N
N

N

HAL

open science

Machine learning for stochastic control and partial
differential equations in high dimension

Maximilien Germain

» To cite this version:

Maximilien Germain. Machine learning for stochastic control and partial differential equations in
high dimension. General Mathematics [math.GM]. Université Paris Cité, 2022. English.

2022UNIP7025 . tel-04132976

HAL Id: tel-04132976
https://theses.hal.science/tel-04132976

Submitted on 19 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

NNT:

https://theses.hal.science/tel-04132976
https://hal.archives-ouvertes.fr

Université Paris Cité

] Université A

Paris Cité LPSM

statistique & modélisation

Ecole Doctorale de Sciences Mathématiques de Paris Centre ED386
Laboratoire de Probabilités, Statistique et Modélisation

Méthodes d’apprentissage automatique pour la résolution de
problémes de controdle stochastique et d’équations aux dérivées
partielles en grande dimension

Machine learning for stochastic control and partial differential
equations in high dimension

Par Maximilien GERMAIN

Theése de doctorat de Mathématiques Appliquées

Dirigée par Huyén PHAM

Présentée et soutenue publiquement le 20/06/2022

Devant un jury composé de :

Jean-Frangois CHASSAGNEUX Professeur, Université Paris Cité Examinateur

Arnulf JENTZEN Professeur, University of Miinster Rapporteur

Nadia OUDJANE Ingénieur chercheur, EDF R&D Examinatrice

Huyén Puam Professeur, Université Paris Cité Directeur de thése

Christoph REISINGER Professeur, Oxford University Rapporteur

Agnés SULEM Directeur de recherche, INRIA Paris Examinatrice

Xavier WARIN Ingénieur chercheur, EDF R&D Encadrant industriel, membre invité

Hasnaa ZIDANI Professeur, INSA Rouen Présidente du jury

ii

iii

Titre : Méthodes d’apprentissage automatique pour la résolution de problémes de controle
stochastique et d’équations aux dérivées partielles en grande dimension

Résumé : Cette thése étudie plusieurs schémas numériques d’apprentissage automatique pour
la résolution d’Equations aux Dérivées Partielles non-linéaires (EDPs) et du contrdle & champ
moyen en dimension modérée ou grande. Elle est divisée en deux parties.

La premiére partie est consacrée a la résolution d’EDPs paraboliques non-linéaires. Nous
décrivons un schéma multistep par réseaux de neurones qui améliore les méthodes existantes
et nous étudions son erreur d’approximation ainsi que celle de schémas existants dans le cas
semilinéaire ol I’équation est linéaire par rapport & la dérivée seconde de la solution. En utilisant
des réseaux de neurones lipschitziens de type GroupSort, nous sommes capables de relier ’erreur
au nombre de neurones et de couches du réseau utilisé pour I'approximation. Nous développons
également des schémas one-step et multistep pour le cas plus délicat des EDPs complétement
non-linéaires. Toutes les méthodes sont testées sur des exemples numériques.

La seconde partie de ce travail est dédiée au contréle & champ moyen et aux équations de
McKean-Vlasov. Nous prouvons par des arguments probabilistes une vitesse de convergence
pour l'approximation en dimension finie d’'une EDP sur ’espace de Wasserstein. Nous utilisons
alors des réseaux de neurones symétriques DeepSet pour résoudre des EDPs symétriques en
grande dimension. Ainsi nous sommes capables d’approcher la solution de problémes de controle
4 champ moyen & partir de leurs conditions d’optimalité. Nous considérons ensuite le controle &
champ moyen avec des contraintes d’état probabilistes. Pour cela, nous représentons le probléme
par un probléme auxiliaire sans contraintes qui peut étre résolu par une variante d’un schéma
existant d’apprentissage profond.

Mots-clefs : EDPs non-linéaires, réseaux de neurones, controle stochastique, controdle & champ
moyen, équation maitresse, contraintes d’état probabilistes, approximation numérique, DeepSet,
GroupSort

Title: Machine learning for stochastic control and partial differential equations in high di-
mension

Abstract: This thesis studies several machine learning numerical schemes to solve nonlinear
PDEs and mean-field control in moderate to high dimension and is divided in two parts.

The first part focuses on the resolution of parabolic nonlinear PDEs. We describe a multistep
neural network scheme which improves existing methods from the literature. One of our con-
tributions is the study of its approximation error together with the ones of existing methods in
the semilinear case where the equation is linear with respect to the second order derivative. By
using Lipschitz GroupSort neural networks, we are able to link the error to the number of layers
and neurons of the approximating network. We also develop one-step and multistep schemes in
the more challenging case of fully nonlinear PDEs, based on Malliavin weights and automatic
differentiation. All the numerical schemes are tested on numerical examples to demonstrate their
relevance.

The second part of this work is dedicated to mean-field control and McKean-Vlasov equations.
We prove by probabilistic arguments a rate of convergence for the finite dimensional approxima-
tion of a PDE on the Wasserstein space. We then use symmetric DeepSet neural networks to solve
symmetric PDEs in high dimension. Hence we are able to approximate numerically mean-field
control problems by solving their optimality conditions in the form of a Master Bellman PDE in

iv

infinite dimension. We then consider mean-field control with probabilistic state constraints on
the law of the controlled state. We represent the problem by an auxiliary unconstrained problem
with exact penalisation which can be solved by the modification of an existing brute force deep
learning scheme.

Keywords: nonlinear PDEs, neural networks, stochastic control, mean-field control, master
equation, probabilistic state constraints, numerical approximation, DeepSet, GroupSort.

List of the six papers being part of this thesis

e H. Pham, X. Warin, and M. Germain. “Neural networks-based backward scheme for fully
nonlinear PDEs”. In: SN Partial Differential Equations and Applications 2, 16 (2021).

e M. Germain, H. Pham, and X. Warin. “Approximation Error Analysis of Some Deep
Backward Schemes for Nonlinear PDEs”. In: SIAM Journal on Scientific Computing 44.1
(2022), A28-A56.

e M. Germain, M. Lauriére, H. Pham, X. Warin. “DeepSets and their derivative networks
for solving symmetric PDEs”. In: Journal of Scientific Computing 91, 63 (2022).

e M. Germain, H. Pham, and X. Warin. “Neural networks based algorithms for stochastic
control and PDEs in finance”, to appear in Machine Learning And Data Sciences For
Financial Markets: A Guide To Contemporary Practices. Ed. by A. Capponi and C.A.
Lehalle. Cambridge University Press, 2022. Chap. New Frontiers for Stochastic Control
in Finance.

e M. Germain, H. Pham, X. Warin. “Rate of convergence for particle approximation of PDEs
in Wasserstein space”, to appear in Journal of Applied Probability 59.4 (2022).

e M. Germain, H. Pham, and X. Warin. “A level-set approach to the control of state-
constrained McKean-Vlasov equations: application to renewable energy storage and port-
folio selection". In:arXiv:2112.11059, submitted to Numerical Algebra, Control and Opti-
mization, special issue Stochastic Analysis, Mathematical Finance, and Related Fields.

vi

vil
Remerciements

Tout d’abord merci a toi Huyén pour ton temps lors de nos nombreuses discussions au tableau
ou sur zoom pendant les confinements. Merci pour ta patience et ton aide dans le déroulement
de cette thése. Tu m’as permis d’explorer de trés beaux sujets. Je te remercie également Xavier.
Tu m’as appris de trés nombreuses choses a propos des méthodes numériques probabilistes et
tu m’as beaucoup apporté. Merci pour tes nombreuses relectures de mes notes de recherche
et ton aide cruciale dans les tests numériques. Vous m’avez tous les deux permis de découvrir
et de construire ce trés beau sujet de thése. Je remercie mes rapporteurs Arnulf Jentzen et
Christoph Reisinger d’avoir consacré du temps a 1’évaluation de mon manuscrit. Vos travaux
m’ont particulierement inspiré. Je souhaite également remercier tous les membres de mon jury,
Jean-Frangois Chassagneux, Nadia Oudjane, Agnés Sulem et Hasnaa Zidani pour leur temps et
leur implication dans ma soutenance de thése.

Merci & tous les collégues d’EDF aux cotés de qui j’ai travaillé pendant ces trois années, no-
tamment le meilleur tuteur de stage au monde, Joseph, qui m’a trés vite expliqué la signification
de tous les sigles désignant les clients de R33, et m’a aussi initié aux joies de Tensorflow. Merci
a Edouard et & Clémence qui m’ont permis de réaliser cette thése dans leur trés belle et bril-
lante équipe. Merci & Nadia pour nos échanges pendant le stage et la thése, mais aussi pour
avoir accepté de faire partie de mon jury. Je salue mes illustres co-bureaux Thomas et Matteo.
Merci & Nathalie et Amina du laboratoire qui ont toujours été trés efficaces pour répondre & mes
questions et demandes.

J’ai pu rencontrer de trés nombreux doctorants et amis au cours de ce parcours. Je souhaite
toutes et tous les remercier, en espérant n’oublier personne. D’abord mes prédécesseurs & EDF
: Laura, ma future co-bureau semble-t-il, spécialiste des jeux & champ moyen mais aussi du
poney, Carl qui a fait doubler la consommation d’électricité de I’équipe & cause de son PC de
gamer aux touches multicolores et Emma en route j’espére pour une future médaille Fields. Ma
co-bureau Margaux qui a brillement publié & ICML et passionne ses étudiants de 'ENSTA qui
restent jusqu’a 12h05 dans la salle de cours au lieu de se précipiter au Magnan. Les spécialistes
de Voptimisation (stochastique?) et des flexibilités du systéme électrique de demain Adrien
et Maxime que je croise parfois en m’égarant dans le couloir de R36. Mes fréres de these :
William qui m’a beaucoup aidé a me préparer lorsque que nous passions de multiples entretiens
d’embauches (et futur co-bureau également), Enzo, le roi du contréle rough, et également Médéric
et Come qui m’ont précédé dans le bureau Serpentard. Guillaume qui a préféré le climat de
Chatou & celui de Saclay pour faire sa thése et qui vient réguliérement en pélérinage sur le
platal pour la journée des doctorants. Je remercie mes co-bureaux Junchao, Yiyang, Houzhi
mais aussi les voisins des bureaux adjacents : Sylvain que j’ai retrouvé sous le soleil d’Evian et
Fabio qui ne manque jamais de nous inviter & déguster de bons petits plats agrémentés d’une
bonne bouteille de vin. Je n’oublie pas les petits nouveaux, Mohamed et Nathan, les prochaines
stars du controle stochastique et des modéles de prix. Merci aux nouveaux co-bureaux Nisrine
et Hoang Dung. Je salue les voisins Mohan et Sothea. Je remercie Thomas, le roi du pétrole,
qui malgré ses tentatives répétées n’aura pas réussi a me faire déménager & Londres. Merci &
Christophe, Antoine, Quentin et Adéle pour nos réunions café ou celles & I'ambassade autour
de gougeres et de grands crus. Merci & Grégoire dont je n’ai pas encore testé le jeu vidéo mais
promis quand il sera disponible sur Android je m’y mettrai. Je salue mes anciens camarades
ENSTA/MVA Omar, Gilles, et Othmane avec qui nous avons enchainé montagne de projets et
TP en tout genre et qui ont & 'unanimité continué en thése, quelle idée !

Merci & Elena et Tiziano qui m’ont permis de découvrir la recherche en mathématiques. Peut-
étre qu'un jour notre article sera enfin accepté, qui sait ® 7 Je remercie également mes en-
seignants de 'ENSTA, notamment Francesco Russo, Fréderic Jean, Pierre Carpentier, et Hasnaa

viii

Zidani qui m’ont donné envie de commencer cette thése grace & leurs excellents cours et leurs
conseils vis a vis de mon orientation. Merci aussi & Francesco d’avoir pensé & moi pour donner
des travaux dirigés aux éléves de premiére année de 'ENSTA.

Toute cette aventure doctorale trouve également son origine dans les cours suivis en classes
préparatoires au lycée Louis-le-Grand, en particulier ceux de MM. Thouard, Rochet, Logeais,
Pommellet, Turiel, et Mme Malaprade. Au lycée Saint-Jean je remercie également MM. Agneray,
Delbecq, et MMes Claisse, Pietrowiak qui ont permis & mon gotit pour les maths et la physique
de s’exprimer. Merci également & M. Borelle et MMes Borelle, Sprimont.

Enfin, je remercie énormément ma famille, mes parents, mes soeurs et mon frére, pour leur
soutien et sans qui rien n’aurait été possible. Merci beaucoup & Clémence qui a su me remonter
le moral quand j’étais bloqué dans mes tentatives de démonstrations et qui me permet chaque
jour d’aller de 'avant. Je crois qu’a cause de moi elle n’a plus envie de faire une thése.

Contents

1__Introductionl 1
1.1 Approximation of non-linear PDEs|o 0000000000 1
(L.L1.1 _From stochastic control to PDFs and their numerical resolution| 1

[1.1.2 Machine learning methods and our proposed schemes|. 3

[1.1.3 Lipschitz GroupSort neural networks and contributions to new theoretical |

[results| L 8
[1.2 Mean-field problems and their numerical approximation| 11
(1.2.1 Motivation and optimality conditions|. 11

[1.2.2 Contributions on the numerical approximation side| 13

[1.2.3 Adding probabilistic state constraints| 16

[2 Introduction (en francais)| 19
2.1 Approximation des EDPs non-linéaires| 19
[2.1.1 Du controdle stochastique aux EDPs et a leur résolution numérique| 19

[2.1.2 Méthodes d’apprentissage automatique et nos nouveaux algorithmes| . . . 21

[2.1.3 Réseaux de neurones lipschitziens GroupSort et contributions a de nou- |

| veaux résultats théoriques|o Lo 26
[2.2 Problémes a champ moyen et leur approximation numérique| 29
[2.2.1 Motivations et conditions d’optimalité] 29

[2.2.2 Contributions pour ['approximation numérique| 32

[2.2.3 Ajouter des contraintes d’état probabilistes| 35

(I Numerical resolution of non-linear partial differential equations| 39

|13 Neural networks-based algorithms for stochastic control and PDEs in finance| 41

3.1 Breakthrough in the resolution of high dimensional non-linear problems| 42
13.2 Deep learning approach for stochastic controll 43
[3.2.1 Global approach| o 43

[3.2.2 Backward dynamic programming approach| 44

3.3 Machine learning algorithms for nonlinear PDEs| 45
[3.3.1 Deterministic approach by neural networks| 45

[3.3.2 Probabilistic approach by neural networks| 46

3.4 Numerical applications| 95
[3.4.1 Numerical tests on credit valuation adjustment pricing| 99

[3.4.2 Portfolio allocation in stochastic volatility models|. 99

3.5 Extensions and perspectives| Lo L 59

4 Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear |
[PDESY 61
A1 Tntroductionl. 62
4.2 BSDE Machine Learning Schemes for Semilinear PDEs| 63
[42.1 Neural Networksl oo 63

1X

X CONTENTS

[4.2.2 Existing Schemes| 66
[4.2.3 Deep Backward Multi-step Scheme (MDBDP)[. 68

4.3 Convergence Analysis| 69
[4.3.1 Convergence of the MDBDP Scheme| 71
[4.3.2 Convergence of the DS Scheme| 72
[4.3.3 Convergence of the DBEDP Scheme|. 73

4.4 Proof of the Main T'heoretical Resultsl 73
441 Proof of TheoremM.3. 1. 73
[4.4.2 Proof of Proposition|4.3.1f 77
4.43 Proof of TheoremM.3.21. 79
[4.4.4 Proot ot Proposition|4.3.2| 82

M5 Numerical Testd.o o 84
[4.5.1 PDE with Bounded Solution and Simple Structurel 84
[4.5.2 PDE with Unbounded Solution and more Complex Structure| 85

[6 Neural networks-based backward scheme for fully nonlinear PDEs| 87
b1 Introduction|. 88
5.2 The proposed deep backward scheme| 89
[>.2.1 Feedforward neural network to approximate functions| 89
[5.2.2 Forward-backward representation|o 90
[b.2.3 Algorithm| 90

5.3 Numerical results 92
5.3.1 Choice of the algorithm hyperparameters| 93

5.3.2 A non-linearity in uD>u| 94
[>.3.3 A linear quadratic stochastic test case.|. 98
[>.3.4 Monge-Ampeére equation| Lo 104
[0.3.5 Portfolio selectionl 104

(II McKean-Vlasov equations and mean-field control 113

|6 Rate of convergence for particles approximation of PDEs in Wasserstein space[l15

6.1 TIntroduction|. 116
6.2 Particles approximation ot Wasserstein PDEs| 117
[6.2.1 Particles BSDE approximationl 118
622 Mainresultsl. 119

6.3 Proof of main resultsl L 124
6.3.1 Proof of TheoremI6.2.11. 124
[6.3.2 Proof of Theorem16.2.2]. 126

[7 Solving mean-field PDEs with symmetric neural networks| 129
[(.1 TIntroduction|. 130
[7.2 Symmetric PDEs|o 132
[7.3 Symmetric neural networks| oL oo 136
[7.3.1 DeepSets and variants| 136
[7.3.2 Comparison tests| 138

[[.4 Numerical schemes 142
[[41 Semi-linear PDEl 142
[7.4.2 Fully nonlinear PDE} o0 oo 144
(.43 The case of mean-field PDEs, 144

[(.5 Numerical results] 146
[7.5.1 A toy example of symmetric PDE in very high dimension| 146

[7.5.2 A mean-field control problem of systemicriskl 148

CONTENTS xi

[7.5.3 Mean-variance problem| o oL, 153
[7.5.4 A min/max Linear quadratic mean-field control problem|. 155

I8 A level-set approach to the control of state-constrained McKean-Vlasov equa- |

| tions: application to renewable energy storage and portfolio selection| 159
8.1 Introduction|. 160
8.2 Mean-field control with state constraintsl 161

[8.2.1 A target problem and an associated control problem| 162
[8.2.2 Representation of the value tunction| 164
823 Proofs 165
[8.2.4 Potential extension towards dynamic programming| 167

8.3 An alternative auxiliary problem|o 170
8.4 Extension to the common noise setting| 171
[8.4.1 Representation by a stochastic target problem and an associated control |

| problem| 172
[8.4.2 Proofs in the common noise frameworkl 172

[8.5 Applications and numerical tests]o oL oL 173
[8.5.1 Algorithms| 174

[8.5.2 Mean-variance problem with state constraints| 174
[8.5.3 Optimal storage ot wind-generated electricity] 180

Conclusion 185

[Bibliography| 187

[List of figures| 199

[Last of tablesl 201

xii

CONTENTS

Chapter 1

Introduction

This thesis is divided in two parts. The first one studies numerical methods for solving non-linear
parabolic Partial Differential Equations (PDEs). These equations typically arise in the context
of dynamic programming for stochastic control, which is our main motivation. Our schemes use
deep learning in order to approximate PDE solutions. We describe a new multistep scheme for
the resolution of semilinear PDEs and realize a convergence analysis of the method and other
existing ones from the literature. We show that both the theoretical approximation error and
the empirical numerical error are lower in comparison to existing methods. In particular, thanks
to recent results on Lipschitz GroupSort neural networks, we are able to relate the scheme error
to the network architecture, that is the number of neurons and layers. When the PDEs are fully
nonlinear, we describe new schemes, both one-step and multistep ones, able to tackle this more
difficult case. We provide numerical tests to demonstrate the relevance of our algorithms.

The second part of the thesis is dedicated to mean-field control. We first prove the rate of
convergence of a finite dimensional approximation to an equation on the Wasserstein space of
probability measures. We rely on a linearization argument together with a Girsanov change of
measure in order to do that. These equations come for instance from the Master Bellman equation
of mean-field control. We then use symmetric DeepSets neural networks to solve symmetric PDEs
such as the ones coming from the approximation of master Bellman equations. The respect
of the problem’s symmetry in the scheme itself allows us to solve high dimensional problems.
Eventually we consider mean-field control with state constraints. We provide a representation
result of the original problem by another one without constraints. This representation allows us
to numerically solve this problem.

1.1 Approximation of non-linear PDEs

1.1.1 From stochastic control to PDEs and their numerical resolution

In applied mathematics, especially in financial mathematics, stochastic control is a powerful
tool to design efficient strategies for an agent whose dynamics is subject to randomness. Typical
examples include among others the quadratic hedging of financial derivatives [Pha00|, the hedging
of gas storage |[Warl2|, or portfolio allocation |ZL00]. Other applications are described and
studied in the book [Pha09].

A general form for such problems is given by:
T
inf B[[7(s. X3 0.) ds + o(X7)]
@ 0

t ¢
X7 = Xo +/ b(s, X, ag) ds +/ o(s, X as) dW,, t >0
0 0

2 CHAPTER 1. INTRODUCTION

where a is some control process with values in R?, W a d-dimensional Brownian motion, and
functions f: [0,7] x R x R? — R, b:[0,7] x R x R? — R%, ¢ : [0, 7] x R? x R? = R4, The
forward process X is a diffusion process, solution to a controlled Stochastic Differential Equation
(SDE). Introducing the value function

T
’U(t,x) = inf E[/ f(stg,x,a’as) ds _i_g(X’%:v,a)}
@ t

S S
Xt — g —|—/t b(u, XL) du —i—/t o(u, X55% ay,) AWy, s > t,

it is well known that it solves in the viscosity solution sense the Hamilton-Jacobi-Bellman (HJB)
equation

{ O(t,x) +inf, {f(t,z,a) + b(t,z,a) Dyv(t,x) + %Tr(oaT(t,a:, a)D2v(t,z))} =0
(T, x) = g(z).

This parabolic PDE is a special case of fully nonlinear PDE which take the form

(1.1.1)

{ dyu(t,z) + F(t, z, u(t,z), Dyu(t,), D2u(t,x)) = 0
u(T,z) = g(x),

for a function F : [0, T] x RY x R x R? x R¥*4 s R. When the volatility o is uncontrolled, that is
D,o =0, we can take the volatility part outside of the infimum and the HJB equation becomes
linear in the second order derivative D2v:

{ o(t,x) + 3 Tr(oo ' (¢,) D2v(t, z)) + info { f(t,z,a) + b(t, z,a) Dyv(t,z)} =0
u(T', z) = g(x),

which is a special case of the semilinear PDE

{ Ovii(t,x) + p(t, x) - Dyt + 3 Tr(oo T (t,2)D2u(t, x)) + F(t, @, a(t,), o (t,x) Dyii(t, x))(1:102)
T, x) = g(x),

for a function F : 0,7] x R x R x R? — R. The numerical resolution of this equation is much
easier than for the previous one and some of our theoretical results will only apply to this case.
This motivates our interest for the resolution of semilinear and fully nonlinear PDEs.

In the semilinear case, the numerical methods we focus on rely on the link between Backward
Stochastic Differential Equations (BSDEs) and PDEs to provide numerical methods. With the
forward diffusion process X having the generator £¢ = pu(t, z)-Dy¢(t,z)+5 Tr(oo ' (t,2)D24(t, z)),
that is

t t
X=X —I—/ (s, Xs) ds +/ o(s, Xs) dWs, (1.1.3)
0 0

the nonlinear Feynman-Kac formula [PP90] links the solution @ to ([1.1.2)) to the adapted solution
(Y, Z) to the BSDE:

T T
Y: = g(Xr) +/ F(s,Xs,Ys,Zs) ds — / Zs dWs, (1.1.4)
t t

through Y; = u(t, X3) and when @ is smooth, Z; = o(t, z) D, u(t, X;). Solving the BSDE amounts
to solve the PDE along trajectories of the forward process.

1.1. APPROXIMATION OF NON-LINEAR PDES 3

We describe the standard approach to solve this BSDE, that is to generate adapted discrete
time processes converging to the discrete time values of the BSDE solutions. Discretizing in time
on ty := % by an Euler scheme for the forward process (1.1.3) and an backward explicit Euler
scheme for the backward component (|1.1.4]) one can define between two consecutive time steps
the discrete time processes

Xi+1 =X;+ ,u(ti,Xi) At + O'(ti,XZ‘> AWI,
Vi1 =Yi = F(ti, X, Yigr, Z) At + Zi AW, i =0,--- N — 1,

with Xg = Xy, At = and AW; = Wy, ,, — Wy, which yields by adaptedness of Y and Z

1+1

{ Zi = ElYi 3¢ | Fi 1.15)

Y; = EB[Yip1 + F(ti, Xi, Yig1, Z)At | Fi], i =0,--- ,N — 1.

This representation is the starting point of several numerical backward schemes [Zha04; BT04;
GLWO05; LGWO06| which start from the terminal condition Yy = g(X7) and recursively compute
Y;, Z; by computing the previous conditional expectations. A variant uses an implicit discretiza-
tion for Y, which requires to solve a fixed point by Picard iteration. By the Markovian structure
of the equations, these conditional expectations can be written as measurable functions of the
discretized forward process X that is exists functions u;, z; such that

Y = wi(X;)
Zi=2(X)), i=0,-- N —1.

The idea is to approximate these functions, which gives at the same time an approximation
to the BSDE and the PDE solutions. This is done in a fully implementable way in [GLWO05;
LGWO6| by choosing a function basis ¥y, --- , ¥, : R? — R and another function basis Py, Dy,
: R? — R? on which the conditional expectation is estimated by regression Monte-Carlo. The
method first samples N; trajectories (X k)k:L...7 N, coming from N independent Brownian mo-
tions (W*)g—1.... n,. Then one initializes Y¥ = g(X%) and, recursively, at time step i, given Y}

i+1
one solves the ordinary least squares optimization problems
AWE
inf Yk 1.1.6
Bi,17"' 7Bi,n 7] i+l At ()
N n 2
. k k
B3 Z = Vi~ Pl X5, 20
:]:
where the arginf are respectively called §;y,---, 5/, and o, ,¢f,. In that case Zf is de-

fined by ZF := > i1 ﬁZij(Xf) and Y} is given by Y} := > i1 a”\Il (XF¥). Under technical
assumptions, it can be proven that ((Y;);, (Z;);) converges to (Y, Z) in a suitable sense. This
method is quite efficient in small dimension but is limited to dimension 6 or 7 and machine
learning methods have been developed in order to solve higher dimensional problems. The usual
finite differences methods suffer from the so-called "curse of dimensionality" which prevent us
for applying them when the state space is of dimension greater than 4. Indeed too many points
are required to discretize the state space which gives a complexity exponentially growing with
the dimension d.

1.1.2 Machine learning methods and our proposed schemes

First we need to introduce the neural networks. We define

g = {0 RY S RE 3 (W,) € REXU xR, (z) = p(Wa+5) |,

4 CHAPTER 1. INTRODUCTION

as the set of layer functions with input dimension d;, output dimension dy, and activation
function p : R% — R, Usually, the activation is applied component-wise via a one-dimensional
activation function, i.e., p(x1,...,24,) = (ﬁ(ml), ... ,[)(xdz)) with p: R — R, to the affine map
z € R" — Wz + 3 € R%, with a matrix W called weight, and vector § called bias. Standard
examples of activation functions p are the sigmoid, the ReLU, the tanh. We then call

Nf o= {0 RO S RY 300 € £ 30, € L4

mi—1,M4?

300 € Lty = B0 dr10- 000},

i=1,...,0—1,

the set of feedforward neural networks with input layer dimension dy, output layer dimension
d', and ¢ hidden layers with m; neurons per layer (i = 0,--- ,£ — 1). These numbers dy, d’, /,
the sequence m = (m;)i=o,... ¢—1, and sequence of activation functions p = (p;)i=o,... r—1, form the
architecture of the network. It is constructed through the alternative composition of affine maps
and a componentwise non-linear activation function.

We shall mostly work with the case dy = d (dimension of the state variable x). A given network
function ¢ € /\/'50 & o.m 18 determined by the weight /bias parameters 6 = (W, So, ..., We, Be)

defining the layer functions ¢y . .. , ¢, and we shall sometimes write ¢ = ¢’. Neural networks are
usually trained thanks to empirical risk minimization. In the framework of supervised learning,
one is given random variables (X,Y") and tries to minimize the risk:

inf B[L(¢"(X),Y)]

with a loss function L quantifying the error between the output ¢?(X) of the neural network
and the label Y. A typical example for L is the quadratic loss function L : (a,b) — (a — b)?. In
practice, the joint law of (X, Y") is unknown and one relies on a finite number N of i.i.d. samples
(Xi,Yi)i=1....n, which are used to estimate the expectation by an empirical one:

N,

1 s
'nf—g Lgpf77 X;),Y;
19 NZ - (()7)’

in a Monte-Carlo fashion, as in . Numerically the optimization problem is solved thanks to
stochastic gradient descent [RM51] or its variants among which Adam |[KB14|, Adagrad [DHS11],
Adadelta |Zeil2|. These optimization methods are implemented in the Tensorflow [Aba+16] and
Pytorch [Pas+19] libraries.

Some papers solve PDEs with machine learning but without relying on BSDEs. The Deep
Galerkin method [SS18] is a framework able to solve PDEs in any form by looking to a solution
in the form of a neural network, sampling point in a domain and trying to enforce the PDE on
every sampled point. The same idea is used by physics-informed neural networks [RPK19| which
also incorporates data and reconstruct the PDEs solutions by interpolating the data through the
PDE dynamics. In the time homogeneous case, the Deep Ritz method of [EY18| solves the vari-
ational formulation of elliptic equations thanks to a Deep Galerkin type scheme. Methods using
machine learning but not neural networks are also considered in the literature. These schemes
have also been designed in order to mitigate the curse of dimensionality, such as sparse grids
|Cha+21|, nesting Monte-Carlo [Warl8b|, branching [Bou+17; HL+19] and multilevel Picard
schemes [E-+19; HK20| which are proven to overcome the curse of dimensionality in some cases.

Semilinear case

Let’s focus on machine learning methods for semilinear PDEs which rely on BSDEs. The first
methods to appear are global methods such as the Deep BSDE method [EHJ17] and then the

1.1. APPROXIMATION OF NON-LINEAR PDES)

Merged Deep BSDE method [CWNMW19]. In that setting one obtains the initial value u(0, z¢)
to the PDE solution and a representation of the gradient of the solution by neural networks but
not for the solution itself. "Global" refers to the fact that one solves a single large optimization
problem taking into account the whole dynamics on [0,7]. The Y process is approximated by a
forward Euler scheme:

Yier =Y — F(ti, X, Yiea, Zi) At + 201(X;).AW;, i =0, N — 1,
with Yy = yo, a variable yg and neural networks Zf ¢. The scheme minimizes the loss

inf E[Yy —g(Xn)P,
y0,00, 0N
which is a target problem for the terminal value of Y. In that way the method is not part of the
supervised learning framework since we don’t have targets for the neural networks approximating
the Z process. The algorithm is also not an unsupervised algorithm since the coefficients in the
dynamics of X and Y are known, which is not the case in the Reinforcement Learning paradigm.
The method can be interpreted as a semi-supervised scheme where the labels are implicitly
learned through the training.

In [HPW20|, the basis function from is replaced by a neural network and both opti-
mization problems for the solution and its gradient are solved jointly at each time steps. This
local method allows us to obtain a functional approximation of the PDE solution at each time
step and not only at initial time ¢ = 0. Contrarily to the Deep BSDE scheme [EHJ17| several
small optimization problems are solved. These optimization problems are close to each other
and therefore we can initialize the neural networks parameters to the previously computed ones,
which gives a very good starting point because the PDE solution is expected to be continuous
in time. Close ideas are used by |Rail8| and in the splitting scheme of [Bec+21|. These schemes
successfully solve PDEs in dimension from 10 to 1000 in some cases. The idea of the Deep Back-
ward Dynamic Programming (DBDP) scheme of [HPW20| is to optimize the parameters 6 of
neural networks (U?(+), Z9(-)) € . C’Z d+1.0,m thanks to the recursive minimization of the backward
problems

~ ~ 2
irelf E\U(Xi) — Usp1(Xip1) — F(ti, X3, UD(X3), Z2(X3) At + 20 (X).AW;| , i =N —1,---,0,
(1.1.7)

where Z/AIN(X ~) is taken as g(Xn), 67 is the arginf of the previous problem and ﬁi—l—l = Llfﬁl
(the notations #* and ~ will have the same meaning below). A variant where Z! is replaced by
the gradient of Z/If is also proposed in this paper but yields a bit less accurate results. The Deep
Splitting (DS) scheme of [Bec+21] uses this idea and minimize the loss functions

N 5 . N 2
ir;f ElU (X;) — Uis1(Xiv1) — F(ti, Xig1, Uit (Xig1), 0 (ti, Xi) " Daldi1 (Xi1)) Aty

fori = N —1,---,0 with respect to the parameters 6 of a single neural network by time step.
Similarly the recent paper [NAO21]| studies a Malliavin scheme with neural networks. Extensions
to more general settings such as the path-dependent case are performed by [RT17}; SVSS20; SZ20),
whereas linear quadratic stochastic control with control delay is treated by [LM21|. When the
objective is to solve a stochastic control problem and not a PDE resolution, the Deep BSDE
method can alternatively be used to solve the coupled Forward-Backward Stochastic Differential
Equations (FBSDEs) coming from the Pontryagin principle. Contrarily to the previous case
where the forward process can be simulated independently of the computation of the BSDE
solution (Y,Z), here the dynamics of of X depends on the costate Y. These methods are
described for instance in |Ji+20a} |Ji4-20b].

6 CHAPTER 1. INTRODUCTION

In this thesis we propose several new schemes and our driving interrogations are:
e How can we improve the existing schemes?

e How do their approximation error behave when the time step vanishes? Can we improve
the theoretical error?

e How does the method depend on the neural network architecture?

Multistep DBDP scheme (MDBDP)(see Algorithm [6])

We propose in Chapter 4] a new machine learning multistep method inspired by |[GT14] and
[HPW20]|. It is called Multistep Deep Backward Dynamic Programming (MDBDP). It relies on
the following remark. Instead of discretizing the BSDE between time steps t; and ¢;11 we can
discretize it between ¢; and ¢ty = T and write

=

-1
Yi=g(Xn)+ Y F(t;, X, Y5, Z)At = > Z; AW,
4 —

7

which can be rewritten by adaptedness of Y and Z as

Yi = Elg(Xn) + S0 F(ty, X5, Y5, Zy) At — N5 28w | Ry
[(g(XNszVZLF(t X;,Y;, Z;)At — ZMlZ AWHRYE | Ry, i =0, N = 1.
(1.1.8)

In fact, the representations and are equal (it can be seen by the tower prop-
erty of conditional expectation) but because of the numerical approximation of the conditional
expectations required for a practical implementation of the scheme, the propagation of the nu-
merical errors will not be the same, see Theorem and the comments below. Our multistep
scheme takes the form of backward iterations as the DBDP scheme but with the following
modified loss function to minimize

UL (Xi) — g(Xn) — F(ts, X, UL (X3), 20 (X0)) At + 20 (X)) AW; (1.1.9)
N-1 R N-1 5

-) F (X)), Zi(X;)At+ Y Zj(Xj)AWj’ :

J=i+l J=it+1

which uses all the previously optimized neural networks at times steps j > 1.

Fully nonlinear case

In the fully nonlinear case (1.1.1)), an efficient probabilistic scheme is introduced by [FTW11]|
and it converges locally uniformly to the viscosity solution of the PDE thanks to the monotone
scheme framework of [BS91|. Assuming that the PDE solution is smooth, It6’s lemma gives

T
1
Y: = g(X7) — / [/L(S,Xs).ZS + itr(aaT(s,Xs)Fs) — F(s, X, Ys, ZS,FS)]ds
t
T
— / o'(s,Xs)Zs.dWs, 0<t<T.
¢

We define F(t,z,u, z,7) := F(t,z,u, 2,7) — u(t,).z — 3tr(c07(s, z)7). Contrarily to the semilin-
ear case now we have to estimate also the process corresponding to the second order derivative
Iy = D2u(t,X;). Here the coefficients of the forward process X from can be chosen
arbitrarily, contrarily to the semilinear case where the volatility is given in the equation .
Indeed, notice that in , the linear part of does not appear.

1.1. APPROXIMATION OF NON-LINEAR PDES 7

A machine learning scheme in this case has been introduced by [BEJ19], relying on the second
order BSDEs |Che+07| representation for the solution of fully nonlinear PDEs

Y, = g(XT)—FftT (s, XS,YS,ZS,I‘)ds — ft Zs.odWs,
Zy = ng(XT)—ft Asds—ft TsodW,, 0<t<T,

with Ay = LD,u(t,X;). In particular, in the case of the existence of a classical solution u of
class C12, T'y verifies I'y = D2u(t, X;) and as previously Y; = u(t, X;) whereas Z; = Dyu(t, X;).
The scheme discretizes this system and uses variables to approximate Yy, Zy and neural networks
(Ae, ge) to approximate A,I" thanks to the minimization of the distance to the terminal condi-
tions g(X7), Dg(X7) of both equations, following the framework of the Deep BSDE scheme.

We propose four alternatives local schemes, by combining ideas from [HPW20; Bec+21| and
from our own multistep scheme.

Second order DBDP scheme (2DBDP)(see Algorithm [7)
The first natural idea described in Chapter [5is an extension of the DBDP scheme with the loss
function given by

inf B{U] (X:) ~ Uper (Xigr) = F(ts, Xi, U (X3), 2)(X3), D23 (T (X)) At
2
+ Z0(X) AW,

where the second order derivative is estimated by differentiating the gradient obtained at the
next time step. We call this method 2DBDP. T is a truncature at a given quantile made to avoid
the propagation of instabilities on the edges of the explored domain. We show that our scheme
is able to solve nonlinear PDEs in moderate dimension and gives a better approximation of the
control than the Deep 2BSDE scheme.

Thanks to our investigations concerning multistep methods, we also extended this scheme to a
multistep setting. We propose in Chapter [3| three variants alongside a survey of machine learning
methods for PDEs and control in finance. All the methods consider the loss functions

N-1 N-1
inf Elg(Xn) +lr] Y Flty, X5, U(X)), (X)), Ty (X)) = D2 Z5(X,).08W; - U'(X)
j=it1 j=i+1

+ || F(t, Xi, U0 (X)), 2°(X:), T, (X3)) — 29(X3).

where the definition of IA’ZJ. depends on the method. We assume that the drift 4 = 0 and that the
volatility matrix is a constant invertible matrix o.

e Second order Explicit Multistep DBDP scheme (2EMDBDP)(see Algorithm B3).
We combine the multistep scheme and the 2DBDP scheme. If ¢ = N —1, define F = D?g,
otherwise T; = Dy Ziy1, Fj =D, Z ,jei+1,N—1]. We also take lj=3.

e Second order Multistep DBDP (2MDBDP), (see Algorithm [4)). Another method
uses Malliavin weights to evaluate this derivative on a subgrid grid # = {tz¢,¢ =0, . N }
C m, of modulus || = &|x|, for some # € N*, with N = AN. I'; is obtained by solvmg

2}%(€+1)(X;%(€+1)) - ZA&(@H)(X (z+1))H1
5 ¢

2

)

inf E 7 (Xre) —

with the Malliavin weights

- W,
Hfl = (GT)_I ~l AW Wt

— Wi,

A(£+1)

8 CHAPTER 1. INTRODUCTION

and the antithetic variables

A~

Xiger1) = Xae — o AW,
We also take [; = j + & + 1 where "= is the symbol for the Euclidian division.

e Second order Multistep Malliavin DBDP (2M2DBDP), (see Algorithm . This
technique uses second order differentiation of the multistep representation on a subgrid
as before thanks to second order Malliavin weights and antithetic variables. We also take

1.1.3 Lipschitz GroupSort neural networks and contributions to new theo-
retical results

We provide in Chapter [4] a detailed convergence analysis of both the splitting scheme and our
multistep scheme. We focus on the propagation of the discretization and regression errors through
the scheme. However we do not consider the statistical error coming from the Monte-Carlo
approximation of the expectation in the loss functions such as nor the optimization error
coming from the gradient descent algorithm.

Thanks to recent results on quantitative universal approximation for Lipschitz GroupSort
neural networks we obtain explicitly the error in terms of the neural network architecture, that
is its number of neurons and layers. For future use, we introduce the L2-regularity of Z from
|Zha04):

N-1 tir1 - B 1 Lit1
_E Zi— Z,2dt|, with Z, = —E»[Zdt}.
[;/t %t = 2.1,] with 2, = 1 Es /t :

i

We choose sequences (7;);, (17;); and consider general approximation classes N, N/ and N;""
respectively from R? — R, R? — R? R? — R (and with ~;-Lipschitz continuous functions
with 7;-Lipschitz continuous gradient for the last one). We define for i = 0,..., N — 1 the L?-
M 21 ,@ 6 =~
sy Uy Uy

approximation errors in this classes of the functions v, %) defined respectively

in (1332), (L31) and (L30)

gl.l’y := inf E‘v XZ)—Z/I(XZ')‘Z, si’z = inf E‘zz z)—Z(Xi)‘Z,
UEN; ZeN/ 2
infy e B[0P (X0) —U(X)|)?, i=0,...,N—1
6;{’77: UGM’ i 1 127 PR)
infyepn Elg(Xn) —U(XN)|", i=N,
2

7

e = inf E[o®(X;) —U(X;)
UEN;

Our approximation result is the following:

Theorem 1.1.1 (Approximation error of MDBDP). Under Assumption there exists a
constant C' > 0 (depending only on the data p, o, f,g,d,T) such that in the limit |7| — 0

sup]E‘Y}i— U —|—E Z/
t;

i€[0,N]

tz+1

12, — Z0(x,)[2 as]

=

< C(Elg(xr) — g(Xw)[* + m| +%(x) + Y ()" + Atge}).
J

I
=)

1.1. APPROXIMATION OF NON-LINEAR PDES 9

This approximation error of the multistep scheme is better than for the DBDP scheme of
[HPW20| where the regression errors term Z;V:_Ol (5}’y+Atj€;’Z) is replaced by Z;V:_Ol (N sjl-’y—i—e}’z)
instead. In particular we answer the point raised by Come Huré in the Section 1.3.4 of his PhD
thesis [Hurl9] where he mentioned that the factor N he obtained in front of the sum of errors
was unexpected and could not be removed from his proof. In fact the use of a multistep method
allows us to remove this term. However, we obtained a similar factor N for the splitting scheme
[Bec+-21].

Theorem 1.1.2 (Approximation error of DS). Let Assumption hold, and assume that Xy
€ L4(f0,Rd). Then, there exists a constant C > 0 (depending only on p, o, f,g,d, T, Xy) such
that in the limit |w| — 0

> 2 2
sup EY;, — U (X)| < C(B|g(Xn) — g(¥r)|* + || + ()
1€[0,N]
N—-1
+ max ['yiz,nﬂ Tl + e+ N Z 57’").
=0

The first classical approximation results prove that neural networks are dense in function
spaces, such as [HSW89; [HSW90; [Hor91] but no rate of convergence was given. When more
regularity is assumed for the target functions, such as boundedness, Lipschitz continuity, con-
vexity or Sobolev regularity, several works later provided explicit approximation results [Pin99a;
BGS15} [Yarl7; [Bacl7]. We use a more recent approach with Lipschitz neural networks. Thanks
to an activation function that divides its input into groups and sorts each one of them (see
Figure , and enforcing bounded weights parameters, the GroupSort network introduced by
[ALG19] is 1-Lipschitz. |[TSB21] proves explicit approximation results for these networks which
allow us to go further into our error analysis by expressing the regression errors as functions of
the architecture. As a consequence we can choose the neural networks parameters so that the
overall error is equivalent to the time discretization error.

Let k € N*, k > 2, be a grouping size, dividing the number of neurons m; = kn;, at each layer
1=0,---£—1. Zf;é m; will be refered to as the width of the network and ¢+ 1 as its depth. The
GroupSort networks correspond to classical deep feedforward neural networks in N éfu’m with
a specific sequence of activation function (, = (C,i)izo,m,g,l, and one-dimensional output. Each
nonlinear function ¢! divides its input into groups of size s and sorts each group in decreasing
order, see Figure 1.1

Moreover, by enforcing the parameters of the GroupSort to satisfy with the Euclidian norm
| - |2 and the s norm | - |oo:

sup ’WO(E|OO S 17 sup |Wl$’00 S 17 |BJ|OO S M7 1=]-7 7l7] = 07 ala

|z|2=1 |z|co=1
for some M > 0, the related GroupSort neural networks from N dc’zl, s.m are 1-Lipschitz. The
space of such 1-Lipschitz GroupSort neural networks is called Sg'} m

ng}’m - {@(Woﬁo,..-,Wbﬁé) c Niﬁl,é,m’ sup Wozloo <1, sup [Wizle < 1,

|z|]2=1 |z]co=1

‘6]|OOSM7 ’L:lea 32077l}

We then introduce the set ggg dd fm 85
/ T+ o
G5 g =Y = (Wi)ic 0 RU o RY, Wiz e RO K5 o 3 ‘) er,
1

¢; € 55”

1€?m)

for some o; € RY, B; > 0}.

10 CHAPTER 1. INTRODUCTION

HET EEN BN e

= T < e

' H'E NN 'EEn

Figure 1.1: GroupSort activation function {, with grouping size k = 5 and m = 20 neurons,

figure from |[ALG19).

Notice that these networks are v/d K -Lipschitz and that each of their components is K-Lipschitz.
We give the approximation result which is central for our study.

Proposition 1.1.1 (Slight extension of Tanielian, Sangnier, Biau : Approximation
theorem for Lipschitz functions by Lipschitz GroupSort neural networks.). Let f : [-R, R]?
RY be K-Lipschitz. Then, for all € > 0, there exists a GroupSort neural network g in gﬁgd,d,
verifying

lvm

sup | f(z) — g(z)]2 < VA'2RKze,
z€[—R,R]4
with g of grouping size Kk = [2?‘/&1, depth € +1 = O(d?) and width Zf;é m; = O((@)dll) in
the case d > 1. If d = 1, the same result holds with g of grouping size k = E], depth ¢ +1=3
and width Zf;é m; = O(2).
We next study convergence for the approximation error of the MDBDP scheme with Group-

Sort neural networks and with the additional assumption that the driver F does not depend on
z, hence the PDE is linear in z.

Proposition 1.1.2 (Rate of convergence of MDBDP). Let Assumption and Assumption
hold, and assume that Xy € L2+5(]:0,]Rd), for some 6 > 0, and g is [g]—Lipschitz. Then,
there exists a bounded sequence K; (uniformly in i, N) such that for GroupSort neural networks

classes N = G~ and N! = G we have
? Ki7d717£7m, ? ﬁKi,d,d,K,m}
1

R N-1 tiv1 R
sup E|Y;, ~ UV () +E[Y / 2~ 20| ds| = 0(1/N),
ie[0,N] = i,

with a grouping size k = O(2v/dN?), depth £+1 = O(d?) and width Zf:é m; = O((2vV/dN?)®* 1)
in the case d > 1. If d = 1, take k = O(N?), depth ¢+1 =3 and width Zf;ol m; = O(N?).
Here, the constants in the O(-) term depend only on u,o,F,g, d, T, x.

We are able to perfom the same analysis for the DBDP scheme in the semilinear case where
the PDE is nonlinear in z.

Proposition 1.1.3 (Rate of convergence of DBDP). Let Assumption hold, and assume
that Xy € L**9(Fy,RY), for some 6 > 0, and g is [g]— Lipschitz. Then, there exists a bounded

sequence K; (uniformly in i, N) such that for N; = Q%_ d1em: and N = G T aaem Ve
R Ttl 'L‘? et 7m

have

R N-1 tiv1 R
sup E|Y, — U (X)) + | Z/ 2.~ 27(x)[2 as] = o/N).
1€[0,N] i—0 “ti

with a grouping size k = O(2vVdN?), depth £+1 = O(d?) and width Zf;é m; = O((2VdN3)*~1)
in the case d > 1. If d = 1, take k = O(N?), depth £+ 1 = 3 and width Zf;ol m; = O(N?).
Here, the constants in the O(-) term depend only on u,o, f,g, d,T, Xp.

1.2. MEAN-FIELD PROBLEMS AND THEIR NUMERICAL APPROXIMATION 11

Due to the previously mentioned differences between the error of DBDP and the one of
MDBDP we notice that much more neurons are required to obtain a similar error rate. For
instance in dimension d = 1, to obtain an error of O(1/N) the DBDP scheme requires in theory
O(N3) neurons whereas only O(N?) are necessary for the MDBDP scheme.

1.2 Mean-field problems and their numerical approximation

1.2.1 Motivation and optimality conditions

Large population games have stimulated a growing interest since the emergence of the mean-field
games theory introduced by |LLO06a; LLO6b| and [HCMO6|. This theory considers the limit of an
infinite number of similar interacting players and aims at characterizing the resulting equilibria.
Two main frameworks are available:

e Mean-Field Games (MFG). The MFG theory looks for Nash equilibria, hence consider
a competitive interaction between the players.

e Mean-Field Control (MFC) (or control of McKean-Vlasov dynamics). Here the frame-
work focuses on collaborative equilibria, with a central planner solving a problem regarding
the whole population.

The starting point is a N —player stochastic differential game with cost and dynamics for agent
i and feedback controls o}

T =E[Jy 5 (X0 % S dxgsf) dt+g (X% DI 0y)]

| S | SN 0 (1.2.1)
dX} = b(ﬂ Xis N 2= 5)(;@704%) dt+a(t7XZ’Nzk:1 5)(57043:) dwy.

When the number of players N is large, the game becomes difficult to solve and mean-field
approximation provide a way to approximately solve the problem by taking the limit N — 4o00.
To find an equilibrium, we consider distributed Markovian feedback controls o} = a;(X}).

To write down the asymptotic MFG problem, we first start by setting a family (Mt)te[o,T] of
probability measures. Then we solve by symmetry only for a representative player:

T
inf E [/ f(t7Xfé¢,Utaat) dt+g(X%7MT):|
ot €A 0

t t
subject to X =¢ +/ b(s, X<, s, aus) ds +/ o(s, X, s, as) dWy.
0 0

Here the initial law of X§, called vy, is known, and ¢ is sampled from this law. Once we find a
solution X" we denote v;" * := L(X}" #’“) its law. We search for the family of measures 1
solving the fixed point problem

= v = (X,

On the other hand the related MFC problem is given by

T
it B [0 L0 ar) a0 £0XR))

(1.2.2)

t ¢

subject to X =¢ —I—/ b(s, X L(XE), as) ds —I—/ o(s, X LX), as) dW,.
0 0

Even if these problems are different, they are nonetheless quite similar. The following en-
lightening interpretation is given by [CDL13;|CD18a): starting from (1.2.1), if you optimize first
then go to the limit N — 400 you obtain a MFG, whereas if you first go to the limit N — 400
and then optimize you end up with a MFC. In general, the two equilibria are different.

12 CHAPTER 1. INTRODUCTION

Mean-field theory has several application in applied mathematics such as quantitative finance
with optimal execution and price impact |[CL18|, economics with bitcoin mining |[Ber+-21] or oil
production |[CS17|, health with the propagation of Epidemics [Lee+21|, or even social networks
[BTB16|. In the field of energy, the multiplication of small operators, decentralization and smart
networks with flexibilities (demand management and storage) have inspired several studies using
the mean-field machinery. These works have investigated smart charging [SWA21a; SWA21b|,
electricity storage and flexibility [ABTM20; GG21a; (GG21b|, but also price formation and trad-
ing in electricity markets [FTT21; FTT20]. These papers often consider linear-quadratic models,
that is linear dynamics and quadratic costs so that the exact solution can be computed. But if
one wants to use more realistic parameters, numerical methods are necessary in order to obtain
an approximation of the solution. As before in the case of stochastic control, neural networks
are an interesting tool to solve moderate to high dimensional nonlinear problems. Eventually,
for practical use, to respect physical constraints or regulatory frameworks, it is sometimes useful
to add state constraints to mean-field control problems. We will consider these two problems.
The second part of our thesis aims at answering the following questions:

e How to introduce new machine learning numerical resolution methods?

e How can we impose state constraints in a mean-field control problem? What about prob-
abilistic constraints?

We review the optimality conditions of mean-field control problems which will be useful for
their numerical resolution. Similar optimality condition are obtained for the MFG. The dynamic
programming approach introduces a value function on [0, T x Po(R%) depending on the starting
law:

T
ot = inf Bu [[P00 L0, 00) ds o+ (X LX)
t
(here E; ,[-] is the conditional expectation given that the law at time ¢ of X solution to (1.2.2) is
equal to p). Similarly as in the standard stochastic control case, this function verifies a partial

differential equation, called the Master Bellman equation [BEY13; PW17; PW18;|CP19; [DPT19|
(see |Car+19; |CCD15| for MFG):

{ O + H(t,u,v,@uv,axauv,aiv) = 0, (t,p) €[0,T) x Po(RY), (1.2.3)

o(T,p) = G(u), pePRY),

with G(u) = [g(x, p) p(dz),

Mt 2030200 = [[p2(a). ()|),

and
1
H(t,z,p,y,2,7) = Inf [b(t, @, p,0).2 + f(2, p,0) + Str (007 (8 2, pa)y)].
ac
In the equation above, d,v is the Lions derivative. It is defined thanks to the Fréchet derivative
[Dv](t,€) of the lifted function o : (t,&) € [0,T] x L*(RY) +— w(t,£(¢)) € R which can be

represented by Riesz representation theorem by 9,v(t, &) € L*(RY) such that [Dv](t,£)(Y) =
E[0uv(t,£).Y] € R.

The Pontryagin principle [CD15| (see |[CD13| for MFG) introduces the Hamiltonian

H(taxauayvzaa) = b(t,a?,,u,a) Y + TY(U(tvaaMaa)Z) + f(t,a:,u, Oé),

1.2. MEAN-FIELD PROBLEMS AND THEIR NUMERICAL APPROXIMATION 13

and gives optimality conditions in the form of McKean-Vlasov Forward-Backward Stochastic
Differential Equations (MKVFBSDEs):

dX; = b(t,Xt,ﬁ(Xt),@t) dt +U(t,Xt,£(Xt),éét) dW,

Xo =¢
dY; = —0.H(t, X1, L(X1), Yy, Zs, &r) At — B[O, H (t, Xp, L(X4), Vi, Zit,)] dt + Z; AW,
Yr = 0.9(Xr,pur)+ E[apg (XT,MT>],

_ (1.2.4)
where &; = argmin H(t, Xy, £(X}),Y:, Z,) and (X,Y, Z, &) is an independent copy of (X, Y, Z, &).
(e
In the case of MFG, the Lions derivatives d,, disappear in (1.2.4). Concerning mean-field
games, the founding paper |[LLOGb| characterizes the equilibrium thanks to a coupled system

of a Hamilton-Jacobi-Bellman and a Fokker-Planck equations which has been used to provide
numerical solutions of MFG |ACD10)].

A first idea to solve (1.2.2)) is presented in |[CL22|. A brute force approach consists in finding
optimal feedback controls by parameterizing the control a; by a neural network A? : (t;,x;) €
0,7] x R? — RY and directly minimize the discretized in time cost:

N, /N
e 1 koo 40 k koo
I%f A ;;—1 <§_1 f(ta, X7, s, A7 (i, X37)) At + g(XR, fiv) (1.2.5)

XFy = XF 4+ b(ti, XF, i, A% (i, XF)) At + o(ti, XT, s, A (4, XT)) AW,

1 &
ﬁz:ﬁszd){f’ i:O,--~,N—1,
k=1
X(’;::é-ka]{3:0,"',N5,

where the law is approached by the empirical measure of the particles with independent Brownian
motions W¥*, k = 1,--- Ny and &*, k = 0,---, N, are independent samples of the initial
condition £. This is the version for mean-field control of the existing methods [GMO05; HE16].

1.2.2 Contributions on the numerical approximation side

Other approaches numerically solve the optimality conditions to construct approximate solutions.
We provide in Section two approaches relying respectively on (1.2.4) and (1.2.3)).

A first natural idea for machine learning resolution of mean-field games and mean-field control,
introduced by [FZ20; CL22|, is to extend the Deep BSDE method to the approximation of
McKean-Vlasov FBSDESs, coming from the Pontryagin principle (|1.2.4)).

(quk+1 = b(tl')sza Ia’iv d’L<X7,k7la’La }/;ka Zq,k)) At + U(tiu szvﬁ% Y;jk7 sz7OAéZ(szv ﬂi7 1/vik7 Zf)) AWf?

X(])C :gkvk:()a"'aNsv

s . - c . ; 0;
— N s OuH (8, X, Y7, 70 6i(X YT Z0)) At 4 200 (XF) AWE,
\/_j’i :]\[LS ;gV;léXlka:Ou’N_l’

% =0, ,N—1.
Moreover df(Xf,ﬂi,Y;k, sz) = argmin H (¢;, Xf,ﬂi,Yik, Zf,a). The scheme minimizes the loss
«

with Y = VJ(X}), a neural network)] and neural networks z0i

function

)

1 & 1 & 2
. k k J
meolf}fﬂN N ; ‘YN — 029 (XNHUN> N ;aug (XNHUN>

14 CHAPTER 1. INTRODUCTION

with respect to the neural networks parameters 7,0y, -+ ,0y. In [GMW22|, we propose variants
and compare all schemes in dimension 10 whereas the previous only tested the schemes in the
unidimensional case. Our methods replace the empirical measure by other choices such as an
online estimated measure or a neural network. We also consider a local version of the algorithm
which solves one optimization problem by time step instead if a simple big optimization step.
However it seems that the global method works better than this local one in the context of
MKVFBSDEs. A theoretical analysis with a posteriori error estimates is conducted by [RSZ20].
An alternative method in the non-smooth case exploits proximal gradient descent to solve the
MFC problem |[RSZ21].

Another method arises by trying to solve the Master Bellman equation (1.2.3). Of course,
being an infinite dimensional PDE, some discretization has to be performed in order to obtain
an implementable scheme. We study this problem in Chapter [f] We consider the equation for
a general function H (t,x, j1,y, z) which does not necessarily come from mean-field control. But
the semilinear structure is required in order to use BSDE arguments. We use a particle method
and replace this equation by a finite dimensional PDE, in high dimension. This equation is given
by

al 1
oo + % ZH(t zi, fi(x), v, ND, o) + §tr(ZN(t,x)DivN) =0, on [0,7) x (RHN

=1

(T,ZL') = G(())’ T = (mi)ie[[l,N]] € (Rd)Na

(1.2.6)
where f(.) is the empirical measure function defined by a(x) = %ZZ]\L 1 Oz, for any & =
(z1,...,zn), N e N*,and Xy = (Z)”6[[1 N is the RNNd_yalued function with block matrices

Z%(t,m) = o(t,zi, ji(x)) o7 (t, x5, i(x))dij + oolt, zi, i(x))af(t, z;, i(x)) € R, This equation
is studied in [GMS21] which proves the convergence of its viscosity solution to the viscosity solu-
tion of the master equation when N goes to +o00, under some conditions on H and the volatility
coefficients o, 0. Our contribution is to give a convergence rate thanks to probabilistic argu-
ments. The finite-dimensional PDE is linked to a Markovian BSDE through the nonlinear
Feynman-Kac formula. The related forward particle system is

XY = o (t, X)) AW, + ao(t, X[Y) dW),

where o is the block diagonal matrix with block diagonals 0% (¢t,x) = o(t,z;, fi(x)), o9 =
(00)16[[171\/]] is the (RP™)N_valued function with o} (¢, z) = O'(](t,ZEl,/J,(), for & = (z:)iep,n
W =W ..., W) where W i =1,..., N, are independent n-dimensional Brownian motions,
independent of a m-dimensional Brownian motion W on a filtered probability space (Q, F,F =
(Ft)o<t<T,P) and where the initial conditions of the particles system, Xé’N, 1 =1,...,N, are
i.i.d. with distribution 9. The backward component is defined by the pair process (Y, Z N —
(Zi’N)z‘e[[l,N]]) valued in R x(R%)N, solution to

N T
R = GO + 3 [s XY ROK. Y NZEY) s
; t
- Z [@yl Y, ax) aw,
- Z/ (ZeN)Too (s, XV, a(XN)) dw?, 0<t<T

The main difficulties in the study of the convergence of this PDE to the Master Bellman equation
are:

1.2. MEAN-FIELD PROBLEMS AND THEIR NUMERICAL APPROXIMATION 15
e The N factor in front of the gradient in the nonlinearity Hp which makes the Lipschitz
regularity with respect to the gradient explode.
e The explosion of the dimension of the PDE.

These difficulties can be bypassed thanks to a linearization procedure together with a Girsanov
change of measure. We study the pathwise error on v:

&= sup |Y}N —ot, m(X))],
0<t<T

and the L%-error on its L-derivative
1« T N NVI2Z0,) 2
Il = 5 30 (] EINZY —ou0 X)) Fat)
i=1

Under assumptions regarding the Lipschitz regularity of the parameters, existence of a smooth
enough classical solution with linear growth and bounded second order Lions derivative, we are
able to find a convergence rate for the solution. Additional assumptions are required to study
the error HSZZVH27 such as ellipticity of the common volatility o9 and a linear structure regarding
the gradient of the PDE solution.

Theorem 1.2.1. Under Assumptions[6.2.1] and[6.2.9, we have P-almost surely

C
Y < Yy
v < N’

where Cyy = %C[thTLHO'HQ with ||o||ee = SUD ;1 11)€[0, 7] xRY xPo (RY) lo(t, z, p1)].

o

Theorem 1.2.2. Under Assumptions[6.2.1),[6.2.9 and[6.2.5, we have

Z CZ
€%, < N

where C. = || |loo 2T ([Hi)s + [L)C3 + Cy T |2 L + 2C3T| Hy |12, and
C, = %e([H1}1+[H2]1L)TL||UHgO,

By noticing the symmetry properties of the PDE, we design in Chapter [7] a scheme fitted
to these symmetries which allows us to work in high dimension, with 1000 or 10000 particles.
More precisely, the solution v" of (I.2.6)) is invariant by permutation of its inputs, namely for
z1,-,xy € (RY)N and a permutation o on {1,--- , N}:

N N
v (21,0, ZN) =0T (To(1)s 7 Ta(N))-
This symmetry also implies a structure for its space derivative. Both these behaviors made us
design a method fitted to symmetric PDEs. The idea is to consider symmetric neural networks,
namely DeepSets [Zah+17| and PointNet |Qi+17] which have been introduced by the machine
learning community in particular in order to efficiently classify point clouds.

A symmetric neural network function, denoted U € S;’évr’s > 18 an R% -valued exchangeable

function to the order N on R?, in the form:

Ux) = ¢(5((<P(9Ui))ie[[1,N]]))7 for x = (xi)ie[[l,N]] € (Rd)N7

where p € N, . e N/, . (here, for simplicity of notations, we assume that the number
of hidden layers and neurons of ¢ and 1 are the same but in practical implementation, they may
be different), and s is a given R*-valued exchangeable function to the order N on R

16 CHAPTER 1. INTRODUCTION

The DeepSet network is given by

N
U) = v S(ele)epm)s for = (e € B,
i=1

when the PointNet network is given by

Ux) = (max ((p(z:))iepny)), for @ = (wi)iepv € (RN,
These networks are symmetric by construction and are expressive enough in the space of sym-
metric functions. More precisely, by combining Theorem 2.9 of [Wag+19| with Theorem 2 of
|[Hor91|, we obtain the following approximation theorem for DeepSets.
Universal approximation for DeepSets networks. Let s be the sum function. The set

s,IN,p
I=1Sd,€,m, N+41,0 aPproximates any N-exchangeable continuous function w arbitrary well on

any compact set of K € R? | once p is continuous, bounded and non-constant: for all £ > 0, N
€ N*, there exists U € U;’,SL’ZIS;’éVT’?fZ N41.q such that

lw(x) —U(x)| < e Vo e KN,

Note that a priori the latent space dimension k has to be chosen equal to N + 1.

Alternatively, by combining Theorem 1 of |Qi+17] with Theorem 2 of [Hor91|, we obtain the
following one-dimensional approximation theorem for PointNet.

Universal approximation for PointNet networks. Let s be the max function. The set
Upr—1 Upey Sié\%),k, o approximates any N-exchangeable Hausdorff continuous function w (seen
as a function on sets) arbitrary well on any compact set of K C R, once p is continuous, bounded,
and non-constant: for all e > 0, N € N*, there exists U € Uj_; Up2, Si’%’?’fk o such that

lw(S) —U(x)| < e, VSCK, S={x1, -, an}.

Note here that a priori the latent space dimension k has to be chosen as large as needed.

We adapt the DBDP scheme [HPW20| with these symmetric neural networks. Contrarily
to feedforward neural networks, our method does converge even in difficult high dimensional
cases. Several variants can be implemented for the approximation of the Z component of the
BSDE, corresponding to the gradient of the solution. We can either consider the derivative of the
neural networks approximating the Y component or use an architecture satisfying the symmetry
properties of the gradient of a symmetric function.

1.2.3 Adding probabilistic state constraints

In many practical situations, it can be useful to impose state constraints on the controlled state.
The constraints can be physical (such as non negativity, boundedness...), could be decided by
the regulatory framework, or useful to find a particular solution of interest. We refer to [ST02;
BEI10; |Gel+13; |CYZ20; [PTZ21; Bal+21] for specific applications of probabilistic constraints,
notably in finance, and often written in expectation form. An example that we consider is the
one of the optimal control of a battery for renewable electricity storage, subject to randomness
in both the production and the market prices. [ABTM20| studies such a problem in a mean-
field setting without physical constraints on the battery, in order to obtain an explicitly solvable
linear-quadratic model. In Chapter|8|we will numerically solve a related problem with constraints
of the size of the storage and the injection or withdrawal capacities.

1.2. MEAN-FIELD PROBLEMS AND THEIR NUMERICAL APPROXIMATION 17

In the context of mean-field problems, several papers consider mean-field games with the
state constrained to stay in a compact set |[CC18; |(CCC18} |[FH20; GM21; AM21]|, either at all
time or only a terminal time 7. Terminal constraints in law are also considered by |[BDK20;
Dau20| respectively for control of McKean-Vlasov dynamics and stochastic control. For mean-
field control, with the point of view of the control of Fokker-Planck equation, the works |[Bon19;
BEF21| are able to enforce terminal or running constraints on a measure, by relying on the
Pontryagin principle, in the deterministic case without diffusion. A mean-field control cost for a
diffusion with probabilistic state constraints is also studied in [Dau21].

