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RÉSUMÉ ÉTENDU :
GUIDAGE PAR L’IMAGE POUR LES

TRAITEMENTS DES TUMEURS MALIGNES

ET BÉNIGNES DE L’UTÉRU

Contexte de l’étude

Les travaux de cette Thèse portent sur le guidage par l’image de traitements de tumeurs
bénignes et malignes de l’utérus.

L’utérus est un organe appartenant à l’appareil génital féminin. Plusieurs affections peuvent
atteindre l’utérus et parmi elles, les tumeurs utérines. Ces tumeurs peuvent être bénignes ou ma-
lignes (cancéreuses). Nous nous intéresserons en particulier à deux types de tumeurs : le fibrome
utérin une tumeur bénigne, représentée par les fibromes, et les tumeurs malignes, représentées
par le cancer du col de l’utérus.

Traitements des fibromes utérins

Les fibromes utérins sont de petites tumeurs bénignes qui se développent au niveau de
l’utérus. Ils sont très fréquents (ils concernent environ 1 femme sur 3 en âge de procréer en
Europe) Ils n’évoluent pas en cancer, mais peuvent entraîner des symptômes gênants (saigne-
ments importants, douleur, envies fréquentes d’uriner,. . . ), voire des problèmes de stérilité. En
l’absence de symptômes, une simple surveillance régulière suffit. Par contre, si des symptômes
existent, et selon la fréquence et la gravité de ceux-ci, des traitements peuvent être proposés
en fonction de la taille du fibrome, de sa localisation, de l’âge de la patiente (ménopausée ou
non) et de son désir d’avoir un enfant : médicaments, intervention chirurgicale, embolisation
des artères utérines, ablation par ultrasons focalisés de haute intensité (HIFU). Notre
travail de Thèse va concerner cette dernière catégorie de traitements qui présente l’énorme avan-
tage d’être non-invasive et compatible avec le désir d’enfant. En deux mots, le diagnostic et la
localisation des fibromes sont génériquement menés sur des volumes d’Imagerie par Résonance
Magnétique (IRM) acquis en mode préopératoire. Sur cette IRM, le chirurgien délimite la zone
de la lésion à traiter, mais également les zones à risques c’est-à-dire les organes environnants
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à préserver (tissus sains de l’utérus, moelle épinière, ...). La thérapie se déroule ensuite de la
façon suivante (Figure 1) : la patiente est allongée à plat ventre sur la machine de traitement.
Cette machine contient deux dispositifs à base d’ultrasons : un transducteur HIFU qui focalise
l’énergie ultrasonore vers la cible ce qui entraîne une hausse rapide de la température au point
focal qui nécrose le tissu en ce point par coagulation et un dispositif d’imagerie échographique
qui permet de guider le point focal de la sonde HIFU sur la zone à traiter. Comme le fibrome
n’est pas visible sur l’image échographique, le médecin s’aide également de l’IRM préopératoire
pour le localiser (écran à droite de la Figure 1).

Figure 1 – Thérapie des fibromes utérins par HIFU.

Un des points clés de la thérapie concerne son planning et plus particulièrement la description
de l’anatomie spécifique à la patiente à partir de l’IRM préopératoire de diagnostic, c’est-à-dire
à la délinéation de l’utérus et des fibromes mais également d’autres organes à risque telle la
colonne vertébrale (moelle épinière),. . . Actuellement cette délinéation est faite manuellement
par un médecin. C’est une opération laborieuse, coûteuse en temps, dépendante de l’expertise
de la personne et sujette à une grande variabilité de résultats entre experts, voire pour deux
occurrences d’un même expert. Une délinéation (une segmentation) automatique est par contre
actuellement difficile à réaliser du fait de a) des grandes variabilités de forme et de taille de
l’utérus et les fibromes d’une patiente à l’autre; b) un faible contraste entre les organes et tissus
adjacents. Le contraste entre l’utérus et les fibromes utérins est par exemple, assez faible, de
sorte que les limites entre les organes sont difficiles à distinguer ; c) du nombre de fibromes et
leurs formes qui sont inconnus. Une méthode de segmentation automatique et précise capable
d’extraire toutes ces structures serait d’une grande importance pour le planning de la thérapie et
le traitement lui-même. Récemment, l’apprentissage profond (Deep Learning) a réalisé d’énormes
progrès dans la segmentation des images médicales. Ces méthodes basées sur l’apprentissage
entièrement supervisé (FSL) peuvent traiter diverses tâches de segmentation d’images médicales.
Cependant, la précision et la robustesse des méthodes d’apprentissage profond dépendent d’un
grand nombre de données d’apprentissage annotées par des experts. L’acquisition de bonnes
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annotations précises nécessite un travail laborieux, et les résultats de la délimitation inter-
experts varient. Nous nous sommes intéressés à la segmentation du volume pelvien à l’aide
d’apprentissage profond selon deux approches :

1) L’adaptation d’une méthode classique basée sur de l’apprentissage supervisé
pour la segmentation multi-classes des régions utérines à partir d’images IRM.
Cette méthode sera décrite dans le chapitre 3. 2) Par contre, comme nous sommes dans le do-
maine des données cliniques, il est extrêmement difficile d’obtenir la très grande quantité de
données annotées nécessaires aux méthodes d’apprentissage profond entièrement supervisées.
Nous allons donc nous concentrer sur l’utilisation d’un nombre limité de données annotées
pour l’apprentissage tout en obtenant des performances de segmentation similaires à celles
des méthodes entièrement supervisées. Nous avons donc développé une nouvelle méthode
semi-supervisée pour cette segmentation multi-classes des régions utérines à par-
tir d’images IRM. Cette méthode utilise un petit nombre de données étiquetées pour établir
un premier modèle. Ensuite, des données non étiquetées sont introduites dans le modèle et co-
entraînées avec les données étiquetées pour rendre le modèle plus efficace. Cette méthode sera
décrite dans le chapitre 4.

Traitements des cancers du col de l’utérus

Le cancer du col de l’utérus est la quatrième tumeur maligne féminine la plus fréquente dans
le monde, avec plus de 500 000 femmes diagnostiquées chaque année et la maladie causant plus
de 300 000 décès dans le monde. Suite à un diagnostic, différents traitements (seuls ou associés)
peuvent être proposés en fonction du stade du cancer, de l’âge et de l’état général de la patiente,
de son désir d’avoir un enfant : chimiothérapie , intervention chirurgicale et/ou radiothérapie.
Le cadre médical de notre travail concerne la radiothérapie adaptative des cancers du
col de l’utérus. En deux mots, la radiothérapie adaptative vise à calculer la dose optimale
à délivrer, en direct, séance après séance, en fonction de l’imagerie et des modifications de
positionnement, de forme ou de volume de la tumeur et des organes adjacents. La radiothérapie
adaptative permet une irradiation à haute dose et de haute précision de la zone cible de la
tumeur tout en réduisant l’irradiation des tissus normaux environnants afin de minimiser la
toxicité. Avec le développement de la technologie, la radiothérapie a été mise en œuvre dans
la pratique clinique sur de nombreuses cibles thérapeutiques, notamment la tête et le cou, le
poumon, la prostate, la vessie et, dans notre cas, le col de l’utérus. Nous nous placerons dans le cas
de la thérapie adaptative offline, c’est-à-dire qui adapte le plan de thérapie quand nécessaire.
C’est généralement en début de chaque séance. En effet, les changements de remplissage de
la vessie et du rectum affectent grandement la position spatiale de l’utérus et donc souvent
entraînent des erreurs dans la délivrance de la dose. L’émergence de la radiothérapie guidée par
l’image (CBCT ou plus récemment l’IRM) a rendu possible la visualisation de la morphologie
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des tissus mous pendant la radiothérapie. Grâce à cette méthode, il est possible de surveiller les
changements dans la vessie, l’intestin et le rectum, garantissant ainsi une dose de rayonnement
élevée dans la zone cible. La figure 2 illustre le déroulement de l’administration en ligne d’une
radiothérapie guidée par CBCT avec replanification quotidienne. Il se compose de deux parties
: la planification et le traitement. Dans la phase de planification, le plan de radiothérapie initial
est généré sur la base des contours des scanners X (CTs) de planification . Dans la phase de
traitement, le plan de traitement est constamment optimisé en fonction des informations sur
la taille et l’emplacement de la tumeur et des organes à risque (obtenues grâce à l’acquisition
continue d’images anatomiques CBCT avant chaque traitement). Dans notre cas particulier nous
nous sommes basés sur la stratégie de replanification proposée au LTSI [1]. Cette stratégie est
basée sur : 1) la génération d’une bibliothèque de plans de traitements, comprenant plusieurs
plans de traitements optimisés sur la base de plusieurs CT de planification acquis avec différents
remplissages de la vessie (Figure 2 – gauche) ; 2) à chaque fraction de traitement, l’acquisition
de l’image CBCT du jour (Figure 2 – haut) ; 3) la sélection du plan de traitement du jour le
plus approprié pour maximiser la couverture de la cible. Cette sélection se fait par la mise en
correspondance entre l’image CBCT et la bibliothèque de plans de traitements (Figure 2 – bas).

Figure 2 – Workflow de la radiothérapie pour le cancer du col de l’utérus. Le processus se compose de trois
étapes (1) Planification : acquisition de plusieurs tomodensitométries de planification avec des volumes de vessie
à différents stades de remplissage. (2) Acquisition de l’image CBCT du jour. (3) Sélection du plan de traitement
le plus approprié pour maximiser la couverture de la cible. L’utérus, la cavité abdominale, la vessie et le rectum
sont représentés par des contours de rouge, vert, jaune et bleu.

Nous nous sommes intéressées à la mise en place de la dernière étape de cette stratégie
c’est-à-dire le sélection du plan de traitement du jour le plus approprié à partir du CBCT
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du jour et la bibliothèque de plans de traitements. Une des préalables en est la segmentation
automatisée des organes dans le CBCT. Actuellement, en routine clinique, comme la délinéation
manuelle des images CBCT pour chaque patient est en fait peu pratique, le praticien effectue
une sélection manuelle du plan du jour pour chaque fraction par seule comparaison visuelle. Ce
processus fastidieux limite les apports d’une radiothérapie adaptative. Or l’image CBCT joue
un rôle important, car elle fournit les dernières informations anatomiques sur le patient ou le
repositionnement du patient. Cependant, la qualité des images CBCT est relativement faible
en raison du bruit, des artefacts et du faible contraste des tissus mous. Ces problèmes rendent
l’annotation manuelle difficile et chronophage. Par conséquent, la segmentation automatique
des images CBCT pour la sélection du plan du jour est essentielle pour la radiothérapie. Nous
proposons un processus automatique permettant de sélectionner le plan de traitement optimal.
Il s’appuie sur une segmentation des images CBCT basée sur l’apprentissage profond. Le but est
d’ensuite de sélectionner le plan de traitement optimal qui maximise la couverture de l’utérus
par le traitement. Cette méthode sera décrite dans le chapitre 5.

Segmentation multi-classes des régions utérines par apprentissage
profond supervise : HIFUNet

L’extraction automatique et précise des structures nécessaires au planning et au guidage de
la thérapie des fibromes par HIFU à partir des images IRM est particulièrement complexe car :
l’utérus et certains des organes périphériques (vessie, rectum) sont extrêmement déformables ;
il y a de très grandes variations de forme et de taille d’une patiente à l’autre ; le contraste
en IRM entre l’utérus et les fibromes utérins est assez faible, de sorte que les limites entre
les organes sont difficiles à distinguer ; et, le nombre de fibromes utérins et leur forme sont
inconnus. Ainsi, développer une méthode par apprentissage profond est un véritable défi. Parmi
les différentes méthodes proposées dans la littérature, les modèles basés sur des architectures
en encodeur-decodeur avec saut de connexion du type U-Net sont très performants. En effet,
cette architecture avec sauts de connexions perte permet de fusionner les caractéristiques à
différentes échelles et d’améliorer la précision des résultats du modèle. Par contre la très grande
variabilité des formes et de leurs tailles et le nombre inconnu de fibromes demandent de très
grands champs réceptifs pour capturer les caractéristiques de l’image. Ceci nous a amené à
modifier le schéma général d’un U-net sous la forme d’un nouveau réseau appelé HIFUNet pour
segmenter automatiquement l’utérus, les fibromes utérins et la colonne vertébrale. Les principales
contributions de la méthode peuvent être résumées comme suit : 1) Pour remédier aux erreurs
de segmentation (par exemple la mùauvaise classification du col utérin comme fibrome utérin en
raison d’un champ réceptif insuffisant), nous introduisons un module de réseau convolutif global
(global convolutional network - GCN) capable d’élargir le champ réceptif de manière efficace.
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2) Nous intégrons le réseau convolutif global et les convolutions profondes de type ‘’atrous
multiples” ( deep multiple atrous convolutions – DMAC pour extraire davantage d’informations
sémantiques basées sur le contexte et générer des caractéristiques plus abstraites pour les fi-
bromes utérins de grande taille.

De manière plus précise, comme annoncé précédemment, HIFUNet est basée sur une struc-
ture de réseau convolutionnel global de type encodeur-décodeur mais avec les particularités
suivantes (Figure 3). En fait, HIFUNet se compose de trois parties principales : 1) un module
d’encodage des caractéristiques (basé sur un backbone ResNet101 pré-entraînée), 2) une par-
tie d’extraction des caractéristiques (avec le réseau de convolution global et les convolutions
profondes atrous multiples) et 3) un module de décodage des caractéristiques.

Figure 3 – Architecture de HIFUNet : le réseau se compose d’un backbone Resnet101 en tant
que module d’encodage, d’un module GCN et d’un module DMAC en tant que partie extracteur
de caractéristiques, et de couches de suréchantillonnage, de couches de concaténation et d’une
couche de sortie en tant que partie du module décodeur de caractéristiques. Les paramètres
et les tailles des caractéristiques de sortie dans les différentes couches sont présentés dans des
couleurs différentes.

Le module encodeur des ResNet-101 pré-entraînés. Dans [2], les auteurs ont démontré que
l’utilisation de connexions résiduelles favorise la propagation de l’information à la fois vers
l’avant et vers l’arrière, ce qui permet d’améliorer considérablement la vitesse d’apprentissage
et les performances. Dans notre cas nous avons simplement transformé les 3 canaux (RGB) de
ResNetr en un seul canal (niveau de gris).
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Dans la partie extraction de caractéristiques, deux principes sont utilisés pour augmenter
les champs réceptifs : 1) La tendance actuelle en matière de conception d’architecture est à
l’empilement de petits noyaux de convolution, car cette option est plus efficace que l’utilisation
d’un gros noyau de convolution pour la même quantité de calcul. Cependant, compte tenu du
fait que les tâches de segmentation sémantique nécessitent une prédiction de la segmentation
pixel par pixel, Peng et al. [3] ont proposé un réseau convolutif global (GCN) pour améliorer
la précision de la classification et de la localisation simultanément. Dans le GCN, une couche
entièrement convolutive est adoptée pour remplacer la couche de mise en commun globale afin
de conserver les informations de localisation. En outre, de grands noyaux sont introduits pour
augmenter le champ réceptif valide. 2) Les convolutions atrous résolvent le problème de la réso-
lution réduite causée par les réseaux neuronaux convolutifs profonds (DMAC) tout en ajustant
le champ réceptif du filtre. L’idée principale de la convolution atrous est d’insérer des "trous"
(zéros) entre les pixels dans les noyaux de convolution afin d’augmenter la résolution de l’image,
permettant ainsi une extraction dense des caractéristiques dans les DMAC. Dans notre cas,
nous avons mis en œuvre cinq couches convolutives avec des noyaux 3 × 3 avec différents taux
d’échantillonnage pour extraire les différentes caractéristiques. Enfin, nous fusionnons toutes les
caractéristiques avec l’image d’entrée pour générer le résultat final. L’idée derrière cette archi-
tecture est d’extraire des caractéristiques multiples et fournir des champs réceptifs de tailles
multiples (au détriment du temps de calcul).

Le module de décodage utilise principalement l’opération de concaténation pour fusionner les
caractéristiques multi-échelles dans notre cas les sorties de GCN avec les cartes correspondantes
de caractéristiques issues de suréchantillonnage. La sortie est assez classique acec une opération
de déconvolution pour agrandir l’échelle de l’image jusqu’à la taille initiale et pour restaurer
les caractéristiques avec des informations plus détaillées. Enfin, le masque de sortie est obtenu
après l’application de deux opérations de convolution et de softmax.

L’apprentissage et la validation du modèle ont été effectués sur une base de données clinique
de volumes IRM préopératoires pondérées en T2 avec suppression de graisse de 297 patients et
recueillies au First Affiliated Hospital of Chongqing Medical University. Chaque volume d’IRM
est constitué de 25 coupes. La vérité de terrain a été générée par un processus d’annotation
approprié. Pour garantir une référence clinique objective et cohérente, deux radiologues (un
senior et un junior) ont été sollicités et ont définis les annotations après accord consensuel. Les
IRMs de 260 patients ont été utilisées pour l’apprentissage et les images des 37 autres patients
ont été utilisées pour les tests. La fonction de coût de l’apprentissage était la minimisation de
l’entropie croisée entre les résultats de la segmentation et la vérité terrain.

L’évaluation a consisté d’une part à estimer l’apport des différents modules à la segmentation
finale. L’utilisation de ResNet101, du GCN et du DMAC a permis à chaque fois d’améliorer les
performances du modèle, ceci de manière statiquement démontrable.
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Dans un second temps, nous avons comparé les performances en segmentation par rapport à
des méthodes classiques (notre modèle a des performances plus élevées statistiquement démon-
trées) et d’autres méthodes basées sur l’apprentissage profond. Dans ce dernier cas, notre modèle
obtenait des résultats légèrement supérieurs et surtout moins sensibles à l’organe segmenté au
meilleur des modèles existants (HRNet), mais statistiquement l’apport n’était pas significatif.

En conclusion, HIFUNet donne des résultats similaires aux experts cliniques et il est plus
performant que de nombreux réseaux de segmentation sémantique existants.

Notre travail sur la segmentation de l’utérus et des fibromes utérins est, à notre connaissance,
la première tentative d’utilisation de réseaux neuronaux convolutifs dans la thérapie HIFU.
L’inclusion de la segmentation de la colonne vertébrale, un organe critique dans la thérapie
HIFU, est une autre caractéristique majeure de notre approche.

HIFUNet a fait l’objet d’une publication dans IEEE transactions on Medical Imaging [4].

Segmentation semi-supervisée des régions autours de l’utérus à
partir d’IRM pour le traitement HIFU

L’étude précédente a utilisé une approche de segmentation de la zone utérine par un modèle
d’apprentissage profond complètement supervisé. Ce type de modèle demande un grand nombre
de données annotées pour l’apprentissage. L’accès à des données cliniques et plus encore à
des données annotées de manière précise par des experts médicaux est souvent extrêmement
difficile. En effet l’annotation est un processus répétitif, chronophage et peu valorisant pour les
experts médicaux avec pour résultats des données en relativement petit nombre, assez imprécises
avec une grande variabilité intra et inter-experts. Ce manque de données en grand nombre et
relativement imprécises pose alors des problèmes de généralisation des modèles par apprentissage
complètement supervisé avec des phases de réapprentissage an cas de changements d’appareils
ou de paramètres d’acquisitions.

Une solution peut être apportée par des méthodes d’apprentissage semi-supervisé, qui es-
sayent d’utiliser des données non annotées pour améliorer la précision des modèles appris sur un
nombre insuffisant de données annotées. Une des stratégies pour cet apprentissage semi-supervisé
consiste à produire des pseudo-labels à partir des données non annotées et de les injecter dans
la phase d’apprentissage. Classiquement, le modèle est dans un premier temps entraîné à partir
d’un petit nombre de données annotées. Puis les données non-annotées sont pseudo-labélisées
ensuite injectées dans le modèle en utilisant le premier entraînement pour un apprentissage
itératif co-joint avec des données annotées et pseudo-labélisées [5]. Un tel mécanisme est assez
similaire à la régularisation entropique.

Selon nous, outre ce principe général, plusieurs apports devraient améliorer ce modèle. D’une
part, une augmentation de données devrait permettre de gagner en généralisation. Nous pensons
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que la méthode du mixup est une façon assez simple et efficace pour rendre un modèle plus
robuste. D’autre part, nous savons que la qualité des pseudo-labels affecte l’apprentissage. Une
stratégie est généralement d’associer une carte de confiance à ces données et d’écarter les pseudo-
labels par seuillage de la carte de confiance. Un tel seuillage est généralement défini de manière
globale et empirique. Dans notre cas nous pensons qu’un seuillage adaptatif évoluant au cours
de l’apprentissage pourrait grandement améliorer la phase d’apprentissage en précision et en
convergence.

Nous avons donc proposé un nouveau modèle appelé ”Pseudo-label Refinement Network”
(PLRNet) qui combine la stratégie d’apprentissage par pseudo-labels, le seul adaptatif des cartes
de confiance de ces pseudo-labels et l’augmentation de données par mixup.

De manière plus précise, la structure de notre modèle est décrite dans la figure 4. Il est divisé
en deux phases : un pipeline d’apprentissage et un pipeline d’inférence.

Figure 4 – Structure de PLRNet.

Pipeline d’apprentissage. Afin de gagner en précision nous avons choisi d’utiliser deux
réseaux de segmentation, un réseau de segmentation plus grossier (”Coarse Segmenta-
tion Network-CSNet”) suivi d’un réseau de segmentation plus fine (”Fine Segmentation
Network-FSNet”). La sortie de chacun des deux réseaux est une carte de probabilités à
4 canaux (un canal par classe (fond, utérus, fibrome et colonne vertébrale). Les données
d’entrée de FSNet sont issus du produit des données en niveau de gris avec les 4 canaux
donnés de CSNet. Ceci permet de donner une région d’intérêt par classe à FSNet.
Pour l’entraînement, nous disposons de deux jeux de données : un jeu de données la-
bellisés, X l, et un jeu de données sans labels Xu. L’entraînement se fait en plusieurs
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phases : 1) Un premier entraînement supervisé des deux réseaux en utilisant une partie
de X l (fonction de perte par corrélation croisée entre labels estimés et vérités terrain) ;
2) un second entraînement avec à la fois des données de X l et de Xu. Xu donne en sortie
des réseaux des pseudo-labels qui sont utilisés également en apprentissage par minimisa-
tion d’une fonction de perte spécifique ; 3) Une fonction de confiance est attachée aux
pseudo-labels. Les pseudos-labels dont la confiance est en dessous d’un certain seuil T ne
sont pas utilisés. Dans notre cas, T est déterminé de manière adaptative à l’aide d’une
fonction de perte durant l’évolution de l’entraînement, ceci afin d’améliorer la qualité des
pseudo-labels durant l’apprentissage.
L’architecture des deux réseaux est un point clés de notre méthode. Comme pour le
HIFUNet de la solution totalement supervisée, nous avons utilisé le réseau convolutif
global (GCN) dans la structure en U afin d’extraire efficacement les données complexes
d’une scène en augmentant le champ valide de réception. Nous avons aussi remplacé les
méthodes de sous-échantillonnage/sur échantillonnage habituellement utilisées dans les
résaux (par ex. : max- ou mean-pooling) par des opérateurs basés sur la transformée en
ondelettes et de la transformée en ondelettes inverse.
Nous avons également introduit lors de l’apprentissage une méthode d’augmentation
de données basée sur le mélange de données caractéristiques alignées (Feature-aligned
Mixup).

Pipeline d’inférence. Le réseau de segmentation fin FSNet après la phase d’entraînement
est utilisé pour comme réseau d’inférence.

L’apprentissage et la validation du modèle ont été effectués sur la même base de données
clinique de volumes IRM de 297 patients que l’étude précédente. La encore, les IRMs de 260
patients ont été utilisées pour l’apprentissage et les images des 37 autres patients ont été util-
isées pour les tests. Par contre, dans les données d’entraînements, nous n’avons utilisé qu’un
pourcentage des annotations pour former le jeu de données labellisés X l, le reste composant les
données non labellisées Xu. Plusieurs pourcentages de données labellisées ont été évalués allant
de 100 % (apprentissage totalement supervisé) à 40%, 25% et 10%.

L’évaluation a consisté d’une part à estimer l’apport des différentes innovations à la seg-
mentation finale. L’utilisation du GCN et des transformées en ondelettes dans les réseaux ainsi
que le seuillage adaptatif durant l’apprentissage du seuil de confiance aux pseudo-labels et que
l’augmentation des données par Mixup ont amélioré chacun les performances de la segmentation,
ceci pour un taux de 25% de données labellisées.

