize these
superstrata, so we will replace the expression for the scalar χ1 + iχ2 in (8.9) by

χ1 + iχ2 =
a√

r2 + a2
F (ζ, ζ̄) eiωt , (9.1)

where we allow for the fact that a general non-supersymmetric solution will not necessarily
lead to holomorphy. As for the (1, 0, n) superstrata, we put the other complex scalar field
to zero, χ3 + iχ4 = 0 to preserve a global U(1) invariance. The potential only depends
on |χ|2 and so the time-dependence cancels there. However, the time-dependence does
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not cancel in the equations for mIJ and some of these scalars must also be made time
dependent in a specific way.

This leads to an ansatz involving arbitrary functions of the coordinates r (or ξ) and
ψ, and while there might be rich families of solutions, finding them is still too much of
a challenge at this point. We further restrict the ansatz to “single-mode solutions”, by
electing to generalize only the single-mode superstratum, and thus fixing the dependence
of the fields to the AdS circle ψ:

χ1 + iχ2 =
a√

r2 + a2
ν1(ξ) e

i(nψ+ωt) =
√
1− ξ2 ν1(ξ) ei(nψ+ωt) , (9.2)

mIJ =

(
eµ1(ξ) S2×2 02×2

02×2 eµ2(ξ) 12×2

)
, (9.3)

where

S = OT
(
eλ1(ξ) 0

0 e−λ1(ξ)

)
O , O =

(
cos(nψ + ωt) sin(nψ + ωt)

− sin(nψ + ωt) cos(nψ + ωt)

)
, (9.4)

for some scalar fields, ν1, λ1, µ1 and µ2, that depend only on the coordinate ξ. The mode
numbers ω and n are fixed, and n must be an integer.

We also make an ansatz for the gauge fields:

Ã12 =
1

g0

[
Φ1(ξ) dτ + Ψ1(ξ) dψ

]
, Ã34 =

1

g0

[
Φ2(ξ) dτ + Ψ2(ξ) dψ

]
, (9.5)

where we have introduced explicit factors of g−1
0 so as to cancel the g0’s in the minimal

coupling and thus render the fields and interactions scale independent.
The metric is kept in the form (7.18), and we also assume that the fields Ω0, Ω1 and

k are functions of ξ only.

The full ansatz thus involves eleven arbitrary functions of one variables, ξ, which can
be assembled into a list:

Fs.m. ≡ { ν1 , λ1 , µ1 , µ2 , Φ1 , Ψ1 , Φ2 , Ψ2 , Ω0 , Ω1 , k } . (9.6)

where the subscript s.m. stand for "single-mode". At this point, it is not clear that this
ansatz, that we obtained in a very roundabout way, is consistent with the equations of
motion. One way to prove it is to see that it corresponds to the more generic truncation
of the theory that is invariant under the following four global symmetries:

(i) The internal U(1) that rotates the indices (3, 4).

(ii) A time translation by τ → τ − α, accompanied by internal U(1) rotation by αω in
the (1, 2)-direction, for an arbitrary parameter, α, and some frequency, ω.

(iii) A ψ-translation by ψ → ψ − α, accompanied by internal U(1) rotation by αn in
the (1, 2)-direction, for an arbitrary parameter, α, and for some mode number, n.

(iv) Reflection invariance under ψ → −ψ, t → −t, accompanied by a discrete internal
SO(4) rotation, 2→ −2, 4→ −4.
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9.1.1 The reduced action

The easiest way to express the equations of motion for this truncated system is to give
the action from which they can be derived. The Lagrangian was given in (7.69), and here
we simply specialize it to the ansatz.

The Lagrangian can be decomposed into pieces:

L = Lgravity + Lχ + Lm + LA + LCS + LY −
√
g V , (9.7)

and the explicit expressions are:

Lgravity ≡ − 1

4

√
g R

=
Ω1

8 g0 ξ

[
Ω2

1

Ω2
0

(
k′ +

2 ξ

1− ξ2
k

)2

− 4 ξ

(
∂ξ

(
ξ
Ω′

0

Ω0

)
+

1

Ω1

∂ξ

(
ξ Ω′

1

))
− 16 ξ2

(1− ξ2)2

]
(9.8)

Lχ ≡
1

8

√
g gµν (DµχI)mIJ (DνχJ)

=
eλ1−µ1

8 g0 ξ (1− ξ2) Ω1

[
Γ ν21 − ξ2 (1− ξ2) Ω2

1 e
−2λ1

(
∂ξ

(√
1− ξ2 ν1

))2 ]
(9.9)

Lm ≡
1

16

√
g gµν Tr

(
m−1(Dµm)m−1(Dνm)

)
=

1

2 g0 ξ (1− ξ2)2Ω1

[
Γ sinh2 λ1 −

1

4
ξ2 (1− ξ2)2Ω2

1

(
(λ′1)

2 + (µ′
1)

2 + (µ′
2)

2
) ]

(9.10)

LA ≡ − 1

8
e gµρ gνσmIKmJL F

IJ
µν F

KL
ρσ

=
1

2g0 ξ Ω1

[
ξ2
(
e2µ2 Φ′2

1 + e2µ1 Φ′2
2

)
− Ω2

1

Ω2
0

(
e2µ2

(
(1− ξ2)Ψ′

1 − kΦ′
1

)2
+ e2µ1

(
(1− ξ2)Ψ′

2 − kΦ′
2

)2)]
(9.11)

LCS ≡
1

2
g0 e ε

µνρ
(
Aµ

IJ ∂νÃρ
IJ +

4

3
g0Aµ

IJ Aν
JK Aρ

KI
)

=
1

g0
(Φ1Ψ

′
2 −Ψ2Φ

′
1 + Φ2Ψ

′
1 −Ψ1Φ

′
2) (9.12)

LY ≡
1

16
e εµνρ Yµ

IJ F IJ
νρ

=
1

4g0

(
1− ξ2

)
ν21 ((2Ψ1 + n) Φ′

2 − (2Φ1 + ω)Ψ′
2) (9.13)

V =
g20
2
e−2(µ1+µ2)

[
1− 2 eµ1+µ2 cosh(λ1) + e2µ1 sinh2 λ1

+
1

16
ν21
(
1− ξ2

)(
(1− ξ2) ν21 + 4 eλ1+µ1 − 8

)]
, (9.14)

where, ′ indicates a differentiation with respect to ξ. We are also using the convenient
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shorthand that captures the mode dependence and minimal couplings:

Γ = ξ2Ω2
0

[
ω + 2Φ1

]2 − Ω2
1

[
(1− ξ2)

(
n+ 2Ψ1) − k

(
ω + 2Φ1

) ]2
. (9.15)

In particular, we note that the mode number, n, and the frequency, ω, can be absorbed
into constant terms in Ψ1 and Φ1, respectively.

There are also three integrals of the motion:

H ≡ ξ2 (1− ξ2)
k

[
1

ξ Ω1

(
L̂gravity + LA +

√
g V − Lχ − Lm

)
− 1

4g0

(
(λ′1)

2 + (µ′
1)

2 + (µ′
2)

2 + e−(λ1+µ1)
(
∂ξ

(√
1− ξ2 ν1

))2)]
.

(9.16)

and

I1 ≡
e2µ1 (1− ξ2) Ω1

ξ Ω2
0

(
(1− ξ2)Ψ′

2 − kΦ′
2

)
−
(
ω + 2Φ1

) (
1− 1

4
(1− ξ2) ν21

)
, (9.17)

I2 ≡
e2µ1 kΩ1

ξ Ω2
0

(
(1− ξ2)Ψ′

2 − kΦ′
2

)
+

e2µ1 ξ Φ′
2

Ω1

−
(
p+ 2Ψ1

) (
1− 1

4
(1− ξ2) ν21

)
.

(9.18)

9.2 A time-independent single-sector ansatz

We have obtained in the previous Section a family of ansätze, parameterized by two mode
numbers n and ω. We remarked that in the equations of motion, these two parameters
can be reabsorbed into constant terms in Ψ1 and Φ1. As we will now explain, this is a
consequence of the fact that all these ansätze are connected by gauge transformations.

In Section 7.6, we mentioned that three-dimensional theory has a residual SO(4) gauge
symmetry, that can be fixed by for example diagonalizing mIJ . Consider the following
SO(4) matrix:

U =


cos(∆ω t+∆nψ) − sin(∆ω t+∆nψ) 0 0

sin(∆ω t+∆nψ) cos(∆ω t+∆nψ) 0 0

0 0 1 0

0 0 0 1

 . (9.19)

where ∆ω is a real number and ∆n is an integer. The scalars χI transform in the vector
representation, the matrix mIJ transforms in the symmetric matrix representation, and
the gauge fields transform as:

Ã→ U ÃU−1 +
1

2 g0
(dU)U−1. (9.20)

When acting on the fields on the ansatz, it leads to:

ω → ω +∆ω , n→ n+∆n , Φ1 → Φ1 −∆ω/2 , Ψ1 → Ψ1 −∆n/2 . (9.21)
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This transformation thus shifts the mode numbers, and lets us rewrite solutions from one
ansatz to another. In other words, all the ansätze in the family are equivalent.

This means that one can decide to focus uniquely on the ansatz where ω = n = 0.
Note that in this specific ansatz, the matrix mIJ is diagonal, and all the scalars are time-
independent, which makes the computation of the supersymmetry equations much easier.
Because the mode numbers only appear as boundary values of the gauge fields, it also
greatly simplifies the numerics.

Because of the importance of this ansatz, which we be used in many computations in
the following Chapters, we make a recap of the field content. Starting from first principles,
the ansatz can be obtained from the same symmetries as in the previous Section, replacing
(ii) and (iii) by:

(ii’) Invariance under time translation τ → τ − α.

(iii’) Invariance under ψ-translation ψ → ψ − β.

For the scalars, χI , the symmetries imply that

χ2 = χ3 = χ4 = 0 , (9.22)

and that the remaining field, χ1, is only a function of ξ. Similarly, the scalar matrix
must be diagonal, and the entries are only functions of ξ. Also note that the symmetry
requirement (i) means that the last two eigenvalues of m must be equal. We therefore
have

χ1 =
√

1− ξ2 ν1(ξ) , χ2 = χ3 = χ4 = 0 , m = diag
(
eµ1+λ1 , eµ1−λ1 , eµ2 , eµ2

)
,

(9.23)
where we have introduced the factor of

√
1− ξ2 into χ1 for convenience later to define

the perturbation theory and holography.
The symmetry (i) also reduces the gauge fields to Ã12 and Ã34, while remaining sym-

metries mean that these fields can only depend on ξ, and have no dξ components. The
gauge fields can therefore be reduced to:

Ã12 =
1

g0

[
Φ1(ξ) dτ + Ψ1(ξ) dψ

]
, Ã34 =

1

g0

[
Φ2(ξ) dτ + Ψ2(ξ) dψ

]
, (9.24)

where, as previously, we have introduced explicit factors of g−1
0 so as to cancel the g0’s in

the minimal coupling and thus render the fields and interactions scale independent.
Finally, the time-translation and ψ-translational invariance means that Ω0, Ω1 and k,

can only depend on ξ.

9.2.1 Remark on the physical meaning of the mode numbers

We explained how the mode numbers ω and n are artifacts that can be removed through
a gauge transformation. Why, then, introduce them in the first place ?
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The first thing to notice is that n is indeed a physical parameter, it corresponds to
the periodicity of the scalars around the y-circle. It is indeed possible to choose a gauge
where n = 0 to simplify the computation, but the solutions in this gauge are not smooth:
Ψ1 limits to a constant at the origin, which can be seen as a Dirac string singularity.
The solutions are only really smooth when one comes back to the correct gauge where Ψ1

limits to zero at the origin, and n ̸= 0.
The standing of the parameter ω is more subtle. The gauge rotation (9.19), while

perfectly valid in classical supergravity, is actually anomalous in the quantum theory.
This means that, from the point of view of the quantum theory, there is really only one
correct gauge in which the solution can live. The parameter ω in that gauge is thus
the “physical” frequency. At the level of classical supergravity, this frequency cannot
be determined. However, using the tools of holography and AdS/CFT, it is possible to
compute this frequency. This point will be discussed in more details in Chapter 14 on
holography.

9.2.2 Superstratum in the single-mode ansatz

For completeness, we summarize here how the (1, 0, n) single-mode superstratum is written
inside the ansatz. Note that the gauge invariances have not yet been completely fixed,
and Ω1 is at this point an arbitrary constant. We discuss how to gauge fix the solutions
in Section 12.1.

ν1 = αξn , eµ1 = 1− 1

4
α2(1− ξ2)ξ2n , eλ1 = eµ2 = 1

Φ1 =
Ω1

2
, Φ2 =

Ω1

2

(
1− 1

1− 1
4
α2(1− ξ2)ξ2n

)
Ψ1 = n/2 , Ψ2 =

1

2

ξ2

1− ξ2

(
1− 1

1− 1
4
α2(1− ξ2)ξ2n

)
Ω2

0 = 1− 1

4
α2(1− ξ2)ξ2n , k = Ω−1

1 ξ2 .

(9.25)

The solution is parameterized by a real number −2 < α < 2, which is related to the
more standard superstrata parameters a and b through:

b

a
=

√
2α2

4− α2
. (9.26)

9.3 Double-sector ansatz

We now build a more general truncation, that includes the full (1,m, n) superstratum,
and that allows for two independent pair of mode numbers (ω1, n1) and (ω2, n2). As
explained in the previous Section, the single-mode ansätze with different mode numbers
can be related through gauge transformations, and this remains true for the double-mode
truncation that we define here. Thus, for simplicity we will write this ansatz directly in
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a time-independent gauge, where the mode numbers appear only as boundary conditions
for the gauge fields.

To obtain the truncation, we start with the same invariances as the single-sector ansatz,
but we forgo the constraint (i). In other words, we no longer require that the truncation
be invariant under a global U(1) that rotates the indices (3, 4). The other constraints are
kept identical:

(ii’) Invariance under time translation τ → τ − α.

(iii’) Invariance under ψ-translation ψ → ψ − β.

(iv) Reflection invariance under ψ → −ψ, t → −t, accompanied by a discrete internal
SO(4) rotation, 2→ −2, 4→ −4.

The first immediate consequence is that χ3 is no longer forced to be zero by the
symmetry, and it appears as a new scalar field. We parameterize the χI scalars as

χ1 =
√

1− ξ2ν1(ξ) , χ3 =
√

1− ξ2ν2(ξ) , χ2 = χ4 = 0 . (9.27)

New degrees of freedom also appears in the scalar matrix m, that we can parameterize
as:

m =


eµ1+λ1 0 m5 0

0 eµ1−λ1 0 m6

m5 0 eµ2+λ2 0

0 m6 0 eµ2−λ2

 , (9.28)

and all these fields can only be functions of ξ.
The gauge fields, ÃIJ , are classified as to whether they are even or odd under 2→ −2,

4→ −4: if they are odd, they can only have components along dτ or dψ, and if they are
even then they can only have dξ components. We therefore have:

Ã12 =
1

g0

[
Φ1(ξ) dτ + Ψ1(ξ) dψ

]
, Ã34 =

1

g0

[
Φ2(ξ) dτ + Ψ2(ξ) dψ

]
,

Ã23 =
1

g0

[
Φ3(ξ) dτ + Ψ3(ξ) dψ

]
, Ã14 =

1

g0

[
Φ4(ξ) dτ + Ψ4(ξ) dψ

]
,

Ã13 =
1

g0
Ψ5(ξ) dξ , Ã24 =

1

g0
Ψ6(ξ) dξ .

(9.29)

As for the metric functions, the symmetries imply once again that Ω0, Ω1 and k be
functions of ξ only.

This truncation obviously contains the previous time-independent ansatz, but it also
contains new fields and will allow for new solutions.

There are residual gauge invariances that allow one to make ξ-dependent U(1) rota-
tions in both the (1, 3) and (2, 4) directions. There are two natural ways to fix the gauge,
that we explore in the following two subSections.
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9.3.1 Diagonal gauge

Here one fixes the gauge by setting m5 = m6 = 0 in (9.28). We will find it useful to
parametrize the matrix P , in this gauge according to

P = diag
(
e

1
2
(µ1+λ1) , e

1
2
(µ1−λ1) , e

1
2
(µ2+λ2) , e

1
2
(µ2−λ2)

)
with m = P P T , (9.30)

as in (7.57). The gauge with diagonal P is more convenient for the analysis of the super-
symmetry. In this gauge, the Ansatz involves the following nineteen arbitrary functions
of one variable, ξ:

Fd.m.d ≡
{
ν1 , ν2 , µ1 , µ2 , λ1 , λ2 , Φ1 , . . . ,Φ4 , Ψ1 , . . . ,Ψ6 , Ω0 , Ω1 , k

}
, (9.31)

and the subscript d.m.d stands for “double-mode in diagonal gauge”.

9.3.2 Axial gauge

Here one fixes the residual gauge invariance by setting Ψ5 = Ψ6 = 0 in (9.29). Note that
if m5 = m6 = 0, then this parametrization matches (9.30).

As we will see, this gauge is more convenient for the perturbative solutions to the
equations of motion. The Ansatz now involves the following nineteen arbitrary functions
of one variable, ξ:

Fd.m.a ≡
{
ν1 , ν2 , µ1 , µ2 , λ1 , λ2 , m5 , m6 , Φ1 , . . . ,Φ4 , Ψ1 , . . . ,Ψ4 , Ω0 , Ω1 , k

}
,

(9.32)
and the subscript d.m.a stands for “double-mode in axial gauge”.

9.3.3 The double superstratum

As explained in Chapter 8, the double superstratum was obtained in [26] and recast in
three-dimensional supergravity in [27]. The fundamental scalars that create this solution
involve setting

χ1 + iχ2 =
√
1− ξ2G0(ζ) , χ3 − iχ4 =

√
1− ξ2G1(ζ) , (9.33)

where ζ ≡ ξeiψ and G0 and G1 are any holomorphic functions. The remaining fields are
then determined in terms of the Gj.

To fit within the double-mode ansatz, one must first once again restrict to the solutions
by taking G0(ζ) = α1ζ

n1 and G1(ζ) = α1ζ
n2 , for some positive integers n1, n2 and some

arbitrary constants α1 and α2. One must them make a gauge transformation so as to
remove the ψ-dependence. This introduces n1 and n2 as constants in Ψ1 and Ψ2. One
therefore starts from (9.27) with:

ν1 = α1 ξ
n1 , ν2 = α2 ξ

n2 , Ψ1(0) =
1

2
n1 , Ψ2(0) = − 1

2
n2 . (9.34)
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It will be easiest to verify the supersymmetries with the projectors (10.1) if one makes
a further SO(4) rotation in the (1, 3) plane so as to write the double superstratum in the
diagonal gauge and obtain:

ν1 =
√
α2
1 ξ

2n1 + α2
2 ξ

2n2 , ν2 = 0 . (9.35)

As we will check, the full BPS solution is given by:

λ1 = 0 , λ2 = 0 , µ1 = log
(
1 − 1

4
(1− ξ2) ν21

)
, µ2 = 0 ,

ν1 =
√
α2
1 ξ

2n1 + α2
2 ξ

2n2 , ν2 = 0 ,

Φ1 =
Ω1

2
e−µ2 =

1

2
, Φ2 = − Ω1

2
e−µ1 , Φ3 = Φ4 = 0 ,

Ψ1 =
1

2
n2 +

1

2
(n1 − n2)

α2
1 ξ

2n1

ν21
,

Ψ2 = − 1

2
n1 +

1

2
(n1 − n2)

α2
1 ξ

2n1

ν21
+

ξ2

2(1− ξ2)
(
1− e−µ1

)
,

Ψ3 = Ψ4 = −ξΨ5 = ξΨ6 =
1

2
(n1 − n2)

α1α2 ξ
n1+n2

ν21
,

Ω0 =

√
1− 1

4
(1− ξ2)ν21 , Ω1 = 1− 1

4

(
α2
1 + α2

2

)
, k = Ω−1

1 ξ2 .

(9.36)

The standard single superstratum is obtained by setting α1 = 0 or α2 = 0. To recover
(9.25) one also needs to reverse the SO(4) that was used previously to obtain the solution
in the diagonal gauge.

An important aspect of the double superstratum is that a non-trivial value of ηψ is
essential to its smoothness. Setting ηψ = 0 gives n2 = −(n1+1), which produces a smooth
solution if and only α1 = 0 or α2 = 0.
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Chapter 10

The BPS equations

In this Chapter, we derive the BPS equations of the three-dimensional theory, given in
Section 7.8 for the specific ansätze described in Chapter 9. We will first focus on the
single-mode truncation, for which we will derive the full set of BPS equations in details.
The last Section will be devoted to the generalization to the double-mode ansatz. This
Chapter is based on the work of [37,41] for the results in the single-mode truncation, and
on [42] for the last Section on the double-mode truncation.

The starting point of the BPS analysis is to decide which of the supersymmetries are
to be preserved, and a standard way to do this is to use projectors. Indeed, we will require
that any residual supersymmetries obey:(

1 − γ12 Γ12
)
ϵ = 0 ,

(
1 + γ12 Γ34

)
ϵ = 0 , (10.1)

which implies: (
1 − Γ1234

)
ϵ = 0 . (10.2)

We refer to the Section 7.1 for an explanation on the notations for the projectors. Any
two of the projectors from (10.1) and (10.2) imply the third. These projectors are the
ones that are preserved by superstrata: choosing them will let us find new BPS solutions
that generalize the superstrata construction.

We also need to allow phase dependencies in the supersymmetries:

dϵ = Γ12 (ητdτ + ηψdψ) ϵ , (10.3)

for some constants ητ and ηψ. Note that this phase dependence is consistent with the
discrete symmetries (ii’) and (iii’) defined in Section 9.2.

It is important to note that the projectors (10.1) and phase dependencies are not
invariant under internal SO(4) rotations, and, in particular, not invariant under the
1↔ 3 and 2↔ 4 rotations. None of these rotations preserve the single-mode truncation,
but there are some rotations preserving the double-mode truncation, such as the rotation
that transposes between the axial and diagonal gauges. Thus the projectors and phase
dependencies that we are imposing are not the most general possibilities allowed in the
double-mode truncation, and so, for this truncation, we will only derive a subsystem of
all the BPS solutions.
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10.1 Preparing the computation

We will set up the BPS equations in a manner that will cover both the single-mode Q-ball
truncation and the Coulomb branch of the theory, that is not discussed in this manuscript,
but can be found in [40]. In particular, this means that we will initially allow many of
the fields to depend on ξ and ψ.

The field, ν1, vanishes in the Coulomb branch flows and only depends on ξ in the
Q-ball truncation, and so we will also restrict ν1 to being a function of ξ alone throughout
this analysis. Ω1 is taken to be constant. The remaining fields, Ω0, λ1, µ1, µ2, Φj, Ψj

will, initially, be allowed to be functions of both ξ and ψ. We will specialize them later
to the two classes of truncation.

With these assumptions, we now catalog all the terms that go into the supersymmetry
variations and thus define the BPS equations.

10.1.1 The frames and connection

We use the frames that are best adapted to the supersymmetry:

e0 = g−1
0 Ω1

(
dτ +

k

(1− ξ2)
dψ

)
, e1 = g−1

0

Ω0

1− ξ2
dξ , e2 = g−1

0

Ω0

1− ξ2
ξ dψ

(10.4)
The spin connections, defined as dea + ωab ∧ eb = 0, are given by:

ω01 = s0e
2 , ω02 = − s0e1 and ω12 = − s0e0 + s1e

1 + s2e
2 (10.5)

where

s0 = g0Ω1
2ξk + (1− ξ2)∂ξk

2ξΩ2
0

, s1 = − g0
(1− ξ2)∂ψΩ0

ξΩ2
0

s2 = g0
(1 + ξ2)Ω0 + ξ(1− ξ2)∂ξΩ0

ξΩ2
0

.

(10.6)

10.1.2 The scalar terms

The scalar kinetic terms, P , defined in (7.60), are given by:

PIJ = 2g0 sinh(λ1)

(
Ω−1

1 Φ1e
0 +

(1− ξ2)Ψ1 − kΦ1

ξΩ0

e2
)
OIJ1

+ (dλ1)OIJ2 +
1

2
diag(dµ1, dµ1, dµ2, dµ2)−

1

2
C IJ

(10.7)

g−1
0 PI5 = −2e

1
2
(λ1−µ1)

√
1− ξ2

2
ν1

(
Ω−1

1 Φ1e
0 +

(1− ξ2)Ψ1 − kΦ1

ξΩ0

e2
)
OI11

+ e−
1
2
(λ1+µ1)

1√
2
d
(√

1− ξ2ν1
)
OI12

(10.8)
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where

O1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 and O2 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 (10.9)

The composite connection, Q, is also defined in (7.60) and is given by:

Q12 = − 2g0 cosh(λ1)

(
Ω−1

1 Φ1e
0 +

(1− ξ2)Ψ1 − kΦ1

ξΩ0

e2
)

(10.10)

+
1

2
C 12 (10.11)

Q34 = − 2g0

(
Ω−1

1 Φ2e
0 +

(1− ξ2)Ψ2 − kΦ2

ξΩ0

e2
)
+

1

2
C 34 (10.12)

The non-zero components of the Chern-Simons term (7.59) are given by:

C 12 =
2g0e

µ1(1− ξ2)
Ω0

(
(1− ξ2)∂ξΨ2 − k∂ξΦ2

ξΩ0

e0 − Ω−1
1

ξ
(∂ψΦ2)e

1 + Ω−1
1 (∂ξΦ2)e

2

)
(10.13)

C 34 =
2g0e

µ2(1− ξ2)
Ω0

(
(1− ξ2)∂ξΨ1 − k∂ξΦ1

ξΩ0

e0 − Ω−1
1

ξ
(∂ψΦ1)e

1 + Ω−1
1 (∂ξΦ1)e

2

)
(10.14)

10.1.3 The A-tensors

The A-tensors were defined in (7.80) for a diagonal matrix of scalars, P . The superpo-
tential (10.15) is:

W =
1

2
g0 e

−µ1−µ2
(
1 − 1

4
(1− ξ2)ν21 − eµ1 cosh(λ1) − eµ2

)
. (10.15)

The tensors are then given by:

AAB1 = W
(
Γ1234

)
AB

, AAȦ52 = −
√
2P J

I

∂W

∂χJ

(
Γ1234ΓI

)
AȦ

(10.16)

and
AAȦ12 = (∂µ1W + ∂λ1W )

(
Γ1234Γ1

)
AȦ

AAȦ22 = (∂µ1W − ∂λ1W )
(
Γ1234Γ2

)
AȦ

AAȦ32 = ∂µ2W
(
Γ1234Γ3

)
AȦ

AAȦ42 = ∂µ2W
(
Γ1234Γ4

)
AȦ

(10.17)

10.2 Deriving the BPS equations

As stated in the introduction of this Chapter, our purpose here is not an exhaustive
classification of BPS solutions, but to get to the generalized superstrata, and so we will
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occasionally take a short cut that could potentially omit some solutions but will get us
efficiently to our target.

From here on, when the indices on the various matrices are omitted, it is to be under-
stood that there is implicit left-multiplication.

10.2.1 The first set of equations

Using (10.16), the equation for the fifth component of the fermion variation (7.72) is:

1

2
iΓI

AȦ
γµϵAPI5µ −

√
2(P ∂χW )I (Γ

1234 ΓI
)
AȦ
ϵA = 0 , (10.18)

The sum over I runs from 1 to 2, since the elements 3 and 4 are trivial.
We can multiply (10.18) by γ1 to the left, and Γ2

ȦB
to obtain:

1

2
i
(
Γ12P15

1 − Γ12γ12P15
2 − P25

1 + γ12P25
2

)
ϵ

+
1

2
γ12
(
Γ12P15

0 − P25
0

)
ϵ+

(√
2(P∂χW )1Γ

12Γ1234 −
√
2(P∂χW )2Γ

1234
)
ϵ = 0 .

(10.19)

One can rewrite this as:

1

2
i
(
Γ12P15

1 + γ12P25
2

)
ϵ− 1

2
i
(
P25

1 + Γ12γ12P15
2

)
ϵ

+

(
1

2
γ12Γ12P15

0 −
√
2(P∂χW )2Γ

1234

)
ϵ−

(
1

2
γ12P25

0 −
√
2(P∂χW )1Γ

12Γ1234

)
ϵ = 0 .

(10.20)
After applying the projection conditions (10.1), one sees that this equation is solved

if one requires:

P15
0 = 2

√
2(P∂χW )2 , P25

0 = − 2
√
2(P∂χW )1 , (10.21)

P15
1 = P25

2 , P15
2 = − P25

1 , (10.22)

where the lower indices are frame indices.
For the configurations we consider, the first two conditions are identical, as are the

last two; and this is actually the only way to solve theses equations given the projection
conditions. Using (10.8) and (10.15), the first two conditions lead to the equation:

ν1

(
Φ1 −

Ω1

2
e−µ2

)
= 0 , (10.23)

while the last two lead to:

1√
1− ξ2

ξ∂ξ(
√

1− ξ2ν1) = 2eλ1
(
Ψ1 −

k

1− ξ2
Φ1

)
ν1 . (10.24)
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10.2.2 The second set of equations

The equations for the other fermion variations (7.72) are:

1

2
iΓI

AȦ
γµϵAPIrµ − AAȦr2 ϵA = 0 , (10.25)

where r runs from 1 to 4.
We will see that the equations for r = 1, 2 are equivalent, as are the equations for

r = 3, 4.

Equations from r = 3, 4

We start with r = 3, and use (10.17). After multiplying by Γ4 on the right, and γ2 on the
left, and rearranging the terms, we find:

1

2
i
(
Γ34P33

1 − γ12P34
2

)
ϵ+

1

2
i
(
P34

1 − Γ34γ34P33
2

)
ϵ+

1

2

(
γ12P34

0 + (∂µ2W )Γ34Γ1234
)
ϵ = 0 .

(10.26)
An obvious way to solve this equation is to require that the three terms in parentheses

vanish independently. Applying the projection conditions (10.1) these three equations
lead to:

P33
1 = P34

2 , P34
1 = −P33

2 and P34
0 = −2∂µ2W . (10.27)

Using (10.7), the first equation leads to

∂ξ

(
Φ1 −

Ω1

2
e−µ2

)
= 0 (10.28)

while the second leads to
∂ψ

(
Φ1 −

Ω1

2
e−µ2

)
= 0 (10.29)

If ν1 ̸= 0 then these two equations are redundant by virtue of (10.23). Thus, at least for
ν1 ̸= 0, the only non-trivial term in (10.26) is the last parenthesis, and, using (10.15), this
leads to: .

1− ξ2

ξ

eµ1+2µ2

Ω2
0

(
k∂ξΦ1 − (1− ξ2)∂ξΨ1

)
= 1− eµ1 cosh(λ1)−

1− ξ2

4
ν21 (10.30)

As we noted earlier, the equation for with r = 4 leads to the same set of equations.

Equations from r = 1, 2

For r = 1, we use (10.17) and multiply to the right by Γ2 and on the left by γ2. Rearranging
the result then leads to:

1

2
i
(
Γ12P11

1 − γ12P12
2

)
ϵ+

1

2
i
(
P12

1 − Γ12γ12P11
2

)
ϵ+

1

2

(
γ12Γ12P11

0

)
ϵ

+
1

2

(
γ12P12

0 + ((2∂µ1W ) + (2∂λ1W ))Γ12Γ1234
)
ϵ = 0

(10.31)
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Once again we ask for each term to vanish independently. We apply the projection
conditions (10.1) and arrive at:

P11
1 = − P12

2 , P12
1 = P11

2 (10.32)

P11
0 = 0 , P12

0 = − 2(∂λ1W + ∂µ1W ) (10.33)

The first and second equations lead to the simple constraints

∂ξ

(
Φ2 +

Ω1

2
e−µ1

)
= 0 , ∂ψ

(
Φ2 +

Ω1

2
e−µ1

)
= 0 , ∂ψλ1 = 0 (10.34)

along with the more interesting equation

(1− ξ2)ξ∂ξλ1 = − 4 sinh(λ1)
[
kΦ1 − (1− ξ2)Ψ1

]
(10.35)

The third and fourth equations lead to the simple constraint

sinh

(
1

2
λ1

)(
Φ1 −

Ω1

2
e−µ2

)
= 0 (10.36)

which is redundant with (10.23) if ν1 ̸= 0 and λ1 ̸= 0 ; along with the interesting equation:

−1− ξ2

ξ

e2µ1+µ2

Ω2
0

(
k∂ξΦ2 − (1− ξ2)∂ξΨ2

)
= 1− eµ2 − 1− ξ2

4
ν21 . (10.37)

Again, the equation for with r = 2 leads to the same result.

10.2.3 The third set of equations

The equation for the gravitino variation (7.72) is

dϵA +
1

4
ωab γ

ab ϵA +
1

4
QIJΓIJAB ϵB − iW (Γ1234

)
AB

γc e
c ϵB = 0 . (10.38)

Using (10.5), we obtain

dϵ +
1

2
s0
(
γ01e2 − γ02e1 − γ12e0

)
ϵ +

1

2
(s1e

1 + s2e
2)γ12 ϵ

+
1

4
QIJΓIJ ϵ − W (iγce

c)Γ1234 ϵ = 0 ,
(10.39)

which we can rewrite as:

dϵ =

(
1

2
s0 +WΓ1234

)(
γ02e1 − γ01e2

)
ϵ

− e0
(
1

2
Q12

0 Γ12 +
1

2
Q34

0 Γ34 − 1

2
s0γ

12 +Wγ12Γ1234

)
ϵ

− e1
(
1

2
Q12

1 Γ12 +
1

2
s1γ

12

)
ϵ

− e2
(
1

2
Q12

2 Γ12 +
1

2
Q34

2 Γ34 +
1

2
s2γ

12

)
ϵ ,

(10.40)
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where s0 is defined in (10.6).
We can now replace the derivative of the spinor using (10.3). Note that, because of

the projection condition (10.2), the gauge rotation (1, 2) direction also implicitly rotates
ϵ in the (3, 4) directions, and so ητ and ηψ will depend on all the U(1) gauge choices.

We now distribute the terms ητ and ηψ to their logical place in equation (10.40),
and ask that each term vanishes independently. After applying the projection conditions
(10.1), we get

W = − 1

2
s0 (10.41)

1

2

(
Q12

0 −Q34
0

)
= − g0Ω−1

1 ητ +W − 1

2
s0 = − g0Ω−1

1 ητ + 2W (10.42)

1

2

(
Q12

1 −Q34
1

)
=

1

2
s1 (10.43)

1

2

(
Q12

2 −Q34
2

)
= − g0

ξΩ0

(
(1− ξ2)ηψ − kητ

)
+

1

2
s2 (10.44)

We now use (10.12), (10.6) and (10.15). The first equation leads to

Ω1e
µ1+µ2

2ξΩ2
0

(
(1− ξ2)∂ξk + 2ξk

)
= − 1 + eµ1 cosh(λ1) + eµ2 +

1− ξ2

4
ν21 . (10.45)

The second equation leads to

1− ξ2

2ξΩ2
0

[
eµ1(k∂ξΦ2 − (1− ξ2)∂ξΨ2)− e2µ2(k∂ξΦ1 − (1− ξ2)∂ξΨ1))

]
=

Ω−1
1 (ητ + Φ2 − cosh(λ1)Φ1) + e−(µ1+µ2)

(
−1 + eµ1 cosh(λ1) + eµ2 +

1

4
(1− ξ2)ν21

)
.

(10.46)
The third equation leads to

Ω1
∂ψΩ0

Ω0

+ eµ2∂ψΦ1 − eµ1∂ψΦ2 = 0 . (10.47)

And the fourth equation leads to

ξ

(
∂ξΩ0

Ω0

+ Ω−1
1 eµ2∂ξΦ1 − Ω−1

1 eµ1∂ξΦ2

)
= 2

cosh(λ1)

1− ξ2
(
kΦ1 − (1− ξ2)Ψ1

)
+ 1

− 2

1− ξ2
(
k(ητ + Φ2)− (1− ξ2)(ηψ +Ψ2) + 1

)
.

(10.48)

The gauge invariant combinations of the ητ and ηψ parameters are:

ητ + Φ2 − Φ1 and ηψ + Ψ2 − Ψ1 . (10.49)

The precise value of ητ and ηψ can be derived from the asymptotics of the fields, at the
origin and at the AdS boundary. In Section 12.1 we detail how to fix these asymptotics by
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imposing regularity and other conditions. Here we will only use the following conditions:
λ1, µ1, µ2 → 0 and k → 1 as ξ → 1, and λ1(0) = k(0) = 0. Using these conditions in
(10.48) leads to

ητ = Φ1(1)− Φ2(1)− 1 and ηψ = Ψ1(0)−Ψ2(0) +
1

2
. (10.50)

10.3 Summary of the BPS equations in the single-mode
truncation

We now summarize and rewrite the equations obtained in the previous Section. For
convenience, we are going to ignore the BPS solutions on the Coulomb branch, when
ν = λ1 = 0. This assumption for example simplifies the equations (10.23), (10.36). We
will also assume that the fields only depend on the variable, as stated originally in the
ansatz.

After simplifications, we find a number of algebraic and first-order equations. The
simplest of the differential equations is Ω′

1 = 0, and so Ω1 is constant. This reflects
the freedom to rescale the time coordinate, τ , and in some of the earlier papers on three-
dimensional superstrata and microstrata, Ω1 was simply set to 1. However, as was pointed
out in [39], this is not the correct choice for holography, and so we will keep Ω1 as an
arbitrary constant for now.

The algebraic equations connect the scalars and the gauge fields ; they are1:

Φ1 =
Ω1

2
e−µ2 , Φ2 = − Ω1

2
e−µ1 . (10.51)

To write the first order equations, it is convenient to define:

H0 ≡
ξ2Ω2

0

(1− ξ2)2Ω2
1

, H ≡ H0Ω
2
1 e

−(µ1+µ2) = −4H0Φ1Φ2 ,

Fj ≡ Ψj −
k

1− ξ2
Φj , j = 1, 2 .

(10.52)

Then one has the scalar equations:

ξ∂ξλ1 − 4 sinh(λ1)F1 = 0 ,

ξ∂ξ

(√
1− ξ2ν1

)
− 2eλ1F1

(√
1− ξ2ν1

)
= 0 ,

(10.53)

that can be combined into an additional algebraic equation:

(1− ξ2)ν21 = σ
(
1− e2λ1

)
, (10.54)

1The equations allow for an additional arbitrary constant in Φ2. This constant is pure gauge in the
single-mode truncation, and does not exist in the double-mode truncation. We thus choose to fix it to
zero.
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for some real integration constant σ. The electromagnetic equations are:

ξ∂ξF1 +H = 0 ,

ξ∂ξF2 −H cosh(λ1) = 0 ,
(10.55)

and metric equations:

ξ∂ξΩ1 = 0 ,

ξ∂ξ

(
k

1− ξ2

)
− 2H

Ω1

(
eµ1 cosh(λ1) + eµ2 − (1− (1− ξ2)ν21/4)

)
= 0 ,

ξ∂ξ log(H)− 4 (ηψ − cosh(λ1)F1 + F2) = 0 .

(10.56)

Note that, using the condition that the scalar fields vanish at infinity and (10.51), we find
that the phase parameter in time vanishes, ητ = 0. The other phase parameter, ηψ, only
appears in the last equation. It is important to keep in mind while solving this equation
that this parameter is bound to the values of magnetic gauge fields through (10.50).

There are eleven functions in (9.6) to be determined. The BPS equations provide eight
algebraic or first-order constraints. They are not enough to find solutions, as they do not
fix the deformations of the Coulomb branch, and the complete solution of the system
requires that we use two of the equations of motion to determine µ1 and µ2. They can be
written as:

ξ∂ξ

(
ξ∂ξe

µ1 − 2
Ω1k

(1− ξ2)
− 4F1

(
1− (1− ξ2)ν

2
1

4

))
= 0 ,

ξ∂ξ(ξ∂ξe
µ2)− 4H

(
eµ1 − eλ1 + eµ2 cosh(λ1)− e−λ1

(
1− (1− ξ2)ν

2
1

4

))
= 0 .

(10.57)

10.4 The BPS equations of the double-mode truncation

This Chapter developed the tools to derive the BPS equations in the single-mode trunca-
tion. The same analysis can be performed for the more general double-mode truncation,
in the diagonal gauge. This computation only adds technical difficulties, and for this
reason we will simply present here the resulting BPS equations.

The BPS equations lead once again to a set of algebraic constraints and first-order
differential equations. The algebraic BPS equations become:

Φ1 =
Ω1

2
e−µ2 , Φ2 = − Ω1

2
e−µ1 , Φ3 = Φ4 = 0 ,

Ψ5 = − sinh(λ2)Ψ3 + sinh(λ1)Ψ4

ξ sinh(λ1 − λ2)
, Ψ6 =

sinh(λ1)Ψ3 + sinh(λ2)Ψ4

ξ sinh(λ1 − λ2)

(10.58)

To write the first order equations, it is again convenient to define:

H0 ≡
ξ2Ω2

0

(1− ξ2)2Ω2
1

, H ≡ H0Ω
2
1 e

−(µ1+µ2) = −4H0Φ1Φ2 ,

Fj ≡ Ψj −
k

1− ξ2
Φj , j = 1, 2, 3, 4 .

(10.59)
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Then one has the scalar equations:

ξ ∂ξλ1 − 4 sinh(λ1)F1 = 0 , ξ ∂ξλ2 + 4 sinh(λ2)F2 = 0 ,

1√
1− ξ2

ξ ∂ξ

(√
1− ξ2ν1

)
− 2 eλ1F1 ν1 +

2 e−λ2 sinh(λ1)

sinh(λ1 − λ2)
(eλ1F3 + eλ2F4) ν2 = 0 ,

1√
1− ξ2

ξ ∂ξ

(√
1− ξ2ν2

)
+ 2 eλ2F2 ν2 −

2 e−λ1 sinh(λ2)

sinh(λ1 − λ2)
(eλ1F3 + eλ2F4) ν1 = 0 ;

(10.60)
the electromagnetic equations:

ξ ∂ξF1 + 2 (F3Ψ5 − F4Ψ6) + H cosh(λ2) = 0 ,

ξ ∂ξF2 + 2 (F4Ψ5 − F3Ψ6) − H cosh(λ1) = 0 ,

ξ ∂ξF3 − 2 (F1Ψ5 − F2Ψ6) = 0 ,

ξ ∂ξF4 − 2 (F2Ψ5 − F1Ψ6) = 0 ,

(10.61)

and metric equations:

ξ ∂ξΩ1 = 0 ,

ξ ∂ξ

(
k

1− ξ2

)
− 2

Ω1

(
eµ1 cosh(λ1) + eµ2 cosh(λ2)−

(
1− 1− ξ2

4
(ν21 + ν22)

))
H = 0 ,

ξ ∂ξ log(H) − 4
(
ηψ − cosh(λ1)F1 + cosh(λ2)F2

)
= 0 .

(10.62)
The phase parameter, ηψ, only appears in the last equation and is determined by the
boundary conditions for F1, F2 and H.

There is also an elementary first integral of these equations

H sinh(λ1) sinh(λ2) = c0 ξ
4ηψ , (10.63)

for some constant, c0.
Once again, the BPS equations are not enough to find the solutions, and the complete

solution of the system requires to use two additional equations of motion.
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Chapter 11

Supersymmetric solutions

Having derived the BPS equations, one can try to construct new supersymmetric solutions.
Perhaps surprisingly, we find that even in the single-mode truncation, the common (1, 0, n)

superstrata are not the only scaling solutions. Indeed, we are able to construct new 3-
charge solutions using a different momentum carrier: the shape mode of the 3-sphere,
rather than the Ramond fields.

This Chapter reviews the work of [40,41]. As stated, the simplest class of the solutions
of the BPS equations are the single-mode and double-mode superstrata, (9.25) and (9.36).
One of the purposes of the work of [37] was to check that these solutions verify all the
BPS equations of Chapter 10. These solutions were already known to be supersymmetric ;
this can be seen as a check of the derivation of the superstrata truncation or of the BPS
equations.

