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To my mother, Rita, my father, Tony, and my sister, Jennifer, nothing would have been possible without your existence and constant love. This one is for you.

In memory of my grandmother, Milia, who gave me infinite love since the day I opened my eyes, in memory of my grandfather, Michael, who believed in me and gave me advices to carry on throughout all my life, and in memory of my best friend, Maria, who always stood by me in the bad days before the good ones. This one is for you.

1.1/ CONTEXT AND PROBLEMATIC Diverse and highly connected networks surround us at any given moment in time. Even though networks originate from a multitude of domains, such as biology, finance, transportation, and society, they tend to share similar structural features. One of the most natural and pervasive features is the community structure: networks are often composed of nodes grouped into communities that are more densely connected than nodes in other communities [START_REF] Mark | Finding and evaluating community structure in networks[END_REF]. Communities can correspond to a group of proteins interacting for proper cell functioning [START_REF] Sah | Exploring community structure in biological networks with random graphs[END_REF], to web pages of similar topics [START_REF] Kleinberg | The structure of the web[END_REF], to papers related to a specific topic [4], or to a group of friends sharing similar interests and aspirations either in real life or online [5,[START_REF] Girvan | Community structure in social and biological networks[END_REF].

Within these networks, it is of utmost importance to identify influential nodes. For instance, in marketing and awareness campaigns, the person's adoption of new products, services, and opinions relies heavily on influencer(s) identification. Pinching essential proteins is decisive for treating infectious and cancer diseases in biological networks. In finance, detecting key financial institutions that may default is necessary to avoid a cascade of defaults. Vaccinating influential nodes allows controlling an epidemic spreading, saving populations from significant threats. Even in terrorist networks, identifying influential nodes is a critical proactive measure to eradicate life losses.

Given such real-world scenarios, one can employ centrality measures, which are considered to be one of the most popular approaches exploiting network structure to identify influential nodes [START_REF] Linyuan L Ü | Vital nodes identification in complex networks[END_REF]. Nodes with a high centrality value are deemed important. The notion of importance depends on how the centrality functions. Local centrality measures are established upon neighborhood information, such as degree centrality. The latter quantifies node influence based on the total number of links a node possesses. Global centrality measures quantify the centrality of a node by inspecting its position in the entire network, such as betweenness centrality. The latter computes the shortest paths of all possible node pairs in order to measure the extent of each node lying in the computed shortest paths. Both local and global information can also be combined to quantify node importance [START_REF] Sciarra | A change of perspective in network centrality[END_REF][START_REF] Ibnoulouafi | M-centrality: identifying key nodes based on global position and local degree variation[END_REF].

Diffusion is a crucial recurring scenario in many real-world networks. Epidemics, computer viruses, information (whether genuine or fake), opinions, behaviors, and innovations can all diffuse in networks. Diffusion can create adverse outcomes such as pandemics, losing internet connectivity across regions, and spreading fake news. However, it can also yield positive outcomes such as identifying cyber-attackers and the origins of fake news, raising people's awareness, spreading positivity, and conducting profitable marketing campaigns. These scenarios led researchers to introduce models to characterize diffusion better, aiming to either minimize the negative outcomes or maximize the positive ones [START_REF] Zhang | Dynamics of information diffusion and its applications on complex networks[END_REF].

Based on the hypothesis that central nodes (i.e., nodes with high centrality) should spread the most [START_REF] Marshall | Sociometric location and innovativeness: Reformulation and extension of the diffusion model[END_REF], the selection of the seeds aims to maximize diffusion in any diffusion phenomenon. For instance, in marketing and awareness campaigns, selecting the most influential nodes to diffuse their influence across the network is decisive as the budget is limited. Indeed, it was shown that in viral marketing, centrality measures based on random walks yield the highest number of consumer activation [START_REF] Pescher | Consumer decisionmaking processes in mobile viral marketing campaigns[END_REF]. By virtue of the node's influence, online word-of-mouth can provide a path for the exponential spread of information [START_REF] Bonchi | Social network analysis and mining for business applications[END_REF]. In the same vein, in an epidemic spreading scenario, it was shown that the infectious capacity of nodes is related to their coreness and degree [START_REF] Ferraz | Role of centrality for the identification of influential spreaders in complex networks[END_REF].

Notwithstanding their merit, classical centrality measures ignore the network organization in communities, one of the main features characterizing real-world networks [START_REF] Girvan | Community structure in social and biological networks[END_REF]. Communities can impact the spreading power of nodes. A diffusion can die out in its originating community if the number of inter-community links (i.e., links connecting communities) does not pass a certain threshold [START_REF] Galstyan | Cascading dynamics in modular networks[END_REF][START_REF] Danon | Impact of community structure on information transfer[END_REF]. For a global cascade to occur, networks need to have an optimal fraction of inter-community links [START_REF] Nematzadeh | Optimal network modularity for information diffusion[END_REF]. Indeed, communities induce a confinement effect which may trap the spread of any dynamic process [START_REF] Lov Ász | Random walks on graphs[END_REF][START_REF] Pons | Computing communities in large networks using random walks[END_REF].

Community-aware centrality measures tackle the shortcoming of classical centrality measures that are agnostic about the community structure [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF][START_REF] Laurent H Ébert-Dufresne | Global efficiency of local immunization on complex networks[END_REF][START_REF] Kumar | An efficient immunization strategy using overlapping nodes and its neighborhoods[END_REF][START_REF] Taghavian | A local immunization strategy for networks with overlapping community structure[END_REF][START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF][START_REF] Rajeh | Identifying influential nodes using overlapping modularity vitality[END_REF]. They are built on the hypothesis of Granovetter [START_REF] Mark | The strength of weak ties[END_REF], who argued that weak ties could be more powerful than strong ties for diffusion to occur across communities. Weak ties resemble inter-community links (i.e., links between nodes belonging to different communities) and are often less frequent. Strong ties resemble intra-community links (i.e., links between nodes belonging to the same community). Community-aware centrality measures distinguish between these two types of links, which in turn characterize nodes' local and global influence at the mesoscopic level. Intra-community links play a part in the diffusion inside the communities, while inter-community links permit the diffusion to spread across communities.

The hierarchical relationship between the network, the seed nodes, and the diffusion models is shown in Figure 1.1. We use this hierarchy to clarify the main limitations found in the literature and, subsequently, the research questions of the thesis. Given a network (A), the regions in which diffusion begins are dictated by the seeds (B) that initiate a spreading phenomenon based on a diffusion model (C). The seeds can be chosen given any centrality measure, whether classical or community-aware. The network structure impacts centrality measures. For instance, an influential node with a weak community structure strength may not be significant in a network with a strong community structure strength, and vice versa. Following the hierarchical relationship from bottom to top, one can assess the spreading reachability of the diffusion model (C), such that the extent of the spreading is dependent on the seed nodes which initiate the diffusion (B) and the network structure (A). The selection of the seed nodes using centrality measures (B) also depends on the network structure (A).

Figure 1.1: The dependencies between the network, the seed nodes, and the diffusion models.

Within the realm of the crucial importance of selecting seed nodes that maximize diffusion in networks and that many diffusion models are available in the literature, there are several research problems left unanswered between the network and its underlying structure, the seed nodes, and the diffusion models:

The first research problem: Researchers developed many diffusion models to characterize realistic situations. Each model involves various conditions on how the propagation evolves from one node to another. Given that community-aware centrality measures can exploit community structure information to identify influential nodes, most research focuses on one spreading model to assess their diffusive ability. A single model is not enough to determine the interplay between the diffusive power of seed nodes selected by the community-aware centrality measures, the network structure, and the diffusion model dynamics. In other words, it is unknown how sensitive the different models' spreading reachability is to the network's structure and the seed nodes selected by the communityaware centrality measures.

The second research problem: Since classical centrality measures do not consider the community structure while computing the centrality of each node, they are susceptible to quantifying many influential nodes located in the vicinity of each other. Whether the centrality is based on local information, global information, or both, the top nodes to be targeted for diffusion maximization may all be positioned in one region. Consequently, since the nodes' influence overlaps, their diffusive impact on their direct and indirect neighborhoods is diminished. In other words, these nodes will influence a similar set of nodes while other nodes in distant regions are left intact. Thus, even with a large number of influential nodes to be invested in (i.e., infected or activated), the diffusion spread may be marginal.

The third research problem: Despite the recent advancements in community-aware centrality measures, few works have been dedicated to networks with overlapping community structure. The overlapping community structure can be naturally found in social, collaboration, biological, and ecological networks. Within these networks, a node may pertain to several communities to play several roles. Moreover, the overlapping community-aware centrality measures do not handle missing or varying overlapping information, which is a challenge faced by many researchers and practitioners. Despite their effectiveness in many real-world scenarios, this leads to underusing the current overlapping community-aware centrality measures to identify influential nodes.

In this thesis, we address the stated research problems and aim to answer the following questions:

2) The second research study is concerned with the problem of influence redundancy. A major pitfall of centrality measures is deeming nodes near each other the most influential. Hence, these nodes are ranked on top of the list in descending order to be selected for maximizing diffusion. However, since these nodes are located near each other, they saturate their shared zone of influence. Consequently, the influence of these nodes has few distinct venues for expansion to distant network regions. To tackle this issue, we propose a ranking strategy exploiting the ubiquity of the community structure in real-world networks. By iterating communities from largest to smallest, the proposed communityaware ranking scheme naturally selects a set of faraway spreaders with the most significant influence. The ranking scheme is tested on synthetic and real-world networks and compared against six classical centrality measures based on the node's neighborhood, paths, and direct and indirect influence in the network. Under all circumstances, the diffusion phenomenon is boosted with the community-aware ranking scheme compared to the descending-order ranking scheme of the centrality measures. The contributions of this study are as follows:

1. Designing a ranking scheme capable of working with any centrality measure computed on any network type (undirected/directed and unweighted/weighted).

2.

Assuring the selection of distant influential nodes to expand any diffusion phenomena based on any given budget.

3.

Serving as a tool for many real-world cases, such as implementing viral marketing, conducting awareness campaigns, and hindering misinformation on networks.

3) The third research study addresses the issue of identifying influential nodes in complex networks with overlapping community structure. Researchers mainly focus on networks with a non-overlapping community structure. Many networks, such as biological and social, are made up of nodes that pertain to several communities rather than one. Moreover, the overlapping information might not be available for all the nodes or might vary from one node to another. For instance, the node may fully belong to more than one community. However, the node may also belong to more than one community to a specific extent. The dissimilarity in information availability calls for a general approach to identify influential nodes in networks with an overlapping community structure. In this study, we introduce the Overlapping Modularity Vitality framework. The proposed framework can integrate multiple definitions of overlapping modularity via different formulations of the community membership strengths of the nodes. We show that overlapping information provides an exploitable ground for identifying influential nodes effectively with various types of information at hand. The contributions of this study are as follows:

1. Introducing a framework in which one can integrate multiple definitions of overlapping modularity via different formulations of the nodes' community membership strengths (fuzzy or crisp) to identify influential nodes.

2.

Investigating how various overlapping modularity alternative definitions that integrate distinct contextual information about the nodes impact identifying influential nodes.

3.

Offering flexibility in case missing or varying overlapping information is confronted as the framework can adapt to compute the centrality of one or many nodes with various information types.

1.3/ THESIS STRUCTURE

The structure of the thesis is as follows:

Chapter 1 -Introduction: In this chapter, we discuss the ubiquity of communities, the importance of identifying influential nodes within them, and maximizing diffusion under different dynamic conditions. We shed light on why community-aware centrality measures provide better insights about nodes in networks with community structure and how community structure plays a role in confining diffusion dynamics. Since the network's community structure, influential nodes identification, and dynamic models are linked (dynamics are initiated by nodes that are located in or between communities), in this chapter, we highlight three main research gaps found in the literature, and we pose three main research questions targeting these gaps. The research questions' answers are the basis of the thesis' contributions.

Chapter 2 -Background: In this chapter, we provide the basic notions and elements to grasp the thesis better. We first present the different centrality measures investigated in this thesis: classical and community-aware. The former can be divided into neighborhood-based, path-based, and iterative refinement-based. The latter can be divided into non-overlapping and overlapping. Then, we present the four diffusion models used in this thesis, two of which belong to epidemic models and two to information diffusion models. Finally, we present several network quality measures that could be used to characterize networks while putting more emphasis on overlapping modularity, which is the foundation of the framework proposed in Chapter 5.

Chapter 3 -Diffusion on Networks with Community Structure:

In this chapter, we explore the relationship between the network's community structure, diffusion of dynamic models, and nodes selected, given the ranking of community-aware centrality measures. We use four models that portray other dynamical conditions: SI, SIR, LT, and IC. Each model is initiated with a set of seed nodes selected based on the community-aware centrality measures on synthetic and real-world networks. The size of the seed nodes varies according to a predefined budget. We compare and highlight the consistency in the performance of the community-aware centrality measures across one set of models and show how the nodes selected in different regions in the network yield various diffusion outcomes. In summary, the findings of this chapter demystify the performance of the community-aware centrality measures under diverse community structures and diffusion models, which in turn can better guide practitioners in utilizing community-aware centrality measures.

Chapter 4 -A Community-Aware Ranking Scheme: This chapter focuses on the problem of influence redundancy and ranking influential nodes. Centrality measures rank nodes using the classical descending order ranking scheme, with the top being the most influential. However, the top nodes ranked as most influential may be in the vicinity of each other. Consequently, there are diminishes in return for the diffusion initiated by these nodes. To tackle this issue, we propose a community-aware ranking scheme that ranks the most influential nodes by iterating across the communities, from the biggest to the smallest, using any centrality measure. The ranking scheme is assessed with the Susceptible-Infected-Recovered (SIR) diffusion model on a set of synthetic and real-world networks using six centrality measures: two local measures exploiting the neighborhood of the node, two path-based measures, and two iterative refinement-based measures. In summary, the findings of this chapter allow the selection of influential nodes across all the network regions without saturating their zone of influence and independently of the centrality and network types.

Chapter 5 -The Overlapping Modularity Vitality Framework: This chapter is dedicated to networks with an overlapping community structure, a feature neglected by many researchers working on identifying influential nodes. The researchers who address this issue provide measures that are hard-coded and thus inflexible in many real-world scenarios. To tackle this issue, we propose a flexible framework called Overlapping Modularity Vitality, based on a generalized modularity equation that accounts for the overlapping community structure in a network. Depending on information availability, it can incorporate fuzzy and/or crisp overlapping information for one or many nodes. The framework is assessed with various definitions of the overlapping modularity on the SIR model and is compared with other state-of-the-art overlapping community-aware centrality measures. In summary, the findings of this chapter show that overlapping information, even if it varies from one node to another, can be exploited using the proposed framework to maximize diffusion. 

2.1/ CENTRALITY MEASURES

Centrality measures quantify the node influence in a network. Let G(V, E) be an undirected and unweighted graph where V is the set of nodes, E ⊆ V × V is the set of edges, and N = |V| is the total size of the network. The connections between the nodes are represented in the adjacency matrix A = (a i,j ) such that a i,j = 1, if node i is connected to node j and a i,j = 0, otherwise. Let the neighborhood of any node i be defined as the set N p (i) = {j ∈ V, (i, j) ∈ E} at length p, where p = 1, 2, ..., D. D is the diameter of G. Accordingly, two nodes are neighbors of order A p if there's a minimal path connecting them at p steps.

2.1.1/ CLASSICAL MEASURES

Classically, centrality measures can be categorized into neighborhood-based, pathbased, and iterative refinement-based [START_REF] Linyuan L Ü | Vital nodes identification in complex networks[END_REF] measures. Neighborhood-based centralities count on the node's capacity to influence its surrounding neighborhood. Path-based centralities rely on the node's role in disseminating information quickly and effectively. Finally, iterative refinement-based centralities quantify the importance of a node based on its direct influence on its neighbors, the capacity of the neighbors to influence their neighborhood, and so on. Centrality measures can also be classified into local and global measures depending on the topological information they process. Local measures rely on a 11 node's ability to influence its neighborhood, while global measures are concerned with the ability of a node to influence the whole network. Generally, local measures require a low computation cost, while global ones are computationally intensive. More recent works consider centrality as a multidimensional issue where local and global information can be combined [START_REF] Sciarra | A change of perspective in network centrality[END_REF][START_REF] Ibnoulouafi | M-centrality: identifying key nodes based on global position and local degree variation[END_REF].

NEIGHBORHOOD-BASED MEASURES

1. Degree centrality of a node sums the total number of connections a node has in its direct neighborhood. It can be defined as:

η d (i) = k i = N ∑ j=1 a ij (2.1)
where a ij is obtained from A 1 , 1-step neighborhood (p=1).

Maximum Neighborhood

Component centrality extracts the largest connected component (LCC) from the direct neighborhood of a node to quantify its importance. It can be defined as:

η m (i) = |LCC ∈ N 1 (i)| (2.2)
where N 1 (i) is the set of direct neighbors of node i.

PATH-BASED CENTRALITY MEASURES

1. Betweenness centrality is based on the frequency of a node situated in the shortest path between any other two nodes in the network. It is defined as:

η b (i) = ∑ s,t i σ i (s, t) σ(s, t) (2.3) 
where σ(s, t) is the number of shortest paths between nodes s and t and σ i (s, t) is the number of shortest paths between nodes s and t that pass through node i.

2. Closeness centrality is based on how close, on average, a node is to all other nodes in the network. It is defined as:

η c (i) = N -1 ∑ N-1 j=1 d(i, j) (2.4)
where d(i, j) is the shortest path distance between node i and j.

ITERATIVE REFINEMENT-BASED CENTRALITY MEASURES

1. Katz centrality quantifies a node's importance based on the influence of all the other nodes on it and their subsequent distances. As the distance of a node increases, its influence diminishes. It is defined as:

η k (i) = ∑ p=1 ∑ j=1 s p a p ij (2.5)
where a p ij is the connectivity of node i with respect to all the other nodes at A p and s p is the attenuation factor where s ∈ [0,1].

2.

PageRank centrality is based on the quantity and quality of the node's direct and indirect connections. It can be thought of as a Markov chain process. It is defined as:

η p (i) = 1 -d N + d ∑ j∈N 1 (i) η p (j) m j (2.6)
where η p (i) and η p (j) are the PageRank centralities of node i and node j, respectively, N 1 (i) is the set of direct neighbors of node i, m j is the number of links from node j to node i, and d is the damping parameter where d ∈ [0,1]. The damping parameter d is set to 0.85.

2.1.2/ COMMUNITY-AWARE MEASURES

Classical centrality measures are community-agnostic. They do not incorporate any information about the community structure to measure the node influence, although it proves to be a ubiquitous property in real-world networks [START_REF] Girvan | Community structure in social and biological networks[END_REF][START_REF] Fortunato | Community detection in graphs[END_REF]. In contrast, recently developed community-aware centrality measures offer a novel perspective by exploiting the network's mesoscopic properties more effectively to quantify the nodes' influence. They can be divided into non-overlapping [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF] and overlapping measures [START_REF] Laurent H Ébert-Dufresne | Global efficiency of local immunization on complex networks[END_REF][START_REF] Kumar | An efficient immunization strategy using overlapping nodes and its neighborhoods[END_REF][START_REF] Taghavian | A local immunization strategy for networks with overlapping community structure[END_REF][START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF][START_REF] Rajeh | Identifying influential nodes using overlapping modularity vitality[END_REF]. In a network with a community structure, one can distinguish the local and global influence of the nodes. A node exerts its local influence on nodes inside its community through its intra-community links. In contrast, its global importance quantifies its ability to influence the nodes it connects to outside its community and is exerted through the node's intercommunity links. Non-overlapping community-aware centrality measures combine intracommunity and inter-community links differently. Overlapping community-aware centrality measures add overlapping information that further refines the local and/or global influence of a node.

Let graph G be divided to C = {c 1 , c 2 , ..., c q , ..., c |C| } communities where c q is q-th community, |C| is the total number of communities, and n c q is the total number of nodes in community c q . In a non-overlapping community structure, a node i is a member of a single community c q , therefore c q ∩ c l = ∅ ∀ q l and |C| q=1 = V. In an overlapping community structure, a node i can be a member of one or more communities. Consequently, ∃ q l | c q ∩ c l ∅ and |C| q=1 = V. Intra-community edges link nodes in the same community, while inter-community edges join nodes in different communities. More formally,

| E in c q |= 1 2 ∑ i,j∈c q A i,j and | E out c q |= ∑ i∈c q ∑ j∈C\c q
A i,j denote, respectively, the number of intra-community and inter-community edges of community c q .

A node i has a total degree of

k i = ∑ N j=1 A i,j = k intra i + k inter i
where k intra i is the internal degree and k inter i is the external degree. More formally,

k intra i = ∑ N j=1 A i,j δ(c i , c j ) and k inter i = ∑ N j=1 A i,j (1 -δ(c i , c j ))
where δ(i, j) is the Kronecker delta function, indicating that δ(m, n) = 1 if m = n, otherwise δ(m, n) = 0, c i denotes community of node i, and c j denotes the community of node j. Moreover, a node i has a degree in community c q denoted as k i,c q . In other words, k i,c q is the number of links node i has, reaching community c q , defined as k i,c q = ∑ N j=1 A i,j δ(c j , c q ). It is important to understand that the distinction between k intra i and k i,c q lies in the fact that the former represents the overall internal degree of the node across all communities, while the latter refers to the internal degree of the node within a particular community c q .

NON-OVERLAPPING MEASURES [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF] quantifies the node's importance based on its participation in various communities through its inter-community links. The more diversified across the communities a node's links are, the higher its Participation Coefficient. If the node has only intra-community links, its Participation Coefficient reduces to zero. It is defined as follows: [START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF] places importance on the distribution of a node's links in its community and across the other communities. The size of the communities it is connected to is also part of the measure. Indeed, the community size either undermines or enhances the node's influence. It is defined as follows: [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] differentiates hubs (high-degree nodes) from bridges (the link between communities) based on a weighted combination of the intra-community links and inter-community links while giving bridges a higher priority. It is defined as follows:

Participation Coefficient

α PC (i) = 1 - |C| ∑ q=1 k i,c q k i 2 (2.7)

Community-based Centrality

α CBC (i) = |C| ∑ q=1 k i,c q n c q N (2.8)

Comm Centrality

α Comm (i) = (1 + µ c q ) × k intra i max (j∈c q ) k intra j × R + (1 -µ c q ) × k inter i max (j∈c q ) k inter j × R 2 (2.9)
where µ c q is the fraction of inter-community links over the total community links in the community, and R is a user-defined value to standardize the intra-community and intercommunity values. [START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF] identifies hubs and bridges depending on their hierarchical position as determined by their k-shell after dividing the network into two components.

K-shell with Community

The first comprises the intra-community links, characterizing the node's local influence.

The second comprises the inter-community links, characterizing the node's global influence. Then a weighted linear combination of the two influences is computed to assess the node's importance. It is defined as follows:

α ks (i) = δ × α intra (i) + (1 -δ) × α inter (i) (2.10)
where α intra (i) and α inter (i) refer to the k-shell value of node i on the graphs constituting intra-community links and inter-community links, respectively. In this thesis, δ is equal to 0.5 so neither hubs nor bridges are preferentially selected. [START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] identifies influential nodes that can quickly spread information across communities based on the entropy of their random walks. The more a node connects communities, the higher its entropy and its importance under the Community-based Mediator. It is defined as follows:

Community-based Mediator

α CBM (i) = H i × k i ∑ N i=1 k i (2.11)
where

H i = [-∑ ρ intra i log(ρ intra i )]+[-∑ ρ inter i log(ρ inter i
)] is node i's entropy according to ρ intra and ρ inter which represent the intra-community and inter-community links over the total degree of node i and ∑ N i=1 k i represents the sum of the degrees of all the nodes. 6. Community Hub-Bridge [START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF] weighs the node's local influence through its intracommunity links by the size of the node's belonging community and the node's global influence by the number of neighboring communities a node can reach in one hop. Then, it sums both influences to assess the overall influence. It is defined as follows:

α CHB (i) = n c q ,i × k intra i + N ∑ c l ⊂C\c q j∈c l a ij × k inter i (2.12)
where n c q ,i is the size of the community c q node i belongs to and j∈c l a ij = 1 if node i connects to at least one node j in community c l . [START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] identifies hubs and bridges based on their contribution to the network's modularity. One quantifies their contribution through the vitality principle that measures the effect of node removal on a quality measure. Removing hubs tends to decrease the network's modularity, while removing bridges tends to increase it. It is defined as follows:

Modularity Vitality

α

MV (i) = Q(G) -Q(G \ {i}) (2.13)
where Q(G) is the network's modularity and Q(G \ {i}) is the network's modularity after the removal of node i. Note that since Modularity Vitality is a signed community-aware centrality measure, we investigate it using hubs-first (α + MV ), bridges-first (α - MV ), and hubsand-bridges (|α MV |) ranking schemes. [START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF] measures the importance of a node in a network by considering the collective marginal harm it causes to the remaining nodes in terms of codeword length, that is, by how many bits the codeword lengths for the remaining nodes could be reduced if the node was silenced. Silencing a node means that when a random walker visits it, the sender does not communicate the codeword for visiting the node to the receiver, resulting in a compressed network modular description. The more one can compress the network's modular description without encoding the node, the higher the node's influence. This means that nodes frequently visited by the random walker play an important role in the network's modular structure. It is defined as follows:

Map Equation Centrality

α MapEq (i) = L i -L i * (2.14)
whereL i denotes the inefficient code (i.e., the difference in the code length between the coding scheme that assigns codewords to all nodes but does not use node i's codeword) and L i * denotes the efficient code (i.e., the coding scheme that assigns codewords to all nodes but never for node i). Modularity Vitality targeting hubs assesses the node's importance by quantifying the Hubs' contribution to the overall modularity of the network. Removing node 13 or node 4 is the most disruptive action against the cohesiveness of the network communities. Modularity Vitality targeting hubs and bridges takes the aggregate contribution of both hubs and bridges and ranks the nodes accordingly. Both nodes 4 and 13 have the highest effect on the network's modularity compared to the bridge-like nodes. Community-based Centrality chooses node 13 as the top node because it has the highest number of connections in its community. Moreover, it belongs to the largest community. Community-based Centrality prioritizes hub-like nodes located in large communities. The Map Equation Centrality picks nodes 4 and 13 as top nodes (i.e., they have the same centrality value). One can see that they are distributed across the two communities. The random walker is more likely to stay in nodes 4 and 13 as they are mainly responsible for the flow of information inside their communities.

