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Résumé :Cette thèse est consacrée à l’étude de
la stabilité des solutions des systèmes Hamil-
toniens presque intégrables (au sens d’Arnold-
Liouville). Le premier axe porte sur la généri-
cité de la propriété d’escarpement (steepness),
une condition de transversalité sur le gradient,
due à Nekhoroshev, qui assure la stabilité sur
des temps très longs des solutions d’un sys-
tème presque-intégrable suffisamment régu-
lier. L’objectif dans cette partie est double : il
s’agit d’une part de clarifier les méthodes de
géométrie algébrique réelle et d’analyse com-
plexe qui permettent de prouver la généricité
de la propriété d’escarpement et, d’autre part,
d’utiliser ces méthodes pour établir des cri-
tères explicites qui entraînent l’escarpement
d’une fonction donnée, ce qui constitue un as-
pect important dans les applications de la théo-
rie. Dans le deuxième axe de cette thèse, on
développe de manière non-triviale un argu-

ment classique d’approximation analytique, qui
permet de généraliser à la classe de régula-
rité Hölder les estimations de stabilité de Ne-
khoroshev initialement valides pour des sys-
tèmes Hamitoniens presque intégrables ana-
lytiques. Une fois qu’une approximation ana-
lytique adaptée est construite, les estimations
sont déduites de manière relativement rapide :
de plus, cette technique permet d’étendre à
une régularité plus faible les estimations de sta-
bilité les plus fines prouvées en classe analy-
tique. Enfin, on s’intéresse au problème de la
stabilité en temps infini des systèmes Hamilto-
niens presque-intégrables analytiques : il s’agit
de généraliser les résultats fins sur la mesure
des tores invariants obtenus avec la théorie
KAM - prouvés pour une classe générique de
systèmes mécaniques - au cas de systèmes as-
sociés à des Hamiltoniens plus généraux.
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Abstract : This thesis is devoted to the study of
the stability of the solutions of Hamiltonian dy-
namical systems which are close to integrable
(in the sense of Arnold-Liouville). We firstly
consider the genericity of functions satisfying
the steepness property, a transversality condi-
tion on the gradient - introduced by Nekhoro-
shev - which ensures the stability over long ti-
mespans of the solutions of a smooth enough
nearly-integrable system. The goal of this part
is two-fold : on the one hand, we clarify the ar-
guments of real-algebraic geometry and com-
plex analysis that enter into the proof of the ge-
nericity of steepness ; on the other hand, these
techniques yield new explicit criteria that al-
low to check whether a given function is steep,
which constitutes an important aspect in view
of applications. The second axis of the thesis is
centered around a non-trivial improvement of

a classical result on analytic approximation : the
aim in this case consists in extending to theHöl-
der case the classic Nekhoroshev’s estimates
of stability holding for generic, analytic, nearly-
integrable systems. Once a suitable analytic ap-
proximation is constructed, estimates are ob-
tained in a relatively effortless way. Moreover
we extend to lower regularity the most accu-
rate Nekhoroshev’s estimates available in the
analytic class. The final part of this thesis inves-
tigates some aspects of the stability in infinite-
time of real-analytic nearly-integrable Hamilto-
nian systems : namely, by making use of quan-
titative results of Morse-Sard’s Theory, we dis-
cuss the extension to more general Hamilto-
nians of the existing refined results about the
Lebesgue measure of the complementary set
of invariant KAM tori in generic mechanical sys-
tems.
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Sunto : Scopo di questa tesi è lo studio della
stabilità delle soluzioni dei sistemi Hamiltoniani
quasi integrabili (secondo Arnold-Liouville). La
prima parte verte sulla genericità della pro-
prietà di ripidità (steepness) : si tratta di una
condizione di trasversalità sul gradiente, intro-
dotta da Nekhoroshev, che garantisce la sta-
bilità su tempi molto lunghi delle soluzioni di
un sistema quasi integrabile sufficientemente
regolare. L’obiettivo di questa prima sezione è
duplice : da un lato vengono chiariti gli argo-
menti di geometria algebrica reale e di analisi
complessa che permettono di provare la ge-
nericità della ripidità e, dall’altro, si utilizzano
questi metodi per stabilire dei criteri espliciti
che permettano di verificare la ripidità di una
funzione data, un punto importante in vista di
possibili applicazioni. La seconda parte della
tesi riguarda l’estensione non triviale di alcuni

risultati classici di approssimazione analitica :
l’obiettivo è quello di generalizzare alla classe di
regolarità Hölder le stime di stabilità di Nekho-
roshev valide per sistemi Hamiltoniani quasi in-
tegrabili di classe analitica. Una volta ottenuti
dei risultati di approssimazione analitica adatti,
le stime di Nekhoroshev vengono dedotte in
maniera relativamente rapida ; inoltre, tale tec-
nica permette di estendere i risultati più fini
sulla stabilità dei sistemi quasi integrabili ana-
litici a sistemi di regolarità più debole. Infine,
nell’ultima parte viene esplorato il problema
della stabilità in tempi infiniti dei sistemi Hamil-
toniani quasi integrabili analitici : si tratta di ge-
neralizzare i risultati sulla misura dell’insieme
complementare dei tori KAM invarianti - dimos-
trati nel caso di sistemi meccanici generici - a
classi più ampie di sistemi quasi integrabili.
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Abstract

This thesis is devoted to the study of the stability of the solutions of Hamiltonian dynam-
ical systems which are close to integrable (in the sense of Arnold-Liouville). We firstly
consider the genericity of functions satisfying the steepness property, a transversality
condition on the gradient - introduced by Nekhoroshev - which ensures the stability over
long timespans of the solutions of a smooth enough nearly-integrable system. The goal
of this part is two-fold: on the one hand, we clarify the arguments of real-algebraic ge-
ometry and complex analysis that enter into the proof of the genericity of steepness; on
the other hand, these techniques yield new explicit criteria that allow to check whether
a given function is steep, which constitutes an important aspect in view of applications.
The second axis of the thesis is centered around a non-trivial improvement of a classi-
cal result on analytic approximation: the aim in this case consists in extending to the
Hölder case the classic Nekhoroshev’s estimates of stability holding for generic, ana-
lytic, nearly-integrable systems. Once a suitable analytic approximation is constructed,
estimates are obtained in a relatively effortless way. Moreover we extend to lower reg-
ularity the most accurate Nekhoroshev’s estimates available in the analytic class. The
final part of this thesis investigates some aspects of the stability in infinite-time of real-
analytic nearly-integrable Hamiltonian systems: namely, by making use of quantitative
results of Morse-Sard’s Theory, we discuss the extension to more general Hamiltonians
of the existing refined results about the Lebesgue measure of the complementary set of
invariant KAM tori in generic mechanical systems.

Résumé

Cette thèse est consacrée à l’étude de la stabilité des solutions des systèmes Hamil-
toniens presque intégrables (au sens d’Arnold-Liouville). Le premier axe porte sur la
généricité de la propriété d’escarpement (steepness), une condition de transversalité
sur le gradient, due à Nekhoroshev, qui assure la stabilité sur des temps très longs des
solutions d’un système presque-intégrable suffisamment régulier. L’objectif dans cette
partie est double : il s’agit d’une part de clarifier les méthodes de géométrie algébrique
réelle et d’analyse complexe qui permettent de prouver la généricité de la propriété
d’escarpement et, d’autre part, d’utiliser ces méthodes pour établir des critères ex-
plicites qui entraînent l’escarpement d’une fonction donnée, ce qui constitue un aspect
important dans les applications de la théorie. Dans le deuxième axe de cette thèse, on
développe de manière non-triviale un argument classique d’approximation analytique,
qui permet de généraliser à la classe de régularité Hölder les estimations de stabilité de
Nekhoroshev initialement valides pour des systèmes Hamitoniens presque intégrables
analytiques. Une fois qu’une approximation analytique adaptée est construite, les esti-
mations sont déduites de manière relativement rapide: de plus, cette technique permet
d’étendre à une régularité plus faible les estimations de stabilité les plus fines prouvées
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en classe analytique. Enfin, on s’intéresse au problème de la stabilité en temps infini
des systèmes Hamiltoniens presque-intégrables analytiques: il s’agit de généraliser les
résultats fins sur la mesure des tores invariants obtenus avec la théorie KAM - prouvés
pour une classe générique de systèmes mécaniques - au cas de systèmes associés à des
Hamiltoniens plus généraux.

Sunto
Scopo di questa tesi è lo studio della stabilità delle soluzioni dei sistemi Hamiltoni-
ani quasi integrabili (secondo Arnold-Liouville). La prima parte verte sulla genericità
della proprietà di ripidità (steepness): si tratta di una condizione di trasversalità sul
gradiente, introdotta da Nekhoroshev, che garantisce la stabilità su tempi molto lunghi
delle soluzioni di un sistema quasi integrabile sufficientemente regolare. L’obiettivo di
questa prima sezione è duplice: da un lato vengono chiariti gli argomenti di geome-
tria algebrica reale e di analisi complessa che permettono di provare la genericità della
ripidità e, dall’altro, si utilizzano questi metodi per stabilire dei criteri espliciti che per-
mettano di verificare la ripidità di una funzione data, un punto importante in vista di
possibili applicazioni. La seconda parte della tesi riguarda l’estensione non triviale di
alcuni risultati classici di approssimazione analitica: l’obiettivo è quello di generaliz-
zare alla classe di regolarità Hölder le stime di stabilità di Nekhoroshev valide per sis-
temi Hamiltoniani quasi integrabili di classe analitica. Una volta ottenuti dei risultati di
approssimazione analitica adatti, le stime di Nekhoroshev vengono dedotte in maniera
relativamente rapida; inoltre, tale tecnica permette di estendere i risultati più fini sulla
stabilità dei sistemi quasi integrabili analitici a sistemi di regolarità più debole. Infine,
nell’ultima parte viene esplorato il problema della stabilità in tempi infiniti dei sistemi
Hamiltoniani quasi integrabili analitici: si tratta di generalizzare i risultati sulla misura
dell’insieme complementare dei tori KAM invarianti - dimostrati nel caso di sistemi
meccanici generici - a classi più ampie di sistemi quasi integrabili.
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Chapter 1

Introduction générale

1.1 Le problème général

Le formalisme Hamiltonien est le cadre qui apparaît naturellement dans la description
mathématique de systèmes fondamentaux issus de la physique: il présente beaucoup
d’avantages que nous allons rappeler brièvement.

Les résultats suivants sont valables pour un système Hamiltonien quelconque mais
nous allons exposer ces théorèmes dans le cas particulier le plus simple des systèmes
mécaniques où la force dérive d’un potentiel et, plus généralement, dans le cas des
systèmes lagrangiens globalement réguliers (voir [4]).

On étudie alors le mouvement d’un point sur une variété riemannienne  (variété
de configuration): le système d’ordre un associé aux équations de la mécanique clas-
sique (i.e. : q̈ = −)U (q) pour l’espace euclidien usuel, où q désigne des coordonnées
locales de ) peut être transformé par dualité grâce à la transformation de Legendre.
Il prend alors la forme canonique :

ṗ = −)qH(p, q) ; q̇ = )pH(p, q) (1.1.1)

où H est une fonction numérique différentiable sur le fibré cotangent T ∗ et p sont
les coordonnées conjuguées à q.

La fonction H est appelée fonction Hamiltonienne, ou plus simplement Hamil-
tonien.

Dans le cas de l’espace euclidien, le Hamiltonien prend la forme habituelle de
l’énergie avec la somme de l’énergie cinétique ||p||2

2 et de l’énergie potentielle U (q).
D’un point de vue plus géométrique, T ∗ peut être muni d’une structure symplec-

tique canonique grâce à la forme de Liouville ! =
∑

i dpi ∧ dqi où (q1,… , qn) sont des
coordonnées locales sur et (p1,… , pn) leurs coordonnées conjuguées (aussi appelées
impulsions). L’équation (1.1.1) est ainsi celle qui est associée au gradient symplectique
X∗
H deH défini par

iXH! ∶= !(XH , ⋅) = dH . (1.1.2)

11
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De plus, on dit qu’un difféomophisme (local) Φ du fibré cotangent T ∗ est sym-
plectique ou canonique s’il préserve la forme de Liouville, i.e. : Φ∗! = !. Plus
généralement, un difféomorphisme entre deux variétés symplectiques (, !) et (̃, !̃)
qui transporte ! sur !̃ (i.e. : Φ∗! = !̃) est un difféomorphisme symplectique.

Si l’on considère un Hamiltonien H défini sur T ∗ alors le flot ΦtH associé au
système canonique gouverné par H est une transformation symplectique sur son do-
maine de définition (voir [89]). Un tel difféomorphisme conserve la forme canonique
(1.1.1) des équations de Hamilton, c’est à dire que le système dans les nouvelles vari-
ables (p, q) = Φ(P ,Q) est associé au gradient symplectique du HamiltonienK(P ,Q) =
H◦Φ(P ,Q). Ceci est un avantage important du formalisme Hamiltonien puisque dans
le système initial défini sur le fibré tangent TM , une transformation ne peut pas faire
intervenir les positions q et les vitesses q̇ tout en conservant la forme des équations
étudiées, alors que dans le cadre canonique on peut mélanger les positions q et les im-
pulsions p. Il s’agit d’un des ingrédients centraux dans la théorie des perturbations
Hamiltoniennes, qui est à la base de la théorie de Nekhoroshev, dont on parlera par la
suite.

1.2 Les systèmes intégrables
Un autre point remarquable apparaît dans l’étude des systèmes Hamiltoniens.

A priori, intégrer un système différentiel ordinaire de dimension 2n impose de déter-
miner 2n intégrales premières. Ici, l’existence de n intégrales premières peut permettre
de garantir que le système (1.1.1) est intégrable par quadrature.

Remarquons d’abord qu’une fonction F ∈ C1 (T ∗,ℝ) est constante le long des
solutions (p(t), q(t)) du système associé à un Hamiltonien H ∈ C1 (T ∗,ℝ) si et
seulement si

d
dt
(F (p(t), q(t)) = )qF)pH − )pF)qH = {F ,H}(t) = 0 (1.2.1)

sur le domaine de définition de la solution considérée.
La fonction {F ,H} s’appelle le crochet de Poisson de F et deH .
On peut alors énoncer le théorème d’Arnold-Liouville :

Theorem 1.2.1 (Arnold-Liouville). On considère un HamiltonienH ∈ C1 (T ∗,ℝ)
dont le système associé admet n intégrales premières indépendantes en involution, que
l’on note Ψi ∈ C1 (T ∗,ℝ) pour i ∈ {1,… , n}, i.e. :

Ψ1 = H ; {Ψi,Ψj} = 0 pour (i, j) ∈ {1,… , n}2 ; dΨ1 ∧… ∧ dΨn ≠ 0.

Soit � ∈ ℝn tel que � =
{

(p, q) ∈ T ∗ avec
(

Ψ1,… ,Ψn
)

= �
}

est non vide,
compacte et connexe.

Alors, � est difféomorphe au tore T n de dimension n.
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De plus, il existe un ouvert V ⊂ T ∗ qui contient � , qui est invariant pour le
flot Hamiltonien associé àH et qui est canoniquement difféomorphe à U ×T n où U est
un ouvert dans ℝn.

En effet, il existe un difféomophisme canoniqueΦ tel que le système (1.1.1) dans les
nouvelles variables (I, �) = Φ−1(p, q) est associé au hamiltonien K(I) = H◦Φ(I, �)
qui est indépendant des angles. Alors les équations associées sont trivialement inté-
grables puisque İ = 0 et �̇ = ∇K(I) où ∇K est le gradient de K sur U .

Les variables (I, �) ∈ U×T n sont appelées variables actions-angles duHamiltonien
intégrable K .

Géométriquement, les propriétés précédentes se traduisent par le fait que l’espace
des phases est feuilleté en tores invariants de dimension n qui portent des solutions où
les coordonnées angulaires varient linéairement (avec les fréquences ∇K): on dit alors
que les solutions sont quasi-périodiques.

1.3 Trois exemples de systèmes intégrables
—Une chaine de rotateurs dont le Hamiltonien associé s’écrit

K(I) = 1
2
(

I21 +…+ I2n
)

, (I, �) ∈ ℝn × T n ∶

il s’agit ici d’une collection de particules libres sur le tore T n de dimension n.

— Une chaine d’oscillateurs harmoniques (i.e. : n ressorts découplés de raideurs
k2i pour i variant entre 1 et n) dont le Hamiltonien associé s’écrit

H(p, q) =
n
∑

i=1

p2i +
(

kiqi
)2

2
, (p, q) ∈ ℝn ×ℝn.

Le passage en variables actions-angles s’obtient en utilisant les coordonnées polaires
symplectiques :

pi =
√

2kiIi cos(�i) ; qi =

√

2
Ii
ki
sin(�i) pour i ∈ {1,… , n} ,

ainsi les actions correspondent aux rayons des tores invariants et le Hamiltonien devient
K(I) = k1I1 +…+ knIn, qui est intégrable.

C’est lemême type deHamiltonien qui apparait au voisinage d’une position d’équilibre
elliptique (voir [32] et les références dans ce travail).

— Le problème de Kepler où l’on étudie le mouvement d’un point soumis à
l’attraction gravitationnelle d’un corps fixe placé à l’origine.

Le Hamiltonien considéré est à trois degrés de liberté et s’écrit en coordonnées
cartésiennesH(p, q) = ||p||2

2 − k
||q|| avec une constante k positive.
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Il est bien connu que pour des énergie négativesH(p, q) < 0, les solutions sont des
ellipses admettant un foyer à l’origine. Les variables actions-angles (dites de Delaunay)
s’expriment alors en fonction des éléments caractéristiques de l’ellipse parcouru.

Plus précisément, il s’agit de la longueur du demi-grand-axe, de l’excentricité, des
trois angles d’Euler permettant de repérer la direction du demi-grand-axe dans l’espace
par rapport à un axe de référence. Enfin, la seule variable évoluant rapidement est
l’angle polaire du point considéré défini à partir du demi-grand-axe. Alors, le Hamil-
tonien transformé ne dépend plus que du demi-grand-axe et est donc intégrable. On
a cinq intégrales premières indépendantes en involutions alors que trois suffiraient, et
cette “sur-intégrabilité” est à l’origine de difficultés spécifiques (voir plus loin).

1.4 Les systèmes quasi-intégrables

Nous avons vu que les flots des systèmes Hamiltoniens intégrables peuvent être étudiés
en détail. Ces systèmes présentent un deuxième intérêt qui justifie leur importance : de
nombreux problèmes en physique mathématique peuvent être considérés comme des
perturbations de systèmes intégrables. C’est ce qui motive l’introduction de la classe
des systèmes quasi-intégrables, que nous allons définir plus précisément dans le cas
analytique:

Definition 1.4.1. Un système Hamiltonien est dit quasi-intégrable s’il existe "0 > 0
tel que son Hamiltonien vérifie ∈ C!

(

] − "0, "0[×T ∗M,ℝ
)

et si ℎ0 ∶= (0, .) ∶
T ∗M → ℝ est intégrable.

En utilisant les variables actions-angles (I, �) associées à (0, .), on se ramène à
une famille de Hamiltoniens prenant la forme

(", I, �) = ℎ0(I) + " (", I, �) où  ∈ !
(]

−"0, "0
[

× U × T n,ℝ
)

(1.4.1)

avec U ouvert dans ℝn.
En fait pour les problèmes étudiés ici, on pourra considérer sans perte de généralité,

la famille de Hamiltoniens

(", I, �) = ℎ0(I) + "f (I, �) où f ∈ ! (U × T n,ℝ) . (1.4.2)

Cette situation apparaît notamment pour l’étude du mouvement des planètes dans le
système solaire (voir [4]). En effet, si la (faible) interaction mutuelle entre les planètes
est négligée, alors le système considéré se découple en plusieurs problèmes de Kepler
indépendants et est intégrable. C’est précisément pour l’étude de ce problème que la
théorie des perturbations a été initiée au dix-huitième siècle.

Le résultat le plus ambitieux serait de montrer que les systèmes quasi-intégrables
sont conjugués à des systèmes intégrables. C’est à dire qu’il faudrait trouver une famille
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à un paramètre V" ⊂ T ∗M constituée d’ouverts connexes invariants pour le flot hamil-
tonien associé à(", ., .) qui sont canoniquement difféomorphes àU"×T n oùU" est un
ouvert dans ℝn. De plus, le hamiltonien (", ., .) sur V" doit être transformé en ℎ"(Ĩ)
avec une famille à un paramètre de fonctions analytiques ℎ" de U" × T n dans ℝ.

Poincaré (voir [103]) a montré que ce résultat est génériquement faux: l’énoncé et
la preuve de ce théorème seront donnés plus loin après l’exposé du principe de moyen-
nisation et des méthodes de moyennisation des perturbations.

1.5 Principe de moyennisation
Pour ce paragraphe et le suivant, on peut consulter le livre d’Arnold, Kozlov et Neishtadt
(réf. [4]).

On voit que dans le cas quasi-intégrable, le système (1.1.1) prend la forme :

İ = −")�f (I, �) ; �̇ = ∇ℎ(I) + ")If (I, �)

où ∇ℎ est le gradient de ℎ. Les variables sont scindées en deux groupes : celles qui
varient sur une échelle temporelle rapide tandis que les autres dérivent lentement, c’est
notamment le cas pour les actions.

Le principe de moyennisation consiste à remplacer le système initial par sa moyenne
temporelle suivant le flot non perturbé Φtℎ associé à ℎ, c’est à dire que l’on passe à
< H > (I, �) = ℎ(I) + " < f > (I, �) avec :

< f > (I, �) = lim
t→∞

(

1
t ∫

t

0
f (I, � + s∇ℎ(I)) ds

)

.

En fait, cette moyenne va dépendre des relations de commensurabilité qui sont véri-
fiées par les composantes du vecteur ∇ℎ(I).

Plus précisément, à un sous-module  ⊂ ℤn, on associe une zone de résonance

 = {I ∈ ℝn
|k ⋅ ∇ℎ(I) = 0⟺ k ∈} ,

et- pour  = {0} - on note 0 la zone non-résonante.
Si le rang de est égal à r ∈ {0,… , n− 1}, il existe une transformation symplec-

tique � = � et I =tJ où  ∈ SL(n,ℤ) est une matrice unimodulaire dont les r
premières lignes constituent une base de .

Dans les nouvelles variables, le hamiltonien considéré devient ∇ℎ̃(J ) = (0, !(J ))
lorsque tJ ∈  avec !(J ) ∈ ℝn−r qui ne vérifie aucune relation de commensura-
bilité.

Alors le flot linéaire de fréquence !(J ) sur le tore T n−r est ergodique et la moyenne
temporelle < f̃ > (J , �) tend vers la moyenne spatiale

< f̃ >
(

J1, J2, �1
)

=
( 1
2�

)n−r

∫ ∫T n−r
f̃
(

J1, J2, �1, �2
)

d�2 (1.5.1)
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où
(

J1, J2, �1, �2
)

∈ ℝr ×ℝn−r × T r × T n−r.
Ainsi, le hamiltonien moyennisé ne dépend plus des angles rapides et le système

considéré ne fait intervenir que des variables qui évoluent lentement (par exemple pour
déterminer numériquement les solutions, on peut prendre un pas d’intégration de l’ordre
de 1∕").

De manière équivalente, le principe de moyennisation est basé sur l’idée que les
termes ignorés dans le champ de vecteur initial entraîne seulement de petites oscillations
qui sont superposées aux solutions générales du systèmemoyennisé, notamment on peut
énoncer :

Theorem 1.5.1. Avec les notations précédentes, les actions J2 conjuguées aux angles
rapides�2 deviennent des intégrales premières du système moyennisé (qui est donc plus
simple que le système initial).

De manière équivalente, on trouve n − r intégrales premières qui sont des combi-
naisons entières des variables d’action initiales I .

Plus particulièrement, si  = {0} (donc dans la zone 0), le système moyennisé
(aussi appelé système séculaire dans ce cas) ne dépend plus des angles et est intégrable.

Par contre, l’ensemble des points résonants (i.e. : situé dans une zone  avec
 ≠ {0}) peut être :

— vide, c’est le cas d’une chaîne d’oscillateurs avec des fréquences
(

!1,… , !n
)

non résonantes.
— dense, c’est la situation générale lorsque l’application fréquence )Iℎ(I) est lo-

calement inversible : ||
|

)2Iℎ(I)
|

|

|

≠ 0, par exemple c’est le cas pour une particule libre sur
le tore T n où le Hamiltonien associé est celui d’un rotateur (voir plus haut).

— égal à ℝn tout entier dans le cas où la différentielle du Hamiltonien intégrable
n’est pas de rang maximal, on dit qu’il admet une dégénérescence propre.

Cette dernière situation apparaît pour le problème de Kepler, où le Hamiltonien con-
sidéré ne dépend que du demi-grand-axe de l’ellipse parcourue. Lever cette dégénéres-
cence est une difficulté majeure dans les problèmes de mécanique céleste.

Le principe de moyennisation a été introduit par Lagrange et Laplace dans leurs
travaux sur les perturbations séculaires des orbites planétaires (c’est à dire lorsque l’on
étudie les solutions du système séculaire intégrable pour le problème des n corps avec
une faible interaction gravitationnelle autour d’un attracteur central massif). Dans ce
cas, le système non perturbé est constitué de n problèmes de Kepler découplés donc
le Théorème 1.5.1 et la remarque précédente entraînent que les demi-grands-axes des
planètes sont des intégrales premières du système moyen si leurs périodes de révolution
autour du corps central ne sont pas commensurables. Ce résultat a été démontré par
Laplace dans son étude de la stabilité du système solaire (1773).
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1.6 Théorie des perturbations classiques
Il s’agit maintenant de vérifier la validité du principe de moyennisation : donc, de
s’assurer que les solutions du système complet restent proches de celles du système
moyennisé.

Notamment, ceci sera le cas si l’on trouve une transformation "−proche de l’identité
qui conjugue le Hamiltonien initial à sa moyenne suivant les angles rapides �2 (i.e. :
dans les variables adaptées à la résonance étudiée comme dans le paragraphe précédent).
On est donc ramené à un problème de forme normale où l’on recherche un système de
coordonnées adéquat dans lequel les équations considérées prennent la forme la plus
“simple” possible.

Ici, on considèrera une transformation correspondant au flot au temps 1 d’un sys-
tème gouverné par un Hamiltonien K(I, �) = "K̃(I, �), que l’on notera Φ1K .

Avec la formule de Taylor et la définition du crochet de Poisson, on obtient

F◦Φ1K = F + {F ,K} + ∫

1

0
(1 − u){{F ,K}K}◦ΦuKdu

pour toute fonction vectorielle F ∈ C2 (U × T n,ℝm).
Ainsi, le Hamiltonien transforméH◦Φ1K admet le développement suivant en "

H◦Φ1K = ℎ + "
(

f + {ℎ, K̃}
)

+ O
(

"2
)

,

donc pour obtenirH◦Φ1K = ℎ(I) + " < f > +O
(

"2
)

, on doit résoudre :

f + {ℎ, K̃} =< f > ⟺ ∇ℎ(I) ⋅ )�K̃(I, �) = −f+ < f> (1.6.1)

qui est l’équation de conjugaison linéarisée ou équation homologique.
Il s’agit de l’équation centrale de la théorie des perturbations.

On est dans le cadre analytique donc la fonction f admet le développement en série
de Fourier f (I, �) =

∑

k∈ℤn
fk(I) exp (ik�).

Dans la zone de résonance , en utilisant l’expression de la moyenne spatiale
(1.5.1) et après le changement de variable (I, �) =

(tJ ,−1�
)

, on voit que lamoyenne
temporelle admet le développement < f > (I, �) =

∑

k∈
fk(I) exp (ik�).

Donc la fonction

K̃(I, �) =
∑

k∉

fk(I)
i (k.∇ℎ(I))

exp (ik�)

fournit une solution formelle de l’équation homologique 1.6.1 définie sur  puisque
les dénominateurs ne s’annulent pas sur cette zone.

On obtient ainsi une transformation qui normalise le Hamiltonien au premier ordre
et, par le même procédé, on peut éliminer formellement les angles rapides à tous les
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ordres (i.e. : le même type d’équation homologique apparaît à tout les ordres pour
déterminer Xn où n ≥ 1).

Cette construction s’appelle la méthode de Lindstedt.

1.7 Problème des résonances
Si la fréquence∇ℎ(I) est résonante, le produit k ⋅∇ℎ(I) s’annule pour un certain multi-
entier k non nul, et ainsi l’équation homologique pour obtenir une forme normale inté-
grable (i.e. : correspondant à  = {0}) ne possède tout simplement pas de solution
formelle. Il n’y a pas de solutions dans ce cas car le flot linéaire de fréquence∇ℎ(I) n’est
pas ergodique et l’approximation de la perturbation par sa moyenne spatiale complète
n’a tout simplement aucun sens.

C’est la situation la plus connue qui correspond, par exemple, au théorème de non-
intégrabilité analytique de Poincaré :

Theorem 1.7.1. On considère un Hamiltonien (", I, �) = ℎ0(I) + "f (I, �) où  ∈
C! (U × T n,ℝ) avec U un ouvert dans ℝn, qui vérifie les conditions de

— Non-dégénérescence : l’application fréquence )Iℎ(I) est de rang maximal (i.e.
|

|

|

)2Iℎ(I)
|

|

|

≠ 0 sur U ).
— Généricité : la perturbation a un développement en série de Fourier

f (I, �) =
∑

k∈ℤn
fk(I) exp (ik�)

complet, i.e. aucun coefficient fk n’est identiquement nul sur U .
Alors, il n’existe pas de transformation canonique analytique définie sur un ouvert

dans U qui transforme (", ., .) en un Hamiltonien intégrable.

Proof. comme on l’a vu, cette transformation ne peut être définie que dans la zone
de non-résonance (0 = {I ∈ ℝn tels que k ⋅ ∇ℎ(I) = 0 si et seulement si k = 0}) qui
admet un complémentaire dense avec notre condition de non-dégénérescence.

Notamment, ceci implique qu’un système Hamiltonien générique n’est pas inté-
grable (voir [88]).

1.8 Problème des petits diviseurs et théorie KAM
Par opposition à la situation précédente, la conjugaison à un système intégrable est
formellement possible si la fréquence ∇ℎ(I) est non résonante, donc sur 0 dont le
complémentaire est demesure nulle si la condition de non-dégénérescence du Théorème
1.7.1 est vérifiée. On a alors l’existence d’une solution formelle, mais rien ne garantit
la convergence de la solution. En effet, même si k ⋅ ∇ℎ(I) est non nul pour tout k ∈
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ℤn∖{0}, le produit scalaire peut (et va) devenir arbitrairement petit pour des multi-
entiers de longueurs arbitrairement grandes, impliquant la divergence de la série. C’est
le fameux phénomène des petits diviseurs.

Poincaré (voir [103]) pensait que la convergence des séries de Lindstedt était “haute-
ment improbable” mais Kolmogorov (réf. [80]) a montré en 1954 (toujours avec la con-
dition de non-dégénérescence du théorème 1.7.1) que la plupart des tores non réso-
nants (i.e. : au-dessus de 0) se prolongent en tores invariants sous le flot perturbé
lorsque la perturbation est suffisamment petite. Ceci est obtenu en considérant des
tores dont les fréquences associées vérifient une condition arithmétique (diophantienne)
générique qui permet le controle des petits dénominateurs qui apparaissent dans les cal-
culs. Arnold (voir [2]) a prouvé que le complémentaire de ces tores invariants a une
mesure qui tend vers zéro avec la taille de la perturbation et Moser (réf. [91]) a étendu
ce résultat aux Hamiltoniens suffisamment différentiables.

Pour un panorama de la théorie de Kolmogorov-Arnold-Moser, on peut se référer
aux très bonnes présentations [29], [105] et [54].

On obtient ainsi un résultat de stabilité en mesure : la plupart des orbites sont situées
sur un tore invariant donc elles sont quasi-périodiques, définies pour tout les temps
et perpétuellement stables car les variables d’action varient très peu autour des tores
invariants.

Pour n = 2, cette propriété de stabilité est même vraie pour toute solution, dans le
cadre du théorème KAM iso-énergétique d’Arnold : sur chaque niveau d’énergie, qui
est de dimension 3, persiste une famille de tores invariants de dimension 2 telle que
chaque composante connexe du complémentaire est bornée. Alors, ou bien la solution
est quasi-périodique, ou bien elle est “coincée” entre deux solutions quasi-périodiques,
et un argument utilisant la mesure des tores préservés montre que la solution est encore
stable avec de faibles variations des variables d’actions.

En 1964, Arnold (réf. [3]) a démontré qu’une telle propriété ne subsiste pas pour
n ≥ 3. Il a construit un exemple de système Hamiltonien à trois degrés de liberté
qui possède un grand nombre de tores invariants grâce à la théorie KAM mais qui,
conjointement, possède une solution (�(t), I(t)) telle que

|

|

I(�) − I0|| ≥ 1

avec � = �("), et ceci pour tout " > 0; donc, une orbite peut décrire une large partie de
l’espace des phases même avec une perturbation arbitrairement petite.

Donc, pour n ≥ 3, la théorie KAM ne fournit pas de résultat de stabilité valable
pour toutes les solutions.

De plus, les tores KAM forment un ensemble de Cantor nulle part dense (donc,
d’intérieur vide) et, du point de vue de la physique, il est impossible de déterminer si
une condition initiale conduit à une solution quasi-périodique ou pas.

Enfin on peut également mentionner un troisième problème, qui n’est pas lié aux
résonances ou petits diviseurs, mais qui est incontournable.
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Problème des grands multiplicateurs

Même en l’absence de petits dénominateurs, la méthode de moyennisation conduit en
général à des séries divergentes: ceci avait déjà été remarqué par Poincaré, qui écriva :

Ce qui empêche la convergence, ce n’est pas la présence de petits diviseurs
s’introduisant par l’intégration, mais celle des grands multiplicateurs s’introduisant
par la différentiation (voir [103]).

Il s’agit tout simplement du problème de la convergence du schéma itératif. En
admettant que l’on sache faire face aux problèmes des résonances et des petits diviseurs,
on peut alors trouver un changement de variables ΦK1 qui élimine la perturbation à
l’ordre ", puisΦK2 qui élimine la perturbation à l’ordre "2 et ainsi de suite, mais il reste
à montrer la convergence du produit infini

Φ = ΦK1◦ΦK2◦… ◦ΦKn◦…

et c’est une question délicate.

En fait, le problème précédent, dans le cas d’un système analytique, peut se ramener
à la convergence d’une série formelle, où le terme général an se trouve être de l’ordre
de An(n!)� , avec A > 0, � > 0 et qui généralement diverge. Par contre cette série
formelle peut être tronquée à un ordre optimal avec un reste qui atteint une taille mini-
male avant de diverger, c’est ce que l’on appelle une sommation “au plus petit terme”.
Selon Poincaré, ce sont “des séries convergentes au sens des astronomes mais diver-
gentes au sens des géomètres”.

De plus, dans le cas général (i.e. : pas analytique), la croissance de ces “grands mul-
tiplicateurs” dans la construction des formes normales dépend uniquement de la régu-
larité du système étudié. On peut toujours faire une sommation “au plus petit terme”
pour pallier à la divergence dans le schéma itératif. Ceci se traduit par le fait que l’on
fait un nombre fini mais "asymptotiquement infini" d’étapes : pour une perturbation de
taille " fixée, on fait un nombre d’étapes de l’ordre de "−a où a > 0, et donc lorsque "
tend vers zéro, ce nombre tend vers l’infini. Au voisinage d’une zone résonante (et
particulièrement à l’intérieur du domaine non résonant0), on peut alors normaliser le
Hamiltonien initial jusqu’à un reste exponentiellement (resp. polynomialement) petit
par rapport à l’inverse de la taille de la perturbation si l’on considère un système ana-
lytique (resp. Ck ou Hölder). On en déduit alors un résultat de stabilité exponentielle
(resp. polynomial) mais seulement “local” et “partiel” : local dans le sens où il n’est
valable que pour les solutions qui restent dans un domaine avec des résonances con-
trôlées où la forme normale est valide, et partiel puisque le système moyenné n’est plus
nécessairement intégrable, et on ne peut contrôler l’évolution des variables d’action que
dans certaines directions.
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1.9 Théorie de Nekhoroshev

1.9.1 Introduction et énoncé
On vient de voir que la stabilité en temps infini des solutions d’un système Hamiltonien
presque-intégrable n’est en général pas vraie, on va donc essayer d’établir la stabilité
en temps fini mais très long de ces solutions au sens de la définition suivante :

Definition 1.9.1. Avec les notations précédentes, on dit qu’un système Hamiltonien
presque-intégrable est effectivement stable s’il existe des constantes positives b, c telles
que pour toute action initiale I(0) :

||I(t) − I(0)|| ≤ c"b où |t| ≤ T (")

avec
lim
"→0

" T (") = +∞

car on veut T (") supérieur au temps de stabilité trivial 1∕".

La propriété précédente entraine que les solutions restent dans un compact et ont
donc un temps de vie supérieur à T ("). De plus, les variables d’actions deviennent
des quasi-intégrales premières sur des temps très longs ce qui permet de localiser les
solutions dans l’espace des phases.

Pour n = 2, la théorie KAM nous donne des résultats de stabilité perpétuelle, c’est-
à-dire T (") = +∞, et on peut montrer que b = 1∕2 dans ce cas.

Par contre, ceci n’est plus vrai pour n ≥ 3 grâce à (voir [3]).
On parlera de stabilité polynomiale (resp. exponentielle) si T (") est d’ordre "−1−a

(resp. "−1 exp ("−a)), où a > 0.
Pour introduire le problème, on commence par un exemple typique de Hamiltonien

qui n’est pas effectivement stable : ℎ(I1, I2) = I21 −I
2
2 . En effet, une dérive des actions

(I1(t), I2(t)) sur un segment de longueur 1 et sur un temps de l’ordre de 1∕" apparaît
lorsque l’on ajoute la perturbation f (�1, �2) = − sin

(

�1 + �2
)

avec la solution du sys-
tème perturbé ℎ + "f donnée par :

(I1(t), I2(t), �1(t), �2(t)) = ("t, "t, "t2,−"t2). (1.9.1)

Dans cet exemple, l’orbite instable dérive le long de la deuxième diagonale qui
correspond à la zone de résonance associée au module = ℤ(1,−1) et le Hamil-
tonien considéré est déjà sous forme normale (ou moyennisé) dans cette zone de ré-
sonance. On note que la vitesse de dérive des actions dans cet exemple est maximale
compte tenu de la taille " de la perturbation, c’est le temps trivial 1∕".

Ce type d’exemple a été introduit initialement par Moser (voir [90]) et la propriété
importante est ici le fait que le gradient ∇ℎ(I1, I2) reste orthogonal à la deuxième di-
agonale ou, de manière équivalente, le gradient de la restriction de ℎ sur la deuxième
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diagonale est identiquement nulle. Ceci entraine que les solutions du système normal-
isé avec des conditions initiales dans la zone de résonance  où  = ℤ(1,−1) ne
peuvent pas sortir de . C’est précisément le point important qui doit être évité pour
toutes les zones de résonance afin de garantir une stabilité effective

A partir des considérations de Moser (réf. [90]), dans un article précurseur Glimm
(réf. [66]) a été le premier à indiquer des propriétés permettant d’éviter le problème
précédent, mais c’est Nekhoroshev (réfs. [94], [95], [96]) dans une série de travaux
fondamentaux au début des années 1970 qui a montré que, génériquement au sens
topologique et de la mesure, le phénomène précédent ne se produit pas et qu’en général,
les systèmes Hamiltoniens presque-intégrables analytiques sont effectivement stables
sur des temps exponentiellement longs. L’étude de la théorie de Nekhoroshev est au
centre de cette thèse, où l’on clarifie et met en perspective la preuve de cette généric-
ité à la lumière de résultats beaucoup plus récents de géométrie algébrique réelle. Par
ailleurs, on étend cette théorie à des systèmes Hamiltoniens de régularité beaucoup plus
faible que le cadre analytique initialement considéré.

Nous allons tout d’abord donner un énoncé informel du théorème de Nekhoroshev.

Theorem 1.9.1 (Nekhoroshev, 1977). On considère un système hamiltonien presque
intégrable associé à ℎ(I) + f (I, �) où (I, �) ∈ BR × T n, avec BR ⊂ ℝn la boule
ouverte de rayon R centré à l’origine et ||f || < " où || ⋅ || est une norme fonctionnelle
adaptée suivant la régularité des systèmes étudiés.

On suppose que :
(i) le système est analytique;
(ii) ℎ satisfait une condition "générique" dite d’escarpement (en anglais, steepness).
Alors il existe des constantes positives C1, C2, C3, a, b, "0 qui ne dépendent que de

ℎ telles que, pour " ≤ "0, on a :

|I(t) − I(0)| ≤ C1"
b , |t| ≤

C2
"
exp

(

C3"
−a)

pour toute action initiale I(0) ∈ BR∕2.

Les constantes a et b sont appelés exposants de stabilité, la valeur de a est la plus
importante car elle fournit le temps de stabilité. La valeur donnée par Nekhoroshev pour
l’exposant de stabilité a tend naturellement vers l’infini lorsque n tend vers l’infini et le
temps de stabilité tend vers le temps trivial 1∕". Guzzo, Chierchia et Benettin (voir [70])
ont donné une version très raffinée de ce résultat avec des exposants de stabilité qui sont
certainement les plus précis que l’on peut obtenir avec la stratégie de Nekhoroshev.

La preuve de ce théorème est expliquée en détail dans la Partie III mais nous en
donnons une description informelle ci-dessous.

1.9.2 Aspects analytiques de la preuve
Le résultat de Nekhoroshev peut être étendu aux Hamiltoniens de classe Gevrey (voir
[87]) toujours avec un temps de stabilité exponentiel par rapport à l’inverse de la taille
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de la perturbation, ainsi qu’en régularité Ck (k ∈ ℕ) (réf. [30]) et Hölder (réf. [14]):
dans ces deux derniers cas le temps de stabilité est seulement polynomial par rapport à
l’inverse de la taille de la perturbation.

La première étape de la preuve est la normalisation du système presque intégrable
jusqu’à un ordre élevé dans une large partie de la zone non-résonante 0 ainsi que
dans des voisinages des zones résonantes  pour  ≠ {0}. Ceci est obtenu par un
contrôle des petits dénominateurs avec des conditions arithmétiques similaires à celles
qui apparaissent dans la théorie KAM. La taille des restes dans ces formes normales
dépend uniquement de la régularité du système étudié et impose le temps de stabilité
des solutions.

C’est précisément cette étape qui est considérée dans la Partie III de cette thèse, et
qui correspond à l’article [14], où l’on développe une version adaptée à la théorie des
perturbations d’un Lemme classique d’approximation analytique des fonctions Hölder
dû à Jackson-Moser-Zehnder (voir [45]). Cet outil permet d’étendre à des systèmes
de classe Hölder de manière simple et rapide les estimations génériques de Nekhoro-
shev les plus raffinées obtenues dans le cas analytique par Guzzo, Chierchia et Benettin
(voir [70]). On obtient alors des temps de stabilité qui sont polynomiaux par rapport
à l’inverse de la taille de la perturbation et donc des bornes à la vitesse de la diffu-
sion d’Arnol’d pour les systèmes de faible régularité. Le schéma de preuve, pour un
Hamiltonien presque intégrable H de classe Hölder, consiste à normaliser son lissage
analytique HAn puis à contrôler précisément la différence H − HAn et, enfin, à ap-
pliquer les arguments de [70]. C’est le contrôle de l’erreurH −HAn qui nécessite des
estimées non classiques dans la preuve du Lemme d’approximation analytique pour des
fonctions Hölder.

1.9.3 Aspects géométriques de la preuve

Comme on l’a vu, les formes normales que l’on considère au voisinage des résonances
non triviales (i.e. engendrées par un module ≠ {0}) donnent seulement un contrôle
partiel de la dynamique et c’est là que la propriété d’escarpement intervient dans les
arguments de Nekhoroshev. En effet, il s’agit d’une condition qui assure l’alternative
suivante : soit une solution du système normalisé associée à une condition initiale dans
une zone résonante non-triviale varie peu, soit elle s’écarte en un temps rapide de la zone
de résonance considérée pour rentrer dans une zone associée à une résonance d’ordre
strictement inférieur (i.e. engendrée par un module de résonance de dimension stricte-
ment inférieure). Ce schéma dichotomique garantit que pour toute condition initiale
appartenant à une zone associée à un module de résonance non-trivial  ≠ {0}

− soit la solution associée reste bornée à l’intérieur de la zone de résonance initiale
pendant un temps très long;
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− soit la solution traverse rapidement au plus un nombre fini de zones associées à
des résonances non-triviales pour ensuite rentrer dans la zone non-résonante 0.

Comme on l’a montré auparavant, toute action en0 a une dérive très lente. De plus, la
taille des zones résonantes non-triviales est de l’ordre d’une puissance de la taille de la
perturbation ". Ces arguments permettent donc d’établir la stabilité effective énoncée
dans le Théorème de Nekhoroshev.

La définition originale d’escarpement donnée par Nekhoroshev est compliquée et
est étudiée de manière très approfondie dans cette thèse. On peut donner une première
caractérisation géométrique de cette propriété établie par Ilyashenko (réf. [75]) dans le
cas complexe et par Niederman (réf. [98]) dans le cas réel.

Theorem 1.9.2. Une fonction holomorphe (resp. réelle analytique) est escarpée si et
seulement si elle n’a pas de points critiques et si sa restriction à tout sous-espace affine
propre n’admet que des points critiques isolés .

En particulier, cette propriété est vérifiée dans le cas important des fonctions con-
vexes où les points critiques considérés sont non-dégénérés donc isolés. Par contre, la
convexité est une propriété ouverte mais pas générique.

Un exemple de fonction non-escarpée est donné par f (x, y) = x2 − y2 qui cor-
respond au hamiltonien donnant lieu à la solution instable (1.9.1) pour une perturba-
tion arbitrairement petites. Si l’on ajoute un terme d’ordre plus élevé en considérant
g(x, y) = ℎ(x, y)+x3, on retrouve une fonction escarpée. Comme on le voit ci dessous,
cette dernière propriété avec les fonctions ℎ et g, relève du théorème de généricité qui
est au centre de cette thèse.

Plus précisément, Nekhoroshev a démontré, initialement dans [94] puis précisé dans
[95] et [96]), l’énoncé suivant :

Theorem 1.9.3. Pour tout couple d’entiers n ≥ 2 et r ≥ 2, le polynôme de Taylor
d’ordre r d’une fonction non-escarpée à n variables de classe C2r−1 appartient à un
sous-ensemble semi-algébrique1  de l’espace des polynôme à n variables et de de-
gré r.

De plus,  a une codimension qui devient strictement positive pour un degré
r suffisament grand (on peut prendre r ≳ ⌊n∕4⌋). Ce dernier résultat entraine la
généricité de la propriété d’escarpement aussi bien au sens topologique qu’au sens
de la mesure.

Bien que la théorie de Nekhoroshev soit un sujet d’étude classique en dynamique
hamiltonienne, la preuve de la généricité de l’escarpement est restée pratiquement non

1C’est à dire, un ensemble dont les points vérifient un nombre fini d’équations et inéquations polynomiales.
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étudiée depuis 50 ans ! Ceci est peut être dû au fait qu’elle n’emploie aucun argu-
ment concernant les systèmes dynamiques, mais utilise des arguments quantitatifs de
géométrie algébrique réelle et d’analyse complexe. En dehors de l’article original (
[94]), à notre connaissance les seuls travaux sur le sujet sont [111], [47] et [13] (ce
dernier papier constitue la Partie V de cette thèse). Ces travaux utilisent en “boîte noire”
le schéma de preuve de Nekhoroshev pour établir des critères explicites qui assurent
l’escarpement dans le cas de fonctions à moins de 5 variables avec les coefficients de
Taylor de la fonction considérée de degré inférieur ou égal à 5.

Dans la première partie de cette thèse, on revisite la preuve initiale (voir [94]) de
la généricité de la propriété d’escarpement puis on démontre des critères explicites
généraux qui permettent de déterminer si une fonction donnée suffisamment régulière
est escarpée.

On réécrit tout d’abord la preuve de la généricité de l’escarpement à la lumière de
résultats beaucoup plus récents. Plus particulièrement, la géométrie algébrique réelle
était encore balbutiante au moment où Nekhoroshev a démontré ce résultat et son article
(réf. [94]) mélange, avec une rédaction parcellaire et obscure par moment, des preuves
de résultats fondamentaux nécessaires, ainsi que des propriétés spécifiques au problème
étudié. Tout ceci rend difficile la lecture de ce texte.

Notamment, comme on le verra dans la première moitié de la Partie I, Nekhoro-
shev prouve, dans le cas particulier qui l’intéresse, un théorème général de Yomdin
(réf. [116]) démontré 35 ans plus tard sur la reparamétrisation analytique des ensembles
semi-algébriques. Sans trop rentrer dans les détails, cette reparamétrisation d’un ensem-
ble semi-algébrique A ⊂ ℝn consiste à recouvrir A par une collection finie d’ensemble
Aj qui sont chacun l’image du cube unité dans ℝn par une fonction semi-algébrique2
suffisament régulière ayant des dérivées que l’on peut borner. On a ce contrôle jusqu’à
un ordre prescrit dans le cas des reparamétrisations introduites indépendamment par
Yomdin [115] et Gromov [67] (ceci s’appelle le LemmeAlgébrique deYomdin-Gromov
dans la littérature), et jusqu’à l’infini dans le cas des reparamétrisations analytiques
étudiées par Yomdin [116] et qui est considéré ici3).

Cette nouvelle paramétrisation contrôlée est centrale dans la preuve de la généricité
de la propriété d’escarpement car elle permet de réduire le problème étudié au cas poly-
nomial et la propriété d’escarpement d’une fonction donnée au voisinage d’un point est
déterminé par le jet à un ordre fini de cette fonction en ce point. Donc on peut ramener
le problème étudié à la dimension finie.

Le second ingrédient central est une analyse fine du système polynomial correspon-
dant au problème étudié après reparamétrisation, ceci permet de borner le rang de ce
système et aboutir à la majoration désirée sur la codimension, ce qui entraine la généric-
ité de la propriété d’escarpement.

2C’est à dire une fonction dont le graphe est un ensemble semi-algébrique.
3Tout ensemble semi-algébrique peut être entièrement reparamétré avec un controle des dérivés jusqu’à

un ordre prescrit, alors que dans le cas analytique il faut toujours exclure un nombre fini de petits voisinages
de singularités complexes.
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Le système polynomial qui apparait dans la preuve précédente permet de trouver
des critères explicites pour vérifier la propriété d’escarpement d’une fonction donnée
en fonction de ses coefficients de Taylor. C’est ce qui est développé dans la seconde
moitié de la Partie I et ces critères sont importants en vu des applications de la théorie
de Nekhoroshev. La définition de l’escarpement n’est pas constructive, et il est diffi-
cile d’établir si une fonction donnée est escarpée ou non sauf dans le cas particulier
des fonctions convexes. Ainsi en mécanique céleste des problèmes importants donnent
lieu à des approximations intégrables non convexes, c’est notamment le cas lorsque
l’on considère le problème séculaire, ou normalisé, des trois corps dans l’appoximation
planétaire (ceci est discuté dans l’introduction de la Partie I, voir aussi [102]). Avant ce
travail de thèse, il existait uniquement des critères pour des polynômes de bas degrés et
dépendant de peu de variables (réf. [111] puis [13], ce dernier article constitue l’annexe
V). On démontre ici des critères généraux valables pour une fonction avec un nombre
quelconque de variables et qui portent sur ses coefficients de Taylor à un ordre arbitraire
ainsi qu’un nombre fini de paramètres réels externes qui, génériquement, appartiennent
à des ensembles compacts.

La Partie II est consacrée à l’extension d’un résultat d’analyse complexe montré par
Nekhoroshev dans sa preuve de la généricité de l’escarpement et qui est intéressant en
soi. Plus précisément, on montre que :

Theorem 1.9.4. SoientΩ un domaine borné dans ℂ, k ≥ 1 un nombre entier et ⊂ Ω
un sous-ensemble compact de cardinalité strictement supérieure à k.

Alors, pour toute fonction f holomorphe sur Ω, dont le graphe est contenu dans la
courbe algébrique d’un polynôme de deux variables4 S ∈ ℂ[Z,W ] de degré borné
par k, la quantité

maxΩ |f |
max |f |

est bornée par une constante qui ne dépend que de k, Ω,  mais pas de f .

Remark 1.9.1. Ce type de majoration s’appelle une inégalité de Bernstein-Remez.

Ce résultat a été démontré par Briskin-Yomdin (réf. [38]) et Roytwarf-Yomdin (réf.
[107]) dans le cas où est un intervalle réel, puis par Yomdin (réf. [117] et Friedland-
Yomdin (réf. [63]) dans le cas où est un ensemble discret de cardinalité assez élevée,
grâce à des arguments de géométrie algébrique réelle et d’analyse complexe. Ici, on
généralise les raisonnements utilisés par Nekhoroshev pour prouver une inégalité de
Bernstein-Remez dans le cas particulier qui apparaissait pour la preuve de la généricité
de l’escarpement. La démonstration développé ici est différente de celle de Yomdin:
elle s’appuie sur des théorèmes classiques d’analyse complexe et permet de montrer de
manière beaucoup plus simple l’inégalité de Bernstein-Remez que dans [107] et [117]
où il y a une preuve constructive, donc très détaillée mais aussi plus délicate.

4I.e. f vérifie S(z, f (z)) = 0, et on dit que f est une fonction algébrique
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La partie IV est encore un travail en cours. On y montre un résultat qui devrait
être utile pour prouver une conjecture d’Arnol’d, Kozlov et Neishtadt sur la mesure des
tores KAM invariants pour un système presque-intégrable générique, qui devrait avoir
une mesure comparable à la taille de la perturbation, alors que les résultats classiques
donnent unemesure comparable à la racine carré de la taille de la perturbation (voir [4]).

Biasco et Chierchia (réf. [25]) ont montré que la mesure du complémentaire des
tores KAM invariants pour un systèmemécanique presque-intégrable générique du type
H(I, �) = I21∕2 + "f1(�1) +… + I2n∕2 + "fn(�n) admet une majoration d’ordre O("):
ceci constitue une partie de la conjecture d’Arnol’d-Kozlov-Neishtadt

On prouve ici un résultat qui devrait être utile pour étendre le résultat de Biasco-
Chierchia aux hamiltoniens de la formeH(I, �) = I2∕2 + "f (I, �) - et, possiblement,
au cas général des hamiltoniens presque-intégrables génériques.

Quand la perturbation f dépend aussi des variables d’actions, les arguments de
Biasco-Chierchia ( [25]) ne sont plus valides et on propose de surmonter ces obstacles
en utilisant la théorie de Morse-Sard quantitative développée par Yomdin (réfs. [114],
[119]).

Enfin, la Partie V correspond à l’article [13] dans lequel on donne des conditions
explicites suffisantes pour garantir l’escarpement dans le cas d’une fonction avec moins
de cinq variables. C’est le cas le plus simple où apparaît la structure des équations qui
sont données en toute généralité dans la Partie I. Ce travail est en fait antérieur à la Partie
I, mais il permet de voir explicitement sur des exemples les difficultés pour établir les
critères de I.

Pour ne pas alourdir la rédaction, les preuves et les énoncés de plusieurs résultats
intermédiaires ont été placées dans des appendices à la fin du manuscrit.

Firenze, le 9 Mars 2023
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Part I

Semi-algebraic geometry and
generic Hamiltonian stability
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Abstract
The steepness property is a geometric transversality condition which proves funda-
mental in order to ensure the stability of nearly-integrable Hamiltonian systems over
long timespans. Steep functions were originally introduced by Nekhoroshev, who also
proved their genericity: namely, the Taylor polynomials of sufficiently smooth non-
steep functions are contained in a semi-algebraic set of positive codimension in the
space of polynomials. The demonstration of this result was originally published in
1973 and has been hardly studied ever since, probably due to the fact that it involves
no arguments of dynamical systems: it makes use of quantitative reasonings of real-
algebraic geometry and complex analysis. The aim of the present work is two-fold. In
the first part, the original proof of the genericity of steepness is rewritten by making
use of modern tools of real-algebraic geometry: this allows to clarify the original rea-
sonings, that were obscure or sketchy in many parts. In particular, Yomdin’s Lemma
on the analytic reparametrization of semi-algebraic sets, together with non trivial esti-
mates on the codimension of certain algebraic varieties, turn out to be the fundamental
ingredients to prove the genericity of steepness. The second part of this work is de-
voted to the formulation of explicit algebraic criteria to check steepness of any given
sufficiently regular function, which constitutes a very important result for applications.
These criteria involve both the derivatives of the studied function up to any given order
and external real parameters that, generically, belong to compact sets.
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Chapter 2

Introduction

2.1 Hamiltonian formalism and nearly-integrable sys-
tems

Hamiltonian formalism is the natural setting appearing in the study of many physical
systems. Namely, for any given positive integer n, we consider a symplectic manifold
 of dimension 2n, endowed with a skew-symmetric two-form !, and with a func-
tion H ∈ C2() classically called Hamiltonian. A Hamiltonian system on  is the
dynamical system governed by the vector field XH verifying

iXH! ∶= !(XH , ⋅) = dH . (2.1.1)

In the simplest case, we consider the motion of a point on a n-dimensional Riemannian
manifold  endowed with the euclidean metric - called the configuration manifold -
under Newton’s second law

q̈ = −∇U (q) ,

where U is a smooth potential function, and q is a system of local coordinates for .
This system can be conjugated by duality due to Legendre’s transformation and reads

ṗ = −)qH(p, q) ; q̇ = )pH(p, q) (2.1.2)

whereH(p, q) is a real smooth function on the cotangent bundle T ⋆, and p is the local
coordinate conjugated to q. In this example, if one takes ≡ T ⋆, and if one chooses
(p, q) to be Darboux’s coordinates associated to the two-form !(p, q) ≡

∑n
j=1 dpi∧dqi,

then system (2.1.2) is locally equivalent to (2.1.1).
Among Hamiltonian system, an important rôle is played by those which are inte-

grable by quadrature. Due to the classical Liouville-Arnol’d Theorem, under general
topological assumptions, an integrable system depending on 2n variables (n degrees of
freedom) can be conjugated to a Hamiltonian system on the cotangent bundle of the

33
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n-dimensional torus T n, whose equations of motion take the form

İ = −)#ℎ(I) = 0 , #̇ = )Iℎ(I) ,

where (I, #) ∈ ℝn ×T n are called action-angle coordinates. Therefore, the phase space
of an integrable system is foliated by invariant tori carrying the linear motions of the
angular variables (called quasi-periodic motions).

Integrable systems are exceptional1, but many important physical problems can be
described by Hamiltonian systems which are close to integrable. Namely, the dynamics
of a nearly-integrableHamiltonian system is described by aHamiltonian functionwhose
form in action-angle coordinates reads

H(I, #) ∶= ℎ(I) + "f (I, #) , (I, #) ∈ ℝn × T n

where " is a small parameter that tunes the size of the perturbation "f w.r.t. the inte-
grable part ℎ.

The structure of the phase space of this kind of systems can be inferred with the help
of classical Kolmogorov-Arnol’d-Moser (KAM) theory. Namely, under the generic
non-degeneracy condition that ∇ℎ is a local diffeomorphism, a Cantor-like set of pos-
itive Lebesgue measure of invariant tori carrying quasi-periodic motions for the inte-
grable flow persists under a suitably small perturbation (see e.g. ref. [5], [46]). As
this Cantor-like set is nowhere dense, it is extremely difficult to determine numerically
whether a given solution is quasi-periodic or not.

Moreover, for a Hamiltonian system depending on n degrees of freedom (hence
a 2n-dimensional system), the invariant tori provided by classical KAM theory are
n-dimensional. Hence, if n = 2, any pair of invariant tori disconnects the three-
dimensional energy level, so that the solutions of the perturbed system are global and
bounded over infinite times. However, an arbitrary large drift of the orbits is possible
in case n ≥ 3. Actually, in ref. [3] Arnol’d proposed an example of a nearly-integrable
Hamiltonian system where an arbitrary large instability of the action variables occurs
for an arbitrary small perturbation. This phenomenon is known under the name of
Arnol’d’s diffusion (see ref. [78] and references therein for the most recent develop-
ments in this field). Thus, results of stability for quasi integrable Hamiltonian systems
which are valid for an open set of initial condition can only be proved over finite times.

2.2 Long time stability of nearly-integrable systems
In the 1970s, Nekhoroshev2 proved that if we consider a real-analytic, integrable Hamil-
tonian whose gradient satisfies a suitable, quantitative transversality condition known

1Three examples of integrable systems are the classical Kepler’s problem, the harmonic oscillator, and
Lagrange’s top.

2See [95], or [70] for a more modern presentation
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as steepness, then, for any sufficiently small perturbation the solutions of the perturbed
system are stable and have a very long time of existence3.

The original definition of steepness given by Nekhoroshev is quite involved and
will be discussed at length in the sequel. In order to grasp an idea of what this property
means, it is worth mentioning that a real-analytic function is steep if and only if it has
no isolated critical points and if any of its restrictions to any affine proper subspace
admits only isolated critical points (see [75] and [98]). This is especially satisfied in
the important case of an integrable Hamiltonian which is strictly convex in the action
variables, so that all convex functions are steep.

Actually, the vast majority of the works on Nekhoroshev’s theory concerns small
perturbation of convex integrable Hamiltonian but Nekhoroshev also proved in [94] that
- unlike convexity - the steepness condition is generic, both in measure and topological
sense: the Taylor polynomials of sufficiently high order of non-steep functions are con-
tained in a semi-algebraic set having positive codimension in the space of polynomials.
The proof and the refinement of this property constitute the first part of the present work.
However, before presenting this and the other main results, we would like to highlight
that - even though convex systems are common 4 - non-convex integrable Hamiltonians
occur in the investigation of important problems of mechanics.

Namely, we consider a symplectic manifold (, !) of dimension 2n, n ∈ ℕ, where
! is an everywhere non-degenerate closed 2-form, a smooth symplectic vector field X
on  (meaning that the one-form iXΩ is closed) and an equilibrium point p∗ ∈ ,
that is X(p∗) = 0.

We are interested in studying whether p∗ is stable or not.
Since we are in a conservative case, a first observation is that, if p∗ is stable, then

the spectrum of the linearized system around p∗ is {±i�1,… ,±i�n} where �1,… , �n
are reals, and p∗ is an elliptic equilibrium position.

The problem being local, we can ensure without any loss of generality (this is spec-
ified in [32]) that (M,Ω) = (ℝ2n,Ω0)whereΩ0 is the canonical symplectic structure of
ℝ2n, hence Ω0(x, y) = dx ∧ dy for the conjuguated variables (x, y) ∈ ℝn × ℝn. More-
over, under generic assumptions (see [32]), we can assume that the considered system
derives from a Hamiltonian of the form:

H(x, y) =
n
∑

j=1
�j(x2j + y

2
j )∕2 + O3(x, y), (2.2.1)

where our standing assumption from now on is that the HamiltonianH is real-analytic.
Such a system, under a suitable rescaling, can be considered as nearly-integrable.

3The time of stability depends of the regularity of the considered system and is exponential (polynomial)
in the inverse of the size of the perturbation if the total Hamiltonian belongs to the Gevrey (Hölder) class.
See [87], [30], [14].

4See e.g. [97], [15] in the study of the three-body problem, [7], [8] in the context of central force motions,
and [9], [6], [106], [56] in the framework of infinite-dimensional Hamiltonian systems.
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In this setting, there are two cases for which one knows that stability holds true for
the considered equilibrium.

The first case is when the quadratic partH2 is sign-definite, or, equivalently, when
the components of the vector � ∈ ℝn have the same sign. Indeed, the Hamiltonian
function has then a strict minimum (or maximum) at the origin, and as this function
is constant along the flow (it is in particular a Lyapounov function) one can construct,
using standard arguments, a basis of neighborhoods of the origin which are invariant,
and the latter property is obviously equivalent to stability.

The second case is when n = 2 and when the so called Arnol’d’s iso-energetic non-
degeneracy condition is satisfied. Then, KAM stability occurs in every energy level
passing sufficiently close to the origin, implying Lyapounov stability, due to the fact
that the two-dimensional tori disconnect each three-dimensional energy level (see for
instance [1] and [91]). It is easy to see that the Arnold iso-energetic non-degeneracy
condition is generic in measure and topology as a function of the coefficients of the
O4(x, y) part of the Taylor expansion ofH around the origin.

In the other cases, a large unstability due to Arnold diffusion can occur (see [57]),
but it has been proved in [32] that, generically, any solution starting sufficiently close
to the equilibrium point remains close to it for an interval of time which is double-
exponentially large (exp ◦ exp) with respect to the inverse of the distance to the equi-
librium point. The latter result is obtained by making use of Nekhoroshev’s theory and
relies crucially on the genericity of steep functions, since one needs to build a suitable
steep integrable approximation of the complete system.

The same issue arises in order to apply Nekhoroshev’s theory to concrete exam-
ples. Especially, in Celestial Mechanics, we have important problems where an elliptic
equilibrium arises with a quadratic term in (2.2.1) which is not sign definite: this is the
case for the Lagrange’s equilibrium points L4, L5 in the restricted three body problem
(see [19]) and in the averaged ("secular") planetary three body problem (this is due to the
Herman’s resonance, see [60] and [86]). The latter system is a crucial approximation to
apply Hamiltonian perturbation theory (hence KAM or Nekhoroshev theory) in Celes-
tial Mechanics. Moreover, we cannot always build an integrable approximation of this
kind of systems which is convex in action variables, hence we have to consider steep non
convex Hamiltonians in order to infer stability results with the help of Nekhoroshev’s
theory. For the study of the Lagrange’s equilibrium points, it is possible in most cases
to recover steepness by considering higher order approximation (see [19]), actually this
corresponds to general considerations on functions with three variables which will be
specified in the sequel. For the secular planetary three-body problem, the associated
Hamiltonian is not convex w.r.t. the actions (see [102]) and much more variables are
involved than for the Lagrange’s points, hence we really need new criteria to ensure that
a given function is steep or not in this case. Up to now, generic explicit conditions for
steepness were known only for functions of three (the conditions given by Nekhoroshev
in [95]), four (see [111]) or five variables (see [13]). The second part of this work is
devoted to proving explicit conditions for steepness which are generic for functions of
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an arbitrary number of variables.

It can also be specified that steepness is a necessary condition in order to ensure
long-time stability: if the steepness condition is dropped, large instablities may occur
over times of order 1∕", which is the shortest possible time of drift when considering
perturbations of magnitude O(") (see [98] and [34]).

In the context of KAM theory, Herman (see [73]) has shown that the lack of steep-
ness of the integrable Hamiltonian allows to build perturbation for which one can find
a G�−dense set of initial conditions leading to orbits whose action components are un-
bounded while the integrable Hamiltonian can also be Kolmogorov non-degenerate,
hence most of the orbits lie on invariant tori and we have simultanously, existence of
large zones of stability and unstability.

Steepness also arises in the framework of Arnol’d’s diffusion (see [21]) for the opti-
mality of the time of diffusion. Finally, recent works of Bambusi and Langella [11]
show that Nekhoroshev’s classical proof of stability for perturbations of steep inte-
grable Hamiltonian systems is also relevant in the study of PDE’s, considered as infinite-
dimensional Hamiltonian systems.

2.3 Genericity and explicit criteria for steepness

Now, we specify Nekhoroshev’s effective result of stability (see refs. [95], [96]), which
is valid for an open set of initial conditions provided that the total Hamiltonian is regular
enough and that its integrable part satisfies the following transversality property on its
gradient:

Definition 2.3.1 (Steepness). Fix � > 0, R > 0. A C2 function ℎ ∶ Bn(0, R+2�)→ ℝ
is steep in Bn(0, R) with steepness indices α1,… ,αn−1 ≥ 1 and steepness coefficients
C1,… , Cn−1, � if:

1. infI∈Bn(0,R) ||∇ℎ(I)|| > 0;

2. for any I ∈ Bn(0, R), for any integer 1 ≤ m < n, and for any m-dimensional sub-
space Γm orthogonal to ∇ℎ(I) and endowed with the induced euclidean metric,
one has:

max
0≤�≤�

min
u∈Γm, ||u||2=�

||�Γm ∇ℎ(I + u) ||2 > Cm�αm , ∀� ∈ (0, �], (2.3.1)

where �Γm stands for the orthogonal projection on Γm.

Remark 2.3.1. Since in definition 11.2.1 the subspace Γm ⊂ ℝn is endowed with the
induced metric, for all u ∈ Γm one has ||�Γm ∇ℎ(I + u)||2 = ||∇(ℎ|I+Γm )(I + u)||2,
where ℎ|I+Γm indicates the restriction of ℎ to the affine subspace I + Γm.
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As it is showed in [98], in the analytic case a function is steep if and only if, on any
affine hyperplane I + Γm, there exists no curve 
 with one endpoint in I such that the
restriction ∇(ℎ|I+Γm ) vanishes identically on 
 . From a heuristic point of view, for any
value m ∈ {1, ..., n−1} the gradient ∇ℎmust "bend" towards I +Γm when "travelling"
along the curve 
 ∈ I +Γm, so that critical points for the restriction of ℎ to I +Γm must
not accumulate.

With such a notion, Nekhoroshev’s effective result of stability reads

Theorem 2.3.1 (Nekhoroshev, 1977). Consider a nearly-integrable system governed
by Hamiltonian

H(I, #) ∶= ℎ(I) + "f (I, #) , H ∈ C!(Br × T n) ,

where Bn(0, r) is the open ball of radius r in ℝn, and ℎ is assumed to be steep. Then
there exist positive constants a, b, "0, C1, C2 such that, for any " ∈ [0, "0) and for any
initial condition not too close to the boundary, one has |I(t) − I(0)| ≤ C2"a for any
time t satisfying |t| ≤ C1 exp

(

"−b
)

.

Remark 2.3.2. The presence of a bound of the kind |I(t)−I(0)| ≤ C2"a on the variation
of the action variables is a consequence of the steepness property. The time of stability
depends on the regularity of the function H at hand. In the original formulation by
Nekhoroshev, H was considered to be real-analytic, which yielded an exponentially-
long time in the inverse of the size of the pertubation (see also [70]). Exponentially-long
times of stability hold also in caseH is Gevrey (see [87]), whereas only polynomially-
long times of stability can be ensured forC∞ and Hölder functions (see refs. [10], [14]).

As it has already been anticipated in the previous paragraph, the steepness property
is generic - both inmeasure and in topological sense - in the space of Taylor polynomials
of sufficiently high order of smooth functions. Namely, let r, n ≥ 2 be two positive
integers. We indicate by (r, n) ⊂ ℝ[x1,… , xn] the subspace of real polynomials in
n variables having degree bounded by r. For any point I0 ∈ ℝn, and any function f
of class Cr near I0, we call r-jet of f at I0 the Taylor polynomial of f up to order
r calculated at I0. Moreover, we say that a subset  ⊂ ℝn is semi-algebraic if it is
the finite union of subsets determined by a finite number of polynomial equalities or
inequalities (see Definition A.1.1). Nekhoroshev proved in [94]- [96] that

Theorem2.3.2 (Nekhoroshev, 1973-1979). The r-jets of all non-steep functions of class
C2r−1 around a non-critical point I0 ∈ ℝn are contained in a semi-algebraic subset
Ω(r, n) of (r, n). Moreover, the codimension of Ω(r, n) in (r, n) becomes positive for
r ≳ [n2∕4].

AlthoughNekhoroshev’s Theory has been a classic subject of study in the dynamical
systems community for more than forty years, the proof of Theorem 2.3.2 has remained
poorly understood. This is possibly due to the fact that such a demonstration does not
involve any arguments of dynamical systems, but combines quantitative reasonings of
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real-algebraic geometry and complex analysis. Moreover, real-algebraic geometry was
at a more rudimentary level than nowadays at the time that Nekhoroshev’s was writing;
for this reason, important properties of real-algebraic geometry are discovered5 in [94]
at the same time that they are used to prove Theorem 2.3.2, which makes that work
obscure in many parts. In addition, the proofs of some lemmas in that work are sketchy
or presented in an old-fashioned way. For these reasons, the first part of this work is
devoted to proving and refining Theorem 2.3.2 by making use of modern results of
real-algebraic geometry. As we will discuss in detail in the sequel, Yomdin’s Lemma
about the analytic reparametrization of semi-algebraic sets (see [116]) turns out to be
the fundamental ingredient of real-algebraic geometry which is used in the proof of the
genericity of steepness.

Moreover, since the definition of steepness is not constructive, it is difficult to di-
rectly establish whether a given function is steep or not. Up to the author’s knowledge,
there are only three articles on this topic (see [111], [47], [13]) which concern only
polynomials of low degree depending on a small number of variables. Actually, by
developing the arguments used by Nekhoroshev to prove Theorem 2.3.2, it is possible
to deduce explicit sufficient algebraic conditions for steepness involving the derivatives
up to an arbitrary order of functions depending of an arbitrary number of variables.
This proves fundamental for applications of Nekhoroshev’s theory to physical models.
The second part of this work is dedicated to this topic. Namely, we will prove refined
versions of the Theorems below.

Theorem 2.3.3. The semi-algebraic set Ω(r, n) in Theorem 2.3.2 satisfies

Ω(r, n) = closure

(n−1
⋃

m=1
Proj(r,n)Z(r, m, n)

)

(2.3.2)

whereZ(r, m, n) is a semi-algebraic set of (r, n)×ℝK ×ℝn×U(m−1, n),K = K(r, m)
is a suitable positive integer, and U(m − 1, n) is the compact m − 1-dimensional Stiefel
manifold in ℝn (see section 3 for its definition).

Moreover, for any m ∈ {1,… , n − 1}, the form of Z(r, m, n) can be explicitly com-
puted.

Remark 2.3.3. Theorem 2.3.3 is a first example of an explicit criterion for steepness.
Infact, as it is known, there exist explicit general algorithms of real-algebraic geometry
that allow to compute the explicit form of the projection and the closure of any given
semi-algebraic set (see e.g. [18]). Hence, at least in principle, it would be possible to
compute the r.h.s. of (2.3.2) - hence Ω(r, n) - as the form of Z(r, m, n) is known due
to Theorem 2.3.3. However, the complexity of the classic algorithms grows double-

5For example, it is remarkable that, up the author’s knowledge, a fundamental Bernstein’s inequality for
algebraic functions is proved for the first-time in Nekhoroshev’s work (see [16]). Such a result seems to have
passed unnoticed, until it has been widely rediscovered and generalized in the late nineties by Roytwarf and
Yomdin in [107], and subsequently developed by several authors.
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exponentially in the number of variables, so that they are of little use in practice (see
[72]).

Remark 2.3.4. Alternatively, one could use Theorem 2.3.3 in order to check if a function
ℎ of classC2r−1 around a point I0 is steep in the followingway. Indicating by TI0 (ℎ, r, n)
the r-jet of ℎ at I0, by (2.3.2) one could check whether there exists � > 0 such that, for
any m ∈ {1,… , n − 1}, and for any choice of parameters � ∈ ℝK × ℝn × U(m − 1, n),
the pair (TI0 (ℎ, r, n), �) lies outside ofZ(r, m, n). This would guarantee that TI0 (ℎ, r, n)

lies outside of closure
(

⋃n−1
m=1 Proj(r,n)Z(r, m, n)

)

, so that (2.3.2) and Theorem 2.3.2
would ensure steepness. This is indeed one possibility, and we will make it more ex-
plicit in the next section (see Theorem B). However, this criterion involves checking
an explicit condition for a non-compact set of parameters (the first components of the
vectors � above lie in ℝK × ℝn, whereas the remaining ones belong to the compact
Stiefel manifold U(m − 1, n)). As we show below, on "most subspaces" steepness can
be checked by making use of criteria involving only parameters belonging to a compact
set.

Namely, let ℎ be a function of class C2r−1 around the origin, satisfying ∇ℎ(0) ≠ 0.
Then,

Theorem 2.3.4. It is possible to find explicit algebraic criteria involving the derivatives
of ℎ up to order r that ensure that ℎ is steep on the one-dimensional subspaces around
the origin.

Moreover, for any m ∈ {2,… , n − 1}, one has the following properties.

1. ℎ is steep at the origin on the m-dimensional subspaces orthogonal to∇ℎ(0) ≠ 0
on which the restriction of the hessian D2ℎ(0) is non-degenerate.

2. On the m-dimensional subspaces of ∇ℎ(0)⟂ on which the restriction of D2ℎ(0)
has exactly one null eigenvalue, it is possible to construct explicit algebraic cri-
teria for steepness that involve the r-jet of ℎ at the origin and a finite number
of real parameters lying in a compact subset. These criteria can be constructed
starting from the explicit form of subsetZ(r, m, n) in Theorem 2.3.3 by the means
of algorithms involving only linear operations6.

Therefore, explicit criteria for steepness involving only the r-jet of ℎ exist in case
m = 1. In case m ∈ {2,… , n − 1}, instead, with the exception of the m-dimensional
subspaces of ∇ℎ⟂(0) on which the restriction ofD2ℎ(0) has two or more null eigenval-
ues, steepness can be checked by using a criterion which is simpler than those stated in
Remarks 2.3.3-2.3.4. Moreover, for any value of m ∈ {1,… , n − 1}, the Hessian of a
generic function ℎ is non-degenerate on most subspaces of the m-dimensional Grass-
mannian G(m, n), as the following result shows.

6Hence, much simpler algorithms than the general algorithms of real-algebraic geometry.
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Theorem 2.3.5. Consider an integer m ∈ {2,… , n − 1}. For any bilinear, symmetric,
non-degenerate form B ∶ ℝn × ℝn ⟶ ℝ, the m-dimensional subspaces on which the
restriction of B is degenerate are contained in a submanifold of codimension one in the
Grassmannian G(m, n).

2.4 Informal presentation of the proofs
Roughly speaking, the proof of Theorem 2.3.2 is split into two parts:

− General considerations of semi-algebraic geometry allow to prove that the com-
plicated condition 11.2.1 arising in the definition of steepness is an open property
in the space of polynomials (r, n). Namely, if (11.2.1) holds for a given poly-
nomial Q ∈ (r, n), then it holds also in a neighborhood of Q with the uniform
indices �1,… ,�m and uniform coefficients C1,… , Cm, �.

− Also, condition (11.2.1) is not satisfied if and only if the Taylor polynomial of
ℎ satisfies a certain number of algebraic equations. A detailed analysis of these
equations ensures that they only admit a non generic set of solutions.

