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infinite dimension. We then consider mean-field control with probabilistic state constraints on the law of the controlled state. We represent the problem by an auxiliary unconstrained problem with exact penalisation which can be solved by the modification of an existing brute force deep learning scheme.

iii Titre : Méthodes d'apprentissage automatique pour la résolution de problèmes de contrôle stochastique et d'équations aux dérivées partielles en grande dimension Résumé : Cette thèse étudie plusieurs schémas numériques d'apprentissage automatique pour la résolution d'Équations aux Dérivées Partielles non-linéaires (EDPs) et du contrôle à champ moyen en dimension modérée ou grande. Elle est divisée en deux parties.

La première partie est consacrée à la résolution d'EDPs paraboliques non-linéaires. Nous décrivons un schéma multistep par réseaux de neurones qui améliore les méthodes existantes et nous étudions son erreur d'approximation ainsi que celle de schémas existants dans le cas semilinéaire où l'équation est linéaire par rapport à la dérivée seconde de la solution. En utilisant des réseaux de neurones lipschitziens de type GroupSort, nous sommes capables de relier l'erreur au nombre de neurones et de couches du réseau utilisé pour l'approximation. Nous développons également des schémas one-step et multistep pour le cas plus délicat des EDPs complétement non-linéaires. Toutes les méthodes sont testées sur des exemples numériques.

La seconde partie de ce travail est dédiée au contrôle à champ moyen et aux équations de McKean-Vlasov. Nous prouvons par des arguments probabilistes une vitesse de convergence pour l'approximation en dimension finie d'une EDP sur l'espace de Wasserstein. Nous utilisons alors des réseaux de neurones symétriques DeepSet pour résoudre des EDPs symétriques en grande dimension. Ainsi nous sommes capables d'approcher la solution de problèmes de contrôle à champ moyen à partir de leurs conditions d'optimalité. Nous considérons ensuite le contrôle à champ moyen avec des contraintes d'état probabilistes. Pour cela, nous représentons le problème par un problème auxiliaire sans contraintes qui peut être résolu par une variante d'un schéma existant d'apprentissage profond.

Mots-clefs : EDPs non-linéaires, réseaux de neurones, contrôle stochastique, contrôle à champ moyen, équation maîtresse, contraintes d'état probabilistes, approximation numérique, DeepSet, GroupSort Title: Machine learning for stochastic control and partial differential equations in high dimension Abstract: This thesis studies several machine learning numerical schemes to solve nonlinear PDEs and mean-field control in moderate to high dimension and is divided in two parts.

The first part focuses on the resolution of parabolic nonlinear PDEs. We describe a multistep neural network scheme which improves existing methods from the literature. One of our contributions is the study of its approximation error together with the ones of existing methods in the semilinear case where the equation is linear with respect to the second order derivative. By using Lipschitz GroupSort neural networks, we are able to link the error to the number of layers and neurons of the approximating network. We also develop one-step and multistep schemes in the more challenging case of fully nonlinear PDEs, based on Malliavin weights and automatic differentiation. All the numerical schemes are tested on numerical examples to demonstrate their relevance.

The second part of this work is dedicated to mean-field control and McKean-Vlasov equations. We prove by probabilistic arguments a rate of convergence for the finite dimensional approximation of a PDE on the Wasserstein space. We then use symmetric DeepSet neural networks to solve symmetric PDEs in high dimension. Hence we are able to approximate numerically mean-field control problems by solving their optimality conditions in the form of a Master Bellman PDE in Chapter 1

Introduction

This thesis is divided in two parts. The first one studies numerical methods for solving non-linear parabolic Partial Differential Equations (PDEs). These equations typically arise in the context of dynamic programming for stochastic control, which is our main motivation. Our schemes use deep learning in order to approximate PDE solutions. We describe a new multistep scheme for the resolution of semilinear PDEs and realize a convergence analysis of the method and other existing ones from the literature. We show that both the theoretical approximation error and the empirical numerical error are lower in comparison to existing methods. In particular, thanks to recent results on Lipschitz GroupSort neural networks, we are able to relate the scheme error to the network architecture, that is the number of neurons and layers. When the PDEs are fully nonlinear, we describe new schemes, both one-step and multistep ones, able to tackle this more difficult case. We provide numerical tests to demonstrate the relevance of our algorithms.

The second part of the thesis is dedicated to mean-field control. We first prove the rate of convergence of a finite dimensional approximation to an equation on the Wasserstein space of probability measures. We rely on a linearization argument together with a Girsanov change of measure in order to do that. These equations come for instance from the Master Bellman equation of mean-field control. We then use symmetric DeepSets neural networks to solve symmetric PDEs such as the ones coming from the approximation of master Bellman equations. The respect of the problem's symmetry in the scheme itself allows us to solve high dimensional problems. Eventually we consider mean-field control with state constraints. We provide a representation result of the original problem by another one without constraints. This representation allows us to numerically solve this problem.

Approximation of non-linear PDEs

From stochastic control to PDEs and their numerical resolution

In applied mathematics, especially in financial mathematics, stochastic control is a powerful tool to design efficient strategies for an agent whose dynamics is subject to randomness. Typical examples include among others the quadratic hedging of financial derivatives [START_REF] Pham | On quadratic hedging in continuous time[END_REF], the hedging of gas storage [START_REF] Warin | Gas Storage Hedging[END_REF], or portfolio allocation [START_REF] Zhou | Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework[END_REF]. Other applications are described and studied in the book [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF].

A general form for such problems is given by:

inf α E T 0 f (s, X α s , α s ) ds + g(X α T ) X α t = X 0 + t 0 b(s, X α s , α s ) ds + t 0 σ(s, X α s , α s ) dW s , t ≥ 0
where α is some control process with values in R q , W a d-dimensional Brownian motion, and functions f :

[0, T ] × R d × R q → R, b : [0, T ] × R d × R q → R d , σ : [0, T ] × R d × R q → R d×d .
The forward process X is a diffusion process, solution to a controlled Stochastic Differential Equation (SDE). Introducing the value function

v(t, x) = inf α E T t
f (s, X t,x,α s , α s ) ds + g(X t,x,α T )

X t,x,α s = x + s t b(u, X t,x,α u , α u ) du + s t σ(u, X t,x,α u , α u ) dW u , s ≥ t,
it is well known that it solves in the viscosity solution sense the Hamilton-Jacobi-Bellman (HJB) equation ∂ t v(t, x) + inf a {f (t, x, a) + b(t, x, a) D x v(t, x) + 1 2 Tr(σσ (t, x, a)D 2 x v(t, x))} = 0 v(T, x) = g(x).

This parabolic PDE is a special case of fully nonlinear PDE which take the form ∂ t u(t, x) + F (t, x, u(t, x), D x u(t, x), D 2

x u(t, x)) = 0 u(T, x) = g(x),

(1.1.1)

for a function F : [0, T ] × R d × R × R d × R d×d → R.
When the volatility σ is uncontrolled, that is D a σ = 0, we can take the volatility part outside of the infimum and the HJB equation becomes linear in the second order derivative D 2 x v:

∂ t v(t, x) + 1 2 Tr(σσ (t, x)D 2 x v(t, x)) + inf a {f (t, x, a) + b(t, x, a) D x v(t, x)} = 0 v(T, x) = g(x), which is a special case of the semilinear PDE ∂ t ũ(t, x) + µ(t, x) • D x ũ + 1 2 Tr(σσ (t, x)D 2 x ũ(t, x)) + F (t, x, ũ(t, x), σ(t, x)D x ũ(t, x)) = 0 ũ(T, x) = g(x),

(1.1.2)

for a function F : [0, T ] × R d × R × R d → R.
The numerical resolution of this equation is much easier than for the previous one and some of our theoretical results will only apply to this case. This motivates our interest for the resolution of semilinear and fully nonlinear PDEs.

In the semilinear case, the numerical methods we focus on rely on the link between Backward Stochastic Differential Equations (BSDEs) and PDEs to provide numerical methods. With the forward diffusion process X having the generator Lφ = µ(t, x)•D x φ(t, x)+ 1 2 Tr(σσ (t, x)D 2 x φ(t, x)), that is

X t = X 0 + t 0 µ(s, X s ) ds + t 0 σ(s, X s ) dW s ,
(1.1.3) the nonlinear Feynman-Kac formula [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] links the solution ũ to (1.1.2) to the adapted solution (Y, Z) to the BSDE:

Y t = g(X T ) + T t F (s, X s , Y s , Z s ) ds - T t Z s dW s , (1.1.4)
through Y t = ũ(t, X t ) and when ũ is smooth, Z t = σ(t, x)D x ũ(t, X t ). Solving the BSDE amounts to solve the PDE along trajectories of the forward process.

We describe the standard approach to solve this BSDE, that is to generate adapted discrete time processes converging to the discrete time values of the BSDE solutions. Discretizing in time on t k := kT N by an Euler scheme for the forward process (1.1.3) and an backward explicit Euler scheme for the backward component (1.1.4) one can define between two consecutive time steps the discrete time processes

X i+1 = X i + µ(t i , X i ) ∆t + σ(t i , X i ) ∆W i , Y i+1 = Y i -F (t i , X i , Y i+1 , Z i )∆t + Z i .∆W i , i = 0, • • • , N -1,
with X 0 = X 0 , ∆t = T N and ∆W i = W t i+1 -W t i which yields by adaptedness of Y and Z

Z i = E[Y i+1 ∆W i ∆t | F t i ] Y i = E[Y i+1 + F (t i , X i , Y i+1 , Z i )∆t | F t i ], i = 0, • • • , N -1.
(1.1.5)

This representation is the starting point of several numerical backward schemes [Zha04; BT04; GLW05 ; LGW06] which start from the terminal condition Y N = g(X T ) and recursively compute Y i , Z i by computing the previous conditional expectations. A variant uses an implicit discretization for Y , which requires to solve a fixed point by Picard iteration. By the Markovian structure of the equations, these conditional expectations can be written as measurable functions of the discretized forward process X that is exists functions u i , z i such that

Y i = u i (X i ) Z i = z i (X i ), i = 0, • • • , N -1.
The idea is to approximate these functions, which gives at the same time an approximation to the BSDE and the PDE solutions. This is done in a fully implementable way in [GLW05;

LGW06] by choosing a function basis 

Ψ 1 , • • • , Ψ n : R d → R
β i,j Φ j (X k i ) -Y k i+1 ∆W k i ∆t 2 (1.1.6) inf α i,1 ,••• ,α i,n 1 N s Ns k=1 n j=1 α i,j Ψ j (X k i ) -Y k i+1 -F (t i , X k i , Y k i+1 , Z k i )∆t 2 ,
where the arginf are respectively called

β * i,1 , • • • , β * i,n and α * i,1 , • • • , α * i,n . In that case Z k i is de- fined by Z k i := n j=1 β * i,j Φ j (X k i ) and Y k i is given by Y k i := n j=1 α * i,j Ψ j (X k i ).
Under technical assumptions, it can be proven that ((Y i ) i , (Z i ) i ) converges to (Y, Z) in a suitable sense. This method is quite efficient in small dimension but is limited to dimension 6 or 7 and machine learning methods have been developed in order to solve higher dimensional problems. The usual finite differences methods suffer from the so-called "curse of dimensionality" which prevent us for applying them when the state space is of dimension greater than 4. Indeed too many points are required to discretize the state space which gives a complexity exponentially growing with the dimension d.

Machine learning methods and our proposed schemes

First we need to introduce the neural networks. We define

L ρ d 1 ,d 2 = φ : R d 1 → R d 2 : ∃ (W, β) ∈ R d 2 ×d 1 × R d 2 , φ(x) = ρ(Wx + β) ,
as the set of layer functions with input dimension d 1 , output dimension d 2 , and activation function ρ : R d 2 → R d 2 . Usually, the activation is applied component-wise via a one-dimensional activation function, i.e., ρ(x 1 , . . . , x d 2 ) = ρ(x 1 ), . . . , ρ(x d 2 ) with ρ : R → R, to the affine map x ∈ R d 1 → Wx + β ∈ R d 2 , with a matrix W called weight, and vector β called bias. Standard examples of activation functions ρ are the sigmoid, the ReLU, the tanh. We then call

N ρ d 0 ,d , ,m = ϕ : R d 0 → R d : ∃φ 0 ∈ L ρ 0 d 0 ,m 0 , ∃φ i ∈ L ρ i m i-1 ,m i , i = 1, . . . , -1, ∃φ ∈ L m l-1 ,d , ϕ = φ • φ -1 • • • • • φ 0 ,
the set of feedforward neural networks with input layer dimension d 0 , output layer dimension d , and hidden layers with m i neurons per layer (i = 0, • • • , -1). These numbers d 0 , d , , the sequence m = (m i ) i=0,..., -1 , and sequence of activation functions ρ = (ρ i ) i=0,..., -1 , form the architecture of the network. It is constructed through the alternative composition of affine maps and a componentwise non-linear activation function.

We shall mostly work with the case d 0 = d (dimension of the state variable x). A given network function ϕ ∈ N ρ d 0 ,d , ,m is determined by the weight/bias parameters θ = (W 0 , β 0 , . . . , W , β ) defining the layer functions φ 0 . . . , φ , and we shall sometimes write ϕ = ϕ θ . Neural networks are usually trained thanks to empirical risk minimization. In the framework of supervised learning, one is given random variables (X, Y ) and tries to minimize the risk:

inf θ E[L(ϕ θ (X), Y )]
with a loss function L quantifying the error between the output ϕ θ (X) of the neural network and the label Y . A typical example for L is the quadratic loss function L : (a, b) → (a -b) 2 . In practice, the joint law of (X, Y ) is unknown and one relies on a finite number N s of i.i.d. samples (X i , Y i ) i=1,••• ,Ns which are used to estimate the expectation by an empirical one:

inf θ 1 N Ns i=1 L(ϕ θ (X i ), Y i ),
in a Monte-Carlo fashion, as in (1.1.6). Numerically the optimization problem is solved thanks to stochastic gradient descent [START_REF] Robbins | A Stochastic Approximation Method[END_REF] or its variants among which Adam [START_REF] Kingma | A Method for Stochastic Optimization[END_REF], Adagrad [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF], Adadelta [START_REF] Zeiler | ADADELTA: An Adaptive Learning Rate Method[END_REF]. These optimization methods are implemented in the Tensorflow [START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF] and Pytorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF] libraries. Some papers solve PDEs with machine learning but without relying on BSDEs. The Deep Galerkin method [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] is a framework able to solve PDEs in any form by looking to a solution in the form of a neural network, sampling point in a domain and trying to enforce the PDE on every sampled point. The same idea is used by physics-informed neural networks [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF] which also incorporates data and reconstruct the PDEs solutions by interpolating the data through the PDE dynamics. In the time homogeneous case, the Deep Ritz method of [START_REF] Yu | The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems[END_REF] solves the variational formulation of elliptic equations thanks to a Deep Galerkin type scheme. Methods using machine learning but not neural networks are also considered in the literature. These schemes have also been designed in order to mitigate the curse of dimensionality, such as sparse grids [START_REF] Chassagneux | A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs[END_REF], nesting Monte-Carlo [START_REF] Warin | Nesting Monte Carlo for high-dimensional non-linear PDEs[END_REF], branching [Bou+17; HL+19] and multilevel Picard schemes [START_REF]On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations[END_REF][START_REF] Hutzenthaler | Multilevel Picard Approximations of High-Dimensional Semilinear Parabolic Differential Equations with Gradient-Dependent Nonlinearities[END_REF] which are proven to overcome the curse of dimensionality in some cases.

Semilinear case

Let's focus on machine learning methods for semilinear PDEs which rely on BSDEs. The first methods to appear are global methods such as the Deep BSDE method [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] and then the Merged Deep BSDE method [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF]. In that setting one obtains the initial value u(0, x 0 ) to the PDE solution and a representation of the gradient of the solution by neural networks but not for the solution itself. "Global" refers to the fact that one solves a single large optimization problem taking into account the whole dynamics on [0, T ]. The Y process is approximated by a forward Euler scheme:

Y i+1 = Y i -F (t i , X i , Y i+1 , Z i )∆t + Z θ i i (X i ).∆W i , i = 0, • • • , N -1,
with Y 0 = y 0 , a variable y 0 and neural networks Z θ i i . The scheme minimizes the loss

inf y 0 ,θ 0 ,••• ,θ N E|Y N -g(X N )| 2 ,
which is a target problem for the terminal value of Y T . In that way the method is not part of the supervised learning framework since we don't have targets for the neural networks approximating the Z process. The algorithm is also not an unsupervised algorithm since the coefficients in the dynamics of X and Y are known, which is not the case in the Reinforcement Learning paradigm.

The method can be interpreted as a semi-supervised scheme where the labels are implicitly learned through the training.

In [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], the basis function from (1.1.6) is replaced by a neural network and both optimization problems for the solution and its gradient are solved jointly at each time steps. This local method allows us to obtain a functional approximation of the PDE solution at each time step and not only at initial time t = 0. Contrarily to the Deep BSDE scheme [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] several small optimization problems are solved. These optimization problems are close to each other and therefore we can initialize the neural networks parameters to the previously computed ones, which gives a very good starting point because the PDE solution is expected to be continuous in time. Close ideas are used by [START_REF] Raissi | Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations[END_REF] and in the splitting scheme of [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF]. These schemes successfully solve PDEs in dimension from 10 to 1000 in some cases. The idea of the Deep Backward Dynamic Programming (DBDP) scheme of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] is to optimize the parameters θ of neural networks (U θ i (•), Z θ i (•)) ∈ N ρ d,d+1, ,m thanks to the recursive minimization of the backward problems

inf θ E U θ i (X i ) -U i+1 (X i+1 ) -F (t i , X i , U θ i (X i ), Z θ i (X i ))∆t + Z θ i (X i ).∆W i 2 , i = N -1, • • • , 0, (1.1.7) 
where U N (X N ) is taken as g(X N ), θ * i is the arginf of the previous problem and

U i+1 = U θ * i+1 i+1
(the notations θ * and • will have the same meaning below). A variant where Z θ i is replaced by the gradient of U θ i is also proposed in this paper but yields a bit less accurate results. The Deep Splitting (DS) scheme of [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] uses this idea and minimize the loss functions

inf θ E U θ i (X i ) -U i+1 (X i+1 ) -F (t i , X i+1 , U i+1 (X i+1 ), σ(t i , X i ) D x U i+1 (X i+1 ))∆t i 2 ,
for i = N -1, • • • , 0 with respect to the parameters θ of a single neural network by time step.

Similarly the recent paper [START_REF] Negyesi | The One Step Malliavin scheme: new discretization of BSDEs implemented with deep learning regressions[END_REF] studies a Malliavin scheme with neural networks. Extensions to more general settings such as the path-dependent case are performed by [RT17; SVSS20; SZ20], whereas linear quadratic stochastic control with control delay is treated by [START_REF] Lefebvre | Linear-Quadratic Stochastic Delayed Control and Deep Learning Resolution[END_REF]. When the objective is to solve a stochastic control problem and not a PDE resolution, the Deep BSDE method can alternatively be used to solve the coupled Forward-Backward Stochastic Differential Equations (FBSDEs) coming from the Pontryagin principle. Contrarily to the previous case where the forward process can be simulated independently of the computation of the BSDE solution (Y, Z), here the dynamics of of X depends on the costate Y . These methods are described for instance in [START_REF] Ji | Solving stochastic optimal control problem via stochastic maximum principle with deep learning method[END_REF][START_REF] Ji | Three Algorithms for Solving High-Dimensional Fully Coupled FBS-DEs Through Deep Learning[END_REF].

In this thesis we propose several new schemes and our driving interrogations are:

• How can we improve the existing schemes?

• How do their approximation error behave when the time step vanishes? Can we improve the theoretical error?

• How does the method depend on the neural network architecture?

Multistep DBDP scheme (MDBDP)(see Algorithm 6) We propose in Chapter 4 a new machine learning multistep method inspired by [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF] and [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. It is called Multistep Deep Backward Dynamic Programming (MDBDP). It relies on the following remark. Instead of discretizing the BSDE between time steps t i and t i+1 we can discretize it between t i and t N = T and write

Y i = g(X N ) + N -1 j=i F (t j , X j , Y j , Z j )∆t - N -1 j=i Z j .∆W j ,
which can be rewritten by adaptedness of Y and Z as

Y i = E[g(X N ) + N -1 j=i F (t j , X j , Y j , Z j )∆t -N -1 j=i Z j .∆W j | F t i ] Z i = E[(g(X N ) + N -1 j=i+1 F (t j , X j , Y j , Z j )∆t -N -1 j=i+1 Z j .∆W j ) ∆W i ∆t | F t i ], i = 0, • • • , N -1.
(1.1.8)

In fact, the representations (1.1.5) and (1.1.8) are equal (it can be seen by the tower property of conditional expectation) but because of the numerical approximation of the conditional expectations required for a practical implementation of the scheme, the propagation of the numerical errors will not be the same, see Theorem 1.1.1 and the comments below. Our multistep scheme takes the form of backward iterations as the DBDP scheme (1.1.7) but with the following modified loss function to minimize

inf θ E U θ i (X i ) -g(X N ) -F (t i , X i , U θ i (X i ), Z θ i (X i ))∆t + Z θ i (X i )∆W i (1.1.9) - N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ))∆t + N -1 j=i+1 Z j (X j ).∆W j 2 ,
which uses all the previously optimized neural networks at times steps j > i.

Fully nonlinear case

In the fully nonlinear case (1.1.1), an efficient probabilistic scheme is introduced by [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic PDEs[END_REF] and it converges locally uniformly to the viscosity solution of the PDE thanks to the monotone scheme framework of [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. Assuming that the PDE solution is smooth, Itô's lemma gives Y t = g(X T ) -T t µ(s, X s ).Z s + 1 2 tr(σσ (s, X s )Γ s ) -F (s, X s , Y s , Z s , Γ s ) ds

- T t σ (s, X s )Z s .dW s , 0 ≤ t ≤ T.
We define F (t, x, u, z, γ) := F (t, x, u, z, γ)-µ(t, x).z -1 2 tr(σσ (s, x)γ). Contrarily to the semilinear case now we have to estimate also the process corresponding to the second order derivative Γ t = D 2

x u(t, X t ). Here the coefficients of the forward process X from (1.1.3) can be chosen arbitrarily, contrarily to the semilinear case where the volatility is given in the equation (1.1.2). Indeed, notice that in (1.1.1), the linear part of (1.1.2) does not appear.

A machine learning scheme in this case has been introduced by [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF], relying on the second order BSDEs [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF] representation for the solution of fully nonlinear PDEs Y t = g(X T ) + T t F (s, X s , Y s , Z s , Γ s )ds -T t Z s .σdW s , Z t = D x g(X T ) -T t A s ds -T t Γ s σdW s , 0 ≤ t ≤ T, with A t = LD x u(t, X t ). In particular, in the case of the existence of a classical solution u of class C 1,2 , Γ t verifies Γ t = D 2

x u(t, X t ) and as previously Y t = u(t, X t ) whereas Z t = D x u(t, X t ). The scheme discretizes this system and uses variables to approximate Y 0 , Z 0 and neural networks (A θ , G θ ) to approximate A, Γ thanks to the minimization of the distance to the terminal conditions g(X T ), D x g(X T ) of both equations, following the framework of the Deep BSDE scheme.

We propose four alternatives local schemes, by combining ideas from [HPW20; Bec+21] and from our own multistep scheme.

Second order DBDP scheme (2DBDP)(see Algorithm 7) The first natural idea described in Chapter 5 is an extension of the DBDP scheme with the loss function given by

inf θ E U θ i (X i ) -U i+1 (X i+1 ) -F (t i , X i , U θ i (X i ), Z θ i (X i ), D Z i+1 (T (X t i+1 )))∆t + Z θ i (X i )∆W i 2 ,
where the second order derivative is estimated by differentiating the gradient obtained at the next time step. We call this method 2DBDP. T is a truncature at a given quantile made to avoid the propagation of instabilities on the edges of the explored domain. We show that our scheme is able to solve nonlinear PDEs in moderate dimension and gives a better approximation of the control than the Deep 2BSDE scheme.

Thanks to our investigations concerning multistep methods, we also extended this scheme to a multistep setting. We propose in Chapter 3 three variants alongside a survey of machine learning methods for PDEs and control in finance. All the methods consider the loss functions inf θ E g(X N ) + |π| N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ), Γ l j (X j )) -

N -1 j=i+1 Z j (X j ).σ∆W j -U θ (X i ) + |π| F (t i , X i , U θ (X i ), Z θ (X i ), Γ l i (X i )) -Z θ (X i ).σ∆W i 2 ,
where the definition of Γl j depends on the method. We assume that the drift µ = 0 and that the volatility matrix is a constant invertible matrix σ.

• Second order Explicit Multistep DBDP scheme (2EMDBDP)(see Algorithm 3).

We combine the multistep scheme and the 2DBDP scheme.

If i = N -1, define Γ i = D 2 g, otherwise Γ i = D x Z i+1 , Γ j = D x Z j , j ∈ i + 1, N -1 .
We also take l j = j.

• Second order Multistep DBDP (2MDBDP), (see Algorithm 4). Another method uses Malliavin weights to evaluate this derivative on a subgrid grid π = {t κ , = 0, . . . , N } ⊂ π, of modulus |π| = κ|π|, for some κ ∈ N * , with N = κ N . Γ is obtained by solving

inf θ E Γ θ (X κ ) - Z κ( +1) (X κ( +1) ) -Z κ( +1) ( Xκ( +1) ) 2 Ĥ1 2 ,
with the Malliavin weights

Ĥ1 = (σ ) -1 ∆W |π| , ∆W := W t κ( +1) -W t κ ,
and the antithetic variables Xκ( +1) = X κ -σ ∆W .

We also take l j = j ÷ κ + 1 where '÷' is the symbol for the Euclidian division.

• Second order Multistep Malliavin DBDP (2M 2 DBDP), (see Algorithm 5). This technique uses second order differentiation of the multistep representation on a subgrid as before thanks to second order Malliavin weights and antithetic variables. We also take l j = j ÷ κ + 1.

Lipschitz GroupSort neural networks and contributions to new theoretical results

We provide in Chapter 4 a detailed convergence analysis of both the splitting scheme and our multistep scheme. We focus on the propagation of the discretization and regression errors through the scheme. However we do not consider the statistical error coming from the Monte-Carlo approximation of the expectation in the loss functions such as (1.1.9) nor the optimization error coming from the gradient descent algorithm.

Thanks to recent results on quantitative universal approximation for Lipschitz GroupSort neural networks we obtain explicitly the error in terms of the neural network architecture, that is its number of neurons and layers. For future use, we introduce the L 2 -regularity of Z from [START_REF] Zhang | A numerical scheme for BSDEs[END_REF]:

ε Z (π) := E N -1 i=0 t i+1 t i |Z t -Zt i | 2 2 dt , with Zt i := 1 ∆t i E i t i+1 t i Z t dt .
We choose sequences (γ i ) i , (η i ) i and consider general approximation classes N i , N i and N γ,η i respectively from R d → R, R d → R d , R d → R (and with γ i -Lipschitz continuous functions with η i -Lipschitz continuous gradient for the last one). We define for i = 0, . . . , N -1 the L 2approximation errors in this classes of the functions v

(1)

i , z i (1) , v (2) 
i , v

i , z i (3) defined respectively in (4.3.2), (4.3.4) and (4.3.6):

ε 1,y i := inf U∈N i E v (1) i (X i ) -U(X i ) 2 , ε 1,z i := inf Z∈N i E z i (1) (X i ) -Z(X i ) 2 2 , ε γ,η i = inf U ∈N γ,η i E v (2) i (X i ) -U(X i ) 2 , i = 0, . . . , N -1, inf U ∈N γ,η i E g(X N ) -U(X N ) 2 , i = N, ε 3,y i := inf U∈N i E v (3) i (X i ) -U(X i ) 2 , ε 3,z i := inf Z∈N i E z i (3) (X i ) -Z(X i ) 2 2 .
Our approximation result is the following:

Theorem 1.1.1 (Approximation error of MDBDP). Under Assumption 4.3.1, there exists a constant C > 0 (depending only on the data µ, σ, f, g, d, T ) such that in the limit |π| → 0

sup i∈ 0,N E Y t i -U (1) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (1) i (X i ) 2 2 ds ≤ C E g(X T ) -g(X N ) 2 + |π| + ε Z (π) + N -1 j=0 (ε 1,y j + ∆t j ε 1,z j ) .
This approximation error of the multistep scheme is better than for the DBDP scheme of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] where the regression errors term N -1 j=0 (ε 1,y j +∆t j ε 1,z j ) is replaced by N -1 j=0 (N ε 1,y j +ε 1,z j ) instead. In particular we answer the point raised by Côme Huré in the Section 1.3.4 of his PhD thesis [START_REF] Huré | Numerical Methods and Deep Learning for Stochastic Control Problems and Partial Differential Equations[END_REF] where he mentioned that the factor N he obtained in front of the sum of errors was unexpected and could not be removed from his proof. In fact the use of a multistep method allows us to remove this term. However, we obtained a similar factor N for the splitting scheme [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF].

Theorem 1.1.2 (Approximation error of DS). Let Assumption 4.3.1 hold, and assume that X 0 ∈ L 4 (F 0 , R d ). Then, there exists a constant C > 0 (depending only on µ, σ, f, g, d, T, X 0 ) such that in the limit |π| → 0

sup i∈ 0,N E Y t i -U (2) i (X i ) 2 ≤ C E g(X N ) -g(X T ) 2 + |π| + ε Z (π) + max i γ 2 i , η 2 i |π| + ε γ,η N + N N -1 i=0 ε γ,η i .
The first classical approximation results prove that neural networks are dense in function spaces, such as [HSW89; HSW90; Hor91] but no rate of convergence was given. When more regularity is assumed for the target functions, such as boundedness, Lipschitz continuity, convexity or Sobolev regularity, several works later provided explicit approximation results [Pin99a; BGS15; Yar17; Bac17]. We use a more recent approach with Lipschitz neural networks. Thanks to an activation function that divides its input into groups and sorts each one of them (see Figure 1.1), and enforcing bounded weights parameters, the GroupSort network introduced by [ALG19] is 1-Lipschitz. [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF] proves explicit approximation results for these networks which allow us to go further into our error analysis by expressing the regression errors as functions of the architecture. As a consequence we can choose the neural networks parameters so that the overall error is equivalent to the time discretization error.

Let κ ∈ N * , κ ≥ 2, be a grouping size, dividing the number of neurons m i = κn i , at each layer i = 0, • • • -1.

-1 i=0 m i will be refered to as the width of the network and + 1 as its depth. The GroupSort networks correspond to classical deep feedforward neural networks in N ζκ d,1, ,m with a specific sequence of activation function ζ κ = (ζ i κ ) i=0,..., -1 , and one-dimensional output. Each nonlinear function ζ i κ divides its input into groups of size κ and sorts each group in decreasing order, see Figure 1.1.

Moreover, by enforcing the parameters of the GroupSort to satisfy with the Euclidian norm

| • | 2 and the ∞ norm | • | ∞ : sup |x| 2 =1 |W 0 x| ∞ ≤ 1, sup |x|∞=1 |W i x| ∞ ≤ 1, |β j | ∞ ≤ M, i = 1, • • • , l, j = 0, • • • , l,
for some M > 0, the related GroupSort neural networks from N ζκ d,d , ,m are 1-Lipschitz. The space of such 1-Lipschitz GroupSort neural networks is called S ζκ d, ,m :

S ζκ d, ,m = {ϕ (W 0 ,β 0 ,...,W ,β ) ∈ N ζκ d,1, ,m , sup

|x| 2 =1 |W 0 x| ∞ ≤ 1, sup |x|∞=1 |W i x| ∞ ≤ 1, |β j | ∞ ≤ M, i = 1, • • • , l, j = 0, • • • , l}.
We then introduce the set G ζκ K,d,d , ,m as Notice that these networks are √ d K-Lipschitz and that each of their components is K-Lipschitz. We give the approximation result which is central for our study. 

G ζκ K,d,d , ,m :={Ψ = (Ψ i ) i=1,...,d : R d → R d , Ψ i : x ∈ R d → Kβ i φ i x + α i β i ∈ R, φ i ∈ S ζκ d, ,m , for some α i ∈ R d , β i > 0}.
i=0 m i = O(( 2 √ d ε ) d 2 -1
) in the case d > 1. If d = 1, the same result holds with g of grouping size κ = 1 ε , depth + 1 = 3 and width -1

i=0 m i = O( 1 ε
). We next study convergence for the approximation error of the MDBDP scheme with Group-Sort neural networks and with the additional assumption that the driver F does not depend on z, hence the PDE is linear in z.

Proposition 1.1.2 (Rate of convergence of MDBDP). Let Assumption 4.3.1 and Assumption 4.3.2 hold, and assume that X 0 ∈ L 2+δ (F 0 , R d ), for some δ > 0, and g is [g]-Lipschitz. Then, there exists a bounded sequence K i (uniformly in i, N ) such that for GroupSort neural networks classes N i = G ζκ K i ,d,1, ,m , and

N i = G ζκ d ∆t i K i ,d,d, ,m
, we have

sup i∈ 0,N E Y t i -U (1) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (1) 
i (X i ) 

i=0 m i = O(N 2 ).
Here, the constants in the O(•) term depend only on µ, σ, F , g, d, T, x 0 .

We are able to perfom the same analysis for the DBDP scheme in the semilinear case where the PDE is nonlinear in z.

Proposition 1.1.3 (Rate of convergence of DBDP). Let Assumption 4.3.1 hold, and assume that X 0 ∈ L 2+δ (F 0 , R d ), for some δ > 0, and g is [g]-Lipschitz. Then, there exists a bounded sequence K i (uniformly in i, N ) such that for N i = G ζκ K i ,d,1, ,m , and

N i = G ζκ d ∆t i K i ,d,d, ,m
, we have

sup i∈ 0,N E Y t i -U (3) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (3) 
i (X i ) 

i=0 m i = O(N 3 ).
Here, the constants in the O(•) term depend only on µ, σ, f, g, d, T, X 0 .

Due to the previously mentioned differences between the error of DBDP and the one of MDBDP we notice that much more neurons are required to obtain a similar error rate. For instance in dimension d = 1, to obtain an error of O(1/N ) the DBDP scheme requires in theory O(N 3 ) neurons whereas only O(N 2 ) are necessary for the MDBDP scheme.

Mean-field problems and their numerical approximation

Motivation and optimality conditions

Large population games have stimulated a growing interest since the emergence of the mean-field games theory introduced by [LL06a; LL06b] and [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]. This theory considers the limit of an infinite number of similar interacting players and aims at characterizing the resulting equilibria. Two main frameworks are available:

• Mean-Field Games (MFG). The MFG theory looks for Nash equilibria, hence consider a competitive interaction between the players.

• Mean-Field Control (MFC) (or control of McKean-Vlasov dynamics). Here the framework focuses on collaborative equilibria, with a central planner solving a problem regarding the whole population.

The starting point is a N -player stochastic differential game with cost and dynamics for agent i and feedback controls

α i t    J i = E T 0 f t, X i t , 1 N N k=1 δ X k t , α i t dt + g X i T , 1 N N k=1 δ X k T dX i t = b t, X i t , 1 N N k=1 δ X k t , α i t dt + σ t, X i t , 1 N N k=1 δ X k t , α i t dW i t .
(1.2.1)

When the number of players N is large, the game becomes difficult to solve and mean-field approximation provide a way to approximately solve the problem by taking the limit N → +∞.

To find an equilibrium, we consider distributed Markovian feedback controls α i t = α t (X i t ).

To write down the asymptotic MFG problem, we first start by setting a family (µ t ) t∈[0,T ] of probability measures. Then we solve by symmetry only for a representative player:

inf αt∈A E T 0 f (t, X α t , µ t , α t ) dt + g(X α T , µ T ) subject to X α t = ξ + t 0 b(s, X α s , µ s , α s ) ds + t 0 σ(s, X α s , µ s , α s ) dW t .
Here the initial law of X α 0 , called ν 0 , is known, and ξ is sampled from this law. Once we find a solution X α * ,µ ,µ , we denote ν α * ,µ t := L(X α * ,µ ,µ t ) its law. We search for the family of measures µ t solving the fixed point problem

µ t = ν α * ,µ ,µ t = L(X α * ,µ ,µ t ).
On the other hand the related MFC problem is given by

inf αt∈A E T 0 f (t, X α t , L(X α t ), α t ) dt + g(X α T , L(X α T )) subject to X α t = ξ + t 0 b(s, X α s , L(X α s ), α s ) ds + t 0 σ(s, X α s , L(X α s ), α s ) dW t .
(1.2.2)

Even if these problems are different, they are nonetheless quite similar. The following enlightening interpretation is given by [CDL13; CD18a]: starting from (1.2.1), if you optimize first then go to the limit N → +∞ you obtain a MFG, whereas if you first go to the limit N → +∞ and then optimize you end up with a MFC. In general, the two equilibria are different.

Mean-field theory has several application in applied mathematics such as quantitative finance with optimal execution and price impact [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF], economics with bitcoin mining [START_REF] Bertucci | Economic Modelling of the Bitcoin Mining Industry[END_REF] or oil production [START_REF] Chan | Fracking, Renewables, and Mean Field Games[END_REF], health with the propagation of Epidemics [START_REF] Lee | Controlling Propagation of Epidemics via Mean-Field Control[END_REF], or even social networks [START_REF] Bauso | Opinion Dynamics in Social Networks through Mean-Field Games[END_REF]. In the field of energy, the multiplication of small operators, decentralization and smart networks with flexibilities (demand management and storage) have inspired several studies using the mean-field machinery. These works have investigated smart charging [SWA21a; SWA21b], electricity storage and flexibility [ABTM20; GG21a; GG21b], but also price formation and trading in electricity markets [START_REF] Féron | Price formation and optimal trading in intraday electricity markets[END_REF][START_REF] Féron | Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player[END_REF]. These papers often consider linear-quadratic models, that is linear dynamics and quadratic costs so that the exact solution can be computed. But if one wants to use more realistic parameters, numerical methods are necessary in order to obtain an approximation of the solution. As before in the case of stochastic control, neural networks are an interesting tool to solve moderate to high dimensional nonlinear problems. Eventually, for practical use, to respect physical constraints or regulatory frameworks, it is sometimes useful to add state constraints to mean-field control problems. We will consider these two problems. The second part of our thesis aims at answering the following questions:

• How to introduce new machine learning numerical resolution methods?

• How can we impose state constraints in a mean-field control problem? What about probabilistic constraints?

We review the optimality conditions of mean-field control problems which will be useful for their numerical resolution. Similar optimality condition are obtained for the MFG. The dynamic programming approach introduces a value function on [0, T ] × P 2 (R d ) depending on the starting law:

v(t, µ) = inf α E t,µ T t f (X α s , L(X α s ), α s ) ds + g(X α T , L(X α T )) ,
(here E t,µ 

∂ t v + H(t, µ, v, ∂ µ v, ∂ x ∂ µ v, ∂ 2 µ v) = 0, (t, µ) ∈ [0, T ) × P 2 (R d ), v(T, µ) = G(µ), µ ∈ P 2 (R d ), (1.2.3) with G(µ) = g(x, µ) µ(dx), H(t, µ, y, z(.), γ(.), γ 0 (., .)) = R d H(t, x, µ, y, z(x), γ(x) µ(dx), and 
H(t, x, µ, y, z, γ) = inf a∈A b(t, x, µ, a).z + f (x, µ, a) + 1 2 tr σσ (t, x, µ, a)γ .
In the equation above, ∂ µ v is the Lions derivative. It is defined thanks to the Fréchet derivative [Dv](t, ξ) of the lifted function ṽ :

(t, ξ) ∈ [0, T ] × L 2 (R d ) → v(t, L(ξ)) ∈ R which can be represented by Riesz representation theorem by ∂ µ v(t, ξ) ∈ L 2 (R d ) such that [Dv](t, ξ)(Y ) = E[∂ µ v(t, ξ).Y ] ∈ R.
The Pontryagin principle [START_REF] Carmona | Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics[END_REF] (see [START_REF] Carmona | Probabilistic Analysis of Mean-Field Games[END_REF] for MFG) introduces the Hamiltonian

H(t, x, µ, y, z, α) = b(t, x, µ, α) • y + Tr(σ(t, x, µ, α)z) + f (t, x, µ, α),
and gives optimality conditions in the form of McKean-Vlasov Forward-Backward Stochastic Differential Equations (MKVFBSDEs):

           dX t = b(t, X t , L(X t ), αt ) dt + σ(t, X t , L(X t ), αt ) dW t X 0 = ξ dY t = -∂ x H(t, X t , L(X t ), Y t , Z t , αt ) dt -E[∂ µ H(t, Xt , L(X t ), Ỹt , Zt , αt )] dt + Z t dW t Y T = ∂ x g (X T , µ T ) + E ∂ µ g X T , µ T , (1.2.4) where αt = argmin α H(t, X t , L(X t ), Y t , Z t , α
) and ( X, Ỹ , Z, α) is an independent copy of (X, Y, Z, α).

In the case of MFG, the Lions derivatives ∂ µ disappear in (1.2.4). Concerning mean-field games, the founding paper [START_REF] Lasry | Jeux à champ moyen. II -Horizon fini et contrôle optimal[END_REF] characterizes the equilibrium thanks to a coupled system of a Hamilton-Jacobi-Bellman and a Fokker-Planck equations which has been used to provide numerical solutions of MFG [START_REF] Achdou | Mean Field Games: Numerical Methods[END_REF].

A first idea to solve (1.2.2) is presented in [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF]. A brute force approach consists in finding optimal feedback controls by parameterizing the control α t by a neural network A θ : (t i , x i ) ∈ [0, T ] × R d → R q and directly minimize the discretized in time cost:

inf θ 1 N s Ns k=1 N i=1 f (t i , X k i , μi , A θ (t i , X k i )) ∆t + g(X k N , μN ) (1.2.5) X k i+1 = X k i + b(t i , X k i , μi , A θ (t i , X k i )) ∆t + σ(t i , X k i , μi , A θ (t i , X k i )) ∆W k i , μi = 1 N s Ns k=1 δ X k i , i = 0, • • • , N -1, X k 0 = ξ k , k = 0, • • • , N s ,
where the law is approached by the empirical measure of the particles with independent Brownian motions W k , k = 1, • • • , N s and ξ k , k = 0, • • • , N s are independent samples of the initial condition ξ. This is the version for mean-field control of the existing methods [GM05; HE16].

Contributions on the numerical approximation side

Other approaches numerically solve the optimality conditions to construct approximate solutions. We provide in Section 1.2.2 two approaches relying respectively on (1.2.4) and (1.2.3).

A first natural idea for machine learning resolution of mean-field games and mean-field control, introduced by [FZ20; CL22], is to extend the Deep BSDE method to the approximation of McKean-Vlasov FBSDEs, coming from the Pontryagin principle (1.2.4).

               X k i+1 = b(t i , X k i , μi , αi (X k i , μi , Y k i , Z k i )) ∆t + σ(t i , X k i , μi , Y k i , Z k i , αi (X k i , μi , Y k i , Z k i )) ∆W k i , X k 0 = ξ k , k = 0, • • • , N s , Y k i+1 = Y k i -∂ x H(t i , X k i , μi , Y k i , Z k i , αi (X k i , μi , Y k i , Z k i )) ∆t -1 N N j=1 ∂ µ H(t i , X j i , μi , Y j i , Z j i , αi (X j i , μi , Y j i , Z j i )) ∆t + Z θ i i (X k i ) ∆W k i , μi = 1 Ns Ns k=1 δ X k i , i = 0, • • • , N -1, with Y k 0 = Y η 0 (X k 0 ), a neural network Y η 0 and neural networks Z θ i i , i = 0, • • • , N -1. Moreover αk i (X k i , μi , Y k i , Z k i ) = argmin α H(t i , X k i , μi , Y k i , Z k i , α
). The scheme minimizes the loss function

inf η,θ 0 ,••• ,θ N 1 N N k=1 Y k N -∂ x g X k N , µ N - 1 N N j=1 ∂ µ g X j N , µ N 2 ,
with respect to the neural networks parameters η, θ 0 , • • • , θ N . In [START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF], we propose variants and compare all schemes in dimension 10 whereas the previous only tested the schemes in the unidimensional case. Our methods replace the empirical measure by other choices such as an online estimated measure or a neural network. We also consider a local version of the algorithm which solves one optimization problem by time step instead if a simple big optimization step. However it seems that the global method works better than this local one in the context of MKVFBSDEs. A theoretical analysis with a posteriori error estimates is conducted by [START_REF] Reisinger | A posteriori error estimates for fully coupled McKean-Vlasov forward-backward SDEs[END_REF]. An alternative method in the non-smooth case exploits proximal gradient descent to solve the MFC problem [START_REF] Reisinger | A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems[END_REF].

Another method arises by trying to solve the Master Bellman equation (1.2.3). Of course, being an infinite dimensional PDE, some discretization has to be performed in order to obtain an implementable scheme. We study this problem in Chapter 6. We consider the equation for a general function H(t, x, µ, y, z) which does not necessarily come from mean-field control. But the semilinear structure is required in order to use BSDE arguments. We use a particle method and replace this equation by a finite dimensional PDE, in high dimension. This equation is given by

     ∂ t v N + 1 N N i=1 H t, x i , μ(x), v N , N D x i v N ) + 1 2 tr(Σ N (t, x)D 2 x v N ) = 0, on [0, T ) × (R d ) N v N (T, x) = G μ(x) , x = (x i ) i∈ 1,N ∈ (R d ) N , (1.2.6) where μ(.) is the empirical measure function defined by μ(x) = 1 N N i=1 δ x i , for any x = (x 1 , . . . , x N ), N ∈ N * , and Σ N = (Σ ij N ) i,j∈ 1,N is the R N d×N d -valued function with block matrices Σ ij N (t, x) = σ(t, x i , μ(x))σ (t, x j , μ(x))δ ij + σ 0 (t, x i , μ(x))σ 0 (t, x j , μ(x)) ∈ R d×d .
This equation is studied in [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] which proves the convergence of its viscosity solution to the viscosity solution of the master equation when N goes to +∞, under some conditions on H and the volatility coefficients σ, σ 0 . Our contribution is to give a convergence rate thanks to probabilistic arguments. The finite-dimensional PDE (1.2.6) is linked to a Markovian BSDE through the nonlinear Feynman-Kac formula. The related forward particle system is

dX N t = σ N (t, X N t ) dW t + σ 0 (t, X N t ) dW 0 t ,
where σ N is the block diagonal matrix with block diagonals

σ ii N (t, x) = σ(t, x i , μ(x)), σ 0 = (σ i 0 ) i∈ 1,N is the (R d×m ) N -valued function with σ i 0 (t, x) = σ 0 (t, x i , μ(x)), for x = (x i ) i∈ 1,N , W = (W 1 , . . . , W N )
where W i , i = 1, . . . , N , are independent n-dimensional Brownian motions, independent of a m-dimensional Brownian motion W 0 on a filtered probability space (Ω, F, F = (F t ) 0≤t≤T , P) and where the initial conditions of the particles system, X i,N 0 , i = 1, . . . , N , are i.i.d. with distribution µ 0 . The backward component is defined by the pair process

(Y N , Z N = (Z i,N ) i∈ 1,N ) valued in R ×(R d ) N , solution to Y N t = G μ(X N T ) + 1 N N i=1 T t H b (s, X i,N s , μ(X N s ), Y N s , N Z i,N s ) ds - N i=1 T t (Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s , - N i=1 T t (Z i,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s , 0 ≤ t ≤ T.
The main difficulties in the study of the convergence of this PDE to the Master Bellman equation are:

• The N factor in front of the gradient in the nonlinearity H b which makes the Lipschitz regularity with respect to the gradient explode.

• The explosion of the dimension of the PDE.

These difficulties can be bypassed thanks to a linearization procedure together with a Girsanov change of measure. We study the pathwise error on v:

E y N := sup 0≤t≤T Y N t -v(t, μ(X N t )) ,
and the L 2 -error on its L-derivative

E z N 2 := 1 N N i=1 T 0 E N Z i,N t -∂ µ v(t, μ(X N t ))(X i,N t ) 2 dt 1 2 .
Under assumptions regarding the Lipschitz regularity of the parameters, existence of a smooth enough classical solution with linear growth and bounded second order Lions derivative, we are able to find a convergence rate for the solution. Additional assumptions are required to study the error E z N 2 , such as ellipticity of the common volatility σ 0 and a linear structure regarding the gradient of the PDE solution.

Theorem 1.2.1. Under Assumptions 6.2.1 and 6.2.2, we have P-almost surely

E y N ≤ C y N ,
where

C y = T 2 e [H b ] 1 T L σ 2 ∞ , with σ ∞ = sup (t,x,µ)∈[0,T ]×R d ×P 2 (R d ) |σ(t, x, µ)|.
Theorem 1.2.2. Under Assumptions 6.2.1, 6.2.2 and 6.2.3, we have

E z N 2 ≤ C z N 1 2
,

where

C z = σ + ∞ 2T ([H 1 ] 1 + [H 2 ] 1 L) C2 y + Cy T σ 2 ∞ L + 2 c 0 C2 y T H 2 2 ∞ and Cy = T 2 e ([H 1 ] 1 +[H 2 ] 1 L)T L σ 2 ∞ .
By noticing the symmetry properties of the PDE, we design in Chapter 7 a scheme fitted to these symmetries which allows us to work in high dimension, with 1000 or 10000 particles. More precisely, the solution v N of (1.2.6) is invariant by permutation of its inputs, namely for

x 1 , • • • , x N ∈ (R d ) N and a permutation σ on {1, • • • , N }: v N (x 1 , • • • , x N ) = v N (x σ(1) , • • • , x σ(N ) ).
This symmetry also implies a structure for its space derivative. Both these behaviors made us design a method fitted to symmetric PDEs. The idea is to consider symmetric neural networks, namely DeepSets [START_REF] Zaheer | Deep Sets[END_REF] and PointNet [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] which have been introduced by the machine learning community in particular in order to efficiently classify point clouds.

A symmetric neural network function, denoted U ∈ S s,N,ρ d, ,m,k,d , is an R d -valued exchangeable function to the order N on R d , in the form:

U(x) = ψ s((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N , where ϕ ∈ N ρ d, ,m,k , ψ ∈ N ρ k, ,m,d ( 
here, for simplicity of notations, we assume that the number of hidden layers and neurons of ϕ and ψ are the same but in practical implementation, they may be different), and s is a given R k -valued exchangeable function to the order N on R k .

The DeepSet network is given by

U(x) = ψ 1 N N i=1 ((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N ,
when the PointNet network is given by

U(x) = ψ max i=1•••N ((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N .
These networks are symmetric by construction and are expressive enough in the space of symmetric functions. More precisely, by combining Theorem 2.9 of [START_REF] Wagstaff | On the Limitations of Representing Functions on Sets[END_REF] with Theorem 2 of [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF], we obtain the following approximation theorem for DeepSets.

Universal approximation for DeepSets networks. Let s be the sum function. The set ∪ ∞ m=1 S s,N,ρ d, ,m,N +1,d approximates any N -exchangeable continuous function w arbitrary well on any compact set of K ⊂ R d , once ρ is continuous, bounded and non-constant: for all ε > 0, N ∈ N * , there exists

U ∈ ∪ ∞ m=1 S s,N,ρ d, ,m,N +1,d such that w(x) -U(x) ≤ ε ∀x ∈ K N .
Note that a priori the latent space dimension k has to be chosen equal to N + 1.

Alternatively, by combining Theorem 1 of [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] with Theorem 2 of [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF], we obtain the following one-dimensional approximation theorem for PointNet.

Universal approximation for PointNet networks. Let s be the max function. The set ∪ ∞ m=1 ∪ ∞ k=1 S s,N,ρ 1, ,m,k,d approximates any N -exchangeable Hausdorff continuous function w (seen as a function on sets) arbitrary well on any compact set of K ⊂ R , once ρ is continuous, bounded, and non-constant: for all ε > 0, N ∈ N * , there exists

U ∈ ∪ ∞ m=1 ∪ ∞ k=1 S s,N,ρ 1, ,m,k,d such that w(S) -U(x) ≤ ε, ∀S ⊂ K, S = {x 1 , • • • , x N }.
Note here that a priori the latent space dimension k has to be chosen as large as needed.

We adapt the DBDP scheme [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] with these symmetric neural networks. Contrarily to feedforward neural networks, our method does converge even in difficult high dimensional cases. Several variants can be implemented for the approximation of the Z component of the BSDE, corresponding to the gradient of the solution. We can either consider the derivative of the neural networks approximating the Y component or use an architecture satisfying the symmetry properties of the gradient of a symmetric function.

Adding probabilistic state constraints

In many practical situations, it can be useful to impose state constraints on the controlled state. The constraints can be physical (such as non negativity, boundedness...), could be decided by the regulatory framework, or useful to find a particular solution of interest. We refer to [ST02; BEI10; Gel+13; CYZ20; PTZ21; Bal+21] for specific applications of probabilistic constraints, notably in finance, and often written in expectation form. An example that we consider is the one of the optimal control of a battery for renewable electricity storage, subject to randomness in both the production and the market prices. [START_REF] Alasseur | An Extended Mean Field Game for Storage in Smart Grids[END_REF] studies such a problem in a meanfield setting without physical constraints on the battery, in order to obtain an explicitly solvable linear-quadratic model. In Chapter 8 we will numerically solve a related problem with constraints of the size of the storage and the injection or withdrawal capacities.

In the context of mean-field problems, several papers consider mean-field games with the state constrained to stay in a compact set [CC18; CCC18; FH20; GM21; AM21], either at all time or only a terminal time T . Terminal constraints in law are also considered by [START_REF] Bouchard | Quenched Mass Transport of Particles Toward a Target[END_REF][START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] respectively for control of McKean-Vlasov dynamics and stochastic control. For meanfield control, with the point of view of the control of Fokker-Planck equation, the works [Bon19; BF21] are able to enforce terminal or running constraints on a measure, by relying on the Pontryagin principle, in the deterministic case without diffusion. A mean-field control cost for a diffusion with probabilistic state constraints is also studied in [START_REF] Daudin | Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space[END_REF].

We consider in Chapter 8 the general case of running and discrete time constraints on the probability law of the state, which contains for instance in particular terminal constraint in law and compact set constraints. We rely on the level set approach from [BPZ15; BPZ16; ABZ13]. It amounts to introduce an auxiliary unconstrained problem with an additional state variable. Thanks to a representation result, we can link the solution of this problem to the solution of the original constrained problem. This approach is also useful for numerical purpose since existing methods can be applied to the auxiliary problem. Hence we are also able to develop numerical schemes for law constrained mean-field control problems. We consider the following cost and dynamics:

J(X 0 , α) = E T 0 f s, X α s , α s , P (X α s ,αs) ds + g X α T , P X α T X α t = X 0 + t 0 b s, X α s , α s , P (X α s ,αs) ) ds + t 0 σ(s, X α s , α t , P (X α s ,αs) dW s ,
and a probabilistic state constraints in the form

Ψ(t, P X α t ) ≤ 0, 0 ≤ t ≤ T, where Ψ = (Ψ l ) 1≤l≤k is a given function from [0, T ]×P 2 (R d ) into R k .
Here, the multi-dimensional constraint Ψ(t, µ) ≤ 0 has to be understood componentwise, i.e., Ψ l (t, µ) ≤ 0, l = 1, • • • , k. The problem of interest is therefore

V Ψ := inf α∈A J(X 0 , α) : Ψ(t, P X α t ) ≤ 0, ∀ t ∈ [0, T ] . (1.2.7)
We introduce an additional deterministic state variable

Z z,α t := z -E t 0 f s, X α s , α s , P (X α s ,αs) ds = z - t 0 f s, P (X α s ,αs) ds, 0 ≤ t ≤ T,
and the unconstrained auxiliary problem

Y Ψ : z ∈ R → inf α∈A { g(P X α T ) -Z z,α T } + + k l=1 sup s∈[0,T ] {Ψ l (s, P X α s )} + , (1.2.8)
with the notation {x} + = max(x, 0) for the positive part. We see that Y Ψ (z) ≥ 0. Define the infimum of the zero level-set

Z Ψ := inf{z ∈ R | Y Ψ (z) = 0}.
(1.2.9)

We prove two representation results of the constrained problem (1.2.7) by the unconstrained problem (1.2.8).

Theorem 1.2.3.

1. If for some z ∈ R ∃ α ∈ A s.t. g(P X α T ) ≤ Z z,α T , Ψ(s, P X α s ) ≤ 0, ∀ s ∈ [0, T ] then Y Ψ (z) = 0. 2. If V Ψ is finite then Y Ψ (V Ψ ) = 0. Thus Z Ψ ≤ V Ψ . CHAPTER 1. INTRODUCTION 3. Define 1 k = (1, • • • , 1) ∈ R k . We have the upper bound V Ψ ≤ inf ε>0 Z Ψ+ε1 k .
Theorem 1.2.4. Assume that V Ψ < ∞. Then we have the representation

Z Ψ = V Ψ .
Moreover ε-optimal controls α ε for the auxiliary problem Y Ψ (V Ψ ) are ε-admissible ε-optimal controls for the original problem in the sense that

J(X 0 , α ε ) ≤ V Ψ + ε, sup 0≤s≤T Ψ(s, P X α ε s ) ≤ ε.
A discussion about open loop and closed loop control is given in 8.3. We restrict ourselves for the numerical approximation part to deterministic Markovian feedback (or closed loop) controls but we give assumptions under which restricting the choice of controls to this space is optimal. In general, adapted (open loop) controls yield smaller cost than closed loop controls. These results allow ourselves to numerically solve the unconstrained problem 1.2.8 and the level-set minimization (1.2.9) in order to solve the constrained problem (1.2.7). We adapt the approach (1.2.5) from [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] to propose an implementable scheme.

