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Résumé : Cette these est consacrée al'étude de
la stabilité des solutions des systemes Hamil-
toniens presque intégrables (au sens d’Arnold-
Liouville). Le premier axe porte sur la généri-
cité de la propriété d'escarpement (steepness),
une condition de transversalité sur le gradient,
due a Nekhoroshev, qui assure la stabilité sur
des temps trés longs des solutions d'un sys-
téme presque-intégrable suffisamment régu-
lier. L'objectif dans cette partie est double : il
s'agit d'une part de clarifier les méthodes de
géomeétrie algébrique réelle et d'analyse com-
plexe qui permettent de prouver la généricité
de la propriété d'escarpement et, d'autre part,
d'utiliser ces méthodes pour établir des cri-
téres explicites qui entrainent l'escarpement
d’'une fonction donnée, ce qui constitue un as-
pectimportant dans les applications de la théo-
rie. Dans le deuxiéme axe de cette thése, on
développe de maniére non-triviale un argu-

ment classique d’approximation analytique, qui
permet de généraliser a la classe de régula-
rité Holder les estimations de stabilité de Ne-
khoroshev initialement valides pour des sys-
témes Hamitoniens presque intégrables ana-
lytiques. Une fois qu'une approximation ana-
lytique adaptée est construite, les estimations
sont déduites de maniére relativement rapide :
de plus, cette technique permet d'étendre a
une régularité plus faible les estimations de sta-
bilité les plus fines prouvées en classe analy-
tique. Enfin, on s'intéresse au probleme de la
stabilité en temps infini des systemes Hamilto-
niens presque-intégrables analytiques : il s'agit
de généraliser les résultats fins sur la mesure
des tores invariants obtenus avec la théorie
KAM - prouvés pour une classe générique de
systemes mécaniques - au cas de systemes as-
sociés a des Hamiltoniens plus généraux.
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Abstract : This thesis is devoted to the study of
the stability of the solutions of Hamiltonian dy-
namical systems which are close to integrable
(in the sense of Arnold-Liouville). We firstly
consider the genericity of functions satisfying
the steepness property, a transversality condi-
tion on the gradient - introduced by Nekhoro-
shev - which ensures the stability over long ti-
mespans of the solutions of a smooth enough
nearly-integrable system. The goal of this part
is two-fold : on the one hand, we clarify the ar-
guments of real-algebraic geometry and com-
plex analysis that enter into the proof of the ge-
nericity of steepness; on the other hand, these
techniques yield new explicit criteria that al-
low to check whether a given function is steep,
which constitutes an important aspect in view
of applications. The second axis of the thesis is
centered around a non-trivial improvement of

a classical result on analytic approximation : the
aim in this case consists in extending to the Hol-
der case the classic Nekhoroshev's estimates
of stability holding for generic, analytic, nearly-
integrable systems. Once a suitable analytic ap-
proximation is constructed, estimates are ob-
tained in a relatively effortless way. Moreover
we extend to lower regularity the most accu-
rate Nekhoroshev's estimates available in the
analytic class. The final part of this thesis inves-
tigates some aspects of the stability in infinite-
time of real-analytic nearly-integrable Hamilto-
nian systems : namely, by making use of quan-
titative results of Morse-Sard’s Theory, we dis-
cuss the extension to more general Hamilto-
nians of the existing refined results about the
Lebesgue measure of the complementary set
of invariant KAM tori in generic mechanical sys-
tems.
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Sunto : Scopo di questa tesi e lo studio della
stabilita delle soluzioni dei sistemi Hamiltoniani
quasi integrabili (secondo Arnold-Liouville). La
prima parte verte sulla genericita della pro-
prieta di ripidita (steepness) : si tratta di una
condizione di trasversalita sul gradiente, intro-
dotta da Nekhoroshev, che garantisce la sta-
bilita su tempi molto lunghi delle soluzioni di
un sistema quasi integrabile sufficientemente
regolare. L'obiettivo di questa prima sezione e
duplice : da un lato vengono chiariti gli argo-
menti di geometria algebrica reale e di analisi
complessa che permettono di provare la ge-
nericita della ripidita e, dall'altro, si utilizzano
questi metodi per stabilire dei criteri espliciti
che permettano di verificare la ripidita di una
funzione data, un punto importante in vista di
possibili applicazioni. La seconda parte della
tesi riguarda l'estensione non triviale di alcuni

risultati classici di approssimazione analitica :
I'obiettivo € quello di generalizzare alla classe di
regolarita Holder le stime di stabilita di Nekho-
roshev valide per sistemi Hamiltoniani quasi in-
tegrabili di classe analitica. Una volta ottenuti
deirisultati di approssimazione analitica adatti,
le stime di Nekhoroshev vengono dedotte in
maniera relativamente rapida; inoltre, tale tec-
nica permette di estendere i risultati piu fini
sulla stabilita dei sistemi quasi integrabili ana-
litici a sistemi di regolarita piu debole. Infine,
nellultima parte viene esplorato il problema
della stabilita in tempi infiniti dei sistemi Hamil-
toniani quasi integrabili analitici : si tratta di ge-
neralizzare i risultati sulla misura dell'insieme
complementare dei tori KAM invarianti - dimos-
trati nel caso di sistemi meccanici generici - a
classi pitu ampie di sistemi quasi integrabili.




,® | FACULTE

universite | DEs SCIENCES
PARIS-SACLAY | D’ORSAY

189
|

MATHEMATIQUES
ORSAY

Fondation mathématique

FMJH

Ja{;ques Hadamard

==ROMA 7)
AZTRE T3

UNIVERSITA DEGLI STUDI DIPARTIMENTO DI MATEMATICA E FISICA



Stability in Hamiltonian Systems: steepness
and regularity in Nekhoroshev theory

Stabilité des Systemes Hamiltoniens :
escarpement et régularité dans la théorie de
Nekhoroshev

S. Barbieri

Laboratoire de mathématiques d’Orsay - Université Paris-Saclay

Rue Michel Magat, Bat. 307 - 91400 Orsay, France

Dipartimento di Matematica e Fisica - Universita degli Studi Roma Tre

Largo San Leonardo Murialdo, 1 - 00146 Roma, Italy

santiago.barbieri @universite-paris-saclay.fr

May 29, 2023



Ad Ivan Casaglia, che fin dai tempi del liceo mi ha fatto amare la matematica



Remerciements - Acknowledgements - Ringraziamenti

This PhD comes with so many beautiful memories, that it is difficult to list them. I wish
to thank Laurent and Luca for always believing and supporting me in the research, and
for supervising this work with kindness, happiness and rigor.

Dear Laurent, thank you for putting me on the very original and transverse subject
of the genericity of steepness and for our mathematical discussions, wherever they took
place: on the benches in the forest in Orsay, at home in Paris, on the seashore of Fécamp,
or on the phone; you taught me how to write maths properly, and how to take my time to
reason with no hurry. Also, I have always been impressed by your intuition: whenever
you thought something would work or not, or whenever you had an idea about the
difficulty of an argument, you were always right. Moreover, you always find the way of
asking the right questions in every mathematical situation. I am also grateful to you for
revising very carefully the manuscript and for giving me insight on how to pursue the
research contained in this thesis.

Besides, your hospitality and the good salmon you prepared for dinner, the pizzas
together on Canal Saint-Martin, our discussions about politics, your support when I was
stuck, made me feel at home any time we have been together in the last years.

Dear Luca, I learnt much from our mathematical discussions about KAM theory
and the Arnold-Kozlov-Neishtadt conjecture; I have in mind so many good moments
in your office, at the "Vigili" bar, in your car while you took me to the metro B, online
when Checco helped us to use zoom properly. Thank you for teaching me how to have a
general overview of mathematical problems and how to understand which elements are
really crucial when conceiving the demonstration of a theorem. The humor and irony
that you put in mathematics makes working with you a real pleasure. Besides, with your
broad mathematical culture, in these years you have been a sure reference any time I
had a question or a doubt; your deep insight in analysis and dynamics helped to enrich
my knowledge on these subjects. Finally, the conversations about art, literature, history
that we had once in a while, and the support you gave when I was feeling anxious about
the thesis are very good memories that I will always keep with me.

I feel grateful to the referees, D. Bambusi and P. Bolle, for accepting to read and
review this long manuscript. Their careful remarks and corrections made the present
work improve.

My gratitude also goes to M.-C. Arnaud, S. Crovisier, and B. Fayad for the honor
they give me to be in the defense committee.

I wish to thank F. Paulin and S. Nonnenmacher for giving me the possibility of
starting this second PhD, thus saving my scientific career.

Moreover, I feel grateful towards the other people with whom I collaborated in these
years.

Jean-Pierre, I have learned so much from you and I am always impressed by the
vastity of your knowledge: from dynamical systems to algebra, from geometry to anal-
ysis, when I talk to you I have the impression of opening an encyclopaedia, and to read



4

it with a lot of humor!

Thank you Jessica for our discussions in which I learned a lot both about analysis
and on how to write down an article properly. Thank you also for the good moments
we had together as friends in Rome and Barcelona.

I also wish to acknowledge L. Chierchia for the mathematical discussions that gave
me much insight, for his interest in my work, and for his support.

A big thank you to my friends and colleagues Anna, Martin, Francesco, Donato,
Lorenzo and Alex for the many interesting conversations about mathematics, and for
their solid friendship.

Warm acknowledgements go to the researchers that I had the chance to meet dur-
ing these years, both in Paris and Roma, and that made me feel part of a stimulating
community: P. Robutel, A. Chenciner, A. Albouy, A. Bounemoura, J. Féjoz, G. Boué,
A. Sorrentino, M. Procesi, G. Gentile, L. Corsi, E. Haus, R. Feola, P.-V. Koseleff, T.
Combot, O. Bernardi, A. Venturelli, G. Benettin, M. Guzzo, M. Berti, B. Langella, H.
S. Dumas, P. Dingoyan, A. Daniilidis, S. Pasquali, B. Kumar.

I also wish to thank M. Guardia, T. Seara, P. Martin, E. Fontich, I. Baldoma and M.
Giralt for introducing me to the stimulating research environment of Barcelona and for
the interest they showed about my research.

Similarly, my gratitude goes to E. Soares Cavalcanti, H. Cabral, and T. Dias Oliveira
Silva for welcoming me in the mathematical community of Recife.

Un ringraziamento speciale va ai miei genitori, Paola e Michele, che mi hanno sem-
pre sostenuto con affetto negli studi senza mai dubitare di cid che facevo; un caloroso
grazie va egualmente agli zii di Monza, Anna e Beppe. Desidero inoltre ringraziare i
miei cugini Massimo e Marilena, e tutti i cugini e zii tra San Ginesio e Milano, per i bei
momenti passati insieme in questi anni.

La mia gratitudine va anche a tutte quelle persone che, tra Firenze, Siena, Bologna,
Parigi, Roma e il resto del mondo in questi anni mi hanno sempre incoraggiato, standomi
vicine, dandomi buoni consigli e facendomi passare momenti indimenticabili.

Un pensiero speciale va a Giacomo, Elisa, Suppa, Arturo, Giulia, Roberto, Cate,
Lisa, Ele, Paris, Fra, Veronica, Fede, Pippo, Cesare, Gaia, Alessandro e Sara, Mohan,
Giorgio, Claudio, Giancarlo, Fred, Felipe, Luigi e Oscar, Alfredo, Rocco, Mingy, Jone
e David, Ricard, Delfina, Peter.

Nkwagala nnyo, Steven.

Un grand merci aussi aux amis parisiens, Gérard et Claude, Nicole, Pédro, Yijie,
Michael, Daniel, Emeline, Sylvie, Florencia, Silvia, Artur, Céline et Simon, Gauthier,
George et Alisa pour les bons moments passés ensemble pendant ces années.

Grazie ai compagni di Nuova Direzione, per i nostri martedi sera passati a riflettere
sul socialismo nel XXI secolo.

Enfin, merci a mes étudiants de Dauphine et de I'TUT d’Orsay, grace auxquels j’ai pu
me confronter a la tiche (difficile) de transmettre la connaissance des mathématiques.

Paris, May 25th 2023



Abstract

This thesis is devoted to the study of the stability of the solutions of Hamiltonian dynam-
ical systems which are close to integrable (in the sense of Arnold-Liouville). We firstly
consider the genericity of functions satisfying the steepness property, a transversality
condition on the gradient - introduced by Nekhoroshev - which ensures the stability over
long timespans of the solutions of a smooth enough nearly-integrable system. The goal
of this part is two-fold: on the one hand, we clarify the arguments of real-algebraic ge-
ometry and complex analysis that enter into the proof of the genericity of steepness; on
the other hand, these techniques yield new explicit criteria that allow to check whether
a given function is steep, which constitutes an important aspect in view of applications.
The second axis of the thesis is centered around a non-trivial improvement of a classi-
cal result on analytic approximation: the aim in this case consists in extending to the
Holder case the classic Nekhoroshev’s estimates of stability holding for generic, ana-
lytic, nearly-integrable systems. Once a suitable analytic approximation is constructed,
estimates are obtained in a relatively effortless way. Moreover we extend to lower reg-
ularity the most accurate Nekhoroshev’s estimates available in the analytic class. The
final part of this thesis investigates some aspects of the stability in infinite-time of real-
analytic nearly-integrable Hamiltonian systems: namely, by making use of quantitative
results of Morse-Sard’s Theory, we discuss the extension to more general Hamiltonians
of the existing refined results about the Lebesgue measure of the complementary set of
invariant KAM tori in generic mechanical systems.

Résumé

Cette theése est consacrée a 1’étude de la stabilité des solutions des systémes Hamil-
toniens presque intégrables (au sens d’Arnold-Liouville). Le premier axe porte sur la
généricité de la propriété d’escarpement (steepness), une condition de transversalité
sur le gradient, due a Nekhoroshev, qui assure la stabilité sur des temps tres longs des
solutions d’un systéme presque-intégrable suffisamment régulier. L’objectif dans cette
partie est double : il s’agit d’une part de clarifier les méthodes de géométrie algébrique
d’escarpement et, d’autre part, d’utiliser ces méthodes pour établir des criteres ex-
plicites qui entrainent 1’escarpement d’une fonction donnée, ce qui constitue un aspect
important dans les applications de la théorie. Dans le deuxieme axe de cette these, on
développe de maniere non-triviale un argument classique d’approximation analytique,
qui permet de généraliser a la classe de régularité Holder les estimations de stabilité de
Nekhoroshev initialement valides pour des systemes Hamitoniens presque intégrables
analytiques. Une fois qu'une approximation analytique adaptée est construite, les esti-
mations sont déduites de maniere relativement rapide: de plus, cette technique permet
d’étendre a une régularité plus faible les estimations de stabilité les plus fines prouvées



en classe analytique. Enfin, on s’intéresse au probleme de la stabilité en temps infini
des systemes Hamiltoniens presque-intégrables analytiques: il s’agit de généraliser les
résultats fins sur la mesure des tores invariants obtenus avec la théorie KAM - prouvés
pour une classe générique de systtmes mécaniques - au cas de systemes associés a des
Hamiltoniens plus généraux.

Sunto

Scopo di questa tesi ¢ lo studio della stabilita delle soluzioni dei sistemi Hamiltoni-
ani quasi integrabili (secondo Arnold-Liouville). La prima parte verte sulla genericita
della proprieta di ripidita (steepness): si tratta di una condizione di trasversalita sul
gradiente, introdotta da Nekhorosheyv, che garantisce la stabilita su tempi molto lunghi
delle soluzioni di un sistema quasi integrabile sufficientemente regolare. L’obiettivo di
questa prima sezione ¢ duplice: da un lato vengono chiariti gli argomenti di geome-
tria algebrica reale e di analisi complessa che permettono di provare la genericita della
ripidita e, dall’altro, si utilizzano questi metodi per stabilire dei criteri espliciti che per-
mettano di verificare la ripidita di una funzione data, un punto importante in vista di
possibili applicazioni. La seconda parte della tesi riguarda 1’estensione non triviale di
alcuni risultati classici di approssimazione analitica: 1’obiettivo ¢ quello di generaliz-
zare alla classe di regolarita Holder le stime di stabilita di Nekhoroshev valide per sis-
temi Hamiltoniani quasi integrabili di classe analitica. Una volta ottenuti dei risultati di
approssimazione analitica adatti, le stime di Nekhoroshev vengono dedotte in maniera
relativamente rapida; inoltre, tale tecnica permette di estendere i risultati pit fini sulla
stabilita dei sistemi quasi integrabili analitici a sistemi di regolarita piu debole. Infine,
nell’ultima parte viene esplorato il problema della stabilita in tempi infiniti dei sistemi
Hamiltoniani quasi integrabili analitici: si tratta di generalizzare i risultati sulla misura
dell’insieme complementare dei tori KAM invarianti - dimostrati nel caso di sistemi
meccanici generici - a classi pit ampie di sistemi quasi integrabili.
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Chapter 1

Introduction générale

1.1 Le probléme général

Le formalisme Hamiltonien est le cadre qui apparait naturellement dans la description
mathématique de systémes fondamentaux issus de la physique: il présente beaucoup
d’avantages que nous allons rappeler brievement.

Les résultats suivants sont valables pour un systtme Hamiltonien quelconque mais
nous allons exposer ces théoremes dans le cas particulier le plus simple des systémes
mécaniques ol la force dérive d’un potentiel et, plus généralement, dans le cas des
systemes lagrangiens globalement réguliers (voir [4]).

On étudie alors le mouvement d’un point sur une variété riemannienne M (variété
de configuration): le systeéme d’ordre un associé aux équations de la mécanique clas-
sique (i.e. : § = —0dU(q) pour I’espace euclidien usuel, ou g désigne des coordonnées
locales de M) peut étre transformé par dualité griace a la transformation de Legendre.
Il prend alors la forme canonique :

p=-0,H(p.a) 5  d=0,H(p.q) (11.1)

ou H est une fonction numérique différentiable sur le fibré cotangent 7% M et p sont
les coordonnées conjuguées a q.

La fonction H est appelée fonction Hamiltonienne, ou plus simplement Hamil-
tonien.

Dans le cas de I’espace euclidien, le Hamiltonien prend la forme habituelle de
I’énergie avec la somme de 1’énergie cinétique w et de I’énergie potentielle U (q).

D’un point de vue plus géométrique, T* M peut étre muni d’une structure symplec-
tique canonique grace a la forme de Liouville w = Y, dp; Adg; ou (qy, ..., q,) sont des
coordonnées locales sur M et (py, ..., p,) leurs coordonnées conjuguées (aussi appelées
impulsions). L’équation (T.T.T) est ainsi celle qui est associée au gradient symplectique
X7, de H défini par

ix,® =Xy, )=dH . (1.1.2)

11



12 CHAPTER 1. INTRODUCTION GENERALE

De plus, on dit qu'un difféomophisme (local) ®@ du fibré cotangent T* M est sym-
plectique ou canonique s’il préserve la forme de Liouville, i.e. : ®*w = w. Plus
généralement, un difféomorphisme entre deux variétés symplectiques (M, @) et (M, @)
qui transporte w sur @ (i.e. : ®*w = @) est un difféomorphisme symplectique.

Si I’on considére un Hamiltonien H défini sur 7*M alors le flot <I>’H associé au
systeme canonique gouverné par H est une transformation symplectique sur son do-
maine de définition (voir [[89]). Un tel difféomorphisme conserve la forme canonique
(TIT) des équations de Hamilton, c’est a dire que le systéme dans les nouvelles vari-
ables (p, q) = ®(P, Q) est associé au gradient symplectique du Hamiltonien K(P, Q) =
Ho®(P, Q). Ceci est un avantage important du formalisme Hamiltonien puisque dans
le systeme initial défini sur le fibré tangent 7'M, une transformation ne peut pas faire
intervenir les positions g et les vitesses ¢ tout en conservant la forme des équations
étudiées, alors que dans le cadre canonique on peut mélanger les positions g et les im-
pulsions p. Il s’agit d’un des ingrédients centraux dans la théorie des perturbations
Hamiltoniennes, qui est a la base de la théorie de Nekhoroshev, dont on parlera par la
suite.

1.2 Les systémes intégrables

Un autre point remarquable apparait dans I’étude des systemes Hamiltoniens.

A priori, intégrer un systeme différentiel ordinaire de dimension 2n impose de déter-
miner 2n intégrales premieres. Ici, I’existence de n intégrales premieres peut permettre
de garantir que le systtme (I.1.1)) est intégrable par quadrature.

Remarquons d’abord qu’une fonction F € C! (T* M, R) est constante le long des
solutions (p(?), g(1)) du systéme associé a un Hamiltonien H € C'(T*M,R) si et
seulement si

% (F(p(t), (1) = 9,FO,H — 9,FO,H = {F, H}(t) = 0 (1.2.1)

sur le domaine de définition de la solution considérée.
La fonction { F, H} s’appelle le crochet de Poisson de F etde H.
On peut alors énoncer le théoréme d’Arnold-Liouville :

Theorem 1.2.1 (Arnold-Liouville). On considére un Hamiltonien H € C' (T* M, R)
dont le systéme associé admet n intégrales premiéres indépendantes en involution, que
U'on note ¥; € C! (T* M,R) pouri € {1,...,n}, i.e. :

¥, =H ; {¥,.¥;} =0 pour (i.j) € {1,....n}* d¥Y, A...ANd¥, #0.

Soit a € R" tel que .Afa = {(p, q) € T*M avec (‘Pl, ,‘Pn) = a} est non vide,
compacte et connexe.
Alors, N, est difféomorphe au tore T" de dimension n.
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De plus, il existe un ouvert V. C T* M qui contient Na, qui est invariant pour le
flot Hamiltonien associé a H et qui est canoniquement difféomorphe a U X T" ou U est
un ouvert dans R".

En effet, il existe un difféomophisme canonique ® tel que le systeme (L.I.1) dans les
nouvelles variables (I1,0) = ®~(p, q) est associé au hamiltonien K(I) = Ho®(I,0)
qui est indépendant des angles. Alors les équations associées sont trivialement inté-
grables puisque T =0 et § = VK(I) ot VK est le gradient de K sur U.

Les variables (1, 8) € UXT" sont appelées variables actions-angles du Hamiltonien
intégrable K.

Géométriquement, les propriétés précédentes se traduisent par le fait que 1’espace
des phases est feuilleté en tores invariants de dimension n qui portent des solutions ou
les coordonnées angulaires varient linéairement (avec les fréquences VK): on dit alors
que les solutions sont quasi-périodiques.

1.3 Trois exemples de systémes intégrables
— Une chaine de rotateurs dont le Hamiltonien associé s’écrit

K(1)=%(112+...+13) . (Lo ER"XT" :

il s’agit ici d’une collection de particules libres sur le tore T" de dimension .

— Une chaine d’oscillateurs harmoniques (i.e. : nressorts découplés de raideurs
kl.2 pour i variant entre 1 et n) dont le Hamiltonien associé s’écrit

n 2 2
p; + (k;q;
H(p,q)=2% . (g ER"XR".
i=1

Le passage en variables actions-angles s’obtient en utilisant les coordonnées polaires
symplectiques :

| I
Pi = V2k;I;cos(0;) ; q; = 2? sin(¢;) pouri € {1,...,n},
1

ainsi les actions correspondent aux rayons des tores invariants et le Hamiltonien devient
K{I)=k{I; + ...+ k,I,, qui est intégrable.
C’est le méme type de Hamiltonien qui apparait au voisinage d’une position d’équilibre
elliptique (voir [32] et les références dans ce travail).
— Le probleme de Kepler ou I'on étudie le mouvement d’un point soumis a
Iattraction gravitationnelle d’un corps fixe placé a ’origine.

Le Hamiltonien considéré est a trois degrés de liberté et s’écrit en coordonnées

el _ _k

cartésiennes H(p, q) = 5 lqll

avec une constante k positive.



14 CHAPTER 1. INTRODUCTION GENERALE

I1 est bien connu que pour des énergie négatives H(p, q) < 0, les solutions sont des
ellipses admettant un foyer a I’origine. Les variables actions-angles (dites de Delaunay)
s’expriment alors en fonction des éléments caractéristiques de I’ellipse parcouru.

Plus précisément, il s’agit de la longueur du demi-grand-axe, de 1’excentricité, des
trois angles d’Euler permettant de repérer la direction du demi-grand-axe dans 1’espace
par rapport a un axe de référence. Enfin, la seule variable évoluant rapidement est
I’angle polaire du point considéré défini a partir du demi-grand-axe. Alors, le Hamil-
tonien transformé ne dépend plus que du demi-grand-axe et est donc intégrable. On
a cinq intégrales premieres indépendantes en involutions alors que trois suffiraient, et
cette “sur-intégrabilité” est a ’origine de difficultés spécifiques (voir plus loin).

1.4 Les systémes quasi-intégrables

Nous avons vu que les flots des systeémes Hamiltoniens intégrables peuvent étre étudiés
en détail. Ces systemes présentent un deuxieme intérét qui justifie leur importance : de
nombreux problémes en physique mathématique peuvent étre considérés comme des
perturbations de systémes intégrables. C’est ce qui motive I’introduction de la classe
des systemes quasi-intégrables, que nous allons définir plus précisément dans le cas
analytique:

Definition 1.4.1. Un systéme Hamiltonien est dit quasi-intégrable s’il existe €, > 0
tel que son Hamiltonien H vérifie H € C® (] — &0, EgIXT* M, IR) etsihy :=H(,.) :
T*M — R est intégrable.

En utilisant les variables actions-angles (I, #) associées a H(0, .), on se ramene a
une famille de Hamiltoniens prenant la forme

H(e,1,0) = ho(I)+€F(e,1,0)  ouF € C”(|—€p.eo[x U x T, R) (1.4.1)

avec U ouvert dans R”".
En fait pour les problemes étudiés ici, on pourra considérer sans perte de généralité,
la famille de Hamiltoniens

H(e,1,0)=hy(I)+ef(I1,0) ou f€C?UxT"R). (1.4.2)

Cette situation apparait notamment pour 1’étude du mouvement des planetes dans le
systeme solaire (voir [4]). En effet, si la (faible) interaction mutuelle entre les planetes
est négligée, alors le systeéme considéré se découple en plusieurs problemes de Kepler
indépendants et est intégrable. C’est précisément pour I’étude de ce probleme que la
théorie des perturbations a été initiée au dix-huitieéme siecle.

Le résultat le plus ambitieux serait de montrer que les systeémes quasi-intégrables
sont conjugués a des systemes intégrables. C’est a dire qu’il faudrait trouver une famille
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a un parametre V, C T*M constituée d’ouverts connexes invariants pour le flot hamil-
tonien associé a H (e, ., .) qui sont canoniquement difféomorphes a U, X T" ot U, est un
ouvert dans R”. De plus, le hamiltonien H(e, .,.) sur V, doit étre transformé en A, (T )
avec une famille a un parametre de fonctions analytiques A, de U, X T" dans R.

Poincaré (voir [[103]]) a montré que ce résultat est génériquement faux: 1’énoncé et
la preuve de ce théoréme seront donnés plus loin apres 1’exposé du principe de moyen-
nisation et des méthodes de moyennisation des perturbations.

1.5 Principe de moyennisation

Pour ce paragraphe et le suivant, on peut consulter le livre d’Arnold, Kozlov et Neishtadt
(véf. [4]D).
On voit que dans le cas quasi-intégrable, le systeme (I.1.1) prend la forme :

I =—£d,f(I,0); 6 =Vh(I)+ed,;f(I.0)

ou Vh est le gradient de h. Les variables sont scindées en deux groupes : celles qui
varient sur une échelle temporelle rapide tandis que les autres dérivent lentement, c’est
notamment le cas pour les actions.

Le principe de moyennisation consiste a remplacer le systéme initial par sa moyenne
temporelle suivant le flot non perturbé CIDZ associé a h, c’est a dire que I’on passe a
<H>U,0)=h(I)+e< f>(,0)avec:

t
</>1.0)=lim (%/0 f(],9+th(I))ds>.

En fait, cette moyenne va dépendre des relations de commensurabilité qui sont véri-
fiées par les composantes du vecteur Vh([I).
Plus précisément, a un sous-module M C Z", on associe une zone de résonance

Zy={IeR"k-VA(I) =0 = ke M},

et- pour M = {0} - on note Z la zone non-résonante.

Silerang de M estégalar € {0,...,n— 1}, il existe une transformation symplec-
tique ¢ = RO et I ="RJ od R € SL(n, Z) est une matrice unimodulaire dont les r
premieres lignes constituent une base de M.

Dans les nouvelles variables, le hamiltonien considéré devient V71(J ) = (0,w(J]))
lorsque '"RJ € Z, avec w(J) € R"™" qui ne vérifie aucune relation de commensura-
bilité.

Alors le flot linéaire de fréquence w(J) sur le tore T"~" est ergodique et la moyenne
temporelle < f > (J, ¢) tend vers la moyenne spatiale

<f> (I dndy) = (%) i //Tn_,f(JI’JZ’(bl’d)z) d¢, (1.5.1)
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ol (J1, 0y, 1, py) ER"XR™ X T x T,

Ainsi, le hamiltonien moyennisé ne dépend plus des angles rapides et le systeme
considéré ne fait intervenir que des variables qui évoluent lentement (par exemple pour
déterminer numériquement les solutions, on peut prendre un pas d’intégration de 1’ordre
de 1/¢).

De maniere équivalente, le principe de moyennisation est basé sur 1’idée que les
termes ignorés dans le champ de vecteur initial entraine seulement de petites oscillations
qui sont superposées aux solutions générales du syst¢me moyennisé, notamment on peut
énoncer :

Theorem 1.5.1. Avec les notations précédentes, les actions J, conjuguées aux angles
rapides ¢, deviennent des intégrales premiéres du systeme moyennisé (qui est donc plus
simple que le systéme initial).

De maniere équivalente, on trouve n — r intégrales premiéres qui sont des combi-
naisons entieres des variables d’action initiales I.

Plus particulierement, si M = {0} (donc dans la zone Z), le systeme moyennisé
(aussi appelé systeme séculaire dans ce cas) ne dépend plus des angles et est intégrable.

Par contre, ’ensemble des points résonants (i.e. : situé dans une zone Z ,, avec
M # {0}) peut étre :

— vide, c’est le cas d’une chaine d’oscillateurs avec des fréquences (a)l, ,a)n)
non résonantes.

— dense, c’est la situation générale lorsque 1’application fréquence d;A([) est lo-
calement inversible :

0? h(1 )’ # 0, par exemple c’est le cas pour une particule libre sur
le tore T" ou le Hami

tonien associé est celui d’un rotateur (voir plus haut).

— égal a R” tout entier dans le cas ou la différentielle du Hamiltonien intégrable
n’est pas de rang maximal, on dit qu’il admet une dégénérescence propre.

Cette derniére situation apparait pour le probleéme de Kepler, ou le Hamiltonien con-
sidéré ne dépend que du demi-grand-axe de I’ellipse parcourue. Lever cette dégénéres-
cence est une difficulté majeure dans les probleémes de mécanique céleste.

Le principe de moyennisation a été introduit par Lagrange et Laplace dans leurs
travaux sur les perturbations séculaires des orbites planétaires (c’est a dire lorsque ’on
étudie les solutions du systeme séculaire intégrable pour le probleéme des n corps avec
une faible interaction gravitationnelle autour d’un attracteur central massif). Dans ce
cas, le systtme non perturbé est constitué de n problemes de Kepler découplés donc
le Théoréme [T.5.] et la remarque précédente entrainent que les demi-grands-axes des
planétes sont des intégrales premieres du systeéme moyen si leurs périodes de révolution
autour du corps central ne sont pas commensurables. Ce résultat a ét¢ démontré par
Laplace dans son étude de la stabilité du systeme solaire (1773).
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1.6 Théorie des perturbations classiques

Il s’agit maintenant de vérifier la validité du principe de moyennisation : donc, de
s’assurer que les solutions du systéme complet restent proches de celles du systeme
moyennisé.

Notamment, ceci sera le cas sil’on trouve une transformation e—proche de I’identité
qui conjugue le Hamiltonien initial & sa moyenne suivant les angles rapides ¢, (i.e. :
dans les variables adaptées a la résonance étudiée comme dans le paragraphe précédent).
On est donc ramené a un probléme de forme normale ol I’on recherche un systeme de
coordonnées adéquat dans lequel les équations considérées prennent la forme la plus
“simple” possible.

Ici, on considérera une transformation correspondant au flot au temps 1 d’un sys-
téme gouverné par un Hamiltonien K(1,6) = ek (1, 8), que I’on notera CD}(.

Avec la formule de Taylor et la définition du crochet de Poisson, on obtient

1
Fo(I)}K:F+{F,K}+/ (I —w){{F,K}K}o®% du
0

pour toute fonction vectorielle F € C2 (U x T",R™).
Ainsi, le Hamiltonien transformé H o<I>}< admet le développement suivant en &

Hodl, =h+e(f+{h,12}) +0(e2)
donc pour obtenir HOQ)}( =h(l)+e< f>4+0 (52), on doit résoudre :
f+{hK}=<f> < Vh(I)-0,K(I.0)=—f+<f> (1.6.1)

qui est I’équation de conjugaison linéarisée ou équation homologique.
Il s’agit de I’équation centrale de la théorie des perturbations.

On est dans le cadre analytique donc la fonction f admet le développement en série

de Fourier f(I,0) = ) fi(I)exp (ikd).
kezn
Dans la zone de résonance Z ,,, en utilisant I’expression de la moyenne spatiale

(T3] et apres le changement de variable (1, 0) = ("RJ, R™¢), on voit que la moyenne

temporelle admet le développement < f > (I,60) = Z fi(I) exp (ikB).

. keMm
Donc la fonction

~ Ji(D)
K(,0) = Z — 2~ exp(ik6)
eyt i(k.Vh(I))
fournit une solution formelle de 1’équation homologique@ définie sur Z ,, puisque
les dénominateurs ne s’annulent pas sur cette zone.
On obtient ainsi une transformation qui normalise le Hamiltonien au premier ordre
et, par le méme procédé, on peut éliminer formellement les angles rapides a tous les
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ordres (i.e. : le méme type d’équation homologique apparait a tout les ordres pour
déterminer X, ou n > 1).
Cette construction s’appelle la méthode de Lindstedt.

1.7 Probléme des résonances

Si la fréquence VA(I) est résonante, le produit k - VA(I') s’annule pour un certain multi-
entier k non nul, et ainsi I’équation homologique pour obtenir une forme normale inté-
grable (i.e. : correspondant a M = {0}) ne possede tout simplement pas de solution
formelle. Il n’y a pas de solutions dans ce cas car le flot linéaire de fréquence VA(I) n’est
pas ergodique et I’approximation de la perturbation par sa moyenne spatiale compléte
n’a tout simplement aucun sens.

C’est la situation la plus connue qui correspond, par exemple, au théoréme de non-
intégrabilité analytique de Poincaré :

Theorem 1.7.1. On considere un Hamiltonien H(e, I,0) = ho(I) +ef(I1,0) ou H €
C? (U x T", R) avec U un ouvert dans R", qui vérifie les conditions de

— Non-dégénérescence : I’application fréquence d;h(I) est de rang maximal (i.e.
|02h(D)| # 0 sur U).

— Généricité : la perturbation a un développement en série de Fourier

fU0)= Y, fiI)exp (iko)

kezn

complet, i.e. aucun coefficient f) n’est identiquement nul sur U.
Alors, il n’existe pas de transformation canonique analytique définie sur un ouvert
dans U qui transforme H(e, .,.) en un Hamiltonien intégrable.

Proof. comme on I’a vu, cette transformation ne peut étre définie que dans la zone
de non-résonance (Z, = {I € R" tels que k - VA(I) = 0 si et seulement si k = 0}) qui
admet un complémentaire dense avec notre condition de non-dégénérescence. O

Notamment, ceci implique qu'un syst¢tme Hamiltonien générique n’est pas inté-
grable (voir [88]).

1.8 Probleéme des petits diviseurs et théorie KAM

Par opposition a la situation précédente, la conjugaison a un systeéme intégrable est
formellement possible si la fréquence VA([I) est non résonante, donc sur Z dont le
complémentaire est de mesure nulle si la condition de non-dégénérescence du Théoreme
[[7T] est vérifiée. On a alors I'existence d’une solution formelle, mais rien ne garantit
la convergence de la solution. En effet, méme si k - VA(I) est non nul pour tout k €



1.8. PROBLEME DES PETITS DIVISEURS ET THEORIE KAM 19

Z"\{0}, le produit scalaire peut (et va) devenir arbitrairement petit pour des multi-
entiers de longueurs arbitrairement grandes, impliquant la divergence de la série. C’est
le fameux phénomene des petits diviseurs.

Poincaré (voir [[103]]) pensait que la convergence des séries de Lindstedt était “haute-
ment improbable” mais Kolmogorov (réf. [80]) a montré en 1954 (toujours avec la con-
dition de non-dégénérescence du théoréme [I.7.1) que la plupart des tores non réso-
nants (i.e. : au-dessus de Z;) se prolongent en tores invariants sous le flot perturbé
lorsque la perturbation est suffisamment petite. Ceci est obtenu en considérant des
tores dont les fréquences associées vérifient une condition arithmétique (diophantienne)
générique qui permet le controle des petits dénominateurs qui apparaissent dans les cal-
culs. Arnold (voir [2]) a prouvé que le complémentaire de ces tores invariants a une
mesure qui tend vers zéro avec la taille de la perturbation et Moser (réf. [91]]) a étendu
ce résultat aux Hamiltoniens suffisamment différentiables.

Pour un panorama de la théorie de Kolmogorov-Arnold-Moser, on peut se référer
aux trés bonnes présentations [29]], [[LO5]] et [54].

On obtient ainsi un résultat de stabilité en mesure : la plupart des orbites sont situées
sur un tore invariant donc elles sont quasi-périodiques, définies pour tout les temps
et perpétuellement stables car les variables d’action varient trés peu autour des tores
invariants.

Pour n = 2, cette propriété de stabilité est méme vraie pour toute solution, dans le
cadre du théoréme KAM iso-énergétique d’Arnold : sur chaque niveau d’énergie, qui
est de dimension 3, persiste une famille de tores invariants de dimension 2 telle que
chaque composante connexe du complémentaire est bornée. Alors, ou bien la solution
est quasi-périodique, ou bien elle est “coincée” entre deux solutions quasi-périodiques,
et un argument utilisant la mesure des tores préservés montre que la solution est encore
stable avec de faibles variations des variables d’actions.

En 1964, Arnold (réf. [3]]) a démontré qu’une telle propriété ne subsiste pas pour
n > 3. 1l a construit un exemple de systtme Hamiltonien a trois degrés de liberté
qui posséde un grand nombre de tores invariants grace a la théorie KAM mais qui,
conjointement, posseéde une solution (6(¢), I(¢)) telle que

[1(x) = Io| > 1

avec 7 = 7(€), et ceci pour tout € > 0; donc, une orbite peut décrire une large partie de
I’espace des phases méme avec une perturbation arbitrairement petite.

Donc, pour n > 3, la théorie KAM ne fournit pas de résultat de stabilité valable
pour toutes les solutions.

De plus, les tores KAM forment un ensemble de Cantor nulle part dense (donc,
d’intérieur vide) et, du point de vue de la physique, il est impossible de déterminer si
une condition initiale conduit a une solution quasi-périodique ou pas.

Enfin on peut également mentionner un troisieme probleéme, qui n’est pas lié aux

résonances ou petits diviseurs, mais qui est incontournable.
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Probléme des grands multiplicateurs

Méme en I’absence de petits dénominateurs, la méthode de moyennisation conduit en
général a des séries divergentes: ceci avait déja été remarqué par Poincaré, qui écriva :

Ce qui empéche la convergence, ce n’est pas la présence de petits diviseurs
s’introduisant par l'intégration, mais celle des grands multiplicateurs s’introduisant
par la différentiation (voir [103])).

Il s’agit tout simplement du probleme de la convergence du schéma itératif. En
admettant que 1’on sache faire face aux problémes des résonances et des petits diviseurs,
on peut alors trouver un changement de variables ®X1 qui élimine la perturbation a
Iordre &, puis ®X2 qui élimine la perturbation 4 1’ordre £ et ainsi de suite, mais il reste
a montrer la convergence du produit infini

® = K000 ... 0®Fio ...

et c’est une question délicate.

En fait, le probleme précédent, dans le cas d’un systéme analytique, peut se ramener
a la convergence d’une série formelle, ou le terme général a,, se trouve étre de I’ordre
de A"(n!)*, avec A > 0, @ > 0 et qui généralement diverge. Par contre cette série
formelle peut étre tronquée a un ordre optimal avec un reste qui atteint une taille mini-
male avant de diverger, c’est ce que I’on appelle une sommation “au plus petit terme”.
Selon Poincaré, ce sont “des séries convergentes au sens des astronomes mais diver-
gentes au sens des géometres”.

De plus, dans le cas général (i.e. : pas analytique), la croissance de ces “grands mul-
tiplicateurs” dans la construction des formes normales dépend uniquement de la régu-
larité du systeme étudié. On peut toujours faire une sommation “au plus petit terme”
pour pallier a la divergence dans le schéma itératif. Ceci se traduit par le fait que ’on
fait un nombre fini mais "asymptotiquement infini" d’étapes : pour une perturbation de
taille € fixée, on fait un nombre d’étapes de I’ordre de e ou a > 0, et donc lorsque &
tend vers zéro, ce nombre tend vers I’infini. Au voisinage d’une zone résonante Z ,, (et
particulicrement a I’intérieur du domaine non résonant Z), on peut alors normaliser le
Hamiltonien initial jusqu’a un reste exponentiellement (resp. polynomialement) petit
par rapport a I’inverse de la taille de la perturbation si I’on consideére un systéme ana-
lytique (resp. C* ou Holder). On en déduit alors un résultat de stabilité exponentielle
(resp. polynomial) mais seulement “local” et “partiel” : local dans le sens ou il n’est
valable que pour les solutions qui restent dans un domaine avec des résonances con-
trdlées ot la forme normale est valide, et partiel puisque le syst¢tme moyenné n’est plus
nécessairement intégrable, et on ne peut contrdler 1’évolution des variables d’action que
dans certaines directions.
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1.9 Théorie de Nekhoroshev

1.9.1 Introduction et énoncé

On vient de voir que la stabilité en temps infini des solutions d’un systeéme Hamiltonien
presque-intégrable n’est en général pas vraie, on va donc essayer d’établir la stabilité
en temps fini mais tres long de ces solutions au sens de la définition suivante :

Definition 1.9.1. Avec les notations précédentes, on dit qu’un systéme Hamiltonien
presque-intégrable est effectivement stable s’il existe des constantes positives b, c telles
que pour toute action initiale 1(0) :

I =10 <ce® on  |t| <T(e)

avec
limeT(e) = 40
e—0

car on veut T (€) supérieur au temps de stabilité trivial 1/e.