In the present work, we have results on the two sides of the proof.

2.4.1 Reparametrization of semi-algebraic sets and Bernstein’s in-
equality

We revisit Nekhoroshev’s reasonings of semi-algebraic geometry under the light of
more recent results in the field.

Due to (11.2.1), a central point to check steepness of a given function ℎ at a point
I ∈ ℝn consists in ensuring a minimal growth of the projection of its gradient on any
affine subspace orthogonal to ∇ℎ(I) ≠ 0. For a fixed affine subspace I + Γ equipped
with local coordinates and with the induced euclidean metric, by Remark 11.2.1 the
projection of ∇ℎ(I) on Γ corresponds to the gradient of the restriction ℎ|I+Γ expressed
in the local coordinates. Hence, one is led to study the locus of minima of ||∇ℎ|I+Γ||.
By the above considerations, without entering into toomany technicalities, a crucial step
in Nekhoroshev’s proof of the genericity of steepness consists in considering, for any
fixed polynomial P ∈ ℝ[X1,… , Xm], the semi-algebraic set - called thalweg nowadays
(see [28]) - determined by :

ℝm ⊃ P ∶=
{

u ∈ ℝm
| ||∇P (u)|| ≤ ||∇P (v)|| ∀v ∈ ℝm s.t. ||u|| = ||v||

}

. (2.4.1)

Nekhoroshev shows that P contains the image of a semi-algebraic curve7 
 which
admits a holomorphic extension with the exception of a finite set of singular complex

7I.e. a curve having semi-algebraic graph, see also Definition A.1.3.
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points whose cardinality depends only on the degree of P and on the number of vari-
ables. In particular, one can ensure the existence of a uniform real interval of analyticity
and of a uniform complex analyticity width for the curve 
 , independently on the choice
of the polynomialP ∈ (r, m). More specifically, the graph of 
 can be parametrized by
analytic-algebraic8 maps, and the existence of a Bernstein’s-like inequality controlling
uniformly the growth of this kind of functions in the complex plane ensures uniform
upper bounds on the derivatives of these charts (see [107], [116], [117], [16] and refer-
ences therein for a modern presentation).

Actually, this result about the thalweg in [94] is a particular case of a general theo-
rem due to Yomdin [116] about analytic reparametrizations of semi-algebraic sets (the
finitely-differentiable case was firstly stated by Yomdin and Gromov in refs. [115], [67]
and then proved by Burguet in [44]). Generally speaking, the reparametrization of a
semi-algebraic set A is a subdivision of A into semi-algebraic pieces Aj each of which
is the image of a semi-algebraic function9 of the unit cube. The uniform control on the
parametrization of the curve 
 is unavoidable in [94], since it ensures that - for a smooth
function - steepness is an open property.

Moreover, it is proved that the coefficients of the Taylor expansions of non-steep
functions satisfy suitable algebraic conditions (one has a "finite-jet" determinacy of
steepness). In this way, the study of the genericity of steepness is reduced to a finite-
dimensional setting which involves polynomials of bounded order and this is another
crucial step in order to prove the genericity.

It is worth adding some remarks about the fact that Nekhoroshev proves a kind of
Bernstein’s inequality for algebraic functions (see [94], Lemma 5.1, p.446). Namely,
Nekhoroshev proves that an algebraic function which is real-analytic over a real inter-
val I admits a bound on its growth on the complex plane which only depends on its
maximum over I and on a constant depending on the degree of the polynomial solving
its graph and on the size of its complex domain of holomorphy. This result is proved
by exploiting the properties of algebraic curves of complex polynomials in two vari-
ables, and by making an intensive use of complex analysis. The original statements are
difficult to disentangle from the context of the genericity of steepness and the proofs
are very sketchy. This is different from the strategy used by Roytwarf and Yomdin
(see [107], [117] and references therein) which relies on arguments of analytic geome-
try. Since we have not been able to find any reference that shows Nekhoroshev’s proof
of Bernstein’s inequality in detail except for the original paper [94], we have clarified
and extended Nekhoroshev’s reasonings in [16], and this allowed to obtain a simpler
proof of recent results of complex analysis.

It is also worth mentioning that, in connection with arithmetic, the steepness con-
dition is introduced to prevent the abundance of rational vectors on certain sets and
it can be noticed that deep applications of the controlled analytic reparametrization of

8I.e. analytic maps whose graph solves a non-zero polynomial of two variables.
9That is, a function whose graph is a semi-algebraic set, see also Definition A.1.3.
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semi-algebraic sets yield bounds on the number of integer points in semi-algebraic sets
(see [26] and [50]). In the future, these ideas may help to spread light on the connec-
tion between the stability of nearly-integrable Hamiltonian systems and the arithmetic
properties of semi-algebraic sets.

We also mention that, in the study of PDEs, the Yomdin-Gromov’s algebraic lemma
was used by Bourgain, Goldstein, and Schlag [37] to bound the number of integer points
in a two-dimensional semi-algebraic set.

2.4.2 Degeneracy condition

We describe heuristically the second part of the proof of Theorem 2.3.2. To make
things simple, we restrict this informal discussion to the case of a real-analytic function
ℎ around the origin. By formula (11.2.1), if ℎ is non-steep at the origin, then for some
m ∈ {1,… , n−1} there exists am-dimensional subspaceΓm and a curve 
 ⊂ Γm starting
at the origin on which the projection (�Γm∇ℎ)|
 is identically null. Assuming that 
 is
sufficiently regular, this means that (�Γm∇ℎ)|
 has a zero of infinite order at the origin. It
can also be shown (see Theorem 5.0.1) that the the curve 
 on which such a condition is
satisfiedmust possess a precise form. By these arguments, one canwrite down explicitly
the equations imposing to the derivatives of the function (�Γm∇ℎ)|
 to be all identically
null. Moreover, by complicated computations it is possible to check that these equations
are all linearly independent. Then, estimates on the codimension of a projected set
show that, if one bounds the order of the derivatives that are being considered in the
equations by r ∈ ℕ, r ≥ 2, the Taylor polynomials of non-steep functions belong to
a semi-algebraic set of positive codimension in the space of polynomials (r, n). It is
this kind of computations - which are expressed explicitly for the first time in this work
- that allow to prove Theorem 2.3.3.

Moreover, by construction, the equations that we are considering depend also on the
Taylor coefficients of the curve 
 and on the vectors spanning the considered subspace
Γm. This explains the presence of the space of parametersℝK and of the Stiefel manifold
in the statement of Theorem 2.3.3. On the one hand, by suitably exploiting the form
of the equations, one can prove Theorem 2.3.4. On the other hand, Theorem 2.3.5 is
independent and its proof relies on the construction of a suitable system of coordinates
for the Grassmannian.

2.4.3 Structure of the work

This work is organized as follows: section 3 sets the main notations and definitions,
whereas the main results (refined versions of Theorems 2.3.2-2.3.3-2.3.4-2.3.5) are
stated in section 4. Section 5 construction of the thalweg and the reparametrization
of semi-algebraic sets, whereas section 6 is devoted to the study of the degeneracy con-
dition described in the paragraph above. Section 7 puts together the results of sections
5 and 6 in order to prove the genericity of steepness. Finally, sections 8-9-10 contain
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the proof of the explicit criteria for steepness.



Chapter 3

Main notations and definitions

Norms
For any n ∈ ℕ⋆, and for any � ∈ ℕ⋆ ∪ {∞}, we denote by || ⋅ ||� the standard l�-norm
in ℝn.

For any integer q ≥ 1, and for any open subsetD ofℝn, the symbol Cq(D) indicates
the set of q-times continuously differentiable maps f ∶ D → ℝ. Moreover, we indicate
by Cqb (D) the subset of C

q(D) containing those functions f satisfying

‖f‖Cq(D) ∶= sup
�∈ℕn
|�|≤q

sup
x∈D

|)�f (x)| < +∞ . (3.0.1)

In particular,
(

Cqb (D), ‖⋅‖Cq(D)
)

is a Banach space with multiplicative norm1.

Sets
In the sequel, we will make use of the following notations:

− For any d > 0 and for any f ∈ Cqb (D), the symbol Bq(f, d,D) indicates the
infinite-dimensional open ball of radius d centered at f for the norm (3.0.1);

− �(z0) indicates the open complex disc of radius � > 0 centered at z0 ∈ ℂ;

− Bn(I, R) indicates the real ball of radius R > 0 centered at I ∈ ℝn.

− For any connected set ⊂ ℂ, we denote the complex polydisk of width r around
 by

()r ∶=
{

z ∈ ℂ s.t. ||z −||2 ∶= inf
z′∈

||z − z′|| < r
}

.

1That is, satisfying an inequality of the form |fg| ≤ K|f | |g| for a suitable constant K .
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Notations of real-algebraic geometry
For any pair (r, n) of positive integers, and for any function ℎ of class Cr in a neighbor-
hood of some point I0 ∈ ℝn, we denote by

− (r, n) ⊂ ℝ[X1,… , Xn] the subspace of polynomials over the real field in n real
variables with zero constant term and whose degree is bounded by r;

− ⋆(r, n) ⊂ (r, n) is the subset of those polynomials Q that verify ∇Q(0) ≠ 0;

− TI0 (ℎ, r, n) ∈ (r, n) the Taylor polynomial at order r of the function ℎ(I)−ℎ(I0)
centered at I0.

Now, let k, n be positive integers, with k ≤ n.

− We indicate by G(k, n) the k-dimensional Grassmanniann in ℝn, i.e. the compact
manifold of k-dimensional linear subspaces in ℝn.

− We also denote by U(k, n) the compact k-dimensional Stiefel manifold inℝn, that
is the manifold of ordered orthonormal k-tuples of vectors in ℝn.

For any set  ⊂ ℝn × ℝm, we indicate by Πx its projection onto the first n coor-
dinates, that is the set

Πx ∶= {x ∈ ℝn ∶ ∃y ∈ ℝm
|(x, y) ∈ } .

Finally, let m, n be positive integers satisfying m ≤ n, and let {u1… , um} be a set of lin-
early independent vectors inℝn. For each i ∈ {1,… , n} and j ∈ {1,… , m}, we denote
the i-th component of the vector uj by uij . For any multi-index � = (�1,… , �m) ∈ ℕm,
we set |�| ∶= ||�||1. Given I0 ∈ ℝn and a function ℎ of class C |�| in a neighborhood
of I0, we also denote by

ℎ|�|I0
[

�1
⏞⏞⏞
u1 ,… ,

�m
⏞⏞⏞
um

]

∶=
n
∑

i11,… ,i1�1=1…
im1,… ,im�m=1

)|�|ℎ(I0)
)Ii11… )Ii1�1 … )Iim1… )Iim�m

ui111 … u
i1�1
1 … uim1m … u

im�m
m

(3.0.2)

the �-th order multilinear form associated to the �-th coefficient of the Taylor expansion
around I0 of the restriction of ℎ to Span (u1,… , um).



Chapter 4

Main results

4.1 Genericity of steepness
As we discussed in Theorem 2.3.2 in the Introduction, the steepness property is generic,
both in measure and topological sense, in the space of jets of functions of sufficiently
high regularity. In this paragraph, we will give a more quantitative version of this result.
Namely, the statement below is a refined version of Nekhoroshev’s Theorem on the
genericity of steepness, which can be found in refs. [94]- [96].

Theorem (A). Let r, n ≥ 2 be two integers, and let s ∶= (s1,… , sn−1) ∈ ℕn−1 be a
vector satisfying 1 ≤ sm ≤ r − 1 for all m = 1,… , n − 1.

There exists a closed semi-algebraic subset 
r,sn of (r, n) such that, for any I0 ∈
ℝn, for any real number % > 0, for any open, bounded domain D ⊂ C2r−1b (B

n
(I0, %)),

and for any function ℎ satisfying

1. ℎ ∈ D ,

2. ∇ℎ(I0) ≠ 0 ,

3. ||
|

|

|

|

TI0 (ℎ, r, n) −

r,s
n
|

|

|

|

|

|∞
∶= inf

Q∈
r,sn
||TI0 (ℎ, r, n) −Q||∞ > � > 0 ,

one can introduce positive constants � = �(r, s, �, n), R = R(r, s, �, n, %), Cm =
Cm(r, sm, �, n) - where m = 1,… , n−1 - and � = �(r, s, �, n, %,D ) so that any function

f ∈ D , f ∈ B2r−2(ℎ, ", B
n
(I0, %)) " ∈ [0, �]

is steep inBn(I0, R), with steepness coefficientsCm, � andwith steepness indices bounded
by

�m(s) ∶=

{

sm , if m = 1
2sm − 1 , if m ≥ 2 .

(4.1.1)
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Moreover, in (r, n) one has

codim 
r,sn ≥ max
{

0, min
m∈{1,…,n−1}

{sm − m(n − m − 1)}
}

. (4.1.2)

With the setting of Theorem (4.1), we give the following

Definition 4.1.1. A function f ∈ C2r−1b (B
n
(I0, %)) satisfying the hypotheses of Theo-

rem A is said to be steep at order r at the point I0 for the vector s. The functions g ∈ D
verifying

∇g(I0) ≠ 0 , TI0 (g, r, n) ∈
⋃

s∈ℕn−1
1≤sm≤r−1

∀m∈{1,…,n−1}

(r, n)∖
r,sn

are said to be steep at order r at the point I0.

With respect to the original result by Nekhoroshev, a few aspects are refined or
clarified in Theorem 4.1

1. The dependence of the steepness coefficients Cm, m ∈ {1,… , n − 1}, and � on
the distance � to the bad set 
r,sn , is made explicit. In particular, as it will be
shown in section 7, for fixed n, r, s, when � → 0, then both � → 0 and Cm → 0
for all m = 1,… , n − 1, whereas the bounds �m on the steepness indices are left
unchanged. Hence, when � → 0, steepness may "break down" due to the steep-
ness coefficients tending to zero (whereas the steepness indices of those functions
whose r-jet lies outside of 
r,sn stay uniformly bounded).

It is important to stress that the above reasonings do not necessarily imply that a
function g ∈ C2r−1b (B

n
(I0, %)) whose r-jet satisfies TI0 (g, r, n) ∈ 


r,s
n - for some

vector s ∈ ℕn−1 as the one in Theorem A - is non-steep. For example, if for two
vectors s, s′ ∈ ℕn−1, s′ ≠ s, having the same properties of the one in Theorem
A, one has ||TI0 (g, r, n)−


r,s′
n ||∞ > 0, ||TI0 (g, r, n)−


r,s
n ||∞ = 0, then g is steep

at order r at I0 for the vector s′ but not for the vector s. Hence, it admits different
bounds on the steepness indices than the functions whose jets lie outside of
r,sn .
Therefore, the only result that one can infer from the relation TI0 (g, r, n) ∈ 


r,s
n

is that, in case g were steep, its steepness indices would admit a different upper
bound than the one in (4.1.1).

By Theorem A, definition 4.1.1, and by the above discussion, the set
⋂

s∈ℕn−1
1≤sm≤r−1

∀m∈{1,…,n−1}


r,sn ⊂ (r, n) (4.1.3)

contains the r-jets of all C2r−1b functions around the non-critical point I0 which
are non-steep at order r at I0. In the same way, when r → +∞, the Taylor
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coefficients of all non-steep analytic functions at the non-critical point I0 belong
to the set

!n(I0) ∶=
∞
⋂

r=2

⋂

s∈ℕn−1
1≤sm≤r−1

∀m∈{1,…,n−1}


r,sn ⊂
∞
⋃

r=2
(r, n) . (4.1.4)

Relation (4.1.4) is the explicit version of what Nekhoroshev meant when he wrote
"Hamiltonians which fail to be steep at a noncritical point are infinitely singular:
they satisfy an infinite number of independent conditions on the Taylor coeffi-
cients" (see [94], p. 426).

Actually, the strategy of proof given in the present work follows Nekhoroshev’s
reasonings by showing - for any givenQ ∈ (r, n)- the existence of an arc, whose
image is contained in the thalweg Q (see Definition 2.4.1), admitting a fitted
parametrization whose derivatives are controlled by constants depending only on
the number of variables n and on the degree r, but not on Q. This is a particular
occurrence of the fact that - with the exception of small neighborhoods - a semi-
algebraic set can be reparametrized by a collection of holomorphic functions with
a domain of analyticity and an upper bound which depend only on the number
of variables and on the number and on the degrees of the polynomials involved
in the construction (see [116] and [118] for a two-dimensional semi-algebraic
set, and [26], [50] for higher dimensional sets with more general properties than
semi-algebraicness). The considered analytic reparametrization is a partial ex-
tension of a theorem (called algebraic lemma) due to Yomdin [115] and Gro-
mov [67] which ensures that, for any semi-algebraic sets, there exists a collection
of Ck−mappings which parametrize entirely the considered set. This latter theo-
rem would be also relevant in our reasonings and, in theory, we would not have to
exclude neighborhoods of the singularities as for the analytic reparametrizations
(this causes extra difficulties in our proof). Actually, in our proof wemust remove
the singularities for other reasons and, also, the use of Ck−reparametrizations
would not allow to obtain a characterization of non-steep functions as in 4.1.4,
where a control of all the derivative up to infinity is needed.

2. The vector s does not appear in the original statement. Indeed, Nekhoroshev
implicitly sets

sm = sm ∶=

⎧

⎪

⎨

⎪

⎩

max
{

1, r − 1 + m(n − m − 1) −
n(n − 2)

4

}

, for n even

max
{

1, r − 1 + m(n − m − 1) −
(n − 1)2

4

}

, for n odd .

(4.1.5)
From a heuristic point of view, in ref. [96] this choice was probably conceived
in the following way: in estimate (4.1.2), one may want to get rid of the quantity
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m(n−m−1), which attains the maximal value n(n−2)∕4 for m = n∕2 when n is
even, and (n − 1)2∕4 for m = (n − 1)∕2 when n is odd. Hence, (4.1.5) is the best
choice which allows to get rid of the term −m(n − m − 1) in (4.1.2) and which
still guarantees the essential condition 1 ≤ sm ≤ r − 1.
Choice (4.1.5), in our case, yields (see (4.1.1)-(4.1.2))

�m(sm) ∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

max
{

1, r − 1 + m(n − m − 1) −
n(n − 2)

4

}

, for n even, m = 1

max
{

1, r − 1 + m(n − m − 1) −
(n − 1)2

4

}

, for n odd, m = 1

max
{

1, 2r − 3 + 2m(n − m − 1) −
n(n − 2)

2

}

, for n even, m ≥ 2

max
{

1, 2r − 3 + 2m(n − m − 1) −
(n − 1)2

2

}

, for n odd, m ≥ 2 ,

(4.1.6)
and

codim 
r,sn ≥
⎧

⎪

⎨

⎪

⎩

max
{

0, r − 1 −
n(n − 2)

4

}

, if n is even

max
{

0, r − 1 −
(n − 1)2

4

}

, if n is odd .
(4.1.7)

For m = 1, the bound (4.1.6) on the steepness indices is half of the one found
in [96]. For m ≥ 2, the estimates in [96] coincide with (4.1.6). Estimate (4.1.7)
on the codimension coincides with the one in [96].

3. Theorem 4.1 holds true even for functions in the class Cr+1b . In that case, one
considers 1 ≤ sm ≤ ⌊r∕2⌋ for any m = 1,… , n−1, which yields worse estimates
both on the indices of steepness and on the codimension. This is the case which
was considered in [94], whereas the regularity C2r−1b was introduced in [96].

4.2 Explicit algebraic criteria for steepness
The kind of genericity stated in Theorem A implies the classic notions of genericity in
topological and in measure sense. However, Theorem A alone is not sufficient when
dealing with applications of Nekhoroshev’s Theory to physical models. Infact, in or-
der to infer long-time stability of a sufficiently regular integrable model Hamiltonian ℎ
under any sufficiently small and regular perturbation, one needs to have a criterion to
check at which points of its domain the given function ℎ is steep. As we shall show in
the sequel, establishing a criterion of this kind is a non-trivial developement of the proof
of the genericity of steepness. Namely, in the rest of this section we will present explicit
algebraic criteria for steepness which involve the Taylor coefficients at any order of the
studied function.

In order to give rigorous statements, we first need to introduce some notations.
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4.2.1 Some additional notations

For any positive integers n ≥ 2 and k ∈ {2,… , n}, we introduce the notation

V 1(k, n) ∶= {(v, u2,… , uk) ∈ ℝn × U(k − 1, n)| rk(v, u2,… , uk) = k} . (4.2.1)

For fixed integersm ≥ 2 and � ≥ 0, for any � ∈ {0, ..., �}, and for any i ∈ {1, ..., m},
we also introduce the family of multi-indices

ℕm ∋ �(i, �) ∶=

{

(� + 1, 0, ..., 0) , for i = 1
(�, 0, ..., 0, 1, 0, ..., 0) , for i = 2, ..., m

(4.2.2)

where the "1" fills the i-th slot for i = 2, ..., m. When � ≥ 1, we denote the multi-indices
� ∈ ℕm of length 2 ≤ |�| ∶= ||�||1 ≤ � + 1 not belonging to the family (4.2.2) with

m(�) ∶= {� ∈ ℕm , 2 ≤ |�| ≤ � + 1}∖
⋃

i=1,...,m
�=1,...,�

{�(i, �)} . (4.2.3)

Moreover, for given values of � ∈ ℕ, � = (�1,… , �m) ∈ ℕm and l ∈ {1, ..., m},
we introduce the multi-index �̃(l) = (�̃1(l),… , �̃m(l)) for which �̃i(l) ∶= �i − �il ,
i = 1,… , m, and the set

m(�̃(l), �) ∶=
{

k ∶= (k22,… , k2� ,… , km2,… , km�) ∈ ℕ(m−1)×(�−1) ∶

�
∑

i=2
kji = �̃j(l) , �̃1(l) +

m
∑

j=2

�
∑

i=2
i kji = �

}

.
(4.2.4)

For any k ∈ m(�̃(l), �), we set k! ∶= k22!… k2�!… km2!… km�! and for any
� ∈ ℕm we set �! ∶= �1!…�m!.

We define also

m(l, �) ∶= {� ∈ ℕm | m(�̃(l), �) ≠ ∅} . (4.2.5)

Finally, we consider a quadruplet of positive integers r ≥ 2, n ≥ 3, 1 ≤ s ≤ r − 1,
2 ≤ m ≤ n − 1, a point I0 ∈ ℝn, and a function ℎ of order Cr around I0.

With this setting, for any given � ∈ {1,… , s}, and l ∈ {1,… , m}, we introduce
the functions

ℎ,I0
m,l,� ∶ V

1(m, n) ×ℝ(m−1)s → ℝ

associating to any element (v, u2,… , um) ∈ V 1(m, n) and to any vector a(m, s) =
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(a21,… , a2s,… , am1,… , ams) ∈ ℝ(m−1)×s the following quantities

ℎ,I0
m,1,1(v, u2,… , um, a(m, s)) ∶= ℎ2I0 [v, v] , � = 1 , l = 1

ℎ,I0
m,l,1(v, u2,… , um, a(m, s)) ∶= ℎ2I0

[

v, ul
]

, � = 1 , l ∈ {2,… , m}

ℎ,I0
m,1,2(v, u2,… , um, a(m, s)) ∶= ℎ3I0 [v, v, v] , if s ≥ 2 , for � = 2 , and l = 1

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
if s ≥ 3, for � ∈ {3,… , s}, and l = 1

ℎ,I0
m,1,�(v, u2,… , um, a(m, s)) ∶=

1
�!
ℎ�+1I0

[

v,… , v
]

+
�−1
∑

�=1

1
(� − 1)!

ℎ�+1I0

[

�
⏞⏞⏞
v ,

m
∑

i=2
ai(�−(�−1)) ui

]

+
∑

�∈m(1,�)
�∈m(�)
�1≠0

∑

k∈m(�̃(1),�)

ℎ|�|I0
[

�1−1
⏞⏞⏞
v ,

k22
⏞⏞⏞
a22u2 ,… ,

k2�
⏞⏞⏞
a2�u2 ,… ,

km2
⏞⏞⏞
am2um ,… ,

km�
⏞⏞⏞
am�um , v

]

(�1 − 1)! k!

(4.2.6)

if s ≥ 2, for � ∈ {2,… , s}, and l ∈ {2,… , m}

ℎ,I0
m,l,�(v, u2,… , um, a(m, s)) ∶=

1
�!
ℎ�+1I0

[

�
⏞⏞⏞
v , ul

]

+
∑

�∈m(l,�)
�∈m(�)
�l≠0

∑

k∈m(�̃(l),�)

ℎ|�|I0
[

�1
⏞⏞⏞
v ,

k22
⏞⏞⏞
a22u2 ,… ,

k2�
⏞⏞⏞
a2�u2 , ...,

km2
⏞⏞⏞
am2um , ...,

km�
⏞⏞⏞
am�um , ul

]

�1! k!
.

(4.2.7)

With the setting above, we can state the first explicit criterion for steepness. Its
Corollary B2 is a refined version of Theorem 2.3.3.

4.2.2 Theorem B and related corollaries

Theorem (B). Let r, n ≥ 2 be two integers, and let s ∶= (s1,… , sn−1) ∈ ℕn−1 be a
vector verifying 1 ≤ si ≤ r − 1 for all i = 1,… , n − 1. Consider a point I0 ∈ ℝn, a
real number % > 0, and a function ℎ of class C2r−1b (Bn(I0, %)) verifying ∇ℎ(I0) ≠ 0.
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i) If the system
{

w ∈ Sn

ℎ1I0 [w] = ℎ
2
I0
[w,w] =⋯ = ℎs1+1I0

[w,… , w] = 0
(4.2.8)

has no solution1, then ℎ is steep around the point I0 on the affine subspaces of dimension
one, with steepness index bounded by s1.

In the sequel, we setN = N(r, n) ∶= dim(r, n).

ii) If, for some m ∈ {2,… , n−1}, there exists Rm > 0 such that for any polynomial
S ∈ BN (TI0 (ℎ, r, n), Rm) the system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1,… , um) ∈ U(m, n)

a(m, sm) ∶= (a21,… , a2sm ,… , am1,… , amsm ) ∈ ℝ(m−1)×sm

v = u1 +
∑m
j=2 aj1 uj

S1I0 [v] = S
1
I0
[u2] =⋯ = S1I0 [um] = 0

∑m
l=1

∑sm
�=1

|

|

|

S,I0
m,l,�(v, u2,… , um, a(m, sm))

|

|

|

= 0

(4.2.9)

has no solution, then ℎ is steep in a neighborhood of I0 on the affine subspaces of
dimension m, with steepness index bounded by �m ≤ 2sm − 1 .

Though the quantities which are involved in Theorem B are quite cumbersome, the
idea behind the result is not difficult to grasp: condition (4.2.9) amounts to asking that
the r-jet of ℎ(I) − ℎ(I0) lies outside of the semi-algebraic set 
r,sn defined in Theorem
A. This will be made clearer in Corollary B2.

As it will be discussed in the technical sections of the present work, for any m ∈
{2,… , n−1}, the real parameters a21,… , a2sm ,… , am1,… , amsm appearing in (4.2.6)-
(4.2.7) and in the statement of Theorem B represent the Taylor coefficients of analytic
curves of the type


(t) ∶=
{

x1(t) ∶= t , xj(t) ∶=
∑+∞
i=1 ajit

i j = 2,… , m (4.2.10)

which, for any m-dimensional affine subspace I0 + Γm, contain the locus of minima of
the projection ||�Γm∇TI0 (ℎ, r, n)||2. For any given Γm and for any function ℎ regular
around I0, the existence of a minimal curve of the form (4.2.10) is ensured by Theorem
5.0.1 in the sequel.

Theorem B comes together with important corollaries.
The following one is well-known: its statement can be found in [95], whereas its

proof can be found in [47]. As we shall see, in our context it is a simple consequence
of Theorem B.

1In this case, ℎ is said to be s1 + 1-jet non-degenerate at the origin.
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Corollary (B1). Consider an integer n ≥ 2, a point I0 ∈ ℝn, and a function ℎ of class
C5 around I0, satisfying ∇ℎ(I0) ≠ 0. If the system
{

w ∈ Sn

ℎ1I0 [w] = ℎ
2
I0
[w,w] = ℎ3I0 [w,w,w] = 0 (3-jet non degeneracy)

(4.2.11)

has no solution, then ℎ is steep in a neighborhood of I0, and its indices satisfy

�1 = 2 , max
m=2,…,n−1

{�m} ≤ 3 .

Remark 4.2.1. Actually, as a more careful analysis of 3-jet non-degenerate functions
shows, the result is true for C4 functions and one can take maxm=1,…,n−1{�m} ≤ 2
(see [47]).

Thanks to TheoremB,moreover, we have amore explicit characterisation of the sets

r,sn appearing in the statement of TheoremA.Namely, as it was the case in the hypothe-
ses of Theorem B, we consider two integers r, n ≥ 2, and a vector s ∶= (s1,… , sn−1) ∈
ℕn−1, with 1 ≤ si ≤ r − 1 for all i = 1,… , n − 1. Also, we take a point I0 ∈ ℝn. This
time, differently to what we did in Theorem B, we do not consider a fixed function.

Corollary (B2). For n ≥ 2, and m = 1, we indicate by r,s1,1
n the algebraic set of

⋆(r, n) × Sn determined by
{

w ∈ Sn , P ∈ ⋆(r, n)
P 1I0 [w] = P

2
I0
[w,w] =⋯ = P s1+1I0

[w,… , w] = 0 .
(4.2.12)

For n ≥ 3, and for any given m ∈ {2,… , n− 1}, we denote by r,sm,m
n the algebraic set

of ⋆(r, n) ×ℝ(m−1)sm ×V 1(m, n) determined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(u1,… , um) ∈ U(m, n) , P ∈ ⋆(r, n)
a(m, sm) ∶= (a21,… , a2sm ,… , am1,… , amsm ) ∈ ℝ(m−1)×sm

v = u1 +
∑m
j=2 aj1 uj

∑m
l=1

∑sm
�=1

|

|

|

P ,I0
m,l,�(v, u2,… , um, a(m, sm))

|

|

|

= 0 .

(4.2.13)

With this setting, one has

n−1
⋃

m=1
closure

(

Π⋆(r,n)
r,sm,m
n

)

= 
r,sn , (4.2.14)

where 
r,sn is the semi-algebraic set introduced in Theorem A.

Remark 4.2.2. Since the sets r,sm,m
n , m = 1,… , n − 1 in Corollary 4.2.2 are alge-

braic, the Theorem of Tarski and Seidenberg (see Th. A.1.1) - together with expression
(4.2.14) and Proposition A.1.2 - assures that
r,sn is a semi-algebraic set of(r, n), as we
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already knew by Theorem 4.1. Moreover, it is worth to notice that - at least in principle
- one could find the explicit expression for
r,sn . Infact, the Theorem of Tarski and Sei-
denberg is somewhat "constructive", in the sense that there exist algorithms that allow
to find the explicit expression for the projection and the closure of any semi-algebraic
set (see e.g. [18]). However, these general algorithms are not very useful in applica-
tions, as their complexity grows double-exponentially with the number of the involved
variables (see [72]). As we shall show in Theorems C1-C2 below, in "most cases" (in
a sense that will be clarified in Theorem C3) the sets r,sm,m

n , with m = 2,… , n−1 can
be projected onto ⋆(r, n) × V 1(m, n) with the help of a simple algorithm involving
only linear operations. Moreover, such a projection yields a closed semi-algebraic set
of ⋆(r, n) × V 1(m, n). This implies a further criterion to check steepness of a given
function.

Finally, using Theorem B we can state a sufficient condition for non-steepness at a
given point, namely

Corollary (B3). Consider a point I0 ∈ ℝn, and a function ℎ in the real-analytic class
around I0 verifying ∇ℎ(I0) ≠ 0.

If at least one of the two following conditions is satisfied, then ℎ is non-steep at I0.

1. There exists w ∈ Sn such that ℎrI0 [w] = 0 , ∀r ∈ ℕ .

2. For some m ∈ {2,… , n − 1}, there exist

(a) m − 1 real sequences {aji}i∈ℕ, j = 2,… , m and a number t > 0 such that
the expansions

∑+∞
i=1 ajit

i admit a radius of convergence greater than t for
all m ;

(b) m linearly-independent vectors v, u2,… , um ∈ V 1(m, n) ;

such that for all integer r ≥ 2 the following system is satisfied:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(u1,… , um) ∈ U(m, n)
a(m, r − 1) ∶= (a21,… , a2(r−1),… , am1,… , am(r−1)) ∈ ℝ(m−1)×(r−1)

v = u1 +
∑m
j=2 aj1 uj

ℎ1I0 [v] = ℎ
1
I0
[u2] =⋯ = ℎ1I0 [um] = 0

∑m
l=1

∑r−1
�=1

|

|

|

P ,I0
m,l,�(v, u2,… , um, a(m, sm))

|

|

|

= 0 .

(4.2.15)

Remark 4.2.3. Since we consider any r ≥ 2, we have an infinite system.

4.2.3 Theorems C1-C2-C3
As we have showed above, Theorem B constitutes an explicit criterion for steepness
which, however, for any given value of n ≥ 3,m ∈ {2,… , n−1} and sm ∈ {1,… , r−1}
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depends on the additional parameters a21,… , a2sm ,… , am1,… , amsm ∈ ℝ(m−1)sm and
on the vectors v, u2,… , um ∈ V 1(m, n). As we have already pointed out in Remark
4.2.2, it is possible in principle to reduce these quantities from system (4.2.9), by the
means of classical algorithms of semi-algebraic geometry (see [18]). However, in gen-
eral the complexity of the latter grows double exponentially in the number of variables
(see [72]) making them of little use in practice.

However, since the quantities in (4.2.6)-(4.2.7) are explicit, one may attempt to ex-
ploit their specific form in order to find an algorithm which is simpler than the classic
ones and that allows to eliminate at least the parameters a22,… , a2sm ,… , am2,… , amsm
from system (4.2.9). In this way, one would have an explicit criterion for steepness
involving only the multilinear forms of the tested function ℎ up to a given order, the
parameters a21,… , am1, and the vectors v, u2,… , um.

Having an explicit criterion for steepness involving only the coefficients a21,… , am1
and the vectors v, u2,… , um as additional free parameters constitutes a qualititative im-
provement w.r.t. Theorem B in view of possible applications. Infact, as we shall show
in the sequel, without any loss of generality the numbers a21,… , am1 and the vector v
can be assumed to belong to a compact subset. Moreover, the vectors u2,… , um be-
long to U(n, m − 1), which is compact by definition. Therefore, if one manages to find
a criterion that does not involve a22,… , a2sm ,… , am2,… , amsm , one only has to deal
with additional parameters belonging to a compactum. Moreover, the presence of the
vectors v, u2,… , um permits to keep track of the subspaces one is working on; namely,
it is possible to isolate the subspaces where the studied function is non-steep.

As we prove in sections 9-10, for a generic regular test function ℎ and for any m ∈
{2,… , n}, on most of the m-dimensional subspaces of the Grassmannian G(m, n) one is
able to apply an explicit criterion to check steepness that does not involve the parameters
a22,… , a2sm ,… , am2,… , amsm : this is the content of Theorems C1-C2-C3.

In order to state these results, we start by considering an integer n ≥ 3, and a function
ℎ of class C2 around the origin, satisfying ∇ℎ(0) ≠ 0. Now, for any m ∈ {2,… , n−1}
we need to consider three subsets of the Grassmannian G(m, n).

Definition 4.2.1. For any integer m ∈ {2, ..., n − 1} and any integer j ∈ {0, 1}, we
indicate by j(ℎ,m, n) the subset of G(m, n) containing those m-dimensional subspaces
Γm satisfying

1. ∇ℎ(0) ⟂ Γm;

2. the Hessian matrix of the restriction of ℎ to Γm, calculated at the origin, has
exactly j null eigenvalues.

Definition 4.2.2. For any fixed m ∈ {2, ..., n− 1}, the symbol 2(ℎ,m, n) indicates the
subset of those m-dimensional linear subspaces Γm ∈ G(m, n) that satisfy the following
conditions

1. ∇ℎ(0) ⟂ Γm;
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2. the Hessian matrix of the restriction of ℎ to Γm, calculated at the origin, has 2 or
more null eigenvalues.

With the above setup, for any fixed m ∈ {2,… , n − 1}, we have

{Γm ∈ G(m, n)|Γm ⟂ ∇ℎ(0)} = 0(ℎ,m, n)
⨆

1(ℎ,m, n)
⨆

2(ℎ,m, n) . (4.2.16)

We are now ready to state Theorems C1-C2-C3.
Consider two positive integers r, n ≥ 2, a vector s ∶= (s1,… , sn−1) ∈ ℕn−1, with

1 ≤ si ≤ r−1 for all i = 1,… , n−1, and a function ℎ of class C2r−1b around the origin,
satisfying ∇ℎ(0) ≠ 0. Then, for any given m ∈ {2, ..., n − 1}, one has the following
results (which, considered together, are refined versions of Theorems 2.3.4-2.3.5 in the
introduction):

Theorem (C1). ℎ is steep at the origin, with index �m = 1, on the m-dimensional
subspaces belonging to 0(ℎ,m, n).

Theorem (C2). If sm ≥ 2 there exist two semi-algebraic sets

A1(r, sm, n, m),A2(r, sm, n, m) ⊂ ⋆(r, n) ×ℝm−1 ×V 1(m, n)

satisfying the following properties:

1. The form of A1(r, sm, n, m) can be explicitly computed starting from the expres-
sion of set r,sm,m

n in (4.2.13) by the means of an algorithm involving only linear
operations.

2. If system
{

(u1,… , um) ∈ U(m, n) , Span (u1, u2,… , um) ∈ 1(ℎ,m, n)
(T0(ℎ, r, n), 0, u1, u2,… , um) ∈ A1(r, sm, n, m)

(4.2.17)

has no solution, then ℎ is steep around the origin with index �m ≤ 2sm − 1 on
any subspace Γm ∈ 1(ℎ,m, n).

3. There exists a positive constantK =K (r, n, m) such that if

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a21,… , am1) ∈ B
m−1

(K )
(u1,… , um) ∈ U(m, n) , v ∶= u1 +

∑m
i=2 ai1ui

Span (v, u2,… , um) ∈ 2(ℎ,m, n)
(T0(ℎ, r, n), a21,… , am1, u1, u2,… , um) ∈ A2(r, sm, n, m)

(4.2.18)

has no solution, then ℎ is steep around the origin with index �m ≤ 2sm − 1 on
any subspace Γm ∈ 2(ℎ,m, n).
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Remark 4.2.4. We observe that the statement above gives no information about the ex-
plicit expression of subset A2(r, sm, n, m). As it will be shown in sections 9-10, the
linear algorithm used to deduce the form of A1(r, sm, n, m) starting from set r,sm,m

n in
(4.2.13) fails in case v, u2,… , um span a subspace belonging to 2(ℎ,m, n). Therefore,
in order to find the explicit expression forA2(r, sm, n, m) one is obliged to apply the clas-
sical, much slower algorithms of real-algebraic geometry to the set r,sm,m

n determined
by system (4.2.13). Thus, checking steepness on the subspaces of 2(ℎ,m, n) is more
complicated than on those belonging to 1(ℎ,m, n), as one is obliged either to apply
slow algorithms to find the explicit expression of system (4.2.18), or to use the state-
ment of Theorem B, which nevertheless depends on the non-compact real coefficients
a22,… , a2sm ,… , am2,… , amsm .

However, for a generic function ℎ the subsets 1(ℎ,m, n) and 2(ℎ,m, n) are "rare"
inside the Grassmannian G(m, n). Namely, in Theorem C3 below we prove that for any
m ∈ {2,… , n−1} and for any bilinear symmetric non-degenerate formB ∶ ℝn×ℝn⟶

ℝ, the subspaces of dimension m on which the restriction of B has one or two null
eigenvalues are rare in G(m, n), both in measure and in topological sense.

Theorem (C3). Let B ∶ ℝn ×ℝn⟶ ℝ be a bilinear, symmetric, nondegenerate form,
and let m ∈ {2,… , n − 1} be a positive integer.

For j ∈ {1, 2}, denote by Gj(B, m, n) ⊂ G(m, n) the subset of linear m-dimensional
subspaces on which the restriction of B has at least j null eigenvalues.

Then

1. G1(B, m, n) is contained in a submanifold of codimension one in G(m, n);

2. G2(B, m, n) is obtained by the intersection of G1(m, n) with another subset con-
tained in a submanifold of codimension one in G(m, n).

Finally, we state the following conjecture, which will hopefully be proved in a future
work.

Conjecture: for a generic bilinear form B, the subset G2(B, m, n) appearing in The-
orem C3 is contained in a submanifold of codimension two in G(m, n).



Chapter 5

The Thalweg and its properties

It is clear from Definition 11.2.1 that studying the steepness property at the origin of
a given function ℎ ∈ C2(Bn(0, 2�),ℝ) satisfying ∇ℎ(0) ≠ 0, amounts to studying the
projection of its gradient on any m-dimensional subspace Γm perpendicular to ∇ℎ(0),
with m ∈ {1, ..., n − 1}. More precisely, given � > 0, for any fixed � ∈ [0, �] we are
interested in the quantity

�ℎ(Γm, �) ∶= min
u∈Γm, ||u||=�

||�Γm ∇ℎ(u)||2 .

Since, for any given Γm orthogonal to ∇ℎ(0) and for any � ∈ [0, �], the value �ℎ(Γm, �)
is attained at some point of the m-dimensional sphere

m� ∶= {u ∈ Γ
m
| ||u||2 = �} ,

it makes sense to give the following

Definition 5.0.1. We call Thalweg of ℎ on Γm the set

 (ℎ,Γm) ∶= {I⋆ ∈ Γm ∶ ||�Γm ∇ℎ(I⋆)|| = �ℎ(Γm, �) for 0 ≤ � ∶= ||I⋆|| ≤ �} .

In the sequel, we will be interested in studying the thalweg  (T0(ℎ, r, n),Γm) of the
Taylor polynomial T0(ℎ, r, n). Namely, the goal of this section is to prove the following

Theorem 5.0.1. (Nekhoroshev, [94]) For any pair of integers r, n ≥ 2, and for any real
� > 0, consider a function ℎ ∈ Cr(Bn(0, 2�)) satisfying ∇ℎ(0) ≠ 0. Then, given a
number m ∈ {1, ..., n − 1}, for any m-dimensional subspace Γm orthogonal to ∇ℎ(0)
there exists a semi-algebraic curve 
 with values in  (T0(ℎ, r, n),Γm) such that 
(0) = 0
and

1. For any fixed � ≥ 0, the intersection Im(
) ∩ m� is a singleton;

2. There exists a positive integer d = d(r, n, m) that bounds the diagram (see Def.
A.1.2) of graph(
);

59
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3. There exists K = K(r, n, m) > 1 such that, for any � > 0, the curve 
 is real-
analytic on some closed interval I� ⊂ [−�, �] of length �∕K, with complex ana-
lyticity width �∕K;

4. Over I�, 
 is an i-arc, i.e. it can be parametrized by


(t) ∶=

{

xi(t) = t for some i ∈ {1, ..., m}
xj(t) = fj(t) for all j ∈ {1, ..., m}, j ≠ i

t ∈ I�

where the fj(t) are Nash (i.e. analytic-algebraic) functions;

5. 
 satisfies a Bernstein’s inequality on its Taylor coefficients over the interval I�.
Namely, indicating by

fj(t) =
+∞
∑

�=0
aj�(u) t� , j ∈ {1, ..., m} , j ≠ i ,

the Taylor expansion of fj at some point u ∈ I�, there exists a positive constants
K2(r, n, m), and M = M(r, n, m, �) ∶= �!×K� ×K2(r, n, m) for which the following
uniform estimate holds:

max
u∈I�

|aj�(u)| ≤
M

��−1
. (5.0.1)

Remark 5.0.1. The Theorem above corresponds to reasonings holding in the polynomial
setting. Moreover, the constants d, K, M depend only on the degree of the considered
polynomial. Consequently, this Theorem holds uniformly for any r-jet of any function
ℎ ∈ Cr(Bn(0, 2�),ℝ).
Remark 5.0.2. Nekhoroshev calls 
 "minimal arc with uniform characteristics" (see
[94], section 4). In that work, the statement of Theorem 5.0.1 is not given in the form
above but is rather split in dispersed parts. Moreover, many of the modern tools of
real-algebraic geometry were lacking at that time, so that the redaction of his work
appears quite obscure in some parts. These two elements makes difficult for the reader
to reconstruct simply Theorem 5.0.1 from Nekhoroshev’s original paper.
Remark 5.0.3. The Bernstein’s inequality at point 5 of Theorem 5.0.1 is essential in
order to have stable1 lower estimates for the steepness coefficients of ℎ. For more details
about this result, which is interesting in itself and has applications in various fields of
mathematics, see refs. [107] and [16].

Some intermediate Lemmas are needed before demonstrating Theorem 5.0.1.

Lemma 5.0.1. Take any triplet of integers r, n ≥ 2 and m ∈ {1, ..., n − 1}. There
exists d = d(r, n, m) ≥ 0 such that, for any Q ∈ (r, n) satisfying ∇Q(0) ≠ 0, and for
any subspace Γm perpendicular to ∇Q(0), the thalweg  (Q,Γm) is a semi-algebraic
set satisfying diag( (Q,Γm)) ≤ d (see Def. A.1.2). Moreover, for any fixed �0 > 0, the
intersection of  (Q,Γm) with the sphere m�0 ⊂ Γ

m is compact.
1In the sense given in Th. 4.1, that is valid for an open set of functions.
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Proof. Γm is obviously isomorphic to ℝm and admits a global system of orthonormal
coordinates x = (x1, ..., xm). We denote by P (x) ∈ (r, m) the restriction of Q(I) to
Γm ≃ ℝm. Since we endow Γm with the induced euclidean metric, studying the norm
of the projection of ∇IQ(I) on Γm amounts to studying the induced norm of ∇xP (x)
on Γm ≃ ℝm. Now, consider the semi-algebraic set

 ∶= {(x, y, �) ∈ ℝ2m ×ℝ ∶ ||x||22 = ||y||22 = �
2, � > 0, ||∇P (x)||2 > ||∇P (y)||2}

(5.0.2)
By the Theorem of Tarski and Seidenberg A.1.1 and Proposition A.1.1, we have that
the set ℝm∖�x ∶= {x ∈ ℝm ×ℝ ∶ ∀(y, �) ∈ ℝm ×ℝ, (x, y, �) ∉ } is semi-algebraic.
We claim that it coincides with  (Q,Γm). Infact, by the definition of  , it is clear that
for any given � > 0 one has

x ∈ ℝm∖�x ⟺ ||∇P (x)||2 ≤ ||∇P (y)||2 for all y ∈ ℝm s.t. ||y||22 = ||x||2
2 ,

(5.0.3)
so that x ∈ ℝm∖�x is the locus of minima on any given sphere for ||∇P ||2 (that
is for ||�Γm∇Q||2), that is it coincides with the Thalweg  (Q,Γm). Moreover, since
degP ≤ r, the diagram of  is uniformly bounded w.r.t. any P ∈ (r, m) and, again
by the Theorem of Tarski and Seidenberg, the same is true for �x and for ℝm∖�x ≡
 (Q,Γm).

It remains to prove that  (Q,Γm)∩m�0 is compact. By construction,  (Q,Γm)∩m�0
is the locus of minima of ||∇P || on m�0 . Since the function ||∇P ||2 is continuous on
m�0 , the inverse image of its minimal value on m�0 is closed. Since 

m
�0
is compact, the

thesis follows.

The next Lemma shows how an analytic curve with uniform characteristics can be
extracted from the Thalweg.

Lemma 5.0.2. Fix a triplet of integers r, n ≥ 2 and m ∈ {1, .., n − 1}. There exist
positive constants D(r, n, m) ∈ ℕ, and Ki = Ki(r, n, m) ∈ ℝ, i = 1, 2, such that,
for any � > 0, for any polynomial Q ∈ (r, n) satisfying ∇Q(0) ≠ 0, and for any
m-dimensional subspace Γm orthogonal to ∇Q(0), there exists a semi-algebraic curve
� = (�1(�), ..., �m(�)) ∶ [0, �]⟶  (Q,Γm) having the following properties

1. For any fixed � ∈ [0, �], the intersection Im(�) ∩ m� is a singleton;

2. The diagram of graph(�) (see Definition A.1.2) is bounded by D;

3. There exists a closed interval � ⊂ [0, �] of length �∕K1 over which � is real-
analytic, with complex analyticity width �∕K1;

4. On the closed complex polydisk (�)�∕K1 of width �∕K1 around � , one has the
uniform Bernstein’s inequality

max
�∈(� )�∕K1

|�j(�)| ≤ K2 � for any j ∈ {1, ..., m}.
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Proof. As in Lemma 5.0.1, we consider the isomorphism Γm ≃ ℝm, and a global system
of orthonormal coordinates x = (x1, ..., xm). We proceed by steps. At the first step, we
build a semi-algebraic function �1 associating to a sphere m� of given radius � > 0
the minimal value attained by the coordinate x1 on m� . At Step 2 we apply Yomdin’s
reparametrization to one of the algebraic components of �1 and we get a function with
the suitable properties. Finally, at Step 3, we repeat the same construction for the other
coordinates.

Step 1. For any � > 0, by Lemma 5.0.1 the set

�(Q,Γm) ∶=  (Q,Γm) ∩ {x ∈ ℝm ∶ ||x||22 ≤ �2}

is semi-algebraic and its diagram is bounded by a positive constant d = d(r, n, m). By
the Theorem of Tarski and Seidenberg A.1.1, the continuous function

f1 ∶= �(Q,Γm)⟶ ℝ , x⟼ x1

is semi-algebraic and its diagram is bounded by a quantity depending only on r, n, m.
Infact,

graph(f1) ∶= Πℝm×ℝ{(u, v) ∈ ℝm ×ℝm
| u ∈ �(Q,Γm), u = v} .

Moreover, Lemma 5.0.1 assures that for any 0 < �0 < � the set �(Q,Γm) ∩ m�0 is
compact, so that f1 admits minimum on it. On the other hand, the function g1 ∶
�(Q,Γm) ⟶ ℝ, x ⟼ ||x||2 is also semi-algebraic of diagram by a quantity de-
pending only on r, n, m, since

graph(g1) ∶= {(x, y) ∈ ℝm ×ℝ | x ∈ �(Q,Γm) , ||x||22 − y
2 = 0} .

Then, by applying Proposition A.1.11, we have that the function

�1 ∶ [0, �]⟶ ℝ �⟼ inf
x∈g−11 (�)

f1(x) = min
x∈� (Q,Γm)∩m�

{x1} (5.0.4)

is semi-algebraic and we indicate by d1 = d1(r, n, m) its diagram.
Step 2. Corollary A.1.1 ensures the existence of a number N1 = N1(d1) and of an

open interval 1 ⊂ [0, �] of length �∕N1 over which the restriction �1|1 is algebraic.
By Proposition A.1.6, �1|1 is d1-valent and has no more than d1 zeros on its domain
so that there exists an interval  1 ⊂ 1 of length �∕(N1(d1) × (d1 + 1)) over which the
restriction �1| 1 has definite sign. Without loss of generality we can assume �1(�) ≥ 0
for all � ∈  1 (one considers −�1 otherwise).

We denote by �1 and �2 the extremal points of the interval  1 and we rescale the
domain by setting

'1 ∶ [−1, 1]⟶ ℝ , '1(u) ∶= �1
(u + 1

2
�2 −

u − 1
2

�1
)

. (5.0.5)



63

We also define the function

'̃1(u) ∶=
'1(u)
�

, 0 ≤ '̃1(u) ≤ 1 , (5.0.6)

which satisfies the hypotheses of Theorem A.2.1. With the notations of Theorem A.2.1,
we choose the value � ∶= 1

8Y1(d1)
so that, once at most Y1 neighborhoods of length

2� around the singularities of '̃1 are eliminated from [−1, 1], the remaining set has a

measure which is no less than 2−
Y1
∑

i=1
2× 1∕(8Y1) = 7∕4 .Moreover, the number of the

partition intervals is bounded by the uniform quantity Y2 log2
(

8Y1
)

, so that there exists
an interval Δ1 ⊂ [−1, 1] satisfying

|Δ1| =
7

4 Y2 log2
(

8Y1
)

on which '̃1 is real-analytic. Infact, by Proposition A.2.1, the complex singularities
of '̃1 are at distance no less than 3|Δ1| from the center c1 of Δ1. By Theorem A.2.1,
Δ1 can be affinely reparametrized by a function  1 ∶ [−1, 1]⟶ Δ1, which maps the
complex disc3(0) into the complex disc%(c1) of radius % ∶=

3
2 |Δ1|. Hence, we can

write

max
u∈%(c1)

|'̃1(u)| ≤ max
u∈%(c1)

|'̃1(u) − '̃1(0)| + |'̃1(0)|

= max
z∈3(0)

|'̃1◦ 1(z) − '̃1◦ 1(0)| + |'̃1(0)|
(5.0.7)

so that, by Definition A.2.1 and Theorem A.2.1 and by the fact that |'̃1(u)| ≤ 1 for any
u ∈ [−1, 1], we obtain

max
u∈%(c1)

|'̃1(u)| ≤ 2 . (5.0.8)

Scaling back to the original variables, by (5.0.5) the interval Δ1 is mapped into an
interval Δ�1 of length |Δ�1| = |Δ1|

�2−�1
2 = |Δ1|

�
2N1(d1)×(d1+1)

and center ĉ1 and, in the

same way, the radius rescales as % ⇝ % �
2N1(d1)×(d1+1)

. Therefore, taking into account
(5.0.6) and (5.0.8), there exists a uniform constant M1 = M1(d1) such that the following
Bernstein’s inequality is satisfied

max
z∈�∕M1 (ĉ1)

|�1(z)| ≤ 2� . (5.0.9)

Step 3. Since Δ�1 is compact, �1(Δ
�
1) is also compact and the inverse image

U1� (Q,Γ
m) ∶= g−11 (�

−1
1 (�1(Δ

�
1))) is closed. Moreover, since the diagrams of �1 and g1

depend only on r, n, m, then by PropositionsA.1.7-A.1.8-A.1.9 the diagram of U1� (Q,Γ
m)

also depends only on r, n, m. Hence, for any fixed � ∈ Δ�1 we have that the set 
m
� ∩
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U1� (Q,Γ
m), which contains the points of the Thalweg that have minimal coordinate x1

on the sphere of radius �, is compact and semialgebraic with a bound on its diagram
depending only on r, n, m. Hence, the coordinate x2 admits a minimum on this set and
we can repeat the same argument of Step 2 on the function

�2 ∶ Δ
�
1⟶ ℝ �⟼ min

x∈g−12 (�)
f2(x) = min

x∈m� ∩U1� (Q,Γ
m)
{x2} (5.0.10)

where we have set f2 ∶ m�0 ∩ U
1
� (Q,Γ

m) ⟶ ℝ , x ⟼ x2 and g2 ∶ m�0 ∩
U1� (Q,Γ

m) ⟶ ℝ, x ⟼ ||x||2 . The curve � ∶= (�1, �2, ..., �m) is constructed by
iterating this procedure m times.

Points 1, 2, and 3 of the thesis follows easily from this construction. Point 4 is a
consequence of estimate (5.0.9) applied to the complex polydisk of uniformwidth �∕K1
around the common uniform real interval of analyticity � of the functions �1, ..., �m.

We are now ready to state the proof of Theorem 5.0.1.

Proof. (Theorem 5.0.1) We assume the setting of Lemma 5.0.2 with Q equal to the
Taylor expansion T0(ℎ, r, n), and we proceed by steps. At Step 1, we show that there
exists a component �i, i ∈ {1,… , m}, of the curve � introduced in Lemma 5.0.2 whose
first derivative admits a lower bound on a domain of uniform length. Then, at the sec-
ond step, we use this fact to apply a quantitative inverse function Theorem and we
reparametrize � by the i-th coordinate. Steps 3 and 4 contain, respectively, the proofs
of points 1-4 and of point 5 in the statement.

Step 1. We cut the uniform interval of analyticity � into three equal intervals and
we denote by ̂� the central one, whose length is |̂�| = |�|∕3. We indicate by �̂1
and �̂2 the extreme points of ̂� . Since for any given � ∈ ̂� by Lemma 5.0.2 we
have �2 = �21(�) + ... + �

2
m(�), there must be some component �i of the curve, with

i ∈ {1, ..., m}, satisfying

|�i(�̂2) − �i(�̂1)| ≥
|̂�|
m

=
�

3mK1
. (5.0.11)

At the same time, for some point �̂3 ∈ ̂� we have

|�i(�̂2) − �i(�̂1)| = |�′i(�̂3)||̂�| = |�′i(�̂3)|
�
3K1

. (5.0.12)

On the one hand, relations (5.0.11) and (5.0.12) together imply

|�′i(�̂3)| ≥
1
m
. (5.0.13)

On the other hand, for any � ∈ [�̂3 − |̂�|, �̂3 + |̂�|] ⊂ � one has the estimate

|�′i(�) − �
′
i(�̂3)| ≤ max�

|�′′i ||� − �̂3| (5.0.14)
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which, thanks to the classic Cauchy estimate and to the Bernstein inequality of Lemma
5.0.2, implies

|�′i(�) − �
′
i(�̂3)| ≤

2K2
1

�2
max
(� )�∕K1

|�i||� − �̂3| ≤
2K2

1K2
�

|� − �̂3| . (5.0.15)

Hence, for any � in the interval J� ∶=
[

�̂3 −
�

4mK21K2
, �̂3 +

�
4mK21K2

]

⊂ � we have by

(5.0.13) and (5.0.15) that

|�′i(�)| ≥
|

|

|

|�′i(�̂3)| − |�′i(�) − �
′
i(�̂3)|

|

|

|

≥ 1
m
−
2K2

1K2
�

�
4mK2

1K2
= 1
2m

. (5.0.16)

Step 2. By Lemma 5.0.2 and by the construction at Step 1 we can apply the quanti-
tative local inversion Theorem B.0.2 for �i at any point � ∈ J� ⊂ � . By making use
of the notations in Theorem B.0.2, we can set the uniform parameters

R ∶=
�
K1

, |�′i(�)| ≥
1
2m

, max
(J� )�∕K1

|�′′j | ≤ 2
K2
1K2
�

. (5.0.17)

Hence, �i is invertible in the complex closed polydisk (J�)R′∕16 around the real interval
J� , where

R′ ∶= 1
2
× min

{

R,
minJ� |�

′
i|

max(J� )�∕(2K1) |�
′′
i |
,

}

=
�

8mK2
1K2

.

Since, by construction, �i is real-analytic in J� , the continuity of the derivative ensures
that �i(J�) is an interval of ℝ. The inverse function is analytic in the complex polydisc
of uniform width

R′′ ∶= min
J�

|�′i|
R′

8
≥ R′

16m
=

�
128m2K2

1K2
(5.0.18)

around �i(J�). Using (5.0.16), one has that its length is no less than

|�i(J�)| ≥ minJ�
|�′i| × |J�| ≥

1
2m

×
�

2mK2
1K2

. (5.0.19)

Step 3. Point 1 of Theorem 5.0.1 follows by Point 1 of Lemma 5.0.2 and by the local
inversion Theorem applied at Step 2. Points 2, 3, and 4 of Theorem 5.0.1 are also
immediate consequences of the local inversion Theorem at Step 2.

Namely, by keeping in mind the notations at Point 4 of Theorem 5.0.1, the curve

 ∶= �◦�−1i can be defined as


(t) ∶=

{

xi = t
xj(t) = fj(xi) ∶= �j(�−1i (xi)) for all j ∈ {1, ..., m} , j ≠ i .

(5.0.20)
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The existence of an interval of analyticity with uniform length and complex width
for 
 is a consequence of (5.0.18) and (5.0.19) and the constant K in the statement can
be taken equal to

K ∶= 128m2K2
1K2 . (5.0.21)

Indeed, for any 0 < � ≤ �, I� can be chosen to be any interval of length �∕K contained
in the interval �i(J�) ⊂ [−�, �] (see (5.0.19)). For later convenience, we also observe
that the above discussion implies that

(�)�∕K1 ⊃ (J�)�∕K1 ⊃ �
−1
i (I�)�∕K , ∀� ∈ (0, �] . (5.0.22)

The fact that the diagram of graph(
) depends only on r, n, m is an immediate conse-
quence of (5.0.20), together with point 2 of Lemma 5.0.2 and with Propositions A.1.8-
A.1.9.

Step 4. It remains to prove the Bernstein’s inequality at Point 5 of the statement. By
Lemma 5.0.2, for any � > 0 we have

max
�∈(�)�∕K1

|�j(�)| ≤ K2 � (5.0.23)

for some uniform constantK2 = K2(r, n, m) and for any j ∈ {1, ..., m}. By construction
in (5.0.20), fj(x1) = �j◦�−1i (xi), and for any � ∈ ℕ ∪ {0} the classic Cauchy estimate
implies

max
t∈I�

|f (�)j (t)| ≤ �! K�
maxz∈(I�)�∕K |fj(z)|

��
= �! K�

maxz∈(I�)�∕K |�j◦�
−1
i (z)|

��
.

(5.0.24)
For any 0 < � ≤ �, by (5.0.22) one has �−1i ((I�)�∕K) ⊂ (�)�∕K1 . Taking this into
account, (5.0.24) and (5.0.23) yield

max
t∈I�

|f (�)j (t)| ≤ �! K�
max�∈(�)�∕K1 |�j(�)|

��
≤ �! K�

K2�
��

= �! K�
K2
��−1

. (5.0.25)

The thesis at Point 5 in the statement follows by setting M = �! ×K2 × K� .



Chapter 6

s-vanishing polynomials

We take into account the results and the notations of the previous section, in particular
Theorem 5.0.1.

6.1 Heuristics and Definitions
The goal of the first part of this paragraph is to provide the reader with a heuristic justi-
fication for introducing the special class of s-vanishing polynomials in the study of the
genericity of steepness. A rigorous description of the rôle played by these polynomials
will be given in the next paragraphs and sections.

For any fixed integer n ≥ 2, we consider the euclidean space ℝn and we endow
any of its linear subspaces with the induced metric. For any pair of positive integers
1 ≤ m ≤ n−1 and r ≥ 2, for any given function ℎ of class Cr near the origin satisfying
∇ℎ(0) ≠ 0, and for any m-dimensional subspace Γm orthogonal to ∇ℎ(0), by Def.
11.2.2, the set  (T0(ℎ, r, n),Γm) is the locus of minima of ||�Γm∇T0(ℎ, r, n)||2 on the
spheres m� (0) ⊂ Γ

m, with � > 0.
In Theorem 5.0.1 we have proved the existence of a minimal semi-algebraic arc 


(see (5.0.20)) of diagram d(r, n, m) parametrized by one coordinate and whose image
is contained in the thalweg  (T0(ℎ, r, n),Γm). Due to Proposition A.1.4 - 
 is piece-
wise algebraic, with a maximal number of algebraic components depending only on its
diagram d(r, n, m). With the exception of a finite set of complex points, any algebraic
function admits locally a holomorphic extension, and the number of its singularities is
bounded by a quantity depending only on its diagram (see appendixA.2, or [16] formore
details). Therefore, 
(t) is real-analytic with the exception of a finite number of points
whose cardinality is bounded uniformly by a quantity depending solely on d(r, n, m).
In particular, for any � > 0, this ensures the existence of an interval I� ⊂ [−�, �] of
uniform length �∕K(r, m, n), where K = K(r, m, n) is a suitable constant, over which 
(t)
is real-analytic with complex analyticity width �∕K.

By the above reasonings, for sufficiently small � > 0 the interval (−3�, 3�) contains

67
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no singularities of 
(t). In particular, 
(t) is real analytic in L� ∶= (�, 2�), with com-
plex analyticity width �, and the same holds also for || �Γm∇T0(ℎ, r, n)||
(t) ||2

2 in that
interval. Hence, if the function || �Γm∇T0(ℎ, r, n)||
(t) ||2

2 has a zero of infinite order at
some point t⋆ ∈ L�, then it is identically null in L�. Then, by Definition 11.2.1, and
by the minimality of 
 , this implies that the polynomial T0(ℎ, r, n) cannot satisfy the
steepness property at the origin on the subspace Γm.

We claim that a kind of converse result - involving I� instead of L� - is also true: if
T0(ℎ, r, n) is non-steep at the origin on the subspace Γm, then || �Γm∇T0(ℎ, r, n)||
(t) ||2

2

must have a zero of infinite order in I�. This observation is fundamental in order to
prove Theorem A. Actually, the necessity of a zero of infinite order has been proved for
a real-analytic function in [98] via the curve-selection Lemma; however, in the polyno-
mial setting considered here, we have a much stronger quantitative result.

Motivated by this heuristic argument, we are interested in studying the properties
of those real polynomials of m ≥ 1 variables whose gradient has a zero of sufficiently
high order on some curve 
 parametrized by one coordinate. In a first moment, we
do not consider the fact that these polynomials are the restrictions to a m-dimensional
subspace Γm of polynomials defined inℝn, with n > m. This will be taken into account
in section 7. Therefore, we give the following definitions:

Definition 6.1.1. We indicate by Θm the set of curves 
(t) with values in ℝm such that

1. 
(t) is real-analytic in a neighborhood U
 of the origin, and 
(0) = 0;

2. for some k ∈ {1, ..., m}, and for all t ∈ U


(t) ∶=

{

xk(t) = t
xj(t) = fj(t) ∀j ∈ {1, ..., m} , j ≠ k .

For fixed i ∈ {1,… , m}, we denote byΘim the subset of curves inΘm that are parametrized
by the i-th coordinate.

Remark 6.1.1. We are asking the arc 
 to be analytic at the origin, but the minimal
arc obtained in Theorem 5.0.1 did not necessarily have this property (the origin was
not included, in general, in the uniform interval of analyticity I� ⊂ [−�, �]). As it
has already been discussed in the introduction, this is an issue that comes from the use
of analytic reparametrizations of semi-algebraic sets. We will deal with this apparent
difficulty in section 7.

Remark 6.1.2. For the moment, we do not make any assumption on the sizes of the
neighborhoods of analyticity U
 of the arcs in Θm. Hence, the results of this section do
not require any uniform lower bound on |U
 | as in Theorem 5.0.1. Nevertheless, the
existence of a uniform lower bound will prove to be necessary in order to to demonstrate
the results of section 7.
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Remark 6.1.3. The definition of the set Θm is coordinate-dependent. However, as we
have showed in Chapter 5 (see Theorem 5.0.1), for any function ℎ ∈ Cr(Bn(0, 2�))
verifying ∇ℎ(0) ≠ 0, and for any euclidean suspace Γm orthogonal to ∇ℎ(0), there
exists a minimal arc 
 ∈ Θm with uniform characteristics whose image is contained in
the thalweg  (T0(ℎ, r, n),Γm).

Definition 6.1.2. For any pair of integers s ≥ 1 and i ∈ {1,… , m}, we indicate by
#m(s) (resp. #im(s)) the subset of (

⋆(s, 1))m = ⋆(s, 1) ×⋯×⋆(s, 1) containing the
truncations at order s of the Taylor expansions at the origin of all curves in Θm (resp.
in Θim). The elements of #m(s) will henceforth be referred to as s-truncations.

Remark 6.1.4. Clearly, #m(s) (resp. #im(s)) is isomorphic to the set of s-jets of curves in
Θm (resp. Θim). Moreover, the set #im(s) is isomorphic to ℝ(m−1)×s, since for any curve

 ∈ Θim its s-truncation s,
 ∈ #im(s) is determined by the first s Taylor coefficients at
the origin of the functions fj , with j ∈ {1, ..., m}, j ≠ i.
Remark 6.1.5. With the definitions above, one has the following decompositions:

Θm =
m
⋃

i=1
Θim , #m(s) =

m
⋃

i=1
#im(s) . (6.1.1)

Definition 6.1.3. Fix three integers r ≥ 2, m ≥ 1, and 1 ≤ s ≤ r − 1. A polynomial
P ∈ (r, m) is said to be s-vanishing if there exists an arc 
 ∈ Θm such that on its
s-truncation s,
 ∈ #m(s) the gradient of P has a zero of order s at the origin, namely

d�

dt�

(

)P
)xl

|

|

|

|s,
 (t)

)

t=0

= 0 , ∀ l ∈ {1, ..., m} , ∀ � ∈ {0, ..., s} . (6.1.2)

The set of s-vanishing polynomials in (r, m) is denoted by �(r, s, m).

In paragraph 6.2, we shall investigate the properties of the set �(r, s, m) ⊂ (r, m)
of s-vanishing polynomials: we shall prove that

1. for any given value of r ≥ 2, m ≥ 1, 1 ≤ s ≤ r − 1, it is the semi-algebraic
projection onto (r, m) of an algebraic set Z(r, s, m) of (r, m) × #m(s) whose
ideal can be explicitly computed ;

2. it has positive codimension.

Secondly, in paragraph 6.3, we shall show that any polynomial P belonging to the com-
plementary of the closure of �(r, s, m) in (r, m) satisfies a "stable" lower estimate on
its gradient. As we shall see, "stable" means that the estimate holds uniformly true for
any polynomial belonging to a neighborhood of P .

Finally, in section 7, we shall prove that a polynomial Q ∈ (r, n) satisfying
∇Q(0) ≠ 0 is steep around the origin iff there exists 1 ≤ s ≤ r − 1 such that, for
all m ∈ {1, ..., n−1}, the restriction ofQ to any m-dimensional linear subspace Γm per-
pendicular to∇Q(0) is contained in the complementary of closure(�(r, s, m)) in(r, m).
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6.2 Algebraic properties
We assume the notations of the previous paragraph, and we consider a triplet of integers
r ≥ 2, m ≥ 1, 1 ≤ s ≤ r − 1. We work in the euclidean space ℝm equipped with
coordinates (x1, ..., xm), and we consider a polynomial P = P (x) ∈ (r, m) satisfying
the s-vanishing condition on the s-truncation s,
 ∈ #m(s) of some curve 
(t) ∶=
(x1(t), ..., xm(t)) ∈ Θm. Unless explicitly specified, we will henceforth work in the case
in which 
 is parametrized by the first coordinate, as the generalization to other cases
is immediate. Hence, 
(t) ∶= (t, x2(t),… , xm(t)) ∈ Θ1m.

6.2.1 Case m = 1

We observe that, for m = 1, we have the following simple result:

Lemma 6.2.1. For m = 1, a polynomial P (x) =
∑

�∈ℕ
1≤�≤r

p�x� of one real variable

belongs to the set �(r, s, 1) ⊂ (r, 1) if and only if

p� = 0 ∀� ∈ ℕ such that 1 ≤ � ≤ s + 1 .

Moreover, �(r, s, 1) is closed and its codimension in (r, 1) is equal to s + 1.

Proof. For m = 1, the set Θ1 is the singleton containing the line 
(t) ∶= x(t) = t.
By Definition 6.1.3, it is clear that a polynomial verifying the hypotheses in the

statement satisfies also the s-vanishing condition. Conversely, again byDefinition 6.1.3,
it is plain to check that the s-vanishing condition form = 1 imposes that the coefficients
of the studied polynomial must be null up to order s + 1. The closure of �(r, s, 1) is
due to continuity, whereas codim �(r, s, 1) = s+ 1 as such a set is determined by s+ 1
independent equations in (r, 1).

6.2.2 Notations (case n ≥ 3, 2 ≤ m ≤ n − 1)

Up to the end of this paragraph, we will restrict to the case n ≥ 3, 2 ≤ m ≤ n − 1.
The goal is to introduce useful notations in order to study the properties of s-vanishing
polynomials in (r, m).

Using standard notations, we set � ∶= (�1, ..., �m) ∈ ℕm , |�| ∶= ||�||1, and for
any P ∈ (r, m) we write

P (x) ∶=
∑

�∈ℕm
1≤|�|≤r

p(�1,...,�m)x
�1
1 ... x

�m
m =∶

∑

�∈ℕm
1≤|�|≤r

p�x
� , (6.2.1)

where we have taken into account the fact that P has no constant term by the definition
of (r, m).
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We also consider a curve 
 ∈ Θ1m and - for j = 2, ..., m - we develop its components
fj at the origin, and we write

xj(t) = fj(t) =∶
+∞
∑

i=1
ajit

i , (6.2.2)

where we have taken into account the fact that 
(0) = 0 by Definition 6.1.1. Thus, the
s-truncation s,
 ∈ #1m(s) of the curve 
 is identified by the (m − 1)s real coefficients
(a21, ..., a2s, ..., am1, ..., ams) of the truncated expansion, namely

s,
 = s,
 (t) =

(

t,
s
∑

i=1
a2it

i ,… ,
s
∑

i=1
amit

i

)

. (6.2.3)

In the rest of this paragraph, we will try to find an explicit expression for the s-
vanishing condition in terms of the coefficients of P and s,
 . We first observe that the
s-vanishing condition (6.1.2) for � = 0 implies

p� = 0 for all � ∈ ℕm such that |�| = 1 . (6.2.4)

Thus, without any loss of generality, in (6.2.1) we can only consider the multi-indices
� ∈ ℕm that satisfy 2 ≤ |�| ≤ r. Moreover, for l = 1, ..., m, the l-th component of the
gradient of P reads
)P
)xl

∶=
∑

�∈ℕm
2≤|�|≤r

�l p�x
�̃(l) , �̃j(l) ∶= �j − �jl , j = 1, ..., m , |�| = |�̃(l)| + 1 ,

(6.2.5)
where �jl is the Kronecker symbol. At this point, we indicate by

Φ1 ∶ (r, m) × #1m(s)⟶ ℝM ×ℝ(m−1)s , M ∶= dim(r, m) (6.2.6)

the trivial chart associating (P ,s,
 )⟼ (p�, a21, ..., a2s, ..., am1, ..., ams) and we define
the functions q1l� ∶ ℝM × ℝ(m−1)s ⟶ ℝ , l ∈ {1, ..., m} , � ∈ {0, ..., s} in the
following way:

For � = 0 q1l0◦Φ
1(P ,s,
 ) ∶=

(

)P
)xl

|

|

|

|s,
 (t)

)

t=0

= p(0,...,0,1,0,...,0)

For � ∈ {1, ..., s} q1l�◦Φ
1(P ,s,
 ) ∶=

d�

dt�

(

)P
)xl

|

|

|

|s,
 (t)

)

t=0

= d�

dt�

⎡

⎢

⎢

⎢

⎣

∑

�∈ℕm
2≤|�|≤r

�l p�t
�̃1(l)

( s
∑

k=1
a2kt

k

)�̃2(l)

...

( s
∑

j=1
amj t

j

)�̃m(l)⎤
⎥

⎥

⎥

⎦t=0

(6.2.7)

where the "1" fills the l-th slot in the multi-index at the rightest member of the first line
and where the last line is obtained by injecting (6.2.3) into expression (6.2.5).
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Remark 6.2.1. In a similar way, when 
 is parametrized by the i-th coordinate, with
i ≠ 1, one can denote by Φi ∶ (r, m) × #im(s)⟶ ℝM ×ℝ(m−1)s the chart associating
(P ,s,
 ) ↦ (p�, a11, ..., a1s, ..., a(i−1)1, ..., a(i−1)s, a(i+1)1, ..., a(i+1)s, ..., am1, ..., ams), and
introduce the maps qil�◦Φ

i(P ,s,
 ), l ∈ {1,… , m}, � ∈ {0,… , s} exchanging the
rôle of the first coordinate with that of the i-th coordinate in (6.2.7).

Remark 6.2.2. Comparing expressions (6.2.7) with Definition 6.1.3 and expression
(6.2.4), and taking Remark 6.2.1 into account, it is easy to see that any given polynomial
P ∈ (r, m) satisfies the s-vanishing condition on some truncation s,
 ∈ #m(s) if and
only if

qil�◦Φ
i(P ,s,
 ) = 0 , for some i ∈ {2,… , m} , for all l ∈ {1, ..., m} , � ∈ {0, ..., s} .

(6.2.8)

By the above discussion, we see that the set of s-vanishing polynomials in (r, m)
is given by

�(r, s, m) =
m
⋃

i=1
�i(r, s, m) , (6.2.9)

where we have introduced the sets

�i(r, s, m) ∶= Π(r,m)Z
i(r, s, m) (6.2.10)

and

Z i(r, s, m) ∶= {(P ,s,
 ) ∈ (r, m) × #im(s)}|(P ,s,
 ) satisfies
qil�◦Φ

i(P ,s,
 ) = 0 for all l ∈ {1, ..., m}, � ∈ {0, ..., s}} .
(6.2.11)

We also set

Z(r, s, m) ∶=
m
⋃

i=1
Zi(r, s, m) . (6.2.12)

It turns out that the ideal of Z(r, s, m) can be explicitly computed for any given value
of the integers r ≥ 2, 1 ≤ s ≤ r − 1, m ≥ 2 1, i.e., one can find explicit expressions
for the quantities qil�◦Φ

i(P ,s,
 ), for any value of l ∈ {1, ..., m}, � ∈ {0, ..., s}, and
i ∈ {1, ..., m}.

Before stating this result, for any given value of i ∈ {1,… , m} we will introduce
new global charts for (r, m) × #im(s) which - though unessential for the validity of our
results - yield nicer expressions for the equations qil�◦Φ

i(P ,s,
 ) = 0 than the standard
chart Φi. As it will be shown in the next paragraph, the variables aj1, j ≠ i, associated
to the linear terms of the s-truncation s,
 can be incorporated in the coordinates of the
polynomial P . This simplifies the calculations and yields more readable formulas.

1The case m = 1 is easier, see Lemma 6.2.1.
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6.2.3 A useful chart for (r, m) × #m(s) (case n ≥ 3, 2 ≤ m ≤ n − 1)
Here too, we restrict to the case n ≥ 3, 2 ≤ m ≤ n − 1.

Once again, we only consider the case in which 
 is parametrized by the coordinate
i = 1, the other cases being trivial generalizations. Some of the quantities introduced in
the sequel should be labeled with an index 1, as their definition depends in an obvious
way from the choice of the parametrizing coordinate. However, in order not to burden
notations, we drop, when possible, the reference to the fact that we are considering the
case i = 1.