Nous avons ensuite comparé les performances de notre méthode par rapport à des méthodes
totalement supervisées (U-Net et HIFUNet), ainsi qu’à 4 autres méthodes d’apprentissage semi-
supervisée U-Net, ASDNet [6], Latent Mixup [7], et Cross-Consistency Training (CCT) [8],
ceci pour les 3 différents pourcentages de données étiquetées/non étiquetées. D’une part, notre
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méthode, avec des pourcentages de 40% et 25% de données annotées, avait des performances
supérieures à celles de U-Net totalement supervisée, et du même ordre de grandeur que U-Net
totalement supervisée avec un taux seulement de 10% de données annotées. Notre méthode avait
également des performances significativement meilleures que 4 autres méthodes d’apprentissage
semi-supervisée, et ceci quel que soit le taux de données annotées. L’analyse visuelle qualitative
des résultats de segmentation des différentes méthodes a confirmé cette tendance.

En conclusion, nous avons proposé un nouveau pipeline de segmentation par apprentis-
sage semi-supervisé appelé PLRNet. Ce pipeline inclus différentes contributions (architecture
d’apprentissage à deux réseaux grossier et fin, réseaux incorporant un réseau convolutif global
et du sous- et sur- échantillonnage basés sur des transformées en ondelette, seuil adaptatif de
confiance aux pseudo-lebels, augmentation de données par Mixup) qui permettent d’incorporer
des données non annotées lors de la phase d’apprentissage afin d’améliorer la performance de
segmentation du réseau. Nous avons validé notre méthode sur des données utilisées pour la plan-
ification du traitement des fibromes par HIFU. Cette évaluation a démontré que notre réseau
de segmentation était plus performant que les méthodes d’apprentissage semi-supervisé de l’état
de l’art. Et avait des performances proches voir supérieure à U-Net avec nettement moins de
données d’apprentissage.

Le travail futur le plus important consiste à améliorer la qualité des pseudo-labels en con-
cevant des seuils par classe plutôt qu’un seuil global, pour générer des pseudo-étiquettes non
biaisées. En outre, nous prévoyons d’étendre notre approche à d’autres ensembles de données
provenant de différents sites afin d’étudier la façon de sélectionner et annoter des données
représentatives et comment extraire une segmentation plus riche à partir d’une annotation de
données limitée.

PLRNet a fait l’objet d’une publication dans IRBM [9].

Segmentation automatique pour la sélection du plan du jour dans
la radiothérapie adaptative du cancer du col de l’utérus guidée
par CBCT

Ce chapitre porte sur le traitement du cancer du col de l’utérus par radiothérapie adaptative
externe dont l’objectif est d’irradier la tumeur lors de différentes fractions de traitement tout en
essayant de limiter au maximum la toxicité sur les tissus normaux environnants. Le traitement
est assez complexe du fait des fortes variations anatomiques intrapelviennes survenant entre
les fractions de traitement. La position et la forme du volume cible clinique (clinical target
volume – CTV) comprenant le col de l’utérus, l’utérus et le haut du vagin dépendent fortement
du remplissage de la vessie et du rectum, et de la régression tumorale le long du traitement.
Le traitement doit donc s’adapter à la morphologie lors de chaque fraction. Une des stratégies
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permettant de prendre en compte la morphologie lors de la fraction est de faire une acquisition
CBCT avant la séance et à adapter le planning de dose (replanifier) en fonction des modifications
de positionnement, de forme ou de volume de la tumeur et des organes adjacents. Une des
stratégies est alors celle du plan du jour (plan of the day - PoD) qui est basée sur la génération
au préalable d’une bibliothèque de plans de traitement comprenant plusieurs plans de traitement
optimisés en fonction de multiples scanners X de planification (pCT) acquises avec différents
remplissages de la vessie. Ensuite, lors de la séance de traitement, le plan de traitement est
sélectionné parmi ceux de la bibliothèque ("plan du jour") sur la base de l’image CBCT. Bien
que cette stratégie semble adéquate pour compenser les mouvements utérins, elle reste complexe
dans un flux de travail clinique en raison du faible contraste des images CBCT et des grandes
déformations anatomiques. Le choix du plan du jour est généralement fait par l’expert médical,
et, comme le montre l’étude de Gobeli et al., il existe une forte variabilité inter-expert (dans
cette étude, le plan du jour optimal n’a été choisi en moyenne que par 60% des experts). Dans
ce contexte notre objectif était de proposer une stratégie pour sélectionner automatiquement le
plan de traitement optimal. Cette stratégie repose sur une segmentation des images CBCT basée
sur l’apprentissage profond suivi d’une procédure de sélection du plan de traitement optimal
maximisant la couverture du volume cible clinique sur la base d’un critère géométrique.

De manière plus précise, la structure de notre stratégie est décrite dans la figure 5.
Noua avons à notre disposition 3 scanners X de planification avec 3 remplissages de vessie

(vessie vide -EB-, vessie intermédiaire -IB- et vessie pleine -FB-). Ces scanners ont été segmentés
manuellement (col de l’utérus, utérus et haut du vagin, ainsi que rectum, vessie et sac intestinal)
et un planning de doses a été établi sur chacun de ces volumes. Les volumes segmentés sont
nommés (CTVEB, CTVIB et CTVF B).

Lors d’une session, un volume CBCT est acquis. Ce volume passe alors par plusieurs étapes
pour la sélection du plan du jour :

1. La segmentation du CBCT par un modèle d’apprentissage profond. Nous avons choisi un
réseau existant, le nnU-Net 3d_fullres [10], qui s’est avéré être l’un des modèles les plus
performants dans de nombreuses tâches de segmentation d’images. Nous avons entraîné ce
réseau sur les données CBCT de 17 patients (environ 200 volumes) et testé sur 6 patients
(environ 70 volumes). Une évaluation en 4-fold cross-validation nous a donné un Dice
médian de l’ordre 0,8 pour les différents organes. Ce Dice est de l’ordre de grandeurs des
deux autres études de segmentations en CBCT mais avec des gains en vitesse de calcul
et en nombre d’organes segmentés ;

2. Un recalage rigide du CBCT sur chacun des 3 scanners X de planification. Le recalage
a été effectué sur les structures osseuses à l’aide de la bibliothèque Elastix. Le recalage
rigide se justifie car nous ne devions pas déformer les organes abdominaux pour passer à
l’étape suivante ;
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Figure 5 – Organigramme de la méthode de choix du plan du jour optimal : (1) segmentation
CBCT à l’aide de l’apprentissage profond et (2) sélection du plan du jour (PoD) à l’aide des
contours du volume cible clinique (CTV). La sélection du PoD s’appuie sur : (a) le recalage
rigide basé sur l’os du CBCT per-opératoire du jour sur les 3 CTs de planification (pCTs) de
la librairie ; (b) le calcul de la couverture entre le CTV du jour (CTVCBCT ) et les 3 CTVs de
la librairie (CTVEB ,CTVIB,CTVF B) ; (c) la sélection du meilleur plan de traitement sur la
base de la couverture cible : le pCT correspondant à la couverture la plus élevée est sélectionné.
(EB : vessie vide ; IB : vessie intermédiaire ; FB : vessie pleine ; cov : valeur de couverture).

3. Sélection du plan du jour. Le CBCT est reprojeté sur chacun des 3 scanners X de planifi-
cation. Pour chacun des 3 scanners le taux de recouvrement entre les organes segmentés
automatiquement du CBCT et ceux manuellement du scanner X de planification est cal-
culé. Le scanner X de planification correspondant à la valeur de taux de recouvrement le
plus élevé sera sélectionné comme plan du jour de la fraction de traitement.

Pour l’évaluation nous avons comparé le résultat de notre choix automatique avec celui de
l’expert dans une étude a posteriori sur les 272 CBCTs à notre disposition. Notre méthode était
en concordance stricte avec l’expert dans 91.5% (seuls 23 cas sur 272 avaient un plan du jour
sélectionné sous-optimal par rapport à la référence). Par contre, nous avons constaté que pour
certains patients, les scanners X de planification pouvaient être assez similaires avec moins de
5% de différences des volumes des organes entre deux remplissages de vessie. Si l’on considère
cette tolérance de 5%, la concordance est alors de 99.6%, avec un seul cas qui présentait un
plan du jour sélectionné sous-optimal par rapport à la référence. C’était le cas d’une patiente
avec une poute petite vessie que notre algorithme de segmentation n’arrivait pas à estimer. Nous

17



pensons que dans un contexte clinique, ce type de cas serait facilement détecté visuellement et
ajusté manuellement

L’algorithme de sélection du plan du jour a fait l’objet d’une publication dans Physics in
Medicine and Biology [11].

Conclusion

Dans cette thèse, nous nous sommes concentré sur la recherche et développement de nouveaux
algorithmes pour la segmentation d’images de la région utérine dans le cadre des traitements
des fibromes utérins par HIFU et tumeurs du col de l’utérus par radiothérapie adaptative. Plus
particulièrement nous avons proposé 3 contributions dans ces domaines :

1. La solution HIFUNet pour la segmentation automatique des images IRM de l’utérus avant
le traitement HIFU. Une segmentation entièrement automatique et précise de l’utérus, des
fibromes utérins et de la colonne vertébrale dans la région utérine été proposée. À notre
connaissance, il s’agit de la première tentative de méthode d’apprentissage profond pour
la segmentation multi-classes dans la région utérine. L’évaluation a montré que HIFUNet
est plus robuste et plus précis que les méthodes traditionnelles ou basées Deep Learning
sur cet organe. L’avantage de HIFUNet est qu’il utilise des grands noyaux convolutifs
afin d’étendre le champ réceptif, ce qui permet au réseau d’extraire les caractéristiques
de la cible de segmentation dans l’arrière-plan complexe de l’image médicale de la scène.
Les résultats expérimentaux indiquent que HIFUNet a bonne précision de segmentation
des fibromes utérins quels que soient leurs nombres ou leurs tailles ;

2. La solution PLRNet qui permet de gérer la rareté des données annotées pour l’apprentissage.
C’est un réseau basé sur de l’apprentissage semi-supervisé. Apres un premier apprentis-
sage sur un nombre restreint de données annotées, l’apprentissage se poursuit en y inclu-
ant également des données non annotées. Lors de l’apprentissage, le réseau propose des
pseudo-labels à partir des données non-annotées, pseudo-labels qui sont réinjectés puis
raffinés dans le processus d’apprentissage. Pour cela, nous utilisons deux étages de réseaux
à noyau convolutif de grande taille avec des opérateurs de sous- et sur-échantillonnage
basés sur des transformées en ondelettes. Nous avons également proposé un mécanisme de
détermination de seuil de confiance aux pseudo-labels qui s’adapte durant l’apprentissage.
Nous avons également intégré un mécanisme d’augmentation des données par mélanges
de caractéristiques dans les couches cachées, ceci permettant d’éviter le surapprentissage.
Ces différentes contributions permettent à PLRNet de résoudre le problème de la rareté
des données étiquetées dans la segmentation des images médicales et ainsi permettre des
réapprentissages rapides à partir de peu de données annotées en cas de changement de
paramètres ou de machine d’acquisition ;
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3. La sélection du plan du jour lors d’une fraction de radiothérapie adaptative du cancer du
col de l’utérus. Pour cela nous avons proposé une méthode basée sur 1) la segmentation
des images CBCT par un réseau de type nnU-Net ; 2) le recalage rigide entre CBCT et les
scanner X de planificattion d’une librairie ; et 3) le choix du plan du jour en choisissant
le scanner X de planification dont les organes ont le plus grand recouvrement avec ceux
du CBCT. Cette méthode constitue la première tentative de sélection automatique du
plan du jour en radiothérapie adaptative.

Les méthodes de segmentation présentées dans cette thèse ont obtenu de bons résultats dans
la segmentation d’images soit sur l’IRM préopératoire pour le traitement HIFU, soit sur le CBCT
pour la radiothérapie adaptative, mais il reste encore quelques problèmes de traitement d’images
dans ces deux domaines d’applications qui méritent d’être explorés et résolus. Pour le traitement
des fibromes par HIFU, le guidage de cette thérapie se fait sous échographie 3D. Il nous faudra
donc développer une nouvelle technique de segmentation de la zone anatomique mais sur l’image
échographique. Dans un deuxième temps, la fusion des deux modalités (IRM/ultrasons) par
recalage élastique devra être envisagée si possible avec de l’apprentissage profond pour des
questions de vitesse de traitement. Pour la radiothérapie adaptative, là encore un recalage entre
CBCT et le CT de planification pourrait être envisagé pour associer directement la morphologie
du patient au moment du traitement à celle utilisée pour établir le planning de dose.
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INTRODUCTION

The uterus is a pear-shaped hollow organ in the female pelvis, located between the bladder
and the rectum. Uterine tumors may occur in the body, isthmus, and cervix and may be benign
or malignant (cancerous). Among these, benign tumors, represented by fibroids, and malignant
tumors, represented by cervical cancer, are currently becoming a serious health risk for women.
With the development of medical technology, there have been more advanced surgical treatments
for benign and malignant tumors of the uterus. Computer-aided methods to improve surgery’s
accuracy, efficiency, and safety are essential to women’s health.

In the treatment of benign and malignant tumors of the uterus, accurate annotation of the
lesions in the uterine region and the surrounding crisis organs is an essential part of the diagno-
sis and treatment planning: 1) In treating uterine fibroids, lesion annotation helps the surgeon
determine the fibroid’s size, shape, location, and, thus, the type of fibroid. 2)When treating adap-
tive radiotherapy (ART) procedures for cervical cancer, the doctor can develop the radiotherapy
process and the prescribed dose based on the results of the delineation. 3) In high-intensity fo-
cused ultrasound surgery (HIFU) for uterine fibroids, the target area in the preoperative images
is mapped to the intraoperative images to guide the surgery. However, annotating target areas
and organs at risk in medical images are time-consuming and labor-intensive, and factors such
as image noise make accurate annotation difficult. Therefore, exploring automatic and accurate
annotating methods for uterine images has significant clinical value for treating benign and
malignant uterine diseases.

To this end, this paper investigates the multimodal image segmentation algorithms and
automated surgical techniques involved in HIFU and ART to treat uterine fibroids and cervical
cancer, respectively. This paper aims to improve the automation and precision of these two
treatments in clinical practice. The main work and contributions are as follows:

1. Multi-Class Segmentation of Uterine Regions From MR Images Using Global
Convolutional Networks for HIFU Surgery Planning

To address the problem that existing state-of-the-art (SOTA) deep learning segmentation
methods are not effective enough for complex multi-level feature extraction, we propose a novel
convolutional neural network called HIFUNet to segment the uterus, uterine fibroids, and spine.
The network is an end-to-end encoder-decoder architecture designed with a global convolutional
network (GCN) module to expand the valid receptive field and extract multi-scale contextual
information. In addition, combining GCN with our proposed deep multiple atrous convolution
(DMAC) module can further extract contextual semantic information and denser feature maps.
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Our approach is compared to both conventional and other deep learning methods and the ex-
perimental results conducted on a large dataset show its effectiveness.

2. Semi-supervised uterine MR image segmentation method based on pseudo-
label Refinement for HIFU procedure planning The fully supervised semantic segmen-
tation approach is effective but requires a high amount of annotation on the training data, so
we propose a semi-supervised deep learning approach to segment MRI images. This method
aims to refine the pseudo-label generated in the semi-supervised method named: pseudo-label
refinement network (PLRNet). Inspired by the fully supervised uterine segmentation method
HIFUNet, feature extraction can be improved by expanding the valid reception field in seg-
menting uterine fibroids with different sizes and shapes. Therefore, in semi-supervised feature
extraction, we consider a network with large convolutional kernels to extract contextual features
for each target class in MR images. In addition, the feature dilution problem caused by the typ-
ical pooling operation in deep learning is improved, and wavelet pooling is utilized to suppress
the image noise. Our semi-supervised segmentation network has two components based on two
cascaded large convolutional kernel networks containing wavelet pooling, a coarse segmentation
network and a fine segmentation network. The coarse segmentation network is pretrained to fix
the model parameters on the labeled images, and after the initial rough segmentation of the
unlabeled data, the inaccurate prediction results are fed into the second network for further
segmentation, and the obtained prediction results are named as the "pseudo-label" of the unla-
beled data. Unlike the traditional semi-supervised approach of setting fixed thresholds, we use
an adaptive method based on confidence thresholds for the first time in semi-supervised segmen-
tation to improve the quality of the pseudo-label. As the network is trained, the threshold value
decreases, automatically shifting the network’s attention from the less difficult spine region to
the more difficult fibroid region, with changes in the threshold value corresponding to changes
in the segmentation target features. In addition, inspired by "Mixup" method, we extend Mixup
operations to each hidden layer of the fine segmentation network, which helps data augmen-
tation and avoid the overfitting phenomenon that tends to occur in semi-supervised learning,
improving the generalization and robustness of the model.

3. Automatic segmentation for plan-of-the-day selection in CBCT-guided adap-
tive radiation therapy of cervical cancer Plan-of-the-day (PoD)-based ART is based on a
library of treatment plans. At each treatment fraction, the PoD is selected based on daily im-
ages. However, this strategy is limited by the optimal PoD selection due to visual uncertainties.
This work proposes a workflow to automatically and quantitatively determine the PoD of ART
for cervical cancer based on daily CBCT images. The quantification is performed by segmenting
the main structures of interest (Clinical target volume (CTV), rectum, bladder, and bowel bag)
in CBCT images using a deep learning model. Then, the PoD is selected from the treatment
plan library according to the geometrical coverage of the CTV. The resulting PoD is compared
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to the one obtained considering reference CBCT delineations for the evaluation.

33





Chapter 1

BACKGROUND-UTERINE TUMORS AND

THERAPIES

1.1 Anatomy of uterus

The uterus is one of the female internal reproductive organs and is located behind the blad-
der and in front of the rectum. The normal adult uterus measures 6 to 9 cm in length [1]. As is
shown in the Figure 1.1, the uterus is pear-shaped and has three sections: the cervix, the body
and the fundus. The uterine body narrows to form a waist (the isthmus), which extends into
the cervix. The uterine canal passes through the internal os and emerges as the external os at
the vaginal vault [2]. The uterus holds the growing fetus during pregnancy. The cervix connects
the lower part of the uterus to the vagina and together with the vagina, forms the birth canal.

Figure 1.1 – Coronal and lateral views of the anatomy of the uterus. Reprinted from "Anatomy of the uterus."
by Ellis, Harold. 2011, Anaesthesia & Intensive Care Medicine,12(3), 99-101. Copyright (2022) by Elsevier.License
number: 5305830077364.

The examination by medical imaging of the uterus includes the evaluation of the endome-
trial stripe, the junction zone, the myometrium, and the cervix. The cervix, endometrium, and
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myometrium are well visualized by both ultrasound and Magnetic Resonance Imaging(MRI).
However, the junctional zone is better assessed on MRI. The contour and anomalies of the
uterus can also be assessed by ultrasound and MRI [3].

Although the interpretation of imaging methods (e.g. MRI) is consistent with the anatomical
description, the precise anatomy of the uterus, must often be analyzed in combination with
multi-modal images. For example, in ultrasound images, imaging of the internal details of the
uterus is often not achieved because of the low resolution of ultrasound imaging. In particular,
in real-time ultrasound video images, the uterine borders are sometimes blurred due to factors
such as the patient’s respiratory. Therefore, in such cases, the doctor will combine the patient’s
MRI images with the ultrasound to make a diagnosis.

1.2 Uterine benign and malignant tumors

The uterus is one of the most important organs in relation to women’s reproductive health.
Uterine tumors, caused by changes in the growth of cells in the uterus and thus uncontrolled
growth of the uterus, are a threat to the women’s health. Tumors are classified as benign or
malignant.

Benign tumors, also called noncancerous tumors, are tumors that grow but do not spread to
other parts of the body. There are four types of noncancerous growths of uterus: uterine fibroids,
benign polyps, endometriosis and endometrial hyperplasia.

Malignant tumors, also known as cancerous tumors, can spread to other parts of the body
and can be life-threatening. The two main types of uterine cancer are adenocarcinoma and
sarcoma [4].

Although the upper end of the cervix is attached to the body of the uterus and is only a few
centimeters away from it, cervical cancer is not classified as an uterine cancer mainly because
(1) the causes of development are different: cervical cancer is due to human papillomaviruses
(HPV) infection; uterine cancer is due to genetic factors, overweight, etc.; (2) The treatment
modalities are different: for early stages of cervical cancer, surgery or radiation combined with
chemotherapy can be used and but for late stage, radiation combined with chemotherapy is
usually the main treatment; uterine cancer is usually treated by surgical removal of the uterus,
fallopian tubes and ovaries.

In this article, we focus on one benign and one malignant disease of the uterus: uterine
fibroids and cervical cancer. These two diseases and their treatments are described in detail
below.
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Figure 1.2 – Fibroid locations (MAYO 2019). "Uterine fiborids" by Mayo Clinic staff, ac-
cessed 16 May 2022, <https://www.mayoclinic.org/diseases-conditions/uterine-fibroids/symptoms-causes/syc-
20354288#dialogId66869006>.

1.2.1 Uterine fiborids and high-intensity focused ultrasound (HIFU) therapy

Uterine fibroids

Uterine fibroids (UF) are also called uterine leiomyomas. UF are benign smooth muscle
tumors of the uterus. They affect women of childbearing age. Uterine fibroids are not associated
with an increased risk of uterine cancer and almost never develop into cancer. The incidence of
uterine fibroids has continued to increase in recent years. In 2001, they are clinically apparent
in up to 25% of women[5]. Twenty years later, the prevalence has increased to more than 75%
[6]. At age 50, nearly 70% of white women and more than 80% of black women have at least
one uterine fibroid [7].

As can be seen from Figure 1.2 (MAYO 2019), there are three main types of uterine fibroids.
Intramural fibroids that develop within the muscular uterine wall. Submucosal fibroids that
protrude into the uterine cavity. Subserosal fibroids that project to the outside of the uterus [8].

Uterine fibroids diagnosis

In most cases, the diagnosis is not timely because patients with fibroids are asymptomatic or
their symptoms develop slowly. Most findings of fibroids are due to routine pelvic examinations or
incidental imaging [9]. Ultrasound is then the standard confirmatory imaging modality because

37



Part, Chapter 1 – Background-uterine tumors and therapies

it can easily and inexpensively distinguish fibroids from the gravid uterus or adnexal masses.
The need for additional imaging depends on the clinical findings of the patient [10]. Transvaginal
ultrasonography is as efficient as MRI in detecting myoma presence, but its ability to accurately
map myomas is inferior to MRI, especially in the case of large multiple-myoma [11]. Diagnostic
imaging is used to confirm clinically suspected uterine fibroids. More details will be discussed in
section 1.3.

Uterine fibroids treatment

When the symptoms of a fibroid become bothersome, a treatment option may be considered.
However, the choice of an option is quite complicated because it depends on the size of the
fibroma, its location, the age of the patient (menopausal or not) and her desire to have a child.
This choice is further complicated by the fact that only few randomized trials have compared
various therapies for fibroids and there is a lack of data to provide information on different
intervension strategies. Different treatment strategies should be used depending on the size and
symptoms of the fibroids. Indeed, many fibroids are relatively small and asymptomatic. Several
factors should be considered when proposing a management plan for benign uterine fibroids,
such as the woman’s preference, severity of symptoms, fertility desires, and the patient’s age.
By assessing the fibroid symptom and the woman’s preferences, recommended decision trees
for the management of symptomatic UFs are provided in professional guidelines (See Figure
1.3) [10]. Hysterectomy, laparoscopic myomectomy and hysteroscopic myomectomy are the most
commonly used surgical interventions for myomas. Alternatives to surgical intervention include
uterine artery embolization (UAE), magnetic resonance-guided high intensity focused ultrasound
surgery (MRgFUS) and vaginal uterine arteries occlusion [12]. Specifically, compared with hys-
terectomy, focused ultrasound procedures result in rapid recovery and low risk of complications
and may provide effective treatment [9]. In this article, we will focus on the application of focused
ultrasound surgery in uterine fibroids.

