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ABSTRACT

Networks are everywhere. We encounter them daily in our lives, through our social inter-
actions, how we come up with decisions in our brain, to having phone calls, conducting
financial transactions, and traveling from one place to another. Individual actions are
influenced by their environment, which is, in turn, influenced by the network’s topology.
Notably, individuals may change their actions, ideas, or opinions to conform to the aspi-
rations of a particular social group. In the same vein, the spread of a virus can take a
certain course if the network’s structure induces specific pathways for expansion. In such
scenarios, communities substantially impact the evolution of the dynamics. They can hin-
der or enhance diffusion flow depending on where diffusion originates. Nodes within and
between communities are responsible for initiating the dynamic diffusion flow in networks,
while influential nodes can play a crucial role in boosting diffusion. The significance of
comprehending the community structure of a network and its impact on the underlying
dynamics, initiated by the nodes, is accentuated by many real-world scenarios. In this
thesis, we study the interplay between dynamic models, influential nodes, the process
of identifying them, and the network’s topology. First, we investigate how the output of
various dynamic models is influenced by the network topology, with seed nodes ranked
using community-aware centrality measures. Studying this problem can provide insights
into how diffusion spreads and identify constraints that limit the effectiveness of utilizing
dynamic scenarios in practical situations, such as promoting viral marketing or combating
false information. Second, we tackle the problem of influence redundancy and propose
a new ranking scheme to naturally select distant nodes to expand any diffusion phenom-
ena. By tackling this problem through the proposed ranking scheme, diffusion ought to
be maximized, independent of the network type. This renders a powerful tool suitable
for researchers aiming to maximize diffusion in many applications. Third, researchers
mainly focus on identifying influential nodes in networks with a non-overlapping commu-
nity structure, while many networks have an overlapping community structure. Moreover,
the measures developed for networks with an overlapping community structure are inflex-
ible to missing or varying information. Therefore, we propose a flexible framework that
identifies influential nodes in networks with incomplete, complete, fuzzy, or crisp over-
lapping information about the nodes. This framework allows researchers to incorporate
various information about overlaps and customize it to different circumstances and infor-
mation availability.

Keywords: Network science, Complex networks, Community structure, Dynamic models,
Centrality measures, Information diffusion
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RÉSUMÉ

Les réseaux sont partout. Nous les rencontrons quotidiennement dans nos vies, à travers
nos interactions sociales, la façon dont nous prenons des décisions dans notre cerveau,
les appels téléphoniques, les transactions financières et les déplacements d’un endroit
à un autre. Les actions individuelles sont influencées par leur environnement, qui est, à
son tour, influencé par la topologie du réseau. Notamment, les individus peuvent modifier
leurs actions, leurs idées ou leurs opinions pour se conformer aux aspirations d’un groupe
social particulier. Dans le même ordre d’idées, la propagation d’un virus peut prendre un
certain cours si la structure du réseau induit des voies d’expansion spécifiques. Dans
de tels scénarios, les communautés ont un impact substantiel sur l’évolution de la dy-
namique. Ils peuvent entraver ou améliorer le flux de diffusion selon l’origine de la dif-
fusion. Les nœuds au sein et entre les communautés sont chargés d’initier le flux de
diffusion dynamique dans les réseaux, tandis que les nœuds influents peuvent jouer un
rôle crucial dans la stimulation de la diffusion. L’importance de comprendre la structure
communautaire d’un réseau et son impact sur la dynamique sous-jacente, initiée par les
nœuds, est accentuée par de nombreux scénarios du monde réel. Dans cette thèse,
nous étudions l’interaction entre les modèles dynamiques, les nœuds influents, leur pro-
cessus d’identification et la topologie du réseau. Tout d’abord, nous étudions comment
la sortie de divers modèles dynamiques est influencée par la topologie du réseau, avec
des nœuds de départ classés à l’aide de mesures de centralité communautaire. L’étude
de ce problème peut fournir des informations sur la façon dont la diffusion se propage
et identifier les contraintes qui limitent l’efficacité de l’utilisation de scénarios dynamiques
dans des situations pratiques, telles que la promotion du marketing viral ou la lutte contre
les fausses informations. Deuxièmement, nous abordons le problème de la redondance
d’influence et proposons un nouveau schéma de classement pour sélectionner naturelle-
ment les nœuds distants afin d’étendre tout phénomène de diffusion. En abordant ce
problème à travers le schéma de classement proposé, la diffusion doit être maximisée,
indépendamment du type de réseau. Cela rend un outil puissant adapté aux chercheurs
visant à maximiser la diffusion dans de nombreuses applications. Troisièmement, les
chercheurs se concentrent principalement sur l’identification des nœuds influents dans
les réseaux avec une structure communautaire sans chevauchement, alors que de nom-
breux réseaux ont une structure communautaire qui se chevauche. De plus, les mesures
développées pour les réseaux dont la structure communautaire se chevauche sont inflex-
ibles face aux informations manquantes ou variables. Par conséquent, nous proposons
un framework flexible qui identifie les nœuds influents dans les réseaux avec des infor-
mations incomplètes, complètes, floues ou nettes qui se chevauchent sur les nœuds. Ce
framework permet aux chercheurs d’intégrer diverses informations sur les chevauche-
ments et de les personnaliser en fonction des circonstances et de la disponibilité des
informations.

Keywords: Science des réseaux, Réseaux complexes, Structure communautaire,
Modèles dynamiques, Mesures de centralité, Diffusion de l’information
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1
INTRODUCTION

Contents
1.1 Context and problematic . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1/ CONTEXT AND PROBLEMATIC

Diverse and highly connected networks surround us at any given moment in time. Even
though networks originate from a multitude of domains, such as biology, finance, trans-
portation, and society, they tend to share similar structural features. One of the most
natural and pervasive features is the community structure: networks are often com-
posed of nodes grouped into communities that are more densely connected than nodes
in other communities [1]. Communities can correspond to a group of proteins interacting
for proper cell functioning [2], to web pages of similar topics [3], to papers related to a
specific topic [4], or to a group of friends sharing similar interests and aspirations either
in real life or online [5, 6].

Within these networks, it is of utmost importance to identify influential nodes. For in-
stance, in marketing and awareness campaigns, the person’s adoption of new products,
services, and opinions relies heavily on influencer(s) identification. Pinching essential
proteins is decisive for treating infectious and cancer diseases in biological networks. In
finance, detecting key financial institutions that may default is necessary to avoid a cas-
cade of defaults. Vaccinating influential nodes allows controlling an epidemic spreading,
saving populations from significant threats. Even in terrorist networks, identifying influen-
tial nodes is a critical proactive measure to eradicate life losses.

Given such real-world scenarios, one can employ centrality measures, which are consid-
ered to be one of the most popular approaches exploiting network structure to identify
influential nodes [7]. Nodes with a high centrality value are deemed important. The no-
tion of importance depends on how the centrality functions. Local centrality measures
are established upon neighborhood information, such as degree centrality. The latter
quantifies node influence based on the total number of links a node possesses. Global
centrality measures quantify the centrality of a node by inspecting its position in the entire
network, such as betweenness centrality. The latter computes the shortest paths of all

1



2 CHAPTER 1. INTRODUCTION

possible node pairs in order to measure the extent of each node lying in the computed
shortest paths. Both local and global information can also be combined to quantify node
importance [8, 9].

Diffusion is a crucial recurring scenario in many real-world networks. Epidemics, com-
puter viruses, information (whether genuine or fake), opinions, behaviors, and innovations
can all diffuse in networks. Diffusion can create adverse outcomes such as pandemics,
losing internet connectivity across regions, and spreading fake news. However, it can
also yield positive outcomes such as identifying cyber-attackers and the origins of fake
news, raising people’s awareness, spreading positivity, and conducting profitable mar-
keting campaigns. These scenarios led researchers to introduce models to characterize
diffusion better, aiming to either minimize the negative outcomes or maximize the positive
ones [10].

Based on the hypothesis that central nodes (i.e., nodes with high centrality) should spread
the most [11], the selection of the seeds aims to maximize diffusion in any diffusion phe-
nomenon. For instance, in marketing and awareness campaigns, selecting the most
influential nodes to diffuse their influence across the network is decisive as the budget is
limited. Indeed, it was shown that in viral marketing, centrality measures based on ran-
dom walks yield the highest number of consumer activation [12]. By virtue of the node’s
influence, online word-of-mouth can provide a path for the exponential spread of infor-
mation [13]. In the same vein, in an epidemic spreading scenario, it was shown that the
infectious capacity of nodes is related to their coreness and degree [14].

Notwithstanding their merit, classical centrality measures ignore the network organization
in communities, one of the main features characterizing real-world networks [6]. Commu-
nities can impact the spreading power of nodes. A diffusion can die out in its originating
community if the number of inter-community links (i.e., links connecting communities)
does not pass a certain threshold [15, 16]. For a global cascade to occur, networks need
to have an optimal fraction of inter-community links [17]. Indeed, communities induce a
confinement effect which may trap the spread of any dynamic process [18, 19].

Community-aware centrality measures tackle the shortcoming of classical centrality mea-
sures that are agnostic about the community structure [20–32]. They are built on the
hypothesis of Granovetter [33], who argued that weak ties could be more powerful than
strong ties for diffusion to occur across communities. Weak ties resemble inter-community
links (i.e., links between nodes belonging to different communities) and are often less fre-
quent. Strong ties resemble intra-community links (i.e., links between nodes belonging to
the same community). Community-aware centrality measures distinguish between these
two types of links, which in turn characterize nodes’ local and global influence at the
mesoscopic level. Intra-community links play a part in the diffusion inside the communi-
ties, while inter-community links permit the diffusion to spread across communities.

The hierarchical relationship between the network, the seed nodes, and the diffusion
models is shown in Figure 1.1. We use this hierarchy to clarify the main limitations found
in the literature and, subsequently, the research questions of the thesis. Given a network
(A), the regions in which diffusion begins are dictated by the seeds (B) that initiate a
spreading phenomenon based on a diffusion model (C). The seeds can be chosen given
any centrality measure, whether classical or community-aware. The network structure
impacts centrality measures. For instance, an influential node with a weak community
structure strength may not be significant in a network with a strong community structure
strength, and vice versa. Following the hierarchical relationship from bottom to top, one
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can assess the spreading reachability of the diffusion model (C), such that the extent of
the spreading is dependent on the seed nodes which initiate the diffusion (B) and the
network structure (A). The selection of the seed nodes using centrality measures (B) also
depends on the network structure (A).

Figure 1.1: The dependencies between the network, the seed nodes, and the diffu-
sion models.

Within the realm of the crucial importance of selecting seed nodes that maximize diffusion
in networks and that many diffusion models are available in the literature, there are several
research problems left unanswered between the network and its underlying structure, the
seed nodes, and the diffusion models:

The first research problem: Researchers developed many diffusion models to charac-
terize realistic situations. Each model involves various conditions on how the propagation
evolves from one node to another. Given that community-aware centrality measures can
exploit community structure information to identify influential nodes, most research fo-
cuses on one spreading model to assess their diffusive ability. A single model is not
enough to determine the interplay between the diffusive power of seed nodes selected by
the community-aware centrality measures, the network structure, and the diffusion model
dynamics. In other words, it is unknown how sensitive the different models’ spreading
reachability is to the network’s structure and the seed nodes selected by the community-
aware centrality measures.

The second research problem: Since classical centrality measures do not consider the
community structure while computing the centrality of each node, they are susceptible
to quantifying many influential nodes located in the vicinity of each other. Whether the
centrality is based on local information, global information, or both, the top nodes to be tar-
geted for diffusion maximization may all be positioned in one region. Consequently, since
the nodes’ influence overlaps, their diffusive impact on their direct and indirect neighbor-
hoods is diminished. In other words, these nodes will influence a similar set of nodes
while other nodes in distant regions are left intact. Thus, even with a large number of
influential nodes to be invested in (i.e., infected or activated), the diffusion spread may be
marginal.

The third research problem: Despite the recent advancements in community-aware
centrality measures, few works have been dedicated to networks with overlapping com-
munity structure. The overlapping community structure can be naturally found in so-
cial, collaboration, biological, and ecological networks. Within these networks, a node
may pertain to several communities to play several roles. Moreover, the overlapping
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community-aware centrality measures do not handle missing or varying overlapping in-
formation, which is a challenge faced by many researchers and practitioners. Despite
their effectiveness in many real-world scenarios, this leads to underusing the current
overlapping community-aware centrality measures to identify influential nodes.

In this thesis, we address the stated research problems and aim to answer the following
questions:

1. How does the diffusion models’ output depend on the seeds selected by the
community-aware centrality measures and the network structure?

2. Can we generalize the rankings of centrality measures using a community-aware
ranking scheme to boost diffusion in all network types?

3. Given the vastly changing and diverse, overlapping community-level information,
can we effectively identify influential nodes to maximize diffusion?

In the following sections and we describe the contributions of the thesis, its structure,
followed by the publications within the framework of the thesis.

1.2/ THESIS CONTRIBUTION

This thesis aims to contribute to the literature on the relationship between network struc-
ture, influential nodes identification, and dynamic models. To this end, three main contri-
butions are introduced. These contributions have led to the publication of several scientific
articles that we quote in the upcoming sections.

1) The first research study analyzes the relationship between dynamic models, commu-
nity structure, and community-aware centrality measures. Researchers have designed
many dynamic models to characterize real-life spreading scenarios, such as the diffusion
of opinions or the spread of epidemic diseases. These models are designed with specific
conditions as the dynamic model evolves. We address the question of how the network’s
community structure can impact the dynamics of four state-of-the-art diffusion models
(i.e., Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), Linear Threshold
(LT), and Independent Cascade (IC)), on a set of synthetic and real-world networks. The
diffusive phenomenon starts from a limited set of nodes based on the community-aware
centrality measures. Using a set of synthetic and real-world networks with diverse com-
munity structure strengths, we highlight the differences and similarities between dynamic
models when diffusion originates from various points in the network. The contributions of
this study are as follows:

1. Helping better understand how nodes’ influence spreads under various diffusion
models.

2. Highlighting how the network structure can impact the selection of seed nodes
based on community-aware centrality measures and the extent of reachability of
any diffusion model.

3. Providing a solid outset for practitioners to select seed nodes that maximize diffu-
sion based on the network structure, budget availability, and the diffusion model that
applies in their research case.
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2) The second research study is concerned with the problem of influence redundancy. A
major pitfall of centrality measures is deeming nodes near each other the most influen-
tial. Hence, these nodes are ranked on top of the list in descending order to be selected
for maximizing diffusion. However, since these nodes are located near each other, they
saturate their shared zone of influence. Consequently, the influence of these nodes has
few distinct venues for expansion to distant network regions. To tackle this issue, we pro-
pose a ranking strategy exploiting the ubiquity of the community structure in real-world
networks. By iterating communities from largest to smallest, the proposed community-
aware ranking scheme naturally selects a set of faraway spreaders with the most signif-
icant influence. The ranking scheme is tested on synthetic and real-world networks and
compared against six classical centrality measures based on the node’s neighborhood,
paths, and direct and indirect influence in the network. Under all circumstances, the dif-
fusion phenomenon is boosted with the community-aware ranking scheme compared to
the descending-order ranking scheme of the centrality measures. The contributions of
this study are as follows:

1. Designing a ranking scheme capable of working with any centrality measure com-
puted on any network type (undirected/directed and unweighted/weighted).

2. Assuring the selection of distant influential nodes to expand any diffusion phenom-
ena based on any given budget.

3. Serving as a tool for many real-world cases, such as implementing viral marketing,
conducting awareness campaigns, and hindering misinformation on networks.

3) The third research study addresses the issue of identifying influential nodes in com-
plex networks with overlapping community structure. Researchers mainly focus on net-
works with a non-overlapping community structure. Many networks, such as biological
and social, are made up of nodes that pertain to several communities rather than one.
Moreover, the overlapping information might not be available for all the nodes or might
vary from one node to another. For instance, the node may fully belong to more than
one community. However, the node may also belong to more than one community to a
specific extent. The dissimilarity in information availability calls for a general approach
to identify influential nodes in networks with an overlapping community structure. In this
study, we introduce the Overlapping Modularity Vitality framework. The proposed frame-
work can integrate multiple definitions of overlapping modularity via different formulations
of the community membership strengths of the nodes. We show that overlapping informa-
tion provides an exploitable ground for identifying influential nodes effectively with various
types of information at hand. The contributions of this study are as follows:

1. Introducing a framework in which one can integrate multiple definitions of over-
lapping modularity via different formulations of the nodes’ community membership
strengths (fuzzy or crisp) to identify influential nodes.

2. Investigating how various overlapping modularity alternative definitions that inte-
grate distinct contextual information about the nodes impact identifying influential
nodes.

3. Offering flexibility in case missing or varying overlapping information is confronted
as the framework can adapt to compute the centrality of one or many nodes with
various information types.
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1.3/ THESIS STRUCTURE

The structure of the thesis is as follows:

Chapter 1 - Introduction: In this chapter, we discuss the ubiquity of communities, the
importance of identifying influential nodes within them, and maximizing diffusion under
different dynamic conditions. We shed light on why community-aware centrality mea-
sures provide better insights about nodes in networks with community structure and how
community structure plays a role in confining diffusion dynamics. Since the network’s
community structure, influential nodes identification, and dynamic models are linked (dy-
namics are initiated by nodes that are located in or between communities), in this chapter,
we highlight three main research gaps found in the literature, and we pose three main re-
search questions targeting these gaps. The research questions’ answers are the basis of
the thesis’ contributions.

Chapter 2 - Background: In this chapter, we provide the basic notions and elements
to grasp the thesis better. We first present the different centrality measures investi-
gated in this thesis: classical and community-aware. The former can be divided into
neighborhood-based, path-based, and iterative refinement-based. The latter can be di-
vided into non-overlapping and overlapping. Then, we present the four diffusion models
used in this thesis, two of which belong to epidemic models and two to information diffu-
sion models. Finally, we present several network quality measures that could be used to
characterize networks while putting more emphasis on overlapping modularity, which is
the foundation of the framework proposed in Chapter 5.

Chapter 3 - Diffusion on Networks with Community Structure: In this chapter, we
explore the relationship between the network’s community structure, diffusion of dynamic
models, and nodes selected, given the ranking of community-aware centrality measures.
We use four models that portray other dynamical conditions: SI, SIR, LT, and IC. Each
model is initiated with a set of seed nodes selected based on the community-aware cen-
trality measures on synthetic and real-world networks. The size of the seed nodes varies
according to a predefined budget. We compare and highlight the consistency in the per-
formance of the community-aware centrality measures across one set of models and
show how the nodes selected in different regions in the network yield various diffusion
outcomes. In summary, the findings of this chapter demystify the performance of the
community-aware centrality measures under diverse community structures and diffusion
models, which in turn can better guide practitioners in utilizing community-aware centrality
measures.

Chapter 4 - A Community-Aware Ranking Scheme: This chapter focuses on the prob-
lem of influence redundancy and ranking influential nodes. Centrality measures rank
nodes using the classical descending order ranking scheme, with the top being the most
influential. However, the top nodes ranked as most influential may be in the vicinity of
each other. Consequently, there are diminishes in return for the diffusion initiated by
these nodes. To tackle this issue, we propose a community-aware ranking scheme that
ranks the most influential nodes by iterating across the communities, from the biggest
to the smallest, using any centrality measure. The ranking scheme is assessed with the
Susceptible-Infected-Recovered (SIR) diffusion model on a set of synthetic and real-world
networks using six centrality measures: two local measures exploiting the neighborhood
of the node, two path-based measures, and two iterative refinement-based measures. In
summary, the findings of this chapter allow the selection of influential nodes across all



1.4. PUBLICATIONS 7

the network regions without saturating their zone of influence and independently of the
centrality and network types.

Chapter 5 - The Overlapping Modularity Vitality Framework: This chapter is dedi-
cated to networks with an overlapping community structure, a feature neglected by many
researchers working on identifying influential nodes. The researchers who address this
issue provide measures that are hard-coded and thus inflexible in many real-world sce-
narios. To tackle this issue, we propose a flexible framework called Overlapping Modular-
ity Vitality, based on a generalized modularity equation that accounts for the overlapping
community structure in a network. Depending on information availability, it can incorpo-
rate fuzzy and/or crisp overlapping information for one or many nodes. The framework is
assessed with various definitions of the overlapping modularity on the SIR model and is
compared with other state-of-the-art overlapping community-aware centrality measures.
In summary, the findings of this chapter show that overlapping information, even if it varies
from one node to another, can be exploited using the proposed framework to maximize
diffusion.

Chapter 6 - Conclusion and Future Perspectives: This chapter concludes our work
then suggests pathways for future research work.
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2.1/ CENTRALITY MEASURES

Centrality measures quantify the node influence in a network. Let G(V, E) be an undi-
rected and unweighted graph where V is the set of nodes, E ⊆ V ×V is the set of edges,
and N = |V| is the total size of the network. The connections between the nodes are
represented in the adjacency matrix A = (ai,j) such that ai,j = 1, if node i is connected
to node j and ai,j = 0, otherwise. Let the neighborhood of any node i be defined as the
set Np(i) = {j ∈ V, (i, j) ∈ E} at length p, where p = 1, 2, ..., D. D is the diameter of G.
Accordingly, two nodes are neighbors of order Ap if there’s a minimal path connecting
them at p steps.

2.1.1/ CLASSICAL MEASURES

Classically, centrality measures can be categorized into neighborhood-based, path-
based, and iterative refinement-based [7] measures. Neighborhood-based centralities
count on the node’s capacity to influence its surrounding neighborhood. Path-based cen-
tralities rely on the node’s role in disseminating information quickly and effectively. Finally,
iterative refinement-based centralities quantify the importance of a node based on its
direct influence on its neighbors, the capacity of the neighbors to influence their neigh-
borhood, and so on. Centrality measures can also be classified into local and global mea-
sures depending on the topological information they process. Local measures rely on a

11
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node’s ability to influence its neighborhood, while global measures are concerned with
the ability of a node to influence the whole network. Generally, local measures require
a low computation cost, while global ones are computationally intensive. More recent
works consider centrality as a multidimensional issue where local and global information
can be combined [8, 9].

NEIGHBORHOOD-BASED MEASURES

1. Degree centrality of a node sums the total number of connections a node has in its
direct neighborhood. It can be defined as:

ηd(i) = ki =
N

∑
j=1

aij (2.1)

where aij is obtained from A1, 1-step neighborhood (p=1).

2. Maximum Neighborhood Component centrality extracts the largest connected com-
ponent (LCC) from the direct neighborhood of a node to quantify its importance. It can be
defined as:

ηm(i) = |LCC ∈ N1(i)| (2.2)

where N1(i) is the set of direct neighbors of node i.

PATH-BASED CENTRALITY MEASURES

1. Betweenness centrality is based on the frequency of a node situated in the shortest
path between any other two nodes in the network. It is defined as:

ηb(i) = ∑
s,t,i

σi(s, t)
σ(s, t)

(2.3)

where σ(s, t) is the number of shortest paths between nodes s and t and σi(s, t) is the
number of shortest paths between nodes s and t that pass through node i.

2. Closeness centrality is based on how close, on average, a node is to all other nodes
in the network. It is defined as:

ηc(i) =
N − 1

∑N−1
j=1 d(i, j)

(2.4)

where d(i, j) is the shortest path distance between node i and j.

ITERATIVE REFINEMENT-BASED CENTRALITY MEASURES

1. Katz centrality quantifies a node’s importance based on the influence of all the other
nodes on it and their subsequent distances. As the distance of a node increases, its
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influence diminishes. It is defined as:

ηk(i) = ∑
p=1

∑
j=1

spap
ij (2.5)

where ap
ij is the connectivity of node i with respect to all the other nodes at Ap and sp is

the attenuation factor where s ∈ [0,1].

2. PageRank centrality is based on the quantity and quality of the node’s direct and
indirect connections. It can be thought of as a Markov chain process. It is defined as:

ηp(i) =
1− d

N
+ d ∑

j∈N1(i)

ηp(j)
mj

(2.6)

where ηp(i) and ηp(j) are the PageRank centralities of node i and node j, respectively,
N1(i) is the set of direct neighbors of node i, mj is the number of links from node j to
node i, and d is the damping parameter where d ∈ [0,1]. The damping parameter d is set
to 0.85.

2.1.2/ COMMUNITY-AWARE MEASURES

Classical centrality measures are community-agnostic. They do not incorporate any infor-
mation about the community structure to measure the node influence, although it proves
to be a ubiquitous property in real-world networks [6, 34]. In contrast, recently devel-
oped community-aware centrality measures offer a novel perspective by exploiting the
network’s mesoscopic properties more effectively to quantify the nodes’ influence. They
can be divided into non-overlapping [20–27] and overlapping measures [28–32]. In a
network with a community structure, one can distinguish the local and global influence of
the nodes. A node exerts its local influence on nodes inside its community through its
intra-community links. In contrast, its global importance quantifies its ability to influence
the nodes it connects to outside its community and is exerted through the node’s inter-
community links. Non-overlapping community-aware centrality measures combine intra-
community and inter-community links differently. Overlapping community-aware centrality
measures add overlapping information that further refines the local and/or global influence
of a node.

Let graph G be divided to C = {c1, c2, ..., cq, ..., c|C|} communities where cq is q-th com-
munity, |C| is the total number of communities, and ncq is the total number of nodes in
community cq. In a non-overlapping community structure, a node i is a member of a
single community cq, therefore cq ∩ cl = ∅ ∀ q , l and

⋃|C|
q=1 = V. In an overlapping

community structure, a node i can be a member of one or more communities. Conse-
quently, ∃ q , l | cq ∩ cl , ∅ and

⋃|C|
q=1 = V. Intra-community edges link nodes in the

same community, while inter-community edges join nodes in different communities. More
formally, | Ein

cq
|= 1

2 ∑
i,j∈cq

Ai,j and | Eout
cq
|= ∑

i∈cq

∑
j∈C\cq

Ai,j denote, respectively, the number

of intra-community and inter-community edges of community cq.