In order to define a new chart for (r, m) × #1m(s), we start by observing that, if we
denote by A1, ..., Am the canonical basis associated to the coordinates x1, ..., xm in ℝm,
for any fixed vector b ∶= (b21, ..., bm1) ∈ ℝm−1, we can define the new parametric basis

vb ∶= A1 + b21A2 + b31A3 + ... + bm1Am , u2 ∶= A2 , ... , um ∶= Am (6.2.13)

associated to the parametric change of variables

b ∶ ℝm⟶ ℝm , (x1, ..., xm)⟼y(b) ∶= (y1, y2(b), ..., ym(b)), (6.2.14)

where

y1 ∶= x1 , y2 = y2(b) ∶= x2 − b21 x1 … ym = ym(b) ∶= xm − bm1 x1 .
(6.2.15)

Obviously, for any fixed b ∈ ℝm−1, the change of coordinates (6.2.15) in ℝm induces
a change of coordinates also in (r, m). Infact, the pull-back of the polynomial P (x) is
indicated by

Pb(y(b)) ∶= P◦−1b (y(b)) =
∑

�∈ℕm
2≤|�|≤r

p�(x(y(b)))� =∶
∑

�∈ℕm
2≤|�|≤r

p�(p�, b)y�(b) ,

(6.2.16)
where the new coefficients p� = p�(p�, b21, ...., bm1) are polynomial functions of coef-
ficients p� and on the parameters b ∈ ℝm−1. For any given b ∈ ℝm−1, there is a 1 − 1
correspondence between the quantities p� and p�, as they represent the coordinates of
the same polynomial written in different bases. Moreover, by (6.2.2), in the new vari-
ables (6.2.15) the components of the push-forward b◦s,
 = b◦s,
 ∈ #1m(s) of any
s-truncation s,
 ∈ #1m(s) read

y1(t) = t , yj(t) ∶= (aj1 − bj1)t +
s
∑

i=2
ajit

i , j ∈ {2, ..., m} . (6.2.17)

By looking at expression (6.2.17), we see that, for any s ≥ 2 and for any given s-
truncation s,
 ∈ #1m(s), it is possible to find a parametric change of coordinates b in
ℝm such that the image b◦s,
 ∈ #1m(s) has no linear terms except for the parametriz-
ing component: it suffices to choose b = a ∶= (a21, ..., am1), with (a21, ..., am1) the
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coefficients of the linear terms of s,
 . Taking (6.2.16) into account, this also entails
that, for any given truncation s,
 ∈ #1m(s), there exists an associated set of coordinates
p� = p�(p�, a), with a ∶= (a21, ..., am1), in the space of polynomials (r, m). Hence,
we can parametrize the coordinates of any polynomial P through the linear coefficients
of any truncation s,
 .

Namely, we firstly observe that #1m(1) is isomorphic to

#1m(1) ≃ {a ∶= (a21,… , am1) ∈ ℝm−1} . (6.2.18)

Also, indicating by #1m(s, 2) the subset of s-truncations having null linear terms, we have
that

#1m(s, 2) ≃ {(a22,… , a2s,… , am2,… , ams) ∈ ℝ(m−1)(s−1)} . (6.2.19)

Clearly, one has
#1m(s) = #

1
m(1) × #

1
m(s, 2) . (6.2.20)

At this point, with the notation in (6.2.16), we define the invertible transformation

ℱ 1 ∶ (r, m) ×ℝm−1⟶ ℝM ×ℝm−1 , M ∶= dim(r, m) (6.2.21)

associating

⎛

⎜

⎜

⎜

⎝

P =
∑

�∈ℕm
1≤|�|≤r

p�x
�, a

⎞

⎟

⎟

⎟

⎠

⟼

⎛

⎜

⎜

⎜

⎝

p�′

(

(p�) �∈ℕm
1≤|�|≤r

, a

)

�′∈ℕm
1≤|�′|≤r

, a

⎞

⎟

⎟

⎟

⎠

(6.2.22)

and we indicate its image by

W 1(r, m) ∶= ℱ 1((r, m) ×ℝm−1) . (6.2.23)

In other words, W 1(r, m) is constructed by attaching to any point a ∈ ℝm−1 ≃ #1m(1)
the fiber of all polynomials in (r, m) expressed in the variables (6.2.15) associated to
the value a.

Furthermore, setting
Js,
,a ∶= a◦s,
 (6.2.24)

we have Js,
,a ∈ #1m(s, 2) by construction because in the adapted variables - as we had
shown in (6.2.17) by setting b = a - with the exception of the parametrizing component,
any truncation starts at order two. Taking the notation in (6.2.16) into account, we can
also define the chart

Υ1 ∶ (r, m) × #1m(s)⟶ W 1(r, m) ×ℝ(m−1)(s−1) (6.2.25)

associating

(P ,s,
 )⟼
⎛

⎜

⎜

⎜

⎝

p�′

(

(p�) �∈ℕm
1≤|�|≤r

, a

)

�′∈ℕm
1≤|�′|≤r

, a, a22, a23, ..., ams

⎞

⎟

⎟

⎟

⎠

. (6.2.26)
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Remark 6.2.3. For further convenience, we also denote by

U1 ∶ (r, m) × #1m(1)⟶ W 1(r, m) (6.2.27)

the restriction ofΥ1 to(r, m)×#1m(1). It is plain to check by formulas (6.2.16), (6.2.22),
and (6.2.26) that U1 is polynomial, invertible and that its inverse is a polynomial map.
Remark 6.2.4. The generalization of the arguments above to the case in which the curve

 ∈ Θm is parametrized by the i-th coordinate, with i ∈ {2,… , m}, is immediate. In
particular, one can define functions ℱ i, Υi, Ui, together with setsW i(r, m).
Remark 6.2.5. With slight abuse of notation, in the rest of this work we will often write
(Pa, a, Js,
,a) and (Pa, a) to indicate the points ofΥ1(P ,s,
 ) andW 1(r, m) respectively.

For further convenience, we also observe that

Lemma 6.2.2. Any polynomial P ∈ (r, m) satisfies the s-vanishing condition

d�

dt�

(

)P (x)
)xl

|

|

|

|s,
 (t)

)

t=0

= 0 ∀� ∈ {0, ..., s} , ∀l ∈ {1, ..., m} (6.2.28)

on the s-truncation s,
 ∈ #1m(s) of some curve 
 ∈ Θ
1
m, if and only if it satisfies

d�

dt�

(

)Pa(y)
)yl

|

|

|

|Js,
,a(t)

)

t=0

= 0 ∀� ∈ {0, ..., s} , ∀l ∈ {1, ..., m}

in the adapted coordinates associated to the linear terms of s,
 .

Proof. By (6.2.15) one has

−1
a
(y) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x1 = y1
x2 = a21 y1 + y2
...
xm = am1 y1 + ym

, −1
a
(y) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 ... 0
a21 1 0 ... 0
a31 0 1 ... 0
... ... ... ... ...
am1 0 0 ... 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (6.2.29)

Indicating with (−1
a
(y))k,l the (k,l)-th entry of the Jacobian of the inverse transfor-

mation −1
a

in (6.2.29), by the Leibniz formula one has

d�

dt�

(

)Pa(y)
)yl

|

|

|

|Js,
,a(t)

)

t=0

∶= d�

dt�

⎛

⎜

⎜

⎝

)(P◦−1
a
(y))

)yl

|

|

|

|

|Js,
,a(t)

⎞

⎟

⎟

⎠t=0

= d
�

dt�

[ m
∑

k=1

)P
)xk

◦−1
a
(y)

|

|

|

|a◦s,
 (t)
× (−1

a
(y))k,l

|

|

|Js,
,a(t)

]

t=0

= d
�

dt�

[ m
∑

k=1

)P (x)
)xk

|

|

|

|s,
 (t)
× (−1

a
(y))k,l

|

|

|Js,
,a(t)

]

t=0

.

(6.2.30)



76 CHAPTER 6. S-VANISHING POLYNOMIALS

Since the entries of the matrix −1
a

in (6.2.29) are constant, one has

(−1
a
(y))k,l

|

|

|Js,
,a(t)
= (−1

a
(y))k,l ,

so that, finally, (6.2.30) reads

d�

dt�

(

)Pa(y)
)yl

|

|

|

|Js,
,a(t)

)

t=0

=
m
∑

k=1

d�

dt�

[

)P (x)
)xk

|

|

|

|s,
 (t)

]

t=0

× (−1
a
(y))k,l . (6.2.31)

By the expression above, it is immediate to check that if P satisfies the s-vanishing
condition ons,
 then Pa does the same on Js,
,a. The proof of the converse is immediate
by applying the same arguments to P (x) ≡ Pa◦a(x).

By the discussion above, one has the choice to write the equations determining
the set Z1(r, s, m) in (6.2.11) either in the original coordinates, where they assume the
form q1l�◦Φ(P ,s,
 ) = 0 for all l ∈ {1..., m} and � ∈ {0, ..., s}, or in the new set
of coordinates associated to the change of variables a in ℝm, defined in (6.2.15). In
particular, by performing the same computations that led to expression (6.2.7) in the
new variables, and by taking into account the fact that the expansion of Js,
,a(t) starts
at order two in t, one can introduce the functions

Ql� ∶ W 1(r, m) ×ℝ(m−1)(s−1)⟶ ℝ , l ∈ {1,… , m} � ∈ {0,… , s}
(6.2.32)

in the following way:

For � = 0, Ql0◦Υ1(P ,s,
 ) = Ql0(Pa, a, Js,
,a) ∶= p(0,…,0,1,0,…,0)

For � ∈ {1, ..., s}, Ql�◦Υ1(P ,s,
 ) = Ql�(Pa, a, Js,
,a) ∶=
d�

dt�

(

)Pa(y)
)yl

|

|

|

|Js,
,a(t)

)

t=0

= d�

dt�

⎡

⎢

⎢

⎢

⎣

∑

�∈ℕm
2≤|�|≤r

�l p�t
�̃1(l)

( s
∑

k=2
a2kt

k

)�̃2(l)

…

( s
∑

j=2
amj t

j

)�̃m(l)⎤
⎥

⎥

⎥

⎦t=0

.

(6.2.33)

Expressions (6.2.7) and (6.2.33), considered together with Lemma 6.2.2, imply that
condition q1l�◦Φ

1(P ,s,
 ) = 0 holds if and only if

Ql�◦Υ1(P ,s,
 ) = Ql�(Pa, a, Js,
,a) = 0 , ∀l ∈ {1,… , m}, � ∈ {0,… , s} , (6.2.34)

so that the ideal of the set Z1(r, s, m) in the new variables is given by the equations
Ql�◦Υ1(P ,s,
 ) = Ql�(Pa, a, Js,
,a) = 0 for all l ∈ {1..., m} and � ∈ {0, ..., s}. In the
sequel, we will work in these new coordinates, since the involved expressions are nicer.
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6.2.4 Computations and estimate on the codimension of �(r, s, m)
(case n ≥ 3, 2 ≤ m ≤ n − 1)

As in the previous paragraphs, we set n ≥ 3, 2 ≤ m ≤ n − 1.
Once again, we will only consider the case in which 
 is parametrized by the first

coordinate.
Before stating the main results of this paragraph, we still need to introduce a few no-

tations. For any fixed � ∈ {0,… , s}, for any � ∈ {0,… , �}, and for any i ∈ {1,… , m},
we set

�(i, �) ∶=

{

(� + 1, 0,… , 0) , for i = 1
(�, 0,… , 0, 1, 0,… , 0) , for i = 2,… , m

(6.2.35)

where the "1" fills the i-th slot for i = 2, ..., m. For � ∈ {1, ..., s}, we also denote the
multi-indices � ∈ ℕm of length 2 ≤ |�| ≤ � + 1 not belonging to this family with

m(�) ∶= {� ∈ ℕm , 2 ≤ |�| ≤ � + 1}∖
⋃

i=1,...,m
�=1,...,�

{�(i, �)} . (6.2.36)

Moreover, for any given � ∈ {1, .., s}, � ∈ ℕm and l ∈ {1, ..., m} we introduce

m(�̃(l), �) ∶=
{

(kj2, ..., kj�) ∈ ℕ(m−1)×(�−1), j ∈ {2, ..., m} ∶

�
∑

i=2
kji = �̃j(l) , �̃1(l) +

m
∑

j=2

�
∑

i=2
i kji = �

} (6.2.37)

and we set

m(l, �) ∶= {� ∈ ℕm | m(�̃(l), �) ≠ ∅} . (6.2.38)

Finally, for any l ∈ {1,… , m} and for any � ∈ ℕm, we remind that (see (6.2.5))

�̃j(l) ∶= �j − �jl j ∈ {1,… , m} .

With these notations, we can now state the following

Lemma 6.2.3. For any choice of integers m ≥ 1, r ≥ 2, 1 ≤ s ≤ r − 1, the set
Z(r, s, m) in (6.2.12) is an algebraic set of(r, m)×#m(s), whose ideal can be explicitly
computed. In particular, with the notations in (6.2.33), (6.2.35), (6.2.36) and (6.2.37),
the set Z1(r, s, m) is the image through the inverse of the transformation Υ1 in (6.2.26)
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of the algebraic set determined by the following equations:

Q10(Pa, a, Js,
,a) = p�(1,0) = 0 ,
Q11(Pa, a, Js,
,a) = 2 p�(1,1) = 0 ,

Q1�(Pa, a, Js,
,a)
�!

= (� + 1)p�(1,�) +
m
∑

i=2

�−1
∑

�=1
� p�(i,�)ai(�−(�−1))

+
∑

�∈m(1,�)
�∈m(�)
�1≠0

�1 p�
∑

k∈m(�̃(1),�)

( m
∏

j=2

(

�̃j(1)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj�

)

= 0 ,

(6.2.39)

for l = 1, � = 2, ..., s, and

Ql0(Pa, a, Js,
,a) = p�(l,0) = 0 ,
Ql1(Pa, a, Js,
,a) = p�(l,1) = 0 ,
Ql�(Pa, a, Js,
,a)

�!
= p�(l,�)

+
∑

�∈m(l,�)
�∈m(�)
�l≠0

�l p�
∑

k∈m(�̃(l),�)

( m
∏

j=2

(

�̃j(l)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj�

)

= 0 ,

for l = 2, ..., m , � = 2, ..., s .
(6.2.40)

Remark 6.2.6. It is plain to check that the coefficients of the vector a ∈ #1m(1) containing
the linear terms of the truncation s,
 do not appear explicitly in expressions (6.2.39)-
(6.2.40). However, they are "hidden" in the terms p� = p�(p�, a) (see (6.2.16)).

As an almost immediate consequence of Lemma 6.2.3, we have that s-vanishing
polynomials are rare in (r, m), namely

Corollary 6.2.1. Z(r, s, m) has codimension m(s+1) in (r, m) × #m(s) and �(r, s, m)
is a semi-algebraic set of codimension s + m in (r, m).

Proof. (Lemma 6.2.3) For fixed s ∈ {1, ..., r − 1}, we consider a polynomial P ∈
(r, m) verifying the s-vanishing condition on some truncation s,
 (t) ∈ #1m(s).

Step 1. By Lemma 6.2.2, in the adapted coordinates (6.2.15) one must have

d�

dt�

(

)Pa(y)
)yl

|

|

|

|Js,
,a(t)

)

t=0

= 0 ∀� ∈ {0, ..., s} , ∀l ∈ {1, ..., m} . (6.2.41)

For � = 0, it is plain to check that the terms of order zero in t in (6.2.41) are the linear
terms of Pa, for which |�| = 1. Expressions (6.2.41) and (6.2.33) yield the thesis for
this value of �.
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Then, as we did in (6.2.5), we drop the linear terms in Pa and we write the quantity
)Pa(y)∕)yl explicitly

)Pa(y)
)yl

∶=
∑

�∈ℕm
2≤|�|≤r

�l p�y
�̃(l) , �̃j(l) ∶= �j − �jl , j = 1, ..., m , |�| = |�̃(l)| + 1 .

(6.2.42)
Taking (6.2.17) into account (with b ∶= (b21,… , bm1) = a ∶= (a21,… , am1)), we
inject in (6.2.42) the components of the s-truncation Js,
,a(t), namely

y1(t) = t , yj(t) =
s
∑

i=2
ajit

i , j ∈ {2, ..., m} , (6.2.43)

and we obtain

)Pa(y)
)yl

|

|

|

|Js,
,a(t)
=

∑

�∈ℕm
2≤|�|≤r

�l p�t
�̃1(l)

( s
∑

i=2
a2it

i

)�̃2(l)

...

( s
∑

u=2
amut

u

)�̃m(l)

. (6.2.44)

Step 2. For � = 1, we must look for the coefficient of the linear term (in t) in
expression (6.2.44). Hence, for fixed l = 1, ..., m, since the sums in (6.2.44) start at
order two in t, only the multi-index for which �̃j(l) = 0 for all j ∈ {2, ..., m} and
�̃1(l) = 1 must be retained in the sum in expression (6.2.44). The first condition
implies �j(l) = �jl for all j ∈ {2, ..., m}, whereas the second yields �1(l) = 1 + �1l .
Therefore, by definition (6.2.35), for fixed l ∈ {1, ..., m} only the multi-index �(l, 1)
appears in expression (6.2.44) for � = 1. Again by (6.2.35), one has �1(1, 1) = 2 and
�l(l, 1) = 1 for l ∈ {2, ..., m} so that the thesis in the case � = 1 follows.

Step 3. For any given � ∈ {2, ..., s}, we are interested in the coefficients of the
terms of order t� in (6.2.44). Hence, we can truncate the internal sums in (6.2.44) at
order �. For the same reason, for any l ∈ {1, ..., m}, we can neglect from the leftmost
sum in (6.2.44) the monomials � satisfying |�̃(l)| > � (hence |�| > � + 1), as their
contribution is of order at least t�+1. Thus, for fixed � ∈ {2, ..., s} and l ∈ {1, ..., m},
we have

Ql�(Pa, a, Js,
,a)

= d�

dt�

⎛

⎜

⎜

⎜

⎝

∑

�∈ℕm
2≤|�|≤�+1

�lp�t
�̃1(l)

( �
∑

i=2
a2it

i

)�̃2(l)

...

( �
∑

u=2
amut

u

)�̃m(l)⎞
⎟

⎟

⎟

⎠t=0

(6.2.45)

due to formula (6.2.33). Now, for any j = 2,… , m and l ∈ {1,… , m}, the multinomial
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expansion yields:

( �
∑

i=2
ajit

i

)�̃j (l)

=
∑

kj2,...,kj�∈ℕ
kj2+...+kj�=�̃j (l)

(

�̃j(l)
kj2 ... kj�

)

aj2
kj2 ... aj�

kj� t2kj2+....+�kj� ,

(6.2.46)

where we have used the notation
(

�̃j(l)
kj2 ... kj�

)

∶=
�̃j(l)!

kj2! ... kj�!
.

Replacing each truncated Taylor development in (6.2.45) by its multinomial expan-
sion (6.2.46), expression (6.2.45) reads

d�

dt�

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

�∈ℕm
2≤|�|≤�+1

�l p� t
�̃1(l)

m
∏

j=2

⎛

⎜

⎜

⎜

⎜

⎝

∑

kj2 ,...,kj�∈ℕ
kj2+...+kj�=�̃j (l)

(

�̃j(l)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj� t2kj2+....+�kj�

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦t=0

=

d�

dt�

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

�∈ℕm
2≤|�|≤�+1

�l p� t
�̃1(l)

∑

k∈ℕ(m−1)×(�−1)
k=(k22 ,…,k2� ,…,km2 ,…,km� )

∀i∈{2,…,m}
ki2+...+ki�=�̃i(l)

m
∏

j=2

(

�̃j(l)
kj2 ...kj�

)

aj2
kj2 ...aj�

kj� t2kj2+....+�kj�

⎤

⎥

⎥

⎥

⎥

⎥

⎦t=0

.

(6.2.47)

Moreover, taking (6.2.37) into account, the class of multi-indices m(�̃(l), �) se-
lects those terms whose contribution inside the brackets of (6.2.47) is of order t� .
Hence, by the above discussion, by (6.2.33) and by (6.2.38), for any fixed � ∈ {2, ..., s},
and l ∈ {1, ..., m}, we can write

Ql�(Pa, a, Js,
,a) =�!
∑

�∈m(l,�)
�l≠0

�l p�
∑

k∈m(�̃(l),�)

( m
∏

j=2

(

�̃j(l)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj�

)

.

(6.2.48)

Now, we split the leftmost sum in (6.2.48) into the partial sums with respect to the
families of indices defined in (6.2.35) and (6.2.36), namely for any fixed � ∈ {2, ..., s}
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and l ∈ {1, ..., m}, we write
Ql�(Pa, a, Js,
,a)

�!

=
m
∑

i=1

�
∑

�=1
�l(i,�)∈m(l,�)

�l(i,�)≠0

�l(i, �) p�(i,�)
∑

k∈m(�̃(l),�)

( m
∏

j=2

(

�̃j(i, �)(l)
kj2 … kj�

)

aj2
kj2… aj�

kj�

)

+
∑

�∈m(l,�)
�∈m(�)
�l≠0

�l p�
∑

k∈m(�̃(l),�)

( m
∏

j=2

(

�̃j(l)
kj2 … kj�

)

aj2
kj2… aj�

kj�

)

.

(6.2.49)

Step 4. We first study the case in which l ≠ 1. For fixed l ∈ {2, ..., m}, for
any i ∈ {1, ..., m}, i ≠ l, and for any � ∈ {1, ..., �}, the monomials corresponding
to the indices �(i, �) do not contribute to the leftmost sum at the r.h.s. of (6.2.49).
Infact, by (6.2.35), the l-th element �l(i, �) of multi-index �(i, �) is equal to zero for
l ∈ {2, ..., m} and i ∈ {1, ..., m}, i ≠ l.

Moreover, still for fixed l ∈ {2, ..., m}, the indices �(l, �), with � ∈ {1, ..., �},
satisfy �̃1(l, �)(l) = � and �̃j(l, �)(l) = 0 for all j ∈ {2, ..., m}, so that by (6.2.37) we
have

m(�̃(l, �)(l), �) =

{

∅ , if � = 1, ..., � − 1
{0} , if � = �

.

Consequently, the only monomial that contributes to the leftmost sum at the r.h.s. of
(6.2.49) is the one associated to the multi-index �(l, �), and one has kj2 = 0,… , kj� =
0 when � = �(l, �). Moreover, by hypothesis we have �l(l, �) = 1 for any l ∈
{2, ..., m}. Due to these arguments, for any fixed l ∈ {2, ..., m}, we can rewrite (6.2.49)
in the form

Ql�(Pa, a, Js,
,a)
�!

= p�(l,�) +
∑

�∈m(l,�)
�∈m(�)
�l≠0

�l p�
∑

k∈m(�̃(l),�)

( m
∏

j=2

(

�̃j(l)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj�

)

.

(6.2.50)

This proves the Lemma for l = 2, ..., m, � = 2, ..., s.
Step 5. We now consider the case l = 1. For all j ∈ {2, ..., m}, the sub-family of

indices �(1, �), with � ∈ {1, ..., �}, satisfies �̃1(1, �)(1) = � and �̃j(1, �)(1) = 0. Hence,
thanks to (6.2.37), we find

m(�̃(1, �)(1), �) =

{

∅ , if � = 1, ..., � − 1
{0} , if � = �

. (6.2.51)
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Moreover, we have �1(1, �) = � + 1 by construction.
On the other hand, for l = 1, � ∈ {1, ..., �} and i, j ∈ {2, ..., m}, the multi-indices

�(i, �) satisfy �̃1(i, �)(1) = � −1 and �̃j(i, �)(1) = �ji. Hence, by (6.2.37) one can write

�̃j(i, �)(1) = �ji =
�
∑

u=2
kju ⟺ kju = �ji�uv for some v ∈ {2, ..., �} (6.2.52)

and

�̃1(i, �)(1) +
m
∑

j=2

�
∑

u=2
u kju = � − 1 +

m
∑

j=2

�
∑

u=2
u kju = � . (6.2.53)

By (6.2.52), we see that condition (6.2.53) can be satisfied by some vector of multi-
integers (k22,… , k2� ,… , km2,… , km�) if � ∈ {1, ..., � − 1}, but cannot be fulfilled for
� = �. Injecting (6.2.52) into (6.2.53) one has
m
∑

j=2

�
∑

u=2
u �ji�uv = � − (� − 1) for all � ∈ {1, ..., � − 1} , i ∈ {2, ..., m} (6.2.54)

which implies

kju = �ji �uv �v,�−(�−1) for all � ∈ {1, ..., � − 1} , i ∈ {2, ..., m} . (6.2.55)

Hence, for all � ∈ {1, ..., � − 1}, and i ∈ {2, ..., m}, we can finally write

m(�̃(i, �)(1), �) = {(kj1, ..., kj�), j ∈ {2, ..., m}, kju = �ji�u,�−(�−1)} (6.2.56)

and
m(�̃(i, �)(1), �) = ∅ . (6.2.57)

Moreover, for i = 2, ..., m, by (6.2.35) we have �1(i, �) = �.
By taking (6.2.51), (6.2.56), (6.2.57) into account, expression (6.2.49) with l = 1

yields

Q1�(Pa, a, Js,
,a)
�!

= (� + 1)p�(1,�) +
m
∑

i=2

�−1
∑

�=1
� p�(i,�)ai(�−(�−1))

+
∑

�∈m(1,�)
�∈m(�)
�1≠0

�1 p�
∑

k∈m(�̃(1),�)

( m
∏

j=2

(

�̃j(1)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj�

)

.
(6.2.58)

This concludes the proof for the case in which s,
 ∈ #1m(s).
The proof of the case in which s,
 ∈ #im(s), with i = 2,… , m, is the same: one

just has to take into account that the rôle of the special index is played by i instead of 1.
Hence, the ideals of the sets Zi(r, s, m) can be explicitly computed and, by expression
(6.2.12), the proof is concluded.
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We are now able to prove that s-vanishing polynomials are rare in (r, m).

Proof. (Corollary 6.2.1) We want to show that, for a given pair (P ,s,
 ) ∈ (r, m) ×
#1m(s), the ms + m equations in (6.2.39) and (6.2.40) are all linearly independent.

For all l = 1, ..., m and � = 0, ..., s, we collect in table (6.2.60) the derivatives
of the functions Ql� defined in (6.2.32)-(6.2.33) - and whose action is made explicit in
(6.2.39) - (6.2.40) - with respect to the coefficients of Pa, a, and to the Taylor coefficients
of Js,
,a. We have indicated

1. with the symbolD, the s×s diagonal matrix whose entries are the numbers �+1,
for � = 1, ..., s;

2. with the symbol Is, the s × s identity matrix;

3. with the symbol Bi, i ∈ {2, ..., m}, an s × s matrix whose entry at position �, �,
with � ∈ {1, ..., s} and � ∈ {1, ..., s}, reads

(Bi)�,� ∶=
⎧

⎪

⎨

⎪

⎩

0 , if � = 1 ,
�ai(�−(�−1)) , if 2 ≤ � ≤ s , 1 ≤ � ≤ � − 1 ,
0 , if 2 ≤ � ≤ s , � ≤ � ≤ s .

(6.2.59)

l � )aji )p� )p�(i,0) )p�(1,�) )p�(2,�) … )p�(m,�)
� ∈(s) i = 1,… , m � = 1,… , s � = 1,… , s … � = 1,… , s

1,… , m 0 0 0 Im 0 0 0 0

1 1,… , s … … 0 D B2 … Bm

2 1,… , s … … 0 0 Is 0 0

… … … … 0 0 0 … 0

m 1,… , s … … 0 0 0 0 Is
(6.2.60)

Table 6.2.60: Jacobian of Ql�(Pa, a, Js,
,a) = 0 with l ∈ {1, ..., m} and � = {0, .., s}.
The first and the second column contain, respectively, all the possible values for the
parameters l and �. The third column corresponds to the derivatives of Ql�(Pa, a, Js,
,a)
with respect to the variables of the vector a ∈ #1m(1), and to the Taylor coefficients
of the s-jet Js,
,a. The remaining columns contain the derivatives with respect to the
coefficients p� of Pa associated with the families of multi-indices (6.2.35) and (6.2.36),
in suitable order.

It is plain to check that matrix (6.2.60) contains a submatrix of maximal rankms+m
- corresponding to the derivatives w.r.t. those coefficients associated to the family of
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multi-indices (6.2.35) - independently of a and of the s-truncation Js,
,a on which the s-
vanishing condition is realized. Hence, since the transformation Υ in (6.2.25) is invert-
ible, by Lemma 6.2.3 the set Z1(r, s, m) is determined by ms + m linearly independent
algebraic equations and has codimension ms + m in (r, m) × #1m(s).

As it was the case in the proof of Lemma 6.2.3, the same strategy of proof applies
for Zj(r, s, m), j = 2,… , m, one just has to switch the rôle of the indices 1 and j.

Since �1(r, s, m) ∶= Π(r,m)Z1(r, s, m) (see (6.2.10)) and Z1(r, s, m) is algebraic,
by the Theorem of Tarski and Seidenberg (see Th. A.1.1) �1(r, s, m) is a semi-algebraic
set of (r, m). Moreover, as Jacobian (6.2.60) has rank ms + m w.r.t. the ms + m
polynomial coefficients associated to the multi-indices of the family (6.2.35), for � ∈
{2, ..., s} and i ∈ {1, ..., m}, by Lemma 6.2.3 and by the implicit function theorem, the
conditions Ql�(Pa, a, Js,
,a) = 0 imply

p�(i,0) = p�(i,1) = 0
p�(i,�) = gi�(p�, a, a22, ..., a2s, ..., am2, ..., ams) , � ∈(�)

(6.2.61)

for some implicit functions gi� . That is, one can express the polynomial coefficients
p�(i,0), p�(i,1), p�(i,�) as implicit functions of the remaining coefficients - associated to the
multi-indices in the family (�) defined in (6.2.35) - and of the (m − 1)s parameters
of a and Js,
,a. Moreover, since the functions Ql�(Pa, a, Js,
,a) are polynomial for all
l ∈ {1, ..., m} and � ∈ {0, .., s}, the implicit functions gi� are all analytic. Therefore,
one has an analytic parametrization of �1(r, s, m) given by the m(s + 1) independent
equations (6.2.61), for i ∈ {1, ..., m}, � ∈ {0, ..., s}. This, in turn, yields that

dim �1(r, s, m) = dimW 1(r, m) − m(s + 1) = dim(r, m) + dim #1m(s) − m(s + 1)
= dim(r, m) + (m − 1)s − m(s + 1) ,

(6.2.62)

which implies that the codimension of �1(r, s, m) in (r, m) is

codim �1(r, s, m) =m(s + 1) − (m − 1)s = m + s . (6.2.63)

Once again, it is plain to check that the same result holds true also in the case in which
the parametrizing coordinate of the curve gamma is the j-th, with j = 2,… , m. Hence,
one finds codim �j(r, s, m) = m + s for j = 2,… , m, which, together with expression
(6.2.9), proves the statement.

6.3 Geometric properties
For fixed integers r ≥ 2, m ≥ 2, 1 ≤ s ≤ r − 1, and for any i ∈ {1,… , m}, we indicate
respectively by Σ(r, s, m) ∶= �(r, s, m) and Σi(r, s, m) ∶= �i(r, s, m) the closures in
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(r, m) of the sets �(r, s, m) and �i(r, s, m) introduced in the previous section. Taking
(6.2.9) into account, one has

Σ(r, s, m) =
m
⋃

i=1
Σi(r, s, m) . (6.3.1)

For m ≥ 2, Corollary 6.2.1 and Proposition A.1.3 ensure that for any i ∈ {1,… , m}

codim Σi(r, s, m) = codim �i(r, s, m) = s + m > 0

in (r, m), so that (r, m)∖Σi(r, s, m) is an open set of full Lebesgue measure. There-
fore, by (6.3.1), the same holds true also for (r, m)∖Σ(r, s, m).

As we did previously, when m ≥ 2 we only consider the case in which the index of
the parametrizing coordinate is i = 1, as the other cases are immediate generalizations.

In case m = 1, Lemma 6.2.1 ensures that

�(r, s, 1) = �(r, s, 1) =∶ Σ(r, s, 1) . (6.3.2)

and
codim �(r, s, 1) = codim Σ(r, s, 1) = s + 1 . (6.3.3)

Still for m = 1, in order to make use of uniform notations w.r.t. the case m = 2 and
to simplify the exposition in the sequel, we write

�1(r, s, m) ≡ Σ1(r, s, 1) ∶= Σ(r, s, 1) (6.3.4)

and we extend the notations of subsection 6.2.3 by setting

a ∶= id , Pa(y) ∶= P (y) , for m = 1 . (6.3.5)

The rest of this section will be devoted to proving the following

Lemma 6.3.1. Let m be a positive integer. For any open set D ⊂ (r, m)∖Σ1(r, s, m)
verifying D∩Σ1(r, s, m) = ∅, there exist positive constants C1(D), C2(s, m) such that for
any polynomial P (x) ∈ D and for any arc 
 ∈ Θ1m one has the following lower estimates

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

dt�

(

)Pa(y)
)yl

|

|

|

|a◦
(t)

)

t=0

|

|

|

|

|

|

> C1(D)

in case s = 1 or m = 1,

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

dt�

(

)Pa(y)
)yl

|

|

|

|a◦
(t)

)

t=0

|

|

|

|

|

|

>
C1(D)

1 + C2(s, m) × maxl=2,...,m
�=2,...,s

|al�|

in case 2 ≤ s ≤ r − 1 and m ≥ 2 ,

(6.3.6)

where - for m ≥ 2 - Pa is the polynomial P written in the adapted system of coordinates
for 
 introduced in paragraph 6.2.3 and a is the associated transformation defined in
(6.2.29), whereas for m = 1 the symbols Pa and a are to be intended as in (6.3.5).
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Remark 6.3.1. As we shall see in the next section, for any � > 0, when 
 is the mini-
mal arc of Theorem 5.0.1, one can give a positive upper bound - that only depends on
r, s, m, � - to the quantitymaxl=1,...,m

�=2,...,s
|al�| at the denominator of (6.3.6). This is due to

the fact that all minimal arcs satisfy a uniform Bernstein-like inequality on their Taylor
coefficients (see formula (5.0.1) in Theorem 5.0.1).

Before proving Lemma 6.3.1, we need an intermediate result and a few additional
notations.

In case m ≥ 2, for any given arc 
 ∈ Θ1m with associated change of coordinates a
(see paragraph 6.2.3, in particular formulas (6.2.15)-(6.2.29)), we define the direct sum

(r, m) = ♯
a
(r, m)⊕ ♭

a
(r, m)

in the following way: for any polynomial R(x) ∈ (r, m), we consider its expression
Ra(y) ∶= R◦−1

a
(y) ∈ (r, m) in the adapted coordinates (6.2.15) for 
; Ra(y) can be

decomposed uniquely into the partial sums with respect to the families of multi-indices
defined in (6.2.35) and (6.2.36), namely:

Ra(y) =
∑

�∈ℕm
1≤|�|≤r

r�y
� =

m
∑

i=1

s
∑

�=0
r�(i,�)y

�(i,�) +
∑

�∈ℕm
�∈(s)

r�y
� =∶ R♯

a
(y) + R♭

a
(y) , (6.3.7)

and we set R♯(x) ∶= R♯a◦a(x) ∈ ♯
a(r, m) and R♭(x) ∶= R♭a◦a(x) ∈ ♭

a
(r, m).

Clearly, the decomposition R(x) = R♯(x) + R♭(x) is unique, as the function associ-
ating R⟼Ra ∶= R◦−1a , with R ∈ (r, m), is invertible.

Finally, we set

Q◦Υ1 ∶ (r, m) × #1m(s)⟶ ℝm(s+1)

(R,s,
 )⟼Ql�◦Υ1(R,s,
 ) ≡ Ql�(Ra, a, Js,
,a) ,
(6.3.8)

where l = 1, ..., m, � = 0, ..., s, s,
 is the s-truncation of the curve 
 , and the explicit
form of Ql�◦Υ1 is given in Lemma 6.2.3. We also indicate by N (⋅) the zero sets of the
transformations which will appear henceforth.

With this setting, one has the following result:

Lemma 6.3.2. In case m ≥ 2, for any given 
 ∈ Θ1m with associated s-truncation
s,
 ∈ #1m(s), and for any given polynomial R(x) ∈ (r, m)∖Σ1(r, s, m), there exists a
unique polynomial S(x) ∈ �1(r, s, m) such that

(S,s,
 ) ∈ N (Q◦Υ1) , S♭ = R♭ .

In particular, S satisfies the s-vanishing condition on the truncation s,
 .

Proof. Given 
 ∈ Θ1m with its associated s-truncation s,
 ∈ #1m(s) and a polynomial
R(x) ∈ (r, m)∖Σ1(r, s, m), we denote by

A
♯
R♭,s,


∶ Υ1(♯
a
⊕ {R♭} × {s,
})→ ℝm(s+1) (6.3.9)
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the restriction of Q to the set Υ(♯
a ⊕ {R♭} × {s,
}) .

As it was shown in the proof of Corollary 6.2.1 (see Table (6.2.60)), for all � ∈
{0, ..., s} and l ∈ {1, ..., m}, the Jacobian matrix of A♯

R♭,s,

reads

 ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Im 0 0 0 ... 0

0 D B2 B3 ... Bm

0 0 Is 0 ... 0

0 0 0 Is ... 0

0 0 0 ... 0 0

0 0 0 0 0 Is

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6.3.10)

where the blocks D and Bi, i = 2, ..., m, were defined in (6.2.59). Also, by Lemma
6.2.3, when R♭ and s,
 are fixed, the restriction of the function Q to the set Υ1(♯

a ⊕
{R♭} × {s,
}) is affine. Hence, A♯

R♭,s,

is represented by matrix (6.3.10) acting on

Υ1(♯
a ⊕ {R♭} × {s,
}) plus a constant term depending only on R♭

a
≡ R♭◦−1

a
and

Js,
,a ≡ a◦s,
 ; thus, it is globally invertible in Υ1(
♯
a ⊕ {R♭} × {s,
}). We set

S♯ ∶=
(

Υ1
)−1 (

N
(

Q
♯
R,s,


))

∈ ♯
a
,

which is equivalent to saying that

(S♯ + R♭,s,
 ) ∈ N (Q◦Υ1) ,

i.e., by (6.3.8) and (6.2.33), S♯ + R♭ satisfies the s-vanishing condition on s,
 .

We are now able to prove Lemma 6.3.1.

Proof. (Lemma 6.3.1)
We consider a polynomial P ∈ D ⊂ (r, m)∖Σ1(r, s, m), with D ∩ Σ1(r, s, m) = ∅.
Case m = 1. In case m = 1, by Lemma 6.2.1 there exists a constant C1(D) such that

the truncation at order s + 1 of P - indicated by Ps+1 - satisfies

||Ps+1||∞ > C1(D) .

The thesis follows easily by the expression above and by Definition 6.1.3.
Case m ≥ 2. For any fixed arc 
 ∈ Θ1m, we shift to its associated adapted coor-

dinates, and we consider the s-truncation Js,
,a ∈ #1m(s), together with the pull-back
Pa ∶= P◦−1

a
of the polynomial P w.r.t. the change of coordinates a introduced in
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paragraph 6.2.3. By the hypothesis, by Lemma 6.2.2 (see especially formulas (6.2.29)
and (6.2.31)), and by the fact that the linear terms of the curve 
 are uniformly bounded
(see the Bernstein’s estimate (5.0.1)), there exists a constant C1(D) > 0 such that

||Pa − Σ1(r, s, m)||∞ ∶= inf
P̂a∈Σ1(r,s,m)

||Pa − P̂a||∞ > C1(D) > 0 . (6.3.11)

It suffices to prove the statement for the quantity

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

dt�

(

)Pa
)yl

|

|

|

|Js,
,a(t)

)

t=0

|

|

|

|

|

|

instead of

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

dt�

(

)Pa
)yl

|

|

|

|a◦
(t)

)

t=0

|

|

|

|

|

|

(6.3.12)

because - as we had already pointed out in paragraph 6.2.4 - the terms of order higher
than s in the Taylor developement ofa◦
 yield a null contribution to (6.3.12). With the
decomposition in (6.3.7), by Lemmata 6.2.2 and 6.3.2 there exists a unique polynomial
Sa = S

♯
a + S♭a fulfilling the s-vanishing condition on Js,
,a and satisfying S♭

a
= P♭

a
.

Hence, (6.3.11) yields

||Pa − Sa||∞ = ||P♯
a
− S♯

a
||∞ > C1(D) > 0 . (6.3.13)

By the proof of Lemma 6.3.2, we also know that - since S♭
a
= P♭

a
and Js,
,a are kept

fixed - the function A♯
P ♭,s,


in (6.3.9) is affine and invertible inΥ1(♯
a⊕{P ♭}×{s,
}).

In particular, it is represented by matrix  in (6.3.10) plus a constant term depending
only on P♭

a
, Js,
,a. Taking into account the fact that A♯

P ♭,s,

is the restriction of Q to the

set Υ1(♯
a ⊕ {P ♭} × {s,
}), one can write

||P♯
a
− S♯

a
||∞ ≤ ||−1

||∞||Q(P♯a + P
♭
a
, Js,
,a) − Q(S♯a + P

♭
a
, Js,
,a)||∞ , (6.3.14)

where ||−1
||∞ indicates the matrix norm of the inverse. Expressions (6.3.13) and

(6.3.14) together yield

||Q(P♯
a
+ P♭

a
, Js,
,a) − Q(S♯a + P

♭
a
, Js,
,a)||∞ >

C1(D)
||−1

||∞
. (6.3.15)

Moreover, by construction one has S♯a ∈ N (A♯
P ♭,s,


), that is (S♯a + P♭a, Js,
,a) ∈ N (Q),
so that (6.3.15) implies

||Q(P♯
a
+ P♭

a
, Js,
,a)||∞ >

C1(D)
||−1

||∞
. (6.3.16)



6.3. GEOMETRIC PROPERTIES 89

From the explicit form (6.3.10) of the (ms + m) × (ms + m) matrix , one can easily
infer the form of −1, namely

−1 ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Im 0 0 0 ... 0

0 D−1 −D−1B2 −D−1B3 ... −D−1Bm

0 0 Is 0 ... 0

0 0 0 Is ... 0

0 0 0 0 ... 0

0 0 0 0 0 Is

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6.3.17)

The induced matrix norm is, by construction, ||−1
||∞ ∶= supi∈{1,...,n}

∑ms+m
j=1 |−1

ij | .
By the definition ofD given above table (6.2.60), and by the definition of the blocks Bi,
with i ∈ {2, ..., m}, in (6.2.59) one has ||D−1||∞ = 1 and for m ∈ {2, ..., m} one can
write

sup
l∈{2,...,m}

||Bl|| ≤
⎧

⎪

⎨

⎪

⎩

0 if s = 1
s × (s − 1)maxl=2,...,m

�=2,...,s
|al�| if 2 ≤ s ≤ r − 1 .

Hence, one finally has

||−1
||∞ ≤

⎧

⎪

⎨

⎪

⎩

1 if s = 1
1 + (m − 1) s (s − 1) × maxl=2,...,m

�=2,...,s
|al�| if 2 ≤ s ≤ r − 1 .

(6.3.18)
Estimate (6.3.18), together with formulas (6.3.16), (6.3.8), and (6.2.33) implies the

thesis, with C2(s, m) = (m − 1) s (s − 1)
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Chapter 7

Proof of Theorem A

In order to prove Theorem A, we need to combine the Lemmata of the previous sections
with several intermediate results.

7.1 Codimension estimates
For any pair of integers n ≥ 2 and 1 ≤ m ≤ n − 1, we indicate by O(n, m) the space of
n × m real matrices whose columns are orthonormal vectors of ℝn. Clearly, a matrix
A ∈ O(n, m) induces a map from ℝm to ℝn associating ℝm ∋ x⟼ I = Ax ∈ ℝn.
From a geometric point of view, for any integer r ≥ 2, the restriction of any polynomial
Q(I) ∈ (r, n) to any m-dimensional subspace Γm ⊂ ℝn endowed with the Euclidean
metric can be identified through Q|Γm (x) ∶= Q(Ax) =∶ P (x) ∈ (r, m), where the
columns of A ∈ O(n, m) span Γm.

We also indicate byO(m) them×m orthogonal group and by G(m, n) them-dimensional
Grassmannian, which is locally isomorphic to O(n, m)∕O(m).

With this setting, for any integer 1 ≤ s ≤ r − 1, we define

 =  (r, s, m, n) ∶= {(Q,A, P ) ∈ ⋆(r, n) × O(n, m) × (r, m)|
P (x) = Q(Ax) , P (x) ∈ Σ(r, s, m)} ,

(7.1.1)

and we indicate by

 = (r, s, m, n) ∶= Π⋆(r,n) (r, s, m, n) (7.1.2)

its projection onto the first component, i.e. the set of those polynomials Q ∈ ⋆(r, n)
for which the origin is non-critical, and such that, for somem-dimensional subspace Γm
orthogonal to ∇Q(0), the restriction Q|Γm ∈ (r, m) belongs to the closure Σ(r, s, m)
of the set of s-vanishing polynomials introduced in section 6.

Remark 7.1.1. Weobserve that it is implicit in Definition (7.1.1) thatΓmmust be orthog-
onal to∇Q(0). Infact, any P ∈ �(r, s, m)must satisfy∇P (0) = 0 (see equation (6.2.4)).
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Hence, the limit P̂ of any converging sequence {Pn ∈ �(r, s, m)}n∈ℕ must have the
same property. Since Σ(r, s, m) = �(r, s, m), one has ∇P̂ (0) = 0 for any P̂ ∈ Σ(r, s, m).
As in our case we are considering P̂ (x) = Q̂(Ax) for some Q̂ ∈ ⋆(r, n), we have
∇P̂ (0) = A†∇Q̂(0) = 0, which is equivalent to saying that the columns of A are all
orthogonal to ∇Q̂(0).

The first result that we prove in this section is the following

Lemma 7.1.1. (r, s, m, n) is a closed set in ⋆(r, n) for the topology induced by
(r, n).

Proof. Consider a sequence {Qj}j∈ℕ in (r, s, m, n), converging to some polynomial
Q ∈ ⋆(r, n) for the topology induced by (r, n) on ⋆(r, n). Then, for any fixed
j ∈ ℕ, by (7.1.1)-(7.1.2) there exists Aj ∈ O(n, m) such that Pj(x) ∶= Qj(Ajx) ∈
Σ(r, s, m). Since O(n, m) is compact, there exists A ∈ O(n, m) and a subsequence
{Ajk}k∈ℕ ⟶ A. Hence, there exists a polynomial P ∈ (r, m) such that the sub-
sequence {Pjk (x) ∶= Qjk (Ajkx)}k∈ℕ converges to P (x) ∶= Q(Ax). Since Pjk (x) ∈
Σ(r, s, m) for all k ∈ ℕ by construction, and Σ(r, s, m) is closed, P (Ax) ∈ Σ(r, s, m),
whence the thesis.

Moreover, for given values of m, n, when r and 1 ≤ s ≤ r − 1 are sufficiently high,
the set (r, s, m, n) becomes generic, namely

Lemma 7.1.2. (r, s, m, n) is a semi-algebraic set of ⋆(r, n) satisfying

codim (r, s, m, n) ≥ max{0, s − m(n − m − 1)} . (7.1.3)

Proof. By hypothesis, Σ(r, s, m) ∶= �(r, s, m) and �(r, s, m) is a semi-algebraic set (see
Corollary 6.2.1). Hence, Proposition A.1.2 assures thatΣ(r, s, m) is also semi-algebraic.
Therefore, set  in (7.1.1) is clearly semi-algebraic, since it is determined by a finite
number of semi-algebraic relations. Finally, the Theorem of Tarski and Seidenberg
A.1.1 implies that  is semi-algebraic since it is obtained by projecting onto its first
component.

As for the codimension of , we start by estimating the dimension of . We remark
that, for a fixed choice of A ∈ O(n, m) and P ∈ Σ(r, s, m), one has

dim( ∩ {(Q,A, P ) ∈ ⋆(r, n) × O(n, m) × (r, m) ∶ A = A , P = P })
= dim⋆(r, n) − dim(r, m) .

(7.1.4)

Infact, since the matrix A ∶= (A1|… |Am), A1,… , Am ∈ ℝn, has been fixed, one can
construct an orthonormal basis of ℝn by completing A1,… , Am, with n − m vectors
Am+1,… , An. Since in the set above the restriction of any polynomial Q ∈ (r, n)
to the space generated by A1,… , Am is fixed, all the monomials of Q corresponding
to the coordinates associated to A1,… , Am are uniquely determined. The number of
these monomials is dim(r, m), and the total number of monomials inQ in dim(r, n),
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whence equality (7.1.4). In order to compute dim , onemust add to the r.h.s. of (7.1.4)
the dimension of the spaces corresponding to the fixed variables, namely

dim = dim( ∩ {(Q,A, P ) ∈ ⋆(r, n) × O(n, m) × (r, m) ∶ A = A , P = P })
+ dimO(n, m) + dimΣ(r, s, m)

= dim⋆(r, n) − dim(r, m) + dimO(n, m) + dimΣ(r, s, m) .
(7.1.5)

We observe that, by Definition 7.1.1, if (Q(I), A,Q(Ax)) ∈  , for any orthogonal ma-
trixM ∈ O(m) also (Q(I), AM,Q(AMx)) ∈  , since one has the freedom to choose
the orthonormal basis spanning the m-dimensional subspace Γm ∈ G(m, n). More pre-
cisely, if we define the action of O(m) on any element (Q(I), A,Q(Ax)) ∈  as

(Q(I), A,Q(Ax))⟼ (Q(I), AM,Q(AMx)) , (7.1.6)

we can define an orbit of O(m) starting at a given point (Q(I), A,Q(Ax)) ∈  as

{(Q(I), AM,Q(AMx)) ∈  , M ∈ O(m)} . (7.1.7)

Since the first component in (7.1.7) is invariant, by (7.1.2) we see that the set  can be
found as the projection of the set of orbits  ∕O(m) onto ⋆(r, n), namely

 ∶= Π⋆(r,n) = Π⋆(r,n) ( ∕O(m)) , (7.1.8)

so that one can write

dim = dimΠ⋆(r,n) ( ∕O(m)) . (7.1.9)

Obviously, the action ofO(m) on is free and smooth, hence by C.1.1 it is also proper.
Therefore, Theorem C.1.1 assures that

dim( ∕O(m)) = dim − dimO(m) . (7.1.10)

By (7.1.9), we have

codim  ≥ codim ( ∕O(m)) − dimO(n, m) − dim(r, m) (7.1.11)

and equations (7.1.5) and (7.1.10) imply

codim ( ∕O(m))
= dim⋆(r, n) + dimO(n, m) + dim(r, m) − dim + dimO(m)
≥ 2 dim(r, m) − dimΣ(r, s, m) + dimO(m)

. (7.1.12)

Expressions (7.1.11) and (7.1.12) together yield

codim  ≥ dim(r, m) − dimΣ(r, s, m) + dimO(m) − dimO(n, m)
= codim Σ(r, s, m) + dimO(m) − dimO(n, m) .

(7.1.13)
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By Proposition A.1.3, codimΣ(r, s, m) = codim �(r, s, m), so by Corollary 6.2.1
one has codim Σ(r, s, m) = s + m. Moreover, since dimO(m) = m(m − 1)∕2 and
dimO(n, m) = mn − m(m − 1)∕2 − m, (7.1.13) reads

codim  ≥ s − m(n − m − 1) . (7.1.14)

Since the codimension is a nonnegative number, the thesis follows.

7.2 Stable lower estimates
The set (r, s, m, n) introduced in the previous section is important because, for any
given polynomial Q ∈ ⋆(r′, n) - with r′ ≥ r - whose truncation at order r lies out-
side of (r, s, m, n), all polynomials belonging to a small open neighborhood of Q in
⋆(r′, n) are steep around the origin on the subspaces of dimension m, with uniform
indices and coefficients. More precisely, one has

Theorem 7.2.1. Take five integers r′ ≥ r ≥ 2, 1 ≤ s ≤ r− 1, n ≥ 2, m ∈ {1, ..., n− 1}.
Consider a polynomial Q ∈ ⋆(r′, n), and suppose that for some � > 0 its truncation
at order r, indicated by Qr, satisfies

|

|

|

|

Qr −  (r, s, m, n)|
|

|

|∞ ∶= inf
R∈(r,s,m,n)

||Qr − R||∞ > � . (7.2.1)

There exist constants "0 = "0(r, s, m, �, n), Cm = Cm(r′, r, s, �, n), �0 = �0(r, s, m, �),
and �̂ = �̂(r, s, m, �, n) such that any polynomial S ∈ ⋆(r′, n) contained in a ball of
radius " ∈ [0, "0] around Q in ⋆(r′, n) is steep on the subspaces of dimension m at
any point I ∈ Bn(0, �̂), with uniform steepness coefficients Cm, �0 and with steepness
indices bounded by

�m(s) ∶=

{

s , if m = 1
2s − 1 , if m ≥ 2 .

(7.2.2)

Remark 7.2.1. By Lemma 7.1.2, since 1 ≤ s ≤ r − 1, if r > m(n − m − 1) + 1 and
s ≥ m(n − m − 1) + 1 one has codim (r, s, m, n) ≥ 1, so that hypothesis (7.2.1) is
generic in ⋆(r, n).

In order to prove Theorem 7.2.1, we need a Lemma used by Pyartli in the study
Diophantine approximation. This result is crucial in KAM Theory, as it was shown by
Herman, Rüssmann, Sevryuk, and others (see [39] and the references therein). We give
its statement in a version provided by Rüssmann [108].

Lemma 7.2.1. Let f ∶ [a, b]⟶ ℝ, with a < b, be a q-times continuously differen-
tiable function satisfying

|f (q)(t)| > �
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for all t ∈ [a, b], for some q ∈ ℕ and � > 0.
Then one has the estimate

meas{t ∈ [a, b] | |f (t)| ≤ �} ≤ 4
(

q!
�
2�

)1∕q

for all � > 0.

We also need the following auxiliary

Lemma 7.2.2. With the hypotheses of Theorem 7.2.1, there exist positive constants
"⋆ = "⋆(r, s, m, �, n), � = �(r, s, m, �, n), and � = � (r, s, m, �), such that, for any
" ∈ [0, "⋆], the truncation Sr ∈ ⋆(r, n) of any polynomial S ∈ ⋆(r′, n) contained
in a ball of radius " around Q in ⋆(r′, n) verifies

||Sr − (r, s, m, n)||∞ > � , (7.2.3)

and for any m-dimensional subspace Γm orthogonal to ∇S(0), one has

||Sr|Γm − Σ(r, s, m)||∞ > � . (7.2.4)

Proof. (Lemma 7.2.2)
We split the proof into three steps. In the first one, we introduce appropriate sets and

notations that are helpful in the proof. In second step, we introduce suitable continuous
functions by exploiting the existence of local continuous sections for the Grassmannian.
In the third and last step, the statement is proved by exploiting the first two steps and
the compactness of the Grassmannian.

We also observe that, due to Remark 7.2.1, estimate (7.2.3) is trivial for r > m(n −
m − 1) + 1 and s ≥ m(n − m − 1) + 1.

Step 1. For any given polynomial V ∈ ⋆(r, n), we denote by GV (m, n) ⊂ G(m, n)
the compact subset of m-dimensional subspaces orthogonal to ∇V (0) ≠ 0. We also
define the set

Λm ∶= {(V ,Γm) |V ∈ ⋆(r, n), Γm ∈ GV (m, n)} . (7.2.5)

Now, setting N ∶= dim⋆(r′, n), for sufficiently small " one has ∇S(0) ≠ 0 for any
S ∈ BN (Q, "). Moreover, the map f ∶ ⋆(r′, n)⟶ ℝn associating S ⟼ ∇S(0)
is obviously continuous and surjective, and the same holds true for the function h ∶
ℝn ⟶ G(n − 1, n) which to a vector ! associates !⟂. Hence, h◦f is also continuous
and surjective. Therefore there exists an open set of n − 1 dimensional hyperplanes -
indicated by n−1(Q, ") ⊂ G(n − 1, n) - whose inverse image f−1(h−1(n−1(Q, ")))
contains BN (Q, "). Hence, for m ∈ {1,… , n − 1}, we can define the open set

m(Q, ") ∶= {Γm ∈ G(m, n) |Γm ⊆ Γn−1 for some Γn−1 ∈n−1(Q, ")} .

The above construction implies that, for anym ∈ {1, ..., n−1} and for sufficiently small
", the choice of an open ball BN (Q, ") determines a set

Ξm(Q, ") ∶= {(S,Γm) |S ∈ BN (Q, "),Γm ∈m(Q, "),Γm ∈ GS (m, n)} ⊂ Λm .
(7.2.6)
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Remark 7.2.2. To carry out the construction at this step, one only needs to perturb the
linear terms of Q. The bound on " that must be considered at this step, therefore, does
not depend on the degree of the polynomial Q.

Step 2. Now, we take into account the fact that it is always possible to define a local
continuous section for the Grassmannian G(m, n). Namely, for any element Γ ∈ G(m, n)
there exists an open neighborhood Γ ⊂ G(m, n) of Γ and a continuous map � ∶ Γ⟶
O(n, m) such that, if � ∶ O(n, m)⟶ G(m, n) is the canonical projection, then �◦� is
the identity. Hence, for any m-dimensional subspace Γm ∈ GQ(m, n), we consider its
associated open neighborhood Γm , and a compact neighborhood VΓm ⊂ Γm centered
at Γm. Since GQ(m, n) is compact, it can be covered by a finite numberL > 0 of compact
neighborhoods Vi and open neighborhoods i, with i = 1, ..., L, of this kind. Hence, if
" is sufficiently small, then one has

m(Q, ") ⊂
L
⋃

i=1
Vi ⊂

L
⋃

i=1
i . (7.2.7)

Moreover, if we indicate by �i, i = 1, ..., L the continuous section associated to each
neighborhood i, it makes sense to define the sets

Ξmi (Q, ") ∶= {(S,Γ
m) | (S,Γm) ∈ Ξm(Q, "),Γm ∈ i} , Ξm(Q, ") =

L
⋃

i=1
Ξmi (Q, ")

(7.2.8)
and the continuous functions

Fi ∶ Ξmi (Q, ")⟶ (r′, m)
(S(I),Γm)⟼ T (x) ∶= S(Ax) , A ∶= �i(Γm) ∈ O(n, m) .

(7.2.9)

Step 3. Fix i = 1, ..., L. By hypothesis ||Qr − ||∞ > � and ∇Q(0) = ∇Qr(0) ≠ 0,
so that by the definition of  and  in (7.1.1)-(7.1.2), by Remark 7.1.1, and by the
compactness of GQ(m, n) = GQr (m, n), there exists �i = �i(r, s, m, �) > 0 such that - on
any subspace Γm ∈ GQ(m, n), Γm ∈ i - one has

||Pr − Σ(r, s, m)||∞ > 2 �i , (7.2.10)

where Pr(x) ∶= Qr(Ax) - with A = �i(Γm) - is the restriction to the subspace Γm of the
truncation Qr.

Now, fix Γm ∈ (GQ(m, n) ∩ Vi) ⊂ i. By the continuity of Fi, there exists "⋆i,Γm =
"⋆i,Γm (r, s, m, �, n) > 0 such that, for any " ∈]0, "

⋆
i,Γm ], the open ball �

m
i,Γm (") ⊂ Ξ

m
i (Q, ")

centered at (Q,Γm) verifies the following property: for any (S, Γ̂m) ∈ �mi,Γm ("), the
restricted truncated polynomial T̂r(x) ∶= Sr(Âx), with Â = �i(Γ̂m), is contained in an
open ball of radius �i around Pr(x) ∶= Qr(Ax), with A = �i(Γm). Hence, on the one
hand by (7.2.10) one infers

||T̂r − Pr||∞ < �i ⟹ ||T̂r − Σ(r, s, m)||∞ > �i . (7.2.11)
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On the other hand, by construction one has
(

Q, GQ(m, n) ∩ Vi
)

⊂
⋃

Γm∈ GQ(m,n)∩Vi

�mi,Γm ("
⋆
i,Γm ) (7.2.12)

and - due to the compactness of the fiber (Q, GQ(m, n) ∩ Vi) - it is possible to extract a
finite number Ji of subspaces Γm ∈ GQ(m, n) ∩ Vi from (7.2.12) and write (with slight
abuse of notation)

(

Q, GQ(m, n) ∩ Vi
)

⊂
Ji
⋃

j=1
�mi,j(") ⊂ Ξmi (Q, ") , " ∈

]

0, "⋆i
]

, (7.2.13)

where we have set

"⋆i = "
⋆
i (r, s, m, �, n) ∶= min

j∈{1,…,Ji}
{"⋆i,j} . (7.2.14)

Inclusion (7.2.13), together with (7.2.8), yields that the finite union �m(") ∶= ∪Li=1∪
Ji
j=1

�mi,j(") is an open neighborhood of Ξm(Q, ") containing the fiber (Q, GQ(m, n)). There-
fore, by setting

� = � (r, s, m, �) ∶= min
i∈{1,…,L}

{�i} > 0 , "⋆ = "⋆(r, s, m, �, n) ∶= min
i=1,…,L

{"⋆i } > 0 ,

and by taking (7.2.11) into account, one has that for 0 < " ≤ "⋆ and for any (S, Γ̂m) ∈
�m(") ⊂ Ξm(Q, "), the restricted truncated polynomial T̂r(x) ∶= Sr(Ax) - with A =
�j(Γ̂m) for some j = 1, ..., L - verifies

||T̂r − Σ(r, s, m)||∞ > �j ≥ � . (7.2.15)

Therefore, we have proved that, for any 0 ≤ " ≤ "⋆ there exists � > 0 such that

||Sr|Γm − Σ(r, s, m)||∞ > � , (7.2.16)

for any S ∈ BN (Q, ") and for any Γm orthogonal to ∇S(0) = ∇Sr(0) ≠ 0. Hence,
the Definition of set (r, s, m, n) in (7.1.2) ensures that for any 0 ≤ " ≤ "⋆ there exists
� = �(r, s, m, �, n) > 0 such that for any S ∈ BN (Q, ") one has

||Sr − (r, s, m, n)||∞ > � . (7.2.17)

This concludes the proof.

We need another intermediate result in order to demonstrate Theorem 7.2.1. Before
giving its statement, for any polynomialS ∈ ⋆(r′, n), we firstly consider its associated
minimal arc 
 constructed in Theorem 5.0.1. Also, for any � > 0 we indicate by I′� ⊂
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[−�, �] the interval obtained by cutting the interval I� at point 3) of Theorem 5.0.1 into
three equal pieces and by taking the central one. In particular, we have

|I′�| =
|I�|

3
= �
3K

,

where K = K(r′, m, n) is a suitable constant.
We also assume the setting of Lemmata 7.2.1 and 7.2.2, and we consider a ball

BN (Q, ") of radius " < "⋆∕2 around Q ∈ ⋆(r′, n). Within this framework, one has

Lemma 7.2.3. There exist two constants ′ = ′(r′, r, s, m, �) and �0 = �0(r, s, m, �)
such that - for any number 0 < � ≤ �0, for any polynomial S ∈ ⋆(r′, n) contained in
BN (Q, "), and for anym-dimensional subspace Γm orthogonal to∇S(0), the restriction
T ∶= S|Γm satisfies the following estimates

max
�=1,...,s

|

|

|

|

|

|

d�

dt�

(

) T (x)
) x1

|

|

|

|
(t)

)

t=t⋆

|

|

|

|

|

|

> ′ , for m = 1,

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

dt�

(

) T (x)
) xl

|

|

|

|
(t)

)

t=t⋆

|

|

|

|

|

|

> ′�s−1 , for m ≥ 2

(7.2.18)

at any point t⋆ ∈ I′�.

Proof. (Lemma 7.2.3)We proceed by steps.
Step 1. We consider the value "⋆ of Lemma 7.2.2 and we fix a polynomial S in the

ball BN (Q, "), where " ∈ [0, "⋆∕2]. By Lemma 7.2.2, there exists a parameter � =
� (r, s, m, �) > 0 such that on any m-dimensional subspace Γm orthogonal to ∇S(0) ≠ 0
- the truncation Sr varifies

||Sr|Γm − Σ(r, s, m)||∞ > � . (7.2.19)

Now, for a given subspace Γm ∈ GS (m, n), one can choose a matrix A ∈ O(n, m)
whose columns span Γm and set T (x) ∶= S(Ax). Then, for any � > 0, by Theorem
5.0.1 there exists a minimal real-analytic arc


(t) ∶=

{

x1(t) = t
xj(t) = fj(t), j ∈ {2, ..., m}

t ∈ I� ⊂ [−�, �] , |I�| = �∕K(r′, n, m) ,

(7.2.20)
whose image is contained in the thalweg  (S,Γm). We observe that, up to a change
in the order of the vectors spanning Γm, in Theorem 5.0.1, we can always suppose that
the coordinate parametrizing 
 is the first one. We divide the interval I� into three
equal parts of length �∕(3K) and we denote by I′� ∶= [�min, �max] the central one.
Then, for any given t⋆ ∈ I′� associated to the point 
(t⋆) = x⋆, we consider the affine
reparametrization


⋆(u) ∶=

{

x1(u) = u + t⋆

xj(u) = fj(u + t⋆) , j ∈ {2, ..., m}
u ∈ [�min − t⋆, �max − t⋆] .
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It is clear that 
 and 
⋆ share the same image, have the same speed everywhere, and
that 
⋆(0) = 
(t⋆) = x⋆, so that for all � ∈ {0, ..., s} and l ∈ {1, ..., m}, one has

d�

dt�

(

)T (x)
)xl

|

|

|

|
(t)

)

t=t⋆
= d�

du�

(

)T (x)
)xl

|

|

|

|
⋆(u)

)

u=0

. (7.2.21)

Now, indicating by L⋆ ∶ ℝm⟶ ℝm, x⟼ x − x⋆ =∶ x̃ the translation w.r.t. x⋆, the
curve 
⋆ is mapped into 
̃⋆ ∶= L⋆◦
⋆, which reads


̃⋆(u) ∶=

{

x̃1(u) = x1(u) − x⋆1 = u + t
⋆ − t⋆ = u

x̃j(u) ∶= xj(u) − xj(t⋆) = fj(u + t⋆) − fj(t⋆) =∶ f̃j(u)
, (7.2.22)

with u ∈ [�min− t⋆, �max− t⋆]. The polynomial T written in the new coordinates reads

T (x) = T ◦L−1⋆ (x̃) = T (x̃ + x
⋆) =∶ U⋆(x̃) . (7.2.23)

Since x⋆ is fixed, one has

)T (x)
)xl

=
)U⋆(x̃)
)x̃l

, ∀l ∈ {1, ..., m} . (7.2.24)

Moreover, if one takes into account the fact that 
̃⋆(0) = 0, and that the origin for the
coordinates x̃ corresponds to the point x = x⋆ in the old coordinates, equality (7.2.21),
together with (7.2.24), yields, for all � ∈ {0, ..., s} and for all l ∈ {1, ..., m},

d�

dt�

(

)T (x)
)xl

|

|

|

|
(t)

)

t=t⋆
= d�

du�

(

)T (x)
)xl

|

|

|

|
⋆(u)

)

u=0

= d�

du�

(

)U⋆(x̃)
)x̃l

|

|

|

|

|
̃⋆(u)

)

u=0

.

(7.2.25)
Step 2. Bernstein’s estimate (5.0.1) applied to the components of 
 in (7.2.20) reads

max
t∈I′�

|fj(t)| ≤ M0� , j = 2,… , m (7.2.26)

for some uniform constant M0 = M(r′, n, m, 0), so that - for any t⋆ ∈ I′� - one has

||x⋆||∞ ∶= ||
(t⋆)||∞ ≤ M0� . (7.2.27)

For any given " ∈ [0, "⋆], with the help of the arguments in the proof of Lemma 7.2.2
- in particular taking (7.2.6), (7.2.8), and (7.2.9) into account - the set Ξm(Q, ") admits
the covering Ξm(Q, ") = ∪Li=1 Ξ

m
i (Q, "), and for any index i ∈ {1, ..., L} there exists a

continuous function
Fi ∶ Ξmi (Q, ")⟶ (r′, m) (7.2.28)

that maps
(R,Γm)⟼ R(Ax) , A ∶= �i(Γm) ∈ O(n, m) , (7.2.29)

where �i is a local continuous section for the Grassmannian G(m, n).
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Hence, taking Lemma 7.2.2 and formula (7.2.23) into account, the function

F⋆i ∶ Ξ
m
i (Q, ") ×ℝm⟶ (r′, m)

(R,Γm, x⋆)⟼ R(A(x̃ + x⋆)) , A ∶= �i(Γm) ∈ O(n, m)
(7.2.30)

is continuous. Moreover, (7.2.27) and the Theorem of Heine-Cantor ensure that F⋆i is
uniformly continuous over the restricted compact domain Ξ

m
i (Q, "

⋆∕2) × B
n
∞(0, M0�).

Choosing the value � (r, s, m, �) > 0 in (7.2.19), there exists a uniform positive real
0 < �i = �i(� ) ≤ 1 such that, for any 0 < � ≤ �i and for any (S,Γm) ∈ Ξmi (Q, "

⋆∕2),
the image of the set (S,Γm, B

n
∞(0, M0�)) through F

⋆
i verifies

F⋆i

(

S,Γm, B
n
∞(0, M0�)

)

⊂ BM∞

(

F⋆i (S,Γ
m, 0),

�
2

)

, M ∶= dim(r′, m) . (7.2.31)

The above reasonings imply for any t⋆ ∈ I′� ⊂ [−�, �], with 0 < � ≤ �i, one has

||(T ◦L−1⋆ )r − Tr||∞ =∶ ||U⋆
r − Tr||∞ ≤ ||U⋆ − T ||∞ <

�
2
, (7.2.32)

where U⋆
r , Tr are the truncations at order r of polynomial U⋆ introduced in (7.2.23)

and of polynomial T ∶= S|Γm , respectively.
Repeating the same argument for any index j ∈ {1, ..., L}, relations (7.2.19), (7.2.31),

and (7.2.32) imply that, if

0 < � ≤ �0 ∶= min
i∈{1,...,L}

{�i = �i(�(r, s, m, �))} ≤ 1 , (7.2.33)

then, for any (Sr,Γm) ∈ Ξm(Qr, "∕2) and for any t⋆ ∈ I′� one has

||U⋆
r − Σ(r, m, n)||∞ = ||Tr◦L

−1
⋆ − Σ(r, m, n)||∞ >

�
2
. (7.2.34)

Step 3. Without any loss of generality, we suppose that the minimal curve 
 ⊂
 (S,Γm) is parametrized by the first coordinate. Hence, for n ≥ 3 and 2 ≤ m ≤ n − 1
we indicate by a = (a12, ..., a1m) the linear coefficients of the Taylor expansion of the
translated curve 
̃⋆ in (7.2.22). One can make use of the set of adapted coordinates
ỹ ∶= a(x̃) for the curve 
̃⋆, as defined in paragraph 6.2.3. We remind that a ∶= id
in case m = 1 (see also (6.3.5)).

In particular, for allm ∈ {1,… , n−1}wewrite U⋆r,a ∶= U
⋆
r ◦

−1
a

and 
̃⋆
a
∶= a◦
̃⋆.

By construction, the curve 
̃⋆
a
is analytic in [�min − t⋆, �max − t⋆] with complex

analyticity width �∕K, and |I′�| = |�max−�min| = �∕(3K), as I′� was obtained by cutting
I� into three equal pieces and by taking the central one. Hence, 
̃⋆

a
∈ Θ1m following

Definition 6.1.1. By (7.2.34) and Lemma 6.3.1, there exist constants1 C1 = C1(� ) and
1In Lemma 6.3.1, C1 depends on the open set D ∈ (r, m)∖Σ(r, s, m). In our case, by (7.2.34), D is the

open ball of radius 1
2 � around T , which is at distance at least

1
2 � from Σ(r, s, m); hence, with slight abuse of

notation, we can write C1 = C1(� ).
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C2 = C2(s, m) such that one has the lower estimate

max
�=1,...,s

|

|

|

|

|

|

d�

du�

(

) U⋆r,a(y)
) y1

|

|

|

|

|
̃⋆a (u)

)

u=0

|

|

|

|

|

|

> C1

in case s = 1 or m = 1,

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

du�

(

) U⋆r,a(y)
) yl

|

|

|

|

|
̃⋆a (u)

)

u=0

|

|

|

|

|

|

>
C1

1 + C2 × maxl=2,...,m
�=2,...,s

|al�|

in case 2 ≤ s ≤ r − 1 and m ≥ 2 ,

(7.2.35)

where the al�’s, with l ∈ {2, ..., m} and � ∈ {2, ..., s}, are the Taylor coefficients of

̃⋆
a
(u) at the origin. Definition (7.2.22) assures that the Taylor coefficients of order equal

or higher than one of the curve 
̃⋆(u) at u = 0, and those of the curve 
 calculated at
t = t⋆ coincide. Moreover, by construction (see paragraph (6.2.3)) 
̃⋆

a
(u) and 
̃⋆(u)

share the same Taylor coefficients of order greater or equal than two calculated at the
origin. Hence, the Bernstein estimate in (5.0.1) applied to the second relation in (7.2.35)
and the fact that 0 < � ≤ �0 ≤ 1 (see (7.2.33)) yield that there exists a uniform constant
M = M(r′, n, m, s) ≥ 1 such that estimate

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

du�

(

) U⋆r,a(y)
) yl

|

|

|

|

|
̃⋆a (u)

)

u=0

|

|

|

|

|

|

>
C1

1 + C2 M
�s−1 (7.2.36)

holds in case 2 ≤ s ≤ r − 1 and m ≥ 2.
Now, expression (6.2.29) together with estimate (5.0.1) yields

||−1
a
||∞ ≤ 1 + M ,

for the matrix norm of −1
a
. Therefore, by (6.2.31), by the first estimate in (7.2.35) and

by (7.2.36), we infer

max
�=1,...,s

|

|

|

|

|

|

d�

du�

(

) U⋆
r (x)
) x1

|

|

|

|

|
̃⋆(u)

)

u=0

|

|

|

|

|

|

>
C1
1 + M

for s = 1 or m = 1,

max
l=1,...,m
�=1,...,s

|

|

|

|

|

|

d�

du�

(

) U⋆
r (x)
) xl

|

|

|

|

|
̃⋆(u)

)

u=0

|

|

|

|

|

|

>
C1

(1 + C2M)(1 + M)
�s−1

for 2 ≤ s ≤ r − 1, m ≥ 2 .

(7.2.37)

Since in expression (7.2.37) one is considering only the derivatives up to order s ∈
{1… , r−1} at the origin u = 0 and 
̃⋆(u) contains no constant terms, the same estimate
holds true for the polynomial U⋆.
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The thesis follows from (7.2.37) and from (7.2.25) by setting′ =
C1

(1 + C2M)(1 + M)
.

With the help of Lemmata 7.2.2 and 7.2.3, we are now able to prove Theorem 7.2.1.

Proof. (Theorem 7.2.1)
Introduction. We assume the setting and the notations of Lemmata 7.2.2-7.2.3. In

particular, for 0 < " ≤ "⋆∕2 we consider a polynomial S ∈ ⋆(r, n) in the ball
BN (Q, "), and a given m-dimensional subspace Γm orthogonal to ∇S(0) ≠ 0. We
denote by 
 the minimal arc of Theorem 5.0.1 - whose image is contained in the thalweg
 (S,Γm) - and for any 0 < � ≤ �0 = �0(r, s, m, �) we indicate by I� its interval of
analyticity of length �∕K, where K = K(r′, n, m) is a uniform constant. We also indicate
by I′� the interval which is obtained by dividing I� into three equal parts and by taking
the central one.

Finally, we set T (x) ∶= S|Γm (x) ∶= S(Ax), with A ∈ O(n, m) a matrix belonging
to the image of the continuous section �i ∶ i(Γm) ⟶ O(n, m), with i ∈ {1, ..., L},
and whose columns span Γm (see the proof of Lemma 7.2.2).

We proceed by steps.
Step 1. For l = 1, ..., m and � = {1, ..., s}, we consider the functions

g(�)l (t⋆) ∶= d�

dt�

(

)T (x)
)xl

|

|

|

|
(t)

)

t=t⋆
, t⋆ ∈ I′� (7.2.38)

and the constant functions

gm+1(t⋆) ∶= ′ , gm+2(t⋆) ∶= −′ , gm+3(t⋆) ∶= ′�s−1 , gm+4(t⋆) ∶= −′�s−1 .

The degree of T is bounded by r′ and - on the interval I� - 
 is an analytic-algebraic
function whose diagram is bounded by a positive integer d = d(r′, n, m) (see Point 2
of the thesis in Theorem 5.0.1). Hence, for any given choice of � ∈ {1, ..., s} and
l ∈ {1, ..., m}, the function g(�)l (t⋆) is Nash (i.e. semi-algebraic of class C∞) due to
Propositions A.1.8 and A.1.10, and its diagram is bounded by a quantity depending
only on r′, m, n. In addition, Proposition A.1.5 ensures that g(�)l (t⋆) is actually analytic-
algebraic in I′�. The same is obviously true also for gm+j(t⋆) for j ∈ {1, 2, 3, 4}. There-
fore, we set d̂ = d̂(r′, m, n) ∶= maxi∈{1,...,m+4}max�∈{1,...,s}{diag (g

(�)
i )}.

Now, for any choice of � ∈ {1, ..., s} and i ∈ {1, ..., m + 4}, the graph of g(�)i over
I′� belongs to the algebraic curve of some non-constant polynomial V (�)i ∈ ℝ[x, y] of
two variables, whose degree depends on d̂(r′, m, n). If we indicate by

V (�)i (x, y) = ΠK(i,�)k=1

(

V (�)i,k (x, y)
)pk

(7.2.39)

the decomposition of V (�)i (x, y) into its irreducible factors, by Bézout’s Theorem (see
Th. C.2.2) the irreducible components

{

(x, y) ∈ ℝ2|V (�)i,k (x, y) = 0
}

of the algebraic
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curve
{

(x, y) ∈ ℝ2|V (�)i (x, y) = 0
}

intersect at most at a finite number of points which

is bounded by
(

degV (�)i

)2
, which in turn is a quantity depending only on d̂(r′, m, n).