A second, simple class of solution that one can build is the BPS “special locus”. Its
existence was conjectured in [38], but the full solution was derived in [40], and this was
the first analytic BPS solution that was discovered after the superstrata. The reason for
its name will be developed in further Chapters, it comes from the specific relation between
the amplitudes of the momentum carriers. Its construction is developed in Section 11.1.

More recently, [41], it has been possible to construct the full space of solutions to the
BPS equations of the single-mode truncation given in Section 10.3. This is the subject of
Section 11.2. We will take a particular care in studying these solutions and their uplift in
six dimensions. Finally, the last Section is devoted to the study of two particular limits
of the space of solutions: the “pure-NS” superstrata, and the asymptotically AdS2 × S1

geometries.

11.1 The special locus

The “special locus” BPS solution is a very specific family of solutions of the single-mode
BPS equations. We start by making some assumptions to simplify the BPS equations:

λ1 ≡ µ1 , µ2 ≡ 0 . (11.1)
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The equation of motion for µ2 (10.57) leads to a algebraic constraint:

σ ≡ 2 or equivalently (1− ξ2)ν21 = 2
(
1− e2λ1

)
(11.2)

where σ was defined in (10.54). The BPS equations for the gauge fields (10.51) and (10.55)
then imply

Φ1 =
1

2
and ∂ξΨ1 = 0 . (11.3)

The absence of Dirac string would normally imply that regular solutions have Ψ1 = 0,
but we are working here in the time-independent gauge, which was obtained by a gauge
rotation that shifted the gauge fields. As was discussed in Section 9.2, the magnetic gauge
fields can be half-integers at the origin. Thus we have

Ψ1 ≡
n

2
, n ∈ N. (11.4)

The non-trivial dynamics is now reduced to four equations for four functions, λ1,Ψ2,Ω0

and k:

ξ∂ξλ1 + 2 sinh(λ1)

(
k

1− ξ2
− n

)
= 0 , (11.5)

ξ∂ξF2 −H cosh(λ1) = 0 , (11.6)

ξ∂ξ log(H)− 4

(
ηψ −

1

2
cosh(λ1)

(
n− k

1− ξ2

)
+ F2

)
, (11.7)

ξ∂ξ

(
k

1− ξ2

)
= 2H . (11.8)

There are several things to note. First, on the special branch (11.1), the first-order BPS
system is enough to determine the solution: there is no need for the second order equations
of motion. This is because the special branch corresponds to a fixed locus on the Coulomb
branch.

Secondly, while the equations (11.5)-(11.8) appear rather complicated, there seems to
be a natural geometric underpinning that remains to be fully fleshed out. To see this,
define

h ≡ log tanh

(
−1

2
λ1

)
, (11.9)

then the equations for λ1 and k become

ξ∂ξh = 2

(
n− k

1− ξ2

)
,

ξ∂ξ

(
k

1− ξ2

)
= 2H .

(11.10)

Now observe that, apart from the factor of e−λ1 in H, the right-hand side of the latter
equation defines the scale of the spatial base metric. Indeed, were it not for the factor
of e−λ1 , these two equations would imply that the three-dimensional metric is a Kähler

100



fibration as in [27,37]. For want of a better term, we will refer to this form of the metric
as a conformal Kähler fibration.

Now one can differentiate (11.7) and eliminate ∂ξF2 using (11.6). Writing the result
in terms of h leads to a differential equation for h:

∂2x log
(
∂2xh
)

+
2 (1 + e2h)

(1− e2h)
∂2xh +

4 e2h(∂xh)
2

(1− e2h)2
= 0 , (11.11)

where x ≡ − log ξ. One can also write this equation as:

∂2x log

(
∂2xh

sinh(h(x))

)
− coth(h(x)) ∂2xh = 0 . (11.12)

At first sight, (11.11) equation appears moderately terrifying, but for a Kähler base,
the first term is simply the Ricci tensor and the other terms are related to the metric and
to the fibration vector, k. We have managed to find a complete, analytic solution to the
system.

11.1.1 An analytic solution to the system

The system of equations (11.5)-(11.8) admits an analytic family of solutions, parametrized
by a real constant γ. If one defines

Λ2
1 ≡ 1− γ4 ξ4p+2 , Λ2

2 ≡ (2n+ 1) γ2 ξ2p (1− ξ2) (11.13)

the solutions are then given by

ν1 =
2
√
2√

1− ξ2
Λ1Λ2

Λ2
1 + Λ2

2

, λ1 = µ1 = − 2 arctanh

(
Λ2

2

Λ2
1

)
, µ2 = 0 ,

Φ1 =
1

2
, Ψ1 =

n

2
,

Φ2 = − Λ2
2

Λ2
1 − Λ2

2

, Ψ2 = − ξ2

1− ξ2
Λ2

2

Λ2
1 − Λ2

2

(
1− γ2ξ2p

)
,

k = ξ2
(
1 − γ2 ξ2p

Λ2
2

Λ2
1

)
, Ω0 = 1− Λ2

2

Λ2
1

, Ω1 = 1 .

(11.14)

for general n.
One can then define

α ≡
√

8(2n+ 1) γ , (11.15)

to obtain ν ∼ α ξn as ξ → 0.
Using the form of the metric (7.18) and the analytic solution, one can compute explic-

itly the coefficient of dψ2 in the metric, and find the range of parameters for which the
solution is CTC-free. We find that the solutions are CTC-free when

γ2 ≤ 1

4n+ 1
or equivalently α2 ≤ 4 · 4n+ 2

4n+ 1
. (11.16)
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11.2 The generalized single-mode superstrata

11.2.1 The BPS layers

In this Section we aim to construct the most general solutions to the system of BPS equa-
tions in the single-mode truncation. We start by focusing on the equations for λ1, F1, F2

and H, that we recall here:

ξ∂ξλ1 − 4 sinh(λ1)F1 = 0 ,

ξ∂ξF1 +H = 0 ,

ξ∂ξF2 −H cosh(λ1) = 0 ,

ξ∂ξ log(H)− 4 (ηψ − cosh(λ1)F1 + F2) = 0 .

(11.17)

Observe that this is a “base-layer” - a system of four first-order, non-linear equations
for the four functions. This system has been decoupled from the other BPS equations
and from the equations of motion. It plays the same role as the “zeroth layer” of six-
dimensional BPS equations did for superstrata, that we described in Section 5.3. This
non-linear system determines the geometry of the base in six dimensions.

Now observe that if one uses (10.56) to eliminate the derivatives of k in (10.57) and
then takes the sums and differences of these two equations, one finds:

1

4
ξ ∂ξ

[
ξ ∂ξ

(
eµ1 + eµ2

)]
− 2H cosh2

(
1

2
λ1

)(
eµ1 + eµ2

)
= −H eλ1 − H

(
1 + e−λ1

)(
1− 1

4
(1− ξ2) ν21

)
+ ξ ∂ξ

[
F1

(
1− 1

4
(1− ξ2) ν21

)]
,

1

4
ξ ∂ξ

[
ξ ∂ξ

(
eµ1 − eµ2

)]
− 2H sinh2

(
1

2
λ1

)(
eµ1 − eµ2

)
= H eλ1 − H

(
1− e−λ1

)(
1− 1

4
(1− ξ2) ν21

)
+ ξ ∂ξ

[
F1

(
1− 1

4
(1− ξ2) ν21

)]
,

(11.18)
Since F1, H and λ1 are known from solving the base-layer equations, (11.17), the

functions appearing in (11.18) are known, with ν1 being determined by (10.54). Therefore
the equations in this “first layer,” (11.18), are linear equations in (eµ1+eµ2) and (eµ1−eµ2).
The solutions to the base layer determine the sources and coefficients of this linear system,
and the functions determined by these equations are precisely the electrostatic potentials
(10.51).

Once this linear system is solved, one finally determines k from the first-order equation
in (10.56), which is considered as a linear “second-layer” equation, where the sources are
entirely determined by the previous layers:

ξ∂ξ

(
k

1− ξ2

)
− 2H

Ω1

(
eµ1 cosh(λ1) + eµ2 − (1− (1− ξ2)ν21/4)

)
= 0 . (11.19)

These BPS equations thus have precisely the “linear structure” discovered in the earlier
BPS systems that underpin microstate geometries [18, 50, 62]. Note also that the base
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geometry, which is determined by F1, F2, H and λ1 , is entirely independent of ν1, or σ,
and hence independent of the amplitude of the standard superstratum excitation.

11.2.2 Solving the base layer

The base-layer system, (11.17), has a remarkable structure that enables us to solve the
system completely. Indeed, one can easily verify that these equations imply:

ξ∂ξ

[
ξ∂ξ(F1+F2) − 2(F1+F2)

2
]
= 0 , ξ∂ξ

[
ξ∂ξ(F1−F2) + 2(F1−F2)

2
]
= 0 . (11.20)

These equations are trivially solved to give:

F1 =
1

4

[
q1
1 + γ1 ξ

2q1

1− γ1 ξ2q1
− q2

1 + γ2 ξ
2q2

1− γ2 ξ2q2

]
, F2 =

1

4

[
q1
1 + γ1 ξ

2q1

1− γ1 ξ2q1
+ q2

1 + γ2 ξ
2q2

1− γ2 ξ2q2

]
,

(11.21)
where the four constants of integration in (11.20) are q1, q2, γ1 and γ2

One should note that with these choices one has

ξ∂ξ(F1+F2) − 2(F1+F2)
2 = − 1

2
q21 , ξ ∂ξ (F1−F2) + 2(F1−F2)

2 = +
1

2
q22 . (11.22)

Note that we have implicitly chosen the signs of the constants of integration in these
equations. One can choose the opposite sign, and this leads to imaginary exponents and
solutions with singular behavior at ξ = 0. Our choice leads to rational functions, and one
must have 2q1, 2q2 ∈ Z if one wishes to avoid branch cuts.

From the first equation in (11.17) one obtains:

λ1 = − log

[
ξq2 (1− γ1 ξ2q1) − β ξq1 (1− γ2 ξ2q2)
ξq2 (1− γ1 ξ2q1) + β ξq1 (1− γ2 ξ2q2)

]
. (11.23)

where β is yet another constant of integration.
Substituting these back into (11.17) one finds that the first order system yields:

H =
q22 γ2

(1− γ1 ξ2q1)2 (1− γ2 ξ2q2)2
(
ξ2q2 (1− γ1 ξ2q1)2 − β2 ξ2q1 (1− γ2 ξ2q2)2

)
. (11.24)

along with a constraint on the constants of integration:

q21γ1 − β2 q22 γ2 = 0 , (11.25)

which, in particular, means that γ1 and γ2 must have the same sign.
We later constrain some of these parameters through re-parametrizations and regular-

ity. For the present we construct the rest of the solution in full generality.

11.2.3 Solving the remaining layers of BPS equations

One can actually solve the linear system of the first layer, (11.18), by quadrature. Indeed,
it follows from (11.20) that for any function, P , one has:

ξ ∂ξ

[
(F1±F2)

2 ξ ∂ξ
(
(F1±F2)

−1 P
)]

= (F1±F2)
[
ξ ∂ξ

(
ξ ∂ξ P

)
∓ 4

(
ξ ∂ξ(F1±F2)

)
P
]
.

(11.26)
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Now observe that

ξ ∂ξ(F1 + F2) = 2H sinh2

(
1

2
λ1

)
, ξ ∂ξ(F1 − F2) = 2H cosh2

(
1

2
λ1

)
, (11.27)

which means that the differential operators on the left-hand sides of (11.18) can be rewrit-
ten using (11.26), to give the following form of the first layer:

ξ ∂ξ

[
(F1 − F2)

2 ξ ∂ξ
(
(F1 − F2)

−1
(
eµ1 + eµ2

))]
= 4(F1 − F2)

[
− H eλ1 + ξ ∂ξ

[
F1

(
1− 1

4
(1− ξ2) ν21

)]]
,

ξ ∂ξ

[
(F1 + F2)

2 ξ ∂ξ
(
(F1 + F2)

−1
(
eµ1 − eµ2

))]
= 4(F1 + F2)

[
H eλ1 − 2H

(
1− 1

4
(1− ξ2) ν21

)
+ ξ ∂ξ

[
F1

(
1− 1

4
(1− ξ2) ν21

)]]
,

(11.28)
The important point is that the sources on the right-hand side of these expressions

consist of known functions. One can therefore solve these equations by integrating and
we find:(

eµ1 + eµ2
)

= σ
β ξq1 (1− γ2 ξ2q2)

ξq2 (1− γ1 ξ2q1) − β ξq1 (1− γ2 ξ2q2)
− 2 c4

1− γ2 ξ2q2

− 1 + γ2 ξ
2q2

1− γ2 ξ2q2
(
(c4 + 2) q2 log ξ + c6

)
,

(
eµ1 − eµ2

)
= σ

ξq2 (1− γ1 ξ2q1)
ξq2 (1− γ1 ξ2q1) − β ξq1 (1− γ2 ξ2q2)

− 2 c5
1− γ1 ξ2q1

− 1 + γ1 ξ
2q1

1− γ1 ξ2q1
(
(c5 − 2) q1 log ξ + c7

)
,

(11.29)

where c4, c5, c6 and c7 are constants of integration.
Exponentiating (11.23) yields:

eλ1 =
ξq2 (1− γ1 ξ2q1) + β ξq1 (1− γ2 ξ2q2)
ξq2 (1− γ1 ξ2q1) − β ξq1 (1− γ2 ξ2q2)

, (11.30)

and hence(
1

2
σ eλ1 − eµ1

)
=

1

2

1 + γ2 ξ
2q2

1− γ2 ξ2q2
(
(c4 + 2) q2 log ξ + c6

)
+

c4
1− γ2 ξ2q2

+
1

2

1 + γ1 ξ
2q1

1− γ1 ξ2q1
(
(c5 − 2) q1 log ξ + c7

)
+

c5
1− γ1 ξ2q1

,

eµ2 = − 1

2
σ − 1

2

1 + γ2 ξ
2q2

1− γ2 ξ2q2
(
(c4 + 2) q2 log ξ + c6

)
− c4

1− γ2 ξ2q2

+
1

2

1 + γ1 ξ
2q1

1− γ1 ξ2q1
(
(c5 − 2) q1 log ξ + c7

)
+

c5
1− γ1 ξ2q1

.

(11.31)
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One can now integrate the last layer, (11.19), to arrive at:

k = − (1− ξ2)
[ (

(c4 + 2) q2 log ξ + c4 + c6
) q2 γ2 ξ

2q2

(1− γ2 ξ2q2)2
+

1

2

c4 q2
1− γ2 ξ2q2

+
(
(c5 − 2) q1 log ξ + c5 + c7

) q1 γ1 ξ
2q1

(1− γ1 ξ2q1)2
+

1

2

c5 q1
1− γ1 ξ2q1

+ c8

]
,

(11.32)
where c8 is a constant of integration.

The rest of the fields can now be easily determined algebraically using (10.51), (10.54)
and (11.17). For completeness, the expressions are given in Appendix A.

11.2.4 Gauge fixing, regularity and asymptotic behavior

We start by removing redundancies from the parametrization of the solution and ensuring
the regularity of the base-layer functions F1, F2, H and λ1 for 0 ≤ ξ < 1.

The base system

Note that:

• The solution to the base-layer, first-order BPS system is invariant under both (q1 →
−q1, γ1 → 1/γ1, β → −β/γ1) and (q2 → −q2, γ2 → 1/γ2, β → −β/γ2), which means
that we can choose q1 ≥ 0 and q2 ≥ 0.

• The regularity of λ1 as ξ → 0 implies q1 ≥ q2.

• The absence of any singularity in F1 and F2 (except possibly at ξ = 1, due to the
finiteness of k at infinity and the form of (10.52)) implies γ1, γ2 ≤ 1.

• If σ ̸= 0, then regularity of ν1 at infinity (ξ = 1) means that λ1 → 0 as ξ → 1.
This means either γ1 = 1 or γ2 = 1 or β = 0. The choice β = 0 will be examined
later. When choosing between the gammas, positivity of e−λ1 implies one must take
γ2 = 1. We therefore have either σ = 0 or γ2 = 1, for β ̸= 0.

Next, we observe that there is an unfixed coordinate choice: ξ → ξλ, with λ > 0. This
leaves ξ = 0, 1 unchanged. Moreover, the BPS equations (11.17) , (11.18) and (11.19)
only involve the differential operator ξ∂ξ, and this scales by λ−1. The system is therefore
invariant under this re-definition, as long as one leaves λ1, µ1, µ2 unchanged but replaces:

F1 , F2 → λ−1F1 , λ
−1F2 , H → λ−2H ,

k

1− ξ2
→ λ−1 k

1− ξ2
, (11.33)

We therefore fix the rescaling of ξ by setting q2 = 1 in (11.22).
To summarize: for σ ̸= 0 , and using (11.25), we arrive at:

σ ̸= 0 , q2 = 1 , 0 ≤ γ1 ≤ 1 , γ2 = 1 , β2 = q21γ1 ; (11.34)
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while for σ = 0, one simply has γ1, γ2 ≤ 1 and

σ = 0 , q2 = 1 , q21γ1 = β2 γ2 . (11.35)

We discuss this solution in more detail in Section 11.4.1. Its significance lies in the
fact that the momentum carrier of the standard superstrata vanishes, ν1 ≡ 0, and yet
it still produces a scaling solution. This can then be S-dualized to a scaling, pure NS
superstratum.

Smoothness of the complete solution

To obtain a smooth solution one must remove the log terms in the solutions for µ1, µ2

and k and require k → 0 as ξ → 0. We will do this without implementing the constraints
from the previous Section and comment on how they combine at the end. This means
one must take:

c4 = − 2 , c5 = 2 , c8 = q2 − q1 , (11.36)

With these choices one has:
1

2
σ eλ1 − eµ1 = − 1

2
(c6 + c7) +

c6 − 2

1− γ2 ξ2q2
+

c7 + 2

1− γ1 ξ2q1
,

eµ2 = − 1

2
(σ − c6 + c7) −

c6 − 2

1− γ2 ξ2q2
+

c7 + 2

1− γ1 ξ2q1
.

(11.37)

and

k

1− ξ2
= − (c6−2)

q2 γ2 ξ
2q2

(1− γ2 ξ2q2)2
+

q2 γ2 ξ
2q2

1− γ2 ξ2q2
− (c7+2)

q1 γ1 ξ
2q1

(1− γ1 ξ2q1)2
− q1 γ1 ξ

2q1

1− γ1 ξ2q1
.

(11.38)
The parameters γ2, c6 and c7 determine the values of the scalars at infinity (ξ = 1). If

one requires that the solution goes to the supersymmetric critical point at infinity, where
all the µj and λ1 vanish, one must take:

γ2 = 1 , c6 = 2 , c7 =
(1− γ1)σ − 4

1 + γ1
. (11.39)

This leads to:
eλ1 =

ξq2 (1− γ1 ξ2q1) + β ξq1 (1− ξ2q2)
ξq2 (1− γ1 ξ2q1) − β ξq1 (1− ξ2q2)

. (11.40)

(
eµ1 − 1

2
σ eλ1

)
= − 1

2
(σ − 2)

(1− γ1)
(1 + γ1)

(1 + γ1 ξ
2q1)

(1− γ1 ξ2q1)
,

eµ2 − 1 = − (σ − 2)
γ1

1 + γ1

1− ξ2q1

1− γ1 ξ2q1
,

(11.41)

k

1− ξ2
=

q2 ξ
2q2

1− ξ2q2
− q1 γ1 ξ

2q1

1− γ1 ξ2q1
− (σ − 2)

(1− γ1)
(1 + γ1)

q1 γ1 ξ
2q1

(1− γ1 ξ2q1)2
. (11.42)

In particular, this implies(
eµ1 − 1

)
+
(
eµ2 − 1

)
− 1

2
σ
(
eλ1 − 1

)
= 0 . (11.43)
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One should also recall that there is the constraint (11.25), which now becomes

q21γ1 − β2 q22 = 0 . (11.44)

To summarize how the results from this and the previous Section combine. Demanding
that the scalars, µj and λ1, vanish at infinity, we have the same constraints, irrespective
of the value of σ:

q2 = 1, 0 ≤ γ1 ≤ 1, γ2 = 1, q21γ1 = β2, c4 = −2, c5 = 2, c8 = 1− q1,

c6 = 2, c7 =
(1− γ1)σ − 4

1 + γ1
. (11.45)

On the other hand, if the µj and λ1 scalars are not required to vanish at infinity, then we
have 2 cases:

σ ̸= 0, q2 = 1, 0 ≤ γ1 ≤ 1, γ2 = 1, q21γ1 = β2, c4 = −2, c5 = 2, c8 = 1− q1,
(11.46)

and

σ = 0, q2 = 1, γ1, γ2 ≤ 1, q21γ1 = γ2 β
2, c4 = −2, c5 = 2, c8 = 1− q1. (11.47)

Each of (11.45), (11.46) and (11.47) leads to all the rest of the functions, given in Appendix
A, being regular as well.

Note that the special locus solution described in Section 11.1 is also contained within
this family of solutions: one must take (11.45) and

σ = 2 , q1 = (2n+ 1) , β = − (2n+ 1) γ2 , γ1 = γ4 . (11.48)

The standard (1, 0, n) superstratum solution, given in Section 9.2.2, is obtained in the
same case, (11.45), by setting q1 = 2n + 1, q2 = 1, γ1 = 0 and taking the limit σ → ∞,
β → 0, with σβ = −1

2
α2 finite.

11.3 Features of the six-dimensional uplift

The complete uplift formulae are given in [27], however we will focus on a subset of the
fields, and especially upon the metric. To write the Ansatz for the uplift one defines the
S3 by introducing four Cartesian coordinates, xI , on R4, obeying the constraint xIxI = 1.
One also defines

∆ = mIJx
IxJ . (11.49)

where mIJ is the matrix of scalars, (7.57), in three dimensions. The six-dimensional
metric ansatz is then given by:

ds26 = − (detmIJ)
−1/2∆1/2 ds23 + g−2

0 (detmIJ)
1/2∆−1/2mIJDxIDxJ , (11.50)
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where ds23 is the three-dimensional metric, (7.18), and D is the covariant derivative defined
in (7.51). The − sign in front of ds23 is to convert the metric into “mostly plus” signature.

The six-dimensional scalars, the dilaton and axion, are given by:

e−
√
2φ = ∆, X = χIx

I . (11.51)

The standard BPS form of the six-dimensional metric is:

ds26 = − 2√
P

(dv + β̂)
(
du+ ω + 1

2
F (dv + β̂)

)
+
√
P ds24 , (11.52)

where ds24 is a metric on a base manifold, B. (We have relabeled the fibration vector as β̂
so as to avoid confusion with the parameter, β, in our solutions.) Our primary goal is to
use (11.50) to determine the various pieces of this metric. Indeed, supersymmetry requires
the base metric, ds24, to be hyper-Kähler and dβ̂ to be self dual on B. As we will see,
the result is a new family of elliptically deformed, two centered ambi-polar hyper-Kähler
metrics.

We should note, at this point, that one might have expected to get a standard super-
stratum in which the base metric is R4 and the fields depend on the v-coordinate in six
dimensions. However, at the outset, we chose a gauge in which the fields are independent
of ψ, and hence v. This gauge choice is equivalent to a spectral flow that converts the
canonical R4 base into a two centered ambi-polar hyper-Kähler metric.

While we are not going to compute the detailed uplifts of the tensor gauge fields, we
note that the tensor gauge field components, usually denoted by Θ(4), are proportional to
the components, B4

ij, in the uplift formula given in [27]:

B4
ij =

(
−
√
2

g20

)
1

2
ω̊ijk g̊

kl∆1/2 ∂l
(
∆−1/2X

)
. (11.53)

Note that the scalar, X, is the axion, whose uplift is given in (11.51), and this is the field
that one calls Z4 in six dimensions.

It is important to note here that if σ = 0, then ν1 ≡ 0, which means that X ≡ 0 and
hence (Z4,Θ

(4)) vanish identically. In the standard superstratum, the pair, (Z4,Θ
(4)), are

the momentum-carrying “seeds” of the solution. However, in our work, the field λ1 can
also carry momentum charge.

11.3.1 The four-dimensional base metric

A straightforward but somewhat involved computation leads to the metric, ds24, on the
base manifold, B. One finds that this metric only depends on the four functions, λ1, F1,
F2 and H that appear in the lowest layer of the BPS equations described in Section 11.2.1.
We parametrize the S3 ⊂ R4 using polar coordinates by taking:

x1 = sin θ sinφ , x2 = sin θ cosφ , x3 = cos θ sinχ , x4 = cos θ cosχ .

(11.54)
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As we will describe in detail below, we obtain a new family of ambi-polar, hyper-Kähler
geometries, parametrized by γ1, γ2, q1 and q2. Indeed, the first-order system, (11.17), is
precisely what defines the hyper-Kähler structure. We will also see that, for γ2 = 1, these
geometries are asymptotically locally-Euclidean (ALE) [63] in that they are asymptotic
to the flat metric on R4/Zq2 at infinity (ξ → 1). Thus, the choice q2 = 1 makes the
base geometries asymptotically Euclidean, and the coordinate reparametrization ξ → ξλ

used in Section 11.2.4 to set q2 = 1 may be viewed as “undoing” the Zq2 orbifold. The
ambi-polar structure of the metric then emerges through individual geometric charges,
1
2
(q2 + q1) and 1

2
(q2 − q1), in the interior.

It should be stressed that these geometries are not the canonical Gibbons-Hawking
ALE metrics because they only have one U(1) isometry and, as we will see in Section
11.3.1, this isometry is not tri-holomorphic. These metrics are expressed in terms of
rational functions of ξ, and are therefore not some variant of the Atiyah-Hitchin metric.
They are thus completely new ambi-polar, hyper-Kähler geometries.

The base metric

The metric, ds24, may be written as the sum of the squares of the frames:

ds24 = a2
4∑
i=1

(
ei
)2
, (11.55)

e1 =
√
H(ξ) Γ

dξ

ξ
,

e2 =

√
H(ξ)

Γ

[
sinh(λ1) sin θ cos θ sin 2φdθ

−
(
cosh(λ1)− sinh(λ1) cos 2φ

)
sin2 θ dφ + cos2 θ dχ

]
,

e3 =
2√
Γ

[(
F1(ξ) e

− 1
2
λ1 sin2 θ − F2(ξ) e

1
2
λ1 cos2 θ

)
cosφdθ

− e
1
2
λ1 sin θ cos θ sinφ

(
F1(ξ) dχ− F2(ξ) dφ

) ]
,

e4 =
2√
Γ

[(
F1(ξ) e

1
2
λ1 sin2 θ − F2(ξ) e

− 1
2
λ1 cos2 θ

)
sinφdθ

+ e−
1
2
λ1 sin θ cos θ cosφ

(
F1(ξ) dχ− F2(ξ) dφ

) ]
,

(11.56)

where

Γ ≡ 2F2(ξ) cos
2 θ − 2F1(ξ)

(
cosh(λ1)− sinh(λ1) cos 2φ

)
sin2 θ . (11.57)

This metric is positive definite for q1 = q2 and ambi-polar for q1 > q2. The latter is
easily seen by taking ξ → 0, where λ1 → 0 and F1 → 1

4
(q1− q2), F2 → 1

4
(q1+ q2), whence:

lim
ξ→0

Γ =
1

2

(
q2 + q1 cos 2θ

)
. (11.58)
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Since one has 0 < θ < π
2
, this changes sign for q1 > q2. The general expression for λ1 = 0

is:

Γ = (F2(ξ)−F1(ξ)) + (F2(ξ)+F1(ξ)) cos 2θ =
q2
2

(1 + γ2 ξ
2q2)

(1− γ2 ξ2q2)
+
q1
2

(1 + γ1 ξ
2q1)

(1− γ1 ξ2q1)
cos 2θ .

(11.59)
We have computed the curvature of ds24 and it is, as one should expect, non-trivial

and self-dual for q1 > q2 and that of flat R4 for q1 = q2.

The complex structures

There is an obvious candidate for a Kähler form:

J ≡ e1 ∧ e2 − e3 ∧ e4 . (11.60)

This is manifestly anti-self-dual, and one can easily verify that it is closed as a result of
the differential identities (11.17). The other two complex structures, K and L, are almost
as simple, and are defined by:

K ≡ (e1 ∧ e3 + e2 ∧ e4) cosχ + (e1 ∧ e4 − e2 ∧ e3) sinχ ,
L ≡ − (e1 ∧ e3 + e2 ∧ e4) sinχ + (e1 ∧ e4 − e2 ∧ e3) cosχ .

(11.61)

These are again manifestly anti-self-dual and are closed by virtue of the differential iden-
tities (11.17).

One should note that ∂
∂χ

is a Killing vector of the metric ds24, but it is not tri-
holomorphic because of the χ-dependence in (11.61).

It is elementary to obtain potentials for these Kähler forms:

J = dA , K + i L = dB ,

A = −
[

1

2 ξ
H(ξ) sinh(λ1) sin

2 θ sin 2φdξ + F2(ξ) sin
2 θ dφ + F1(ξ) cos

2 θ dχ

]
,

B = e−i χ
(
e

1
2
λ1 cosφ+ i e−

1
2
λ1 sinφ

)√
H(ξ)

[
2F2(ξ)

ξ
sin θ cos θ dξ − sin2 θ dθ − i sin θ cos θ dχ

]
.

(11.62)
While one can choose any linear combination of J,K and L to define a complex

structure, we will use Jµν as the complex structure henceforth.

Some complex coordinates and the hermitian form of the metric

Using Jµν as the complex structure, one can define holomorphic coordinates:

z1 ≡
(
e

1
2
λ1 cosφ− i e− 1

2
λ1 sinφ

)
√
sinhλ1

sin θ , z2 ≡ ei χ
√

2H(ξ) sinhλ1 cos θ . (11.63)

The metric, ds24 can then be written in hermitian form:

ds24 = A1

∣∣dz1∣∣2 + A2

∣∣dz2∣∣2 + A3

(
dz1
z1

dz̄2
z̄2

+
dz̄1
z̄1

dz2
z2

)
− i A4

(
dz1
z1

dz̄2
z̄2
− dz̄1

z̄1

dz2
z2

)
.

(11.64)

110



We then find:

A1 = 2 sinh(λ1)
[
2F2(ξ) + Q

(
cosh(λ1)− sinh(λ1) cos 2φ

)
sin2 θ

]
,

A2 =
1

H(ξ) sinh(λ1)

[
− 2F1(ξ) + Q cos2 θ

]
,

A3 = Q sin2 θ cos2 θ , A4 = −Q sinh(λ1) sin
2 θ cos2 θ sin 2φ .

(11.65)

where
Q ≡ 1

Γ

(
4F1(ξ)F2(ξ) + H(ξ)

)
=

1

4Γ
(q21 − q22) . (11.66)

It is interesting to note that for q1 = q2 one has Q ≡ 0, which means H(ξ) =

−4F1(ξ)F2(ξ). Moreover, one has:

F2 sinh(λ1) =
q1 β

1− β2
. (11.67)

As a result, the metric defined by (11.64) and (11.65) becomes

ds24 = A1

∣∣dz1∣∣2 + A2

∣∣dz2∣∣2 =
4 q1β

(1− β2)

∣∣dz1∣∣2 +
(1− β2)

2 q1β

∣∣dz2∣∣2 . (11.68)

This is manifestly a flat metric in (scaled) Cartesian coordinates.

A Kähler potential

One can write the standard expression for the Kähler potential, K, in terms of real
variables implicitly as

Aµ = ∂µ U + Jµ
ν ∂ν K . (11.69)

where the potential, Aµ, is given in (11.62) and J is the complex structure defined by
(11.60). The function, U , is simply a gauge transformation reflecting an implicit gauge
choice in (11.62).

A straightforward computation leads to a solution:

U =
β

8
(q1 + q2)

ξq1−q2(1− γ2 ξ2q2)
(1− γ1 ξ2q1)

− 1

4

(
q1

β ξq1−q2(1− γ2 ξ2q2)
+

q2 β ξ
q1−q2

(1− γ1 ξ2q1)

)
,

K =
1

4

[
q1

(1− γ1 ξ2q1)
− q2

(1− γ2 ξ2q2)
+

1

2
(q21 − q22) log ξ − q1 cos2 θ

+

(
q1

β ξq1−q2(1− γ2 ξ2q2)
− q2 β ξ

q1−q2

(1− γ1 ξ2q1)

+
β

2
(q1 + q2) ξ

q1−q2 (1− γ2 ξ
2q2)

(1− γ1 ξ2q1)

)
sin2 θ cos 2φ

]
.

(11.70)
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11.3.2 The other parts of the six-dimensional metric

The warp factor

The warp factor, P , is relatively straightforward. One finds that

P =
∆

g40 a
4 Γ2

, (11.71)

where

∆ ≡ mABx
AxB = eµ2 cos2 θ + eµ1

(
cosh(λ1)− sinh(λ1) cos 2φ

)
sin2 θ . (11.72)

The fibration vector

The connection, β̂, of the v-fibration is given by:

β̂ = − Ry√
2H(ξ) Γ

e2

= − Ry√
2 Γ

[
sinh(λ1) sin θ cos θ sin 2φdθ

−
(
cosh(λ1)− sinh(λ1) cos 2φ

)
sin2 θ dφ + cos2 θ dχ

]
.

(11.73)

where e2 is one of the frames in (11.56).
One can then verify that one has:

Θ3 = dβ̂

=

√
2Ry

Γ2

(
cosh(λ1)− sinh(λ1) sin

2 θ cos 2φ
)
(e1 ∧ e2 + e3 ∧ e4)

+
4Ry F1(ξ)√
2H(ξ) Γ2

sinh(λ1) sin θ cos θ
(
e

1
2
λ1 sinφ (e1 ∧ e3 − e2 ∧ e4)

+ e−
1
2
λ1 cosφ (e1 ∧ e4 + e2 ∧ e3)

)
.

(11.74)

This is manifestly a self-dual flux.

The momentum function and angular momentum vector

The momentum function, F , is given by:

F = 2− 2

R2
ya

2g40

[
1

Γ

(
4eµ2 F1(ξ)

2 + eµ1 H(ξ)
)(

cosh(λ1)− sinh(λ1) cos 2φ
)
sin2 θ

+
1

Γ

(
4eµ1 F2(ξ)

2 + eµ2 H(ξ)
)
cos2 θ − 2k

1− ξ2

]
.

(11.75)
The non-trivial components of the angular momentum vector are:

ω ≡ ωθ dθ + ωφ dφ + ωχ dχ , (11.76)
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with

ωθ = −
√
2

Ry a2g40 Γ
sinh(λ1) sin θ cos θ sin 2φ (2eµ1F2(ξ) + ω0) ,

ωφ =

√
2

Ry a2g40 Γ

(
cosh(λ1)− sinh(λ1) cos 2φ

)
sin2 θ (2eµ1F2(ξ) + ω0) ,

ωχ =

√
2

Ry a2g40 Γ
cos2 θ (2eµ2F1(ξ)− ω0)

(11.77)

where Q is defined in (11.66) and

ω0 ≡ − k

1− ξ2
− 1

2
R2
y a

2g40 +Q∆ . (11.78)

11.3.3 Asymptotics and conserved charges

We can extract the conserved charges of the geometries according to the methods of [18].
At large r, the momentum function limits to a constant value:

lim
r→∞
F = 2 +

2

R2
y a

2g40

(
2q1 − q2 −

q1σ

1−√γ1
+
q1(σ − 2)

1 + γ1

)
. (11.79)

In order to get the correct AdS3 × S3 asymptotics, this constant must vanish [18,27].
This leads to the following constraint, which is akin to what is often called the “regularity
condition” of superstrata:

R2
y a

2g40 = q2 − 2q1 +
q1σ

1−√γ1
− q1(σ − 2)

1 + γ1
. (11.80)

As we will discuss below, the positivity of the left-hand side places bounds on σ and γ1.
Upon applying the constraint, the momentum function then decays at infinity as

F = − q21 − q22
2R2

y g
4
0 r

2
+O

(a
r

)4
. (11.81)

The fibration and angular momentum vectors, β̂ and ω, also decreases as 1/r2 at
infinity:

β̂ =
Ry√
2

(
sin2 θ dφ− cos2 θ dχ

)a2
r2

+ O
(a
r

)4
,

ω =
Ry√
2

[
1 +

q1 − q2
R2
y a

2g40

](
sin2 θ dφ+ cos2 θ dχ

)a2
r2

+ O
(a
r

)4
.

(11.82)

Using these results, one can then follow the procedure described in [18] to read-off the
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conserved charges1:

β̂ϕ + β̂χ + ωϕ + ωχ =

√
2

r2
(JL − JR cos 2θ) +O(r−4) ,

F = − 2QP

r2
+O(r−4) ,

(11.83)

leading to:

JL =
Ry

2

(
a2 +

q1 − q2
R2
yg

4
0

)
, JR =

a2Ry

2
, QP =

q21 − q22
4R2

y g
4
0

. (11.84)

11.3.4 Inverting the spectral flow

Because of the gauge choices described in Section 9.2, our six-dimensional solution is v-
independent even though it carries momentum charge. The more canonical formulation
as a superstratum would involve a topologically trivial R4 base and would have explicit
v-dependence in the fluctuating modes, and trivial constant terms in the magnetic poten-
tials. To convert the canonical superstratum into the solution presented here one needs
to do a spectral flow of the form:

φ → φ − 1

2
(q1 − q2)ψ , χ → χ − 1

2
(q1 − q2)ψ , (11.85)

which means the Hopf fiber of the Gibbons-Hawking space is shifted by:

(φ+ χ) → (φ+ χ) − (q1 − q2)ψ . (11.86)

This flow takes the trivial base to a base with GH charges 1
2
(q1 + q2) and 1

2
(q1 − q2). It

also shifts the quantized CFT charges according to [64–68]:

jL → jL +
c

12
(q1 − q2) , h → h + (q1 − q2)jL +

c

24
(q1 − q2)2 . (11.87)

where c = 6N1N5 is the central charge of the D1-D5 CFT. This translates into the
following shift of the supergravity charges2:

JL → JL +
q1 − q2
2Ryg40

, QP → QP + (q1 − q2)
JL
Ry

+
(q1 − q2)2

4R2
y g

4
0

. (11.88)

This means that the canonical form of our new superstratum solution on an R4 base
with v-dependent modes must have

JL = JR =
a2Ry

2
, QP =

q1 − q2
2R2

yg
4
0

(
q2 − a2R2

yg
4
0

)
. (11.89)

1We are using the standard conventions in which the excitations of the supertube are in the left-moving
sector. Section D.5 of [27] uses the opposition conventions, swapping JL and JR.

2The translation between quantized and supergravity charges can be found in many places, see, for
example, [18, 21].
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These charges are determined by the fact that the spectral flow (11.88) applied to them
results in the charges (11.84). The canonical superstratum therefore has JL = JR ∼ a2.
The momentum charge determines the AdS3 radius, g−1

0 ≡ (Q1Q5)
1/4, and is related to

the mode numbers and the amplitudes through the constraint (11.80). It is interesting to
note that the expression for QP may be rewritten as:

2QP

(q1 − q2)
+ a2 =

q2
R2
yg

4
0

=
q2Q1Q5

R2
y

, (11.90)

which is the analogue of the usual superstratum regularity condition.

11.4 Two Important Examples

11.4.1 Pure-NS superstrata

The solution with σ = 0 may seem a rather degenerate limit of the solutions we have
presented here, but it is very significant. As we noted at the beginning of Section 11.3,
setting σ = 0 removes the standard momentum carriers of the original superstratum. On
the other hand, this solution can still have momentum charge carried by λ1. We will
therefore examine this solution in more detail.

What makes it important is that the six-dimensional uplift only has excitations in the
metric, the gauge fields (Z1,Θ

(2)) and (Z2,Θ
(1)), and the dilaton. The axion and flux,

(Z4,Θ
(4)), are identically zero. If one takes the S-dual of such a D1-D5 superstratum, then

it becomes a pure F1-NS5 superstratum whose excitations lie only in the NS-NS sector
of the theory: there are no R-R excitations. This means one has the possibility of using
exact world-sheet methods for exploring these geometries.

While such solutions exist for arbitrary γ1, γ2 ≤ 1, we will focus on smooth solutions
that limit to the supersymmetric critical point at infinity. That is, we impose (11.45),
with σ = 0, and use the general solution given in (11.30), (11.31), (11.32) and Appendix
A:

ν1 ≡ 0 , eλ1 =
(1− λ2 ξ2q1) + λ q1 ξ

q1−1 (1− ξ2)
(1− λ2 ξ2q1) − λ q1 ξq1−1 (1− ξ2)

,

eµ1 = 1 − 2λ2 (1− ξ2q1)
(1 + λ2)(1− λ2 ξ2q1)

, eµ2 = 1 +
2λ2 (1− ξ2q1)

(1 + λ2)(1− λ2 ξ2q1)
,

(11.91)

where we have solved the constraint in (11.35) by introducing a new parameter, λ:

β ≡ λ q1 , γ1 ≡ λ2 . (11.92)
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The metric functions are3:

Ω2
0 =

(1− λ2)(1 + λ2 ξ2q1)

(1 + λ2)(1− λ2 ξ2q1)

(
1 +

2λ2 (1− ξ2q1)
(1 + λ2)(1− λ2 ξ2q1)

)(
1 − λ2 q21 ξ

2q1−2 (1− ξ2)2

(1− λ2 ξ2q1)2

)
,

(11.93)

k

1− ξ2
= Ω−1

1

 ξ2

1− ξ2
+
q1 λ

2 ξ2 q1
(
1− λ2

(
3− ξ2 q1(1 + λ2)

))
(1 + λ2)(1− λ2 ξ2 q1)2

 . (11.94)

For completeness, we re-state the gauge fields in terms of the other fields and the
functions F1 and F2, (11.21), with parameters fixed by (11.45), which provides the easiest
way of obtaining expressions for them:

Φ1 =
Ω1

2
e−µ2 , Ψ1 =

(
F1(ξ) +

Ω1k

2(1− ξ2)
e−µ2

)
,

Φ2 = − Ω1

2
e−µ1 , Ψ2 =

(
F2(ξ) −

Ω1k

2(1− ξ2)
e−µ1

)
,

F1 =
1

4

[
q1
1 + λ2 ξ2q1

1− λ2 ξ2q1
− 1 + ξ2

1− ξ2

]
, F2 =

1

4

[
q1
1 + λ2 ξ2q1

1− λ2 ξ2q1
+

1 + ξ2

1− ξ2

]
.

(11.95)

11.4.2 Asymptotically AdS2 × S1 geometries

We now return to superstrata with generic values of σ and to obtain a better understanding
these solutions, it is useful to track the evolution of the length of the ψ-circle in the 3-
dimensional geometry (7.18):

Lψ(ξ) ≡
2π

RAdS

√
gψψ . (11.96)

We can generally identify three distinct regions:

• Close to the origin of space, one has Lψ(r) ∼ 2πr/a, the solution caps off smoothly
with no conical singularity.

• There is an intermediate regime where Lψ(ξ) remains constant, which means that
the size of the circle is fixed, and the geometry is approximately AdS2×S1. We call
this region the throat.

• Asymptotically, the size of the circle typically grows linearly with r, forming an
AdS3 region. It is given by

Lψ(r) ∼r→∞ 2πC
(r
a

)
, or equivalently Lψ(ξ) ∼ξ→1

2πC√
1− ξ2

, (11.97)

3Ω1 is a free constant that can be rescaled by a rescaling of the time coordinate. We do not fix it for
now.
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where C is a constant that depends on the exact solution we are looking at. We can
compute it using (11.24) and (11.40)-(11.42). Its value depends on the parameters
β and σ, and on the modes q1 and q2:

C2 = q2 − 2q1 +
σ q21

q1 − q2 β
− (σ − 2) q31
q21 + q22 β

2
. (11.98)

Note that using the regularity condition (11.80), one can write C simply in terms
of the radii of the supertube locus and of the AdS space:

C2 = R2
y a

2 g40 . (11.99)

More precisely, when C2 is positive, Lψ grows linearly at infinity, and the geometry is
asymptotically AdS3. But at certain values of the parameters, when C = 0, the size of
the circle is kept finite at infinity, the asymptotically AdS3 region disappears, the throat
becomes infinite, and the geometry is asymptotically AdS2×S1. If we keep on increasing
the parameters, we reach a regime where C2 is negative, the solution then develops closed
time-like curves and is therefore unphysical.