High-intensity focused ultrasound (HIFU) therapy

High-intensity focused ultrasound (HIFU) is a high-precision medical procedure for local
heating and ablation of diseased tissue. It has been widely used to treat uterine fibroids. Com-
pared to other surgical therapies, HIFU has the advantage of being non-invasive and having a low
number of complications. HIFU can be considered as a promising treatment option for women
who wish to conceive a child [13]. HIFU can be either guided by MRI (Magnetic Resonance-
guided HIFU - MRgHIFU) or ultrasound (Ultrasound-guided HIFU - USgHIFU). However, the
clinical use of MRgHIFU is limited due to the requirements of a dedicated MR device to guide
the treatment and the length of the procedure [14].
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Figure 1.3 – Algorithm for the Management of Symptomatic Uterine Fibroids. FUS denotes focused ultrasound
surgery, GnRH gonadotropin-releasing hormone, MRI magnetic resonance imaging, and UAE uterine-artery em-
bolization. Reproduced with permission from "Clinical practice. Uterine fibroids." by Stewart, Elizabeth A. 2015,
The New England journal of medicine, 372(17), 1646-1655. Copyright Massachusetts Medical Society.
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Figure 1.4 shows the treatment process of the HIFU procedure on the patient. During the
treatment, the patient is lying prone on the treatment machine. An extracorporeal focused piezo-
electric transducer converges the ultrasound energy to the target. The conversion of ultrasound
into thermal energy induces irreversible cell death by coagulation necrosis if the temperature
exceeds 56°C and is maintained for more than 2 seconds. In fact, during ultrasonic ablation
(UA), the temperature at the focal volume can rapidly exceed 80°C [15, 16].

Figure 1.4 – High-intensity focused ultrasound (HIFU) therapy for fibroid ablation.

The flowchart for treating uterine fibroids with HIFU is shown in Figure 1.5 (with a focus on
USgHIFU as an example). During the diagnostic and planning phase, the patient first undergoes
an MRI scan. On this MRI, the surgeon delineates the area of the lesion (typically the uterus
and the fibroid area). During the operation, the HIFU spot (the area to be treated) is guided by
means of a real time ultrasound. In order to transfer the area of the fibroids delineated in the
MRI to the ultrasound, the physician performs a manual registration of the preoperative MRI
image with the intraoperative ultrasound real time acquisition. This registration then allows the
guidance of the fibroid ablation in the HIFU procedure.

Figure 1.5 – The flowchart of USgHIFU for treating uterine fibroids. The figure was partly modified from Servier
Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

40



1.2. Uterine benign and malignant tumors

1.2.2 Cervical cancer and adaptive radiotherapy (ART)

Cervical cancer diagnose

Cervical cancer is the fourth most common female malignancy worldwide [17], with more
than 500,000 women diagnosed with cervical cancer each year and the disease causing more
than 300,000 deaths worldwide [18]. Most cases occur in the less developed countries where no
effective screening systems is available. Risk factors include exposure to human papillomavirus,
smoking, and immune-system dysfunction [19]. The usual tests for diagnosing cervical cancer
are: colposcopy with biopsy and large loop excision of the transformation zone (LLETZ) or cone
biopsy.

Adaptive radiotherapy (ART)

Adaptive radiation therapy (ART) is a closed-loop radiation treatment process where the
treatment plan can be modified through systematic feedback of measurements. It was first
introduced and discussed conceptually by Yan et al. in 1997 [20]. ART is mainly designed
to solve the problem of the impact of target area location and morphological changes between
radiotherapy fractions on the actual dose distribution. ART allows for high-dose, high-precision
irradiation of the tumor target area while reducing irradiation of the surrounding normal tissue
to minimize toxicity.

With the development of technology, ART has been implemented in clinical practice on many
therapeutic targets, including head-and-neck, lung, prostate, bladder and cervix. Volumetric
imaging and automated segmentation allow the calculation of daily doses so that adaptation
decisions can be made based on dosimetric information rather than geometric information alone
[21]. ART can be classified into three categories: adapt when necessary (offline ART), adapt
before or during the treatment of that day (online ART), or adapt in real time to changes and
movements (real-time ART).

In this thesis, we will focus on the treatment of cervical cancer. Hereafter, ART will refer to
offline ART, except unless otherwise noted. During ART for cervical cancer, changes in bladder
and rectal filling can affect the spatial position of the uterus and thus often lead to errors in dose
delivery. The emergence of image-guided radiotherapy (IGRT) has made it possible to visualize
the morphology of the soft tissues during ART. With this method it is possible to monitor
changes in the bladder, bowel and rectum, ensuring a high radiation dose within the target
area [22]. MR- [23] or cone-beam computed tomography(CBCT)-guided [24] ART is widely
used in the clinic. The workflow of CBCT-guided online ART delivery with daily replanning is
shown in Figure 1.6. It consists of two parts: planning and treatment. In the planning phase,
the initial radiotherapy plan is generated based on the contours of the planning CTs. In the
treatment phase,the treatment plan is constantly optimized based on information about the size
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Figure 1.6 – Workflow for cone beam computed tomography (CBCT)-guided online adaptive radiotherapy with
daily replanning for cervical cancer. Reproduced with permission from "Adaptive Radiotherapy in the Management
of Cervical Cancer: Review of Strategies and Clinical Implementation." by Shelley, C. E.,(2021). Clinical Oncology,
33(9), 579-590. Copyright Clearance Center’s RightsLink service. License number: 5318700298103.

Figure 1.7 – Flowchart of plan-of-the-day ART for cervical cancer. The process consists of three steps (1)
Planning: acquisition of multiple planning CT scans with variable bladder volumes. (2) Acquisition of the CBCT
image of the day. (3) Selection of the most appropriate treatment plan to maximize the target coverage. The CTV,
bowel sac, bladder and rectum are represented as red, green, yellow and blue filled contours. For plan-of-the-day
selection, empty bladder (EB), intermediate bladder (IB), full bladder (FB) and daily CTV are represented on
the daily CBCT as red, blue, green and yellow contours, respectively.
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and location of the tumor and organs at risks (OARs) obtained from the continuous acquisition
of online anatomical images.

In the context of offline CBCT-guided ART, plan-of-the-day (PoD) strategies have been
proposed, based on the generation of a treatment plan library, including several treatment plans
optimized based on multiple planning CTs (pCT) acquired with various bladder fillings. At each
treatment fraction, the treatment plan is then selected among those of the library ("plan-of-the-
day") based on an in-room image (e.g., CBCT image, see Figure 1.7).

1.3 Uterine imaging

Medical images are currently essential for diagnosis and in image-guided surgery. In the
treatment of uterine fibroids and cervical cancer, diagnostic images are used for the planning
of both HIFU therapy and ART. Also, both of these treatments are image-guided therapies.
Therefore, in this section we present the different types and specificities of uterine imaging.

1.3.1 Magnetic Resonance (MR) Imaging

Figure 1.8 – MRI of a case with uterine fibroids. (a) fat-suppressed T2-weighted in sagittal direction, (b)
fat-saturated T2-weighted in sagittal direction, (c) fat-saturated T2-weighted in axial direction.

MRI is the reference modality because of the high tissue spatial resolution and absence of
ionizing radiation. The different layers of the uterus are visualized distinctly. The advantage of
MRI is that it can also evaluate the adjacent anatomical structures such as the ovaries, fallopian
tubes, bladder and rectum. Compared to transvaginal ultrasound, MRI provides better soft-
tissue contrast resolution and is preferred for preoperative mapping to determine location, size,
and number of fibroids [25]. Multiple sequences in different planes are obtained. The standard
pelvic examination begins with a sagittal T2 weighted image, followed by coronal and axial views.
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It is followed by a sagittal and/or axial fat-saturated T2 weighted sequence. Other sequences
may be helpful in some cases, such as angled axis to evaluate the cervix and Mullerian duct
anomalies. An oblique plane perpendicular to the long axis of the cervix can also be useful in
staging cervical carcinoma [26].

As shown in Figure 1.8, different MR sequences have different imaging information about
the organs.

1.3.2 Ultrasound (US) imaging

Figure 1.9 – Examples of ultraound images in USgHIFU. The doctor uses Doppler to evaluate the vascularization
inside the fibroids (above). The shape of the fibroids is difficult to distinguish and only the unclear contour of the
uterus are shown (below).

Ultrasound (US) is the most common and usually the primary modality for evaluating the
uterus because to its availability and low cost [27]. US provides a good assessement of anatomy
and contour. Transvaginal images offer a better view of the endometrium and the entire my-
ometrium and are better to detect fibroids near the cervix. Transabdominal US can locate large
leiomyomas. Color Doppler can be used to evaluate the vascularity within the lesions, while
whereas leiomyomas will show an absence of flow [28].

As mentioned in Section 1.2.1 and shown in Figure 1.4 and Figure 1.5, transabdominal US
imaging is used in the USgHIFU treatment procedure. During treatment, the doctors monitor
the changes and movements of the uterus and observe the ablation of the uterine fibroids.

Figure 1.9 shows examples of US images in USgHIFU. These images are frames of the real-
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time US video. Before HIFU ablation, the doctor uses Doppler to assess the vascularity of the
fibroids (above). The shape of the fibroids is difficult to distinguish in the US image and usually
only unclear contours of the uterus can be seen (below). This is why the preoperative MRI
is important to overlay the segmented contours of the fibroids to the US images during the
treatment.

In addition, transvaginal ultrasound (TVUS) could be used for cervical cancer staging. Sev-
eral dedicated imaging centers report that the accuracy of TVUS is comparable to that of MRI
for cervical cancer staging and assessment of parametrial involvement [29, 30]. In CBCT guided
cervical cancer ART, a first finding is that the combination of CBCT and US further improves
the accuracy of the detection of the uterus [31].

1.3.3 Computerized tomography (CT) and cone-beam computed tomogra-
phy(CBCT)

Figure 1.10 – CBCT and CT images of cervical cancer in 3 different planes. Comparing the quality of CBCT
(above) and CT (below) images, CBCT images are of lower quality and have lower contrast in the soft tissues.

Computed tomography (CT) is a widely used imaging modality. CT is more cost-effective
than MRI and is more common worldwide. In cervical cancer staging, CT is used primarily to
evaluate the size of the cervix and to assess the recurrence assessment of patients. In cervical
cancer ART, planning CTs are used to allow Radiophysicist to obtain 3D images of the area
being treated in order to create individualized radiotherapy plans including dose distributions
planning, patient alignment and radiation beam optimization [32].
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Cone-beam CT (CBCT) is an effective image-guided radiotherapy (IGRT) tool for verifying
the patient position. It also allows the real-time re-evaluation of the treatment plans for adaptive
radiation therapy (ART). However, the relatively poor image quality of CBCT and the particu-
larly large variability in Hounsfield unit values (HU) pose problems for its use as a valid tool for
ART because these fluctuations in HU values can affect the accuracy of dose calculations [33].
As shown in Figure 1.10, CBCT images are of quality and have lower soft tissues contrast.

1.4 Challenges

In this Section, we focus on a review and discussion of the different image segmentation and
alignment algorithms for the treatment of uterine fibroids and cervical cancer using HIFU and
ART respectively.

Here we present the main scientific challenges, which we address in this thesis.

1.4.1 Multi-class segmentation of uterine Regions from MR images

(a) (b) (c)

(d) (e) (f)

Figure 1.11 – MR images of the uterine regions in different patients. Red indicates the fibroids,
blue the uterus, and green the spine. (a) Raw MR image of Patient 71, slice14. The labeled
images of: (b) Patient 71, slice14; (c) Patient 84 slice14; (d) Patient 93, slice12; (e) Patient 26
slice12; and (f) Patient 8, slice13. We can observe: 1) large variations in shape and size between
individuals; 2) low contrast between adjacent organs and tissues; 3) uterine fibroids that vary
greatly in numbers and shapes.

The segmentation of uterus and uterine fibroids is a prerequisite step for the planning of
a HIFU treatment. However, the segmentation of the spine is also important in order to avoid
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any injury to the spinal cord. Manual delineation of the uterus, fibroids, and spine is a tedious,
time-consuming task and is subject to intra- and inter-expert variability during both pre- and
post-treatment. Thus, an automatic and accurate segmentation method capable to extract all
these structures is of great importance.

Such an objective is challenging because of 1) the large shape and size variations
among individuals. As shown in Figure 1.11, uterine and fibroids are highly variable between
patients; 2) a poor contrast between adjacent organs and tissues. The contrast between
uterus and uterine fibroids is quite low, so the boundaries between the organs are difficult to
distinguish; 3) the number of uterine fibroids and their shapes are unknown. For
the above mentioned reasons, the existing methods dealing with uterine fibroid segmentation
are often applied after treatment, while the pre-treatment is always performed manually by an
operator to mark the uterus, fibroids and surrounding organs.

Recently, deep learning (DL) has achieved tremendous progress in medical image segmenta-
tion. These fully-supervised learning (FSL)-based methods can handle various medical images
segmentation tasks. However, the accuracy and robustness of the DL methods depend on a
large number of learning data annotated by experts. Acquiring good and accurate annotations
requires laborious work, and the results of inter-expert delineation vary.

1.4.2 Semi-supervised learning-based multi-class image segmentation

When solving segmentation problems with deep learning methods, it is often necessary to
annotate a large amount of data to satisfy the training of the neural network. However, in clinical
practice, it is difficult to obtain data due to the privacy-protective nature of medical data and the
reliance on specialist doctors for accurate annotation. In recent years, semi-supervised learning
has also been used in medical image segmentation. Semi-supervised methods require only a small
amount of data to be annotated. A small amount of annotated data is fed into the network with
a large amount of unannotated data during training. Existing semi-supervised methods that
use pseudo-labels obtained from training with unlabelled data to expand the trainable dataset
are widely used. To further promote the use of HIFU surgery in clinical practice, this paper
considers using semi-supervised methods to segment the uterine region.

However, the quality of the pseudo-label affects the accuracy of the segmentation method,
and the segmentation quality of each target on the pseudo-label varies due to the different
difficulties of the segmentation targets in the uterine region. Therefore, optimizing the quality
of pseudo-labels for multiple classes is the main challenge in this paper in segmenting uterine
images using semi-supervised segmentation.
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1.4.3 Automated segmentation for plan-of-the-day (PoD) selection in CBCT-
guided cervical cancer ART

The complex ART flowchart (as shown in Figure 1.7), including daily image observation and
analysis, can increase the workload and hinder the deployment of advanced ART strategies in
clinical routine. In the standard flowchart, the manual delineation of CBCT images for each
patient is actually impractical. And the manual selection of the PoD for each fraction relys
on the visual comparison. These time-consuming process limits rapid progress of ART. CBCT
image plays an important role in ART, it can provide the latest anatomical information about
the patient or the patient repositioning. However, the quality of CBCT images is relatively low
due to noise, artifacts and low soft tissue contrast. These challenges make manual annotation
difficult and time-consuming.

Therefore, the automatic segmentation of CBCT images and PoD selection are essential in
ART.

1.5 Thesis aims

The main aim of this thesis is to develop new methods for image-guided surgeries to treat
uterine fibroids and cervical cancer. Moreover, the proposed methods may contribute to improve
the accuracy, efficiency and robustness of these clinical procedures.

Our objective is to address the above challenges, so we list the following aims:
1) HIFU therapy: To address the segmentation problem in HIFU therapy. To facilitate the

development of HIFU therapy with automatic and accurate segmentation of the uterine region
in preoperative MR images in multiple categories. This work on segmentation in MRI will be
described in chapter 3.

2) HIFU: To solve the problem of semi-supervised segmentation in HIFU therapy. It is
difficult to obtain the large amount of annotated data required for fully supervised deep learning
methods in the field of clinical data. Therefore, investigate how semi-supervised learning can be
performed using limited annotated data. This work on segmentation in MRI will be described
in chapter 4.

2) ART: We propose an automatic workflow to select the optimal treatment plan. It relies
on a deep learning-based segmentation of the CBCT images, enabling to select the optimal
treatment plan (PoD selection) regarding the CTV coverage based on a geometrical criterion.
This contribution on segmentation in CBCT will be presented in chapter 5.
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Chapter 2

DEEP LEARNING-BASED MEDICAL

IMAGE SEGMENTATION

2.1 Overview

2.1.1 Image segmentation

In computer vision, image segmentation is the process of subdividing a digital image into
multiple sub-regions of the image. The purpose of image segmentation is to simplify or change
the image representation to make the image easier to understand and analyze. An image is a
collection of different pixel points, so image segmentation can also be seen as a grouping or
classification of these pixel points. In general, image segmentation can be divided into semantic
segmentation [1, 2] and instance segmentation [3]. The semantic segmentation assigns a class
to each pixel of the image, but objects of the same category are not distinguished. Instance
segmentation, on the other hand, only classifies specific objects. It is similar to target detection,
except that target detection outputs the bounding box and category of the target, while instance
segmentation outputs the mask and category of the target.

Symbolically, let the set R represent pixels point of the whole image. The segmentation of R

can be seen as partitioning R into N nonempty subsets 1 R1, R2, R3,..., RN according to some
uniformity predicate P (some uniformity or similarity rules related to the values of the pixel)
such as [4, 5, 6]:

N⋃
i=1

Ri = R (2.1)

Ri, i = 1, 2, . . . , N is connected (2.2)

P (Pi) = TRUE for i = 1.2 . . . N (2.3)

1. A subset Ri consists of contiguous pixel points.
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P
(
Ri ∪ Rj

)
= FALSE for i ̸= j (2.4)

where Ri and Rj are adjacent subsets and P is a uniform predicate which is true for each
subset. The first condition implies that every picture point must be in a region. This means that
the segmentation algorithm should not terminate until every point is processed. The second
condition implies that regions must be connected, i.e. composed of contiguous lattice points.
The third condition determines what kind of properties the segmented regions should have, for
example, uniform gray levels. The fourth condition expresses the maximality of each region in
the segmentation.

Numerous image segmentation methods have been proposed in the literature. In addition to
the deep learning (DL)-based methods described in detail in 2.2.1, the other techniques are as
follows:

1. Thresholding [7, 8, 9]: Thresholding is one of the most widely used and simplest image
segmentation methods. Based on the pixel intensity of the original image, we set a thresh-
old value to select the region of interest in one image. In thresholding setting process,
we can choose a appropriate threshold by considering the feature histogram of the im-
age to be segmented. In particular, feature histograms can include: grayscale histograms,
gradient histograms, texture histograms, etc.

2. Region-growing[10, 11, 12, 13, 14]: The main idea of region-growing is to merge adjacent
pixel points with similar properties. For each region, a seed point is assigned as the
starting point for growth, then the pixel points in the field around the seed point are
compared with the seed point, and the points with similar properties are merged together
and continue to grow outward until no pixels satisfying the conditions are included.

3. Clustering [15, 16]: Clustering is the process of finding different groups in the feature
space, where the pixels in each group are more closely related to each other than the
pixels that are assigned to different groups. The general steps of the clustering method
are: 1) initialize a coarse cluster; 2) cluster pixel points with similar features to the same
superpixel in an iterative manner until convergence to obtain the final segmentation.
The clustering-based segmentation methods are: K-means segmentation, Fuzzy C-means
clustering, mountain clustering method and substractive clustering method [15].

4. Watershed methods [17, 18, 19]: The concept of a watershed comes from a topograph-
ical analogy. Think of an image as a representation of three-dimensional(3D) topography:
a two-dimensional (2D) land base (image space) and the third dimension of height (image
grayscale). We can represent areas of high-intensity as peaks and areas of low-intensity as
valleys. To separate the objects in the image, we will fill each valley with water of different
colors. Slowly, the water will rise to a point where the water from the different valleys
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begins to merge. At this point, we build barriers on the tops of the mountains to prevent
them from being flooded with water. These barriers are the segmentation boundaries.

5. Active contours[20, 21]: The main principle of the active contour model is to build
curves that fit the edges of the objects with a minimum of energy. This minimization
allows to find a compromise between the attachment to the data (attraction towards
the edges) and the complexity of the curve (torsion, ...). The contour curve gradually
approaches the edge of the object to be detected and finally segments the target.

6. Graph cuts[22, 23]: The graph cut is an optimization method for energy functions.
Representing an image as an undirected graph, the pixel points in the graph are the
vertices of the graph, and the connection of every two four-neighborhood vertices is
an edge (called n-links). Two terminal vertices (foreground target and background) are
connected to the vertices representing each pixel and form edges (called t-links). Each
edge has a cost, and a cost function is defined such that the sum of the costs of a cut (a
subset of the set of edges) is minimized, which is the result of the graph cut. Common
algorithms are: Normalized cuts segmentation [24] and MRFs (Markov Random Fields)
graph cuts segmentation [25].

2.2 Deep Learning-based medical image segmentation

Medical images share the basic image properties with natural images, so some of the seg-
mentation methods mentioned in section 2.1 can be applied to medical images. For example:
image segmentation using thresholding [26], region-growing [27], k-means [28], watershed [29].
Pham et al. summarized the conventional methods of medical images segmentation.

However, some differences between natural and medical images make some of the methods
that work well on the former, fail when applied to the latter. These differences are in the following
aspects:

1. Medical images have non-uniform noise distributions and artifacts due to the single light
source and the thickness of the body. On the other hand, the noise distribution in natural
images approximates Gaussian noise because the light field distribution can be considered
as uniform.

2. Medical images have many forms of information, such as 2D grayscale, 2D with 4 channels,
3D volumes and even 4D. They also have spatial resolution, scan parameters, field of view
(FOV), and other information. Natural images are generally 2D RGB images.

3. Medical images have multi-modal and multi-view information. These are not available in
natural images.

4. Medical images are more difficult to acquire (from patients) and more challenging to
delineate due to the need of medical expertise.
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5. Medical images analysis requires greater details. For example, for lung nodules detection,
the target lesion area is tiny compared to the background, so it is challenging to accurately
detect the location of lung nodules.

In the past decade, the development of DL has led to advances and great success in medical
image processing [30]. Since DL-based image segmentation methods can automatically extract a
huge number of meaningful features from the characteristics of the data itself, DL methods are
simpler and more adaptable to process medical images of different modalities than traditional
methods designed to deal with morphological features or intensity information.

2.2.1 Fully-, semi- and self-supervised learning

With the development of DL, which has played a considerable role in advancing the field of
image processing, heavy reliance on large amounts of labeled data has frustrated some image
tasks. Therefore, gradually reducing the reliance on annotated datasets, including the need for
large data volumes and fine-grained annotations, has become a hot concern in the industry. DL
has gradually evolved from traditional fully supervised learning to semi-(weakly-)supervised,
self-supervised learning.

In fully supervised learning, a large amount of labeled data is needed to train the model, and
the model’s prediction and the data’s annotation generate losses followed by backpropagation
(calculating gradients, updating parameters). The above process is repeated until the model
obtains the expected learning capability.

Semi-supervised learning [31, 32] attempts to learn from both unlabeled and labeled samples,
usually assuming sampling from the same or similar distributions. Weakly supervised learning
[33] includes incomplete supervision (only some of the labels are given), inexact supervision (the
labels of the training data are coarse-grained), and inaccurate supervision (the labels given are
not always correct). Semi-supervised learning belongs to incomplete supervision. In this paper,
we focus on semi-supervised learning.

Self-supervised learning [34] constructs semantically meaningful image representations by
using a pretext task that does not require semantic annotation. The pretext task is typically
performed by transforming the input image and requiring the learner to predict the properties
of the transformation from the transformed image.

2.2.2 Fully-supervised learning (FSL) for medical image segmentation and
limitations

Convolutional neural networks (CNNs) are the most widely used architectures for processing
medical images. They are composed of convolutional layers, pooling layers, normalization layers
and fully connected layers. Hesamian et al. [35] summarized the popular DL techniques for
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medical image segmentation and categorized the approaches in the following aspects:

1. CNN: 2D CNN refer to CNN networks that accept input images in the form of 2D
images. Zhang et al. [36] used a deep 2D CNN to segment infant brain tissue from input
T1, T2 and fractional anisotropy (FA) images. Furthermore, in order to extract more
spatial information, some methods [37, 38] developed 2.5D CNNs that feed the network
with orthogonal 2D patches of XY,YZ,XZ planes. Then, the convolutional kernel was
extended from 2D to 3D thanks to the improvement of the hardware and allowed to get
better performance than 2.5D CNN. The 3D CNN can now support 3D patches of the
data with the original spatial information. Urban et al. [39] proposed a 3D CNN model
to segment the brain tumor.

2. Fully convolutional network (FCN): FCN replaces the classical last fully connected
layer with a fully convolutional layer to get a dense pixel-wise prediction. Nie et al.
[40] proposed multi-FCNs to segment isointense-phase brain images from three modality
images (T1, T2 and FA).

3. U-Net: U-Net was first proposed by Ronneberger et al. [41] in 2015 to segment 2D
biomedical image and then it has been widely used in medical image segmentation with
success. Its shape is like U-shape with a symmetrical encoder-decoder architecture. Based
on the U-Net, other modified methods are developed to solve more medical image tasks,
such as: V-Net [42], 3D U-Net [43], UNet++[44].