A node i has a total degree of ki = ∑N
j=1 Ai,j = kintra

i + kinter
i where kintra

i is the internal
degree and kinter

i is the external degree. More formally, kintra
i = ∑N

j=1 Ai,jδ(ci, cj) and
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kinter
i = ∑N

j=1 Ai,j(1− δ(ci, cj)) where δ(i, j) is the Kronecker delta function, indicating that
δ(m, n) = 1 if m = n, otherwise δ(m, n) = 0, ci denotes community of node i, and cj denotes
the community of node j. Moreover, a node i has a degree in community cq denoted as
ki,cq . In other words, ki,cq is the number of links node i has, reaching community cq, defined
as ki,cq = ∑N

j=1 Ai,jδ(cj, cq). It is important to understand that the distinction between kintra
i

and ki,cq lies in the fact that the former represents the overall internal degree of the node
across all communities, while the latter refers to the internal degree of the node within a
particular community cq.

NON-OVERLAPPING MEASURES

1. Participation Coefficient [20] quantifies the node’s importance based on its participa-
tion in various communities through its inter-community links. The more diversified across
the communities a node’s links are, the higher its Participation Coefficient. If the node has
only intra-community links, its Participation Coefficient reduces to zero. It is defined as
follows:

αPC(i) = 1−
|C|

∑
q=1

( ki,cq

ki

)2

(2.7)

2. Community-based Centrality [21] places importance on the distribution of a node’s
links in its community and across the other communities. The size of the communities it is
connected to is also part of the measure. Indeed, the community size either undermines
or enhances the node’s influence. It is defined as follows:

αCBC(i) =
|C|

∑
q=1

ki,cq

(ncq

N

)
(2.8)

3. Comm Centrality [22] differentiates hubs (high-degree nodes) from bridges (the link
between communities) based on a weighted combination of the intra-community links and
inter-community links while giving bridges a higher priority. It is defined as follows:

αComm(i) = (1+µcq)×
(

kintra
i

max(j∈cq)k
intra
j
× R

)
+(1−µcq)×

(
kinter

i

max(j∈cq)k
inter
j
× R

)2

(2.9)

where µcq is the fraction of inter-community links over the total community links in the
community, and R is a user-defined value to standardize the intra-community and inter-
community values.

4. K-shell with Community [23] identifies hubs and bridges depending on their hierarchi-
cal position as determined by their k-shell after dividing the network into two components.
The first comprises the intra-community links, characterizing the node’s local influence.
The second comprises the inter-community links, characterizing the node’s global influ-
ence. Then a weighted linear combination of the two influences is computed to assess
the node’s importance. It is defined as follows:

αks(i) = δ× αintra(i) + (1− δ)× αinter(i) (2.10)

where αintra(i) and αinter(i) refer to the k-shell value of node i on the graphs constituting
intra-community links and inter-community links, respectively. In this thesis, δ is equal to
0.5 so neither hubs nor bridges are preferentially selected.



2.1. CENTRALITY MEASURES 15

5. Community-based Mediator [24] identifies influential nodes that can quickly spread
information across communities based on the entropy of their random walks. The more
a node connects communities, the higher its entropy and its importance under the
Community-based Mediator. It is defined as follows:

αCBM(i) = Hi ×
ki

∑N
i=1 ki

(2.11)

where Hi = [−∑ ρintra
i log(ρintra

i )]+[−∑ ρinter
i log(ρinter

i )] is node i’s entropy according to
ρintra and ρinter which represent the intra-community and inter-community links over the
total degree of node i and ∑N

i=1 ki represents the sum of the degrees of all the nodes.

6. Community Hub-Bridge [25] weighs the node’s local influence through its intra-
community links by the size of the node’s belonging community and the node’s global
influence by the number of neighboring communities a node can reach in one hop. Then,
it sums both influences to assess the overall influence. It is defined as follows:

αCHB(i) = ncq,i × kintra
i +

N

∑
cl⊂C\cq

∨
j∈cl

aij × kinter
i (2.12)

where ncq,i is the size of the community cq node i belongs to and
∨

j∈cl
aij = 1 if node i

connects to at least one node j in community cl.

7. Modularity Vitality [26] identifies hubs and bridges based on their contribution to
the network’s modularity. One quantifies their contribution through the vitality principle
that measures the effect of node removal on a quality measure. Removing hubs tends
to decrease the network’s modularity, while removing bridges tends to increase it. It is
defined as follows:

αMV(i) = Q(G)−Q(G \ {i}) (2.13)

where Q(G) is the network’s modularity and Q(G \ {i}) is the network’s modularity after
the removal of node i. Note that since Modularity Vitality is a signed community-aware
centrality measure, we investigate it using hubs-first (α+

MV), bridges-first (α−MV), and hubs-
and-bridges (|αMV |) ranking schemes.

8. Map Equation Centrality [27] measures the importance of a node in a network by
considering the collective marginal harm it causes to the remaining nodes in terms of
codeword length, that is, by how many bits the codeword lengths for the remaining nodes
could be reduced if the node was silenced. Silencing a node means that when a random
walker visits it, the sender does not communicate the codeword for visiting the node to
the receiver, resulting in a compressed network modular description. The more one can
compress the network’s modular description without encoding the node, the higher the
node’s influence. This means that nodes frequently visited by the random walker play an
important role in the network’s modular structure. It is defined as follows:

αMapEq(i) = Li − Li∗ (2.14)

whereLi denotes the inefficient code (i.e., the difference in the code length between the
coding scheme that assigns codewords to all nodes but does not use node i’s codeword)
and Li∗ denotes the efficient code (i.e., the coding scheme that assigns codewords to all
nodes but never for node i).
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Fig 2.1 shows the top node selected by the various community-aware centrality mea-
sures on a toy example network with two communities. The top node appears to be either
a hub-like or bridge-like node. In this figure, if a community-aware centrality measure is
labeled twice, it is because two nodes obtain the same highest centrality score value. In
this case, they are both represented as the top node for the given centrality measure.
For instance, one can see that hub-like nodes (i.e., nodes 4 and 13) are the top node
for Modularity Vitality targeting hubs (α+

MV), Modularity Vitality targeting hubs and bridges
(|αMV |), Community-based Centrality (αCBC), and the Map Equation Centrality (αMapEq).
One can expect this result, as these community-aware centrality measures implicitly em-
phasize hub-like nodes.

Figure 2.1: Top nodes selected by the community-aware centrality measures under
study. The 19 nodes network with 31 edges has two communities with < k > = 3.26.
The solid lines represent the intra-community links and the dashed lines represent the
inter-community links.

Modularity Vitality targeting hubs assesses the node’s importance by quantifying the
Hubs’ contribution to the overall modularity of the network. Removing node 13 or node 4
is the most disruptive action against the cohesiveness of the network communities. Modu-
larity Vitality targeting hubs and bridges takes the aggregate contribution of both hubs and
bridges and ranks the nodes accordingly. Both nodes 4 and 13 have the highest effect on
the network’s modularity compared to the bridge-like nodes. Community-based Centrality
chooses node 13 as the top node because it has the highest number of connections in
its community. Moreover, it belongs to the largest community. Community-based Central-
ity prioritizes hub-like nodes located in large communities. The Map Equation Centrality
picks nodes 4 and 13 as top nodes (i.e., they have the same centrality value). One can
see that they are distributed across the two communities. The random walker is more
likely to stay in nodes 4 and 13 as they are mainly responsible for the flow of information
inside their communities.

The remaining centrality measures rank node 3 as the top node. It plays a bridge-like
role between the communities. Indeed, it is the node with the highest number of inter-
community links. Participation Coefficient (αPC) selects it as the top node because it
distributes its connections across the two communities. Similarly, the Community-based
Mediator (αCBM) grants node 3 the highest entropy based on the distribution of its intra-
community and inter-community links. For Comm Centrality (αComm) and Community Hub-
Bridge (αCHB), node 3 is the most critical bridge-like node due to its connections to its ex-
ternal community while playing an essential role inside its community as well. Concerning



2.1. CENTRALITY MEASURES 17

K-shell with Community (αks), node 3 is the mostly embedded node inside the network’s
local and global components, yielding the highest K-shell with Community centrality value
when both influences are linearly combined. Finally, Modularity Vitality targeting bridges
(α−MV) ranks node 3 as the top node since it is the node that essentially plays a posi-
tive role in the community structure cohesiveness. In other words, if one removes it, the
network’s modularity increases since it becomes more tightly connected.

OVERLAPPING MEASURES

This section presents the main overlapping community-aware centrality measures. Note
that throughout the thesis, when we refer to community-aware centrality measures, we
refer to the non-overlapping measures unless stated otherwise.

1. Membership [28] sums up the number of communities a node is part of. Nodes
belonging to many communities are considered the most influential, as they play a prime
role in propagating diffusion across many communities. The abbreviation of Membership
is βM hereafter.

2. OverlapNeighborhood [29] assumes that overlapping nodes have a higher probability
of connecting to different hubs throughout the network. Hence, by randomly targeting the
neighbors of overlapping nodes for diffusion or immunization, results are improved com-
pared to solely targeting overlapping nodes. The abbreviation of OverlapNeighborhood is
βON hereafter.

3. Random Walk Overlap Selection [30] proposes to target overlapping nodes based on
a random walk since it considers that not all overlapping nodes are important. However,
an overlapping node selected by a random walker is more important since the random
walker had a higher probability of visiting it due to its high degree rather visiting another
overlapping node. The abbreviation of Random Walk Overlap Selection is βRWOS here-
after.

4. Overlapping Modular Centrality [31] first checks if a node is overlapping or not. If so,
the node’s local influence will be based on the network made up of the intra-community
links a node has (i.e., local component). These intra-community links pertain to more
than one community. If the node is not overlapping, the node’s local influence will still
be based on the network made up of intra-community links. However, the node’s local
influence is less amplified since the node does not participate in several communities.
On the other hand, the node’s global influence is always the same, whether the node
is overlapping or not. The global influence is based on the network constructed by the
inter-community links of the node (i.e., global component). Then, choosing any centrality
measure, one computes it on the local and global components. The result will be a
vector of two values, indicating the local and global influence. Both influences are then
combined depending on the user’s choice. In this thesis, we use the degree centrality with
the modulus combination. The abbreviation of Overlapping Modular Centrality is βOMC
hereafter.
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2.2/ DIFFUSION MODELS

Diffusion in complex networks is an important interdisciplinary research area representing
many real-world situations. Researchers from various domains were attracted to develop-
ing models for a more realistic characterization of dynamics on networks. The goal is to
describe the current dynamic situation better to apply well-informed decisions and predict
future trends. For instance, models were proposed to combat malware spreading across
computer networks [35], to optimize online marketing campaigns [36], and to forecast
COVID-19 at different territorial levels [37]. Thus, it is clear that one model characterizing
all real-world situations is insufficient.

Due to the ubiquity of dynamic interactions across networks in many domains, there is
a rich taxonomy for diffusion models. Some researchers refer to them as simple and
complex contagions [38–41]. The dynamics of a simple contagion designate that a single
contact with an active/infected node is enough for successful transmission. With a com-
plex contagion, a node requires an aggregation of connections with its neighborhood for
successful communication to take place. Other researchers divide diffusion models into
biological/epidemic models and social/information diffusion models [42–45]. Epidemic
models characterize the spread of a virus between individuals, with various parameters
in place, such as the infection rate and the recovery rate. In information diffusion, the goal
is to simulate the influence of one person over others through passing knowledge, ideas,
or opinions toward products or controversial topics. Diffusion models also can be divided
into explanatory and predictive models [46–48]. In explanatory models, given an ordered
sequence of activated nodes, the goal is to backtrack the evolution of the propagation.
In predictive models, the aim is to infer the development of the diffusion process from a
set of activated nodes. One can further divide predictive models into graph-based and
non-graph-based [46].

Regardless of the taxonomy, popular models mainly differ in three main aspects. The first
is the number of states a node can acquire. For instance, in the Susceptible-Infected-
Recovered (SIR) model [49], a node can be in one of three states. In contrast, in the
Susceptible-Infected (SI) model [49], the node can be either susceptible or infected. The
second is the frequency of an activated node capable of influencing other nodes. In the
Independent Cascades (IC) model [50], an activated node has a single chance of affecting
its neighboring nodes. On the contrary, in the Linear Threshold (LT) model [51], more
than one possibility of activation is possible. Finally, the third main difference relates to the
conditions set on nodes and/or edges. For example, in the SIR model, a constant infection
rate is set, while in the IC model, the probability of influencing neighboring nodes can vary.
Note that one can use the terms active/infected and inactive/susceptible interchangeably.

We are interested in using various models to study the interplay of the diffusion process
and the networks given a set of activated nodes selected based on the community-aware
centrality measures. In this thesis, we consider four diffusion models:

- The Susceptible-Infected (SI) model
- The Susceptible-Infected-Recovered (SIR) model
- The Linear Threshold (LT) model
- The Independent Cascade (IC) model

We choose these models for three main reasons: their popularity in the scientific commu-
nity, their capacity to model realistically diverse diffusion phenomena, and their genericity.
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The SI and the SIR models originate from epidemiological modeling, while the LT and IC
models originate from information diffusion modeling. Additionally, the SI, SIR, and IC
models are simple contagion processes where an active node has a single chance of ac-
tivating another node. In this case, an inactive node does not rely on collective influence
to change its state. A single event from an influential activated node is enough for it to
become active. In contrast, in the LT model, the success of a transmission depends on
the aggregation of the activations of a node’s neighborhood. Finally, all these models are
predictive since they all predict the diffusion spread in a network given a set of activated
nodes. Fig 2.2 illustrates the main characteristics of the four models. In the following
sections, we discuss each model in more detail.

Figure 2.2: Comparing the diffusion models under study. λ is the infection rate, ψ
is the recovery rate, mv is the total number of active neighbors node v possesses, ξv is
node the threshold of node v, Pu,v is the likelihood of node u activating node v, and ξu,v is
the threshold of edge (u, v).

Note that in this thesis, we use seed-dependent models, not seed-independent ones
like the random walk. Thus, if we change the seeds, the output will change. We also
note that we are not addressing the problem of influence maximization (i.e., finding the
smallest set of nodes that ignites the maximal activation size of nodes). Instead, we are
more interested in the interplay between the dynamic models, the network structure, and
seed nodes selected using centrality measures with different budget availabilities. The
influence maximization problem is NP-hard [52, 53]. Several algorithms have been pro-
posed to approximate this problem. Nevertheless, many require information surpassing
the structural-level information. Moreover, many suffer from scalability limitations. This,
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in turn, hinders their utilization in many real-world cases. For more information about
influence maximization, one can refer to [54, 55].

2.2.1/ EPIDEMIC MODELS

The SI and the SIR models proposed by Kermack and McKendrick [49] are epidemic
models characterizing various diseases. They have been initially developed under a
“well-mixed” populations hypothesis, where individuals have the same probability of in-
teracting. However, in real-world scenarios, a person’s likelihood of contacting another
person depends on the underlying contact network structure [42, 56]. Accordingly, sci-
entists integrate the original models on a network, and the status of the nodes evolves
according to the contact information [57, 58]. One can distinguish homogeneous mixing
(i.e., individuals are equally likely to interact with each other) and heterogeneous mixing
(i.e., contact rate depends on each individual). If detailed data about people interactions
are missing, one uses a homogeneous mixing approximation [56].

SUSCEPTIBLE-INFECTED (SI) MODEL

In the SI model, a node can be either in susceptible (S) or infected (I) states. For a viral
disease, the susceptible state indicates that the node has not yet encountered the virus.
An infected node is a node holding the virus. It may infect its susceptible neighbor(s) at
time t based on the infection rate λ. Once a node is in the infected state, it remains so
forever.

Suppose that at time t, the number of susceptible individuals is denoted by S(t), and
the number of infected individuals is denoted as I(t). Concurrently, in a population of
N = S(t) + I(t) individuals, the susceptible density is i(t) = I(t)/N and the infected
density is s(t) = S(t)/N where s(t) + i(t) = 1. Assuming that each individual has, on
average, < k > connections, and di/dt represents the rate of change of the number of
infected individuals over time, the evolution of the SI model is described as follows:

di
dt

= λ < k > i(t)[1− i(t)] (2.15)

Equation 2.15 indicates that the infected density is directly proportional to the increase in
the infection rate and the average number of connections of an individual. Note that since
there are only two states, an increase in infected individuals leads to an equal decrease
in susceptible individuals.

The SI model is one of the basic models of epidemics, such as several sexually transmit-
ted diseases, yet other significant applications fit into its dynamics. For instance, com-
puter viruses [59], human activity [60], and rumor spreading [61].

SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL

In the SIR model, a node can be either in the susceptible (S), infected (I), or recovered
(R) state. Initially, a set of nodes is infected while all the remaining nodes are susceptible.
At each time step t, every infected node attempts to infect its neighbor(s) with an infection
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rate λ. Simultaneously, each infected node can recover with a recovery rate ψ. It is unable
to infect again. Recovered nodes stay in this state throughout the dynamic process.

The population N in the SIR model divides into three subpopulations such that N =
S(t) + I(t) + R(t) and the densities are s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N,
such that s(t) + i(t) + r(t) = 1. Assuming that each individual has, on average, < k >
connections, and ds/dt, di/dt, and dr/dt represent the change over time in the number
of susceptible, infected, and recovered individuals, respectively, then the evolution of the
SIR model is described as follows:

ds
dt

= −λ < k > i(t)[1− r(t)− i(t)] (2.16)

di
dt

= −ψi(t) + λ < k > i(t)[1− r(t)− i(t)] (2.17)

dr
dt

= ψi(t) (2.18)

Since any individual can recover randomly at any time t, the epidemic outbreak decreases
as the evolution of the SIR process proceeds. Note that the SI model can be apprehended
as the limiting case of the SIR model with a recovery rate (ψ) equal to zero [56].

Like the SI model, the SIR model is not limited to diseases that yield immunity or death.
One can model rumors using the SIR model [62]. Indeed, the SIR model is a basic model
for many information diffusion scenarios, such as the SIRaRu model, which simultane-
ously considers individuals exposed to the rumor and chooses to disseminate it along
with individuals who do not [63]. SIR can also be an ideal model for advertising [64],
economics [65], and computer viruses [66].

2.2.2/ INFORMATION DIFFUSION MODELS

Information diffusion has recently gained much attention due to the ongoing technologi-
cal expansion and the rise in social media platforms. Information spreading can take the
form of viral marketing [67], innovation [68], norms [69], behaviors [70], fake news [71]
and opinions [72]. Modeling diffusion processes helps policymakers and practitioners
understand social behaviors, identify terrorists, halt disseminating false information, and
improve marketing campaigns compared to traditional approaches [43]. Numerous mod-
els have been proposed to describe information diffusion on networks. The most popular
and classical ones are the Linear Threshold (LT) model and the Independent Cascade
(IC) model [10, 47, 73].

LINEAR THRESHOLD (LT) MODEL

The Linear Threshold (LT) model proposed by Granovetter in 1978 depicts the significant
role the neighborhood of an individual plays in social influence [51]. The individual makes
a binary choice at every time step t, relying on social reinforcement. In other words, it
looks at the opinion of its neighborhood at each time step t and becomes active if and
only if the fraction of the activated neighboring nodes (i.e., their collective influence) is
greater than a threshold value.
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An individual v in the LT model possesses a threshold ξv ∈ [0, 1]. At any time t, it can be
in one of the two alternative states:

v(t) =

{
0 if v is inactive
1 if v is active

(2.19)

At each time step t, an inactive node v checks the states of its neighbors. It is activated if
and only if:

mv

kv
≥ ξv (2.20)

where mv is the number of active neighbors of node v and kv is the degree of node v.

Initially developed to characterize complex social contagions, the LT model is prevalent
in real-world scenarios such as joining a riot or a strike, diffusing rumors, voting, and
residential segregation [51]. It has also been used and refined to predict product adoption
in online social networks [74], as well as identifying influential nodes [75], and to assess
the robustness of urban railway networks [76].

INDEPENDENT CASCADE (IC) MODEL

Goldenberg et al. introduced the Independent Cascade (IC) model to represent marketing
dynamics under the simple contagion mechanism [50]. In the IC model, an individual can
either be active or inactive. Each activated individual u has only one chance to activate
their neighbor v with a probability Pu,v. The attempt to activate an inactive individual
is independent of the remaining activated individuals. In other words, the inactivated
individual does not depend on the collective influence of their neighbors. Instead, a single
influential node is capable of activating it.

An individual v in the IC model can be only in one of the two alternative states:

v(t) =

{
0 if v is inactive
1 if v is active

(2.21)

Each edge in the IC model is weighted by an activation probability Pu,v, denoting the
likelihood of node u activating node v. Additionally, one sets a threshold on the edges ξu,v
such that ξu,v ∈ [0, 1] to impede the independent influence of the nodes. Thus, node v is
activated by node u if and only if:

Pu,v ≥ ξu,v (2.22)

One can consider the IC model as a variant of the SIR model with a varying infection rate
among the nodes (Pu,v) instead of a constant infection rate (λ) between all the individuals.
Additionally, one can consider that the IC model has a recovery rate ψ = 1 for all the nodes
since each node has a single chance of activating its neighbor(s) [73]. Apart from mar-
keting, It has been widely used in various situations, spanning from investigating rumor
spreading [77], combating misinformation [78], sentiment analysis [79], and incorporation
of textual data for better diffusion modeling [80].
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2.3/ NETWORK QUALITY MEASURES

One can classify the several quality measures characterizing a community structure into
two groups. Metrics in the first group exploit connectivity patterns [81, 82] while members
of the second group rely on network models [83, 84]. This section briefly discusses these
measures while emphasizing the overlapping modularity, which is used in Chapter 5.

The quality functions f (cq) are usually defined at the community level cq. Then, the
average on all the communities f (C) characterizes the network’s community structure.
In the following, we recall the definitions for a community cq.

2.3.1/ QUALITY MEASURES BASED ON CONNECTIVITY

One can divide quality measures based on connectivity into three categories based on
the type of connectivity they consider: 1) measures based on internal connectivity, 2)
measures based on external connectivity, and 3) measures based on internal & external
connectivity. We briefly describe the main ones.

MEASURES BASED ON INTERNAL CONNECTIVITY

Measures based on internal connectivity quantify the quality of the community according
to edges between nodes located inside the community.

1. Average internal degree is the average internal degree of the nodes included in cq.
The higher the value of the average degree, the stronger the community structure. It is
defined as follows:

f (cq) =
2 | Ein

cq
|

ncq

2. Internal density measures the density of links joining nodes inside community cq. The
higher the value of the internal density, the stronger the community structure. It is defined
as follows:

f (cq) =
2 | Ein

cq
|

ncq(ncq − 1)

MEASURES BASED ON EXTERNAL CONNECTIVITY

Measures based on external connectivity quantify the quality of the community based on
links pointing out of the community.

1. Expansion quantifies the average proportion of external links per node inside cq.
The lower the value of expansion, the stronger the community structure. It is defined as
follows:
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f (cq) =
| Eout

cq
|

ncq

2. Cut ratio is the ratio of external links out of all possible links. The lower the value of
the cut ratio, the stronger the community structure. It is defined as follows:

f (cq) =
| Eout

cq
|

ncq(N − ncq)

MEASURES BASED ON INTERNAL & EXTERNAL CONNECTIVITY

Measures based on internal and external connectivity take information from the internal
and external links simultaneously to quantify a community’s quality.

1. Average-Out Degree Fraction (Average-ODF) is the average fraction of edges con-
necting nodes in community cq to others. The lower the value of the Average-ODF, the
stronger the community structure. It is defined as follows:

f (cq) =
1

ncq
∑
i∈cq

kout
i
ki

2. Fitness function measures the fraction of internal links to the total number of links of
the community [85]. The higher the internal degree of the community, the stronger the
community. It is defined as follows:

f (cq) =
2 | Ein

cq
|

(2 | Ein
cq
| + | Eout

cq
|)α

where α > 0 is a resolution parameter that tunes the size of the communities.

2.3.2/ QUALITY MEASURES BASED ON MODELS

Some quality measures rely on a specific criterion based on a model to quantify the
community structure strength. These measures defined for non-overlapping communities
have natural extensions for networks with an overlapping community structure. Modularity
and the Potts model are the most influential. Indeed, researchers have widely used these
measures as an optimization criterion to identify communities in a network [84, 86–90].
We give a general presentation of modularity and its various versions and present the
Potts model briefly.

OVERLAPPING MODULARITY

Initially introduced by Newman [86], it assumes that a node belongs to a single com-
munity. In numerous real-world scenarios, this is not the case. Therefore, Nepuszet al.
[83] proposed incorporating the community membership strength vector Θ(i) of a node i
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to relax this requirement. Therefore, each node i possesses a community membership
strength defined as follows:

Θ(i) = (θi,c1 , θi,c2 , ..., θi,cq , ..., θi,c|C|) (2.23)

Under this setting, the overlapping modularity definition for fuzzy and crisp communities
is given by:

f (cq) =
1

2 | E |∑i,j

[
Ai,j −

kik j

2 | E |

]
s(Θ(i), Θ(j)) (2.24)

where s(Θ(i), Θ(j)) is a function of the vectors of community membership strength of
nodes i and j denoted as Θ(i) and Θ(j), respectively.