To illustrate this behavior, we take q2 = 1 and plot, in Fig. 11.1, the logarithm of the
length of the circle, log Lψ, against x, defined through ξ ≡ ex√

e2x+1
. This is done, as an

example, on the special locus, (11.48). There we obtain

C2 =
1− (4n+ 1)γ2

1 + γ2
=

1− (2 q1 − 1)γ2

1 + γ2
, (11.100)

where q1 = 2n+1 as in (11.48). Asking for C2 to be positive, we find again the condition
given in (11.16):

γ2 ≤ 1

4n+ 1
=

1

2 q1 − 1
, or equivalently − β ≤ q1

2 q1 − 1
. (11.101)

A choice of parameters for which this bound is respected is shown on the left graph of
Fig. 11.1. The aforementioned three regions are identified as follows: the linear growth on
the left corresponds to the cap; the plateau, in the middle, is the throat; and the growing
part to the right signifies the AdS3 region.

The bound is saturated when C = 0. The solutions saturating the bound are asymp-
totically AdS2 × S1 geometries, as shown on the right graph of Fig. 11.1.

More generally, moving away from the special locus, one finds that the length of the
ψ circle at infinity when C = 0 is:

L
(∞)
ψ =

√
2q2 (q1 − q2) π . (11.102)

The solutions of the equation C = 0 describe a contour in the plane (σ, β), that
separates it into two regions: the physical region, and the region with CTCs. This is
represented on Fig. 11.2, for q1 = 5 and q2 = 1. Alternatively, one can replace σ by
α2 = −2βσ – a better parametrization in relation to the standard superstratum in our
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Figure 11.1: Plots of log Lψ against x, where ξ = ex√
e2x+1

. In the first graph we have taken
σ = 2, β = − q1

2q1−1
+ 1

106
, q1 = 5. Here C2 has a small positive value, and we identify the

two AdS3 regions of linear growth separated by a plateau, which is the throat. The second
graph corresponds to σ = 2, β = − q1

2q1−1
, q1 = 5. For this solution, C is zero, and the

asymptotic AdS3 region is not present.

three-dimensional notation, and plot the contour C = 0 in the (α, β) plane. This is done
in Fig. 11.3, using once again q1 = 5 and q2 = 1. We recover a similar result to the one
presented in figure 12 of [38].

Because of (11.99), the C = 0 locus can also be identified with the “a → 0 limit” of
superstrata geometries. In the standard construction of the latter, there are two ways
of taking that limit. To see that, one needs to transform back to the original r coordi-
nate, (7.12). Then, one possibility is to keep r finite and take a → 0, this leads to an
asymptotically AdS3 geometry with an infinitely-deep throat at the origin and a metric
approaching that of extremal BTZ. The other option is to take both r → 0 and a → 0,
while keeping the ratio r/a fixed. This is a choice we have implicitly made by using the
compactified radial variable, ξ. As we have seen, it produces an asymptotically AdS2×S1

spacetime, as the AdS3 region is pushed to an infinite distance, with a smooth AdS3 cap
at the origin.

The significance of the a→ 0 limit for the standard superstratum and a resolution to
the issue of whether a black hole solution can be obtained as a limit of such a horizonless
geometry is discussed in [69].

We have therefore shown, and depicted in Fig. 11.1, that our new superstrata, including
the family in Section 11.4 that can be S-dualized to a solution with only NS-fields, can
exhibit the deep scaling behavior of the standard superstrata as the momentum charge is
increased towards its maximum value. Intriguingly enough, one can see from (11.40) and
(11.41) that the scalars λ1, µ1 and µ2 remain smooth and bounded even in the deepest
such superstrata4, except when q1 = q2. See, for example, Fig. 11.4, which shows a plot
of λ1 on the special locus, (11.48), where λ1 = µ1 and µ2 = 0. We use the same values of
the parameters as in Fig. 11.1, and while that leads to different spacetime asymptotics,

4Here, we are only considering solutions where the scalars are taken to vanish at infinity.
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Figure 11.2: Plot of C2, (11.98), for q1 = 5, q2 = 1, as a function of σ and β. The red
dashed-dotted lines indicates the C = 0 contour. In the region between them is where the
values are positive. C2 determines the size of the ψ circle at infinity, in the asymptotically
AdS3 region.

λ1 barely changes. This means that the elliptical deformation also remains bounded and
goes nowhere near “flattening the ellipse.”
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values. C2 determines the size of the ψ circle at infinity, in the asymptotically AdS3
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Figure 11.4: Plots of 1
2
λ1 ≡ µ0 against ξ. In the first graph we have taken σ = 2,
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, q1 = 5. The second graph corresponds to σ = 2, β = − q1
(2q1−1)2

,
q1 = 5.
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Chapter 12

Perturbative constructions of non-BPS
geometries

Having explored the space of supersymmetric solutions, we now turn to the construction
of non-BPS states. While the ansätze presented in Chapter 9 have drastically simplified
the problem by making it one-dimensional, we are still left with the problem of finding
solutions to the equations of motion: a system of many coupled non-linear differential
equations. Finding analytical solutions to this system is out of reach. The main tool at
our disposal is perturbation theory, but we also make use of numerical methods.

This Chapter is based on the work of [38,39,42]. In Section 12.1, we start by reviewing
the technicalities of imposing physical constraints on the solutions, and gauge fixing the
ansätze. In Section 12.2, we present the perturbative construction of solutions in the
single-mode ansatz. This system consists of 11 second order ODEs for these functions
plus 3 first-order constraints. We find two large classes of new non-BPS solutions whose
properties we explore.

In Section 12.3, we then work in the Axial gauge of Section 9.3 with the functions
(9.32). This system is a superset of the previous one, and in total consists of 19 second
order ODEs for these functions plus 3 first-order constraints. We study this system and
make use of the relative independence of the two sectors of the truncation to construct
“almost-BPS” solutions.

Section 12.4 finally presents a radically different approach to the perturbative com-
putation, taking as a base a deep superstratum solution rather than the vacuum. We
construct solutions within the framework of the WKB approximation, and are able to
compare some of the results with those of the previous perturbation theory.

The scope of this Chapter is limited to the presentation of the new non-BPS solutions,
and the computations that lead to these solutions, within supergravity. The analysis and
interpretation of these solutions using holography and the CFT will be the object of the
Chapters 13 and 14.
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12.1 Gauge fixing and boundary conditions

We start by determining as many of the boundary conditions as we can. Since the single-
mode truncation is included in the double-mode truncation, we use the latter to fix the
conditions, and it is straightforward to specialize the results to the single-mode truncation.
First and foremost, we fix the geometry to be asymptotic to AdS3. This means that the
leading divergences in (7.18) must cancel as ξ → 1, and this implies:

Ω1(1) =
Ω0(1)

k(1)
. (12.1)

The metric now has divergences proportional to (1− ξ)−1 ∼ ρ2 that multiply the metric
in the (dψ, dτ)-directions. This describes some, possibly boosted, asymptotically AdS
geometry.

It is convenient to use the coordinate σ, defined in (7.12). The components of (7.18)
then satisfy:

gσσ + gττ − 2 gστ = Ω2
1 , (12.2)

for all ξ. The fixed canonical periodicity of σ prevents it from being rescaled. On the
other hand, we have not yet fixed the rescaling of the time coordinate, τ → c τ (along with
the appropriate rescaling of the electric gauge fields and metric functions1). In previous
work [38], this gauge was fixed by requiring Ω1(ξ = 1) = 1, however, as was pointed out
in [39], holography suggests a more natural choice. We want the asymptotic geometry to
be sectioned by canonically normalized (cylindrical) Minkowski slices with

ds22 ∼ ρ2(dτ 2 − dσ2) . (12.3)

We therefore fix the scaling of τ by requiring:

lim
ξ→1

gσσ
gττ

= − 1 . (12.4)

However, combining this with (12.2), one sees that this condition also removes the ρ2

divergent term in gστ , and so (12.4) sets the asymptotic metric to the unboosted, conically-
normalized, Minkowski-sliced AdS3 with (12.3).

We therefore use the boundary conditions (12.1) and (12.4) throughout this manuscipt.
From (7.18) we see that we can also absorb a scale of Ω0 into the definition of RAdS,

and thus we can, without loss of generality take2:

Ω0(1) = 1 . (12.5)

In order for the solution to limit to the supersymmetric vacuum at infinity, the scalar
fields must limit to the supersymmetric critical point of the potential. This means that

1Precisely, the change of coordinates τ → c τ leads to the redefinitions Ω1 → cΩ1, Φ1,2 → cΦ1,2, k →
c−1k.

2The overall scale, RAdS , is fixed by the equations of motion. Since we will actually set RAdS = g−1
0 ,

the condition Ω0(1) = 1 will then emerge from the equations of motion.
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χI and mIJ must vanish at infinity, which in terms of the fields of the ansatz translates
to:

ν1,2(1) = O(1) , µ1,2(1) = λ1,2(1) = 0 , m5,6(1) = 0 . (12.6)

We are, of course, going to require that all the fields in (9.6) or (9.32) are smooth
functions of ξ on the whole interval [0, 1], including at the boundaries. In particular, this
imposes some conditions at the origin. Since we are working with τ and ψ independent
solutions, the value at the origin of the potentials Ψ1 and Ψ2 fixes the “modes,” or “mag-
netic quantum numbers,” of our excitations. The other magnetic potentials must limit to
0 at the origin3:

Ψ1(0) =
1

2
n1 , Ψ2(0) =

1

2
n2 , Ψ3(0) = Ψ4(0) = 0 . (12.7)

The periodicity of the ψ-circle and smoothness requires4 that nj ∈ Z. Note that the
situation is only slightly different in the single-mode truncation. This ansatz contains
a residual global U(1) rotation, whose action is to shift the values of the potentials:
Φ2,Ψ2. We thus need to impose additional conditions to uniquely fix a solution, we
choose Φ2(1) = 0 and n2 = 0.

Finally, ensuring the regularity of the metric at the origin also requires that Ω0 and
Ω1 remain finite at ξ = 0 and that

k(ξ) = O(ξ2) as ξ → 0 . (12.8)

We will show that the system has two classes of smooth “solitonic” solutions, which
we refer to as α-class and β-class. Each solution is defined by a locus with param-
eters that depend on the truncation: (n1, ω̂1, ζ1) for the single-mode truncation, and
(n1, n2, ω̂1, ω̂2, ζ1, ζ2) for the double-mode truncation, where n1, n2 ∈ Z are the “mag-
netic quantum numbers” defined in (12.7), ω̂1, ω̂2 are discrete “frequencies,” or energies,
of normal modes of oscillation and ζ1 and ζ2 are continuous parameters that determine
the magnitudes of various component fields. As one would expect, all these parameters
emerge from the choice of boundary conditions that result in smooth solutions. Pin-
ning down the solution locus exactly can be done using perturbation theory, or numerics.
These methods lead to different possible characterizations of the parameters ζ1, and ζ2.
In Chapter 14, we will show how one extracts the energies, ω̂1, ω̂2, from the boundary
data.

3We work here in the axial gauge. In the diagonal gauge, one also needs to impose Ψ5(0) = Ψ6(0) = 0.
4Combining (7.75) and (9.5), one sees that the minimal couplings of the gauge potentials inherit a

factor of 2, and hence all the factors of 1
2 in (12.7).
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12.2 Perturbation theory in the single-mode truncation

In this Section we work in the single-mode truncation, described in Section 9.2, and with
the fields (9.6). To construct the perturbative solutions, we expand each field as:

X(ξ) = XAdS(ξ) +
∞∑
k=1

ϵk δ(k)X(ξ), (12.9)

where ϵ is a bookkeeping parameter. We will introduce parameters for the (small) am-
plitudes of the perturbations at linear order, and so in the end, we will be able to take
ϵ = 1. The superscript AdS denotes the AdS vacuum. Furthermore, we will sometimes
work with a slightly different basis of fields that makes the computations easier, namely:

µ± =
1

2

(
µ1 ± µ2

)
, Φ± =

1

2
(Φ1 ± Φ2), Ψ± =

1

2
(Ψ1 ± Ψ2). (12.10)

The values of XAdS are determined by the AdS3 vacuum. For the scalars and the
metric fields, this is simply:

νAdS
1 = 0, µAdS

1,2 = 0, λAdS
1 = 0, ΩAdS

0 = 1, ΩAdS
1 = 1, kAdS = ξ2 . (12.11)

The gauge fields require more care, as the vacuum possesses many symmetries that indi-
vidual solutions do not. The magnetic potentials must be fixed at the origin as in (12.7).
In addition, as explained in the previous Section, the residual global U(1) symmetry ro-
tating the indices (34) can be fixed by choosing Φ2(1) = 0 and n2 = 0. Remains the other
electric potential, Φ1. At this level, Φ1 is unconstrained, and so we need to introduce a
new mode number, ω1, to parametrize the range of values it can take. The gauge fields
are then:

ΦAdS
1 =

ω1

2
, ΦAdS

2 = 0 , ΨAdS
1 =

n1

2
, ΨAdS

2 = 0 . (12.12)

We can now solve the system of second order, ordinary differential equations, order by
order in ϵ. We will first compute the linearised equations of motion and determine their
solutions. At higher orders, the equations one needs to solve are given by the linear piece
plus additional sources coming from the previous orders.

12.2.1 Linear perturbations

We now turn to the linear perturbations. The linearized equations of motion around the
vacuum can be derived from the action (9.7), they are:

ξ ∂ξ
(
ξ
(
1− ξ2

)
δ(1)ν ′1

)
−
(
n2
1 − (ω1 + n1 + 1)(ω1 + n1 − 1)ξ2

)
δ(1)ν1 = 0 , (12.13)

ξ ∂ξ
(
ξ δ(1)λ′1

)
− 4

(1− ξ2)
(n2

1 − (ω1 + n1)
2ξ2) δ(1)λ1 = 0, (12.14)

ξ ∂ξ
(
ξ δ(1)µ′

+

)
− 8ξ2

(1− ξ2)2
δ(1)µ+ = 0 , ξ ∂ξ

(
ξ δ(1)µ′

−
)

= 0, (12.15)
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∂ξ
(
ξδ(1)Φ′

+

)
= 0 , ∂ξ

(
1− ξ2

2 ξ
δ(1)Ψ′

+ − δ(1)Ψ+ − δ(1)Φ+

)
= 0 (12.16)

∂ξ

(
1− ξ2

2 ξ
δ(1)Ψ′

− + δ(1)Ψ− + δ(1)Φ−

)
= 0 , (12.17)

∂ξ
(
ξδ(1)Φ′

−
)
+ 4 δ(1)Ψ′

− − 4
ξ2

1− ξ2
δ(1)Φ′

− = 0, (12.18)

∂ξ
(
ξ
(
1− ξ2

)
δ(1)Ω′

1 − 2 δ(1)Ω1

)
= 0 , (12.19)

∂ξ
(
ξδ(1)Ω′

0

)
− 8

ξ

(1− ξ2)2
δ(1)Ω0 = − 3

1 + ξ2

1− ξ2
δ(1)Ω′

1 , (12.20)

∂ξ

(
δ(1)k

1− ξ2

)
+

1 + ξ2

1− ξ2
δ(1)Ω′

1 =
2ξ

(1− ξ2)2
(2δ(1)Ω0 − δ(1)Ω1) . (12.21)

The only fields that admit regular and normalizable solutions to their linearised equa-
tions are ν1 and λ1:

ν1 =α1 ξ
n1

2F1

(
(1− ω1)/2, n1 + (1 + ω1)/2, 1 + n1, ξ

2
)
,

λ1 =β1 ξ
2n1

2F1

(
− ω1, 2n1 + ω1, 1 + 2n1, ξ

2
)
,

(12.22)

where α1 and β1 are the amplitudes of the scalar perturbations, they are real numbers.
Depending on which of (12.22) we turn on, we can identify two main classes of solutions
- the “alpha class” if ν1 is excited at linear order and the “beta class” if λ1 is switched
on at linear order. For these perturbations to be regular, ω1 must be an odd integer,
ω1 ∈ 2Z+ 1.

The linear perturbations play an important role in holography, since they allow the
identification of the bulk fields with CFT operators. This identification, and the com-
plementary field theory interpretation of the bulk gravitational results, is the subject of
Chapter 13.

Linearizing the generalized superstrata solution described in Section 11.2 around the
AdS vacuum, one finds a result that matches the expansion (12.22) with ω1 = 1. The
amplitudes α1 and β1 are expressed in terms of the parameters of the superstrata as:

α2
1 = − 2σβ , and β1 = β. (12.23)

This means that all solutions with ω1 = 1 are BPS. Since we are interested in building
non-supersymmetric solutions, we turn to the next simplest value for the frequency, and
for the rest of this section, we fix ω1 = 3. In the double-mode truncation, that will be
investigated in the next section, it will be possible to build non-BPS solutions with ω1 = 1.

12.2.2 The α-class of non-BPS solutions

We will first focus solely on the α1-deformation, setting β1 = 0 in (12.22) to turn off λ1
at linear order.

125



It is necessary to compute the expansion up to at least fourth order in α1, for two
reasons. The first is that this order will be needed to perform non-trivial checks in the
CFT. The second reason is that the coiffuring condition appears at this order. This non-
trivial result shows that, in order for the α-deformation to be normalizable, one needs to
also excite the scalar λ1 (at higher than linear order), corresponding to the β-deformation,
in a precise relation to α1.

First order

The linear perturbation has already been described in section 12.2.1. Only one scalar field
is excited, ν1, with ω1 = 3:

δ(1)ν = α1ξ
n

(
1− n1 + 2

n1 + 1
ξ2
)
, (12.24)

and the other fields are set to zero. Note that α1 is normalised so that ν1 ∼ α1 ξ
n as

ξ → 0.

Second order

At order α2
1, all fields but ν1 receive normalizable corrections. One could argue that the

scalar ν1, as well as λ1, have normalizable homogeneous solutions, which can always be
added to the two scalars at each order. Indeed, as we will see, the homogeneous term in
λ1 will prove to be very important for assuring the normalizability of the solutions. On
the other hand, this term in ν1 would only lead to a redefinition of α1, and therefore can
be discarded.

For the scalars, we find

δ(2)λ1 =
(n1 + 2)α2

1

16(2n1 + 1)(n1 + 1)2
ξ2+2n1(1− ξ2)

(
(2n1 + 3)ξ2 − 2(n1 + 1)

)
+ β(2) ξ

2n(1− ξ2)
(
1− 4

n1 + 2

2n1 + 1
ξ2 +

(n1 + 2)(2n1 + 5)

(n1 + 1)(2n1 + 1)
ξ4
)
, (12.25)

δ(2)µ1 = − α2
1

16
ξ2n(1− ξ2)

(
1− n1 + 2

n1 + 1
ξ2
)2

, (12.26)

δ(2)µ2 = 0 , (12.27)

where we named β(2) the constant of integration for the homogeneous solution in λ1. We
will find that it gets fixed at order α4

1 by a coiffuring mechanism.
The corrections to the gauge fields are

δ(2)Φ1 = γ(2) δ(2)Ψ1 = 0 (12.28)

δ(2)Φ2 =
α2
1

4(n1 + 1)2
ξ2n
(
1 + n1(n1 + 2)(1− ξ2)2

)
, (12.29)

δ(2)Ψ2 =
α2
1

4(n1 + 1)2
ξ2n1+2

(
(n1 + 1)(n1 + 3)(1− ξ2)2 + ξ4

)
, (12.30)
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where γ2 is a constant, which will be fixed at the next order by demanding regularity
of ν1 at infinity. Again, the subscript denotes the order at which these constants are
introduced.

The corrections to the metric are

δ(2)Ω0 = − α2
1

8(n1 + 1)2
ξ2n1(1− ξ2)

[
(n1 + 1)2 − 2(n2

1 + 3n1 + 1)ξ2 + (n1 + 2)2ξ4
]
,

(12.31)

δ(2)Ω1 = − 3α2
1

4(n1 + 1)2
+

α2
1

2(n1 + 1)2
ξ2n1+2(1− ξ2), (12.32)

δ(2)k =
3α2

1

4(n1 + 1)2
ξ2 +

α2
1

2(n1 + 1)2
ξ2n1+2(1− ξ2)

(
n1 + 1− (n1 + 2)ξ2

)
. (12.33)

Note that the constant factor of 3/4 appearing in Ω1 and k is a result of the normal-
ization of time (12.4).

Third order

As we progress to higher orders, it becomes harder to solve the equations for a general
mode number n1, as the source terms become more complicated. Two methods can
be used to determine the solutions. The first is based on the fact that all normalizable
solutions appear to be polynomials in ξ. The differential equations thus become recurrence
equations, that can sometimes be solved. The second method is to solve the equations for
a large number of different values of n1, and to try to extrapolate the general solution.
The result can then be checked against the original equations. We use the latter method.

Akin to the linear order situation, at third order in α1 only δ(3)ν1 receives a non-
trivial correction (non-linearly sourced by lower order solutions). We again find a non-
normalizable (log-divergent at infinity) piece, whose vanishing gives us an expression for
one of the constants that was not fixed at the previous order, γ(2). This results in:

γ(2) =
9

4(n1 + 1)2
− 3

32(n1 + 1)2

(
1

2n1 + 1
+

22

2n1 + 3
+

1

2n1 + 5

)
. (12.34)

Moreover, one can add homogeneous solutions in δ(3)λ1 and δ(3)Φ1, by introducing
respectively the constants β(3) and γ(3). We have:

δ(3)ν =
3(3n2

1 + 9n1 + 4) ξ2+n1

2(8n3
1 + 36n2

1 + 46n1 + 15)(n1 + 1)3

[
n1−1∑
k=1

n1 + k + 2

k(k + 1)
ξ2k − (n1 + 3)

]
− ξ3n1Pn1(ξ

2) ,

(12.35)

δ(3)λ1 = β3 ξ
2n1(1− ξ2)

(
1− 2

2n1 + 4

2n1 + 1
ξ2 +

(n1 + 2)(2n1 + 5)

(n1 + 1)(2n1 + 1)
ξ4
)
, (12.36)

δ(3)Φ1 = γ(3) , (12.37)

where Pn1(ξ
2) is a family of polynomials of order 4 in ξ2, whose terms are complicated

rational functions of the mode n1, and have a linear dependence on β(2).
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The constant γ(3) will be fixed at next order, by the regularity of the scalars at infinity,
and β(3) will get fixed two orders later (at α5

1) to avoid non-normalizable solutions, as
explained earlier.

Fourth and higher orders

At fourth order in the perturbative expansion, one finds that all fields but ν receive
corrections, as was the case at order α2

1. The scalar δ(4)λ1 is normalizable (and polynomial)
if and only if the following coiffuring constraint is satisfied

β2 = − α2
1

4
and γ(3) = 0 . (12.38)

The expression for the other fields is also known, but of little interest here. They are all
polynomial in ξ.

At higher orders, while the analysis becomes too involved when keeping n1 general, it
is possible to continue it at a fixed value of n1. We did this up to tenth order, and for n1

up to 10. We find patterns that we postulate are true for all modes, in particular

δ(2 k)ν = 0, and δ(2 k+1)λ1 = 0 , for k ∈ N , (12.39)

γ(k) = 0 and β(k) = 0 , for k ≥ 3 . (12.40)

12.2.3 Properties of the special locus

We call special locus the precise relation (12.38), between the amplitudes of the alpha-
perturbation and the beta-perturbation, found in the previous Section. The non-BPS
alpha-class solutions that we can construct within the truncation are necessarily on this
special locus. This locus also exists for BPS solutions, as we have seen in Section 11.1,
however in this case more general solutions can be constructed, as we did in Section 11.2.

The special locus plays an essential role in the construction of smooth non-BPS so-
lutions. We describe it first through its rather prosaic description in supergravity. The
understanding of its significance only comes from its description in the dual CFT, which
is the object of a following chapter.

However, the definition of the special locus in terms of equation (12.38) is very narrow,
we want to give a broader definition that can be applicable to the other Q-ball truncations,
and beyond perturbation theory. We will thus define it by the properties that the solutions
at the special locus seem to enjoy.

Definition. A solution is said to be on the special locus if it satisfies two very specific
algebraic relationship between the scalars χI , the scalars mIJ and the Maxwell fields,
Fµν

IJ :

• χI is an eigenvector of mIJ , and the corresponding eigenvalue, m0, is the only non-
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trivial eigenvalue of mIJ , with

m0 = 1− 1

2
χIχI . (12.41)

All other eigenvalues of mIJ are equal to 1.

• Furthermore, χI is a null vector of the dual field strengths.

F̃µν
IJ χJ = 0 . (12.42)

These properties are indeed satisfied by both the BPS solution at the special locus, and
perturbatively by the non-BPS solutions constructed in the previous Section. Note that
the first property means that the matrix mIJ has an SO(3) invariance in the directions
orthogonal to χI . This matrix encodes the deformation of the S3 on which the parent
supergravity theory has been reduced from six to three dimensions. However, the SO(3)
is typically broken by the gauge fields, AIJµ .

We should stress that these are “empirical” properties of the special locus that were
found through the construction of smooth non-BPS solutions. The significance of the
special locus in supergravity remains somewhat mysterious.

12.2.4 The β-class of perturbative non-BPS solutions

We now repeat the previous analysis with the solutions emerging from the second defor-
mation in (12.22). That is, we turn off the ν1 deformation by setting α1 = 0, and make
a perturbative expansion of the solution in small β1. The β-deformation does not require
a coiffuring. While our results with general n1 are limited to the third order, we will
continue the analysis for a few fixed values of n1, as done for the α-deformation.

First order

The linear solution has been described in section 12.2.1. The only excited 3D field is

δ(1)λ1 = β1
(
1− ξ2

)
ξ2n1

(
1− 2

2n1 + 4

2n1 + 1
ξ2 +

(n1 + 2)(2n1 + 5)

(n1 + 1)(2n1 + 1)
ξ4
)
. (12.43)

Second order

At second order, most of the fields receive a correction. The scalars are given by

δ(2)ν1 = δ(2)λ1 = 0, (12.44)

and

δ(2)µ1 = − δ(2)µ2 =
1

4
β2
1ξ

4n1+2

(
12(n1 + 2) (4n2

1 + 12n1 + 7) ξ4

(n1 + 1)(2n1 + 1)2(2n1 + 3)2
+

2(n1 + 2)2ξ8

(n1 + 1)2(2n1 + 1)2

− 4(2n1 + 5)ξ6

(n1 + 1)(2n1 + 1)2
− 4(n1 + 2)ξ2

(n1 + 1)2(2n1 + 1)
+

2

(2n1 + 1)2

)
− 3β2

1

2(n1 + 1)2(2n1 + 1)2(2n1 + 3)2
.

(12.45)
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The gauge fields are more appropriately written in the basis described in (12.10). They
are

δ(2)Φ+ =
−3β2

1

2(2n1 + 1)2

[
(n1 + 2)2ξ8

(n1 + 1)2
− 2(2n1 + 5)ξ6

n1 + 1
+

6(n1 + 2) (4n2
1 + 12n1 + 7) ξ4

(n1 + 1)(2n1 + 3)2

− 2(n1 + 2)(2n1 + 1)ξ2

(n1 + 1)2
+ 1

]
ξ4n1+2 + γ(2).

(12.46)

δ(2)Φ− =
−3β2

1 (1− ξ2)
2
((n2

1 + 4n1 + 4)ξ4 − (2n2
1 + 6n1 + 3)ξ2 + n2

1 + 2n1 + 1) ξ4n1+2

2(n1 + 1)2(2n1 + 1)2
+γ(2).

(12.47)

δ(2)Ψ− =
1

4
β2
1ξ

4n1+2

[
− (n1 + 2)2ξ8

(n1 + 1)2(2n1 + 1)
+

2 (4n3
1 + 16n2

1 + 17n1 + 4) ξ6

(n1 + 1)2(2n1 + 1)2

− 2 (12n4
1 + 60n3

1 + 99n2
1 + 59n1 + 9) ξ4

(n1 + 1)2(2n1 + 1)2(2n1 + 3)
+

2 (4n2
1 + 8n1 + 1) ξ2

(n1 + 1)(2n1 + 1)2
− 1

2n1 + 1

]
.

(12.48)

δ(2)Ψ+ =
−β2

1ξ
2

4(n1 + 1)2(2n1 + 1)2(2n1 + 3)2

[
ξ4n1

(
(n1 + 2)2(2n1 − 1)(2n1 + 3)2ξ8

− 2(n1 + 1)(2n1 + 3)2
(
4n2

1 + 9n1 − 4
)
ξ6

+ 6(n1 + 1)
(
8n4

1 + 40n3
1 + 58n2

1 + 14n1 − 9
)
ξ4

− 2(2n1 + 1)
(
8n4

1 + 42n3
1 + 73n2

1 + 39n1 − 9
)
ξ2

+ 8n5
1 + 44n4

1 + 94n3
1 + 97n2

1 + 48n1 − 9

)
− 18 (1− ξ4n1)

1− ξ2

]
.

(12.49)

Finally, the corrections to the metric functions are

δ(2)Ω1 =
3β2

1

(
2(2n1 + 3) (ξ2 − 1)

2
ξ4n1+2 ((n1 + 2)2ξ4 − (2n1(n1 + 3) + 3)ξ2 + (n1 + 1)2)− 3

)
2(n1 + 1)2(2n1 + 1)2(2n1 + 3)

.

(12.50)

δ(2)Ω0 =
1

4
β2
1

(
1− ξ2

)2
ξ4n1

(
− (n1 + 2)2(2n1 + 5)2ξ8

2(n1 + 1)2(2n1 + 1)2
+

2(n1 + 2)2 (4n2
1 + 14n1 + 5) ξ6

(n1 + 1)2(2n1 + 1)2

− (12n4
1 + 72n3

1 + 133n2
1 + 75n1 + 9) ξ4

(n1 + 1)2(2n1 + 1)2
+

2 (4n2
1 + 10n1 − 1) ξ2

(2n1 + 1)2
− 1

2

)
.

(12.51)

δ(2)k = − β2
1ξ

2

4(n1 + 1)2(2n1 + 1)2(2n1 + 3)

[ (
ξ2 − 1

)
ξ4n1

(
5(n1 + 2)2(2n1 + 3)(2n1 + 5)ξ8

− 4(n1 + 2)(2n1 + 3)(5n1(2n1 + 7) + 23)ξ6 + 2
(
n1(n1 + 3)

(
60n2

1 + 180n1 + 209
)
+ 171

)
ξ4

− 4(n1 + 1)(2n1 + 3)(10n2
1 + 25n1 + 8)ξ2 + 5(n1 + 1)2(2n1 + 1)(2n1 + 3)

)
− 18

]
.

(12.52)
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One could add a homogeneous term to the scalar δ(2)ν1, but we find at next order that
it has to vanish. Here again, γ(2) is an integration constant that is fixed when requiring
that the solution is normalizable at third order

Third order

At this order the only field that receives a non-trivial correction is λ1:

δ(3)λ1 = −
1

4
β3
1(1−ξ2)ξ2+2n

[
48n1,2B1

n2
1,1 n

3
2,1 n

2
2,3 n4,3 n4,5 n4,7 n4,9

− B2 ξ
2

n3
1,1 n

3
2,1 n2,3 n4,3 n4,5 n4,7 n4,9

+
ξ4n

3

(
4n8,17 + 47

n2
2,1

− 1

ξ2
− B3 ξ

2

n2
1,1 n

3
2,1

+
B4 ξ

4

n3
1,1 n

4
2,1 n

2
2,3 n4,7 n4,9

− B5 ξ
6

n4
1,1 n

3
2,1 n

2
2,3 n4,9

+
B6 ξ

8

n3
1,1n

3
2,1

− B7 ξ
10

n3
1,1 n

3
2,1

+
n3
1,2B8 ξ

12

n3
1,1 n

3
2,1

− B9 ξ
14

n3
1,1 n

3
2,1

)

+
24
(
n4,3 n4,5 n4,7

)−1

n3
1,1 n

3
2,1 n

3
2,3 , n4,9

2n∑
k=1

ξ2k+2

k k1,1 k1,2

(
C1 n

5 − C2 n
4 − C3 n

3 − C4 n
2 − C5n

− 1260
(
k3 − 15k2 − 88k − 120

)
+ 7824(k + 8)n6 + 5216n7

)]
, (12.53)

where,

na,b = (a n+ b), (12.54)

and Bj an Cj are constants that are polynomial in n1, an given in [39]. Moreover, the
constant parts in the Φ± fields are left undetermined until the next order:

δ(3)Φ+ = γ(3) and δ(3)Φ− = γ(3). (12.55)

Analogously to the α-class calculation, in the process of solving the equations, we need
to discard a non-normalizable mode for the scalar field driving the solution, λ1. This sets
the constant γ(2) to

γ(2) = 3β2
1

2304n5
1 + 16360n4

1 + 44880n3
1 + 59330n2

1 + 37671n1 + 9135

2(n1 + 1)2(2n1 + 1)2(2n1 + 3)2(4n1 + 3)(4n1 + 5)(4n1 + 7)(4n1 + 9)
.

(12.56)
As before, we could have added a homogeneous term to the scalar δ(3)ν, but it vanishes

at next order.

Fourth and higher orders

Once again, the solution at higher order becomes too complicated to determine for a
general mode number, but it is possible to continue the computations with a fixed value
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of n1, and deduce some general properties of the solution. This has been done up to
eighth order, and with n1 up to 10.

We find at all orders a polynomial expression for all the fields. At order k, one can
introduce a constant γ(k) in the gauge field Φ1, and this constant is fixed at order k + 1,
whereby it is zero for odd values of k. Furthermore, we find that ν1 = 0 at every order we
compute. We postulate that this is an exact result, and that it holds for all values of n1.

12.3 Perturbation theory in the double-mode trunca-
tion

In this Section we work in the double-mode truncation, described in Section 9.3, and in the
Axial gauge, with the fields (9.32). We aim to construct non-BPS solutions perturbatively,
and once again, we start by expanding each field as

X(ξ) = XAdS(ξ) +
∞∑
k=1

ϵk δ(k)X(ξ), (12.57)

where ϵ is a bookkeeping parameter, that will be taken to 1 at the end. We have to adapt
the AdS vacuum of (12.11)-(12.12) to this new truncation, giving extra attention to the
gauge fields. The new scalars are simply put to zero:

νAdS
1,2 = 0, µAdS

1,2 = 0, λAdS
1,2 = 0, mAdS

5,6 = 0, ΩAdS
0 = 1, ΩAdS

1 = 1, kAdS = ξ2 .

(12.58)

The magnetic gauge fields at zeroth order are fixed by the boundary conditions (12.7).
The electric potentials however, are not. We introduce two new parameters, ω1 and ω2,
and choose:

ΦAdS
1,2 =

1

2
ω1,2, ΦAdS

3,4 = 0, ΨAdS
1,2 =

1

2
n1,2, ΨAdS

3,4 = 0 , (12.59)

We will now solve the system of equations order by order in ϵ, starting with the
linearised equations of motion. The equations at each order split in five sub-sectors: 1)
the three metric functions Ω0,1 and k; 2) the χI scalars ν1,2; 3) the mIJ scalars µ1,2, λ1,2
and m5,6; 4) the four gauge fields Φ1,2 and Ψ1,2; and 5) the other four gauge fields Φ3,4

and Ψ3,4. These are easier to solve using the redefinitions:

µ± = µ1 ± µ2, m± =m5 ±m6, Φ
(1,2)
± = Φ1 ± Φ2, Ψ

(1,2)
± = Ψ1 ±Ψ2,

Φ
(3,4)
± =Φ3 ± Φ4, Ψ

(3,4)
± = Ψ3 ±Ψ4. (12.60)

12.3.1 Linear perturbations

The linearised equations of motion can be derived from the action, as was done in Section
12.2.1. For brevity we will not give the equations here. A few more fields admit regular

132



and normalizable solutions to their linearised equations around the vacuum, they are ν1,2,
λ1,2 and m± = m5 ±m6:

ν1,2 =α1,2 ξ
n1,2

2F1

(
(1− ω1,2)/2, n1,2 + (1 + ω1,2)/2, 1 + n1,2, ξ

2
)
,

λ1,2 =β1,2 ξ
2n1,2

2F1

(
− ω1,2, 2n1,2 + ω1,2, 1 + 2n1,2, ξ

2
)
,

m+ =γ+ ξ
|n1−n2|

2F1

(
− sign(n1 − n2)

ω1 − ω2

2
, |n1 − n2|+ sign(n1 − n2)

ω1 − ω2

2
, 1 + |n1 − n2|, ξ2

)
,

m− =γ− ξ
n1+n2

2F1

(
− (ω1 + ω2)/2, n1 + n2 + (ω1 + ω2)/2, 1 + n1 + n2, ξ

2
)
. (12.61)

where we have several amplitudes of the scalar perturbations, α1,2, β1,2 and γ+,−. Note
that they are fixed so that ν1,2 ∼ α1,2ξ

n1,2 and λ1,2 ∼ β1,2ξ
2n1,2 at the origin.

As we did for the single-mode truncation, depending on which of (12.61) we turn on,
we can identify two main classes of solutions in each of the two sectors (1, 0, n1) and
(1, 1, n2) - the alpha class if only one of ν1,2 are excited at linear order and the beta
class if one of λ1,2 are switched on at linear order. These were already investigated in
detail in Section 12.2 for the (1, 0, n1) solutions and their features in the (1, 1, n2) sector
are exactly the same, so we will only briefly go over them below. The scalars m± also
lead to a class of solutions, but our ansatz does not seem to be well suited for analyzing
them. Activating only m− at linear order produces an easy-to-handle perturbative BPS
solution. However, the same does not hold for m+ and we cannot find a solution within
our ansatz. Turning both m± on simultaneously should produce a non-BPS geometry,
but the expressions become quickly very cumbersome to work with and we have not been
able to explore the system in any significant detail. Therefore, from here onward we will
mostly focus on the alpha and beta classes of solutions.

We find that there need not be a correlation between the classes in each sector. That
is, one can choose to keep the perturbations associated with α1 and β2, for example. In
this Section, however, we make the choice to present two of the four allowed combinations
of classes: We first present the “alpha-alpha” class, then the “beta-beta” class, and will
not discuss the “alpha-beta” and “beta-alpha” classes.

Note that once again, these perturbations are regular only if ω1,2 are odd integers,
ω1,2 ∈ 2Z + 1. In the single-mode truncation, we found that solutions with ω1 = 1

were BPS, and this led us to choose ω1 = 3. However, this is no longer true in the
double-mode truncation: solutions with ω1 = ω2 = 1 are generally not BPS, provided
that at least one scalar perturbation is activated in each sector. Indeed, while the double
superstratum solution detailed in Section 9.3.3 does match with the form of the linearized
perturbations5, it does so with different mode numbers: ω1 = −ω2 = 1.

For the rest of this Section, we will then make the choice ω1 = ω2 = 1. We emphasize
again that in this work, if only one of the sectors is activated, then the solution is BPS.
Only when excitations in both sectors are turned on is the resulting geometry non-BPS.
There is one rather interesting exception: n1 = n2, α1,2 ̸= 0 and β1,2 = 0 at linear order.

5The double superstratum was presented in the Diagonal gauge, it needs first to be rotated to the
Axial gauge before linearizing and comparing with the perturbations (12.61)
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The resulting geometry can be generated with a finite SU(2)R gauge rotation6 of the
single sector supersymmetric solution with α2 = β1 = β2 = 0 at linear order.

Solving the perturbative system for general n1,2 is challenging as the equations very
quickly grow to unmanageable size, and we have only managed to reach fourth order for
the alpha class of solutions on the special locus. Some of the expressions are given in the
next section.

We also have perturbative solutions to sixth order for various specific values of n1 and
n2 for both classes of solutions.

12.3.2 Alpha class and special locus

Taking αi, i ∈ {1, 2}, non-zero and setting β1,2 = 0 in (12.61) at linear order gives us the
alpha class of solutions, in both sectors. One can now solve the linearized equations order
by order, with progressively more complicated source terms.

The main result of this analysis is that, as we have found for the single-mode trun-
cation, the regular solutions of this expansion all sit on the special locus, defined in
Section 12.2.3. Indeed, at second order in perturbation theory it is necessary to turn on
the λ1,2 fields, in order to have a normalizable solution to the equations of motion. At
fourth order regularity requires

βi = −
α2
i

4
. (12.62)

This relation is a generalization of the same constraint in the single-mode truncation,
(12.38), and all the specific properties described in Section 12.2.3 are clearly verifiable
with the perturbative expansion.

These properties of mIJ on the special locus allow us to easily solve for the scalar
fields in the perturbative expansion. In fact, the perturbative solution suggests certain
relations between some of the scalar fields:

µ1,2(ξ) = λ1,2(ξ) =
1

2
log
(
1− 1− ξ2

2
ν1,2(ξ)

2
)
,

m5(ξ) = −
1

2
(1− ξ2) ν1(ξ) ν2(ξ), m6(ξ) = 0, (12.63)

with the only non-trivial eigenvalue of the mIJ given by (12.41). Remarkably, one can
check that these relations are indeed consistent with the full non-linear system of equa-
tions, by substituting them in and then reducing the equations to a consistent set. What is
more, within that set all the gauge fields, as well as the metric function k(ξ), satisfy first-
order, linear ordinary differential equations. One can, furthermore, derive a first-order
equation for a linear combination of Ω0(ξ) and Ω1(ξ), in addition to a “Wronskian-like”
constraint that relates the first derivatives of ν1(ξ) and ν2(ξ). The equations are given
in Appendix B. We have checked that solutions to this reduced system of equations also

6This finite rotation does not respect the form of the projectors (10.1) and so the rotated solution does
not appear amongst the BPS solutions considered in Chapter 11. The supersymmetries of the unrotated
“single sector” solution do respect the projectors (10.1).
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verify all the second-order, non-linear equations of motion. We will make some comments
about this below.

Therefore, we only need to determine ν1,2, Φi, Ψi and the metric functions Ω0,1 and k
on the special locus in order to satisfy the equations of motion. We will now give the first
three orders of the solution for general n1, n2.

At first order only the ν fields are non-zero:

δ(1)ν1 = α1 ξ
n1 , δ(1)ν2 = α2 ξ

n2 ,

δ(1)Φi = δ(1)Ψi = δ(1)Ω0,1 = δ(1)k = 0. (12.64)

At second order the ν1,2 fields vanish, but all the others are excited:

δ(2)ν1,2 =0,

δ(2)Φ1 =
1

8

[
− α2

1 + α2
2

(
− 1 +

2 (n1 − n2)
2

(n1 + n2) (n1 + n2 + 1) (n1 + n2 + 2)
− ξ2n2(1− ξ2)

)]
,

δ(2)Φ2 =
1

8

[
− α2

2 + α2
1

(
− 1 +

2 (n1 − n2)
2

(n1 + n2) (n1 + n2 + 1) (n1 + n2 + 2)
− ξ2n1(1− ξ2)

)]
,

δ(2)Φ3 =
1

4
α1 α2 ξ

n1+n2

(
ξ2 (n2 + 1)

n1 + n2 + 2
− n2

n1 + n2

)
,

δ(2)Φ4 =−
1

4
α1 α2 ξ

n1+n2

(
ξ2 (n1 + 1)

n1 + n2 + 2
− n1

n1 + n2

)
,

δ(2)Ψ1 =−
1

8
α2
2 ξ

2+2n2 , δ(2)Ψ2 = −
1

8
α2
1 ξ

2+2n1 ,

δ(2)Ψ3 =−
α1 α2 (n2 + 1) ξn1+n2+2

4 (n1 + n2 + 2)
, δ(2)Ψ4 =

α1 α2 (n1 + 1) ξn1+n2+2

4 (n1 + n2 + 2)
,

δ(2)Ω0 =−
1

8
(1− ξ2)

(
α2
1 ξ

2n1 + α2
2 ξ

2n2
)
, δ(2)Ω1 = −

1

4

(
α2
1 + α2

2

)
, δ(2)k =

ξ2

4

(
α2
1 + α2

2

)
.