The remaining centrality measures rank node 3 as the top node. It plays a bridge-like role between the communities. Indeed, it is the node with the highest number of intercommunity links. Participation Coefficient (α PC ) selects it as the top node because it distributes its connections across the two communities. Similarly, the Community-based Mediator (α CBM ) grants node 3 the highest entropy based on the distribution of its intracommunity and inter-community links. For Comm Centrality (α Comm ) and Community Hub-Bridge (α CHB ), node 3 is the most critical bridge-like node due to its connections to its external community while playing an essential role inside its community as well. Concerning K-shell with Community (α ks ), node 3 is the mostly embedded node inside the network's local and global components, yielding the highest K-shell with Community centrality value when both influences are linearly combined. Finally, Modularity Vitality targeting bridges (α - MV ) ranks node 3 as the top node since it is the node that essentially plays a positive role in the community structure cohesiveness. In other words, if one removes it, the network's modularity increases since it becomes more tightly connected.

OVERLAPPING MEASURES

This section presents the main overlapping community-aware centrality measures. Note that throughout the thesis, when we refer to community-aware centrality measures, we refer to the non-overlapping measures unless stated otherwise. [START_REF] Laurent H Ébert-Dufresne | Global efficiency of local immunization on complex networks[END_REF] sums up the number of communities a node is part of. Nodes belonging to many communities are considered the most influential, as they play a prime role in propagating diffusion across many communities. The abbreviation of Membership is β M hereafter. [START_REF] Kumar | An efficient immunization strategy using overlapping nodes and its neighborhoods[END_REF] assumes that overlapping nodes have a higher probability of connecting to different hubs throughout the network. Hence, by randomly targeting the neighbors of overlapping nodes for diffusion or immunization, results are improved compared to solely targeting overlapping nodes. The abbreviation of OverlapNeighborhood is β ON hereafter. [START_REF] Taghavian | A local immunization strategy for networks with overlapping community structure[END_REF] proposes to target overlapping nodes based on a random walk since it considers that not all overlapping nodes are important. However, an overlapping node selected by a random walker is more important since the random walker had a higher probability of visiting it due to its high degree rather visiting another overlapping node. The abbreviation of Random Walk Overlap Selection is β RWOS hereafter. [START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF] first checks if a node is overlapping or not. If so, the node's local influence will be based on the network made up of the intra-community links a node has (i.e., local component). These intra-community links pertain to more than one community. If the node is not overlapping, the node's local influence will still be based on the network made up of intra-community links. However, the node's local influence is less amplified since the node does not participate in several communities. On the other hand, the node's global influence is always the same, whether the node is overlapping or not. The global influence is based on the network constructed by the inter-community links of the node (i.e., global component). Then, choosing any centrality measure, one computes it on the local and global components. The result will be a vector of two values, indicating the local and global influence. Both influences are then combined depending on the user's choice. In this thesis, we use the degree centrality with the modulus combination. The abbreviation of Overlapping Modular Centrality is β OMC hereafter.

Membership

OverlapNeighborhood

Random Walk Overlap Selection

Overlapping Modular Centrality

2.2/ DIFFUSION MODELS

Diffusion in complex networks is an important interdisciplinary research area representing many real-world situations. Researchers from various domains were attracted to developing models for a more realistic characterization of dynamics on networks. The goal is to describe the current dynamic situation better to apply well-informed decisions and predict future trends. For instance, models were proposed to combat malware spreading across computer networks [START_REF] Piqueira | Malware propagation in clustered computer networks[END_REF], to optimize online marketing campaigns [START_REF] Richardson | Mining knowledge-sharing sites for viral marketing[END_REF], and to forecast COVID-19 at different territorial levels [START_REF] Goel | Mobility-based sir model for complex networks: with case study of covid-19[END_REF]. Thus, it is clear that one model characterizing all real-world situations is insufficient.

Due to the ubiquity of dynamic interactions across networks in many domains, there is a rich taxonomy for diffusion models. Some researchers refer to them as simple and complex contagions [START_REF] Centola | Complex contagions and the weakness of long ties[END_REF][START_REF] Guilbeault | Complex contagions: A decade in review. Complex spreading phenomena in social systems[END_REF][START_REF] Firth | Considering complexity: animal social networks and behavioural contagions[END_REF][START_REF] Horsevad | Transition from simple to complex contagion in collective decision-making[END_REF]. The dynamics of a simple contagion designate that a single contact with an active/infected node is enough for successful transmission. With a complex contagion, a node requires an aggregation of connections with its neighborhood for successful communication to take place. Other researchers divide diffusion models into biological/epidemic models and social/information diffusion models [START_REF] Mason | Dynamical systems on networks[END_REF][START_REF] Jalili | Information cascades in complex networks[END_REF][START_REF] Rossetti | Ndlib: a python library to model and analyze diffusion processes over complex networks[END_REF][START_REF] Du | How do social media and individual behaviors affect epidemic transmission and control?[END_REF]. Epidemic models characterize the spread of a virus between individuals, with various parameters in place, such as the infection rate and the recovery rate. In information diffusion, the goal is to simulate the influence of one person over others through passing knowledge, ideas, or opinions toward products or controversial topics. Diffusion models also can be divided into explanatory and predictive models [START_REF] Guille | Information diffusion in online social networks: A survey[END_REF][START_REF] Li | A survey on information diffusion in online social networks: Models and methods[END_REF][START_REF] Yujie | A survey on information diffusion in online social networks[END_REF]. In explanatory models, given an ordered sequence of activated nodes, the goal is to backtrack the evolution of the propagation. In predictive models, the aim is to infer the development of the diffusion process from a set of activated nodes. One can further divide predictive models into graph-based and non-graph-based [START_REF] Guille | Information diffusion in online social networks: A survey[END_REF]. Regardless of the taxonomy, popular models mainly differ in three main aspects. The first is the number of states a node can acquire. For instance, in the Susceptible-Infected-Recovered (SIR) model [START_REF] Ogilvy | A contribution to the mathematical theory of epidemics[END_REF], a node can be in one of three states. In contrast, in the Susceptible-Infected (SI) model [START_REF] Ogilvy | A contribution to the mathematical theory of epidemics[END_REF], the node can be either susceptible or infected. The second is the frequency of an activated node capable of influencing other nodes. In the Independent Cascades (IC) model [START_REF] Goldenberg | Talk of the network: A complex systems look at the underlying process of word-of-mouth[END_REF], an activated node has a single chance of affecting its neighboring nodes. On the contrary, in the Linear Threshold (LT) model [START_REF] Granovetter | Threshold models of collective behavior[END_REF], more than one possibility of activation is possible. Finally, the third main difference relates to the conditions set on nodes and/or edges. For example, in the SIR model, a constant infection rate is set, while in the IC model, the probability of influencing neighboring nodes can vary. Note that one can use the terms active/infected and inactive/susceptible interchangeably.

We are interested in using various models to study the interplay of the diffusion process and the networks given a set of activated nodes selected based on the community-aware centrality measures. In this thesis, we consider four diffusion models:

-The Susceptible-Infected (SI) model -The Susceptible-Infected-Recovered (SIR) model -The Linear Threshold (LT) model -The Independent Cascade (IC) model

We choose these models for three main reasons: their popularity in the scientific community, their capacity to model realistically diverse diffusion phenomena, and their genericity.

The SI and the SIR models originate from epidemiological modeling, while the LT and IC models originate from information diffusion modeling. Additionally, the SI, SIR, and IC models are simple contagion processes where an active node has a single chance of activating another node. In this case, an inactive node does not rely on collective influence to change its state. A single event from an influential activated node is enough for it to become active. In contrast, in the LT model, the success of a transmission depends on the aggregation of the activations of a node's neighborhood. Finally, all these models are predictive since they all predict the diffusion spread in a network given a set of activated nodes. Fig 2 .2 illustrates the main characteristics of the four models. In the following sections, we discuss each model in more detail. is the recovery rate, m v is the total number of active neighbors node v possesses, ξ v is node the threshold of node v, P u,v is the likelihood of node u activating node v, and ξ u,v is the threshold of edge (u, v).

Note that in this thesis, we use seed-dependent models, not seed-independent ones like the random walk. Thus, if we change the seeds, the output will change. We also note that we are not addressing the problem of influence maximization (i.e., finding the smallest set of nodes that ignites the maximal activation size of nodes). Instead, we are more interested in the interplay between the dynamic models, the network structure, and seed nodes selected using centrality measures with different budget availabilities. The influence maximization problem is NP-hard [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF][START_REF] Chen | Efficient influence maximization in social networks[END_REF]. Several algorithms have been proposed to approximate this problem. Nevertheless, many require information surpassing the structural-level information. Moreover, many suffer from scalability limitations. This, in turn, hinders their utilization in many real-world cases. For more information about influence maximization, one can refer to [START_REF] Li | Influence maximization on social graphs: A survey[END_REF][START_REF] Banerjee | A survey on influence maximization in a social network[END_REF].

2.2.1/ EPIDEMIC MODELS

The SI and the SIR models proposed by Kermack and McKendrick [START_REF] Ogilvy | A contribution to the mathematical theory of epidemics[END_REF] are epidemic models characterizing various diseases. They have been initially developed under a "well-mixed" populations hypothesis, where individuals have the same probability of interacting. However, in real-world scenarios, a person's likelihood of contacting another person depends on the underlying contact network structure [START_REF] Mason | Dynamical systems on networks[END_REF][START_REF] Pastor-Satorras | Epidemic processes in complex networks[END_REF]. Accordingly, scientists integrate the original models on a network, and the status of the nodes evolves according to the contact information [START_REF] Moreno | Epidemic outbreaks in complex heterogeneous networks[END_REF][START_REF] Mark Ej Newman | Spread of epidemic disease on networks[END_REF]. One can distinguish homogeneous mixing (i.e., individuals are equally likely to interact with each other) and heterogeneous mixing (i.e., contact rate depends on each individual). If detailed data about people interactions are missing, one uses a homogeneous mixing approximation [START_REF] Pastor-Satorras | Epidemic processes in complex networks[END_REF].

SUSCEPTIBLE-INFECTED (SI) MODEL

In the SI model, a node can be either in susceptible (S) or infected (I) states. For a viral disease, the susceptible state indicates that the node has not yet encountered the virus. An infected node is a node holding the virus. It may infect its susceptible neighbor(s) at time t based on the infection rate λ. Once a node is in the infected state, it remains so forever.

Suppose that at time t, the number of susceptible individuals is denoted by S(t), and the number of infected individuals is denoted as I(t). Concurrently, in a population of N = S(t) + I(t) individuals, the susceptible density is i(t) = I(t)/N and the infected density is s(t) = S(t)/N where s(t) + i(t) = 1. Assuming that each individual has, on average, < k > connections, and di/dt represents the rate of change of the number of infected individuals over time, the evolution of the SI model is described as follows:

di dt = λ < k > i(t)[1 -i(t)] (2.15) 
Equation 2.15 indicates that the infected density is directly proportional to the increase in the infection rate and the average number of connections of an individual. Note that since there are only two states, an increase in infected individuals leads to an equal decrease in susceptible individuals.

The SI model is one of the basic models of epidemics, such as several sexually transmitted diseases, yet other significant applications fit into its dynamics. For instance, computer viruses [START_REF] Vazquez | Impact of non-poissonian activity patterns on spreading processes[END_REF], human activity [START_REF] Min | Spreading dynamics following bursty human activity patterns[END_REF], and rumor spreading [START_REF] Jain | Fast rumor source identification via random walks[END_REF].

SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL

In the SIR model, a node can be either in the susceptible (S), infected (I), or recovered (R) state. Initially, a set of nodes is infected while all the remaining nodes are susceptible. 

ds dt = -λ < k > i(t)[1 -r(t) -i(t)] (2.16 
)

di dt = -ψi(t) + λ < k > i(t)[1 -r(t) -i(t)]
(2.17)

dr dt = ψi(t) (2.18)
Since any individual can recover randomly at any time t, the epidemic outbreak decreases as the evolution of the SIR process proceeds. Note that the SI model can be apprehended as the limiting case of the SIR model with a recovery rate (ψ) equal to zero [START_REF] Pastor-Satorras | Epidemic processes in complex networks[END_REF].

Like the SI model, the SIR model is not limited to diseases that yield immunity or death. One can model rumors using the SIR model [START_REF] Daryl | Stochastic rumours[END_REF]. Indeed, the SIR model is a basic model for many information diffusion scenarios, such as the SIRaRu model, which simultaneously considers individuals exposed to the rumor and chooses to disseminate it along with individuals who do not [START_REF] Wang | Siraru rumor spreading model in complex networks[END_REF]. SIR can also be an ideal model for advertising [START_REF] Jing | Improved sir advertising spreading model and its effectiveness in social network[END_REF], economics [START_REF] Bognanni | Economics and epidemics: Evidence from an estimated spatial econ-sir model[END_REF], and computer viruses [START_REF] Amador | The stochastic sira model for computer viruses[END_REF].

2.2.2/ INFORMATION DIFFUSION MODELS

Information diffusion has recently gained much attention due to the ongoing technological expansion and the rise in social media platforms. Information spreading can take the form of viral marketing [START_REF] Ida | Profanity in viral tourism marketing: A conceptual model of destination image reinforcement[END_REF], innovation [START_REF] Gabriel | Rapid innovation diffusion in social networks[END_REF], norms [START_REF] Peyton | The evolution of social norms[END_REF], behaviors [START_REF] Centola | How behavior spreads: The science of complex contagions[END_REF], fake news [START_REF] Khubaib | Complex network and source inspired covid-19 fake news classification on twitter[END_REF] and opinions [START_REF] Abid | Deterministic models for opinion formation through communication: A survey[END_REF]. Modeling diffusion processes helps policymakers and practitioners understand social behaviors, identify terrorists, halt disseminating false information, and improve marketing campaigns compared to traditional approaches [START_REF] Jalili | Information cascades in complex networks[END_REF]. Numerous models have been proposed to describe information diffusion on networks. The most popular and classical ones are the Linear Threshold (LT) model and the Independent Cascade (IC) model [START_REF] Zhang | Dynamics of information diffusion and its applications on complex networks[END_REF][START_REF] Li | A survey on information diffusion in online social networks: Models and methods[END_REF][START_REF] Shakarian | Diffusion in social networks[END_REF].

LINEAR THRESHOLD (LT) MODEL

The Linear Threshold (LT) model proposed by Granovetter in 1978 depicts the significant role the neighborhood of an individual plays in social influence [START_REF] Granovetter | Threshold models of collective behavior[END_REF]. The individual makes a binary choice at every time step t, relying on social reinforcement. In other words, it looks at the opinion of its neighborhood at each time step t and becomes active if and only if the fraction of the activated neighboring nodes (i.e., their collective influence) is greater than a threshold value.

An individual v in the LT model possesses a threshold ξ v ∈ [0, 1]. At any time t, it can be in one of the two alternative states:

v(t) = 0 if v is inactive 1 if v is active (2.19)
At each time step t, an inactive node v checks the states of its neighbors. It is activated if and only if:

m v k v ≥ ξ v (2.20)
where m v is the number of active neighbors of node v and k v is the degree of node v.

Initially developed to characterize complex social contagions, the LT model is prevalent in real-world scenarios such as joining a riot or a strike, diffusing rumors, voting, and residential segregation [START_REF] Granovetter | Threshold models of collective behavior[END_REF]. It has also been used and refined to predict product adoption in online social networks [START_REF] Zhou | A linear threshold-hurdle model for product adoption prediction incorporating social network effects[END_REF], as well as identifying influential nodes [START_REF] Fabi Án Riquelme | Centrality measure in social networks based on linear threshold model[END_REF], and to assess the robustness of urban railway networks [START_REF] Zhang | Robustness of urban railway networks against the cascading failures induced by the fluctuation of passenger flow[END_REF].

INDEPENDENT CASCADE (IC) MODEL

Goldenberg et al. introduced the Independent Cascade (IC) model to represent marketing dynamics under the simple contagion mechanism [START_REF] Goldenberg | Talk of the network: A complex systems look at the underlying process of word-of-mouth[END_REF]. In the IC model, an individual can either be active or inactive. Each activated individual u has only one chance to activate their neighbor v with a probability P u,v . The attempt to activate an inactive individual is independent of the remaining activated individuals. In other words, the inactivated individual does not depend on the collective influence of their neighbors. Instead, a single influential node is capable of activating it.

An individual v in the IC model can be only in one of the two alternative states:

v(t) = 0 if v is inactive 1 if v is active (2.21)
Each edge in the IC model is weighted by an activation probability P u,v , denoting the likelihood of node u activating node v. Additionally, one sets a threshold on the edges ξ u,v such that ξ u,v ∈ [0, 1] to impede the independent influence of the nodes. Thus, node v is activated by node u if and only if:

P u,v ≥ ξ u,v (2.22) 
One can consider the IC model as a variant of the SIR model with a varying infection rate among the nodes (P u,v ) instead of a constant infection rate (λ) between all the individuals. Additionally, one can consider that the IC model has a recovery rate ψ = 1 for all the nodes since each node has a single chance of activating its neighbor(s) [START_REF] Shakarian | Diffusion in social networks[END_REF]. Apart from marketing, It has been widely used in various situations, spanning from investigating rumor spreading [START_REF] Xu | Scalable rumor source detection under independent cascade model in online social networks[END_REF], combating misinformation [START_REF] Budak | Limiting the spread of misinformation in social networks[END_REF], sentiment analysis [START_REF] Wang | An emotion-based independent cascade model for sentiment spreading[END_REF], and incorporation of textual data for better diffusion modeling [START_REF] Kim | Homophily independent cascade diffusion model based on textual information[END_REF].

2.3/ NETWORK QUALITY MEASURES

One can classify the several quality measures characterizing a community structure into two groups. Metrics in the first group exploit connectivity patterns [START_REF] Yang | Defining and evaluating network communities based on ground-truth[END_REF][START_REF] Jebabli | Community detection algorithm evaluation with ground-truth data[END_REF] while members of the second group rely on network models [START_REF] Tam Ás Nepusz | Fuzzy communities and the concept of bridgeness in complex networks[END_REF][START_REF] Bornholdt | Statistical mechanics of community detection[END_REF]. This section briefly discusses these measures while emphasizing the overlapping modularity, which is used in Chapter 5.

The quality functions f (c q ) are usually defined at the community level c q . Then, the average on all the communities f (C) characterizes the network's community structure.

In the following, we recall the definitions for a community c q .

2.3.1/ QUALITY MEASURES BASED ON CONNECTIVITY

One can divide quality measures based on connectivity into three categories based on the type of connectivity they consider: 1) measures based on internal connectivity, 2) measures based on external connectivity, and 3) measures based on internal & external connectivity. We briefly describe the main ones.

MEASURES BASED ON INTERNAL CONNECTIVITY

Measures based on internal connectivity quantify the quality of the community according to edges between nodes located inside the community.

1. Average internal degree is the average internal degree of the nodes included in c q . The higher the value of the average degree, the stronger the community structure. It is defined as follows:

f (c q ) = 2 | E in c q | n c q 2.
Internal density measures the density of links joining nodes inside community c q . The higher the value of the internal density, the stronger the community structure. It is defined as follows:

f (c q ) = 2 | E in c q | n c q (n c q -1)

MEASURES BASED ON EXTERNAL CONNECTIVITY

Measures based on external connectivity quantify the quality of the community based on links pointing out of the community.

1. Expansion quantifies the average proportion of external links per node inside c q . The lower the value of expansion, the stronger the community structure. It is defined as follows:

f (c q ) = | E out c q | n c q 2.
Cut ratio is the ratio of external links out of all possible links. The lower the value of the cut ratio, the stronger the community structure. It is defined as follows:

f (c q ) = | E out c q | n c q (N -n c q ) MEASURES BASED ON INTERNAL & EXTERNAL CONNECTIVITY
Measures based on internal and external connectivity take information from the internal and external links simultaneously to quantify a community's quality.

1. Average-Out Degree Fraction (Average-ODF) is the average fraction of edges connecting nodes in community c q to others. The lower the value of the Average-ODF, the stronger the community structure. It is defined as follows:

f (c q ) = 1 n c q ∑ i∈c q k out i k i 2.
Fitness function measures the fraction of internal links to the total number of links of the community [START_REF] Lancichinetti | Detecting the overlapping and hierarchical community structure in complex networks[END_REF]. The higher the internal degree of the community, the stronger the community. It is defined as follows:

f (c q ) = 2 | E in c q | (2 | E in c q | + | E out c q |) α
where α > 0 is a resolution parameter that tunes the size of the communities.

2.3.2/ QUALITY MEASURES BASED ON MODELS

Some quality measures rely on a specific criterion based on a model to quantify the community structure strength. These measures defined for non-overlapping communities have natural extensions for networks with an overlapping community structure. Modularity and the Potts model are the most influential. Indeed, researchers have widely used these measures as an optimization criterion to identify communities in a network [START_REF] Bornholdt | Statistical mechanics of community detection[END_REF][START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF][START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF][START_REF] De Meo | Generalized louvain method for community detection in large networks[END_REF][START_REF] Ronhovde | Multiresolution community detection for megascale networks by information-based replica correlations[END_REF][START_REF] Ronhovde | Local resolution-limit-free potts model for community detection[END_REF].

We give a general presentation of modularity and its various versions and present the Potts model briefly.

OVERLAPPING MODULARITY

Initially introduced by Newman [START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF], it assumes that a node belongs to a single community. In numerous real-world scenarios, this is not the case. Therefore, Nepuszet al. [START_REF] Tam Ás Nepusz | Fuzzy communities and the concept of bridgeness in complex networks[END_REF] proposed incorporating the community membership strength vector Θ(i) of a node i to relax this requirement. Therefore, each node i possesses a community membership strength defined as follows:

Θ(i) = (θ i,c 1 , θ i,c 2 , ..., θ i,c q , ..., θ i,c |C| ) (2.23)
Under this setting, the overlapping modularity definition for fuzzy and crisp communities is given by:

f (c q ) = 1 2 | E | ∑ i,j A i,j - k i k j 2 | E | s(Θ(i), Θ(j)) (2.24)
where s(Θ(i), Θ(j)) is a function of the vectors of community membership strength of nodes i and j denoted as Θ(i) and Θ(j), respectively.

Modularity can be equivalently defined in terms of the intra-community links and intercommunity links of each community [START_REF] Mark Ej Newman | Fast algorithm for detecting community structure in networks[END_REF]. Thus, equation 2.24 can also be written as:

f (c q ) = | E in c q | | E | - 2 | E in c q | + | E out c q | 2 | E | 2 (2.25)
Note that here modularity is defined for one community. When computed on the whole network, we denote it as Q ′ (G).

Fuzzy overlapping community structure

In a fuzzy overlapping community structure, the community membership strength of a node is a value between zero and one, and the sum of the strength values is normalized [START_REF] Chen | Fuzzy overlapping community quality metrics[END_REF]. Consequently, ∀i ∈ V, ∀c q ∈ C 0 ≤ θ i,c q ≤ 1 and ∑ c q ∈C θ i,c q = 1.

This study uses two fuzzy definitions. The first one, called reciprocity membership, is independent of the network topology. The second, degree membership, exploits the network topology. The literature proposes various alternatives. For more information, the reader can consult the following reference [START_REF] Chen | Fuzzy overlapping community quality metrics[END_REF].

Reciprocity membership represents a node's reciprocal number of communities. If a node i belongs to o i communities, the community membership strength for these communities is given by:

θ R i,c q = 1 o i (2.26)
It is equal to zero for the other communities. Note that no information is used about the topology of the overlap in this definition except that different communities share the overlapping node.