4. Convolutional Residual Networks (CRNs): Based on the residual block in ResNet
[45], 2D CRNS [46] and 3D CRNs [47] are proposed to successfully improve the segmen-
tation accuracy in medical images.

5. Recurrent Neural Networks (RNNs): The recurrent neural block is designed to
extract contextual information from sequential data. But it can also be applied to volu-
metric medical images to memorize inter-slice spatial information across adjacent slices.
The most popular type is the long short-term memory (LSTM)-based CNN [48].

Fully supervised segmentation methods achieve significant performance in medical images. How-
ever, fully supervised segmentation methods also face challenges and limitations. These methods
rely on a huge number of annotated data. While in the medical field, the clinical data should be
collected from the patients, and the annotation process is tedious and time-consuming with the
involvement of medical experts.

2.2.3 Semi-supervised and self-supervised learning (S4L) for medical image
segmentation and limitations

In traditional FSL methods, the training of the model relies on a large amount of highly
accurate labeled data. The emergence of S4L gets rid of the reliance on large amounts of labeled
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data. Therefore, the S4L approach is closer to the real-world application.
In semi-supervised learning methods, the main idea is to improve the model performance by

training the labeled data and then using the unlabeled data as constraints. The algorithms can
be divided into the 4 following categories:

1. Graph-based methods: The graph has convexity, scalability and effectiveness in mod-
eling relationships between different entities [49]. Kipf et al. [50] presented an approach
using the graph topology and the nodes side information for semi-supervised classifica-
tion.

2. Generative Adversarial Nets (GAN)-based methods: GAN-based semi-supervised
learning methods can generate a perfect discriminator by learning imperfect generators
on labeled and unlabeled data. Hung et al. [51] applied adversarial learning for semi-
supervised semantic segmentation by combining two semi-supervised loss terms to lever-
age the unlabeled data.

3. Self-training or co-training: Self-training or co-training is a proxy label method that
produces proxy labels on unlabeled data without supervision. Self-training methods use
labeled data to pre-train a model and then predict the pseudo-labels on unlabeled data.
Yalniz et al. [52] trained a teacher-student model to exploit the large-scale unlabeled
data and achieved a 4.8% accuracy improvement compared to ResNet-50. Co-training
was originally proposed to describe a model in which unlabeled data is used to augment
labeled data based on two views of an example [53]. Inspired by this model, Qiao et
al. [54] extended co-training to deep co-training for semi-supervised image recognition.
Especially, adversarial examples are used in different views to prevent a model from
collapsing.

4. Consistency training: Consistency regularization allows to obtain similar output re-
sults for the same input with different data enhancements or networks. Π-Model and tem-
poral ensembling [55] are typical implementations of consistency regularization. However,
temporal ensembling reaches its limits for large datasets because each target is updated
once per epoch. Tarvainen et al. [56] overcame the problem by averaging model weights
instead of predictions. The method is called Mean Teacher, which includes two networks:
the teacher network and the student network. The two networks have the same struc-
ture but are updated in different ways. The student network updates parameters by
back-propagating gradient descent and the teacher network updating parameters by ex-
ponential moving average (EMA) of the student network parameters. Compared with
the temporal ensembling, Mean Teacher can update the moving average of the network
parameters once per backpropagation, which is more efficient. Ouali et al. [57] proposed
a cross-consistency training (CCT) network, in which predictions invariance is enforced
over different perturbations applied to the encoder outputs. Besides, the adoption of ad-
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versarial learning can enforce the segmentation distributions of unannotated images to
be similar to those of the annotated images.

Semi-supervised learning approaches have been widely applied in medical image segmentation
tasks. Nie et al. [58] employed an adversarial network named ASDNet to produce unannotated
high-confidence data to train the segmentation network. Li et al. [59] used transformation con-
sistency learning to do the semi-supervised skin lesion segmentation and got a new record on
the ISIC2017 skin lesion segmentation challenge. Bai et al. [60] proposed an semi-supervised
learning framework in which the pseudo labels of the unlabeled data were obtained by non-rigid
image registration in the cardiac cycle. This method was evaluated on a short-axis cardiac MR
image dataset and obtained mean Dice values of 0.92, 0.85, and 0.89 for the left ventricular
(LV) cavity, LV myocardium, and right ventricular (RV) cavity, respectively. Similarly, Ito et
al. [61] also used the registration-based semi-supervised learning method to achieve brain tis-
sue segmentation and evaluated it on human and marmoset brain image datasets to show the
effectiveness of the method.

Self-supervised learning is a recent training paradigm that does not require labeled data.
Specifically, it involves extracting supervised information from unlabeled data and thus learning
robust data representations. This can be considered as an effective approach to solve the problem
of sparse annotated medical data. In self-supervised learning, two tasks need to be defined. One
is the pretext task, which is used to perform useful feature learning from unlabeled data. The
second, called the down-stream task, is used to transfer and fine-tune the concepts learned in the
pretext task to achieve the final task goal. Shurrab et al. [62] reviewed and analysed the recent
self-supervised medical image analysis methods.They classified self-supervised learning pretext
tasks into three categories, predictive, generative, and contrastive.

The predictive pretext task learns latent features in the input data by treating the pretext
task as a classification problem. Taleb et al. [63] used Jigsaw puzzle as the pretext method.
Specifically, they introduced a multimodal puzzle task, which is beneficial for learning rich
representations from multiple image modalities. The final down-stream tasks include brain tumor
segmentation and prostate segmentation, as well as liver segmentation using unregistered CT
and MRI modalities, demonstrating the effectiveness of the method.

The generative pretext task aims to learn latent features throughout the reconstruction pro-
cess. Hervella et al. [64] proposed the use of the multimodal reconstruction between retinography
and fluorescein angiography as a common self-supervised pre-training task. After fine-tuning of
the pre-trained network, the self-learning model can address the localization and segmentation
of the main anatomical structures of the eye fundus.

The contrastive task is one of the most popular scheme recently in self-supervised learning for
its comparable to supervised learning methods. It aims to develop robust representations from
the input data. The model maximizes the consistency between different transformed views of
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the same image while minimizing the consistency between transformed views of different images,
thereby acquiring general representations. MoCo [65]and SimCLR [66] are two widely used con-
strastive learning approaches and also have also been shown to achieve significant performance
in self-learning medical image analysis tasks [67, 68]. MoCO is mainly used in classification tasks.
SimCLR can support the transfer to different down-stream tasks due to its simple but effective
design. In medical image segmentation, Chaitanya et al. [69] improved the SimCLR by using
new contrastive strategy and contrastive loss to learn distinctive representations of local regions
that are useful for per-pixel segmentation. The experimental evaluation was performed on the
cardiac and prostate segmentation tasks.

S4L methods have achieved segmentation performance comparable to FSL segmentation
methods, although they are free to some extent from strong data dependence. However, they
still face some challenges and limitations.

In semi-supervised learning method, semi-supervised learning relies on labeled data distri-
bution features. For multi-center medical image data, the unlabeled data maybe misaligned
with the labeled data, the semi-supervised learning segmentation method maybe not robust
and generalized enough. Besides, in the process of pseudo-labels generation, the quality of the
pseudo-labels will affect the optimization of the model when it is updated. In the existing meth-
ods, the generation of pseudo-labels relies on time-consuming artificial offline selection, usually
based on experience or after experiments on a small validation set. Then a threshold is set to
generate a credible confidence map. Therefore, an adaptive threshold strategy needs to be devel-
oped for an automatic adaptation to different semi-supervised data distributions. This should
help to improve the generalization and robustness of the semi-supervised methods.

In terms of self-supervised learning, there are few studies focusing on embedding medical
knowledge into pretext tasks. If prior medical knowledge can be taken into account in the design
of pretext tasks, the model can be closer to the down-stream task. In addition, studying how
to combine transfer learning with self-supervised learning can help to get better results when
transferring data representations to down-stream tasks.

2.3 Conclusion

This chapter introduces the basic concepts of image segmentation and related algorithms.
Traditional image segmentation methods are first investigated, followed by a description of recent
deep learning-based medical image segmentation algorithms of fully supervised and semi-(self-)
supervised, and an analysis and summary of the current drawbacks and limitations of each type
of segmentation algorithm.
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Chapter 3

HIFUNET: MULTI-CLASS

SEGMENTATION OF UTERINE REGIONS

FROM MR IMAGES USING GLOBAL

CONVOLUTIONAL NETWORKS FOR HIFU
SURGERY PLANNING

3.1 Introduction

Uterine fibroids are benign tumors, common and present in up to 25% of women [1]. High
intensity focused ultrasound (HIFU) is a new noninvasive surgery method for treating uterine
fibroids. Magnetic Resonance (MR) image is clinically used for their diagnosis and the guidance
of the HIFU procedure. The segmentation of uterus and uterine fibroids is a prerequisite step
for the planning of HIFU treatment. However, the segmentation of the spine is also important
in order to avoid any injury to the spinal cord. Manual delineation of the uterus, fibroids, and
spine is a time-consuming, tedious task and subject to intra-expert and inter-expert variability
during both pre- and post- treatment. Thus, an automatic and accurate segmentation method
capable to extract all these structures is of great importance.

Such an objective is challenging because of 1) large shape and size variations among
individuals. As it is shown in Figure 3.1, uterine and fibroids are highly variable in different
patients; 2) a low contrast between adjacent organs and tissues. The contrast among
uterus and uterine fibroids is quite low, so the boundaries between organs are difficult to distin-
guish; 3) the number of uterine fibroids and their shapes are unknown. These issues
are illustrated in Figure 3.1. Due to the above reasons, the existing methods dealing with uterine
fibroid segmentation are often applied after treatment, while the pre-treatment is still performed
manually by an operator to mark uterus, fibroids and surrounding organs. Therefore, in order
to facilitate the development of a treatment plan, a preoperative segmentation is required.

In recent years, deep learning (DL) methods have been widely used in medical image seg-
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(a) (b) (c)

(d) (e) (f)

Figure 3.1 – MR images of uterus regions in different patients. Red denotes the fibroids, blue the
uterus, and green the spine. (a) Patient 71 slice14 of raw MR image. (b-f) The labeled images
of Patient 71 slice14, Patient 84 slice14, Patient 93 slice12, Patient 26 slice12, Patient 8 slice13.
We can observe 1) large shape and size variations among individuals; 2) a low contrast between
adjacent organs and tissues; 3) highly variable uterine fibroids numbers and shapes.

mentation [2, 3]. However, they have to face the overall complexity of the scenes under study.
We propose here to derive comprehensive anatomical information through a global convolutional
network (GCN) module based on a large valid receptive field and deep multiple atrous convo-
lutions (DMAC) for hierarchically structuring the information. By doing so, the performance in
locating and classifying the structures of interest can be improved.

Such semantic segmentation can be built upon the Encoder-Decoder architecture already
widely utilized. Inspired by Fully Convolutional Network (FCN) [4] which was initially designed
for image classification, U-Net was proposed for medical image segmentation by Ronneberger
et al. [5] where the pooling operators in FCN are replaced by upsampling operators so that the
output resolution can be retained at the same size as the input. The state-of-the-art results of
U-Net in segmenting medical images, especially with small training dataset, show a promising
ability of this Encoder-Decoder architecture. Basically, the Encoder aims to capture features and
reduce the spatial dimensions while the Decoder aims to recover the object details and spatial
dimension. Therefore, in order to improve the performance of image segmentation, more high-
level features need to be automatically captured in the encoder and more spatial information
can be saved in the decoder.

The U-Net was later extended in order to tackle different problems. Cicek et al. [6] modified
the initial U-Net architecture by replacing all 2D operations with their 3D counterparts. Milletari
et al. [7] presented a novel 3D segmentation approach (called V-Net) that leverages the power
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of a fully convolutional neural network based on the Dice coefficient for processing volumetric
medical images such as MR images. In addition, in contrast with 3D U-Net, the V-net formulates
each stage by using a residual function which can accelerate the convergence rate. Many other U-
Net based segmentation schemes have been further reported for retinal vessels, liver and tumors
in CT scans, ischemic stroke lesion, intervertebral disc and pancreas [8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18].

The U-Net shows a good segmentation performance with the usage of skip connections which
can concatenate two feature maps of the same size in the corresponding parts of the encoder and
decoder. The concatenated feature maps contain the information from both high and low levels,
thus achieving feature fusion under different scales to improve the accuracy of model results.
Even so, the complex anatomical scene involved in our HIFU therapy application remains a
challenge. Large valid receptive fields play an important role in global scene observation. Global
convolutional network [19] enables dense connections within a large region by using spatial
decomposed convolution with a large kernel. It can capture multi-scale context cues with less
computational cost than a general convolution with a large kernel. Therefore, we introduce layer-
by-layer the GCN which has an efficient kernel parameter number to enlarge the receptive field
in our Encoder-Decoder architecture.

In addition, getting the hierarchical structural information can help to provide more contex-
tual information at various levels by using atrous convolutions. The key element of this method
is to insert holes into the convolution kernels, which allows preserving the resolution and enlarg-
ing the receptive field. Recently, atrous convolution has been widely used in many deep learning
architectures. DeepLab [20], based on FCN and atrous convolutions, maintains the receptive
field unchanged. Besides, in order to get a better object segmentation at multiple scales, in
DeepLabV2 [21], Chen et al. proposed a module called atrous spatial pyramid pooling (ASPP)
which uses multiple parallel atrous convolutional layers with different sampling rates. The use
of atrous convolutions preserves the spatial resolution of the final map and thus leads to higher
performance when compared to most methods in Encoder-Decoder schemes. DeepLabV3+ [22]
combines the advantages of Xception [23] and Encoder-Decoder, which employs DeepLabV3 [24]
as the encoder.

However, the uncertainty regarding the location, the numbers and the sizes of uterine fibroids
leads to an increase of complexity for segmentation and many existing deep learning segmenta-
tion models lack using features from different levels efficiently. Subsequently, in some cases, the
targets can be segmented incorrectly. More effective feature extraction approaches are required
for uterine fibroid segmentation.

Motivated by the above discussions and ResNet [25] structures, we propose a novel net-
work named HIFUNet to segment uterus, uterine fibroids and spine automatically. The main
contributions of the method can be summarized as follows:
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1. To address the segmentation errors (i.e., classifying uterine neck as uterine fibroid because
of insufficient receptive field), we introduce a global convolutional network module able
to enlarge the receptive field effectively.

2. We integrate the global convolutional network and deep multiple atrous convolutions to
further extract context-based semantic information and generate more abstract features
for large scaled uterine fibroids.

3. The proposed HIFUNet behaves similarly to clinical experts and, as it will be shown
through a large number of experiments, performs better than many existing semantic
segmentation networks.

4. The segmentation of the uterus and uterine fibroids is, to the best of our knowledge, the
first methodological attempt using convolutional neural networks in HIFU therapy. The
inclusion of the spine segmentation, a critical organ in HIFU therapy, is another major
feature of our approach.

3.2 Related Work

We sketch here the conventional methods proposed so far for segmenting the uterus and
uterine fibroids and we review the state-of-the-art MR image segmentation methods based on
CNN architectures.

3.2.1 Conventional Methods of Uterus and Uterine Fibroid Segmentation

Very few contributions have been reported for segmenting uterus and uterine fibroids from
MR images. The main methods are summarized below:

Approaches based on level-set: Ben-Zadok et al. [26] presented an interactive level set seg-
mentation framework that allows user feedback. It is a semi-automatic method where the users
have to select seed-points. Khotanlou et al. [27] proposed a two-stage method combining the
region-based level set [28] and the hybrid Bresson methods [29]. Yao et al. [30] employed a
method based on a combination of fast marching level-set and Laplacian level set.

Approaches based on Fuzzy C-Means (FCM): Fallahi et al. [31] segmented the uterine fibroids
by combining a fuzzy C-means method with some morphological operations. Later, on the basis
of [31], a two-step method [32] was proposed by employing a Modified Possibilistic Fuzzy C-
Means (MPFCM) [33] in a second step.

Approaches based on region-growing: Militello et al. [34] used a semi-automatic approach
based on region-growing and reported a quantitative and qualitative evaluation of the HIFU
treatment by providing the 3D model of the fibroid area. Rundo et al. [35] presented a two-
phase method where the first phase is an automatic seed-region selection and region detection
while the second one is aimed at uterine fibroid segmentation.
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Other mixed methods: Antila et al. [36] designed an automatic segmentation pipeline without
user input. They applied the active shape model (ASM) to get the deformed surface, and clas-
sified PV (perfused volume: the untreated tissue) and NPV (nonperfused volume: the treated
tissue) by an expectation maximization (EM) algorithm. Militello et al. [37] proposed a novel
fully automatic method based on the unsupervised Fuzzy C-Means clustering and iterative op-
timal threshold selection algorithms for uterus and fibroid segmentation.

Recently, Rundo et al. [38] evaluated the above mentioned two computer-assisted segmen-
tation methods [37, 35] and provided a quantitative comparison on segmentation accuracy in
terms of area-based and distance-based metrics. Their results show that both methods remark-
ably outperform the other ones.

However, there are still some limitations and drawbacks in the conventional methods and a
fully-automatic and accurate method, able to reduce or even to remove pre-processing/ post-
processing procedures as well as the interventions of the medical physicists, is still expected.
For this purpose, a detailed comparison between the methods reported in [35] and [37] and our
method will be shown in Section 3.4.4.

3.2.2 Deep Learning Methods of MR Image Segmentation

Only a few attempts have been reported for the uterus segmentation using CNN-based meth-
ods. Kurata et al. [39, 40] evaluated the clinical feasibility of fully automatic uterine segmentation
on T2-weighted MR images based on an optimized U-Net. The segmentation of uterus in this
research was focused on the staging of uterine endometrial cancer and on estimating the ex-
tent of tumor invasion to the uterine myometrium. To the best of our knowledge, there is no
literature published on the uterine fibroid segmentation using CNN-based methods. Even so, it
is important to highlight that many innovative deep learning methods have been proposed for
MR image processing [41, 42]. The most common applications concern segmentation of organs,
substructures, or lesions, often as a preprocessing step for feature extraction and classification.
Deep learning methods for MR image segmentation can be divided into two different categories.

DL based on image patches: Features are extracted from a local patch for every voxel using
convolutional layers. These features are then classified with a fully connected neural network to
obtain a label for every voxel. This method is for instance widely used in brain tumor [43], white
matter segmentation in multiple sclerosis patients [44], normal components of brain anatomy
[45] and rectal cancer segmentation [46]. However, such methods have some disadvantages. The
main problem is that their computational efficiency is very low because they have to process
overlapping parts of the image. Another disadvantage is that each voxel is segmented based on a
finite size context window, ignoring the broader context. In some cases, more global information
may be needed to properly assign these labels to pixels or voxels.

Fully convolutional neural network (FCNN): In this case, the entire image or a large portion
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is processed, the output being a segmentation result instead of a label of a single pixel or voxel.
Such an approach solves the shortcomings of the former method and improves the efficiency of the
algorithm. Many architectures can be considered for segmentation among which, as mentioned
in Section 3.1, encoder-decoder ones such as U-Net and its modified versions [8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18]. For MR images, we refer to [41] for a full survey. Zhang et al. [47] used
CNN for segmenting the infant brain tissues by combining T1, T2, and FA images into white
matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Brain tumor segmentation was
addressed in [48]. Avendi et al. [49] associated DL algorithms with deformable models for the
left ventricle segmentation of the heart. Milletari et al. [7] proposed a 3D image segmentation
based on a volumetric, fully convolutional, neural network. Their CNN was trained end-to-end
on MR image volumes depicting the prostate and learned to predict segmentation for the whole
volume at once. Some universal architectures were also proposed (for instance CE-Net by Gu et
al. [50]) to address different clinical applications.

However, our target presents significant differences with these examples (i.e. brain, prostate,
and heart). The deformation of the uterus shape is very large among the patients. The uterus
position is also varying a lot. The high number of surrounding organs together with their sim-
ilarity in tissue features makes more challenging the segmentation. In addition, different kinds
of uterine fibroids (such as subseries fibroids, submucosal fibroids, intramural uterine fibroid
tumors, pedunculated leiomyomas, and parasitic uterine fibroids) may be located in different
regions of the uterus, and the gray level of these fibroids are affected by the signal intensity and
other experimental factors. All these considerations have guided the design of our approach.

3.3 Method

To accurately segment the uterus, uterine fibroids and spine from the raw MR images,
we propose an Encoder-Decoder global convolutional network scheme. The whole pipeline is
illustrated in Figure 3.2. This network (called HIFUNet) consists of three major parts: the feature
encoder module (based on a pre-trained ResNet101 backbone), the feature extractor part (with
the global convolution network and deep multiple atrous convolutions) and the feature decoder
module.

3.3.1 Encoder Module

The encoder part uses pre-trained ResNet-101 [25]. In [51], the authors demonstrated that
the use of residual connections promotes information propagation both forward and backward, so
it helps to improve significantly both the training speed and the performance. Because we have
only one channel in our raw 2D input image (instead of RGB channels like in natural images),
we change the original first portion which forms three input channels to one channel and we
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Figure 3.2 – The architecture of our proposal network (HIFUNet). The network consists ofa
Resnet101 backbone as Encoder Module; GCN module and DMAC module as feature extractor
par; and upsampling layers, concatenation layers, and an output layer as part of the feature
decoder module. The parameters and sizes of output features in different layers are presented in
different colors.

obtain 64 channels after the first ‘Conv1’. Then, four feature extracting blocks are employed.
The first, second, third, and fourth stages contain 3, 4, 23, and 3 bottlenecks respectively and
each block has no average pooling layer or fully connected layers.

3.3.2 Global Convolution Network

The current trend in architecture design goes toward stacking small convolution kernels
because this option is more efficient than using a large convolution kernel with the same amount
of computation. However, considering that semantic segmentation tasks require pixel-by-pixel
segmentation prediction, Peng et al. [19] proposed a global convolutional network to improve the
accuracy of classification and localization simultaneously. In GCN, a fully-convolutional layer
is adopted to replace the global pooling layer in order to keep the localization information.
Besides, large kernels are introduced to increase the valid receptive field (VRF). However, using
a large kernel or a global convolution directly is inefficient. To further improve the computational
efficiency, GCN uses a combination of two large 1D convolutional kernels to replace a single 2D
kernel for the skip-connector layer. The architecture of GCN is shown in Figure 3.3. The kernel
size we use in our segmentation approach is 11 × 11.
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Figure 3.3 – Global Convolutional Network

3.3.3 Deep Multiple Atrous Convolutions

Atrous convolutions solve the problem of reduced resolution caused by the Deep Convolu-
tional Neural Networks (DCNNs) while adjusting the receptive field of the filter. Figure 3.4
illustrates the atrous convolution. The main idea of atrous dilation rate convolution is to insert
’holes’ (zeros) between pixels in convolutional kernels to increase the image resolution, enabling
thus dense feature extraction in DCNNs. The atrous convolution was initially proposed to ef-
ficiently compute the undecimated wavelet transform [52] and the wavelet decomposition [53]
in the atrous scheme. In recent years, atrous convolution has been widely used in tasks such
as semantic segmentation and object detection. The Deeplab series [20, 21, 22, 24] and dense
upsampling convolution (DUC) [54] made thorough studies of atrous convolution. Figure 3.5
shows our proposed deep multiple atrous convolution scheme to achieve multi-scale representa-
tions. We implement five convolutional layers with 3 × 3 kernels with different sampling rates to
extract the different features. Finally, we fuse all features with the input image to generate the
final result.
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image-based methods rely on information from the segmenting
images, rather than the training data.

Based on cardiac motion, the image-based methods can
compensate the lack of a priori knowledge. One clear advan-
tage is that they do not depend on a training set. Another
advantage is that images are segmented over full cardiac cycle
[8]. In the Right Ventricle Segmentation Challenge, an image-
based method (termed NTUST) won the second place [16].
An image-based segmentation method termed BIT-UPM could
trace a contour inside right ventricle within four or five 2D
slices of the end-diastole phase [8], [29].

Compared with the other approaches, the pixel classification
method does not require the expertise of cardiac structures,
pre-trained statistical shape models or gray-level appearance
models. A pixel classification method based on random forest
was applied to optimize right ventricle segmentation perfor-
mance [17]. Based on a three-layer neural network, the ven-
tricle structure could be segmented and quantitative analysed
in 4-D cardiac MRI [18]. However, the conventional pixel
classification methods were shallow models which do not have
enough depth to model complex right ventricle structure. As
a result, the performance of the existing pixel classification
methods was poor.