We consider in Chapter [§] the general case of running and discrete time constraints on the
probability law of the state, which contains for instance in particular terminal constraint in law
and compact set constraints. We rely on the level set approach from |[BPZ15; BPZ16; |ABZ13|.
It amounts to introduce an auxiliary unconstrained problem with an additional state variable.
Thanks to a representation result, we can link the solution of this problem to the solution of the
original constrained problem. This approach is also useful for numerical purpose since existing
methods can be applied to the auxiliary problem. Hence we are also able to develop numerical
schemes for law constrained mean-field control problems. We consider the following cost and
dynamics:

T
J(XQ,O[) =]E|:/(] f(s7X?7a87]P)(X§‘,as)) ds + g(X%,Px%)}

t t
X = Xo +/ b(s,Xs‘,aS,]P’(Xg’as)) ds —i—/ U(S,X?,at,P(X§a7as)) dWs,
0 0)

and a probabilistic state constraints in the form
\I/(t,IP)X?)S 0, 0<t<T,

where ¥ = (U!); </}, is a given function from [0, T] x P2(R?) into R*. Here, the multi-dimensional
constraint W(t,) < 0 has to be understood componentwise, i.e., W!(t,u) < 0,1 =1,--- ,k. The
problem of interest is therefore

VY .= ini{J(Xo,a) :W(t,Pxa) <0, Vte0,T]}. (1.2.7)
ac

We introduce an additional deterministic state variable

t t
0% = z—E[/O F(5, X, s, Pxe) ds} - z—/o F(5,Pixeay) ds, 0<t<T,

and the unconstrained auxiliary problem

k

Y.z eRw inf [{ﬁ(]P’X%) ~ZEY e+ Y sup {qﬂ(s,PXg)H, (1.2.8)
acA 1—1 S€[0,T7

with the notation {z}, = max(z,0) for the positive part. We see that Y¥(z) > 0. Define the
infimum of the zero level-set

zZ¥ . =inf{zeR | YY(z) =0} (1.2.9)

We prove two representation results of the constrained problem ((1.2.7)) by the unconstrained

problem ([1.2.8)).

Theorem 1.2.3. 1. If for some 2z € R 3 a € A s.t. §(Px%) < Z7%, W(s,Pxa) <0, Vs e
[0, T then Y¥(z) = 0.

2. If V¥ is finite then YY(VY) = 0. Thus Z¥Y < VY.

18 CHAPTER 1. INTRODUCTION

3. Define 1, = (1,--- ,1) € Rk, We have the upper bound

VY <inf ZVtels,
e>0

Theorem 1.2.4. Assume that VY < co. Then we have the representation
zV=vY.

Moreover e-optimal controls of for the auziliary problem YY(VY) are e-admissible e-optimal
controls for the original problem in the sense that

J(X0,0°) < VY 4¢, sup U(s,Pyac) <e.
0<s<T °

A discussion about open loop and closed loop control is given in[8.3] We restrict ourselves for
the numerical approximation part to deterministic Markovian feedback (or closed loop) controls
but we give assumptions under which restricting the choice of controls to this space is optimal.
In general, adapted (open loop) controls yield smaller cost than closed loop controls. These
results allow ourselves to numerically solve the unconstrained problem [[.2.8 and the level-set
minimization in order to solve the constrained problem . We adapt the approach
from |CL22| to propose an implementable scheme.

Chapter 2

Introduction (en frangais)

Cette thése est divisée en deux parties. La premiére étudie les méthodes numériques pour
résoudre les Equations aux Dérivées Partielles (EDPs) paraboliques non-linéaires. Ces équations
apparaissent typiquement dans le contexte de la programmation dynamique pour le controle
stochastique, ce qui constitue notre principale motivation. Nos schémas utilisent ’apprentissage
profond afin d’approcher les solutions des EDPs. Nous décrivons un nouveau schéma multistep
pour la résolution d’EDP semilinéaires et réalisons une analyse de convergence de cette méthode
et d’autres méthodes proposées dans la littérature. Nous montrons que ’erreur d’approximation
théorique et l'erreur numérique empirique sont plus faibles en comparaison avec les méthodes
existantes. En particulier, grace a des résultats récents sur les réseaux de neurones lipschitziens
GroupSort, nous sommes en mesure de relier 'erreur du schéma a I’architecture du réseau, c’est-a-
dire le nombre de neurones et de couches. Lorsque les EDPs sont entiérement non-linéaires, nous
décrivons de nouveaux schémas, one-step ou multistep, capables de traiter ce cas plus difficile.
Nous fournissons des tests numériques afin de démontrer la pertinence de nos algorithmes.

La deuxiéme partie de la thése est consacrée au contrdle & champ moyen. Nous obtenons
d’abord la vitesse de convergence d’une approximation en dimension finie d’une équation sur
I’espace de Wasserstein des mesures de probabilité. Nous nous appuyons pour cela sur un argu-
ment de linéarisation ainsi que sur un changement de mesure de Girsanov. Ces équations provien-
nent par exemple de I’équation maitresse de Bellman du contréle & champ moyen. Nous utilisons
ensuite des réseaux de neurones symétriques DeepSets pour résoudre des EDPs symétriques telles
que celles provenant de 'approximation des équations maitresses de Bellman. Le respect de la
symétrie du probléme dans le schéma lui-méme nous permet de résoudre des problémes en haute
dimension. Finalement, nous considérons le controle du champ moyen avec des contraintes d’état.
Nous fournissons un résultat de représentation du probléme original par un autre probléme sans
contraintes. Cette représentation nous permet de résoudre numériquement le probléme initial.

2.1 Approximation des EDPs non-linéaires

2.1.1 Du controéle stochastique aux EDPs et a leur résolution numérique

En mathématiques appliquées, notamment en mathématiques financiéres, le controle stochastique
est un outil puissant pour concevoir des stratégies efficaces pour un agent dont la dynamique et
les objectifs sont soumis au hasard. Des exemples typiques incluent entre autres la couverture
quadratique de produits dérivés financiers [Pha00], la couverture du stockage de gaz [Warl2|, ou
'allocation de portefeuille [ZL00|. D’autres applications sont décrites et étudiées dans le livre
[Pha09].

19

20 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

La forme générale de tels problémes est donnée par:
T
it B[[7(s, X3 0.) ds + g(X7)]
« 0

t t
X = Xo —i—/ b(s, Xg', as) ds +/ o(s, X¢, as) dWs, t >0,
0 0

ol « est un processus de controle a valeurs dans R?, W un mouvement Brownien d-dimensionnel,
et des fonctions f: [0,T] x REx R? = R, b: [0,7] x R x R? = RY, o : [0, T] x RY x RY s R4,
Le processus X est un processus de diffusion, solution d’une Equation Différentielle Stochastique
(EDS) controlée. En introduisant la fonction valeur

T
’U(t,l‘) = inf E[/ f(San’x’a,Oés) ds _i_g(X’%:v,a)}
@ t

S S
Xboo — g +/ b(u, X5) du +/ o(u, XE5 ay,) AWy, s > t,
t t

il est connu que celle-ci résout dans le sens des solutions de viscosité I’équation de Hamilton-
Jacobi-Bellman (HJB)

{ ow(t,z) +inf, {f(t,x,a) + b(t,x,a) Dyv(t,z) + %Tr(ao'—r(t,x, a)D%v(t,x))} =0
v(T,x) = g(x).

Cette EDP parabolique est un cas particulier d’EDP complétement non-linéaire qui prend la
forme

{ owu(t,) + F(t, z,u(t,x), Dyu(t, z), D2u(t,x)) =0 (2.1.1)

u(T, x) = g(a?),
pour une fonction F : [0, 7] xR? x R x R? x R¥*? — R. Quand la volatilité ¢ n’est pas controlée,

c’est-a-dire quand D,o = 0, nous pouvons faire sortir le terme de volatilité de 'infimum et
I'équation de HJB devient linéaire en la dérivée seconde (Hessienne) D2v:

{ Oro(t,x) + 3 Tr(oo T (t,2) D2u(t, x)) + info { f(t,z, @) + b(t, x,a) Dyv(t,z)} =0
o(T,z) = g(),

qui est un cas de particulier d’EDP semilinéaire

{ dvu(t,x) + p(t,z) - Dy + 3 Tr(oo ' (¢, 2)D2a(t, z)) + F(t,z,u(t, x),o(t,) Dyalt, x))(2:102)
(T, x) = g(x),

pour une fonction F : [0,7] x R xR x R? — R. La résolution numérique de cette équation
est plus facile que dans le cas précédent et certains de nos résultats théoriques seront seulement
valides dans ce cas.

Dans le cas semilinéaire, les méthodes numériques sur lesquelles nous nous concentrons re-
posent sur le lien entre les Equations Différentielles Stochastiques Rétrogrades (EDSRs) et les
EDPs pour construire des méthodes numériques. Avec le processus de diffusion X ayant pour
générateur Lo = pu(t,x) - Dyp(t, z) + 1 Tr(oo " (t,2)D2¢(t, z)), c'est-a-dire

t t
X=X +/ u(s, Xs) ds +/ o(s, Xs) dWs, (2.1.3)
0 0

la formule de Feynman-Kac non-linéaire [PP90] relie la solution u de ([2.1.2)) a la solution adaptée

(Y, Z) de PEDSR:

T T
Yt—g(XT)+/ F(s, Xy, Yy, Zs) ds—/ Z, AW, (2.1.4)
t t

a travers Y; = u(t, X;) et quand @ est réguliére, Z; = o(t, x) Dya(t, X¢). Résoudre 'EDSR revient
a résoudre 'EDP le long de trajectoires du processus X.

2.1. APPROXIMATION DES EDPS NON-LINEAIRES 21

Décrivons ’approche standard de résolution de cette EDSR. On cherche a générer des processus
adaptés a temps discret qui convergent vers les solutions de 'EDSR évalués le long d’une grille
temporelle. En discrétisant en temps selon la grille réguliére ¢ := % par un schéma d’Euler
pour le processus X et un schéma d’Euler rétrograde pour la composante rétrograde Y
(2.1.4) nous pouvons définir entre deux pas de temps consécutifs les processus a temps discret

Xiy1 = Xi + p(ti, Xi) At +o(ti, Xi) AW,
Vie1 =Y — F(t;, X, Yig1, Zi) At + Z;.AW;, i =0, N — 1,

avec Xg = Xp, At = % et AW; = W,,,, — Wy, ce qui donne par adaptation de Y et de Z

{ZFEMH%HEJ

- 2.1.5
Yz:E[Yz+1+F(tzaXhY1+17ZZ)At|‘Ft7,]a ’L:OavN*]- ()

Cette représentation est a l'origine de divers schémas numeériques |Zha04; |BT04; GLWO05; [LGWO06|
qui partent de la condition terminale Yy = g(X7) et déterminent récursivement Y;, Z; en cal-
culant les espérances conditionelles précédentes. Une variante utilise une discrétisation implicite
pour Y, qui requiert de résoudre un point fixe par itérations de Picard. Par la structure
Markovienne du probléme, ces espérances conditionnelles peuvent étre écrites comme des fonc-
tions mesurables du processus discret X, c’est-a-dire qu’il existe des fonctions mesurables u;, z;
telles que

Yi = ui(X;)

L’idée est d’approcher ces fonctions, ce qui fournit en méme temps une solution a 'EDP et
I'EDSR. Ceci est fait de maniére totalement implémentable dans [GLWO05; [LGWO06| en choissisant
une base de fonctions ¥y, ---, ¥, : R = R et une autre base de fonctions @1, --- ,®,, : R —
R? sur lesquelles sont calculées les espérances conditionnelles par régression Monte-Carlo. La
méthode génére N trajectoires (X k Jk=1,- N, & partir de Ny mouvements Brownien indépendants
(W*)—1... n,. Puis on initialise Y = g(X%) et, récursivement, au i-éme pas de temps, étant
donné Y 11 on résout le probléme de moindres carrés

AW
inf - Y4 2.1.6
31‘,171'I~1~7Bz',n 3P AL ()
s n 9
i k k
O‘i,lal‘l}f;ai,n N Z Z YH‘l F(t“ X; Y;—i—l’ Z7)At|

7j=1

ol les minimiseurs sont appelés respectivement BZI, cee :‘n et aZl, -, ,. Dans ce cas Zik
est défini par ZF = > i1 B;jfbj(Xf) et Y est donné par Y} := D1 ;(XF). Sous des
hypotheéses techniques, il peut étre montré que ((Y;);, (Z;);) converge vers (Y Z) dans un sens
approprié. Cette méthode est plutdt efficace en petite dimension mais est limité & la dimen-
sion 6 ou 7. Des méthodes d’apprentissage automatique ont été développées pour résoudre des
problémes en dimension plus grande. Les méthodes usuelles de différences finies souffrent de la
"malédiction de la dimension" qui nous empéche de les utiliser quand la dimension de ’espace
d’état est plus grande que 4. En effet, de trop nombreux points sont nécessaires pour discrétiser

I’espace d’état, ce qui donne une complexité exponentielle en la dimension d.

2.1.2 Meéthodes d’apprentissage automatique et nos nouveaux algorithmes

D’abord nous devons introduire les réseaux de neurones. On définit

L= {6 RY S RE 13, 8) e REH xRE, 9(a) = p(Wa+6) |,

22 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

comme ’ensemble des fonction de couche avec dimension d’entrée di, dimension de sortie do, et
fonction d’activation p : R% — R%. En général, la fonction d’activation est appliqué composante
par composante p(z1,...,%a,) = (p(x1),...,p(2a,)) & partir d’une fonction unidimensionnelle
p: R — R, a la transformation affine z € R4 — Wz + 8 € R, avec une matrice W appelée
poids, et un vecteur 5 appelé biais. Les examples classiques de fonction d’activation p sont la
sigmoide, le ReLU, la tangente hyperbolique. Nous appelons ensuite

N :{@:RdO%Rd/:EIgZ)OEU’O 3p; € LP i=1,....0—1,

0,d’ ,£,m do,mo’ mMG—1,M4?

dpe € Lop, Ja0,p = Prodg_10 "'O¢0},

I’ensemble des réseaux de neurones avec dimension d’entrée dgy, dimension de sortie d’, et /¢
couches cachées avec m; neurones par couche (i = 0,---,¢ —1). Ces nombres dy,d’, ¢, la suite
m = (m;)i=0,...¢—1, et la suite de fonctions d’activation p = (p;)i=0,. ¢—1, forment I'architecture
du réseau. Il est construit par la composition alternée entre des transformations affines et des
non-linéarités.

Nous travaillerons surtout avec le cas dy = d (dimension de la variable d’état z). Un réseau
donné ¢ € N 507 & 0m €St déterminé par les paramétres 0 = (W, fo, ..., Wy, B¢) définissant les
couches g . . ., d¢, et nous écrirons parfois ¢ = ¢?. Les réseaux de neurones sont habituellement
entrainés grace a la minimisation d’un risque empirique. En apprentissage supervisé, a partir de
variables aléatoires (X,Y’) on cherche & minimiser le risque

irele[L(goe(X),Y)],

avec une fonction de perte L quantifiant 'erreur entre la sortie ¢?(X) du réseau de neurones
et la cible Y. Un exemple classique pour L est la fonction quadratique L : (a,b) — (a — b)2.
En pratique, la loi jointe (X,Y’) est inconnue et on se fonde sur N réalisations de tirages i.i.d.
(Xi,Yi)i=1....N, qui permettent d’approcher ’espérance par une espérance empirique

N.

1 S
inf — Y L’ (X;),Y;
I%N; (¥(X:), V),

dans le style Monte-Carlo, comme dans . Numériquement le probléme d’optimisation est
résolu par descente de gradient stochastique [RM51| ou ses variantes parmi lesquelles |[KB14],
Adagrad |[DHS11|, Adadelta |Zeil2|. Ces méthodes d’optimisation sont implémentées en partic-
ulier dans les libraires Tensorflow |[Aba+16| et Pytorch |[Pas+19).

Certains articles résolvent les EDPs a ’aide de ’apprentissage automatique, mais sans s’appuyer
sur les EDSRs. La méthode Deep Galerkin [SS18] est capable de résoudre des EDPs en cherchant
une solution sous la forme d’un réseau de neurones. Pour cela il faut tirer au sort un point dans le
domaine d’intérét et essayer de faire respecter 'EDP localement, en chaque point tiré. La méme
idée est utilisée par les réseaux de neurones physics-informed |[RPK19] qui incorporent égale-
ment des données et reconstruisent les solutions des EDPs en interpolant les données & partir
de I'équation. Dans le cas homogéne en temps, la méthode Deep Ritz de |[EY18| résout la for-
mulation variationnelle des équations elliptiques grace & un schéma de type Deep Galerkin. Des
méthodes utilisant 'apprentissage automatique mais pas les réseaux de neurones sont également
envisagées dans la littérature. Ces schémas ont également été congus afin d’atténuer la malé-
diction de la dimension, comme les sparse grids [Cha+21], le nesting Monte-Carlo [Warl8b|, le
branching |[Bou+17; HL+19| et les schémas de Picard multiniveaux |[E+19; HK20| qui s’avérent
surmonter la malédiction de la dimension dans certains cas.

2.1. APPROXIMATION DES EDPS NON-LINEAIRES 23

Cas semilinéaire

Concentrons-nous sur les méthodes d’apprentissage automatique qui reposent sur les EDSRs pour
résoudre les EDP semilinéaires. Les premiéres méthodes a apparaitre sont des méthodes globales
telles que la méthode Deep BSDE [EHJ17] puis la méthode Merged Deep BSDE [CWNMW19.
Dans ce cadre, on obtient la valeur initiale u(0, zg) de la solution de 'EDP et une représentation
du gradient de la solution par les réseaux de neurones mais pas de la solution elle-méme. Le
terme "global" fait référence au fait que ’on résout un seul grand probléme d’optimisation en
tenant compte de toute la dynamique sur [0,7]. Le processus Y est approché par un schéma
d’Euler :

Yiyr = Yi — F(ty, Xi,Yip1, Zi) At + Z5(X;).AW;, i =0,--- N — 1,

avec Yy = 1o, une variable yg et des réseaux de neurones Zf ‘. Le schéma minimise la fonction
de perte
inf E|Yy — g(Xn)[%,
y0,00, 0N

qui est un probléme cible pour la valeur terminale de Y7. De cette fagon, la méthode ne s’inscrit
pas dans le cadre de I'apprentissage supervisé puisque nous n’avons pas de cibles pour les réseaux
de neurones approximant le processus Z. L’algorithme n’est pas non plus un algorithme non
supervisé puisque les coefficients de la dynamique de X et Y sont connus, ce qui n’est pas le cas
dans le paradigme de I'apprentissage par renforcement. La méthode peut étre vue comme un
schéma semi-supervisé ou les cibles sont implicitement apprises lors de I'entrainement.

Dans [HPW20], la fonction de base de est remplacée par un réseau de neurones et
les deux problémes d’optimisation pour la solution et son gradient sont résolus conjointement a
chaque pas de temps. Cette méthode locale nous permet d’obtenir une approximation fonction-
nelle de la solution de 'EDP & chaque pas de temps et pas seulement au temps initial ¢ = 0.
Contrairement au schéma Deep BSDE |[EHJ17|, plusieurs petits problémes d’optimisation sont
résolus. Ces problémes d’optimisation sont proches les uns des autres et, par conséquent, nous
pouvons initialiser les paramétres des réseaux de neurones aux parameétres calculés précédem-
ment, ce qui donne un trés bon point de départ, car la solution de ’EDP est censée étre continue
dans le temps. Des idées proches sont utilisées par [Rail8| et dans le splitting scheme de |[Bec+21].
Ces schémas résolvent avec succeés des EDP en dimension de 10 & 100 voire 1000 ou plus dans
certains cas. L’idée du schéma Deep Backward Dynamic Programming (DBDP) de [HPW20]
est d’optimiser les paramétres 6 des réseaux de neurones (UY(-), Z9(-)) € N Cﬁ d1.0m STace a la
minimisation récursive des problémes rétrogrades

—~ - 2
i%f E|U(Xi) — Usp1(Xip1) — F(ti, X3, UD(X3), Z2(X)) At + 20 (X).AW;| , i=N—1,---,0,
(2.1.7)

0311
i+1
(les notations #* et ~ auront le méme sens par la suite). Une variante o Zf est remplacé par le

gradient de L{f est aussi proposée dans ce papier mais donne des résultats un peu moins bons.
La méthode de Deep Splitting (DS) de |Bec+21| utilise cette idée et minimise les fonctions de
perte

ot U, N(Xn) est pris comme g(Xy), 6 est le minimiseur du probléme précédent et Z:i,;+1 =

—~ ~ —~ ~ 2
inf E UL (X)) — U1 (Xis1) — F(ti, X1, U1 (Xisn), 0 (ti, Xi) " Dallisn (Xit1)) Aty

pouri = N—1,---,0 par rapport aux paramétres # d’un seul réseau de neurones par pas de temps.
De méme, larticle récent [NAO21] étudie un schéma de Malliavin avec des réseaux de neurones.
Des extensions a des problémes plus généraux tels que le cas path-dependent sont réalisées par
[RT17; ISVSS20; |SZ20|, tandis que la commande stochastique linéaire quadratique avec retard

24 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

est traitée par [LM21]. Lorsque 'objectif est de résoudre un probléme de controle stochastique
et non de résoudre une EDP, la méthode Deep BSDE peut alternativement étre utilisée pour
résoudre les équations différentielles stochastiques couplées Progressives-Rétrogrades (EDSPRs)
provenant du principe de Pontryagin. Contrairement au cas précédent ou le processus X peut
étre simulé indépendamment du calcul de la solution de I'EDSR (Y, Z), ici la dynamique de X
dépend de la covariable Y. Ces méthodes sont décrites par exemple dans [Ji+20a; |Ji+20b].

Dans cette thése nous proposons plusieurs nouveaux schémas et nos interrogations principales
sont :

e Comment pouvons-nous améliorer les méthodes existantes 7

e Comment se comporte leur erreur d’approximation lorsque le pas de temps décroit vers 0
7 Peut-on améliorer I'erreur théorique 7

e Comment la méthode dépend-elle de I'architecture du réseau de neurones ?

Schéma Multistep DBDP (MDBDP)(voir Algorithme [6)

Nous proposons dans le Chapitre [f] une nouvelle méthode d’apprentissage automatique multistep
inspirée de |GT14] et [HPW20|. Elle est appelée Multistep Deep Backward Dynamic Program-
ming (MDBDP). Elle repose sur la remarque suivante. Au lieu de discrétiser la BSDE entre les
pas de temps t; et t;41, nous pouvons la discrétiser entre t; et ty =T et écrire

N-1 N-1
Y =g(Xn)+ Y F(t;, XY, Z)At = Y Z; AW,
j=i J=t

qui peut étre réécrit par adaptation de Y et Z comme

Y =Elg(Xn) + 255, 1F<t],Xg,19,Z>At—EN‘1Z AW; | o]
[(g(XN)_‘_Zsz}-lF(tjﬂX]?YYjaZ)At_zj 7,+1Z AWJ) |]:t] _OvaN_l
(2.1.8)

En fait, les représentations ([2.1.5)) et sont égales (cela peut se voir par la propriété de tour
dans les espérances conditionnelles) mais & cause de 'approximation numérique des espérances
conditionnelles nécessaires pour l'implémentation de l’algorithme, la propagation des erreurs
numériques ne sera pas la méme, voir le Théoréme et les commentaires associés. Notre
schéma multistep prend la forme d’itérations rétrogrades comme dans le schéma DBDP
mais avec la fonction de perte modifiée

P(X0) — g(Xn) — F(ti, X, UL (X3), 2] (X0)) At + 27 (X)) AW (2.1.9)
N—-1 ~ R R N—-1 R 9

— > Ft, X, Us(X5), Zi(X;) At + Y Zj(Xj)-AWj’ ,

Jj=i+1 J=i+1

qui utilise tous les réseaux de neurones précédemment entrainés aux pas de temps j > i.

Cas complétement non-linéaire

Dans le cas complétement non-linéaire , un schéma probabiliste efficace est introduit par
[FTW11] et il converge localement uniformément vers la solution de viscosité de 'EDP grace
a la théorie des schémas monotones de [BS91|. En supposant que la solution de I’équation est
réguliére, la formule d’It6 donne

T
1
Y= g(Xr) — / [,u(s,XS).ZS + §tr(GaT(s,Xs)Fs) — F(s, X, Ys, ZS,I‘S)]ds
t

T
—/ (s, X)) ZodWs, 0 <t<T.
t

2.1. APPROXIMATION DES EDPS NON-LINEAIRES 25

On défnit F(t,z,u,2,7) = F(t,2,u,z,7) — p(t,z).z — tr(co™(s,z)v). Contrairement au cas
semilinéaire nous devons désormais estimer également le processus correspondant a la derivée
seconde I'y = D2u(t, X;). Ici les coefficients du processus X de peuvent étre choisis arbi-
trairement, contrairement au cas semilinéaire dans lequel la volatilité est donnée par I’équation

(2.1.2). En effet, remarquons que dans (2.1.1), la partie linéaire de (2.1.2]) n’apparait pas.

Un schéma d’apprentissage pour traiter ce cas a été introduit par [BEJ19], & partir des EDSRs
du second ordre de |Che+07| pour la solution des EDPs complétement non-linéaires

Y, = g(&Xr)+ [F(s, X, Ys, Zs, Ty)ds — [Zg.odWy,
Zy = Dug(Xr)— [/ Agds — [TsodW,, 0<t<T,

avec Ay = LDyu(t, Xy). En particulier, dans le cas ou il existe une solution classique u de classe
CY2 Ty vérifie I'y = D2u(t, X;) et comme précédemment Y; = u(t, X;) alors que Z; = D u(t, Xy).
Le schéma discrétise ce systéme et utilise des variables pour approcher Yy, Zy et des réseaux de
neurones (A% G% pour approcher A,T grace a la minimisation de la distance a la conditon
terminale (¢(X7), Dyg(X7)) des deux équations, en suivant la méthode du schéma Deep BSDE.

Nous proposons quatre schémas locaux alternatifs, en combinant des idées de [HPW20; Bec+21|
et de notre propre schéma multistep.

Second order DBDP scheme (2DBDP)(voir Algorithme (7))
La premiére idée naturelle décrite dans le Chapitre [5| est une extension du schéma DBDP avec
la fonction de perte

inf E U (X)) — U1 (Xis1) — Fts, X5, UP(X3), 29(X3), D21 (T(Xy,,,))) At

i+1
2
+ Z0(X) AW,

ou la dérivée seconde est estimée en différentiant le gradient obtenu au pas de temps suivant.
Nous appelons cette méthode 2DBDP. T est une troncature a un certain quantile qui permet
de modérer la propagation d’instabilités sur les bords du domaine exploré. Nous montrons que
notre schéma est capable de résoudre des EDPs non-linéaires en dimension modérée et donne
une meilleure approximation du controle que le schéma Deep 2BSDE.

Grace a nos investigations concernant les méthodes multistep, nous avons aussi étendu ce
schéma dans un cadre multistep. Nous proposons dans le Chapitre [3] trois variantes a coté d’une
synthése de la littérature sur les méthodes d’apprentissage automatique pour les EDPs et le
controle stochastique en finance. Toutes les méthodes considérent les fonctions de perte

N-1 N-1
inf E|g(Xn) + 7| D F(X5, Ui (X)), Z5(X5), Ty (X)) = Y Z5(X)).0AW; — U'(X;)
Jj=i+1 Jj=i+1

_ ~ 2
+ |7 | F(ts, X5, U0 (X5), 29(X,), T, (X5)) — 22(X;).0 AW,

ou la définition de f‘lj dépend de la méthode. Nous supposons que le drift vérifie y = 0 et que la
matrice de volatilité o est inversible et constante en temps et espace.

¢ Second order Explicit Multistep DBDP scheme (2EMDBDP)(voir Algorithme|3).
On combine le schéma multistep et le schéma 2DBDP. Si ¢ = N — 1, définissons I'; = D?g,
sinon I'; = D, Z;11, ' = Dy Z;, j € [i+1,N — 1. On prend aussi [; = j.

26 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

e Second order Multistep DBDP (2MDBDP), (voir Algorithme 4). Une autre méth-
ode utilise des poids de Malliavin pour évaluer cette dérivée sur une sous-grille 7 =
{tze,£ =0,...,N} C m, de module |7| = &|r|, pour & € N*, avec N = &N. I'; obtenu en

résolvant
Z o) (X; — Zaen) (X; 2
inf E|T(Xer) w041 (Xaer1)) — Zipesn)(n(f+1))H€1 ,
0 2
avec les poids de Malliavin
. AW,
Hfl = (UT) ! ’7}| , AW, = Wtk(£+1) _Wtﬁeé?

et les variables antithétiques
Xigerr) = Xae — o AW,
On prend aussi [; = j + A+ 1 ot '+ est le symbole pour la division Euclidienne.

e Second order Multistep Malliavin DBDP (2M?DBDP), (voir Algorithme. Cette
technique utilise une différentiation du second ordre de la représentation multistep sur une
sous-grille comme précedemment grace a des poids de Malliavin du second ordre et des
variables antithétiques. On prend également [; = j + & + 1.

2.1.3 Reéseaux de neurones lipschitziens GroupSort et contributions a de nou-
veaux résultats théoriques

Nous fournissons au chapitre [4] une analyse détaillée de la convergence du schéma Deep Split-
ting et de notre schéma multistep. Nous nous concentrons sur la propagation des erreurs de
discrétisation et de régression a travers le schéma. Cependant, nous ne considérons pas ’erreur
statistique provenant de 'approximation Monte-Carlo de ’espérance dans les fonctions de perte
telles que ni I'erreur d’optimisation provenant de I’algorithme de descente de gradient.

Gréace a des résultats récents sur ’approximation universelle quantitative pour les réseaux de
neurones lipschitziens GroupSort, nous obtenons explicitement ’erreur en termes de I’architecture
du réseau de neurones, c’est-a-dire son nombre de neurones et de couches. Pour une utilisation
future, nous introduisons la régularité L? de Z introduite par [Zha04] :

N=L oty _ _ 1 tit1
() = E[Z/ \Zt—Zti\gdt], with Z, = MEZ{/ tht}.
i=0 i ’ ti

Nous choisissons des suites (7;);, (1;); et considérons des classes d’approximation Aj, N et N
respectivement de R? — R, R? — RY, R? — R (et avec des fonctions v;-Lipschitz et gradient ;-
Lipschitz pour le dernier). On définit pour i = 0,..., N — 1 les erreurs d’approximation L? dans
ces classes de fonction de vgl), 2}-(1), 01(2), Ul(?)), 2(3) definies respectivement dans , et
(14.3.6)):

el = inf EloV(X) —uX), et = inf E|50(X;) - Z(X)|%
UEN; ZeN] 2
infyepn E|ol™ (X)) —U(X)]?, i=0,...,N -1
E?’n: UG./\/i’ 3 7 127 PR)
infy /e prvm Elg(Xn) —U(XN)|", i=N,
e = inf () —uXy)|?, & = f B5O(X) - 2(x))

g UEN; ZeN]

Notre résultat d’approxiamtion est le suivant

2.1. APPROXIMATION DES EDPS NON-LINEAIRES 27

Theorem 2.1.1 (Erreur d’approximation de MDBDP). Sous I’Hypothése il existe une
constante C > 0 (dependant seulement des données u, o, f,g,d,T) telle qu’a la limite ou |7| — 0

N—-1 tiv1
EY: —U " (X)) +E / Zs—Z7(X)) d
ieS[gE)V] ‘ U ()| [;0 8 | i ()‘2 s}

N—
< C(Elg(Xr) — g(Xn)|* + || +£7(x) + 3 (¥ + Atye)?)).
0

—_

j:

Cette erreur d’approximation du schéma & plusieurs étapes est meilleure que celle du schéma
DBDP de [HPW20| ou le terme des erreurs de régression Z;V:_Ol (6}’?’ + Atjs}’z) est remplacé
par Z;V:_Ol (N e;’y + 6]1-"2). En particulier, nous répondons au point soulevé par Céme Huré dans
la section 1.3.4 de sa thése [Hurl9] ou il mentionne que le facteur N qu'’il a obtenu devant la
somme des erreurs était inattendu et ne pouvait pas étre retiré de sa preuve. En fait, I'utilisation
d’une méthode multistep nous permet de supprimer ce terme. Cependant, nous avons obtenu un
facteur similaire N pour le schéma Deep Splitting de [Bec+21].

Theorem 2.1.2 (Erreur d’approximation de DS). Supposons que I’Hypothése soit vérifiée,
et supposons que Xy € L4(.7-"0,Rd). Alors, il existe une constante C > 0 (dépendant seulement
de p,o, f,g,d, T, Xy) telle qu’a la limite ou |w| — 0

sup E|Y;, — U (X)| < C(Blg(Xn) — g(¥p)|* + || + ()
1€[0,N]
N—-1
+ max [v7, 7] |7| + X"+ N Z 53’").
=0

Les premiers résultats d’approximation classiques prouvent que les réseaux de neurones sont
denses dans les espaces de fonctions, tels que [HSW89; HSW90; Hor91| mais aucune vitesse de
convergence n’est donnée dans ces travaux. Lorsque ’on suppose une plus grande régularité pour
les fonctions cibles, comme la dérivabilité, la continuité de Lipschitz, la convexité ou la régularité
de Sobolev, plusieurs articles ont ensuite fourni des résultats d’approximation explicites [Pin99a;
BGS15} Yarl7, |[Bacl7]. Nous utilisons une approche plus récente avec des réseaux de neurones
lipschitziens. Grace & une fonction d’activation qui divise son entrée en groupes et trie chacun
d’entre eux (voir figure , et en imposant des paramétres bornés, le réseau GroupSort introduit
par [ALG19| est 1-Lipschitz. |[TSB21| prouve des résultats d’approximation explicites pour ces
réseaux qui nous permettent d’aller plus loin dans notre analyse des erreurs en exprimant les
erreurs de régression en fonction de l'architecture. En conséquence, nous pouvons choisir les
paramétres des réseaux de neurones de sorte que 'erreur globale soit équivalente & I'erreur de
discrétisation temporelle.

Soit k € N*, k > 2, une taille de groupement, divisant le nombre de neurones m; = kn;, a
chaque couche i = 0,---£—1. On appellera Zf;é m; la largeur du réseau et £+ 1 sa profondeur.

Les réseaux GroupSort correspondent a des réseaux de neurones classiques dans N 5”1 ‘m
1y

une suite spécifique de fonctions d’activation (, = (C,i)izo,_“,g_l, et une sortie unidimensionnelle.
Chaque fonction non-linéaire (¢ divise son entrée en groupes de taille & et trie chaque groupe en
ordre décroissant, voir la figure 2.1]

De plus, en imposant aux paramétres du GroupSort des contraintes en norme euclidienne |- |5
et de norme lo | - |00 sur leurs parameétres:

avec

sup ’WOx’mgla sup |Wl$’oo§17 ‘5]’00§M7 1:17 7la]:07 ala

|z[2=1 |Z|oo=1

28 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

HET EEN BN e

= T < e

' H'E NN 'EEn

Figure 2.1: Fonction d’activation GroupSort (. avec taille de groupement x = 5 et m = 20
neurones, figure provenant de [ALG19].

pour un certain M > 0, les réseaux de neurones GroupSort correspondants de N’ g'ji, 4. SONE

1-Lipschitz. L’espace de tels réseaux de neurones GroupSort 1-Lipschitz est appelé fl“é m

nge,m _ {(p(Wo,ﬁo,...,Weﬁé) c Ni"l,&m, sup Wozleo <1, sup |[Wiz|e <1,

|z|2=1 |7|o0=1

‘BJ|OOSM7 12177l7]:0771}

On introduit alors ’ensemble g§g dd' Lm

T+ o

Bi

G g =10 = (Wi RO RY, Wiz e R KB gi(T20) €R,

o; € Sfl" pour un certain o; € R%, 3; > 0}.

£,m>

Remarquons que ces réseaux sont v/d K-Lipschitz et que chacune de leur composante est K-
Lipschitz. Donnons le résultat d’approximation qui est central pour notre étude:

Proposition 2.1.1 (Légére extension de Tanielian, Sangnier, Biau |[TSB21| : Théoréme d’approximation
pour les fonctions Lipschitz par des réseaux de neurones lipschitziens GroupSort.). Soit f :
[-R,R]¢ — R une fonction K -Lipschitz. Alors, pour tout € > 0, il existe un réseau GroupSort

g dans gﬁgdd, o.m VETifiant

sup |f(x) —g(z)]2 < \/672RKE,
z€[—R,R]4

avec g de taille de groupement k = [%1, profondeur £ +1 = O(d?) et largeur Zf;é m; =
O((Q?‘/a)dtl) dans le cas d > 1. Si d = 1, le méme résultat est valide avec g de taille de
groupement = [17, profondeur € +1 =3 et largeur Zf:é m; = O(1)

)
Nous étudions ensuite la convergence pour 'erreur d’approximation du schéma MDBDP avec

des réseaux de neurones GroupSort et avec I’hypothése supplémentaire que le driver F ne dépend
pas de z, donc que 'EDP est linéaire en z.

Proposition 2.1.2 (Vitesse de convergence de MDBDP). Supposons que I’Hypothése et
[’Hypothese sotent vérifices, et supposons que Xy € L2+‘5(.7:0,Rd), pour un certain § > 0,
et que g soit [g]— Lipschitz. Alors, il existe une suite bornée K; (uniformément en i, N) telle que

pour les classes de réseaux GroupSort N; = gg&_ d1ems EEN] = g , on ait

d
TtiKiadydy&m

I
(1) 2 ~(1) 9
E|Y:, —U; " (Xy)|" +E / Zs— 27 (Xy)|” ds| = O(1/N),
ies[[l(jl,IZ)V]] | b P)’ [Zz; N ‘ i ()‘2 5} (1/N)

avec une taille de groupement k = O(2vdN?), une profondeur £ + 1 = O(d?) et une largeur
Zf:(l) m; = O((2VAN?)P =1 dans le cas d > 1. Si d = 1, on peut prendre & = O(N?), une
profondeur £ + 1 = 3 et une largeur Zf:ol m; = O(N?). Ici, les constantes dans le terme O(-)
dépendent seulement de u, o, F,g, d, T, xg.

2.2. PROBLEMES A CHAMP MOYEN ET LEUR APPROXIMATION NUMERIQUE 29

Nous sommes capables d’effectuer la méme analyse pour le schéma DBDP dans le cas semil-
inéaire ou 'EDP est non-linéaire en z.

Proposition 2.1.3 (Rate of convergence of DBDP). Supoosant que I’Hypothése soit véri-
fice, et supposons que Xy € L*Y°(Fo,RY), pour un certain § > 0, et que g soit [g]— Lipschitz.
Alors, il existe une suite bornée K; (uniformément en i, N) telle que pour N; = g%i d1ems €t

j\/'i/ _ g(n

g , on ait
TtiKi:d:dyfvm

N-—1 tiv1
Ely;, —U® (X)) +E / Zs — 23 (x)? ds| = O(1/N),
-+ [e 2000] - o

avec une taille de groupement k = O(2vdN?), une profondeur £ + 1 = O(d?) et une largeur
Zf:é m; = O((2VAN3)E~1) in the case d > 1. Sid = 1, on peut prendre k = O(N3), une
profondeur £ + 1 = 3 et une largeur Ef;ol m; = O(N?). Ici, les constantes dans le terme O(-)
dépendent seulement de u,o, f,g, d, T, Xy.

En raison des différences mentionnées précédemment entre ’erreur de DBDP et celle de
MDBDP, nous remarquons que beaucoup plus de neurones sont nécessaires pour obtenir une
vitesse similaire pour 'erreur. Par exemple en dimension d = 1, pour obtenir une erreur en
O(1/N) le schéma DBDP nécessite en théorie O(N?) neurones alors que seulement O(N?) sont
nécessaires pour le schéma MDBDP.

2.2 Problémes & champ moyen et leur approximation numérique

2.2.1 Motivations et conditions d’optimalité

Les jeux a grande population ont suscité un intérét croissant depuis ’émergence de la théorie
des jeux & champ moyen introduite par |[LL06a; [LLO6b| et [HCMOG6|. Cette théorie considére la
limite d’un nombre infini de joueurs similaires en interaction et vise & caractériser les équilibres
qui en résultent. Deux cadres principaux sont disponibles :

e Jeux a champ moyen (MFG) La théorie MFG s’intéresse aux équilibres de Nash, et
considére donc une interaction compétitive entre les joueurs.

e Controle a champ moyen (MFC) (ou contréle de dynamique de type McKean-Vlasov).
Ici, le cadre se concentre sur les équilibres collaboratifs, avec un planificateur central qui
résout un probléme concernant ’ensemble de la population.

Le point de départ est un jeu différentiel stochastique a N joueurs, avec des controles par rétroac-
tion aj qui influent sur le cotit et la dynamique suivantes pour l'agent ¢ :

J'=E [fo f (thtz’ N k=1 5Xf’04) dt +g (XZTv N 2k=1 5X§2)} (2.2.1)
ax; =b (. Xp & Sy o 0f) dt+o (60 & Y g 0f) dW.

Lorsque le nombre de joueurs N est grand, le jeu devient difficile & résoudre et 'approximation du
champ moyen fournit un moyen de résoudre approximativement le probléme en prenant la limite
N — +00. Pour trouver un équilibre, nous considérons des controéles de rétroaction Markoviens
distribués of = az(X}).

Pour écrire le probléme MFG asymptotique, nous commengons par définir une famille (Mt)te[O,T]
de mesures de probabilité. Ensuite, nous résolvons par symétrie uniquement pour un joueur

30 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

représentatif :

T
we B[[X a0 b+ (X r)
ar €A 0

t t
subject to X =¢ +/ b(s, X<, s, aus) ds +/ o(s, X, s, as) dWy.
0 0

Ici, la loi initiale de X, appelée v, est connue, et & est tiré aléatoirement selon cette loi. Une
fois que I'on a trouvé une solution X on note v * := L(X* "*) sa loi. Nous recherchons
alors la famille de mesures pu; résolvant le probléme de point fixe

*

= v = (X,

D’autre part le probléme MFC associé est

T
if B [[st xe e, dt+g<x%,c<X%>>}

t t (2.2.2)
subject to X =¢ —I—/ b(s, X L(XE), as) ds —|—/ o(s, X LX), as) dW,.
0 0

Meéme si ces problémes sont différents, ils sont néanmoins assez similaires. L’interprétation
éclairante suivante est donnée par [CDL13; |CD18a] : a partir de , si 'on optimise d’abord
puis que I'on prend la limite N — 400 on obtient un MFG, alors que si 'on prend d’abord la
limite N — +o0o puis qu’on optimise on se retrouve avec un MFC. En général, les deux équilibres
sont différents.

La théorie du champ moyen a plusieurs applications en mathématiques appliquées comme en
finance quantitative avec l’exécution optimale et I'impact des prix |[CL18|, en économie avec le
minage de bitcoins |[Ber+21| ou la production de pétrole |[CS17], dans la santé avec la propa-
gation des épidémies |Lee+21|, ou encore pour les réseaux sociaux |[BTB16|. Dans le domaine
de I’énergie, la multiplication des petits opérateurs, la décentralisation et les réseaux intelligents
avec des flexibilités (gestion de la demande et stockage) ont inspiré plusieurs études utilisant la
machinerie du champ moyen. Ces travaux se sont intéressés a la recharge intelligente [SWA21a;
SWA21b|, au stockage et aux flexibilités pour I'électricité [ABTM20; |(GG21a; GG21b|, mais aussi
a la formation des prix et aux échanges sur les marchés de 'électricité [FTT21; FTT20]. Ces
articles considérent souvent des modéles linéaires-quadratiques, c¢’est-a-dire avec une dynamique
linéaire et des cotits quadratiques afin de pouvoir calculer la solution exacte. Mais si I'on veut
utiliser des représentations plus réalistes, des méthodes numériques sont nécessaires afin d’obtenir
une approximation de la solution. Comme précédemment dans le cas du controle stochastique,
les réseaux de neurones sont un outil intéressant pour résoudre des problémes non-linéaires de
dimension moyenne & élevée. Enfin, pour une utilisation pratique, pour respecter des contraintes
physiques ou des cadres réglementaires, il est parfois utile d’ajouter des contraintes d’état aux
problémes de controéle & champ moyen. Nous allons considérer ces deux problémes. La deuxiéme
partie de notre thése vise a répondre aux questions suivantes :

e Comment introduire de nouvelles méthodes de résolution numérique par apprentissage
automatique 7

e Comment imposer des contraintes d’état dans un probléme de controle & champ moyen ?
Qu’en est-il des contraintes probabilistes 7

Nous passons en revue les conditions d’optimalité des problémes de contréle du champ moyen qui
seront utiles pour leur résolution numérique. Des conditions d’optimalité similaires sont obtenues

2.2. PROBLEMES A CHAMP MOYEN ET LEUR APPROXIMATION NUMERIQUE 31

pour les MFG. L’approche par programmation dynamique introduit une fonction de valeur sur
0, 7] x P2(R?) dépendant de la loi de départ :

T
U(tnu’) = igf Et,u[/t f(ng‘C(Xsa)vas) dS'i‘g(X%a[’(X%))]a

(ici E ,[-] est Pespérance conditonnelle sachant que la loi & l'instant ¢ de X solution de
est égale &). Similairement au cadre du controdle stochastique, cette fonction vérifie une EDP
appelée équation maitresse de Bellman |[BFY13; PW17; PW18; (CP19; DPT19] (voir [Car+19;
CCD15| pour les MFGs):

{ atv + H(t7 /"L7 U, a/LU) 8338}141}7 65’0) = 07 (t? lu) € [07 T) X P2(Rd)7 (2 2 3)

U(Th“) = G(N)? MEPQ(Rd)a

avec G(u) = [gz,) p(dw),

Mt 2030200 = [[p2(). ()|),

et
. 1
H(tamwu7y)277) = lng [b(tvxvua (1).2 + f(xmuﬂ CL) + §tr(ao’T(t,x,,u,a)'y)].
ac

Dans l'équation précédente, d,v est la dérivée de Lions. Elle est définie grace a la dérivée
de Fréchet [Dv](t,€) de la fonction liftée o : (t,£) € [0,T] x L*(R?) — w(t, £(€)) € R qui
peut étre représentée par théoréme de representation de Riesz par d,v(t,&) € L2(RY) tel que
(Do (t,€)(Y) = E[d,0(t,€).Y] € R.

Le principe de Pontryagin [CD15| (voir [CD13| pour les MFGs) introduit ’'Hamiltonien
H(t, @, p,y, 2,) = b(t, , p, @) -y + Tr(o(t, z, p,)2) + f(t, 2, p, @),

et donne des conditions d’optimalité sous la forme d’équations différentielles stochastiques progressives-
rétrogrades de McKean-Vlasov (MKVFBSDEs):

dX; = b(t,Xt,,C(Xt),dt) dt—i—O’(t,Xt,E(Xt),éét) dW;

Xo =¢

dY; = -0, H(t, Xy, L(X1), Vs, Z, &) dt — B[O, H (L, Xy, L(X4), Ve, Zy, 64)] At + Z; AW,
029 (X1, pur) +E {3;19 (XT, ,UT)],

5
[

_ (2.2.4)
ou & = argmin H (t, Xy, £L(Xy), Ys, Zy,) et (X,Y, Z, &) est une copie indépendante de (X, Y, Z, &).

(0%
Dans le cas des MFGs, les dérivées de Lions 9, disparaissent dans . En ce qui concerne les
MFGs, le papier fondateur |[LLO6b| caractérise ’équilibre grace a un systéme couplé d’équations
de Hamilton-Jacobi-Bellman et de Fokker-Planck. Ce systéme est utilisé pour construire des
solutions approchées de MFGs par [ACD10).

Une premiére idée pour résoudre ([2.2.2)) est présentée dans [CL22|. Une approche par force
brute consiste a chercher des controéles par rétroaction optimaux en représentant le controle oy
par un réseau de neurones A% : (t;,2;) € [0,T] x R =+ RY et de minimiser directement le cotit

32 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

discrétisé en temps :

inf *Z (Zf (ti X, fu, A%(83, XF)) At +g(X]’“V,ﬂN)> (2.2.5)

Xz—‘,—l - sz + b(tZaszﬂala Ae(thzk)) At + J(tla szv ﬁlaAe(t’ank)) AVI/f)

N,
1 S
——E 5 i =0,--- ,N—1
NSk:1 Xf’l)))
Xb=¢¥ k=0,-- N,

ot la loi est approchée par la mesure empirique des particules avec des mouvements Bronwiens
indépendants W* k = 1,--- Ny et €%, k = 0,---, N, sont des tirages indépendants de la
condition initiale €. Il s’agit de la version pour le controéle & champ moyen des méthodes existantes

[GMO5; [HE16).

2.2.2 Contributions pour approximation numeérique

D’autres approches résolvent numériquement les conditions d’optimalité pour construire des so-
lutions approchées. Nous décrivons dans la Section deux approches fondées respectivement

sur (@2 ot @23)

Une premiére idée naturelle pour la résolution par apprentissage du contrdle a champ moyen
et des jeux a champs moyen, introduite par [FZ20; |(CL22|, est d’étendre la méthode Deep BSDE
pour 'aproximation des FBSDEs de McKean-Vlasov, venant du principe de Pontryagin (2.2.4))

‘XZ+1 = b(thzku ﬁiv dZ<sz7la’La }/jka sz)) At + U(tia vaﬂi7)/;k7 ZrLk7OA%(XrLku ﬂi7)/;ka sz)) AWf?
Xk =¢k k=0, N,
Yh, =YF- a L H (i, XE, g, YE, 28 i (XF

)

7/22'7}/;]{:7 sz)) At

-4 X H(tl,XJ,ﬂi,Yj,Zg,ézi(Xf,ﬂi,ifij,Zf)) At + 20(XEF) AWE,
,az _J\]}s i}vil Xk7Z—0“' N_17
avec Yok =) (XO) un réseau de neurones) et des réseaux de neurones ZZ ,1=0,--- ,N -1
De plus &f(Xf,ul,sz, Zf’) = argmin H(t“XZ T sz, ZZk, «). La méthode minimise la fonction
(0%
de perte
1 X 1 X _ 2
inf = ‘Y’“—a (X’f,)—7 B (XJ,) ,
wolf{ on N ; N wd | AN KN N ; nd \ AN> HN
par rapport aux paramétres des réseaux de neurones 7, 6o, - ,0y. Dans [GMW22|, nous pro-

posons des variantes et comparons tous les schémas en dimension 10 alors que les précédents
articles testaient uniquement les schémas dans le cas unidimensionnel. Nos méthodes rempla-
cent la mesure empirique par d’autres choix tels qu’une mesure estimée en ligne ou un réseau de
neurones. Nous considérons également une version locale de ’algorithme qui résout un probléme
d’optimisation par pas de temps au lieu d’'un unique probléme plus complexe. Cependant, il
semble que la méthode globale fonctionne mieux que cette version locale dans le contexte des
MKVFBSDEs. Une analyse théorique avec des estimations d’erreur a posteriori est menée par
[RSZ20]. Une méthode alternative dans le cas non régulier exploite la descente de gradient
proximale pour résoudre le probléme MFC |RSZ21].

Une autre méthode apparait lorsque ’'on résout I’équation maitresse de Bellman (2.2.3). Bien
str, comme il s’agit d’une équation en dimension infinie, une discrétisation doit étre effectuée
afin d’obtenir un schéma implémentable. Nous étudions ce probléme dans le Chapitre [6] Nous

2.2. PROBLEMES A CHAMP MOYEN ET LEUR APPROXIMATION NUMERIQUE 33

considérons ce probléme pour une fonction générale H (t, x, i1, y, z) qui ne provient pas nécessaire-
ment d’un probléme de contréle & champ moyen. Mais la structure semilinéaire est nécessaire de
maniére & pouvoir utiliser des arguments de type EDSR. Nous utilisons une méthode particulaire
et nous remplagons cette équation par une EDP en dimension finie, en grande dimension. Cette
équation est donnée par

N
1
oV + %ZH(t,xi,ﬁ(m),vN,NDmvN) + §tr(EN(t,ac)DivN) =0, on [0,T) x (RHN
i=1
UN(T,CU) = G(,a(a:)), T = (ﬂfz‘)ie[[LN]} € (Rd)N,
(2.2.6)
ou fi(.) est la mesure empirique définie par fi(x) = % Zf\il dz;, pour tout & = (x1,...,2n), N

RNNd 4vec des matrices par bloc

e N* et Xy = (E%)i,je[[l,N]] est la fonction & valeurs dans
S{(tx) = olt,zi, j(2))o (t, 5, i(x))di; + o0(t, zi, f())o](t, 25, i(x)) € R, Cette équation
est étudiée dans [GMS21| qui démontre la convergence de ses solutions de viscosité vers la solution
de viscosité de I’équation maitresse quand N tend vers +o0o, sous certaines conditions sur H et
les coefficients de volatilité o, 0¢. Notre contribution est de donner une vitesse de convergence
grace a des arguments probabilistes. L’EDP de dimension finie (2.2.6) est liée & une EDSR
Markovienne a travers la formule de Feynman-Kac non-linéaire. Le systéme de particule associé

est donné par
AXY =on(t, X)) AW, + oo(t, X7) dW),

ot o est la matrice diagonale par blocs avec blocs diagonaux o%(t,x) = o(t,x;, fi(z)), oo
= (00)iep,n] est la fonction a valeurs dans (R*™N avec af(t,x) = oo(t,z, fi(x)), pour
x = (i)iepny, W = (Wh ..., WN) ot Wi i =1,...,N, est un mouvement Brownien n-
dimensionnel, indépendant d’un mouvement Brownien m-dimensionnel W° sur un espace prob-
abilisé filtré (2, F,F = (Ft)o<i<7,P) et ot les conditiones initiales du systéme de particules,
Xé’N, 1 =1,...,N, sont i.i.d. avec distribution pg. La composante rétrograde est définie par la
paire de processus (Y, ZN = (Zi’N)iE[[LN]]) a valeurs dans R x (RY)N, solution de

N .
1))
YN = Ga(X)) + 5> / Hy(s, XoN, (X), V¥, NZEY) ds
i=17t
=X [@ XY a(xX))
i=171

N T
=Y [@Yo Va2 vl 0<esT
i=1"t

Les principales difficultés dans I’étude de la convergence de cette EDP vers I’équation de Bellman
maitre sont :

e Le facteur N devant le gradient de la non-linéarité Hp qui fait exploser la régularité de
Lipschitz par rapport au gradient.

e [’explosion de la dimension de 'EDP.

Ces difficultés peuvent étre contournées griace & une procédure de linéarisation associée & un
changement de mesure de Girsanov. Nous étudions l'erreur trajectorielle sur v :

&= sup |YN —o(t,m(X))],
0<t<T

et Verreur L2 sur sa L-derivative

N T >

1 i = i 2

&kl = 530 ([BINZY - gt ax i) Par).
i=1

34 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

Sous des hypothéses concernant la régularité de Lipschitz des paramétres, I'existence d’une so-
lution classique suffisamment réguliére avec une croissance linéaire et une dérivée de Lions du
second ordre bornée, nous sommes capables de trouver une vitesse de convergence pour la so-
lution. Des hypothéses supplémentaires sont nécessaires pour étudier ’erreur HEJZVHQ, comme
Pellipticité de la volatilité commune oy et une structure linéaire concernant le gradient de la
solution de 'EDP.

Theorem 2.2.1. Sous les Hypotheses et[6-2.3, nous avons P-presque surement

ou Cy = %e[H”hTLHUH2 avec ||olloo = SUP(, efo.1)xRE xPy(RY |0 (E: T, 1))

o

Theorem 2.2.2. Sous les Hypothéses|6.2.1),(6.2.2 et|6.2.5, nous avons

Z CZ
1ER], < s

0it Cs = [|0*[looy /2T ([Hily + [Hol1 L)CZ + CyTllo |2 L + 2 CTI| Hall%, et
Cy = Telh+H:L DT 5|2 .

En remarquant les propriétés de symétrie de 'EDP, nous concevons dans le Chapitre [7] un
schéma adapté a ces symétries qui nous permet de travailler en haute dimension, avec 1000 ou
10000 particules. Plus précisément, la solution vV of est invariante par permutation de
ces arguments, c’est-a-dire que pour z1,--- ,zy € (RN et une permutation o sur {1,--- , N}:

UN(xlv”' 7-%'N) = UN(xa(l)v"' 7xU(N))'

Cette symétrie implique également une structure pour sa dérivée spatiale. Ces deux comporte-
ments nous ont incités & concevoir une méthode adaptée aux EDP symétriques. L’idée est de
considérer des réseaux de neurones symétriques, a savoir DeepSets [Zah-+17] et PointNet [Qi-+17]
qui ont été introduits par la communauté de ’apprentissage automatique notamment afin de clas-
sifier efficacement les nuages de points.

Une fonction de réseau de neurones symétrique, notée U dans Sfl:é\%)’h 4> est une fonction

échangeable & valeurs dans RY & l'ordre N sur RY, de la forme :

Ux) = P(s((p(@i))iepng), for @ = (:)iep,n € RHY,

o € N! cll), Cmk P e N, ,ﬁ Lo (ici, pour simplifier les notations, nous supposons que le nombre
de couches cachées et de neurones de ¢ et i est le méme, mais en pratique, ils peuvent étre
différents), et s est une fonction échangeable & valeur dans R* a ordre N sur R

Le réseau DeepSet est donné par

N
U@) = ¥(5 D ((e@)ienny) for @ = (@)iep,n € R,

i=1
alors que le réseau PointNet network vérifie

d\N

U(x) = P(max ((p(xi)iepny), for @ = (29)iep vy € (RY)

i=1---N
Ces réseaux sont symétriques par construction et sont suffisamment expressifs dans ’espace des
fonctions symétriques. Plus précisément, en combinant le théoréme 2.9 de [Wag+19| avec le
théoréme 2 de [Hor91|, nous obtenons le théoréme d’approximation suivant pour les DeepSets.

Approximation universelle pour les réseaux DeepSets. Soit s la fonction somme. L’ensemble

Ugl":lS;’éV?ls N41.q @pproche n’importe quelle fonction N-échangeable w arbitrairement bien sur

2.2. PROBLEMES A CHAMP MOYEN ET LEUR APPROXIMATION NUMERIQUE 35

n’importe quel compact de K € R? | dés que p est continu, borné et non-constant: pour tout &

a N
>0, N € N* il existe Y € U%°:1823£7;£7N+17d, tel que

lw(x) —U(x)| < e Vo e KN,

Notez qu’a priori la dimension k de 'espace latent doit étre prise égale & N + 1.

Alternativement, en combinant le Théoréme 1 de |[Qi+17] avec le Théoréme 2 de |[Hor91],
nous obtenons un théoréme d’approximation universelle pour PointNet en dimension un.

Approximation universelle pour les réseaux PointNet. Soit s la fonction max. L’ensemble

=1 Yoy SféVTSk » approche n’importe quelle function N-échangeable Hausdorff continue w
(vue comme une fonction sur les ensembles) arbitrairement bien sur tout compact de K C R
, dés que p est continue, bornée et non constante: pour tout € > 0, N € N* il existe U €

USo_y URey ST tel que
lw(S) —U(x)| < e, VSCK, S= {1, -, an}.

Notez ici qu’a priori la dimension k de I’espace latent doit étre choisie aussi grande que nécessaire.

Nous adaptons le schéma DBDP [HPW20] a ces réseaux de neurones symétriques. Contraire-
ment aux réseaux de neurones classiques, notre méthode converge méme dans les cas difficiles de
haute dimension. Plusieurs variantes peuvent étre mises en ceuvre pour 'approximation de la
composante Z de 'EDSR, correspondant au gradient de la solution. Nous pouvons soit considérer
la dérivée des réseaux de neurones approximant la composante Y, soit utiliser une architecture
satisfaisant les propriétés de symétrie du gradient d’une fonction symétrique.

2.2.3 Ajouter des contraintes d’état probabilistes

Dans de nombreuses situations pratiques, il peut étre utile d’imposer des contraintes d’état a
I’état controlé. Les contraintes peuvent étre physiques (telles que la non négativité, le caractére
borné...), peuvent étre imposées par le cadre réglementaire, ou étre utiles pour trouver une
solution particuliére d’intérét. Nous nous référons a [ST02; [BEIL0; Gel+13} |(CYZ20; PTZ21;
Bal-+21| pour des applications spécifiques de contraintes probabilistes, notamment en finance, et
souvent écrites sous forme d’espérance. Un exemple que nous considérons est celui du controle
optimal d’une batterie pour le stockage d’électricité renouvelable, soumis au hasard a la fois au
travers de la production intermittente mais aussi des prix de marché. [ABTM20] étudie un tel
probléme dans un cadre de champ moyen sans contraintes physiques sur la batterie, afin d’obtenir
un modele linéaire-quadratique explicitement résoluble. Dans le Chapitre [§] nous résoudrons
numériquement un probléme proche avec des contraintes sur la taille du stockage et les capacités
d’injection et de soutirage.

Dans le contexte des problémes de champ moyen, plusieurs articles considérent les jeux & champ
moyen ou l'état est contraint de rester dans un ensemble compact |[CC18; |CCC18; FH20; |(GM21;
AM21|, soit & tout moment, soit seulement & un temps terminal 7". Les contraintes terminales
en loi sont également considérées par [BDK20; Dau20| respectivement pour la commande de
dynamique de McKean-Vlasov et la commande stochastique. Pour le contréle & champ moyen,
du point de vue du controle de 1’équation de Fokker-Planck, les travaux |[Bonl9; BF21| sont
en mesure d’imposer des contraintes terminales ou continues sur la distribution de l’état, en
s’appuyant sur le principe de Pontryagin, dans le cas déterministe sans diffusion. Un cotit du
type du contréle & champ moyen pour une diffusion classique mais avec des contraintes d’état
probabilistes est également étudié dans [Dau2l].

36 CHAPTER 2. INTRODUCTION (EN FRANCAIS)

Nous considérons dans le Chapitre[§|le cas général des contraintes en temps continu et en temps
discret sur la loi de probabilité de I’état, qui contient par exemple en particulier la contrainte
terminale en loi et les contraintes en ensemble compact. Nous nous appuyons sur l'approche
level-set de |BPZ15;, BPZ16; ABZ13|. Cela revient a introduire un probléme auxiliaire non
contraint avec une variable d’état supplémentaire. Grace & un résultat de représentation, on
peut lier la solution de ce probléme & la solution du probléme contraint original. Cette approche
est également utile & des fins numériques puisque les méthodes existantes peuvent étre appliquées
au probléme auxiliaire. Par conséquent, nous sommes également en mesure de développer des
schémas numériques pour les problémes de contréle & champ moyen sous contrainte de loi. Nous
considérons le coiit et la dynamique suivants :

T
J(Xo,0) = E[/O F(5, X2, 00, Pxg) ds + g(X5,)|

t t
Xta = X —|—/ b(S,X?,OzS,P(Xg@S)) ds +/ U(S7Xgaat7P(Xg,as)) dWs,
0 0

et des contraintes probabilistes sous la forme
\I/(t,ng)S 0, 0<t<T,

ot ¥ = (U!);<j<y, est une fonction de [0, T]x P (R?) dans R¥. TIci, la contrainte multi-dimensionnelle

U(t, 1) < 0 doit étre comprise composante par composante, i.e., W (t, u) < 0,1 =1,--- k. Le
probléme d’intérét est donc
vV .— ina{J(Xo,oz) U(t,Pxe) <0, Vtel[0,T]}. (2.2.7)
ac

Nous introduisons une variable d’état déterministe

o~

t t
Z7% =z —E[/ f(s,X;)‘,as,IP’(ngas)) ds} = z—/ f(s,]P)(Xa,as)) ds, 0<t<T,
0 0

et le probléme auxiliaire sans contrainte
k
Y. zeRw inf [{ﬁ(]P’X%) —ZEY e+ Y sup {xpl(s,PXsa)H, (2.2.8)
acA 1—1 S€[0,T]

avec la notation {z}; = max(z,0) pour la partie positive. Nous observons que Y¥(z) > 0.
Definissons 'infimum du zéro level-set

zZ¥ .=inf{z R | Y¥(2) = 0}. (2.2.9)
Nous prouvons deux résultats de représentation du probléme contraint (2.2.7)) par le probléme
sans contrainte ([2.2.§]).
Theorem 2.2.3. 1. Si pour un certain z € R 3 a € A st. g(Pxe) < Z7%, ¥(s,Pxa) <
0, Vs €[0,T] alors Y¥(z) = 0.
2. Si V¥ est fini alors YY(VY) = 0. Donc Z¥ < VY.
3. Définissons 1, = (1,---,1) € R*. Nous avons la borne supérieure

VY < inf Z¥tele,
>0

Theorem 2.2.4. Supposons que VY < co. Alors nous avons la représentation
zVt=v"?

De plus les contréles e-optimauzr of pour le probléeme auxiliaire y‘I’(V\I’) sont e-admissibles e-
optimauz pour le probléme originel dans le sens que

J(X(bae) < V\Ij +¢&, sup \II(S,PXQE) <e.
0<s<T s

2.2. PROBLEMES A CHAMP MOYEN ET LEUR APPROXIMATION NUMERIQUE 37

Une discussion sur les contrdles en boucle ouverte et en boucle fermée est donnée dans
Nous nous limitons, pour la partie approximation numérique, aux commandes détermin-
istes markoviennes a rétroaction (ou en boucle fermée), mais nous donnons des hypothéses sous
lesquelles restreindre le choix des commandes & cet espace se fait sans perte de généralité. En
général, les controles adaptés (en boucle ouverte) atteignent en effet un coit plus faible que
les controles en boucle fermée. Ces résultats nous permettent de résoudre numériquement le
probléme sans contrainte et la minimisation par level-set afin de résoudre le prob-
léme contraint . Nous adaptons ’approche de |CL22| pour proposer un schéma
implémentable.

38

CHAPTER 2. INTRODUCTION (EN FRANCAIS)

Part I

Numerical resolution of non-linear
partial differential equations

39

Chapter 3

Neural networks-based algorithms for
stochastic control and PDEs in finance

This chapter is based on the paper [GPW22a|

M. Germain, H. Pham, and X. Warin. “Neural networks based algorithms for stochastic control
and PDEs in finance”. In: to appear in Machine Learning And Data Sciences For Financial
Markets: A Guide To Contemporary Practices. Ed. by A. Capponi. and C.A. Lehalle Cambridge
University Press, 2022. Chap. New Frontiers for Stochastic Control in Finance.

We provide in this chapter a survey of machine learning methods for the resolution of stochas-
tic control problems. We also describe new schemes for fully nonlinear PDEs, by combining
ideas from the multistep scheme from Chapter [from the 2DBDP method of Chapter [f| and
the Malliavin weights used by [FTW11]. Our main focus are problems coming from financial
mathematics, especially derivatives pricing and portfolio selection and we demonstrate on numer-
ical examples that our second order mutlistep schemes improve the one step scheme 2DBDP of
Chapter |5l We also compare the Deep BSDE method [HJE18| with the DBDP scheme [HPW20)|
on a derivatives pricing example in high dimension.

41

42 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

Abstract

This chapter presents machine learning techniques and deep reinforcement learning-based
algorithms for the efficient resolution of nonlinear partial differential equations and dynamic
optimization problems arising in investment decisions and derivative pricing in financial engi-
neering. We survey recent results in the literature, present new developments, and compare the
different schemes illustrated by numerical tests on various financial applications. We conclude
by highlighting some future research directions.