Degree membership incorporates information about the node's attachment to the various communities. It measures the fraction of links of a node reaching a specific community. It is defined as follows:

θ D i,c q = k i,c q k i (2.27)
The question now is how to integrate the measure s(Θ(i), Θ(j)) of equation 2. [START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF]. In this study, we opt for the average of the nodes' community membership strengths to be incorporated within the adjacency matrix (A i,j ) for reciprocity membership and degree membership. This approach is proposed by Zhang et al. [START_REF] Zhang | Identification of overlapping community structure in complex networks using fuzzy c-means clustering[END_REF]. Based on the variables of equation 2.25, the adjacency matrix is weighted according to the following fuzzy definitions:

| E in c q |= 1 2 ∑ i,j∈c q θ i,c q + θ j,c q 2 A i,j (2.28 
)

| E out c q |= ∑ i∈c q ∑ j∈C-c q θ i,c q + (1 -θ j,c q ) 2 A i,j (2.29) 
Crisp overlapping community structure

In crisp overlapping community structure, nodes either fully belong to communities or do not [START_REF] Chen | Fuzzy overlapping community quality metrics[END_REF]. Consequently, the membership strength of a node to a community is either 0 or

1. Consequently, ∀i ∈ V, ∀c q ∈ C, θ i,c q ∈ {0, 1} and 0 ≤ ∑ c q ∈C θ i,c q ≤| C |.
In this case, the sum of the community membership strengths is equal to | C | if node i belongs to all the communities, and it is equal to zero if it does not belong to any community. This study uses one crisp definition independent of the network topology called node similarity. Note that a non-overlapping community structure is a particular crisp overlapping case where all the community membership strengths of nodes are equal to zero except for a unique community, where it is equal to one.

Node similarity measures the similarity of two nodes depending on their community membership strength Θ(i). The idea is to account for all the binary memberships of the nodes in the vector Θ(i) and then convert the similarity between any two nodes to a fuzzy index. One can use any similarity measure [START_REF] Tam Ás Nepusz | Fuzzy communities and the concept of bridgeness in complex networks[END_REF]. In the following, we adopt the widespread cosine similarity:

s(Θ(i), Θ(j)) = cos(Θ(i), Θ(j)) (2.30)
Two nodes with similar community membership exhibit a high cosine similarity index. Note that node similarity does not use any information about the topology of the overlap.

The cosine similarity value of the two community membership strength vectors is directly incorporated into the adjacency matrix if two nodes i and j belong to the same community.

Based on the variables of equation 2.25, the adjacency matrix is weighted using the following fuzzy expressions:

| E in c q |= ∑ i,j∈c q s(Θ(i), Θ(j))A i,j (2.31 
)

| E out c q |= ∑ i∈c q ∑ j∈C-c q [1 -s(Θ(i), Θ(j))] A i,j (2.32) 

POTTS MODEL

In the Potts model, an energy expression quantifies the quality of the communities considered as spin states [START_REF] Bornholdt | Statistical mechanics of community detection[END_REF]. Minimizing the system's energy expressed by the Hamiltonian of the spin model results in a well-separated community structure. It is defined as follows:

f (c q ) = -∑ i,j∈c q J(A i,j -γp i,j )
where:

• J is a multiplicative constant characterizing the weights between the nodes

• γ weights the importance of the energy from connected and missing edges

• p i,j can be any arbitrary null model denoting the probability of node i connecting to node j

MAP EQUATION

The map equation originating from information theory aims to find cohesive structures networks based on the flow of information [START_REF] Rosvall | The map equation[END_REF][START_REF] Alcides | Compression of flow can reveal overlapping-module organization in networks[END_REF]. The underlying mechanism is based on compressing regions where a random walker has a higher probability of staying in for an extended period. By minimizing the map equation over the possible partitions in the network, communities can be revealed depending on how information flows. The map equation is defined as follows:

f (c q ) = q ↷ H(Q) + p c q ⟳ H(P c q )
where:

• q ↷ H(Q) denotes the average number of bits describing the movement between community c q and the remaining communities

• p c q
⟳ H(P c q ) denotes the average number of bits describing the movement within community c q

2.4/ SUMMARY

This chapter introduces the concepts and elements essential to understanding the thesis. It first discusses the centrality measures the thesis investigates, including classical and community-aware measures. The former is divided into neighborhood-based, path-based, and iterative refinement-based measures, while the latter is divided into nonoverlapping and overlapping measures. The chapter then presents four diffusion models, two belonging to epidemic models and two to information diffusion models. Lastly, the chapter discusses various network quality measures that can be used to describe networks, focusing on overlapping modularity, which forms the basis of the framework proposed in Chapter 5. 

DIFFUSION ON NETWORKS WITH COMMUNITY STRUCTURE

3.1/ INTRODUCTION

Diffusion begins from nodes located in specific areas of the network and spreads out with time. How to select the seed nodes to maximize diffusion is a fundamental problem. Centrality measures are one of the main approaches to do so. They rely on topological information from the network to quantify node importance. Since the community structure impacts the diffusion spreading dynamics [START_REF] Galstyan | Cascading dynamics in modular networks[END_REF][START_REF] Nematzadeh | Optimal network modularity for information diffusion[END_REF][START_REF] Peng | Network modularity controls the speed of information diffusion[END_REF], researchers showed that classical centrality measures may fallback in terms of selecting the most influential nodes [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF]. Therefore, it is important to incorporate community structure information to select seed nodes that maximize diffusion.

Unlike the classical centrality measures, which focus more on either the local or the global influence of a node, the so-called community-aware centrality measures incorporate the node's local and global influence through its intra-community and inter-community links, respectively [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF]. The difference between these measures is how they combine intracommunity links and inter-community links, as shown in Chapter 2. If more importance is given to the intra-community links (i.e., local influence), the measure emphasizes hub-like nodes. On the other hand, if importance is given to the inter-community links (i.e., global influence), the measure renders more important bridge-like nodes.

The diffusive ability of the community-aware centrality measures in selecting seed nodes is assessed in a dynamic spreading scenario with specific conditions set on nodes and/or edges. Most of the studies use the SIR model to assess the impact of the selection of seed nodes either to maximize diffusion or to minimize it (this can also be called immunization) [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF]. Despite being widely used, the SIR model does not convey all 29 real-world spreading scenarios. In particular, in the SIR model, a node can infect its neighborhood several times. In other words, a node has many chances to infect or influence its neighbor(s) before it is removed from the network. Nevertheless, sometimes the diffusion of a disease or a piece of information to raise awareness can be spread by a node once. That is to say, a node has a single chance to influence its neighbor(s).

For instance, consider people meeting in a manifestation. They will meet in this manifestation once, and they may not meet again afterward. The piece of information from one person to another will be transmitted given this one-time chance. Another example is that a person may change his/her opinion towards a cause only if a sufficient number his/her neighbors adopts this opinion. The presence of various conditions that can occur in nodes or edges in the real world necessitates the creation of multiple diffusion models.

This grants us permission to pose the main research question of this chapter: how does the diffusion models' output depend on the seeds and the network? The seeds are selected based on the community-aware centrality measures. The community-aware centrality measures rely on the network's structure. The model's output (i.e., the diffusion spread) depends on the network's structure and the seed nodes. Thus, we investigate the interplay between the spread of various diffusion models, initiated through the seed nodes selected by the community-aware centrality measures, and the network's structure. This problem is relevant to many disciplines, from biology and epidemics to sociology and economics. In addition to the diffusion models, there are insufficient studies using a multiple-spreading phenomenon under a spreading scenario rather than in immunization. Another issue is that the community structure changes using one community detection algorithm over the other, which may impact the diffusion dynamics. This also poses a challenge on how the spread will evolve, given that the same seed nodes initiate the diffusion. Finally, we do not have a clear idea of how the community-aware centrality measures compare in controlled synthetic networks and diverse real-world networks. Indeed, previous works mainly focused on a small set of synthetic and real-world networks. This does not enable us to rigorously answer when community-aware centrality measures outperform and what their bottlenecks are.

Thus, despite their outperformance, the literature so far renders a blurred vision of community-aware centrality measures, their robustness, and their limitations. All of the stated challenges are tackled in this chapter. To conduct the study, we systematically use eight community-aware centrality measures on a set of four conceptually different diffusion models using a set of synthetic and real-world networks from diverse domains under the multiple-spreader scheme. Therefore, three main parameters are under investigation: the diffusion model and its underlying dynamics, the network and its characteristics, and the community-aware centrality measures and their inner workings. The employed diffusion models are the Susceptible-Infected (SI) model, Susceptible-Infected-Recovered (SIR) model, the Linear Threshold (LT) model, and the Independent Cascade (IC) model. Synthetic networks are generated using the Lancichinetti, Fortunato, and Radicchi algorithm (LFR) [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF] where several parameters can be varied, including the community structure strength, the community size distribution, and the degree distribution. In real-world networks, Infomap and Louvain community detection algorithms are used to uncover the underlying community structure, and their impact is also studied. The community-aware centrality measures, the diffusion models, and the networks are discussed in more detail in Chapter 2.

In this chapter, we contribute to the literature by:

1. Evaluating the community-aware centrality measures selecting seed nodes in four distinct diffusion models.

2.

Using a set of 45 LFR synthetic networks to investigate the impact of the community structure strength, community size distribution, and degree distribution.

3.

Applying the methods on a large set of real-world networks for an extensive statistical study.

4.

Investigating two fundamentally different community detection algorithms to investigate their impact on dynamics.

3.2/ STATE OF THE ART

Influential nodes are critical in boosting or curbing spreading phenomena in complex networks. A multitude of classical centrality measures has been proposed to quantify node influence. These measures prove their merit in many scenarios, like assessing the infectious capacities of nodes [START_REF] Ferraz | Role of centrality for the identification of influential spreaders in complex networks[END_REF] to quantifying financial distress [START_REF] Battiston | Debtrank: Too central to fail? financial networks, the fed and systemic risk[END_REF] and applying viral marketing [START_REF] Pescher | Consumer decisionmaking processes in mobile viral marketing campaigns[END_REF]. Researchers have shown that classical centrality measures may undermine the influence of nodes in networks with community structure [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF]. Indeed, many real-world networks are characterized by a community structure that drastically impacts spreading dynamics [START_REF] Galstyan | Cascading dynamics in modular networks[END_REF][START_REF] Nematzadeh | Optimal network modularity for information diffusion[END_REF][START_REF] Peng | Network modularity controls the speed of information diffusion[END_REF]. Thus, in networks with a community structure, nodes that may not be considered influential by a classical centrality measure (i.e., agnostic about the community structure) may be of ultimate influence when one considers the mesoscopic organization of the network.

The exploitation of communities to identify influential nodes using centrality dates back to 2005 when Guimer à and Amaral [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF] proposed the Participation Coefficient, which uncovered the key metabolites across species in metabolic networks. Zhao et al. [START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF] proposed the Community-based Centrality, capable of identifying influential nodes in which the classical degree, betweenness, and eigenvector centralities could not identify in the Susceptible-Infected-Recovered (SIR) model with a single-spreader scheme. Unlike Community-based Centrality, Comm centrality proposed by Gupta et al. [START_REF] Gupta | Centrality measures for networks with community structure[END_REF] adapts to the network's strength of community structure, succeeding in identifying hubs and bridges, with the latter being prioritized in an immunization scenario using SIR. Luo et al. [START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF] merged the network's community structure and hierarchy to develop K-shell with Community, proving its outperformance against classical centrality measures in the SIR model with a single-spreader scheme. Tulu et al. [START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF] showed that using the entropy of a node's intra-community and inter-community links, nodes disseminating information quickly can be better identified in the SIR model. Ghalmane et al. [START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF] proposed Community Hub-Bridge, which showed its effectiveness in hindering an epidemic by immunizing influential nodes under the SIR dynamics in networks with a strong community structure. Magelinski et al. [START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] exploited the so-called modularity, a quality measure to assess the community structure of a network to identify hubs and bridges. The authors showed that their community-aware centrality could dismantle a very large infrastructural network eight times more effectively than other centrality measures by taking a limiting case of the SIR model. Recently, Bl öcker et al. [START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF] showed the merit of an information-theoretic community-aware centrality measure based on the map equation in the SIR model using a single-spreader scheme and the Linear Threshold (LT) model using a multiple-spreader scheme.

Despite the outperformance of the community-aware centrality measures compared to classical ones in identifying influential nodes, several limitations need to be addressed. First, most of the community-aware centrality measures are assessed exclusively under the SIR dynamics, either to maximize diffusion [START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF] or minimize it [START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] by removing the most central nodes. The latter case is also referred to as "immunization." Nevertheless, the SIR model does not characterize all situations. Despite researchers' aim to develop generalized diffusion models, many cases entail adding specific conditions that are not applicable in all real-world situations. Therefore, many diffusive models exist to characterize better cases occurring in the real world. Only one community-aware centrality measure, the Map Equation Centrality [START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF], is assessed using the SIR and LT dynamics. Second, most of the studies maximizing SIR diffusion use the single-spreader scheme. To minimize diffusion, studies naturally select multiple nodes [START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF]. That being said, Participation Coefficient [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF] is the only communityaware centrality measure not assessed with respect to a dynamic model since its original aim was to identify key proteins and construct cartography of metabolic networks rather than compare the measure's diffusive power. Third, many studies use a single community detection algorithm if the network's community structure is unknown. Therefore, it is not well understood how the mesoscopic arrangement of communities affects the dynamics within the same network. Finally, every community-aware centrality measure is assessed on a small sample of real-world and synthetic networks. Table 3.1 summarizes the works concerning the development and comparison of community-aware centrality measures.

The limitations raise several concerns regarding the consistency of the community-aware centrality measures, and this chapter aims to address these questions. indicates that the goal is to minimize diffusion and ↗

indicates that the goal is to maximize diffusion.

3.3/ SYNTHETIC NETWORKS

This section investigates the interplay between the network's community structure, various diffusion mechanisms based on the models provided in Chapter 2, and communityaware centrality measures on a set of synthetic networks generated by the Lancichinetti, Fortunato, and Radicchi (LFR) algorithm [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF]. This algorithm allows the tuning of various parameters of the community structure. We investigate the influence of the community structure strength controlled by the mixing parameter (µ), the degree distribution powerlaw exponent (γ), and the community size distribution power-law exponent (θ). More details about the synthetic networks and the parameters set to generate them are provided in Appendix I.

INFLUENCE OF THE COMMUNITY STRUCTURE STRENGTH

The mixing parameter (µ) controls the community structure strength. Low values yield networks with a strong community structure since few inter-community links exist. As µ increases, the network's community structure strength loosens, resulting in the disappearance of dense and well-defined regions. To study the effect of the community structure strength on the various diffusion dynamics, we generate LFR networks with strong (µ = 0.05), medium (µ = 0.20), and weak (µ = 0.70) community structures. Given the ranking of a community-aware centrality measure, a fraction f o of the top-ranked nodes in the network is initially infected/activated in each of the SI, SIR, IC, and LT models. The results are reported in Fig 3 .1. The evaluation measure in the SI model is the average number of iterations needed for a given f o to infect 50% of the network. The lower the number of iterations, the more effective the centrality measure. In the SIR and IC models, the relative outbreak/activation size (i.e., ∆R/∆A) is computed. This value quantifies the difference between the number of nodes recovered/activated at the end of the dynamical process when f o is based on a given community-aware centrality measure and a baseline measure which is the degree centrality. Recall that ∆R = R c -R r R r (see Appendix I for more details). The higher it is, the better the performance of the community-aware centrality measure. Finally, in the LT model, the evaluation measure is the total number of activated nodes normalized by the size of the network (i.e., the activation rate Ar).

Two main phenomena dominate as the community structure strength (µ) varies from strong (µ = 0.05) to weak (µ = 0.70). First, the stronger the community structure, the more pronounced the difference is in the performance of the community-aware centrality measures. As the community structure strength decreases (i.e., weakens), the performance of the community-aware centrality measures becomes more comparable, and differences are less visible. Community-aware centrality measures are well-adapted to networks with a well-defined community structure. With this structure, each measure can exploit various community information to identify influential hubs and bridges that contribute to the network's community structure. If the community structure is loosely defined, it becomes more difficult for the community-aware centrality measures to pinpoint these influential nodes. Indeed, in a weak community structure, hubs and bridges become less prominent, and the average degree of the nodes becomes more analogous.

The second phenomenon is related to the divergence in the scales' magnitude while the dynamical processes take place. In the SI model, with a strong community structure, the epidemic diffusion needs more iterations to reach 50% of the network. As communities share a few inter-community links in a network with a strong community structure, the infection tends to stay more localized in the communities. With a decrease in the community structure strength, the proportion of inter-community links increases. Therefore, the infection can spread more quickly to the remaining communities. Thus, fewer iterations are needed to infect half of the network. In the SIR and IC model, it is clear that when the network has a strong community structure, a set of community-aware centrality measures outperform degree centrality by a large difference. However, as the community structure strength weakens, the community-aware centrality measures become more comparable to the performance of the degree centrality. Inspecting the community-aware centrality measures in more detail, most of these measures are a variant of degree centrality exploiting the inter-community and intracommunity links in various ways. The smaller the difference between these two types of links -usually prevailing in a network with a loose community structure -the higher the resemblance of the community-aware centrality measures to degree centrality. Therefore, in a network with a weak community structure, the outperformance of the communityaware centrality measures is insignificant compared to degree centrality. The latter is advised for usage as it does not need community-level information. Nevertheless, with a strong community structure strength, community-aware centrality measures can extract information that the community-agnostic degree centrality cannot.

An important finding can be extracted independently of the community structure strength (µ). It concerns the similarities of the various dynamic models. By visually inspecting Fig 3 .1, one can note that generally, at any given f o , the top 2 outperforming centrality measures are comparable across the SI, SIR, and IC models, excluding the LT model. For instance, at f o = 0.05 and µ = 0.05, the top 2 outperforming centrality measures are Comm Centrality (α Comm ) and Participation Coefficient (α PC ) in the SI, SIR, and IC models. In contrast, Map Equation Centrality (α MapEq ) and Community-based Mediator (α CBM ) are the top 2 most performing in the LT model at f o = 0.05 and µ = 0.05. This behavior is logical as the SI, SIR, and IC are a variant of one another. The SIR is the SI with an additional "recovered" state. The IC sets thresholds on edges, and nodes have one chance to infect/activate their neighbors, while in the SIR model, a node has more than one chance. Even though differences exist, they are nominal. Indeed, their dynamics follow the simple contagion dynamics where nodes getting activated/infected are independent of their surroundings. This is not true for the LT model, where a node's activation depends on its neighborhood's aggregate activations. Subsequently, activations are harder to diffuse across the network, especially if the network has a strong community structure strength [START_REF] Morris | Contagion[END_REF][START_REF] Easley | Networks, crowds, and markets: Reasoning about a highly connected world[END_REF].

These results suggest that the community-aware centrality measures are more profitable in networks with a strong community structure strength. They also suggest that one should be prudent in using the measures even with a strong community structure strength, as the outperformance depends on the model. Some measures are well-suited to the SI, SIR, and IC models, while others are more suited to the LT dynamics.

INFLUENCE OF THE COMMUNITY SIZE DISTRIBUTION EXPONENT

The community size distribution exponent (θ) is responsible for the frequency and the size of the generated communities. We fix the community structure strength at µ = 0.05 and generate three networks with three different community size distribution exponents. The first, having θ = 2, indicates that large communities make up most of the network, with the existence of few small communities, resulting in a large variance in the community sizes. The second, having θ = 2.7, yields less variance in the community sizes with a larger number of communities. Finally, the third, having θ = 3, a high number of communities exist with equivalent sizes. Given the ranking of a community-aware centrality measure, a fraction f o of the top-ranked nodes in the network is initially infected/activated in each of the SI, SIR, IC, and LT models. The results are reported in Fig 3 .2.

In case the dynamics follow the SI, SIR, or IC, it can be noticed that the general trends of the community-aware centrality measures persist whether the network is generated with θ = 2, θ = 2.7, and θ = 3. The main difference is in the magnitude of the final output of each of the models. However, with the LT model, the behavior of the community-aware centrality measures changes with every θ under investigation.

Particularly, in the SI model, in the network with a larger variance in the community size distribution (i.e., at θ = 2), it takes less time to infect 50% of the network compared to networks with fewer communities of equivalent sizes. For instance, when θ = 2, at f o = 0.2, the average number of iterations for Comm Centrality (α Comm ), the best performing centrality, takes 20 iterations while with θ = 2.7, it takes 30 iterations and with θ = 3 it takes 32 iterations. The magnitude of the relative outbreak size (∆R) in the SIR model shows that the outperformance of Comm Centrality (α Comm ), Modularity Vitality targeting hubs (α + MV ), and Participation Coefficient (α PC ) is more pronounced in the networks with θ = 2.7 and θ = 3. For instance, let's take f o = 0.10, ∆R of Comm Centrality amounts to 8.5% in the network with θ = 2, while in the networks with θ = 2.7 and θ = 3, ∆R amounts to 15%. Under the IC dynamics, the highest magnitude of the relative activation size (∆A) is reached when θ = 2 (∆A = 13%). In contrast, when θ = 2.7 and θ = 3, the maximum ∆A reached amounts to 25% and 28.5%, respectively. Despite the similarities in the general trends of the community-aware centrality measures, one subtle difference needs to be noted concerning Participation Coefficient. In the three models, Participation Coefficient performs less when θ = 2. As stated earlier, θ = 2 indicates that the network is characterized by a few small communities and many large communities, which comprise most of the network. Participation Coefficient's effectiveness depends on the number of communities within the network. If there are many communities, it has more room to distinguish the difference in influence between nodes. On the other hand, having fewer communities makes it less effective as many nodes will have similar centrality, making it difficult to distinguish their influence characteristics.

In the LT model, the impact of adjusting θ is more pronounced on the performance of the top-performing community-aware centrality measures in terms of behavior rather than magnitude. The contrast becomes more noticeable when the budget range goes from low to medium. When the budget is high, in all of the studied θ, the strategy is to target hubs and bridges together using Modularity Vitality targeting hubs and bridges (|α MV |). We now discuss when the budget spans from low to medium. When the network has a significant variance in the community size distribution (θ = 2), hub-like nodes are preferred up to a small value for the budget availability, then bridge-like nodes are preferred. In contrast, with a smaller variance in the community size distribution (θ = 2.7 and θ = 3), hub-like nodes are always preferred. More specifically, when the value of θ is equal to 2, the hub-like nodes that produce the highest outbreak until f o reaches 0.05 are selected by Map Equation Centrality (α MapEq ) and Community-based Centrality (α CBC ). From f o = 0.06 to f o = 0.34, bridge-like nodes selected by Community-based Mediator (α CBM ) and then by Comm Centrality (α Comm ) are the nodes that generate the highest activation rate. If θ is equal to 2 or 2.7, the hub-like nodes preferred at the small budget are chosen by Map Equation Centrality (α MapEq ), and then Modularity Vitality targeting hubs (α + MV ) takes over for a broader range of budget availabilities.

To sum up, the results of the SI, SIR, and IC models suggest that changing the community size distribution exponent has a greater community-aware centrality measures' magnitude in the model's output rather than their behavior. In networks with a large variance in community sizes, the outbreak size in the SIR model and the activation size in the IC model are not as pronounced as in networks with a smaller variance, implying that the outbreak can more easily spread to many communities with equivalent sizes. However, many communities may remain unaffected if the infection starts in big communities and remains within them. In the SI model, when there is a large variance in community sizes, it takes less time to infect 50% of the network since it consists of only a few big communities. Suppose many nodes are in the same community, making up almost 50% of the network. In that case, it is easy to infect/activate that community because the nodes in the community are more likely to be directly or indirectly connected. In the LT model, the community size distribution has a greater effect on the behavior of community-aware centrality measures than their magnitude. When there is a large variance in community size distribution, bridge-like nodes play a crucial role in the medium budget range, as the selected bridges are likely to be located in large communities, resulting in a higher outbreak. Conversely, when there are many communities of similar sizes, it is more beneficial to target hub-like nodes since the influence of bridge nodes may stop at the border of a community with high density. These findings are supported by studies on contagion and networks [START_REF] Morris | Contagion[END_REF][START_REF] Easley | Networks, crowds, and markets: Reasoning about a highly connected world[END_REF].

INFLUENCE OF THE DEGREE DISTRIBUTION EXPONENT

The degree distribution exponent (γ) characterizes the number of links nodes have in a network. The LFR algorithm generates networks with a power-law degree distribution fitting the degree distribution of many real-world networks [START_REF] Barab | Emergence of scaling in random networks[END_REF][START_REF] Sergey | Evolution of networks[END_REF]. Many real-world networks are distinguished by γ falling between 2 and 3 [START_REF] Goh | Classification of scale-free networks[END_REF][START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF]. To investigate three representative cases, we fix the community structure strength at µ = 0.05 and generate three networks with γ = [2, 2.7, 3]. While preserving the community structure, the network portrays a hub-and-spoke structure when γ = 2 [START_REF] Tsiotas | Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness[END_REF]. On the other extreme, the nodes inside the communities have more comparable degrees, resembling a random-like network when γ = 3. At γ = 2.7, the network resembles a typical scale-free network. Given the ranking of a community-aware centrality measure, a fraction f o of the top-ranked nodes in the network is initially infected/activated in each of the SI, SIR, IC, and LT models. The results are reported in Fig 3 . Similar to the variation of the community size distribution exponent (θ), the general trend persists when varying the degree distribution exponent (γ) in the SI, SIR, and IC models where the difference is attributed to the magnitude of the models' output, while with the LT model, the behavior of the community-aware centrality measures is what changes rather than the magnitude.