Modularity can be equivalently defined in terms of the intra-community links and inter-
community links of each community [91]. Thus, equation 2.24 can also be written as:

f (cq) =
| Ein

cq
|

| E | −
(

2 | Ein
cq
| + | Eout

cq
|

2 | E |

)2

(2.25)

Note that here modularity is defined for one community. When computed on the whole
network, we denote it as Q′(G).

Fuzzy overlapping community structure

In a fuzzy overlapping community structure, the community membership strength of a
node is a value between zero and one, and the sum of the strength values is normalized
[92]. Consequently, ∀i ∈ V, ∀cq ∈ C 0 ≤ θi,cq ≤ 1 and ∑

cq∈C
θi,cq = 1.

This study uses two fuzzy definitions. The first one, called reciprocity membership, is
independent of the network topology. The second, degree membership, exploits the net-
work topology. The literature proposes various alternatives. For more information, the
reader can consult the following reference [92].

Reciprocity membership represents a node’s reciprocal number of communities. If a node
i belongs to oi communities, the community membership strength for these communities
is given by:

θR
i,cq

=
1
oi

(2.26)

It is equal to zero for the other communities. Note that no information is used about
the topology of the overlap in this definition except that different communities share the
overlapping node.

Degree membership incorporates information about the node’s attachment to the various
communities. It measures the fraction of links of a node reaching a specific community. It
is defined as follows:
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θD
i,cq

=
ki,cq

ki
(2.27)

The question now is how to integrate the measure s(Θ(i), Θ(j)) of equation 2.24. In
this study, we opt for the average of the nodes’ community membership strengths to be
incorporated within the adjacency matrix (Ai,j) for reciprocity membership and degree
membership. This approach is proposed by Zhang et al. [93]. Based on the variables of
equation 2.25, the adjacency matrix is weighted according to the following fuzzy defini-
tions:

| Ein
cq
|= 1

2 ∑
i,j∈cq

θi,cq + θj,cq

2
Ai,j (2.28)

| Eout
cq
|= ∑

i∈cq

∑
j∈C−cq

θi,cq + (1− θj,cq)

2
Ai,j (2.29)

Crisp overlapping community structure

In crisp overlapping community structure, nodes either fully belong to communities or do
not [92]. Consequently, the membership strength of a node to a community is either 0 or
1. Consequently, ∀i ∈ V, ∀cq ∈ C, θi,cq ∈ {0, 1} and 0 ≤ ∑

cq∈C
θi,cq ≤| C |.

In this case, the sum of the community membership strengths is equal to | C | if node i
belongs to all the communities, and it is equal to zero if it does not belong to any com-
munity. This study uses one crisp definition independent of the network topology called
node similarity. Note that a non-overlapping community structure is a particular crisp
overlapping case where all the community membership strengths of nodes are equal to
zero except for a unique community, where it is equal to one.

Node similarity measures the similarity of two nodes depending on their community mem-
bership strength Θ(i). The idea is to account for all the binary memberships of the nodes
in the vector Θ(i) and then convert the similarity between any two nodes to a fuzzy in-
dex. One can use any similarity measure [83]. In the following, we adopt the widespread
cosine similarity:

s(Θ(i), Θ(j)) = cos(Θ(i), Θ(j)) (2.30)

Two nodes with similar community membership exhibit a high cosine similarity index. Note
that node similarity does not use any information about the topology of the overlap.

The cosine similarity value of the two community membership strength vectors is directly
incorporated into the adjacency matrix if two nodes i and j belong to the same community.
Based on the variables of equation 2.25, the adjacency matrix is weighted using the
following fuzzy expressions:

| Ein
cq
|= ∑

i,j∈cq

s(Θ(i), Θ(j))Ai,j (2.31)
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| Eout
cq
|= ∑

i∈cq

∑
j∈C−cq

[1− s(Θ(i), Θ(j))] Ai,j (2.32)

POTTS MODEL

In the Potts model, an energy expression quantifies the quality of the communities con-
sidered as spin states [84]. Minimizing the system’s energy expressed by the Hamiltonian
of the spin model results in a well-separated community structure. It is defined as follows:

f (cq) = − ∑
i,j∈cq

J(Ai,j − γpi,j)

where:

• J is a multiplicative constant characterizing the weights between the nodes

• γ weights the importance of the energy from connected and missing edges

• pi,j can be any arbitrary null model denoting the probability of node i connecting to
node j

MAP EQUATION

The map equation originating from information theory aims to find cohesive structures
networks based on the flow of information [94, 95]. The underlying mechanism is based
on compressing regions where a random walker has a higher probability of staying in for
an extended period. By minimizing the map equation over the possible partitions in the
network, communities can be revealed depending on how information flows. The map
equation is defined as follows:

f (cq) = q↷H(Q) + pcq
⟳H(P cq)

where:

• q↷H(Q) denotes the average number of bits describing the movement between
community cq and the remaining communities

• pcq
⟳H(P cq) denotes the average number of bits describing the movement within com-

munity cq

2.4/ SUMMARY

This chapter introduces the concepts and elements essential to understanding the the-
sis. It first discusses the centrality measures the thesis investigates, including classi-
cal and community-aware measures. The former is divided into neighborhood-based,
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path-based, and iterative refinement-based measures, while the latter is divided into non-
overlapping and overlapping measures. The chapter then presents four diffusion mod-
els, two belonging to epidemic models and two to information diffusion models. Lastly,
the chapter discusses various network quality measures that can be used to describe
networks, focusing on overlapping modularity, which forms the basis of the framework
proposed in Chapter 5.
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3.1/ INTRODUCTION

Diffusion begins from nodes located in specific areas of the network and spreads out
with time. How to select the seed nodes to maximize diffusion is a fundamental problem.
Centrality measures are one of the main approaches to do so. They rely on topological
information from the network to quantify node importance. Since the community structure
impacts the diffusion spreading dynamics [15, 17, 96], researchers showed that classical
centrality measures may fallback in terms of selecting the most influential nodes [20–27].
Therefore, it is important to incorporate community structure information to select seed
nodes that maximize diffusion.

Unlike the classical centrality measures, which focus more on either the local or the global
influence of a node, the so-called community-aware centrality measures incorporate the
node’s local and global influence through its intra-community and inter-community links,
respectively [20–27]. The difference between these measures is how they combine intra-
community links and inter-community links, as shown in Chapter 2. If more importance is
given to the intra-community links (i.e., local influence), the measure emphasizes hub-like
nodes. On the other hand, if importance is given to the inter-community links (i.e., global
influence), the measure renders more important bridge-like nodes.

The diffusive ability of the community-aware centrality measures in selecting seed nodes
is assessed in a dynamic spreading scenario with specific conditions set on nodes and/or
edges. Most of the studies use the SIR model to assess the impact of the selection of
seed nodes either to maximize diffusion or to minimize it (this can also be called im-
munization) [20–26]. Despite being widely used, the SIR model does not convey all

29
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real-world spreading scenarios. In particular, in the SIR model, a node can infect its
neighborhood several times. In other words, a node has many chances to infect or in-
fluence its neighbor(s) before it is removed from the network. Nevertheless, sometimes
the diffusion of a disease or a piece of information to raise awareness can be spread by
a node once. That is to say, a node has a single chance to influence its neighbor(s).
For instance, consider people meeting in a manifestation. They will meet in this mani-
festation once, and they may not meet again afterward. The piece of information from
one person to another will be transmitted given this one-time chance. Another example
is that a person may change his/her opinion towards a cause only if a sufficient number
his/her neighbors adopts this opinion. The presence of various conditions that can occur
in nodes or edges in the real world necessitates the creation of multiple diffusion models.

This grants us permission to pose the main research question of this chapter: how does
the diffusion models’ output depend on the seeds and the network? The seeds are se-
lected based on the community-aware centrality measures. The community-aware cen-
trality measures rely on the network’s structure. The model’s output (i.e., the diffusion
spread) depends on the network’s structure and the seed nodes. Thus, we investigate
the interplay between the spread of various diffusion models, initiated through the seed
nodes selected by the community-aware centrality measures, and the network’s struc-
ture. This problem is relevant to many disciplines, from biology and epidemics to soci-
ology and economics. In addition to the diffusion models, there are insufficient studies
using a multiple-spreading phenomenon under a spreading scenario rather than in im-
munization. Another issue is that the community structure changes using one community
detection algorithm over the other, which may impact the diffusion dynamics. This also
poses a challenge on how the spread will evolve, given that the same seed nodes initiate
the diffusion. Finally, we do not have a clear idea of how the community-aware centrality
measures compare in controlled synthetic networks and diverse real-world networks. In-
deed, previous works mainly focused on a small set of synthetic and real-world networks.
This does not enable us to rigorously answer when community-aware centrality measures
outperform and what their bottlenecks are.

Thus, despite their outperformance, the literature so far renders a blurred vision of
community-aware centrality measures, their robustness, and their limitations. All of the
stated challenges are tackled in this chapter. To conduct the study, we systematically use
eight community-aware centrality measures on a set of four conceptually different diffu-
sion models using a set of synthetic and real-world networks from diverse domains under
the multiple-spreader scheme. Therefore, three main parameters are under investigation:
the diffusion model and its underlying dynamics, the network and its characteristics, and
the community-aware centrality measures and their inner workings. The employed dif-
fusion models are the Susceptible-Infected (SI) model, Susceptible-Infected-Recovered
(SIR) model, the Linear Threshold (LT) model, and the Independent Cascade (IC) model.
Synthetic networks are generated using the Lancichinetti, Fortunato, and Radicchi algo-
rithm (LFR) [97] where several parameters can be varied, including the community struc-
ture strength, the community size distribution, and the degree distribution. In real-world
networks, Infomap and Louvain community detection algorithms are used to uncover the
underlying community structure, and their impact is also studied. The community-aware
centrality measures, the diffusion models, and the networks are discussed in more detail
in Chapter 2.

In this chapter, we contribute to the literature by:
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1. Evaluating the community-aware centrality measures selecting seed nodes in four
distinct diffusion models.

2. Using a set of 45 LFR synthetic networks to investigate the impact of the community
structure strength, community size distribution, and degree distribution.

3. Applying the methods on a large set of real-world networks for an extensive statis-
tical study.

4. Investigating two fundamentally different community detection algorithms to investi-
gate their impact on dynamics.

3.2/ STATE OF THE ART

Influential nodes are critical in boosting or curbing spreading phenomena in complex net-
works. A multitude of classical centrality measures has been proposed to quantify node
influence. These measures prove their merit in many scenarios, like assessing the in-
fectious capacities of nodes [14] to quantifying financial distress [98] and applying viral
marketing [12]. Researchers have shown that classical centrality measures may under-
mine the influence of nodes in networks with community structure [20–27]. Indeed, many
real-world networks are characterized by a community structure that drastically impacts
spreading dynamics [15, 17, 96]. Thus, in networks with a community structure, nodes
that may not be considered influential by a classical centrality measure (i.e., agnostic
about the community structure) may be of ultimate influence when one considers the
mesoscopic organization of the network.

The exploitation of communities to identify influential nodes using centrality dates back
to 2005 when Guimerà and Amaral [20] proposed the Participation Coefficient, which
uncovered the key metabolites across species in metabolic networks. Zhao et al. [21]
proposed the Community-based Centrality, capable of identifying influential nodes in
which the classical degree, betweenness, and eigenvector centralities could not identify
in the Susceptible-Infected-Recovered (SIR) model with a single-spreader scheme. Un-
like Community-based Centrality, Comm centrality proposed by Gupta et al. [22] adapts
to the network’s strength of community structure, succeeding in identifying hubs and
bridges, with the latter being prioritized in an immunization scenario using SIR. Luo et
al. [23] merged the network’s community structure and hierarchy to develop K-shell with
Community, proving its outperformance against classical centrality measures in the SIR
model with a single-spreader scheme. Tulu et al. [24] showed that using the entropy
of a node’s intra-community and inter-community links, nodes disseminating information
quickly can be better identified in the SIR model. Ghalmane et al. [25] proposed Commu-
nity Hub-Bridge, which showed its effectiveness in hindering an epidemic by immunizing
influential nodes under the SIR dynamics in networks with a strong community structure.
Magelinski et al. [26] exploited the so-called modularity, a quality measure to assess
the community structure of a network to identify hubs and bridges. The authors showed
that their community-aware centrality could dismantle a very large infrastructural network
eight times more effectively than other centrality measures by taking a limiting case of
the SIR model. Recently, Blöcker et al. [27] showed the merit of an information-theoretic
community-aware centrality measure based on the map equation in the SIR model using
a single-spreader scheme and the Linear Threshold (LT) model using a multiple-spreader
scheme.
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Despite the outperformance of the community-aware centrality measures compared to
classical ones in identifying influential nodes, several limitations need to be addressed.
First, most of the community-aware centrality measures are assessed exclusively un-
der the SIR dynamics, either to maximize diffusion [21, 23, 24, 27] or minimize it
[22, 23, 25, 26] by removing the most central nodes. The latter case is also referred to
as “immunization.” Nevertheless, the SIR model does not characterize all situations. De-
spite researchers’ aim to develop generalized diffusion models, many cases entail adding
specific conditions that are not applicable in all real-world situations. Therefore, many
diffusive models exist to characterize better cases occurring in the real world. Only one
community-aware centrality measure, the Map Equation Centrality [27], is assessed using
the SIR and LT dynamics. Second, most of the studies maximizing SIR diffusion use the
single-spreader scheme. To minimize diffusion, studies naturally select multiple nodes
[22, 23, 25, 26]. That being said, Participation Coefficient [20] is the only community-
aware centrality measure not assessed with respect to a dynamic model since its original
aim was to identify key proteins and construct cartography of metabolic networks rather
than compare the measure’s diffusive power. Third, many studies use a single community
detection algorithm if the network’s community structure is unknown. Therefore, it is not
well understood how the mesoscopic arrangement of communities affects the dynamics
within the same network. Finally, every community-aware centrality measure is assessed
on a small sample of real-world and synthetic networks. Table 3.1 summarizes the works
concerning the development and comparison of community-aware centrality measures.
The limitations raise several concerns regarding the consistency of the community-aware
centrality measures, and this chapter aims to address these questions.
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3.3/ SYNTHETIC NETWORKS

This section investigates the interplay between the network’s community structure, vari-
ous diffusion mechanisms based on the models provided in Chapter 2, and community-
aware centrality measures on a set of synthetic networks generated by the Lancichinetti,
Fortunato, and Radicchi (LFR) algorithm [97]. This algorithm allows the tuning of various
parameters of the community structure. We investigate the influence of the community
structure strength controlled by the mixing parameter (µ), the degree distribution power-
law exponent (γ), and the community size distribution power-law exponent (θ). More de-
tails about the synthetic networks and the parameters set to generate them are provided
in Appendix I.

INFLUENCE OF THE COMMUNITY STRUCTURE STRENGTH

The mixing parameter (µ) controls the community structure strength. Low values yield
networks with a strong community structure since few inter-community links exist. As µ
increases, the network’s community structure strength loosens, resulting in the disappear-
ance of dense and well-defined regions. To study the effect of the community structure
strength on the various diffusion dynamics, we generate LFR networks with strong (µ =
0.05), medium (µ = 0.20), and weak (µ = 0.70) community structures. Given the rank-
ing of a community-aware centrality measure, a fraction fo of the top-ranked nodes in
the network is initially infected/activated in each of the SI, SIR, IC, and LT models. The
results are reported in Fig 3.1. The evaluation measure in the SI model is the average
number of iterations needed for a given fo to infect 50% of the network. The lower the
number of iterations, the more effective the centrality measure. In the SIR and IC models,
the relative outbreak/activation size (i.e., ∆R/∆A) is computed. This value quantifies the
difference between the number of nodes recovered/activated at the end of the dynamical
process when fo is based on a given community-aware centrality measure and a baseline
measure which is the degree centrality. Recall that ∆R = Rc−Rr

Rr
(see Appendix I for more

details). The higher it is, the better the performance of the community-aware centrality
measure. Finally, in the LT model, the evaluation measure is the total number of activated
nodes normalized by the size of the network (i.e., the activation rate Ar).

Two main phenomena dominate as the community structure strength (µ) varies from
strong (µ = 0.05) to weak (µ = 0.70). First, the stronger the community structure, the more
pronounced the difference is in the performance of the community-aware centrality mea-
sures. As the community structure strength decreases (i.e., weakens), the performance
of the community-aware centrality measures becomes more comparable, and differences
are less visible. Community-aware centrality measures are well-adapted to networks with
a well-defined community structure. With this structure, each measure can exploit vari-
ous community information to identify influential hubs and bridges that contribute to the
network’s community structure. If the community structure is loosely defined, it becomes
more difficult for the community-aware centrality measures to pinpoint these influential
nodes. Indeed, in a weak community structure, hubs and bridges become less promi-
nent, and the average degree of the nodes becomes more analogous.

The second phenomenon is related to the divergence in the scales’ magnitude while the
dynamical processes take place. In the SI model, with a strong community structure, the
epidemic diffusion needs more iterations to reach 50% of the network. As communities
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share a few inter-community links in a network with a strong community structure, the
infection tends to stay more localized in the communities. With a decrease in the commu-
nity structure strength, the proportion of inter-community links increases. Therefore, the
infection can spread more quickly to the remaining communities. Thus, fewer iterations
are needed to infect half of the network. In the SIR and IC model, it is clear that when the
network has a strong community structure, a set of community-aware centrality measures
outperform degree centrality by a large difference. However, as the community structure
strength weakens, the community-aware centrality measures become more comparable
to the performance of the degree centrality.

Figure 3.1: Behavior of the community-aware centrality measures under various
dynamic models in synthetic networks while varying the mixing parameter (µ). The
first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR model,
(C) IC model, and (D) LT model.

Inspecting the community-aware centrality measures in more detail, most of these
measures are a variant of degree centrality exploiting the inter-community and intra-
community links in various ways. The smaller the difference between these two types
of links - usually prevailing in a network with a loose community structure - the higher the
resemblance of the community-aware centrality measures to degree centrality. Therefore,
in a network with a weak community structure, the outperformance of the community-
aware centrality measures is insignificant compared to degree centrality. The latter is
advised for usage as it does not need community-level information. Nevertheless, with a
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strong community structure strength, community-aware centrality measures can extract
information that the community-agnostic degree centrality cannot.

An important finding can be extracted independently of the community structure strength
(µ). It concerns the similarities of the various dynamic models. By visually inspecting
Fig 3.1, one can note that generally, at any given fo, the top 2 outperforming centrality
measures are comparable across the SI, SIR, and IC models, excluding the LT model.
For instance, at fo = 0.05 and µ = 0.05, the top 2 outperforming centrality measures are
Comm Centrality (αComm) and Participation Coefficient (αPC) in the SI, SIR, and IC models.
In contrast, Map Equation Centrality (αMapEq) and Community-based Mediator (αCBM) are
the top 2 most performing in the LT model at fo = 0.05 and µ = 0.05. This behavior is
logical as the SI, SIR, and IC are a variant of one another. The SIR is the SI with an addi-
tional “recovered” state. The IC sets thresholds on edges, and nodes have one chance to
infect/activate their neighbors, while in the SIR model, a node has more than one chance.
Even though differences exist, they are nominal. Indeed, their dynamics follow the sim-
ple contagion dynamics where nodes getting activated/infected are independent of their
surroundings. This is not true for the LT model, where a node’s activation depends on
its neighborhood’s aggregate activations. Subsequently, activations are harder to diffuse
across the network, especially if the network has a strong community structure strength
[99, 100].

These results suggest that the community-aware centrality measures are more profitable
in networks with a strong community structure strength. They also suggest that one
should be prudent in using the measures even with a strong community structure strength,
as the outperformance depends on the model. Some measures are well-suited to the SI,
SIR, and IC models, while others are more suited to the LT dynamics.

INFLUENCE OF THE COMMUNITY SIZE DISTRIBUTION EXPONENT

The community size distribution exponent (θ) is responsible for the frequency and the size
of the generated communities. We fix the community structure strength at µ = 0.05 and
generate three networks with three different community size distribution exponents. The
first, having θ = 2, indicates that large communities make up most of the network, with the
existence of few small communities, resulting in a large variance in the community sizes.
The second, having θ = 2.7, yields less variance in the community sizes with a larger
number of communities. Finally, the third, having θ = 3, a high number of communities
exist with equivalent sizes. Given the ranking of a community-aware centrality measure,
a fraction fo of the top-ranked nodes in the network is initially infected/activated in each
of the SI, SIR, IC, and LT models. The results are reported in Fig 3.2.

In case the dynamics follow the SI, SIR, or IC, it can be noticed that the general trends of
the community-aware centrality measures persist whether the network is generated with
θ = 2, θ = 2.7, and θ = 3. The main difference is in the magnitude of the final output of
each of the models. However, with the LT model, the behavior of the community-aware
centrality measures changes with every θ under investigation.

Particularly, in the SI model, in the network with a larger variance in the community size
distribution (i.e., at θ = 2), it takes less time to infect 50% of the network compared to
networks with fewer communities of equivalent sizes. For instance, when θ = 2, at fo =
0.2, the average number of iterations for Comm Centrality (αComm), the best performing
centrality, takes 20 iterations while with θ = 2.7, it takes 30 iterations and with θ = 3 it
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takes 32 iterations. The magnitude of the relative outbreak size (∆R) in the SIR model
shows that the outperformance of Comm Centrality (αComm), Modularity Vitality targeting
hubs (α+

MV), and Participation Coefficient (αPC) is more pronounced in the networks with
θ = 2.7 and θ = 3. For instance, let’s take fo = 0.10, ∆R of Comm Centrality amounts to
8.5% in the network with θ = 2, while in the networks with θ = 2.7 and θ = 3, ∆R amounts
to 15%. Under the IC dynamics, the highest magnitude of the relative activation size (∆A)
is reached when θ = 2 (∆A = 13%). In contrast, when θ = 2.7 and θ = 3, the maximum
∆A reached amounts to 25% and 28.5%, respectively.

Figure 3.2: Behavior of the community-aware centrality measures under various dy-
namic models in synthetic networks while varying the community size distribution
exponent (θ). The first, second, third, and fourth rows indicate the results of the (A) SI
model, (B) SIR model, (C) IC model, and (D) LT model.

Despite the similarities in the general trends of the community-aware centrality measures,
one subtle difference needs to be noted concerning Participation Coefficient. In the three
models, Participation Coefficient performs less when θ = 2. As stated earlier, θ = 2 indi-
cates that the network is characterized by a few small communities and many large com-
munities, which comprise most of the network. Participation Coefficient’s effectiveness
depends on the number of communities within the network. If there are many communi-
ties, it has more room to distinguish the difference in influence between nodes. On the
other hand, having fewer communities makes it less effective as many nodes will have
similar centrality, making it difficult to distinguish their influence characteristics.
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In the LT model, the impact of adjusting θ is more pronounced on the performance of the
top-performing community-aware centrality measures in terms of behavior rather than
magnitude. The contrast becomes more noticeable when the budget range goes from
low to medium. When the budget is high, in all of the studied θ, the strategy is to target
hubs and bridges together using Modularity Vitality targeting hubs and bridges (|αMV |).
We now discuss when the budget spans from low to medium. When the network has a
significant variance in the community size distribution (θ = 2), hub-like nodes are preferred
up to a small value for the budget availability, then bridge-like nodes are preferred. In
contrast, with a smaller variance in the community size distribution (θ = 2.7 and θ = 3),
hub-like nodes are always preferred. More specifically, when the value of θ is equal to 2,
the hub-like nodes that produce the highest outbreak until fo reaches 0.05 are selected
by Map Equation Centrality (αMapEq) and Community-based Centrality (αCBC). From fo =
0.06 to fo = 0.34, bridge-like nodes selected by Community-based Mediator (αCBM) and
then by Comm Centrality (αComm) are the nodes that generate the highest activation rate.
If θ is equal to 2 or 2.7, the hub-like nodes preferred at the small budget are chosen by
Map Equation Centrality (αMapEq), and then Modularity Vitality targeting hubs (α+

MV) takes
over for a broader range of budget availabilities.

To sum up, the results of the SI, SIR, and IC models suggest that changing the com-
munity size distribution exponent has a greater community-aware centrality measures’
magnitude in the model’s output rather than their behavior. In networks with a large vari-
ance in community sizes, the outbreak size in the SIR model and the activation size in the
IC model are not as pronounced as in networks with a smaller variance, implying that the
outbreak can more easily spread to many communities with equivalent sizes. However,
many communities may remain unaffected if the infection starts in big communities and
remains within them. In the SI model, when there is a large variance in community sizes,
it takes less time to infect 50% of the network since it consists of only a few big com-
munities. Suppose many nodes are in the same community, making up almost 50% of
the network. In that case, it is easy to infect/activate that community because the nodes
in the community are more likely to be directly or indirectly connected. In the LT model,
the community size distribution has a greater effect on the behavior of community-aware
centrality measures than their magnitude. When there is a large variance in community
size distribution, bridge-like nodes play a crucial role in the medium budget range, as
the selected bridges are likely to be located in large communities, resulting in a higher
outbreak. Conversely, when there are many communities of similar sizes, it is more ben-
eficial to target hub-like nodes since the influence of bridge nodes may stop at the border
of a community with high density. These findings are supported by studies on contagion
and networks [99, 100].

INFLUENCE OF THE DEGREE DISTRIBUTION EXPONENT

The degree distribution exponent (γ) characterizes the number of links nodes have in a
network. The LFR algorithm generates networks with a power-law degree distribution
fitting the degree distribution of many real-world networks [101, 102]. Many real-world
networks are distinguished by γ falling between 2 and 3 [103, 104]. To investigate three
representative cases, we fix the community structure strength at µ = 0.05 and generate
three networks with γ = [2, 2.7, 3]. While preserving the community structure, the network
portrays a hub-and-spoke structure when γ = 2 [105]. On the other extreme, the nodes in-
side the communities have more comparable degrees, resembling a random-like network
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when γ = 3. At γ = 2.7, the network resembles a typical scale-free network. Given the
ranking of a community-aware centrality measure, a fraction fo of the top-ranked nodes
in the network is initially infected/activated in each of the SI, SIR, IC, and LT models. The
results are reported in Fig 3.3.