La propriété précédente entraine que les solutions restent dans un compact et ont
donc un temps de vie supérieur a T'(¢). De plus, les variables d’actions deviennent
des quasi-intégrales premicres sur des temps tres longs ce qui permet de localiser les
solutions dans 1’espace des phases.

Pour n = 2, 1a théorie KAM nous donne des résultats de stabilité perpétuelle, c’est-
a-dire T'(¢) = +o0, et on peut montrer que b = 1/2 dans ce cas.

Par contre, ceci n’est plus vrai pour n > 3 grice a (voir [3]]).

On parlera de stabilité polynomiale (resp. exponentielle) si T (¢) est d’ordre £~
(resp. £~ exp (£79)), ol a > 0.

Pour introduire le probléme, on commence par un exemple typique de Hamiltonien
qui n’est pas effectivement stable : h(1}, I,) =1 12 -1 22 En effet, une dérive des actions
(I, (®), I,(1)) sur un segment de longueur 1 et sur un temps de I’ordre de 1/¢ apparait
lorsque I’on ajoute la perturbation f(6,,6,) = —sin (61 + 02) avec la solution du sys-
téme perturbé i + ¢ f donnée par :

1—a

(I (1), I,(1), 0, (1), 05(1)) = (et, et, 1>, —£t?). (1.9.1)

Dans cet exemple, I'orbite instable dérive le long de la deuxieme diagonale qui
correspond a la zone de résonance Z ,, associée au module M = Z(1, —1) et le Hamil-
tonien considéré est déja sous forme normale (ou moyennisé) dans cette zone de ré-
sonance. On note que la vitesse de dérive des actions dans cet exemple est maximale
compte tenu de la taille £ de la perturbation, c’est le temps trivial 1/e.

Ce type d’exemple a été introduit initialement par Moser (voir [90]) et la propriété
importante est ici le fait que le gradient VA(I{, I,) reste orthogonal a la deuxieme di-
agonale ou, de maniere équivalente, le gradient de la restriction de A sur la deuxieme



22 CHAPTER 1. INTRODUCTION GENERALE

diagonale est identiquement nulle. Ceci entraine que les solutions du systeme normal-
isé avec des conditions initiales dans la zone de résonance Z ,, ot M = Z(1,~-1) ne
peuvent pas sortir de Z ,,. C’est précisément le point important qui doit étre évité pour
toutes les zones de résonance afin de garantir une stabilité effective

A partir des considérations de Moser (réf. [90]]), dans un article précurseur Glimm
(réf. [66]) a été le premier a indiquer des propriétés permettant d’éviter le probleme
précédent, mais c’est Nekhoroshev (réfs. [94], [95], [[96]]) dans une série de travaux
fondamentaux au début des années 1970 qui a montré que, génériquement au sens
topologique et de la mesure, le phénomene précédent ne se produit pas et qu’en général,
les systemes Hamiltoniens presque-intégrables analytiques sont effectivement stables
sur des temps exponentiellement longs. L’étude de la théorie de Nekhoroshev est au
centre de cette thése, ol ’on clarifie et met en perspective la preuve de cette généric-
ité a la lumiere de résultats beaucoup plus récents de géométrie algébrique réelle. Par
ailleurs, on étend cette théorie a des systemes Hamiltoniens de régularité beaucoup plus
faible que le cadre analytique initialement considéré.

Nous allons tout d’abord donner un énoncé informel du théoréme de Nekhoroshev.

Theorem 1.9.1 (Nekhoroshev, 1977). On considére un systeme hamiltonien presque
intégrable associé a h(I) + f(1,0) o (I1,0) € Br X T", avec By C R" la boule
ouverte de rayon R centré a l'origine et || f|| < € ou
adaptée suivant la régularité des systéemes étudiés.

| - || est une norme fonctionnelle

On suppose que :

(i) le systeme est analytique;

(ii) h satisfait une condition "générique" dite d’escarpement (en anglais, steepness).

Alors il existe des constantes positives Cy, C,, Cs, a, b, €y qui ne dépendent que de
h telles que, pour € < €y, ona:

C
|I(t) - I(0)] < Cye® 1] < =2 exp (C3e7%)
€
pour toute action initiale 1(0) € Bg .

Les constantes a et b sont appelés exposants de stabilité, la valeur de a est la plus
importante car elle fournit le temps de stabilité. La valeur donnée par Nekhoroshev pour
I’exposant de stabilité a tend naturellement vers I’infini lorsque » tend vers I’infini et le
temps de stabilité tend vers le temps trivial 1 /e. Guzzo, Chierchia et Benettin (voir [70])
ont donné une version tres raffinée de ce résultat avec des exposants de stabilité qui sont
certainement les plus précis que 1’on peut obtenir avec la stratégie de Nekhoroshev.

La preuve de ce théoréme est expliquée en détail dans la Partie [lT]| mais nous en
donnons une description informelle ci-dessous.

1.9.2 Aspects analytiques de la preuve

Le résultat de Nekhoroshev peut étre étendu aux Hamiltoniens de classe Gevrey (voir
[87]]) toujours avec un temps de stabilité exponentiel par rapport a I’inverse de la taille
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de la perturbation, ainsi qu’en régularité Ck (k € N) (téf. [30]) et Holder (véf. [14]):
dans ces deux derniers cas le temps de stabilité est seulement polynomial par rapport a
I’inverse de la taille de la perturbation.

La premiere étape de la preuve est la normalisation du systeme presque intégrable
jusqu’a un ordre élevé dans une large partie de la zone non-résonante Z, ainsi que
dans des voisinages des zones résonantes Z 4, pour M # {0}. Ceci est obtenu par un
contrdle des petits dénominateurs avec des conditions arithmétiques similaires a celles
qui apparaissent dans la théorie KAM. La taille des restes dans ces formes normales
dépend uniquement de la régularité du systeme étudié et impose le temps de stabilité
des solutions.

C’est précisément cette étape qui est considérée dans la Partie [Tl de cette these, et
qui correspond a I’article [[14]], ol ’'on développe une version adaptée a la théorie des
perturbations d’un Lemme classique d’approximation analytique des fonctions Holder
da a Jackson-Moser-Zehnder (voir [45]]). Cet outil permet d’étendre a des systémes
de classe Holder de maniere simple et rapide les estimations génériques de Nekhoro-
shev les plus raffinées obtenues dans le cas analytique par Guzzo, Chierchia et Benettin
(voir [[70]]). On obtient alors des temps de stabilité qui sont polynomiaux par rapport
a I’inverse de la taille de la perturbation et donc des bornes a la vitesse de la diffu-
sion d’Arnol’d pour les systemes de faible régularité. Le schéma de preuve, pour un
Hamiltonien presque intégrable H de classe Holder, consiste a normaliser son lissage
analytique H 4, puis a contrdler précisément la différence H — H 4, et, enfin, a ap-
pliquer les arguments de [[70]. C’est le controle de I’erreur H — H 4, qui nécessite des
estimées non classiques dans la preuve du Lemme d’approximation analytique pour des
fonctions Holder.

1.9.3 Aspects géométriques de la preuve

Comme on I’a vu, les formes normales que 1’on consideére au voisinage des résonances
non triviales (i.e. engendrées par un module M # {0}) donnent seulement un contrdle
partiel de la dynamique et c’est 1a que la propriété d’escarpement intervient dans les
arguments de Nekhoroshev. En effet, il s’agit d’une condition qui assure 1’alternative
suivante : soit une solution du systeme normalisé associée a une condition initiale dans
une zone résonante non-triviale varie peu, soit elle s’écarte en un temps rapide de la zone
de résonance considérée pour rentrer dans une zone associée a une résonance d’ordre
strictement inférieur (i.e. engendrée par un module de résonance de dimension stricte-
ment inférieure). Ce schéma dichotomique garantit que pour toute condition initiale
appartenant a une zone associée a un module de résonance non-trivial M # {0}

— soit la solution associée reste bornée a I’intérieur de la zone de résonance initiale
pendant un temps tres long;
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— soit la solution traverse rapidement au plus un nombre fini de zones associées a
des résonances non-triviales pour ensuite rentrer dans la zone non-résonante Z,.

Comme on I’a montré auparavant, toute action en Z, a une dérive trés lente. De plus, la
taille des zones résonantes non-triviales est de I’ordre d’une puissance de la taille de la
perturbation €. Ces arguments permettent donc d’établir la stabilité effective énoncée
dans le Théoréme de Nekhoroshev.

La définition originale d’escarpement donnée par Nekhoroshev est compliquée et
est étudiée de maniere tres approfondie dans cette these. On peut donner une premiere
caractérisation géométrique de cette propriété établie par Ilyashenko (réf. [[75]]) dans le
cas complexe et par Niederman (réf. [[98]]) dans le cas réel.

Theorem 1.9.2. Une fonction holomorphe (resp. réelle analytique) est escarpée si et
seulement si elle n’a pas de points critiques et si sa restriction d tout sous-espace dffine
propre n’admet que des points critiques isolés .

En particulier, cette propriété est vérifiée dans le cas important des fonctions con-
vexes ou les points critiques considérés sont non-dégénérés donc isolés. Par contre, la
convexité est une propriété ouverte mais pas générique.

Un exemple de fonction non-escarpée est donné par f(x,y) = x> — y* qui cor-
respond au hamiltonien donnant lieu a la solution instable (I.9.I)) pour une perturba-
tion arbitrairement petites. Si I’on ajoute un terme d’ordre plus élevé en considérant
gx,y) = h(x,y)+ x3, on retrouve une fonction escarpée. Comme on le voit ci dessous,
cette derniere propriété avec les fonctions A et g, releéve du théoreme de généricité qui
est au centre de cette these.

Plus précisément, Nekhoroshev a démontré, initialement dans [94] puis précisé dans
[95] et [96])), I’énoncé suivant :

Theorem 1.9.3. Pour tout couple d’entiers n > 2 et r > 2, le polynome de Taylor
d’ordre r d’une fonction non-escarpée d n variables de classe C¥ = appartient a un
sous-ensemble semi-algébriqueﬂ NE de espace des polyndme a n variables et de de-
grér.

De plus, N'E a une codimension qui devient strictement positive pour un degré
r suffisament grand (on peut prendre r 2 |n/4|). Ce dernier résultat entraine la
généricité de la propriété d’escarpement aussi bien au sens topologique qu’au sens

de la mesure.

Bien que la théorie de Nekhoroshev soit un sujet d’étude classique en dynamique
hamiltonienne, la preuve de la généricité de 1’escarpement est restée pratiquement non

1C’estadire, un ensemble dont les points vérifient un nombre fini d’équations et inéquations polynomiales.
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étudiée depuis 50 ans ! Ceci est peut €tre di au fait qu’elle n’emploie aucun argu-
ment concernant les systemes dynamiques, mais utilise des arguments quantitatifs de
géométrie algébrique réelle et d’analyse complexe. En dehors de I’article original (
[94]), a notre connaissance les seuls travaux sur le sujet sont [[111], [47] et [[13]] (ce
dernier papier constitue la Partie[V]de cette these). Ces travaux utilisent en “boite noire”
le schéma de preuve de Nekhoroshev pour établir des criteres explicites qui assurent
I’escarpement dans le cas de fonctions a moins de 5 variables avec les coefficients de
Taylor de la fonction considérée de degré inférieur ou égal a 5.

Dans la premiére partie de cette these, on revisite la preuve initiale (voir [94]]) de
la généricité de la propriété d’escarpement puis on démontre des critéres explicites
généraux qui permettent de déterminer si une fonction donnée suffisamment réguliere
est escarpée.

On réécrit tout d’abord la preuve de la généricité de 1’escarpement a la lumiere de
résultats beaucoup plus récents. Plus particulierement, la géométrie algébrique réelle
était encore balbutiante au moment ot Nekhoroshev a démontré ce résultat et son article
(réf. [94]) mélange, avec une rédaction parcellaire et obscure par moment, des preuves
de résultats fondamentaux nécessaires, ainsi que des propriétés spécifiques au probleme
étudié. Tout ceci rend difficile la lecture de ce texte.

Notamment, comme on le verra dans la premiere moitié¢ de la Partie |I|, Nekhoro-
shev prouve, dans le cas particulier qui I’intéresse, un théoreme général de Yomdin
(réf. [[116]]) démontré 35 ans plus tard sur la reparamétrisation analytique des ensembles
semi-algébriques. Sans trop rentrer dans les détails, cette reparamétrisation d’un ensem-
ble semi-algébrique A C R” consiste a recouvrir A par une collection finie d’ensemble
A; qui sont chacun I'image du cube unité dans R" par une fonction semi—algébriqueﬁ
suffisament réguliere ayant des dérivées que I’on peut borner. On a ce contrdle jusqu’a
un ordre prescrit dans le cas des reparamétrisations introduites indépendamment par
Yomdin [[115] et Gromov [67] (ceci s’appelle le Lemme Algébrique de Yomdin-Gromov
dans la littérature), et jusqu’a I’infini dans le cas des reparamétrisations analytiques
étudiées par Yomdin [|116] et qui est considéré icﬂ).

Cette nouvelle paramétrisation controlée est centrale dans la preuve de la généricité
de la propriété d’escarpement car elle permet de réduire le probléme étudié au cas poly-
nomial et la propriété d’escarpement d’une fonction donnée au voisinage d’un point est
déterminé par le jet a un ordre fini de cette fonction en ce point. Donc on peut ramener
le probleme étudié a la dimension finie.

Le second ingrédient central est une analyse fine du syst¢eme polynomial correspon-
dant au probléeme étudié aprés reparamétrisation, ceci permet de borner le rang de ce
systeme et aboutir a la majoration désirée sur la codimension, ce qui entraine la généric-
ité de la propriété d’escarpement.

2C’est a dire une fonction dont le graphe est un ensemble semi-algébrique.

3Tout ensemble semi-algébrique peut étre entierement reparamétré avec un controle des dérivés jusqu’a
un ordre prescrit, alors que dans le cas analytique il faut toujours exclure un nombre fini de petits voisinages
de singularités complexes.
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Le systeme polynomial qui apparait dans la preuve précédente permet de trouver
des criteres explicites pour vérifier la propriété d’escarpement d’une fonction donnée
en fonction de ses coefficients de Taylor. C’est ce qui est développé dans la seconde
moitié de la Partie[[ et ces criteres sont importants en vu des applications de la théorie
de Nekhoroshev. La définition de I’escarpement n’est pas constructive, et il est diffi-
cile d’établir si une fonction donnée est escarpée ou non sauf dans le cas particulier
des fonctions convexes. Ainsi en mécanique céleste des problemes importants donnent
lieu a des approximations intégrables non convexes, c’est notamment le cas lorsque
I’on considere le probléme séculaire, ou normalisé, des trois corps dans 1’appoximation
planétaire (ceci est discuté dans I’introduction de la Partiem voir aussi [[102]). Avant ce
travail de these, il existait uniquement des criteres pour des polyndmes de bas degrés et
dépendant de peu de variables (réf. [[111]] puis [|13]], ce dernier article constitue I’annexe
[VD. On démontre ici des critéres généraux valables pour une fonction avec un nombre
quelconque de variables et qui portent sur ses coefficients de Taylor a un ordre arbitraire
ainsi qu’un nombre fini de parametres réels externes qui, génériquement, appartiennent
a des ensembles compacts.

La Partie[[jest consacrée a I’extension d’un résultat d’analyse complexe montré par
Nekhoroshev dans sa preuve de la généricité de 1’escarpement et qui est intéressant en
soi. Plus précisément, on montre que :

Theorem 1.9.4. Soient Q un domaine borné dans C, k > 1 un nombre entier et K C Q
un sous-ensemble compact de cardinalité strictement supérieure a k.

Alors, pour toute fonction f holomorphe sur Q, dont le graphe est contenu dans la
courbe algébrique d’un polynéme de deux variableﬂ S € C[Z,W] de degré borné

par k, la quantité
maxg | |

maxy | f|

est bornée par une constante qui ne dépend que de k, Q, K mais pas de f.

Remark 1.9.1. Ce type de majoration s’appelle une inégalité de Bernstein-Remez.

Ce résultat a été démontré par Briskin-Yomdin (réf. [38]]) et Roytwarf-Yomdin (réf.
[LO7]]) dans le cas ou K est un intervalle réel, puis par Yomdin (réf. [117]] et Friedland-
Yomdin (réf. [63]]) dans le cas ou K est un ensemble discret de cardinalité assez élevée,
grice a des arguments de géométrie algébrique réelle et d’analyse complexe. Ici, on
généralise les raisonnements utilisés par Nekhoroshev pour prouver une inégalité de
Bernstein-Remez dans le cas particulier qui apparaissait pour la preuve de la généricité
de I’escarpement. La démonstration développé ici est différente de celle de Yomdin:
elle s’appuie sur des théoréemes classiques d’analyse complexe et permet de montrer de
maniere beaucoup plus simple 1’inégalité de Bernstein-Remez que dans [[107] et [117]]
ou il y a une preuve constructive, donc tres détaillée mais aussi plus délicate.

4Te. f vérifie S(z, f(z)) = 0, et on dit que f est une fonction algébrique
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La partie [[V] est encore un travail en cours. On y montre un résultat qui devrait
&tre utile pour prouver une conjecture d’Arnol’d, Kozlov et Neishtadt sur la mesure des
tores KAM invariants pour un systéme presque-intégrable générique, qui devrait avoir
une mesure comparable a la taille de la perturbation, alors que les résultats classiques
donnent une mesure comparable a la racine carré de la taille de la perturbation (voir [4]]).

Biasco et Chierchia (réf. [25]]) ont montré que la mesure du complémentaire des
tores KAM invariants pour un systeme mécanique presque-intégrable générique du type
H(I,0) = 112/2 +efi(0)+ ...+ 13/2 + ¢ f,(0,) admet une majoration d’ordre O(¢):
ceci constitue une partie de la conjecture d’Arnol’d-Kozlov-Neishtadt

On prouve ici un résultat qui devrait étre utile pour étendre le résultat de Biasco-
Chierchia aux hamiltoniens de la forme H(I,0) = I? /2 +ef(,0) - et, possiblement,
au cas général des hamiltoniens presque-intégrables génériques.

Quand la perturbation f dépend aussi des variables d’actions, les arguments de
Biasco-Chierchia ( [25]]) ne sont plus valides et on propose de surmonter ces obstacles
en utilisant la théorie de Morse-Sard quantitative développée par Yomdin (réfs. [[114],
[T19]).

Enfin, la Partie [V] correspond a I'article [13]] dans lequel on donne des conditions
explicites suffisantes pour garantir I’escarpement dans le cas d’une fonction avec moins
de cinq variables. C’est le cas le plus simple ou apparait la structure des équations qui
sont données en toute généralité dans la Partie[l] Ce travail est en fait antérieur a la Partie
[l mais il permet de voir explicitement sur des exemples les difficultés pour établir les
criteres dell

Pour ne pas alourdir la rédaction, les preuves et les énoncés de plusieurs résultats
intermédiaires ont été placées dans des appendices a la fin du manuscrit.

Firenze, le 9 Mars 2023
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Semi-algebraic geometry and
generic Hamiltonian stability
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Abstract

The steepness property is a geometric transversality condition which proves funda-
mental in order to ensure the stability of nearly-integrable Hamiltonian systems over
long timespans. Steep functions were originally introduced by Nekhoroshev, who also
proved their genericity: namely, the Taylor polynomials of sufficiently smooth non-
steep functions are contained in a semi-algebraic set of positive codimension in the
space of polynomials. The demonstration of this result was originally published in
1973 and has been hardly studied ever since, probably due to the fact that it involves
no arguments of dynamical systems: it makes use of quantitative reasonings of real-
algebraic geometry and complex analysis. The aim of the present work is two-fold. In
the first part, the original proof of the genericity of steepness is rewritten by making
use of modern tools of real-algebraic geometry: this allows to clarify the original rea-
sonings, that were obscure or sketchy in many parts. In particular, Yomdin’s Lemma
on the analytic reparametrization of semi-algebraic sets, together with non trivial esti-
mates on the codimension of certain algebraic varieties, turn out to be the fundamental
ingredients to prove the genericity of steepness. The second part of this work is de-
voted to the formulation of explicit algebraic criteria to check steepness of any given
sufficiently regular function, which constitutes a very important result for applications.
These criteria involve both the derivatives of the studied function up to any given order
and external real parameters that, generically, belong to compact sets.
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Chapter 2

Introduction

2.1 Hamiltonian formalism and nearly-integrable sys-
tems

Hamiltonian formalism is the natural setting appearing in the study of many physical
systems. Namely, for any given positive integer n, we consider a symplectic manifold
M of dimension 2n, endowed with a skew-symmetric two-form @, and with a func-
tion H € C?(M) classically called Hamiltonian. A Hamiltonian system on M is the
dynamical system governed by the vector field X j; verifying

ix,® =oXg,)=dH . @2.1.1)

In the simplest case, we consider the motion of a point on a n-dimensional Riemannian
manifold R endowed with the euclidean metric - called the configuration manifold -
under Newton’s second law

§g=-VU(),

where U is a smooth potential function, and ¢ is a system of local coordinates for R.
This system can be conjugated by duality due to Legendre’s transformation and reads

p=-0,H(p.9) 5 d=03,H(p.q) (2.1.2)

where H (p, q) is a real smooth function on the cotangent bundle 7*R, and p is the local
coordinate conjugated to g. In this example, if one takes M = T*R, and if one chooses
(p, g) to be Darboux’s coordinates associated to the two-form w(p, q) = Z?:l dp;Ndgq;,
then system is locally equivalent to (Z.1.1).

Among Hamiltonian system, an important role is played by those which are inte-
grable by quadrature. Due to the classical Liouville-Arnol’d Theorem, under general
topological assumptions, an integrable system depending on 2n variables (n degrees of
freedom) can be conjugated to a Hamiltonian system on the cotangent bundle of the
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n-dimensional torus T", whose equations of motion take the form
I =-0gh()=0 |, d=0,n() ,

where (I,9) € R" X T" are called action-angle coordinates. Therefore, the phase space
of an integrable system is foliated by invariant tori carrying the linear motions of the
angular variables (called quasi-periodic motions).

Integrable systems are exceptionaﬂ but many important physical problems can be
described by Hamiltonian systems which are close to integrable. Namely, the dynamics
of anearly-integrable Hamiltonian system is described by a Hamiltonian function whose
form in action-angle coordinates reads

H(,9) :=h(I)+ef.,9) , I,9)eR"xT"

where ¢ is a small parameter that tunes the size of the perturbation € f w.r.t. the inte-
grable part h.

The structure of the phase space of this kind of systems can be inferred with the help
of classical Kolmogorov-Arnol’d-Moser (KAM) theory. Namely, under the generic
non-degeneracy condition that V4 is a local diffeomorphism, a Cantor-like set of pos-
itive Lebesgue measure of invariant tori carrying quasi-periodic motions for the inte-
grable flow persists under a suitably small perturbation (see e.g. ref. [S]], [46]). As
this Cantor-like set is nowhere dense, it is extremely difficult to determine numerically
whether a given solution is quasi-periodic or not.

Moreover, for a Hamiltonian system depending on n degrees of freedom (hence
a 2n-dimensional system), the invariant tori provided by classical KAM theory are
n-dimensional. Hence, if n = 2, any pair of invariant tori disconnects the three-
dimensional energy level, so that the solutions of the perturbed system are global and
bounded over infinite times. However, an arbitrary large drift of the orbits is possible
in case n > 3. Actually, in ref. [3] Arnol’d proposed an example of a nearly-integrable
Hamiltonian system where an arbitrary large instability of the action variables occurs
for an arbitrary small perturbation. This phenomenon is known under the name of
Arnol’d’s diffusion (see ref. [78]] and references therein for the most recent develop-
ments in this field). Thus, results of stability for quasi integrable Hamiltonian systems
which are valid for an open set of initial condition can only be proved over finite times.

2.2 Long time stability of nearly-integrable systems

In the 1970s, NekhoroshevElproved that if we consider a real-analytic, integrable Hamil-
tonian whose gradient satisfies a suitable, quantitative transversality condition known

IThree examples of integrable systems are the classical Kepler’s problem, the harmonic oscillator, and
Lagrange’s top.
2See [95]], or [[70] for a more modern presentation
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as steepness, then, for any sufficiently small perturbation the solutions of the perturbed
system are stable and have a very long time of existenceﬂ

The original definition of steepness given by Nekhoroshev is quite involved and
will be discussed at length in the sequel. In order to grasp an idea of what this property
means, it is worth mentioning that a real-analytic function is steep if and only if it has
no isolated critical points and if any of its restrictions to any affine proper subspace
admits only isolated critical points (see [[75]] and [98]]). This is especially satisfied in
the important case of an integrable Hamiltonian which is strictly convex in the action
variables, so that all convex functions are steep.

Actually, the vast majority of the works on Nekhoroshev’s theory concerns small
perturbation of convex integrable Hamiltonian but Nekhoroshev also proved in [94] that
- unlike convexity - the steepness condition is generic, both in measure and topological
sense: the Taylor polynomials of sufficiently high order of non-steep functions are con-
tained in a semi-algebraic set having positive codimension in the space of polynomials.
The proof and the refinement of this property constitute the first part of the present work.
However, before presenting this and the other main results, we would like to highlight
that - even though convex systems are commonﬁ— non-convex integrable Hamiltonians
occur in the investigation of important problems of mechanics.

Namely, we consider a symplectic manifold (M, w) of dimension 2n, n € N, where
 is an everywhere non-degenerate closed 2-form, a smooth symplectic vector field X
on M (meaning that the one-form i, Q is closed) and an equilibrium point p* € M,
that is X (p*) = 0.

We are interested in studying whether p* is stable or not.

Since we are in a conservative case, a first observation is that, if p* is stable, then
the spectrum of the linearized system around p* is {+iay, ..., +ia,} where a;, ..., a,
are reals, and p* is an elliptic equilibrium position.

The problem being local, we can ensure without any loss of generality (this is spec-
ified in [32]) that (M, Q) = (R%", ) where Q) is the canonical symplectic structure of
R2?", hence Qy(x,y) = dx A dy for the conjuguated variables (x, y) € R” X R". More-
over, under generic assumptions (see [32]), we can assume that the considered system
derives from a Hamiltonian of the form:

H(x,y) = Z o (x5 + y9)/2 + O5(x, y), (2.2.1)
j=1

where our standing assumption from now on is that the Hamiltonian H is real-analytic.
Such a system, under a suitable rescaling, can be considered as nearly-integrable.

3The time of stability depends of the regularity of the considered system and is exponential (polynomial)
in the inverse of the size of the perturbation if the total Hamiltonian belongs to the Gevrey (Holder) class.
See [87]], (30, [14].

4Sece. 2. [97]], [15]] in the study of the three-body problem, [[7], [8]] in the context of central force motions,
and [9], (6], [106]l, [56] in the framework of infinite-dimensional Hamiltonian systems.
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In this setting, there are two cases for which one knows that stability holds true for
the considered equilibrium.

The first case is when the quadratic part H, is sign-definite, or, equivalently, when
the components of the vector « € R” have the same sign. Indeed, the Hamiltonian
function has then a strict minimum (or maximum) at the origin, and as this function
is constant along the flow (it is in particular a Lyapounov function) one can construct,
using standard arguments, a basis of neighborhoods of the origin which are invariant,
and the latter property is obviously equivalent to stability.

The second case is when n = 2 and when the so called Arnol’d’s iso-energetic non-
degeneracy condition is satisfied. Then, KAM stability occurs in every energy level
passing sufficiently close to the origin, implying Lyapounov stability, due to the fact
that the two-dimensional tori disconnect each three-dimensional energy level (see for
instance [|1]] and [91]]). It is easy to see that the Arnold iso-energetic non-degeneracy
condition is generic in measure and topology as a function of the coefficients of the
O,(x, y) part of the Taylor expansion of H around the origin.

In the other cases, a large unstability due to Arnold diffusion can occur (see [57]]),
but it has been proved in [32] that, generically, any solution starting sufficiently close
to the equilibrium point remains close to it for an interval of time which is double-
exponentially large (exp o exp) with respect to the inverse of the distance to the equi-
librium point. The latter result is obtained by making use of Nekhoroshev’s theory and
relies crucially on the genericity of steep functions, since one needs to build a suitable
steep integrable approximation of the complete system.

The same issue arises in order to apply Nekhoroshev’s theory to concrete exam-
ples. Especially, in Celestial Mechanics, we have important problems where an elliptic
equilibrium arises with a quadratic term in (2.2.I)) which is not sign definite: this is the
case for the Lagrange’s equilibrium points L4, L5 in the restricted three body problem
(see [[19]]) and in the averaged ("secular") planetary three body problem (this is due to the
Herman’s resonance, see [[60f] and [[86]). The latter system is a crucial approximation to
apply Hamiltonian perturbation theory (hence KAM or Nekhoroshev theory) in Celes-
tial Mechanics. Moreover, we cannot always build an integrable approximation of this
kind of systems which is convex in action variables, hence we have to consider steep non
convex Hamiltonians in order to infer stability results with the help of Nekhoroshev’s
theory. For the study of the Lagrange’s equilibrium points, it is possible in most cases
to recover steepness by considering higher order approximation (see [[19]]), actually this
corresponds to general considerations on functions with three variables which will be
specified in the sequel. For the secular planetary three-body problem, the associated
Hamiltonian is not convex w.r.t. the actions (see [[102]) and much more variables are
involved than for the Lagrange’s points, hence we really need new criteria to ensure that
a given function is steep or not in this case. Up to now, generic explicit conditions for
steepness were known only for functions of three (the conditions given by Nekhoroshev
in [93])), four (see [[111]]) or five variables (see [[13]]). The second part of this work is
devoted to proving explicit conditions for steepness which are generic for functions of
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an arbitrary number of variables.

It can also be specified that steepness is a necessary condition in order to ensure
long-time stability: if the steepness condition is dropped, large instablities may occur
over times of order 1/, which is the shortest possible time of drift when considering
perturbations of magnitude O(e) (see [98]] and [34])).

In the context of KAM theory, Herman (see [[73]]) has shown that the lack of steep-
ness of the integrable Hamiltonian allows to build perturbation for which one can find
a Gs—dense set of initial conditions leading to orbits whose action components are un-
bounded while the integrable Hamiltonian can also be Kolmogorov non-degenerate,
hence most of the orbits lie on invariant tori and we have simultanously, existence of
large zones of stability and unstability.

Steepness also arises in the framework of Arnol’d’s diffusion (see [21]]) for the opti-
mality of the time of diffusion. Finally, recent works of Bambusi and Langella [[11]]
show that Nekhoroshev’s classical proof of stability for perturbations of steep inte-
grable Hamiltonian systems is also relevant in the study of PDE’s, considered as infinite-
dimensional Hamiltonian systems.

2.3 Genericity and explicit criteria for steepness

Now, we specify Nekhoroshev’s effective result of stability (see refs. [95]], [96]]), which
is valid for an open set of initial conditions provided that the total Hamiltonian is regular
enough and that its integrable part satisfies the following transversality property on its
gradient:

Definition 2.3.1 (Steepness). Fix 6 > 0, R > 0. A C? function h : B"(0, R+28) - R
is steep in B"(0, R) with steepness indices «, ..., «,_; > 1 and steepness coefficients
Cl’ ,Cn_1,5 if:

1. ianEB"(O,R) ||Vh(1)|| > 0,

2. forany I € B"(0, R), for any integer 1 < m < n, and for any m-dimensional sub-
space I orthogonal to VA(I) and endowed with the induced euclidean metric,
one has:

max  min || zpe VA +u) ||, > C, %, VE€(0,5], (2.3.1)

0<n<& uel™, |fully=n
where zp» stands for the orthogonal projection on I'™.

Remark 2.3.1. Since in definition [TT.2.] the subspace I C R” is endowed with the
induced metric, for all u € I'™ one has ||zpm VA + w)|l, = [[V(h|j1pn)T + W],
where A|;,» indicates the restriction of 4 to the affine subspace I + 1.
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As it is showed in [98]], in the analytic case a function is steep if and only if, on any
affine hyperplane I + I, there exists no curve y with one endpoint in I such that the
restriction V(A|;, =) vanishes identically on y. From a heuristic point of view, for any
value m € {1,...,n— 1} the gradient VA must "bend" towards I +I" when "travelling"
along the curve y € I +1"™, so that critical points for the restriction of A to I +I" must
not accumulate.

With such a notion, Nekhoroshev’s effective result of stability reads

Theorem 2.3.1 (Nekhoroshev, 1977). Consider a nearly-integrable system governed
by Hamiltonian

H(I,9) :=h(I)+ef(I1,9) , HeCB,xT"),

where B"(0,r) is the open ball of radius r in R", and h is assumed to be steep. Then
there exist positive constants a, b, €y, Cy, C, such that, for any € € [0, gy) and for any
initial condition not too close to the boundary, one has |1(t) — I(0)] < C,€° for any
time t satisfying |t| < C; exp (e_b) .

Remark 2.3.2. The presence of a bound of the kind | I(¢¥)—1(0)| < C,&“ on the variation
of the action variables is a consequence of the steepness property. The time of stability
depends on the regularity of the function H at hand. In the original formulation by
Nekhoroshev, H was considered to be real-analytic, which yielded an exponentially-
long time in the inverse of the size of the pertubation (see also [[70]]). Exponentially-long
times of stability hold also in case H is Gevrey (see [87]), whereas only polynomially-
long times of stability can be ensured for C*° and Holder functions (see refs. [[1O], [14]).

As it has already been anticipated in the previous paragraph, the steepness property
is generic - both in measure and in topological sense - in the space of Taylor polynomials
of sufficiently high order of smooth functions. Namely, let r,n > 2 be two positive
integers. We indicate by P(r,n) C R[x, ..., x,] the subspace of real polynomials in
n variables having degree bounded by r. For any point I, € R”, and any function f
of class C" near I, we call r-jet of f at I, the Taylor polynomial of f up to order
r calculated at I,. Moreover, we say that a subset A C R” is semi-algebraic if it is
the finite union of subsets determined by a finite number of polynomial equalities or

inequalities (see Definition[A.T.T). Nekhoroshev proved in [94]- [96] that

Theorem 2.3.2 (Nekhoroshev, 1973-1979). The r-jets of all non-steep functions of class
C?>~1 around a non-critical point I, € R" are contained in a semi-algebraic subset
Q(r, n) of P(r,n). Moreover, the codimension of Q(r, n) in P(r, n) becomes positive for
r 2 [n?/4].

Although Nekhoroshev’s Theory has been a classic subject of study in the dynamical
systems community for more than forty years, the proof of Theorem[2.3.2]has remained
poorly understood. This is possibly due to the fact that such a demonstration does not
involve any arguments of dynamical systems, but combines quantitative reasonings of
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real-algebraic geometry and complex analysis. Moreover, real-algebraic geometry was
at a more rudimentary level than nowadays at the time that Nekhoroshev’s was writing;
for this reason, important properties of real-algebraic geometry are discoverecﬂ in [94]
at the same time that they are used to prove Theorem [2.3.2] which makes that work
obscure in many parts. In addition, the proofs of some lemmas in that work are sketchy
or presented in an old-fashioned way. For these reasons, the first part of this work is
devoted to proving and refining Theorem [2.3.2] by making use of modern results of
real-algebraic geometry. As we will discuss in detail in the sequel, Yomdin’s Lemma
about the analytic reparametrization of semi-algebraic sets (see [[116]]) turns out to be
the fundamental ingredient of real-algebraic geometry which is used in the proof of the
genericity of steepness.

Moreover, since the definition of steepness is not constructive, it is difficult to di-
rectly establish whether a given function is steep or not. Up to the author’s knowledge,
there are only three articles on this topic (see [111], [47], [[13]]) which concern only
polynomials of low degree depending on a small number of variables. Actually, by
developing the arguments used by Nekhoroshev to prove Theorem [2.3.7] it is possible
to deduce explicit sufficient algebraic conditions for steepness involving the derivatives
up to an arbitrary order of functions depending of an arbitrary number of variables.
This proves fundamental for applications of Nekhoroshev’s theory to physical models.
The second part of this work is dedicated to this topic. Namely, we will prove refined
versions of the Theorems below.

Theorem 2.3.3. The semi-algebraic set Q(r, n) in Theorem[2.3.2] satisfies

n—1
Q(r, n) = closure U Projpg. ,yZ(r,m, n) 2.3.2)

m=1

where Z(r,m, n) is a semi-algebraic set of P(r, n) X REXxR"xU(m—1,n), K = K(r,m)
is a suitable positive integer, and U(m — 1, n) is the compact m — 1-dimensional Stiefel
manifold in R" (see section[3|for its definition).

Moreover, for any m € {1, ...,n— 1}, the form of Z(r, m, n) can be explicitly com-
puted.

Remark 2.3.3. Theorem [2.3.3]is a first example of an explicit criterion for steepness.
Infact, as it is known, there exist explicit general algorithms of real-algebraic geometry
that allow to compute the explicit form of the projection and the closure of any given
semi-algebraic set (see e.g. [[18]). Hence, at least in principle, it would be possible to
compute the rh.s. of 2.3.2) - hence Q(r, n) - as the form of Z(r, m,n) is known due
to Theorem [2.3.3] However, the complexity of the classic algorithms grows double-

SFor example, it is remarkable that, up the author’s knowledge, a fundamental Bernstein’s inequality for
algebraic functions is proved for the first-time in Nekhoroshev’s work (see [[16]]). Such a result seems to have
passed unnoticed, until it has been widely rediscovered and generalized in the late nineties by Roytwarf and
Yomdin in [[107], and subsequently developed by several authors.
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exponentially in the number of variables, so that they are of little use in practice (see
(72]).

Remark 2.3.4. Alternatively, one could use Theorem|273_73'|in order to check if a function
hof class C?"~! around a point I is steep in the following way. Indicating by T; (h, r, n)
the r-jet of h at I, by (2:3:2) one could check whether there exists 7 > 0 such that, for
any m € {1,...,n— 1}, and for any choice of parameters f € RK x R" x U(m — 1, n),
the pair (T Io(h, r,n), f) lies outside of Z(r, m, n). This would guarantee that T Io(h, r,n)

lies outside of closure <U"m_=11 Projp, . Z(r, m, n)), so that (2:3.2) and Theorem [2.3.2
would ensure steepness. This is indeed one possibility, and we will make it more ex-
plicit in the next section (see Theorem B). However, this criterion involves checking
an explicit condition for a non-compact set of parameters (the first components of the
vectors f§ above lie in RK x R”, whereas the remaining ones belong to the compact
Stiefel manifold U(m — 1, n)). As we show below, on "most subspaces" steepness can

be checked by making use of criteria involving only parameters belonging to a compact
set.

Namely, let & be a function of class C*"~! around the origin, satisfying VA(0) # 0.
Then,

Theorem 2.3.4. It is possible to find explicit algebraic criteria involving the derivatives
of h up to order r that ensure that h is steep on the one-dimensional subspaces around
the origin.

Moreover, for any m € {2, ...,n — 1}, one has the following properties.

1. his steep at the origin on the m-dimensional subspaces orthogonal to Vh(0) # 0
on which the restriction of the hessian D*h(0) is non-degenerate.

2. On the m-dimensional subspaces of Vh(0)L on which the restriction of D2h(0)
has exactly one null eigenvalue, it is possible to construct explicit algebraic cri-
teria for steepness that involve the r-jet of h at the origin and a finite number
of real parameters lying in a compact subset. These criteria can be constructed
starting from the explicit form of subset Z(r, m, n) in Theorem[2.3.3|by the means
of algorithms involving only linear operation

Therefore, explicit criteria for steepness involving only the r-jet of A exist in case
m=1. Incase m € {2,...,n — 1}, instead, with the exception of the m-dimensional
subspaces of VAL (0) on which the restriction of D>A(0) has two or more null eigenval-
ues, steepness can be checked by using a criterion which is simpler than those stated in
Remarks [2:33]2.3:4] Moreover, for any value of m € {1,...,n — 1}, the Hessian of a
generic function A is non-degenerate on most subspaces of the m-dimensional Grass-
mannian G(m, n), as the following result shows.

%Hence, much simpler algorithms than the general algorithms of real-algebraic geometry.
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Theorem 2.3.5. Consider an integer m € {2, ... ,n — 1}. For any bilinear, symmetric,
non-degenerate form B : R" X R" — R, the m-dimensional subspaces on which the
restriction of B is degenerate are contained in a submanifold of codimension one in the
Grassmannian G(m, n).

2.4 Informal presentation of the proofs
Roughly speaking, the proof of Theorem [2.3.7]is split into two parts:

— General considerations of semi-algebraic geometry allow to prove that the com-
plicated condition[TT.2T]arising in the definition of steepness is an open property
in the space of polynomials P(r, n). Namely, if (IT.2:I) holds for a given poly-
nomial Q € P(r, n), then it holds also in a neighborhood of Q with the uniform
indices a4, ..., a,, and uniform coefficients Cy, ..., C,,, 6.

— Also, condition (TT:2Z1) is not satisfied if and only if the Taylor polynomial of
h satisfies a certain number of algebraic equations. A detailed analysis of these
equations ensures that they only admit a non generic set of solutions.

In the present work, we have results on the two sides of the proof.

2.4.1 Reparametrization of semi-algebraic sets and Bernstein’s in-
equality

We revisit Nekhoroshev’s reasonings of semi-algebraic geometry under the light of
more recent results in the field.