To begin with the SI model, the time it takes to infect 50% of the network decreases as the initial fraction of infected nodes ( f o ) increases, as γ increases. Indeed, the network structure impacts the number of iterations it takes to infect 50% of the network. The random-like structure inside the communities, as found in γ = 3 networks, results in a faster spread compared to the hub-and-spoke-like structure, as found in γ = 2 networks and to a lesser extent when γ = 2.7. For example, when f o = 0.1, the best performing centrality in the SI model, Comm Centrality (α Comm ), takes an average of 39 iterations to infect 50% of the network in a γ = 2 network, 36 iterations in a γ = 2.7 network, and 31.5 iterations in a γ = 3 network. In the SIR and IC models, the output of all the measures performs more in the networks with θ = 2 and θ = 2.7 compared to γ = 3. Let's take f o = 0.10 following the SIR model, ∆R of Comm Centrality amounts to 17% in the network with γ = 2, to 16% in the network with γ = 2.7, and to 13% in the network with γ = 3. Under the IC dynamics, the maximum relative activation size (∆A) when it equals 2 is 26.5%, while at γ = 2.7 and γ = 3, the ∆A reached is 25% and 19.5%, respectively.

Although there are similarities in the overall patterns of the community-aware centrality measures in the SI, SIR, and LT models, the Participation Coefficient is influenced by changes in the degree distribution exponent, similar to the impact of changes in the community size distribution exponent. Specifically, the Participation Coefficient performs better when the network is created with γ = 2 and γ = 2.7. This suggests that the Participation Coefficient benefits from having differences in node degrees, which allows it to distinguish between nodes and identify the most influential ones.

The results of the LT model show that the main difference between different values of γ is observed when the budget availability is medium. When the budget is high (i.e., f o ≥ 0.40), targeting hub-like and bridge-like nodes using Modularity Vitality targeting hubs and bridges (|α MV |) is always the most effective strategy, regardless of γ. Similarly, when the budget is low (i.e., f o ≤ 0.05), it is always better to target hub-like nodes selected by Map Equation Centrality (α MapEq ). However, when the budget is medium, networks with γ = 2 and γ = 2.7 tend to benefit more from targeting hub-like nodes using Modularity Vitality targeting hubs (α + MV ). On the other hand, in networks with γ = 3, where the communities are more random, bridge-like nodes become more influential. Community-based Mediator (α CBM ) selects nodes that are well-connected between different communities in the network for a higher activation rate in this case.

In brief, results show that community-aware centrality measures exhibit consistent behavior across the SI, SIR, and IC models as the degree distribution exponent changes. However, the models' output based on these measures varies in magnitude. When the degrees of nodes in communities are similar, the SI model takes less time to infect more of the network. But in the SIR and IC models, community-aware centrality measures are comparable to degree centrality as they are evaluated using the relative outbreak and activation sizes. This is because the measures have less power to differentiate between hub-like and bridge-like nodes when node degrees are similar. In contrast, the LT model's community-aware centrality measures exhibited differences in behavior rather than magnitude, particularly at medium budget availabilities. Results indicate that targeting bridge-like nodes is better when node degrees are comparable in their communities. This is because similar degrees may imply similar influence, making differentiation difficult. Therefore, selecting bridge-like nodes has a better chance of igniting a more significant impact in the network.

3.4/ REAL-WORLD NETWORKS

In this section, we investigate the interplay between the diffusion dynamics of the models provided in Chapter 2 and the community-aware centrality measures on real-world networks. Unlike synthetic networks, the topological characteristics of real-world networks cannot be controlled. Indeed, real-world networks are characterized by diverse structures that affect the diffusion dynamics differently. Moreover, these networks pertain to various domains (i.e., infrastructural, social, acting, biological, and collaborative). Thus, nodes and edges have specific roles in maintaining the normal functioning of the network. Since the community structure of real-world networks is unknown a priori, we uncover their communities using the Infomap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] community detection algorithm. At a later stage, we investigate the consistency of the results using the Louvain [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF] community detection algorithm.

Similar to the methodology adopted with synthetic networks, a fraction f o of the top-ranked nodes in each network is initially infected/activated, given the ranking of a communityaware centrality measure in each of the SI, SIR, IC, and LT models. For brevity, the results of four real-world networks are reported in Fig 3 .4. These networks are representative cases of the dynamics seen across the networks under study. Indeed, the extensive analysis across the models shows two network categories in every diffusion model investigated. These two categories, illustrating a different behavior in terms of the spreading dynamics, can be divided based on the network's community structure strength.

The first category comprises networks with medium to weak community structure strengths, such as the networks Hamsterster (µ = 0.298) and Kegg Metabolic (µ = 0.466). In this category, a shared trend illustrates that up to a certain fraction of initially infected/activated nodes ( f o ), bridge-like nodes using Comm Centrality (α Comm ) outperform the remaining measures. After passing f o , which is network-dependent, hub-like nodes using Modularity Vitality targeting hubs (α + MV ) outperform other measures in terms of spreading capability in each of the SI, SIR, and IC models. In between, Community Hub-Bridge (α CHB ) provides good results in a medium range of f o only in the SIR and IC models. Results in the LT model diverge from the remaining models. With the LT dynamics, hub-like nodes using Map Equation Centrality (α MapEq ) outperform the remaining measures up to a certain f o . Then, it either persists in its outperformance with other measures or Comm Centrality (α Comm ), which has a preference for bridge-like nodes, outperforms the remaining measures (as seen with Hamsterster).

The second category comprises networks with a strong community structure strength, such as Ego Facebook (µ = 0.077) and Facebook Politician Pages (µ = 0.111 A divergence in scale occurs among the real-world networks. For instance, the performance of the community-aware centrality measures in networks with a weak community structure is more comparable with degree centrality than in networks with a strong community structure. However, the divergence in scale is less significant than in synthetic networks. Moreover, unlike synthetic networks, differences in the performance of the community-aware centrality measures exist in real-world networks under the SI, SIR, and IC dynamics. A high variance between the curves is seen regardless of whether the network has a strong or weak community structure strength. The study's results show that the SI, SIR, and IC models behave similarly to synthetic networks, but the dynamics differ in real-world networks based on the strength of their community structure. In networks with a weak community structure, bridge-like nodes lead to higher outbreaks/activations until hub-like nodes perform better. However, bridge-like nodes always perform better in networks with a strong community structure. Regarding the LT dynamics, hub-like nodes outperform other measures up to a certain f o , and after that, other measures with preferences for hub-like, bridge-like, or both types of nodes show better performance. Additionally, real-world networks have a more pronounced variance between the curves regardless of their community structure strength, showcasing their unique characteristics that diversely affect the network's dynamics. This contrasts with synthetic networks, where all parameters are controlled.

3.5/ DISCUSSION

In this section, we address questions related to why the results of the dynamic models seen with the real-world networks are obtained. We refer to the fraction of initially infected/activated nodes ( f o ) as "budget availability" thenceforth.

(1) Why is it more beneficial to target bridge-like nodes at low budget availability and hub-like nodes at high budget availability in the SI, SIR, and IC diffusion models when the network has a medium to weak community structure strength? As it was previously seen, in networks with a medium to weak community structure strength, Comm Centrality (α Comm ) generally results in the highest outbreak when the budget is limited.

To investigate why we take the Kegg Metabolic network, which has a weak community structure strength (µ = 0.466). Using this network, we compare in In contrast, with K-shell with Community (α ks ), a measure that generally underperforms in these models, the nodes chosen are close to each other and embedded in the core of the network. Thus, the spreading virus or piece of information will die out before it reaches the peripherical areas in the network. Now, why do hub-like nodes targeted using Modularity Vitality targeting hubs (α + MV ) at high budget availability yield the highest outbreak in the SI, SIR, and IC models? Referring back to Fig 3 .5, when f o = 40%, as we can see, the nodes are distributed even more than Comm Centrality (α Comm ) across all the regions in the network. Thus, it is normal to have a higher outbreak, as the virus/information would reach all the peripherical areas of the network and its core.

(2) Why is it more beneficial to target bridge-like nodes, regardless of the budget availability, in the SI, SIR, and IC diffusion models when the network has a strong community structure strength? We have seen that bridge-like nodes always perform well when the network has a strong community structure strength. The distinction lies in which community-aware centrality measure with a preference to bridge-like nodes yields the highest outbreak. The results show that Comm Centrality (α Comm ) generally performs best when the budget is limited. Conversely, when the budget availability is high, Modularity Vitality targeting bridges (α - MV ) overcomes all the measures (see networks Ego For comparison purposes, the top nodes visualized are based on Comm Centrality (α Comm ), Modularity Vitality targeting hubs (α + MV ), and Modularity Vitality targeting bridges (α - MV ). As we can see, in this network with a strong community structure, when the budget is low (i.e., f o = 1%) and medium (i.e., f o = 25%), the top nodes ranked by Comm Centrality (α Comm ) are widespread between and across many communities. This spread indicates that the virus/information has many venues to further expand into, permitting a higher outbreak. As the budget increases to 40%, Modularity Vitality targeting bridges (α - MV ) takes over. The nodes selected by it also spread across many regions in the networks, however, not to the extent of Comm Centrality (α Comm ), which reaches even the peripherical communities in the network. Indeed, Modularity Vitality targeting bridges (α - MV ) focuses on bridges between communities and has a preference to target more nodes inside big communities rather than the peripherical areas. Thus, targeting bridges connecting communities and simultaneously focusing on big communities for higher outbreaks is more effective since small and peripherical communities cannot be leveraged as much as big communities if the budget is high and the network has a strong community structure. Thus, under the SI, SIR, and IC dynamics, choosing nodes inside and between the big communities diffuses the information more widely internally and externally. In contrast, small peripherical communities are isolated and do not have many pathways for the virus/information to spread.

We also shed light on how Modularity Vitality targeting hubs (α + MV ) behaves. At f o = 0.40, Modularity Vitality targeting hubs (α + MV ) does not target the community colored in fuchsia, the biggest community in the network. It does not since a node removed from a big and well-connected community will not change the network's modularity significantly. In contrast, a hub removed from a smaller community may shatter that community. Consequently, when ranked according to Modularity Vitality targeting hubs, these nodes would receive a higher score (α + MV ). Thus, having big communities not targeted in a network with a strong community structure yields lower reachability of the virus/information. The behavior is the opposite in a network with a weak community structure. Since all the small communities surrounding a big community will be activated/infected, the infection/information has a higher probability of entering the big community as there are many pathways to enter it, causing an internal avalanche of infections/activations (see Kegg Metabolic in Fig 3 .5 at f o = 40%).

(3) Why is it more beneficial to target hub-like nodes at low budget availability in the LT model? Results reveal that the dynamics on the LT model contrast with that of the SI, SIR, and IC models. Indeed, bridge-like nodes are always preferred in the latter set of models when the budget is limited. However, with the LT model, under limited budget availability, hub-like nodes targeted by the Map Equation Centrality (α MapEq ) diffuse better the virus/information across the network. To understand why this phenomenon occurs, we visualize two structurally different networks, namely the Hamsterster and Facebook Politician Pages networks in Fig 3 .7. In these two networks, the Map Equation Centrality (α MapEq ) shows good performances up to a specific budget. Suppose that a piece of information is circulating around a given community. If this community is well-connected (i.e., if it has a high internal density compared to its external connections), the piece of information will never enter it [START_REF] Morris | Contagion[END_REF][START_REF] Easley | Networks, crowds, and markets: Reasoning about a highly connected world[END_REF]. This trend is even more pronounced when the nodes have a high threshold, even if the network has a weaker community structure.

The Map Equation Centrality (α MapEq ) overcomes this obstacle in the LT model by targeting nodes inside all the network communities and not around them. Because the Map Equation Centrality (α MapEq ) correlates with the node's intra-community links, the random walker has a higher chance of staying in nodes with a high internal degree. Thus, these nodes tend to be hub-like rather than bridge-like nodes, as seen in the two networks in Fig 3 .7. For demonstration purposes, the nodes targeted by Community Hub-Bridge (α CHB ) and Comm Centrality (α Comm ) are also shown. These two measures perform poorly on the LT model when the budget is limited. As we can see, Community Hub-Bridge (α CHB ) picks many nodes inside a few communities, missing many regions in the network. Concerning Comm Centrality (α Comm ), since the top nodes picked are more frequent between the communities rather than the inside as it has a preference for bridge-like nodes, this will not be enough at low budget availability for the piece of information to enter the tightly-knit communities [START_REF] Morris | Contagion[END_REF][START_REF] Easley | Networks, crowds, and markets: Reasoning about a highly connected world[END_REF]. Therefore, given a low budget availability, ensuring a piece of information starts by nodes embedded in their communities such that these communities spread across all the network regions is the best approach for effective diffusion. If bridge-like nodes are targeted at low budget availability, the information will not be capable of entering high-density communities. Note that this behavior contrasts with the behaviors seen with the SI, SIR, and IC models. Indeed, in the latter set of models and at low budget availability, bridge-like nodes play the most influential role in diffusion since, in these models, bridge-like nodes have a higher chance to enter many communities and cause an avalanche of activations/infections.

(4) Why is it more beneficial to target both hub-like and bridge-like nodes simulta-neously or bridge-like nodes only at high budget availability in the LT model? At high budget availability, results show that either hub-like and bridge-like nodes targeted simultaneously using Modularity Vitality targeting hubs and bridges (|α MV |) or bridge-like nodes only using Comm Centrality (α Comm ) yield the highest outbreak. These trends also contrast with the ones found in the SI, SIR, and IC models. At high budget availability, the networks with the latter set of models showed good performance with either hub-like nodes targeted with Modularity Vitality targeting hubs (α + MV ) or hub-like nodes targeted with Modularity Vitality targeting bridges (α - MV ), depending on the community structure strength. This leads us to investigate why the LT dynamics also diverge when the budget availability is high. We visualize Ego Facebook and Facebook Politician Pages to depict the two trends regarding the outperformance of Modularity Vitality targeting hubs and bridges (|α MV |) in the former network and bridge-like nodes only using Comm Centrality (α Comm ) in the latter network in Fig 3 .8. For comparison purposes, we also choose Community Hub-Bridge (α CHB ) to be represented.

Discussing first the Facebook Politician Pages network, we can see that both Modularity Vitality targeting hubs and bridges (|α MV |) and Comm Centrality (α Comm ) target nodes that all well-distributed, internally and externally, across all the communities in the network, unlike Community Hub-Bridge (α CHB ) which targets a limited number of communities. Since the communities in Facebook Politician Pages are not of equivalent sizes, Comm Centrality (α Comm ) yields a higher activation rate as the difference between Modularity Vitality targeting hubs and bridges (|α MV |) and Comm Centrality (α Comm ) is that the latter targets more nodes on the peripherical communities. In contrast, in the Ego Facebook network, since there is a smaller variance in the community size distribution, targeting hub-like and bridge-like nodes simultaneously using Modularity Vitality targeting hubs and bridges (|α MV |) assures that the diffusion will spread across the communities as small peripherical communities do not exist.

The question is, why do we observe such behavior in the LT model rather than the behavior seen with Modularity Vitality targeting hubs (α + MV ) and Modularity Vitality targeting bridges (α - MV ) in the SI, SIR, and IC dynamics. Targeting nodes inside the communities satisfies the dynamical conditions of the LT model for a higher activation rate [START_REF] Morris | Contagion[END_REF][START_REF] Easley | Networks, crowds, and markets: Reasoning about a highly connected world[END_REF]. However, with a higher budget availability, bridge-like nodes also play a role since many are targeted. Subsequently, at high budget availability in the LT dynamics, enough hublike and bridge-like will make the diffusion spread, rather than just targeting hub-like nodes or bridge-like nodes independently. Moreover, as we discussed previously, a major drawback for Modularity Vitality targeting hubs (α + MV ) is that it misses hub-like nodes in big communities since they are easily replaced by others and subsequently they do not receive a high centrality score. Hence, it falls back in the LT dynamics as all communities should be targeted internally before externally for higher activation rates. We visualize the Ego Facebook network in Results show that the dynamics of the LT model differ from that of the SI, SIR, and IC even when uncovering the communities with the Louvain algorithm. As the findings generally show, the differences in the outbreak can be seen when the budget is limited with the stated set of models. However, with the LT model, the differences are featured at high budget availability (see the last row of Fig 3 .10). These differences accentuate how the LT dynamics differ from the remaining models. Yet, results show that bridge-like nodes also play a lesser role when Louvain identifies the communities. This is clear when f o exceeds 0. 

3.6/ CONCLUSION

Modeling complex network dynamics is a major breakthrough in describing and understanding the real world. Researchers from various disciplines, such as sociology, epidemiology, and physics, have developed diffusion models deemed to be interdisciplinary in nature. These diffusion models differ mainly in their underlying conditions and states as the dynamic process begins in a given network. In the vast data era we live in, a myriad of unique topological characteristics characterizes networks. One of the prominent characteristics is the network's community structure. Indeed, the community structure affects any diffusive phenomena on the network.

That being said, finding the most important nodes that play a role in accelerating or inhibiting a diffusion phenomenon within and across these communities is of utmost importance. Community-aware centrality measures acknowledge the network's community structure and aim to identify key nodes accordingly. Some measures prioritize hub-like nodes, while others prioritize bridge-like nodes. Still, the aim at the end is to maximize the diffusion (or inhibit it) under any dynamic model in a network.

Numerous community-aware centrality measures and diffusion models have been proposed in the literature. This chapter investigates the interplay between the diffusion dynamics, the community-aware centrality measures, and the network's topological characteristics. More specifically, we analyze how the diffusive power of nodes selected based on various community-aware centrality measures changes with respect to the model and the network at hand. Four diffusion models have been simulated, starting with a set of initial nodes based on the community-aware measures under study on synthetic and real-world networks. The diffusion models studied are the Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), Independent Cascade (IC), and Linear Threshold (LT) models.

Results show that the strength of the community structure and budget availability significantly impact how diffusion spreads. In addition, the SI, SIR, and IC dynamics show a convergent behavior, while the LT dynamics diverge within a given community structure strength and budget availability. By controlling the community structure strength in synthetic networks, we observed that the community-aware centrality measures are more profitable in networks with a strong community structure strength. With real-world networks with a strong community structure under the SI, SIR, and IC dynamics, bridges are always preferred regardless of the budget. With the LT dynamics, hub-like nodes are preferred when the budget is limited or high. However, when the budget increases, hub-like and bridge-like nodes are preferred. In networks with a weak community structure, with the SI, SIR, and IC dynamics, bridge-like nodes are preferred, then distant hub-like nodes take over at high budget availability. However, with the LT dynamics, hub-like nodes are preferred at a low budget, while more interlinked nodes with hub-like nodes are preferred from medium to high budget availability. We also analyzed the impact of the community detection algorithm, and results showed that in the SI, SIR, and IC dynamics, the performance of the measures changes when the budget is limited. In contrast, with the LT dynamics, differences are seen when the budget availability is high. The differences between the diffusion models, mainly seen at a limited budget availability, is credited to the fact that the conditions in the SI, SIR, and IC models are well suited to select bridge-like nodes as it is easier for the virus/piece of information to circulate from one community to another compared to the LT model. Indeed, if the virus/piece of information is initiated in the well-connected communities under the LT dynamics, the community will never be part of the occurring diffusive phenomenon.

The extensive experiments shed light on how the diffusion dynamics, the position of the nodes initially activated, the network's community structure strength, and the budget availability are interconnected. Given the knowledge of one or the other, one can choose the suitable measure for running the most effective diffusion on the network.

A COMMUNITY-AWARE RANKING SCHEME

4.1/ INTRODUCTION

Many real-world systems, including transportation, social, technological, infrastructural, information, and biological systems, are complex. Influential nodes in these systems play a critical role in the structure and dynamics of the network [START_REF] Stephenson | Rethinking centrality: Methods and examples[END_REF]. Identifying the most influential nodes in these networks is a major issue. Indeed, it allows for conducting specific optimization tasks, such as controlling, minimizing, or maximizing a diffusion process. This issue is mainly related to centrality measures [START_REF] Linyuan L Ü | Vital nodes identification in complex networks[END_REF]. These measures extract diverse information from the network to quantify its importance. For instance, betweenness centrality allows identifying genes related to heart attacks [START_REF] Csermely | Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review[END_REF]. Other applications include hindering epidemic outbreaks [START_REF] Wang | Vaccination and epidemics in networked populations-an introduction[END_REF], augmenting the effectiveness of marketing campaigns on social media [START_REF] Klein | Social activity and structural centrality in online social networks[END_REF], enhancing the resiliency of infrastructural networks [START_REF] Wandelt | Robustness estimation of infrastructure networks: On the usage of degree centrality[END_REF], and many other [START_REF] Jalili | Evolution of centrality measurements for the detection of essential proteins in biological networks[END_REF][START_REF] Wang | Betweenness centrality based software defined routing: Observation from practical internet datasets[END_REF][START_REF] Das | Study on centrality measures in social networks: a survey[END_REF].

Centrality measures can be signed (positive or negative) or unsigned (positive and negative). In the first case, one ranks nodes in descending order, and a fraction of the top nodes are selected to conduct a specific optimization task. In the second case, one can have a multitude of ranking schemes. One can combine positive and negative ranks, take a fraction of both positions, or convert negative values to positive values and take the aggregate ranks. In either case, one can have two general ranking schemes, strong and weak. In the former, one selects the most critical nodes first. In the latter, one chooses the less important nodes [START_REF] Sun | Robustness analysis metrics for worldwide airport network: A comprehensive study[END_REF]. Although centrality measures provide an effective way to rank nodes, several challenges exist. The first challenge is that several centrality measures may underestimate the influence of specific nodes depending on the network's structure [START_REF] Kitsak | Identification of influential spreaders in complex networks[END_REF]. The second challenge is that many nodes with high centrality may be neighbors [START_REF] Bucur | Top influencers can be identified universally by combining classical centralities[END_REF]. Thus, targeting these nodes for diffusion or immunization is inefficient because one uses the resources locally, ignoring large parts of the network. The third challenge is which ranking schemes and/or combination criteria are ideal for a network with specific topological features.

To address these challenges, we propose a ranking method that considers the community structure. Communities are widely present in real-world networks, consisting of tightly connected and coherent sets of nodes with only a few links with nodes outside their group [START_REF] Mark | Finding and evaluating community structure in networks[END_REF]. The community structure of a network is known to impact its underlying dynamics [START_REF] Arenas | Synchronization reveals topological scales in complex networks[END_REF][START_REF] Cheng | Uncovering the community structure associated with the diffusion dynamics on networks[END_REF], and recent studies highlight the advantages of using this structure 55 to identify influential nodes [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF]. The proposed ranking strategy exploits this precious information. It is simple yet effective and applicable to all centrality measures. Given a centrality measure, the most straightforward ranking strategy targets the top nodes independently of the community structure, if any. Instead, we propose to rank the nodes based on their importance in their communities. First, we select the most central nodes in each community. We order these nodes in decreasing order of their community size.

Then we move to each community's next most central node and adopt the same ordering strategy. We iterate this process until we reach the given budget of nodes to rank. This approach naturally selects distant nodes in each community.

To evaluate the proposed ranking strategy, we report a series of experiments on synthetic and real-world networks using a set of six classical centrality measures using the SIR epidemic model [START_REF] Roy | Population biology of infectious diseases: Part i[END_REF]. We categorize these centrality measures into three groups, namely neighborhood-based (Degree and Maximum Neighborhood Component), pathbased (Betweenness and Closeness), and iterative refinement-based (Katz and PageRank). Experiments on synthetic networks investigate the impact of various network parameters on the proposed ranking strategy. Indeed, one can control the community structure strength, the community size distribution, and the degree distribution. Real-world networks include infrastructural, social, biological, citation, word, and collaboration networks with unknown community structures. Therefore, we uncover the communities using two community detection algorithms to assess the proposed strategy's consistency linked to community structure variations. Results show that the community-aware ranking strategy is more effective than the classical ranking by descending order of the centrality measure. The main advantages of the proposed method are threefold:

1. It applies to all types of centrality measures in all networks (undirected/directed and unweighted/weighted).

2.

It naturally selects distant nodes to expand any diffusion phenomena based on any given budget.

3.

Its complexity depends on the centrality measure computed.

4.2/ PROPOSED RANKING STRATEGY

Centrality measures attempt to measure the level of influence nodes have in a network. Nodes are typically ranked in decreasing order of influence, with those having the highest centrality considered to be strategically positioned within the network. As a result, targeting these nodes for optimization tasks will likely result in favorable outcomes. However, in real-world networks, these nodes may be close, which can harm the effectiveness of dissemination strategies. Consider an immunization scenario in an epidemic process.