Figure 3.3: Behavior of the community-aware centrality measures under various
dynamic models in synthetic networks while varying the degree distribution expo-
nent (γ). The first, second, third, and fourth rows indicate the results of the (A) SI model,
(B) SIR model, (C) IC model, and (D) LT model.

Similar to the variation of the community size distribution exponent (θ), the general trend
persists when varying the degree distribution exponent (γ) in the SI, SIR, and IC models
where the difference is attributed to the magnitude of the models’ output, while with the LT
model, the behavior of the community-aware centrality measures is what changes rather
than the magnitude.

To begin with the SI model, the time it takes to infect 50% of the network decreases as
the initial fraction of infected nodes ( fo) increases, as γ increases. Indeed, the network
structure impacts the number of iterations it takes to infect 50% of the network. The
random-like structure inside the communities, as found in γ = 3 networks, results in a
faster spread compared to the hub-and-spoke-like structure, as found in γ = 2 networks
and to a lesser extent when γ = 2.7. For example, when fo = 0.1, the best performing
centrality in the SI model, Comm Centrality (αComm), takes an average of 39 iterations to
infect 50% of the network in a γ = 2 network, 36 iterations in a γ = 2.7 network, and 31.5
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iterations in a γ = 3 network. In the SIR and IC models, the output of all the measures
performs more in the networks with θ = 2 and θ = 2.7 compared to γ = 3. Let’s take fo =
0.10 following the SIR model, ∆R of Comm Centrality amounts to 17% in the network with
γ = 2, to 16% in the network with γ = 2.7, and to 13% in the network with γ = 3. Under
the IC dynamics, the maximum relative activation size (∆A) when it equals 2 is 26.5%,
while at γ = 2.7 and γ = 3, the ∆A reached is 25% and 19.5%, respectively.

Although there are similarities in the overall patterns of the community-aware central-
ity measures in the SI, SIR, and LT models, the Participation Coefficient is influenced
by changes in the degree distribution exponent, similar to the impact of changes in the
community size distribution exponent. Specifically, the Participation Coefficient performs
better when the network is created with γ = 2 and γ = 2.7. This suggests that the Par-
ticipation Coefficient benefits from having differences in node degrees, which allows it to
distinguish between nodes and identify the most influential ones.

The results of the LT model show that the main difference between different values of γ
is observed when the budget availability is medium. When the budget is high (i.e., fo ≥
0.40), targeting hub-like and bridge-like nodes using Modularity Vitality targeting hubs
and bridges (|αMV |) is always the most effective strategy, regardless of γ. Similarly, when
the budget is low (i.e., fo ≤ 0.05), it is always better to target hub-like nodes selected by
Map Equation Centrality (αMapEq). However, when the budget is medium, networks with
γ = 2 and γ = 2.7 tend to benefit more from targeting hub-like nodes using Modularity
Vitality targeting hubs (α+

MV). On the other hand, in networks with γ = 3, where the com-
munities are more random, bridge-like nodes become more influential. Community-based
Mediator (αCBM) selects nodes that are well-connected between different communities in
the network for a higher activation rate in this case.

In brief, results show that community-aware centrality measures exhibit consistent be-
havior across the SI, SIR, and IC models as the degree distribution exponent changes.
However, the models’ output based on these measures varies in magnitude. When the
degrees of nodes in communities are similar, the SI model takes less time to infect more
of the network. But in the SIR and IC models, community-aware centrality measures
are comparable to degree centrality as they are evaluated using the relative outbreak
and activation sizes. This is because the measures have less power to differentiate be-
tween hub-like and bridge-like nodes when node degrees are similar. In contrast, the
LT model’s community-aware centrality measures exhibited differences in behavior rather
than magnitude, particularly at medium budget availabilities. Results indicate that tar-
geting bridge-like nodes is better when node degrees are comparable in their communi-
ties. This is because similar degrees may imply similar influence, making differentiation
difficult. Therefore, selecting bridge-like nodes has a better chance of igniting a more
significant impact in the network.

3.4/ REAL-WORLD NETWORKS

In this section, we investigate the interplay between the diffusion dynamics of the models
provided in Chapter 2 and the community-aware centrality measures on real-world net-
works. Unlike synthetic networks, the topological characteristics of real-world networks
cannot be controlled. Indeed, real-world networks are characterized by diverse structures
that affect the diffusion dynamics differently. Moreover, these networks pertain to various
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Figure 3.4: Behavior of the community-aware centrality measures under various dy-
namic models in real-world networks with varying community structure strengths.
The first, second, third, and fourth rows indicate the results of the (A) SI model, (B) SIR
model, (C) IC model, and (D) LT model.

domains (i.e., infrastructural, social, acting, biological, and collaborative). Thus, nodes
and edges have specific roles in maintaining the normal functioning of the network. Since
the community structure of real-world networks is unknown a priori, we uncover their
communities using the Infomap [106] community detection algorithm. At a later stage,
we investigate the consistency of the results using the Louvain [87] community detection
algorithm.

Similar to the methodology adopted with synthetic networks, a fraction fo of the top-ranked
nodes in each network is initially infected/activated, given the ranking of a community-
aware centrality measure in each of the SI, SIR, IC, and LT models. For brevity, the
results of four real-world networks are reported in Fig 3.4. These networks are represen-
tative cases of the dynamics seen across the networks under study. Indeed, the extensive
analysis across the models shows two network categories in every diffusion model inves-
tigated. These two categories, illustrating a different behavior in terms of the spreading
dynamics, can be divided based on the network’s community structure strength.

The first category comprises networks with medium to weak community structure
strengths, such as the networks Hamsterster (µ = 0.298) and Kegg Metabolic (µ =
0.466). In this category, a shared trend illustrates that up to a certain fraction of initially
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infected/activated nodes ( fo), bridge-like nodes using Comm Centrality (αComm) outper-
form the remaining measures. After passing fo, which is network-dependent, hub-like
nodes using Modularity Vitality targeting hubs (α+

MV) outperform other measures in terms
of spreading capability in each of the SI, SIR, and IC models. In between, Community
Hub-Bridge (αCHB) provides good results in a medium range of fo only in the SIR and
IC models. Results in the LT model diverge from the remaining models. With the LT
dynamics, hub-like nodes using Map Equation Centrality (αMapEq) outperform the remain-
ing measures up to a certain fo. Then, it either persists in its outperformance with other
measures or Comm Centrality (αComm), which has a preference for bridge-like nodes, out-
performs the remaining measures (as seen with Hamsterster).

The second category comprises networks with a strong community structure strength,
such as Ego Facebook (µ = 0.077) and Facebook Politician Pages (µ = 0.111). Within this
category, under the SI, SIR, and IC dynamics, bridge-like nodes always yield the highest
performance. The distinction lies in which community-aware centrality measure yields
such performance. Generally, Comm Centrality (αComm) has the highest performance up
to a certain fo. Then, Participation Coefficient (αPC) overcomes Comm Centrality (αComm)
only in the SI and SIR dynamics. Then, in the SI, SIR, and IC dynamics, Modularity Vitality
targeting bridges (α−MV) outperforms all remaining measures. The LT dynamics pose
different outcomes. At first, hub-like nodes using Community-based Centrality (αCBC) or
Map Equation Centrality (αMapEq) outperform the remaining measures. After exceeding
a certain fo, several measures may show high performance, namely Community-based
Mediator (αCBM), Modularity Vitality targeting hubs (α+

MV), Modularity Vitality targeting
hubs and bridges (|αMV |), Map Equation Centrality (αMapEq), and/or Comm Centrality
(αComm).

A divergence in scale occurs among the real-world networks. For instance, the perfor-
mance of the community-aware centrality measures in networks with a weak community
structure is more comparable with degree centrality than in networks with a strong com-
munity structure. However, the divergence in scale is less significant than in synthetic
networks. Moreover, unlike synthetic networks, differences in the performance of the
community-aware centrality measures exist in real-world networks under the SI, SIR, and
IC dynamics. A high variance between the curves is seen regardless of whether the
network has a strong or weak community structure strength.

The study’s results show that the SI, SIR, and IC models behave similarly to synthetic net-
works, but the dynamics differ in real-world networks based on the strength of their com-
munity structure. In networks with a weak community structure, bridge-like nodes lead
to higher outbreaks/activations until hub-like nodes perform better. However, bridge-like
nodes always perform better in networks with a strong community structure. Regarding
the LT dynamics, hub-like nodes outperform other measures up to a certain fo, and af-
ter that, other measures with preferences for hub-like, bridge-like, or both types of nodes
show better performance. Additionally, real-world networks have a more pronounced vari-
ance between the curves regardless of their community structure strength, showcasing
their unique characteristics that diversely affect the network’s dynamics. This contrasts
with synthetic networks, where all parameters are controlled.
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3.5/ DISCUSSION

In this section, we address questions related to why the results of the dynamic mod-
els seen with the real-world networks are obtained. We refer to the fraction of initially
infected/activated nodes ( fo) as “budget availability” thenceforth.

(1) Why is it more beneficial to target bridge-like nodes at low budget availability
and hub-like nodes at high budget availability in the SI, SIR, and IC diffusion models
when the network has a medium to weak community structure strength? As it was
previously seen, in networks with a medium to weak community structure strength, Comm
Centrality (αComm) generally results in the highest outbreak when the budget is limited.
To investigate why we take the Kegg Metabolic network, which has a weak community
structure strength (µ = 0.466). Using this network, we compare in Fig 3.5 the position of
the top nodes chosen based on low (i.e., fo = 1%), medium (i.e., fo = 25%), and high (i.e.,
fo = 40%) budget availabilities. For comparison purposes, we take the various budget
availabilities according to the rankings based on Comm Centrality (αComm), K-shell with
Community (αks), and Modularity Vitality targeting hubs (α+

MV). As we can see in Fig 3.5,
Comm Centrality (αComm) targets nodes distributed across the network when the budget is
either low (i.e., fo = 1%) or medium (i.e., fo = 25%). These nodes yield a higher spreading
capability in the SI, SIR, and IC models, as Fig 3.4 shows.

Figure 3.5: Comparing the position of the top nodes in the Kegg Metabolic network
(µ = 0.466). The top nodes are chosen at a low budget availability ( fo = 1%), medium
budget availability ( fo = 25%), and high budget availability ( fo = 40%). The bigger nodes
in the left, middle, and right figures are the top nodes ranked by Comm Centrality (αComm),
K-shell with Community (αks), and Modularity Vitality targeting hubs (α+

MV), respectively.
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In contrast, with K-shell with Community (αks), a measure that generally underperforms in
these models, the nodes chosen are close to each other and embedded in the core of the
network. Thus, the spreading virus or piece of information will die out before it reaches the
peripherical areas in the network. Now, why do hub-like nodes targeted using Modularity
Vitality targeting hubs (α+

MV) at high budget availability yield the highest outbreak in the
SI, SIR, and IC models? Referring back to Fig 3.5, when fo = 40%, as we can see, the
nodes are distributed even more than Comm Centrality (αComm) across all the regions in
the network. Thus, it is normal to have a higher outbreak, as the virus/information would
reach all the peripherical areas of the network and its core.

(2) Why is it more beneficial to target bridge-like nodes, regardless of the budget
availability, in the SI, SIR, and IC diffusion models when the network has a strong
community structure strength? We have seen that bridge-like nodes always perform
well when the network has a strong community structure strength. The distinction lies in
which community-aware centrality measure with a preference to bridge-like nodes yields
the highest outbreak. The results show that Comm Centrality (αComm) generally performs
best when the budget is limited. Conversely, when the budget availability is high, Mod-
ularity Vitality targeting bridges (α−MV) overcomes all the measures (see networks Ego
Facebook and Facebook Politician Pages in Fig 3.4). To investigate these results, we vi-
sualize in Fig 3.6 the Facebook Politician Pages network, which has a strong community
structure strength (µ = 0.111).
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Figure 3.6: Comparing the position of the top nodes in the Facebook Politician
Pages network (µ = 0.111). The top nodes are chosen at a low budget availability ( fo
= 1%), medium budget availability ( fo = 25%), and high budget availability ( fo = 40%).
The bigger nodes in the left, middle, and right figures are the top nodes ranked by Comm
Centrality (αComm), Modularity Vitality targeting hubs (α+

MV), and Modularity Vitality target-
ing bridges (α−MV), respectively.

For comparison purposes, the top nodes visualized are based on Comm Centrality
(αComm), Modularity Vitality targeting hubs (α+

MV), and Modularity Vitality targeting bridges
(α−MV). As we can see, in this network with a strong community structure, when the bud-
get is low (i.e., fo = 1%) and medium (i.e., fo = 25%), the top nodes ranked by Comm
Centrality (αComm) are widespread between and across many communities. This spread
indicates that the virus/information has many venues to further expand into, permitting a
higher outbreak. As the budget increases to 40%, Modularity Vitality targeting bridges
(α−MV) takes over. The nodes selected by it also spread across many regions in the net-
works, however, not to the extent of Comm Centrality (αComm), which reaches even the
peripherical communities in the network. Indeed, Modularity Vitality targeting bridges
(α−MV) focuses on bridges between communities and has a preference to target more
nodes inside big communities rather than the peripherical areas. Thus, targeting bridges
connecting communities and simultaneously focusing on big communities for higher out-
breaks is more effective since small and peripherical communities cannot be leveraged
as much as big communities if the budget is high and the network has a strong community
structure. Thus, under the SI, SIR, and IC dynamics, choosing nodes inside and between
the big communities diffuses the information more widely internally and externally. In con-
trast, small peripherical communities are isolated and do not have many pathways for the
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virus/information to spread.

We also shed light on how Modularity Vitality targeting hubs (α+
MV) behaves. At fo =

0.40, Modularity Vitality targeting hubs (α+
MV) does not target the community colored in

fuchsia, the biggest community in the network. It does not since a node removed from
a big and well-connected community will not change the network’s modularity signifi-
cantly. In contrast, a hub removed from a smaller community may shatter that community.
Consequently, when ranked according to Modularity Vitality targeting hubs, these nodes
would receive a higher score (α+

MV). Thus, having big communities not targeted in a net-
work with a strong community structure yields lower reachability of the virus/information.
The behavior is the opposite in a network with a weak community structure. Since all
the small communities surrounding a big community will be activated/infected, the infec-
tion/information has a higher probability of entering the big community as there are many
pathways to enter it, causing an internal avalanche of infections/activations (see Kegg
Metabolic in Fig 3.5 at fo = 40%).

(3) Why is it more beneficial to target hub-like nodes at low budget availability in
the LT model? Results reveal that the dynamics on the LT model contrast with that of the
SI, SIR, and IC models. Indeed, bridge-like nodes are always preferred in the latter set
of models when the budget is limited. However, with the LT model, under limited budget
availability, hub-like nodes targeted by the Map Equation Centrality (αMapEq) diffuse better
the virus/information across the network. To understand why this phenomenon occurs,
we visualize two structurally different networks, namely the Hamsterster and Facebook
Politician Pages networks in Fig 3.7. In these two networks, the Map Equation Centrality
(αMapEq) shows good performances up to a specific budget. Suppose that a piece of
information is circulating around a given community. If this community is well-connected
(i.e., if it has a high internal density compared to its external connections), the piece of
information will never enter it [99, 100]. This trend is even more pronounced when the
nodes have a high threshold, even if the network has a weaker community structure.

The Map Equation Centrality (αMapEq) overcomes this obstacle in the LT model by target-
ing nodes inside all the network communities and not around them. Because the Map
Equation Centrality (αMapEq) correlates with the node’s intra-community links, the random
walker has a higher chance of staying in nodes with a high internal degree. Thus, these
nodes tend to be hub-like rather than bridge-like nodes, as seen in the two networks
in Fig 3.7. For demonstration purposes, the nodes targeted by Community Hub-Bridge
(αCHB) and Comm Centrality (αComm) are also shown. These two measures perform poorly
on the LT model when the budget is limited.
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Figure 3.7: Comparing the position of the top nodes in the Hamsterster and Face-
book Politician networks. The top nodes are chosen at a low budget availability ( fo =
1%) and medium budget availability ( fo = 25%). The bigger nodes in the left, middle, and
right figures are the top nodes ranked by Map Equation Centrality (αMapEq), Community
Hub-Bridge (αCHB), and Comm Centrality (αComm), respectively.

As we can see, Community Hub-Bridge (αCHB) picks many nodes inside a few communi-
ties, missing many regions in the network. Concerning Comm Centrality (αComm), since
the top nodes picked are more frequent between the communities rather than the inside
as it has a preference for bridge-like nodes, this will not be enough at low budget availabil-
ity for the piece of information to enter the tightly-knit communities [99, 100]. Therefore,
given a low budget availability, ensuring a piece of information starts by nodes embedded
in their communities such that these communities spread across all the network regions
is the best approach for effective diffusion. If bridge-like nodes are targeted at low budget
availability, the information will not be capable of entering high-density communities. Note
that this behavior contrasts with the behaviors seen with the SI, SIR, and IC models. In-
deed, in the latter set of models and at low budget availability, bridge-like nodes play the
most influential role in diffusion since, in these models, bridge-like nodes have a higher
chance to enter many communities and cause an avalanche of activations/infections.

(4) Why is it more beneficial to target both hub-like and bridge-like nodes simulta-
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neously or bridge-like nodes only at high budget availability in the LT model?

At high budget availability, results show that either hub-like and bridge-like nodes targeted
simultaneously using Modularity Vitality targeting hubs and bridges (|αMV |) or bridge-like
nodes only using Comm Centrality (αComm) yield the highest outbreak. These trends also
contrast with the ones found in the SI, SIR, and IC models. At high budget availability,
the networks with the latter set of models showed good performance with either hub-like
nodes targeted with Modularity Vitality targeting hubs (α+

MV) or hub-like nodes targeted
with Modularity Vitality targeting bridges (α−MV), depending on the community structure
strength. This leads us to investigate why the LT dynamics also diverge when the bud-
get availability is high. We visualize Ego Facebook and Facebook Politician Pages to
depict the two trends regarding the outperformance of Modularity Vitality targeting hubs
and bridges (|αMV |) in the former network and bridge-like nodes only using Comm Cen-
trality (αComm) in the latter network in Fig 3.8. For comparison purposes, we also choose
Community Hub-Bridge (αCHB) to be represented.

Discussing first the Facebook Politician Pages network, we can see that both Modularity
Vitality targeting hubs and bridges (|αMV |) and Comm Centrality (αComm) target nodes that
all well-distributed, internally and externally, across all the communities in the network,
unlike Community Hub-Bridge (αCHB) which targets a limited number of communities.
Since the communities in Facebook Politician Pages are not of equivalent sizes, Comm
Centrality (αComm) yields a higher activation rate as the difference between Modularity
Vitality targeting hubs and bridges (|αMV |) and Comm Centrality (αComm) is that the latter
targets more nodes on the peripherical communities. In contrast, in the Ego Facebook
network, since there is a smaller variance in the community size distribution, targeting
hub-like and bridge-like nodes simultaneously using Modularity Vitality targeting hubs
and bridges (|αMV |) assures that the diffusion will spread across the communities as
small peripherical communities do not exist.

The question is, why do we observe such behavior in the LT model rather than the be-
havior seen with Modularity Vitality targeting hubs (α+

MV) and Modularity Vitality targeting
bridges (α−MV) in the SI, SIR, and IC dynamics. Targeting nodes inside the communities
satisfies the dynamical conditions of the LT model for a higher activation rate [99, 100].
However, with a higher budget availability, bridge-like nodes also play a role since many
are targeted. Subsequently, at high budget availability in the LT dynamics, enough hub-
like and bridge-like will make the diffusion spread, rather than just targeting hub-like nodes
or bridge-like nodes independently. Moreover, as we discussed previously, a major draw-
back for Modularity Vitality targeting hubs (α+

MV) is that it misses hub-like nodes in big
communities since they are easily replaced by others and subsequently they do not re-
ceive a high centrality score. Hence, it falls back in the LT dynamics as all communities
should be targeted internally before externally for higher activation rates. We visualize
the Ego Facebook network in Fig 3.9 with the top 40% nodes ranked by all the Modularity
Vitality variants (i.e., α+

MV , α−MV , and |αMV |) to show how Modularity Vitality targeting both
hubs and bridges (|αMV |) is well suited for the LT dynamics as it assures internal diffusion
and external diffusion by effectively utilizing the high budget availability. The red dashed
lines highlight that two large communities in the network are not targeted by Modularity
Vitality targeting hubs (α+

MV) despite having a budget of f = 40%. In contrast, Modular-
ity Vitality targeting both hubs and bridges (|αMV |) targets hub-like nodes inside all the
communities and a set of bridges between them.
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Figure 3.8: Comparing the position of the top nodes in the Facebook Politician
Pages and Ego Facebook networks. The top nodes are chosen at a medium budget
availability ( fo = 25%) and high budget availability ( fo = 40%). The bigger nodes in the
left, middle, and right figures are the top nodes ranked by Modularity Vitality targeting
hubs and bridges (|αMV |), Community Hub-Bridge (αCHB), and Comm Centrality (αComm),
respectively.

Figure 3.9: Comparing the position of the top nodes in the Ego Facebook networks
The top nodes are chosen at a high budget availability ( fo = 40%). The bigger nodes in
the left, middle, and right figures are the top nodes ranked by Modularity Vitality targeting
hubs and bridges (|αMV |), hubs only (α+

MV), and bridges only (α−MV), respectively.
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(5) Comparing the dynamics of communities identified by Infomap and Louvain,
why do the dynamics of the community-aware centrality measures the in the SI,
SIR, and IC diverge when the budget is low to medium?

Results show that in the SI, SIR, and IC models, with a budget availability varying from low
to medium, the nodes targeted by the community-aware centrality measures induce dif-
ferent dynamics when Infomap identifies the communities compared to the communities
identified by Louvain. The measures having preferences for bridge-like nodes, namely
Comm Centrality (αComm) and Community Hub-Bridge (αCHB), underperform with Louvain
as shown in the first three rows of Fig 3.10.

Figure 3.10: Comparing the trends of the various dynamic models in Hamsterster
with its communities identified by Infomap and Louvain. The first, second, third, and
fourth rows indicate the results of the (A) SI model, (B) SIR model, (C) IC model, (D) LT
model.

We visualize the Hamsterster network with its communities identified by Infomap and
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Louvain to clarify why this occurrence happens in Fig 3.11. We also show the histogram
of the community size distribution in Fig 3.12 of the Hamsterster network using both
Infomap and Louvain.

Figure 3.11: Comparing the position of the top nodes in the Hamsterster network
having its communities identified by Infomap and Louvain. The top nodes are chosen
at a low budget availability ( fo = 1%) and medium budget availability ( fo = 25%). The
bigger nodes in the left, middle, and right figures are the top nodes ranked by Comm
Centrality (αComm), Community Hub-Bridge (αCHB), and Modularity Vitality targeting hubs
(α+

MV), respectively.

Figure 3.12: Histograms of the community size distribution of the Hamsterster net-
work. Communities are identified by Infomap and Louvain.
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Generally, Infomap yields high variance in the sizes of the communities with a power-law
distribution. Louvain uncovers fewer communities with more uniform sizes having a lower
variance. For instance, in the Hamsterster network, Infomap identifies 64 communities
with a maximum size of 692 and a minimum size of 2. Conversely, Louvain uncovers 13
communities with a maximum size of 307 and a minimum size of 6. As Comm Centrality
(αComm) exploits bridge-like nodes in all of the communities of the network, either small or
large, having a more uniform size distribution with less variance diminishes Comm Cen-
trality’s return targeting. Indeed, the bridge-like nodes’ frequency undoubtedly decreases
with Louvain. As we can see in Fig 3.11, when the budget is fo = 1%, and the commu-
nities are identified by Infomap, Comm Centrality’s top nodes are well-distributed across
the network in opposition to its top nodes selected when communities are determined by
Louvain where they are situated in the core of the network. Similarly is the case at fo =
25%.

(6) Comparing the dynamics on communities identified by Infomap and Louvain,
why do the dynamics of the community-aware centrality measures in the LT diverge
when the budget availability is high?

Results show that the dynamics of the LT model differ from that of the SI, SIR, and IC even
when uncovering the communities with the Louvain algorithm. As the findings generally
show, the differences in the outbreak can be seen when the budget is limited with the
stated set of models. However, with the LT model, the differences are featured at high
budget availability (see the last row of Fig 3.10). These differences accentuate how the
LT dynamics differ from the remaining models. Yet, results show that bridge-like nodes
also play a lesser role when Louvain identifies the communities. This is clear when fo
exceeds 0.47 in the LT dynamics of Hamsterster in the last row of Fig 3.10. At this
given budget range, Comm Centrality (αComm) outperformed the remaining measures with
Infomap. However, Modularity Vitality targeting hubs and bridges (|αMV |) outperformed
with Louvain. In addition, we note that Map Equation Centrality (αMapEq) and Community-
based Centrality (αCBC) show superior performances with Louvain as these measures
prioritize hub-like nodes, which are pervasive with Louvain as compared to Infomap.

3.6/ CONCLUSION

Modeling complex network dynamics is a major breakthrough in describing and under-
standing the real world. Researchers from various disciplines, such as sociology, epi-
demiology, and physics, have developed diffusion models deemed to be interdisciplinary
in nature. These diffusion models differ mainly in their underlying conditions and states as
the dynamic process begins in a given network. In the vast data era we live in, a myriad
of unique topological characteristics characterizes networks. One of the prominent char-
acteristics is the network’s community structure. Indeed, the community structure affects
any diffusive phenomena on the network.