Due to (IT.2-1)), a central point to check steepness of a given function 4 at a point
I € R” consists in ensuring a minimal growth of the projection of its gradient on any
affine subspace orthogonal to VA(I) # 0. For a fixed affine subspace I + I" equipped
with local coordinates and with the induced euclidean metric, by Remark [IT.2.T] the
projection of VA(I) onI" corresponds to the gradient of the restriction A| ;- expressed
in the local coordinates. Hence, one is led to study the locus of minima of ||VA|; |l
By the above considerations, without entering into too many technicalities, a crucial step
in Nekhoroshev’s proof of the genericity of steepness consists in considering, for any
fixed polynomial P € R[X}, ..., X,,], the semi-algebraic set - called thalweg nowadays
(see [28]]) - determined by :

R™ > Tp :={u e R"[||VPW|| < [|[VPW)|| Vv € R" s.t. [[u]| = [|v]|} . (2.4.1)

Nekhoroshev shows that 7 contains the image of a semi-algebraic curveﬂ y which
admits a holomorphic extension with the exception of a finite set of singular complex

7Le. a curve having semi-algebraic graph, see also Deﬁnition
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points whose cardinality depends only on the degree of P and on the number of vari-
ables. In particular, one can ensure the existence of a uniform real interval of analyticity
and of a uniform complex analyticity width for the curve y, independently on the choice
of the polynomial P € P(r, m). More specifically, the graph of y can be parametrized by
analytic—algebraidﬂ maps, and the existence of a Bernstein’s-like inequality controlling
uniformly the growth of this kind of functions in the complex plane ensures uniform
upper bounds on the derivatives of these charts (see [[107], [116]], [117]], [16]] and refer-
ences therein for a modern presentation).

Actually, this result about the thalweg in [94] is a particular case of a general theo-
rem due to Yomdin [[116] about analytic reparametrizations of semi-algebraic sets (the
finitely-differentiable case was firstly stated by Yomdin and Gromov in refs. [[115]], [[67]]
and then proved by Burguet in [44]). Generally speaking, the reparametrization of a
semi-algebraic set A is a subdivision of A into semi-algebraic pieces A; each of which
is the image of a semi-algebraic functionﬂ of the unit cube. The uniform control on the
parametrization of the curve y is unavoidable in [[94]], since it ensures that - for a smooth
function - steepness is an open property.

Moreover, it is proved that the coefficients of the Taylor expansions of non-steep
functions satisfy suitable algebraic conditions (one has a "finite-jet" determinacy of
steepness). In this way, the study of the genericity of steepness is reduced to a finite-
dimensional setting which involves polynomials of bounded order and this is another
crucial step in order to prove the genericity.

It is worth adding some remarks about the fact that Nekhoroshev proves a kind of
Bernstein’s inequality for algebraic functions (see [94]], Lemma 5.1, p.446). Namely,
Nekhoroshev proves that an algebraic function which is real-analytic over a real inter-
val I admits a bound on its growth on the complex plane which only depends on its
maximum over I and on a constant depending on the degree of the polynomial solving
its graph and on the size of its complex domain of holomorphy. This result is proved
by exploiting the properties of algebraic curves of complex polynomials in two vari-
ables, and by making an intensive use of complex analysis. The original statements are
difficult to disentangle from the context of the genericity of steepness and the proofs
are very sketchy. This is different from the strategy used by Roytwarf and Yomdin
(see [[107], [[117] and references therein) which relies on arguments of analytic geome-
try. Since we have not been able to find any reference that shows Nekhoroshev’s proof
of Bernstein’s inequality in detail except for the original paper [94], we have clarified
and extended Nekhoroshev’s reasonings in [[16]], and this allowed to obtain a simpler
proof of recent results of complex analysis.

It is also worth mentioning that, in connection with arithmetic, the steepness con-
dition is introduced to prevent the abundance of rational vectors on certain sets and
it can be noticed that deep applications of the controlled analytic reparametrization of

8Le. analytic maps whose graph solves a non-zero polynomial of two variables.
9That is, a function whose graph is a semi-algebraic set, see also Definition
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semi-algebraic sets yield bounds on the number of integer points in semi-algebraic sets
(see [26] and [50]]). In the future, these ideas may help to spread light on the connec-
tion between the stability of nearly-integrable Hamiltonian systems and the arithmetic
properties of semi-algebraic sets.

We also mention that, in the study of PDEs, the Yomdin-Gromov’s algebraic lemma
was used by Bourgain, Goldstein, and Schlag [37] to bound the number of integer points
in a two-dimensional semi-algebraic set.

2.4.2 Degeneracy condition

We describe heuristically the second part of the proof of Theorem 232 To make
things simple, we restrict this informal discussion to the case of a real-analytic function
h around the origin. By formula (TT.2.I), if 4 is non-steep at the origin, then for some
m € {1,...,n—1} there exists a m-dimensional subspace ' and a curve y C '™ starting
at the origin on which the projection (zr» Vh)|, is identically null. Assuming that y is
sufficiently regular, this means that (zr» V h)|, has a zero of infinite order at the origin. It
can also be shown (see Theorem[5.0.1)) that the the curve y on which such a condition is
satisfied must possess a precise form. By these arguments, one can write down explicitly
the equations imposing to the derivatives of the function (- Vh)|, to be all identically
null. Moreover, by complicated computations it is possible to check that these equations
are all linearly independent. Then, estimates on the codimension of a projected set
show that, if one bounds the order of the derivatives that are being considered in the
equations by r € N,r > 2, the Taylor polynomials of non-steep functions belong to
a semi-algebraic set of positive codimension in the space of polynomials P(r, n). It is
this kind of computations - which are expressed explicitly for the first time in this work
- that allow to prove Theorem [2.3.3]

Moreover, by construction, the equations that we are considering depend also on the
Taylor coefficients of the curve y and on the vectors spanning the considered subspace
™. This explains the presence of the space of parameters RX and of the Stiefel manifold
in the statement of Theorem [2.3.3] On the one hand, by suitably exploiting the form
of the equations, one can prove Theorem [2.3.4] On the other hand, Theorem 2.3.5]is
independent and its proof relies on the construction of a suitable system of coordinates
for the Grassmannian.

2.4.3 Structure of the work

This work is organized as follows: section [3] sets the main notations and definitions,
whereas the main results (refined versions of Theorems [2.3.212.3.312.3.4}2.3.3) are
stated in section ] Section [5] construction of the thalweg and the reparametrization
of semi-algebraic sets, whereas section[f]is devoted to the study of the degeneracy con-
dition described in the paragraph above. Section[7]puts together the results of sections
[B]and [6]in order to prove the genericity of steepness. Finally, sections contain
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the proof of the explicit criteria for steepness.



Chapter 3

Main notations and definitions

Norms

For any n € N*, and for any v € N* U {0}, we denote by || - ||, the standard £¥-norm
in R".

For any integer ¢ > 1, and for any open subset D of R", the symbol C9(D) indicates
the set of g-times continuously differentiable maps f : D — R. Moreover, we indicate
by CZ(D) the subset of C4(D) containing those functions f satisfying

Iflcacpy := sup sup [0* f(x)] < +oo. (3.0.1)
aeN" xeD
lal<q

In particular, (CZ(D), Il cacp) ) is a Banach space with multiplicative norrrﬂ

Sets

In the sequel, we will make use of the following notations:

— For any d > 0 and for any f € CZ(D), the symbol B9(f, d, D) indicates the
infinite-dimensional open ball of radius d centered at f for the norm (3.0.1);

— D,(z() indicates the open complex disc of radius p > 0 centered at z, € C;

B"(I, R) indicates the real ball of radius R > O centered at I € R”".

For any connected set A C C, we denote the complex polydisk of width r around
A by

), i= {ZEC st ||z—=All, := inf ||z —2|| <r} .
z’eA

IThat is, satisfying an inequality of the form | fg| < K|f| |g| for a suitable constant K.
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Notations of real-algebraic geometry

For any pair (r, n) of positive integers, and for any function A of class C” in a neighbor-
hood of some point I, € R", we denote by

— P(r,n) C R[X,, ..., X,] the subspace of polynomials over the real field in n real
variables with zero constant term and whose degree is bounded by r;

— P*(r,n) C P(r, n) is the subset of those polynomials Q that verify VQ(0) # 0;

- T I (h,r,n) € P(r,n) the Taylor polynomial at order r of the function h(1)—h(1)
centered at 1.

Now, let k, n be positive integers, with k < n.

— We indicate by G(k, n) the k-dimensional Grassmanniann in R”, i.e. the compact
manifold of k-dimensional linear subspaces in R”.

— We also denote by U(k, n) the compact k-dimensional Stiefel manifold in R”, that
is the manifold of ordered orthonormal k-tuples of vectors in R”.

For any set A C R” X R™, we indicate by I1, A its projection onto the first n coor-
dinates, that is the set

A :={xeR":JyeR"|(x,y) € A}.

Finally, let m, n be positive integers satisfying m < n, and let {u; ..., u,,} be a set of lin-

early independent vectors in R”. Foreachi € {1,...,n}andj € {1,...,m}, we denote
the i-th component of the vector u; by u; For any multi-index y = (g, ..., #,,) € N,
we set |u| :=||u||;. Given I, € R" and a function £ of class C'#l in a neighborhood

of I, we also denote by

Hi Hm
hlﬂl[ u u ]._
I() 1 g eses m e

n . .

ol h(1y) W iy i i, (3:0.2)

Z Uty ety Uy
& ol ..ol ..ol .0l
lll""’ll}llzl 11 1uy ml My,
P

the u-th order multilinear form associated to the u-th coefficient of the Taylor expansion
around [ of the restriction of 4 to Span (u, ..., u,,).



Chapter 4

Main results

4.1 Genericity of steepness

As we discussed in Theorem[2.3.2]in the Introduction, the steepness property is generic,
both in measure and topological sense, in the space of jets of functions of sufficiently
high regularity. In this paragraph, we will give a more quantitative version of this result.
Namely, the statement below is a refined version of Nekhoroshev’s Theorem on the
genericity of steepness, which can be found in refs. [94]- [96].

Theorem (A). Let r,n > 2 be two integers, and let s := (s1,...,5,_1) € N1 be a
vector satisfying 1 < s, <r—1forallm=1,...,n—1.

There exists a closed semi-algebraic subset Q)'° of P(r, n) such that, for any 1, €
R", for any real number ¢ > 0, for any open, bounded domain & C Cg’ _1(§n(10, 0)),
and for any function h satisfying

1. heD,
2. Vh(Iy) #0,

3. HT,O(h, rom)—Q°

= inf ||T, (h.r.n)=OQllo>7>0,
) QEQ;.S 0

one can introduce positive constants € = €(r,s,7,n), R = R(r,s,7,n,0), C, =
C,(r,s,,7,n)-wherem=1,...,n—1-and 6 = 6(r, s, t,n, 0, D) so that any function
fe€2 . feBUnheB Upo) el

is steep in B"(1,, R), with steepness coefficients C,,, 6 and with steepness indices bounded
by

_ S , ifm=1

a,(s) := " i 4.1.1)

2s,,—1 ifm>2 .
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Moreover, in P(r, n) one has

codim Q' ° Zmax{O, min  {s, —m@m —m— 1)}} . (4.1.2)
me{l,...,n—1}

With the setting of Theorem @.I)), we give the following

Definition 4.1.1. A function f € C~! (B"(I,, 0)) satisfying the hypotheses of Theo-
rem A is said to be steep at order r at the point I, for the vector s. The functions g € &
verifying

Vep)#0 . Tyrme | Pr.m\Q;s
seN 1
1<s,,<r—1
vme{l,...,n—1}

are said to be steep at order r at the point .

With respect to the original result by Nekhoroshev, a few aspects are refined or
clarified in Theorem E.1]

1. The dependence of the steepness coefficients C,,, m € {1,...,n — 1}, and 6 on
the distance 7 to the bad set Q;’s, is made explicit. In particular, as it will be
shown in sectionm for fixed n,r, s, when r — 0O, then both 6 - Oand C,, = 0
forallm=1,...,n — 1, whereas the bounds «,, on the steepness indices are left
unchanged. Hence, when 7 — 0, steepness may "break down" due to the steep-
ness coefficients tending to zero (whereas the steepness indices of those functions
whose r-jet lies outside of Q° stay uniformly bounded).

It is important to stress that the above reasonings do not necessarily imply that a
function g € CZ"I (En(lo, 0)) whose r-jet satisfies T; (g,r,n) € Q' - for some
vector s € N"~! as the one in Theorem A - is non-steep. For example, if for two
vectors 8,8’ € N1, g/ £ g, having the same properties of the one in Theorem
A, onehas [|T; (g, n)—Q;’sllloo >0, T, (g, n)—Q"#|| , = 0, then g is steep
at order r at I for the vector s’ but not for the vector s. Hence, it admits different
bounds on the steepness indices than the functions whose jets lie outside of Q'-°.
Therefore, the only result that one can infer from the relation T I (g,r,n) € Q;’s
is that, in case g were steep, its steepness indices would admit a different upper
bound than the one in @.1.1).

By Theorem A, definition [A-1.1] and by the above discussion, the set
(|  QFcPrn (4.1.3)

seN™!
1<s,,<r—1

contains the r-jets of all Cgr‘l functions around the non-critical point I, which
are non-steep at order r at I,. In the same way, when r — +4oco, the Taylor
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coefficients of all non-steep analytic functions at the non-critical point I, belong

to the set
o0 o0
o, =) (] @ < [Jren. (4.1.4)
r=2 seNn—l r=2
1<s,,<r-1
vme({l,...,n—1}

Relation (#.1.4) is the explicit version of what Nekhoroshev meant when he wrote
"Hamiltonians which fail to be steep at a noncritical point are infinitely singular:
they satisfy an infinite number of independent conditions on the Taylor coeffi-
cients" (see [94], p. 426).

Actually, the strategy of proof given in the present work follows Nekhoroshev’s
reasonings by showing - for any given Q € P(r, n)- the existence of an arc, whose
image is contained in the thalweg 7, (see Definition , admitting a fitted
parametrization whose derivatives are controlled by constants depending only on
the number of variables » and on the degree r, but not on Q. This is a particular
occurrence of the fact that - with the exception of small neighborhoods - a semi-
algebraic set can be reparametrized by a collection of holomorphic functions with
a domain of analyticity and an upper bound which depend only on the number
of variables and on the number and on the degrees of the polynomials involved
in the construction (see [[116] and [118] for a two-dimensional semi-algebraic
set, and [26]], [50] for higher dimensional sets with more general properties than
semi-algebraicness). The considered analytic reparametrization is a partial ex-
tension of a theorem (called algebraic lemma) due to Yomdin [[115]] and Gro-
mov [67] which ensures that, for any semi-algebraic sets, there exists a collection
of Ck—mappings which parametrize entirely the considered set. This latter theo-
rem would be also relevant in our reasonings and, in theory, we would not have to
exclude neighborhoods of the singularities as for the analytic reparametrizations
(this causes extra difficulties in our proof). Actually, in our proof we must remove
the singularities for other reasons and, also, the use of Ck—reparametrizations
would not allow to obtain a characterization of non-steep functions as in 4.1.4]
where a control of all the derivative up to infinity is needed.

2. The vector s does not appear in the original statement. Indeed, Nekhoroshev
implicitly sets

-2

max{l,r—1+m(n—m—l)—n(n4 ) , for n even
Sy =Sy, 1= 2
-1

max{l,r—1+m(n—m—1)—(n4) } s for n odd .

4.1.5)

From a heuristic point of view, in ref. [96]] this choice was probably conceived
in the following way: in estimate ([#.1.2)), one may want to get rid of the quantity
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m(n —m — 1), which attains the maximal value n(n — 2)/4 for m = n/2 when n is

even, and (n — 1)?/4 for m = (n — 1)/2 when n is odd. Hence, @.1.3) is the best
choice which allows to get rid of the term —m(n — m — 1) in @I.2) and which
still guarantees the essential condition 1 <5, <r—1.

Choice @#I.3), in our case, yields (see @1.1)-@1.2))

max 1,r—1+m(n—m—1)—@ s for neven, m = 1
Y
max 1,r—1+m(n—m—1)—(n 41) }, fornodd, m=1
@) 1= 3 nin—2)
max< 1,2r=3+2mn—m—1)— > , forneven,m>?2
(n—1)?
max 1,2r—3+2m(n—m—1)—T s fornodd, m > 2 ,
(4.1.6)
and
-2
max{O,r—l—n(n ) , if nis even
codim Q% > 4.1.7)

_ 12
max{O,r—l— ( 41) } if nis odd .

For m = 1, the bound @.1.6) on the steepness indices is half of the one found
in [96]. For m > 2, the estimates in [96] coincide with (@.1.6). Estimate @.1.7)
on the codimension coincides with the one in [96]].

3. Theorem holds true even for functions in the class C;“. In that case, one
considers 1 < s,, < |r/2| forany m = 1, ...,n— 1, which yields worse estimates
both on the indices of steepness and on the codimension. This is the case which
was considered in [94], whereas the regularity Cgr‘l was introduced in [96].

4.2 Explicit algebraic criteria for steepness

The kind of genericity stated in Theorem A implies the classic notions of genericity in
topological and in measure sense. However, Theorem A alone is not sufficient when
dealing with applications of Nekhoroshev’s Theory to physical models. Infact, in or-
der to infer long-time stability of a sufficiently regular integrable model Hamiltonian h
under any sufficiently small and regular perturbation, one needs to have a criterion to
check at which points of its domain the given function 4 is steep. As we shall show in
the sequel, establishing a criterion of this kind is a non-trivial developement of the proof
of the genericity of steepness. Namely, in the rest of this section we will present explicit
algebraic criteria for steepness which involve the Taylor coefficients at any order of the
studied function.
In order to give rigorous statements, we first need to introduce some notations.
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4.2.1 Some additional notations

For any positive integers n > 2 and k € {2, ..., n}, we introduce the notation
%'(k,n) ={,uy,...,u) € R" XUk — 1,n)| tk(v, uy, ... ,uy) =k} . 4.2.1)

For fixed integers m > 2and a > 0, forany § € {0, ...,a},and foranyi € {1,...,m},
we also introduce the family of multi-indices

+1,0,..,0), fori=1
N s v gy =4 P ). fori 42.2)
(3,0,..,0,1,0,...,0), fori=2,..m

where the "1" fills the i-th slot for i = 2, ..., m. When a > 1, we denote the multi-indices
u € N"of length 2 < || :=||ull; £ a + 1 not belonging to the family #.2.2) with

M@ i={peN", 2<ul <a+1)\ | (vi.p}. 4.2.3)
Moreover, for given values of « € N, y = (yy, ..., u,,) € N"and £ € {1,...,m},

we introduce the multi-index u(2) = (@ (£), ..., i,,(£)) for which i@,(£) 1= u; — 8,4,
i=1,...,m, and the set

G, (W), ) 1= {k = (kg vvn s higgs v s Ko v K py) € NUTZDX(@=D)

a m a 4.2.4)
Yok =0, @O+ Y Y ik = a} .
i=2 j=2i=2
For any k € G,,(U(©), a), we set k! 1= kop!...koy! ... kyp! ... k! and for any
HeN"weset u! i=p!l..op,l.
We define also
EnZ.@) 1= (4 €N | G, (i(£), ) # @) . (4.2.5)

Finally, we consider a quadruplet of positive integers r > 2,n > 3,1 < s <r—1,
2<m<n-1,apoint I € R", and a function £ of order C” around I,.

With this setting, for any given @« € {1,...,s}, and £ € {1,...,m}, we introduce
the functions

h,1,
mt,a

H sV N mn) x RDS S R

associating to any element (v, u,, ..., u,) € 7 Y(m,n) and to any vector a(m,s) =
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(@a1sees@ogreee s s ee s Gpy) € RUDXS the following quantities
H 0 uy, .. ou,, a(m, 5)) i= B2 [0, 0] a=1, ¢=1
m,1,1 s UD s eee s Uyyy ) = IO ) ) - ’ -
H™D (0,uy, ...y, a(m, 9)) i= B2 [v,u] a=1, £€{2....m
m,f,l s UDs eee s Upyy B L IO s Uy ’ - ’ LR
HZ:{?Z(U, Uy, ..., Uy, a(m,s)) 1= h?o[u, v,v] , ifs>2, fora=2,and £ =1

ifs>3,forae{3,...,s},andZ =1

h,I, .
Hm’l"’a(u, Upy .oy Uy, a(m, 8)) 1=
1 a—1 1 4 m
a+1 p+l1
LM CERTIED) GO L Y » 2 a1 ]
: p=1 : i=2
141_1 k22 kZa km2 kmtx
i —— " —~N= —~N = —~N =
hfo [ U, Guly .o, Goglly 5oy Aol s .. s amaum,u]
+ Z Z (uy — DI k!
HEE,(1,0) kEG,,(i(1).a) ! o
HEM,, (@)
H1#0
(4.2.6)
ifs>2,fora e {2,...,s},and Z € {2,...,m}
a
h.1, 1 ~
Hmf(fa(v, Uy ooy Uy, a(m, s)) 1= ah‘zrl v ,uf]
M kap ko K K
i —~ —~
hlo U, Gyolly 5eeey Qoglly o eeey Qupllyy s eoes amaum,uf]
* Z k!
HEE,(£.a) kEG,,(I(£).) !
HEM,,(a)
He#0
4.2.7)

With the setting above, we can state the first explicit criterion for steepness. Its
Corollary B2 is a refined version of Theorem [2.3.3]

4.2.2 Theorem B and related corollaries

Theorem (B). Let r,n > 2 be two integers, and let s = (s,...,S,_1) € N1 pe a
vector verifying 1 < s; <r—1foralli =1,...,n—1. Consider a point I, € R", a
real number ¢ > 0, and a function h of class CZ’_I(B”(IO, 0)) verifying Vh(1,) # 0.
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i) If the system

weS"
sp+1 (4.2.8)

h}o[w] = hf,o[w, w] = =h"w,...,w] =0
has no solutiorﬂ then h is steep around the point I on the affine subspaces of dimension
one, with steepness index bounded by s.
In the sequel, we set N = N (r,n) := dim P(r, n).
ii) If, for some m € {2, ...,n—1}, there exists R,, > 0 such that for any polynomial

S e BN(TIO(h, r,n), R,,) the system

(uy, ..., u,) € U(m,n)

a(m, s,,) 1= (g, ooy Gyg seees Qs eee s Qg ) € ROm=DXsp,
=mt X, au (4.2.9)
11, = ¢l = ol =
S} (0] = S} ] =+ = S} [, ] =0

m Sm S,IO _
szzl hI M)y, .y, a(m,s,)) =0

has no solution, then h is steep in a neighborhood of I on the affine subspaces of
dimension m, with steepness index bounded by o, < 2s,, — 1.

Though the quantities which are involved in Theorem B are quite cumbersome, the
idea behind the result is not difficult to grasp: condition (#:2.9) amounts to asking that
the r-jet of A(I) — h(I) lies outside of the semi-algebraic set Q; *S defined in Theorem
A. This will be made clearer in Corollary B2.

As it will be discussed in the technical sections of the present work, for any m €
{2,...,n—1}, the real parameters a,y, ..., ay ...y, .- » Qy,, appearing in @2.6)-
#Z77) and in the statement of Theorem B represent the Taylor coefficients of analytic
curves of the type

y(@) = {xl(t) =t , x;(1) 1= Z:’:‘T ajt' j=2,...,m (4.2.10)

which, for any m-dimensional affine subspace I, + I, contain the locus of minima of
the projection ||zpn VT (h,r,n)||,. For any given I'"" and for any function A regular
around I, the existence of a minimal curve of the form @.2.10) is ensured by Theorem
[5.0.1)in the sequel.

Theorem B comes together with important corollaries.

The following one is well-known: its statement can be found in [95]], whereas its
proof can be found in [47]. As we shall see, in our context it is a simple consequence
of Theorem B.

UIn this case,  is said to be s; + 1-jet non-degenerate at the origin.
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Corollary (B1). Consider an integer n > 2, a point 1, € R", and a function h of class
C3 around 1y, satisfying Vh(1y) # 0. If the system

{w es”
4.2.11)

h}o[w] = h%o[w, w] = h;o[w, w,w]=0 (3-jet non degeneracy)
has no solution, then h is steep in a neighborhood of 1, and its indices satisfy

a =2 , max {a,} <3.
m=2,...,n—1
Remark 4.2.1. Actually, as a more careful analysis of 3-jet non-degenerate functions
shows, the result is true for C* functions and one can take max,_; . ,—1i®,} <2
(see [47]).

Thanks to Theorem B, moreover, we have a more explicit characterisation of the sets
Q- appearing in the statement of Theorem A. Namely, as it was the case in the hypothe-
ses of Theorem B, we consider two integers r,n > 2, and a vector s = (sq,...,S5,_1) €
N1 with 1 < s;<r—1foralli=1,...,n—1. Also, we take a point I, € R". This

time, differently to what we did in Theorem B, we do not consider a fixed function.

Corollary (B2). For n > 2, and m = 1, we indicate by Z:,’Sl’l the algebraic set of
P*(r,n) x S" determined by

wes" | P € P*(r,n)
(4.2.12)

Pl w] = P2 [w,w] = - = P w, ... ,w] =0.
0 0 0

Forn > 3, and for any givenm € {2, ... ,n— 1}, we denote by Z;’S’”’m the algebraic set
of P*(r,n) x R"=Dsm x 7" (m, n) determined by

Wy, ... uy) € Um,n) P € P*(r,n)
a(m, s,) 1= (Aopy e sloe senes Gty e, ) € RITTDXsy
( m) m( 21 28, ml ms, (4.2.13)
V=gt Y a5
N P
DD IS M, (., ..y, a(m, sm))‘ =0.
With this setting, one has
n—1
U closure (Tps .,y 27°") = QL (4.2.14)
m=1

where Q% is the semi-algebraic set introduced in Theorem A.

Remark 4.2.2. Since the sets Z:,’S'”’m, m = 1,...,n — 1 in Corollary are alge-
braic, the Theorem of Tarski and Seidenberg (see Th. [AI.) - together with expression
(B:2.T4) and Proposition[A.1.2)- assures that Q7 is a semi-algebraic set of P(r, n), as we
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already knew by Theoremf.I] Moreover, it is worth to notice that - at least in principle
- one could find the explicit expression for Q'-. Infact, the Theorem of Tarski and Sei-
denberg is somewhat "constructive", in the sense that there exist algorithms that allow
to find the explicit expression for the projection and the closure of any semi-algebraic
set (see e.g. [18]]). However, these general algorithms are not very useful in applica-
tions, as their complexity grows double-exponentially with the number of the involved
variables (see [[72]). As we shall show in Theorems C1-C2 below, in "most cases" (in
a sense that will be clarified in Theorem C3) the sets Z;’S'"’m, withm=2,...,n—1can
be projected onto P*(r,n) X 7" (m, n) with the help of a simple algorithm involving
only linear operations. Moreover, such a projection yields a closed semi-algebraic set
of P*(r,n) X 7 Y(m, n). This implies a further criterion to check steepness of a given
function.

Finally, using Theorem B we can state a sufficient condition for non-steepness at a

given point, namely

Corollary (B3). Consider a point 1, € R", and a function h in the real-analytic class
around Iy verifying Vh(1y) # 0.
If at least one of the two following conditions is satisfied, then h is non-steep at I,.

1. There exists w € S" such that h;o[w] =0, VreN.

2. For somem € {2, ...,n— 1}, there exist
(a) m— 1 real sequences {ain}ieN, Jj=2,...,mand a number t > 0 such that
the expansions z::’lo a;;1" admit a radius of convergence greater than t for
allm ;
(b) m linearly-independent vectors v, u,, ... ,u,, € WI(m, n);

such that for all integer r > 2 the following system is satisfied:

-

(uy,...,u,) € U(m,n)
a(m,r—1) 1= (@y1s .o, Qypp_pysoe s Qs o s Apy(p_py) € RUTDXCD
dv=u; + Z;":zajl u;
h}O[U] = h}O [up] = - = h}O [u,,] =0
e P ‘Hi’;f’a(u, Uy, ... sty a(m, s, )| =0.
(4.2.15)

Remark 4.2.3. Since we consider any r > 2, we have an infinite system.

4.2.3 Theorems C1-C2-C3

As we have showed above, Theorem B constitutes an explicit criterion for steepness
which, however, for any given valueofn > 3,m € {2,...,n—1}ands, € {1,...,r—1}
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depends on the additional parameters @y, ..., dy, s s yis o> s, € RDSm and
on the vectors v,u,, ..., u,, € 7 Y(m,n). As we have already pointed out in Remark
B27] it is possible in principle to reduce these quantities from system @2.9), by the
means of classical algorithms of semi-algebraic geometry (see [[18]]). However, in gen-
eral the complexity of the latter grows double exponentially in the number of variables
(see [[72[]) making them of little use in practice.

However, since the quantities in (#.2.6)-(#.2.7) are explicit, one may attempt to ex-
ploit their specific form in order to find an algorithm which is simpler than the classic
ones and that allows to eliminate at least the parameters asy, ..., dag 5.3 G2y - > Ay,
from system @.2.9). In this way, one would have an explicit criterion for steepness
involving only the multilinear forms of the tested function A up to a given order, the
parameters a,y, ..., ,,, and the vectors v, u,, ..., u,,.

Having an explicit criterion for steepness involving only the coefficients a,, ... , a,,
and the vectors v, u,, ..., u,, as additional free parameters constitutes a qualititative im-
provement w.r.t. Theorem B in view of possible applications. Infact, as we shall show
in the sequel, without any loss of generality the numbers a,,, ... ,a,,; and the vector v
can be assumed to belong to a compact subset. Moreover, the vectors u,, ..., u,, be-
long to U(n, m — 1), which is compact by definition. Therefore, if one manages to find
a criterion that does not involve ayy, ..., s ..., 4y, ..., Gy, , one only has to deal
with additional parameters belonging to a compactum. Moreover, the presence of the
vectors v, U,, ... , U, permits to keep track of the subspaces one is working on; namely,
it is possible to isolate the subspaces where the studied function is non-steep.

As we prove in sections [OI0] for a generic regular test function A and for any m €

{2,...,n}, on most of the m-dimensional subspaces of the Grassmannian G(m, n) one is
able to apply an explicit criterion to check steepness that does not involve the parameters
Ayps -5y s een sy, -oe s Ay this s the content of Theorems C1-C2-C3.

In order to state these results, we start by considering an integer n > 3, and a function
h of class C? around the origin, satisfying VA(0) # 0. Now, forany m € {2,...,n—1}
we need to consider three subsets of the Grassmannian G(m, n).

Definition 4.2.1. For any integer m € {2,...,n — 1} and any integer j € {0, 1}, we
indicate by A j(h, m, n) the subset of G(m, n) containing those m-dimensional subspaces
'™ satisfying

1. VA©0) LT™;

2. the Hessian matrix of the restriction of & to I'™, calculated at the origin, has
exactly j null eigenvalues.

Definition 4.2.2. For any fixed m € {2, ...,n — 1}, the symbol A, (A, m, n) indicates the
subset of those m-dimensional linear subspaces I € G(m, n) that satisfy the following
conditions

1. VhR(O) LT™;
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2. the Hessian matrix of the restriction of & to I'™, calculated at the origin, has 2 or
more null eigenvalues.

With the above setup, for any fixed m € {2, ...,n — 1}, we have
{I'™ € G(m, n)[T"™ L Vh(0)} = Ay(h, m, n) |_| Ay(h, m, n) |_| Ny(h,m,n). (4.2.16)

We are now ready to state Theorems C1-C2-C3.

Consider two positive integers r,n > 2, a vector s := (s, ..., 5,_;) € N"~!, with
1<s;<r—1foralli=1,...,n—1, and a function A of class Cg’_l around the origin,
satisfying VA(0) # 0. Then, for any given m € {2,...,n — 1}, one has the following
results (which, considered together, are refined versions of Theorems[2.3.4}{2.3.3]in the
introduction):

Theorem (C1). h is steep at the origin, with index a,, = 1, on the m-dimensional
subspaces belonging to Ay(h, m, n).

Theorem (C2). If s,, > 2 there exist two semi-algebraic sets
Ay (1, 8 1y M), Ao (F, 8,y 1, M) C P*(r,0) X R™ ' x 71 (m, n)
satisfying the following properties:

1. The form of S|(r, s,,, n, m) can be explicitly computed starting from the expres-

sion of set Z,;""" in @.2.13)) by the means of an algorithm involving only linear
operations.
2. If system
(wy,...,u,) €U@m,n) , Span (uj,u,, ..., u,) € Aj(h,m, n)
(To(h,r,n),0,uy,uy, ..., u,) € d(r,s,, n,m)

(4.2.17)

has no solution, then h is steep around the origin with index a,, < 2s,, — 1 on
any subspace I'™ € A (h, m, n).

3. There exists a positive constant & = F (r,n, m) such that if

—m-—1

(021,...,am1)6 B (c%.)
Uy, uy) €Um,n) vi=up+ 2 a4 42.18)
Span (v,u,, ..., u,,) € Ay(h,m, n)

(To(h,r,n),app, ..., Gy, Uy, Uy, ... s Uy,) € Ho(F, S, 0, M)

has no solution, then h is steep around the origin with index a,, < 2s,, — 1 on
any subspace I'™ € Ay(h, m, n).
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Remark 4.2.4. We observe that the statement above gives no information about the ex-
plicit expression of subset &/,(r, s,,,n,m). As it will be shown in sections the
linear algorithm used to deduce the form of < (r, s,,, n, m) starting from set Z;’S””m in
#2173) fails in case v, uy, ... , u,, span a subspace belonging to A,(h, m, n). Therefore,
in order to find the explicit expression for @/, (r, s,,, n, m) one is obliged to apply the clas-
sical, much slower algorithms of real-algebraic geometry to the set Z;’S’"’m determined
by system (@.2.13). Thus, checking steepness on the subspaces of A,(h, m,n) is more
complicated than on those belonging to A(h, m, n), as one is obliged either to apply
slow algorithms to find the explicit expression of system (@.2.18), or to use the state-
ment of Theorem B, which nevertheless depends on the non-compact real coefficients
Axps ey g s eee s Apds oee s Ui

However, for a generic function & the subsets A;(h, m,n) and A,(h, m, n) are "rare"
inside the Grassmannian G(m, n). Namely, in Theorem C3 below we prove that for any
m € {2, ...,n—1} and for any bilinear symmetric non-degenerate formB : R"XR" —
R, the subspaces of dimension m on which the restriction of B has one or two null
eigenvalues are rare in G(m, n), both in measure and in topological sense.

Theorem (C3). LetB : R"XR" — R be a bilinear, symmetric, nondegenerate form,
andletm € {2, ...,n — 1} be a positive integer.

For j € {1,2}, denote by G;(B,m,n) C G(m, n) the subset of linear m-dimensional
subspaces on which the restriction of B has at least j null eigenvalues.

Then

1. G;(B, m, n) is contained in a submanifold of codimension one in G(m, n);

2. Gy(B,m, n) is obtained by the intersection of G;(m, n) with another subset con-
tained in a submanifold of codimension one in G(m, n).

Finally, we state the following conjecture, which will hopefully be proved in a future
work.

Conjecture: for a generic bilinear form B, the subset G,(B, m, n) appearing in The-
orem C3 is contained in a submanifold of codimension two in G(m, n).
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The Thalweg and its properties

It is clear from Definition [TT.2.]] that studying the steepness property at the origin of
a given function 2 € C?(B"(0,25), R) satisfying VAa(0) # 0, amounts to studying the
projection of its gradient on any m-dimensional subspace I perpendicular to VA(0),
with m € {1,...,n — 1}. More precisely, given 6 > 0, for any fixed n € [0, 6] we are
interested in the quantity

up @™, m) 1= uel"’r"nlillllllﬁv [|7zrm VAW, .

Since, for any given I orthogonal to VA4(0) and for any # € [0, 6], the value pu,(I'™, 1)
is attained at some point of the m-dimensional sphere

Sy i={uel™ [ |lully=n},
it makes sense to give the following

Definition 5.0.1. We call Thalweg of h on I the set

T(h,T™) = {I* €T : ||mpn VRA®)|| = pu, M, ) for 0<n:=||I*]|<5}.

In the sequel, we will be interested in studying the thalweg 7 (Ty(h, r, n),I'") of the
Taylor polynomial T(h, r, n). Namely, the goal of this section is to prove the following

Theorem 5.0.1. (Nekhoroshev, [|94)]) For any pair of integers r,n > 2, and for any real
0 > 0, consider a function h € C"(B"(0,26)) satisfying Vh(0) # 0. Then, given a
number m € {1,....n — 1}, for any m-dimensional subspace I'™ orthogonal to Vh(0)
there exists a semi-algebraic curve y with values in T (Ty(h, r,n),I'"™) such that y(0) = 0
and

1. For any fixed n > 0, the intersection Im(y) N S’;" is a singleton;

2. There exists a positive integer A = d(r, n, m) that bounds the diagram (see Def.

[AT2) of graph(y);
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3. There exists K = K(r,n,m) > 1 such that, for any A > 0, the curve y is real-
analytic on some closed interval 1, C [—A, A] of length A/K, with complex ana-

Iyticity width A/X;
4. Over1,, yisani-arc, i.e. it can be parametrized by
x:(t)y=t or somei € {1,....m
y0 =4 Jorsome € {hom}
x;(1) = f;@) forallje{l,.,m}, j#i

where the [ ; (t) are Nash (i.e. analytic-algebraic) functions;

5. y satisfies a Bernstein’s inequality on its Taylor coefficients over the interval 1.

Namely, indicating by

+00

L= au@t el .m), j#i,

p=0
the Taylor expansion of f ; at some point u € I1,, there exists a positive constants
Ky(r,n,m), andM =M(r,n,m, f) 1= p! X KP x K, (r, n, m) for which the following
uniform estimate holds:

i [a;0)] < - (5.0.1)
Remark 5.0.1. The Theorem above corresponds to reasonings holding in the polynomial
setting. Moreover, the constants d,K,M depend only on the degree of the considered
polynomial. Consequently, this Theorem holds uniformly for any r-jet of any function
h € C"(B"(0,26),R).
Remark 5.0.2. Nekhoroshev calls y "minimal arc with uniform characteristics" (see
[94]], section 4). In that work, the statement of Theoremmis not given in the form
above but is rather split in dispersed parts. Moreover, many of the modern tools of
real-algebraic geometry were lacking at that time, so that the redaction of his work
appears quite obscure in some parts. These two elements makes difficult for the reader
to reconstruct simply Theorem@from Nekhoroshev’s original paper.
Remark 5.0.3. The Bernstein’s inequality at point 5 of Theorem [5.0.1] is essential in
order to have stableEl lower estimates for the steepness coefficients of 4. For more details
about this result, which is interesting in itself and has applications in various fields of
mathematics, see refs. [107] and [16].

Some intermediate Lemmas are needed before demonstrating Theorem [5.0.1]

Lemma 5.0.1. Take any triplet of integers r,n > 2 and m € {1,...,n — 1}. There
exists d = d(r,n,m) > 0 such that, for any Q € P(r,n) satisfying VO(0) # 0, and for
any subspace T'™ perpendicular to VQ(0), the thalweg T (Q,I"™) is a semi-algebraic

set satisfying diag(T (Q,T™)) < d (see Def. . Moreover, for any fixed no > 0, the
intersection of T (Q,T™) with the sphere S};’(’) c I' is compact.

UIn the sense given in Th. that is valid for an open set of functions.
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Proof. T™ is obviously isomorphic to R™ and admits a global system of orthonormal
coordinates x = (xy, ..., x,,,). We denote by P(x) € P(r, m) the restriction of Q(I) to
I' ~ R™. Since we endow I with the induced euclidean metric, studying the norm
of the projection of V;Q(I) on I amounts to studying the induced norm of V, P(x)
on I ~ R™. Now, consider the semi-algebraic set

€ :={(x,y.m) € R™XR : ||x|3 = ¥[3 = n*.n > 0, [IVPIl, > [IVPW)II)
(5.0.2)
By the Theorem of Tarski and Seidenberg [A-T.T] and Proposition [A-T.T] we have that
the set R™\7z,.€ (= {x e R"XR : V(y,n) € R" XR, (x, y,n) ¢ £} is semi-algebraic.
We claim that it coincides with 7(Q, ™). Infact, by the definition of &, it is clear that
for any given # > 0 one has

x €RM1E < [[VPWIl, < [IVPOII, forall y € R” s.t. [Iyll,> = [Ix11,7.
(5.0.3)
so that x € R™\x,£ is the locus of minima on any given sphere for ||V P||, (that
is for ||zr=VQ||,), that is it coincides with the Thalweg 7 (Q,I"™). Moreover, since
deg P < r, the diagram of £ is uniformly bounded w.r.t. any P € P(r, m) and, again
by the Theorem of Tarski and Seidenberg, the same is true for z,.£ and for R"\z £ =
7O, ™).

It remains to prove that 7(Q,T"™)NS, :I:’) is compact. By construction, 7(Q,I"™)NS "7’(‘)
is the locus of minima of ||V P|| on 5};’;. Since the function ||V P||, is continuous on
S,;", the inverse image of its minimal value on S’;'é is closed. Since S,;'é is compact, the
thesis follows. O

The next Lemma shows how an analytic curve with uniform characteristics can be
extracted from the Thalweg.

Lemma 5.0.2. Fix a triplet of integers r,n > 2 and m € {1,..,n — 1}. There exist
positive constants D(r,n,m) € N, and K; = K;(r,n,m) € R, i = 1,2, such that,
for any & > 0, for any polynomial Q € P(r,n) satisfying VO(O) # 0, and for any
m-dimensional subspace I'™ orthogonal to VQ(0), there exists a semi-algebraic curve
¢ = (), ..., d,, () : [0,&] — T(Q,I"™) having the following properties

1. For any fixed n € [0, &), the intersection Im(¢) N S';" is a singleton;
2. The diagram of graph(¢) (see Definition|A.1.2)) is bounded by D;

3. There exists a closed interval I, C [0,£] of length &/ K, over which ¢ is real-
analytic, with complex analyticity width /K ;

4. On the closed complex polydisk (Iﬁ)g/Kl of width £/ K, around 1;, one has the
uniform Bernstein’s inequality

max |¢;(n)] < Ky ¢ forany j € {1,...,m}.
nelele/k,
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Proof. Asin Lemma[5.0.1} we consider the isomorphism I ~ R™, and a global system
of orthonormal coordinates x = (x, ..., x,,). We proceed by steps. At the first step, we
build a semi-algebraic function ¢; associating to a sphere S';” of given radius > 0
the minimal value attained by the coordinate x; on S ’;” At Step 2 we apply Yomdin’s
reparametrization to one of the algebraic components of ¢»; and we get a function with
the suitable properties. Finally, at Step 3, we repeat the same construction for the other
coordinates.
Step 1. For any & > 0, by Lemmal5.0.1| the set

TA(Q.I™ :=T(Q,I™n {x € R™ : ||x]]3 < &%}

is semi-algebraic and its diagram is bounded by a positive constant d = d(r, n, m). By
the Theorem of Tarski and Seidenberg[AT.T] the continuous function

fi:=7:00,T") —R X —> X

is semi-algebraic and its diagram is bounded by a quantity depending only on r, n, m.
Infact,

graph(f}) := Hgmyp{@, v) € R" XR™ [ u € T(Q,I"™),u = v} .