Chapter 2

Introduction (en français)

Cette thèse est divisée en deux parties. La première étudie les méthodes numériques pour résoudre les Équations aux Dérivées Partielles (EDPs) paraboliques non-linéaires. Ces équations apparaissent typiquement dans le contexte de la programmation dynamique pour le contrôle stochastique, ce qui constitue notre principale motivation. Nos schémas utilisent l'apprentissage profond afin d'approcher les solutions des EDPs. Nous décrivons un nouveau schéma multistep pour la résolution d'EDP semilinéaires et réalisons une analyse de convergence de cette méthode et d'autres méthodes proposées dans la littérature. Nous montrons que l'erreur d'approximation théorique et l'erreur numérique empirique sont plus faibles en comparaison avec les méthodes existantes. En particulier, grâce à des résultats récents sur les réseaux de neurones lipschitziens GroupSort, nous sommes en mesure de relier l'erreur du schéma à l'architecture du réseau, c'est-àdire le nombre de neurones et de couches. Lorsque les EDPs sont entièrement non-linéaires, nous décrivons de nouveaux schémas, one-step ou multistep, capables de traiter ce cas plus difficile. Nous fournissons des tests numériques afin de démontrer la pertinence de nos algorithmes.

La deuxième partie de la thèse est consacrée au contrôle à champ moyen. Nous obtenons d'abord la vitesse de convergence d'une approximation en dimension finie d'une équation sur l'espace de Wasserstein des mesures de probabilité. Nous nous appuyons pour cela sur un argument de linéarisation ainsi que sur un changement de mesure de Girsanov. Ces équations proviennent par exemple de l'équation maîtresse de Bellman du contrôle à champ moyen. Nous utilisons ensuite des réseaux de neurones symétriques DeepSets pour résoudre des EDPs symétriques telles que celles provenant de l'approximation des équations maîtresses de Bellman. Le respect de la symétrie du problème dans le schéma lui-même nous permet de résoudre des problèmes en haute dimension. Finalement, nous considérons le contrôle du champ moyen avec des contraintes d'état. Nous fournissons un résultat de représentation du problème original par un autre problème sans contraintes. Cette représentation nous permet de résoudre numériquement le problème initial.

Approximation des EDPs non-linéaires

Du contrôle stochastique aux EDPs et à leur résolution numérique

En mathématiques appliquées, notamment en mathématiques financières, le contrôle stochastique est un outil puissant pour concevoir des stratégies efficaces pour un agent dont la dynamique et les objectifs sont soumis au hasard. Des exemples typiques incluent entre autres la couverture quadratique de produits dérivés financiers [START_REF] Pham | On quadratic hedging in continuous time[END_REF], la couverture du stockage de gaz [START_REF] Warin | Gas Storage Hedging[END_REF], ou l'allocation de portefeuille [START_REF] Zhou | Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework[END_REF]. D'autres applications sont décrites et étudiées dans le livre [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF].

CHAPTER 2. INTRODUCTION (EN FRANÇAIS)

La forme générale de tels problèmes est donnée par:

inf α E T 0 f (s, X α s , α s ) ds + g(X α T ) X α t = X 0 + t 0 b(s, X α s , α s ) ds + t 0 σ(s, X α s , α s ) dW s , t ≥ 0,
où α est un processus de contrôle à valeurs dans R q , W un mouvement Brownien d-dimensionnel,

et des fonctions f : [0, T ] × R d × R q → R, b : [0, T ] × R d × R q → R d , σ : [0, T ] × R d × R q → R d×d .
Le processus X est un processus de diffusion, solution d'une Équation Différentielle Stochastique (EDS) contrôlée. En introduisant la fonction valeur

v(t, x) = inf α E T t f (s, X t,x,α s , α s ) ds + g(X t,x,α T ) X t,x,α s = x + s t b(u, X t,x,α u , α u ) du + s t σ(u, X t,x,α u , α u ) dW u , s ≥ t,
il est connu que celle-ci résout dans le sens des solutions de viscosité l'équation de Hamilton-Jacobi-Bellman (HJB)

∂ t v(t, x) + inf a {f (t, x, a) + b(t, x, a) D x v(t, x) + 1 2 Tr(σσ (t, x, a)D 2 x v(t, x))} = 0 v(T, x) = g(x).
Cette EDP parabolique est un cas particulier d'EDP complétement non-linéaire qui prend la forme

∂ t u(t, x) + F (t, x, u(t, x), D x u(t, x), D 2 x u(t, x)) = 0 u(T, x) = g(x), (2.1.1) pour une fonction F : [0, T ]×R d × R × R d × R d×d → R.
Quand la volatilité σ n'est pas contrôlée, c'est-à-dire quand D a σ = 0, nous pouvons faire sortir le terme de volatilité de l'infimum et l'équation de HJB devient linéaire en la dérivée seconde (Hessienne) D 2 x v:

∂ t v(t, x) + 1 2 Tr(σσ (t, x)D 2 x v(t, x)) + inf a {f (t, x, a) + b(t, x, a) D x v(t, x)} = 0 v(T, x) = g(x),
qui est un cas de particulier d'EDP semilinéaire 

∂ t ũ(t, x) + µ(t, x) • D x ũ + 1 2 Tr(σσ (t, x)D 2 x ũ(t, x)) + F (t, x, ũ(t, x), σ(t, x)D x ũ(t, x)) = 0 ũ(T, x) = g(x), (2.1.2) pour une fonction F : [0, T ] × R d × R × R d → R.
= µ(t, x) • D x φ(t, x) + 1 2 Tr(σσ (t, x)D 2 x φ(t, x)), c'est-à-dire X t = X 0 + t 0 µ(s, X s ) ds + t 0 σ(s, X s ) dW s , (2.1.3)
la formule de Feynman-Kac non-linéaire [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] relie la solution ũ de (2.1.2) à la solution adaptée (Y, Z) de l'EDSR:

Y t = g(X T ) + T t F (s, X s , Y s , Z s ) ds - T t Z s dW s , (2.1.4) à travers Y t = ũ(t, X t ) et quand ũ est régulière, Z t = σ(t, x)D x ũ(t, X t ).
Résoudre l'EDSR revient à résoudre l'EDP le long de trajectoires du processus X.

Décrivons l'approche standard de résolution de cette EDSR. On cherche à générer des processus adaptés à temps discret qui convergent vers les solutions de l'EDSR évalués le long d'une grille temporelle. En discrétisant en temps selon la grille régulière t k := kT N par un schéma d'Euler pour le processus X (2.1.3) et un schéma d'Euler rétrograde pour la composante rétrograde Y (2.1.4) nous pouvons définir entre deux pas de temps consécutifs les processus à temps discret

X i+1 = X i + µ(t i , X i ) ∆t + σ(t i , X i ) ∆W i , Y i+1 = Y i -F (t i , X i , Y i+1 , Z i )∆t + Z i .∆W i , i = 0, • • • , N -1, avec X 0 = X 0 , ∆t = T N et ∆W i = W t i+1 -W t i ce qui donne par adaptation de Y et de Z Z i = E[Y i+1 ∆W i ∆t | F t i ] Y i = E[Y i+1 + F (t i , X i , Y i+1 , Z i )∆t | F t i ], i = 0, • • • , N -1.
(2.1. 

Y i = u i (X i ) Z i = z i (X i ), i = 0, • • • , N -1.
L'idée est d'approcher ces fonctions, ce qui fournit en même temps une solution à l'EDP et l'EDSR. Ceci est fait de manière totalement implémentable dans [GLW05 ; LGW06] en choissisant une base de fonctions 

Ψ 1 , • • • , Ψ n : R d → R et une autre base de fonctions Φ 1 , • • • , Φ n : R d → R d sur
inf β i,1 ,••• ,β i,n 1 N s Ns k=1 n j=1 β i,j Φ j (X k i ) -Y k i+1 ∆W k i ∆t 2 (2.1.6) inf α i,1 ,••• ,α i,n 1 N s Ns k=1 n j=1 α i,j Ψ j (X k i ) -Y k i+1 -F (t i , X k i , Y k i+1 , Z k i )∆t 2 , où les minimiseurs sont appelés respectivement β * i,1 , • • • , β * i,n et α * i,1 , • • • , α * i,n . Dans ce cas Z k i est défini par Z k i := n j=1 β * i,j Φ j (X k i ) et Y k i est donné par Y k i := n j=1 α * i,j Ψ j (X k i ).
Sous des hypothèses techniques, il peut être montré que ((Y i ) i , (Z i ) i ) converge vers (Y, Z) dans un sens approprié. Cette méthode est plutôt efficace en petite dimension mais est limité à la dimension 6 ou 7. Des méthodes d'apprentissage automatique ont été développées pour résoudre des problèmes en dimension plus grande. Les méthodes usuelles de différences finies souffrent de la "malédiction de la dimension" qui nous empêche de les utiliser quand la dimension de l'espace d'état est plus grande que 4. En effet, de trop nombreux points sont nécessaires pour discrétiser l'espace d'état, ce qui donne une complexité exponentielle en la dimension d.

Méthodes d'apprentissage automatique et nos nouveaux algorithmes

D'abord nous devons introduire les réseaux de neurones. On définit Nous travaillerons surtout avec le cas d 0 = d (dimension de la variable d'état x). Un réseau donné ϕ ∈ N ρ d 0 ,d , ,m est déterminé par les paramètres θ = (W 0 , β 0 , . . . , W , β ) définissant les couches φ 0 . . . , φ , et nous écrirons parfois ϕ = ϕ θ . Les réseaux de neurones sont habituellement entraînés grâce à la minimisation d'un risque empirique. En apprentissage supervisé, à partir de variables aléatoires (X, Y ) on cherche à minimiser le risque

L ρ d 1 ,d 2 = φ : R d 1 → R d 2 : ∃ (W, β) ∈ R d 2 ×d 1 × R d 2 , φ(x) = ρ(Wx + β) ,
N ρ d 0 ,d , ,m = ϕ : R d 0 → R d : ∃φ 0 ∈ L ρ 0 d 0 ,m 0 , ∃φ i ∈ L ρ i m i-1 ,m i , i = 1, . . . , -1, ∃φ ∈ L m l-1 ,d , ϕ = φ • φ -1 • • • • • φ 0 , l'
inf θ E[L(ϕ θ (X), Y )],
avec une fonction de perte L quantifiant l'erreur entre la sortie ϕ θ (X) du réseau de neurones et la cible Y . Un exemple classique pour L est la fonction quadratique L : (a, b) → (a -b) 2 . En pratique, la loi jointe (X, Y ) est inconnue et on se fonde sur N s réalisations de tirages i.i.d.

(X i , Y i ) i=1,••• ,Ns qui permettent d'approcher l'espérance par une espérance empirique inf θ 1 N Ns i=1 L(ϕ θ (X i ), Y i ),
dans le style Monte-Carlo, comme dans (2.1.6). Numériquement le problème d'optimisation est résolu par descente de gradient stochastique [START_REF] Robbins | A Stochastic Approximation Method[END_REF] ou ses variantes parmi lesquelles [START_REF] Kingma | A Method for Stochastic Optimization[END_REF], Adagrad [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF], Adadelta [START_REF] Zeiler | ADADELTA: An Adaptive Learning Rate Method[END_REF]. Ces méthodes d'optimisation sont implémentées en particulier dans les libraires Tensorflow [START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF] et Pytorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF].

Certains articles résolvent les EDPs à l'aide de l'apprentissage automatique, mais sans s'appuyer sur les EDSRs. La méthode Deep Galerkin [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] est capable de résoudre des EDPs en cherchant une solution sous la forme d'un réseau de neurones. Pour cela il faut tirer au sort un point dans le domaine d'intérêt et essayer de faire respecter l'EDP localement, en chaque point tiré. La même idée est utilisée par les réseaux de neurones physics-informed [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF] qui incorporent également des données et reconstruisent les solutions des EDPs en interpolant les données à partir de l'équation. Dans le cas homogène en temps, la méthode Deep Ritz de [START_REF] Yu | The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems[END_REF] résout la formulation variationnelle des équations elliptiques grâce à un schéma de type Deep Galerkin. Des méthodes utilisant l'apprentissage automatique mais pas les réseaux de neurones sont également envisagées dans la littérature. Ces schémas ont également été conçus afin d'atténuer la malédiction de la dimension, comme les sparse grids [START_REF] Chassagneux | A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs[END_REF], le nesting Monte-Carlo [START_REF] Warin | Nesting Monte Carlo for high-dimensional non-linear PDEs[END_REF], le branching [Bou+17; HL+19] et les schémas de Picard multiniveaux [E+19; HK20] qui s'avèrent surmonter la malédiction de la dimension dans certains cas.

Cas semilinéaire

Concentrons-nous sur les méthodes d'apprentissage automatique qui reposent sur les EDSRs pour résoudre les EDP semilinéaires. Les premières méthodes à apparaître sont des méthodes globales telles que la méthode Deep BSDE [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] puis la méthode Merged Deep BSDE [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF]. Dans ce cadre, on obtient la valeur initiale u(0, x 0 ) de la solution de l'EDP et une représentation du gradient de la solution par les réseaux de neurones mais pas de la solution elle-même. Le terme "global" fait référence au fait que l'on résout un seul grand problème d'optimisation en tenant compte de toute la dynamique sur [0, T ]. Le processus Y est approché par un schéma d'Euler :

Y i+1 = Y i -F (t i , X i , Y i+1 , Z i )∆t + Z θ i i (X i ).∆W i , i = 0, • • • , N -1,
avec Y 0 = y 0 , une variable y 0 et des réseaux de neurones Z θ i i . Le schéma minimise la fonction de perte inf

y 0 ,θ 0 ,••• ,θ N E|Y N -g(X N )| 2 ,
qui est un problème cible pour la valeur terminale de Y T . De cette façon, la méthode ne s'inscrit pas dans le cadre de l'apprentissage supervisé puisque nous n'avons pas de cibles pour les réseaux de neurones approximant le processus Z. L'algorithme n'est pas non plus un algorithme non supervisé puisque les coefficients de la dynamique de X et Y sont connus, ce qui n'est pas le cas dans le paradigme de l'apprentissage par renforcement. La méthode peut être vue comme un schéma semi-supervisé où les cibles sont implicitement apprises lors de l'entraînement.

Dans [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], la fonction de base de (2.1.6) est remplacée par un réseau de neurones et les deux problèmes d'optimisation pour la solution et son gradient sont résolus conjointement à chaque pas de temps. Cette méthode locale nous permet d'obtenir une approximation fonctionnelle de la solution de l'EDP à chaque pas de temps et pas seulement au temps initial t = 0. Contrairement au schéma Deep BSDE [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF], plusieurs petits problèmes d'optimisation sont résolus. Ces problèmes d'optimisation sont proches les uns des autres et, par conséquent, nous pouvons initialiser les paramètres des réseaux de neurones aux paramètres calculés précédemment, ce qui donne un très bon point de départ, car la solution de l'EDP est censée être continue dans le temps. Des idées proches sont utilisées par [START_REF] Raissi | Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations[END_REF] et dans le splitting scheme de [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF]. Ces schémas résolvent avec succès des EDP en dimension de 10 à 100 voire 1000 ou plus dans certains cas. L'idée du schéma Deep Backward Dynamic Programming (DBDP) de [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] est d'optimiser les paramètres θ des réseaux de neurones

(U θ i (•), Z θ i (•)) ∈ N ρ d,d+1
, ,m grâce à la minimisation récursive des problèmes rétrogrades

inf θ E U θ i (X i ) -U i+1 (X i+1 ) -F (t i , X i , U θ i (X i ), Z θ i (X i ))∆t + Z θ i (X i ).∆W i 2 , i = N -1, • • • , 0, (2.1.7) où U N (X N ) est pris comme g(X N ), θ * i est le minimiseur du problème précédent et U i+1 = U θ * i+1 i+1
(les notations θ * et • auront le même sens par la suite). Une variante où Z θ i est remplacé par le gradient de U θ i est aussi proposée dans ce papier mais donne des résultats un peu moins bons. La méthode de Deep Splitting (DS) de [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] utilise cette idée et minimise les fonctions de perte 

inf θ E U θ i (X i ) -U i+1 (X i+1 ) -F (t i , X i+1 , U i+1 (X i+1 ), σ(t i , X i ) D x U i+1 (X i+1 ))∆t i 2 , pour i = N -1, •
Y i = g(X N ) + N -1 j=i F (t j , X j , Y j , Z j )∆t - N -1 j=i Z j .∆W j ,
qui peut être réécrit par adaptation de Y et Z comme 

Y i = E[g(X N ) + N -1 j=i F (t j , X j , Y j , Z j )∆t -N -1 j=i Z j .∆W j | F t i ] Z i = E[(g(X N ) + N -1 j=i+1 F (t j , X j , Y j , Z j )∆t -N -1 j=i+1 Z j .∆W j ) ∆W i ∆t | F t i ], i = 0, • • • , N -1. ( 2 
inf θ E U θ i (X i ) -g(X N ) -F (t i , X i , U θ i (X i ), Z θ i (X i ))∆t + Z θ i (X i )∆W i (2.1.9) - N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ))∆t + N -1 j=i+1 Z j (X j ).∆W j 2 ,
qui utilise tous les réseaux de neurones précédemment entraînés aux pas de temps j > i.

Cas complétement non-linéaire

Dans le cas complétement non-linéaire (2.1.1), un schéma probabiliste efficace est introduit par [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic PDEs[END_REF] et il converge localement uniformément vers la solution de viscosité de l'EDP grâce à la théorie des schémas monotones de [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. En supposant que la solution de l'équation est régulière, la formule d'Itô donne

Y t = g(X T ) - T t µ(s, X s ).Z s + 1 2 tr(σσ (s, X s )Γ s ) -F (s, X s , Y s , Z s , Γ s ) ds - T t σ (s, X s )Z s .dW s , 0 ≤ t ≤ T.
On défnit F (t, x, u, z, γ) := F (t, x, u, z, γ) -µ(t, x).z -1 2 tr(σσ (s, x)γ). Contrairement au cas semilinéaire nous devons désormais estimer également le processus correspondant à la derivée seconde Γ t = D 2

x u(t, X t ). Ici les coefficients du processus X de (2.1.3) peuvent être choisis arbitrairement, contrairement au cas semilinéaire dans lequel la volatilité est donnée par l'équation (2.1.2). En effet, remarquons que dans (2.1.1), la partie linéaire de (2.1.2) n'apparaît pas.

Un schéma d'apprentissage pour traiter ce cas a été introduit par [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF], à partir des EDSRs du second ordre de [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF] pour la solution des EDPs complétement non-linéaires

Y t = g(X T ) + T t F (s, X s , Y s , Z s , Γ s )ds - T t Z s .σdW s , Z t = D x g(X T ) - T t A s ds - T t Γ s σdW s , 0 ≤ t ≤ T, avec A t = LD x u(t, X t ).
En particulier, dans le cas où il existe une solution classique u de classe

C 1,2 , Γ t vérifie Γ t = D 2 x u(t, X t ) et comme précédemment Y t = u(t, X t ) alors que Z t = D x u(t, X t ).
Le schéma discrétise ce système et utilise des variables pour approcher Y 0 , Z 0 et des réseaux de neurones (A θ , G θ ) pour approcher A, Γ grâce à la minimisation de la distance à la conditon terminale (g(X T ), D x g(X T )) des deux équations, en suivant la méthode du schéma Deep BSDE.

Nous proposons quatre schémas locaux alternatifs, en combinant des idées de [HPW20; Bec+21] et de notre propre schéma multistep.

Second order DBDP scheme (2DBDP)(voir Algorithme 7) La première idée naturelle décrite dans le Chapitre 5 est une extension du schéma DBDP avec la fonction de perte 

inf θ E U θ i (X i ) -U i+1 (X i+1 ) -F (t i , X i , U θ i (X i ), Z θ i (X i ), D Z i+1 (T (X t i+1 )))∆t + Z θ i (X i )∆W i 2 ,
θ E g(X N ) + |π| N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ), Γ l j (X j )) - N -1 j=i+1 Z j (X j ).σ∆W j -U θ (X i ) + |π| F (t i , X i , U θ (X i ), Z θ (X i ), Γ l i (X i )) -Z θ (X i ).σ∆W i 2 ,
où la définition de Γl j dépend de la méthode. Nous supposons que le drift vérifie µ = 0 et que la matrice de volatilité σ est inversible et constante en temps et espace.

• Second order Explicit Multistep DBDP scheme (2EMDBDP)(voir Algorithme 3).

On combine le schéma multistep et le schéma 2DBDP. Si i = N -1, définissons

Γ i = D 2 g, sinon Γ i = D x Z i+1 , Γ j = D x Z j , j ∈ i + 1, N -1 .
On prend aussi l j = j.

• Second order Multistep DBDP (2MDBDP), (voir Algorithme 4). Une autre méthode utilise des poids de Malliavin pour évaluer cette dérivée sur une sous-grille π = {t κ , = 0, . . . , N } ⊂ π, de module |π| = κ|π|, pour κ ∈ N * , avec N = κ N . Γ obtenu en résolvant

inf θ E Γ θ (X κ ) - Z κ( +1) (X κ( +1) ) -Z κ( +1) ( Xκ( +1) ) 2 Ĥ1 2 ,
avec les poids de Malliavin

Ĥ1 = (σ ) -1 ∆W |π| , ∆W := W t κ( +1) -W t κ ,
et les variables antithétiques

Xκ( +1) = X κ -σ ∆W .
On prend aussi l j = j ÷ κ + 1 où '÷' est le symbole pour la division Euclidienne.

• Second order Multistep Malliavin DBDP (2M 2 DBDP), (voir Algorithme 5). Cette technique utilise une différentiation du second ordre de la représentation multistep sur une sous-grille comme précedemment grâce à des poids de Malliavin du second ordre et des variables antithétiques. On prend également l j = j ÷ κ + 1.

Réseaux de neurones lipschitziens GroupSort et contributions à de nouveaux résultats théoriques

Nous fournissons au chapitre 4 une analyse détaillée de la convergence du schéma Deep Splitting et de notre schéma multistep. Nous nous concentrons sur la propagation des erreurs de discrétisation et de régression à travers le schéma. Cependant, nous ne considérons pas l'erreur statistique provenant de l'approximation Monte-Carlo de l'espérance dans les fonctions de perte telles que (2.1.9) ni l'erreur d'optimisation provenant de l'algorithme de descente de gradient.

Grâce à des résultats récents sur l'approximation universelle quantitative pour les réseaux de neurones lipschitziens GroupSort, nous obtenons explicitement l'erreur en termes de l'architecture du réseau de neurones, c'est-à-dire son nombre de neurones et de couches. Pour une utilisation future, nous introduisons la régularité L 2 de Z introduite par [START_REF] Zhang | A numerical scheme for BSDEs[END_REF] :

ε Z (π) := E N -1 i=0 t i+1 t i |Z t -Zt i | 2 2 dt , with Zt i := 1 ∆t i E i t i+1 t i Z t dt .
Nous choisissons des suites

(γ i ) i , (η i ) i et considérons des classes d'approximation N i , N i et N γ,η i respectivement de R d → R, R d → R d , R d → R (et avec des fonctions γ i -Lipschitz et gradient η i -
Lipschitz pour le dernier). On définit pour i = 0, . . . , N -1 les erreurs d'approximation L 2 dans ces classes de fonction de v

(1)

i , z i (1) , v (2) 
i , v

i , z i (3) definies respectivement dans (4.3.2), (4.3.4) et (4.3.6):

ε 1,y i := inf U∈N i E v (1) i (X i ) -U(X i ) 2 , ε 1,z i := inf Z∈N i E z i (1) (X i ) -Z(X i ) 2 2 , ε γ,η i = inf U ∈N γ,η i E v (2) i (X i ) -U(X i ) 2 , i = 0, . . . , N -1, inf U ∈N γ,η i E g(X N ) -U(X N ) 2 , i = N, ε 3,y i := inf U∈N i E v (3) i (X i ) -U(X i ) 2 , ε 3,z i := inf Z∈N i E z i (3) (X i ) -Z(X i ) 2 2 .
Notre 

E Y t i -U (1) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (1) i (X i ) 2 2 ds ≤ C E g(X T ) -g(X N ) 2 + |π| + ε Z (π) + N -1 j=0 (ε 1,y j + ∆t j ε 1,z j ) .
Cette erreur d'approximation du schéma à plusieurs étapes est meilleure que celle du schéma DBDP de [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] où le terme des erreurs de régression N -1 j=0 (ε 1,y j + ∆t j ε 1,z j ) est remplacé par N -1 j=0 (N ε 1,y j + ε 1,z j ). En particulier, nous répondons au point soulevé par Côme Huré dans la section 1.3.4 de sa thèse [START_REF] Huré | Numerical Methods and Deep Learning for Stochastic Control Problems and Partial Differential Equations[END_REF] où il mentionne que le facteur N qu'il a obtenu devant la somme des erreurs était inattendu et ne pouvait pas être retiré de sa preuve. En fait, l'utilisation d'une méthode multistep nous permet de supprimer ce terme. Cependant, nous avons obtenu un facteur similaire N pour le schéma Deep Splitting de [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF].

Theorem 2.1.2 (Erreur d'approximation de DS). Supposons que l'Hypothèse 4.3.1 soit vérifiée, et supposons que X 0 ∈ L 4 (F 0 , R d ). Alors, il existe une constante C > 0 (dépendant seulement de µ, σ, f, g, d, T, X 0 ) telle qu'à la limite où |π| → 0

sup i∈ 0,N E Y t i -U (2) i (X i ) 2 ≤ C E g(X N ) -g(X T ) 2 + |π| + ε Z (π) + max i γ 2 i , η 2 i |π| + ε γ,η N + N N -1 i=0 ε γ,η i .
Les premiers résultats d'approximation classiques prouvent que les réseaux de neurones sont denses dans les espaces de fonctions, tels que [HSW89; HSW90; Hor91] mais aucune vitesse de convergence n'est donnée dans ces travaux. Lorsque l'on suppose une plus grande régularité pour les fonctions cibles, comme la dérivabilité, la continuité de Lipschitz, la convexité ou la régularité de Sobolev, plusieurs articles ont ensuite fourni des résultats d'approximation explicites [Pin99a; BGS15; Yar17; Bac17]. Nous utilisons une approche plus récente avec des réseaux de neurones lipschitziens. Grâce à une fonction d'activation qui divise son entrée en groupes et trie chacun d'entre eux (voir figure 1.1), et en imposant des paramètres bornés, le réseau GroupSort introduit par [START_REF] Anil | Sorting Out Lipschitz Function Approximation[END_REF] est 1-Lipschitz. [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF] prouve des résultats d'approximation explicites pour ces réseaux qui nous permettent d'aller plus loin dans notre analyse des erreurs en exprimant les erreurs de régression en fonction de l'architecture. En conséquence, nous pouvons choisir les paramètres des réseaux de neurones de sorte que l'erreur globale soit équivalente à l'erreur de discrétisation temporelle.

Soit κ ∈ N * , κ ≥ 2, une taille de groupement, divisant le nombre de neurones m i = κn i , à chaque couche i = 0, pour un certain M > 0, les réseaux de neurones GroupSort correspondants de N ζκ d,d , ,m sont 1-Lipschitz. L'espace de tels réseaux de neurones GroupSort 1-Lipschitz est appelé S ζκ d, ,m :

sup |x| 2 =1 |W 0 x| ∞ ≤ 1, sup |x|∞=1 |W i x| ∞ ≤ 1, |β j | ∞ ≤ M, i = 1, • • • , l, j = 0, • • • , l,
S ζκ d, ,m = {ϕ (W 0 ,β 0 ,...,W ,β ) ∈ N ζκ d,1, ,m , sup |x| 2 =1 |W 0 x| ∞ ≤ 1, sup |x|∞=1 |W i x| ∞ ≤ 1, |β j | ∞ ≤ M, i = 1, • • • , l, j = 0, • • • , l}. On introduit alors l'ensemble G ζκ K,d,d , ,m G ζκ K,d,d , ,m :={Ψ = (Ψ i ) i=1,...,d : R d → R d , Ψ i : x ∈ R d → Kβ i φ i x + α i β i ∈ R, φ i ∈ S ζκ d, ,m , pour un certain α i ∈ R d , β i > 0}.
Remarquons que ces réseaux sont √ d K-Lipschitz et que chacune de leur composante est K-Lipschitz. Donnons le résultat d'approximation qui est central pour notre étude: Proposition 2.1.1 (Légère extension de Tanielian, Sangnier, Biau [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF] : Théorème d'approximation pour les fonctions Lipschitz par des réseaux de neurones lipschitziens GroupSort.). Soit f :

[-R, R] d → R d une fonction K-Lipschitz. Alors, pour tout ε > 0, il existe un réseau GroupSort g dans G ζκ K,d,d , ,m vérifiant sup x∈[-R,R] d |f (x) -g(x)| 2 ≤ √ d 2RKε, avec g de taille de groupement κ = 2 √ d ε , profondeur + 1 = O(d 2 ) et largeur -1 i=0 m i = O(( 2 √ d ε ) d 2 -1
) dans le cas d > 1. Si d = 1, le même résultat est valide avec g de taille de groupement κ = 1 ε , profondeur

+ 1 = 3 et largeur -1 i=0 m i = O( 1 ε ).
Nous étudions ensuite la convergence pour l'erreur d'approximation du schéma MDBDP avec des réseaux de neurones GroupSort et avec l'hypothèse supplémentaire que le driver F ne dépend pas de z, donc que l'EDP est linéaire en z.

Proposition 2.1.2 (Vitesse de convergence de MDBDP). Supposons que l'Hypothèse 4.3.1 et l'Hypothèse 4.3.2 soient vérifiées, et supposons que X 0 ∈ L 2+δ (F 0 , R d ), pour un certain δ > 0, et que g soit [g]-Lipschitz. Alors, il existe une suite bornée K i (uniformément en i, N ) telle que pour les classes de réseaux GroupSort

N i = G ζκ K i ,d,1, ,m , et N i = G ζκ d ∆t i K i ,d,d, ,m
, on ait

sup i∈ 0,N E Y t i -U (1) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (1) i (X i ) 2 2 ds = O(1/N ), avec une taille de groupement κ = O(2 √ dN 2 ), une profondeur + 1 = O(d 2 ) et une largeur -1 i=0 m i = O((2 √ dN 2 ) d 2 -1 ) dans le cas d > 1. Si d = 1, on peut prendre κ = O(N 2 ), une profondeur + 1 = 3 et une largeur -1 i=0 m i = O(N 2 ).
Ici, les constantes dans le terme O(•) dépendent seulement de µ, σ, F , g, d, T, x 0 .

Nous sommes capables d'effectuer la même analyse pour le schéma DBDP dans le cas semilinéaire où l'EDP est non-linéaire en z.

Proposition 2.1.3 (Rate of convergence of DBDP). Supoosant que l'Hypothèse 4.3.1 soit vérifiée, et supposons que X 0 ∈ L 2+δ (F 0 , R d ), pour un certain δ > 0, et que g soit [g]-Lipschitz. Alors, il existe une suite bornée K i (uniformément en i, N ) telle que pour d,d,,m , on ait

N i = G ζκ K i ,d,1, ,m , et N i = G ζκ d ∆t i K i ,
sup i∈ 0,N E Y t i -U (3) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (3) i (X i ) 2 2 ds = O(1/N ), avec une taille de groupement κ = O(2 √ dN 3 ), une profondeur + 1 = O(d 2 ) et une largeur -1 i=0 m i = O((2 √ dN 3 ) d 2 -1 ) in the case d > 1. Si d = 1, on peut prendre κ = O(N 3 ), une profondeur + 1 = 3 et une largeur -1 i=0 m i = O(N 3 ). Ici, les constantes dans le terme O(•) dépendent seulement de µ, σ, f, g, d, T, X 0 .
En raison des différences mentionnées précédemment entre l'erreur de DBDP et celle de MDBDP, nous remarquons que beaucoup plus de neurones sont nécessaires pour obtenir une vitesse similaire pour l'erreur. Par exemple en dimension d = 1, pour obtenir une erreur en O(1/N ) le schéma DBDP nécessite en théorie O(N 3 ) neurones alors que seulement O(N 2 ) sont nécessaires pour le schéma MDBDP.

Problèmes à champ moyen et leur approximation numérique

Motivations et conditions d'optimalité

Les jeux à grande population ont suscité un intérêt croissant depuis l'émergence de la théorie des jeux à champ moyen introduite par [LL06a; LL06b] et [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]. Cette théorie considère la limite d'un nombre infini de joueurs similaires en interaction et vise à caractériser les équilibres qui en résultent. Deux cadres principaux sont disponibles :

• Jeux à champ moyen (MFG) La théorie MFG s'intéresse aux équilibres de Nash, et considère donc une interaction compétitive entre les joueurs.

• Contrôle à champ moyen (MFC) (ou contrôle de dynamique de type McKean-Vlasov). Ici, le cadre se concentre sur les équilibres collaboratifs, avec un planificateur central qui résout un problème concernant l'ensemble de la population.

Le point de départ est un jeu différentiel stochastique à N joueurs, avec des contrôles par rétroaction α i t qui influent sur le coût et la dynamique suivantes pour l'agent i :

   J i = E T 0 f t, X i t , 1 N N k=1 δ X k t , α i t dt + g X i T , 1 N N k=1 δ X k T dX i t = b t, X i t , 1 N N k=1 δ X k t , α i t dt + σ t, X i t , 1 N N k=1 δ X k t , α i t dW i t .
(2.2.1)

Lorsque le nombre de joueurs N est grand, le jeu devient difficile à résoudre et l'approximation du champ moyen fournit un moyen de résoudre approximativement le problème en prenant la limite N → +∞. Pour trouver un équilibre, nous considérons des contrôles de rétroaction Markoviens distribués α i t = α t (X i t ).

Pour écrire le problème MFG asymptotique, nous commençons par définir une famille (µ t ) t∈[0,T ] de mesures de probabilité. Ensuite, nous résolvons par symétrie uniquement pour un joueur

CHAPTER 2. INTRODUCTION (EN FRANÇAIS) représentatif : inf αt∈A E T 0 f (t, X α t , µ t , α t ) dt + g(X α T , µ T ) subject to X α t = ξ + t 0 b(s, X α s , µ s , α s ) ds + t 0 σ(s, X α s , µ s , α s ) dW t .
Ici, la loi initiale de X α 0 , appelée ν 0 , est connue, et ξ est tiré aléatoirement selon cette loi. Une fois que l'on a trouvé une solution X α * ,µ ,µ , on note ν α * ,µ t := L(X α * ,µ ,µ t ) sa loi. Nous recherchons alors la famille de mesures µ t résolvant le problème de point fixe

µ t = ν α * ,µ ,µ t = L(X α * ,µ ,µ t ).
D'autre part le problème MFC associé est

inf αt∈A E T 0 f (t, X α t , L(X α t ), α t ) dt + g(X α T , L(X α T )) subject to X α t = ξ + t 0 b(s, X α s , L(X α s ), α s ) ds + t 0 σ(s, X α s , L(X α s ), α s ) dW t .
(2.2.2)

Même si ces problèmes sont différents, ils sont néanmoins assez similaires. L'interprétation éclairante suivante est donnée par [CDL13; CD18a] : à partir de (2.2.1), si l'on optimise d'abord puis que l'on prend la limite N → +∞ on obtient un MFG, alors que si l'on prend d'abord la limite N → +∞ puis qu'on optimise on se retrouve avec un MFC. En général, les deux équilibres sont différents.

La théorie du champ moyen a plusieurs applications en mathématiques appliquées comme en finance quantitative avec l'exécution optimale et l'impact des prix [START_REF] Cardaliaguet | Mean field game of controls and an application to trade crowding[END_REF], en économie avec le minage de bitcoins [START_REF] Bertucci | Economic Modelling of the Bitcoin Mining Industry[END_REF] ou la production de pétrole [START_REF] Chan | Fracking, Renewables, and Mean Field Games[END_REF], dans la santé avec la propagation des épidémies [START_REF] Lee | Controlling Propagation of Epidemics via Mean-Field Control[END_REF], ou encore pour les réseaux sociaux [START_REF] Bauso | Opinion Dynamics in Social Networks through Mean-Field Games[END_REF]. Dans le domaine de l'énergie, la multiplication des petits opérateurs, la décentralisation et les réseaux intelligents avec des flexibilités (gestion de la demande et stockage) ont inspiré plusieurs études utilisant la machinerie du champ moyen. Ces travaux se sont intéressés à la recharge intelligente [SWA21a; SWA21b], au stockage et aux flexibilités pour l'électricité [ABTM20; GG21a; GG21b], mais aussi à la formation des prix et aux échanges sur les marchés de l'électricité [START_REF] Féron | Price formation and optimal trading in intraday electricity markets[END_REF][START_REF] Féron | Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player[END_REF]. Ces articles considèrent souvent des modèles linéaires-quadratiques, c'est-à-dire avec une dynamique linéaire et des coûts quadratiques afin de pouvoir calculer la solution exacte. Mais si l'on veut utiliser des représentations plus réalistes, des méthodes numériques sont nécessaires afin d'obtenir une approximation de la solution. Comme précédemment dans le cas du contrôle stochastique, les réseaux de neurones sont un outil intéressant pour résoudre des problèmes non-linéaires de dimension moyenne à élevée. Enfin, pour une utilisation pratique, pour respecter des contraintes physiques ou des cadres réglementaires, il est parfois utile d'ajouter des contraintes d'état aux problèmes de contrôle à champ moyen. Nous allons considérer ces deux problèmes. La deuxième partie de notre thèse vise à répondre aux questions suivantes :

• Comment introduire de nouvelles méthodes de résolution numérique par apprentissage automatique ?

• Comment imposer des contraintes d'état dans un problème de contrôle à champ moyen ? Qu'en est-il des contraintes probabilistes ?

Nous passons en revue les conditions d'optimalité des problèmes de contrôle du champ moyen qui seront utiles pour leur résolution numérique. Des conditions d'optimalité similaires sont obtenues pour les MFG. L'approche par programmation dynamique introduit une fonction de valeur sur [0, T ] × P 2 (R d ) dépendant de la loi de départ : 

v(t, µ) = inf α E t,µ T t f (X α s , L(X α s ), α s ) ds + g(X α T , L(X α T )) , (ici E t,
∂ t v + H(t, µ, v, ∂ µ v, ∂ x ∂ µ v, ∂ 2 µ v) = 0, (t, µ) ∈ [0, T ) × P 2 (R d ), v(T, µ) = G(µ), µ ∈ P 2 (R d ), (2.2.3) avec G(µ) = g(x,
: (t, ξ) ∈ [0, T ] × L 2 (R d ) → v(t, L(ξ)) ∈ R qui peut être représentée par théorème de representation de Riesz par ∂ µ v(t, ξ) ∈ L 2 (R d ) tel que [Dv](t, ξ)(Y ) = E[∂ µ v(t, ξ).Y ] ∈ R.
Le principe de Pontryagin [START_REF] Carmona | Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics[END_REF] (voir [START_REF] Carmona | Probabilistic Analysis of Mean-Field Games[END_REF] 

           dX t = b(t, X t , L(X t ), αt ) dt + σ(t, X t , L(X t ), αt ) dW t X 0 = ξ dY t = -∂ x H(t, X t , L(X t ), Y t , Z t , αt ) dt -E[∂ µ H(t, Xt , L(X t ), Ỹt , Zt , αt )] dt + Z t dW t Y T = ∂ x g (X T , µ T ) + E ∂ µ g X T , µ T , (2.2.4) où αt = argmin α H(t, X t , L(X t ), Y t , Z t , α) et ( X, Ỹ , Z, α) est une copie indépendante de (X, Y, Z, α).
Dans le cas des MFGs, les dérivées de Lions ∂ µ disparaissent dans (2.2.4). En ce qui concerne les MFGs, le papier fondateur [START_REF] Lasry | Jeux à champ moyen. II -Horizon fini et contrôle optimal[END_REF] caractérise l'équilibre grâce à un système couplé d'équations de Hamilton-Jacobi-Bellman et de Fokker-Planck. Ce système est utilisé pour construire des solutions approchées de MFGs par [START_REF] Achdou | Mean Field Games: Numerical Methods[END_REF].

Une première idée pour résoudre (2.2.2) est présentée dans [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF]. Une approche par force brute consiste à chercher des contrôles par rétroaction optimaux en représentant le contrôle α t par un réseau de neurones A θ : (t i , x i ) ∈ [0, T ] × R d → R q et de minimiser directement le coût discrétisé en temps :

inf θ 1 N s Ns k=1 N i=1 f (t i , X k i , μi , A θ (t i , X k i )) ∆t + g(X k N , μN ) (2.2.5) X k i+1 = X k i + b(t i , X k i , μi , A θ (t i , X k i )) ∆t + σ(t i , X k i , μi , A θ (t i , X k i )) ∆W k i , μi = 1 N s Ns k=1 δ X k i , i = 0, • • • , N -1, X k 0 = ξ k , k = 0, • • • , N s ,
où la loi est approchée par la mesure empirique des particules avec des mouvements Bronwiens indépendants 

W k , k = 1, • • • , N s et ξ k , k = 0, • • • , N s sont
               X k i+1 = b(t i , X k i , μi , αi (X k i , μi , Y k i , Z k i )) ∆t + σ(t i , X k i , μi , Y k i , Z k i , αi (X k i , μi , Y k i , Z k i )) ∆W k i , X k 0 = ξ k , k = 0, • • • , N s , Y k i+1 = Y k i -∂ x H(t i , X k i , μi , Y k i , Z k i , αi (X k i , μi , Y k i , Z k i )) ∆t -1 N N j=1 ∂ µ H(t i , X j i , μi , Y j i , Z j i , αi (X j i , μi , Y j i , Z j i )) ∆t + Z θ i i (X k i ) ∆W k i , μi = 1 Ns Ns k=1 δ X k i , i = 0, • • • , N -1, avec Y k 0 = Y η 0 (X k 0 ), un réseau de neurones Y η 0 et des réseaux de neurones Z θ i i , i = 0, • • • , N -1. De plus αk i (X k i , μi , Y k i , Z k i ) = argmin α H(t i , X k i , μi , Y k i , Z k i , α). La méthode minimise la fonction de perte inf η,θ 0 ,••• ,θ N 1 N N k=1 Y k N -∂ x g X k N , µ N - 1 N N j=1 ∂ µ g X j N ,
     ∂ t v N + 1 N N i=1 H t, x i , μ(x), v N , N D x i v N ) + 1 2 tr(Σ N (t, x)D 2 x v N ) = 0, on [0, T ) × (R d ) N v N (T, x) = G μ(x) , x = (x i ) i∈ 1,N ∈ (R d ) N , (2.2.6) où μ(.) est la mesure empirique définie par μ(x) = 1 N N i=1 δ x i , pour tout x = (x 1 , . . . , x N ), N ∈ N * , et Σ N = (Σ ij N ) i,j∈ 1,N est la fonction à valeurs dans R N d×N d avec des matrices par bloc Σ ij N (t, x) = σ(t, x i , μ(x))σ (t, x j , μ(x))δ ij + σ 0 (t, x i , μ(x))σ 0 (t, x j , μ(x)) ∈ R d×d .
Cette équation est étudiée dans [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] qui démontre la convergence de ses solutions de viscosité vers la solution de viscosité de l'équation maîtresse quand N tend vers +∞, sous certaines conditions sur H et les coefficients de volatilité σ, σ 0 . Notre contribution est de donner une vitesse de convergence grâce à des arguments probabilistes. L'EDP de dimension finie (2.2.6) est liée à une EDSR Markovienne à travers la formule de Feynman-Kac non-linéaire. Le système de particule associé est donné par

dX N t = σ N (t, X N t ) dW t + σ 0 (t, X N t ) dW 0 t , où σ N est la matrice diagonale par blocs avec blocs diagonaux σ ii N (t, x) = σ(t, x i , μ(x)), σ 0 = (σ i 0 ) i∈ 1,N est la fonction à valeurs dans (R d×m ) N avec σ i 0 (t, x) = σ 0 (t, x i , μ(x)), pour x = (x i ) i∈ 1,N , W = (W 1 , . . . , W N ) où W i , i = 1, .
. . , N , est un mouvement Brownien ndimensionnel, indépendant d'un mouvement Brownien m-dimensionnel W 0 sur un espace probabilisé filtré (Ω, F, F = (F t ) 0≤t≤T , P) et où les conditiones initiales du système de particules, X i,N 0 , i = 1, . . . , N , sont i.i.d. avec distribution µ 0 . La composante rétrograde est définie par la paire de processus (Y N , Z N = (Z i,N ) i∈ 1,N ) à valeurs dans R ×(R d ) N , solution de

Y N t = G μ(X N T ) + 1 N N i=1 T t H b (s, X i,N s , μ(X N s ), Y N s , N Z i,N s ) ds - N i=1 T t (Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s , - N i=1 T t (Z i,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s , 0 ≤ t ≤ T.
Les principales difficultés dans l'étude de la convergence de cette EDP vers l'équation de Bellman maître sont :

• Le facteur N devant le gradient de la non-linéarité H b qui fait exploser la régularité de Lipschitz par rapport au gradient.

• L'explosion de la dimension de l'EDP.

Ces difficultés peuvent être contournées grâce à une procédure de linéarisation associée à un changement de mesure de Girsanov. Nous étudions l'erreur trajectorielle sur v :

E y N := sup 0≤t≤T Y N t -v(t, μ(X N t )) , et l'erreur L 2 sur sa L-derivative E z N 2 := 1 N N i=1 T 0 E N Z i,N t -∂ µ v(t, μ(X N t ))(X i,N t ) 2 dt 1 2 .
Sous des hypothèses concernant la régularité de Lipschitz des paramètres, l'existence d'une solution classique suffisamment régulière avec une croissance linéaire et une dérivée de Lions du second ordre bornée, nous sommes capables de trouver une vitesse de convergence pour la solution. Des hypothèses supplémentaires sont nécessaires pour étudier l'erreur E z N 2 , comme l'ellipticité de la volatilité commune σ 0 et une structure linéaire concernant le gradient de la solution de l'EDP.

Theorem 2.2.1. Sous les Hypothèses 6.2.1 et 6.2.2, nous avons P-presque surement

E y N ≤ C y N , où C y = T 2 e [H b ] 1 T L σ 2 ∞ , avec σ ∞ = sup (t,x,µ)∈[0,T ]×R d ×P 2 (R d ) |σ(t, x, µ)|.
Theorem 2.2.2. Sous les Hypothèses 6.2.1, 6.2.2 et 6.2.3, nous avons

E z N 2 ≤ C z N 1 2 , où C z = σ + ∞ 2T ([H 1 ] 1 + [H 2 ] 1 L) C2 y + Cy T σ 2 ∞ L + 2 c 0 C2 y T H 2 2 ∞ et Cy = T 2 e ([H 1 ] 1 +[H 2 ] 1 L)T L σ 2 ∞ .
En remarquant les propriétés de symétrie de l'EDP, nous concevons dans le Chapitre 7 un schéma adapté à ces symétries qui nous permet de travailler en haute dimension, avec 1000 ou 10000 particules. Plus précisément, la solution v N of (2.2.6) est invariante par permutation de ces arguments, c'est-à-dire que pour

x 1 , • • • , x N ∈ (R d ) N et une permutation σ sur {1, • • • , N }: v N (x 1 , • • • , x N ) = v N (x σ(1) , • • • , x σ(N ) ).
Cette symétrie implique également une structure pour sa dérivée spatiale. Ces deux comportements nous ont incités à concevoir une méthode adaptée aux EDP symétriques. L'idée est de considérer des réseaux de neurones symétriques, à savoir DeepSets [START_REF] Zaheer | Deep Sets[END_REF] et PointNet [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] qui ont été introduits par la communauté de l'apprentissage automatique notamment afin de classifier efficacement les nuages de points.

Une fonction de réseau de neurones symétrique, notée U dans S s,N,ρ d, ,m,k,d , est une fonction échangeable à valeurs dans R d à l'ordre N sur R d , de la forme :

U(x) = ψ s((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N , où ϕ ∈ N ρ d, ,m,k , ψ ∈ N ρ k, ,m,d ( 
ici, pour simplifier les notations, nous supposons que le nombre de couches cachées et de neurones de ϕ et ψ est le même, mais en pratique, ils peuvent être différents), et s est une fonction échangeable à valeur dans R k à l'ordre N sur R k .

Le réseau DeepSet est donné par

U(x) = ψ 1 N N i=1 ((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N ,
alors que le réseau PointNet network vérifie

U(x) = ψ max i=1•••N ((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N .
Ces réseaux sont symétriques par construction et sont suffisamment expressifs dans l'espace des fonctions symétriques. Plus précisément, en combinant le théorème 2.9 de [START_REF] Wagstaff | On the Limitations of Representing Functions on Sets[END_REF] avec le théorème 2 de [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF], nous obtenons le théorème d'approximation suivant pour les DeepSets.

Approximation universelle pour les réseaux DeepSets. Soit s la fonction somme. L'ensemble

∪ ∞ m=1 S s,N,ρ d, ,m,N +1,d approche n'importe quelle fonction N -échangeable w arbitrairement bien sur n'importe quel compact de K ⊂ R d , dès que ρ est continu, borné et non-constant: pour tout ε > 0, N ∈ N * , il existe U ∈ ∪ ∞ m=1 S s,N,ρ d, ,m,N +1,d tel que w(x) -U(x) ≤ ε ∀x ∈ K N .
Notez qu'a priori la dimension k de l'espace latent doit être prise égale à N + 1.

Alternativement, en combinant le Théorème 1 de [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] avec le Théorème 2 de [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF], nous obtenons un théorème d'approximation universelle pour PointNet en dimension un.

Approximation universelle pour les réseaux PointNet. Soit s la fonction max. L'ensemble ∪ ∞ m=1 ∪ ∞ k=1 S s,N,ρ 1, ,m,k,d approche n'importe quelle function N -échangeable Hausdorff continue w (vue comme une fonction sur les ensembles) arbitrairement bien sur tout compact de K ⊂ R , dès que ρ est continue, bornée et non constante:

pour tout ε > 0, N ∈ N * , il existe U ∈ ∪ ∞ m=1 ∪ ∞ k=1 S s,N,ρ 1, ,m,k,d tel que w(S) -U(x) ≤ ε, ∀S ⊂ K, S = {x 1 , • • • , x N }.
Notez ici qu'a priori la dimension k de l'espace latent doit être choisie aussi grande que nécessaire.

Nous adaptons le schéma DBDP [HPW20] à ces réseaux de neurones symétriques. Contrairement aux réseaux de neurones classiques, notre méthode converge même dans les cas difficiles de haute dimension. Plusieurs variantes peuvent être mises en oeuvre pour l'approximation de la composante Z de l'EDSR, correspondant au gradient de la solution. Nous pouvons soit considérer la dérivée des réseaux de neurones approximant la composante Y , soit utiliser une architecture satisfaisant les propriétés de symétrie du gradient d'une fonction symétrique.

Ajouter des contraintes d'état probabilistes

Dans de nombreuses situations pratiques, il peut être utile d'imposer des contraintes d'état à l'état contrôlé. Les contraintes peuvent être physiques (telles que la non négativité, le caractère borné...), peuvent être imposées par le cadre réglementaire, ou être utiles pour trouver une solution particulière d'intérêt. Nous nous référons à [ST02; BEI10; Gel+13; CYZ20; PTZ21; Bal+21] pour des applications spécifiques de contraintes probabilistes, notamment en finance, et souvent écrites sous forme d'espérance. Un exemple que nous considérons est celui du contrôle optimal d'une batterie pour le stockage d'électricité renouvelable, soumis au hasard à la fois au travers de la production intermittente mais aussi des prix de marché. [ABTM20] étudie un tel problème dans un cadre de champ moyen sans contraintes physiques sur la batterie, afin d'obtenir un modèle linéaire-quadratique explicitement résoluble. Dans le Chapitre 8, nous résoudrons numériquement un problème proche avec des contraintes sur la taille du stockage et les capacités d'injection et de soutirage.

Dans le contexte des problèmes de champ moyen, plusieurs articles considèrent les jeux à champ moyen où l'état est contraint de rester dans un ensemble compact [CC18; CCC18; FH20; GM21; AM21], soit à tout moment, soit seulement à un temps terminal T . Les contraintes terminales en loi sont également considérées par [BDK20; Dau20] respectivement pour la commande de dynamique de McKean-Vlasov et la commande stochastique. Pour le contrôle à champ moyen, du point de vue du contrôle de l'équation de Fokker-Planck, les travaux [Bon19; BF21] sont en mesure d'imposer des contraintes terminales ou continues sur la distribution de l'état, en s'appuyant sur le principe de Pontryagin, dans le cas déterministe sans diffusion. Un coût du type du contrôle à champ moyen pour une diffusion classique mais avec des contraintes d'état probabilistes est également étudié dans [START_REF] Daudin | Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space[END_REF].

Nous considérons dans le Chapitre 8 le cas général des contraintes en temps continu et en temps discret sur la loi de probabilité de l'état, qui contient par exemple en particulier la contrainte terminale en loi et les contraintes en ensemble compact. Nous nous appuyons sur l'approche level-set de [BPZ15; BPZ16; ABZ13]. Cela revient à introduire un problème auxiliaire non contraint avec une variable d'état supplémentaire. Grâce à un résultat de représentation, on peut lier la solution de ce problème à la solution du problème contraint original. Cette approche est également utile à des fins numériques puisque les méthodes existantes peuvent être appliquées au problème auxiliaire. Par conséquent, nous sommes également en mesure de développer des schémas numériques pour les problèmes de contrôle à champ moyen sous contrainte de loi. Nous considérons le coût et la dynamique suivants :

J(X 0 , α) = E T 0 f s, X α s , α s , P (X α s ,αs) ds + g X α T , P X α T X α t = X 0 + t 0 b s, X α s , α s , P (X α s ,αs) ) ds + t 0 σ(s, X α s , α t , P (X α s ,αs) dW s ,
et des contraintes probabilistes sous la forme

Ψ(t, P X α t ) ≤ 0, 0 ≤ t ≤ T, où Ψ = (Ψ l ) 1≤l≤k est une fonction de [0, T ]×P 2 (R d ) dans R k . Ici, la contrainte multi-dimensionnelle Ψ(t, µ) ≤ 0 doit être comprise composante par composante, i.e., Ψ l (t, µ) ≤ 0, l = 1, • • • , k. Le problème d'intérêt est donc V Ψ := inf α∈A J(X 0 , α) : Ψ(t, P X α t ) ≤ 0, ∀ t ∈ [0, T ] . (2.2.7)
Nous introduisons une variable d'état déterministe

Z z,α t := z -E t 0 f s, X α s , α s , P (X α s ,αs) ds = z - t 0 f s, P (X α s ,αs) ds, 0 ≤ t ≤ T,
et le problème auxiliaire sans contrainte

Y Ψ : z ∈ R → inf α∈A { g(P X α T ) -Z z,α T } + + k l=1 sup s∈[0,T ] {Ψ l (s, P X α s )} + , (2.2.8)
avec la notation {x} + = max(x, 0) pour la partie positive. Nous observons que Y Ψ (z) ≥ 0. Definissons l'infimum du zéro level-set

Z Ψ := inf{z ∈ R | Y Ψ (z) = 0}.
(2.2.9)

Nous prouvons deux résultats de représentation du problème contraint (2.2.7) par le problème sans contrainte (2.2.8).

Theorem 2.2.3.

1. Si pour un certain z ∈ R ∃ α ∈ A s.t. g(P X α T ) ≤ Z z,α T , Ψ(s, P X α s ) ≤ 0, ∀ s ∈ [0, T ] alors Y Ψ (z) = 0. 2. Si V Ψ est fini alors Y Ψ (V Ψ ) = 0. Donc Z Ψ ≤ V Ψ . 3. Définissons 1 k = (1, • • • , 1) ∈ R k . Nous avons la borne supérieure V Ψ ≤ inf ε>0 Z Ψ+ε1 k .
Theorem 2.2.4. Supposons que V Ψ < ∞. Alors nous avons la représentation

Z Ψ = V Ψ .
De plus les contrôles ε-optimaux α ε pour le problème auxiliaire Y Ψ (V Ψ ) sont ε-admissibles εoptimaux pour le problème originel dans le sens que

J(X 0 , α ε ) ≤ V Ψ + ε, sup 0≤s≤T Ψ(s, P X α ε s ) ≤ ε.
Une discussion sur les contrôles en boucle ouverte et en boucle fermée est donnée dans 8.3. Nous nous limitons, pour la partie approximation numérique, aux commandes déterministes markoviennes à rétroaction (ou en boucle fermée), mais nous donnons des hypothèses sous lesquelles restreindre le choix des commandes à cet espace se fait sans perte de généralité. En général, les contrôles adaptés (en boucle ouverte) atteignent en effet un coût plus faible que les contrôles en boucle fermée. Ces résultats nous permettent de résoudre numériquement le problème sans contrainte 2.2.8 et la minimisation par level-set (2.2.9) afin de résoudre le problème contraint (2.2.7). Nous adaptons l'approche (2.2.5) de [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] pour proposer un schéma implémentable.

Part I

Numerical resolution of non-linear partial differential equations

Chapter 3

Neural networks-based algorithms for stochastic control and PDEs in finance We provide in this chapter a survey of machine learning methods for the resolution of stochastic control problems. We also describe new schemes for fully nonlinear PDEs, by combining ideas from the multistep scheme from Chapter 4, from the 2DBDP method of Chapter 5 and the Malliavin weights used by [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic PDEs[END_REF]. Our main focus are problems coming from financial mathematics, especially derivatives pricing and portfolio selection and we demonstrate on numerical examples that our second order mutlistep schemes improve the one step scheme 2DBDP of Chapter 5. We also compare the Deep BSDE method [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] with the DBDP scheme [HPW20] on a derivatives pricing example in high dimension.

CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

Abstract

This chapter presents machine learning techniques and deep reinforcement learning-based algorithms for the efficient resolution of nonlinear partial differential equations and dynamic optimization problems arising in investment decisions and derivative pricing in financial engineering. We survey recent results in the literature, present new developments, and compare the different schemes illustrated by numerical tests on various financial applications. We conclude by highlighting some future research directions.

Breakthrough in the resolution of high dimensional non-linear problems

The numerical resolution of control problems and nonlinear PDEs-arising in several financial applications such as portfolio selection, hedging, or derivatives pricing-is subject to the so-called "curse of dimensionality", making impractical the discretization of the state space in dimension greater than 3 by using classical PDE resolution methods such as finite differences schemes. Probabilistic regression Monte-Carlo methods based on a Backward Stochastic Differential Equation (BSDE) representation of semilinear PDEs have been developed in [START_REF] Zhang | A numerical scheme for BSDEs[END_REF], [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF], [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF] to overcome this obstacle. These mesh-free techniques are successfully applied upon dimension 6 or 7, nevertheless, their use of regression methods requires a number of basis functions growing fastly with the dimension. What can be done to further increase the dimension of numerically solvable problems? A breakthrough with deep learning based-algorithms has been made in the last five years towards this computational challenge, and we mention the recent survey by [START_REF] Beck | An overview on deep learning-based approximation methods for partial differential equations[END_REF]. The main interest in the use of machine learning techniques for control and PDEs is the ability of deep neural networks to efficiently represent high dimensional functions without using spatial grids, and with no curse of dimensionality [START_REF] Grohs | A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equation[END_REF], [START_REF] Hutzenthaler | A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equation[END_REF].

Although the use of neural networks for solving PDEs is not new, see e.g. [START_REF] Dissanayake | Neural network-based approximations for solving partial differential equations[END_REF], the approach has been successfully revived with new ideas and directions. Neural networks have known a increasing popularity since the works on Reinforcement Learning for solving the game of Go by Google DeepMind teams.

These empirical successes and the introduced methods allow to solve control problems in moderate or large dimension. Moreover, recently developed open source libraries like Tensorflow and Pytorch also offer an accessible framework to implement these algorithms.

A first natural use of neural networks for stochastic control concerns the discrete time setting, with the study of Markov Decision Processes, either in a brute force fashion or by using dynamic programming approaches.

In the continuous time setting, and in the context of PDE resolution, we present various methods. A first kind of schemes is rather generic and can be applied to a variety of PDEs coming from a large range of applications. Other schemes rely on BSDE representations, strongly linked to stochastic control problems. In both cases, numerical evidence seems to indicate that the methods can be used in large dimension, greater than 10 and up to 1000 in certain studies. Some theoretical results also illustrates the convergence of specific algorithms. These advances pave the way for new methods dedicated to the study of large population games, studied in the context of mean field games and mean field control problems.

The outline of this article is the following. We first focus on some schemes for discrete time control in Section 3.2 before presenting generic machine learning schemes for PDEs in Subsection 3.3.1. Then we review BSDE-based machine learning methods for semilinear equations in Subsection 3.3.2. Existing algorithms for fully non-linear PDEs are detailed in Subsection 3.3.2 before presenting new BSDE schemes designed to treat this more difficult case. Numerical tests on CVA pricing and portfolio selection are conducted in Section 3.4 to compare the different approaches.

Finally, we highlight in Section 3.5 further directions and perspectives including recent advances for the resolution of mean field games and mean field control problems with or without model.

Deep learning approach for stochastic control

We present in this section some recent breakthrough in the numerical resolution of stochastic control in high dimension by means of machine learning techniques. We consider a model-based setting in discrete-time, i.e., a Markov decision process, that could possibly be obtained from the time discretization of a continuous-time stochastic control problem.

Let us fix a probability space (Ω, F, P) equipped with a filtration F = (F t ) t representing the available information at any time t ∈ N (F 0 is the trivial σ-algebra). The evolution of the system is described by a model dynamics for the state process

(X t ) t∈N valued in X ⊂ R d : X t+1 = F (X t , α t , ε t+1 ), t ∈ N, (3.2.1)
where (ε t ) t is a sequence of i.i.d. random variables valued in E, with ε t+1 F t+1 -measurable containing all the noisy information arriving between t and t + 1, and α = (α t ) t is the control process valued in A ⊂ R q . The dynamics function F is a measurable function from R d × R q ×E into R d , and assumed to be known. Given a running cost function f , a finite horizon T ∈ N * , and a terminal cost function, the problem is to minimize over control process α a functional cost

J(α) = E T -1 t=0 f (X t , α t ) + g(X T ) . (3.2.2)
In some relevant applications, we may require constraints on the state and control in the form:

(X t , α t ) ∈ S, t ∈ N.
for some subset S of R d × R q . This can be handled by relaxing the state/constraint and introducing into the costs a penalty function L(x, a): f (x, a) ← f (x, a) + L(x, a), and g(x) ← g(x) + L(x, a). For example, if the constraint set is in the form:

S = {(x, a) ∈ R d × R q : h k (x, a) = 0, k = 1, . . . , p, h k (x, a) ≥ 0, k = p+1, .
. . , m}, then one can take as penalty functions:

L(x, a) = p k=1 µ k |h k (x, a)| 2 + m k=p+1 µ k max(0, -h k (x, a)),
where µ k are penalization parameters (large in practice) see e.g. [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF].

Global approach

The method consists simply in approximating at any time t, the feedback control, i.e. a function of the state process, by a neural network (NN):

α t π θt (X t ), t = 0, . . . , T -1,
where π θ is a feedforward neural network on R d with parameters θ, and then to minimize over the global set of parameters θ = (θ 0 , . . . , θ T -1 ) the quantity (playing the role of loss function)

J(θ) = E T -1 t=0 f (X θ t , π θt (X θ t )) + g(X θ T ) ,
where X θ is the state process associated with the NN feedback controls:

X θ t+1 = F (X θ t , π θt (X θ t ), ε t+1 ), t = 0, . . . , T -1.
This basic idea of approximating control by parametric function of the state was proposed in [START_REF] Gobet | Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control[END_REF], and updated with the use of (deep) neural networks by [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF]. This method met success due to its simplicity and the easy accessibility of common libraries like TensorFlow for optimizing the parameters of the neural networks. Some recent extensions of this approach dealt with stochastic control problems with delay, see [START_REF] Han | Recurrent Neural Networks for Stochastic Control Problems with Delay[END_REF]. However, such global optimization over a huge set of parameters θ = (θ 0 , . . . , θ T -1 ) may suffer from being stuck in suboptimal traps and thus does not converge, especially for large horizon T . An alternative is to consider controls α t π θ (t, X t ), t = 0, . . . , T -1, with a single neural network π θ giving more stabilized results as studied by [START_REF] Fécamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. We focus here on feedback controls, which is not a restriction as we are in a Markov setting. For path-dependent control problems, we may consider recurrent neural networks to take into consideration the past of state trajectory as input of the policy.

Backward dynamic programming approach

In [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical computations[END_REF], the authors propose methods that combine ideas from numerical probability and deep reinforcement learning. Their algorithms are based on the classical dynamic programming (DP), (deep) neural networks for the approximation/learning of the optimal policy and value function, and Monte-Carlo regressions with performance and value iterations.

The first algorithm, called NNContPI, is a combination of dynamic programming and the approach in [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF]. It learns sequentially the control by NN π θ (.) and performance iterations, and is designed as follows:

Algorithm 1: NNContPI Input: the training distributions (µ t ) T -1 t=0 ; Output: estimates of the optimal strategy (π t ) T -1 t=0 ; for t = T -1, . . . , 0 do Compute πt := π θt with θt ∈ arg min θ E f X t , π θ (X t ) + T -1 s=t+1 f X θ s , πs X θ s + g X θ T
where X t ∼ µ t and where X θ s T s=t+1 is defined by induction as:

X θ t+1 = F X t , π θ (X t ), ε t+1 , X θ s+1 = F X θ s , πs (X θ s ), ε s+1 , for s = t + 1, . . . , T -1.
The second algorithm, refereed to as Hybrid-Now, combines optimal policy estimation by neural networks and dynamic programming principle, and relies on an hybrid procedure between value and performance iteration to approximate the value function by neural network Φ η (.) on R d with parameters η.

The convergence analysis of Algorithms NNContPI and Hybrid-Now are studied in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF], and various applications in finance are implemented in [START_REF] Bachouch | Deep neural networks algorithms for stochastic control problems on finite horizon: numerical computations[END_REF]. These algorithms are welldesigned for control problems with continuous control space A = R q or a ball in R q . In the case where the control space A is finite, it is relevant to randomize controls, and then use classification methods by approximating the distribution of controls with neural networks and Softmax activation function.

Algorithm 2: Hybrid-Now

Input: the training distributions (µ t ) T -1 t=0 ; Output: -estimate of the optimal strategy (π t ) T -1 t=0 ; -estimate of the value function ( Vt ) T -1 t=0 ; Set VT = g; for t = T -1, . . . , 0 do Compute: θt ∈ arg min θ E f X t , π θ (X t ) + Vt+1 (X θ t+1 )
where X t ∼ µ t , and

X θ t+1 = F (X t , π θ (X t ), ε t+1 ); Set πt := π θt ;
πt is the estimate of the optimal policy at time t Compute

ηt ∈ arg min η E f (X t , πt (X t )) + Vt+1 (X θt t+1 ) -Φ η (X t ) 2 . Set Vt = Φ ηt ;
Vt is the estimate of the value function at time t

Machine learning algorithms for nonlinear PDEs

By change of time scale, Markov decision process (3.2.1)-(3.2.2) can be obtained from the time discretization of a continuous-time stochastic control problem with controlled diffusion dynamics on

R d dX t = b(X t , α t )dt + σ(X t , α t )dW t ,
and cost functional to be minimized over control process α valued in A

J(α) = E T 0 f (X t , α t )dt + g(X T ) .
In this case, it is well-known, see e.g. [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF], that the dynamic programming Bellman equation leads to a PDE in the form

∂ t u + H(x, D x u, D 2 x u) = 0, on [0, T ) × R d u(T, .) = g on R d , where H(x, z, γ) = inf a∈A b(x, a).z + 1 2 tr(σσ (x, a)γ) + f (x, a)
is the so-called Hamiltonian function. The numerical resolution of such class of second-order parabolic PDEs will be addressed in this section.

Deterministic approach by neural networks

In the schemes below, differential operators are evaluated by automatic differentiation of the network function approximating the solution of the PDE. Machine learning libraries such as Tensorflow or Pytorch allow to efficiently compute these derivatives. The studied PDE problem is

     ∂ t u + Fu = 0 on [0, T ) × Λ u(T, •) = g on Λ u(t, x) = h(t, x) on [0, T ) × ∂Λ, with F a space differential operator, Λ a subset of R d . • Deep Galerkin Method [SS18].
The Deep Galerkin Method is a meshfree machine learning algorithm to solve PDEs on a domain, eventually with boundary conditions. The principle is to sample time and space points according to a training measure, e.g. uniform on a bounded domain, and minimize a performance measure quantifying how well a neural network satisfies the differential operator and boundary conditions. The method consists in minimizing over neural network

U : R × R d → R d , the L 2 loss E|∂ t U(τ, κ) + FU(τ, κ)| 2 + E|U(T, ξ) -g(ξ)| 2 + E|U(τ, κ) -h(τ, κ)| 2 with κ, τ, ξ independent random variables in Λ × [0, T ) × ∂Λ. [SS18]
also prove a convergence result (without rate) for the Deep Galerkin method. This method is tested on financial problems by [START_REF] Al-Aradi | Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning[END_REF]. A major advantage to this method is its adaptability to a large range of PDEs with or without boundary conditions. Indeed the loss function is straightforwardly modified according to changes in the constraints one wishes to enforce on the PDE solution. A related approach is the deep parametric PDE method, see [START_REF] Khoo | Solving parametric PDE problems with artificial neural networks[END_REF], and [START_REF] Glau | The deep parametric PDE method: application to option pricing[END_REF] applied to option pricing.

• Other approximation methods (i) Physics informed neural networks [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF]. Physics informed neural networks use both data (obtained for a limited amount of samples from a PDE solution), and theoretical dynamics to reconstruct solutions from PDEs. The convergence of this method in the Second Order linear parabolic (or elliptic) case is proven in [START_REF] Shin | On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs[END_REF], see also [START_REF] Gräser | Error bounds for PDE-regularized learning[END_REF].

(ii) Deep Ritz method [START_REF] Yu | The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems[END_REF]. The Deep Ritz method focuses on the resolution of the variational formulation from elliptic problems where the integral is evaluated by randomly sampling time and space points, like in the Deep Galerkin method [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] and the minimization is performed over the parameters of a neural network. This scheme is tested on Poisson equation with different types of boundary conditions. [START_REF] Müller | Deep Ritz revisited[END_REF] studies the convergence of the Deep Ritz algorithm.

Probabilistic approach by neural networks

Semi-linear case

In this paragraph, we consider semilinear PDEs of the form

∂ t u + µ • D x u + 1 2 Tr(σσ D 2 x u) = f (•, •, u, σ D x u) on [0, T ) × R d u(T, •) = g on R d . (3.3.1)
for which we have the forward backward SDE representation

Y t = g(X T ) - T t f (s, X s , Y s , Z s )ds - T t Z s • dW s , 0 ≤ t ≤ T, X t = X 0 + t 0 µ(s, X s )ds + t 0 σ(s, X s )dW s , (3.3.2) via the (non-linear) Feynman-Kac formula: Y t = v(t, X t ), Z t = σ (t, X t )D x v(t, X t ), 0 ≤ t ≤ T , see [PP90].
Let π be a subdivision

{t 0 = 0 < t 1 < • • • < t N = T } with modulus |π| := sup i ∆t i , ∆t i := t i+1 -t i , satisfying |π| = O 1
N , and consider the Euler-Maruyama discretization (X i ) i=0,...,N defined by

X i = X 0 + i-1 j=0 µ(t j , X j )∆t j + i-1 j=0 σ(t j , X j )∆W j ,
where ∆W j := W t j+1 -W t j , j = 0, . . . , N . Sample paths of (X i ) i act as training data in the machine learning setting. Thus our training set can be chosen as large as desired, which is relevant for training purposes as it does not lead to overfitting.

The time discretization of the BSDE (3.3.2) can be written in backward induction as

Y π i = Y π i+1 -f (t i , X i , Y π i , Z π i )∆t i -Z π i .∆W i , i = 0, . . . , N -1, (3.3.3)
which can be described as conditional expectation formulae

   Y π i = E i Y π i+1 -f (t i , X i , Y π i , Z π i )∆t i Z π i = E i ∆W i ∆t i Y π i+1 , i = 0, . . . , N -1, (3.3.4)
where E i is a notation for the conditional expectation w.r.t. F t i .

• Deep BSDE scheme [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF], [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF].

The essence of this method is to write down the backward equation (3.3.3) as a forward equation.

One approximates the initial condition Y 0 and the Z component at each time by networks functions taking the forward process X as input. The objective function to optimize is the error between the reconstructed dynamics and the true terminal condition. More precisely, the problem is to minimize over network functions U 0 : R d → R, and sequences of network functions

Z = (Z i ) i , Z i : R d → R d , i = 0, . . . , N -1, the global quadratic loss function J G (U 0 , Z) = E Y U 0 ,Z N -g(X N ) 2 ,
where (Y U 0 ,Z i ) i is defined by forward induction as

Y U 0 ,Z i+1 = Y U 0 ,Z i + f (t i , X i , Y U 0 ,Z i , Z i (X i ))∆t i + Z i (X i ).∆W i , i = 0, . . . , N -1, starting from Y U 0 ,Z 0 = U 0 (X 0 )
. The output of this scheme, for the solution ( U 0 , Z) to this global minimization problem, supplies an approximation U 0 of the solution u(0, .) to the PDE at time 0, and approximations Y U 0 , Z i of the solution to the PDE (3.3.1) at times t i evaluated at X t i , i.e., of Y t i = u(t i , X t i ), i = 0, . . . , N . The convergence of this algorithm through a posteriori error is studied by [START_REF] Han | Convergence of the Deep BSDE Method for Coupled FB-SDEs[END_REF], see also [START_REF] Jiang | Convergence of the Deep BSDE method for FBSDEs with non-Lipschitz coefficients[END_REF]. A variant is proposed by [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF] which introduces a single neural network Z(t, x) : [0, T ] × R d → R d instead of N independent neural networks. This simplifies the optimization problem and leads to more stable solutions. A close method introduced by [START_REF] Raissi | Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations[END_REF] uses also a single neural network U(t, x) : [0, T ] × R d → R and estimates Z as the automatic derivative in space of U. We also refer to [START_REF] Jacquier | Deep curve-dependent PDEs for affine rough volatility[END_REF] for a variation of this deep BSDE scheme to curve-dependent PDEs arising in the pricing under rough volatility model, to [START_REF] Nüsken | Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space[END_REF] for approximations methods for Hamilton-Jacobi-Bellman PDEs, and to [START_REF] Kremsner | A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics[END_REF] for extension of deep BSDE scheme to elliptic PDEs with applications in insurance.

• Deep Backward Dynamic Programming (DBDP) [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. The method builds upon the backward dynamic programming relation (3.3.3) stemming from the time discretization of the BSDE, and approximates simultaneously at each time step t i the processes (Y t i , Z t i ) with neural networks trained with the forward diffusion process X i as input. The scheme can be implemented in two similar versions: 1. DBDP1. Starting from U

(1) N = g, proceed by backward induction for i = N -1, . . . , 0, by minimizing over network functions U i : R d → R, and Z i : R d → R d the quadratic loss function

J (B1) i (U i , Z i ) = E U (1) i+1 (X i+1 ) -U i (X i ) -f (t i , X i , U i (X i ), Z i (X i ))∆t i -Z i (X i ).∆W i 2 ,
and update ( U

(1) i , Z (1) 
i ) as the solution to this local minimization problem.

DBDPStarting from U

(2) N = g, proceed by backward induction for i = N -1, . . . , 0, by minimizing over C 1 network functions U i : R d → R the quadratic loss function

J (B2) i (U i ) = E U (2) i+1 (X i+1 ) -U i (X i ) -f (t i , X i , U i (X i ), σ(t i , X i ) D x U i (X i ))∆t i -D x U i (X i ) σ(t i , X i )∆W i 2 , where D x U i is the automatic differentiation of the network function U i . Update U (2) i
as the solution to this local minimization problem, and set

Z (2) i = σ (t i , .)D x U (2) i .
The output of DBDP supplies an approximation ( U i , Z i ) of the solution u(t i , .) and its gradient σ (t i , .)D x u(t i , .) to the PDE (3.3.1) on the time grid t i , i = 0, . . . , N -1. The study of the approximation error due to the time discretization and the choice of the loss function is accomplished in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF].

Variants and extensions of DBDP schemes (i) A regression-based machine learning scheme inspired by regression Monte-Carlo methods

for numerically computing condition expectations in the time discretization (3.3.4) of the BSDE, is given by: starting from ÛN = g, proceed by backward induction for i = N -1, . . . , 0, in two regression problems:

(a) Minimize over network functions

Z i : R d → R d J r,Z i (Z i ) = E ∆W i ∆t i U i+1 (X i+1 ) -Z i (X i ) 2
and update Z i as the solution to this minimization problem (b) Minimize over network functions

U i : R d → R J r,Y i (U i ) = E U i+1 (X i+1 ) -U i (X i ) -f (t i , X i , U i (X i ), Z i (X i ))∆t i 2
and update U i as the solution to this minimization problem.

Compared to these regression-based schemes, the DBDP scheme simultaneously estimates the pair component (Y, Z) through the minimization of the loss functions

J (B1) i (U i , Z i ) (or J (B2) i (U i ) for the second version), i = N -1, . . . , 0.
Interestingly, the convergence of the DBDP scheme can be confirmed by computing at each time step the infimum of loss function, which should vanish for the exact solution (up to the time discretization). In contrast, the infimum of the loss functions in usual regression-based schemes is unknown for the true solution as it is supposed to match the residual of L 2 -projection. Therefore the scheme accuracy cannot be directly verified.

(ii) The DBDP scheme is based on local resolution, and was first used to solve linear PDEs, see [START_REF] Vidales | Unbiased deep solvers for parametric PDEs[END_REF]. It is also suitable to solve variational inequalities and can be used to valuate American options as shown in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. Alternative methods consists in using the Deep Optimal Stopping scheme [START_REF] Becker | Deep optimal stopping[END_REF] or the method from [START_REF] Becker | Solving high-dimensional optimal stopping problems using deep learning[END_REF]. Some tests on Bermudan options are also performed by [START_REF] Liang | Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing[END_REF] and [START_REF] Fujii | Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs[END_REF] with some refinements of the Deep BSDE scheme.

(iii) The Deep Splitting (DS) scheme in [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] combines ideas from the DBDP2 and regression-based schemes. Indeed the current regression-approximation on Z is estimated by the automatic differentiation of the neural network computed at the previous optimization step. The current approximation of Y is then computed by a regression-type optimization problem. It can be seen as a local version of the global algorithm from [START_REF] Raissi | Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations[END_REF] or as a step by step Feynman-Kac approach. As the scheme is a local one, it can be used to valuate American options. The convergence of this method is studied by [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF].

(iv) Local resolution permits to add other constraints such as constraints on a replication portfolio using facelifting techniques as in [START_REF] Kharroubi | Discretization and Machine Learning Approximation of BSDEs with a Constraint on the Gains-Process[END_REF].

(v) The Deep Backward Multistep (MDBDP) scheme [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF] is described as follows: for i = N -1, . . . , 0, minimize over network functions U i : R d → R, and Z i : R d → R d the loss function

J M B i (U i , Z i ) = E g(X N ) - N -1 j=i+1 f (t j , X j , U j (X j ), Z j (X j ))∆t j - N -1 j=i+1 Z j (X j ).∆W j -U i (X i ) -f (t i , X i , U i (X i ), Z i (X i ))∆t i -Z i (X i ).∆W i 2
and update ( U i , Z i ) as the solution to this minimization problem. This output provides an approximation ( U i , Z i ) of the solution u(t i , .) to the PDE (3.3.1) at times t i , i = 0, . . . , N -1.

MDBDP is a machine learning version of the Multi-step Forward Dynamic Programming method studied by [START_REF] Bender | A forward scheme for backward SDEs[END_REF] and [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]. Instead of solving at each time step two regression problems, our approach allows to consider only a single minimization as in the DBDP scheme. Compared to the latter, the multi-step consideration is expected to provide better accuracy by reducing the propagation of errors in the backward induction as it can be shown comparing the error estimated in [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF] and [HPW20] both at theoretical and numerical level.

Case of fully non-linear PDEs

In this paragraph, we consider fully non-linear PDEs in the form

∂ t u + µ • D x u + 1 2 Tr(σσ D 2 x u) = F (•, •, u, D x u, D 2 x u) on [0, T ) × R d u(T, •) = g on R d , (3.3.5)
For this purpose, we introduce a forward diffusion process X in R d as in (3.3.2), and associated to the linear part L of the differential operator in the l.h.s. of the PDE (3.3.5).

Since the function F contains the dependence both on the gradient D x u and the Hessian D 2

x u, we can shift the linear differential operator (left hand side) of the PDE (3.3.5) into the function F . However, in practice, this linear differential operator associated to a diffusion process X is used for training simulations in SGD of machine learning schemes. We refer to Section 3.1 in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] for a discussion on the choice of the parameters µ, σ.

In the sequel, we assume for simplicity that µ = 0, and σ is a constant invertible matrix.

Let us derive formally a BSDE representation for the nonlinear PDE (3.3.5) on which we shall rely for designing our machine learning algorithm. Assuming that the solution u to this PDE is smooth C 2 , and denoting by (Y, Z, Γ) the triple of F-adapted processes valued in R × R d ×S d , defined by

Y t = u(t, X t ), Z t = D x u(t, X t ), Γ t = D 2 x u(t, X t ), 0 ≤ t ≤ T, a direct application of Itô's formula to u(t, X t ), yields that (Y, Z, Γ) satisfies the backward equa- tion Y t = g(X T ) - T t F (s, X s , Y s , Z s , Γ s )ds - T t Z s σdW s , 0 ≤ t ≤ T. (3.3.6)
Compared to the case of semi-linear PDE of the form (3.3.1), the key point is the approximation/learning of the Hessian matrix D 2

x u, hence of the Γ-component of the BSDE (3.3.6). We present below different approaches for the approximation of the Γ-component. To the best of our knowledge, no theoretical convergence result is available for machine learning schemes in the fully nonlinear case but several methods show good empirical performances.

• Deep 2BSDE scheme [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF]. This scheme relies on the 2BSDE representation of [Che+07]

Y t = g(X T ) - T t F (s, X s , Y s , Z s , Γ s )ds - T t Z s σdW s , Z t = D x g(X T ) - T t A s ds - T t Γ s σdW s , 0 ≤ t ≤ T, (3.3.7) with A t = LD x u(t, X t ).
The idea is to adapt the Deep BSDE algorithm to the fully non-linear case. Again, we treat the backward system (3.3.7) as a forward equation by approximating the initial conditions Y 0 , Z 0 and the A, Γ components of the 2BSDE at each time by networks functions taking the forward process X as input, and aiming to match the terminal condition.

• Second order DBDP (2DBDP) [PWG21]

The basic idea is to adapt the DBDP scheme by approximating the solution u and its gradient D x u by network functions U and Z, and then Hessian D 2

x u by the automatic differentiation D x Z of the network function Z (or double automatic differentiation D 2

x U of the network function U), via a learning approach relying on the time discretization of the BSDE (3.3.6). It turns out that such method approximates poorly Γ inducing instability of the scheme: indeed, while the unique pair solution (Y, Z) to classical BSDEs (3.3.2) completely characterizes the solution to the related semilinear PDE and its gradient, the relation (3.3.6) does not allow to characterize directly the triple (Y, Z, Γ). This approach was proposed and tested in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] where the automatic differentiation is performed on the previous value of Z with a truncation T which allows to reduce instabilities.

• Second Order Multistep schemes.

To overcome the instability in the approximation of the Γ-component in the Second order DBDP scheme, we propose a finer approach based on a suitable probabilistic representation of the Γcomponent for learning accurately the Hessian function D 2

x u by using also Malliavin weights. We start from the training simulations of the forward process (X i ) i on the uniform grid π = {t i = i|π|, i = 0, . . . , N }, |π| = T /N , and notice that X i = X t i , i = 0, . . . , N as µ and σ are constants. The approximation of the value function u and its gradient D x u is learnt simultaneously on the grid π but requires in addition a preliminary approximation of the Hessian D 2

x u in the fully non-linear case. This will be performed by regression-based machine learning scheme on a subgrid π ⊂ π, which allows to reduce the computational time of the algorithm.

We propose three versions of second order MDBDP based on different representations of the Hessian function.

For the second and the third one, we need to introduce a subgrid π = {t κ , = 0, . . . , N } ⊂ π, of modulus |π| = κ|π|, for some κ ∈ N * , with N = κ N .

-Version 1: Extending the methodology introduced in [PWG21], the current Γ-component at step i can be estimated by automatic differentiation of the Z-component at the previous step while the other Γ-components are estimated by automatic differentiation of their associated Z-components:

Γ i D x Z i+1 , Γ j D x Z j , j > i.
-Version 2: The time discretization of (3.3.6) on the time grid π, where (Y π , Z π , Γ π ) denotes an approximation of the triple

u(t κ , X κ ), D x u(t κ , X κ ), D 2 x u(t κ , X κ ) , = 0, . . . , N ,
leads to the standard representation formula for the Z component:

Z π = E κ Y π +1 Ĥ1 , = 0, . . . , N -1,
(recall that E κ denotes the conditional expectation w.r.t. F t κ ), with the Malliavin weight of order one:

Ĥ1 = (σ ) -1 ∆W |π| , ∆W := W t κ( +1) -W t κ .
By direct differentiation, we then obtain an approximation of the Γ component as

Γ π E κ D x u(t κ( +1) , X κ( +1) ) Ĥ1 .
Moreover, by introducing the antithetic variable

Xκ( +1) = X κ -σ ∆W ,
we then propose the following regression estimator of D 2 x u on the grid π for = 0, . . . ,

N -1 with Γ(1) (t κ N , X κ N ) = D 2 g(X κ N ) Γ(1) (t κ , X κ ) = E κ Dxu(t κ( +1) ,X κ( +1) )-Dxu(t κ( +1) , Xκ( +1) ) 2
Ĥ1 .

-Version 3: Alternatively, the time discretization of (3.3.6) on π yields the iterated conditional expectation relation:

Y π = E κ g(X κ N ) -|π| N -1 m= F (t κm , X κm , Y π m , Z π m , Γ π m ) , = 0, . . . , N ,
By (double) integration by parts, and using Malliavin weights on the Gaussian vector X, we obtain a multistep approximation of the Γ-component:

Γ π E κ g(X κ N ) Ĥ2 , N -|π| N -1 m= +1 F (t κm , X κm , Y π m , Z π m , Γ π m ) Ĥ2
,m , for = 0, . . . , N , where

Ĥ2 ,m = (σ ) -1 ∆W m ( ∆W m ) -(m -)|π|I d (m -) 2 |π| 2 σ -1 , ∆W m := W t κm -W t κ .
By introducing again the antithetic variables

Xκm = X κ -σ ∆W m , m = + 1, . . . , N ,
we then propose another regression estimator of D 2 x u on the grid π with

Γ(2) (t κ , X κ ) = E κ g(X κ N ) + g( Xκ N ) 2 Ĥ2 , N - |π| 2 N -1 m= +1 F t κm , X κm , u(t κm , X κm ), D x u(t κm , X κm ), Γ(2) (t κm , X κm ) + F t κm , Xκm , u(t κm , Xκm ), D x u(t κm , Xκm ), Γ(2) (t κm , Xκm ) -2F t κ , X κ , u(t κ , X κ ), D x u(t κ , X κ ), Γ(2) (t κ , X κ ) Ĥ2 ,m , for = 0, . . . , N -1, and Γ(2) (t κ N , X κ N ) = D 2 g(X κ N ).
The correction term -2F evaluated at time t κ in Γ(2) (t κ , X κ ) does not add bias since

E κ F t κ , X κ , u(t κ , X κ ), D x u(t κ , X κ ), Γ(2) (t κ , X κ ) Ĥ2 ,m = 0,
for all m = + 1, . . . , N -1, and by Taylor expansion of F at second order, we see that it allows together with the antithetic variable to control the variance when the time step goes to zero.

Remark 3.3.1. In the case where the function g has some regularity property, one can avoid the integration by parts at the terminal data component in the above expression of Γ(2) . For example,

when g is C 1 , g(X κ N )+g( Xκ N ) 2 Ĥ2 , N is alternatively replaced in Γ(2) expression by (Dg(X κ N ) - Dg( Xκ N )) Ĥ1 , N , while when it is C 2 it is replaced by D 2 g(X κ N ).
Remark 3.3.2. We point out that in our machine learning setting for the versions 2 and 3 of the scheme, we only solve two optimization problems by time step instead of three as in [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic PDEs[END_REF]. One optimization is dedicated to the computation of the Γ component but the U and Z components are simultaneously learned by the algorithm.

We can now describe the three versions of second order MDBDP schemes for the numerical resolution of the fully non-linear PDE (3.3.5). We emphasize that these schemes do not require a priori that the solution to the PDE is smooth.

Algorithm 3: Second order Explicit Multistep DBDP (2EMDBDP) 

for i = N -1, . . . , 0 do If i = N -1, update Γ i = D 2 g, otherwise Γ i = D x Z i+1 , Γ j = D x Z j , j ∈ i + 1, N -1 , /*
J M B i (U, Z) = E g(X N ) -|π| N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ), Γj (X j )) - N -1 j=i+1 Z j (X j ) σ∆W j -U(X i ) -|π|F (t i , X i , U(X i ), Z(X i ), Γ i (X i+1 )) -Z(X i ) • σ∆W i 2 .
Update ( U i , Z i ) as the solution to this minimization problem /* Update the function and its derivative */ end

The proposed algorithms 3, 4, 5 are in backward iteration, and involve one optimization at each step. Moreover, as the computation of Γ requires a further derivation for Algorithms 4 and 5, we may expect that the additional propagation error varies according to |π| |π| = 1 κ , and thus the convergence of the scheme when κ is large. In the numerical implementation, the expectation in the loss functions are replaced by empirical average and the minimization over network functions is performed by stochastic gradient descent. 

J 1,M (Γ) = E Γ(X κ ) - Z κ( +1) (X κ( +1) ) -Z κ( +1) ( Xκ( +1) ) 2 Ĥ1 2 .
Update Γ the solution to this minimization problem /* Update Hessian */ for k = κ -1, . . . , 0 do Minimize over network functions U : R d → R, and Z : R d → R d the loss function at time t i , i = ( -1)κ + k: 

J M B i (U, Z) = E g(X N ) -|π| N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ), Γ (X j )) - N -1 j=i+1 Z j (X j ) σ∆W j -U(X i ) -|π|F (t i , X i , U(X i ), Z(X i ), Γ (X i )) -Z(X i ) • σ∆W i 2 . Update ( U i , Z i )
J 2,M (Γ) = E Γ(X κ ) - D 2 g(X κ N ) + D 2 g( Xκ N ) 2 + |π| 2 N -1 m= +1 F t κm , X κm , U κm (X κm ), Z κm (X κm ), Γ m (X κm ) + F t κm , Xκm , U κm ( Xκm ), Z κm ( Xκm ), Γ m ( Xκm ) -2F t κ , X κ , U κ (X κ ), Z κ (X κ ), Γ (X κ ) Ĥ2 ,m 2 .
Update Γ the solution to this minimization problem /* Update Hessian */ for k = κ -1, . . . , 0 do Minimize over network functions U : R d → R, and Z : R d → R d the loss function at time t i , i = ( -1)κ + k: 

J M B i (U, Z) = E g(X N ) -|π| N -1 j=i+1 F (t j , X j , U j (X j ), Z j (X j ), Γ (X j )) - N -1 j=i+1 Z j (X j ) σ∆W j -U(X i ) -|π|F (t i , X i , U(X i ), Z(X i ), Γ (X i )) -Z(X i ) • σ∆W i 2 . Update ( U i , Z i )

Numerical applications

We test our different algorithms on various examples and by varying the state space dimension.

If not stated otherwise, we choose the maturity T = 1. In each example we use an architecture composed of 2 hidden layers with d + 10 neurons. We apply Adam gradient descent [START_REF] Kingma | A Method for Stochastic Optimization[END_REF] with a decreasing learning rate, using the Tensorflow library [START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF]. Each numerical experiment is conducted using a node composed of 2 Intel® Xeon® Gold 5122 Processors, 192 Go of RAM, and 2 GPU nVidia® Tesla® V100 16Go. We use a batch size of 1000.

Numerical tests on credit valuation adjustment pricing

We consider an example of model from [START_REF] Henry-Labordere | Deep Primal-Dual Algorithm for BSDEs: Applications of Machine Learning to CVA and IM[END_REF] for the pricing of CVA in a d-dimensional Black-Scholes model dX t = σX t dW t , X 0 = 1 d with σ > 0, given by the nonlinear PDE

∂ t u + σ 2 2 Tr(x D 2 x u x) + β(u + -u) = 0 on [0, T ] × R d u(T, x) = | d i=1 x i -d| -0.1 on R d
with a straddle type payoff. We compare our results with the DBDP scheme [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] with the ones from the Deep BSDE solver [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF]. The results in Table 3.1 are averaged over 10 runs and the standard deviation is written in parentheses. We use ReLu activation functions. We observe in Table 3.1 that both algorithms give very close results and are able to solve the nonlinear pricing problem in high dimension d. The variance of the results is quite small and similar from one to another but increases with the dimension. The same conclusions arise when solving the PDE for the larger maturity T = 2.

Portfolio allocation in stochastic volatility models

We consider several examples from [PWG21] that we solve with Algorithms 3 (2EMDBDP), 4 (2MDBDP), and 5 (2M 2 DBDP) designed in this paper. Notice that some comparison tests with the 2DBSDE scheme [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF] have been already done in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF]. For a resolution with N = 120, N = 30, the execution of our multitep algorithms takes between 10000 s. and 30000 s. (depending on the dimension) with a number of gradient descent iterations fixed at 4000 at each time step except 80000 at the first one. We use tanh as activation function.

We consider a portfolio selection problem formulated as follows. There are n risky assets of uncorrelated price process P = (P 1 , . . . , P n ) with dynamics governed by

dP i t = P i t σ(V i t ) λ i (V i t )dt + dW i t , i = 1, . . . , n,
where W = (W 1 , . . . , W n ) is a n-dimensional Brownian motion, λ = (λ 1 , . . . , λ n ) is the market price of risk of the assets, σ is a positive function (e.g. σ(v) = e v corresponding to the Scott model), and V = (V 1 , . . . , V n ) is the volatility factor modeled by an Ornstein-Uhlenbeck (O.U.) process

dV i t = κ i [θ i -V i t ]dt + ν i dB i t , i = 1, . . . , n, with κ i , θ i , ν i > 0, and B = (B 1 , . . . , B n ) a n-dimensional Brownian motion, s.t. d < W i , B j > = δ ij ρ ij dt, with ρ i := ρ ii ∈ (-1, 1
). An agent can invest at any time an amount α t = (α 1 t , . . . , α n t ) in the stocks, which generates a wealth process X = X α governed by

dX t = n i=1 α i t σ(V i t ) λ i (V i t )dt + dW i t .
The objective of the agent is to maximize her expected utility from terminal wealth:

E U (X α T )
] ← maximize over α It is well-known that the solution to this problem can be characterized by the dynamic programming method (see e.g. [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF]), which leads to the Hamilton-Jacobi-Bellman for the value function on

[0, T ) × R × R n :            ∂ t u + n i=1 κ i (θ i -v i )∂ v i u + 1 2 ν 2 i ∂ 2 v i u = 1 2 R(v) (∂xu) 2 ∂ 2 xx u + n i=1 ρ i λ i (v i )ν i ∂xu∂ 2 xv i u ∂ 2 xx u + 1 2 ρ 2 i ν 2 i (∂ 2 xv i u) 2 ∂ 2 xx u u(T, x, v) = U (x), x ∈ R, v ∈ R n , with a Sharpe ratio R(v) := |λ(v)| 2 , for v = (v 1 , . . . , v n ) ∈ (0, ∞) n .
The optimal portfolio strategy is then given in feedback form by

α * t = â(t, X * t , V t ), where â = (â 1 , . . . , ân ) is given by âi (t, x, v) = - 1 σ(v i ) λ i (v i ) ∂ x u ∂ 2 xx u + ρ i ν i ∂ 2 xv i u ∂ 2 xx u , (t, x, v = (v 1 , . . . , v n )) ∈ [0, T ) × R × R n , for i = 1, . . . , n.
We shall test this example when the utility function U is of exponential form: U (x) = -exp(-ηx), with η > 0, and under different cases for which explicit solutions are available. We refer to [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] where these solutions are described.

(1) Merton problem. This corresponds to a degenerate case where the factor V , hence the volatility σ and the risk premium λ are constant (v i = θ i , ν i = 0). We train our algorithms with the forward process

X k+1 = X k + |λ|∆t k + ∆W k , k = 0, . . . , N, X 0 = x 0 .
(2) One risky asset: n = 1. We train our algorithms with the forward process

X k+1 = X k + λ(θ)∆t k + ∆W k , k = 0, . . . , N -1, X 0 = x 0 V k+1 = V k + ν∆B k , k = 0, . . . , N -1, V 0 = θ.
We test our algorithm with λ(v) = λv, λ > 0, for which we have an explicit solution.

(3) No leverage effect, i.e., ρ i = 0, i = 1, . . . , n. We train with the forward process and N = 120, N = 30. Average and standard deviation observed over 10 independent runs are reported. The exact solution is -0.53609477.

X k+1 = X k + n i=1 λ i (θ i )∆t k + ∆W k , k = 0, . . . , N -1, X 0 = x 0 V i k+1 = V i k + ν i ∆B i k , k = 0, . . . , N -1, V i 0 = θ i . We test our algorithm with λ i (v) = λ i v i , λ i > 0, i = 1, . . . , n, v = (v 1 , . . . , v n ),
Merton Problem. We take η = 0.5, λ = 0.6, N = 120, N = 30, T = 1, x 0 = 1. We plot in Figure 3.1 the neural networks approximation of u, D x u, D 2

x u, and the feedback control â (for one asset) computed from our different algorithms, together with their analytic values (in orange). As also reported in the estimates of Table 3.2, the multistep algorithms improve significantly the results obtained in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF], where the estimation of the Hessian is not really accurate (see blue curve in Figure 3.1).

One asset n = 1 in Scott volatility model. We take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.4, κ = 1, ρ = -0.7, T = 1, x 0 = 1. For all tests we choose N = 120, N = 30 and σ(v) = e v . We report in Table 3.3 the relative error between the neural networks approximation of u, D x u, D 2

x u computed from our different algorithms and their analytic values. It turns out that the multistep extension of [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF], namely 2EMDBDP scheme, yields a very accurate approximation result, much better than the other algorithms, with also a reduction of the standard deviation.

No Leverage in Scott model. In the case with one asset we take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.2, κ = 1, T = 1, x 0 = 1. For all tests we choose N = 120, N = 30 and σ(v) = e v . We report in Table 3.4 the relative error between the neural networks approximation of u, D x u, D 2

x u computed from our different algorithms and their analytic values. All the algorithms yield quite accurate results, but compared to the case with correlation in Table 3.3, it appears here that the best performance in terms of precision is achieved by Algorithm 2M 2 DBDP.

In the case with four assets (n = 4, d = 5), we take η = 0.5, λ = 1.5 1.1 2. 0.8 , θ = 0.1 0.2 0.3 0.4 , ν = 0.2 0.15 0.25 0.31 , κ = 1. 0.8 1.1 1.3 . The results are reported in Table 3.5. We observe that the algorithm in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] 

U [PWG19] U 2EMDBDP U 2MDBDP U 2M2DBDP U Analytic 1 0 1 2 3 x 0.2 0.4 0.6 0.8 1.0 Dxu(x) Z [PWG19] Z 2EMDBDP Z 2MDBDP Z 2M2DBDP Z Analytic 0.7 0.8 0.9 1.0 1.1 1.2 1.
D 2 x u(x) Gamma [PWG19] Gamma 2EMDBDP Gamma 2MDBDP Gamma 2M2DBDP Gamma Analytic 1 0 1 2 3 x 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 (x) Control [PWG19] Control 2EMDBDP Control 2MDBDP Control 2M2DBDP Control Analytic 0.7 0.8 0.9 1.0 1.1 1.2 1.3 x 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 (x) Control [PWG19] Control 2EMDBDP Control 2MDBDP Control 2M2DBDP Control Analytic Figure 3.1: Estimates of u, D x u, D 2
x u and of the optimal control α on the Merton problem with N = 120, N = 30. We take x 0 = 1., at the left t = 0.5042, and at the right t = 0.0084. error and the standard deviation.

In the case with nine assets (n = 9, d = 10), we take η = 0.5, λ = 1.5 1.1 2. 0.8 0.5 1.7 0.9 1. 0.9 , θ = 0.1 0.2 0.3 0.4 0.25 0.15 0.18 0.08 0.91 , ν = 0.2 0.15 0.25 0.31 0.4 0.35 0.22 0.4 0.15 , κ = 1. 0.8 1.1 1.3 0.95 0.99 1.02 1.06 1.6 . The results are reported in Table 3.6. The approximation is less accurate than in lower dimension, but we observe again that compared to one-step scheme in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] , the multistep versions improve significantly the standard deviation of the result. However the best performance in precision is obtained here by the [PWG21] scheme.

Extensions and perspectives

• Solving mean-field control and mean-field games through McKean-Vlasov FBSDEs. These methods solve the optimality conditions for mean-field problems through the stochastic Pontryagin principle from [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications[END_REF]. The law of the solution influences the coupled FBSDEs dynamics so they are of McKean-Vlasov type. Variations around the Deep BSDE method [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] are used to solve such a system by [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF], [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF]. [START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF] uses the Merged method from [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF] and solves several numerical examples in dimension 10 by introducing an efficient law estimation technique. [CL22] also proposes another method dedicated to mean field control to directly tackle the optimization problem with a neural network as the control in the stochastic dynamics. The N -player games, before going to the mean-field limit of an infinite number of players, are solved by [START_REF] Hu | Deep fictitious play for stochastic differential games[END_REF], [START_REF] Han | Convergence of deep fictitious play for stochastic differential games[END_REF].

• Solving mean-field control through master Bellman equation and symmetric neural networks.

[Ger+22] solves the master Bellman equation arising from dynamic programming principle applied to mean-field control problems (see [START_REF] Pham | Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics[END_REF]). The paper approximates the value function evaluated on the empirical measure stemming from particles simulation of a training forward process. The symmetry between iid particles is enforced by optimizing over exchangeable high-dimensional neural networks, invariant by permutation of their inputs. The companion paper [START_REF] Germain | Rate of convergence for particle approximation of PDEs in Wasserstein space[END_REF] provides a rate for the particle method convergence.

• Reinforcement Learning for mean-field control and mean-field games [CLT19; AKS19; AFL20; Gu+20; Guo+20]. Some works focus on similar problems but with unknown dynamics. Thus they rely on trajectories sampled from a simulator and reinforcement learnings-especially Q-learning-to estimate the state action value function and optimal control without a model. The idea is to optimize a neural network by relying on a memory of past state action transitions used to train the network in order for it to verify the Bellman equation on samples from memory replay.

• Machine learning framework for solving high-dimensional mean field game and mean field control problems [START_REF] Ruthotto | A machine learning framework for solving high-dimensional mean field game and mean field control problems[END_REF] This paper focuses on potential mean field games, in which the cost functions depending on the law can be written as the linear functional derivative of a function with respect to a measure. A Lagrangian method with Deep Galerkin type penalization is used. In this case the potential is approached by a neural network and solving mean-field games amounts to solve an unconstrained optimization problem.

• Deep quantum neural networks [START_REF] Sakuma | Application of deep quantum neural networks to finance[END_REF] We briefly mention this work studying the use of deep quantum neural networks which exploit the quantum superposition properties by replacing bits by "qubits". Promising results are obtained when using these networks for regression in financial contexts such as implied volatility estimation. Future works may study the application of such neural networks to control problems and PDEs.

• Path signature for path-dependent PDE [START_REF] Vidales | Solving path dependent PDEs with LSTM networks and path signatures[END_REF] This work extends previously developed methods for solving state-dependent PDEs to the linear path-dependent setting coming for instance from the pricing and hedging of path-dependent options. A path-dependent Feynman-Kac representation is numerically computed through a global minimization over neural networks. The authors show that using LSTM networks taking the forward process' path signatures (coming from the rough paths literature) as input yields better results than taking the discretized path as input of a feedforward network.

Chapter 4

Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs

This chapter is based on the paper [GPW22a] M. Germain, H. Pham, and X. Warin. "Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs". In: SIAM Journal on Scientific Computing 44.1 (5 January 2022), A28-A56.

In this chapter we propose a new multistep machine learning scheme for the resolution of semilinear PDEs. We combine ideas from [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] and [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF] and demonstrate both the theoretical and numerical performances of our method. A theoretical analysis is also performed on the Deep Splitting scheme [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] and the Deep Backward Dynamic Programming scheme [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. We are able to relate the approximation error of the algorithm to the number of neurons and layers of the approximating neural networks, in the case of the GroupSort architecture [START_REF] Anil | Sorting Out Lipschitz Function Approximation[END_REF]. These neural networks enjoy Lipschitz continuity properties and quantitative approximation results are given by [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF]. However these results still exhibit the curse of dimensionality, even though in practice a small number of neurons and layers is enough on the tested examples.

CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Abstract

Recently proposed numerical algorithms for solving high-dimensional nonlinear partial differential equations (PDEs) based on neural networks have shown their remarkable performance. We review some of them and study their convergence properties. The methods rely on probabilistic representation of PDEs by backward stochastic differential equations (BSDEs) and their iterated time discretization. Our proposed algorithm, called deep backward multistep scheme (MDBDP), is a machine learning version of the LSMDP scheme of Gobet, Turkedjiev (Math. Comp. 85, 2016). It estimates simultaneously by backward induction the solution and its gradient by neural networks through sequential minimizations of suitable quadratic loss functions that are performed by stochastic gradient descent. Our main theoretical contribution is to provide an approximation error analysis of the MDBDP scheme as well as the deep splitting (DS) scheme for semilinear PDEs designed in Beck, Becker, Cheridito, Jentzen, Neufeld (2019). We also supplement the error analysis of the DBDP scheme of Huré, Pham, Warin (Math. Comp. 89, 2020). This yields notably convergence rate in terms of the number of neurons for a class of deep Lipschitz continuous GroupSort neural networks when the PDE is linear in the gradient of the solution for the MDBDP scheme, and in the semilinear case for the DBDP scheme. We illustrate our results with some numerical tests that are compared with some other machine learning algorithms in the literature.

Introduction

Let us consider the nonlinear parabolic partial differential equation (PDE) of the form x refer respectively to the first and second order spatial derivatives, the symbol . denotes the scalar product, and is the transpose of vector or matrix.

∂ t u + µ • D x u + 1 2 Tr(σσ D 2 x u) = f (•, •, u, σ D x u) on [0, T ) × R d u(T, •) = g on R d , ( 4 
A major challenge in the numerical resolution of such semilinear PDEs is the so-called "curse of dimensionality" making unfeasible the standard discretization of the state space in dimension greater than 3. Probabilistic mesh-free methods based on the Backward Stochastic Differential Equation (BSDE) representation of semilinear PDEs through the nonlinear Feynman-Kac formula were developed in [START_REF] Zhang | A numerical scheme for BSDEs[END_REF], [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF], [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF] to overcome this obstacle. These schemes are successfully applied upon dimension 6 or 7, nevertheless, their use of regression methods implies a dimension dependence through the number of required basis functions. Let us also mention recent probabilistic approach relying on (i) branching method, see [START_REF] Henry-Labordere | Branching diffusion representation of semilinear PDEs and Monte Carlo approximation[END_REF], and (ii) on multilevel Picard methods, developed in [E+19] with algorithms based on Picard iterations, multi-level techniques and automatic differentiation. These methods permit to handle some PDEs with non linearity in u and its gradient D x u, with convergence results as well as numerous numerical examples showing their efficiency in high dimension.

Over the last few years, machine learning methods have emerged since the pioneering papers by [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] and [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF], and have shown their efficiency for solving high-dimensional nonlinear PDEs by means of neural networks approximation. The work [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] introduces a global machine learning resolution technique via a BSDE approach. The solution is represented by one feedforward neural network by time step, whose parameters are chosen as solutions of a single global optimization problem. It allows to solve PDEs in high dimension and a convergence study of Deep BSDE is conducted in [START_REF] Han | Convergence of the Deep BSDE Method for Coupled FB-SDEs[END_REF].

The Deep Galerkin method of [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] proposes another global meshfree method with a random sampling of time and space points inside a bounded domain.

A different point of view is proposed by [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] with convergence results in L 2 for solving semilinear PDEs, where the solution and its gradient are estimated simultaneously by backward induction through the minimization of sequential loss functions. Similar idea also appears in [START_REF] Vidales | Unbiased deep solvers for parametric PDEs[END_REF] for linear PDEs. At the cost of solving multiple optimization problems, the Deep Backward scheme (DBDP) of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] verifies better stability and accuracy properties than the global method in [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF], as illustrated on several test cases. The recent paper [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] also introduces machine learning schemes based on local loss functions, called Deep Splitting (DS) method which estimates the PDE solution through backward explicit local optimization problems relying on a neural network regression method for the computation of conditional expectations.

In this paper, we propose machine learning schemes that use multistep methods introduced in [BD07] and [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]. The idea is to rely on the whole previously computed values of the discretized processes in the backward computations of the approximation as it is expected to yield a better propagation of regression errors. We shall develop this approach to the DBDP scheme of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], leading to the so-called deep backward multi-step scheme (MDBDP). This can be viewed as a machine learning version of the Multi-step Forward Dynamic Programming method studied by [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]. However, instead of solving at each time step two regression problems, our approach allows to consider only a single minimization as in the DBDP scheme. Compared to the latter, the multi-step consideration is expected to provide better accuracy by reducing the propagation of errors in the backward induction.Our main theoretical contribution is a detailed study of the approximation error of MDBDP scheme, through standard stability-type arguments for BSDEs (see e.g. Section 4.4 in [START_REF] Zhang | Backward stochastic differential equations: from linear to fully nonlinear theory[END_REF] for the continuous time case). The arguments can be adapted to obtain the convergence of the DS scheme introduced in [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF]. Furthermore, by relying on recent approximation results for deep neural networks in [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF], we obtain a rate of convergence of our scheme in terms of the number of neurons, and supplement the convergence analysis of the DBDP scheme [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF].

We provide some numerical tests of our proposed algorithms, which show the benefit of multistep schemes, and compare our results with the cited machine learning schemes. Notice that the GroupSort network is used for theoretical analysis but in the numerical implementation, we applied standard networks with tanh as activation function. The theoretical analysis of the convergence of methods relying on standard neural networks is left to future research. More numerical examples and tests are presented in the extended first arXiv version [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF] of this paper.

The plan of the paper is the following. In Section 4.2, we give a brief reminder on neural networks and notably on a specific class of deep network functions considered in [ALG19; TSB21] that yields an approximation result with rate of convergence for Lipschitz functions. We also review machine learning schemes for the numerical resolution of semilinear PDEs. We then describe in detail the MDBDP scheme.

We state in Section 4.3 the convergence of the MDBDP, DS, and DBDP schemes, while Section 4.4 is devoted to the proof of these results. Section 4.5 gives some numerical tests for illustration.

BSDE Machine Learning Schemes for Semilinear PDEs

In this section, we review recent numerical schemes, and present our new scheme for the resolution of the semi-linear PDE (4.1.1) by approximations in the class of neural networks and relying on probabilistic representation of the solution to the PDE.

Neural Networks

We denote by We then define

L ρ d 1 ,d 2 = φ : R d 1 → R d 2 : ∃ (W, β) ∈ R d 2 ×d 1 × R d 2 , φ(x) = ρ(Wx + β) ,
N ρ d 0 ,d , ,m = ϕ : R d 0 → R d : ∃φ 0 ∈ L ρ 0 d 0 ,m 0 , ∃φ i ∈ L ρ i m i-1 ,m i , i = 1, . . . , -1, ∃φ ∈ L m l-1 ,d , ϕ = φ • φ -1 • • • • • φ 0 ,
as the set of feedforward neural networks with input layer dimension d 0 , output layer dimension d , and hidden layers with m i neurons per layer (i = 0, • • • , -1). These numbers d 0 , d , , the sequence m = (m i ) i=0,..., -1 , and sequence of activation functions ρ = (ρ i ) i=0,..., -1 , form the architecture of the network.

In the sequel, we shall mostly work with the case d 0 = d (dimension of the state variable x).

A given network function ϕ ∈ N ρ d 0 ,d , ,m is determined by the weight/bias parameters θ = (W 0 , β 0 , . . . , W , β ) defining the layer functions φ 0 . . . , φ , and we shall sometimes write ϕ = ϕ θ .

We recall the fundamental result of [START_REF] Hornik | Multilayer Feedforward Networks Are Universal Approximators[END_REF] that justifies the use of neural networks as function approximators, in the usual case of activation functions applied componentwise at each hidden layer.

Universal approximation theorem. The space

-1 i=0 ∞ m i =0 N ρ d 0 ,d , ,m is dense in L 2 (ν), the set of measurable functions h : R d 0 → R d s.t. |h(x)| 2 2 ν(dx) < ∞,
for any finite measure ν on R d 0 , whenever ρ is continuous and non-constant. This universal approximation theorem does not provide any rate of convergence, nor reveals even in theory how to achieve a given accuracy for a fixed number of neurons. Some results give rates for the approximation of functions in Sobolev spaces [START_REF] Pinkus | Approximation theory of the MLP model[END_REF], for bounded convex subdifferentiable Lipschitz functions [START_REF] Balazs | Near-optimal max-affine estimators for convex regression[END_REF] or bounded Lipschitz functions [START_REF] Yarotsky | Error bounds for approximations with deep ReLU networks[END_REF], but here, we need a result related to (possibly unbounded) Lipschitz functions. The paper [START_REF] Bach | Breaking the Curse of Dimensionality with Convex Neural Networks[END_REF] provides a possible answer in this direction, but we instead rely on a simpler approach in [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF], building on the GroupSort deep neural networks introduced by [START_REF] Anil | Sorting Out Lipschitz Function Approximation[END_REF]. Let κ ∈ N * , κ ≥ 2, be a grouping size, dividing the number of neurons m i = κn i , at each layer i = 0, • • • -1.

-1 i=0 m i will be refered to as the width of the network and +1 as its depth 

∞ norm | • | ∞ : sup |x| 2 =1 |W 0 x| ∞ ≤ 1, sup |x|∞=1 |W i x| ∞ ≤ 1, |β j | ∞ ≤ M, i = 1, • • • , l, j = 0, • • • , l
for some M > 0, the related GroupSort neural networks from N ζκ d,d , ,m are 1-Lipschitz. The space of such 1-Lipschitz GroupSort neural networks is called S ζκ d, ,m :

S ζκ d, ,m = {ϕ (W 0 ,β 0 ,...,W ,β ) ∈ N ζκ d,1, ,m , sup |x| 2 =1 |W 0 x| ∞ ≤ 1, sup |x|∞=1 |W i x| ∞ ≤ 1, |β j | ∞ ≤ M, i = 1, • • • , l, j = 0, • • • , l}.
We then introduce the set G ζκ K,d,d , ,m as

G ζκ K,d,d , ,m :={Ψ = (Ψ i ) i=1,...,d : R d → R d , Ψ i : x ∈ R d → Kβ i φ i x + α i β i ∈ R, φ i ∈ S ζκ d, ,m , for some α i ∈ R d , β i > 0}.
Notice that these networks are √ d K-Lipschitz and that each of their components is K-Lipschitz. We rely on the the following quantitative approximation result which directly follows from [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF].