That being said, finding the most important nodes that play a role in accelerating or in-
hibiting a diffusion phenomenon within and across these communities is of utmost im-
portance. Community-aware centrality measures acknowledge the network’s community
structure and aim to identify key nodes accordingly. Some measures prioritize hub-like
nodes, while others prioritize bridge-like nodes. Still, the aim at the end is to maximize
the diffusion (or inhibit it) under any dynamic model in a network.
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Numerous community-aware centrality measures and diffusion models have been pro-
posed in the literature. This chapter investigates the interplay between the diffusion dy-
namics, the community-aware centrality measures, and the network’s topological charac-
teristics. More specifically, we analyze how the diffusive power of nodes selected based
on various community-aware centrality measures changes with respect to the model
and the network at hand. Four diffusion models have been simulated, starting with a
set of initial nodes based on the community-aware measures under study on synthetic
and real-world networks. The diffusion models studied are the Susceptible-Infected (SI),
Susceptible-Infected-Recovered (SIR), Independent Cascade (IC), and Linear Threshold
(LT) models.

Results show that the strength of the community structure and budget availability signif-
icantly impact how diffusion spreads. In addition, the SI, SIR, and IC dynamics show a
convergent behavior, while the LT dynamics diverge within a given community structure
strength and budget availability. By controlling the community structure strength in syn-
thetic networks, we observed that the community-aware centrality measures are more
profitable in networks with a strong community structure strength. With real-world net-
works with a strong community structure under the SI, SIR, and IC dynamics, bridges are
always preferred regardless of the budget. With the LT dynamics, hub-like nodes are pre-
ferred when the budget is limited or high. However, when the budget increases, hub-like
and bridge-like nodes are preferred. In networks with a weak community structure, with
the SI, SIR, and IC dynamics, bridge-like nodes are preferred, then distant hub-like nodes
take over at high budget availability. However, with the LT dynamics, hub-like nodes are
preferred at a low budget, while more interlinked nodes with hub-like nodes are preferred
from medium to high budget availability. We also analyzed the impact of the community
detection algorithm, and results showed that in the SI, SIR, and IC dynamics, the per-
formance of the measures changes when the budget is limited. In contrast, with the LT
dynamics, differences are seen when the budget availability is high. The differences be-
tween the diffusion models, mainly seen at a limited budget availability, is credited to the
fact that the conditions in the SI, SIR, and IC models are well suited to select bridge-like
nodes as it is easier for the virus/piece of information to circulate from one community to
another compared to the LT model. Indeed, if the virus/piece of information is initiated in
the well-connected communities under the LT dynamics, the community will never be part
of the occurring diffusive phenomenon.

The extensive experiments shed light on how the diffusion dynamics, the position of the
nodes initially activated, the network’s community structure strength, and the budget avail-
ability are interconnected. Given the knowledge of one or the other, one can choose the
suitable measure for running the most effective diffusion on the network.





4
A COMMUNITY-AWARE RANKING

SCHEME

4.1/ INTRODUCTION

Many real-world systems, including transportation, social, technological, infrastructural,
information, and biological systems, are complex. Influential nodes in these systems play
a critical role in the structure and dynamics of the network [107]. Identifying the most
influential nodes in these networks is a major issue. Indeed, it allows for conducting
specific optimization tasks, such as controlling, minimizing, or maximizing a diffusion pro-
cess. This issue is mainly related to centrality measures [7]. These measures extract
diverse information from the network to quantify its importance. For instance, between-
ness centrality allows identifying genes related to heart attacks [108]. Other applications
include hindering epidemic outbreaks [109], augmenting the effectiveness of marketing
campaigns on social media [110], enhancing the resiliency of infrastructural networks
[111], and many other [112–114].

Centrality measures can be signed (positive or negative) or unsigned (positive and neg-
ative). In the first case, one ranks nodes in descending order, and a fraction of the top
nodes are selected to conduct a specific optimization task. In the second case, one can
have a multitude of ranking schemes. One can combine positive and negative ranks, take
a fraction of both positions, or convert negative values to positive values and take the
aggregate ranks. In either case, one can have two general ranking schemes, strong and
weak. In the former, one selects the most critical nodes first. In the latter, one chooses
the less important nodes [115]. Although centrality measures provide an effective way to
rank nodes, several challenges exist. The first challenge is that several centrality mea-
sures may underestimate the influence of specific nodes depending on the network’s
structure [116]. The second challenge is that many nodes with high centrality may be
neighbors [117]. Thus, targeting these nodes for diffusion or immunization is inefficient
because one uses the resources locally, ignoring large parts of the network. The third
challenge is which ranking schemes and/or combination criteria are ideal for a network
with specific topological features.

To address these challenges, we propose a ranking method that considers the com-
munity structure. Communities are widely present in real-world networks, consisting of
tightly connected and coherent sets of nodes with only a few links with nodes outside
their group [1]. The community structure of a network is known to impact its underlying
dynamics [118, 119], and recent studies highlight the advantages of using this structure
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to identify influential nodes [20–27]. The proposed ranking strategy exploits this precious
information. It is simple yet effective and applicable to all centrality measures. Given a
centrality measure, the most straightforward ranking strategy targets the top nodes in-
dependently of the community structure, if any. Instead, we propose to rank the nodes
based on their importance in their communities. First, we select the most central nodes
in each community. We order these nodes in decreasing order of their community size.
Then we move to each community’s next most central node and adopt the same ordering
strategy. We iterate this process until we reach the given budget of nodes to rank. This
approach naturally selects distant nodes in each community.

To evaluate the proposed ranking strategy, we report a series of experiments on syn-
thetic and real-world networks using a set of six classical centrality measures using the
SIR epidemic model [120]. We categorize these centrality measures into three groups,
namely neighborhood-based (Degree and Maximum Neighborhood Component), path-
based (Betweenness and Closeness), and iterative refinement-based (Katz and PageR-
ank). Experiments on synthetic networks investigate the impact of various network pa-
rameters on the proposed ranking strategy. Indeed, one can control the community struc-
ture strength, the community size distribution, and the degree distribution. Real-world
networks include infrastructural, social, biological, citation, word, and collaboration net-
works with unknown community structures. Therefore, we uncover the communities using
two community detection algorithms to assess the proposed strategy’s consistency linked
to community structure variations. Results show that the community-aware ranking strat-
egy is more effective than the classical ranking by descending order of the centrality
measure. The main advantages of the proposed method are threefold:

1. It applies to all types of centrality measures in all networks (undirected/directed and
unweighted/weighted).

2. It naturally selects distant nodes to expand any diffusion phenomena based on any
given budget.

3. Its complexity depends on the centrality measure computed.

4.2/ PROPOSED RANKING STRATEGY

Centrality measures attempt to measure the level of influence nodes have in a network.
Nodes are typically ranked in decreasing order of influence, with those having the highest
centrality considered to be strategically positioned within the network. As a result, target-
ing these nodes for optimization tasks will likely result in favorable outcomes. However,
in real-world networks, these nodes may be close, which can harm the effectiveness of
dissemination strategies. Consider an immunization scenario in an epidemic process.
Prioritizing the immunization of neighbors, even if influential, may prevent protecting vast
areas of the network. To address this problem, we suggest a community-aware rank-
ing scheme that considers the network’s community structure to select distant influential
nodes.
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ALGORITHM

The proposed ranking strategy targets influential nodes spreading across communities in
the network. It applies to any centrality measure. First, one computes the centrality of
the nodes. Second, one targets top nodes community by community. Such a strategy
prevents the concentration of influential nodes in the same network area. The targeted
nodes are naturally more dispersed.

Algorithm 1 Community-aware ranking scheme

Input: Graph G(V, E), Centrality measure β, Sorted community set C, Budget B
Output: List of ranked nodes L

1: D ← ∅ ▷ Compute the centrality of each node
2: for each i ∈ V do
3: D[i]← β(i)
4: for each cl,l∈{1,2,...,|C|} ∈ C do ▷ Sorting the nodes inside their communities
5: for each i ∈ cl do
6: Dcl ← D[i]
7: Dcl ← Sort(Dcl )

8: while B , 0 do ▷ Extract sorted list of nodes till budget is reached
9: for each Dcl and i ∈ Dcl do

10: if Dcl , ∅ then
11: v← Dcl .pop(i)
12: L.append(v)
13: B← B− 1

Doing so makes it more likely that any diffusion process spreads more uniformly in the
network than in the case where targeted nodes by a centrality measure in a descending
order ranking scheme are close to each other. Note that we assume the communities are
sorted from the biggest to the smallest, with ties decided at random. Also, note that the
maximum budget is the size of the network. The pseudocode is provided in Algorithm 1.

TOY EXAMPLE

Figure 4.1 illustrates the proposed ranking method on a toy example. The network con-
tains 22 nodes and three communities in this example. Suppose the maximum budget is
three nodes out of the whole network. We consider Degree and Betweenness centrality
as measures of influence. Tables 3 and 4 in Appendix I report the centrality values and
the corresponding ranks using the descending order and the proposed approach. Based
on the descending order ranking scheme of the Degree centrality, presented on top of Fig
4.1A, we can see that the highest degree nodes (nodes 1, 4, and 5) belong to the same
community C1. Similarly, the nodes with the highest Betweenness centrality (nodes 13,
14, and 15) are all located in the same community C2, presented at the bottom of Fig
4.1A.
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Figure 4.1: Illustrating the behavior of the descending order ranking scheme and
the community-aware ranking scheme. The nodes chosen are the top 3 nodes based
on the Degree centrality (colored in red) and the Betweenness centrality (colored in blue).

In contrast, the proposed community-aware ranking scheme selects the highest degree
node in each community, presented on top of Fig 4.1B. Indeed, node 5 is picked from com-
munity C1, node 13 is picked from community C2, and node 19 is picked from community
C3. Results with the Betweenness centrality are similar, as presented at the bottom of
Fig 4.1B. Instead of targeting the top three nodes in the same community C2, the pro-
posed ranking approach selects nodes with the highest Betweenness centrality in each
community. More precisely node 3 in C1, node 13 in C2, and node 21 in C3. Note that
ranks of nodes with the same centrality value in a community are chosen randomly.

One of the main drawbacks of the classical descending order ranking scheme is ignoring
the network’s community structure. From the diffusion perspective, if targeted nodes
diffusing a piece of information or a virus are very close, the diffusion dies out before
spreading across the other communities. On the contrary, the proposed ranking approach
naturally selects the most influential nodes in their community. Indeed, the proposed
ranking scheme favors nodes from all the dense parts of the network rather than specific
communities.

4.3/ SYNTHETIC NETWORKS

We investigate synthetic networks using the LFR benchmark [97].
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INFLUENCE OF THE COMMUNITY STRUCTURE STRENGTH

This experiment aims to investigate the influence of the community structure strength
on the performance of the ranking strategies (the descending order ranking scheme and
the proposed community-aware ranking scheme). The mixing parameter (µ) is tuned
to cover a wide range of community structure strengths. It spans from very strong to
very weak (µ = 0.05, 0.10, 0.20, 0.40, 0.70). Remember that a low value means few
links between communities, indicating a strong community structure. In contrast, high
value corresponds to networks with many links between communities, indicating a weak
community structure. For the sake of brevity, we only show the outcomes of the most
significant situations.

Fig 4.2 shows the relative difference in the outbreak size (∆R) as a function of the fraction
of initially infected nodes of the six investigated centrality measures (Degree, Maximum
Neighborhood Component, Betweenness, Closeness, Katz, PageRank) with a strong (µ
= 0.05), medium (µ = 0.40), and weak (µ = 0.70) community structure strengths. The
remaining parameters, including the community size (θ) and degree distribution (γ) expo-
nents, are fixed at 2.7. The outbreak size (∆R), represented by the red curve, is the differ-
ence between the number of nodes recovered after an initial set of nodes ranked based on
the community-aware ranking scheme is infected and another initial set of nodes infected
ranked based on the classical descending order ranking scheme. Thus, it represents a
measure of performance of the community-aware ranking scheme. Positive values indi-
cate that the proposed ranking scheme performs better (see Appendix I for details about
calculating ∆R).

In networks with a strong community structure (µ = 0.05), the community-aware ranking
scheme consistently outperforms the classical descending order ranking scheme for all
the centrality measures under study. The gain reaches 24% for Katz centrality at a fraction
of initially infected nodes ( fo) of 0.20, followed by 22% for Degree, MNC, and Closeness
centrality. The performance of these measures is consistent from a fraction of initially
infected nodes of 0.10 till 0.25, then they decline. Closeness centrality slightly declines,
showing a ∆R of 14% at fo = 0.50, followed by Katz centrality with 8%, then Degree and
MNC obtaining a ∆R of 6%. Betweenness and PageRank are the less performing mea-
sures under the community-aware ranking scheme. The maximum gain for Betweenness
is 12.5% at fo = 0.12, and for PageRank is 16.5% at fo = 0.9. After a peak, performance
declines, reaching a gain of 2% at fo = 0.50.

In networks with a medium community structure (µ = 0.40), the community-aware ranking
scheme of all the centrality measures still performs better than the classical descending
order ranking scheme. When the fraction of initially infected nodes fo is low (i.e., between
0.01 and 0.05), the gain for all the centrality measures is low, reaching a maximum of 1%.
As the fraction of initially infected nodes increases, the performance of the community-
aware ranking scheme also increases until it reaches a plateau or barely changes. For
example, the relative difference in the outbreak size of Degree centrality increases from
fo equaling 0.10 to 0.25, going till ∆R = 6.5%, and then it hardly changes. MNC, Be-
tweenness, Closeness, Katz, and PageRank show similar behavior with ∆R reaching a
maximum between 5% and 10%.

In networks with a weak community structure (µ = 0.70), when the fraction of initially
infected nodes is between 0.01 and 0.10, the relative difference in the outbreak size (∆R)
alternates between -1% and +1%. After that, it increases to a maximum of ∆R = 3%
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Figure 4.2: Impact of the community structure strength (µ) in synthetic networks.
The figures represent the relative difference of the outbreak size (∆R) as a function of
the fraction of initially infected nodes. The red curve indicates the relative performance
difference of the community-aware ranking strategy with the descending order ranking for
the six centrality measures under test. The mixing parameter (µ) varies while the other
parameters, including the community size distribution exponent (θ = 2.7) and the degree
distribution exponent (γ = 2.7), are fixed.
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Figure 4.3: The relative difference of the outbreak size (∆R) as a function of the
mixing parameter (µ) when fraction of initially infected nodes ( fo) equals 0.15. The
color of the curve represents the centrality measures under study. (A) Synthetic networks
with degree distribution γ = 2.7 and community size distribution θ = 2. (B) Synthetic
networks with degree distribution γ = 2.7 and community size distribution θ = 2.7. (C)
Synthetic networks with degree distribution γ = 2.7 and community size distribution θ = 3.

and shows a plateau. One can expect these results. Indeed, the frontier between weak
community structure and no community structure is thin.

We fix the fraction of initially infected nodes at 0.15 for all the centrality measures in Fig
4.2 and plot the relative difference in the outbreak size (∆R) as a function of the mixing
parameter (µ) as shown in Fig 4.3B. As the community structure gets weaker (i.e., from
µ = 0.05 to µ = 0.7), the performance of the community-aware ranking scheme starts
declining. Moreover, one can differentiate between the centrality measures’ effective-
ness. Closeness is the best-performing centrality measure, followed by Katz, Degree,
and MNC. In contrast, Betweenness and PageRank perform poorly. However, all the
measurements show a higher relative difference in the epidemic outbreak size than the
classical descending order ranking scheme.

These results show that the community-aware ranking scheme is more effective in net-
works with a strong community structure. Indeed, in a strong community structure, com-
munities are so well-separated that one can consider them independent subnetworks with
their topological characteristics. In turn, targeting the most influential nodes in each com-
munity leads to a higher spreading, ensuring that the diffusion reaches all communities.
As the community structure gets weaker, the performance of the community-aware rank-
ing scheme decreases. Since the community structure is not well defined, the network is
barely distinguishable from the one without a community structure. However, even in the
worst-case scenario, the community-aware ranking scheme still is more effective than the
classical descending order ranking scheme.

INFLUENCE OF THE COMMUNITY SIZE DISTRIBUTION

This investigation aims to analyze the impact of the community size distribution on the
community-aware ranking scheme. One can tune the power-law community size distri-
bution exponent (θ) in the networks generated by the LFR. In this study, we evaluate two
values representing extreme cases. In the first case with θ = 2, few small communities
coexist with large communities with a large variance in community sizes. In the second
case, with θ = 3, more communities of equivalent sizes coexist, and the variance in the
community sizes is minor. There are more communities in the second case than in the
first case. Table 5 in Appendix I reports the number of communities of each generated
network, along with the minimum and maximum size of the communities. Note that we
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also perform tests with θ = 2.7. However, no significant differences were compared to θ
= 3.

Fig 4.4 shows the relative difference in the outbreak size (∆R) as a function of the fraction
of initially infected nodes for the Degree and Katz centrality. The community size distribu-
tion exponent θ equals 2 (panel A) and 3 (panel B). The other fixed parameters include
the mixing parameter (µ = 0.05) and the degree distribution exponent (γ = 2.7).

When θ = 2 (Fig 4.4A), the networks contain a few small communities coexisting with
much larger ones. The relative difference of the outbreak size (∆R) increases as the
fraction of initially infected nodes increases, reaching a maximum of 11% for Degree
centrality and 12% for Katz centrality for the community-aware ranking scheme. Then, ∆R
barely varies when the fraction of initially infected nodes fo ranges from 0.10 and 0.25.
After that, it gradually decreases, reaching 3.5% and 4% for both centralities, respectively,
when fo = 0.50.

When θ equals 3 (Fig 4.4B), many small communities of comparable sizes and a few
large ones exist. The performance of the community-aware ranking scheme for Degree
centrality increases, reaching a maximum of 24% gain in terms of ∆R. Then it gradually
decreases until it reaches 5.1% gain when the fraction of initially infected nodes is 0.50.
Katz centrality exhibits similar behavior. The relative outbreak size increases as the frac-
tion of initially infected nodes increases, reaching a maximum gain of 24%. It decreases
until it reaches a gain of 8% when the fraction of initially infected nodes equals 0.50.

Figure 4.4: Impact of the community size distribution exponent (θ) in synthetic net-
works. The figures represent the relative difference of the outbreak size (∆R) as a
function of the fraction of initially infected nodes. The red curve indicates the relative
performance difference of the community-aware ranks of the Degree and Katz centrality
measures compared to the descending order ranks. The community size distribution ex-
ponent (θ) varies while the other parameters, including the mixing parameter (µ = 0.05)
and the degree distribution exponent (γ = 2.7), are fixed.

Fig 4.3 reports the relative outbreak size (∆R) for all the centrality measures in synthetic
networks with a community size distribution exponent (θ) spanning from 2 (Panel A) to 3
(Panel C). The fraction of initially infected nodes ( fo) is fixed at 15%. When networks have
a large difference in the sizes of the communities leading to fewer communities (θ = 2), the
gain in ∆R of the community-aware ranking scheme ranges from 11% as a maximum at
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µ = 0.05. It decreases, reaching 0% when µ = 0.70. On the contrary, when the networks
have many small communities with fewer larger ones leading to many communities, ∆R
for Degree, MNC, Closeness, and Katz reach a gain of 23% and a gain of 13% and 12.7%
for Betweenness and PageRank, respectively. As the community structure gets weaker,
∆R decreases to a minimum of 1% for PageRank centrality and a maximum of 2.3% for
Closeness centrality.

Results indicate that when the network contains a few large communities, the community-
aware ranking scheme is not as effective as in networks with many communities of smaller
sizes. It is reasonable since when huge communities coexist with a few small communi-
ties, the large communities will make up most of the network. When one picks the top
influential nodes from each community in the first iteration, the nodes picked in the sec-
ond iteration inside the large communities will likely be next to each other. Indeed, when
there are substantial communities, there are few communities overall. Thus, infecting the
most influential nodes in the same neighborhood is less effective than covering many
communities of comparable sizes with the community-aware ranking scheme.

INFLUENCE OF THE DEGREE DISTRIBUTION

In this experiment, we investigate the effect of the degree distribution on the performance
of the community-aware ranking scheme. The degree distribution exponent (γ) is tunable
in the LFR model. Studies have shown that real-world networks are scale-free, with
a degree distribution exponent in the range of 2 and 3 [104, 121]. Consequently, we
test these two values. We also set γ = 2.7, but there are no significant differences
compared to γ = 3. When γ equals 2, the network’s structure resembles a hub-and-
spoke network [105]. When γ equals 3, the network’s structure is more similar to a
random network where more nodes would have a comparable frequency of neighbors.
Since the LFR model also generates networks with a community structure, the nodes
inside the communities have equivalent sizes while ensuring the community structure is
maintained [97].

Fig 4.5 shows the relative difference in the outbreak size (∆R) as a function of the fraction
of initially infected nodes for the Degree and Katz centrality. The degree distribution
exponent γ equals 2 (panel A) and 3 (panel B). We fix all the other parameters, including
the mixing parameter (µ = 0.05) and the community size distribution exponent (θ = 2.7).

When γ = 2 (Fig 4.5A), generating networks with a hub-and-spoke structure, the relative
difference of the outbreak size (∆R) of both Degree centrality and Katz centrality under
the community-aware ranking scheme escalates quickly from a fraction of initially infected
nodes ( fo) amounting to 0.01 till 0.10, reaching a maximum of 24%. ∆R stays in this range
between 20% and 24% from fo = 0.11 till fo = 0.27 for Degree and fo = 0.30 for Katz. After
which ∆R starts to decrease, reaching 6.5% for Degree and 8.5% for Katz at fo = 0.50.

When γ = 3, the degree distribution of the communities of the generated networks is more
random than average. One can observe that both Degree centrality and Katz centrality
perform similarly according to the relative difference of the outbreak size (∆R). Com-
pared to the descending order ranking scheme, the gain of the community-aware ranking
scheme reaches 19% and barely changes till fo = 0.25. Then it gradually decreases,
reaching ∆R = 5% at fo = 0.50.
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Figure 4.5: Impact of the degree distribution exponent (γ) in synthetic networks.
The figures represent the relative difference of the outbreak size (∆R) as a function of
the fraction of initially infected nodes. The red curve indicates the relative performance
difference of the community-aware ranks of the Degree and Katz centrality measures
compared to the descending order ranks. The degree distribution exponent (γ) varies
while the other parameters, including the mixing parameter (µ = 0.05) and the community
size distribution exponent (θ = 2.7), are fixed.

Fig 4.6 reports the differences in the relative outbreak size (∆R) for all the centrality mea-
sures in networks with a degree distribution exponent (γ) spanning from 2 (Panel A) to
3 (Panel C). The fraction of initially infected nodes ( fo) equals 15% When networks are
similar to a hub-and-spoke structure (Fig 4.6A) with a strong community structure (µ =
0.05), centrality measures under the community-aware ranking scheme always show a
higher relative outbreak size difference (∆R).

Figure 4.6: The relative difference of the outbreak size (∆R) as a function of the
mixing parameter (µ) when fraction of initially infected nodes ( fo) equals 0.15. The
color of the curve represents the centrality measures under study. (A) Synthetic networks
with degree distribution γ = 2 and community size distribution θ = 2.7. (B) Synthetic
networks with degree distribution γ = 2.7 and community size distribution θ = 2.7. (C)
Synthetic networks with degree distribution γ = 3 and community size distribution θ = 2.7.

However, one can consider two categories. The first, including Degree, MNC, Closeness,
and Katz, exhibit gains ranging from 21% and 23.5%. The second involving Between-
ness and PageRank, obtains a gain of around 13%. As we shift to a more random-like
structure (γ = 3) in Fig 4.6C, categorizing the centrality measures observed at γ = 2 re-
mains the same. However, for the first category, the gain decreases between 17% and
18%. The second category exhibits a gain of around 11%. As the community structure
weakens, the difference in the outbreak size becomes less pronounced. Nevertheless,
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the community-aware ranking scheme always performs better than the descending order
ranking scheme.

Even though the differences are not as pronounced compared to the variation in the com-
munity size distribution, results show that when the communities of the generated net-
works are more random-like, the performance of the community-aware ranking scheme
slightly decreases. Since more nodes have a comparable number of connections in-
ternally in a random-like structure, they may have similar centrality values. In turn, the
community-aware ranking scheme may be prone to selecting nodes of the same influence
inside their communities, saturating the diffusion spread. On the contrary, in a network
with well-separated communities such as the hub-and-spoke structure, a community-
aware ranking scheme can distinctively pick influential nodes in their communities that
are naturally not close to each other due to the hub-and-spoke structure. It results in a
higher diffusion to more isolated areas that the descending order ranking scheme cannot
reach.

4.4/ REAL-WORLD NETWORKS

We also investigate the community-aware ranking scheme on 33 real-world networks
covering various domains (i.e., infrastructural, biological, social, collaboration, and eco-
logical). Since their community structure is unknown, we uncover it using two community
detection algorithms: Infomap [106], and Louvain [87]. It allows us to check the impact of
the community structure variations on the consistency of the community-aware ranking
scheme.

SPREADING POWER OF THE PROPOSED METHOD

Since the community structure strength is a significant feature influencing the perfor-
mance of the proposed community-aware ranking strategy, we classify the networks into
three categories. The categories cover networks with strong (µ ≤ 0.20), medium (0.20
< µ < 0.40), and weak (µ ≥ 0.40) community structures. We consider communities
uncovered by Infomap as our reference case. For brevity, we report one network of each
category for all the centrality measures under study in Fig 4.7.