(12.65)

Then at third order again only the ν fields are non-trivial:

δ(3) ν1,2 =
α1,2 ξ

n1,2

8

[
− α2

1,2 ξ
2n1,2 (1− ξ2) + 2α2

2,1

(
ξ2n2,1

(
− n1,2

n1 + n2

+
(1 + n1,2) ξ

2

2 + n1 + n2

)

+
(n1 − n2)

2
(
− ξ2n2,1 + n2,1 ξ

2n2,1 Φ(ξ2, 1, n2,1) + n2,1 log(1− ξ2)
)

n2,1 (n1 + n2) (1 + n1 + n2) (2 + n1 + n2)

)

+
2 (n1 − n2)

2 α2
2,1

(
n1 + n2 +

n1,2

n2,1
+ (n1 − n2)

(
γ + ψ(0)(n2,1)

))
(n1 + n2) (1 + n1 + n2) (2 + n1 + n2)

]
,

(12.66)

δ(3)Φi = δ(3)Ψi = δ(3)Ω0,1 = δ(3)k = 0, (12.67)

where Φ(z, s, a) is the Lerch transcendent, γ is the Euler-Mascheroni constant and ψ(m)(z)

is the polygamma function of order m. The function ψ(0)(z) is also known as the digamma
function.
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The solution is smooth - in particular, the log gets cancelled with a log part of the Lerch
transcendent, Φ(ξ2, 1, n2,1), and the entire expression is a polynomial in ξ. Moreover, the
coefficients are all rational despite the appearance of γ and ψ(0)(z). We see no issues, in
principle, to continuing this to arbitrarily high orders. We also have gone to 8th order for
specific values of n1 and n2 and have encountered no problems.

In constructing these solutions we find that the asymptotic values at infinity of the
metric coefficient, Ω1, and the electromagnetic potentials, Φj and Ψj, get corrected in
terms of α1,2 at every order in perturbation theory. As we will discuss in Chapter 14, this
results in an energy shift of the normal modes away from their AdS values, ω1,2, to new,
lower energies represented by ω̂1,2.

12.3.3 Almost-BPS solutions

Before describing more non-BPS solutions to our three-dimensional system, it is worth
stepping back and commenting on the somewhat surprising result summarized in Ap-
pendix B: some the equations of motion of some of the non-BPS solutions described here
can be reduced to first-order, linear ordinary differential equations.

This phenomenon has already played a significant role in the construction of spe-
cial families non-BPS solutions in higher dimensions. It was observed in [70–77] that
one could construct non-supersymmetric solutions by assembling “locally supersymmet-
ric components” whose individual supersymmetries are incompatible with one another
and so the solution preserves no supersymmetry when considered globally. At a com-
putational level, this could be implemented by solving some first-order BPS equations
in backgrounds that satisfied incompatible BPS conditions, or backgrounds that break
supersymmetry altogether. For example, one can find non-BPS solutions by solving BPS
equations for electromagnetic fields in a gravitational background that has non-trivial,
supersymmetry-breaking holonomy. The non-trivial result of such an approach is to show
that, despite the mismatched supersymmetry conditions, the background one creates is
still a solution to the complete set of equations of motion.

Thus the construction of such “Almost-BPS solutions” typically involves solving a
combination of first-order BPS-like equations and second-order equations of motion. The
results of Section 12.3.2 are highly reminiscent of this process, especially because a few of
the equations in Appendix B display a close parallel to some of the BPS equations.

We will not pursue this issue here, but it would be very interesting to revisit the
Almost-BPS approach in three dimensions and see, to what extent, the solutions described
here can be characterized as being Almost-BPS. Intuitively, the success of the Almost-BPS
procedure requires a “decoupling” between the distinct, but incompatible, supersymmetric
elements. While we do not expect our general non-BPS solutions to behave in such a
manner, it is possible that the special locus might be characterized through such behavior
in supergravity.
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12.3.4 Beta class

This sector starts, at linear order, with α1,2 = 0 in (12.61) and non-zero βi, i ∈ {1, 2}.
There is no need of a special locus, and one finds ν1,2 = 0 at all orders in perturbation
theory. One also finds that m5,6, Φ3,4, Ψ3,4 vanish to all orders we have checked. When
both β1,2 are turned on, the CFT representation of the resulting non-BPS state is given
in (13.29).

As with the α-class, the individual solutions with β1 = 0 or β2 = 0 are separately
supersymmetric, but the combined excitation breaks all the supersymmetry. Unlike the
α-class, there is no accidental supersymmetry for n1 = n2: global SO(4) rotations of
α1 = α2 = β2 = 0 create additional background fields that move outside our Ansatz. We
have computed the perturbative solution for general β1,2 and n1,2 up to 3th order:

δ(1)λ1 = β1 ξ
2n1 (1− ξ2), δ(1)λ2 = β2 ξ

2n2 (1− ξ2),
δ(1)µ1,2 = δ(1)Φi = δ(1)Ψi = δ(1)Ω0,1 = δ(1)k = 0. (12.68)

δ(2)λ1,2 =0,

δ(2)µ1 = β2
2

1− ξ2 (1+2n2)

2 (1 + 2n2)2
− β2

1

1− ξ2 (1+2n1)

2 (1 + 2n1)2
,

δ(2)µ2 =β
2
1

1− ξ2 (1+2n1)

2 (1 + 2n1)2
− β2

2

1− ξ2 (1+2n2)

2 (1 + 2n2)2
,

δ(2)Φ1 = β2
1

ξ2 (1+2n1) − 2 (1 + 2n1)

4 (1 + 2n1)2
+ β2

2

(1 + n1 + n2) ξ
2 (1+2n2) − 2 (n1 + n1 n2 + n2

2)

4 (1 + n1 + n2) (1 + 2n2)2
,

δ(2)Φ2 = β2
2

ξ2 (1+2n2) − 2 (1 + 2n2)

4 (1 + 2n2)2
+ β2

1

(1 + n1 + n2) ξ
2 (1+2n1) − 2 (n2 + n1 n2 + n2

1)

4 (1 + n1 + n2) (1 + 2n1)2
,

δ(2)Ψ1 = − β2
2

ξ2
(
1− ξ2 (1+2n2)

)
4 (1 + 2n2)2 (1− ξ2)

− β2
1

ξ2
(
1− ξ4n1

(
1 + 2n1 (1− ξ2)

))
4 (1 + 2n1)2 (1− ξ2)

,

δ(2)Ψ2 = − β2
1

ξ2
(
1− ξ2 (1+2n1)

)
4 (1 + 2n1)2 (1− ξ2)

− β2
2

ξ2
(
1− ξ4n2

(
1 + 2n2 (1− ξ2)

))
4 (1 + 2n2)2 (1− ξ2)

. (12.69)

δ(3)µ1,2 = δ(3)Φi = δ(3)Ψi = δ(3)Ω0,1 = δ(3)k = 0, (12.70)
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δ(3)λ1,2 =
β1,2 β

2
2,1 ξ
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log(4) + 2H4n2,1−1 −H2n2,1− 1

2

)
+

1

n2,1 (1 + 4n2,1)
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(
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+ 4 (1− ξ2)(1 + 2n2,1) log
(
1− ξ2
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+
β3
1,2 (1− ξ2) ξ2n1,2

12 (1 + 2n1,2)2

[
(1 + 2n1,2)

2 ξ4n1,2 +
(
1− 8n1,2 (1 + n1,2)

)
ξ2 (1+2n1,2)

+ (1 + 2n1,2)
2 ξ4 (1+n1,2) − 3

]
, (12.71)

where Hn is a harmonic number. We again find a smooth solution, and as for the α class,
despite appearances, this is a polynomial in ξ with rational coefficients. Hence, there
should be no issues, in principle, to continuing this to arbitrarily high orders. As before,
we also have examples for specific values of n1 and n2 that we have taken to 8th order
with no complications.

Like the α-class solutions, the β-class solutions also develop non-trivial perturbative
corrections to the asymptotic values, at infinity, of the metric coefficient, Ω1, and the
electromagnetic potentials, Φj and Ψj. This also results in an energy shift of the normal
modes away from their AdS values, ω1,2, to new, lower energies represented by ω̂1,2.

12.4 Perturbation theory around the pure-NS super-
strata solutions

The previous Sections explored the construction of microstrata using perturbation theory
around the vacuum. However, having at our disposal various BPS microstate geometries
corresponding to finite excitations, it is natural to ask whether one can build similar
microstrata as perturbations on top of these known geometries.

This kind of analysis is in general difficult to achieve, as one is lead to find solutions to
systems of complicated, coupled differential equations. However, this work is facilitated in
many ways by our truncation. A first, trivial reason is that the Q-ball ansätze reduces the
problem to solving equations involving functions of only one variable. This alone is not
sufficient, as the resulting equations can be arbitrarily complex and highly-coupled. The
remarkable property of the double-mode truncation is the existence of two sets of mostly
independent, mutually incompatible, BPS sectors. This lets one build an analytic BPS
solution in one sector, and add supersymmetry-breaking excitations through the second
sector.
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The first step is thus to choose the BPS geometry that will be used as a base for the
perturbation. Because it is very simple and already well-studied, it would be tempting
to use the standard single-sector superstratum geometry, (9.25). However, the results of
the perturbation theory around the vacuum show that such solutions cannot be described
within the ansatz, as they ultimately lead to divergences.

The consequence is that only two families of superstrata solutions can be used as
the base: the “special locus” solution in (11.14), and the “pure-NS” solution described in
Section 11.4.1. The former can be used as a base to construct non-BPS linear excitations
of the scalar ν2, and using the set of reduced equations on the special locus in Appendix
B, one finds that at first order, the problem reduces to a system of first-order differential
equations for the fields ν2,Φ3/4,Ψ3/4.

It is however more interesting to use the “pure-NS” solution as a base. Indeed, at first
order in the perturbation, one finds that only one field receives a contribution: the scalar
λ2.

12.4.1 The linearized perturbation

We start with the pure-NS solution given in Section 11.4.1. This is a single-mode solution,
and as such there is still a gauge transformation that shifts the fields Φ2 and Ψ2. In
accordance with the discussion on boundary conditions in Section 12.1, we first need to
introduce the mode numbers of the (1, 1, n2) sector by applying shifts to the gauge fields:

Φ2 → Φ2 + cϕ2 , Ψ2 → Ψ2 + n2 . (12.72)

As will be explained in Chapters 13 and 14 on holography, the constant cϕ2 is related,
up to a shift, to the physical frequency of the solution: cϕ2 = 1/2 + Ω1 ω̂2 . Note that
this frequency is generally not equal to the parameter ω2 that we have introduced in the
perturbation theory, and in particular it is not an integer.

We now use the action to derive the linearized equations of motion. Concentrating on
the normalizable perturbations, the problem reduces to solving a single linear differential
equation:

ξ∂ξ(ξ∂ξλ2) + V0(ξ)λ2 = 0 , (12.73)

where the function V0 is defined in terms of the fields of the “pure-NS” BPS solution:

V0(ξ) = 16(F 2
2 +H0Φ

2
2)− 4H0

(
e−2µ1 − e−µ1−µ2 coshλ1

)
. (12.74)

where we used the notations introduced in (10.59).
We wish to find bound states of the scalar λ2, where the excitation lives entirely in the

throat of the geometry, and compute the normal modes of these excitations. These normal
modes, once fully-backreacted, translate to shifts in the energy of the microstratum. Thus,
solving the problem defined by the equation (12.73) with suitable boundary conditions
on the scalar λ2 (which will be precised in the following), one can have access to the
first-order corrections to the energy of these non-BPS microstates, and on the CFT side
to the anomalous dimension of the constituent operators of the microstratum.
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12.4.2 The WKB approximation

It is not possible to solve the equation (12.73) exactly, so one has to resort to approxi-
mations. We will use the WKB method, which is well-suited to dispersive or dissipative
problems with large separation of scales: the potential must vary slowly with respect
to the oscillations of the scalar. This method has often been used to compute normal
or quasi-normal modes, and has recently been applied successfully to the computation
of the quasi-normal modes of superstrata in [29, 35]. Here we will review the basics of
the approximation. Its application to the problem at hand will be explained in the next
section.

The WKB method has been originally developed for equations in the Schrödinger
form, for which it is well understood:

d2f

dx2
+ V (x)f = 0 . (12.75)

One can easily transform any second-order linear equation, such as (12.73), into the
Schrödinger form, by making change of variables of the form

ξ → x(ξ) , λ2(ξ) → Λ(x(ξ)) f(x(ξ)) , (12.76)

for suitably chosen functions x and Λ.
The WKB method consists in approximating the solutions of (12.75) by

f±
WKB(x) = C± |V (x)|−1/4 exp

(
±
∫ x

V (y)1/2dy

)
(12.77)

where C± are integration constants. Formal estimations of the quality of this approxima-
tion can be done (see [78] for a detailed review). For the approximation to be close to the
exact solution, the potential must obey

∣∣V (x)−3/2V ′(x)
∣∣ ≪ 1 , and

∫ x
∣∣∣∣ V ′′(y)

V (y)3/2
− 5V ′(y)2

4V (y)5/2

∣∣∣∣ dy ≪ 1 . (12.78)

The first condition ensures the separation of scales between the oscillations of the solution
and the variation of the potential. The second condition is a technical necessity that is
usually satisfied when the first condition is.

Notice that if V (x) > 0, the solutions (12.77) are exponentially growing or decaying,
while if V (x) < 0, they are oscillating. The solutions break down at the turning points of
the potential, when V (x) = 0. It is also easy to see that the conditions (12.78) cannot be
satisfied in the neighborhood of the turning points. It does not mean however that one
must give up on using the WKB approximation: one can use a different approximation
to construct the solutions in the problematic regions, then match with the WKB solution
at the edges of these domains.

Assuming that the first derivative of the potential does not vanish, one can approxi-
mate the potential around a turning point x⋆ by a linear function V (x) ∼ V ′(x⋆)(x−x⋆).
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The solutions to the Schrödinger equation for a linear potential are well known and can
be expressed in terms of the Airy functions

f⋆(x) = C1Ai
(
V ′(x⋆)

1/3(x− x⋆)
)
+ C2 Bi

(
V ′(x⋆)

1/3(x− x⋆)
)
. (12.79)

One can then construct the full solutions to the problem in patches. Away from the
turning points, the solution is well-described by (12.77). Around each turning point, one
uses the solution (12.79). It is then necessary to ensure that the solutions are regular, by
relating the integration constants of neighboring patches to each other. These conditions
are called connection formulas.

For any matching to be possible, it is of course necessary that the domains of validity of
the solutions (12.77) and (12.79) overlap. This leads to another condition on the potential,
relating its slope at the turning points to its curvature:

V ′(x⋆)
−4/3V ′′(x⋆) ≪ 1 . (12.80)

12.4.3 Quantization condition

We now explain how to use the WKB approximation to derive the solutions of the wave
equation for λ2, and find a quantization condition on the frequency ω̂2. The first step is
to rewrite the equation in the Schrödinger form, using a change of variable of the form
(12.76). Many choices are possible: the particular choice of variable x(ξ) can affect the
precision of the WKB method as well as the simplicity of the treatment of boundary
conditions. We make the same choice as in [29, 35], as it makes the boundary conditions
relatively simple:

x(ξ) ≡ log

(
ξ√

1− ξ2

)
= log

(r
a

)
. (12.81)

After this change of variable, the function f , defined by

λ2(ξ) ≡
√

1− ξ2 f(x(ξ)) , (12.82)

satisfies the Schrödinger equation (12.75) with potential

V (x) = 1− 1

(1 + e2x)2
(1 + V0(x)) , (12.83)

where V0 is given by (12.74). This potential depends on several parameters: the initial BPS
superstrata parameters β1, n1, and the parameters of the excitation n2, cϕ2 (or equivalently
ω̂2). Figure 12.1 depicts the typical shape of the potential. It has two turning points
x1, x2 ; it limits to 1 at positive infinity, and to 4n2

2 at negative infinity. The minimum of
the potential is negative and scales as

|minV (x)| ∼ O(n2
2, c

2
ϕ2
) as n2 ≫ 1 or cϕ2 ≫ 1 . (12.84)
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Figure 12.1: Shape of the potential for the function f , written in terms of the variable
x introduced in (12.81). The specific curve plotted here corresponds to n1 = 2, n2 = 4,
β1 = 2, and we have chosen to fix arbitrarily ω̂2 = 5.

One can see numerically that the potential satisfies the conditions (12.78), as well
as (12.80) around each turning point when the frequency of the scalar, ω̂2, is large. In
practice, we find that ω̂2 ∼ O(10− 100) is sufficient to obtain a good approximation.

The solutions away from the turning points are given by

f(x) =



V (x)1/4
(
C

(1)
+ exp

(∫ x1

x

√
V (y)dy

)
+ C

(1)
− exp

(
−
∫ x1

x

√
V (y)dy

))
, x < x1 ,

|V (x)|1/4
(
C

(2)
+ exp

(
i

∫ x

x1

√
|V (y)|dy

)
+ C

(2)
− exp

(
−i
∫ x

x1

√
|V (y)|dy

))
, x1 < x < x2 ,

V (x)1/4
(
C

(3)
+ exp

(∫ x

x2

√
V (y)dy

)
+ C

(3)
− exp

(
−
∫ x

x2

√
V (y)dy

))
, x2 < x .

(12.85)
These constants are of course not all independent: the solution to a second-order differ-

ential equation must only be determined by two constants. Looking at the neighborhood
of each turning point, the solution is well described in terms of Airy functions (12.79), and
imposing that the solution is smooth leads to relations between the integration constants
on both sides of the turning point. The details of the computation can be found in [78],
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one finds that the connection formulas are given by

C
(2)
+ =

1

2
eiπ/4C

(1)
+ + e−iπ/4C

(1)
− , C

(3)
+ = − sinΘC

(1)
+ + 2 cosΘC

(1)
− ,

C
(2)
− =

1

2
e−iπ/4C

(1)
+ + eiπ/4C

(1)
− , C

(3)
− =

1

2
cosΘC

(1)
+ + sinΘC

(1)
− ,

(12.86)

where
Θ ≡

∫ x2

x1

√
|V (y)|dy . (12.87)

We must now impose the boundary conditions. First, the excitation must be local-
ized in the throat, and have a finite energy. As a consequence, the growing mode at
infinity must be cancelled C

(3)
+ = 0. Moreover, contrary to excitations over a black hole

background, we must impose a smoothness condition at the origin, as the objective is to
construct smooth microstate geometries. This translates to C(1)

+ = 0. One integration
constant, C(1)

− , is not fixed. This constant is the strength of the perturbation, and must
be infinitesimally small compared to β1.

Combining these boundary conditions with the connection formulas leads to a quan-
tization condition:

cosΘ = 0 ⇐⇒ 1

π

∫ x2

x1

√
|V (y)|dy = N + 1/2 , N ∈ N . (12.88)

This equation has to be understood as an implicit quantization condition for the constant
cϕ2 , or equivalently ω̂2, which in turn determines the first-order correction to the energy
of the microstratum. Recall that it is an approximation that is valid in the limit cϕ2 ≫ 1.

12.4.4 Normal modes of λ2

We first look at an example of application of the quantization condition. Set the back-
ground to be empty AdS by putting the amplitude of the superstratum to 0, β1 = 0. The
perturbation theory around this background has been studied in Section 12.3, we know
that the mode number ω2, defined in (12.59), must be an integer7. If we furthermore
impose n2 = 0, the integral in (12.88) can be computed explicitly, and one finds:

1

π

∫ x2

x1

√
|V (y)|dy =

√
(ω2)

2 − 1

4
− 1

2
∼ ω2 −

1

2
− 1

8ω2

+ . . . . (12.89)

From that relation and the quantization condition (12.88), we find that N = ω2 − 1, and
that the error of the WKB approximation is of order 1/(8N).

Coming back to the general setting, β1 ̸= 0, the quantization condition can be solved
numerically. In what follows, we fix as an example n1 = 2, n2 = 4. The figure 12.2
shows the evolution of δω2 ≡ ω̂2 − ω2 as a function of β1, for different values of ω2.

7As was pointed out in Section 12.3.1, this integer must be odd for the alpha-perturbation to be
regular. However, for the beta-perturbation that is considered here, this is not a requirement.
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Figure 12.2: Results from the WKB analysis. Plots of δω2 as a function of β1, for n1 = 2,
n2 = 4, and for normal modes labeled by ω2.

The interpretation of this quantity δω2 in the context of holography will be detailed in
Chapter 14.

We first see that δω2 ≤ 0, which is in accordance with the fact that this energy
comes from the attractive interaction between mutually non-BPS particles. Notice also
that this energy goes to −∞ in the “infinite-throat-limit”, when the geometry becomes
asymptotically AdS2 (see Section 11.4.2), at

β
(0)
1 =

4n1 + 2√
4n1 + 1

=
10

3
. (12.90)

This is a sign of a break down of this analysis at some point before the limit.
We can make a further check on these numerical results, by comparing them to the

perturbative solution around the vacuum. Indeed, the terms proportional to β2
1 and β2

2

in the shift δω2 can be accessed by the perturbation theory around the vacuum. We can
adapt the computations of Section 12.3, that were done at ω2 = 1, for different values
of ω2. The general analysis is complicated, but we can restrict ourselves to a specific
example, for instance n1 = 2, n2 = 4.

This can be compared to the WKB results by fitting a polynomial in β2
1 on the results

of the WKB approximation. This polynomial fit is presented in Table 12.1. The constant
term of this polynomial is a good indication of the error that is made by the WKB
approximation, and we see that it diminishes as the frequency increases. The term of
order β2

1 can be compared with the perturbative analysis. The approximation grows
better as one increases ω2, as we can see in Table 12.2.

The main interest of the WKB approximation is that its results are valid for finite
values of β1, while the perturbation theory is only giving access to expansions around
the vacuum. Nevertheless, we can also use the WKB analysis to learn more about the
perturbation theory. Because it is much easier to get data points at large ω2 using the
WKB approximation than with the perturbation theory, one can make further analyses
on these results. By fitting the coefficient of order β2

1 with a line, we can find:

δω2 ≈ − (0.112335 + 0.0842948ω2) β
2
1 + O

(
β4
1 , β

2
2 , (ω2)

−1) . (12.91)
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ω2 Fit of δω2

1 −0.0000378819β6
1 − 0.000318806β4

1 − 0.173513β2
1 + 0.0249378

3 −0.0000909752β6
1 − 0.000123277β4

1 − 0.347659β2
1 + 0.0178344

5 −0.00015133β6
1 + 0.0000441431β4

1 − 0.520276β2
1 + 0.0138782

7 −0.000216834β6
1 + 0.000192361β4

1 − 0.69175β2
1 + 0.0113578

9 −0.000285129β6
1 + 0.000326079β4

1 − 0.862479β2
1 + 0.00961188

...
...

105 −0.0038392β6
1 + 0.00555269β4

1 − 8.9661β2
1 + 0.00114766

205 −0.00757974β6
1 + 0.0109112β4

1 − 17.3949β2
1 + 0.000600001

Table 12.1: Fit of a polynomial of order 3 in β2
1 on the numerical data from the WKB

analysis. The constant term, which is expected to be 0, gives an indication of the precision
of the method. The term of order β2

1 can be matched with the perturbative computation
around the vacuum.

It is interesting to note that the coefficient at first-order in β2
1 is linear in the integer

zeroth-order mode number ω2. The analysis shows that this is not true at higher orders in
β2
1 . This is a prediction for the perturbation theory: if one could develop the perturbation

theory for a generic frequency ω2, up to third order in β1, one could check the validity of
this prediction, and give exact expressions for the coefficients in (12.91).
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ω2 δω2 from WKB δω2 from vacuum perturbation theory

1 −0.1735 − 6

35
≈ −0.1714

5 −0.5203 −14844427

28601650
≈ −0.5190

9 −0.8625 −102879754

119409675
≈ −0.8616

13 −1.2026 −154958717

128927388
≈ −1.2019

17 −1.5417 −2066874954282

1341119288509
≈ −1.5412

Table 12.2: Comparison between the computations of the frequency shift from the WKB
analysis, and from the perturbation theory around the vacuum, for a few values of ω2. The
constants that are displayed correspond to the term proportional to β2

1 in the expansion
of δω2.
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Chapter 13

The CFT interpretation

This Chapter aims to explain the CFT analogue of the computations that have been
done in supergravity. We exclusively concentrate on the CFT, the matching with the
bulk theory using holography is the purpose of the next Chapter. We review the work of
[39,42].

The three-dimensional supergravity described in Chapter 7 can be embedded in Type
IIB string theory compactified on a 4-dimensional Calabi-Yau M. The 4-dimensional
compact space will play no role in our analysis and can be taken to be either T4 or
K31. The remaining six-dimensional space-time has AdS3 × S3 asymptotics and thus
our solutions are holographically dual to states of the D1-D5 CFT, that we introduced
in Chapter 4. In this section we review some of the operator content of this CFT and
describe the heavy states that are dual to the geometries discussed in this work. As we
will see it is sometimes convenient to refer to the CFT free locus, where the theory reduces
to the orbifold MN/SN (N = n1n5 is the product of the numbers of D1 and D5 branes
and SN is the permutation group). The characterization in terms of orbifold is useful
because the elementary constituents of our heavy states, even the non-BPS ones, are by
themselves BPS and thus are expected to be stable across the moduli space of the CFT.

13.1 Supergravity operators of the D1-D5 CFT

The six-dimensional supergravity obtained by compactifying type IIB on M contains a
gravity multiplet σ and Nf tensor multiplets s(f) (with Nf = 5 or 21 if M =T4 or
K3). The scalar chiral primary operators (CPO) of the D1-D5 CFT are dual to the S3-
harmonics of these fields, and are denoted respectively as σn and s(f)n : they have conformal
dimension (h, h̄) = (n

2
, n
2
) with n a positive integer starting from 1 for the tensor fields

s
(f)
n and from 2 for the gravity fields σn.

The 3D truncation we use does not allow all these operators to have freely tunable
vacuum expectation values (VEV): only the operators dual to the fields that admit ho-
mogeneous and normalizable solutions of the three-dimensional supergravity equations

1In the theory described in Chapter 7, we haveM = T4
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can take arbitrary VEVs. This does not imply that the other operators necessarily have
vanishing VEVs, but these VEVs will be determined in terms of the freely tunable ones
by the non-linearity of the 3D supergravity equations. Thus only a subset of the D1-D5
states can fit in our truncation but we will see that the subset is large enough to en-
compass non-trivial non-BPS states, including non-supersymmetric deformations of BPS
states with long AdS2 throats.

13.1.1 Light states of the single-mode truncation

For the restricted single-mode truncation considered in Section 9.2, the possible homo-
geneous deformations and the dual operators were identified in [39]. As we saw in Sec-
tion 12.2, in that restricted truncation, only two fields, ν1 and λ1, have normalizable
homogeneous modes. We recall them here:

ν1 =α1 ξ
n1

2F1

(
(1− ω1)/2, n1 + (1 + ω1)/2, 1 + n1, ξ

2
)
,

λ1 =β1 ξ
2n1

2F1

(
− ω1, 2n1 + ω1, 1 + 2n1, ξ

2
)
,

(13.1)

where, for the perturbation to be regular, ω1 must be an integer, and, for the ν1 perturba-
tion, must be odd. At linear order in α1 the only non-trivial fields of the six-dimensional
theory are a 3-form H(3) = dB(2) and the axion C(0) which are given by

C(0) = α1

√
Q5

2Q1

Re(B1Y1) ,

H(3) = α1

√
Q1Q5

2
Re [d(⋆AdS3dB1Y1 −B1 ⋆S3 dY1)] ,

(13.2)

with

B1 =
√

1− ξ2ξn 2F1(−m,m+ n1 + 1, n1 + 1, ξ2) e−i(2m+1)τ−in1ψ , Y1 = sin θ eiφ1 , (13.3)

where m = 1
2
(ω1−1) ∈ N, and ⋆AdS3 , ⋆S3 the Hodge duals with respect to the undeformed

AdS3 and S3 metrics. B1 and Y1 are scalar harmonics of AdS3 and S3, respectively: B1

is an eigenfunction of L0 and L̃0 with eigenvalues

h = m+ n1 +
1

2
, h̄ = m+

1

2
, (13.4)

and Y1 is an eigenfunction of J3
0 and J̃3

0 with eigenvalues

j = j̄ =
1

2
. (13.5)

For m = n1 = 0 the perturbation (13.2) is thus dual to the component of spin (1
2
, 1
2
) of

one of the tensor multiplet CPOs2, O(1/2,1/2)
1 ≡ s

(7)
1 . At the orbifold locus, s(7)1 is described

2For the supergravity fields, we follow the notation of [36] and references therein, which is motivated
by the analysis of the 6D supergravity sketched in Appendix C.
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by a bilinear of free fermions of the form ϵAB ψ
+Aψ̃+B (A,B = 1, 2) (see Chapter 4) that

we schematically indicates as

O
(1/2,1/2)
1 ≡ s

(7)( 1
2
, 1
2
)

1 ∼
N∑
r=1

∣∣∣1
2
,
1

2

〉(r)
+ . . . , (13.6)

where the sum is over the N copies of the sigma-model on M and the dots stand for
possible corrections where the elementary fields are on different copies3.

From the supergravity perspective, this state is the lowest KK mode in the S3 reduction
of one of the tensor multiplets of the 6D theory. For non-vanishing values of m,n the field
(13.2) is a Virasoro descendant of the CPO given by4

Ln1+m
−1 L̃m−1 |O

(1/2,1/2)
1 ⟩ . (13.7)

A similar, but slightly more complicated, description applies to λ1. Regular and
normalisable solutions for λ1 exist when m = 1

2
(ω1 − 1) is either a non-negative integer

or half-integer. At first order in β1 the non-trivial fields of the truncation are the metric,
the dilaton, and the three-form field strength F(3) = dC(2) − C(0) dB(2):

ds26
R2
AdS

= ds2AdS3
+ ds2S3

+ 2β1Re

[
B2Y2

(
ds2AdS3

+ ds2S3 − 2
dθ2

sin2 θ
+ 2 cos2 θ(dφ2

1 − dφ2
2)− 4i

cos θ

sin θ
dθdφ1

)]
= ds2AdS3

+ ds2S3 + 2β1Re
[
B2Y2

(
ds2AdS3

− 3ds2S3

)
−B2∇α∂βY2 dx

αdxβ)
]
,

e2Φ =
Q1

Q5

[1 + 4β1Re (B2Y2)] ,

F(3) = 2Q5 (−volAdS3 + volS3) + 2β1Q5 Re
[
d(B2 ⋆S3 dY2)

]
,

(13.8)
where ds2AdS3

, ds2S3 are the unperturbed metrics of global AdS3 and of the three-sphere, α, β
(µ, ν) are S3 (AdS3) indices, the covariant derivative ∇ is computed with the unperturbed
metric. The functions

B2 = ξ2n(1− ξ2) 2F1(−2m, 2m+ 2n1 + 2, 2n1 + 1, ξ2) e−2i(2m+1)τ−2in1ψ , Y2 = sin2 θ e2iφ1

(13.9)
are AdS3 and S3 harmonics with eigenvalues

h = 2m+ 2n1 + 1 , h̄ = 2m+ 1 , j = j̄ = 1 . (13.10)

In the CPO limit m = n1 = 0, one finds an operator of dimension (1, 1) that we denote
by O(1,1)

2 , and for non-vanishing m, n we have again its Virasoro descendants

L
2(n1+m)
−1 L̃2m

−1 |O
(1,1)
2 ⟩ . (13.11)

3In the K3 case such corrections are absent for the low dimension field in (13.6), while for the dimension
2 states in (13.12) they are spelled out explicitly in [36].

4As usual, |O⟩ indicates the state related to the operator O under the standard CFT operator-state
correspondence.
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The precise identification of the CPO O
(1,1)
2 is more involved: in the orbifold CFT

there are two operators with the required quantum numbers, which are the operator built
out of the four fermions, ψ+1ψ+2ψ̃+1ψ̃+2, and the supersymmetric twist field of order 3,
Σ++

3 . Linear combinations of these two CPOs [33,36,79] form the KK modes of dimension
two of a 6D tensor multiplet (different from the one associated with O(1/2,1/2)

1 ) and of the
6D gravity multiplet; following the notation of [36], we denote these CPOs as s(6)2 and σ2
respectively. The operator s(6)2 is dual to a perturbation of AdS3×S3 [80] where only the
dilaton and the anti-delf-dual part of the RR 3-form are excited, while σ2 only perturbs
the 6D metric. The linearised solution (13.8) contains both types of perturbations and
thus we conclude that the CPO O

(1,1)
2 associated with µ0 is a linear combination of the

(1, 1) components of the operators s(6)2 and σ2:

O
(1,1)
2 ≡

√
3 s

(6)(1,1)
2 − σ(1,1)

2 ∼
N∑
r=1

|1, 1⟩(r) + . . . . (13.12)

As explained, in the orbifold CFT picture, s(6)(1,1)2 and σ
(1,1)
2 are two orthogonal linear

combinations of the supersymmetric twist field of order 3 and of an operator that is
quadrilinear in the elementary fermions. The state in (13.12) is precisely such that the
single-trace terms with four fermions cancels.

The relative coefficient between s(6)2 and σ2 is determined by comparison with a simple
BPS solution. The orthogonal linear combination does not have a normalisable deforma-
tion within the truncation used here, but is partially encoded in the scalars µ1,2. As we
will see in explicit solutions, their presence is necessary for regularity since these fields
can be produced at quadratic order when the deformations (12.22) are present.

13.1.2 Light states of the double-mode truncation

The more general, double-mode truncation contains, as we saw in Section 12.3, includes
a larger set of homogeneous modes, including also the fields ν2, λ2 and m5 ± m6, in
addition to ν1 and λ1. The states dual to these new modes are different spin components
of the states introduced above. Indeed SO(4) rotations, dual to the SU(2)L × SU(2)R
R-symmetry of the CFT, permute the fields ν1 and ν2 and the fields λ1, m5±m6 and λ2.
The full holographic map5 is summarized below:

ν1 → O
( 1
2
, 1
2
)

1 , ν2 → O
( 1
2
,− 1

2
)

1 ,

λ1 → O
(1,1)
2 , m5 +m6 → O

(0,1)
2 , m5 −m6 → O

(1,0)
2 , λ2 → O

(1,−1)
2 ,

(13.13)

where as before the superscript (j, j̄) denotes the spin of each operator with respect to
the R-symmetry group SU(2)L × SU(2)R.

5The map depends on the choice of phase for the fields: for example the state | 12 ,−
1
2 ⟩ turns into

| − 1
2 ,

1
2 ⟩ if one conjugates the field ν2. The map given here corresponds to the choice of phase used in

the solutions of this article.
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13.2 Heavy states

The states reviewed above are “light”, having a conformal dimension that does not scale
with the CFT central charge c = 6N . We will also refer to this light operators as single-
particle (or single-trace) operators, as they are dual to elementary supergravity fields.
Supergravity solutions like the ones described in Chapter 12, that are large deformations
of AdS3 × S3, are dual to “heavy” states whose conformal dimension grows like c in the
large central charge limit.

Heavy states can be realized as multi-particle (or multi-trace) operators made by
a large (of order c) number of single-trace constituents. For supersymmetric states, a
precise characterization of the multi-particle operators dual to the supergravity solutions
can be given in the language of the MN/SN orbifold sigma model [31, 53, 54, 81]. We
first introduce the basic formalism for a simple geometry, the single 2-charge supertube
corresponding to the solution (9.25) with n = 0, and then generalize to 3-charge and
non-BPS solutions.

The single superstratum geometry depends on one continuous parameter α1 ≡ α and
at linear order in α1 the only field excited is ν1 which, as we have seen, is dual to the state
in (13.6). This indicates that the heavy state dual to the geometry for finite values of α1

is a multi-particle state made by many copies of this basic constituent of spin (1
2
, 1
2
). A

more precise definition is given by the following coherent-like state [53,54,81]

|α1⟩ ≡
N∑
p=0

Ap1A
N−p
0

(∣∣∣1
2
,
1

2

〉)p
∗
(|0⟩)N−p with A1 =

√
N
α1

2
, A0 =

√
N

(
1− α2

1

4

)1/2

,

(13.14)
where |0⟩ is the NS-sector6 vacuum and (|1

2
, 1
2
⟩)p∗ denotes a multi-particle state made by

p copies of the state |1
2
, 1
2
⟩, which will be more explicitly defined below. In the large N

limit, the sum over p in (13.14) is peaked over the average value

p̄ = A2
1 = N

α2
1

4
≡ N1 , (13.15)

as it can be checked by calculating the norm of the state (13.14), see for instance [31].
For many purposes it suffices to approximate the sum with its average:

|α1⟩ ∼
(∣∣∣1

2
,
1

2

〉)N1

∗
with

N1

N
=
α2
1

4
; (13.16)

the precise form of the state (13.14) is however needed to compute expectation values of
operators that mix the constituents |1

2
, 1
2
⟩ and |0⟩ in the heavy state.

A crucial point for us is the definition of the product (|1
2
, 1
2
⟩)p∗ and for this purpose

we must recall a basic fact about the orbifold MN/SN : All operators must be invariant
6We represent the states in the NS sector in this article. Of course an alternative representation can

be given by spectrally flowing to the R sector. As far as one works with asymptotically AdS solutions
the two representations are equivalent, but one should keep in mind that only the R-sector states can be
extended to asymptotically-flat solutions.
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under the exchange of the copies of the sigma-model on eachM. A simple way to achieve
this for the heavy state is to define each term in (13.14) as(∣∣∣1

2
,
1

2

〉)p
∗
≡

∑
r1,r2,...,rp
r1 ̸=r2 ̸...rp

∣∣∣1
2
,
1

2

〉(r1)∣∣∣1
2
,
1

2

〉(r2)
. . .
∣∣∣1
2
,
1

2

〉(rp)
, (13.17)

so that any of the N copies is either occupied by one CPO |1
2
, 1
2
⟩(r) or by the vacuum.

Another approach, more natural at a generic point in the CFT moduli space, is to consider
the (non-singular) OPE product of p single-particle operators(∣∣∣1

2
,
1

2

〉)p
≡ lim

zi→0
O

( 1
2
, 1
2
)

1 (z1) . . . O
( 1
2
, 1
2
)

1 (zp) |0⟩ . (13.18)

This is not the definition of the multi-particle operator in (13.14): in that heavy state one
removes the copies where more than one operator |1

2
, 1
2
⟩(r) acts simultaneously, and also

the multi-trace corrections mentioned in (13.6).
The fact that the superstratum geometry is dual to the state (13.14) with the definition

(13.17) has been confirmed by several precision-holography checks [31, 33, 36, 82], where
the difference between (13.17) and (13.18) plays a crucial role.

A legitimate question is what is the gravity dual of a heavy state defined in terms of
the multi-particle (13.18) that is more natural from the OPE point of view. As discussed
in Section 11.2, in the 3D theory there is an extended family of supersymmetric solutions
parametrized by the two real numbers α1, β1. Choosing β1 = 0 results in the superstrata
geometry (9.25), whose dual is the state |α1⟩ in (13.14). On the other hand, the solution
with β1 = −α2

1

4
is the so-called “special-locus” solution, described in Section 12.2.3, that

exhibits a remarkable simplicity and, in particular, its scalar matrix m has a single non-
trivial eigenvalue and thus it enjoys an SO(3) symmetry. As we will see in the next
Section, this structure of the matrix m is naturally explained by assuming that the state
dual to the “special-locus” geometry has the leading order form7

|α1⟩s.l. ∼
(∣∣∣1

2
,
1

2

〉)N1

with
N1

N
=

2α2
1

8 + α2
1

, (13.19)

where the multi-particle (|1
2
, 1
2
⟩)N1 is defined as in (13.18). The precise form of the state

|α1⟩s.l., analogous to (13.14), has not yet been determined, but it is important to keep in
mind that (13.19) represents only the leading order term of the state and, like in (13.14),
the actual state also contains terms with (|1

2
, 1
2
⟩)p, where p is spread around the average

value N1. These terms are relevant when computing generic 1-point functions of CPOs
in the state |α1⟩s.l..

It is straightforward to generalise the CFT description of the states to the 3-charge
BPS geometries and then to the non-BPS solutions constructed in the previous section.
For simplicity, we will only give the leading order form of the state, in the spirit of (13.16)

7The relation between the supergravity parameter α1 and N1 can be found for example by comparing
the angular momenta of the gravity solution with those of the CFT state |α1⟩s.l..
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and (13.19). Adding the momentum charge n1 amounts to replace the CPO |1
2
, 1
2
⟩ by its

descendant Ln1
−1|12 ,

1
2
⟩. Thus the 3-charge superstratum and the special locus solutions are

dual to
|α1, n1⟩ ∼

(
Ln1
−1

∣∣∣1
2
,
1

2

〉)N1

∗
with

N1

N
=
α2
1

4
, (13.20a)

|α1, n1⟩s.l. ∼
(
Ln1
−1

∣∣∣1
2
,
1

2

〉)N1

with
N1

N
=

2(2n1 + 1)α2
1

8(2n1 + 1) + α2
1

, (13.20b)

where the starred and un-starred multi-particle operators are defined as in (13.17) and
(13.18) respectively. One also has the “pure NS” superstratum of Section 11.4.1, which
depends on the single parameter β1 associated with the CPO defined in (13.12). We thus
expect the heavy state dual to the pure NS superstratum to be of the form

|β1, n1⟩ ∼ (L2n1
−1 |1, 1⟩)N1 with

N1

N
=

(2n1 + 1)β2
1

4 (2n1 + 1)2 + β2
1

. (13.21)

Based on the existence of non-BPS deformations of the state |β1, n1⟩ within the Q-ball
ansatz (see the perturbation theory of Section 12.4), we conjecture that the multi-particle
constituents appearing in this state are constructed following the same approach as
(13.18). For instance, in the n1 = 0 case the coherent-like sum (13.14) should run over
the states (

|1, 1⟩
)p
≡ lim

zi→0
O

(1,1)
2 (z1) . . . O

(1,1)
2 (zp) |0⟩ . (13.22)

This is to be contrasted with the geometries defined through the Lunin-Mathur pro-
file [53] which involve linear combinations between single and multi-trace operator that
are different from the one needed to define O(1,1)

2 , see [33, 36]. We do not present, how-
ever, any direct check of this conjecture, since this would require computing the VEVs of
dimension-four CPOs a task that is unfeasible with our current holographic tools.

13.2.1 Non-BPS heavy states in the single-mode truncation

The heavy states dual to the non-BPS single-mode solutions presented in Section 12.2
are constructed following the same procedure as for the 3-charge superstrata: by building
multi-particle heavy states out of many light constituents. As in the perturbative analysis,
we limit the study to ω1 = 3, or equivalently m = 1. The schematic, leading order
representation of the dual states is expected to be

|α1, n1,m = 1⟩ ∼
(
Ln+1
−1 L̃−1 |O 1

2
, 1
2
⟩
)N1

, (13.23)

where, based on the superstrata relation (13.20a), the link between the number of strands
N1 and the quantities α1, n1 should have the form

N1

N
=

α2
1

4
+O(α4

1) . (13.24)

The first order correction to this equality will be computed in the next Chapter. Note
that the state |α1, n1,m = 1⟩ is indeed non-BPS, as each of its single-particle constituents
is non-BPS on its own.
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It is important to clarify why in (13.23) we have used the multi-particle definition
(13.18) rather than the one in (13.17). Both options lead to perfectly acceptable heavy
states which should have a dual representation in supergravity. It was however a non-
trivial outcome of the supergravity analysis of Section 12.2 that the only non-BPS geome-
tries that fit in the Q-ball ansatz are at the special locus ; they are dual to the state in
(13.23). A rough explanation of this finding rests on two facts: first, the Q-ball ansätze
of Chapter 9 require the phases present in the matrix m (associated with λ1,2 modes) to
be exactly twice the ones present in the scalar χ (the ν1,2 modes) and, second, the scalar
matrix of the special locus geometry enjoys an SO(3) symmetry. It is conjectured that
this symmetry protects the ratio of the phases of the scalar modes against the non-BPS
corrections and locks it to the value required by the Q-ball Ansatz.