Proposition 4.2.1 (Slight extension of Tanielian, Sangnier, Biau [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF] : Approximation theorem for Lipschitz functions by Lipschitz GroupSort neural networks.).

Let f : [-R, R] d → R d be K-Lipschitz. Then, for all ε > 0, there exists a GroupSort neural network g in G ζκ K,d,d , ,m verifying sup x∈[-R,R] d |f (x) -g(x)| 2 ≤ √ d 2RKε with g of grouping size κ = 2 √ d ε , depth + 1 = O(d 2 ) and width -1 i=0 m i = O(( 2 √ d ε ) d 2 -1 ) in the case d > 1. If d = 1
, the same result holds with g of grouping size κ = 1 ε , depth + 1 = 3 and width -1

i=0 m i = O( 1 ε ).
Proof. With f i the i-th component of f , define 

f i : z ∈ [0, 1] d → f i (2R(z -1/2)) 2RK . ( 4 
sup z∈[0,1] d | f i (z) -g i (z)| ≤ ε with g i of grouping size κ = O( 2 √ d ε ), depth +1 = O(d 2 ) and width -1 i=0 m i = O(( 2 √ d ε ) d 2 -1 )(respectively grouping size κ = O( 1 ε ), depth + 1 = 3 and width -1 i=0 m i = O( 1 ε ) if d = 1). Inverting (4.2.1) we have f i (x) = 2KR f i ( x+R 2R ) hence sup x∈[-R,R] d f i (x) -2KRg i x + R 2R ≤ 2KRε.
The result is proven by concatenating the

d K-Lipschitz GroupSort networks x → 2KRg i ( x+R 2R ), i = 1, • • • , d .
Remark 4.2.1. As mentioned in [START_REF] Tanielian | Approximating Lipschitz continuous functions with GroupSort neural networks[END_REF], GroupSort neural networks generalize the ReLU networks and, thanks to their Lipschitz continuity, offer better stability regarding noisy inputs and adversarial attacks. It also appears that GroupSort networks are more expressive than ReLU ones.

Existing Schemes

We review recent machine learning schemes that will serve as benchmarks for our new scheme described in the next section. All these schemes rely on BSDE representation of the solution to the PDE, and differ according to the formulation of the time discretization of the BSDE.

For this purpose, let us introduce the diffusion process X in R d associated to the linear part of the differential operator in the PDE (4.1.1), namely:

X t = X 0 + t 0 µ(s, X s )ds + t 0 σ(s, X s )dW s , 0 ≤ t ≤ T, (4.2.2)
where W is a d-dimensional standard Brownian motion on some probability space (Ω, F, P) equipped with a filtration F = (F t ) t , and X 0 is an F 0 -measurable random variable valued in R d .

Recall from [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] that the solution u to the PDE (4.1.1) admits a probabilistic representation in terms of the BSDE:

Y t = g(X T ) - T t f (s, X s , Y s , Z s )ds - T t Z s .dW s , 0 ≤ t ≤ T, (4.2.3) via the Feynman-Kac formula Y t = u(t, X t ), 0 ≤ t ≤ T .
When u is a smooth function, this BSDE representation is directly obtained by Itô's formula applied to u(t, X t ), and we have

Z t = σ(t, X t ) D x u(t, X t ), 0 ≤ t ≤ T . Let π be a subdivision {t 0 = 0 < t 1 < • • • < t N = T } with modulus |π| := sup i ∆t i , ∆t i := t i+1 -t i , satisfying |π| = O 1
N , and consider the Euler scheme

X i = X 0 + i-1 j=0 µ(t j , X j )∆t j + i-1 j=0 σ(t j , X j )∆W j , i = 0, . . . , N,
where ∆W j := W t j+1 -W t j , j = 0, . . . , N . When the diffusion X cannot be simulated, we shall rely on the simulated paths of (X i ) i that act as training data in the setting of machine learning, and thus our training set can be chosen as large as desired.

The time discretization of the BSDE (4.2.3) is written in backward induction as

Y π i = Y π i+1 -f (t i , X i , Y π i , Z π i )∆t i -Z π i .∆W i , i = 0, . . . , N -1, (4.2.4)
which also reads as conditional expectation formulae

   Y π i = E i Y π i+1 -f (t i , X i , Y π i , Z π i )∆t i Z π i = E i ∆W i ∆t i Y π i+1 , i = 0, . . . , N -1, (4.2.5)
where E i denotes the conditional expectation w.r.t. F t i . Alternatively, by iterating relations (4.2.4) together with the terminal relation Y π N = g(X N ), we have

Y π i = g(X N ) - N -1 j=i f (t j , X j , Y π j , Z π j )∆t j + Z π j .∆W j , i = 0, . . . , N -1. (4.2.6)
• Deep BSDE scheme [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF].

The idea of the method is to treat the backward equation (4.2.4) as a forward equation by approximating the initial condition Y 0 and the Z component at each time by networks functions of the X process, so as to match the terminal condition. More precisely, the problem is to minimize over network functions U 0 : R d → R, and sequences of network functions Z = (Z i ) i , Z i : R d → R d , i = 0, . . . , N -1, the global quadratic loss function

J G (U 0 , Z) = E Y U 0 ,Z N -g(X N ) 2 ,
where (Y U 0 ,Z i ) i is defined by forward induction as

Y U 0 ,Z i+1 = Y U 0 ,Z i + f (t i , X i , Y U 0 ,Z i , Z i (X i ))∆t i + Z i (X i ).∆W i , i = 0, . . . , N -1, starting from Y U 0 ,Z 0 = U 0 (X 0 )
. The output of this scheme, for the solution ( U 0 , Z) to this global minimization problem, provides an approximation U 0 of the solution u(0, .) to the PDE at time 0, and approximations Y U 0 , Z i of the solution to the PDE (4.1.1) at times t i evaluated at X t i , i.e., of Y t i = u(t i , X t i ), i = 0, . . . , N .

• Deep Backward Dynamic Programming (DBDP) [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. The method relies on the backward dynamic programming relation (4.2.4) arising from the time discretization of the BSDE, and learns simultaneously at each time step t i the pair (Y t i , Z t i ) with neural networks trained with the forward process X and the Brownian motion W . The scheme has two versions: 1. DBDP1. Starting from U

(1) N = g, proceed by backward induction for i = N -1, . . . , 0, by minimizing over network functions U i : R d → R, and Z i : R d → R d the local quadratic loss function

J (B1) i (U i , Z i ) = E U (1) i+1 (X i+1 ) -U i (X i ) -f (t i , X i , U i (X i ), Z i (X i ))∆t i -Z i (X i ).∆W i 2 ,
and update ( U

(1) i , Z (1) 
i ) as the solution to this local minimization problem.

DBDPStarting from U

(2) N = g, proceed by backward induction for i = N -1, . . . , 0, by minimizing over C 1 network functions U i : R d → R the local quadratic loss function

J (B2) i (U i ) = E U (2) i+1 (X i+1 ) -U i (X i ) -f (t i , X i , U i (X i ), σ(t i , X i ) D x U i (X i ))∆t i -D x U i (X i ) σ(t i , X i )∆W i 2 ,
where D x U i is the automatic differentiation of the network function U i . Update U

(2) i as the solution to this problem, and set

Z (2) i = σ (t i , .)D x U (2) i .
The output of DBDP provides an approximation ( U i , Z i ) of the solution u(t i , .) and its gradient σ (t i , .)D x u(t i , .) to the PDE (4.1.1) at times t i , i = 0, . . . , N -1. The approximation error has been analyzed in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF].

Remark 4.2.2. A machine learning scheme in the spirit of regression-based Monte-Carlo methods ([BT04], [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF]) for approximating condition expectations in the time discretization (4.2.5) of the BSDE, can be formulated as follows: starting from ÛN = g, proceed by backward induction for i = N -1, . . . , 0, in two regression problems: (a) Minimize over network functions

Z i : R d → R d J r,Z i (Z i ) = E ∆W i ∆t i U i+1 (X i+1 ) -Z i (X i ) 2
and update Z i as the solution to this minimization problem (b) Minimize over network functions

U i : R d → R J r,Y i (U i ) = E U i+1 (X i+1 ) -U i (X i ) -f (t i , X i , U i (X i ), Z i (X i ))∆t i 2
and update U i as the solution to this minimization problem.

Compared to these regression-based schemes, the DBDP scheme approximates simultaneously the pair component (Y, Z) via the minimization of the loss functions

J (B1) i (U i , Z i ) (or J (B2) i (U i )
for the second version), i = N -1, . . . , 0. One advantage of this latter approach is that the accuracy of the DBDP scheme can be tested when computing at each time step the infimum of loss function, which should be equal to zero for the exact solution (up to the time discretization). In contrast, the infimum of the loss functions in the regression-based schemes is not known for the exact solution as it corresponds in theory to the residual of L 2 -projection, and thus the accuracy of the scheme cannot be tested directly in-sample. Moreover, a variant where the automatic differentiation D x U i (X i ) is performed to estimate Z t i instead of using a second neural network Z i (similarly as in the previous DBDP2 scheme) can also be considered. In this case, one only needs to solve for each time step the (b) optimization problem and not the (a) problem anymore.

• Deep Splitting (DS) scheme [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF]. This method also proceeds by backward induction as follows:

-Minimize over C 1 network functions U N : R d → R the terminal loss function

J S N (U N ) = E g(X N ) -U N (X N ) 2 ,
and denote by U N as the solution to this minimization problem. If g is C 1 , we can choose directly U N = g.

-For i = N -1, . . . , 0, minimize over C 1 network functions U i : R d → R the loss function

J S i (U i ) = E U i+1 (X i+1 ) -U i (X i ) -f (t i , X i+1 , U i+1 (X i+1 ), σ(t i , X i ) D x U i+1 (X i+1 ))∆t i 2 , (4.2.7)
and update U i as the solution to this minimization problem. Here D x refers again to the automatic differentiation operator for network functions.

The DS scheme combines ideas of the DBDP2 and regression-based schemes where the current regression-approximation on Z is replaced by the automatic differentiation of the network function computed at the previous step. The current approximation of Y is then computed by a regression network-based scheme. In Section 4.3, we shall analyze the approximation error of the DS scheme. Please note that in (4.2.7) we consider a slight modification of the original DS scheme from [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF]. In their loss function, the term f

(t i , X i+1 , U i+1 (X i+1 ), σ(t i , X i ) D x U i+1 (X i+1 )) is replaced by f (t i+1 , X i+1 , U i+1 (X i+1 ), σ(t i+1 , X i+1 ) D x U i+1 (X i+1 )).

Deep Backward Multi-step Scheme (MDBDP)

The starting point of the MDBDP scheme is the iterated representation (4.2.6) for the time discretization of the BSDE. This backward scheme is described as follows: for i = N -1, . . . , 0, minimize over network functions U i : R d → R, and Z i : R d → R d the loss function

J M B i (U i , Z i ) = E g(X N ) - N -1 j=i+1 f (t j , X j , U j (X j ), Z j (X j ))∆t j - N -1 j=i+1 Z j (X j ).∆W j -U i (X i ) -f (t i , X i , U i (X i ), Z i (X i ))∆t i -Z i (X i ).∆W i 2 (4.2.8)
and update ( U i , Z i ) as the solution to this minimization problem. This output provides an approximation ( U i , Z i ) of the solution u(t i , .) to the PDE (4.1.1) at times t i , i = 0, . . . , N -1. This approximation error will be analyzed in Section 4.3.

MDBDP is a machine learning version of the Multi-step Dynamic Programming method studied by [START_REF] Bender | A forward scheme for backward SDEs[END_REF] and [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF]. Instead of solving at each time step two regression problems, our approach allows to consider only a single minimization as in the DBDP scheme. Compared to the latter, the multi-step consideration is expected to provide better accuracy by reducing the propagation of errors in the backward induction.

Remark 4.2.3. We could have also considered, as in the DBDP2 scheme, the automatic differentiation of U i for the approximation of the gradient Z t i . However, as shown in the numerical tests of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], this approach leads to less accurate results than the DBDP1 algorithm which uses an additional neural network. Moreover, at least for theoretical analysis, it requires to optimize over C 1 neural networks, which is a restrictive assumption. Hence we focus on a DBDP1-type method.

In the numerical implementation, the expectation defining the loss function J M B i in (4.2.8) is replaced by an empirical average leading to the so-called generalization (or estimation) error, largely studied in the statistical community, see [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF], and more recently [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF], [START_REF] Beck | Full error analysis for the training of deep neural networks[END_REF] and the references therein. Moreover, recalling the parametrization d,,m , the minimization of the empirical average is amenable to stochastic gradient descent (SGD) extensively used in machine learning. More precisely, given a fixed time step i = N -1, . . . , 0, at each iteration of the SGD, we pick a sample (X k j , ∆W k j ) j=i,...,N of the Euler process and increment of Brownian motion (X j , ∆W j ) j , k = 1, . . . , K, of mini-batch size K, and consider the empirical loss function:

(U θ , Z θ ) of neural network functions in N ρ d,1, ,m ×N ρ d,
J K i (θ) = 1 K K k=1 g(X k N ) - N -1 j=i+1 f (t j , X k j , U j (X k j ), Z j (X k j ))∆t j - N -1 j=i+1 Z j (X k j ).∆W k j -U θ (X k i ) -f (t i , X k i , U θ (X k i ), Z θ (X k i ))∆t i -Z θ (X k i ).∆W k i 2
, (4.2.9)

where U j = U θj j , Z j = Z θj j , and θj is the resulting parameter from the SGD obtained at dates j ∈ i + 1, N -1 . In practice, the number of iterations for SGD at the initial induction time N -1 should be large enough so as to learn accurately the value function u(t N -1 , .) and its gradient D x u(t N -1 , .) via U θN-1 and Z θN-1 . However, it is then expected that ( U j , Z j ) does not vary a lot from j = i + 1 to i, which means that at time i, one can design the SGD with initialization parameter equal to the resulting parameter from the previous SGD at time i + 1, and then use few iterations to obtain accurate values of U i and Z i . This observation allows to reduce significantly the computational time in (M)DBDP scheme when applying sequentially N SGD. The SGD algorithm for computing an approximate minimizer of the loss function induces the so-called optimization error, which has been extensively studied in the stochastic algorithm and machine learning communities, see [BM], [START_REF] Bercu | Generic stochastic gradient methods[END_REF], [START_REF] Beck | Full error analysis for the training of deep neural networks[END_REF], and the references therein.

Convergence Analysis

This section is devoted to the approximation error and rate of convergence of the MDBDP, DS, and DBDP schemes described in Section 4.2.

We make the following standard assumptions on the coefficients of the forward-backward equation associated to semilinear PDE (4.1.1).

Algorithm 6: MDBDP scheme.

Data:

Initial parameter θN . A sequence of number of iterations (S i ) i=0,...,N -1 for i = N -1, . . . , 0 do Initial parameter θ i ← θi+1 Set s = 1 while s ≤ S i do Pick a sample of (X j , ∆W j ) j=i,...,N of mini-batch size K Compute the gradient 

∇J K i (θ) of J K i (θ) defined in (4.2.9) Update θ i ← θ i -η∇J K i (θ i ) with η learning rate s ← s + 1 end Return θi ← θ i , U i = U θi , Z i = Z θi /*
(i) X 0 is square-integrable : X 0 ∈ L 2 (F 0 , R d ).
(ii) The functions µ and σ are Lipschitz in x ∈ R d , uniformly in t ∈ [0, T ].

(iii) The generator function f is 1/2-Hölder continuous in time and Lipschitz continuous in all other variables: ∃ [f ] L > 0 such that for all (t, x, y, z) and (t , x , y , z

) ∈ [0, T ] × R d × R × R d , |f (t, x, y, z) -f (t , x , y , z )| ≤ [f ] L |t -t | 1/2 + |x -x | 2 + |y -y | + |z -z | 2 .
Moreover, sup t∈[0,T ] |f (t, 0, 0, 0)| < ∞.

(iv) The function g satisfies a linear growth condition.

Assumption 4.3.1 guarantees the existence and uniqueness of an adapted solution (X , Y, Z) to the forward-backward equation (4.2.2)-(4.2.3), satisfying

E sup 0≤t≤T |X t | 2 2 + sup 0≤t≤T |Y t | 2 + T 0 |Z t | 2 2 dt < ∞,
( see for instance Theorem 3.3.1, Theorem 4.2.1, Theorem 4.3.1 from [START_REF] Zhang | Backward stochastic differential equations: from linear to fully nonlinear theory[END_REF]). Given the time grid π = {t i : i = 0, . . . , N }, let us introduce the L 2 -regularity of Z:

ε Z (π) := E N -1 i=0 t i+1 t i |Z t -Zt i | 2 2 dt , with Zt i := 1 ∆t i E i t i+1 t i Z t dt .
Since Z is a L 2 -projection of Z, we know that ε Z (π) converges to zero when |π| goes to zero. Moreover, as shown in [START_REF] Zhang | A numerical scheme for BSDEs[END_REF], when g is also Lipschitz, we have

ε Z (π) = O(|π|).
Here, the standard notation O(|π|) means that lim sup |π|→0 |π| -1 O(|π|) < ∞.

Lemma 4.3.1. Under Assumption 4.3.2 (ii), the following standard estimate for the Euler-Maruyama scheme holds when ∆t i → 0

E|X x i+1 -X x i+1 | 2 2 ≤ (1 + C∆t i )|x -x | 2 2
, where X x i+1 := x + µ(t i , x)∆t i + σ(t i , x)∆W i . Proof. By expanding the square, simply notice that the dominant terms when ∆t i → 0 are of older ∆t i because the term of order √ ∆t i , namely (x -x ) • (σ(t i , x) -σ(t i , x ))∆W i has a null expectation and all other terms are dominated by ∆t i .

Convergence of the MDBDP Scheme

We fix classes of functions N i and N i for the approximations respectively of the solution and its gradient, and define ( U (1) i , Z

(1) i ) as the output of the MDBDP scheme at times t i , i = 0, . . . , N . Let us define (implicitly) the process

             V (1) i = E i g(X N ) -f t i , X i , V (1) i , Z i (1) ∆t i - N -1 j=i+1 f t j , X j , U (1) j (X j ), Z (1) j (X j ) ∆t j , Z (1) i = E i g(X N )∆W i ∆t i - N -1 j=i+1 f t j , X j , U (1) 
j (X j ), Z (1) 
j (X j ) ∆W i ∆t j ∆t i , i = 0, . . . , N, (4.3.1) and notice by the Markov property of the discretized forward process

(X i ) i that V (1) i = v (1) i (X i ), Z i (1) = z i (1) (X i ), i = 0, . . . , N, (4.3.2)
for some deterministic functions v

(1) 1) . Let us then introduce

i , z i ( 
ε 1,y i := inf U∈N i E v (1) i (X i ) -U(X i ) 2 , ε 1,z i := inf Z∈N i E z i (1) (X i ) -Z(X i ) 2 2 ,
for i = 0, . . . , N -1, which represent the L 2 -approximation errors of the functions v

(1)

i , z i (1) in the classes N i and N i .

Theorem 4.3.1 (Approximation error of MDBDP). Under Assumption 4.3.1, there exists a constant C > 0 (depending only on the data µ, σ, f, g, d, T ) such that in the limit |π| → 0

sup i∈ 0,N E Y t i -U (1) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (1) i (X i ) 2 2 ds ≤ C E g(X T ) -g(X N ) 2 + |π| + ε Z (π) + N -1 j=0 (ε 1,y j + ∆t j ε 1,z j ) . (4.3.3)
Remark 4.3.1. The upper bound in (4.3.3) consists of four terms. The first three terms correspond to the time discretization of BSDE, similarly as in [START_REF] Zhang | A numerical scheme for BSDEs[END_REF], [START_REF] Bouchard | Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations[END_REF], namely (i) the strong approximation of the terminal condition (depending on the forward scheme and g), and converging to zero, as |π| goes to zero, with a rate |π| when g is Lipschitz, (ii) the strong approximation of the forward Euler scheme, and the L 2 -regularity of Y , which gives a convergence of order |π|, (iii) the L 2 -regularity of Z. Finally, the last term is the approximation error by the chosen class of functions. Note that the approximation error N -1 j=0 (ε 1,y j + ∆t j ε 1,z j ) in (4.3.3) is better than the one for the DBDP scheme derived in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], with an order N -1 j=0 (N ε 1,y j + ε 1,z j ). In the work [START_REF] Gobet | Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions[END_REF] which introduced the multistep scheme with linear regression, the authors noticed the same improvement in the error propagation in comparison with the one-step classical scheme [START_REF] Gobet | A regression-based Monte Carlo method to solve backward stochastic differential equations[END_REF].

We next study convergence for the approximation error of the MDBDP scheme, for a specific choice of functions classes N i and N i and with the additional assumption that f does not depend on z.

Assumption 4.3.2. The generator function f is independent of z. Namely, for all (t, x, y, z, z )

∈ [0, T ] × R d × R × R d × R d , f (t, x, y, z) = f (t, x, y, z ).
Actually, if f is linear in z: f (t, x, y, z) = f (t, x, y)+λ(t, x).z, one can boil down to Assumption 4.3.2 for f by incorporating the linearity in the drift function µ, namely with the modified drift: μ(t, x) = µ(t, x) -σλ(t, x).

Proposition 4.3.1 (Rate of convergence of MDBDP). Let Assumption 4.3.1 and Assumption 4.3.2 hold, and assume that X 0 ∈ L 2+δ (F 0 , R d ), for some δ > 0, and g is [g]-Lipschitz. Then, there exists a bounded sequence K i (uniformly in i, N ) such that for GroupSort neural networks classes N i = G ζκ K i ,d,1, ,m , and

N i = G ζκ d ∆t i K i ,d,d, ,m
, we have

sup i∈ 0,N E Y t i -U (1) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (1) i (X i ) 2 2 ds = O(1/N ), with a grouping size κ = O(2 √ dN 2 ), depth +1 = O(d 2 ) and width -1 i=0 m i = O((2 √ dN 2 ) d 2 -1 ) in the case d > 1. If d = 1, take κ = O(N 2 ), depth + 1 = 3 and width -1 i=0 m i = O(N 2 ).
Here, the constants in the O(•) term depend only on µ, σ, f, g, d, T, X 0 .

Convergence of the DS Scheme

We consider classes N γ,η i of differentiable γ i -Lipschitz functions with η i -Lipschitz derivative for sequences γ = (γ i ) i , η = (η i ) i and define U

(2) i as the output of the DS scheme at times t i , i = 0, . . . , N . . Let us define the process

V (2) i = E i U (2) i+1 (X i+1 ) -f t i , X i , E i [ U (2) i+1 (X i+1 )], E i [σ(t i , X i ) D x [ U (2) i+1 (X i+1 )] ∆t i ,(4.3.4)
for i ∈ 0, N -1 , and V

(2)

N = U (2) 
N (X N ). By the Markov property of (X i ) i , we have

V (2) i = v (2)
i (X i ), for some functions v

(2) i : R d → R, i ∈ 0, N -1 , and we introduce

ε γ,η i = inf U ∈N γ,η i E v (2) i (X i ) -U(X i ) 2 , i = 0, . . . , N -1, inf U ∈N γ,η i E g(X N ) -U(X N ) 2 , i = N.
the L 2 -approximation error in the class N γ,η i of the functions v

i , i = 0, . . . , N -1, and g.

Theorem 4.3.2 (Approximation error of DS). Let Assumption 4.3.1 hold, and assume that X 0 ∈ L 4 (F 0 , R d ). Then, there exists a constant C > 0 (depending only on µ, σ, f, g, d, T, X 0 ) such that in the limit |π| → 0

sup i∈ 0,N E Y t i -U (2) i (X i ) 2 ≤ C E g(X N ) -g(X T ) 2 + |π| + ε Z (π) + max i γ 2 i , η 2 i |π| + ε γ,η N + N N -1 i=0 ε γ,η i . (4.3.5)
Remark 4.3.2. We retrieve a similar error as in the analysis of the DBDP2 scheme derived in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. Notice that when g is C 1 , one can choose to initialize the DS scheme with U N = g, and the term ε γ,η N is removed in (4.3.5). The GroupSort neural networks being only continuous but not differentiable, we are not able to express a convergence rate for the Deep Splitting scheme in terms of the architecture and number of neurons to choose, like in Propositions 4.3.1, 4.3.2. It would require a quantitative approximation result for C 1 neural networks with bounded Lipschitz gradient, and this is left to future research.

Convergence of the DBDP Scheme

We consider classes of functions N i and N i for the approximations of the solution and its gradient, and define ( U

(3) i , Z (3) 
i ) as the output of the DBDP scheme at times t i , i = 0, . . . , N . Let us define (implicitly) the process

     V (3) i = E i U (3) i+1 (X i+1 ) -f t i , X i , V (3) i , Z i (3) ∆t i Z i (3) = E i U (3) i+1 (X i+1 ) ∆W i ∆t i , i = k, . . . , N -1.
and notice by the Markov property of the discretized forward process (X i ) i that

V (3) i = v (3) i (X i ), Z i = z i (3) (X i ), i = 0, . . . , N, (4.3.6)
for some deterministic functions v 3) . Let us then introduce

(3) i , z i ( 
ε 3,y i := inf U∈N i E v (3) i (X i ) -U(X i ) 2 , ε 3,z i := inf Z∈N i E z i (3) (X i ) -Z(X i ) 2 2 ,
for i = 0, . . . , N -1, which represent the L 2 -approximation errors of the functions v

(3)

i , z i (3) in the classes N i and N i .

Theorem 4.3.3 (Huré, Pham, Warin [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] : Approximation error of DBDP). Under Assumption 4.3.1, there exists a constant C > 0 (depending only on the data µ, σ, f, g, d, T ) such that in the limit |π| → 0

sup i∈ 0,N E Y t i -U (3) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (3) i (X i ) 2 2 ds ≤ C E g(X T ) -g(X N ) 2 + |π| + ε Z (π) + N N -1 j=0 (ε 3,y j + ∆t j ε 3,z j ) . (4.3.7) 
We next study convergence rate for the approximation error of the DBDP scheme, and need to specify the class of network functions N i and N i .

Proposition 4.3.2 (Rate of convergence of DBDP). Let Assumption 4.3.1 hold, and assume that X 0 ∈ L 2+δ (F 0 , R d ), for some δ > 0, and g is [g]-Lipschitz. Then, there exists a bounded sequence K i (uniformly in i, N ) such that for N i = G ζκ K i ,d,1, ,m , and

N i = G ζκ d ∆t i K i ,d,d, ,m
, we have

sup i∈ 0,N E Y t i -U (3) i (X i ) 2 + E N -1 i=0 t i+1 t i Z s -Z (3) i (X i ) 2 2 ds = O(1/N ), with a grouping size κ = O(2 √ dN 3 ), depth +1 = O(d 2 ) and width -1 i=0 m i = O((2 √ dN 3 ) d 2 -1 ) in the case d > 1. If d = 1, take κ = O(N 3 ), depth + 1 = 3 and width -1 i=0 m i = O(N 3 ).
Here, the constants in the O(•) term depend only on µ, σ, f, g, d, T, X 0 .

Proof of the Main Theoretical Results

Proof of Theorem 4.3.1

Let us introduce the processes ( Vi , Zi ) i arising from the time discretization of the BSDE (4.2.3), and defined by the implicit backward Euler scheme:

   V (1) i = E i V (1) i+1 -f t i , X i , V (1) i , Z (1) 
i ∆t i Z(1) i = E i V (1) i+1 ∆W i ∆t i , i = 0, . . . , N -1, (4.4.1)
starting from V (1) N = g(X N ). We recall from [START_REF] Zhang | A numerical scheme for BSDEs[END_REF] the time discretization error:

sup i∈ 0,N E Y t i -Vi (1) 2 + E N -1 i=0 t i+1 t i Z s - Z(1) i 2 2 ds ≤ C E g(X T ) -g(X N ) 2 + |π| + ε Z (π) , (4.4.2)
for some constant C depending only on the coefficients satisfying Assumption 4.3.1. Let us introduce the auxiliary process

V (1) i = E i g(X N ) - N -1 j=i f t j , X j , U (1) 
j (X j ), Z (1) 
j (X j ) ∆t j , i = 0, . . . , N, (4.4.3) and notice by the tower property of conditional expectations that we have the recursive relations:

Vi (1) = E i V (1) i+1 -f t i , X i , U (1) 
i (X i ), Z

i (X i ) ∆t i , i = 0, . . . , N -1. (4.4.4)

Observe also that Z

(1) i defined in (4.3.1) satisfies

Z i (1) = E i V (1) i+1 ∆W i ∆t i , i = 0, . . . , N -1. (4.4.5)
We now decompose the approximation error, for i ∈ 0, N -1 , into

E Y t i -U (1) i (X i ) 2 ≤ 4 E Y t i -Vi (1) 2 + E Vi (1) - V (1) i 2 + E V (1) i -V (1) i 2 + E V (1) i - Û(1) i (X i ) 2 =: 4(I 1 i + I 2 i + I 3 i + I 4 i ), (4.4.6)
and analyze each of these contribution terms. In the sequel, C denotes a generic constant independent of π that may vary from line to line, and depending only on the coefficients satisfying Assumption 4.3.1. Notice that the first contribution term is the time discretization error for BSDE given by (4.4.2), and we shall study the three other terms in the following steps.

Step 1. Fix i ∈ 0, N -1 . From the definition (4.3.1) of V

(1) i

and by the martingale representation theorem, there exists a square integrable process { Z

(1)

s , t i ≤ s ≤ T } s.t. g(X N ) -f t i , X i , V (1) 
i , Z

i ∆t i - N -1 j=i+1 f t j , X j , U (1) 
j (X j ), Z (1) 
j (X j ) ∆t j = V i + t N t i Z (1) s .dW s . (4.4.7) (1) 
From the definition (4.3.1) of Z i

, and by Itô isometry, we then have

Z i (1) = E i t i+1 t i Z (1) s ds ∆t i , i.e. E i t i+1 t i Z (1) s -Z i (1) ds = 0. (4.4.8)
Plugging (4.4.7) into (4.2.8), we see that the loss function of the MDBDP scheme can be rewritten as

J M B i (U i , Z i ) = E V (1) i -U i (X i ) + ∆t i f t i , X i , V (1) 
i , Z i (1) -f t i , X i , U i (X i ), Z i (X i ) + N -1 j=i+1 t j+1 t j Z (1) s -Z j (X j ) .dW s + t i+1 t i Z (1) s -Z i (X i ) .dW s 2 = J M B i (U i , Z i ) + E N -1 j=i t j+1 t j Z (1) s -Z j (1) 2 2 ds + N -1 j=i+1 ∆t j E Z j (1) -Z j (X j ) 2 2 , (4.4.9)
where we use (4.4.8), and

J M B i (U i , Z i ) := E V (1) i -U i (X i ) + ∆t i f t i , X i , V (1) 
i , Z i (1) -f t i , X i , U i (X i ), Z i (X i ) 2 + ∆t i E Z i (1) -Z i (X i ) 2 2 . It is clear by Lipschitz continuity of f in Assumption 4.3.1 that J M B i (U i , Z i ) ≤ C E V (1) i -U i (X i ) 2 + ∆t i E Z i (1) -Z i (X i ) 2 2 . (4.4.10)
On the other hand, by the Young inequality:

(1 -β)a 2 + 1 -1 β b 2 ≤ (a + b) 2 ≤ (1 + β)a 2 + 1 + 1 β b 2 , for all (a, b) ∈ R 2
, and β > 0, we have

J M B i (U i , Z i ) ≥ (1 -β)E V (1) i -U i (X i ) 2 + ∆t i E Z i (1) -Z i (X i ) 2 2 + 1 - 1 β |∆t i | 2 E f t i , X i , U i (X i ), Z i (X i ) -f t i , X i , V (1) 
i , Z i

(1) 2

≥ (1 -β)E V (1) i -U i (X i ) 2 + ∆t i E Z i (1) -Z i (X i ) 2 2 - 2[f ] 2 L β |∆t i | 2 E U i (X i ) -V (1) i 2 + E Z i (X i ) -Z i (1) 2 2 ≥ 1 -4[f ] 2 L + 1 2 ∆t i E V (1) i -U i (X i ) 2 + 1 2 ∆t i E Z i (1) -Z i (X i ) 2 2 , (4.4.11)
where we use the Lipschitz continuity of f in the second inequality, and choose explicitly β = 4[f ]2 L ∆t i (< 1 for ∆t i small enough) in the last one. By applying inequality (4.4.11) to

(U i , Z i ) = ( U (1) i , Z (1) 
i ), which is a minimizer of J M B i by (4.4.9), and combining with (4.4.10), this yields for ∆t i small enough and for all functions U i , Z i :

E V (1) i -U (1) i (X i ) 2 + ∆t i E Z i (1) -Z (1) i (X i ) 2 2 ≤ C E V i -U i (X i ) 2 + ∆t i E Z i -Z i (X i ) 2 2 .
By minimizing over U i , Z i in the right hand side, we get the approximation error in the classes

N i , N i of the regressed functions V (1) i , Z i (1) : E V (1) i -U (1) i (X i ) 2 + ∆t i E Z i (1) -Z (1) 
i (X i )

Step 2. From the expressions of V

(1) i and V

i in (4.3.1), (4.4.3), and by Lipschitz continuity of f , we have by (4.4.12):

E Vi (1) -V (1) i 2 = ∆t 2 i E E i f t i , X i , V (1) 
i , Z i (1) -f t i , X i , U (1) 
i (X i ), Z

i

(X i ) 2 ≤ 2[f ] 2 L |∆t i | 2 E V (1) i -U (1) i (X i ) 2 + E Z i (1) -Z (1) i (X i ) 2 2 ≤ C∆t i (ε 1,y i + ∆t i ε 1,z i ), i = 0, . . . , N.
(4.4.13)

Step 3. From the recursive expressions of Vi (1) , V

i in (4.4.1), (4.4.4), and applying the Young, the Cauchy-Schwarz inequalities, together with the Lipschitz condition of f , we get for β > 0:

E V (1) i - V (1) i 2 ≤ (1 + β)E E i V (1) i+1 - V (1) i+1 2 + 2[f ] 2 L 1 + 1 β |∆t i | 2 E Vi (1) - Û(1) i (X i ) 2 + E Z(1) i -Z (1) i (X i ) 2 2 ≤ (1 + β)E E i V (1) i+1 - V (1) i+1 2 + 2[f ] 2 L 1 + 1 β |∆t i | 2 3E| Vi (1) -Vi (1) | 2 + 2E Z(1) i -Z i (1) 2 2 + 2[f ] 2 L 1 + 1 β |∆t i | 2 3E| Vi (1) -V (1) i | 2 + 3E|V (1) i -U (1) i (X i )| 2 + 2E Z i (1) -Z i (X i ) 2 2 ≤ (1 + β)E E i V (1) i+1 - V (1) i+1 2 + (1 + β) 2[f ] 2 L |∆t i | 2 β 3E| Vi (1) -Vi (1) | 2 + 2E Z(1) i -Z i (1) 2 2 + C[f ] 2 L 1 + 1 β ∆t i (ε 1,y i + ∆t i ε 1,z i ), (4.4.14) 
where we use (4.4.12), (4.4.13) in the last inequality. Moreover, by (4.4.1), (4.4.5), we have

∆t i Z(1) i -Z i (1) = E i ∆W i V (1) i+1 - V (1) i+1 = E i ∆W i V (1) i+1 - V (1) i+1 -E i V (1) i+1 - V (1) i+1 ,
and thus by the Cauchy-Schwarz inequality Plugging into (4.4.14), and choosing

∆t i E Z(1) i -Z i (1) 2 2 ≤ d E V (1) i+1 - V (1) i+1 2 -E E i V (1) i+1 - V ( 
β = 4d[f ] 2 L ∆t i , gives (1 -C∆t i )E V (1) i - V (1) i 2 ≤ (1 + C∆t i )E V (1) i+1 - V (1) i+1 2 + (1 + C∆t i ) ε 1,y i + ∆t i ε 1,z i )
By discrete Gronwall lemma, and recalling that

V (1) N = V (1) N (= g(X N
)), we then obtain

sup i∈ 0,N E Vi (1) -Vi (1) 2 ≤ C N -1 i=0 ε 1,y i + ∆t i ε 1,z i ). (4.4.16)
The required bound for the approximation error on Y follows by plugging (4.4.2), (4.4.12), (4.4.13), and (4.4.16) into (4.4.6).

Step 4. We decompose the approximation error for the Z component into three terms

E N -1 i=0 t i+1 t i Z (1) s -Z (1) i (X i ) 2 2 ds ≤ 3 N -1 i=0 E t i+1 t i Z (1) s - Z(1) i 2 2 ds + ∆t i E Z(1) i -Z (1) i 2 2 + ∆t i E Z (1) i -Z (1) i (X i )
By summing the inequality (4.4.15) (recalling that

V (1) N = V (1)
N ), and using (4.4.14), we have for β ∈ (0, 1):

N -1 i=0 ∆t i E| Z(1) i -Z (1) i | 2 ≤ d N -1 i=0 E V (1) i - V (1) i 2 -E E i V (1) i+1 - V (1) i+1 2 ≤ d N -1 i=0 βE E i V (1) i+1 - V (1) i+1 2 + 1 + 1 β 2[f ] 2 L |∆t i | 2 3E| Vi (1) -Vi (1) | 2 + 2E Z(1) i -Z i (1) 2 2 + C[f ] 2 L 1 + 1 β ∆t i (ε 1,y i + ∆t i ε 1,z i ) ≤ d N -1 i=0 8d[f ] 2 L ∆t i 1 -8d[f ] 2 L ∆t i E E i V (1) i+1 - V (1) i+1 2 + 3 4d ∆t i E| Vi (1) -Vi (1) | 2 + C 8d (ε 1,y i + ∆t i ε 1,z i ) + 1 2 N -1 i=0 ∆t i E Z(1) i -Z (1) i 2 2 , (4.4.18) by choosing explicitly β = 8d[f ] 2 L ∆t i 1-8d[f ] 2 L ∆t i = O(∆t i )
for ∆t i small enough. Plugging (4.4.2), (4.4.12), (4.4.16), and (4.4.18) (using the Jensen inequality) into (4.4.17), this proves the required bound for the approximation error on Z, and completes the proof.

Proof of Proposition 4.3.1

Let us introduce the flow of the Euler scheme (X i ) by: X k,x j+1 := X k,x j + µ(t j , X k,x j )∆t j + σ(t j , X k,x j )∆W j , j = k, . . . , N, starting from X k,x k = x at time step j = k ∈ N * . Under Assumption 4.3.2, f does not depend on z so by slight abuse of notation we write f (t, x, y) = f (t, x, y, z). Define

                   V k,x i,1 = E i g(X k,x N ) -f t i , X k,x i , V k,x i,1 ∆t i - N -1 j=i+1 f t j , X k,x j , U (1) 
j (X k,x j ) ∆t j , V k,x i,1 = E i g(X k,x N ) - N -1 j=i f t j , X k,x j , U (1) 
j (X k,x j ) ∆t j , i = k, . . . , N, Z k,x i,1 = E i V k,x i+1,1 ∆W i ∆t i , i = k, . . . , N,
and observe that we have the recursive relations:

V k,x i,1 = E i V k,x i+1,1 -f t i , X k,x i , U (1) 
i (X k,x i ) ∆t i , i = k, . . . , N, V k,x i,1 = E i V k,x i+1,1 -f t i , X k,x i , V k,x i,1 ∆t i , i = k, . . . , N.
Notice by the Markov property of the discretized forward process (X k,x i ) i that

V k,x j,1 = v (1) j (X k,x j ), V k,x j,1 = v(1) j (X k,x j ), Z k,x j,1 = ẑ(1) j (X k,x j ), j = k, . . . , N
for some deterministic function v

(1) Step 1. We first estimate the evolution of the Lipschitz constant of v(1) i when i varies. Let x ∈ R d . By the Cauchy-Schwarz inequality

j , v(1) j , ẑ (1) 
∆t k E Z k,x k,1 -Z k,x k,1 2 ≤ 1 ∆t k E E k ( V k,x k+1,1 -V k,x k+1,1 )∆W k 2 ≤ d E V k,x k+1,1 -V k,x k+1,1 2 . (4.4.19)
Moreover, assuming that U

(1)

k is [ U (1) k ]-Lipschitz yields E V k,x k,1 -V k,x k,1 ≤ E V k,x k+1,1 -V k,x k+1,1 + ∆t i E {f t k , x , U (1) 
k (x ) -f t k , x, U (1) 
k (x) } ≤ E V k,x k+1,1 -V k,x k+1,1 + [f ]∆t i (1 + [ U (1) k ])|x -x | 2 .
Step 2. Then for the v

(1) k function, the Young inequality gives

E V k,x k,1 -V k,x k,1 2 ≤ (1 + γ∆t k )E E k V k,x k+1,1 -V k,x k+1,1 2 + (1 + 1 γ∆t k )∆t 2 k E {f t k , x , V k,x k,1 -f t k , x, V k,x k,1 } 2 ≤ (1 + γ∆t k )E E k V k,x k+1,1 -V k,x k+1,1 2 + 2[f ] 2 (1 + 1 γ∆t k )∆t 2 k E |x -x | 2 2 + |V k,x k,1 -V k,x k,1 | 2 .
Therefore by choosing γ = 2[f ] 2 for ∆t k small enough

E V k,x k,1 -V k,x k,1 2 ≤ (1 + (γ + 3)∆t k )E V k,x k+1,1 -V k,x k+1,1 2 + (1 + (γ + 3)∆t i )∆t k |x -x | 2 2 . Hence assuming v(1) k+1 is [v (1) 
k+1 ]-Lipchitz we obtain with Lemma 4.3.1

|v (1) k (x) -v (1) k (x )| 2 = E V k,x k,1 -V k,x k,1 2 (4.4.20) ≤ (1 + (γ + 3)∆t k )((1 + C∆t k )[v (1) k+1 ] 2 + ∆t k )|x -x | 2 2 ≤ (1 + C∆t k )([v (1) k+1 ] 2 + ∆t k )|x -x | 2 2 := [v (1) k ] 2 |x -x | 2 2 , (4.4.21)
for ∆t k small enough and another constant C.

Step 3. Let > 0, κ ∈ N, ∈ N, m ∈ R to be chosen after. Recursively, we choose

N k = G ζκ [v (1) k ],d,1, ,m (with [v 
(1) 

N -1 ] 2 = (1 + C∆t N -1 )([g] 2 + ∆t N -1 ) by (4.4.21)) to approximate v (1) k by [v (1) k ]-Lipschitz GroupSort neural networks with uniform error 2[v k ]R on [-R, R] d ,
(x) - v(1) k (x )| ≤ E V k,x k+1,1 -V k,x k+1,1 + [f ]∆t k (1 + [ U (1) k ])|x -x | 2 ≤ (1 + (C + 2[f ])∆t k )[v (1) k+1 ]|x -x | 2 + [f ](1 + C∆t k )∆t k |x -x | 2 . Thus v(1) k is [v (1) k ] Lipschitz with [v (1) k ] ≤ (1 + Ĉ∆t k )[v (1) k+1 ] + [f ](1 + C∆t k )∆t i for a constant Ĉ. By discrete Gronwall lemma over k = N -1, . . . , 0, [v (1) i ] 2 ≤ K, [v (1) i ] 2 ≤ K,
uniformly in i, N for some constant K. By (4.4.19) and Proposition 4.2.1, we choose

N k = G ζκ d ∆t i [v (1) k ],d,d, ,m
to approximate z k (1) by GroupSort neural networks with uniform error

2 d √ ∆t k [v k ]R on [-R, R] d . Thus √ ∆t k z k (1) , √ ∆t k Z (1)
k are dK Lipschitz, uniformly.

Step 4. The regression errors ε 1,y i verify from, localization of X i on B 2 (R), the Hölder inequality, and the Markov inequality, the approximation error of v (1) i , i ∈ 0, N -1 , by the class of GroupSort neural networks (Proposition 4.2.1)

ε 1,y i = inf U∈G [v i ],d,1 v (1) i (X i ) -U(X i ) 2 ≤ inf U∈G [v i ],d,1 v (1) i (X i ) -U(X i ) 1 X i ∈B 2 (R) 2 + v (1) i (X i ) -U (1) i (X i ) 1 |X i | 2 ≥R 2 ≤ 2KR + E v (1) i (X i ) -U (1) i (X i ) 2q 1/2q E 1 2q 2q-1 |X i | 2 ≥R 2q-1 2q = 2KR + E v (1) i (X i ) -U (1) i (X i ) 2q 1/2q E[1 |X i | 2 ≥R ] 2q-1 2q ≤ 2KR + v (1) i (X i ) -v (1) i (0) 2q + U (1) i (X i ) -v (1) i (0) 2q X i 2q 2q-1 R , (4.4.22)
for q > 1 and 2q = 2 + δ with δ as in the statement of the Proposition and by noticing that

(v (1) i (X i ) -U (1) i (X i ) = (v (1) i (X i ) -v (1) i (0) -( U (1) i (X i ) -v (1) 
i (0)) . Now, by Lipschitz continuity of v

(1) i , U (1) and because 0 ∈ B 2 (R) we have

U (1) i (X i ) -v (1) i (0) 2q + v (1) i (X i ) -v (1) i (0) 2q ≤ U 
(1)

i (0) -v (1) 
i (0) 2q + U (1) i (X i ) -U (1) 
i (0) 2q + v (1) i (X i ) -v (1) i (0) 2q ≤ 2KR + 2K X i 2q . (4.4.23)
Recalling the standard estimate X i 2q ≤ C(1 + X 0 2q ), i = 0, . . . , N , we then have

ε 1,y i ≤ C R 2 2 + 1 + R 2 2 R 2 ,
for some constant C(d, X 0 ) independent of N, R, . Similarly, repeating (4.4.22) and (4.4.23) by replacing respectively U

(1) i by Z

(1) i and v

(1) i by ẑ(1) i and recalling that

√ ∆t k z k (1) , √ ∆t k Z (1) 
k are dK Lipschitz uniformly w.r.t N , we obtain

∆t i ε 1,z i ≤ C{R 2 2 + 1 + R 2 2 R 2 }, Then to obtain a convergence rate of O(1/N ) in (4.3.3), it suffices to choose R, such that N R 2 2 = O(1/N ), N 1 + R 2 2 R 2 = O(1/N ), which is verified with if d > 1 with R = O(N ), = O( 1 N 2 ).
Then by Proposition 4.2.1, we can choose the previously GroupSort neural networks with grouping size κ = O(2

√ dN 2 ), depth + 1 = O(d 2 ) and width -1 i=0 m i = O((2 √ dN 2 ) d 2 -1 ) if d > 1. If d = 1, we can take κ = O(N 2 ), depth + 1 = 3 and width -1 i=0 m i = O(N 2 ).

Proof of Theorem 4.3.2

Let us introduce the explicit backward Euler scheme of the BSDE (4.2.3):

   V (2) i = E i V (2) i+1 -f t i , X i , V (2) i+1 , Z (2) 
i ∆t i Z(2) i = E i V (2) i+1 ∆W i ∆t i , i = 0, . . . , N -1, (4.4.24) starting from V (2) N = g(X N
), and which is also known to converge with the same time discretization error (4.4.2) than the implicit backward scheme.

We decompose the approximation error into three terms:

E Y t i -U (2) i (X i ) 2 ≤ 3 E Y t i - V (2) i 2 + E V (2) i -V (2) i 2 + E V (2) i -U (2) i (X i ) 2 .(4.4.25)
The first term is the classical time discretization error, and the rest of the proof is devoted to the analysis of the second and third terms.

Step 1. Fix i ∈ 0, N -1 . By definition of V

(2) i in (4.3.4) and the martingale representation theorem, there exists a square integrable process { Z

(2)

s , t i ≤ s ≤ t i+1 } such that U (2) i+1 (X i+1 ) -f t i , X i , E i U (2) i+1 (X i+1 ) , E i σ(t i , X i ) D x U (2) i+1 (X i+1 ) ∆t i = V i + t i+1 t i Z (2) s .dW s .
It follows that the quadratic loss function of the DS scheme in (4.2.7) is written as

J S i (U i ) := E U (2) i+1 (X i+1 ) -U i (X i ) -f t i , X i+1 , U (2) i+1 (X i+1 ), σ(t i , X i ) D x U (2) i+1 (X i+1 ) ∆t i 2 = JS i (U i ) + E t i+1 t i | Z (2) s | 2 2 ds , (4.4.26)
where

JS i (U i ) := E V (2) i -U i (X i ) + ∆f i ∆t i 2 with ∆f i := f t i , X i , E i [ U (2) i+1 (X i+1 )], E i [σ(t i , X i ) D x U (2) i+1 (X i+1 )] -f t i , X i+1 , U (2) i+1 (X i+1 ), σ(t i , X i ) D x U (2) i+1 (X i+1 ) .
A direct application of the Young inequality in the form (a + b) 2 ≥ 1 2 a 2 -b 2 leads to

JS i (U i ) + |∆t i | 2 E ∆f i 2 ≥ 1 2 E V (2) i -U i (X i ) 2 . (4.4.27)
On the other hand, by Lipschitz continuity of f , we have

JS i (U i ) + |∆t i | 2 E ∆f i 2 ≤ 2E V (2) i -U i (X i ) 2 + 3|∆t i | 2 E ∆f i 2 ≤ 2E V (2) i -U i (X i ) 2 + 9|∆t i | 2 [f ] 2 L E|X i+1 -X i | 2 2 + 9|∆t i | 2 [f ] 2 L E U (2) i+1 (X i+1 ) -E i [ U (2) i+1 (X i+1 )] 2 + 9|∆t i | 2 [f ] 2 L E σ(t i , X i ) D x U (2) i+1 (X i+1 ) -E i σ(t i , X i ) D x U (2) i+1 (X i+1 ) 2 2 ≤ 2 E V (2) i -U (2) i (X i ) 2 + 9|∆t i | 2 [f ] 2 L E|X i+1 -X i | 2 2 + 9|∆t i | 2 [f ] 2 L E U (2) i+1 (X i+1 ) -U (2) i+1 (X i ) 2 + 9|∆t i | 2 [f ] 2 L E |σ(t i , X i )| 2 2 E i D x U (2) i+1 (X i+1 ) -D x U (2) i+1 (X i ) 2 2 , (4.4.28)
where we use the definition of conditional expectation E i [.], and the tower property of conditional expectation in the last inequality. Recall that U i+1 ∈ N γ,η i is Lipschitz on R d . Actually, we have

U i+1 (x) -U i+1 (x ) ≤ γ i |x -x | 2 , ∀x, x ∈ R d .
By the Cauchy-Schwarz inequality, we then have

E U (2) i+1 (X i+1 ) -U (2) i+1 (X i ) 2 ≤ Cγ 2 i X i+1 -X i 2 4
≤ Cγ 2 i ∆t i for ∆t i small enough, R ≥ 1, and we used again the standard estimate:

X i 2p ≤ C(1 + X 0 2p ), X i+1 -X i 2p ≤ C(1+ X 0 2p )
√ ∆t i , for p ≥ 1. By using also the Lipschitz condition on D x U i+1 , and plugging into (4.4.28), we get

JS i (U i ) + |∆t i | 2 E ∆f i 2 ≤ 2E V (2) i -U i (X i ) 2 + C(d) max γ 2 i , η 2 i 1 + X 0 2 4 2 |∆t i | 3 . (4.4.29)
By applying inequality (4.4.27) to

U i = U (2)
i , which is a minimizer of J S i by (4.4.26), and combining with (4.4.29), this yields for all functions U i in N γ,η i :

E V (2) i -U (2) i (X i ) 2 ≤ C E V (2) i -U i (X i ) 2 + (1 + X 0 2 4 ) 2 |∆t i | 3 max γ 2 i , η 2 i ,
and thus by minimizing over U i in the right hand side

E V (2) i -U (2) i (X i ) 2 ≤ C ε γ,η i + (1 + X 0 2 4 ) 2 |∆t i | 3 max γ 2 i , η 2 i .
(4.4.30)

Step 2. From the expressions of V

(2) i , and

V (2)
i in (4.3.4) and (4.4.24), and by applying the Young, the Cauchy-Schwarz inequalities, we get with β ∈ (0, 1)

E V (2) i -V (2) i 2 ≤ (1 + β)E E i U (2) i+1 (X i+1 ) - V (2) i+1 2 + 1 + 1 β |∆t i | 2 E f t i , X i , V (2) i+1 , Z (2) 
i -f t i , X i , E i [ U (2) i+1 (X i+1 )], E i [σ(t i , X i ) D x U (2) i+1 (X i+1 )] 2 ≤ (1 + β)E E i U (2) i+1 (X i+1 ) - V (2) i+1 2 + 2[f ] 2 L 1 + 1 β |∆t i | 2 E U (2) i+1 (X i+1 ) - V (2) i+1 2 + E E i σ(t i , X i ) D x U (2) i+1 (X i+1 ) - Z(2) i 2 2 . (4.4.31)
Now, recalling the expression of Zi in (4.4.24), and by a standard integration by parts argument (see e.g. Lemma 2.1 in [FTW11]), we have

E i σ(t i , X i ) D x U (2) i+1 (X i+1 ) - Z(2) i = E i U (2) i+1 (X i+1 ) - V (2) i+1 ∆W i ∆t i = E i U (2) i+1 (X i+1 ) - V (2) i+1 -E i U (2) i+1 (X i+1 ) - V (2) i+1 ∆W i ∆t i .
By plugging into (4.4.31), we then obtain by the Cauchy-Schwarz inequality

E Vi (2) -V (2) i 2 ≤ (1 + β)E E i U (2) i+1 (X i+1 ) - V (2) i+1 2 + 2[f ] 2 L (1 + β) |∆t i | 2 β E U (2) i+1 (X i+1 ) - V (2) i+1 2 + d ∆t i E U (2) i+1 (X i+1 ) - V (2) i+1 2 -E E i U (2) i+1 (X i+1 ) - V (2) i+1 2 ≤ (1 + C∆t i )E U (2) i+1 (X i+1 ) - V (2) i+1 2 , (4.4.32)
by choosing explicitly β = 2d[f ] 2 L ∆t i for ∆t i small enough. By using again the Young inequality on the r.h.s. of (4.4.32), and since ∆t i = O(1/N ), we then get

E V (2) i -V (2) i 2 ≤ (1 + C∆t i )E V (2) i+1 -V (2) i+1 2 + CN E U (2) i+1 (X i+1 ) -V (2) i+1 2 .
By discrete Gronwall lemma, and recalling that

V (2) N = g(X N ), V (2) 
N = U N (X N ), we deduce with (4.4.30) that

sup i∈ 0,N E V (2) i -V (2) i 2 ≤ Cε γ,η N + CN N -1 i=1 ε γ,η i + (1 + X 0 2 4 ) 2 |∆t i | 3 max γ 2 i , η 2 i . (4.4.33)
The required bound (4.3.5) for the approximation error on Y follows by plugging (4.4.2), (4.4.30) and (4.4.33) into (4.4.25).

Proof of Proposition 4.3.2

For x ∈ R d , we define the processes X j,x j+1 , j = 0, . . . , N , X j,x j+1 := x + µ(t j , x)∆t j + σ(t j , x)∆W j , j = 0, . . . , N -1. 

Define also

   V x i,3 = E i U (3) i+1 (X i,x i+1 ) -f t i , x, V x i,3 , Z x i,3 ∆t i = v (3) i (x) Z x i,3 = E i U (3) i+1 (X i,x i+1 ) ∆W i ∆t i = z (3) i (x) with v (3) i , z (3) 
∆t i E Z x i,3 -Z x i,3 2 2 = 1 ∆t i E E i { U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) -E i U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) }∆W i 2 ≤ d E U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) 2 -E E i U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) 2 . (4.4.34)
We then apply the Young inequality to see that

E V x i,3 -V x i,3 2 ≤ (1 + γ∆t i )E E i U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) 2 + (1 + 1 γ∆t i )∆t 2 i E {f t i , x , V x i,3 , Z i 3,x -f t i , x, V x i,3 , Z x i,3 } 2 ≤ (1 + γ∆t i )E E i U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) 2 + 3[f ] 2 (1 + 1 γ∆t i )∆t 2 i E{|x -x | 2 2 + |V x i,3 -V x i,3 | 2 + | Z x i,3 -Z x i,3 | 2 2 }.
Hence for γ = 3[f ] 2 d and ∆t i small enough, using (4.4.34) we obtain

E V x i,3 -V x i,3 2 ≤ (1 + (γ + 3d)∆t i )E U (3) i+1 (X i,x i+1 ) -U (3) i+1 (X i,x i+1 ) 2 + (1 + (γ + 3d)∆t i )∆t i E|x -x | 2 2 .
for some constant C(d, X 0 ) independent of N, R, . Similarly repeating (4.4.35) and (4.4.36) by replacing respectively U

(3) i by Z

(3) i and v

(3) i by ẑ(3) i and recalling that

√ ∆t i z i (3) , √ ∆t i Z
(3) i are dK Lipschitz uniformly w.r.t. N , we obtain

∆t i ε 3,z i ≤ C R 2 2 + 1 + R 2 2 R 2 .
Then to obtain a convergence rate of O(1/N ) in (4.3.7), it suffices to choose R, ε such that 

N 2 R 2 2 = O(1/N ), N 2 1 + R 2 2 R 2 = O(1/N ), which is verified with R = O(N 3/2 ), = O( 1 N 3 ). Then
i=0 m i = O((2 √ dN 3 ) d 2 -1 ). If d = 1, we can take κ = O(N 3 ), depth + 1 = 3 and width -1 i=0 m i = O(N 3 ).