The community-aware ranking scheme outperforms the classical descending order rank-
ing scheme in networks with a strong community structure (µ ≤ 0.20). The distinction lies
in the gain in the relative difference of the outbreak size (∆R). As depicted by the U.S.
Airports network (with µ = 0.08) in Fig 4.7, one can note the outperformance of Closeness
centrality, with a difference in the outbreak size (∆R) reaching a maximum of 21% when
the fraction of initially infected nodes ( fo) amounts to 0.41, followed by Degree centrality
with ∆R = 20% at fo = 0.41 and MNC and Katz with ∆R = 20% at fo = 0.40. Then comes
PageRank with ∆R = 15% at fo = 0.41 followed by Betweenness with ∆R = 14% at fo =
0.41. In general, in all the networks, Closeness, Degree, MNC, and Katz show higher ∆R
than Betweenness and PageRank. One can also note three typical behaviors for the per-
formance of the community-aware ranking scheme in networks with a strong community
structure. These behaviors are common to all the centrality measures within a given net-
work. For brevity, we report the results of Degree centrality only. The first typical behavior
is that ∆R increases as fo increases. It is illustrated by the Princeton network in Fig 4.8A
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Figure 4.7: Impact of the community structure strength (µ) in real-world networks.
The figures represent the relative difference of the outbreak size (∆R) as a function of
the fraction of initially infected nodes. The red curve indicates the relative performance
difference of the community-aware ranking strategy with the descending order ranking for
the six centrality measures under test. A strong, medium, and weak mixing parameter
(µ) is derived based on the communities in real-world networks (U.S. Airports, Facebook
Organizations, and Adolescent Health) identified by the Infomap community detection
algorithm.

on the left. Ego Facebook, Facebook Friends, and Facebook Politician Pages share simi-
lar behavior. The second typical behavior is that ∆R increases until it reaches a plateau or
barely deviates as fo increases. It is shown in the middle of Fig 4.8A for the Yeast Collins
network. London Transport, Malaria Genes, NetSci, Board of Directors, and DNC Emails
show similar behavior. Finally, in the third case, ∆R increases until it reaches a specific
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Figure 4.8: Trends in the performance of the community-aware ranking scheme in
real-world networks. The figures represent the relative difference of the outbreak size
(∆R) as a function of the fraction of initially infected nodes. The red curve indicates the
relative performance difference of the community-aware ranks of the Degree centrality
compared to the descending order ranks. Communities are identified using Infomap.
(A) Networks with a strong community structure strength. (B) Networks with a medium
community structure strength. (C) Networks with a weak community structure strength.

value of fo, then decreases gradually. It is demonstrated by the EU Airlines network in Fig
4.8A on the right. U.S. Airports, Madrid Train Bombings, Reptiles, 911 All Words, Marvel
Partnerships, U.S. Power Grid, PGP, EuroRoad, and Internet Topology Cogentco share
similar behavior.

The community-aware ranking scheme still outperforms the classical descending order
ranking scheme in networks with a medium community structure (0.20 < µ < 0.40).
However, the gain is less pronounced compared to networks with a strong community
structure. It is depicted by the Facebook Organizations network in Fig 4.7. One can see
that Closeness and Katz centrality measures achieve the highest gain in ∆R amounting
to 6% and 7% from a fraction of initially infected nodes amounting to 0.15 to 0.45. The
maximum gain for Degree and MNC is 4% and 4.5%, respectively. Then, Betweenness
and PageRank show a gain of ∆R = 2.5% and ∆R = 3.5, respectively. One can also
note that within this category, we observe three behaviors for the performance of the
community-aware ranking scheme. These behaviors are similar to those in networks with
a strong community structure but at a smaller magnitude. We have an increasing ∆R as
fo increases, depicted by the Human Protein network on the left of Fig 4.8B. Hamsterster
and Blumenau Drug share similar behavior. In the second category, we have an increas-
ing ∆R until it reaches a plateau or barely deviates as fo increases. It is depicted by the
Interactome Vidal network in the middle of Fig 4.8B. Facebook Organizations and Caltech
share similar behavior. Finally, the third category shows a slight and gradual decrease
directly from the start as fo increases. It is illustrated by the Yeast Protein network in Fig
4.8B on the right. Retweets Copenhagen shows similar behavior.
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The community-aware ranking scheme outperforms the classical descending order rank-
ing scheme in networks with a weak community structure (µ ≥ 0.40). However, in some
networks, the gain in ∆R can even be higher than in networks with a strong or medium
community structure. Indeed, the maximum improvement in ∆R can reach up to 15% in
the AstroPh network (see Fig 4.8C) with Degree, MNC, Closeness, and Katz centrality
measures and up to 11% and 10% for PageRank and Betweenness centrality measures
respectively. At the same time, it can be as low as 5% in Adolescent Health given in Fig
4.7 for Degree, MNC, Closeness, and Katz and as low as 4% for Betweenness and 3% for
PageRank. That being said, in networks with a weak community structure, there is one
trend despite the difference in magnitude. Indeed, as seen from Fig 4.8C, all networks
(AstroPh, DeezerEU, and Bible Nouns) have an increasing ∆R as fo increases. The only
difference is in the magnitude of ∆R from one network to another.

In summary, the community-aware ranking scheme outperforms the descending order
ranking scheme in all real-world networks under study. The gain of the proposed ranking
scheme is affected by the community structure strength, as observed in artificial networks
with controlled community structure strength. The stronger the community structure, the
higher the performance of the community-aware ranking scheme. Nevertheless, it is
worth noting that the community-aware ranking also shows high performance in some
real-world networks with a weak community structure.

The community-aware ranking scheme has a high performance in networks with strong
community structure strength because it does not select nodes in one dense region when
there are many well-separated dense areas. We visualize two networks with strong com-
munity structure strength but different topological structures, namely Yeast Collins and
EU Airlines in Fig 4.9A and Fig 4.9B, respectively. In these two networks, we pick and in-
crease the size of the top 15% of nodes selected by the descending order ranking scheme
and the community-aware ranking scheme. For brevity, we only show Degree centrality
and Closeness centrality. Concerning the Yeast Collins network, for both Degree and
Closeness centrality, one can directly point out how the descending order scheme se-
lects most of the top nodes in large network communities mainly located at the bottom of
the network. On the contrary, the community-aware ranking scheme selects nodes in ev-
ery community, spreading across all the network regions. A similar interpretation goes for
the EU Airlines network, another network with a strong community structure. Indeed, the
descending order ranking scheme of Degree and Closeness centrality measures targets
only the dark pink and green communities. In contrast, the community-aware ranking
scheme does not miss a single community. It is the reason why the community-aware
ranking strategy allows a higher diffusion.

We also investigate the case of networks with a weak community structure where the
proposed community-aware ranking scheme performs well. Fig 4.9C visualizes the As-
troPh network, a network with a weak community structure and high performance of the
community-aware ranking scheme. Despite having loosely defined communities with a
vast number of inter-community connections, the community-aware ranking scheme tar-
gets nodes at the core and in the periphery of the AstroPh network, either with Degree or
Closeness centrality measures. While with the descending order ranking scheme, using
Degree or Closeness centrality measures, nodes picked are mainly in the network’s core.
Consequently, the community-aware ranking scheme can ignite a higher diffusion as it
reaches regions the descending order ranking scheme never targets.

It is worth mentioning that networks characterized by a weak community structure may
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Figure 4.9: Top nodes selected based on the Degree and Closeness centrality mea-
sures according to the descending order and community-aware ranking schemes.
Communities of the Yeast Collins (A), EU Airlines (B), and AstroPh (C) networks are iden-
tified by Infomap. The top selected nodes (depicted in bigger sizes) amount to 15% of the
network’s size.

exhibit different topologies [122, 123]. If it is core-periphery-like, such as in the AstroPh
network, the community-aware ranking scheme covers all the regions in the network. If
the network is very dense with no particular local structure, the community-aware ranking
scheme might select nodes in the vicinity of each other. We suggest using a measure
that combines the local and global influence of the nodes for better targeting influential
nodes [117, 124]. Note that the distance between the nodes should also be addressed.
Alternatively, one can also incorporate a minimum distance constraint between nodes in
a community so that targeted nodes are scattered. There is room for improvement in
networks with a weak community structure.

INFLUENCE OF THE COMMUNITY DETECTION ALGORITHM

In this experiment, we use the Infomap [106] community detection algorithm to extract the
communities in real-world networks. Then, we perform the same comparative evaluation
process using SIR simulations between the classical and the proposed ranking strate-
gies based on the communities identified by Louvain [87]. The aim is to investigate the
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impact of the variations in the community structure induced by the community detection
algorithms on the performance of the ranking schemes.

Fig 4.10 illustrates the relative difference in the outbreak size (∆R) of the community-
aware ranking scheme for Degree and Closeness centrality measures. We comment
on the results for three typical networks (Facebook Friends, Human Protein, and Bible
Nouns). Facebook Friends and Human Protein belong respectively to the strong and
medium community structure categories using Infomap or Louvain. Bible Nouns network
is in the medium community structure category based on Louvain and the weak commu-
nity structure using Infomap.

First, these results demonstrate that the community-aware ranking scheme is robust to
the community structure variation induced by the community detection algorithm. Indeed,
∆R is positive whether Infomap or Louvain uncovers communities. This result is indepen-
dent of the community structure strength. For example, Facebook Friends is a network
with a strong community structure. For a fraction of initially infected nodes equal to 0.25,
the gain of ∆R equals 15% for Degree centrality and 11% for Closeness centrality. It
compares to an 8% increase for Degree centrality and 7% for Closeness centrality using
Louvain with the same fraction of initially infected nodes. Consider the Human Protein
network with a medium community structure strength. With a fraction of initially infected
nodes equal to 0.25, the ∆R gain is 6% for Degree and Closeness centrality measures. In
the same situation, using Louvain, the growth is lower. Indeed, ∆R equals 2% for Degree
centrality and 3% for Closeness centrality. Finally, the community-aware ranking scheme
still outperforms the classical descending order ranking scheme in the Bible Nouns net-

Figure 4.10: Impact of the community detection algorithm in real-world networks
with strong, medium, and weak community structure strengths. The figures rep-
resent the relative difference of the outbreak size (∆R) as a function of the fraction of
initially infected nodes. The red curve indicates the relative performance difference of the
community-aware ranks of the Degree and Closeness centrality measures compared to
the descending order ranks. (A) Communities identified using Infomap. (B) Communities
identified using Louvain.
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work. For a fraction of initially infected nodes of 0.25, ∆R equals 6% for Degree centrality
and 5.5% for Closeness centrality. Using Louvain with the same fraction of initially in-
fected nodes reduces the ∆R gain to 2.5% for Degree centrality and 2% for Closeness
centrality.

Second, one can note that with Infomap, the gain in ∆R is relatively higher than Lou-
vain. For instance, in Facebook Friends with communities identified using Infomap, the
maximum ∆R reaches 17.5% at a fraction of initially infected nodes of 0.44 using De-
gree centrality and 13% using Closeness at a fraction of initially infected nodes of 0.31.
In contrast, with the Louvain community detection algorithm, the maximum ∆R reaches
12.5% at a fraction of initially infected nodes of 0.39 using Degree centrality and 10% us-
ing Closeness at a fraction of initially infected nodes of 0.08. Thus, the difference in gain
of ∆R is +5% for Degree centrality and +3% for Closeness centrality using Infomap. One
observes similar results for Human Protein and Bible Nouns. The maximum gain in ∆R
in Human Protein amounts to 6% using both Degree and Closeness centrality measures.
Meanwhile, Louvain’s maximum gain in ∆R amounts to 3% for the two centrality mea-
sures. In Bible Nouns, with Infomap, the maximum improvement in ∆R amounts to 8.5%
using both Degree and Closeness centrality measures. In opposition, using Louvain, the
maximum gain in ∆R is 4.8% for Degree centrality and 3.8% for Closeness centrality.

To investigate why the performance of the community-aware ranking scheme decreases
with Louvain compared to Infomap, we examine the community size distributions of the
networks. Fig 4.10 gives the community size distributions associated with Infomap and
Louvain of the networks provided in Fig 4.11. Indeed, they represent typical cases. Si-
multaneously, we compute the number of communities uncovered by each community
detection algorithm and the minimum and maximum size of the communities for all the
networks. Tables 5 and 6 in Appendix I report the results using Infomap and Louvain,
respectively.

The histograms of the community size distributions in Fig 4.11 show that they are gener-
ally more skewed to the right using Infomap. A high number of small communities coexists
with very few large communities. In contrast, this distribution is more uniform for the Lou-
vain community structure. We observe many communities with medium and large sizes.
Moreover, Infomap uncovers a higher number of communities. For example, it reveals 21
communities in Facebook Friends, 99 in Human Protein, and 88 in Bible Nouns. It com-
pares with 10 communities in Facebook Friends, 14 in Human Protein, and 17 in Bible
Nouns identified by Louvain.

The question is, how do these two outcomes affect the performance of the proposed
community-aware ranking scheme compared to the classical descending order ranking
scheme. On the one hand, Louvain generally uncovers fewer communities, with many
medium-sized and large communities making up most of the network. On the other hand,
Infomap discovers many more communities with a high number of small communities co-
existing with fewer larger ones. The proposed community-aware ranking strategy is more
effective with Infomap. Naturally, with more communities, it selects at least one node in
every community. The higher the number of communities, the higher its ability to choose
distinct nodes. It is not necessarily true with fewer communities. Indeed, first, one selects
a node in each community. Then, in the next iteration, nodes are targeted in the same
communities. Thus, nodes inside the same communities may be closer to each other
than when there are many communities. Thus, the diffusion power weakens. Indeed, it
does not reach distant regions in the network, and the diffusion stays confined in large
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Figure 4.11: Histograms of the community size distribution. Communities are iden-
tified in Facebook Friends, Human Protein, and Bible Nouns by the Infomap (A) and
Louvain (B) community detection algorithms.

communities. Note that these results complement those reported using the generated
LFR networks with controlled community size distribution exponent regarding the number
of communities. Indeed, when fewer communities exist, the community-aware ranking
scheme is more susceptible to picking the next top node close to the former top-picked
node inside these communities. Consequently, infecting the most influential nodes in
fewer communities is less efficient than having many communities spanning the whole
network.

4.5/ CONCLUSION

This chapter presents a community-aware ranking scheme that one can use with any
centrality measure. The proposed method is simple yet effective at selecting nodes ac-
cording to their relative influence in a modular network. Unlike the popular descending
order ranking scheme, which ranks the most influential nodes from high to low centrality
values, it ranks nodes in a sequential order linked to the community size. Consequently,
it selects nodes across all regions of the networks. In contrast with the descending order
ranking scheme that can select nodes in a few communities that ignore large parts of the
network, this strategy targets nodes more uniformly distributed. As a result, the proposed
strategy warrants that the diffusion process does not die out locally and reaches distant
regions of the network.

Extensive experiments have been conducted on synthetic and real-world networks us-
ing the SIR epidemic spreading model. To better understand the interplay between the
community structure and the performance of the proposed strategy, we performed a se-
ries of experiments in synthetic networks controlling the community structure strength,
the exponents of the community size, and degree distributions. Results show that the
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community-aware ranking scheme is more effective in networks with strong community
structure strength. As it weakens, the performance decreases gradually. Nevertheless,
the community-aware ranking scheme always performs better than the descending order
ranking scheme, even in networks with a weak community structure. The community size
distribution also affects the performance of the community-aware ranking scheme. Re-
sults show the strategy performs better in networks of many small communities instead
of a few large communities. Indeed, the higher the number of communities, the more
likely the targeted nodes are scattered across the network regions, igniting a higher epi-
demic outbreak. The influence of the degree distribution exponent is less pronounced.
However, one can notice that the community-aware ranking scheme performs better in
hub-and-spoke-like networks than in random-like ones.

The community-aware ranking scheme also outperforms the classical ranking strategy in
a set of real-world networks of various domains. The findings are consistent with the syn-
thetic networks’ experiments. Indeed, the community-aware ranking scheme performs
better in networks with a strong community structure strength. The gain gradually de-
creases with the community structure strength. Note that in some networks with a weak
community structure strength, the community-aware ranking scheme still creates a higher
outbreak than its alternative. Indeed, the community-aware ranking scheme ranks the
top nodes inside each community. Even in networks with a weak community structure, it
can rank nodes in faraway regions, causing a higher outbreak. We also investigate the
influence of the community detection algorithm on the performance of the community-
aware ranking scheme. The comparisons involve Infomap and Louvain. Since the com-
munity structure uncovered by Louvain results in fewer communities and subsequently
larger ones compared to Infomap, the community-aware ranking scheme performs better
with the Infomap community structure. This result is coherent with synthetic networks’
community size distribution variation. Whatever the community detection algorithm, the
community-aware ranking scheme consistently outperforms the descending order ranking
strategy.

The main lesson from this study is to highlight the necessity of incorporating the com-
munity structure information in centrality measurements to better rank influential nodes.
This work departs from previous community-aware solutions combining a node’s local
and global influence. Here, we show that whatever the notion of influence, the ranking
strategy is a critical factor in the diffusion process. Whatever the centrality measure, the
proposed ranking scheme is decisive in targeting the most influential nodes scattered
across the network. This strategy overcomes a frequent drawback in centrality measures
using the popular descending order ranking scheme in which the most influential nodes
happen to be in the vicinity of each other. The proposed ranking scheme is adequate for
igniting higher diffusion for marketing and awareness campaigns or combating diseases
and unwanted viruses since it pinpoints influential nodes while ensuring that all regions
in the network are covered.
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5.1/ INTRODUCTION

Real-world networks often exhibit a community structure [125]. The recent trend of re-
search on centrality measures exploits network community structure to design the so-
called “community-aware” centrality measures [20–27]. These measures assume that a
node belongs to one and only one community. While in many situations, nodes may be-
long to several communities, indicating an overlapping community structure [126]. We,
as humans, belong to several communities merging our personal and professional lives.
A protein may belong to different protein complexes. Researchers have shown that the
overlap is a significant feature in many real-world networks [126–128].

While there are plenty of works to detect overlapping communities [129–135], few scien-
tists make use of the overlapping community structure to identify critical nodes [28–31].
This chapter aims to develop a flexible framework to identify influential nodes in networks
with an overlapping community structure. It allows exploiting the structure of overlapping
communities pervasive in many real-world networks through various definitions of over-
lapping modularity. The proposed approach can be modified to suit various situations and
data availability by including various types of overlap information. This allows researchers
and practitioners to tailor the framework to various situations depending on the available
information.

The proposed framework is inspired by the concept of vitality [136]. Given a quality func-
tion computed on the graph, the vitality of a node expresses the quality function varia-
tion when one removes it from the network. Depending on the node’s role in the given

75
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quality function, it is either negative or positive. Originally, vitality was used with classi-
cal centrality measures. Recently, [26] introduced “Modularity Vitality.” It uses Newman’s
non-overlapping modularity as a quality measure to quantify the centrality of nodes.

When it comes to community structure, numerous quality metrics have been proposed in
the literature [81, 82]. Since overlapping communities are a significant characteristic of
real-world networks, we opt for overlapping information to compute the vitalities of nodes.
We also rely on modularity as it is the most influential quality measure. The proposed
measure, called Overlapping Modularity Vitality, is based on a generalized modularity
equation that accounts for the overlapping community structure in a network. One can
distinguish fuzzy and crisp overlapping modularity measures [83, 92, 137]. The proposed
framework differs from its non-overlapping counterpart in its flexibility. We do not focus on
a unique definition of overlapping modularity. We propose a general framework that allows
including different types of overlapping structural information of the network. Indeed,
one cannot extract the same information from all networks. Accordingly, depending on
availability, the proposed framework can work with fuzzy and crisp information.

In the following sections, we introduce the Overlapping Modularity Vitality framework in
which one can integrate multiple definitions of overlapping modularity via different for-
mulations of the community membership strength of the nodes. We then investigate
three overlapping modularity alternative definitions that incorporate contextual informa-
tion about the nodes in real-world networks. The proposed framework under the three
definitions is compared to its non-overlapping version and state-of-the-art overlapping
centrality measures under an SIR spreading scenario. We also evaluate the influence of
the community structure variation induced by the community detection algorithm on the
frameworks’ performance.

The chapter’s main findings summarize as follows:

1. With limited resources, Overlapping Modularity Vitality with reciprocity membership
targeting hubs first results in the best performance alongside OverlapNeighborhood,
which targets random neighbors of overlapping nodes.

2. When resources are available, Overlapping Modularity Vitality with node similar-
ity and degree membership to quantify a node’s community membership strengths
perform better when the ranking scheme is based on targeting bridges first.

3. Results demonstrate the superiority of Overlapping Modularity Vitality over its alter-
natives. Furthermore, one can tailor the measure to the budget using an appropriate
definition of the community membership strengths and ranking strategies.

5.2/ STATE OF THE ART

This section presents the main centrality measures considering the overlapping nature of
communities. In [28], L. Hébert-Dufresne et al. proposed an overlapping measure called
“Membership.” It orders nodes for immunization based on their number of shared commu-
nities. It is a local measure since it doesn’t require complete network knowledge. Hence,
it is suitable for large-scale networks, and it is not too sensitive to incorrect or incomplete
data. Overlapping nodes with a high membership facilitate the epidemic spreading be-
tween communities. The measure has been evaluated using the SIS and SIR epidemic
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models with a set of real-world networks (social, technological, and communication net-
works). Results show that when the disease is highly infectious, and the communities are
dense, Membership outperforms coreness, degree, and betweenness centrality.

Kumar et al. [29] proposed the OverlapNeighborhood strategy. It randomly selects neigh-
bors of overlapping nodes as the most crucial for immunization. It is a random local
method that requires only information about the overlapping nodes. Experiments show
that it performs as good as betweenness centrality while requiring less information about
the network. Note that OverlapNeighorhood does not use a ranking strategy as nodes
are selected randomly.

Random Walk Overlap Selection (RWOS) proposed by F. Taghavian et al. [30] aims to
detect high-degree overlapping nodes based on a random walk. A random walk starts
from a node randomly selected. A list of known or extracted overlapping nodes is checked
with every step the random walker takes. The node is immunized if the visited node is
in the list of overlapping nodes. Else, the random walk continues its search. The pro-
cess stops when one reaches the desired fraction of nodes to immunize. This method
is local because, at each step, one searches only in the neighborhood of the currently
visited node. Ultimately, it targets high-degree nodes as the random walk is more likely
to reach such nodes. Simulation results using the SIR epidemic model on synthetic and
real-world networks show that this measure performs better in networks with strong com-
munity structure, when community membership of nodes is high, and when community
sizes are small.

In [31], Ghalmane et al. developed Overlapping Modular Centrality, a measure that quan-
tifies the local and global centrality of the nodes using a two-dimensional vector. After
choosing a classical centrality measure, the local influence depends on whether a node
is an overlapping node. One computes the local centrality of overlapping nodes consid-
ering all their communities as a single community, whereas locality applies to a single
community for non-overlapping nodes. The global influence is based on the global net-
work, constructed by the inter-community links of the node.

In recent work, Magelinski et al. [26] proposed a non-overlapping community-aware cen-
trality measure called Modularity Vitality. Leveraging the concept of vitality, it can target
hubs and bridges based on their contribution to Newman’s modularity. Removing bridge
nodes increases modularity because communities become less connected. In contrast,
eliminating hubs decreases modularity because communities are less dense. Therefore,
the modularity variation when removing a node indicates the type and the strength of its
impact on the network’s cohesiveness.

All these methods present some limitations. The measures exploiting the communities’
overlap use partial information about its structure. Membership is quite basic, with many
ties. It cannot distinguish between highly and poorly connected overlapping nodes. Over-
lapNeighborhood targets hubs in the vicinity of the overlapping nodes independently of
their relations. Random Walk Overlap Selection targets highly connected overlapping
nodes. Finally, Overlapping Modular Centrality merges the communities of the overlap-
ping nodes into a single community to compute the local importance, reducing the pre-
cious information of the overlap structure. These measures fail to consider how the node
is embedded in its overlapping communities. In contrast, Modularity Vitality better han-
dles the topology, but it discards the precious overlapping information. To overcome these
drawbacks, we show the potential gain of using overlapping information to identify influ-
ential nodes better [32]. This work proposes a framework called “Overlapping Modularity
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Vitality,” which can use any fuzzy or crisp version of the overlapping modularity quality
function.

The proposed framework is based on a general definition of modularity that one can tailor
to the various types of information available based on the network’s structure. It gener-
alizes the Modularity Vitality of [26] to networks with overlapping communities spanning
from crisp to fuzzy structures. This work aligns with studies generalizing the traditional
modularity in non-overlapping community structure [86] to the more realistic overlapping
community structure. It spans from centrality measures [31, 138] to network characteri-
zation measures [92] and community detection algorithms [93, 139, 140]. The main ad-
vantage of the proposed work, falling into developing centrality measures for overlapping
communities, is its flexibility in incorporating various types of information from the net-
work rather than just a single kind of information. For instance, in collaboration networks,
community membership strengths could be fuzzy, indicating the percentage of affiliation
of each person to different research groups [137]. In contrast, in biological networks, a
protein might participate with equal importance in various modules [141]. All these cases
can be incorporated into the proposed framework, indicating its flexibility in the type of
information available to identify critical nodes.

5.3/ THE OVERLAPPING MODULARITY VITALITY FRAMEWORK

In this section, we present the Overlapping Modularity Vitality framework. We introduce
the vitality concept. Then, we derive an efficient technique to integrate the various ver-
sions of the overlapping modularity in this framework.

VITALITY

One way to compute the importance of a node or an edge x in a graph is through the
vitality measurement [136]. The vitality of a node or an edge x denotes the variation of a
real-valued arbitrary quality function f computed on a graph G when one removes x from
the network. More formally, a vitality index V(G, f , x) is equal to the difference between
the value of f on G and of f on G without the element x.