This fact, together with the regularity of g(�)i in I′�, implies that there exist two positive
integers k(i, �) ∈ {1,… , K(i, �)},w = w(r′, m, n), and a subinterval of I⋆�,i,� ⊂ I

′
� of

length |I′�|∕w verifying

graph
(

g(�)i
|

|

|I⋆�,i,�

)

⊂
{

(x, y) ∈ ℝ2|V (�)
i,k(i,�)

(x, y) = 0
}

graph
(

g(�)i
|

|

|I⋆�,i,�

)

∩
{

(x, y) ∈ ℝ2|V (�)i,k (x, y) = 0
}

= ∅
(7.2.40)

for all k ∈ {1,… , K(i, �)}∖{k(i, �)}.
The above reasoning can be repeated for all other pairs of integers belonging to

{1,… , s}×{1,… , m+4} and which are different from (�, i). Hence, finally there exists
an interval I⋆� ⊂ I

′
� of length |I′�|∕(w

(m+4) s) on which for any (i′, �′) ∈ {1,… , s} ×
{1,… , m + 4} the relations

graph
(

g(�
′)

i′
|

|

|I⋆�

)

⊂
{

(x, y) ∈ ℝ2|V (�
′)

i′,k(i′,�′)
(x, y) = 0

}

graph
(

g(�
′)

i′
|

|

|I⋆�

)

∩
{

(x, y) ∈ ℝ2|V (�
′)

i′,k (x, y) = 0
}

= ∅
(7.2.41)

are verified for some integer k(i′, �′) ∈ {1,… , K(i′, �′)} and for any integer k ∈
{1,… , K(i′, �′)}, with k(i′, �′) ≠ k.

Then, by (7.2.41) and again by Bézout’s Theorem, there exists a positive integer
N = N(r′, m, n) such that for any distinct pairs of integers (�, i) and (�, j) belonging to
{1,… , s} × {1,… , m + 4}, the algebraic curves {(x, y) ∈ (I⋆� ,ℝ)|V

(�)
i,k(i,�)

(x, y) = 0}

and {(x, y) ∈ (I⋆� ,ℝ)|V
(�)
i,k(i,�)

(x, y) = 0} either coincide or intersect at most at N =

N(r′, m, n) points.
By repeating this reasoning for all possible distinct pairs and by taking (7.2.41) into

account, one finally has that there exists a positive constant M = M(r′, s, m, n) and
an interval J⋆� of uniform length |J⋆� | = |I⋆� |∕M over which the graphs of any pair
of functions among g(1)1 , ..., g(1)m , ..., g(s)1 , ..., g

(s)
m , gm+1, ..., gm+4 either do not intersect or

coincide.
These reasonings - together with the fact that expression (7.2.18) in Lemma 7.2.3

holds for all t⋆ ∈ J⋆� ⊂ I
′
� - yield that there must exist � ∈ {1, ..., s} and l ∈ {1, ..., m}

verifying

min
t⋆∈J⋆�

|

|

|

|

g(�)
l
(t⋆)

|

|

|

|

> ′ for m = 1

min
t⋆∈J⋆�

|

|

|

|

g(�)
l
(t⋆)

|

|

|

|

> ′�s−1 for m ≥ 2 .
(7.2.42)
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Step 2. We apply Lemma 7.2.1 to gl , with q ≡ �, [a, b] ≡ J⋆� and with � equal to
the r.h.s. of (7.2.42). If we ask for

4
(

�!
�
2�

)1∕�
≤

|J⋆� |

2
= �
6 KMw(m+4) s

(7.2.43)

and we take into account the fact that � ∈ {1, ..., s}, we can choose

� = 2 �s

s ! ×
[

24 KMw(m+4) s
]s ×

{

′ for m = 1
′�s−1 for m ≥ 2 .

(7.2.44)

Hence, in a closed set A� ⊂ J⋆� of measure
|J⋆� |

2
= �
6 KMw(m+4) s

, one has

|gl(t)| > � =

{

C1�s , for m = 1
Cm�2s−1 , for m ≥ 2

∀t ∈ A� (7.2.45)

for some l ∈ {1, ..., m}, and for a constant

Cm = Cm(r′, r, s, �, n) =
2′(r′, r, s, m, �)

s ! ×
[

24 K(r′, m, n)M(r′, s, m, n)w(r′, m, n)(m+4) s
]s ,

(7.2.46)
where m ∈ {1,… , n − 1}.

Step 3. Taking the definition of A� into account, by construction (see (7.2.38)) we
have

max
t∈A�

|

|

|

gl(t)
|

|

|

∶= max
t∈A�

|

|

|

|

|

|

)T (x)
)xl

|

|

|

|

|
(t)

|

|

|

|

|

|

∶= max
t∈A�

|

|

|

|

|

|

)S|Γm (x)
)xl

|

|

|

|

|
(t)

|

|

|

|

|

|

. (7.2.47)

Due to Theorem 5.0.1, the image of 
 is contained in the thalweg  (S,Γm), that is in
the locus of minima of T ∶= S|Γm on the spheres m� ⊂ Γ

m of radius � > 0 centered at
the origin. Moreover, the curve 
 was constructed by a uniform local inversion theorem
applied to the curve � of Lemma 5.0.2 that was parametrized by the radius � > 0 of the
spheres m� ⊂ Γm and shared the same image with 
 . So, to any value of t ∈ A� there
corresponds a unique radius �(t) associated to a sphere m�(t) ⊂ Γ

m.
Hence, taken any pair of real numbers �, � satisfying 0 < � ≤ � ≤ �0 - where

�0 is the quantity defined in Lemma 7.2.3 - by the discussion at step 3 of the proof of
Theorem 5.0.1 (in particular, the inclusions in (5.0.22)), one has that the inverse image
of A� is contained in the interval � ⊂ [0, �] defined in Lemma 5.0.2. This argument
and (7.2.47) imply that for some l ∈ {1, ..., m} one has

max
t∈A�

|

|

|

|

|

|

)S|Γm (x)
)xl

|

|

|

|

|
(t)

|

|

|

|

|

|

≤ max
�∈[0,�]

|

|

|

|

|

|

)S|Γm (x)
)xl

|

|

|

|

|�(�)

|

|

|

|

|

|

= max
�∈[0,�]

min
||x||2=�

|

|

|

|

|

)S|Γm (x)
)xl

|

|

|

|

|

(7.2.48)
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which in turn, as 0 < � ≤ � ∈ (0, �0], by taking (7.2.45)-(7.2.47) and the equivalence
of norms into account, implies that

max
�∈[0,�]

min
||x||2=�

|

|

|

|

∇S|Γm (x)||||2 >

{

C1�s , for m = 1
Cm�2s−1 , for m ≥ 2

, ∀ 0 < � ≤ � ∈ (0, �0] .

(7.2.49)
Since the coordinates x are associated to an orthonormal basis spanning Γm, for any
point I ∈ ℝn contained in the subspace Γm one has �Γm (∇IS(I)) ≡ ∇x(S|Γm )(x), and
by choosing � = � in (7.2.49), we have proved that any polynomial S ∈ ⋆(r′, n) in
the ball BN (Q, "), with " ≤ "⋆∕2, is steep at the origin on the subspaces of dimension
mwith index bounded as in (7.2.2) and with coefficients Cm, �0. It remains to prove that
this holds true also in a neighborhood of the origin.

Step 4. For any polynomial S ∈ ⋆(r′, n), we consider the translation

H⋆ ∶ ⋆(r′, n) ×ℝn⟶ ⋆(r′, n) , (S(I), I⋆)⟼ S(I + I⋆) . (7.2.50)

H⋆ is uniformly continuous over the compact B
N
(Q, "⋆∕4) × B

n
(0, 1). Hence, there

exists a number �̂ = �̂("⋆) > 0 such that for any S ∈ B
N
(Q, "⋆∕4), one has

H⋆({S} × B
n
(0, �̂)) ⊂ BN (S, "⋆∕4) . (7.2.51)

Hence, for any given point I⋆ satisfying ||I⋆||2 < �̂ and for any polynomial S ∈
B
N
(Q, "⋆∕4), the polynomial S(I + I⋆) belongs to BN (Q, "⋆∕2).
Now, we consider a polynomial S ∈ B

N
(Qr, "⋆∕4). By the above reasonings,

for any I⋆ verifying ||I⋆||2 < �̂, one has that its translation S(I + I⋆) belongs to
BN (Q, "⋆∕2). We have proved at Step 3 that any polynomial in ⋆(r′, n) belonging to
BN (Q, ") - with " ∈ [0, "⋆∕2] - is steep at the origin on the subspaces of dimension
m, with index as in (7.2.2), and with uniform coefficients Cm, �0. Consequently, for any
given I⋆ satisfying ||I⋆||2 < �̂, the polynomial S(I + I⋆) is steep at the origin on the
m-dimensional subspaces, with uniform index and coefficients. This is equivalent to
stating the same property for polynomial S at any point I⋆ in a ball of radius �̂ around
the origin.

The thesis follows by setting "0 = "0(r, s, m, �, n) ∶= "⋆∕4.

7.3 Proof of the genericity of steepness
With the help of Theorem 7.2.1, we are finally able to prove Theorem A.

Proof. (Theorem A)
It is sufficient to study the case in which I0 = 0, else one considers the translated

function ℎ0(I) ∶= ℎ(I + I0). We proceed by steps.
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Step 1. For any choice of integers r, n ≥ 2, and for any given s = (s1,… , sn−1) ∈
ℕn−1, where sm ∈ {1,… , r − 1} for all m ∈ {1,… , n − 1}, by taking (7.1.2) into
account, we define


r,sn ∶=
n−1
⋃

m=1
(r, sm, m, n) ⊂ ⋆(r, n) . (7.3.1)

The above set is closed due to Lemma 7.1.1.
For any given pair %, � > 0, we consider a function ℎ ∈ D ⊂ C2r−1b (B

n
(0, %))

satisfying
∇ℎ(0) ≠ 0 , |

|

|

|

T0(ℎ, r, n) −
r,sn |

|

|

|∞ > � . (7.3.2)

Now, form = 1,… , n−1, taking the definition of "0(r, sm, m, �, n) in Theorem 7.2.1
into account, we set

� = �(r, s, �, n) ∶= 1
2
× min
m∈{1,...,n−1}

{"0(r, sm, m, �, n) > 0} . (7.3.3)

Then, for " ∈ [0, �], we consider a function f ∈ D ⊂ C2r−1b (B
n
(0, %)) satifying

f ∈ B2r−2(ℎ, ", B
n
(0, %)) . (7.3.4)

Due to (7.3.4), T0 (f, 2r−2, n) is contained in a ball of radius " around T0 (ℎ, 2r−2, n)
in (r, n). Hence, as by construction we have set " ≤ �, where � was defined in (7.3.3),
the definition of set 
r,sn in (7.3.1), together with condition (7.3.2) yields that we can
apply Theorem 7.2.1 with r′ = 2r − 2. In turn, this ensures the existence of positive
constants Cm = Cm(r′ = 2r − 2, r, sm, �, n),

d̂ = d̂(r, s, �, n) ∶= min
m∈{1,…,n−1}

�̂(r, sm, m, �, n) ,

and
� = �(r, s, �) ∶= min

m∈{1,...,n−1}
�0(r, sm, m, �)

such that T0(f, 2r − 2, n) is steep in an open ball of radius d̂ around the origin with
coefficients �̄, Cm, m = 1,… , n − 1, and with indices

�m(sm) ∶=

{

s1 , if m = 1
2sm − 1 , if m ≥ 2 .

(7.3.5)

Step 2. For any I ∈ Bn(0, R) - with

R = R(r, s, �, n, %) ∶= min

{

%
3
,
d̂(r, s, �, n)

2

}

, (7.3.6)

for any m ∈ {1,… , n − 1}, and for any m-dimensional affine subspace Γm = Γm(I)
passing through I and orthogonal to ∇f (I) ≠ 0, we indicate by f |Γm the restriction
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of f to Γm. We assume that any given Γm(I) is endowed with the induced euclidean
metric, and we indicate by x a suitable system of coordinates on Γm(I) whose origin
x = 0 corresponds to point I . Moreover, for any � ∈ {1,… , n}, we set )� ∶=

)
)x�

and

� ∶= min
{

�,
%
3

}

,

Now, we fix both I ∈ Bn(0, R) and Γm(I). By standard calculus, at any point x
verifying ||x|| ≤ � (hence, sufficiently close to I), one can write

|)�(f |Γm )(x) − T0()�(f |Γm ), 2r − 3, m)(x)|

≤ K(r, m) max
α∈ℕn

|α|=2r−1

max
I ′∈B

n
(0,%)

|D�f (I ′)|
||x||2r−22
(2r − 2)!

(7.3.7)

for some constant K(r, m) > 0.
Since T0 ()�(f |Γm ), 2r − 3, m)(x) = )�[T0(f |Γm , 2r − 2, m)](x), taking (7.3.7) into

account, we have

|)�(f |Γm )(x)|

≥ |

|

|

| )�[ T0 (f |Γm , 2r − 2, m) ] (x) | − |)�(f |Γm )(x) − T0()�(f |Γm ), 2r − 3, m) (x)|
|

|

|

≥ | )�[ T0 (f |Γm , 2r − 2, m) ] (x) | − c(r, n, m, %,D ) ||x||2
2r−2 ,

(7.3.8)

where we have indicated

c = c(r, n, m, %,D ) ∶=
K(r, m)
(2r − 2)!

max
g∈D

||g||C2r−1b (B
n
(0,%)) .

Estimate (7.3.8) implies that for any x ∈ Γm(I) verifying ||x|| ≤ � we can write

||∇(f |Γm )(x)||1 ≥ |

|

|

|

∇T0 (f |Γm , 2r − 2, m)(x)||||1 − c n ||x||2
2r−2 ,

and, by the equivalence of norms,

||∇(f |Γm )(x)||2 ≥
1
n
|

|

|

|

∇T0 (f |Γm , 2r − 2, m)(x)||||2 − c ||x||2
2r−2 . (7.3.9)

Step 3. By the discussion at Step 1, T0(f, 2r−2, n) is steep in an open ball of radius
d̂ around the origin I = 0, with coefficients �̄, Cm, m = 1,… , n − 1, and with indices
as in (7.3.5). This property, together with expression (7.3.9) and with the fact that

− the origin x = 0 on Γm(I) corresponds to point I ∈ Bn(0, R) by construction;

− R ≤ d̂∕2 by (7.3.6);
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yields

max
�∈[0,�]

min
||x||2∈Γ1(I)
||x||2=�

||∇(f |Γ1 )(x)||2 >
C1
n
�s1 − c �2r−2 ∀� ∈ [0, �] (m = 1) (7.3.10)

max
�∈[0,�]

min
||x||2∈Γm(I)
||x||2=�

||∇(f |Γm )(x)||2 >
Cm
n
�2sm−1−c �2r−2 ∀� ∈ [0, �] (2 ≤ m ≤ n−1) .

(7.3.11)
If we impose

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c �2r−2 ≤
C1
2n
�s1 , if m = 1

c �2r−2 ≤
Cm
2n
�2sm−1 , if m = 2,… , n − 1

(7.3.12)

by (7.3.10)-(7.3.11), and by the fact that sm ≤ r − 1 for all m = 1,… , n − 1, we have
that f is steep in a ball of radius R around the origin with coefficients (we have set
r′ = 2r − 2)

� = �(r, s, �, n, %,D )

∶= min

{

�,
(

C1(r′, r, s1, �, n)
2 n c(r, n, m, %,D )

)
1

2r−2−s1
, min
m∈{2,…,n−1}

{

(

Cm(r′, r, sm, �, n)
2 n c(r, n, m, %,D )

)
1

2(r−sm )−1
}}

,

(7.3.13)

Cm(r′, r, sm, �, n) ∶=
Cm(r′, r, sm, m, �, n)

2n
,

and with indices bounded as in (7.3.5).
It remains to prove the estimate on the codimension of 
r,sn . By (7.3.1), Lemma

7.1.2 and Proposition A.1.3 we have

codim 
r,sn ≥ max
{

0, min
m∈{1,…,n−1}

{sm − m(n − m − 1)}
}

.

This concludes the proof.



Chapter 8

Proof of Theorem B and of its
Corollaries

Hereafter, we assume the notations and the results of the previous sections.

8.1 Proof of Theorem B

It suffices to prove the statement for I0 = 0, otherwise one considers ℎ0(I) ∶= ℎ(I+I0).

8.1.1 Case m = 1.

Let Γ1 be a 1-dimensional subspace (a line) orthogonal to ∇ℎ(0) ≠ 0, and let w ∈ Sn
be its generating vector. By standard results of calculus, the restriction of the Taylor
polynomial T0(ℎ, r, n) to Γ1, indicated by T0(ℎ|Γm , r, 1), reads

T0(ℎ|Γ1 , r, 1)(x) = ℎ(0) +
r
∑

i=1

1
i!
ℎi[w,… , w]xi , (8.1.1)

where the notation in (3.0.2) has been taken into account, and where x is the coordinate
associated to the vector w.

By (8.1.1) and Lemma 6.2.1, condition (4.2.8) amounts to asking that, for any sub-
space Γ1, the polynomial T0(ℎ|Γ1 , r, 1) belongs to the complementary of the set of s1-
vanishing polynomials �(r, s1, 1) in (r, 1). Moreover, again by Lemma 6.2.1, one has
�(r, s1, 1) = �(r, s1, 1) =∶ Σ(r, s1, 1). Hence, by definitions (7.1.1)-(7.1.2), by Theo-
rem A and by (7.3.1), ℎ is steep on the subspaces of dimension one in a neighborhood
of the origin, with steepness index bounded by s1.

109
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8.1.2 Case n ≥ 3, 2 ≤ m ≤ n − 1.
It is sufficient to prove that, for fixed m ∈ {1,… , n − 1}, under the assumptions at
point ii) of Theorem B, one has T0(ℎ, r, n) ∈ (r, n)∖(r, sm, m, n), where the set
(r, sm, m, n) was defined in (7.1.2). The thesis then follows by Theorem A and by
expression (7.3.1).

By absurd, suppose that the claim is false. Then, by (7.1.1)-(7.1.2), there exists
some subspace Γm orthogonal to ∇ℎ(0) ≠ 0 such that T0(ℎ|Γm , r, m) ∈ Σ(r, sm, m).

Hence, since Σ(r, sm, m) ∶= �(r, sm, m) by construction, there are two possibilities:

1. either T0(ℎ|Γm , r, m) ∈ �(r, sm, m) ;

2. or T0(ℎ|Γm , r, m) ∈ Σ(r, sm, m)∖�(r, sm, m) .

We consider the two cases separately and we prove that in both cases we end up being
in contradiction with the hypotheses.

Case 1. If T0(ℎ|Γm , r, m) ∈ �(r, sm, m), then by construction T0(ℎ|Γm , r, m) satisfies
the sm vanishing condition at the origin on some curve 
 ∈ Θm, whose image is con-
tained in Γm. Since one is free to choose the orthonormal basis {u1,… , um} ∈ U(m, n)
spanning Γm, up to a changement in the order of the vectors we can suppose without
loss of generality that the coordinate which parametrizes the curve 
 is the first one,
that is 
 ∈ Θ1m, and T0(ℎ|Γm , r, m) ∈ �1(r, sm, m). Moreover, following section 6.2.3,
we can make use of the adapted coordinates for the curve 
 , which are associated to the
basis (see expression (6.2.13))

{

v ∶= u1 +
m
∑

i=2
ai1ui, u2,… , um

}

∈ V 1(m, n) , (8.1.2)

where, as we did in 6.2.3, we have indicated by a ∶= (a21,… , a1m) ∈ ℝm−1 the vector
containing the linear terms of the Taylor expansion of 
 at the origin. Following the
notations of section 6.2.3 (especially, formula (6.2.16)), we write

T0,a(ℎ|Γm , r, m)(y) ∶= T0(ℎ|Γm , r, m)◦−1a (y) .

Then, by standard results of calculus, taking (3.0.2) into account, one can write

T0,a(ℎ|Γm , r, m)(y) =
∑

�∈ℕm
1≤|�|≤r

1
�!
ℎ|�|0

[

�1
⏞⏞⏞
v ,

�2
⏞⏞⏞
u2 ,… ,

�m
⏞⏞⏞
um

]

y
�1
1 … y�mm ,

(8.1.3)
where �! ∶= �1!… , �m!.

Since T0(ℎ|Γm , r, m) ∈ �1(r, sm, m), by (6.2.10) and Lemma 6.2.3, one has

Qi�(T0,a(ℎ|Γm , r, m), a, Jsm,
,a) = 0 ∀ i ∈ {1,… , m} , ∀� ∈ {0,… , s} , (8.1.4)
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where Jsm,
,a ∶= a◦sm,
 denotes the sm-truncation at the origin of the curve 
 ex-
pressed in the adapted variables.

We now try to simplify the expressions in (8.1.4), by taking expressions (6.2.39)-
(6.2.40) in Lemma 6.2.3 into account and by exploiting the form of the polynomial
T0,a(ℎ|Γm , r, m) in (8.1.3). Namely - thanks to (8.1.3) and (4.2.2) - the coefficients p�(1,�)
and p�(l,�), with l ∈ {2,… , m}, � ∈ {0,… , sm}, appearing in (6.2.39)-(6.2.40) read

p�(1,�) =
1

(� + 1)!
ℎ�+10 [v,… , v] , p�(l,�) =

1
�!
ℎ�+10

[

�
⏞⏞⏞
v , ul

]

. (8.1.5)

Moreover, if sm ≥ 2, for � ∈ {2,… , sm}, exploiting (8.1.3) and the linearity, the second
addend at the right hand side of (6.2.39) in our case reads

m
∑

i=2

�−1
∑

�=1
� p�(i,�)ai(�−(�−1)) =

m
∑

i=2

�−1
∑

�=1

�
�!
ℎ�+10

[

�
⏞⏞⏞
v , ui

]

ai(�−(�−1))

=
�−1
∑

�=1

1
(� − 1)!

ℎ�+10

[

�
⏞⏞⏞
v ,

m
∑

i=2
ai(�−(�−1))ui

]

.

(8.1.6)

Henceforth, in order to simplify our formulas, we make use of the notation

Vi ∶=
{

v , if i = 1
ui , if i ∈ {2,… , m}

.

Considering again the case sm ≥ 2, for � ∈ {2,… , sm}, and for any i = 1,… , m, by
(8.1.3) and by (4.2.4)-(4.2.5), the last addend at the right hand side of (6.2.39)-(6.2.40)
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reads

∑

�∈m(i,�)
�∈m(�)
�i≠0

�i p�
∑

k∈m(�̃(i),�)

( m
∏

j=2

(

�̃j(i)
kj2 ... kj�

)

aj2
kj2 ...aj�

kj�

)

=
∑

�∈m(i,�)
�∈m(�)
�i≠0

�i
�!
ℎ|�|0

[

�̃1(i)
⏞⏞⏞
v ,

�̃2(i)
⏞⏞⏞
u2 ,… ,

�̃m(i)
⏞⏞⏞
um ,Vi

]

×
∑

k∈m(�̃(i),�)

( m
∏

j=2

(

�̃j(i)
kj2...kj�

)

aj2
kj2 ...aj�

kj�

)

=
∑

�∈m(i,�)
�∈m(�)
�i≠0

∑

k∈m(�̃(i),�)

ℎ|�|0
[

�̃1(i)
⏞⏞⏞
v ,

k22
⏞⏞⏞
a22 u2 ,… ,

k2�
⏞⏞⏞
a2� u2 ,

km2
⏞⏞⏞
am2 um ,… ,

km�
⏞⏞⏞
am� um ,Vi

]

�̃1(i)! k!
,

(8.1.7)

where the last passage is a consequence of the multi-linearity and of the fact that, for all
i ∈ {1,… , m}, j ∈ {2,… , m}, we have

∑�
u=2 kju = �̃j(i) by construction (see (4.2.4)).

By (6.2.39)-(6.2.40), it is trivial to observe that for � = 0 and for all i ∈ {1,… , m},
one has

Qi,0(T0,a(ℎ|Γm , r, m), a, Jsm,
,a) = 0 ⟺ ℎ10[v] = ℎ
1
0[u2] = …ℎ10[um] = 0 (8.1.8)

which simply means that the basis vectors {v, u2,… , ul} are orthogonal to ∇ℎ(0) ≠ 0.
We observe that, in case i = 1,… , m and � = 1, taking (8.1.5) and (6.2.39)-(6.2.40)

into account, condition (8.1.4) amounts to requiring that for all i ∈ {1,… , m}

Qi,1(T0,a(ℎ|Γm , r, m), a, Jsm,
,a) = 0 ⟺ ℎ20[v, v] = ℎ
2
0[v, u2] =⋯ = ℎ20[v, um] = 0 .

(8.1.9)
For i = 1 and � = 2, instead, we have

p�(1,�) =
1
3!
ℎ3[v, v, v] (8.1.10)

and for � = 1 the term in (8.1.6) is null thanks to (8.1.9).
Moreover, still for i = 1 and � = 2 we observe that also the term in (8.1.7) does not

yield any contribution to condition (8.1.4). In order to see this, we start by remarking
that the multi-indices to be taken into account in (8.1.7) for i = 2 and � = 2must satisfy
� ∈ m(1, 2), that is, by (4.2.4)-(4.2.5)

kj2 = �̃j(1) ∀ j ∈ {2,… , m} , �̃1(1) +
m
∑

j=2
2kj2 = 2 . (8.1.11)
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Conditions (8.1.11) are only possible if

1. �̃1(1) = 2 and �̃j(1) = 0 for all j ∈ {2,… , m}, which implies � = (3, 0,… , 0).

2. kj2 = �̃j(1) = �jp for some given p ∈ {2,… , m} and �̃1(1) = 0. This implies
that �1 = 1 and �j = �jp for all j ∈ {2,… , m}, so that finally |�| = 2.

The first case is incompatible with the condition � ∈ m(2) required in (8.1.7)
(see (4.2.3)), as (3, 0,… , 0) ≡ �(1, 2). The second case does not yield any contribution
to (8.1.7) because of (8.1.9).

Hence one has

Q1,2(T0,a(ℎ|Γm , r, m), a, Jsm,
,a) = 0 ⟺ ℎ3[v, v, v] = 0 . (8.1.12)

Finally, for i = 1 and � ≥ 3, and for i ∈ {2,… , m} and � ≥ 2, comparing expres-
sions (8.1.5)-(8.1.6)-(8.1.7) with the quantities (6.2.39)-(6.2.40) in Lemma 6.2.3, and
taking the definition of the quantities ℎ,0

m,l,�(v, u2,… , um, a(m)) in (4.2.6)-(4.2.7) into
account, one has that

Qi,�(T0,a(ℎ|Γm , r, m), a, Jsm,
,a) = 0 ⟺ ℎ,0
m,l,�(v, u2,… , um, a(m, sm)) = 0 .

(8.1.13)
Putting together (8.1.8)-(8.1.9)-(8.1.12)-(8.1.13) with (8.1.2), we see that the polyno-
mial T0,a(ℎ|Γm , r, m) belongs to �1(r, sm, m) if and only if the system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1,… , um) ∈ U(m, n)

a(m) ∶= (a21,… , a2sm ,… , am1,… , amsm ) ∈ ℝ(m−1)×sm

v = u1 +
∑m
j=2 aj1 uj

ℎ10[v] = ℎ
1
0[u2] =⋯ = ℎ10[um] = 0

ℎ,0
m,l,�(v, u2,… , um, a(m, sm)) = 0 i = 1,… , m , � = 1,… , s

(8.1.14)

is satisfied. However, this is in contradiction with hypothesis (4.2.9) in the statement,
therefore T0(ℎ|Γm , r, m) ∉ �1(r, sm, m).

Case 2. We now assume that T0(ℎ|Γm , r, m) ∈ Σ(r, sm, m)∖�(r, sm, m). Up to chang-
ing the order of the vectors spanning Γm, by (6.3.1) without any loss of generality we can
suppose T0(ℎ|Γm , r, m) ∈ Σ1(r, sm, m)∖�(r, sm, m). Then, there must exist a sequence of
polynomials {Pk ∈ �1(r, sm, m)}k∈ℕ approaching T0(ℎ|Γm , r, m). To conclude the proof
of Case 2, we need the following

Lemma 8.1.1. There exist a sequence {Sk ∈ (r, n)}k∈ℕ converging to T0(ℎ, r, n) in
(r, n) and verifying Sk|Γm = Pk for any given k ∈ ℕ.

Proof. We indicate byA1,… , Am ∈ U(m, n) an orthonormal basis of Γm, and we choose
n − m orthonormal supplementary vectors Am+1,… , An to form a orthonormal basis
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of ℝn. In the coordinates (x1,… , xn) associated to A1,… , An, the restriction of any
polynomial Q ∈ (r, n) to the subspace Γm is obtained by simply setting xm+1 = ⋯ =
xn = 0 in the expression of Q. Conversely, any polynomial P (x1,… , xm) ∈ (r, m)
depending only on the first m variables is the projection on Γm of any polynomial Q ∈
(r, n) of the form Q(x1,… , xn) = P (x1,… , xm) + q(x1,… , xn), where q ∈ (r, n)
verifies q(x1,… , xm, 0) = 0.

By the above discussion and with slight abuse of notation, one can define the poly-
nomial

qℎ = qℎ(x1,… , xn) ∶= T0(ℎ, r, n)(x1,… , xn) − T0(ℎ|Γm , r, m)(x1,… , xm) (8.1.15)

which verifies qℎ(x1,… , xm, 0) = 0 by construction.
Then, for k ∈ ℕ, we consider the polynomials

Sk = Sk(x1,… , xn) ∶= Pk(x1,… , xm) + qℎ(x1,… , xn) , (8.1.16)

where {Pk}k∈ℕ is the sequence approaching T0(ℎ|Γm , r, m) introduced above. The se-
quence {Sk}k∈ℕ has the properties we seek. Infact, as qℎ(x1,… , xm, 0) = 0, on the one
hand Sk verifies

Sk|Γm = Sk(x1,… , xm, 0) = Pk ∀ k ∈ ℕ ; (8.1.17)

on the other hand, as Pk ⟶ T0(ℎ|Γm , r, m) by hypothesis, by taking (8.1.15) into ac-
count one has

Sk⟶T0(ℎ|Γm , r, m) + qℎ = T0(ℎ, r, n) . (8.1.18)

Since by Lemma 8.1.1 one has Sk|Γm = Pk, and since Pk ∈ �1(r, sm, m) by con-
struction, the same arguments developed at Case 1 yield that for any k ∈ ℕ the system

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1,… , um) ∈ U(m, n)

a(m) ∶= (a21,… , a2sm ,… , am1,… , amsm ) ∈ ℝ(m−1)×sm

v = u1 +
∑m
j=2 aj1 uj

(Sk)10[v] = (Sk)
1
0[u2] =⋯ = (Sk)10[um] = 0

Sk,0
m,l,�(v, u2,… , um, a(m, sm)) = 0 i = 1,… , m , � = 1,… , s

(8.1.19)

must be verified. However, this fact and the fact that, by Lemma 8.1.1, one also has
Sk ⟶ T0(ℎ, r, n), contradicts the hypotheses of Theorem B. Hence, we must have
T0(ℎ|Γm , r, m) ∉ Σ(r, sm, m)∖�(r, sm, m).

By the discussion at Cases 1-2 above, the assumptions of Theorem B imply that -
for any m-dimensional subspace Γm, with m ∈ {2,… , n − 1} - the Taylor polynomial
T0(ℎ|Γm , r, m) lies outside of Σ(r, sm, m). Hence T0(ℎ, r, n) ∈ (r, n)∖(r, sm, m, n).
This, together with (7.3.1) and Theorem A, concludes the proof.
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8.2 Proof of the Corollaries

8.2.1 Proof of Corollary B1

We start by studying the one-dimensional affine subspaces orthogonal to ∇ℎ(I0) ≠ 0.
Hypothesis (4.2.11) is equivalent to hypothesis (4.2.8) in TheoremBwith r = 3, s1 = 2,
whence the thesis.

On the other hand, for any fixed m ∈ {2,… , n − 1}, since G(m, n) and Sn are both
compact, by hypothesis (4.2.11) there exists �m > 0 such that for any m-dimensional
affine subspace I0+Γm orthogonal to ∇ℎ(I0), and for any vectorw ∈ Sn ∩Γm we have

ℎ1I0 [w] = 0 , |ℎ2I0 [w,w]| + |ℎ3I0 [w,w,w]| ≥ �m > 0 . (8.2.1)

By (8.2.1), ℎ matches the hypotheses at point ii) of Theorem B for r = 3 and sm = 2,
whence the thesis for affine subspaces of dimension higher or equal than two.

8.2.2 Proof of Corollary B2

In the proof of Theorem A we have set 
r,sn ∶=
⋃n−1
m=1 (r, sm, m, n) (see (7.3.1)). Fur-

thermore, formula (7.1.2) ensures that for any given function ℎ of class C2r−1 around
I0

TI0 (ℎ, r, n) ∈ (r, sm, m, n)
by definition
⟺

∃Γm∈G(m,n), Γm⟂∇ℎ(I0) s.t.
TI0 (ℎ|Γm ,r,m)∈Σ(r,sm,m)∶=�(r,sm,m)

. (8.2.2)

Since one is free to choose the order of the orthonormal vectors spanning Γm, without
any loss of generality we can also write

TI0 (ℎ, r, n) ∈ (r, sm, m, n) ⟺
∃Γm∈G(m,n), Γm⟂∇ℎ(I0) s.t.

TI0 (ℎ|Γm ,r,m)∈Σ
1(r,sm,m)∶=�

1(r,sm,m)
. (8.2.3)

In the proof of Theorem B, we have also seen that for any m ∈ {1,… , n − 1}, and
for any given subspace Γm ∈ G(m, n) orthogonal to ∇ℎ(I0), condition TI0 (ℎ|Γm , r, m) ∈
�1(r, sm, m) holds if and only if system (4.2.12) (if m = 1) or (4.2.13) (if m ≥ 2) admits
a solution when P is set to be the Taylor polynomial at order r of function ℎ.

By the above discussion, we have that, for any fixed m ∈ {1,… , n − 1}, condition
TI0 (ℎ, r, n) ∈ (r, sm, m, n) is equivalent to asking that TI0 (ℎ, r, n) belongs to the closure
in ⋆(r, n) of the set of polynomials solving system (4.2.12) (if m = 1) or system
(4.2.13) (for m ∈ {2,… , n − 1}).

The thesis follows by the arguments above and by (7.3.1).
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8.2.3 Proof of Corollary B3
By the proof of TheoremB, the conditions in i) and ii) amount to asking for the existence
of a real-analytic curve


(t) ∶=

{

wt for m = 1
(

t,
∑+∞
i=1 a2it

i,… ,
∑+∞
i=1 amit

i) for m = {2,… , n − 1}
(8.2.4)

whose image is contained in some m-dimensional subspace orthogonal to ∇ℎ(I0) ≠ 0,
and such that (�Γm∇ℎ)◦
 has a zero of infinite order at 
(0) = I0. By analyticity, then,
(�Γm∇ℎ)◦
 is identically zero. This implies by Definition 11.2.1 that ℎ is not steep.



Chapter 9

Partition of the set of
s-vanishing polynomials

The proof of Theorems C1-C2-C3 is quite long and requires intermediate results which
will be presented in this section. Before stating them, in the following two paragraphs
we will introduce some definitions and notations.

9.1 Initial setting
Consider three integers r, m ≥ 2, and s ∈ {2,… , r − 1}. In sections 6-7, we have indi-
cated byΣ(r, s, m) ⊂ (r, m) the closure of the set �(r, s, m) of s-vanishing polynomials.
In particular, by (6.2.9)-(6.2.10) one has

�(r, s, m) =
m
⋃

i=1
�i(r, s, m) , �i(r, s, m) ∶= Π(r,m)Z

i(r, s, m) ,

Σ(r, s, m) =
n
⋃

i=1
Σi(r, s, m) ∶=

n
⋃

i=1
�i(r, s, m) ∶=

n
⋃

i=1
Π(r,m)Z i(r, s, m) ,

(9.1.1)

where the setsZ i(r, s, m) ⊂ (r, m)×#im(s), with i ∈ {1,… , m}, are defined in (6.2.11),
and one has decomposition (6.2.12), namely

(r, m) × #m(s) ⊃ Z(r, s, m) =∶
m
⋃

i=1
Zi(r, s, m) .

The expression of the sets Zi(r, s, m), i ∈ {1,… , m}, is given explicitly 1 in Lemma
6.2.3.

1Actually, in Lemma 6.2.3, only the expression of Z1(r, s, m) is explicit. However, as it was already
pointed out in section 6, the cases i = 2,… , m are trivial generalizations of the case i = 1: in order to find
the expression of Z i(r, s, m) for i ≠ 1, one simply has to follow the same steps needed to find the expression
for Z1(r, s, m), and to exchange the rôle of the first coordinate with the i-th one.

117
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In the previous sections, we have seen that, in order to check if a given polynomial
Q ∈ (r, n) is steep at the origin2 on a fixed subspace Γm ∈ GQ(m, n) 3, one must
check whether the restriction P ∶= Q|Γm ∈ (r, m) belongs to the complementary
of Σ(r, s, m) ∶= �(r, s, m). We now claim that it is not strictly necessary to consider
the closure of the whole set �(r, s, m). Indeed, in practice, the curves on which the s-
vanishing condition must be tested are minimal arcs with uniform characteristics, like
the one defined in Theorem 5.0.1.

Namely, by the arguments in the proof of Lemma 7.2.3 - for any given Q ∈ (r, n)
and for any fixed Γm ∈ GQ(m, n), it is sufficient to check if there exists a threshold
�0 > 0 such that, for any 0 < � ≤ �0, there exists an interval I� ⊂ [−�, �] of length
�∕K 4, on which - for any curve 
 ∈ Θm verifying the Bernstein’s inequality (5.0.1) -
the composition (∇P )◦
 ∶= (∇Q|Γm )◦
 has no zeros of order greater or equal than s.
In particular, we are interested in testing the s-vanishing conditions on those analytic
curves 
 over I� that, for some i ∈ {1,… , m}, satisfy


(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1(t) =
∑+∞
k=1 a1k t

k

…
xi−1(t) =

∑+∞
k=1 a(i−1)k t

k

xi(t) = t
xi+1(t) =

∑+∞
k=1 a(i+1)k t

k

…
xm(t) =

∑+∞
k=1 amk t

k

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, max
u∈I�

max
j∈{1,…,m}

j≠i

|ajk(u)| ≤
M(r, n, m, k)

�k−1
.

(9.1.2)
By Theorem 5.0.1, the constant M = M(r, n, m, k) in (9.1.2) can be explicitly com-

puted and it is uniform for all curves 
 ∈ Θm.
As we have shown in the proof of Lemma 7.2.3, for any given P ∈ (r, m), the

threshold �0 - if it exists - goes to zero with the distance of P to the "bad" set �(r, s, m).
Therefore, by formula (9.1.2), the Taylor coefficients of the curves 
 on which the s-
vanishing condition must be tested may take any value, except for those of order one
which, independently from the choice of � > 0, are always uniformly bounded by
M(r, n, m, 1).

Inspired by the above reasonings, with the notations in (9.1.2), we give the following

Definition 9.1.1. For i = 1,… , m, we introduce the sets

Θ̂im ∶=

⎧

⎪

⎨

⎪

⎩


 ∈ Θim| max
j∈{1,…,m}

j≠i

{|aj1(0)|} ≤ M(r, n, m, 1)
⎫

⎪

⎬

⎪

⎭

(9.1.3)

2It is clear that the arguments devoped in the sequel hold also if the considered point is not the origin.
3The symbol GQ(m, n) was introduced in the proof of Lemma 7.2.2.
4More details about the threshold �0 are given in Lemma 7.2.3, whereas the constant K is the one intro-

duced in Theorem 5.0.1.
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and

Θ̂m ∶=
m
⋃

i=1
Θ̂im , (9.1.4)

and we denote respectively by #̂im(s) ⊂ #im(s) and by #̂m(s) ⊂ #m(s) their associated
subsets of s-truncations.

Remark 9.1.1. By formula (9.1.3), if one introduces the decomposition

#̂im(s) = #̂
i
m(1) × #̂

i
m(s, 2) (9.1.5)

as in (6.2.20), the space #̂im(1) is compact and #̂im(s, 2) ≡ #im(s, 2).

Definition 9.1.2. In section 6.2.3 (see formula (6.2.23)), we defined the set W 1(r, m)
as

W 1(r, m) ∶= ℱ 1((r, m) ×ℝm−1) , (9.1.6)

where the functionℱ 1 was defined in (6.2.21). Similarly, for any j ∈ {2,… , m}, taking
Remark 6.2.4 into account, we had set

W j(r, m) ∶= ℱ j((r, m) ×ℝm−1) . (9.1.7)

Now, by (9.1.3), for any i ∈ {1,… , m} it makes sense to define also

Ŵ i(r, m) ∶= ℱ i((r, m) × B
m−1

(0, M(r, n, m, 1))) . (9.1.8)

We remind that, due to Definition 9.1.1 and to Remark 6.2.3, for any given i ∈
{1,… , m} there exists a polynomial bijectionUi between(r, m)×#̂im(1) and Ŵ

i(r, m):
one is free to work either in the standard coordinates of (p�, a) ∈ ℝM × ℝ(m−1)s, with
M ∶= dim(r, m), or in the adapted coordinates of (p�, a) ∈ Ŵ i(r, m).

By the arguments above, without any loss of generality, for any fixed i ∈ {1,… , m}
it is sufficient to consider the set of those polynomials P ∈ (r, m) verifying the s-
vanishing condition on the s-jets,
 ∈ #̂im(s) of some curve 
 ∈ Θ̂im. Namely, following
(6.2.11) and (9.1.1), for i = 1,… , m we introduce the semi-algebraic sets

Ẑ i(r, s, m) ∶={(P , ̂s,
 ) ∈ (r, m) × #̂im(s)}|(P , ̂s,
 ) satisfies

qil�◦Φ
i(P , ̂s,
 ) = 0 for all l ∈ {1, ..., m}, � ∈ {0, ..., s}}

Ẑ(r, s, m) ∶=
m
⋃

i=1
Ẑi(r, s, m)

�̂i(r, s, m) ∶=Π(r,m)Ẑ
i(r, s, m) , �̂(r, s, m) =

m
⋃

i=1
�̂i(r, s, m)

Σ̂(r, s, m) ∶=
n
⋃

i=1
Σ̂i(r, s, m) ∶=

n
⋃

i=1
closure

(

�̂i(r, s, m)
)

(9.1.9)
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and, of course, we have

Ẑi(r, s, m) ⊂ Zi(r, s, m) , �̂i(r, s, m) ⊂ �i(r, s, m) ∀ i ∈ {1,… , m}. (9.1.10)

For further convenience, we also state the following simple

Lemma 9.1.1. �̂(r, s, m) has codimension s + m = codim �(r, s, m) in (r, m).

Proof. By the third line of (9.1.9) and by the second inclusion in (9.1.10), it suffices to
prove the statement for �̂1(r, s, m). By the first line of (9.1.9) and by Definition 9.1.1,
one has

Ẑ1(r, s, m) = Z1(r, s, m)
⋂

{

(P ,s,
 ) ∈ (r, m) × #̂1m(s)
}

. (9.1.11)

As it was shown in Corollary 6.2.1, the Jacobian associated to the equalities deter-
mining Z1(r, s, m) has full rank ms + m. Namely, by the discussion below expression
(6.2.60), in the adapted coordinates of section 6.2.3, such a Jacobian has non-zero pivots
corresponding to the derivatives w.r.t. the coefficients of the polynomial Pa associated
to multi-indices in the family (6.2.35). As we had shown in the proof of Corollary 6.2.1,
this fact and the Implicit Function Theorem imply that for any pair (P ,s,
 ) belonging
to Z1(r, s, m), one can express ms + m coefficients of P as implicit functions of the
other coefficients of P and of the (m − 1)s parameters of s,
 . This was the argument
that led to estimate codim �1(r, s, m) = s + m in Corollary 6.2.1. The thesis follows
by putting together this argument with formulas (9.1.9)-(9.1.11) and with the fact that
dim #1m(s) = dim #̂

1
m(s).

9.2 Partition of (r, m) and Ŵ 1(r, m)

Let r, m ≥ 2 be two integers. In this paragraph, we introduce a partition of the spaces
(r, m) and Ŵ 1(r, m) which will turn out to be useful in the sequel. In order to do this,
we first need to introduce a family of multi-indices.

9.2.1 A family of multi-indices

For b, c ∈ {2,… , m}, b ≤ c 5, we set

$(b, c) ∶= � = (�1,… , �m) ∈ ℕm | �1 = 0 , �j = �jb + �jc ∀j ∈ {2,… , m} .
(9.2.1)

5We have set b ≤ c in (9.2.1) only for convenience, in order not to have two indices b, c corresponding to
the same multi-index � ∈ ℕm. Infact, it is clear that if we eliminate this constraint we have$(b, c) = $(c, b)
for all b, c ∈ {2,… , m}.
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Comparing (9.2.1) with the sub-family �(i, 1) defined in (6.2.35), it is plain to check
that one has the disjoint union

⎛

⎜

⎜

⎜

⎝

m
⋃

b,c=2
b≤c

{$(b, c)}

⎞

⎟

⎟

⎟

⎠

⨆

( m
⋃

i=1
{�(i, 1)}

)

= {� ∈ ℕm | |�| = 2} . (9.2.2)

Moreover, we have the following

Lemma 9.2.1. For any polynomial P ∈ (r, m), the coefficients p� associated to the
multi-indices � belonging to the family (9.2.1) are invariant under the transformations
of paragraph 6.2.3. Namely, using the notations in (6.2.16), for any given a ∈ #̂1m(1)
one has

p$(b,c) = p$(b,c) for all b, c ∈ {2,… , m} , b ≤ c .

Proof. We indicate by A1,… , Am the orthonormal basis of ℝm associated to the coor-
dinates x1,… , xm on which polynomials in (r, m) depend.

For any a ∶= (a21,… , am1) ∈ #̂1m(1), we also denote by

va ∶= A1 + a21A2 + a31A3 + ... + am1Am , u2 ∶= A2 , ... , um ∶= Am , (9.2.3)

the basis associated to the adapted variables defined in Section 6.2.3 (see (6.2.13)),
namely

y1 ∶= x1 , y2 = y2(a) ∶= x2 − a21 x1 … ym = ym(a) ∶= xm − am1 x1 .
(9.2.4)

By (6.2.16), (6.2.35) and (9.2.2), the quadratic terms of the transformed polynomial Pa
read

⎧

⎪

⎨

⎪

⎩

p�(1,1)y
2
1 = p�(1,1)x

2
1

p�(l,1)y1yl = p�(l,1)x1(xl − al1x1) l = 2,… , m
p$(j,l)yjyl = p$(j,l)(xj − aj1x1)(xl − al1x1) j,l = 2,… , m , j ≤ l .

(9.2.5)

By expression (9.2.5), we infer that - in the original variables x1,… , xm - for any
j,l ∈ {2,… , m}, j ≤ l, the coefficient associated to the monomial xjxl is p$(j,l),
that is p$(j,l) = p$(j,l) .

9.2.2 Partition
For any P ∈ (r, m), we set

ℍ1(P ) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

2p$(2,2) p$(2,3) … p$(2,m)
p$(2,3) 2p$(3,3) … p$(3,m)
… … ⋱ …

p$(2,m) p$(3,m) … 2p$(m,m)

⎞

⎟

⎟

⎟

⎟

⎠

(9.2.6)
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and
S11(r, m) ∶= {P ∈ (r, m)| det ℍ1(P ) ≠ 0} . (9.2.7)

Remark 9.2.1. Matrix ℍ1(P ) is invariant under the transformations of section 6.2.3.
Namely, by Lemma 9.2.1, we have

ℍ1(Pa) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

2p$(2,2) p$(2,3) … p$(2,m)
p$(2,3) 2p$(3,3) … p$(3,m)
… … ⋱ …
p$(2,m) p$(3,m) … 2p$(m,m)

⎞

⎟

⎟

⎟

⎟

⎠

= ℍ1(P ) . (9.2.8)

We also define

S12(r, m) ∶= (r, m)∖S11(r, m) = {P ∈ (r, m)| det ℍ1(P ) = 0} , (9.2.9)

so that we can write the disjoint union

(r, m) = S11(r, m)
⨆

S12(r, m) . (9.2.10)

We now consider the images of S11(r, m) and S
1
2(r, m) through the transformationU1

defined in Remark 6.2.3, namely

S 11 (r, m) ∶= U
1
(

S11(r, m) × #̂
1
m(1)

)

=
{

(Pa, a) ∈ Ŵ 1(r, m)| det ℍ1(Pa) ≠ 0
}

S 12 (r, m) ∶= U
1
(

S12(r, m) × #̂
1
m(1)

)

=
{

(Pa, a) ∈ Ŵ 1(r, m) | det ℍ1(Pa) = 0
}

.

(9.2.11)

By (9.2.11), we have the partition

Ŵ 1(r, m) = S 11 (r, m)
⨆

S 12 (r, m) . (9.2.12)

Remark 9.2.2. It is clear that the above partition can be implemented also in case one
considers adapted variables (Pa, a) ∈ Ŵ i(r, m), with i ∈ {2,… , m}. By suitably mod-
ifying the family of indices in (9.2.1), as well as by introducing an adapted matrix
ℍi(P ) = ℍi(P ), it is possible to define sets Si1, S

i
2 whose disjoint union yields (r, m)

and sets S i1,S
i
2 whose disjoint union yields Ŵ

i(r, m). However, the underlying reason-
ings are not conceptually different from the ones we did above, therefore we omit them
in order not to burden the exposition.

9.3 Two important results
Consider three integers r, m ≥ 2 and s ∈ {1,… , r − 1}. The two results below are the
cornerstones of the proof of Theorems C1-C2-C3.
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Theorem 9.3.1. In case r ≥ 2, s = 1, for any i ∈ {1,… , m} the semi-algebraic sets
�̂i(r, 1, m), and �̂(r, 1, m) are closed in (r, m), that is, by formulas (9.1.9),

�̂i(r, 1, m) = Σ̂i(r, 1, m) ∀ i ∈ {1,… , m} , �̂(r, 1, m) = Σ̂(r, 1, m) .

Moreover, for any i ∈ {1,… , m}, taking the definition of transformationΥi into account
(see (6.2.25)), the set ΠŴ i(r,m)Υ

i(Ẑ i(r, 1, m)) is closed in Ŵ i(r, m), and its form can be
explicitly computed.

Theorem 9.3.2. For any given values of r ≥ 3, s ≥ 2, and i ∈ {1,… , m} there exist
two semi-algebraic subsets of (r, m)

Xi
1(r, s, m) ⊂ S

i
1(r, m) , X

i
2(r, s, m) ⊂ S

i
2(r, m) , (9.3.1)

and two semi-algebraic subsets of Ŵ i(r, m)

Y i1 (r, s, m) ⊂ S
i
1(r, m) , Y

i
2 (r, s, m) ⊂ S

i
2(r, m) , (9.3.2)

satisfying the following properties:

1. for j ∈ {1, 2}, one has

Xi
j(r, s, m) = Π(r,m)

(

(U1)−1(Y ij (r, s, m))
)

,

where U1 was defined in Remark 6.2.3;

2. Y i1 (r, s, m) is closed in S
i
1(r, m) for the induced topology;

3. Xi
1(r, s, m) is closed in S

i
1(r, m) for the induced topology;

4. one has the partition �̂i(r, s, m) = Xi
1(r, s, m)

⨆

Xi
2(r, s, m) ;

5. the form of Y i1 (r, s, m) can be explicitly computed by the means of an algorithm
involving only linear operations.

The rest of this section is devoted to the proof of the above results.
We will only prove Theorems 9.3.1-9.3.2 in the case i = 1, as the other cases are

simple generalizations.

9.3.1 Strategy of proof of Theorems 9.3.1-9.3.2.
We have seen in section 6 that the equations determining Z1(r, s, m), can be written in
the adapted coordinates introduced in section 6.2.3. Namely, by recalling the functions

Qi�(Pa, a, Js,
,a) ∶ W 1(r, m)×ℝ(m−1)(s−1)⟶ ℝ , i ∈ {1,… , m} � ∈ {0,… , s} ,
(9.3.3)
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presented in (6.2.32)-(6.2.33), Lemma 6.2.3 ensures thatZ1(r, s, m) is the image through
the inverse of the transformation Υ1 in (6.2.26) of the zero set

⋂

i∈{1,…,m}
�∈{0,…,s}

{(Pa, a, Js,
,a) ∈ W 1(r, m) ×ℝ(m−1)(s−1)|Qi�(Pa, a, Js,
,a) = 0} . (9.3.4)

Then, if we indicate by Q̂i�(Pa, a, Js,
,a) the restriction of Qi�(Pa, a, Js,
,a) to the

subset Ŵ 1(r, m) × #1m(s, 2), and if we denote by N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

)

the zero set of

the non-linear maps {Q̂i�}i∈{1,…,m}
�∈{0,…,s}

, it is clear by the discussion at paragraph 9.1, in

particular by (9.1.11), that

Ẑ1(r, s, m) ∶= (Υ1)−1
(

N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

))

(9.3.5)

that is

Υ1(Ẑ1(r, s, m)) = N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

)

. (9.3.6)

Taking (9.3.6) and the third line of (9.1.9) into account, the key idea behind the
proof of Theorems 9.3.1-9.3.2 consists in understanding under which conditions the set
Υ1(Ẑ1(r, s, m)) admits a closed projection onto Ŵ 1(r, m).

Namely, we assume the existence of a semi-algebraic subset of polynomials

S10(r, s, m) ⊂ (r, m) (9.3.7)

for which it is possible to extrapolate linearly from the ms + m equations in (9.3.6)
the (m − 1)s parameters of #1m(s, 2) as explicit algebraic functions of the parameters of
Ŵ 1(r, m).

Remark 9.3.1. The fact of being able to reduce linearly the coefficients of #1m(s, 2) from
(9.3.6) may in principle depend also on the values of the parameters a ∈ #̂1m(1), so
that the set in (9.3.7) should depend also on a. Moreover, for the moment we have no
elements that allow us to establish that a semi-algebraic set S10(r, s, m)with the required
properties exists. In order to understand the sequel, we stress that here we simply make
a working hypothesis on the existence of a semi-algebraic subset S10(r, s, m) on which it
is possible to reduce linearly the parameters of #1m(s, 2) from (9.3.6) independently of
the value of the parameter a ∈ #̂1m(1). The validity of this hypothesis will be verified in
the sequel.

Then, we introduce

A(r, s, m) ∶=N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

)

⋂

Υ1(S10(r, s, m) × #̂
1
m(s)) , (9.3.8)
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and we remind that, by Remark 6.2.3,

Υ1(S10(r, s, m) × #̂
1
m(s)) = U

1(S10(r, s, m) × #̂
1
m(1)) × #

1
m(s, 2) . (9.3.9)

We can now state

Lemma 9.3.1. With the setting above, the two following properties hold:

1. the projection
A′(r, s, m) ∶= ΠŴ 1(r,m)A(r, s, m)

is a semi-algebraic subset which is closed in U1(S10(r, s, m) × #
1
m(1)) for the in-

duced topology;

2. the projection Π(r,m)
(

(U1)−1(A′(r, s, m))
)

is a semi-algebraic subset which is
closed in S10(r, s, m) for the induced topology.

Proof.
Step 1. By construction, at any point of U1(S10(r, s, m) × #̂

1
m(1)) × #

1
m(s, 2) the (m−

1)(s − 1) parameters of the space #1m(s, 2) can be reduced explicitly from the ms +
m algebraic equations in (9.3.6) with the help of linear algorithms. This means that
A(r, s, m) is determined by a system of ms+m− (m− 1)(s− 1) = s+ 2m− 1 algebraic
equations involving only the coordinates of U1(S10(r, s, m) × #̂

1
m(1)), and of (m− 1)(s−

1) algebraic equations that parametrize the coefficients of #1m(s, 2) as functions of the
points in U1(S10(r, s, m) × #̂

1
m(1)). In other words, A(r, s, m) has the form of a graph of

the type

A(r, s, m) = A′(r, s, m) × �(r, s, m) , (9.3.10)

where A′(r, s, m) ∶= ΠŴ 1(r,m)A(r, s, m) is a closed subset of U1(S10(r, s, m) × #̂
1
m(1))

for the induced topology determined by algebraic equations involving the coordinates
of elements in U1(S10(r, s, m) × #̂

1
m(1)), and the points of �(r, s, m) ⊂ #1m(s, 2) are

parametrized by A′(r, s, m).
Moreover, by Remark 6.2.3 the functionU1 is polynomial, and we have assumed as

a working hypothesis that S10(r, s, m) is semi-algebraic in (r, m) (see Remark 9.3.1).
Therefore, by (9.3.8)-(9.3.9) the set A(r, s, m) is semi-algebraic in Ŵ 1(r, m) × #1m(s, 2),
and A′(r, s, m) is semi-algebraic in Ŵ 1(r, m) by the Theorem of Tarski and Seidenberg
A.1.1.

Step 2. Since the invertible transformation U1 defined in Remark 6.2.3 is polyno-
mial, due to Step 1 and to continuity we have that the inverse image

(U1)−1(A′(r, s, m)) ⊂ S10(r, m) × #̂
1
m(1) (9.3.11)

is closed in S10(r, m) × #̂
1
m(1) for the induced topology. Finally - taking into account the

fact that, as we have already pointed out in Remark 9.1.1, #̂1m(1) is compact - Lemma
C.2.1 ensures that the projection

Π(r,m)
(

(U1)−1(A′(r, s, m))
)

(9.3.12)
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is closed in S10(r, s, m) for the induced topology.
The semi-algebraicness of the projection in (9.3.12) is a consequence of the semi-

algebraicness of A′(r, s, m) demonstrated at Step 1, of the fact that U1 is polynomial,
and of the Theorem of Tarski and Seidenberg.

Corollary 9.3.1. In case S0(r, s, m) ≡ (r, m), the subsets

A′(r, s, m) , Π(r,m)
(

(U1)−1(A′(r, s, m))
)

= �̂1(r, s, m) .

are both closed in Ŵ 1(r, m) and (r, m), respectively.
In particular, one has �̂1(r, s, m) = Σ̂1(r, s, m).

Proof. It is immediate by (9.3.8) and (9.3.6) that if S0(r, s, m) ≡ (r, m) then

A(r, s, m) ∶= N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

)

= Υ1(Ẑ1(r, s, m)) .

The thesis follows by considering the above expression together with (9.1.9) and Lemma
9.3.1.

Corollary 9.3.2. The same result of Lemma 9.3.1 holds if one considers a semi-algebraic
subset S̃10(r, m) ⊂ S10(r, m). One just has to replace S10(r, m) with S̃

1
0(r, m) in the state-

ment.

Proof. One just needs to follow the same steps in the proof of Lemma 9.3.1 and to
consider S̃10(r, m) instead of S10(r, m).

By the above reasonings, the goal in the next paragraphs is to study in depth the
form of the equations in (9.3.4)-(9.3.6) in order to see in which cases the parameters
of #1m(s, 2) can be reduced by the means of linear algorithms. For i ∈ {1,… , m}, and
� ∈ {0,… , s}, the explicit expressions of the functions Qi�(Pa, a, Js,
,a) are given in
formulas (6.2.39)-(6.2.40) of Lemma 6.2.3.

As we shall see, the linear reduction of the parameters of #1m(s, 2) is always possible
in case r ≥ 2, s = 1, or r ≥ 3, s = 2, in other words in this regime one has S10(r, s, m) ≡
(r, m).

For r ≥ 4, s ≥ 3, the linear reduction of #1m(s, 2) is possible for polynomials belong-
ing to set S11(r, m) in (9.2.7), that is S

1
0(r, s, m) ⊃ S

1
1(r, m).

9.3.2 Proof of Theorem 9.3.1.
When s = 1, then in (6.2.39)-(6.2.40) one must consider � ∈ {0, 1}. We observe that

∀ � ∈ {0, 1} , ∀i = 1,… , m Q̂i�(Pa, a, Js,
,a) = 0 ⟺ p�(i,�) = 0 ,
(9.3.13)
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where the family of multi-indices �(i, �) was defined in (6.2.35). As we see, no pa-
rameters belonging to the space #1m(s, 2) appear in (9.3.13), so that with the notations
of paragraph 9.3.1, we have S10(r, 1, m) ≡ (r, m) and (9.3.13) corresponds to the ex-
plicit expression of the closed set A′(r, 1, m). Moreover, by Corollary 9.3.1, �̂1(r, 1, m)
is closed in (r, m) and, by (9.1.9), one has �̂1(r, 1, m) = Σ̂1(r, 1, m).

This proves the statement of Theorem 9.3.1 for r ≥ 2, s = 1.

9.3.3 Explicit form of the equations (case r ≥ 3, s ≥ 2)

The goal of this paragraph is to give amore explicit expression ofN
(

{Q̂i�}i∈{1,…,m}
�∈{0,1}

)

,

in case r ≥ 3, s ≥ 2.

Remark 9.3.2. We remind that equations (6.2.39)-(6.2.40) are recursive w.r.t. the pa-
rameters of the curve 
 . Namely, for any given integer � ∈ {2,… , s}, the coefficients
of order � belonging to the space #1m(s, 2) - that is a22,… , a2� ,… , am2,… , am� - appear
in equations (6.2.39)-(6.2.40) only for � ≥ �.

For any polynomial P ∈ (r, m) and any curve 
 ∈ Θ̂1m, we indicate by P
(>2)
a the

associated polynomial Pa written in the adapted coordinates for 
 (see paragraph 6.2.3)
deprived of its monomials of degree less or equal than two 6. Also, if s,
 ∈ #̂1m(1) is
the s-truncation of 
 , for any given � ∈ {2,… , s} we denote by

Js,
,a
(<�)(t) ∶= Js,
,a −

⎛

⎜

⎜

⎜

⎜

⎝

0
∑s
i=� a2it

i

…
∑s
j=� amj t

j

⎞

⎟

⎟

⎟

⎟

⎠

its truncation at order � − 1 written in the adapted coordinates for 
 .

Remark 9.3.3. We observe that, for � = 2, Js,
,a(<2)(t) reduces to the line (t, 0,… , 0),
since with the exception of the parametrizing coordinate, the components of Js,
,a start
at order two in t (see paragraph 6.2.3).

With this setting, we have

Lemma 9.3.2. For any polynomial P ∈ (r, m), there exists a linear change of co-
ordinates D = D(P ) ∶ ℝm ⟶ ℝm such that for any given � ∈ {2,… , s}, and for
i = 1,… , m, the algebraic equations Q̂i�(Pa, a, Js,
,a) = 0 in (6.2.39)-(6.2.40) take the

6One has P(>2)a ≠ 0 since we are considering the case of polynomials having degree r ≥ 3.
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form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0
0 2p′$(2,2) 0 … 0
0 0 2p′$(3,3) … 0
0 … … … …
0 0 0 … 2p′$(m,m)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
a′2�
a′3�
…
a′m�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+D

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q̂1�

(

P
(>2)
a , Js,
,a(<�)

)

Q̂2�

(

P
(>2)
a , Js,
,a(<�)

)

Q̂3�

(

P
(>2)
a , Js,
,a(<�)

)

…
Q̂m�

(

P
(>2)
a , Js,
,a(<�)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 .

(9.3.14)

Proof. Step 1. We firstly claim that equations (6.2.39)-(6.2.40) can be but into the form

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0
0 2p$(2,2) p$(2,3) … p$(2,m)
0 p$(2,3) 2p$(3,3) … p$(3,m)
0 … … … …
0 p$(2,m) p$(3,m) … 2p$(m,m)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
a2�
a3�
…
am�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q̂1�

(

P
(>2)
a , Js,
,a(<�)

)

Q̂2�

(

P
(>2)
a , Js,
,a(<�)

)

Q̂3�

(

P
(>2)
a , Js,
,a(<�)

)

…
Q̂m�

(

P
(>2)
a , Js,
,a(<�)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 .

(9.3.15)
By (9.3.13), for any � ∈ {2,… , s}, and for any i, j ∈ {1,… , m}, the monomials

p�(j,0), p�(j,1) do not yield any contribution to equations Qi�(Pa, a, Js,
,a) = 0. There-
fore, taking (9.2.2) into account, the only monomials of order two which may appear
in equation Qi�(Pa, a, Js,
,a) = 0 are those associated to the multi-indices$(b, c), with
b, c ∈ {2,… , m}, b ≤ c.

Moreover, fixing the values of i ∈ {1,… , m} and � ∈ {2,… , s}, by (6.2.39)-
(6.2.40), the multi-indices � ∈ ℕm contributing to equation Q̂i�(Pa, a, Js,
,a) = 0 are
those for which the set m(�̃(i), �) in (6.2.37) is non-empty. This amounts to requir-
ing that the components of the vector (k22,… , k2� ,… , km2,… , km�) ∈ ℕ(m−1)(�−1)
appearing in formulas (6.2.39)-(6.2.40) satisfy

�
∑

i=2
kji = �̃j(i) ∀j ∈ {2,… , m} , �̃1(i) +

m
∑

j=2

�
∑

i=2
i kji = � . (9.3.16)

In particular, for fixed i ∈ {1,… , m}, � ∈ {2,… , s} and l ∈ {2,… , m}, if we look at
the monomials containing the coefficient al� in equation Q̂i�(Pa, Js,
,a) = 0 - that is, at
the form of the terms for which kl� ≠ 0 in (6.2.39)-(6.2.40) - by (9.3.16) we must have

�̃1(i) = 0 , kji = �i��jl , �̃j(i) = �jl , j ∈ {2,… , m} . (9.3.17)

Firstly, expression (9.3.17) implies |�| = 2. Secondly, as we said above, the only multi-
indices of length |�| = 2 which may yield a contribution to Qi�(Pa, a, Js,
,a) = 0 are
those belonging to the family {$(b, c)}b,c∈{2,…,m}b≤c in (9.2.1). Therefore, we have
two cases.
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Case i = 1. If � ∈ {$(b,l)}b,l∈{2,…,m}b≤l then �1 = 0, and all terms in formula
(6.2.39) which are associated to these indices are multiplied by zero. Hence, the coeffi-
cients al� do not appear in Q̂1�(Pa, a, Js,
,a) = 0, nor do any of the monomials of order
two in Pa. This, together with Remark 9.3.2 proves the claim for i = 1 (the first line of
(9.3.15)).

Case i ∈ {2,… , m}. Taking (9.3.17) into account, for any given l ∈ {2,… , m}
one has that

1. if i ≤ l, the only term to which the coefficient al� is associated in equation
Q̂i�(Pa, a, Js,
,a) = 0 is the one corresponding to the multi-index � ∈ $(i,l),
that is, by (6.2.40), the monomial (1 + �li)p$(i,l)al�;

2. if i > l, the term containing al� is the one associated to the multi-index � ∈
$(l, i), that is, by (6.2.40), (1 + �li)p$(l,i)al� .

Conversely, if a monomial associated to an index $(i,l), with i,l ∈ {2,… , m},
i ≤ l, appears in equations Q̂i�(Pa, a, Js,
,a) = 0, then, by (9.2.1) and by (9.3.16), one
must necessarily have

{

�̃1(i) +
∑m
j=2

∑�
i=2 i kji = � , �̃1(i) = 0

∑�
i=2 kji = �̃j(i) ∶= �jl + �ji − �ji = �jl ∀j ∈ {2,… , m} ,

(9.3.18)

which is true if and only if for some v ∈ {2,… , �} one has
{

kji = �jl�iv
∑m
j=2

∑�
i=2 i �jl�iv = �

(9.3.19)

that is if and only if kji = �jl�i� . One can check by formula (6.2.40) that this ensures
that such a term must be of the form (1+ �li)p$(i,l)al� . This reasoning, together with
Remark 9.3.2, and with the fact that - as we showed at the beginning of the proof -
no monomials of order two appear in equation Q̂i�(Pa, a, Js,
,a) = 0 other than those
associated to the family (9.2.1), proves the claim for i ∈ {2,… , m} (lines 2,… , m of
(9.3.15)).

Step 2. For any P ∈ (r, m), taking Lemma 9.2.1 into account we indicate by
G1(P ) the matrix

⎛

⎜

⎜

⎜

⎜

⎝

0 0 … 0
0 2p$(2,2) … p$(2,m)
0 … ⋱ …
0 p$(2,m) … 2p$(m,m)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 … 0
0 2p$(2,2) … p$(2,m)
0 … ⋱ …
0 p$(2,m) … 2p$(m,m)

⎞

⎟

⎟

⎟

⎟

⎠

=
(

0 0
0 ℍ1(P )

)

(9.3.20)
appearing in (9.3.15). G1(P ) is symmetric, hence diagonalizable. Hence, for any P ∈
(r, m), there exist a basis of eigenvectors, indicated by

va, u
′
2 = u

′
2(P ),… , u′m = u

′
m(P ) , (9.3.21)
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and a realm×m invertible matrixD = D(P ), such that equation (9.3.14) takes the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 … 0
0 2p′$(2,2) 0 … 0
0 0 2p′$(3,3) … 0
0 … … … …
0 0 0 … 2p′$(m,m)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
a′2�
a′3�
…
a′m�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+D

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q1�

(

P
(>2)
a , Js,
,a(<�)

)

Q2�

(

P
(>2)
a , Js,
,a(<�)

)

Q3�

(

P
(>2)
a , Js,
,a(<�)

)

…
Qm�

(

P
(>2)
a , Js,
,a(<�)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 ,

(9.3.22)
where the primed quantities indicate that we are working in the new basis (9.3.21).
Remark 9.3.4. Comparing (9.2.3) with (9.3.21), we observe that the vector va was left
unchanged. This is due to the fact that, by (9.3.20), va is already an eigenvector of
G1(P ) (associated to a null eigenvalue).

9.3.4 Proof of Theorem 9.3.2
For r ≥ 3, s ≥ 2, we define

X1
1 (r, s, m) ∶= �̂

1(r, s, m)
⋂

S11(r, m) . (9.3.23)

Firstly, we show that, if P ∈ S11(r, m), then the parameters of the space #1m(s, 2) can
be reduced iteratively from equation (9.3.14) for � ∈ {2,… , s}.

When � = 2 the second term at the l.h.s. of (9.3.14) does not depend on the param-
eters of #1m(s, 2) (see Remark 9.3.3), so that the coefficients a22,… , am2 can be reduced,
as matrix ℍ1(P ) is invertible by construction.

If, for � ∈ {3,… , s}, we assume that the parameters aj� , with j ∈ {2,… , m}
and � ∈ {2,… , � − 1}, have been reduced, then the first equation in (9.3.14) does not
contain any new parameter, whereas the terms a2� ,… , am� can be found by inverting
ℍ1(P ) once again.

The above considerations and (9.3.23) imply that if P ∈ X1
1 (r, s, m) then

1. the parameters of the space #1m(s, 2) can be reduced from the equations in (9.3.14)
by the means of a recursive algorithm which only involves linear computations
and the inversion of ℍ1(P );

2. there exists a truncation s,
 ∈ #1m(s) such that U1(P × s,
 ) = (Pa, a, Js,
,a)
solves (9.3.14).

Taking (9.3.8) and the above arguments into account, with the notations of section
9.3.1 we have that

1. S11(r, m) ⊂ S
1
0(r, s, m) for all s ≥ 2;
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2. by the previous point and by Corollary 9.3.2, the projection

Y 11 (r, s, m) ∶= ΠŴ 1(r,m)

(

N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

)

⋂

Υ1(S11(r, m) × #̂
1
m(s))

)

is closed inU1(S11(r, m)× #̂
1
m(1)) =∶ S

1
1 (r, m) for the induced topology and semi-

algebraic in Ŵ 1(r, m). Moreover, still by Corollary 9.3.2, taking into account
(9.3.23) the projection

Π(r,m)
(

(U1)−1(Y 11 (r, s, m))
)

= �̂1(r, s, m)
⋂

S11(r, m) =∶ X
1
1 (r, s, m)

is a semi-algebraic subset of (r, m), closed in S11(r, m) for the induced topology;

3. as, due to (9.3.13), for � = 0, 1 no parameters of #1m(s, 2) appear in the equations
determining the set in (9.3.6), and as for any P ∈ S1(r, m) the parameters of
#1m(s, 2) can be reduced recursively from (9.3.14) by a linear algorithm when
2 ≤ � ≤ s, the form of Y 11 (r, s, m) can be obtained by performing solely linear
operations.

The above arguments prove Theorem 9.3.2 once one sets

X1
2 (r, s, m) ∶= �̂

1(r, s, m)∖X1
1 (r, s, m)

Y 12 (r, s, m) ∶= ΠŴ 1(r,m)

(

N
(

{Q̂i�}i∈{1,…,m}
�∈{0,…,s}

))

∖Y 11 (r, s, m) .
(9.3.24)
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Chapter 10

Proof of Theorems C1-C2-C3

We assume the notations of section 9. In this context, we are considering two positive
integers r ≥ 2, n ≥ 3, a vector s ∶= (s1,… , sn−1) ∈ ℕn−1, with 1 ≤ si ≤ r − 1 for all
i = 1,… , n−1, and a function ℎ of classC2r−1b around the origin, satisfying∇ℎ(0) ≠ 0.

Also, for any m ∈ {2,… , n − 1}, we set K (r, n, m) ∶= M(r, n, m, 1), where the
constant M(r, n, m, 1) was defined in Lemma 5.0.1 (see formula 5.0.1).

10.1 Proof of Theorem C1

Fix m ∈ {2,… , n − 1}. Let Γm be a m-dimensional subspace belonging to the subset
0(ℎ,m, n) ⊂ G(m, n) introduced in Definition 4.2.1.

Taking Definition 9.1.3 into account, we consider a curve 
 ∈ Θ̂m whose image is
contained in Γm. Without any loss of generality, up to changing the order of the vectors
spanning Γm, we can suppose that 
 is parametrized by the first coordinate, hence that

 ∈ Θ̂1m. Following (9.1.2), we indicate by a = (a21,… , am1) ∈ B

m−1
(0,K (r, n, m))

the linear Taylor coefficients of 
 at the origin, and by s,
 its s-truncation (with 1 ≤
s ≤ r − 1).

We also indicate by u1,… , um ∈ U(m, n) a orthonormal basis spanning Γm, and
by v ∶= u1 +

∑m
i=2 ai1ui, u2… , um the basis associated to the adapted coordinates for 


introduced in section 6.2.3. As we have already shown in (8.1.3), the Taylor polynomial
T0(ℎ, r, n) restricted to Γm written in the adapted coordinates reads

T0,a(ℎ|Γm , r, m)(y) =
∑

�∈ℕm
1≤|�|≤r

1
�!
ℎ|�|0

[

�1
⏞⏞⏞
v ,

�2
⏞⏞⏞
u2 ,… ,

�m
⏞⏞⏞
um

]

y
�1
1 … y�mm ,

(10.1.1)
where we have used the notation introduced in formula (3.0.2). Moreover, as customary,
s,
 reads Js,
,a in the new coordinates.

133
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By the arguments at paragraph 9.1, and by taking (6.2.25) and (9.1.9) into account,
if we manage to prove that condition

(T0,a(ℎ|Γm , r, m), a, J1,
,a) ∈ Υ1(Ẑ1(r, 1, m))

is never satisfied for any choice of the curve 
 , which is equivalent - due to Theorem
9.3.1 for s = 1 - to condition

T0(ℎ|Γm , r, m) ∉ �̂1(r, 1, m) = Σ̂1(r, 1, m) ,

then by the definitions in (7.1.1)-(7.1.2) we have

T0(ℎ, r, n) ∈ (r, n)∖(r, 1, m, n)

and the thesis follows by putting the expression above together with (7.3.1) and Theorem
A.

By Lemma 6.2.3 and by (6.2.33), condition

(T0,a(ℎ|Γm , r, m), a, J1,
,a) ∉ Υ1(Ẑ1(r, 1, m))

is equivalent to asking that system

Qi�(T0,a(ℎ|Γm , r, m), a, J1,
,a) = 0 ∀ i ∈ {1,… , m} , ∀� ∈ {0, 1} , (10.1.2)

has no solution. Then, by expressions (8.1.8)-(8.1.9), the system in (10.1.2) is not sat-
isfied if and only if

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(u1,… , um) ∈ U(m, n) , Span (u1,… , um) = Γm

(a21,… , am1) ∈ B
m−1

(0,K (r, n, m)) , v ∶= u1 + a21u2 +⋯ + am1um
ℎ10[v] = ℎ

1
0[u2] =⋯ = ℎ10[um]

ℎ20[v, v] = ℎ
2
0[v, u2] =⋯ = ℎ20[v, um] = 0

(10.1.3)
has no solution.

By construction, the hessian of the restriction ℎ|Γm has no null eigenvalues, so that
system (10.1.3) admits no solution and T0(ℎ|Γm , r, m) ∉ Σ̂1(r, 1, m) as wished. This
concludes the proof.

10.2 Proof of Theorem C2

10.2.1 Case of a subspace belonging to 1(ℎ,m, n)
With the usual setting, let m ∈ {2,… , n − 1} be an integer, and Γm ∈ 1(ℎ,m, n) ⊂
G(m, n) be a m-dimensional subspace spanned by vectors u1,… , um ∈ U(m, n).
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As the Hessian matrix of the restriction ℎ|Γm has at most one null eigenvalue, with-
out any loss of generality one can choose u1 to be the eigenvector associated to the
unique null eigenvalue, that is

⎧

⎪

⎨

⎪

⎩

ℎ10[u1] = ℎ
1
0[u2] =⋯ = ℎ10[um] = 0

ℎ20[u1, u1] = ℎ
2
0[u1, u2] = ℎ

2
0[u1, um] = 0

Span(u1, u2,… , um) = Γm
(10.2.1)

so that at the same time one must have

det

⎛

⎜

⎜

⎜

⎜

⎝

ℎ20[u2, u2] ℎ20[u2, u3] … ℎ20[u2, um]
ℎ20[u3, u2] ℎ20[u3, u3] … ℎ20[u3, um]

…
ℎ20[um, u2] ℎ20[um, u3] … ℎ20[um, um]

⎞

⎟

⎟

⎟

⎟

⎠

≠ 0 . (10.2.2)

The expression of T0(ℎ|Γm , r, m) w.r.t. the coordinates x1,… , xm associated to the
vectors u1, u2,… , um reads

T0(ℎ|Γm , r, m)(x) =
∑

�∈ℕm
1≤|�|≤r

1
�!
ℎ|�|0

[

�1
⏞⏞⏞
u1 ,

�2
⏞⏞⏞
u2 ,… ,

�m
⏞⏞⏞
um

]

x�11 … x�mm .

(10.2.3)
We now claim that

Lemma 10.2.1. If ℎ is non-steep on Γm at some given order sm ≥ 2, then

T0(ℎ|Γm , r, m) ∈ X1
1 (r, sm, m) ∶= �̂

1(r, sm, m)
⋂

S11(r, m) (10.2.4)

and T0(ℎ|Γm , r, m) satisfies the sm-vanishing condition on Γm on some curve 
 ∈ Θ̂1m
whose Taylor expansion at the origin has null linear terms.