Moreover, Lemma assures that for any 0 < 5y < & the set 7:(Q,I"™) N S’;’(’) is
compact, so that f; admits minimum on it. On the other hand, the function g;
T:(0,I"™) — R, x > ||x]|, is also semi-algebraic of diagram by a quantity de-
pending only on r, n, m, since

graph(g)) 1= {(x,y) e R"XR | x € T(Q.T™), ||x||;—»* =0} .
Then, by applying Proposition [A.T.TT] we have that the function

¢; 1 [0,¢] — R n+— inf fi(x)= min
xeg () XET(Q.I"NS)!

{x} (5.04)
is semi-algebraic and we indicate by d; = d,(r, n, m) its diagram.

Step 2. Corollary [A-T.T|ensures the existence of a number Ny = N(d;) and of an
open interval I! C [0, £] of length &/ N, over which the restriction ¢, |71 is algebraic.
By Proposition [A.T.6] ¢; |71 is d;-valent and has no more than d; zeros on its domain
so that there exists an interval J! C I! of length &/(N,(d,) X (d, + 1)) over which the
restriction ¢, | 71 has definite sign. Without loss of generality we can assume ¢ (1) > 0
for all € J' (one considers —¢, otherwise).

We denote by & and &, the extremal points of the interval J! and we rescale the
domain by setting

u+1 u—lél) (5.0.5)

o FLI—R g =gy (6 - 15
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We also define the function
@ (u)

5 9
which satisfies the hypotheses of Theorem[A.2.T} With the notations of Theorem[A.2.T]

we choose the value 6 :=

P1(u) 1= 0<pw<1, (5.0.6)

so that, once at most Y; neighborhoods of length
8Y,(d))

26 around the singularities of @, are eliminated from [—1, 1], the remaining set has a
Yy

measure which is no less than 2 — Z 2x1/(8Y,) =7/4 . Moreover, the number of the
i=1

partition intervals is bounded by the uniform quantity Y, log, (SYl ), so that there exists

an interval A| C [—1, 1] satisfying

7

A= —1
l 4Y, log, (8Y))

on which @, is real-analytic. Infact, by Proposition the complex singularities
of @, are at distance no less than 3|A,| from the center ¢; of A;. By Theorem
A can be affinely reparametrized by a function y; : [-1,1] — A, which maps the
complex disc D;(0) into the complex disc D (c;) of radius ¢ := %lAI |. Hence, we can
write

max ;)] < max @) —@0)] + [9,(0)]
weD,(¢))

ueDa(cl) (5 0 7)
= max_|@ oy (z) — @;oy(0)| + |9,(0)]

2€D;(0)
so that, by Definition[A.2.1]and Theorem|[A.2.1]and by the fact that | @, (u)| < 1 for any
u € [—1, 1], we obtain
@ <2. 5.0.8
% l@ ()] < (5.0.8)
Scaling back to the original variables, by (5.0.3)) the interval A; is mapped into an

: ¢ g 5H-& _ ¢ ~ :
interval Al of length |A1| = |A] = |A1|2N1(d1)><(d|+1) and center ¢; and, in the

same way, the radius rescales as o w om. Therefore, taking into account
1“1 1

(5.0.6) and (5.0.8), there exists a uniform constant M; = M;(d;) such that the following

Bernstein’s inequality is satisfied

~

ZeD:/Ml (c;

max )|¢1(z)| <2&. (5.0.9)

Step 3. Since Af is compact, ¢1(Af) is also compact and the inverse image
Ué(Q, .= gl_l(d)l_l(d)l (A'f))) is closed. Moreover, since the diagrams of ¢; and g,
depend only on r, n, m, then by PropositionsIA. 1 .7HA. 1 .8HA. 1 .9|the diagram of Uie(Q, rm

also depends only on r, n,m. Hence, for any fixed n € Af we have that the set S:I” N
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Ué(Q, I'™), which contains the points of the Thalweg that have minimal coordinate x,
on the sphere of radius #, is compact and semialgebraic with a bound on its diagram
depending only on r, n, m. Hence, the coordinate x, admits a minimum on this set and
we can repeat the same argument of Step 2 on the function

¢ A — R p— min fL(x)= min _ {x} (5.0.10)
xeg; ' (n) XES;'NULQ.I™)

where we have set f, : 5'"7’:) n Ué(Q,F’”) — R, x — x, and g, : S’;’(’) N
Ué(Q, 'y — R,x > |[|x]||, . The curve ¢ := (¢, ,,....d,,) is constructed by
iterating this procedure m times.

Points 1, 2, and 3 of the thesis follows easily from this construction. Point 4 is a
consequence of estimate (53.0.9) applied to the complex polydisk of uniform width & /K
around the common uniform real interval of analyticity T, B of the functions ¢, ..., ¢

m*

O
We are now ready to state the proof of Theorem [5.0.1]

Proof. (Theorem [5.0.I) We assume the setting of Lemma [5.0.2] with Q equal to the
Taylor expansion Ty(h, r, n), and we proceed by steps. At Step 1, we show that there
exists a component ¢;, i € {1, ..., m}, of the curve ¢ introduced in Lemma@l whose
first derivative admits a lower bound on a domain of uniform length. Then, at the sec-
ond step, we use this fact to apply a quantitative inverse function Theorem and we
reparametrize ¢ by the i-th coordinate. Steps 3 and 4 contain, respectively, the proofs
of points 1-4 and of point 5 in the statement.

Step 1. We cut the uniform interval of analyticity I, into three equal intervals and
we denote by I,g the central one, whose length is |I§| = |I§| /3. We indicate by 51
and 52 the extreme points of Zé Since for any given n € If by Lemma we
have #? d)?(n) + ..+ d)fn(n) there must be some component ¢; of the curve, with
iell,..,m}, satisfying

|1§| &
19:&) — ¢ (ED| > — = K (5.0.11)
1

At the same time, for some point 23 € 7, e we have

168 — 6, @)l = B EIITe] = |¢;<53>|% . (5.0.12)

On the one hand, relations (5.0.11)) and (3.0.12)) together imply

2 1
|@)(&)] 2. (5.0.13)
On the other hand, for any n € 5 |15| 53 + |I§|] C I, one has the estimate

PAOETACYHES max ¢/ 1ln - &l (5.0.14)
¢
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which, thanks to the classic Cauchy estimate and to the Bernstein inequality of Lemma

[5.0.2] implies

() — (&) 2Ky ;117 — & 2K‘2K2| &l 5.0.15)
(M) — @:(&)| £ —— max |@;|ln—&| < n—2=&l. (5.0.
i i\e3 52 (I.f).f/lq i 3 § 3
. : e e 2 5
Hence, for any # in the interval J; := [53 KK, &+ era C I, we have by

(3.0:13) and (5.0.13)) that

B,00] = 161G - 1¢m) — D)) L1 KK ¢
#i00) > [|4E)] - 1900 = (| = - - — K, " 3

(5.0.16)

Step 2. By Lemma[5.0.2]and by the construction at Step 1 we can apply the quanti-
tative local inversion Theoremlﬂ_ﬂ'for ¢; at any point 7 € J; C 1. By making use
of the notations in Theorem [B.0.2] we can set the uniform parameters

Ref
Kl

1 K
I¢§(n)|2% . max |¢7/| <2 (5.0.17)

Hence, ¢, is invertible in the complex closed polydisk (J¢) /16 around the real interval
J, & where

min,, ||
R':=lxmin{R, : ! e = 52 .
2 max(,). o, 19 | 8mK?K,

Since, by construction, ¢; is real-analytic in J,, the continuity of the derivative ensures
that ¢;(J;) is an interval of R. The inverse function is analytic in the complex polydisc
of uniform width

. R R ¢
R" := N=>——=———— 5.0.18
rr}én|¢,| 8 2 Tom 18wk, ( )
around ¢,(J;). Using (5.0.16), one has that its length is no less than
(b(T)] > min | x | ;] > 2 x — = (5.0.19)
P T T am T K2k, o

Step 3. Point 1 of Theorem [5.0.1] follows by Point 1 of Lemma [5.0.2]and by the local
inversion Theorem applied at Step 2. Points 2, 3, and 4 of Theorem [5.0.1] are also
immediate consequences of the local inversion Theorem at Step 2.

Namely, by keeping in mind the notations at Point 4 of Theorem [5.0.1] the curve
y = qboq')i_l can be defined as

X, =t
r@:=q"
{xj(t) = fi(x;) 1= (l)j(gl)i'l(x,-)) forallj € {1,...,m}, j#i.
(5.0.20)
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The existence of an interval of analyticity with uniform length and complex width
for y is a consequence of (5.0.18)) and (3.0.19) and the constant K in the statement can
be taken equal to

K:=128m’K{K, . (5.0.21)

Indeed, for any 0 < 4 < &, I, can be chosen to be any interval of length A/K contained
in the interval ¢;(J,;) C [—4, A] (see (5.0.19)). For later convenience, we also observe
that the above discussion implies that

@Dk, DTk, 207 A - VAE(0,€]. (5.0.22)

The fact that the diagram of graph(y) depends only on r, n, m is an immediate conse-

quence of (5.0.20), together with point 2 of Lemma[5.0.2and with Propositions[A.T.8}
A.1.0

Step 4. It remains to prove the Bernstein’s inequality at Point 5 of the statement. By
Lemma[5.0.2] for any 4 > 0 we have

max |¢;(n)] < K, 4 (5.0.23)
n€(@ )k,

for some uniform constant K, = K,(r, n, m) and forany j € {1,...,m}. By construction
in @, fj(xl) = ¢j0¢i‘l(x,-), and for any f € NU {0} the classic Cauchy estimate
implies

MaX ze(1,),/x |f;(2)I 8 Kﬂmaxze(li)‘ﬂ‘ |¢j°¢,~_1(2)|

AP ' AP

max | fP ()] < p1KP
€1, "/
(5.0.24)
For any 0 < A < &, by (5.0.22) one has ¢7'((1,),x) C (I;);/k,- Taking this into
account, (5.0.24) and (5.0.23) yield

MaXye(z,), i, 19,00 1
< KB 2D _ g2
= <P = prP R (5.025)

max | fP )| < pr&’
tel, "~/

The thesis at Point 5 in the statement follows by setting M = ! x K, x KP.



Chapter 6
s-vanishing polynomials

We take into account the results and the notations of the previous section, in particular

Theorem [3.0.11

6.1 Heuristics and Definitions

The goal of the first part of this paragraph is to provide the reader with a heuristic justi-
fication for introducing the special class of s-vanishing polynomials in the study of the
genericity of steepness. A rigorous description of the rdle played by these polynomials
will be given in the next paragraphs and sections.

For any fixed integer n > 2, we consider the euclidean space R" and we endow
any of its linear subspaces with the induced metric. For any pair of positive integers
1 <m<n—1andr > 2, for any given function A of class C" near the origin satisfying
Vh(0) # 0, and for any m-dimensional subspace [ orthogonal to VA(0), by Def.
11.2.2] the set T (Ty(h, r,n),I"™) is the locus of minima of ||zp» VTy(h, r,n)||, on the
spheres S};”(O) c I, withy > 0.

In Theorem [5.0.1] we have proved the existence of a minimal semi-algebraic arc y
(see (3:0.20)) of diagram d(r, n, m) parametrized by one coordinate and whose image
is contained in the thalweg 7 (Ty(h, r,n),I"™). Due to Proposition - y is piece-
wise algebraic, with a maximal number of algebraic components depending only on its
diagram d(r, n, m). With the exception of a finite set of complex points, any algebraic
function admits locally a holomorphic extension, and the number of its singularities is
bounded by a quantity depending only on its diagram (see appendix[A.2] or [16] for more
details). Therefore, y(¢) is real-analytic with the exception of a finite number of points
whose cardinality is bounded uniformly by a quantity depending solely on d(r, n, m).
In particular, for any A > 0, this ensures the existence of an interval I; C [—A4, A] of
uniform length A/K(r, m, n), where K = K(r, m, n) is a suitable constant, over which y ()
is real-analytic with complex analyticity width A/K.

By the above reasonings, for sufficiently small 4 > 0 the interval (—34, 34) contains

67
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no singularities of y(¢). In particular, y(¢) is real analytic in L; := (4,24), with com-

plex analyticity width A, and the same holds also for || 7w VTy(h, r, n)| /() ||22 in that

interval. Hence, if the function || 7= VTy(A, 1, n)| /() | |22 has a zero of infinite order at
some point t* € L, then it is identically null in L,. Then, by Deﬁnition and
by the minimality of y, this implies that the polynomial Ty(h, r, n) cannot satisfy the
steepness property at the origin on the subspace I'".

We claim that a kind of converse result - involving I, instead of L, - is also true: if
To(h, r, n) is non-steep at the origin on the subspace I'”, then || zrn VTy(h, r, n)|y(t) | |22
must have a zero of infinite order in I,. This observation is fundamental in order to
prove Theorem A. Actually, the necessity of a zero of infinite order has been proved for
a real-analytic function in [98]] via the curve-selection Lemma; however, in the polyno-
mial setting considered here, we have a much stronger quantitative result.

Motivated by this heuristic argument, we are interested in studying the properties
of those real polynomials of m > 1 variables whose gradient has a zero of sufficiently
high order on some curve y parametrized by one coordinate. In a first moment, we
do not consider the fact that these polynomials are the restrictions to a m-dimensional
subspace I'" of polynomials defined in R”, with n > m. This will be taken into account
in section[7} Therefore, we give the following definitions:

Definition 6.1.1. We indicate by ©,, the set of curves y(f) with values in R™ such that
1. y(#) is real-analytic in a neighborhood U, of the origin, and y(0) = 0;

2. forsome k € {1,...,m},and forallt € U

xk(t):t
y(@® = _ )
x;)=f;0) Vje{l,..m}, j#k.

Forfixedi € {1, ...,m}, we denote by @in the subset of curves in ©,, that are parametrized
by the i-th coordinate.

Remark 6.1.1. We are asking the arc y to be analytic at the origin, but the minimal
arc obtained in Theorem [5.0.1] did not necessarily have this property (the origin was
not included, in general, in the uniform interval of analyticity I, C [—A4,1]). As it
has already been discussed in the introduction, this is an issue that comes from the use
of analytic reparametrizations of semi-algebraic sets. We will deal with this apparent
difficulty in section|[7]

Remark 6.1.2. For the moment, we do not make any assumption on the sizes of the
neighborhoods of analyticity U, of the arcs in ©,,. Hence, the results of this section do
not require any uniform lower bound on |U, | as in Theorem Nevertheless, the
existence of a uniform lower bound will prove to be necessary in order to to demonstrate
the results of section[7]
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Remark 6.1.3. The definition of the set ©,, is coordinate-dependent. However, as we
have showed in Chapter [3] (see Theorem [5.0.1), for any function » € C"(B"(0,26))
verifying VA(0) # 0, and for any euclidean suspace I'™ orthogonal to VA(0), there
exists a minimal arc y € ©,, with uniform characteristics whose image is contained in
the thalweg 7 (T (h, r, n),I'™).

Definition 6.1.2. For any pair of integers s > 1 and i € {1,...,m}, we indicate by
9,,(s) (resp. 9! (s)) the subset of (P*(s, 1))™ = P*(s,1) X --- x P*(s, 1) containing the
truncations at order s of the Taylor expansions at the origin of all curves in ®,, (resp.

in @ﬁn ). The elements of 9,,(s) will henceforth be referred to as s-truncations.

Remark 6.1.4. Clearly, 9,,(s) (resp. 19;, (s)) is isomorphic to the set of s-jets of curves in
0,, (resp. G)f" ). Moreover, the set 19;1(s) is isomorphic to R™~DXs since for any curve
y € @ﬁn its s-truncation J, , € Sin(s) is determined by the first s Taylor coefficients at
the origin of the functions f;, with j € {1,....m}, j #i.

Remark 6.1.5. With the definitions above, one has the following decompositions:
m m
%:an, %m:U%m. 6.1.1)
i=1 i=1
Definition 6.1.3. Fix three integers r > 2, m > 1,and 1 < s < r — 1. A polynomial

P € P(r,m) is said to be s-vanishing if there exists an arc y € ©,, such that on its
s-truncation J, , € 9,,(s) the gradient of P has a zero of order s at the origin, namely

a (op
dr® ()xf

The set of s-vanishing polynomials in P(r, m) is denoted by o(r, s, m).

) =0, Vee{l,..m},Vae{0,..s}. (6.1.2)
Ty 0/ 1=

In paragraph[6.2] we shall investigate the properties of the set (r, s, m) C P(r, m)
of s-vanishing polynomials: we shall prove that

projection onto P(r, m) of an algebraic set Z(r, s, m) of P(r,m) X 9,,(s) whose
ideal can be explicitly computed ;

1. for any given value of r > 2, m > 1,1 < s < r — 1, it is the semi-algebraic

2. it has positive codimension.

Secondly, in paragraph[6.3] we shall show that any polynomial P belonging to the com-
plementary of the closure of o(r, s, m) in P(r, m) satisfies a "stable" lower estimate on
its gradient. As we shall see, "stable" means that the estimate holds uniformly true for
any polynomial belonging to a neighborhood of P.

Finally, in section [} we shall prove that a polynomial Q € P(r,n) satisfying
VQO(0) # 0 is steep around the origin iff there exists 1 < s < r — 1 such that, for
allm € {1,...,n—1}, the restriction of Q to any m-dimensional linear subspace I'"* per-
pendicular to VQ(0) is contained in the complementary of closure(o(r, s, m)) in P(r, m).
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6.2 Algebraic properties

We assume the notations of the previous paragraph, and we consider a triplet of integers
r>2,m>1,1<s <r—1. We work in the euclidean space R" equipped with
coordinates (xy, ..., x,,), and we consider a polynomial P = P(x) € P(r, m) satisfying
the s-vanishing condition on the s-truncation J;, € 9,,(s) of some curve y(r) :=
(x1@), ..., x,,(1)) € ©,,. Unless explicitly specified, we will henceforth work in the case
in which y is parametrized by the first coordinate, as the generalization to other cases
is immediate. Hence, y(t) := (1, x,(0), ..., x,,(1)) € ©! .

6.2.1 Casem=1

We observe that, for m = 1, we have the following simple result:

Lemma 6.2.1. For m = 1, a polynomial P(x) = Y, HeN pﬂx" of one real variable
I<u<r
belongs to the set o(r, s, 1) C P(r, 1) if and only if

py=0 Vu e Nsuchthatl <uy<s+1.
Moreover, o(r, s, 1) is closed and its codimension in P(r, 1) is equal to s + 1.

Proof. For m = 1, the set © is the singleton containing the line y(¢) := x(t) = ¢.

By Definition [6.1.3] it is clear that a polynomial verifying the hypotheses in the
statement satisfies also the s-vanishing condition. Conversely, again by Definition[6.1.3]
it is plain to check that the s-vanishing condition for m = 1 imposes that the coefficients
of the studied polynomial must be null up to order s + 1. The closure of o(r, s, 1) is
due to continuity, whereas codim o(r, s, 1) = s + 1 as such a set is determined by s + 1
independent equations in P(r, 1). O

6.2.2 Notations (casen >3,2<m<n-1)

Up to the end of this paragraph, we will restrict to the case n > 3,2 < m < n— 1.
The goal is to introduce useful notations in order to study the properties of s-vanishing
polynomials in P(r, m).

Using standard notations, we set y := (yy, ..., 4,,) € N" , |u| :=||ul||;, and for

any P € P(r, m) we write

P) = D Pl X x = ) pxt, 6.2.1)
ueN™ ueN™
1< ul<r 1< ul<r

where we have taken into account the fact that P has no constant term by the definition
of P(r, m).
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We also consider a curve y € @:n and - for j = 2, ..., m - we develop its components
f; at the origin, and we write

+00
X0 =f,0=: Y a,f, 6.2.2)

i=1
where we have taken into account the fact that y(0) = 0 by Definition[6.1.1] Thus, the
s-truncation J, € 91 (5) of the curve y is identified by the (m — 1)s real coefficients

m
(g1 es Qg ooy Ay 5 -, Apyg) Of the truncated expansion, namely

Ty =Ty, 1) = <t, Yayt .Y amiti> . (6.2.3)

i=1 i=1
In the rest of this paragraph, we will try to find an explicit expression for the s-
vanishing condition in terms of the coefficients of P and J ,. We first observe that the
s-vanishing condition (6.1.2)) for « = 0 implies

p, =0 forallue N" such that |u| =1 . (6.2.4)

Thus, without any loss of generality, in (6.2.1)) we can only consider the multi-indices
u € N™ that satisfy 2 < |u| < r. Moreover, for £ = 1, ..., m, the £-th component of the
gradient of P reads

oP ~ ~ . ~
== X e p O O =y =8y J=Lam, il = EO]+ 1,
Xyp 'm
HeN
2<|ul<r
(6.2.5)
where 6, is the Kronecker symbol. At this point, we indicate by
@' P(r,m) x 9 (s) — RM x R™DS M = dim P(r, m) (6.2.6)

the trivial chart associating (P, J ) = (P> @215 s ogs ovs Q1 -oos Gpyg) and we define
the functions q;a T RM xRDs s R 2 e {l,..,m}, a € {0,..s)} in the
following way:

JoP

a0 dyoole.a, o= (22
4

) = D....0,1,0,...,0)
sy /) 1=0

Fora € {l,...s} gl o®\(P,J,,) = % <67P >
gm0/, (6.2.7)
L e RO s\
== MGZN'" pe put"? <]; a2k1k> (; amjzf>
2<|ul<r o

where the "1" fills the £-th slot in the multi-index at the rightest member of the first line
and where the last line is obtained by injecting (6.2.3) into expression (6.2.3).
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Remark 6.2.1. In a similar way, when y is parametrized by the i-th coordinate, with
i # 1, one can denote by @' : P(r,m) X 9 (s) — RM x R("=Ds the chart associating
(P, JY,}/) [axd (p”, aiy, o als? veey a(i_l)l, vees a(i_l)s, a(i+1)1, ceey a(H_])S, s Ao vees ams), and
introduce the maps q;aotb’(P, Js’y), ¢ e {l,....m}, a € {0,...,s} exchanging the
role of the first coordinate with that of the i-th coordinate in (6.2.7).

Remark 6.2.2. Comparing expressions (6.2.7) with Definition and expression
(6-2-4), and taking Remark[6.2.T|into account, it is easy to see that any given polynomial
P € P(r, m) satisfies the s-vanishing condition on some truncation J , € 9,,(s) if and
only if

q;aOQi(P, JS’},) =0, forsomeie€ {2,...,m}, forallZ € {1,...,m}, a € {0,...,5}.
(6.2.8)

By the above discussion, we see that the set of s-vanishing polynomials in P(r, m)
is given by

m
o(r,s,m) = U ol(r,s,m), (6.2.9)
i=1
where we have introduced the sets
o'(r,s.m) :=Tp, , Z'(r, s, m) (6.2.10)

and

Z'(r,s,m) := {(P.J,,) € P(r,m) X 9, ()}|(P, J;,,) satisfies

o 6.2.11)
q.,0® (P, J,,)=0forall £ € {1,...m},a € {0,....s}} .
We also set
m
Z(r,s,m) 1= U Zi(r, s,m) . (6.2.12)
i=1

It turns out that the ideal of Z(r, s, m) can be explicitly computed for any given value
of the integers r > 2, 1 < s <r—1,m > ZEI, i.e., one can find explicit expressions
for the quantities q;aodﬁ(P, Js ). for any value of 7 € (1,...,m}, « € {0,...,s}, and
ie{l,..,m}

Before stating this result, for any given value of i € {1,...,m} we will introduce
new global charts for P(r, m) X Sjn (s) which - though unessential for the validity of our
results - yield nicer expressions for the equations g, o®'(P, J;,) = 0 than the standard
chart @'. As it will be shown in the next paragraph, the variables a i1sd # i, associated
to the linear terms of the s-truncation J , can be incorporated in the coordinates of the
polynomial P. This simplifies the calculations and yields more readable formulas.

I'The case m = 1 is easier, see Lemma
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6.2.3 A useful chart for P(r,m) X 9,,(s) (casen > 3,2 <m<n—1)

Here too, we restrict tothe casen > 3,2 <m<n-1.

Once again, we only consider the case in which y is parametrized by the coordinate
i = 1, the other cases being trivial generalizations. Some of the quantities introduced in
the sequel should be labeled with an index 1, as their definition depends in an obvious
way from the choice of the parametrizing coordinate. However, in order not to burden
notations, we drop, when possible, the reference to the fact that we are considering the
case i = 1.

In order to define a new chart for P(r, m) X 19r1n (s), we start by observing that, if we
denote by Ay, ..., A,, the canonical basis associated to the coordinates xy, ..., x,,, in R™,
for any fixed vector b := (by, ..., b,,;) € R™™!, we can define the new parametric basis

Up i= Ay + by Ay +b31 Ay + ..+ b, 1A, uy i =Ay, .., u, =4, (6213)
associated to the parametric change of variables
Ly R" —R", (x1,...x,) —> y(0) 1= (71, 72(0), ey T1n(D))s (6.2.14)
where

Vii=x1 . Va=yab) i=xa=byyxy o Yy = Yu(P) =X = by Xy
(6.2.15)
Obviously, for any fixed b € R™~!, the change of coordinates (6.2.13) in R™ induces
a change of coordinates also in P(r, m). Infact, the pull-back of the polynomial P(x) is
indicated by

Po(y(d) := PoLy'(y0) = Y p,y®N =1 Y p,(p,. D)y (®),
neN” neN™
2L ul<r 2L ul<r

(6.2.16)
where the new coefficients p, = p,(p,, by, ..., b,,) are polynomial functions of coef-
ficients p,, and on the parameters b € R™-!. For any given b € R™~!, thereisal—1
correspondence between the quantities p,, and p,,, as they represent the coordinates of
the same polynomial written in different bases. Moreover, by (6.2.2), in the new vari-
ables (6.2.T3) the components of the push-forward £,0J; , = L,0J;, € 92 (s) of any
s-truncation J, , € 9} (s) read

N
i =t . oy =@ —bt+ Y apt . jE(2..m}. (6217
i=2

By looking at expression (6.2.17), we see that, for any s > 2 and for any given s-
truncation J, , € 19},1(s), it is possible to find a parametric change of coordinates L in
R™ such that the image £,07; , € 19,1n(s) has no linear terms except for the parametriz-
ing component: it suffices to choose b = a = (ay,....a,,), With (a,...,a,,) the
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coefficients of the linear terms of J; ,. Taking (6.2.T6) into account, this also entails
that, for any given truncation J, , € SrIn(s), there exists an associated set of coordinates
Py = pﬂ(pﬂ, a), with a := (a1, ..., a,,1), in the space of polynomials P(r, m). Hence,
we can parametrize the coordinates of any polynomial P through the linear coefficients
of any truncation J , .

Namely, we firstly observe that d rln (1) is isomorphic to

()~ {a:=(ay,....a,) ER™}. (6.2.18)

Also, indicating by 19,1n(s, 2) the subset of s-truncations having null linear terms, we have
that

9 (5,2) = {(agps oo s Ao oe s Gy o Gyg) € RTDETDY (6.2.19)
Clearly, one has
Loy — ol 1
9L ()= 91 (1)x 91 (5,2) . (6.2.20)
At this point, with the notation in (6.2:.16), we define the invertible transformation
F'Prm)yxR™ S RM xR M i=dimP@rm)  (62.21)
associating
P= Y patal—|py| @) uernn 2 ,a (6.2.22)
ueN™ 1<|ulgr u' eNm
1<|ul<r 1<\ |<r

and we indicate its image by
wlr,m) := F1(P@r,m)x R™ 1. (6.2.23)

In other words, W !(r, m) is constructed by attaching to any point a € R"™! ~ 19,1n(1)
the fiber of all polynomials in P(r, m) expressed in the variables (6.2.13)) associated to
the value a.
Furthermore, setting
Jsya 1= L30T, (6.2.24)

we have J;, , € Srln(s, 2) by construction because in the adapted variables - as we had
shown in by setting b = a - with the exception of the parametrizing component,
any truncation starts at order two. Taking the notation in (6.2.16) into account, we can
also define the chart

Y' D Pr,m)x 9! (s) — W(r,m) x RIm=DE=D (6.2.25)
associating
(P, T ) — |pw | ) penr 2 s 85,893, s Ay | - (6.2.26)
1<|pl<r u' eN™

1| |<r
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Remark 6.2.3. For further convenience, we also denote by
ul s Per,myx 9L (1) — wlr,m) (6.2.27)
the restriction of Y! to P(r, m)x8! (1). Itis plain to check by formulas (6-2.16), (6-2.22),

and (6.2.26)) that U' is polynomial, invertible and that its inverse is a polynomial map.

Remark 6.2.4. The generalization of the arguments above to the case in which the curve
y € ©,, is parametrized by the i-th coordinate, with i € {2, ...,m}, is immediate. In
particular, one can define functions &*, Y, U, together with sets Wi(r, m).

Remark 6.2.5. With slight abuse of notation, in the rest of this work we will often write
P,.a,J S’y,a) and (P,, a) to indicate the points of Y'(P, Jw) and Wl(r, m) respectively.

For further convenience, we also observe that

Lemma 6.2.2. Any polynomial P € P(r, m) satisfies the s-vanishing condition

d° ( OP(x)

=0 Vae{0,..,s}, Ve l,..,m} (6.2.28)
dr® Ox, Js,y(’)>t=0

on the s-truncation J, € 19,1n(s) of some curve y € G)rln, if and only if it satisfies

ﬂ aPa(Y)
dr 0yf

> =0 Vael0,..s}, VZe{l,..,m}
Jw,a(t) =0

in the adapted coordinates associated to the linear terms of J .

Proof. By (6.2.13)) one has

R 1 0 0 0
Xy =ay, ¥ +y aj 1 0 0

el =T T ey = ey, 01 ol. (6229
Xm = Au1 Y1 + Ym Al 0 0 1

Indicating with (£a‘1(y))kf the (k, £)-th entry of the Jacobian of the inverse transfor-
mation £ in (6:2.29), by the Leibniz formula one has

a <0Pa(y> ) . d | oL )

dr® 0Yf Jsya® /1o d an Jsya® t=0

e P _1 6.2.30
- P, o (6.2.30)

dre dxko - 0 L,0,, () (e e J”'a(t)] 1=0

J0P(x)
()xk

X(E;I(Y))k,fJ (t)]
70,0 sra® ]

d(l
dre

:
:
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. . . —1:
Since the entries of the matrix £ in (6.2.29) are constant, one has

L Dir = (L7 Py s

Jsya(®

so that, finally, reads

e [ P.) _ z’": d* | 0P(x)
dt® ()yf Js,y,a.(t) =0 =1 dt® 0xk

] XL e (6231
Ty (1) =0

By the expression above, it is immediate to check that if P satisfies the s-vanishing
conditionon J , then P, does the same on J , . The proof of the converse is immediate
by applying the same arguments to P(x) = P, oL, (x). U

By the discussion above, one has the choice to write the equations determining
the set Z'(r, s, m) in (6.2.11) either in the original coordinates, where they assume the
form qLLao<I>(P, Jsy) = 0forall £ € {1...,m} and @ € {0,...,s}, or in the new set
of coordinates associated to the change of variables £, in R™, defined in (6.2.13). In
particular, by performing the same computations that led to expression (6.2.7) in the
new variables, and by taking into account the fact that the expansion of J , ,(7) starts
at order two in ¢, one can introduce the functions

Qpy : Wi, m)yx RDED S mo £e{l,....m} a€l0,...,s)}
(6.2.32)
in the following way:

Fora =0, QoY (P. ;) = Qpo(Para. I, ) = Poo..0.10....0)

d® [ 9P,(y)
Fora € (Loss), QoY (P.0) = QP d, ) 1= o (22
dt oy, 720/ 120
» , e Fin(®)
-~ ,
= > mpp )(Za2k1k> ...(Zamjtf>
ueN” k=2 j=2
2<]|pl<r =0

(6.2.33)

Expressions (6.2.7) and (6.2.33), considered together with Lemma [6.2.2] imply that
condition q}aocbl(P, Js.,) = 0 holds if and only if

QreoY (P, ;) = Qpy(Pana, Iy, ) =0, V€ (1,...,m},a €{0,...,s}, (6.2.34)

so that the ideal of the set Z!(r, s, m) in the new variables is given by the equations
QfaoYl(P, Jsy) = Qpe(Pyra, 3, ) =0forall £ € {1...,m} and a € {0, ..., s}. In the
sequel, we will work in these new coordinates, since the involved expressions are nicer.
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6.2.4 Computations and estimate on the codimension of o(r, s, m)
(casen >3,2<m<n-1)

As in the previous paragraphs, wesetn > 3,2 <m <n-— 1.

Once again, we will only consider the case in which y is parametrized by the first
coordinate.

Before stating the main results of this paragraph, we still need to introduce a few no-
tations. For any fixeda € {0, ..., s}, forany f € {0, ...,a},andforanyi € {1, ...,m},
we set

+1,0,...,0), fori =1
Vi =4 P ) ort (6.2.35)
(3,0,....,0,1,0,...,0), fori=2,....m

where the "1" fills the i-th slot for i = 2,...,m. For @ € {1, ..., s}, we also denote the
multi-indices y € N™ of length 2 < || < a + 1 not belonging to this family with

M@ = {(neN", 2<|ul <a+ 1)\ | G/ (6.2.36)

Moreover, for any given a € {1,..,s}, p € N" and ¢ € {1, ..., m} we introduce

Cn(i(£), ) 1= {(k,-z, cnkjy) €N e 4o m)

ud m a (6.2.37)
=T O+ Y T 1y =a |
=2 j=2i=2
and we set
Ent.) 1= {p eN"| G, (i(£), a) # D} . (6.2.38)

Finally, for any £ € {1, ..., m} and for any 4 € N™, we remind that (see (6.2.3))
/’Ij(f) i=uj—06;,, jE{l ....m}.
With these notations, we can now state the following

Lemma 6.2.3. For any choice of integers m > 1, r > 2, 1 < s < r — 1, the set

Z(r,s,m) in (6.2.12) is an algebraic set of P(r, m)X9,,(s), whose ideal can be explicitly
computed. In particular, with the notations in (6.2.33), (6.2.33)), (6.2.36) and (6.2.37),

the set Z(r, s, m) is the image through the inverse of the transformation Y' in (6.2.26)
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of the algebraic set determined by the following equations:

QioPas a, Js,y,a.) =Pva,0 = 0,
Q11(Py, a, Js,y,a.) = 2Pv(l,l) =0,

Q]a(Pas a, Js,y,a,) moacl
— - (@+ 1Dpyq + 2 2 B Pui pyGita—(p—1))
i=2 p=1
(D K k
© Y wmp 3 (H (P Y, ) o,
ue€,(1,a) keG,,(i(1,e) \j=2 Nj2 = Yja
HEM,, ()
1 #0
(6.2.39)
for¢ =1, a=2,..,5s, and
Qr0(Para, Jgya) = Puro) =0,
Qfl(Pa’ a, Js,y,a) = pv(f,l) =0 s
Qfa(Pai a, Js’yya)
- a = Pui.a)
m ~
#(f) k; k'tx
+ Z He Py Z (H<k j k >af212"-ajaj>=0’
UEE,, (€ ,a) keG,,(H().a) \j=2 j2 e Nja
HEM,,(a)
He#O
fort =2,...m, a=2,..,5.
(6.2.40)

Remark 6.2.6. Itis plain to check that the coefficients of the vector a € 19,1”(1) containing
the linear terms of the truncation J; , do not appear explicitly in expressions (6.2.39)-
(6.2.40). However, they are "hidden" in the terms p, = p,,(p,, a) (see (6.2.16)).

As an almost immediate consequence of Lemma [6.2.3] we have that s-vanishing
polynomials are rare in P(r, m), namely

Corollary 6.2.1. Z(r, s, m) has codimension m(s + 1) in P(r,m) X 3,,(s) and o(r, s, m)
is a semi-algebraic set of codimension s + m in P(r, m).

Proof. (Lemma |6.2.5) For fixed s € {1,...,r — 1}, we consider a polynomial P &
P(r, m) verifying the s-vanishing condition on some truncation J ,(t) € 19}’1(s).
Step 1. By Lemma[6.2.2] in the adapted coordinates (6.2.13)) one must have

d_a ()Pa(y)
dt® ay'f
For a = 0, it is plain to check that the terms of order zero in # in (6.2.41)) are the linear

terms of P, for which |u| = 1. Expressions (6.2.41)) and (6.2.33) yield the thesis for
this value of «a.

) =0 Vae{0,..s}, VZe{l,..m}. (6241)
Js,r,a(t) =0
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Then, as we did in (6.2.3)), we drop the linear terms in P, and we write the quantity
0P, (y)/dy, explicitly

oP,(y) = ~ . -
aL = ) e p O ) = =6, j=1am, ul = HE)| + 1.
Ye penm

2<lul<r

(6.2.42)
Taking (6.2.17) into account (with b = (byj, ..., b)) = @ 1= (Ap)s .- »Gpp)), WE
inject in (6.2.42) the components of the s-truncation J; , ,(#), namely

=t . y0=a;r . jE(2..m}, (6.2.43)

i=2

and we obtain

oP.(y)
oy,

s () s (@)
=) ﬂfp,,t”‘“)<2azﬁ’> ---(Zamut“) - (6.2.44)

Js,y.a(t) MENm i=2 u=2
2<|ul<r

Step 2. For a = 1, we must look for the coefficient of the linear term (in ¢) in
expression (6.2.44). Hence, for fixed £ = 1,...,m, since the sums in (6.2.44) start at
order two in ¢, only the multi-index for which ﬁj(f ) =0forall j € {2,....m} and
#,(£) = 1 must be retained in the sum in expression (6.2.44). The first condition
implies u;(Z) = 6, forall j € {2,...,m}, whereas the second yields y;(£) = 1+ 6.
Therefore, by definition (6.2.33)), for fixed £ € {1, ..., m} only the multi-index v(#, 1)
appears in expression (6.2.44) for « = 1. Again by (6.2.35), one has v;(1,1) = 2 and
ve(Z,1) =1for ¢ € {2,...,m} so that the thesis in the case @ = 1 follows.

Step 3. For any given a € {2,...,s}, we are interested in the coefficients of the
terms of order t* in (6.2:44). Hence, we can truncate the internal sums in (6.2.44) at
order a. For the same reason, for any £ € {1, ..., m}, we can neglect from the leftmost
sum in (6.2:44) the monomials u satisfying |j(¢)| > « (hence |u| > a + 1), as their
contribution is of order at least t**!. Thus, for fixed « € {2,...,s}and 7 € {1,...,m},
we have

Qfa(Pa; a, ‘]S’y’a,)

« (@) a ()
4e N . (6.2.45)
==l 2 ﬂfput’““)( azﬂ’) ---(Z%M“)
Z

neN™ i u=2
2<|p|<a+1 =0

due to formula (6.2.33). Now, forany j =2,...,mand ¢ € {1, ..., m}, the multinomial
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expansion yields:

a Hi (@) 7@
; _ M kja Kja 2k p+...4ak
<Z"ﬂ;> = X <k ok )“12' @R
J Jja

i=2 kjookj €N j2
kjpt..tkjq=H; )

(6.2.46)

where we have used the notation (

(0 >._ (2!
kjy o kg kjgl oo k!

ja
Replacing each truncated Taylor development in (6.2.43) by its multinomial expan-

sion (6.2.46), expression (6.2.43)) reads

a ~ n e B
| T own Ol B () et e <
! Jj=2 k/ kja

pueN™ kjpskjq €N j2
2<|p|<a+1 Kjp+..+k jo=fi;(£)
L =0

kj k;
j2 Jja 2kiy+..tak;
)aj2 Qg [ ja
a

% Y wep, 1O Y I1 <kj/:j.(.l./ﬂk

HeNm keNm=Dx(@=1) j=2 j
2<|pl<a+1 k=(kaseskagseeeskmse - sKma)
Vie(2,...,m} -0

- kip+...+kig=H;(£)

(6.2.47)

Moreover, taking (6.2.37) into account, the class of multi-indices G, (i(£), a) se-
lects those terms whose contribution inside the brackets of is of order r*.
Hence, by the above discussion, by and by (6.2.38), for any fixed a € {2, ..., s},
and 7 € {1,...,m}, we can write

m ~
”(f) kj k'a
Qa(Paras g, 5) =al Z He Py Z <H <k J . ap ’2...aja ).
UEE,, (C.a) keG,,(i(&),e) \j=2 \*j2 = Nja
He#0

(6.2.48)

Now, we split the leftmost sum in (6.2.48)) into the partial sums with respect to the
families of indices defined in (6.2.33)) and (6.2.36)), namely for any fixed @ € {2, ..., s}
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and 7 € {1,...,m}, we write
Qfa(Pa; a, Js,y,a,)

a!l
m a m ~
. v;(i, B)(@) kj Kjq
= ZZ Ve(i, B) Puip Z <H<k1 ) ajp /2,..aja1
i=1 p=1 keC,(i(£).a) \j=2 2 -+ Kja
Ve (i, B)EE,, (£ )
v (i,)#0
m ~
u;(6) ki iy
¢ 3w B (T Ye ).
UEE, (£.a) keG,, (i), \j=2 \*j2 - Fja
HEM,(a)
He#0

(6.2.49)

Step 4. We first study the case in which £ # 1. For fixed £ € {2,...,m}, for
any i € {1,...,m},i # ¢, and for any f € {1,...,a}, the monomials corresponding
to the indices v(i, #) do not contribute to the leftmost sum at the r.h.s. of (6.2.49).
Infact, by (6.2.33)), the #-th element v,(i, #) of multi-index v(i, §) is equal to zero for
e{2,..mlandi € {l,...m},i #7.