3.1 Breakthrough in the resolution of high dimensional non-linear
problems

The numerical resolution of control problems and nonlinear PDEs— arising in several financial
applications such as portfolio selection, hedging, or derivatives pricing—is subject to the so-called
“curse of dimensionality", making impractical the discretization of the state space in dimension
greater than 3 by using classical PDE resolution methods such as finite differences schemes. Prob-
abilistic regression Monte-Carlo methods based on a Backward Stochastic Differential Equation
(BSDE) representation of semilinear PDEs have been developed in [Zha04], [BT04], [GLW05] to
overcome this obstacle. These mesh-free techniques are successfully applied upon dimension 6
or 7, nevertheless, their use of regression methods requires a number of basis functions growing
fastly with the dimension. What can be done to further increase the dimension of numerically
solvable problems?

A breakthrough with deep learning based-algorithms has been made in the last five years
towards this computational challenge, and we mention the recent survey by [Bec+20|. The main
interest in the use of machine learning techniques for control and PDEs

is the ability of deep neural networks to efficiently represent high dimensional functions
without using spatial grids, and with no curse of dimensionality |Gro-+18|, [Hut+20].

Although the use of neural networks for solving PDEs is not new, see e.g. |DPT94], the
approach has been successfully revived with new ideas and directions. Neural networks have
known a increasing popularity since the works on Reinforcement Learning for solving the game
of Go by Google DeepMind teams.

These empirical successes and the introduced methods allow to solve control problems in
moderate or large dimension. Moreover, recently developed open source libraries like Tensorflow
and Pytorch also offer an accessible framework to implement these algorithms.

A first natural use of neural networks for stochastic control concerns the discrete time setting,
with the study of Markov Decision Processes, either in a brute force fashion or by using dynamic
programming approaches.

In the continuous time setting, and in the context of PDE resolution, we present various
methods. A first kind of schemes is rather generic and can be applied to a variety of PDEs
coming from a large range of applications. Other schemes rely on BSDE representations, strongly
linked to stochastic control problems. In both cases, numerical evidence seems to indicate that
the methods can be used in large dimension, greater than 10 and up to 1000 in certain studies.
Some theoretical results also illustrates the convergence of specific algorithms. These advances
pave the way for new methods dedicated to the study of large population games, studied in the
context of mean field games and mean field control problems.

The outline of this article is the following. We first focus on some schemes for discrete time
control in Section before presenting generic machine learning schemes for PDEs in Subsec-
tion Then we review BSDE-based machine learning methods for semilinear equations in
Subsection Existing algorithms for fully non-linear PDEs are detailed in Subsection [3.3.2]
before presenting new BSDE schemes designed to treat this more difficult case. Numerical tests
on CVA pricing and portfolio selection are conducted in Section to compare the different
approaches.

3.2. DEEP LEARNING APPROACH FOR STOCHASTIC CONTROL 43

Finally, we highlight in Section further directions and perspectives including recent ad-
vances for the resolution of mean field games and mean field control problems with or without
model.

3.2 Deep learning approach for stochastic control

We present in this section some recent breakthrough in the numerical resolution of stochastic
control in high dimension by means of machine learning techniques. We consider a model-based
setting in discrete-time, i.e., a Markov decision process, that could possibly be obtained from the
time discretization of a continuous-time stochastic control problem.

Let us fix a probability space (2, F,P) equipped with a filtration F = (F;); representing the
available information at any time ¢ € N (Fj is the trivial o-algebra). The evolution of the system
is described by a model dynamics for the state process (X;)ien valued in X C R%:

Xy = F(Xt, Oét,6t+1), teN, (321)

where (g¢)¢ is a sequence of i.i.d. random variables valued in E, with .41 F41-measurable
containing all the noisy information arriving between ¢ and ¢ + 1, and a = (ay)¢ is the control
process valued in A € R?. The dynamics function F is a measurable function from R? x R? x ¥
into R?, and assumed to be known. Given a running cost function f, a finite horizon T' € N*,
and a terminal cost function, the problem is to minimize over control process « a functional cost

T—
J(a) = E[F(Xy,) + g(X7)]. (3.2.2)

t=

—

In some relevant applications, we may require constraints on the state and control in the form:
(X, o) € S, teN.

for some subset S of R? x RY. This can be handled by relaxing the state/constraint and
introducing into the costs a penalty function L(z,a): f(z,a) < f(z,a) + L(z,a), and g(x)
— g(z) + L(z,a). For example, if the constraint set is in the form: S = {(z,a) € R? xRY :
hi(x,a) =0,k =1,...,p,hg(x,a) > 0,k =p+1,...,m}, then one can take as penalty functions:

p m
L(z,a) = Y pelhe(z,)+) ppmax(0, —hy(z,a)),
k=1 k=p+1

where py are penalization parameters (large in practice) see e.g. |[HE16].

3.2.1 Global approach

The method consists simply in approximating at any time ¢, the feedback control, i.e. a function
of the state process, by a neural network (NN):

o~ 7(X,), t=0,...,T—1,

where 7 is a feedforward neural network on R? with parameters 6, and then to minimize over

the global set of parameters @ = (6, ...,607_1) the quantity (playing the role of loss function)
J(0) = E[3 f(x?. % (xf)) + g(xf)],

where X? is the state process associated with the NN feedback controls:

X2, = F(X? 7%(XP),e01), t=0,...,T—1.

44 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

This basic idea of approximating control by parametric function of the state was proposed in
|[GMO5|, and updated with the use of (deep) neural networks by [HE16|. This method met
success due to its simplicity and the easy accessibility of common libraries like TensorFlow for
optimizing the parameters of the neural networks. Some recent extensions of this approach dealt
with stochastic control problems with delay, see [HH21]. However, such global optimization over

a huge set of parameters @ = (fg,...,07_1) may suffer from being stuck in suboptimal traps
and thus does not converge, especially for large horizon T'. An alternative is to consider controls
ap ~ 7? (t,X¢), t=0,...,T — 1, with a single neural network 7% giving more stabilized results

as studied by [FMW21|. We focus here on feedback controls, which is not a restriction as we are
in a Markov setting. For path-dependent control problems, we may consider recurrent neural
networks to take into consideration the past of state trajectory as input of the policy.

3.2.2 Backward dynamic programming approach

In [Bac+21], the authors propose methods that combine ideas from numerical probability and
deep reinforcement learning. Their algorithms are based on the classical dynamic programming
(DP), (deep) neural networks for the approximation/learning of the optimal policy and value
function, and Monte-Carlo regressions with performance and value iterations.

The first algorithm, called NNContPI, is a combination of dynamic programming and the
approach in [HE16|. It learns sequentially the control by NN 7r9(.) and performance iterations,
and is designed as follows:

Algorithm 1: NNContPI
Input: the training distributions (,ut)tT:BI;

Output: estimates of the optimal strategy (ﬁt)tT:Bl;

fort=T-1,...,0do

Compute 7y := 7% with

T-1

0 € argminE[f(Xe, 7°(X0) + D F(XL7(XE)) + g(xE) |
s=t+1

where X; ~ u; and where (X 59)T

sti1 18 defined by induction as:

{ Xt+1 = F(Xta 5t+1)
1

X9, F(Xf/ €s41), fors=t+1,...,T—1

The second algorithm, refereed to as Hybrid-Now, combines optimal policy estimation by
neural networks and dynamic programming principle, and relies on an hybrid procedure between
value and performance iteration to approximate the value function by neural network ®"(.) on
R? with parameters 1.

The convergence analysis of Algorithms NNContPI and Hybrid-Now are studied in [Hur-+21],
and various applications in finance are implemented in |Bac+21|. These algorithms are well-
designed for control problems with continuous control space A = R? or a ball in R?. In the
case where the control space A is finite, it is relevant to randomize controls, and then use
classification methods by approximating the distribution of controls with neural networks and
Softmax activation function.

3.3. MACHINE LEARNING ALGORITHMS FOR NONLINEAR PDES 45

Algorithm 2: Hybrid-Now

Input: the training distributions ()7
Output:
— estimate of the optimal strategy (ﬁt)tT:_Ol;
— estimate of the value function (Vt)tT:_ol;
Set Vi = ¢;
fort=T-1,...,0do

Compute:

b, € arg meinIE[f(Xt, (X)) + Vipa (X0,)

where X ~ it and X! = F(X;,7%(X,),e041);

Set 7y == wt; > 7 is the estimate of the optimal policy at time ¢
Compute
N . R ~ ét " 2
e € argm#nE F(Xy, 7e(X)) + Vt+1(Xt+1) — ®1(X,)
Set f/t = §r; > Vt is the estimate of the value function at time ¢

3.3 Machine learning algorithms for nonlinear PDEs

By change of time scale, Markov decision process (3.2.1])-(3.2.2)) can be obtained from the time
discretization of a continuous-time stochastic control problem with controlled diffusion dynamics
on R?

dXt = b(Xt, O[t)dt + O'(Xt, Oét)th,

and cost functional to be minimized over control process « valued in A

T
J(o) = E| /0 (X, an)dt + 9(X1)].

In this case, it is well-known, see e.g. [Pha09|, that the dynamic programming Bellman equation
leads to a PDE in the form

O+ H(x, Dyu, D>u) = 0, on [0,T) x R?
uw(T,.) = g on RY

where H(z,2,7) = infeea [b(z,a).z + Ltr(co™(z,a)y) + f(z,a)] is the so-called Hamiltonian
function. The numerical resolution of such class of second-order parabolic PDEs will be addressed
in this section.

3.3.1 Deterministic approach by neural networks

In the schemes below, differential operators are evaluated by automatic differentiation of the
network function approximating the solution of the PDE. Machine learning libraries such as
Tensorflow or Pytorch allow to efficiently compute these derivatives. The studied PDE problem
is

Ou+Fu =0 on0,T)xA

wT,”) =g on A

u(t,z) = h(t,z) on [0,T) x OA,

46 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

with F a space differential operator, A a subset of R?.
e Deep Galerkin Method [SS18|.

The Deep Galerkin Method is a meshfree machine learning algorithm to solve PDEs on a domain,
eventually with boundary conditions. The principle is to sample time and space points according
to a training measure, e.g. uniform on a bounded domain, and minimize a performance measure
quantifying how well a neural network satisfies the differential operator and boundary conditions.
The method consists in minimizing over neural network &/ : R x R — R? the L? loss

E|0U(r, k) + FU(T, k) + EU(T, €) — g(&)]° + EU(r, &) — h(r, k)|?

with k, 7, ¢ independent random variables in A x [0,7) x OA. [SS18| also prove a convergence
result (without rate) for the Deep Galerkin method. This method is tested on financial problems
by [AA-+18]. A major advantage to this method is its adaptability to a large range of PDEs with
or without boundary conditions. Indeed the loss function is straightforwardly modified according
to changes in the constraints one wishes to enforce on the PDE solution. A related approach is
the deep parametric PDE method, see |[KJY20|, and [GW20| applied to option pricing.

e Other approximation methods

(i) Physics informed neural networks [RPK19]. Physics informed neural networks use both
data (obtained for a limited amount of samples from a PDE solution), and theoretical
dynamics to reconstruct solutions from PDEs. The convergence of this method in the
Second Order linear parabolic (or elliptic) case is proven in [SDEK20|, see also [GAS20].

(ii) Deep Ritz method |[EY18|. The Deep Ritz method focuses on the resolution of the vari-
ational formulation from elliptic problems where the integral is evaluated by randomly
sampling time and space points, like in the Deep Galerkin method [SS18| and the mini-
mization is performed over the parameters of a neural network. This scheme is tested on
Poisson equation with different types of boundary conditions. [MZ19| studies the conver-
gence of the Deep Ritz algorithm.

3.3.2 Probabilistic approach by neural networks
Semi-linear case

In this paragraph, we consider semilinear PDEs of the form

Opu+ - Dyu+ 3 Tr(ooD2u) = f(-+,u,07Dyu) on [0,T) x R? (33.1)
u(T,) =g on RY. o
for which we have the forward backward SDE representation
Y‘t = g(XT)_ﬁTf(S7X87Y97ZS)dS_ﬂTZS'dW57 OStSTa (332)
X = XO + f()t M(sa Xs)dS + f()t J(Sa Xs)dst o

via the (non-linear) Feynman-Kac formula: Y; = v(t, Xy), Z; = o7(t, ;) Dyv(t, Xy), 0 <t < T,
see [PP90.

Let 7 be a subdivision {t) =0 < t; < --- < ty = T} with modulus |7| := sup; At;, At; :=
tiy1 — ti, satisfying |7| = O (%), and consider the Euler-Maruyama discretization (X;)i=o,.. N
defined by

i—1 i—1
Xi=Xo+ Y plty, X)) At + Y o(ty, X;) AW,
=0 §=0

3.3. MACHINE LEARNING ALGORITHMS FOR NONLINEAR PDES 47

where AW; := Wy, ., — Wy, j = 0,...,N. Sample paths of (X;); act as training data in the
machine learning setting. Thus our training set can be chosen as large as desired, which is

relevant for training purposes as it does not lead to overfitting.
The time discretization of the BSDE ([3.3.2]) can be written in backward induction as

Y = Y7 — f(t, Xa, Y7, ZF) At — ZF AW, i=0,...,N —1, (3.3.3)

7

which can be described as conditional expectation formulae

Y7 = E[V7, - (6 X0 YT, Z0)A

(3.3.4)
7 = E %{_qgg], i=0,...,N—1,

where E; is a notation for the conditional expectation w.r.t. F,.

e Deep BSDE scheme |[EHJ17|, [HJE18].

The essence of this method is to write down the backward equation (3.3.3)) as a forward equation.
One approximates the initial condition Yy and the Z component at each time by networks
functions taking the forward process X as input. The objective function to optimize is the
error between the reconstructed dynamics and the true terminal condition. More precisely, the
problem is to minimize over network functions Uy : R — R, and sequences of network functions
Z=(2)i Zi:R* >R i =0,...,N — 1, the global quadratic loss function

2
Jo(Uo, Z) = E|YZ — g(Xn)|

where (Y;uo’z)i is defined by forward induction as

Yﬁofz = Yiuo,z + f(ti, X, Yiuo,z’ Zi(Xi))At; + Zi(X;). AW, i =0,...,N — 1,
starting from YOMO’Z = Up(AXp). The output of this scheme, for the solution (LA{(), 2) to this global
minimization problem, supplies an approximation Uy of the solution u(0,.) to the PDE at time

0, and approximations Yiuo’z of the solution to the PDE at times ¢; evaluated at &}, i.e.,
of Yy, = u(ti, X)), i = 0,...,N. The convergence of this algorithm through a posteriori error
is studied by [HL20|, see also [JL21|. A variant is proposed by [CWNMW19| which introduces
a single neural network Z(t,z) : [0,7] x R? — R? instead of N independent neural networks.
This simplifies the optimization problem and leads to more stable solutions. A close method
introduced by |Rail8| uses also a single neural network (¢, z) : [0, 7] x R? — R and estimates
Z as the automatic derivative in space of Y. We also refer to [JO19| for a variation of this deep
BSDE scheme to curve-dependent PDEs arising in the pricing under rough volatility model,
to [NR20] for approximations methods for Hamilton-Jacobi-Bellman PDEs, and to [KSS20| for
extension of deep BSDE scheme to elliptic PDEs with applications in insurance.

e Deep Backward Dynamic Programming (DBDP) [HPW20|.

The method builds upon the backward dynamic programming relation (3.3.3) stemming from
the time discretization of the BSDE, and approximates simultaneously at each time step t; the
processes (Y;., Z;,;) with neural networks trained with the forward diffusion process X; as input.
The scheme can be implemented in two similar versions:

1. DBDPI. Starting from Z/A{J(\;) = g, proceed by backward induction for ¢ = N — 1,...,0,
by minimizing over network functions 4; : R — R, and Z; : RY — R? the quadratic loss
function

Ji(Bl)(uini)
2

(Xiv1) = Ui(X) — f(ti, Xo, Us(X3), Zi(X)) Aty — Zi(Xi). AW

and update (Z:{\i(l), ZAi(l)) as the solution to this local minimization problem.

48

2.

CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

DBDP2. Starting from Z:{\J(\?) = g, proceed by backward induction for i = N —1,...,0, by
minimizing over C' network functions #4; : R? — R the quadratic loss function

=E Zji(i)l(Xz’H) — Ui (X;) — f(ti, Xo, Us(X5), 0 (ti, Xi) T Dalhi (X)) At

2
- Dxul'(Xi)TO'(t@', XZ)AWZ

where D,U; is the automatic differentiation of the network function ;. Update LA{Z@) as the

solution to this local minimization problem, and set Z() = = 07 (t;,.) DaU; @)

The output of DBDP supplies an approximation (LAI Z. ;) of the solution u(t-, .) and its gradi-
ent o7(t;,.)Dgu(t;,.) to the PDE (on the time grid ¢;, ¢ = 0,. — 1. The study of
the approximation error due to the tlme discretization and the ChOlce of the loss function is
accomplished in [HPW20)].

Variants and extensions of DBDP schemes

(i)

(iif)

A regression-based machine learning scheme inspired by regression Monte-Carlo methods
for numerically computing condition expectations in the time discretization of the
BSDE, is given by: starting from Uy = g, proceed by backward induction for ¢ = N —
1,...,0, in two regression problems:

(a) Minimize over network functions Z; : R — R?

- AW; ~
T2 (Z) = E(U1 (Xi1) — Zi(X3)

and update 21 as the solution to this minimization problem
(b) Minimize over network functions ; : R? — R

JYU)=E

(2

Uy (i) — Us(Xa) — fts, Xi, Us(X3), Z(X3))

and update Z/A{l as the solution to this minimization problem.

Compared to these regression-based schemes, the DBDP scheme simultaneously estimates
the pair component (Y, Z) through the minimization of the loss functions Ji(Bl)(Z/[Z-,Zi)

(or JZ-(B2)(UZ~) for the second version), i = N —1,...,0. Interestingly, the convergence of
the DBDP scheme can be confirmed by computing at each time step the infimum of loss
function, which should vanish for the exact solution (up to the time discretization). In
contrast, the infimum of the loss functions in usual regression-based schemes is unknown
for the true solution as it is supposed to match the residual of L2-projection. Therefore
the scheme accuracy cannot be directly verified.

The DBDP scheme is based on local resolution, and was first used to solve linear PDEs,
see [VSS18|. It is also suitable to solve variational inequalities and can be used to valuate
American options as shown in [HPW20|. Alternative methods consists in using the Deep
Optimal Stopping scheme [BCJ19] or the method from [Bec+19|. Some tests on Bermudan
options are also performed by |[LXL19| and |[FTT19] with some refinements of the Deep
BSDE scheme.

The Deep Splitting (DS) scheme in [Bec+21| combines ideas from the DBDP2
and regression-based schemes. Indeed the current regression-approximation on 7 is esti-
mated by the automatic differentiation of the neural network computed at the previous

3.3. MACHINE LEARNING ALGORITHMS FOR NONLINEAR PDES 49

optimization step. The current approximation of Y is then computed by a regression-type
optimization problem. It can be seen as a local version of the global algorithm from |[Rail8|
or as a step by step Feynman-Kac approach. As the scheme is a local one, it can be used
to valuate American options. The convergence of this method is studied by |[GPW22a].

(iv) Local resolution permits to add other constraints such as constraints on a replication port-
folio using facelifting techniques as in [KLW21J.

(v) The Deep Backward Multistep (MDBDP) scheme [GPW22a] is described as fol-
lows: for i = N —1,...,0, minimize over network functions ¢; : R — R, and Z; : RY —
R? the loss function

Jz]WB(uMZ)
E’g Xn) — Z (5, X5, Uy (X5), Z5(X) At — Y Z5(X5).AW;
j=i+1 Jj=i+1

— Ui(Xi) — f(ti, Xi, Ui (Xs), 24(X3)) At — Zi(X5).

and update (LA{l, 22) as the solution to this minimization problem. This output provides an
approximation (U;, Z;) of the solution u(¢;, .) to the PDE (3.3.1)) at times t;, i =0,..., N—1.

MDBDP is a machine learning version of the Multi-step Forward Dynamic Programming
method studied by [BD07| and |[GT14]. Instead of solving at each time step two regression
problems, our approach allows to consider only a single minimization as in the DBDP
scheme. Compared to the latter, the multi-step consideration is expected to provide better
accuracy by reducing the propagation of errors in the backward induction as it can be
shown comparing the error estimated in [GPW22a] and [HPW20| both at theoretical and
numerical level.

Case of fully non-linear PDEs

In this paragraph, we consider fully non-linear PDEs in the form

{éku + - Dyu+ 3 Tr(00"D2u) = F(-,,u, Dyu, D?u) on [0,T) x R (335)

u(T,:) =g on Rd7

For this purpose, we introduce a forward diffusion process X in R? as in , and associated
to the linear part £ of the differential operator in the Lh.s. of the PDE (3.3.5)).

Since the function F' contains the dependence both on the gradient D,u and the Hessian
D2u, we can shift the linear differential operator (left hand side) of the PDE into the
function F'. However, in practice, this linear differential operator associated to a dlffusmn process
X is used for training simulations in SGD of machine learning schemes. We refer to Section 3.1
in [PWG21| for a discussion on the choice of the parameters p, o

In the sequel, we assume for simplicity that ¢ = 0, and o is a constant invertible matrix.

Let us derive formally a BSDE representation for the nonlinear PDE ([3.3.5)) on which we shall
rely for designing our machine learning algorithm. Assuming that the solution u to this PDE is
smooth C?, and denoting by (Y, Z,T) the triple of F-adapted processes valued in R x R? xS¢,
defined by

Y; = u(t,X), Z; = Dyu(t, &), Ty = D32u(t, &), 0<t<T,

a direct application of Itd’s formula to u(t, X;), yields that (Y, Z,T") satisfies the backward equa-
tion

T T
Y= g(Xr)— | F(s, X, Yy, Zs,Ts)ds — / Z1odW,, 0< t < T. (3.3.6)
t t

50 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

Compared to the case of semi-linear PDE of the form , the key point is the approxi-
mation/learning of the Hessian matrix D2u, hence of the I'-component of the BSDE (3.3.6). We
present below different approaches for the approximation of the I'-component. To the best of
our knowledge, no theoretical convergence result is available for machine learning schemes in the
fully nonlinear case but several methods show good empirical performances.

e Deep 2BSDE scheme |[BEJ19].
This scheme relies on the 2BSDE representation of |[Che+07]

3.3.7
Zy D,g(Xr) — ftT Agds — ftT ILyodW,, 0<t<T, ()

{ Y, = g(Xr)— [F(s, X, Yy, Zs,T)ds — [ZiodWy,

with A, = LD,u(t, X;). The idea is to adapt the Deep BSDE algorithm to the fully non-linear
case. Again, we treat the backward system as a forward equation by approximating
the initial conditions Yp, Zp and the A,I' components of the 2BSDE at each time by networks
functions taking the forward process X as input, and aiming to match the terminal condition.

e Second order DBDP (2DBDP) [PWG21|

The basic idea is to adapt the DBDP scheme by approximating the solution w and its gradient
D,u by network functions ¢/ and Z, and then Hessian D2u by the automatic differentiation D, Z
of the network function Z (or double automatic differentiation D2 of the network function),
via a learning approach relying on the time discretization of the BSDE . It turns out
that such method approximates poorly I' inducing instability of the scheme: indeed, while the
unique pair solution (Y, Z) to classical BSDEs completely characterizes the solution to
the related semilinear PDE and its gradient, the relation does not allow to characterize
directly the triple (Y, Z,T'). This approach was proposed and tested in [PWG21| where the
automatic differentiation is performed on the previous value of Z with a truncation 7 which
allows to reduce instabilities.

e Second Order Multistep schemes.

To overcome the instability in the approximation of the I'-component in the Second order DBDP
scheme, we propose a finer approach based on a suitable probabilistic representation of the I'-
component for learning accurately the Hessian function D2u by using also Malliavin weights.
We start from the training simulations of the forward process (X;); on the uniform grid =
= {t; = i|n|,i = 0,...,N}, |n| = T/N, and notice that X; = &4, i = 0,...,N as p and
o are constants. The approximation of the value function u and its gradient D,u is learnt
simultaneously on the grid 7 but requires in addition a preliminary approximation of the Hessian
D2y in the fully non-linear case. This will be performed by regression-based machine learning
scheme on a subgrid # C m, which allows to reduce the computational time of the algorithm.

We propose three versions of second order MDBDP based on different representations of the
Hessian function.

For the second and the third one, we need to introduce a subgrid # = {tz¢,£ =0,... ,N} C
7, of modulus |#| = &l|r|, for some # € N*, with N = AN

- Version 1: Extending the methodology introduced in [PWG21|, the current I'-component
at step ¢ can be estimated by automatic differentiation of the Z-component at the previous
step while the other I'-components are estimated by automatic differentiation of their
associated Z-components:

Iy ~ D Zi4q, Fj ~ Dij, 7> 1.

- Version 2: The time discretization of (3.3.6)) on the time grid 7, where (Yf, ZZF, F?) denotes
an approximation of the triple

(u(tie, Xae), Dyultae, Xae), D2u(tae, Xae)), £=0,...,N,

3.3. MACHINE LEARNING ALGORITHMS FOR NONLINEAR PDES 51

leads to the standard representation formula for the Z component:
ZF = E,gg{YZ‘_lfle}, 0=0,....N—1,

(recall that Egy denotes the conditional expectation w.r.t. F,,), with the Malliavin weight
of order one:

AWy == Wi, ., — Wi,

&(0+1)

By direct differentiation, we then obtain an approximation of the I' component as
7 ~ Ex Dzu(t,%(ul),X,%(zH))ﬁel]-

Moreover, by introducing the antithetic variable

Xr%(é—i—l) = Xuo — 0 AW,

we then propose the following regression estimator of Dgu on the grid 7 for £ =0, . .. ,]\7 —1
with L)
POt g, Xox) = D9(Xip) .
f(l)(tkz,Xﬁz) _]E’%Z[Dru(tk(éJrl)7X%(Z+l))gDzu(t;%(Z+l)’Xr%(2+1))I;[Zl ‘

- Version 3: Alternatively, the time discretization of (3.3.6) on 7 yields the iterated condi-
tional expectation relation:

MZ

}/é —EHZ|: HmaXRm7Y£7Z2-17an):|7 6207"‘7N7

m=/

By (double) integration by parts, and using Malliavin weights on the Gaussian vector X,
we obtain a multistep approximation of the I'-component:
N-1
F? ~ E,gg g(XRN)HZZ,N - ’ﬁ'| Z F(tl%va/%ma Yn71r7 Z'Z;m Fgﬁ,)Hfz,m}’
m=~¢+1

forﬁzO,...,N, where

VAW AW — (m — Olfla__,

Him = ()" (m — O71P

, M

AWm = Wt,%m - Wt,;[‘

By introducing again the antithetic variables
Xiom = XRZ—UAng, mzﬁ—l—l,...,N,
we then propose another regression estimator of D2u on the grid # with
I'® (s, Xz0)
9(Xx) +9(Xip)

= Efd[2 HEQN
. N-1
- m (F(tf%vaRmyu(t/%m7Xf%m)7chu<t/%m7XRm)af‘(z)(tkmyX/%m))
m={+1
+ F(t/%maXf%m7u(tr%m7Xf%m)aDxu(t/%maX) f(nm;)
— 2F (tae, Xo, ul(tae, Xae), Doultae, Xae), T (tar, X))) 52 }

52 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

for¢=0,...,N—1,and I'® (taxs Xag) = DQg(XRN). The correction term —2F evaluated
at time tz, in I (tae, Xze) does not add bias since

Exe [F(taz, X, ultae, Xao), Daultae, Xae), TP (te, X%ﬁ))f{g,m} = 0,

foralm=¢+1,...,N — 1, and by Taylor expansion of F' at second order, we see that
it allows together with the antithetic variable to control the variance when the time step
goes to zero.

Remark 3.3.1. In the case where the function g has some regularity property, one can avoid the
integration by parts at the terminal data component in the above expression of '@ For example,

when ¢ is C1, wﬁ;ﬂ is alternatively replaced in I'®) expression by (Dg(X.x) —
Dg()A(RN))fAIelN, while when it is C? it is replaced by D?*¢(X). O

Remark 3.3.2. We point out that in our machine learning setting for the versions 2 and 3
of the scheme, we only solve two optimization problems by time step instead of three as in
[FTW11]. One optimization is dedicated to the computation of the I' component but the ¢/ and
Z components are simultaneously learned by the algorithm. O

We can now describe the three versions of second order MDBDP schemes for the numerical
resolution of the fully non-linear PDE (3.3.5). We emphasize that these schemes do not require
a priori that the solution to the PDE is smooth.

Algorithm 3: Second order Explicit Multistep DBDP (2EMDBDP)
fori=N-1,...,0do
If i = N — 1, update I'; = D?g, otherwise I'; = D,Zi1,1'; = D, Zj,

jei+1,N—-1], /* Update Hessian */
Minimize over network functions ¢/ : R* — R, and Z : R? — R? the loss function at
time t;:
TP U, 2)
N-1 R R
= E‘Q(XN) — Il > F(ty, X5,Ui(X), Z5(X;), T5(X;))
j=i+1

N-1
— Y Z(X)0AW; — U(X,)
J=i+1

~

2
— |m|F(ti, Xi, U(X5), Z2(X;),Ti(Xiq1)) — Z2(X5) - c AW .

Update (ﬁz, ZA’Z) as the solution to this minimization problem /* Update the
function and its derivative */

end

The proposed algorithms are in backward iteration, and involve one optimization at

each step. Moreover, as the computation of I' requires a further derivation for Algorithms [4] and
, we may expect that the additional propagation error varies according to % = %, and thus the
convergence of the scheme when & is large. In the numerical implementation, the expectation in
the loss functions are replaced by empirical average and the minimization over network functions

is performed by stochastic gradient descent.

3.3. MACHINE LEARNING ALGORITHMS FOR NONLINEAR PDES

93

Algorithm 4: Second order Multistep DBDP (2MDBDP)

for {=N,...,0do
If ¢ = N, update I'y = D?g, otherwise minimize over network functions I' : R — S¢
the loss function

ZioryXagern) — Zagern) Kaesn)
2

.2
I M) = BN (Xa) — Hj| .

Update fg the solution to this minimization problem /* Update Hessian */
for k=4(—-1,...,0do
Minimize over network functions ¢/ : R — R, and Z : R — R? the loss function
at time t;, 1 = ({ — 1)k + k:

T, 2)
N-1 R R R

= E|g(xn) —Inl Y Flt, X 0,(X), Z(X,), Dol X))
j=i+1l

N—-1
— Y Z(Xy)eAW; — UX))
=~

~

— || F(t;, Xi, U(X3), Z2(X5), Te(X;)) — Z2(X5) - cAW; 2.

Update (4;, Z;) as the solution to this minimization problem /* Update the
function and its derivative */

end
end

o4 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

Algorithm 5: Second order Multistep Malliavin DBDP (2M2DBDP)

for {=N,...,0do
If ¢ = N, update I';y = D2%g, otherwise minimize over network functions I' : R — S¢
the loss function

2,M
Iy ()
D2g(X,x) + D?*g(X, 5
_ E’F(X,%g)— g(;»;N) . q(;sN)
7 N2
+ 5> (Ftams Xams Ui (Xaom): Zan(Xim), o (X))
m=~¢+1
R ~ ~ o2
— 2F(tﬁe€;XM:Z/[M(XM)aZI%K(XM>7FZ(X;%€>))H22,m’ :
Update fg the solution to this minimization problem /* Update Hessian */

fork=4—-1,...,0do
Minimize over network functions &/ : R? — R, and Z : R? — R? the loss function
at time ¢;, i = (0 — 1)k + k:

JMBy, z)

— E|g(Xn) - 3 Bl X 05(5),5500),T060)
Jj=i+1

—Zz DTOAW, — U(X;)
Jj=i+1

~

— || F(t;, Xi, U(X;), Z2(X5), Te(X5)) — Z2(X5) - cAW; ’

Update (Z/A{z7 22) as the solution to this minimization problem /* Update the
function and its derivative */

end
end

3.4. NUMERICAL APPLICATIONS

95

Dimension d | DBDP [HPW20] | DBSDE [HJELS]
1 0.05950 (0.000257) | 0.05949 (0.000264) |
3 0.17797 (0.000421) | 0.17807 (0.000288)
5 0.25956 (0.000467) | 0.25984 (0.000331)
10 0.40930 (0.000623) | 0.40886 (0.000196)
15 0.52353 (0.000591) | 0.52389 (0.000551)
30 0.78239 (0.000832) | 0.78231 (0.001266)

Table 3.1: CVA value with Xg=1,7 =1,5 =0.03,0 = 0.2 and 50 time steps.

3.4 Numerical applications

We test our different algorithms on various examples and by varying the state space dimension.
If not stated otherwise, we choose the maturity 7' = 1. In each example we use an architecture
composed of 2 hidden layers with d + 10 neurons. We apply Adam gradient descent |[KB14] with
a decreasing learning rate, using the Tensorflow library [Aba+16|. Each numerical experiment is
conducted using a node composed of 2 Intel®) Xeon®) Gold 5122 Processors, 192 Go of RAM,
and 2 GPU nVidia®) Tesla® V100 16Go. We use a batch size of 1000.

3.4.1 Numerical tests on credit valuation adjustment pricing

We consider an example of model from [HL17| for the pricing of CVA in a d-dimensional Black-
Scholes model

dXt = UXt th, X() = 1d

with o > 0, given by the nonlinear PDE

O+ G Tr(zT D2u) + Buy —u) =0 on [0,7] x R?
w(T,z) = | S0 @ —d| — 0.1 on R?

with a straddle type payoff. We compare our results with the DBDP scheme [HPW20| with the
ones from the Deep BSDE solver [HJE1S8|. The results in Table are averaged over 10 runs
and the standard deviation is written in parentheses. We use RelLu activation functions.

We observe in Table that both algorithms give very close results and are able to solve the
nonlinear pricing problem in high dimension d. The variance of the results is quite small and
similar from one to another but increases with the dimension. The same conclusions arise when
solving the PDE for the larger maturity 7" = 2.

3.4.2 Portfolio allocation in stochastic volatility models

We consider several examples from [PWG21| that we solve with Algorithms 3] (2EMDBDP),
(2MDBDP), and [5| (2M2DBDP) designed in this paper. Notice that some comparison tests
with the 2DBSDE scheme |BEJ19| have been already done in [PWG21|. For a resolution with
N =120, N = 30, the execution of our multitep algorithms takes between 10000 s. and 30000
s. (depending on the dimension) with a number of gradient descent iterations fixed at 4000 at
each time step except 80000 at the first one. We use tanh as activation function.

We consider a portfolio selection problem formulated as follows. There are n risky assets of
uncorrelated price process P = (P!, ..., P") with dynamics governed by

AP} = Plo(VH)[M(V)dt+dW}], i=1,...,n,

where W = (W1, ..., W") is a n-dimensional Brownian motion, A = (A!,..., A") is the market
price of risk of the assets, o is a positive function (e.g. o(v) = €¥ corresponding to the Scott

56 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

model), and V = (V1,..., V") is the volatility factor modeled by an Ornstein-Uhlenbeck (O.U.)
process

AVi = wi[0; — Vi]dt +vdB;, i=1,...,n,

with s;,0;,v; > 0, and B = (B',..., B") a n-dimensional Brownian motion, s.t. d < W BJ >
= d;jpijdt, with p; :== pi € (—1,1). An agent can invest at any time an amount oy = (af,...,aR)
in the stocks, which generates a wealth process X = X“ governed by

Zata Vi (Vi de + dwy].

The objective of the agent is to maximize her expected utility from terminal wealth:
E[U(Xf)] <« maximize over o

It is well-known that the solution to this problem can be characterized by the dynamic pro-
gramming method (see e.g. [Pha09]), which leads to the Hamilton-Jacobi-Bellman for the value
function on [0,7) x R x R™:

8tu+z i) O, U + V282]

Oxud?, u (02,,u)?
= 1R< >< iy [P v =g + s ptvE]

u(T,x,v) = U(x), x€R, veR”,

with a Sharpe ratio R(v) := |A(v)[?, for v = (v1,...,v,) € (0,00)". The optimal portfolio
strategy is then given in feedback form by of = a(t, Xy, V;), where @ = (a1, ..., a,) is given by

&i(t,X,’U)

1 8u 8)2(1;1 n

= —U(Ui)()\()82 + pi la{(), (t,x,v = (v1,...,vp)) €[0,T) x RxR",
fori=1,...,n.

We shall test this example when the utility function U is of exponential form: U(x) =
—exp(—nx), with n > 0, and under different cases for which explicit solutions are available. We
refer to [PWG21| where these solutions are described.

(1) Merton problem. This corresponds to a degenerate case where the factor V, hence the
volatility o and the risk premium A are constant (v; = 6;, v; = 0). We train our algorithms
with the forward process

Xit1 = Xp+ |MNAty + AWy, k=0,....,N, Xo = zp.
(2) One risky asset: n = 1. We train our algorithms with the forward process

Xpr1 = X+ ANO)Aty + AWy, k=0,....N—1, &) = x¢
Viti = Vi +vAB,, k=0,...,N—1, Vj = 6.

We test our algorithm with A(v) = Av, A > 0, for which we have an explicit solution.

(3) No leverage effect, i.e., p; = 0,1 = 1,...,n. We train with the forward process
X1 = Xk+2)\ DA+ AWy, k=0,....N—1, Xy = xo

V]j—}-l:Vk_'—ViABk’ k::(),...,N—l, ‘/OZ:H,L

We test our algorithm with \;(v) = Ajv, Ay > 0,4 =1,...,n, v = (v1,...,0,), for which
we have an explicit solution.

3.4. NUMERICAL APPLICATIONS

Average | Standard deviation | Relative error (%)
[PWG21] -0.50561 0.00029 0.20
| 2EMDBDP | -0.50673 0.00019 0.022
2MDBDP | -0.50647 0.00033 0.030
2M?DBDP | -0.50644 0.00022 0.035

~

Table 3.2: Estimate of w(0,1.) in the Merton problem with N = 120, N = 30. Average and
standard deviation observed over 10 independent runs are reported. The theoretical solution is
-0.50662.

Average | Standard deviation | Relative error (%)
T PWG21] | -0.53431 0.00070 0.34
2EMDBDP | -0.53613 0.00045 0.007
2MDBDP -0.53772 0.00046 0.304
2M?DBDP | -0.53205 0.00050 0.755

Table 3.3: Estimate of u(0,1,6) on the One Asset problem with stochastic volatility (d = 2)

and N = 120, N = 30. Average and standard deviation observed over 10 independent runs are
reported. The exact solution is —0.53609477.

Merton Problem. We take n = 0.5, A = 0.6, N = 120, N = 30, T =1, zg = 1. We plot in
Figure the neural networks approximation of u, D,u, D?u, and the feedback control a (for one
asset) computed from our different algorithms, together with their analytic values (in orange).
As also reported in the estimates of Table [3.2] the multistep algorithms improve significantly the
results obtained in [PWG21], where the estimation of the Hessian is not really accurate (see blue

curve in Figure .

One asset n = 1 in Scott volatility model. We take n =0.5, A=1.5,0 =04, v = 0.4,
k=1 p=—0.7,T =1, 2o = 1. For all tests we choose N = 120, N = 30 and o(v) =e". We
report in Table the relative error between the neural networks approximation of u, Dyu, D2
computed from our different algorithms and their analytic values. It turns out that the multistep
extension of [PWG21|, namely 2EMDBDP scheme, yields a very accurate approximation result,
much better than the other algorithms, with also a reduction of the standard deviation.

No Leverage in Scott model. In the case with one asset we take n = 0.5, A = 1.5, 0 = 0.4,
v=202 k=1, T=1, 9 = 1. For all tests we choose N = 120, N = 30 and o(v) =e’. We
report in Table the relative error between the neural networks approximation of u, Dyu, D2u
computed from our different algorithms and their analytic values. All the algorithms yield quite
accurate results, but compared to the case with correlation in Table it appears here that the
best performance in terms of precision is achieved by Algorithm 2M?DBDP.

In the case with four assets (n = 4, d = 5), we take n = 0.5,

A=(15 11 2. 08),6=(01 02 03 04),r=(02 0.15 025 031),x=(1. 0.8 1.1 1.3).
The results are reported in Table We observe that the algorithm in [PWG21| provides a not
so accurate outcome, while its multistep version (2EMDBDP scheme) divides by 10 the relative

Average | Standard deviation | Relative error (%)
T PWG21] | -0.49980 0.00073 0.35
| 2EMDBDP | -0.50400 0.00229 0.485
2MDBDP -0.50149 0.00024 0.015
2M?’DBDP | -0.50157 0.00036 0.001

Table 3.4: Estimate of u(0,1,0), with 120 time steps on the No Leverage problem with 1 asset

A~

(d =2) and N = 120, N = 30. Average and standard deviation observed over 10 independent
runs are reported. The exact solution is —0.501566.

o8 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

U [PWG19] _0.425 1 U [PWG19]
—0.254 - U2EMDBDP T T U 2EMDBDP
--- U2MDBDP --- U2MDBDP
_o.50] —- u2m208DP —04507 _._ y2m208BDP
—— U Analytic —— U Analytic
-0.475 4
-0.754
~0.500
< —1.00 =
El El
—0.525
-1.254
—0.550
-1.50 1
-0.575
-1.754
~0.600 -
~2.00 4
-1 0 1 2 3 0.7 0.8 0.9 1.0 1.1 1.2 1.3
X X
1.0
Z [PWG19] Z [PWG19]
- Z 2EMDBDP 00N [[|- Z 2EMDBDP
--- Z2MDBDP RN --- Z2MDBDP
0.8 —-- Z2M2DBDP R —-- Z2M2DBDP
—— Z Analytic 0.28 1 5 —— Z Analytic
— 0.61 —
X X 0.264
))
q qQ
0.4
0.24
0.2
0.22 4
-1 0 1 2 3 0.7 0.8 0.9 1.0 1.1 1.2 1.3
X
~0.05 4 Gamma [PWG19] il Gamma [PWG19] //'
- Gamma 2EMDBDP —o114 Gamma 2EMDBDP
—=- Gamma 2MDBDP | —=- Gamma 2MDBDP
~0109 _ .. Gamma 2M2DBDP —.- Gamma 2M2DBDP
—— Gamma Analytic —— Gamma Analytic
—0.15 —0.12 1
X -0.20 77 X
32 -, o7 R —0.134
Q = W Q
-0.251 7
/
/
7 -0.14 4
-0.301
=035 775 -0.151 /
-1 0 1 2 3 0.7 0.8 0.9 1.0 1.1 1.2 1.3
X X
1.4
Control [PWG19] 124 Control [PWG19] H
134 o Control2EMDBDP e Control 2EMDBDP !
" ==~ Control 2MDBDP 1.14 ——- Control 2MDBDP !
124 7 Control 2M2DBDP —-= Control 2M2DBDP)
: —— Control Analytic 10 ~—— Control Analytic rd
114y
\
\
FROTTON 2
S 5]
094 I_r-‘
g e ._.._N—_M!u\:}y
0.8 i S
N NV
0.7 1+
0.6
0.5
-1 0 1 2 3 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Figure 3.1: Estimates of u, D,u, D?u and of the optimal control a on the Merton problem with

N =120, N = 30. We take xg = 1., at the left ¢t = 0.5042, and at the right ¢ = 0.0084.

3.5. EXTENSIONS AND PERSPECTIVES

Average | Standard deviation | Relative error (%)
[PWG21] | -0.43768 0.00137 0.92
| 2EMDBDP | -0.4401 0.00051 0.239
2MDBDP | -0.43796 0.00098 0.861
2M?DBDP | -0.44831 0.00566 1.481

Table 3.5: Estimate of u(0,1,0), with 120 time steps on the No Leverage problem with 4 assets

A~

(d =5) and N = 120, N = 30. Average and standard deviation observed over 10 independent
runs are reported. The theoretical solution is -0.44176462.

N | Average S.d. Relative error (%)
| [PWG21] -0.27920 | 0.05734 1.49
| 2EMDBDP -0.26631 | 0.00283 3.19
2MDBDP | 30 | -0.28979 | 0.00559 5.34
2MDBDP | 60 | -0.28549 | 0.00948 3.78
9MDBDP | 120 | -0.28300 | 0.01129 2.87
2M?DBDP | 30 NC NC NC

Table 3.6: Estimate of u(0,1,0), with 120 time steps on the No Leverage problem with 9 assets
(d = 10) and N = 120. Average and standard deviation (S.d.) observed over 10 independent
runs are reported. The theoretical solution is -0.27509173.

error and the standard deviation.

In the case with nine assets (n = 9, d = 10), we take n = 0.5,
A=(15 11 2. 08 05 1.7 09 1. 0.9),
0= (0.1 0.2 0.3 04 025 0.15 0.18 0.08 0.91),
v=(02 0.5 025 031 04 035 022 0.4 0.15),
k= (1 08 L1 13 095 099 102 1.06 1.6). The results are reported in Table [3.6]
The approximation is less accurate than in lower dimension, but we observe again that com-
pared to one-step scheme in [PWG21]| , the multistep versions improve significantly the standard
deviation of the result. However the best performance in precision is obtained here by the
[PWG21| scheme.

3.5 Extensions and perspectives

¢ Solving mean-field control and mean-field games through McKean-Vlasov FBSDEs.

These methods solve the optimality conditions for mean-field problems through the stochastic
Pontryagin principle from [CD18c|. The law of the solution influences the coupled FBSDEs dy-
namics so they are of McKean-Vlasov type. Variations around the Deep BSDE method [HJE1S|
are used to solve such a system by |[CL22|, [FZ20]. |[GMW22| uses the Merged method from
[CWNMW19| and solves several numerical examples in dimension 10 by introducing an efficient
law estimation technique. |CL22| also proposes another method dedicated to mean field control
to directly tackle the optimization problem with a neural network as the control in the stochastic
dynamics. The N —player games, before going to the mean-field limit of an infinite number of
players, are solved by [Hul9|, [HHL20].

e Solving mean-field control through master Bellman equation and symmetric neural
networks.

|Ger+-22| solves the master Bellman equation arising from dynamic programming principle ap-
plied to mean-field control problems (see [PW17]). The paper approximates the value function
evaluated on the empirical measure stemming from particles simulation of a training forward
process. The symmetry between iid particles is enforced by optimizing over exchangeable high-

60 CHAPTER 3. NEURAL NETWORKS FOR STOCHASTIC CONTROL AND PDES

dimensional neural networks, invariant by permutation of their inputs. The companion paper
[GPW22¢| provides a rate for the particle method convergence.

e Reinforcement Learning for mean-field control and mean-field games [CLT19;
AKS19; |AFL20; Gu+20; Guo-+20|.

Some works focus on similar problems but with unknown dynamics. Thus they rely on trajectories
sampled from a simulator and reinforcement learnings— especially Q-learning— to estimate the
state action value function and optimal control without a model. The idea is to optimize a neural
network by relying on a memory of past state action transitions used to train the network in
order for it to verify the Bellman equation on samples from memory replay.

e Machine learning framework for solving high-dimensional mean field game and
mean field control problems [Rut+20]

This paper focuses on potential mean field games, in which the cost functions depending on the
law can be written as the linear functional derivative of a function with respect to a measure. A
Lagrangian method with Deep Galerkin type penalization is used. In this case the potential is
approached by a neural network and solving mean-field games amounts to solve an unconstrained
optimization problem.

e Deep quantum neural networks [Sak20]

We briefly mention this work studying the use of deep quantum neural networks which exploit
the quantum superposition properties by replacing bits by “qubits". Promising results are ob-
tained when using these networks for regression in financial contexts such as implied volatility
estimation. Future works may study the application of such neural networks to control problems
and PDEs.

e Path signature for path-dependent PDE [SVSS20]|

This work extends previously developed methods for solving state-dependent PDEs to the linear
path-dependent setting coming for instance from the pricing and hedging of path-dependent
options. A path-dependent Feynman-Kac representation is numerically computed through a
global minimization over neural networks. The authors show that using LSTM networks taking
the forward process’ path signatures (coming from the rough paths literature) as input yields
better results than taking the discretized path as input of a feedforward network.

Chapter 4

Approximation Error Analysis of Some

Deep Backward Schemes for Nonlinear
PDEs

This chapter is based on the paper [GPW22a|

M. Germain, H. Pham, and X. Warin. “Approximation Error Analysis of Some Deep Backward
Schemes for Nonlinear PDEs”. In: SIAM Journal on Scientific Computing 44.1 (5 January 2022),
A28-A56.

In this chapter we propose a new multistep machine learning scheme for the resolution of semi-
linear PDEs. We combine ideas from [HPW20| and |[GT14] and demonstrate both the theoretical
and numerical performances of our method. A theoretical analysis is also performed on the Deep
Splitting scheme |Bec+21| and the Deep Backward Dynamic Programming scheme |[HPW20.
We are able to relate the approximation error of the algorithm to the number of neurons and
layers of the approximating neural networks, in the case of the GroupSort architecture [ALG19].
These neural networks enjoy Lipschitz continuity properties and quantitative approximation re-
sults are given by |[TSB21]. However these results still exhibit the curse of dimensionality, even
though in practice a small number of neurons and layers is enough on the tested examples.

61

62 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Abstract

Recently proposed numerical algorithms for solving high-dimensional nonlinear partial dif-
ferential equations (PDEs) based on neural networks have shown their remarkable performance.
We review some of them and study their convergence properties. The methods rely on proba-
bilistic representation of PDEs by backward stochastic differential equations (BSDEs) and their
iterated time discretization. Our proposed algorithm, called deep backward multistep scheme
(MDBDP), is a machine learning version of the LSMDP scheme of Gobet, Turkedjiev (Math.
Comp. 85, 2016). It estimates simultaneously by backward induction the solution and its gra-
dient by neural networks through sequential minimizations of suitable quadratic loss functions
that are performed by stochastic gradient descent. Our main theoretical contribution is to pro-
vide an approximation error analysis of the MDBDP scheme as well as the deep splitting (DS)
scheme for semilinear PDEs designed in Beck, Becker, Cheridito, Jentzen, Neufeld (2019). We
also supplement the error analysis of the DBDP scheme of Huré, Pham, Warin (Math. Comp.
89, 2020). This yields notably convergence rate in terms of the number of neurons for a class
of deep Lipschitz continuous GroupSort neural networks when the PDE is linear in the gradient
of the solution for the MDBDP scheme, and in the semilinear case for the DBDP scheme. We
illustrate our results with some numerical tests that are compared with some other machine
learning algorithms in the literature.

4.1 Introduction

Let us consider the nonlinear parabolic partial differential equation (PDE) of the form

{8tU+M - Dyu+ 5 Tr(00™Diu) = f(-,u,0"Deu) on [0,T) x R? (4.1.1)

U(T,) =9 on Rd?

with p, o functions defined on [0, 7] x R?, valued respectively in RY, and M¢ (the set of d x d
matrices), a nonlinear generator function f defined on [0,7] x R? x R x R?, and a terminal
function g defined on R?. Here, the operators Dy, D? refer respectively to the first and second
order spatial derivatives, the symbol . denotes the scalar product, and 7 is the transpose of vector
or matrix.

A major challenge in the numerical resolution of such semilinear PDEs is the so-called "curse
of dimensionality" making unfeasible the standard discretization of the state space in dimension
greater than 3. Probabilistic mesh-free methods based on the Backward Stochastic Differential
Equation (BSDE) representation of semilinear PDEs through the nonlinear Feynman-Kac for-
mula were developed in [Zha04], [BT04], [GLWO05|] to overcome this obstacle. These schemes are
successfully applied upon dimension 6 or 7, nevertheless, their use of regression methods implies
a dimension dependence through the number of required basis functions. Let us also mention re-
cent probabilistic approach relying on (i) branching method, see [HL+19|, and (ii) on multilevel
Picard methods, developed in [E+19] with algorithms based on Picard iterations, multi-level
techniques and automatic differentiation. These methods permit to handle some PDEs with
non linearity in u and its gradient D, u, with convergence results as well as numerous numerical
examples showing their efficiency in high dimension.

Over the last few years, machine learning methods have emerged since the pioneering papers
by [HJE18| and [SS18|, and have shown their efficiency for solving high-dimensional nonlinear
PDEs by means of neural networks approximation. The work [HJE18| introduces a global ma-
chine learning resolution technique via a BSDE approach. The solution is represented by one
feedforward neural network by time step, whose parameters are chosen as solutions of a single
global optimization problem. It allows to solve PDEs in high dimension and a convergence study
of Deep BSDE is conducted in [HL20)].

The Deep Galerkin method of [SS18| proposes another global meshfree method with a random
sampling of time and space points inside a bounded domain.

4.2. BSDE MACHINE LEARNING SCHEMES FOR SEMILINEAR PDES 63

A different point of view is proposed by [HPW20| with convergence results in L? for solving
semilinear PDEs, where the solution and its gradient are estimated simultaneously by backward
induction through the minimization of sequential loss functions. Similar idea also appears in
[VSS18| for linear PDEs. At the cost of solving multiple optimization problems, the Deep
Backward scheme (DBDP) of [HPW20]| verifies better stability and accuracy properties than the
global method in [HJE18]|, as illustrated on several test cases. The recent paper |[Bec+21] also
introduces machine learning schemes based on local loss functions, called Deep Splitting (DS)
method which estimates the PDE solution through backward explicit local optimization problems
relying on a neural network regression method for the computation of conditional expectations.

In this paper, we propose machine learning schemes that use multistep methods introduced
in [BDO7] and |GT14]. The idea is to rely on the whole previously computed values of the
discretized processes in the backward computations of the approximation as it is expected to
yield a better propagation of regression errors. We shall develop this approach to the DBDP
scheme of [HPW20), leading to the so-called deep backward multi-step scheme (MDBDP). This
can be viewed as a machine learning version of the Multi-step Forward Dynamic Programming
method studied by [GT14]. However, instead of solving at each time step two regression problems,
our approach allows to consider only a single minimization as in the DBDP scheme. Compared
to the latter, the multi-step consideration is expected to provide better accuracy by reducing the
propagation of errors in the backward induction.Our main theoretical contribution is a detailed
study of the approximation error of MDBDP scheme, through standard stability-type arguments
for BSDEs (see e.g. Section 4.4 in |Zhal7| for the continuous time case). The arguments can be
adapted to obtain the convergence of the DS scheme introduced in |[Bec+21|. Furthermore, by
relying on recent approximation results for deep neural networks in [TSB21|, we obtain a rate of
convergence of our scheme in terms of the number of neurons, and supplement the convergence
analysis of the DBDP scheme [HPW20].

We provide some numerical tests of our proposed algorithms, which show the benefit of
multistep schemes, and compare our results with the cited machine learning schemes. Notice
that the GroupSort network is used for theoretical analysis but in the numerical implementation,
we applied standard networks with tanh as activation function. The theoretical analysis of the
convergence of methods relying on standard neural networks is left to future research. More
numerical examples and tests are presented in the extended first arXiv version [GPW22a] of this
paper.

The plan of the paper is the following. In Section we give a brief reminder on neural
networks and notably on a specific class of deep network functions considered in [ALG19; [TSB21|
that yields an approximation result with rate of convergence for Lipschitz functions. We also
review machine learning schemes for the numerical resolution of semilinear PDEs. We then
describe in detail the MDBDP scheme.

We state in Section the convergence of the MDBDP, DS, and DBDP schemes, while
Section is devoted to the proof of these results. Section gives some numerical tests for
illustration.

4.2 BSDE Machine Learning Schemes for Semilinear PDEs
In this section, we review recent numerical schemes, and present our new scheme for the resolution

of the semi-linear PDE (4.1.1)) by approximations in the class of neural networks and relying on
probabilistic representation of the solution to the PDE.

4.2.1 Neural Networks
We denote by

L= {0 RY S RE 3 (W,5) € REXU X R®, 4(z) = p(Wa+B) |,

64 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

HET EEN BN e

= T < e

' H'E NN 'EEn

Figure 4.1: GroupSort activation function {, with grouping size kK = 5 and m = 20 neurons,

figure from |[ALG19).

the set of layer functions with input dimension d;, output dimension do, and activation function p
:R%2 — R%, Usually, the activation is applied component-wise via a one-dimensional activation
function, i.e., p(x1,...,%a,) = (p(z1),..., p(x4,)) With p: R — R, to the affine map z € R
Wz + 8 € R% | with a matrix W called weight, and vector 3 called bias. Standard examples of
activation functions p are the sigmoid, the ReLLU, the tanh. When p is the identity function, we
simply write Lg, 4, -

We then define
Ll—1,

0,d’ ,£,m do,mg’ mi—1,mis b=

300 € Lty = $1ode-10-+-0 00},

NP - {cp R% 5 R 3pg € L0 g € LP 1

as the set of feedforward neural networks with input layer dimension dy, output layer dimension
d', and ¢ hidden layers with m; neurons per layer (i = 0,--- ,£ — 1). These numbers dy, d’, ¢,
the sequence m = (m;);=o,... ¢—1, and sequence of activation functions p = (p;)i=o,... ¢—1, form the
architecture of the network.
In the sequel, we shall mostly work with the case dy = d (dimension of the state variable z).
A given network function ¢ € N cll)o,d',z,m is determined by the weight/bias parameters 6 =
Wo, Bo, - - -, W, Be) defining the layer functions ¢y . . ., ¢, and we shall sometimes write ¢ = py.

We recall the fundamental result of [HSW89| that justifies the use of neural networks as
function approximators, in the usual case of activation functions applied componentwise at each
hidden layer.

Universal approximation theorem. The space Uf;é =0 NV oli)o &/ 0. is dense in L?(v), the
set of measurable functions h : R® — R? s.t. [|h(z)]2v(dz) < oo, for any finite measure v on

R% whenever p is continuous and non-constant.

This universal approximation theorem does not provide any rate of convergence, nor reveals
even in theory how to achieve a given accuracy for a fixed number of neurons. Some results
give rates for the approximation of functions in Sobolev spaces , for bounded convex
subdifferentiable Lipschitz functions or bounded Lipschitz functions |[Yarl7], but here,
we need a result related to (possibly unbounded) Lipschitz functions. The paper |[Bacl7| provides
a possible answer in this direction, but we instead rely on a simpler approach in , building
on the GroupSort deep neural networks introduced by . Let k € N*, k > 2, be a grouping
size, dividing the number of neurons m; = kn;, at each layer ¢ = 0,---¢ — 1. Zf;ol m; will be
refered to as the width of the network and £+1 as its depth. The GroupSort networks correspond
to classical deep feedforward neural networks in N dc,“L&m with a specific sequence of activation
function ¢, = (C,i)izo’m’g_l, and one-dimensional output. Each nonlinear function ¢’ divides its
input into groups of size k and sorts each group in decreasing order, see Figure Moreover,
by enforcing the parameters of the GroupSort to satisfy with the Euclidian norm | - |2 and the
loo nOTM | - |00t

sup ’W(]x‘oogla sup ‘sz’oogla ’BJ‘OOSMa Z:L 7la]:Oa 7l

|z|2=1 |2]oo=1

4.2. BSDE MACHINE LEARNING SCHEMES FOR SEMILINEAR PDES 65

for some M > 0, the related GroupSort neural networks from N g’zl/ o.m are 1-Lipschitz.

The space of such 1-Lipschitz GroupSort neural networks is called Sg’} m

ngg’m = {OWo.80,...We,8:) € Ninl,f,m’ sup Wozleo <1, sup |[Wix|eo <1,

|z|2=1 |z|co=1

|Bjloo <M, i=1,--- 1, j=0,---,1}.

We then introduce the set Qg{“ dd as

7é7m

T+ o

Bi

G airim =¥ = (Wit RO RY, Wiz e RO KB (50) € R,

@i € Sg’}m, for some o; € RY, B; > 0}.

Notice that these networks are v/d’K-Lipschitz and that each of their components is K-
Lipschitz. We rely on the the following quantitative approximation result which directly follows
from [TSB21].

Proposition 4.2.1 (Slight extension of Tanielian, Sangnier, Biau |[TSB21| : Approximation
theorem for Lipschitz functions by Lipschitz GroupSort neural networks.). Let f : [-R, R]? —
RY be K-Lipschitz. Then, for all € > 0, there exists a GroupSort neural network g in g}gd,d,
verifying

,Z,m

sup |f(z) —g(x)]2 < VA'2RK¢
z€[—R,R]4

with g of grouping size Kk = [%], depth £ +1 = O(d?) and width Ef;é m; = O((Qsﬁ)d%l) in
the case d > 1. If d = 1, the same result holds with g of grouping size Kk = [5, depth £ +1=3
and width Zf;é m; = O(1).

£

Proof. With f; the i-th component of f, define

T fi2R(2 — 1/2))
fi:ze[0,1]¢— R ,

(4.2.1)
Then f; is 1-Lipschitz and by Theorem 3 from [TSB21] if d > 1 (or Proposition 5 from |[TSB21]
if d =1), there exists a 1-Lipschitz GroupSort neural network g; € Sfl'} ., verifying

sup |fi(2) — gi(2)| < e
2€[0,1]¢

with g; of grouping size k = 0(2?\/8), depth £+1 = O(d?) and width Zf;é m; = O((QT‘/E)dZ_l)(respectively
grouping size £ = O(L), depth £+ 1 = 3 and width Zf;é m; = O(L) if d = 1). Inverting (£.2.1)

we have f;(x) = QKRﬁ(m;RR) hence

R
sup |fi(z) — 2KR91<%)‘ < 2K Re.

z€[—R,R]4

The result is proven by concatenating the d’ K-Lipschitz GroupSort networks z — 2K Rgi(”";RR),

i=1,-,d. O

Remark 4.2.1. As mentioned in [TSB21|, GroupSort neural networks generalize the ReLU
networks and, thanks to their Lipschitz continuity, offer better stability regarding noisy inputs
and adversarial attacks. It also appears that GroupSort networks are more expressive than ReLU
ones.

66 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

4.2.2 Existing Schemes

We review recent machine learning schemes that will serve as benchmarks for our new scheme
described in the next section. All these schemes rely on BSDE representation of the solution to
the PDE, and differ according to the formulation of the time discretization of the BSDE.

For this purpose, let us introduce the diffusion process X in R¢ associated to the linear part
of the differential operator in the PDE (4.1.1)), namely:

t t
Xy =X+ / (s, Xs)ds + / o(s, Xs)dW,, 0<t<T, (4.2.2)
0 0

where W is a d-dimensional standard Brownian motion on some probability space (€2, F,P)
equipped with a filtration F = (F), and A} is an Fp-measurable random variable valued in R,
Recall from |[PP90| that the solution u to the PDE (4.1.1)) admits a probabilistic representation
in terms of the BSDE:

T T
Y, = g(Xr) — / F(s, X, Yy, Zg)ds — / ZgdW,, 0<t<T, (4.2.3)
t t

via the Feynman-Kac formula YV; = u(t,&;), 0 < ¢t < T. When u is a smooth function, this
BSDE representation is directly obtained by It6’s formula applied to u(¢, X;), and we have Z; =
U(t, Xt)TDm’U,(t, Xt), 0<t< T.

Let 7 be a subdivision {t) =0 < t; < -+ < ty = T} with modulus |7| := sup; At;, At; :=

tiy1 — ti, satisfying 7| = O (%), and consider the Euler scheme

i—1 i—1
Xi=Xo+ Y plty, Xj)At;+) o(t;, X;)AW;, i=0,...,N,
=0 =0

where AW := Wy, ., — Wy, j =0,...,N. When the diffusion X cannot be simulated, we shall
rely on the simulated paths of (X;); that act as training data in the setting of machine learning,
and thus our training set can be chosen as large as desired.

The time discretization of the BSDE (4.2.3)) is written in backward induction as

YT = Y7, — f(ti, Xi, YT, ZF) At — ZF AW, i=0,... N — 1, (4.2.4)

(2

which also reads as conditional expectation formulae

Y7 o= Ei|\Y, - f(t, Xi, Y[, ZT) At
A — Ez AA‘ZVYVZZLI:L i:O7"'7N_1’

(2

(4.2.5)

where E; denotes the conditional expectation w.r.t. F;,. Alternatively, by iterating relations
(4.2.4) together with the terminal relation YJ = g(Xxy), we have

N—-1
Y7 = g(Xn) = > [ft, X, Y], Z7) At + ZF.AW,], i=0,...,N—1. (4.26)
Jj=t

e Deep BSDE scheme |[HJE18§].

The idea of the method is to treat the backward equation as a forward equation by appro-
ximating the initial condition Y; and the Z component at each time by networks functions of the
X process, so as to match the terminal condition. More precisely, the problem is to minimize
over network functions Uy : R? — R, and sequences of network functions Z = (Z)i, Zi R —
R% i =0,...,N — 1, the global quadratic loss function

2
Jo(Uo, Z) = E|YFZ — g(Xn)|

4.2. BSDE MACHINE LEARNING SCHEMES FOR SEMILINEAR PDES 67

YZ/[O,Z

9%); is defined by forward induction as

where (

VHOZ = YIOF 4 f(t, X0, YHOF Z0(X0) At + Zi(X,).AW;, i=0,...,N —1,

starting from YOUO’Z = Uy(Xp). The output of this scheme, for the solution (, 2) to this global
minimization problem, provides an approximation Uy of the solution «(0,.) to the PDE at time

0, and approximations Yiuo,z of the solution to the PDE (4.1.1)) at times ¢; evaluated at &}, i.e.,
of V3, = u(tiaXti), 1=20,...,N.

e Deep Backward Dynamic Programming (DBDP) [HPW20|.

The method relies on the backward dynamic programming relation arising from the time
discretization of the BSDE, and learns simultaneously at each time step ¢; the pair (Y3,, Z,) with
neural networks trained with the forward process X and the Brownian motion W. The scheme
has two versions:

1. DBDPI. Starting from Z;{\J(\}) = g, proceed by backward induction for i = N —1,...,0, by
minimizing over network functions U; : R? = R, and Z; : R? — R? the local quadratic loss
function

TV U, 2) = EU (Xi) - Ui(X0)
2
— f(ti, Xi, Ui (Xi), Zi(X;)) At — Zi(X;). AW,

and update (Z;{\i(l), gi(l)) as the solution to this local minimization problem.

2. DBDP2. Starting from Z/A{](\?) = g, proceed by backward induction for i = N —1,...,0, by
minimizing over C' network functions U; : R? — R the local quadratic loss function

TP W)

)

- Elg7®

i1 (K1) = U(X5) — f(ts, Xa, Ui(X3), o (i, Xi)TDoli (X)) At;

2
— D Ui(X;)To(t;, Xi) AW

where D, U; is the automatic differentiation of the network function ;. Update LAIZ-@) as the
solution to this problem, and set zZ® — o™ (t;, .)Dxui@).

(2

The output of DBDP provides an approximation (Z:I\Z, 22) of the solution u(t;,.) and its gradient
o™ (ti,.)Dyu(t;,.) to the PDE (4.1.1) at times ¢;, ¢ = 0,..., N — 1. The approximation error has
been analyzed in [HPW20].

Remark 4.2.2. A machine learning scheme in the spirit of regression-based Monte-Carlo meth-
ods (|BT04], [GLWO05|) for approximating condition expectations in the time discretization
of the BSDE, can be formulated as follows: starting from Uy = ¢, proceed by backward induction
fori =N —1,...,0, in two regression problems:

(a) Minimize over network functions Z; : R? — R?