Analogously one can consider the non-BPS multi-particle state based on the con-
stituents of the β1 perturbation:

|β1, n1,m = 1⟩ ∼ (L
2 (n1+1)
−1 L̃2

−1|1, 1⟩)N1 , (13.25)

where
N1

N
=

β2
1

4 (2n1 + 1)
+O(β4

1) . (13.26)

13.2.2 Non-BPS heavy states in the double-mode truncation

The situation is somewhat different for the non-BPS microstates of the double-mode
truncation that were constructed in Section 12.3. They can be obtained by starting from
one of the BPS solutions reviewed above and by adding single-particle constituents that
do not preserve the same supercharges of the original constituents. Hence, though each
single-particle component is by itself BPS, and as such it is dual to a certain supergrav-
ity mode, the supersymmetry of the full state is broken by the non-trivial interaction
between the mutually non-BPS constituents. For example the states |1

2
, 1
2
⟩ and |1

2
,−1

2
⟩

preserve different supercharges on the right sector but the same on the left sector, and
thus a multi-particle state containing both states is still BPS; to break the remaining
supersymmetries one excites the left sector by acting, for instance, with some power of
the Virasoro generator L−1. One is thus led to consider the state

|α1, α2, n1, n2⟩ ∼
(
Ln1
−1

∣∣∣1
2
,
1

2

〉)N1
(
Ln2
−1

∣∣∣1
2
,−1

2

〉)N2

, (13.27)

where the relation between the microscopic quantities, N1, N2, and the macroscopic ones,
α1, α2, should have the general form

N1

N
=

2(2n1 + 1)α2
1

8(2n1 + 1) + α2
1

+O(α2
1α

2
2) ,

N2

N
=

2(2n2 + 1)α2
2

8(2n2 + 1) + α2
2

+O(α2
1α

2
2) . (13.28)

We will provide a derivation of the first non-trivial correction terms of order O(α2
1, α

2
2)

in the next Chapter. While the state |α1, α2, n1, n2⟩ is non-BPS for generic values of n1 and
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n2, it is BPS for n1 = n2, since it can be obtained by acting with a finite SU(2)R rotation
generated by J̃−

0 on the supersymmetric state |α1, n1⟩s.l. (this follows from J̃−
0 |12 ,

1
2
⟩ =

|1
2
,−1

2
⟩ and (J̃−

0 )
k|1

2
, 1
2
⟩ = 0 for k > 1).

Note that in (13.27), we have once again used the multi-particle definition (13.18)
rather than the one in (13.17). this is for exactly the same reason as in the previous
Section: the only non-PS solutions that fit the Q-ball truncation are on the special locus.

Analogously one can consider the “pure NS” non-BPS state

|β1, β2, n1, n2⟩ ∼ (L2n1
−1 |1, 1⟩)N1(L2n2

−1 |1,−1⟩)N2 , (13.29)

where

N1

N
=

(2n1 + 1)β2
1

4 (2n1 + 1)2 + β2
1

+O(β2
1β

2
2) ,

N2

N
=

(2n2 + 1)β2
2

4 (2n2 + 1)2 + β2
2

+O(β2
1β

2
2) . (13.30)

This state is non-BPS for the same reason explained before (13.27) but, contrary to the
state |α1, α2, n1, n2⟩, it remains non-BPS even for n1 = n2 ̸= 0. Indeed, since J̃−

0 |1, 1⟩ =
|1, 0⟩ and (J̃−

0 )
2|1, 1⟩ = |1,−1⟩, acting with a finite rotation generated by J̃−

0 on the BPS
state |β1, n1⟩ produces both copies of type |1, 0⟩ and |1,−1⟩ and does not yield the state
|β1, β2, n1, n1⟩.

13.2.3 The holographic charges

We start by briefly reviewing the relevant holographic formulas (following [39,54]) needed
to extract the angular momenta, Ja, J̃a, and the conformal dimensions, h, h̄, from the
geometry. To compute these quantities one only needs the 3D Einstein metric ds23 (7.18)
and the gauge fields Ãij (9.5). We will use an AdS3 radial coordinate z, related to our
previous coordinate ξ, and coordinates xµ ≡ {τ, σ} on the boundary, where τ coincides
with the coordinate used in (7.12) up to a rescaling, while the normalisation of σ cannot
be changed since we need to preserve the periodicity 2π. The relation between ξ and z is
chosen in such a way that the 3D metric (7.18) has the asymptotic form as z → 0 [83]

−ds23 =
dz2

z2
+
−dτ 2 + dσ2

z2
+ g(2)µν dx

µdxν +O(z2) . (13.31)

The z (or ξ) component of the gauge fields should vanish at z = 0 (ξ = 1) and the
asymptotic values of the τ and ψ components are denoted by Φ

(∞)
i , Ψ(∞)

i (i = 1, 2, 3, 4).
In terms of these asymptotic values, the SU(2)L × SU(2)R angular momenta Ja, J̃a

(a = 3,±) are

J3 = −N
2

(
Φ

(∞)
1 + Φ

(∞)
2 + 2(Ψ

(∞)
1 +Ψ

(∞)
2 )

)
, J± =

N

2

(
Φ

(∞)
3 + Φ

(∞)
4 + 2(Ψ

(∞)
3 +Ψ

(∞)
4 )

)
,

(13.32a)

J̃3 = −N
2

(
Φ

(∞)
1 − Φ

(∞)
2

)
, J̃± =

N

2

(
Φ

(∞)
3 − Φ

(∞)
4

)
. (13.32b)
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Note that these formulas are also valid in the single-sector truncation, where some of the
gauge fields vanish Φ3,4 = Ψ3,4 = 0. In this case, we find immediately J± = J̃± = 0,
which matches with the momenta of the CFT states (13.23), (13.25).

The values of the left and right conformal dimensions, h and h̄, are computed from

h =
N

4

(
1 + g(2)ττ + 2g(2)τσ + g(2)σσ

)
+

(J3)2 + J+J−

N
, (13.33a)

h̄ =
N

4

(
1 + g(2)ττ − 2g(2)τσ + g(2)σσ

)
+

(J̃3)2 + J̃+J̃−

N
. (13.33b)

Note that the formulas (13.32) assume the Axial gauge, but the general result follows
simply by transforming the guage fields: under a generic SO(4) gauge rotation, U , the
matrix of the gauge fields, Ã, transforms as Ã→ UÃU−1 + 1

2
dUU−1. In particular, for a

block-diagonal phase rotation of the form

U =

(
U1 0

0 U2

)
with Ui =

(
cos δi − sin δi
sin δi cos δi

)
and δi = δτi τ + δψi ψ , (13.34)

so the angular momenta transform as

J3 → J3 +
N

4
(δτ1 + δτ2 + 2(δψ1 + δψ2 )) , J± → J±e±i(δ1+δ2) ,

J̃3 → J̃3 +
N

4
(δτ1 − δτ2 ) , J̃± → J̃±e±i(δ1−δ2) .

(13.35)

13.3 Precision holography tests for supersymmetric
states

In this section we provide some explicit checks supporting the identification between the
supergravity solutions and the heavy states introduced in the previous section. In order
to have a precise, quantitative check, we focus on protected physical observables, such
as discrete quantum numbers and supersymmetric 3-point correlators [84]. In particular
for the 3-point correlators we follow the approach initiated by [53,54,81]: we extract the
expectation values of the BPS operators dual to single particle states from the asymptotic
expansion of the supergravity solutions at the AdS boundary and then match these results
against those obtained in the CFT description. The main goal of this section is to show
how the different definitions of the multiparticle heavy states are reflected in the corre-
sponding supergravity solutions, thus providing support for our proposed identification.

We will focus on the 1/4-BPS case which is technically simpler, but still contains all
the interesting features needed for our analysis. In particular we show that the special
locus constraint β1 = −α2

1

4
is directly related to the standard definition of multiparticle

states (13.18). In contrast the more familiar 2-charge solution with β1 = 0 is dual to the
state (13.14) as discussed in [53]. The most interesting information is derived from the
expectation values of the operators of dimension 2 [33, 36]. This requires a careful anal-
ysis of the supergravity solutions since the corresponding expectation values are related
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to subleading terms at the AdS boudary with respect to the contributions relevant for
dimension 1 operators. In the 1/4-BPS case, we can bypass the problem by working in the
gauged-fixed approach summarised in Appendix D of [36] which is the approach we follow
in Section 13.3. The main result is that all operators of dimension 2 have a vanishing
expectation value in the special locus geometry (11.14) with p = 0. This is consistent
with the dual state (13.19) since these vanishing expectation values are proportional to
extremal 3-point correlators or equivalently 2-point correlators between a single and a
double-particle state. These quantities are known to be sensitive to the mixing between
multi-particle operators [85] and they vanish when using the natural holographic dictio-
nary [86, 87] derived from the standard OPE product (13.18). This is to be contrasted
with what happens for the state (13.14), where one can use the free orbifold descrip-
tion to check that there are non-zero expectation values for opreators of dimensions 2.
Thanks to the non-renormalisation properties of these observables [84], we can match the
CFT results with those obtained from the solution with β1 = 0 and check that there is a
non-trivial agreement as done in [33,36].

This analysis can be extended to the case of 1/8-BPS geometries thanks to the fact
that a chiral part of the supersymmetry is preserved, but this will not be discussed here.

The 1/4-BPS case

In this section we use Eq. [D.2] and [D.4] of [36] to read the holographic expectation
values. We start the 6D uplift of Appendix C and use for instance, Eq. [C.1] of [36] to
read the functions Z1,2,4, thus we need to work in the Ramond sector. From the scalars
parametrised as in (C.1) and (C.13) we have

Z4

Z2

= C4 =

√
Q1

2Q5

X ,
Z1

Z2

= V 2
4 =

Q1

2Q5

(
X2 + 2∆

)
, P ≡ Z1Z2 − Z2

4 =
Q1

Q5

∆Z2
2 .

(13.36)
Looking now at 6D Einstein metric ds26 (C.9), we should rewrite it in the form of Eq. [C.1]
of [36]. In order to apply the gauged-fixed approach of that reference, we first need
to fix the constants in Ω1 and perform an appropriate transformation (13.34) on the
3D gauge fields so as to reproduce the values expected for the CFT in the Ramond
sector. Then we should choose coordinates such that the 4D metric in [C.1] takes the
form dρ2 + ρ2

(
dθ2 + sin2 θdφ2

1 + cos2 θdφ2
2

)
, where the relation between ξ and ρ is given

in (7.12). In general this requires a change of coordinates that we can derive perturbatively
around the AdS boundary

ρ→ cρρ̂+
fρ(θ̂, φ̂i)

ρ̂
+. . . , θ → θ̂+

fθ(θ̂, φ̂i)

ρ̂2
+. . . , φj → φ̂j+

fφj(θ̂, φ̂i)

ρ̂2
+. . . , (13.37)

where the dots stand for subleading terms in the large ρ expansion.
Let us first start from the configuration described in Eq. (9.25) with n = n1. In order

to satisfy (13.31) we need to perform a rescaling of τ which amounts to choose

Ω1 = 1− α2
1

4
, (13.38)
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while to reproduce the angular momenta from (13.32) we need to perform the SO(4)

rotation (13.34) with parameters8

δτi = 0 , δψ1 = n1 , δψ2 = −1 . (13.39)

Finally the change of variables (13.37) needed reads

cρ =

√
1− α2

1

4
, fρ(θ̂, φ̂i) =

1

8

√
1− α2

1

4
(1+2 cos(2θ)) , fθ(θ̂, φ̂i) = −

1

4

(
1− α2

1

4

)
sin(2θ) ,

(13.40)
while fφj = 0. In the 1/4-BPS case, which has ni = 0, was first obtained in [53] where also
the dual interpretation in terms of the state (13.14) was introduced. For this geometry,
we see that Z2 does not depend on the S3 coordinates. By using (C.8) and the explicit
expressions in (9.25) in the equations above, one can expand Z4

Z2
in spherical harmonics9

and read from (D.4) of [36] the leading order result for the expectation value of the
operator (13.6)

⟨s(7)(±
1
2
,± 1

2
)

1 ⟩ = α1√
2

lim
ξ→1

(
ρ̂
√
1− ξ2

)
=

α1√
2

√
1− α2

1

4
. (13.41)

Moving to the harmonics of order 2, one can check that the operator O2 has vanishing
expectation value in the solution defined by (9.25). The only components that can be
potentially non-trivial are (±1,±1) and in that case there is a cancellation between the
two terms in (13.12) which separately are non-zero

s
(6)(±1,±1)
2 =

1√
3
σ
(±1,±1)
2 =

1

2
√
2

α2
1

4

(
1− α2

1

4

)
⇒ ⟨O(±1,±1)

2 ⟩ = 0 . (13.42)

Then the orthogonal combination

C
(±1,±1)
2 ≡

√
3σ

(±1,±1)
2 + s

(6)(±1,±1)
2 (13.43)

has a non-trivial expectation value in the heavy state dual to (9.25)

⟨C(±1,±1)
2 ⟩ = α2

1

2
√
2

(
1− α2

1

4

)
. (13.44)

Let us now consider the 1/4-BPS version of the “special locus” solution discussed in
Section 11.1, which is obtained by setting n1 = 0 in (11.14). In this case we have

cρ =

√
8− α2

1

8 + α2
1

(13.45)

and, thus, he expectation value for the operator (13.6) now reads

⟨s(7)(±
1
2
,± 1

2
)

1 ⟩ = 4
√
2

8 + α2
1

. (13.46)

8In the Neveu-Schwarz sector we have δψ2 = 0 and the potentials Ψ1,2 vanish at ξ = 0.
9We follow [36] also for the conventions of the spherical harmonics, see their Appendix A.
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Moving to the harmonics of order 2, one can start again from [D.4] of [36] and evaluate the
second equation in (13.36). The surprise is that it does not depend on the S3 coordinates
and so the expectation value of s(6)2 vanishes for the 1/4-BPS “special-locus” solution. The
analysis of the expectation values for σ2 is more involved. For the (±1,±1) components,
the terms proportional to the second harmonics of Z1,2 and those proportional to the
square of the first harmonics of Z4 are separately non-trivial, but cancel in the combination
in [D.4] of [36]. For the (0, 0) component, also the term proportional to the square of the
first harmonic of the vectors contributes, but again there is a non-trivial cancellation when
all contributions to [D.4] are combined. In summary also all components of σ2 vanish,
which implies ⟨C2⟩ = ⟨O2⟩ = 0, and so there are no dimension-2 expectation values for
this “special locus” solution.
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Chapter 14

Holographic analysis of non-BPS
microstates

In this Chapter, we explain how to establish the link between the CFT picture described
in Chapter 13, and the bulk perturbation theory of Chapter 12. It is based on the work
presented in [39,42].

The non-BPS solutions constructed in Chapter 12 are holographically related to the
heavy CFT states reviewed in Section 13.2. Establishing the precise relation and verifying
its consistency requires, however, some further analysis. We will first outline our general
approach and then discuss in more detail the alpha and beta classes of solutions, in both
the single-mode and double-mode truncation.

14.1 The approach

When dealing with non-BPS configurations the set of precise-holography tools that has
been used to conjecture and verify with great accuracy the map between asymptotically
AdS3 geometries and D1-D5 supersymmetric states [31,33,36,53,54] shrinks considerably.
This is because three-point functions where some of the operators break all supersym-
metries generically depend on the CFT moduli and their values at the gravity point are
unknown. The only available link between gravity and CFT is provided by few quantized
charges, the momentum charge, np = h− h̄, and the SU(2)L×SU(2)R angular momenta,
Ja and J̃a (a = 3,±). The holographic formulas for these quantities is given for example
in [54,88].

The formulae for the angular momenta depend on the asymptotic values of the gauge
fields, and thus are sensitive to the gauge in which the bulk solution sits. As it was
explained in [88], in the quantum theory large gauge transformations are anomalous, and
the choice of gauge has the physical effect of changing the state. An example of this
phenomenon is the spectral flow transformation that relates the R and NS sectors of the
CFT.

In our theory, the U(1)2 gauge rotating the (12) and (34) components will play an im-
portant role, as it shifts the gauge fields Φ1 and Φ2, and changes the τ - and ψ-dependence
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of the scalars. The gravity computations of Chapter 12 have been performed in a par-
ticularly convenient gauge where, in particular, all the dependence on the worldsheet
coordinates τ and ψ has been gauged away. Using this gauge, the computed quantized
charges do not reproduce the values expected from the CFT. A first step for a holographic
interpretation of our gravity solutions is to perform the appropriate rotation that yields
the values of the angular momenta predicted by the CFT.

A further step is finding the relation between the microscopic quantities, N1, N2, and
the gravity parameters, α1, α2, β1, β2, expressed by the perturbative relations (13.24) and
(13.26) in the single-sector truncation, and by (13.28) and (13.30) in the double-sector
truncation. In the single-sector truncation, this relation can be computed by simply
matching the momentum charge h− h̄. However, as we will see, this is not enough in the
double-sector truncation, and we will need to also match the energy h+ h̄.

This second point requires some clarification: Unlike the quantized momentum, the
energy is a non-protected (moduli-dependent) quantity, which receives corrections from
the interactions between the mutually non-BPS single-particles constituents of the heavy
states (13.27), (13.29). From the CFT perspective, these corrections correspond to the
anomalous dimensions of the non-BPS multi-particle operators formed by the interacting
single-particles and are interesting dynamical data that are, generically, unknown. These
energy corrections can be read off from the geometry in two different ways: from the τ -
dependence of fields and from the asymptotic behavior of (τ, ψ) component of the metric
(the precise formulas will be reviewed below). Thus, though we cannot predict the energy
corrections from the CFT, requiring the consistency1 between these two ways of extract-
ing them imposes a non-trivial constraint, which allows us to completely determine the
holographic dictionary and the energy corrections order by order in perturbation theory.

A schematic summary of our procedure is as follows:

(i) Start from the solutions of Chapter 12 and perform an SO(4) rotation such that:
the angular momenta of the rotated solution have the values expected from the
CFT, the ξ-components of the gauge fields vanish at infinity, ξ = 1 (this is the
gauge where one usually computes the angular momenta), and the ψ-components
of the gauge fields vanish at the origin, ξ = 0 (this is needed for regularity, since the
ψ coordinate degenerates at the origin);

(ii) Extract the conformal dimensions h, h̄ from the metric (with the holographic formu-
las reviewed below) and determine the relation between N1, N2 and the supergravity
parameters α1, α2, β1, β2 by matching the momentum h − h̄ with the CFT value,
and, in the double-mode truncation, the energy h+ h̄ with the value inferred from
the frequency of the supergravity fields.

Since the procedure requires extracting the angular momenta, Ja, J̃a, and the confor-
mal dimensions, h, h̄, from the geometry, we first briefly review the relevant holographic

1We will make an independent check of this consistency requirement in the single-mode truncation.
In the double-mode truncation, we turn things around and impose by hand the consistency, as a way to
infer the relations (13.28) and (13.30).

162



formulas (following [39,54]) and then give some details of the computations for the alpha
and beta class of solutions at the lowest perturbative orders.

14.2 Matching in the single-mode truncation

We start to derive the matching in the simpler case of the single-mode truncation, and
we focus on the alpha class of solutions. In the bulk, the solution has been computed
perturbatively in Section 12.2.2. The proposed identification for the CFT state was given
in (13.23).

As we explained, the first step is to rewrite the metric in the Feffermann-Graham
form. We then need to find the correct gauge to match the CFT quantized charges.

The radial coordinate z is defined such that the metric is asymptotic to

ds23 =
dz2

z2
+
−dτ 2 + dσ2

z2
+ g(2)µν dx

µdxν +O(z2) . (14.1)

Using the perturbative expansion, we find that the coordinates z and ξ are related as

ξ√
1− ξ2

=

(
1 +

3

8(n1 + 1)2
α2
1 + c(0)ρ α4

1 +O(α6
1)

)
z−1

[
1− z2

4

(
1 + c(1)ρ α4

1 +O(α6
1)
)
+O(z4)

]
,

(14.2)
where c(0)ρ , c(1)ρ are n1-dependent rational numbers :

c(0)ρ =
72
(
3n1(n1 + 3) + 4

)(
−3Hn1+1 +Hn1+

5
2
+ log 4

)
+ 3(1 + 2n1)

(
89 + 4n1(35 + 9n1)

)
128(2n1 + 1)(2n1 + 3)(2n1 + 5)(n1 + 1)4

,

(14.3)

c(1)ρ =
36
(
3n1(n1 + 3) + 4

)(
Hn1+1 −Hn1+

5
2
− log 4

)
− 24n1(6n

2
1 + 13n1 − 12) + 231

32(2n1 + 1)(2n1 + 3)(2n1 + 5)(n1 + 1)4
,

(14.4)

and we have defined

Hk =

∫ 1

0

1− xk

1− x
dx, (14.5)

which is equal to the k-th harmonic number when k is an integer. Note that to obtain
the holographic matching it is indeed necessary the expansion of the metric up to O(α4

1).
The CFT quantized charges can be read-off from the state (13.23):

J3 = J̃3 =
N1

2
, J± = J̃± = 0 , h =

(
n1 +

3

2

)
N1 , h̄ =

3

2
N1 . (14.6)

To compare these predictions with the supergravity values, we first need to establish
the dictionary between the scale of the perturbation, α1, and the number of non-BPS
strands, N1. While h and h̄ depend on the moduli and thus cannot be matched directly,
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the momentum charge h − h̄ can. Using the formulas (13.33), it can computed in the
supergravity in a perturbative expansion in α1, and then matched with (14.6). We obtain

g(2)τσ = n1
N1

N
; (14.7)

and we can invert the series in α1 on the left-hand side, to obtain:

α2
1

4
=

N1

N

[
1 + cN1

N1

N
+O

(
N1

N

)2
]
. (14.8)

where cN1 are n1-dependent rational numbers:

cN1 =
12
(
3n1(n1 + 3) + 4

)(
3Hn1+1 −Hn1+

5
2
− log 4

)
+ 4n1(4n1 + 21) + 39

2(2n1 + 1)(2n1 + 3)(2n1 + 5)
. (14.9)

Having this dictionary, we can now match the angular momenta. As noted in the
previous Section, it is necessary to first perform a large gauge transformation on the
gravity side. In the single-mode truncation, a simple block-diagonal rotation of the form
(13.34) is enough, and we find that we can match the angular momenta with

∆ω1 ≡ δω1 = − cω
N1

N
+O

(
N1

N

)2

, ∆ω2 = 0 , (14.10)

with cω an n1-dependent positive rational number:

cω =
1

8

(
64− 3

2n1 + 1
− 66

2n1 + 3
− 3

2n1 + 5

)
. (14.11)

It is natural to interpret the frequency shift δω1 as the correction to the energy of a
single particle constituents Ln1+1

−1 L̃−1 |O 1
2
, 1
2
⟩ due to the (attractive) interaction with the

other elements of the bound state: this correction should be proportional to the number
of elements N1 (for N1 ≫ 1) and to the Newton’s constant GN ∼ N−1, in agreement with
(14.10). To check the numerical coefficient cω would require to compute an anomalous
dimension of the operator Ln+1

−1 L̃−1O 1
2
, 1
2

in the strongly coupled CFT, a task that is at
the moment out of reach.

Even without an independent verification of (14.10), we can still make a non-trivial
check of our interpretation of δω1 and of the consistency of our supergravity construction
by comparing with the energy h+h̄ extracted from the metric via the holographic relations
(13.33). Indeed, using these relations we compute the energy at order O(α4

1) and find

h+ h̄ = N1

[
(3 + n1) +

δω1

2
+O

(
N1

N

)2
]
. (14.12)

On the other hand, this quantity represents the energy of the full state (13.23) and thus
should be, in first approximation, (3 + n1)N1 which is the sum of the free energies of
the elementary constituents of the bound state. Then we should include the dynamical
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correction: in the regime 1≪ N1 ≪ N this is given by the interaction energy between any
single pair of constituents, times the number of pairs. But according to our interpretation
of δω1 the interaction energy between one pair should be identified with δω1

N1
, and the

number of pairs is ≈ N2
1

2
for N1 ≫ 1. This way of calculating h + h̄ reproduces the

holographic result (14.12), including the N1/N correction in the square parenthesis.

14.3 Matching in the double-mode truncation

We now turn to the more difficult case of the double-mode truncation. We follow the same
method as previously, however the computations are more challenging. In particular, the
large gauge transformation needed to match the angular momenta is no longer a simple
block-diagonal rotation.

14.3.1 Alpha class

We focus here on the gravity solution constructed in Section 12.3.2 and show that, after
an appropriate SO(4) rotation, it is dual to the heavy state described schematically in
(13.27).

Our guides in finding the correct gauge are, once again, the CFT quantized charges,
that can be easily extracted from (13.27):

J3 =
1

2
(N1+N2) , J

± = 0 , J̃3 =
1

2
(N1−N2) , J̃

± = −δn1,n2

√
N1N2 , np = h−h̄ = n1N1+n2N2 .

(14.13)
The only point that might deserve a clarification is the value of J̃±: it can be understood by
remembering that the heavy states are actually defined by coherent state superpositions,
like in (13.14), and by noting that the state J̃+

0

(
Ln2
−1

∣∣∣12 ,−1
2

〉)
= Ln2

−1

∣∣∣12 , 12〉 is orthogonal

to Ln1
−1

∣∣∣12 , 12〉 unless n1 = n2; hence, when n1 = n2 acting with J̃± on the heavy state
gives a state that has non-vanishing overlap with itself, but this does not happen for the
non-BPS state with n1 ̸= n2. This shows that we have to treat the BPS and non-BPS
cases separately in the alpha class of solutions and we cannot simply set n1 = n2 in
the expressions (for the beta class, n1 = n2 is still non-BPS, as explained after (13.30),
and there is no such issue there). In the following we will mostly focus on the non-BPS
solutions with n1 ̸= n2.

Comparison of the CFT predictions (14.13) with the supergravity values computed
from the holographic formulas (13.32), (13.33), requires the dictionary between the CFT
variables, N1, N2, and the gravity ones, α1, α2, which is only known in the BPS limits,
α1 = 0 or α2 = 0 (see (13.28)), while the corrections have to be inferred order by order in
the double perturbative expansion in α1, α2. Already at zeroth order in both α1 and α2

one sees that the gauge used in the supergravity construction is not the one that describes
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a proper CFT state. At this order, the non-vanishing gauge fields are constants:

Φ1 = Φ2 =
1

2
, Ψ1 =

n1

2
, Ψ2 =

n2

2
. (14.14)

A regular solution must have Ψi = 0 at the origin and moreover the CFT requires, at this
order, J3 = J̃3 = 0 and thus, via (13.32), Φ(∞)

1 = Φ
(∞)
2 = 0. Hence, one has to apply a

gauge rotation of the form (13.34) with

δ1 = τ + n1 ψ , δ2 = τ + n2 ψ , (14.15)

to cancel the constant parts of the gauge fields. Note than when this transformation
acts on the SO(4) vector χI , as χ → Uχ, it induces the phases χ1 + iχ2 ∼ eiδ1 and
χ3 + iχ4 ∼ eiδ2 which are the phases expected for the states Ln1

−1

∣∣∣12 , 12〉 and Ln2
−1

∣∣∣12 ,−1
2

〉
,

respectively, based on the values of the energy and momentum. Turning things around,
this is the reason why in the supergravity construction one has chosen the constants
(14.14) for the gauge fields.

The “non-abelian" gauge fields, Φi, Ψi with i = 3, 4, first appear at order α1α2 and
are given in (12.65). Using the holographic formulas (13.32) to extract the values of the
angular momenta from the asymptotic values of these gauge fields we obtain J± ̸= 0 and
J̃± = 0, while for the non-BPS states with n1 ̸= n2 one expects both J± and J̃± to vanish
(see (14.13)). This signals the necessity to perform a further gauge transformation to
rotate J± away. The regularity condition that Ψi(ξ = 0) = 0 and the requirement that the
ξ-components of the gauge fields vanish at ξ = 1 partially constrain the transformation,
and a possible choice is

U = 1+ α1α2

ξn1+n2
(
(n1 + n2)ξ

2 − (n1 + n2 + 2)
)

2(n1 − n2)(n1 + n2)2(n1 + n2 + 2)


0 0 u1 0

0 0 0 u2
−u1 0 0 0

0 −u2 0 0

 , (14.16)

where u1 = n1+n2+2n1 n2 and u2 = n1 (n1+1)+n2 (n2+1). This transforms the gauge
fields to

Φ3 = Φ4 = α1 α2

n2
1 − n2

2 + (n1 − n2) ξ
n1+n2

(
(n1 + n2)ξ

2 − (n1 + n2 + 2)
)

4 (n1 + n2)2(n1 + n2 + 2)
,

Ψ3 = −α1 α2

(n2 + 1)
(
n1 + n2 + ξn1+n2

(
2 + (1− ξ2)(n1 + n2)

))
4(n1 + n2)(n1 + n2 + 2)

,

Ψ4 = α1 α2

(n1 + 1)
(
n1 + n2 + ξn1+n2

(
2 + (1− ξ2)(n1 + n2)

))
4(n1 + n2)(n1 + n2 + 2)

,

Ψ5 = α1 α2
(n1 + n2 + 2n1 n2)

4(n2
1 − n2

2)
(1− ξ2) ξn1+n2−1 ,

Ψ6 = α1 α2
n1 (n1 + 1) + n2 (n2 + 1)

4(n2
1 − n2

2)
(1− ξ2) ξn1+n2−1 .

(14.17)
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It appears that Ψ5,6 are singular at the origin for n1 = n2, but, in fact, the state is then
BPS, whereas the transformation above applies only in the non-BPS case. The former is
discussed further down.

Having obtained the expected values of J± and J̃±, one should also consider J3 and
J̃3: discarding terms of order α2

2 ∼ N2 and higher, one should have J3 = J̃3 = N1

2
∼ N

α2
1

4
,

where we stop at order O(α2
1) for now. At this order, the existence of a normalisable

solution for ν2 requires adjusting the constant term in Φ2 and the asymptotic values of
the gauge fields are corrected with respect to the zero-th order values (14.14) to (see
(12.65))

Φ
(∞)
1 =

1

2
− α2

1

8
, Φ

(∞)
2 =

1

2
+

1

8

[
− 1 +

2 (n1 − n2)
2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

]
α2
1 ,

Ψ
(∞)
1 =

n1

2
, Ψ

(∞)
2 =

n2

2
− α2

1

8
. (14.18)

To obtain the expected values of J3 and J̃3 it is necessary to correct the phase δ2 in the
gauge transformation (13.34) to

δ2 → (1 + δω2) τ + n2 ψ (14.19)

with

δω2 = −2
N1

N

[
1− (n1 − n2)

2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

]
+O

(
N1

N

N2

N
,

(
N1

N

)2
)

for n1 ̸= n2 .

(14.20)
This quantity has an important microscopic meaning: it represents the interaction
energy of a particle of type Ln2

−1

∣∣∣12 ,−1
2

〉
with the N1 particles of type Ln1

−1

∣∣∣12 , 12〉 or,
in CFT language, the anomalous dimension of the non-BPS double-trace operator
: ∂n1s

(1)( 1
2
, 1
2
)

1 ∂n2s
(1)( 1

2
,− 1

2
)

1 :. Since this energy shift originates from the attractive inter-
action between oppositely charged particles, one expects δω2 < 0, in agreement with the
expression in (14.20), for any n1, n2 ≥ 0. One could wonder why δω2 does not vanish for
the BPS state with n1 = n2. The point is that, as we emphasised after (14.13), the limit
n1 → n2 is not smooth and the analysis above only applies when n1 ̸= n2. When n1 = n2

one has J̃± ̸= 0 (see (14.13)), and this requires modifying the gauge-transformation (14.16)
to

U = 1+
α1τ

4


0 0 0 α2

0 0 −α2 0

0 α2 0 2α1

−α2 0 −2α1 0

 , (14.21)

which is ξ-independent but τ -dependent and it changes the energy shift δω2 at order α2
1

to
δω2 = 0 for n1 = n2 , (14.22)

as expected for a supersymmetric state.
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Both the supergravity and the CFT pictures have a symmetry under the exchange of
the states Ln1

−1

∣∣∣12 , 12〉 and Ln2
−1

∣∣∣12 ,−1
2

〉
, which interchanges the labels 1 and 2. This implies

that the energy of the particles of type Ln1
−1

∣∣∣12 , 12〉 is shifted by

δω1 = −2
N2

N

[
1− (n1 − n2)

2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

]
+O

(
N1

N

N2

N
,

(
N2

N

)2
)

for n1 ̸= n2 ,

(14.23)
when interacting with the N2 particles of type Ln2

−1

∣∣∣12 ,−1
2

〉
. Moreover the total energy of

the non-supersymmetric bound state should be given by the (1-2) symmetric expression

h+ h̄ = (n1 + 1)N1 + (n2 + 1)N2 − 2
N1N2

N

[
1− (n1 − n2)

2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

]
,

(14.24)
up to higher order corrections in N1/N , N2/N ; the first term, N1 +N2, is just the energy
of the particles in the free theory and second term is the attractive interaction energy,
proportional to the numbers of particle N1 and N2 and to the 3D Newtons’s constant
G3 ∼ 1/N , as expected from the bulk perspective.

One could try to verify the relation (14.24) by extracting the energy h+ h̄ from the 3D
metric ds23, computed up to oder α2

1α
2
2, using the holographic formulas (13.33). However

one faces a difficulty: the prediction (14.24) is expressed in terms of the microscopic
numbers N1, N2, while the holographic computation yields h + h̄ as a function of the
gravity parameters α1, α2. The comparison thus requires the relation between (N1, N2)

and (α1, α2) up to order α2
1α

2
2; keeping into account the (1-2)-exchange symmetry, this

relation could have the general form

N1

N
=
α2
1

4
+ c(n1, n2)α

2
1 α

2
2+O

(
α4
1, α

2
1 α

4
2

)
,

N2

N
=
α2
2

4
+ c(n2, n1)α

2
1 α

2
2+O

(
α4
2, α

4
1 α

2
2

)
,

(14.25)
for some function c(n1, n2) that should be neither symmetric nor anti-symmetric under
the exchange of n1 and n2. The only constraint one has on c(n1, n2) is the one coming
from the momentum h− h̄:

h− h̄ = n1N1 + n2N2 =
n1 α

2
1 + n2 α

2
2

4
+ (n1 c(n1, n2) + n2 c(n2, n1))α

2
1α

2
2 +O

(
α4
1, α

4
2

)
,

(14.26)
which can again be computed from the gravity solution using (13.33). This lone constraint
is not sufficient to determine c(n1, n2); one can, however, turn things around2 and assume
both (14.26) and (14.24), and thus determine c(n1, n2). Computationally, this requires
obtaining the perturbative solution for general n1 and n2 to at least 4th order. We
managed to do this only for the alpha class of solutions, due to the simplifications of the

2In [39] an independent check of a relation analogous to (14.24) was performed: the non-
supersymmetric states studied in that article depended on a single parameter α and thus the constraint
coming from the momentum charge was sufficient to completely determine the gravity-CFT map. The
non-triviality of that check, gives us further motivation for assuming (14.24) in our context.

168



special locus. We have:

c(n1, n2) =
1

16

[
4n2

1

(n1 + n2)2
− 5n1(n1 + 2)

n1 + n2

+
1

n1 − n2

− 2 (2n1 + 1)2

(n1 + n2 + 1)2
+

4(n1 + 1)2

(n1 + n2 + 2)2

+
2 + 2n1

(
5n1(n1 + 3) + 8

)
n1 (n1 + n2 + 1)

−
(n1 + 1)

(
5n1 (n1 + 3) + 4

)
n1 (n1 + n2 + 2)

]
+

(n1 − n2)
2
(
ψ(0)(n1 + n2)− ψ(0)(n1)

)
8 (n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

, (14.27)

where ψ(m)(z) is the polygamma function of orderm. ψ(0)(z) is also known as the digamma
function.

The coefficients c(n1, n2) do not have an intrinsic physical meaning, they just encode
the dictionary between gravity and CFT, but their knowledge is useful because it allows
us to push the computation of the energy shifts, δω1, δω2, one step further and include
the corrections proportional to N1N2:

δω1 = −2
N2

N

[
1− (n1 − n2)

2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

]
+
N1N2

N2
d(n1, n2)

δω2 = −2
N1

N

[
1− (n1 − n2)

2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

]
+
N1N2

N2
d(n2, n1) ,

(14.28)

where we have again implemented the (1-2) symmetry and introduced the unknown coeffi-
cients d(n1, n2). The procedure to determine these unknowns is conceptually the same we
used to arrive at (14.20): one computes the corrections of order α2

1α
2
2 to the gauge fields,

and in particular to the constant part of Φ1, Φ2 (see eq. (14.18)), which is needed to have
normalisable solutions for ν1 (resp. ν2) at order α3

1α
2
2 (resp. α2

1α
3
2); one then determines

the corrections to the phases, δ1, δ2, of the gauge transformation (13.34) in such a way
to obtain the CFT-expected values of the angular momenta J3 and J̃3 in (14.13) – it
is at this step that one needs the map (14.25). The energy shifts, δω1, δω2 in (14.28),
follow from the rotation parameters δ1, δ2. As for c(n1, n2), we only have an expression
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for d(n1, n2) for generic n1, n2 for the alpha class of solutions, namely:

d(n1, n2) = −
16n4

1

(n1 + n2)3
+

8n3
1 (5n1 + 2)

(n1 + n2)2
+

4n2
1

n2 (n2
1 + 3n1 + 2)2

− 4n1 (n
2
1(n1 (14n1 + 31) + 26)− 3)

(2n1 + 1)(n1 + n2)

− 4(3n1 + 1)2

(n1 + 1)2(2n1 + n2 + 1)
+

4 (3n1 + 2)2(n1(n1 + 6) + 4)

(n1 + 1)2(n1 + 2)2(2n1 + n2 + 2)
− 4 (2n1 + 1)4

(n1 + n2 + 1)3
− 16 (n1 + 1)4

(n1 + n2 + 2)3

+
4 (2n1 + 1)2(n1(n1 + 1)(2n1 (3n1 + 5) + 7) + 1)

n1 (n1 + 1)(n1 + n2 + 1)2
+

16(n1 + 1)3(n1 (n1 (n1 + 4) + 6) + 2)

n1 (n1 + 2)(n1 + n2 + 2)2

+
4 (n1 + 1)(n1 (n1 (n1 (n1 (n1 (2n1 (3n1 (10n1 + 67) + 527) + 1373) + 914) + 244)− 68)− 72)− 16)

n2
1(n1 + 2)2(2n1 + 1)(n1 + n2 + 2)

+
2n1 (n1 (n1 (n1 (2n1 (16n1 (n

2
1 − 9)− 329)− 727)− 460)− 165)− 30)− 4

n2
1(n1 + 1)2(n1 + n2 + 1)

+
4 γ (n1 − n2)

2(n3
1 + (3n2 + 4)n2

1 + (n2 (3n2 + 4) + 2)n1 + n2(n2(n2 + 4) + 2))

(n1 + n2)2(n1 + n2 + 1)2(n1 + n2 + 2)2

+

[
4n4

1

n1 + n2

+
(2n1 + 1)4

n1 + n2 + 1
+

4 (n1 + 1)4

n1 + n2 + 2

](
4ψ(1)(n1)−

2π2

3

)
+

4 (n1 − n2)
2 ψ(0)(n1 + n2)

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

(
1− (n1 − n2)

2

(n1 + n2)(n1 + n2 + 1)(n1 + n2 + 2)

)
+

4(n1 − n2)
2(n3

1 + (3n2 + 4)n2
1 + (n2 (3n2 + 4) + 2)n1 + n2 (n2 (n2 + 4) + 2))

(n1 + n2)2(n1 + n2 + 1)2(n1 + n2 + 2)2
ψ(0)(n1)

− 4(n1 − n2)
2(n3

1 + (3n2 + 2)n2
1 + (n2 (3n2 + 8) + 2)n1 + n2 (n2 (n2 + 2) + 2))

(n1 + n2)2(n1 + n2 + 1)2(n1 + n2 + 2)2
ψ(0)(n2)

+

n1∑
p=1

( (p+ n1 − 1)2

8 (p− n1 − 3)(p− n1 − 2)(p− n1 − 1)(p+ n2 − 1)
+

(2n1 + p+ 2)4

8 p2(p+ 1)2(p+ 2)2(n1 + n2 + p+ 2)

)
,

(14.29)

where γ is the Euler–Mascheroni constant. Somewhat surprisingly, the result is non-
vanishing, implying that the strands of type 2 feel a force proportional to the num-
ber of strands of the same type, in the presence of strands of type 1 (and the same
with 1 and 2 interchanged, of course); in other words, the strands of type 1 deform the
strands of type 2 in such a way that they are no longer mutually BPS with each other.
From a CFT point of view, as the term proportional to N1 in δω2 is identified with
the anomalous dimension of the double-trace operator mentioned after (14.20), the term
of oder N1N2 computes the anomalous dimension of a triple-trace operator of the form
: ∂n1σ

( 1
2
, 1
2
)

1 ∂n2σ
( 1
2
,− 1

2
)

1 ∂n2σ
( 1
2
,− 1

2
)

1 :.

14.3.2 Beta class

An analogous analysis can be performed for the non-BPS state (13.29), whose charges
readily follow from its CFT representation:

J3 = N1+N2 , J± = 0 , J̃3 = N1−N2 , J̃± = 0 , np = h−h̄ = n1N1+n2N2 .

(14.30)
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The non-BPS perturbation at first order in the perturbation parameter β2 is controlled
by a single field λ2 and this greatly simplifies the linear-order analysis: in particular one
can study the perturbation at first order in β2 and all orders in β1 using a WKB approach
that is discussed in Section 12.4. Here we briefly comment on the double-perturbative
approach in β1 and β2, along the lines of the previous subsection.

At first order in β2, the fact that all the “non-abelian" gauge fields Φi, Ψi with i = 3, 4

vanish, trivialises the agreement with the constraints J± = J̃± = 0. A non-trivial input
comes from the CFT-gravity matching of J3, J̃3. At lowest non-trivial order in β1, the
asymptotic values of the gauge fields are

Φ
(∞)
1 =

1

2
− β2

1

4 (2n1 + 1)
, Ψ

(∞)
1 =

n1

2
,

Φ
(∞)
2 =

1

2
+

(n1 + n2 − 1) β2
1

4 (2n1 + 1)(n1 + n2 + 1)
, Ψ

(∞)
2 =

n2

2
− β2

1

4 (2n1 + 1)
, (14.31)

where, in particular, the constant part of Φ2 is determined by the existence of a normal-
isable solution for λ2. The angular momenta implied by these gauge fields are consistent
with the ones predicted by the CFT only after a gauge rotation (13.34) with

δω2 = −
n1 + n2

(2n1 + 1)(n1 + n2 + 1)
β2
1 ≈ −4

N1

N

n1 + n2

n1 + n2 + 1
; (14.32)

note that, due to the form of the 6D ansatz, the phase of the field λ2 is 2δω2, and thus
(14.32) represents half of the interaction energy between a particle of type Ln2

−1|1,−1⟩ and
N1 particles of type Ln1

−1|1, 1⟩. It is a non-trivial consistency check that this interaction
energy, when expressed in terms of the microscopic number N1, is symmetric under ex-
change of n1 and n2, and also that it is always negative, as expected on physical grounds.
In CFT terms this energy shift encodes the anomalous dimension of the double-trace
operator : ∂n1(

√
3 s

(2)(1,1)
2 − σ(1,1)

2 )∂n2(
√
3 s

(2)(1,−1)
2 − σ(1,−1)

2 ) :. Following the same steps
explained in the previous subsection for the “alpha class" of solutions, one can include the
corrections of order β2

1β
2
2 to the energy shift:

δω2 = −4
N1

N

n1 + n2

n1 + n2 + 1
+
N1N2

N2
d̃(n1, n2) , (14.33)

where the coefficients d̃(n1, n2) capture the triple-trace anomalous dimension. For some
values of n1, n2, one finds ...
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Chapter 15

The numerical approach

All results presented up to now have been derived in a perturbative regime. However, we
can also solve the full system of non-linear equations numerically and in this chapter we
will outline our schemes for doing so and discuss our findings, comparing them with what
we already know from perturbation theory. This Chapter is based on [38,42].