Recently, deep networks were applied for biomedical image
processing tasks as well as cardiac right ventricle segmentation
[6], [21], [22]. The deep network for segmentation could be
considered as a new type of pixel classification method which
outperformed many conventional methods in right ventricle
segmentation [6], [7], [26]. However, the performance of the
existing deep networks was still below expert-level [8]. To
our knowledge, the main reason was that the features of right
ventricle were not fully exploited for segmentation. Therefore,
we propose a novel deep network to extract and aggregate
multi-scale features of right ventricle for segmentation.

III. PROPOSEDMETHOD

In the past few years, deep learning approaches have
achieved significant success in many areas [20]. With deeper
structure, the deep networks like FCN and U-net are able
to learn more complex features and outperform conventional
models in cardiac ventricle segmentation [6], [21], [22]. In
this section, we propose a novel deep network to extract and
aggregate multi-scale features of right ventricle, and further
improve the performance of right ventricle segmentation.

A. Multi-scale Feature and Dilated Convolution

In each convolutional layer of deep network, the size of
convolutional kernel determines the size of its receptive field,
i.e. the scale of the learned feature [30]. For example, small
convolutional kernels (e.g.1×1 and3×3) were used to learn
small-scale features [31] while the large kernels (e.g.7 × 7,
11×11 or larger) were used to obtain large-scale features in the
deep networks like GoogleNet and Overfeat [32], [33]. With
different sizes of convolutional kernels, features in different
scales, i.e. multi-scale features, can be obtained. According
to the prior studies [34], [35], multi-scale features are sig-
nificant for improving the segmentation performance of deep

networks. However, using large convolutional kernels to obtain
large-scale features will dramatically increase the number of
parameters and computational costs which easily leads to over-
fitting problem on a small dataset like the benchmark RVSC
database.

In previous studies [34], [36], two approaches were conduct-
ed to deal with the conflicting demands of large-scale features
and computational cost. One approach was to use stacked con-
volutional layers with small kernels that large-scale features
could be obtained [36]. Another approach was to apply dilated
convolution. Dilated convolution is a special convolutional
operation which is able to obtain large-scale features without
increasing too many parameters and computational cost [34].
In practice, features in different scales can be obtained by
dilated convolution in different dilation rates. In this paper, we
propose a novel network with dilated convolutional layers in
different dilation rates which can extract and aggregate multi-
scale features for right ventricle segmentation.

B. Dilated-Inception Net

Developed from discrete dilated convolution [37], standard
dilated convolution is defined as

G (p) =
∑

s+lt=p
F (s)k (t) (1)

whereG : Z2 → R is a discrete function which denotes the
output of dilated convolution,p is an element inG, F : Z2 →
R is a discrete function which denotes the input of dilated
convolution,Ωr = [−r, r]2 ∩ Z2 and k : Ωr → R denotes a
convolutional kernel of size(2r+1)2, l is the dilation rate of
convolution.

Dilation rate = 4Dilation rate = 2Dilation rate = 1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0
0 0

0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0
0 0

0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0

0 0
0 0
0 0

0 0

0 0
0 0

0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

Fig. 2. Dilated convolution with3 × 3 kernel (blue blocks) in 1, 2 or 4
dilation rate.

In Fig. 2, three examples of dilated convolutions with
3 × 3 kernel in different dilation rates are presented. The
feature scale of each convolutional kernel is(2l + 1)2 that
l is the dilation rate of this kernel. Dilated convolution is
able to dramatically expand receptive fields without losing
resolution or coverage [34]. With dilated convolutions in
different dilation rates, receptive fields in different sizes can
be obtained that multi-scale features are extracted. In the
previous study [32], the Inception structure was proposed that
different features were combined by a concatenation layer for
further processing. The Inception structure and its variants
played important roles in improving the performance of deep
networks [38]. Therefore, based on the dilated convolution
and the Inception structure, we propose a Dilated-Inception
Block (DIB). The DIB is able to combine multiple dilated

Figure 3.4 – Atrous convolutions with 3 × 3 kernel (blue blocks) and rates 1, 2 or 4.
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Figure 3.5 – Deep multiple atrous convolutions (DMAC) consist of five atrous convolutional
layers.

When compared to the conventional network structure, our deep multiple atrous convolutions
can extract multiple features and provide receptive fields of multiple sizes. It can be noticed
that the architecture of our atrous convolution scheme adopts a serial frame instead of a parallel
structure such as Inception and Atrous Spatial Pyramid Pooling (ASPP). We employ the DMAC
block in the final layer of the encoder and this way more abstract information can be exploited.
Within the DMAC block, as the layer is deeper, the dilation rate is getting larger. Because of
the kernel discontinuity, not all pixels are used for calculation, so more atrous rate convolutions
can compensate for the uncalculated information in the serial structure, which can increase the
receptive field effectively. Besides, different sizes of atrous rates can help to extract different
sized targets (from small fibroids to large organs like uterus or spine). The serial structure can
get global distribution information from various scales of atrous convolution. The final step sums
up as the output the abstract information extracted from the multiple layers. This output is
then sent to the decoder phase in order to recover the object details and spatial dimensions.
Therefore, in order to improve the performance of image segmentation, more low and high-level
features are automatically captured in the encoder.

3.3.4 Decoder Module

The decoder module mainly uses the concatenation operation to fuse the multi-scale features.
U-Net concatenates the downsampling feature maps with the corresponding upsampling feature
maps. Here, this concatenation is performed between two neighboring feature maps after the
GCN modules and this from the bottom to the top. After four concatenation operations, the
image scale increases from 1/32 to 1/2 of the input image size. Then, we use a deconvolution
operation to enlarge the image scale to the initial size and to restore features with more detailed
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information. Finally, the output mask is obtained after applying two convolution operations and
softmax. As illustrated in Figure 3.2, the decoder module mainly includes four concatenation
operations (a 1 × 1 convolution, a 4 × 4 transposed convolution, and two 3 × 3 convolutions
consecutively). Then, the feature decoder module outputs a mask with the same size as the
original input.

3.3.5 Loss Function

The HIFUNet can be trained by minimizing the cross-entropy error between its prediction
result and the ground-truth. The loss function is defined as:

L =
∑
i∈Ω

yci log(pci) + (1 − yci) log(1 − (pci)) (3.1)

where pci denotes the predicted probability of c-th class for pixel i in the predicted result p,
yci ∈ {0, 1} is the corresponding ground-truth value. If yci = 1, it means that pixel i belongs to
the c-th class. If yci = 0, it means that pixel i does not belong to the c-th class. c = 0 denotes the
background, c = 1 denotes the uterus, c = 2 denotes the uterine fibroids while c = 3 denotes the
spine. Ω denotes the space of the predicted result of p and the ground-truth y. By minimizing
the loss function on a training database, the parameters of HIFUNet can be optimized. Then the
trained HIFUNet can be applied for automated uterus, uterine fibroids and spine segmentation
on different datasets.

3.3.6 Discussion about the choice of our HIFUNET model

The main difference between our HIFUNet and other state-of-the-art deep learning networks
including GCN[19], HRNet[55], U-Net[5], CE-Net [50], AttentionUNet [18], and LEDNet[56] is
summarized as follows:

— GCN uses large kernels to enlarge the effective receptive field which can help classify
different objects.
Different from GCN, in order to exploit more abstract information, HIFUNet adds an
original DMAC block which improves the accuracy of segmentation of key parts such as
the cervix and minor fibroids.

— HRNet relies on a parallel structure enabling the model to connect multi-resolution sub-
networks in a novel and effective way. It starts from a high-resolution subnetwork as the
first stage and gradually adds high-to-low resolution subnetworks one by one to form
more stages, the multiresolution subnetworks being connected in parallel.
The main difference is that HIFUNet and HRNet use different ways for computing high-
resolution representation. Our HIFUNet employs the way of recovering high-resolution
representations from low-resolution representations outputted by a network (e.g., ResNet).
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While in HRNet, the authors propose another way that maintaining high-resolution rep-
resentations through high-resolution convolutions and strengthening the representations
with parallel low-resolution convolutions

— U-Net uses a simple downsampling way to extract features while HIFUNet uses ResNet101
as the backbone to extract more features. We add large kernels in the skip-connections
to increase the valid receptive field (VRF).

— CE-Net uses the Dense Atrous Convolution (DAC) module with multi-scale convolution
and the Residual Multi-kernel Pooling (RMP) with multi-scale pooling at the bottom
to extract and decode multi-scale features in parallel, as well directly integrate them.
It ignores the global scene content at each level which further enhance the localization
effect of the skip connection, as well as the progressivity and the correlativity among the
multi-scale structure.
Especially different from the CE-Net, the proposed HIFUNet adopts GCN in each skip
connection between the encoder and the decoder. So that it is able to embed global
scene information in the decoder, avoiding the global scene information loss in the di-
mension reduction during encoding. Besides, the HIFUNet also employs DMAC with the
series structure and hierarchical fusion at the bottom of the encoder to progressively and
correlatively extract multi-scale structure for the semantic.

— AttentionUNet proposes a novel Attention Gate (AG) model for medical imaging that
automatically learns to focus on target structures of varying shapes and sizes, which
brings a risk of transmitting multiplicative error along with the network.
CE-Net and AttentionUNet are both based on the U-Net and keep the way of extracting
features in the encoder of U-Net. Differently, we choose to use a ResNet-101 pre-trained
on Imagenet as our backbone because it can be easier to train Resnet than training simple
deep convolutional neural networks and resolve the problem of accuracy degradation.

— LEDNet aims at real-time semantic image segmentation. It employs an asymmetric
encoder-decoder architecture. The encoder adopts a ResNet as the backbone network,
where two new operations, channel split and shuffle, are utilized in each residual block to
greatly reduce the computational cost while maintaining a higher segmentation accuracy.
On the other hand, an Attention Pyramid Network (APN) is employed in the decoder to
further decrease the entire network complexity.
In our task, we pay more attention to the segmentation accuracy than to the efficiency of
training. In the decoder part, LEDNet focuses on the last feature map from the encoder
network, while some low-level features can be let out, which is not conducive to recovering
detailed information. Therefore, we choose to recover the high-resolution information by
concatenating low- and high-level features, which can help to identify the objects of all
sizes and the details in complex medical images.

77



Part, Chapter 3 – HIFUNet: Multi-class Segmentation of Uterine Regions from MR Images Using
Global Convolutional Networks for HIFU Surgery Planning

3.4 Experiment and Discussions

3.4.1 Datasets

To train and validate our work, we used preoperative T2-weighted MR images with fat
suppression of 297 patients.These images were collected from the First Affiliated Hospital of
Chongqing Medical University. Sagittal T2-weighted fast spin-echo images were acquired using
a 3.0T MR unit (Signa HD Excite, GE Healthcare, Marlborough, MA) with an eight-channel
phased-array coil. The scan parameters and characteristics of MR images are shown in Table
3.1.

Table 3.1 – The scan parameters and characteristics of the MR Dataset
Variable Value

Repetition time (TR) 3040 ms
echo time (TE) 107.5 ms

field of view (FOV) 28 × 22.4 cm
slice thickness 6 mm

slice gap 1 mm
matrix 304 × 304

age (years) 40.8 ± 6.6*

* Age is Mean value ± S.D.

Each MR volume consists of 25 slices of 304×304 pixels. The ground truth has been generated
through a proper annotation process. To ensure an objective and consistent clinical reference,
two radiologists were solicited for consensus agreement. This procedure included three steps:

1. Annotations through discussions: the discussion between our two radiologists, A (7-year
experience) and B (15-year experience), was held in a face-to-face mode to set the anno-
tation rules and identify special and complicated cases. It appeared, in this application,
that the variability of the annotations mainly existed on the contour of the cervix and
some minor fibroids.

2. The radiologist A took 2 months in annotating (no more than 5 volumes per day). After
annotating 10 volumes, a second face-to-face discussion was held to analyze the first-round
annotation, and improve the annotation rule further.

3. Then the radiologist A processed all cases (297 patients). Radiologist B checked all results
and marked the cases which have some divergent views. Then, they held a face-to-face
discussion and solved these situations.

After the above three steps, a full agreement between the two radiologists was obtained.
The research associated with the treatment of uterine fibroids was approved by the ethics

committee and has no implication on patient treatment.
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3.4.2 Experimental Setup

Training and testing phase

MR images from 260 patients were used for training and images from the rest 37 patients
were used for testing. The number of images in the testing set was 925. But as we know that
the use of a small amount of training data can result in overfitting. To prevent this overfitting
due to the limited number of images, the training data was augmented by image manipulation
[57]. We applied the random shifting and scaling strategies (zoom range of 0.1, shift of 0.5mm).

Parameter settings and platform

For the optimization of our network, we use the Adam optimizer and set the initial learning
rate to 2e-4. After each epoch, if we observe that the validation loss does not decrease for three
consecutive times, the learning rate is reduced to 1/5 of its current value until it stops at 5e-7.
Therefore, the number of training epochs is determined by the decreasing learning rate. The
batch size is set to 8. All the comparative experiments adopt the same strategy for updating the
hyperparameters. Besides, in the ablation study, the hyperparameters are fixed when removing
parts of the network.

Our proposed network is based on the pretrained ResNet101 model on ImageNet. Notice
that we adapt the first convolution operation because, as mentioned in section 3.3.1, we have a
single channel input image instead of RGB channels like in natural images. The implementation
is carried out on the PyTorch platform. The training and testing bed are ubuntu 16.04 system
with NVIDIA Titan XP GPU (12 GB memory) and CUDA 9.0.

3.4.3 Evaluation Metrics

Different quantitative measures are used to comprehensively evaluate and compare the seg-
mentation performance with the other methods.

Area-based indexes, which compare the predicted segmentation results (Sp) with the ref-
erence delineation (Sr) manually labeled by radiologists in terms of the mask. The fol-
lowing metrics are introduced : In general:
True positive (TP ) = correctly identified
False positive (FP ) = incorrectly identified
True negative (TN) = correctly rejected
False negative (FN) = incorrectly rejected

1. Dice coefficient (DSC) [58], also called the overlap index, is the most used metric for
validating medical volume segmentation.
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DSC = 2
∣∣sr ∩ sp

∣∣
|sr| +

∣∣sp

∣∣ = 2TP

2TP + FP + FN
(3.2)

2. Precision (PR) [59] is able to describe the purity of our positive detections relative to
the reference

PR = TP

TP + FP
(3.3)

3. Sensitivity (SE) [60]: also called true positive rate (TPR) or recall, it measures the
extent to which actual positives are not overlooked.

SE = TPR = RR = TP

TP + FN
(3.4)

4. Specificity (SP) [60]: also called the true negative rate (TNR) is the extent to which
actual negatives are classified.

SP = TNR = TN

TN + FP
(3.5)

5. Jaccard index (JI) [61]: also referred to as the Intersection over Union (IoU) metric,
is essentially a method to quantify the percent overlap between the ground-truth and
our prediction segmentation output.

JI =
∣∣Sr ∩ Sp

∣∣∣∣Sr ∪ Sp

∣∣ = TP

FP + FN + TP
(3.6)

6. False Positive Ratio (FPR), False Negative Ratio (FNR) and False Region Ratio
(FRR) [38]:

FPR = FP

FP + TN
= 1 − TNR (3.7)

FNR = FN

FN + TP
= 1 − TPR (3.8)

FRR = FP + FN

FN + TP
(3.9)

Distance-based indexes, which evaluate the segmentation in terms of both the location
and shape accuracies of the extracted region boundaries. We defined two point sets A

and B from Sp and Sg. N is the number of points in A.

1. Mean Absolute Distance (MAD) [38]: measures the average error of one boundary
pixel the closest boundary pixels in the other segmentation.
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MAD = 1
N

∑
a∈A

min
b∈B

∥a − b∥ (3.10)

2. Maximum Distance (MAXD) [38]: measures the maximum difference from two bound-
aries.

MAXD = max
a∈A

min
b∈B

∥a − b∥ (3.11)

3. Hausdorff Distance (HD) [62] : measures the similarity between two boundaries and
can be expressed as:

HD = max(h(A, B), h(B, A)) (3.12)

where h(A, B) = maxa∈A minb∈B ∥a − b∥.
Some literature report HD95, i.e., the 95th percentile of HD, to limit the influence of
small outliers.

3.4.4 Comparison with Conventional Methods and Discussion

As mentioned in Section 3.2.1, Rundo et al. [35] and Militello et al. [37] proposed to segment
uterine fibroids after treatment and evaluated them in [38]. We compare their methods with our
method on the same dataset (fat-suppressed T2-weighted MR images composed of 375 slices
issued from 15 patients).

It can be noticed that the above two methods are based on the fact that ablated fibroids
appear as homogeneous hypo-intense regions with respect to the rest of the uterus (after contrast
medium injection). Before the treatment, all kinds of fibroids appear as different states, which
makes the segmentation task harder.

For all patients, area-based and distance-based indexes were computed based on a slice-by-
slice comparison and were performed on each slice having a fibroid area. The results are displayed
in Table 3.2. They show the superiority of the proposed method over the other two approaches
and demonstrate its ability for uterine fibroid segmentation.

Table 3.2 – Values of Area-Based and Distance-Based for segmenting uterine fibroids using
different methods on T2-weighted MR Images

Method area-based distance-based
DSC(%) Precision(%) SE(%) SP(%) JI(%) FPR FNR FRR MAD MAXD HD

IOTS [37] 80.50 76.83 89.03 98.22 69.34 0.018 0.110 0.540 2.432 7.893 8.893
SM&RG [35] 81.15 77.74 89.47 98.33 72.13 0.017 0.105 0.429 3.422 11.536 12.935

Proposed 86.58 88.17 88.45 99.53 78.45 0.005 0.116 0.709 2.955 9.365 16.372
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Some visual results are depicted in Figure 3.6. It can be seen that, for the Patient 4, the gray
level values around the area outlined by the circles have little difference from adjacent tissue.
While in the post-treatment MR images the ablated tissue does not absorb the contrast medium
and is hypo-intense with respect to the uterus, the use of simple adaptive global thresholding
and region growing methods remains possible. However, the quality of the MR images is affected
by noise which may lead to gray values in the regions of uterine fibroids similar to those of the
surrounding tissues. As it is shown for Patient 7, there are two fibroids that appear with different
signal strengths because of the different moisture contents: one is dark and the other one is
bright. Thus, it is difficult for IOTS to distinguish the two different grayscale distributions of
fibroids. SM&RG fails to identify the contour of fibroids and assimilates the uterus to fibroids.
The segmentation provided by our DL method is close to the ground-truth segmented by the
clinical experts.

Figure 3.6 – Visualization of the uterine fibroids segmentation results on two patients using the
proposed method and two conventional methods. Red denotes the fibroids, and the yellow and
green circles point out incorrect segmentation of uterine fibroids due to the little gray value
difference with the surrounding tissues.

Additional comments on the two methods used here for comparison are worth making. The
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uterus ROI segmentation is a preliminary step for a robust fibroid detection in [38]. This task can
be accomplished manually by the user to remove parts outside the uterus which are present in
sagittal sections [35] or can rely on the Fuzzy C-Means (FCM) [37], which is an automatic method
but where the number of clusters is set according to a visual inspection (i.e. anatomical properties
of the analyzed pelvic images by considering image features) and experimental evidence (by
means of segmentation trials). It means that the intervention of the experts is indispensable and
that a complex and time-consuming preprocessing is needed before applying the intensity-based
clustering technique. In conclusion, although these conventional methods have some merits in
terms of performance, they show some practical limits in the clinical setting.

3.4.5 Comparison with Other Deep Learning Methods

We compare our method with six state-of-the-art (SOTA) algorithms, including U-Net [5],
AttentionUNet [18], GCN [19], CE-Net [50], HRNet [55], LEDNet [56]. Their original implemen-
tations were kept and the same experimental conditions were used.

We select four of these SOTA methods (U-Net, GCN, HRNet and CE-Net) to visually com-
pare our method in Figure 3.7 where the segmentation results are overlaid on the raw images.
Different colors denote different classes (red denotes the fibroids, blue the uterus and green the
spine). The images show that our method provides more accurate results. The performance of the
six selected methods is presented in Table 3.3 for quantitative comparison. Among them, HRNet
is the best method for segmenting uterus and fibroids. Besides, for the spine, which has a high
contrast with adjacent tissues, the introduction of the attention mechanism (i.e. AttentionUNet)
gives quite good results. However, overall, our method provides the best results.

Table 3.3 – Quantitative comparison of three evaluation indexes of different segmentation meth-
ods on the testing dataset. The best results are indicated in bold.)

Method Uterus Fibroids Spine Memory Test timeDSC Precision Recall DSC Precision Recall DSC Precision Recall

GCN[19] 79.44% 79.27% 80.37% 80.43% 82.88% 80.04% 80.50% 85.14% 77.74% 464.96M 108.25ms
HRNet [55] 80.43% 78.29% 83.45% 80.88% 85.39% 80.76% 85.45% 83.77% 86.50% 561.88M 165.55ms
U-Net [5] 75.34% 76.97% 74.81% 77.58% 78.39% 79.23% 78.15% 89.10% 71.46% 317.97M 14.56ms

CE-Net [50] 74.69% 75.42% 74.99% 76.38% 75.05% 80.66% 82.48% 86.99% 79.15% 123.22M 105.77ms
AttentionUNet [18] 74.79% 76.08% 74.56% 76.24% 74.97% 81.18% 83.28% 88.54% 79.25% 927.34M 159.12ms

LEDNet [56] 77.87% 77.10% 79.46% 78.92% 83.71% 76.12% 79.02% 87.19% 74.19% 121.37M 73.84ms
Proposed 82.37% 79.45% 86.00% 83.51% 84.48% 83.70% 85.01% 82.51% 88.69% 503.71M 109.83ms

Regarding the computation cost, we estimated them by displaying the GPU memory require-
ments and the test time for segmenting each slice. Because of using ResNet as our backbone,
our HIFUNet has a larger number of parameters. However, in clinical applications, the accu-
racy of the segmentation is much more important than the computation cost. From Table 3.3,
we can see that the performance of HIFUNet is significantly better in comparison to the other
methods. We found it acceptable that the increases in computational costs are negligible for the
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Figure 3.7 – Visualization of the segmentation results of uterus, fibroids and spine by using
the proposed method and other four SOTA methods. From top to bottom are three different
patients. Red denotes the fibroids, blue denotes uterus, and green denotes spine.

improvement in accuracy. The computational cost of our method at test time can be borne by
a standard GPU.

Looking now organs by organs. As can be seen from Figure 3.7, the fibroids are more difficult
to segment than the uterus, due to their unclear boundaries and undefined shapes. For patient
9, GCN and HRNet fail to segment the spine. For patient 8, U-Net, HRNet and CE-Net lead
to incomplete segmentations. We can also observe the crucial role of the large receptive field
used in our approach. Figure 3.8 show the DSC of uterus and fibroid segmentation results in
the form of box plots. Our method provides the best and steadiest performance in segmenting
both uterus and fibroids while the performance of HRNet is slightly weaker.

Figure 3.8 – Box plots of the qualitative performance to segment the uterus (left) and the
fibroid (right). The y axis indicates the DSC values, while the x axis corresponds to the different
methods (unfilled circles denote the suspected outliers).
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3.4.6 Ablation Study

DMAC block We first conducted ablation studies and validated the effectiveness of our
DMAC block using the same training strategy and datasets. The original GCN (GCN-no DMAC
[19]) was compared with the modified GCN (GCN-DMAC) with a DMAC block added in the
last layer. In the proposed HIFUNet (Proposed-DMAC), the DMAC block was put in the last
layer and before the operation of global convolution. Comparisons were performed between the
Proposed-DMAC, removal of DMAC block (Proposed-no DMAC) and insertion of the DMAC
after the global convolutional operation (Proposed-DMAC behind). Table 3.4 shows the results
of this study together with the time needed for each training epoch. They point out that the
segmentation results are not significantly improved for GCN-DMAC. Concerning the DMAC
position in our method, the computation time is strongly reduced when it is behind but the
performance is worse than DMAC in-front (i.e. Proposed-DMAC). Our method is time intensive
in training due to the large number of feature channels in the last layer (1024), but it also retains
more features as a result. Also, HIFUNet outperforms CGN -DMAC with a p-value of 0.0031 >
0.001.

Table 3.4 – The mean DSC and computation time of different segmentation methods using
DMAC block. The best results are indicated in bold.)