T AVVZ -~ 2
JHZ(Zi) = E‘FUiH(XHl) - Zi(X))

and update z as the solution to this minimization problem

(b) Minimize over network functions ¢4; : R* — R

2

~

JYWU) = E

(2

and update Z/A{Z as the solution to this minimization problem.

68 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Compared to these regression-based schemes, the DBDP scheme approximates simultaneously
the pair component (Y, Z) via the minimization of the loss functions JZ(Bl)(L{i, Z;) (or JZ-(BQ) (U;)
for the second version), ¢ = N — 1,...,0. One advantage of this latter approach is that the
accuracy of the DBDP scheme can be tested when computing at each time step the infimum of
loss function, which should be equal to zero for the exact solution (up to the time discretization).
In contrast, the infimum of the loss functions in the regression-based schemes is not known for the
exact solution as it corresponds in theory to the residual of L2-projection, and thus the accuracy
of the scheme cannot be tested directly in-sample. Moreover, a variant where the automatic
differentiation D,U;(X;) is performed to estimate Z;, instead of using a second neural network
z- (similarly as in the previous DBDP2 scheme) can also be considered. In this case, one only
needs to solve for each time step the (b) optimization problem and not the (a) problem anymore.

O

e Deep Splitting (DS) scheme [Bec+21].

This method also proceeds by backward induction as follows:

- Minimize over C! network functions Uy : R? — R the terminal loss function

In(Un) = Elg(Xn) — Un(XnN) 27

and denote by ﬁN as the solution to this minimization problem. If g is C'!, we can choose
directly Uy = g¢.

- For i = N —1,...,0, minimize over C* network functions ¢; : R¢ — R the loss function

TS (U;)

=E uz'+1(Xi+1) - Ui(Xi)

~ ~ 2
— f(ts, Xiv1,Uir1(Xig1), o (ti, Xi) " Dolhi 1 (Xig1))Ali| (4.2.7)

and update Z/A{Z as the solution to this minimization problem. Here D, refers again to the
automatic differentiation operator for network functions.

The DS scheme combines ideas of the DBDP2 and regression-based schemes where the current
regression-approximation on Z is replaced by the automatic differentiation of the network func-
tion computed at the previous step. The current approximation of Y is then computed by a
regression network-based scheme. In Section [£.3] we shall analyze the approximation error of the
DS scheme. Please note that in (4.2.7]) we consider a slight modification of the original DS scheme
from [Bec+21]. In their loss function, the term f(t;, Xit1, Us 1 (Xit1),0(ti, Xi)"Daldi11(Xig1))

~

is replaced by f(tit1, Xit1, Uit1(Xig1), 0(tir1, Xig1) " Dalhip1(Xig1)).

4.2.3 Deep Backward Multi-step Scheme (MDBDP)

The starting point of the MDBDP scheme is the iterated representation for the time
discretization of the BSDE.

This backward scheme is described as follows: for ¢ = N — 1,...,0, minimize over network
functions U; : R — R, and Z; : RY — R? the loss function

N-—1 N-1
JME Ui, 2i) = E‘Q(XN)— 1 X5 U (XG), Z5(X)) At — Y Z5(X;). AW
Jj=i+1 Jj=i+1

2

UK — ft X Ui(X3), Z5(X0) At — Z4(X,).AW; (4.2.8)

4.3. CONVERGENCE ANALYSIS 69

and update (LA{l,ZAz) as the solution to this minimization problem This output provides an
approximation (Z:l\z, Z) of the solution u(t;,.) to the PDE (at times ¢;, 7 = 0,..., N — 1.
This approximation error will be analyzed in Section [£.3]

MDBDP is a machine learning version of the Multi-step Dynamic Programming method
studied by [BDO7] and |[GT14]. Instead of solving at each time step two regression problems, our
approach allows to consider only a single minimization as in the DBDP scheme. Compared to
the latter, the multi-step consideration is expected to provide better accuracy by reducing the
propagation of errors in the backward induction.

Remark 4.2.3. We could have also considered, as in the DBDP2 scheme, the automatic differen-
tiation on/A{i for the approzimation of the gradient Z;,. However, as shown in the numerical tests
of [HPW20], this approach leads to less accurate results than the DBDP1 algorithm which uses
an additional neural network. Moreover, at least for theoretical analysis, it requires to optimize
over C' neural networks, which is a restrictive assumption. Hence we focus on a DBDP1-type
method.

In the numerical implementation, the expectation defining the loss function JZ-M B in
is replaced by an empirical average leading to the so-called generalization (or estimation) error,
largely studied in the statistical community, see |Gy02|, and more recently [Hur-+21|, [BJK19|
and the references therein. Moreover, recalling the parametrization (U?, 2%) of neural network
functions in N! [Z Lem XN Cﬁ dlm the minimization of the empirical average is amenable to stochastic
gradient descent (SGD) extensively used in machine learning. More precisely, given a fixed time
stepi =N —1,...,0, at each iteration of the SGD, we pick a sample (XJI-“, AWJIC)j:i7._,,N of the
Euler process and increment of Brownian motion (X;, AWj);, k = 1,..., K, of mini-batch size
K, and consider the empirical loss function:

K N-1 N—1

1 k7i(vky 5. vk 5 vk k

- K E ’ XN E f(tjij’Uj(Xj),Zj(Xj))Atj - E : Zj(Xj)~AWj
k=1 j=i+1 j=i+1

2
— W) — Ft, XEUO(XE), 29 (XE) AL — 20(XE).AWE], (4.29)

where Z:{\j = L{fj , é\j = ij , and éj is the resulting parameter from the SGD obtained at dates
j € [i +1,N —1]. In practice, the number of iterations for SGD at the initial induction time
N — 1 should be large enough so as to learn accurately the value function u(ty_1,.) and its
gradient Dyu(ty_1,.) via U1 and Z%-1. However, it is then expected that (LA{j,gj) does
not vary a lot from j = 7 + 1 to ¢, which means that at time i, one can design the SGD with
initialization parameter equal to the resulting parameter from the previous SGD at time i + 1,
and then use few iterations to obtain accurate values of ZZ and Z\Z This observation allows to
reduce significantly the computational time in (M)DBDP scheme when applying sequentially N
SGD. The SGD algorithm for computing an approximate minimizer of the loss function induces
the so-called optimization error, which has been extensively studied in the stochastic algorithm
and machine learning communities, see [BM|, |[BF11], [BJK19|, and the references therein.

4.3 Convergence Analysis

This section is devoted to the approximation error and rate of convergence of the MDBDP, DS,
and DBDP schemes
described in Section

We make the following standard assumptions on the coefficients of the forward-backward
equation associated to semilinear PDE (4.1.1]).

70 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Algorithm 6: MDBDP scheme.

Data:

Initial parameter fy. A sequence of number of iterations (Si)i=o0,... N—1

for i=N-1,...,0do

Initial parameter 6; < éz’+1

Set s =1

while s < S; do
Pick a sample of (X;, AW});—; . n of mini-batch size K
Compute the gradient VJX () of JX(0) defined in (4.2.9)
Update 6; < 6; — nVJEX(0;) with 7 learning rate
s s+1

end

~

Return éz «— 0;, ZZ = Z/Iéi7 Z;, = Zéi /* Update parameter, function and
derivative */

end

Assumption 4.3.1. (i) Xy is square-integrable : Xy € L?*(Fy, RY).
(ii) The functions u and o are Lipschitz in x € R, uniformly in t € [0,T7.
(11i) The generator function f is 1/2-Hélder continuous in time and Lipschitz continuous in
all other variables: 3 [f], > 0 such that for all (t,z,y,z) and (t',2',y',2") € [0,T] x
R x R x RY,
[f(t,2,y,2) = (', 2y,)|
< (=12 4 |z =l + ly =y + 12 = 2'),).
Moreover, sup;e(o 1 1f(¢,0,0,0)| < oo.
(iv) The function g satisfies a linear growth condition.

Assumption m guarantees the existence and uniqueness of an adapted solution (X,Y, Z)
to the forward-backward equation (4.2.2))-(4.2.3), satisfying

T
E[sup |2+ sup]Yt|2+/ |Zt|§dt} < 00,
0<t<T 0<t<T 0

(see for instance Theorem 3.3.1, Theorem 4.2.1, Theorem 4.3.1 from |Zhal7|). Given the time
grid m = {t; : i =0,..., N}, let us introduce the L?-regularity of Z:

N=Lo i _ _ 1 tit1
2 (1) = E[Z/ \Zt—Zti@dt], with Z,, = ME,»[/ tht}.
i=0 Yt ¢ ti

Since Z is a L2-projection of Z, we know that ¢Z () converges to zero when || goes to zero.
Moreover, as shown in |[Zha04], when g is also Lipschitz, we have

e?(m) = O(|rl).
Here, the standard notation O(|7|) means that limsupj,_, |7|7LO(|7]) < oo.

Lemma 4.3.1. Under Assumption (ii), the following standard estimate for the FEuler-
Maruyama scheme holds when At; — 0

EIXf = XP 5 < (1+ CAL) |z - o'[3,
where X | := x4 p(t;, v)At; + o(t;, ©) AW;.
Proof. By expanding the square, simply notice that the dominant terms when At; — 0 are of
older At; because the term of order \/At;, namely (x — ') - (o(t;,x) — o(t;, 2'))AW; has a null
expectation and all other terms are dominated by At;. O

4.3. CONVERGENCE ANALYSIS 71

4.3.1 Convergence of the MDBDP Scheme

We fix classes of functions N; and N for the approximations respectively of the solution and its
gradient, and define (Z/A{Z-(l), ZAi(l)) as the output of the MDBDP scheme at times ¢;, ¢ = 0,..., V.
Let us define (implicitly) the process

7() N-1 R R
VIO = () = f (s X VL Z0) At = YD F (X540 (), 210 () At
J=i+1
=(1) Xn)AW; (1 AWZAt
Zi =]EZ[(Xitl Z ftij_ﬂu()(X) Z]()(X]))Tj]v 1207‘ 7N7
Jj=t+1 ¢
(4.3.1)
and notice by the Markov property of the discretized forward process (X;); that
W _ ARNNPNCY
Vi = v (Xy), Z; = zi"(X;), i=0,...,N, (4.3.2)
for some deterministic functions 02(1)7 2}(1). Let us then introduce
el = inf EloV(X) —uX), er® = inf E|50(X;) - Z(X)|%
UEN; ZeN] 2
for i = 0,..., N — 1, which represent the L?-approximation errors of the functions vi(l), 2}(1) in

the classes NV; and N/.

Theorem 4.3.1 (Approximation error of MDBDP). Under Assumption there ezists a
constant C > 0 (depending only on the data p, o, f,g,d,T) such that in the limit || — 0

1+1
E|Y, +IET / Zy— Z0(x)7 a
o v, = UV () Z | X)[2 ds]
N-—1
< C(E\g(XT) g(Xn)[* + Il + 2% () + 3 (e + Atget)). (4.3.3)
7=0

Remark 4.3.1. The upper bound in

consists of four terms. The first three terms correspond to the time discretization of BSDE,
similarly as in [ZhaO4], [BT04], namely (i) the strong approximation of the terminal condition
(depending on the forward scheme and g), and converging to zero, as |r| goes to zero, with a
rate |r| when g is Lipschitz, (ii) the strong approximation of the forward Euler scheme, and
the L2-regularity of Y, which gives a convergence of order |r|, (iii) the L2-regularity of Z.

Finally, the last term is the approximation error by the chosen class of functions. Note that the
approximation error Z;y;()l (ai’y —i—AtjE;’) in is better than the one for the DBDP scheme

derived in [HPW20|, with an order Z;-V:Ol (Ne ;y + aj “). In the work |GT14] which introduced
the multistep scheme with linear regression, the authors noticed the same improvement in the
error propagation in comparison with the one-step classical scheme [GLWO05|. O

We next study convergence for the approximation error of the MDBDP scheme, for a specific
choice of functions classes N; and N/ and with the additional assumption that f does not depend
on z.

Assumption 4.3.2. The generator function f is independent of z. Namely, for all (t,z,y,z,2")
€ [0,T] x RTx R xR% x RY,

[t x,y, 2) = f(t,z,y,2).

72 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Actually, if f is linear in 2: f(¢,z,y,2) = f(t,z,y)+\(t, z).z, one can boil down to Assumption
for f by incorporating the linearity in the drift function p, namely with the modified drift:
a(t,z) = u(t,z) — o(t,).

Proposition 4.3.1 (Rate of convergence of MDBDP). Let Assumption and Assumption
hold, and assume that Xy € L*t°(Fy,R?), for some § > 0, and g is [g]— Lipschitz. Then,
there exists a bounded sequence K; (uniformly in i, N) such that for GroupSort neural networks

classes N; = G and N = G we have
? Kivdzlag»n/” ? 7A(i Ki,d,d,f,m7
1

tit1

sup E|Yt L{(I) ’ +E Z/

|2, Z0(x)[2 as] = oa/),
1€[0,N]

with a grouping size k = O(2vVdN?), depth {+1 = O(d?) and width Z 0 m; = ((2\/&N2)d2_1)
in the case d > 1. If d = 1, take k = O(N?), depth £ + 1 = 3 and width Zz o mi = O(N?).
Here, the constants in the O(-) term depend only on p,o, f,g, d,T, Xp.

4.3.2 Convergence of the DS Scheme

We consider classes N of differentiable ~;—Lipschitz functions with n;—Lipschitz derivative

2)

for sequences v = (v;);, n = (n;); and define Z;l\i(as the output of the DS scheme at times t;, 4

~0,...,N. .

Let us define the process

Vi = Bi[A)(Xi0) = £t X Bl (X)) Bilo(ti, X0) Dalll) (Xig)]) Ai] (4.3.4)

for i € [0,N — 1], and Vjsfz) = ﬁz(v?) (Xn). By the Markov property of (X;);, we have Vi(Q) =
01(2) (Xi), for some functions ’L)Z@) :R? - R, i € [0, N — 1], and we introduce

v _ [infuenp B[0P (X;) —uU(X)[, i=0,...,N—1,

= . 2

! mquMv,n E‘g(XN) —U(XN)| , 1= N.

the L2-approximation error in the class N of the functions vi@), 1=0,...,N—1,and g.

Theorem 4.3.2 (Approximation error of DS). Let Assumption hold, and assume that Xy
€ LY(Fy,RY). Then, there exists a constant C > 0 (depending only on p,o, f,g,d, T, Xy) such
that in the limit |7| — 0

sup E|Y;, — U (X)| < C(B|g(Xn) — g(¥p)|* + || + ()
1€[0,N]
N—-1
+ max [y n]lw] +]+ N Y 7). (435)
=0

Remark 4.3.2. We retrieve a similar error as in the analysis of the DBDP2 scheme derived in
[HPW20|. Notice that when g is Cl, one can choose to initialize the DS scheme with Uy = g,

and the term 67\[77 is removed in . O

The GroupSort neural networks being only continuous but not differentiable, we are not able
to express a convergence rate for the Deep Splitting scheme in terms of the architecture and
number of neurons to choose, like in Propositions [£.3.1] [£:3:2] It would require a quantitative
approximation result for C' neural networks with bounded Lipschitz gradient, and this is left to
future research.

4.4. PROOF OF THE MAIN THEORETICAL RESULTS 73

4.3.3 Convergence of the DBDP Scheme

We consider classes of functions N; and N for the approximations of the solution and its gradient,
and define (Z/A{i(g), 2;3)) as the output of the DBDP scheme at times ¢;, 7 = 0,..., N. Let us define
(implicitly) the process

R 50
v E; [ui(—?-)l (Xisn) = f (6 X0, Vi, Z0) A }

—=(3) ~
Z = B[

z+1(Xi+1)AA‘gi}, i=k,...,N—1.

and notice by the Markov property of the discretized forward process (X;); that

v =P x), Zi= 5900), i=0,....N, (4.3.6)
3)

for some deterministic functions v, ,2(3). Let us then introduce

3y . 2 3z . 2
eV = ulélflE‘U (Xi) —UXy)|, g” = Zlél/{/_/E‘ZZ Xi) — 2(Xy) >
for i = 0,...,N — 1, which represent the L?-approximation errors of the functions vi(g), 2(3) in

the classes NV; and M.

Theorem 4.3.3 (Huré, Pham, Warin [HPW20| : Approximation error of DBDP). Under As-
sumption there exists a constant C > 0 (depending only on the data u,o, f,g,d,T) such
that in the limit |x| — 0

141
E|Y, +E / Z, - 208 d
a8 [e e
< C(E 2 z = 3y 3,z
< C(Elg(xr) — g(xXm)|* + In| + () + N 3 (€3 + Atye?)). (4.3.7)
§=0

We next study convergence rate for the approximation error of the DBDP scheme, and need
to specify the class of network functions N; and N/.

Proposition 4.3.2 (Rate of convergence of DBDP). Let Assumption hold, and assume
that Xy € L*Y°(Fo,RY), for some 6 > 0, and g is [g]— Lipschitz. Then, there exists a bounded

sequence K; (uniformly in i, N) such that for N; = ggg_ d1tems and Nj = G e gaem L€
wE T Ttl i? Yy 7m

have
~(3 2 Tt =(3 2
sup E|V;, — U™ (X)) +E[Z/ 12— 2P ()| ds} = O(1/N),
1€[0,N] i i

with a grouping size k = O(2vV/dN?), depth £+1 = O(d?) and width Z 0 m; = ((2\/&]\[3)‘12_1)
in the case d > 1. If d = 1, take kK = O(N?), depth £ +1 = 3 and width EZ OmZ = O(N?).
Here, the constants in the O(-) term depend only on u,o, f,g, d, T, Xp.

4.4 Proof of the Main Theoretical Results

4.4.1 Proof of Theorem [4.3.1]

Let us introduce the processes (V;, Z;); arising from the time discretization of the BSDE (4.2.3)),
and defined by the implicit backward Euler scheme:

_y (1) (1) (1)
7V = E VHr1 fti, Xi, Vi, Z;)Ati] (4.4.1)
; i i—i—l Ati 0 LR ’

74 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

starting from V]SI) = g(Xn). We recall from |[Zha04| the time discretization error:

o LD o TR Al
ielo,N] —~) iy

< C(Elg(¥r) — g(xXn)[* + Il + =% (m)). (44.2)

for some constant C' depending only on the coefficients satisfying Assumption [4.3.1
Let us introduce the auxiliary process

N-1
v = E [Q(XN) - f(tj’Xjau](l)(Xj)aZJ(‘I)(Xj))Atj}a i=0,...,N, (443)

)

7=t
and notice by the tower property of conditional expectations that we have the recursive relations:

~ (1)

v — R, [ij{ _ f(ti,Xi,ﬁi(l)(Xi),§i(1)(XZ~))AtZ}, i=0,... N—1. (4.4.4)

=(1)
Observe also that Z; defined in (4.3.1)) satisfies

Z(l) _ E, [V(l) AWz‘] ’

AL 1T0 N (4.4.5)

We now decompose the approximation error, for i € [0, N — 1], into

E|Y;, — Z/Afi(l)(Xi)lg

< 4By, - VP +E[GY - GOP RV - vOP LBV - a0 (x)?)

= AI}+ I+ I+ 1, (4.4.6)
and analyze each of these contribution terms. In the sequel, C' denotes a generic constant
independent of 7 that may vary from line to line, and depending only on the coefficients satisfying

Assumption Notice that the first contribution term is the time discretization error for
BSDE given by (4.4.2), and we shall study the three other terms in the following steps.

Step 1. Fix i € [0, N—1]. From the definition (4.3.1)) of V;-(l) and by the martingale representation

theorem, there exists a square integrable process {Z\S(l), ti <s<T}st.

_ N-1
g(Xn) — f(thXi»V;‘(l)»Zi(l))Ati - Z f(tjavau;I)(Xj)7Z](1)(Xj))Atj
j=it1
tN
= Vi+ / ZW aw,,. (4.4.7)
ti

=(1)
From the definition (4.3.1) of Z; , and by It6 isometry, we then have

1 E,L bit1 2§1)d ti ~ —(1
o _ ElJ, - 8]7 ie. E / " zw 7))ds] = 0. (4.4.8)
’L’ tl

Plugging (4.4.7) into (4.2.8)), we see that the loss function of the MDBDP scheme can be rewritten

4.4. PROOF OF THE MAIN THEORETICAL RESULTS 75

as

TME (U, 2;)

=E Vi(l) — Ui (X;) + At [f (8, Xi, V;(U,Z(l)) — f(ti, X5, Ui (X5), Zi(X3))]
t t; -
/]+1 (2 - ZAj(Xj)].dWSJr/ 20 -z x)]aw,|
j=i+1 tj ti
= S0 _7 ()12

= G W, 2) [Z/ W - 7" as]

N-—1 (1) _A

+ 3 AGE|Z - () (4.4.9)
Jj=i+1

where we use (4.4.8]), and
TMP Ui, 2)

—(1) 2

— Us(Xi) + Aty [f (ti, X, v Z,) — f (i, Xi, Ui (X5), Zi(Xi))H
7(1) 2

It is clear by Lipschitz continuity of f in Assumption that

TME W, 2) < C(BIVY — (x| + atE|Z - Z(X))). (4.4.10)

2

On the other hand, by the Young inequality: (1 — 8)a? + (1 — %)b2 < (a+0b)? <1+ B)a®+
(1+ %)bQ, for all (a,b) € R?, and 8 > 0, we have

TMB(U;, 2;)

> (1 PEVY — (X[+ ALE|Z - Z(X))

+ (1 - ;)’AtiPE'f(ti,Xi,“i(Xz‘),Zi(X)) - f(tn X, v E(l))‘2

> (1= BBV — U] + AkE]Z - z(x0)
) f 2 —(1)
- L a0 — VO +Blz 00 - 7 1)

1 1 =)
> (1 — (4l + 5)Ati)ﬂ«:\v}” —UX) + SALE|Z - 20 (4.4.11)
where we use the Lipschitz continuity of f in the second inequality, and choose explicitly g =
4[f]%AtZ~ (< 1 for At; small enough) in the last one. By applying inequality (4.4.11)) to (U;, Z;)
= (LA{i(l), 2/,7\1-(1)), which is a minimizer of jz»MB by (4.4.9), and combining with (4.4.10), this yields
for At; small enough and for all functions U;, Z;:

E|V ~u ‘+AtE‘Z —ZAi(l)(Xi)E
< C<E|X/;—M¢(Xi)| +AtiE‘Zi—Zi(Xi)|§>'

By minimizing over U;, Z; in the right hand side, we get the approximation error in the classes
=(1)
N, N/ of the regressed functions Vi(l)7 Z;

—(1) ~
X2+ ALE|Z - ZD(X)[P < O + Atel?). (4.4.12)

2

E[VY 1

76 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Step 2. From the expressions of V() and V in -, -, and by Lipschitz continuity of

f, we have by m

A —=(1 ~ -~
BV - VO = AZE[E[f (4 XV, Z-()) - f(ti,Xi,u»“NXz-),Zﬁ”(Xz-))])
S NHRNA A7 ol LE|Z —zj.“)(Xi)ﬁ)
< CAL(e}Y + Ate)), i=0,...,N. (4.4.13)

Step 3. From the recursive expressions of V V() in - -, and applying the Young,
the Cauchy-Schwarz inequalities, together w1th the Lipschitz condition of f, we get for g > 0:

E\V(l) B ‘}(1)}2
(1+B)E

IN

B[V - V[+2[f]i<1+;)!AtiP(E\Vim—L?i(l)(Xi)}2+E\Zf1)—ii(l)(Xi)f

IA

1 _ A _ =
(1 B fE Y~ V[20 (14 5)an P Vi w120 - 2

1 ~) ~
+2[f]i(1+—)\Ati\2(3]E|V;(— VIR + 3V 00 (x0) 2+ 2|2 - Zi(x0)[2)
2[f17 |At;]?

B

B)Ati(a}y + Atieh), (4.4.14)

where we use (4.4.12)), (4.4.13]) in the last inequality. Moreover, by (4.4.1)), (4.4.5), we have

< (1+B8)E

E [V - 7 + @+) (GEVY - V.V + 28|20 - Z,)

+ ClfP2 (1 +

a0 ~7.) = B [aw () - Vi)
= | awi (V] - v - B[V - v)) .
and thus by the Cauchy-Schwarz inequality
atElZ0 -2 < a(Bv) - VO - EE Y). @)

Plugging into (£.4.14)), and choosing 8 = 4d[f]? At;, gives
(1 - CAt)E[VY — Vi“)f

< (14+ CAE[VY =V P+ (1 + CAt) (1Y + Atiel)

By discrete Gronwall lemma, and recalling that st,l) = Vjsfl) (= g(Xn)), we then obtain

=2

-1
< O (e + Atie}?). (4.4.16)

3

sup E‘Vi(l) - ‘71'(1)‘2
1€[0,N]

Il
=)

The required bound for the approximation error on Y follows by plugging (4.4.2), (4.4.12),

(4.4.13)), and (4.4.16) into (4.4.6)).

Step 4. We decompose the approximation error for the Z component into three terms

N-1

o Z /tm 1200 - B0t ds]

=0

)

S ”1 (1) _ 702 Or =0
< 32([/ Z; ‘ ds}-ﬁ-AtiE‘Zi - Z; ‘Q—i-AtiE‘Zi _Z (Xi)‘C4>4_17)

=

4.4. PROOF OF THE MAIN THEORETICAL RESULTS 7

By summing the inequality (4.4.15)) (recalling that V]S,D = V]gl)), and using (4.4.14)), we have for
B e (0,1):

N—

H

7(1)

AtLEIZD — 7,
=0
- (1 1)72
< aY BV - 0P - BE) - 7 P)
=0
§ dN 1(V(l) V(l) 2 1 2\ AL [2) (3E — (1) (D]EZ(I) §(1)2
= i+l i+1H +(1+B)(2[fh| t1?)(BEIV; = Vi P+ 2E|Z; - Z; |2)
=0
+ Ol (1+ ;)Ati(e}’y + Atis;’z))
<dN1 2At (1) (1)7)2 SA — (1) (D) C iy Apcl?
= Z(l—Sd 2At E‘Ei[‘/;+1_‘/;+1” +@ tzE’Vz -V ‘ + 87d(€z + Atse;))
1 _ =(1)
- 52&@\2}”—@ 2 (4.4.18)
i=0

d[f]? At; .
by choosing explicitly 8 = %ﬁiiti = O(At;) for At; small enough. Plugging (4.4.2)), (4.4.12)),

(4.4.16)), and (4.4.18) (using the Jensen inequality) into (4.4.17)), this proves the required bound

for the approximation error on Z, and completes the proof. O
4.4.2 Proof of Proposition 4.3.1
Let us introduce the flow of the Euler scheme (X;) by:
k, k, k, k, .
X35 = X700 4 ulty, X0 A + o(ty, X)) AW, j=k,..., N,

starting from X]l:’x = x at time step j = k € N*. Under Assumption 2l f does not depend
on z so by slight abuse of notation we write f(t,z,y) = f(t,z,y, 2). Deﬁne

(- N-1
Vi = Eilo(XN) — F (X5 V) At 3T F(a, XD () Aty
) j=i+1
i N-1
vhT = Eilg(xy) - S r(ty xEd (x ’”))Atj] i=k,....N,
=i
k,x r
Ziy = E VzigflAAIZ’], i=k, ...,N,

and observe that we have the recursive relations:
vhe = E [VHl f(t,-,Xf’””,ﬁ.(l)(Xk"”))Ati], i=k,... N,
VAT = BV S XET VA i =k

Notice by the Markov property of the discretized forward process (X)i that

—k,x
k,), ko 7ok, (V) vhay B
V;‘,lz = Uj(‘)(Xj)7 V;‘,fc = Uj(‘)(Xj x)a Z
() (1) (1)
IR

~(1
o= A, j=k. N

for some deterministic functlon v;

the same functions as in .

which do not depend on k. Notably v() A](-l) are

)

78 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

(1)

Step 1. We first estimate the evolution of the Lipschitz constant of 9, when i varies. Let 2’ € R

By the Cauchy-Schwarz inequality

—=k, "2

=Rr,T 7k‘,$
AtkE‘Zk,l - Zk,l

1 Nk ~ k:,:c’ 2 ~ g R k;’x/ 2
< ME‘Ek {(Vlﬁ—l,l - Vk+1,1)AWk} ‘ <d E‘Vkﬂ,l - Vk+1,1‘ (4.4.19)
Moreover, assuming that Z/Al,gl) is [Z/Allgl)]—Lipschitz yields

ko ko’
]E‘Vk,l = Vil k41,1

<E|VEL, - Vs |+ AtE

{f(tk,x/,lj’gl)(x/)) — f(tk’xvil\,il)(x))})
< E‘ka_;_xLl - ka—fl,l’ + [f]Ati(l + [ﬁél)])m . $/’2.

Step 2. Then for the UI(CI) function, the Young inequality gives

k,x k! 2 [k,x kx| 2
E‘Vm —Vii | S (A +7AL)EE; Vit — Vi1 ‘
1 ’ 2
+ 1+ VAtk)At%E‘{f(tkw'?Vk]ff) — f(te, z, Vk’ff)}‘

112

- s
< (1 +yAt)E(Ey |V = Vi ‘

1 /
2 2 2 k,x k,x’' 2
Therefore by choosing v = 2[f]? for At;, small enough

/12 ~ ~ ap
BV -Vl | <+ 0+ 3)Atk)IE‘kaﬁ71 - kaﬁ,l‘ + (14 (7 + 3)At) Atz — 2|3

Hence assuming @,(;21 is [ﬁ,(cl_gl]—Lipchitz we obtain with Lemma |4.3.1

/12
(@) — oV ()2 = E‘Vk]f’f — vk (4.4.20)
< (14 (7 + 3)At) (1 + CAt) B2 + Aty) e — 2/ 3
< (14 CAt) ([0]2 + Aty — 2'3 = [oV]P|le — /3, (4.4.21)

for Atj, small enough and another constant C.
Step 3. Let € > 0, k € N, £ € N, m € R’ to be chosen after. Recursively, we choose N,

= Q[C"(l)] il (with [vgll]z = (1 + CAty_1)([g]* + Aty_1) by [(E4.2T)) to approximate v,(cl)
v, '],d,1,6,m

by [v,(gl)]—Lipschitz GroupSort neural networks with uniform error 2[vi]Re on [~R, R]¢ | see

Proposition 4.2.1l Therefore, by Lemma estimations (4.4.20) and the definition of [v](fl)] in
(4.4.21)), for Aty small enough

07 () — 57 @) S E|VELL - V| + (800 + Gl - o'l
< (L+(C+2A DAt]le — 2’|z + [)(1 + CAL) Atyla — 2|2
Thus f),(cl) is [@,(Cl)] Lipschitz with
[037] < (14 CAt)[a))] + [f1(1 + CAt) A

for a constant C. By discrete Gronwall lemma over k=N —1,...,0,

)2 < K, Y2 < K,

4.4. PROOF OF THE MAIN THEORETICAL RESULTS 79

uniformly in ¢, N for some constant K. By (4.4.19) and Proposition we choose N
Cr

- g,/ﬁ[v(l)]ddfm

2\/d7[vk]Re on [—R, R]*. Thus VALEW, \/Ath,gl) are dK Lipschitz, uniformly.

Step 4. The regression errors 51-1 Y verify from, localization of X; on Bs(R), the Holder inequal-

to approximate z}(l) by GroupSort neural networks with uniform error

ity, and the Markov inequality, the approximation error of vgl), i € [0,N — 1], by the class of
GroupSort neural networks (Proposition |4.2.1)

ly . (1) . .
s T uegl[riif]dl o (X5) _M(X’)Hz

< et 000) |, 000 B XL

(1) A(l) 2 1/2q 2(;71
< 2KRe + E’(vl (Xi) —U; 7 (X3)) q‘ E1% L or|
— 9KRe+ E‘ (1)) u(l)())QQ‘I/QQE[]_‘X on 2g—1
(i (x0) = w2 O, + [(X)) = o O], 1]
< oK Red W (4.4.29)

R
for ¢ > 1 and 2¢ = 2 4+ § with § as in the statement of the Proposition and by noticing that
M (X) = UV (X)) = P (x) = 0P(0) = @A (X;) — vV (0))). Now, by Lipschitz continuity

of vgl),ljl(l) and because 0 € BQ(R) we have

Haz‘(l)<Xi) H + Hv(l) 1) — ”(1)(0)“2(1
< HLA{i(l)(O _ Uzgl) H + Hu(l) 2 — u(l H 4 Hv(l) (X;) — vlgl)(o)HQq
< 2KRe +2K|| X, . (4.4.23)

Recalling the standard estimate || X;[,, < C(1+ ||All,,), @ = 0,..., N, we then have

1+ R2e

b

for some constant C'(d, Xy) independent of N, R, e. Similarly, repeating (4.4.22)) and (4.4.23) by

replacing respectively Z:{\i(l) by Z\i(l) and UZO) by 22(1) and recalling that M@(l), \/EZIEI) are
dK Lipschitz uniformly w.r.t IV, we obtain

eV < o R 4

P 1+ R%€?
Ati&‘}’ < C{R262 + T},
Then to obtain a convergence rate of O(1/N) in (4.3.3), it suffices to choose R, € such that
1+ R%¢?
NR?¢ = O(1)N), N—p— = O(1/N),
which is verified with if d > 1 with R = O(N), e = O(5). Then by Proposition we

can choose the previously GroupSort neural networks with grouping size x = O(2\/&N 2), depth
{+1 = O(d?) and width Z 0 mz = O((2VdAN?)¥~1)if d > 1. If d = 1, we can take k = O(N?),
depth ¢+ 1 = 3 and width Z 0 m; = O(N?).

4.4.3 Proof of Theorem 4.3.2]

Let us introduce the explicit backward Euler scheme of the BSDE (4.2.3):
= (2 2
AZENS m&i f (X0, V2L 22 At

§ 4.4.24

i H—l AtZ

80 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

starting from V]?) = g(Xx), and which is also known to converge with the same time discretiza-
tion error (4.4.2)) than the implicit backward scheme.

We decompose the approximation error into three terms:
E[Y, - 4P (%) < 3(E[Y, - PP +E[G® - vOP B[V -4 (X)) (4.4.25)

The first term is the classical time discretization error, and the rest of the proof is devoted to
the analysis of the second and third terms.

Step 1. Fix i € [0,N — 1]. By definition of V(2) in and the martingale representation

theorem, there exists a square integrable process {Z 72) ,ti <'s < t;y1} such that
(2
ui(+)1(Xi+1) - f(tu X, E; [uz(+)1(Xi+1)] B [U(tiﬂ Xi)TD uz(+)1(Z-H)])Ati

tiv1
= v;+/ Z@ aw,.
t;

It follows that the quadratic loss function of the DS scheme in (4.2.7) is written as

T3 (Us)
= U (Xir1) = UXs) = f (1 Xt Uy (Xi), 0 (b, Xi) Dl (X))
_ tit1
= Jf(UiHE[/ |Z§2)|§ds], (4.4.26)
ti
where

~ 2

JS<Z/{1) = (2) — Z/[Z(XZ) + Af;At;

with Af; = (b, X0 Bl (Xi)), Bilo (1, X0)T Dald) (Xin))
— f(t X U (Xinr), o (ti, Xi)TDall iy (Xig1)).

A direct application of the Young inequality in the form (a + b)? > 2a? — % leads to

TS (Us) + | At PE|Af] > éE\Vi@) —U(x)]%. (4.4.27)
On the other hand, by Lipschitz continuity of f, we have
J7 W) + | A6 PE[A S|
2B |V.®) —u(X0)|* + 3|AtPE|A S
2B |V — s(Xi)|* + 9| AL [f12E| Xis1 — Xif2

IN

IN

—~ —~ 2
+ AP ZEAD, (Xit1) - Bl (X))
2
+ 9| ALPIF2E o (ts, Xi) Dall 1) (Xis1) — Bi[o(ti, Xi) DU (Xiga)]

2

< 2]E‘V;Q) _ui(z)(Xi)’2 + 9| AL P [fI2E[X1 — Xil?

R ~ 2
+ IALPfPE ui(i)l (Xit1) — ui(i)l (Xi)

[(2 2
+ 9L P2 lo(t, X0) P DA (Xi1) — DAL (X)) (4.4.28)

where we use the definition of conditional expectation E; [.], and the tower property of conditional
expectation in the last inequality. Recall that Z/IZH € N is Lipschitz on R?. Actually, we have

Uisr () = Uir (2)| < ~ilw — 2], Va,2’ €R?.

4.4. PROOF OF THE MAIN THEORETICAL RESULTS 81

By the Cauchy-Schwarz inequality, we then have

2
< X - X
< C2AY,

(2 (2
E[U? (X)) — U2 (X,)

for At; small enough, R > 1, and we used again the standard estimate: || X;||,, < C(14|Xo]l,,),
| Xiv1—Xill,, < C(+Abl,,)v/At;, for p > 1. By using also the Lipschitz condition on Dyl 1,
and plugging into (4.4.28)), we get

= 2 2 22

TS @) + |1APEA L < 2BV — (X [* + C(d) max [72,07] (1+ | X |?) 1 A¢(H4.29)

By applying inequality (4.4.27) to U; = Z;{\Z@), which is a minimizer of jis by (4.4.26)), and
combining with ([4.4.29)), this yields for all functions U; in N;"":

2) (2 2 2 2
E[V® - d®(x)" < (B[—t(X) + (1 +11%]12)% At max [+, 7])
and thus by minimizing over U; in the right hand side

E|V® -4 (x,)|? < 0(527" + (1+ | X132 At P max [ﬁ,nﬂ). (4.4.30)

Step 2. From the expressions of Vi(z), and ‘71-(2) in (4.3.4) and (4.4.24)), and by applying the Young,
the Cauchy-Schwarz inequalities, we get with 8 € (0, 1)

E[V® - v)?

R o (2
< (14 B)EE UL (Xig1) — V] ‘

+ (1+;)IA#E’f(ti,XuVi(ﬂaZz@))

12 (Xia1)], Eilo (i, X)) DUP), (Xi11)])
‘2

2
— f(ts, X0, Bl ‘
E; [U2) (Xis1) — V]

1 —(2) 2
+ 2T (1) 1AaP (B (X - V)

< (1+B)E

Lo, X DA (X)) - Z3E)3)

Now, recalling the expression of Z; in ({#.4.24)), and by a standard integration by parts argument
(see e.g. Lemma 2.1 in [FTW11]), we have

E; [o(ti, Xi) Dol (Xiv1)] — 2

—(2)\ AW;
= Ei[(ui(i)l(XZ+l) Vz(ﬁ) Ati}
_ 77(2) =(2) ~(2) —2)1\ AW;
= E Kuiﬂ(XiH) — Vi —Ei [Z/{i+1(Xi+1) - Vi+1]> At }

By plugging into (4.4.31]), we then obtain by the Cauchy-Schwarz inequality

E’V;(Q) _ V(z)

ol

A2 (o~ _
< (L1 BE[E (A, (X - VA + 2020+) 20 8102, (x0) - O
_ 2
+ o[BI) - VAP - Bl 2) - v}
< (1+ CAL)EUD, (Xis1) — VO, (4.4.32)

82 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

by choosing explicitly 8 = 2d]| f]%Ati for At; small enough. By using again the Young inequality
on the r.h.s. of (4.4.32)), and since At; = O(1/N), we then get

2

E‘Vi(g)—vi@)\ < (14 CAt) E‘ z+1 i(fi‘2+CNEWi(i)1(Xi+l) V(2|

By discrete Gronwall lemma, and recalling that V]E,) = 9(Xn), V() = = Un(Xy), we deduce with

(4.4.30)) that

N-1

sup E[V;® — VPP < ol +oN Y (az’” + (14 [X]1%)2| At max [42, nﬂ).4.4.33)
1€[0,N] i=1

The required bound (4.3.5) for the approximation error on Y follows by plugging (4.4.2)),
(T1.30) and ([.4.33) into (4.4.25). 0

4.4.4 Proof of Proposition

For z € R?, we define the processes X e 7=0,....,N,

X.]:

= x oty) At + oty 2)AW;, j=0,...,N -1

Define also
x (3 i,w " e~ 3
i3 = EZ |:ul(+)1 (X'H—l) - f(tla €, ‘/;'737 ZZ73)A1JZ:| = U,E)(SU)

=T

773 i,z i (3
Ziz = K [Ui(+)1(Xi+1)AAIZ} = %\z()(1')

with v(), E'f as in (4.3.6) by Markov property.
Step 1. Let 2/ € R By the Cauchy-Schwarz inequality, we have the standard estimate

2

/
=T

37 Zi,3

1 (3 1, i, i, 77(3 1,T 2
- E[E, [{u}&(Xm) A (xii) — B A (it - ai o raw]

3 1, 1,2 3 i, 1,X 2
< (B|a, (i) —d o[g fad ocn) —a o], @asy

We then apply the Young inequality to see that

;12

VE -V

2y 1y

E

st
R A A S] H—l H—l

+(1+—At2ﬂ«:}{ft CVE T)~ Fltna, Vi Zs)}

< (1+~7AL)E

‘ 2

~3) [i 2
< (1+~At)E|E; |:ui+1(Xi+l) z+1 Xih } ‘

VALZE |z — 2[5 + | iy — ‘@?3|2 + |Zi,3 - Zi73|§}'

+3[f]?(1 +

YAt

Hence for v = 3[f]?d and At; small enough, using (4.4.34) we obtain

2 77(3) i, 75(3) i, 2
< (14 (v + 3d)AL)E|U L (X0) — Uz‘+1(Xz+1>
+ (14 (v + 3d)At;) At;E|z — 2/|3.

E|V% — Vs

2 1y

4.4. PROOF OF THE MAIN THEORETICAL RESULTS 83

Therefore, with Lemma

3 3 - 2 2
’U(: (fU) - Uj(v)q(x/)’z = E’VN—1,3 - VN—1,3

< (14 (y+3d) Aty 1) ((1 4+ CAtn 1) [g)* + Aty) |z — 2|3
< (14 CAty_1)([9) + Aty) |z — 23,
(3) .

for some constant C. Similarly, assuming U, 4 +)1 is [Z/IZ(+)1] Lipschitz, v;”" is Lipschitz with constant

o

;] verifying

P2 < (14 CAL)([UD)? + Aty).

7

Step 2. Let e >0, k€N, £ € N, m € R to be chosen after. Recursively, we approximate %(3) by
)] Lipschitz GroupSort neural network L{ in \; = g

@/\

a v, with uniform error 2[v;] Re

[P].d1,6m

n [~R, R]? (Proposition [4.2.1). Then by discrete Gronwall inequality
(3)72 (3)72

U7P < K, [y <K,

1

®3)

uniformly in 4, N for some constant K. Thus vl-(g),l/{i
approximate by ([#.4.34) z® by a 1/i[(3)]-Lipschitz GroupSort neural network Z; in N =
G with uniform error 2—4—[v 1(3)]R5 on [~ R, R]? thanks to Proposition|4.2.1] Thus

Va1 dd bm VAL
\/Ati:?i(g'), \/AtiZi(?’) are dK Lipschitz, uniformly.

Step 3. The regression errors z—:?’y verify from, localization of X; on Bs(R), the Holder inequality,

are K Lipschitz, uniformly. Then we

and the Markov inequality, the approximation error of UZ(S), i € [0,N — 1], by the class of
GroupSort neural networks (Proposition [4.2.1)

D= ednt | o —ue],
< et (0700 UL ||+ [0 XD - AP X1
< 2K Re+ B (x) - 20 00| B L
— 2KRe+ E‘(Uﬁ)(xi) —1/71-‘3)(Xi))2q\1/2(11@[1%213 7
(o (X5 = v O, + U (X5) =P O) 1X]] .
< 2KRe+ LR (4.4.35)

R
by noticing that (1)7?3) (Xi) — u® (Xy)) = (U(S) (Xi) — ’U(S)(O) - (LA{-(S) (Xi) — 02(3)(0))) for g > 0

K3 (2 3 7

and 2¢g = 2 4+ § with § as in the statement of the Proposition. Now, by Lipschitz continuity of
v,f3),L{ (3) and because 0 € By(R) we have

167 (x5 = o@), + [0 (x:) =P)],

< [) = P O, + 167 X) = &2 O, + 1o () = v O,

< 2KRe +2K|| X, . (4.4.36)
Recalling the standard estimate || X||,, < C(1+ [|&oll,,), 4 =0,..., N, we then have

1 +R262}

5?’?’ < C{R262 + 2

84 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

for some constant C'(d, Xp) independent of N, R, e. Similarly repeating (4.4.35)) and (4.4.36|) by
replacing respectively LA{i(3) by 21.(3) and vgg) by 21-(3) and recalling that / Atié\i@), \/AtiZi(g) are
dK Lipschitz uniformly w.r.t. N, we obtain

1+ R2¢2
)
Then to obtain a convergence rate of O(1/N) in (4.3.7)), it suffices to choose R, e such that

Ati&??’z < C{R262 +

1+ R%e?
N2R?¢2 = O(1/N), N?T = O(1/N),
which is verified with R = O(N3/2), € = O(%) Then by Proposition if d > 1 we can

choose the previously GroupSort neural networks with grouping size Kk = O([Q\/&N 31), depth
{+1=0(d?) and width >0 m; = O((2VdN?®)#~1). 1f d = 1, we can take k = O(N3), depth
{+1=3and width Y'Z} m; = O(N?).

4.5 Numerical Tests

We test our different algorithms and the cited ones in this paper on some examples and by
varying the state space dimension. In each example we use tanh as activation function, and an
architecture composed of 2 hidden layers with d + 10 neurons. We apply Adam gradient descent
|[KB14] with a decreasing learning rate, using the Tensorflow library. Each numerical experiment
is conducted using a node composed of 2 Intel®) Xeon®) Gold 5122 Processors, 192 Gb of RAM,
and 2 GPU nVidia®) Tesla® V100 16Gb. We use a batch size of 1000. We do not implement
the GroupSort network because even if it is useful for theoretical analysis, it would be costly to
use in practice: on the one hand, it will induce a cost of order O(n Inn) where n is the batch size,
compared to a linear cost O(n) for standard activation function; on the other hand, it requires
to track the Lipschitz constant of the functions and adapt the networks architecture accordingly.
Whereas theoretical results suggest to take deep neural networks with depth increasing with the
dimension, we observe that two hidden layers are enough to obtain a good accuracy. According
to our experience tanh activation function provides the best results. ReLU or Elu being not
bounded, some explosion tends to appear when the learning rates are not small enough.

We consider examples from [HPW20] to compare its DBDP scheme with the DS and MDBDP
schemes.

The three first lines of the tables below are taken from [HPW20]. For each test, the two best
results are highlighted in boldface. We use 5000 gradient descent iterations by time step except
20000 for the projection of the final condition. The execution of the multistep algorithm approx-
imately takes between 8000 s. and 16000 s. (depending on the dimension) for a resolution with
N = 120. More numerical examples and tests are presented in the extended version [GPW22a|
of this paper, and the codes at: https://github.com/MaxGermain/MultistepBSDE.

4.5.1 PDE with Bounded Solution and Simple Structure

We take the parameters: pu = %, o= %, terminal condition g(x) = cos(Z), with T = 2?21 i,

and generator

f(x7 y? Z)

= —(cos(f) +0.2 sin(f)) 2 4 —(sin(Z) cos(T)el 71)? — i(y(ld - 2))2.

1
2 2d
so that the PDE solution is given by u(t,x) = cos (T) exp (£5%).

We fix T' = 1, and increase the dimension d. The results are reported in Table for d =
10, in Table for d = 20, and in Table for d = 50. It is observed that all the schemes

https://github.com/MaxGermain/MultistepBSDE

4.5. NUMERICAL TESTS 85

Averaged value | Standard deviation | Relative error (%)
[IPW20] (DBDP1) 1.3895 0.0015 0.44
[HPW20| (DBDP2) T1.3913 0.0006 0.57
[(IJE17] (DBSDE) - 1.3880 0.0016 0.33
[Bec—19] (DS) ~1.4097 0.0173 1.90
MDBDP -1.3887 0.0006 0.38

Table 4.1: Estimate of u(0, z¢) in the case (4.5.1)), where d = 10,29 = 1 19,7 = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is -1.383395.

Averaged value | Standard deviation | Relative error (%)
[HPW20| (DBDP1) 0.6760 0.0027 0.47
[HPW20| (DBDP2) 0.6710 0.0056 0.27
[HJE17] (DBSDE) 0.6869 0.0024 2.09
[Bec+19] (DS) 0.6944 0.0201 3.21
MDBDP 0.6744 0.0005 0.24

Table 4.2: Estimate of (0, z¢) in the case (4.5.1]), where d = 20,29 = 1 199, 7 = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is 0.6728135.

DBDP, DBSDE and MDBDP provide quite accurate results with smallest standard deviation
for MDBDP, and largely outperforms the DS scheme.

4.5.2 PDE with Unbounded Solution and more Complex Structure

We consider a toy example with solution given by

d d

T—1 . .
u(t,x) = 0 (sin(z)1z,<0 + zilz,>0) + cos (Z zxi).
i=1 i=1
Therefore we take the parameters
Iy y Y
=0, 0=—, T=1, t,x,y,z) =k(t,x) — —=(14-2) — = 4.5.2
’ -’ ft.a.9.2) = hit.m) = Yo(1a2) - (152)

with k(t, @) = Qpu + 3 Te(D3u) + 25 32, Dayu + %

We start with tests in dimension d = 1. The results are reported in Table [4.4]

We next increase the dimension to d = 8, and report the results in the following figure. The
accuracy is not so good as in the previous section with simple structure of the solution, but we
notice that the MDBDP scheme yields the best performance (above dimension d = 10, all the
schemes do not give good approximation results).

Averaged value | Standard deviation | Relative error (%)
[HPW20] (DBDP1) 1.5903 0.0063 0.04
[IPW20| (DBDP2) 1.5876 0.0068 0.21
[(JE17] (DBSDE) 1.5830 0.0361 0.50
[Bec +19] (DS) 1.6485 0.0140 3.62
MDBDP 1.5924 0.0005 0.09

Table 4.3: Estimate of u(0, z¢) in the case (4.5.1]), where d = 50,29 = 1 159, 7 = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is 1.5909.

86 CHAPTER 4. ERROR ANALYSIS OF BACKWARD SCHEMES FOR PDES

Averaged value | Standard deviation | Relative error (%)
[IPW20] (DBDPI) 1.3720 0.0030 0.41
[IPW20| (DBDP2) 1.3736 0.0022 0.29
[HJEL7] (DBSDE) 1.3724 0.0005 0.38
[Bec +19] (DS) 1.3630 0.0079 1.06
MDBDP 1.3735 0.0003 0.30

Table 4.4: Estimate of u(0,z¢) in the case (4.5.2)), where d = 1,29 = 0.5, T = 1 with 120 time
steps. Average and standard deviation observed over 10 independent runs are reported. The
theoretical solution is 1.3776.

Averaged value | Standard deviation | Relative error (%)
[IPW20] (DBDP1) 1.1694 0.0254 0.78
[IPW20| (DBDP2) 1.0758 0.0078 7.28
[(JE17] (DBSDE) NC NC NC
[Bec—19] (DS) 1.2283 0.0113 5.86
MDBDP 1.1654 0.0379 0.47

Table 4.5: Estimate of u(0,z¢) in the case (4.5.2)), where d = 8,29 = 0.5 1g, T' = 1 with 120
time steps. Average and standard deviation observed over 10 independent runs are reported.
The theoretical solution is 1.1603.

Chapter 5

Neural networks-based backward
scheme for fully nonlinear PDEs

This chapter is based on the paper [PWG21|
H. Pham, X. Warin, and M. Germain. “Neural networks-based backward scheme for fully non-
linear PDEs.” In: SN Partial Differential Equations and Applications 2, 16 (27 January 2021).

The objective of this Chapter is to design a new deep learning scheme for solving fully nonlinear
PDEs. The existing scheme in the literature is the Deep 2BSDE method of [BEJ19|, which is
a modified version of the Deep BSDE scheme [HJE1§| able to treat full nonlinearity. Similarly,
thanks to ideas from the Deep Splitting scheme [Bec+21| we provide an adaptation of the DBDP
scheme of [HPW20| to the more challenging case of non-linearity in the second order derivative
of the solution. Our study is only focused on numerical aspects and the theoretical study of the
algorithm is left to future research.

87

88 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

Abstract

We propose a numerical method for solving high dimensional fully nonlinear partial differential
equations (PDEs). Our algorithm estimates simultaneously by backward time induction the
solution and its gradient by multi-layer neural networks, while the Hessian is approximated by
automatic differentiation of the gradient at previous optimization step.

This methodology extends to the fully nonlinear case the approach recently proposed in
[HPW20] for semi-linear PDEs. Numerical tests illustrate the performance and accuracy of our
method on several examples in high dimension with non-linearity on the Hessian term including a
linear quadratic control problem with control on the diffusion coefficient, Monge-Ampére equation
and Hamilton-Jacobi-Bellman equation in portfolio optimization.

5.1 Introduction

This paper is devoted to the resolution in high dimension of fully nonlinear parabolic partial
differential equations (PDEs) of the form

O+ f(.,.,u, Dyu, D?u) = 0, on [0,T) x R?,
{t f() 0,T) (5.1.1)

u(T7 ') = g7 on Rd?

with a non-linearity in the solution, its gradient D,u and its hessian D2u via the function
f(t,z,y,2,7) defined on [0, T]|xR? x R x R? xS¢ (where S is the set of symmetric d x d matrices),
and a terminal condition g.

The numerical resolution of this class of PDEs is far more difficult than the one of classical
semi-linear PDEs where the nonlinear function f does not depend on . In fact, rather few
methods are available to solve fully nonlinear equations even in moderate dimension.

e First based on the work of [Che+07], an effective scheme developed in [FTW11] using some
regression techniques has been shown to be convergent under some ellipticity conditions
later removed by |Tanl3]. Due to the use of basis functions, this scheme does not permit
to solve PDE in dimension greater than 5.

e A scheme based on nesting Monte Carlo has been recently proposed in |[Warl8al. It seems
to be effective in very high dimension for maturities 7' not too long and linearities not too
important.

e A numerical algorithm to solve fully nonlinear equations has been proposed by |[BEJ19]
based on the second order backward stochastic differential equations (2BSDE) representa-
tion of [Che+07| and global deep neural networks minimizing a terminal objective function,
but no test on real fully nonlinear case is given. This extends the idea introduced in the
pioneering papers [EHJ17; [HJE18|, which were the first serious works for using machine
learning methods to solve high dimensional PDEs.

e The Deep Galerkin method proposed in [SS18| based on some machine learning techniques
and using some automatic differentiation of the solution seems to be effective on some
cases. It has been tested in [AA+18| for example on the Merton problem.

In this article, we introduce a numerical method based on machine learning techniques and
backward in time iterations, which extends the proposed schemes in [VSS18]| for linear problems,
and in the recent work [HPW20] for semi-linear PDEs. The approach in these works consists
in estimating simultaneously the solution and its gradient by multi-layer neural networks by
minimizing a sequence of loss functions defined in backward induction. A basic idea to extend
this method to the fully nonlinear case would rely on the representation proposed in |Che+07]:
at each time step t, of an Euler scheme, the Hessian D?u at t, is approximated by a neural

5.2. THE PROPOSED DEEP BACKWARD SCHEME 89

network minimizing some local Ly criterion associated to a BSDE involving D,u at date t,,41 and
D2u. Then, the pair (u, Du) at date t, is approximated/learned with a second minimization
similarly as in the method described by |[HPW20|. The first minimization can be implemented
with different variations but numerical results show that the global scheme does not scale well
with the dimension. Instability on the D2u calculation rapidly propagates during the backward
resolution. Besides, the methodology appears to be costly when using two optimizations at each
time step. An alternative approach that we develop here, is to combine the ideas of [HPW20)|
and the splitting method in [Bec+21| in order to derive a new deep learning scheme that requires
only one local optimization during the backward resolution for learning the pair (u, Dyu) and
approximating D2u by automatic differentiation of the gradient computed at the previous step.

The outline of the paper is organized as follows. In Section we briefly recall the math-
ematical description of the classical feedforward approximation, and then derive the proposed
neural networks-based backward scheme. We test our method in Section[5.3]on various examples.
First we illustrate our results with a PDE involving a non-linearity of type uD?u. Then, we con-
sider a stochastic linear quadratic problem with controlled volatility where an analytic solution
is available, and we test the performance and accuracy of our algorithm up to dimension 20.
Next, we apply our algorithm to a Monge-Ampére equation, and finally, we provide numerical
tests for the solution to fully nonlinear Hamilton-Jacobi-Bellman equation, with non-linearities
of the form |D,u|?/D2u, arising in portfolio selection problem with stochastic volatilities.

5.2 The proposed deep backward scheme

Our aim is to numerically approximate the function u : [0,7] x R? — R, assumed to be the
unique smooth solution to the fully nonlinear PDE under suitable conditions. This will
be achieved by means of neural networks approximations for u and its gradient D, u, relying on a
backward scheme and training simulated data of some forward diffusion process. Approximations
of PDE in high dimension by neural networks have now become quite popular, and are supported
theoretically by recent results in [Hut+18| and [DLM20| showing their efficiency to overcome the
curse of dimensionality.

5.2.1 Feedforward neural network to approximate functions

We denote by dy the dimension of the input variables, and d; the dimension of the output
variable. A (deep) neural network is characterized by a number of layers L +1 € N\ {1, 2} with
mg, £ = 0,..., L, the number of neurons (units or nodes) on each layer: the first layer is the
input layer with mg = d, the last layer is the output layer with my = d;, and the L — 1 layers
between are called hidden layers, where we choose for simplicity the same dimension my, = m, £
=1,...,L—1.

A feedforward neural network is a function from R% to R% defined as the composition

reRY— ApopoAp_jo0...0p0A(z) € R. (5.2.1)

Here Ay, ¢ = 1,..., L are affine transformations: A; maps from R% to R™, As, ..., A;_; map
from R™ to R™, and Ay, maps from R™ to R%, represented by

Ay(z) = Wiz + S,

for a matrix W, called weight, and a vector 3y called bias term, o : R — R is a nonlinear function,
called activation function, and applied component-wise on the outputs of Ay, i.e., o(x1,...,2Tpn)
= (o(x1),...,0(xm)). Standard examples of activation functions are the sigmoid, the ReLu, the
Elu, tanh.

All these matrices W, and vectors Gy, £ = 1,..., L, are the parameters of the neural network,
and can be identified with an element # € RV, where N,,, = ZL;Ol me(l+mpp1) = do(14+m)+
m(1 +m)(L —2) + m(1 4 dy) is the number of parameters. We denote by Ny, 4,,1.m the set of

all functions generated by (5.2.1) for 6 € RV,

90 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

5.2.2 Forward-backward representation

Let us introduce a forward diffusion process
t ¢
Xt = Xo —i—/ p(s, Xs)ds + / o(s, Xs)dWs, 0<t<T, (5.2.2)
0 0

where 1 is a function defined on [0,7] x R? with values in RY, o is a function defined on
[0, 7] x R? with values in M? the set of d x d matrices, and W a d-dimensional Brownian motion
on some probability space (§2, F,P) equipped with a filtration F = (F;)o<i<7 satisfying the usual
conditions. The process X will be used for the simulation of training data in our deep learning
algorithm, and we shall discuss later the choice of the drift and diffusion coefficients p and o,
see Remark [3

Let us next denote by (Y, Z,T") the triple of F-adapted processes valued in R x R? xS%, defined
by

Y; = u(t,Xy), Z; = Dyu(t,X;), Ty = Du(t,X;), 0<t<T. (5.2.3)

By Itd’s formula applied to u(t, X;), and since u is solution to (5.1.1), we see that (Y, Z,T)
satisfies the backward equation:

T
1
Y, = g(X7) / [M(S,XS).ZS + §tI‘(O'O'T(S,XS)Fs) - f(s,XS,YS,ZS,FS)]ds
t

T
- / o'(s,Xs)Zs.dWs, 0<t<T. (5.2.4)
t

Remark 1. This BSDE does not uniquely characterize a triple (Y, Z,I') contrarily to the semilin-
ear case (without a non-linearity with respect to I') in which proper assumptions on the equation
coefficients provide existence and uniqueness for a solution couple (Y, Z). In the present case at
least two options can be used to estimate the I' component:

e Rely on the 2BSDE representation from |Che+07] which extends the probabilistic repre-
sentation of [PP90| for semilinear equations to the fully nonlinear case. It is the approach
used by |[BEJ19] with a global large minimization problem, as in [HJE1§].

e Compute the second order derivative by automatic differentiation. This is the point of view
we adopt in this paper together with a local approach solving several small optimization
problems. In this way, we provide an extension of [HPW20| to cover a broader range of
nonlinear PDEs.

5.2.3 Algorithm

We now provide a numerical approximation of the forward backward system —, and
consequently of the solution u (as well as its gradient D,u) to the PDE .

We start from a time grid 7 = {t;,i = 0,...,N} of [0,T], with tp =0 < t; < ... <ty =
T, and time steps At; := t;41 —t;, © = 0,..., N — 1. The time discretization of the forward
process X on 7 is then equal (typically when p and o are constants) or approximated by an
Euler scheme:

th.Jrl = Xti + H(tivXti)Ati + U(tiaXti)AWti, 1=0,...,N —1,

where we set AWy, := Wy, — W;, (by misuse of notation, we keep the same notation X for
the continuous time diffusion process and its Euler scheme). The backward SDE ((5.2.4)) is
approximated by the time discretized scheme

1
Vi, ~ Y, — [p(ti, Xe,)-Zy, + §tr(UUT(ti;XtiFti) — f(ti, X4, Ve, Ze,, Do) | Aty — 07 (b, Xe,) Ze, AW,

it+1

5.2. THE PROPOSED DEEP BACKWARD SCHEME 91

that is written in forward form as

Y} >~ F(tiaXtiuYtiyZti7rti)Ati7AWti)7 iZO,...,N—l, (525)

i+1
with
F(t,z,y,z,v,h,A) = y — f(t,x,y,z,’y)h + 2To(t,x)A, (5.2.6)

flt2,9,2,7) 1= S(62,,7,7) = it 2).2 — Ste(oo™ (1,2)0).

The idea of the proposed scheme is the following. Similarly as in [HPW20], we approximate at
each time t;, u(t;,.) and its gradient D,u(t;,.), by neural networks 2 € R? — (U;(2;0), Zi(x;6))
with parameter 6 that are learned optimally by backward induction: suppose that Z/lHl =
Uis1(07,1), 2i+1 := Ziy1(.;07,1) is an approximation of u(t;11,.) and Dyu(ti11,.) at time t;41,
then 67 is computed from the minimization of the quadratic loss function:

R . . 2
Li(0) = E\Uir1 — F(t;, Xo, , Ui(X435 0), 2i(X,30), DZi 1 (T (X4,), Aty AW)

where 7T is a truncation operator such that 7(X) is bounded for example by a quantile of the
diffusion process and D2i+1 stands for the automatic differentiation of 2¢+1. The idea behind
the truncation is the following. During one step resolution, the estimation of the gradient is less
accurate at the edge of the explored domain where samples are rarely generated. Differentiating
the gradient gives a very oscillating Hessian at the edge of the domain. At the following time
step resolution, these oscillations propagate to the gradient and the solution even if the domain
where the oscillations occur is rarely attained. In order to avoid these oscillations, a truncation
is achieved, permits to avoid that the oscillations of the neural network fit in zone where the
simulations propagate scarcely to areas of importance. This truncation may be necessary to get
convergence on some rather difficult cases. Of course this truncation is only valid if the real
Hessian does not varies too much.

The intuition for the relevance of this scheme to the approxnnatlon of the PDE is the
following. From (5.2.3) and (/5.2.5)), the solution u to (should approximately satlsfy

u(ti-‘rlaXtiJrl) = F(t’“Xt”u(tlath)7Dz‘u(t“th)?Diu(tlath)7At’L7AWtz)

Suppose that at time ;4 1, Z:lz-+1 is an estimation of u(t;+1,.). Recalling the expression of F in
(5.2.6)), the quadratic loss function at time ¢; is then approximately equal to

Li(0) = Elulti, Xi,) — Us(Xe;;0) + (Daulti, Xi,) — Zi(X1,30)) o (i, X0,) AW,

- Atl [f(t’wthvu(tuth)aDxu(tlath)ngu(tlﬂth)) fN(tZ?Xt“ (Xt 70)7Z’L(Xt“0)7DZA’L+1(T(X7?,+1))

By assuming that f has small non-linearities in its arguments (y, z,7), say Lipschitz, possibly
with a suitable choice of i, o, the loss function is thus approximately equal to

f,Z(H) ~ (1 + O(Atz))E‘u(tz,th) — uz(Xt“ 9)}2 + O(Atz)E‘Dmu(tz, th) — Zz(Xtﬂ 9)‘2 + O(‘Atz‘Q)

Therefore, by minimizing over 6 this quadratic loss function, via stochastic gradient descent
(SGD) based on simulations of (Xy,, Xy,,,, AWy,) (called training data in the machine learning
language), one expects the neural networks U; and Z; to learn/approximate better and better
the functions wu(t;,.) and Dyu(t;,) in view of the universal approximation theorem for neural
networks. The rigorous convergence of this algorithm is postponed to a future work.

To sum up, the global algorithm is given in Algo [7] in the case where g is Lipschitz and the
derivative can be analytically calculated almost everywhere. If the derivative of g is not available,
it can be calculated by automatic differentiation of the neural network approximation of g.

92 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

Algorithm 7: Second order DBDP (2DBDP) from [PWG21]|

Use a single deep neural network (Un(.;0), Zn(;0)) € Ng1+d,L.m and minimize (by
SGD)

Atn_ 2
LR Zn(Xy 6) — Dg(Xiy)

~ 2
LN(G) =E uN(XtN;e) - g(XtN) +

0% € arg min Ly(6).
GGRN"”

Uy = Un(.;0%), and set Zy = Zx(.;0%)

for i=N-1,...,0do

Use a single deep neural network (U;(.;0), Zi(.;6)) € Ngi144,,m for the
approximation of (u(t;,.), Dyu(t;,.)), and compute (by SGD) the minimizer of the
expected quadratic loss function

Li(6)

. 2
= E{Uit1(Xy — F(ty, Xo,, Ui(X4,30), Z2(X4,30), DZi 1 (T (X440), Aty, AW)

i+1)

0 € arg min L;(6).
geRNm

(5.2.7)

Update: U; = U;(.;67), and set Z; = Zi(.07).
end

Remark 2. Several alternatives can be implemented for the computation of the second order
derivative. A natural candidate would consist in choosing to approximate the solution u at time ¢;
by a neural network U; and estimate I'; as the iterated automatic differentiation D:%UZ-. However,
it is shown in [HPW20| that choosing only a single neural network for u and using its automatic
derivative to estimate the Z component degrades the error in comparison to the choice of two
neural networks U, Z. A similar behavior has been observed during our tests for this second
order case and the most efficient choice was to compute the derivative of the Z network. This
derivative can also be estimated at the current time step ¢; instead of ¢;11. However this method
leads to an additional cost for the neural networks training by complicating the computation
of the automatic gradients performed by Tensorflow during the backpropagation. It also leads
numerically to worse results on the control estimation, as empirically observed in Table and
described in the related paragraph "Comparison with an implicit version of the scheme". For
this reason, we decided to apply a splitting method and evaluate the Hessian at time ¢;4;. For
this reason, we decided to apply a splitting method and evaluate the Hessian at time ¢;11. O

Remark 3. The diffusion process X is used for the training simulations in the stochastic gradient
descent method for finding the minimizer of the quadratic loss function in , where the
expectation is replaced by empirical average for numerical implementation. The choice of the
drift and diffusion parameters are explained in Section [5.3.1] O

5.3 Numerical results

We first construct an example with different non-linearities in the Hessian term and the solution.
We graphically show that the solution is very well calculated in dimension d = 1 and then move
to higher dimensions. We then use an example derived from a stochastic optimization problem
with an analytic solution and show that we are able to accurately calculate the solution. Next,
we consider the numerical resolution of the Monge-Ampére equation, and finally, give some tests
for a fully nonlinear Hamilton-Jacobi-Bellman equation arising from portfolio optimization with

5.3. NUMERICAL RESULTS 93

stochastic volatilities.