Moreover, still for fixed £ € {2,...,m}, the indices v(Z, ), with g € {1,...,a},
satisfy V| (¢, f)(¢) = pand V;(¢, f)(£) = O for all j € {2,...,m}, so that by (6.2.37) we
have

- o, ifp=1,.,a—-1
GV, B)&), a) = . :
{0}, iff=a
Consequently, the only monomial that contributes to the leftmost sum at the r.h.s. of
(6.2.49) is the one associated to the multi-index v(#, «), and one has ka =0,..., kja =

0 when 4 = v(Z,a). Moreover, by hypothesis we have v,(£,a) = 1 for any £ €
{2,...,m}. Due to these arguments, for any fixed £ € {2, ..., m}, we can rewrite (6.2.49)
in the form

Qfa(Pa’ a, Js’y’a,)

al
(@) k k
j j2 ja
= pv(f,a) + Z He P,, z ( <k J L > aj2 J "'aja J > .
HEE,(Z ) keC,(u(£).a) \j=2 \"j2 = Tja
HEM,, (@)
He#0

(6.2.50)

This proves the Lemma for £ = 2,....m, a = 2, ..., s.
Step 5. We now consider the case £ = 1. For all j € {2, ..., m}, the sub-family of
indices v(1, §), with f € {1, ..., a}, satisfies Vi (1, §)(1) = fand V;(1, f)(1) = 0. Hence,

thanks to (6.2.37), we find
g, ifp=1,.,a—-1

v(1, (), @) = . 6.2.51
Gn(V(1, p)(1), @) {{0}7 ip=a ( )
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Moreover, we have v(1, a) = a + 1 by construction.
On the other hand, forZ =1, f € {1,...,a} and i,j € {2,...,m}, the multi-indices
v(i, p) satisfy vy (i, f)(1) = f— 1 and V;(i, f)(1) = 6;;. Hence, by (6.2.37) one can write

o
vi(i, (1) =6, = z kj, = kj, =66, forsomev € {2,..,a} (6.2.52)

u=2
and o o
VNEAHD + Y Dk, =p—1+ Yuk,=a. (6.2.53)
J=2u=2 j=2 u=2

By (6.2.32)), we see that condition (6.2.53) can be satisfied by some vector of multi-
integers (kyo, ... s Kogs oo s Ky - s Kppo) if p € {1, ..., — 1}, but cannot be fulfilled for

p = a. Injecting (6.2.32) into (6.2.53) one has

m a
YD ubb,=a-(B-1) forall pe(l,.,a—1}, i€ (2 ...m} (62.54)
j=2 u=2

which implies
Kjy =6 0y 6y a—p—1y forall pge{l,..,.a—1}, i€ {2,...m}. (6.2.55)
Hence, forall p € {1,...,a — 1}, and i € {2, ...,m}, we can finally write

Cn V(i BY(1), @) = {(Kjys s kjo)s G € {2, om), kjy =66, 4 5-1)}  (6.2.56)
and
C,(V(i,)(1),a) =@ . (6.2.57)

Moreover, for i = 2, ...,m, by (6.2.35) we have v, (i, f) = p.

By taking (6.2.51)), (6:2.36)), (6.2.57) into account, expression (6.2.49) with £ = 1
yields

Q]a(Pan a, 'Js,}/,a) &
T =(a+ l)Pv(l,a) + Z z p Puii,p)%ita—(p-1))

: i=2 p=1

m ~
7 ‘. k., (6.2.58)
+ Z M1 Py Z <H <k j . >ajz 2oaj, > .
HeE, (1) keG,(i(1,a) \j=2 \*%j2 = Mja
HEM,, (@)
u#0

This concludes the proof for the case in which Js, € 19,1'1(s).

The proof of the case in which JS,}, S 19jn(s), withi = 2,...,m, is the same: one
just has to take into account that the role of the special index is played by i instead of 1.
Hence, the ideals of the sets Z/(r, s, m) can be explicitly computed and, by expression
(6:2:12), the proof is concluded.

O
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We are now able to prove that s-vanishing polynomials are rare in P(r, m).

Proof. ( Corollary We want to show that, for a given pair (P, J,,) € P(r,m) X
19,1n(s), the ms + m equations in (6.2.39)) and (6.2.40)) are all linearly independent.

Forall # = 1,..,mand @ = 0, ..., s, we collect in table the derivatives
of the functions Q,, defined in (6.2.32))-(6.2.33) - and whose action is made explicit in
- (6:2:40)) - with respect to the coefficients of P, a, and to the Taylor coefficients
of J We have indicated

S,Y,a°

1. with the symbol D, the s X s diagonal matrix whose entries are the numbers a + 1,
fora=1,..,s;

2. with the symbol [, the s X s identity matrix;

3. with the symbol B;, i € {2,...,m}, an s X s matrix whose entry at position a, f,
witha € {1,...,s} and g € {1, ..., s}, reads

0, ifa=1,
(Bi)a,ﬂ = ﬂai(a_(ﬁ_l)) N if 2 <a<s N 1 < ﬂ <a-— 1 , (6259)
0, if2<a<s, a<f<s.
4 o aa/z aPu 0Pv(i.0) 0}9»(1./1) apv(Z.ﬂ) o apv(m,ﬂ)
HeMes) i=1,....m p=1,....,s p=1,....,s ... p=1,..,s
1,....m 0 0 0 [ 0 0 0 0
1 L...,s ... 0 D B, B,
2 1 K 0 0 I8 0 0
0 0 0 0
m L...,s ... 0 0 0 0 Iy
(6.2.60)

Table 6.2.60: Jacobian of Qz,(P,,a, J;, ,) = O with Z € {1,...,m} and « = {0, .., s}.
The first and the second column contain, respectively, all the possible values for the
parameters £ and a. The third column corresponds to the derivatives of Q,(P,, a, J; , »)
with respect to the variables of the vector a € 19}'1(1), and to the Taylor coefficients
of the s-jet J,, ,. The remaining columns contain the derivatives with respect to the
coefficients p,, of P, associated with the families of multi-indices (6.2.33)) and (6.2.36)),
in suitable order.

It is plain to check that matrix (6.2.60) contains a submatrix of maximal rank ms+m
- corresponding to the derivatives w.r.t. those coefficients associated to the family of
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multi-indices (6.2.33)) - independently of a and of the s-truncation J; , , on which the s-
vanishing condition is realized. Hence, since the transformation Y in (6.2.23) is invert-
ible, by Lemmathe set Z!(r, s, m) is determined by ms + m linearly independent
algebraic equations and has codimension ms + m in P(r, m) X 19rln(s).

As it was the case in the proof of Lemma[6.2.3] the same strategy of proof applies
for ZI(r,s,m), j =2,...,m, one just has to switch the role of the indices 1 and ;.

Since ¢! (r, s,m) := Hpy, ,yZ'(r,s,m) (see 210)) and Z'(r, s, m) is algebraic,
by the Theorem of Tarski and Seidenberg (see Th. c!(r, s, m) is a semi-algebraic
set of P(r,m). Moreover, as Jacobian (6.2.60) has rank ms + m w.r.t. the ms + m
polynomial coefficients associated to the multi-indices of the family (6.2.33), for « €
{2,...s}and i € {1,..,m}, by Lemma[6.2.3]and by the implicit function theorem, the
conditions Qz4(P,,a, J;, ,) = 0 imply

Pvi,00 = Pvi,) = 0

(6.2.61)
Puiia) = gia(pﬂ, 3,09, ooy Aogs wes Ay oos Appg) u € M(a)

for some implicit functions g;,. That is, one can express the polynomial coefficients
Pu(i.0)» Pu(i,1)> Pu(i,e @S implicit functions of the remaining coefficients - associated to the
multi-indices in the family M(a) defined in (6.2.39) - and of the (m — 1)s parameters
of a and J,, ,. Moreover, since the functions Q,(P,,a, J, ,) are polynomial for all
¢ e {l,..,m}and a € {0,..,s}, the implicit functions g;, are all analytic. Therefore,
one has an analytic parametrization of ol(r,s,m) given by the m(s + 1) independent
equations (6.2.61), fori € {1, ..., m}, « € {0, ..., s}. This, in turn, yields that

dimo'(r, s,m) =dim W'(r,m) — m(s + 1) = dim P(r, m) + dim 9’ (s) — m(s + 1)
=dimP@r,m)+ (m—1)s—m(s+ 1),
(6.2.62)

which implies that the codimension of ol(r, s, m) in P(r, m) is
codime!(r,s,m)=m(s+1)—(m—Ds=m+s. (6.2.63)

Once again, it is plain to check that the same result holds true also in the case in which

the parametrizing coordinate of the curve gamma is the j-th, with j =2, ..., m. Hence,
one finds codim ¢/ (r, s,m) = m + s for j = 2, ..., m, which, together with expression
(6:229), proves the statement.

0
6.3 Geometric properties
For fixed integers r > 2, m > 2,1 < s <r—1,and forany i € {1,...,m}, we indicate

respectively by X(r,s,m) := o(r,s,m) and Z/(r,s,m) = E[(r, s, m) the closures in
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P(r, m) of the sets (r, s, m) and ¢'(r, s, m) introduced in the previous section. Taking

into account, one has
m
(r, s, m) = U Si(r, s,m) . 6.3.1)
i=1

For m > 2, Corollary [6.2.T]and Proposition[A.1.3|ensure that for any i € {1,...,m}
codim i (r, s,m) = codim 6'(r,s,m) = s +m >0

in P(r, m), so that P(r, m)\Z'(r, s, m) is an open set of full Lebesgue measure. There-
fore, by (6.3.1), the same holds true also for P(r, m)\Z(r, s, m).
As we did previously, when m > 2 we only consider the case in which the index of
the parametrizing coordinate is i = 1, as the other cases are immediate generalizations.
In case m = 1, Lemmal[6.2.1] ensures that

o(r,s,1)=0(r,s,1)=: Z(r,s,1). (6.3.2)

and
codim o(r, s, 1) = codim X(r,s,1) =s+ 1. (6.3.3)

Still for m = 1, in order to make use of uniform notations w.r.t. the case m = 2 and
to simplify the exposition in the sequel, we write

ol(r,s,m)=2(r,s, 1) :=2(r,s, 1) (6.3.4)
and we extend the notations of subsection [6.2.3] by setting
£,:=id , P(y:=PFy , form=1. (6.3.5)

The rest of this section will be devoted to proving the following

Lemma 6.3.1. Let m be a positive integer. For any open set D C P(r,m)\Z!(r, s, m)
verifying DN 2N(r, s, m) = @, there exist positive constants C(D), C5(s, m) such that for
any polynomial P(x) € D and for any arcy € ®r1n one has the following lower estimates

a [ 0P
max d_a a(Y) > C] (D)
£=1,...m|dt ay, Laoy® /) 1—o

incases=1or m=1,

(6.3.6)
e () § @)
=L |d1%\ 0V, p oy ) _ 1+ Cy(s,m) X maxs=p,_m|azs,l
a=l1,...,s 1=0 a=2,...,s

incase2 <s<r—1land m>?2,

where - for m > 2 - P, is the polynomial P written in the adapted system of coordinates
for y introduced in paragraphl@]and L, is the associated transformation defined in
(6:2.29), whereas for m = 1 the symbols P, and L, are to be intended as in (6.3.3).
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Remark 6.3.1. As we shall see in the next section, for any 4 > 0, when y is the mini-
mal arc of Theorem [5.0.1} one can give a positive upper bound - that only depends on
r, s, m, A - to the quantity max,—1,__n |a,,| at the denominator of (6.3.6). This is due to

a=2,...,s
the fact that all minimal arcs satisfy a uniform Bernstein-like inequality on their Taylor

coefficients (see formula (3.0.1)) in Theorem [5.0.T).

Before proving Lemma [6.3.1] we need an intermediate result and a few additional
notations.

.....

In case m > 2, for any given arc y € ®,1n with associated change of coordinates £,
(see paragraph[6.2.3] in particular formulas (6-2.15)-(6.2.29)), we define the direct sum

P(r,m) = Pg(r, m) @ PZ(r, m)

in the following way: for any polynomial R(x) € P(r, m), we consider its expression
R,(y) := Roﬁgl(y) € P(r, m) in the adapted coordinates (6.2.13)) for y; R,(y) can be
decomposed uniquely into the partial sums with respect to the families of multi-indices

defined in (6.2.33) and (6.2.36), namely:

m N
o= Y 55=Y Y@+ Y ry = Be+Rm, 637
pneN” i=1 p=0 neNm”

I<|pl<r HEM(s)
and we set R¥(x) := RioL,(x) € Pl(r,m) and R'(x) := RloL,(x) € P)(r,m).
Clearly, the decomposition R(x) = R¥(x) + R*(x) is unique, as the function associ-
ating R — R, := RoL]!, with R € P(r,m), is invertible.
Finally, we set

QoY 1 P(r,m) x 9} (s) — R™HD

g (6.3.8)
(R. Ty ;) — Qoo Y (R T ) = Qra R 2 I, o)

where 2 =1,...m,a =0,..., s, Js,y is the s-truncation of the curve y, and the explicit
form of Q,0Y! is given in Lemma We also indicate by //(-) the zero sets of the
transformations which will appear henceforth.

With this setting, one has the following result:

Lemma 6.3.2. In case m > 2, for any given y € @rln with associated s-truncation
Jsy € 19]1"(s), and for any given polynomial R(x) € P(r,m)\X(r, s, m), there exists a
unique polynomial S(x) € '(r, s, m) such that

(S.J,) €N@QYYH .,  S'=R.
In particular, S satisfies the s-vanishing condition on the truncation J .

Proof. Giveny € @}n with its associated s-truncation J,, € Srln(s) and a polynomial
R(x) € P(r, m)\E1 (r, s, m), we denote by

K Y P (R x () — R"CHD (6.3.9)

Tsy
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the restriction of Q to the set Y(Pg ® (R} x {Tsy D) -
As it was shown in the proof of Corollary [6.2.1] (see Table (6.2.60)), for all a €

{0,...,s} and Z € {1, ..., m}, the Jacobian matrix of ARb 7 reads
Ty

I, 0 0 0 0
0 D B, B, B,,
0 0 1, 0 .. 0
A= , (6.3.10)
0 0 0 I 0
0 0 0 0 0
00 0 0 0 I

where the blocks D and B;, i = 2,...,m, were defined in (6.2.39). Also, by Lemma
, when R” and Js,y are fixed, the restriction of the function Q to the set Yl(Pg (45}
(R} x {J,,}) is affine. Hence, Aib 7 is represented by matrix acting on

Sy

Y](Pg (&) {Rb} X {Js,y}) plus a constant term depending only on RZ = Rbo[l;l and
Jsya = L5075, thus, it is globally invertible in Yl(Pg ® (R} x {Js, 1) We set

e (y1)7! 8
sti= ()7 (o () €7t
which is equivalent to saying that
(S*+ R, J,,) € ¥(@QoY"),

i.e., by (6.3-8) and (6.2.33), S* + R’ satisfies the s-vanishing condition on Tsy O

We are now able to prove Lemma[6.3.1]

Proof. (Lemmal6.3.1)
We consider a polynomial P € D C P(r, m)\Zl(r, s, m), with Dn Zl(r, s,m) = @.
Casem = 1. Incase m = 1, by Lemma@there exists a constant C;(D) such that
the truncation at order s + 1 of P - indicated by P, - satisfies

||Ps+l||oo > CI(D) .

The thesis follows easily by the expression above and by Definition[6.1.3}

Case m > 2. For any fixed arc y € ®,In, we shift to its associated adapted coor-
dinates, and we consider the s-truncation Js’y’a € 19,1,1(s), together with the pull-back
P, = Poﬁ;l of the polynomial P w.r.t. the change of coordinates £, introduced in
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paragraph [6.2.3] By the hypothesis, by Lemma [6.2.2] (see especially formulas (6.2.29)
and (6:2.31))), and by the fact that the linear terms of the curve y are uniformly bounded

(see the Bernstein’s estimate (3.0.1))), there exists a constant C; (D) > 0 such that

IIP, ==\, s,m)||e i= _ inf  ||Py—B,lle > Ci(D)>0. 6.3.11)

P,exl(r,s,m)

It suffices to prove the statement for the quantity

de (apa >
f;l ,,,,, m dt* \ 9y l5, . =0

.....

instead of

a [ JdP
max 4 2 (6.3.12)
¢=1,.m | dt* 0yf £a0}/(l‘) =0

because - as we had already pointed out in paragraph [6.2.4]- the terms of order higher
than s in the Taylor developement of £, oy yield a null contribution to (6.3:12). With the
decomposition in (6.3.7), by Lemmata[6.2.2]and [6.3.2] there exists a unique polynomial
S, = Si + SZ fulfilling the s-vanishing condition on J and satisfying SZ = PZ.

Hence, (6.3.11) yields

1P, = Salleo = PE = ||, > C,(D) > 0. (6.3.13)

S,7.a

By the proof of Lemma , we also know that - since SZ = PZ and Jg , ,
fixed - the function AﬁPb 5 in (6:3.9) is affine and invertible in Y! (Pg ®{P}x {Tsy D-

sJsy

are kept

In particular, it is represe‘nted by matrix A in plus a constant term depending
only on PZ, Js,y,a- Taking into account the fact that APb is the restriction of Q to the

sy

set Yl(Pg ® (P} x {J;, 1), one can write
-1 b b
I1Pf — 8% 1o < AT 11QPE +P2, 30, ) = QESE +P2L 3 Dl (6.3.14)

where ||.A7!||, indicates the matrix norm of the inverse. Expressions (6.3.13) and

(6:3:14) together yield

¢, D)

um%+ﬂJwg—m£+ngmmw>ﬁzgﬁa
[s9)

(6.3.15)

Moreover, by construction one has sﬁ S !/V(Aijb 7 ), that is (Sg + P'_:L, Jsya) € V(Q,
Jsy

so that (6.3.13)) implies

(S10)]

b
m@bmykmmm>m;m:-

(6.3.16)
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From the explicit form of the (ms + m) X (ms + m) matrix A, one can easily
infer the form of A~!, namely

l, O 0 0 0
o p! -p'B, -D7'B; .. -D7'B,
0 0 I 0 0

AL = ) (6.3.17)
0 0 0 I 0
0 0 0 0 0
0 0 0 0 0 I

The induced matrix norm is, by construction, || A™"||, 1= sup,c(;. Ej"jm |Ai_jl| .
By the definition of D given above table (6.2.60), and by the definition of the blocks B,
with i € {2,...,m}, in (6:2.39) one has ||D~'||,, = 1 and for m € {2,...,m} one can

write

0 ifs=1

sX(s—1maxp—n _mlay,l if2<s<r-1.

a=2,...,s

sup  ||By|| <
2
Hence, one finally has

' 1 ifs=1
A e < T+m—1)s(s—1)Xmaxe—  mlazs,l if2<s<r-1.
(6.3.18)

Estimate (6.3:18), together with formulas (6.3.16), (6-3:8), and (6.2:33) implies the
thesis, with Cy(s,m) =(m —1)s(s — 1) O
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Chapter 7

Proof of Theorem A

In order to prove Theorem A, we need to combine the Lemmata of the previous sections
with several intermediate results.

7.1 Codimension estimates

For any pair of integers n > 2 and 1 < m < n — 1, we indicate by O(n, m) the space of
n X m real matrices whose columns are orthonormal vectors of R”. Clearly, a matrix
A € O(n,m) induces a map from R” to R” associating R” 2 x — [ = Ax € R".
From a geometric point of view, for any integer r > 2, the restriction of any polynomial
O() € P(r,n) to any m-dimensional subspace I C R" endowed with the Euclidean
metric can be identified through Q|p»(x) := Q(Ax) =: P(x) € P(r,m), where the
columns of A € O(n, m) span I'™.

We also indicate by O(m) the mxm orthogonal group and by G(m, n) the m-dimensional
Grassmannian, which is locally isomorphic to O(n, m)/O(m).

With this setting, for any integer 1 < s < r — 1, we define

U =U(r,s,mn) :={(0, A, P) € P*(r,n) X O(n, m) X P(r, m)|

(7.1.1)
P(x) =Q(Ax), P(x) € X(r,s,m)},

and we indicate by
VY =YV(r,s,mn) .= Hps U(r,s,m,n) (7.1.2)

its projection onto the first component, i.e. the set of those polynomials Q € P*(r, n)
for which the origin is non-critical, and such that, for some m-dimensional subspace ['"™
orthogonal to VQ(0), the restriction Q| € P(r, m) belongs to the closure X(r, s, m)
of the set of s-vanishing polynomials introduced in section [6]

Remark7.1.1. We observe that it is implicit in Definition (7-I.1)) that ™ must be orthog-
onal to VQ(0). Infact, any P € o(r, s, m) must satisfy V. P(0) = 0 (see equation (6.2.4)).

91
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Hence, the limit P of any converging sequence {P, € o(r,s, m)},cn must have the
same property. Since X(r, s, m) = o(r, s, m), one has VIS(O) = 0 for any Pe 2(r, s, m).
As in our case we are considering ﬁ(x) = Q(Ax) for some @ € P*(r,n), we have
Vﬁ(O) = ATVQ\(O) = 0, which is equivalent to saying that the columns of A are all
orthogonal to VQ(O).

The first result that we prove in this section is the following

Lemma 7.1.1. V(r,s,m,n) is a closed set in P*(r,n) for the topology induced by
P(r,n).

Proof. Consider a sequence {Q j } jeN in V(r, s, m, n), converging to some polynomial
Q € P*(r,n) for the topology induced by P(r,n) on P*(r,n). Then, for any fixed
Jj €N, by (TT.I)-(7.1.9) there exists A; € O(n, m) such that P;(x) := Q;(A;x) €
(r,s,m). Since O(n,m) is compact, there exists A e O(n,m) and a subsequence
{A i Yeen — A. Hence, there exists a polynomial Pe P(r,m) such that the sub-
sequence {ij(x) = ij(Ajkx)}keN converges to ﬁ(x) = E(Zx). Since ij (x) €
X(r,s,m) for all k € N by construction, and X(r, s, m) is closed, ;(Zx) € X(r,s,m),
whence the thesis. O

Moreover, for given values of m,n, when r and 1 < s < r — 1 are sufficiently high,
the set V(r, s, m, n) becomes generic, namely

Lemma 7.1.2. V(r, s, m, n) is a semi-algebraic set of P*(r, n) satisfying
codim V(r,s,m,n) > max{0,s —m(n —m—1)} . (7.1.3)

Proof. By hypothesis, X(r, s,m) := o(r, s, m) and o(r, s, m) is a semi-algebraic set (see
Corollary[6.2.1). Hence, Proposition[A.T.2)assures that X(r, s, m) is also semi-algebraic.
Therefore, set U in (7.1.1)) is clearly semi-algebraic, since it is determined by a finite
number of semi-algebraic relations. Finally, the Theorem of Tarski and Seidenberg
[ATT)implies that V is semi-algebraic since it is obtained by projecting U~ onto its first
component.

As for the codimension of V, we start by estimating the dimension of U°. We remark
that, for a fixed choice of Ae O(n, m) and Pe 2(r, s, m), one has

dim(V" N {(0Q, A, P) € P*(r,n) X O(n,m) X P(r,m) : A=A, P=P})

(7.14)
= dim P*(r, n) — dim P(r, m) .

Infact, since the matrix A := (4| ...|4,,), 4;,...,A,, € R", has been fixed, one can
construct an orthonormal basis of R"” by completing A, ..., A,,, with n — m vectors
A,i1>---,A,. Since in the set above the restriction of any polynomial Q € P(r,n)
to the space generated by Ay, ..., A,, is fixed, all the monomials of Q corresponding
to the coordinates associated to Ay, ..., A, are uniquely determined. The number of
these monomials is dim P(r, m), and the total number of monomials in Q in dim P(r, n),
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whence equality (7.1.4). In order to compute dim V", one must add to the r.h.s. of (7.1.4)
the dimension of the spaces corresponding to the fixed variables, namely

dim V" = dim(V" N {(Q, A, P) € P*(r,n) X O(n,m) X P(r,m) : A=A, P=P})
+ dim O(n, m) + dim Z(r, s, m)
= dim P*(r, n) — dim P(r, m) + dim O(n, m) + dim =(r, s, m) .
(7.1.5)

We observe that, by Deﬁnition if (1), A, O(Ax)) € U, for any orthogonal ma-
trix M € O(m) also (Q(I), AM,Q(AM x)) € U, since one has the freedom to choose
the orthonormal basis spanning the m-dimensional subspace I € G(m, n). More pre-
cisely, if we define the action of O(m) on any element (Q(I), A, Q(Ax)) € U as

(O(), A, Q(Ax)) — (O(I), AM, Q(AM x)) , (7.1.6)
we can define an orbit of O(m) starting at a given point (Q(1), A, Q(Ax)) € U as
{(OU),AM,Q(AMx)) e U, M € O(m)} . (7.1.7)

Since the first component in (7.1.7) is invariant, by (7.1.2)) we see that the set I can be
found as the projection of the set of orbits " /O(m) onto P*(r, n), namely

V = Hp*(r’n) U = Hp*(r’n) (U/O(m)) 5 (718)
so that one can write
dimV = dim HP*(M) (U /O(m)) . (7.1.9)

Obviously, the action of O(m) on U is free and smooth, hence by|[C.1.1]it is also proper.
Therefore, Theorem [C.1.1] assures that

dim(V"/O(m)) = dim U" — dim O(m) . (7.1.10)
By (7.1.9), we have
codim ¥V > codim (U"/O(m)) — dim O(n, m) — dim P(r, m) (7.1.11)
and equations (7.1.3) and (7.1.10) imply
codim (V" /O(m))

= dim P*(r, n) + dim O(n, m) + dim P(r, m) — iim U + dimO(m) . (7.1.12)
> 2dim P(r, m) — dim Z(r, s, m) + dim O(m)
Expressions (7.1.11)) and (7-1.12)) together yield

codim V >dim P(r, m) — dim Z(r, s, m) + dim O(m) — dim O(n, m)
= codim X(r, s, m) + dim O(m) — dim O(n, m) .

(7.1.13)
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By Proposition [A.1.3] codim X(r, s,m) = codim 6 (r, s, m), so by Corollary [6.2.1]
one has codim X(r, s,m) = s + m. Moreover, since dimO(m) = m(m — 1)/2 and
dim O(n,m) = mn — m(m — 1)/2 — m, (T.1.13) reads

codimV > s—mn—m—1). (7.1.14)

Since the codimension is a nonnegative number, the thesis follows.

7.2 Stable lower estimates

The set V(r, s, m, n) introduced in the previous section is important because, for any
given polynomial Q € P*(+/,n) - with ¥/ > r - whose truncation at order r lies out-
side of V(r, s, m, n), all polynomials belonging to a small open neighborhood of Q in
P*(r', n) are steep around the origin on the subspaces of dimension m, with uniform
indices and coefficients. More precisely, one has

Theorem 7.2.1. Take five integersr' >r>2,1<s<r—-1,n>2,me{l,...,n—1}.
Consider a polynomial Q € P* (¢, n), and suppose that for some t > 0 its truncation
at order r, indicated by Q,, satisfies

[|Q, =V (r,s,m,n)|, := Revi(l;l,g,m,n) 10, — R||, > 7. (7.2.1)
There exist constants €y = g(r,s,m,z,n), C, = Cm(r’, r,s,T,n), Ay = Ay(r,s,m, ),
and § = g(r, s,m, T, n) such that any polynomial S € P* (', n) contained in a ball of
radius € € [0,gq] around Q in P*(r', n) is steep on the subspaces of dimension m at
any point I € B"(0, (/S\), with uniform steepness coefficients C,,, Ay and with steepness
indices bounded by

T(s) =4 ym=1 (1.2.2)
a S) .= L
" 2s—1 ifm>2 .

Remark 7.2.1. By Lemma|/.1.2] since ] < s <r—1,ifr > m(n —m — 1)+ 1 and
s > m(n —m — 1) + 1 one has codim V(r, s,m,n) > 1, so that hypothesis (7:2:1) is
generic in P*(r, n).

In order to prove Theorem [7.2.1] we need a Lemma used by Pyartli in the study
Diophantine approximation. This result is crucial in KAM Theory, as it was shown by
Herman, Riissmann, Sevryuk, and others (see [39] and the references therein). We give
its statement in a version provided by Riissmann [[108]].

Lemma 7.2.1. Let f : [a,b] — R, with a < b, be a g-times continuously differen-
tiable function satisfying

lf 90> p
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forallt € [a,b], for some g € N and f > 0.
Then one has the estimate

P 1/q
meas(t € [a,b] | 1/(0)] < p} < 4 <q!ﬁ>

forall p > 0.

We also need the following auxiliary

Lemma 7.2.2. With the hypotheses of Theorem there exist positive constants
X = eX(r,s,m,t,n), y = y(r,s,m,t,n), and { = {(r,s,m,t), such that, for any
€ € [0,&*], the truncation S, € P*(r,n) of any polynomial S € P*(r', n) contained

in a ball of radius € around Q in P*(¢', n) verifies

[1S, = V(r,s,m,n)||, > 1, (7.2.3)
and for any m-dimensional subspace I'™ orthogonal to V.S(0), one has

1Sy lpm = Z(r,s,m)| | > ¢ (1.2.4)
Proof. (Lemmal[7.2.2)

We split the proof into three steps. In the first one, we introduce appropriate sets and
notations that are helpful in the proof. In second step, we introduce suitable continuous
functions by exploiting the existence of local continuous sections for the Grassmannian.
In the third and last step, the statement is proved by exploiting the first two steps and
the compactness of the Grassmannian.

We also observe that, due to Remark[7.2.1] estimate (7.2.3) is trivial for r > m(n —
m—1)+lands >mn—m—1)+1.

Step 1. For any given polynomial V' € P*(r, n), we denote by Gy, (m,n) C G(m, n)
the compact subset of m-dimensional subspaces orthogonal to VIV (0) # 0. We also
define the set

A" = {(V,T"™) |V € P*(r,n), T™ € G (m,n)} . (7.2.5)

Now, setting N := dim P*(+/, n), for sufficiently small £ one has V.S(0) # O for any
S € BN(Q,¢). Moreover, the map £ : P*(r',n) — R” associating S — V.S(0)
is obviously continuous and surjective, and the same holds true for the function h :
R"” — G(n — 1, n) which to a vector w associates w'. Hence, hof is also continuous
and surjective. Therefore there exists an open set of n — 1 dimensional hyperplanes -
indicated by W"~1(Q,€) c G(n — 1, n) - whose inverse image £~!(h=!(W"1(Q, ¢)))
contains BV (0, €). Hence, for m € {1,...,n— 1}, we can define the open set

W™(Q,€) 1= {I™ € G(m,n) | I C T for some I~ € W~1(Q, )} .

The above construction implies that, for any m € {1, ..., n—1} and for sufficiently small
€, the choice of an open ball BN (0, ¢) determines a set

EM(Q,€) := {(S,T™) ]S € BN(Q,e),IT™ € W"(Q,¢),T" € Gg(m,n)} Cc A™.
(7.2.6)
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Remark 7.2.2. To carry out the construction at this step, one only needs to perturb the
linear terms of Q. The bound on ¢ that must be considered at this step, therefore, does
not depend on the degree of the polynomial Q.

Step 2. Now, we take into account the fact that it is always possible to define a local
continuous section for the Grassmannian G(m, n). Namely, for any element I" € G(m, n)
there exists an open neighborhood &- C G(m, n) of I" and a continuous map & : & —
O(n, m) such that, if # : O(n,m) — G(m, n) is the canonical projection, then wo& is
the identity. Hence, for any m-dimensional subspace [ € G (m, n), we consider its
associated open neighborhood &, and a compact neighborhood Vrm C &rm centered
atI™. Since Gy (m, n) is compact, it can be covered by a finite number L > 0 of compact
neighborhoods Vi and open neighborhoods &;, with i = 1, ..., L, of this kind. Hence, if
€ is sufficiently small, then one has

L L

wr,e) c |V, c & (7.2.7)

=1 i=1

Moreover, if we indicate by &;, i = 1, ..., L the continuous section associated to each
neighborhood &;, it makes sense to define the sets

L
ENQ,e) :={(S. ") [(S.") € E"(Q,e),T" € &}, E"(Q.,¢e)= U EM(Q,¢€)
i=1
1 (7.2.8)
and the continuous functions
F, : B"(Q,¢) — P, m
i B, 9) (', m) (72.9)

(S(.T™) — T(x) := S(Ax), A :=¢&(@I™) € O(n,m).

Step 3. Fix i = 1, ..., L. By hypothesis ||Q, — V||, > 7 and VOQ(0) = VQ,(0) # 0,
so that by the definition of ¥" and V in (Z.I1)-(7.1.2), by Remark [7.T.T] and by the
compactness of Gy (m,n) = GQr(m, n), there exists §; = {;(r, s, m, t) > 0 such that - on
any subspace [ € GQ(m, n), I € &; - one has

P, = 2(r, s, m)||o > 2, (7.2.10)

where P.(x) := Q,(Ax) - with A = &,(I"") - is the restriction to the subspace I'"” of the
truncation Q,..

Now, fix I € (Gg(m,n) N'V;) C &;. By the continuity of F;, there exists gi*r,,, =
€ (r, s,m, 7,n) > 0 such that, for any € €]0, ], the open ball v, (€) C E'(Q, €)
centered at (Q,I™) verifies the following property: for any (.S, ) e 0! (€), the
restricted truncated polynomial f“,(x) = Sr(gx), with A = & (f""), is contained in an
open ball of radius {; around P.(x) := Q,(Ax), with A = &(I""). Hence, on the one
hand by (7.2.10) one infers

T =Pl <& = IT.=Z(rs,m)lly>¢ . (7.2.11)
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On the other hand, by construction one has

<Q,GQ(m, n)nV,.> c U o (71.2.12)
[me Gy (mmnV;

and - due to the compactness of the fiber (Q, Gy(m,n) N V[) - it is possible to extract a

finite number J; of subspaces I"" € Gy(m, n) N V; from (72.12) and write (with slight
abuse of notation)

Ji
(Q,GQ(m,n)nV,> cJue c 2o . eeloel]. (7.2.13)
j=1
where we have set
e =¢€f(r,s,m,7,n) i= je{rlr}.iHJi}{ng} ) (7.2.14)

Inclusion (7.2.T3), together with (7.2.8), yields that the finite union v (¢) := UL | U{"zl
vl’,”j(s) is an open neighborhood of E™(Q, €) containing the fiber (Q, Gy(m, n)). There-
fore, by setting

{=¢(r,s,mr) = min {{} >0, € =¢e*(r,s,m,z,n) := min {e}>0,
ie{l,....L} i=1,...L !

and by taking (7:2.1T) into account, one has that for 0 < & < ¢* and for any (S,T™) €
v™(e) € E™(Q,¢), the restricted truncated polynomial 7,(x) := S,.(Ax) - with A =
éj(F’”) for some j =1, ..., L - verifies

T, = 20, s,m)llo > & 2 € . (7.2.15)
Therefore, we have proved that, for any 0 < & < €* there exists { > 0 such that
1S, \rm — Z(r,s,m)||, > ¢, (7.2.16)

for any S € BN (Q,¢) and for any I orthogonal to VS(0) = VS,(0) # 0. Hence,
the Definition of set V(r, s, m, n) in (7.1.2)) ensures that for any 0 < € < £* there exists
x = y(r,s,m,7,n) > 0 such that for any .S € BN (0, ¢) one has

1S, =V somm)ll > 1 - (7.217)

This concludes the proof.
O

We need another intermediate result in order to demonstrate Theorem[Z.2.1] Before
giving its statement, for any polynomial S € P*(+/, n), we firstly consider its associated
minimal arc y constructed in Theoremm Also, for any 4 > 0 we indicate by Ig C
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[—A, A] the interval obtained by cutting the interval I, at point 3) of Theoreml’ST_ﬂ'linto
three equal pieces and by taking the central one. In particular, we have
=l A
where K = K(+/, m, n) is a suitable constant.
We also assume the setting of Lemmata [7.2.1] and [7.2.2] and we consider a ball
BN(Q, ¢) of radius € < £* /2 around Q € P*(+/, n). Within this framework, one has

Lemma 7.2.3. There exist two constants C' = C'(r',r,s,m,t) and Ay = Ay(r,s,m, 1)
such that - for any number 0 < A < A, for any polynomial S € P*(r', n) contained in
BN (0, ¢), and for any m-dimensional subspace I'™ orthogonal to V.S(0), the restriction
T := S| satisfies the following estimates

a
ma d* [ 0T (x) >c for m=1,
a=lews | 1%\ 00Xy Ly )

t=t*
(7.2.18)

a oT
i jT( a(X) > SO s
am1 s O

at any point t* € I'.

Proof. (Lemmal7.2.3) We proceed by steps.

Step 1. We consider the value e* of Lemmaand we fix a polynomial S in the
ball BN(Q, €), where ¢ € [0, e* /2]. By Lemma there exists a parameter { =
¢(r,s,m, ) > 0 such that on any m-dimensional subspace '™ orthogonal to V.§(0) # 0
- the truncation .S, varifies

S, lpm — Z(r, s,m)||o > & . (7.2.19)

Now, for a given subspace I € Gg(m, n), one can choose a matrix A € O(n, m)
whose columns span I and set T'(x) := S(Ax). Then, for any 4 > 0, by Theorem
[5.0.1] there exists a minimal real-analytic arc

- {xm =1 Ry
y() = tel, Ccl-AAl, |I;|=A/K@E,n,m),
x;(0)=f;), j€1{2,..,m}

(7.2.20)
whose image is contained in the thalweg 7 (S,I™). We observe that, up to a change
in the order of the vectors spanning I, in Theorem[5.0.1] we can always suppose that
the coordinate parametrizing y is the first one. We divide the interval I, into three
equal parts of length 4/(3K) and we denote by Ii{ = [Ain> Amax] the central one.
Then, for any given t* € I’ associated to the point y(t*) = x*, we consider the affine
reparametrization

- *
) = xiw)=u+t | wE Ay — 1% Ay —1*].
xjw) = filu+t*), je(2,..,.m}
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It is clear that y and y* share the same image, have the same speed everywhere, and
that y*(0) = y(t*) = x*, so that for all « € {0, ...,s} and Z € {1, ..., m}, one has

£<_5T(x) ) =ﬂ<_aT(") ) (7.2.21)
OV L NE T YRy

dta (3xf
Now, indicating by L, : R™ — R™, x —> x — x* =: X the translation w.r.t. x*, the
curve y* is mapped into y* := L, oy™, which reads

~ — *x __ * *
P = { W=D o= ud S = _ L (1222
xj(u) = xj(u) - xj(t*) = f](u +1%) - fj(t*) = fj(u)
withu € [A,,;, —*, Apax — 1. The polynomial T written in the new coordinates reads
T(x)=ToL'®) =TE+x*)=: U*®X). (7.2.23)
Since x* is fixed, one has
*
M) _ V"D vociymy (7.2.24)

6xf ()ff

Moreover, if one takes into account the fact that y*(0) = 0, and that the origin for the
coordinates X corresponds to the point x = x* in the old coordinates, equality (7.2.21)),
together with (7:2.29), yields, for all « € {0, ..., s} and for all £ € {1,...,m},

ra <aT(x) ) G <aT(x) ) e <aU*(§) )
dre \  ox, |, - du® \  0xp |, o du“ 0X, 7@/ ueo
(72.25)

Step 2. Bernstein’s estimate (5.0.1) applied to the components of y in (7.2.20) reads

max [f;()] <Mpd ,  j=2,....m (7.2.26)
tel’,

for some uniform constant M, = M(r', n, m,0), so that - for any t* € I; - one has
X 1= 7)o < Mg (7.2.27)

For any given € € [0, e*], with the help of the arguments in the proof of Lemma[7.2.2]

- in particular taking (7.2.6)), (7.2.8), and (7.2.9) into account - the set Z"(Q, ) admits
the covering E™(Q, ) = UiL:I E;"(Q, €), and for any index i € {1, ..., L} there exists a
continuous function

F, : E'"Q.e) — P(',m) (7.2.28)

that maps
(R,I™) — R(Ax), A :=&I™) € O(n,m), (7.2.29)

where §; is a local continuous section for the Grassmannian G(m, n).
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Hence, taking Lemma[7.2.2]and formula (7.2:23) into account, the function

Y 2M0.6) x R" — P(r'.m)

- . . (7.2.30)
(R,T", x*) — RAR +x*)), A :=&I™) € O(n,m)

is continuous. Moreover, (7.227)) and the Theorem of Heine-Cantor ensure that F* is
uniformly continuous over the restricted compact domain ET(Q, £X/2) X EZO (0,MpA).
Choosing the value {(r,s,m,7) > 0 in @[), there exists a uniform positive real
0 < 4; = 4,(¢) < 1 such that, for any 0 < 4 < 4, and for any (S,I™) € E'(Q, £X/2),
the image of the set (S, T, EZO(O, My4)) through Flf verifies

¢

F* (S,Fm,EZO(O,MOA)> c BM <Fi*(S,Fm,O),§> . M :=dim PG, m). (12.31)

The above reasonings imply for any * € I/, € [~4, A], with 0 < 4 < 4;, one has

- ¢
NToLLD, = Tl =2 IV} =Tl S NIU* =Tl < 3, (7.232)
where U*, T, are the truncations at order r of polynomial U* introduced in (7.2.23)
and of polynomial T’ := S|, respectively.

Repeating the same argument for any index j € {1, ..., L}, relations (7.2.19), (7.2.31),

and (7:2.32) imply that, if

0<A<dg = min (4=24E0smo) <], (7.2.33)

.....

then, for any (S,,I"™) € E™(Q,, £/2) and for any t* € Ig one has

107 =2 m )l = IT,0Ly! = 20.m I > 5 (1234

Step 3. Without any loss of generality, we suppose that the minimal curve y C
T (S,I'"™) is parametrized by the first coordinate. Hence, forn > 3 and2 <m <n-—1
we indicate by a = (ay,, ..., a;,,) the linear coefficients of the Taylor expansion of the
translated curve 7* in (7.2:22). One can make use of the set of adapted coordinates
¥ := L, (%) for the curve 7*, as defined in paragraph We remind that £, :=id
in case m = 1 (see also (6:3.9)).

In particular, forallm € {1,...,n—1} wewrite U*_ 1= U*oL ! and7* := L oy*.