V(G, f , x) = f (G)− f (G \ {x}) (5.1)

OVERLAPPING MODULARITY VITALITY

We adopt the overlapping modularity Q′ as the quality function f . It presents several
advantages. First, many popular community detection algorithms use it as an objective
function. Second, it has many extensions for networks with an overlapping community
structure, whether crisp or fuzzy [83, 92, 137]. Finally, overlapping modularity is a flexible
quality measure that incorporates various information on the community structure through
the community membership strength parameters. For example, one may think that a node
located at the overlap is more influential than a node embedded in its community. More-
over, two nodes located in the overlap might have different influences depending on the
number of communities they share. Unlike the basic alternative measures, overlapping
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modularity can account for these types of information. Combining the adopted definition
of overlapping modularity and the vitality concept allows, therefore, to propose a general
framework using tailored information about the community structure to identify influential
nodes. The Overlapping Modularity Vitality of a node i is consequently defined as follows:

βOMV(i) = Q′(G)−Q′(G \ {i}) (5.2)

It is important to note that the sign of the centrality indicates the node’s role. A node
with a positive centrality value plays a hub role. Its removal decreases the overlapping
modularity of the network. Subsequently, it has a positive centrality value. A hubs-first
ranking strategy indicates that one ranks nodes in descending order starting from the
highest positive centrality values. In contrast, if a node acts as a bridge between two
communities, its removal increases the network’s modularity. Indeed, the number of inter-
community links between communities decreases, leading to better-defined communities.
Consequently, it receives a negative centrality value. In a bridges-first ranking strategy,
one orders the nodes from the highest negative to the highest positive centrality values.
To aggregate the influence of hubs and bridges simultaneously, we consider the absolute
value of the centrality of each node. Then, one sorts the nodes in descending order.
These ranking strategies are decisive in diffusion scenarios since the budget is limited.

COMPUTING THE OVERLAPPING MODULARITY VITALITY

Computing the overlapping modularity naı̈vely can be prohibitive for large networks. In-
deed, computing the modularity is in O(|E|). Therefore, computing the contribution of
each node directly requires O(N|E|). One needs an efficient way to update the modu-
larity after removing a node. [26] proposed an efficient iterative process to compute the
non-overlapping Modularity Vitality. Inspired by their approach, we extend their develop-
ment to the Overlapping Modularity Vitality framework, whether the community member-
ship strength of the node is crisp or fuzzy. Following is an expression to compute the
modularity after the removal of node i:

Q′(G \ {i}) = ∑cq∈C
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One uses |E|, |Ein
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|, and |Eout
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| to calculate Q′(G). The only requirement to compute

the variation is to calculate the node’s contribution inside and outside its communities
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|). The node’s total contribution (|Ei|) is the sum over the communities of

the node’s internal contribution (|Ein
i,cq
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|). Thus, the extra

computation has a O(N|C|+ |E|) complexity for the increment.



80 CHAPTER 5. THE OVERLAPPING MODULARITY VITALITY FRAMEWORK

PROPOSED FRAMEWORK

One can use the developed framework with any definition of community membership
strengths. In the experiments, we investigate three versions of community member-
ship strengths (i.e., reciprocity membership, degree membership, and node similarity).
Note that we do not consider regrouping the community structure when removing a node
since there is no closed-form solution for the re-computation of the overlapping modular-
ity alongside the community membership strengths. Algorithm 2 reports the steps of the
Overlapping Modularity Vitality computation. The adjacency matrix Ai,j weighted by the
crisp and fuzzy community membership strengths of the nodes is given in Algorithm 3
and Algorithm 4.

The time complexity of Algorithm 2 is O(N|C|). Indeed, lines 1 to 5 require O(|C|). For
lines 6 till 12, it requires O(N|C|). Finally, lines 13 and 14, require O(N). Algorithms 3
and 4 have O(N|C|) complexity. The complexity of acquiring the community membership
strengths depends on the acquisition method. In our study, the complexities for reciprocity
membership, degree membership, and node similarity are O(N), O(N < k >), and
O(2N), respectively.

Algorithm 2 Overlapping Modularity Vitality

Input: Graph G(V, E), Weighted adjacency matrix Wi,j, Community set C
Output: Vitality of each node βOMV(i)

// Computing the overlapping modularity of the graph
1: for each cq ∈ C do
2: Compute the total internal weights |Ein

cq
| of community cq

3: Compute the total external weights |Eout
cq
| of community cq

4: |E| ← |Ein
cq
|+ |Eout

cq
|

5: Q′(G)← ∑cq∈C
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// Computing the overlapping modularity increment of each node
6: for each i ∈ V do
7: for each cq ∈ C do
8: if i ∈ cq then
9: Compute the total internal weights |Ein

i,cq
| of node i

10: Compute the total external weights |Eout
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| of node i

11: |Ei| ← ∑
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|

12: Q′(G \ {i})← ∑cq∈C
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// Computing the vitality of each node
13: for each i ∈ V do
14: βOMV(i)← Q′(G)−Q′(G \ {i})
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Algorithm 3 Integrating the Average of Community Membership Strength

Input: Graph G(V, E), Adjacency matrix Ai,j, Community set C, Community membership
strength of the nodes Θ(i)

Output: Weighted adjacency matrix Wi,j
1: for each i, j ∈ V do
2: for each cq ∈ C do
3: if i, j ∈ cq then

4: Wi,j ←
θi,cq+θj,cq

2 Ai,j
5: else
6: Wi,j ←

θi,cq+(1−θj,cq )

2 Ai,j

Algorithm 4 Integrating the Product of Community Membership Strength

Input: Graph G(V, E), Adjacency matrix Ai,j, Community set C, Community membership
strength of the nodes Θ(i)

Output: Weighted adjacency matrix Wi,j
1: for each i, j ∈ V do
2: for each cq ∈ C do
3: if i, j ∈ cq then
4: Wi,j ← s(Θ(i), Θ(j))Ai,j
5: else
6: Wi,j ← [1− s(Θ(i), Θ(j))] Ai,j
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5.4/ COMPARING THE COMMUNITY-AWARE CENTRALITY MEA-
SURES

This experiment allows us to compare the performance of the Modularity Vitality mea-
sures (i.e., overlapping and non-overlapping) with their alternatives on 21 networks. The
alternative measures include Membership, OverlapNeighborhood, Random Walk Overlap
Selection, and Overlapping Modular Centrality. Like the previous experiment, we consider
three ranking strategies for the vitality-based measures: hubs-first, bridges-first, and hubs
and bridges. We also evaluate the influence of the algorithm used to uncover the commu-
nity structure on the performance of the measures. Note that we use the Degree centrality
(ηd) as a reference to compare all the measures in this case. Note that Table 5.1 provides
the abbreviations of the centrality measures used in this chapter.

Table 5.1: The abbreviations of the centrality measures used.

Symbol Meaning
βM Membership
βON OverlapNeighborhood
βRWOS Random Walk Overlap Selection
βOMC Overlapping Modular Centrality
α+

MV Modularity Vitality with a hubs-first ranking strategy
α−MV Modularity Vitality with a bridges-first ranking strategy
|αMV | Modularity Vitality with a hubs and bridges ranking strategy
βR+

OMV Overlapping Modularity Vitality with reciprocity membership
and a hubs-first ranking strategy

βD+
OMV Overlapping Modularity Vitality with degree membership

and a hubs-first ranking strategy
βS+

OMV Overlapping Modularity Vitality with node similarity
and a hubs-first ranking strategy

βR−
OMV Overlapping Modularity Vitality with reciprocity membership

and a bridges-first ranking strategy
βD−

OMV Overlapping Modularity Vitality with degree membership
and a bridges-first ranking strategy

βS−
OMV Overlapping Modularity Vitality with node similarity

and a bridges-first ranking strategy
|βR

OMV | Overlapping Modularity Vitality with reciprocity membership
and a hubs and bridges ranking strategy

|βD
OMV | Overlapping Modularity Vitality with degree membership

and a hubs and bridges ranking strategy
|βS

OMV | Overlapping Modularity Vitality with node similarity
and a hubs and bridges ranking strategy

ηd Degree centrality
Rr Reference centrality

HUBS-FIRST RANKING STRATEGY

We observe four typical behaviors illustrated in Figure 5.1 and the first row (A) of Figure
5.2 using the hubs-first strategy.
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The first case, illustrated by the DBLP, AstroPh, and DeezerEU networks in Figure 5.1,
shows that Overlapping Modularity Vitality based on node similarity outperforms at the
beginning its alternative definitions (i.e., reciprocity membership and degree membership)
and the remaining alternative measures. Then, either reciprocity membership or degree
membership takes over.

Figure 5.1: Hubs-first ranking strategy. The relative difference of the outbreak size (∆R)
as a function of the fraction of initially infected nodes ( fo) of the networks DBLP, AstroPh,
and DeezerEU.

The second case, illustrated by Bible Nouns, demonstrates the superiority of Overlapping
Modularity Vitality based on the reciprocity membership method (βR+

OMV). There is no
single winner for low values of the initial fraction of infected nodes ( fo ≤ 0.10). However,
βR+

OMV outperforms all its alternatives when fo increases. The gain on the reference (ηd)
is around 21% for fo = 0.5. It is 6% higher than the second-best performing centrality
(α+

MV). U.S. Airports, EU Airlines, Princeton, and 911AllWords present similar behavior.

The third case shows that when infecting a small fraction of nodes ( fo), OverlapNeigh-
borhood (βON) performs slightly better than the other measures. Then, as the fraction of
initially infected nodes increases, other centrality measures join the lead (i.e., Membership
(βM), Random Walk Overlap Selection (βRWOS), Modularity Vitality (α+

MV), or Overlapping
Modularity Vitality with reciprocity membership (βR+

OMV)). Finally, their gain over the refer-
ence declines except for Modularity Vitality (α+

MV) and Overlapping Modularity Vitality with
reciprocity membership (βR+

OMV). For example, in DNC Emails, when fo < 0.25, Overlap-
Neighborhood shows a slightly higher relative difference in the relative epidemic outbreak
size (∆R). In the range fo = 0.25 to fo = 0.30, it is joined by Membership, Random Walk
Overlap Selection, Modularity Vitality, and Overlapping Modularity Vitality with reciprocity
membership. When fo > 0.30, ∆R decreases for all the centrality measures except for
Modularity Vitality and Overlapping Modularity Vitality with reciprocity membership. Face-
book Politician Pages, Yeast Collins, Facebook Friends, Hamsterster, Caltech, Facebook
Organizations, Budapest Connectome, Ego Facebook, and PGP show similar behavior.
We note that only in Ego Facebook and PGP, Overlapping Modularity Vitality with reci-
procity membership is not as effective compared to the stated well-performing centrality
measures.

The fourth case, illustrated by Adolescent Health, shows that the Modularity Vitality (α+
MV)

is the best performing centrality starting from a small fraction of initially infected nodes
( fo). However, the difference with Overlapping Modularity Vitality based on reciprocity
membership (βR+

OMV) is pretty small at a higher fraction of initially infected nodes. Yeast
Protein and Reptiles show similar behavior.

To summarize, we observe four behaviors using the hubs-first ranking strategy. First,
Overlapping Modularity Vitality based on node similarity followed by degree membership
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Figure 5.2: Hubs-first (A), bridges-first (B), and hubs & bridges (C) ranking strate-
gies. The relative difference of the outbreak size (∆R) as a function of the fraction of
initially infected nodes ( fo) of the networks Bible Nouns, DNC Emails, and Adolescent
Health.

and reciprocity membership at a higher fraction of initially infected nodes produces the
highest outbreak. Second, Overlapping Modularity Vitality with reciprocity membership
outperforms all its alternative measures on a group of networks. In the third case, for
a small fraction of initially infected nodes, OverlapNeighborhood is the best performer
before being surpassed by Modularity Vitality and Overlapping Modularity Vitality based
on reciprocity membership. It suggests that one should randomly target the overlapping
neighbors on a low budget to a certain extent on these networks. Then, leveraging deter-
ministic information from the community structure is more beneficial. Finally, in the fourth
case, Modularity Vitality outperforms all its alternatives. It suggests that, in this case,
information about the overlap is not decisive.

BRIDGES-FIRST RANKING STRATEGY

We still observe three typical behaviors in the 21 networks using the bridges-first ranking
strategy. The results of the six networks showcasing these behaviors are given in the
second row (B) of Figure 5.2 and Figure 5.3.

The first case, illustrated by Bible Nouns, shows that Overlapping Modularity Vitality
based on node similarity (βS−

OMV) takes the lead either in all the range of the fraction
of initially infected nodes ( fo) or after one reaches a specific value of fo. For example,
in the Bible Nouns network, when the fraction of initially infected nodes ( fo) is less than
0.10, βS−

OMV performs as well as Overlapping Modularity Vitality based on degree mem-
bership (βD−

OMV). Then, it keeps increasing at a higher pace outperforming all the other
measures, including βD−

OMV . Its gain over the reference reaches 21% at fo = 0.49. It is 6%
more than the second-best performing centrality. Facebook Organizations, Reptiles, Ego
Facebook, Facebook Politician Pages, Yeast Protein, Adolescent Health, and PGP exhibit
similar behavior. We note that in the Yeast Protein network, given in Figure 5.3, the best
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Figure 5.3: Bridges-first ranking strategy. The relative difference of the outbreak size
(∆R) as a function of the fraction of initially infected nodes ( fo) of the networks Facebook
Organizations, Yeast Protein, and Facebook Friends.

performing centrality is first Overlapping Modular Centrality (βOMC) before node similarity
(βS−

OMV) takes over. While in the other networks of this category, OverlapNeighborhood
(βON) performs better when resources are limited. One can observe the initial superiority
of OverlapNeighborhood (βON) in Facebook Organizations in Figure 5.3.

The second case, illustrated by DNC Emails, shows that for low values of the initial frac-
tion of infected nodes, OverlapNeighborhood (βON) or Overlapping Modularity Vitality
using node similarity (βS−

OMV) perform the best. After a specific fraction of initially infected
nodes ( fo), the outperformance is interchangeable between Overlapping Modularity Vi-
tality based on degree membership (βD−

OMV) and node similarity (βS−
OMV). For example, in

DNC Emails, the relative outbreak size of Overlapping Modularity Vitality based on de-
gree membership fluctuates positively to negatively when fo ≤ 0.14. Above this value, it
increases and outperforms the rest of the measures until fo = 0.50. At this point, it ex-
ceeds the reference centrality by 29%. EU Airlines, U.S. Airports, Hamsterster, Budapest
Connectome, Princeton, DBLP, AstroPh, DeezerEU, and 911AllWords show similar be-
havior.

Facebook Friends is a typical example of the third case. Figure 5.3 shows that two
Overlapping Modularity Vitality versions (i.e., node similarity (βS−

OMV) and degree member-
ship (βD−

OMV)) perform similarly. They outperform the other measures after one reaches
a specific fraction of initially infected nodes ( fo). Before passing fo, OverlapNeighbor-
hood (βON) performs better. The networks Yeast Collins and Caltech also follow a similar
behavior.

Using the bridges-first strategy, we observe the effectiveness of two versions of Overlap-
ping Modularity Vitality (i.e., node similarity and degree membership). However, the gain
on the reference starts at a specific fraction of initially infected nodes. Before reaching
this value, OverlapNeighborhood performs better. Thus, one should use bridges that pre-
dominantly affect the overlapping modularity when enough resources are available. With
a low budget, one should target random nodes situated near overlaps of communities
using OverlapNeighborhood.

HUBS AND BRIDGES RANKING STRATEGY

With the hubs and bridges ranking strategy, one can distinguish three behaviors. The
third row (C) of Figure 5.2 and Figure 5.4 report the results for three typical networks.

The first case, illustrated by Bible Nouns, shows that Overlapping Modularity Vitality
based on the reciprocity membership method (|βR

OMV |) ranks first after a specific frac-
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tion of initially infected nodes ( fo). For instance, in the Bible Nouns network, when fo ≥
0.13, |βR

OMV | begins outperforming other measures at an increasing rate. It reaches the
maximum relative epidemic outbreak size (∆R) of 21% at fo = 0.50. Compared to the
second-best performing centrality, namely, Overlapping Modularity Vitality based on the
degree membership method (|βD

OMV |), the difference is 6%. When fo < 0.13, there is
no clear winner. EU Airlines, U.S. Airports, and Hamsterster show similar behavior. The
maximum relative epidemic outbreak size (∆R) reaches 28%, 22.5%, 22%, 20%, and
12% at fo = 0.50 in EU Airlines, Princeton, U.S. Airports, Hamsterster, and 911AllWords,
respectively.

Figure 5.4: Hubs & bridges ranking strategy. The relative difference of the outbreak
size (∆R) as a function of the fraction of initially infected nodes ( fo) of the Yeast Collins
and Yeast Protein networks.

The second case, illustrated by DNC Emails, shows that OverlapNeighborhood (βON) per-
forms better than the other measures up to a specific fraction of initially infected nodes
( fo). Then, either Overlapping Modularity Vitality with reciprocity membership (|βR

OMV |),
degree membership (|βD

OMV |), or node similarity (|βS
OMV |) takes over. For example, in

DNC Emails, OverlapNeighborhood outperforms the other measures up to fo = 0.22.
Then, its curve coincides with those of Random Walk Overlap Selection (βRWOS), Mem-
bership (βM), and Overlapping Modularity Vitality with reciprocity membership (|βR

OMV |).
At fo = 0.30, all other measures decrease while |βR

OMV | keeps increasing until it reaches
a gain of 19% on the reference. Similarly, Yeast Collins provided in Figure 5.4, shows that
βON does slightly better up till fo = 0.06. Then, degree membership (|βD

OMV |) outperforms
the other measures with a gain up to 25%. Ego Facebook, Facebook Politician Pages,
Facebook Organizations, Facebook Friends, Caltech, Adolescent Health, Reptiles, Bu-
dapest Connectome, PGP, Yeast Collins, AstroPh, DBLP, and DeezerEU follow a similar
behavior, with fo changing from one network to another.

Yeast Protein represents the third and final case in Figure 5.4. Most overlapping centrality
measures perform worse in this network than reference centrality (i.e., Degree central-
ity). It is not the case for Overlapping Modular Centrality (βOMC) and Modularity Vitality
(|αMV |). All curves show a negative relative difference in the epidemic outbreak size (∆R)
except for βOMC and |αMV |. These two centrality measures outperform the reference by
a maximum of 3%.

In summary, with the hubs and bridges ranking strategy and a limited budget, one should
target neighbors of the overlapping nodes using OverlapNeighborhood. If enough budget
is available, Overlapping Modularity Vitality based on reciprocity membership or degree
membership results in a much larger epidemic outbreak than its alternatives.



5.4. COMPARING THE COMMUNITY-AWARE CENTRALITY MEASURES 87

Figure 5.5: Influence of the community detection algorithm in DNC Emails. The rel-
ative difference of the outbreak size (∆R) as a function of the fraction of initially infected
nodes ( fo). The figures on the left represent the results of the SLPA community detec-
tion algorithm, while the figures on the right represent the results of the LFM community
detection algorithm. The ranking strategies are as follows hubs-first (A), bridges-first (B),
and hubs & bridges (C).

INFLUENCE OF THE COMMUNITY DETECTION ALGORITHMS

We now use the Lancichinetti Fortunato Method (LFM) to uncover the community struc-
ture of the networks. We perform the performance analysis of the centrality measures un-
der test and compare it with the community structure results extracted with the Speaker-
Listener Label Propagation Algorithm (SLPA). Our goal is to investigate the consistency
of the centrality measures when one uses a different community detection algorithm. We
present two extreme cases. The first case has similar communities identified by the two
community detection algorithms. In contrast, the second case greatly differs in the num-
ber of communities identified.

Figure 5.5 reports the relative difference in the epidemic outbreak size in the DNC Emails
network using SLPA and LFM. The community structure identified by SLPA contains 13
communities, while LFM extracts 15 communities.

Results show that the performance of the centrality measures with the three different
ranking strategies (i.e., hubs-first, bridges-first, and hubs and bridges) is similar. One can
see slight differences in Overlapping Modularity Vitality based on reciprocity membership.
Its gain on the reference reaches 25% with the community structure uncovered by LFM
at fo = 50% with the hubs-first and hubs and bridges ranking schemes. It is to compare to
a 20% gain with the community structure of SLPA. In addition, OverlapNeighborhood and
Membership perform slightly better with LFM. More specifically, the gain of OverlapNeigh-
borhood reaches 13% at fo = 0.50 while it is only 8% with SLPA. Membership reaches its
highest gain of 21% at fo = 0.36 using LFM compared to 15% at fo = 0.30 with SLPA.

Figure 5.6 presents the performance of the centrality measures in the Bible Nouns net-
work using SLPA and LFM. SLPA identifies 13 communities, while LFM identifies 150
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Figure 5.6: Influence of the community detection algorithm in Bible Nouns. The rel-
ative difference of the outbreak size (∆R) as a function of the fraction of initially infected
nodes ( fo). The figures on the left represent the results of the SLPA community detec-
tion algorithm, while the figures on the right represent the results of the LFM community
detection algorithm. The ranking strategies are as follows hubs-first (A), bridges-first (B),
and hubs & bridges (C).

small communities. In this situation, Overlapping Modularity Vitality based on reciprocity
membership deteriorates when the ranking strategy is hubs-first or hubs and bridges si-
multaneously. More specifically, using the hubs-first approach and SLPA, the gain on the
reference reaches 21% at fo = 0.50 compared to 11% when LFM uncovers the community
structure. One observes a similar behavior using the hubs and bridges ranking strategy.
The higher the number of communities, the less effective Overlapping Modularity Vitality
based on reciprocity membership is. It is because its ability to differentiate the nodes
decreases when the number of communities increases. Consider two extreme cases: a
network with 13 overlapping nodes belonging to 13 communities and another network
with 150 overlapping nodes belonging to 150 communities. Even though all nodes have
the same reciprocity membership value, the number of nodes with distinct centrality val-
ues is higher in the first case. Therefore, it is more discriminative when the number of
communities is low.

To conclude, the main driver of performance sensitivity to the community structure varia-
tion is the number of communities. Indeed, overall performance evolution exhibits similar
trends for the various centrality measures when the number of communities uncovered by
the community detection algorithms is comparable. In contrast, if the number of communi-
ties differs significantly, Overlapping Modularity Vitality based on reciprocity membership
underperforms when the number of communities is high. In this case, more overlapping
nodes share the same centrality value.
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5.5/ DISCUSSION

We now investigate the underlying behavior of the best performing centrality measures.
We explore why Overlapping Modularity Vitality based on reciprocity membership target-
ing hubs performs best when resources are limited. We also examine why Overlapping
Modularity Vitality targeting bridges based on degree membership and node similarity
are more effective with more resources. A node is bridge-oriented if it has more inter-
community links than intra-community links. In addition, a node is hub-oriented if it has
more intra-community links than inter-community links. Figure 5.7 shows a toy example
of four networks with increasing communities. In this example, node 3 is the only over-
lapping node. In subfigure A, containing two communities, node 3 is hub-oriented since
all of its links are intra-community links.

Figure 5.7: A toy example illustrating the impact of removing an overlapping node
in four different networks. The number of communities in these networks ranges from
two to seven. Node 3 is the only overlapping node. The three versions of Overlapping
modularity vitality (reciprocity membership, degree membership, and node similarity) de-
tect it as an overlapping bridge in networks B, C, and D, respectively. Solid lines represent
intra-community links, and dashed lines represent inter-community links.

As the number of communities grows, node 3 transitions from an overlapping hub-
oriented node to an overlapping bridge-oriented node. Reciprocity membership is the
first version of Overlapping Modularity Vitality to identify node 3 as an overlapping bridge
(i.e., it receives a negative value). It starts in subfigure B, where node 3 has the same
number of intra-community and inter-community links. Degree membership begins by
identifying node 3 as an overlapping bridge in subfigure C. It has more inter-community
links than intra-community links in this case. Finally, node similarity identifies node 3 as
an overlapping bridge in subfigure D. It has a higher number of inter-community links in
this case. This example shows that reciprocity membership is more effective at detecting
bridges. Degree membership follows, and node similarity is the last. Table 5.2 reports the
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Table 5.2: Overlapping Modularity Vitality values of node 3 in the toy example using the
three different approaches: reciprocity membership (βR

OMV), degree membership (βD
OMV),

and node similarity (βS
OMV).

Network A B C D
Reciprocity membership (βR

OMV) 0.254 -0.070 -0.138 -0.203
Degree membership (βD

OMV) 0.434 0.069 -0.009 -0.093
Node similarity (βS

OMV) 0.033 0.004 0.001 -0.0001

centrality values of node 3 in the four networks. If there are more overlapping nodes, then
as reciprocity membership is prompt at identifying bridges, they are more likely to be near
each other. In contrast, since degree membership and node similarity are less sensitive
to bridges, they tend to be far apart. Consequently, those nodes distributed across all
communities diffuse the epidemics in communities unreachable with clustered bridges.

In contrast, with the hubs-first ranking strategy, the effectiveness of Overlapping Modu-
larity Vitality based on reciprocity membership is due to its ability to select hubs in com-
munities far apart. Consequently, distinct nodes are exposed to the epidemic, causing
a higher virus circulation under limited resources. However, since the distance between
those nodes is not as high as the ones picked by Overlapping Modularity Vitality based
on degree membership and node similarity targeting bridges, the diffusion does not scale
up when more nodes are infected.