5.3.1 Choice of the algorithm hyperparameters

We describe in this paragraph how we choose the various hyperparameters of the algorithm and
explain the learning strategy.

e PARAMETERS OF THE TRAINING SIMULATIONS: the choice of the drift coefficient is typically
related to the underlying probabilistic problem associated to the PDE (for example a stochastic
control problem), and should drive the training process to regions of interest, e.g.., that are
visited with large probability by the optimal state process in stochastic control. In practice, we
can take a drift function u(.) equal to the drift associated to some a priori control. This choice
of control could be an optimal control for a related problem for which we know the solution, or
could be the control obtained by the first iteration of the algorithm. The choice of the diffusion
coefficient ¢ is also important: large o induces a better exploration of the state space, but as
we will see in most of examples below, it gives a scheme slowly converging to the solution with
respect to the time discretization and it generates a higher variance on the results. Moreover,
for the applications in stochastic control, we might explore some region that are visited with
very small probabilities by the optimal state process, hence representing few interest. On the
other hand, small 0 means a weak exploration, and we might lack information and precision on
some region of the state space: the solution calculated at each time step is far more sensitive
to very local errors induced by the neural network approximation and tends to generate a bias.
Therefore a trade off has to be found between rather high variance with slow convergence in time
and fast convergence in time with a potential bias. We also refer to [NR20| for a discussion on
the role of the diffusion coefficient.

In practice and for the numerical examples in the next section, we test the scheme for different
o and by varying the number of time steps, and if it converges to the same solution, one can
consider that we have obtained the correct solution. We also show the impact of the choice of
the diffusion coefficient o.

e PARAMETERS OF TRUNCATION: Given the training simulations X, we choose a truncation
operator 7, indexed by a parameter p close to 1, so that 7,(X,) corresponds to a truncation of
X, at a given quantile ¢,. In the numerical tests, we shall vary p between 0.95 and 0.999.

e PARAMETERS OF THE OPTIMIZATION ALGORITHM OVER NEURAL NETWORKS: In the whole
numerical part, we use a classical Feedforward network using layers with m neurons each and a
tanh activation function, the output layer uses an identity activation function. At each time step
the resolution of equation is achieved using a mini-batch with 1000 training trajectories.
The training and learning rate adaptation procedure is the following;:

e Every 40 inner gradient descent iterations, the loss is checked on 10000 validation trajec-
tories.

e This optimization sequence is repeated with 200 outer iterations for the first optimization
step at date ¢ty = T and only 100 outer iterations at the dates t; with ¢ < V.

e An average of the loss calculated on 10 successive outer iterations is performed. If the
decrease of the average loss every 10 outer iterations is less than 5% then the learning rate
is divided by 2.

The optimization is performed using the Adam gradient descent algorithm, see [KB14]. Notice
that the adaptation of the learning rate is not common with the Adam method but in our case
it appears to be crucial to have a steady diminution of the loss of the objective function. The
procedure is also described in [CWNMW19| and the chosen parameters are similar to this article.
At the initial optimization step at time ¢y = T, the learning rate is taken equal to 1E — 2 and
at the following optimization steps, we start with a learning rate equal to 1E — 3.

94 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

During time resolution, it is far more effective to initialize the solution of equations
with the solution (U, Z) at the next time step. Indeed the previously computed values at time
step t;+1 are good approximations of the processes at time step t; if the PDE solution and its
gradient are continuous.

All experiments are achieved using Tensorflow |[Aba+16|. In the sequel, the PDE solutions
on curves are calculated as the average of 10 runs. We provide the standard deviation associated
to these results. We also show the influence of the number of neurons on the accuracy of the
results.

5.3.2 A non-linearity in uD?u

We consider a generator in the form

[tz y,2,7) = ytr(y) + % + 2y2 — 2y467(T’t)7

d
and g(x) = tanh (Zi:lxl), so that an analytical solution is available:

Vd

d -
u(t,z) = tanh (Zi/éxz>e_T2t.

We fix the horizon T' = 1, and choose to evaluate the solution at t = 0 and =z = 0.5% (here

1I; denotes the vector in R? with all components equal to 1), for which u(t,z) = 0.761902 while
its derivative is equal to 1.2966.

This initial value x is chosen such that independently of the dimension the solution is varying
around this point and not in a region where the tanh function is close to —1 or 1.

The coefficients of the forward process used to solve the equation are (here I; is the identity
d X d-matrix)

o
o =—=1, =0,
\/Zid I

and here the truncation operator is chosen equal to
7;)(Xto’x) = min { max[z — a\/fqﬁp, X?’x], x+ a\/fqﬁp},

where ¢, = N "1(p), with A/ is the CDF of a unit centered Gaussian random variable.

In the numerical results, we take p = 0.999 and m = 20 neurons. We first begin in dimension
d = 1, and show in Figure how u, D,u and D2u are well approximated by the resolution
method.

On Figure [5.2] we check the convergence, for different values of & of both the solution u and
its derivative at point x and date 0. Standard deviation of the function value is very low and
the standard deviation of the derivative still being low.

As the dimension increases, we have to increase the value of & of the forward process. In
dimension 3, the value & = 0.5 gives high standard deviation in the result obtained as shown on
Figure while in dimension 10, see Figure [5.4] we see that the value 6 = 1 is too low to give
good results. We also clearly notice that in 10D, a smaller time step should be used but in our
test cases we decided to consider a maximum number of time steps equal to 160.

On this simple test case, the dimension is not a problem and very good results are obtained
in dimension 20 or above with only 20 neurons and 2 layers.

5.3. NUMERICAL RESULTS 95

u(x) -t Dyu(x) 100 DIulx)
12
o u(x) analytic Daulx) analytic 075 D2ulx) analytic,
10
0.50
05
08 0.25
= = 2
3 00 3 06 & 000
N g [~
—0.25
0.4
-05
-0.50
02
10 -0.75
00
-1.00
-4 -2 o 2 4 6 -4 -2 o 2 4 6 -4 -2 o 2 4 6
x x x
2.0
w0 . e D)
125 (x) analytic . Duu(x) anal
ux) 8 xu(x) analytic 15 DZy(x) analytic
1.00 14
10
075 12
= = = 05
2 o050 2 =
3 d 10 & \
00 A
0.25
0.8
-0.5
0.00 "
N
06 . -10
-0.25
-0.2 0.0 0.2 0.4 0.6 0.8 10 12 -0.2 0.0 0.2 04 0.6 0.8 10 12 -0.2 0.0 0.2 0.4 0.6 0.8 10 12
x x x

Y at date t = 0.006125. Z at date t = 0.006125 I' at date t = 0.006125

Figure 5.1: A single valuation run for test case one 1D using 160 time steps, 6 = 2., p = 0.999,
20 neurons, 2 layers.

96 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

—- 0=105
0.950 b=
_ o: L 0.010 4
0.925 1 -m-o=15
—_— 0= 2
e
0.900 4 Reference 0.008 4
0.875
£ 2
g 0.850 - n 0.006 -
\.
08254 N\,
0.800 0.004
orrs{ S =
eyt npetep=AL 0.002 1
0.750 T T T T T T T T T T T T
2.5 3.0 35 4.0 4.5 5.0 2.5 3.0 3.5 4.0 4.5 5.0
Log(number of time steps) Log(number of time steps)
Convergence of u depending on & Standard deviation of u
13 0.025
12 0.020
%114 - 0.015
3 o]
0.010
1.0 A =05
— 0=1
-—- 0=15
. 0.005
0.9 — o=2
——- Reference
25 30 35 40 as 5.0 25 30 35 40 as 5.0
Log(number of time steps) Log(number of time steps)
Convergence of D;u depending on & Standard deviation of D;u

Figure 5.2: Convergence in 1D of the case one, number of neurons par layer equal to 20, 2 layers,
p = 0.999.

0.950 S
} —- 6=05 0761 ___________________________,;/_ _______ T~
0.925 —— =1 0.74 4
\\ ——- =15 2=
0o00{ — =2 072
AN ——- Reference
0.875 - 3 0704
v g
S
3 oss0] 0.68 |
0.66 o= 05
0.825 1 _aea
0.64 - —-- 0= 15
0.800 1 X
- §=2
0.62 q ——- Reference
0.775 7 T T T T T T
2.5 3.0 35 4.0 45 5.0
T T T T T T Log(number of time steps)
2.5 3.0 35 4.0 45 5.0
Log(number of time steps)
Convergence of D u (first component) depending
Convergence of © depending on & on &

Figure 5.3: Convergence in 3D of the case one, number of neurons par layer equal to 20, 2 layers,
p = 0.999.

5.3. NUMERICAL RESULTS 97

0.415
0.90 o= 1
1. oo o= 13 04101 —=m= =€
0.88 \ 5= 2
M ——- Reference 0.405 4
0.86
2 0.400
o 0.84 q g
2 0.395
) . 4
>
0.82
0.390 5= 1
0.80 A
—=- 0= 15
0.385 .
— o= 2
0.78 1 ——- Reference
0.380
T T T T T T
0.76 4 2.5 3.0 3.5 4.0 45 5.0

T T T T Log(number of time steps)
2.5 3.0 35 4.0 4.5 5.0
Log(number of time steps)

Convergence of D,u depending on & (first compo-
Convergence of u depending on & nent)

Figure 5.4: Convergence in 10D of the case one, number of neurons par layer equal to 20, 2
layers, p = 0.999.

98 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

5.3.3 A linear quadratic stochastic test case.

In this example, we consider a controlled process X = X® with dynamics in R? according to
dXt = (AXt + Bat)dt + Datth, 0 S t S T, XO = T,

where W is a real Brownian motion, the control process « is valued in R, and the constant
coefficients A € M4, B € R%, D € R%. The quadratic cost functional to be minimized is

T
J(a) ZE[/O (X7 QX + afN)dt + X}PXT},

where P, () are non negative d X d symmetric matrices and N € R is strictly positive.
The Bellman equation associated to this stochastic control problem is:
ou | . a’ T2 T 2 d
N —i—(llrel& [(Az + Ba).Dyu + ?tr(DD Diu) 4+ 2"Qz + Na’| = 0, (t,z) €[0,T) x R,
uw(T,z) = 2Pz, zeR%,

which can be rewritten as a fully nonlinear equation in the form (5.1.1f) with

ft,2,y,2,7) = 27Qz + Ax.2 1 B2 .
e 2tr(DD7y) + 2N

An explicit solution to this PDE is given by
u(t,x) = 2"K(t)z,
where K (t) is non negative d x d symmetric matrix function solution to the Riccati equation:

KBB'K

K+ATK+KA+Q— ————— =
* FRAT QS T DTRD

0, K(T)=P.

We take T' = 1. The coeflicients of the forward process used to solve the equation are

o :ild, u(t,z) = Ax.

Vd

In our numerical example we take the following parameters for the optimization problem:

1
A=1,; B=D =1y, Q:P:gId, N=d
and we want to estimate the solution at x = 1.
In this example, the truncation operator (indexed by p between 0 and 1 and close to 1) is as
follows:

. 24t _ R 24t _
E(th) = min{max |:.’L'€At — 0 GT(bp,th],xeAt‘FO— eT(ﬁp}a

where ¢, = N=L(p), A is a vector so that A; = A i=1,....d, 1is a unit vector, and the square
root is taken componentwise.

On Figure [5.5] we give the solution of the PDE with d = 1 using 6 = 1.5 obtained for two
dates: at t = 0.5 and at ¢ close to zero. We observe that we have a very good estimation of the
function value and a correct one of the I' value at date ¢ = 0.5. The precision remains good for
I’ close to t = 0 and very good for u and Dy u.

On Figure [5.6) we give the results obtained in dimension d = 1 by varying 6. For a value of
6 = 2, the standard deviation of the result becomes far higher than with & = 0.5 or 1.

5.3. NUMERICAL RESULTS 99

ulx) 40 Deulx) s Diulx)
wx) analytic Dyu(x) analytic P D2utx) analytic

ulx)

g8 8 8
D(x)

5 8
D2ulx)
I

o /
2
W
10
20 0
-20
o
- -2 0 2 a 6 -4 -2 0 2 4 6 - -2 0 2 a s
x x x
w0 D) 1225 D3uta)
\
I u(x) analytic R % Dau(x) analytic Ls 11200 D2ulx) analytic 3
11.175
10 1
11.150
s . -
= TR 2 mas
3 H =
11100
6 10
11.075 /'
4 J
8 11.050 #
2 - # 11.025
6
06 08 10 12 14 06 08 10 12 14 06 08 10 12 14
x x x

Y at date t = 0.006125. Z at date t = 0.006125 I' at date t = 0.006125

Figure 5.5: Test case linear quadratic 1D using 160 time steps, ¢ = 1.5, p = 0.999, 100 neurons.

0.045 -
5.6
0.040 -
5.5
0.035
5.4 0.030
E 3
s " 0,025
5.3
y - 0.020
o=1
5.2 4 - =15 0.015 1
—-- 0= 175
514 — 0=2 0.010 -
——- Reference
25 30 35 40 as 5.0 25 30 35 a0 as 5.0
Log(number of time steps) Log(number of time steps)
Convergence of u depending on &. Standard deviation of u

Figure 5.6: Convergence in 1D of the linear quadratic case, number of neurons par layer equal
to 50, 2 layers, p = 0.999.

CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

6.9 4
6.8
6.7
6.6
L7
E]
s 6.5
6.4 1
— 0=1
6.37 ——- @= 15
— 0=2
6.2 - ——- Reference
T T T T T T
2.5 3.0 35 4.0 4.5 5.0
Log(number of time steps)
10 neurons
6.8 q
6.7
6.6 1
E
§ 6.5 1
6.4
g=1
6.3 1 -—- 6=15
— 0=z
——- Reference
6.2 - T T T T T T
25 3.0 35 4.0 a5 5.0

Figure 5.7: Convergence in 3D of the linear quadratic case, 2 layers, testing the

Log(number of time steps)

30 neurons

number of neurons, truncation p = 0.95.

6.8 1
6.7 q
6.6
[
=
g 6.5
6.4
g=1
6.3 1 ——- a=15
— =2
—-- Reference
6.2 4 T T T T T T
2.5 3.0 3.5 4.0 4.5 5.0

Log(number of time steps)

20 neurons

6.3

=1
-—- =15
— =2

——- Reference

T T
35 4.0
Log(number of time steps)

50 neurons

45 5.0

influence of the

5.3. NUMERICAL RESULTS

6.9
6.8
6.7
v 6.6+
=
s
6.5
6.4 1 =1
——- =15
6.3 — 0=2
—-- =25
6.2 q ——- Reference
T T T T T T
2.5 3.0 35 4.0 4.5 5.0
Log(number of time steps)
10 neurons
6.8
6.7
6.6
E
= 6.5
2
6.4 4
g=1
6.3 ——- =15
— 0=z
—=—- Reference
6.2 4 T T T T T T
25 3.0 35 4.0 a5 5.0

Figure 5.8: Convergence in 3D of the linear quadratic case, 2 layers, testing the

Log(number of time steps)

50 neurons

number of neurons, truncation p = 0.99.

101

7.0 4

6.9 4

6.8

6.7 4

6.6

Value

6.5

6.4

6.3 4

6.2 1

— =1
——- =15
— =2
—-- Reference

T T
3.0 3.5 4.0

Log(number of time steps)

20 neurons

T
4.5 5.0

6.3

6.2 4

=1
-—- =15
— =2

——- Reference

T T
35 4.0
Log(number of time steps)

100 neurons

45 5.0

influence of the

102 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

8.0 1 —=- 7.9 4 ______-":
~azzIemT LT =
7.9 e o -
.._._._._._._._._._‘_/.;..’:,.’_ 784 - /},4
P et -~ -
-
7.8 - o #
7 a
-z el 7.7 7 v
/, " /I v
EREE Ry E s
@ . a . /
> ey ~ 76 ’ 4
. e !
7.6 4 L K 4 %
/ s
/ R 7.5 A / .
75 ‘f ——- 0=15 ; -—- =15
’ - , -
/s o= 2 Fé o= 2
4 / - §=125 147 - §=125
A1 —-- Reference / —-- Reference
T T T T T T T T T T T T
2.5 3.0 35 4.0 4.5 5.0 2.5 3.0 35 4.0 4.5 5.0
Log(number of time steps) Log(number of time steps)
Convergence with 50 neurons Convergence with 100 neurons

Figure 5.9: Convergence in 7D of the linear quadratic case, 2 layers, p = 0.999.

7.9 1

7.8 1

7.7 4

value

7.6 4

— p=0.99
75 1 p=0.999
—— p=0.9999
--- p=0.99999
—-- Reference

7.4 4

T T T T T T
25 30 35 4.0 45 5.0
Log(number of time steps)

Figure 5.10: Function value convergence in 7D of the linear quadratic case with 2 layers, 100
neurons, testing p, using 6 = 2

On Figure for d = 3, we take a quite low truncation factor p = 0.95 and observe that the
number of neurons to take has to be rather high. We have also checked that taking a number of
hidden layers equal to 3 does not improve the results.

On Figure for d = 3, we give the same graphs for a higher truncation factor. As we take
a higher truncation factor, the results are improved by taking a higher number of neurons (100
in the figure below).

On Figure we observe in dimension 7 the influence of the number of neurons on the result
for a high truncation factor p = 0.999. We clearly have a bias for a number of neurons equal to
50. This bias disappears when the number of neurons increases to 100.

On Figure for d = 7, we check that influence of the truncation factor appears to be slow
for higher dimensions.

Finally, we give results in dimension 10, 15 and 20 for p = 0.999 on Figures .12 We
observe that the number a neurons with 2 hidden layers has to increase with the dimension but
also that the increase is rather slow in contrast with the case of one hidden layer as theoretically
shown in [Pin99b|. For 6 = 5 we had to take 300 neurons to get very accurate results.

5.3. NUMERICAL RESULTS

8.4
9.0
8.3 1 8.9
8.2 88y TS ==
8.7
E 8.1 g
8 8 8.6
8.0 2, 100 neurons
a= 2, 200 neurons 8.5 4 3, 100 neurons
——- @= 3, 100 neurons. 4, 100 neurons
7.9 4 . 8.4
—-- @= 3, 200 neurons —-- @= 3, 200 neurons
— &= 3, 400 neurons — 4= 4, 200 neurons
7.8 1 837
—-- Reference - Reference
T T T T T T T T T T T T
2.5 3.0 35 4.0 45 5.0 2.5 3.0 35 4.0 45 5.0

Log(number of time steps)

10D

Log(number of time steps)

15D

103

Figure 5.11: Function value convergence in 10D and 15D of the linear quadratic case with 2

layers, p = 0.999.

9.1+

9.0 +

8.9

Value

8.8 4

8.7 4

8.6

3, 200 neurons
- o= 4, 200 neurons
—.- 0= 5, 200 neurons.
— o= 4, 300 neurons
——- = 5, 300 neurons
—-- Reference
2‘5 3‘0 3.‘5 4.‘0 4.‘5 5.‘0

Log(number of time steps)

Figure 5.12: Function value convergence in 20D of the linear quadratic case with 2 layers,

p = 0.999.

104 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

Dimension d | Averaged value | Standard deviation | Relative error (%) | Theoretical solution

) 0.37901 0.00312 0.97 0.382727

15 0.25276 0.00235 1.17 0.255754

Table 5.1: Estimate of u(0,29 = 15) on the Monge Ampere problem ({5.3.1) with N = 120.
Average and standard deviation observed over 10 independent runs are reported.

5.3.4 Monge-Ampére equation

Let us consider the parabolic Monge-Ampére equation

{8tu+det(D§U) = h(z), (t.z)€[0,T] xRY, (5.3.1)

uT,z) = g(x),
where det(D2u) is the determinant of the Hessian matrix D2u. It is in the form (5.1.1]) with
ft,,7) = det(y) = h(z).

We test our algorithm by choosing a C? function g, then compute G = det(D2g), and set h
:= G — 1. Then, by construction, the function

u(t,z) = g(x)+T —t,

is solution to the Monge-Ampére equation (5.3.1). We choose g(z) = cos(zgl:1 x;/V/d), and we
shall train with the forward process X = xg+ W, where W is a d-dimensional Brownian motion.
On this example, we use neural networks with 3 hidden layers, d 4+ 10 neurons per layer, and we
do not need to apply any truncation to the forward process X. Actually, we observe that adding
a truncation worsens the results. For choosing the truncation level, we first test the method with
no truncation before decreasing the quantile parameter p. In the Monge-Ampére case the best
results are obtained without any truncation. It may be caused by the oscillation of the Hessian.

The following table gives the results in dimension d = 5, 15, and for T' = 1.

5.3.5 Portfolio selection

We consider a portfolio selection problem formulated as follows. There are n risky assets of
uncorrelated price process P = (P!, ..., P") with dynamics

AP} = Plo(V)[N(Vi)dt +dW], i=1,...,n,

where W = (W1 ... , W") is a n-dimensional Brownian motion, b = (b',...,b") is the rate of
return of the assets, A = (A!,..., A\") is the risk premium of the assets, o is a positive function
(e.g. o(v) = €’ corresponding to the Scott model), and V = (V!,... V") is the volatility factor
modeled by an Ornstein-Uhlenbeck (O.U.) process

AV} = ki0; — Vi]dt + 1,dB, i=1,...,n, (5.3.2)

with s;,0;,v; > 0, and B = (B',..., B") a n-dimensional Brownian motion, s.t. d < W BJ >
= d;jpi;jdt, with p; :== ps € (—1,1). An agent can invest at any time an amount o = (af,...,aR)
in the stocks, which generates a wealth process X = X'“ governed by

A, = > ajo (V) [N(VE)dt + dW].
=1

The objective of the agent is to maximize her expected utility from terminal wealth:

E[U(Xf)] <« maximize over «

5.3. NUMERICAL RESULTS 105

It is well-known that the solution to this problem can be characterized by the dynamic pro-
gramming method (see e.g. [Pha09]), which leads to the Hamilton-Jacobi-Bellman for the value
function on [0,7) x R x R™:

2 Oxud?, 82
at“+z i (6; 6v1u+21122831 u] = §R()(6))\i(vi)ViM-i- L2 2(

(T,X,v) = U(x), x € R, v e R,

with a Sharpe ratio R(v) := |A(v)|?, for v = (vi,...,v,) € (0,00)". The optimal portfolio
strategy is then given in feedback form by of = a(t, X}, V;), where a = (a1, ...,a,) is given by

1
o(v;)

for i = 1,...,n. This Bellman equation is in the form (5.1.1)) with

8}(8)2&1“ n
(A(OF it ”afu)’ (t,x,0 = (v1,...,v)) € [0,T) x R x R",

ai(t,x,v) = —

n 1 2 20000, 1 5 5(701)°
¢ :E (0: —)2 _°R _E SYCAY — 02y
f(7«T7yaz7’}/) £ [Hl(i vz)zz + 5 D) 1722] 9 (v)'YOO £ [pz z('Uz)Vz oD + 2plyz ~o0],
for z = (x,v) € R"™ 2 = (20,...,2,) € R"™ v = (3i;)0<ij<n € S"*L, and displays a high

non-linearity in the Hessian argument ~.

The truncation operator indexed by a parameter p is chosen equal to
E(Xz?’m) = min { max[m + :U't - O-\/iqbpv ngx]a T+ Ht + O’\/E(;Sp},

where ¢, = N71(p), NV is the CDF of a unit centered Gaussian random variable. We use neural
networks with 2 hidden layers and d 4 10 neurons per layer. We shall test this example when the
utility function U is of exponential form: U(z) = — exp(—nx), with n > 0, and under different
cases for which closed-form solutions are available:

(1) Merton problem. This corresponds to a degenerate case where the factor V', hence the
volatility o and the risk premium A are constant, so that the generator of Bellman equation
reduces to

1 2
flbwg,zy) = 5 WP, (6o9,2) € DT XRXRXR, (5.33)

with explicit solution given by:
u(t,z) = e T D% U®@), a = =

We train with the forward process

X1 = Xp + AAt, + AWy, k=0,...,N, Xog = xo.

(2) One risky asset: n = 1. A quasi-explicit solution is provided in [Zar01]:

u(t,x,v) = U(x)w(t,v), with w(t,v) = H exp (- ;/tT R(Kt’“)ds>’

L1-p?

where Vst”” is the solution to the modified O.U. model

dv, = [n(& - Vi) — pu)\(ffs)]ds +vdBs, s>t V,=o.

52 2PV ey

o)y

106 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES
We test our algorithm with A(v) = Av, A > 0, for which we have an explicit solution:

2
v
'U)(t, U) = €exp (- ¢(t)? - QZJ(t)’U - X(t))a (tav) € [OaT} X Ra
where (¢, 1, x) are solutions of the Riccati system of ODEs:

¢ —2Rp — V21— p*)* + X = 0, ¢(T) = 0,
b — (R + 21— p?)o)b + Kbp = 0, »(T) = 0,

V2

X+ 1Y — S (—¢+ (L= p*)¥%) = 0, x(T) = 0,
with & = k 4 pr, and explicitly given by (see e.g. Appendix in [SZ99)|)

- sinh(&(T —t))
$(t) = A° i cosh(&(T —t)) + Rsinh(A(T —t))
2 0 cosh(&(T —t)) — 1

)= N
v K kcosh(A(T —t)) + Rsinh(A(T —t))
1 R 1
t)y = ————1 h(z(T —t —sinh(&(T —t))| — ———k(T —t
X(0) = =y I [eosh(R(T 1)) + & sinb(i(~1))] ~ 5T~
6)? sinh(4(T — t))
— /\Q(R —(T -t
R2 [/%cosh(A (T —1t)+ smh((T —1)) ()}
Y (k0)%k cosh(&(T —t)) —
k3 Reosh(A(T —t)) + & Slnh((T —1t))’
with & = /K2 + 2pv Ak + 72X2. We train with the forward process
Xipyr1 = X + NAL, + AWy, k=0,...,N—1, Xy = xo,
Vk+1:Vk+VABk, k=0,....N—1, Vi = 6.
(3) No leverage effect, i.e., p; = 0, i = 1,...,n. In this case, there is a quasi-explicit solution

given by

u(t,x,v) = Ux)w(t,v), with w(t,v) = E[exp(—% /t TR(V;’”)dsﬂ, (t,0) € [0,T] x R™,

(5.3.4)
where V" is the solution to ((5.3.2]), starting from v at time t. We test our algorithm with
Ai(v) = A, i > 0,i=1,...,n,v = (v1,...,v,), for which we have an explicit solution
given by

n
’LU(t,’U) = €exp (Z + ¢z)Ui + Xz(t)])v (t,?}) € [OaT] X Rn>
=1

B Slnh(%i(T —t))

Dit) = N R =) + Frcosh (T~ D)

. K,Z'ei COSh(I%i(T — t)) -1

djl(t) N)\? IA{Z Kq Slnh(l%l(T - t)) + I%Z COSh(I%i(T — t))

i) = %m [cosh((T~ 1)) + & sinh(io(T — 1))] - %mi(T _ 4
ril;)? [sinh(#;(T —t))

k2 Lijcosh(ii(T — t)) + ki sinh(k; (T — t))
5 (ki) %Ki cosh(k;(T —t)) —1

k3 Ricosh(k; (T —t)) + ki sinh(&; (T —t))’

(2

el (@)

- A

5.3. NUMERICAL RESULTS 107

Averaged value | Standard deviation | Theoretical value | Relative error (%)
u(0,29 = 1) -0.50561 0.00029 -0.50662 0.20
Dyu(0,20 = 1) 0.25081 0.00088 0.25331 0.99
a0,z =1) 0.83552 0.02371 0.80438 3.87

Table 5.2: Estimate of the solution, its derivative and the optimal control at the initial time £ = 0
in the Merton problem ([5.3.3]). Average and standard deviation observed over 10 independent
runs are reported.

u(x)

10

u(x) — Dy D2ulx) -

ulx) analytic — Dyu(x) analytic D2ulx) analytic /
P 08 -

Y at date t = 0.5042. Z at date t = 0.5042 I' at date t = 0.5042

D)

D2u(x
Dyu(x) analytic DZu(x) analytic
—0.12 /\/A\ \
-0.13 7 - kY

uuuuu

S -0525

uuuuu

Y at date t = 0.0084. Z at date t = 0.0084 I' at date t = 0.0084

Figure 5.13: Estimates of the solution and its derivatives on the Merton problem ([5.3.3]) using
120 time steps.

with &; = 1//&% + VZ-Q)\%. We train with the forward process

Xip1= X+ AWy, k=0,....N—1, X = xo,
Vig= Vi +ulB, k=0,.. N-1 V=6,

with < W, B* >; = 0.

Merton Problem. We take n = 0.5, A = 0.6, T =1, N = 120, and o(v) = €¢”. We plot the
neural networks approximation of u, D,u, D?u,a (in blue) together with their analytic values
(in orange). For comparison with Figures and we report the error on the gradient and
the initial control. In practice, after empirical tests, we choose p = 0.98 for the truncation.

One asset (n = 1) in Scott volatility model. We take n = 0.5, A= 1.5, 0 = 0.4, v = 0.4,
k=1, p = —0.7. For all tests we choose T' =1, N = 120, and o(v) = €". In practice, after
empirical tests, we choose p = 0.98 for the truncation.

No Leverage in Scott model. In the case with one asset (n = 1), we take n = 0.5, A = 1.5,
0 =04, v=0.2, k= 1. For all tests we choose T' =1, N = 120, and o(v) = e”. In practice,
after empirical tests, we choose p = 0.95 for the truncation.

In the case with four assets (n = 4, d = 5), we take n = 0.5, A = (1.5 1.1 2. ().8),
=(01 02 03 04),r=(02 015 025 031),x=(1. 08 1.1 1.3).

108

16

agl(x)
14
12

1.0

0.8

aolx)

0.6

0.4

0.2

0.0

aplx) analytic

o at date t = 0.5042.

aglx)

ap(x)
ap(x) analytic

0.7 0.8 0.9 1.0

x

11

CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

1.2 13

« at date t = 0.0084.

Figure 5.14: Estimates of the optimal control o on the Merton problem ([5.3.3]).

Averaged value

Standard deviation

Relative error (%)

-0.53431

0.00070

0.34

Table 5.3: Estimate of u(0,xg = 1,6) on the One Asset problem with stochastic volatility
(d = 2). Average and standard deviation observed over 10 independent runs are reported. The
exact solution is —0.53609477.

Dimension d | Averaged value | Standard deviation | Relative error (%) | Theoretical solution
2 -0.49980 0.00073 0.35 -0.501566
) -0.43768 0.00137 0.92 -0.441765
8 -0.38720 0.00363 1.96 -0.394938
10 -0.27920 0.05734 1.49 -0.275092

Table 5.4: Estimate of u(0,x¢ = 1,6) on the No Leverage problem (/5.3.4). Average and standard
deviation observed over 10 independent runs are reported.

5.3. NUMERICAL RESULTS 109

Average Std True value Relative error (%)

u(0,z9 = 1) -0.50572 0.00034 -0.50662 0.18
Dyu(0,29 =1) 0.25091 0.00067 0.25331 0.95
a0,z =1) 0.85254 0.01956 0.80438 5.99

Table 5.5: Estimate of the solution, its derivative and the optimal control at the initial time ¢t = 0
in the Merton problem (5.3.3) with implicit estimation of the Hessian. Average and standard
deviation (Std) observed over 10 independent runs are reported

In the case with seven assets (n =7, d = 8) we taken = 0.5, A= (1.5 1.1 2. 0.8 0.5 1.7
=01 02 03 04 025 015 0.18),r= (02 015 025 031 04 035 0.22),
k= (1. 08 1.1 1.3 095 099 1.02).

Inthecasewithnineassets(n:9,d:10),Wetake77:0.5,)\:(1.5 1.1 2. 0.8 05 1.7
9=(01 02 03 04 025 015 0.18 0.08 0.91),r= (02 0.15 0.25 0.31 04 0.35
k= (1. 08 11 1.3 0.95 099 1.02 1.06 1.6).

Hamilton-Jacobi-Bellman equation from portfolio optimization is a typical example of full-
nonlinearity in the second order derivative, and the above results show that our algorithm per-
forms quite well up to dimension d = 8, but gives a high variance in dimension d = 10.

Comparison with an implicit version of the scheme.

As explained in Remark [2 an alternative option for the estimation of the Hessian is to ap-
proximate it by the automatic differentiation of the current neural network for the Z component.
It corresponds to the replacement of D2i+1(T(Xti+1)) by DZ;(T(Xy,));0) in (5.2.7). An addi-
tional change has to be made to the method for it to work. At the last optimization step (for time
step to = 0), we notice empirically that the variable 'y is not able to properly learn the initial
Hessian value at all. Therefore for this last step we use variables Y, Zy and an explicit estimation
of the second order derivative given by DZ;(T(X;,)). We see in Table that the results for
the Merton problem are very similar to the ones from Table for the splitting scheme but with
a worse estimation of the Hessian and optimal control (the error is multiplied by around 1.5).
When we tested this implicit scheme on the Monge Ampere problem we also faced computational
problems during the optimization step of Tensorflow. The numerical computation of the gradient
of the objective function for the backpropagation step, more precisely for the determinant part,
often gives rise to matrix invertibility errors which stops the algorithm execution. For these two
reasons, we focused our study on the explicit scheme.

Comparison with the 2BSDE scheme of [BEJ19|. We conclude this paper with a
comparison of our algorithm with the global scheme of [BEJ19], called Deep 2BDSE. The tests
below concern the Merton problem but similar behavior happens on the other examples
with stochastic volatilities. This scheme was implemented in the original paper only for small
number of time steps (e.g. N = 30). Thus we tested this algorithm on two discretizations,
respectively with N = 20 and N = 120 time steps, as shown in Figure for T = 1 where
we plotted the learning curve of the Deep BSDE method. These curves correspond to the values
taken by the loss function during the gradient descent iterations. For this algorithm the loss
function to minimize in the training of neural networks is defined as the mean L? error between
the generated Yy value and the true terminal condition g(Xx). We observe that for this choice
of maturity T = 1 the loss function oscillates during the training process and does not vanish.
As a consequence the Deep 2BSDE does not converge in this case. Even when decreasing the
learning rate, we noticed that we cannot obtain the convergence of the scheme.

However, the Deep 2BSDE method does converge for small maturities T', as illustrated in
Table with 7' = 0.1 and different values for the number of time steps IN. Nevertheless, even
if the value function is well approximated, the estimation of the gradient and control did not

0.9),
09 1. 0.9)
0.22 0.4 0.1

110

Validation loss function through gradient descent iterations

i

] 2000

4000

6000 8000 10000

CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

Validation loss function through gradient descent iterations

102 4

10° 4

o] 2000

4000 6000 8000

10000

Figure 5.15: Learning curve in logarithmic scale for the scheme |[BEJ19] on the Merton problem
(5.3.3]) with N = 20 times steps on the left and N = 120 time steps on the right. The maturity

isT=1

. 10000 gradient descent iterations were conducted.

N | Averaged value | Standard deviation | Theoretical value | Relative error (%)
u(0,z9 = 1) 5 -0.60667 0.01588 -0.59571 1.84
u(0,z9 =1) 10 -0.59841 0.02892 -0.59571 0.45
u(0,z0 =1) | 20 -0.59316 0.04251 -0.59571 0.43
Dyu(0,z0=1) | 5 0.09668 0.25630 0.29786 67.54
Dyu(0,20 =1) | 10 0.03810 0.44570 0.29786 93.36
Dyu(0,20 =1) | 20 0.07557 0.55030 0.29786 74.63
a(0,z9 =1) 5 -0.15243 0.61096 0.80438 118.95
a(0,zo=1) | 10 0.59971 1.97906 0.80438 25.44
a(0,z0=1) |20 0.28385 0.43775 0.80438 64.71

Table 5.6: Estimate of the solution, its derivative and the optimal control at the initial time
t = 0 in the Merton problem ([5.3.3]) with maturity 7' = 0.1 for the |[BEJ19] scheme. Average and

standard deviation observed over 10 independent runs are reported.

converge (the corresponding variance is very large), in comparison with our scheme whereas the
gradient is very well approximated and the control is quite precise. We also have a much smaller
variance in the results. Table [5.7] shows the results obtained by our method with 7" = 0.1 in
order to compare it with the performance of |[BEJ19|. It illustrates the limitations of the global
approach and justifies our introduction of a local method.

5.3. NUMERICAL RESULTS

111

N | Averaged value | Standard deviation | Theoretical value | Relative error (%)
u(0,z9 = 1)) -0.59564 0.01136 -0.59571 0.01
u(0,z9 =1) 10 -0.59550 0.00037 -0.59571 0.04
u(0,z9 = 1) 20 -0.59544 0.00054 -0.59571 0.04
Dyu(0,z0=1) | 5 0.29848 0.00044 0.29786 0.21
Dyu(0,29=1) | 10 0.29842 0.00084 0.29786 0.19
Dyu(0,20 =1) | 20 0.29785 0.00054 0.29786 0.001
a0,z =1)) 0.82322 0.01014 0.80438 2.34
a0,z =1) | 10 0.85284 0.07565 0.80438 6.02
a0,z =1) | 20 0.84201 0.09892 0.80438 4.68

Table 5.7: Estimate of the solution, its derivative and the optimal control at the initial time
t = 0 in the Merton problem (5.3.3) with maturity 7 = 0.1 for our scheme. Average and
standard deviation observed over 10 independent runs are reported.

112 CHAPTER 5. DEEP BACKWARD SCHEME FOR FULLY NONLINEAR PDES

Part 11

McKean-Vlasov equations and
mean-field control

113

Chapter 6

Rate of convergence for particles
approximation of PDEs in Wasserstein
space

This chapter is based on the paper [GPW22¢]
M. Germain, H. Pham, X. Warin. “Rate of convergence for particles approximation of PDEs in
Wasserstein space”, to appear in Journal of Applied Probability 59.4 (December 2022)

In this part of the thesis we move to the problem of mean-field control. In this generalization of
stochastic control, the law of the state appears in the dynamics but also in the cost to minimize.
As a consequence, it complicates the resolution and we need to design new numerical methods.
In this Chapter we study the discretization in space of the semilinear PDEs on the Wasserstein
space, like the Master Bellman equation characterizing the value function of mean-field control.
We show the convergence speed of an approximating PDE in finite dimension by probabilistic
arguments. Our work complements |[GMS21| which studies a very similar problem but obtain a
convergence without rate. Nevertheless, our proofs require existence and uniqueness of smooth
classical solutions for the limit PDE, which is quite restrictive. |[GMS21| works instead with the
weaker notion of viscosity solutions and hence require less regularity.

115

116 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

Abstract

We prove a rate of convergence for the N-particle approximation of a second-order partial
differential equation in the space of probability measures, like the Master equation or Bellman
equation of mean-field control problem under common noise. The rate is of order 1/N for the
pathwise error on the solution v and of order 1/v/N for the L? error on its L-derivative Ouv. The
proof relies on backward stochastic differential equations techniques.

6.1 Introduction

Let us consider the second-order parabolic partial differential equation (PDE) on the Wasserstein
space Pg(Rd) of square-integrable probability measures on R%, in the form:

{ Oyv +H(t,u,v,8uv,8xauv,aﬁv) = 0, (t,n) € 10,T) x Pg(Rd),

v(T,p) = G(u), pePyRY. (6.1.1)

Here, 9,v(t, ;1) is the L-derivative on Pa(R?) (see [CD18al) of yu + v(t, 1), and it is a function
from R? into RY, 0,0,v(t, u) is the usual derivative on R? of z € R? v 9,,0(t, pu)(x) € RY, hence
valued in R?? the set of d x d-matrices with real coefficients, and 632}(15,) is the L-derivative
of p = 9 v(t, n)(.), hence a function from R? x R? into R%*?. The terminal condition is given
by a real-valued function G on Po(R?), and the Hamiltonian # of this PDE is assumed to be in

semi-linear (non linear w.r.t. v, d,v, and linear w.r.t. 0,0y, 831}) expectation form:

H(t, 1y, 2(.), (), 0(,) = /Rd [H(t,z,p,y,2(z)) + %tlf((fMT + 0008) (t, z, 1)y () | (i) .2)

1
+ / tr(oo(t, , p)ol(t, 2, wyo(z, ') p(dz)p(da’),
R? x R?

2
for some real-valued measurable function H defined on [0, 7] x R? xPy(R%) x R x R?, and where
o, 0¢ are measurable functions on [0, 7] x R? xPy(RY), valued respectively in R¥™, and R*™,
Here tr(M) denotes the trace of a square matrix M, while MT is its transpose, and . is the scalar
product.

PDEs in Wasserstein space have been largely studied in the literature over the last years,
notably with the emergence of the mean-field game theory, and we mention among others the
papers |[BFY15|, |GS15|, [PW18§|, [Car+19], [SZ19], [Bur+20|, and other references in the two-
volume monographs [CD18a]-|CD18b].

An important application concerns mean-field type control problems with common noise.
The controlled stochastic McKean-Vlasov dynamics is given by

dX® = B(s, X2, ng ,as)ds + o (s, X?,ng)dWs (6.1.3)

+ ao(s,Xg,ng)dWQ, t<s<T, X}=¢,

where W is a n-dimensional Brownian motion, independent of a m-dimensional Brownian motion
WO (representing the common noise) on a filtered probability space (Q, F,F = (F¢)o<t<T, P), the
control process « is F-adapted valued in some Polish space A, and here P denotes the conditional
law given W0. The value function defined on [0, 7] x Py(R?) by

T
v(t,pu) = infEt#{/ et p(x o, PO as)ds+67T(T7t)g(X%,IP’?(%)},
@ t

a)
XS

(here E; ,[-] is the conditional expectation given that the law at time ¢ of X solution to (6.1.3)
is equal to p) is shown to satisfy the Bellman equation (6.1.1)-(6.1.2) (see [BFY13|, [CP19],

[DPT19]) with G(n) = [g(z, p)p(dz), o, op as in (6.1.3) and
H(t,z,p,y,2) = —ry+ lI€1£ [ﬂ(t,x,u,a).z + f(x, p, a)}. (6.1.4)

6.2. PARTICLES APPROXIMATION OF WASSERSTEIN PDES 117

We now consider a finite-dimensional approximation of the PDE (6.1.1))-(6.1.2)) in the Wasser-
stein space. This can be derived formally by looking at the PDE for i to averages of Dirac masses,
and it turns out that the corresponding PDE takes the form

N
1
oV + %ZH(t,xi,ﬂ(x),vN,NDmivN) + §tr(ZN(t,:c)D:2ch) = 0, on [0,7) x (RHN
i=1

UN(T’:U) = G(ﬂ(w))’ T = (mi)ie[[l,N]] € (Rd)Na

(6.1.5)
where f(.) is the empirical measure function defined by a(x) = %ZZ]\L 1 Oz,;, for any & =
(z1,...,2n), N € N*, and Sn = (£%); jeqn is the RV N valued function with block ma-

trices E%(t,az) = o(t,zi, ()07 (t, xj, i(x))di; + oolt, zi, i(x))og(t, x;, i(x)) € R In the
special case where H has the form , we notice that is the Bellman equation for the
N-cooperative problem, whose convergence to the mean-field control problem has been studied
in |[Lacl7], [CD18b|, [LT19; [LT20], when o9 = 0 (no common noise), and recently by [Dje20)|
in the common noise case. We point out that these works do not consider the same master
equation. In particular their master equation is stated on [0,7] x R? xPy(R?) and is linear in
0uu whereas we allow a non-linear dependence in this derivative. Moreover our master equation
is in expectation form. In |[LT20| the master equation is approached by a system of N coupled
PDEs on [0, 7] x (RY)N whereas we consider a single approximating PDE on [0, 7] x (R%)Y. For
more general Hamiltonian functions H, it has been recently proved in [GMS21]| that the sequence
of viscosity solutions (v™)y to (6.1.5) converge locally uniformly to the viscosity solution v to
when ¢ = 0 and o¢ does not depend on space and measure arguments. For a detailed
comparison between this work and ours, we refer to Remark [6.2.4]

In this paper, we adopt a probabilistic approach by considering a backward stochastic differ-
ential equation (BSDE) representation for the finite-dimensional PDE according to the
classical work [PP90|. The solution (YN, ZY = (Z%");<;<x) to this BSDE is written with an
underlying forward particle system XV = (XN)i<i<n of a McKean-Vlasov SDE, and connected
to the PDE via the Feynman-Kac formula: YN = oV (t, XN), zoN = D, oM (¢, X1,
0 <t <T. By using BSDE techniques, our main contribution is to show a rate of convergence
of order 1/N of [YN —v(t, i(XM))|, and also of [NZN — 8,0(t, a(XM)(XP™M)2,i=1,...,N,
for suitable norms, and under some regularity conditions on v (see Theorem and Theorem
6.2.2)). This rate of convergence on the particles approximation of v and its L-derivative is new
to the best of our knowledge. We point out that classical BSDE arguments for proving the rate
of convergence do not apply directly due to the presence of the factor N in front of D, v" in
the generator H, and we rather use linearization arguments and change of probability measures
to overcome these issues. Another issue is due to the fact that the BSDE dimension d x N
is exploding with the number of particles therefore we have to track down the influence of the
dimension in the estimations, whereas classical BSDE works usually consider a fixed dimension
d which is incorporated into constants.

The outline of the paper is organized as follows. In Section [6.2] we formulate the particle
approximation of the PDE and its BSDE representation, and state the rate of convergence for v
and its L-derivative. Section [6.3]is devoted to the proof of these results.

6.2 Particles approximation of Wasserstein PDEs

The formal derivation of the finite-dimensional approximation PDE is obtained as follows. We

look at the PDE (6.LI)-(6.1.2) for u = fi(x) = & X1 0z, € P2(R?), when @ = (2;);eps v runs

over (RH)N. By setting oV (¢,) = v(t, fi(x)), and assuming that v is smooth, we have for all
(1,7) € [1, N] (see Proposition 5.35 and Proposition 5.91 in [CD18al):

{ DN () = Lot ilz))(z),

D2, N (@) = £8u0,0(t, i(®)) (@) + Rz 020(t, i) (x:, ;). (6.2.1)

118 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

By substituting into the PDE (6.1.1])-(6.1.2) for © = f(x), and using (6.2.1)), we then see that

oV satisfies the relation:

N
o™ + % > H(t, i, fi(z), 5", NDy, ") (6.2.2)
=1
1 1
42 S (00" + 0008) (1,1, i) (D2, — 3 0R0(t, (@) (s)]
=1
1 i
+ Z tr(O—O(tnyima(m))Ug(tv xj?ﬁ(w))Dgiwij)
i#j€[1,N]

N
g 3 00t 2 H)00)) = 0

for (t,z = (%i)ieq,ny) € [0,T) % (RN together with the terminal condition 7V (¢,) = G(fi(x)).
By neglecting the terms 8311/N2 in the above relation, we obtain the PDE for vN ~
™. The purpose of this section is to rigorously justify this approximation and state a rate of
convergence for vV towards v, as well as a convergence for their gradients.

6.2.1 Particles BSDE approximation

Let us introduce an arbitrary measurable R%valued function b on [0, 7] x R? xPy(R%), and set
By the (R?)N-valued function defined on [0,7] x (RY)N by By(t,z) = (b(t, i, fi(x)) e, Ny for
(t,x = (zi)iep,ny) € [0,T) % (RHN. The finite-dimensional PDE (6.1.5) may then be written as

+ %> Hy(t, 2, i), oY, NDpo™) = 0, on [0,T) x (R)Y, (6.2.3)
’UN(T, w) = G(ﬂ(w))7 T = (xi)ie[[l,N]] € (Rd)Na

where Hy(t,x,u,y,2) := H(t,z,p,y,z) — b(t,z,pn).z. For error analysis purpose, the function
b can be simply taken to be zero. The introduction of the function b is actually motivated by
numerical purpose. It corresponds indeed to the drift of training simulations for approximating
the function v, notably by machine learning methods, and should be chosen for suitable ex-
ploration of the state space, see a detailed discussion in our companion paper |Ger+22|. In this
paper, we fix an arbitrary function b (satisfying Lipschitz condition to be precised later).

Following |PP90|, it is well-known that the semi-linear PDE (/6.2.3) admits a probabilistic
representation in terms of forward backward SDE. The forward component is defined by the
process XV = (X*N);ep,ny valued in (RHN | solution to the SDE:

dXY = By(t, XN)dt + on(t, XN)AW; + oo(t, XY)dW} (6.2.4)

where o is the block diagonal matrix with block diagonals o% (¢, x) = o(t,z;, ii(x)), o9 =
(08)ieqi,n] is the (R*™)N_yalued function with e (t,x) = oo(t, z;, i(z)), for & = (T4)ieq, N5
W =W ..., W¥) where W i =1,..., N, are independent n-dimensional Brownian motions,
independent of a m-dimensional Brownian motion W? on a filtered probability space (Q, F,F =
(Ft)o<t<r,P). Notice that ¥ = ono)y + 090, and XN is the particles system of the McKean-
Vlasov SDE:

dX, = b(t, X;, Py)dt + o (t, Xy, Pgt VAW + oo(t, Xy, IP’?Q)dwy, (6.2.5)

6.2. PARTICLES APPROXIMATION OF WASSERSTEIN PDES 119

where W is an n-dimensional Brownian motion independent of W9, The backward component
is defined by the pair process (YN, ZN = (Z% Niep,ny) valued in R x (RHN, solution to

N T
1 . .
YN = G(u(X7)) +NZ/ Hy(s, XoN, (X)), Y, NZpN)ds (6.2.6)
. t
=Y [@Y px) aws
t
T . .
— Z/ (ZN Yoo (s, XEN, p(XN))aw?, 0<t<T.

We shall assume that the measurable functions (¢, z, u) — b(t, z, p), o(t, x, u) satisfy a Lipschitz
condition in (z, 1) € R? xPy(R?) uniformly w.r.t. ¢t € [0,7], which ensures the existence and
uniqueness of a strong solution X~ € SZ((RH)N) to given an initial condition. Here,
SZ(R?) is the set of F-adapted process (V;); valued in RY s.t. E[supg<;<p [Vi|?] < o0, (|| is the
Euclidian norm on RY, and for a matrix M, we choose the Frobenius norm |M| = \/tr(MMT))
and the Wasserstein space Py(R?) is endowed with the Wasserstein distance

Wal,) = (inf (Bl — €2 €~ € ~ u'})”,

and we set ||p]|, := ([pa |2|? u(daz))% for 1 € Po(R?). Assuming also that the measurable function
(t,z, 1, y, 2) — Hy(t,z, 1, y,z) is Lipschitz in (y,z) € R x R? uniformly with respect to (¢, x,)
€ [0,T] x R xPy(R?), and the measurable function G satisfies a quadratic growth condition
on Po(R%), we have the existence and uniqueness of a solution (YV,ZV = (Zi’N)ieﬂl,N]]) €

SZ(R) x HZ((RH)N) to (6.2.6), and the connection with the PDE (6.2.3) (satisfied in general in
the viscosity sense) via the (non linear) Feynman-Kac formula:

v = oV, XY), and Z"N = DoV, XY), i=1,...,N, 0<t<T, (6.2.7)
(when v is smooth for the last relation). Here, H2(RY) is the set of F-adapted process (Vi)

valued in RY s.t. E[fOT Vi|?dt] < oo.

6.2.2 Main results

We aim to analyze the particles approximation error on the solution v to the PDE , and
its L-derivative 0,v by considering the pathwise error on v:

EY = sup ‘YtN — U(t,ﬂ(XiV))}a
0<t<T

and the L%-error on its L-derivative
1
i\N _ N 2
€%, = N§ (/ E|NZN — ou(t, a(XN)) (XN dt)2

where the initial conditions of the particles system, XS’N, i=1,...,N, arei.i.d. with distribution
Ho-

Here, it is assumed that we have the existence and uniqueness of a classical solution v to the
PDE —. More precisely, we make the following assumption:

Assumption 6.2.1 (Smooth solution to the Master Bellman PDE). There ezists a unique so-
lution v to to (6.1.1)), which lies in Cg’z([O,T] x Po(R%)) that is:

120 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

e v(.,) € CY[0,T)), and continuous on [0,T], for any u € Pa(R?),

o u(t,.) is fully C% on Po(RY), for any t € [0,T)] in the sense that: (z,pn) € R xPy(R?)
Ouv(t, 1) (z) € R, (z, 1) € R xPy(RY) = 0,0,0(t, 1) (z) € M?, and (z, 2",) € R? x R xPy(R?)
8Zv(t w)(z,x') € M2, are well-defined and jointly continuous,

e there exists some constant L > 0 s.t. for all (t,z,p) € [0,T] x R? xPy(RY)

|0uv(t,) (@)| < L1+ |2| + [lull,), |50t p)(z,2)| < L.

The existence of classical solutions to mean-field PDE in Wasserstein space is a challenging
problem, and beyond the scope of this paper. We refer to [Buc+17], |[CCD15|, [SZ19], [WZ20] for
conditions ensuring regularity results of some Master PDEs. Notice also that linear-quadratic
mean-field control problems have explicit smooth solutions as in Assumption [6.2.1] see e.g.

[PW18).

We also make some rather standard assumptions on the coefficients of the forward backward
SDE:

Assumption 6.2.2 (Lipschitz condition on the coefficients of the forward backward SDE).

(i) The drift and volatility coefficients b, 0,09 are Lipschitz: there exist positive constants [b],
(0], and [o0] s.t. for allt € [0,T], z,2" € RY, pu, ' € Po(RY),

[b(t, z, 1) = b(t, 2, 1) < [b](J2 = 2" + Wa(p, 1))
lo(t,z,p) — ot ', 1) < [o](lx — 2| + Walp, 1))
loo(t, , 1) = oolt, ', u) < [oo] (|2 — 2| + Walp, 1))

(i) For all (t,z,p) € [0,T] x R xPy(RY), S(t, x, 1) := oo™ (t,x, 1) is invertible, and the func-
tion o, and its pseudo-inverse o = o™X are bounded.

1
(iii) po € Pag(RY) for some g > 1, i.e., lpolly, == ([|z[*po(dz))3e < oo, and

T
/ 1B(£,0, 80| + [0 (1,0, 80) + |oo(t, 0,80)[*7 dt < oo,
0

(iv) The driver Hy satisfies the Lipschitz condition: there exist positive constants [Hp|, and
[Hy), s.t. for allt € [0,T], z,2" € RY, u, 1/ € Po(RY), 4,9/ € R, 2,2 € RY,

[H], (ly — '] + 2 = 2'])
[Hy), (1 + [z] + ']+ [l + 111,)
(lz = 2| + Walp, 1))

‘Hb(taxaﬂvyvz) - Hb(t,l’,,u, ylaz)

| <
\Hy(t, @, .y, 2) — Hy(t, 2", 1y, 2)| <

(v) The terminal condition satisfies the (locally) Lipschitz condition: there exists some positive
constant [G) s.t. for all p, 1! € Po(R?)

1G() = G < (Gl + i 1) W,).

In order to have a convergence result for the first order Lions derivative we have to make a
stronger assumption.

Assumption 6.2.3.

6.2. PARTICLES APPROXIMATION OF WASSERSTEIN PDES 121
(i) The function Hy is in the form:
Hb(ta T, (1Y, Z) = Hl(tv €T, [, y) + HQ(ta H, y).z,

where Hy : [0,T] x R xPy(RY) x R — R wverifies for all t € [0,T], =,z € R, p, i €
P2(RY), y.y € R, 2,2/ € RY,

’Hl(taxa,U?)_Hl(t Ty 1Y)
|H1(t,x,u,y) Hl(t $ M y)

[Hi], |y — /|
[, (14]+ 27|+ (el + 11]]5)
(‘:E - IL‘/| + W2(:uwu/))>

| <
| <

and Hy : [0,T] x R xPy(RY) x R - R? is bounded and verifies for all t € [0,T), z,2’ €
Rd; /L,,U,, € PQ(Rd)i y7y, € R; Z,Z/ € Rd;

|H2(t,x,,u,)*HZ(t x,u,y)| < [HQ] |y y‘
|Ho(t, @, p,y) — Ha(t, 2/, 1, y)] < [Hal, (1+ || + |2 + [|ull, + [14/1],)
(J& — 2’| + Walu, i)).

(ii) oo is uniformly elliptic and does not depend on x, namely there exists co > 0 such that for
allt € [0,T), p € P2(RY), 2 € RY
ZToo(t, waj(t,)z > colzl*.

(iii) There exists some constant L > 0 s.t. for all (t,z, 1) € [0,T] x R? xPy(R?)

Buo(t, 1) (@)| < L.

Remark 6.2.1. The Lipschitz condition on b, o in Assumption(i) implies that the functions
€ (RHYN — By(t,x), resp. on(t,x) and oo(t,x), defined in (6.2.4), are Lipschitz (with
Lipschitz constant 2[b], resp. 2[o] and 2[og]). Indeed, we have

’BN(t, $) BN t ac Z ’b t 1‘17 - b(t IUzaM(iU/))‘Q
N
<202 (|l — 24 + Wafu(=), i(z))?)
i=1
< 2[p]? \w—wl2+z x —a'|?) = 4[|z — '),

for x = (z:)icp,N), and similarly for on and oy.
This yields the existence and uniqueness of a solution XV = (Xi’N)iE[[LNﬂ to (6.2.4) given
wiatial conditions. Moreover, under Assumption (iii), we have the standard estimate:

E[sup [XN[*] < C(1+[luoll}?) < oo, i=1,...,N, (6.2.8)
0<t<T

for some constant C' (possibly depending on N). The Lipschitz condition on Hy w.r.t. (y,z) in
Assumption [6.2.9(iv), and the quadratic growth condition on G from Assumption [6.2.9(v) gives
the existence and uniqueness of a solution (YN, ZN = (ZzN)le[[l N]) € SE(R) x HZ((RH)N) to

122 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

(6.2.6). Moreover, by Assumption[6.2.9(iv)(v), we see that

2

1 & 1
‘Nsz(taxiv yvz’L _N t,a:z,,u yazz)‘

N
< [Hilayy D (1 il + 1) + jﬁ<|w| +1) (1 = of] + —fe - o)
1
(

< 4[Hb]2

_ o G / '
|G(i(@)) = G(a(a)| < 7 (| + [z — 2|,

1=
/

1+ |z| + [a']) |z — 2]

for all z,2’ € RY, @ = (2))icp g, ®= (@)icpng € (RDY, which yields by standard stability
results for BSDE (see e.g. Theorems 4.2.1 and 5.2.1 in [Zhal7]) that the function vV in (6.2.7)

inherits the locally Lipschitz condition:
[N (t,2) — N (ta')| < C(1+ |2| + [2|)|z - 2|, Va2’ e (R)Y
for some constant C' (possibly depending on N). This implies

ZPN | < c(1+|XY)), 0<t<T, i=1,...,N, (6.2.9)

N

(this is clear when v* is smooth, and otherwise obtained by a mollifying argument as in Theorem

5.2.2in [ZhalT]).

Remark 6.2.2. Assumption [6.2-1] is verified in the case of linear quadratic control problems
for which explicit smooth solutions are found in [PW18; |PW17] respectively without and with
common noise. These papers prove that the second order Lions derivative (92 18 a continuous
function of time which does not depend on the p,x arguments hence is bounded whereas 0, is
affine in both the state and the first moment of the measure thus satisfies linear growth. Notice
that in general, Assumptions|6.2.2 and[6.2.5 are not satisfied due to the quadratic nature of Hy
in the z. However, in the uncontrolled case

T
o(t 1) = By /t (XTA(1)X, + BX] T BOE[X,) + C(1) X, + D(ELX,]) dt

+ X} EX7 + E[X7]" FE[X7] + GX7 4+ HE[X7] }
dX; = (bo(t) + b1 (£) X¢ + ba(E[X,]) dt + o(t) AW,

we see that v is a solution to the linear PDE

v + Jpa [¢TA(t)z + 5" B(t)a + C(t)x + D(t)ja

+(bo(t) + b1 (t)x + b2 (t) 1) v (t, p) ()

+atr((007)(8):0,0(t, 1) (x))] p(dz) = 0, (t,1) € [0,T) x Pa(RY),
v(T,) = E Var(u) + 5" (E+ F)a+ (G+ H)i, pu€ Po(RY),

where i = fRd zp(dz), Var(u f]Rd 2?pu(dx) — 2. In that case both assumptions|6.2. 1| and|6.2.2|
are satisfied.

Theorem 6.2.1. Under Assumptions[6.2.1] and[6.2.9, we have P-almost surely

C
Y < Y
En < N’

where Cy = eI TL|o|12,, with ||o e = Sup(, , ot xpa(rety |0t 25)]

6.2. PARTICLES APPROXIMATION OF WASSERSTEIN PDES 123

Theorem 6.2.2. Under Assumptions|0.2.1],16.2.9 and|6.2.5, we have

C,
lexl, < <.
2

where C, = Ha"’HOO\/QT([th + [Hg]lL)C'g + Cy T2, L + %C_’gTHHQHgO and
Cwy _ ge([HﬂlHHQ]lL)TLHUHgo-

Remark 6.2.3. Let us consider the global weak errors on v and its L-derivative 0,v along the
limiting McKean-Viasov SDE, and defined by

EY, = sup [E[Y}"] —E[o(t,P})]]
0<t<T

N

E, ‘:Nz</0T‘E[NZf’N] ~ E[0,0(t. P,)(X)]‘ dt>é

i=1
where X' has the same law than X, and with McKean-Vlasov dynamics as in (6.2.5) but driven
by Wi, i =1,...,N. Then, they can be decomposed as
B < BE)+ By Fi < &, + B
where E’}'\,, E]ZV are the (weak) propagation of chaos errors defined by

By = s [Bl(t A(XT))] ~ BB

1

B NZ([[Blowte s)] - BlagoE o) Car)

From the conditional propagation of chaos result, which states that for any fized k > 1, the law of

XZ Nyi€lL k] converges toward the conditional law of (X} i€lLR] o goes to infinity, we deduce
te[0,T] t/tef0,1]’

that E]yV,EZ — 0. Furthermore, under additional assumptions on v, we can obtain a rate of
convergence. Namely, if v(t,.) is Lipschitz uniformly in t € [0,T], with Lipschitz constant [v],
we have

~ 1 .
B < [o) sup (EDa(a(XD),P%)%)" = O(N 5@ \/T+n(N) s)
0<t<T

9 (N*m 1+ ln(N)ld:4> : (6.2.10)

y
hence Ey

where we use the rate of convergence of empirical measures in Wasserstein distance stated in
|FG15] (see also Theorem 2.12in [CD18bf), and since we have the stcmdard estzmate Elsupg<s<r | X¢[*]
<C(1+ HM0||4q) by Assumption mmz) The rate of convergence in s consistent with

the one found in Theorem 6.17 [CD18b] for mean-field control problem. Furthermore, if the func-

tion 0,v(t,.)(.) is Lipschitz in (x,) uniformly in t, then by the rate of convergence in Theorem
2.12 of [CD18b], we have

By = O(N #5@0 (1 +In(N)lyms)), hence By = O(N™ 550 (1 4+ n(N)14s)).

Remark 6.2.4 (Comparison with |GMS21|). In the related paper [GMS21|] the authors consider
a pure common noise case, that is o = 0 and restrict themselves to oo(t,z;, i(x)) = rlg for

k € R. If we consider these assumptions in our smooth setting, we directly see that AYN = 0
and AZN =0 P a.s. Indeed by (6.2.6) and (6.3.2) we notice that (YN, ZN) and

(T = olt, XN AZ™ = L0t X)), i=1,. N},

124 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

solve the same BSDE therefore by existence and pathwise uniqueness for Lipschitz BSDEs the
result follows. Moreover, [GMS21|] does not allow H to depend on y. Our approach allows to
extend their findings to the case of idiosyncratic noises and in contrast to them we are able to
choose a state-dependent volatility coefficient. Moreover we provide a convergence rate for the
solution. However, we have to assume existence of a smooth solution for the master equation
which 1s a restrictive assumption.

6.3 Proof of main results

6.3.1 Proof of Theorem [6.2.1]

Step 1. Under the smoothness condition on v in Assumption one can apply the standard
It6’s formula in (RY)N to the process oV (t, XN) = v(t, a(XY)), and get

T
N, XNy = (T, X)) — / 5™ (5, XV)ds (6.3.1)
t

T
1
_/ By (s, X2).Da0™ (5, X2) + Str(S(s, X2)DE0Y (5, X)) ds
t

N T
-y / (D™ (5, XV)) T (s, XN, (XN) AW
=1

N
=Y [(e X)) (o XY XY,
i=1"1t

Now, by setting (recall (6.2.1])):

VN i= ot u(X7)) = oM, X,

ot (XIN(XN) = Dy Nt XN), i=1,...,N, 0<t<T,

and using the relation (6.2.2)) satisfied by 9V into (6.3.1)), we have for all 0 <t < T,

N .7

- 1) - -

VN = G(p(x)) +N2/t Hy(s, X0V (X)), YN, NZbN)ds (6.3.2)
=1

N T
S [(e XY X0, BN X)) ds
=17t

1
2N?