Prioritizing the immunization of neighbors, even if influential, may prevent protecting vast areas of the network. To address this problem, we suggest a community-aware ranking scheme that considers the network's community structure to select distant influential nodes.

ALGORITHM

The proposed ranking strategy targets influential nodes spreading across communities in the network. It applies to any centrality measure. First, one computes the centrality of the nodes. Second, one targets top nodes community by community. Such a strategy prevents the concentration of influential nodes in the same network area. The targeted nodes are naturally more dispersed. for each i ∈ c l do 6: L.append(v)

D c l ← D[i]
13:

B ← B -1 Doing so makes it more likely that any diffusion process spreads more uniformly in the network than in the case where targeted nodes by a centrality measure in a descending order ranking scheme are close to each other. Note that we assume the communities are sorted from the biggest to the smallest, with ties decided at random. Also, note that the maximum budget is the size of the network. The pseudocode is provided in Algorithm 1.

TOY EXAMPLE Figure 4.1 illustrates the proposed ranking method on a toy example. The network contains 22 nodes and three communities in this example. Suppose the maximum budget is three nodes out of the whole network. We consider Degree and Betweenness centrality as measures of influence. Tables 3 and4 in Appendix I report the centrality values and the corresponding ranks using the descending order and the proposed approach. Based on the descending order ranking scheme of the Degree centrality, presented on top of One of the main drawbacks of the classical descending order ranking scheme is ignoring the network's community structure. From the diffusion perspective, if targeted nodes diffusing a piece of information or a virus are very close, the diffusion dies out before spreading across the other communities. On the contrary, the proposed ranking approach naturally selects the most influential nodes in their community. Indeed, the proposed ranking scheme favors nodes from all the dense parts of the network rather than specific communities.

4.3/ SYNTHETIC NETWORKS

We investigate synthetic networks using the LFR benchmark [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF].

INFLUENCE OF THE COMMUNITY STRUCTURE STRENGTH

This experiment aims to investigate the influence of the community structure strength on the performance of the ranking strategies (the descending order ranking scheme and the proposed community-aware ranking scheme). The mixing parameter (µ) is tuned to cover a wide range of community structure strengths. It spans from very strong to very weak (µ = 0.05, 0.10, 0.20, 0.40, 0.70). Remember that a low value means few links between communities, indicating a strong community structure. In contrast, high value corresponds to networks with many links between communities, indicating a weak community structure. For the sake of brevity, we only show the outcomes of the most significant situations. The remaining parameters, including the community size (θ) and degree distribution (γ) exponents, are fixed at 2.7. The outbreak size (∆R), represented by the red curve, is the difference between the number of nodes recovered after an initial set of nodes ranked based on the community-aware ranking scheme is infected and another initial set of nodes infected ranked based on the classical descending order ranking scheme. Thus, it represents a measure of performance of the community-aware ranking scheme. Positive values indicate that the proposed ranking scheme performs better (see Appendix I for details about calculating ∆R).

In networks with a strong community structure (µ = 0.05), the community-aware ranking scheme consistently outperforms the classical descending order ranking scheme for all the centrality measures under study. The gain reaches 24% for Katz centrality at a fraction of initially infected nodes ( f o ) of 0.20, followed by 22% for Degree, MNC, and Closeness centrality. The performance of these measures is consistent from a fraction of initially infected nodes of 0.10 till 0.25, then they decline. Closeness centrality slightly declines, showing a ∆R of 14% at f o = 0.50, followed by Katz centrality with 8%, then Degree and MNC obtaining a ∆R of 6%. Betweenness and PageRank are the less performing measures under the community-aware ranking scheme. The maximum gain for Betweenness is 12.5% at f o = 0.12, and for PageRank is 16.5% at f o = 0.9. After a peak, performance declines, reaching a gain of 2% at f o = 0.50.

In networks with a medium community structure (µ = 0.40), the community-aware ranking scheme of all the centrality measures still performs better than the classical descending order ranking scheme. When the fraction of initially infected nodes f o is low (i.e., between 0.01 and 0.05), the gain for all the centrality measures is low, reaching a maximum of 1%.

As the fraction of initially infected nodes increases, the performance of the communityaware ranking scheme also increases until it reaches a plateau or barely changes. For example, the relative difference in the outbreak size of Degree centrality increases from f o equaling 0.10 to 0.25, going till ∆R = 6.5%, and then it hardly changes. MNC, Betweenness, Closeness, Katz, and PageRank show similar behavior with ∆R reaching a maximum between 5% and 10%.

In networks with a weak community structure (µ = 0.70), when the fraction of initially infected nodes is between 0.01 and 0.10, the relative difference in the outbreak size (∆R) alternates between -1% and +1%. After that, it increases to a maximum of ∆R = 3% and shows a plateau. One can expect these results. Indeed, the frontier between weak community structure and no community structure is thin.

We fix the fraction of initially infected nodes at 0.15 for all the centrality measures in Fig 4 .2 and plot the relative difference in the outbreak size (∆R) as a function of the mixing parameter (µ) as shown in Fig 4 .3B. As the community structure gets weaker (i.e., from µ = 0.05 to µ = 0.7), the performance of the community-aware ranking scheme starts declining. Moreover, one can differentiate between the centrality measures' effectiveness. Closeness is the best-performing centrality measure, followed by Katz, Degree, and MNC. In contrast, Betweenness and PageRank perform poorly. However, all the measurements show a higher relative difference in the epidemic outbreak size than the classical descending order ranking scheme.

These results show that the community-aware ranking scheme is more effective in networks with a strong community structure. Indeed, in a strong community structure, communities are so well-separated that one can consider them independent subnetworks with their topological characteristics. In turn, targeting the most influential nodes in each community leads to a higher spreading, ensuring that the diffusion reaches all communities.

As the community structure gets weaker, the performance of the community-aware ranking scheme decreases. Since the community structure is not well defined, the network is barely distinguishable from the one without a community structure. However, even in the worst-case scenario, the community-aware ranking scheme still is more effective than the classical descending order ranking scheme.

INFLUENCE OF THE COMMUNITY SIZE DISTRIBUTION

This investigation aims to analyze the impact of the community size distribution on the community-aware ranking scheme. One can tune the power-law community size distribution exponent (θ) in the networks generated by the LFR. In this study, we evaluate two values representing extreme cases. In the first case with θ = 2, few small communities coexist with large communities with a large variance in community sizes. In the second case, with θ = 3, more communities of equivalent sizes coexist, and the variance in the community sizes is minor. There are more communities in the second case than in the first case. Table 5 in Appendix I reports the number of communities of each generated network, along with the minimum and maximum size of the communities. Note that we also perform tests with θ = 2.7. However, no significant differences were compared to θ = 3. C). The fraction of initially infected nodes ( f o ) is fixed at 15%. When networks have a large difference in the sizes of the communities leading to fewer communities (θ = 2), the gain in ∆R of the community-aware ranking scheme ranges from 11% as a maximum at µ = 0.05. It decreases, reaching 0% when µ = 0.70. On the contrary, when the networks have many small communities with fewer larger ones leading to many communities, ∆R for Degree, MNC, Closeness, and Katz reach a gain of 23% and a gain of 13% and 12.7% for Betweenness and PageRank, respectively. As the community structure gets weaker, ∆R decreases to a minimum of 1% for PageRank centrality and a maximum of 2.3% for Closeness centrality.

Results indicate that when the network contains a few large communities, the communityaware ranking scheme is not as effective as in networks with many communities of smaller sizes. It is reasonable since when huge communities coexist with a few small communities, the large communities will make up most of the network. When one picks the top influential nodes from each community in the first iteration, the nodes picked in the second iteration inside the large communities will likely be next to each other. Indeed, when there are substantial communities, there are few communities overall. Thus, infecting the most influential nodes in the same neighborhood is less effective than covering many communities of comparable sizes with the community-aware ranking scheme.

INFLUENCE OF THE DEGREE DISTRIBUTION

In this experiment, we investigate the effect of the degree distribution on the performance of the community-aware ranking scheme. The degree distribution exponent (γ) is tunable in the LFR model. Studies have shown that real-world networks are scale-free, with a degree distribution exponent in the range of 2 and 3 [START_REF] Boccaletti | Complex networks: Structure and dynamics[END_REF][START_REF] Ászl Ó Barab Ási | Statistical mechanics of complex networks[END_REF]. Consequently, we test these two values. We also set γ = 2.7, but there are no significant differences compared to γ = 3. When γ equals 2, the network's structure resembles a hub-andspoke network [START_REF] Tsiotas | Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness[END_REF]. When γ equals 3, the network's structure is more similar to a random network where more nodes would have a comparable frequency of neighbors.

Since the LFR model also generates networks with a community structure, the nodes inside the communities have equivalent sizes while ensuring the community structure is maintained [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF]. When γ = 3, the degree distribution of the communities of the generated networks is more random than average. One can observe that both Degree centrality and Katz centrality perform similarly according to the relative difference of the outbreak size (∆R). Compared to the descending order ranking scheme, the gain of the community-aware ranking scheme reaches 19% and barely changes till f o = 0.25. Then it gradually decreases, reaching ∆R = 5% at f o = 0.50. However, one can consider two categories. The first, including Degree, MNC, Closeness, and Katz, exhibit gains ranging from 21% and 23.5%. The second involving Betweenness and PageRank, obtains a gain of around 13%. As we shift to a more random-like structure (γ = 3) in Fig 4 .6C, categorizing the centrality measures observed at γ = 2 remains the same. However, for the first category, the gain decreases between 17% and 18%. The second category exhibits a gain of around 11%. As the community structure weakens, the difference in the outbreak size becomes less pronounced. Nevertheless, the community-aware ranking scheme always performs better than the descending order ranking scheme.

Even though the differences are not as pronounced compared to the variation in the community size distribution, results show that when the communities of the generated networks are more random-like, the performance of the community-aware ranking scheme slightly decreases. Since more nodes have a comparable number of connections internally in a random-like structure, they may have similar centrality values. In turn, the community-aware ranking scheme may be prone to selecting nodes of the same influence inside their communities, saturating the diffusion spread. On the contrary, in a network with well-separated communities such as the hub-and-spoke structure, a communityaware ranking scheme can distinctively pick influential nodes in their communities that are naturally not close to each other due to the hub-and-spoke structure. It results in a higher diffusion to more isolated areas that the descending order ranking scheme cannot reach.

4.4/ REAL-WORLD NETWORKS

We also investigate the community-aware ranking scheme on 33 real-world networks covering various domains (i.e., infrastructural, biological, social, collaboration, and ecological). Since their community structure is unknown, we uncover it using two community detection algorithms: Infomap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF], and Louvain [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF]. It allows us to check the impact of the community structure variations on the consistency of the community-aware ranking scheme.

SPREADING POWER OF THE PROPOSED METHOD

Since the community structure strength is a significant feature influencing the performance of the proposed community-aware ranking strategy, we classify the networks into three categories. The categories cover networks with strong (µ ≤ 0.20), medium (0.20 < µ < 0.40), and weak (µ ≥ 0.40) community structures. We consider communities uncovered by Infomap as our reference case. For brevity, we report one network of each category for all the centrality measures under study in Fig 4 .7.

The community-aware ranking scheme outperforms the classical descending order ranking scheme in networks with a strong community structure (µ ≤ 0.20). The distinction lies in the gain in the relative difference of the outbreak size (∆R). As depicted by the U.S. Airports network (with µ = 0.08) in The community-aware ranking scheme still outperforms the classical descending order ranking scheme in networks with a medium community structure (0.20 < µ < 0.40). However, the gain is less pronounced compared to networks with a strong community structure. It is depicted by the Facebook Organizations network in Fig 4 .7. One can see that Closeness and Katz centrality measures achieve the highest gain in ∆R amounting to 6% and 7% from a fraction of initially infected nodes amounting to 0.15 to 0.45. The maximum gain for Degree and MNC is 4% and 4.5%, respectively. Then, Betweenness and PageRank show a gain of ∆R = 2.5% and ∆R = 3.5, respectively. One can also note that within this category, we observe three behaviors for the performance of the community-aware ranking scheme. These behaviors are similar to those in networks with a strong community structure but at a smaller magnitude. We have an increasing ∆R as f o increases, depicted by the Human Protein network on the left of The community-aware ranking scheme outperforms the classical descending order ranking scheme in networks with a weak community structure (µ ≥ 0.40). However, in some networks, the gain in ∆R can even be higher than in networks with a strong or medium community structure. Indeed, the maximum improvement in ∆R can reach up to 15% in the AstroPh network (see Fig In summary, the community-aware ranking scheme outperforms the descending order ranking scheme in all real-world networks under study. The gain of the proposed ranking scheme is affected by the community structure strength, as observed in artificial networks with controlled community structure strength. The stronger the community structure, the higher the performance of the community-aware ranking scheme. Nevertheless, it is worth noting that the community-aware ranking also shows high performance in some real-world networks with a weak community structure.

The community-aware ranking scheme has a high performance in networks with strong community structure strength because it does not select nodes in one dense region when there are many well-separated dense areas. We visualize two networks with strong community structure strength but different topological structures, namely Yeast Collins and EU Airlines in Fig 4 .9A and Fig 4 .9B, respectively. In these two networks, we pick and increase the size of the top 15% of nodes selected by the descending order ranking scheme and the community-aware ranking scheme. For brevity, we only show Degree centrality and Closeness centrality. Concerning the Yeast Collins network, for both Degree and Closeness centrality, one can directly point out how the descending order scheme selects most of the top nodes in large network communities mainly located at the bottom of the network. On the contrary, the community-aware ranking scheme selects nodes in every community, spreading across all the network regions. A similar interpretation goes for the EU Airlines network, another network with a strong community structure. Indeed, the descending order ranking scheme of Degree and Closeness centrality measures targets only the dark pink and green communities. In contrast, the community-aware ranking scheme does not miss a single community. It is the reason why the community-aware ranking strategy allows a higher diffusion.

We also investigate the case of networks with a weak community structure where the proposed community-aware ranking scheme performs well. Fig 4 .9C visualizes the As-troPh network, a network with a weak community structure and high performance of the community-aware ranking scheme. Despite having loosely defined communities with a vast number of inter-community connections, the community-aware ranking scheme targets nodes at the core and in the periphery of the AstroPh network, either with Degree or Closeness centrality measures. While with the descending order ranking scheme, using Degree or Closeness centrality measures, nodes picked are mainly in the network's core. Consequently, the community-aware ranking scheme can ignite a higher diffusion as it reaches regions the descending order ranking scheme never targets.

It is worth mentioning that networks characterized by a weak community structure may exhibit different topologies [START_REF] Liu | Detecting communities based on network topology[END_REF][START_REF] Abbe | Community detection and stochastic block models: recent developments[END_REF]. If it is core-periphery-like, such as in the AstroPh network, the community-aware ranking scheme covers all the regions in the network. If the network is very dense with no particular local structure, the community-aware ranking scheme might select nodes in the vicinity of each other. We suggest using a measure that combines the local and global influence of the nodes for better targeting influential nodes [START_REF] Bucur | Top influencers can be identified universally by combining classical centralities[END_REF][START_REF] Bartolucci | Emerging locality of network influence[END_REF]. Note that the distance between the nodes should also be addressed.

Alternatively, one can also incorporate a minimum distance constraint between nodes in a community so that targeted nodes are scattered. There is room for improvement in networks with a weak community structure.

INFLUENCE OF THE COMMUNITY DETECTION ALGORITHM

In this experiment, we use the Infomap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] community detection algorithm to extract the communities in real-world networks. Then, we perform the same comparative evaluation process using SIR simulations between the classical and the proposed ranking strategies based on the communities identified by Louvain [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF]. The aim is to investigate the impact of the variations in the community structure induced by the community detection algorithms on the performance of the ranking schemes.

Fig 4 .10 illustrates the relative difference in the outbreak size (∆R) of the communityaware ranking scheme for Degree and Closeness centrality measures. We comment on the results for three typical networks (Facebook Friends, Human Protein, and Bible Nouns). Facebook Friends and Human Protein belong respectively to the strong and medium community structure categories using Infomap or Louvain. Bible Nouns network is in the medium community structure category based on Louvain and the weak community structure using Infomap.

First, these results demonstrate that the community-aware ranking scheme is robust to the community structure variation induced by the community detection algorithm. Indeed, ∆R is positive whether Infomap or Louvain uncovers communities. This result is independent of the community structure strength. For example, Facebook Friends is a network with a strong community structure. For a fraction of initially infected nodes equal to 0.25, the gain of ∆R equals 15% for Degree centrality and 11% for Closeness centrality. It compares to an 8% increase for Degree centrality and 7% for Closeness centrality using Louvain with the same fraction of initially infected nodes. Consider the Human Protein network with a medium community structure strength. With a fraction of initially infected nodes equal to 0.25, the ∆R gain is 6% for Degree and Closeness centrality measures. In the same situation, using Louvain, the growth is lower. Indeed, ∆R equals 2% for Degree centrality and 3% for Closeness centrality. Finally, the community-aware ranking scheme still outperforms the classical descending order ranking scheme in the Bible Nouns net- work. For a fraction of initially infected nodes of 0.25, ∆R equals 6% for Degree centrality and 5.5% for Closeness centrality. Using Louvain with the same fraction of initially infected nodes reduces the ∆R gain to 2.5% for Degree centrality and 2% for Closeness centrality.

Second, one can note that with Infomap, the gain in ∆R is relatively higher than Louvain. For instance, in Facebook Friends with communities identified using Infomap, the maximum ∆R reaches 17.5% at a fraction of initially infected nodes of 0.44 using Degree centrality and 13% using Closeness at a fraction of initially infected nodes of 0.31.

In contrast, with the Louvain community detection algorithm, the maximum ∆R reaches 12.5% at a fraction of initially infected nodes of 0.39 using Degree centrality and 10% using Closeness at a fraction of initially infected nodes of 0.08. Thus, the difference in gain of ∆R is +5% for Degree centrality and +3% for Closeness centrality using Infomap. One observes similar results for Human Protein and Bible Nouns. The maximum gain in ∆R in Human Protein amounts to 6% using both Degree and Closeness centrality measures. Meanwhile, Louvain's maximum gain in ∆R amounts to 3% for the two centrality measures. In Bible Nouns, with Infomap, the maximum improvement in ∆R amounts to 8.5% using both Degree and Closeness centrality measures. In opposition, using Louvain, the maximum gain in ∆R is 4.8% for Degree centrality and 3.8% for Closeness centrality.

To investigate why the performance of the community-aware ranking scheme decreases with Louvain compared to Infomap, we examine the community size distributions of the networks. 11. Indeed, they represent typical cases. Simultaneously, we compute the number of communities uncovered by each community detection algorithm and the minimum and maximum size of the communities for all the networks. Tables 5 and6 in Appendix I report the results using Infomap and Louvain, respectively.

The histograms of the community size distributions in Fig 4 .11 show that they are generally more skewed to the right using Infomap. A high number of small communities coexists with very few large communities. In contrast, this distribution is more uniform for the Louvain community structure. We observe many communities with medium and large sizes. Moreover, Infomap uncovers a higher number of communities. For example, it reveals 21 communities in Facebook Friends, 99 in Human Protein, and 88 in Bible Nouns. It compares with 10 communities in Facebook Friends, 14 in Human Protein, and 17 in Bible Nouns identified by Louvain.

The question is, how do these two outcomes affect the performance of the proposed community-aware ranking scheme compared to the classical descending order ranking scheme. On the one hand, Louvain generally uncovers fewer communities, with many medium-sized and large communities making up most of the network. On the other hand, Infomap discovers many more communities with a high number of small communities coexisting with fewer larger ones. The proposed community-aware ranking strategy is more effective with Infomap. Naturally, with more communities, it selects at least one node in every community. The higher the number of communities, the higher its ability to choose distinct nodes. It is not necessarily true with fewer communities. Indeed, first, one selects a node in each community. Then, in the next iteration, nodes are targeted in the same communities. Thus, nodes inside the same communities may be closer to each other than when there are many communities. Thus, the diffusion power weakens. Indeed, it does not reach distant regions in the network, and the diffusion stays confined in large communities. Note that these results complement those reported using the generated LFR networks with controlled community size distribution exponent regarding the number of communities. Indeed, when fewer communities exist, the community-aware ranking scheme is more susceptible to picking the next top node close to the former top-picked node inside these communities. Consequently, infecting the most influential nodes in fewer communities is less efficient than having many communities spanning the whole network.

4.5/ CONCLUSION

This chapter presents a community-aware ranking scheme that one can use with any centrality measure. The proposed method is simple yet effective at selecting nodes according to their relative influence in a modular network. Unlike the popular descending order ranking scheme, which ranks the most influential nodes from high to low centrality values, it ranks nodes in a sequential order linked to the community size. Consequently, it selects nodes across all regions of the networks. In contrast with the descending order ranking scheme that can select nodes in a few communities that ignore large parts of the network, this strategy targets nodes more uniformly distributed. As a result, the proposed strategy warrants that the diffusion process does not die out locally and reaches distant regions of the network.

Extensive experiments have been conducted on synthetic and real-world networks using the SIR epidemic spreading model. To better understand the interplay between the community structure and the performance of the proposed strategy, we performed a series of experiments in synthetic networks controlling the community structure strength, the exponents of the community size, and degree distributions. Results show that the community-aware ranking scheme is more effective in networks with strong community structure strength. As it weakens, the performance decreases gradually. Nevertheless, the community-aware ranking scheme always performs better than the descending order ranking scheme, even in networks with a weak community structure. The community size distribution also affects the performance of the community-aware ranking scheme. Results show the strategy performs better in networks of many small communities instead of a few large communities. Indeed, the higher the number of communities, the more likely the targeted nodes are scattered across the network regions, igniting a higher epidemic outbreak. The influence of the degree distribution exponent is less pronounced. However, one can notice that the community-aware ranking scheme performs better in hub-and-spoke-like networks than in random-like ones.

The community-aware ranking scheme also outperforms the classical ranking strategy in a set of real-world networks of various domains. The findings are consistent with the synthetic networks' experiments. Indeed, the community-aware ranking scheme performs better in networks with a strong community structure strength. The gain gradually decreases with the community structure strength. Note that in some networks with a weak community structure strength, the community-aware ranking scheme still creates a higher outbreak than its alternative. Indeed, the community-aware ranking scheme ranks the top nodes inside each community. Even in networks with a weak community structure, it can rank nodes in faraway regions, causing a higher outbreak. We also investigate the influence of the community detection algorithm on the performance of the communityaware ranking scheme. The comparisons involve Infomap and Louvain. Since the community structure uncovered by Louvain results in fewer communities and subsequently larger ones compared to Infomap, the community-aware ranking scheme performs better with the Infomap community structure. This result is coherent with synthetic networks' community size distribution variation. Whatever the community detection algorithm, the community-aware ranking scheme consistently outperforms the descending order ranking strategy.

The main lesson from this study is to highlight the necessity of incorporating the community structure information in centrality measurements to better rank influential nodes. This work departs from previous community-aware solutions combining a node's local and global influence. Here, we show that whatever the notion of influence, the ranking strategy is a critical factor in the diffusion process. Whatever the centrality measure, the proposed ranking scheme is decisive in targeting the most influential nodes scattered across the network. This strategy overcomes a frequent drawback in centrality measures using the popular descending order ranking scheme in which the most influential nodes happen to be in the vicinity of each other. The proposed ranking scheme is adequate for igniting higher diffusion for marketing and awareness campaigns or combating diseases and unwanted viruses since it pinpoints influential nodes while ensuring that all regions in the network are covered. 

THE OVERLAPPING MODULARITY VITALITY FRAMEWORK

5.1/ INTRODUCTION

Real-world networks often exhibit a community structure [START_REF] Fortunato | Community detection in networks: A user guide[END_REF]. The recent trend of research on centrality measures exploits network community structure to design the socalled "community-aware" centrality measures [START_REF] Guimera | Functional cartography of complex metabolic networks[END_REF][START_REF] Zhao | A community-based approach to identifying influential spreaders[END_REF][START_REF] Gupta | Centrality measures for networks with community structure[END_REF][START_REF] Luo | Identifying influential spreaders of epidemics on community networks[END_REF][START_REF] Muluneh Mekonnen Tulu | Identifying influential nodes based on community structure to speed up the dissemination of information in complex network[END_REF][START_REF] Ghalmane | Immunization of networks with non-overlapping community structure[END_REF][START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF][START_REF] Bl Öcker | Map equation centrality: community-aware centrality based on the map equation[END_REF]. These measures assume that a node belongs to one and only one community. While in many situations, nodes may belong to several communities, indicating an overlapping community structure [START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF]. We, as humans, belong to several communities merging our personal and professional lives.

A protein may belong to different protein complexes. Researchers have shown that the overlap is a significant feature in many real-world networks [START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF][START_REF] Kelley | Defining and discovering communities in social networks[END_REF][START_REF] Reid | Partitioning breaks communities[END_REF].