By construction, the curve ¥} is analytic in [A,,;, — t*, A, — t*] with complex
analyticity width /K, and |T/,| = | 4,05 = Apin| = 4/(3K), as I, was obtained by cutting
I, into three equal pieces and by taking the central one. Hence, 7 € @rln following

Definition By (7:2:34) and Lemmal6.3.1] there exist constanty| C; = C;(¢) and

'In Lemma C, depends on the open set D € P(r,m)\X(r, s,m). In our case, by (7:2.34), D is the
open ball of radius = ¢ around 7', which is at distance at least %(j from Z(r, s, m); hence, with slight abuse of
notation, we can write C; = C;({).
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C, = C,(s, m) such that one has the lower estimate

d° <0U:a(y) )
73w/ =0

0y

> C

incases=1lor m=1,

(7.2.35)
d* 0U:a(y) C
fn}a du® 7 > 1+ C, X max la,,|
=1,..., m ~ -
a=l,...s ye YaW/ y=0 2 L;:Z ....... ’: ‘e

incase2 <s<r—1land m>2,

where the a,,’s, with £ € {2,..,m} and @ € {2,..., s}, are the Taylor coefficients of
72 (u) at the origin. Definition (7.2.27) assures that the Taylor coefficients of order equal
or higher than one of the curve 7*(u) at u = 0, and those of the curve y calculated at
t = t* coincide. Moreover, by construction (see paragraph (6.2.3)) 7 (u) and 7*(u)
share the same Taylor coefficients of order greater or equal than two calculated at the
origin. Hence, the Bernstein estimate in (5.0.1]) applied to the second relation in
and the fact that 0 < 4 < 4, < 1 (see (7.2.33)) yield that there exists a uniform constant
M = M(+',n,m,s) > 1 such that estimate

*
de ( aUx. (y) > C, 4
ma . >——X (7.2.36)
— a
?/Z;ll .......... V;l du ayf 7:(11) 40 1 +C2M

holdsincase2 < s <r—1landm > 2.
Now, expression (6.2.29) together with estimate (3.0.1) yields

-1
127 M < 1+M,

. _1 . .
for the matrix norm of £'. Therefore, by (6.2.31), by the first estimate in (7.2.35) and

by @, we lnfer
> >
T (u) u=0

4o < QU (x)
7*('4))14:0

axl
for2<s<r—-1,m>2.

Cl
1+M

fors=1or m=1,
(7.2.37)

> Cl AS—]
(1 + CM)(1 + M)

a)Cf

d- < IUX(x)

Since in expression (7.2.37) one is considering only the derivatives up to order s €
{1...,r—1} atthe origin u = 0 and 7* («) contains no constant terms, the same estimate
holds true for the polynomial U™*.
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G

The thesis follows from and from by setting ¢/ = —————.
7237 (7225) by setting TT i+
O

With the help of Lemmata[7.2.2]and[7.2.3] we are now able to prove Theorem[7.2.1]

Proof. (Theorem[7.2.1))
Introduction. We assume the setting and the notations of Lemmata [7.2.2}{7.2.3] In

particular, for 0 < & < &*/2 we consider a polynomial S € P*(r,n) in the ball
BN (0, ¢), and a given m-dimensional subspace I'"” orthogonal to V.S(0) # 0. We
denote by y the minimal arc of Theorem[5.0.1]- whose image is contained in the thalweg
T(S,I'") - and for any 0 < 4 < Ay = Ay(r,s,m, 7) we indicate by I, its interval of
analyticity of length A/K, where K = K(+/, n, m) is a uniform constant. We also indicate
by Ii{ the interval which is obtained by dividing I, into three equal parts and by taking
the central one.

Finally, we set T(x) := S|p(x) := S(Ax), with A € O(n, m) a matrix belonging
to the image of the continuous section §; : &I™) — O(n,m), withi € {1,...,L},
and whose columns span I'™ (see the proof of Lemmal[7.2.2).

We proceed by steps.

Step 1. For? =1,..,mand @ = {1, ..., s}, we consider the functions

0 « (o1
g );:‘L(ﬂ

,rfel (7.2.38)
dt® 0xf y(t)>t:t* 4

and the constant functions

g1 () 1= €10 gin(1) 1= =C' 1 gs(1%) 1= O, g g (1*) 1= =0

The degree of T is bounded by ' and - on the interval I - ¥ is an analytic-algebraic
function whose diagram is bounded by a positive integer d = d(+/, n, m) (see Point 2
of the thesis in Theorem [5.0.I). Hence, for any given choice of « € {1,...,s} and
¢ € {1,...,m}, the function g;fx)(t*) is Nash (i.e. semi-algebraic of class C*) due to
Propositions [A.1.8] and [A.T.10] and its diagram is bounded by a quantity depending
only on r/, m, n. In addition, Propositionensures that g(;)(t*) is actually analytic-
algebraic in I;. The same is obviously true also for g, j(t*) forj € {1,2,3,4}. There-

..........

Now, for any choice of @ € {1,...,s} and i € {1,...,m + 4}, the graph of gl@ over
I; belongs to the algebraic curve of some non-constant polynomial V[.(a) € R[x, y] of

two variables, whose degree depends on d (r', m, n). If we indicate by

. p
Vi(a)(x, y) — HkK:(ll,a) (I/I(Z)(x7 y)> k (7239)

the decomposition of Vi(a)(x, y) into its irreducible factors, by Bézout’s Theorem (see
Th. |C.2.2) the irreducible components {(x, y) € [R{2|Vi(z)(x, y) = 0} of the algebraic
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curve { (x,y) € R2 | V[(a)(x, y) = O} intersect at most at a finite number of points which

2 ~
is bounded by <deg Vi(a)> , which in turn is a quantity depending only on d(+', m, n).

This fact, together with the regularity of g}

9 in I;, implies that there exist two positive
integers k(i,a) € {1,...,K(i,a)}, w = w(r', m,n), and a subinterval of I’;i W« C I; of

length |1’ | /2 verifying

, R2V® (x,5)=0
I* ) C {(x y) € R l_,k(i,a)(x »)

Ada

graph <g§“)
(7.2.40)
graph <gf“)

. ) n{en eRV P =0} =0
A ’

forall k € {1,..., K@i, a)}\{k(i,a)}.

The above reasoning can be repeated for all other pairs of integers belonging to
{1,...,s}x{1,...,m+4} and which are different from («, i). Hence, finally there exists
an interval I§ C T, of length T | /(z+"™*¥%) on which for any (i',a’) € {1,...,s} X
{1,...,m+ 4} the relations

graph (gff") ) c {(x, »ERWVD - (x,y) = 0}

I* ”,k(", /)
2 PR (7.2.41)
graph (gf,‘” I*> n{enerRYV D=0} =0
A
are verified for some integer k(i’,a’) € {1,...,K(i’,a’)} and for any integer k €

{1,...., K@i, a")}, with k(i’, ') # k.

Then, by (7.2.41) and again by Bézout’s Theorem, there exists a positive integer
N = N(+/, m, n) such that for any distinct pairs of integers (a, i) and (8, j) belonging to
{1,...,s} X {1,...,m + 4}, the algebraic curves {(x,y) € (I*, R)lVi(;()i L =0)

and {(x,y) € (I*, IR)|V'(£’()‘ )(x, y) = 0} either coincide or intersect at most at N =
i,k(i,a

N(#', m, n) points.
By repeating this reasoning for all possible distinct pairs and by taking (7.2.41) into
account, one finally has that there exists a positive constant M = M(, s, m, n) and

an interval J of uniform length [J¥| = |I7|/M over which the graphs of any pair
of functions among gil), e gfnl), ey gis), ey gf,f), &mt1s - Emss €ither do not intersect or
coincide.

These reasonings - together with the fact that expression (7.2.18) in Lemma [7.2.3]
holds for all t* € J’; C IQ - yield that there must exist @ € {1,...,s} and Z € {1, ..., m}
verifying

min |g @) > ¢ form=1
t*eJ; 2
B (7.2.42)
min [g @) > A for m>2.
t*eJ; 2
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Step 2. We apply Lemma to g, with ¢ = @, [a,b] = J} and with f equal to
the r.h.s. of (7.2.42)). If we ask for

1/a |J*|
_.p 1 A
|— < X = -
4 <a. > S CEM s (7.2.43)

and we take into account the fact that « € {1, ..., s}, we can choose

228 C' form=1
p= - X | (7.2.44)
s !X [24KMw(’”+4)S] 'l form>2.
. N 1371 A
Hence, in a closed set A; C J7 of measure — = ————————, one has
A 2 6 KM r(m+4) s
le=(D)] > K form=1" v ca (7.2.45)
87 p= 2.
‘ C, A% for m > 2 g

for some 7 € {1,...,m}, and for a constant

2C' (¥, r,s,m, 1)

s !X [24 K(+, m, n) M(r, s, m, n) w(r', m, n)"+s S
(7.2.46)

/
C,=C,(r, rs7,n=

where m € {1,...,n—1}.
Step 3. Taking the definition of A, into account, by construction (see (7.2.38)) we
have

0T (x)
ax;

0S| pm(x)
ox

(7.2.47)

max g(# | .= max
teh, 'gf( ) teh

" 1€h;

0] 20

Due to Theorem [5.0.1] the image of  is contained in the thalweg 7 (S,I"™), that is in
the locus of minima of T' := S| on the spheres S ’;” C I' of radius # > O centered at
the origin. Moreover, the curve y was constructed by a uniform local inversion theorem
applied to the curve ¢ of Lemmal5.0.2]that was parametrized by the radius 7 > 0 of the
spheres S};" C I’ and shared the same image with y. So, to any value of t € A there
corresponds a unique radius #(f) associated to a sphere S ”1’6) cIrm.

Hence, taken any pair of real numbers 4, ¢ satisfying 0 < 4 < § < A - where
Ag is the quantity defined in Lemma [7.2.3]- by the discussion at step 3 of the proof of
Theorem [5.0.1] (in particular, the inclusions in (5.0.22))), one has that the inverse image
of A, is contained in the interval 7, C [0,¢] defined in Lemma@ This argument

and (7.Z&7) imply that for some # € (1, ..., m} one has

0S| rm(x)
ox

0S| pm(x)
ox

0S| pm(x)
6x7

= max min
n€l0.8] l1xll,=n

max
=1y

< 7.2.48
7 nelog] Z (7:248)

y(®) o(n)
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which in turn, as 0 < 4 < & € (0, 4¢], by taking (7.2.:43)-(7.2.47) and the equivalence
of norms into account, implies that

CiA%, for m=1

, VO< A< E€(0,4].
C AR, for m>2 0

2y, 1V Sten o > {
(7.2.49)
Since the coordinates x are associated to an orthonormal basis spanning '™, for any
point I € R” contained in the subspace I'” one has zp»(V;S(I)) = V, (S|)(x), and
by choosing 4 = & in (7.2.49), we have proved that any polynomial S € P*(+/,n) in
the ball BN(Q, €), with € < £* /2, is steep at the origin on the subspaces of dimension
m with index bounded as in (7.2.2)) and with coefficients C,,, 4. It remains to prove that
this holds true also in a neighborhood of the origin.

Step 4. For any polynomial S € P* (¢, n), we consider the translation
H* : PX( . m) X R" — P*(F',n), (SU),T*)— ST +17). (7.2.50)

—_N —

H* is uniformly continuous over the compact B (Q, e* /4) X Bn(O, 1). Hence, there
~ A —N

exists a number § = 5(¢*) > 0 such that for any S € B (Q, e*/4), one has

H*({S} x B (0,5)) c BN(S,e*/4). (7.2.51)

Hence, for any given point I'* satisfying ||I*||, < 5 and for any polynomial § €
EN(Q, £* /4), the polynomial S(I + I'*) belongs to B¥(Q, £*/2).

Now, we consider a polynomial S & B (0,,€*/4). By the above reasonings,
for any I* verifying [[I*]|, < 5, one has that its translation S (I + I'*) belongs to
BN (Q,£*/2). We have proved at Step 3 that any polynomial in P*(+, n) belonging to
BN (Q,¢) - with € € [0,e* /2] - is steep at the origin on the subspaces of dimension
m, with index as in (7.2.2), and with uniform coefficients C,,, 4). Consequently, for any
given I* satisfying ||I*]|, < 5, the polynomial S(I + I'*) is steep at the origin on the
m-dimensional subspaces, with uniform index and coefficients. This is equivalent to
stating the same property for polynomial .S at any point I* in a ball of radius 5 around
the origin.

The thesis follows by setting £ = &(y(r, s, m, 7, n) := e* /4.

7.3 Proof of the genericity of steepness
With the help of Theorem [7.2.1] we are finally able to prove Theorem A.

Proof. (Theorem A)
It is sufficient to study the case in which I, = 0, else one considers the translated
function hy(I) := h(I + I;). We proceed by steps.
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Step 1. For any choice of integers r,n > 2, and for any given s = (s{,...,5,_1) €
N1, where s,, € {1,...,r — 1} forall m € {1,...,n — 1}, by taking into
account, we define

n—1
Q° = V(r, sy, m,n) C P*(r,n). (7.3.1)
m=1
The above set is closed due to Lemmal[7. 111
—n

For any given pair g,z > 0, we consider a function h € & C Cb2’ (B (0, 0))

satisfying
Vh0)#0 , ||T0(h, r,n) — Q;’SHOO > 7. (7.3.2)

Now, form = 1, ..., n—1, taking the definition of £y(r, s,,, m, 7, n) in Theorem[7.2.1]

into account, we set

e€=¢(r,s,1,n) := % X me{rlnirb_l}{eo(r, Sy-m, T,n) > 0} . (7.3.3)

Then, for € € [0, €], we consider a function f € @ C Cb2’ _I(En(O, 0)) satifying
£ €8 (h,e, B (0,0). (7.3.4)

Due to (7.3:4), T, (f, 2r — 2, n) is contained in a ball of radius & around T, (h, 2r — 2, n)
in P(r, n). Hence, as by construction we have set € < €, where € was defined in (7.3.3),
the definition of set Q" in (7.3.1), together with condition (7.3.2) yields that we can
apply Theorem with ¥/ = 2r — 2. In turn, this ensures the existence of positive
constants C,, = C,,(+' =2r —2,r,s,,, 7, n),
dA=c?,s,,:= min 3,,,,,
(r,s,7,n) e (r, Sy, m, 7, n)
and
A= Ar,s, 1) = min  Ag(r,s,,,m,T)
me n—1}

such that Ty(f,2r — 2, n) is steep in an open ball of radius d around the origin with

coefficients 4,C,,, m = 1,...,n — 1, and with indices

—_ Sl N lf m=1

a,,(s,,) = ) (7.3.5)
2s,—1 ifm>2 .
Step 2. For any I € B"(0, R) - with

. J o dr,s,7,n)
R = R(r,s,t,n,0) := min 3 52 [ (7.3.6)
for any m € {1,...,n — 1}, and for any m-dimensional affine subspace I'"* = I'"(I)

passing through I and orthogonal to V f(I) # 0, we indicate by f | the restriction
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of f to I'"™. We assume that any given I"(I) is endowed with the induced euclidean

metric, and we indicate by x a suitable system of coordinates on I"(/) whose origin

x = 0 corresponds to point 1. Moreover, for any g € {1,...,n}, we set dﬁ = % and
I

. [7 0
i=min {72},
K mln{ 3

Now, we fix both I € B"(0, R) and I"*(I). By standard calculus, at any point x
verifying ||x|| < k (hence, sufficiently close to I), one can write

105( Ipm)(6) = To(@p(S s 28 = 3, m)(0)]

lIxI13~ 737
< K(r,m) max max |D*f(I") S (7.3.7)

|o<o|(=€2'\in—1 1'eB"(0,0) @2r-2)!

for some constant K(r, m) > 0.

Since T, (aﬁ(f|rm), 2r —3,m)(x) = aﬂ[TO(flrm, 2r — 2, m)](x), taking (7.3.7) into
account, we have

10,( IEm)(0)|
> [ 1051 Ty (flpms 2r = 2m) 1 (X) | = 10,(f lpa)() = To(@p(f ), 27 = 3,m) (0] |

> | 95[ To (f lpms 2r = 2,m) 1 ()| = c(r,n,m, 0, D) ||x|1,> 2
(7.3.8)

where we have indicated

c=c(r,n,m,0,9) .= ———— e .
( 0-2) = 5o i e CRCIO)

Estimate (7.3-8) implies that for any x € I"™ (1) verifying ||x|| < k we can write
IV I @I 2 [[VTo (flpm, 2 = 2,m)0)] ] = e nllx]* 2,
and, by the equivalence of norms,
IV Ol 2 % [[VTo (flpm, 2r = 2,m)@)|[, — e x> 2 . (7.3.9)
Step 3. By the discussion at Step 1, Ty(f, 2r —2, n) is steep in an open ball of radius

d around the origin I = 0, with coefficients 2, Cnm=1,...,n—1, and with indices
as in (7.3:5). This property, together with expression (7.3.9) and with the fact that

— the origin x = 0 on I'"™(I) corresponds to point I € B"(0, R) by construction;

- R<d/2by (T39);
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yields

¢
max  min ||V(flp)@)]], > =& —c 72 vee[0,x] (m=1) (7.3.10)
n€l0.£] ||x||,er'(r) n

|Ix1l2=n

C
max  min V(flem))||, > ZEXm~l_c 22 vee [0,k] 2<m<n—1).
ity ||x||zer’”(1)” (flem) 2 " ¢ ¢ ¢el0k] ( )

[IxIl2=n
(7.3.11)
If we impose
C
cgzr—z < _1531 , ifm=1
2n
(7.3.12)
C
Cer—Zs_mézsm_l s ifm=2,---,"_l
2n

by (7.3:10)-(7.3-11), and by the fact that s,, < r— 1 forallm = 1,...,n — 1, we have
that f is steep in a ball of radius R around the origin with coefficients (we have set
r=2r-2)

6 =46(r,s,7,n,0,PD)
1 1
) Cy(r',r,s;,7,n) \ 725 ) C, (' r,s,,T,n) \ 0—smw-1
= min< k,( —mm88 , min _— ,
2nce(r,n,m,0,9) me(2,...n—1} 2nce(r,n,m,0,9)
(7.3.13)

/
C,(r',r, s, mt,n)
2n ’

C,(r . r, s, T,n) =

and with indices bounded as in (7.3.3).
. . . . rs
It remains to prove the estimate on the codimension of Q**. By (7.3.1), Lemma

[7.1.2) and Proposition[AT.3| we have

codim Q- Zmax{O, min {sm—m(n—m—l)}} )
me(l,...,n—1}

This concludes the proof.



Chapter 8

Proof of Theorem B and of its
Corollaries

Hereafter, we assume the notations and the results of the previous sections.

8.1 Proof of Theorem B

It suffices to prove the statement for I, = 0, otherwise one considers hy(I) := h(I+1;).

8.1.1 Casem=1.

Let T'! be a I-dimensional subspace (a line) orthogonal to VA(0) # 0, and let w € S”
be its generating vector. By standard results of calculus, the restriction of the Taylor
polynomial T (h, r, n) to T'!, indicated by T(h|pm, r, 1), reads

To(hlpt, 7, 1)(x) = h(0) + 2 il'h"[w, cwlx (8.1.1)
i=1

where the notation in (3.0.2) has been taken into account, and where x is the coordinate
associated to the vector w.

By (8:1.1) and Lemmal6.2.T} condition #.2.8)) amounts to asking that, for any sub-
space I'!, the polynomial Ty(h|p1, 7, 1) belongs to the complementary of the set of ;-
vanishing polynomials o(r, 51, 1) in P(r, 1). Moreover, again by Lemma@ one has
o(r,s;,1) = o(r,s;,1) =1 Z(r, s, 1). Hence, by definitions (7.1.1)-(7.1.2), by Theo-
rem A and by (7.321), A is steep on the subspaces of dimension one in a neighborhood
of the origin, with steepness index bounded by s;.

109
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812 Casen>3,2<m<n-1.

It is sufficient to prove that, for fixed m € {1,...,n — 1}, under the assumptions at
point ii) of Theorem B, one has Ty(h,r,n) € P(r,n)\V(r,s,,, m,n), where the set
V(r, s,,, m,n) was defined in (7.1.2). The thesis then follows by Theorem A and by
expression (7.321).
By absurd, suppose that the claim is false. Then, by (7.I.I)-(7.1.2), there exists
some subspace I'"” orthogonal to VA(0) # 0 such that To(A|pm, r, m) € Z(r, s,,, m).
Hence, since X(r, s,,, m) := o(r, s,,, m) by construction, there are two possibilities:

1. either To(A|pm,r,m) € o(r,s,,, M) ;
2. or To(hlpm,r,m) € Z(r, s,,,, m)\o (¥, 5,,, m) .

We consider the two cases separately and we prove that in both cases we end up being
in contradiction with the hypotheses.

Case 1. It Ty(h|pm,r,m) € o(r, s,,, m), then by construction Ty(h|rm, r, m) satisfies
the s,, vanishing condition at the origin on some curve y € ©,,, whose image is con-
tained in I'™. Since one is free to choose the orthonormal basis {uy, ... ,u,,} € U(m, n)
spanning I, up to a changement in the order of the vectors we can suppose without
loss of generality that the coordinate which parametrizes the curve y is the first one,
that is y € ®!, and To(hlpm,r,m) € c'(r,s,,.m). Moreover, following section
we can make use of the adapted coordinates for the curve y, which are associated to the

basis (see expression (6.2.13))

m
{u =up+ ) g, uz,...,um} e 7 (mn), (8.1.2)
i=2

where, as we did in|6.2.3} we have indicated by a := (ayy, ..., a;,,) € R""! the vector
containing the linear terms of the Taylor expansion of y at the origin. Following the

notations of section [6.2.3| (especially, formula (6.2.16)), we write
To o Chlpm, 7, m)(y) 2= To(hlpn, 1, mo L7 (3)

Then, by standard results of calculus, taking (3.0.2)) into account, one can write

Hi Ho Hm
1 ~= ~— ~N =
TO,a(hlrm’ ra m)(Y) = Z _'h(l)”l [ ] Ll2 9. £ le ] y"fl YZm £
MGNm H:
1<|pul<r
(8.1.3)

where p! 1= py!..,p,!

Since To(h|pm,r,m) € c'(r, s,,, m), by and Lemma6.2.3} one has

Qio(ToaBlpm.rom). a3y ) =0 Vie{l,...m}, Ya€{(0,....s}, (8.14)
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where J; . := L0 , denotes the s, -truncation at the origin of the curve y ex-

pressed in the adapted variables.

We now try to simplify the expressions in (8.1.4), by taking expressions (6.2.39)-
©-2:40) in Lemma [6.2.3] into account and by exploiting the form of the polynomial
To.a(hlpm, r,m) in (81.3). Namely - thanks to (8.T.3) and - the coefficients p,; 4
and ps 4 With 2 € {2,...,m}, a € {0, ..., 5,,}, appearing in (6.2.39)-(6.2.40) read

a

‘ \ 8.1.5
pv(l,a) = mhg“[u, ey l)] N pv(f,a) = ;hg+l [ 1% N Llf:I . ( )

Moreover, if s, > 2, fora € {2, ...,s,,}, exploiting (8:1.3) and the linearity, the second
addend at the right hand side of in our case reads

B
m a—1 m a—1
B opri[—
B Puip)ia--1» = 2 D, 10 [ v ’”i]ai(a—(ﬁ—l))
i=2 p=1 i=2 p=1F"
P (8.1.6)
a—1 m
1 p+1 [ ,-/\
= Z h v Z A p_ u] .
_ 0 > i(a—(f—1)Yi
p=1 #-D! i=2
Henceforth, in order to simplify our formulas, we make use of the notation
v,ifi=1
vV, = ]
u;,ifie{2,...,m}
Considering again the case s,, > 2, fora € {2,...,s,}, and forany i = 1,...,m, by

(@T3) and by @E24)-@2-35), the last addend at the right hand side of (6.2.39)-(6.2:40)
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reads
S G Ky k
J Jj2 ja
Z Hi pﬂ Z <H <k k > aj2 ...aja )
HEE(i.@) keG, (il \j=2 \Nj2 = Kja
HEM,, (@)
M,-;’:O
O] (D)
Z Hi jul[ —N —~ =
= _|h0 v . Uy ey Uy Vi
HeEy, (i,a) H:
HEM,,(a)
ﬂi?éo

m ~ .
#(0 k2 kja
X E, <H (k k >aj2 g
keQm(ﬁU),lX) Jj=2 j2Kja

() ko ko ko k

[ —— —~ =~ ~ =
ho [ v ,a22u2,...,aZauz,amzum,...,amaum,V,-]
h Z Z () k! ’

HEE,,(i,) ke, (1(i),a)
HEM,,(a)
Hi#0

(8.1.7)

where the last passage is a consequence of the multi-linearity and of the fact that, for all
i€{l,...,m},j €{2,...,m},wehave Y _, k;, = ji;(i) by construction (see @2.4)).

By (6.2.39)-(6.2.40), it is trivial to observe that for @ = 0 and for all i € {1, ... ,m},
one has

Qio(Toalhlpm rom),a, 3, )=0 < hylv]l = hylus] = ... hylu,] =0 (8.1.8)

which simply means that the basis vectors {v, u,, ... ,u,} are orthogonal to VAa(0) # 0.

We observe that, incasei = 1, ...,mand « = 1, taking (8:1.3)) and (6.2.39)-(6.2.40)

into account, condition (8:T-4) amounts to requiring that for all i € {1, ..., m}

Qi1 (ToaChlpm rom), 2,3 ) =0 < hlv,v] = hylv, uy] = - = hglv,u,]1 =0.
(8.1.9)
Fori = 1 and a = 2, instead, we have

1
Pvil,a) = §h3[U, v, V] (8.1.10)

and for g = 1 the term in (8:1.6)) is null thanks to -1.9).

Moreover, still for i = 1 and @ = 2 we observe that also the term in (8.1.7)) does not
yield any contribution to condition (8:1.4). In order to see this, we start by remarking
that the multi-indices to be taken into account in 8.1.7) for i = 2 and & = 2 must satisfy

u € &,(1,2), that is, by @2.4)-E23)

m

kp=H1) Yj€(2....m} . D)+ Y 2%,=2. (8.1.11)
j=2
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Conditions (8-I.TT) are only possible if
1. y;(1)=2and ﬁj(l) =O0forall j € {2,...,m}, which implies y = (3,0, ...,0).

2. kj, = u;(1) = 8, for some given p € {2,...,m} and (1) = 0. This implies
that y; = 1and u; = 6;, forall j € {2,...,m}, so that finally |u| = 2.

The first case is incompatible with the condition u € M,,(2) required in (B-1.7)
(see @23)), as (3,0, ...,0) = v(1,2). The second case does not yield any contribution

to (8:1.7) because of (§-1.9).

Hence one has
Qua(Toalhlpm,rom)a, 3, )=0 <  hv,0,0]=0. (8.1.12)

Finally, fori = 1 and @« > 3, and fori € {2,...,m} and a > 2, comparing expres-
sions B-1.3)-@-T.6)-(817) with the quantities (6-2.39)-(6-2.40) in Lemma [6.2.3] and
taking the definition of the quantities HZ”(;,“(U, Uy, ... Uy, a(m)) in @2.6)-@2.7) into
account, one has that

Qo (Toahlpm rom), 2,3y ) =0 < M (wuy, ...ty a(m,s,)=0.
(8.1.13)
Putting together (§.1.8)-(-1.9)-@.1.12)-(8-1.13) with (8-1.2)), we see that the polyno-

mial To’a(l’llr‘m, r, m) belongs to al(r, s, m) if and only if the system

wy,....u,) € U(m,n)
a(m) 1= (agy, ...,y s Qs oee s Ay, ) € ROm=DXs

Jv=1u +Z;”=2aj1uj (8.1.14)
hilv] = hiluy] = -+ = hilu,] =0

\HZ”(;’“(U,MZ,...,um,a(m,sm)) =0 i=1,....m, a=1,...,s

is satisfied. However, this is in contradiction with hypothesis @.2.9) in the statement,
therefore Ty(h|pm,r, m) & ol(r, Sy M).

Case 2. We now assume that To(h |, r, m) € Z(r, s,,, m)\o(r, s,,, m). Up to chang-
ing the order of the vectors spanning I, by (6.3.1)) without any loss of generality we can
suppose To(h|pm, r,m) € >l (r, s, m\o(r, s,,, m). Then, there must exist a sequence of
polynomials { P, € c'(r, s,,, m)} xen approaching To(h|pm, r, m). To conclude the proof
of Case 2, we need the following

Lemma 8.1.1. There exist a sequence {S); € P(r,n)},cn converging to To(h,r,n) in
P(r,n) and verifying Sy |pm = P for any given k € N.

Proof. Weindicateby Ay, ..., A,, € U(m, n) an orthonormal basis of I"”, and we choose
n — m orthonormal supplementary vectors A, ..., A, to form a orthonormal basis
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of R". In the coordinates (x, ..., x,) associated to Ay, ..., A,, the restriction of any
polynomial Q € P(r, n) to the subspace I"” is obtained by simply setting x,,,,; = -+ =
x, = 0 in the expression of Q. Conversely, any polynomial P(x,...,x,) € P(r,m)
depending only on the first m variables is the projection on I'"” of any polynomial Q €
P(r,n) of the form Q(xy, ..., x,) = P(xy,...,X,) + q(xq, ..., x,), where ¢ € P(r,n)
verifies q(xq, ..., x,,,0) =0.

By the above discussion and with slight abuse of notation, one can define the poly-
nomial

an = qp(xq, ..., x,) = To(h,r,n)(xq, ..., x,) = To(Alpm, r,m)(xq, ..., x,,) (8.1.15)

which verifies ¢, (x, ..., x,,,0) = 0 by construction.
Then, for k € N, we consider the polynomials

S =8(xq,..0,x,) 1= P, X)) Fqp(xg, ., x,) (8.1.16)

where { P },¢n 1s the sequence approaching To(4|pm, r, m) introduced above. The se-
quence {5} };en has the properties we seek. Infact, as g (x4, ..., x,,,0) = 0, on the one
hand ), verifies

Silpn = S (X x,,0)= P, VkeN; (8.1.17)

on the other hand, as P, — T((h|pw, r, m) by hypothesis, by taking (8:1.13) into ac-
count one has
Sy, — To(Rlpms rom) + q = To(haron) . (8.1.18)

O

Since by Lemma one has Si|rm = P, and since P, € ¢'(r,s,,, m) by con-
struction, the same arguments developed at Case 1 yield that for any k € N the system

r(ul, ooy lty,) € U(m, n)

a(m) 1= (g, ... s Ayg seee s yseee s Ay ) € ROm=1Xsp

<U=u1+zr:2ajluj (8.1.19)
(Splvl = (Splua] = -+ = (Si)gluy] = 0

L7{;:?,(7)0[(11,142, vl a(m, s, =0 i=1,....m, a=1,...,s

must be verified. However, this fact and the fact that, by Lemma [8.I.1] one also has
S, — Ty(h,r,n), contradicts the hypotheses of Theorem B. Hence, we must have

To(hlpm, r,m) & Z(r, s, m\o(r, S,,, M).

By the discussion at Cases 1-2 above, the assumptions of Theorem B imply that -
for any m-dimensional subspace I'”, with m € {2,...,n — 1} - the Taylor polynomial
To(hlpm, r, m) lies outside of X(r, s,,,m). Hence Ty(h,r,n) € P(r,n)\V(r,s,,, m,n).
This, together with (7.3.T) and Theorem A, concludes the proof.



8.2. PROOF OF THE COROLLARIES 115

8.2 Proof of the Corollaries

8.2.1 Proof of Corollary B1

We start by studying the one-dimensional affine subspaces orthogonal to VA(I) # 0.
Hypothesis @.2.TT)) is equivalent to hypothesis (#.2.8) in Theorem B withr = 3, 5| = 2,
whence the thesis.

On the other hand, for any fixed m € {2,...,n — 1}, since G(m, n) and S" are both
compact, by hypothesis @.2.TT)) there exists z,, > 0 such that for any m-dimensional
affine subspace I, +I"™ orthogonal to VA([;)), and for any vector w € S" NI we have

h}o[w] =0 , |h§0[w, wl| + |h§0[w, w,wl]| >17,>0. (8.2.1)

By (8:2:1), h matches the hypotheses at point ii) of Theorem B for r = 3 and s,, = 2,
whence the thesis for affine subspaces of dimension higher or equal than two.

8.2.2 Proof of Corollary B2

In the proof of Theorem A we have set Q7% := | J"_| V(r,s,,,m,n) (see (T3.1)). Fur-
thermore, formula (7.1.2) ensures that for any given function A of class C*~! around
Iy

by definition A" eG(m,n), I LVA(Iy) s.t.
Tp(hrm) €V, sym.n) S i )€ m): =5 (rsym)

(8.2.2)
Since one is free to choose the order of the orthonormal vectors spanning I, without
any loss of generality we can also write

ArMeG(m,n), I™ LVh(Iy) s.t.
Ty (hlpm.r.m)eX! (St 2 =G (oS o)

Ty (hor,n) € V(r, sy, mn) (8.2.3)

In the proof of Theorem B, we have also seen that for any m € {1,...,n— 1}, and
for any given subspace I € G(m, n) orthogonal to VA(I,), condition T Io(hll-m, r,m) €
ol(r, s,,, m) holds if and only if system @2.12) (if m = 1) or @2Z.13) (if m > 2) admits
a solution when P is set to be the Taylor polynomial at order r of function A.

By the above discussion, we have that, for any fixed m € {1,...,n — 1}, condition
T Io(h’ r,n) € V(r, s,,, m, n)is equivalent to asking that T I (h, r, n) belongs to the closure
in P*(r,n) of the set of polynomials solving system (if m = 1) or system
#B2T3) (forme {2,....,n—1}).

The thesis follows by the arguments above and by (7.3-1).
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8.2.3 Proof of Corollary B3
By the proof of Theorem B, the conditions in i) and ii) amount to asking for the existence

of a real-analytic curve

. wt for m=1
7(1) = +00 i +oo i —
(’»21:1 ayt', ..., X amit) form=1{2,...,n—1)}

whose image is contained in some m-dimensional subspace orthogonal to VA(1,) # 0,
and such that (zr» Vh)oy has a zero of infinite order at y(0) = I,,. By analyticity, then,
(7w Vh)oy is identically zero. This implies by Definition [TT.2.T]that A is not steep.

(8.2.4)



Chapter 9

Partition of the set of
s-vanishing polynomials

The proof of Theorems C1-C2-C3 is quite long and requires intermediate results which
will be presented in this section. Before stating them, in the following two paragraphs
we will introduce some definitions and notations.

9.1 Initial setting

Consider three integers r,m > 2,and s € {2,...,r—1}. In sections@-m we have indi-
cated by X(r, s, m) C P(r, m) the closure of the set o(r, s, m) of s-vanishing polynomials.

In particular, by (6.2.9)-(6.2.10) one has
m

o(r,s,m)=|Jo'(rsm) . ol(rs,m) i=Tpg ) Zi(r,5,m),
i=1
- . . ©.1.1)
X(r,s,m) = U Sir,s,m) 1= U o' (r,s,m) :=
i=1 =

i=1 i=1

Hp(,’m)Z"(r, s,m),

where the sets Z'(r, s, m) C P(r,m)x9’ (s), withi € {1,...,m}, are defined in (62.T1),
and one has decomposition (6.2.12)), namely

P(r,m) X 8,,(s) > Z(r,s,m) =: | ] Z'(r,5,m) .
i=1

The expression of the sets Z/(r,s,m), i € {1,...,m}, is given explicitlyEl in Lemma
6.2.3]

1 Actually, in Lemma only the expression of Z!(r,s,m) is explicit. However, as it was already
pointed out in section the cases i = 2, ..., m are trivial generalizations of the case i = 1: in order to find
the expression of Z'(r, s, m) for i # 1, one simply has to follow the same steps needed to find the expression
for Z!(r, s, m), and to exchange the role of the first coordinate with the i-th one.

117
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In the previous sections, we have seen that, in order to check if a given polynomial
Q € P(r,n) is steep at the origirEl on a fixed subspace I € Gy(m,n) EI, one must
check whether the restriction P := Q|r» € P(r, m) belongs to the complementary
of (r,s,m) := o(r,s,m). We now claim that it is not strictly necessary to consider
the closure of the whole set o(r, s, m). Indeed, in practice, the curves on which the s-
vanishing condition must be tested are minimal arcs with uniform characteristics, like
the one defined in Theorem[3.0.11

Namely, by the arguments in the proof of Lemma [7.2.3]- for any given Q € P(r, n)
and for any fixed [ € Gg(m, n), it is sufficient to check if there exists a threshold
Ag > 0 such that, for any 0 < A < A, there exists an interval I; C [—4, 4] of length
A/K El on which - for any curve y € ©,, verifying the Bernstein’s inequality (3.0.1)) -
the composition (VP)oy := (VQ|r»)oy has no zeros of order greater or equal than s.
In particular, we are interested in testing the s-vanishing conditions on those analytic

curves y over I, that, for some i € {1, ..., m}, satisfy
x1(0) =X 5 ag i+
_ V't k
xi_1(0) =205 a1t M(r, n. m, k)
y(t) = x; ()=t , max max |a; W) < —_
ot k uel; jefl....m} Ak=1
Xip1 () = X2 Gt J#i
xm(t) = 22—3 Ak tk
9.1.2)

By Theorem [5.0.1] the constant M = M(r, n, m, k) in can be explicitly com-
puted and it is uniform for all curves y € ©,,,.

As we have shown in the proof of Lemma [7.2.3] for any given P € P(r, m), the
threshold 4 - if it exists - goes to zero with the distance of P to the "bad" set o (r, s, m).
Therefore, by formula (©@.1.2)), the Taylor coefficients of the curves y on which the s-
vanishing condition must be tested may take any value, except for those of order one
which, independently from the choice of 4 > 0, are always uniformly bounded by
M(r,n,m, 1).

Inspired by the above reasonings, with the notations in (9:1.2), we give the following

Definition 9.1.1. Fori =1, ..., m, we introduce the sets
G)in =17 € G)inlje{ml,'f‘.’.‘,m}{laﬂ(o)” <M(r,n,m,1) 9.1.3)
J#i

21t is clear that the arguments devoped in the sequel hold also if the considered point is not the origin.
3The symbol Gg(m, n) was introduced in the proof of Lemma
“4More details about the threshold 4, are given in Lemma[7.2.3] whereas the constant X is the one intro-

duced in Theorem@
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and

= LmJ e, (9.1.4)

i=1

and we denote respectively by §£n(s) C 19571(s) and by §m(s) C 9,,(s) their associated
subsets of s-truncations.

Remark 9.1.1. By formula (0.1.3), if one introduces the decomposition
9 (5)=9 1)xd (5,2 9.15)
as in (6.2.20), the space :9\21(1) is compact and ﬁin(s, 2) =9 (s,2).

Definition 9.1.2. In section (see formula (6.2.23)), we defined the set W'(r, m)
as

wWlr,m) := FY(P@r,m) x R™ 1), (9.1.6)

where the function %! was defined in (6.2.21)). Similarly, forany j € {2, ...,m}, taking
Remark [6.2.4]into account, we had set

Wi(r,m) := F/(P(r,m) x R™ 1) . 9.1.7)
Now, by (0.1.3), for any i € {1, ..., m} it makes sense to define also

Wir,m) := F(P(r,m) X Em'l(o, M(r, n,m, 1)) . (9.1.8)

We remind that, due to Definition [0.1.1] and to Remark [6.2.3] for any given i €
{1, ..., m} there exists a polynomial bijection 1’ between P(r, m)xﬁin(l) and Wi(r, m):
one is free to work either in the standard coordinates of (p,,a) € RM x R"=Ds_with
M := dim P(r, m), or in the adapted coordinates of (p o a) € wi (r,m).

By the arguments above, without any loss of generality, for any fixed i € {1, ..., m}
it is sufficient to consider the set of those polynomials P € P(r, m) verifying the s-
vanishing condition on the s-jet J; , € ﬁﬁn(s) of some curvey € (:)’m Namely, following
(6-2.17)) and (O-1.1)), for i = 1, ..., m we introduce the semi-algebraic sets

Zi(r,s,m) :=((P, J;,) € P(r,m) x 9 (5)}|(P, J,,) satisfies
¢, 0@ (P,J,,)=0forall £ € {1,...m},a € {0,....s}}

2(;’, s,m) = U Z\i(r, s, m)
i=1 9.1.9)

m
5'(r,s,m) :=Tp  Z'rossm) 80 s,m) = | 60, 5,m)
i=1

S(r,s,m) : U Sitr, s,m) U closure (5'(r, s, m))
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and, of course, we have
Zir,s,m) C Zir, s,m) 6'(r,s,m) C o'(r,s,m) Y ie{l,...,m}. (9.1.10)
For further convenience, we also state the following simple
Lemma 9.1.1. &(r, s, m) has codimension s + m = codim o(r, s, m) in P(r, m).

Proof. By the third line of (9:1.9) and by the second inclusion in (9:1.10), it suffices to
prove the statement for 6!(r, s, m). By the first line of and by Definition [9.1.1}
one has

2'¢isom = Z'eosm) ({ (P Ty € Pram) x BL) | ©.1.11)

As it was shown in Corollary[6.21] the Jacobian associated to the equalities deter-
mining Z!(r, s, m) has full rank ms + m. Namely, by the discussion below expression
(6:2:60), in the adapted coordinates of section[6.2.3] such a Jacobian has non-zero pivots
corresponding to the derivatives w.r.t. the coefficients of the polynomial P, associated
to multi-indices in the family (6.2.35)). As we had shown in the proof of Corollary[6.2.1]
this fact and the Implicit Function Theorem imply that for any pair (P, J; ,) belonging
to Z 1(r, s, m), one can express ms + m coefficients of P as implicit functions of the
other coefficients of P and of the (m — 1)s parameters of J; ,. This was the argument
that led to estimate codim 6! (r,s,m) = s + m in Corollary m The thesis follows
by putting together this argument with formulas (9.1.9)-(-1.11)) and with the fact that
dim 8! (s) = dim 91 (5). O

9.2 Partition of P(r, m) and W (r, m)
Let r,m > 2 be two integers. In this paragraph, we introduce a partition of the spaces

P(r, m) and I//I71(r, m) which will turn out to be useful in the sequel. In order to do this,
we first need to introduce a family of multi-indices.

9.2.1 A family of multi-indices

Forb,c € {2,....,m}, b < clﬂ we set

w(b,c) ==, ... ) EN" |y =0, Hj=0;,+06;. Vji€{2,....m}.
(9.2.1)

SWe have set b < ¢ in (@.2.1) only for convenience, in order not to have two indices b, ¢ corresponding to
the same multi-index ¢ € N, Infact, it is clear that if we eliminate this constraint we have w (b, ¢) = w(c, b)
forall b,c € {2,...,m}.