Methods
DSC Time(s)

Uterus Fibroids Spine
GCN-no DMAC 79.44% 80.43% 80.50% 164

GCN-DMAC 80.15% 81.08% 80.01% 161
Proposed-no DMAC 76.87% 78.84% 84.28% 479

Proposed-DMAC behind 77.72% 77.47% 80.89% 441
Proposed-DMAC 82.37% 83.51% 85.01% 1094

Some images are shown in Figure 3.9 for visual inspection. GCN leads to a relatively good
segmentation of the uterus and the spine but the boundary of the fibroids is clearly inaccurate,
and most parts of the fibroids fail to be labeled out. Adding the DMAC on GCN helps to refine
the inaccurate boundary of the uterus and correct to some extent the wrong segmentation of
fibroids. When replacing GCN by our proposed main structure, two fibroids are labeled out
successfully with accurate boundaries (see Patient 20 slice 13) which shows the advantage of our
main structure. In the same slice, by comparing GCN and Proposed-no DMAC, the boundary
of the spine is corrected, which confirms the previous observation. A slightly better result can
be achieved with DMAC. In all cases, our method labels both the uterus and the inside fibroids
accurately which shows the effectiveness of the proposed DMAC. In particular, by comparing
the last two columns, we can conclude that DMAC can extract the features of a large receptive
field in a multi-scale context from multi-level feature maps.
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Figure 3.9 – Visualization of the segmentation results of uterus, fibroids and spine from two
patients by using different methods which are mentioned in Table 3.3. From left to right: ground-
truth, GCN [19], GCN with DMAC, our proposed method without/with DMAC. Red denotes the
fibroids, blue denotes uterus, and green denotes spine. The places showing differences between
the methods are surrounded by a red frame.

Decoder method In our approach, we replace the summation operation in GCN by a
concatenation operation in U-Net. Besides, in the procedure of upsampling, the deconvolution
operation is employed to recover the original image size and to get the output mask. Recent
contributions focus on the use of an upsampling module to upsample a low-resolution feature map
given high-resolution feature maps as guidance. For instance, Joint Pyramid Upsampling (JPU)
[63] aims at generating a high-resolution target image by transferring details and structures
from the guidance image. DUpsampling (DUP) [64] was also proposed to replace the standard
bilinear upsampling to recover the final pixel-wise prediction. The DUP takes advantage of the
redundancy in the label space of semantic segmentation and is able to recover the pixel-wise
prediction from low-resolution outputs of CNNs.

We report here the experiments made in order to compare different ways of decoding. Inspired
by Octave Convolution [65], in which Chen et al. proposed to store and process low-frequency
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and high-frequency characteristics respectively, we plan to deal with low and high channels
separately. Also motivated by the Inception module [66] which employed a split-transform-merge
strategy, we design a Channel-Split (CS) module that splits channels of each feature map after
the GCN module into high and low channels and then we use concatenation and summation
operations to integrate features of different layers in a continuous way. Different from Octave
Convolution in [65] which is an operation as a direct replacement of vanilla convolutions, CS is a
decoder strategy to change the way of merging different channels from different layers. Another
decoding method is shown in Figure 3.2. It removes the operations of summation in each layer
and mainly uses deconvolution and concatenation. We name it Concatenation-Decoding (CD).

We train the three networks, i.e. with JPU or with CS or with CD as decoder respectively.
The backbone here is the encoder of ResNet101 with GCN block and DMAC block. DUP is not
trained because there is no formal code implementation of it. Experiments for method compari-
son were conducted on the same training parameter settings over the same training and validation
dataset. The quantitative assessment was performed on the same testing dataset. The implemen-
tation of the JPU refers to the official PyTorch version on https://github.com/wuhuikai/FastFCN.

As shown in Table 3.5, the CD method is more accurate than the JPU and CS methods,
with a benefit in DSC ranging from 6% and 16% for the uterus. It can be concluded that
concatenation helps to recover the features especially in complex contexts and multiple targets.
The summation is applied in the shortcuts (skip connections) in ResNet. It can help the network
to speed up the training process and improve the gradient flow since the shortcuts are taken from
previous convolution operations. Therefore, it is effective for the backpropagation to transfer
error corrections to earlier layers, which can address the problem of vanishing gradient. However,
due to the summation of the different channels or feature maps in CS, it may be difficult for the
networks to distinguish different targets or recover the object details in the decoder. In contrast,
the concatenation in CD operates on the feature maps generated by different filter sizes and
keeps the information of different resolution feature maps since the information of features is
not lost by summing up. JPU mainly uses the last three layers in the encoder. Therefore, the
features of multiple objects in our complicated context may not be fully exploited by employing
JPU.

Table 3.5 – The performance on the testing dataset by using different decoder methods: Joint
Pyramid Upsampling (JPU), Channel-Split (CS) and Concatenation-Decoding (CD). The best
results are indicated in bold.

Method
Uterus Fibroids Spine

DSC Precision Recall DSC Precision Recall DSC Precision Recall
Backbone+JPU 66.26% 70.44% 63.37% 67.36% 70.20% 66.74% 66.07% 76.90% 58.79%
Backbone+CS 76.37% 80.77% 73.27% 80.06% 79.55% 83.31% 83.88% 87.45% 81.37%

Backbone+CD (Proposed) 82.37% 79.45% 86.00% 83.51% 84.48% 83.70% 85.01% 82.51% 88.69%
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3.5 Conclusions

In this study, we have proposed a global convolutional network with deep multiple atrous
convolutions to segment uterus, uterine fibroids and spine automatically. The employment of
the DMAC block allows capturing effectively more low and high-level features.

Experimental results on the same datasets and platform demonstrated (i) the accuracy and
robustness of the proposed method, (ii) a significant improvement when compared to state-of-
the-art segmentation methods and (iii) the performance could be close to radiologist level.

Although the proposed method shows promising results, some boundary inaccuracies may
still be present in patients depicting multiple fibroids (see the left fibroid in the first row of
Figure 3.9 ). We plan to improve our approach by working directly in 3D (i.e. 3D convolutional
filters) instead of dealing with 2D slices. This will make the training issues (improving efficiency
and reducing training time) more critical. Other ideas should also be explored such as the use
of prior anatomical and pathological knowledge on the uterus and spine. Coupling our approach
with other techniques (active contour models, for instance) to refine the boundaries of the uterus
and spine may also offer a sound way to correct the remaining errors mentioned above.
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Chapter 4

SEMI-SUPERVISED SEGMENTATION OF

UTERINE REGIONS FROM MR IMAGES

FOR HIFU TREATMENT

4.1 Introduction

Chapter 3 addressed the problem of segmentation of the uterine region, which is the pre-
requisite for defining the HIFU treatment planning. However, segmentation methods based on
fully supervised learning (FSL) require a large amount of accurate annotated data to support
the network during learning. But, clinically accurate annotated data is often difficult to obtain
because it is a time-consuming process for physicians, often repetitive and not very rewarding
for them. This results in imprecise annotation with high intra- or inter-individual variability
between the experts and often a huge difficulty to access these data. One of the consequences
is the lack of generalization of these networks based on fully supervised learning which requires
a new round of learning in case of change or improvement of the image acquisition devices or
even more simply of changes of the acquisition parameters.

One solution would be to use more limited sets of labeled data and develop models that
could obtain segmentation performances close to those of fully supervised learning models. In
our opinion, the development of such models is a critical problem to solve in the field of medical
image segmentation.

Semi-supervised learning (SSL) could be one of the answers to this problem. Unlike the
FSL methods, SSL methods can take advantage of large numbers of unlabeled data to improve
network performance when labeled data is insufficient. One popular SSL approach is to adopt
consistency learning, which regularizes the network to be consistent with the predictions of
perturbation [1]. Another common way for SSL is pseudo-labeling by producing an artificial label
for unlabeled images. Specifically, a pre-trained model is first used on a small number of labeled
data. Then, the unlabeled data is fed to the model, and the class with the maximum predicted
probability is selected and called pseudo-labels. After that, the labeled data is co-trained with the
pseudo-labeled data. The above procedures are repeated to make the model more efficient. The
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effectiveness of this mechanism is similar to that of entropy regularization. The semi-supervised
model can achieve state-of-the-art performance when combined with Denoising Auto-Encoder
and Dropout [2].

Because of the lack of annotated data, some data augmentation methods have to be consid-
ered in SSL. One simple and efficient method is Mixup [3] which can improve the generalization
and robustness of the model by mixing the data pairs. This strategy can also be interpreted as
an empirical risk minimization on modified data with random perturbations [4]. Based on the
Mixup, CutMix [5] and Mixmatch [6] were developed to further improve the performance of the
SSL.

However, the quality of the pseudo-labels will affect the optimization of the model when
it is updated. In existing approaches, the generation of pseudo-labels relies on time-consuming
manual offline selection, usually based on experience or after experimentation on a small valida-
tion set, followed by setting a threshold to generate a confidence map. This threshold is usually
task-specific and is not universal. We believe that an adaptive thresholding strategy needs to be
developed to adapt automatically to different semi-supervised data distributions. This should
improve the generality and robustness of semi-supervised methods.

Besides, the utilization of limited annotated data also affects the quality of the pseudo-
label generation. We plan to improve the quality of pseudo-label generation by using a powerful
feature extraction network to extract features from segmented targets in limited data and noise
reduction of pseudo-labels. In addition, we plan to extend the regularisation in Mixup to adapt
the framework to more complex semi-supervised medical image segmentation tasks.

In order to combine all of these proposals, we have developed a new method called the
Pseudo-label Refinement Network (PLRNet). The contributions of our approach are as follow:

— PLRNet utilizes an efficient segmentation noise reduction network to enhance the quality
of pseudo-label generation while performing efficient feature extraction on the labeled
data.

— PLRNet introduces a new online threshold adaptation strategy to generate high-confidence
graphs for pseudo-labels, which improves the performance of the model even for different
ratios of the amount of annotated and unannotated data.

— PLRNet uses a data augumentation method inspired by Mixup. This method called
”Feature-aligned Mixup”, will improve generalization across different patient data distri-
butions.

— Experiments on the uterine dataset show that PLRNet outperforms other state-of-the-art
semi-supervised methods and has the potential to apply to other segmentation tasks.
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4.2 Methods

In this study, we aim to exploit unlabelled data by: improving feature extraction from labelled
data, optimizing the generation of pseudo-labels and improving the generalisation capability of
the model. In this section, we will first describe the main structure of PLRNet, then the employed
pseudo-label optimization strategy, and finally the four basic components of the framework: the
segmentation module, the confidence-based threshold adaptation module, the feature-aligned
mixup module, and the consistency regularization operation.

4.2.1 Overview of PLRNet

PLRNet has two quite different parts as shown in Figure 4.1. On the one hand, a training
pipeline that integrates annotated data and unannotated data in several phases while proposing
a data augmentation. On the other hand, an inference pipeline that takes one of the networks
trained in the learning pipeline to segment new MR images.

Figure 4.1 – The framework of PLRNet.

The training pipeline. The structure of the training pipeline is shown on the top of
Figure 4.1). In order to gain in accuracy, we have chosen a coarse to fine approach. So our
training pipeline is backed by two networks: a Coarse Segmentation Network (CSNet) and a
Fine Segmentation Network (FSNet). For both, we used a CNN with large convolutional kernels
as backbone network. Both underlying networks are trained from scratch. The output of both
these 2 networks is a 4 channels probability map (one channel for each class: background, uterus,
fibroids and spine). Note that for the cascade between these two networks, each of the probability
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maps given by CSNet is pixel-multiplied with the original image of the input so that each channel
has only the region of interest for the current category. We now delve into the details.

1. We first train the CSNet on labeled data X l supervised by the cross-entropy loss Lce1

between Ĉ l, the predicted outputs of CSNet, and GT l, the ground-truth annotated by
experts. In the second stage, FSNet is also trained on the labeled data X l supervised by
the cross-entropy loss Lce2 between F̂ l, the predicted outputs of FSNet, and GT l.

2. Similarly, for the unlabeled image Xu, we use Ĉu and F̂ u to define the output which are
both the pseudo-labels of unlabeled data. Ĉu is refined to obtain F̂ u. Specifically, Ĉu and
Ĉ l, which are four-channel probability maps, are respectively associated by a dot product
with X l, Xu to generate Ŷ l and Ŷ u. In the second stage, F̂ u is produced by feeding Ŷ u

into FSNet.

3. However, pseudo-labels with low confidence must be discarded from the optimization
process. For this, usually a confidence threshold T is set. The network is trained only if
prediction confidence is over T . In most of the paper, this threshold is fixed at the start.
In our case, the threshold T is designed on the loss function in Lthr, which continuously
optimizes the estimated global threshold as training proceeds, thus continually improving
the quality of the pseudo-label.

The two networks carry out cooperative training and constantly update under four losses: the
feature-aligned mixup loss Lfam, the weighted cross-entropy loss Lwce, the threshold loss Lthr,
and consistency regularization loss Lcon. Specifically, Lfam is used to improve the generalization
performance of the model, Lwce and Lthr are related to the loss of unlabeled data to achieve the
automatic online generation of high-confidence pseudo-labels and Lcon helps the two networks
to produce similar reference results. These losses will be detailed later on.

The inference pipeline. The bottom part of Fig.(4.1) shows the inference process. Simply,
a new input image to be segmented is fed into the trained FSNet to obtain the inference result.

We will now detail some of the key points of PLRNet: the segmentation network, the
confidence-based threshold adaptation and the feature-aligned Mixup.

4.2.2 Segmentation network

In semi-supervised learning, it is important to extract as many abstract feature representa-
tions as possible for annotated data. In current semi-supervised learning, U-Net has been widely
used as a feature extraction network. However, in some multi-class medical image segmentation
with complex contexts, using U-Net networks to extract features tends to introduce noise and
neglect feature extraction for some fine targets (e.g. small-sized fibroids). In addition, in the
cascaded CSNet-FSNet network used in this paper, CSNet acts as a pre-trained network to

100



4.2. Methods

generate coarse pseudo-labels for unlabelled data, and the noise in the pseudo-labels affects the
optimisation of the pseudo-labels in FSNet.

To solve these challenges, we consider the use of Global Convolutional Network (GCN), an
important component in HIFUNet, which can effectively extract the complex data features of a
scene by increasing the valid reception field. In addition, wavelet sampling, consisting of wavelet
transform and inverse wavelet transform, is used instead of traditional upsampling to suppress
noise in the image to extract representative and effective features.

Figure 4.2 – (a) The architecture of WLKNet, (b) Global convolutional network using large
convolutional kernels, (c) Wavelet Sampling

The Wavelet-Based Large Kernel Network (WLKNet) can be seen in Figure 4.2 (a). It shows
the main structure of WLKNet, which is an end-to-end network with an encoder-decoder struc-
ture. E1 - E4 in the figure represent features encoded using Resnet101. G1 - G5 are features ex-
tracted using GCN and W1 - W4 represent wavelet coefficients extracted using the Harr Discrete
Wavelet Transform (DWT). Fig. 4.2 c) is a demonstration of the process of wavelet sampling
in WLKNet. Specifically, Resnet101 was performed for an input image to obtain four stages
of encoding features, after which the encoding features were processed with large convolution
kernels using GCN to obtain G1 - G5 respectively. Meanwhile, the wavelet decomposition was
performed for E1 - E4 to obtain wavelet coefficients for W1 - W4 respectively. In the decoding
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stage, G4 and G5 are concatenated, and the features obtained are then subjected to the Inverse
Discrete Wavelet Transform (IDWT) together with W4 to obtain the decoding feature D4, and
the decoded feature Di is then merged with the previous layer’s large convolution kernel feature
Gi−1 at each step. Finally, convolution and other operations are performed to recover the size of
the original input image. The application of GCN and wavelet sampling in WLKNet is described
in details below.

Large kernel network

The successful application of networks with large convolutional kernels in HIFUNet demon-
strated that enhancing the valid receptive field size can accurately segment multi-class targets
in the uterine region. Therefore, we use an 11 × 11 convolutional kernel as in Figure 4.2 (b) for
feature extraction of the image. The input encoded features Ei are summed pixel by pixel after
two separate large convolutional kernel operations. The result is a feature Gi with the same size
as the input Ei and 256 channels.

Wavelet sampling

In existing deep learning networks, downsampling operations usually use either max pooling
or average pooling, which have some limitations. For example, max pooling can cause the loss of
primary features when their magnitude values are lower than the values of unimportant features.
The use of average pooling allows for a balance between important and unimportant features,
thus diluting the crucial features. In conclusion,both of these traditional pooling operations
result in lower feature extraction, making segmentation less efficient. In addition, operations
such as max pooling, average pooling lead to aliasing between data components in different
frequency intervals. The noise in the data is mainly in the high-frequency components, while
the low-frequency components contain the main information, such as the underlying object
structure. As a result, aliasing introduces residual noise in the downsampled data and corrupts
the underlying structure, thus reducing the accuracy and noise immunity of the CNN [7].

On the other hand, in computer vision tasks requiring high-resolution image recovery, includ-
ing semantic segmentation and super-resolution recovery in encoder-decoder network structures,
upsampling operations such as inverse pooling, linear interpolation, and deconvolution have tra-
ditionally been used. Unpooling fills the gaps in low-resolution feature maps containing semantic
information with ”0”, linear interpolation fills the low-resolution feature maps with adjacent ap-
proximations, and deconvolution convolves the low-resolution features maps also with ”0”. These
methods recover only a limited amount of detail, making it challenging to recover edge texture
information from an image.

To solve the above problem, Williams et al. [8] recently proposed a sampling operation from
the wavelet domain. Specifically, in the encoder part, wavelet pooling would replace traditional
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max pooling. Wavelet pooling decomposes features into a low-frequency component and a high-
frequency component after a two-dimensional wavelet decomposition. The low-frequency com-
ponent stores the primary information such as the underlying feature structure, including the
image contour, which is transferred to the subsequent layers to extract robust high-dimensional
features. On its side, the high-frequency component stores the detailed part of the image for
rounding during downsampling. Wavelet pooling discards only the detailed part, which effectively
avoids removing important features as max pooling does, and solves the problem of dilution of
all features as in average pooling. Wavelet pooling operation allows to maintain spatial infor-
mation as much as possible while suppressing the correlation among frequency bands, and it
can also effectively suppress high-frequency noise. The combination of wavelet transform and
pooling operation can achieve a more powerful feature extraction capability than spatial domain
downsampling. In the decoding module, wavelet upsampling will replace the traditional max
unpooling. Specifically, the low-resolution high semantic features in the decoder are treated as
wavelet low-frequency components, and the high-resolution texture and edge detail information
in the encoder module at the lower layers are treated as wavelet high-frequency components.
The inverse wavelet transform recovers the high-resolution features containing more detailed
information. In short, the high-frequency components in the encoder network are stored and
transmitted to the decoder for resolution recovery, which can achieve more efficient detail recov-
ery than traditional interpolation and deconvolution.

Based on this idea, we will carry out in this project a small wavelet transform (upper diagram
in Figure 4.2 (c)). A first order wavelet decomposes an image in two dimensions to obtain four
sub-bands, LL, LH, HL, HH. The 3 sub-bands LH, HL, HH represent the image details including
most of the noise, while LL is the low-resolution version of the image in which the primary object
structure is represented.

In WLKNet, the four sub-bands are obtained by first performing DWT on Ei. These four
sub-bands are half the size of the input Ei. This operation is therefore similar to a downsampling
operation using max pooling. After separating the high and low-frequency sub-bands, the image
details including noise such as LH, HL, and HH. are retained and then convolved to make the
number of channels to 256. This result is called Wi. Afterward, Wi and Gi, which have been
abstracted by the GCN features, are subjected to IDWT to recover the image features Di.

4.2.3 Confidence-based Threshold Adaptation

As told previously, in the pseudo-label generation these with low confidence must be dis-
carded from the optimization process. For this, usually a confidence threshold T is set. The
determination of this threshold is one of the key points of the method. Usually, in previous pub-
lications, this threshold is fixed and is determined by experimentation or by a manual grid search
which are time-consuming and have limitations in the multi-class medical image segmentation
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tasks.
Inspired by [9], which was the first attempt of an online weighted pseudo-label in unsupervised

domain adaptation (UDA), we introduce an adaptive method as an alternative to the manual
grid search method to obtain the threshold T . Specifically, for each FSNet output pixel, if it is
lower than T , we set the weight of this pixel as 0. On the contrary, if the pixel output of FSNet
is higher than T , the pseudo-label weight ω of this pixel will be calculated by:

ω =


max

(
p̂u

)
−T

1−T if max
(
p̂u

)
≥ T

0 otherwise
(4.1)

where max(p̂u) refers to the maximum confidence value for each pixel p̂u in F̂ u. Notice that
F̂ u is actually a feature map containing multiple channels, where each channel represents a
segmentation category.

In this way, the pixels with higher confidence can be used to calculate the loss, while a lower
ones will be discarded. By using pixel-by-pixel weighting, the network can pay more attention to
pixels with correct predictions in pseudo-labels, and reduce the negative impact of pixels with
inaccurate predictions. The loss function of unlabeled data, namely Lu, is defined by:

Lu = Lwce + Lthr (4.2)

where Lwce is the weighted cross-entropy loss function, and Lthr is the adaptive threshold
loss function. They are given by:

Lwce = − 1
N

∑
i∈I

ωpu
i log

(
p̂u

i

)
(4.3)

Lthr = log2(1 − T ) (4.4)

Here N is the number of pixels in one image and pu
i represents each pixel of the channel i in

one pseudo-label P u generated by FSNet. I is the number of channels. For the initialization of T ,
in the early training process, we first chose a threshold value that is high enough to quickly get
a good result for easy-to-segment targets. Considering the training efficiency, we set the initial
value of T to 0.8, which provides acceptable results. Then, as the training process proceeds, the
threshold value is gradually reduced so that high weights are learned for the hard-to-segment
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pixels.

4.2.4 Feature-aligned Mixup

Mixup [3] aims to improve the network generalization by a linear combination of paired input
data and their labels. Recently, [10] extended this regularization strategy to both the input space
and the latent space to regularize different parts of the network. Considering the semi-supervised
multi-category image segmentation task, we should use limited labels to generate more data to
avoid over-fitting and achieve generalization over different patients.

Feature-aligned Mixup in FSNet achieves this goal by regularizing the output of each layer
in the decoder part. The Feature-aligned Mixup loss (Fig.4.3) is computed in the hidden layers
of FSNet. For the encoder input in FSNet, we first generate a multiple-channel attention map
Ŷ l by multiplying the labeled image X l with its predicted result of CSNet, then the unlabeled
image gets its corresponding attention map Ŷ u in the same way . After that, we linearly mix
the two attention maps as follows:

λ ∼ Beta(α, α) (4.5)

λ′ = max(λ, 1 − λ) (4.6)

Ŷ mix = λ′Ŷ l +
(
1 − λ′

)
Ŷ u (4.7)

where Beta is a Beta distribution with α its positive shape parameter. α is considered as a
hyperparameter in this work.

In order to make feature-aligned Mixup, we also realized the mixup with attention maps
from the ground truth and pseudo-labels :

R̂mix = λ′Rl +
(
1 − λ′

)
Ru (4.8)

where Rl is X l multiplied by GT l and Ru is Xu multiplied by P u.
Ŷ mix and R̂mix are respectively sent into the FSNet, and their outputs at each layer k of

the decoder are marked as two sets F̂ =
{

f̂k

}
and F = {fk} where 1 ≤ k ≤ K. K is the depth

of FSNet. Here we set K to 3. We can the use a Cross entropy loss function for computing
Feature-aligned Mixup
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Lfam = −
K∑

k=1
fk log

(
f̂k

)
(4.9)

Figure 4.3 – The illustration of the Feature-aligned Mixup loss (Lfam) and cross-entropy loss in
the PLRNet.

4.2.5 Consistency Regularization and Dropout

Due to the existence of pseudo-labels, some noise will inevitably be introduced. Therefore,
regularization plays an important role in our task. We use Kullback-Leibler Divergence (DKL)
as the consistency regularization here. The purpose of consistency regularization is to ensure
that the sample and the extended version of its network prediction have the same conceptual
meaning as possible in the method.

The dropout layer is another technique to prevent our model from over-fitting. It randomly
drops neurons from the network during training. The consistency regularization loss is defined
as:

Lcon = 0.5∗DKL

(
Ĉ∥F̂

)
+ 0.5∗DKL

(
F̂∥Ĉ

)
(4.10)

where Ĉ and F̂ represent the prediction outputs of CSNet and FSNet for both labeled and
unlabeled data, respectively.