Proof. Looking at (10.2.3), it is easy to check that the coefficients of T0(ℎ|Γm , r, m)
associated to the family of indices {$(b, c)}b,c∈{2,…,m},b≤c introduced in (9.2.1) read

p$(b,c) =
(

T0(ℎ|Γm , r, m)
)

$(b,c) =
1

1 + �bc
ℎ20[ub, uc] , (10.2.5)

where �bc is the Kronecker delta.
By putting together expressions (10.2.2) - (10.2.5) with the definition of set S11(r, m)

in (9.2.7), one has that
T0(ℎ|Γm , r, m) ∈ S11(r, m) . (10.2.6)

Since we have assumed ℎ is non-steep on Γm at some order sm ≥ 2 then, by the
discussions at section 7 and at paragraph 9.1, one has

T0(ℎ|Γm , r, m) ∈ Σ̂(r, sm, m) (10.2.7)
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which, together with (10.2.6), yields

T0(ℎ|Γm , r, m) ∈ Σ̂(r, sm, m)
⋂

S11(r, m) . (10.2.8)

We now claim that

Lemma 10.2.2.

T0(ℎ|Γm , r, m) ∉ Σ̂i(r, sm, m) ∀ i ∈ {2,… , m} . (10.2.9)

Proof. Suppose, by absurd, that T0(ℎ|Γm , r, m) ∈ Σ̂i(r, sm, m) for some i ∈ {2,… , m}.
It is clear from Lemma 6.2.3 and (9.1.9) that, as sm ≥ 2, one has �̂i(r, sm, m) ⊂
�̂i(r, 1, m), and therefore Σ̂i(r, sm, m) ⊂ Σ̂i(r, 1, m). This fact and the initial hypothe-
sis imply T0(ℎ|Γm , r, m) ∈ Σ̂i(r, 1, m), so that by Theorem 9.3.1, one must have

T0(ℎ|Γm , r, m) ∈ �̂i(r, 1, m) . (10.2.10)

Relation (10.2.10) implies that there must exist a curve 
 ∈ Θ̂im with values in Γm such
that T0(ℎ|Γm , r, m) satisfies the 1-vanishing condition on 
 . As it was shown in the proof
of Theorem C1 (see the discussion around formula (10.1.2)) this is equivalent to asking
that system

{

ℎ10[u1] = ℎ
1
0[u2] =⋯ = ℎ10[ui] =⋯ = ℎ10[um] = 0

ℎ20[ui, u1] = ℎ
1
0[ui, u2] =⋯ = ℎ10[ui, ui] =⋯ = ℎ10[ui, um] = 0

i ≠ 1

(10.2.11)
admits a solution, which contradicts (10.2.2).

Due to (10.2.8) and to Lemma 10.2.2, we then have that

T0(ℎ|Γm , r, m) ∈ Σ̂1(r, sm, m)
⋂

S11(r, m) . (10.2.12)

Moreover, by Theorem 9.3.2, the setX1
1 (r, s, m) ∶= �̂

1(r, s, m)
⋂

S11(r, m) defined in
(9.3.23) is closed in S11(r, m) for the induced topology, whence one deduces that actually

X1
1 (r, sm, m) = closure

(

�̂1(r, sm, m)
)
⋂

S11(r, m) = Σ̂
1(r, sm, m)

⋂

S11(r, m) .
(10.2.13)

Relations (10.2.12) and (10.2.13) together imply

T0(ℎ|Γm , r, m) ∈ X1
1 (r, sm, m) . (10.2.14)

Therefore, by (10.2.14) and by the definition ofX1
1 (r, sm, m) in (9.3.23), there exists

a curve 
 ∈ Θ̂1m, with image in Γm, on which the Taylor polynomial of the restriction
T0(ℎ|Γm , r, m) satisfies the sm-vanishing condition. Namely, if a = (a21,… , am1) ∈
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B
m−1

(0,K (r, n, m)) indicates the linear coefficients of 
 and Ĵsm,
,a its sm-truncation
written in the adapted coordinates, by (9.1.9) one must have

(T0,a(ℎ|Γm , r, m), a, Ĵsm,
,a) ∈ Υ
1(Ẑ1(r, sm, m)) , (10.2.15)

that is, by (6.2.33),

Q̂l�(T0,a(ℎ|Γm , r, m), a, Ĵsm,
,a) = 0 , l = 1,… , m , � = 0,… , sm . (10.2.16)

In particular, as sm ≥ 2, due to Lemma 6.2.3 and to (8.1.5), the equations in
(10.2.16) for � = 0, 1 read

⎧

⎪

⎨

⎪

⎩

ℎ10[v] = ℎ
1
0[u1] =⋯ = ℎ10[um] = 0

ℎ20[v, v] = ℎ
2
0[v, u2] = ℎ

2
0[v, um] = 0

Span(v, u2,… , um) = Γm
(10.2.17)

where

v = u1 +
m
∑

i=2
ai1ui (10.2.18)

is the anisotropic vector associated to the curve 
 . Comparing (10.2.1) to (10.2.17), as
the Hessian of ℎ|Γm has only one null eigenvalue we see that the vectors u1 and v must
be parallel, but then (10.2.18) yields

v = u1 , a21 =⋯ = am1 = 0 , (10.2.19)

so that by the arguments of subsection (6.2.3) the coordinates adapted to the curve 

coincide with the original coordinates.

We now recall that, due to Theorem 9.3.2, the form of the set

Y 11 (r, sm, m) ∶= ΠŴ 1(r,m)

(

N

(

{Q̂i�} i∈{1,…,m}
�∈{0,…,sm}

)

⋂

Υ1(S11(r, m) × #̂
1
m(s))

)

(10.2.20)
satisfying1

X1
1 (r, sm, m) = Π(r,m)

(

(U1)−1Y 11 (r, sm, m)
)

(10.2.21)

can be explicitly computed - starting from the relations determining Υ1(Ẑ1(r, sm, m)) -
by the means of an algorithm involving only linear operations. By this fact, the form of
the set

Y 1
1 (r, sm, m) ∶= Y

1
1 (r, sm, m)

⋂

{(p�, a) ∈ Ŵ 1(r, m)|a = 0} (10.2.22)

1The transformation U1 was introduced in Remark 6.2.3.
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can also be deduced explicitly starting fromΥ1(Ẑ1(r, sm, m)) and, due to Lemma 10.2.1
and to (10.2.21), one has that

ℎ non-steep
at order sm on Γm ⟹ U1(T0(ℎ|Γm , r, m), 0) = (T0(ℎ|Γm , r, m), 0) ∈ Y 1

1 (r, sm, m) .
(10.2.23)

Moreover, we observe the following facts:

1. the explicit expression of setr,sm,m
n ⊂ ⋆(r, n)×ℝ(m−1)sm×V 1(m, n) introduced

in Corollary B2 can be obtained by injecting into the explicit expression for

Υ1(Ẑ1(r, sm, m)) ∶= N
{

Qi,�(T0,a(Pa, r, m), a, Jsm,
,a)
}

i=1,…,m
�=0,…,sm

(10.2.24)

given in Lemma 6.2.3 the explicit form of the coefficients of T0,a(P |Γm , r, m) in
(10.1.1), with P any polynomial belonging to ⋆(r, n), and by considering the
vectors v, u2,… , um in (10.1.1) as free parameters of V 1(m, n).

2. In the same way, for any P ∈ ⋆(r, n), one can inject in the expressions de-
termining Y 1

1 (r, sm, m) the explicit form of the coefficients of T0,a(P |Γm , r, m),
given in (10.1.1), with the vectors v, u2,… , um considered as free parameters of
V 1(m, n). The resulting subset is indicated by

A1(r, sm, n, m) ⊂ ⋆(r, n) ×ℝm−1 ×V 1(m, n) .

By the arguments above, and by the fact that the form of Y 1
1 (r, sm, m) is obtained

starting from the expression of Υ1(Ẑ1(r, sm, m)) through linear algorithms, we have
that the explicit expression of A1(r, sm, n, m) can be found linearly starting from the
expressions determining r,sm,m

n .
Furthermore, the above arguments together with (10.2.23) andwith formula (10.2.19)

yield that if system
{

(u1,… , um) ∈ U(m, n) , Span (u1, u2,… , um) = Γm ∈ 1(ℎ,m, n)
(T0(ℎ, r, n), 0, u1, u2,… , um) ∈ A1(r, sm, n, m)

(10.2.25)

has no solution, then ℎ is steep around the origin with index �m ≤ 2sm − 1 on any
subspace Γm ∈ 1(ℎ,m, n).

10.2.2 Case of a subspace belonging to 2(ℎ,m, n)
As we did in paragraph 10.2.1, we choose a basis u1,… , um ∈ U(m, n) spanning Γm
such that u1 coincides with a normalized eigenvector of the hessian associated to one
of the null eigenvalues. Then, we have
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Lemma 10.2.3. If ℎ is non-steep on Γm ∈ 2(ℎ,m, n) at a given order sm ≥ 2, up to
suitably changing the order of the vectors u1,… , um one has

T0(ℎ|Γm , r, m) ∈ Σ̂1(r, sm, m)
⋂

S12(r, m) . (10.2.26)

Proof. By (10.2.5), and by the fact that the hessian of ℎ|Γm has two or more null eigen-
values, we have that

det

⎛

⎜

⎜

⎜

⎜

⎝

ℎ20[u2, u2] ℎ20[u2, u3] … ℎ20[u2, um]
ℎ20[u3, u2] ℎ20[u3, u3] … ℎ20[u3, um]

…
ℎ20[um, u2] ℎ20[um, u3] … ℎ20[um, um]

⎞

⎟

⎟

⎟

⎟

⎠

= 0 , (10.2.27)

hence T0(ℎ|Γm , r, m) ∈ S12(r, m) following definition (9.2.9).
Moreover, ℎ is non-steep on Γm at a given order sm ≥ 2 so that, by the discussions

at section 7 and at paragraph 9.1, one has

T0(ℎ|Γm , r, m) ∈ Σ̂(r, sm, m) (10.2.28)

so that by the previous considerations we have

T0(ℎ|Γm , r, m) ∈ Σ̂(r, sm, m)
⋂

S12(r, m) . (10.2.29)

By the above expression and by (9.1.9), we have that there must exist i ∈ {1,… , m}
such that T0(ℎ|Γm , r, m) ∈ Σ̂i(r, sm, m)

⋂

S12(r, m). As it was already discussed in the
proof of Theorem C1, if T0(ℎ|Γm , r, m) ∈ Σ̂i(r, sm, m)

⋂

S12(r, m) then the vector ui must
satisfy (10.2.11). If i = 1, there is nothing else to prove. If i ≠ 1, it suffices to change
the order of the vectors u1 and ui.

Now, if for any P ∈ ⋆(r, n) we inject in the expressions2 determining the semi-
algebraic subset U1

((

Σ̂1(r, sm, m)
⋂

S12(r, m)
)

× #̂1m(1)
)

⊂ Ŵ 1(r, m) the explicit ex-
pression of the coefficients of the polynomial T0,a(P |Γm , r, m), and we let the vectors
v, u2,… , um appearing in (10.1.1) vary in V 1(m, n), we obtain a set

A2(r, sm, n, m) ⊂ (r, n) ×ℝm−1 ×V 1(m, n) .

Moreover, by Lemma 10.2.3, we have that if system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a21,… , am1) ∈ B
m−1

(K )
(u1,… , um) ∈ U(m, n) , v ∶= u1 +

∑m
i=2 ai1ui

Span (v, u2,… , um) = Γm ∈ 2(ℎ,m, n)
(T0(ℎ, r, n), a21,… , am1, v, u2,… , um) ∈ A2(r, sm, n, m)

(10.2.30)

has no solution, then ℎ is steep around the origin with index �m ≤ 2sm − 1 on any
subspace Γm ∈ 2(ℎ,m, n).

2Contrary to the case studied in the previous paragraph, here these expressions cannot be found easily, in
general.
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10.3 Proof of Theorem C3

10.3.1 Construction of an atlas of analytic maps for the Grassman-
nian

It is well known that for any choice of positive integers k, n, with k < n, the Grassman-
nian G(k, n) has the structure of a projective algebraic variety (see e.g. [27], [100]). In
this subparagraph, for any positive integer n ≥ 3 and for any m ∈ {2,… , n−1} we will
construct a suitable atlas of analytic maps for G(m, n) by exploiting classic arguments
of real-algebraic geometry.

Namely, we fix two integers n ≥ 3, and m ∈ {2,… , n − 1} and we consider a
subset I ∶= (i1,… , im) ⊂ {1,… , n} of cardinality m, as well as its complementary
J ∶= (j1,… , jn−m) of cardinality n − m in {1,… , n}.

Wework in the euclidean spaceℝn, andwe fix a bilinear, symmetric, non-degenerate
form B ∶ ℝn ×ℝn⟶ ℝ. The Spectral Theorem ensures the existence of an orthonor-
mal basis - indicated by e1,… , en - that diagonalizes B. Namely, in the basis e1,… , en
the form B is represented by matrix

B(e1,…,en) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

�1 0 0 … 0
0 �2 0 … 0
… … … … …
0 0 0 … �n

⎞

⎟

⎟

⎟

⎟

⎠

, (10.3.1)

where �1 ×⋯ × �n ≠ 0.
We indicate by EI (resp. EJ ) the m-dimensional subspace spanned by the vectors

(ei1 ,… , eim ) (resp. the n − m-dimensional subspace spanned by ej1 ,… , ejn−m ). One
clearly has ℝn = EI ⊕EJ . We also denote by UJ the subset of G(m, n) containing the
m-dimensional subspaces which are supplementary for EJ .

With this setting, we consider the cartesian product EmJ ∶=

m times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
EJ ×⋯ × EJ and we

have that

Lemma 10.3.1. The map

ℱJ ∶ EmJ ⟶ UJ (w1,… , wm)⟼ Span(ei1 +w1,… , eim +wm) (10.3.2)

is bijective.

Proof. We proceed by steps. In the first two steps, we check that definition (10.3.2) is
well-posed. In Steps 3 and 4 we prove injectivity and surjectivity.

Step 1. We claim that for any choice of (w1,… , wm) ∈ EmJ , the vectors (ei1 +
w1,… , eim + wm) are linearly independent. Infact, if by absurd there exist m vectors
(w1,… , wm) ∈ EmJ such that (ei1 +w1,… , eim +wm) are not linearly independent, then
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there must be a vector � = (�1,… , �m) ∈ ℝm∖{0} satisfying
∑m
l=1 �l(eil +wl) = 0,

that is
∑m
l=1 �leil = −

∑m
l=1 �lwil .

As
∑m
l=1 �leil ∈ EI , and −

∑m
l=1 �lwil ∈ EJ , and as ℝn = EI ⊕ EJ by con-

struction, by the assumptions one must have −
∑m
l=1 �lwil =

∑m
l=1 �leil = 0. The

previous relation - together with the fact that the vectors ei1 ,… , eim are linearly inde-
pendent by hypothesis, yields � = 0, in contradiction with the initial assumption � ≠ 0.

Step 2. We claim that for any choice of (w1,… , wm) ∈ EmJ one has Span (ei1 +
w1,… , eim +wm) ∈ UJ .

By absurd, we suppose that for some (w1,… , wm) ∈ EmJ there exist two non-
zero vectors u ∈ EJ , � = (�1,… , �m) ∈ ℝm, verifying u =

∑m
l=1 �l(eil + wl),

that is
∑m
l=1 �leil = u −

∑m
l=1 �lwl . By construction, one has

∑m
l=1 �leil ∈ EI ,

and u −
∑m
l=1 �lwl ∈ EJ . Hence, as ℝn = EI ⊕ EJ , the previous formula yields

u −
∑m
l=1 �lwl =

∑m
l=1 �leil = 0, which in turn implies � = 0, as the vectors

(ei1 ,… , eim ) are linearly independent.
Hence, one has EJ ∩ Span (ei1 + w1,… , eim + wm) = {0}. Therefore, since

dimEJ = n − m and dim
(

Span (ei1 +w1,… , eim +wm)
)

= m (the vectors ei1 +
w1,… , eim+wm are linearly independent by Step 1), the subspace given by Span (ei1+
w1,… , eim +wm) is supplementary to EJ and thus belongs to UJ .

Step 3. We prove that ℱJ is injective. By absurd, we suppose that there exists a
subspace inUJ which has two different pre-images. Namely, we suppose that there exist
vectors (u1,… , um) ∈ EmJ , and (w1,… , wm) ∈ EmJ , with (u1,… , um) ≠ (w1,… , wm),
satisfying ℱJ (u1,… , um) = ℱJ (w1,… , wm). Hence, as ei1 + u1,… , eim + um and
ei1 +w1,… , eim +wm generate the same subspace, for any l ∈ {1,… , m} there must
exist �l = (�l1 ,… , �lm) ∈ ℝm∖{0} such that

eil +wl =
m
∑

k=1
�lk (eik + uk) , (10.3.3)

that is

eil −
m
∑

k=1
�lk eik =

m
∑

i=1
�li ui −wl . (10.3.4)

By construction one has eil −
∑m
k=1 �

l
k eik ∈ EI and

∑m
i=1 �

l
i ui − wl ∈ EJ , so due

to (10.3.4) and to the direct sum ℝn = EI ⊕ EJ one infers
∑m
i=1 �

l
i ui − wl = eil −

∑m
k=1 �

l
k eik = 0. Since the vectors ei1 ,… , eim are linearly independent, we finally

obtain
�lk = �lk . (10.3.5)

where �lk is the Kronecker symbol. Formulas (10.3.3) and (10.3.5) together imply that

eil +wl = eil + ul ⟺ wl = ul ∀l ∈ {1,… , m} , (10.3.6)

in contradiction with the hypothesis (u1,… , um) ≠ (w1,… , wm).
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Step 4. We prove that ℱJ is surjective. Consider a subspace V ∈ UJ . Since V is
supplementary ofEJ , one has the direct sumℝn = V ⊕EJ , and for any l ∈ {1,… , m}
there exist unique vectors (vl , wl) ∈ V × EJ such that eil = vl − wl . Hence, for
any l ∈ {1,… , m} there exists a unique choice of vectors (w1,… , wm) satisfying
vl = eil + wl . The vectors v1,… , vm belong to V by construction, and are linearly
independent by Step 1. Therefore, since dimV = m by hypothesis (V ∈ UJ ), one has
Span(v1,… , vm) = V .

We indicate by J n−m the subsets of cardinality n − m in {1,… , n}. One has the
following covering of the m-dimensional Grassmannian:

G(m, n) =
⋃

J∈J n−m
UJ . (10.3.7)

By construction, any vector wl ∈ EJ can be expressed uniquely as

wl =
n−m
∑

k=1
Mlkejk , (10.3.8)

where (Mlk) l=1,…,m
k=1,…,n−m

is a real m× (n−m)matrix. By (10.3.7), and by Lemma 10.3.1,

there exists an atlas sending G(m, n) to the open union
⋃

J∈J n−m
ℱ −1
J (UJ ) =

⋃

J∈J n−m
EmJ ⊂ ℝm×(n−m) . (10.3.9)

10.3.2 Proof of Theorem C3
Taking (10.3.7) into account, we fix J ∈ J n−m together with its associated setsEJ , UJ .
Let V be a m-dimensional subspace belonging to UJ . By Lemma 10.3.1, one has

V = Span {ei1 +w1,… , eim +wm} (10.3.10)

for a unique (w1,… , wm) ∈ EmJ .
Now, as G1(m, n) contains those subsets of G(m, n) on which the restriction of the

bilinear form B has at least one null eigenvalue, V ∈ G1(m, n) if and only if B is de-
generated on V . Namely, taking (10.3.10) into account, V ∈ G1(m, n) iff there exists a
vector v =

∑m
l=1 vl(eil +wl) ∈ V such that for all l′ ∈ {1,… , m} one has

B(v, eil′ +wl′ ) =
m
∑

l=1
vl B(eil +wl , eil′ +wl′ )

=
m
∑

l=1
vl

(

B(eil , eil′ ) + B(wl , wl′ )
)

= vl′ �il′ +
m
∑

l=1
vl B(wl , wl′ ) .

(10.3.11)
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To pass from the first to the second line in the above expression, we have taken into
account the fact that (w1,… , wm) ∈ EmJ , that EJ = Span(ej1 ,… , ejn−m ), and that
the form B is diagonal in the basis e1,… , em; in the last passage, we have considered
(10.3.1). Setting

ℳB =ℳB(w1,… , wm) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
�i1
B(w1, w1) … 1

�i1
B(w1, wm)

… … …
1
�im

B(wm, w1) … 1
�im

B(wm, wm)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(10.3.12)

it is plain to check that (10.3.11) can be rewritten in the form

ℳB v = −v (10.3.13)

that is, we are asking for −1 to be an eigenvalue ofℳB, hence (10.3.13) is equivalent
to

det(ℳB + Im) = 0 , (10.3.14)

where Im is the m × m identity matrix.
SinceℳB depends on (w1,… , wm) ∈ EmJ and since (w1,… , wm) are in bijection

with ℝm(n−m) by (10.3.8), the quantity det(ℳB + Im) determines a polynomial map
ℝm(n−m)⟶ ℝ.

If, by absurd, det(ℳB + Im) is the null polynomial, then relation (10.3.14) holds on
the whole inverse image ℱ −1

J (UJ ). In particular, we observe that (w1 = 0,… , wm =
0) ∈ ℱ −1

J (UJ ) because ℱJ (0,… , 0) = Span{ei1 ,… , eim} = EI and EI is supplemen-
tary of EJ by construction. Therefore, by the above reasonings one must have

det(ℳB(0,… , 0) + Im) = det Im = 0

which is clearly false. Consequently, the polynomial function det(ℳB(w1,… , wm)+Im)
is not identically null over ℝm(n−m) and, due to Lemma C.2.3, its zero set is contained
in a submanifold of codimension one inℝm(n−m). Hence, also the subset of degenerated
subspaces of UJ is contained in a submanifold of codimension one in G(m, n). The
reasoning can be repeated for all J ∈ J n−m. As, by its definition and by (10.3.7),
G1(m, n) is the finite union over J ∈ J n−m of the degenerated subspaces of UJ , we
have that G1(m, n) is contained in a submanifold of codimension one in G(m, n). This
proves point 1 of the statement.

With the setting above, for any fixed J ∈ J n−m we observe that a m-dimensional
subspace V ′ ∈ UJ belongs to G2(m, n) if and only if there exist at least two linearly inde-
pendent vectors v, u ∈ V ′ satisfying (10.3.13). In particular, the subset G2(m, n)∩UJ of
"doubly-degenerated" subspaces of UJ is contained in the intersection of G1(m, n) ∩UJ
with the set

TJ ∶= {W ∈ UJ |Δ(PℳB
) = 0} (10.3.15)
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where PℳB
is the characteristic polynomial of matrixℳB, and Δ(PℳB

) is its discrim-
inant. By the above arguments and by (10.3.7), point 2 of the statement follows if we
manage to prove that TJ is contained in a submanifold of codimension one in G(m, n).
The rest of the proof will be devoted to demonstrating this property.

Clearly, by the same arguments used in the proof of point 1 of the statement,Δ(PℳB
)

is a polynomial function over ℝm(n−m). If, by absurd, Δ(PℳB
) is identically zero in

ℝm(n−m), then in particular it must be zero over the open set ℱ −1
J (UJ ).

Now, choose m numbers j1,… , jm ∈ J , and consider the vectors

w′1 ∶=

√

|

|

|

|

|

�i1
�j1

|

|

|

|

|

ej1 , w′2 ∶=

√

2
|

|

|

|

|

�i2
�j2

|

|

|

|

|

ej2 , … , w′m ∶=

√

m
|

|

|

|

|

�im
�jm

|

|

|

|

|

ejm , (10.3.16)

which are well defined by the fact that B is non-degenerate (see (10.3.1)). It is clear that
(w′1,… , w′m) ∈ EmJ , so that by Lemma (10.3.1) one has ℱJ (w′1,… , w′m) ∈ UJ . As B
is diagonal for the basis e1,… , en by hypothesis, matrix ℳB(w′1,… , w′m) in (10.3.1)
reads

⎛

⎜

⎜

⎜

⎜

⎝

sgn(�i1 ) sgn(�j1 ) 0 0 … 0
0 2 sgn(�i2 ) sgn(�j2 ) 0 … 0
… … … … …
0 0 0 … m sgn(�im ) sgn(�jm )

⎞

⎟

⎟

⎟

⎟

⎠

, (10.3.17)

and it is clear that the discriminant of the characteristic polynomial of this matrix cannot
be zero, in contradiction with the fact that Δ(PℳB

) = 0 on the whole set ℱ −1
J (UJ ).

Therefore, the polynomial function Δ(PℳB
) is not identically null over ℝm(n−m) and its

zero set is contained in a submanifold of codimension one inℝm(n−m), by Lemma C.2.3.
This proves that TJ is contained in a submanifold of codimension one in G(m, n), which
concludes the proof.
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Abstract
By taking full advantage of the structure of complex algebraic curves and by using
compactness arguments, in this part we give a self-contained proof that holomorphic
algebraic functions verify a uniform Bernstein-Remez inequality. Namely, their growth
over a bounded, open, complex set is uniformly controlled by their size on a compact
complex subset of sufficiently high cardinality. Up to our knowledge, the first known
demonstration on the existence of such an inequality for a specific subset of algebraic
functions is contained in Nekhoroshev’s 1973 breakthrough on the genericity of close-
to-integrable Hamiltonian systems that are stable over long time. Despite its pivotal
rôle, this passage of Nekhoroshev’s proof has remained unnoticed so far. This work
aims at extending and generalizing Nekhoroshev’s arguments to a modern framework.
We stress the fact that our proof is different from the one contained in Roytwarf and
Yomdin’s seminal work (1998), where Bernstein-type inequalities are proved for several
classes of functions.
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Chapter 11

Introduction and main result

11.1 The Bernstein-Remez inequality
Let Ω ⊂ ℂ be an open bounded domain, ⊂ Ω be a compact subset and let f ∶ Ω⟶
ℂ be holomorphic in Ω and continuous in its closure Ω. The Bernstein’s constant of f
with respect to Ω, is the quantity

B(f,,Ω) ∶= max
Ω

|f |∕max


|f | .

Any family  of holomorphic functions defined in Ω and continuous in Ω is said to
satisfy a uniform Bernstein-Remez inequality if there exists C(,Ω) > 0 such that for
all f ∈ 

max
Ω

|f | ≤ C(,Ω) max


|f | or, equivalently, if sup
f∈

B(f,,Ω) ≤ C(,Ω) .

The term Bernstein-Remez inequality is used in order to avoid confusion with other
sorts of Bernstein’s inequalities that involve derivatives or primitives (see e.g. [58]).

The Bernstein-Remez inequality and the existence of families verifying a uniform
estimate of this kind turn out to be important in many areas of mathematics. Without
pretending to make a complete survey on the subject, we observe that these kind of
estimates appear in the study of the local behavior of certain holomorphic functions
(see e.g. [113], [40], [93], [51], [42], [101], [52]), in questions related to the second part
of Hilbert’s 16th problem (see e.g. [62], [40], [76], [41], [61]), in the study of special
classes of ODEs (see e.g. [77]) and subelliptic PDEs (see e.g. [58], [59]), as well as
in potential theory (see e.g. [109], [43]) and in dynamical systems when investigating
questions related to entropy (see e.g. [115]).

In this part, we are interested in finding a family of functions verifying a uniform
Bernstein-Remez inequality. Namely, by extending a strategy due to Nekhoroshev [94]
and that is different from the known demonstrations in this field (see [107], [38], [117],
[43]), with the above notations we shall prove the following.
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If

1. the graph of f solves the algebraic equation S(z, f (z)) = 0 for some non-zero
polynomial S ∈ ℂ[X, Y ] of degree k;

2. the algebraic curve of S over Ω is given by the union of vertical lines of the form
{(z,w) ∈ ℂ2 | z = z∗} together with disjoint graphs of holomorphic functions
over Ω;

3. the cardinality of  is strictly greater than k;

then the Bernstein’s constant of f w.r.t. Ω, depends on k but is independent of f .
Before stating this result more rigorously (see Theorem 11.5.1), let us discuss our

motivation for developing this subject.

11.2 Rôle in Hamiltonian dynamics and Nekhoroshev
theory

The authors discovered the Bernstein-Remez inequality during the investigation of an
important result of Hamiltonian dynamics. However, before describing the key rôle
played by the Bernstein-Remez estimate in this field, we make a short review of some
general results which are helpful in order to make the context clear to the reader.

Namely, Hamiltonian formalism is the natural setting appearing in the study ofmany
physical systems. In the simplest case, we consider the motion of a point on a Rieman-
nian manifold , called configuration manifold, governed by Newton’s second law
(q̈ = −∇U (q) for a potential function U in the euclidean case, with q a system of local
coordinates for ). This system can be transformed by duality thanks to Legendre’s
transformation and reads

ṗ = −)qH(p, q) , q̇ = )pH(p, q) ,

where H(p, q) is a real differentiable function on the cotangent bundle T ∗, classi-
cally called Hamiltonian, and p is the coordinate conjugated to q. Systems integrable
by quadrature are an important class of Hamiltonian systems. A Hamiltonian system
depending on 2n variables (n degrees of freedom) is said to be integrable in the sense
of Arnol’d-Liouville if it can be conjugated to a Hamiltonian system on the cotangent
bundle of the n-dimensional torus T n, whose equations of motion take the form

İ = −)#ℎ(I) = 0 , #̇ = )Iℎ(I) ,

where (I, #) ∈ ℝn ×T n are called action-angle coordinates. Therefore, the phase space
for an integrable system is foliated by invariant tori carrying the linear motions of the
angular variables (called quasi-periodic motions). Integrable systems are exceptional,
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but many important physical problems are governed by Hamiltonian systems which are
close to integrable. Namely, the dynamics of a nearly-integrable Hamiltonian system is
described by a Hamiltonian function whose form in action-angle coordinates (I, #) ∈
ℝn × T n reads

H(I, #) ∶= ℎ(I) + "f (I, #) ,

where " is a small parameter. The structure of the phase space for this kind of systems
can be inferred with the help of Kolmogorov-Arnol’d-Moser (KAM) theory. Namely,
under a generic non-degeneracy condition for ℎ, a Cantor set of large measure of invari-
ant tori carrying quasi-periodic motions for the integrable flow persists under a suitably
small perturbation (see e.g. ref. [5], [46]).

For systems with three or more degrees of freedom, KAM theory yields little infor-
mation about trajectories lying in the complementary of such Cantor set, where instabil-
ities may occur (see e.g. ref. [3]). However, in a series of articles published during the
seventies (see ref. [95], [96], or [70], [14] for a more modern presentation), Nekhoro-
shev proved an effective result of stability for all initial conditions holding over a time
which is exponentially long in the inverse of the size " of the perturbation, provided that
the Hamiltonian is analytic and that its integrable part satisfies a generic transversality
property known as steepness.

In order to introduce the steepness property, we fix a positive integer n ≥ 2 and
we indicate by Bn(0, R) the real n-dimensional ball of radius R centered at the origin.
Then, we have

Definition 11.2.1 (Steepness). Fix � > 0,R > 0. AC2 function ℎ ∶ Bn(0, R+2�)→ ℝ
is steep in Bn(0, R) with steepness indices �1,… ,�n−1 ≥ 1 and steepness coefficients
C1,… , Cn−1, � if:

1. infI∈Bn(0,R) ||∇ℎ(I)|| > 0;

2. for any I ∈ Bn(0, R), for any integer 1 ≤ m < n, and for any m-dimensional sub-
space Γm orthogonal to ∇ℎ(I) and endowed with the induced euclidean metric,
one has:

max
0≤�≤�

min
u∈Γm, ||u||2=�

||�Γm ∇ℎ(I + u) || > Cm��m , ∀� ∈ (0, �], (11.2.1)

where �Γm stands for the orthogonal projection on Γm.

Remark 11.2.1. Since in definition 11.2.1 the subspace Γm ⊂ ℝn is endowed with the
induced metric, for all u ∈ Γm one has ||�Γm ∇ℎ(I +u)|| = ||∇(ℎ|I+Γm )(I +u)||, where
ℎ|I+Γm indicates the restriction of ℎ to the affine subspace I + Γm.

Remark 11.2.2. It is worth mentioning that a real-analytic function is steep if and only if
it has no isolated critical points and if any of its restrictions to any affine proper subspace
has only isolated critical points (see [75] and [98]).

With this notion, Nekhoroshev’s effective result of stability reads
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Theorem11.2.1 (Nekhoroshev, 1977). Consider a nearly-integrable systemwithHamil-
tonianH(I, #) ∶= ℎ(I)+"f (I, #) analytic in some complex neighborhood ofBn(0, R)×
T n, and assume that ℎ is steep. Then, there exist positive constants a, b, "0, C1, C2, C3
such that, for any " ∈ [0, "0) and for any initial condition not too close to the boundary,
one has |I(t) − I(0)| ≤ C2"a for any time t satisfying |t| ≤ C1 exp

(

C3∕"b
)

.

Nekhoroshev also proved in [94] that the steepness condition is generic, both in
measure and in topological sense: for a sufficiently high positive integer r, the Tay-
lor polynomials of order less or equal than r of non-steep functions are contained in a
semi-algebraic1 set having positive codimension in the space of polynomials of order
bounded by r. Hence, steep functions are characterised by the fact that their Taylor
polynomials satisfy suitable algebraic conditions (see [96] and [12]). Although these
results have been studied and extended for more than forty years (so that Nekhoroshev
Theory is a classic subject of study in the dynamical systems community), the proof
of the genericity of steepness has remained, up to now, largely unstudied and poorly
understood. This is certainly due to the fact that such a demonstration does not in-
volve any arguments of dynamical systems, but combines quantitative reasonings of
real-algebraic geometry and complex analysis. It is precisely in those reasonings that
the Bernstein-Remez inequality plays a major rôle.

11.2.1 The rôle of Bernstein-Remez inequality

A crucial step in Nekhoroshev’s proof of the genericity of steepness consists in con-
sidering, for any fixed polynomial P ∈ ℝ[X1,… , Xm], the semi-algebraic set - called
thalweg nowadays (see [28]) - defined by

P ⊂ ℝm ∶= {u ∈ ℝm
| ||∇P (u)|| ≤ ||∇P (v)|| ∀v ∈ ℝm s.t. ||u|| = ||v||} . (11.2.2)

Remark 11.2.3. In order to grasp why this kind of set is interesting in the study of the
genericity of steepness, it is worth comparing (11.2.2) with (11.2.1) from a heuristic
point of view. Infact, in Definition 11.2.1, one is interested in controlling quantitatively
the projection of the gradient of the function ℎ on any affine subspace Γm which is
orthogonal to ∇ℎ(I). Fixing Γm and taking Remark 11.2.1 into account, if one approx-
imates the restriction ℎ|I+Γm by its Taylor polynomial Pℎ,I+Γm at a suitable order, then
studying the locus
{

I + u ∈ I + Γm s.t. ||∇Pℎ,I+Γm (I + u)|| = min
w∈Γm, ||w||=�

||∇Pℎ,I+Γm (I +w)||
}

amounts to studying the set Pℎ,I+Γm in (11.2.2), where we have identified P ≡ Pℎ,I+Γm .

1A subset of ℝn is said to be semi-algebraic if it can be determined by a finite number of polynomial
equalities and inequalities.
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Nekhoroshev shows that, for any open ball  ⊂ ℝm and for any given polynomial
P , the intersection P ∩  contains a real analytic curve  such that both the distance
between the extremities of  and the complex analyticity width of its parametrization
admit a lower bound that depends only on m and on the degree of the polynomial P .
More specifically,  can be parametrized by algebraic functions. The existence of a
uniform Bernstein-Remez inequality (also proved in [94] in a less general context than
the one we consider in the following paragraphs) ensures uniform upper bounds on the
derivatives of these charts.

The uniform control on the parametrization of the curve  is unavoidable in [94],
since it ensures that - for a smooth function - steepness is an open property which can
be determined by the Taylor expansion at a certain order (we have a "finite-jet" de-
terminacy of steepness). Namely, with the setting of Definition 11.2.1, if for any m-
dimensional subspace Γm orthogonal to ∇ℎ(I) the Taylor polynomial Pℎ,I+Γm verifies
condition (11.2.1), then the uniform control on the derivatives of the curve  contained
in the thalweg Pℎ,I+Γm ensures that estimate (11.2.1) is verified uniformly also by poly-
nomials belonging to a neighborhood of Pℎ,I+Γm .

In this way, the study of the genericity of steepness is reduced to the study of uniform
lower estimates of the kind (11.2.1) in a finite-dimensional setting which involves poly-
nomials of bounded order. This aspect, together with additional technicalities which
will not be discussed here, is crucial in order to prove that the Taylor polynomial of
suitably high order of non-steep functions are contained in a semi-algebraic set having
positive codimension in the space of polynomials of bounded order. This aspect will be
investigated and specified in a forthcoming paper of the first author.

11.3 Rôle in semi-algebraic geometry

Actually, the result about the thalweg described above is a particular case of a general
theorem about analytic reparametrizations of semi-algebraic sets. Namely, in refs. [116]
and [118], Yomdin has shown that - with the exception of a small part - any two-
dimensional semi-algebraic set can be covered by the images of a finite number of
real-analytic, algebraic charts of the interval [−1, 1]. Moreover, thanks to the existence
of a Bernstein-Remez inequality for algebraic functions, one has a bound over the size
of all the derivatives of these charts that depends only on the order of the derivation
and on the degrees of the polynomials involved in the definition of the considered semi-
algebraic set. This is a partial extension of the theorem (called Algebraic Lemma) about
the Ck−reparametrization of semi-algebraic sets proved independently by Yomdin and
Gromov (see [115], [67], [44]). The analytic reparametrization in [116] result has re-
cently been generalized (see [26] and [50]) to higher dimensional sets with more general
structures than semi-algebraic, which allows for important applications in arithmetics.

From a more general point of view, the steepness condition is introduced to prevent
the abundance of rational vectors on certain sets. In particular, deep applications of



154 CHAPTER 11. INTRODUCTION AND MAIN RESULT

the controlled analytic parametrizations of semi-algebraic sets - yielding bounds on the
number of integer points in semi-algebraic sets - are given in [26] and [50]. Along these
lines of ideas, the Yomdin-Gromov algebraic lemma with tame parametrizations of
semi-algebraic sets (see [115], [67]) was used by Bourgain, Goldstein, and Schlag [37]
to bound the number of integer points in a two-dimensional semi-algebraic set.

11.4 Different strategies of proof
In ref. [94], Nekhoroshev proves the existence of a Bernstein-Remez inequality for
algebraic functions in his specific problem, by exploiting the properties of complex
algebraic curves and by making an intensive use of complex analysis (especially, of
compactness arguments exploiting Montel’s Theorem). The original statements are
difficult to disentangle from the context of the genericity of steepness and their proofs
are very sketchy. The existence of Bernstein-Remez inequalities in more general sit-
uations has been proved in relatively more recent times by Roytwarf-Yomdin [107],
Briskin-Yomdin [38], and Yomdin [117], by combining the controlled growth of the
Taylor coefficients of p-valent functions2 together with arguments of analytic geome-
try. Moreover, in a closely related problem, Brudnyi has proved in [43] the existence
of Bernstein-Remez inequalities for polynomials restricted to graphs of multivariate
holomorphic functions.

Nekhoroshev’s different strategy of proof is briefly mentioned in [107] (p. 848),
without quoting [94]. The strategy of Brudnyi’s work [43] relies mainly on potential
theory. In particular, Lemma 2.1 in [43] contains a reasoning similar to a minor part of
Nekhoroshev’s reasonings in combination with a result by Sadullaev (see [109]). How-
ever, the overall framework of [43] is very different from Nekhoroshev’s one, and the
core of Nekhoroshev’s arguments does not appear (in particular, Lemma 13.0.2 below).
In conclusion, so far we have not been able to find any reference that shows Nekhoro-
shev’s proof in detail except for the original paper (see [94], Lemma 5.1, p.446).

This is our motivation for a short, self-contained exposition of Nekhoroshev’s proof
relying on arguments complex analysis. Actually, Nekhoroshev [94] shows the exis-
tence of a Bernstein-Remez inequality only in the case in which the compact set  is
a real segment and the considered algebraic functions have a particular form, since this
is sufficient for his purposes. Here, we extend this strategy by considering any compact
set of high enough cardinality and we get rid of the additional conditions on the form
of the algebraic functions.

Nekhoroshev’s approach presents two drawbacks. It does not allow for quantitative
estimates for the Bernstein constants as in [107] and [117]. Moreover, we were not
able to prove a Bernstein-Remez inequality for an algebraic function on its maximal

2An analytic function over a disc is said to be p-valent if either it is constant or each element of Im(f ) is the
image of at most k points. Any algebraic function f satisfying S(z, f (z)) = 0 for some non-zero polynomial
S ∈ ℂ[X, Y ] of degree k is k-valent (Lemma 12.3.1).
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disk of regularity, what is obtained in [107] and is called structural inequality, but only
for the maximal disk of regularity of all the algebraic functions associated to the con-
sidered polynomial. However, these two points are not mandatory for applications of
the Bernstein-Remez inequality to Nekhoroshev’s arguments on the thalweg and, more
generally, to describe the overall structure of semi-algeraic sets (see [116]).

Finally, as it was already known in [94] and is central in [107], the existence of
uniform Bernstein’s constants implies uniform bounds on the Taylor coefficients of al-
gebraic functions. In this spirit, we shall also state a result of this kind in Corollary
12.2.2.

11.5 Main result
By the discussion above, it is of crucial importance to find classes of functions admitting
a uniform bound on their Bernstein’s constants, and thus satisfying a uniformBernstein-
Remez inequality. In this part we will establish the existence of a uniform Bernstein-
Remez inequality for the following class of analytic-algebraic functions:

Definition 11.5.1. Consider k ∈ ℕ, � > 0 and denote by �(0) the open complex disk
of radius � centered at the origin.

We indicate by (k, �) the set of functions f that satisfy:

1. f is holomorphic over �(0) ;

2. The graph of f is included in an algebraic curve

RS ∶= {(z,w) ∈ ℂ2 ∶ S(z,w) = 0}

associated to a non-zero polynomial S ∈ ℂ[z,w] of degree at most k, hence

S(z, f (z)) = 0 for z ∈ �(0) ;

3. The algebraic curve RS is such that RS ∩ {�(0) × ℂ} is the union of at most k
elements that can be either vertical lines of the form {(z,w) ∈ ℂ2 | z = z∗} or
disjoint graphs of holomorphic functions over �(0).

The functions in the class (k, �) verify the following

Theorem 11.5.1 (Main result). With the notations of Definition 11.5.1, consider a com-
pact set  ⊂ �(0) satisfying:

0 ∈  and card () > k. (11.5.1)

Then, the functions of the family (k, �) verify a uniform Bernstein-Remez inequal-
ity with respect to  and to any open set Ω such that  ⊂ Ω and Ω ⊂ �(0).
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Consequently, there exists a number C = C(k, �,,Ω) > 0 such that, for any f ∈
(k, �), one has:

max
z∈Ω

|f (z)| ≤ C max
z∈

|f (z)| .

This theorem has been demonstrated by Briskin-Yomdin and Roytwarf-Yomdin in
refs. [38]- [107] in the cases where  = [−�′, �′] ⊂ ℝ or  = �′ (0) ⊂ ℂ, and
Ω = �′′ (0) ⊂ ℂ, with 0 < �′ < �′′ < �. Moreover, the authors obtain quantita-
tive estimates on the upper bound C(k, �′, �′′,) for the Bernstein’s constant and they
generalize these results to relevant cases of algebraic families of holomorphic functions.
More recently, these estimates have been extended by Yomdin and Friedland to the case
of a discrete compact  of sufficiently high cardinality in refs. [117] and [63], thanks
to the introduction of a geometric invariant related to entropy.

This part is organized as follows: chapter 12 contains the mathematical setting, to-
gether with the proof of the main result and of other strictly related statements. Chapter
13 is devoted to the proof of some technical lemmas that are used in chapter 12 and is
the "core" of Nekhoroshev’s strategy (especially Lemma 13.0.2). Finally, we have rele-
gated to the appendices the statements of some auxiliary results that are used throughout
this part.



Chapter 12

Setting, main proof, and
auxiliary statements

12.1 Setting
For any r > 0 and any z0 ∈ ℂ, we denote by r(z0) the open complex disk centered at
z0 and by r(z0) its closure.

ℂ[z,w] indicates the ring of polynomials of two variables over the complex field.
Throughout this part, we will often identify ℂ[z,w] with ℂ[z][w], the ring of complex
polynomials in w over the ring of polynomials of the complex variable z.

For k ∈ ℕ, we indicate by (k) ⊂ ℂ[w] and (r, n) ⊂ ℂ[z,w] respectively the
subspaces of complex polynomials in one and two variables having degree inferior or
equal to k. Since (k),(r, n) are finite-dimensional, they can be equipped with an
arbitrary norm.

12.2 Main proof and auxiliary statements
With the notations of Theorem 11.5.1, we consider the following class of functions:

Definition 12.2.1. For k ∈ ℕ and � > 0, we denote by 0(k, �) ⊂ (k, �) the subset of
those functions g ∈ (k, �) that satisfy g(0) = 0.

The functions of the family 0(k, �) belong to the same Bernstein’s class w.r.t. the
sets Ω and  of Theorem 11.5.1. Namely, one has:

Theorem 12.2.1. Consider an open set Ω satisfying Ω ⊂ �(0) and ⊂ Ω a compact
set satisfying card  > k. There exists a number C0 = C(k, �,,Ω) > 0 that bounds
uniformly the Bernstein’s constants of the elements of 0(k, �), i.e.:

for any g ∈ 0(k, �), one has max
z∈Ω

|g(z)| ≤ C0 maxz∈
|g(z)|.

157
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Remark 12.2.1. The hypothesis 0 ∈  of Theorem 11.5.1 is unnecessary in Theorem
12.2.1.

Theorem 11.5.1 is a consequence of Theorem 12.2.1 since, for any f ∈ (k, �), the
function g(z) ∶= f (z)−f (0) belongs to the class 0(k, �) and Theorem 12.2.1 ensures:

max
Ω

|f | ≤|f (0)| + max
Ω

|g| ≤ |f (0)| + C0 max
|g|

≤|f (0)| + C0|f (0)| + C0max
|f | = (1 + 2C0) max

|f | ∶= C max


|f |

where the last estimate comes from the hypothesis 0 ∈ .
This concludes the proof of Theorem 11.5.1

Theorem 12.2.1 is also the cornerstone which allows one to prove a uniform upper
bound on the Taylor coefficients of functions in 0(k, �). More specifically, we intro-
duce the following class of bounded algebraic functions:

Definition 12.2.2. With the previous notations, for anyM ≥ 0 and any compact  ⊂
�(0), we denote by  (k, �,,M) the subset of those functions g ∈ 0(k, �) that
satisfy max |g| =M .

Hence, we have 0(k, �) = ∪M≥0 (k, �,,M).

The functions in  (k, �,Λ, LΛ) satisfy a generalized uniform Cauchy inequality,
namely

Theorem 12.2.2. Under the additional assumption card  > k, there exists a constant
K = K(k, �,) such that, for any function g ∈  (k, �,Λ, LΛ), the coefficients of the
Taylor series

g(z) =
+∞
∑

j=1
ajz

j (witℎ g(0) = 0) (12.2.1)

satisfy the uniform inequality

1.
|aj| ≤ K(k, �,)M if � > 1 ;

2. for any number m > 1

|aj| ≤ K(k, m,)M
(

m
�

)j
if � ≤ 1 .

Remark 12.2.2. This result is stated and used in [94] in the particular case where � > 1,
 = [0, �] ⊂ ℝ, M(�) = � and � > 0. The equivalence between a uniform bound
on the growth of the Taylor coefficients and the Bernstein-Remez inequality is central
in [107].

Theorems 12.2.1 and 12.2.2 will be proved in the next section.



12.3. PROOF OF THE AUXILIARY STATEMENTS 159

12.3 Proof of the auxiliary statements
We first need the following standard lemma:

Lemma 12.3.1. With the notations of the previous section, an analytic-algebraic func-
tion f , associated to a polynomial S ∈ ℂ[z,w] of degree k ∈ ℕ, is k-valent: that is,
if f is not constant then each element of Im(f ) is the image of at most k points. Con-
sequently, if f is not identically zero, then f cannot be identically zero over any set 
included in the domain of definition of f such that Card() > k.

Proof. Assume, by contradiction, that f is non-constant and that there exists w0 ∈
Im(f ) which is the image of at least p > k points. The polynomial Sw0 (z) ∶= S(z,w0)
would admit p > k roots while deg(Sw0 ) ≤ k by hypothesis. The Fundamental Theo-
rem of Algebra ensures that Sw0 must be identically zero and one has the factorization
S(z,w) = (w − w0)�Ŝ(z,w), where � ∈ {1, ..., k}, while Ŝ cannot be divided by
(w − w0) in ℂ[z,w]. Since f is analytic and not constant, the preimage f−1({w0})
is a discrete set and the graph of f must satisfy Ŝ(z, f (z)) = 0 outside of f−1({w0}).
By continuity, one has Ŝ(z, f (z)) = 0 on the whole domain of definition of f since
f−1({w0}) is discrete. But deg Ŝw0 ≤ k, with Ŝw0 (z) ∶= Ŝ(z,w0), and Ŝw0 ad-
mits more than k roots, hence the previous argument ensures that Ŝ can be divided by
(w −w0), in contradiction to construction.

Moreover, if f ≢ 0, then 0 admits at most k inverse images by f , and f cannot
be identically null over any set  included in the domain of definition of f satisfying
card  > k.

Consequently, without any loss of generality, in Theorem 12.2.1 we can assume
g ∈  (k, �,, 1) according to Definition 12.2.2 (hence g ∈ 0(k, �) and max |g| =
1) since, if this is not the case, it suffices to consider g∕max |g|.

Then, we define the following set:

Definition 12.3.1.  ∶= (, k, �) denotes the set of those polynomialsS ∈ (r, n)∖{0}
whose algebraic curve RS ∶= {(z,w) ∈ ℂ2 ∶ S(z,w) = 0} satisfies

1. RS∩{�(0)×ℂ} is the union of at most k elements that can be either vertical lines
of the form {(z,w) ∈ ℂ2 | z = z∗} or disjoint graphs of holomorphic functions
over �(0) ;

2. there exists gS ∈  (k, �,, 1) whose graph is contained in RS ∩ {�(0) × ℂ}.

Remark 12.3.1. For any S ∈ , the function gS is unique since the graphs contained
in the algebraic curve of S are disjoint over �(0) and the value gS (0) = 0 is fixed.

The central property in the proof of Theorem 12.2.1 is the following
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Lemma 12.3.2. ∪ {0} is closed in (r, n) and, for any open set Ω satisfying ⊂ Ω,
Ω ⊂ �(0), the function

�Ω ∶ ⟶ ℝ S⟼ max
Ω

|gS |

is continuous.

We shall relegate the proof of Lemma 12.3.2 to the next section and we shall exploit
its statement here to prove Theorems 12.2.1 and 12.2.2.

Proof. (Theorem 12.2.1)
By Definitions 12.2.1, 12.2.2 and 12.3.1, we can associate to any g ∈  (k, �,, 1)

a polynomial S ∈  such that g = gS . A standard combinatorial computation yields
that (r, n) is isomorphic to ℂm, with m = (k + 1)(k + 2)∕2. It is also easy to see that
for any polynomial S ∈  and for any c ∈ ℂ∖{0} the polynomial S′ = cS belongs to
 and gS′ ≡ gS , so that it makes sense to pass to the projective space

ℂℙm−1 ∶= {ℂm∖{0}}∕{ℂ∖{0}} , � ∶ ℂm∖{0}⟶ ℂℙm−1 ,

where � denotes the standard canonical projection inducing the quotient topology in
ℂℙm−1. Moreover, for any open set Ω satisfying  ⊂ Ω, Ω ⊂ �(0), the function

�̂Ω ∶ �()⟶ ℝ , �(S)⟼ max
Ω

|gS |

is well defined and continuous by Lemma 12.3.2. To prove the latter claim, take a closed
set  ⊂ ℝ and consider its inverse image �̂−1Ω () = �(�

−1
Ω ()). Since �Ω is continuous,

�−1Ω () is closed in  for the induced topology. By Lemma 12.3.2,  ∪ {0} is closed
in ℂm, so that  is closed in ℂm∖{0}. Hence, �−1Ω () is closed in ℂm∖{0}. Since
�Ω is invariant if its argument is multiplied by a complex non-zero constant, �−1Ω () is
saturated and one has �−1(�(�−1Ω ())) = �−1Ω (). Consequently, the set �(�

−1
Ω ()) =

�̂−1Ω () is closed for the quotient topology because its inverse image w.r.t. � is closed.
This proves the continuity of �̂Ω.

Moreover, since  is closed and saturated in ℂm∖{0}, �() is closed in ℂℙm−1
and the compactness of ℂℙm−1 ensures that �() is compact. By continuity of �̂Ω, the
image �̂Ω(�()) is a compact subset of ℝ, hence bounded. Therefore, there exists a
constant C(k, �,,Ω) such that for any g ∈  (k, �,, 1) one has

max
Ω

|g| =
maxΩ |g|
max |g|

≤ C(k, �,,Ω)

and this concludes the proof.

Proof. (Theorem 12.2.2)
Since g is non identically zero over  (see Lemma 12.3.1), we can consider the

function g∕M and we are reduced to the caseM = 1.
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For � > 1, the statement is a consequence of the Cauchy’s estimate and of Theorem
12.2.1 applied to Ω = 1(0) and .

In case � ≤ 1, for any fixed m > 1 one considers the function

gm(z) ∶= g
( �
m
z
)

∶=
+∞
∑

j=1
cjz

j =
+∞
∑

j=1
aj

( �
m
z
)j

analytic in m(0) and belonging to  (k, m,m, 1), where

m ∶= {z ∈ m(0) ∶
�
m
z ∈ }

satisfies cardm > k since  does.
Since the convergence radius of gm is m > 1, the statement holds for this function

and there exists a constant K(k, m,) such that

|cj| ≤ K(k, m,) ∀ j ∈ ℕ,

which implies

|aj| ≤ K(k, m,)
(

m
�

)j
.

This concludes the proof.
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Chapter 13

Technical lemmas

The aim of this section is to prove Lemma 12.3.2. We first recall a few classical points.
The algebraic curve of a polynomial S ∈ ℂ[z,w] is the zero-set

RS ∶= {(z,w) ∈ ℂ2 ∶ S(z,w) = 0} .

and one has the following standard result

Lemma 13.0.1. For any integer k ≥ 1 and for any polynomial S ∈ (r, n), there exists
a set S ⊂ ℂ (defined explicitly in Appendix A, see D.0.1) satisfying card S ≤ Nk -
where Nk ∈ ℕ is an upper bound depending only of k - and such that over any simply
connected domain D ⊂ ℂ the intersection of the algebraic curve RS with D × ℂ is the
union of at most k disjoint graphs of holomorphic functions defined over D if and only
if D ∩S = ∅.

The proof of this result can be found by putting together known results on algebraic
curves (see e.g. [92]). For the sake of clarity, it is given in appendix D.
Remark 13.0.1. Following ref. [94], the elements of S are called excluded points.
Remark 13.0.2. The number of graphs in Lemma 13.0.1 may be equal to zero, for ex-
ample if S(z,w) = z, we have RS = {(z,w) ∈ ℂ2 ∶ z = 0} and the point z = 0 is
excluded by construction (see Appendix D).

Definition 13.0.1 (Riemann branches and leaves). In the setting of Lemma 13.0.1, if
RS is non-empty over D, the holomorphic functions whose graphs cover D are algebraic
since their graphs solve the equation S(z,w) = 0 for all z ∈ D. These functions will
henceforth be called the Riemann branches of S over D, whereas their graphs will be
referred to as the Riemann leaves of S over D.

It is a standard fact that, up to constant multiplicative factors, any polynomial S ∈
(r, n) can be uniquely factorized as

S(z,w) = q(z) Πmi=1(i(z,w))
ji (13.0.1)
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for some 1 ≤ ji ≤ k, 1 ≤ m ≤ k, where the i’s are non-constant, irreducible, mutually
non-proportional polynomials. Hence, without any loss of generality, we can pass to
the unit sphere in (k) and assume ||q|| = 1 for an arbitrary norm || ⋅ ||.

We denote
(z,w) ∶= Πmi=1(i(z,w))

ji (13.0.2)

and we have the polynomial product:

S(z,w) = q(z)(z,w). (13.0.3)

We start by giving the following

Definition 13.0.2. We indicate by  = (k, �) ⊂ (r, n) the set of polynomials
S ∈ (r, n)∖{0} such that the polynomial  in decomposition (13.0.3) has no excluded
points (Definition D.0.1) in �(0).

Remark 13.0.3. Given S ∈ , by decomposition (13.0.3) and Definition D.0.1, the
only possible excluded points for S in �(0) are those at which q(z) = 0. Inside the
disk �(0), the algebraic curve RS is therefore the union of at most k elements that
can be either disjoint holomorphic Riemann leaves of  or vertical lines in ℂ2 of the
kind z = z0, with q(z0) = 0. In particular, all the Riemann branches of S ∈  are
holomorphic over �(0).

Remark 13.0.4. The set  of Definition 12.3.1 is contained in  and, with the nota-
tions of Theorem 11.5.1, the functions in (k, �) are precisely those associated to the
polynomials in .

In order to prove Lemma 12.3.2, we need the following

Lemma 13.0.2.  ∪ {0} is closed in (r, n).

The proof of Lemma 13.0.2 is quite technical and requires some intermediate results,
which are stated in the sequel.

We start by considering a sequence {Sn(z,w)}n∈ℕ of polynomials in ∪ {0}, con-
verging to a polynomial S ∈ (r, n). We can assume that S ≢ 0 otherwise there is
nothing to prove; hence we have Sn ≢ 0 for n large enough.

Following decomposition (13.0.3), we write Sn(z,w) ∶= qn(z)n(z,w) and, by
construction, the sequence of polynomials {qn}n∈ℕ is in the compact unit sphere and
admits a convergent subsequence. With slight abuse of notation, in the sequel we shall
indicate this subsequence with the same symbol {qn}n∈ℕ and we shall denote by q̂ its
limit, which is not identically null by construction.

We recall thatS andSn (for n ∈ ℕ) denote the sets of excluded points of S and
Sn, respectively. For r > 0 small enough, we remove from �(0) all open neighbor-
hoods of radius r around the excluded points of S and consider the following compact
set:

Er ∶= {z ∈ �−r(0) ∕ |z − z0| ≥ r for z0 ∈S} ⊂ �(0). (13.0.4)
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Lemma 13.0.3. There exists r0 = r0(�, k) such that, for any 0 < r ≤ r0, one has Er ≠ ∅
and there exists an integer n0 = n0(r) such that:

Er ∩Sn = ∅ for all n ≥ n0 . (13.0.5)

Proof. The fact that Er ≠ ∅ for r sufficiently small is an immediate consequence of
Definition 13.0.4 and of the fact that cardS is bounded by a number depending only
on k (see Lemma 13.0.1).

As for the second part of the statement, since Sn⟶ S ∈ (r, n), and qn → q̂ ≢ 0,
there exists a polynomial Ŝ ∈ (r, n) such that

lim
n⟶+∞

Sn(z,w) = lim
n⟶+∞

n(z,w) × lim
n⟶+∞

qn(z) = Ŝ(z,w) × q̂(z). (13.0.6)

By applying again decomposition (13.0.3) to Ŝ we obtain Ŝ(z,w) = q̃(z)(z,w),
so that we can write S(z,w) = q(z)(z,w) by setting

q(z) ∶= q̂(z) × q̃(z) . (13.0.7)

Therefore, all the roots of q̂ are also roots of q and belong toS . By construction (see
also remark 13.0.3), all points in Sn are roots of qn(z) = 0. Since qn ⟶ q̂, taking
into account the continuous dependence of the roots of a polynomial on its coefficients
expressed in Theorem F.0.1, one has that for sufficiently high n the roots of qn must be
either r-close to the roots of q̂, and hence to some point ofS , or outside of the disc of
radius1∕r(0). Taking r0 < 1∕�, one has1∕r(0) ⊃ �(0), whence the conclusion.

We fix 0 < r ≤ r0, with r0 the bound in Lemma 13.0.3, andwe consider a point z⋆ ∈
Er, hence z⋆ is not an excluded point of S and any solution of Sz⋆ (w) ∶= S(z⋆, w) = 0
must belong to the image of a Riemann branch of S holomorphic in a neighbourhood
of z⋆. We fix one of these branches and denote it with ℎ. The continuous dependence
of the zeros of a polynomial on its coefficients (Theorem F.0.1) ensures the existence
of a sequence {w⋆n }n∈ℕ of roots of Sz⋆n (w) ∶= Sn(z

⋆, w) such that

w⋆n ⟶ ℎ(z⋆) .

Lemma 13.0.3 and Remark 13.0.3 together with the fact that Sn ∈  for all n ∈ ℕ
ensure that, for any fixed n > n0(r), the point (z⋆, w⋆n )must belong to the Riemann leaf
of one of the branches of n, denoted ℎn, which is holomorphic over�(0). Hence we
have the pointwise convergence

ℎn(z⋆)⟶ ℎ(z⋆) . (13.0.8)

We show in the sequel that the sequence {ℎn}n∈ℕ admits a subsequence that converges
uniformly on any compact subset of �(0)∖S to a holomorphic function which ex-
tends ℎ over�(0)∖S . In order to prove this claim, which is fundamental to the proof
of Lemma 13.0.2, we need the following results.
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Lemma 13.0.4. The Riemann branches of S are bounded on the compact sets included
in �(0)∖S .

Proof. By construction, any point ẑ ∈ �(0)∖S is regular forS, hence there exists an
open neighbourhood V ⊂ ℂ of ẑ such that the algebraic curve RS∩{V ×ℂ} is composed
of at most k graphs of holomorphic functions bounded over V . Since any compact set
included in�(0)∖S can be covered by a finite number of these neighbourhoods, the
claim is proved.

Lemma 13.0.5. The sequence {ℎn}n∈ℕ is locally bounded (E.0.2) over �(0)∖S .

Proof. If, by contradiction, there exists a compact K ⊂ �(0)∖S such that {ℎn}n∈ℕ
is unbounded over K, then there exists a sequence {zn}n∈ℕ in K and a strictly increasing
function ' over ℕ such that the subsequence {|ℎ'(n)(zn)|}n∈ℕ diverges.

By Definition (13.0.4), �(0)∖S = ∪r>0 Er, so there exists 0 < r ≤ r0 small
enough such that K ⊂ Er ⊂ �(0)∖S . Moreover, Er is a compact, arc-connected set
since it is �−r(0) without a finite number of open disks. Then, for any n ∈ ℕ it is
always possible to construct a continuous arc:


n ∶ [0, 1]⟶Er with 
n(0) = z⋆ and 
n(1) = zn.

We introduce the continuous functions:

 n ∶ [0, 1]⟶ ℝ ,  n(t) ∶= |ℎ'(n)(
n(t))| .

Since Szn → Sz uniformly for z ∈ �−r(0), Theorem F.0.1 ensures that, for all " > 0,
there exists n(") ∈ ℕ such that for all n > n(") and all z ∈ �−r(0), the roots of Szn
are either "-close to the roots of Sz or in the complement of the closed disk 1∕"(0).
Moreover, Lemma 13.0.4 ensures that the roots of Sz are uniformly bounded for all
z ∈ Er. We indicate by wmax(r) the maximal module that the Riemann branches of S
can reach on Er and we set

"0(r) =
1

wmax(r) + 1
.

In this setting, we can consider a fixed integer n > n("0(r)) such that:

 n(1) >
1
"0
= wmax(r) + 1 (13.0.9)

and taking (13.0.8) into account, we also assume that n is high enough to ensure:

| n(0)−|ℎ(z⋆)| | = | |ℎ'(n)(z⋆)|−|ℎ(z⋆)| | ≤ |ℎ'(n)(z⋆)−ℎ(z⋆)| < "0 < 1 (13.0.10)

hence  n(0) < |ℎ(z⋆)| + 1 ≤ wmax(r) + 1.
With (13.0.9) and (13.0.10), the intermediate value theorem applied to  n implies

that there exists t⋆ ∈]0, 1[ satisfying

 n(t⋆) = wmax(r) + 1 . (13.0.11)
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But n > n("0(r)) and 
n(t⋆) ∈ �−r(0), hence ℎ'(n)(
n(t⋆)) is either in the comple-
ment of the closed disk 1∕"0 (0) and

 n(t⋆) >
1
"0
= wmax(r) + 1 (13.0.12)

or "0-close to the roots of Sz and

 n(t⋆) < wmax(r) + "0 < wmax(r) + 1. (13.0.13)

Conditions (13.0.11), (13.0.12) and (13.0.13) are in contradiction and the statement
is proved.

Lemma 13.0.6. There exists a subsequence of {ℎn}n∈ℕ which converges uniformly on
the compact subsets of�(0)∖S to a Riemann branch of S (still denoted ℎ) extending
holomorphically ℎ over �(0)∖S .

Proof. With Lemma 13.0.5 and Montel’s Theorem E.0.1, it is possible to extract a sub-
sequence - still denoted {ℎn}n∈ℕ with slight abuse of notation - that converges uniformly
on the compact subsets of�(0)∖S to a function holomorphic over�(0)∖S which
is also still denoted ℎ. Finally, thanks to Lemma F.0.1 and to the fact that Sn ⟶ S,
one has S(z, ℎ(z)) = 0 for any z ∈ �(0).

Remark 13.0.5. By the above Lemma, S does not contain any ramification points.

With the help of Lemma 13.0.6, we are now able to prove Lemma 13.0.2.

Proof. (Lemma 13.0.2)
The aim is to prove that the set of excluded points for  associated to the limit

polynomial S is empty, from which the conclusion follows.
Assume that z0 ∈ . Since is a finite set, for t > 0 small enough the punctured

disc ̇t(z0) ∶= {z ∈ �(0) ∶ 0 < |z − z0| < t} is included in �(0)∖ and any
branch ℎ of the polynomial  is holomorphic in ̇t(z0). Then, by Laurent’s Theorem
E.0.2 and Proposition F.0.1, z0 is either a removable singularity or a pole. We show
that the second possibility does not occur.

If by contradiction z0 is a pole for ℎ, then limz⟶z0 ℎ(z) is infinite and one can
choose the radius t small enough so that ℎ(z) ≠ 0 for all z ∈ ̇t(z0). Hence the function
� ∶= 1∕ℎ is analytic on the punctured disc ̇t(z0) and it is also bounded since its limit
is zero when z goes to z0. By Riemann’s Theorem (E.0.4) on removable singularities,
� admits a holomorphic extension, still denoted �, on the whole disc t(z0) satisfying
�(z0) = 0.

Lemma 13.0.6 ensures that there exists a subsequence {ℎnj}j∈ℕ of Riemann branches
forSnj (actually, by Remark 13.0.3, the branchesℎnj are analytic over�(0) sinceSnj ∈
) which converges uniformly to ℎ on the compact subsets of ̇t(z0) ⊂ �(0)∖S .
Consequently, the functions ℎnj do not vanish on any compact subset of the diskt(z0)
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for j large enough. This ensures that the functions {�nj}j∈ℕ ∶= {1∕ℎnj}j∈ℕ are holo-
morphic on t(z0). Moreover, the sequence {�nj}j∈ℕ converges locally uniformly to
� on ̇t(z0). Since both �nj and � are holomorphic at z0, by the Maximum Principle,
this convergence is actually locally uniform over the whole disc t(z0).

On the one hand, we have �(z0) = 0 and �(z) ≠ 0 for z ∈ ̇t(z0), since in this
domain �(z) = 1∕ℎ(z) and ℎ is holomorphic on ̇t(z0).

On the other hand, the terms of the subsequence {�nj}j∈ℕ ∶= {1∕ℎnj}j∈ℕ are
nowhere-vanishing on t(z0) and �nj is holomorphic in that domain. Consequently,
by Hurwitz’s Theorem E.0.5 on sequences of holomorphic functions, � must be either
identically zero or nowhere null on t(z0).

We have obtained a contradiction and therefore limz⟶z0 ℎ(z) is finite. By applying
once again Riemann’s Theorem on removable singularities, ℎ admits an analytic exten-
sion ℎ̃ to the whole disc t(z0). Moreover, ℎ̃ is a Riemann branch of  in the whole
disc t(z0), since

(z0, ℎ̃(z0)) = lim
z⟶z0

(z, ℎ(z)) = 0 .

It remains to rule out the possibility that z0 is singular because the graphs of two
distinct branches ℎ and l of the limit polynomial  intersect on it. Assume that ℎ(z0) =
l(z0). By Lemma 13.0.6 and by the previous arguments, there exist two subsequences
{ℎnj}j∈ℕ and {lnj}j∈ℕ of branches associated to {nj}j∈ℕ that approach respectively
ℎ and l locally uniformly over t(z0).

We first notice that ℎnj is distinct from lnj for j large enough, otherwise there exists
a subsequence of common branches ℎnj=lnj for nj up to infinity which converges
locally uniformly in t(z0) respectively to ℎ and l. Consequently ℎ = l over t(z0),
which contradicts the assumption that ℎ and l are distinct. Moreover, since Rnj

is
composed of distinct regular leaves over t(z0) for any j ∈ ℕ, the functions ℎnj−lnj
never vanish over t(z0).

Consequently, Hurwitz’s Theorem E.0.5 ensures that the sequence of holomorphic
functions {ℎnj−lnj}j∈ℕ converges to a limit which either never vanishes or is identi-
cally zero over t(z0). Here limj→+∞(ℎnj−lnj )(z0) = (ℎ − l)(z0) = 0, so ℎ = l
everywhere overt(z0), which is again in contradiction with the assumption that ℎ and
l are distinct.

Therefore, we have proved that the algebraic curve of the limit polynomial  is
composed of disjoint and regular Riemann leaves over a neighborhood of z0. Since
the above arguments hold for any z0 ∈ S , the algebraic curve R is composed of
distinct leaves over �(0) and the branches of  are globally holomorphic over �(0),
consequently  = ∅ (see Remark 13.0.3).

Lemma 13.0.2 is the cornerstone for the proof of Lemma 12.3.2.

Proof. (Lemma 12.3.2)
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We start by proving the closure of  ∪ {0} in (r, n) and consider a sequence
{Sn}n∈ℕ in  ∪ {0} which converges to a limit S ∈ (r, n). One has S ∈  ∪ {0},
since  ∪ {0} ⊂  ∪ {0} and  ∪ {0} is closed by Lemma 13.0.2.

By hypothesis, for any fixed n ∈ ℕ there exists a Riemann branch gn(z) which is
analytic on �(0) and satisfies

Sn(z, gn(z)) = 0 , gn(0) = 0 , maxz∈
|gn(z)| = 1 . (13.0.14)

If S ≡ 0 there is nothing to prove.
If S ≢ 0, we claim that {gn}n∈ℕ has a subsequence that converges uniformly on the

compact subsets of �(0) to a branch gS of S having the desired properties.
In fact, since S ∈  ∪ {0}, the elements of the set S are the roots of q(z) = 0.

Consequently, card S ≤ k and card > k ensures that there exists z⋆ ∈ ∖S
such that {gn(z⋆)}n∈ℕ is bounded. Up to the extraction of a subsequence, gn(z⋆) con-
verges to a complex value w⋆. Moreover, since z⋆ is not an excluded point of S ∈ ,
we can ensure that (z⋆, w⋆) belongs to a Riemann leaf of R which is associated to a
holomorphic Riemann branch over �(0), denoted gS .

By the same arguments used in the proofs of Lemmas 13.0.5 and 13.0.6, the se-
quence {gn}n∈ℕ admits a subsequence which converges uniformly on the compact sub-
sets of �(0)∖S to a Riemann branch fS associated to S. The holomorphy of fS
over �(0) (since S ∈ ) and the Maximum Principle imply that the convergence is
actually locally uniform on the whole set �(0). Then, by the uniqueness of the limit,
we have gS (z⋆) = fS (z⋆), which implies gS ≡ fS over �(0) because S ∈ . This
yields max |gS | = 1 and gS (0) = 0, hence gS meets the requirements of Definition
12.3.1 and S ∈ .

Finally, it remains to prove that the function �Ω in Lemma 12.3.2 is continuous.
Since {gn}n∈ℕ converges locally uniformly to gS in �(0), we can write

lim
n⟶+∞

|

|

|

|

max
z∈′

|gS (z)| − maxz∈′
|gn(z)|

|

|

|

|

≤ lim
n⟶+∞

(

max
z∈′

|gS (z) − gn(z)|
)

= 0 ,

(13.0.15)
for any compact ′ ⊂ �(0). By taking ′ ≡ Ω ⊂ �(0), we have

�Ω(S) ∶= max
z∈Ω

|gS (z)| = lim
n⟶+∞

(

max
z∈Ω

|

|

gn(z)||

)

=∶ lim
n⟶+∞

(

�Ω(Sn)

)

,

which implies that �Ω is continuous. This concludes the proof of Lemma 12.3.2.
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Part III

Analytic Smoothing and
Nekhoroshev estimates for
Hölder steep Hamiltonians
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Abstract
In this part we prove the first result of Nekhoroshev stability for steep Hamiltonians
in Hölder class. Our new approach combines the classical theory of normal forms in
analytic category with an improved smoothing procedure to approximate an Hölder
Hamiltonian with an analytic one. It is only for the sake of clarity that we consider
the (difficult) case of Hölder perturbations of an analytic integrable Hamiltonian, but
our method is flexible enough to work in many other functional classes, including the
Gevrey one. The stability exponents can be taken to be (l−1)∕(2n�1...�n−2)+1∕2 for
the time of stability and 1∕(2n�1...�n−1) for the radius of stability, n being the dimen-
sion, l > n+1 being the regularity and the �i’s being the indices of steepness. Crucial
to obtain the exponents above is a new non-standard estimate on the Fourier norm of
the smoothed function. As a byproduct we improve the stability exponents in the Ck
class, with integer k.
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Chapter 14

Introduction and main results

Themain goal of this work is to introduce a unified way for proving “long time stability”
of the action variables for perturbations of completely integrable Hamiltonian systems
which belong to a large class of function spaces. We will limit ourselves here to Hölder
perturbations of analytic systems, but our method is flexible enough to be adapted to
many other settings1.

The effective stability theory for nearly-integrable Hamiltonian systems was initi-
ated by the pioneeringwork of J.E. Littlewood [82] and reached a first main achievement
in the seventies with the work of N.N. Nekhoroshev [95]; it was then developed bymany
authors. The usual setting is that of Hamiltonian systems of the form

H(I, �) = ℎ(I) + f (I, �), (14.0.1)

where (I, �) ∈ ℝn×T n are the action-angle variables and f is small with respect to ℎ. In
Nekhoroshev’s work the HamiltonianH is analytic and ℎ satisfies a steepness condition
(see definition 14.3.1 below). The theory has been then developed in various settings:
H can be assumed to be Gevrey (which includes the analytic case) or Ck with k ≥ 2
and integer, while ℎ can be assumed to be convex or quasi-convex (see for example [87]
or [30])

The norm of f , relative to the function space at hand, is denoted by ". For systems
as (14.0.1), the previous results assert that the action variables are confined in a ball of
radius R(") centered at the initial action during a time T("), provided that " is smaller
that some threshold E. We say that R(") is the confinement radius, T(") is the stability
time and E is the applicability threshold. The remarkable fact is that – ℎ being given –
the results depend only on the norm of f and not on its particular form.

Much attention has been paid in the literature in order to obtain good estimates for
the quantities R(") and T(") in the different frameworks. As we shall see in the sequel,
in the setting of Hölder perturbations of analytic integrable systems, the method we
introduce in this part yields sharper estimates than those that are found in the literature

1Assuming that the unperturbed system is analytic is just a matter of simplification.
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up to now. Before stating rigorously our results, however, it is useful to have an overview
of the classical results on the effective stability of near-integrable Hamiltonian systems.

14.1 The classical results
Let us briefly describe the classical abstract results. In the 70’s Nekhoroshev proved
his seminal theorem [95], which asserts that for a steep real-analytic function ℎ and for
any real-analytic perturbation f with analytic extension to a complex domain , all
solutions are stable at least over exponentially long time intervals. Namely, there exist
positive exponents a, b and a positive threshold E, depending only on ℎ, such that if
|f | ≤ E, then any initial condition (I0, �0) gives rise to a solution

(

I(t), �(t)
)

which
is defined at least for |t| ≤ exp

(

c(1∕")a
)

and satisfies |
|

I(t) − I0|| ≤ C"b in that range.
Here |f | is the C0 sup-norm on the domain  and c, C are positive constants which
also depend only on ℎ. With our notation, for these systems:

T(") = exp(c(1∕")a), R(") = C"b, (14.1.1)

while the expression of the threshold E is quite difficult to obtain explicitly2, see [95].
Since the constants c and C are less significant than the exponents we will get rid of
them in our subsequent description.

Nekhoroshev’s proof is based on the construction of a partition (a “patchwork") of
the phase space into zones of approximate resonances of different multiplicities, over
which one can construct adapted normal forms. The global stability result necessitates
a very delicate control of the size and disposition of the elements of the patchwork in
order to produce a “dynamical confinement” preventing the orbits from fast motions
along distances larger than the confinement radius (see below for a discussion).

In the convex case, as noticed in [64] and [20], a shrewd use of energy conserva-
tion leads to a much simpler and “physical” way to confine the orbits. This gave rise
to two distinct series of works, originating in the articles of Lochak [83] - where the
simultaneous approximation method was introduced - and Pöschel [104] - where the
construction of Nekhoroshev’s patchwork was made much easier - both relying on the
convexity or quasi-convexity of the integrable Hamiltonian.

The simplicity of these methods made it possible to prove that the Nekhoroshev
Theorem in the analytic case holds with

T(") = exp(c(1∕")1∕2n), R(") = C"1∕2n, (14.1.2)

if ℎ is assumed to be quasi-convex (see [83, 85, 104]). Moreover, besides the global
result, one can state local results for neighborhoods of resonant surfaces. For m ∈
{1,… , n − 1}, consider a sublattice Λ ∈ ℤnK ∶= {k ∈ ℤn ∶ |k|1 ≤ K} of rank m and
the resonant subsetΛ ∶= {I ∈ ℝn ∣ ∇ℎ(I) ∈ Λ⊥}. Then, for all trajectories starting

2Thresholds have been studiedmore extensively in applications to celestial mechanics, see e.g. [97] or [15]
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at a distance of order "1∕2 of Λ, one gets larger stability exponents, namely a = b =
1∕(2(n − m)). Moreover, in the resonant block Λ (which is obtained by eliminating
fromΛ all the intersections with other resonant subsetsΛ′ , with rank Λ′ = m+1)
one can even take a = 1∕(2(n − m)), b = 1∕2.