9.2. PARTITION OF P(R, M) AND W' (R, M) 121

Comparing with the sub-family v(i, 1) defined in (6.2.33), it is plain to check
that one has the disjoint union

i=1

U tw.0 |_|<U{v(i, 1>}> = (neN"|ul=2}. 92.2)

b,c=2
b<c

Moreover, we have the following
Lemma 9.2.1. For any polynomial P € P(r,m), the coefficients p, associated to the
multi-indices p belonging to the family (9.2.1)) are invariant under the transformations

of paragraph 6.2.3| Namely, using the notations in (6.2.16), for any given a € ﬁrln(l)
one has

Pw(bc) = Pwibe) forallb,c € {2,...,m} , b<c.
Proof. We indicate by A, ..., A,, the orthonormal basis of R™ associated to the coor-
dinates x, ..., x,, on which polynomials in 7P(r, m) depend.
For any a :=(ay;,...,a,,) € 1971n(1), we also denote by
Uy = Al + 021142 + a31A3 + ... +am1Am , Up = A2 s e Uy = Am N (923)

the basis associated to the adapted variables defined in Section [6.2.3] (see (6.2.13)),
namely

yi =X, V2o =V2a) i=xp —ap; X; .. Y =Yp(3) 1= X — @y Xy
(9.2.4)
By (6.2:16), (6.2.39) and (9:2.2)), the quadratic terms of the transformed polynomial P,
read

2 2
Pva,n¥; = Pva,n¥;
Pue,)Y1Ye = PuenyX1(xp —ap1x)) €=2,....m
Pw(i0)V Ve = Pw(.e)X; — ajx))(Xp —ap1x)) j,0=2,....m, j<C.

(9.2.5)
By expression (9.2.3)), we infer that - in the original variables x, ..., x,, - for any
Js¢ € {2,...,m}, j < ¢, the coefficient associated to the monomial x;X, i$ Py )
that is po,; 2) = Pw(jz) -
O
9.2.2 Partition
For any P € P(r, m), we set
Pwer  Poe3 Poem
Hi(P) = | Poed) 20533+ PoGm (9.2.6)

pw(Z,m) pw(3,m) e 2pw(m,m)
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and
Si(r,m) :={P € P(r,m)| detH'(P)# 0} . (9.2.7)

Remark 9.2.1. Matrix H!(P) is invariant under the transformations of section
Namely, by Lemma([9.2.1] we have

2Pw(2,2) Pw23 -+ Pwem
H'(P,) := | Pred  2Pwas co PoGm [ gipy (9.2.8)
Poem PoGm - 2Pomm
We also define
Sy(r,m) := P(r,m)\S;(r,m) = {P € P(r,m)| detH'(P) =0}, (9.2.9)

so that we can write the disjoint union
P(r,m) = S} (r,m) |_| Sy (r,m). (9.2.10)

We now consider the images of S} (r, m) and S)(r, m) through the transformation 2(!
defined in Remark[6.2.3] namely

Siom) = u (8} m x QL)) ={ Po2) € Wrum)] dett1! (P,) #0 |

$3rom) =2 (83rm) x D)) ={ Por2) € W rom) | detb1! () =0 .

(9.2.11)

By (9.2.T1)), we have the partition
Wir.m) = $em)| | $)e.m). 9.2.12)

Remark 9.2.2. It is clear that the above partition can be implemented also in case one
considers adapted variables (P,,a) € wi (r,m), withi € {2, ..., m}. By suitably mod-
ifying the family of indices in (9.2, as well as by introducing an adapted matrix
Hi(P) = Hi(P), it is possible to define sets S, Sg whose disjoint union yields P(r, m)
and sets &7, &, whose disjoint union yields Wi(r, m). However, the underlying reason-
ings are not conceptually different from the ones we did above, therefore we omit them
in order not to burden the exposition.

9.3 Two important results

Consider three integers r,m > 2 and s € {1,...,r — 1}. The two results below are the
cornerstones of the proof of Theorems C1-C2-C3.
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Theorem 9.3.1. Incaser > 2,s = 1, forany i € {1, ..., m} the semi-algebraic sets
6'(r, 1,m), and 6(r, 1, m) are closed in P(r, m), that is, by formulas (0.1.9),

&ir,1,m) = Sir, 1,m) Vie (1,...,m} 6, 1,m)=3(r, 1, m) .

Moreover, foranyi € {1, ..., m}, taking the definition of transformation Y' into account
(see (6:2.23)), the set g, m)Yi(Zi(r, 1, m)) is closed in W(r, m), and its form can be
explicitly computed.

Theorem 9.3.2. For any given values of r > 3, s > 2, and i € {1,...,m} there exist
two semi-algebraic subsets of P(r, m)

X!(r,s,m) C S\ (r,m), Xi(r,s,m)C Sh(r,m), (9.3.1)
and two semi-algebraic subsets of Wi (r,m)

Y/(r.5,m) C S{(r,m), Y)(r,s,m) C Sy(r,m), (9.3.2)
satisfying the following properties:

1. for j € {1,2}, one has
X7, 5.m) = Ty (@Y (V5,0 )

where U was defined in Remark'
2. Yli (r, s, m) is closed in oS’l’ (r, m) for the induced topology,
3. Xi(r, s,m) is closed in Si (r, m) for the induced topology;
4. one has the partition &' (r, s,m) = X|(r, s,m) || X5 (r, s,m) ;

5. the form of Yli(r, s, m) can be explicitly computed by the means of an algorithm
involving only linear operations.

The rest of this section is devoted to the proof of the above results.
We will only prove Theorems in the case i = 1, as the other cases are
simple generalizations.

9.3.1 Strategy of proof of Theorems[9.3.1{9.3.2

We have seen in sectionElthat the equations determining Z L(r, s, m), can be written in
the adapted coordinates introduced in section[6.2.3] Namely, by recalling the functions

Qie(Paa Iy, 0) ¢ W mxRMDED R ie{l,....m} a€{0,...,s},
(9.3.3)
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presented in (6.2.32)-(6.2.33), Lemma ensures that Z'! (r, s, m) is the image through
the inverse of the transformation Y! in (6.2.26)) of the zero set

(| (P23, €W r,m)x R™DEDIg, (P, 8,3, ) =0}. (9.34)

iell,...,m}
a€{0,...,s}
Then, if we indicate by aia(Pa, a, J;, ») the restriction of Q;,(P,,a, I, ,) to the

subset W(r, m) x 9! (5,2), and if we denote by A’ ({/Q\ia}ie{l,_,_,m} the zero set of
a€{0,...,s}
the non-linear maps {Q;, }ie(1,....m} » it is clear by the discussion at paragraph 9.1} in
a€{0,...,s}

particular by (9:.T.T1), that

Z'(r,s,m) 1= (X! </V <{ﬁm}ie{1,...,m}>> (9.3.5)
ae{0,...,s}
that is
YN Z'(r, s,m) = <{ﬁm}ieu ..... m}> : (9.3.6)
ac{0,...,s}

Taking (9:3:6) and the third line of (9:1.9) into account, the key idea behind the
proof of Theorems[9.3.1}{9.3.2] consists in understanding under which conditions the set
Y!(Z(r, s, m)) admits a closed projection onto W !(r, m).

Namely, we assume the existence of a semi-algebraic subset of polynomials

So(r,s,m) C P(r,m) (9.3.7)

for which it is possible to extrapolate linearly from the ms + m equations in (9.3.6)
the (m — 1)s parameters of 19,1n(s, 2) as explicit algebraic functions of the parameters of
Wl(r, m).

Remark 9.3.1. The fact of being able to reduce linearly the coefficients of 19,]n(s, 2) from
may in principle depend also on the values of the parameters a € 1/91[(1), S0
that the set in (9:3.7) should depend also on a. Moreover, for the moment we have no
elements that allow us to establish that a semi-algebraic set S(l)(r, s, m) with the required
properties exists. In order to understand the sequel, we stress that here we simply make
a working hypothesis on the existence of a semi-algebraic subset S(l)(r, s, m) on which it
is possible to reduce linearly the parameters of 19,1n(s, 2) from independently of
the value of the parameter a € 1/9\,1n(1). The validity of this hypothesis will be verified in
the sequel.

Then, we introduce

Ar,s,m) :=N <{Gm}ie“,...,m}> ()Y S50, 5,m) x 8),(5)) , (9.3.8)

a€{0,...,s}
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and we remind that, by Remark [6.2.3]
Y'(SL(r 5,m) x 91 () = UL (S, (r, 5,m) x 8! (1)) x 8] (5,2) . (9.3.9)
We can now state
Lemma 9.3.1. With the setting above, the two following properties hold:

1. the projection

A, s,m) =11 A(r, s, m)

I//I\/l(r,m)
is a semi-algebraic subset which is closed in l[l(S(l)(r, s, m) X 19,1,1(1)) for the in-
duced topology;

2. the projection Hp(r’m) ((ul)_l(A’(r, s, m))) is a semi-algebraic subset which is
closed in S(l)(r, s, m) for the induced topology.

Proof.

Step 1. By construction, at any point of l[l(S(l)(r, s, m) X ﬁ}n(l)) x 9! (s,2) the (m —
1)(s — 1) parameters of the space SrIn (s,2) can be reduced explicitly from the ms +
m algebraic equations in with the help of linear algorithms. This means that
A(r, s, m) is determined by a system of ms +m — (m — 1)(s — 1) = s +2m — 1 algebraic
equations involving only the coordinates of l[l(S(l)(r, s, m) X §}n(1)), and of (m — 1)(s —
1) algebraic equations that parametrize the coefficients of Srln(s, 2) as functions of the
points in l[l(S(l)(r, s, m) X §,1n (1)). In other words, A(r, s, m) has the form of a graph of
the type

A(r,s,m) = A'(r, s,m) X 0(r, s, m) , (9.3.10)

where A'(r, s, m) = Hﬁ/l(r’m)A(", s,m) is a closed subset of ul(S(l)(r, s, m) X @\}"(1))
for the induced topology determined by algebraic equations involving the coordinates
of elements in l[l(S(l)(r, s, m) X §,1n(1)), and the points of 8(r,s,m) C 9! (5,2) are
parametrized by A’(r, s, m).

Moreover, by Remarkthe function 2! is polynomial, and we have assumed as
a working hypothesis that S(l)(r, s, m) is semi-algebraic in P(r, m) (see Remark .
Therefore, by (0:3:8)-(.3.9) the set A(r, s, m) is semi-algebraic in wl (r,m)x 19,1,1(s, 2),
and A’(r, s, m) is semi-algebraic in w! (r, m) by the Theorem of Tarski and Seidenberg

ATT
Step 2. Since the invertible transformation 2! defined in Remark is polyno-
mial, due to Step 1 and to continuity we have that the inverse image

U A (r, 5,m) € L, m) x 91 (1) (9.3.11)
is closed in S(l)(r, m) X :9\,1”(1) for the induced topology. Finally - taking into account the

fact that, as we have already pointed out in Remark , 1/9\,1n(1) is compact - Lemma
ensures that the projection

p e m) ((ul)_l(A/(r, s,m))) (9.3.12)
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is closed in S(l)(r, s, m) for the induced topology.

The semi-algebraicness of the projection in (9:3.12)) is a consequence of the semi-
algebraicness of A’(r, s, m) demonstrated at Step 1, of the fact that ul s polynomial,
and of the Theorem of Tarski and Seidenberg.

O

Corollary 9.3.1. In case Sy(r, s, m) = P(r, m), the subsets
Ar,sm) . Tpg (UDYTHA G s,m) =6, 5,m) .

are both closed in Wl(r, m) and P(r, m), respectively.
In particular, one has ol (r,s,m) = L (r,s, m).

Proof. 1t is immediate by (9.3.8) and (9.3.6) that if Sy(r, s, m) = P(r, m) then

A(rs,m) := W <{6m}ie{1,...,m}> =Y'(Z'(r5.m)).
a€{0,...,s}
The thesis follows by considering the above expression together with (9.1.9) and Lemma
9.3 1] O

Corollary 9.3.2. The same result of Lemma[9.31|holds if one considers a semi-algebraic
subset S(l)(r, m) C S(l)(r, m). One just has to replace S(l)(r, m) with S(l)(r, m) in the state-
ment.

Proof. One just needs to follow the same steps in the proof of Lemma [0.3.1] and to
consider S(l)(r, m) instead of S(l)(r, m). O

By the above reasonings, the goal in the next paragraphs is to study in depth the
form of the equations in (9.3.4)-(9.3.6) in order to see in which cases the parameters
of 19,1n (s,2) can be reduced by the means of linear algorithms. For i € {1,...,m}, and
a € {0,..., s}, the explicit expressions of the functions Q;,(P,,a, J S’},’a) are given in
formulas (6.2.39)-(6.2:40) of Lemma[6.2.3]

As we shall see, the linear reduction of the parameters of 19,1n(s, 2) is always possible
incaser > 2,5 = 1,orr > 3,5 = 2, in other words in this regime one has S(l)(r, s, m) =
P(r,m).

For r > 4, s > 3, the linear reduction of 19,1n(s, 2) is possible for polynomials belong-
ing to set S{(r, m) in 9.2.7), that is S(l)(r, s,m) D S}(r,m).

9.3.2 Proof of Theorem [9.3.1}
When s = 1, then in (6:2.39)-(6.2.40) one must consider a € {0, 1}. We observe that

Vae (0,1}, Vi=l..m QuP,.al,.)=0 < p;q=0,
(9.3.13)
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where the family of multi-indices v(i, a) was defined in (6.:2.33). As we see, no pa-
rameters belonging to the space 19},1(s, 2) appear in (9:3:13), so that with the notations
of paragraph , we have S(l)(r, 1,m) = P(r,m) and corresponds to the ex-
plicit expression of the closed set A’(r, 1, m). Moreover, by Corollary cl(r,1,m)
is closed in P(r, m) and, by (9.1.9), one has &' (r, 1,m) = ' (r, 1, m).

This proves the statement of Theorem[0.31]for r > 2,5 = 1.

9.3.3 Explicit form of the equations (case r > 3, s > 2)

The goal of this paragraph is to give a more explicit expression of A <{61a Yie(,....m) > ,
ae{0,1}
incaser >3,s > 2.

Remark 9.3.2. We remind that equations (6.2.39)-(6.2.40) are recursive w.r.t. the pa-
rameters of the curve y. Namely, for any given integer f € {2, ..., s}, the coefficients
of order f# belonging to the space 19,1,1(s, 2) - thatis ayy, ..., Arps s Ay - » Ay - APPEAT

in equations (6.2.39)-(6.2.40) only for a > B.

For any polynomial P € P(r,m) and any curve y € (:),1,[, we indicate by PE:Z) the
associated polynomial P, written in the adapted coordinates for y (see paragraph@)
deprived of its monomials of degree less or equal than twoﬁ Also, if J; , € 19},1(1) is

the s-truncation of y, for any given @ € {2, ..., s} we denote by
0
s i
24: (12-t
Js,y,a(<a)(t) = Js,y,a. - =
S J
Zj:a amjt

its truncation at order a — 1 written in the adapted coordinates for y.

Remark 9.3.3. We observe that, for « = 2, Js%a(d)(t) reduces to the line (7,0, ...,0),
since with the exception of the parametrizing coordinate, the components of J; , . start
at order two in 7 (see paragraph[6.2.3).

With this setting, we have

Lemma 9.3.2. For any polynomial P € P(r,m), there exists a linear change of co-
ordinates ® = D(P) : R™ — R™ such that for any given a € {2,...,s}, and for
i=1,...,m, the algebraic equations Q; ,(P,,a, J; , ;) = 0 in (6.2.39)-(6.2.40) take the

5One has P(;Z) # 0 since we are considering the case of polynomials having degree r > 3.
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form
A 2
0 0 0 0 0 Q]a (Pg> )’ JS,}’,a,(<a)>
A 2
0 20,0 0O . 0 d,. Goy (pg_; ). Jw,a<<a>>
/ A _
0 0 2P 35 - 0 4, [+2]4,, (pgjz), Js’m«a)) =0.
0
0 0 0 ..o2p a A~
pw(m,m) " Qma (P(a>2)’ JS,Ysa(<a)>
(9.3.14)

Proof. Step 1. We firstly claim that equations (6.2.39)-(6.2.40) can be but into the form

A >2)
0 0 0 0 Ela <P(>2> Jwazwz)
<a
0 2pp22 Pwe3) - Pm(z m || e o (Pa sra )
0 Pwe3 2PwG3) - Poem || %« |T]Q5, (sz), J s,y,a(“’)) =0.
0 pw(2,m) pw(3,m) cee 2pw(m m) Ama @ (P(>2) J (<,1))
ma a ? S,7,a
9.3.15)

By (0:3:13), for any « € {2,...,s}, and for any i,j € {1,...,m}, the monomials
Py(3,0)> Pu(j,1y do not yield any contribution to equations Q;,(P,,a, J;, ,) = 0. There-
fore, taking into account, the only monomials of order two which may appear
in equation Q;,(P,, a, J;, ;) = 0 are those associated to the multi-indices @ (b, c), with
b,ce{2,...,m},b<c.

Moreover, fixing the values of i € {1,...,m} and « € {2,...,s}, by (6:2.39)-
(6:2.40), the multi-indices 4 € N™ contributing to equation Q,,(P,, a, J sya) = 0are
those for which the set G,,(ji(i), ) in (6:2.37) is non-empty. This amounts to requir-
ing that the components of the vector (Kyy, ..., Kyg» ...k k) € NOm=Dla=D

appearing in formulas (6.2.39)-(6.2.40) satisfy

m2s e

Yk =i,1) Vi€{2....m} . /41(1)+2sz . (9.3.16)

i=2 j=2 i=

In particular, for fixed i € {1,...,m},a € {2,...,s}and £ € {2, ..., m}, if we look at
the monomials containing the coefficient a,, in equation Q;,(P,, J;, ,) = 0 - that is, at
the form of the terms for which k., # 0 in (6.2.39)-(6-2.40) - by (9-3:16) we must have

@) =0 ,  k;=648, » H@ =6, , JjE€I{2..,m}. (93.17)

Firstly, expression (9.3.17) implies |u| = 2. Secondly, as we said above, the only multi-
indices of length || = 2 which may yield a contribution to Q;,(P,,a, J;, ,) = 0 are
those belonging to the family {@(b, )}y ca.  myp<e in @2.1). Therefore, we have
two cases.
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Casei =1 If p € {w(b,0)}} e, mp<e then py =0, and all terms in formula
(6.2.39) which are associated to these indices are multiplied by zero. Hence, the coeffi-
cients a,, do not appear in [31 «(Pasa, Jg, 2) = 0, nor do any of the monomials of order
two in P,. This, together with Remark@proves the claim for i = 1 (the first line of
©3.13)).

Case i € {2,...,m}. Taking (9:3.17) into account, for any given £ € {2,...,m}
one has that

1. if 1 < 7, the only term to which the coefficient a,, is associated in equation

~

Qiq(Pasa, J;, ) = O is the one corresponding to the multi-index u € w(1,?),
that is, by (6.2.40), the monomial (1 + 64;)P 1./ a7

2. if i > ¢, the term containing a,, is the one associated to the multi-index y €
W(f, 1), that iS, by @), (1 + afi)pm(f,i)afa'

Conversely, if a monomial associated to an index w(i, ), with 1,7 € {2,...,m},

i < ¢, appears in equations Q,,(P,, a, Jsy.a) = 0, then, by (0.2:1) and by (0.3.16), one
must necessarily have

~ . m a . _ ~ . _
M1§1)+Zj=~22i=2’kji =a , :“1(1)—0. 93.18)
Yok =) =60 +06; =8, =0;, VjE{2...m},
which is true if and only if for some v € {2, ..., a} one has
k.. =68.,5
{ I (9.3.19)
ijz 2,-:2' 5jf5iu =a

that is if and only if k ; = 6;,6;, . One can check by formula that this ensures
that such a term must be of the form (1 +6,;)P (1. £)dzq- This reasoning, together with
Remark 0.32] and with the fact that - as we showed at the beginning of the proof -
no monomials of order two appear in equation ﬁia(Pa, a,Js,2) = 0 other than those
associated to the family m, proves the claim for i € {2,...,m} (lines 2, ..., m of
©.3.15)).

Step 2. For any P € P(r,m), taking Lemma [9.2.1] into account we indicate by
G!(P) the matrix

0 0 0 0 0 0
0 2Pw(2,2) o Poem | 2 0 2Pw(2,2) o Pwm | _ 0 0
0 .. 0 . 0 H'(P)
0 pw(Z,m) tee 2pw(m,m) 0 pw(2,m) s 2pw(m,m)
(9.3.20)

appearing in (9.3.15). G!(P) is symmetric, hence diagonalizable. Hence, for any P €
P(r, m), there exist a basis of eigenvectors, indicated by

Uy, ty = W(P), ..., =u! (P), 9.3.21)
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and a real mx m invertible matrix ® = D(P), such that equation takes the form

(>2)

0 0 0 0 0 Qi (Pa , Js’y’a(<a)>
2
0 200y 0 0 d, Qog (pg ), ‘]S’y’a(<a)>
0 0 2Puay O || % |+ 2 Qs (PP, 0,52 ) [= 0
0o .. .
. ;
’ ’ 0 zpw(m’m) O Qmar (P(a>2)7 ‘]s,y,a(<a)
(9.3.22)

where the primed quantities indicate that we are working in the new basis (9.3:21).

Remark 9.3.4. Comparing (9.2.3) with (9.3:21)), we observe that the vector v, was left
unchanged. This is due to the fact that, by (9.3.20), v, is already an eigenvector of
G!(P) (associated to a null eigenvalue).

O
9.3.4 Proof of Theorem [9.3.2]
For r > 3, s > 2, we define
X{(r,s,m) :=5"(r,s,m) [ ]S} (r.m) . (9.3.23)

Firstly, we show that, if P € Si (r, m), then the parameters of the space 19,171(s, 2) can
be reduced iteratively from equation (9:3:14) for « € {2, ..., s}.

When a = 2 the second term at the 1.h.s. of does not depend on the param-
eters of SrIn(s, 2) (see Remark, so that the coefficients a,,, ..., a,,, can be reduced,
as matrix H!(P) is invertible by construction.

If, for a € {3,...,s}, we assume that the parameters ajp, with j € {2,...,m}
and p € {2,...,a — 1}, have been reduced, then the first equation in (9.3.14) does not
contain any new parameter, whereas the terms a,,, ... can be found by inverting
H!(P) once again.

The above considerations and (9.3.23) imply that if P € X|(r, s, m) then

2 ama

1. the parameters of the space 9! (s, 2) can be reduced from the equations in (9:3:14)
by the means of a recursive algorithm which only involves linear computations
and the inversion of H!(P);

2. there exists a truncation J;, € 9} (s) such that U'(P x J,,) = (P,.a,J;,,)

solves (9.3.14).

Taking (9:3-8) and the above arguments into account, with the notations of section
9.3.1l we have that

1. 3}(", m) C S(l)(r, s,m) forall s > 2;
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2. by the previous point and by Corollary the projection

Y, s,m) =T, 0 </V ({ﬁm}ie“,...,m}) ()Y m)x ﬁ,ln(s»)

a€{0,...,s}

is closed in 2! (S} (r, m) x§r1n(1)) =: &/ (r,m) for the induced topology and semi-
algebraic in I//I71(r, m). Moreover, still by Corollary taking into account

(9:3:23)) the projection
Mpm (U X 5,m))) =6 (rs,m) () S (rm) =2 X[ (r, 5,m)
is a semi-algebraic subset of P(r, m), closed in Si(r, m) for the induced topology;

3. as, due to (9:3.13), for a = 0, 1 no parameters of 9! (s, 2) appear in the equations
determining the set in (9.3.6), and as for any P € S!(r,m) the parameters of
9! (5,2) can be reduced recursively from (9:3.T4) by a linear algorithm when
2 < a < s, the form of Yll(r, s, m) can be obtained by performing solely linear
operations.

The above arguments prove Theorem[9.3.2 once one sets
le (r,s,m) :=5'(r,s, m)\Xl1 (r,s,m)

1 . 1 (9.3.24)
Y2 (r’ S, m) = HW'(I‘,M) <‘/V <{Qia}i€{1,...,m}>> \Y1 (r’ s, m) .
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Chapter 10

Proof of Theorems C1-C2-C3

We assume the notations of section[9] In this context, we are considering two positive
integers r > 2,n > 3,avector s :=(sy,...,5,_1) € N1 with 1 < s; <r—1forall
i=1,...,n—1, and a function A of class Cbzr_1 around the origin, satisfying VA(0) # 0.

Also, for any m € {2,...,n — 1}, we set Z(r,n,m) := M(r,n,m, 1), where the
constant M(r, n, m, 1) was defined in Lemma[5.0.1] (see formula[5.0.1)).

10.1 Proof of Theorem C1

Fixm € {2,...,n—1}. Let '™ be a m-dimensional subspace belonging to the subset
Ag(h,m,n) C G(m, n) introduced in Definition 4.2.1]

Taking Deﬁnition into account, we consider a curve y € @m whose image is
contained in I'”. Without any loss of generality, up to changing the order of the vectors
spanning I, we can suppose that y is parametrized by the first coordinate, hence that
y € @)}n Following (9:1.2), we indicate by a = (ayy, ... a,) € Em_l(O, K (r,n, m))
the linear Taylor coefficients of y at the origin, and by J; , its s-truncation (with 1 <
s<r-—1).

We also indicate by u,...,u,, € U(m,n) a orthonormal basis spanning I"”, and
by v i=u;+ Y, a;u;,uy ..., u,, the basis associated to the adapted coordinates for y
introduced in section[6.2.3] As we have already shown in (8:1.3)), the Taylor polynomial
To(h, r, n) restricted to I'"™ written in the adapted coordinates reads

Hi Hy Hm
f-/\f-/\ —~N =
Toalhlm () = Y Ll i T |
penm u!
1<|ul<r

(10.1.1)
where we have used the notation introduced in formula (3.0.2). Moreover, as customary,

J,, reads Jg . in the new coordinates.

133
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By the arguments at paragraph0.1] and by taking (6.2.23)) and (9-1.9) into account,
if we manage to prove that condition

(Toahlpm, rom),a, 3y,,) € YN(Z!(r, 1,m))

is never satisfied for any choice of the curve y, which is equivalent - due to Theorem
[03Tlfor s = 1 - to condition

ToChlpmr.m) & 6'(r, 1,m) = E(r, 1, m) ,
then by the definitions in (7.I.1)-(7.1.2) we have
To(h,r,n) € P(r,n)\V(r,1,m, n)

and the thesis follows by putting the expression above together with (7.3.1)) and Theorem
A

By Lemma[6.2.3]and by (6.2.33), condition
(ToaChlpm,rom), 2,3y, ) & YHZ'(r, 1,m))
is equivalent to asking that system

Qia(Toalhlpmrom),a, 3y, ) =0  Vie{l,...,m}, Yae {0,1}, (10.1.2)

has no solution. Then, by expressions (8-1.8)-(8-1.9), the system in (T0.1.2) is not sat-
isfied if and only if

(wuy, ... u,) €U(m,n) Span (ug, ..., u,,) =I"
—m—1
((121,...,am1)eBm (0,%(?‘,1’!,”1)) 5 vi= u1+(121u2+---+am1um
h(l)[v] = h(')[uz] = = h(')[um]
hilv, vl = R3[v,uy] = -+ = hg[v,u,] =0

(10.1.3)
has no solution.
By construction, the hessian of the restriction A|p» has no null eigenvalues, so that
system (I0.1.3) admits no solution and To(h|pm,r, m) & $1(r, 1, m) as wished. This
concludes the proof.

10.2 Proof of Theorem C2

10.2.1 Case of a subspace belonging to A,(h, m, n)

With the usual setting, let m € {2,...,n — 1} be an integer, and I € A{(h,m,n) C
G(m, n) be a m-dimensional subspace spanned by vectors uy, ... ,u,, € U(m, n).
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As the Hessian matrix of the restriction 4|r» has at most one null eigenvalue, with-
out any loss of generality one can choose u; to be the eigenvector associated to the
unique null eigenvalue, that is

hllu] = hlluy] = -+ = hl[u,] =
heluy,uy] = hgluy, up] = h3luy,u,] =0 (10.2.1)
Span(u;, u,, ...,u,) =I"

so that at the same time one must have

Rlug, up]  hglug,usl .. holuy, uy,]
2 2 2
det ho[u3,u2] hO[MS’u3] ho[u3,um] # 0. (1022)
Rty tn]  hlty,us] o HG [ty 1]
The expression of To(h|pm, r, m) w.r.t. the coordinates x, ..., x,, associated to the
Vectors uy, Uy, ... , Uy, reads
H1 Hy Hm
r-’H r-“% r-’\
To(hlpm.rom)(x) = Y, h'”'[ w, e u, ] X
ueN™
1<|ul<r
(10.2.3)

We now claim that

Lemma 10.2.1. If h is non-steep on I'™ at some given order s,, > 2, then
To(hlpm,r,m) € X1 (r, $,y,m) 1= G (r, 5, m) ﬂ Sl(r,m) (10.2.4)

and Ty(h|pm, r, m) satisfies the s,,-vanishing condition on I'™ on some curve y € ®r1n
whose Taylor expansion at the origin has null linear terms.

Proof. Looking at (T0:2.3), it is easy to check that the coefficients of To(A|pm, r, m)
associated to the family of indices {@(b, )}, ce(2... m)p<c introduced in Q.21 read

,,,,,

1
Parioe) = (To(hlpm, 7, m))w(b,c) = Whg[ub,uc] , (10.2.5)
C

where 6, is the Kronecker delta.
By putting together expressions (T0.2.2) - (T0.2.3) with the definition of set S} (r, m)

in (©.277), one has that

To(hlpm, r,m) € S}(r,m) . (10.2.6)

Since we have assumed 4 is non-steep on I'” at some order s,, > 2 then, by the
discussions at section [7]and at paragraph[D.1] one has

To(hlpm. r.m) € £(r, s,,, m) (10.2.7)
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which, together with (T0.2.6), yields
To(hlpm, r.m) € £(r, s,,, m) ﬂ Slr,m). (10.2.8)

We now claim that

Lemma 10.2.2.
To(h|pm, r, m) Eii(r,sm,m) Vie{2,...,m}. (10.2.9)

Proof. Suppose, by absurd, that To(h|pm,r,m) € ii(r, Sy, m) for some i € {2,...,m}.
It is clear from Lemma and that, as s,, > 2, one has 6'(r,s,,,m) C
6'(r, 1,m), and therefore X/(r, s,,, m) C Si(r,1,m). This fact and the initial hypothe-
sis imply To(h|pm,r,m) € i (r, 1, m), so that by Theorem one must have

To(hlpm, r.m) € 8'(r, 1,m) . (10.2.10)

Relation (T0.2.T0) implies that there must exist a curve y € @jn with values in I such
that To(h|pm, r, m) satisfies the 1-vanishing condition on y. As it was shown in the proof
of Theorem C1 (see the discussion around formula (I0.1.2)) this is equivalent to asking
that system

hiluy] = hlus] = - = hlu;] = -+ = hi[u,] =0 P41
halus, ] = hjlug,up] = -+ = hylug,u;] = - = hjlu;,u,] =0
(10.2.11)
admits a solution, which contradicts (T0.2.2). O
Due to (T0:2:8) and to Lemma[T0.2.2] we then have that
To(hlpm, r,m) € £\(r, 5,,, m) ﬂ Sl(r,m). (10.2.12)

Moreover, by Theorem the set X ll(r, s,m) .= &l (r,s, m) ﬂ S}(r, m) defined in
is closed in S} (r, m) for the induced topology, whence one deduces that actually

Xll(r, Sy, M) = closure (3](r, Sps m)) ﬂ S}(r, m) =S (r, Syp> M) ﬂ S}(r, m) .
(10.2.13)

Relations (T0.2:12) and (10.2.13) together imply

To(hlpm, r.m) € X{(r, s, m) . (10.2.14)
Therefore, by (T0.2.14) and by the definition of X | (r, s,,, m) in (9:3:23), there exists

acurvey € G),ln, with image in I, on which the Taylor polynomial of the restriction
To(h|pm, r, m) satisfies the s,,-vanishing condition. Namely, if a = (a3, ...,a,,;) €
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—m—1 ~
B" (0, # (r, n, m)) indicates the linear coefficients of y and Jsm%a its s,,-truncation
written in the adapted coordinates, by (9.1.9) one must have

(To.a(hlpm, 7, m), a, j\sm,y,a) eY' (Z'tr,s,.m), (10.2.15)

that is, by (6.2.33),

QUaToulhlon.rom.a 3, =0, £=1,....m, a=0,....5,. (10.2.16)

In particular, as s,, > 2, due to Lemma [6.2.3] and to (8I3)), the equations in

m 2
(10.2.16) for @ = 0, 1 read

h(l)[u] = h(l)[ul] == h(l)[um] =0

h2[v,v] = R2[v,u] = h2[v,u,] =0 (10.2.17)

Span(v, u,, ..., u,) =I"
where

m
v=up+ ) ayu, (10.2.18)
i=2

is the anisotropic vector associated to the curve y. Comparing (T0.2.1) to (T0.2.17), as
the Hessian of /|- has only one null eigenvalue we see that the vectors u; and v must

be parallel, but then (T0.2.18) yields

UV=u . Ay = =04, = 0 . (10219)

so that by the arguments of subsection (6.2.3)) the coordinates adapted to the curve y
coincide with the original coordinates.

O
We now recall that, due to Theorem the form of the set
Y s m) = Tlg (/V <{6m} il m) ) () Y'(S} 0 m) x 3},,@)))
a€l{0,...,s,,}
(10.2.20)
satisfyinﬂ
X[, $prm) =Tp, (UHTY () 5, m)) (10.2.21)

can be explicitly computed - starting from the relations determining Y1(2 Y(r, s,,, m)) -
by the means of an algorithm involving only linear operations. By this fact, the form of
the set

YL, spm) =Y (r, 5,,m) ﬂ{(p”, a) e W'(r,m)a =0} (10.2.22)

IThe transformation U was introduced in Remark
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can also be deduced explicitly starting from Yl(f L, S, m)) and, due to Lemma|10.2.1
and to (T0.2.21), one has that

h non-steep
atorder s, onI" = u! (To(Blpm,r,m),0) = (Ty(h|pm,r,m),0) € ?11 (r, Sy, m) .
(10.2.23)
Moreover, we observe the following facts:

7,8 y,m

1. the explicit expression of set Z,, C P*(r,n)xR"=Dsn x 71 (m, n) introduced
in Corollary B2 can be obtained by injecting into the explicit expression for

Y2 05y m) 1= { QaToaParrom) a3 o) | o

i=1,....m
a=0,...,5,,

(10.2.24)

given in Lemma [6.2.3| the explicit form of the coefficients of Ty ,(P|rm, r,m) in
(TOI.1), with P any polynomial belonging to P*(r, n), and by considering the
Vectors v, uy, ... , Uy, in (T0.1.1)) as free parameters of 7! (m, n).

2. In the same way, for any P € P*(r,n), one can inject in the expressions de-
termining ?f(r, s,,»m) the explicit form of the coefficients of Ty ,(P|pm, 7, m),
given in (T0.I.1)), with the vectors v, uy, ..., u,, considered as free parameters of
%'1(m, n). The resulting subset is indicated by

Ay (F, S,y 1, m) C P*(r,n) X R"™ ' sx 7 Y(m,n).

By the arguments above, and by the fact that the form of ‘;?/ll(r, S,,» m) is obtained

starting from the expression of Y!(Z1(r, s,;»m)) through linear algorithms, we have
that the explicit expression of &, (r, s,,, n,m) can be found linearly starting from the
expressions determining Z;’S""m.

Furthermore, the above arguments together with (10.2.23) and with formula (T0.2:19)
yield that if system

(uy, ..., u,) €U(m,n) Span (uy,uy, ..., u,) =I" € A{(h,m,n)
(To(h,r,n),0,u,uy, ..., u,,) € d(r,s,,, n,m)

(10.2.25)

has no solution, then 4 is steep around the origin with index «a,, < 2s, — 1 on any
subspace I € A(h, m, n).

10.2.2 Case of a subspace belonging to A,(h, m, n)

As we did in paragraph |10.2.1} we choose a basis uy, ...,u,, € U(m,n) spanning I
such that u; coincides with a normalized eigenvector of the hessian associated to one
of the null eigenvalues. Then, we have
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Lemma 10.2.3. If h is non-steep on I' € Ay(h,m, n) at a given order s,, > 2, up to
suitably changing the order of the vectors uy, ... ,u,, one has

To(hlpm,r,m) € il(r, S M) ﬂ Sé(r, m) . (10.2.26)

Proof. By (10.2:5), and by the fact that the hessian of A|p» has two or more null eigen-
values, we have that

h(z)[uz,uz] h(z)[uQ,u3] h%[uz,um]
det | Mol el Aglusus] e hglus ]| (10.2.27)
Rl tin] MGl us] oo Q[ 1]

hence Ty(h|pm,r, m) € Sé(r, m) following definition (9.2.9)).
Moreover, A is non-steep on I at a given order s,, > 2 so that, by the discussions
at section [7]and at paragraph[0.1} one has

To(Alpm,r,m) € S(r, Spp» 1) (10.2.28)
so that by the previous considerations we have
To(hlpm, r,m) € £(r, s, m) ﬂ Si(r,m). (10.2.29)

By the above expression and by (9.1.9), we have that there must exist i € {1,...,m}
such that To(h|pm,r,m) € ii(r, S Sé(r, m). As it was already discussed in the
proof of Theorem C1, if To/(h|pm, r, m) € i r, Sy m) ) S;(r, m) then the vector u; must
satisfy (T0.2.11). If i = 1, there is nothing else to prove. If i # 1, it suffices to change
the order of the vectors u; and u;. O

Now, if for any P € P*(r, n) we inject in the expressionﬂ determining the semi-
algebraic subset 2! <(21(r, Sy ) ) S;(r, m)) X 1%(1)) C W(r, m) the explicit ex-
pression of the coefficients of the polynomial Ty ,(P|rm, 7, m), and we let the vectors
v, Uy, ..., U,, appearing in (T0.1.1) vary in 7"!(m, n), we obtain a set

Ay, Sy 11 m) C P(r,n) X R™ 77 (m, n) .

Moreover, by Lemma[T0.2.3] we have that if system

—m—1
((121,...,am1)€B (%)
Uy ... u,) € U(m,n) vi=up+ Y, anl;

Span (v, uy, ... ,u,) =" € Ay(h, m, n)

(10.2.30)

(To(h,r,n),az, ..., G5, U, Uy, ... U,,) € Ay(r, 5, n,m)

has no solution, then 4 is steep around the origin with index a,, < 2s, — 1 on any
subspace I'" € A,(h, m, n).

2Contrary to the case studied in the previous paragraph, here these expressions cannot be found easily, in
general.
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10.3 Proof of Theorem C3

10.3.1 Construction of an atlas of analytic maps for the Grassman-
nian

It is well known that for any choice of positive integers k, n, with k < n, the Grassman-
nian G(k, n) has the structure of a projective algebraic variety (see e.g. [27], [100]). In
this subparagraph, for any positive integer n > 3 and forany m € {2,...,n— 1} we will
construct a suitable atlas of analytic maps for G(m, n) by exploiting classic arguments
of real-algebraic geometry.

Namely, we fix two integers n > 3, and m € {2,...,n — 1} and we consider a
subset I := (iy,...,i,) C {1,...,n} of cardinality m, as well as its complementary
J = (s e sy Of cardinality n —m in {1, ..., n}.

We work in the euclidean space R”, and we fix a bilinear, symmetric, non-degenerate
form B : R” X R” — R. The Spectral Theorem ensures the existence of an orthonor-
mal basis - indicated by ey, ..., e, - that diagonalizes B. Namely, in the basis ey, ..., e,
the form B is represented by matrix

@ 0 0 .. 0
0 a 0 .. 0

B =[] (103.1)
0 0 0 a

where a; X -+ X a,, # 0.

We indicate by E; (resp. E;) the m-dimensional subspace spanned by the vectors
(e,-l, ,e,»m) (resp. the n — m-dimensional subspace spanned by e s € jn_m). One
clearly has R" = E; @ E;. We also denote by U the subset of G(m, n) containing the

m-dimensional subspaces which are supplementary for E;.
m times

——N—
With this setting, we consider the cartesian product E7' :=E; X - X E; and we

have that

Lemma 10.3.1. The map
F; L EY — Uy Wy, ..., wy) — Span(e; +wy,....e; +w,) (10.3.2)
is bijective.

Proof. We proceed by steps. In the first two steps, we check that definition (T0.322) is
well-posed. In Steps 3 and 4 we prove injectivity and surjectivity.

Step 1. We claim that for any choice of (wy,...,w,,) € E', the vectors (e,-l +
wy,....e + w,,) are linearly independent. Infact, if by absurd there exist m vectors
(wy, ..., w,) € EY suchthat(e; +w, ..., e; +w,) arenotlinearly independent, then
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there must be a vector 4 = (4y, ..., 4,) € R™\{0} satisfying }'7_, As(e, +wy) =0,
thatis Yp_, Ase;, = — X0, Asw;, .

As Yy_ Ase;, € Ef,and = Y7 A,w; € Ej, andas R" = E; @ E; by con-
struction, by the assumptions one must have — Y7, 2,w;, = Y/_, As¢;, = 0. The
previous relation - together with the fact that the vectors €js-.->€ are linearly inde-
pendent by hypothesis, yields A = 0, in contradiction with the initial assumption 4 # 0.

Step 2. We claim that for any choice of (wy, ..., w,,) € E one has Span (¢; +

wl,...,eim +wm) S UJ.
By absurd, we suppose that for some (wy,...,w,,) € E7 there exist two non-
i m
zero vectors u € E;, 0 = (0y,...,0,) € R™, verifying u = Zle 6f(el'/ + wy),

thatis 37 ope;, = u— ¥7_ o,w,. By construction, one has }7_, os¢; € Ej,
and u — ),7_ o,w, € E;. Hence, as R" = E; @ E;, the previous formula yields
u— Y, oW, = Yy 0pe;, = 0, which in turn implies ¢ = 0, as the vectors
(ei] e eim) are linearly independent.

Hence, one has E; N Span (e, + wy,...,¢; + w,) = {0}. Therefore, since
dimE; = n— m and dim ( Span (¢; +wy,....e; + wm)> = m (the vectors ¢; +
Wy, ...,e; +w,are linearly independent by Step 1), the subspace given by Span (ei1 +
wy,...,e; +w,)is supplementary to E; and thus belongs to U;;.