Similarly is the case with the performance of OverlapNeighborhood and Modularity Vital-
ity targeting hubs when resources are limited. They also rely on their ability to pick up
nodes far away from each other. However, their potential in picking up distant nodes does
not augment as Overlapping Modularity Vitality using degree membership and node sim-
ilarity targeting bridges. Since hubs are more frequent in large communities, removing a
few does not significantly affect the network’s modularity. It is the opposite with smaller
communities. This is the reason why Modularity Vitality targeting hubs falls behind. In-
deed, it targets hubs located in smaller communities first. As small communities are far
apart, when resources are limited, it is more beneficial to target their hubs. However,
as the availability of resources increases, one needs to target hubs in small and large
communities.

We use the Yeast Collins and Facebook Friends networks to visualize the nodes tar-
geted by the overlapping centrality measures. Figure 5.8 and Figure 5.9 show the initially
infected nodes for Modularity Vitality and the three versions of Overlapping Modularity
Vitality in the stated networks. They visually depict the infected nodes of the vitality mea-
sures with a low fraction of initially infected nodes ( fo = 2%) and a high fraction of initially
infected nodes ( fo = 20%) using a hubs-first ranking strategy (indicated with a + sign)
and a bridges-first ranking strategy (marked with a − sign). One can see that in both
networks, using Overlapping Modularity Vitality based on degree membership and node
similarity targeting bridges (βD−

OMV , βS−
OMV), the top 2% and top 20% nodes initially infected

are more distant as compared to the Modularity Vitality targeting bridges (α−MV) and Over-
lapping Modularity Vitality using reciprocity membership targeting bridges (βR−

OMV).

When resources are limited, we observe two behaviors resulting in the largest outbreak.
Either infecting hubs inside different communities using Overlapping Modularity Vitality
with nodes reciprocity targeting hubs first or infecting the neighbors of overlapping nodes
using OverlapNeighborhood centrality. We show the nodes selected by the Overlap-
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Figure 5.8: The Yeast Collins network with the nodes chosen to be initially infected
by the vitality measures: Modularity Vitality (αMV), and the three different versions of
Overlapping Modularity Vitality, namely: reciprocity membership (βR

OMV), degree mem-
bership (βD

OMV), and node similarity (βS
OMV). The measures use a hubs-first ranking

scheme denoted by a “+” sign and a bridges-first ranking scheme marked by a “−” sign.
The top two rows and the bottom two rows represent 2% and 20% of the fraction of ini-
tially infected nodes, respectively.

Neighborhood centrality in Figure 5.10 for the Yeast Collins and Facebook Friends net-
works. In Facebook Friends, when resources are low, OverlapNeighborhood centrality
performs slightly better. Let’s compare it with the nodes chosen by the vitality measures
in Figure 5.9. At fo = 2%, nodes targeted by OverlapNeighborhood are more scattered
across the network, resulting in a slightly higher outbreak. Similarly is the case for the
Yeast Collins network.

On the contrary, it is better to target distant bridges when enough resources are avail-
able. Indeed, an epidemic can reach the entire network without getting stuck inside its
originating community with this strategy. These results demonstrate the importance of
incorporating information on the overlapping communities to ignite a more extensive epi-
demic outbreak capable of spreading across the whole network.
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Figure 5.9: The Facebook Friends network with the nodes chosen to be initially
infected by the vitality measures: Modularity Vitality (αMV), and the three different ver-
sions of Overlapping Modularity Vitality, namely: reciprocity membership (βR

OMV), degree
membership (βD

OMV), and node similarity (βS
OMV). The measures use a hubs-first ranking

scheme denoted by a “+” sign and a bridges-first ranking scheme marked by a “−” sign.
The top two rows and the bottom two rows represent 2% and 20% of the fraction of ini-
tially infected nodes, respectively.

5.6/ CONCLUSION

This work proposes the Overlapping Modularity Vitality framework to identify critical nodes
in networks with an overlapping community structure. One can use various definitions of
community membership strengths in this framework. We investigate three alternatives:
reciprocity membership, degree membership, and node similarity, obtaining three mea-
sures to target essential nodes. They present two main differences. First, they use more
or less information about the overlaps of the communities. Reciprocity membership relies
only on the number of overlapping communities of a node. Degree membership requires
more knowledge, probing the total links of a node to each community to quantify the
belonging strength of overlapping nodes to their communities. Finally, node similarity
quantifies the similarity of the nodes’ community membership strength vectors. The sec-
ond difference concerns the ability to discriminate the nodes. Reciprocity membership is
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Figure 5.10: The Yeast Collins and Facebook Friends networks with the nodes cho-
sen to be initially infected using the OverlapNeighborhood centrality (βON). The top
and bottom rows represent 2% and 20% of the fraction of initially infected nodes, respec-
tively.

less effective because many nodes may share the same number of communities, while
node similarity and degree membership encode more nuanced differences.

One can use three ranking strategies to prioritize hubs, bridges, or both. We investigate
three versions of Overlapping Modularity Vitality based on the community membership
strength of the nodes (i.e., reciprocity membership, degree membership, and node simi-
larity). We perform an extensive comparative evaluation on 21 real-world networks based
on an epidemic spreading scenario using the Susceptible-Infected-Recovered epidemic
model. Comparisons involve four popular overlapping centrality measures and Modu-
larity Vitality specially designed for networks with non-overlapping community structure.
Results show the effectiveness of Overlapping Modularity Vitality while marking the de-
pendence of the performance on the resources at hand. With a limited budget of nodes
(i.e., a low fraction of initially infected nodes), one should prefer Overlapping Modular-
ity Vitality based on reciprocity membership targeting hubs or OverlapNeighborhood, a
random strategy targeting the neighbors of overlapping nodes. With a higher budget of
nodes, Overlapping Modularity Vitality using degree membership and node similarity with
a bridges-first ranking scheme are the top measures. These results suggest that the
distance between initially infected nodes is a good indicator when enough resources are
available. For efficient diffusion in a multiple-spreader scenario, initially infected nodes
must be far away. It is how Overlapping Modularity Vitality based on degree membership
and node similarity with a bridges-first ranking scheme works. These results demon-
strate the benefit of effectively integrating overlapping community structure information to
identify critical nodes.

The added value of the proposed framework is its ability to integrate different structural
information via a tailored overlapping modularity definition. Indeed, no universal definition
suits all real-world networks’ scenarios. Subsequently, an adaptable measure is required
to cover multiple real-world cases. This study gives practical indications to practitioners
to identify influential nodes in a network based on budget and information availability.





6
CONCLUSION AND FUTURE

PERSPECTIVES

6.1/ CONCLUSION

We are surrounded by a multitude of complex networks naturally organized into commu-
nities. Depending on what is spreading within a network, diffusion dynamics can directly
impact our lives, either positively or negatively. For instance, the rapid spread of informa-
tion through networks can lead to the rapid dissemination of knowledge and ideas, which
can drive progress and innovation. On the other hand, the rapid spread of information
through networks can also have negative impacts, such as the spread of misinformation
and the amplification of harmful or divisive content. It is thus crucial to gain a deeper
understanding of diffusion dynamics, how community structure impacts diffusion, and
which nodes play a central role in the spread of diffusion. This thesis addresses research
gaps toward a better understanding of the interplay between the network’s structure, the
influence of important nodes and their identification, and diffusion dynamics in complex
systems. It sheds light on the impact of the community structure on the dynamical spread-
ing of diverse models, how by identifying influential nodes, we can better understand how
diffusion dynamics flow through the network, and how these nodes can be harnessed to
achieve desired outcomes.

To this end, in Chapter 2, we recalled the essentials for this thesis. First, we presented
the centrality measures spanning from classical measures (neighborhood-based, path-
based, iterative refinement-based) to community-aware measures (non-overlapping and
overlapping). Then, we deliberated about diffusion models and highlighted two popular
epidemic models (SI, SIR) and two information diffusion models (LT, IC). Finally, we intro-
duced several network quality measures based on network connectivity and on models
while putting more emphasis on overlapping modularity. We highlighted the flexibility of
overlapping modularity in incorporating various types of information and presented two
mathematical definitions in which it can be written.

In Chapter 3, driven by the reality that community structure has a confinement effect
on diffusion dynamics and there are many diffusion models provided in the literature,
we analyzed how the output of four diffusion models, namely the SI, SIR, IC, and LT
models, depends on the network’s structure and the seed nodes selected based on the
community-aware centrality measures. All these models are mathematical models used
to study the spread of diseases or information in a network. Each model has its own set of
possible states and conditions for the spread to propagate. We showed that the strength

95
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of the community structure and budget availability in synthetic and real-world networks
significantly impact how diffusion spreads. Additionally, the SI, SIR, and IC dynamics
converge while the LT dynamics diverge within a given community structure strength and
budget availability. The differences between the diffusion models, mainly seen at a limited
budget availability, is credited to the fact that the conditions in the SI, SIR, and IC models
are well suited to select bridge-like nodes as it is easier for the epidemic or information
to circulate from one community to another compared to the LT model. Studying these
models and their relationship with seed nodes and the network’s community structure
is important because they help us understand how diseases or information can spread
through a population, and thus how we can evaluate the effectiveness of different in-
tervention strategies and make informed decisions about how to amplify the spread of
positive diffusion mechanisms.

In Chapter 4, aroused by the revelation that centrality measures tend to target influential
nodes contiguous to each other, we proposed a community-aware ranking scheme that
naturally gravitates towards selecting nodes separated from each other by capitalizing
on the network’s community structure. Given any network and the rankings of any cen-
trality measure, the proposed ranking scheme cycles through the network’s communities
from the largest to the and guarantees that every community has its most influential node
targeted for diffusion maximization. This way, the ranking scheme avoids the diminish-
ing return of the influential nodes’ influence. It also ensures that all the network regions
are not left intact. The proposed ranking scheme was compared against the traditional
descending order ranking scheme using six centrality measures on synthetic and real-
world networks. Results show that the proposed ranking scheme maximizes diffusion
at a larger scale than the descending order ranking scheme, notably when the network
has a strong community structure strength and a large number of communities of hetero-
geneous sizes. Moreover, the proposed ranking scheme is independent of the network
type (whether directed or undirected, weighted or unweighted) and requires no additional
information other than the network’s communities and the rankings of any centrality mea-
sure.

In Chapter 5, we address the problem of identifying influential nodes in networks with
overlapping community structure. Although they excel, most community-aware central-
ity measures consider non-overlapping community structures. Additionally, measures
adapted for overlapping communities are hardcoded and not flexible for varying or missing
information. We propose the “Overlapping Modularity Vitality” framework to resolve these
issues. It identifies essential nodes based on their contribution to the network’s overlap-
ping modularity. It allows targeting top hubs or bridges or simultaneously both types of
nodes. We use three alternative definitions of overlapping modularity to investigate this
framework (reciprocity membership, degree membership, and node similarity). We per-
form extensive simulations based SIR model in an epidemic spreading process scenario.
Results show that the proposed measures outperform their non-overlapping counterpart
and prominent overlapping centrality measures reported in the literature. Knowing that
we are always confronted with inconsistent and missing data, the proposed framework
offers versatility and flexibility to any overlapping information about the node(s) and can
run whether the information is fully available or not.
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6.2/ FUTURE PERSPECTIVES

The analysis and propositions done in this thesis open numerous future perspectives.
They can be divided into two main categories: extensions or new open questions that can
be raised for further investigations. In the following, we outline these future perspectives
for every contribution presented in the thesis in a non-exhaustive manner.

We first start with the investigation of the diffusion dynamics, community structure in-
fluence, and seed nodes selected based on community-aware centrality measures pre-
sented in Chapter 3. Several research works include dynamic community detection algo-
rithms [142–144]. One interesting work encompasses investigating how the alteration in
the communities within a network over time impacts the dissemination of diseases, infor-
mation, or other diffusive phenomena. In other words, how the change in communities
can help or hinder the diffusion of these processes. Another work could include consider-
ing both the network structure and the diffusion dynamics of the processes being studied
to develop new algorithms for identifying the most influential nodes in a network. One can
also explore the spread of diseases/information in networks comprising several layers,
such as networks of social and professional contacts, and how these multiplex networks
affect the diffusion of diseases/information. Finally, one can examine more sophisticated
models that can include exogenous events, such as the introduction of a vaccine or the
emergence of a new information source, and how these exogenous events affect the dif-
fusion of diseases, information, or other processes starting at specific seed nodes in a
network.

We now refer to the proposition of the community-aware ranking scheme given in Chapter
4. The proposed ranking scheme in its current form is not well-adapted for networks with
few and large communities. Indeed, it is susceptible to target influential nodes in the sub-
sequent iterations nearby each other as the ranking scheme does not have many commu-
nities to iterate over. One possible way to overcome this problem is to impose a distance
condition. If the iterator goes back to the community it already visited, the next node to be
selected must not be less than a distance of a specific value set depending on the diame-
ter of the community. However, this method requires more information about the network,
and thus it is more computationally demanding if the network is large. Another approach
could be inverting the iterator after every complete run until the budget is reached. That
is, selecting the most influential nodes in the first iteration and then selecting the least
influential nodes in the second iteration, to augment the chances of selecting nodes not
in the same region. One could also further divide a given community to sub-communities
and then select the most influential nodes within these sub-communities. This approach
allows us to zoom in to the network at the mesoscale level for a finer selection of influen-
tial nodes that are not in the same region. An alternate avenue of research would involve
tailoring the ranking method to fit multilayer and temporal networks.

We now discuss the possible future perspectives related to the Overlapping Modularity
Vitality framework presented in Chapter 5. One can consider extending this work in sev-
eral directions. First, one approach could be to explore alternative methods for assessing
the quality of the community structure in the framework instead of relying on overlapping
modularity. These could include measures based on network connectivity or models. In
this manner, it would be valuable to examine the extent to which each node contributes to
and influences the chosen quality measure to understand better the node’s overall impact
on the network’s overlapping community structure. Doing so gives us a new perspective



98 CHAPTER 6. CONCLUSION AND FUTURE PERSPECTIVES

on the node’s influence, which could help maximize its impact. This can be followed up by
intersecting the results obtained using different quality measures, diffusion models, and
machine learning to predict the node’s diffusion influence. One way to quantify the node’s
diffusion influence under a given diffusion model is to set the in question node only as
active/infected and run the diffusion model. After the model reaches the steady state, the
total number of active/infected nodes acts as an indicator of the node’s influence through-
out the whole network. Another research work is related to improving the scalability of
the framework. The framework could be optimized to handle large-scale networks. More-
over, one can explore the possible extensions of the proposed framework to multilayer
and temporal networks.
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[7] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng Zhang,
and Tao Zhou. Vital nodes identification in complex networks. Physics Reports,
650:1–63, 2016.

[8] Carla Sciarra, Guido Chiarotti, Francesco Laio, and Luca Ridolfi. A change of per-
spective in network centrality. Scientific reports, 8(1):1–9, 2018.

[9] Ahmed Ibnoulouafi, Mohamed El Haziti, and Hocine Cherifi. M-centrality: identi-
fying key nodes based on global position and local degree variation. Journal of
Statistical Mechanics: Theory and Experiment, 2018(7):073407, 2018.

[10] Zi-Ke Zhang, Chuang Liu, Xiu-Xiu Zhan, Xin Lu, Chu-Xu Zhang, and Yi-Cheng
Zhang. Dynamics of information diffusion and its applications on complex networks.
Physics Reports, 651:1–34, 2016.

[11] Marshall H Becker. Sociometric location and innovativeness: Reformulation and
extension of the diffusion model. American sociological review, pages 267–282,
1970.

[12] Christian Pescher, Philipp Reichhart, and Martin Spann. Consumer decision-
making processes in mobile viral marketing campaigns. Journal of interactive mar-
keting, 28(1):43–54, 2014.

99



100 BIBLIOGRAPHY

[13] Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Alejandro Jaimes. So-
cial network analysis and mining for business applications. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):1–37, 2011.
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[28] Laurent Hébert-Dufresne, Antoine Allard, Jean-Gabriel Young, and Louis J Dubé.
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Cfinder: locating cliques and overlapping modules in biological networks. Bioinfor-
matics, 22(8):1021–1023, 2006.
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DATA

Throughout this thesis, synthetic and real-world networks are used. The synthetic net-
works are generated by the LFR model with which several topological parameters can
be controlled [97]. The real-world networks pertain to various domains and are charac-
terized by diverse topological structures. All real-world networks can be obtained online
[145–151]

SYNTHETIC NETWORKS

The LFR model [97] allows generating modular networks with controlled power-law de-
gree (γ) and community size (θ) distributions. In addition, one can also tune the com-
munity structure strength through the so-called mixing parameter (µ). Small values of µ
indicate a strong community structure with few links between communities. Weak commu-
nity structures correspond to high values of µ with a high fraction of connections between
communities. Throughout this thesis, studies involve simulations on a set of synthetic
networks with diverse values for the mixing parameter (µ), community size distribution
(θ), and degree distribution (γ). Table 1 reports these parameter values.

Table 1: Synthetic network parameters generated by the LFR model.

Network Parameter Value
Number of nodes 2500
Average degree 8
Maximum degree 27
Exponent for degree distribution (γ) [2, 2.7, 3]
Exponent for community size distribution (θ) [2, 2.7, 3]
Minimum community size 4
Maximum community size 250
Mixing parameter (µ) [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 0.40, 0.70]

REAL-WORLD NETWORKS

A set of 50 real-world networks is collected from different fields (social, biological, eco-
logical, infrastructure, and collaboration networks). They are provided in Table 2.

COMMUNITY DETECTION ALGORITHMS

If the community structure of the networks under test is unknown, one uses a commu-
nity detection algorithm. The non-overlapping community structure is identified using In-
fomap [106] and Louvain [87]. The overlapping community structure is uncovered by the
Speaker-Listener Label Propagation Algorithm (SLPA) [152] and the Lancichinetti Fortu-
nato Method (LFM) [85]. Previous research shows the effectiveness of these algorithms
in uncovering communities [82, 153, 154].
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Domain Network’s name and number
Animal networks Dolphins (1), Reptiles (2)
Biological networks Budapest Connectome (3), Blumenau Drug (4), E. coli

Transcription (5), Human Protein (6), Interactome Vidal (7),
Kegg Metabolic (8), Malaria Genes (9), Mouse Visual Cor-
tex (10), Yeast Collins (11), Yeast Protein (12)

Collaboration networks DBLP (13), AstroPh (14), C.S. PhD (15), GrQc (16), NetSci
(17), New Zealand Collaboration (18)

Offline social networks Adolescent health (19), Jazz (20), Zachary Karate Club
(21), Madrid Train Bombings (22)

Infrastructural networks EU Airlines (23), EuroRoad (24), Internet Autonomous Sys-
tems (25), Internet Topology Cogentco (26), London Trans-
port (27), U.S. Power Grid (28), U.S. Airports (29), U.S.
States (30)

Actor networks Game of Thrones (31), Les Misérables (32), Marvel Part-
nerships (33), Movie Galaxies (34)

Miscellaneous networks 911AllWords (35), Bible Nouns (36), Board of Directors
(37), DNC Emails (38), Football (39), Polbooks (40)

Online social networks DeezerEU (41), Ego Facebook (42), Facebook Friends
(43), Facebook Organizations (44), Caltech (45), Facebook
Politician Pages (46), Hamsterster (47), PGP (48), Prince-
ton (49), Retweets Copenhagen (50)

Table 2: The fifty real-world networks used in this study divided into eight different do-
mains.

Infomap is based on data compression and random walks. A random walker is first de-
ployed on the network. A random walker is more likely to stay in the same community
than leave for another community due to the modular structure of real-world networks.
Huffman coding is used to retain the information about staying and leaving the commu-
nities using prefix codes (for the communities) and suffix codes (for the nodes). The
suffix codes can be used several times. By compressing the random walk description,
the non-overlapping community structure is revealed.

Louvain is based on optimizing the modularity of a network. It consists of two iterative
steps. First, communities are uncovered by maximizing local modularity between the
nodes. Second, a new network is built consisting of nodes as the communities found in
the previous step, and modularity is maximized on this new network until no further gain
can be achieved.

Speaker-Listener Label Propagation Algorithm (SLPA) is based on information diffu-
sion. In SLPA, an extended version of the Label Propagation Algorithm, nodes can save
their gained knowledge (i.e., different labels) from previous iterations. Initially, each node
belongs to a different community. In other words, each node has a unique label. Next, a
random node is selected as a listener. Labels are propagated from their speakers (i.e.,
neighbors). The process keeps iterating based on a user-defined number of iterations
T. When the diffusion of labels stops, the memory of each node resembles a probability
distribution of membership strengths to different communities. A probability r is then as-
signed to transform the membership strengths into binary memberships. In this thesis, T
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is set to 20, and r is set to 0.01.

Lancichinetti Fortunato Method (LFM) is based on the fitness function. The fitness
function quantifies the strength of the community structure through the internal and total
degrees of communities. It incorporates a resolution parameter for detecting overlapping
and hierarchical communities simultaneously. Low values of the resolution parameter
yield few but large communities, while high values produce numerous small communi-
ties. One starts with any node at random considered as a community. The optimization
process adds nodes to this community, maximizing the fitness function. After reaching a
local maximum, one chooses another node randomly from the unassigned nodes. Then,
the process iterates until all nodes belong to at least one community. Nodes assigned to
communities can also be added to newly created communities, resulting in an overlapping
community structure. In this thesis, the resolution parameter is set to 0.8.

RELATIVE OUTBREAK SIZE

The outbreak size, which indicates the total number of nodes in the recovered or activated
state, is calculated for each centrality measure when the diffusion process ends. This
value indicates the spreading/influence ability of the centrality measure at a given fraction
of initially infected/active nodes fo. The higher this value, the more effective the centrality
measure in selecting the most influential nodes. The relative difference in the outbreak
size is defined as follows:

∆R =
Rc − Rr

Rr
(1)

where:

• Rc denotes the outbreak size using a centrality measure c under test

• Rr denotes the outbreak size using the reference centrality

∆R is positive if the centrality measure under test is more effective than the reference.
Else, ∆R is negative. It is important to note that in the SIR model, ∆R has the same
meaning as ∆A in the IC model, which is the relative size of activation. These measures
both assess the number of nodes that become infected or activated at the end of the
diffusion process.
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Table 3: The Degree centrality of each node in the toy network with their respective
descending order and community-aware ranks.

Node ID Degree Descending order ranks Community-aware ranks
1 5 2 4
2 3 12 16
3 3 13 18
4 5 3 7
5 7 1 1
6 4 4 10
7 4 5 13
8 2 17 20
9 2 18 21

10 2 19 22
11 2 20 15
12 3 14 12
13 4 6 3
14 4 7 6
15 4 8 9
16 2 21 17
17 3 15 11
18 4 9 5
19 4 10 2
20 3 16 14
21 4 11 8
22 2 22 19

Table 4: The Betweenness centrality of each node in the toy network with their respective
descending order and community-aware ranks.

Node ID Betweenness Descending order ranks Community-aware ranks
1 0.039 14 18
2 0.056 13 16
3 0.200 5 1
4 0.099 11 13
5 0.158 7 4
6 0.100 10 10
7 0.146 8 7
8 0.010 19 21
9 0.014 17 20

10 0.000 20 22
11 0.016 16 15
12 0.038 15 12
13 0.287 1 3
14 0.266 3 9
15 0.280 2 6
16 0.000 21 17
17 0.012 18 14
18 0.080 12 11
19 0.125 9 8
20 0.190 6 5
21 0.221 4 2
22 0.000 22 19



125

Table 5: The number of communities and their minimum and maximum sizes for the real-
world networks based on communities identified by Infomap.

Network Number of communities Minimum Size Maximum Size
EU Airlines 10 2 332
Ego Facebook 72 2 471
U.S. Airports 39 2 226
Facebook Friends 21 2 72
Facebook Politician Pages 180 2 421
Madrid Train Bombings 5 3 38
Yeast Collins 61 2 119
Malaria Genes 11 2 86
NetSci 38 3 32
Reptiles 55 2 42
Marvel Partnerships 27 2 11
911AllWords 842 2 7609
U.S. Power Grid 422 3 44
Board of Directors 78 5 23
PGP 896 2 160
Princeton 29 2 3714
London Transport 50 4 14
EuroRoad 111 3 22
Internet Topology Cogentco 27 4 19
DNC Emails 38 2 231
Yeast Protein 164 2 49
Blumenau Drug 6 3 29
Retweets Copenhagen 92 3 32
Hamsterster 64 2 692
Human Protein 99 2 645
Caltech 11 2 270
Facebook Organizations 51 11 526
Interactome Vidal 222 2 124
AstroPh 675 2 547
DeezerEU 1395 2 446
DBLP 376 2 528
Adolescent Health 136 3 237
Bible Nouns 88 3 131
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Table 6: The number of communities and their minimum and maximum sizes for the real-
world networks based on communities identified by Louvain.

Network Number of communities Minimum Size Maximum Size
EU Airlines 8 27 103
Ego Facebook 15 19 548
U.S. Airports 12 2 137
Facebook Friends 10 5 92
Facebook Politician Pages 29 17 585
Madrid Train Bombings 5 3 22
Yeast Collins 22 3 130
Malaria Genes 8 6 71
NetSci 18 6 56
Reptiles 19 6 55
Marvel Partnerships 14 6 19
911AllWords 14 5 2052
U.S. Power Grid 41 26 241
Board of Directors 26 13 69
PGP 101 6 672
Princeton 11 4 1752
London Transport 17 11 31
EuroRoad 23 20 84
Internet Topology Cogentco 12 6 27
DNC Emails 10 2 210
Yeast Protein 33 9 84
Blumenau Drug 5 12 19
Retweets Copenhagen 23 7 85
Hamsterster 13 6 307
Human Protein 14 32 604
Caltech 9 9 164
Facebook Organizations 11 35 1267
Interactome Vidal 34 4 412
AstroPh 32 5 1629
DeezerEU 91 4 4326
DBLP 22 5 1933
Adolescent Health 19 16 358
Bible Nouns 17 6 247
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