While there are plenty of works to detect overlapping communities [START_REF] Psorakis | Overlapping community detection using bayesian non-negative matrix factorization[END_REF][START_REF] Xie | Overlapping community detection in networks: The state-of-the-art and comparative study[END_REF][START_REF] Yang | Overlapping community detection at scale: a nonnegative matrix factorization approach[END_REF][START_REF] Da | A comparative study of overlapping community detection methods from the perspective of the structural properties[END_REF][START_REF] Gupta | An overlapping community detection algorithm based on rough clustering of links[END_REF][START_REF] Kumar | Overlapping community detection using multiobjective genetic algorithm[END_REF][START_REF] Doluca | Apal: Adjacency propagation algorithm for overlapping community detection in biological networks[END_REF], few scientists make use of the overlapping community structure to identify critical nodes [START_REF] Laurent H Ébert-Dufresne | Global efficiency of local immunization on complex networks[END_REF][START_REF] Kumar | An efficient immunization strategy using overlapping nodes and its neighborhoods[END_REF][START_REF] Taghavian | A local immunization strategy for networks with overlapping community structure[END_REF][START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF]. This chapter aims to develop a flexible framework to identify influential nodes in networks with an overlapping community structure. It allows exploiting the structure of overlapping communities pervasive in many real-world networks through various definitions of overlapping modularity. The proposed approach can be modified to suit various situations and data availability by including various types of overlap information. This allows researchers and practitioners to tailor the framework to various situations depending on the available information.

The proposed framework is inspired by the concept of vitality [START_REF] Kosch Ützki | Centrality indices[END_REF]. Given a quality function computed on the graph, the vitality of a node expresses the quality function variation when one removes it from the network. Depending on the node's role in the given 75 quality function, it is either negative or positive. Originally, vitality was used with classical centrality measures. Recently, [START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] introduced "Modularity Vitality." It uses Newman's non-overlapping modularity as a quality measure to quantify the centrality of nodes.

When it comes to community structure, numerous quality metrics have been proposed in the literature [START_REF] Yang | Defining and evaluating network communities based on ground-truth[END_REF][START_REF] Jebabli | Community detection algorithm evaluation with ground-truth data[END_REF]. Since overlapping communities are a significant characteristic of real-world networks, we opt for overlapping information to compute the vitalities of nodes.

We also rely on modularity as it is the most influential quality measure. The proposed measure, called Overlapping Modularity Vitality, is based on a generalized modularity equation that accounts for the overlapping community structure in a network. One can distinguish fuzzy and crisp overlapping modularity measures [START_REF] Tam Ás Nepusz | Fuzzy communities and the concept of bridgeness in complex networks[END_REF][START_REF] Chen | Fuzzy overlapping community quality metrics[END_REF][START_REF] Gregory | Fuzzy overlapping communities in networks[END_REF]. The proposed framework differs from its non-overlapping counterpart in its flexibility. We do not focus on a unique definition of overlapping modularity. We propose a general framework that allows including different types of overlapping structural information of the network. Indeed, one cannot extract the same information from all networks. Accordingly, depending on availability, the proposed framework can work with fuzzy and crisp information.

In the following sections, we introduce the Overlapping Modularity Vitality framework in which one can integrate multiple definitions of overlapping modularity via different formulations of the community membership strength of the nodes. We then investigate three overlapping modularity alternative definitions that incorporate contextual information about the nodes in real-world networks. The proposed framework under the three definitions is compared to its non-overlapping version and state-of-the-art overlapping centrality measures under an SIR spreading scenario. We also evaluate the influence of the community structure variation induced by the community detection algorithm on the frameworks' performance.

The chapter's main findings summarize as follows:

1. With limited resources, Overlapping Modularity Vitality with reciprocity membership targeting hubs first results in the best performance alongside OverlapNeighborhood, which targets random neighbors of overlapping nodes.

2.

When resources are available, Overlapping Modularity Vitality with node similarity and degree membership to quantify a node's community membership strengths perform better when the ranking scheme is based on targeting bridges first.

3.

Results demonstrate the superiority of Overlapping Modularity Vitality over its alternatives. Furthermore, one can tailor the measure to the budget using an appropriate definition of the community membership strengths and ranking strategies.

5.2/ STATE OF THE ART

This section presents the main centrality measures considering the overlapping nature of communities. In [START_REF] Laurent H Ébert-Dufresne | Global efficiency of local immunization on complex networks[END_REF], L. H ébert-Dufresne et al. proposed an overlapping measure called "Membership." It orders nodes for immunization based on their number of shared communities. It is a local measure since it doesn't require complete network knowledge. Hence, it is suitable for large-scale networks, and it is not too sensitive to incorrect or incomplete data. Overlapping nodes with a high membership facilitate the epidemic spreading between communities. The measure has been evaluated using the SIS and SIR epidemic models with a set of real-world networks (social, technological, and communication networks). Results show that when the disease is highly infectious, and the communities are dense, Membership outperforms coreness, degree, and betweenness centrality.

Kumar et al. [START_REF] Kumar | An efficient immunization strategy using overlapping nodes and its neighborhoods[END_REF] proposed the OverlapNeighborhood strategy. It randomly selects neighbors of overlapping nodes as the most crucial for immunization. It is a random local method that requires only information about the overlapping nodes. Experiments show that it performs as good as betweenness centrality while requiring less information about the network. Note that OverlapNeighorhood does not use a ranking strategy as nodes are selected randomly.

Random Walk Overlap Selection (RWOS) proposed by F. Taghavian et al. [START_REF] Taghavian | A local immunization strategy for networks with overlapping community structure[END_REF] aims to detect high-degree overlapping nodes based on a random walk. A random walk starts from a node randomly selected. A list of known or extracted overlapping nodes is checked with every step the random walker takes. The node is immunized if the visited node is in the list of overlapping nodes. Else, the random walk continues its search. The process stops when one reaches the desired fraction of nodes to immunize. This method is local because, at each step, one searches only in the neighborhood of the currently visited node. Ultimately, it targets high-degree nodes as the random walk is more likely to reach such nodes. Simulation results using the SIR epidemic model on synthetic and real-world networks show that this measure performs better in networks with strong community structure, when community membership of nodes is high, and when community sizes are small.

In [START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF], Ghalmane et al. developed Overlapping Modular Centrality, a measure that quantifies the local and global centrality of the nodes using a two-dimensional vector. After choosing a classical centrality measure, the local influence depends on whether a node is an overlapping node. One computes the local centrality of overlapping nodes considering all their communities as a single community, whereas locality applies to a single community for non-overlapping nodes. The global influence is based on the global network, constructed by the inter-community links of the node.

In recent work, Magelinski et al. [START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] proposed a non-overlapping community-aware centrality measure called Modularity Vitality. Leveraging the concept of vitality, it can target hubs and bridges based on their contribution to Newman's modularity. Removing bridge nodes increases modularity because communities become less connected. In contrast, eliminating hubs decreases modularity because communities are less dense. Therefore, the modularity variation when removing a node indicates the type and the strength of its impact on the network's cohesiveness.

All these methods present some limitations. The measures exploiting the communities' overlap use partial information about its structure. Membership is quite basic, with many ties. It cannot distinguish between highly and poorly connected overlapping nodes. Over-lapNeighborhood targets hubs in the vicinity of the overlapping nodes independently of their relations. Random Walk Overlap Selection targets highly connected overlapping nodes. Finally, Overlapping Modular Centrality merges the communities of the overlapping nodes into a single community to compute the local importance, reducing the precious information of the overlap structure. These measures fail to consider how the node is embedded in its overlapping communities. In contrast, Modularity Vitality better handles the topology, but it discards the precious overlapping information. To overcome these drawbacks, we show the potential gain of using overlapping information to identify influential nodes better [START_REF] Rajeh | Identifying influential nodes using overlapping modularity vitality[END_REF]. This work proposes a framework called "Overlapping Modularity Vitality," which can use any fuzzy or crisp version of the overlapping modularity quality function.

The proposed framework is based on a general definition of modularity that one can tailor to the various types of information available based on the network's structure. It generalizes the Modularity Vitality of [START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] to networks with overlapping communities spanning from crisp to fuzzy structures. This work aligns with studies generalizing the traditional modularity in non-overlapping community structure [START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF] to the more realistic overlapping community structure. It spans from centrality measures [START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF][START_REF] Ghalmane | Centrality in complex networks with overlapping community structure[END_REF] to network characterization measures [START_REF] Chen | Fuzzy overlapping community quality metrics[END_REF] and community detection algorithms [START_REF] Zhang | Identification of overlapping community structure in complex networks using fuzzy c-means clustering[END_REF][START_REF] Wang | Overlapping community structure and modular overlaps in complex networks[END_REF][START_REF] Havens | A soft modularity function for detecting fuzzy communities in social networks[END_REF]. The main advantage of the proposed work, falling into developing centrality measures for overlapping communities, is its flexibility in incorporating various types of information from the network rather than just a single kind of information. For instance, in collaboration networks, community membership strengths could be fuzzy, indicating the percentage of affiliation of each person to different research groups [START_REF] Gregory | Fuzzy overlapping communities in networks[END_REF]. In contrast, in biological networks, a protein might participate with equal importance in various modules [START_REF] Bal Ázs Adamcsek | Cfinder: locating cliques and overlapping modules in biological networks[END_REF]. All these cases can be incorporated into the proposed framework, indicating its flexibility in the type of information available to identify critical nodes.

5.3/ THE OVERLAPPING MODULARITY VITALITY FRAMEWORK

In this section, we present the Overlapping Modularity Vitality framework. We introduce the vitality concept. Then, we derive an efficient technique to integrate the various versions of the overlapping modularity in this framework.

VITALITY

One way to compute the importance of a node or an edge x in a graph is through the vitality measurement [START_REF] Kosch Ützki | Centrality indices[END_REF]. The vitality of a node or an edge x denotes the variation of a real-valued arbitrary quality function f computed on a graph G when one removes x from the network. More formally, a vitality index V (G, f , x) is equal to the difference between the value of f on G and of f on G without the element x.

V (G, f , x) = f (G) -f (G \ {x}) (5.1)

OVERLAPPING MODULARITY VITALITY

We adopt the overlapping modularity Q ′ as the quality function f . It presents several advantages. First, many popular community detection algorithms use it as an objective function. Second, it has many extensions for networks with an overlapping community structure, whether crisp or fuzzy [START_REF] Tam Ás Nepusz | Fuzzy communities and the concept of bridgeness in complex networks[END_REF][START_REF] Chen | Fuzzy overlapping community quality metrics[END_REF][START_REF] Gregory | Fuzzy overlapping communities in networks[END_REF]. Finally, overlapping modularity is a flexible quality measure that incorporates various information on the community structure through the community membership strength parameters. For example, one may think that a node located at the overlap is more influential than a node embedded in its community. Moreover, two nodes located in the overlap might have different influences depending on the number of communities they share. Unlike the basic alternative measures, overlapping modularity can account for these types of information. Combining the adopted definition of overlapping modularity and the vitality concept allows, therefore, to propose a general framework using tailored information about the community structure to identify influential nodes. The Overlapping Modularity Vitality of a node i is consequently defined as follows:

β OMV (i) = Q ′ (G) -Q ′ (G \ {i}) (5.2)
It is important to note that the sign of the centrality indicates the node's role. A node with a positive centrality value plays a hub role. Its removal decreases the overlapping modularity of the network. Subsequently, it has a positive centrality value. A hubs-first ranking strategy indicates that one ranks nodes in descending order starting from the highest positive centrality values. In contrast, if a node acts as a bridge between two communities, its removal increases the network's modularity. Indeed, the number of intercommunity links between communities decreases, leading to better-defined communities. Consequently, it receives a negative centrality value. In a bridges-first ranking strategy, one orders the nodes from the highest negative to the highest positive centrality values.

To aggregate the influence of hubs and bridges simultaneously, we consider the absolute value of the centrality of each node. Then, one sorts the nodes in descending order. These ranking strategies are decisive in diffusion scenarios since the budget is limited.

COMPUTING THE OVERLAPPING MODULARITY VITALITY

Computing the overlapping modularity naïvely can be prohibitive for large networks. Indeed, computing the modularity is in O(|E|). Therefore, computing the contribution of each node directly requires O(N|E|). One needs an efficient way to update the modularity after removing a node. [START_REF] Magelinski | Measuring node contribution to community structure with modularity vitality[END_REF] proposed an efficient iterative process to compute the non-overlapping Modularity Vitality. Inspired by their approach, we extend their development to the Overlapping Modularity Vitality framework, whether the community membership strength of the node is crisp or fuzzy. Following is an expression to compute the modularity after the removal of node i:

Q ′ (G \ {i}) = ∑ c q ∈C   |E in c q |-|E in i,c q | |E|-|E i | - 2 |E in c q |-|E in i,c q | + |E out c q |-|E out i,c q | 2(|E|-|E i |) 2   (5.3) One uses |E|, |E in c q |, and |E out c q | to calculate Q ′ (G).
The only requirement to compute the variation is to calculate the node's contribution inside and outside its communities (|E in i,c q | and |E out i,c q |). The node's total contribution (|E i |) is the sum over the communities of the node's internal contribution (|E in i,c q |) and external contribution (|E out i,c q |). Thus, the extra computation has a O(N|C| + |E|) complexity for the increment.

PROPOSED FRAMEWORK

One can use the developed framework with any definition of community membership strengths. In the experiments, we investigate three versions of community membership strengths (i.e., reciprocity membership, degree membership, and node similarity). Note that we do not consider regrouping the community structure when removing a node since there is no closed-form solution for the re-computation of the overlapping modularity alongside the community membership strengths. Algorithm 2 reports the steps of the Overlapping Modularity Vitality computation. The adjacency matrix A i,j weighted by the crisp and fuzzy community membership strengths of the nodes is given in Algorithm 3 and Algorithm 4.

The time complexity of Algorithm 2 is O(N|C|). Indeed, lines 1 to 5 require O(|C|). For lines 6 till 12, it requires O(N|C|). Finally, lines 13 and 14, require O(N). Algorithms 3 and 4 have O(N|C|) complexity. The complexity of acquiring the community membership strengths depends on the acquisition method. In our study, the complexities for reciprocity membership, degree membership, and node similarity are O(N), O(N < k >), and O(2N), respectively.

Algorithm 2 Overlapping Modularity Vitality

Input: Graph G(V, E), Weighted adjacency matrix W i,j , Community set C Output: Vitality of each node β OMV (i)

// Computing the overlapping modularity of the graph 1: for each c q ∈ C do 2:

Compute the total internal weights |E in c q | of community c q

3:

Compute the total external weights |E out c q | of community c q

4: |E| ← |E in c q | + |E out c q | 5: Q ′ (G) ← ∑ c q ∈C |E in cq | |E| - 2|E in cq |+|E out cq | 2|E| 2
// Computing the overlapping modularity increment of each node 6: for each i ∈ V do 7:

for each c q ∈ C do 8:

if i ∈ c q then 9:
Compute the total internal weights |E in i,c q | of node i 10:

Compute the total external weights |E out i,c q | of node i 11:

|E i | ← ∑ c q ∈C |E in i,c q |+|E out i,c q | 12: Q ′ (G \ {i}) ← ∑ c q ∈C   |E in cq |-|E in i,cq | |E|-|E i | -  
// Computing the vitality of each node 13: for each i ∈ V do 14: for each c q ∈ C do 3:

β OMV (i) ← Q ′ (G) -Q ′ (G \ {i})
if i, j ∈ c q then 4:

W i,j ← θ i,cq +θ j,cq 2 
A i,j for each c q ∈ C do 3:

if i, j ∈ c q then 4:

W i,j ← s(Θ(i), Θ(j))A i,j 5:

else 6: W i,j ← [1 -s(Θ(i), Θ(j))] A i,j

5.4/ COMPARING THE COMMUNITY-AWARE CENTRALITY MEA-

SURES

This experiment allows us to compare the performance of the Modularity Vitality measures (i.e., overlapping and non-overlapping) with their alternatives on 21 networks. The alternative measures include Membership, OverlapNeighborhood, Random Walk Overlap Selection, and Overlapping Modular Centrality. Like the previous experiment, we consider three ranking strategies for the vitality-based measures: hubs-first, bridges-first, and hubs and bridges. We also evaluate the influence of the algorithm used to uncover the community structure on the performance of the measures. Note that we use the Degree centrality (η d ) as a reference to compare all the measures in this case. Note that Table 5.1 provides the abbreviations of the centrality measures used in this chapter. 

HUBS-FIRST RANKING STRATEGY

We observe four typical behaviors illustrated in Figure 5.1 and the first row (A) of Figure 5.2 using the hubs-first strategy.

The first case, illustrated by the DBLP, AstroPh, and DeezerEU networks in Figure 5.1, shows that Overlapping Modularity Vitality based on node similarity outperforms at the beginning its alternative definitions (i.e., reciprocity membership and degree membership) and the remaining alternative measures. Then, either reciprocity membership or degree membership takes over. We note that only in Ego Facebook and PGP, Overlapping Modularity Vitality with reciprocity membership is not as effective compared to the stated well-performing centrality measures.

The fourth case, illustrated by Adolescent Health, shows that the Modularity Vitality (α + MV ) is the best performing centrality starting from a small fraction of initially infected nodes ( f o ). However, the difference with Overlapping Modularity Vitality based on reciprocity membership (β R+ OMV ) is pretty small at a higher fraction of initially infected nodes. Yeast Protein and Reptiles show similar behavior.

To summarize, we observe four behaviors using the hubs-first ranking strategy. First, Overlapping Modularity Vitality based on node similarity followed by degree membership and reciprocity membership at a higher fraction of initially infected nodes produces the highest outbreak. Second, Overlapping Modularity Vitality with reciprocity membership outperforms all its alternative measures on a group of networks. In the third case, for a small fraction of initially infected nodes, OverlapNeighborhood is the best performer before being surpassed by Modularity Vitality and Overlapping Modularity Vitality based on reciprocity membership. It suggests that one should randomly target the overlapping neighbors on a low budget to a certain extent on these networks. Then, leveraging deterministic information from the community structure is more beneficial. Finally, in the fourth case, Modularity Vitality outperforms all its alternatives. It suggests that, in this case, information about the overlap is not decisive.

BRIDGES-FIRST RANKING STRATEGY

We still observe three typical behaviors in the 21 networks using the bridges-first ranking strategy. The results of the six networks showcasing these behaviors are given in the second row (B) of Figure 5. The first case, illustrated by Bible Nouns, shows that Overlapping Modularity Vitality based on node similarity (β S- OMV ) takes the lead either in all the range of the fraction of initially infected nodes ( f o ) or after one reaches a specific value of f o . For example, in the Bible Nouns network, when the fraction of initially infected nodes ( f o ) is less than 0.10, β S- OMV performs as well as Overlapping Modularity Vitality based on degree membership (β D- OMV ). Then, it keeps increasing at a higher pace outperforming all the other measures, including β D- OMV . Its gain over the reference reaches 21% at f o = 0.49. It is 6% more than the second-best performing centrality. Facebook Organizations, Reptiles, Ego Facebook, Facebook Politician Pages, Yeast Protein, Adolescent Health, and PGP exhibit similar behavior. We note that in the Yeast Protein network, given in Figure 5.3, the best The second case, illustrated by DNC Emails, shows that for low values of the initial fraction of infected nodes, OverlapNeighborhood (β ON ) or Overlapping Modularity Vitality using node similarity (β S- OMV ) perform the best. After a specific fraction of initially infected nodes ( f o ), the outperformance is interchangeable between Overlapping Modularity Vitality based on degree membership (β D- OMV ) and node similarity (β S- OMV ). For example, in DNC Emails, the relative outbreak size of Overlapping Modularity Vitality based on degree membership fluctuates positively to negatively when f o ≤ 0.14. Above this value, it increases and outperforms the rest of the measures until f o = 0.50. At this point, it exceeds the reference centrality by 29%. EU Airlines, U.S. Airports, Hamsterster, Budapest Connectome, Princeton, DBLP, AstroPh, DeezerEU, and 911AllWords show similar behavior.

Facebook Friends is a typical example of the third case. Figure 5.3 shows that two Overlapping Modularity Vitality versions (i.e., node similarity (β S- OMV ) and degree membership (β D- OMV )) perform similarly. They outperform the other measures after one reaches a specific fraction of initially infected nodes ( f o ). Before passing f o , OverlapNeighborhood (β ON ) performs better. The networks Yeast Collins and Caltech also follow a similar behavior.

Using the bridges-first strategy, we observe the effectiveness of two versions of Overlapping Modularity Vitality (i.e., node similarity and degree membership). However, the gain on the reference starts at a specific fraction of initially infected nodes. Before reaching this value, OverlapNeighborhood performs better. Thus, one should use bridges that predominantly affect the overlapping modularity when enough resources are available. With a low budget, one should target random nodes situated near overlaps of communities using OverlapNeighborhood.

HUBS AND BRIDGES RANKING STRATEGY

With the hubs and bridges ranking strategy, one can distinguish three behaviors. The third row (C) of In summary, with the hubs and bridges ranking strategy and a limited budget, one should target neighbors of the overlapping nodes using OverlapNeighborhood. If enough budget is available, Overlapping Modularity Vitality based on reciprocity membership or degree membership results in a much larger epidemic outbreak than its alternatives. 

INFLUENCE OF THE COMMUNITY DETECTION ALGORITHMS

We now use the Lancichinetti Fortunato Method (LFM) to uncover the community structure of the networks. We perform the performance analysis of the centrality measures under test and compare it with the community structure results extracted with the Speaker-Listener Label Propagation Algorithm (SLPA). Our goal is to investigate the consistency of the centrality measures when one uses a different community detection algorithm. We present two extreme cases. The first case has similar communities identified by the two community detection algorithms. In contrast, the second case greatly differs in the number of communities identified. Results show that the performance of the centrality measures with the three different ranking strategies (i.e., hubs-first, bridges-first, and hubs and bridges) is similar. One can see slight differences in Overlapping Modularity Vitality based on reciprocity membership. Its gain on the reference reaches 25% with the community structure uncovered by LFM at f o = 50% with the hubs-first and hubs and bridges ranking schemes. It is to compare to a 20% gain with the community structure of SLPA. In addition, OverlapNeighborhood and Membership perform slightly better with LFM. More specifically, the gain of OverlapNeighborhood reaches 13% at f o = 0.50 while it is only 8% with SLPA. Membership reaches its highest gain of 21% at f o = 0.36 using LFM compared to 15% at f o = 0.30 with SLPA. small communities. In this situation, Overlapping Modularity Vitality based on reciprocity membership deteriorates when the ranking strategy is hubs-first or hubs and bridges simultaneously. More specifically, using the hubs-first approach and SLPA, the gain on the reference reaches 21% at f o = 0.50 compared to 11% when LFM uncovers the community structure. One observes a similar behavior using the hubs and bridges ranking strategy. The higher the number of communities, the less effective Overlapping Modularity Vitality based on reciprocity membership is. It is because its ability to differentiate the nodes decreases when the number of communities increases. Consider two extreme cases: a network with 13 overlapping nodes belonging to 13 communities and another network with 150 overlapping nodes belonging to 150 communities. Even though all nodes have the same reciprocity membership value, the number of nodes with distinct centrality values is higher in the first case. Therefore, it is more discriminative when the number of communities is low.

To conclude, the main driver of performance sensitivity to the community structure variation is the number of communities. Indeed, overall performance evolution exhibits similar trends for the various centrality measures when the number of communities uncovered by the community detection algorithms is comparable. In contrast, if the number of communities differs significantly, Overlapping Modularity Vitality based on reciprocity membership underperforms when the number of communities is high. In this case, more overlapping nodes share the same centrality value.

5.5/ DISCUSSION

We now investigate the underlying behavior of the best performing centrality measures. We explore why Overlapping Modularity Vitality based on reciprocity membership targeting hubs performs best when resources are limited. We also examine why Overlapping Modularity Vitality targeting bridges based on degree membership and node similarity are more effective with more resources. A node is bridge-oriented if it has more intercommunity links than intra-community links. In addition, a node is hub-oriented if it has more intra-community links than inter-community links. Figure 5.7 shows a toy example of four networks with increasing communities. In this example, node 3 is the only overlapping node. In subfigure A, containing two communities, node 3 is hub-oriented since all of its links are intra-community links. As the number of communities grows, node 3 transitions from an overlapping huboriented node to an overlapping bridge-oriented node. Reciprocity membership is the first version of Overlapping Modularity Vitality to identify node 3 as an overlapping bridge (i.e., it receives a negative value). It starts in subfigure B, where node 3 has the same number of intra-community and inter-community links. Degree membership begins by identifying node 3 as an overlapping bridge in subfigure C. It has more inter-community links than intra-community links in this case. Finally, node similarity identifies node 3 as an overlapping bridge in subfigure D. It has a higher number of inter-community links in this case. This example shows that reciprocity membership is more effective at detecting bridges. Degree membership follows, and node similarity is the last. In contrast, with the hubs-first ranking strategy, the effectiveness of Overlapping Modularity Vitality based on reciprocity membership is due to its ability to select hubs in communities far apart. Consequently, distinct nodes are exposed to the epidemic, causing a higher virus circulation under limited resources. However, since the distance between those nodes is not as high as the ones picked by Overlapping Modularity Vitality based on degree membership and node similarity targeting bridges, the diffusion does not scale up when more nodes are infected.