N T N T
-3 [@yl awi - 3 [z, X5 D).
=1 i=1

Step 2: Linearization. We set

AYN = YN YN, AZN =Nz - 72PN, i=1,...N, 0<t<T,

6.3. PROOF OF MAIN RESULTS 125

so that by (6.2:6)-(32),

1 T —_— , —_— - .y
AN = =3 / [(s, X0, A(X), Y NZEN) = Hy(s, X0V, p(X), VY NZEN)]ds
i t

N T
1 .))
w0 [e XY X)X (KEY, X))
i=1"1t
1L T . .
3 [Az (s XY) aw;
=1 t
Z/ AZENY oo (s, XN, p(X)) dW?, 0<t<T. (6.3.3)

We now use the linearization method for BSDEs and rewrite the above equation as

N r N 1 Y T o i, N
AYN = AYNds + - i AZBN
f /t asAY; ds + ¥ i:1/t Be.AZYds
1 M T . A A
~ v 2 [@z (s X pX) aw

i t

N T
$p) A (s, X X

- Z/ tr (S (s, X0N, p(X)5 (s, f(X 1) (XN, X0N))ds, (6.3.4)

2N?
with
- Ho(s XEY (), YN NZEY) — By (s, X2V p(XN), VN, N ZEY)
=¥ AYY lavgaos
_ S ..
gi = Ho(s.Xe (X YN N2~ Hy (s, X0V WX D). YN NZZ™) o i Ny

|AZiN |2 AZEN£0

for i = 1,...,N, and we notice by Assumption [6.2.2{(iv) that the processes o and 3! are
bounded by [Hp],. Under Assumption ii), let us define the bounded processes \. =

ot (s, X\ a(XN))Bi, s €[0,T),i=1,...,N, and introduce the change of probability measure
P* with Radon-Nikodym density:

dp Y Ti i Y e i
= & = exp(;/o AdeS—;2/0 |)\S’2d3>,

so that by Girsanov’s theorem: /W/ti =W} - fg Mids, i = 1,...,N, and W° are independant
Brownian motion under P*. By applying It6’s Lemma to elo @sds AY,N under P?, we then obtain

Ay = QNQZ [T e (5, RO, RO, KN

]1[2/ ft audU(AZzN)TO_(S XZN,M(XN))sz

Z\H

N
Z/ el awdu(AZINYIG (5, XN A(XN) AW, 0<t<T. (6.3.6)

126 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

Step 3. Let us check that the stochastic integrals in , namely [éi’N.dWs?, and | ZNS’i’N.dWS
are “true" martingales under P*, where 70N = els audugr (s,Xﬁ’N,ﬂ(XéV))AZé’N, 796N
elo cwdugr(s XUV p(XN)AZYN, i=1,...,N,0<s<T.

Indeed, for fixed i € [[1, N], recalling that « is bounded, and by the linear growth condition
of o¢ from Assumption [6.2.2fi), we have

P [[(700 2as
| }
0

IN

T
A i _
OB [[(lofs.0.80) + X5V + (X))

(INZEY P+ 180 (s, (X)) (XEY)) ds

IN

T
CE[g} [N¥(Jou(s,0.00)1* + 1X2]")ds]
0

where we use Bayes formula, the estimation (6.2.9), the growth condition on d,v(.)(.) in As-
sumption and noting that [X2 < | XN, ||ﬂ(XéV)||g = | XN 2/N. By Holder inequality
with ¢ as in Assumption (iii), and % + é =1, the above inequality yields

1

e[[Cz0 s < o (s]gr) (8] / (on(s.0.60) 14 + X5 0as])
0 0

which is finite by (6.2.8), and since X is bounded. This shows the square-integrable martin-
gale property of [ZgmN .dAWY? under P*. By the same arguments, we get the square-integrable

martingale property of [Z~§’N.dWSi under P
Step 4: Estimation of £X;. By taking the P* conditional expectation in (6.3.6)), we obtain

N T
1 : : N s
N S EY [/t el iy (35, X0V A(XN))020(s, m(X) (XN, XN))ds\Ft},
i=1

for all ¢ € [0,7]. Under the boundedness condition on ¥ = oo™ in Assumption |6.2.2(ii), and on
8311 in Assumption it follows immediately that

C
X = sup |AYN| < Wy’ a.s.
0<t<T

where Cy = FelITLo|[3,, with [|oflee = SUD(, 4) cfo.17xre xpa(re) 0t 2, 1)
6.3.2 Proof of Theorem [6.2.2]

From ([6.3.5)), and under Assumption [6.2.3{(i) and (iii), we see that

Hy(s, XN, p(XN), v NZ2™) — Hy(s, X p(X D), VY, NZ2™)
AYN AYN#0
S

Qg —

2=
1=

1

-
Il

Hl(S, Xsi,Na /_L(ngv)v YVSN) - Hl(sv XSi,Nv /_L(ngv)v YN)

S

N Layn o
S

I
2|~
™=

1

N f. a(XNy yN f. (XN yN
1 § : i, N 2(5,/1()’) - Q(Snu’()7)
+ 7N NZ; . 5 5 }/SN = 5]]'AYSN7£O7 (637)

-
I

i=1

6.3. PROOF OF MAIN RESULTS 127

is bounded by [H], + [Ha]1 L, recalling NZ2Y = auv(s,ﬂ(XéV))(Xé’N). As a consequence, the
proof of Theorem still applies. Then by (6.3.3))

T 1 N T .
AYN =/ a,AYNds + Z/ Hy(s, i(X3), YY).AZ5 N ds
t N =i

N T
-y [@z XY X)
=1

N T
1 ‘
-y 2 [@zl (XA
=17t

1
2N?2

N T ' 4 '
S [(S X) R0 XY, XN s,
=171

+

By applying Ito’s formula to |AY,V|? in (6.3.4) under P

!AYON\2+]$2/O Z\UT 5, X0V, m(X) AZIN Pds + |og (s, m(XY)) ZAZJN\ ds

7=1
T
:2/ a3|AYN\2ds+ / AYN Hy(s, (X N), YN).AZN ds
- = / AYN(AZIN Yo (s, XUV, (X Y)) AW,
- = / AYN(AZEN Y oo (s, p(XN))dw?
T / AY Nt (s, X0V, G (X)) 020(s, 7 X)) (XN, XV))ds,

so by taking expectation under P, and using the Cauchy-Schwarz inequality in R?

N
wl ZE\UT X X AZEY 4 o,) D0 AZ s
j—l

N2 N - N N AZZN
SE[2/ a,l|AY, |ds+2/ AV (s (XD YD), Z s]
0 0

=1

N T
1 i _ — % %
+ 22 /0 EIAY tr(S(s, X0V, a(X)00 (s, m(X) (XN, X))l ds,

<E[2 [laflavPas+2 [[avY s ac), v Y 25 fas]
0 0 i=1

N T
1)))
P | EAY (S, X5V O, X)X X)) s,

<E[s /0 AV H (s, m(X V), V) Pds +W/ \ZAZ”V! as] + .

by Yourzg inequality for any 9 > (3, boufldedness of « (se_e (6.3.7), X, 831} and Theorem
where C, = 2T([Hy]y + [Ho]1L)C2 + CT||o |3, L and C) = LeHh+HDDT)52 Thus,

128 CHAPTER 6. APPROXIMATION OF PDES IN WASSERSTEIN SPACE

by Assumption (ii), and by choosing ¥ = %’ it follows from the boundeduess of Hy, and
Theorem [6.2.1] that

3 ! > 2 /2 2

- ' ‘ C,+ =C2T||H

E[NZ/() ’UT(Ssz’N,/j(Xév))AZ;vNP ds] < =t 5 j\/f | 2H007

i=1

which ends the proof by recalling that ||ot||sc < 400, using Cauchy-Schwarz inequality in RY (in
the form + SN Vai] </ + S°Nai|) and Jensen inequality (in the form E[\/|X]] < /E[[X]]).

Chapter 7

Solving mean-field PDEs with
symmetric neural networks

This chapter is based on the paper |Ger+22|
M. Germain, M. Lauriére, H. Pham, X. Warin. “DeepSets and their derivative networks for
solving symmetric PDEs”. In: Journal of Scientific Computing 91, 63 (8 April 2022).

This Chapter is a companion work of Chapter [6] Inspired from the finite dimensional PDEs
stemming from Chapter [6] which have the property of being symmetric with respect to the
permutation of their space arguments, we develop a numerical method to solve symmetric PDEs.
The main tool is to consider symmetric neural networks like PointNet |[Qi+17] and DeepSet
|Zah+17|. Plugging the symmetry properties of the solution into the scheme itself allows us to
solve high dimensional problems for which classical feedforward neural networks do not converge.
As a consequence we provide a way to estimate the solution of Master Bellman equations in
infinite dimension. However, some randomization has to be achieved in order to efficiently explore
the Wasserstein space. We propose a first idea in this direction but a systematic treatment of
this point is left to future research.

129

130 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

Abstract

Machine learning methods for solving nonlinear partial differential equations (PDEs) are hot
topical issues, and different algorithms proposed in the literature show efficient numerical ap-
proximation in high dimension. In this paper, we introduce a class of PDEs that are invariant to
permutations, and called symmetric PDEs. Such problems are widespread, ranging from cosmol-
ogy to quantum mechanics, and option pricing/hedging in multi-asset market with exchangeable
payoff. Our main application comes actually from the particles approximation of mean-field
control problems. We design deep learning algorithms based on certain types of neural networks,
named PointNet and DeepSet (and their associated derivative networks), for computing simulta-
neously an approximation of the solution and its gradient to symmetric PDEs. We illustrate the
performance and accuracy of the PointNet/DeepSet networks compared to classical feedforward
ones, and provide several numerical results of our algorithm for the examples of a mean-field
systemic risk, mean-variance problem and a min/max linear quadratic McKean-Vlasov control
problem.

7.1 Introduction

The numerical resolution of partial differential equations (PDEs) in high dimension is a major
challenge in various areas of science, engineering, and finance. PDEs that appear in the appli-
cations are often non linear and of very high dimension (number of particles in physics, number
of agents in large population control problems, number of assets and factors in financial mar-
kets, etc), and are subject to the so-called curse of dimensionality, which makes infeasible the
implementation of classical grid methods and Monte-Carlo approaches.

A breakthrough with deep learning based-algorithms has been made in the last five years
towards this computational challenge, and we mention the recent survey papers by |Bec+20)|
and [GPW22b|. The main interest in the use of machine learning techniques for PDEs is the
ability of deep neural networks to efficiently represent high dimensional functions without using
spatial grids, and with no curse of dimensionality (see e.g. [Hut+20]). Although the use of neural
networks for solving PDEs is not new, the approach has been successfully revived with new ideas
and directions. Moreover, recently developed open source libraries like Tensorflow and Pytorch
offer an accessible framework to implement these algorithms.

In this paper, we introduce a class of PDEs that are invariant by permutation, and called
here symmetric PDEs. Such PDEs occur naturally in the modelling of systems dealing with sets
that are invariant by permutation of their elements. Applications range from models in general
relativity and cosmology, to quantum mechanics and chemistry, see e.g. [WykO0§|, [Smull]. Sym-
metric PDEs also appear in the pricing/hedging of basket option and options on the maximum
of multiple assets. Our main motivation for introducing this general class of symmetric PDEs
comes from the control of large population of interacting indistinguishable agents, which leads in
the asymptotic regime of infinite population to the theory of mean-field games (MFG) and mean-
field type control, also called McKean-Vlasov (MKV) control. These topics have attracted an
increasing and large interest since the seminal papers [LL07| and [HCMO6| with important math-
ematical developments and numerous applications in various fields over the last decade. We refer
to the two-volume monographs |[CD18al-|[CD18b| for an exhaustive exposition of this research
domain, where it is known that the solution to MFG or MKV control problem are characterized
in terms of a Master equation or a Bellman equation, which are PDEs in the Wasserstein space of
probability measures. It turns out that the finite-dimensional approximation of these equations
are formulated as symmetric non linear PDEs, and the convergence of this approximation has
been recently obtained in |[GMS21], and [GPW22¢| (for a rate of convergence), see also |Lacl7|
and [Dje20].

Symmetric PDEs are often in very high dimension, typically of the order of one thousand in
the case of particles approximation of Master and Bellman equations, and it is tempting to apply

7.1. INTRODUCTION 131

machine learning algorithms in this framework. For that purpose, we shall furthermore exploit the
symmetric structure of the PDEs in order to design deep learning-based algorithms with a suitable
class of neural networks. We first observe that the solution to symmetric PDEs is invariant by
permutation (also called exchangeable), and we shall then consider a class of symmetric neural
networks, named PointNet and DeepSets, aiming to approximate our solution. Such class of
neural networks has been recently introduced in the machine learning community, see |Qi+17],
|Zah+17], [BRT20|, for dealing with tasks involving some invariant data sets, and it turns out
that they provide much better accuracy than classical feedforward neural networks (NN in short)
in the approximation of symmetric functions. Indeed, feedforward NN have too many degrees
of freedom, and the optimization over parameters in (stochastic) gradient descent algorithm
may be trapped away in the approximation of a symmetric function, as illustrated in several
examples and comparison tests presented in this paper. We shall also introduce different classes
of derivative symmetric network, named DeepDerSet and AD-DeepSet, for the approximation of
the gradient of the solution to symmetric PDEs.

By relying on the class of symmetric NN, and their derivative networks, we next adapt
the deep backward dynamic programming scheme [HPW20|, [PWG21| for numerically solving
symmetric PDEs, i.e., finding approximations of the solution and its gradient. We also explain
in the case of mean-field control problem how our scheme provides an approximation for the
solution to a Bellman equation in the Wasserstein space of probability measures. This yields
alternative deep learning schemes for mean-field control problems to the ones recently designed in
[GMW22|, [CL22|, [FZ20], or [Rut+20]. We test our algorithms on several examples arising from
different McKean-Vlasov control problem, for which we have explicit or benchmarked solutions: a
systemic risk model as in |[CFS15], the classical mean-variance, i.e., Markowitz portfolio allocation
problem, and a min/max linear quadratic mean-field control problem as in [SMLN15|.

Outline of the paper. The rest of the paper is organized as follows. We introduce in Section
[7:2] the class of symmetric PDEs with some examples, and show exchangeability properties of
the solution and its gradient to such PDEs. Section is devoted to the exposition of the
class of symmetric neural networks, as well as its derivative networks, and we provide several
comparison tests with respect to classical feedforward NN. We describe in Section [7.4] the deep
learning schemes for solving symmetric PDEs, and finally provide several numerical examples in

Section [T.5]

Notations. Given N € N*, XV denotes the set of all elements & = (%i)ieq1,n] With coefficients
z; valued in X and [1,N] = {1,--- ,N}. When X = R?, one usually identifies (R?)" with RV
the set of d x N-matrices with real-valued coefficients. S¥(X) is the set of N x N-symmetric
matrices with coefficients valued in X, and is simply denoted by S¥ when X = R. For a real-
valued C? function ¢ defined on (R)Y| its gradient Dy(z) = (Dz;p(x))ieqi,ny s valued in
(RN, while its Hessian D?p(x) = (Dgixjgo(az))i,je[[LN]] is valued in SV (S9).

We denote by &y the set of permutations on {1,..., N}. For any = (2;);ei,n € XN 7
€ Gy, we denote by 7[x] = (23))icpi,N] € AN, For any T' = (Tij)ijen,ny € SN (X), we denote
by [[] = (Criyn(s))ijepng € SN (X).

We say that a function ¢ defined on XV is exchangeable to the order N on X if it is
invariant by permutation, i.e., p(x) = p(r[x]), for any £ € XN, and 7 € Sy. We may simply
say exchangeable when it is clear from the context. The notations 04,14 refer respectively to
d-dimensional vectors full of 0 and 1. With two vectors a,b € R, the notation a.b = Zle a;b;
refers to the canonical scalar product.

132 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

7.2 Symmetric PDEs

We consider a so-called symmetric class of parabolic second-order partial differential equations
(PDEs):
O + F(t,x,v, Dgv, D3v) = 0, (t,x) € [0,T) x (RH)N 791
{ o(T,z) = G(x), xec (RHN (7.2.1)
where F is a real-valued function defined on [0,7] x (RH)N x R x (RH)N x SV (S, G is defined
on (Rd)N , and satisfying the permutation-invariance condition:

(HI) Foranyte [0,T],z € (RYN, y € R, z € (RHYN, v € SN(S%),

F(tvway7z77) = F(tvﬂ-[w]ayvﬂ-[z]vﬂ-[’”)
G(x) = G(rlz]), VrmeGy.

We assume that PDE ([7.2.1]) is well-posed in the sense that there exists a unique classical solution
satisfying a suitable growth condition.

We list below some examples of symmetric PDEs in the form (7.2.1). We start with an
example of pricing in a “symmetric" multi-asset model.

Example 7.2.1 (Multi-asset pricing). Let us consider a model with N risky assets of price
process X = (X1,..., X") governed by

X! = by dt—i—Zaw AW,

where the diffusion coefficients satisfy the property: for all 7 € Gy,
oij(r[z]) = or@p(®), = (@i)iepnp, 5 =1,..., N, (7.2.2)

Notice that b; is the drift of the asset price under the historical probability measure, and does not
appear in the pricing equations below. The symmetry condition is satisfied for example
when 0y (x) = o(x), and 045(x) = 6(x), 4,5 = 1,..., N, i # j, with 0,5 exchangeable functions.
Another example is when 0y;(x) = o(z;), and 0y (x) = I(xi)0(x;), 4,5 =1,...,N,i# j, for some
functions o, 9, U defined on R, which means that all the assets have the same marglnal volatility
coefficient, and the correlation function between any pair of assets is identical. We consider

an option of maturity 7' with payoff G(X1, ..., X&), where G is an exchangeable function, for
example:
(max(z1,...,zN) — K)+, (call on max)
Gx) = (leil x; — K)+, (call on sum),
SN ek (sum of binary options),
for & = (z1,...,2x) € RY. In a frictionless market with constant interest rate r, the option

price (t,z) € [0,T] x RY s v(t,) satisfies a linear PDE (7.2.1)) with terminal condition given
by the exchangeable function G and

F(t,:c,y,z,'y) = —ry—l—erzl—{— Z 7@]7
i,5=1

for t € [0,T], * = (%i)iep,n] € RV, y eR, z = = (zi)ien,N] € RV, and v = (i) ,]E[[l N]] e SV,
In the case of counterparty risk, the pricing of CVA leads to a quasi-linear PDE with F
in the form (see [HL12| for the details of the PDE derivation):

F(t,m,y,z,’y) = +TZ$121+ Z 72]7
5,5=1

7.2. SYMMETRIC PDES 133

where 8 > 0 is the intensity of default. Another case of non-linearity occurs when lending rate
r > 0 is smaller than borrowing rate R > 0, which leads to a super-replication price solution to

(7.2.1) with F' given by

N

N

1

F(t,w,y,z,'y) = Sup [_by+bzxzzz 5 Z rng
be[r,R) i—1 =1

In the above three cases, and under (7.2.2), the generator function F' clearly satisfies the
permutation-invariance condition in (HI). O

The second example is actually our main motivation for considering symmetric PDEs, and
comes from mean-field models.

Example 7.2.2 (McKean-Viasov control problem with common noise). Let us consider N in-
teracting indistinguishable agents with controlled state process X = (X!,..., XV) valued in
(RN, and driven by
dXi = B(t, X{, ((Xy), af)dt + o (t, X{, i(X¢), ap)dW]
+ Uo(t7Xz7ﬁ(Xt))thov 0<t<T,i=1,...,N,

where = (2i)iep,n] = M(x) = + SN | 6,, is the empirical measure (exchangeable) function,
Wi i=1,...,N, are independent Brownian motions representing idiosyncratic noises, and W?°
is a Brownian motion independent of W = (Wi)ie[[l, N]» representing a common noise. Moreover,

o' is a control process (valued in some Polish space A) applied by the agent i who follows in a
cooperative equilibrium a social planner aiming to minimize a social cost in the form

J@t,...a" ZE[/ e (X (Xt),ai)dt+e_7"Tg(X%,,a(XT))].

The Bellman equation to this N-cooperative agents control problem is in the form (7.2.1)) with
a Hamiltonian function F' given by

45 S troult, zo) oy (12 Al)ig) —

where ¥ = 007 + 0oy, and a terminal condition given by

L
N;Q(»’Uz’aﬂ(@)

Such functions F' and G clearly satisfy condition (HI). Let us point out that in the limiting
regime when the number N of agents goes to infinity, it is proved in |Lacl7|, [Dje20], [GMS21|
that the solution to this cooperative-agents problem converges to the McKean-Vlasov control
problem with state process X = X of dynamics

dXy = B(t, X¢, P%,, ap)dt + o (t, X4, P,) dWy + o (t, X, PR, AW}, (7.2.3)

and cost functional

T
Tue(@) = B [e (X B+ e Ty B,)],
0

134 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

(Here Pg(t denotes the conditional law of X; given the common noise W?). Moreover, the cor-
responding Bellman equation in the Wasserstein space of square-integrable probability measures
P2(RY) is given by (see [PW17])

d
{ Opv +.F(t,u,v,8uv,8xauv,8ﬁv) = 0, (t,n) € [0,T) x Po(R?) (7.2.4)

u(T,n) = G(u), pePaRY),
where d,0(u)(.) : RY — RY, 8,0,0(p)(.) : RY — S%, 82@(;1)(.,.) : RYx R? — S¢, are the L-
derivatives of a function ¢ on Po(R?) (see [CD18a]) and
Flton. 20T To()) = =rt [bt Z(@), T) a(da)

1
+ / Ste(o0(t, 2,)a§(t, 2!,)0, 2')) pu(da)(da),
RY x RY 2

o) = [gla.nn(da),
with

1
h(t,z,p,2,7) = inf [ﬁ(t,x,uva)ergtr(z(t,x,u,ah) + flz,p,a)|.

a

We end this section by showing some exchangeability properties of the solution to the symmet-
ric PDE ((7.2.1)). Let us introduce the notion of D-exchangeability where D stands for derivative.

Definition 7.2.1. A function (z,z) € (R)N x R? — z(x,z) € X is D-exchangeable if for any
fized x € RY, z(.,x) is exchangeable. Given a D-exchangeable function z, we denote by z the
function defined on (RHN by z(x) = (z(®, 7i))icn,N] € XN,

This definition is actually motivated by the exchangeability property of the solution to the
PDE (7.2.1)), and by a structural property on the gradient of an exchangeable function that is
differentiable.

Lemma 7.2.1. The solution v to the PDE (7.2.1)) with F and G satisfying (HI) is exchangeable,
n.e., forallm € Gy,

o(t,®) = w(t,w[x]), (t,x)e[0,T]x (RHN,

Proof. Let m € Gy. We set v(t,x) = v(t, w[x]), and observe that dv(t, w[x]) = v (t, x),
while

Dyu(t,mlx]) = n[Dgvs(t,x)], D2uv(t,w[x]) = w[D2v.(t,x)].
By writing the PDE (7.2.1)) at (¢, w[z]), it follows under (HI) that v, satisfies

Opvr + F(tvinaUmeva?cUﬂ) = 0, (t,il?) € [O’T) € (Rd)N
’UT‘-(T,ZC) = G(m)a T < (Rd)N'

By uniqueness of the solution to PDE (|7.2.1)), we conclude that v, = v, i.e., the exchangeability
property of v. O

Lemma 7.2.2. Let w be an exchangeable, and differentiable function on (Rd)N. Then there
exists a D-exchangeable function z such that

Dyw(x) = z(x,z;), i=1,...,N, (7.2.5)

for all z = (z;)ep,ny € (RHN i, Dw = z.

7.2. SYMMETRIC PDES 135

Proof. Since w is exchangeable, it is clear that for fixed i € [1, N], and z; € R,
x_i = (x)jz € (RHN-1 Dy, w(zxy,...,%i—1,%i, Tit1,...,2N) is exchangeable,
and we shall then write:
Z2(x_i,x) = Dpw(T1,... T 1,T,Tit1,- s TN), T € R?.
By exchangeability of w, we also note that
Z(x_;,x) = 2"(x_;,x), Vi le[l,N]. (7.2.6)

Let us now define the function z on (R%)Y x R? by:

N-1
1
z(x,x) == N Z(—l p Z Z a: s T)i seipi1s L)
p=0 1<i1<...<ipp1 <N £=1 ptlmes
for € = (z1,...,zy) € (RHYY, and = € R?, (,...,x, (75)j#i1,....ipp1) 18 the vector in (RHN-1
\—Y—/
p times
consisting of p components z, and the N — p — 1 components z;, for j # i1,...,%p41. By

construction, it is clear that for fixed # € R?, z(.,z) is exchangeable, i.e., z is a D-exchangeable
function. Let us now show (7.2.5)), i.e., that for fixed = (2;);e N € (RHN

z(x, ;) = 2" (x_;,z;), i€ [1,N].
It suffices to check this property for ¢ = 1. We set for p =10,...,N — 1:

Sp = E E .’El, xlv'--vxl)xj)j¢i1,...,ip+1)'
N’

1<i1 <. <ipr1 <N £=1 p times

and see that

N N N
0 _ E
S = g Z :1: 1,331 E E xl,%]7611171‘1)

(=1 1=2 /(=1

N N
Sl = ZZZZ .Tl,.I]) 7&112,$1)+ Z Z l’l,l’] #il,igvl‘l)
=1

2<i1<i9<N (=1

N
SN=2 = > D d(wr, W,) inin 1) D2 (21, 1), 21)

) - N———
2<in<...<iy_1<N £=1 N—2 times =1

=2

1 N-1 1 N
2((z1,- o an), @) = 5) (FLPSP = NZZZ((%)#MH) = 2'((x))j1,71),
/=1

where the last equality follows from ([7.2.6). This shows the property ([7.2.5)). O

136 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

7.3 Symmetric neural networks

7.3.1 DeepSets and variants

In view of Lemma [7.2.1 and [7.2.2] we shall consider a class of neural networks (NN in short)
that satisfy the exchangeability and D-exchangeability properties for approximating the solution

(and its gradient) to the PDE ([7.2.1).
We denote by

L= {0 RY SR :3(W,8) € REH xRE, 9(a) = p(Wa +6) },

the set of layer functions with input dimension d;, output dimension do, and activation function p
:R — R. Here, the activation is applied component-wise, i.e., p(x1,...,24,) = (p(xl), .. ,p(de)),
to the result of the affine map z € R — Wz + 8 € R, with a matrix W called weight, and
vector called bias. Standard examples of activation functions are the sigmoid, the ReLLU, the
Elu (see |[CUH16]), or tanh. When p is the identity function, we simply write Lg, 4, .

We then define
NE e = {9 R% = R 300 € L5, 1 36 € Lhypri =1, 0= 1, 36y € L,

do,m’
p = @0@—10“'0%},

as the set of feedforward (or artificial) neural networks with input layer dimension dy, output
layer dimension k, and ¢ hidden layers with m neurons (or units). These numbers dy, ¢, m, and
the activation function p, form the architecture of the network. When ¢ = 1, one usually refers to
shallow neural networks, as opposed to deep neural networks which have several hidden layers.

A symmetric neural network function, denoted U € SZ’%’;? s 18 an R? -valued exchangeable

function to the order N on R?, in the form:

Ux) = w(ﬁ((‘P(xi))ie[[l,N]]))a for = (xi)ie[[l,N]] S (Rd)N7 (7.3.1)

where ¢ € N 5 vmi ¥ EN, kp sm.q (here, for simplicity of notations, we assume that the number
of hidden layers and neurons of ¢ and @ are the same but in practical implementation, they may
be different), and s is a given R*-valued exchangeable function to the order N on R*, typically:

e Max-pooling (component-wise): 5(y) = max(y;)ic[1,n7

o Sum: s(y) = Y.V | y;, or average: s(y) = + SN i,

for y = (yi)iep,ny € (R¥)N. When s is the max-pooling function, S;:é\;s,h o 18 called PointNet,
as introduced in |Qi+17|, while for s equals to the sum/average function, it is called DeepSet,
see [Zah+17|. The architecture is described in Figure and k can be interpreted as a number
of features describing the geometry of the set of points {%’}z‘e[[l, ~]- For example in the context
of mean-field control problem, k£ will be related to the moments for describing the law of the
McKean-Vlasov SDE.

A given symmetric network function U € S;:g;f; k. 1s determined by the weight /bias param-

eters 0 = (01, 9@ with 00 = WV A1 .. W B1) defining the layer functions ¢y .. ., ¢
of ¢, and A = (Wéz),ﬂ(()Q), . ,WéQ),,Bf)) defining the layer functions ..., of . The
number of parameters is M = M; + Mo, with M7 = m(d+ 1) + m(m + 1)(¢{ — 1) + (m + 1)k,
My = (k+1)m+m(m+1)(¢ — 1)+ (m+ 1)d’, and we observe that it does not depend on the
number N of inputs.

Remark 7.3.1 (Time dependent symmetric network). A time-dependent symmetric in space
neural network can be constructed as

Ut x) = w(tv5((50(xi))ie[[1,N]]))v fort € Ry, @ = (wi)ier € (Rd)Nv

7.3. SYMMETRIC NEURAL NETWORKS 137

X1 ©0(X1)

Componentwise U Synunetric] w
feedforward CIO ~ 0 Aboperator 5 —>Feedforward

XN (XN)
RdXN kaN Rk Rd’

Figure 7.1: Architecture of a symmetric neural network.

t—‘
X3 0(X1)

(Feedforward d}
ﬁComponentwise(’D L : *)Symmetric 5’

, feedforward : operator
Xn p(XN)
Rd X N

kaN Rk-l—l_,R

Figure 7.2: Architecture of time dependent symmetric network.

with ¢ a feedforward network from R? into R¥, and ¢ is a feedforward from R**! into Rd/, where
we add time as an additional feature, see architecture in Figure

a

A D-symmetric neural network function, denoted Z € DSZ’Z;S j.qr> 18 an R% valued D-exchan-
geable function in the form

Z(z,z) = ¢(5<(<P(37i))ie[[1,N]1),$), for = (l"z')ie[[LN]} € (Rd)Nax € Rd,

where p € N 5’ Lk v e N, ,f S lmd and s is a given RF-valued N-exchangeable function on
R¥. The number of parameters of a given Z € DSZ:Zm’k,d, is M' = M| + M}, with M| =
m(d+1)+mim+1)—1)+ (m+ Dk, My =m(k+d+1)+m(m+1)(£—1)+ (m+1)d'. We
shall often take for s the average function, and call DS;:éY;ﬁ’k, o as DeepDerSet. Its architecture
is given in Figure Given a D-symmetric neural network Z, we denote by Z the function
defined on (RHN by Z(z) = (Z(z,7i))ep,n] € (RHN | and by misuse of notation, we may
also call Z as a D-symmetric NN. By construction, these networks respect the representation
given by Lemma [7.2.2] by being defined as a D-exchangeable function applied component by
component. In that way we are able to enforce the correct symmetries for representing both a
symmetric function and its derivative, which will be useful in Section [7-4] and Section [7.5 when
looking for the gradient of PDE solutions.

Alternatively, one can generate D-exchangeable functions as follows. Starting from a DeepSet
element U € Scsl:é\;’?f,k, o as in (7.3.1) with s the sum function, and network functions ¢, with
smooth activation functions

DmlU((IB) =DU(x,z;), == (xi)e[[l,N]] € (Rd)N?
with
DU(x,x) := Dgo(x)Dw(s((np(ari))ig)), reRY.

The set of D-exchangeable functions obtained from differentiation of DeepSet network functions
is called AD-DeepSet, where AD stands for automatic differentiation, and Automatic refers to

138 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

X4
X4
R 7
XN o(XnN)
RdXN kaN Rk_,Rk—l—de Rd XN

Figure 7.3: Architecture of DeepDerSet network

the implementation of the differentiation in software library, e.g. in TensorFlow. This alternative
network for approximating the derivative of a differentiable symmetric function naturally respects
the structure given by Lemma by construction as the derivative of a symmetric DeepSet
neural network.

Given a D-symmetric NN Z in DeepDerSet or in AD-DeepSet with smooth activation func-
tions, we denote by DZ its differentiation.

As for the well-known universal approximation theorem [Hor91|] for neural networks, we have
a similar result for symmetric neural networks, which states that any exchangeable function can
be arbitrarily approximated by a PointNet or DeepSet given enough neurons. More precisely,
by combining Theorem 2.9 of [Wag+19] with Theorem 2 of |[Hor91|, we obtain the following
approximation theorem for DeepSets.

Universal approximation for DeepSets networks. Let s be the sum function. The set
Ug’lesg’%’?f N41q @pproximates any N-exchangeable continuous function w arbitrary well on

any compact set of K C R? | once p is continuous, bounded and non-constant: for all e > 0, N
€ N*, there exists U € UfnozlS;’éV;r’f N41.q Such that

lw(x) —U(x)| < e Vo e KN,

Note that a priori the latent space dimension k has to be chosen equal to N + 1.

Alternatively, by combining Theorem 1 of |Qi+17] with Theorem 2 of [Hor91|, we obtain the
following one-dimensional approximation theorem for PointNet.

Universal approximation for PointNet networks. Let s be the max function. The set

=1 Upe févn’zk o approximates any N-exchangeable Hausdorff continuous function w (seen
as a function on sets) arbitrary well on any compact set of K C R, once p is continuous, bounded,
and non-constant: for all ¢ > 0, N € N*, there exists U € Up_; U2 Si’%’gk o such that

lw(S)—U(x)| < e, VSCK, S={z, - ,an}.
Note here that a priori the latent space dimension k has to be chosen as large as needed.

7.3.2 Comparison tests

In this paragraph, we test the accuracy of the approximation of exchangeable functions by
DeepSet or PointNet, and also the approximation of D-exchangeable functions by DeepDerSet
or AD-DeepSet, and compare numerically with classical feedforward approximations.

Approximation of some simple functions

We first test the approximation of the following simple symmetric functions:

7.3. SYMMETRIC NEURAL NETWORKS 139

N
L 1
1. f(z) = exp (27 + 373), with 7 = N ;xz (case 1)

N

2. f(z) = %Z[sin(wi)lxid) + xi1g,>0] (case 2)
=1

3. f(x) =z +27% + 323, with Z = max{z;,i = 1,..., N} (case 3)
4. f(x) = cos(2z + 37?%), with z = Zfil x; (case 4)
We use a symmetric neural network architecture as proposed in |[Qi+17], |[Zah+17]:

e First, a feedforward network ¢ with £ = 5 hidden layers, and respectively 64, 64, 64, 128 and
1024 neurons such that each dimension ¢, ¢ = 1,..., N, is treated with the same network
in one dimension avoiding to break the symmetry.

e Two possible symmetric functions s to the order N on R* with k& = 1024, the max-pooling
(PointNet) and the sum function (DeepSet).

o At last, a feedforward network v from R'%?* to R with £ = 2 hidden layers, and respectively
512 and 256 neurons.

For the approximation with classical feedforward networks, we used three or four layers and
a number of neurons constant per layer equal to 10 + d, or 10 + 2d neurons.

We use the ADAM optimizer (|[KB14]), with a batch size equal to 300 for solving the approx-
imation problem with quadratic loss function:

min E[|f(X) —u’ (X)), (7.3.2)

with training simulations from X ~ N (0On, 1x), and 6 are the parameters of the network function
U?. The number of epochs (corresponding to the number of gradient descent iterations) used is
equal to 100. After epoch iterations of the stochastic gradient, the error is estimated with
20000 simulations. If the error is below a threshold equal to le—5 the optimization is stopped,
otherwise a counter for outer iterations is incremented. The number of outer iterations is blocked
at epochExt = 1000 (meaning a maximal total number of stochastic gradient iterations equal to
epoch x epochExt = 100000).

In Tables we report the accuracy reached (Error) and the number of iterations
(Iter.) used to obtain this given accuracy: then a threshold equal to le—5 means that the
optimization has been successful and the relevant parameter is the number of iterations used.
A number of iterations equal to expochExt = 1000 means that the optimization has not been
successful and the error reached indicates how far we are from optimality. For the feedforward
case, we report the best result (“minimum" in table) and the worse result (“maximum" in table)
obtained changing the number of layers and the number of neurons used.

The initial learning rate is taken equal to le—3 for first outer simulation in cases 1 and 2
with a linear decay to 1le—5 for a number of outer iterations equal to 1000. For test case 3, the
initial learning rate is taken equal to 1le—4 with a linear decay to le—5. The result obtained in
Table [7.1] is similarly obtained with a large number of functions tested in dimension between N
= 10 to 1000. It shows the following results:

e The classical feedforward, with dense layers, often permits to obtain optimally without
forcing symmetry of the solution,

e Classical feedforward results do not depend a lot on the number of layers, the number of
neurons tested and the activation function used,

140 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

Symmetric Feedforward
PointNet DeepSet Minimum Maximum
Activation | Error | Iter. | Error | Iter. | Error | Iter. | Error | Iter.

ReLU 0.008 | 1000 | 1le—=5 | 10 | le—5 | 125 | le—5 | 166
tanh 0.016 | 1000 | 1e—5 | 288 | le—5 | 180 | 1le—5 | 308
ELU 0.015 | 1000 | 1le—5 | 176 | le—5 | 108 | 1le—5 | 130

Table 7.1: Approximation error (7.3.2]) obtained for different networks on one run and number
of iterations used depending on activation functions for approximation of the function f in case
1, dimension N = 100.

Case | activ Symmetric Feedforward
PointNet DeepSets Minimum Maximum
Error | Iter. | Error | Iter. | Error | Iter. Error Iter.
2 ReLU | 0.001 | 1000 | 1e—5 5 le—5 | 992 0.002 1000
2 tanh | 0.03 | 1000 | 1le—5 | 342 | 0.0018 | 1000 | 6x le—5 | 1000
3 ReLU | 0.001 | 1000 | 0.23 | 1000 88 1000 432 1000
3 tanh | 0.002 | 1000 65 1000 933 1000 969 1000

Table 7.2: Approximation error (|7.3.2)) obtained for different networks on one run and number
of iterations used for approximation of the function f in cases 2 and 3, dimension N = 100,
activation function ReLU.

e For symmetric approximations, DeepSets generally permits to get the best results and the
ReLU activation function is the best out of the three tested.

In the sequel, we drop the ELU activation function on other cases as shown in Tables
for cases 2 and 3. Notice that case 3, involving a max function is the only one where PointNet
approximation gives the best result among the other tested networks. On cases 2 and 3 in
dimension 100, the DeepSets approximation outperforms the classical feedforward network for
all the number of layers and neurons tested. However, results on case 3 are not very good for
the PointNet approximation even with the ReLLU activation function.

Results for test case 4 are given on Table using an initial learning rate equal to 5e—5 and a
decay linear to 5e—6 with the number of outer iterations. At last, considering case 4 in dimension
N = 1000, when the function is quickly changing, we see that the classical feedforward network
functions have difficulty to converge while the DeepSets network approximation converges. The
latter turns out to be a very good candidate to some very high dimensional PDEs when there is
symmetry in the solution.

Approximation of a function of ¢t and =z with symmetry in =

We test the accuracy of our time dependent symmetric neural network by considering the fol-
lowing two cases of functions:

Symmetric Feedforward

PointNet DeepSets Minimum Maximum

activ Error | Iter. Error Iter. | Error | Iter. | Error | Iter.
ReLU | 0.1910 | 1000 | 8.9e—5 | 1000 | 0.0045 | 1000 0.01 1000
tanh 0.19 1000 | 4e—5 | 1000 | 0.0006 | 1000 | 0.0012 | 1000

Table 7.3: Approximation error ((7.3.2)) obtained for different networks, activation functions for
approximation of the function f in case 4 dimension 1000.

7.3. SYMMETRIC NEURAL NETWORKS 141

Case DeepSets Feedforward
Error | Iter. | Error | Iter.
1 le—5 | 67 | 0.008 | 1000
le—5 | 344 | 0.048 | 1000

Table 7.4: Approximation error ([7.3.3)) obtained for different networks on one run and number
of iterations used for approximation of the function f in case 1 and 2, dimension N = 100.

N
1
_ — 2 =3\ with 7 — A
1. f(x) = exp (Z(t + 2t?) + 3tz®) with z = ZE_I x; (case 1)

2. f(z) =t + cos(tz), with z = ﬁ SN 2 (case 2)
The approximation is performed through the minimization problem

min E[|f(7, X) — Ul (r, X)|?, (7.3.3)

with training simulations from X ~ N (O, 1x), and an independent uniform law for 7 on [0, 1],
and where U is a time-dependent DeepSet with parameters §. We keep the same number of
neurons and layers as in the previous section, and compare with a classical feedforward network
composed of 3 layers of d + 10 neurons. In all experiments, we use a ReLLU activation function.

In Table [74] we give the results obtained in dimension 100. Surprisingly, the feedforward
approximation seems to have difficulties to approximate the case 1 although it is quite similar
to case one in the previous section. As for the second case, the result is not so surprising as the
case is quite similar to case 4 in previous section, where the feedforward network has difficulties
to converge.

Gradient approximation

We now focus on the approximation of the derivative of an exchangeable function by means of
U? a DeepDerSet, a AD-DeepSet, or a classical feedforward network .
The minimization problem is now:

min B[Df(X) — U’ (X)|?], (7.3.4)

where the norm || - || is the Euclidean norm.
The comparison is performed on the following test functions:

N
1
1. f(x) = exp (z + 7%)(1n + 322) where 7 = N z;xz (case 1)

2. f(z) =y where y; = 15,50 + cos(x;)1g,<0, i=1,...,N (case 2)
3. flx) = ﬁ sin(z)1y, where & = ﬁ Zfil x; (case 3)

We compare the classical feedforward approximation to our network approximation in Ta-
bles and using a maximal number of iterations equal to 5000. Clearly using a ReLU
activation function is superior to the tanh activation function and the DeepDerSet gives the best
approximation while the AD-DeepSet or the feedforward may have difficulties to approximate
the functions accurately.

142 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

Case | N | Feedforward | DeepDerSet | AD-DeepSet
Error | Iter. | Error | Iter. | Error | Iter.
10 | 5e—4 | 5000 | 5e—4 | 5000 | 7e—3 | 5000
100 | 1e=5 | 300 | le—5 | 250 | le—=5 | 50

10 | 0.03 | 5000 | 1le—5 | 550 | 2e—4 | 5000
100 | 0.12 | 5000 | 1le—5 | 450 | le—4 | 5000
10 | 1le—5 | 3800 | 1le—5 | 850 | 0.03 | 5000
100 | 1e—5 | 1850 | 1le—5 | 700 | 3e—3 | 5000

W W[DN DO =] =

Table 7.5: Approximation error (7.3.4) with ReLU activation function obtained for different
networks on one run and number of iterations used for approximation of the derivative of an
exchangeable function.

Case | N Feedforward DeepDerSet | AD-DeepSet
Error | Iter. | Error | Iter. | Error | Iter.
10 5e—4 | 5000 | 1.7e—4 | 5000 | 3e—3 | 5000
100 | le—5 500 le—5 100 | 1le=5 | 50

10 0.03 5000 | le—5 950 | 0.028 | 5000
100 0.12 5000 | le—5 700 | 0.56 | 5000
10 | 1.5e—5 | 5000 | 1le—5 | 1850 | 0.02 | 5000
100 | le—5 | 2100 | le—5 | 1350 | 4e—3 | 5000

W W[DN DN =] =

Table 7.6: Approximation error with tanh activation function obtained for different net-
works on one run and number of 1terat10ns used for approximation of the derivative of an ex-
changeable function.

7.4 Numerical schemes

We now adapt the deep backward dynamic programming (DBDP) schemes developed in [HPW20)|
and [PWG21] for solving nonlinear PDEs, by using symmetric neural networks and D-symmetric
neural networks (instead of feedforward neural networks) for approximating the exchangeable
solution v and its gradient Dgzv. We recall the main steps of the DBDP scheme, and distinguish
the case of semi-linear and fully non-linear PDEs.

7.4.1 Semi-linear PDE
We first consider the case where the generator F' in ([7.2.1) may be decomposed into the form

F(t,z,y,2,vy) = H(tz,y 2 +Zb (t,x).2 + = Ztr St) vij)
hj=1
fort € [0,T], ¢ = (lfi)z‘e[[LN]] € (Rd)Na yeR, z= (Zi)ie[[l,N]] € (Rd)Na and v = (%’j)z’,je[[l,N]] €
SN(S%). Here, H is a function on [0, T] x (RN xR x (R%)N satisfying the permutation-invariance
condition:

H(t,z,y,z) = H(t n[x],y,7[z]), VreSn,
the coefficients b;, i = 1,. .., N, are R%valued functions on [0, 7] x (R?)V satisfying the condition
bi(t, w[x]) = bry(t,x), Vme by, (7.4.2)
and the coefficients ¥;;, 4,5 = 1,..., N, are d x d-matrix valued functions on [0,77] x (RHN

the form

it @) = 0307 (t, @) + 000y (t,), (7.4.3)

7.4. NUMERICAL SCHEMES 143

for some d x d-matrix valued functions o;;, and d x g-matrix valued functions o9, satisfying the
invariance property: for all 7 € Gy,

Oij (t, W[w]) = Uﬂ(i)ﬂ(j)(t, :I:), O'i()(t, 7T[.’13]) = O'ﬂ.(i)o(t, CIZ) (7.4.4)

In this case, the permutation invariance condition (HI) on F is satisfied, and we observe that
it includes Example of multi-asset pricing with H(t,x,y,z) = B(y —y) (in the case of
the CVA pricing), b; = r and oio = 0. This also includes Example [7 of the McKean-Vlasov

control problem under common noise with uncontrolled diffusion coefﬁc1ent, where 04i(t,x) =
U(ta Zi, ﬂ(m))é’l]ﬂ UiO(ta (I:) = UO(tv Ti, ﬂ(m))7 and

H(t.z,y, z) = —ry+z int [B(1, 21, 1(2),). + %f(xi,ﬂ(m),a)} (7.4.5)

— Z bi(t, CC).ZZ‘,
i=1

for any function b; satisfying ((7.4.2)).
We shall discuss more in detail the relevant choice of the drift coeflicient b; in Section

The starting point of the numerical scheme is the probabilistic representation of the PDE
with F as in in terms of a forward backward stochastic differential equation
(FBSDE), as in [PP90|. In our context, the forward system is described by the process X =
(X1, ..., XN) valued in (R)Y governed by the diffusion dynamics:

N
dX] = bi(t, Xy)dt + Y o4 (t, X¢)dWY, (7.4.6)
j=0
where W% i = 1,..., N, are independent d-dimensional Brownian motions, independent of the

g-dimensional Brownian motion WP°. Given this forward diffusion process, we then consider the
pair process (Y, Z = (Z");e1 np) valued in R X (RHN solution to the BSDE

T
G(XT)_Y;""/ H(37X37Y37Zs)d3 (7.4.7)
—ZZ/ Voi(s, X)dWI = 0, 0<t<T,
=1 5=0

which is connected by It6’s formula to the solution of the PDE ([7.2.1]) via:
Y; = v(t,Xy), Z! = Dygo(t,Xy),i=1,...,N, 0<t<T.

We next consider a time discretization of this FBSDE on a time grid {tx,k = 0,..., Nr},
with tg =0, tn, =T, Aty :=tgq1—t > 0, by defining the Euler scheme {XivT = (X,i’NT)ie[[LNﬂ,
k=0,..., N7} associated to the forward diffusion process { Xy = (X});ci, v, 0 <t < T}, which
is used for the training simulations, together with the increments of the Brownian motions: AW,g
=W} —W/ k=0,...,Np—1,j=0,...,N, of our numerical backward scheme. The DBDP

tk+1 tg
algorlthm reads then as follows:

The output of the DBDP scheme provides approximations Uy, (x) of v(ty,), and Z(x) of
Dyv(ty,), k= 0,...,Np — 1, for values of € (RY)Y that are well-explored by the training
simulations of X gT. We refer to [PWG21| (see their section 3.1) for a discussion on the choice

of the algorithm hyperparameters.

Remark 7.4.1. We stress that the neural networks do not take time as an input. Adding time
would not make any difference because the training is done locally, time step per time step. So the

144 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

Algorithm 8: DBDP scheme with symmetric NN

Initialization: Initialize from the exchangeable function: LA{NT(') = G(")

for k= Nr—1,...,0do

minimize over symmetric NN Uy, and D-symmetric NN Z, the quadratic loss
function

Ii(Us 24) = E[Ui (X0T,) = Uy (XT)

+ H(tr, X3 7 U (X7, Z6(XT)) Aty
N N

= 3> (Z(XYT X)) 0 (1, X AW
i—1 j=0

2
)

and update (g, Z;) as the solution to this minimization problem.
end

neural networks approximating Uy and Zi would be trained with only ty as an input and hence
they would not be able to learn the dependence on time. However, at time k < Np, we initialize
the parameters of Uy, and Zji respectively with the parameters of the neural networks for Uy4q
and Zyy1, which have been trained at the previous iteration. This gives a good initial guess for
the neural networks at time t and leads to more efficient training.

7.4.2 Fully nonlinear PDE

We consider more generally the fully non-linear PDE (7.2.1)) with a symmetric generator F
satisfying (HI). We adapt the machine learning scheme in [PWG21]| for solving fully nonlinear
PDEs by exploiting furthermore the exchangeability property of the solution by using again
symmetric neural networks as in the semi-linear case.

We fix some arbitrary drift and diffusion coefficients b;, o, ¢ = 1,...,N, 7 = 0,..., N,
satisfying invariance properties as in — (in practice, they should be chosen depending
on the studied problem as for the semi-linear case, see a general discussion in Section 3.1 in
[PWG21|, and an application in Section , and introduce the forward diffusion system X
as in and its discrete-time Euler scheme X™7. We then consider the triple process
Y, Z = (Z9)icp Ny, T = (TY); jepu,nq) valued in R x (RH)N x SV (S9) solution to the BSDE

T
G(X71) -V + / Foo(s, Xy, Ys, Z,Ts)ds
t

N N T
—ZZ/ (Z)704(s5, X)dWI = 0, 0<t<T,
i=1 j=0"1t
with
N | X
Fyo(t,x,y,2z,7v) = F(t,z,y,2z,7v) — Zbi(t,m).zi b Z tr (345 (t, 2)vi)),
i=1 ij=1

and X;; as in (7.4.3). It is connected by Itd’s formula to the fully non-linear PDE ([7.2.1) via the
representation: Y; = v(t, X;), Z; = Dgv(t, X,), T, = D2v(t,X,), 0 <t < T.
Assuming that G is smooth, the algorithm is designed in Algorithm [9]

7.4.3 The case of mean-field PDEs

We consider in this section the case where the PDE (7.2.1)) is the particles approximation of
a McKean-Vlasov control problem with a Bellman equation ([7.2.4) in the Wasserstein space of

7.4. NUMERICAL SCHEMES 145

Algorithm 9: Fully nonlinear DPBD scheme with symmetric NN

Initialization: Initialize from the exchangeable function: LA{NT(') = G(-) and the

D-exchangeable function QNT(-) = DG(-).

for k= Npr—1,...,0do

minimize over symmetric NN Uy, and D-symmetric NN Zj, the quadratic loss
function

To(Uy, Z3,) = IE‘LA{kH(X]kal) — Up(X VT
+ Fyo(te, X307 Un(X27), Z(X7), D211 (X2T))) Aty
N N , 12
=D (@XT X)) o (b X AW
i=1 j=0

and update (ﬁk, fk) as the solution to this minimization problem. Here DZ k1 1S
the automatic differentiation of the D-symmetric NN Z;.; computed previously at
the time step k& + 1.

end

probability measures as described in Example To simplify the presentation, we consider
that there is only control on the drift coefficient 5(t,x, u,a) but no control on the diffusion
coefficient o(t,x, 1) and og(t, z, u) of the McKean-Vlasov equation . In this case, recall
that when the solution v(¢,) to this Bellman equation is smooth, an optimal control is given in
feedback form by (see [PW17]):

of = a(t, X P 0t P) (X)),

where a(t,z,p, z) is an argmin of a € A — B(t,z,pu,a).2 + f(x,p,a), and X* = X is the
optimal McKean-Vlasov state process.

Approximation of the optimal control by forward induction of the scheme. As proven
in [GPW22¢, the solution (X,Y,Z) to the FBSDE (7.4.6)-(7.4.7) provides an approximation
with a rate of convergence 1/N, when N goes to infinity, of the solution v to , and its
L-derivative: Y; ~ v(t, i(X4)), NZ; ~ d,v(t, i(X))(X}). The drift coefficients b; of the forward
particles system X should be chosen in order to generate from training simulations a suitable
exploration of the state space for getting a good approximation of the optimal feedback control.
In practice, in a first step, one can choose b;(t,) = (¢, x;, i(x), ap), for some arbitrary value ag
€ A of the control. After a first implementation of Algorithm [§] we thus have an approximation
of dyu(t, pu)(x) at time t = t;, and p = f(x), by NZ(z,z). Notice however that we solved
the PDE along the law of the forward training process, which is different from the optimally
controlled process law, except at the initial time tg, where we then get an approximation of the
optimal feedback control with

(2, f(@)) — alto,z, i), N Zo(, z)).
Next, by defining an updated initial drift coefficient as
B’i(toa :B) = ﬂ(toa L, ﬂ(%), d(to, Ly ﬂ($), NZ\O("B’ $l)))? for & = (xi)ié[[l,N]], i=1,...,N,

~ N N
and considering the N-particle discrete-time system {X, = = (X;’NT)iE[[LNH,k =0,...,Nr},
starting from i.i.d. samples X}, i = 1,..., N distributed according to some distribution o on
R?, and with dynamics

XPNT = X{+ bilto, Xo)Ato + o(to, X, i(X0)) AW,
o > o _ N i
Xk’ivlT = Xk’NT + bi(t, X;]:[T)Atk + o (g, Xk’NTaM(XkT))AWm

146 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

for k =1,...,Np — 1, we obtain an approximation of the distribution of the optimal particle
mean-field process at time ¢1. Applying the algorithm again between ¢; and ¢y, then allows to
compute an approximation of the optimal feedback control a(t1, x, i(x), zZ (x,x)) at time ¢; and
to update the simulation of X;’NT. By induction, we can compute the optimal feedback control
at every time step through Np executions of the scheme.

Approximation of the solution by randomization of the training simulations. Al-
gorithm 8| provides actually an approximation of v(t,u) (resp. 9,v(t,u)(x)) at time t;, and
for empirical measures p = ji(z), by Uy(x) (resp. NZj(@,z)). Thus, in order to get an ap-
proximation of v(ty,.) (resp. 9,v(tk,.)(x)) on the whole Wasserstein space P2(R?%), we need a
suitable exploration of (X ,ZCVT) when using the training simulations X iVT, k=0,...,Np. For
that purpose, some randomization can first be implemented by randomizing the initial law g
of the forward process. By sampling g in a compact set K of PQ(Rd) for each batch element,
such as a family of Gaussian measures for instance, our algorithm will be able to learn the value
function v(0,) and its Lions derivative 0,v(0, 1) on K. Therefore, instead of solving the PDE
several times for each initial law we can run the algorithm only once. This can be useful if we
have an uncertainty in the initial law of the problem we aim to solve. It corresponds to learning
the solution v(tg,fig¢) on a family of empirical measures corresponding to forward processes
X6@ONr i — 1 ... N, with initial laws ué € K. Relying on the generalization properties of
neural networks, we expect to approximate the value function at time g = 0 on K. Further-
more, if the goal is to obtain an approximation of the PDE solution at any time step tj, the
task is more complex. A randomization needs to be performed at each time step t; by sampling
X ka T according to a Gaussian mixture v with random parameters. We then apply Algorithm
Bl and expect to learn the solution over measures with regular densities. The updated method is
presented in Algorithm If the state space exploration is efficient, the feedback control will be
directly available with only one execution of the algorithm, contrarily to the previously described
procedure with Np executions. We should explore the Wasserstein space well enough to learn
the value function and its derivative on the unknown law of the optimal process.

7.5 Numerical results

In the different test cases, for the approximation of the solution v by means of symmetric neutral
networks, we used DeepSets.

7.5.1 A toy example of symmetric PDE in very high dimension

We consider a symmetric semi-linear PDE:

Ov + b.Dgv + 2tr(0o™D2v) + f(x,v,0"Dgv) = 0, (t,z) € [0,T) x RY
v(T,x) = cos(z), withz = Ef\il z;, for & = (z1,...,2n5) € RY,

with b = 0.2/N, o = ITNN

L an =)

f(x,y,z) = (cos(T) + 0.2sin(T)) eT %(sin(f) cos(Z)el 7% + 5N

so that the PDE solution is exchangeable and given by

T—1
t = z —).
v(t, @) = cos (T) exp (5)
We solve this PDE in dimension N = 1000 by using the deep backward scheme (DBDP) in
[HPW20] with 60 time steps, and estimate Uy = v(0,1x) and Zy = Dzv(0, 1y). For the approx-
imation of v, and its gradient D,v, we test with three classes of networks:

7.5. NUMERICAL RESULTS 147

Algorithm 10: DBDP scheme with symmetric NN and exploration of Wasserstein
space

Initialization: Initialize from the exchangeable function: Z;I\NT(-) = G(")
for k= Nr—1,...,0do
define random variables

L~ U(lemax)7 wr ~ U(07 1)7 Mg~ U(_Mmaxﬁ-l’maac): (91)2 ~ U(Ova_rznaz)

define a random Gaussian mixture v, of random density

Zlel ‘Pl/\/(ﬂz, 912)
Zlel Pl

define N i.i.d. particles X]i’NT with law v, for i =1,--- | N,
perform one Euler-Maruyama scheme step

X;ivlT = X;;’NT + bi(tk,XivT)Atk +O’(tk,XIi’NT,ﬂ())AWk,

minimize over symmetric NN Uy, and D-symmetric NN Zj, the quadratic loss function (with H as

in):
J1(Z/[k,Zk) = E)Z:{\IH—l(k+1) Uk()

H(tkyXkTvuk(XkT),Zk(XﬁT))Atk

Mz

(Ze(X, X)) o (1, X (X)) AW
1

<.
Il

'MZ

(26 (XN, XENT)) o (14, X1NT ’(XNT))AW,?F,

i=1

and update ({fx, Zx) as the solution to this minimization problem.
end

148 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

Analytical (i) AD-DeepSets | (ii) DeepDerSet | (iii) Feedforward
Uo Zy Uo Zy Uo Zy Uo Zy
0.9272 | -1.3632 | 0.9289 | -1.2973 | 0.90140 | -1.304 | 0.6896 | -le-7

Table 7.7: PDE resolution in dimension 1000 with DBDP scheme |[HPW20).

(i) DeepSet U for v, and AD-DeepSet DU for Dyv (DeepSets derivative case).
(ii) DeepSet for v, and DeepDerSet for Dyv (DeepDerSet case)

(iii) Feedforward for v and Dzv (Feedforward case)

For each of theses case, we use ReLU activation functions for all the networks, and for the
feedforward network, we choose 3 layers of 1010 neurons.

Remark 7.5.1. An alternative to Case (i) is to consider an AD-DeepSet DU for Dyv with U
another DeepSet independent of the one U used for v. O

We report the solution in Table [7.7]

We observe that the results with the feedforward network are not good. This is due to the fact
that the feedforward network is not able to approximate correctly the final condition whatever
the initial learning rate and the number of epochExt are taken, as already shown in Table [7.3]
In contrast, we see that the AD-DeepSets and DeepDerSet networks give good results but only
when the initial learning rate is taken small enough (here we took le—5). Finally, we have tested
the Deep BSDE method in [HJE18| with the variation proposed in [CWNMW19]| using a network
reported in section The results are unstable and so we do not report them. A direct use of
[HJE18| method with a network per time step is impossible to test due the size of the problem
but results in lower dimension also indicate some instability directly linked to the initialization
of the network.

7.5.2 A mean-field control problem of systemic risk

We consider a mean-field model of systemic risk introduced in |[CFS15|. This model was in-
troduced in the context of mean field games but here we consider a cooperative version. The
limiting problem (when the number of banks is large) of the social planner (central bank) is
formulated as follows. The log-monetary reserve of the representative bank is governed by the
mean-reverting controlled McKean-Vlasov dynamics

dX; = [k(E[X:] — X¢) + ag] dt +0dWs, Xo ~ po,

where o = (ay); is the control rate of borrowing/lending to a central bank that aims to minimize
the functional cost

T ~
J(a) = JE[/O F(X0, ELX,],) dt+§(XT,IE[XT])] = Vo= infJ), (7T51)

where the running and terminal costs are given by

fz,0) = Sa*—qa(z) + 2@ - o), §aw) = o)

[\)

for some positive constants ¢, n, ¢ > 0, with ¢ < 7.
The value function v to the mean-field type control problem (|7.5.1) is solution to the Bellman
(semi-linear PDE) equation ((7.2.4)) with o constant, g = 0, r = 0, and

52
(v, p,2,7) = inf {[s(Bule]) +)z + 20 — qa(Byle] —)} + 5o+ L(Ele) —)’
o2 — . 22
= (k+q)(Eu§] — 7)2 + 57 + 5 (Eu[f] - 1’) -

7.5. NUMERICAL RESULTS 149

and G(u) = §Var(u) := SE,|¢ — E,[€]1? is the variance of the distribution p (up to ¢/2). Here,
we use the notation: E,[o(&)] := [¢(x)u(dx).

The finite-dimensional approximation of with N-bank model corresponds to the sym-
metric Bellman semi-linear PDE on [0, 7] x RY

N 2 2 N N
_ g - _ 2 N
™ + § (k+) (T — 2;) 0z, 0™ + 7AmvN + "21\;1 . (7 -m) =5 § 105,07V | %75.2)
=1 =1 i=1
— N = _ 1 N _ N 92 . .
for & = (z1,...,2y) € RY, where we set 7 = > ;. @, and Ay =) ;7 9z, is the Laplacian

operator. We numerically solve (7.5.2)) with Algorithm [§| described in Section . The algorithm
is trained with the forward process in R™:

X = Xp+0AW), Xi~po, k=0,...,Np—1, i=1,...,N.

The choice of a null drift for this training process is intuitively justified by the fact that the
objective in is to incite the log-monetary reserve of the banks to be close to the average
of all the other banks, hence we formally expect their drift to be close to zero.

We test our algorithm by increasing N, and compare with the explicit solution of the limiting
linear-quadratic McKean-Vlasov control problem , which is solved via the resolution of a
Riccati equation (see [BP19]), and is analytically given by

T
v(t,p) = K¢Var(u) + 02/ K ds,
t

where

1
Kt:—i[kﬂrq—

\/Z\/Zsinh(\/K(T — 1)) + (kK + g + ¢) cosh(vVA(T — t))}
VA cosh(VA(T — 1)) + (k4 g + ¢) sinh(VA(T —)’

with VA = /(k+¢)2 + 71 — ¢2, and

K+q+c

VA

We have tested various approximation symmetric networks and different resolution methods.
We list the methods that fail to solve the problem in high dimension:

/TKS ds = %m [cosh(VA(T 1) + sinh(VA(T — 1)) — %(erQ)(T—t).

e First we tried the global resolution method in [EHJ17| by using the network described in
paragraph for v. In this case, we could not obtain exploitable results.

e Then we decided to use the local resolution method [HPW20| with a DeepDerSet approx-
imation approach for Z. We found that the method give accurate results in dimension
below 100 but with a variance increasing with the dimension. Results were impossible to
exploit in dimension 1000. We thus decided to not report the results.

o At last we tested the local resolution methods [HPW20| with classical feedforward networks
using tanh or ReLU activation functions. Two variants were tested with N = 500: the first
one using a network for vV (we stress the dependence of the solution to the PDE on N)
and another network for Dv" giving values not exploitable, and a second version using a
single network for vV and using automatic differentiation to approximate DvY giving a
very high bias and a high standard deviation.

Therefore we only report the case where we use a DeepSet network for U and a second AD-
DeepSet network to estimate Z or a single DeepSet network for ¢ which is differentiated to
approximate Z.

150 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS
N7 | Dimension N | Averaged Std Relative error
15 10 0.259 0.0029 0.11
15 100 0.2871 0.0016 0.018
15 500 0.2866 | 0.00179 0.019
15 1000 0.2877 | 0.00238 0.016
30 10 0.265 0.004 0.09
30 100 0.2892 0.2892 0.010
30 500 0.2897 | 0.00153 0.009
30 1000 0.2899 | 0.00146 0.0084
60 10 0.2655 0.0045 0.092
60 100 0.2894 0.0012 0.010
60 500 0.2894 0.0027 0.010
60 1000 0.2916 0.0014 0.0025

Table 7.8: Systemic risk with ReLU activation function, a DeepSet network for ¢/ and a second

AD-DeepSet network to estimate Z.

Nr | Dimension N | Averaged Std Relative error
15 10 0.2530 0.0074 0.1346
15 100 0.27968 | 0.0051 0.043
15 500 0.2938 0.0067 0.0049
15 1000 0.3084 0.0253 0.054
30 10 0.2494 0.0074 0.1471
30 100 0.2756 | 0.00677 0.057
30 500 0.2885 0.0127 0.013
30 1000 0.2860 0.009 0.02
60 10 0.2519 0.0037 0.138
60 100 0.28253 | 0.0047 0.033
60 500 0.28329 | 0.0108 0.03
60 1000 0.2881 0.0043 0.014

Table 7.9: Systemic risk with ReLLU activation function, a single DeepSet network for ¢/ which
is differentiated to approximate Z.

We test the tanh and ReLLU activation function on this test case using the parameters o = 1,

k=206,¢g=08 c=21n=2 T=1 We report vV estimated with different values of Np
and N at time t = 0 and = = 0 so using g = dp on the figures below. The theoretical solution
obtained when N goes to infinity is 0.29244.
We use a batch size equal to 200, a number of gradient iteration equal to 30000 for the reso-
lution to project the terminal condition on the network and 6000 gradient iterations for other
resolutions. The initial learning rate is taken equal to 1le —4 at the first resolution and 5e — 5 for
other resolutions. The learning is taken decreasing linearly with gradient iterations to be — 6.

On figure we give the results obtained with ReLU activation function using a DeepSet
network for U and a second AD-DeepSet network to approximate Z. The convergence is steady
as Np grows and as the dimension grows leading to a very accurate result for Ny = 60 and
N =1000.

Using a ReLLU activation function, a single network for &/ which is differentiated to approx-
imate Z, we get the results in figure The convergence is still steady but results are not as
good as in table

The replace the ReLU activation function by a tanh one using two networks and the results
are given in table The convergence is not steady and increasing to much N or Ny worsen
to results : it shows the importance of the activation function in this method. At last we do not

7.5. NUMERICAL RESULTS

Np | N | Averaged Std Relative error
15 10 0.2678 0.0061 0.08
15 | 100 | 0.28858 | 0.0144 0.013
15 | 500 0.2491 0.027 0.14
15 | 1000 | 0.27401 | 0.0127 0.063
30 10 0.2725 0.0052 0.068
30 | 100 0.2959 0.0161 0.012
30 | 500 0.2577 | 0.01568 0.118
30 | 1000 0.320 0.0030 0.096
60 10 0.2739 0.0049 0.063
60 | 100 0.2924 0.0309 0.0001
60 | 500 0.3158 | 0.00297 0.079
60 | 1000 | 0.2210 0.004 0.24

Table 7.10: Systemic with tanh activation function, a DeepSet network for ¢4 and a second
AD-DeepSet network to estimate Z.