We construct numerical solutions based on two different methods. The first one was
used in [38], to study the solutions of the single-mode truncation. The second method,
from [42], produced more reliable results in a special instance of the double-mode trun-
cation.

15.1 First method in the single-mode truncation

In this section we present the method used in [38] to construct non-BPS solutions in
the single-mode truncation. These computations provided an important insight into the
form of solutions of the systems, and lead to the discovery of the special locus. However,
the results of [38] were obtained before we really understood the signification of the
special locus, the CFT interpretation, and the resolution of log-divergences in perturbation
theory, in [39]. As such, most of the results in [38] were either wrong or no longer relevant.
For this reason, we will only present the method behind the computation and abstain from
presenting these results in this section. In the next section, we present updated results
obtained from a different method.

15.1.1 Solving the boundary value problem

We have to solve for the eleven functions given in the list, Fs.m, given in (9.6). The
equations of motion (9.7) give us eleven second-order differential equations with three
integrals of motion given in Section 9.1.1. To solve this system we need essentially 22

pieces of data. Much of this data is encompassed by requiring that the solution is smooth
at ξ = 0 and ξ = 1, however, as we saw in Section 12.1 this is not sufficient and so we will
also impose the same boundary conditions that we imposed on the linear system: The
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gauge fixing of the Maxwell potentials, (12.7)1, the asymptotics of the metric functions,
(12.4) and (12.8), and the requirement that the scalars approach the supersymmetric
critical point at infinity, (12.6).

Having done this, the linear system still had four degrees of freedom, ω1, n1, and trwo
continuous parameters, that were named α1 and β1 in the perturbation theory. We will
fix ω1 = 3 and n1 = 2. A canonical choice for the continuous variables would be to fix:

α̂1 ≡ ∂2ξν(0) and β̂1 ≡ ∂4ξλ1(0) . (15.1)

This choice has the advantage of matching exactly with the perturbation theory. However,
using conditions on derivatives can lead to loss of numerical precision, and so our numerical
analysis is configured somewhat differently: we use α to parametrize the constant value
of ν1 at infinity, α ≡ ν1(1). As for β, we use β ≡ −1/2∂ξλ1(1).2

This characterizes the families of solutions we seek. However, one cannot simply plug
these constraints into a numerical algorithm. The primary challenge is that ξ = 0 and
ξ = 1 are regular singular points of all the differential equations, and almost all these
equations have singular branches. This means that if one “shoots” from one end of the
ξ-interval, (0, 1), then the numerical solution will, through the accumulation of numerical
errors, pick up one of the singular branches and diverge hopelessly at the other end of the
interval.

Our first method to dealing with this problem is to use a “double-shooting” method.
That is, we completely specify initial data near ξ = 0 and use standard algorithms (such
as Runge-Kutta) to evolve it towards ξ = 1. Similarly, we completely specify initial data
near ξ = 1 and numerically evolve the solution towards ξ = 0. We then examine both
solutions at some intermediate point, which we take to be ξmid ≡ 3

5
, and try to match the

two solutions by adjusting the initial data at both ends while respecting the boundary
conditions we wish to impose.

There is a further issue: the fact that ξ = 0 and ξ = 1 are singular points of the
differential equations means that we cannot simply specify the initial conditions at these
points. We have to determine the solution at an infinitesimal displacement away from the
end points and then shoot from these displaced initial points. Specifically, we take the
initial points for the numerics to be ξ0 = 1/100 and ξ1 = 995/1000. We expand every one
of the eleven functions in series about ξ = 0 and in series about ξ = 1, and impose the
boundary data on these series and choose values of α and β. We then use the equations of
motion to determine the series as much as as possible. In this way we obtain approximate
solutions at ξ0 and at ξ1. These approximate solutions still have undetermined coefficients
and these become the data that must be varied in order to find a matched solution at
the “mid-point,” ξmid = 3

5
. Obviously the match will not be perfect, and we express the

mismatch in terms of a cost function. The complete numerical algorithm then involves
the minimization of this cost function.

1Since we are in the single-mode truncation, we can choose n2 = 0, and furthermore Φ2(1) = 0, this
was discussed in the end of Section 12.1

2This uses only one derivative, and is thus a direct input for the numerics.
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15.1.2 Series expansions at the boundaries

Our purpose here is to use series expansions to generate approximate solutions at ξ0 =

1/100 and ξ1 = 995/1000. Motivated by the expectation that the normalizable modes
lead to simple power series solutions, we are going to ignore all logs, both leading, and
sub-leading. This is consistent with what we saw from the perturbation theory.

At ξ = 0 we take:

ν1 =
∑
n≥2

ν(0)n ξn , λ1 = β ξ4 +
∑
n≥5

λ
(0)
1,n ξ

n ,

µ1 =
∑
n≥0

µ
(0)
1,n ξ

n , µ2 =
∑
n≥0

µ
(0)
2,n ξ

n ,

Φ1 =
∑
n≥0

ϕ
(0)
1,n ξ

n , ϕ2 =
∑
n≥1

ϕ
(0)
2,n ξ

n ,

Ψ1 =
∑
n≥1

ψ
(0)
1,n ξ

n , Ψ2 =
∑
n≥1

ψ
(0)
2,n ξ

n ,

Ω0 =
∑
n≥0

ω
(0)
0,n ξ

n , Ω1 =
∑
n≥0

ω
(0)
1,n ξ

n ,

k =
∑
n≥2

k(0)n ξn .

(15.2)

and at ξ = 1 we take:

ν1 = α +
∑
n≥1

ν(∞)
n (1− ξ2)n , λ1 =

∑
n≥1

λ
(∞)
1,n (1− ξ2)n ,

µ1 =
∑
n≥1

µ
(∞)
1,n (1− ξ2)n , µ2 =

∑
n≥1

µ
(∞)
2,n (1− ξ2)n ,

Φ1 =
∑
n≥0

ϕ
(∞)
1,n (1− ξ2)n , Φ2 =

∑
n≥0

ϕ
(∞)
2,n (1− ξ2)n ,

Ψ1 =
∑
n≥0

ψ
(∞)
1,n (1− ξ2)n , Ψ2 =

∑
n≥0

ψ
(∞)
2,n (1− ξ2)n ,

Ω0 = 1 +
∑
n≥1

ω
(∞)
0,n (1− ξ2)n , Ω1 =

∑
n≥0

ω
(∞)
1,n (1− ξ2)n ,

k =
1

ω
(∞)
1,0

+
∑
n≥1

k(∞)
n (1− ξ2)n .

(15.3)

We then substitute these expansions in the equations of motions and solve for the
coefficients order by order.

The result is that all but 19 of the coefficients are fixed by the equations of motion. We
can furthermore fix two of them using the conserved quantities defined in Section 9.1.1.
Indeed, since these quantities are independent of ξ, they can be used to relate some of
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the coefficients at infinity with the coefficients at the origin:

ϕ
(∞)
1,0 = ϕ

(0)
1,0 − e4µ

(0)
1,0
ψ

(0)
2,2

ω
(0)
0,0

and ψ
(∞)
1,0 = 0 . (15.4)

The constant terms in Φ2 and Ψ2 are special in that they do not enter the dynamics,
and so, a priori, ϕ(0)

2,0, ψ
(0)
2,0, ϕ

(∞)
2,0 and ψ

(∞)
2,0 can be set to arbitrary values in the shooting

process. Indeed we start by setting them to zero. However, the potential differences
ϕ
(∞)
2,0 −ϕ

(0)
2,0 and ψ(∞)

2,0 −ψ
(0)
2,0 do have physical meaning, and are determined by the dynamics.

What this means is that when we evolve the solutions from their zero initial values at
ξ = 0 and ξ = 1, the solutions from each end will have a constant offset relative to one
another at the mid-point, ξmid = 3

5
. A smooth solution is then obtained by uniformly

shifting either the solution from ξ = 0, or the solution from ξ = 1, by the constant offset.
We therefore determine the potential differences between ξ = 0 and ξ = 1 from these
offsets at ξmid. The important point here is that the data ϕ

(0)
2,0, ψ

(0)
2,0, ϕ

(∞)
2,0 and ψ

(∞)
2,0 is

irrelevant to solving the shooting problems, but the potential differences are easily read
off from the solutions.

We are thus left with 15 parameters that must be varied in order to find the solution:

P =
{
ν
(0)
2 , λ

(0)
1,0 , µ

(0)
2,0 , ψ

(0)
1,2 , ψ

(0)
2,2 , k

(0)
2 , ω

(0)
0,0 , ω

(∞)
1,0 ,

µ
(∞)
0,1 , µ

(∞)
1,1 , µ

(∞)
1,2 , ϕ

(∞)
2,1 , ψ

(∞)
1,1 , k

(∞)
1 , k

(∞)
2

}
.

(15.5)

15.1.3 The minimization procedure

The first step is to choose fixed values of α, β and ω1 = 1, 3 or 5. We then choose a set
of values of the parameters, P , (15.5), and use them to fix the values of all the fields and
their derivatives close to both ends of the segment, at ξ0 = 1/100 and ξ1 = 995/1000.
This provides initial conditions for the shooting process from each end. Finally, we select
a value of ω close to ω1. We apply the shooting algorithm from both ends, to get two
solutions in the bulk. We denote these solutions respectively S0 and S1.

We then compare these solutions at a “mid-point” in the bulk, which we take to be
ξmid =

3
5
. The comparison is made by defining a cost function:

C(P) =
∑

v∈Fs.m\{Φ2,Ψ2}

(vS0(ξmid)− vS1(ξmid))
2 +

∑
v∈Fs.m

(
v′S0

(ξmid)− v′S1
(ξmid)

)2 (15.6)

where Fs.m = {ν1, λ1, µ1, µ2,Φ1,Φ2,Ψ1,Ψ2,Ω0,Ω1, k} is the set of all the fields. Note that,
for the reasons explained above, we do not match on the values of Φ2 and Ψ2.

The goal is now to compute numerically the values of P that minimize C(P).
We do this by using numerical algorithms built into Mathematica, and, in particular,

we use ParametricNDSolve for the shooting and FindMinimum to compute the minimum
of the cost function. Rather than simply treat the latter as a black box, we summarize
what is going on inside the algorithm and how we adapted some of the options to make
the solution technique more effective.

176



We use the Levenberg-Marquardt algorithm (a refinement of the Gauss-Newton algo-
rithm), implemented in FindMinimum. This algorithm makes successively more accurate
approximations of the minimum by using quadratic approximations to the cost function.
This method is particularly well-adapted for minimization problems for which the cost
function is written as a sum of squares, C =

∑
r2i . The schematic process is then:

Step 1 Choose a first estimate of the solution P . These values are used as a seed for the
algorithm. Such seeds can be based on other known solutions, or starting from the
exactly known superstratum result. The seed must be close enough to the solution,
or at least not so far as to make the results from the shooting diverge before reaching
ξmid.

Step 2 Use this data and ParametricNDSolve to compute a solution and calculate the
value of the cost function, C(P). Next compute numerically the Jacobian J of the
functions, ri, at this point by computing the difference between the original value
of the ri, and the new values obtained using small perturbations of the parameters.

Step 3 Ideally a quadratic approximation would involve computing the Hessian of the cost
function, but this is numerically very demanding and compounds numerical errors.
Instead, the Gauss-Newton algorithm uses the Jacobian to construct an approxi-
mation to the Hessian and makes a quadratic approximation based on this. The
displacements of the parameters, ∆P , that move the solution towards the minimum
are thus estimated by computing the minimum of the quadratic approximation:∑

ij

[
ri(P) Jji∆Pj +

1

2
∆Pi(JJ⊤)ij∆Pj

]
. (15.7)

Step 4 The danger, as ever, with such an algorithm is that it might overshoot, or oscillate
around, the minimum. So FindMinimum actually treats ∆P as a displacement in
the parameters space and then finds a better estimate of the minimum of the cost
function in the one-dimensional space along this direction. This is the primary
function of the “step control” within FindMinimum. The result is a new estimate of
the parameters of the solution given by P+λ∆P , where λ is a step in the minimizing
direction deemed good enough by FindMinimum.

Step 5 Then FindMinimum repeats steps 2 to 4 with the new estimates, and does so until
it achieves a good level of convergence3

15.2 Second method

We now present a different method for solving the equations of motion numerically, that
we use in the double-mode truncation.

3It can also generate errors where it has failed to converge adequately and then one must adjust the
values of P and restart the search.
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That will only be done for the Z2 symmetric beta class of solutions, that is - we
work with n1 = n2 = n and β1 = β2 = β. The states in this restricted case are still
non-BPS, they were computed perturbatively in Section 12.3.4. The reason we make this
choice is not because we cannot perform the numerics in the other cases, but due to the
fact that this is the only scenario in which we can exactly map all CFT parameters to
bulk quantities using the holographic dictionary. To elaborate, in the general case, when
n1 ̸= n2, for either the alpha or beta class of solutions, we have different numbers of
constituents of the given species in the two sectors, N1 ̸= N2. Perturbatively, these are
related to the gravity amplitudes that drive the bulk solution via (13.28) and (13.30).
Unfortunately, we cannot obtain exact expressions for them as that requires the precise
form of h + h̄ in terms of the full energy shifts δ ω1,2, thus making it impossible to read
off N1,2 from the bulk, numerical solution.

In the Z2 symmetric case, N1 = N2, so we only need a single relation, which we get
from h− h̄ = np. The equations that we will solve are given in Appendix D, namely (D.1).
These are seven second-order, ordinary differential equations. The reduced number comes
about because n1 = n2 = n and β1 = β2 = β imply that µ1 = µ2, λ1 = λ2, Φ1 = Φ2 and
Ψ1 = Ψ2, as easily seen in perturbation theory. We should note that a linear combination
of the Φ1, Ψ1 and κ EoMs leads to a first-order, differential equation, given in (D.2). This
is a genuine EoM for one of the fields, but we did not use it in the numerical procedure,
as it seemed to have slightly worse convergence properties.

Our system of equations also contains three first-order constraints. The ones coming
from the Maxwell sector are automatically satisfied. Only the constraint from Einstein
equations, ERτψ , remains and it is a constant of motion by the EoMs, given in Appendix D
for this case. It is used to monitor the convergence of our solutions, as seen in Figure 15.1,
where the maximum value of the constraint over the whole space is plotted as a function
of the number of grid points, Nξ, for a highly non-BPS solution. All results presented in
this work have max|ERτψ(ξ)| ≤ 10−50.

We solve for {λ1, µ1, Φ1, Ψ1, Ω0, Ω1, κ} as functions of the radial variable ξ ∈ [0, 1],
where ξ = 0 is the origin of space, ξ = 1 is the AdS boundary, and κ is defined via
k = ξ κ. The numerical integration is carried out by using spectral collocation methods
on a Chebyshev-Gauss-Lobatto grid and implementing a standard Newton-Raphson iter-
ation (see [89] for a review of such methods applied to gravity) with increased precision
(50 digits). We need to impose appropriate boundary conditions to ensure a well-posed
problem. These were discussed in detail in Section 12.1, but we will briefly outline them
for completeness.

At the origin, ξ = 0, regularity enforces Neumann boundary conditions on almost all
fields, except4 for Ψ1 and κ:

∂ξX(ξ)|ξ=0 = 0, forX ∈ {λ1, µ1, Φ1, Ω0, Ω1},

κ(ξ = 0) = 0, Ψ1(ξ = 0) =
n

2
. (15.8)

4Remember that k(ξ = 0) ∼ ξ2 and we have defined k(ξ) = ξ κ(ξ).
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Figure 15.1: Maximum of the absolute value of the Einstein constraint, ERτψ , over the
whole integration domain for a highly non-BPS state as a function of the number of points
used in the numerics, Nξ. ω1 = ω2 = 1.

In fact, it can be shown that the first 2n − 1 derivatives of λ1 vanish at the origin, in
agreement with expectations from perturbation theory.

At the AdS boundary, ξ = 1, we impose a conformally Minkowski metric, which
requires

Ω0(ξ = 1) = 1, Ω1(ξ = 1) =
1

κ(ξ = 1)
, ∂ξ κ|ξ=1 = 1. (15.9)

The scalars are fixed by demanding that, in addition, we approach the supersymmetric
vacuum at the boundary, so that:

λ1(ξ = 1) = 0, µ1(ξ = 1) = 0. (15.10)

Our solutions is specified by 2 parameters, n and β. The former is set at the origin,
(15.8). In the perturbation theory, we identify β1,2 with the 2n1,2-th derivatives of λ1,2.
However, enforcing a boundary condition at the origin with so many derivatives is very
hard to implement numerically, especially if we want to access values of n1 = n2 = n > 1.
Therefore, for β1 = β2 = β, we have found that numerically it is easiest to dial it using
the value of Φ1 at infinity. Thus, we set

Φ1(ξ = 1) = ϕ̃1, (15.11)

and use ϕ̃1 to explore the moduli space of solutions for fixed n. Nevertheless, we need the
value of β to compare our numerical results with the perturbative predictions. To extract
it precisely we resorted to obtaining our solutions with extended precision of 50 digits, so
that we can trust the derivatives.
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We do not need to provide a boundary condition for Ψ1 at infinity since the existence
of (D.2) implies that we have in fact 6 second-order differential equations and 1 first-order
equation, and, even though, we do not integrate (D.2) explicitly, it can be used to argue
that a single boundary condition on Ψ1 at the origin is sufficient, as numerically we are
solving for smooth functions.

15.2.1 Holographic extraction

Here we discuss the procedure for extracting the holographic quantities from the numer-
ical solutions. First we need to expand the EoMs, (D.1), in series about the conformal
boundary, ξ = 1, using

X =
∞∑
k=0

(1− ξ2)k q(k)X , forX ∈ {λ1, µ1, Φ1, Ψ1, Ω0, Ω1, κ}. (15.12)

Similarly to what happened in Section 15.1.2, some of the coefficients in the expansion
above get fixed by the EoMs, (D.1), together with the boundary conditions. The ones
that remain unspecified are:

q
(1)
λ1
, q(2)µ1

, q
(1)
Φ1
, q

(0)
Ψ1
, q

(2)
Ω0
, q(0)κ . (15.13)

Then, we write the metric in Fefferman-Graham form for an asymptotically, locally
AdS space, as in (13.31):

ds2 =
R2
AdS

z2

[
dz2 + gij(x, z) dx

i dxj
]
,

g(x, z) = g(0) + z2 g(2) + · · ·+ zd g(d) + h(d) z
d log z2 +O

(
zd+1

)
, (15.14)

where d is the number of boundary dimensions (d = 2 here) and the radial coordinate z
is such that the conformal boundary is located at z = 0. Only even powers of z appear
in the expansion up to order zd−1 and the logarithmic term is only present in odd bulk
dimensions – it is linked to the conformal anomaly of the boundary CFT. Moreover, g(0)
specifies the conformal class of the boundary metric, which we pick as flat Minkowski,
implying that the conformal anomaly vanishes and h(d) = 0 here as well [83].

To obtain (15.14) we change coordinates asymptotically using

ξ =
∞∑
k=0

ak z
k, (15.15)

where the coefficients ak are determined order by order in z by taking our metric ansatz,
(7.18), plugging in the function expansions (15.12), applying the above coordinate trans-
formation and matching with (15.14). For our purposes we only need:

a0 = 1, a1 = 0, a2 = −
1

2 q
(0)
κ

, a3 = 0, a4 =
1

8
(
q
(0)
κ

)2 . (15.16)
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Finally, we use (14.30), which for the Z2 symmetric case reduce to5 J3 = 2N1, J̃3 = 0

(which is automatically satisfied since Φ1 = Φ2) and np = h − h̄ = 4nN1 to determine
N1/N = N2/N and δω1 = δω2 as functions of the gravity parameters. As desired we have
equal number of equations and unknowns. The result is:

δω1 = δω2 =− 1 + 2
(
ϕ̃1 + 2 q

Ψ
(0)
1

)
+K,

N1/N = N2/N =
n

2
+
K

4
, (15.17)

where

K = − 1
√
3
(
q
(0)
κ

)2
[
−
(
q(0)κ

)2(
3 + 8

(
q(0)κ

)4((
q
(1)
λ1

)2
ϕ̃1

2
+
(
q
(1)
Φ1

)2))

−
(
q(0)κ

)4(
3 + 12n2 − 4

(
q
(1)
λ1

)2 − 18 q
(2)
Ω0

)] 1
2

.

(15.18)

The expression for the total energy in terms of bulk quantities can be determined from
(13.33) as

h+ h̄

N
=

1

2

(
1− 1(

q
(0)
κ

)2
)

+ n

(
2n+K

)
. (15.19)

15.2.2 Results

For the beta class of solutions, (12.61) implies that half-integer values of n1,2 are also
allowed. We have obtained numerical results for six different values: n1 = n2 = n ∈
{1
2
, 1, 3

2
, 2, 5

2
, 3} with ω1 = ω2 = 1. All of them have qualitatively the same behaviour,

except for n = 1
2
, which will be discussed further below.

The space of geometries is explored by using the perturbative solutions as seeds to the
Newton-Raphson method. We start from ϕ̃1 ∼ ω1/2, equivalent6 to β ≪ 1, and decrease
its value, equivalent to increasing β. In practice, we will present our results as a function
of the fraction of single-particle constituents, N1/N = N2/N , hence we start with its plot
as a function of β1 = β2 = β. The latter is read off from the gravity solutions as

β =
1

n!
∂2nξ λ1

∣∣
ξ=0

, (15.20)

whereas the former is given by (15.17). When extracting β, we make sure that the value we
get is stable to 10−50 when varying the grid size. The results are shown in Figure 15.2. The
right graph exhibits the agreement of our numerics (solid markers) with the perturbative
expression (dashed curves and hollow markers, which are added to make the comparison
easier), given as Pn in the plot, and which can be obtained from (13.30) by expanding for

5J± and J̃± don’t change.
6From perturbation theory we know that for the Z2 symmetric beta class we have: Φ1(ξ = 1) =

ω1/2− (nβ2)/(1 + 2n)2 +O(β4).
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β1 = β2 = β ≪ 1 and setting n1 = n2 = n. As β increases the exact and perturbative
results deviate significantly and we have omitted the latter for clarity from the left figure,
which shows all our numerical data. For n ≥ 1 the points reach very close to the CTC
bound and the behaviour far away from the perturbative regime appears linear in β. The
only exception is n = 1

2
, where the curve turns around and N1/N = N2/N stops being a

single-valued function of β.
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Figure 15.2: N1/N as a function of β for six different values of n. ω1 = ω2 = 1. On the
right we zoom in for small β and show a comparison with the perturbative result, Pn,
given by dashed curves and additional hollow markers to facilitate the comparison. Both
graphs use solid markers for the numerical results.

The theoretical limit to decreasing ϕ̃1 is the point at which CTCs become present in the
spacetime. We monitor the value of Ω1 at ξ = 1, which approaches zero, where the bound
is attained and changes sign once CTC are present. One can then see the development of a
finite-length, BTZ-like throat, as depicted in Figure 15.3. As n increases, larger values of
β, and thus N1/N , become attainable before hitting the bound. Our observations suggest
that it comes at a lower value of β or N1/N in the non-BPS case than in the BPS one.

The energy shift of our solutions is probably the most interesting when it comes to
analysing them. A non-zero value indicates that the state is indeed non-BPS. Figure 15.4
demonstrates that all our solutions break supersymmetry. δω1 = δω2 = 0 is possible
for β = 0, when the solutions is just the AdS3 vacuum, or for n = 0 (and non-zero β

or N1/N), which results in a non-trivial geometry that we have constructed, but is not
presented here, and it does have vanishing interaction energy. The x-axis is given in terms
of the momentum charge. For n ≥ 1 the curves approach δω1 = δω2 = −1 as np grows
and our numerics approach the CTC bound. It is interesting that this can happen, as
δωi is the correction to the phase of the SO(4) transformation that puts us in the correct
gauge to identify the CFT states. The coefficient of τ that gets corrected by the energy
shifts is the twist of the L2n

−1 operator that acts on the state |1, ±1⟩. δωi → −1 would
then correspond to the vanishing of that twist.

As before, n = 1/2 displays a qualitatively different behaviour in that it does not
approach the limit of −1. The numerics for this case are the hardest, as the gradients in
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Figure 15.3: The radius of the y−circle 2 π√gyy for n = 1 and different values ofN1/N , ap-
proaching the CTC bound. The x-axis uses a rescaled radial coordinate, ξ = ex/

√
e2x + 1.

ω1 = ω2 = 1.

the functions are the steepest, but we do not believe it is possible to reach −1.
Figure 15.5 shows the agreement of the numerical data with the predictions from

perturbation theory, (14.32) with n1 = n2 = n, for small values of N1/N - i.e. small β.
We have omitted the perturbative results from the main plot, Figure 15.4, for clarity.

Finally, we also show a plot of the total energy, (15.19), of our states, Figure 15.6. The
right plot again depicts the excellent agreement with our perturbative results for small
values of N1/N (β), whereas on the left we have all the numerical data.

15.2.3 Perturbation theory comparison with numerical results

In this work, we have relied heavily on perturbation theory to explore the space of solutions
in our system and analyse their properties. To this end, it is instructive to also compare
the perturbative results with solutions to the full non-linear system of equations.

It turns out that for small values of β the perturbative expansion to third order gives
remarkably good approximation to the full solution. This can be seen in Fig. 15.7, where
we show a comparison for all the relevant fields in our case, with β ∼ 1

4
, n1 = n2 = 1 and

ω1 = ω2 = 1. Note that the plots show κ instead of k, defined via k = ξ κ.
For n = 1, the maximum value of β is ∼ 2.05 (before the appearance of closed timelike

curves (CTCs) in the spacetime). Given that we are using only third order perturbation
theory, the accuracy at β ∼ 1/4 is surprisingly good, except for µ1. The latter receives
its first non-trivial correction at fourth order7 in β, hence the visible disagreement on our

7We have checked this for explicit values of n1 and n2 in the non-Z2 symmetric case and have no
reasons to believe that the behaviour here will be different, as the beta class is continuous in taking the

183



0.0 0.5 1.0 1.5 2.0 2.5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure 15.4: The energy shift δω1 = δω2 as a function of the momentum charge np for six
different values of n. ω1 = ω2 = 1. For n ≥ 1 the curves approach the limiting value −1,
as we get close to the CTC bound. n = 1/2 is an exception and our numerics suggest −1
will not be reached.
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Figure 15.5: The energy shift δω1 = δω2 in comparison with our perturbative results, Pn,
given by dashed curves and additional hollow markers to facilitate the comparison, for
six different values of n. ω1 = ω2 = 1. Both graphs use solid markers for the numerical
results. Pn is given in (14.32) with n1 = n2 = n.

plots. Moreover, at third order Ω1 is just a constant, nevertheless, the horizontal scale
shows that the fully backreacted solution is very close to that value.

Figures 15.8 and 15.9 are analogues to Fig. 15.7, but for larger values of β, namely
at β ∼ 1 and close to the maximum β ∼ 2.05, respectively. They are meant to illustrate
how the increasing amount of non-BPSness deforms the solution, all the way to the CTC
bound. The fields that change the most are Φ1, Ω1 and κ. In particular, κ increases

n1 = n2 limit.
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Figure 15.6: The total energy (h + h̄)/N as a function of N1/N for six different values
of n. ω1 = ω2 = 1. On the right we zoom in for small N1/N and show a comparison
with the perturbative result, Pn, given by dashed curves and additional hollow markers
to facilitate the comparison. Both graphs use solid markers for the numerical results.

massively in value at infinity, as one gets closer to the maximum value of β, which together
with (12.1) and (12.5) implies that Ω1 decreases quickly towards 0 as ξ → 1.

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06
0.2 0.4 0.6 0.8 1.0

-0.000015

-0.000010

-5.×10
-6

0.2 0.4 0.6 0.8 1.0

0.4900

0.4905

0.4910

0.4915

0.4920

0.4925

0.4930

0.2 0.4 0.6 0.8 1.0

0.495

0.496

0.497

0.498

0.499

0.500

0.2 0.4 0.6 0.8 1.0

0.9992

0.9994

0.9996

0.9998

1.0000

0.2 0.4 0.6 0.8 1.0

0.97918

0.97920

0.97922

0.97924

0.97928

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 15.7: The non-zero fields in the Z2 symmetric beta class of solutions, where β1 = β2,
n1 = n2 and λ1 = λ2, µ1 = µ2, Φ1 = Φ2, Ψ1 = Ψ2. We compare the full numerical results
to the perturbative solution. ω1 = ω2 = 1.
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Figure 15.8: The non-zero fields in the Z2 symmetric beta class of solutions, where β1 = β2,
n1 = n2 and λ1 = λ2, µ1 = µ2, Φ1 = Φ2, Ψ1 = Ψ2. We compare the full numerical results
to the perturbative solution. ω1 = ω2 = 1.
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Figure 15.9: The non-zero fields in the Z2 symmetric beta class of solutions, where β1 = β2,
n1 = n2 and λ1 = λ2, µ1 = µ2, Φ1 = Φ2, Ψ1 = Ψ2. We compare the full numerical results
to the perturbative solution. ω1 = ω2 = 1.
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Chapter 16

Final Comments

We have constructed, both in perturbation theory and numerically, families of non-
extremal microstrata, along with their CFT dictionaries. These states are non-BPS
analogues of the superstrata and share with them many qualitative features but they
also display new dynamical properties. There is excellent accord between the numerical
and perturbative results and this gives us a high level of confidence in the accuracy of our
solutions.

The solutions separates into two families, that we named alpha-class and beta-class.
In the alpha-class, we have pointed out that if one turns on the ν1,2-perturbation at linear
order, one has to fine-tune the coefficient of the other independent (λ1,2) perturbations
at the higher orders to ensure regularity and not to spoil the asymptotic behaviour. We
called this condition the “special locus”, and we provided an interpretation in the CFT of
this condition. The solutions in the beta-class are simpler, as many fields vanish, and this
allowed us to analyze them further. Using WKB techniques, we add a non-BPS excitation
to a very deep BPS microstate, we have compared them to the perturbative results around
the vacuum, and computed the normal modes of these solutions in the regime of large
redshift.

Using holography and the tools of the CFT, we determined the dependence of micro-
stratum frequencies, and energies, on their amplitudes. In retrospect, this dependence
should not be very surprising. The normal modes of oscillation will naturally depend on
the shape of the geometry and particularly upon the depth, or red-shift, between the cap
and the top of the AdS throat. Since we know that these geometric features depend on
the amplitudes of the microstratum, it must follow that these amplitudes lead to non-
linear shifts in the frequencies of the normal modes. It is, however, gratifying to see this
explicitly and it also suggests how microstate-geometry fluctuations will lead to the de-
velopment of a chaotic spectrum. The non-linear dynamics will re-shuffle the spectrum,
and may well result in the eigenvalue repulsion that is characteristic of non-integrable
field theories.

We also have examined the BPS equations for the three-dimensional supergravity the-
ory. We have used this BPS system to significantly extend the known families of super-
strata to obtain “generalized superstrata,” that include a family of elliptical deformations
of the supertube that underlies the superstratum. The resulting geometries have reduced
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symmetry (compared to standard superstrata) and it would have been very challenging
to construct them directly in six dimensions. We have determined the CFT dual of these
new BPS geometries and made some precision holographic test that confirmed the iden-
tification. Of note is the existence of a special locus of solutions, whose duals in the CFT
take a very simple and natural form, as an OPE product of light states. These states in
the CFT are simpler than the standard superstrata, which rely on the particularities of
the orbifold point for their definition. They enjoy the same properties as the non-BPS
special locus, in particular the SO(3) invariance. We have also a family of “pure-NS”
superstrata ; these solutions can be dualized in the NS5-F1 frame to a solution with no
Ramond excitations, possibly enabling a worldsheet description.

There are a multitude of possible future directions arising from our results. First, we
constructed our microstrata by making reductions, consistent truncations, implementing a
Q-ball Ansatz, and focussing on single-mode or double-mode solutions. There are obvious
directions for generelizations of our results, the foremost is certainly trying to generate
solutions with more modes, to observe the cascade of frequencies and a possibly chaotic
spectrum. Moving in a more ambitious direction, one can try to find solutions that depend
on more that one variable.

It may be possible to distill the core elements of the “Q-ball” trick we found in three
dimensions and implement it directly in six dimensions. Doing this might enable one to
get beyond the limitations imposed by the consistent truncation. One of the issues with
this ansatz is that it restricts generic (k,m, n) superstrata to k = 1, and these have rather
weak fall-off at infinity. Making the Q-ball trick work for higher values of k would be
most interesting.

Another important aspect is the question of whether one can couple microstrata to
asymptotically-flat space. All the solutions have been built in asymptotically AdS space,
which allowed us to construct time-independent solutions, for which the geometry is in
equilibrium with its radiation. But a genuinely non-BPS solution in flat space would
radiate, and depend explicitly on time. Constructing such a solution would provide an
analogue of Hawking radiation for microstrata, and one would be able to check explicitly
that (at least some) microstates can decay without violating unitarity.
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Part III

Brane fractionation and microstate
counting
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Chapter 17

The (amazing) Super-Maze

This Chapter reviews the work of [43].
String Theory is famous for its ability to count the degrees of freedom that give rise to

the entropy of supersymmetric black holes, but this counting is always done in a regime
of parameters where the interactions are weak and the classical black-hole solution does
not exist [10, 90, 91]. This leaves open the question of how these microscopic degrees
of freedom look like in the regime of parameters where the classical black hole solution
exists. This question is hard to answer, because it is difficult to track these degrees as one
moves to this regime of parameters, and also because the black-hole microscopic degrees
of freedom look different in different duality frames.1

Historically, the quest for understanding the black hole degrees of freedom has been
pursued from the opposite direction: people have first constructed solutions with black-
hole charges that do not have a horizon and that exist in the same regime of parameters as
the classical black hole solution [18,20–30,37,38,40,50,68,92–106]. By construction, these
solutions (known as microstate geometries) describe some of the black-hole microstates.
The second step was to use holographic tools to relate some of them to the corresponding
states in the CFT that counts the black-hole entropy [31–36,39,53,54,79]. This endeavor
has been very successful, and has produced some of the finest checks of the power of
holography to date. However, despite the tremendous amount of geometries constructed2,
it has not been possible to construct geometries dual to the states that account for the
total black-hole entropy.

Here we take the opposite approach: We start from a weakly-coupled system whose
degrees of freedom count the entropy of the black hole, and attempt to track these degrees
of freedom to the regime of parameters where the classical black-hole solution exists. Our
starting point is the F1-NS5-P black hole in Type IIA string theory, whose entropy comes
from the fractionation of each of the N1 fundamental strings into N5 little strings living
in the worldvolume of the NS5-branes [109,110]. The resulting N1×N5 little strings wrap

1For example, the entropy of the D1-D5-P black hole for example comes from 1-5 strings carrying
fractional momentum quanta, while the entropy of the U-dual IIA F1-NS5-P black hole comes from
fractionated little strings carrying integer momenta.

2Of order e

√
N1N5N

1/2
p for the D1-D5 system [107,108].
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the common F1-NS5 direction and can carry momentum along this direction by transverse
oscillations in the other four internal directions of the NS5 branes [91]3. It is not hard
to see that in the Cardy limit the entropy of these oscillations and of their fermionic
superpartners is Slittle strings = 2π

√
(4 + 2)N1N5Np

6
, reproducing precisely the entropy of

the F1-NS5-P black hole.
The M-theory uplift of this system makes the little strings less mysterious: One obtains

N5 M5 branes wrapping the common 1-5 direction (that we will henceforth call y) and that
are located at different points of the M-theory circle. One fundamental string uplifts to an
M2 brane wrapping y and the M-theory circle, x11, and this M2 brane can break into N5

“strips” stretching between two adjacent M5 branes. As one can see from Figure 17.1, these
M2 strips can move independently along the other internal directions of the M5 branes.
Hence, the fractionation of an F1 string into N5 little strings has a clear geometric picture
in M-theory, as the breaking of an M2 brane into N5 strips.

The purpose of this chapter is to begin tracking the fractionated little strings, from the
“zero backreaction” regime, where their counting reproduces the the F1-NS5-P black-hole
entropy, to the regime of parameters where their backreaction becomes important. We
will show that the momentum-carrying fractionated strings coalesce into 4-supercharge
brane bound-states that have locally 16 supersymmetries.

The first step in our endeavor is to understand the backreaction of the M2 strips
ending on a single M5 brane. We show that their behavior is similar to that of the
Callan-Maldacena spikes describing backreacted F1 strings ending on D3 branes [111].
Since the M5 branes and the M2 branes extend along a common direction, the M2 branes
will now form “furrows” on the M5 brane worldvolume, whose transverse section will look
like a Callan-Maldacena spike. A key feature of these bound-states is that they preserve
8 supersymmetries, but if one zooms on a piece of the spike or of the furrow, one finds
that locally there are 16 preserved supersymmetries, as a result of the presence of extra
“dipolar” charges.

Besides the infinite M5-M2 brane furrow, one can consider more complicated bound
state of multiple M5 branes and multiple M2 strips stretching between them (like the
system in Figure 17.1). This will result in a complicated maze of furrows, that connect
these M5 branes. This super-maze preserves the same supersymmetries and the M5 branes
and M2 branes whose charges it carries, but if one zooms in on a piece of maze, one expects
that the supersymmetry will be locally enhanced from 8 to 16 supercharges.

Note that each of the N1N5 M2 brane strips whose pull on the M5 branes gives the
super-maze can be located at an arbitrary position inside the T 4 or K3 wrapped by the

3In the rest of this chapter, we refer to these microstates as “Dijkgraaf-Verlinde-Verlinde (DVV)
microstates” or “little-string microstates." It is important to note that the DVV microscopic counting is
different in spirit from the Strominger-Vafa/D1-D5 counting: here the momentum is carried by N1N5

fractionated strings carrying integer momenta, while in the D1-D5 CFT we have a single long effective
string with modes with momentum quantized in units of 1/N1N5. Hence, the entropy of the DVV
microstates comes from fractionating the F1 strings, while the Strominger-Vafa entropy comes from
fractionating the momentum carriers.
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Figure 17.1: Cross-section of N1 = 2 M2 branes splitting into strips between N5 = 3 M5
branes. The vertical axis is the M-theory direction, and the horizontal axis represents one
of the internal directions of the M5 branes, x1. The strips can carry momentum along the
y-circle, which is common to the M2 and M5 branes.

M5 branes. Therefore, the dimension of the moduli space of super-mazes is 4N1N5. This
matches, as expected, the dimension of the moduli space of the D1-D5 (F1-NS5) system
deformations that preserve rotational invariance in the transverse space [14,17,112]

The second step in our endeavour is to add momentum to the super-maze, in order
to construct a brane bound-state configuration that has 16 supercharges locally and that
carries the charges of a black hole with a macroscopically-large event horizon. To do this,
we will first construct the two-charge bound states formed by M2 branes and momentum,
and by M5 branes and momentum. The former is the M-theory uplift of the F1-P system,
whose solutions have been described in supergravity in [113]. The momentum is carried
by the transverse oscillations of the M2 branes and, if one zooms in near a piece of
the momentum-carrying M2 brane one finds that the supersymmetry is enhanced to 16
supercharges.

Similarly, the M5 branes can carry momentum by transverse fluctuations, that we can
restrict to be oriented only along the M-theory direction, so that the resulting solution is
spherically symmetric in the non-compact spacetime directions. This system is the uplift
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Figure 17.2: The fractionation of M2 branes into strips and the super-maze: Before
the fractionation (left panel) the M2 brane does not interact with the M5 branes, and
can be freely taken away. After the fractionation, each strip of the M2 branes can move
independently, giving the naïve configuration in the middle panel. However, the M2 strips
pull on the M5 brane, creating the super-maze depicted in the right panel.

of the NS5-P-D0-D4 solution found in [69]. This solution also preserves 8 supersymmetries,
but locally the supersymmetry is enhanced to 16. For both the M2-P and the M5-P
system, this is ensured by the presence of dipolar charges, which can be thought of as
the “glue” needed to construct the bound states of two-charge system. Of course, for the
M5-P system one can consider other types of glue, coming for example from 2 species
of M2 branes inside the M5-brane worldvolume. The resulting configuration is called a
magnetube, and its supergravity solution was constructed in [114,115].

The main result of this chapter is to identify the ingredients needed to construct the
bound states of the NS5-F1-P Type IIA system and of its M-theory M2-M5-P uplift.
These bound states describe the DVV little strings carrying momentum in the regime
of parameters where the brane interactions are taken into account. We show that there
exists a supersymmetry projector corresponding to a brane configuration that has 16-
supersymmetries locally and 4 globally, and which describes the zooming in on a piece of
the momentum-carrying M2-M5 maze. Besides the M2, M5 and P charges of the black
hole, this system has 6 other dipolar charges, which are necessary to form the glue that
transforms these branes into a bound state.

The entropy of the DVV little strings carrying momentum reproduces (upon taking
into account all bosonic and fermionic polarizations) the entropy of the F1-NS5-P black
hole [91], and our result shows that the microstates carrying this entropy correspond
(upon taking brane interactions into account) to a momentum-carrying super-maze whose
supersymmetry is enhanced everywhere to 16 supercharges locally.

It is important to emphasize that the local enhancement of supersymmetry to 16 super-
charges is the hallmark of the existence in certain duality frames of smooth supergravity
solutions that result from the backreaction of these configurations and, more generally,
of the absence of event horizons. We will explain the connection between local enhance-
ment of supersymmetry and smooth horizonless solutions in more detail in Section 17.4.
Confirming that the entropy of this black hole comes from horizonless super-mazes would
constitute a proof of the fuzzball proposal for three-charge supersymmetric black holes in
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String Theory, and we are looking forward to the construction of the fully-backreacted
solution corresponding to the brane microstates we have discovered.

Our result points towards a change of strategy in the fuzzball/microstate geometry
programme of constructing horizonless solutions dual to microstates of string-theory black
holes. Until now, the strategy of this programme has been to “blow up” the delta-function
source of the harmonic functions of the branes making up the black hole, and replace it
by an extended source in the non-compact spatial dimensions. This has resulted in a huge
plæthora of solutions [18,20–30,37,38,40,50,68,92–106], all of which break the spherical
symmetry of the black-hole horizon. However, the connection between these solutions and
the microstates that give rise to the black-hole entropy at weak coupling is difficult to
establish, and has only been worked out for superstrata, whose entropy is parametrically
smaller than that of the black hole [107, 108]. Furthermore, all the known superstrata
have at least one unit of angular momentum in one of the non-compact angular directions
in which supersymmetric black holes cannot rotate4.

Our work points out a new route for constructing microstate geometries that solves
these two challenges at the same time: the momentum-carrying super-maze preserves the
same spacetime spherical symmetry as the black-hole solution, and it is directly connected
to DVV fractionated strings that give rise to the entropy of the F1-NS5-P black-hole
in Type IIA String Theory. Furthermore, as we will explain in Section 17.4 the fact
that locally the supersymmetry is enhanced to 16 supersymmetries indicates that the
fully-backreacted super-mazes will give rise to smooth horizonless black hole microstate
geometries, and will not have an event horizon.

In Section 17.1 we review the construction of two-charge bound states and the role
of branes that act as “glue” and transform singular configurations of branes into bound
states preserving locally 16 supercharges. In Section 3 we describe the construction of the
new three-charge bound state, which preserves 16 supercharges locally and is a piece of
the super-maze coming from the backreaction of DVV black-hole microstates. In Section
17.3 we explain the link between the projector and the local orientation of the branes that
make up the super-maze, and confirm our construction by showing that the energy of the
super-maze saturates the BPS bound. In Section 17.4 we discuss the relation between
smooth horizonless supergravity solutions and brane configurations preserving locally 16
supercharges, and argue that the backreaction of the super-maze will give rise to bubbling
horizonless solutions. In Appendix 1 we collect the projectors corresponding to branes,
strings, KK Monopoles and momentum in String and M Theory.