Similarly is the case with the performance of OverlapNeighborhood and Modularity Vitality targeting hubs when resources are limited. They also rely on their ability to pick up nodes far away from each other. However, their potential in picking up distant nodes does not augment as Overlapping Modularity Vitality using degree membership and node similarity targeting bridges. Since hubs are more frequent in large communities, removing a few does not significantly affect the network's modularity. It is the opposite with smaller communities. This is the reason why Modularity Vitality targeting hubs falls behind. Indeed, it targets hubs located in smaller communities first. As small communities are far apart, when resources are limited, it is more beneficial to target their hubs. However, as the availability of resources increases, one needs to target hubs in small and large communities.

We use the Yeast Collins and Facebook Friends networks to visualize the nodes targeted by the overlapping centrality measures. Figure 5.8 and Figure 5.9 show the initially infected nodes for Modularity Vitality and the three versions of Overlapping Modularity Vitality in the stated networks. They visually depict the infected nodes of the vitality measures with a low fraction of initially infected nodes ( f o = 2%) and a high fraction of initially infected nodes ( f o = 20%) using a hubs-first ranking strategy (indicated with a + sign) and a bridges-first ranking strategy (marked with asign). One can see that in both networks, using Overlapping Modularity Vitality based on degree membership and node similarity targeting bridges (β D- OMV , β S- OMV ), the top 2% and top 20% nodes initially infected are more distant as compared to the Modularity Vitality targeting bridges (α - MV ) and Overlapping Modularity Vitality using reciprocity membership targeting bridges (β R- OMV ). When resources are limited, we observe two behaviors resulting in the largest outbreak. Either infecting hubs inside different communities using Overlapping Modularity Vitality with nodes reciprocity targeting hubs first or infecting the neighbors of overlapping nodes using OverlapNeighborhood centrality. We show the nodes selected by the Overlap- ). The measures use a hubs-first ranking scheme denoted by a "+" sign and a bridges-first ranking scheme marked by a "-" sign. The top two rows and the bottom two rows represent 2% and 20% of the fraction of initially infected nodes, respectively. Neighborhood centrality in Figure 5.10 for the Yeast Collins and Facebook Friends networks. In Facebook Friends, when resources are low, OverlapNeighborhood centrality performs slightly better. Let's compare it with the nodes chosen by the vitality measures in Figure 5.9. At f o = 2%, nodes targeted by OverlapNeighborhood are more scattered across the network, resulting in a slightly higher outbreak. Similarly is the case for the Yeast Collins network.

On the contrary, it is better to target distant bridges when enough resources are available. Indeed, an epidemic can reach the entire network without getting stuck inside its originating community with this strategy. These results demonstrate the importance of incorporating information on the overlapping communities to ignite a more extensive epidemic outbreak capable of spreading across the whole network. ). The measures use a hubs-first ranking scheme denoted by a "+" sign and a bridges-first ranking scheme marked by a "-" sign. The top two rows and the bottom two rows represent 2% and 20% of the fraction of initially infected nodes, respectively.

5.6/ CONCLUSION

This work proposes the Overlapping Modularity Vitality framework to identify critical nodes in networks with an overlapping community structure. One can use various definitions of community membership strengths in this framework. We investigate three alternatives: reciprocity membership, degree membership, and node similarity, obtaining three measures to target essential nodes. They present two main differences. First, they use more or less information about the overlaps of the communities. Reciprocity membership relies only on the number of overlapping communities of a node. Degree membership requires more knowledge, probing the total links of a node to each community to quantify the belonging strength of overlapping nodes to their communities. Finally, node similarity quantifies the similarity of the nodes' community membership strength vectors. The second difference concerns the ability to discriminate the nodes. Reciprocity membership is less effective because many nodes may share the same number of communities, while node similarity and degree membership encode more nuanced differences.

One can use three ranking strategies to prioritize hubs, bridges, or both. We investigate three versions of Overlapping Modularity Vitality based on the community membership strength of the nodes (i.e., reciprocity membership, degree membership, and node similarity). We perform an extensive comparative evaluation on 21 real-world networks based on an epidemic spreading scenario using the Susceptible-Infected-Recovered epidemic model. Comparisons involve four popular overlapping centrality measures and Modularity Vitality specially designed for networks with non-overlapping community structure. Results show the effectiveness of Overlapping Modularity Vitality while marking the dependence of the performance on the resources at hand. With a limited budget of nodes (i.e., a low fraction of initially infected nodes), one should prefer Overlapping Modularity Vitality based on reciprocity membership targeting hubs or OverlapNeighborhood, a random strategy targeting the neighbors of overlapping nodes. With a higher budget of nodes, Overlapping Modularity Vitality using degree membership and node similarity with a bridges-first ranking scheme are the top measures. These results suggest that the distance between initially infected nodes is a good indicator when enough resources are available. For efficient diffusion in a multiple-spreader scenario, initially infected nodes must be far away. It is how Overlapping Modularity Vitality based on degree membership and node similarity with a bridges-first ranking scheme works. These results demonstrate the benefit of effectively integrating overlapping community structure information to identify critical nodes.

The added value of the proposed framework is its ability to integrate different structural information via a tailored overlapping modularity definition. Indeed, no universal definition suits all real-world networks' scenarios. Subsequently, an adaptable measure is required to cover multiple real-world cases. This study gives practical indications to practitioners to identify influential nodes in a network based on budget and information availability.

CONCLUSION AND FUTURE PERSPECTIVES 6.1/ CONCLUSION

We are surrounded by a multitude of complex networks naturally organized into communities. Depending on what is spreading within a network, diffusion dynamics can directly impact our lives, either positively or negatively. For instance, the rapid spread of information through networks can lead to the rapid dissemination of knowledge and ideas, which can drive progress and innovation. On the other hand, the rapid spread of information through networks can also have negative impacts, such as the spread of misinformation and the amplification of harmful or divisive content. It is thus crucial to gain a deeper understanding of diffusion dynamics, how community structure impacts diffusion, and which nodes play a central role in the spread of diffusion. This thesis addresses research gaps toward a better understanding of the interplay between the network's structure, the influence of important nodes and their identification, and diffusion dynamics in complex systems. It sheds light on the impact of the community structure on the dynamical spreading of diverse models, how by identifying influential nodes, we can better understand how diffusion dynamics flow through the network, and how these nodes can be harnessed to achieve desired outcomes.

To this end, in Chapter 2, we recalled the essentials for this thesis. First, we presented the centrality measures spanning from classical measures (neighborhood-based, pathbased, iterative refinement-based) to community-aware measures (non-overlapping and overlapping). Then, we deliberated about diffusion models and highlighted two popular epidemic models (SI, SIR) and two information diffusion models (LT, IC). Finally, we introduced several network quality measures based on network connectivity and on models while putting more emphasis on overlapping modularity. We highlighted the flexibility of overlapping modularity in incorporating various types of information and presented two mathematical definitions in which it can be written.

In Chapter 3, driven by the reality that community structure has a confinement effect on diffusion dynamics and there are many diffusion models provided in the literature, we analyzed how the output of four diffusion models, namely the SI, SIR, IC, and LT models, depends on the network's structure and the seed nodes selected based on the community-aware centrality measures. All these models are mathematical models used to study the spread of diseases or information in a network. Each model has its own set of possible states and conditions for the spread to propagate. We showed that the strength 95 of the community structure and budget availability in synthetic and real-world networks significantly impact how diffusion spreads. Additionally, the SI, SIR, and IC dynamics converge while the LT dynamics diverge within a given community structure strength and budget availability. The differences between the diffusion models, mainly seen at a limited budget availability, is credited to the fact that the conditions in the SI, SIR, and IC models are well suited to select bridge-like nodes as it is easier for the epidemic or information to circulate from one community to another compared to the LT model. Studying these models and their relationship with seed nodes and the network's community structure is important because they help us understand how diseases or information can spread through a population, and thus how we can evaluate the effectiveness of different intervention strategies and make informed decisions about how to amplify the spread of positive diffusion mechanisms.

In Chapter 4, aroused by the revelation that centrality measures tend to target influential nodes contiguous to each other, we proposed a community-aware ranking scheme that naturally gravitates towards selecting nodes separated from each other by capitalizing on the network's community structure. Given any network and the rankings of any centrality measure, the proposed ranking scheme cycles through the network's communities from the largest to the and guarantees that every community has its most influential node targeted for diffusion maximization. This way, the ranking scheme avoids the diminishing return of the influential nodes' influence. It also ensures that all the network regions are not left intact. The proposed ranking scheme was compared against the traditional descending order ranking scheme using six centrality measures on synthetic and realworld networks. Results show that the proposed ranking scheme maximizes diffusion at a larger scale than the descending order ranking scheme, notably when the network has a strong community structure strength and a large number of communities of heterogeneous sizes. Moreover, the proposed ranking scheme is independent of the network type (whether directed or undirected, weighted or unweighted) and requires no additional information other than the network's communities and the rankings of any centrality measure.

In Chapter 5, we address the problem of identifying influential nodes in networks with overlapping community structure. Although they excel, most community-aware centrality measures consider non-overlapping community structures. Additionally, measures adapted for overlapping communities are hardcoded and not flexible for varying or missing information. We propose the "Overlapping Modularity Vitality" framework to resolve these issues. It identifies essential nodes based on their contribution to the network's overlapping modularity. It allows targeting top hubs or bridges or simultaneously both types of nodes. We use three alternative definitions of overlapping modularity to investigate this framework (reciprocity membership, degree membership, and node similarity). We perform extensive simulations based SIR model in an epidemic spreading process scenario. Results show that the proposed measures outperform their non-overlapping counterpart and prominent overlapping centrality measures reported in the literature. Knowing that we are always confronted with inconsistent and missing data, the proposed framework offers versatility and flexibility to any overlapping information about the node(s) and can run whether the information is fully available or not.

6.2/ FUTURE PERSPECTIVES

The analysis and propositions done in this thesis open numerous future perspectives. They can be divided into two main categories: extensions or new open questions that can be raised for further investigations. In the following, we outline these future perspectives for every contribution presented in the thesis in a non-exhaustive manner.

We first start with the investigation of the diffusion dynamics, community structure influence, and seed nodes selected based on community-aware centrality measures presented in Chapter 3. Several research works include dynamic community detection algorithms [START_REF] Palla | Quantifying social group evolution[END_REF][START_REF] Peter J Mucha | Community structure in time-dependent, multiscale, and multiplex networks[END_REF][START_REF] Bazzi | Community detection in temporal multilayer networks, with an application to correlation networks[END_REF]. One interesting work encompasses investigating how the alteration in the communities within a network over time impacts the dissemination of diseases, information, or other diffusive phenomena. In other words, how the change in communities can help or hinder the diffusion of these processes. Another work could include considering both the network structure and the diffusion dynamics of the processes being studied to develop new algorithms for identifying the most influential nodes in a network. One can also explore the spread of diseases/information in networks comprising several layers, such as networks of social and professional contacts, and how these multiplex networks affect the diffusion of diseases/information. Finally, one can examine more sophisticated models that can include exogenous events, such as the introduction of a vaccine or the emergence of a new information source, and how these exogenous events affect the diffusion of diseases, information, or other processes starting at specific seed nodes in a network.

We now refer to the proposition of the community-aware ranking scheme given in Chapter 4. The proposed ranking scheme in its current form is not well-adapted for networks with few and large communities. Indeed, it is susceptible to target influential nodes in the subsequent iterations nearby each other as the ranking scheme does not have many communities to iterate over. One possible way to overcome this problem is to impose a distance condition. If the iterator goes back to the community it already visited, the next node to be selected must not be less than a distance of a specific value set depending on the diameter of the community. However, this method requires more information about the network, and thus it is more computationally demanding if the network is large. Another approach could be inverting the iterator after every complete run until the budget is reached. That is, selecting the most influential nodes in the first iteration and then selecting the least influential nodes in the second iteration, to augment the chances of selecting nodes not in the same region. One could also further divide a given community to sub-communities and then select the most influential nodes within these sub-communities. This approach allows us to zoom in to the network at the mesoscale level for a finer selection of influential nodes that are not in the same region. An alternate avenue of research would involve tailoring the ranking method to fit multilayer and temporal networks.

We now discuss the possible future perspectives related to the Overlapping Modularity Vitality framework presented in Chapter 5. One can consider extending this work in several directions. First, one approach could be to explore alternative methods for assessing the quality of the community structure in the framework instead of relying on overlapping modularity. These could include measures based on network connectivity or models. In this manner, it would be valuable to examine the extent to which each node contributes to and influences the chosen quality measure to understand better the node's overall impact on the network's overlapping community structure. Doing so gives us a new perspective on the node's influence, which could help maximize its impact. This can be followed up by intersecting the results obtained using different quality measures, diffusion models, and machine learning to predict the node's diffusion influence. One way to quantify the node's diffusion influence under a given diffusion model is to set the in question node only as active/infected and run the diffusion model. After the model reaches the steady state, the total number of active/infected nodes acts as an indicator of the node's influence throughout the whole network. Another research work is related to improving the scalability of the framework. The framework could be optimized to handle large-scale networks. Moreover, one can explore the possible extensions of the proposed framework to multilayer and temporal networks. OMV ). The measures use a hubs-first ranking scheme denoted by a "+" sign and a bridges-first ranking scheme marked by a "-" sign. The top two rows and the bottom two rows represent 2% and 20% of the fraction of initially infected nodes, respectively. . . . . . . . . . . . . . . . . . . . . . .
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Fig 2 . 1

 21 Fig 2.1 shows the top node selected by the various community-aware centrality measures on a toy example network with two communities. The top node appears to be either a hub-like or bridge-like node. In this figure, if a community-aware centrality measure is labeled twice, it is because two nodes obtain the same highest centrality score value. In this case, they are both represented as the top node for the given centrality measure. For instance, one can see that hub-like nodes (i.e., nodes 4 and 13) are the top node for Modularity Vitality targeting hubs (α + MV ), Modularity Vitality targeting hubs and bridges (|α MV |), Community-based Centrality (α CBC ), and the Map Equation Centrality (α MapEq ).One can expect this result, as these community-aware centrality measures implicitly emphasize hub-like nodes.

Figure 2 . 1 :

 21 Figure 2.1: Top nodes selected by the community-aware centrality measures under study. The 19 nodes network with 31 edges has two communities with < k > = 3.26. The solid lines represent the intra-community links and the dashed lines represent the inter-community links.

Figure 2 . 2 :

 22 Figure 2.2: Comparing the diffusion models under study. λ is the infection rate, ψ is the recovery rate, m v is the total number of active neighbors node v possesses, ξ v is node the threshold of node v, P u,v is the likelihood of node u activating node v, and ξ u,v is the threshold of edge (u, v).
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Table 3 . 1 :

 31 A summary of the studies of community-aware centrality measures. SIR means Susceptible-Infected-Recovered model and LT refers to Linear Threshold model. The character '-' refers to "not applicable". ↘

Figure 3 . 1 :

 31 Figure 3.1: Behavior of the community-aware centrality measures under various dynamic models in synthetic networks while varying the mixing parameter (µ). The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT model.

Figure 3 . 2 :

 32 Figure 3.2: Behavior of the community-aware centrality measures under various dynamic models in synthetic networks while varying the community size distribution exponent (θ). The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT model.
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Figure 3 . 3 :

 33 Figure 3.3: Behavior of the community-aware centrality measures under various dynamic models in synthetic networks while varying the degree distribution exponent (γ). The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT model.

Figure 3 . 4 :

 34 Figure 3.4: Behavior of the community-aware centrality measures under various dynamic models in real-world networks with varying community structure strengths. The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, and (D) LT model.

  Fig 3.5 the position of the top nodes chosen based on low (i.e., f o = 1%), medium (i.e., f o = 25%), and high (i.e., f o = 40%) budget availabilities. For comparison purposes, we take the various budget availabilities according to the rankings based on Comm Centrality (α Comm ), K-shell with Community (α ks ), and Modularity Vitality targeting hubs (α + MV ). As we can see in Fig 3.5, Comm Centrality (α Comm ) targets nodes distributed across the network when the budget is either low (i.e., f o = 1%) or medium (i.e., f o = 25%). These nodes yield a higher spreading capability in the SI, SIR, and IC models, as Fig 3.4 shows.

Figure 3 . 5 :

 35 Figure 3.5: Comparing the position of the top nodes in the Kegg Metabolic network (µ = 0.466). The top nodes are chosen at a low budget availability ( f o = 1%), medium budget availability ( f o = 25%), and high budget availability ( f o = 40%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Comm Centrality (α Comm ), K-shell with Community (α ks ), and Modularity Vitality targeting hubs (α + MV ), respectively.

  Facebook and Facebook Politician Pages in Fig 3.4). To investigate these results, we visualize in Fig 3.6 the Facebook Politician Pages network, which has a strong community structure strength (µ = 0.111).

Figure 3 . 6 :

 36 Figure 3.6: Comparing the position of the top nodes in the Facebook Politician Pages network (µ = 0.111). The top nodes are chosen at a low budget availability ( f o = 1%), medium budget availability ( f o = 25%), and high budget availability ( f o = 40%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Comm Centrality (α Comm ), Modularity Vitality targeting hubs (α + MV ), and Modularity Vitality targeting bridges (α - MV ), respectively.

Figure 3 . 7 :

 37 Figure 3.7: Comparing the position of the top nodes in the Hamsterster and Facebook Politician networks. The top nodes are chosen at a low budget availability ( f o = 1%) and medium budget availability ( f o = 25%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Map Equation Centrality (α MapEq ), Community Hub-Bridge (α CHB ), and Comm Centrality (α Comm ), respectively.

Fig 3 . 9

 39 with the top 40% nodes ranked by all the Modularity Vitality variants (i.e., α + MV , α - MV , and |α MV |) to show how Modularity Vitality targeting both hubs and bridges (|α MV |) is well suited for the LT dynamics as it assures internal diffusion and external diffusion by effectively utilizing the high budget availability. The red dashed lines highlight that two large communities in the network are not targeted by Modularity Vitality targeting hubs (α + MV ) despite having a budget of f = 40%. In contrast, Modularity Vitality targeting both hubs and bridges (|α MV |) targets hub-like nodes inside all the communities and a set of bridges between them.

Figure 3 . 8 :

 38 Figure 3.8: Comparing the position of the top nodes in the Facebook Politician Pages and Ego Facebook networks. The top nodes are chosen at a medium budget availability ( f o = 25%) and high budget availability ( f o = 40%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Modularity Vitality targeting hubs and bridges (|α MV |), Community Hub-Bridge (α CHB ), and Comm Centrality (α Comm ), respectively.

Figure 3 . 9 :( 5 )

 395 Figure 3.9: Comparing the position of the top nodes in the Ego Facebook networks The top nodes are chosen at a high budget availability ( f o = 40%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Modularity Vitality targeting hubs and bridges (|α MV |), hubs only (α + MV ), and bridges only (α - MV ), respectively.

Figure 3 . 10 :

 310 Figure 3.10: Comparing the trends of the various dynamic models in Hamsterster with its communities identified by Infomap and Louvain. The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, (D) LT model.

Figure 3 . 11 :

 311 Figure 3.11: Comparing the position of the top nodes in the Hamsterster network having its communities identified by Infomap and Louvain. The top nodes are chosen at a low budget availability ( f o = 1%) and medium budget availability ( f o = 25%). The bigger nodes in the left, middle, and right figures are the top nodes ranked by Comm Centrality (α Comm ), Community Hub-Bridge (α CHB ), and Modularity Vitality targeting hubs (α + MV ), respectively.

Figure 3 . 12 :

 312 Figure 3.12: Histograms of the community size distribution of the Hamsterster network. Communities are identified by Infomap and Louvain.

Algorithm 1

 1 Community-aware ranking scheme Input: Graph G(V, E), Centrality measure β, Sorted community set C, Budget B Output: List of ranked nodes L 1: D ← ∅ ▷ Compute the centrality of each node 2: for each i ∈ V do 3: D[i] ← β(i) 4: for each c l,l∈{1,2,...,|C|} ∈ C do ▷ Sorting the nodes inside their communities 5:

7 : 9 :

 79 D c l ← Sort(D c l ) 8: while B 0 do ▷ Extract sorted list of nodes till budget is reached for each D c l and i ∈ D c l do 10: if D c l ∅ then 11:v ← D c l .pop(i)12:

Fig 4 .

 4 Figure 4.1 illustrates the proposed ranking method on a toy example. The network contains 22 nodes and three communities in this example. Suppose the maximum budget is three nodes out of the whole network. We consider Degree and Betweenness centrality as measures of influence. Tables3 and 4in Appendix I report the centrality values and the corresponding ranks using the descending order and the proposed approach. Based on the descending order ranking scheme of the Degree centrality, presented on top of Fig 4.1A, we can see that the highest degree nodes (nodes 1, 4, and 5) belong to the same community C1. Similarly, the nodes with the highest Betweenness centrality (nodes 13, 14, and 15) are all located in the same community C2, presented at the bottom of Fig 4.1A.

Figure 4 . 1 :

 41 Figure 4.1: Illustrating the behavior of the descending order ranking scheme and the community-aware ranking scheme. The nodes chosen are the top 3 nodes based on the Degree centrality (colored in red) and the Betweenness centrality (colored in blue).

Fig 4 . 2

 42 Fig 4.2 shows the relative difference in the outbreak size (∆R) as a function of the fraction of initially infected nodes of the six investigated centrality measures (Degree, Maximum Neighborhood Component, Betweenness, Closeness, Katz, PageRank) with a strong (µ = 0.05), medium (µ = 0.40), and weak (µ = 0.70) community structure strengths. The remaining parameters, including the community size (θ) and degree distribution (γ) exponents, are fixed at 2.7. The outbreak size (∆R), represented by the red curve, is the difference between the number of nodes recovered after an initial set of nodes ranked based on the community-aware ranking scheme is infected and another initial set of nodes infected ranked based on the classical descending order ranking scheme. Thus, it represents a measure of performance of the community-aware ranking scheme. Positive values indicate that the proposed ranking scheme performs better (see Appendix I for details about calculating ∆R).

Figure 4 . 2 :

 42 Figure 4.2: Impact of the community structure strength (µ) in synthetic networks. The figures represent the relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes. The red curve indicates the relative performance difference of the community-aware ranking strategy with the descending order ranking for the six centrality measures under test. The mixing parameter (µ) varies while the other parameters, including the community size distribution exponent (θ = 2.7) and the degree distribution exponent (γ = 2.7), are fixed.

Figure 4 . 3 :

 43 Figure 4.3: The relative difference of the outbreak size (∆R) as a function of the mixing parameter (µ) when fraction of initially infected nodes ( f o ) equals 0.15. The color of the curve represents the centrality measures under study. (A) Synthetic networks with degree distribution γ = 2.7 and community size distribution θ = 2. (B) Synthetic networks with degree distribution γ = 2.7 and community size distribution θ = 2.7. (C) Synthetic networks with degree distribution γ = 2.7 and community size distribution θ = 3.

Fig 4 . 4

 44 Fig 4.4 shows the relative difference in the outbreak size (∆R) as a function of the fraction of initially infected nodes for the Degree and Katz centrality. The community size distribution exponent θ equals 2 (panel A) and 3 (panel B). The other fixed parameters include the mixing parameter (µ = 0.05) and the degree distribution exponent (γ = 2.7).When θ = 2 (Fig 4.4A), the networks contain a few small communities coexisting with much larger ones. The relative difference of the outbreak size (∆R) increases as the fraction of initially infected nodes increases, reaching a maximum of 11% for Degree centrality and 12% for Katz centrality for the community-aware ranking scheme. Then, ∆R barely varies when the fraction of initially infected nodes f o ranges from 0.10 and 0.25. After that, it gradually decreases, reaching 3.5% and 4% for both centralities, respectively, when f o = 0.50.When θ equals 3 (Fig 4.4B), many small communities of comparable sizes and a few large ones exist. The performance of the community-aware ranking scheme for Degree centrality increases, reaching a maximum of 24% gain in terms of ∆R. Then it gradually decreases until it reaches 5.1% gain when the fraction of initially infected nodes is 0.50. Katz centrality exhibits similar behavior. The relative outbreak size increases as the fraction of initially infected nodes increases, reaching a maximum gain of 24%. It decreases until it reaches a gain of 8% when the fraction of initially infected nodes equals 0.50.

Figure 4 . 4 :

 44 Figure 4.4: Impact of the community size distribution exponent (θ) in synthetic networks. The figures represent the relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes. The red curve indicates the relative performance difference of the community-aware ranks of the Degree and Katz centrality measures compared to the descending order ranks. The community size distribution exponent (θ) varies while the other parameters, including the mixing parameter (µ = 0.05) and the degree distribution exponent (γ = 2.7), are fixed.