7 S

Nr =10 Nr =20 Ny = 40

Figure 7.4: Resolution on [0.5,1] in dimension N = 500 : analytic Lions derivatives versus NZ
estimated by the network. DeepSet network for U, AD-DeepSet for Z. ReLLU activation function.

report the test obtained using a ReLLU activation function for the first network and a tanh one
for the second network given results far better than in table but not as good as in tables
[7-8 and [7.9] We also test the accuracy of our algorithm for approximating the L-derivative of
the solution, which is here explicitly given by

Opu(t, p)(x) = 2K (x — By[€])-

For this purpose, using Np steps, we solve the same problem on [t,T], starting at t = % with
a distribution pg equal to real distribution of the solution of taken at date t. After
training, we plot =z > Né\(Xt,m), where X; ~ ,uggN, and compare to the analytic solution:
x +— 0,v(t, po)(x). Some graphs are reported in figure which shows the accuracy of the
approximation.

As mentioned in Section in theory, the proposed methodology should learn the solution
for any initial law pg in the space of measures so that we should be able to solve the problem in
infinite dimension. We test our algorithm by sampling g in the following way: for a sample j,
we pick up a mean M € [~1,1] and a standard deviation o € [0.2, 1] with an uniform law. Then
Xy ~ N(M, 0?) i=1,...,N and as before we use the forward process:

XZ’.]

= X+ oAW, k=0,...,Np—1, i=1,...,N.

After the training part, we try to recover the initial solution and the initial Lions derivative for
a given pg following a gaussian law. Results are given on figure The Lions derivative is
relatively correctly calculated but the initial value can get an error around 15%.

152 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

0.35 1
0.2
0.34 1 o1
0.33 00
—01
0.32
-0.2
031
—03
— —
S ——- Analytic -~~~ Analytic
. —0.4 . :
0 200 400 600 800 1000 20 -1s 10 05 0.0 05

Solution for py = N (—0.8,0.09)

0.3425 {
0.3400
0.3375 9
0.3350 1
0.3325 4
0.3300 1
0.3275 4
— NN ,/1 — NN
032504 __________ L. —=- Analytic —=- Analytic
6 260 460 660 360 1060 7‘3 :Z ,‘1 CI] ‘l 2‘ 3‘
Solution for py = N(0.,0.36) Lions derivative for g = N (0.,0.36)
0.43 1.00
0.42 075
0.50
0.41
0.25
0.40
0.00
0.39
=0.25
0.38
—0.50
0.37 — NN 075 ‘,/(— NN
_________________________________ === Analytic : e === Analytic
6 260 460 660 ﬂdo 10b0 *‘4 *‘2 6 2‘)‘
Solution for pug = N(0.8,0.81) Lions derivative for o = AN (0.8,0.81)

Figure 7.5: Solution and Lions derivative after a single training, with NV = 500, Ny = 30, with
ReLU activation function, a single DeepSet network for I/ which is differentiated to approximate
Z. For the solution, the z-axis corresponds to the sample number and the y-axis is the value of
the estimated solution. For the Lions derivative, the x-axis is the state space and the y-axis is
the value of the derivative.

7.5. NUMERICAL RESULTS 153

0.3

/ mj\
0.2 —/ 0.2
v

0.1 el
= o1 7 - pe’
= =
= f\j = o0 J\,rr
5 X =
~ ~
< < 01
= 00 = ,\J_VH
-0.2 /7
-0.1
—-0.3
—— NN —— NN
Analytic Analytic
-0.4
—0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8 -1.8 -1.6 1.4 -1.2 -1.0 —-0.8 —0.6 —0.4
Xt Xt

—

0.2

(Xt)

0.0

auvlt, £(X0)

-0.2

—0.4 _/ —— NN
Analytic

—0.2 0.0 02 0.4 0.6 0.8

t=0.7

Figure 7.6: Analytic Lions derivative versus N Z estimated by the network. Dimension N = 300,
number of time steps Ny = 30. We use a DeepSet network for ¢/ with ReLLU activation functions,
and Z its automatic derivative.

More generally, if we want to solve the PDE at each time step in the Wasserstein space, we
can use Algorithm [I0] In order to illustrate the exploration of the Wasserstein space we plot
in Figure 7.6 the graphs of (X, NZ(X,X?)),i = 1,...,N, vs X = 9,v(t,Px:)(X?), when X}
~ random mixture of Gaussian laws, for N = 300, Ny = 30. We observe that we are able to
estimate correctly the Lions derivative of the solution (and therefore the optimal control) on
several probability measures through a randomized training. Concerning the solution itself, we
observe similar behavior as in Figure with an error of order 10-15% so we do not show the
plots. Further numerical studies are left to future research to improve the estimation of the
solution with the randomization procedure.

7.5.3 Mean-variance problem

We consider the celebrated Markowitz portfolio selection problem where an investor can invest
at any time ¢ an amount oy in a risky asset (assumed for simplicity to follow a Black-Scholes
model with constant rate of return 4 and volatility v > 0), hence generating a wealth process X
= X% with dynamics

dXt = O[t,Bdt + atl/th, 0 <t< T, X() =9 € R.

154 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

The goal is then to minimize over portfolio control oo the mean-variance criterion:
J(a) = AVar(X7) — E[XF],

where A > 0 is a parameter related to the risk aversion of the investor. Due to the presence of the
variance term Var in the criterion, the Markowitz problem falls into the class of McKean-Vlasov
control problems, and the associated value function v satisfies the Bellman equation on
[0,T] x P2(R) with = 0, o9 = 0,

{h(a:,u,z,w = infaeg [208+ }702?] = —5Z, 2 eR,y >0,

where we set R := 3%/v2.
The associated finite-dimensional PDE with N particles is given by

N _R Y (D ”N)2 d\N
o — £ i =0, tel0,T),x= R
tV 2 P D%Z"UN ’ S [))7:1: (1’1, ,J}N) S () ’ (753)

vN(T,2) = G(f()).

We refer to [IP19] for the McKean-Vlasov approach to Markowitz mean-variance problems (in a
more general context), and we recall that the solution to the Bellman equation is given by

ot 1) = Ae FODE, ¢ — B, [e]]* — Eule] - % R0] (7.5.4)

At m)(x) = 2xe BT D(x — R [€]) — 1, 8,0,0(t, p)(x) = 2xe FTD

and in particular Vj := infq J(a) = (0, 6,) = —z0— 75 [e¥T —1]. Moreover, the optimal portfolio
strategy is given by
af = a(t, X7, E[X]]) = T2 [Xt - E[X{] - o\]
B BT
= S -w-55] o<tz (7.5.5)

where X* = X is the optimal wealth process.
We test our Algorithm [9] described in Section with the training of the forward process

. . R R A ,
X;ﬁ”:X;’N’”+—Atk+£AW,§, X,=uax9, k=0,...,Np—1, i=1,... N,

2\ 2\
which is the time discretization of the wealth process for a constant portfolio strategy a; =
B/(2v2)), which is known to be optimal for the exponential utility function U(z) = —e™2.

This corresponds to the choice of b; = R/(2A) and 0; = VR/(2)). Here, notice that 9,G(u)(x)
= 2\(z —E,[¢]) — 1, and we then use for the initialization at terminal step N, the DeepDerSet
function Zn, ((z:)i, x) = 2A(x — + >, 2;) — 1 (corresponding to the average function s((x;);) =
%+ 37, @), which yields the automatic differentiation DZn,. ((z;);, 2) = 2A(1 — %).

We choose the parameters 8 = 0.15, v = 0.35, A = 1, and the quantile at 99.9% for the
truncation in scheme [PWG21|, and report the results in Table . The optimization parameters
are the same as in the semilinear case, except the batch size taken equal to 50 and the number
of gradient iterations after first step taken equal to 4000. We use a ReLLU Deepset for U and a
AD-Deepset with a tanh activation function for Z. Remark that in this case it is not possible to
use a ReLU activation function for the second network.

Moreover, we test the accuracy of the control approximation. We solve the PDE from T'/2
to T starting with the optimal distribution of the wealth at 7'/2, which is given by:

Xr

log <77(T7;) — 1z — e%T> ~ N(0,x(T/2)),

7.5. NUMERICAL RESULTS 155

Np | Dimension N | Averaged Std Relative error
10 10 -1.0561 0.001 0.005
10 100 -1.0522 | 0.0008 0.0017
20 10 -1.0570 | 0.0008 0.006
20 100 -1.0520 | 0.0007 0.0015
30 10 -1.0578 | 0.0011 0.007
30 100 -1.0535 | 0.0021 0.0029

Table 7.11: Estimate of E[v™ (0, X{,..., X§")] with a deterministic initial condition Xo =1, T =1, 0 =
1. Average and standard deviation observed over 10 independent runs are reported. The theoretical
solution is —1.0504058 when N, Np — 400.

2.00 \\

: \VJ\ N HM taNy

— — NN
-1.10 Analytic 0.25 Analytic
0 10 20 30 40 50 0.0 0.‘2 0.4 0.6 0.8 1.0 1‘2 14
Solution Control
0.5 1.85
1.84
1.0
1.83
1.5 1.82
1.81
2.0 s
N,,J” 1.80
/
2.5 N 179
al - —
10 / Analytic 178 Analytic
0.0 0.2 0.4 0.6 0.8 1.0 12 14 0.0 0.2 0.4 0.6 0.8 1.0 12 14
Derivative Second order derivative

Figure 7.7: Solution and control obtained on the mean variance case at % in dimension 100 with
20 time steps comparing analytic solution to the calculated one (NN). Truncation factor equal
to 0.999.

with

R(T—t) R(T—t) (eRT _ R(T—t))

n(t)= —e 2x K?Q(t) = log(e

e
AN (t)?

+1),

and we calculate the solution obtained at date 7'/2 and the control obtained solving the PDE

(7.5.3) that we can compare to the analytical solution given by (7.5.4) and ([7.5.5)). After training,

using ns = 50 samples of X € (RN)"s following the law of Xz, we calculate the control obtained
2

for each sample in each of the dimension. After sorting X in a one dimensional array, We plot
the result obtained on Figures For the solution, the z-axis corresponds to the sample
number and the y-axis is the value of the estimated solution. For the other plots, the x-axis is
the state space and the y-axis is the value of the corresponding function.

7.5.4 A min/max Linear quadratic mean-field control problem

We consider a mean-field model in which the dynamics is linear and the running cost is quadratic
in the position, the control and the expectation of the position. The terminal cost is encourages

156 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

— NN — NN
Analytic

0 10 20 30 40 50 02 0.4 0.6 0.8 10 12 14

Solution Control

/

-2.0
182
-2.5
W 181 —
Analytic Analytic

02 0.4 0.6 0.8 1.0 12 14 02 0.4 0.6 0.8 10 12 14

Derivative Second order derivative

Figure 7.8: Solution and control obtained on the mean variance case at Z in dimension 300 with 20
time steps comparing analytic solution to the calculated one (NN). Truncation factor: 0.999.

to be close to one of two targets. This type of model is inspired by the min-LQG problem
of [SMLN15|. More precisely, we consider the following controlled McKean-Vlasov dynamics

dX; = [AX; + AE[Xy] + Boy| dt + 0 dW;, Xo ~ po,
where oo = (o) is the control, and the agent aims to minimize the functional cost
T
J@) = B[[f(XuBXan) de+g(Xn)] > Vo = imfJ(a), (7.5.6)
0 «
where the running and terminal costs are given by

(Qx2+Q($—S§3)2—I—Ra2), g(ﬂj) = min{|x—§1|2,]x—§2\2},

N

flz,Z,a) =

for some non-negative constants Q, @, S, R, and two real numbers & and &;.
The value function to the mean-field type control problem ([7.5.6) is solution to the Bellman
(semi-linear PDE) equation ((7.2.4) with » = 0, and

2
hiz,p,2,7) = inf {[Az + AB,[¢] + Ba]z + % (Q” + Qa — SE,[€])* + Ra®) } + -

a€R
1 B*, 1 2.9 2 o’
= [Az+ AE,[¢]]z — =52+ = (Qz° + Q(z — SE,[¢])?) + =,
2R 2 2
where the minimizer in the above inf is given by a = —%z, and the terminal condition G(u) =

E,, min {]5 — &2, 1€ — §2|2} is the expected minimal distance to one of the targets &1, &s.

For the sake of illustration, we present several test cases. The targets are at & = 0.25 and
& =1.75. Hereweused A=A=0,B=1,Q=0,Q =5 = R=1, and a time horizon T' = 0.5.
The initial distribution pg is a Gaussian N (xg,92). We consider the following test cases:

1. 0 =03,29 = 1,99 = 0.2,

7.5. NUMERICAL RESULTS 157
Case | Benchmark Global
1 0.2256 0.2273(0.004)
2 0.2085 0.2098(0.006)
3 0.1734 0.1742(0.005)
4 0.2276 0.2300(0.009)

Table 7.12: Min-LQC example reference solutions : benchmark solution estimated by finite difference
scheme and Algorithm 1 in |[CL22| with N = 10000, Ny = 50, 10 neurons and 3 hidden layers, tanh
activation function, average on 10 runs.

Case | N = 100, Ny =30 | N = 100, N7 = 60 | N = 500, Ny = 30 | N = 500, Ny = 60
1 0.2370(0.013) 0.2382(0.012) 0.2446(0.013) 0.2495(0.09)
2 0.2088(0.002) 0.2092(0.001) 0.2106(0.003) 0.2105(0.003)
3 0.1774(0.007) 0.1784(0.005) 0.1819(0.005) 0.1785(0.008)
4 0.2279(0.005) 0.2264(0.005) 0.2292(0.006) 0.2274(0.006)

Table 7.13: Min-LQC example with DPBD scheme using ReLU activation functions with a DeepSet
network for U and a second AD-DeepSet network to estimate Z, average on 10 runs, standard deviation
in parenthesis.

2. 0 =0.5,z0 = 0.625, 9 = /0.2,
3. 0 =0.3,20 = 0.625, 9 = 0.2,
4. o =0.3,z9 = 0.625, 9 = v/0.4.

References are given in table they are calculated by the PDE method in [ACD10] (in the
context of mean field games; see [AL15| for the adaptation to the PDE system arising in mean
field control) with step size in space and time of size 1072, and the neural network method
referred to as Algorithm 1 in |[CL22| with N = 10000 and N7 = 50.

In table we give the results obtained with different time discretization and dimension
for the DPBD scheme using ReLLU activation functions with a DeepSet network for ¢/ and a
second AD-DeepSet network to estimate Z. Results are very good except for test case 1 where
a small bias appears.

In table we give the same results using a single network. Here the results are very good
for all test cases. Using two networks, the algorithm certainly face difficulties to approximate
the derivatives near maturities which is not required using a single network.

Case | N =100, Ng =30 | N = 100, N7 = 60 | N =500, Ny = 30 | N = 500, Ny = 60
1 0.2289(0.0006) 0.2271(0.001) 0.2290(0.0004) 0.2271(0.0008)
2 0.2083(0.0008) 0.2086(0.0007) 0.2097(0.0008) 0.2089(0.0004)
3 0.1740(0.001) 0.1740(0.001) 0.1742(0.0004) 0.1729(0.0007)
1 0.2276(0.001) 0.2310(0.003) 0.2282(0.0008) 0.2278(0.001)

Table 7.14: Min-LQC example with DBDP scheme using ReLU activation functions and a single DeepSet
network for &/ which is differentiated to approximate Z, average on 10 run, standard deviation in paren-
thesis.

158 CHAPTER 7. SOLVING MEAN-FIELD PDES WITH SYMMETRIC NNS

20
-
f\\‘\,ﬁ 10 \\
! o
\‘*\\ W .
. s
e
ol E
P Er

.
N . \ AVAN

Case 1 Case 2 Case 3 Case 4

Figure 7.9: Control calculated at ¢t = 0 for Min-LQC examples: comparison DBDP using a single
DeepSet network with Ny = 50, N = 500 and global approximation.

Chapter 8

A level-set approach to the control of
state-constrained McKean-Vlasov
equations: application to renewable
energy storage and portfolio selection

This chapter is based on the paper [GPW21]|

M. Germain, H. Pham, and X. Warin. “A level-set approach to the control of state-constrained
McKean-Vlasov equations: application to renewable energy storage and portfolio selection".
In:arXiv:2112.11059, submitted to Numerical Algebra, Control and Optimization, special issue
Stochastic Analysis, Mathematical Finance, and Related Fields.

This last Chapter develops a framework to consider state constrained mean-field control. In
this context we establish a method to write down mean-field control with constraints on the law of
the state. As a consequence, it contains in particular the case of almost sure constraints which are
considered in the mean field games literature [CC18; |CCC18|. The constraint is handled thanks
to a representation result with a level-set approach and an auxiliary unconstrained deterministic
problem in infinite dimension. This problem can be solved numerically by an adaptation of the
scheme from |CL22|. An alternative could have been to consider the resolution of the master
Bellman equation characterizing the auxiliary problem, which is left to future research.

159

160 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

Abstract

We consider the control of McKean-Vlasov dynamics (or mean-field control) with probabilistic
state constraints. We rely on a level-set approach which provides a representation of the con-
strained problem in terms of an unconstrained one with exact penalization and running maximum
or integral cost. The method is then extended to the common noise setting. Our work extends
(Bokanowski, Picarelli, and Zidani, SIAM J. Control Optim. 54.5 (2016), pp. 2568-2593) and
(Bokanowski, Picarelli, and Zidani, Appl. Math. Optim. 71 (2015), pp. 125-163) to a mean-field
setting.

The reformulation as an unconstrained problem is particularly suitable for the numerical
resolution of the problem, that is achieved from an extension of a machine learning algorithm from
(Carmona, Lauriére, arXiv:1908.01613 to appear in Ann. Appl. Prob., 2019). A first application
concerns the storage of renewable electricity in the presence of mean-field price impact and
another one focuses on a mean-variance portfolio selection problem with probabilistic constraints
on the wealth. We also illustrate our approach for a direct numerical resolution of the primal
Markowitz continuous-time problem without relying on duality.

8.1 Introduction

The control of McKean-Vlasov dynamics, also known as mean-field control problem, has attracted
a lot of interest over the last years since the emergence of the mean-field game theory. There is
now an important literature on this topic addressing on one hand the theoretical aspects either
by dynamic programming approach (see |[LP14; PW17; [PW18; CP19]), or by maximum principle
(see |CD15|), and on the other hand the numerous applications in economics and finance, and we
refer to the two-volume monographs |[CD18a; (CD18b| for an exhaustive and detailed treatment
of this area.

In this paper, we aim to study control of McKean-Vlasov dynamics under the additional
presence of state constraints in law. The consideration of probabilistic constraints (usually in
expectation or in target form) for standard stochastic control has many practical applications,
notably in finance with quantile and CVaR type constraints, and is the subject of many papers,
we refer to [ST02; BEIL0; Gel+13; CYZ20; [PTZ21; Bal+21| for an overview.

There exists some recent works dealing with mean-field control under some specific law state
constraints. For example, the paper [CW19| solves mean-field control with delay and smooth
expectation terminal constraint (and without dependence with respect to the law of the control).
In the case of mean field games, state constraints are considered by |[CC18; |(CCC18; FH20;
GM21; |AM21|. In these cited works the state belongs to a compact set, which corresponds to
a particular case of our constraints in distribution. Related literature includes the recent work
[BDK20] which studies a mean-field target problem where the aim is to find the initial laws of
a controlled McKean-Vlasov process satisfying a law constraint, but only at terminal time. The
paper |Dau20| also studies these terminal constraint in law for the control of a standard diffusion
process. Next, it has been extended in [Dau2l| to a running law constraint for the control of a
standard diffusion process with McKean-Vlasov type cost through the control of a Fokker-Planck
equation. Several works also consider directly the optimal control of Fokker-Planck equations
in the Wasserstein space with terminal or running constraints, such as |[Bon19; BF21| through
Pontryagin principle, in the deterministic case without diffusion.

In this paper, we consider general running (at discrete or continuous time) and terminal
constraints in law, and extend the level-set approach |[BPZ15; BPZ16| (see also |[ABZ13| in the
deterministic case) to our mean-field setting. This enables us to reformulate the constrained
McKean-Vlasov control problem into an unconstrained mean-field control problem with an aux-
iliary state variable, and a running path-dependent supremum cost or alternatively a non path-
dependent integral cost over the constrained functions. Such equivalent representations of the
control problem with exact penalization turns out to be quite useful for an efficient numerical

8.2. MEAN-FIELD CONTROL WITH STATE CONSTRAINTS 161

resolution of the original constrained mean-field control problem. We shall actually adapt the
machine learning algorithm in |CL22| for solving two applications in renewable energy storage
and in portfolio selection.

The outline of the paper is organized as follows. Section[8.2]develops the level-set approach in
our constrained mean-field setting with supremum term. We present in Section [8.3] the alterna-
tive level-set formulation with integral term, and discuss when the optimization over open-loop
controls yields the same value than the optimization over closed-loop controls. This will be useful
for numerical purpose in the approximation of optimal controls. The method is then extended
in Section [8:4] to the common noise setting. Finally, we present in Section [8:5] the applications
and numerical tests.

8.2 Mean-field control with state constraints

Let (2, F,P) be a probability space on which is defined a d-dimensional Brownian motion W with
associated filtration F = (F;); augmented with P-null sets. We assume that Fj is “rich enough"
in the sense that any probability measure p on R? can be represented as the distribution law of
some JFy-measurable random variable. This is satisfied whenever the probability space (£2, Fo, P)
is atomless.

We consider the following cost and dynamics:

T
J(Xo,0) = E| /0 6, X2 00, Bixg) s+ 9(XF x|

t t
X = Xp +/ b(s, X¢, s, Pxe q,)) ds +/ U(S,Xg,at,IF’(X?’aS)) dWs, (8.2.1)
0 0

where P(xa o) is the joint law of (X, as) under P and Xp is a given random variable in
LQ(fO,Rd). The control « belongs to a set A of F-progressively measurable processes with
values in a set A C RY. The coefficients b and ¢ are measurable functions from [0, 7] x R? x A x
Pa(RY x A) into R? and R4, where Py(E) is the set of square integrable probability measures
on the metric space F, equipped with the 2-Wasserstein distance W,. We make some standard
Lipschitz conditions on b, o in order to ensure that equation is well-defined and admits a
unique strong solution, which is square-integrable. The function f is a real-valued measurable
function on [0, 7] x R x A x Py(R? x A), while g is a measurable function on R? xPy(R?), and
we assume that f and g satisfy some linear growth condition which ensures that the functional

in (8.2.1) is well-defined.

Furthermore, the law of the controlled McKean-Vlasov process X is constrained to verify
U(t,Pya) < 0, 0<t<T, (8.2.2)
where U = (U!);<;<}, is a given function from [0, T] x Po(R?) into R¥. Here, the multi-dimensional

constraint W(¢, 1) < 0 has to be understood componentwise, i.e., W!(t,u) < 0,1 =1,--- ,k. The
problem of interest is therefore

V= inf {J(X 2 U(t,Pxe) <0, Vte[0,T]}.
olcrel.A{ (0,04) (7 Xt)_) 6[7]}
By convention the infimum of the empty set is +0o0. When needed, we will sometimes use the

notation V¥ to emphasize the dependence of the value function on ¥. Clearly, ¥ < ¥ (meaning
that for each component W' < W [=1...k) implies V¥ < V'V

Remark 8.2.1. This very general type of constraints includes for instance:

o (Controlled McKean-Viasov process X constrained to stay inside a mon-empty closed set
K, C RY with probability larger than a threshold p, € [0, 1], namely

P(XP € K) > pi, YV €[0,T],
with U (t, p) — pr — (k). With pr =1, Vt € [0,T] it yields almost sure constraints.

162 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

o Almost sure contraints on the state, X{* € K¢, ¥Vt € [0,T] P a.s., with

Vit [i) p(da),

where dic, is the distance function to the non-empty closed set K.

o The case of a Wasserstein ball constraint around a benchmark law n; in the form Ws (IP’Xta,nt) <

W (1) = Walp,me) — 6.

This is the constraint considered in [PJ21] at terminal time.

o A terminal constraint in law p(Pxe) < 0 as in [Dau20] with
Wt p) = o)L=
e Terminal constraint in law Pxa € K C Po(RY) as in [BDK20] with
U (t,p) = (1= 1er)li—r.
e The case of discrete time constraints ¢(tz‘,PXf;) <0 fort; <--- <ty with

U (t,pm) — ot ,U)]lte{h,“wtk}'

Even though this problem seems much more involved than the standard stochastic control
problem with state constraints investigated in [BPZ16|, thanks to an adequate reformulation,
it turns out that we can adapt the main ideas from this paper to our framework and construct
similarly an unconstrained auxiliary problem (in infinite dimension).

8.2.1 A target problem and an associated control problem

Given z € R, and a € A, define a new state variable
¢ t
ZP% =2 — E[/ f(s, X& as, Pixa a,)) ds} =z —/ f(8,Pixaa,)) ds, 0<t<T823)
0 0

where fis the function defined on [0, 7] x Po(R% x A) by f(t, V) = Jpdwa f(t, z,a, 1/) v(dz,da).
We also denote by § the function defined on Py(R?) by §(u) = Jga 9(x, p)p(d).

Lemma 8.2.1. The value function admits the deterministic target problem representation
V=inf{zeR [JacAst §Pxq) < Z3% ¥(s,Pxa) <0, Vsel0,T]}
Proof. We first observe from the definition of V' in that it can be rewritten as
V=inf{zeR |TaecAst. J(Xg,a) <z ¥tPxs) <0, Vtel0,T]}.

Next, by noting that the cost functional is written as

T
J(Xo,a) = /0 Pt Pixpan) dE+5(Pxs),

the result then follows immediately by the definition of Z*“ in (8.2.3)). Ul

8.2. MEAN-FIELD CONTROL WITH STATE CONSTRAINTS 163

We want to link this representation to the zero-level set of the solution of an auxiliary
unconstrained control problem. Define the auxiliary unconstrained deterministic control
problem:

k
YizeR e inf [{@\(PX%) ~Z: e+ Y swp {\pl(s,ngm}, (8.2.4)
acA 1= s€0.7]

with the notation {x}, = max(x,0) for the positive part. We see that Y¥(z) > 0.
By classical estimates on McKean-Vlasov equations we can obtain continuity and growth

conditions on Y. The proof of Proposition is given in Section [8.2.3]
Proposition 8.2.1. YV verifies

1. YV is 1-Lipschitz. For any z,7 € R
V¥ (2) = YY) < |z — 7).
2. YV is non-increasing. Thus if V¥ (29) = 0 then YY(2) = 0 for all z > 2.

Define the infimum of the zero level-set
zZ¥ .=inf{z R | Y¥(2) = 0}. (8.2.5)

We prove a first result linking the auxiliary control problem with the original constrained
problem. Solving this easier problem provides bounds on the value function, by making the
constraint function vary.

Theorem 8.2.1. 1. If for some z € R 3 a € Ast. g(Pxa) < Z3%, U(s,Pxe) <0, Vs €
[0, T] then Y¥(2) = 0.

2. If VY is finite then YY(VY) = 0. Thus Z¥ < VY.
3. Define 1, = (1,---,1) € R*. We have the upper bound

VY < inf Z¥tele,
e>0

To sum up, when V¥ < +00, Theorem provides the bounds

zZ¥ < v¥ <inf Z¥tel,
e>0

The proof of Theorem is given in Section [8.2.3]

Remark 8.2.2. In the easier case where optimal controls exist for the auziliary problem, as
assumed in [BPZ16], and when ¥ is continuous, similar arguments as in [BPZ16] (and Section
directly prove that Z¥ = VY and that an optimal control o associated to the auziliary
problem Y¥ (V) is optimal for the original problem. However some difficulties arise when trying
to remove this assumption.

Remark 8.2.3. If there exists ¢g > 0 such that VY10l < oo then ZYFeole < V¥+eols < o0 by
Theorem [8.2.1 Thus the right-hand side of the previous inequality is finite.

On the other hand, if we consider for instance a one-dimensional terminal constraint in law
¢p(Pxq) <0, it is represented with

W (t 1) = p(p)Ler,

and we see that the constraint V(t,n) + e < 0 would never be verified for any t < T and any
>0, hence V¥ = .

164 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

In view of the above example in Remark we introduce a modified constraint function
in order to deal with discrete time constraints, and also with a.s. constraints. Given a constraint
function W(¢, 1), we define

k
\I/H(t, /_,L) = \Ij(t, ,LL) — HZ]l{\ljl(t”u)go}el, (826)
=1

with x > 0 and ¢; the I-th component of the canonical basis of R¥. Then it is immediate to see
that

V\If :Vﬁﬁ7 y\p :y@7 zv :Z@.

Remark 8.2.4. Notice that by taking eq < k, and assuming that V¥ < oo, we have Z¥Vr+eolk
< 0. Indeed, by applying Theorem to Wy, we have Z¥xteolk < V¥nteole - Moreover, by
observing that an admissible control for the original problem V¥ is also admissible for the auwil-
iary problem with constraint function U, + eoly, by definition of W, this implies that V' Yx+e0lk
< 00.

8.2.2 Representation of the value function

Now we prove under some assumptions on the constraints the continuity property 2V =
inf.~o Z¥<T¢1% in order to obtain a characterization of the original value function V¥. The
result relies on convexity arguments.

Lemma 8.2.2. (z,¢) € R xR+ YY+el(2) s jointly convex.
The proof of Lemma [8.2.2]is given in Section [8.2.3

Proposition 8.2.2. YV being conver, positive and non-increasing, if Z¥Y < oo then YV is
decreasing on (—oo, Z¥] then Y¥(2) = 0 on [ZY, c0).

Proof. By contradiction, if Y¥(a) = Y¥(b) > 0 with a < b then by monotonicity Y¥([a,b]) =
{¥Y¥(@)} and 0 € 9Y¥(a) thus Y¥(z) > Y¥(a) > 0 Vo € R which is not the case because
Z¥ < 00. As a consequence, YV is decreasing. Then by continuity of YV and definition of Z¥
we obtain y‘I’(Z‘I’) =0. O

Theorem 8.2.2. Assume that V¥ < 0o. Then we have the representation
z¥=vY.

Moreover e-optimal controls of for the auziliary problem YY(VY) are e-admissible e-optimal
controls for the original problem in the sense that

J(X0,0°) < VY 4¢, sup U(s,Pyac) <e.
0<s<T ®

Proof of Theorem[8.2.9. We prove the continuity of Z¥» along the curve Z¥+*elx for ¢ € R
where U, is defined in (8.2.6).

Let kK > 0 and g9 < k. By Remark we know that Z¥++e0lk < oo, We consider the
optimization problem

d:eeR—inf 2+ x=(e,2),
z

where x= is the indicator function of the non-empty admissible set £ = {(e,2) € R2 ‘ PUrtely (2) =
O} g {(6,2’) G RQ | y\lf;g‘f‘Elk (Z) S O}, name].y

8.2. MEAN-FIELD CONTROL WITH STATE CONSTRAINTS 165

e) = {0 if (c,2) €Z

+o0o otherwise.

Note that Z¥=+elk = inf{z | Y¥r*+elr(2) = 0} = ®(¢). By Proposition YVetele(z) is
jointly convex thus = is convex. Hence, (g,2) + z + xZ(g, 2) is jointly convex. Now ®(e)
is convex as the marginal of a jointly convex function. As a consequence, ¢ € R — ®(¢) is
continuous in zero by noticing that ¢ € (—o0,g0) + ®(g) < Z¥»+e0lk < 400 and applying
Lemma 2.1 from [ET99]. As a consequence Z¥* = inf.~q Z¥++¢1¢, Therefore by Theorem
applied to U,, we obtain Z¥Y* = V¥ Then recalling that ZY = 2%+ V¥ = V¥ the result
follows.

Concerning the controls, take ¢ > 0, and consider an e-optimal control a® € A such that

1

k
~ af \I',of
(OF) =27 ") 43 sup (Wl Pyge)}y <c
1=1 €%

The two terms on the 1.h.s. being non-negative, they both are smaller than € and thus
GPF) < 227 te, and Ul(s,Pyae) < e, Vs €[0,T], Vi=1,--- k.

Hence

J(Xo,05) < Z2¥ 4e=VY +¢
and

\I/(s,IP’Xge) <e Vsel0,T].

8.2.3 Proofs

Proof of Proposition[8.2.1] 1) By the inequalities |inf, A(u) — inf,, B(u)| < sup,, |A(u) — B(u)|,
| sup,, A(u) — sup,, B(u)| < sup,, |A(u) — B(u)|we obtain for any z,z’ € R

V¥ (2) = Y ()

k
= | inf [{/g\(IP’X$) - Z;’a}q_ + Z sup {\I’Z(S,ng)}_i_}
acA 1—1 SE[t.T]
, k
— inf [gpxa — 77 4 qup {Ul(s, Pya }
i1 [0x) = 20+ 32 s (¥)]
k k
~ z,a ~ 7 l l
< sup {g(Pxg) — Z7:" b — {G(Pxg) — Z7%}+ + D sup {W'(s,Pxa)}y — Y sup {¥!(s,Pxa)}
acA =1 SE[t.T] =1 SE[t.T]
< sup |27 — 23 = |z = 2],
acA
by 1-Lipschitz continuity of x — {z},.
2) Denote by
k
L¥(z,0) = {§(Pxg) — Z7°}+ +) SEI}]{‘I’Z(&PX;I)}JN
=1 se|0,

so that YY(z) = infaea LY (2,). Then, it is clear that

166 ~CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

2<2 = LY(¢,a) < LY(z,0)
hence by minimizing, the same monotonicity property holds also for the value function

2 <2 = YY) <YY(2).

Proof of Theorem[8.2.1 1) 3 a € A, §(Pxe) < Z; and ¥(s,Pxa) <0, V s € [0,T]. Therefore

k

{9(Pxg) = 23"} +) sup {¥'(s,Pxg)}+ =0

and by non-negativity of J we obtain Y¥(z) =0

2) By continuity of) (Proposition [8.2.1)) and 1), we obtain Y¥ (V%) = 0 by taking admissible
e-optimal controls for the original problem and taking the limit ¢ — 0. By definition of Z¥ the
property is established.

3) We assume that exists g9 > 0 such that ZY+%0lx < joo. If it is not the case then
inf.~g ZY*elk = 400 and the inequality is verified. Let 0 < € < gq satisfying Z¥+% < co. By
continuity of) in the z variable (Proposition [8.2.1), Y¥*+¢!*(2¥+ex) = 0. Then by definition
of Y¥Felk for 0 < & <e,3 o € A such that

k

N <! Wtel;, e

@) - 28+ Y s (WP eh <
=1 se|0,

The two terms on the 1.h.s. being non-negative, they both are smaller than ¢’ and thus

Z\II+51k ’Oéel

9Py) < Z7 +¢, and Ul(s,Pya) <&’ —£<0, Vs€[0,T], VI=1, -,k

Hence

J(Oza/) S Z\If+51k +€/

and

U(s,Pxa) <0, Vs el0,T].

Therefore by arbitrariness of &’ verifying 0 < & < e we conclude that V¥ < Z¥+elk By
arbitrariness of ¢ verifying 0 < € < g it follows

VYV < inf Z¥tele = jnf ZVFelk
€€(0,e0) e>0

where the last equality comes from the non-increasing property of Z¥+elk wrt. €. Ul

8.2. MEAN-FIELD CONTROL WITH STATE CONSTRAINTS 167

Proof of Lemma[8.2.2 1. Let 0 <A < 1. Then for z,2/,e,/ € R

L‘I’+/\€1k+(1*)\)€/1k ()\Z + (1 _ A)Z/, O[)

= {>‘<§(]P)X%) + /OT F(5,P(xaa,) ds — Z) +(1=A) <§(PX%) + /OT F(5,P(xaa,) ds — ZI>}+

k
+ Z sup {AU!(s,Pya) + e + (1 — \)W!(s,Pxa) + (1 — N)e'}+
=1 s€[0,7
T _ T _
S MIExg) + [Tl Pocran) ds=2he + (=N @Ex)+ [(5. Peran) ds =
k
+) sup MU(s,Pxg) + ety + (1= N{T (s, Pxa) + '} 4
=1 SG[O,T]
<)\L\Il—i—slk(z’a) + (1 _)\)L‘I’”ra'l’“(z',a)
by convexity of x — {z}. By minimizing over the controls, the result follows. O]

8.2.4 Potential extension towards dynamic programming

If one wants to use dynamic programming in order to solve the auxiliary control problem, it
requires to write it down under a Markovian dynamic formulation. Define

S S
X};’&’a = §+/t b(“’ Xitlé’a’au’P(Xi’g’aau)) du +/; o(u, thf&a7 a“’P(ij&’a,ocu)) AWy,

for t € [0,T], and & € L?(F;,RY), and notice that we have the flow property

.6,
XEoo = XX P 0 = P
s Xr

X tea , VO<s<r<T,

5,X¢

coming from existence and pathwise uniqueness in (8.2.1)). We thus consider the cost function

T
J(t,& a) = E[/ f(s,Xg’g’o‘,aS,IF’(X;,g,ayas)) ds +g(X§i£7a,PX;§,a):|,
t
and the value function
V(t7 é) = igg{J(t7 67 a) ‘ \P(87 PXta€7(‘Y) S 07 \v/ S e [t7 T}}'

Then we introduce the auxiliary state variable

Zﬁ’é’z’a =z — IE[/ f(S7X§7£7a,a5,P(X§,§,a a.)) ds} =2z — / f(S,P(Xt,g,a a‘)) ds, t<r<T,
t b S t S 9 S

and the auxiliary value function is given by
YY(t,¢,2) = inf {{gmxz,&,a) — 28 (T)}y + sup {xyl(s,th,g,a)h)]
acA T SE[t,ul s

= inf LY(¢) 8.2.7
Inf (t,&, 2,) (8.2.7)

We can treat the non-Markovian formulation of this problem by introducing as in [BPZ15| an
additional state variable Y, &®™ = (Zle supse[t,u]{\lll(s,IP’Xt,g,a)}+) Vm > 0 for u > t with

m € R and the value function

Y — 3 I~ t7£7a7m — 3 v
y (tv 57 2y m) - ctlelfél [{Q(Px?ﬁva) - Ztcf£7Z(T)}+ + YT :| _‘ Och€1f4L (ta 57 2, M, a)-

168 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

The two problems are related by

k
yqj(ta 57 Z) = yw(ta €7 Z, Z{\Pl(t,]P)X:’fﬂl)}'f')‘
=1

With this formulation, the problem becomes a Mayer-type Markovian optimal control
problem in the augmented state space [0, 7] x L?(Fp, R?) x R x R. As mentioned in [BPZ15|,
this procedure is used for instance for hedging lookback options in finance, see e.g. |GHLT14].
Now the infimum of the zero level-set is given by

ZY(t,6) =inf{z € R | Y (¢, 2,0) =0}.

Indeed note that fq’(t,g, z,m) =0 <= m <0 and ?‘I’(t,g, 2,0) = 0.

The Lipschitz and convexity properties of the value function are proven exactly as in Propo-
sition but we detail here the continuity in space and in the running maximum variable
m.

Assumption 8.2.1. U, f g, b, 0 are Lipschitz continuous uniformly with respect to to other vari-
ables. Namely exists [¥],[f],[g], [b], [0], L > 0 and locally bounded functions h,£, £ : [0, +00)
[0, 4+00) such that for any t € [0,T], z,2' € R%, € Po(RY),v,v' € Po(RExA), a € A

Wt 1) — W)] < (W)
£t 2ra,0) — £t 00| < [f)(x — 2] + Walo,)
l9(, 1) — g(z, 1) < [g](lz — 2] + Wa(p, 1)
b(t,z,a,v) —b(t, 2’ a,v)| < [b](|]z — 2’| + Wa(v,V))
lo(t,z,a,v) — o(t, 2, a,V)| < [o](|z — 2| + Wa(v, 1))
b(t,0,a,00 ® p)| +[o(t,0,a,60 @ p)| + | f(t,0,a,60 ® p)| < L
|f(t 2, a,v)] < A(||v]|2) (1 + [2]?)
|9,)| < E(llpll2) (1 + |]?)
(W (t,)] < L(pll2)-

Proposition 8.2.3. Under Assumption y is Lipschitz continuous: there exists C > 0
such that for any t € [0,T], £, € LQ(}},Rd), m,m’ € R

@\P(t,g,z,m) —yw(t,f’,z’,m’)\ <lz =2+ |m—-nm'|+CVE|£ - &2

Proof of Proposition[8.2.5 By the inequalities |inf, A(u) — inf, B(u)| < sup, |A(u) — B(u)],
| sup,, A(u) —sup, B(u)| < sup, |A(u)—B(u)|, and |[aVb—cVd| < |a—c|V][b—d| < |a—c|+|b—d|

8.2. MEAN-FIELD CONTROL WITH STATE CONSTRAINTS 169

we obtain for any &,& € L2(F;, R?) (if ¥ is not continuous consider & = ¢')
’y (tvgvzam) _y (t,fl,Z/,m/”
< sup (Byge) ~ ZH5°) — (8Bygen) - 2t

acA T 7

sup {\II(S,]P)X;,&,Q)}+ V'm — sup {\II(Sa]P)X;,S’ya)}Jr N m/|

s€lt,T) s€(t,T]
< D[Py) — G o) | + 125 — 289 1| sup {W(s,Pyrea)}s — sup {T(5,P cora)}s]
acA T T s€t,T] ® s€t,T) s

+ |m —m/|)

< sup ([E[g(X7"", P

) - g(X%£/7a7 P
acA

X XtT,g/,a)H + |z — 72|

T T
L o5 B a0 [03 0,)]
t t S ys

+sup sup [{U(s,Pyrca)by = {U(s, P rea)bi] +[m—m'|
acAselt,T) ® s

< [g] sup (E|XE5 — XxhEe
acA

+ Wg(]P’X;g,a,]P’)+ |z =2+ |m—m/| + [¥]sup sup Wa(Prea,P

t, ¢ a
X7 acAse(t,T]

+T[f] sup{E[sup |XL5* = XL 4+ sup Wo(Pyrea, P rera)},
acA s€t,T) s€t,T] s s

by Lipschitz continuity of ¥,z +— {z};. We recall the estimates
sup Wa(Pyrea, P rea) = \/ sup Wo(Pyrea,Pyrea)? < CVEE -2
selt,T] ° s selt,T] ° s

| <CE[¢ —¢| < CVE[E— ¢,

E[sup |X5& — X1
s€t,T)

obtained by standard arguments (see e.g. the proof of Proposition 3.3 in |[CP19]). Then the
result follows.

O

Proposition 8.2.4 (Law invariance properties). Under Assumption we have law invari-
ance of ?w and ZY, namely if £, are Fi-adapted square integrable with the same law, for any

(t,z,m) € [0,T] x RxR

4 ¥

y (t7 g’ Z7 m) = y (t’ 777 Z7 m)

Z2¥(t,6) = 2" (t.n).
Therefore we can define the lifted functions y¥,z¥ on [0,T] x P2(R%) x R (respectively [0, T] x
Pa(RY) by y¥(t,Pe, z,m) := y@(t,ﬁ,z,m) and 2¥ (t,Pg, z,m) == ZY(t,&,2,m).

Proof. Apply the same arguments as in Theorem 3.5. from |Cos+20] to the unconstrained
Markovian value function ¥ on the extended state space. In particular use the continuity of
VY from Proposition and notice for a given control « that in Step 1 of Theorem 3.5. from
|Cos+-20| the equality in law

((X?g’a)se[t,T}) (ZE’&Z’Q)SG[@T]? (Yzfé’a’m)se[t,T]v (as)sé[t,T])
L z m
= ((Xﬁ’”’ﬁ)se[t,ﬂ, (Zﬁ’t’n’)selt. 1] (qu’n’ﬁ’)selt,1)> (Bs)sele,1))s

holds true with as defined in Lemma B.2. from [Cos+20| (verifying in particular the equality
in law as = as(§,Ug)) and s = as(n,U,) where U, (respectively Ug) is a Fi-adapted uniform

170 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

random variable on [0, 1] independent of 7 (respectively £). Then use the definition (8.2.5) to
obtain the same law invariance property for ZY¥ too. O

Theorem and Theorem [8.2.2] are still valid in the the dynamic case, by applying the
exact same arguments. More precisely for any (t,€) € [0,T] x L?(F;, RY), if V¥(t,£) < oo then

Z¥(1,6) < V(1,8 < inf 2V €).

Similarly, arguments like in Theorem [8:2.2] prove that
2Y(t,8) = V¥ (t,9),

if V¥(t,¢) < oo.

If the value function is law invariant (see Proposition and Theorem holds true,
we expect y to be formally (by combining arguments from |[BPZ15; |CP19|) characterized by a
Master Bellman equation in Wassertein space with oblique derivative boundary conditions.

8.3 An alternative auxiliary problem
We study the constrained McKean-Vlasov control problem

V= inf {J(Xo,0): W(t,Pxp) <0, V1€ [0,T], o(Pxz) <0},
(oS

where we now assume that the running constraint ¥ is continuous (hence, no discrete time

constraints, see Remark , and with a terminal constraint function ¢. We now consider an
alternative auxiliary control problem as in [BPZ16|:

k T
w(z) = inf [{5(Bxp) = Zi"}e + Y /0 {05, Pxg)}s ds+ {p(Pxg)}+|. (831)
=1

Compared to the control problem of the previous section, the penalization term of the
constrained function W is in integral form instead of a supremum form. It follows that this
problem is not path-dependent, and we shall show that it also provides a similar representation
of the value function by its zero level set:

V = inf{z € R: w(z) =0},

but under the additional assumption that optimal controls do exist. Actually, we prove this
result in the more general case with common noise in the next section.

The mean-field control problem is Markovian with respect to the state variables (X7,
Pxe, Z;"), and it is known from |Cos+20] that the infimum over open-loop controls a in A
can be taken equivalently over randomized feedback policies, i.e. controls « in the form: o =
a(t, X, Pxe, Z7%,U), for some deterministic function a from [0, 7] x R* x P(R?) x R x[0, 1] into
A, where U is an Fp-measurable uniform random variable on [0, 1].

Let us now discuss conditions under which the infimum in can be taken equivalently
over (deterministic) feedback policies, i.e. for controls a in the form: oy = a(t, X{*, Pxae, Z,
for some deterministic function a from [0,7] x R? xP(R?) x R into A. This will be helpful for
numerical purpose in Section We assume on top of Assumption that the running cost
f, the drift b and the volatility coefficient ¢ do not depend on the law of the control process.
We also assume that the running cost f = f(¢,z, u) does not depend on the control argument.
The terminal constraint function ¢ should also verify the same assumptions as the terminal cost
function g, namely Lipschitz continuity and local boundedness (see Assumption .

8.4. EXTENSION TO THE COMMON NOISE SETTING 171

In this case, the corresponding dynamic auxiliary problem of (8.3.1)) is written as

k T
w(t, p,z) = inf [{g(px;m) Sy 1Y /O {U!(5,Pyrea)}s ds+ {cp(nmx;g,a)}gs}ag)
=1

acA
r r
Xﬁ@a:u/ b(s, X5 a,, Py tga)ds+/ o(s, X5 oy, P, tga) dWy, €~ p,
t t

‘a
Zbema = 4 _/ f(s,lP’X;,g,a) ds, r>t,
t

where f is the function defined on [0,7] x Pa(R?) by f(t, 1) = [ga f(t, 2, 1) p(dz). Note that
we have applied Theorem 3.5 from [Cos+20] to obtain the law invariance of the auxiliary value
function which can be written as a function of the measure pu. From Theorem 3.5, Proposition
5.6. 2), and equation (5.17) in |Cos+20] (see also Remark 5.2. from |[CP19| and Section 6 in
[PW18|) we see that the Bellman equation for problem is:

Ow(t, i, z) + Elinfaea{b(t, &, a, p)0uw(t, p, 2)(£) — F(t, 1) 0w (t, p, 2)
FLTr(00 T (€, a, 0)3pdwit 1, 2)()}] + S LU (E) be = 0 for (£ 4, 2) € [0,T) x Py(RY) x R
w(T, 1, 2) = {G(1) — 2} + {p(1)}+ for (i, 2) € Po(R?) x R.
(8.3.3)
By assuming that w is a smooth solution to this Bellman equation, and when the infimum in

- 1
e (b(t,, 0, 1) (1,1, 2) () — (b, 0wt . 2) + 5 Trloo T (1,0, w)0uByw(t, 1 2)()
is attained for some measurable function a(t, x, i, z) on [0, T] x R? x P(RY) x R, we get an optimal
control for (8.3.1)) given in feedback form by o = a(t, Xta*,IF’X?* ,Z7%), 0 <t < T, which shows
that one can restrict in (8.3.1]) to deterministic feedback policies.

8.4 Extension to the common noise setting

We briefly discuss how the state constraints can be extended to mean-field control problems
with common noise. In this case, in contrast with the previous section, we need to assume
the existence of optimal control for the auxiliary unconstrained problem. It is similar to the
assumption made by [BPZ16|. Let W9 be a p-dimensional Brownian motion independent of W,
and denote by FY = (F?); the filtration generated by W°. We consider the following cost and
dynamics:

T
Ty =B[[508 0Bl)+ 9(X2.)]

axy =o(t, Xﬁ,at,P(V)Vga’at)) dt + o (t, X?,ozt,IP’&iayat)) AW, + 0° (£, X2, at,P&(}’at)) awo.

where IP’(XD‘) is the joint conditional law of (X{, o) given W. The control process o belongs
to a set A of F-progressively measurable processes with values in a set A C RY.

The controlled McKean-Vlasov process X is constrained to verify ¥(¢, IP’)V(Vg) < 0and gp(IP’)Vg%) <
0. The proofs still follow the arguments from |[BPZ16| but are slightly more involved than in
Section [8:2 due to the additional noise appearing in the conditional law with respect to the
common noise. We refer to [PW17; DPT19| for the dynamic programming approach to these
problems. The problem of interest is

VO = inf{J(a) | W(tPRR) <0, ¥t e 0,7, o(P) <0},

172 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

8.4.1 Representation by a stochastic target problem and an associated con-
trol problem

Given z € R, a € A, and B € L?(FY,RP), the set of RP-valued F°-adapted processes 3 s.t.
E[f,|8:2dt] < oo, define

t t
th’a”B =z —/0 f(S,IP’&;aS)) ds —l—/o B dWY, 0<t<T. (8.4.1)

Lemma 8.4.1. The value function admits the stochastic target problem representation
VO =inf{z €R |3 (a,f) € Ax L*(F*,RP) s.t. G(PYa) < 237,
W(t,PYa) <0, V1 €[0,T], p(Pa) <0, Pas}.

Lemma [8.4.1] is proven in Section [8.4.2
Define the auxiliary unconstrained control problem

k T
o — 3 - WO _ Zvavﬁ l WO WO
Uz) = <a,g)€A§HLf2<FO,Rp)E[WX%) Z; }++§l:1j /0 [0'(s, P} ds + {o(P (B 2)

for z € R. We notice that U(z) > 0.

Proposition 8.4.1. U is 1-Lipschitz. For any z,2' € R
U(z) —UE)| < |z = 2.

Proposition (8.4.1)) is proven exactly as (8.2.1]).

Assumption 8.4.1. Problem (8.4.2) admits an optimal control for any z € R and the constraint
function (t,p) € [0,T] x Po(RY) = W(t, u) is continuous.

Remark 8.4.1. Please note that the integral penalization in does not allow to consider
discrete times constraints (except at terminal time) because the contribution to the integral would
be null and the constraint function ¥ would be discontinuous in time. We could consider discrete
time constraints in the objective of the auziliary problem by adding a sum of functions of P%S

for some (t;); € [0,T] but it would lose its standard Bolza form.
Define Z = inf{z € R | U(z) = 0}.

Theorem 8.4.1. 1. If 3 (a,) € A x L*(F*,R?), G(PYy) < Zi%P (s, PY) <0, Vs €
[0,T], and (p(IP’}/(V;) <0, P as. thenU(z) =0. Hence Z < V0.

2. The value function verifies VO < Z thus VO = Z. Moreover optimal controls for the
problem U(Z) = 0 are optimal for the original problem.

Theorem [8.4.1] is proven in Section [8.4.2]

8.4.2 Proofs in the common noise framework

Proof of Lemma[8.4.1 We first observe that

T
VO=inf{zeR |Jac Ast. E[/ Fs. P o) ds+§(]P>}’(V;)] <
0 s

U(s, PRy) <0, Vs €0,7], P as.).

8.5. APPLICATIONS AND NUMERICAL TESTS 173

We need to prove that for z € R

3 (a, B) € Ax L2(F*, RP) s.t. G(PYa) < Z3™7, (s, PH) <0, Vs € [0,7], p(Pa) <0, PP as.,
(8.4.3)
and

T
Ja e Ast. E[/ F(s.Ple o)) ds+§(P)‘@/§)} <z U(s,PRa) <0, Vs €[0,T), p(PRa) <0, Pas,,
0 s 1 %s s

(8.4.4)
are equivalent. It is immediate to see that (8.4.3) = (8.4.4) by taking the expectation and
noticing that the It6 integral is a true martingale. Conversely, assuming (8.4.4), the martingale
representation theorem provides a process 3 such that

T
~ 0 R
z > E[/o F(5:P{a o)) ds + Q(PI)A(/%)}
T wo ~mW?o 4 0
= A f(S,]P)(Xg7as)) ds +g(IPX%) —) s dWS .
Thus by ({8.4.1]) R
777 > g(PYa), P as.,

and we see that (8.4.4) = (8.4.3). Then the result follows. O

Proof of Theorem 841, 1) 3 (a, 8) € A x LX(F°,R?), G(PYa) < ZP w(s,PYy) <0, Vs €
[0,7] and cp(IP’g{V;) <0, P° a.s.. Therefore

k T
~ 0 0 0
GOYa) — 22)+ Y /0 {05, PYa) 1 ds + {p(Pa)} 1 =0, P as.
=1

and by non-negativity of & we obtain U(z) = 0. Then with optimal controls a*, * we obtain
UV = 0. By definition of Z the property is established.

2) By 1) and the continuity given by Proposition we obtain U(Z) = 0. Then by
Assumption 3 (o, B) € A x L?(F°, RP) such that

k T
B @) — 27)e + 3 [AP s+ LoD =0
=1

The three terms on the L.h.s. being non-negative, they are in fact null P a.s. Thus
(PYe, Z7*") € Epi(g), U(s,PXa) <0V s €[0,7], andp(Pa) <0 P as.

by continuity of ¥ and of s — IP)VKS , which means V? < Z. By 1) it yields V? = Z. As a
consequence the previous proof provides an optimal control « for the original problem. O

8.5 Applications and numerical tests

We design several machine learning methods to solve this problem. We discretize the problem
in time, parametrize the control by a neural network and directly minimize the cost. When the
constraints are almost sure, we can sometimes enforce them by choosing an appropriate neural
network architecture, for instance in storage problems. A more adaptive alternative is to solve
the unconstrained auxiliary problem. We propose an extension of the first algorithm from |[CL22|
to achieve this task. Thus we obtain a machine learning method able to solve state constrained
mean field control problems.

174 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

8.5.1 Algorithms

We solve the auxiliary problem in the simpler case without common noise with a first algorithm.
We fix a relevant line segment K of R on which we are going to explore the potential values of
the problem. For instance we know that the value is greater than the value of the unconstrained
problem V therefore it is useless to compute the auxiliary value function for z < V. We discretize

the problem in time on the grid ¢, := % We call At = % and the Brownian increment

AW; =Wy, =Wy, For j=1,---, N, AWij (respectively Xg) correspond to samples from N
independent Brownian motions W7 (respectively from N independent random variables with law
o). For training we discretize K by using N points. We choose ¢ as a small parameter, typically
of order 1076, We refer to [BGZ21] for results on the numerical approximation of level sets with
a given threshold in the context of constrained deterministic optimal control. We propose the
following extension of the Method 1 from |CL22|. It is tested in Subsection It can indeed
also be used to solve unconstrained problem.

Remark 8.5.1. We point out that adding an additional parameter A > 0 in front of the constraint
function does not modify the representation results. In that case we solve the following auxiliary
problem

kT
VW i=z€R— inf |{5(Pxg) — Z2%% + AZ/O {W!(s,Pxa)}s ds + Acp(PX%)]
=1

We discretize the problem in time and use a neural network by time step, since a single
network taking time as input is usually not sufficient enough for complex problems, as shown in
[War21b|. In view of the discussion about closed-loop controls in Section [8.3] the neural network
representing the control at each time step takes as inputs the current states X and Z;** where
z is taken on a discretization of K. The method is described in Algorithm [11] with an example
in Section [8.5.2] Solving (8.3.3) with the approach of [Ger+22] would provide another numerical
method for mean-field control with state constraints. The extension to the common noise case
is given in Algorithm [12] where the neural network for the control at each time step t; takes in
addition as input the current value of the common noise Wt(z),. Notice that in general, the control
may depend on the past values of the common noise, which could be taken into account in the
neural network by taking as inputs the past increments of the common noise AWY, ..., AW |,
where AW = Wt% . — W{. The neural network for the auxiliary control 3 at each time ¢; takes
as inputs the current state Zf "* and the current value of the common noise. An illustration is
given in Section [8.5.3

8.5.2 Mean-variance problem with state constraints

We consider the celebrated Markowitz portfolio selection problem where an investor can invest
at any time ¢ an amount a4 in a risky asset (assumed for simplicity to follow a Black-Scholes
model with constant rate of return r and volatility o > 0), hence generating a wealth process X
= X% with dynamics

dX; = ayr dt + oo dWy, 0<t<T, Xg =129 €R.
The goal is then to minimize over portfolio control o the mean-variance criterion :

inf J(a) = AVar(Xg) — E[X?] (8.5.1)

where A > 0 is a parameter related to the risk aversion of the investor. We will add to this
standard problem a conditional expectation constraint in the form

BIX? | X2 < 6] > 6, if P(X® < 6) >0,

8.5. APPLICATIONS AND NUMERICAL TESTS 175

Algorithm 11: Algorithm to solve mean-field control with probabilistic constraints

For a discretization z; < --- < zpy of K, minimize over neural networks (o)ico,.... Ny—1:
R? x R — RY the loss function

M
Z WA (Zm)
m=1
with wy defined by
L o1 N k Nr L
wa(e)i= B[2 0(Xhp i Dby,)~ Zihe + A 20 D0 (b D0)
=1 j=1 m=1 i=1 j=1

1 N
ato (300, 1)
j=1

/* Auxiliary problem */
and fori=0,--- , Np—1,j=1,--- /N

X1 = X) +0(t, XT, 0a(X], Z0%), 1) At + o (i, XF, eu(XT, Z2%),) AW, X3 ~ o

N
1
Zi =20 - NZ F(ti X1 oa (XL Z7%)) A, 25" =
1 N
‘]:

/* Particle approximations */
Define o* as the solution to this minimization problem.
Then, compute Vy = inf{z;, i € [1, M] | wa(z) < e} with @ = a* in the dynamics.
/* Recovering the cost of the original problem */
Return the value Vj and the optimal controls &; : x — o (z, ZZ-V 0’0‘*) for
i=0,-- ,Np—1.
/* Recovering the control of the original problem */

176 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

Algorithm 12: Algorithm to solve mean-field control with probabilistic constraints and
common noise

For a discretization z; < --- < zpy of K, minimize over neural networks (o)ico,... Ny—1:
R?x R x R? — R? and (Bi)ico,- Np—1: Rx RP — RP the loss function

M

> walzm)

m=1
with wy defined by

1 N 1 N k Nt 1 N
wa(2) = E[{ Y 0(Xhp o Dby) = Zie b+ A D S0t D0)b A
=1 j=1 T m=1 i=1 j=1
1 N
a1

/* Auxiliary problem */
and fort=0,--- ,Np—-1,5=1,--- N

ij-i—l = X7,J + b(tlv X;,]v aZ(Xfa Ziz’ayﬁa Wt?)aﬁz)At + O-(tlv ija O‘Z(X;,jv Zizya’ﬁv th)’ﬁl)AWiy

+UO(tiuXijvai(XgaZz'Z@’/B’Wt?)’ﬁi)AWiO’ Xé ~ Ho

N

1

2330 = 20 = 5 30 Pl XL on(XL 20 W)) At B2 WE) AWD, 250 =
=1

N

= —N\N"5 _
=N Z; (X7 i (X720 WD)
]:

/* Particle approximations */
Define (a*, 8*) as the solution to this minimization problem.
Then, compute Vp = inf{z;, i € [1, M] | wa(zi) < e} with @ = o* and § = §* in the
dynamics.
/* Recovering the cost of the original problem */

Return the value Vj and the optimal controls &; : x — o (z, ZZ-VO’O‘*”B*,Wg) for
i=0,--- Np—1.
/* Recovering the control of the original problem */

8.5. APPLICATIONS AND NUMERICAL TESTS 177

with & < 6, which can be reformulated as
0> (5— BIX | X < 0)P(X <0).

The auxiliary deterministic unconstrained control problem is therefore

T
Va(e) = inf, [{AVar(X§) ~ E[XF] - =}, + A /0 {0~ E[XS | X5 < 0)B(XS < 0)} ds]

with the dynamics dX$ = asr ds + aso dWs, which corresponds to the constraint function
U(t,pu) = (6 — Eul€ | € < 0])u((—00,0]). We have the representation J(a*) = Z = inf{z €
R | Ya(2) = 0}. Indeed we see that the null control is admissible with the modified constraint
EX} | X <O0P(XpF<0)=0>0+e)P(X}<0)=0, Vt € [0,T] forany 0 < e <80 —9
because xp > 6 hence P(X* < #) = 0 so we can apply Theorem For practical application,
other constraints could be considered like almost sure constraints on the portfolio weights as
in [War2lal. Instead of the dualization method used by [LLP20|, constraints on the law of the
tracking error with respect to a reference portfolio could be enforced.

For numerical tests we take » = 0.15, ¢ = 0.35, A = 1. We choose z9g = 1,0 = 0.9, § = 0.8
and solve

inf J(a) = AVar(X$) - E[Xg)] (8.5.2)

dXt = our dt + oo th,
(0.8 — E[X® | X& < 0.9))P(X2 < 0.9) <0, Vt e [0,T].

We compare the controls from Algorithm [11| with the exact optimal ones in the unconstrained
case for which we have an analytical value. We also solve without constraints for comparison and
plot the final time histograms. We solve the unconstrained case with algorithm [11] and the one
from |[CL22| for comparison. We take 50 time steps for the time discretization and a batch size
of 20000. We use an feedforward architecture with two hidden layers of 15 neurons. We perform
15000 gradient descent iterations thanks to the Tensorflow library. The true value v = J(a*) is
-1.05041 without constraints. We also have the upper bound —1. for the value in the constrained
case, corresponding to the identically null control and wealth process X; = 1 V¢ € [0,T]. With
constraint we choose K = [—1.047,—1.041], without constraint we take K = [—1.07,—1.03],
discretized by regular grids with 25 points.

In Figure we observe the shift of the distribution of the final wealth thanks to the con-
straint (on the left) with less probable large losses but also less probable large gains. Indeed
Figure [8.4] confirms that the conditional expectation constraint is verified when we solve the
corresponding problem through our level set approach. We see in Figure that the more A
is large the more the auxiliary value function becomes affine before reaching zero. Additional
results are presented in Table

Our method can also handle directly the primal of the mean-variance problem, that is to
maximize over portfolio control « the expected terminal wealth under a terminal variance con-
straint:

igf J(a) = —E[X§] (8.5.3)

dXt = our dt + oo th,
Var(X7) < 9.

which give the same optimal control as Problem ({8.5.1)) under the correspondence A = 4/ %.
This problem allows us to consider a constrained problem with an analytical solution. In this

178 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

—— Wealth 12 \ealtn
1.0 — =~ Control asset ——- Control asset
-+ Exact control L1 Exact control
0.9 1.0
0.8 0.9
0.8
0.7
0.7
0.6
0.6
= P
P - ~———-
0.5 — -
P 05
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t
Problem (8.5.2)) No constraint, problem (8.5.1])

Figure 8.1: Sample path of the controlled process X', with the analytical optimal control (for
the unconstrained case) and the computed control. On the left figure we don’t have the true
control but plot the unconstrained one for comparison. Here A = 100

10000 10000

8000 8000

6000 6000
4000 4000
2000 2000
0 0.00 0.25 175 0 0.00 0.25 175
Problem (8.5.2)) No constraint, problem (8.5.1)
Figure 8.2: Histogram of X% for 50000 samples. Here A = 100.
R 0.0200 {
0.0030 A —— A=10.
— A=100. 0.0175 A
0.0025 0.0150 4
0.0020 0.01254
0.0100 +
0.0015
0.0075 +
0.0010
0.0050 4
0.0005 1 0.0025 4
0.0000 0.0000
—1.647 —1.646 —1.645 —1.644 —1.'(]43 —1.'(]42 —1.'(]41 —1.670 —1.655 —1.650 —1.655 —1.650 —1.‘045 —1.'(]4[1 —1.'(]35 —1.'(]3[1
z z
Problem (8.5.2)) No constraint, problem (8.5.1))

Figure 8.3: Auxiliary value function Y, (z) for several values of A in the constrained case, auxiliary
value function)Y(z) in the unconstrained case

8.5. APPLICATIONS AND NUMERICAL TESTS 179

— E(X: | Xt=0.9) — E(Xt | Xt=0.9)
0.875

0.850
0.825

0.800

0.775

0.750

0.725

0.80

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
t t

Problem (8.5.2)) No constraint, problem (8.5.1])

Figure 8.4: Conditional expectation E[X{ | X7 < 0.9] estimated with 50000 samples. The black
line corresponds to § = 0.8. Here A = 100

14— Wealth
Control asset
----- Exact control

0.05 —— vamAdS

0.04

0.02

0.00

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
t t

0.2

Figure 8.5: Sample trajectory of the controlled process X' and the control for problem (8.5.3)
(left). Variance Var(X;) estimated with 50000 samples for problem ({8.5.3) (right) with A = 10

case Var(X%') = o thus J(a*) = AVar(X2') + J(a*) = M + J(a*). See Remark 2.5 from
|DFNP19i—7‘or comparison with Problem ({8.5.1]) we thus report A\ + J(a*) for Problem ({8.5.3))

in Table and choose ¥ = % = 0.0504. In this case the auxiliary deterministic

unconstrained control problem is now

Un(z) = inf [{~E[XF] -)+ + A{Var(X7) - 9}
dXt = our dt + (772 th,

which corresponds to the constraint function W(t, u) — (Var(u) — 9)+1,—7r and the modified
constraint function U, (¢, u) — (Var(u)—9) 4+ Li=r—nli<7 (see Remark. Theoremstill
applies as far as the null control is admissible with the modified constraint (Var(u) —)4 1i—p +
e —nlier <0 for any 0 < e <n and any ¢ € [0,7].

Figure shows that we recover the optimal control for the problem and that the terminal
variance constraint is satisfied. We see in Figure [8.6] that similarly as in Figure [8:3] for large
values of A the auxiliary value function is affine before reaching zero. In this case the exact
solution is —1.10 which is very close to the point in which the affine part reaches zero.