4.2.6 Loss function

The training of PLRNet is divided into three steps: 1) the CSNet is trained with a limited
proportion of labeled data; 2) then the parameters are shared to the FSNet; 3) the whole network
is trained with all training data, including labeled and unlabeled data. The loss function is as
follows
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L = Ll + Lu + Lfam + Lcon (4.11)

where the Lu, Lfam, Lcon were introduced in sections 4.2.3, 4.2.4 and 4.2.5 respectively.
Ll is the loss function of the labeled data and is composed of two standard cross-entropy loss
functions (Fig.(4.2)):

Ll = 0.5 ∗ (Lce1 + Lce2) (4.12)

Here Lce1 and Lce2 are the cross-entropy of the output for labeled data of respectively
CSNet and FSNet with the Ground-truth. Both CSNet and FSNet can improve the predicted
segmentation region under the supervision of the loss function of labeled data.

4.3 Experimental configurations

4.3.1 Data Description

The dataset is the same as the experiments in the previous study (see section 3.4).
As a reminder, the HIFU dataset was collected at the State Key Laboratory of Ultrasound

in Medicine and Engineering (Chongqing Medical University, Chongqing, China). Sagittal T2-
weighted images were performed using a 3.0-T MRI system (Signa HD, GE Healthcare, Milwau-
kee, WI, USA). The standardized parameters of the T2WI sequence were as follows: Repetition
time (TR) 3040ms/Echo time(TE) 107.5ms, slice thickness 6mm, slice gap 1mm. The median
age of the patients was 40.8 years.

The MR dataset is a uterine fibroids dataset containing 297 labeled 3D fat-suppressed T2-
weighted MRI scans with the uterus, uterine fibroids, and spine. Each MR volume consists of
25 slices of 304 × 304 pixels. We split them into 260 scans for training and the remaining 37
scans for testing. The ground-truth was manually annotated and confirmed by two radiologists
through a proper annotation process to ensure the consensus agreement of the annotation.

The ethics committee approved the study at Chongqing Medical University. The patients
signed an informed consent form before each procedure.

4.3.2 Experimental Setup and details

The framework is implemented using Pytorch and trained by the Adam optimizer. In the
training data, the segmentation models of CSNet and FSNet are called M1, M2, respectively.
Firstly, M1 is pre-trained with labeled data for 50 epochs, and the model parameters are saved.
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We then import the pre-trained model parameters and train M1 and M2 with both labeled and
unlabeled data for 50 epochs. The training set is further divided into training and validation
sets in an 8:2 ratio. For example, if 10% of the training data is used as labeled data, we use data
from 26 patients for training (21 patients as the training set and 5 patients as the validation set).
The data division is randomized and different slices of the same patient do not appear in both
the training or validation sets. All the models are trained with an initial learning rate of 0.001,
which decays by 1/2 after every 10 epochs. The best model is saved based on the validation
accuracy, and then the best weights are saved to infer the test data. The Mixing parameter α

for the datasets was set to 1.0. The batch size was 4. The computation was performed on an
RTX 2080Ti GPU.

The data and hyperparameters are fixed during the comparison experiments and ablation
experiments.

4.3.3 Evaluation Criteria

To evaluate the performance of the segmentation, we employed some of the most commonly
used metrics such as the DSC similarity coefficient (DSC), precision (PR), and recall rate (RR)
(see Section 3.4.3).

4.3.4 Comparison with Other Deep Learning Methods

We compared our PLRNet with four SOTA semi-supervised learning approaches, including
ASDNet [11], Latent Mixup [10], and Cross-Consistency Training (CCT) [12], this for 3 different
labeled/unlabeled data ratios. Besides, we added two fully-supervised methods: the classical
Vanilla U-Net [13] and HIFUNet [14] with the whole set of labeled data as the performance
reference. All the experiments were conducted in a fair way with the same training, test data,
and network hyperparameters.

For quantitative comparison, Table 4.1 shows the DSC, PR, and RR indices obtained on
the HIFU dataset by the different methods. In order to test the impact of the ratio of la-
beled/unlabeled data on the results of the methods, we used respectively 10%, 25%, and 40%
of the training data as labeled data (26, 65, and 104 patients) and the remainder as unlabeled
data. As shown in this table, our method is better than other semi-supervised learning methods,
and this is for all ratios of labeled/unlabeled data. This trend is also more pronounced for low
ratios of labeled/unlabeled data.

As expected, the segmentation performance is improved when the number of labeled data
increases. However, it should be noted that our method still shows segmentation performance
close to that of a fully supervised U-Net (100% of the labeled data) even when the number of
labeled datasets is only 65 scans (25% of the labeled data).
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If we now look at the segmentation performance on an organ by organ basis, we can see that
the spine has the highest segmentation accuracy due to the large contrast difference between
the spine and the surrounding organs, which makes segmentation less difficult. As we suspected,
the performance is lower for the 2 organs with a smaller contract and/or greater variability in
shape (uterus and fibroid).

Fig. 4.4 compares the segmentation results on two different slices (one with one fibroid -
bottom- and one with multiple fibroids -top-) by using the different SOTA methods at different
labeled/unlabeled ratios to the corresponding ground-truth. On these images, we can make
several qualitative observations on the behavior of the different methods:

1. The spine is segmented with higher accuracy than the uterus and the fibroid. This is due
to the more fixed size and shape of the spine, and the more obvious difference in contrast
with the surrounding tissues on the MRI image.

2. The case of multiple fibroids is much more complex than that of single fibroids. One
explanation could be that in cases of multiple fibroids, the contrast and size of the fibroids
are sometimes not the same. As shown in the case of multiple-fibroids at the top of Fig.
4.4, the two fibroids have different intensities, and it is easy to confuse them with the
surrounding tissues whose contrast is similar to those of the fibroids.

3. As the ratio of annotated data increases, it does not always improve the segmentation
results. For example, on the case of multiple-fibroids (the top of Fig. 4.4), we can see
that from 10% to 25%, the segmentation result of each method is improved significantly.
However, from 25% to 40%, the performance of all the methods decreases except U-Net
(b), CCT (c) and our PLRNet (f). However, in the single-fibroid case (bottom of Fig. 4.4),
from 10% to 40%, the segmentation results of all methods are significantly improved.

4. Some of the methods show relatively poor results. For example, the CCT (c) method
shows jagged boundaries. On the other hand, our method shows a segmentation behavior
relatively consistent with the ground truth.

4.3.5 Ablation Studies

We also conducted a series of ablation studies to justify the effectiveness of the proposed
approach.

First, the effectiveness of the large convolutional kernel structure used in CSNet and FSNet
is validated. Using 25% of the data as labeled data, we compare the traditional U-Net, the large
convolutional kernel network LKNet, and the large convolutional kernel WLKNet with wavelet
sampling used in this paper to extract features from the data. Figure 4.5 shows the results of the
pseudo-label generated for the unlabeled input data when these three baseline models are used as
CSNet. It can be seen that using U-Net as the feature extraction network, the feature extraction
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Figure 4.4 – Segmentation results of 2 slices obtained by different SOTA methods with 3 different
percentages of labeled data (10%, 25%, and 40%) and the corresponding ground-truth. From left
to right are the (a) raw image, (b) results of U-Net, (c) CCT, (d) ASDNet, (e) Latent Mixup, (f)
our PLRNet and, (g) the ground-truth. Blue represents the uterus, pink the fibroids and yellow
the spine.

capability is not sufficient and the quality of the generated pseudo-labels is low, whereas with
the large convolutional kernel, the abstract feature extraction capability is improved due to the
expansion of the valid receptive field. In addition, the quality of the pseudo-label is substantially
improved after using the wavelet sampling operation. Our network removes the possible signal
interference in the original feature extraction operation, thus maximizing the preservation of
spatial information. Table 4.2 quantitatively evaluates the quality of the pseudo-labels.

Table 4.2 – Results of pseudo-labels generated by different segmentation networks of CSNet
using 25% of the labeled data (best results are in bold)

Baseline DSC(%) PR(%) RR(%)
Uterus Fibroid Spine Uterus Fibroid Spine Uterus Fibroid Spine

U-Net 53.25 58.45 46.74 63.88 69.53 97.84 47.90 56.48 31.76
LKNet 64.40 70.21 69.83 66.24 75.46 95.83 64.55 68.18 55.18

WLKNet 69.53 76.31 77.66 72.53 76.03 95.98 68.06 78.04 66.06

Then, we analyzed the confidence-based threshold adaptation under 25% training data of
the HIFU dataset. We compared our automatic adaptive threshold strategy with different of-
fline fixed threshold settings, ranging from 0.1 to 0.8. The results in Table 4.3 show that some
of the fixed thresholds can give a good segmentation performance for one specific organ. For
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Figure 4.5 – Segmentation results of pseudo-label generated by different segmentation models
with 25% labeled data. From left to right are the (a) raw image, (b) results of U-Net, (c) LKNet,
(d) WLKNet, and, (e) the ground-truth. Blue represents the uterus, pink the fibroids and yellow
the spine.

example, 0.4 is the best threshold for fibroid segmentation, while a threshold of 0.3 shows better
performance for uterus and spine segmentation. However, our method achieves the best average
performance and the best performance for almost all the target organs.

Table 4.3 – DSC(%) of the proposed Confidence-Based Threshold Adaptation module on a 25%
labeled dataset (best results are indicated in bold)

Threshold Uterus Fibroid Spine Average
0.1 69.87 69.43 81.34 73.55
0.2 69.66 70.05 82.33 74.01
0.3 72.36 74.40 84.00 76.92
0.4 72.18 75.03 83.47 76.89
0.5 71.07 70.32 83.23 74.87
0.6 70.43 71.98 82.65 75.02
0.7 69.38 70.35 80.29 73.34
0.8 70.29 69.21 79.56 73.02

Adaptive 76.01 75.97 85.98 79.32

Fig. 4.6 shows the adaptation of the threshold value during the training process. It can be
seen that the threshold gradually converges from 0.80 to about 0.25, and there is a sharp to
slow decrease during the training process. This finding indicates that more training rounds are
needed when the network learns regions that are difficult to segment.

We also wanted to estimate the impact of our several improvements on the segmentation re-
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Figure 4.6 – PLRNet threshold adaptation during the training process (from 0.8 to 0.25).

sults. Table 4.4 presents the ablation study of our PLRNet with the several components or vari-
ants introduced in Section 4.2.1. All these experiments were performed using the same dataset
with a 25%/75% labeled/unlabeled ratio. First, we compared the classic Vanilla U-Net (Net1)
with our CSNet-FSNet architecture based on 2 U-Nets but without any other improvements
(Net2). The 2 U-Nets slightly improved the results. Next, we added the CTA (Confidence-based
Threshold Adaptation) to the architecture (Net3). CTA brought steady improvements in the
segmentation of the uterus and fibroids. Based on this, we then compared the original Mixup
(Net4) with our FAM (Feature-aligned MixUp, Net5) and found that the addition of our FAM
improved the average segmentation accuracy by more than 1%. Next, the full solution (Net6)
with the addition of RAD (consistent regularization and dropout) gives better segmentation
results. Finally, the use of an encoder-decoder structure containing wavelet sampling with a
large convolution kernel as a feature extraction scheme for CSNet and FSNet (Net7) can further
improve the segmentation results. The Table shows that each component plays an important
role in our semi-supervised scheme. Moreover, each of these components is independent and can
be applied to other semi-supervised learning networks.

Fig. 4.7 shows the segmentation results for 3 different images obtained after adding sev-
eral components or variants, i.e., with the networks Net1 to Net7 (respectively Fig. 4.7. (b) to
(h)). Visually comparing Net 1 (b) and Net2 (c), we can see that the segmentation accuracy is
improved for all the three segmentation targets when we add the semi-supervised mechanism.
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Table 4.4 – Effectiveness of the proposed techniques on the HIFU dataset using 25% of the
labeled data (best results are indicated in bold)

Method Baseline Components DSC(%)
Semi CTA Mixup FAM RAD Uterus Fibroid Spine Average

Net1

U-Net

67.39 65.72 84.56 72.56
Net2 ✓ 69.46 69.71 85.01 74.73
Net3 ✓ ✓ 70.21 71.04 84.24 75.16
Net4 ✓ ✓ ✓ 71.34 72.83 81.00 75.05
Net5 ✓ ✓ ✓ 73.01 72.86 82.76 76.21
Net6 ✓ ✓ ✓ ✓ 74.72 73.51 84.61 77.62
Net7 WLKNet ✓ ✓ ✓ ✓ 76.01 75.97 85.98 79.32

Looking at Net3 (d), we see that although the adaptive threshold may have a negative impact
on the segmentation of the spine. It allows solving the ”hole” problem that occurs in the seg-
mentation. When comparing Net4 (e) and Net5 (f), we can see that FAM can further refine the
segmentation of the uterus and improve the boundary segmentation problem compared to the
traditional Mixup. One explanation could be the data augmentation at each scale of the feature
map, especially for the continuous segmentation of the spine, or, more obviously, the refinement
of the cervical part of the uterus. Finally, using the strategy of incorporating regularization Net6
(g), the generalization and robustness of the model are further improved. This allows us to better
estimate the details of the segmentation targets, to reduce the false segmentation caused by the
noise in the pseudo-labels, and to make the morphology of the segmentation targets (smoothness
of the fibroid, integrity of the uterine shape, and continuity of the spine) more consistent with
the real situation. Finally, replacing the segmentation network with WLKNet (Net7 (h)) yields
results comparable to the reference result (i) with better details of the fibroid as well as the
spine.

Figure 4.7 – Visualization segmentation results of ablation study on 25% of labeled data. From
left to right corresponds to the network with the different components in Table 4.4: (a) the raw
image, (b)-(h) segmentation results using Net1 to Net7 and (i) the ground-truth. Blue represents
uterus, pink fibroids and yellow spine.
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4.4 Discussion and Conclusion

We started from the semi-supervised learning method principle which consists in producing
pseudo-labels from unannotated data, pseudo-labels which are then re-injected into the model
during the learning process to make it more efficient. We have made several improvements to
this scheme.

In order to perform feature extraction on finite labeled data as large as possible, a large con-
volution kernel operation is used instead of the traditional small convolution kernel operation to
extend the valid receptive field. In addition, wavelet transform is used to preprocess the original
signal and then laterally subsume multiple consecutive low-frequency components to reduce the
dimensionality and information distortion of the image. DWT and IDWT are used to replace
the down-sampling operation (pooling) and up-sampling (unpooling) operations in conventional
CNN networks to effectively suppress high-frequency noise and achieve more powerful feature
extraction capability than signal processing in the spatial domain. Also, our framework has a
better denoising effect on pseudo-label of unlabeled data.

In order to give more importance to the reliable pixels, we defined a weighting at pixel level
(see (4.1)). Thus more higher-confidence pixels correspond to higher weights. In this way, the
network focuses more attention on regions with high weights, thus improving the quality of
the training data. Second, the thresholds are determined using an adaptive approach, which
can alleviate the problem of time-consuming manual grid search. The threshold value gradually
converges from the initial set value of 0.8 to around 0.25. In the early epochs, the network focuses
on pixels with higher confidence, corresponding to the easy-to-learn areas in an image. During
the learning progression, the threshold gradually decreases, and the network starts to focus on
some areas with lower confidence, which correspond to the hard-to-learn areas. The network
gradually learns so the features of the images by the threshold adaptive method from easy to
difficult.

The introduction of the Feature-aligned Mixup improves the generalizability of the model
and effectively avoids over-fitting the data. The core of the strategy is to add complexity control
to the space that is not covered by the training data. Our strategy performs linear interpolation
using the data points generated in the encoding-decoding structure. This data augmentation
model allows the neural network to learn a simple linear interpolation function in the ”blank
region”, thus reducing the complexity of the uncovered space. The input of FSNet is the product
of the original image and the four-channel feature. This ensures that the network pays more
attention to the region of interest by adding soft attention to each channel, reducing the effect
of irrelevant regions on the segmentation results.

By introducing the consistency regularization loss, the intermediate representation of the
same data in two networks tends to be consistent, which improves the robustness and general-
ization of the model.
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One possible limitation would be that the model is biased toward the dominant class. The
model is trained based on labeled data distribution at the early training stage. Thus, a biased
distribution of categories for the pretrained labeled data may directly affect the quality of pseudo-
label generation and may impact the training results. Second, we used a simple U-Net for feature
extraction, ignoring the difficulties of low tissue contrast around the uterus and fibroids with
varying sizes and shapes, which is insufficient for feature extraction.

In conclusion, we have proposed a novel semi-supervised framework named PLRNet to im-
prove the quality of pseudo-labels. The main contribution of our approach is the adaptive thresh-
olds learning to automatically generate high-quality pseudo-labels for semi-supervised learning.
This allows us to abandon offline threshold tuning. We validated our method on data used for
HIFU fibroid treatment planning. This evaluation demonstrated that our segmentation network
outperformed the SOTA semi-supervised learning methods.

The most prominent future work is to improve the quality of pseudo-labels by designing
class-wise thresholds to generate unbiased pseudo-labels. In addition, we plan to extend our
approach to external datasets from different sites. We will explore how to select and annotate
representative data and extract richer feature representations from limited data annotation.
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Chapter 5

AUTOMATIC SEGMENTATION FOR

PLAN-OF-THE-DAY SELECTION IN

CBCT-GUIDED ADAPTIVE RADIATION

THERAPY OF CERVICAL CANCER

5.1 Introduction

The standard treatment for locally advanced cervical cancer (LACC) is external beam radio-
therapy (EBRT) with chemotherapy, followed by brachytherapy. Although Intensity-Modulated
Radiation Therapy (IMRT) is used to reduce normal tissue toxicity [1, 2], it is limited by large
and complex intrapelvic anatomical variations occurring between the treatment fractions [3, 4].
The position and shape of the clinical target volume (CTV, including the cervix, uterus, upper-
vagina, and parametrium) are highly dependent on the bladder and rectum filling, and on tumor
regression during treatment [5, 6, 7]. In the context of adaptive radiation therapy (ART), plan-
of-the-day (PoD) strategies have been proposed based on the generation of a treatment plan
library, including several treatment plans optimized according to multiple planning CTs (pCT)
acquired with various bladder fillings [8, 9, 10]. At each treatment fraction, the treatment plan
is then selected among those of the library (”plan-of-the-day”) based on an in-room image (e.g.,
CBCT image, see Figure 5.1). Although this strategy appears to be adequate to compensate for
uterine motions [9, 10, 11], it remains complex in a clinical workflow.

Different factors limit the rapid advancement of PoD ART. The PoD selection is actually
a difficult process, mainly due to the poor contrast of CBCT images and large anatomical
deformations. Thus, the expert needs to visualize the full 3D volume to assess the coverage
of the whole target by the available treatment plans. The PoD selection is, therefore a time-
consuming process which is submitted to interobserver variability, as demonstrated in [12] where
26 operators manually selected PoD on 24 CBCT images. This study showed a high inter-observer
variability since the optimal PoD was chosen on average by 60% of users.

In order to automatize PoD selection, the automatic segmentation of CBCT images has
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Figure 5.1 – Flowchart of plan-of-the-day ART for cervical cancer. The process consists of three steps (1)
Planning: acquisition of multiple planning CT scans with variable bladder volumes. (2) Acquisition of the CBCT
image of the day. (3) Selection of the most appropriate treatment plan to maximize the target coverage. The CTV,
bowel sac, bladder and rectum are represented as red, green, yellow and blue filled contours. For plan-of-the-day
selection, empty bladder (EB), intermediate bladder (IB), full bladder (FB) and daily CTV are represented on
the daily CBCT as red, blue, green and yellow contours, respectively.

been proposed to measure, at each treatment fraction, the ability of the treatment plans to
treat the target [13]. Langerak et al. [14] proposed to use a multi-atlas-based segmentation
method. On a total of 224 CBCT, the CBCT images corresponding to low confidence levels
were firstly removed, resulting to 187 images on which the Dice values were 0.85, 0.81, and 0.80
for the uterus, bladder, and rectum, respectively. However, the CBCT image quality is limited by
noise, artifacts, and low soft-tissue contrast, making automatic segmentation very challenging.
Recently, with the widespread use of deep learning (DL) in medical imaging, Beekman et al [15]
compared different DL models, performing either direct segmentation or a segmentation prior
deformation by diffeomorphic image registration. The deformation-based model performed the
best on the CBCT test set, with a median Dice score of 0.80.

In the context of PoD-based ART for LACC, this work aimed to propose a strategy to
automatically select the optimal treatment plan. It relies on a deep learning-based segmentation
of the CBCT images, enabling the selection of the optimal treatment plan regarding the CTV
coverage based on a geometrical criterion. This strategy was simulated and compared to a
reference obtained from expert manual delineations.
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5.2 Materials and methods

Figure 5.2 describes the flowchart of the study. Based on a set of three planning CT scans
(corresponding to an empty, an intermediate and a full bladder) and on daily CBCT scans, it
contains two parts applied to each daily CBCT image: (1) segmentation of the CBCT image
using a deep learning network in order to obtain the segmented daily CTV (CTVCBCT ); (2)
selection of the most appropriate PoD among the 3 available pCTs. For this second step, the
three planning CTs (pCTs) in the planning library were registered to the daily CBCT image
to simulate the patient repositioning. Then, the coverage of the segmented daily CTVCBCT by
the CTVs of the 3 pCTs was computed. Finally, the best treatment plan was selected as the one
corresponding to the highest daily CTV coverage. Our goal in this project was to implement
this global scheme with the integration of specific image segmentation modules and the novel
automatic PoD selection strategy based on the registration result. We will now present you in
detail the several part of the framework and the evaluation of these parts.

Figure 5.2 – Flowchart of the study. The steps are: (1) CBCT segmentation using deep learning
and (2) plan-of-the-day (PoD) selection using clinical target volume (CTV) contours. The PoD
selection relies on: (a) bone-based rigid registration of the planning CTs (pCTs) with the daily
CBCT to simulate patient repositioning; (b) computation of the coverage between the daily CTV
(CTVCBCT ) and the CTVs of the pCTs (CTVEB, CTVIB and CTVF B); (c) selection of the
best treatment plan based on target coverage: the pCT corresponding to the highest coverage
was selected. (EB: empty bladder; IB: intermediate bladder; FB: Full bladder; cov: coverage
value).
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5.2.1 Data acquisition and experimental settings

In this study, we collected 272 CBCT scans and 63 CT scans from 23 patients. All patients
were treated with a combination of external beam radiation therapy (EBRT) and pulse-dose-rate
brachytherapy (PDR-BT). EBRT delivered a total dose of 45 Gy to the pelvis (supine position),
at 1.8 Gy per fraction, using IMRT along with concomitant weekly cisplatin (40 mg/ mm2).
PDR-BT was delivered following the GEC-ESTRO recommendations. All patients provided
signed informed consent.

Each patient underwent two or three planning CTs with different bladder volumes: empty
bladder (EB), intermediate bladder (IB), and full bladder (FB). One hour before the first IB CT,
the patient had to drink 250 mL of water. Then another 500 mL of water should be consumed
to obtain the FB CT after 20 minutes. For EB CT, the patient emptied her bladder. All CTs
were scanned (Big Bore, Philips) with voxel spacing ranging from 0.87 × 0.87 × 3.00 mm3 to
1.21 × 1.21 × 3.00 mm3. The dimensions range of CT volumes was from 75 × 512 × 512 to
168 × 512 × 512. During the radiation therapy treatment, 5 to 16 CBCT images were acquired
(XVI mounted on a Synergy linac, Elekta) for each patient with voxel spacing of 1.00×1.00×2.00
mm3 and dimensions of 132 × 410 × 410.

All images (i.e., planning CTs and CBCTs) were manually contoured slice-by-slice by one
radiation oncologist. These contours were the primary CTV, including the cervix, uterus, and
upper-vagina, and the rectum, bladder, and bowel bag (including the sigmoid). These delin-
eations were considered as the reference in this study.

5.2.2 CBCT segmentation using deep-learning

The segmentation model was trained using the deep learning-based method nnU-Net, which
has been demonstrated to be efficient in multiple medical image segmentation tasks [16]. NnU-
Net’s automatic configuration runs without human intervention when it is applied to a new
dataset. The nnU-Net focuses on pre-processing, training, inference strategies, and post-processing.
Although there are several methods available in nnU-Net: 2D U-Net (2d), 3D full resolution U-
Net (3d_fullres), 3D low resolution U-Net (3d_lowres) and 3D cascade U-Net (3d_cascade),
we didn’t want to train all the models because the training process is time-consuming. We only
trained nnU-Net 3d_fullres as our base model which has been shown to be one of the best
performing models in many medical image segmentation tasks [17, 16].

All images were cropped to the region of nonzero values with a cropping size of 84×410×410
voxels. The resampling voxel size was the median voxel spacing of the dataset, i.e. 1.00 × 1.00 ×
2.00 mm3. A z-score normalization was applied to each image. In the post-processing procedure,
a connected component analysis was performed to eliminate the detection of spurious false
positives. The model was trained using Pytorch and stochastic gradient descent (SGD) optimizer.
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The initial learning rate was set to 0.01 and decreased according to the ”Poly” scheme [18]. The
loss function was the sum of Dice similarly coefficient and cross-entropy with the same weight.