As alluded to above, long time stability does not require a priori the analyticity of
the Hamiltonian at hand. For general Gevrey quasi-convex systems3, the fast decay
of the Fourier coefficients also yields exponentially long stability times. Namely, for
�-Gevrey systems (where � is the Gevrey exponent) it is proved in [87] that

T(") = exp
(

c∕"1∕(2n�)
)

, R(") = C"1∕(2n�).

The proof is based on a direct construction of normal forms for Gevrey systems. This
study was initiated by M. Herman for proving the optimality of the stability exponents
by constructing explicit examples taking advantage of the flexibility of the Gevrey cat-
egory, see below.

Soon after, finitely differentiable systems have been investigated in [30] using a
direct implementation of Lochak’s scheme in this setting, which yields the estimates

T(") = c∕"(l−2)∕(2n) R(") = C"1∕(2n)

for quasi-convex Cl systems with l ≥ 2 and integer. On the other hand, the stability of
Cl systems, with l an integer such that l ≥ l∗n+1 for some suitable l∗ ≥ 1,l∗ ∈ ℕ,
satisfying a property known as Diophantine-Morse condition4, was investigated in [31],
where the values

T(") = c∕"l∗∕[3(4(n+1))n] R(") = C"1∕(4(n+1))n

were found.
The case l = +∞ has been studied in [10], where the authors find that, in the case

ℎ(I) = I2∕2 and for fixed b ∈ (0, 1∕2), for anyM > 0 there exists CM > 0 such that

T(") =
CM
"M

R(") = CM"b .

The result is achieved by implementing an innovative global normal form in Pöschel’s
framework.

Finally, we also refer to the recent work [33] and references therein for much more
information about stability in various functional classes.

3See [87] for the definition.
4The Diophantine-Morse property is a special case of the Diophantine-steep condition introduced in [99]

which, in turn, is a prevalent condition on integrable systems that ensures long time stability once these are
perturbed. All steep functions are Diophantine-steep.
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14.2 Purpose of the work
The objective of this part is to make a systematic use of analytic smoothing methods
to derive normal forms in a very simple way - whatever the regularity of the Hamilto-
nians at hand - from the usual analytic ones. This way we get maximal flexibility to
adapt the different long-time stability proofs to a large class of function spaces. We will
investigate here only the case of Hölder differentiable Hamiltonians, but our method
extends to any steep functions belonging to any regularity class which admits an an-
alytic smoothing. More precisely, the proposed strategy (see Section 17.3) allows us
to prove, in a very simple way, the first Nekoroshev-type result of stability for Hölder
steep Hamiltonians with presumed sharp exponents5. In this case one cannot expect to
get more than polynomial stability times relative to the size " of the perturbation [30].
In the course of the proof we need to adjust in a rather unusual way the size of the var-
ious parameters: ultraviolet cutoff and, in an essential way, the analyticity width, as a
function of the size " of the perturbation.

14.3 Main results
Let us fix the main definitions and assumptions. In the following, given � ∈ {1,… ,∞},
we denote by | ⋅ |� the corresponding l�-norm inℝn or ℂn. We denote by B�(I0, R) the
open ball centered at I0 of radius R for the norm | ⋅ |� in ℝn.

Consider a Hamiltonian of the form (14.0.1), where we assume, for the sake of
simplicity, that the unperturbed part ℎ is analytic6 while only the perturbation f is
Hölder, so:

ℎ ∈ C!(BR�0 ), f ∈ Cl(BR × T n), (14.3.1)

where BR�0 is the complex extension of analyticity width �0 ≥ 1 of BR, and l ∈ (1,+∞)
(meaning that f is Hölder differentiable when l is not an integer, see section 16 for a
brief overview on this class of functions). The small parameter is

" ∶= |f |Cl(BR×T n), (14.3.2)

(see (16.1.2) for a definition of the Hölder norm). We denote by ! = ∇ℎ ∶ ℝn → ℝn

the action-to-frequency map attached to ℎ.
We will assume that the Hessian of ℎ is uniformly bounded from above:

M ∶= sup
I∈BR�0

‖

‖

‖

D2ℎ(I)‖‖
‖op

< ∞, (14.3.3)

where ‖ ‖op stands for the operator norm induced by the Hermitian norm on ℂn.
5Sharpness has the same meaning as in [70], i.e. these are the best values of the exponents for T(") and

R(") that one can obtain with these techniques.
6As we will see in the course of the proof, assuming that ℎ is Hölder with large enough exponents would

be enough, see Section 17.3.2
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We will also assume that the Hamiltonian ℎ is steep according to the following
definition.

Definition 14.3.1 (Steepness). Fix � > 0. A C1 function ℎ ∶ B∞(0, R + �) → ℝ is
steepwith steepness indices �1,… ,�n−1 ≥ 1 and steepness coefficientsC1,… , Cn−1, �
if:

1. infB∞(0,R) |!(I)|2 > 0;

2. for any I ∈ B∞(0, R) and any m-dimensional subspace Γ orthogonal to !(I),
with 1 ≤ m < n:

max
0≤�≤�

min
u∈Γ,|u|2=�

|

|

�Γ!(I + u)||2 > Cm�
�m , ∀� ∈ (0, �], (14.3.4)

where �Γ stands for the orthogonal projection on Γ.

Remark 14.3.1. Note that a uniformly strictly convex function is steep with steepness
indices equal to 1.

Remark 14.3.2. The steepness condition is generic in the space of jets of sufficiently
regular functions (see [94] for the general discussion and [111], [13] for sufficient con-
ditions for steepness in the space of jets of order four and five respectively).

Our main theorem is the following.

Theorem 14.3.1 (Stability estimates in the steep case). Consider a near-integrable
Hamiltonian system (14.0.1) satisfying (14.3.1) and assume l ≥ n + 1 7. Suppose
that ℎ is steep in B∞(0, R) with steepness indices � ∶= (�1,… ,�n−1) and set:

a ∶= l − 1
2n�1 ×⋯ × �n−2

+ 1
2

, b ∶= 1
2n�1 ×⋯ × �n−1

.

Then, there exist positive constantsE = E(n,l,�), C′′I ∶= C
′′
I (n,l,�), C

′′
T ∶= C

′′
T(n,l,�)

such that, for " ≤ E, the radius and time of confinement relative to any initial condition
in the set B∞(0, R∕4) satisfy:

R(") ≤ C′′I "
b , T(") ≤ C′′T

1
| ln "|l−1 "a

. (14.3.5)

Remark 14.3.3.
∙ The presence of the logarithm in (14.3.5) comes from the fact that in our method we
have some freedom to fix the analyticity width depending on ", in contrast with the
classical analytic setting. We send the reader to Remark 18.2.1, where this comment
is contextualized, the dependence of the analyticity width in " is made precise and a
qualitative justification is given.
∙ If we set �1,… ,�n−1 = 1 (i.e. the convex case) we obtain better estimates than

7Actually one could probably get l ≳ n∕2 by making use of Paley-Littlewood theory.
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in [30].
∙ Our proof relies on the geometric construction of the geography of resonances intro-
duced in [70], which is appropriate only for Hamiltonians in n ≥ 3 degrees of freedom.
Here too we shall restrict to this setting, the 2 d.o.f. isoenergetic non-degenerate case
being easily managed through KAM theory. A specific construction should be imple-
mented to treat the peculiarity of the isoenergetic degenerate 2 d.o.f. case. This study
is in progress in a forthcoming work.

14.4 Prospects
The sharpness of the exponents in Theorem 14.3.1 should be proved in the same way as
in the case of convex system. The first attempt to tackle this problem led to work in the
Gevrey category instead of the analytic one and construct examples with unstable orbits,
which experience a drift in action of the same order as the confinement radius within
a time of the same order as the stability time, see [87]. It has then be realized that the
initial conjecture in quasi-convex analytic systems (a ∼ 1∕2n, see [49] and Lochak [83])
was in fact incorrect: as proved in [35] using a purely topological argument together
with the previous remark on the local exponents near simple resonances, one can choose
a = 1∕(2(n−1)) as a global stability exponent for T("). This result was improved soon
after with a ∼ 1∕(2(n−2)) (see [120]). The construction of unstable system proving the
optimality of these latter exponents was achieved in [87], [84], [120]. A remarkable fact
is that the unstable mechanism introduced by Arnold in the 60’s, with its subsequent
improvements, is exactly what is needed to produce the unstable examples in the quasi-
convex case.

As for the steep case, a careful construction of the geography of resonances leads
with strong evidence to the conjecture that the exponents a = 1∕(2n�1...�n−2) and
b = 1∕(2n�1...�n−1) are sharp (see ref. [70]). The question of constructing explicit ex-
amples with unstable orbits proving this sharpness is still open nowadays and is maybe
the last challenging problem in the general long time stability theory, probably relying
on new Arnold diffusion ideas.

The part is organized as follows: in the next section we give a short overview of
the classical methods with particular attention on the geometry of resonant blocks, on
which the present work strongly relies. Next we define the functional setting. In Section
17 we introduce the analytic smoothing appropriately adapted to our problem. Finally
Section 18 is devoted to the study of the steep case.



Chapter 15

General setting and classical
methods

15.1 Resonances and the steepness condition.
Consider a Hamiltonian system of the form (14.0.1) defined on O × T n, where O is an
open subset ofℝn. The main feature underlying Hamiltonian perturbation theory is that
one can modify the form of the perturbation f by composing H with properly chosen
local Hamiltonian diffeomorphisms, in order to remove a large number of “nonessential
harmonics”. The result of this process - a local normal form - strongly depends on the
location of the domain of the normalizing diffeomorphism w.r.t the resonances of the
unperturbed part ℎ, and enables one to discriminate between fast drift and extremely
slow drift directions in the action space, according to this location.

Let us first make this idea more precise. Given an integer lattice Λ ⊂ ℝn of dimen-
sion m ∈ {1,… , n − 1} – a resonance lattice – one associates with Λ the resonance
vector subspace Λ⊥ ⊂ ℝn in the frequency space ℝn, together with the corresponding
resonance subset in the action space previously introduced

Λ ∶= !−1(Λ⊥) = {I ∈ O ∣ !(I) ∈ Λ⊥},

where! = ∇ℎ is the frequencymap. The dimensionm ofΛ is said to be the multiplicity
of the resonance Λ. Of course, given a resonance module Λ′ ⊃ Λ with dimΛ′ >
dimΛ, the resonance Λ′ is contained in Λ, so that a resonance subset contains in
general infinitely many resonances of higher multiplicity. The complement0 ⊂ O of
the union of all resonance subsets is the non-resonant subset. In general, a resonance
subsetΛ has no particular structure, however, one can think ofΛ as a submanifold
of ℝn of the same dimension as Λ⊥ (with perharps singular loci).

As a rule, when " is small enough, for a small enough "-depending neighborhood
WΛ of the parts of the resonance subset Λ located far enough from resonances of

181
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higher multiplicity1, one can iteratively construct a symplectic diffeomorphism ΨΛ,
whose image containsWΛ ×T n, such that the pull-backHΛ = H◦ΨΛ takes the follow-
ing form

HΛ = ℎ +NΛ + RΛ. (15.1.1)

Here RΛ is a remainder whose C2 norm is (very) small2 with respect to " and the
resonant partNΛ contains only harmonics belonging to Λ, that is:

NΛ(I, �) =
∑

k∈Λ, |k|1≤K(")
ak(I) eik⋅� ,

where K(") is an ultraviolet cutoff which has to be properly chosen3. Both terms NΛ
and RΛ of course depend on ". A subsetWΛ for which such a normal form is proved to
exist will be called a normal form neighborhood associated with Λ, with multiplicity
dimΛ. One proves that the space of actions can be covered by such neighborhoods,
and in Section 18.1, we will construct finer covers by subsets of those, named resonant
blocks (and denoted by DΛ in the aforementioned section).

The iterative process to construct the normalizing diffeomorphism involves the con-
trol of small denominators which appear during the resolution of the so-called homo-
logical equation, and which depend on the location of the normalization domain with
respect to the resonances (see for instance [104]). This can be seen as a drawback of
the method which could be greatly simplified by an idea due to Lochak (see below),
however the general method presented here give precise dynamical informations which
would not be reachable otherwise.

The Hamilton equations generated by (15.1.1) yield the following form for the evo-
lution of the action variables:

I(t) − I(0) = ∫

t

0
)�NΛ (I(s), �(s)) + )�RΛ (I(s), �(s)) ds

=
∑

k∈Λ, |k|1≤K(")
k ⋅

(

∫

t

0
i ak(I(s)) eik⋅�(s) ds

)

+(t).
(15.1.2)

The variation of I is therefore the sum of the main part

(t) ∶=
∑

k∈Λ, |k|1≤K(")
k ⋅ (k)(t),  (k)(t) = ∫

t

0
i ak(I(s)) eik⋅�(s) ds, (15.1.3)

and the very small remainder term (t).
To simplify the presentation in the following, we will forget about the angles and

consider only the action part of the solutions of our system (which is legitimized by the
fact that the angles play no role in the various estimates).

1In fact, only a finite "-depending subset (related to the cutoffK(") introduced below) of these resonances
has to be taken into account.

2The smallness depends on the regularity of the system.
3This choice is indeed a main issue in the theory.
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The whole theory relies firstly on the obvious fact that the main drift term (t)
in (15.1.3) belongs to the vector space Vect Λ spanned by Λ (which is often called
“plane” of fast drift), and secondly on the smallness of the remainder term. A solu-
tion starting from some initial condition I(0) ∈ WΛ will therefore remain very close to
the fast drift space

I(0) + Vect Λ

during a very long time – governed by the smallness of  – as long as it is contained
inside the neighborhoodWΛ. This makes it necessary to understand first the intersec-
tions of the fast drift planes I + Vect Λ and the neighborhoods WΛ to which they are
attached.

As an extreme example, let us consider the Hamiltonian

ℎ(I) = 1
2
(I21 − I

2
2 )

on A2, with (invertible) frequency map !(I1, I2) = (I1,−I2). We focus on the reso-
nance module Λ = ℤ(1,−1), so that Λ⊥ = ℝ(1, 1) and Vect Λ =Λ. Hence, given an
initial action I(0) ∈ Λ, the entire fast drift affine subspace I(0) + Vect Λ coincides
with Λ, so that nothing prevents the fast drift to take place during the whole motion
provided the perturbation is well-chosen: the resonance Λ is called a superconduc-
tivity channel. No long time stability result can be expected in this case: indeed, when
f (I, �) = sin(�1 − �2), the initial condition I = 0, � = 0 yields the fast evolution
(I1(t), I2(t)) = (−"t, "t) for the action variables 4.

In constrast with the previous example, for the Hamiltonian

H(I, �) = 1
2
|I|22 + "f (�)

on An, for any Λ ⊂ ℤnK , the the resonant set Λ coincides with Λ⊥, so that the affine
planes of fast drift are always orthogonal toΛ. In this case a fast drift - if it happens
- makes the orbits move away from the resonance in a very short time.

These extreme examples illustrate the role of the Nekhoroshev condition: steepness
is an intermediate quantitative property, which prevents from the existence of the su-
perconductivity channels by ensuring a certain amount of transversality between the
fast drift planes and the corresponding resonances in action. Starting from an action
I = I(0) located at some resonance Λ, so that its associated frequency !(I) is or-
thogonal to Γ ∶= Vect Λ, the condition

max
0≤�≤�

min
u∈Γ,|u|2=�

|

|

�Γ!(I + u)||2 > Cm�
�m , ∀� ∈ (0, �], (15.1.4)

(where �Γ stands for the orthogonal projection on Γ) imposes that a drift of length �
starting from I and occuring along the fast drift plane I+Γmakes the projection �Γ(!)
change by an amount of Cm��m during the way.

4Here a proper choice of the initial angles is needed.
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Figure 15.1: Geometric interpretation of the steep condition

This admits an easy geometric interpretation (see Figure 1). Assume dimΛ = m
and consider the vector space Γ spanned by Λ, together with its orthogonal space Λ⊥ -
of dimension n − m. Then one can define a family of tubular neighborhoods of Λ⊥ of
width � > 0 by

T�(Λ⊥) = {$ ∈ ℝn ∣ �Γ($) < �}, � > 0 . (15.1.5)

Each such neighborhood gives rise to a neighborhood of the resonance Λ in action,
namely:

W�(Λ) = !−1
(

T�(Λ⊥)
)

. (15.1.6)

Therefore, condition (15.1.4) just says that any orbit starting from I and drifting to a
distance � from I along the plane of fast drift Γ must exit the neighborhoodW�(Λ)
with � = Cm��m .

Note finally that given disjoint subsets T, T′ of tubular neighborhoods of the form
(15.1.5), the associated neighborhoods !−1(T) and !−1(T′) are disjoint too, whatever
the geometric assumptions on the frequency map !.

15.2 Nekhoroshev’s hierarchy.

This section is inspired by Nekhoroshev’s ideas as presented in the very nice paper [70].
We also refer to [69] for further details and to [99] for a different approach. Nekhoro-
shev’s strategy to prove long-time stability results for perturbations of steep Hamilto-
nians is based on the previous description of resonant neighborhoods, and relies on the
following key observation.

Given " small enough, there exist T ("), R(") and a covering of the action space O
by resonant “blocks” (m,p)0≤p≤pm , for 0 ≤ m ≤ n − 1, and m, p, pm ∈ ℕ, which satisfy
the following properties:

1. T (")→ +∞ and R(")→ 0 when "→ 0;
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2. each block m,p is contained in a resonant neighborhood of multiplicity m and
admits an enlargement ̂m,p ⊃ m,p contained in the same resonant neighbor-
hood;

3. any solution starting from an initial condition in m,p either stays inside ̂m,p for
0 ≤ t ≤ T (") or admits a first exit time t1 such that I(t1) belongs to a blockm′,p′
with m′ < m;

4. for any initial condition I(0) inside a block m,p and for any interval  such that
I(t) ∈ ̂m,p for all t ∈ , then

|I(t) − I(0)|2 < R("), ∀t ∈ .

We say that m is the multiplicity of the blockm,p. Taking the previous observation
for granted, the stability of the action variable over a timescale T (") is easy to prove
by finite induction. Given an initial condition I(0) located in some block m0,p0 , either
I(t) ∈ ̂m0,p0 for 0 ≤ t ≤ T ("), or there is a t1 such that I(t) ∈ ̂m0,p0 for 0 ≤ t < t1 and
I(t1) belongs to a block m1,p1 with m1 < m0. Consequently, there is a finite sequence
(m0, p0),… , (mj , pj) such that m0 > m1 > ⋯ > mj (with maybe mj = 0) and a finite
sequence of times t0 = 0 < t1 <⋯ < tp = T (") such that for 0 ≤ i < j:

I(t) ∈ ̂(mi,pi), ∀t ∈ [ti, ti+1].

In words, any orbits crosses a finite number of enlarged blocks during the interval
[0, T (")] and get trapped inside the last one. To conclude, one just has to use prop-
erty (4), which proves that the distance between I(0) and I(t) is at most nR(") for
t ∈ [0, T (")].

One should be aware that the covering by the blocks is not a partition of O: two
distinct blocks may have a nonempty intersection. However, one can choose the blocks
visited by the orbits according to a hierarchical order, in such a way that their multi-
plicity decreases as t increases 5. We say that a covering of O by blocks satisfying the
previous properties is a Nekhoroshev patchwork.

15.3 Construction of Nekhoroshev patchworks.
Let us now describe how the blocks are constructed so as to possess their covering and
confinement properties6.

Given " > 0, we first fix an ultraviolet cutoff K(") and consider only the setM" of
resonance modules which are spanned by vectors of length smaller than K("). Given a

5This raises the question of the existence of local finite time Lyapunov functions on the phase space, a
still unclear issue.

6A source of inspiration for nowadays governments.
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resonant module Λ ∈M" of multiplicity m, we start with the resonant zone of “width”
�Λ

ZΛ ∶= W�Λ (Λ) = !−1
{

$ ∈ ℝn ∣ |
|

�Γ($)||2 < �Λ
}

,

where �Λ has to be properly chosen as a function of " and the various geometric invari-
ants of the module (see section 18). We then define the ("-dependent) resonant zone
m of multiplicity m as

Zm =
⋃

Λ∈M", dimΛ=m
ZΛ.

Given Λ ∈ M", dimΛ = m, the block attached to Λ is obtained by removing from ZΛ
its intersection with the complete resonant zone of multiplicity m + 1:

Λ = ZΛ ⧵Zm+1.

The blocks m,p are the connected components of Zm. With no great loss of gen-
erality, one can think of (the closure of) a block as a submanifold with boundary and
corners – even if it is not necessary.

The following figure shows the construction of the blocks in the case n = 3 (and
in a transverse section). The resonance zone of multiplicity 2 if the disjoint union of
the blue blocks, the resonance zone of multiplicity 1 is the union on the strips with red
boundaries, while the 0-multiplicity zone is the complement of the 1-multiplicity zone.

In any case, the blocks satisfy two main properties.

− The closures of two different blocks can intersect only when their multiplicities
are distinct.

This comes from a very careful choice of the widths of the various resonance zones
(see [70] and Section 18), which in fact ensures a more stringent (and crucial) property:
the enlargement of a block contained in some Λ cannot intersect any other block con-
tained in the zone Λ, neither any other neighborhoodΛ′ with dimΛ′ = dimΛ (see
below for precisions on the construction of the enlargement).

We state the second property in the spirit of Conley’s isolating blocks theory.

− The frontier )m,p of m,p is the union of two subsets

)m,p = )+m,p + )−m,p

where )+m,p (resp. )−m,p) is contained in blocks m′,p′ with m′ > m (resp.
m′ < m).

This raises new questions which could be the starting point of a better understanding
of the relations between diffusion along invariant subsets and long-time stability theory.
Indeed, given a block m,p, a description of the (generic) features of the Hamiltonian
vector field XH"

at the frontier )m,p has never been done. In particular, nothing is



15.3. CONSTRUCTION OF NEKHOROSHEV PATCHWORKS. 187

Fast drift Mon
Spare t' = chz tBm.se#EEpMm.ndimn--dimN=m
\ un§
| ! !

Mon"
In beau , pmrtofthebmt

Math "
ofhighwmnltîtvicity .

Ingram : mbowfrmmt.fr Bmik .

Figure 15.2: Construction of the resonant blocks

known on the locus where XH"
“enters the block” and the locus where XH"

“exits the
block”. These two subsets are crucial for the understanding of the homology of the
invariant sets contained into the blocks, following Conley’s theory, and could provide
one with a new tool for constructing diffusing orbits in the steep setting.

ÏËËËË..
Figure 15.3: Interpretation of the resonant blocks in the light of Conley’s theory

Going back to the construction of Nekhoroshev’s patchwork, we have to make pre-
cise the process conducting to the enlargement of a block and its stability property. Here
wewill againmake a crucial use of the fact that an orbit starting from an initial condition
I ∶= I(0) located in m,p will remain extremely close to the fast drift space I +Vect Λ
for 0 ≤ t ≤ T ("), as long as it stays inside the resonant neighborhood Λ and far
enough to the higher multiplicity resonance zones. Hence, to enlarge the block m,k,
we just have to add to it the collection of all the parts of the disks centered at points
I ∈ m,p which are contained in the intersection of the fast drift spaces I +Vect Λwith
the resonant neighborhoodΛ (the resulting added subset is the green part in the pre-
vious two figures). We have in fact to add a very small neighborhood of these union of
disks, in order to prevent the solutions to exit the extended block under the influence of
the remainder part  of the dynamics during the time T ("), but this would not change
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le → o if E → 0

a •

FETER

.ee#**mTmqoe---Imfessitilityf
snpneonductrng charnels

Figure 15.4: The Steepness property prevents the existence of superconductivity chan-
nels by ensuring a contact of finite order between the resonant manifold and the plane
of fast drift. Here in the figure, l is the size of the resonant zone (see Section 18.1)

our description significantly. Finally, one has to make sure that the extension will not
intersect any other block of the same neighborhood Λ or any other resonance neigh-
borhood, which can be done by a careful tuning of the width of the zone (see Section
18).

This concludes our description of Nekhoroshev’s method.
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Functional setting

For n ≥ 1, we denote the standard n-dimensional torus by T n = ℝn∕2�ℤn and the
standard 2n-dimensional annulus by An = ℝn × T n.

16.1 Hölder differentiable functions.

Given an integer q ≥ 0 and an open subset D of ℝn, we denote by Cq(D) the set of q-
times continuously differentiable maps f ∶ D → ℝ (C0(D) being the set of continuous
functions onD). We identifyCq(T n)with the subset ofCq(ℝn) formed by the functions
that are 2�ℤn-periodic and Cq(D × T n) with the subset of Cq(D × ℝn) formed by the
functions which are 2�ℤn-periodic with respect to their last n variables.

We use the conventional notation for partial derivatives: given f ∈ Cq(D) and
� ∈ ℕn, we set for x ∈ D:

)�f (x) =
)|�|f

)x�11 … )x�nn
(x),

with |�| = �1 +⋯ + �n.
We denote by Cqb (D) the set of f ∈ C

q(D) such that

‖f‖Cq(D) ∶= sup
|�|≤q

sup
x∈D

|)�f (x)| < +∞, (16.1.1)

so that
(

Cqb (D), ‖⋅‖Cq(D)
)

is a Banach space with multiplicative norm1. It is understood
that, for a function defined on a compex domainD, the ‖⋅‖C0(D) is the usual sup-norm.

If l > 0 is a non-integer real number, we write q ∶= ⌊l⌋ for its integer part and
� = l− q ∈ (0, 1) for its fractional part. Given a non-negative integer q and � ∈ (0, 1),

1That is, satisfying an inequality of the form |fg| ≤ C|f ||g| for a suitable constant C .
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we denote by Cq,�b (D) the space formed by those functions f ∈ Cq(D) such that

|f |Cq,�(D) ∶= ‖f‖Cq(D) + sup
�∈ℕn∶|�|=q

sup
x,y∈D∶

0<|x−y|<1

|)�f (x) − )�f (y)|
|x − y|�

< +∞. (16.1.2)

It is well-known that
(

Cq,�b (D), | ⋅ |Cq,�(D)
)

is also a Banach space with multiplicative
norm. Functions belonging to these spaces are called Hölder-differentiable functions.

Given a non-integer real number l > 0, together with its integer part q ∶= ⌊l⌋
and its fractional part � = l − q ∈ (0, 1), we also write Clb (D) instead of Cq,�b (D) and
| ⋅|Cl(D) instead of | ⋅|Cq,�(D). ClearlyClb (D) ⊂ C

l′
b (D)when l ≥ l′ and if f ∈ Clb (D)

|f |Cl′ (D) ≤ |f |Cl(D). (16.1.3)

16.2 Domains and their complex extensions.
Let us define the complex n-dimensional torus T nℂ and the complex 2n-dimensional
annulus Anℂ as

T nℂ = ℂn∕2�ℤn and Anℂ = ℂn × T nℂ. (16.2.1)

We use angle coordinates � on T nℂ (with the usual abuse � ∈ ℂn when there is no am-
biguity) and action-angle coordinates (I, �) on Anℂ. We see T nℂ as a real n-dimensional
vector bundle over T n. Consequently, we write

|�| ∶= max
j

(

|

|

|

Im �j
|

|

|

)

, |I| ∶= max
j

|

|

|

Ij
|

|

|

, |(I, �)| = max (|I|, |�|) . (16.2.2)

For integer vectors k ∈ ℤn, we use the “dual" l1-norm, which we write |k| only when
there is no risk of confusion.

We need to introduce specific domains in Anℂ. First, given r > 0, for a domain
D ⊂ ℝn, we set

Dr ∶=
{

z ∈ ℂn ∶ ∃z∗ ∈ D ∶ |z − z∗|2 < r
}

. (16.2.3)

As for the torus, given s > 0, we introduce the global complex neighborhood

T ns ∶=
{

� ∈ T nℂ ∶ |�| < s
}

. (16.2.4)

We will essentially deal with complex domains of the form

r,s ∶= Dr × T ns ⊂ Anℂ. (16.2.5)

We finally write Dℝ
r and ℝ

r,s for the projections of Dr and r,s on ℝn and An respec-
tively.
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16.3 Analytic functions and norms.
If g is a bounded holomorphic function defined on T ns , Dr or r,s we denote the corre-
sponding classical sup-norms by

|g|s = sup
�∈T ns

|g(�)|, |g|r = sup
I∈Dr

|g(I)|, |g|r,s = sup
(I,�)∈r,s

|g(I, �)|. (16.3.1)

Fix a bounded holomorphic function g ∶ r,s+2� → ℂ, where � > 0, and let g(I, �) =
∑

k∈ℤn ĝk(I)ei k⋅� be its Fourier expansion, where k ⋅ � = k1�1 +⋯ + kn�n. We then
introduce the weighted Fourier norm

||g||r,s ∶= sup
I∈Dr

∑

k∈ℤn
|

|

ĝk(I)|| e
|k|s, (16.3.2)

which is finite and satisfies

|g|r,s ≤ ||g||r,s ≤ cothn � |g|r,s+� . (16.3.3)

We denote by r,s the space of holomorphic functions on r,s with finite Fourier
norm. Endowed with this norm, r,s is a Banach algebra.

Finally, the norm of a vector valued function will be the maximum of the norms of
its components.
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Chapter 17

Analytic smoothing

We state in this section the key ingredient of the present work. We first recall the analytic
smoothingmethod as developed by Jackson-Moser-Zehnder for Hölder functions ofℝn:
given aHölder function f ∈ Cl(ℝn) and a positive number s ≤ 1, this yields an analytic
function on the complex neighborhood ℝn

s whose restriction to ℝn is close to f in the
Ck topology, for 1 ≤ k ≤ l.

We then adapt their method to our specific setting of functions defined on An (see
Section 17.2) and, in addition, we derive the new estimate (17.3.2) for the weighted
Fourier norm of the smoothed function.

17.1 Analytic smoothing in ℝn

We recall here the result by Jackson, Moser and Zehnder, following the presentation
by [45] and [110].

Proposition 17.1.1 (Jackson-Moser-Zehnder). Fix an integer n ≥ 1, a real number
l > 0 and let f ∈ Clb (ℝ

n). Then there is a constant CJ = CJ(l, n) such that for every
0 < s ≤ 1 there exists a function fs, analytic on ℝn

s , which satisfies

|

|

|

|

|

|

)�fs(x) −
∑

�∈ℕn∶|�|≤⌊l⌋−|�|
)�+�f (Re x)

(Im x)�

�!

|

|

|

|

|

|

≤ CJ s
l−|�|

|f |Cl(ℝn), ∀x ∈ ℝn
s ,

(17.1.1)
for all multi-integer � ∈ ℕn such that |�| ≤ ⌊l⌋. More precisely, given any even C∞

function Φ with compact support in ℝn and setting

K(�) ∶= 1
(2�)n ∫ℝn

Φ(x)eix⋅�dx, � ∈ ℝn
s , (17.1.2)

the function

fs(x) ∶= ∫ℝn
K
(x
s
− �

)

f (s�) d� , (17.1.3)
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satisfies the previous requirements (where the constant CJ(l, n) depends on the choice
of Φ).

Observe that fs takes real values when its argument is in ℝn.

17.2 Analytic smoothing in An.
In the following, the Hölder regularity l is assumed to satisfy ⌊l⌋ ≥ n + 1 as in the
hypotheses of Theorem 14.3.1.
We now specialize the previous result to our setting and give a more detailed description
of the method in the case of functions of An. In that case, the analytic smoothing is a
truncation of the Fourier series of the initial Hölder function with suitably modified
Fourier coefficients (the so-called Jackson polynomials). Our main concern here is to
derive an estimate on the weighted Fourier norm of an s-smoothed Cl function over a
complex strip of width s.

Tomake thewhole presentationmore explicit and take the anisotropy of the weighted
Fourier norm into account, we first consider functions defined onℝn and T n separately.
This then yields a statement for functions of An.

∙ The non-periodic case. Fix an even function Φ ∶ ℝn → [0, 1], of class C∞, with
support in the ball B2(0, 1) and let K ∶ ℂn → ℂ be its Fourier-Laplace transform:

K(y) = 1
(2�)n ∫ℝn

Φ(�)e−i�⋅yd�. (17.2.1)

Since Φ is compactly supported, then K is an entire function . Moreover its restriction
toℝn is in the Schwartz class (ℝn) sinceΦ is, and this is also the case for the translates
y↦ K(y − z) for y ∈ ℝn and fixed z ∈ ℂn.

Let f ∶ ℝn → ℝ be a Cl function with ⌊l⌋ ≥ n + 1, with compact support
contained in the ball B∞(0, R0) for some R0 > 0. Given s ∈ ]0, 1], set for x ∈ ℝn:

fs(x) =
1
sn ∫ℝn

K
(x − y

s

)

f (y)dy = ∫ℝn
K
(x
s
− y

)

f (sy)dy = ∫ℝn
K(y)f (x − sy)dy.

(17.2.2)
By Fourier reciprocity:

fs(x) = ∫ℝn
Φ(�) ̂f (x − sy)(�)d�,

with:

̂f (x − sy)(�) = 1
(2�)n ∫ℝn

f (x − sy)e−iy⋅�dy

= 1
(2�)nsn ∫ℝn

f (u)e−i(x−u)⋅�∕sdu = e−ix⋅�∕s

sn
f̂
(−�
s

)

.
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Therefore, since Φ is even:

fs(x) =
1
sn ∫ℝn

Φ(�)f̂
(−�
s

)

e−ix⋅�∕sd�

= ∫ℝn
Φ(s�)f̂ (−�)e−ix⋅�d� = ∫ℝn

Φ(s�)f̂ (�)eix⋅�d�.
(17.2.3)

Hence fs is the inverse Fourier-Laplace transform of the “truncation”

� ↦ Φ(s�)f̂ (�).

The first term of (17.2.2) shows that fs extends to ℂn and is an entire function. To get
our final estimate we go back to the second term in (17.2.2), which yields

|fs(z)| ≤ ‖f‖C0(ℝn) ∫ℝn
|

|

|

|

K
(z
s
− y

)

|

|

|

|

dy, z ∈ ℂn. (17.2.4)

By the Schwartz estimate of Lemma G.0.1, there exists a constant Cn such that

|

|

|

|

K
(z
s
− y

)

|

|

|

|

≤ Cn
eIm(z∕s−y)

(1 + |z∕s − y|2)n+1
,

so that, for y ∈ ℝn, z ∈ ℂn and | Im z|2 ≤ s:

|

|

|

|

K
(z
s
− y

)

|

|

|

|

≤ Cn
e

(1 + |Re(z∕s − y)|2)n+1
.

Hence:
|fs(z)| ≤ ‖f‖C0(ℝn) Cne∫ℝn

dy
(1 + |y|2)n+1

. (17.2.5)

since z∕s is fixed and can be eliminated by a simple translation. We finally get the
following estimate:

|fs|s = sup
z∈ℂn∶|Im z|2≤s

|fs(z)| ≤ C1(n) ‖f‖C0(ℝn) , (17.2.6)

with
C1(n) ∶= Cne∫ℝn

dy
(1 + |y|2)n+1

< ∞.

∙ The periodic case. Fix now an even function Ψ ∶ ℝn → [0, 1], of class C∞, with
support in the ball B1(0, 1) and define the associate kernel K as in (17.2.1).

Fix a 2�ℤn-periodic function f ∈ Cl(ℝn) with l ≥ n + 1. Then the Fourier
expansion

f (�) =
∑

k∈ℤn
f̂ke

ik⋅� , f̂k =
1

(2�)n ∫T n
f (')e−ik⋅'d',
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converges normally since, by Lemma G.0.2 in Appendix G, for k ∈ ℤn ⧵ {0}, there
exists a universal constant CF(n,l) satisfying

|

|

|

f̂k
|

|

|

≤ CF(n,l)
||f ||C⌊l⌋

|k|⌊l⌋∞

(17.2.7)

and ⌊l⌋ ≥ n + 1 by hypothesis. For s ∈ ]0, 1], the function

fs(�) =
1
sn ∫ℝn

K
(� − '

s

)

f (')d'

is well-defined and, by the Fubini interversion theorem:

fs(�) =
∑

k∈ℤn
f̂k ∫ℝn

K(')eik⋅(�−s')d' =
∑

k∈ℤn
f̂ke

ik⋅�
∫ℝn

K(')e−isk⋅'d'.

Hence, sinceK is the inverse Fourier transform ofΨ, by the Fourier inversion theorem:

fs(�) =
∑

k∈ℤn
f̂kΨ(sk) eik⋅� , � ∈ ℝn. (17.2.8)

As in the non-periodic case, this makes apparent that fs is a continuous truncation of
the Fourier expansion of f with a Ψ-dependent modification of its Fourier coefficients
(the so-called Jackson polynomial):

(̂fs)k = Ψ(sk)f̂k . (17.2.9)

Consequently, the Fourier norm

‖

‖

fs‖‖s =
∑

k∈ℤn

|

|

|

(̂fs)k
|

|

|

es|k|1

depends only on the harmonics such that |k|1 ≤ 1∕s and satisfies

‖

‖

fs‖‖s ≤
∑

|k|1≤1∕s

|

|

|

(̂fs)k
|

|

|

es|k|1 ≤ e
∑

|k|1≤1∕s

|

|

|

(̂fs)k
|

|

|

≤ e
∑

k∈ℤn

|

|

|

f̂k
|

|

|

.

Hence, by (17.2.7):
‖

‖

fs‖‖s ≤ C2(l)|f |C⌊l⌋ (17.2.10)

with

C2(l) ∶= e

(

1 + CF(n,l)
∑

k∈ℤn⧵{0}

1
|k|[l]∞

)

(17.2.11)

∙ Functions on An. We finally gather together the previous two cases. Let Φ⊗Ψ ∶
ℝn ×ℝn → [0, 1] be defined by

Φ⊗Ψ(x, �) = Φ(x)Ψ(�),
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and define the kernel

K(y, ') = ∫ℝ2n
Φ⊗Ψ(x, �) e−i(x,�)⋅(y,') dxd� = KΦ(y)KΨ(') = KΦ ⊗KΨ(y, ')

where KΦ and KΨ are defined as above.

Fix a function f ∶ ℝn ×ℝn → ℂ, 2�ℤn-periodic with respect to its last n variables,
with support inB2(0, R0)×ℝn for someR0 > 0, belonging toCl(ℝ2n)with ⌊l⌋ ≥ n+1.
For s ∈ ]0, 1] and (x, �) ∈ ℝn ×ℝn, set

fs(x, �) = ∫ℝ2n
K(y, ')f (x − sy, � − s')dyd'

= ∫ℝ2n
K(y, ')

∑

k∈ℤn
f̂k(x − sy)eik⋅(�−s')dyd'

(17.2.12)

with
f̂k(u) =

1
(2�)n ∫T n

f (u, v)e−ik⋅vdv. (17.2.13)

Note that fk is Cl , with support in B2(0, R0), so that the previous study on the non-
periodic case applies to fk.

By Fubini interversion

fs(x, �) =
∑

k∈ℤn
∫ℝ2n

K(y, ')f̂k(x − sy)eik⋅(�−s')dyd'

=
∑

k∈ℤn

(

∫ℝn
KΦ(y)f̂k(x − sy)dy

)(

∫ℝn
KΨ(')eik⋅(�−s')d'

)

=
∑

k∈ℤn
(f̂k)s(x)Ψ(sk)eik⋅�

(17.2.14)

where (f̂k)s stands for the analytic smoothing of the Fourier coefficient f̂k. This proves
that the Fourier coefficient (f̂s)k(x) relative to the periodic variable � reads

(f̂s)k(x) = Ψ(sk)(f̂k)s(x), k ∈ ℤn. (17.2.15)

Expressions (17.2.14) and (17.2.15) make clear that the whole smoothing procedure
of a function depending both on action and angle variables consists in constructing a
Jackson trigonometric polynomial by smoothing the Fourier coefficients and by suitably
truncating the Fourier series.

Using the definition of Ψ, one has (f̂s)k = 0 when |k|1 > 1∕s and, by (17.2.15) and
(17.2.6), one has

|(f̂s)k(z)| ≤ |(f̂k)s(z)| ≤ C1(n)
‖

‖

‖

f̂k
‖

‖

‖C0(ℝn)
≤ C1(n)CF(n,l)

|f |C⌊l⌋(ℝn)

|k|⌊l⌋∞

(17.2.16)
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when k ≠ 0, |k|1 ≤ 1∕s, whereas

|(f̂s)0(z)| ≤ C1(n)
‖

‖

‖

f̂0
‖

‖

‖C0(ℝn)
≤ C1(n) ‖f‖C0(ℝn) . (17.2.17)

As for the weighted Fourier norm of fs, we finally get:

||fs||s,s = sup
|Im z|2≤s

∑

k∈ℤn
|

|

|

(f̂s)k(z)
|

|

|

es|k|1

≤ C1(n) ‖f‖C0(ℝn) +
∑

k∈ℤn∖{0}∶
|k|1≤1∕s

eC1(n)CF(n,l)
|f |C⌊l⌋(ℝn)

|k|⌊l⌋∞

≤ CL(n,l)|f |Cl(ℝn) ,

where

CL(n,l) ∶= C1(n)

(

1 + eCF(n,l)
∑

k∈ℤn

1
|k|⌊l⌋∞

)

< +∞. (17.2.18)

17.3 Themain result with an application to normal forms.

17.3.1 Main result
Gathering together the elements of the previous section, we get the following result.

Theorem 17.3.1 (Analytic smoothing). Fix an integer n ≥ 1, R > 0 and s ∈ ]0, 1]. Let
f be aCl function onB∞(0, 2R)×T n. There exist two constantsA(R,l, n),B(R,l, n)
and an analytic function fs on the set Ans satisfying

‖

‖

f − s(f )‖‖Cp(BR×T n) ≤ A(R,l, n) sl−p|f |Cl(B∞(0,2R)×T n) (17.3.1)

for any integer 0 ≤ p ≤ ⌊l⌋, and

‖

‖

fs
‖

‖s,s ≤ B(R,l, n)|f |Cl(B∞(0,2R)×T n). (17.3.2)

Moreover, s(f ) is a trigonometric polynomial in the angular variables.

Proof. Fix a function � ∈ C∞(ℝn), with values in [0, 1], equal to 1 on the ball BR and
with support in B2R. Then the product f ∶= �f is Cl on An, has compact support in
B2R × T n and coincides with f on BR × T n. Moreover

|f |Cl(B∞(0,2R)×T n) ≤ CK |f |Cl(B∞(0,2R)×T n)

where CK = C|�|Cl(BR×T n) and C is a universal constant. By the Jackson-Moser-
Zehnder theorem applied to f , there is an analytic function s(f̄ ) on Ans satisfying

|

|

|

|

|

|

|

|

|

)�s(f̄ )(I, �) −
∑

�∈ℕ2n∶
|�|≤⌊l⌋−|�|

)�+� f̄ (Re(I, �))
(Im(I, �))�

�!

|

|

|

|

|

|

|

|

|

≤ CJs
l−|�|

|f̄ |Cl(An),

(17.3.3)
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so that for any p ≤ ⌊l⌋:

‖

‖

f̄ − s(f̄ )‖‖Cp(An) ≤ CJs
l−p

|f̄ |Cl(An). (17.3.4)

As a consequence, taking the form of � into account, one gets

‖

‖

f − s(f ) ‖‖Cp(BR×T n) ≤ CKCJs
l−p

|f |Cl(B∞(0,2R)×T n). (17.3.5)

Setting A ∶= CKCJ and, since the analyticity width � of the integrable part ℎ is greater
than s, the bound (17.3.1) follows. The proof of (17.3.2) is an immediate consequence
of the previous paragraphs if one sets B ∶= CL × CK .

17.3.2 An easy way to derive normal forms for Hölder functions
from analytic ones.

Let us now explain our strategy for a general Hölder Hamiltonian, we will then restrict
ourselves to the case where ℎ is analytic. Let

H(I, �) ∶= ℎ(I) + f (I, �) (17.3.6)

be Cl on B∞(0, 2R) × T n. Given s ∈ ]0, 1], let Hs be the s-smoothed analytic function
given by Theorem 17.3.1 applied to the functionH . By classical constructions (alluded
to in the introduction and which will be recalled in the following), there exist (close to
identity) symplectic analytic local diffeomorphisms Ψ defined on domains D ⊂ An
which bring Hs = hs + fs to the normal form Hs◦Ψ ∶ D → ℝ:

Hs◦Ψ = hs + g + f∗s (17.3.7)

where hs is nothing else than the smoothed initial integrableHamiltonian, g is a resonant
part which controls the fast drift in certain directions and f∗s is a very small remainder –
all these functions being analytic on D. The keypoint in our subsequent constructions
is the following very simple equality

H◦Ψ = Hs◦Ψ + (H −Hs)◦Ψ = hs + g +
[

f∗s + (H −Hs)◦	
]

. (17.3.8)

This is a normal form forH , obtained by composition ofH with an analytic diffeomor-
phism, in which the first three terms are analytic on D and only the last one is Cl . So
H◦Ψ has the same structure and dynamical interpretation as Hs◦Ψ, provided that the
Cl size of the additional remainder (H −Hs)◦Ψ is of the same order as the size of the
initial remainder f∗s . This issue strongly depends on the analytic smoothing method in
use, we will show in the sequel that the Jackson-Moser-Zehnder method is relevant for
our purposes. Our study will be even easier since we assume from the beginning that
the integrable part ℎ is analytic.

It turns out that the same smoothing method - and the same simple way to get a
normal form from an analytical one - are also relevant in many other functional classes,
the main ones being the Gevrey classes already used in [87], but also other ultradiffer-
entiable ones. This will be developed in a further work.
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Chapter 18

Estimates of stability

The aim of this section is to prove Theorem 14.3.1. The proof consists of several steps.
Following the discussion in section 15.1 of the introduction, we first build an appropriate
resonant covering of the phase space for the integrable Hamiltonian ℎ. Secondly, we
study the local dynamics by applying Pöschel’s resonant normal form (see Appendix
H) in each resonant block and we set the dependencies of the ultraviolet cut-off K and
analyticity widths r, s on the perturbative parameter ". Finally, we exploit the properties
of the resonant covering and we obtain a global result of stability by exploiting the so
called "capture in resonance" argument.

18.1 Construction of the resonant patchwork

In the sequel, we follow ref. [70], in which the choices of the parameters and the depen-
dencies of the small denominators on the ultraviolet cut-offK are justified heuristically.
For the sake of clarity, in order to have coherent notations we denote byDΛ rather than
Λ the resonant blocks introduced in Section 15, moreover when possible we will not
keep track of constants 1 but rather indicate their presence in bounds and equalities by
using the following symbols respectively: ≗,⋖ and ⋗.

We start by setting some parameters, depending on the steepness indices �1, ..,�n−1
of ℎ, that will be useful throughout this section.

pj ∶=

{

Πn−2i=j �i , if j ∈ {1, ..., n − 2}
1 , if j ∈ {n − 1, n}

qj ∶= npj − j , j ∈ {1, ..., n} ; cj ∶= qj − qj+1 , j ∈ {1, ..., n − 1}

(18.1.1)

1i.e. of quantities depending only on the fixed parameters of the problem, namely n, ℎ,l and on the indices
of steepness �1, ...,�n−1.
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and set

a ∶= 1
2n�1...�n−2

= 1
2np1

, b ∶= 1
2n�1...�n−1

= a
�n−1

, R(") ∶≗ "b .

(18.1.2)
With this setting, we fix an action I0 ∈ B∞(0, R∕4) and we consider its neighborhood
B2(I0, R(")).

Since ℎ is steep inB∞(0, R), the norm of the frequency! ∶= )Iℎ(I) at any point of
this set admits a uniform lower positive bound, that is infI∈B∞(0,R) ||!(I)|| ⋗ 1. Hence,
when studying the geography of resonances for ℎ, for sufficiently small " and without
any loss of generality we can just consider maximal lattices Λ ⊂ ℤnK of dimension
j ∈ {0, ..., n − 1}, with K ≥ 1 the ultraviolet cut-off. For a lattice Λ of dimension
j ∈ {0, ..., n − 1} we define its associated resonant zone as

ZΛ ∶= {I ∈ B2(I0, R(")) ∶ ∀k ∈ Λ one has |k ⋅ !(I)| < �Λ} , �Λ ∶≗
1

|Λ|Kqj
.

(18.1.3)
and its associated resonant block DΛ as

DΛ ∶= ZΛ∖
⋃

Λ′∶ dimΛ′=j+1
ZΛ′ . (18.1.4)

Note that DΛ corresponds to that part of the resonant zone ZΛ which does not contain
any other resonances other than the one associated to Λ. In particular, this implies
that for the completely non-resonant block associated to Λ = {0} and for any block Λ
corresponding to a maximal resonance of dimension j = n − 1 one has, respectively

D0 ∶= B(I0, R("))∖
⋃

Λ′∶ dimΛ′=1
ZΛ′ and DΛ = ZΛ . (18.1.5)

For any j ∈ {0, ..., n − 1} we set

Dj ∶=
⋃

Λ∶ dimΛ=j
DΛ , Zj ∶=

⋃

Λ∶ dimΛ=j
ZΛ . (18.1.6)

It is easy to see from (18.1.4) that

Dj = Zj∖Zj+1 (18.1.7)

so that from the definition of D0 in (18.1.5) one has the decompositions

B2(I0, R(")) =
n−1
⋃

i=0
Di , B2(I0, R(")) =

(j−1
⋃

i=0
Di

)

∪Zj ∀j = 1, ..., n − 1 .

(18.1.8)
As we have explained in the introduction (see section 15.1), a large drift over a short
time of any action variable I ∈ DΛ is only possible along the plane of fast drift I + ⟨Λ⟩
spanned by the vectors belonging to Λ. Moreover, the fast motion of the orbit starting



18.1. CONSTRUCTION OF THE RESONANT PATCHWORK 203

at I along I + ⟨Λ⟩ can take the actions out of the block DΛ. So, we are interested in
understanding what happens when the actions leaveDΛ but keep staying inZΛ. Hence,
we are naturally taken to consider the intersection of a neighborhood of I + ⟨Λ⟩ with
ZΛ. In this spirit, we fix

�(") ∶=
R(")
2n

(18.1.9)

and, for any 0 < � ≤ �(") and for any action I ∈ DΛ with Λ ≠ {0}, we define the disc
associated to I as

D�Λ,�(I) ∶=
(

(

⋃

I ′∈I+⟨Λ⟩
B2(I ′, �)

)

∩ZΛ ∩ B
(

I0, R(") − �(")
)

)

I

(18.1.10)

where the subscript I denotes the connected component of the set containing the action
I . Since we are going to study the fate of all orbits starting at a fixed block DΛ, with
Λ ≠ {0}, that exit such block in a short time along the plane of fast drift, we are also
led to define the extended resonant block

D�
Λ,rΛ

∶=

(

⋃

I∈DΛ∩B(I0,R(")−�("))
D�Λ,rΛ (I)

)

⊂ ZΛ ∩ B
(

I0, R(") − �(")
)

, rΛ ∶=
�Λ
M

,

(18.1.11)
whereM was defined in (14.3.3). In the same way, the extended non-resonant block is
defined as

D�
0 ∶= D0 ∩ B(I0, R(") − �(")) . (18.1.12)

18.1.1 The resonant blocks
As we have explained there, Nekhoroshev proved in [94] that, if ℎ is steep, when any
action I ∈ DΛ, with Λ ≠ {0}, moves along the plane of fast drift, it must exit the
resonant zone ZΛ after having travelled for a short distance. Indeed, if ℎ is steep with
steepness indices �1, ...,�n−1 one can prove that the diameter of the intersection of a
neighborhood of the fast drift plane with the resonant zone is small in the sense given
by the following

Lemma 18.1.1. For any Λ ≠ 0, dimΛ = j ∈ {1, ..., n − 1}, for any I ∈ DΛ ∩
B(I0, R(") − �(")) and for any I ′ ∈ D

�
Λ,rΛ

(I) one has

|

|

I − I ′|
|2 ≤ rj , where rj ∶≗

1
Kqj∕�j

. (18.1.13)

For a proof of this result we refer to Lemma 2.1 of ref. [70].
We notice that a smaller value of ", i.e. a higher value of K since the ultraviolet

cut-off is always a decreasing function of ", leads to a closer maximal distance between
any action I belonging to a resonant block and any action belonging to its disc.

Since we will perform normal forms in the (extended) resonant blocks, we also need
an estimate of the small divisors in these sets, namely we have
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Lemma 18.1.2. For any maximal lattice Λ ∈ ℤnK of dimension j ∈ {0, ..., n − 1}, for
any k ∈ ℤnK∖Λ and for any I ∈ D�

Λ,rΛ
one has

|⟨k, !(I)⟩| ≥ �Λ ∶≗
1

|Λ|Kqj−cj
, (18.1.14)

whereas for any action I in the completely non-resonant blockD0 and for any k ∈ ℤnK
one has

|⟨k, !(I)⟩| ≥ �0 ∶≗
1
Kq1

. (18.1.15)

We refer again to [70, Lemma 2.2] for a proof of this result.
Finally, a key ingredient in order to insure stability in the steep case is the fact that,

when possibly exiting a resonant zone along the plane of fast drift, the actionsmust enter
another resonant zone associated to a lattice of lower dimension. This is the content of

Lemma 18.1.3. Let Λ,Λ′ two maximal lattices of ℤnK having the same dimension j ∈
{1, ..., n − 1}. Then one has

closure
(

D�
Λ,rΛ

)

∩ZΛ′ = ∅ . (18.1.16)

Once again, the proof of this Lemma can be found in [70] (Lemma 2.3).
With the ingredients of this paragraph, we are able to prove stability.

18.2 Proof of the Main Theorem
In order to prove Theorem 14.3.1, we start by giving the standard estimates of stability
in the completely non-resonant extended block D�

0. Note that the following bounds do
not require any geometric assumption on the integrable part ℎ.

Lemma 18.2.1 (Non-resonant Stability Estimates). For any sufficiently small " and for
any time t satisfying

|t| ≤ T0 ∶≗
1

(1 + al)| ln "|l−1 "a(l−1)+1∕2
, a ∶= 1

2np1
, (18.2.1)

any initial condition I(0) ∈ D�
0 drifts at most as

|I(t) − I(0)|2 ⋖− "
1∕2 . (18.2.2)

Proof. Our goal is to apply Pöschel’s normal form (see Lemma H.0.1) to the smoothed
Hamiltonian of Theorem 17.3.1 with analyticity widths r and s.

∙ Normal form
By monotonicity of the Fourier norm w.r.t. the action variables and (17.3.2) we

immediately get,

||s(f )||r,s ≤ ||s(f )||s,s ≤ B(R,l, n)" =∶ � , (18.2.3)
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for any r ≤ s, where we set " ∶= |f |Cl(BR×T n).
Denote

%,� ∶= {(I, �) ∈ ℂn ∶ |I − B∞(0, R∕4)|2 < % , � ∈ T n� } ,

since ℎ is analytic, we chose not to regularize it further. So let Hs ∶= ℎ(I) + fs be
the corresponding analytic Hamiltonian defined on s,s. By Pöschel’s Lemma H.0.1
applied in the complex extension, denoted �

0,r,s, of the non-resonant block D
�
0, with

%′ ⇝ r, %⇝ s, � ⇝ s, if

� ⋖−
�0 r
K

, r ⋖− min
(�0
K
, s
)

, Ks ≥ 6 (18.2.4)

are satisfied, then there exists a symplectic diffeomorfism Ψ0 that puts Hs into resonant
normal form:

Hs◦Ψ0 = ℎ(I) + g + f∗s , {ℎ, g} = 0, Ψ0 ∶ 
�
0,r∕2,s∕6⟶ �

0,r,s . (18.2.5)

In particular the resonant and non-resonant part satisfy, respectively,

||g − g0||r∕2,s∕6 ⋖− � , ||f∗s ||r∕2,s∕6 ≤ e−
Ks
6 � (18.2.6)

where g0 ∶= PΛPKs(f ) and PΛ, PK are the projectors defined in Lemma H.0.1.

∙ Setting of the initial parameters

Let us set the following dependences on � of the ultraviolet cut-off K and of the
analyticity widths r, s

K ∶=
(�0
�

)a
, s ∶≗

(

�
�0

)a |
|

|

|

|

|

ln

[

(

�
�0

)6(1+al)
]

|

|

|

|

|

|

r ∶≗ 1
K1+q1

≗
(

�
�0

)a(1+q1)
=
(

�
�0

)1∕2
.

(18.2.7)

where �0 is a free parameter and � ≤ �0 since K ≥ 1.
Remark 18.2.1. The freedom in the definitions above is subordinated to the fact that,
in order for the construction to be meaningful, the reminder produced by the normal
form must be less than or equal to the size of the additional term (H − s(H))◦Ψ0,
byproduct of the analytic smoothing. As we are working in finite regularity, the latter is
expected to be polynomial. The reminder of the normal form being of order e−Ks, one
must have Ks ∼ O(| log �|c) for some c > 0. Since s tunes the size of the remainder
yielded by the analytic smoothing, it has to be polynomial. Hence one is left with two
possibilities: either the choice we made in (18.2.7), or to set K ∼ �−a| log �|c and
s ∼ �a. However this second choice would worsen the exponents of stability, since the
thresholds of applicability in the normal form lemma strongly depend onK . Of course,
to deal with other regularity classes, such as the Gevrey one, other choices must be
made.
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By plugging the choices (18.2.7) into the three thresholds in (18.2.4), it is easy to
see that there exists an appropriate choice of �0 that makes the three conditions to be
simultaneously satisfied. Hence, for the Hölder Hamiltonian

H = ℎ + f = Hs + f − fs, Hs ∶= ℎ + fs

we can write

H◦Ψ0 = s(H)◦Ψ0 + (f − s(f ))◦Ψ0 = ℎ + f∗s + (f − s(f ))◦Ψ0 . (18.2.8)

Note that since we are in a completely non-resonant block, the resonant term g does not
appear in the normal form. Now, the normal form in Lemma H.0.1 insures that there
exists a constant � > 1 such that any initial condition (I(0), �(0)) ∈ D�

0 × T n is mapped
by Ψ0 into (I(0), #(0)) ∈ (

�
0, r
32�
)ℝ × T n. For any time t such that the normalized flow

ΦtH◦Ψ0 ∶ (I(0), #(0)) ⟼ (I(t), #(t)) starting at (�
0, r
32�
)ℝ × T n does not exit from

(�
0,r∕2)

ℝ × T n, the evolution of the normalized variables reads (i = 1, ..., n)

|Ii(t) − Ii(0)|

≤ ∫

t

0
sup

(I,#)∈(�
0, r32�

)ℝ×T n

(

|

|

|

()#if
∗
s )◦Φ

t
H◦Ψ0

|

|

|

+ |

|

|

{)#i [(f − s(f ))◦Ψ0]}◦ΦtH◦Ψ0
|

|

|

)

dt

≤ ∫

t

0

⎛

⎜

⎜

⎝

sup
(I,#)∈(�

0,r∕2)
ℝ×T n

|)#if
∗
s | + sup

(I,#)∈(�
0,r∕2)

ℝ×T n
|)#i [(f − s(f ))◦Ψ0]|

⎞

⎟

⎟

⎠

dt

≤ |t|
⎡

⎢

⎢

⎣

||s(f )∗||r∕2,s∕6
s

+ ‖

‖

f − s(f )‖‖C1(B∞(0,R∕2)×T n) × sup
(I,#)∈(�

0,r∕2)
ℝ×T n

|)#iΨ0|
⎤

⎥

⎥

⎦

.

(18.2.9)

The normal form Lemma H.0.1, together with the choices in (18.2.7) and the definition
of � in (18.2.3), assures that

||s(f )∗||r∕2,s∕6 ≤ e−Ks∕6 � ⋖− exp

{

ln

[

(

�
�0

)1+al
]}

� ⋖− "
2+al , (18.2.10)

whereas, by Theorem 17.3.1, we have

‖

‖

f − s(f )‖‖C1(B∞(0,R∕2)×T n)

⋖− s
l−1" ⋖−

|

|

|

|

|

|

ln

[

(

�
�0

)6(1+al)
]

|

|

|

|

|

|

l−1

"1+a(l−1) ⋖−
|

|

|

ln
(

"6(1+al)
)

|

|

|

l−1
"1+a(l−1) .

(18.2.11)
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Finally, by writing in the usual way |)#iΨ0| = |)#i (Ψ0− id+ id)|, the Cauchy estimates
together with the bounds in H.0.5 imply (since r ≤ s)

sup
(I,#)∈(�

0,r∕2)
ℝ×T n

|)#iΨ0|2 ⋖− 1 + max
{

1
24�

, 1
32�

r
s

}

⋖− 1 . (18.2.12)

It is easy to see from estimates (18.2.10), (18.2.11) and (18.2.12) that, in order, the
remainder from the analytic smoothing dominates on the one coming from the normal
form, namely

||s(f )∗||r∕2,s∕6
s

≪ ‖

‖

f − s(f )‖‖C1(B∞(0,R∕2)×T n) × sup
(I,#)∈(�

0,r∕2)
ℝ×T n

|)#iΨ0|

so that finally we can write

|I(t) − I(0)|2 ⋖− |t| ||
|

ln
(

"6(1+al)
)

|

|

|

l−1
"1+a(l−1) . (18.2.13)

Hence, over a time

|t| ⋖−
r

|

|

|

ln
(

"6(1+al)
)

|

|

|

l−1
"1+a(l−1)

⋖−
1

|

|

|

ln
(

"6(1+al)
)

|

|

|

l−1
"1∕2+a(l−1)

one has |I(t) − I(0)|2 ⋖− r and, by scaling back to the original variables,

|I(t) − I(0)|2 ⋖− r ⋖− "
1∕2 .

As for the dynamics in the resonant blocks, we have the following

Lemma 18.2.2. Consider a maximal lattice Λ ⊂ ℤnK of dimension j ∈ {1, ..., n − 1}.
There exists Tj > 0 such that for any sufficiently small " and for any initial condition

(I(0), �(0)) ∈
(

DΛ ∩ B
(

I0, R(") − (j + 1)�(")
)

)

× T n, if one sets

TΛ ∶=Tj ×
rΛ

| ln "6(1+al)|l−1 "1+a(l−1)
, a ∶= 1

2np1
, (18.2.14)

and considers the time of escape of the flow generated byH from the extended resonant
block

�e ∶= inf
{

t ∈ ℝ ∶ ΦtH

(

DΛ ∩ B
(

I0, R(") − (j + 1)�(")
)

× T n
)

⊄ D�
Λ,rΛ

× T n
}

,

(18.2.15)

the following dichotomy applies:
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1. If |�e| ≥ TΛ one has
|I(t) − I(0)|2 < �(") (18.2.16)

over a time |t| ≤ TΛ;

2. If |�e| < TΛ there exists i ∈ {0, ..., j − 1} such that

I(�e) ∈ Di ∩
(

B
(

I0, R(") − j�(")
)

)

.

Proof. We start by considering the case |�e| ≥ TΛ. In a similar way to what we did
in the proof of Lemma 18.2.1, we apply Pöschel’s Normal Form (see Lemma H.0.1) to
the smoothed Hamiltonian Hs in the complex extension (D�

Λ,rΛ
)rΛ of the real extended

resonant block D�
Λ,rΛ

, with parameters

K ∶=
(�0
�

)a
, s ∶≗

(

�
�0

)a |
|

|

|

|

|

ln

[

(

�
�0

)6(1+al)
]

|

|

|

|

|

|

, rΛ ∶≗
1

|Λ|Kqj
(18.2.17)

and with a small divisor estimate given by formula (18.1.14) in Lemma 18.1.2, namely

�Λ ∶≗
1

|Λ|Kqj−cj
. (18.2.18)

As before, we plug (18.2.17) and (18.2.18) into Pöschel’s thresholds (H.0.1) – (H.0.2)
and we derive the conditions

� ⋖−
�ΛrΛ
K

⟷

(

�
�0

)1−an(pj+pj+1)
⋖− 1 j ∈ {1,… , n − 1}

rΛ ⋖−
�Λ
K

⟷

(

�
�0

)an(pj−pj+1)
⋖− 1 j ∈ {1,… , n − 1}

Ks ≥ 6 ⟷

|

|

|

|

|

|

ln

[

(

�
�0

)6(1+al)
]

|

|

|

|

|

|

≥ 6 .

(18.2.19)

By definition of the parameters pj in (18.1.1), it is easy to see that the first two conditions
are always satisfied by appropriately choosing �0, whereas the last condition is trivial.

Therefore, by taking into account the notations in (16.2.3), there exists a symplectic
transformation ΨΛ ∶ (D

�
Λ,rΛ

)rΛ∕2 × T ns∕6 ⟶ (D�
Λ,rΛ

)rΛ × T ns , (I, #)⟼ (I, �), that
takesH into the resonant normal form

H◦ΨΛ = s(H)◦ΨΛ + (H −s(H))◦ΨΛ = ℎ+ g+ f∗s + (f −s(f ))◦ΨΛ (18.2.20)

with {ℎ, g} = 0, ||f∗s ||r∕2,s∕6 ⋖− e
−Ks∕6 ".

Now, for any time t such that |t| ≤ TΛ ≤ |�e|, the dynamics on the subspace orthog-
onal to the plane of fast drift ⟨Λ⟩ can be controlled in the usual way by exploiting the
smallness of the non-resonant remainder f∗s , as well as that of (f − fs)◦ΨΛ. Namely,
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for any initial position in the actions I(0) ∈ DΛ, by the first estimate in (H.0.5) one
has that the associated normalized coordinate satisfies I(0) ∈ (DΛ)ℝrΛ

32�
, where (DΛ)ℝrΛ

32�

represents the real projection of the complex extension of width rΛ
32� around DΛ (not to

be confused with the extended resonant block) and where � > 1 is a free parameter that
can be suitably adjusted. By taking into account the fact that Π

⟨Λ⟩⟂ ()#g) = 0, one can
write

|

|

|

Π
⟨Λ⟩⟂

(

I(t) − I(0)
)

|

|

|2

≤ ∫

t

0
sup

(I,#)∈(DΛ)ℝrΛ
32�

×T n

(

|

|

|

Π
⟨Λ⟩⟂ ()#g + )#f∗s )◦Φ

t
H◦ΨΛ

|

|

|2

+ |

|

|

Π
⟨Λ⟩⟂{)#[(f − s(f ))◦ΨΛ]}◦ΦtH◦ΨΛ

|

|

|2

)

dt

≤ ∫

t

0
sup

(I,#)∈(DΛ)ℝrΛ
32�

×T n

(

|

|

|

()#f∗s )◦Φ
t
H◦ΨΛ

|

|

|2
+ |

|

|

{)#[(f − s(f ))◦ΨΛ]}◦ΦtH◦ΨΛ
|

|

|2

)

dt

≤ sup
(I,#)∈

(

D�Λ,rΛ

)ℝ
rΛ
32�

×T n

(

|

|

()#f∗s )||2 + |

|

{)#[(f − s(f ))◦ΨΛ]}||2

)

|t| ,

(18.2.21)

where the last inequality follows from the fact that |t| ≤ �e and, since the initial variables
are confined in D�

Λ,rΛ
, the normalized ones stay in (D�

Λ,rΛ
)ℝrΛ
32�

over the same time.

Since |t| ≤ TΛ ≤ �e, by the same arguments that were used in estimate (18.2.9) and
estimate (18.2.21) we obtain

|

|

|

Π
⟨Λ⟩⟂

(

I(t) − I(0)
)

|

|

|2

⋖− |t| ||
|

ln
(

"6(1+al)
)

|

|

|

l−1
"1+a(l−1)

⋖− Tj ×
rΛ

|

|

|

ln
(

"6(1+al)
)

|

|

|

l−1
"1+a(l−1)

|

|

|

ln
(

"6(1+al)
)

|

|

|

l−1
"1+a(l−1) =

rΛ
4

(18.2.22)

by suitably choosing Tj .
Let us decompose the variation of the action variables as

I(t) − I(0) =I(t) − I(t) + I(t) − I(0) + I(0) − I(0)
=I(t) − I(t) + Π

⟨Λ⟩⟂
(

I(t) − I(0)
)

+ Π
⟨Λ⟩

(

I(t) − I(0)
)

+ I(0) − I(0) ,
(18.2.23)

so that estimate (18.2.22), together with the size of the normal form, implies that, for
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|t| ≤ TΛ, the motion orthogonal to the fast drift plane is bounded by

|I(t) − I(0) − Π
⟨Λ⟩

(

I(t) − I(0)
)

|2

≤ |I(t) − I(t)|2 + |Π
⟨Λ⟩⟂

(

I(t) − I(0)
)

|2 + |I(0) − I(0)|2

≤
rΛ
32�

+
rΛ
4
+
rΛ
32�

≤ 3
4
rΛ ,

(18.2.24)

where we have used the fact that � > 1. Hence, by (18.2.24), I(t) ∈ D�
Λ,rΛ

since
I(0) ∈ DΛ and the orbit lies entirely in this set for any |t| ≤ TΛ ≤ �e; moreover, the
definition in (18.1.10) implies

I(t) ∈ D�
Λ, 34 rΛ

(I(0)) ⊂ D�Λ,rΛ (I(0)) .

This fact, together with Lemma 18.1.1, yields

|I(t) − I(0)|2 ≤ rj , where rj ∶≗
1

Kqj∕�j
, rj ⋗− rΛ . (18.2.25)

As it is shown in [70] (formula (38)), a careful choice of the constants leads to

max
j∈{1,...,n−1}

rj < �(") ,

which concludes the proof of the first claim of this Lemma.
We now consider the second claim. In this case, for any time t such that |t| < |�e| <

TΛ we can repeat the same arguments above and find I(t) ∈ D�
Λ, 34 rΛ

(I(0)). Then, by

construction, the escape time satisfies

I(�e) ∈ closure
(

D�
Λ, 34 rΛ

(I(0))
)

. (18.2.26)

Again, by Lemma 18.1.1, this implies |I(t) − I(0)|2 < �(") for any |t| < �e < TΛ, so
that, since I(0) ∈ B2

(

I(0), R(") − (j + 1)�(")
)

one has

I(�e) ∈ B2
(

I(0), R(") − j�(")
)

. (18.2.27)

Now, we shall prove that I(�e) ∉ ZΛ. By definition we have I(�e) ∉ D�
Λ,rΛ

and, thanks to (18.1.11), this means that there does not exist any action I∗ ∈ DΛ ∩
B
(

I0, R(") − �(")
)

such that I(�e) belongs to its disc D�Λ,rΛ (I
∗). Hence, by (18.1.10),

I(�e) must satisfy at least one of the three following conditions:

1. ∄I∗ ∈ DΛ ∩ B2
(

I0, R(") − �(")
)

∶ I(�e) ∈
⋃

I ′∈I∗+⟨Λ⟩ B2(I ′, rΛ);

2. I(�e) ∉ ZΛ;

3. I(�e) ∉ B2
(

I0, R(") − �(")
)

.
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By taking (18.2.26) and (18.2.27) into account, we see that the first and the third possi-
bility cannot occur. Therefore, there must exist a maximal latticeΛ′ ≠ Λ and a resonant
zoneZΛ′ such that I(�e) ∈ ZΛ′ . Moreover, Lemma 18.1.3, insures that dimΛ′ ≠ dimΛ
so that I(�e) ∉ Zj . The second decomposition in (18.1.8) together with (18.2.27) and
(18.1.9) implies that I(�e) belongs to a resonant block of lower multiplicity, hence the
claim.

Remark 18.2.2. The decompositions in (18.1.8) are a covering of B(I0, R(")) but they
are not a partition since, in general,Di∩Dj ≠ ∅ for j > i+1. Hence, nothing prevents
I(�e) from belonging to a resonant block of strictly higher multiplicity than the starting
one. If this happens, however, thanks to the construction in (18.1.8), one is insured
that I(�e) will also belong to another block associated to a lower order resonance. One
therefore chooses the block in which to study the evolution of the actions once they
leave the resonant zone they started at. This is at the core of the resonant trap argument,
which is discussed in the sequel.

Proof of Theorem 14.3.1. Theorem 14.3.1 follows from Lemmas 18.2.1 and 18.2.2. In-
deed, for any initial condition in the action variables I0 ∈ B∞(0, R∕4), we consider the
ball B2(I0, R(")) and the following dichotomy holds:

1. either I0 belongs to the completely non-resonant domain D�
0, in which case the

proof ends here thanks to Lemma 18.2.1;

2. or for some j ∈ {1, ..., n − 1} and some maximal Λ ⊂ ℤnK of rank j, I0 ∈
DΛ ∩ B

(

I0, R(") − (j + 1)�(")
)

.

In the second case, Lemma 18.2.2 applies and one has another dichotomy:

1. either |I(t) − I(0)|2 ⋖− �(") ∶≗ "b over a time TΛ; in this case the Theorem is
proven since, taking into account the fact that the analyticity width in Lemma
18.2.1 satisfies r ≗ "1∕2, one has

T(") ∶= T0 ∶≗
1

|(1 + al) ln "|l−1 "a(l−1)+1∕2
≗ r

|(1 + al) ln "|l−1 "a(l−1)+1

⋖−
Tj × rΛ

| ln "6(1+al)|l−1"a(l−1)+1
≗∶ TΛ ,

(18.2.28)

where the last inequality is a consequence of the fact that, by (18.2.7), (18.2.17),
one can write

r ≤ rΛ ⟷
1

K1+q1
≤ 1

|Λ|Kqj

and that, since |Λ| ≤ Kj , the stricter inequality

1
K1+q1

≤ 1
Kj+qj

⟷ 1 + q1 ≥ j + qj ⟷ p1 ≥ pj ,
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is trivially satisfied by the definition of p1 and pj , j ∈ {1, ..., n − 1}, in (18.1.1)
and by the fact that the steepness indices are always greater or equal than one.

2. or the actions enter a resonant block Di ∩
(

B
(

I0, R(") − j�(")
)

)

corresponding

to a resonant lattice of dimension i < j after having travelled a distance �(") over
a time inferior to the time of escape. In this block, the above arguments can be
repeated so that, after having possibly visited at most n − 1 blocks, overall the
actions can travel at most a distance (n − 1)�(") before entering the completely
non-resonant block, in which they are trapped for a time T0 given by Lemma
18.2.1 and they travel for another length �("). Thanks to (18.1.9), by construction
one has |I(t) − I(0)| ≤ n�(") = 1

2R(") ≗ "b.

This is the so-called resonant trap argument and concludes the proof of Theorem 14.3.1,
once one sets

a = a(l − 1) + 1
2

, b = b .
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Abstract
This part of the thesis is a work in progress. In the sequel we demonstrate a preparatory
step which is crucial in order to prove a conjecture by Arnol’d, Kozlov and Neishtadt
stating that the complementary set of invariant KAM tori of a generic nearly-integrable
system of the kind H(I, �) = ℎ(I) + "f (I, �) has Lebesgue measure O("). The result
we prove is a cornerstone which is necessary to extend to the larger class of real-analytic
systems H(I, �) = I2∕2 + "f (I, �), and, possibly, even to the complete real-analytic
system H(I, �) = ℎ(I) + "f (I, �) a former result by Biasco and Chierchia on the
phase space of systems of the form H(I, �) = I2∕2 + "f (�). Biasco and Chierchia’s
result, in turn, is fundamental in order to prove that the measure of the complementary
set of invariant KAM tori for a generic system is bounded from above by O("), which
constitutes one block of the aforementioned conjecture. In particular, we will show that
a dependence of the perturbation f on the action variables adds non-trivial obstacles
to the proof of Biasco and Chierchia’s result, which are tackled by making use of tools
of quantitative Morse-Sard’s Theory which were developed by Yomdin and Yomdin-
Comte.



216



Chapter 19

Heuristic introduction and state
of the art

19.1 Preliminary considerations
Let n ≥ 2 be a positive integer, and let D be an open subset of ℝn. We consider those
analytic Hamiltonian systems whose associated functionH is the sum of an integrable
part (in the sense of Arnol’d-Liouville) and of a small perturbation. Namely, indicating
the n-dimensional torus by T n ∶= ℝn∕ℤn, and making use of standard action-angle
coordinates (I, �) ∈ D×T n associated to the symplectic two-formΩ ∶=

∑n
i=1 dIi∧d�i,

we are interested in those systems whose Hamiltonian reads

H(I, �) ∶= ℎ(I) + "f (I, �) , H ∈ C!(D × T n;ℝ) (19.1.1)

where " > 0 is a small parameter which characterizes the size of the perturbation f
w.r.t. the integrable part ℎ. The equations of motion associated toH are

Ω(XH , ⋅) = −dH , XH ∶=  (∇H)† , (19.1.2)

where  is the standard symplectic matrix.
In this work we demonstrate a preparatory step which is crucial in order to prove

a conjecture by Arnol’d, Kozlov and Neishtadt stating that the complementary set of
invariant KAM tori of a generic nearly-integrable system of the kind (19.1.1)-(19.1.2)
has Lebesgue measure O("). Namely, the theorem we prove is a cornerstone which is
necessary to extend to the larger class of systems

H(I, �) = I2

2
+ "f (I, �) , f ∈ C!(D × T n) , 0 < " << 1

and, possibly, even to the complete system (19.1.1), a former result by Biasco and Chier-
chia (see [24]) on the the phase space of systems of the form

H(I, �) = I2

2
+ "f (�) , f ∈ C!(T n) , 0 < " << 1 .
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Biasco and Chierchia’s result, in turn, is fundamental in order to prove that the measure
of the complementary set of invariant KAM tori for a generic system (19.1.1) is bounded
from above by O("), which constitutes one block of the aforementioned conjecture (see
[22]). The other part of the conjecture, stating that a generic system (19.1.1) has a set
of Lebesgue measure ≥ O(") that does not contain any invariant torus, is a very hard
problem to tackle and will not be discussed here.