Note on nomenclature: Throughout this chapter we will refer to two- and three-
charge systems as systems of two or three sets of branes that preserve 8 respectively 4
common supersymmetries and that exert no force on each other. Thus, a system of D5
branes and parallel D1 branes can be properly called a two-charge system, but a system
of D3 branes and parallel D1 branes is not: the D1 branes are attracted to the D3 branes
and form a bound state that has 16 supercharges everywhere and is T-dual to a single

4The five-dimensional supersymmetric three-charge black holes can have finite JL, but their JR must
be zero. In contrast superstrata always have JR ̸= 0.
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oblique stack of parallel D2 branes. Similarly a D7 brane and a parallel D1 brane do not
constitute a two-charge system, because the D1 branes run away from the D7 branes.

17.1 Making two-charge bound states out of strings and
branes

The vacuum of Type II String Theory preserves 32 supersymmetries. Adding excitations
such as strings or branes decreases the number of preserved supersymmetries. Indeed,
one can derive using the BPS equations that the presence of branes imposes a constraint
on the Killing spinor ϵ:

P ϵ = − ϵ , or equivalently Π ϵ ≡ 1

2
(1 + P ) ϵ = 0 , (17.1)

where P is a traceless involution (P 2 = 1), typically a product of gamma matrices, that
depend on the exact type and orientation of the object considered. Thus Π is a projector,
verifying Π2 = Π. A list of the involutions corresponding to branes, strings, solitons and
momentum waves is given in Appendix E. The constraint (17.1) divides the number of
preserved global supersymmetries by two.

If one considers configurations with several types of branes whose supersymmetries
are compatible, the constraints add up. For example, for a two-charge system, the Killing
spinor must respect

Π1 ϵ = 0 , and Π2 ϵ = 0 . (17.2)

In other words, the Killing spinor must lie in the intersection of the kernels of Π1 and Π2.
The dimension of this intersection is the number of preserved global supersymmetries (8).

The number of states of a two-charge system is however much larger than one can
surmise by considering the individual motion of its component branes. Indeed, the branes
can form bound states5, which contain more fields than those of the naïve multi-brane
solution. These fields can be thought of as coming from the dipolar branes that act as the
“glue” needed to form the bound state, and which also give rise to a local enhancement
of the number of preserved supersymmetries to 16.

For a general bound state, the Killing spinor satisfies

Π̂ ϵ ≡ 1

2
(1 + α1P1 + · · ·+ αnPn) ϵ = 0 , (17.3)

where Pi are the traceless involutions associated to the branes whose charges the bound
state has and where, for each species of brane, i, the coefficient αi is the ratio between the
charge density corresponding to this brane, Qi,6 and the mass density of the full bound

5In the D0-D4 system for example, the individual motion of the branes corresponds to the Coulomb
branch, where the branes do not form a bound state. However, the large degeneracy of the system comes
from the Higgs branch, which describes bound states of D0 branes inside the D4 branes.

6Note that the dependence in the string coupling, gs, enters in the Qi’s.
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state, M :

αi ≡
Qi

M
. (17.4)

Hence, the projector can be written as

Π̂ ≡ 1

2M
(M +Q1P1 + · · ·+QnPn) . (17.5)

The number of preserved supersymmetries is now the dimension of the kernel of Π̂.
This operator is in general not a projector, but when it is, the configuration preserves 16
global supersymmetries.

It is thus possible to reveal the extra dipole charges needed to construct the bound
states of a two- or three-charge system by finding involutions corresponding to suitable
branes and tuning their charges to make Π̂ a projector. For a given bound state, the
solution for αi is often not unique: There often exists a whole moduli space of values of
the charges that make Π̂ a projector. One can then imagine varying these charge densities
along the internal dimensions of the bound state, so that the constraint becomes:

Π̂(x⃗) ϵ(x⃗) ≡ 1

2

[
1 + α1(x⃗)P1 + · · ·+ αn(x⃗)Pn

]
ϵ(x⃗) = 0 , (17.6)

where x⃗ denotes the internal dimensions of the bound state. Doing so, the number of local
preserved supersymmetries is still 16. However, the number of global supersymmetries can
be much less: it is the dimension of the common kernel to the projectors at all possible
values of x⃗. The global Killing spinor does not depend on the position x⃗, and it must
satisfy

∀ x⃗ , Π̂(x⃗) ϵ = 0 , (17.7)

where ϵ must be constant.
A common way to ensure that at least some amount of supersymmetry is preserved

globally is to rewrite the projectors as

Π̂(x⃗) = f1(x⃗)Π1 + · · ·+ fk(x⃗)Πk (17.8)

where Π1, . . . ,Πk are commuting projectors, and f1, . . . , fk can be any matrix-valued
functions. Then, satisfying (17.7) is equivalent to

Π1 ϵ = . . . = Πk ϵ = 0 , (17.9)

so the number of preserved global supersymmetries is the dimension of the intersection
of the kernels of Π1, . . . ,Πk.

When constructing bound states, one typically starts with the set of global charges
and their projectors, Π1, . . . ,Πk. Combining (17.6) with (17.8) then leads to constraints
on the charges of each constituent, Qi, and hence on αi.

The distinction between local and global supersymmetries is important, and is at the
core of the results of this chapter. As we explained in the Introduction, by constructing
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two- and three-charge bound states preserving 16 local supersymmetries, we ensure that
we construct microstates of these two- or three-charge systems and that furthermore their
backreaction will not give rise to an event horizon.

This bound-state making philosophy was first used to conjecture the existence of su-
perstrata [116], but the method presented here is a generalization of that of [116], where
an orthogonal momentum, P(ψ), was imposed to be one of the dipoles. In the follow-
ing Subsection, we will first illustrate the bound-state making philosophy with several
examples of two-charge bound states.

17.1.1 The F1-P bound state

Consider an F1-P system where the strings wrap a compact direction, y, and momentum
is also along y direction. The involutions and projectors associated to them are (see
Appendix E):

PF1(y) = Γ0yσ3 , ΠF1(y) =
1

2
(1 + PF1(y)) ,

PP(y) = Γ0y , ΠP(y) =
1

2
(1 + PP(y)) .

(17.10)

When the F1 and P do not form a bound state, the constraints on the Killing spinor
add up

ΠF1(y)ϵ = ΠP(y)ϵ = 0 . (17.11)

and the system preserves 8 supersymmetries everywhere.
It is possible to form a bound state possessing the same global charges as this system,

but preserving locally 16 supersymmetries. In order to do so, one needs to add dipolar
transverse strings and momentum which we choose to be along a single transverse direc-
tion inside the T 4, that we call x1 (more complicated choices are also possible but not
illustrative for our purpose here):

PF1(1) = Γ01σ3 , ΠF1(1) =
1

2
(1 + PF1(1)) ,

PP(1) = Γ01 , ΠP(1) =
1

2
(1 + PP(1)) .

(17.12)

The objective is to construct a local projector, ΠF1-P bound, that can be written in two
ways:

ΠF1-P bound =
1

2

(
1 + α1PF1(y) + α2PP(y) + α3PF1(1) + α4PP(1)

)
(17.13)

= f1ΠF1(y) + f2ΠP(y) (17.14)

where α1, . . . , α4 are real numbers, and f1, f2 are matrices.
The equation Π2

F1-P bound = ΠF1-P bound first leads to

α2
1 + α2

2 + α2
3 + α2

4 = 1 , α1α4 + α2α3 = 0 , (17.15)
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while equalizing (17.13) and (17.14) leads to

α3 + α4 = 0 , α1 + α2 = 1 ,

f1 = α1 − α4Γ
y1σ3 , f2 = α2 − α3Γ

y1σ3 .
(17.16)

The solution given here for f1 and f2 is not unique.
Solving these equations is straightforward, the solution depends on the choice of an

arbitrary angle, θ:

ΠF1-P bound =
1

2

[
1 + c2PF1(y) + s2PP(y) + csPF1(1) − csPP(1)

]
= c

(
c+ sΓy1σ3

)
ΠF1(y) + s

(
s− cΓy1σ3

)
ΠP(y) ,

(17.17)

where c ≡ cos θ and s ≡ sin θ.
Geometrically, the angle θ corresponds to the inclination of the string in the (y, x1)

plane. If θ is constant, the configuration is a straight string tilted in the (y, x1)-plane,
with transverse momentum. This transversely boosted F1 string preserves 16 supersym-
metries.7 In the limit θ = 0, this is a pure F1 string along y, and when θ = π/2 this is a
pure momentum wave along y.

One can bend the string by allowing θ to vary along it. The resulting configuration
still preserves 16 supersymmetries locally, but only 8 globally.

17.1.2 The NS5-P bound state

The same exercise can be done for the NS5-P system in type IIA. We start with NS5 branes
extending along the directions y, x1, . . . , x4, and momentum along y. The involutions
associated to them are:

PNS5(y1234) = Γ0y1234 , PP(y) = Γ0y . (17.18)

Once again, if these constituents do not form a bound state the configuration preserves
8 supersymmetries. They can also form bound states that preserve locally 16 supersym-
metries. Contrary to the fundamental string, the NS5-brane does not need to bend in the
transverse directions to carry momentum. To make the bound state, one possibility is to
use internal dipolar D4-branes (extending along the directions x1, . . . , x4) and D0-branes
[69]:

PD4(1234) = Γ01234iσ2 , PD0 = Γ0iσ2 . (17.19)

Note that this is not the only possible choice of dipoles. We can also form an F1-NS5
bound state by adding as “glue” two orthogonal sets of D2 branes. This system can
be obtained from the one we have by two T-dualities along the NS5 internal directions
that are not wrapped by the F1 strings. Its M-theory uplift is know as the magnetube
[114,115].

7For an illustration, see Figure 2 and Figure 3 in [69].
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Another possibility to construct bound states with P and NS5 charges is to put a
momentum-carrying transverse wave on the NS5 brane. This configuration can easily be
obtained by dualizing the F1 strings with a transverse momentum wave described above
and its “glue” consists of a dipolar NS5 charge and angular momentum. This solution
breaks the spherical symmetry of the black-hole solution. Since in this chapter we are
interested in constructing bound states that respect this spherical symmetry and can
describe locally the backreaction of the DVV microstates, we will describe in detail the
brane bound states created using D0-D4 glue.

One needs to construct a projector satisfying

ΠNS5-P bound =
1

2

(
1 + α1PNS5(y1234) + α2PP(y) + α3PD0 + α4PD4(1234)

)
(17.20)

= f1ΠNS5(y1234) + f2ΠP(y) (17.21)

as well as the usual condition on projectors Π2
NS5-P bound = ΠNS5-P bound, for some real

numbers α1, . . . , α4 and matrices f1, f2.8

The solution to this system is:

ΠNS5-P bound =
1

2

[
1 + c2PNS5(y1234) + s2PP(y) + csPD0 − csPD4(1234)

]
= c(c+ sΓyiσ2)ΠNS5(y1234) + s(s− cΓyiσ2)ΠP(y) ,

(17.22)

where again c ≡ cos θ and s ≡ sin θ.

17.1.3 The NS5-F1 bound state

One can form an NS5-F1 bound state in type IIA using a similar procedure. Consider an
NS5-F1 system where the NS5 extends along the directions y, x1, . . . , x4, and the string
is along y. The involutions associated to them are

PNS5(y1234) = Γ0y1234 , PF1(y) = Γ0yσ3 . (17.23)

The bound state can be obtained from the NS5-P system by performing two T-dualities
along the directions y and x1. Again, the choice of x1 among the four torus directions is
at this point arbitrary.

The dipole charges needed to form it are D4-branes extending along the directions
y, x2 . . . , x4, and D2-branes along the direction y and x1:

PD4(y234) = Γ0y234iσ2 , PD2(y1) = Γ0y1σ1 . (17.24)

The projector of this bound state is

ΠNS5-F1 bound =
1

2

[
1 + c2PNS5(y1234) + s2PF1(y) + csPD2(y1) + csPD4(y234)

]
= c

(
c+ sΓ1iσ2

)
ΠNS5(y1234) + s

(
s− cΓ1iσ2

)
ΠF1(y) .

(17.25)

8It is not necessary to do this computation again. One can find the result by dualizing the F1-P
system (if the directions are not compact, a T-duality can be seen as a solution-generating technique
rather than a proper duality). The duality chain is T1 − S − T1234 − S − T1.
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where again c ≡ cos θ and s ≡ sin θ, and the angle θ is a function of the coordinates
y, x1, . . . , x4.

y

M5-M2 (y, z, x1)

x1

z

Figure 17.3: The backreaction of the M5-M2 bound state, projected onto the space
(y, x1, z). The M2-branes pull the M5-branes, forming a furrow. The mechanism is
similar to the formation of a Callan-Madacena spike in the D3-F1 brane system.

The angle θ and the form of the projector have a clear geometric interpretation for the
F1-P bound state (as the tilt of the string). For the NS5-F1 bound state, the interpretation
is more complicated: one needs first to uplift the configuration to M-theory. The projector
is then given by:

ΠM5−M2 =
1

2

[
1 + c2PM5(y1234) + s2PM2(y z) − csPM5(y234 z) + csPM2(y1)

]
. (17.26)

The brane system then consists of M5-branes and M2-branes sharing one common
direction, y. The M2-branes are also extended along the M-theory circle, denoted by z.
It is easy to see that M2 branes terminating on the M5 branes will pull them along the
(previously orthogonal) M-theory direction. This mechanism is similar to the formation
of a Callan-Maldacena spike (see Fig. 17.3). At each location on the M5-brane, the angle
θ corresponds to the tilt of the brane in the z direction. Of course, for a generic spike,
the pull of the M2 brane will affect all the 4 directions of the NS5 brane, (x1, x2, x3, x4),
and the spike will be described by a complicated function of all these four variables. To
obtain the bound state depicted in Figure (17.3), corresponding to the projector (17.25),
we can either smear the M2 branes along the directions (x2, x3, x4) or one can zoom in at
a location of the spike where the tangent to the spike is orthogonal to x1.

Another (more familiar) possibility to construct bound states with F1 and NS5 charges
is to add a dipolar KKM charge (extending in the space transverse to the NS5 worldvolume
and with the special direction along the F1-NS5 common direction) as well as angular
momentum, J. This gives rise to a F1-NS5 supertube with KKM-J dipole charge, and its
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supergravity solution is the S-dual of the well-known Lunin-Mathur geometry [52, 117].
Much like its better known supertube cousins [118,119], the KKM can wrap an arbitrary
curve in the four dimensions transverse to the NS5 branes, and the solution preserves
8 supercharges. As reviewed in [116], when one zooms near the supertube profile this
configuration preserves locally 16 supercharges and this enhancement of supersymmetry
comes from the presence of the KKM and angular-momentum “glue”, and is equivalent to
the fact that the supergravity solution corresponding to the F1-NS5-KKM-J supertube is
smooth [120].

Starting from this two-charge bound state one can also add momentum, and build
three-charge superstrata: bound states that have the same charges as an F1-NS5-P black
hole and give rise to a smooth supergravity solution [18]. However, since our purpose in
this chapter is to build three-charge brane bound states that have the same charges as a
black hole but that do not break the rotational symmetry of the black-hole horizon, we
will not use the “KKM-angular momentum glue”, and focus instead on the “D4-D2 glue”.

17.1.4 The relation between the M5-M2 furrow and the Callan-
Maldacena spike

There are two ways to relate the M2-M5 furrow whose Type-IIA reduction gives rise to
the NS5-F1 bound state to the better known F-string and D-string spikes constructed in
the D3 brane worldvolume by Callan and Maldacena [111,121].

The first is to start with a D4-brane in the directions 1234, and an F1-string along
the direction y, ending on the D4-brane. This picture is valid when gs ≪ 1. As one
increases gs or the number of F1 strings, these strings pull on the D4 brane and give rise
to a spike. Much like the D3-F1 spike, this D4-F1 spike can be constructed as a solution
to the D4-brane DBI action.

The M5-M2 bound state we consider is dual to the D4-F1 spike, after 11-dimensional
uplift along z, and a flip in the coordinates (y, z):(

D4(x1x2x3x4)
F1(y)

)
IIA

uplift on z−−−−−−−→
(

M5(z, x1x2x3x4)
M2(z, y)

)
M

(z,y)-flip−−−−−−→
(

M5(y, x1x2x3x4)
M2(y, z)

)
M

.

(17.27)

Another way to obtain an M2-M5 furrow – but this time smeared over one of the
internal directions – is to construct the furrow corresponding to a D2 along the directions
0, y, z that ends on a D4 brane extended along 0, y, 1, 2, 3. From the perspective of the
D4 brane DBI action, this smeared furrow has exactly the same solution as a D1-D3 spike
[121]. This furrow can also be constructed using the non-Abelian DBI action of the D2
brane; the D2 non-commuting worldvolume fields are the same as the D6 brane fields
describing a D6 brane ending on a D8 brane [122]. Upon uplifting the D2-D4 furrow to
11 dimensions, one obtains a solution smeared along this direction, which is precisely the
same as an M2-M5 furrow smeared along one of the M5-brane worldvolume directions:
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(
D3(x1x2x3)

D1(z)

)
IIB

Ty−−→
(

D4(y, x1x2x3)
D2(y, z)

)
IIA

uplift on x4−−−−−−−−→

(
M5(y, x1x2x3x̃4)

M2(y, z)

)
M

. (17.28)

17.2 The three-charge NS5-F1-P bound state

This section is devoted to the construction of the bound states of the three-charge system.
As explained in the Introduction, we expect the bound state to have both the three charges
of the NS5-F1-P system, but also several dipolar charges, which constitute the glue needed
to construct a bound state that has locally 16 supercharges.

17.2.1 Constructing the projector

We consider the Type IIA three-charge system with NS5-branes extending along the
directions y, x1, . . . , x4, as well as F1 strings and momentum along the direction y. The
involutions that enter in the construction of their corresponding projectors are:

PNS5(y1234) = Γ0y1234 , PF1(y) = Γ0yσ3 , PP(y) = Γ0y . (17.29)

In order to form a bound state, one needs to find the dipole charges that bind these
branes into a configuration with 16 supersymmetries locally. In Section 17.1 we explained
how to construct two-charge bound states for the F1-P, NS5-F1 and NS5-P systems:
For each system, we found several pairs of dipole charges acting as a glue between the
constituents to form bound states. However, upon demanding that these bound states
preserve the rotational invariance of the black-hole horizon, only a limited choice of dipole-
brane glue remained. The intuitive first attempt at constructing the NS5-F1-P three-
charge bound state is to add all the six dipole charges that enter in the construction of
the rotationally-invariant two-charge bound states (summarized in Table 17.1), and to try
to construct a projector. We can easily find that this only works if the dipole charges of
the F1-P bound state are oriented along the same direction, x1, as the dipole charges of
the NS5-F1 bound state.

NS5(y1234) F1(y) P(y) D4(y234) D2(y1) D4(1234) D0 F(1) P(1)⊗ ⊗
× ×⊗ ⊗

× ×⊗ ⊗
× ×

Table 17.1: Each line describes a two-charge bound state whose charges are two of the
three charges of the NS5-F1-P brane systems (denoted by

⊗
). Each bound state contains

two more dipole charges, denoted by ×. We attempt to construct a three-charge bound
state with NS5-F1-P and all six dipole charges.
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Constructing the projector for this bound state follows the same rules as for the two-
charge systems. One needs to determine the local charges, αi, and the matrices, fj, such
that the expression:

ΠNS5-F1-P bound =
1

2

[
1 + α1PNS5(y1234) + α2PF1(y) + α3PP(y) + α4PD4(y234)

+ α5PD2(y1) + α6PP(1) + α7PF1(1) + α8PD4(1234) + α9PD0

]
.

(17.30)

= f1ΠNS5(y1234) + f2ΠF1(y) + f3ΠP(y) , (17.31)

is a projector (Π2
NS5-F1-P bound = ΠNS5-F1-P bound) and moreover, as the second line illus-

trates, is compatible everywhere with the supersymmetries of the NS5-F1-P system.
From (17.30) and (17.31) we find:

α1 + α2 + α3 = 1 , α4 − α5 = 0 , α6 + α7 = 0 , α8 + α9 = 0 ,

f1 = α1 + α4 Γ
1iσ2 − α8 Γ

yiσ2 ,

f2 = α2 − α5 Γ
1iσ2 − α6 Γ

y1σ3 ,

f3 = α3 − α9 Γ
yiσ2 − α7 Γ

y1σ3 .

(17.32)

Here again the values of the functions fj are not unique. The equation Π2
NS5-F1-P bound =

ΠNS5-F1-P bound leads to:

9∑
i=1

α2
i = 1 , (17.33)

α2α3 + α6α7 = 0 , α3α5 + α7α9 = 0 , α2α9 − α5α6 = 0 , (17.34)

α3α4 + α6α8 = 0 , α1α3 + α8α9 = 0 , α1α2 − α4α5 = 0 , (17.35)

α1α6 − α4α9 = 0 , α1α7 − α5α8 = 0 , α2α8 − α4α7 = 0 . (17.36)

The solutions to this system can be expressed in terms of three real numbers (a, b, c)

satisfying a2 + b2 + c2 = 1:

α1 = a2 , α2 = b2 , α3 = c2 , (17.37a)

α4 = ab , α5 = ab , α6 = bc , (17.37b)

α7 = − bc , α8 = − ac , α9 = ac . (17.37c)

Then the projector is:

ΠNS5-F1-P bound =
1

2

[
1 + a2PNS5(y1234) + b2PF1(y) + c2PP(y) + ab

(
PD4(y234) + PD2(y1)

)
+ bc

(
PP(1) − PF1(1)

)
− ac

(
PD4(1234) − PD0

)]
.

(17.38)
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This projector preserves locally 16 supersymmetries. We now allows the parameters
a, b, c to be functions of the coordinates y, x1, . . . , x4, z. The supersymmetries rotate, but
the projector still preserves the 4 global supercharges of the NS5-F1-P brane system:

ΠNS5-F1-P bound = a (a+ bΓ1iσ2 + cΓyiσ2) ΠNS5(y1234)

+ b (b− aΓ1iσ2 − cΓy1σ3) ΠF1(y)

+ c (c− aΓyiσ2 + bΓy1σ3) ΠP(y) .

(17.39)

We represent the relative densities of the branes whose charges enter in this projector in
Figure 17.4.

Of course, in order for the projector (17.38) to correspond to a physical brane configu-
ration the densities of branes wrapping a certain direction should not be functions of this
direction. Since these densities are related to the coefficients in the projector via equation
(17.4) this puts certain constraints on the parameters a, b and c. These constraints will
be further explained in Section 17.3.

NS5(y1234) D4(y234) D2(y1) F1(y)

P(y)

D4(1234)

D0 P(1)

F1(1)

a2 b2

c2

a b

a c b c

Figure 17.4: Schematic representation of the three-charge NS5-F1-P bound state. The
nodes represent the three charges of the bound state. Every combination of two nodes
and the orange line joining them corresponds to a two-charge bound state, and the dipole
charges and their coefficients in the projector are indicated next to the line.
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17.2.2 The M5-M2-P triality

It is also possible to uplift the three-charge bound state to M-theory, and argue that it is
related to the local structure of DVV black-hole microstates.

The charges and dipole charges of the bound state have a clear M-theory origin. For
simplicity we can rename the M-theory direction x11 ≡ z. As we explained in Section
17.1.3, the two-charge bound state of F1 strings and NS5 branes can be interpreted in
M-theory as the near-brane limit of the furrow created by the backreaction of M2 branes
that end on M5 branes. From the perspective of the M5 brane worldvolume theory,
this furrow can be constructed similarly to the Callan-Maldacena spike describing the F1
strings terminating on D3 branes.

From the M-theory perspective, the dipole branes which form the glue of the M2-
M5-P bound state are also M2 and M5 branes and momentum, oriented differently. The
NS5-brane along (y1234) becomes an M5 brane along the same directions, and the F1
string along (y) becomes an M2 brane along (y, z). The gluing dipole branes correspond
to M5 branes along (1234z) and along (y234z), M2 branes along (y1) and along (1z), and
momentum along 1 and along z. Figure 17.5 reveals this triality.

M5(y1234) M5(y234z) M2(y1) M2(yz)

P(y)

M5(1234z)

P(z) P(1)

M2(1z)

a2 b2

c2

a b

a c b c

Figure 17.5: The M-theory uplift of the NS5-F1-P bound state. The nodes represent the
three charges of the bound state. Every combination of two nodes and the orange line
joining them corresponds to a two-charge bound state, and the dipole charges and their
coefficients in the projector are indicated next to the line.
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In terms of M-theory ingredients, the projector is written as:

ΠNS5−F1−P =
1

2

[
1 + aP̂M5 + bP̂M2 + cP̂P

]
, (17.40)

where

P̂M5 ≡ aPM5(y1234) − bPM5(y234 z) + cPM5(1234 z) , (17.41)

P̂M2 ≡ aPM2(y1) + bPM2(y z) − cPM2(1 z) , (17.42)

P̂P ≡ −aPP(z) + bPP(1) + cPP(y) , (17.43)

and the brane involutions are all of the following form:

PM5(y1234) = Γ0y1234 (17.44)

PM2(y1) = Γ0y1 (17.45)

PP(z) = Γ0 z . (17.46)

17.3 The Brane Content of the Super-Maze

Equations (17.41), (17.42) and (17.43), together with Figure 17.5, reveal to us the mi-
croscopic physics of the M-theory super-maze. As we explained in Section 17.1.3, to
understand the local physics of the super-maze surface it is best to work in the (y, 1, z)

space, in which both the M5 branes and the M2 branes wrap nontrivial two-surfaces, and
1 denotes a torus direction orthogonal to the original M2 brane. One can see for example
that equation (17.41) implies that at every location along the super-maze, the local M5
charge density in the (y, 1) direction (proportional to the projection of the surface of the
super-maze along the (y, 1)-plane) is equal to a times the mass density of the full con-
figuration. We recall that the parameters a, b, c have been promoted to functions of the
position on the brane bound state. One can also see that equation (17.42) implies that
the local M2 charge in the direction (y, z) (again proportional to the projection of the M2
charge of the super-maze in the (y, z)-plane) is equal to b times the mass density.9

We can span the (y, 1, z) space using orthonormal vectors (uy, u1, uz). Let u⊥M5 be the
unit vector orthogonal to the two-dimensional M5-brane surface in the (y, 1, z) space. Let
u⊥M2 be its equivalent for the M2-brane, and uP the unit vector along the direction of the
momentum P. Then, by choosing the orientation signs appropriately, one can show that
the equations (17.41), (17.42) and (17.43) imply successively

a = u⊥M5 · uz , b = u⊥M5 · u1 , c = u⊥M5 · uy , (17.47)

a = u⊥M2 · uz , b = u⊥M2 · u1 , c = u⊥M2 · uy , (17.48)

a = uP · uz , b = uP · u1 , c = uP · uy . (17.49)

9Strictly speaking, the value is ±b , where the choice of ± depends on which one of the two unit
vectors orthogonal to the M5-brane surface we choose.
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Hence, these equations simply imply that:

u⊥M5 = u⊥M2 = uP . (17.50)

Thus, even though the super-maze has several M5 and M2 local charges pointing in
different directions, when one zooms in on any particular location one finds a tilted M5
brane with parallel M2 charge dissolved in it and orthogonal momentum, which is a con-
figuration preserving 16 supercharges. Of course, these 16 supercharges vary as one moves
to a different location of the super-maze, and only 4 of them remain unchanged - the su-
percharges corresponding to the F1-NS5-P system whose microstates we are constructing.

Our projector also makes it clear how the energy density of the super-maze is dis-
tributed among its constituents. Before adding momentum (c = 0), we have a static
y-independent maze, that contains M5 and M2 branes wrapping y. If one concentrates
on a single furrow in the maze, the surface can de described by an equation z = f(x1).
One can then parametrize a and b by an angle, β, that depends on x1:

a = cos β , b = sin β . (17.51)

This angle β corresponds locally to the bending of the surface of the momentum-less maze
in the (y, z) plane: tan β = f ′(x1).

We can now compute the energy density of the momentum-less maze from its M5- and
M2-brane constituent charges. Using (17.4), one finds

QM5
(y1234) = M cos2 β , QM5

(y234z) = −M cos β sin β , (17.52)

QM2
(y1) = M cos β sin β , QM2

(yz) = M sin2 β , (17.53)

where M is the mass density. As usual, the square of the energy density is equal to the
sum of the squares of all the charges

M2 =
∑
I

(QI)
2 . (17.54)

However, since the ratio of the M5 and M2 charges is the same as the angle of the furrow,
the mass simplifies to the usual BPS mass of a two-charge system:

M = QM5
(y1234) +QM2

(yz) . (17.55)

If one now adds momentum, the super-maze oscillates along y. The furrow can now
be described by a generic function of two variables (see Figure 17.6.), and the bending
angle, β, can also become y-dependent.

Moreover. we also need to introduce an additional “wiggling” angle, α, corresponding
to the slope of the furrow waves carrying momentum along the y direction. This angle
can also depend on both y and x1. The parameters a, b and c can now be expressed in
terms of these angles as

a = cosα cos β = cαcβ , b = cosα sin β = cαsβ , c = sinα = sα . (17.56)
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The energy density of the momentum-carrying furrow is distributed between the branes
and the momentum:

QM5
(y1234) = Mc2αc

2
β , QM5

(y234z) = −Mc2αcβsβ , QM5
(1234z) = Mcαsαcβ , (17.57)

QM2
(y1) = Mc2αcβsβ , QM2

(yz) = Mc2αs
2
β , QM2

(1z) = −Mcαsαsβ , (17.58)

QP
(1) = −Mcαsαsβ , QP

(z) = Mcαsαcβ , QP
(y) = Ms2α , (17.59)

and once again, this leads to the BPS condition for the three-charge system

M = QM5
(y1234) +QM2

(yz) +QP
y . (17.60)

Note that as one moves in the (y, 1) plane, the projection of the M5 charge in this
plane remains constant. Indeed, the original five-brane wraps the y, 1 plane, and its charge
density cannot therefore depend on y or x1. This appears to be in conflict with equation
(17.57), but we have to realize that M is the mass density of the furrow in the (y, 1) plane,
which changes as one moves along the furrow. Hence, QM5

(y1234) is independent on α and
β, but M depends on them:

M(y, x1) =
QM5

(y1234)

cos2 α(y, x1) cos2 β(y, x1)
. (17.61)

(y, z)

(y, x1)

M5-M2-P (y, z, x1)

z
y

x1

Figure 17.6: Wiggling half-furrow.

17.4 In lieu of a Conclusion: Some thoughts on Super-
Maze backreaction

One key question about the super-maze we discovered is whether it gives rise to a hori-
zonless and possibly smooth solution in the regime of parameters where the classical
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black-hole solution exists. Naïvely one may argue that, since the super-maze contains
N1N5 M2 brane strips crammed into a very small torus, its backreaction will give rise to
a solution whose curvature is too large to be reliably described by supergravity. However,
this intuition fails to take into account the fact that when branes backreact they can blow
up the size of the transverse spacetime.

The key feature of the super-maze that makes us confident that its backreaction will
be smooth and horizonless is the local enhancement of the supersymmetry to 16 super-
charges. This is the smoking gun of the construction of the brane bound states that
account for the entropy of the two-charge system. This is perhaps best known from the
physics of supertubes [118,119]: A supertube can have arbitrary shape and, if one zooms
in at a certain location along this shape, one finds a brane system that preserves 16 super-
symmetries. Moreover, as one moves along the supertube these supersymmetries rotate,
and only a subset of 8 of them is preserved by the full configuration. When the supertube
is dualized to the D1-D5 (or F1-NS5) duality frame and its two charges correspond to
D1 and D5 (or F1 and NS5) branes [52, 117], the presence of 16 supercharges locally is
equivalent to the existence of a smooth horizonless supergravity solution [120]. Another
examples of a two-charge brane bound states is the F1 string carrying longitudinal mo-
mentum [113], reviewed in Section 17.1. This solution has again 8 supercharges, but if
one zooms in near the location of the momentum-carrying string one finds a solution with
16 supercharges. These supercharges rotate as one moves along the string profile, and
only 8 of them remain invariant and are preserved by the whole configuration. A similar
bound state can be made from any brane carrying longitudinal momentum.

A third, slightly less known illustration of a two-charge bound state that has 16 su-
percharges locally is the magnetube, which has again two charges, corresponding to an
M5 brane and longitudinal momentum, which are bound together by the presence of M2
brane dipole charges [114, 115]. Finally, a fourth illustration of this phenomenon is the
NS5-P bound state recently constructed in [69], where the supersymmetry is enhanced
locally to 16 supercharges because of the presence of dipolar D0 and D4 charges on the
NS5 worldvolume.

There also exist brane configurations that have the same charges as those of a three-
charge black hole, and again have 16 supercharges locally and only 4 globally. When
the brane configurations correspond to multi-center solutions [123] whose centers are
fluxed D6 branes (which preserve locally 16 supercharges), the solutions uplift [124] to
the smooth horizonless bubbling solutions in eleven dimensions constructed in [93, 94].
Another three-charge brane configuration that has locally 16 supercharges is the super-
stratum conjectured in [116], which served as inspiration for the building of superstratum
supergravity solutions [18].

Note that in all these systems, in the absence of the dipolar branes providing the
“glue” and in the absence of the local enhancement of the supersymmetry to 16 super-
charges, one obtains singular solutions or solutions with a horizon, which do not describe
microscopic degrees of freedom of these systems, but rather ensemble averages. Thus the
local enhancement of the supersymmetry is the key indication that the backreaction of
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the brane bound state will result in a horizonless solution that describes a pure state of
the system.

It is important to remark that the local enhancement of supersymmetry and the ab-
sence of a horizon are duality-frame-invariant phenomena. Of course, in some duality
frames a smooth solution can become a singular solution, but a solution with an event
horizon can never be dualized to a solution without one [125] and viceversa.

One can also speculate on how the supergravity solution corresponding to a super-maze
may look. In Figure 17.7 we illustrate the shape of a super-maze corresponding to two M5
branes extending along x1 and a single fractionated M2 brane extended along z (the M-
Theory direction) and smeared over three of the M5-brane worldvolume directions, x234.
Before the fractionation, the M2 brane does not pull on the M5 branes; this is depicted in
the left panel. Once the M2 brane gets fractionated, its components start pulling on the
M5 brane. However, since the M2 brane strips have been smeared along x234, they end
on a codimension-one surface inside the M5 branes. Therefore, the pull of a fractionated
M2 brane does not give rise to a spike, but rather to a wedge.10

As one can see from the middle panel of Figure 17.7, when the distance between the two
M5 branes is large, the configuration consists of several M5 branes wedges with dissolved
M2 charge, pulled by M2 branes extended along z. However, the bent M5 branes can move
freely along the z direction, and when two opposite M5 wedges become close they can
transform into the brane web depicted in the right panel, which contains also un-fluxed
coincident M5 branes. In general, a more complicated super-maze smeared over three of
the M5-brane worldvolume directions will correspond to a brane web in the (x1, z)-plane
which has the all the three ingredients of the web in the right panel of Figure 17.7.

If the M2 branes are not smeared, the resulting maze does not have any “bare” M2
lines, but will be everywhere a fluxed M5 brane.11 One can then ask how the supergravity
solution corresponding to this M5 super-maze will look. First, the M5 branes source a
magnetic four-form whose flux on a four-sphere is constant. When the M5 branes backre-
act, there will be a geometric transition: this four-sphere becomes large and topologically
nontrivial, while the nontrivial maze surface wrapped by the M5 branes will shrink to
zero size. Thus, the maze of M5 branes will transform into a maze of bubbles with fluxes.

As we have discussed in the Introduction, the existence of super-mazes and the pos-
sibility that their supergravity solution might be smooth, represents a paradigm shift
for the microstate geometry programme and for the fuzzball conjecture in general. The
starting point of this conjecture is the idea that collapsing matter do not form horizons in
nature, but rather transition into horizonless “fuzzball" solutions of string theory. Stan-

10Remember that the Callan-Maldacena spike corresponds to a string ending on a codimension-three
defect inside the D3 brane, and the profile of the pulled D3 brane is similar to the harmonic function in
three dimensions, 1/r. Here, the M2 branes end on a codimension-one defect, so the profile of the pulled
M5 brane has the shape of the harmonic function in one dimension, |x1|, and looks like a wedge.

11Even when the M2 branes are smeared, one can argue that because the distance between the M5
branes on the M-theory circle is small, the maze components will be mostly fluxed and unfluxed M5
branes.
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Figure 17.7: A super-maze made of 2 M5 branes and a single M2 brane which is smeared
along three of the M5 brane worldvolume directions. Before the fractionation the M2 brane
does not pull on the M5 branes, and can be freely taken away. After the fractionation
(middle panel), each strip of the M2 branes deforms the M5 brane in its vicinity. As the
branes move, the web depicted in the middle panel can also transform in the web depicted
in the right panel, which has regions of coincident un-fluxed M5 branes.

dard black holes are then seen as average descriptions of the space of microstates that
the stringy fuzzball matter can reach. One also expects on general grounds that some of
these fuzzball solutions will have a classical limit, and will be describable purely using
low-energy supergravity, as microstate geometries.

Despite the extraordinary success of the microstate geometry programme, the entropy
of the solutions constructed so far, of order

√
N1N5N

1/4
P is parametrically smaller than

the entropy of the three-charge black hole,
√
N1N5NP . Furthermore, all the solutions that

have been constructed break the spacetime spherical symmetry of the black-hole horizon,
while we expect

√
5/6 of the black hole entropy to come from configurations that do not

break this symmetry [112].12

The super-maze promises to solve both these problems at the same time. On one
hand, we have constructed the super-maze using the types of “glue” that preserve the
rotational invariance of the black hole. Furthermore, the DVV microstates that we have
argued to backreact into super-maze configuration correspond to momentum carriers that
are purely bosonic. Hence, we expect the super-maze and its corresponding supergravity
solutions to have an entropy of order 2π

√
4
6
N1N5NP .13 Furthermore, since two of the

fermionic zero modes also preserve the rotational symmetry of the black-hole horizon,
and the super-maze is the most general brane bound state with black-hole charges that
preserves this symmetry, it is possible that the super-maze could even have an entropy of
order 2π

√
5
6
N1N5NP .

Our construction also allows us to speculate how we may try to capture the remaining
part of the black-hole entropy, which comes from fermion momentum carriers that break

12For other extremal black holes there are arguments that most of the entropy comes from such mi-
crostates [126].

13See also [127], expecting that disentangled microstates [128] – and therefore microstates without
smooth horizons – to account for at least a finite fraction of the black-hole entropy.
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the rotational symmetry of the black-hole horizon [112]: Instead of using the super-maze
glue, we could could try to use the other types of glue, and construct generalizations of
the super-maze that break this rotational symmetry.

It would be very interesting to construct the fully backreacted super-maze solutions,
and to understand how this entropy is realized in supergravity. It would be also interesting
to apply the “making bound states with glue” philosophy we used in this chapter to reveal
the microscopic structure of black holes in other duality frames, where microstate counting
has not been done.
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Chapter 18

Themelia: the irreducible
microstructure of black holes

This Chapter reviews the work of [44].
Whether you describe it in General Relativity or think of it as a strongly-coupled

quantum object, a black hole must necessarily reduce matter to its most fundamental
constituents. From the perspective of string theory, this is usually interpreted as meaning
strings and branes, but we will argue that the full range of fundamental constituents must
include more general species of objects that we will call themelia. A themelion is defined
to be any object in string theory that locally preserves 16 supercharges. This certainly
includes fundamental strings and branes, but a themelion can carry multiple charges and
preserve less supersymmetry when taken as a whole. A themelion will typically have
varying charge densities along a non-trivial profile, but the defining idea is that when
one “zooms in” on a small segment of the themelion, the localized part preserves sixteen
supersymmetries and those supersymmetries will generically depend on their location on
the themelion.

Our purpose here is not only to characterize some large families of themelia, but also
to show that they play the central role in the description of black-hole microstructure, and
that they are necessarily the irreducible constituents of a supersymmetric fuzzball. As we
will describe, themelia not only include all known supersymmetric microstate geometries,
but also greatly extend their range. Indeed, a central result of this chapter will be to
exhibit themelia that embed the microstate geometries known as superstrata [18, 20, 21]
into highly fractionated brane configurations that include the super-maze [43].

The fuzzball paradigm [4, 12] seeks a gravitational and quantum description of black
holes, and their microstructure, in terms of horizonless objects in string theory. The idea
is that, because individual microstates have no entropy, they cannot have a horizon, and
that horizons only arise through ensemble averaging. Fuzzballs are supposed to represent
a new phase that emerges when matter is compressed to black-hole densities, and this
new phase prevents the formation of a horizon or singularity.

The challenge has been to formulate fuzzballs more precisely [129] and this has been
done largely through the construction of huge families of examples: In particular, mi-
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crostate geometries are realizations of the fuzzball paradigm in terms of smooth solutions
to supergravity. What is perhaps most startling about this program is the extent to which
it can be realized. (For recent reviews, see [12,130].) This extensive body of work has also
led to a much deeper understanding of the new phase of matter that underlies fuzzballs,
and hence our proposal that their fundamental constituents should be themelia.

Fundamental constituents must themselves be horizonless. But this is not sufficient:
there are “horizonless” string configurations, like the unadorned D1-D5 solution, that still
have microstructure. While the classical horizon of such an object has vanishing area,
it can be argued to have a “Planck-scale horizon” that accounts for the entropy of its
microstructure [9]. On the other hand, the sixteen supersymmetries of the themelion
not only preclude it from having a horizon, even at the Planck scale, but also makes it
a fundamental bound state, an indivisible “atomic object” of string theory – hence the
building block of fuzzballs.

Objects with 16 supersymmetries can always be dualized to a system consisting of a
single species of brane, such as a stack of F1’s, or the empty space of a KKM. A generic
themelion is, however, highly non-trivial: It only has 16 supersymmetries locally, and so
the “trivializing” duality transformation depends on the location on the themelion profile.
In any fixed duality frame, a themelion can carry a huge range of charges that vary with
location. Some of these will average to zero over the themelion, and some will average
to non-zero values. We will refer to these as dipolar and global charges respectively. The
global charges determine the overall supersymmetry preserved by the themelion.

The important point about themelia is that, individually, each one has essentially no
microstructure and, upon dualizations, can be characterized locally using string theory
(as an F1) or geometry (as a KKM). However, globally, themelia can have huge moduli
spaces, expressed in terms of shapes and charge densities, and so they can encode a vast
number of microstates within their configuration spaces. Conversely, because of the 16
supersymmetries, the moduli space of a themelion cannot ipso facto contain any black
holes, or give rise to horizons.

Superstrata were originally conjectured to exist [116] entirely based on the underlying
principle of themelia: namely, 16 supersymmetries locally. Five years later, large families
of superstratum supergravity solutions were explicitly constructed [18, 20, 21] but their
connection with the themelion of [116] was not clear.

In this chapter we exhibit the themelion structure of the superstratum solution, and
show that the supergravity constraints imposed by smoothness are equivalent to requiring
that themelia have 16 local supercharges. We also reveal a similar structure in the recently
constructed “vector superstrata” [131].

In addition to superstrata, one should recall that there is another huge family of
smooth horizonless microstate geometries: the bubbling solutions constructed from ambi-
polar Gibbons-Hawking (GH) geometries [93, 94, 97]. Upon reduction to 10 dimensions
along the GH fiber, one obtains a multi-center solution [123] where each center has 16
supercharges [124] (and hence is a themelion).

Based on our observations, we conjecture a relation between bound states of themelia
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and smooth horizonless supergravity solutions:
The Themelion Conjecture:

All smooth horizonless solutions come from bound states of themelia with KKM charge.
All bound states of such themelia give rise to a smooth supergravity solution.

As we remarked above, each themelion can have a large moduli space. Furthermore,
combining different themelia can lead to an enhancement of the moduli space. As we will
show, the superstratum solution is a combination of two themelia, each of which involves
a function of one variable and yet, the generic superstratum solution is expected to be
parametrized by arbitrary functions of three variables [25]. Therefore, our conjecture
does not imply that a choice of component themelia leads to a unique smooth horizonless
solution.