Step 3. We prove that & is injective. By absurd, we suppose that there exists a
subspace in U; which has two different pre-images. Namely, we suppose that there exist

vectors (uy, ...,u,) € ET, and (wy, ..., w,,) € ET, with (uy, ...,u,,) # (W, ..., W,,),
satisfying #;(uy, ..., u,) = Fy(wy,...,w,). Hence, as ¢; +uy,....¢; +u, and
e, +wy,....e; + 1w, generate the same subspace, for any £ € {1, ..., m} there must

exist ¥ = (87, ..., p%) € R™\{0} such that

m
e, + W, = Z B (e;, +uy), (10.3.3)
k=1
that is
m m
€, ~ Z Brei, = Z Blu; —w, . (10.3.4)
k=1 i=1

By construction one has e;, — Y, fre; € Epand Y, flu; —w, € Ey, so due
to (T0.34) and to the direct sum R" = E; @ E; one infers Y| flu; — w, = ¢;, —
ZZ:] ﬂfeik = 0. Since the vectors € 5. € are linearly independent, we finally
obtain

Bl =6y . (10.3.5)

where 6, is the Kronecker symbol. Formulas (T0.3.3)) and (10.3.3) together imply that

e, twe=¢e,+tu, = Wp=1ly Ve e(l,...,m}, (10.3.6)

in contradiction with the hypothesis (uy, ..., u,,) # (wy, ..., w,,).
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Step 4. We prove that F is surjective. Consider a subspace V' € Uj;. Since V is
supplementary of E, one has the direct sumR" = V@ E;, and forany £ € {1, ..., m}
there exist unique vectors (vy, wy) € V' X E; such that e;, = v, — w,. Hence, for
any £ € {1,...,m} there exists a unique choice of vectors (wj, ..., w,,) satisfying
vy = €;, + wy. The vectors vy, ..., v, belong to V' by construction, and are linearly
independent by Step 1. Therefore, since dim V' = m by hypothesis (V' € Uj), one has
Span(vy,...,v,)=V. O

We indicate by #"~™ the subsets of cardinality n — m in {1,...,n}. One has the
following covering of the m-dimensional Grassmannian:

G(m, n) = U U, . (10.3.7)
Jejn—m
By construction, any vector w, € E; can be expressed uniquely as

n—m
Wy = Mfkejk N (1038)
k=1

m is areal m X (n —m) matrix. By (10:3.7), and by Lemmal[10.3.1

,,,,,

there exists an atlas sending G(m, n) to the open union

U F'un= | Eycrmte-m. (10.3.9)
Jejn—m Jejn—m

10.3.2 Proof of Theorem C3

Taking (10.3.7) into account, we fix J € #"~" together with its associated sets E;, U.
Let V' be a m-dimensional subspace belonging to U;. By Lemma[T0.3.T} one has

V = Span{e; +wy,....¢; +w,} (10.3.10)

for a unique (wy, ..., w,,) € E?

Now, as G;(m, n) contains those subsets of G(m, n) on which the restriction of the
bilinear form B has at least one null eigenvalue, V' € G(m, n) if and only if B is de-
generated on V. Namely, taking into account, V' € G (m, n) iff there exists a
vector v = Z?:l ve(e;, +wp) €V such that for all ¢’ € {1,...,m) one has

m

B(v,e,,, +wp) = ) v, Ble, +wpe,, +ws)
=1
m

= Uy (B(e,»f,e

) + B(wf,wf,)) (10.3.11)
£=1

ipr

m

=vp @, + 2 vy B(wy, wyr) .
=1
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To pass from the first to the second line in the above expression, we have taken into
account the fact that (w,,...,w,,) € E;" that E; = Span(ejl, ,ejn_m), and that
the form B is diagonal in the basis e, ..., e,,; in the last passage, we have considered

(T03:T). Setting

1 1
a—_B(wl,wl) ee. —B(w,w,)

i i
My = Mg(wy, ..., w,) = (10.3.12)
1 1
a—B(wm,wl) a—B(wm,wm)

im im
it is plain to check that (I0.3.T1)) can be rewritten in the form
Mg v =—v (10.3.13)

that is, we are asking for —1 to be an eigenvalue of .#g, hence (10:3:13) is equivalent
to
det( Mg +1,) =0, (10.3.14)

where [, is the m X m identity matrix.

Since g depends on (wy, ..., w,,) € E7 and since (wy, ..., w,,) are in bijection
with R""=™ by (10.3.8), the quantity det(.#g + 1,,) determines a polynomial map
Rm(n—m) — R.

If, by absurd, det(.#g + 1,,) is the null polynomial, then relation (I0.3.14) holds on
the whole inverse image F/TJ_I(U 7). In particular, we observe that (w; =0, ..., w,, =
0) € 9;1(UJ) because #;(0,...,0) = Span{eil, ,eim} = E; and E; is supplemen-
tary of E; by construction. Therefore, by the above reasonings one must have

det(Mg(0, ...,0)+1,) = detl, =0

which is clearly false. Consequently, the polynomial function det(Ag(wy, ..., w,,)+1,,)
is not identically null over R™M"=m) and, due to Lemma its zero set is contained
in a submanifold of codimension one in R™"=™ Hence, also the subset of degenerated
subspaces of U is contained in a submanifold of codimension one in G(m, n). The
reasoning can be repeated for all J € #"™". As, by its definition and by (10.3.7),
G (m,n) is the finite union over J € #"~™ of the degenerated subspaces of U, we
have that G;(m, n) is contained in a submanifold of codimension one in G(m, n). This
proves point 1 of the statement.

With the setting above, for any fixed J € #"~™ we observe that a m-dimensional
subspace V' € U belongs to G, (m, n) if and only if there exist at least two linearly inde-
pendent vectors v,u € V' satisfying (I0.3.13). In particular, the subset G,(m, n)n U of
"doubly-degenerated" subspaces of U} is contained in the intersection of Gy (m,n)NU
with the set

Ty :={W € U;|A(P,,) =0} (10.3.15)
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where P is the characteristic polynomial of matrix /g, and A(P 4, ) is its discrim-
inant. By the above arguments and by (T0:3.7), point 2 of the statement follows if we
manage to prove that T’ is contained in a submanifold of codimension one in G(m, n).
The rest of the proof will be devoted to demonstrating this property.

Clearly, by the same arguments used in the proof of point I of the statement, A(P. ;)
is a polynomial function over R~ If, by absurd, A(P ) 18 identically zero in
R™#=m) then in particular it must be zero over the open set gJ_l(U 7)-

Now, choose m numbers j, ..., j, € J, and consider the vectors

/ %, ’ %, / %,
w, = - e, w,:= 2 - s s W, =4 m o e (10.3.16)
J1 J2 Jm

which are well defined by the fact that B is non-degenerate (see (10.3.1)). It is clear that
(W', ....w)) € EY, so that by Lemma (T0.3.T) one has &, (w/, ..., w,) € U;. As B
is diagonal for the basis ey, ..., e, by hypothesis, matrix ./%B(w’l, ..,w!)in (T0.37)
reads

sgn(o:i1 ) sgn((le) 0 0o .. 0
0 2sgn(a;,)sgn(a; ) 0 ... 0 . (103.17)
0 0 0 ... m sgn(aim) sgn(ajm)

and it is clear that the discriminant of the characteristic polynomial of this matrix cannot
be zero, in contradiction with the fact that A(P /%B) = 0 on the whole set F J‘l Wwy.
Therefore, the polynomial function A(P,,) is not identically null over R™=m) and its
zero set is contained in a submanifold of codimension one in R”"~" by Lemma
This proves that T, is contained in a submanifold of codimension one in G(m, n), which
concludes the proof.
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Abstract

By taking full advantage of the structure of complex algebraic curves and by using
compactness arguments, in this part we give a self-contained proof that holomorphic
algebraic functions verify a uniform Bernstein-Remez inequality. Namely, their growth
over a bounded, open, complex set is uniformly controlled by their size on a compact
complex subset of sufficiently high cardinality. Up to our knowledge, the first known
demonstration on the existence of such an inequality for a specific subset of algebraic
functions is contained in Nekhoroshev’s 1973 breakthrough on the genericity of close-
to-integrable Hamiltonian systems that are stable over long time. Despite its pivotal
role, this passage of Nekhoroshev’s proof has remained unnoticed so far. This work
aims at extending and generalizing Nekhoroshev’s arguments to a modern framework.
We stress the fact that our proof is different from the one contained in Roytwarf and
Yomdin’s seminal work (1998), where Bernstein-type inequalities are proved for several
classes of functions.
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Chapter 11

Introduction and main result

11.1 The Bernstein-Remez inequality

Let Q c C be an open bounded domain, K C €2 be a compact subset and let f : Q@ —
C be holomorphic in € and continuous in its closure Q. The Bernstein’s constant of f
with respect to Q, K is the quantity

B(/,K.9) 1= max| 1/ max || .
Q

Any family F of holomorphic functions defined in € and continuous in Q is said to
satisfy a uniform Bernstein-Remez inequality if there exists C(XC, Q) > 0 such that for
al feF

max | f| < C(K, Q) mlgx |f] or, equivalently, if sup B(f, K,Q) < C(K, Q).
Q fer

The term Bernstein-Remez inequality is used in order to avoid confusion with other
sorts of Bernstein’s inequalities that involve derivatives or primitives (see e.g. [58]).

The Bernstein-Remez inequality and the existence of families verifying a uniform
estimate of this kind turn out to be important in many areas of mathematics. Without
pretending to make a complete survey on the subject, we observe that these kind of
estimates appear in the study of the local behavior of certain holomorphic functions
(see e.g. [113], [401, [93]I, [51], [42]], [1O1], [52]), in questions related to the second part
of Hilbert’s 16th problem (see e.g. [62], [40[l, [[76]], [41], [[61]), in the study of special
classes of ODEs (see e.g. [77]) and subelliptic PDEs (see e.g. [58], [59]), as well as
in potential theory (see e.g. [109], [43]]) and in dynamical systems when investigating
questions related to entropy (see e.g. [[115]]).

In this part, we are interested in finding a family of functions verifying a uniform
Bernstein-Remez inequality. Namely, by extending a strategy due to Nekhoroshev [94]]
and that is different from the known demonstrations in this field (see [[107]], [38]], [117]],
[43]]), with the above notations we shall prove the following.
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If

1. the graph of f solves the algebraic equation S(z, f(z)) = O for some non-zero
polynomial S € C[X, Y] of degree k;

2. the algebraic curve of S over Q is given by the union of vertical lines of the form
{(z,w) € C? | z = z,} together with disjoint graphs of holomorphic functions
over Q;

3. the cardinality of K is strictly greater than k;

then the Bernstein’s constant of f w.r.t. Q, K depends on k but is independent of f.
Before stating this result more rigorously (see Theorem [IT.5.1)), let us discuss our
motivation for developing this subject.

11.2 Role in Hamiltonian dynamics and Nekhoroshev
theory

The authors discovered the Bernstein-Remez inequality during the investigation of an
important result of Hamiltonian dynamics. However, before describing the key role
played by the Bernstein-Remez estimate in this field, we make a short review of some
general results which are helpful in order to make the context clear to the reader.

Namely, Hamiltonian formalism is the natural setting appearing in the study of many
physical systems. In the simplest case, we consider the motion of a point on a Rieman-
nian manifold M, called configuration manifold, governed by Newton’s second law
(§ = —VU(q) for a potential function U in the euclidean case, with ¢ a system of local
coordinates for M). This system can be transformed by duality thanks to Legendre’s
transformation and reads

p=-9,H(p,q) , 4g=0,H(p,q) .

where H(p, q) is a real differentiable function on the cotangent bundle 7* M, classi-
cally called Hamiltonian, and p is the coordinate conjugated to g. Systems integrable
by quadrature are an important class of Hamiltonian systems. A Hamiltonian system
depending on 2n variables (n degrees of freedom) is said to be integrable in the sense
of Arnol’d-Liouville if it can be conjugated to a Hamiltonian system on the cotangent
bundle of the n-dimensional torus T”, whose equations of motion take the form

I=-0,h(1)=0 , 9=0;h) ,

where (I, d) € R"” X T" are called action-angle coordinates. Therefore, the phase space
for an integrable system is foliated by invariant tori carrying the linear motions of the
angular variables (called quasi-periodic motions). Integrable systems are exceptional,
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but many important physical problems are governed by Hamiltonian systems which are
close to integrable. Namely, the dynamics of a nearly-integrable Hamiltonian system is
described by a Hamiltonian function whose form in action-angle coordinates (/,9J) €
R” x T" reads

H,9) :=h(I)+ef,9),

where ¢ is a small parameter. The structure of the phase space for this kind of systems
can be inferred with the help of Kolmogorov-Arnol’d-Moser (KAM) theory. Namely,
under a generic non-degeneracy condition for 4, a Cantor set of large measure of invari-
ant tori carrying quasi-periodic motions for the integrable flow persists under a suitably
small perturbation (see e.g. ref. [3]], [46]).

For systems with three or more degrees of freedom, KAM theory yields little infor-
mation about trajectories lying in the complementary of such Cantor set, where instabil-
ities may occur (see e.g. ref. [3]]). However, in a series of articles published during the
seventies (see ref. [95], [96], or [[70], [[14]] for a more modern presentation), Nekhoro-
shev proved an effective result of stability for all initial conditions holding over a time
which is exponentially long in the inverse of the size € of the perturbation, provided that
the Hamiltonian is analytic and that its integrable part satisfies a generic transversality
property known as steepness.

In order to introduce the steepness property, we fix a positive integer n > 2 and
we indicate by B"(0, R) the real n-dimensional ball of radius R centered at the origin.
Then, we have

Definition 11.2.1 (Steepness). Fix § > 0, R > 0. A C? function & : B"(0, R+28) — R
is steep in B"(0, R) with steepness indices @y, ..., a,_; > 1 and steepness coefficients
Cl’ ,Cn_1,5 if:

1. ianEB"(O,R) ”Vh([)” > O,

2. forany I € B"(0, R), for any integer 1 < m < n, and for any m-dimensional sub-
space I orthogonal to VA(I) and endowed with the induced euclidean metric,
one has:

' n VR(I +u) || > C,&%, VE€ (0,6, (1121
max. min Wz VAU + 011> G £e©8], (1121)

where zp-» stands for the orthogonal projection on I'™.

Remark 11.2.1. Since in definition [TT.2.I] the subspace I C R" is endowed with the
induced metric, for all u € I'"™ one has ||zrm VA +w)|| = ||V(h| 1)U +u)||, where
h| ;.= indicates the restriction of & to the affine subspace I + 1.

Remark 11.2.2. It is worth mentioning that a real-analytic function is steep if and only if
it has no isolated critical points and if any of its restrictions to any affine proper subspace
has only isolated critical points (see [[75]] and [98]]).

With this notion, Nekhoroshev’s effective result of stability reads
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Theorem 11.2.1 (Nekhoroshev, 1977). Consider a nearly-integrable system with Hamil-
tonian H(1,9) := h(I)+ef(1,9) analytic in some complex neighborhood of B"(0, R)x

T", and assume that h is steep. Then, there exist positive constants a, b, €y, C, C,, C3

such that, for any € € [0, g,)) and for any initial condition not too close to the boundary,

one has |1(t) — I1(0)] < Cye? for any time t satisfying |t| < C| exp (C3/eb) .

Nekhoroshev also proved in [94] that the steepness condition is generic, both in
measure and in topological sense: for a sufficiently high positive integer r, the Tay-
lor polynomials of order less or equal than r of non-steep functions are contained in a
semi—algebraicﬂ set having positive codimension in the space of polynomials of order
bounded by r. Hence, steep functions are characterised by the fact that their Taylor
polynomials satisfy suitable algebraic conditions (see [96] and [[12]). Although these
results have been studied and extended for more than forty years (so that Nekhoroshev
Theory is a classic subject of study in the dynamical systems community), the proof
of the genericity of steepness has remained, up to now, largely unstudied and poorly
understood. This is certainly due to the fact that such a demonstration does not in-
volve any arguments of dynamical systems, but combines quantitative reasonings of
real-algebraic geometry and complex analysis. It is precisely in those reasonings that
the Bernstein-Remez inequality plays a major role.

11.2.1 The role of Bernstein-Remez inequality

A crucial step in Nekhoroshev’s proof of the genericity of steepness consists in con-
sidering, for any fixed polynomial P € R[X}, ..., X,,], the semi-algebraic set - called
thalweg nowadays (see [28]]) - defined by

Tp CR™ := {u € R"| [|[VPW)|| < |[VP®)|| Vv € R™s.t. [Jul] = [|v]]}. (11.2.2)

Remark 11.2.3. In order to grasp why this kind of set is interesting in the study of the
genericity of steepness, it is worth comparing (I11.2.2) with (T1.2.1) from a heuristic
point of view. Infact, in Definition[TT.2.1] one is interested in controlling quantitatively
the projection of the gradient of the function A on any affine subspace I which is
orthogonal to VA(I). Fixing I'" and taking Remark[TT.2.T]into account, if one approx-
imates the restriction a|;,m by its Taylor polynomial P, ;,r at a suitable order, then
studying the locus

{I+H€I+Fm S.t. ||VPh’[+1"m(I+M)||= min ||vPhJ+rm(I+LU)||}

wel™, ||w||=n

amounts to studying the set 7p, . in (IT.2.3), where we have identified P = Py ;.

A subset of R” is said to be semi-algebraic if it can be determined by a finite number of polynomial
equalities and inequalities.
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Nekhoroshev shows that, for any open ball B C R"” and for any given polynomial
P, the intersection 7p N B contains a real analytic curve C such that both the distance
between the extremities of C and the complex analyticity width of its parametrization
admit a lower bound that depends only on m and on the degree of the polynomial P.
More specifically, C can be parametrized by algebraic functions. The existence of a
uniform Bernstein-Remez inequality (also proved in [[94] in a less general context than
the one we consider in the following paragraphs) ensures uniform upper bounds on the
derivatives of these charts.

The uniform control on the parametrization of the curve C is unavoidable in [94],
since it ensures that - for a smooth function - steepness is an open property which can
be determined by the Taylor expansion at a certain order (we have a "finite-jet" de-
terminacy of steepness). Namely, with the setting of Definition [TT.2.1] if for any m-
dimensional subspace I orthogonal to VA([) the Taylor polynomial P, ;. verifies
condition (TT:2:T), then the uniform control on the derivatives of the curve C contained
in the thalweg 7, P, orm ©0SUTEs that estimate (TT:ZT) is verified uniformly also by poly-
nomials belonging to a neighborhood of P, ;.

In this way, the study of the genericity of steepness is reduced to the study of uniform
lower estimates of the kind (TT.2.T) in a finite-dimensional setting which involves poly-
nomials of bounded order. This aspect, together with additional technicalities which
will not be discussed here, is crucial in order to prove that the Taylor polynomial of
suitably high order of non-steep functions are contained in a semi-algebraic set having
positive codimension in the space of polynomials of bounded order. This aspect will be
investigated and specified in a forthcoming paper of the first author.

11.3 Role in semi-algebraic geometry

Actually, the result about the thalweg described above is a particular case of a general
theorem about analytic reparametrizations of semi-algebraic sets. Namely, in refs. [[116]]
and [118]], Yomdin has shown that - with the exception of a small part - any two-
dimensional semi-algebraic set can be covered by the images of a finite number of
real-analytic, algebraic charts of the interval [—1, 1]. Moreover, thanks to the existence
of a Bernstein-Remez inequality for algebraic functions, one has a bound over the size
of all the derivatives of these charts that depends only on the order of the derivation
and on the degrees of the polynomials involved in the definition of the considered semi-
algebraic set. This is a partial extension of the theorem (called Algebraic Lemma) about
the C*¥—reparametrization of semi-algebraic sets proved independently by Yomdin and
Gromov (see [[L15]], [[67], [44]). The analytic reparametrization in [[116] result has re-
cently been generalized (see [26] and [S0])) to higher dimensional sets with more general
structures than semi-algebraic, which allows for important applications in arithmetics.

From a more general point of view, the steepness condition is introduced to prevent
the abundance of rational vectors on certain sets. In particular, deep applications of
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the controlled analytic parametrizations of semi-algebraic sets - yielding bounds on the
number of integer points in semi-algebraic sets - are given in [26[] and [50]]. Along these
lines of ideas, the Yomdin-Gromov algebraic lemma with tame parametrizations of
semi-algebraic sets (see [|[115]], [67]]) was used by Bourgain, Goldstein, and Schlag [37]
to bound the number of integer points in a two-dimensional semi-algebraic set.

11.4 Different strategies of proof

In ref. [94], Nekhoroshev proves the existence of a Bernstein-Remez inequality for
algebraic functions in his specific problem, by exploiting the properties of complex
algebraic curves and by making an intensive use of complex analysis (especially, of
compactness arguments exploiting Montel’s Theorem). The original statements are
difficult to disentangle from the context of the genericity of steepness and their proofs
are very sketchy. The existence of Bernstein-Remez inequalities in more general sit-
uations has been proved in relatively more recent times by Roytwarf-Yomdin [[107],
Briskin-Yomdin [38]], and Yomdin [117], by combining the controlled growth of the
Taylor coefficients of p-valent functionsEl together with arguments of analytic geome-
try. Moreover, in a closely related problem, Brudnyi has proved in [43]] the existence
of Bernstein-Remez inequalities for polynomials restricted to graphs of multivariate
holomorphic functions.

Nekhoroshev’s different strategy of proof is briefly mentioned in [[107] (p. 848),
without quoting [94]]. The strategy of Brudnyi’s work [43] relies mainly on potential
theory. In particular, Lemma 2.1 in [43] contains a reasoning similar to a minor part of
Nekhoroshev’s reasonings in combination with a result by Sadullaev (see [109]). How-
ever, the overall framework of [43]] is very different from Nekhoroshev’s one, and the
core of Nekhoroshev’s arguments does not appear (in particular, Lemma[T3.0.2]below).
In conclusion, so far we have not been able to find any reference that shows Nekhoro-
shev’s proof in detail except for the original paper (see [94], Lemma 5.1, p.446).

This is our motivation for a short, self-contained exposition of Nekhoroshev’s proof
relying on arguments complex analysis. Actually, Nekhoroshev [94]] shows the exis-
tence of a Bernstein-Remez inequality only in the case in which the compact set K is
areal segment and the considered algebraic functions have a particular form, since this
is sufficient for his purposes. Here, we extend this strategy by considering any compact
set K of high enough cardinality and we get rid of the additional conditions on the form
of the algebraic functions.

Nekhoroshev’s approach presents two drawbacks. It does not allow for quantitative
estimates for the Bernstein constants as in [[107]] and [[117]. Moreover, we were not
able to prove a Bernstein-Remez inequality for an algebraic function on its maximal

2 An analytic function over a disc is said to be p-valent if either it is constant or each element of Im( f) is the
image of at most k points. Any algebraic function f satisfying S(z, f(z)) = 0 for some non-zero polynomial
S € C[X,Y] of degree k is k-valent (Lemma@.
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disk of regularity, what is obtained in [[107]] and is called structural inequality, but only
for the maximal disk of regularity of all the algebraic functions associated to the con-
sidered polynomial. However, these two points are not mandatory for applications of
the Bernstein-Remez inequality to Nekhoroshev’s arguments on the thalweg and, more
generally, to describe the overall structure of semi-algeraic sets (see [[116]).

Finally, as it was already known in [94] and is central in [[I07], the existence of
uniform Bernstein’s constants implies uniform bounds on the Taylor coefficients of al-
gebraic functions. In this spirit, we shall also state a result of this kind in Corollary
12.2.2]

11.5 Main result

By the discussion above, it is of crucial importance to find classes of functions admitting
auniform bound on their Bernstein’s constants, and thus satisfying a uniform Bernstein-
Remez inequality. In this part we will establish the existence of a uniform Bernstein-
Remez inequality for the following class of analytic-algebraic functions:

Definition 11.5.1. Consider k € N, p > 0 and denote by D,,(0) the open complex disk
of radius p centered at the origin.
We indicate by V(k, p) the set of functions f that satisfy:

1. f is holomorphic over D p(O) ;
2. The graph of f is included in an algebraic curve
Rg := {(z,w) € C? : S(z,w) =0}
associated to a non-zero polynomial S € C[z, w] of degree at most k, hence

S(z, f(z))=0 forz € DP(O) ;

3. The algebraic curve Rg is such that Rg N {D,(0) X C} is the union of at most k
elements that can be either vertical lines of the form {(z,w) € C*> | z = z,} or
disjoint graphs of holomorphic functions over D ,(0).

The functions in the class V(k, p) verify the following

Theorem 11.5.1 (Main result). With the notations of Definition[IT.3.1] consider a com-
pact set K C D ,(0) satisfying:

0 e Kand card (K) > k. (11.5.1)

Then, the functions of the family V(k, p) verify a uniform Bernstein-Remez inequal-
ity with respect to K and to any open set Q such that K C Q and Q C D ,(0).
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Consequently, there exists a number C = C(k, p, K,Q) > 0 such that, for any f €
V(k, p), one has:
max | f(z)| < C max|f(z)|.
z€Q zeK
This theorem has been demonstrated by Briskin-Yomdin and Roytwarf-Yomdin in
refs. [38]- [107]] in the cases where £ = [-p/,p'] ¢ Ror K = 5p/(0) c C, and
Q = D,(0) c C,with0 < p' < p” < p. Moreover, the authors obtain quantita-
tive estimates on the upper bound C(k, p’, p”’, K) for the Bernstein’s constant and they
generalize these results to relevant cases of algebraic families of holomorphic functions.
More recently, these estimates have been extended by Yomdin and Friedland to the case
of a discrete compact K of sufficiently high cardinality in refs. [117] and [63]], thanks
to the introduction of a geometric invariant related to entropy.

This part is organized as follows: chapter 12 contains the mathematical setting, to-
gether with the proof of the main result and of other strictly related statements. Chapter
13 is devoted to the proof of some technical lemmas that are used in chapter 12 and is
the "core" of Nekhoroshev’s strategy (especially Lemma[I3.0.2). Finally, we have rele-
gated to the appendices the statements of some auxiliary results that are used throughout
this part.



Chapter 12

Setting, main proof, and
auxiliary statements

12.1 Setting

For any r > 0 and any z, € C, we denote by D,(z,) the open complex disk centered at
zq and by 5,(20) its closure.

Clz, w] indicates the ring of polynomials of two variables over the complex field.
Throughout this part, we will often identify C[z, w] with C[z][w], the ring of complex
polynomials in w over the ring of polynomials of the complex variable z.

For k € N, we indicate by Q(k) C C[w] and P(r,n) C C[z, w] respectively the
subspaces of complex polynomials in one and two variables having degree inferior or
equal to k. Since Q(k), P(r, n) are finite-dimensional, they can be equipped with an
arbitrary norm.

12.2 Main proof and auxiliary statements

With the notations of Theorem [IT.5.1] we consider the following class of functions:

Definition 12.2.1. For k € N and p > 0, we denote by V,(k, p) C V(k, p) the subset of
those functions g € V(k, p) that satisfy g(0) = 0.

The functions of the family V,(k, p) belong to the same Bernstein’s class w.r.t. the
sets Q and K of Theorem [T1.5.1] Namely, one has:

Theorem 12.2.1. Consider an open set Q satisfying QcD ,(0) and K C Q a compact
set satisfying card K > k. There exists a number Cy = C(k, p, K, Q) > 0 that bounds
uniformly the Bernstein’s constants of the elements of Vy(k, p), i.e.:

for any g € Vy(k, p), one has max |g(z)| < Cy max |g(z)|.
zeQ zeK
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Remark 12.2.1. The hypothesis 0 € K of Theorem [TT.5.1]is unnecessary in Theorem
zz1

Theorem|[IT.5.1]is a consequence of Theorem[12.2.1]since, for any f € V(k, p), the
function g(z) := f(z)— f(0) belongs to the class Vy(k, p) and Theorem[T2.2T|ensures:

max | f| <|f(0)| + max |g| < [f(0)] + Cy max |g|
Q Q K

<IF )] +Col £ (O)] + Cymax || = (1 +2Cg) max | /] := C max ||

where the last estimate comes from the hypothesis 0 € K.
This concludes the proof of Theorem [IT.5.1]

Theorem [I2.2.]]is also the cornerstone which allows one to prove a uniform upper
bound on the Taylor coefficients of functions in Vy(k, p). More specifically, we intro-
duce the following class of bounded algebraic functions:

Definition 12.2.2. With the previous notations, for any M > 0 and any compact K C
D,(0), we denote by U'(k, p, K, M) the subset of those functions g € V(k, p) that
satisfy maxy |g| = M.

Hence, we have V(k, p) = Uy U'(k, p, K, M).

The functions in V'(k, p, A, L A) satisfy a generalized uniform Cauchy inequality,
namely

Theorem 12.2.2. Under the additional assumption card K > k, there exists a constant
K = K(k, p, K) such that, for any function g € U'(k, p, A, L,), the coefficients of the

Taylor series
+o0

g(z) =Y a;z/ (with g(0) = 0) (12.2.1)
j=1

satisfy the uniform inequality

1.

2. for any number m > 1
m J

Remark 12.2.2. This result is stated and used in [94] in the particular case where p > 1,
K =1[0,4 c R, M(1) = Aand A > 0. The equivalence between a uniform bound
on the growth of the Taylor coefficients and the Bernstein-Remez inequality is central
in [107].

Theorems [T2.2.T]and [T2:2.2] will be proved in the next section.
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12.3 Proof of the auxiliary statements

We first need the following standard lemma:

Lemma 12.3.1. With the notations of the previous section, an analytic-algebraic func-
tion f, associated to a polynomial S € C[z, w] of degree k € N, is k-valent: that is,
if f is not constant then each element of Im(f) is the image of at most k points. Con-
sequently, if f is not identically zero, then f cannot be identically zero over any set K
included in the domain of definition of f such that Card(K) > k.

Proof. Assume, by contradiction, that f is non-constant and that there exists w, €
Im(f) which is the image of at least p > k points. The polynomial $*0(z) := S(z, wg)
would admit p > k roots while deg(S*0) < k by hypothesis. The Fundamental Theo-
rem of Algebra ensures that S0 must be identically zero and one has the factorization
S(z,w) = (w — wo)"S'(z, w), where a € {1,...,k}, while S cannot be divided by
(w — wyp) in C[z,w]. Since f is analytic and not constant, the preimage f _1({w0})
is a discrete set and the graph of f must satisfy S(z, f(z)) = 0 outside of f‘l({wo}).
By continuity, one has S(z, f(z)) = 0 on the whole domain of definition of f since
F~'{wy)) is discrete. But deg S*0 < k, with $§%0(z) := S(z,w,), and $*0 ad-
mits more than k roots, hence the previous argument ensures that S can be divided by
(w — wy), in contradiction to construction.

Moreover, if f # 0, then O admits at most k inverse images by f, and f cannot
be identically null over any set K included in the domain of definition of f satisfying
card K > k. O

Consequently, without any loss of generality, in Theorem [T2.2.1] we can assume
g € U'(k, p, K, 1) according to Definition [12.2.2] (hence g € Vy(k, p) and maxy |g| =
1) since, if this is not the case, it suffices to consider g/ maxy |g|.

Then, we define the following set:

Definition 12.3.1. A := A(K, k, p) denotes the set of those polynomials S’ € P(r, n)\{0}
whose algebraic curve Rg := {(z,w) € C?: S(z,w) = 0} satisfies

1. Rgn{D b (0)xC} is the union of at most k elements that can be either vertical lines
of the form {(z, w) € C? | z = z,} or disjoint graphs of holomorphic functions
over D,(0);

2. there exists gg € U'(k, p, K, 1) whose graph is contained in Rg N {D,(0) X C}.

Remark 12.3.1. For any S € A, the function gg is unique since the graphs contained
in the algebraic curve of .S are disjoint over D,(0) and the value g4(0) = 0 is fixed.

The central property in the proof of Theorem[I2.2.T]is the following
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Lemma 12.3.2. AU {0} is closed in P(r, n) and, for any open set Q satisfying K C Q,
Q C D,(0), the function

Ho t A—R S +— max [gg|
Q

s continuous.

We shall relegate the proof of Lemma([I2.3.2]to the next section and we shall exploit
its statement here to prove Theorems [12.2.1]and[12.2.2]

Proof. (Theorem[I2.2.1)
By Definitions[12.2.1}[12.2.2]and[12.3.1] we can associate to any g € U'(k, p, K, 1)
a polynomial .S € A such that g = g¢. A standard combinatorial computation yields

that P(r, n) is isomorphic to C™, with m = (k + 1)(k + 2)/2. It is also easy to see that
for any polynomial .S € A and for any ¢ € C\{0} the polynomial S” = ¢S belongs to
A and gg/ = gg, so that it makes sense to pass to the projective space

CP™™' := {C™\{0}}/{C\{0}} , = :C"\{0} — CP"',

where 7 denotes the standard canonical projection inducing the quotient topology in
CP™ 1. Moreover, for any open set Q satisfying K ¢ Q, Q ¢ D ,(0), the function

fg i w(A) — R ,  (S)— max|gg]
Q

is well defined and continuous by Lemma[12.3.2] To prove the latter claim, take a closed
set £ C R and consider its inverse image ﬁél(f )= 7[([1;21(6‘)). Since pg is continuous,
/451(6’ ) is closed in A for the induced topology. By Lemma A U {0} is closed
in C™, so that A is closed in C"\{0}. Hence, ;45‘21(8) is closed in C™\{0}. Since
Hg 1s invariant if its argument is multiplied by a complex non-zero constant, ,ug_zl(é' ) is
saturated and one has 7[_1(7[(”;21(8))) = ;451(6 ). Consequently, the set ﬂ(uél(é‘ ) =
ﬁg‘zl(é' ) is closed for the quotient topology because its inverse image w.r.t. z is closed.
This proves the continuity of fiq.

Moreover, since A is closed and saturated in C"\ {0}, 7(A) is closed in CP"~!
and the compactness of CP™~! ensures that 7(A) is compact. By continuity of fiq,, the
image fio(7(A)) is a compact subset of R, hence bounded. Therefore, there exists a
constant C(k, p, K, Q) such that for any g € U'(k, p, K, 1) one has

maxg |g|

max |g| = ——— < C(k, p, K, Q)
Q max |g|

and this concludes the proof. O

Proof. (Theorem[I12.2.2)

Since g is non identically zero over K (see Lemma [I2.3.1), we can consider the
function g/ M and we are reduced to the case M = 1.
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For p > 1, the statement is a consequence of the Cauchy’s estimate and of Theorem

12.2.1)applied to Q = D;(0) and K.

In case p < 1, for any fixed m > 1 one considers the function
P +o0 +00 P) j
(P ._ j_ L4
gn(2) =g <mz) = jZ}cjz = Z}aj <mz)
= j=

analytic in D,,(0) and belonging to U'(k, m, K,,, 1), where

K, :={zeD,0) : 2zek}
m

satisfies card KC,, > k since K does.
Since the convergence radius of g,, is m > 1, the statement holds for this function
and there exists a constant K (k, m, KC) such that

which implies
J
la;| < K(k,m, K) <@> :
p

This concludes the proof. O
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Chapter 13

Technical lemmas

The aim of this section is to prove Lemma[I2.3.2] We first recall a few classical points.
The algebraic curve of a polynomial .S € Clz, w] is the zero-set

Ry := {(z,w) € C? : S(z,w) =0} .
and one has the following standard result

Lemma 13.0.1. For any integer k > 1 and for any polynomial S € P(r, n), there exists
a set N'g C C (defined explicitly in Appendix A, see satisfying card N'g < N -
where N, € N is an upper bound depending only of k - and such that over any simply
connected domain D C C the intersection of the algebraic curve Rg with D X C is the
union of at most k disjoint graphs of holomorphic functions defined over D if and only
The proof of this result can be found by putting together known results on algebraic
curves (see e.g. [92]). For the sake of clarity, it is given in appendix
Remark 13.0.1. Following ref. [94], the elements of N s are called excluded points.
Remark 13.0.2. The number of graphs in Lemma [T3.0.T] may be equal to zero, for ex-
ample if S(z, w) = z, we have Rg = {(z,w) € C?: z= 0} and the point z = 0 is
excluded by construction (see Appendix [D).

Definition 13.0.1 (Riemann branches and leaves). In the setting of Lemma [13.0.1} if
R is non-empty over D, the holomorphic functions whose graphs cover D are algebraic
since their graphs solve the equation S(z, w) = O for all z € D. These functions will
henceforth be called the Riemann branches of S over D, whereas their graphs will be
referred to as the Riemann leaves of S over D.

It is a standard fact that, up to constant multiplicative factors, any polynomial S €
P(r,n) can be uniquely factorized as

S(z,w) = q(2) L (Si(z, w)Y' (13.0.1)
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forsome 1 < j; < k, 1 <m < k, where the S;’s are non-constant, irreducible, mutually
non-proportional polynomials. Hence, without any loss of generality, we can pass to
the unit sphere in Q(k) and assume ||g|| = 1 for an arbitrary norm || - ||.
We denote
S(z,w) 1=T" (Si(z, w)Y (13.0.2)

and we have the polynomial product:
S(z,w) = q(2)S(z, w). (13.0.3)
We start by giving the following

Definition 13.0.2. We indicate by B =_B(k, p) C P(r,n) the set of polynomials
S € P(r,n)\{0} such that the polynomial S in decomposition (I3.0.3) has no excluded

points (Deﬁnition in D,(0).

Remark 13.0.3. Given S € B, by decomposition (I3.0.3) and Definition [D.0.1] the
only possible excluded points for .S in DP(O) are those at which g(z) = 0. Inside the
disk DP(O), the algebraic curve Rg is therefore the union of at most k elements that
can be either disjoint holomorphic Riemann leaves of S or vertical lines in C2 of the
kind z = zy, with ¢g(zy) = 0. In particular, all the Riemann branches of S € 3 are
holomorphic over D ,(0).

Remark 13.0.4. The set A of Definition [T2.3:1] is contained in /3 and, with the nota-
tions of Theorem |11.5.1] the functions in V(k, p) are precisely those associated to the
polynomials in .

In order to prove Lemma[I2.3.2} we need the following
Lemma 13.0.2. B U {0} is closed in P(r, n).

The proof of Lemma[I3.0.2]is quite technical and requires some intermediate results,
which are stated in the sequel.

We start by considering a sequence {.S,(z, w)} ey of polynomials in BU {0}, con-
verging to a polynomial S € P(r,n). We can assume that .S # 0 otherwise there is
nothing to prove; hence we have .S, # 0 for n large enough.

Following decomposition (13.0.3), we write S,(z, w) := q,(2)S,(z, w) and, by
construction, the sequence of polynomials {g,},cy 1S in the compact unit sphere and
admits a convergent subsequence. With slight abuse of notation, in the sequel we shall
indicate this subsequence with the same symbol {g, } ey and we shall denote by 7 its
limit, which is not identically null by construction.

We recall that N'g and NV, s, (for n € N) denote the sets of excluded points of .5 and
S, respectively. For r > 0 small enough, we remove from D,(0) all open neighbor-
hoods of radius r around the excluded points of .S and consider the following compact
set:

E.:={z€ 5p_r(0)/ |z = zg| > rfor zy € NS} C Dp(()). (13.0.4)
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Lemma 13.0.3. There exists ro = ry(p, k) such that, forany 0 < r < ry, one hasE, # @
and there exists an integer ny = ny(r) such that:

E,NNg =@foralln>n. (13.0.5)

Proof. The fact that E. # @ for r sufficiently small is an immediate consequence of
Definition and of the fact that card N is bounded by a number depending only
on k (see Lemmal[T3.0.1).

As for the second part of the statement, since S, — S € P(r,n), and q, = qg#0,
there exists a polynomial .S € P(r, n) such that

lim S,(z,w)= lim §n(z, w)x lim g,(z) = §(z, w) X q(z). (13.0.6)
n—+oo n—+oo n—s+oo

By applying again decomposition (13.0.3)) to S we obtain S(z, w) = §(2)S(z, w),

so that we can write S(z, w) = q(z)S(z, w) by setting

q(z) 1= q(2) X q(z) . (13.0.7)

Therefore, all the roots of g are also roots of ¢ and belong to N'g. By construction (see
also remark , all points in J\/Sn are roots of g,(z) = 0. Since g, — ¢, taking
into account the continuous dependence of the roots of a polynomial on its coefficients
expressed in Theorem@ one has that for sufficiently high # the roots of g, must be
either r-close to the roots of g, and hence to some point of N’ 5, or outside of the disc of
radius D, /,(O). Taking ry < 1/p, one has D, /,(O) 3 D,(0), whence the conclusion. [

We fix 0 < r < rg, with r; the bound in Lemma and we consider a point z* €
E,, hence z* is not an excluded point of .S and any solution of S z* (w) :=8S*,w)=0
must belong to the image of a Riemann branch of .S holomorphic in a neighbourhood
of z*. We fix one of these branches and denote it with 4. The continuous dependence
of the zeros of a polynomial on its coefficients (Theorem [F.0.I)) ensures the existence
of a sequence {w: }nen Of roots of Srf* (w) := S, (z*, w) such that

wr — h(z*).

Lemma [T3.0.3] and Remark [13.0.3] together with the fact that S, € B forall n € N
ensure that, for any fixed n > ny(r), the point (z*, w;‘) must belong to the Riemann leaf
of one of the branches of gn, denoted £,,, which is holomorphic over D p(O). Hence we
have the pointwise convergence

h,(z*) — h(z*). (13.0.8)

We show in the sequel that the sequence { A, },cn admits a subsequence that converges
uniformly on any compact subset of D p(O)\./\f ¢ to a holomorphic function which ex-
tends h over D p(O)\N - In order to prove this claim, which is fundamental to the proof
of Lemma([I3.0.2] we need the following results.
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Lemma 13.0.4. The Riemann branches of S are bounded on the compact sets included

in D ,(0)\Ns.

Proof. By construction, any point Z € D p(O)\J\/ g isregular for .S, hence there exists an
open neighbourhood V' C C of Z such that the algebraic curve Rgn{V xC} is composed
of at most k graphs of holomorphic functions bounded over V. Since any compact set
included in D p(O)\N s can be covered by a finite number of these neighbourhoods, the
claim is proved. O

Lemma 13.0.5. The sequence {h,},cy is locally bounded over DP(O)\N s

Proof. If, by contradiction, there exists a compact K C Dp(O)\.N' s such that {h,},cn
is unbounded over K, then there exists a sequence {z,},cn in K and a strictly increasing
function ¢ over N such that the subsequence {|h,,,(z,)|},en diverges.

By Definition (13.0.4), D,(0)\Ns = U,5(E,, so there exists 0 < r < ry small
enough such thatK C E, C DP(O)\N - Moreover, E, is a compact, arc-connected se