Fig 4 . 5

 45 Fig 4.5 shows the relative difference in the outbreak size (∆R) as a function of the fraction of initially infected nodes for the Degree and Katz centrality. The degree distribution exponent γ equals 2 (panel A) and 3 (panel B). We fix all the other parameters, including the mixing parameter (µ = 0.05) and the community size distribution exponent (θ = 2.7).When γ = 2 (Fig 4.5A), generating networks with a hub-and-spoke structure, the relative difference of the outbreak size (∆R) of both Degree centrality and Katz centrality under the community-aware ranking scheme escalates quickly from a fraction of initially infected nodes ( f o ) amounting to 0.01 till 0.10, reaching a maximum of 24%. ∆R stays in this range between 20% and 24% from f o = 0.11 till f o = 0.27 for Degree and f o = 0.30 for Katz. After which ∆R starts to decrease, reaching 6.5% for Degree and 8.5% for Katz at f o = 0.50.

Figure 4 . 5 :

 45 Figure 4.5: Impact of the degree distribution exponent (γ) in synthetic networks. The figures represent the relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes. The red curve indicates the relative performance difference of the community-aware ranks of the Degree and Katz centrality measures compared to the descending order ranks. The degree distribution exponent (γ) varies while the other parameters, including the mixing parameter (µ = 0.05) and the community size distribution exponent (θ = 2.7), are fixed.

Fig 4 . 6

 46 Fig 4.6 reports the differences in the relative outbreak size (∆R) for all the centrality measures in networks with a degree distribution exponent (γ) spanning from 2 (Panel A) to 3 (Panel C). The fraction of initially infected nodes ( f o ) equals 15% When networks are similar to a hub-and-spoke structure (Fig 4.6A) with a strong community structure (µ = 0.05), centrality measures under the community-aware ranking scheme always show a higher relative outbreak size difference (∆R).

Figure 4 . 6 :

 46 Figure 4.6: The relative difference of the outbreak size (∆R) as a function of the mixing parameter (µ) when fraction of initially infected nodes ( f o ) equals 0.15. The color of the curve represents the centrality measures under study. (A) Synthetic networks with degree distribution γ = 2 and community size distribution θ = 2.7. (B) Synthetic networks with degree distribution γ = 2.7 and community size distribution θ = 2.7. (C) Synthetic networks with degree distribution γ = 3 and community size distribution θ = 2.7.

Fig 4 . 7 ,

 47 one can note the outperformance of Closeness centrality, with a difference in the outbreak size (∆R) reaching a maximum of 21% when the fraction of initially infected nodes ( f o ) amounts to 0.41, followed by Degree centrality with ∆R = 20% at f o = 0.41 and MNC and Katz with ∆R = 20% at f o = 0.40. Then comes PageRank with ∆R = 15% at f o = 0.41 followed by Betweenness with ∆R = 14% at f o = 0.41. In general, in all the networks, Closeness, Degree, MNC, and Katz show higher ∆R than Betweenness and PageRank. One can also note three typical behaviors for the performance of the community-aware ranking scheme in networks with a strong community structure. These behaviors are common to all the centrality measures within a given network. For brevity, we report the results of Degree centrality only. The first typical behavior is that ∆R increases as f o increases. It is illustrated by the Princeton network in Fig 4.8A

Figure 4 . 7 :

 47 Figure 4.7: Impact of the community structure strength (µ) in real-world networks. The figures represent the relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes. The red curve indicates the relative performance difference of the community-aware ranking strategy with the descending order ranking for the six centrality measures under test. A strong, medium, and weak mixing parameter (µ) is derived based on the communities in real-world networks (U.S. Airports, Facebook Organizations, and Adolescent Health) identified by the Infomap community detection algorithm.

Figure 4 . 8 :

 48 Figure 4.8: Trends in the performance of the community-aware ranking scheme in real-world networks. The figures represent the relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes. The red curve indicates the relative performance difference of the community-aware ranks of the Degree centrality compared to the descending order ranks. Communities are identified using Infomap. (A) Networks with a strong community structure strength. (B) Networks with a medium community structure strength. (C) Networks with a weak community structure strength.

Fig 4 .

 4 8B. Hamsterster and Blumenau Drug share similar behavior. In the second category, we have an increasing ∆R until it reaches a plateau or barely deviates as f o increases. It is depicted by the Interactome Vidal network in the middle of Fig 4.8B. Facebook Organizations and Caltech share similar behavior. Finally, the third category shows a slight and gradual decrease directly from the start as f o increases. It is illustrated by the Yeast Protein network in Fig 4.8B on the right. Retweets Copenhagen shows similar behavior.

Figure 4 . 9 :

 49 Figure 4.9: Top nodes selected based on the Degree and Closeness centrality measures according to the descending order and community-aware ranking schemes. Communities of the Yeast Collins (A), EU Airlines (B), and AstroPh (C) networks are identified by Infomap. The top selected nodes (depicted in bigger sizes) amount to 15% of the network's size.

Figure 4 . 10 :

 410 Figure 4.10: Impact of the community detection algorithm in real-world networks with strong, medium, and weak community structure strengths. The figures represent the relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes. The red curve indicates the relative performance difference of the community-aware ranks of the Degree and Closeness centrality measures compared to the descending order ranks. (A) Communities identified using Infomap. (B) Communities identified using Louvain.

Fig 4 .

 4 10 gives the community size distributions associated with Infomap and Louvain of the networks provided in Fig 4.

Figure 4 . 11 :

 411 Figure 4.11: Histograms of the community size distribution. Communities are identified in Facebook Friends, Human Protein, and Bible Nouns by the Infomap (A) and Louvain (B) community detection algorithms.
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Figure 5 . 1 :

 51 Figure 5.1: Hubs-first ranking strategy. The relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes ( f o ) of the networks DBLP, AstroPh, and DeezerEU.

Figure 5 . 2 :

 52 Figure 5.2: Hubs-first (A), bridges-first (B), and hubs & bridges (C) ranking strategies. The relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes ( f o ) of the networks Bible Nouns, DNC Emails, and Adolescent Health.

  2 and Figure 5.3.

Figure 5 . 3 :

 53 Figure 5.3: Bridges-first ranking strategy. The relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes ( f o ) of the networks Facebook Organizations, Yeast Protein, and Facebook Friends.

Figure 5 .

 5 2 and Figure 5.4 report the results for three typical networks. The first case, illustrated by Bible Nouns, shows that Overlapping Modularity Vitality based on the reciprocity membership method (|β R OMV |) ranks first after a specific frac-tion of initially infected nodes ( f o ). For instance, in the Bible Nouns network, when f o ≥ 0.13, |β R OMV | begins outperforming other measures at an increasing rate. It reaches the maximum relative epidemic outbreak size (∆R) of 21% at f o = 0.50. Compared to the second-best performing centrality, namely, Overlapping Modularity Vitality based on the degree membership method (|β D OMV |), the difference is 6%. When f o < 0.13, there is no clear winner. EU Airlines, U.S. Airports, and Hamsterster show similar behavior. The maximum relative epidemic outbreak size (∆R) reaches 28%, 22.5%, 22%, 20%, and 12% at f o = 0.50 in EU Airlines, Princeton, U.S. Airports, Hamsterster, and 911AllWords, respectively.

Figure 5 . 4 :

 54 Figure 5.4: Hubs & bridges ranking strategy. The relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes ( f o ) of the Yeast Collins and Yeast Protein networks.

Figure 5 . 5 :

 55 Figure 5.5: Influence of the community detection algorithm in DNC Emails. The relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes ( f o ). The figures on the left represent the results of the SLPA community detection algorithm, while the figures on the right represent the results of the LFM community detection algorithm. The ranking strategies are as follows hubs-first (A), bridges-first (B), and hubs & bridges (C).

Figure 5 .

 5 Figure 5.5 reports the relative difference in the epidemic outbreak size in the DNC Emails network using SLPA and LFM. The community structure identified by SLPA contains 13 communities, while LFM extracts 15 communities.

Figure 5 .

 5 Figure 5.6 presents the performance of the centrality measures in the Bible Nouns network using SLPA and LFM. SLPA identifies 13 communities, while LFM identifies 150

Figure 5 . 6 :

 56 Figure 5.6: Influence of the community detection algorithm in Bible Nouns. The relative difference of the outbreak size (∆R) as a function of the fraction of initially infected nodes ( f o ). The figures on the left represent the results of the SLPA community detection algorithm, while the figures on the right represent the results of the LFM community detection algorithm. The ranking strategies are as follows hubs-first (A), bridges-first (B), and hubs & bridges (C).

Figure 5 . 7 :

 57 Figure 5.7: A toy example illustrating the impact of removing an overlapping node in four different networks. The number of communities in these networks ranges from two to seven. Node 3 is the only overlapping node. The three versions of Overlapping modularity vitality (reciprocity membership, degree membership, and node similarity) detect it as an overlapping bridge in networks B, C, and D, respectively. Solid lines represent intra-community links, and dashed lines represent inter-community links.

Figure 5 . 8 :

 58 Figure 5.8: The Yeast Collins network with the nodes chosen to be initially infected by the vitality measures: Modularity Vitality (α MV ), and the three different versions of Overlapping Modularity Vitality, namely: reciprocity membership (β R OMV ), degree membership (β DOMV ), and node similarity (β S OMV ). The measures use a hubs-first ranking scheme denoted by a "+" sign and a bridges-first ranking scheme marked by a "-" sign. The top two rows and the bottom two rows represent 2% and 20% of the fraction of initially infected nodes, respectively.

Figure 5 . 9 :

 59 Figure 5.9: The Facebook Friends network with the nodes chosen to be initially infected by the vitality measures: Modularity Vitality (α MV ), and the three different versions of Overlapping Modularity Vitality, namely: reciprocity membership (β R OMV ), degree membership (β D OMV ), and node similarity (β S OMV). The measures use a hubs-first ranking scheme denoted by a "+" sign and a bridges-first ranking scheme marked by a "-" sign. The top two rows and the bottom two rows represent 2% and 20% of the fraction of initially infected nodes, respectively.
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 510 Figure 5.10: The Yeast Collins and Facebook Friends networks with the nodes chosen to be initially infected using the OverlapNeighborhood centrality (β ON ). The top and bottom rows represent 2% and 20% of the fraction of initially infected nodes, respectively.
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  At each time step t, every infected node attempts to infect its neighbor(s) with an infection rate λ. Simultaneously, each infected node can recover with a recovery rate ψ. It is unable to infect again. Recovered nodes stay in this state throughout the dynamic process.

	The population N in the SIR model divides into three subpopulations such that N =
	S(t) + I(t) + R(t) and the densities are s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N,
	such that s(t) + i(t) + r(t) = 1. Assuming that each individual has, on average, < k >
	connections, and ds/dt, di/dt, and dr/dt represent the change over time in the number
	of susceptible, infected, and recovered individuals, respectively, then the evolution of the
	SIR model is described as follows:

  ). Within this category, under the SI, SIR, and IC dynamics, bridge-like nodes always yield the highest performance. The distinction lies in which community-aware centrality measure yields such performance. Generally, Comm Centrality (α Comm ) has the highest performance up to a certain f o . Then, Participation Coefficient (α PC ) overcomes Comm Centrality (α Comm ) only in the SI and SIR dynamics. Then, in the SI, SIR, and IC dynamics, Modularity Vitality targeting bridges (α - MV ) outperforms all remaining measures. The LT dynamics pose different outcomes. At first, hub-like nodes using Community-based Centrality (α CBC ) or Map Equation Centrality (α MapEq ) outperform the remaining measures. After exceeding a certain f o , several measures may show high performance, namely Community-based Mediator (α CBM ), Modularity Vitality targeting hubs (α + MV ), Modularity Vitality targeting hubs and bridges (|α MV |), Map Equation Centrality (α MapEq ), and/or Comm Centrality (α Comm ).

Comparing the dynamics on communities identified by Infomap and Louvain, why do the dynamics of the community-aware centrality measures in the LT diverge when the budget availability is high?

  Generally, Infomap yields high variance in the sizes of the communities with a power-law distribution. Louvain uncovers fewer communities with more uniform sizes having a lower variance. For instance, in the Hamsterster network, Infomap identifies 64 communities with a maximum size of 692 and a minimum size of 2. Conversely, Louvain uncovers 13 communities with a maximum size of 307 and a minimum size of 6. As Comm Centrality (α Comm ) exploits bridge-like nodes in all of the communities of the network, either small or large, having a more uniform size distribution with less variance diminishes Comm Centrality's return targeting. Indeed, the bridge-like nodes' frequency undoubtedly decreases with Louvain. As we can see in Fig 3.11, when the budget is f o = 1%, and the communities are identified by Infomap, Comm Centrality's top nodes are well-distributed across the network in opposition to its top nodes selected when communities are determined by Louvain where they are situated in the core of the network. Similarly is the case at f o = 25%.

	(6)

  4.8C) with Degree, MNC, Closeness, and Katz centrality measures and up to 11% and 10% for PageRank and Betweenness centrality measures respectively. At the same time, it can be as low as 5% in Adolescent Health given in Fig 4.7 for Degree, MNC, Closeness, and Katz and as low as 4% for Betweenness and 3% for PageRank. That being said, in networks with a weak community structure, there is one trend despite the difference in magnitude. Indeed, as seen from Fig 4.8C, all networks (AstroPh, DeezerEU, and Bible Nouns) have an increasing ∆R as f o increases. The only difference is in the magnitude of ∆R from one network to another.

Algorithm 3

 3 Integrating the Average of Community Membership StrengthInput: Graph G(V, E), Adjacency matrix A i,j , Community set C, Community membership strength of the nodes Θ(i)

	Output: Weighted adjacency matrix W i,j
	1: for each i, j ∈ V do
	2:

Table 5 .

 5 1: The abbreviations of the centrality measures used.

	Symbol Meaning
	β M	Membership
	β ON	OverlapNeighborhood
	β RWOS	Random Walk Overlap Selection
	β OMC α + MV α -MV	Overlapping Modular Centrality Modularity Vitality with a hubs-first ranking strategy Modularity Vitality with a bridges-first ranking strategy
	|α MV |	Modularity Vitality with a hubs and bridges ranking strategy
	β R+ OMV	Overlapping Modularity Vitality with reciprocity membership
		and a hubs-first ranking strategy
	β D+ OMV	Overlapping Modularity Vitality with degree membership
		and a hubs-first ranking strategy
	β S+ OMV	Overlapping Modularity Vitality with node similarity
		and a hubs-first ranking strategy
	β R-OMV	Overlapping Modularity Vitality with reciprocity membership
		and a bridges-first ranking strategy
	β D-OMV	Overlapping Modularity Vitality with degree membership
		and a bridges-first ranking strategy
	β S-OMV	Overlapping Modularity Vitality with node similarity
		and a bridges-first ranking strategy
	|β R OMV | Overlapping Modularity Vitality with reciprocity membership
		and a hubs and bridges ranking strategy
	|β D OMV | Overlapping Modularity Vitality with degree membership
		and a hubs and bridges ranking strategy
	|β S OMV | Overlapping Modularity Vitality with node similarity
		and a hubs and bridges ranking strategy
	η d	Degree centrality
	R r	Reference centrality

Table 5 .

 5 2 reports the

Table 5 .

 5 2: Overlapping Modularity Vitality values of node 3 in the toy example using the three different approaches: reciprocity membership (β R OMV ), degree membership (β D OMV ), and node similarity (β S OMV ). node 3 in the four networks. If there are more overlapping nodes, then as reciprocity membership is prompt at identifying bridges, they are more likely to be near each other. In contrast, since degree membership and node similarity are less sensitive to bridges, they tend to be far apart. Consequently, those nodes distributed across all communities diffuse the epidemics in communities unreachable with clustered bridges.

	Network	A	B	C	D
	Reciprocity membership (β R OMV ) 0.254 -0.070 -0.138 -0.203 Degree membership (β D 0.434 0.069 -0.009 -0.093 OMV ) Node similarity (β S OMV ) 0.033 0.004 0.001 -0.0001
	centrality values of				

Table 3 :

 3 The Degree centrality of each node in the toy network with their respective descending order and community-aware ranks.

	Node ID Degree Descending order ranks Community-aware ranks
	1	5	2	4
	2	3	12	16
	3	3	13	18
	4	5	3	7
	5	7	1	1
	6	4	4	10
	7	4	5	13
	8	2	17	20
	9	2	18	21
	10	2	19	22
	11	2	20	15
	12	3	14	12
	13	4	6	3
	14	4	7	6
	15	4	8	9
	16	2	21	17
	17	3	15	11
	18	4	9	5
	19	4	10	2
	20	3	16	14
	21	4	11	8
	22	2	22	19

Table 4 :

 4 The Betweenness centrality of each node in the toy network with their respective descending order and community-aware ranks.

	Node ID Betweenness Descending order ranks Community-aware ranks
	1	0.039	14	18
	2	0.056	13	16
	3	0.200	5	1
	4	0.099	11	13
	5	0.158	7	4
	6	0.100	10	10
	7	0.146	8	7
	8	0.010	19	21
	9	0.014	17	20
		0.000	20	22
		0.016	16	15
		0.038	15	12
		0.287	1	3
		0.266	3	9
		0.280	2	6
		0.000	21	17
		0.012	18	14
		0.080	12	11
		0.125	9	8
		0.190	6	5
		0.221	4	2
		0.000	22	19

Table 5 :

 5 The number of communities and their minimum and maximum sizes for the realworld networks based on communities identified by Infomap.

	Network	Number of communities Minimum Size Maximum Size
	EU Airlines	10	2	332
	Ego Facebook	72	2	471
	U.S. Airports	39	2	226
	Facebook Friends	21	2	72
	Facebook Politician Pages	180	2	421
	Madrid Train Bombings	5	3	38
	Yeast Collins	61	2	119
	Malaria Genes	11	2	86
	NetSci	38	3	32
	Reptiles	55	2	42
	Marvel Partnerships	27	2	11
	911AllWords	842	2	7609
	U.S. Power Grid	422	3	44
	Board of Directors	78	5	23
	PGP	896	2	160
	Princeton	29	2	3714
	London Transport	50	4	14
	EuroRoad	111	3	22
	Internet Topology Cogentco	27	4	19
	DNC Emails	38	2	231
	Yeast Protein	164	2	49
	Blumenau Drug	6	3	29
	Retweets Copenhagen	92	3	32
	Hamsterster	64	2	692
	Human Protein	99	2	645
	Caltech	11	2	270
	Facebook Organizations	51	11	526
	Interactome Vidal	222	2	124
	AstroPh	675	2	547
	DeezerEU	1395	2	446
	DBLP	376	2	528
	Adolescent Health	136	3	237
	Bible Nouns	88	3	131

Table 6 :

 6 The number of communities and their minimum and maximum sizes for the realworld networks based on communities identified by Louvain.

	Network	Number of communities Minimum Size Maximum Size
	EU Airlines	8	27	103
	Ego Facebook	15	19	548
	U.S. Airports	12	2	137
	Facebook Friends	10	5	92
	Facebook Politician Pages	29	17	585
	Madrid Train Bombings	5	3	22
	Yeast Collins	22	3	130
	Malaria Genes	8	6	71
	NetSci	18	6	56
	Reptiles	19	6	55
	Marvel Partnerships	14	6	19
	911AllWords	14	5	2052
	U.S. Power Grid	41	26	241
	Board of Directors	26	13	69
	PGP	101	6	672
	Princeton	11	4	1752
	London Transport	17	11	31
	EuroRoad	23	20	84
	Internet Topology Cogentco	12	6	27
	DNC Emails	10	2	210
	Yeast Protein	33	9	84
	Blumenau Drug	5	12	19
	Retweets Copenhagen	23	7	85
	Hamsterster	13	6	307
	Human Protein	14	32	604
	Caltech	9	9	164
	Facebook Organizations	11	35	1267
	Interactome Vidal	34	4	412
	AstroPh	32	5	1629
	DeezerEU	91	4	4326
	DBLP	22	5	1933
	Adolescent Health	19	16	358
	Bible Nouns	17	6	247

|E in cq |-|E in i,cq | + |E out cq |-|E out i,cq | 2(|E|-|E i |)

DATA

Throughout this thesis, synthetic and real-world networks are used. The synthetic networks are generated by the LFR model with which several topological parameters can be controlled [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF]. The real-world networks pertain to various domains and are characterized by diverse topological structures. All real-world networks can be obtained online [START_REF] Lusseau | The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations[END_REF][START_REF] Rossi | The network data repository with interactive graph analytics and visualization[END_REF][START_REF] Clauset | The colorado index of complex networks[END_REF][START_REF] Latora | Complex networks: principles, methods and applications[END_REF][START_REF] Rozemberczki | Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models[END_REF][START_REF] Tiago | The netzschleuder network catalogue and repository[END_REF][START_REF] Kunegis | Handbook of network analysis[END_REF] 

LIST OF FIGURES

Comparing the position of the top nodes in the Facebook Politician

Pages network (µ = 0.111 The LFR model [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF] allows generating modular networks with controlled power-law degree (γ) and community size (θ) distributions. In addition, one can also tune the community structure strength through the so-called mixing parameter (µ). Small values of µ indicate a strong community structure with few links between communities. Weak community structures correspond to high values of µ with a high fraction of connections between communities. Throughout this thesis, studies involve simulations on a set of synthetic networks with diverse values for the mixing parameter (µ), community size distribution (θ), and degree distribution (γ). Table 1 reports these parameter values. 

REAL-WORLD NETWORKS

A set of 50 real-world networks is collected from different fields (social, biological, ecological, infrastructure, and collaboration networks). They are provided in Table 2.

COMMUNITY DETECTION ALGORITHMS

If the community structure of the networks under test is unknown, one uses a community detection algorithm. The non-overlapping community structure is identified using Infomap [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF] and Louvain [START_REF] Vincent D Blondel | Fast unfolding of communities in large networks[END_REF]. The overlapping community structure is uncovered by the Speaker-Listener Label Propagation Algorithm (SLPA) [START_REF] Xie | Slpa: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process[END_REF] and the Lancichinetti Fortunato Method (LFM) [START_REF] Lancichinetti | Detecting the overlapping and hierarchical community structure in complex networks[END_REF]. Previous research shows the effectiveness of these algorithms in uncovering communities [START_REF] Jebabli | Community detection algorithm evaluation with ground-truth data[END_REF][START_REF] Orman | Comparative evaluation of community detection algorithms: a topological approach[END_REF][START_REF] Dao | Community structure: A comparative evaluation of community detection methods[END_REF]. 

Table 2: The fifty real-world networks used in this study divided into eight different domains.

Infomap is based on data compression and random walks. A random walker is first deployed on the network. A random walker is more likely to stay in the same community than leave for another community due to the modular structure of real-world networks. Huffman coding is used to retain the information about staying and leaving the communities using prefix codes (for the communities) and suffix codes (for the nodes). The suffix codes can be used several times. By compressing the random walk description, the non-overlapping community structure is revealed.

Louvain is based on optimizing the modularity of a network. It consists of two iterative steps. First, communities are uncovered by maximizing local modularity between the nodes. Second, a new network is built consisting of nodes as the communities found in the previous step, and modularity is maximized on this new network until no further gain can be achieved.

Speaker-Listener Label Propagation Algorithm (SLPA) is based on information diffusion. In SLPA, an extended version of the Label Propagation Algorithm, nodes can save their gained knowledge (i.e., different labels) from previous iterations. Initially, each node belongs to a different community. In other words, each node has a unique label. Next, a random node is selected as a listener. Labels are propagated from their speakers (i.e., neighbors). The process keeps iterating based on a user-defined number of iterations T. When the diffusion of labels stops, the memory of each node resembles a probability distribution of membership strengths to different communities. A probability r is then assigned to transform the membership strengths into binary memberships. In this thesis, T is set to 20, and r is set to 0.01.

Lancichinetti Fortunato Method (LFM) is based on the fitness function. The fitness function quantifies the strength of the community structure through the internal and total degrees of communities. It incorporates a resolution parameter for detecting overlapping and hierarchical communities simultaneously. Low values of the resolution parameter yield few but large communities, while high values produce numerous small communities. One starts with any node at random considered as a community. The optimization process adds nodes to this community, maximizing the fitness function. After reaching a local maximum, one chooses another node randomly from the unassigned nodes. Then, the process iterates until all nodes belong to at least one community. Nodes assigned to communities can also be added to newly created communities, resulting in an overlapping community structure. In this thesis, the resolution parameter is set to 0.8.

RELATIVE OUTBREAK SIZE

The outbreak size, which indicates the total number of nodes in the recovered or activated state, is calculated for each centrality measure when the diffusion process ends. This value indicates the spreading/influence ability of the centrality measure at a given fraction of initially infected/active nodes f o . The higher this value, the more effective the centrality measure in selecting the most influential nodes. The relative difference in the outbreak size is defined as follows:

where:

• R c denotes the outbreak size using a centrality measure c under test

• R r denotes the outbreak size using the reference centrality ∆R is positive if the centrality measure under test is more effective than the reference. Else, ∆R is negative. It is important to note that in the SIR model, ∆R has the same meaning as ∆A in the IC model, which is the relative size of activation. These measures both assess the number of nodes that become infected or activated at the end of the diffusion process.