Numerical Tests

We test our different algorithms and the cited ones in this paper on some examples and by varying the state space dimension. In each example we use tanh as activation function, and an architecture composed of 2 hidden layers with d + 10 neurons. We apply Adam gradient descent [START_REF] Kingma | A Method for Stochastic Optimization[END_REF] with a decreasing learning rate, using the Tensorflow library. Each numerical experiment is conducted using a node composed of 2 Intel® Xeon® Gold 5122 Processors, 192 Gb of RAM, and 2 GPU nVidia® Tesla® V100 16Gb. We use a batch size of 1000. We do not implement the GroupSort network because even if it is useful for theoretical analysis, it would be costly to use in practice: on the one hand, it will induce a cost of order O(n ln n) where n is the batch size, compared to a linear cost O(n) for standard activation function; on the other hand, it requires to track the Lipschitz constant of the functions and adapt the networks architecture accordingly. Whereas theoretical results suggest to take deep neural networks with depth increasing with the dimension, we observe that two hidden layers are enough to obtain a good accuracy. According to our experience tanh activation function provides the best results. ReLU or Elu being not bounded, some explosion tends to appear when the learning rates are not small enough.

We consider examples from [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] to compare its DBDP scheme with the DS and MDBDP schemes.

The three first lines of the tables below are taken from [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. For each test, the two best results are highlighted in boldface. We use 5000 gradient descent iterations by time step except 20000 for the projection of the final condition. The execution of the multistep algorithm approximately takes between 8000 s. and 16000 s. (depending on the dimension) for a resolution with N = 120. More numerical examples and tests are presented in the extended version [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF] of this paper, and the codes at: https://github.com/MaxGermain/MultistepBSDE.

PDE with Bounded Solution and Simple Structure

We take the parameters:

µ = 0.2 d , σ = I d √ d , terminal condition g(x) = cos(x), with x = d i=1 x i , and generator f (x, y, z) = -cos(x) + 0.2 sin(x) e T -t 2 + 1 2 (sin(x) cos(x)e T -t ) 2 - 1 2d (y(1 d • z)) 2 .
so that the PDE solution is given by u(t, x) = cos (x) exp T -t 2 . We fix T = 1, and increase the dimension d. The results are reported in 

PDE with Unbounded Solution and more Complex Structure

We consider a toy example with solution given by

u(t, x) = T -t d d i=1 (sin(x i )1 x i <0 + x i 1 x i ≥0 ) + cos d i=1 ix i .
Therefore we take the parameters

µ = 0, σ = I d √ d , T = 1, f (t, x, y, z) = k(t, x) - y √ d (1 d • z) - y 2 2 (4.5.2) with k(t, x) = ∂ t u + 1 2d Tr(D 2 x u) + u √ d i D x i u + u 2 2 .
We start with tests in dimension d = 1. The results are reported in Table 4.4. We next increase the dimension to d = 8, and report the results in the following figure. The accuracy is not so good as in the previous section with simple structure of the solution, but we notice that the MDBDP scheme yields the best performance (above dimension d = 10, all the schemes do not give good approximation results).

Averaged value Standard deviation Relative error (%) [HPW20] (DBDP1)

1 The objective of this Chapter is to design a new deep learning scheme for solving fully nonlinear PDEs. The existing scheme in the literature is the Deep 2BSDE method of [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF], which is a modified version of the Deep BSDE scheme [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] able to treat full nonlinearity. Similarly, thanks to ideas from the Deep Splitting scheme [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] we provide an adaptation of the DBDP scheme of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] to the more challenging case of non-linearity in the second order derivative of the solution. Our study is only focused on numerical aspects and the theoretical study of the algorithm is left to future research.

CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

Abstract

We propose a numerical method for solving high dimensional fully nonlinear partial differential equations (PDEs). Our algorithm estimates simultaneously by backward time induction the solution and its gradient by multi-layer neural networks, while the Hessian is approximated by automatic differentiation of the gradient at previous optimization step.

This methodology extends to the fully nonlinear case the approach recently proposed in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] for semi-linear PDEs. Numerical tests illustrate the performance and accuracy of our method on several examples in high dimension with non-linearity on the Hessian term including a linear quadratic control problem with control on the diffusion coefficient, Monge-Ampère equation and Hamilton-Jacobi-Bellman equation in portfolio optimization.

Introduction

This paper is devoted to the resolution in high dimension of fully nonlinear parabolic partial differential equations (PDEs) of the form

∂ t u + f (., ., u, D x u, D 2 x u) = 0, on [0, T ) × R d , u(T, .) = g, on R d , (5.1.1)
with a non-linearity in the solution, its gradient D x u and its hessian D 2 x u via the function f (t, x, y, z, γ) defined on [0, T ]×R d × R × R d ×S d (where S d is the set of symmetric d×d matrices), and a terminal condition g.

The numerical resolution of this class of PDEs is far more difficult than the one of classical semi-linear PDEs where the nonlinear function f does not depend on γ. In fact, rather few methods are available to solve fully nonlinear equations even in moderate dimension.

• First based on the work of [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF], an effective scheme developed in [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic PDEs[END_REF] using some regression techniques has been shown to be convergent under some ellipticity conditions later removed by [START_REF] Tan | A splitting method for fully nonlinear degenerate parabolic PDEs[END_REF]. Due to the use of basis functions, this scheme does not permit to solve PDE in dimension greater than 5.

• A scheme based on nesting Monte Carlo has been recently proposed in [START_REF] Warin | Monte Carlo for high-dimensional degenerated Semi Linear and Full Non Linear PDEs[END_REF]. It seems to be effective in very high dimension for maturities T not too long and linearities not too important.

• A numerical algorithm to solve fully nonlinear equations has been proposed by [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF] based on the second order backward stochastic differential equations (2BSDE) representation of [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF] and global deep neural networks minimizing a terminal objective function, but no test on real fully nonlinear case is given. This extends the idea introduced in the pioneering papers [EHJ17; HJE18], which were the first serious works for using machine learning methods to solve high dimensional PDEs.

• The Deep Galerkin method proposed in [START_REF] Sirignano | DGM: A deep learning algorithm for solving partial differential equations[END_REF] based on some machine learning techniques and using some automatic differentiation of the solution seems to be effective on some cases. It has been tested in [START_REF] Al-Aradi | Solving Nonlinear and High-Dimensional Partial Differential Equations via Deep Learning[END_REF] for example on the Merton problem.

In this article, we introduce a numerical method based on machine learning techniques and backward in time iterations, which extends the proposed schemes in [START_REF] Vidales | Unbiased deep solvers for parametric PDEs[END_REF] for linear problems, and in the recent work [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] for semi-linear PDEs. The approach in these works consists in estimating simultaneously the solution and its gradient by multi-layer neural networks by minimizing a sequence of loss functions defined in backward induction. A basic idea to extend this method to the fully nonlinear case would rely on the representation proposed in [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF]: at each time step t n of an Euler scheme, the Hessian D 2

x u at t n is approximated by a neural network minimizing some local L 2 criterion associated to a BSDE involving D x u at date t n+1 and D 2 x u. Then, the pair (u, D x u) at date t n is approximated/learned with a second minimization similarly as in the method described by [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]. The first minimization can be implemented with different variations but numerical results show that the global scheme does not scale well with the dimension. Instability on the D 2

x u calculation rapidly propagates during the backward resolution. Besides, the methodology appears to be costly when using two optimizations at each time step. An alternative approach that we develop here, is to combine the ideas of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] and the splitting method in [START_REF] Beck | Deep splitting method for parabolic PDEs[END_REF] in order to derive a new deep learning scheme that requires only one local optimization during the backward resolution for learning the pair (u, D x u) and approximating D 2

x u by automatic differentiation of the gradient computed at the previous step. The outline of the paper is organized as follows. In Section 5.2, we briefly recall the mathematical description of the classical feedforward approximation, and then derive the proposed neural networks-based backward scheme. We test our method in Section 5.3 on various examples. First we illustrate our results with a PDE involving a non-linearity of type uD 2

x u. Then, we consider a stochastic linear quadratic problem with controlled volatility where an analytic solution is available, and we test the performance and accuracy of our algorithm up to dimension 20. Next, we apply our algorithm to a Monge-Ampère equation, and finally, we provide numerical tests for the solution to fully nonlinear Hamilton-Jacobi-Bellman equation, with non-linearities of the form |D x u| 2 /D 2 x u, arising in portfolio selection problem with stochastic volatilities.

The proposed deep backward scheme

Our aim is to numerically approximate the function u : [0, T ] × R d → R, assumed to be the unique smooth solution to the fully nonlinear PDE (5.1.1) under suitable conditions. This will be achieved by means of neural networks approximations for u and its gradient D x u, relying on a backward scheme and training simulated data of some forward diffusion process. Approximations of PDE in high dimension by neural networks have now become quite popular, and are supported theoretically by recent results in [START_REF] Hutzenthaler | Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations[END_REF] and [START_REF] Darbon | Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures[END_REF] showing their efficiency to overcome the curse of dimensionality.

Feedforward neural network to approximate functions

We denote by d 0 the dimension of the input variables, and d 1 the dimension of the output variable. A (deep) neural network is characterized by a number of layers L + 1 ∈ N \ {1, 2} with m , = 0, . . . , L, the number of neurons (units or nodes) on each layer: the first layer is the input layer with m 0 = d, the last layer is the output layer with m L = d 1 , and the L -1 layers between are called hidden layers, where we choose for simplicity the same dimension m = m, = 1, . . . , L -1.

A feedforward neural network is a function from R d 0 to R d 1 defined as the composition

x ∈ R d -→ A L • • A L-1 • . . . • • A 1 (x) ∈ R . ( 5 

.2.1)

Here A , = 1, . . . , L are affine transformations:

A 1 maps from R d 0 to R m , A 2 , . . . , A L-1 map from R m to R m , and A L maps from R m to R d 1 , represented by A (x) = W x + β ,
for a matrix W called weight, and a vector β called bias term, : R → R is a nonlinear function, called activation function, and applied component-wise on the outputs of A , i.e., (x 1 , . . . , x m ) = ( (x 1 ), . . . , (x m )). Standard examples of activation functions are the sigmoid, the ReLu, the Elu, tanh. All these matrices W and vectors β , = 1, . . . , L, are the parameters of the neural network, and can be identified with an element θ ∈ R Nm , where

N m = L-1 =0 m (1 + m +1 ) = d 0 (1 + m) + m(1 + m)(L -2) + m(1 + d 1 )
is the number of parameters. We denote by N d 0 ,d 1 ,L,m the set of all functions generated by (5.2.1) for θ ∈ R Nm .

Forward-backward representation

Let us introduce a forward diffusion process 

X t = X 0 + t 0 µ(s, X s )ds + t 0 σ(s, X s )dW s , 0 ≤ t ≤ T, ( 5 
Y t = u(t, X t ), Z t = D x u(t, X t ), Γ t = D 2
x u(t, X t ), 0 ≤ t ≤ T.

(5.2.3) By Itô's formula applied to u(t, X t ), and since u is solution to (5.1.1), we see that (Y, Z, Γ) satisfies the backward equation:

Y t = g(X T ) - T t µ(s, X s ).Z s + 1 2 tr(σσ (s, X s )Γ s ) -f (s, X s , Y s , Z s , Γ s ) ds - T t σ (s, X s )Z s .dW s , 0 ≤ t ≤ T.
(5.2.4)

Remark 1. This BSDE does not uniquely characterize a triple (Y, Z, Γ) contrarily to the semilinear case (without a non-linearity with respect to Γ) in which proper assumptions on the equation coefficients provide existence and uniqueness for a solution couple (Y, Z). In the present case at least two options can be used to estimate the Γ component:

• Rely on the 2BSDE representation from [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs[END_REF] which extends the probabilistic representation of [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] for semilinear equations to the fully nonlinear case. It is the approach used by [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF] with a global large minimization problem, as in [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF].

• Compute the second order derivative by automatic differentiation. This is the point of view we adopt in this paper together with a local approach solving several small optimization problems. In this way, we provide an extension of [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] to cover a broader range of nonlinear PDEs.

Algorithm

We now provide a numerical approximation of the forward backward system (5.2.2)-(5.2.4), and consequently of the solution u (as well as its gradient D x u) to the PDE (5.1.1). We start from a time grid π = {t i , i = 0, . . . , N } of [0, T ], with t 0 = 0 < t 1 < . . . < t N = T , and time steps ∆t i := t i+1 -t i , i = 0, . . . , N -1. The time discretization of the forward process X on π is then equal (typically when µ and σ are constants) or approximated by an Euler scheme:

X t i+1 = X t i + µ(t i , X t i )∆t i + σ(t i , X t i )∆W t i , i = 0, . . . , N -1,
where we set ∆W t i := W t i+1 -W t i (by misuse of notation, we keep the same notation X for the continuous time diffusion process and its Euler scheme). The backward SDE (5.2.4) is approximated by the time discretized scheme

Y t i Y t i+1 -µ(t i , X t i ).Z t i + 1 2 tr σσ (t i , X t i Γ t i -f (t i , X t i , Y t i , Z t i , Γ t i ) ∆t i -σ (t i , X t i )Z t i .∆W t i ,
that is written in forward form as

Y t i+1 F (t i , X t i , Y t i , Z t i , Γ t i , ∆t i , ∆W t i ), i = 0, . . . , N -1, (5.2.5)
with F (t, x, y, z, γ, h, ∆) := y -f (t, x, y, z, γ)h + z σ(t, x)∆, (5.2.6) f (t, x, y, z, γ) := f (t, x, y, z, γ) -µ(t, x).z -1 2 tr σσ (t, x)γ .

The idea of the proposed scheme is the following. Similarly as in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], we approximate at each time t i , u(t i , .) and its gradient D x u(t i , .), by neural networks x ∈ R d → (U i (x; θ), Z i (x; θ)) with parameter θ that are learned optimally by backward induction: suppose that Ûi+1 := U i+1 (.; θ * i+1 ), Ẑi+1 := Z i+1 (.; θ * i+1 ) is an approximation of u(t i+1 , .) and D x u(t i+1 , .) at time t i+1 , then θ * i is computed from the minimization of the quadratic loss function:

Li (θ) = E Ûi+1 -F (t i , X t i , U i (X t i ; θ), Z i (X t i ; θ), D Ẑi+1 (T (X t i+1 )), ∆t i , ∆W t i ) 2
where T is a truncation operator such that T (X) is bounded for example by a quantile of the diffusion process and D Ẑi+1 stands for the automatic differentiation of Ẑi+1 . The idea behind the truncation is the following. During one step resolution, the estimation of the gradient is less accurate at the edge of the explored domain where samples are rarely generated. Differentiating the gradient gives a very oscillating Hessian at the edge of the domain. At the following time step resolution, these oscillations propagate to the gradient and the solution even if the domain where the oscillations occur is rarely attained. In order to avoid these oscillations, a truncation is achieved, permits to avoid that the oscillations of the neural network fit in zone where the simulations propagate scarcely to areas of importance. This truncation may be necessary to get convergence on some rather difficult cases. Of course this truncation is only valid if the real Hessian does not varies too much. The intuition for the relevance of this scheme to the approximation of the PDE (5.1.1) is the following. From (5.2.3) and (5.2.5), the solution u to (5.1.1) should approximately satisfy

u(t i+1 , X t i+1 ) F (t i , X t i , u(t i , X t i ), D x u(t i , X t i ), D 2 x u(t i , X t i ), ∆t i , ∆W t i ).
Suppose that at time t i+1 , Ûi+1 is an estimation of u(t i+1 , .). Recalling the expression of F in (5.2.6), the quadratic loss function at time t i is then approximately equal to

Li (θ) E u(t i , X t i ) -U i (X t i ; θ) + D x u(t i , X t i ) -Z i (X t i ; θ) σ(t i , X t i )∆W t i -∆t i f (t i , X t i , u(t i , X t i ), D x u(t i , X t i ), D 2 x u(t i , X t i )) -f (t i , X t i , U i (X t i ; θ), Z i (X t i ; θ), D Ẑi+1 (T (X t i+1 )))
By assuming that f has small non-linearities in its arguments (y, z, γ), say Lipschitz, possibly with a suitable choice of µ, σ, the loss function is thus approximately equal to

Li (θ) (1 + O(∆t i ))E u(t i , X t i ) -U i (X t i ; θ) 2 + O(∆t i )E D x u(t i , X t i ) -Z i (X t i ; θ) 2 + O(|∆t i | 2 ).
Therefore, by minimizing over θ this quadratic loss function, via stochastic gradient descent (SGD) based on simulations of (X t i , X t i+1 , ∆W t i ) (called training data in the machine learning language), one expects the neural networks U i and Z i to learn/approximate better and better the functions u(t i , .) and D x u(t i , ) in view of the universal approximation theorem for neural networks. The rigorous convergence of this algorithm is postponed to a future work.

To sum up, the global algorithm is given in Algo 7 in the case where g is Lipschitz and the derivative can be analytically calculated almost everywhere. If the derivative of g is not available, it can be calculated by automatic differentiation of the neural network approximation of g. Algorithm 7: Second order DBDP (2DBDP) from [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] Use a single deep neural network (U N (.; θ), Z N (.; θ)) ∈ N d,1+d,L,m and minimize (by SGD)

     LN (θ) := E U N (X t N ; θ) -g(X t N ) 2 + ∆t N -1 d E Z N (X t N ; θ) -Dg(X t N ) 2 θ * N ∈ arg min θ∈R Nm LN (θ).
U N = U N (.; θ * N ), and set Z N = Z N (.; θ * N ) for i = N -1, . . . , 0 do Use a single deep neural network (U i (.; θ), Z i (.; θ)) ∈ N d,1+d,L,m for the approximation of (u(t i , .), D x u(t i , .)), and compute (by SGD) the minimizer of the expected quadratic loss function

           Li (θ) := E U i+1 (X t i+1 ) -F (t i , X t i , U i (X t i ; θ), Z i (X t i ; θ), D Ẑi+1 (T (X t i+1 )), ∆t i , ∆W t i ) 2 θ * i ∈ arg min θ∈R Nm Li (θ).
(5.2.7) Update: U i = U i (.; θ * i ), and set Z i = Z i (.; θ * i ). end Remark 2. Several alternatives can be implemented for the computation of the second order derivative. A natural candidate would consist in choosing to approximate the solution u at time t i by a neural network U i and estimate Γ i as the iterated automatic differentiation D 2

x U i . However, it is shown in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] that choosing only a single neural network for u and using its automatic derivative to estimate the Z component degrades the error in comparison to the choice of two neural networks U, Z. A similar behavior has been observed during our tests for this second order case and the most efficient choice was to compute the derivative of the Z network. This derivative can also be estimated at the current time step t i instead of t i+1 . However this method leads to an additional cost for the neural networks training by complicating the computation of the automatic gradients performed by Tensorflow during the backpropagation. It also leads numerically to worse results on the control estimation, as empirically observed in Table 5.5 and described in the related paragraph "Comparison with an implicit version of the scheme". For this reason, we decided to apply a splitting method and evaluate the Hessian at time t i+1 . For this reason, we decided to apply a splitting method and evaluate the Hessian at time t i+1 .

Remark 3. The diffusion process X is used for the training simulations in the stochastic gradient descent method for finding the minimizer of the quadratic loss function in (5.2.7), where the expectation is replaced by empirical average for numerical implementation. The choice of the drift and diffusion parameters are explained in Section 5.3.1.

Numerical results

We first construct an example with different non-linearities in the Hessian term and the solution. We graphically show that the solution is very well calculated in dimension d = 1 and then move to higher dimensions. We then use an example derived from a stochastic optimization problem with an analytic solution and show that we are able to accurately calculate the solution. Next, we consider the numerical resolution of the Monge-Ampère equation, and finally, give some tests for a fully nonlinear Hamilton-Jacobi-Bellman equation arising from portfolio optimization with stochastic volatilities.

Choice of the algorithm hyperparameters

We describe in this paragraph how we choose the various hyperparameters of the algorithm and explain the learning strategy.

• Parameters of the training simulations: the choice of the drift coefficient is typically related to the underlying probabilistic problem associated to the PDE (for example a stochastic control problem), and should drive the training process to regions of interest, e.g.., that are visited with large probability by the optimal state process in stochastic control. In practice, we can take a drift function µ(.) equal to the drift associated to some a priori control. This choice of control could be an optimal control for a related problem for which we know the solution, or could be the control obtained by the first iteration of the algorithm. The choice of the diffusion coefficient σ is also important: large σ induces a better exploration of the state space, but as we will see in most of examples below, it gives a scheme slowly converging to the solution with respect to the time discretization and it generates a higher variance on the results. Moreover, for the applications in stochastic control, we might explore some region that are visited with very small probabilities by the optimal state process, hence representing few interest. On the other hand, small σ means a weak exploration, and we might lack information and precision on some region of the state space: the solution calculated at each time step is far more sensitive to very local errors induced by the neural network approximation and tends to generate a bias. Therefore a trade off has to be found between rather high variance with slow convergence in time and fast convergence in time with a potential bias. We also refer to [START_REF] Nüsken | Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space[END_REF] for a discussion on the role of the diffusion coefficient.

In practice and for the numerical examples in the next section, we test the scheme for different σ and by varying the number of time steps, and if it converges to the same solution, one can consider that we have obtained the correct solution. We also show the impact of the choice of the diffusion coefficient σ.

• Parameters of truncation: Given the training simulations X, we choose a truncation operator T p indexed by a parameter p close to 1, so that T p (X t ) corresponds to a truncation of X t at a given quantile φ p . In the numerical tests, we shall vary p between 0.95 and 0.999.

• Parameters of the optimization algorithm over neural networks: In the whole numerical part, we use a classical Feedforward network using layers with m neurons each and a tanh activation function, the output layer uses an identity activation function. At each time step the resolution of equation (5.2.7) is achieved using a mini-batch with 1000 training trajectories. The training and learning rate adaptation procedure is the following:

• Every 40 inner gradient descent iterations, the loss is checked on 10000 validation trajectories.

• This optimization sequence is repeated with 200 outer iterations for the first optimization step at date t N = T and only 100 outer iterations at the dates t i with i < N .

• An average of the loss calculated on 10 successive outer iterations is performed. If the decrease of the average loss every 10 outer iterations is less than 5% then the learning rate is divided by 2.

The optimization is performed using the Adam gradient descent algorithm, see [START_REF] Kingma | A Method for Stochastic Optimization[END_REF]. Notice that the adaptation of the learning rate is not common with the Adam method but in our case it appears to be crucial to have a steady diminution of the loss of the objective function. The procedure is also described in [START_REF] Chan-Wai-Nam | Machine Learning for Semi Linear PDEs[END_REF] and the chosen parameters are similar to this article. At the initial optimization step at time t N = T , the learning rate is taken equal to 1E -2 and at the following optimization steps, we start with a learning rate equal to 1E -3.

During time resolution, it is far more effective to initialize the solution of equations (5.2.7) with the solution (U, Z) at the next time step. Indeed the previously computed values at time step t i+1 are good approximations of the processes at time step t i if the PDE solution and its gradient are continuous.

All experiments are achieved using Tensorflow [START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF]. In the sequel, the PDE solutions on curves are calculated as the average of 10 runs. We provide the standard deviation associated to these results. We also show the influence of the number of neurons on the accuracy of the results.

A non-linearity in uD 2

x u

We consider a generator in the form

f (t, x, y, z, γ) = ytr(γ) + y 2 + 2y 2 -2y 4 e -(T -t) ,
and g(x) = tanh

d i=1 x i √ d
, so that an analytical solution is available:

u(t, x) = tanh d i=1 x i √ d e -T -t 2 .
We fix the horizon T = 1, and choose to evaluate the solution at t = 0 and x = 0.5 1 I d √ d (here 1I d denotes the vector in R d with all components equal to 1), for which u(t, x) = 0.761902 while its derivative is equal to 1.2966.

This initial value x is chosen such that independently of the dimension the solution is varying around this point and not in a region where the tanh function is close to -1 or 1.

The coefficients of the forward process used to solve the equation are (here

I d is the identity d × d-matrix) σ = σ √ d I d , µ = 0,
and here the truncation operator is chosen equal to

T p (X 0,x t ) = min max[x -σ √ tφ p , X 0,x t ], x + σ √ tφ p ,
where φ p = N -1 (p), with N is the CDF of a unit centered Gaussian random variable.

In the numerical results, we take p = 0.999 and m = 20 neurons. We first begin in dimension d = 1, and show in Figure 5.1 how u, D x u and D 2

x u are well approximated by the resolution method.

On Figure 5.2, we check the convergence, for different values of σ of both the solution u and its derivative at point x and date 0. Standard deviation of the function value is very low and the standard deviation of the derivative still being low.

As the dimension increases, we have to increase the value of σ of the forward process. In dimension 3, the value σ = 0.5 gives high standard deviation in the result obtained as shown on Figure 5.3, while in dimension 10, see Figure 5.4, we see that the value σ = 1 is too low to give good results. We also clearly notice that in 10D, a smaller time step should be used but in our test cases we decided to consider a maximum number of time steps equal to 160.

On this simple test case, the dimension is not a problem and very good results are obtained in dimension 20 or above with only 20 neurons and 2 layers.

Y at date t = 0.5.

Z at date t = 0.5 Γ at date t = 0.5

Y at date t = 0.006125. Z at date t = 0.006125 Γ at date t = 0.006125 

A linear quadratic stochastic test case.

In this example, we consider a controlled process X = X α with dynamics in R d according to

dX t = (AX t + Bα t )dt + Dα t dW t , 0 ≤ t ≤ T, X 0 = x,
where W is a real Brownian motion, the control process α is valued in R, and the constant coefficients

A ∈ M d , B ∈ R d , D ∈ R d .
The quadratic cost functional to be minimized is

J(α) =E T 0 X t QX t + α 2 t N dt + X T P X T ,
where P , Q are non negative d × d symmetric matrices and N ∈ R is strictly positive. The Bellman equation associated to this stochastic control problem is:

∂u ∂t + inf a∈R (Ax + Ba).D x u + a 2 2 tr(DD D 2 x u) + x Qx + N a 2 = 0, (t, x) ∈ [0, T ) × R d , u(T, x) = x P x, x ∈ R d ,
which can be rewritten as a fully nonlinear equation in the form (5.1.1) with

f (t, x, y, z, γ) = x Qx + Ax.z - 1 2 |B z| 2 tr(DD γ) + 2N
.

An explicit solution to this PDE is given by

u(t, x) = x K(t)x,
where K(t) is non negative d × d symmetric matrix function solution to the Riccati equation:

K + A K + KA + Q - KBB K N + D KD = 0, K(T ) = P.
We take T = 1. The coefficients of the forward process used to solve the equation are

σ = σ √ d I d , µ(t, x) = Ax.
In our numerical example we take the following parameters for the optimization problem:

A = I d , B = D = 1I d , Q = P = 1 d I d , N = d
and we want to estimate the solution at x = 1I d .

In this example, the truncation operator (indexed by p between 0 and 1 and close to 1) is as follows:

T p (X x t ) = min max xe Ât -σ e 2 Ât - 1 2 Â φ p , X x t , xe Ât + σ e 2 Ât - 1 2 Â φ p ,
where φ p = N -1 (p), Â is a vector so that Âi = A ii , i = 1, ..., d, 1 is a unit vector, and the square root is taken componentwise. On Figure 5.5 we give the solution of the PDE with d = 1 using σ = 1.5 obtained for two dates: at t = 0.5 and at t close to zero. We observe that we have a very good estimation of the function value and a correct one of the Γ value at date t = 0.5. The precision remains good for Γ close to t = 0 and very good for u and D x u.

On Figure 5.6, we give the results obtained in dimension d = 1 by varying σ. For a value of σ = 2, the standard deviation of the result becomes far higher than with σ = 0.5 or 1.

Y at date t = 0.5.

Z at date t = 0.5 Γ at date t = 0.5

Y at date t = 0.006125. Z at date t = 0.006125 Γ at date t = 0.006125 Average and standard deviation observed over 10 independent runs are reported.

Monge-Ampère equation

Let us consider the parabolic Monge-Ampère equation

∂ t u + det(D 2 x u) = h(x), (t, x) ∈ [0, T ] × R d , u(T, x) = g(x), (5.3.1)
where det(D 2 x u) is the determinant of the Hessian matrix D 2 x u. It is in the form (5.1.1) with

f (t, x, γ) = det(γ) -h(x).
We test our algorithm by choosing a C 2 function g, then compute G = det(D 2 x g), and set h := G -1. Then, by construction, the function

u(t, x) = g(x) + T -t,
is solution to the Monge-Ampère equation (5.3.1). We choose g(x) = cos( d i=1 x i / √ d), and we shall train with the forward process X = x 0 + W , where W is a d-dimensional Brownian motion. On this example, we use neural networks with 3 hidden layers, d + 10 neurons per layer, and we do not need to apply any truncation to the forward process X. Actually, we observe that adding a truncation worsens the results. For choosing the truncation level, we first test the method with no truncation before decreasing the quantile parameter p. In the Monge-Ampère case the best results are obtained without any truncation. It may be caused by the oscillation of the Hessian.

The following table gives the results in dimension d = 5, 15, and for T = 1.

Portfolio selection

We consider a portfolio selection problem formulated as follows. There are n risky assets of uncorrelated price process P = (P 1 , . . . , P n ) with dynamics

dP i t = P i t σ(V i t ) λ i (V i t )dt + dW i t , i = 1, . . . , n, where W = (W 1 , . . . , W n ) is a n-dimensional Brownian motion, b = (b 1 , . . . , b n
) is the rate of return of the assets, λ = (λ 1 , . . . , λ n ) is the risk premium of the assets, σ is a positive function (e.g. σ(v) = e v corresponding to the Scott model), and V = (V 1 , . . . , V n ) is the volatility factor modeled by an Ornstein-Uhlenbeck (O.U.) process

dV i t = κ i [θ i -V i t ]dt + ν i dB i t , i = 1, . . . , n, (5.3.2) with κ i , θ i , ν i > 0, and B = (B 1 , . . . , B n ) a n-dimensional Brownian motion, s.t. d < W i , B j > = δ ij ρ ij dt, with ρ i := ρ ii ∈ (-1, 1
). An agent can invest at any time an amount α t = (α 1 t , . . . , α n t ) in the stocks, which generates a wealth process X = X α governed by

dX t = n i=1 α i t σ(V i t ) λ i (V i t )dt + dW i t .
The objective of the agent is to maximize her expected utility from terminal wealth:

E U (X α T )] ← maximize over α
It is well-known that the solution to this problem can be characterized by the dynamic programming method (see e.g. [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF]), which leads to the Hamilton-Jacobi-Bellman for the value function on

[0, T ) × R × R n :      ∂ t u + n i=1 κ i (θ i -v i )∂ v i u + 1 2 ν 2 i ∂ 2 v i u = 1 2 R(v) (∂ x u) 2 ∂ 2 xx u + n i=1 ρ i λ i (v i )ν i ∂ x u∂ 2 xv i u ∂ 2 xx u + 1 2 ρ 2 i ν 2 i (∂ 2 xv i u) 2 ∂ 2 xx u u(T, x, v) = U (x), x ∈ R, v ∈ R n , with a Sharpe ratio R(v) := |λ(v)| 2 , for v = (v 1 , . . . , v n ) ∈ (0, ∞) n .
The optimal portfolio strategy is then given in feedback form by α * t = â(t, X * t , V t ), where â = (â 1 , . . . , ân ) is given by

âi (t, x, v) = - 1 σ(v i ) λ i (v i ) ∂ x u ∂ 2 xx u + ρ i ν i ∂ 2 xv i u ∂ 2 xx u , (t, x, v = (v 1 , . . . , v n )) ∈ [0, T ) × R × R n ,
for i = 1, . . . , n. This Bellman equation is in the form (5.1.1) with

f (t, x, y, z, γ) = n i=1 κ i (θ i -v i )z i + 1 2 ν 2 i γ ii - 1 2 R(v) z 2 0 γ 00 - n i=1 ρ i λ i (v i )ν i z 0 γ 0i γ 00 + 1 2 ρ 2 i ν 2 i (γ 0i ) 2 γ 00 , for x = (x, v) ∈ R n+1 , z = (z 0 , . . . , z n ) ∈ R n+1 , γ = (γ ij ) 0≤i,j≤n ∈ S n+1
, and displays a high non-linearity in the Hessian argument γ.

The truncation operator indexed by a parameter p is chosen equal to

T p (X 0,x t ) = min max[x + µt -σ √ tφ p , X 0,x t ], x + µt + σ √ tφ p ,
where φ p = N -1 (p), N is the CDF of a unit centered Gaussian random variable. We use neural networks with 2 hidden layers and d + 10 neurons per layer. We shall test this example when the utility function U is of exponential form: U (x) = -exp(-ηx), with η > 0, and under different cases for which closed-form solutions are available:

(1) Merton problem. This corresponds to a degenerate case where the factor V , hence the volatility σ and the risk premium λ are constant, so that the generator of Bellman equation reduces to

f (t, x, y, z, γ) = - 1 2 |λ| 2 z 2 γ , (t, x, y, z) ∈ [0, T ] × R × R × R, (5.3.3)
with explicit solution given by:

u(t, x) = e -(T -t) |λ| 2 2 U (x), âi = λ i ησ .
We train with the forward process

X k+1 = X k + λ∆t k + ∆W k , k = 0, . . . , N, X 0 = x 0 .
(2) One risky asset: n = 1. A quasi-explicit solution is provided in [START_REF] Zariphopoulou | A solution approach to valuation with unhedgeable risks[END_REF]:

u(t, x, v) = U (x)w(t, v), with w(t, v) = exp - 1 2 T t R( V t,v s )ds L 1-ρ 2
where V t,v s is the solution to the modified O.U. model

d Vs = κ(θ -Vs ) -ρνλ( Vs ) ds + νdB s , s ≥ t, Vt = v.
We test our algorithm with λ(v) = λv, λ > 0, for which we have an explicit solution:

w(t, v) = exp -φ(t) v 2 2 -ψ(t)v -χ(t) , (t, v) ∈ [0, T ] × R,
where (φ, ψ, χ) are solutions of the Riccati system of ODEs:

φ -2κφ -ν 2 (1 -ρ 2 )φ 2 + λ 2 = 0, φ(T ) = 0, ψ -(κ + ν 2 (1 -ρ 2 )φ)ψ + κθφ = 0, ψ(T ) = 0, χ + κθψ - ν 2 2 (-φ + (1 -ρ 2 )ψ 2 ) = 0, χ(T ) = 0,
with κ = κ + ρνλ, and explicitly given by (see e.g. Appendix in [START_REF] Schöbel | Stochastic volatility with an Ornstein-Uhlenbeck process and extension[END_REF])

φ(t) = λ 2 sinh(κ(T -t)) κ cosh(κ(T -t)) + κ sinh(κ(T -t)) ψ(t) = λ 2 κθ κ cosh(κ(T -t)) -1 κ cosh(κ(T -t)) + κ sinh(κ(T -t)) χ(t) = 1 2(1 -ρ 2 ) ln cosh(κ(T -t)) + κ κ sinh(κ(T -t)) - 1 2(1 -ρ 2 ) κ(T -t) -λ 2 (κθ) 2 κ2 sinh(κ(T -t)) κ cosh(κ(T -t)) + κ sinh(κ(T -t)) -(T -t) -λ 2 (κθ) 2 κ κ3 cosh(κ(T -t)) -1 κ cosh(κ(T -t)) + κ sinh(κ(T -t))
,

with κ = κ 2 + 2ρνλκ + γ 2 λ 2 .
We train with the forward process

X k+1 = X k + λθ∆t k + ∆W k , k = 0, . . . , N -1, X 0 = x 0 , V k+1 = V k + ν∆B k , k = 0, . . . , N -1, V 0 = θ.
(3) No leverage effect, i.e., ρ i = 0, i = 1, . . . , n. In this case, there is a quasi-explicit solution given by

u(t, x, v) = U (x)w(t, v), with w(t, v) = E exp - 1 2 T t R(V t,v s )ds , (t, v) ∈ [0, T ] × R n , (5.3.4)
where V t,v is the solution to (5.3.2), starting from v at time t. We test our algorithm with

λ i (v) = λ i v i , λ i > 0, i = 1, . . . , n, v = (v 1 , . . . , v n ),
for which we have an explicit solution given by

w(t, v) = exp - n i=1 φ i (t) v 2 i 2 + ψ i (t)v i + χ i (t) , (t, v) ∈ [0, T ] × R n , φ i (t) = λ 2 i sinh(κ i (T -t)) κ i sinh(κ i (T -t)) + κi cosh(κ i (T -t)) ψ i (t) = λ 2 i κ i θ i κi cosh(κ i (T -t)) -1 κ i sinh(κ i (T -t)) + κi cosh(κ i (T -t)) χ i (t) = 1 2 ln cosh(κ i (T -t)) + κ i κi sinh(κ i (T -t)) - 1 2 κ i (T -t) -λ 2 i (κ i θ i ) 2 κ2 i sinh(κ i (T -t)) κi cosh(κ i (T -t)) + κ i sinh(κ i (T -t)) -(T -t) -λ 2 (κ i θ i ) 2 κ i κ3 i cosh(κ i (T -t)) -1 κi cosh(κ i (T -t)) + κ i sinh(κ i (T -t)) ,
Averaged value Standard deviation Theoretical value Relative error (%) u(0, x 0 = 1) -0.50561 0.00029 -0.50662 0.20 D x u(0, x 0 = 1) 0.25081 0.00088 0.25331 0.99 α(0, x 0 = 1) 0.83552 0.02371 0.80438 3.87 Table 5.2: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton problem (5.3.3). Average and standard deviation observed over 10 independent runs are reported.

Y at date t = 0.5042. Z at date t = 0.5042 Γ at date t = 0.5042 Y at date t = 0.0084. Z at date t = 0.0084 Γ at date t = 0.0084 with κi = κ 2 i + ν 2 i λ 2 i . We train with the forward process

X k+1 = X k + ∆W k , k = 0, . . . , N -1, X 0 = x 0 , V i k+1 = V i k + ν i ∆B i k , k = 0, . . . , N -1, V i 0 = θ i , with < W, B i > t = 0.
Merton Problem. We take η = 0.5, λ = 0.6, T = 1, N = 120, and σ(v) = e v . We plot the neural networks approximation of u, D x u, D 2

x u, α (in blue) together with their analytic values (in orange). For comparison with Figures 5.6 and 5.7, we report the error on the gradient and the initial control. In practice, after empirical tests, we choose p = 0.98 for the truncation.

One asset (n = 1) in Scott volatility model. We take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.4, κ = 1, ρ = -0.7. For all tests we choose T = 1, N = 120, and σ(v) = e v . In practice, after empirical tests, we choose p = 0.98 for the truncation.

No Leverage in Scott model. In the case with one asset (n = 1), we take η = 0.5, λ = 1.5, θ = 0.4, ν = 0.2, κ = 1. For all tests we choose T = 1, N = 120, and σ(v) = e v . In practice, after empirical tests, we choose p = 0.95 for the truncation.

In the case with four assets (n = 4, d = 5), we take η = 0.5, λ = 1.5 1.1 2. 0.8 , θ = 0.1 0.2 0.3 0.4 , ν = 0.2 0.15 0.25 0.31 , κ = 1. 0.8 1.1 1.3 . α at date t = 0.5042.

α at date t = 0.0084. u(0, x 0 = 1) -0.50572 0.00034 -0.50662 0.18 D x u(0, x 0 = 1) 0.25091 0.00067 0.25331 0.95 α(0, x 0 = 1) 0.85254 0.01956 0.80438 5.99 Table 5.5: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton problem (5.3.3) with implicit estimation of the Hessian. Average and standard deviation (Std) observed over 10 independent runs are reported

In the case with seven assets (n = 7, d = 8) we take η = 0.5, λ = 1.5 1.1 2. 0.8 0.5 1.7 0.9 , θ = 0.1 0.2 0.3 0.4 0.25 0.15 0.18 , ν = 0.2 0.15 0.25 0.31 0.4 0.35 0.22 , κ = 1. 0.8 1.1 1.3 0.95 0.99 1.02 .

In the case with nine assets (n = 9, d = 10), we take η = 0.5, λ = 1.5 1.1 2. 0.8 0.5 1.7 0.9 1. 0.9 , θ = 0.1 0.2 0.3 0.4 0.25 0.15 0.18 0.08 0.91 , ν = 0.2 0.15 0.25 0.31 0.4 0.35 0.22 0.4 0.1 κ = 1. 0.8 1.1 1.3 0.95 0.99 1.02 1.06 1.6 .

Hamilton-Jacobi-Bellman equation from portfolio optimization is a typical example of fullnonlinearity in the second order derivative, and the above results show that our algorithm performs quite well up to dimension d = 8, but gives a high variance in dimension d = 10.

Comparison with an implicit version of the scheme.

As explained in Remark 2, an alternative option for the estimation of the Hessian is to approximate it by the automatic differentiation of the current neural network for the Z component. It corresponds to the replacement of D Ẑi+1 (T (X t i+1 )) by DZ i (T (X t i )); θ) in (5.2.7). An additional change has to be made to the method for it to work. At the last optimization step (for time step t 0 = 0), we notice empirically that the variable Γ 0 is not able to properly learn the initial Hessian value at all. Therefore for this last step we use variables Y 0 , Z 0 and an explicit estimation of the second order derivative given by D Ẑ1 (T (X t 1 )). We see in Table 5.5 that the results for the Merton problem are very similar to the ones from Table 5.2 for the splitting scheme but with a worse estimation of the Hessian and optimal control (the error is multiplied by around 1.5). When we tested this implicit scheme on the Monge Ampere problem we also faced computational problems during the optimization step of Tensorflow. The numerical computation of the gradient of the objective function for the backpropagation step, more precisely for the determinant part, often gives rise to matrix invertibility errors which stops the algorithm execution. For these two reasons, we focused our study on the explicit scheme.

Comparison with the 2BSDE scheme of [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF]. We conclude this paper with a comparison of our algorithm with the global scheme of [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF], called Deep 2BDSE. The tests below concern the Merton problem (5.3.3) but similar behavior happens on the other examples with stochastic volatilities. This scheme was implemented in the original paper only for small number of time steps (e.g. N = 30). Thus we tested this algorithm on two discretizations, respectively with N = 20 and N = 120 time steps, as shown in Figure 5.15, for T = 1 where we plotted the learning curve of the Deep BSDE method. These curves correspond to the values taken by the loss function during the gradient descent iterations. For this algorithm the loss function to minimize in the training of neural networks is defined as the mean L 2 error between the generated Y N value and the true terminal condition g(X N ). We observe that for this choice of maturity T = 1 the loss function oscillates during the training process and does not vanish. As a consequence the Deep 2BSDE does not converge in this case. Even when decreasing the learning rate, we noticed that we cannot obtain the convergence of the scheme. However, the Deep 2BSDE method does converge for small maturities T , as illustrated in Table 5.6 with T = 0.1 and different values for the number of time steps N . Nevertheless, even if the value function is well approximated, the estimation of the gradient and control did not converge (the corresponding variance is very large), in comparison with our scheme whereas the gradient is very well approximated and the control is quite precise. We also have a much smaller variance in the results. Table 5.7 shows the results obtained by our method with T = 0.1 in order to compare it with the performance of [START_REF] Beck | Machine Learning Approximation Algorithms for High-Dimensional Fully Nonlinear Partial Differential Equations and Secondorder Backward Stochastic Differential Equations[END_REF]. It illustrates the limitations of the global approach and justifies our introduction of a local method.

N Averaged value Standard deviation Theoretical value Relative error (%) u(0, x 0 = 1) In this part of the thesis we move to the problem of mean-field control. In this generalization of stochastic control, the law of the state appears in the dynamics but also in the cost to minimize. As a consequence, it complicates the resolution and we need to design new numerical methods. In this Chapter we study the discretization in space of the semilinear PDEs on the Wasserstein space, like the Master Bellman equation characterizing the value function of mean-field control. We show the convergence speed of an approximating PDE in finite dimension by probabilistic arguments. Our work complements [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] which studies a very similar problem but obtain a convergence without rate. Nevertheless, our proofs require existence and uniqueness of smooth classical solutions for the limit PDE, which is quite restrictive. [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] works instead with the weaker notion of viscosity solutions and hence require less regularity.

Introduction

Let us consider the second-order parabolic partial differential equation (PDE) on the Wasserstein space P 2 (R d ) of square-integrable probability measures on R d , in the form:

∂ t v + H(t, µ, v, ∂ µ v, ∂ x ∂ µ v, ∂ 2 µ v) = 0, (t, µ) ∈ [0, T ) × P 2 (R d ), v(T, µ) = G(µ), µ ∈ P 2 (R d ). (6.1.1) Here, ∂ µ v(t, µ) is the L-derivative on P 2 (R d ) (see [CD18a]) of µ → v(t, µ), and it is a function from R d into R d , ∂ x ∂ µ v(t, µ) is the usual derivative on R d of x ∈ R d → ∂ µ v(t, µ)(x) ∈ R d , hence
valued in R d×d the set of d × d-matrices with real coefficients, and 

∂ 2 µ v(t, µ) is the L-derivative of µ → ∂ µ v(t, µ)(.), hence a function from R d × R d into R d×d .
H(t, µ, y, z(.), γ(.), γ 0 (., .)) = R d H(t, x, µ, y, z(x)) + 1 2 tr (σσ + σ 0 σ 0 )(t, x, µ)γ(x) µ(dx) (6.1.2) + 1 2 R d × R d tr σ 0 (t, x, µ)σ 0 (t, x , µ)γ 0 (x, x ) µ(dx)µ(dx ),
for some real-valued measurable function Here tr(M ) denotes the trace of a square matrix M , while M is its transpose, and . is the scalar product.

H defined on [0, T ] × R d ×P 2 (R d ) × R × R d ,
PDEs in Wasserstein space have been largely studied in the literature over the last years, notably with the emergence of the mean-field game theory, and we mention among others the papers [START_REF] Bensoussan | The Master equation in mean-field theory[END_REF], [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean-field games[END_REF], [START_REF] Pham | Bellman equation and viscosity solutions for mean-field stochastic control problem[END_REF], [START_REF] Cardaliaguet | The Master equation and the convergence problem in meanfield games[END_REF], [START_REF] Saporito | Stochastic Control with Delayed Information and Related Nonlinear Master Equation[END_REF], [START_REF] Burzoni | Viscosity solutions for controlled McKean-Vlasov jump-diffusions[END_REF], and other references in the twovolume monographs [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF]- [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF].

An important application concerns mean-field type control problems with common noise. The controlled stochastic McKean-Vlasov dynamics is given by

dX α s = β(s, X α s , P 0 X α s , α s )ds + σ(s, X α s , P 0 X α s
)dW s (6.1.3)

+ σ 0 (s, X α s , P 0 X α s )dW 0 s , t ≤ s ≤ T, X α t = ξ,
where W is a n-dimensional Brownian motion, independent of a m-dimensional Brownian motion W 0 (representing the common noise) on a filtered probability space (Ω, F, F = (F t ) 0≤t≤T , P), the control process α is F-adapted valued in some Polish space A, and here P 0 denotes the conditional law given W 0 . The value function defined on

[0, T ] × P 2 (R d ) by v(t, µ) = inf α E t,µ T t e -r(s-t) f (X α s , P 0 X α s , α s )ds + e -r(T -t) g(X α T , P 0 X α T ) ,
(here E t,µ [•] is the conditional expectation given that the law at time t of X solution to (6.1.3) is equal to µ) is shown to satisfy the Bellman equation (6.1.1)-(6.1.2) (see [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF], [START_REF] Cosso | Zero-sum stochastic differential games of generalized McKean-Vlasov type[END_REF], [START_REF] Djete | McKean-Vlasov optimal control: the dynamic programming principle[END_REF]) with G(µ) = g(x, µ)µ(dx), σ, σ 0 as in (6.1.3) and H(t, x, µ, y, z) = -ry + inf a∈A β(t, x, µ, a).z + f (x, µ, a) . (6.1.4)

We now consider a finite-dimensional approximation of the PDE (6.1.1)-(6.1.2) in the Wasserstein space. This can be derived formally by looking at the PDE for µ to averages of Dirac masses, and it turns out that the corresponding PDE takes the form

     ∂ t v N + 1 N N i=1 H t, x i , μ(x), v N , N D x i v N ) + 1 2 tr(Σ N (t, x)D 2 x v N ) = 0, on [0, T ) × (R d ) N v N (T, x) = G μ(x) , x = (x i ) i∈ 1,N ∈ (R d ) N , ( 6 
.1.5) where μ(.) is the empirical measure function defined by μ(x) = 1 N N i=1 δ x i , for any x = (x 1 , . . . , x N ), N ∈ N * , and

Σ N = (Σ ij N ) i,j∈ 1,N is the R N d×N d -valued function with block ma- trices Σ ij N (t, x) = σ(t, x i , μ(x))σ (t, x j , μ(x))δ ij + σ 0 (t, x i , μ(x))σ 0 (t, x j , μ(x)) ∈ R d×d .
In the special case where H has the form (6.1.4), we notice that (6.1.5) is the Bellman equation for the N -cooperative problem, whose convergence to the mean-field control problem has been studied in [START_REF] Lacker | Limit Theory for Controlled McKean-Vlasov Dynamics[END_REF], [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF], [LT19; LT20], when σ 0 ≡ 0 (no common noise), and recently by [START_REF] Djete | Extended mean-field control problem: a propagation of chaos result[END_REF] in the common noise case. We point out that these works do not consider the same master equation. In particular their master equation is stated on [0, T ] × R d ×P 2 (R d ) and is linear in ∂ µ u whereas we allow a non-linear dependence in this derivative. Moreover our master equation is in expectation form. In [START_REF] Laurière | Convergence of large population games to mean field games with interaction through the controls[END_REF] the master equation is approached by a system of N coupled PDEs on [0, T ] × (R d ) N whereas we consider a single approximating PDE on [0, T ] × (R d ) N . For more general Hamiltonian functions H, it has been recently proved in [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] that the sequence of viscosity solutions (v N ) N to (6.1.5) converge locally uniformly to the viscosity solution v to (6.1.1) when σ = 0 and σ 0 does not depend on space and measure arguments. For a detailed comparison between this work and ours, we refer to Remark 6.2.4.

In this paper, we adopt a probabilistic approach by considering a backward stochastic differential equation (BSDE) representation for the finite-dimensional PDE (6.1.5) according to the classical work [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]. The solution (Y N , Z N = (Z i,N ) 1≤i≤N ) to this BSDE is written with an underlying forward particle system X N = (X i,N ) 1≤i≤N of a McKean-Vlasov SDE, and connected to the PDE (6.1.5) via the Feynman-Kac formula:

Y N t = v N (t, X N t ), Z i,N t = D x i v N (t, X i,N t
), 0 ≤ t ≤ T . By using BSDE techniques, our main contribution is to show a rate of convergence of order 1/N of |Y N t -v(t, μ(X N t ))|, and also of

|N Z i,N t -∂ µ v(t, μ(X N t ))(X i,N t )| 2 , i = 1, .
. . , N , for suitable norms, and under some regularity conditions on v (see Theorem 6.2.1 and Theorem 6.2.2). This rate of convergence on the particles approximation of v and its L-derivative is new to the best of our knowledge. We point out that classical BSDE arguments for proving the rate of convergence do not apply directly due to the presence of the factor N in front of D x i v N in the generator H, and we rather use linearization arguments and change of probability measures to overcome these issues. Another issue is due to the fact that the BSDE dimension d × N is exploding with the number of particles therefore we have to track down the influence of the dimension in the estimations, whereas classical BSDE works usually consider a fixed dimension d which is incorporated into constants.

The outline of the paper is organized as follows. In Section 6.2, we formulate the particle approximation of the PDE and its BSDE representation, and state the rate of convergence for v and its L-derivative. Section 6.3 is devoted to the proof of these results.

Particles approximation of Wasserstein PDEs

The formal derivation of the finite-dimensional approximation PDE is obtained as follows. We look at the PDE (6.1.1)-(6.1.2) for µ N . By setting ṽN (t, x) = v(t, μ(x)), and assuming that v is smooth, we have for all (i, j) ∈ 1, N (see Proposition 5.35 and Proposition 5.91 in [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF]):

= μ(x) = 1 N N i=1 δ x i ∈ P 2 (R d ), when x = (x i ) i∈ 1,N runs over (R d )
D x i ṽN (t, x) = 1 N ∂ µ v(t, μ(x))(x i ), D 2 x i x j ṽN (t, x) = 1 N ∂ x ∂ µ v(t, μ(x))(x i )δ ij + 1 N 2 ∂ 2 µ v(t, μ(x))(x i , x j ).
(6.2.1)

By substituting into the PDE (6.1.1)-(6.1.2) for µ = μ(x), and using (6.2.1), we then see that ṽN satisfies the relation:

∂ t ṽN + 1 N N i=1 H t, x i , μ(x), ṽN , N D x i ṽN ) (6.2.2) + 1 2 N i=1 tr σσ + σ 0 σ 0 (t, x i , μ(x)) D 2 x i ṽN - 1 N 2 ∂ 2 µ v(t, μ(x))(x i , x i ) + 1 2 i =j∈ 1,N tr σ 0 (t, x i , μ(x))σ 0 (t, x j , μ(x))D 2 x i x j ṽN + 1 2N 2 N i=1 tr σ 0 σ 0 (t, x i , μ(x))∂ 2 µ v(t, μ(x))(x i , x i ) = 0 for (t, x = (x i ) i∈ 1,N ) ∈ [0, T )×(R d ) N , together with the terminal condition ṽN (t, x) = G(μ(x)).
By neglecting the terms ∂ 2 µ v/N 2 in the above relation, we obtain the PDE (6.1.5) for v N ṽN . The purpose of this section is to rigorously justify this approximation and state a rate of convergence for v N towards v, as well as a convergence for their gradients.

Particles BSDE approximation

Let us introduce an arbitrary measurable

R d -valued function b on [0, T ] × R d ×P 2 (R d ), and set B N the (R d ) N -valued function defined on [0, T ] × (R d ) N by B N (t, x) = (b(t, x i , μ(x)) i∈ 1,N for (t, x = (x i ) i∈ 1,N ) ∈ [0, T ) × (R d ) N .
The finite-dimensional PDE (6.1.5) may then be written as

           ∂ t v N + B N (t, x).D x v N + 1 2 tr Σ N (t, x)D 2 x v N + 1 N N i=1 H b t, x i , μ(x), v N , N D x i v N ) = 0, on [0, T ) × (R d ) N , v N (T, x) = G μ(x) , x = (x i ) i∈ 1,N ∈ (R d ) N , (6.2.3) 
where H b (t, x, µ, y, z) := H(t, x, µ, y, z) -b(t, x, µ).z. For error analysis purpose, the function b can be simply taken to be zero. The introduction of the function b is actually motivated by numerical purpose. It corresponds indeed to the drift of training simulations for approximating the function v N , notably by machine learning methods, and should be chosen for suitable exploration of the state space, see a detailed discussion in our companion paper [START_REF] Germain | DeepSets and derivative networks for solving symmetric PDEs[END_REF]. In this paper, we fix an arbitrary function b (satisfying Lipschitz condition to be precised later). Following [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], it is well-known that the semi-linear PDE (6.2.3) admits a probabilistic representation in terms of forward backward SDE. The forward component is defined by the process X N = (X i,N ) i∈ 1,N valued in (R d ) N , solution to the SDE:

dX N t = B N (t, X N t )dt + σ N (t, X N t )dW t + σ 0 (t, X N t )dW 0 t (6.2.4)
where σ N is the block diagonal matrix with block diagonals

σ ii N (t, x) = σ(t, x i , μ(x)), σ 0 = (σ i 0 ) i∈ 1,N is the (R d×m ) N -valued function with σ i 0 (t, x) = σ 0 (t, x i , μ(x)), for x = (x i ) i∈ 1,N , W = (W 1 , . . . , W N )
where W i , i = 1, . . . , N , are independent n-dimensional Brownian motions, independent of a m-dimensional Brownian motion W 0 on a filtered probability space (Ω, F, F = (F t ) 0≤t≤T , P). Notice that Σ N = σ N σ N + σ 0 σ 0 , and X N is the particles system of the McKean-Vlasov SDE:

dX t = b(t, X t , P X t )dt + σ(t, X t , P 0 X t )dW t + σ 0 (t, X t , P 0 X t )dW 0 t , (6.2.5) 
where W is an n-dimensional Brownian motion independent of W 0 . The backward component is defined by the pair process

(Y N , Z N = (Z i,N ) i∈ 1,N ) valued in R ×(R d ) N , solution to Y N t = G μ(X N T ) + 1 N N i=1 T t H b (s, X i,N s , μ(X N s ), Y N s , N Z i,N s )ds (6.2.6) - N i=1 T t (Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s , - N i=1 T t (Z i,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s , 0 ≤ t ≤ T.
We shall assume that the measurable functions

(t, x, µ) → b(t, x, µ), σ(t, x, µ) satisfy a Lipschitz condition in (x, µ) ∈ R d ×P 2 (R d ) uniformly w.r.t. t ∈ [0, T ],
which ensures the existence and uniqueness of a strong solution X N ∈ S 2 F ((R d ) N ) to (6.2.4) given an initial condition. Here,

S 2 F (R q ) is the set of F-adapted process (V t ) t valued in R q s.t. E sup 0≤t≤T |V t | 2 < ∞, (|.
| is the Euclidian norm on R q , and for a matrix M , we choose the Frobenius norm |M | = tr(M M )) and the Wasserstein space P 2 (R d ) is endowed with the Wasserstein distance

W 2 (µ, µ ) = inf E|ξ -ξ | 2 : ξ ∼ µ, ξ ∼ µ 1 2 ,
and we set

µ 2 := R d |x| 2 µ(dx) 1 2 for µ ∈ P 2 (R d ).
Assuming also that the measurable function

(t, x, µ, y, z) → H b (t, x, µ, y, z) is Lipschitz in (y, z) ∈ R × R d uniformly with respect to (t, x, µ) ∈ [0, T ] × R d ×P 2 (R d ),
and the measurable function G satisfies a quadratic growth condition on P 2 (R d ), we have the existence and uniqueness of a solution

(Y N , Z N = (Z i,N ) i∈ 1,N ) ∈ S 2 F (R) × H 2 F ((R d ) N
) to (6.2.6), and the connection with the PDE (6.2.3) (satisfied in general in the viscosity sense) via the (non linear) Feynman-Kac formula:

Y N t = v N (t, X N t ), and Z i,N t = D x i v N (t, X N t ), i = 1, . . . , N, 0 ≤ t ≤ T, (6.2.7) 
(when v N is smooth for the last relation). Here,

H 2 F (R q ) is the set of F-adapted process (V t ) t valued in R q s.t. E T 0 |V t | 2 dt < ∞.