In Table [8.1] we observe that our method gives a small variance for the results over several
runs. In the case where an analytical solution is known, the value of the control problem is
computed accurately with less than 0.5% of relative error. The expectation and variance of the

180 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

0.025

0.020 4

0.015

0.010

0.005

0.000

T T T T T T T T T
—1.120 -1.115 -1.110 -1.105 —-1.100 —-1.095 -1.090 -1.085 -1.080
z

Figure 8.6: Auxiliary value function U (z) for several values of A

Problem Average | Std | True val. | Error | E[X$'] | True E[X$'] [Var(X$") | True Var(X$)
8.5.2 -1.045 | 0.0005 ? ? 1.07 ? 0.027 ?
8.5.3 -1.048 | 0.0017 | -1.050 0.22 1.10 1.10 0.049 0.050
8.5.1 -1.050 | 0.0009 | -1.050 0.07 1.10 1.10 0.050 0.050
®5.0) [CL22] | -1.052 | 0.0022 | -1.050 | 0.13 | L1.10 1.10 0.053 0.050

Table 8.1: Estimate of the solution with maturity 7' = 1. Average and standard deviation
observed over 10 independent runs are reported, with the relative error (in %). We also report
the terminal expectation and variance of the approximated optimally controlled process for a
single run. ’?” means that we don’t have a reference value. For problem we take A = 10
and for problem we choose A = 100

terminal value of the optimally controlled process are also very close to their theoretical values.
In the case of a conditional expectation constraint, even though we don’t have an exact solution
we notice that the value is close to the unconstrained value hence since our solution is admissible,
we expect to be near optimality. On the unconstrained problem our scheme and the one
from [CL22| give similar results.

8.5.3 Optimal storage of wind-generated electricity

We consider N wind turbines with N associated batteries. Define the productions P}, storage
levels X/, storage injection ! for which we provide a typical rangeﬂ We consider the following
constraints

{ 0 < X} < Xax — limited storage capacity (1kWh — 10 MWh)
a<aof

a; < & — limited injection/withdrawal capacity (10 kW — 10MW)

with Xinax > 0, @ < 0 < @. Define the spot price of electricity S; without wind power, g’t the
price with wind production. Selling a quantity P} — aj on the market, producer ¢ obtains a
revenue Si(P} — af) (if P — ai < 0 the producer is buying from the market) where the market
price is affected by linear price impact
N
- O(N . A
St:St_gv> (P} — ap),
i=1
modeling the impact of intermittent renewable production on the market. © is positive, non-
decreasing and bounded. We call O = limy_,00 O(N) < oco. We consider N + 2 indepen-

"https://css.umich.edu/factsheets/us-grid-energy-storage-factsheet

8.5. APPLICATIONS AND NUMERICAL TESTS 181

dent Brownian motions WP, BY, W} ... W} and the following dynamics for the producers
1=1,---, N state processes
dX} =al dt

AP} = 1(¢Pmax — Pf) dt + 0p(P; A { Pumax — Pi}) 1 (p AWP + /1 — p2 dW})
F(t,T) = F(t,T)ore~T=1dBY
= F(t,t).

In the production dynamics, the common noises W, BY corresponds to the global weather and
the market price randomness whereas the idiosyncratic noises W} for i > 1 model the local
weather, independent from one wind turbine to another. We call FO the filtration generated by
W2 BY. The productions P} are bounded processes and the price S; is positive. Of course the
modified price S; in the presence of renewable producers can become negative, as empirically
observed in some overproduction events. However it stays bounded by below in our model.
Producer ¢ gain function to maximize is

N
Ti(an, - an /{stpl) @(N Pﬂ—at}dt]

J=1

The related mean field control problem for a central planner is therefore

acA
dX; = oy dt
AP, = t(¢Puax — Pr) dt + 0p(Py A { Pmax — P, })+(p AW + /1 — p2 dW})
dF(t,T) = F(t,T)o e~ T=9dBY
Sy = F(t,t)
0< Xy < Xpax P as.

— inf]E[/OT{St(Pt —) + O (P, — ap)E[P, — o [FO]} dt}

Here the state is (Xy, P, S;) € R3 hence the distribution of the state lives in Po(R?). The set A
corresponds to progressively measurable controls with values in the compact set [o, @]. A similar
problem is solved by [ABTM20| without any storage constraints by Pontryagin principle. With
constraints but without mean-field interaction, a close problem is solved by |[PV20]. For instance
Xmax = 0 corresponds to the much simpler problem without storage nor control of the valuation
of a wind power park. See also |Cur+21; |War2lb|. To represent the almost sure constraint
0 < X; < Xpnax we choose as constrained function

TU:p € Py(R?) = /R{(—x)i + (z — Xmax) 1} pa(dz),

where p is the first marginal law of the measure u.
The auxiliary unconstrained control problem is therefore

T
e : _ o o o 07170
w(z) = aﬁO,lﬁOéIéaXL?xLQ E[{/O E[St(Pt Ozt) + @oo(Pt Ctt)E[Pt Oét‘F ”F] de —(854)

T 0 0 T 0,2 0 1 T 2 2
- [awe— [g0 apt)s + 1 [BIEXDR + (X~ Xt a]

dXt = (Ot de
dP; = t(¢Pumax — P;) dt + 0p(Py A { Pumax — P })+ (p AW + /1 — p2 dW})

dF(t,T) = F(t,T)o e~ TDdBY
St = F(t7 t)

182 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

where € is a small term used to force the a.s. constraints.

We consider the standard stochastic control benchmark with only common noise for the
production (p = 1). It corresponds to a single very large wind farm where all wind turbines
produce the same power. The problem degenerates as

T
_;231@[/0 (=81 + O (P — a)) (P — o)} dit

dX; = ay dt

dP; = t(¢Pumax — P;) dt + 0p(Py A { Pmax — P;})+ AW

dF(t,T) = F(t,T)o e~ *TDdBY

Sy = F(t,t)

0 < Xt < Xpmax P aus. (8.5.5)

and equation (8.5.4]) gives

T
w(z) = — a,ﬁé]g\foQE[((Yaﬁ —2)y + i/o I[Eﬁ[(—XS)%r + (X5 — Xmax)i] ds]

dXt = O de¢
dP; = t(¢Pmax — Pr) dt + 0p(Py A { Pmax — Pi})+ dW
dF(t,T) = F(t,T)o e~ *TDdBY

Sy = F(t,t)
where
T T T
Yol = / (—=S; + Ouo (P —) (Py — o) dt —/ Bt aw? —/ B%2dBY. (8.5.6)
0 0 0
The solution of our optimization problem is then z* = sup{z | w(z) = 0} where w(z) := —w(z).

Remark now that will be estimated discretizing the integral f(;f B Aw? and fOT B? AB°
using an Euler scheme for the underlying processes and therefore w(z) will be above 0 except for
low values of z due to the variance of the Y**# estimator that cannot be reduced to 0.

In order to reduce the variance of Y*#, we propose to modify Y®# as follows :

T T
Yol = [(814 0P =) (P~ u) dt = [(=514 Ou(Pi = a0))(Pr—) de+
0 0

T T T
B[(5 + 0P - a0)(Pi = d] - [g4 awd - [g2 a2

where ¢, is the rough estimation of the optimal deterministic command maximizing the gain.
We take T' = 40, N7 = 40 time steps, Xpmax = 1, Xg = 0.5, Py = 0.12, F(0,t) = 30+5008(%) +
cos(@), 0f=03,a=0.16,1:=0.2,0,=02,¢=0.3, Ppax = 0.2, =02 < a < 0.2, O(N) = 10.
The network depends on P, S;, Xy and z where z takes some deterministic values on a grid with
the same spacing. The global curve is therefore approximated by a single run.

The grid is taken from 107 to 127 with a spacing of 0.5. The neural networks have two hidden
layers with 14 neurons on each layer. We take a e parameter equal to 107%. The number of
gradient iterations is set to 50000 with a learning rate equal to 2 x 1072 and every 100 iterations
a more accurate estimate of w is calculated.

We give the @ function on figure 8.7} Using Dynamic Programming with the StOpt library
|Gev+18|, we get an optimal value equal to 117.28 while a direct optimization of using
some neural networks as in [War21b|, [CL22| we get a value of 117.11. Encouraged by Remark
B.5.1] Figure [8.3] Figure and the related comments, we empirically estimate the value func-
tion by the point where the linear part of the auxiliary function reaches zero when A = % is

8.5. APPLICATIONS AND NUMERICAL TESTS 183

Wiz)

107.5 110.0 1125 1150 117.5 120.0 122.5 125.0 127.5
z

Figure 8.7: w function value for the storage problem

— oymamic rogramming ; 1o

02
— Dynamic Programming
00 — Level set

Figure 8.8: Storage trajectories with the Level Set and Dynamic Programming method.

sufficiently large. The estimated value is 116.75, close to the reference solutions. On figure 8.8
we compare trajectories obtained by Dynamic Programming and by the Level Set approach :
they are accurately calculated.

184 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

Conclusion

We have developed several schemes in order to solve nonlinear PDEs in moderate and high
dimension, thanks to neural networks. We also considered the more difficult case of mean-field
control. Our methods show a good empirical performance and some first results have been
obtained on the theoretical analysis side.

We have notably described the approximation error of the multistep and deep backward dy-
namic programming schemes in terms of the number of layers and neurons needed to reach an
error of size O(1/N), that is the discretization error. However this study is achieved thanks to
the GroupSort activation function. One should try to obtain similar results for Relu or tanh
neural networks in order to comply with the architectures used in practice in our tests. The
main difficulty in this study is to consider regular enough approximations (Sobolev regularity,
convexity, or boundedness) to have quantitative approximation results. The regularity then has
to be preserved when the time step vanishes which motivated the introduction of GroupSort
neural networks in our study. Future work could also be dedicated to the fully nonlinear setting
for which we have not been able to perform a theoretical analysis of our methods.

Concerning the numerical approximation of PDEs on the Wasserstein space, we obtained
the convergence speed of a finite dimensional PDE approximation. The resulting scheme with
symmetric neural networks is able to solve the PDE along one trajectory of the forward process.
That is why we performed some first tests to randomize the training samples and explore the
space of probability measures. But further research is needed to fully understand how to proceed
in order to efficiently perform the exploration and solve the PDE in the whole domain. Moreover,
we require a lot of regularity for the target solution, which is not satisfied in most cases. Hence
it would be interesting to look for an alternative result in a more realistic setting.

We also introduced probabilistic state constraints for mean-field control thanks to a level-
set approach making use of an auxiliary unconstrained problem. Our method allows us to
consider an exact penalization and is suitable for a numerical implementation thanks to machine
learning. To the best of our knowledge we are the first authors to consider this problem with
general constraints. Future research could introduce Pontryagin principle or HJB equations based
algorithms, following the (theoretical) works [Bonl9; Dau2l|. The numerical resolution of the
Master Bellman equation arising from the unconstrained auxiliary problem is another possibility.
A comparison of these methods with our level-set approach would be very interesting.

185

186 CHAPTER 8. LEVEL-SET FOR STATE-CONSTRAINED MEAN-FIELD CONTROL

Bibliography

[AA 18]

[Aba+16]

[ABTM20]

[ABZ13]

[ACD10]

[AFL20]
|[AKS19]

[AL15]

[ALG19]

[AM21]
[Bacl7|

[Bac+21]

[Bal+21|

[BCJ19]

[BDO7]

A. Al-Aradi et al. “Solving Nonlinear and High-Dimensional Partial Differential
Equations via Deep Learning”. In: arXiv:1811.08782 (2018).

M. Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). 2016, pp. 265-283.

C. Alasseur, I. Ben Taher, and A. Matoussi. “An Extended Mean Field Game for
Storage in Smart Grids”. In: Journal of Optimization Theory and Applications
184 (2020), 644-670.

A. Altarovici, O. Bokanowski, and H. Zidani. “A general Hamilton-Jacobi frame-
work for non-linear state-constrained control problems”. In: ESAIM: COCV 19.2
(2013), pp. 337-357.

Y. Achdou and I. Capuzzo-Dolcetta. “Mean Field Games: Numerical Meth-
ods”. In: SIAM Journal on Numerical Analysis 48 (Jan. 2010). DOI: [10.1137/
090758477

A. Angiuli, J.-P. Fouque, and M. Lauriére. “Unified Reinforcement Q-Learning
for Mean Field Game and Control Problems”. In: arXiv:2006.15912 (2020).

B. Anahtarci, C. Deha Kariksiz, and N. Saldi. “Fitted Q-Learning in Mean-field
Games”. In: arXiv:1912.13309 (2019).

Y. Achdou and M. Lauriére. “On the system of partial differential equations
arising in mean field type control”. In: Discrete Contin. Dyn. Syst. 35.9 (2015),
pp- 3879-3900.

C. Anil, J. Lucas, and R. Grosse. “Sorting Out Lipschitz Function Approxima-
tion”. In: Proceedings of the 36th ICML. Ed. by K. Chaudhuri and R. Salakhut-
dinov. Vol. 97. 2019, pp. 291-301.

S. Sadeghi Arjmand and G. Mazanti. “Nonsmooth mean field games with state
constraints”. In: arXiv:2110.15713 (2021).

F. Bach. “Breaking the Curse of Dimensionality with Convex Neural Networks”.
In: Journal of Machine Learning Research 18.19 (2017), pp. 1-53.

A. Bachouch et al. “Deep neural networks algorithms for stochastic control prob-
lems on finite horizon: numerical computations”. In: Methodol. Comput. Appl.
Probab (2021).

A. Balata et al. “Statistical learning for probability-constrained stochastic opti-
mal control”. In: European Journal of Operational Research 290.2 (2021), pp. 640
656.

S. Becker, P. Cheridito, and A. Jentzen. “Deep optimal stopping”. In: J. Mach.
Learn. Res. 20 (2019), pp. 1-25.

C. Bender and R. Denk. “A forward scheme for backward SDEs”. In: Stochastic
Processes and their Applications 117.12 (2007), pp. 1793 —1812.

187

https://doi.org/10.1137/090758477
https://doi.org/10.1137/090758477

188

[BDK20]

[Bec+19|
[Bec+20]
[Bec+21]

[BEIL0]

[BEJ19)

[Ber+21]
[BF11]
[BF21]
[BFY13]
[BFY15]

[BGS15]

[BGZ21]
[BJK19)

[BM]

[Bon19|

[Bou+17|

[BP19]

BIBLIOGRAPHY

B. Bouchard, B. Djehiche, and I. Kharroubi. “Quenched Mass Transport of Par-
ticles Toward a Target”. In: Journal of Optimization Theory and Applications
186.2 (2020), pp. 345-374. DOI: 10.1007/s10957-020-01704-.

S. Becker et al. “Solving high-dimensional optimal stopping problems using deep
learning”. In: arXiv:1908.01602 (2019).

C. Beck et al. “An overview on deep learning-based approximation methods for
partial differential equations”. In: arXiv:2012.12348 (2020).

C. Beck et al. “Deep splitting method for parabolic PDEs”. In: SIAM Journal
on Scientific Computing 43.5 (2021).

B. Bouchard, R. Elie, and C. Imbert. “Optimal Control under Stochastic Tar-
get Constraints”. In: SIAM Journal on Control and Optimization 48.5 (2010),
pp. 3501-3531.

C. Beck, W. E, and A. Jentzen. “Machine Learning Approximation Algorithms
for High-Dimensional Fully Nonlinear Partial Differential Equations and Second-
order Backward Stochastic Differential Equations”. In: J. Nonlinear Sci. 29.4
(Aug. 2019), pp. 1563-1619. 1sSN: 1432-1467. DOI: 10.1007/s00332-018-9525-
3l URL: https://doi.org/10.1007/s00332-018-9525-3.

C. Bertucci et al. “Economic Modelling of the Bitcoin Mining Industry”. In:
SSRN: hittps://ssrn.com/abstract=3907822 (2021).

B. Bercu and J.C. Fort. “Generic stochastic gradient methods”. In: Wiley Ency-
clopedia of Opera- tions Research and Management Science. 2011, pp. 1-8.

B. Bonnet and H. Frankowska. “Necessary Optimality Conditions for Optimal
Control Problems in Wasserstein Spaces”. In: Appl Math Optim (2021).

A. Bensoussan, J. Frehse, and P. Yam. Mean field games and mean field type
control theory. Springer Briefs in Mathematics. Springer, 2013.

A. Bensoussan, J. Frehse, and P. Yam. “The Master equation in mean-field the-
ory”. In: J. de Math. Pures et Appliquées 103.6 (2015), pp. 1441-1474.

G. Balazs, A. Gyorgy, and C. Szepesvari. “Near-optimal max-affine estimators
for convex regression”. In: Proceedings of the Fighteenth International Confer-
ence on Artificial Intelligence and Statistics. Ed. by Guy Lebanon and S. V. N.
Vishwanathan. Vol. 38. 2015, pp. 56—64.

O. Bokanowski, N. Gammoudi, and H. Zidani. “Optimistic Planning Algorithms
For State-Constrained Optimal Control Problems”. preprint. July 2021.

C. Beck, A. Jentzen, and B. Kuckuck. “Full error analysis for the training of
deep neural networks”. In: arXiv:1910.00121v2 (2019).

F. Bach and E. Moulines. “Non-strongly-convex smooth stochastic approxima-
tion with convergence rate O(1/n).” In: Proceedings of the 26th International
Conference on Neural Information Processing Systems, NIPS’13, pp. 7T73-781.

B. Bonnet. “A Pontryagin Maximum Principle in Wasserstein spaces for con-
strained optimal control problems”. In: ESAIM: COCV 25 (2019), p. 52.

B. Bouchard et al. “Numerical approximation of BSDEs using local polynomial
drivers and branching processes”. In: Monte Carlo Methods and Applications 23.4
(2017), pp. 241-263.

M. Basei and H. Pham. “A weak martingale approach to linear-quadratic McKean-
Vlasov stochastic control problem”. In: Journal of Optimization Theory and Ap-
plications 181.2 (2019), pp. 347-382.

https://doi.org/10.1007/s10957-020-01704-
https://doi.org/10.1007/s00332-018-9525-3
https://doi.org/10.1007/s00332-018-9525-3
https://doi.org/10.1007/s00332-018-9525-3

BIBLIOGRAPHY 189

[BPZ15] O. Bokanowski, A. Picarelli, and H. Zidani. “Dynamic Programming and Error
Estimates for Stochastic Control Problems with Maximum Cost”. In: Appl Math
Optim 71 (2015), pp. 125-163.

[BPZ16| O. Bokanowski, A. Picarelli, and H. Zidani. “State-Constrained Stochastic Opti-
mal Control Problems via Reachability Approach”. In: SIAM Journal on Control
and Optimization 54.5 (2016), pp. 2568-2593.

[BRT20] B. Bloem-Reddy and Y.W. Teh. “Probabilistic symmetries and invariant neural
networks”. In: Journal of Machine Learning Research 21 (2020), pp. 1-61.

[BS91] G. Barles and P.E. Souganidis. “Convergence of approximation schemes for fully
nonlinear second order equations”. In: Asymptotic Analysis 4.3 (1991), pp. 271
283.

[BT04] B. Bouchard and N. Touzi. “Discrete-time approximation and Monte-Carlo sim-

ulation of backward stochastic differential equations”. In: Stoch. Process. Appl.
111.2 (2004), pp. 175 —206.

[BTB16] D. Bauso, H. Tembine, and T. Basar. “Opinion Dynamics in Social Networks
through Mean-Field Games”. In: SIAM Journal on Control and Optimization
54.6 (2016), pp. 3225-3257.

[Buc+17] R. Buckdahn et al. “Mean-field stochastic differential equations and associated
PDEs”. In: Ann. Probab. 45.2 (Mar. 2017), pp. 824-878.

[Bur+20] M. Burzoni et al. “Viscosity solutions for controlled McKean-Vlasov jump-diffusions”.
In: SIAM Journal on Control and Optimization 58.3 (2020), pp. 1676-1699.

[Car+19] P. Cardaliaguet et al. The Master equation and the convergence problem in mean-
field games. Vol. 201. Annals of mathematics studies. Princeton University Press,
2019.

[CC18] P. Cannarsa and R. Capuani. “Existence and Uniqueness for Mean Field Games

with State Constraints”. In: PDE Models for Multi-Agent Phenomena. Ed. by
Cardaliaguet P., Porretta A., and Salvarani F. Vol. 28. Springer INdAM Series.
Springer, Cham, 2018.

[CCC18| P. Cannarsa, R. Capuani, and P. Cardaliaguet. “Mean Field Games with state
constraints: from mild to pointwise solutions of the PDE system”. In: arXiv:1812.11374
(2018).

[CCD15] J.-F. Chassagneux, D. Crisan, and F. Delarue. “A probabilistic approach to clas-

sical solutions of the master equation for large population equilibria”’. In: to
appear in Memoirs of the AMS (2015).

[CD13] R. Carmona and F. Delarue. “Probabilistic Analysis of Mean-Field Games”. In:
SIAM Journal on Control and Optimization 51.4 (2013), pp. 2705-2734. DOI:
10.1137/120883499. URL: https://doi.org/10.1137/120883499.

[CD15] R. Carmona and F. Delarue. “Forward-backward stochastic differential equations
and controlled McKean—Vlasov dynamics”. In: The Annals of Probability 43.5
(2015), pp. 2647 —2700.

[CD18a] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games: vol. I,
Mean Field FBSDEs, Control, and Games, Springer, 2018.

[CD18b] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games: vol. 11,
Mean Field FBSDEs, Control, and Games, Springer, 2018.

[CD18c] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with

Applications vol I. and II. Vol. 83. Probability Theory and Stochastic Modelling.
Springer, 2018.

https://doi.org/10.1137/120883499
https://doi.org/10.1137/120883499

190 BIBLIOGRAPHY

[CDL13] R. Carmona, F. Delarue, and A. Lachapelle. “Control of McKean—Vlasov dy-
namics versus mean field games”. In: Mathematics and Financial Economics 7
(2013), 131-166.

[CFS15] R. Carmona, J.P. Fouque, and L. Sun. “Mean field games and systemic risk”. In:
Commun. Math. Sci. 13.4 (2015), pp. 911-933.

[Cha+21] J.-F. Chassagneux et al. “A learning scheme by sparse grids and Picard approx-
imations for semilinear parabolic PDEs”. In: arXiv:2102.12051 (2021).

[Che+-07] P. Cheridito et al. “Second-order backward stochastic differential equations and

fully nonlinear parabolic PDEs”. In: Comm. Pure Appl. Math. 60.7 (July 2007),
pp- 1081-1110. 18sN: 0010-3640. DOI: [10.1002/cpa.20168.

[CL18| P. Cardaliaguet and C.-A. Lehalle. “Mean field game of controls and an applica-
tion to trade crowding”. In: Mathematics and Financial Economics 12.3 (2018),
pp- 335-363. DOI: https://doi.org/10.1007/s11579-017-0206-z.

|CL22| R. Carmona and M. Lauriére. “Convergence analysis of machine learning algo-
rithms for the numerical solution of mean-field control and games: II The finite
horizon case”. In: to appear in the Annals of Applied Probability (2022).

[CLT19] R. Carmona, M. Lauriére, and Z. Tan. “Model-Free Mean-Field Reinforcement
Learning: Mean-Field MDP and Mean-Field Q-Learning”. In: arXiv:1910.12802
(2019).

[Cos+20] A. Cosso et al. “Optimal control of path-dependent McKean-Vlasov SDEs in
infinite dimension”. In: arXiv:2012.14772 (2020).

|[CP19] A. Cosso and H. Pham. “Zero-sum stochastic differential games of generalized

McKean—Vlasov type”. In: Journal de Mathématiques Pures et Appliquées 129
(2019), pp. 180 —212.

[CS17] P. Chan and R. Sircar. “Fracking, Renewables, and Mean Field Games”. In: STAM
Review 59.3 (2017), pp. 588-615.
|[CUH16| D.-A. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and Accurate Deep Net-

work Learning by Exponential Linear Units (ELUs)”. In: 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2016.
URL: http://arxiv.org/abs/1511.07289.

[Cur-+21] N. Curin et al. “A deep learning model for gas storage optimization”. In: arXiv:2102.01980
(2021).

[CW19] L. Chen and J. Wang. “Maximum principle for delayed stochastic mean-field
control problem with state constraint”. In: Advances in Difference Equations
348 (2019).

[CWNMW19| Q. Chan-Wai-Nam, J. Mikael, and X. Warin. “Machine Learning for Semi Linear
PDEs”. In: J. Sci. Comput. (Feb. 2019).

[CYZ20] Y.-L. Chow, X. Yu, and C. Zhou. “On Dynamic Programming Principle for
Stochastic Control under Expectation Constraints”. In: Journal of Optimization
Theory and Applications 185 (2020), 803-818.

[Dau20] S. Daudin. “Optimal Control of Diffusion Processes with Terminal Constraint in
Law”. In: arXiw:2012.10707 (2020).

[Dau21] S. Daudin. “Optimal control of the Fokker-Planck equation under state con-
straints in the Wasserstein space”. In: arXiw:2109.14978 (2021).

[DFNP19] C. De Franco, J. Nicolle, and H. Pham. “Bayesian learning for the Markowitz

portfolio selection problem”. In: International Journal of Theoretical and Applied
Finance 22.07 (2019), p. 1950037.

https://doi.org/10.1002/cpa.20168
https://doi.org/https://doi.org/10.1007/s11579-017-0206-z
http://arxiv.org/abs/1511.07289

BIBLIOGRAPHY 191

IDHS11]

[Dje20]

[DLM20]

[DPT19]

[DPT94]

[E-+19]

[EHJ17]

[ET99]

[EY18]

[FG15]

[FH20]

[FMW21]

[FTT19|

[FTT20]

[FTT21]

[FTW11]

J Duchi, E Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Re-
search 12.61 (2011), pp. 2121-2159. URL: http:// jmlr . org/papers/vi2/
duchilla.htmll

F Djete. “Extended mean-field control problem: a propagation of chaos result”.
In: arXiw:2006.12996 (2020).

J. Darbon, G. Langlois, and T. Meng. “Overcoming the curse of dimensional-
ity for some Hamilton—Jacobi partial differential equations via neural network
architectures”. In: Res Math Sci 7 (2020).

F. Djete, D. Possamai, and X. Tan. “McKean-Vlasov optimal control: the dy-
namic programming principle”. In: arXiv:1907.08860 (2019).

M.W.M. Dissanayake and N. Phan-Thien. “Neural network-based approxima-
tions for solving partial differential equations”. In: Commun. Numer. Methods
Eng. 10.3 (1994), pp. 195-201.

W. E et al. “On multilevel Picard numerical approximations for high-dimensional
nonlinear parabolic partial differential equations and high-dimensional nonlinear
backward stochastic differential equations”. In: Journal of Scientific Computing
79 (2019), 1534-1571.

W. E, J. Han, and A. Jentzen. “Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic
differential equations”. In: Communications in Mathematics and Statistics 5.4
(2017), pp. 349-380.

I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Society
for Industrial and Applied Mathematics, 1999.

W. E and B. Yu. “The Deep Ritz Method: A Deep Learning-Based Numerical
Algorithm for Solving Variational Problems”. In: Commun. Math. Stat. 6 (2018),
pp- 1-12.

N. Fournier and A. Guillin. “On the rate of convergence in the Wasserstein
distance of the empirical measure”. In: Probability Theory and Related Fields
162 (2015), pp. 707-738.

G. Fu and U. Horst. “Mean-Field Leader-Follower Games with Terminal State
Constraint”. In: STAM Journal on Control and Optimization 58.4 (2020), pp. 2078
2113.

S. Fécamp, J. Mikael, and X. Warin. “Deep learning for discrete-time hedging in
incomplete markets”. In: Journal of Computational Finance 25.2 (2021), 51-85.

M. Fujii, A. Takahashi, and M. Takahashi. “ Asymptotic expansion as prior knowl-
edge in deep learning method for high dimensional BSDEs”. In: Asia Pacific
Financial Markets 26.3 (2019), pp. 391-408.

O. Féron, P. Tankov, and L. Tinsi. “Price Formation and Optimal Trading in
Intraday Electricity Markets with a Major Player”. In: Risks 8.4 (2020). 1SSN:
2227-9091.

O. Féron, P. Tankov, and L. Tinsi. “Price formation and optimal trading in
intraday electricity markets”. In: Math Finan Econ (2021).

A. Fahim, N. Touzi, and X. Warin. “A probabilistic numerical method for fully
nonlinear parabolic PDEs”. In: Ann. Appl. Probab. 21.4 (Aug. 2011), pp. 1322—
1364.

http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html

192

[FZ20]

[GAS20]

[Gel+13]

[Ger 22|
[Gev-+18]
[GG21a]
[GG21b)

[GHLT14]

[GLWO5)

[GMO5]

[GM21]

[GMS21]

[GMW22]

|GPW21]

[GPW22a]

[GPW22b]

[GPW22c]

BIBLIOGRAPHY

J-.P. Fouque and Z. Zhang. “Deep Learning Methods for Mean Field Control
Problems with Delay”. In: Frontiers in Applied Mathematics and Statistics 6
(2020). DOI: https://doi.org/10.3389/fams.2020.00011.

C. Gréser and P. A. Alathur Srinivasan. “Error bounds for PDE-regularized
learning”. In: arXiv:2003.06524 (2020).

A. Geletu et al. “Advances and applications of chance-constrained approaches to
systems optimisation under uncertainty”. In: International Journal of Systems
Science 44.7 (2013), pp. 1209-1232.

M. Germain et al. “DeepSets and derivative networks for solving symmetric
PDEs”. In: Journal of Scientific Computing 91.63 (2022).

H. Gevret et al. STochastic OPTimization library in C++. 2018. URL: https:
//hal .archives-ouvertes.fr/hal-01361291.

E. Gobet and M. Grangereau. “Extended McKean-Vlasov optimal stochastic
control applied to smart grid management”. In: hal-02181227 (2021).

E. Gobet and M. Grangereau. “Federated stochastic control of numerous hetero-
geneous energy storage systems”. In: hal-03108611 (2021).

A. Galichon, P. Henry-Labordére, and N. Touzi. “A stochastic control approach
to no-arbitrage bounds given marginals, with an application to lookback options”.
In: The Annals of Applied Probability 24.1 (2014), pp. 312 —336.

E. Gobet, J.-P. Lemor, and X. Warin. “A regression-based Monte Carlo method
to solve backward stochastic differential equations”. In: Ann. Appl. Probab. 15.3
(2005), pp. 2172-2202.

E. Gobet and R. Munos. “Sensitivity analysis using It6-Malliavin calculus and
martingales, and application to stochastic optimal control”. In: SIAM J. Control
Optim. 43.5 (2005), pp. 1676-1713.

J. Graber and S. Mayorga. “A note on mean field games of controls with state
constraints: existence of mild solutions”. In: arXiw:2109.11655 (2021).

W. Gangbo, S. Mayorga, and A. Swiech. “Finite Dimensional Approximations
of Hamilton—Jacobi—Bellman Equations in Spaces of Probability Measures”. In:
SIAM Journal on Mathematical Analysis 53.2 (2021), pp. 1320-1356.

M. Germain, J. Mikael, and X. Warin. “Numerical resolution of McKean-Vlasov
FBSDEs using neural networks”. In: Methodology and Computing in Applied
Probability (2022). DOL: https://doi.org/10.1007/s11009-022-09946-1.

M. Germain, H. Pham, and X. Warin. “A level-set approach to the control
of state-constrained McKean-Vlasov equations: application to renewable energy
storage and portfolio selection”. In: arXiw:2112.11059 (2021).

M. Germain, H. Pham, and X. Warin. “Approximation Error Analysis of Some
Deep Backward Schemes for Nonlinear PDEs”. In: SIAM Journal on Scientific
Computing 44.1 (2022), A28-A56.

M. Germain, H. Pham, and X. Warin. “Neural networks based algorithms for
stochastic control and PDEs in finance”. In: arXiv:2101.08068 to appear in Ma-
chine Learning And Data Sciences For Financial Markets: A Guide To Contem-
porary Practices. Ed. by A. Capponi and C.A. Lehalle. Cambridge University
Press, 2022.

M. Germain, H. Pham, and X. Warin. “Rate of convergence for particle ap-
proximation of PDEs in Wasserstein space”. In: to appear in Journal of Applied
Probability 59.4 (2022).

https://doi.org/https://doi.org/10.3389/fams.2020.00011
https://hal.archives-ouvertes.fr/hal-01361291
https://hal.archives-ouvertes.fr/hal-01361291
https://doi.org/https://doi.org/10.1007/s11009-022-09946-1

BIBLIOGRAPHY 193

|Gro+18| P. Grohs et al. “A proof that rectified deep neural networks overcome the curse
of dimensionality in the numerical approximation of Black-Scholes partial differ-
ential equation”. In: to appear in Memoirs of the American mathematical society
(2018).

[GS15] W. Gangbo and A. Swiech. “Existence of a solution to an equation arising from

the theory of mean-field games”. In: Journal of Differential equations 259.11
(2015), pp. 6573-6643.

|[GT14] E. Gobet and P. Turkedjiev. “Linear regression MDP scheme for discrete back-
ward stochastic differential equations under general conditions”. In: Math. Comp.
85 (Mar. 2014).

[Gu+20] H. Gu et al. “Q-Learning Algorithm for Mean-Field Controls, with Convergence
and Complexity Analysis”. In: arXiv:2002.04131 (2020).

[Guo-+20] X. Guo et al. “A General Framework for Learning Mean-Field Games”. In:
arXiw:2008.06069 (2020).

[GW20] K. Glau and L. Wunderlich. “The deep parametric PDE method: application to

option pricing”. In: arXiv:2012.06211 (2020).
|Gy02] L. Gyorfi et al. A distribution-free theory of nonparametric regression. Springer
Series in Statistics, Springer-Verlag, 2002.

[HCMO6| M. Huang, P. Caines, and R. Malhamé. “Large population stochastic dynamic
games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence
principle”. In: Communication in Information and Systems 3 (2006), pp. 221—

252.

[HE16] J. Han and W. E. “Deep learning approximation for stochastic control problems”.
In: Deep Reinforcement Learning Workshop (2016).

[HH21] J. Han and R. Hu. “Recurrent Neural Networks for Stochastic Control Problems
with Delay”. In: arXiv:2101.01385 (2021).

[HHL20] J. Han, R. Hu, and J. Long. “Convergence of deep fictitious play for stochastic
differential games”. In: arXiv:2008.05519 (2020).

[HJE1S| J. Han, A. Jentzen, and W. E. “Solving high-dimensional partial differential equa-

tions using deep learning”. In: Proceedings of the National Academy of Sciences
of America 115.34 (2018), pp. 8505-8510.

[HK20] M. Hutzenthaler and T. Kruse. “Multilevel Picard Approximations of High-
Dimensional Semilinear Parabolic Differential Equations with Gradient-Dependent
Nonlinearities”. In: SIAM J. Numer. Anal. 58.2 (2020), pp. 929-961.

[HL12| P. Henry-Labordére. “Counterparty risk valuation: a marked branching diffusion
approach”. In: Hal-00677348 (2012).

[HL17] P. Henry-Labordere. “Deep Primal-Dual Algorithm for BSDEs: Applications of
Machine Learning to CVA and IM”. In: Available at SSRN: https://ssrn.com/abstract=3071506
(2017).

[HL+19] P. Henry-Labordere et al. “Branching diffusion representation of semilinear PDEs

and Monte Carlo approximation”. In: Ann. Inst. Henri Poincaré Probab. Stat.
55.1 (2019), pp. 184-210.

[HL20] J. Han and J. Long. “Convergence of the Deep BSDE Method for Coupled FB-
SDEs”. In: Probability, Uncertainty and Quantitative Risk 5.1 (2020), pp. 1-33.

[Hor91] K. Hornik. “Approximation Capabilities of Multilayer Feedforward Networks”.
In: Neural Networks 4 (1991), pp. 251-257.

194

[HPW20]

[HSW89]

[HSW90]

[Hul9]

[Hur19

[Hur+21]

[Hut+18]

[Hut+20]

[IP19]

[Ji+20a]

[Ji+-20b]

[JL21]
[JO19]

[KB14]

[KJY20]

[KLW21]

[KSS20]

BIBLIOGRAPHY

C. Huré, H. Pham, and X. Warin. “Deep backward schemes for high-dimensional
nonlinear PDEs”. In: Mathematics of Computation 89.324 (July 2020), pp. 1547—
1580.

K. Hornik, M. Stinchcombe, and H. White. “Multilayer Feedforward Networks
Are Universal Approximators”. In: Neural Netw. 2.5 (July 1989), pp. 359-366.
ISSN: 0893-6080.

K. Hornik, M. Stinchcombe, and H. White. “Universal approximation of an un-
known mapping and its derivatives using multilayer feedforward networks”. In:
Neural Networks 3(5) (1990), pp. 551-560.

R. Hu. “Deep fictitious play for stochastic differential games”. In: arXiv:1903.09376
(2019).

C. Huré. “Numerical Methods and Deep Learning for Stochastic Control Prob-
lems and Partial Differential Equations”. PhD thesis. Université Paris Diderot
(Paris 7), Sorbonne Paris Cité, June 2019. URL: https://tel . archives -
ouvertes.fr/tel-02331441.

C. Huré et al. “Deep neural networks algorithms for stochastic control problems
on finite horizon: convergence analysis”. In: SIAM J. Numer. Anal. 59.1 (2021),
525-557.

M. Hutzenthaler et al. “Overcoming the curse of dimensionality in the numer-
ical approximation of semilinear parabolic partial differential equations”. In:
arXiv:1807.01212 (2018).

M. Hutzenthaler et al. “A proof that rectified deep neural networks overcome the
curse of dimensionality in the numerical approximation of semilinear heat equa-
tion”. In: SN partial differential equations and applications 1.10 (2020), pp. 1-
34.

A. Ismail and H. Pham. “Robust Markowitz mean-variance portfolio selection un-
der ambiguous covariance matrix”. In: Mathematical Finance 29.174-207 (2019).

S. Ji et al. “Solving stochastic optimal control problem via stochastic maximum
principle with deep learning method”. In: arXiv:2007.02227 (2020).

S. Ji et al. “Three Algorithms for Solving High-Dimensional Fully Coupled FBS-
DEs Through Deep Learning”. In: IEEE Intelligent Systems 35.3 (2020), pp. 71—
84. DOI:10.1109/MIS.2020.2971597.

Y. Jiang and J. Li. “Convergence of the Deep BSDE method for FBSDEs with
non-Lipschitz coefficients”. In: arXiv:2101.01869 (2021).

A. Jacquier and M. Oumgari. “Deep curve-dependent PDEs for affine rough
volatility”. In: arXiv:1906.02551 (2019).

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. Pub-
lished as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015. 2014.

Y. Khoo, J.Lu, and L. Ying. “Solving parametric PDE problems with artificial
neural networks”. In: Furopean Journal of Applied Mathematics (2020), pp. 1-15.

I. Kharroubi, T. Lim, and X. Warin. “Discretization and Machine Learning Ap-
proximation of BSDEs with a Constraint on the Gains-Process”. In: Monte Carlo
Methods and Applications 27.1 (2021), pp. 27-55.

S. Kremsner, A. Steinicke, and M. Szélgyenyi. “A deep neural network algorithm
for semilinear elliptic PDEs with applications in insurance mathematics”. In:
arXiv:2010.15757 (2020).

https://tel.archives-ouvertes.fr/tel-02331441
https://tel.archives-ouvertes.fr/tel-02331441
https://doi.org/10.1109/MIS.2020.2971597

BIBLIOGRAPHY 195

[Lacl7]
[Lee+21|

[LGWO6]

[LLO6a]

[LLOGD)

[LLO7]
[LLP20]

[LM21]

[LP14]

[LT19]

[LT20]

[LXL19]

[MZ19]
[NAO21]

[NR20]

[Pas+19]

[Pha00]
[Pha09)
[Pin99al

[Pin99b)

D. Lacker. “Limit Theory for Controlled McKean—Vlasov Dynamics”. In: STAM
Journal on Control and Optimization 55.3 (2017), pp. 1641-1672.

W. Lee et al. “Controlling Propagation of Epidemics via Mean-Field Control”.
In: SIAM Journal on Applied Mathematics 81.1 (2021), pp. 190-207.

J.-P. Lemor, E. Gobet, and X. Warin. “Rate of convergence of an empirical regres-
sion method for solving generalized backward stochastic differential equations”.
In: Bernoulli 12.5 (2006), pp. 889-916.

J.-M. Lasry and P.-L. Lions. “Jeux & champ moyen. I — Le cas stationnaire”.
In: Comptes Rendus Mathematique - C R MATH 343 (Nov. 2006), pp. 619-625.
DOI: 10.1016/j.crma.2006.09.019.

J.-M. Lasry and P.-L. Lions. “Jeux & champ moyen. II — Horizon fini et controle
optimal”. In: Comptes Rendus. Mathématique. Académie des Sciences, Paris 10
(Nov. 2006). DOI: [10.1016/j . crma.2006.09.018.

J.-M. Lasry and P.-L. Lions. “Mean field games”. In: Japanese Journal of Math-
ematics 2 (2007), pp. 229-260.

W. Lefebvre, G. Loeper, and H. Pham. “Mean-Variance Portfolio Selection with
Tracking Error Penalization”. In: Mathematics 8.11 (2020).

W. Lefebvre and E. Miller. “Linear-Quadratic Stochastic Delayed Control and
Deep Learning Resolution”. In: Journal of Optimization Theory and Applications
191 (2021), 134-168.

M. Lauriére and O. Pironneau. “Dynamic programming for mean-field type con-
trol”. In: Comptes Rendus Mathematique 352.9 (2014), pp. 707-713.

M. Lauriére and L. Tangpi. “Backward propagation of chaos”. In: arXiv:1911.06835
(2019).

M. Lauriére and L. Tangpi. “Convergence of large population games to mean
field games with interaction through the controls”. In: arXiv:2004.08351 (2020).

J. Liang, Z. Xu, and P. Li. “Deep Learning-Based Least Square Forward-Backward
Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing”.
In: arXiw:1907.10578 (2019).

J. Miiller and M. Zeinhofer. “Deep Ritz revisited”. In: arXiv:1912.03937 (2019).

B. Negyesi, K. Andersson, and C. W. Oosterlee. “The One Step Malliavin scheme:
new discretization of BSDEs implemented with deep learning regressions”. In:
arXiv:2110.05421 (2021).

N. Niisken and L. Richter. “Solving high-dimensional Hamilton-Jacobi-Bellman
PDEs using neural networks: perspectives from the theory of controlled diffusions
and measures on path space”. In: arXiw:2005.05409 (2020).

A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024-8035.

H. Pham. “On quadratic hedging in continuous time”. In: Mathematical Methods
of Operations Research 51 (2000), 315-339.

H. Pham. Continuous-time Stochastic Control and Optimization with Financial
Applications. Vol. 61. SMAP. Springer, 2009.

A. Pinkus. “Approximation theory of the MLP model”. In: Acta Numerica 8
(1999), pp. 143-195.

A. Pinkus. “Approximation theory of the MLP model in neural networks”. In:
Acta numerica 8 (1999), pp. 143-195.

https://doi.org/10.1016/j.crma.2006.09.019
https://doi.org/10.1016/j.crma.2006.09.018

196 BIBLIOGRAPHY

[PJ21] S. M. Pesenti and S. Jaimungal. “Portfolio Optimisation within a Wasserstein
Ball”. In: Awvailable at SSRN: hitps://ssrn.com/abstract=3744994 (2021).

[PP9I0| E. Pardoux and S. Peng. “Adapted solution of a backward stochastic differential
equation”. In: Systems € Control Letters 14.1 (1990), pp. 55 —61. 1SSN: 0167-6911.

[PTZ21] L. Pfeiffer, X. Tan, and Y.-L. Zhou. “Duality and Approximation of Stochastic

Optimal Control Problems under Expectation Constraints”. In: SIAM Journal
on Control and Optimization 59.5 (2021), pp. 3231-3260.

[PV20] A. Picarelli and T. Vargiolu. “Optimal management of pumped hydroelectric
production with state constrained optimal control”. In: Journal of Economic
Dynamics and Control (2020), p. 103940.

[PW17] H. Pham and X. Wei. “Dynamic programming for optimal control of stochastic
McKean-Vlasov dynamics”. In: SIAM J. Control Optim. 55.2 (2017), pp. 1069
1101.

[PW18| H. Pham and X. Wei. “Bellman equation and viscosity solutions for mean-field
stochastic control problem”. In: ESAIM: COCV 24.1 (2018), pp. 437-461.

[PWG21] H. Pham, X. Warin, and M. Germain. “Neural networks-based backward scheme
for fully nonlinear PDESs”. In: SN Partial Differential Equations and Applications
2.16 (2021).

[Qi+17] C. Ruizhongtai Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classi-
fication and Segmentation”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017, pp. 77-85.

[Rail§| M. Raissi. “Forward-Backward Stochastic Neural Networks: Deep Learning of
High-dimensional Partial Differential Equations”. In: arXiv:1804.07010 (2018).

[RM51] H. Robbins and S. Monro. “A Stochastic Approximation Method”. In: The Annals
of Mathematical Statistics 22.3 (1951), pp. 400-407.

[RPK19] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural net-

works: A deep learning framework for solving forward and inverse problems in-
volving nonlinear partial differential equations”. In: J. Comput. Phys. 378 (2019),
pp. 686 —707. 1ssN: 0021-9991. DOIL: https://doi.org/10.1016/j.jcp.2018.

10.045.
[RSZ20] C. Reisinger, W. Stockinger, and Y. Zhang. “A posteriori error estimates for fully
coupled McKean-Vlasov forward-backward SDEs”. In: arXiw:2007.07731 (2020).
[RSZ21] C. Reisinger, W. Stockinger, and Y. Zhang. “A fast iterative PDE-based al-

gorithm for feedback controls of nonsmooth mean-field control problems”. In:
arXiw:2108.06740 (2021).

[RT17] Z. Ren and X. Tan. “On the convergence of monotone schemes for path-dependent
PDEs”. In: Stochastic Processes and their Applications 127.6 (2017), pp. 1738~
1762. 1sSN: 0304-4149.

[Rut+20] L. Ruthotto et al. “A machine learning framework for solving high-dimensional
mean field game and mean field control problems”. In: Proc. Natl. Acad. Sci. USA
117.17 (2020), pp. 9183-9193. 1ssN: 0027-8424. DOI: |10.1073/pnas . 1922204117,

[Sak20] T. Sakuma. “Application of deep quantum neural networks to finance”. In: arXiv:2011.07319v1
(2020).
[SDEK20] Y. Shin, J. Darbon, and G. Em Karniadakis. “On the convergence of physics in-

formed neural networks for linear second-order elliptic and parabolic type PDEs”.
In: arXiv:2004.01806 (2020).

https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1073/pnas.1922204117

BIBLIOGRAPHY 197

[SMLN15| R. Salhab, R. P. Malhamé, and J. Le Ny. “A dynamic game model of collec-
tive choice in multi-agent systems”. In: 2015 IEEE 54th Annual Conference on
Decision and Control (CDC). 2015, pp. 4444-4449.

[Smull] J. Smulevici. “On the area of the symmetry orbits of cosmological spacetimes with
toroidal or hyperbolic symmetry”. In: Analysis and PDE 4.2 (2011), pp. 191-245.

[SS18] J. Sirignano and K. Spiliopoulos. “DGM: A deep learning algorithm for solving
partial differential equations”. In: Journal of Computational Physics 375 (2018),
pp. 1339-1364.

[ST02] H. M. Soner and N. Touzi. “Stochastic Target Problems, Dynamic Programming,
and Viscosity Solutions”. In: SIAM Journal on Control and Optimization 41.2
(2002), pp. 404-424.

[SVSS20] M. Sabate Vidales, D. Siska, and L. Szpruch. “Solving path dependent PDEs
with LSTM networks and path signatures”. In: arXiv:2011.10630v1 (2020).
[SWA21a] A. Séguret, C. Wan, and C. Alasseur. “A mean field control approach for smart

charging with aggregate power demand constraints”. In: 2021 IEEE PES Inno-
vative Smart Grid Technologies Europe (ISGT Europe). 2021, pp. 01-05.

[SWA21b] A. Séguret, C. Wan, and C. Alasseur. “Computation and implementation of an
optimal mean field control for smart charging”. In: arXiv:2110.00332 (2021).
[SZ19] Y. F. Saporito and J. Zhang. “Stochastic Control with Delayed Information and

Related Nonlinear Master Equation”. In: SIAM Journal on Control and Opti-
mization 57.1 (2019), pp. 693-717.

[SZ20| Y. F. Saporito and Z. Zhang. “PDGM: a Neural Network Approach to Solve
Path-Dependent Partial Differential Equations”. In: arXiv:2003.02035 (2020).

[SZ99| R. Schébel and J. Zhu. “Stochastic volatility with an Ornstein-Uhlenbeck process
and extension”. In: Review of Finance 3.1 (1999), pp. 23-46.

[Tan13] X. Tan. “A splitting method for fully nonlinear degenerate parabolic PDEs”. In:
Electronic Journal of Probability 18 (2013).

[TSB21] U. Tanielian, M. Sangnier, and G. Biau. “Approximating Lipschitz continuous

functions with GroupSort neural networks”. In: Proceedings of the 24th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS). PMLR:
Volume 130, 2021.

[VSS18| M. Sabate Vidales, D. Siska, and L. Szpruch. “Unbiased deep solvers for para-
metric PDEs”. In: arXiv:1810.05094v2 (2018).
[Wag+19] E. Wagstaff et al. “On the Limitations of Representing Functions on Sets”. In:

ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of
Machine Learning Research. 2019, pp. 6487—6494.

[War12] X. Warin. “Gas Storage Hedging”. In: Numerical methods in finance. Ed. by R.
Carmona et al. Springer, 2012, pp. 421-445.

[Warl8a] X. Warin. “Monte Carlo for high-dimensional degenerated Semi Linear and Full
Non Linear PDES”. In: arXiv:1805.05078 (2018).

[Warl8b| X. Warin. “Nesting Monte Carlo for high-dimensional non-linear PDEs”. In:
Monte Carlo Methods Appl. 24.4 (2018), pp. 225-247.

[War21a] X. Warin. “Deep learning for efficient frontier calculation in finance”. In: arXiv:2101.02044,
to appear in Journal of Computational Finance (2021).

[War21b| X. Warin. “Reservoir optimization and Machine Learning methods”. In: arXiv:2106.08097

(2021).

198
[Wyk08|

[WZ20]

[Yar17]
[Zah+17]
|Zar01]
|Zeil2]
|Zha04]
|Zhal7]

[Z1.00]

BIBLIOGRAPHY

S. Van Wyk. “Partial differential equations and quantum mechanics”. In: Com-
puter solution in Physics (2008), pp. 99-139.

C. Wu and J. Zhang. “Viscosity solutions to parabolic master equations and
McKean—Vlasov SDEs with closed-loop controls”. In: Annals of Applied Proba-
bility 30.2 (Apr. 2020), pp. 936-986.

D. Yarotsky. “Error bounds for approximations with deep ReLU networks”. In:
Neural Networks 94 (2017), pp. 103-114.

M. Zaheer et al. “Deep Sets”. In: Advances in Neural Information Processing
Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 3391-3401.

T. Zariphopoulou. “A solution approach to valuation with unhedgeable risks”.
In: Finance and Stochastics 5 (2001), pp. 61-82.

M. D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: arXiv:1212.5701
(2012).

J. Zhang. “A numerical scheme for BSDEs”. In: Ann. Appl. Probab. 14.1 (2004),
pp. 459-488.

J. Zhang. Backward stochastic differential equations: from linear to fully nonlin-
ear theory. Vol. 86. Probability theory and stochastic modelling. Springer, 2017.

X.Y. Zhou and D. Li. “Continuous-Time Mean-Variance Portfolio Selection: A
Stochastic LQ Framework”. In: Applied Mathematics and Optimization 42 (2000),
19-33.

List of Figures

|1.1 GroupSort activation function (,, with grouping size k = 5 and m = 20 neurons, |
| figure from |[ALGI9[.| 10
[2.1 Fonction d’activation GroupSort (, avec taille de groupement Kk = 5 et m = 20 |
| neurones, figure provenant de [JALGI9[.|. o0 28
[3.1 Estimates of u, D, u, Du and of the optimal control o on the Merton problem
| with N = 120, N = 30. We take zg = 1., at the left ¢ = 0.5042, and at the right
| t=0.00840. . . . L e e e e e 58
4.1 GroupSort activation function (, with grouping size k = 5 and m = 20 neurons, |
| figure from |[ALGI9[.| 64
5.1 A single valuation run for test case one 1D using 160 time steps, 6 = 2., p = 0.999, |
| 20 neurons, 2 layers.| 95
b.2 Convergence in 1D of the case one, number of neurons par layer equal to 20, 2 |
| layers, p = 0.999.] e 96
5.3 Convergence in 3D of the case one, number of neurons par layer equal to 20, 2 |
| layers, p=10.999.] 96
5.4 Convergence in 10D of the case one, number of neurons par layer equal to 20, 2 |
| layers, p = 0.999.] e 97
5.5 Test case linear quadratic 1D using 160 time steps, 6 = 1.5, p = 0.999, 100 neurons.| 99
5.6 Convergence in 1D of the linear quadratic case, number of neurons par layer equal |
| to 00, 2 layers, p=0.999.] 99
5.7 Convergence in 3D of the linear quadratic case, 2 layers, testing the influence ot |
| the number of neurons, truncation p =0.95.| 100
b.8 Convergence in 3D of the linear quadratic case, 2 layers, testing the influence ot |
| the number of neurons, truncation p =0.99.f 101
5.9 Convergence in 7D of the linear quadratic case, 2 layers, p =0.999. 102
[5.10 Function value convergence in 7D of the linear quadratic case with 2 layers, 100 |
| neurons, testing p, using d = 2| 102
[5.11 Function value convergence in 10D and 15D ot the linear quadratic case with 2 |
| layers, p=10.999.] 103
[5.12 Function value convergence in 20D of the linear quadratic case with 2 layers, |
| D=0090] .« o e e e e e 103
[5.13 Estimates of the solution and its derivatives on the Merton problem ([5.3.3)) using |
| 120 time steps.|o 107
5.14 Estimates of the optimal control a on the Merton problem (5.3.3). 108
5.15 Learning curve in logarithmic scale for the scheme [BEJ19[on the Merton problem
| (5.3.3) with N = 20 times steps on the left and N = 120 time steps on the right.
| The maturity is T'=1| 110
[7.1 Architecture of a symmetric neural network. | 137

199

200 LIST OF FIGURES
[7.2 Architecture of time dependent symmetric network. | 137
[7.3 Architecture of DeepDerSet network| 138
[7.4 Resolution on [0.5,1] in dimension N = 500 : analytic Lions derivatives versus |

| N Z estimated by the network. DeepSet network tor (/, AD-DeepSet tor Z. ReLU |

[activation function. L L 151
[7.5 Solution and Lions derivative atter a single training, with N = 500, Nr = 30, with |

| ReLU activation function, a single DeepSet network for {/ which is differentiated |

| to approximate Z. For the solution, the z-axis corresponds to the sample number |
| and the y-axis is the value of the estimated solution. For the Lions derivative, the |

| z-axis 1s the state space and the y-axis is the value of the derivative.| 152
7.6 Analytic Lions derivative versus N Z estimated by the network. Dimension N = |

| 300, number of time steps N7 = 30. We use a DeepSet network for (/ with ReLU |

| activation functions, and Z its automatic derivative. |. 153
|7.7 Solution and control obtained on the mean variance case at % in dimension 100

| with 20 time steps comparing analytic solution to the calculated one (NN). Trun-

| cation factor equal t0 0.999. L o 155
|7.8 Solution and control obtained on the mean variance case at % in dimension 300 with 20

| time steps comparing analytic solution to the calculated one (NN). Truncation factor:

L0099 - e 156
[7.9 Control calculated at ¢ = 0 tor Min-LQC examples: comparison DBDP using a |

| single DeepSet network with Np = 50, N = 500 and global approximation. | . . . 158
[8.1 Sample path of the controlled process X*, with the analytical optimal control (for

| the unconstrained case) and the computed control. On the left figure we don’t

| have the true control but plot the unconstrained one for comparison. Here A = 100[178
8.2 Histogram of X for 50000 samples. Here A =100 178
8.3 Auxiliary value function Y, (z) for several values of A in the constrained case, |

| auxiliary value function)(z) in the unconstrained case|. 178
[8.4 Conditional expectation E[X/ | X' < 0.9] estimated with 50000 samples. The |

| black line corresponds to 0 =0.8. Here A =100 179
[8.5 Sample trajectory of the controlled process X;* and the control for problem (8.5.3])

| (left). Variance Var(X;) estimated with 50000 samples for problem ({8.5.3) (right)

[with A=T01. e 179
[8.6 Auxiliary value function U (z) for several valuesof A|. 180
[8.7 w tunction value for the storage problem|. 183
[8.8 Storage trajectories with the Level Set and Dynamic Programming method.| . . . 183

List of Tables

3.1

CVA value with Xg =1,7=1,5 =0.03,0 = 0.2 and 50 time steps. |

3.2

Estimate of u(0,1.) in the Merton problem with N = 120, N = 30. Average

and standard deviation observed over 10 independent runs are reported. The

theoretical solution 1s -0.50662. 1.

B3

Estimate of «(0,1,6) on the One Asset problem with stochastic volatility (d =

2) and N = 120, N = 30. Average and standard deviation observed over 10

independent runs are reported. The exact solution is —0.53609477.)

57

B4

Estimate of «(0,1,6), with 120 time steps on the No Leverage problem with 1

asset (d = 2) and N = 120, N = 30. Average and standard deviation observed

over 10 independent runs are reported. The exact solution is —0.501566. |

o7

B5

Estimate of u(0,1,6), with 120 time steps on the No Leverage problem with 4

assets (d = 5) and N = 120, N = 30. Average and standard deviation observed

over 10 independent runs are reported. The theoretical solution is -0.44176462. | .

99

B6

Estimate of u(0,1,60), with 120 time steps on the No Leverage problem with 9

assets (d = 10) and N = 120. Average and standard deviation (S.d.) observed

over 10 independent runs are reported. The theoretical solution is -0.27509173.| .

99

%1

Estimate of u(0, z¢) in the case (4.5.1]), where d = 10,29 = 1 119, 7 = 1 with 120

time steps. Average and standard deviation observed over 10 independent runs

are reported. The theoretical solution 18 -1.383395.)

A2

Estimate of u(0, xg) in the case (4.5.1), where d = 20,29 = 1 199, T = 1 with 120

time steps. Average and standard deviation observed over 10 independent runs

are reported. The theoretical solution is 0.6728135.

i3

Estimate of u(0,xo) in the case (4.5.1), where d = 50,29 = 1 159,7 = 1 with 120

time steps. Average and standard deviation observed over 10 independent runs

are reported. The theoretical solution 1s 1.5909.f

na

Estimate of u(0,x¢) in the case (4.5.2)), where d = 1,29 = 0.5, 7' = 1 with 120

time steps. Average and standard deviation observed over 10 independent runs

are reported. The theoretical solution1s 1.3776.[.

a5

Estimate of u(0, zp) in the case (4.5.2), where d = 8,29 = 0.5 1g, 7' = 1 with 120

time steps. Average and standard deviation observed over 10 independent runs

are reported. The theoretical solution 1s 1.1603.f

B

Estimate of u(0, 29 = 15) on the Monge Ampere problem ([5.3.1) with N = 120.

Average and standard deviation observed over 10 independent runs are reported.|

52

Estimate of the solution, its derivative and the optimal control at the initial time

t = 0 in the Merton problem ([5.3.3)). Average and standard deviation observed

over 10 independent runs are reported. | L.

53

Estimate of u(0,xp = 1,0) on the One Asset problem with stochastic volatility

(d = 2). Average and standard deviation observed over 10 independent runs are

reported. The exact solution i1s —0.53609477.

201

202

LIST OF TABLES

(4

Estimate of u(0,x9 = 1,0) on the No Leverage problem (5.3.4). Average and

standard deviation observed over 10 independent runs are reported.).

108

[5.5

Estimate of the solution, its derivative and the optimal control at the initial time

t = 0 in the Merton problem ([5.3.3)) with implicit estimation of the Hessian. Av-

erage and standard deviation (Std) observed over 10 independent runs are reported{109

[5.6

Estimate of the solution, i1ts derivative and the optimal control at the initial time

t = 0 in the Merton problem (/5.3.3) with maturity 7' = 0.1 for the |[BEJ19| scheme.

Average and standard deviation observed over 10 independent runs are reported.|

5.7

Estimate of the solution, its derivative and the optimal control at the initial time

t = 0 in the Merton problem (5.3.3) with maturity 7' = 0.1 for our scheme.

Average and standard deviation observed over 10 independent runs are reported.|

71

Approximation error (7.3.2)) obtained for different networks on one run and num-

ber of 1terations used depending on activation functions for approximation of the

function f in case 1, dimension N =100

72

Approximation error (|7.3.2]) obtained for different networks on one run and number

of iterations used for approximation of the function f in cases 2 and 3, dimension

N =100, activation function ReLU.|

73

Approximation error (7.3.2) obtained for different networks, activation functions

for approximation of the function f in case 4 dimension 1000

i

Approximation error ([7.3.3) obtained for different networks on one run and number

of 1terations used for approximation ot the function f in case 1 and 2, dimension

N =T00J . . .o

75

Approximation error (7.3.4) with ReLU activation function obtained for differ-

ent networks on one run and number of iterations used for approximation ot the

derivative of an exchangeable function.| 0.

76

Approximation error (7.3.4) with tanh activation function obtained for different

networks on one run and number of iterations used tor approximation ot the deriva-

tive of an exchangeable tunction.| 000000

77

PDE resolution in dimension 1000 with DBDP scheme [HPW20]. |.

[7.8

oystemic risk with ReLLU activation function, a DeepSet network for i/ and a

second AD-DeepSet network to estimate Z.| 0oL

(7.9

oystemic risk with ReLLU activation function, a single DeepSet network tor ¢ which

is differentiated to approximate Z. |. L

7.10

Systemic with tanh activation function, a DeepSet network for ¢ and a second

AD-DeepSet network to estimate Z.| L.

711

Estimate of]E[UN (0,X¢,... ,Xév)] with a deterministic initial condition Xg = 1, T =

1, 0 = 1. Average and standard deviation observed over 10 independent runs are reported.

The theoretical solution is —1.0504058 when N, Np — 4oc0

[/.12

Min-LQC example reterence solutions : benchmark solution estimated by finite difference

scheme and Algorithm 1 in |[CL22| with N = 10000, N+ = 50, 10 neurons and 3 hidden

layers, tanh activation function, average on 10 runs.|

713

Min-LQC example with DPBD scheme using ReLLU activation functions with a DeepSet

network for U and a second AD-DeepSet network to estimate Z, average on 10 runs

standard deviation in parenthesis.|o 0oL

/.14

Min-LQC example with DBDP scheme using ReLLU activation functions and a single

Deepset network for U which is differentiated to approximate Z, average on 10 run

standard deviation in parenthesis.|o

LIST OF TABLES 203

[8.1 Estimate of the solution with maturity " = 1. Average and standard deviation |
observed over 10 independent runs are reported, with the relative error (in %). We |

|

|

also report the terminal expectation and variance ot the approximated optimally
controlled process for a single run. 7" means that we don’t have a reference value.
For problem (8.5.1]) we take A = 10 and for problem (8.5.2) we choose A =100 | . 180

	Introduction
	Approximation of non-linear PDEs
	From stochastic control to PDEs and their numerical resolution
	Machine learning methods and our proposed schemes
	Lipschitz GroupSort neural networks and contributions to new theoretical results

	Mean-field problems and their numerical approximation
	Motivation and optimality conditions
	Contributions on the numerical approximation side
	Adding probabilistic state constraints

	Introduction (en français)
	Approximation des EDPs non-linéaires
	Du contrôle stochastique aux EDPs et à leur résolution numérique
	Méthodes d'apprentissage automatique et nos nouveaux algorithmes
	Réseaux de neurones lipschitziens GroupSort et contributions à de nouveaux résultats théoriques

	Problèmes à champ moyen et leur approximation numérique
	Motivations et conditions d'optimalité
	Contributions pour l'approximation numérique
	Ajouter des contraintes d'état probabilistes

	I Numerical resolution of non-linear partial differential equations
	Neural networks-based algorithms for stochastic control and PDEs in finance
	Breakthrough in the resolution of high dimensional non-linear problems
	Deep learning approach for stochastic control
	Global approach
	Backward dynamic programming approach

	Machine learning algorithms for nonlinear PDEs
	Deterministic approach by neural networks
	Probabilistic approach by neural networks

	Numerical applications
	Numerical tests on credit valuation adjustment pricing
	Portfolio allocation in stochastic volatility models

	Extensions and perspectives

	Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs
	Introduction
	BSDE Machine Learning Schemes for Semilinear PDEs
	Neural Networks
	Existing Schemes
	Deep Backward Multi-step Scheme (MDBDP)

	Convergence Analysis
	Convergence of the MDBDP Scheme
	Convergence of the DS Scheme
	 Convergence of the DBDP Scheme

	Proof of the Main Theoretical Results
	Proof of Theorem 4.3.1
	Proof of Proposition 4.3.1
	Proof of Theorem 4.3.2
	Proof of Proposition 4.3.2

	Numerical Tests
	PDE with Bounded Solution and Simple Structure
	PDE with Unbounded Solution and more Complex Structure

	Neural networks-based backward scheme for fully nonlinear PDEs
	Introduction
	The proposed deep backward scheme
	Feedforward neural network to approximate functions
	Forward-backward representation
	Algorithm

	Numerical results
	Choice of the algorithm hyperparameters
	A non-linearity in u Dx2 u
	A linear quadratic stochastic test case.
	Monge-Ampère equation
	Portfolio selection

	II McKean-Vlasov equations and mean-field control
	Rate of convergence for particles approximation of PDEs in Wasserstein space
	Introduction
	Particles approximation of Wasserstein PDEs
	Particles BSDE approximation
	Main results

	Proof of main results
	Proof of Theorem 6.2.1
	Proof of Theorem 6.2.2

	Solving mean-field PDEs with symmetric neural networks
	Introduction
	Symmetric PDEs
	Symmetric neural networks
	DeepSets and variants
	Comparison tests

	Numerical schemes
	Semi-linear PDE
	Fully nonlinear PDE
	The case of mean-field PDEs

	Numerical results
	A toy example of symmetric PDE in very high dimension
	A mean-field control problem of systemic risk
	Mean-variance problem
	A min/max Linear quadratic mean-field control problem

	A level-set approach to the control of state-constrained McKean-Vlasov equations: application to renewable energy storage and portfolio selection
	Introduction
	Mean-field control with state constraints
	A target problem and an associated control problem
	Representation of the value function
	Proofs
	Potential extension towards dynamic programming

	An alternative auxiliary problem
	Extension to the common noise setting
	Representation by a stochastic target problem and an associated control problem
	Proofs in the common noise framework

	Applications and numerical tests
	Algorithms
	Mean-variance problem with state constraints
	Optimal storage of wind-generated electricity

	Conclusion
	Bibliography
	List of figures
	List of tables