The building block of this work can be stated in the following way

Theorem 19.1.1. Let  be a compact domain of ℝ2 and let  be the unit ball in the
spaceC5(;ℝ) endowed with the standardC5-norm. There exists a constantC = C()
such that, for any quadruplet of functions (F1, F2, F3, F4), with Fi ∈  for all i ∈
{1, 2, 3, 4}, for any � > 0 sufficiently small, and for every vector � ∶= (�1, �2, �3, �4)
lying outside of a set of measure O(�) in ℝ4, the shifted functions

F �i (x) ∶= Fi(x) − �i i ∈ {1, 2, 3, 4}

verify

min
x∈

(

|F �1 (x)| + |F �2 (x)| + |F �3 (x)| + |F �4 (x)|
)

≥ C �19∕6 . (19.1.3)

As we will see in section 20, the proof of this statement relies on quantitative results
of Morse-Sard’s Theory developed by Yomdin [114] and Yomdin-Comte [119]. In the
same section, the rôle of Theorem 19.1.1 in the proof of the conjecture by Arnol’d-
Kozlov and Neishtadt is discussed from a heuristic point of view. In the following
paragraphs, instead, we will make an overview of the main ideas lying behind this con-
jecture, and we will present the state of the art without entering into too many techni-
calities.

19.2 On the conjecture by Arnold, Kozlov and Neish-
tadt

From a general point of view, the structure of the phase space of systems governed by
(19.1.1)-(19.1.2) is the object of study of classical Kolmogorov-Arnol’d-Moser (KAM)
Theory (see e.g. [5]), whose fundamental results for analytic systems are briefly dis-
cussed in the sequel.

For any vector ! ∈ ℝn, we start by giving the following

Definition 19.2.1. System (19.1.1)-(19.1.2) has a primary invariant torus carrying quasi
periodic motions of frequency ! if there exists a real-analytic embedding Φ ∶ T n ⟶
D × T n verifying

1. the imageΦ(T n) is a Lagrangian set which is invariant for the dynamics generated
by Hamiltonian (19.1.1);
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2. the flow of system (19.1.1)-(19.1.2) restricted toΦ(T n) is conjugated to the linear
quasi-periodic flow q⟼ q + !t in T n;

3. the image Φ(T n) is a graph over T n in D × T n.

Then, it is well-known that

1. for " = 0, system (19.1.1)-(19.1.2) is integrable in the sense of Arnol’d-Liouville,
and its phase space is foliated by primary invariant tori carrying quasi-periodic
motions;

2. for " > 0 sufficiently small, if the frequency map ! ∶= ∇ℎ ∶ D⟶ ℝ satisfies
the Kolmogorov non-degeneracy condition det()2ℎ∕)I2) ≠ 0 on D (i.e., if it is
a local diffeomorphism on D), classical KAM Theory ensures the existence of a
set of relative Lebesgue measure 1 − O(

√

") of primary invariant tori carrying
quasi-periodic motions. In particular, each invariant torus is a deformation of
order O(

√

") of an invariant torus of the unperturbed system.

Classical KAM Theory strongly relies on the study of the commensurability condi-
tions (resonances) satisfied by the frequencies! ∶= h.∕I. of the unperturbed system ℎ. In
particular, for fixed 
 > 0, � ≥ n−1, the invariant tori of a Kolmogorov non-degenerate
integrable system whose associated frequencies ! satisfy the (
, �)-Diophantine condi-
tion

|k ⋅ !| ≥ 

|k|�

∀k ∈ ℤn∖{0} , |k| ∶=
n
∑

i=1
|ki| (19.2.1)

persist under any sufficiently small perturbation.
It is expected that primary invariant tori of a generic Kolmogorov non-degenerate

nearly-integrable system do not fill the phase space homogeneously. In order to give a
heuristic justification of this fact, we start by providing the two following definitions:

Definition 19.2.2. Let K > 1 be a real number, and d ∈ {1,… , n}. A K-resonance of
order d in frequency space is the locus of points satisfying exactly d linearly indepen-
dent relations of the kind k1 ⋅ ! = 0,… , kd ⋅ ! = 0, where k1,… , kd ∈ ℤn∖{0} are
multi-integers whose lengths |ki| verify |ki| ≤ K , where i ∈ {1,… , d}.

Definition 19.2.3. Consider two real numbers K > 1 and �0 > 0. The (�0, K)-
completely non-resonant block in frequency space is the subset of frequencies ! veri-
fying

|k ⋅ !| ≥ �0 ∀k ∈ ℤn∖{0} , |k| ≤ K .

One has that - for appropriately chosen values of K > 1 and �0 > 0 - the frequency
space can be covered by suitably constructed open neighborhoods ofK-resonances and
by the (�0, K)-non-resonant block. Provided that the Kolmogorov non-degeneracy as-
sumption holds (which amounts to asking for the local invertibility of the frequency
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map), such a covering can be pulled back into action space. The construction of a res-
onant covering adapted to the considered problem is, in general, a very delicate matter,
and there is no unique choice of the parameters determining the sizes of the resonant
neighborhoods (see e.g. [104], [70]). Here, we follow Biasco and Chierchia’s construc-
tion in ref. [24] (Proposition 2.1) and we admit the existence of a covering of the action
space D into three blocks

D = D0
⋃

D1
⋃

D2 (19.2.2)

having, roughly speaking1, the following properties

− D0 is (�0, K) completely non-resonant for a suitable value �0. Moreover, there
exists c > 0 such that D0 is filled up to a set of Lebesgue measure O(e−1∕"c ) by
primary invariant tori carrying quasi-periodic motions associated to Diophantine
frequencies.

− D1 is the inverse image in action space of neighborhoods of size O(
√

") around
hyperplanes associated to K-resonances of order 1 (simple resonances deter-
mined by exactly one linear relation k ⋅ ! = 0, with |k| ≤ K). If one chooses
K ∼ | ln "|a, with a > 0, up to logarithmic corrections the measure of D1 is of
order O(

√

").

− D2 contains K-resonances of order higher or equal than two and, up to logarith-
mic corrections, has measure O(") for K ∼ | ln "|a, a > 0.

Remark 19.2.1. As it will be briefly mentioned in the next section, in Biasco and Chier-
chia’s construction one actually needs to set two "ultra-violet" cut-offsK1 andK2, with
K2 > K1. K1 plays the same rôle of K in the heuristics above, whereas K2 is intro-
duced as one needs - for technical reasons which will not be discussed here - to eliminate
neighborhoods of K2-resonances of order d ≥ 2 from the block D1. However, for the
purpose of this section, we will not need this distinction and we will only consider the
cut-off K1 = K .

Heuristically speaking, it is natural to expect that most of the primary tori of system
(19.1.1)-(19.1.2) are to be found inD0. Infact, as it was conjectured by Arnol’d, Kozlov
and Neishtadt in [5], D2 is not expected to contain a large set of invariant tori, as its
dynamics is essentially non perturbative. Namely, one has the following

Conjecture (Arnol’d, Kozlov, Neishtadt (ref. [5], Remark 6.8, p.285)
It is natural to expect that in a generic system with three or more degrees of freedom

the measure of the ‘non-torus’ set has order ". Indeed, the O(
√

")-neighbourhoods of
two resonant surfaces intersect in a domain of measure ∼ ". In this domain, after the
partial averaging taking into account the resonances under consideration, normalizing
the deviations of the “actions” from the resonant values by the quantity

√

", normaliz-
ing time, and discarding the terms of higher order, we obtain a Hamiltonian of the form

1The estimtes presented below hold up to logarithmic corrections.
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1
2⟨Ap, p⟩ + V (q1, q2), which does not involve a small parameter (...). Generally speak-
ing, for this Hamiltonian there is a set of measure ∼ 1 that does not contain points
of invariant tori. Returning to the original variables we obtain a ‘non-torus’ set of
measure ∼ ".

On the other hand, the example of the classical pendulum governed by the Hamil-
tonian function I2∕2 + " cos(�), with (I, �) ∈ ℝ × T , shows that the measure of the
complementary set of primary KAM tori can attain a value of order O(

√

"). Infact, the
invariant sets which are inside the separatrices of the pendulum are all homotopically
trivial and thus cannot be primary KAM tori (as they cannot be graphs over T ). On the
other hand, the region outside of the separatrices is filled by primary KAM tori which
are graphs over T . Hence, as the area of the region inside the separatrices is O(

√

"),
this is also the size of the complementary set of invariant primary tori for the pendulum.

Therefore, by the above heuristic arguments one expects most of KAM primary tori
for a generic system to be inD0 and their complementary set to have measure bounded
by O(

√

") (possibly, up to logarithmic corrections).
However, as the example of the classic pendulum shows, primary invariant tori are

not the only type of tori that a nearly-integrable system may possess. Indeed, the region
inside the separatrices of the pendulum is filled by homotopically trivial invariant sets
that are images of embeddings of T n, and on which the dynamics is periodic. These
sets do not appear in the non-perturbative regime associated to " = 0 and are to be
considered as a pure byproduct of the perturbation. We generalize this kind of sets by
giving the following

Definition 19.2.4. System (19.1.1) -(19.1.2) has a secondary invariant torus carrying
quasi periodic motions of frequency ! if there exists a real-analytic embedding Φ ∶
T n⟶ D × T n verifying

1. the imageΦ(T n) is invariant for the dynamics generated by Hamiltonian (19.1.1);

2. the flow of system (19.1.1)-(19.1.2) restricted toΦ(T n) is conjugated to the linear
quasi-periodic flow q⟼ q + !t in T n;

3. for fixed angles (q2,… , qn) ∈ T n−1, the imageΦ(q1, q2,… , qn) is homotopically
trivial in D × T 1.

In general, we do not expect secondary tori to fillD2 for, as we have already pointed
out, the dynamics in that region is non-perturbative. However, secondary tori are ex-
pected to appear in D1. To understand this from a heuristic point of view, we firstly
remind that any frequency in D1 lies in a neighborhood of some resonant hyperplane
of the kind k ⋅! = 0, with k ∈ ℤn, |k| ≤ K , and no other linearly independent resonant
relations are verified in such a neighborhood. Therefore, one can apply perturbation the-
ory near a given simple resonance in D1 and put HamiltonianH into resonant normal
form (see e.g. [104]) by averaging out n − 1 angles.
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Hence, up to a small remainder, near each simple resonance ofD1 system (19.1.1)-
(19.1.2) is symplectically conjugated to a system depending on only one angle (there-
fore, integrable). Then, one may build action-angle coordinates (J , ') for this sys-
tem and indicate by ℎ⋆(J ) the associated integrable Hamiltonian function. Taking
into account the small remainder due to the normal form - indicated by f⋆ - one fi-
nally obtains that system (19.1.1)-(19.1.2) can be symplectically conjugated to a sys-
temH⋆(J , ') = ℎ⋆(J ) + "f⋆(J , ') near simple resonances inD1. If the Kolmogorov
non-degeneracy condition is satisfied by ℎ⋆(J ), then KAM Theorem can be applied,
and the region of D1 near the simple resonance that one is considering is filled with
primary Lagrangian tori ofH⋆(J , '), which correspond to secondary tori of the initial
systemH(I, �) (see [23], [24]).

Moreover, indicating by s the analyticity width of H , by standard result of pertur-
bation theory the size of the remainder f⋆ is of order O(e−Ks) (see [104]), where K
is the usual "ultraviolet cut-off" on the length of the vector generating the simple reso-
nance. If one chooses, for example, K ∼ | ln "|a for some a > 1, then the remainder is
of order O("′ ∶= e−| ln "|a s), and the classical KAM estimate yields that the measure of
the complementary set of secondary tori near the considered simple resonance (that is,
of primary tori of systemH⋆) is bounded by O(

√

"′ ∶=
√

e−| ln "|a s), which is asymp-
totically smaller than O(") for a > 1. Summing up all possible simple resonances of
length 1 ≤ |k| ≤ K = K(") ∼ | ln "|a one has that, up to logarithmic corrections,D1 is
filled by secondary tori up to a set of measure bounded by O(

√

e−| ln "|a s).
Hence, if one manages to make the heuristic reasoning above rigorous for a generic

system (19.1.1) and takes secondary tori into account, the measure of the set of "non-
tori" in phase space is bounded by the measure of D2, that is - up to logarithmic cor-
rections - by O("), as stated by the conjecture of Arnol’d, Kozlov, and Neishtadt.

Many technical difficulties arise when trying to demonstrate the heuristics above
rigorously. Up to now, the only known result is the one of, Biasco and Chierchia (see
[22], [24], [23]) who have carried out a demonstration of the conjecture by Arnold,
Kozlov and Neishtadt for "natural" mechanical systems of the kind

H(I, �) = I2

2
+ "f (�) , f ∈ C!(T n) . (19.2.3)

In the present work the goal is to present a result which constitutes a first step in order
to prove the conjecture for the more general class of systems

H(I, �) = I2

2
+ "f (I, �) , f ∈ C!(D × T n) (19.2.4)

and, possibly, even to

H(I, �) = ℎ(I) + "f (I, �) , H ∈ C!(D × T n) . (19.2.5)

In the next two subsections, we will make on overview about Biasco and Chierchia’s
strategy, and we will show how it must be modified in case the perturbation depends
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on the action variables. In particular, we will see that the latter case adds a non-trivial
difficulty to the problem, which is tackled by making use of quantitative tools of Morse-
Sard’s Theory.

19.3 Heuristics on KAM Theory for secondary tori.

Biasco and Chierchia’s proof of the conjecture is splitted into two main parts, which are
discussed below from a heuristic point of view.

Conjugation to a "pendulum-like" system close to simple resonances (see [24])

Given a multi-integer k = (k1,… , kn) ∈ ℤn∖{0} satisfying

k1 > 0 , gcd(k1,… , kn) = 1 , |k| ≤ K , (19.3.1)

we indicate by Dk
1 ⊂ D1 its associated simple resonant zone, that is the neighborhood

of size O(
√

") around the resonant manifold

k
1 ∶= {I ∈ D1 | k ⋅ !(I) = 0} .

We stress that, for I ∈ k
1 , the frequency !(I) does not satisfy any other linearly

independent equation of the kind k′ ⋅ !(I) = 0 for any k′ ∈ ℤn∖{0}, |k′| ≤ K .
The idea, here, is to show that close to simple resonances generated by a sufficiently

large k verifying (19.3.1), any generic, analytic, nearly-integrable system behaves like
a pendulum. The resonances associated to generating vectors k of small size are treated
separately, as we will briefly discuss in the sequel.

By classical results of perturbation theory (see e.g. the normal form in [104]), there
exists an analytic symplectic change of coordinates Φk defined in a complex neighbor-
hood of Dk

1 × T n that conjugates the analytic system2 H(I, �) = ℎ(I) + "f (�) to

H◦Φk(I, �) = ℎk(I) + "
(

gk(I, k ⋅ �) + fk⋆(I, �)
)

, (19.3.2)

where gk depends on the sole angle ' = k ⋅ � and fk⋆ is a suitably small remainder. It is
known that gk(I, k ⋅ �) is "close" (in a sense to be defined rigorously) to the "resonant
part of the perturbation" determined by the Fourier expansion

∑

j∈ℤ fjke
i jk⋅� , which

contains only those harmonics that are multiple of the generating vector k. Namely,
if one supposes fk ≠ 0, and takes into account the fact that - for a suitable functional
norm || ⋅ || - the Fourier coefficients decay as |fk| ≃ O(||f ||e−|k|s), where s denotes

2We observe that, in this part of the proof, no assumption is made about the analytic integrable part ℎ(I),
whose form is not necessarily I2∕2.
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the complex analyticity width ofH(I, �), one can write

gk(I, k ⋅ �)

=
∑

j∈ℤ∖{0}
fjke

i jk⋅� + gk(I, k ⋅ �) −
∑

j∈ℤ∖{0}
fjke

i jk⋅�

≃ fkeik⋅� + fke−ik⋅� + O(||f ||e−2|k|s) + gk(I, k ⋅ �) −
∑

j∈ℤ∖{0}
fjke

i jk⋅�

= 2|fk|

(

cos(k ⋅ x + �k) + O(e−|k|s) +
gk(I, k ⋅ �) −

∑

j∈ℤ∖{0} fjke
i jk⋅�

|fk|

)

.

(19.3.3)

Therefore, from heuristic point of view, if one compares (19.3.2) with (19.3.3), takes
into account the fact that |gk(I, k⋅�)−

∑

j∈ℤ∖{0} fjke
i jk⋅�

| ≃ o(1), and assumes 1∕s <<
|k| ≤ K , then one can write

H◦Φk(I) =∶ ℎk(I) + 2"|fk|
(

cos(k ⋅ � + �k) +Nk(I, �)
)

, 1∕s << |k| ≤ K
(19.3.4)

where Nk(I, �) is a small remainder. By these heuristic arguments, it is clear that if
ℎ(I) = I2∕2, then the phase portrait of system (19.3.4) is close to that of the standard
pendulum I2∕2 + 2"|fk| cos(k ⋅ � + �k).

In [24] the authors show that the heuristics above can be made rigorous. In partic-
ular, under the hypotheses that

1. " is sufficiently small;

2. 1∕s << |k| ≤ K;

3. for some � > 0, there exists �(�) > 0 such that, for |k| > �(�), one has

|fk| ≥ � e
−|k|s

|k|n
, (19.3.5)

then there exists an analytic symplectic change of coordinates Ψk defined in a complex
neighborhood of Dk

1 × T n that conjugates system (19.2.3) to

H◦Ψk(I) =∶ ℎk(I) + 2|fk|"
(

cos(k ⋅ x + �k) + Gk(I, k ⋅ �) + Rk(I, �)
)

, (19.3.6)

where the sizes of Gk and Rk are suitably small so that cos(k ⋅ x + �k) + Gk(I, k ⋅ �)
is a Morse function with only one minimum and one maximum, and system (19.3.6) is
dynamically equivalent to a simple pendulum.

Moreover, hypothesis (19.3.5) is proved to be generic - in measure and topological
sense - in the space C!(T n) (endowed with a suitable norm).

The above result is particularly important, because it shows that close to simple res-
onances generated by a vector k ∈ ℤn∖{0} satisfying (19.3.1) and 1∕s << |k| ≤ K ,
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the behavior of a generic analytic system of the kindH(I, �) = ℎ(I)+"f (�) is dynam-
ically equivalent to that of a pendulum. As we will discuss in the next subparagraph,
this proves very useful when dealing with the construction of action-angle coordinates
for the averaged system near simple resonances.

From a technical point of view, two major technical obstacles are to be overcome
when passing from the heuristics to the rigorous proof. Firstly, a direct application of
classical perturbation theory (e.g. the standard normal form considered in [104]) proves
insufficient to make the remainder in Nk in (19.3.4) small enough. Hence, a more
refined normal form, characterized by a "small" consumption of the analyticity width
s must be introduced. Secondly, a suitable resonant patchwork must be constructed in
order to avoid the possibility that |fk| and the remainderRk in (19.3.6) have comparable
sizes.

Construction of action-angle coordinates for the averaged system near simple res-
onances and verification of Kolmogorov’s non-degeneracy.

In this step, only systems of the form (19.2.3), where the integrable part of the Hamil-
tonian has the form of a kinetic energy, are considered. The second part of Biasco
and Chierchia’s proof consists in constructing action-angle coordinates for the aver-
aged system (19.3.2) near simple resonances and in checking that Kolmogorov’s non-
degeneracy condition is satisfied. In particular, simple resonances associated to the
"low modes" k ∈ ℤn, 1 ≤ |k| ≲ 1∕s are studied separately from those generated by the
high modes k ∈ ℤn, 1∕s << |k| ≤ K .

Low modes. The phase portraits of this type of resonances can be very compli-
cated; generally speaking, a finite number of islands of stability delimited by separa-
trices appear among free motions associated to homotopically non-trivial orbits (see
Figure 19.1). Moreover, it is also possible that islands are nested inside each other.
However, for a given system, by construction the number of resonances associated to
the low modes is constant and independent of the value of K . Hence, in order to treat
the lowmodes one has in principle to construct action-angle variables and to check Kol-
mogorov’s non-degeneracy for a finite number of complicated systems. In particular,
verifying that Kolmogorov’s determinant is not zero is a highly non-trivial task which
requires the application of technical non-perturbative arguments. We will not treat this
aspect here, as this would take the discussion far from the main focus of the present
work.

HighmodesAs the ultraviolet cut-offK can be arbitrarily large (usually, one chooses
K(") ⟶ +∞ when " ⟶ 0), the number of resonances associated to high modes
which must be considered is - in principle - unbounded when "⟶ 0. Without any ad-
ditional information, this would be a serious obstacle, since onewould have to control an
infinite number of different systems, each with different parameters that might degener-
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Figure 19.1: Phase portrait of system H(y, x) ∶= y2

2 −
1
2 cos(x) +

2
5 cos(2x + 1) +

3
10 cos(3x−2)−

1
5 cos(4x−1)+

1
2 cos(5x) , taken as an example of behavior near a "low

mode" resonance. We see that the topology of this system is very complicated: many
separatrices lie between nested islands of stability and free librations.

ate. However, as it was discussed heuristically in the previous subsection, for a generic
Hamiltonian the phase portrait of any high mode resonance is topologically equiva-
lent to that of the simple pendulum, that is a Morse function with only one maximum
and one minimum. This important property simplifies dramatically the construction of
the action-angle coordinates and the verification of the Kolmogorov’s non-degeneracy,
since it solves the problem of having a uniform control on the parameters.



Chapter 20

Main result

In this section, we present a result which is meant to extend the first step of Biasco and
Chierchia’s construction to generic, nearly-integrable Hamiltonian systems of the form

H(I, �) = ℎ(I) + "f (I, �) , H ∈ C!(D × T n) , (20.0.1)

whereD is a domain of the euclidean spaceℝn, and T n ∶= ℝn∖ℤn is the standard torus.

20.1 Heuristic motivation and strategy
As in the case of a perturbation depending only on the angular variables, simple res-
onances associated to low modes are considered separately. Hence, in the sequel, we
will concentrate only on resonances associated to high modes, generated by vectors
k = (k1,… , kn) ∈ ℤn∖{0} verifying

k1 > 0 , gcd(k1,… , kn) = 1 , 1∕s << |k| ≤ K , (20.1.1)

where s > 0 is the analyticity width of HamiltonianH .
Around each resonance of this type, the symplectic conjugation to a Morse func-

tion with only one maximum and one minimum described in subsection 19.3 fails for a
generic system governed by Hamiltonian (20.0.1). Indeed, in subsection 19.3 we con-
sidered f ∈ C!(T n), so that the coefficients fk of the Fourier expansion

∑

k∈ℤn fke
i k⋅�

were constants; under this condition - as we have already mentioned in the introduction
- one can prove that the crucial condition (19.3.5) is generically satisfied. However, in
the case of system (20.0.1), the Fourier coefficients fk(I) are holomorphic functions,
and it is false that a generic holomorphic function does not have any zeroes on its do-
main. Therefore, condition (19.3.5) cannot be expected to be satisfied by a generic
perturbation f ∈ C!(D × T n).

In order to overcome this difficulty, the idea is to firstly apply the aforementioned
Biasco and Chierchia’s improved Normal Form (see [24], Prop. 4.1) to system (20.0.1)

227
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inside the domain Dk
1 ⊂ D1 associated to a simple resonance of generating vector k

verifying (20.1.1). Without entering into too many technicalities, the authors show
that - if " is sufficiently small - then there exists a real-analytic, symplectic change of
coordinates Ψk defined in a complex neighborhood of Dk

1 which conjugates system
(20.0.1) to

H◦Ψk(I) = ℎk(I) + "
∑

j∈ℤ∖{0}
fjk(I)ei jk⋅� + "Rk(I, �) , (20.1.2)

where Rk is a suitably small remainder in a sense which will be specified in the sequel.
Secondly, depending on the number of degrees of freedom n of the considered system,
the strategy consists in fixing a suitable positive integer l = l(n) ≥ 2 and in taking
system

ℎk(I)+"
∑

j∈ℤ∖{0},|j|≤l
fjk(I) ei jk⋅� = ℎk(I)+2"

∑

j∈ℤ∖{0},|j|≤l
|fjk(I)| cos(j(k⋅�)+�jk)

(20.1.3)
to be the integrable approximation near the simple resonance, instead of choosing

ℎk(I) + "fk(I)ei k⋅� + "fk(I)e−i k⋅� = ℎk(I) + 2|fk(I)| cos(k ⋅ x + �k) (20.1.4)

as in the original framework (see (19.3.3)). The rest of this section is devoted to a heuris-
tic discussion about how the choice of system (20.1.3) instead of (20.1.4) overcomes
the difficulties encountered by the original strategy.

Expression (20.1.2) can be rewritten as

H◦Ψk(I) =ℎk(I)

+ "

(

∑

j∈ℤ∖{0},|j|≤l
fjk(I) ei jk⋅� +

∑

j∈ℤ∖{0},|j|>l
fjk(I) ei jk⋅� + Rk(I, �)

)

(20.1.5)

For the above construction to make sense, the term
∑

j∈ℤ∖{0},|j|>l
fjk(I) ei jk⋅� + Rk(I, �) = 2

∑

j∈ℤ∖{0}
|j|>l

|fjk(I)| cos(j(k ⋅ �) + �jk) + Rk(I, �)

(20.1.6)
must be "small" (in a sense to be specified in the sequel) w.r.t. the term

∑

j∈ℤ∖{0},|j|≤l
fjk(I) ei jk⋅� = 2

∑

j∈ℤ∖{0}
|j|≤l

|fjk(I)| cos(j(k ⋅ �) + �jk) , (20.1.7)

for 1∕s ≲ |k| ≤ K . In order to see under which conditions this can be ensured, we
indicate by r the analyticity width of Hamiltonian (20.0.1) w.r.t. the actions, and we fix
two numbers � ∈]0, r[, � ∈]0, s[, to which we associate the complex domains

D� ∶= {I ∈ ℂn |∃I0 ∈ D satisfying ||I − I0|| < �}
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T n� ∶=
{

� ∈ T nℂ | max
j∈{1,…,n}

|Im (�j)| < �
}

, where T nℂ ∶= ℂn∕ℤn .

Then, we endow the space C!(D × T n) with the weighted Fourier norm

||f ||�,� ∶= sup
I∈D�

(

∑

k∈ℤn
|fk(I)|e|k|(s−�)

)

= sup
I∈D�

(

∑

k∈ℤn
|f̃k(I)|e−|k|�

)

,

where we have introduced the weighted Fourier coefficients

f̃k(I) ∶= fk(I) e|k|s ∀k ∈ ℤn∖{0} . (20.1.8)

At this point, on the one hand we observe that if there exists �′ > 0 such that

min
I∈D

(

∑

j∈ℤ∖{0},|j|≤l
|f̃jk(I)|

)

≥ �′ (20.1.9)

then one has the following estimate:

min
I∈D

(

∑

j∈ℤ∖{0},|j|≤l
|f̃k(I)|e−|jk|�

)

≥ �′ e−l|k|� . (20.1.10)

On the other hand, one has

sup
I∈D�

∑

j∈ℤ∖{0},|j|>l
|f̃jk(I)| e−|jk|� ≲ O(e−(l+1)|k|�) . (20.1.11)

As for the remainder Rk(I, �), it can be shown (see [24], Th. 2.1 and Prop. 4.1 for
technical details) that it satisfies

||Rk(I, �)||�,� ≲ O(e−cK2�) (20.1.12)

for a suitable integer K2 > (l + 1)K1 and for some uniform constant c > 0, provided
that one has carefully constructed the resonant covering of the phase space (see Remark
19.2.1).

Therefore, if the crucial condition (20.1.9) is satisfied, relations (20.1.10), (20.1.11)
and (20.1.12) together imply that for any k ∈ ℤn satisfying

k1 > 0 , gcd(k1,… , kn) = 1 , 1∕� << |k| ≤ K , (20.1.13)

one has

min
I∈D

∑

j∈ℤ∖{0},|j|≤l
|f̃jk(I)| e−|jk|� >> sup

I∈D�

∑

j∈ℤ∖{0},|j|>l
|f̃jk(I)| e−|jk|�+||Rk(I, �)||�,� ,

(20.1.14)
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which, together with the obvious estimate

sup
I∈D�

(

∑

j∈ℤ∖{0},|j|≤l
|f̃jk(I)| e−|jk|�

)

≥ min
I∈D

(

∑

j∈ℤ∖{0},|j|≤l
|f̃k(I)|e−|jk|�

)

,

implies

|

|

|

|

|

|

|

|

|

|

|

|

∑

j∈ℤ∖{0},|j|≤l
fjk(I) ei jk⋅�

|

|

|

|

|

|

|

|

|

|

|

|�,�

>>
|

|

|

|

|

|

|

|

|

|

|

|

∑

j∈ℤ∖{0},|j|>l
fjk(I) ei jk⋅�

|

|

|

|

|

|

|

|

|

|

|

|�,�

+ ||Rk(I, �)||�,� .

(20.1.15)
Estimates (20.1.14)-(20.1.15), translate quantitatively the initial request for (20.1.6)

to be small w.r.t. (20.1.7).
Heuristically speaking, we stress the fact that - unlike (19.3.5) - condition (20.1.9) is

generic among analytic functions if l is chosen to be sufficiently high. Infact, (20.1.9)
is not satisfied for any � > 0 iff the functions f̃jk(I), with j ∈ ℤn∖{0}, |j| ≤ l, have
a zero in common, which is not a generic property for large l. Namely, for any given
l ≥ 2 and k ∈ ℤn satisfying (20.1.13), the functions fjk(I), with |j| ≤ l have a zero
in common if and only if

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Re f̃k(I1,… , In) = 0 , Im f̃k(I1,… , In) = 0
Re f̃2k(I1,… , In) = 0 , Im f̃2k(I1,… , In) = 0
…
Re flk(I1,… , In) = 0 , Im f̃lk(I1,… , In) = 0 .

(20.1.16)

The above system contains 2l equations in n real unknowns and has generically no
solution if l ≥ ⌊n∕2⌋ + 1 (see e.g. [55], Sect. 3.7-3.8).

However, in order to make the above strategy rigorous and prove the genericity of
condition (20.1.9), we need quantitative estimates on how "far from zero" the equations
in system (20.1.16) are. The main result of this work , which is stated in the next
subsection, answers to this question by making use of the quantitative Morse-Sard’s
Theory developed by Yomdin in [114] and by Yomdin and Comte in [119]. For the
sake of simplicity, in the sequel we only consider the case of functions depending on
n = 2 variables, but - as it will be discussed further - the reasonings can be easily
extended to an arbitrary number n of degrees of freedom.

20.2 Main result
Let  be a compact domain of ℝ2. We consider the space C5(;ℝ) endowed with the
standard || ⋅ ||C5() norm, and we denote by  the unit ball in this space.

The rest of this section is devoted to the demonstration of the following result:
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Theorem 20.2.1. There exist two constants C1 = C1() and C2 = C2(), and a thresh-
old �0 = �0() such that, for any quadruplet of functions (F1, F2, F3, F4), with Fi ∈ 
for all i ∈ {1, 2, 3, 4}, and for any � ∈ (0, �0) there exist two bad sets � ⊂ ℝ2, � ⊂ ℝ2
satisfying

meas � ≤ C1� , meas � ≤ C1� (20.2.1)

such that the shifted functions

F �i (x) ∶= Fi(x) − �i i ∈ {1, 2, 3, 4} � ∶= (�1, �2, �3, �4) ∈ (ℝ2∖�) × (ℝ2∖�)

verify

min
x∈

(

|F �1 (x)| + |F �2 (x)| + |F �3 (x)| + |F �4 (x)|
)

≥ C2 �19∕6 . (20.2.2)

Remark 20.2.1. Theorem 20.2.1 puts the heuristics of the previous subsection into a
rigorous framework. Namely, if one takes n = l = 2 and sets

F1 ∶= Re f̃k , F2 ∶= Im f̃k , F3 ∶= Re f̃2k , F4 ∶= Im f̃2k , (20.2.3)

then one has that by the equivalence of norms formula (20.2.2) is equivalent to estimate
(20.1.9) (up to setting �′ ∶= �19∕6). The strategy to follow in order to extend Theorem
20.2.1 to an arbitrary number n of degrees of freedom will be discussed in the sext
sections.

Remark 20.2.2. Theorem 20.2.1 states a form of genericity for functions that verify
condition (20.2.2) for some sufficiently small � > 0. Infact, by (20.2.1) one has

meas

(

⋂

�∈(0,�0)
�

)

= meas

(

⋂

�∈(0,�0)
�

)

= 0 ,

so that, for given functions F1, F2, F3, F4 ∈ , for almost every choice of the shifting
parameters (�1, �2, �3, �4) ∈ ℝ4, the shifted functions F �i ∶= Fi − �i, i ∈ {1, 2, 3, 4}
verify relation (20.2.2) for some � > 0.

Remark 20.2.3. Theorem 19.1.1 follows easily from Theorem 20.2.1 and from remark
20.2.2.

Theorem 20.2.1 is proven by combining a quantitative result ofMorse-Sard’s theory
together with a quantitative version of the local inversion Theorem (see Appendix I).
Namely, in the proof we will make use of the following

Lemma 20.2.1 (Quantitative Morse-Sard’s theory, [114], [119]).
For any m, n ∈ ℕ⋆, m ≤ n, for any � ∈ (0, 1),  > 0, and for any g ∈

C2n+1(,ℝm) with 0 < ||g||C2n+1() ≤ , there exists a subset � ∈ ℝm and a
constant C ∶= C(n, m,,) such that

meas � ≤ C
√

� (20.2.4)
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and, for any � ∈ ℝm∖� , the function g�(z) ∶= g(z) − � satisfies at any point x ∈ 
at least one of the two conditions

||g�(x)|| > � or ||Dg�(x)�|| > �
n
n+1

||�|| ∀� ∈ ℝn , (20.2.5)

where || ⋅ || indicates the standard euclidean norm.

The above Lemma is proven by using the quantitative Morse-Sard’s theory devel-
oped by Yomdin and Comte in [114] and [119] (see also Appendix I, where the basic
concepts of Morse function and Sard’s Theorem are recalled). The given statement can
be found in [99] 1, where it is exploited in order to prove the prevalence of a class of
functions (the so-called "Diophantine-steep" functions) which plays an important rôle
in the study of the effective stability of nearly-integrable Hamiltonian systems.

20.2.1 Proof of Theorem 20.2.1

In the formulas which will appear henceforth, we will often make use of the symbols
⋖, ⋗ and ≗ to indicate the presence of constants depending at most on the form of the
domain  ⊂ ℝ2.

We assume the setting of Theorem 20.2.1 with m = n = 2 and - as we will work
with functions in the unit ball  of C5(;ℝ) - we pose  = 1. We now consider
four given functions F ∶= (F1, F2, F3, F4) ∶  ⟶ ℝ4 and, for any shift vector
� ∶= (�1, �2, �3, �4) ∈ ℝ4, we indicate their translations by

F �i (x) ∶= Fi(x) − �i ∀i ∈ {1, 2, 3, 4} , F � ∶= (F �1 , F
�
2 , F

�
3 , F

�
4 ) ∈ ⟶ ℝ4 ,

and we set

Φ ∶= (F1, F2) ∶ ⟶ ℝ2 , Φ� ∶= (F �1 , F
�
2 ) ∶ ⟶ ℝ2

Ψ ∶= (F3, F4) ∶ ⟶ ℝ2 , Ψ� ∶= (F �3 , F
�
4 ) ∶ ⟶ ℝ2 .

For any given � ∈ (0, 1), we now fix a pair of parameters (�1, �2) ∈ ℝ2∖� - where
� is the bad set in (20.2.4) - together with a real number 
 > 4

3
. We are interested in

the sublevel
S
 ∶= {x ∈  ∶ ||Φ�(x)|| ≤ �
} ,

where || ⋅ || is the standard euclidean norm in ℝ2.
Since �
 < �, Lemma 20.2.1 (for n = m = 2) ensures that if x0 ∈ S
 then

||DΦ�(x0)�|| > �2∕3||�|| ∀� ∈ ℝn . (20.2.6)

1Actually, in [99] one is required  ≥ 1, but this condition is not really necessary once one slightly
worsens the constant C.
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This implies that Φ� is locally invertible at x0. One has Φ�(x0) ⊂ B�
 (0) by construc-
tion, B�
 (0) being the ball of radius �
 centered at the origin in the range ofΦ�. We indi-
cate by (Φ�x0 )

−1 the inverse function, andwewant to estimate the size of (Φ�x0 )
−1(B�
 (0)).

As it will be made clear in the sequel, this is a crucial step of the proof.
In order to do this, we make use of the quantitative local inversion Theorem I.0.1

and we estimate the parameters that appear in its statement. We start by taking a ball
of radius r > 0 around x0, which we denote by Br(x0), and, for any x ∈ Br(x0), we
estimate the parameter % as follows

% ∶= sup
x∈Br(x0)

||I − (Df�(x0))−1DΦ�(x)||

≤ sup
x∈Br(x0)

|

|

|

|

|

|

|

|

|

|

|

|

I − (DΦ�(x0))−1
(

DΦ�(x0) + ∫

1

0

d
dt
[DΦ�(tx + (1 − t)x0)]dt

)

|

|

|

|

|

|

|

|

|

|

|

|

≤ |

|

|

|

|

|

(DΦ�(x0))−1
|

|

|

|

|

|

sup
x∈Br(x0)

|

|

|

|

|

|

|

|

|

|

∫

1

0
∇
[

DΦ�(tx + (1 − t)x0)
]

⋅ (x − x0)dt
|

|

|

|

|

|

|

|

|

|

⋖
r

min
||�||=1 ||DΦ�(x0)�||

⋖
r
�2∕3

(20.2.7)

where the last estimate is a consequence of (20.2.6) and of the fact that we have set
 = 1. The above calculation yields % ≤ 1

2
if we fix

r ≗ �2∕3 .

This choice also implies that the radius � of the ball B� (Φ�(x0)) ⊂ Φ�(Br(x0)) in The-
orem I.0.1 verifies the following estimate:

� ∶=
r(1 − %)

||(DΦ�)−1(x0)||
≗ �2∕3 min

||�||=1
||DΦ�(x0) �|| ⋗ �4∕3 , (20.2.8)

where (20.2.6) was used once again in the last passage.
As 
 > 4∕3 by construction, by inequality (20.2.8) there exists a positive threshold

�0 = �0(
,) < 1 such that for any 0 < � < �0 one has 2�
 < � so that, for any
x0 ∈ S
 ,

Φ�(x0) ⊂ B�
 (0) ⊂ B� (Φ�(x0)) ,

and B�
 (0) is contained in the domain of the inverse function.
We are now able to estimate the size of (Φ�x0 )

−1(B�
 (0)). Indeed, the Lipschitz con-
stant of the inverse function is given by the parameter L' in Theorem I.0.1, that in our
case is bounded by

L(Φ�x0 )−1
≤

||(DΦ�(x0))−1||
1 − %

≤ 2
min

||�||=1 ||DΦ�(x0)�||
≤ 2
�2∕3

,
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so that
meas

[

(Φ�x0 )
−1(B�
 (0))

]

⋖ (L(Φ�x0 )−1
�
 )2 ≗ �2
−4∕3 .

This estimate is crucial because it allows to infer a bound on the size of Ψ(S
 ). Infact,
the image of the set (Φ�x0 )

−1(B�
 (0)) through the function Ψ satisfies

meas
{

Ψ
[

(Φ�x0 )
−1(B�
 (0))

]}

⋖ �2
−4∕3 , (20.2.9)

due to the fact that the Lipschitz constant is bounded by the first derivatives of Ψ and
thatΨ belongs to the unit ball . Then, we must estimate the number of inverse images
of the kind (Φ�x0 )

−1(B�
 (0)), which depends on the numberN(�) of balls in S
 on which
Φ� can be inverted. N(�) admits the upper bound

N(�) ≤ meas 
meas Br(x0)

⋖
1
r2

≗ 1
�4∕3

. (20.2.10)

The size ofΨ(S
 ) can therefore be bounded from above by taking (20.2.9) and (20.2.10)
into account, namely

meas Ψ(S
 ) ≤ N(�) × meas
[

Ψ((Φ�x0 )
−1(B�
 (0)))

]

⋖ �2(
−4∕3) . (20.2.11)

Theorem 20.2.1 is a consequence of estimate (20.2.11). To see this, we impose to
the shift parameters (�3, �4) to lie outside of a neighborhood of size �
 around Ψ(S
 ),
which we denote by

�,
 ∶= {y ∈ ℝ2 ∶ ||y − Ψ(S
 )|| ≤ �
} .

By (20.2.11), the size of set �,
 can be obtained by enlarging the image sets
Ψ((Φ�x0 )

−1(B�
 (0))) of a width �
 , and by multiplying by N(�). By formula (20.2.9)
we have that

diam Ψ[(Φ�x0 )
−1(B�
 (0))] ⋖ �
−2∕3

so that, since � < 1 and consequently �
 < �
−2∕3, we have

meas {y ∈ ℝ2 ∶ dist (y,Ψ[(Φ�x0 )
−1(B�
 (0))]) ≤ �
} ⋖ �2(
−2∕3)

and
meas�,
 ⋖ N(�) × �2(
−2∕3) ⋖ �2(
−4∕3) . (20.2.12)

Hence, by taking (�3, �4) ∈ ℝ2∖�,
 , by the above construction and by the equivalence
of norms we have that for all x0 ∈ S


||Ψ�(x0)|| ⋗ |F �3 (x0)| + |F �4 (x0)| ⋗ ||(�3, �4) − Ψ(S
 )|| ⋗ �
 . (20.2.13)

This implies that, taken (�1, �2) × (�3, �4) ∈ (ℝ2∖�) × (ℝ2∖�,
 ), as  is compact,
estimate

min
x∈

(

|F �1 (x)| + |F �2 (x)| + |F �3 (x)| + |F �4 (x)|
)

≥ C2 �
 (20.2.14)
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holds true for some absolute constant C2 depending only on the form of . Infact, we
indicate by x⋆ ∈  the point at which the minimum at the l.h.s. of formula (20.2.14)
is attained. Then, either x⋆ ∉ S
 , in which case

|F �1 (x
⋆)| + |F �2 (x

⋆)| ≥ �


by construction, or x⋆ ∈ S
 and

|F �3 (x
⋆)| + |F �4 (x

⋆)| ⋗ �


by inequality (20.2.13). C2 is therefore theminimumbetween 1 and the implicit constant
in (20.2.13).

We also notice that the choice 
 = 19
12

, together with (20.2.12), entails

meas�,19∕12 ≗
√

� . (20.2.15)

The thesis follows by choosing � ∶=
√

�, � ∶= � , � ∶= �,19∕12, and C1 as
the maximum between the constant C in Lemma 20.2.1 and the implicit constant in
(20.2.15).

Remark 20.2.4. The above reasonings can be extended to the case of functions depend-
ing on an arbitrary number n of variables. As it has already been pointed out in subsec-
tion (20.1), in that case, one considers the functions Fi, with i ∈ {1,… , 2(⌊n∕2⌋+ 1)}
- together with the translations F �i ∶= Fi − �i, of shift vector � ∈ ℝ2(⌊n∕2⌋+1) - and
applies the arguments of this section to

Φ ∶= (F1, F2,… , F
⌊n∕2⌋+1) ∶ ⟶ ℝ⌊n∕2⌋+1

Φ� ∶= (F �1 , F
�
2 ,… , F �

⌊n∕2⌋+1) ∶ ⟶ ℝ⌊n∕2⌋+1

Ψ ∶= (F
⌊n∕2⌋+2, F⌊n∕2⌋+3,… , F2(⌊n∕2⌋+1)) ∶ ⟶ ℝ⌊n∕2⌋+1

Ψ� ∶= (F �
⌊n∕2⌋+2, F

�
⌊n∕2⌋+3,… , F �2(⌊n∕2⌋+1)) ∶ ⟶ ℝ⌊n∕2⌋+1 .



236 CHAPTER 20. MAIN RESULT



Chapter 21

Further heuristics

In this paragraph, we will consider a mechanical system

H(I, �) = I2

2
+ "f (I, �) , f ∈ C!(D × T n) . (21.0.1)

The extension of the heuristic arguments of this paragraph to the general analytic nearly-
integrable Hamiltonian H(I, �) = ℎ(I) + "f (I, �) will be discussed in the following
section, where a rigorous result is presented.

21.1 Application of KAM Theory
As it was the case in the study of perturbations depending only on the angles (see section
19.3), also in this context the strategy depends on the size of the vector k ∈ ℤn∖{0}
generating the resonance. In particular, we will distinguish between a finite number of
"low modes" associated to vectors k ∈ ℤn∖{0} satisfying

k1 > 0 , gcd(k1,… , kn) = 1 , 1 ≤ |k| ≲ 1∕s

and an infinite number of "high modes" verifying

k1 > 0 , gcd(k1,… , kn) = 1 , 1∕s << |k| ≤ K .

Low modes The low modes are treated in a similar way to the case of a perturbation
f ∈ C!(T n) depending only on the angles. In particular, one has to deal with a finite
number of phase portraits which can be in principle very complicated. Then, technical
non-perturbative results are needed in order to check Kolmogorov’s non-degeneracy
condition for these systems. This latter aspect is highly non-trivial and is essentially
non-perturbative. It will not be discussed here (see [22]).

High modes. By the arguments developed in the previous sections, for any vector
k ∈ ℤn∖{0} associated to a "high mode resonance" satisfying (20.1.13), the first goal

237



238 CHAPTER 21. FURTHER HEURISTICS

is to build action-angle coordinates for the integrable approximation (see (20.1.3))

I2

2
+ 2"

∑

j∈ℤ,|j|≤l
|fjk(I)| cos(j(k ⋅ �) + �jk) (21.1.1)

inside the simple resonant domain Dk
1 .

Then, one has to check if Kolmogorov’s non-degeneracy condition is satisfied by the
integrable Hamiltonian in the new action variables, in order to establish the existence
of secondary tori in Dk

1 .
As it was the case in the original problem, where the perturbation f depended only

on the angles, the fact that near high mode resonances the system is always close to
the same Hamiltonian (21.1.1) up to a suitably small remainder simplifies the problem
dramatically, as it eliminates the difficulty of having a uniform control on the parameters
of an infinite number of different systems.

When f ∈ C!(D × T n), two main differences occur w.r.t. the original case f ∈
C!(T n) considered in [22].

1. In general, for l ≥ 2, bifurcations appear in the topological properties of the
phase space of the integrable approximation

2"
∑

j∈ℤ∖{0},|j|≤l
|fjk(I)| cos(j(k ⋅ �) + �jk) .

To fix the ideas, we choose l = 2, we consider the example of Hamiltonian

y2

2
+ a cos(x) + b cos(2x) , a, b > 0 , (y, x) ∈ ℝ2

and we plot the associated phase space for different values of a and b.

Figure 21.1: a = 0.5, b = 0.01 Figure 21.2: a = 0.5, b = 0.5

In the first figure, which is topologically equivalent to that of the simple pendu-
lum, we see that there exists only class of homotopically trivial curves associated
to librations. In the second figure, where the two addends a cos(x) and b cos(2x)
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have the same magnitude, instead, two elliptic points and more separatrices than
in the previous case appear, so that different kinds of librations are possible, de-
pending on the value of the energy.

2. Degenerated critical points occur. For example, system

y2

2
+ a(cos(kx) + b cos(2kx)) a, b ≥ 0 (21.1.2)

has a degenerated critical point at the origin for a = 0 of for b = 1
4 .

On the contrary, it can be shown that in the original setting, when f ∈ C!(T n)
and the system is conjugated to a "simple pendulum", degenerated critical points
do not occur.

Without entering into details (for which we refer to [22]), we observe that the
presence of degenerated critical ponts is an obstacle to the verification of the
non-degeneracy conditions needed in order to apply KAM theory. However, as
for a given system there is only a finite number of these singularities, one may
"avoid" them in a quantitative way by making use again of Yomdin and Comte’s
quantitative Morse-Sard’s Theory. Heuristically speaking, the idea would be to
prove that - for most potentials - when the first derivatives are close to zero, then
the second derivatives are not.

21.2 Extension to a generic integrable part
In this section, we briefly discuss a result which constitutes an important step in order
to extend our reasonings from mechanical Hamiltonians of the form

H(y, x) =
y2

2
+ "f (y, x) , f ∈ C!(D × T n) . (21.2.1)

to more general Hamiltonians of the kind

H(y, x) = ℎ(y) + "f (y, x) , H ∈ C!(D × T n) . (21.2.2)

We start by stating the following

Lemma 21.2.1 (see ref. [24]). For any k ∈ ℤn verifying (20.1.13), there exists a matrix
A ∈ ℤ(n−1)×n such that1

B ∶=
(

k
A

)

=
(

k1⋯ kn
A

)

∈ SL(n,ℤ) ,

|A|
∞
≤ |k|

∞
, |B|

∞
= |k|

∞
, |B−1|

∞
≤ (n − 1)

n−1
2
|k|n−1

∞
.

1
|M|

∞
, withM matrix (or vector), denotes the maximum norm maxij |Mij | (or maxi |Mi|).
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Then, we observe that - close to a simple resonance generated by a vector k ∈ ℤn
verifying (20.1.13), namely close to

k ∶= {y ∈ D|k ⋅ )yℎ(y) = 0} ∩D1 ,

where the block of simple2 resonancesD1 was introduced in (19.2.2), one can introduce
the adapted symplectic change of variables

'(x, y) ∶ D × T n⟶ ℝn × T n , (y, x)⟼

{

I = (B†)−1y
� = Bx .

(21.2.3)

We indicate by H(I, �) ∶= H◦'−1(I, �) = h(I) + "f (I, �) Hamiltonian (21.2.2)
written in the new variables. It is plain to check that if y0 ∈ k, then in the new coor-
dinates (21.2.3) one has )I1h(I)|I0 = 0, where I0 is the image of y0 through the inverse
of transformation (21.2.3). Namely, the image of the simple resonant set k through
(21.2.3) is constituted by critical points for the functions I1⟼ h(I1, I2,… , In), which
are parametrized by the dummy actions I2,… , In.

Then, we introduce the following definitions

Definition 21.2.1. A C2(T ,ℝ)Morse function F with distinct critical values is called
�–Morse, with � > 0, if

min
�∈T

(

|F ′(�)| + |F ′′(�)|
)

≥ � , min
i≠j

|F (�i) − F (�j)| ≥ � , (21.2.4)

where �i ∈ T are the critical points of F .

Definition 21.2.2. Let ̂ ⊆ ℝn−1 be a bounded domain, R > 0 and  ∶= (−R, R) × ̂.
We say that the real-analytic Hamiltonian is in standard formwith respect to standard
symplectic variables (I1, �1) ∈ (−R, R) × T and ‘external actions’

Î ∶= (I2, ..., In) ∈ ̂

if  has the form

(I, �1) =
(

1 + �(I, �1)
)

I21 + G(Î , �1) , (21.2.5)

where:

− � and G are real-analytic functions defined on, respectively, r × Ts and ̂r × Ts
for some 0 < r ≤ R and s > 0;

− G has zero average and there exists a function G0 (the ‘reference potential’) de-
pending only on �1 such that, for some3 � > 0,

G0 is �–Morse , ⟨G0⟩ = 0 ; (21.2.6)
2We stress that, in the above expression, if the frequency vector )yℎ(y) verifies k′ ⋅ )yℎ(y) = for some

other k′ ∈ ℤn satisfying (20.1.13), then k′ must be parallel to k.
3Recall Definition 21.2.1.
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− the following estimates hold:

⎧

⎪

⎨

⎪

⎩

supTs |G0| ≤ " ,
sup̂r×Ts

|G − G0| ≤ "� , for some 0 < " ≤ r2∕216 , 0 ≤ � < 1 ,
supr×Ts |�| ≤ � .

(21.2.7)

Remark 21.2.1. The Hamiltonian in standard form (21.2.5) retains the basic features
of the standard pendulum, more precisely of a natural system with a generic periodic
potential, having, in particular all equilibria on the I1 = 0 axis in the (I1, �1)–phase
space.

It is a remarkable fact that, close to the simple resonance k introduced above,
the Hamiltonian H(I, �) = h(I) + "f (I, �) written in the resonant variables (21.2.3)
associated to k can be symplectically conjugated to a Hamiltonian in standard form,
provided that the perturbation f is Morse w.r.t. the angle. Namely, in ref. [25] it is
proved that

Proposition 21.2.1. Let H(I, �) = h(I) + "f (I, �) be a real-analytic function and as-
sume that at I0 ∈ D the function I1⟼ h(I1, Î) has a non–degenerated critical point4.
Assume also that �1⟼ f (I0, �1) is aMorse function with distinct critical values. Then,
for " small enough, H is symplectically conjugated to a Hamiltonian in standard form
in a ("–independent) neighborhood of I0 × T n.

4Explicitly: )I1h(I0) = 0 and )
2
I21
h(I0) ≠ 0.
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Part V

Annex - On the algebraic
properties of exponentially

stable integrable Hamiltonian
systems
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Abstract
Steepness is a geometric property which, together with complex-analyticity, is needed
in order to insure stability of a near-integrable hamiltonian system over exponentially
long times. Following a strategy developed by Nekhoroshev, we construct sufficient
algebraic conditions for steepness for a given function that involve algebraic equations
on its derivatives up to order five. The underlying analysis suggests some interesting
considerations on the genericity of steepness and represents a first step towards the con-
struction of sufficient conditions for steepness involving the derivatives of the studied
function up to an arbitrary order.

Notice
This part of the thesis is the study of genericity and criteria for steepness for polynomials
with depending on a small number of variables and of degree less or equal than five. It
was the original starting point for the results of Part I, which contains a way deeper and
general discussion. However, this part is somehow still interesting as it contains some
examples of integrable Hamiltonians on which the explicit conditions for steepness are
tested. Moreover, it can be a good way to get introduced to the complicated calculations
of Part I.

Moreover, this part has already been published. Its reference is:
S. Barbieri, On the algebraic properties of exponentially stable integrable Hamilto-

nian systems, Annales de la Faculté des Sciences de Toulouse, 31 (6), pp. 1365-1390,
2022.
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Chapter 22

Introduction

Hamiltonian formalism is the natural setting appearing in the study of many physical
systems. In the simplest case, we consider the motion of a point on a Riemannian mani-
fold, called configurationmanifold, governed by Newton’s second law (q̈ = −∇U (q)
for a potential function U in the euclidean case, with q a system of local coordinates for
). This system can be transformed by duality thanks to Legendre’s transformation
and reads

ṗ = −)qH(p, q) , q̇ = )pH(p, q) ,

where H(p, q) is a real differentiable function on the cotangent bundle T ∗, classi-
cally called Hamiltonian, and p is the coordinate conjugated to q. Systems integrable
by quadrature are an important class of Hamiltonian systems. By the classical Liouville-
Arnol’d Theorem, under general topological assumptions, an integrable system depend-
ing on 2n variables (n degrees of freedom) can be conjugated to a Hamiltonian system
on the cotangent bundle of the n-dimensional torus T n, whose equations of motion take
the form

İ = −)#ℎ(I) = 0 , #̇ = )Iℎ(I) ,

where (I, #) ∈ ℝn ×T n are called action-angle coordinates. Therefore, the phase space
for an integrable system is foliated by invariant tori carrying the linear motions of the
angular variables (called quasi-periodic motions). Integrable systems are exceptional,
but many important physical problems are governed by Hamiltonian systems which are
close to integrable. Namely, the dynamics of a near-integrable Hamiltonian system is
described by a Hamiltonian function whose form in action-angle coordinates (I, #) ∈
ℝn × T n reads

H(I, #) ∶= ℎ(I) + "f (I, #) ,

where " is a small parameter. The structure of the phase space for this kind of systems
can be inferred with the help of Kolmogorov-Arnol’d-Moser (KAM) theory. Namely,
under a general non-degeneracy condition for ℎ, a Cantor set of positive measure of
invariant tori carrying quasi-periodic motions for the integrable flow persists under a
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suitably small perturbation (see e.g. ref. [5], [46]).
For systems with three or more degrees of freedom, KAM theory yields little informa-
tion about trajectories lying in the complementary of such Cantor set, where instabilities
can occur (see e.g. ref. [3]). However, in a series of articles published during the seven-
ties (see ref. [95], [96]) Nekhoroshev proved an effective result of stability for an open
set of initial conditions holding over a time which is exponentially long in the inverse
of the size " of the perturbation, provided that the Hamiltonian is analytic and that its
integrable part satisfies a generic transversality property known as steepness.
From a more technical point of view, steepness is defined as follows:

Definition 1. Let  be an open set of ℝn and ℎ ∶  ⟶ ℝ a smooth function. ℎ is
steep at I ∶= (I1, ..., In) ∈  if ∇ℎ(I) ≠ 0 and if, for any m = 1, ..., n − 1, there exist
constants Cm > 0, �m > 0 and �m > 1 such that, for all m-dimensional affine subspace
ΛIm orthogonal to ∇ℎ(I), the gradient of the restriction of ℎ to ΛIm, which we denote by
∇(ℎ|ΛIm ), satisfies

max
0≤�≤�

(

min
I ′∈ΛIm, ||I−I

′
||=�

||∇(ℎ|ΛIm )(I
′
)||

)

> Cm�
�m , ∀� ∈ (0, �m] . (22.0.1)

The constants Cm and �m are called the steepness coefficients of ℎ, whereas the �m
are its steepness indices. In particular, in the analytic case, a function is steep if and
only if, on any affine hyperplane ΛIm, there exists no curve 
 with one endpoint in I
such that the restriction ∇(ℎ|ΛIm ) identically vanishes on 
 , as is showed in ref. [98].
From a heuristic point of view, for any value m ∈ {1, ..., n − 1} the gradient ∇ℎ must
"bend" towards ΛIm when "travelling" along the curve 
 ∈ ΛIm, so that critical points for
the restriction of ℎ to ΛIm must not accumulate (see ref. [98]). Finally, ℎ is said to be
steep in a given domain if it is steep at each point of such set with uniform indices and
coefficients.
With such notion, Nekhoroshev’s effective result of stability reads

Theorem (Nekhoroshev, 1977) 1. Consider a near-integrable systemwithHamiltonian
H(I, #) ∶= ℎ(I)+ "f (I, #) analytic in some complex neighborhood of Br ×T n, where
Br is the open ball of radius r in ℝn, and suppose ℎ steep. Then there exist positive
constants a, b, "0, C1, C2 such that, for any " ∈ [0, "0) and for any initial condition not
too close from the boundary, one has |I(t) − I(0)| ≤ C2"a for any time t satisfying
|t| ≤ C1 exp

(

"−b
)

.

Such result also holds under the weaker regularity assumption that the Hamiltonian
is in the Gevrey class (see ref. [87]) and by requiring steepness to be verified only on
those subspaces which are spanned by integer vectors satisfying suitable arithmetic con-
ditions (see refs. [71], [99]). However, one cannot get completely rid of the steepness
hypothesis since examples of instability over times of order 1∕" may be constructed
in case such property is not satisfied on a subspace spanned by integer vectors (see
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ref. [98], [34]). Therefore, a crucial step in order to establish stability over exponen-
tially long times for a near-integrable Hamiltonian system consists in building a suitable
steep integrable approximation. This aspect is important when trying to apply Nekhoro-
shev’s estimates to concrete examples, as it is shown for example in refs. [32] and [102].
As we shall see, the steepness property is generic, both in measure and topological
sense. However, since its definition is not constructive, it is difficult to directly estab-
lish wether a given function is steep or not. Fortunately, Nekhoroshev provided in [96]
a scheme which, in principle, allows to deduce explicit sufficient algebraic conditions
for steepness involving the derivatives of the studied function up to an arbitrary order.
In particular, let us define the r-jet PI (ℎ, r, n) of a smooth function ℎ of n variables at
I as the vector containing all the coefficients of the Taylor polynomial of ℎ at I up to
order r, with the exception of the constant term, namely

PI (ℎ, r, n) ∶=
{

1
�!
)�ℎ
)I�

, 1 ≤ |�| ≤ r
}

,

where � ∶= (�1, ...�n) is a multi-index of naturals and |�| =
∑n
i=1 �i.

With this definition, one can pass to the quotient in the set of smooth functions and
consider a representative of the class of smooth functions of n variables having the
same r-jet at I . We also denote by I (r, n) the polynomial space of the r-jets of smooth
functions of n variables calculated at I . Nekhoroshev showed that, for any r ≥ 2, one
can construct a semi-algebraic set whose closure contains the r-jets of all non-steep
functions with non-zero gradient at I . Namely, we have the following

Theorem (Nekhoroshev, 1979) 2. For any n ≥ 2 and r ≥ 2, there exists a semi-
algebraic set �rn(I) ⊂ I (r, n), whose closure is denoted by Σrn(I), such that any given
function ℎ satisfying:

1. ℎ ∈ C2r−1 in a neighborhood of I ,

2. ∇ℎ(I) ≠ 0 ,

3. PI (ℎ, r, n) ∈ I (r, n)∖Σrn(I) ,

is steep in some neighborhood of I .
Moreover, for any m = 1, ..., n − 1, one has

codim Σrn ≥
⎧

⎪

⎨

⎪

⎩

max
{

0, r − 1 −
n(n − 2)

4

}

, if n is even

max
{

0, r − 1 −
(n − 1)2

4

}

, if n is odd
(22.0.2)

and the steepness indices �m of ℎ are superiorly bounded by

�̄m ∶=

⎧

⎪

⎨

⎪

⎩

max
{

1, 2r − 3 −
n(n − 2)

2
+ 2m(n − m − 1)

}

, if n is even

max
{

1, 2r − 3 −
(n − 1)2

2
+ 2m(n − m − 1)

}

, if n is odd
. (22.0.3)
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As Nekhoroshev points out in his discussion, such result implies a stratification in
the space of jets: the strata Σrn(I), with r ≥ 2, are semialgebraic sets of increasing
codimension. Hence, as expression (22.0.2) shows, for fixed n and sufficiently high
r, the steepness property is generic in I (r, n). Moreover, for fixed values of r and
n, in addition to non-steep functions, also all steep functions with steepness indices
greater than �̄m are contained in the stratus Σrn(I). In other words, for increasing values
of r, the complementary of Σrn(I) contains more and more jets of steep functions and
the steepness indices of such functions are superiorly bounded by a quantity �̄m which
increases linearly with r. A way to obtain sufficient conditions for steepness in the
space of jets at a fixed order r consists therefore in knowing the explicit form of the
stratus Σrn(I) or the form of some closed set containing it: a function whose r-jet lies
outside such set is steep. The sets Σ2n(I), for any n ≥ 2, have been explicitly described
by Nekhoroshev in references [95] and [96]. Before stating Nekhoroshev’s results, we
denote by

ℎkI [v
1, ..., vk] =

n
∑

i1,...,ik=1

)kℎ
)Ii1 ...)Iik

(I)v1i1 ...v
k
ik

the k-th order multilinear form corresponding to the k-th coefficient of the Taylor ex-
pansion of a function ℎ which is k-times continuously differentiable in a neighborhood
of I . We also give the following

Definition 2. For r ∈ ℕ, r ≥ 2, a function ℎ of class Cr in a neighborhood of a point I
is said to be r-jet non-degenerate if the system

ℎ1[v] = 0 ; ℎ2[v, v] = 0 , ... , ℎr[v, ..., v] = 0

admits only the trivial solution v = 0. If this is not the case, ℎ is said to be r-jet
degenerate.

With such setup, Nekhoroshev proved that, in the space of jets of order two, one
has PI (ℎ, 2, n) ∈ I (2, n)∖Σ2n(I) if and only if ℎ is two-jet degenerate. Such condition
is equivalent to requiring that ℎ is quasi-convex (i.e. convex on level sets) at I and
Theorem 2 implies that all quasi-convex functions in C3 class around a non-critical
point I are steep in a neighborhood of such point. In a similar way, Nekhoroshev found
a sufficient condition for steepness involving the derivatives of order three: namely, if
a function ℎ ∈ C5 around a non-critical point I is three-jet non-degenerate at I , then ℎ
is steep in a neighborhood of such point. As we shall see in subsection 27.3, such result
is more general than the conditions that can be inferred on the jets of order three by
simply following the scheme of Theorem 2, since it applies to a wider set of functions.
Its proof is not found in Nekhoroshev’s works (see refs. [94] and [96]) and it has been
explicitly written in an analytic way in [47] for systems with any number of degrees of
freedom. As we shall show in subsection 27.3, the fact that the three-jet non degeneracy
of a given function depending on n = 2, 3, 4, 5 coordinates implies its steepness comes
out as a straightforward corollary of the algebraic structure of the equations that define
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the sets Σrn(I), for r = 4, 5 and n = 2, 3, 4, 5. Following such discussion, we conjecture
that the algebraic properties of the sets Σrn(I), for any values of r and n, can be used to
prove the steepness of all three-jet non-degenerate functions depending on an arbitrary
number of variables; this would constitute an alternative proof to the one used in [47].
However, the algebraic form of the strata Σrn(I), for r ≥ 4, cannot be expressed so
straightforwardly as in the cases r = 2, 3. In [111] the authors were able to build closed
sets containing the strata Σ4n(I) for n = 2, 3, 4 by exploiting Nekhoroshev’s strategy.
For n ≥ 5 and r = 4, on the other hand, Nekhoroshev’s scheme turns out not to be
helpful since it yields conditions for steepness which are stronger than three-jet non
degeneracy.
In this work, we develop the scheme in [111] and we build closed sets containing Σ5n(I)
for n = 2, 3, 4, 5. This allows us to formulate new explicit conditions for steepness
involving the five-jet of a given function. Similarly to the case considered in [111], the
constraints we find are useful only in the case of systems with n = 2, 3, 4, 5 degrees
of freedom, as we shall discuss in subsection 27.1. Moreover, we slightly modify the
construction in [111] so to get rid of some hypotheses of non-degeneracy on the hessian
matrix of the function whose steepness is being tested. Furthermore, this work can be
seen as a first step towards the formulation of sufficient conditions for steepness in the
space of jets of arbitrary order. Indeed, a comparison on the equations defining the
’bad’ sets �rn(I) defined in Theorem 2, for r = 4, 5, suggests hints on the algebraic
structure of �rn(I) for any value of r, which shall be studied in detail in a further work.
By formula (22.0.2), this would allow to obtain generic conditions for steepness for
functions depending on an arbitrary number of degrees of freedom. Actually, if the
explicit expression of the sets �nr (I) were known for all r, n ∈ ℕ, for any fixed value
of n one should then simply find the minimal order r∗, depending on n, for which the
codimension of the bad set �rn(I) is positive. At that point, steepness would be generic
in the space of jets of order r∗ and a way to test steepness of a given function would be
to see if its r∗-jet belongs to the complementary of the closure of �r∗n (I).

This part is organized as follows: in section 23 we state our results, whereas in
section 24 we test such conditions on a couple of polynomial examples. Section 25
is dedicated to an overview on Nekhoroshev abstract strategy to construct sets �rn(I),
section 26 contains the proofs of the statements in section 23 and, finally, section 27
contains some remarks and a short discussion on the possible developements of this
work.
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Chapter 23

Results

Below, we state our results separately for each of the possible values of the number of
degrees of freedom n.
As a matter of notation, for fixed n and for any collection of m ∈ {1, ..., n − 1} vec-
tors v1, ..., vm in ℝn, we shall indicate by rk(v1, ..., vm) the linear rank of the matrix
(v1, ..., vm) generated by such collection.

For n = 2 we have

Theorem 3. Let an open set of ℝ2 and ℎ ∶ ⟶ ℝ a smooth function. Let I ∈ 
a point such that∇ℎ(I) ≠ 0. If ℎ is five-jet non-degenerate at I , then ℎ is steep in some
neighborhood of I .

For n = 3 we have

Theorem 4. Let an open set of ℝ3 and ℎ ∶ ⟶ ℝ a smooth function. Let I ∈ 
a point such that ∇ℎ(I) ≠ 0. If

1. ℎ is five-jet non-degenerate at I ;

2. for any v ≠ 0 such that ℎ is three-jet degenerate at I , any vector u solving system

ℎ1I [u] = 0 ; ℎ
2
I [u, v] = 0 ; ℎ

2
I [u, u]ℎ

4
I [v, v, v, v] = 3(ℎ

3
I [v, v, u])

2

satisfies rk(u, v) < 2;

then ℎ is steep in some neighborhood of I .

For n = 4 we have

Theorem 5. Let an open set of ℝ4 and ℎ ∶ ⟶ ℝ a smooth function. Let I ∈ 
a point such that ∇ℎ(I) ≠ 0.
If
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1. ℎ is five-jet non-degenerate at I ;

2. for all v ≠ 0 such that ℎ is three-jet degenerate at I , any vector u solving system

⎧

⎪

⎨

⎪

⎩

ℎ1I [u] = 0 ; ℎ
2
I [u, v] = 0 ; ℎ

2
I [u, u]ℎ

4
I [v, v, v, v] = 3(ℎ

3
I [v, v, u])

2

15(ℎ3I [v, v, u])
2ℎ3I [u, u, v] + ℎ

5
I [v, v, v, v, v](ℎ

2
I [u, u])

2

= 10ℎ4I [v, v, v, u]ℎ
3
I [u, v, v]ℎ

2
I [u, u]

(23.0.1)

satisfies rk(u, v) < 2;

3. for all v ≠ 0 such that ℎ is three-jet degenerate at I , any couple of vectors (u,w)
solving

ℎ1I [u] = 0 ; ℎ
1
I [w] = 0 ; ℎ

2
I [u, v] = 0 ; ℎ

2
I [w, v] = 0 (23.0.2)

satisfies rk(u, v,w) < 3 ;

then ℎ is steep in some neighborhood of I .

For n = 5 we have

Theorem 6. Let an open set of ℝ5 and ℎ ∶ ⟶ ℝ a smooth function. Let I ∈ 
a point such that ∇ℎ(I) ≠ 0.
If

1. ℎ is four-jet non-degenerate at I ;

2. for all v ≠ 0 such that ℎ is three-jet degenerate at I , any vector u solving

⎧

⎪

⎨

⎪

⎩

ℎ1I [u] = 0 ; ℎ
2
I [u, v] = 0 ; ℎ

2
I [u, u]ℎ

4
I [v, v, v, v] = 3(ℎ

3
I [v, v, u])

2

15(ℎ3I [v, v, u])
2ℎ3I [u, u, v] + ℎ

5
I [v, v, v, v, v](ℎ

2
I [u, u])

2

= 10ℎ4I [v, v, v, u]ℎ
3
I [u, v, v]ℎ

2
I [u, u]

(23.0.3)

satisfies rk(u, v) < 2;

3. for all v ≠ 0 such that ℎ is three-jet degenerate at I , any couple of vectors (u,w)
solving

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ1I [u] = 0 ; ℎ
1
I [w] = 0 ; ℎ

2
I [u, v] = 0 ; ℎ

2
I [w, v] = 0

{ℎ4I [v, v, v, v]ℎ
2
I [u, u] − 6(ℎ

3
I [u, v, v])

2}{ℎ2I [w,w]ℎ
2
I [u, u] − (ℎ

2
I [u,w])

2}
+12ℎ3I [u, v, v]ℎ

3
I [v, v,w]ℎ

2
I [u, u]ℎ

2
I [u,w] − 6(ℎ

3
I [u, v, v])

2(ℎ2I [u,w])
2

−6(ℎ3I [v, v,w])
2(ℎ2I [u, u])

2 = 0
(23.0.4)

satisfies rk(u, v,w) < 3 ;
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4. for all v ≠ 0 such that ℎ is two-jet degenerate at I , any triplet of vectors (u,w, x)
solving

{

ℎ1I [u] = 0 ; ℎ
1
I [w] = 0 ; ℎ

1
I [x] = 0

ℎ2I [u, v] = 0 ; ℎ
2
I [w, v] = 0 ; ℎ

2
I [x, v] = 0

(23.0.5)

satisfies rk(u,w, x, v) < 4 ;

then ℎ is steep in some neighborhood of I .
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Chapter 24

Examples

In this section, we test our results on some polynomial examples.

Example 1. The function

ℎ(I) = ℎ(I1, I2, I3, I4) =
I52
5
+
I31
3
−
I21
2
+
I1I2
2

−
I23
2
− I4 (24.0.1)

is steep in a neighborhood of the origin I = 0.

Proof. We start be remarking that such function is three-jet and four-jet degenerate at
the origin on those vectors v ≠ 0 of the form

v ∶= (v1, v2, v3, v4) = (0, v2, 0, 0) , (24.0.2)

so that neither Nekhoroshev explicit algebraic conditions for steepness, nor theorems
in ref. [111] apply. However, the claim can be proven by applying Theorem 5. Indeed,
it is easy to see that ℎ is five-jet non-degenerate at I = 0. Moreover, system (23.0.1)
reads

u4 = 0 ; u1v1 + u3v3 −
1
2
u1v2 −

1
2
u2v1 = 0 ; v52(u

2
1 + u

2
3 − u1u2)

2 = 0 (24.0.3)

and, by taking expression (24.0.2) into account, one has that the only non-null solution
is given by vectors of the kind u = (0, u2, 0, 0), which satisfy rk(u, v) < 2.
Finally, system (23.0.2) reads

{

u4 = w4 = 0
u1v1 + u3v3 −

1
2u1v2 −

1
2u2v1 = 0 ; w1v1 +w3v3 −

1
2w1v2 −

1
2w2v1 = 0

(24.0.4)
and, by taking expression (24.0.2) again into account, the only possible solutions are
two families of vectors of the kind u = (0, u2, u3, 0) and w = (0, w2, w3, 0), which
satisfy rk(u, v,w) < 3. Therefore, the hypotheses of Theorem 5 are fulfilled and the
proof is concluded.
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Example 2. The function

ℎ(I) = ℎ(I1, I2, I3, I4, I5) =
I44
4
+
I45
4
+
I33
3
+
I3I22
2
−
I21
2
−
I23
2
−
I25
2
+I3I4+I2 (24.0.5)

is steep in a neighborhood of the origin I = 0.

Proof. We start by remarking that such function is two-jet degenerate at the origin on
those vectors z ≠ 0 of the form

z ∶= (z1, 0, z3, z4, z5) (24.0.6)

whose coordinates satisfy

z21 + z
2
3 + z

2
5 − 2z3z4 = 0 , (24.0.7)

and three-jet degenerate on those vectors v ≠ 0 of the kind

v ∶= (0, 0, 0, v4, 0) . (24.0.8)

Therefore, Nekhoroshev’s non-degeneracy conditions on the jets of order two and three
are helpless in this case. Moreover, since such function has five degrees of freedom,
the results in ref. [111] cannot be used (they only hold for n = 2, 3, 4). However, the
claim can be proven by making use of Theorem 6. First, it is easy to see that ℎ is four-
jet non-degenerate at the origin. Moreover, by taking expression (24.0.8) into account,
system (23.0.3) reads

u2 = 0 ; u3 = 0 ; u21 + u
2
5 = 0 , (24.0.9)

which is solved by vectors of the kind u = (0, 0, 0, u4, 0), that depend linearly on v. On
the other hand, system (23.0.4) has the form

u2 = 0 ; w2 = 0 ; u3 = 0 ; w3 = 0 ; (u21 + u
2
5)(u1w5 − u5w1)

2 = 0 , (24.0.10)

where the particular form (24.0.8) of vector v has been taken into account once again.
There are four possible cases

1. u21 + u
2
5 = 0, which, by system (24.0.10), implies u1 = u5 = 0, so that vector u is

of the kind u = (0, 0, 0, u4, 0), which is parallel to v;

2. u1 = 0, u5 ≠ 0, which, by the last equation in (24.0.10), implies w1 = 0, so
that u and w have the form u = (0, 0, 0, u4, u5) and w = (0, 0, 0, w4, w5), so that
rk(u, v,w) < 3;

3. u1 ≠ 0, u5 = 0 which is similar to the previous point and yields u,w of the kind
u = (u1, 0, 0, u4, 0), w = (w1, 0, 0, w4, 0), so that rk(u, v,w) < 3;
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4. u1 ≠ 0, u5 ≠ 0 which, by system (24.0.10), yields u5w1 − u1w5 = 0. Therefore,
one has

det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 v4 0
u1 0 0 u4 u5
w1 0 0 w4 w5
0 1 0 0 0
0 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= v4(u5w1 − u1w5) = 0

so that, since

rk
⎛

⎜

⎜

⎝

0 0 0 v4 0
0 1 0 0 0
0 0 1 0 0

⎞

⎟

⎟

⎠

= 3 ,

one must have rk(u,w) < 2 and, consequently, rk(u, v,w) < 3.

Finally, system (23.0.5) reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u2 = 0 ; w2 = 0 ; x2 = 0
u1z1 + u3z3 + u5z5 − u3z4 − u4z3 = 0
w1z1 +w3z3 +w5z5 −w3z4 −w4z3 = 0
x1z1 + x3z3 + x5z5 − x3z4 − x4z3 = 0

(24.0.11)

which means that the vectors u,w, x belong to the three-dimensional subspace orthog-
onal to Span{(0, 1, 0, 0, 0), (z1, 0, z3−z4,−z3, z5)}. By looking at expressions (24.0.6)
and (24.0.7), we see that vector z belongs to the same subspace, so that rk(u,w, x, z) <
4. The hypotheses of theorem 6 are therefore fulfilled and the proof is concluded.
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Chapter 25

The steepness property in the
space of jets

We start by recalling Nekhoroshev’s abstract construction (see ref. [96]) of the sets
�rn(I) in Theorem 2, with r, n ≥ 2, whose closures contain all non steep functions with
non-zero gradient at the point I .