Main results

We aim to analyze the particles approximation error on the solution v to the PDE (6.1.1), and its L-derivative ∂ µ v by considering the pathwise error on v:

E y N := sup 0≤t≤T Y N t -v(t, μ(X N t )) ,
and the L 2 -error on its L-derivative

E z N 2 := 1 N N i=1 T 0 E N Z i,N t -∂ µ v(t, μ(X N t ))(X i,N t ) 2 dt 1 2 ,
where the initial conditions of the particles system, X i,N 0 , i = 1, . . . , N , are i.i.d. with distribution µ 0 .

Here, it is assumed that we have the existence and uniqueness of a classical solution v to the PDE (6.1.1)-(6.1.2). More precisely, we make the following assumption: Assumption 6.2.1 (Smooth solution to the Master Bellman PDE). There exists a unique solution v to to (6.1.1), which lies in C 1,2 b ([0, T ] × P 2 (R d )) that is:

• v(., µ) ∈ C 1 ([0, T ))
, and continuous on [0, T ], for any µ ∈ P 2 (R d ),

• v(t, .) is fully C 2 on P 2 (R d ), for any t ∈ [0, T ] in the sense that:

(x, µ) ∈ R d ×P 2 (R d ) → ∂ µ v(t, µ)(x) ∈ R d , (x, µ) ∈ R d ×P 2 (R d ) → ∂ x ∂ µ v(t, µ)(x) ∈ M d , and (x, x , µ) ∈ R d × R d ×P 2 (R d ) → ∂ 2 µ v(t, µ)(x, x ) ∈ M d ,
are well-defined and jointly continuous,

• there exists some constant L > 0 s.t. for all (t, x, µ)

∈ [0, T ] × R d ×P 2 (R d ) ∂ µ v(t, µ)(x) ≤ L 1 + |x| + µ 2 , ∂ 2 µ v(t, µ)(x, x) ≤ L.
The existence of classical solutions to mean-field PDE in Wasserstein space is a challenging problem, and beyond the scope of this paper. We refer to [START_REF] Buckdahn | Mean-field stochastic differential equations and associated PDEs[END_REF], [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], [START_REF] Saporito | Stochastic Control with Delayed Information and Related Nonlinear Master Equation[END_REF], [START_REF] Wu | Viscosity solutions to parabolic master equations and McKean-Vlasov SDEs with closed-loop controls[END_REF] for conditions ensuring regularity results of some Master PDEs. Notice also that linear-quadratic mean-field control problems have explicit smooth solutions as in Assumption 6.2.1, see e.g. [START_REF] Pham | Bellman equation and viscosity solutions for mean-field stochastic control problem[END_REF].

We also make some rather standard assumptions on the coefficients of the forward backward SDE: Assumption 6.2.2 (Lipschitz condition on the coefficients of the forward backward SDE).

(i) The drift and volatility coefficients b, σ, σ 0 are Lipschitz: there exist positive constants [b],

[σ], and

[σ 0 ] s.t. for all t ∈ [0, T ], x, x ∈ R d , µ, µ ∈ P 2 (R d ), |b(t, x, µ) -b(t, x , µ )| ≤ [b] |x -x | + W 2 (µ, µ ) |σ(t, x, µ) -σ(t, x , µ )| ≤ [σ] |x -x | + W 2 (µ, µ ) |σ 0 (t, x, µ) -σ 0 (t, x , µ )| ≤ [σ 0 ] |x -x | + W 2 (µ, µ ) . (ii) For all (t, x, µ) ∈ [0, T ] × R d ×P 2 (R d ), Σ(t, x, µ) := σσ (t,
x, µ) is invertible, and the function σ, and its pseudo-inverse σ + := σ Σ -1 are bounded.

(iii) µ 0 ∈ P 4q (R d ) for some q > 1, i.e., µ 0 4q := |x| 4q µ 0 (dx)) 1 4q < ∞, and

T 0 |b(t, 0, δ 0 )| 4q + |σ(t, 0, δ 0 )| 4q + |σ 0 (t, 0, δ 0 )| 4q dt < ∞.
(iv) The driver H b satisfies the Lipschitz condition: there exist positive constants

[H b ] 1 and [H b ] 2 s.t. for all t ∈ [0, T ], x, x ∈ R d , µ, µ ∈ P 2 (R d ), y, y ∈ R, z, z ∈ R d , |H b (t, x, µ, y, z) -H b (t, x, µ, y , z )| ≤ [H b ] 1 (|y -y | + |z -z |) |H b (t, x, µ, y, z) -H b (t, x , µ , y, z)| ≤ [H b ] 2 1 + |x| + |x | + µ 2 + µ 2 |x -x | + W 2 (µ, µ ) .
(v) The terminal condition satisfies the (locally) Lipschitz condition: there exists some positive constant

[G] s.t. for all µ, µ ∈ P 2 (R d ) |G(µ) -G(µ )| ≤ [G] µ 2 + µ 2 W 2 (µ, µ ).
In order to have a convergence result for the first order Lions derivative we have to make a stronger assumption. Assumption 6.2.3.

(i) The function H b is in the form: H b (t, x, µ, y, z) = H 1 (t, x, µ, y) + H 2 (t, µ, y).z, where H 1 : [0, T ] × R d ×P 2 (R d ) × R → R verifies for all t ∈ [0, T ], x, x ∈ R d , µ, µ ∈ P 2 (R d ), y, y ∈ R, z, z ∈ R d , |H 1 (t, x, µ, y) -H 1 (t, x, µ, y )| ≤ [H 1 ] 1 |y -y | |H 1 (t, x, µ, y) -H 1 (t, x , µ , y)| ≤ [H 1 ] 2 1 + |x| + |x | + µ 2 + µ 2 |x -x | + W 2 (µ, µ ) ,
and

H 2 : [0, T ] × R d ×P 2 (R d ) × R → R d is bounded and verifies for all t ∈ [0, T ], x, x ∈ R d , µ, µ ∈ P 2 (R d ), y, y ∈ R, z, z ∈ R d , |H 2 (t, x, µ, y) -H 2 (t, x, µ, y )| ≤ [H 2 ] 1 |y -y | |H 2 (t, x, µ, y) -H 2 (t, x , µ , y)| ≤ [H 2 ] 2 1 + |x| + |x | + µ 2 + µ 2 |x -x | + W 2 (µ, µ ) .
(ii) σ 0 is uniformly elliptic and does not depend on x, namely there exists c 0 > 0 such that for all t ∈ [0, T ],

µ ∈ P 2 (R d ), z ∈ R d z σ 0 (t, µ)σ 0 (t, µ)z ≥ c 0 |z| 2 .
(iii) There exists some constant L > 0 s.t. for all (t, x, µ)

∈ [0, T ] × R d ×P 2 (R d ) ∂ µ v(t, µ)(x) ≤ L.
Remark 6.2.1. The Lipschitz condition on b, σ in Assumption 6.2.2(i) implies that the functions x ∈ (R d ) N → B N (t, x), resp. σ N (t, x) and σ 0 (t, x), defined in (6.2.4), are Lipschitz (with Lipschitz constant 2[b], resp. 2[σ] and 2[σ 0 ]). Indeed, we have

|B N (t, x) -B N (t, x )| 2 = N i=1 |b(t, x i , μ(x)) -b(t, x i , μ(x ))| 2 ≤ 2[b] 2 N i=1 (|x i -x i | 2 + W 2 (μ(x), μ(x )) 2 ) ≤ 2[b] 2 (|x -x | 2 + N i=1 1 N |x -x | 2 ) = 4[b] 2 |x -x | 2 , for x = (x i ) i∈ 1,N
, and similarly for σ N and σ 0 . This yields the existence and uniqueness of a solution X N = (X i,N ) i∈ 1,N to (6.2.4) given initial conditions. Moreover, under Assumption 6.2.2(iii), we have the standard estimate:

E sup 0≤t≤T |X N t | 4q ≤ C 1 + µ 0 4q 4q < ∞, i = 1, . . . , N, (6.2.8) 
for some constant C (possibly depending on N ). The Lipschitz condition on H b w.r.t. (y, z) in Assumption 6.2.2(iv), and the quadratic growth condition on G from Assumption 6.2.2(v) gives the existence and uniqueness of a solution

(Y N , Z N = (Z i,N ) i∈ 1,N ) ∈ S 2 F (R) × H 2 F ((R d ) N ) to (6.2.6
). Moreover, by Assumption 6.2.2(iv)(v), we see that

1 N N i=1 H b (t, x i , μ(x), y, z i ) - 1 N N i=1 H b (t, x i , μ(x ), y, z i ) ≤ [H b ] 2 1 N N i=1 1 + |x i | + |x i | + 1 √ N (|x| + |x |) |x i -x i | + 1 √ N |x -x | ≤ 4[H b ] 2 1 + |x| + |x | |x -x | G(μ(x)) -G(μ(x )) ≤ [G] N (|x| + |x |)|x -x |, for all x, x ∈ R d , x = (x i ) i∈ 1,N , x = (x i ) i∈ 1,N ∈ (R d ) N
, which yields by standard stability results for BSDE (see e.g. Theorems 4.2.1 and 5.2.1 in [START_REF] Zhang | Backward stochastic differential equations: from linear to fully nonlinear theory[END_REF]) that the function v N in (6.2.7) inherits the locally Lipschitz condition:

v N (t, x) -v N (t, x )| ≤ C(1 + |x| + |x |)|x -x |, ∀x, x ∈ (R d ) N ,
for some constant C (possibly depending on N ). This implies

|Z i,N t | ≤ C 1 + |X N t | , 0 ≤ t ≤ T, i = 1, . . . , N, (6.2.9) 
(this is clear when v N is smooth, and otherwise obtained by a mollifying argument as in Theorem 5.2.2 in [START_REF] Zhang | Backward stochastic differential equations: from linear to fully nonlinear theory[END_REF]).

Remark 6.2.2. Assumption 6.2.1 is verified in the case of linear quadratic control problems for which explicit smooth solutions are found in [PW18; PW17] respectively without and with common noise. These papers prove that the second order Lions derivative ∂ 2 µ is a continuous function of time which does not depend on the µ, x arguments hence is bounded whereas ∂ µ is affine in both the state and the first moment of the measure thus satisfies linear growth. Notice that in general, Assumptions 6.2.2 and 6.2.3 are not satisfied due to the quadratic nature of H b in the z. However, in the uncontrolled case

v(t, µ) = E t,µ T t X t A(t)X t + E[X t ] B(t)E[X t ] + C(t)X t + D(t)E[X t ] dt + X T EX T + E[X T ] F E[X T ] + GX T + HE[X T ] dX t = (b 0 (t) + b 1 (t)X t + b 2 (t)E[X t ]) dt + σ(t) dW t ,
we see that v is a solution to the linear PDE

           ∂ t v + R d x A(t)x + μ B(t)μ + C(t)x + D(t)μ +(b 0 (t) + b 1 (t)x + b 2 (t)μ)∂ µ v(t, µ)(x) + 1 2 tr (σσ )(t)∂ x ∂ µ v(t, µ)(x) µ(dx) = 0, (t, µ) ∈ [0, T ) × P 2 (R d ), v(T, µ) = E Var(µ) + μ (E + F )μ + (G + H)μ, µ ∈ P 2 (R d ), where μ = R d xµ(dx), Var(µ) = R d x 2 µ(dx) -μ2 .
In that case both assumptions 6.2.1 and 6.2.2 are satisfied. Theorem 6.2.1. Under Assumptions 6.2.1 and 6.2.2, we have P-almost surely

E y N ≤ C y N ,
where

C y = T 2 e [H b ] 1 T L σ 2 ∞ , with σ ∞ = sup (t,x,µ)∈[0,T ]×R d ×P 2 (R d ) |σ(t, x, µ)|.
Theorem 6.2.2. Under Assumptions 6.2.1, 6.2.2 and 6.2.3, we have

E z N 2 ≤ C z N 1 2
,

where C z = σ + ∞ 2T ([H 1 ] 1 + [H 2 ] 1 L) C2 y + Cy T σ 2 ∞ L + 2 c 0 C2 y T H 2 2 ∞ and Cy = T 2 e ([H 1 ] 1 +[H 2 ] 1 L)T L σ 2 ∞ .
Remark 6.2.3. Let us consider the global weak errors on v and its L-derivative ∂ µ v along the limiting McKean-Vlasov SDE, and defined by

E y N := sup 0≤t≤T E[Y N t ] -E[v(t, P 0 X t
)]

E z N := 1 N N i=1 T 0 E N Z i,N t -E ∂ µ v(t, P 0 X i t )(X i t ) 2 dt 1 2 ,
where X i has the same law than X, and with McKean-Vlasov dynamics as in (6.2.5) but driven by W i , i = 1, . . . , N . Then, they can be decomposed as

E y N ≤ E E y N + Ẽy N , E z N ≤ E z N 2 + Ẽz N ,
where Ẽy N , Ẽz N are the (weak) propagation of chaos errors defined by

Ẽy N := sup 0≤t≤T E[v(t, μ(X N t ))] -E[v(t, P 0 X t )] Ẽz N := 1 N N i=1 T 0 E ∂ µ v(t, μ(X N t ))(X i,N t ) -E ∂ µ v(t, P 0 X i t )(X i t ) 2 dt 1 2 ,
From the conditional propagation of chaos result, which states that for any fixed k ≥ 1, the law of (X i,N t )

i∈ 1,k t∈[0,T ] converges toward the conditional law of (X i t )

i∈ 1,k t∈[0,T ] , as N goes to infinity, we deduce that Ẽy N , Ẽz N → 0. Furthermore, under additional assumptions on v, we can obtain a rate of convergence. Namely, if v(t, .) is Lipschitz uniformly in t ∈ [0, T ], with Lipschitz constant [v], we have

Ẽy N ≤ [v] sup 0≤t≤T E[W 2 (μ(X N t ), P 0 X t ) 2 ] 1 2 = O N - 1 max(d,4) 1 + ln(N )1 d=4 , hence E y N = O N - 1 max(d,4) 1 + ln(N )1 d=4 , (6.2.10) 
where we use the rate of convergence of empirical measures in Wasserstein distance stated in [START_REF] Fournier | On the rate of convergence in the Wasserstein distance of the empirical measure[END_REF] (see also Theorem 2.12 in [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]), and since we have the standard estimate

E[sup 0≤t≤T |X t | 4q ] ≤ C(1 + µ 0 4q 2q
) by Assumption 6.2.2(iii). The rate of convergence in (6.2.10) is consistent with the one found in Theorem 6.17 [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] for mean-field control problem. Furthermore, if the function ∂ µ v(t, .)(.) is Lipschitz in (x, µ) uniformly in t, then by the rate of convergence in Theorem 2.12 of [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF], we have

Ẽz N = O N - 1 max(d,4) 1 + ln(N )1 d=4 , hence E z N = O N - 1 max(d,4) 1 + ln(N )1 d=4 .
Remark 6.2.4 (Comparison with [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF]). In the related paper [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] the authors consider a pure common noise case, that is σ = 0 and restrict themselves to σ 0 (t, x i , μ(x)) = κI d for κ ∈ R. If we consider these assumptions in our smooth setting, we directly see that ∆Y N s = 0 and ∆Z N s = 0 P a.s. Indeed by (6.2.6) and (6.3.2) we notice that (Y N t , Z N t ) and

( Ỹ N t := v(t, μ(X N t )), { Zi,N t := 1 N ∂ µ v(t, μ(X N t ))(X i,N t ), i = 1, . . . , N }),
solve the same BSDE therefore by existence and pathwise uniqueness for Lipschitz BSDEs the result follows. Moreover, [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] does not allow H to depend on y. Our approach allows to extend their findings to the case of idiosyncratic noises and in contrast to them we are able to choose a state-dependent volatility coefficient. Moreover we provide a convergence rate for the solution. However, we have to assume existence of a smooth solution for the master equation which is a restrictive assumption.

Proof of main results

6.3.1 Proof of Theorem 6.2.1

Step 1. Under the smoothness condition on v in Assumption 6.2.1, one can apply the standard Itô's formula in (R d ) N to the process ṽN (t,

X N t ) = v(t, μ(X N t ))
, and get

ṽN (t, X N t ) = ṽN (T, X N T ) - T t ∂ t ṽN (s, X N s )ds (6.3.1) - T t B N (s, X N s ).D x ṽN (s, X N s ) + 1 2 tr Σ N (s, X N s )D 2 x ṽN (s, X N s ) ds - N i=1 T t D x i ṽN (s, X N s ) σ(s, X i,N s , μ(X N s ))dW i s - N i=1 T t D x i ṽN (s, X N s ) σ 0 (s, X i,N s , μ(X N s ))dW 0 s ,
Now, by setting (recall (6.2.1)):

Ỹ N t := v(t, μ(X N t )) = ṽN (t, X N t ), Zi,N t := 1 N ∂ µ v(t, μ(X N t ))(X i,N t ) = D x i ṽN (t, X N t ), i = 1, . . . , N, 0 ≤ t ≤ T,
and using the relation (6.2.2) satisfied by ṽN into (6.3.1), we have for all 0 ≤ t ≤ T ,

Ỹ N t = G μ(X N T ) + 1 N N i=1 T t H b (s, X i,N s , μ(X N s ), Ỹ N s , N Zi,N s )ds (6.3.2) - 1 2N 2 N i=1 T t tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds - N i=1 T t ( Zi,N s ) σ s, X i,N s , μ(X N s ) dW i s - N i=1 T t ( Zi,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s .
Step 2: Linearization. We set

∆Y N t := Y N t -Ỹ N t , ∆Z i,N t := N (Z i,N t -Zi,N t ), i = 1, . . . , N, 0 ≤ t ≤ T,
so that by (6.2.6)-(6.3.2),

∆Y N t = 1 N N i=1 T t H b (s, X i,N s , μ(X N s ), Y N s , N Z i,N s ) -H b (s, X i,N s , μ(X N s ), Ỹ N s , N Zi,N s ) ds + 1 2N 2 N i=1 T t tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds - 1 N N i=1 T t (∆Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s - 1 N N i=1 T t (∆Z i,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s , 0 ≤ t ≤ T. (6.3.3)
We now use the linearization method for BSDEs and rewrite the above equation as

∆Y N t = T t α s ∆Y N s ds + 1 N N i=1 T t β i s .∆Z i,N s ds - 1 N N i=1 T t (∆Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s - 1 N N i=1 T t (∆Z i,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s + 1 2N 2 N i=1 T t tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds, (6.3.4) 
with

       α s = 1 N N i=1 H b (s, X i,N s , μ(X N s ), Y N s , N Zi,N s ) -H b (s, X i,N s , μ(X N s ), Ỹ N s , N Zi,N s ) ∆Y N s 1 ∆Y N s =0 β i s = H b (s,X i,N s ,μ(X N s ),Y N s ,N Z i,N s )-H b (s,X i,N s ,μ(X N s ),Y N s ,N Zi,N s ) |∆Z i,N s | 2 ∆Z i,N s 1 ∆Z i,N s =0
(6.3.5)

for i = 1, . . . , N , and we notice by Assumption 6.2.2(iv) that the processes α and β i are bounded by [H b ] 1 . Under Assumption 6.2.2(ii), let us define the bounded processes

λ i s = σ + (s, X i,N s , μ(X N s ))β i s , s ∈ [0, T ], i = 1, .
. . , N , and introduce the change of probability measure P λ with Radon-Nikodym density:

dP λ dP = E λ T := exp N i=1 T 0 λ i s dW i s - N i=1 1 2 T 0 |λ i s | 2 ds ,
so that by Girsanov's theorem:

W i t = W i t - t 0 λ i s ds, i = 1, . . . , N
, and W 0 are independant Brownian motion under P λ . By applying Itô's Lemma to e s 0 αsds ∆Y N t under P λ , we then obtain

∆Y N t = 1 2N 2 N i=1 T t e s t αudu tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds - 1 N N i=1 T t e s t αudu (∆Z i,N s ) σ s, X i,N s , μ(X N s ) d W i s - 1 N N i=1 T t e s t αudu (∆Z i,N s ) σ 0 s, X i,N s , μ(X N s ) dW 0 s , 0 ≤ t ≤ T. (6.3.6)
Step 3. Let us check that the stochastic integrals in (6.3.6), namely Zi,N s .d W i s , and Z0,i,N s .dW 0 s are "true" martingales under P λ , where Zi,N

s := e s 0 αudu σ s, X i,N s , μ(X N s ) ∆Z i,N s , Z0,i,N s := e s 0 αudu σ 0 s, X i,N
s , μ(X N s ) ∆Z i,N s , i = 1, . . . , N , 0 ≤ s ≤ T . Indeed, for fixed i ∈ 1, N , recalling that α is bounded, and by the linear growth condition of σ 0 from Assumption 6.2.2(i), we have

E P λ T 0 | Z0,i,N s | 2 ds ≤ CE P λ T 0 |σ 0 (s, 0, δ 0 )| 2 + |X i,N s | 2 + μ(X N s ) 2 2 |N Z i,N s | 2 + |∂ µ v(s, μ(X N s ))(X i,N s )| 2 ds ≤ CE E λ T T 0 N 2 (|σ 0 (s, 0, δ 0 )| 4 + |X N s | 4 )ds
where we use Bayes formula, the estimation (6.2.9), the growth condition on ∂ µ v(.)(.) in Assumption 6.2.1, and noting that

|X i,N s | ≤ |X N s |, μ(X N s ) 2 2 = |X N s | 2 /N
. By Hölder inequality with q as in Assumption 6.2.2(iii), and 1 p + 1 q = 1, the above inequality yields

E P λ T 0 | Z0,i,N s | 2 ds ≤ CN 2 E |E λ T | p 1 p E T 0 (|σ 0 (s, 0, δ 0 )| 4q + |X N s | 4q )ds 1 q ,
which is finite by (6.2.8), and since λ is bounded. This shows the square-integrable martingale property of Z0,i,N s .dW 0 s under P λ . By the same arguments, we get the square-integrable martingale property of Zi,N s .d W i s under P λ Step 4: Estimation of E y N . By taking the P λ conditional expectation in (6.3.6), we obtain

∆Y N t = 1 2N 2 N i=1 E P λ T t e s t αudu tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds F t ,
for all t ∈ [0, T ]. Under the boundedness condition on Σ = σσ in Assumption 6.2.2(ii), and on ∂ 2 µ v in Assumption 6.2.1, it follows immediately that

E y N = sup 0≤t≤T |∆Y N t | ≤ C y N , a.s.
where

C y = T 2 e [H b ] 1 T L σ 2 ∞ , with σ ∞ = sup (t,x,µ)∈[0,T ]×R d ×P 2 (R d ) |σ(t, x, µ)|.

Proof of Theorem 6.2.2

From (6.3.5), and under Assumption 6.2.3(i) and (iii), we see that

α s = 1 N N i=1 H b (s, X i,N s , μ(X N s ), Y N s , N Zi,N s ) -H b (s, X i,N s , μ(X N s ), Ỹ N s , N Zi,N s ) ∆Y N s 1 ∆Y N s =0 = 1 N N i=1 H 1 (s, X i,N s , μ(X N s ), Y N s ) -H 1 (s, X i,N s , μ(X N s ), Ỹ N s ) ∆Y N s 1 ∆Y N s =0 + 1 N N i=1 N Zi,N s . H 2 (s, μ(X N s ), Y N s ) -H 2 (s, μ(X N s ), Ỹ N s ) ∆Y N s 1 ∆Y N s =0 , (6.3.7) 
is bounded by

[H 1 ] 1 + [H 2 ] 1 L, recalling N Zi,N s = ∂ µ v(s, μ(X N s ))(X i,N s ).
As a consequence, the proof of Theorem 6.2.1 still applies. Then by (6.3.3)

∆Y N t = T t α s ∆Y N s ds + 1 N N i=1 T t H 2 (s, μ(X N s ), Y N s ).∆Z i,N s ds - 1 N N i=1 T t (∆Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s - 1 N N i=1 T t (∆Z i,N s ) σ 0 (s, μ(X N s ))dW 0 s + 1 2N 2 N i=1 T t tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds.
By applying Itô's formula to |∆Y N t | 2 in (6.3.4) under P

|∆Y N 0 | 2 + 1 N 2 T 0 N i=1 σ s, X i,N s , μ(X N s ) ∆Z i,N s 2 ds + |σ 0 (s, μ(X N s )) N j=1 ∆Z j,N s | 2 ds = 2 T 0 α s |∆Y N s | 2 ds + 2 N N i=1 T 0 ∆Y N s H 2 (s, μ(X N s ), Y N s ).∆Z i,N s ds - 2 N N i=1 T 0 ∆Y N s (∆Z i,N s ) σ s, X i,N s , μ(X N s ) dW i s - 2 N N i=1 T 0 ∆Y N s (∆Z i,N s ) σ 0 (s, μ(X N s ))dW 0 s + 1 N 2 N i=1 T 0 ∆Y N s tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) ds,
so by taking expectation under P, and using the Cauchy-Schwarz inequality in

R d 1 N 2 T 0 N i=1 E σ s, X i,N s , μ(X N s ) ∆Z i,N s 2 + |σ 0 (s, μ(X N s )) N j=1 ∆Z j,N s | 2 ds ≤ E 2 T 0 |α s ||∆Y N s | 2 ds + 2 T 0 ∆Y N s H 2 (s, μ(X N s ), Y N s ). N i=1 ∆Z i,N s N ds + 1 N 2 N i=1 T 0 E|∆Y N s tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) |ds, ≤ E 2 T 0 |α s ||∆Y N s | 2 ds + 2 T 0 ∆Y N s H 2 (s, μ(X N s ), Y N s ) N i=1 ∆Z i,N s N ds + 1 N 2 N i=1 T 0 E|∆Y N s tr Σ(s, X i,N s , μ(X N s ))∂ 2 µ v(s, μ(X N s ))(X i,N s , X i,N s ) |ds, ≤ E ϑ T 0 |∆Y N s H 2 (s, μ(X N s ), Y N s )| 2 ds + 1 ϑN 2 T 0 N i=1 ∆Z i,N s 2 ds + Cz N 2 ,
by Young inequality for any ϑ > 0, boundedness of α (see (6.3.7)), Σ, ∂ 2 µ v and Theorem 6.2.1, where

Cz = 2T ([H 1 ] 1 + [H 2 ] 1 L) C2 y + Cy T σ 2 ∞ L and Cy = T 2 e ([H 1 ] 1 +[H 2 ] 1 L)T L σ 2 ∞ . Thus,
by Assumption 6.2.3(ii), and by choosing ϑ = 2 c 0 , it follows from the boundedness of H 2 , and Theorem 6.2.1 that

E 1 N N i=1 T 0 |σ s, X i,N s , μ(X N s ) ∆Z i,N s | 2 ds ≤ Cz + 2 c 0 C2 y T H 2 2 ∞ N ,
which ends the proof by recalling that σ + ∞ < +∞, using Cauchy-Schwarz inequality in R N (in the form 1 This Chapter is a companion work of Chapter 6. Inspired from the finite dimensional PDEs stemming from Chapter 6, which have the property of being symmetric with respect to the permutation of their space arguments, we develop a numerical method to solve symmetric PDEs. The main tool is to consider symmetric neural networks like PointNet [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] and DeepSet [START_REF] Zaheer | Deep Sets[END_REF]. Plugging the symmetry properties of the solution into the scheme itself allows us to solve high dimensional problems for which classical feedforward neural networks do not converge. As a consequence we provide a way to estimate the solution of Master Bellman equations in infinite dimension. However, some randomization has to be achieved in order to efficiently explore the Wasserstein space. We propose a first idea in this direction but a systematic treatment of this point is left to future research.

N N i |a i | ≤ 1 N N i |a i |) and Jensen inequality (in the form E[ |X|] ≤ E[|X|]).

CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

Abstract

Machine learning methods for solving nonlinear partial differential equations (PDEs) are hot topical issues, and different algorithms proposed in the literature show efficient numerical approximation in high dimension. In this paper, we introduce a class of PDEs that are invariant to permutations, and called symmetric PDEs. Such problems are widespread, ranging from cosmology to quantum mechanics, and option pricing/hedging in multi-asset market with exchangeable payoff. Our main application comes actually from the particles approximation of mean-field control problems. We design deep learning algorithms based on certain types of neural networks, named PointNet and DeepSet (and their associated derivative networks), for computing simultaneously an approximation of the solution and its gradient to symmetric PDEs. We illustrate the performance and accuracy of the PointNet/DeepSet networks compared to classical feedforward ones, and provide several numerical results of our algorithm for the examples of a mean-field systemic risk, mean-variance problem and a min/max linear quadratic McKean-Vlasov control problem.

Introduction

The numerical resolution of partial differential equations (PDEs) in high dimension is a major challenge in various areas of science, engineering, and finance. PDEs that appear in the applications are often non linear and of very high dimension (number of particles in physics, number of agents in large population control problems, number of assets and factors in financial markets, etc), and are subject to the so-called curse of dimensionality, which makes infeasible the implementation of classical grid methods and Monte-Carlo approaches.

A breakthrough with deep learning based-algorithms has been made in the last five years towards this computational challenge, and we mention the recent survey papers by [START_REF] Beck | An overview on deep learning-based approximation methods for partial differential equations[END_REF] and [START_REF] Germain | Neural networks based algorithms for stochastic control and PDEs in finance[END_REF]. The main interest in the use of machine learning techniques for PDEs is the ability of deep neural networks to efficiently represent high dimensional functions without using spatial grids, and with no curse of dimensionality (see e.g. [START_REF] Hutzenthaler | A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equation[END_REF]). Although the use of neural networks for solving PDEs is not new, the approach has been successfully revived with new ideas and directions. Moreover, recently developed open source libraries like Tensorflow and Pytorch offer an accessible framework to implement these algorithms.

In this paper, we introduce a class of PDEs that are invariant by permutation, and called here symmetric PDEs. Such PDEs occur naturally in the modelling of systems dealing with sets that are invariant by permutation of their elements. Applications range from models in general relativity and cosmology, to quantum mechanics and chemistry, see e.g. [START_REF] Van Wyk | Partial differential equations and quantum mechanics[END_REF], [START_REF] Smulevici | On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry[END_REF]. Symmetric PDEs also appear in the pricing/hedging of basket option and options on the maximum of multiple assets. Our main motivation for introducing this general class of symmetric PDEs comes from the control of large population of interacting indistinguishable agents, which leads in the asymptotic regime of infinite population to the theory of mean-field games (MFG) and meanfield type control, also called McKean-Vlasov (MKV) control. These topics have attracted an increasing and large interest since the seminal papers [START_REF] Lasry | Mean field games[END_REF] and [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF] with important mathematical developments and numerous applications in various fields over the last decade. We refer to the two-volume monographs [CD18a]- [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] for an exhaustive exposition of this research domain, where it is known that the solution to MFG or MKV control problem are characterized in terms of a Master equation or a Bellman equation, which are PDEs in the Wasserstein space of probability measures. It turns out that the finite-dimensional approximation of these equations are formulated as symmetric non linear PDEs, and the convergence of this approximation has been recently obtained in [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF], and [START_REF] Germain | Rate of convergence for particle approximation of PDEs in Wasserstein space[END_REF] (for a rate of convergence), see also [START_REF] Lacker | Limit Theory for Controlled McKean-Vlasov Dynamics[END_REF] and [START_REF] Djete | Extended mean-field control problem: a propagation of chaos result[END_REF].

Symmetric PDEs are often in very high dimension, typically of the order of one thousand in the case of particles approximation of Master and Bellman equations, and it is tempting to apply machine learning algorithms in this framework. For that purpose, we shall furthermore exploit the symmetric structure of the PDEs in order to design deep learning-based algorithms with a suitable class of neural networks. We first observe that the solution to symmetric PDEs is invariant by permutation (also called exchangeable), and we shall then consider a class of symmetric neural networks, named PointNet and DeepSets, aiming to approximate our solution. Such class of neural networks has been recently introduced in the machine learning community, see [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF], [START_REF] Zaheer | Deep Sets[END_REF], [START_REF] Bloem-Reddy | Probabilistic symmetries and invariant neural networks[END_REF], for dealing with tasks involving some invariant data sets, and it turns out that they provide much better accuracy than classical feedforward neural networks (NN in short) in the approximation of symmetric functions. Indeed, feedforward NN have too many degrees of freedom, and the optimization over parameters in (stochastic) gradient descent algorithm may be trapped away in the approximation of a symmetric function, as illustrated in several examples and comparison tests presented in this paper. We shall also introduce different classes of derivative symmetric network, named DeepDerSet and AD-DeepSet, for the approximation of the gradient of the solution to symmetric PDEs.

By relying on the class of symmetric NN, and their derivative networks, we next adapt the deep backward dynamic programming scheme [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] for numerically solving symmetric PDEs, i.e., finding approximations of the solution and its gradient. We also explain in the case of mean-field control problem how our scheme provides an approximation for the solution to a Bellman equation in the Wasserstein space of probability measures. This yields alternative deep learning schemes for mean-field control problems to the ones recently designed in [START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF], [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF], [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF], or [START_REF] Ruthotto | A machine learning framework for solving high-dimensional mean field game and mean field control problems[END_REF]. We test our algorithms on several examples arising from different McKean-Vlasov control problem, for which we have explicit or benchmarked solutions: a systemic risk model as in [START_REF] Carmona | Mean field games and systemic risk[END_REF], the classical mean-variance, i.e., Markowitz portfolio allocation problem, and a min/max linear quadratic mean-field control problem as in [START_REF] Salhab | A dynamic game model of collective choice in multi-agent systems[END_REF].

Outline of the paper. The rest of the paper is organized as follows. We introduce in Section 7.2 the class of symmetric PDEs with some examples, and show exchangeability properties of the solution and its gradient to such PDEs. Section 7.3 is devoted to the exposition of the class of symmetric neural networks, as well as its derivative networks, and we provide several comparison tests with respect to classical feedforward NN. We describe in Section 7.4 the deep learning schemes for solving symmetric PDEs, and finally provide several numerical examples in Section 7.5.

Notations. Given N ∈ N * , X N denotes the set of all elements x = (x i ) i∈ 1,N with coefficients x i valued in X and 1, N = {1, • • • , N }. When X = R d , one usually identifies (R d ) N with R d×N the set of d × N -matrices with real-valued coefficients. S N (X ) is the set of N × N -symmetric matrices with coefficients valued in X , and is simply denoted by S N when X = R. For a realvalued C 2 function ϕ defined on (R d ) N , its gradient Dϕ(x) = (D

x i ϕ(x)) i∈ 1,N is valued in (R d ) N , while its Hessian D 2 ϕ(x) = (D 2 x i x j ϕ(x)) i,j∈ 1,N is valued in S N (S d ).
We denote by S N the set of permutations on {1, . . . , N }. For any x = (x i ) i∈ 1,N ∈ X N , π ∈ S N , we denote by π

[x] = (x π(i) ) i∈ 1,N ∈ X N . For any Γ = (Γ ij ) i,j∈ 1,N ∈ S N (X ), we denote by π[Γ] = (Γ π(i)π(j) ) i,j∈ 1,N ∈ S N (X ).
We say that a function ϕ defined on X N is exchangeable to the order N on X if it is invariant by permutation, i.e., ϕ(x) = ϕ(π[x]), for any x ∈ X N , and π ∈ S N . We may simply say exchangeable when it is clear from the context. The notations 0 d , 1 d refer respectively to d-dimensional vectors full of 0 and 1. With two vectors a, b ∈ R d , the notation a.b = d i=1 a i b i refers to the canonical scalar product.

Symmetric PDEs

We consider a so-called symmetric class of parabolic second-order partial differential equations (PDEs):

∂ t v + F (t, x, v, D x v, D 2 x v) = 0, (t, x) ∈ [0, T ) × (R d ) N v(T, x) = G(x), x ∈ (R d ) N , (7.2.1)
where F is a real-valued function defined on

[0, T ] × (R d ) N × R ×(R d ) N × S N (S d ), G is defined on (R d ) N
, and satisfying the permutation-invariance condition:

(HI) For any t ∈ [0, T ], x ∈ (R d ) N , y ∈ R, z ∈ (R d ) N , γ ∈ S N (S d ), F (t, x, y, z, γ) = F (t, π[x], y, π[z], π[γ]) G(x) = G(π[x]), ∀π ∈ S N .
We assume that PDE (7.2.1) is well-posed in the sense that there exists a unique classical solution satisfying a suitable growth condition.

We list below some examples of symmetric PDEs in the form (7.2.1). We start with an example of pricing in a "symmetric" multi-asset model.

Example 7.2.1 (Multi-asset pricing). Let us consider a model with N risky assets of price process X = (X 1 , . . . , X N ) governed by

dX i t = bi (X t )dt + N j=1 σ ij (X t )dW j t ,
where the diffusion coefficients satisfy the property: for all π ∈ S N ,

σ ij (π[x]) = σ π(i)π(j) (x), x = (x i ) i∈ 1,N , i, j = 1, . . . , N. (7.2.2)
Notice that bi is the drift of the asset price under the historical probability measure, and does not appear in the pricing equations below. The symmetry condition (7.2.2) is satisfied for example when σ ii (x) = σ(x), and σ ij (x) = σ(x), i, j = 1, . . . , N , i = j, with σ, σ exchangeable functions. Another example is when σ ii (x) = σ(x i ), and σ ij (x) = θ(x i ) θ(x j ), i, j = 1, . . . , N , i = j, for some functions σ, θ, θ defined on R, which means that all the assets have the same marginal volatility coefficient, and the correlation function between any pair of assets is identical. We consider an option of maturity T with payoff G(X 1 T , . . . , X N T ), where G is an exchangeable function, for example:

G(x) =      max(x 1 , . . . , x N ) -K + , (call on max) N i=1 x i -K + ,
(call on sum), N i=1 1 x i ≥K , (sum of binary options), for x = (x 1 , . . . , x N ) ∈ R N . In a frictionless market with constant interest rate r, the option price (t, x) ∈ [0, T ] × R N → v(t, x) satisfies a linear PDE (7.2.1) with terminal condition given by the exchangeable function G and

F (t, x, y, z, γ) = -ry + r N i=1 x i z i + 1 2 N i,j=1 σ 2 ij (x)γ ij , for t ∈ [0, T ], x = (x i ) i∈ 1,N ∈ R N , y ∈ R, z = (z i ) i∈ 1,N ∈ R N , and γ = (γ ij ) i,j∈ 1,N ∈ S N .
In the case of counterparty risk, the pricing of CVA leads to a quasi-linear PDE (7.2.1) with F in the form (see [START_REF] Henry-Labordère | Counterparty risk valuation: a marked branching diffusion approach[END_REF] for the details of the PDE derivation):

F (t, x, y, z, γ) = β(y + -y) + r N i=1 x i z i + 1 2 N i,j=1 σ 2 ij (x)γ ij ,
where β > 0 is the intensity of default. Another case of non-linearity occurs when lending rate r > 0 is smaller than borrowing rate R > 0, which leads to a super-replication price solution to (7.2.1) with F given by

F (t, x, y, z, γ) = sup b∈[r,R] -by + b N i=1 x i z i + 1 2 N i,j=1 σ 2 ij (x)γ ij .
In the above three cases, and under (7.2.2), the generator function F clearly satisfies the permutation-invariance condition in (HI).

The second example is actually our main motivation for considering symmetric PDEs, and comes from mean-field models.

Example 7.2.2 (McKean-Vlasov control problem with common noise). Let us consider N interacting indistinguishable agents with controlled state process X = (X 1 , . . . , X N ) valued in (R d ) N , and driven by

dX i t = β(t, X i t , μ(X t ), α i t )dt + σ(t, X i t , μ(X t ), α i t )dW i t + σ 0 (t, X i t , μ(X t ))dW 0 t , 0 ≤ t ≤ T, i = 1, . . . , N, where x = (x i ) i∈ 1,N → μ(x) = 1 N N
i=1 δ x i is the empirical measure (exchangeable) function, W i , i = 1, . . . , N , are independent Brownian motions representing idiosyncratic noises, and W 0 is a Brownian motion independent of W = (W i ) i∈ 1,N , representing a common noise. Moreover, α i is a control process (valued in some Polish space A) applied by the agent i who follows in a cooperative equilibrium a social planner aiming to minimize a social cost in the form

J(α 1 , . . . , α N ) = 1 N N i=1 E T 0 e -rt f (X i t , μ(X t ), α i t )dt + e -rT g(X i T , μ(X T )) .
The Bellman equation to this N -cooperative agents control problem is in the form (7.2.1) with a Hamiltonian function F given by

F (t, x, y, z, γ) = N i=1 inf a∈A β(t, x i , μ(x), a).z i + 1 2 tr Σ(t, x i , μ(x), a)γ ii + 1 N f (x i , μ(x), a) + 1 2 i =j tr σ 0 (t, x i , μ(x))σ 0 (t, x j , μ(x))γ ij -ry,
where Σ = σσ + σ 0 σ 0 , and a terminal condition given by

G(x) = 1 N N i=1 g(x i , μ(x)).
Such functions F and G clearly satisfy condition (HI). Let us point out that in the limiting regime when the number N of agents goes to infinity, it is proved in [START_REF] Lacker | Limit Theory for Controlled McKean-Vlasov Dynamics[END_REF], [START_REF] Djete | Extended mean-field control problem: a propagation of chaos result[END_REF], [START_REF] Gangbo | Finite Dimensional Approximations of Hamilton-Jacobi-Bellman Equations in Spaces of Probability Measures[END_REF] that the solution to this cooperative-agents problem converges to the McKean-Vlasov control problem with state process X = X α of dynamics dX t = β(t, X t , P 0 Xt , α t )dt + σ(t, X t , P 0 Xt , α t )dW t + σ 0 (t, X t , P 0 Xt )dW 0 t , (7.2.3) and cost functional

J M KV (α) = E
T 0 e -rt f (X t , P 0 Xt , α t )dt + e -rT g(X T , P 0 X T ) .

(Here P 0 Xt denotes the conditional law of X t given the common noise W 0 ). Moreover, the corresponding Bellman equation in the Wasserstein space of square-integrable probability measures P 2 (R d ) is given by (see [START_REF] Pham | Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics[END_REF])

∂ t v + F(t, µ, v, ∂ µ v, ∂ x ∂ µ v, ∂ 2 µ v) = 0, (t, µ) ∈ [0, T ) × P 2 (R d ) v(T, µ) = G(µ), µ ∈ P 2 (R d ), (7.2.4)
where

∂ µ ϕ(µ)(.) : R d → R d , ∂ x ∂ µ ϕ(µ)(.) : R d → S d , ∂ 2 µ ϕ(µ)(., .) : R d × R d → S d
, are the Lderivatives of a function ϕ on P 2 (R d ) (see [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF]) and F(t, µ, y, Z(.), Γ(.), Γ 0 (., .))

= -ry + R d h(t, x, µ, Z(x), Γ(x))µ(dx) + R d × R d 1 2 tr σ 0 (t, x, µ)σ 0 (t, x , µ)Γ 0 (x, x ) µ(dx)µ(dx ), G(µ) = R d g(x, µ)µ(dx), with h(t, x, µ, z, γ) = inf a∈A β(t, x, µ, a).z + 1 2 tr Σ(t, x, µ, a)γ + f (x, µ, a) .
We end this section by showing some exchangeability properties of the solution to the symmetric PDE (7.2.1). Let us introduce the notion of D-exchangeability where D stands for derivative.

Definition 7.2.1. A function (x, x) ∈ (R d ) N × R d → z(x, x) ∈ X is D-exchangeable if for any fixed x ∈ R d , z(., x) is exchangeable. Given a D-exchangeable function z, we denote by z the function defined on (R d ) N by z(x) = (z(x, x i )) i∈ 1,N ∈ X N .
This definition is actually motivated by the exchangeability property of the solution to the PDE (7.2.1), and by a structural property on the gradient of an exchangeable function that is differentiable. Lemma 7.2.1. The solution v to the PDE (7.2.1) with F and G satisfying (HI) is exchangeable, i.e., for all π ∈ S N ,

v(t, x) = v(t, π[x]), (t, x) ∈ [0, T ] × (R d ) N . Proof. Let π ∈ S N . We set v π (t, x) = v(t, π[x]), and observe that ∂ t v(t, π[x]) = ∂ t v π (t, x), while D x v(t, π[x]) = π[D x v π (t, x)], D 2 x v(t, π[x]) = π[D 2 x v π (t, x)].
By writing the PDE (7.2.1) at (t, π[x]), it follows under (HI) that v π satisfies

∂ t v π + F (t, x, v π , D x v π , D 2 x v π ) = 0, (t, x) ∈ [0, T ) ∈ (R d ) N v π (T, x) = G(x), x ∈ (R d ) N .
By uniqueness of the solution to PDE (7.2.1), we conclude that v π = v, i.e., the exchangeability property of v. Lemma 7.2.2. Let w be an exchangeable, and differentiable function on (R d ) N . Then there exists a D-exchangeable function z such that

D x i w(x) = z(x, x i ), i = 1, . . . , N, (7.2.5) 
for all x = (x i ) ∈ 1,N ∈ (R d ) N , i.e., Dw = z.

7.3 Symmetric neural networks

DeepSets and variants

In view of Lemma 7.2.1 and 7.2.2, we shall consider a class of neural networks (NN in short) that satisfy the exchangeability and D-exchangeability properties for approximating the solution (and its gradient) to the PDE (7.2.1). We denote by

L ρ d 1 ,d 2 = φ : R d 1 → R d 2 : ∃ (W, β) ∈ R d 2 ×d 1 × R d 2 , φ(x) = ρ(Wx + β) ,
the set of layer functions with input dimension d 1 , output dimension d 2 , and activation function ρ : R → R. Here, the activation is applied component-wise, i.e., ρ(x 1 , . . . , x d 2 ) = ρ(x 1 ), . . . , ρ(x d 2 ) , to the result of the affine map We then define

x ∈ R d 1 → Wx + β ∈ R d 2 ,
N ρ d 0 , ,m,k = ϕ : R d 0 → R k : ∃φ 0 ∈ L ρ d 0 ,m , ∃φ i ∈ L ρ m,m , i = 1, . . . , -1, ∃φ ∈ L m,k , ϕ = φ • φ -1 • • • • • φ 0 ,
as the set of feedforward (or artificial) neural networks with input layer dimension d 0 , output layer dimension k, and hidden layers with m neurons (or units). These numbers d 0 , , m, and the activation function ρ, form the architecture of the network. When = 1, one usually refers to shallow neural networks, as opposed to deep neural networks which have several hidden layers.

A symmetric neural network function, denoted U ∈ S s,N,ρ d, ,m,k,d , is an R d -valued exchangeable function to the order N on R d , in the form:

U(x) = ψ s((ϕ(x i )) i∈ 1,N ) , for x = (x i ) i∈ 1,N ∈ (R d ) N , (7.3.1)
where ϕ ∈ N ρ d, ,m,k , ψ ∈ N ρ k, ,m,d (here, for simplicity of notations, we assume that the number of hidden layers and neurons of ϕ and ψ are the same but in practical implementation, they may be different), and s is a given R k -valued exchangeable function to the order N on R k , typically:

• Max-pooling (component-wise): s(y) = max(y i ) i∈ 1,N , • Sum: s(y) = N i=1 y i , or average:

s(y) = 1 N N i=1 y i , for y = (y i ) i∈ 1,N ∈ (R k ) N .
When s is the max-pooling function, S s,N,ρ d, ,m,k,d is called PointNet, as introduced in [Qi+17], while for s equals to the sum/average function, it is called DeepSet, see [START_REF] Zaheer | Deep Sets[END_REF]. The architecture is described in Figure 7.1, and k can be interpreted as a number of features describing the geometry of the set of points {x i } i∈ 1,N . For example in the context of mean-field control problem, k will be related to the moments for describing the law of the McKean-Vlasov SDE.

A given symmetric network function U ∈ S s,N,ρ d, ,m,k,d is determined by the weight/bias parameters θ = (θ (1) , θ (2) ) with θ (1) = (W Remark 7.3.1 (Time dependent symmetric network). A time-dependent symmetric in space neural network can be constructed as 

U(t, x) = ψ t, s((ϕ(x i )) i∈ 1,N ) , for t ∈ R + , x = (x i ) i∈I ∈ (R d ) N ,
(R d ) N by Z(x) = (Z(x, x i )) ∈ 1,N ∈ (R d ) N ,
and by misuse of notation, we may also call Z as a D-symmetric NN. By construction, these networks respect the representation given by Lemma 7.2.2, by being defined as a D-exchangeable function applied component by component. In that way we are able to enforce the correct symmetries for representing both a symmetric function and its derivative, which will be useful in Section 7.4 and Section 7.5 when looking for the gradient of PDE solutions.

Alternatively, one can generate D-exchangeable functions as follows. Starting from a DeepSet element U ∈ S s,N,ρ d, ,m,k,d as in (7.3.1) with s the sum function, and network functions ϕ, ψ with smooth activation functions

D x i U(x) = DU(x, x i ), x = (x i ) ∈ 1,N ∈ (R d ) N , with DU(x, x) := Dϕ(x)Dψ s((ϕ(x i )) i∈I ) , x ∈ R d .
The set of D-exchangeable functions obtained from differentiation of DeepSet network functions is called AD-DeepSet, where AD stands for automatic differentiation, and Automatic refers to As for the well-known universal approximation theorem [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF] for neural networks, we have a similar result for symmetric neural networks, which states that any exchangeable function can be arbitrarily approximated by a PointNet or DeepSet given enough neurons. More precisely, by combining Theorem 2.9 of [START_REF] Wagstaff | On the Limitations of Representing Functions on Sets[END_REF] with Theorem 2 of [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF], we obtain the following approximation theorem for DeepSets.

Universal approximation for DeepSets networks. Let s be the sum function. The set ∪ ∞ m=1 S s,N,ρ d, ,m,N +1,d approximates any N -exchangeable continuous function w arbitrary well on any compact set of K ⊂ R d , once ρ is continuous, bounded and non-constant: for all ε > 0, N ∈ N * , there exists U ∈ ∪ ∞ m=1 S s,N,ρ d, ,m,N +1,d such that

w(x) -U(x) ≤ ε ∀x ∈ K N .
Note that a priori the latent space dimension k has to be chosen equal to N + 1.

Alternatively, by combining Theorem 1 of [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] with Theorem 2 of [START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF], we obtain the following one-dimensional approximation theorem for PointNet.

Universal approximation for PointNet networks. Let s be the max function. The set ∪ ∞ m=1 ∪ ∞ k=1 S s,N,ρ 1, ,m,k,d approximates any N -exchangeable Hausdorff continuous function w (seen as a function on sets) arbitrary well on any compact set of K ⊂ R , once ρ is continuous, bounded, and non-constant: for all ε > 0, N ∈ N * , there exists

U ∈ ∪ ∞ m=1 ∪ ∞ k=1 S s,N,ρ 1, ,m,k,d such that w(S) -U(x) ≤ ε, ∀S ⊂ K, S = {x 1 , • • • , x N }.
Note here that a priori the latent space dimension k has to be chosen as large as needed.

Comparison tests

In this paragraph, we test the accuracy of the approximation of exchangeable functions by DeepSet or PointNet, and also the approximation of D-exchangeable functions by DeepDerSet or AD-DeepSet, and compare numerically with classical feedforward approximations.

Approximation of some simple functions

We first test the approximation of the following simple symmetric functions:

1. f (x) = exp (2x + 3x 3 ), with x = 1 N N i=1 x i (case 1) 2. f (x) = 1 N N i=1 sin(x i )1 x i <0 + x i 1 x i ≥0 (case 2)
3. f (x) = x + 2x 2 + 3x 3 , with x = max{x i , i = 1, . . . , N } (case 3) 4. f (x) = cos(2x + 3x 2 ), with x = N i=1 x i (case 4)

We use a symmetric neural network architecture as proposed in [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF], [START_REF] Zaheer | Deep Sets[END_REF]:

• First, a feedforward network ϕ with = 5 hidden layers, and respectively 64, 64, 64, 128 and 1024 neurons such that each dimension i, i = 1, . . . , N , is treated with the same network in one dimension avoiding to break the symmetry.

• Two possible symmetric functions s to the order N on R k with k = 1024, the max-pooling (PointNet) and the sum function (DeepSet).

• At last, a feedforward network ψ from R 1024 to R with = 2 hidden layers, and respectively 512 and 256 neurons.

For the approximation with classical feedforward networks, we used three or four layers and a number of neurons constant per layer equal to 10 + d, or 10 + 2d neurons.

We use the ADAM optimizer ([KB14]), with a batch size equal to 300 for solving the approximation problem with quadratic loss function:

min θ E[|f (X) -U θ (X)| 2 ], (7.3.2) 
with training simulations from X ∼ N (0 N , 1 N ), and θ are the parameters of the network function U θ . The number of epochs (corresponding to the number of gradient descent iterations) used is equal to 100. After epoch iterations of the stochastic gradient, the error (7.3.2) is estimated with 20000 simulations. If the error is below a threshold equal to 1e-5 the optimization is stopped, otherwise a counter for outer iterations is incremented. The number of outer iterations is blocked at epochExt = 1000 (meaning a maximal total number of stochastic gradient iterations equal to epoch × epochExt = 100000). In Tables 7.1, 7.2, 7.3, we report the accuracy reached (Error) and the number of iterations (Iter.) used to obtain this given accuracy: then a threshold equal to 1e-5 means that the optimization has been successful and the relevant parameter is the number of iterations used. A number of iterations equal to expochExt = 1000 means that the optimization has not been successful and the error reached indicates how far we are from optimality. For the feedforward case, we report the best result ("minimum" in table) and the worse result ("maximum" in table) obtained changing the number of layers and the number of neurons used.

The initial learning rate is taken equal to 1e-3 for first outer simulation in cases 1 and 2 with a linear decay to 1e-5 for a number of outer iterations equal to 1000. For test case 3, the initial learning rate is taken equal to 1e-4 with a linear decay to 1e-5. The result obtained in Table 7.1 is similarly obtained with a large number of functions tested in dimension between N = 10 to 1000. It shows the following results:

• The classical feedforward, with dense layers, often permits to obtain optimally without forcing symmetry of the solution,

• Classical feedforward results do not depend a lot on the number of layers, the number of neurons tested and the activation function used, x i (case 1)

2. f (x) = t + cos(tx), with x = 1 √ N N i=1 x i (case 2)
The approximation is performed through the minimization problem

min θ E[|f (τ, X) -U θ (τ, X)| 2 ], (7.3.3) 
with training simulations from X ∼ N (0 N , 1 N ), and an independent uniform law for τ on [0, 1], and where U θ is a time-dependent DeepSet with parameters θ. We keep the same number of neurons and layers as in the previous section, and compare with a classical feedforward network composed of 3 layers of d + 10 neurons. In all experiments, we use a ReLU activation function. In Table 7.4, we give the results obtained in dimension 100. Surprisingly, the feedforward approximation seems to have difficulties to approximate the case 1 although it is quite similar to case one in the previous section. As for the second case, the result is not so surprising as the case is quite similar to case 4 in previous section, where the feedforward network has difficulties to converge.

Gradient approximation

We now focus on the approximation of the derivative of an exchangeable function by means of U θ a DeepDerSet, a AD-DeepSet, or a classical feedforward network .

The minimization problem is now:

min θ E[ Df (X) -U θ (X) 2 ], (7.3.4) 
where the norm • is the Euclidean norm.

The comparison is performed on the following test functions:

1. f (x) = exp (x + x3 )(1 N + 3x 2 ) where x = 1 N N i=1 x i (case 1) 2. f (x) = y where y i = 1 x i >0 + cos(x i )1 x i <0 , i = 1, . . . , N (case 2) 3. f (x) = 1 √ N sin(x)1 N , where x = 1 √ N N i=1 x i (case 3)
We compare the classical feedforward approximation to our network approximation in Tables 7.5 and 7.6, using a maximal number of iterations equal to 5000. Clearly using a ReLU activation function is superior to the tanh activation function and the DeepDerSet gives the best approximation while the AD-DeepSet or the feedforward may have difficulties to approximate the functions accurately.

for some d × d-matrix valued functions σ ij , and d × q-matrix valued functions σ i0 , satisfying the invariance property: for all π ∈ S N , 

σ ij (t, π[x]) = σ π(i)π(j) (t, x), σ i0 (t, π[x]) = σ π(i)0 (t,
H(t, x, y, z) = -ry + N i=1 inf a∈A β(t, x i , μ(x), a).z i + 1 N f (x i , μ(x), a) (7.4.5) - N i=1 b i (t, x).z i ,
for any function b i satisfying (7.4.2). We shall discuss more in detail the relevant choice of the drift coefficient b i in Section 7.4.3.