18.1 Themelia

To pin down the structure of a particular themelion, one must first specify its global
charges, and the amount of supersymmetry it will preserve overall. One then chooses
dipolar charges as “glue” that will bind the global object into a bound state with 16
supersymmetries locally [43]. There are typically multiple choices for such glue and, as we
will see, one can often combine different types of glue to create an even larger themelion
moduli space. The choice of these dipole charges is also motivated by the underlying
physics of the themelion.

The construction, of course, depends on the duality frame and the charges we want the
themelion to carry. Here we will work exclusively in the Type IIA/M-theory frame and
focus on themelia that have the F1, NS5 and P charges of a supersymmetric black hole.
We can uplift everything to M-theory, where the supersymmetries, Q, are 32-component
spinors and the themelion building blocks are M2 and M5 branes, momentum, P , and
KKM charge. The supersymmetries of the themelion are then defined by projectors
involving gamma matrices.

ΠQ = 0, Π =
1

2
(1 + P ), (18.1)

where the matrices, P , are given by [116]:

PM2(12) = Γ012 , PM5(12345) = Γ012345

PP(1) = Γ01 , PKKM(123456;7) = Γ0123456 = Γ789 10 .

Here the indices indicate the directions along which the branes extend. For the KKM the
last entry denotes the “special direction” of the fibration.

We will also focus on the T4 compactification of IIA supergravity to six dimensions
and will denote the M-theory circle by z and the torus directions as 1, 2, 3, 4. We will also
introduce two other circles: an S1(y) corresponding to the common direction of the F1
strings and NS5 branes that give global charges, and a “space-time” ψ-circle transverse to
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the T4 × S1(y). If the ψ direction is non-compact then charges corresponding to branes
wrapping this direction are necessarily dipolar. We will also find it useful to use the
standard IIA nomenclature: NS5, F1, D2 , D4 and D6 to encode the way in which the
M-theory objects wrap the z-circle.

An archetypical example of the relation between themelia and supergravity solution
comes from the Lunin-Mathur 8-supercharge solution [117]. This is a smooth horizonless
solution, which can be thought of as a supertube [118] with F1(y) and NS5(1234y) charges
and a KKM(1234ψz; y) dipole charge. The global supersymmetries are defined by the
vectors, ξ, satisfying:

1

2
(1 + Γ0yz) ξ = 0 ,

1

2
(1 + Γ01234y) ξ = 0 . (18.2)

This solution is made of two themelia. The first themelion is at the “supertube locus”
and has F1 and NS5 charges, as well as a glue coming from the angular momentum P(ψ)
along the supertube direction, ψ, and the KKM(1234ψz; y). Its projector has [116]:

P = λ1Γ
0yz + λ2Γ

01234y + λ3Γ
0ψ + λ4Γ

01234ψz . (18.3)

If one takes λ1 = cos2 ϕ, λ2 = sin2 ϕ and λ3 = −λ4 = sinϕ cosϕ, then one has:

P 2 = 1 , Π ξ =
1

2
(1 + P ) ξ = 0 . (18.4)

The identity Π2 = Π means that Π only has eigenvalues 0 or 1 and, combined with the fact
that the products of gamma matrices are traceless, it means that Π must have sixteen null
vectors, preserving 16 supersymmetries. However eight of those supersymmetries depend
upon the parameter, ϕ, and eight are independent of ϕ and are determined by the global
F1 and NS5 charges as in (18.2).

The second themelion is a bit less obvious when the supertube is in R4, but can be seen
easily if one embeds the Lunin-Mathur geometry in Taub-NUT [132,133]: The “center-of-
space” themelion is a KKM wrapping the (y1234z) directions and with a special direction
ψ. This reflects a more general principle: to reveal the themelion sources of a solution
one should write it as a fibration over a spatial R3. The themelia are located where the
fibers degenerate.

Supergravity superstrata of [18, 20, 21] are built by adding momentum waves along
y to a generalized supertube solution. These momentum waves cannot be sourced on
the themelion at the supertube locus, where the y-circle degenerates. Instead, they are
sourced at the center of space, promoting the simple KKM themelion to a much more
complicated momentum-carrying themelion.

To recast the original supergravity superstrata [18,20,21] in our IIA/M-theory frame,
we perform an S-duality and a T-duality along one direction of the T4, which we can
choose to be x1. By writing the superstratum solution as circle fibrations over an R3

base, one can easily read off all the themelion charges from the singularities in the fluxes
and metric functions. In particular, there are warp factors that diverge at the supertube
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location. These correspond to the global F1 (M2(yz)) and NS5 (M5(y1234)) charges, and
equal amounts of dipolar M2(1y) and M5(z234y) charges. At the center of space there
are also singularities corresponding to the same set of branes wrapped on the ψ direction:
M2(ψz), M5(ψ1234) and equal amounts of M2(ψ1) and M5(ψ234z). These branes are
dipolar. There is also the KKM with special direction ψ at the center of space.

In this chapter, we will focus on three-charge themelia (with four global supercharges)
carrying the charges F1(y), NS5(1234y) and P(y) in Type IIA/M-theory. The global
supersymmetries are given by:

1

2
(1 + Γ0yz) ξ = 0 ,

1

2
(1 + Γ01234y) ξ = 0 ,

1

2
(1 + Γ0y) ξ = 0 .

(18.5)

The most general themelion projector with these charges and the dipole charges corre-
sponding to the superstrata considered above is:

P = (α1Γ
0yz + α2Γ

0y1234 + α3Γ
0y + α4Γ

0y1234z)

+ (α5Γ
0ψz + α6Γ

0ψ1234 + α7Γ
0ψ + α8Γ

0ψ1234z)

+ (α9Γ
0y1 + α10Γ

0y234z) + (α11Γ
0ψ1 + α12Γ

0ψ234z) ,

(18.6)

where the αj can be interpreted as local charge densities divided by the mass density.
The global supercharge condition (18.5) leads to the following linear constraints:

α1 + α2 + α3 + α4 = 1 , (18.7)

α5 + α6 + α7 + α8 = 0 , (18.8)

α10 = −α9 , α11 = −α12 , (18.9)

and the projector condition P 2 = 1 in (18.4), leads to several quadratic conditions, which
include, for example:

(α1α2 + α3α4 − α2
9) + (α5α6 + α7α8 − α2

11) = 0 . (18.10)

The complete solution to the themelion constraints, obtained using (18.6) in equations
(18.4) and (18.5) is given by (F.1) and (F.2) with θ2 = π

2
, φ2 = 0.

Our first result is that: All existing microstate geometries - both bubbling solutions
and superstrata - are bound states of multiple themelia defined by (18.6).

We find that all the themelion constraints have counterparts in the supergravity so-
lutions. However, the relation is subtle. First, the themelion analysis is done for a
non-backreacted brane probe in flat space. Thus, to link the supergravity charges to the
αi we have to arrange that themelion’s environment be that of empty space: in particular
one must perform large gauge transformations to eliminate all the Wilson lines along the
themelion. Secondly, the themelion wraps several compact directions, whose radii affect
the charge densities and hence the αi. Since these radii typically vary across spacetime,
some of the themelion constraints impose conditions on the location of the themelion
itself.
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Object Coefficient Object Coefficient

F1(y) α1
x1

y1

z1

F1(ψ) α5
x2

y2

z2

NS5(y1234) α2 NS5(ψ1234) α6

P(y) α3 P(ψ) α7

KKm(y1234;ψ) α4 KKm(ψ1234;y) α8

D2(y1) α9
u1

D2(ψ1) α11
u2

D4(y234) α10 =

−α9

D4(ψ234) α12 =

−α11

D0 α13
v1

D2(yψ) α15
v2

D4(1234) α14 =

−α13

D6(yψ1234) α16 =

−α15

F1(1) α17
w1

NS5(yψ234) α19
w2

P(1) α18 =

−α17

KKm(yψ234; 1) α20 =

−α19

Table 18.1: The Type IIA constituents and parametrization of the most general themelion
with T3 invariance.

The simplest themelion constraint to interpret is (18.7), which reflects the fact that
the mass density of the themelion is the sum of its global charge densities: M = Q1+Q2+

Q3 +Q4. The parameters in the second constraint, (18.8), depend on distinct powers or
the radius of the ψ-circle, and so this determines the possible locations of the themelion.
In particular, for the bubbling solutions of [93, 94, 97], this constraint is equivalent to
the bubble equations 1. The last linear equations (18.9) reflect the fact that, in the six-
dimensional supergravity theories used to build superstrata and bubbling solutions, the
tensor fields corresponding to α9,10,11,12 must be anti-self dual.

For bubbling solutions the quadratic constraints, like (18.10), correspond to smooth-
ness conditions, giving exactly the quadratic constraints on the sources of harmonic func-
tions needed to construct smooth horizonless solutions of [93,94,97].

As we noted earlier, a superstratum is made of two themelia: one at the supertube
locus and one at the center of space. Using the correspondence between parameters in
branes in Table 18.1, one can see that the supertube themelion has α3,4,5,6,11,12 = 0 and
α7+α8 = α9+α10 = 0. The simplest way to identify the parameters of the center-of-space
themelion is to perform a “spectral inversion,” ψ ↔ y, [134] 2 and then one sees that this
themelion has α1,2,7,8,9,10 = 0 and α11 + α12 = α3 + α4 = 0.

Remembering that the supertube themelion has charge densities that depend on ψ, and
the center-of-space themelion has charge densities that depend on y one sees that (18.10)
imposes two independent constraints on these densities. Amazingly, these are exactly
the coiffuring constraints [21], which were necessary to construct smooth supergravity
solutions.

1A similar relation between bubble equations and probe-brane constraints has been found for super-
tubes probing bubbling solutions [120]

2We note that spectral inversion is inconsistent with (18.7) and (18.8). Consistency can be restored
by performing a large gauge transformation in supergravity to eliminate Wilson lines.
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18.2 The hyperstratum

The themelia that enter in the construction of the superstrata actually belong to a much
larger moduli space of themelia. Indeed, the Type IIB superstratum only had fields that
preserve the T4 invariance, but when we dualize it to the Type IIA/M-Theory duality
frame we use in this Chapter, it only has a T3 invariance, along the directions 234. This
suggests one should consider a more general themelion which preserves this T3 invariance
and has branes that can wrap 1, y, z and ψ. This themelion can have 20 possible species
of branes:

M2(0ab) , M5(0234ab) , P(a) , KKM(0234abc) , (18.11)

where a, b, c ∈ {1, y, z, ψ}. The complete set of species is described in the IIA nomencla-
ture in Table 18.1.

The projector is now constructed using P̂ = P + P ′ where P is given by (18.6) and

P ′ = α13Γ
0z + α14Γ

01234z + α15Γ
0yψ + α16Γ

0yψ1234

+ α17Γ
01z + α18Γ

01 + α19Γ
0yψ234 + α20Γ

0yψ234z .
(18.12)

We find that the null-space condition (18.5) now imposes eight linear constraints on the
αj, while the projection condition yields another 15 quadratic constraints. This is a hugely
overdetermined system, and if we first use the linear constraints, we can re-parametrize
the system in terms of three vectors in C3, defined by:

p⃗1 ≡ (u1 + iu2 ,−(w1 − iw2) , x1 + ix2) ,

p⃗2 ≡ (−i(v1 + iv2) ,−i(y1 − iy2) ,−i(w1 − iw2)) ,

p⃗3 ≡ (−(z1 + iz2) ,−(v1 + iv2) , u1 + iu2) .

(18.13)

where (u1, . . . , z2) are real parameters. Note that each vector pi has an entry in common
with both other vectors and so there are twelve independent real parameters and their
relationship with the αj may be found in (F.1). The projection condition, P̂ 2 = P̂ , is
equivalent to the statement that the p⃗j are orthonormal in C3 . This means that one can
then use U(3) to rotate the p⃗j to a simple canonical form:

p⃗1
′ ≡ (0 , 0 , 1) , p⃗2

′ ≡ (0 ,∓i , 0) , p⃗3′ ≡ (∓1 , 0 , 0) . (18.14)

Note that this basis corresponds to x1 = 1, y1 = z1 = ±1, with all the other parameters
set to zero. From (F.1) one sees that this themelion corresponds to α1 = 1 (for +), or
α4 = 1 (for −) with all the other αj vanishing. Thus a U(3) U-duality rotation can locally
map this themelion onto a stack of F1 strings or a stack of coincident KKM’s.

Using the U(3) one can parametrize the most general themelion, remembering that
the rotation must be restricted by the constraints on interrelated components of the p⃗i
in (18.13). The result is a six parameter family, (F.2), given by the angles, θ1, θ2, φj,
j = 1, 2, 3, 4. As noted earlier, the projector of the supertube-locus themelion of the
superstratum solution, based on (18.6), is given by vj = wj = 0, or θ2 = π

2
and φ2 = 0.
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It is not hard to see that our general themelion also include the themelia that enter
the construction of the vector superstratum of [131] of which a subset can be built using
only NS-NS fields. The “supertube-locus" themelion of these NS-NS vector superstratum
is obtained by taking uj = vj = 0, or θ2 = 0.

To obtain a themelion with no components in the space-time (ψ) directions, a glance
at Table 18.1 reveals that one must remove all the constituents in the second column, and
hence all the second components must vanish. This is achieved by setting all the φ-phases
in (F.2) to zero. This leaves a themelion with:

P =(β1 Γ
0yz + β2 Γ

01234y + β3 Γ
0y) + β4 (Γ

0z − Γ01234z)

+ β5 (Γ
01 − Γ01z) + β6 (Γ

01y + Γ0234yz) .

and
β1 =cos2

1

2
θ1 , β2 = sin21

2
θ1 sin

2θ2 , β3 = sin21

2
θ1 cos

2θ2 ,

β4 =sin21

2
θ1 sin θ2 cos θ2 , β5 + iβ6 =

1

2
sin θ1 e

iθ2 .

Amazingly, this is the projector of the super-maze [43]. Hence, the class of themelia we
obtain from P̂ contains the themelia that govern both the original and vector superstrata,
as well as the super-maze themelion. Based on the Themelion Conjecture, we expect
there to be supergravity solutions made of multiple generalized themelia, which we can
call hyperstrata. These will contain all the existing superstrata and super-mazes. Since
the momentum charge is carried by different excitations in the superstrata and the super-
maze, we expect the hyperstrata to have a larger entropy than either subclass.

Moreover, it was argued in [43] that, because the super-maze captures brane fraction-
ation, its entropy is expected to match that of the rotationally-invariant microstates of
the black hole, 2π

√
5
6
Q1Q5QP . The hyperstratum will capture these microstates as well

those that break the spacetime rotational invariance of the black-hole horizon. Given that
the hyperstratum captures fractionation and restores democracy between the y-circle and
a generic torus direction, we expect it to match the full black-hole entropy. It would be
exciting to construct some hyperstratum solutions, to see whether this intuition is realized.

By breaking the torus invariance, we have found themelia that capture fractionated
branes, and perhaps the full black-hole entropy. It is thus natural ask how the phase space
of themelia will expand if we relax the T3 invariance imposed here and allow all possible
branes wrapping the compactified dimensions. Given that the generic super-maze breaks
this invariance, we suspect that relaxing the T3 invariance will lead to a phase space that
is a combination of all superstrata and generic supermazes.

Armed with our knowledge of themelia and hyperstrata, we return to the resolution
of a seeming paradox of the original superstratum: its moduli space appears to have a
degenerate limit to a BTZ black hole with finite horizon area [20,21], and yet a themelion
cannot have a horizon. This degenerate limit arises when one forces the two themelia of
the superstratum to coincide. One of these themelia has only ψ fluctuations and a KKM
that shrinks y, while the other one has only y fluctuations and a KKM that shrinks ψ.
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Forcing these two themelia to coincide turns off both the ψ and y fluctuations, and either
requires one to set the momentum charge to zero, or results in a configuration that is not
a themelion.

However, we have seen that the themelia that give rise to the superstratum are part of
a much larger family of themelia that can fluctuate not only along ψ and y, but also along
z and the torus directions. The hyperstratum is built from these more generic themelia,
and the coincidence limit is no longer degenerate: the momentum charge can be carried
by fluctuations along z and the torus, and the resulting configuration will be another
horizonless themelion, the super-maze. The presence of a black hole in the phase space
of superstratum solutions is an artifact of objects made from enforcing T4 invariance and
smearing the themelia. This illustrates, once again, the fuzzball precept: horizons only
appear because of ensemble averaging.
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Appendix A

General solutions of the single-mode
BPS equations

Here we explicitly present the general solutions to the fields that remain undetermined at
the end of Section 11.2.3. These can be obtained from (10.51), (10.54) and (11.17) with
the already derived solutions for λ1, µ1, µ2, k and Ω1. The equations imply that Ω1 is
constant, and we assume here that we are in a gauge where

Ω1 ≡ 1 . (A.1)

ν =

√√√√ σ

1− ξ2

(
1−

(
ξq2(1− γ1 ξ2 q1) + β ξq1(1− γ2 ξ2 q2)

)2(
ξq2(1− γ1 ξ2 q1)− β ξq1(1− γ2 ξ2 q2)

)2
)
, (A.2)

Φ1 =
1

2

(
c5

1− γ1 ξ2 q1
− c4

1− γ2 ξ2 q2
+

(1 + γ1 ξ
2 q1)

2(1− γ1 ξ2 q1)
(
(c5 − 2)q1 log ξ + c7

)
− (1 + γ2 ξ

2 q2)

2(1− γ2 ξ 2 q2)

(
(c4 + 2)q2 log ξ + c6

)
− σ

2

)−1

, (A.3)

Φ2 =
1

2

(
1−

[
σ
(
ξq2(1− γ1 ξ2 q1) + β ξq1(1− γ2 ξ2 q2)

)
2
(
ξq2(1− γ1ξ2 q1)− β ξq1(1− γ2 ξ2 q2)

) − c5
1− γ1 ξ2 q1

− c4
1− γ2 ξ2 q2

− (1 + γ1 ξ
2 q1)

2(1− γ1 ξ2 q1)
(
(c5 − 2)q1 log ξ + c7

)
− (1 + γ2 ξ

2 q2)

2(1− γ2 ξ 2 q2)

(
(c4 + 2)q2 log ξ + c6

)]−1)
,

(A.4)

Ψ1 =
1

4

(
q2 −

2 q2
1− γ2 ξ2 q2

− q1 −
2 q1

1− γ1 ξ2 q1
)
−
[(
(c4 + 2) q2 log ξ + c4 + c6

) q2 γ2 ξ
2 q2

(1− γ2 ξ2 q2)2

+
1

2

c4 q2
1− γ2 ξ2 q2

+
(
(c5 − 2) q1 log ξ + c5 + c7

) q1 γ1 ξ
2 q1

(1− γ1 ξ2 q1)2
+

1

2

c5 q1
1− γ1 ξ2 q1

+ c8

]
×

×1

2

(
c5

1− γ1 ξ2 q1
− c4

1− γ2 ξ2 q2
+

(1 + γ1 ξ
2 q1)

2(1− γ1 ξ2 q1)
(
(c5 − 2)q1 log ξ + c7

)
− (1 + γ2 ξ

2 q2)

2(1− γ2 ξ 2 q2)

(
(c4 + 2)q2 log ξ + c6

)
− σ

2

)−1

, (A.5)
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Ψ2 = −
1

2
+
q1 + q2

4
+
q1
4

[ 2 ξ2 q2(1− γ21 ξ4 q1)
ξ2 q2(1− γ1 ξ2 q1)2 − β2 ξ2 q1(1− γ2 ξ2 q2)2

+
2

1− γ1 ξ2 q1
− 4
]

+
q2
4

[ 2

1− γ2 ξ2 q2
− 2 β2 ξ2 q1(1− γ22 ξ4 q2)
ξ2 q2(1− γ1 ξ2 q1)2 − β2ξ2 q1(1− γ2 ξ2 q2)2

− 4
]

+
γ2 ξ

2 q2(2 γ1(q1 − q2)(q1 + q2)
2ξ2 q1 + γ21 q

2
2(2 q1 + q2) ξ

4 q1 + q32)− γ1 q21 ξ2 q1(q1 + γ22 ξ
4 q2(q1 + 2 q2))

2 γ2 q22 ξ
2 q2(1− γ1 ξ2 q1)2 − 2 γ1 q21ξ

2 q1(1− γ2 ξ2 q2)2

+
1

2

[(
(c4 + 2) q2 log ξ + c4 + c6

) q2 γ2 ξ
2 q2

(1− γ2 ξ2 q2)2
+

1

2

c4 q2
1− γ2 ξ2 q2

+
1

2

c5 q1
1− γ1 ξ2 q1

+ c8

+
(
(c5 − 2) q1 log ξ + c5 + c7

) q1 γ1 ξ
2 q1

(1− γ1 ξ2 q1)2

]
×
[
σ
(
ξq2(1− γ1 ξ2 q1) + β ξq1(1− γ2 ξ2 q2)

)
2
(
ξq2(1− γ1ξ2 q1)− β ξq1(1− γ2 ξ2 q2)

) − c5
1− γ1 ξ2 q1

− c4
1− γ2 ξ2 q2

− (1 + γ1 ξ
2 q1)

2(1− γ1 ξ2 q1)
(
(c5 − 2)q1 log ξ + c7

)
− (1 + γ2 ξ

2 q2)

2(1− γ2 ξ 2 q2)

(
(c4 + 2)q2 log ξ + c6

)]−1

,

(A.6)

Ω0 =
[(1− ξ2)2(γ2 q22 ξ2 q2(1− γ1ξ2 q1)2 − γ1 q21 ξ2 q1(1− γ2 ξ2 q2)2)

4 ξ2(1− γ1 ξ2 q1)2(1− γ2 ξ2 q2)2
×

×
( 2 c5
1− γ1 ξ2 q1

− 2 c4
1− γ2 ξ2 q2

− σ +
(1 + γ1 ξ

2q1)

1− γ1 ξ2 q1
(
(c5 − 2)q1 log ξ + c7

)
−(1 + γ2 ξ

2 q2)

1− γ2 ξ2 q2
(
(c4 + 2)q2 log ξ + c6

))
×
(
− 2 c5

1− γ1 ξ2 q1
− 2 c4

1− γ2 ξ2 q2

−(1 + γ1 ξ
2q1)

1− γ1 ξ2 q1
(
(c5 − 2)q1 log ξ + c7

)
− (1 + γ2 ξ

2 q2)

1− γ2 ξ2 q2
(
(c4 + 2)q2 log ξ + c6

)
+
σ
(
ξq2(1− γ1 ξ2 q1) + β ξq1(1− γ2 ξ2 q2)

)
ξq2(1− γ1 ξ2 q1)− β ξq1(1− γ2 ξ2 q2)

)]1/2
. (A.7)
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Appendix B

Reduced equations on special locus

The definition of the special locus in supergravity is introduced in Section 12.2.3, and
its consequences in the double-mode truncation are explored in Section 12.3.2. In this
Appendix we derive the consequences of these properties on the equations of motion. For
completeness, we will restate the relations characterizing it, namely:

µ1,2 = λ1,2 =
1

2
log
(
1− 1− ξ2

2
ν21,2

)
,

m5 = −
1

2
(1− ξ2) ν1 ν2, m6 = 0, (B.1)

The matrix m, (9.28), is thus given by

m =


1− 1

2
(1− ξ2) ν21 0 −1

2
(1− ξ2) ν1 ν2 0

0 1 0 0

−1
2
(1− ξ2) ν1 ν2 0 1− 1

2
(1− ξ2) ν22 0

0 0 0 1

 , (B.2)

with only one non-trivial eigenvalue, given by

m0 = 1− 1

2
χIχI = 1− 1

2
(1− ξ2)

(
ν21 + ν22

)
. (B.3)

Moreover, χ is a null vector of F̃

F̃µν
IJ χJ = 0 , (B.4)

which results in the following algebraic relation between the gauge fields

Φ4Ψ2 + Φ3Ψ1 − Φ1Ψ3 − Φ2Ψ4 = 0. (B.5)

Substituting the relations above in the equations of motion leads to a reduced set
of “almost BPS” equations. The procedure is tedious, so we will only present the final
results. It will prove convenient to define the following complex vectors:

VF =


F1 + iF4

0

−F3 + iF2

0

 , VΦ =


Φ1 + iΦ4

0

−Φ3 + iΦ2

0

 . (B.6)
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where the functions Fj have been defined in (10.59). We will also define

Λ = 2m0 = 2− (1− ξ2)
(
ν21 + ν22

)
. (B.7)

The gauge fields all satisfy first-order linear ODEs:

ξ∂ξ(Φ1 + iΦ4) =

√
1− ξ2 ν2
Λ

Ω1(iχI)VFI , ξ∂ξ(Φ3 − iΦ2) =

√
1− ξ2 ν1
Λ

Ω1(iχI)VFI ,

ξ∂ξ(Ψ1 + iΨ4) =

√
1− ξ2 ν2
Λ

Ω1(iχI)

(
k

1− ξ2
VFI +H0VΦ

I

)
,

ξ∂ξ(Ψ3 − iΨ2) =

√
1− ξ2 ν1
Λ

Ω1(iχI)

(
k

1− ξ2
VFI +H0VΦ

I

)
.

The above equations also imply:

ν1Φ
′
1 − ν2Φ′

3 = 0, ν2Φ
′
2 + ν1Φ

′
4 = 0,

ν1Ψ
′
1 − ν2Ψ′

3 = 0, ν2Ψ
′
2 + ν1Ψ

′
4 = 0. (B.8)

The equation for k is also first-order and linear:

Ω1 ξ∂ξ

(
k

1− ξ2

)
+ 8
(
Φ1Φ2 + Φ3Φ4 − κ

)
H0 = 0, (B.9)

where κ is a constant of integration, that can be determined order by order in the per-
turbative expansion using the regularity constraints. One can also derive a first-order
equation for H0, and through it the metric fields Ω0 and Ω1:

Ω1 ξ∂ξ log(H0)− 8
(
Φ1 F2 + Φ2 F1 + Φ3 F4 + Φ4 F3

)
− 16κ

k

1− ξ2
+ϖ = 0, (B.10)

where ϖ is another constant of integration. The metric sector of the equations does not
fully reduce to first-order, hence one has to complement (B.10) with the second-order
equation of motion for Ω1:

2
ξ∂ξ(ξ∂ξΩ1)

Ω1H0

− 2
Λ + 2

Λ
Ω2

1 + H−2
0

(
ξ∂ξ

k

1− ξ2

)2

− 8

Λ

∣∣χIVΦ
I

∣∣2 = 0. (B.11)

Finally, we need equations for ν1,2. One can derive a Wronskian type of constraint for
them:

ξ(1− ξ2)Ω1

Λ

(
ν2 ν

′
1 − ν1 ν ′2

)
= 4

(
Φ4Ψ1 − Φ1Ψ4 + Φ3Ψ2 − Φ2Ψ3

)
, (B.12)

which is to be supplemented by one second-order differential equation from the equations
of motion of ν1 and ν2, that we can write in terms of the eigenvalue Λ:

ξ∂ξ(ξ∂ξΛ) +
3Λ− 4

2Λ(2− Λ)
(ξ∂ξΛ)

2 + (ξ∂ξ log Ω1)(ξ∂ξΛ)− 8
∣∣χIVFI ∣∣2 + 8H0

∣∣χIVΦ
I

∣∣2 (B.13)

+ 32
Λ2

(2− Λ)Ω2
1

(Φ1Ψ4 + Φ2Ψ3 − Φ3Ψ2 − Φ4Ψ1)
2 + 2(2− Λ)Ω2

1H0 = 0 ,

(B.14)
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Appendix C

Uplift to six dimensions

The solutions of the three-dimensional gauged supergravity can be uplifted to type IIB
supergravity compactified on a four-dimensional compact space M, which can be either
T4 or K3. The latter is the appropriate framework to interpret the solutions as bound
states of D1 and D5 branes and to perform the holographic analysis. The compact space
M plays a trivial role in our solutions and one can conveniently focus on the remaining
six-dimensional directions, which we describe, following [36, 53, 135], by the 6D Einstein
metric ds26, the three-forms G(I) and the scalars ϕ(mr). In our solutions the only non-
trivial fields sit in the gravity multiplet, which contains the three-form G(5), and two
tensor multiplets, which add two more three-forms, G(6), G(7), and two scalars, ϕ(56),
ϕ(57). From the ten-dimensional perspective the non-trivial fields are: the RR forms, C0,
C2, C4, the NSNS two-form, B2, the dilaton, Φ, and the volume of M, V4; since the RR
four-form has only a component alongM, plus the 6D component needed for self-duality,
we will simply denote by C4 the scalar giving its M-component; we will also denote by
C6 the two-form in 6D obtained by reducing on M the six-form dual to C2. The four
scalars, ϕ, V4, C0, C4, are related by

C4 =
e2ΦC0

e2ΦC2
0 + 1

, V 2
4 =

e2Φ

e2ΦC2
0 + 1

. (C.1)

The relation between the 10D and 6D quantities is

ϕ(56) =
1

2

[√
Q5

Q1

C4

C0

−

√
Q1

Q5

C0

C4

]
, ϕ(57) =

√
C0C4 , (C.2)

G(5) =
Q1G

(1) +Q5G
(2)

2Q1Q5

, G(6) =
Q1G

(1) −Q5G
(2)

2Q1Q5

, G(7) = − G(4)

√
Q1Q5

, (C.3)

with
G(1) =

1

2
dC2 , G(2) =

1

2
dC6 , G(4) = −1

2
dB2 ; (C.4)

Q1 and Q5 are the D1 and D5 supergravity charges that determine the magnetic (S3)
components of the three-forms at infinity: G(1)|S3 → Q5, G(2)|S3 → Q1.
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The general uplift formulas were given in [27]: we would like to make these formulas
explicit for the Q-ball truncations introduced in Chapter 9; we will work in the axial gauge
specified by the functions in (9.32). It is convenient to define

Γi = eλi cos2 φi + e−λi sin2 φi (i = 1, 2) , (C.5)

∆ = eµ1Γ1 sin
2 θ + eµ2Γ2 cos

2 θ + 2 (m5 cosφ1 cosφ2 +m6 sinφ1 sinφ2) sin θ cos θ , (C.6)

det(m) = (eµ1+µ2 − e−λ1−λ2m2
5)(e

µ1+µ2 − eλ1+λ2m2
6) , (C.7)

X =
√

1− ξ2 (ν1 cosφ1 sin θ + ν2 cosφ2 cos θ) . (C.8)

Then the 6D Einstein metric is

ds26 = (det(m))−1/2∆1/2 ds23 +R2
AdS (det(m))1/2∆−1/2

(
Gαβ DyαDyβ

)
, (C.9)

where ds23 is defined in (7.18), the components of the S3 metric are

Gθθ = eµ2
[

e−λ1 cos2 φ1

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ1 sin2 φ1

eµ1+µ2 − eλ1+λ2m2
6

]
cos2 θ

+ eµ1
[

e−λ2 cos2 φ2

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ2 sin2 φ2

eµ1+µ2 − eλ1+λ2m2
6

]
sin2 θ

+ 2

[
e−λ1−λ2 m5 cosφ1 cosφ2

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ1+λ2 m6 sinφ1 sinφ2

eµ1+µ2 − eλ1+λ2m2
6

]
sin θ cos θ ,

(C.10a)

Gφ1φ1 = eµ2
[

e−λ1 sin2 φ1

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ1 cos2 φ1

eµ1+µ2 − eλ1+λ2m2
6

]
sin2 θ , (C.10b)

Gφ2φ2 = eµ1
[

e−λ2 sin2 φ2

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ2 cos2 φ2

eµ1+µ2 − eλ1+λ2m2
6

]
cos2 θ , (C.10c)

Gθφ1 = eµ2
[
− e−λ1

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ1

eµ1+µ2 − eλ1+λ2m2
6

]
sinφ1 cosφ1 sin θ cos θ

+

[
−e

−λ1−λ2 m5 sinφ1 cosφ2

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ1+λ2 m6 cosφ1 sinφ2

eµ1+µ2 − eλ1+λ2m2
6

]
sin2 θ ,

(C.10d)

Gθφ2 = eµ1
[

e−λ2

eµ1+µ2 − e−λ1−λ2m2
5

− eλ2

eµ1+µ2 − eλ1+λ2m2
6

]
sinφ2 cosφ2 sin θ cos θ

+

[
e−λ1−λ2 m5 cosφ1 sinφ2

eµ1+µ2 − e−λ1−λ2m2
5

− eλ1+λ2 m6 sinφ1 cosφ2

eµ1+µ2 − eλ1+λ2m2
6

]
sin2 θ ,

(C.10e)

Gφ1φ2 = −
[
e−λ1−λ2m5 sinφ1 sinφ2

eµ1+µ2 − e−λ1−λ2m2
5

+
eλ1+λ2m6 cosφ1 cosφ2

eµ1+µ2 − eλ1+λ2m2
6

]
sin θ cos θ , (C.10f)

and the S3 one-forms are
Dyα = dyα −Kα

IJ Ã
IJ , (C.11)
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with Kα
IJ = −Kα

IJ the S3 Killing vectors

K12 =
∂

∂φ1

, K34 =
∂

∂φ2

,

K13 = cosφ1 cosφ2
∂

∂θ
− sinφ1 cosφ2 cot θ

∂

∂φ1

+ cosφ1 sinφ2 tan θ
∂

∂φ2

,

K14 = cosφ1 sinφ2
∂

∂θ
− sinφ1 sinφ2 cot θ

∂

∂φ1

− cosφ1 cosφ2 tan θ
∂

∂φ2

,

K23 = sinφ1 cosφ2
∂

∂θ
+ cosφ1 cosφ2 cot θ

∂

∂φ1

+ sinφ1 sinφ2 tan θ
∂

∂φ2

,

K24 = sinφ1 sinφ2
∂

∂θ
+ cosφ1 sinφ2 cot θ

∂

∂φ1

− sinφ1 cosφ2 tan θ
∂

∂φ2

.

(C.12)

All the scalars can be reconstructed from the dilaton and axion, which are given by

e2Φ =
Q1

4Q5

(X2 + 2∆)2

∆
, C0 =

√
2Q5

Q1

X

X2 + 2∆
. (C.13)

Formulas for the three-forms are considerably more cumbersome. We will only give the
results that are used in the holographic computation, i.e. the components, G(I)|S3 , of the
three-forms along the S3 (divided by the volume of the round S3) for the restricted ansatz
with µ2 = λ2 = ν2 = m5 = m6 = Φ3 = Ψ3 = Φ4 = Ψ4 = 0:

G(1)|S3 =
Q5 e

µ1

∆

[
eλ1 + e−λ1

2
− eµ1(e2λ1 cos2 φ1 + e−2λ1 sin2 φ1)− eµ2Γ1

∆
sin2 θ

]
, (C.14a)

G(2)|S3 = Q1 −
Q1

2
(1− ξ2)ν21

[
eµ2
(
cos 2θ

∆
− eµ1Γ1 − eµ2

∆2
sin2 θ cos2 θ

)
cos2 φ1

− 1

4

∂

∂φ1

(
sin(2φ1)

∆

)
(eµ1−λ1 sin2 θ + eµ2 cos2 θ)

]
,

(C.14b)

G(7)|S3 = X
eµ1

2
√
2∆

[
e−λ1 − 2

(eµ1 + eµ2Γ1) sin
2 θ + eµ2(eλ1 + e−λ1) cos2 θ)

∆

]
. (C.14c)
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Appendix D

Z2 symmetric beta class equations for
numerics

Here are the equations for the Z2 symmetric case of the beta class of solutions - that is,
n1 = n2 = n, β1 = β2 = β and µ1 = µ2, λ1 = λ2, Φ1 = Φ2 and Ψ1 = Ψ2. For numerical
convenience, we have defined k = ξ κ. The equations follow:

Eµ1 ≡ ξ (1− ξ2)2 Ω2
0 Ω1 ∂ξ

(
ξΩ1 µ

′
1

)
− 4 e2µ1(1− ξ2)2 Ω2

1

(
ξ κΦ′

1 − (1− ξ2)Ψ′
1

)2
+4 e2µ1 ξ2(1− ξ2)2Ω2

0 Φ
′2
1 + 4 e−4µ1ξ2 Ω4

0 Ω
2
1

(
1− e2µ1

)
= 0,

Eλ1 ≡ ξ (1− ξ2)2 Ω1 ∂ξ
(
ξΩ1 λ

′
1

)
− 2 sinh

(
2λ1

)(
4Ω2

1

(
ξ κΦ1 − (1− ξ2)Ψ1

)2 − 4 ξ2Ω2
0 Φ

2
1

)
= 0,

EΦ1 ≡ −4 ξ2 sinh
(
λ1

)2
Φ1 Ω

4
0 Ω1 + e2µ1 ξ (1− ξ2)2 Ω2

0

(
− ξΦ′

1 Ω
′
1 +Ω1

(
(1 + 2 ξ µ′

1) Φ
′
1 + ξΦ′′

1

))
−(1− ξ2) Ω2

1

[
− 2 ξΩ2

0

(
ξ κΦ′

1 − (1− ξ2)Ψ′
1

)
+ e2µ1 Ω1

(
(1 + ξ2)κ+ ξ (1− ξ2)κ′)(ξ κΦ′

1 − (1− ξ2)Ψ′
1

)]
= 0,

EΨ1 ≡ −κΩ2
1

[
− 2 ξΩ2

0

(
ξ κΦ′

1 − (1− ξ2)Ψ′
1

)
+ e2µ1 Ω1

(
(1 + ξ2)κ+ ξ (1− ξ2)κ′)(ξ κΦ′

1 − (1− ξ2)Ψ′
1

)]
+e2µ1 Ω0 Φ

′
1

[
− ξ (1− ξ2) Ω0 Ω1 (κ+ ξ κ′) + 2 ξ κ

(
ξ (1− ξ2) Ω1 Ω

′
0 +Ω0

(
Ω1 − ξ (1− ξ2) Ω′

1

))]
−e2µ1 (1− ξ2) Ω0

[
Ω0

(
Ψ′

1

(
Ω1 (1 + 3 ξ2 − 2 ξ(1− ξ2)µ′

1)− ξ (1− ξ2) Ω′
1

)
− ξ (1− ξ2) Ω1 Ψ

′′
1

)
+2 ξ (1− ξ2) Ω1 Ψ

′
1 Ω

′
0

]
− 2 ξ2 Ω4

0 Φ
′
1 − 4 ξ sinh

(
λ1

)2
Ψ1 Ω

4
0 Ω1 = 0,

EΩ0 ≡ 2 ξΩ1

[
− ξ(1− ξ2)2 Ω1 Ω

′2
0 +Ω2

0

(
4 ξΩ1 + (1− ξ4) Ω′

1

)
+ (1− ξ2)2 Ω0

(
Ω′

0(Ω1 + ξΩ′
1) + ξΩ1Ω

′′
0

)]
−Ω4

1

(
(1 + ξ2)κ+ ξ(1− ξ2)κ′)2 + 32Ω2

0 Ω
2
1 sinh

(
λ1

)2(
ξ κΦ1 − (1− ξ2)Ψ1

)2
+ 8 (1− ξ2)2ξ2 Ω2

0 e
2µ1 Φ′2

1

+4 e−4µ1 ξ2 Ω4
0 Ω

2
1

(
1− 2 e2µ1

)
= 0,

EΩ1 ≡ −32 ξ2 sinh
(
λ1

)2
Φ2

1 Ω
4
0 + 4 e−4µ1 ξ2 Ω4

0 Ω
2
1

(
1− 2 e2µ1

)
+Ω4

1

(
(1 + ξ2)κ+ ξ (1− ξ2)κ′)2

−8 (1− ξ2)2 Ω2
1 e

2µ1
(
ξ κΦ′

1 − (1− ξ2)Ψ′
1

)2
+ 2 ξ (1− ξ2)2Ω2

0 Ω1

(
Ω′

1 + ξΩ′′
1

)
= 0,

Eκ ≡ 32 ξ sinh
(
λ1

)2
Φ1

(
ξ κΦ1 − (1− ξ2)Ψ1

)
Ω3

0 + 8 ξ (1− ξ2)2 Ω0 e
2µ1Φ′

1

(
ξ κΦ′

1 − (1− ξ2)Ψ′
1

)
−(1− ξ2) Ω1

[
2 ξΩ1

(
(1 + ξ2)κ+ ξ (1− ξ2)κ′)Ω′

0 +Ω0

(
− 3 ξ

(
(1 + ξ2)κ+ ξ (1− ξ2)κ′)Ω′

1

−(1− ξ2) Ω1

(
− κ+ ξ (κ′ + ξ κ′′)

))]
= 0. (D.1)
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These are the equations we integrate numerically. However, one can show that a linear
combination of EΦ1 , EΨ1 and Eκ reduces to a first order equation, namely:

(1− ξ2)2

ξ

Ω3
1

Ω2
0

∂ξ

(
ξ κ

1− ξ2

)
+ 8

e2µ1 (1− ξ2)2Ω1

(
ξ κ

1−ξ2 Φ
′
1 −Ψ′

1

)
ξ Ω2

0

Φ1 + 8Φ2
1 − cκ = 0, (D.2)

where cκ is a constant of integration. Equation (D.2) generalizes to the n1 ̸= n2 beta
class and we treat it as the equation of motion for the Ψ1 gauge field, implying that the
latter is governed by a first-order differential equation. It is not related to the 3 constraint
equations. The latter reduce to a single constraint for the beta class (for general n1,2),
as the ones coming from the Maxwell equations are automatically satisfied. Only the
Einstein constraint remains non-trivial and we omit it here, as it is rather cumbersome.
We use it to monitor the convergence of our numerics.
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Appendix E

Projectors and involutions for branes

In this Appendix we list the involutions associated to common brane type. In Type II
string theory, they are:

PP = Γ01 , PF1 = Γ01σ3 ,

P IIA
NS5 = Γ012345 , P IIB

NS5 = Γ012345σ3 ,

P IIA
KKM(12345;6) = Γ012345σ3 , P IIB

KKM(12345;6) = Γ012345 , (E.1)

PD0 = Γ0iσ2 , PD2 = Γ012σ1 , PD4 = Γ01234iσ2 , PD6 = Γ0123456σ1 ,

PD1 = Γ01σ1 , PD3 = Γ0123iσ2 , PD5 = Γ012345σ1 .

The projectors in M-theory are given by:

PP = Γ01 , PM2 = Γ012 , PM5 = Γ012345 , P IIB
KKm = Γ0123456 . (E.2)
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Appendix F

Parametrizing the themelia

In the interest of efficiency we parametrize the most general themelion considered in this
manuscript, which should be the building block of hyperstrata, via:

α1 =
1

4
(1 + x1 + y1 + z1) , α2 =

1

4
(1− x1 + y1 − z1) ,

α3 =
1

4
(1− x1 − y1 + z1) , α4 =

1

4
(1 + x1 − y1 − z1) ,

α5 =
1

4
(x2 + y2 + z2) , α6 =

1

4
(−x2 + y2 − z2) ,

α7 =
1

4
(−x2 − y2 + z2) , α8 =

1

4
(x2 − y2 − z2) ,

α9=α10=
1

2
u1 , α11=α12=

1

2
u2 , α13=−α14=

1

2
v1 ,

α15=−α16=
1

2
v2, α17=−α18=

1

2
w1, α19=−α20=

1

2
w2.

(F.1)

and the solution to the projection conditions is:

u1 + iu2 = s1s2 e
iφ1 ,

v1 + iv2 = s2c2 e
i(φ1−φ2−φ3)(e−2iφ4 − c1) ,

w1 + iw2 = s1c2 e
iφ2 , x1 + ix2 = c1e

iφ3 ,

y1 + iy2 = ei(2φ2+φ3) (c1c
2
2 + s22 e

−2iφ4) ,

z1 + iz2 = ei(2φ1−φ3) (c22 e
2iφ4 + c1s

2
2) ,

(F.2)

where cj ≡ cos θj and sj ≡ sin θj. The quadratic terms appear because some U(3)

rotation angles must be fixed in terms of others to preserve the relationships between the
components, (18.13) of the p⃗j.
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