Definition 3. Take two integers r, n ≥ 2 and define �m ∶=
�̄m + 3
2

, with �̄m as in
Theorem 2.
�rn(I) ⊂ I (r, n) is the set containing the r-jets of smooth functions ℎ such that

1. ∇ℎ(I) ≠ 0

2. There exists an m-dimensional subspace ΛIm orthogonal to ∇ℎ(I) and a curve

 ∶ ℝ⟶ ΛIm of the form


(t) ∶=

⎧

⎪

⎨

⎪

⎩

x1(t) = t

xi(t) =
�m−1
∑

j=1
bij t

j , i ∈ {2, ..., m} , bij ∈ ℝ
, (25.0.1)

such that the restriction of the gradient of ℎ to 
(t) has a zero of order not smaller
than �m − 1 at t = 0:

dp(∇ℎ|ΛIm )|
(t)
dtp

|

|

|

|

|t=0
= 0 , p ∈ {1, 2, ..., �m − 1} . (25.0.2)

Remark. The readermight wonder why the value �m = (�m+3)∕2was chosen in the
definition of �rn(I). Infact, in his first work on the genericity of steepness, Nekhoroshev
proves that, for any fixed �m ∈ ℕ, �m > 1, any polynomial P ∈ I (r, n)∖�rn(I) is steep
on the subspace ΛIm with indices �m = 2(�m − 1) − 1, hence �m = (�m + 3)∕2 (see
Theorem C and Lemma 7.2.2 in ref. [94]).
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With this definition, we canwrite down the algebraic conditions that the r-jetPI (ℎ, r, n)
of a smooth function ℎmust satisfy in somem-dimensional subspace ΛIm in order to be-
long to �rn(I). For fixed m, these can be gathered in a system Ξm(ℎ, I, n) composed of
four subsystems �m,l, with l = 1, 2, 3, 4,

Ξm(ℎ, I, n) ∶=

{

�m,1(ℎ) ; �m,2(ℎ,Ai)
�m,3(ℎ,Ai) ; �m,4(ℎ,Ai, bij)

,

where i ∈ {1, ..., m}, j ∈ {1, ..., �m − 1}, the Ai are linearly independent vectors (with
origin at I) which constitute a basis for ΛIm and the coefficients bij are real parameters
defining a curve 
(t) as in (25.0.1). One has that

1. �1(ℎ) imposes ∇ℎ(I) ≠ 0;

2. �2(ℎ,Ai) imposes the vectors A1, ..., Am to be linearly independent,

rk[A1, ..., Am] = m ;

3. �3(ℎ,Ai) imposes the vectors A1, ..., Am to be orthogonal to ∇ℎ(I),

ℎ1I [A
1] = 0 ; ... ; ℎ1I [A

m] = 0 ;

4. �4(ℎ,Ai, bij) is a system of m(�m − 1) equations obtained as follows. We denote
by x1, ..., xm the coordinates for ΛIm with respect to the basis A1, ..., Am. By con-
struction, such coordinates are null at I . Then, we consider the Taylor polynomial
of ℎ|ΛIm at I up to order �m, namely

P �mn (x) ∶=
m
∑

i=1
ℎ1I [A

i]xi +
1
2

m
∑

i,j=1
ℎ2I [A

i, Aj]xixj

+... + 1
�m!

m
∑

i, j, k, ..., l = 1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�m terms

ℎ�m−1I [Ai, Aj , Ak, ..., Al]xixjxk...xl .

(25.0.3)

Condition (25.0.2) can now be imposed by considering the gradient∇P �mn (x), by
injecting expression (25.0.1) in each of its m components and by requiring that
the �m − 1 coefficients of the resulting polynomial in t are null. One thus obtains
m(�m − 1) equations.

For fixed m, Ξm(ℎ, I, n) is said to be solvable for a given ℎ at I if there exist a basis
A1, ..., Am and real parameters bij that verify it. PI (ℎ, r, n) belongs to �rn(I) if at least
one of the systems Ξm(ℎ, I, n), with m ∈ {1, ..., n − 1}, is solvable for ℎ.
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Indeed, following Theorem 2, in the sequel we will try to consider the closure of the
algebraic conditions defining �5n (I) and, when this turns out to be too complicated,
we will choose suitable closed sets containing �5n (I), with n = 2, 3, 4, 5. We will not
deal with the case n ≥ 6 since in such situation the conditions we find yield sets of
steep functions which are smaller than those yielded by the three-jet non degeneracy
condition, as it was already pointed out in ref. [111].
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Chapter 26

Proofs

For the sake of simplicity, from now on we drop the subscript I in ℎI referring to the
point where the considered jet is calculated. Moreover, we denote byΠΛIm the projection
onto an m-dimensional linear affine subspace ΛIm orthogonal to the gradient. We start
by stating the following simple lemma, which will turn out to be useful when trying to
prove the closedness of the sets which we shall consider in the sequel, namely

Lemma 1. Let E be a metric space, K a compact subset of some metric space and Δ a
closed subset of E ×K . Then, the projection of Δ on E, denoted by ΠE(Δ), is closed.

Proof. Let {pn}n∈ℕ be a sequence in ΠE(Δ) converging to a point p̄ and {kn}n∈ℕ a
sequence in K satisying (pn, kn) ∈ Δ. Since K is a compact subset of some metric
space, one can extract a subsequence {knl}l∈ℕ converging to a point k̄ ∈ K . Hence, the
sequence {(pnl , knl )}l∈ℕ in Δ converges to (p̄, k̄) ∈ Δ, since Δ is closed. This implies
that p̄ belongs to ΠE(Δ), which is therefore closed.

The following sets will turn out to be particularly useful in the sequel.

Definition 4. For n = 2, 3, 4, we denote by Ψ∗1(n) ⊂ I (5, n) the set of those jets of or-
der five which satisfy the five-jet degeneracy condition. Similarly, for n = 5 we denote
by Ψ∗1(5) ⊂ I (5, 5) the set of those jets of order five which are four-jet degenerate.
Moreover, for n = 1, 2, 3, 4, 5, we indicate byΨ1(n) ⊂ I (5, n) the intersection between
Ψ∗1(n) and the set containing those jets corresponding to functions having non-zero gra-
dient at I .

In particular, by Lemma 4.1 in ref. [111] one has

Lemma 2. For n = 2, 3, 4, 5, the set Ψ∗1(n) is closed and it coincides with the closure
of Ψ1(n).

With this setup, we are now ready to give the proofs of Theorems 3-6.

265
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26.1 Proof of Theorem 3 (n=2)
Proof. We assume the hypotheses of Theorem 3. Since we are in a domain of ℝ2, the
only possible dimension for a subspace orthogonal to the gradient is m = 1. For n = 2
and r = 5 we have �1 = 5. Now, we build the set �52 (I) by following the strategy
described by Nekhoroshev in [96] and which we recalled in Theorem 2 and Definition
3. First, we consider the Taylor polynomial of the restriction of the function ℎ to the
subspace ΛI1 up to order �1 = 5:

P 52 (x) =ℎ
1[v]x + 1

2
ℎ2[v, v]x2 + 1

6
ℎ3[v, v, v]x3

+ 1
24
ℎ4[v, v, v, v]x4 + 1

120
ℎ5[v, v, v, v, v]x5 ,

(26.1.1)

where v is a non-null vector orthogonal to the gradient. Then, we calculate ∇P 25 (x)
and we consider its restriction to the curve x(t) = t. By setting all the coefficients of
such polynomial to be equal to zero we obtain the subsystem �4(ℎ, v) described in the
previous section, so that system Ξ1(ℎ, I) reads

{

∇ℎ(I) ≠ 0 ; v ≠ 0 ; ℎ1[v] = 0 ; ℎ2[v, v] = 0
ℎ3[v, v, v] = 0 ; ℎ4[v, v, v, v] = 0 ; ℎ5[v, v, v, v, v] = 0

. (26.1.2)

Since this is the only system we can consider in this case, we have that the set �52 (I)
coincides with the one defined byΞ1(ℎ, I)which, in turn, is equal toΨ1(2) byDefinition
4. Theorem 3 then follows from Lemma 2 and Theorem 2.

26.2 Proof of the case n = 3
The goal is to prove Theorem 4. Analogously to the case n = 2, we give some suitable
definitions.

Definition 5. We denote byΨ2(3) the set in the space of 5-jets of smooth functions ℎ of
three variables such that there exist two linearly independent vectors u, v and two real
parameters �, � satisfying

⎧

⎪

⎨

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ΠΛI2ℎ
2[v, ⋅] = ΠΛI2

(

2�ℎI [u, ⋅] + ℎ3[v, v, ⋅]
)

= 0

ΠΛI2 (6�ℎ
2[u, ⋅] + 6�ℎ3[u, v, ⋅] + ℎ4I [v, v, v, ⋅]) = 0 .

(26.2.1)

Definition 6. We denote by Ψ∗2(3) the set in the space of 5-jets of smooth functions ℎ
of three variables such that there exists two linearly independent vectors u, v satisfying

{

ℎ1[u] = ℎ1[v] = ℎ2[v, v] = ℎ2[v, u] = ℎ3[v, v, v] = 0
ℎ2[u, u]ℎ4[v, v, v, v] = 3(ℎ3[v, v, u])2

. (26.2.2)



26.2. PROOF OF THE CASEN = 3 267

The following result holds true

Lemma 3. The set Ψ∗2(3) is closed and contains the closure of Ψ2(3).

Proof. We notice that all equations in (26.2.2) are homogeneous in u and v, so that
without any loss of generality we can consider (u, v) ∈ S2×S2. Moreover, still without
any loss of generality we can assume u ⋅v = 0, since it is easy to see that the component
of u which is parallel to v yields a null contribution to the system in (26.2.2). Then,
system (26.2.2) defines an algebraic closed set in I (5, 3) × S2 × S2, whose projection
onto I (5, 3) isΨ∗2(3). HenceΨ

∗
2(3) is closed by Lemma 1. In order to prove inclusion,

we write the system defining Ψ2(3) in its less compact form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = 0 ; ℎ1[v] = 0 ; ℎ2[v, v] = 0
ℎ2[v, u] = 0 ; ℎ3[v, v, v] = 0 ; 6�ℎ3[u, v, v] + ℎ4[v, v, v, v] = 0
2�ℎ2[u, u] + ℎ3[u, v, v] = 0
6�ℎ2[u, u] + 6�ℎ3[u, u, v] + ℎ4[v, v, v, u] = 0

. (26.2.3)

By applying Gauss elimination method to the last two equations and by subtracting one
to another, one can get rid of parameter � and obtains

3(ℎ3[u, v, v])2 = ℎ4[v, v, v, v]ℎ2[u, u] .

Then, by discarding the last equation and the inequality on the gradient of ℎ, one reduces
to the system defining the set Ψ∗2(3). Therefore the inclusion Ψ∗2(3) ⊃ Ψ2(3) holds.
Since Ψ∗2(3) is closed, one has Ψ

∗
2(3) ⊃ Ψ̄2(3) and the statement is thus proven.

We remark that we considered set Ψ∗2(3) since Ψ2(3) is not closed, as we show in
the following

Example 3. For k ∈ ℕ, consider the sequence of polynomial functions

ℎk(I1, I2, I3) =
3
2
I41 + I

4
2

4!
−
I43
4!k

−
I2I21
2k

+
I22
2k2

+ I3 ,

converging to ℎ(I1, I2, I3) =
3
2
I41 + I

4
2

4!
+I3 .At the origin, the jetP (ℎk, 5, 3) associated

to ℎk belongs to the set Ψ2(3) for all k, but the jet P (ℎ, 5, 3) associated to the limit
function does not.

Proof. For fixed k ∈ ℕ, set �k ∶=
k
2
, �k ∶=

k2

2
and the vectors u = (0, 1, 0), v =

(1, 0, 0). It is straightforward to see that P (ℎk, 5, 3) ∈ Ψ2(3) at the origin, with such
choice of vectors and parameters. However, the limit function ℎ is weakly-convex at
the origin and, as the reader can easily verify, it does not fulfill system (26.2.3) for any
non-null vector v.

We are now ready to write the proof of Theorem 4.
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Proof. We assume the hypotheses of Theorem 4. Since we are in a domain of ℝ3, m
can be equal to 1 or 2. For n = 3 and r = 5 we have �1 = 5 and �2 = 4.
For m = 1, by following the same construction as in the case n = 2, we have the same
expression of (26.1.2) for Ξ1(ℎ, I, 3).
In order to build up systemΞ2(ℎ, I, 3), we follow the usual strategy described byNekhoro-
shev in [96] and we consider the Taylor polynomial of the restriction of the function ℎ
to the subspace ΛI2 up to order �2 = 4. By calculating ∇P 34 (x) = ()x1P

3
4 (x), )x2P

3
4 (x))

along the curve
x1 = t ; x2 = b21t + b22t2 + b23t3

and by setting equal to zero all the coefficients of the resulting polynomial in t up to
order �2 − 1 = 3, one has that

1. The linear terms yield ΠΛI2ℎ
2[A1 + b21A2, ⋅] = 0 ;

2. The quadratic terms yield

ΠΛI2
(

2b22ℎ2[A2, ⋅] + ℎ3[A1 + b21A2, A1 + b21A2, ⋅]
)

= 0 ; (26.2.4)

3. Finally, the cubic terms yield

ΠΛI2 (6b23ℎ
2[A2, ⋅] + 6b22ℎ3[A2, A1 + b21A2, ⋅]

+ℎ4[A1 + b21A2, A1 + b21A2, A1 + b21A2, ⋅]) = 0 ;
(26.2.5)

where A1, A2 are a basis for ΛI2 .
Thus, system Ξ2(ℎ, I, 3) takes the form

⎧

⎪

⎨

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ΠΛI2ℎ
2[v, ⋅] = ΠΛI2

(

2�ℎ2[u, ⋅] + ℎ3[v, v, ⋅]
)

= 0

ΠΛI2 (6�ℎ
2[u, ⋅] + 6�ℎ3[u, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0 ,

(26.2.6)
with u ∶= A2, v ∶= A1 + b21A2 two linearly independent vectors and � ∶= b22, � ∶=
b23 two real parameters. With the help of Definitions 4 and 5 we see that �53 (I) =
Ψ1(3)∪Ψ2(3). As a consequence of Lemmas 2 and 3 and of Theorem 2 one has Σ53(I) =
�̄53 (I) ⊂ Ψ

∗
1(3) ∪ Ψ

∗
2(3) and Theorem 4 follows.

26.3 Proof of the case n = 4
The goal is to prove Theorem 5. We start with the usual definitions

Definition 7. We denote by Ψ2(4) the set in the space of 5-jets of smooth functions ℎ
of four variables such that there exist two linearly independent vectors u, v and three
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real parameters �, �, 
 satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ΠΛI2ℎ
2[v, ⋅] = ΠΛI2

(

2�ℎ2[u, ⋅] + ℎ3[v, v, ⋅]
)

= 0

ΠΛI2 (6�ℎ
2[u, ⋅] + 6�ℎ3[u, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0

ΠΛI2 (24
ℎ
2[u, ⋅] + 24�ℎ3[u, v, ⋅]

+12�2ℎ3[u, u, ⋅] + 12�ℎ4[v, v, u, ⋅] + ℎ5[v, v, v, v, ⋅]) = 0

.

(26.3.1)

Definition 8. We denote by Ψ∗2(4) the set in the space of 5-jets of smooth functions ℎ
of four variables such that there exist two linearly independent vectors u, v satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ1[u] = ℎ1[v] = ℎ2[v, v] = ℎ2[v, u] = ℎ3[v, v, v] = 0
ℎ2[u, u]ℎ4[v, v, v, v] = 3(ℎ3[v, v, u])2

15(ℎ3[v, v, u])2ℎ3[u, u, v] + ℎ5[v, v, v, v, v](ℎ2[u, u])2

= 10ℎ4[v, v, v, u]ℎ3[u, v, v]ℎ2[u, u]

. (26.3.2)

Definition 9. We denote by Ψ3(4) the set in the space of 5-jets of smooth functions ℎ
of four variables such that there exist three linearly independent vectors u, v,w and two
real parameters �, � satisfying

⎧

⎪

⎨

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ℎ1[w] = ΠΛI3ℎ
2[v, ⋅] = 0

ΠΛI3 (2ℎ
2[�u + �w, ⋅] + ℎ3[v, v, ⋅]) = 0

. (26.3.3)

Definition 10. Wedenote byΨ∗3(4) the set in the space of 5-jets of smooth functions ℎ of
four variables such that there exist three linearly independent vectors u, v,w satisfying

ℎ1[u] = ℎ1[v] = ℎ1[w] = ℎ2[v, v] = ℎ2[v, u] = ℎ2[v,w] = 0 ; ℎ3[v, v, v] = 0 .
(26.3.4)

With these definitions, we have the following

Lemma 4. The sets Ψ∗2(4),Ψ
∗
3(4) are closed and one also has the inclusions Ψ∗2(4) ⊇

Ψ̄2(4),Ψ∗3(4) ⊇ Ψ̄3(4) .

Proof. The proof is similar to that of Theorem 3: without any loss of generality, one
can always choose the vectors to be perpendicular and unitary, so that systems (26.3.2)
and (26.3.4) define algebraic closed sets in I (5, n) × S2 × S2 and I (5, n) × S3 ×
S3, whose projections onto I (5, n) are Ψ∗2(4) and Ψ

∗
3(4), which are therefore closed

thanks to Lemma 1. As for the inclusions, the relation Ψ3(4) ⊂ Ψ∗3(4) is immediate
from definition 9, once one projects the equations on the basis u, v,w and compares the
system to the one in definition 10.
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In order to prove that Ψ2(4) ⊂ Ψ∗2(4) , we consider system (26.3.1) defining Ψ2(4) in
its most explicit form

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = 0 ; ℎ2[v, v] = ℎ2[v, u] = 0
ℎ3[v, v, v] = 0 ; 2�ℎ2[u, u] + ℎ3[v, v, u] = 0
6�ℎ3[u, v, v] + ℎ4[v, v, v, v] = 0
6�ℎ2[u, u] + 6�ℎ3[u, u, v] + ℎ4[v, v, v, u] = 0
24�ℎ3[u, v, v] + 12�2ℎ3[u, u, v] + 12�ℎ4[v, v, v, u] + ℎ5[v, v, v, v, v] = 0
24
ℎ2[u, u] + 24�ℎ3[u, u, v]
+12�2ℎ3[u, u, u] + 12�ℎ4[v, v, u, u] + ℎ5[v, v, v, v, u] = 0

.

(26.3.5)
Applying Gauss eliminationmethod in order to get rid of parameters �, � and discarding
the last equation containing parameter 
 yields system (26.3.2) defining Ψ∗2(4). There-
fore, one has Ψ2(4) ⊂ Ψ∗2(4) . Since Ψ

∗
2(4) and Ψ

∗
3(4) are closed, one finally obtains

Ψ∗2(4) ⊇ Ψ̄2(4) ,Ψ
∗
3(4) ⊇ Ψ̄3(4) .

With this setup, we are ready to prove Theorem 5.

Proof. Since we work in a domain of ℝ4, m can be equal to 1, 2 or 3. For n = 4 and
r = 5 we have �1 = �2 = 5 and �3 = 3.
For m = 1, we follow the same construction as in the cases n = 2, 3 and system
Ξ1(ℎ, I, 4) defines a set Ψ1(4) whose closure concides with Ψ∗1(4). In order to build
up system Ξ2(ℎ, I, 4), we follow once again the construction in [96] and we consider
the Taylor polynomial of the restriction of the function ℎ to a subspace ΛI2 up to order
�2 = 5. By calculating ∇P 45 (x) = ()x1P

4
5 (x), )x2P

4
5 (x)) along the curve

x1 = t ; x2 = b21t + b22t2 + b23t3 + b24t4

and by setting equal to zero all the coefficients of the resulting polynomial in t up to
order �2 − 1 = 4, one has that

1. The linear terms yield ΠΛI2ℎ
2[A1 + b21A2, ⋅] = 0 ;

2. The quadratic terms yield

ΠΛI2
(

2b22ℎ2[A2, ⋅] + ℎ3[A1 + b21A2, A1 + b21A2, ⋅]
)

= 0 ; (26.3.6)

3. The cubic terms yield

ΠΛI2 (6b23ℎ
2[A2, ⋅] + 6b22ℎ3[A2, A1 + b21A2, ⋅]

+ℎ4[A1 + b21A2, A1 + b21A2, A1 + b21A2, ⋅]) = 0 ;
(26.3.7)
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4. The quartic terms yield

ΠΛ2 (24b24ℎ
2[A2, ⋅] + 24b23ℎ3[A1 + b21A2, A2, ⋅] + 12b222ℎ

3[A2, A2, ⋅]

+12b22ℎ4[A1 + b21A2, A1 + b21A2, A2, ⋅]
+ℎ5[A1 + b21A2, A1 + b21A2, A1 + b21A2, A1 + b21A2, ⋅]) = 0 ;

(26.3.8)

whereA1, A2 are a basis forΛI2 . Thus, by following the same strategy as in the previous
section, Ξ2(ℎ, I) has the form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = 0 ; ΠΛI2ℎ
2[v, ⋅] = 0

ΠΛI2
(

2�ℎ2[u, ⋅] + ℎ3[v, v, ⋅]
)

= 0

ΠΛI2 (6�ℎ
2[u, ⋅] + 6�ℎ3[u, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0

ΠΛ2 (24
ℎ
2[u, ⋅] + 24�ℎ3[v, u, ⋅] + 12�2ℎ3[u, u, ⋅]

+12�ℎ4[v, v, u, ⋅] + ℎ5[v, v, v, v, ⋅]) = 0 .

(26.3.9)

with u ∶= A2, v ∶= A1 + b21A2 two linearly independent vectors and � ∶= b22, � ∶=
b23, 
 ∶= b24 three real parameters. Finally, we construct system Ξ3(ℎ, I). We consider
the Taylor polynomial P 45 (x) of the restriction of the function ℎ to the subspace ΛI3 , up
to order �3 = 3. By calculating ∇P 45 (x) = ()x1P

4
5 (x), )x2P

4
5 (x), )x3P

4
5 (x)) along the

curve
x1 = t ; x2 = b21t + b22t2 ; x3 = b31t + b32t2

and by setting equal to zero all the coefficients of the resulting polynomial in t up to
order �3 − 1 = 2, one has that

1. The linear terms yield ΠΛI3 (ℎ
2[A1 + b21A2 + b31A3, ⋅]) = 0 ;

2. The quadratic terms yield

ΠΛI3 (ℎ
2[2b22A2 + 2b32A3, ⋅]

+ℎ3[A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, ⋅]) = 0 ;
(26.3.10)

where A1, A2, A3 are a basis for ΛI3 .

Thus, by following the same strategy as in the previous section, Ξ3(ℎ, I) reads
{

∇ℎ(I) ≠ 0 ; ℎ1[u] = 0 ; ℎ1[v] = 0 ; ℎ1[w] = 0
ΠΛI3ℎ

2[v, ⋅] = 0 ; ΠΛI3
(

2ℎ2[�u + �w, ⋅] + ℎ3[v, v, ⋅]
)

= 0
. (26.3.11)

with u ∶= A2, v ∶= A1 + b21A2 + b31A3, w ∶= A3 three linearly independent vectors
and � ∶= b22, � ∶= b32 two real parameters. With the help of Definitions 4, 7 and 9,
we see that �54 (I) = Ψ1(4) ∪Ψ2(4) ∪Ψ3(4) , so that, as a consequence of Lemma 4 and
of Theorem 2, one has Σ54(I) = �̄54 (I) ⊂ Ψ

∗
1(4) ∪ Ψ

∗
2(4) ∪ Ψ

∗
3(4), which, together with

Theorem 2 once again, implies Theorem 5.
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26.4 Proof of the case n = 5

The goal consists in proving Theorem 6. We start with the usual definitions

Definition 11. We denote by Ψ2(5) the set in the space of 5-jets of smooth functions
ℎ of five variables such that there exist two linearly independent vectors u, v and three
real parameters �, �, 
 satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ΠΛI2ℎ
2[v, ⋅] = ΠΛI2

(

2�ℎ2[u, ⋅] + ℎ3[v, v, ⋅]
)

= 0

ΠΛI2 (6�ℎ
2[u, ⋅] + 6�ℎ3[u, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0

ΠΛI2 (24
ℎ
2[u, ⋅] + 24�ℎ3[u, v, ⋅]

+12�2ℎ3[u, u, ⋅] + 12�ℎ4[v, v, u, ⋅] + ℎ5[v, v, v, v, ⋅]) = 0

.

(26.4.1)

Definition 12. We denote by Ψ∗2(5) the set in the space of 5-jets of smooth functions ℎ
of five variables such that there exist two linearly independent vectors u, v satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ1[u] = ℎ1[v] = ℎ2[v, v] = ℎ2[v, u] = ℎ3[v, v, v] = 0
ℎ2[u, u]ℎ4[v, v, v, v] = 3(ℎ3[v, v, u])2

15(ℎ3[v, v, u])2ℎ3[u, u, v] + ℎ5[v, v, v, v, v](ℎ2[u, u])2

= 10ℎ4[v, v, v, u]ℎ3[u, v, v]ℎ2[u, u]

. (26.4.2)

Definition 13. We denote by Ψ3(5) the set in the space of 5-jets of smooth functions ℎ
of five variables such that there exist three linearly independent vectors u, v,w and four
real parameters �, �, 
, � satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ℎ1[w] = ΠΛI3ℎ
2[v, ⋅] = 0

ΠΛI3 (ℎ
2[�u + �w, ⋅] + ℎ3[v, v, ⋅]) = 0

ΠΛI3 (6ℎ
2[
u + �w, ⋅] + 6ℎ3[�u + �w, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0

. (26.4.3)

Definition 14. We denote by Ψ∗3(5) the set in the space of 5-jets of smooth functions ℎ
of five variables such that there exist three linearly independent vectors u, v,w satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ1[u] = ℎ1[v] = ℎ1[w] = ℎ2[v, v] = ℎ2[v, u] = ℎ2[v,w] = ℎ3[v, v, v] = 0
12ℎ3[u, v, v]ℎ3[v, v,w]ℎ2[u, u]ℎ2[u,w]
−6(ℎ3[u, v, v])2(ℎ2[u,w])2 − 6(ℎ3[v, v,w])2(ℎ2[u, u])2

+{ℎ4[v, v, v, v]ℎ2[u, u] − 6(ℎ3[u, v, v])2}{ℎ2[w,w]ℎ2[u, u] − (ℎ2[u,w])2} = 0

.

(26.4.4)
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Definition 15. Wedenote byΨ4(5) the set in the space of 5-jets of smooth functions ℎ of
five variables such that there exist four linearly independent vectors u, v,w, x satisfying

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ℎ1[w] = ℎ1[x] = 0 ; ΠΛI4ℎ
2[v, ⋅] = 0 . (26.4.5)

Definition 16. Wedenote byΨ∗4(5) the set in the space of 5-jets of smooth functions ℎ of
five variables such that there exist four linearly independent vectors u, v,w, x satisfying

ℎ1[u] = ℎ1[v] = ℎ1[w] = ℎ1[x] = 0 ; ΠΛI4ℎ
2[v, ⋅] = 0 . (26.4.6)

We have the following result:

Lemma 5. The sets Ψ∗2(5),Ψ
∗
3(5),Ψ

∗
4(5) are closed and the following inclusions hold:

Ψ∗2(5) ⊃ Ψ̄2(5),Ψ
∗
3(5) ⊃ Ψ̄3(5),Ψ

∗
4(5) ⊃ Ψ̄4(5).

Proof. Closure of the three sets Ψ∗2(5),Ψ
∗
3(5),Ψ

∗
4(5) is proven exactly in the same way

as in the previous paragraphs, with the help of Lemma 1. The proof of the inclusion
Ψ∗2(5) ⊃ Ψ̄2(5) is identic to the one given in Lemma 4 for the inclusion Ψ∗2(4) ⊃ Ψ̄2(4).
Inclusion Ψ∗4(5) ⊃ Ψ̄4(5) is immediate when considering the definitions of Ψ4(5) and
Ψ∗4(5) and the closure of the latter. The only non-trivial inclusion is thusΨ

∗
3(5) ⊃ Ψ̄3(5).

In order to prove it, we rewrite the system defining Ψ3(5) in its less synthetic form

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ℎ1[w] = ℎ2[v, v] = ℎ2[v, u] = ℎ2[v,w] = 0
ℎ3[v, v, v] = 0 ; ℎ2[�u + �w, u] + ℎ3[v, v, u] = 0
ℎ2[�u + �w,w] + ℎ3[v, v,w] = 0
6ℎ2[
u + �w, u] + 6ℎ3[�u + �w, v, u] + ℎ4[v, v, v, u] = 0
6ℎ2[
u + �w,w] + 6ℎ3[�u + �w, v,w] + ℎ4[v, v, v, w] = 0
6ℎ3[�u + �w, v, v] + ℎ4[v, v, v, v] = 0

.

(26.4.7)
Once again, Gauss elimination method can be used in order to get rid of parameters �
and �. Then, by discarding the first inequality and the two equations containing 
, �
in system (26.4.7) defining Ψ3(5), one obtains the system in Definition 10, which de-
termines Ψ∗3(5). Therefore, one has Ψ

∗
3(5) ⊃ Ψ3(5) and Ψ

∗
3(5) ⊃ Ψ̄3(5) since Ψ

∗
3(5) is

closed.

With this background, we are ready to prove Theorem 6.

Proof. Since we work in a domain of ℝ5, m can be equal to 1, 2, 3 or 4. For n = 5 and
r = 5 we have �1 = 4, �2 = 5, �3 = 4 and �4 = 2.
For m = 1, by following the same construction as in the cases n = 2, 3, 4, we find the
following expression for Ξ1(ℎ, I, 5):

∇ℎ(I) ≠ 0 ; v ≠ 0 ; ℎ1[v] = ℎ2[v, v] = ℎ3[v, v, v] = ℎ4[v, v, v, v] = 0 , (26.4.8)
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so that Ξ1(ℎ, I, 5) = Ψ1(5) by Definition 4.
Now, since �2 = 5 as it was in the case n = 4, we have exactly the same construction
and we can write Ξ2(ℎ, I, 5) in the same form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ΠΛI2ℎ
2[v, ⋅] = ΠΛI2

(

2�ℎ2[u, ⋅] + ℎ3[v, v, ⋅]
)

= 0

ΠΛI2 (6�ℎ
2[u, ⋅] + 6�ℎ3[u, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0

ΠΛ2 (24
ℎ
2[u, ⋅] + 24�ℎ3[v, u, ⋅] + 12�2ℎ3[u, u, ⋅]

+12�ℎ4[v, v, u, ⋅] + ℎ5[v, v, v, v, ⋅]) = 0 .
(26.4.9)

with u ∶= A2, v ∶= A1 + b21A2 two linearly independent vectors and � ∶= b22, � ∶=
b23, 
 ∶= b24 three real parameters. We now construct Ξ3(ℎ, I, 5). As usual, we con-
sider the Taylor polynomial P 45 (x1, x2, x3) of the restriction of the function ℎ to the sub-
space ΛI3 up to order �3 = 4. By calculating ∇P

4
5 (x) = ()x1P

4
5 (x), )x2P

4
5 (x), )x3P

4
5 (x))

along the curve

x1 = t ; x2 = b21t + b22t2 + b23t3 ; x3 = b31t + b32t2 + b33t3

and by setting equal to zero all the coefficients of the resulting polynomial in t up to
order �3 − 1 = 3, one has that

1. The linear terms yield ΠΛI3 (ℎ
2[A1 + b21A2 + b31A3, ⋅]) = 0 ;

2. The quadratic terms yield

ΠΛI2 (ℎ
2[b22A2 + b32A3, ⋅]

+ ℎ3[A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, ⋅] ) = 0 ;
(26.4.10)

3. The cubic terms yield

ΠΛI3 (6ℎ
2[2b23A2 + 2b33A3, ⋅] + 6ℎ3[b22A2 + b23A3, A1 + b21A2 + b31A3, ⋅]

+ℎ4[A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, A1 + b21A2 + b31A3, ⋅])
= 0 ;

(26.4.11)

where A1, A2, A3 are a basis for ΛI3 .

Therefore, Ξ3(ℎ, I, 5) can be compactly formulated as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ℎ1[w] = 0 ; ΠΛI3ℎ
2[v, ⋅] = 0

ΠΛI3 (ℎ
2[�u + �w, ⋅] + ℎ3[v, v, ⋅]) = 0

ΠΛI3 (6ℎ
2[
u + �w] + 6ℎ3[�u + �w, v, ⋅] + ℎ4[v, v, v, ⋅]) = 0

. (26.4.12)
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with u ∶= A2, v ∶= A1 + b21A2 + b31A3, w ∶= A3 three linearly independent vectors
and � ∶= b22, � ∶= b32, 
 ∶= b23, � ∶= b33 four real parameters.
Finally, we construct Ξ4(ℎ, I, 5) in the same usual way.
As usual, we consider the Taylor polynomial P 45 (x1, x2, x3) of the restriction of the
function ℎ to the subspace ΛI4 up to order �4 = 2.
By calculating ∇P 45 (x) = ()x1P

4
5 (x), )x2P

4
5 (x), )x3P

4
5 (x)) along the curve

x1(t) = t ; x2(t) = b21t ; x3(t) = b31t ; x4(t) = b41t

and by setting equal to zero all the coefficients of the resulting polynomial in t up to
order �4 − 1 = 1, Ξ4(ℎ, I, 5) reads

∇ℎ(I) ≠ 0 ; ℎ1[u] = ℎ1[v] = ℎ1[w] = ℎ1[x] = 0 ; ΠΛ4ℎ
2[v, ⋅] = 0 , (26.4.13)

with v = A1 + b21A2 + b31A3 + b41A4, u = A2, w = A3, x = A4. With the help of
definitions 4, 12 and 14, we see that �55 (I) = Ψ1(5) ∪ Ψ2(5) ∪ Ψ3(5) ∪ Ψ4(5) so that,
as a consequence of Lemma 5 and of Theorem 2, one has Σ55(I) = �̄55 (I) ⊂ Ψ∗1(5) ∪
Ψ∗2(5) ∪ Ψ

∗
3(5) ∪ Ψ

∗
4(5). This, together with Theorem 2, implies Theorem 6.
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Chapter 27

Final remarks

27.1 The case n ≥ 6
As the computations in the previous sections showed (see e.g. the case n = 2 or ref.
[111]), Nekhoroshev’s construction on affine linear subspaces of dimension m = 1 al-
ways yields a subsystem Ξ1(ℎ, I, n) requiring �1-degeneracy condition. In other words,
take an arbitrary integer r ≥ 2 and compute coefficient �1 on a one-dimensional sub-
space; if there exists v ≠ 0 such that

∇ℎ(I) ≠ 0 ; ℎ1[v] = 0 ; ℎ2[v, v] = 0 ; ... ; ℎ�1 [v, ..., v] = 0 (27.1.1)

is satisfied, then the r-jet of ℎ belongs to �rn(I), since it fulfills membership requirements
on subspaces of dimensionm = 1. On the other hand, algebraic conditions for steepness
on jets of order strictly greater than three make sense only at those points I where the
function ℎ is three-jet degenerate, since three-jet non-degeneracy automatically implies
steepness. By looking at the explicit expression for �m in Definition 3 and by taking
expression (22.0.3) for the maximal index of steepness �̄m into account, one easily sees
that �1 ≤ 3 for r = 5, m = 1 and n ≥ 6. Therefore, the 5-jet of a function ℎ with
six or more degrees of freedom belongs to �5n (I) at those points I where ℎ is three-
jet degenerate. As a consequence, in this case Theorem 2 is helpless at establishing
whether ℎ is steep or not at those points where it is three-jet degenerate.

27.2 Genericity and further developments
As Nekhoroshev pointed out in refs. [94], [96] and as Theorem 2 shows, steepness is a
generic property in the space of jets of a sufficiently high order r, since the codimension
of the set containing the jets of all non-steep functions becomes positive for r sufficiently
big. Such property is due to the fact that, for increasing r, one obtains more and more
algebraic conditions that a function must satisfy in order to belong to such set. As
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Nekhoroshev writes in ref. [94]: "Hamiltonians that fail to be steep at a non-critical
point are infinitely singular: they satisfy an infinite number of conditions on their Taylor
coefficients". This, in turn, is a straightforward consequence of Definition 3: when r
increases, so does the order of the zero that the gradient of the tested function must
possess on the minimal path 
 so to stay in the bad set �rn(I). Indeed, since 
 is a
polynomial path, this implies that more and more coefficients of such polynomial must
be set equal to zero, which yields an increasing number of algebraic conditions on the
coefficients of the jet of the studied function.
In the present section, we give some examples of genericity for the sufficient conditions
for steepness which we examined throughout the article.

Example 4. Quasi-convexity is a generic property in the space P (r, 2) of polynomials
of fixed degree r ≥ 2 of two variables.

Proof. In case ℎ is a non quasi-convex polynomial of order two in two variables, there
exists v ≠ 0 such that system

ℎ1[v] = 0 ; ℎ2[v, v] = 0 (27.2.1)

is satisfied. Moreover, v can be normalized to one since the system is homogeneous
in such variable. Therefore, for all non quasi-convex functions ℎ and for any integer
r ≥ 2, system (27.2.1) defines an algebraic set of codimension two in the cartesian
space P (r, 2) × S1 of polynomials and vectors. Since S1 has dimension one, by the
Theorem of Tarski and Seidenberg, the projection of such algebraic set in the space of
polynomialsP (r, 2) is semialgebraic and its codimension is no less than 2−1 = 1.

By following exactly the same startegy, one can prove also the two following

Example 5. Three-jet non-degeneracy is a generic property in the space P (r, 3) of
polynomials of fixed degree r ≥ 3 of three variables.

Example 6. The sufficient conditions for steepness of Theorem 5 are generic in the
space P (r, 4) of polynomials of fixed degree r ≥ 4 of four variables.

We remark that the minimal degree r of the polynomials for which genericity holds
in the previous examples is the same one yielded by formula (4.1.2) in Theorem 2.
Therefore, generic conditions for steepness for polynomials of arbitrary degree can only
be inferred if one is able to write sufficient conditions for jets of any order. Such task is
not straightforward and will be investigated in future works.

27.3 On the three-jet non-degeneracy condition
By closely looking at the algebraic form of the sets Ψ∗m(n) for n ∈ {2, 3, 4, 5} and
m ∈ {1, ..., n − 1}, which was developed in the previous sections, one easily sees that
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any function whose jet belongs to any of these sets must be 3-jet degenerate. There-
fore, if a function depending on a fixed number n of degrees of freedom is three-jet non
degenerate, it belongs to the complementary of all sets Ψ∗m(n), with m ∈ {1, ..., n − 1}.
Since for fixed n ∈ {2, 3, 4, 5} the bad set �5n (I) is contained in the union of closed sets
∪m∈{1,...,n−1}Ψ∗m(n), by Theorem 2 one has that all three-jet non-degenerate functions
depending on n = 2, 3, 4, 5 degrees of freedom are steep. We conjecture that for func-
tions depending on n ≥ 6 degrees of freedom the same result can be proved by closely
looking at the algebraic form of the sets defining the bad set �rn(I), for a sufficiently high
value of the order r. This would constitute an alternative strategy for proving the steep-
ness of three-jet non-degenerate functions with respect to the one contained in [47].

Finally, by following a similar reasoning as in subsection 27.1, for r = 3 one ob-
tains �1 ≤ 3 for n ≥ 2, so that the set of jets of order three satisying the conditions for
steepness of Theorem 2 is contained in the set of three-jet non degenerate jets. There-
fore, three-jet non-degeneracy yields a wider set of steep functions with respect to the
construction of Theorem 2.
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Appendix A

Tools of real-algebraic geometry

The goal of this appendix is to provide the reader with an overview of some standard
results of real-algebraic geometry that are used throughout the present work. The inter-
ested reader can find a complete exposition in [27] and [18].

A.1 Semi-algebraic sets and semi-algebraic functions
Definition A.1.1. A set A ⊂ ℝn is said to be semi-algebraic if it can be written in the
form

s
⋃

i=1
{Ri(x) = 0, Qi1(x) < 0,… , Qi ri (x) < 0} , (A.1.1)

where Ri, Qi1, ..., Qi ri ∈ ℝ[x].

Remark A.1.1. If only equalities are present in (A.1.1), A is said to be algebraic.

It is clear that the polynomials generating a given semi-algebraic set A are not
uniquely determined, nor is their number. However, one can introduce a unique quantity
associated to a semi-algebraic set, namely

Definition A.1.2 (Diagram). For any semi-algebraic set A ⊂ ℝn, we denote by

− k1(A) the minimal number of polynomials Ri(X), Qij(X) ∈ ℝ[X] that are nec-
essary in order to determine A as in (A.1.1).

− k2(A) the minimal value that the sum
∑s
i=1 deg(R̂i) +

∑s
i=1

∑ri
j=1 deg(Q̂ij) can

attain, with R̂i(X), Q̂ij(X) ∈ ℝ[X] determining A as in (A.1.1).

Following [36] (Def. 9.1), we call diagram of A the quantity

diag(A) ∶= k1(A) + k2(A) . (A.1.2)

Semi-algebraic sets are stable under projection, namely
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Theorem A.1.1. (Tarski and Seidenberg, quantitative version)
Take n, m > 0 and let A ⊂ ℝn × ℝm be a semi-algebraic set. We indicate by

Πn ∶ ℝn × ℝm ⟶ ℝm, (x, y)⟼ x the projector onto the first n coordinates. Then,
the set Πn(A) is semi-algebraic and its diagram depends only on diag(A), m and n.

The classic versions of the Theorem of Tarski and Seidenberg do not usually make
any reference to the diagram of the projected set. The statement given here can be found
in [36] (Proposition 9.2) and its proof is contained in [17].

The Theorem of Tarski and Seidenberg is fundamental in order to demonstrate the
following results (see [27] for proofs)

PropositionA.1.1. The complementary of a semi-algebraic setA ⊂ ℝn is semi-algebraic,
and its diagram depends only on the diagram of A.

Proposition A.1.2. The closure, the interior and the boundary of a semi-algebraic set
A ⊂ ℝn are semi-algebraic and their diagrams depend only on the diagram of A.

Proposition A.1.3. Let A be a semi-algebraic set of ℝn. Then, indicating with A the
closure of A, one has that diag(A) depends only on diag(A), and

dimA = dim(A) .

The notion of semi-algebraicness can be easily extended to functions by making
reference to their graphs, namely

DefinitionA.1.3. LetA ⊂ ℝn andB ∈ ℝm be semi-algebraic sets. Amap' ∶ A⟶ B
is said to be semi-algebraic if graph(') is a semi-algebraic set of ℝn ×ℝm.

Semi-algebraic functions are piecewise algebraic, namely one has

Proposition A.1.4. Let A be a semialgebraic subset A ⊂ ℝn and ' ∶ A ⟶ ℝ be
a semi-algebraic function of diagram d > 0. There exist a positive integer M(d), a
partition of A into a finite number of semi-algebraic sets Ai, i = 1,… , m, with m ≤
M(d), and for every value of i there exists a polynomial Si(X, Y ) in n + 1 variables
such that, for every x in Ai, Si(x, Y ) is not identically zero and solves Si(x, '(x)) = 0.

Proof. Except for the existence of the bound M = M(d), the proof can be found in
ref. [27] (Lemma 2.6.3). Assume, by absurd, that the boundM(d) does not exist; then,
one can find a sequence {'j}j∈ℕ of semi-algebraic functions of A with diagram d such
that, for each fixed j ∈ ℕ, the Proposition holds with the minimal number of pieces
in the partition of A being equal to mj , and mj ⟶ +∞. In particular, one can write
A = ⊔

mj
i=1Ai,j for any j ∈ ℕ, and there exist polynomials Si,j(X1,… , Xn, Y ) with the

required properties. On the one hand, for any given j ∈ ℕ and i ∈ {1,… , mj}, by
decomposition (A.1.1), one has that graph('j|Ai,j ) is the finite union of sets of the kind

{

(x, y) ∈ Ai,j ×ℝ | Si,j(x, y) = 0, Qi1,j(x, y) < 0,… , Qiri,j(x, y) < 0
}

(A.1.3)
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for some polynomials Qi1,j ,… , Qiri,j ∈ ℝ[X1,… , Xn, Y ]. On the other hand, one has
the disjoint union

graph('j) =
mj
⨆

i=1
graph('j|Ai,j) , (A.1.4)

which is a consequence of the fact that A = ⊔mji=1Ai,j is a partition.
By Def. A.1.2, formulas (A.1.3)-(A.1.4), and the fact thatmj is the minimal number

of pieces in the partition of A for 'j , one has diag('j) ≥ mj and, for sufficiently high j,
one has alsomj > d sincemj ⟶ +∞, in contradiction with the hypothesis diag('j) =
d for any j ∈ ℕ. This concludes the proof.

An immediate consequence of Proposition A.1.4 is the following

Corollary A.1.1. Let A ⊂ ℝ be an interval (finite or infinite) and ' ∶ A ⟶ ℝ be
a semi-algebraic function of diagram d > 0. There exist a positive integerM(d) and
an interval  of length |A|∕M(d) over which the function ' is algebraic, namely there
exists a polynomial S(X, Y ) in n + 1 variables such that, for every x in , S(x, Y ) is
not identically zero and solves S(x, '(x)) = 0.

Among semi-algebraic functions, an important class is that of Nash functions:

Definition A.1.4. Let A be an open semi-algebraic subset of ℝn. A semi-algebraic
function ' ∶ A⟶ ℝ belonging to the C∞ class is said to be a Nash function. The
set of Nash functions on A is a ring under the usual operations of sum and function
multiplication.

Moreover, if we define analytic-algebraic functions as those real-analytic functions
f defined on an open semi-algebraic set A ⊂ ℝn and satisfying P (x, f (x)) = 0 for
some polynomial P of n + 1 variables and for all x ∈ A, it turns out that

Proposition A.1.5 (ref. [27], Prop. 8.1.8). A function ' ∶ A⟶ ℝ is Nash on A if
and only if it is analytic-algebraic.

Another important property of more general complex analytic-algebraic functions
is stated in the following

Proposition A.1.6. Let D ⊂ ℂ be an open, bounded domain. An analytic-algebraic
function f ∶ D⟶ ℂ, whose graph solves a polynomial S ∈ ℂ[z,w] of degree k ∈ ℕ,
is k-valent: that is, if f is not constant then each value of Im(f ) is the image of at most
k points in D.

Proof. Assume, by absurd, that f is non-constant and that there exists w0 ∈ Im(f )
which is the image of at least p > k points in D. The polynomial Sw0 (z) ∶= S(z,w0)
would admit p > k roots while deg(Sw0 ) ≤ k by hypothesis. The Fundamental The-
orem of Algebra ensures that Sw0 must be identically zero and one has the factoriza-
tion S(z,w) = (w −w0)�Ŝ(z,w), where � ∈ {1, ..., k}, while Ŝ cannot be divided by
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(w−w0) inℂ[z,w]. Since f is analytic and not constant, then the preimage f−1({w0})
is a finite set and the graph of f must fulfill Ŝ(z, f (z)) = 0 out of f−1({w0}). By conti-
nuity, one has Ŝ(z, f (z)) = 0 on the whole domain of definition of f since f−1({w0}) is
finite. But deg Ŝw0 ≤ k, with Ŝw0 (z) ∶= Ŝ(z,w0), and Ŝw0 admits more than k roots,
hence the previous argument ensures that Ŝ can be divided by (w−w0), in contradiction
with the construction.

Semi-algebraicness is preserved by composition and inversion of semi-algebraic
maps. In the following propositions, A ⊂ ℝn and B ⊂ ℝm are supposed to be semi-
algebraic sets.

Proposition A.1.7. Let ' ∶ A ⟶ B a semi-algebraic map. If S ⊂ A and T ⊂
'(A) are semi-algebraic, so are '(S) and the inverse image '−1(T ). Moreover, their
diagrams depend only on the diagram of graph(').

Proposition A.1.8. Let f ∶ A⟶ B and g ∶ B⟶ C be two semi-algebraic func-
tions. Then f◦g is semi-algebraic and the diagram of its graph depends only on the
diagram of graph(f ) and on the diagram of graph(g).

Proposition A.1.9. Let f ∶ A⟶ B be an injective semi-algebraic function. Then,
its inverse f−1 ∶ f (A)⟶ A is semi-algebraic and the diagram of its graph depends
only on the diagram of graph(f ).

Proposition A.1.10. Let I ⊂ ℝ be an open interval and f ∶ I ⟶ ℝ be a semi-
algebraic function differentiable in I . Then its derivative f ′ is a semi-algebraic function
and its diagram only depends on the diagram of graph(f ).

We refer to [27] for the proofs of these statements. The dependence of the diagrams
on the diagram of the initial function is, once again, a consequence, of the quantitative
version A.1.1 of the Theorem of Tarski and Seidenberg.

Finally, we give the following statement, which will prove to be helpful in our work

Proposition A.1.11. (see e.g. ref. [74], pag. 23-24) Let f ∶ A⟶ ℝ and g ∶ A⟶
ℝm be semi-algebraic functions and suppose that f is bounded from below. Then

' ∶ g(A)⟶ ℝ y⟼ inf
x∈g−1(y)

f (x)

is semi-algebraic and the diagram of its graph depends only on the diagrams of graph(f )
and graph(g).

A.2 Analytic reparametrization of semi-algebraic sets
Generally speaking, the reparametrization of a semi-algebraic set A is a subdivision of
A into semi-algebraic piecesAj each of which is the image of a semi-algebraic function
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of the unit cube. On the one hand, it is possible to cover the whole ofA if one asks for the
covering functions to be of finite regularity, with a uniform control on their derivatives
(see [67]). On the other hand, if one requires analyticity of the covering functions
together with a uniform control on their derivatives, it is only possible to cover A up to
a "small" subset.

Hereafter, we state this result only in the case we need, that is for reparametrizations
of graphs of algebraic functions, referring to [116] for the general theory.

It is known that algebraic functions can only have two type of complex singularities:
ramification points and poles (where the function may also ramify). If we denote by d
the diagram of an algebraic function, the number of its complex singularities is bounded
by a quantity depending only on d (see e.g. [16]). It is exactly the neighborhoods of
these singularities that cannot be analytically covered.

Definition A.2.1. Let � > 0 and g ∶ I ∶= [−1, 1]⟶ ℝ be an algebraic function. An
analytic �-reparametrization of g consists of

− A finite number N of open subintervals Ui of I , with length(Ui) ≤ 2� for any
i = 1, ..., N .

− A partition of I∖ ∪Ni=1 Ui into a finite number of subsegments Δj , j = 1, ...,M ,
together with a collection of analytic maps  j ∶ I ⟶ Δj such that for any
j ∈ {1, ..., N}

1.  j is an affine reparametrization of the segment Δj .

2.  j and g◦ j are both holomorphic in 3 ∶= {z ∈ ℂ ∶ |z| ≤ 3} .

3.  j and g◦ j both satisfy a Bernstein inequality, that is

max
z∈3

| j(z) −  j(0)| ≤ 1 max
z∈3

|g◦ j(z) − g◦ j(0)| ≤ 1 . (A.2.1)

Theorem A.2.1. (Yomdin, [116] Th. 3.2) Let d be a positive integer. There exist con-
stants Y1 = Y1(d) and Y2 = Y2(d) such that for each algebraic function g(x) of diagram
d defined on I satisfying 0 ≤ g(x) ≤ 1 and for each � > 0 there is an analytic �-
reparametrization of g with the numberN of the removed intervals bounded by Y1 and
the number M of the covering maps bounded by Y2 log2(1∕�). Each of the removed
intervals is centered at the real part of a complex singularity of g(x).

Moreover, one has the following auxiliary result concerning the distance of each
interval Δj to the singularities of the complex extension of the function g

Proposition A.2.1. (Yomdin, [116], Lemma 3.6) The center of any of the segments Δj
in the partition given by Theorem A.2.1 is at distance no less than 3 × |Δj| from any
complex singularity of g.
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Appendix B

Quantitative local inversion
theorem

We start by stating a Lipschitz inverse function Theorem. Its proof can be found, for
example, in [65] (Th. 14.6.6).

TheoremB.0.1. LetU be an open subset of a Banach spaceE and that k ∶ U⟶ E is
a Lipschitz mapping with constant K < 1. Set ℎ(x) = x+ k(x). If the closed ball B"(x)
of radius " around x is contained in U then B(1−K)"(ℎ(x)) ⊂ ℎ(B"(x)) ⊂ B(1+K)"(ℎ(x)).
The mapping ℎ is a homeomorphism of U onto ℎ(U ), ℎ−1 is a Lipschitz mapping with
constant 1∕(1 −K), and ℎ(U ) is an open subset of E.

This result is crucial in order to prove an analytic inverse function theorem, namely

Theorem B.0.2. Take a function f ∈ C!(R(0)) and a point z∗ ∈ R∕2(0) satisfying
f ′(z∗) ≠ 0. Then, f is invertible in the closed disk R′∕16(z∗) and its inverse f−1 is
analytic in 

|f ′(z∗)|R′∕8(f (z∗)), where

R′ ∶= 1
2
× min

{

R,
|f ′(z∗)|

maxR(0)
|f ′′|

,

}

.

Proof. We define ℎ(z) ∶= f (z) − f (z∗)
f ′(z∗)

+ z∗, k(z) ∶= ℎ(z) − z; both these functions

are obviously holomorphic in R∕2(z∗). Since k′(z) = ℎ′(z) − 1 =
f ′(z)
f ′(z∗)

− 1 =

f ′(z) − f ′(z∗)
f ′(z∗)

, one has |k′(z)| = |f ′(z) − f ′(z∗)|
|f ′(z∗)|

≤ max
R(0)

|f ′′|
|z − z∗|
|f ′(z∗)|

. If we

choose to consider only the z ∈ R′ (z∗), we obtain that k is 1
2
−Lipschitz on this

set.
At this point, we exploit TheoremB.0.1 andwe have that the functionℎ(z) = k(z)+z

is a homeomorphism of R′ (z∗) onto its image. Moreover, one has R′∕8(ℎ(z∗)) ⊂

301
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ℎ(R′∕4(z∗)) ⊂ 3R′∕8(ℎ(z∗)) and, since ℎ(z∗) = z∗, this yields

R′∕8(z∗) ⊂ ℎ(R′∕4(z∗)) ⊂ 3R′∕8(z∗) . (B.0.1)

We can define f−1 by exploiting ℎ and its inverse, namely

z = ℎ−1(ℎ(z)) = ℎ−1
(

z∗ +
f (z) − f (z∗)

f ′(z∗)

)

=∶ f−1(f (z)) (B.0.2)

Indeed, by expressions (B.0.1) and (B.0.2), we see that, if we choose

|

|

|

|

z∗ +
f (z) − f (z∗)

f ′(z∗)
− z∗

|

|

|

|

≤ R′

8
,

that is |f (z) − f (z∗)| ≤ |f ′(z∗)|R
′

8
, we have defined the inverse over the closed disc


|f ′(z∗)|R′∕8(f (z∗)). Finally, we prove that

f (R′∕16(z∗)) ⊂ 
|f ′(z∗)|R′∕8(f (z∗)) .

In order to see this, for z ∈ R′∕16(z∗) we consider the identity

f (z) − f (z∗) = f ′(z∗)(z − z∗) + ∫

1

0
f ′′(tz + (1 − t)z∗) (z − z∗)2 (1 − t)dt

that yields the estimate

|f (z) − f (z∗)| ≤|f ′(z∗)||z − z∗| + max
R(0)

|f ′′| |z − z∗|2

≤|f ′(z∗)|R
′

16
+ max

R(0)
|f ′′|R

′2

256
≤ |f ′(z∗)|R

′

8
,

(B.0.3)

where the last estimate is a consequence of the definition of R′.
The fact that f−1 inherits the same regularity of f is a standard consequence of the

classic local inversion theorem.
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Auxiliary Lemmas for the
genericity of steepness

C.1 Two elementary properties of Lie Groups
We refer to [81] (Cor. 21.6, Th. 21.10) for proofs.

Proposition C.1.1. Every continuous action by a compact Lie group on a manifold is
proper.

Theorem C.1.1 (Quotient manifold). SupposeG is a Lie group acting smoothly, freely,
and properly on a smooth manifold . Then the orbit space ∕G is a topological
manifold of dimension equal to dim−dimG and has a unique smooth structure with
the property that the quotient map � ∶⟶∕G is a smooth submersion.

C.2 Three auxiliary Lemmas
The following Lemma is an elementary criterion to establish when the projection of a
closed set is still closed.

Lemma C.2.1. Let E be a metric space,K a compact subset of some metric space and
Δ a closed subset of E × K . Then, the projection of Δ on E, indicated by ΠE(Δ), is
closed.

Proof. Let {pn}n∈ℕ be a sequence in ΠE(Δ) converging to a point p̄ and {kn}n∈ℕ a
sequence in K satisying (pn, kn) ∈ Δ. Since K is a compact subset of some metric
space, one can extract a subsequence {knl}l∈ℕ converging to a point k̄ ∈ K . Hence, the
sequence {(pnl , knl )}l∈ℕ in Δ converges to (p̄, k̄) ∈ Δ, since Δ is closed. This implies
that p̄ belongs to ΠE(Δ), which is therefore closed.

The following statement is a known Theorem due to Bézout (see [79], Th. 3.4a).
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Lemma C.2.2. For any couple of positive integers k1, k2 consider two non-zero irre-
ducible, non-proportional polynomials Q1 ∈ (k1) and Q2 ∈ (k2). Then the system
Q1(z,w) = Q2(z,w) = 0 has at most k1 × k2 solutions.

For the sake of completeness, we also state the following simple result on the codi-
mension of the zero set of a non-null polynomial.

Lemma C.2.3. Let n be a positive integer. Consider a non-null real polynomial P ∈
ℝ[x] of the variables x = (x1,… , xn) ∈ ℝn. The zero set ZP ∶= {x ∈ ℝn

|P (x) = 0}
is contained in a submanifold of codimension one in ℝn.

Proof. If P is a non-zero constant, then there is nothing to prove.
If P is non-constant, the proof is by induction on the degree of P .
If degP = 1, then ZP is a hyperplane, which is obviously a submanifold of codi-

mension one.
Suppose, now, that the statement is true for polynomials of degree k − 1 ≥ 1.

Consider a polynomial of degree k, together with its associated open set of non-critical
points SP ∶= {x ∈ ℝn

|∇P (x) ≠ 0}. On the one hand, locally around any point of
ZP ∩ SP one can apply the implicit function theorem, so that ZP ∩ SP is indeed a
submanifold of codimension one inℝn. On the other hand, ℝn∖SP is the common zero
set of the n polynomials )P∕)x1,… , )P∕)xn; moreover, since degP = k ≥ 2, at least
one among )P∕)x1,… , )P∕)xn has degree k − 1 ≥ 1. Hence, by hypothesis, ℝn∖SP
is contained in a submanifold of codimension one in ℝn.

This proves that the set ZP ∩ (ℝn∖SP ) ⊂ (ℝn∖SP ) is contained in a submanifold
of codimension one in ℝn. Obviously, the thesis follows by the fact that

ZP = (ZP ∩ (ℝn∖SP )) ∪ (ZP ∩ SP ) .



Appendix D

A Lemma on Riemann branches

The goal of this appendix consists in proving Lemma 13.0.1. We start by stating two
standard results of algebraic geometry.

Lemma D.0.1. For any pair of positive integers k1, k2 consider two non-zero irre-
ducible, non-proportional polynomials Q1 ∈ (k1) and Q2 ∈ (k2). Then the system
Q1(z,w) = Q2(z,w) = 0 has at most k1 × k2 solutions.

Lemma D.0.2. For k ≥ 2, let Q(z,w) ∈ (r, n) be an irreducible polynomial. Then

card {z ∈ ℂ | ∃w ∈ ℂ ∶ Q(z,w) = )wQ(z,w) = 0} ≤ k .

The first Lemma is a simple corollary of Bézout’s Theorem (see e.g. [79], Th. 3.4a),
while the second Lemma is also known (see e.g. Proposition 1 and its proof in [92]).

With these tools, we can now give the proof of Lemma 13.0.1.

Proof. The lemma is trivial if S depends only onw since we haveS = ∅ in this case
because RS is composed of a finite number of Riemann branches which are horizontal
lines over the z-axis.

If S ∈ (r, n) depends only on z, then RS = {(z,w) ∈ ℂ2 ∶ z = z0, with S(z0) =
0} and the thesis holds true since there are only vertical lines at the distinct roots of S
(whose number is bounded by k) and no Riemann branches.

Let’s now examine the case in which S depends on both variables where, up to mul-
tiplication by constant factors, any polynomial S ∈ (r, n) can be factorized uniquely
as

S(z,w) = q(z) Πmi=1(Si(z,w))
ji (D.0.1)

for some 1 ≤ ji ≤ k, 1 ≤ m ≤ k and the Si are non-constant, irreducible, mutually
non-proportional polynomials.

We denote

(z,w) = Πmi=1(Si(z,w))
ji and ̃(z,w) = Πmi=1Si(z,w) (D.0.2)
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and 
z
(w) ∶= (z,w), ̃z(w) ∶= ̃(z,w) hence ̃z ∈ ℂ[z][w] - with deg(̃z) = l

l ∈ {1,… , k} - and al(z) is the corresponding leading coefficient.
We notice that decomposition D.0.1 and definition D.0.2 ensure that RS is the union

of the vertical lines z = z∗ with q(z∗) = 0 and of the Riemann surface R , moreover
the Riemann surfaces R and R̃ are identical.

Definition D.0.1 (Excluded points). Taking decomposition D.0.1 into account, we de-
fine S ⊂ ℂ as the set of those points z0 ∈ ℂ that satisfy at least one of the following
conditions

1.
q(z0) = 0 (Vertical lines)

2. There exists w0 ∈ ℂ such that for some i ∈ {1, ..., m}
{

Si(z0, w0) = 0
)wSi(z0, w0) = 0

(Ramification points)

3. There exists w0 ∈ ℂ such that for some i, j ∈ {1, ..., m}, i ≠ j
{

Si(z0, w0) = 0
Sj(z0, w0) = 0

(Intersection of graphs)

4.
al(z0) = 0 (Poles)

Henceforth, we prove that over ℂ∖S the conclusions of Lemma 13.0.1 are valid
and that we can choose the set S as the excluded points for S.

To see this, we fix a point z∗ ∈ ℂ∖S .
By negation of condition (1), we have q(z) ≠ 0 in the vicinity of z∗, hence the

vertical lines are excluded from the algebraic curve RS in the vicinity of z∗.
Then, we also notice that for any valuew∗ such that 

z∗
(w∗) = 0, by decomposition

(D.0.1) and negation of condition (3), one must have Si(z∗, w∗) = 0, for exactly one
i ∈ {1, ..., m}. Hence, by negation of condition (2) at (z∗, w∗), we can apply the implicit
function theorem and there exists an open neighbourhood V around (z∗, w∗) such that
RS ∩V = R ∩V = R̃ ∩V = RSi ∩V is the graph of an unique holomorphic function.

Finally, the negation of condition (4) in a neighbourhood of z∗ ensures that the poly-
nomial ̃z admits l ≤ k complex roots counted with multiplicity for z in the vicinity
of z∗. With z∗ ∈ ℂ∖S , a direct computation ensures that the discriminant of ̃z∗

is non-zero since ̃z∗ and its derivative cannot have common roots, hence ̃z admits
simple roots for z in the vicinity of z∗.

This implies the existence of a neighborhood V of z∗ ∈ ℂ∖S such that the alge-
braic curve RS ∩ V × ℂ = R̃ ∩ V × ℂ is the union of exactly l ≤ k disjoint graphs of
holomorphic branches.
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Hence, over a simply connected domain D ⊂ ℂ∖S , branch cuts can be avoided and
the Riemann surface RS is the finite union of at most k disjoint graphs of holomorphic
functions.

Conversely, consider a simply connected complex domain D such that RS ∩ D ×
ℂ is the finite union of l ∈ {1,… , k} disjoint graphs of functions ℎ1(z),… , ℎl(z)
holomorphic over D.

For a fixed point z∗ ∈ D, the polynomial Sz∗ admits l roots, and decomposition
D.0.1 ensures that we have q(z∗) ≠ 0. Moreover, the discriminant of S̃z might be
zero only at a finite number of points (since the discriminant is itself a polynomial) but
we always have l roots for S̃z with z ∈ D as a consequence of our assumption that
the Riemann leaves are distinct. Hence, the roots are simple and the degree of S̃z is
constant equal to l for all z ∈ D. Consequently, the discriminant of ̃z is non-zero and
al(z) ≠ 0 for all z ∈ D.

Moreover, for any i, j ∈ {1, ..., m}, i ≠ j and for any w ∈ ℂ, we have either
Si(z∗, w) ≠ 0 or Sj(z∗, w) ≠ 0 otherwise two distincts Riemann leaves associated
respectively to Si and Sj would intersect.

Finally, we have the decomposition ̃(z,w) = al(z)(w− ℎ1(z))… (w− ℎl(z)) for
(z,w) ∈ D × ℂ, and for z ∈ D we can check that Sz and its derivative cannot have
common roots under our assumptions. Hence, for any w ∈ ℂ and any i ∈ {1,… , m},
we have either Si(z∗, w) ≠ 0 or )wSi(z∗, w) ≠ 0.

Then, we prove that the cardinality ofS is bounded by a quantity depending only
on k.

Conditions (1) and (4) are polynomial equations of degree less than or equal to k (q
factorizes all the terms in z and al(z) is the coefficient of the term of highest degree in
w), hence they have at most k solutions. By Lemma D.0.1, condition (2) is satisfied at
most at k points. Since the index i in (2) can assume at most k values, this condition
yields k2 singularities. In the sameway, LemmaD.0.2 says that condition (3) is satisfied
at most at k2 points. Since the indices i, j in condition (3) can each take at most k values
and i ≠ j, we get k2

(k
2

)

solutions. The sum of the previous estimates yields a bound
depending only on k.
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Appendix E

Tools of complex analysis

() denotes the set of holomorphic functions over an open domain  ⊂ ℂ.

Definition E.0.1 (Normal families). A family  ⊂ () is said to be normal iff it is
precompact, that is, if from any sequence in  , one can extract a subsequence converg-
ing uniformly on the compact subsets of  to a function in ().

Definition E.0.2 (Locally bounded families). A family  ⊂ () is said to be locally
bounded if for any compact set  ⊂ , there exists a constant C ≥ 0 such that
max |f | ≤ C for all f ∈  .

A criterion for establishing if a given family is normal is Montel’s theorem, which
is a version of the Ascoli-Arzelà theorem for sets of holomorphic functions.

Theorem E.0.1 (Montel, see for example [112], Prop. 21.3).
A family  ⊂ () is locally bounded if and only if it is normal.

From this theorem comes an important

Corollary E.0.1. If {fn}n∈ℕ is a locally bounded sequence of holomorphic functions
over, then one can extract a subsequence that converges uniformly to a holomorphic
function f on all the compact subsets of .

Hereafter, we state some further classic results of complex analysis.

Theorem E.0.2 (Laurent series, [112] p. 130).
Take two numbers 0 < r1 < r2, z0 ∈ ℂ and f ∈ (Ar1,r2 (z0)) where Ar1,r2 is the

annulus of radii r1 and r2 around z0, then

f (z) =
+∞
∑

k=−∞
ak(z − z0)k ,

where the convergence is uniform over the compact subsets of Ar1,r2 (z0).
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Corollary E.0.2 (Laurent classification of singularities, [112]).
Let z0 ∈ ℂ be a singularity of a holomorphic function f and consider the Laurent

series f (z) =
∑+∞
k=−∞ ak(z − z0)

k, then

− z = z0 is a removable singularity iff ak = 0 for any k ≤ −1.

− given m ∈ ℕ, z = z0 is a pole of order m iff a−m ≠ 0 and ak = 0 for any
k ≤ −m − 1.

− z = z0 is an essential singularity iff ak ≠ 0 for infinitely many negative integers
k.

Theorem E.0.3 (Casorati-Weierstrass Theorem, [112] p.127).
Let z0 ∈ ℂ be an isolated essential singularity of a function f ∈ (Ω∖{z0}), then

for every neighborhood V of z0 in Ω, the image of V ∖{z0} under f is dense in ℂ.

Theorem E.0.4 (Riemann’s Theorem on removable singularities, [112] p.126).
Take r > 0, z0 ∈ ℂ and f ∈ (̇r(z0)) with f bounded.
Then

− limz⟶z0 f (z) exists and is finite;

− the function f̃ ∶ r(z0)⟶ ℂ ,

f̃ ∶=

{

f (z) if z ∈ ̇r(z0)
limz⟶z0 f (z) if z = z0

is holomorphic.

Theorem E.0.5 (Hurwitz, [112] p. 216). Suppose that  is a connected open set and
that {fn}n∈ℕ is a sequence of nowhere vanishing holomorphic functions over . If the
sequence {fn}n∈ℕ converges uniformly on compact subsets of to a (necessarily holo-
morphic) limit function f , then either f is nowhere-vanishing over or f is identically
null.



Appendix F

Auxiliary results on algebraic
functions

F.0.1 On the dependence of the roots of a polynomial on its coeffi-
cients

It is a standard fact in the study of algebra that the roots of a monic complex polynomial
of one variable depend continuously on its coefficients. The same result holds true for
non-monic polynomials once one takes solutions at infinity into account by means of
the compact identification of ℂ∪ {∞} with the Riemann sphere. Without entering into
too many details, we state the following result, whose proof can be found in [53].

Theorem F.0.1. Let P (w) = anwn + an−1wn−1 + ... + a0 be a non-zero complex
polynomial of degree k ≤ n. Let �1, ..., �r be its roots in ℂ with m1, ..., mr their re-
spective multiplicities. Fix " > 0 small enough and denote by "(�1), ...,"(�r) the
disjoint disks of radius " centered at �1, ..., �r, such that "(�j) ⊂ 1∕"(0) for all
j ∈ {1, ..., r}. Then, there exists �(") > 0 such that every complex polynomial Q(w) =
bnwn + bn−1wn−1 + ... + b0 satisfying |bj − aj| < �(") for all j ∈ {0, ..., n} has mi
roots (counted with multiplicity) in each "(�i) for i ∈ {1, ..., r} and deg(Q) − k roots
belonging to the complement of 1∕"(0).

This theorem formalizes the intuitive idea that, if one takes a polynomial

Q(w) = anwn + an−1, wn−1 + ... + a0, with an ≠ 0

andmakes ak+1, ak+2, ..., an tend to zerowhile ak ≠ 0, then n−k solutions "continuously
go to infinity" and k solutions, counted with their multiplicities, "stay finite."

F.0.2 Application to sequences of algebraic functions
LemmaF.0.1. Take an open bounded set U ⊂ ℂ, let {gn}n∈ℕ be a sequence of algebraic
functions in (U) associated to polynomials of degree k ∈ ℕ and converging in U to a
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function g ∈ (U). Then g is an algebraic function. Moreover, there exists a sequence
of polynomials {Qn ∈ (r, n)}n∈ℕ solving the graphs of the functions in {gn}n∈ℕ which
converges to a polynomial Q ∈ ℂ[z,w] that solves graph(g) everywhere in U.

Proof. For any n ∈ ℕ, the graph of the function gn satisfies Sn(z, gn(z)) = 0 for some
polynomial Sn ∈ (k)∖{0} and the equation Sn(z, gn(z)) = 0 is invariant when Sn
is multiplied by any non-zero constant. Without loss of generality, one can choose an
arbitrary norm || ⋅ || in (r, n) ≃ ℂm, with m = (k + 1)(k + 2)∕2, and consider the
sequence of polynomials {Qn}n∈ℕ associated to {gn}n∈ℕ by defining, for any n ∈ ℕ:

Qn(z,w) ∶=
Sn(z,w)
||Sn||

with Qn(z, gn(z)) = 0 and Qn ∈ Sm (F.0.1)

where Sm denotes the unitary sphere in (r, n) ≃ ℂm. By compactness of Sm, there
exists a subsequence {Qnj}j∈ℕ converging to a polynomial Q ∈ Sm. Moreover, if we
denote Qznj (w) ∶= Qnj (z,w) and Q

z(w) ∶= Q(z,w) - hence Qznj and Q
z belong to

(k) for any fixed z ∈ ℂ - we have the convergence

lim
j⟶+∞

||Qz
∗

nj
−Qz

∗
|| = 0 (F.0.2)

for any fixed z∗ ∈ U and with respect to any norm in (k).
The convergence in (F.0.2) and Theorem F.0.1 imply that the sequence {gnj (z

∗)}j∈ℕ
approaches a root of Qz∗ for any z∗ ∈ U. Since gnj converges over U to g, then g(z) is
a solution of Qz(w) = 0 for any z ∈ U.

Finally, since g ∈ (U), then g is a Riemann branch of Q ∈ (k) over U.

F.0.3 Non-existence of essential singularities for algebraic functions
Proposition F.0.1. An algebraic function f cannot have any essential singularity.

Proof. By Lemma 13.0.1 and decomposition D.0.1, the singularities of f are included
in the set  of excluded points (see D.0.1). Hence, suppose by contradiction that
z0 ∈ is an essential singularity. Since the cardinality of is finite, z0 is isolated.
Then, the Casorati-Weierstrass Theorem (see Th. E.0.3) holds and, for any fixed w0 ∈
ℂ, one can build a sequence {zk}k∈ℕ converging to z0 and such that

lim
k⟶+∞

f (zk) = w0 .

But w0 is also a root of the one-variable polynomial 
z0 (w) ∶= (z0, w) since f (z) is

a Riemann branch of  in a punctured neighborhood centered at z0 and


z0 (w0) ∶= (z0, w0) = lim

k⟶+∞
(zk, f (zk)) = 0.

This construction holds for any w0 ∈ ℂ and the polynomial 
z0 is null but, neces-

sarily, (z−z0) is a factor of  and this is not possible with decomposition D.0.1. Hence,
f (z) cannot have an essential singularity at z0.



Appendix G

Smoothing estimates

Lemma G.0.1. The derivatives of K satisfy

∀p ∈ ℕ, ∃Cp ∶
|

|

|

)�K(x)||
|

≤ Cp
e| Im x|

(1 + |x|2)p
, ∀ |�| ≤ p.

For the proof see [45, Lemma 9].

Lemma G.0.2. Let f ∈ Clb (A
n), with l ≥ 1, and let

∑

k∈ℤn f̂k(I)eik⋅� be its Fourier
series. Then, for any fixed k ∈ ℤn∖{0}, there exists a uniform constant CF(n,l) satis-
fying

‖

‖

‖

f̂k
‖

‖

‖C0(ℝn)
≤ CF(n,l)

‖f‖Cq(An)
|k|q

, (G.0.1)

where q ∶= ⌊l⌋.

Proof. Fix a multi-index j = (j1, ..., jn) ∈ ℕn such that |j|1 ≤ q ∶= ⌊l⌋, one obviously
has

)j�f (I, �) =
∑

k∈ℤn
(i)|j|kj11 ...k

jn
n f̂k(I)eik⋅� . (G.0.2)

From
)j�f (I, �) ∶=

∑

k∈ℤn
()̂jf )k(I)eik⋅� , (G.0.3)

and by the unicity of Fourier’s coefficients one also has

f̂k(I) ∶=
()̂jf )k(I)

kj11 ...k
jn
n

. (G.0.4)

As in expression (G.0.4) the multi-index j ∈ ℤn is arbitrary, for each value of k ∈
ℤn∖{0} we can choose j so that

f̂k(I) =
()̂jf )k(I)

(maxi=1,...,n{ki})|j|
. (G.0.5)
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Moreover, for any k ∈ ℤn∖{0} one has the trivial inequality

max
i=1,...,n

{|ki|} ≥
|k|
n
.

This, together with (G.0.5) and the choice |j| = q yields

|f̂k(I)| = nl
|()̂jf )k(I)|

|k|q
= nl

1∕(2�)n| ∫ 2�0 )jf (I, �)eik⋅�d�|
|k|q

≤ nl
|)jf (I, �)|

|k|q
,

(G.0.6)
which, once the supremum over the actions is taken, implies the result.



Appendix H

Pöschel’s Normal form

Given a function F in r,s, the notations Λ and K stand for the projections

ΛF (I, �) ∶=
∑

k∈ℤn∶k∈Λ
Fk(I)eik⋅� , KF (I, �) ∶=

∑

k∈ℤn∶|k|1≤K
Fk(I)eik⋅�

Accordingly with our notations, we state here the result of Pöschel [104].

Lemma H.0.1 (Poschel’s normal form). Let %, � > 0 and H(I, �) = h(I) + f (I, �) be
analytic on

Λ,%,� ∶= {(I, �) ∈ ℂn ∶ |
|

I −DΛ||2 < % , � ∈ T n� }
where DΛ is (�,K)-nonresonant modulo Λ with respect to the integrable Hamiltonian
h. Also, letM denote the hermitian norm of the hessian of h over Λ,%,� .

If, for some %′ > 0, one is insured

||f ||%,� ≤ � ≤ 1
256�

�%′

K
, %′ ≤

(

%, �
2�MK

)

(H.0.1)

for some � > 1 and
K� ≥ 6, (H.0.2)

then there exists a real-analytic, symplectic transformation Ψ ∶ Λ,%′∕2,�∕6⟶ Λ,%,�
taking H into resonant normal form, that is

H◦Ψ = h + g + f∗ , {h, g} = 0 . (H.0.3)

Moreover, denoting by g0 ∶= PΛPK f the resonant part of f , we have the estimates

||g − g0||%′∕2,�∕6 ≤ 64
K
�%′

�2 , ||f∗||%′∕2,�∕6 ≤ e−K�∕6�. (H.0.4)

Furthermore, Ψ is close to the identity, in the sense that, for any (I, �) ∈ Λ,%′∕2,�∕6,
one has

|

|

ΠIΨ − I||2
�′

≤ 23 K
��′

� ≤ 1
32�

,
|

|

Π�Ψ − �||∞
�

≤ 25K
3��′

� ≤ 1
24�

(H.0.5)

where ΠI ,Π� denote the projection on the action and angle variables, respectively.
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Appendix I

Morse’s functions, Sard’s
Theorem, and a quantitative
local inversion theorem

Morse’s functions and Sard’s Theorem
We refer to [55]- [68] for more details.

Let V be an open subset of the euclidean space ℝn, and let f be a function of class
C2 over V .

Definition I.0.1. We say that f has a non-degenerate critical point at a ∈ V if the
Hessian form Hf (a) is nondegenerate. f is said to be a Morse function on V if all its
critical points are non-degenerate.

Morse’s functions are generic in the following sense

Proposition I.0.1. The parameters � ∈ ℝn such that f (x) − � ⋅ x is a Morse function
are contained in a dense residual subset of measure zero in ℝn.

For the sake of completeness, we also state

Theorem I.0.1 (Sard). Let X, Y be differentiable manifolds. The set of critical values
of a smooth map f ∶ X⟶ Y has measure zero.

Quantitative local inversion Theorem
The following statement can be found in ref. [48] (Theorem B.1).
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Lemma I.0.1 (Quantitative local inversion theorem).
Let  be a convex subset of ℂn and f ∈ C1(;ℂn). Suppose that at a point x0 ∈ 
the Jacobian of f is invertible and assume

% ∶= sup
x∈

||I − (Df (x0))−1Df (x)|| < 1 .

Then, the Jacobian Df is invertible in  and

||(Df (x))−1|| ≤
||(Df (x0))−1||

1 − %
.

Moreover, f is injective on  and the Lipschitz constant L' of its inverse function
' ∶ f ()⟶  satisfies

L' ≤
||(Df (x0))−1||

1 − %
on f ().

In addition, if  ∶= Br(x0), � ∶=
r(1 − %)

||Df−1(x0)||
and y0 = f (x0), then

B� (y0) ⊂ f () .
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