The starting point of the numerical scheme is the probabilistic representation of the PDE (7.2.1) with F as in (7.4.1) in terms of a forward backward stochastic differential equation (FBSDE), as in [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]. In our context, the forward system is described by the process X = (X 1 , . . . , X N ) valued in (R d ) N governed by the diffusion dynamics:

dX i t = b i (t, X t )dt + N j=0 σ ij (t, X t )dW j t , (7.4.6) 
where W i , i = 1, . . . , N , are independent d-dimensional Brownian motions, independent of the q-dimensional Brownian motion W 0 . Given this forward diffusion process, we then consider the pair process

(Y, Z = (Z i ) i∈ 1,N ) valued in R ×(R d ) N solution to the BSDE G(X T ) -Y t + T t H(s, X s , Y s , Z s )ds (7.4.7) - N i=1 N j=0 T t (Z i s ) σ ij (s, X s )dW j s = 0, 0 ≤ t ≤ T,
which is connected by Itô's formula to the solution of the PDE (7.2.1) via:

Y t = v(t, X t ), Z i t = D x i v(t, X t ), i = 1, . . . , N, 0 ≤ t ≤ T.
We next consider a time discretization of this FBSDE on a time grid {t k , k = 0, . . . , N T }, with t 0 = 0, t N T = T , ∆t k := t k+1 -t k > 0, by defining the Euler scheme

{X N T k = (X i,N T k
) i∈ 1,N , k = 0, . . . , N T } associated to the forward diffusion process {X t = (X i t ) i∈ 1,N , 0 ≤ t ≤ T }, which is used for the training simulations, together with the increments of the Brownian motions: ∆W j k := W j t k+1 -W j t k , k = 0, . . . , N T -1, j = 0, . . . , N , of our numerical backward scheme. The DBDP algorithm reads then as follows:

The output of the DBDP scheme provides approximations U k (x) of v(t k , x), and Z k (x) of D x v(t k , x), k = 0, . . . , N T -1, for values of x ∈ (R d ) N that are well-explored by the training simulations of X N T k . We refer to [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] (see their section 3.1) for a discussion on the choice of the algorithm hyperparameters. 

J 1 (U k , Z k ) = E U k+1 (X N T k+1 ) -U k (X N T k ) + H t k , X N T k , U k (X N T k ), Z k (X N T k ) ∆t k - N i=1 N j=0 Z k (X N T k , X i,N T k ) σ ij t k , X N T k ∆W j k 2 ,
and update ( U k , Z k ) as the solution to this minimization problem. end neural networks approximating U k and Z k would be trained with only t k as an input and hence they would not be able to learn the dependence on time. However, at time k < N T , we initialize the parameters of U k and Z k respectively with the parameters of the neural networks for U k+1 and Z k+1 , which have been trained at the previous iteration. This gives a good initial guess for the neural networks at time t k and leads to more efficient training.

Fully nonlinear PDE

We consider more generally the fully non-linear PDE (7.2.1) with a symmetric generator F satisfying (HI). We adapt the machine learning scheme in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] for solving fully nonlinear PDEs by exploiting furthermore the exchangeability property of the solution by using again symmetric neural networks as in the semi-linear case.

We fix some arbitrary drift and diffusion coefficients b i , σ ij , i = 1, . . . , N , j = 0, . . . , N , satisfying invariance properties as in (7.4.2)-(7.4.4) (in practice, they should be chosen depending on the studied problem as for the semi-linear case, see a general discussion in Section 3.1 in [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF], and an application in Section 7.5.3), and introduce the forward diffusion system X as in (7.4.6) and its discrete-time Euler scheme X N T . We then consider the triple process

(Y, Z = (Z i ) i∈ 1,N , Γ = (Γ ij ) i,j∈ 1,N ) valued in R ×(R d ) N × S N (S d ) solution to the BSDE G(X T ) -Y t + T t F b,σ (s, X s , Y s , Z s , Γ s )ds - N i=1 N j=0 T t (Z i s ) σ ij (s, X s )dW j s = 0, 0 ≤ t ≤ T, with F b,σ (t, x, y, z, γ) := F (t, x, y, z, γ) - N i=1 b i (t, x).z i - 1 2 N i,j=1 tr Σ ij (t, x)γ ij ,
and Σ ij as in (7.4.3). It is connected by Itô's formula to the fully non-linear PDE (7.2.1) via the representation:

Y t = v(t, X t ), Z t = D x v(t, X t ), Γ t = D 2 x v(t, X t ), 0 ≤ t ≤ T .
Assuming that G is smooth, the algorithm is designed in Algorithm 9.

The case of mean-field PDEs

We consider in this section the case where the PDE (7. 

J 2 (U k , Z k ) = E U k+1 (X N T k+1 ) -U k (X N T k ) + F b,σ t k , X N T k , U k (X N T k ), Z k (X N T k ), D Z k+1 (X N T k+1 ) ∆t k - N i=1 N j=0 Z k (X N T k , X i,N T k ) σ ij t k , X N T k ∆W j k 2 ,
and update ( U k , Z k ) as the solution to this minimization problem. Here D Z k+1 is the automatic differentiation of the D-symmetric NN Z k+1 computed previously at the time step k + 1. end probability measures as described in Example 7.2.2. To simplify the presentation, we consider that there is only control on the drift coefficient β(t, x, µ, a) but no control on the diffusion coefficient σ(t, x, µ) and σ 0 (t, x, µ) of the McKean-Vlasov equation (7.2.3). In this case, recall that when the solution v(t, µ) to this Bellman equation is smooth, an optimal control is given in feedback form by (see [START_REF] Pham | Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics[END_REF]):

α * t = â(t, X * t , P 0 X * t , ∂ µ v(t, P 0 X * t )(X * t )),
where â(t, x, µ, z) is an argmin of a ∈ A → β(t, x, µ, a).z + f (x, µ, a), and X * = X α * is the optimal McKean-Vlasov state process.

Approximation of the optimal control by forward induction of the scheme. As proven in [START_REF] Germain | Rate of convergence for particle approximation of PDEs in Wasserstein space[END_REF], the solution (X, Y, Z) to the FBSDE (7.4.6)-(7.4.7) provides an approximation with a rate of convergence 1/N , when N goes to infinity, of the solution v to (7.2.4), and its

L-derivative: Y t v(t, μ(X t )), N Z i t ∂ µ v(t, μ(X t ))(X i t ).
The drift coefficients b i of the forward particles system X should be chosen in order to generate from training simulations a suitable exploration of the state space for getting a good approximation of the optimal feedback control. In practice, in a first step, one can choose b i (t, x) = β(t, x i , μ(x), a 0 ), for some arbitrary value a 0 ∈ A of the control. After a first implementation of Algorithm 8, we thus have an approximation of ∂ µ v(t, µ)(x) at time t = t k , and µ = μ(x), by N Z k (x, x). Notice however that we solved the PDE along the law of the forward training process, which is different from the optimally controlled process law, except at the initial time t 0 , where we then get an approximation of the optimal feedback control with

(x, μ(x)) -→ â(t 0 , x, μ(x), N Z 0 (x, x)).
Next, by defining an updated initial drift coefficient as bi (t 0 , x) := β t 0 , x i , μ(x), â(t 0 , x i , μ(x), N Z 0 (x, x i )) , for x = (x i ) i∈ 1,N , i = 1, . . . , N, and considering the N -particle discrete-time system

{ XN T k = ( Xi,N T k
) i∈ 1,N , k = 0, . . . , N T }, starting from i.i.d. samples X i 0 , i = 1, . . . , N distributed according to some distribution µ 0 on R d , and with dynamics Xi,N T 1

= X i 0 + bi (t 0 , X 0 )∆t 0 + σ(t 0 , X i 0 , μ(X 0 ))∆W i 0 , Xi,N T k+1 = Xi,N T k + b i (t k , X N T k )∆t k + σ(t k , Xi,N T k , μ( XN T k ))∆W i k ,
for k = 1, . . . , N T -1, we obtain an approximation of the distribution of the optimal particle mean-field process at time t 1 . Applying the algorithm again between t 1 and t N T then allows to compute an approximation of the optimal feedback control â(t 1 , x, μ(x), Z 1 (x, x)) at time t 1 and to update the simulation of Xi,N T

2

. By induction, we can compute the optimal feedback control at every time step through N T executions of the scheme.

Approximation of the solution by randomization of the training simulations. Algorithm 8 provides actually an approximation of v(t, µ) (resp. ∂ µ v(t, µ)(x)) at time t k , and for empirical measures µ = μ(x), by U k (x) (resp. N Z k (x, x)). Thus, in order to get an approximation of v(t k , .) (resp. ∂ µ v(t k , .)(x)) on the whole Wasserstein space P 2 (R d ), we need a suitable exploration of μ(X N T k ) when using the training simulations X N T k , k = 0, . . . , N T . For that purpose, some randomization can first be implemented by randomizing the initial law µ 0 of the forward process. By sampling µ 0 in a compact set K of P 2 (R d ) for each batch element, such as a family of Gaussian measures for instance, our algorithm will be able to learn the value function v(0, µ) and its Lions derivative ∂ µ v(0, µ) on K. Therefore, instead of solving the PDE several times for each initial law we can run the algorithm only once. This can be useful if we have an uncertainty in the initial law of the problem we aim to solve. It corresponds to learning the solution v(t k , µ k, ) on a family of empirical measures corresponding to forward processes X i,( ),N T , i = 1, . . . , N , with initial laws µ 0 ∈ K. Relying on the generalization properties of neural networks, we expect to approximate the value function at time t 0 = 0 on K. Furthermore, if the goal is to obtain an approximation of the PDE solution at any time step t k , the task is more complex. A randomization needs to be performed at each time step t k by sampling X N T k according to a Gaussian mixture ν k with random parameters. We then apply Algorithm 8, and expect to learn the solution over measures with regular densities. The updated method is presented in Algorithm 10. If the state space exploration is efficient, the feedback control will be directly available with only one execution of the algorithm, contrarily to the previously described procedure with N T executions. We should explore the Wasserstein space well enough to learn the value function and its derivative on the unknown law of the optimal process.

Numerical results

In the different test cases, for the approximation of the solution v by means of symmetric neutral networks, we used DeepSets.

A toy example of symmetric PDE in very high dimension

We consider a symmetric semi-linear PDE:

∂ t v + b.D x v + 1 2 tr(σσ D 2 x v) + f (x, v, σ D x v) = 0, (t, x) ∈ [0, T ) × R N v(T, x) = cos(x), with x = N i=1 x i , for x = (x 1 , . . . , x N ) ∈ R N , with b = 0.2/N , σ = I N √ N , f (x, y, z) = (cos(x) + 0.2 sin(x)) e T -t 2 - 1 2 (sin(x) cos(x)e T -t ) 2 + 1 2N (y(1 N • z)) 2 .
so that the PDE solution is exchangeable and given by

v(t, x) = cos (x) exp T -t 2 .
We solve this PDE in dimension N = 1000 by using the deep backward scheme (DBDP) in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] with 60 time steps, and estimate U 0 = v(0, 1 N ) and Z 0 = D x v(0, 1 N ). For the approximation of v, and its gradient D x v, we test with three classes of networks:

Algorithm 10: DBDP scheme with symmetric NN and exploration of Wasserstein space

Initialization: Initialize from the exchangeable function:

UN T (•) = G(•) for k = NT -1, . . . , 0 do define random variables L ∼ U (1, Lmax), ϕ l ∼ U (0, 1), µi ∼ U (-µmax, µmax), (θi) 2 ∼ U (0, σ 2 max ) define a random Gaussian mixture ν k of random density L l=1 ϕ l N (µi, θ 2 i ) L l=1 ϕ l define N i.i.d. particles X i,N T k with law ν k for i = 1, • • • , N , perform one Euler-Maruyama scheme step X i,N T k+1 = X i,N T k + bi(t k , X N T k )∆t k + σ t k , X i,N T k , μ(X N T k ) ∆W i k ,
minimize over symmetric NN U k , and D-symmetric NN Z k , the quadratic loss function (with H as in (7.4.5)):

J1(U k , Z k ) = E U k+1 (X N T k+1 ) -U k (X N T k ) + H t k , X N T k , U k (X N T k ), Z k (X N T k ) ∆t k - N i=1 Z k (X N T k , X i,N T k ) σ t k , X i,N T k , μ(X N T k ) ∆W i k - N i=1 Z k (X N T k , X i,N T k ) σ0 t k , X i,N T k , μ(X N T k ) ∆W 0 k 2 ,
and update ( U k , Z k ) as the solution to this minimization problem. end For each of theses case, we use ReLU activation functions for all the networks, and for the feedforward network, we choose 3 layers of 1010 neurons.

Analytical (i) AD-DeepSets (ii) DeepDerSet (iii) Feedforward U 0 Z 0 U 0 Z 0 U 0 Z 0 U 0 Z 0 0.
Remark 7.5.1. An alternative to Case (i) is to consider an AD-DeepSet DU 1 for D x v with U 1 another DeepSet independent of the one U used for v.

We report the solution in Table 7.7.

We observe that the results with the feedforward network are not good. This is due to the fact that the feedforward network is not able to approximate correctly the final condition whatever the initial learning rate and the number of epochExt are taken, as already shown in Table 7.3. In contrast, we see that the AD-DeepSets and DeepDerSet networks give good results but only when the initial learning rate is taken small enough (here we took 1e-5). Finally, we have tested the Deep BSDE method in [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] with the variation proposed in [CWNMW19] using a network reported in section 7.3.2. The results are unstable and so we do not report them. A direct use of [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] method with a network per time step is impossible to test due the size of the problem but results in lower dimension also indicate some instability directly linked to the initialization of the network.

A mean-field control problem of systemic risk

We consider a mean-field model of systemic risk introduced in [START_REF] Carmona | Mean field games and systemic risk[END_REF]. This model was introduced in the context of mean field games but here we consider a cooperative version. The limiting problem (when the number of banks is large) of the social planner (central bank) is formulated as follows. The log-monetary reserve of the representative bank is governed by the mean-reverting controlled McKean-Vlasov dynamics

dX t = κ(E[X t ] -X t ) + α t ] dt + σdW t , X 0 ∼ µ 0 ,
where α = (α t ) t is the control rate of borrowing/lending to a central bank that aims to minimize the functional cost

J(α) = E T 0 f (X t , E[X t ], α t ) dt + g(X T , E[X T ]) → V 0 = inf α J(α), (7.5.1) 
where the running and terminal costs are given by

f (x, x, a) = 1 2 a 2 -qa(x -x) + η 2 (x -x) 2 , g(x, x) = c 2 (x -x) 2 ,
for some positive constants q, η, c > 0, with q 2 ≤ η.

The value function v to the mean-field type control problem (7.5.1) is solution to the Bellman (semi-linear PDE) equation (7.2.4) with σ constant, σ 0 ≡ 0, r = 0, and

h(t, x, µ, z, γ) = inf a∈R κ(E µ [ξ] -x) + a z + 1 2 a 2 -qa(E µ [ξ] -x) + σ 2 2 γ + η 2 E µ [ξ] -x 2 = (κ + q)(E µ [ξ] -x)z + σ 2 2 γ + η -q 2 2 E µ [ξ] -x 2 - z 2 2 ,
and

G(µ) = c 2 Var(µ) := c 2 E µ |ξ -E µ [ξ]| 2
is the variance of the distribution µ (up to c/2). Here, we use the notation: E µ [ϕ(ξ)] := ϕ(x)µ(dx).

The finite-dimensional approximation of (7.5.1) with N -bank model corresponds to the symmetric Bellman semi-linear PDE on [0, T ] × R N : x i , and ∆ x = N i=1 ∂ 2 x i x i is the Laplacian operator. We numerically solve (7.5.2) with Algorithm 8 described in Section 7.4. The algorithm is trained with the forward process in R N :

∂ t v N + N i=1 (κ + q) x -x i ∂ x i v N + σ 2 2 ∆ x v N + η -q 2 2N N i=1 x -x i 2 - N 2 N i=1 |∂ x i v N | 2 = 0, ( 7 
X i k+1 = X i k + σ∆W i k , X i 0 ∼ µ 0 , k = 0, . . . , N T -1, i = 1, . . . , N.
The choice of a null drift for this training process is intuitively justified by the fact that the objective in (7.5.1) is to incite the log-monetary reserve of the banks to be close to the average of all the other banks, hence we formally expect their drift to be close to zero. We test our algorithm by increasing N , and compare with the explicit solution of the limiting linear-quadratic McKean-Vlasov control problem (7.5.1), which is solved via the resolution of a Riccati equation (see [START_REF] Basei | A weak martingale approach to linear-quadratic McKean-Vlasov stochastic control problem[END_REF]), and is analytically given by

v(t, µ) = K t Var(µ) + σ 2 T t K s ds, where K t = - 1 2 κ + q - √ ∆ √ ∆ sinh( √ ∆(T -t)) + (κ + q + c) cosh( √ ∆(T -t)) √ ∆ cosh( √ ∆(T -t)) + (κ + q + c) sinh( √ ∆(T -t)) ,
with √ ∆ = (κ + q) 2 + η -q 2 , and

T t K s ds = 1 2 ln cosh( √ ∆(T -t)) + κ + q + c √ ∆ sinh( √ ∆(T -t)) - 1 2 (κ + q)(T -t).
We have tested various approximation symmetric networks and different resolution methods. We list the methods that fail to solve the problem in high dimension:

• First we tried the global resolution method in [EHJ17] by using the network described in paragraph 7.3.2 for v. In this case, we could not obtain exploitable results.

• Then we decided to use the local resolution method [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] with a DeepDerSet approximation approach for Z. We found that the method give accurate results in dimension below 100 but with a variance increasing with the dimension. Results were impossible to exploit in dimension 1000. We thus decided to not report the results.

• At last we tested the local resolution methods [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] with classical feedforward networks using tanh or ReLU activation functions. Two variants were tested with N = 500: the first one using a network for v N (we stress the dependence of the solution to the PDE on N ) and another network for Dv N giving values not exploitable, and a second version using a single network for v N and using automatic differentiation to approximate Dv N giving a very high bias and a high standard deviation. We test the tanh and ReLU activation function on this test case using the parameters σ = 1, κ = 0.6, q = 0.8, c = 2, η = 2, T = 1. We report v N estimated with different values of N T and N at time t = 0 and x = 0 so using µ 0 = δ 0 on the figures below. The theoretical solution obtained when N goes to infinity is 0.29244. We use a batch size equal to 200, a number of gradient iteration equal to 30000 for the resolution to project the terminal condition on the network and 6000 gradient iterations for other resolutions. The initial learning rate is taken equal to 1e -4 at the first resolution and 5e -5 for other resolutions. The learning is taken decreasing linearly with gradient iterations to 5e -6.

On figure 7.8, we give the results obtained with ReLU activation function using a DeepSet network for U and a second AD-DeepSet network to approximate Z. The convergence is steady as N T grows and as the dimension grows leading to a very accurate result for N T = 60 and N = 1000.

Using a ReLU activation function, a single network for U which is differentiated to approximate Z, we get the results in figure 7.9. The convergence is still steady but results are not as good as in table 7.8.

The replace the ReLU activation function by a tanh one using two networks and the results are given in table 7.10. The convergence is not steady and increasing to much N or N T worsen to results : it shows the importance of the activation function in this method. At last we do not report the test obtained using a ReLU activation function for the first network and a tanh one for the second network given results far better than in table 7.10 but not as good as in tables 7.8 and 7.9. We also test the accuracy of our algorithm for approximating the L-derivative of the solution, which is here explicitly given by

∂ µ v(t, µ)(x) = 2K t (x -E µ [ξ]).
For this purpose, using N T steps, we solve the same problem on [t, T ], starting at t = T 2 with a distribution µ 0 equal to real distribution of the solution of (7.5.1) taken at date t. After training, we plot x → N Z(X t , x), where X t ∼ µ ⊗N 0 , and compare to the analytic solution: x → ∂ µ v(t, µ 0 )(x). Some graphs are reported in figure 7.4, which shows the accuracy of the approximation.

As mentioned in Section 7.4.3, in theory, the proposed methodology should learn the solution for any initial law µ 0 in the space of measures so that we should be able to solve the problem in infinite dimension. We test our algorithm by sampling µ 0 in the following way: for a sample j, we pick up a mean M ∈ [-1, 1] and a standard deviation σ ∈ [0.2, 1] with an uniform law. Then X i,j 0 ∼ N ( M , σ 2 ) i = 1, . . . , N and as before we use the forward process:

X i,j k+1 = X i,j k + σ∆W i,j k , k = 0, . . . , N T -1, i = 1, . . . , N.
After the training part, we try to recover the initial solution and the initial Lions derivative for a given µ 0 following a gaussian law. Results are given on figure 7.5. The Lions derivative is relatively correctly calculated but the initial value can get an error around 15%. More generally, if we want to solve the PDE at each time step in the Wasserstein space, we can use Algorithm 10. In order to illustrate the exploration of the Wasserstein space we plot in Figure 7.6 the graphs of (X i , N Ẑ(X, X i )), i = 1, . . . , N, vs X i → ∂ µ v(t, P X i )(X i ), when X i t random mixture of Gaussian laws, for N = 300, N T = 30. We observe that we are able to estimate correctly the Lions derivative of the solution (and therefore the optimal control) on several probability measures through a randomized training. Concerning the solution itself, we observe similar behavior as in Figure 7.5 with an error of order 10-15% so we do not show the plots. Further numerical studies are left to future research to improve the estimation of the solution with the randomization procedure.

Mean-variance problem

We consider the celebrated Markowitz portfolio selection problem where an investor can invest at any time t an amount α t in a risky asset (assumed for simplicity to follow a Black-Scholes model with constant rate of return β and volatility ν > 0), hence generating a wealth process X = X α with dynamics

dX t = α t βdt + α t νdW t , 0 ≤ t ≤ T, X 0 = x 0 ∈ R .
The goal is then to minimize over portfolio control α the mean-variance criterion:

J(α) = λVar(X α T ) -E[X α T ],
where λ > 0 is a parameter related to the risk aversion of the investor. Due to the presence of the variance term Var in the criterion, the Markowitz problem falls into the class of McKean-Vlasov control problems, and the associated value function v satisfies the Bellman equation (7.2.4) on [0, T ] × P 2 (R) with r = 0, σ 0 ≡ 0,

h(x, µ, z, γ) = inf a∈R zaβ + 1 2 γa 2 ν 2 = -R 2 z 2 γ , z ∈ R, γ > 0, G(µ) = λE µ ξ -E µ [ξ] 2 -E µ [ξ], µ ∈ P 2 (R),
where we set R := β 2 /ν 2 . The associated finite-dimensional PDE with N particles is given by

     ∂ t v N -R 2 N i=1 (D x i v N ) 2 D 2 x i v N = 0, t ∈ [0, T ), x = (x 1 , . . . , x N ) ∈ (R d ) N , v N (T, x) = G(μ(x)). (7.5.3)
We refer to [START_REF] Ismail | Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix[END_REF] for the McKean-Vlasov approach to Markowitz mean-variance problems (in a more general context), and we recall that the solution to the Bellman equation is given by

v(t, µ) = λe -R(T -t) E µ ξ -E µ [ξ] 2 -E µ [ξ] - 1 4λ e R(T -t) -1 (7.5.4) ∂ µ v(t, µ)(x) = 2λe -R(T -t) (x -E µ [ξ]) -1, ∂ x ∂ µ v(t, µ)(x) = 2λe -R(T -t)
and in particular

V 0 := inf α J(α) = v(0, δ x 0 ) = -x 0 -1 4λ [e RT -1].
Moreover, the optimal portfolio strategy is given by

α * t = â(t, X * t , E[X * t ]) := - β ν 2 X * t -E[X * t ] - e R(T -t) 2λ = - β ν 2 X * t -x 0 - e RT 2λ , 0 ≤ t ≤ T, (7.5.5) 
where X * = X α * is the optimal wealth process. We test our Algorithm 9 described in Section 7.4.2 with the training of the forward process

X i,N,π k+1 = X i,N,π k + R 2λ ∆t k + √ R 2λ ∆W i k , X i 0 = x 0 , k = 0, . . . , N T -1, i = 1, . . . , N,
which is the time discretization of the wealth process for a constant portfolio strategy α t = β/(2ν 2 λ), which is known to be optimal for the exponential utility function U (x) = -e -2λx . This corresponds to the choice of b i = R/(2λ) and

σ ij = √ R/(2λ). Here, notice that ∂ µ G(µ)(x) = 2λ(x -E µ [ξ]
) -1, and we then use for the initialization at terminal step N T , the DeepDerSet function

Z N T ((x i ) i , x) = 2λ x -1 N i x i -1 (corresponding to the average function s((x i ) i ) = 1 N i x i ), which yields the automatic differentiation DZ N T ((x i ) i , x) = 2λ(1 -1 N ).
We choose the parameters β = 0.15, ν = 0.35, λ = 1, and the quantile at 99.9% for the truncation in scheme [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF], and report the results in Table 7.11. The optimization parameters are the same as in the semilinear case, except the batch size taken equal to 50 and the number of gradient iterations after first step taken equal to 4000. We use a ReLU Deepset for U and a AD-Deepset with a tanh activation function for Z. Remark that in this case it is not possible to use a ReLU activation function for the second network.

Moreover, we test the accuracy of the control approximation. We solve the PDE from T /2 to T starting with the optimal distribution of the wealth at T /2, which is given by: log

X T 2 η(T /2) -x 0 -e RT 2λ
∼ N (0, κ(T /2)), 7.11: Estimate of E v N (0, X 1 0 , . . . , X N 0 ) with a deterministic initial condition X 0 = 1, T = 1, σ = 1. Average and standard deviation observed over 10 independent runs are reported. The theoretical solution is -1.0504058 when N, N T → +∞.

Solution Control

Derivative Second order derivative 

η(t) = -e R(T -t) 2λ , κ 2 (t) = log e R(T -t) (e RT -e R(T -t) ) 4λ 2 η(t) 2 + 1 ,
and we calculate the solution obtained at date T /2 and the control obtained solving the PDE (7.5.3) that we can compare to the analytical solution given by (7.5.4) and (7.5.5). After training, using n s = 50 samples of X ∈ (R N ) ns following the law of X T

2

, we calculate the control obtained for each sample in each of the dimension. After sorting X in a one dimensional array, We plot the result obtained on Figures 7.7-7.8. For the solution, the x-axis corresponds to the sample number and the y-axis is the value of the estimated solution. For the other plots, the x-axis is the state space and the y-axis is the value of the corresponding function.

A min/max Linear quadratic mean-field control problem

We consider a mean-field model in which the dynamics is linear and the running cost is quadratic in the position, the control and the expectation of the position. 2. σ = 0.5, x 0 = 0.625, ϑ 0 = √ 0.2,

3. σ = 0.3, x 0 = 0.625, ϑ 0 = √ 0.2, 4. σ = 0.3, x 0 = 0.625, ϑ 0 = √ 0.4.
References are given in table 7.12: they are calculated by the PDE method in [START_REF] Achdou | Mean Field Games: Numerical Methods[END_REF] (in the context of mean field games; see [START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF] for the adaptation to the PDE system arising in mean field control) with step size in space and time of size 10 -3 , and the neural network method referred to as Algorithm 1 in [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] with N = 10000 and N T = 50. In table 7.13, we give the results obtained with different time discretization and dimension for the DPBD scheme using ReLU activation functions with a DeepSet network for U and a second AD-DeepSet network to estimate Z. Results are very good except for test case 1 where a small bias appears.

In table 7.14, we give the same results using a single network. Here the results are very good for all test cases. Using two networks, the algorithm certainly face difficulties to approximate the derivatives near maturities which is not required using a single network. This last Chapter develops a framework to consider state constrained mean-field control. In this context we establish a method to write down mean-field control with constraints on the law of the state. As a consequence, it contains in particular the case of almost sure constraints which are considered in the mean field games literature [CC18; CCC18]. The constraint is handled thanks to a representation result with a level-set approach and an auxiliary unconstrained deterministic problem in infinite dimension. This problem can be solved numerically by an adaptation of the scheme from [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF]. An alternative could have been to consider the resolution of the master Bellman equation characterizing the auxiliary problem, which is left to future research. resolution of the original constrained mean-field control problem. We shall actually adapt the machine learning algorithm in [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] for solving two applications in renewable energy storage and in portfolio selection.

The outline of the paper is organized as follows. Section 8.2 develops the level-set approach in our constrained mean-field setting with supremum term. We present in Section 8.3 the alternative level-set formulation with integral term, and discuss when the optimization over open-loop controls yields the same value than the optimization over closed-loop controls. This will be useful for numerical purpose in the approximation of optimal controls. The method is then extended in Section 8.4 to the common noise setting. Finally, we present in Section 8.5 the applications and numerical tests.

Mean-field control with state constraints

Let (Ω, F, P) be a probability space on which is defined a d-dimensional Brownian motion W with associated filtration F = (F t ) t augmented with P-null sets. We assume that F 0 is "rich enough" in the sense that any probability measure µ on R d can be represented as the distribution law of some F 0 -measurable random variable. This is satisfied whenever the probability space (Ω, F 0 , P) is atomless.

We consider the following cost and dynamics:

J(X 0 , α) = E T 0 f s, X α s , α s , P (X α s ,αs) ds + g X α T , P X α T X α t = X 0 + t 0 b s, X α s , α s , P (X α s ,αs) ) ds + t 0 σ(s, X α s , α t , P (X α s ,αs) dW s , (8.2.1)
where P (X α s ,αs) is the joint law of (X α s , α s ) under P and X 0 is a given random variable in L 2 (F 0 , R d ). The control α belongs to a set A of F-progressively measurable processes with values in a set A ⊆ R q . The coefficients b and σ are measurable functions from [0, T ] × R d ×A × P 2 (R d ×A) into R d and R d×d , where P 2 (E) is the set of square integrable probability measures on the metric space E, equipped with the 2-Wasserstein distance W 2 . We make some standard Lipschitz conditions on b, σ in order to ensure that equation (8.2.1) is well-defined and admits a unique strong solution, which is square-integrable. The function f is a real-valued measurable function on [0, T ] × R d ×A × P 2 (R d ×A), while g is a measurable function on R d ×P 2 (R d ), and we assume that f and g satisfy some linear growth condition which ensures that the functional in (8.2.1) is well-defined.

Furthermore, the law of the controlled McKean-Vlasov process X is constrained to verify

Ψ(t, P X α t ) ≤ 0, 0 ≤ t ≤ T, (8.2.2) where Ψ = (Ψ l ) 1≤l≤k is a given function from [0, T ]×P 2 (R d ) into R k . Here, the multi-dimensional constraint Ψ(t, µ) ≤ 0 has to be understood componentwise, i.e., Ψ l (t, µ) ≤ 0, l = 1, • • • , k. The problem of interest is therefore V := inf α∈A J(X 0 , α) : Ψ(t, P X α t ) ≤ 0, ∀ t ∈ [0, T ]
. By convention the infimum of the empty set is +∞. When needed, we will sometimes use the notation V Ψ to emphasize the dependence of the value function on Ψ. Clearly, Ψ ≤ Ψ (meaning that for each component

Ψ l ≤ Ψ l , l = 1 • • • k) implies V Ψ ≤ V Ψ .
Remark 8.2.1. This very general type of constraints includes for instance:

• Controlled McKean-Vlasov process X constrained to stay inside a non-empty closed set K t ⊆ R d with probability larger than a threshold p t ∈ [0, 1], namely

P(X α t ∈ K t ) ≥ p t , ∀ t ∈ [0, T ], with Ψ : (t, µ) → p t -µ(K t ). With p t = 1, ∀t ∈ [0, T ] it yields almost sure constraints.
• Almost sure contraints on the state, X α t ∈ K t , ∀t ∈ [0, T ] P a.s., with

Ψ : (t, µ) → R d d Kt (x) µ(dx),
where d Kt is the distance function to the non-empty closed set K t .

• The case of a Wasserstein ball constraint around a benchmark law η t in the form W 2 (P

X α t , η t ) ≤ δ t with Ψ : (t, µ) → W 2 (µ, η t ) -δ t .
This is the constraint considered in [START_REF] Pesenti | Portfolio Optimisation within a Wasserstein Ball[END_REF] at terminal time.

• A terminal constraint in law ϕ(P X α T ) ≤ 0 as in [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] with

Ψ : (t, µ) → ϕ(µ)1 t=T . • Terminal constraint in law P X α T ∈ K ⊂ P 2 (R d ) as in [BDK20] with Ψ : (t, µ) → (1 -1 µ∈K )1 t=T . • The case of discrete time constraints φ(t i , P X α t i ) ≤ 0 for t 1 < • • • < t k with Ψ : (t, µ) → φ(t, µ)1 t∈{t 1 ,••• ,t k } .
Even though this problem seems much more involved than the standard stochastic control problem with state constraints investigated in [START_REF] Bokanowski | State-Constrained Stochastic Optimal Control Problems via Reachability Approach[END_REF], thanks to an adequate reformulation, it turns out that we can adapt the main ideas from this paper to our framework and construct similarly an unconstrained auxiliary problem (in infinite dimension).

A target problem and an associated control problem

Given z ∈ R, and α ∈ A, define a new state variable

Z z,α t := z -E t 0 f s, X α s , α s , P (X α s ,αs) ds = z - t 0 f s, P (X α s ,αs) ds, 0 ≤ t ≤ T, (8.2.3)
where f is the function defined on [0, T ] × P 2 (R d ×A) by f (t, ν) = R d ×A f t, x, a, ν ν(dx, da). We also denote by g the function defined on P

2 (R d ) by g(µ) = R d g(x, µ)µ(dx).
Lemma 8.2.1. The value function admits the deterministic target problem representation

V = inf{z ∈ R | ∃ α ∈ A s.t. g(P X α T ) ≤ Z z,α T , Ψ(s, P X α s ) ≤ 0, ∀ s ∈ [0, T ]}.
Proof. We first observe from the definition of V in (8.2.2) that it can be rewritten as

V = inf{z ∈ R | ∃ α ∈ A s.t. J(X 0 , α) ≤ z, Ψ(t, P X α t ) ≤ 0, ∀ t ∈ [0, T ]}.
Next, by noting that the cost functional is written as

J(X 0 , α) = T 0 f t, P (X α t ,αt) dt + g(P X α T ),
the result then follows immediately by the definition of Z z,α in (8.2.3).

In view of the above example in Remark 8.2.3, we introduce a modified constraint function in order to deal with discrete time constraints, and also with a.s. constraints. Given a constraint function Ψ(t, µ), we define

Ψ κ (t, µ) := Ψ(t, µ) -κ k l=1 1 {Ψ l (t,µ)≤0} e l , (8.2.6)
with κ > 0 and e l the l-th component of the canonical basis of R k . Then it is immediate to see that

V Ψ = V Ψκ , Y Ψ = Y Ψκ , Z Ψ = Z Ψκ .
Remark 8.2.4. Notice that by taking ε 0 < κ, and assuming that V Ψ < ∞, we have Z Ψκ+ε 0 1 k < ∞. Indeed, by applying Theorem 8.2.1 to Ψ κ , we have Z Ψκ+ε 0 1 k ≤ V Ψκ+ε 0 1 k . Moreover, by observing that an admissible control for the original problem V Ψ is also admissible for the auxiliary problem with constraint function

Ψ κ + ε 0 1 k , by definition of Ψ κ , this implies that V Ψκ+ε 0 1 k < ∞.

Representation of the value function

Now we prove under some assumptions on the constraints the continuity property Z Ψκ = inf ε>0 Z Ψκ+ε1 k in order to obtain a characterization of the original value function V Ψ . The result relies on convexity arguments. Theorem 8.2.2. Assume that V Ψ < ∞. Then we have the representation

Lemma 8.2.2. (z, ε) ∈ R × R → Y Ψ+ε1 k (z) is jointly convex.
Ψ < ∞ then Y Ψ is decreasing on (-∞, Z Ψ ] then Y Ψ (z) = 0 on [Z Ψ , ∞).
Z Ψ = V Ψ .
Moreover ε-optimal controls α ε for the auxiliary problem Y Ψ (V Ψ ) are ε-admissible ε-optimal controls for the original problem in the sense that

J(X 0 , α ε ) ≤ V Ψ + ε, sup 0≤s≤T Ψ(s, P X α ε s ) ≤ ε.
Proof of Theorem 8.2.2. We prove the continuity of Z Ψκ along the curve Z Ψκ+ε1 k for ε ∈ R where Ψ κ is defined in (8.2.6). Let κ > 0 and ε 0 < κ. By Remark 8.2.4, we know that Z Ψκ+ε 0 1 k < ∞. We consider the optimization problem

Φ : ε ∈ R → inf z z + χ Ξ (ε, z),
where χ Ξ is the indicator function of the non-empty admissible set Ξ

= {(ε, z) ∈ R 2 | Y Ψκ+ε1 k (z) = 0} = {(ε, z) ∈ R 2 | Y Ψκ+ε1 k (z) ≤ 0}, namely χ Ξ (ε, z) = 0 if (ε, z) ∈ Ξ +∞ otherwise. Note that Z Ψκ+ε1 k = inf{z | Y Ψκ+ε1 k (z) = 0} = Φ(ε). By Proposition 8.2.2, Y Ψκ+ε1 k (z) is jointly convex thus Ξ is convex. Hence, (ε, z) → z + χ Ξ (ε, z) is jointly convex. Now Φ(ε)
is convex as the marginal of a jointly convex function. As a consequence, ε ∈ R → Φ(ε) is continuous in zero by noticing that ε ∈ (-∞, ε 0 ) → Φ(ε) ≤ Z Ψκ+ε 0 1 k < +∞ and applying Lemma 2.1 from [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF]. As a consequence Z Ψκ = inf ε>0 Z Ψκ+ε1 k . Therefore by Theorem 8.2.1 applied to Ψ κ , we obtain Z Ψκ = V Ψκ . Then recalling that Z Ψ = Z Ψκ , V Ψ = V Ψκ , the result follows. Concerning the controls, take ε > 0, and consider an ε-optimal control α ε ∈ A such that

{ g(P α ε T ) -Z Z Ψ ,α ε T } + + k l=1 sup s∈[0,T ] {Ψ l (s, P X α ε s )} + ≤ ε.
The two terms on the l.h.s. being non-negative, they both are smaller than ε and thus

g(P α ε T ) ≤ Z Z Ψ ,α ε T + ε, and Ψ l (s, P X α ε s ) ≤ ε, ∀ s ∈ [0, T ], ∀l = 1, • • • , k. Hence J(X 0 , α ε ) ≤ Z Ψ + ε = V Ψ + ε and Ψ(s, P X α ε s ) ≤ ε, ∀ s ∈ [0, T ].

Proofs

Proof of Proposition 8.2.1. 1) By the inequalities

| inf u A(u) -inf u B(u)| ≤ sup u |A(u) -B(u)|, | sup u A(u) -sup u B(u)| ≤ sup u |A(u) -B(u)|we obtain for any z, z ∈ R |Y Ψ (z) -Y Ψ (z )| = | inf α∈A { g(P X α T ) -Z z,α T } + + k l=1 sup s∈[t,T ] {Ψ l (s, P X α s )} + -inf α∈A { g(P X α T ) -Z z ,α T } + + k l=1 sup s∈[t,T ] {Ψ l (s, P X α s )} + | ≤ sup α∈A |{ g(P X α T ) -Z z,α T } + -{ g(P X α T ) -Z z ,α T } + + k l=1 sup s∈[t,T ] {Ψ l (s, P X α s )} + - k l=1 sup s∈[t,T ] {Ψ l (s, P X α s )} + | ≤ sup α∈A |Z z,α T -Z z ,α T | = |z -z |, by 1-Lipschitz continuity of x → {x} + . 2) Denote by L Ψ (z, α) = { g(P X α T ) -Z z,α T } + + k l=1 sup s∈[0,T ] {Ψ l (s, P X α s )} + , so that Y Ψ (z) = inf α∈A L Ψ (z, α). Then, it is clear that z ≤ z =⇒ L Ψ (z , α) ≤ L Ψ (z, α)
hence by minimizing, the same monotonicity property holds also for the value function

z ≤ z =⇒ Y Ψ (z ) ≤ Y Ψ (z). Proof of Theorem 8.2.1. 1) ∃ α ∈ A, g(P X α T ) ≤ Z z,α T and Ψ(s, P X α s ) ≤ 0, ∀ s ∈ [0, T ]. Therefore { g(P X α T ) -Z z,α T } + + k l=1 sup s∈[0,T ] {Ψ l (s, P X α s )} + = 0
and by non-negativity of Y we obtain Y Ψ (z) = 0

2) By continuity of Y (Proposition 8.2.1) and 1), we obtain Y Ψ (V Ψ ) = 0 by taking admissible ε-optimal controls for the original problem and taking the limit ε → 0. By definition of Z Ψ the property is established.

3) We assume that exists ε

0 > 0 such that Z Ψ+ε 0 1 k < +∞. If it is not the case then inf ε>0 Z Ψ+ε1 k = +∞ and the inequality is verified. Let 0 < ε < ε 0 satisfying Z Ψ+ε1 k < ∞. By continuity of Y in the z variable (Proposition 8.2.1), Y Ψ+ε1 k (Z Ψ+ε1 k ) = 0. Then by definition of Y Ψ+ε1 k , for 0 < ε ≤ ε, ∃ α ε ∈ A such that { g(P α ε T ) -Z Z Ψ+ε1 k ,α ε T } + + k l=1 sup s∈[0,T ] {Ψ l (s, P X α s ) + ε} + ≤ ε .
The two terms on the l.h.s. being non-negative, they both are smaller than ε and thus

g(P α ε T ) ≤ Z Z Ψ+ε1 k ,α ε T + ε , and Ψ l (s, P X α s ) ≤ ε -ε ≤ 0, ∀ s ∈ [0, T ], ∀l = 1, • • • , k. Hence J(α ε ) ≤ Z Ψ+ε1 k + ε and Ψ(s, P X α s ) ≤ 0, ∀ s ∈ [0, T ].
Therefore by arbitrariness of ε verifying 0 < ε < ε we conclude that V Ψ ≤ Z Ψ+ε1 k . By arbitrariness of ε verifying 0 < ε < ε 0 it follows

V Ψ ≤ inf ε∈(0,ε 0 ) Z Ψ+ε1 k = inf ε>0 Z Ψ+ε1 k ,
where the last equality comes from the non-increasing property of Z Ψ+ε1 k w.r.t. ε.

Proof of Lemma 8.2.2. 

1. Let 0 ≤ λ ≤ 1 . Then for z, z , ε, ε ∈ R L Ψ+λε1 k +(1-λ)ε 1 k (λz + (1 -λ)z , α) = {λ g(P X α T ) + T 0 f s, P (X α s ,αs) ds -z + (1 -λ) g(P X α T ) + T 0 f s, P (X α s ,αs) ds -z } + + k l=1 sup s∈[0,T ] {λΨ l (s, P X α s ) + λε + (1 -λ)Ψ l (s, P X α s ) + (1 -λ)ε } + ≤ λ{ g(P X α T ) + T 0 f s, P (X α s ,αs) ds -z} + + (1 -λ){ g(P X α T ) +

Potential extension towards dynamic programming

If one wants to use dynamic programming in order to solve the auxiliary control problem, it requires to write it down under a Markovian dynamic formulation. Define With this formulation, the problem (8.2.7) becomes a Mayer-type Markovian optimal control problem in the augmented state space [0, T ] × L 2 (F 0 , R d ) × R × R. As mentioned in [START_REF] Bokanowski | Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost[END_REF], this procedure is used for instance for hedging lookback options in finance, see e.g. [START_REF] Galichon | A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options[END_REF]. Now the infimum of the zero level-set is given by

Z Ψ (t, ξ) := inf{z ∈ R | Y Ψ (t, ξ, z, 0) = 0}.
Indeed note that Y Ψ (t, ξ, z, m) = 0 ⇐⇒ m ≤ 0 and Y Ψ (t, ξ, z, 0) = 0.

The Lipschitz and convexity properties of the value function are proven exactly as in Proposition 8.2.1 but we detail here the continuity in space and in the running maximum variable m. 

Z Ψ (t, ξ) = Z Ψ (t, η).
Therefore we can define the lifted functions y Ψ , z Ψ on [0, T ] × P 2 (R d ) × R (respectively [0, T ] × P 2 (R d ) by y Ψ (t, P ξ , z, m) := Y Ψ (t, ξ, z, m) and z Ψ (t, P ξ , z, m) := Z Ψ (t, ξ, z, m).

Proof. Apply the same arguments as in Theorem 3.5. from [START_REF] Cosso | Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension[END_REF] to the unconstrained Markovian value function Y Ψ on the extended state space. In particular use the continuity of Y Ψ from Proposition 8.2.1 and notice for a given control α that in Step 1 of Theorem 3.5. from [START_REF] Cosso | Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension[END_REF] the equality in law ((X holds true with a s defined in Lemma B.2. from [START_REF] Cosso | Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension[END_REF] (verifying in particular the equality in law α s = a s (ξ, U ξ )) and β s = a s (η, U η ) where U η (respectively U ξ ) is a F t -adapted uniform ) ≤ 0 P a.s.

by continuity of Ψ and of s → P W 0 X α s , which means V 0 ≤ Z. By 1) it yields V 0 = Z. As a consequence the previous proof provides an optimal control α for the original problem.

Applications and numerical tests

We design several machine learning methods to solve this problem. We discretize the problem in time, parametrize the control by a neural network and directly minimize the cost. When the constraints are almost sure, we can sometimes enforce them by choosing an appropriate neural network architecture, for instance in storage problems. A more adaptive alternative is to solve the unconstrained auxiliary problem. We propose an extension of the first algorithm from [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] to achieve this task. Thus we obtain a machine learning method able to solve state constrained mean field control problems.

Algorithms

We solve the auxiliary problem in the simpler case without common noise with a first algorithm. We fix a relevant line segment K of R on which we are going to explore the potential values of the problem. For instance we know that the value is greater than the value of the unconstrained problem V therefore it is useless to compute the auxiliary value function for z ≤ V . We discretize the problem in time on the grid t k := kT N . We call ∆t := kT N and the Brownian increment ∆W i := W t i+1 -W t i . For j = 1, • • • , N , ∆W j i (respectively X j 0 ) correspond to samples from N independent Brownian motions W j (respectively from N independent random variables with law µ 0 ). For training we discretize K by using N points. We choose ε as a small parameter, typically of order 10 -6 . We refer to [START_REF] Bokanowski | Optimistic Planning Algorithms For State-Constrained Optimal Control Problems[END_REF] for results on the numerical approximation of level sets with a given threshold in the context of constrained deterministic optimal control. We propose the following extension of the Method 1 from [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF]. It is tested in Subsection 8.5.2. It can indeed also be used to solve unconstrained problem.

Remark 8.5.1. We point out that adding an additional parameter Λ > 0 in front of the constraint function does not modify the representation results. In that case we solve the following auxiliary problem

Y Ψ Λ := z ∈ R → inf α∈A { g(P X α T ) -Z z,α T } + + Λ k l=1
T 0 {Ψ l (s, P X α s )} + ds + Λϕ(P X α T ) .

We discretize the problem in time and use a neural network by time step, since a single network taking time as input is usually not sufficient enough for complex problems, as shown in [START_REF] Warin | Reservoir optimization and Machine Learning methods[END_REF]. In view of the discussion about closed-loop controls in Section 8.3, the neural network representing the control at each time step takes as inputs the current states X and Z z,α i where z is taken on a discretization of K. The method is described in Algorithm 11 with an example in Section 8.5.2. Solving (8.3.3) with the approach of [START_REF] Germain | DeepSets and derivative networks for solving symmetric PDEs[END_REF] would provide another numerical method for mean-field control with state constraints. The extension to the common noise case is given in Algorithm 12 where the neural network for the control at each time step t i takes in addition as input the current value of the common noise W 0 t i . Notice that in general, the control may depend on the past values of the common noise, which could be taken into account in the neural network by taking as inputs the past increments of the common noise ∆W 0 0 , . . . , ∆W 0 i-1 , where ∆W 0 i = W 0 t i+1 -W 0 t i . The neural network for the auxiliary control β at each time t i takes as inputs the current state Z z,α i and the current value of the common noise. An illustration is given in Section 8.5.3.

Mean-variance problem with state constraints

We consider the celebrated Markowitz portfolio selection problem where an investor can invest at any time t an amount α t in a risky asset (assumed for simplicity to follow a Black-Scholes model with constant rate of return r and volatility σ > 0), hence generating a wealth process X = X α with dynamics dX t = α t r dt + α t σ dW t , 0 ≤ t ≤ T, X 0 = x 0 ∈ R .

The goal is then to minimize over portfolio control α the mean-variance criterion :

inf α J(α) = λVar(X α T ) -E[X α T ] (8.5.1)
where λ > 0 is a parameter related to the risk aversion of the investor. We will add to this standard problem a conditional expectation constraint in the form /* Auxiliary problem */ and for i = 0, • • • , N T -1, j = 1, • • • , N X j i+1 = X j i + b t i , X j i , α i (X j i , Z z,α,β i , W 0 t i ), µ i ∆t + σ t i , X j i , α i (X j i , Z z,α,β i , W 0 t i ), µ i ∆W j i + σ 0 t i , X j i , α i (X j i , Z z,α,β i , W 0 t i ), µ i ∆W 0 i , X j 0 ∼ µ 0 Z z,α,β i+1 = Z z,α,β i -1 N N l=1 f t i , X l i , α i (X l i , Z z,α,β i , W 0 t i ), µ i ∆t + β i (Z z,α,β i , W 0 t i ) ∆W 0 i , Z z,α,β

E[X α t | X α t ≤ θ] ≥ δ, if P(X α t ≤ θ) > 0,
0 = z µ i = 1 N N j=1
δ (X j i ,α i (X j i ,Z z,α,β i ,W 0 t i

))

/* Particle approximations */ Define (α * , β * ) as the solution to this minimization problem. Then, compute V 0 = inf{z i , i ∈ 1, M | w Λ (z i ) ≤ ε} with α = α * and β = β * in the dynamics. /* Recovering the cost of the original problem */ Return the value V 0 and the optimal controls αi : x → α * i (x, Z V 0 ,α * ,β * i , W 0 t i ) for i = 0, • • • , N T -1.

/* Recovering the control of the original problem */ with δ < θ, which can be reformulated as 0 ≥ (δ -E[X α t | X α t ≤ θ])P(X α t ≤ θ).

The auxiliary deterministic unconstrained control problem is therefore

Y Λ (z) := inf α∈A {λVar(X α T ) -E[X α T ] -z} + + Λ T 0 {(δ -E[X α s | X α s ≤ θ])P(X α s ≤ θ)} + ds
with the dynamics dX α s = α s r ds + α s σ dW s , which corresponds to the constraint function Ψ(t, µ) → (δ -E µ [ξ | ξ ≤ θ])µ((-∞, θ]). We have the representation J(α * ) = Z = inf{z ∈ R | Y Λ (z) = 0}. Indeed we see that the null control is admissible with the modified constraint E[X α t | X α t ≤ θ]P(X α t ≤ θ) = 0 ≥ (δ + ε)P(X α t ≤ θ) = 0, ∀t ∈ [0, T ] for any 0 < ε < θ -δ because x 0 ≥ θ hence P(X α t ≤ θ) = 0 so we can apply Theorem 8.2.2. For practical application, other constraints could be considered like almost sure constraints on the portfolio weights as in [START_REF] Warin | Deep learning for efficient frontier calculation in finance[END_REF]. Instead of the dualization method used by [START_REF] Lefebvre | Mean-Variance Portfolio Selection with Tracking Error Penalization[END_REF], constraints on the law of the tracking error with respect to a reference portfolio could be enforced.

For numerical tests we take r = 0.15, σ = 0.35, λ = 1. We choose x 0 = 1, θ = 0.9, δ = 0.8 and solve inf α J(α) = λVar(X α T ) -E[X α T ] (8.5.2) dX t = α t r dt + α t σ dW t , (0.8 -E[X α t | X α t ≤ 0.9])P(X α t ≤ 0.9) ≤ 0, ∀t ∈ [0, T ].

We compare the controls from Algorithm 11 with the exact optimal ones in the unconstrained case for which we have an analytical value. We also solve without constraints for comparison and plot the final time histograms. We solve the unconstrained case with algorithm 11 and the one from [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] for comparison. We take 50 time steps for the time discretization and a batch size of 20000. We use an feedforward architecture with two hidden layers of 15 neurons. We perform 15000 gradient descent iterations thanks to the Tensorflow library. The true value v = J(α * ) is -1.05041 without constraints. We also have the upper bound -1. for the value in the constrained case, corresponding to the identically null control and wealth process X t = 1 ∀t ∈ [0, T ]. With constraint we choose K = [-1.047, -1.041], without constraint we take K = [-1.07, -1.03], discretized by regular grids with 25 points. In Figure 8.2 we observe the shift of the distribution of the final wealth thanks to the constraint (on the left) with less probable large losses but also less probable large gains. Indeed Figure 8.4 confirms that the conditional expectation constraint is verified when we solve the corresponding problem through our level set approach. We see in Figure 8.3 that the more Λ is large the more the auxiliary value function becomes affine before reaching zero. Additional results are presented in Table 8.1.

Our method can also handle directly the primal of the mean-variance problem, that is to maximize over portfolio control α the expected terminal wealth under a terminal variance constraint: 8.1 and choose ϑ = exp(σ -2 r 2 T )-1 4λ 2 = 0.0504. In this case the auxiliary deterministic unconstrained control problem is now

inf α J(α) = -E[X α T ] (8.
U Λ (z) = inf α∈A {-E[X α
T ] -z} + + Λ{Var(X α T ) -ϑ} + dX t = α t r dt + α t σ dW t , which corresponds to the constraint function Ψ(t, µ) → (Var(µ) -ϑ) + 1 t=T and the modified constraint function Ψ η (t, µ) → (Var(µ)-ϑ) + 1 t=T -η1 t<T (see Remark 8.2.3). Theorem 8.2.2 still applies as far as the null control is admissible with the modified constraint (Var(µ) -ϑ) + 1 t=T + ε -η1 t<T ≤ 0 for any 0 < ε < η and any t ∈ [0, T ]. Figure 8.5 shows that we recover the optimal control for the problem and that the terminal variance constraint is satisfied. We see in Figure 8.6 that similarly as in Figure 8.3, for large values of Λ the auxiliary value function is affine before reaching zero. In this case the exact solution is -1.10 which is very close to the point in which the affine part reaches zero.

In Table 8.1 we observe that our method gives a small variance for the results over several runs. In the case where an analytical solution is known, the value of the control problem is computed accurately with less than 0.5% of relative error. The expectation and variance of the Average and standard deviation observed over 10 independent runs are reported, with the relative error (in %). We also report the terminal expectation and variance of the approximated optimally controlled process for a single run. ' ?' means that we don't have a reference value. For problem (8.5.1) we take Λ = 10 and for problem (8.5.2) we choose Λ = 100 terminal value of the optimally controlled process are also very close to their theoretical values.

In the case of a conditional expectation constraint, even though we don't have an exact solution we notice that the value is close to the unconstrained value hence since our solution is admissible, we expect to be near optimality. On the unconstrained problem (8.5.1) our scheme and the one from [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] give similar results.

Optimal storage of wind-generated electricity

We consider N wind turbines with N associated batteries. Define the productions P i t , storage levels X i t , storage injection α i t for which we provide a typical range1 . We consider the following constraints 0 ≤ X i t ≤ X max -→ limited storage capacity (1kWh -10 MWh) α ≤ α i t ≤ α -→ limited injection/withdrawal capacity (10 kW -10MW)

with X max ≥ 0, α ≤ 0 ≤ α. Define the spot price of electricity S t without wind power, S t the price with wind production. Selling a quantity P i t -α i t on the market, producer i obtains a revenue S t (P i t -α i t ) (if P i t -α i t < 0 the producer is buying from the market) where the market price is affected by linear price impact

S t = S t - Θ(N ) N N i=1 (P i t -α i t ),
modeling the impact of intermittent renewable production on the market. Θ is positive, nondecreasing and bounded. We call Θ ∞ = lim N →∞ Θ(N ) < ∞. We consider N + 2 indepen-dent Brownian motions W 0 t , B 0 t , W In the production dynamics, the common noises W 0 t , B 0 t corresponds to the global weather and the market price randomness whereas the idiosyncratic noises W i t for i > 1 model the local weather, independent from one wind turbine to another. We call F 0 the filtration generated by W 0 t , B 0 t . The productions P i t are bounded processes and the price S t is positive. Of course the modified price S t in the presence of renewable producers can become negative, as empirically observed in some overproduction events. However it stays bounded by below in our model. Producer i gain function to maximize is Here the state is (X t , P t , S t ) ∈ R 3 hence the distribution of the state lives in P 2 (R 3 ). The set A corresponds to progressively measurable controls with values in the compact set [α, α]. A similar problem is solved by [START_REF] Alasseur | An Extended Mean Field Game for Storage in Smart Grids[END_REF] without any storage constraints by Pontryagin principle. With constraints but without mean-field interaction, a close problem is solved by [START_REF] Picarelli | Optimal management of pumped hydroelectric production with state constrained optimal control[END_REF]. For instance X max = 0 corresponds to the much simpler problem without storage nor control of the valuation of a wind power park. See also [START_REF] Curin | A deep learning model for gas storage optimization[END_REF][START_REF] Warin | Reservoir optimization and Machine Learning methods[END_REF]. To represent the almost sure constraint 0 ≤ X t ≤ X max we choose as constrained function

J i (α 1 , • • • , α N ) = E T 0 {S
Ψ : µ ∈ P 2 (R 3 ) → R {(-x) 2 + + (x -X max ) 2 + } µ 1 (dx),
where µ 1 is the first marginal law of the measure µ.

The auxiliary unconstrained control problem is therefore w(z) := -inf α,β 0,1 ,β where is a small term used to force the a.s. constraints.

We consider the standard stochastic control benchmark with only common noise for the production (ρ = 1). It corresponds to a single very large wind farm where all wind turbines produce the same power. The problem degenerates as -inf α∈A E T 0 {(-S t + Θ ∞ (P t -α t ))(P -α t )} dt dX t = α t dt dP t = ι(φP max -P t ) dt + σ p (P t ∧ {P max -P t }) + dW 0 t dF (t, T ) = F (t, T )σ f e -a(T -t) dB 0 t S t = F (t, t) 0 ≤ X t ≤ X max P a.s.

(8.5. Remark now that (8.5.6) will be estimated discretizing the integral T 0 β 0,1 s dW 0 s and T 0 β 0,2 s dB 0 s using an Euler scheme for the underlying processes and therefore ŵ(z) will be above 0 except for low values of z due to the variance of the Y α * ,β estimator that cannot be reduced to 0.

In order to reduce the variance of Y α,β , we propose to modify Y α,β as follows :

Y α,β = T 0 (-S t + Θ ∞ (P t -α t ))(P t -α t ) dt - where αt is the rough estimation of the optimal deterministic command maximizing the gain. We take T = 40, N T = 40 time steps, X max = 1, X 0 = 0.5, P 0 = 0.12, F (0, t) = 30 + 5 cos( 2πt N ) + cos( 2πt 7 ), σ f = 0.3, a = 0.16, ι = 0.2, σ p = 0.2, φ = 0.3, P max = 0.2, -0.2 ≤ α ≤ 0.2, Θ(N ) = 10. The network depends on P t , S t , X t and z where z takes some deterministic values on a grid with the same spacing. The global curve is therefore approximated by a single run. The grid is taken from 107 to 127 with a spacing of 0.5. The neural networks have two hidden layers with 14 neurons on each layer. We take a parameter equal to 10 -4 . The number of gradient iterations is set to 50000 with a learning rate equal to 2 × 10 -3 and every 100 iterations a more accurate estimate of ŵ is calculated. We give the ŵ function on figure 8.7. Using Dynamic Programming with the StOpt library [START_REF] Gevret | STochastic OPTimization library in C++[END_REF], we get an optimal value equal to 117.28 while a direct optimization of (8.5.5) using some neural networks as in [START_REF] Warin | Reservoir optimization and Machine Learning methods[END_REF], [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] 

Conclusion

We have developed several schemes in order to solve nonlinear PDEs in moderate and high dimension, thanks to neural networks. We also considered the more difficult case of mean-field control. Our methods show a good empirical performance and some first results have been obtained on the theoretical analysis side.

We have notably described the approximation error of the multistep and deep backward dynamic programming schemes in terms of the number of layers and neurons needed to reach an error of size O(1/N ), that is the discretization error. However this study is achieved thanks to the GroupSort activation function. One should try to obtain similar results for Relu or tanh neural networks in order to comply with the architectures used in practice in our tests. The main difficulty in this study is to consider regular enough approximations (Sobolev regularity, convexity, or boundedness) to have quantitative approximation results. The regularity then has to be preserved when the time step vanishes which motivated the introduction of GroupSort neural networks in our study. Future work could also be dedicated to the fully nonlinear setting for which we have not been able to perform a theoretical analysis of our methods.

Concerning the numerical approximation of PDEs on the Wasserstein space, we obtained the convergence speed of a finite dimensional PDE approximation. The resulting scheme with symmetric neural networks is able to solve the PDE along one trajectory of the forward process. That is why we performed some first tests to randomize the training samples and explore the space of probability measures. But further research is needed to fully understand how to proceed in order to efficiently perform the exploration and solve the PDE in the whole domain. Moreover, we require a lot of regularity for the target solution, which is not satisfied in most cases. Hence it would be interesting to look for an alternative result in a more realistic setting.

We also introduced probabilistic state constraints for mean-field control thanks to a levelset approach making use of an auxiliary unconstrained problem. Our method allows us to consider an exact penalization and is suitable for a numerical implementation thanks to machine learning. To the best of our knowledge we are the first authors to consider this problem with general constraints. Future research could introduce Pontryagin principle or HJB equations based algorithms, following the (theoretical) works [START_REF] Bonnet | A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems[END_REF][START_REF] Daudin | Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space[END_REF]. The numerical resolution of the Master Bellman equation arising from the unconstrained auxiliary problem is another possibility. A comparison of these methods with our level-set approach would be very interesting. 8.1 Estimate of the solution with maturity T = 1. Average and standard deviation observed over 10 independent runs are reported, with the relative error (in %). We also report the terminal expectation and variance of the approximated optimally controlled process for a single run. ' ?' means that we don't have a reference value. For problem (8.5.1) we take Λ = 10 and for problem (8.5.2) we choose Λ = 100 . 180

  and another function basis Φ 1 , • • • , Φ n : R d → R d on which the conditional expectation is estimated by regression Monte-Carlo. The method first samples N s trajectories (X k ) k=1,••• ,Ns coming from N s independent Brownian motions (W k ) k=1,••• ,Ns . Then one initializes Y k N = g(X k N ) and, recursively, at time step i, given Y k i+1 one solves the ordinary least squares optimization problems inf β i,1 ,••• ,β i,n

Figure 1 . 1 :

 11 Figure 1.1: GroupSort activation function ζ κ with grouping size κ = 5 and m = 20 neurons, figure from [ALG19].

  Proposition 1.1.1 (Slight extension of Tanielian, Sangnier, Biau [TSB21] : Approximation theorem for Lipschitz functions by Lipschitz GroupSort neural networks.). Let f : [-R, R] d → R d be K-Lipschitz. Then, for all ε > 0, there exists a GroupSort neural network g in G ζκ K,d,d , ,m verifying sup x∈[-R,R] d |f (x) -g(x)| 2 ≤ √ d 2RKε, with g of grouping size κ = 2 √ d ε , depth + 1 = O(d 2 ) and width -1

22

  ds = O(1/N ), with a grouping size κ = O(2 √ dN 2 ), depth +1 = O(d 2 ) and width -1i=0 m i = O((2 √ dN 2 ) d 2 -1 ) in the case d > 1. If d = 1, take κ = O(N 2 ), depth + 1 = 3 and width -1

22

  ds = O(1/N ), with a grouping size κ = O(2 √ dN 3 ), depth +1 = O(d 2 ) and width -1i=0 m i = O((2 √ dN 3 ) d 2 -1 ) in the case d > 1. If d = 1, take κ = O(N 3 ), depth + 1 = 3 and width -1

Figure 2 . 1 :

 21 Figure 2.1: Fonction d'activation GroupSort ζ κ avec taille de groupement κ = 5 et m = 20 neurones, figure provenant de [ALG19].

Algorithm 4 :

 4 Second order Multistep DBDP (2MDBDP) for = N , . . . , 0 do If = N , update Γ = D 2 g, otherwise minimize over network functions Γ : R d → S d the loss function

  as the solution to this minimization problem /* Update the function and its derivative */ end end Algorithm 5: Second order Multistep Malliavin DBDP (2M 2 DBDP) for = N , . . . , 0 do If = N , update Γ = D 2 g, otherwise minimize over network functions Γ : R d → S d the loss function

  .1.1) with µ, σ functions defined on [0, T ] × R d , valued respectively in R d , and M d (the set of d × d matrices), a nonlinear generator function f defined on [0, T ] × R d × R × R d , and a terminal function g defined on R d . Here, the operators D x , D 2

Figure 4 . 1 :

 41 Figure 4.1: GroupSort activation function ζ κ with grouping size κ = 5 and m = 20 neurons, figure from [ALG19].

  . The GroupSort networks correspond to classical deep feedforward neural networks in N ζκ d,1, ,m with a specific sequence of activation function ζ κ = (ζ i κ ) i=0,..., -1 , and one-dimensional output. Each nonlinear function ζ i κ divides its input into groups of size κ and sorts each group in decreasing order, see Figure 4.1. Moreover, by enforcing the parameters of the GroupSort to satisfy with the Euclidian norm | • | 2 and the

j

  which do not depend on k. Notably v (1) j , ẑ(1)j are the same functions as in (4.3.2).

  i as in (4.3.6) by Markov property. Step 1. Let x ∈ R d . By the Cauchy-Schwarz inequality, we have the standard estimate

  .2.2)where µ is a function defined on [0, T ] × R d with values in R d , σ is a function defined on [0, T ] × R d with values in M d the set of d × d matrices, and W a d-dimensional Brownian motion on some probability space (Ω, F, P) equipped with a filtration F = (F t ) 0≤t≤T satisfying the usual conditions. The process X will be used for the simulation of training data in our deep learning algorithm, and we shall discuss later the choice of the drift and diffusion coefficients µ and σ, see Remark 3.Let us next denote by (Y, Z, Γ) the triple of F-adapted processes valued in R × R d ×S d , defined by
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 5525354 Figure 5.1: A single valuation run for test case one 1D using 160 time steps, σ = 2., p = 0.999, 20 neurons, 2 layers.
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 555657585 Figure 5.5: Test case linear quadratic 1D using 160 time steps, σ = 1.5, p = 0.999, 100 neurons.

Figure 5 .

 5 Figure 5.12: Function value convergence in 20D of the linear quadratic case with 2 layers, p = 0.999.

Figure 5 .

 5 Figure 5.13: Estimates of the solution and its derivatives on the Merton problem (5.3.3) using 120 time steps.

Figure 5 .

 5 Figure 5.14: Estimates of the optimal control α on the Merton problem (5.3.3).

Figure 5 .

 5 Figure 5.15: Learning curve in logarithmic scale for the scheme [BEJ19] on the Merton problem (5.3.3) with N = 20 times steps on the left and N = 120 time steps on the right. The maturity is T = 1 . 10000 gradient descent iterations were conducted. N Averaged value Standard deviation Theoretical value Relative error (%) u(0, x 0 = 1) 5 -0.60667 0.01588 -0.59571 1.84 u(0, x 0 = 1) 10 -0.59841 0.02892 -0.59571 0.45 u(0, x 0 = 1) 20 -0.59316 0.04251 -0.59571 0.43 D x u(0, x 0 = 1) 5 0.09668 0.25630 0.29786 67.54 D x u(0, x 0 = 1) 10 0.03810 0.44570 0.29786 93.36 D x u(0, x 0 = 1) 20 0.07557 0.55030 0.29786 74.63 α(0, x 0 = 1) 5 -0.15243 0.61096 0.80438 118.95 α(0, x 0 = 1) 10 0.59971 1.97906 0.80438 25.44 α(0, x 0 = 1) 20 0.28385 0.43775 0.80438 64.71 Table 5.6: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton problem (5.3.3) with maturity T = 0.1 for the [BEJ19] scheme. Average and standard deviation observed over 10 independent runs are reported.

  and where σ, σ 0 are measurable functions on [0, T ] × R d ×P 2 (R d ), valued respectively in R d×n , and R d×m .

Chapter 7

 7 Solving mean-field PDEs with symmetric neural networksThis chapter is based on the paper [Ger+22] M. Germain, M. Laurière, H. Pham, X. Warin. "DeepSets and their derivative networks for solving symmetric PDEs". In: Journal of Scientific Computing 91, 63 (8 April 2022).

  ) defining the layer functions φ 0 . . . , φ of ϕ, and θ (2) ) defining the layer functions ψ 0 . . . , ψ of ψ. The number of parameters is M = M 1 + M 2 , with M 1 = m(d + 1) + m(m + 1)( -1) + (m + 1)k, M 2 = (k + 1)m + m(m + 1)( -1) + (m + 1)d , and we observe that it does not depend on the number N of inputs.
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 71 Figure 7.1: Architecture of a symmetric neural network.

Figure 7 .

 7 Figure 7.2: Architecture of time dependent symmetric network.
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 73 Figure 7.3: Architecture of DeepDerSet network

Remark 7 .

 7 4.1. We stress that the neural networks do not take time as an input. Adding time would not make any difference because the training is done locally, time step per time step. So the Algorithm 8: DBDP scheme with symmetric NN Initialization: Initialize from the exchangeable function:U N T (•) = G(•) for k = N T -1, . . . ,0 do minimize over symmetric NN U k , and D-symmetric NN Z k , the quadratic loss function

  2.1) is the particles approximation of a McKean-Vlasov control problem with a Bellman equation (7.2.4) in the Wasserstein space of Algorithm 9: Fully nonlinear DPBD scheme with symmetric NN Initialization: Initialize from the exchangeable function: U N T (•) = G(•) and the D-exchangeable function Z N T (•) = DG(•). for k = N T -1, . . . , 0 do minimize over symmetric NN U k , and D-symmetric NN Z k , the quadratic loss function

  (i) DeepSet U for v, and AD-DeepSet DU for D x v (DeepSets derivative case). (ii) DeepSet for v, and DeepDerSet for D x v (DeepDerSet case) (iii) Feedforward for v and D x v (Feedforward case)

  .5.2) for x = (x 1 , . . . , x N ) ∈ R N , where we set x = 1 N N i=1

NFigure 7 . 4 :

 74 Figure 7.4: Resolution on [0.5, 1] in dimension N = 500 : analytic Lions derivatives versus N Z estimated by the network. DeepSet network for U, AD-DeepSet for Z. ReLU activation function.
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 755776 Figure 7.5: Solution and Lions derivative after a single training, with N = 500, N T = 30, with ReLU activation function, a single DeepSet network for U which is differentiated to approximate Z.For the solution, the x-axis corresponds to the sample number and the y-axis is the value of the estimated solution. For the Lions derivative, the x-axis is the state space and the y-axis is the value of the derivative.
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 77 Figure 7.7: Solution and control obtained on the mean variance case at T 2 in dimension 100 with 20 time steps comparing analytic solution to the calculated one (NN). Truncation factor equal to 0.999.

  with

  Case N = 100, N T = 30 N = 100, N T = 60 N = 500, N T = 30 N = 500, N T = 60 1 0.

Figure 7 . 9 :

 79 Figure 7.9: Control calculated at t = 0 for Min-LQC examples: comparison DBDP using a single DeepSet network with N T = 50, N = 500 and global approximation.

Proof.

  By contradiction, if Y Ψ (a) = Y Ψ (b) > 0 with a < b then by monotonicity Y Ψ ([a, b]) = {Y Ψ (a)} and 0 ∈ ∂Y Ψ (a) thus Y Ψ (x) ≥ Y Ψ (a) > 0 ∀x ∈ R which is not the case because Z Ψ < ∞. As a consequence, Y Ψ is decreasing. Then by continuity of Y Ψ and definition of Z Ψ we obtain Y Ψ (Z Ψ ) = 0.

  P (X α s ,αs) ds -z } + λ{Ψ l (s, P X α s ) + ε} + + (1 -λ){Ψ l (s, P X α s ) + ε } + ≤ λL Ψ+ε1 k (z, α) + (1 -λ)L Ψ +ε 1 k (z , α)by convexity of x → {x} + . By minimizing over the controls, the result follows.

, 7 )

 7 , P (X t,ξ,α u ,αu) dW u , for t ∈ [0, T ], and ξ ∈ L 2 (F t , R d ), and notice that we have the flow propertyX t,ξ,α r = X s,X t,ξ∀ 0 ≤ s ≤ r ≤ T,coming from existence and pathwise uniqueness in (8.2.1). We thus consider the cost functionJ(t, ξ, α) := E T t f s, X t,ξ,α s , α s , P (X t,ξ,α s ,αs) ds + g X t,ξ,α T , P X t,ξ,α T ,and the value functionV (t, ξ) := inf α∈A {J(t, ξ, α) | Ψ(s, P X t,ξ,α s ) ≤ 0, ∀ s ∈ [t, T ]}.Then we introduce the auxiliary state variableZ t,ξ,z,α r := z -E r t f s, X t,ξ,α s , α s , P (X t,ξ,α s ,αs) ds = z -r t f s, P (X t,ξ,α s ,αs) ds, t ≤ r ≤ T,and the auxiliary value function is given byY Ψ (t, ξ, z) = inf α∈A { g(P X t,ξ,α T ) -Z α t,ξ,z (T )} + + sup s∈[t,u] {Ψ l (s, P X t,ξ,α s We can treat the non-Markovian formulation of this problem by introducing as in [BPZ15] an additional state variable Y t,ξ,α,m u = k l=1 sup s∈[t,u] {Ψ l (s, P X t,ξ,α s )} + ∨ m ≥ 0 for u ≥ t with m ∈ R and the value function Y Ψ (t, ξ, z, m) = inf α∈A { g(P X t,ξ,α T ) -Z α t,ξ,z (T )} + + Y t,ξ,α,m T =: inf α∈A L Ψ (t, ξ, z, m, α). The two problems are related by Y Ψ (t, ξ, z) = Y Ψ (t, ξ, z, k l=1 {Ψ l (t, P X t,ξ,α t )} + ).

  Assumption 8.2.1. Ψ, f, g, b, σ are Lipschitz continuous uniformly with respect to to other variables. Namely exists[Ψ], [f ], [g], [b], [σ], L > 0 and locally bounded functions h, , L : [0, +∞) → [0, +∞) such that for any t ∈ [0, T ], x, x ∈ R d , µ ∈ P 2 (R d ), ν, ν ∈ P 2 (R d ×A), a ∈ A |Ψ(t, µ) -Ψ(t, µ )| ≤ [Ψ]W 2 (µ, µ ) |f (t, x, a, ν) -f (t, x , a, ν )| ≤ [f ](|x -x | + W 2 (ν, ν )) |g(x, µ) -g(x, µ )| ≤ [g](|x -x | + W 2 (µ, µ )) |b(t, x, a, ν) -b(t, x , a, ν )| ≤ [b](|x -x | + W 2 (ν, ν )) |σ(t, x, a, ν) -σ(t, x , a, ν )| ≤ [σ](|x -x | + W 2 (ν, ν )) |b(t, 0, a, δ 0 ⊗ µ)| + |σ(t, 0, a, δ 0 ⊗ µ)| + |f (t, 0, a, δ 0 ⊗ µ)| ≤ L |f (t, x, a, ν)| ≤ h( ν 2 )(1 + |x| 2 ) |g(x, µ)| ≤ ( µ 2 )(1 + |x| 2 ) |Ψ(t, µ)| ≤ L( µ 2 ). Proposition 8.2.3. Under Assumption 8.2.1 Y Ψ is Lipschitz continuous: there exists C > 0 such that for any t ∈ [0, T ], ξ, ξ ∈ L 2 (F t , R d ), m, m ∈ R |Y Ψ (t, ξ, z, m) -Y Ψ (t, ξ , z , m )| ≤ |z -z | + |m -m | + C E|ξ -ξ | 2 .Proof of Proposition 8.2.3. By the inequalities | inf u A(u) -inf u B(u)| ≤ sup u |A(u) -B(u)|, | sup u A(u)-sup u B(u)| ≤ sup u |A(u)-B(u)|, and |a∨b-c∨d| ≤ |a-c|∨|b-d| ≤ |a-c|+|b-d| we obtain for any ξ, ξ ∈ L 2 (

Algorithm 12 :

 12 Algorithm to solve mean-field control with probabilistic constraints and common noiseFor a discretizationz 1 < • • • < z M of K, minimize over neural networks (α i ) i∈0,••• ,N T -1 : R d × R × R p → R q and (β i ) i∈0,••• ,N T -1 : R × R p → R p the loss function M m=1 w Λ (z m )with w Λ defined byw Λ (z) := E { 1 N

Figure 8 . 5 :

 85 Figure 8.4: Conditional expectation E[X α t | X α t ≤ 0.9] estimated with 50000 samples. The black line corresponds to δ = 0.8. Here Λ = 100

Figure 8 . 6 :

 86 Figure 8.6: Auxiliary value function U Λ (z) for several values of Λ Problem Average Std True val. Error E[X α * T ] True E[X α * T ] Var(X α * T ) True Var(X α * T ) (8.5.2) -1.045 0.0005 ? ? 1.07 ? 0.027 ? (8.5.3) -1.048 0.0017 -1.050 0.22 1.10 1.10 0.049 0.050 (8.5.1) -1.050 0.0009 -1.050 0.07 1.10 1.10 0.050 0.050 (8.5.1) [CL22] -1.052 0.0022 -1.050 0.13 1.10 1.10 0.053 0.050

  our optimization problem is then z * = sup{z | ŵ(z) = 0} where ŵ(z) := -w(z).

T 0 (

 0 -S t + Θ ∞ (P t -αt ))(P t -αt ) dt+ E[ T 0 (-S t + Θ ∞ (P -αt ))(P t -αt ) dt] -

  Figure 8.7: ŵ function value for the storage problem
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  La résolution numérique de cette équation est plus facile que dans le cas précédent et certains de nos résultats théoriques seront seulement valides dans ce cas.Dans le cas semilinéaire, les méthodes numériques sur lesquelles nous nous concentrons reposent sur le lien entre les Équations Différentielles Stochastiques Rétrogrades (EDSRs) et les EDPs pour construire des méthodes numériques. Avec le processus de diffusion X ayant pour générateur Lφ

  comme l'ensemble des fonction de couche avec dimension d'entrée d 1 , dimension de sortie d 2 , et fonction d'activation ρ : R d 2 → R d 2 . En général, la fonction d'activation est appliqué composante par composante ρ(x 1 , . . . , x d 2 ) = ρ(x 1 ), . . . , ρ(x d 2 ) à partir d'une fonction unidimensionnelle ρ : R → R, à la transformation affine x ∈ R d 1 → Wx + β ∈ R d 2 , avec une matrice W appelée poids, et un vecteur β appelé biais. Les examples classiques de fonction d'activation ρ sont la sigmoïde, le ReLU, la tangente hyperbolique. Nous appelons ensuite

  ensemble des réseaux de neurones avec dimension d'entrée d 0 , dimension de sortie d , et couches cachées avec m i neurones par couche (i = 0, • • • , -1). Ces nombres d 0 , d , , la suite m = (m i ) i=0,..., -1 , et la suite de fonctions d'activation ρ = (ρ i ) i=0,..., -1 , forment l'architecture du réseau. Il est construit par la composition alternée entre des transformations affines et des non-linéarités.

  • • , 0 par rapport aux paramètres θ d'un seul réseau de neurones par pas de temps. Elle repose sur la remarque suivante. Au lieu de discrétiser la BSDE entre les pas de temps t i et t i+1 , nous pouvons la discrétiser entre t i et t N = T et écrire

	est traitée par [LM21]. Lorsque l'objectif est de résoudre un problème de contrôle stochastique
	et non de résoudre une EDP, la méthode Deep BSDE peut alternativement être utilisée pour
	résoudre les équations différentielles stochastiques couplées Progressives-Rétrogrades (EDSPRs)
	provenant du principe de Pontryagin. Contrairement au cas précédent où le processus X peut
	être simulé indépendamment du calcul de la solution de l'EDSR (Y, Z), ici la dynamique de X
	dépend de la covariable Y . Ces méthodes sont décrites par exemple dans [Ji+20a; Ji+20b].
	Dans cette thèse nous proposons plusieurs nouveaux schémas et nos interrogations principales
	sont :
	• Comment pouvons-nous améliorer les méthodes existantes ?
	• Comment se comporte leur erreur d'approximation lorsque le pas de temps décroît vers 0
	? Peut-on améliorer l'erreur théorique ?
	• Comment la méthode dépend-elle de l'architecture du réseau de neurones ?
	Schéma Multistep DBDP (MDBDP)(voir Algorithme 6)
	Nous proposons dans le Chapitre 4 une nouvelle méthode d'apprentissage automatique multistep
	inspirée de [GT14] et [HPW20]. Elle est appelée Multistep Deep Backward Dynamic Program-
	ming (MDBDP).
	De même, l'article récent [NAO21] étudie un schéma de Malliavin avec des réseaux de neurones.
	Des extensions à des problèmes plus généraux tels que le cas path-dependent sont réalisées par
	[RT17; SVSS20; SZ20], tandis que la commande stochastique linéaire quadratique avec retard

  Nous étudions ce problème dans le Chapitre 6. Nous considérons ce problème pour une fonction générale H(t, x, µ, y, z) qui ne provient pas nécessairement d'un problème de contrôle à champ moyen. Mais la structure semilinéaire est nécessaire de manière à pouvoir utiliser des arguments de type EDSR. Nous utilisons une méthode particulaire et nous remplaçons cette équation par une EDP en dimension finie, en grande dimension. Cette équation est donnée par

	2	
	µ N	,
	par rapport aux paramètres des réseaux de neurones η, θ 0 , • • • , θ N . Dans [GMW22], nous pro-
	posons des variantes et comparons tous les schémas en dimension 10 alors que les précédents
	articles testaient uniquement les schémas dans le cas unidimensionnel. Nos méthodes rempla-
	cent la mesure empirique par d'autres choix tels qu'une mesure estimée en ligne ou un réseau de
	neurones. Nous considérons également une version locale de l'algorithme qui résout un problème
	d'optimisation par pas de temps au lieu d'un unique problème plus complexe. Cependant, il
	semble que la méthode globale fonctionne mieux que cette version locale dans le contexte des
	MKVFBSDEs. Une analyse théorique avec des estimations d'erreur a posteriori est menée par
	[RSZ20]. Une méthode alternative dans le cas non régulier exploite la descente de gradient
	proximale pour résoudre le problème MFC [RSZ21].	
	Une autre méthode apparaît lorsque l'on résout l'équation maîtresse de Bellman (2.2.3). Bien
	sûr, comme il s'agit d'une équation en dimension infinie, une discrétisation doit être effectuée
	afin d'obtenir un schéma implémentable.	

  for which we have an explicit solution.

		Average Standard deviation Relative error (%)
	[PWG21]	-0.50561	0.00029	0.20
	2EMDBDP -0.50673	0.00019	0.022
	2MDBDP	-0.50647	0.00033	0.030
	2M 2 DBDP	-0.50644	0.00022	0.035
	Table 3.2: Estimate of u(0, 1.) in the Merton problem with N = 120, N = 30. Average and
	standard deviation observed over 10 independent runs are reported. The theoretical solution is
	-0.50662.			
		Average Standard deviation Relative error (%)
	[PWG21]	-0.53431	0.00070	0.34
	2EMDBDP -0.53613	0.00045	0.007
	2MDBDP	-0.53772	0.00046	0.304
	2M 2 DBDP	-0.53205	0.00050	0.755
	Table 3.3: Estimate of u(0, 1, θ) on the One Asset problem with stochastic volatility (d = 2)

Table 3

 3 provides a not so accurate outcome, while its multistep version (2EMDBDP scheme) divides by 10 the relative

		Average Standard deviation Relative error (%)
	[PWG21]	-0.49980	0.00073	0.35
	2EMDBDP -0.50400	0.00229	0.485
	2MDBDP	-0.50149	0.00024	0.015
	2M 2 DBDP -0.50157	0.00036	0.001

.4: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 1 asset (d = 2) and N = 120, N = 30. Average and standard deviation observed over 10 independent runs are reported. The exact solution is -0.501566.

Table 3 .

 3 5: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 4 assets (d = 5) and N = 120, N = 30. Average and standard deviation observed over 10 independent runs are reported. The theoretical solution is -0.44176462.

		Average Standard deviation Relative error (%)
	[PWG21]	-0.43768		0.00137	0.92
	2EMDBDP -0.4401	0.00051	0.239
	2MDBDP -0.43796		0.00098	0.861
	2M 2 DBDP -0.44831		0.00566	1.481
		N	Average	S.d.	Relative error (%)
	[PWG21]	-0.27920 0.05734	1.49
	2EMDBDP		-0.26631 0.00283	3.19
	2MDBDP	30	-0.28979	0.00559	5.34
	2MDBDP	60	-0.28549	0.00948	3.78
	2MDBDP 120 -0.28300 0.01129	2.87
	2M 2 DBDP	30	NC	NC	NC

Table 3

 3 

.6: Estimate of u(0, 1, θ), with 120 time steps on the No Leverage problem with 9 assets (d = 10) and N = 120. Average and standard deviation (S.d.) observed over 10 independent runs are reported. The theoretical solution is -0.27509173.

Table 4

 4 Table 4.1 for d = 10, in Table 4.2 for d = 20, and in Table 4.3 for d = 50. It is observed that all the schemes

	Averaged value Standard deviation Relative error (%)
	[HPW20] (DBDP1)	-1.3895	0.0015	0.44
	[HPW20] (DBDP2)	-1.3913	0.0006	0.57
	[HJE17] (DBSDE)	-1.3880	0.0016	0.33
	[Bec+19] (DS)	-1.4097	0.0173	1.90
	MDBDP	-1.3887	0.0006	0.38
	Table 4.1: Estimate of u(0, x 0 ) in the case (4.5.1), where d = 10, x 0 = 1 1 10 , T = 1 with 120 time
	steps. Average and standard deviation observed over 10 independent runs are reported. The
	theoretical solution is -1.383395.			
	Averaged value Standard deviation Relative error (%)
	[HPW20] (DBDP1)	0.6760	0.0027	0.47
	[HPW20] (DBDP2)	0.6710	0.0056	0.27
	[HJE17] (DBSDE)	0.6869	0.0024	2.09
	[Bec+19] (DS)	0.6944	0.0201	3.21
	MDBDP	0.6744	0.0005	0.24

.2: Estimate of u(0, x 0 ) in the case (4.5.1), where d = 20, x 0 = 1 1 20 , T = 1 with 120 time steps. Average and standard deviation observed over 10 independent runs are reported. The theoretical solution is 0.6728135. DBDP, DBSDE and MDBDP provide quite accurate results with smallest standard deviation for MDBDP, and largely outperforms the DS scheme.

Table 4

 4 

		.5903	0.0063	0.04
	[HPW20] (DBDP2)	1.5876	0.0068	0.21
	[HJE17] (DBSDE)	1.5830	0.0361	0.50
	[Bec+19] (DS)	1.6485	0.0140	3.62
	MDBDP	1.5924	0.0005	0.09

.3: Estimate of u(0, x 0 ) in the case (4.5.1), where d = 50, x 0 = 1 1 50 , T = 1 with 120 time steps. Average and standard deviation observed over 10 independent runs are reported. The theoretical solution is 1.5909. H. Pham, X. Warin, and M. Germain. "Neural networks-based backward scheme for fully nonlinear PDEs." In: SN Partial Differential Equations and Applications 2, 16 (27 January 2021).

Table 5 .

 5 1: Estimate of u(0, x 0 = 1 5 ) on the Monge Ampere problem (5.3.1) with N = 120.

	Dimension d Averaged value Standard deviation Relative error (%) Theoretical solution
	5	0.37901	0.00312	0.97	0.382727
	15	0.25276	0.00235	1.17	0.255754

Table 5 .

 5 

	Dimension d Averaged value Standard deviation Relative error (%) Theoretical solution
	2	-0.49980	0.00073	0.35	-0.501566
	5	-0.43768	0.00137	0.92	-0.441765
	8	-0.38720	0.00363	1.96	-0.394938
	10	-0.27920	0.05734	1.49	-0.275092
	Table 5.4: Estimate of u(0, x 0 = 1, θ) on the No Leverage problem (5.3.4). Average and standard
	deviation observed over 10 independent runs are reported.		

3: Estimate of u(0, x 0 = 1, θ) on the One Asset problem with stochastic volatility (d = 2). Average and standard deviation observed over 10 independent runs are reported. The exact solution is -0.53609477.

Table 5 . 7

 57 

		5	-0.59564	0.01136	-0.59571	0.01
	u(0, x 0 = 1)	10	-0.59550	0.00037	-0.59571	0.04
	u(0, x 0 = 1)	20	-0.59544	0.00054	-0.59571	0.04
	D x u(0, x 0 = 1) 5	0.29848	0.00044	0.29786	0.21
	D x u(0, x 0 = 1) 10	0.29842	0.00084	0.29786	0.19
	D x u(0, x 0 = 1) 20	0.29785	0.00054	0.29786	0.001
	α(0, x 0 = 1)	5	0.82322	0.01014	0.80438	2.34
	α(0, x 0 = 1)	10	0.85284	0.07565	0.80438	6.02
	α(0, x 0 = 1)	20	0.84201	0.09892	0.80438	4.68

: Estimate of the solution, its derivative and the optimal control at the initial time t = 0 in the Merton problem (5.3.3) with maturity T = 0.1 for our scheme. Average and standard deviation observed over 10 independent runs are reported. This chapter is based on the paper [GPW22c] M. Germain, H. Pham, X. Warin. "Rate of convergence for particles approximation of PDEs in Wasserstein space", to appear in Journal of Applied Probability 59.4 (December 2022)

  The terminal condition is given by a real-valued function G on P 2 (R d ), and the Hamiltonian H of this PDE is assumed to be in semi-linear (non linear w.r.t. v, ∂ µ v, and linear w.r.t. ∂ x ∂ µ , ∂ 2

µ v) expectation form:

  with a matrix W called weight, and vector β called bias. Standard examples of activation functions are the sigmoid, the ReLU, the Elu (see[START_REF] Clevert | Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)[END_REF]), or tanh. When ρ is the identity function, we simply write L d 1 ,d 2 .

Table 7 .

 7 4: Approximation error (7.3.3) obtained for different networks on one run and number of iterations used for approximation of the function f in case 1 and 2, dimension N = 100.

	Case	DeepSets	Feedforward
		Error Iter. Error Iter.
	1	1e-5	67	0.008 1000
	2	1e-5 344 0.048 1000
	1. f (x) = exp x(t + 2t 2 ) + 3tx 3 with x =	1 N	N i=1

  In this case, the permutation-invariance condition (HI) on F is satisfied, and we observe that it includes Example 7.2.1 of multi-asset pricing with H(t, x, y, z) = β(y + -y) (in the case of the CVA pricing), b i ≡ r and σ i0 ≡ 0. This also includes Example 7.2.2 of the McKean-Vlasov control problem under common noise with uncontrolled diffusion coefficient, where σ ij (t, x) = σ(t, x i , μ(x))δ ij , σ i0 (t, x) = σ 0 (t, x i , μ(x)), and

	x).	(7.4.4)

Table 7 .

 7 7: PDE resolution in dimension 1000 with DBDP scheme[START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF].

	9272 -1.3632 0.9289 -1.2973 0.90140 -1.304 0.6896	-1e-7

Table 7 .

 7 8: Systemic risk with ReLU activation function, a DeepSet network for U and a second AD-DeepSet network to estimate Z.

	N T Dimension N Averaged	Std	Relative error
	10	0.259	0.0029	0.11
	100	0.2871	0.0016	0.018
	500	0.2866	0.00179	0.019
	1000	0.2877	0.00238	0.016
	10	0.265	0.004	0.09
	100	0.2892	0.2892	0.010
	500	0.2897	0.00153	0.009
	1000	0.2899	0.00146	0.0084
	10	0.2655	0.0045	0.092
	100	0.2894	0.0012	0.010
	500	0.2894	0.0027	0.010
	1000	0.2916	0.0014	0.0025
	N T Dimension N Averaged	Std	Relative error
	10	0.2530	0.0074	0.1346
	100	0.27968	0.0051	0.043
	500	0.2938	0.0067	0.0049
	1000	0.3084	0.0253	0.054
	10	0.2494	0.0074	0.1471
	100	0.2756	0.00677	0.057
	500	0.2885	0.0127	0.013
	1000	0.2860	0.009	0.02
	10	0.2519	0.0037	0.138
	100	0.28253	0.0047	0.033
	500	0.28329	0.0108	0.03
	1000	0.2881	0.0043	0.014

Therefore we only report the case where we use a DeepSet network for U and a second AD-DeepSet network to estimate Z or a single DeepSet network for U which is differentiated to approximate Z.

Table 7 .
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9: Systemic risk with ReLU activation function, a single DeepSet network for U which is differentiated to approximate Z.

Table 7 .

 7 10: Systemic with tanh activation function, a DeepSet network for U and a second AD-DeepSet network to estimate Z.

	N T	N	Averaged	Std	Relative error
	15	10	0.2678	0.0061	0.08
	15	100	0.28858	0.0144	0.013
	15	500	0.2491	0.027	0.14
	15 1000 0.27401	0.0127	0.063
	30	10	0.2725	0.0052	0.068
	30	100	0.2959	0.0161	0.012
	30	500	0.2577	0.01568	0.118
	30 1000	0.320	0.0030	0.096
	60	10	0.2739	0.0049	0.063
	60	100	0.2924	0.0309	0.0001
	60	500	0.3158	0.00297	0.079
	60 1000	0.2210	0.004	0.24

Table 7 .

 7 The terminal cost is encourages 12: Min-LQC example reference solutions : benchmark solution estimated by finite difference scheme and Algorithm 1 in[START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II The finite horizon case[END_REF] with N = 10000, N T = 50, 10 neurons and 3 hidden layers, tanh activation function, average on 10 runs.

		Case Benchmark	Global	
		1	0.2256	0.2273(0.004)	
		2	0.2085	0.2098(0.006)	
		3	0.1734	0.1742(0.005)	
		4	0.2276	0.2300(0.009)	
	Case N = 100, N T = 30 N = 100, N T = 60 N = 500, N T = 30 N = 500, N T = 60
	1	0.2370(0.013)	0.2382(0.012)	0.2446(0.013)	0.2495(0.09)
	2	0.2088(0.002)	0.2092(0.001)	0.2106(0.003)	0.2105(0.003)
	3	0.1774(0.007)	0.1784(0.005)	0.1819(0.005)	0.1785(0.008)
	4	0.2279(0.005)	0.2264(0.005)	0.2292(0.006)	0.2274(0.006)

Table 7 .

 7 13: Min-LQC example with DPBD scheme using ReLU activation functions with a DeepSet network for U and a second AD-DeepSet network to estimate Z, average on 10 runs, standard deviation in parenthesis.

Table 7

 7 

		2289(0.0006)	0.2271(0.001)	0.2290(0.0004)	0.2271(0.0008)
	2	0.2083(0.0008)	0.2086(0.0007)	0.2097(0.0008)	0.2089(0.0004)
	3	0.1740(0.001)	0.1740(0.001)	0.1742(0.0004)	0.1729(0.0007)
	4	0.2276(0.001)	0.2310(0.003)	0.2282(0.0008)	0.2278(0.001)

.14: Min-LQC example with DBDP scheme using ReLU activation functions and a single DeepSet network for U which is differentiated to approximate Z, average on 10 run, standard deviation in parenthesis.

  The proof of Lemma 8.2.2 is given in Section 8.2.3.
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obtained by standard arguments (see e.g. the proof of Proposition 3.3 in

[START_REF] Cosso | Zero-sum stochastic differential games of generalized McKean-Vlasov type[END_REF]

). Then the result follows.

Proposition 8.2.4 (Law invariance properties). Under Assumption 8.2.1, we have law invariance of Y Ψ and Z Ψ , namely if ξ, η are F t -adapted square integrable with the same law, for any

(t, z, m) ∈ [0, T ] × R × R Y Ψ (t, ξ, z, m) = Y Ψ (t, η, z, m)

Table 8 .

 8 1: Estimate of the solution with maturity T = 1.

	5.2)	-1.045	0.0005	?	?	1.07	?	0.027	?
	(8.5.3)	-1.048	0.0017	-1.050	0.22	1.10	1.10	0.049	0.050
	(8.5.1)	-1.050	0.0009	-1.050	0.07	1.10	1.10	0.050	0.050
	(8.5.1) [CL22]	-1.052	0.0022	-1.050	0.13	1.10	1.10	0.053	0.050

  1 t , • • • , W N t and the following dynamics for the producersi = 1, • • • , N state processes = ι(φP max -P i t ) dt + σ p (P t ∧ {P max -P i t }) + (ρ dW 0 t + 1 -ρ 2 dW i t ) dF (t, T ) = F (t, T )σ f e -a(T -t) dB 0 t S t = F (t, t).

	     	dX i t = α i t dt dP i t
	    	

  (P t -α t ) + Θ ∞ (P t -α t )E[P t -α t |F 0 ]} dt dX t = α t dt dP t = ι(φP max -P t ) dt + σ p (P t ∧ {P max -P t }) + (ρ dW 0 t + 1 -ρ 2 dW 1 t ) dF (t, T ) = F (t, T )σ f e -a(T -t) dB 0 t S t = F (t, t)0 ≤ X t ≤ X max P a.s.
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	The related mean field control problem for a central planner is therefore
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  E[(-X s ) 2 + + (X s -X max ) 2 + ] ds dX t = α t dt dP t = ι(φP max -P t ) dt + σ p (P t ∧ {P max -P t }) + dW 0

			5)
	and equation (8.5.4) gives		
	w(z) := -inf α,β∈A×L 2	E ((Y α,β -z) + +	1 T 0

t dF (t, T ) = F (t, T )σ f e -a(T -t) dB 0 t S t = F (t, t)

where

Y α,β = T 0 (-S t + Θ ∞ (P t -α t ))(P t -α t ) dt -

≤ C(ε 1,y i + ∆t i ε 1,z i ).(4.4.12)

. (4.4.17)

https://css.umich.edu/factsheets/us-grid-energy-storage-factsheet

Remerciements

Therefore, with Lemma 4.3.1

for some constant Ĉ. Similarly, assuming U

(3)

i is Lipschitz with constant [v

Step 2. Let > 0, κ ∈ N, ∈ N, m ∈ R to be chosen after. Recursively, we approximate v

1). Then by discrete Gronwall inequality

uniformly in i, N for some constant K. Thus v

(3) i , U

(3) i are K Lipschitz, uniformly. Then we approximate by (4.4.34) z i

(3) by a

i ]Rε on [-R, R] d thanks to Proposition 4.2.1. Thus √ ∆t i z i (3) , √ ∆t i Z

(3) i are dK Lipschitz, uniformly.

Step 3. The regression errors ε 3,y i verify from, localization of X i on B 2 (R), the Hölder inequality, and the Markov inequality, the approximation error of v (3) i , i ∈ 0, N -1 , by the class of GroupSort neural networks (Proposition 4.2.1)

by noticing that (v

i (0)) for q > 0 and 2q = 2 + δ with δ as in the statement of the Proposition. Now, by Lipschitz continuity of v

(3) i , U (3) and because 0 ∈ B 2 (R) we have

(4.4.36)

Recalling the standard estimate X i 2q ≤ C(1 + X 0 2q ), i = 0, . . . , N , we then have

Convergence with 50 neurons Convergence with 100 neurons Figure 5.9: Convergence in 7D of the linear quadratic case, 2 layers, p = 0.999.

Figure 5.10: Function value convergence in 7D of the linear quadratic case with 2 layers, 100 neurons, testing p, using σ = 2 .

On Figure 5.7, for d = 3, we take a quite low truncation factor p = 0.95 and observe that the number of neurons to take has to be rather high. We have also checked that taking a number of hidden layers equal to 3 does not improve the results.

On Figure 5.8, for d = 3, we give the same graphs for a higher truncation factor. As we take a higher truncation factor, the results are improved by taking a higher number of neurons (100 in the figure below).

On Figure 5.9, we observe in dimension 7 the influence of the number of neurons on the result for a high truncation factor p = 0.999. We clearly have a bias for a number of neurons equal to 50. This bias disappears when the number of neurons increases to 100.

On Figure 5.10, for d = 7, we check that influence of the truncation factor appears to be slow for higher dimensions.

Finally, we give results in dimension 10, 15 and 20 for p = 0.999 on Figures 5.11, 5.12. We observe that the number a neurons with 2 hidden layers has to increase with the dimension but also that the increase is rather slow in contrast with the case of one hidden layer as theoretically shown in [START_REF] Pinkus | Approximation theory of the MLP model in neural networks[END_REF]. For σ = 5 we had to take 300 neurons to get very accurate results.

Proof. Since w is exchangeable, it is clear that for fixed i ∈ 1, N , and

and we shall then write:

By exchangeability of w, we also note that

Let us now define the function z on (R d ) N × R d by:

consisting of p components x, and the N -p -1 components x j , for j = i 1 , . . . , i p+1 . By construction, it is clear that for fixed x ∈ R d , z(., x) is exchangeable, i.e., z is a D-exchangeable function. Let us now show (7.2.5), i.e., that for fixed

It suffices to check this property for i = 1. We set for p = 0, . . . , N -1:

and see that

. . .

z ((x 1 , . . . , x 1 ), x 1 ).

The telescopic sum then yields

where the last equality follows from (7.2.6). This shows the property (7.2.5). • For symmetric approximations, DeepSets generally permits to get the best results and the ReLU activation function is the best out of the three tested.

Symmetric

In the sequel, we drop the ELU activation function on other cases as shown in Tables 7.2 for cases 2 and 3. Notice that case 3, involving a max function is the only one where PointNet approximation gives the best result among the other tested networks. On cases 2 and 3 in dimension 100, the DeepSets approximation outperforms the classical feedforward network for all the number of layers and neurons tested. However, results on case 3 are not very good for the PointNet approximation even with the ReLU activation function.

Results for test case 4 are given on Table 7.3 using an initial learning rate equal to 5e-5 and a decay linear to 5e-6 with the number of outer iterations. At last, considering case 4 in dimension N = 1000, when the function is quickly changing, we see that the classical feedforward network functions have difficulty to converge while the DeepSets network approximation converges. The latter turns out to be a very good candidate to some very high dimensional PDEs when there is symmetry in the solution.

Approximation of a function of t and x with symmetry in x

We test the accuracy of our time dependent symmetric neural network by considering the following two cases of functions: 

Numerical schemes

We now adapt the deep backward dynamic programming (DBDP) schemes developed in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] and [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear PDEs[END_REF] for solving nonlinear PDEs, by using symmetric neural networks and D-symmetric neural networks (instead of feedforward neural networks) for approximating the exchangeable solution v and its gradient D x v. We recall the main steps of the DBDP scheme, and distinguish the case of semi-linear and fully non-linear PDEs.

Semi-linear PDE

We first consider the case where the generator F in (7.2.1) may be decomposed into the form

and the coefficients Σ ij , i, j = 1, . . . , N , are to be close to one of two targets. This type of model is inspired by the min-LQG problem of [START_REF] Salhab | A dynamic game model of collective choice in multi-agent systems[END_REF]. More precisely, we consider the following controlled McKean-Vlasov dynamics

where α = (α t ) t is the control, and the agent aims to minimize the functional cost

where the running and terminal costs are given by

for some non-negative constants Q, Q, S, R, and two real numbers ξ 1 and ξ 2 . The value function to the mean-field type control problem (7.5.6) is solution to the Bellman (semi-linear PDE) equation ( 7.2.4) with r = 0, and

where the minimizer in the above inf is given by a = -B R z, and the terminal condition

For the sake of illustration, we present several test cases. The targets are at ξ 1 = 0.25 and ξ 2 = 1.75. Here we used A = Ā = 0, B = 1, Q = 0, Q = S = R = 1, and a time horizon T = 0.5. The initial distribution µ 0 is a Gaussian N (x 0 , ϑ 2 0 ). We consider the following test cases:

Abstract

We consider the control of McKean-Vlasov dynamics (or mean-field control) with probabilistic state constraints. We rely on a level-set approach which provides a representation of the constrained problem in terms of an unconstrained one with exact penalization and running maximum or integral cost. The method is then extended to the common noise setting. Our work extends (Bokanowski, Picarelli, and Zidani, SIAM J. Control Optim. 54.5 (2016), pp. 2568-2593) and (Bokanowski, Picarelli, and Zidani, Appl. Math. Optim. 71 (2015), pp. 125-163) to a mean-field setting.

The reformulation as an unconstrained problem is particularly suitable for the numerical resolution of the problem, that is achieved from an extension of a machine learning algorithm from (Carmona, Laurière, arXiv:1908.01613 to appear in Ann. Appl. Prob., 2019). A first application concerns the storage of renewable electricity in the presence of mean-field price impact and another one focuses on a mean-variance portfolio selection problem with probabilistic constraints on the wealth. We also illustrate our approach for a direct numerical resolution of the primal Markowitz continuous-time problem without relying on duality.

Introduction

The control of McKean-Vlasov dynamics, also known as mean-field control problem, has attracted a lot of interest over the last years since the emergence of the mean-field game theory. There is now an important literature on this topic addressing on one hand the theoretical aspects either by dynamic programming approach (see [LP14; PW17; PW18; CP19]), or by maximum principle (see [START_REF] Carmona | Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics[END_REF]), and on the other hand the numerous applications in economics and finance, and we refer to the two-volume monographs [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] for an exhaustive and detailed treatment of this area.

In this paper, we aim to study control of McKean-Vlasov dynamics under the additional presence of state constraints in law. The consideration of probabilistic constraints (usually in expectation or in target form) for standard stochastic control has many practical applications, notably in finance with quantile and CVaR type constraints, and is the subject of many papers, we refer to [ST02; BEI10; Gel+13; CYZ20; PTZ21; Bal+21] for an overview.

There exists some recent works dealing with mean-field control under some specific law state constraints. For example, the paper [CW19] solves mean-field control with delay and smooth expectation terminal constraint (and without dependence with respect to the law of the control). In the case of mean field games, state constraints are considered by [CC18; CCC18; FH20; GM21; AM21]. In these cited works the state belongs to a compact set, which corresponds to a particular case of our constraints in distribution. Related literature includes the recent work [START_REF] Bouchard | Quenched Mass Transport of Particles Toward a Target[END_REF] which studies a mean-field target problem where the aim is to find the initial laws of a controlled McKean-Vlasov process satisfying a law constraint, but only at terminal time. The paper [START_REF] Daudin | Optimal Control of Diffusion Processes with Terminal Constraint in Law[END_REF] also studies these terminal constraint in law for the control of a standard diffusion process. Next, it has been extended in [START_REF] Daudin | Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space[END_REF] to a running law constraint for the control of a standard diffusion process with McKean-Vlasov type cost through the control of a Fokker-Planck equation. Several works also consider directly the optimal control of Fokker-Planck equations in the Wasserstein space with terminal or running constraints, such as [Bon19; BF21] through Pontryagin principle, in the deterministic case without diffusion.

In this paper, we consider general running (at discrete or continuous time) and terminal constraints in law, and extend the level-set approach [BPZ15; BPZ16] (see also [START_REF] Altarovici | A general Hamilton-Jacobi framework for non-linear state-constrained control problems[END_REF] in the deterministic case) to our mean-field setting. This enables us to reformulate the constrained McKean-Vlasov control problem into an unconstrained mean-field control problem with an auxiliary state variable, and a running path-dependent supremum cost or alternatively a non pathdependent integral cost over the constrained functions. Such equivalent representations of the control problem with exact penalization turns out to be quite useful for an efficient numerical We want to link this representation to the zero-level set of the solution of an auxiliary unconstrained control problem. Define the auxiliary unconstrained deterministic control problem:

with the notation {x} + = max(x, 0) for the positive part. We see that Y Ψ (z) ≥ 0.

By classical estimates on McKean-Vlasov equations we can obtain continuity and growth conditions on Y Ψ . The proof of Proposition 8.2.1 is given in Section 8.2.3.

Define the infimum of the zero level-set

We prove a first result linking the auxiliary control problem with the original constrained problem. Solving this easier problem provides bounds on the value function, by making the constraint function vary.

We have the upper bound

To sum up, when V Ψ < +∞, Theorem 8.2.1 provides the bounds

The proof of Theorem 8.2.1 is given in Section 8.2.3. Remark 8.2.2. In the easier case where optimal controls exist for the auxiliary problem, as assumed in [START_REF] Bokanowski | State-Constrained Stochastic Optimal Control Problems via Reachability Approach[END_REF], and when Ψ is continuous, similar arguments as in [START_REF] Bokanowski | State-Constrained Stochastic Optimal Control Problems via Reachability Approach[END_REF] (and Section 8.4) directly prove that Z Ψ = V Ψ and that an optimal control α * associated to the auxiliary problem Y Ψ (V ) is optimal for the original problem. However some difficulties arise when trying to remove this assumption.

Remark 8.2.3. If there exists ε 0 > 0 such that V Ψ+ε 0 1 k < ∞ then Z Ψ+ε 0 1 k ≤ V Ψ+ε 0 1 k < ∞ by Theorem 8.2.1. Thus the right-hand side of the previous inequality is finite.

On the other hand, if we consider for instance a one-dimensional terminal constraint in law ϕ(P X α T ) ≤ 0, it is represented with Ψ : (t, µ) → ϕ(µ)1 t=T , and we see that the constraint Ψ(t, µ) + ε ≤ 0 would never be verified for any t < T and any ε > 0, hence V Ψ+ε = ∞.

random variable on [0, 1] independent of η (respectively ξ). Then use the definition (8.2.5) to obtain the same law invariance property for Z Ψ too.

Theorem 8.2.1 and Theorem 8.2.2 are still valid in the the dynamic case, by applying the exact same arguments. More precisely for any (t, ξ)

Similarly, arguments like in Theorem 8.2.2 prove that

If the value function is law invariant (see Proposition 8.2.4) and Theorem 8.2.2 holds true, we expect y to be formally (by combining arguments from [BPZ15; CP19]) characterized by a Master Bellman equation in Wassertein space with oblique derivative boundary conditions.

An alternative auxiliary problem

We study the constrained McKean-Vlasov control problem

where we now assume that the running constraint Ψ is continuous (hence, no discrete time constraints, see Remark 8.4.1), and with a terminal constraint function ϕ. We now consider an alternative auxiliary control problem as in [START_REF] Bokanowski | State-Constrained Stochastic Optimal Control Problems via Reachability Approach[END_REF]:

Compared to the control problem (8.2.4) of the previous section, the penalization term of the constrained function Ψ is in integral form instead of a supremum form. It follows that this problem is not path-dependent, and we shall show that it also provides a similar representation of the value function by its zero level set:

but under the additional assumption that optimal controls do exist. Actually, we prove this result in the more general case with common noise in the next section. The mean-field control problem (8.3.1) is Markovian with respect to the state variables (X α t , P X α t , Z z,α t ), and it is known from [START_REF] Cosso | Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension[END_REF] that the infimum over open-loop controls α in A can be taken equivalently over randomized feedback policies, i.e. controls α in the form:

Let us now discuss conditions under which the infimum in (8.3.1) can be taken equivalently over (deterministic) feedback policies, i.e. for controls α in the form: α t = a(t, X α t , P X α t , Z z,α t ), for some deterministic function a from [0, T ] × R d ×P(R d ) × R into A. This will be helpful for numerical purpose in Section 8.5. We assume on top of Assumption 8.2.1 that the running cost f , the drift b and the volatility coefficient σ do not depend on the law of the control process. We also assume that the running cost f = f (t, x, µ) does not depend on the control argument. The terminal constraint function ϕ should also verify the same assumptions as the terminal cost function g, namely Lipschitz continuity and local boundedness (see Assumption 8.2.1).

In this case, the corresponding dynamic auxiliary problem of (8.3.1) is written as

where f is the function defined on [0, T ] × P 2 (R d ) by f (t, µ) = R d f t, x, µ µ(dx). Note that we have applied Theorem 3.5 from [START_REF] Cosso | Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension[END_REF] to obtain the law invariance of the auxiliary value function which can be written as a function of the measure µ. From Theorem 3.5, Proposition 5.6. 2), and equation (5.17) in [START_REF] Cosso | Optimal control of path-dependent McKean-Vlasov SDEs in infinite dimension[END_REF] (see also Remark 5.2. from [START_REF] Cosso | Zero-sum stochastic differential games of generalized McKean-Vlasov type[END_REF] and Section 6 in [START_REF] Pham | Bellman equation and viscosity solutions for mean-field stochastic control problem[END_REF]) we see that the Bellman equation for problem (8.3.2) is:

(8.3.3) By assuming that w is a smooth solution to this Bellman equation, and when the infimum in

is attained for some measurable function â(t, x, µ, z) on [0, T ]×R d ×P(R d )×R, we get an optimal control for (8.3.1) given in feedback form by

), 0 ≤ t ≤ T , which shows that one can restrict in (8.3.1) to deterministic feedback policies.

Extension to the common noise setting

We briefly discuss how the state constraints can be extended to mean-field control problems with common noise. In this case, in contrast with the previous section, we need to assume the existence of optimal control for the auxiliary unconstrained problem. It is similar to the assumption made by [START_REF] Bokanowski | State-Constrained Stochastic Optimal Control Problems via Reachability Approach[END_REF]. Let W 0 be a p-dimensional Brownian motion independent of W , and denote by F 0 = (F 0 t ) t the filtration generated by W 0 . We consider the following cost and dynamics:

where P W 0 (X α t ,αt) is the joint conditional law of (X α t , α t ) given W 0 . The control process α belongs to a set A of F-progressively measurable processes with values in a set A ⊂ R q .

The controlled McKean-Vlasov process X is constrained to verify Ψ(t, P W 0 X α t ) ≤ 0 and ϕ(P W 0 X α T ) ≤ 0. The proofs still follow the arguments from [START_REF] Bokanowski | State-Constrained Stochastic Optimal Control Problems via Reachability Approach[END_REF] but are slightly more involved than in Section 8.2 due to the additional noise appearing in the conditional law with respect to the common noise. We refer to [PW17; DPT19] for the dynamic programming approach to these problems. The problem of interest is 

) ≤ 0, P a.s.}.

Lemma 8.4.1 is proven in Section 8.4.2. Define the auxiliary unconstrained control problem

for z ∈ R. We notice that U(z) ≥ 0.

Proposition (8.4.1) is proven exactly as (8.2.1).

Assumption 8.4.1. Problem (8.4.2) admits an optimal control for any z ∈ R and the constraint function (t, µ) ∈ [0, T ] × P 2 (R d ) → Ψ(t, µ) is continuous.

Remark 8.4.1. Please note that the integral penalization in (8.4.2) does not allow to consider discrete times constraints (except at terminal time) because the contribution to the integral would be null and the constraint function Ψ would be discontinuous in time. We could consider discrete time constraints in the objective of the auxiliary problem by adding a sum of functions of P W 0

for some (t i ) i ∈ [0, T ] but it would lose its standard Bolza form.

2. The value function verifies V 0 ≤ Z thus V 0 = Z. Moreover optimal controls for the problem U(Z) = 0 are optimal for the original problem.

Theorem 8.4.1 is proven in Section 8.4.2.

Proofs in the common noise framework

Proof of Lemma 8.4.1. We first observe that

Algorithm 11: Algorithm to solve mean-field control with probabilistic constraints For a discretization z

with w Λ defined by

/* Particle approximations */ Define α * as the solution to this minimization problem. Then, compute

/* Recovering the cost of the original problem */ Return the value V 0 and the optimal controls αi :