We randomly divided all 23 patients into four-fold using a cross-validation scheme. Table
5.1 presents the partition of the dataset. Multiple images (i.e. planning and daily images) from
individual patients were not distributed among datasets. The test data was only used to evaluate
the performance of the model in this fold and was not involved in training. nnU-Net further
divided the training data into training and validation sets and performed a five-fold cross-
validation to automatically select the best network configuration. In the end, the model (or
ensemble) which got the best performance was chosen to perform the inference on the test sets
of this fold. The number of epochs during training was 1000 for every fold. The evaluation of
the segmented volumes is described in part 5.2.4. Table 5.2 reports the network configurations
generated by nnU-Net for the considered dataset.

Table 5.1 – Partition of the dataset for the deep learning network training and testing. The
population was randomly separated into four folds using a cross-validation scheme to evaluate
the model performance. Multiple images (i.e. planning and daily images) from individual patients
were not distributed among datasets.

Model #Patient #CBCT volume
Train Test Train Test

1 18 5 216 56
2 17 6 197 75
3 17 6 206 66
4 17 6 199 73

Table 5.2 – Network configurations generated by nnU-Net.
Parameters 3D full resolution U-Net
Normalization Z normalization

Patch size 56 × 192 × 160
Batch size 2

Downsampling strides [[1,2,2],[2,2,2],[2,2,2],[2,2,2],[1,2,2]]
Convolution kernel sizes [[1,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]]

5.2.3 Plan-of-the-day selection

After obtaining the segmentation results for each CBCT image, the following three steps were
performed: (1) Bone-based rigid registration between each pCT with different bladder fillings
(FB, IB, EB) and the daily CBCT to simulate patient repositioning; (2) computation of the
coverage between the CTV of CBCT (CTVCBCT ) and CTV of the CTs (CTVCBCT ) and CTV
of the pCTs (CTVEB, CTVIB,CTVF B); (3) selection of the pCT corresponding to the best
coverage.
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Rigid registration

For each patient, a bone-based rigid registration was performed between each CBCT and
each pCT, using the ROI of the CBCT which was limited to the treated region. In the clinical
setup, the rigid transformation would result from moving the patient between the CT and the
EBRT device with the CBCT. The library Elastix [19] was used on thresholded images to keep
only the bones to estimate the rigid transformation (translation and rotation) with normalized
correlation as the metric. The resulting rigid transformation was visually validated by checking
the bone alignment and was applied to the pCT’s corresponding delineations.

Selection of the PoD

To evaluate the ability of each treatment plan to treat the CTV in its daily position, a
coverage index was computed between the CTVCBCT segmented by the deep learning model
and the different CTV of the patients’s library CTVCT ∈ {CTVEB, CTVIB, CTVF B}:

cov = |CTVCBCT ∩ CTVCT |
|CTVCT |

(5.1)

where |.| is the cardinality of the set. In this way, each CBCT had a coverage value associated
with each of the three pCTs (IB, EB, FB) of the patient. All the three pCTs of the considered
patient were ranked according to the corresponding coverage index. The pCT corresponding to
the highest coverage value was selected as the PoD of the considered treatment fraction.

5.2.4 Evaluation protocol

The data of all the 23 patients described previously were used to evaluate the proposed PoD
selection process. As said previously the rigid registration was visually validated by checking the
bone alignment. However we developed the following protocol to evaluate the segmentation and
the PoD selection methods.

Segmentation evaluation

The segmentation of CBCT images was evaluated using a four-fold cross-validation, con-
sidering the manual expert delineations as the reference. The following geometric metrics were
computed for CTV, bowel bag, rectum, and bladder: DSC, MAD and 95HD (see section 3.4.3).

PoD selection evaluation

For each treatment fraction, the PoD resulting from the proposed automatic process was
compared to the one obtained using the reference delineation of the CTV in the CBCT image.
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Thus, this reference PoD corresponded to the best coverage between the manual delineation of
the CTVCBCT and CTVCT ∈ {CTVEB, CTVIB, CTVF B}.

To consider that multiple treatment plans may provide a satisfying coverage of the target,
a 5% tolerance was applied to the maximum coverage, and the corresponding treatment plans
were also selected.

The accuracy of the PoD selection was determined by calculating the number of automatically
selected PoD that were identical to the reference PoD or included in the selected treatment plans.

5.3 Results

5.3.1 Performance of the segmentation

Table 5.3 reports the mean (range) values of the geometric metrics for the automatic delin-
eations of the observed organs. Figure 5.3 summarizes also these quantitative results as boxplots.
In this figure, the median DSC of primary CTV, bowel bag, rectum, and bladder were 0.79, 0.81,
0.75, and 0.84, respectively. Figure 5.4 shows some visual results of the automatic contouring
for four patients in some axial and sagittal views.

Figure 5.3 – Quantitative segmentation results of CTV (uterus), bowel bag, rectum and bladder
presented as boxplots. (a) DSC = Dice similarity coefficient ; (b) MAD = Mean absolute distance
; (c) HD95 = 95th percentile Hausdorff Distance
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Table 5.3 – Quantitative evaluation results of CBCT segmentation.
Organ DSC MAD (mm) HD95 (mm)
CTV 0.79 (0.42 - 0.94) 2.90 (0.65 - 11.48) 10.49 (3.02 - 46.43)

Bowel bag 0.81 (0.53 - 0.92) 5.22 (2.12 - 12.15) 18.40 (6.12 - 60.43)
Rectum 0.75 (0.30 - 0.91) 3.14 (0.65 - 16.04) 14.19 (2.24 - 78.79)
Bladder 0.84 (0.13 - 0.96) 2.91 (0.61 - 17.9) 9.45 (2.03 - 58.22)

DSC = Dice similarity coefficient; MAD = Mean absolute distance;
HD95 = 95th percentile Hausdorff Distance

Figure 5.4 – Examples of segmentation on CBCT. The contours are represented on the axial
and sagittal views in red, green, yellow and blue for the primary CTV, bowel bag, bladder and
rectum, respectively. DSC: Dice similarity coefficient

5.3.2 Performance of treatment plan selections

Considering the accuracy of strict automatic PoD selection (without the 5% tolerance), an
agreement between the reference PoD and the automatically identified PoD was observed for
91.5% of CBCTs. Thus, in this case, 23 out of 272 tested CBCTs having a suboptimal selected
PoD compared to the reference.

Using the 5% tolerance value for PoD selection, multiple (up to three) pCTs could be selected
as optimal PoD. This resulted in an increased PoD selection agreement to 99.6%, with one CBCT
having suboptimal PoD selection. Figure 5.5 shows the PoD selection on four different patients
corresponding to an agreement between the proposed and selected PoDs. Figure 5.6 illustrates
the only case with suboptimal PoD selection. For this case, the automatic segmentation results
were poor (Dice of CTV segmentation was 0.52), which resulted in the wrong proposed PoD.
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Figure 5.5 – Examples of automatic PoD selection for four patients. (Left) Result of segmenta-
tion and clinical target volumes (CTVs) corresponding to the planning library for PoD selection;
(Right) Automatic and reference CTV segmentations. The cases shown here were selected based
on the following criteria: single selected PoD (Patients 1 and 2); multiple PoD selections due to
the tolerance value of 5% (Patient 3 and 4)

5.4 Discussion

This study aimed at improving the PoD selection for LACC ART on CBCT images. By
simulating the proposed process on 272 treatment fractions, it resulted in an agreement between
the reference PoD and the automatically identified PoD for all fractions except one.

The first step of the process was based on the automatic segmentation of the daily images
using a deep learning network. The resulting average DSC on the 272 CBCT images were higher
than 0.75 for the primary CTV and the three main organs at risk (bowel bag, rectum, and
bladder).

To the best of our knowledge, Only two works in the literature have proposed automatic
segmentation of the cervix in CBCT [14, 15]. Langerak et al. [14] used a multi-atlas-based
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Figure 5.6 – The only case with suboptimal PoD selections. On the left, the segmentation result
and clinical target volumes (CTVs) corresponding to the planning library for PoD selection;
On the right the automatic CTV segmentations. The poor segmentation of CTV resulted in a
suboptimal PoD selection.

segmentation method. In this study, from a total of 224 CBCT, the images corresponding to
low confidence levels were firstly removed, resulting in 187 images and on these images the Dice
values were 0.85, 0.81, and 0.80 for the uterus, bladder, and rectum, respectively. In our study
and without discarding any CBCT image, the obtained DSC values were close to the values of
the Langerak study but with lower values for the CTV and rectum, and higher values for the
bladder. More recently, Beekman et al. [15] compared different deep learning approaches and
showed that the best performances were obtained by a deformation-based registration network
with a mean DSC of 0.80 on the uterus, computed on a test set of 20 CBCT images. In our study,
we obtained similar DSC on 272 CBCT images. Our study and [15] are the only ones using deep
learning for cervix CBCT segmentation. Although 2D and 3D U-Net (or V-Net) networks have
been used on planning CT images [20, 21, 22] with a higher DSC for CTV (0.86 ± 0.08), their
exploitation in CBCT remains challenging because of the lower contrast, the higher noise, but
also because of a much more limited availability of reference segmentation. To our knowledge,
this is the first study exploiting nnU-Net on CBCT images and on the uterine region. It confirms
its good performances which have been already demonstrated on other imaging modalities [16].

In this study, the deep learning model was trained to segment not only the CTV (which is
important for PoD selection), but also the main OARs. Intuitively, a binary segmentation task
(segmenting only CTVs) might be easier than a multi-class segmentation task (segmenting CTVs
and also OARs) and thus might yield better segmentation results. However, in terms of geometric
considerations, multi-class segmentation provides a positional a priori (e.g. the uterus should
be between the bladder and rectum). Such a positional a priori helps the convolutional neural
network to constrain the position of the uterus during segmentation. Preliminary experiments
have validated this assumption, with better results when OARs are included in the segmentation
task.
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The evaluation of the proposed process, not only in terms of segmentation accuracy (e.g.
with Dice score) but also in terms of PoD selection, is of clinical interest since this PoD selection
is the most important and difficult step in this adaptive strategy.

In the current clinical practice, the treatment plan is selected visually, resulting in poten-
tially high inter-observer variations [12]. The identification of the optimal treatment plan appears
particularly challenging in the context of complex deformations and/or limited image quality.
Langerak et al. [14] proposed a PoD selection, after CBCT segmentation, by comparing the seg-
mented bladder volume to the preoperative planning library (empty and full bladder). However,
the shape of the CTV may be influenced by other factors than bladder filling alone, including
rectum filling, tumor shrinkage, or non-moving cervix. The PoD selection should thus ideally be
based primarily on the shape of the target.

In this paper, the criteria used to select the PoD was the coverage of the daily CTV by the
CTVs corresponding to the different planning CTs. It enabled to consider directly the treatment
of the target instead of a surrogate of the target position. Moreover, selecting the best plan as
the one providing the best CTV coverage is the approach considered in the literature [12, 9].
Improving the target coverage should decrease the dose received by the OARs since the high
doses would be focused on the CTV. On the other hand, since the OARs are segmented in
the proposed process, it is technically possible to consider them in the PoD selection. However,
this would require the definition of a decision process, or a metric, that takes into account and
weights the different criteria (CTV and OARs coverage).

In our study, only one case (out of 272) resulted in a wrong PoD selection (Figure 5.6).
The particularity of this case was that of a patient who had a relatively small uterus that was
therefore poorly segmented. We believe that in a clinical context, this kind of result would be
easily visually detected. The treatment plan could then be manually selected in the library or a
backup plan could be used as proposed in [9].

Online adaptive radiotherapy has recently undergone significant improvements, especially
with the development of MRI-linac and CBCT-based online optimization. Concerning the lat-
ter, although promising, only very few studies have considered this kind of systems to treat
cervix cancer patients [23, 24]. Actually, the complete re-optimization workflow faces some chal-
lenges, especially related to the precise segmentation of all the considered organs on images with
limited quality. If the proposed study also includes CBCT segmentation, it showed that minor
segmentation uncertainties, which may be unacceptable for re-optimization, may have no impact
on PoD selection. Concerning MRI-linac, very few studies have been proposed on online adap-
tation for cervix cancer [23], except on the precision of dose calculation [25]. Some challenges
remain in the implementation of daily optimization (segmentation, pseudo-CT generation, re-
optimization, and quality assurance). Long treatment time ( 60 min) may also be a limitation for
a treatment in which hypo-fractionation is difficult when nodes have to be irradiated. Moreover,
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the combination of online adaptation with PoD strategies may be of interest to optimize the
clinical workflow and limit treatment times.

Our study still has some limitations. The PoD selection criterion was only based on geometri-
cal coverage. It could be interesting to take into account dosimetric criteria, which is challenging
since it would require computing the dose distribution on the CBCT images. Another limitation
is related to the limited number of patients in this study. The proposed workflow will need to
be evaluated on a larger cohort. In particular, the evaluation of the segmentation network will
need to be further investigated, which may require improving the robustness of the model by
training it with new data. Finally, the PoD ART strategy based on multiple planning CTs has
shown some limitations, and some more complex strategies have been proposed to improve the
libraries. For example, an ”evolutive library” strategy has been proposed, enriching the library
by including some CBCT anatomies into the library when the daily clinical target volume (CTV)
shape differed from those in the library [26]. The inclusion of modeled anatomies resulting from
population analysis was also proposed [27]. All these strategies are based on daily PoD selec-
tion, so the possibility of combining the proposed PoD selection method with them should be
investigated.

5.5 Conclusion

This work proposed and evaluated an automatic workflow to select PoD for LACC ART.
Based on CBCT image segmentation using a deep-learning method, it selects the optimal treat-
ment plan based on daily CTV geometrical coverage. The evaluation on 272 treatment fractions
showed a high agreement with the reference obtained by expert delineation. The proposed work-
flow should be further evaluated in a clinical workflow and on a larger number of patients.
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CONCLUSIONS AND PERSPECTIVES

Conclusion

Medical image segmentation is crucial for the diagnosis and analysis of diseases, and in the
clinical setting, since detailed manual annotation of MR images and CBCT images is difficult
and is medical expertise time consuming. In this thesis, we focused on the algorithmic applica-
tion of image segmentation of the uterine region in the treatment of uterine fibroids and cervical
cancer diseases. In particular, we developed two patient-specific deep learning-based segmen-
tation methods of fibroids and surrounding organs from MRI data for preoperative planning
of HIFU treatments and an deep-learning-based algorithm for the segmentation of the uterus
and the surrounding organs from CBCT followed by an optimal choice of the plan-of-the-day in
adaptive radiotherapy. For this, we made the following contributions in this Thesis:

1. HIFUNet has been proposed to address the automatic segmentation of uterine MR images
before HIFU treatment. Fully automatic and accurate segmentation of the uterus, uterine
fibroids, and spine in the uterine region was performed. This was the first attempt of
deep learning method for multi-class segmentation in the uterine region, and according
to our evaluation the proposed algorithm was more robust and accurate than the previous
traditional image segmentation methods. Unlike other CNN segmentation networks that
use small convolutional kernels, the large convolutional kernels with atrous in GCN and
DMAC were used in HIFUNet to expand the valid receptive field, which enabled the
network to extract the features of the segmentation target in the complex medical image
background of the scene. Experimental results indicated that HIFUNet was really effective
in extracting uterine fibroids of different sizes and numbers within the framework of
preoperative planning of HIFU treatment.

2. PLRNet, a semi-supervised learning-based pseudo-label refinement network, has been
proposed to solve the problem of the scarcity of labeled data for deep-learning-based
medical image segmentation algorithms. Unlike the HIFUNet, which requires a large
amount of labeled data to segment the uterine region, PLRNet only requires a small
amount of labeled and unlabeled data for training. First, we used a large convolutional
kernel network with wavelet pooling operation to efficiently extract features from MR
images even when the number of labeled data is small and the pre-trained pseudo la-
bels are coarse and contain more noise. The use of large convolutional kernels allowed
so the effective extraction of abstract features. PLRNet uses DWT and IDWT instead
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of downsampling and upsampling operations in CNN to preserve and recover more de-
tailed information, which can maintain object structure and suppresses data noise during
network inference. In addition, the semi-supervised method depends on pseudo-labels
obtained from unlabeled data and fed back into the training. However, the integration of
these pseudo-labels depends on the confidence we have in them. We have defined an adap-
tive process for defining a confidence threshold. This process allowed getting rid of either
a manual definition or after an extensive grid search and also alleviated the threshold
selection dilemma in multi-class segmentation tasks with different segmentation difficulty.
Finally, based on Mixup, a data enhancement method to solve the overfitting problem
caused by the difficulty of labeled data scarcity was proposed. For this, a feature-aligned
mixup module in each hidden layer of the network was used to effectively enhance the
robustness and generalizability of the network.

3. An automatic segmentation and plan-of-the-day framework for adaptive radiotherapy
for the treatment of cervical cancer was proposed. The annotation of CBCT images
in adaptive radiotherapy is difficult and time-consuming, and the CBCT segmentation
results based on CBCT need to be compared with the preoperative CT images to select
the daily radiotherapy plan. In this thesis, the proposed automatic framework quantified
the similarity results of CBCT after automatic segmentation with the corresponding
organs in the preoperative CT images. First, the segmentation of nnU-Net was used for
CBCT images, which is the first attempt to use nnU-Net on CBCT images; after that
and after a rigid registration between CT and CBCT, the overlap size was calculated
from the CTV in the registered CT images and the CTV in CBCT. A tolerance of 5%
was also set to avoid errors due to automatic segmentation. The overlap size was selected
from the CTV in CBCT. The CT image with the largest overlap with the CTV of CBCT
is selected as the dose reference for radiotherapy on that day. This framework was the
first attempt of the automatic selection of the plan-of-the-day in adaptive radiotherapy.

The above three works on image segmentation have been used in applications in the treat-
ment of benign or malignant uterine tumors, including MR and CBCT, fully supervised to
semi-supervised segmentation and non-invasive treatment to radiotherapy. These methods have
achieved competitive advantages in uterine application and have potential to be applied to other
medical image segmentation tasks as well.

Prospects for future work

The segmentation methods presented in this thesis have achieved good results in image
segmentation either on preoperative MR for HIFU treatment or CBCT for adaptive radiotherapy,
however, there are still some image processing issues in both treatments that are worth exploring
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and solving. We summarize the following future work that should be done.

1. Ultrasound segmentation problem. In HIFU treatment, intraoperative ultrasound images
are used in the clinic to guide the surgical procedure. However, these images are much less
rich in information than MRI images. Therefore, the intraoperative ultrasound images
must be merged with the preoperative MR images. Prior to registration, the ultrasound
images must be segmented. The segmentation of ultrasound images is a difficult problem
to solve because of the speckle nature of transabdominal ultrasound images in HIFU
surgery. The most commonly used methods are to perform some preprocessing to at-
tenuate the noise. However, it has been shown that speckle texture can also be used as
an effective feature for image segmentation, which contains information about the mi-
crostructures of the tissues. One approach is to model the spatial distribution of speckle,
such as Rayleigh distribution, Rician distribution, etc., to characterize the texture of ul-
trasound images and then use the texture analysis results for segmentation. Since the size
of speckle depends on its distance from the probe, and for circular probes, the speckle
noise has a circular distribution and its orientation depends on its position in the image,
the relevant texture analysis methods should use features that are independent of the
size and orientation of the speckle as much as possible, which will be an effective way to
improve the robustness of ultrasound image segmentation methods. The future plan is
to develop scattering networks based on orthogonal moments and invariants to segment
ultrasound images in HIFU surgery.

2. Multimodal image registration problem. In adaptive radiotherapy, cross-modal deforma-
tion registration of CBCT to CT images is also required in order to calculate the cumula-
tive dose. Due to the poor image quality of CBCT, it has been found in previous work that
it is difficult to perform cross-modal image registration directly using a deep-learning-
based image registration network. Therefore, the technique of deep learning-based image
synthesis could be considered in the future to transform the multimodal registration task
into a single-modal registration task. A cycle-consistent generative adversarial neural net-
work unsupervised used to build the style transfer framework to achieve an unsupervised
end-to-end registration network. A bi-directional process would be added to the gener-
ative adversarial network that would take the source domain image input, perform a
game of generators and discriminators, and finally output data under the target domain
modality. The aim would be to solve the dependence of the previous method on paired
datasets by the cyclic consistency in this bidirectional process. The neural network could
realize the conversion generation between CBCT and CT images without changing the
image structure, thus simplifying the multimodal registration problem of medical images
into a simpler mono-modal registration problem.

3. Collaborative registration methods for multimodal images. Despite the use of a cycle-
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consistent generative adversarial neural network to build the required style transfer frame-
work, the network still could not guarantee the structural consistency between the input
image and the synthesized image. The output image from the generator may have a cer-
tain degree of scaling and distortion, which does not destroy the cycle-consistency of the
network and the registration results could appear to be fully valid, but would not main-
tain the original anatomical morphology of the uterine image. In order to solve the above
problems and to address the large spatial resolution gap between CT and CBCT images,
we add Modality Independent Neighborhood Descriptor (MIND) to the style transfer
framework. MIND uses non-local small block-based self-similarity to define, which relies
on the structure of local images rather than intensity values and can better measure the
similarity of CBCT to CT. Therefore, these images should first be mapped into a common
structural feature space by extracting modality-independent structural features, and then
structural consistency should be measured in this feature space. A direct constraint would
so be formed on the input and synthetic images in the generative adversarial network
to ensure the structural consistency between these two images and could so improve the
accuracy of the registration. In addition, spectral normalization could be used to stabilize
the training process and avoid problems such as pattern collapse of the network during
training.
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Titre : Méthodes de segmentation d’images basées sur l’apprentissage profond dans le traite-
ment des tumeurs bénignes et malignes de l’utérus
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Résumé : Cette thèse porte sur l’aide à la thé-
rapie des fibromes utérins (tumeurs bénignes
mais pouvant être douloureuses et entraîner
des problèmes de fertilité) par ultrasons fo-
calisés haute intensité (HIFU) et des cancers
du col de l’utérus par radiothérapie adaptative
(ART). Dans les deux cas, l’annotation pré-
cise des lésions dans la région utérine et des
organes à risque environnants est une partie
essentielle du diagnostic et de la planification
du traitement. Dans cette thèse, nous avons
proposé, d’une part deux outils de segmen-
tations automatiques par apprentissage pro-
fond de l’utérus, des fibromes et de la co-
lonne vertébrale en IRM préopératoire du trai-

Title: Deep learning-based image segmentation methods in the treatment of benign and ma-
lignant uterine tumor diseases

Keywords: Uterine fibroids, cervical cancer, image segmentation, deep learning, computer-

assisted therapy.

Abstract: This thesis deals with the therapy
of uterine fibroids (benign tumors that can
be painful and cause fertility problems) by
high-intensity focused ultrasound (HIFU) and
of cervical cancers by adaptive radiotherapy
(ART). In both cases, the accurate annotation
of lesions in the uterine region and surround-
ing organs at risk is an essential part of di-
agnosis and treatment planning. In this the-
sis, we proposed, on the one hand, two tools
for automatic deep learning-based segmenta-
tions of the uterus, fibroids and spine in pre-

operative MRI in HIFU therapy: 1) HIFUNet,
a novel fully-supervised convolutional neural
network and 2) PLRNet, a method based on
semi-supervised learning that aims to achieve
segmentation results comparable to fully su-
pervised methods with only a small amount of
annotated data. On the other hand, for cervical
cancer CBCT-guided ART, we designed an au-
tomatic plan-of-the day selection strategy that
includes a deep learning-based CBCT image
segmentation module followed by a day plan
selection from a library of treatment plans.

tement  HIFU:  1)  HIFUNet,  un  nouveau  ré-
seau  neuronal  convolutionnel  entièrement  su-
pervisé  et  2)  PLRNet,  une  méthode  basée  sur 
de  l’apprentissage  semi-supervisé  qui  vise  à 
obtenir  des  résultats  de  segmentation  com-
parables  aux  méthodes  entièrement  supervi-
sées  avec  seulement  une  petite  quantité  de 
données  annotées.  D’autre  part,  nous  avons 
conçu  une  stratégie  de  détermination  du  plan  
du  jour  pour  l’ART  guidée  par  CBCT  pour  le 
cancer  du  col  de  l’utérus  qui  comprend  un  mo-
dule  de  segmentation  d’images  CBCT  basée 
sur  de  l’apprentissage  profond  suivi  d’une  sé-
lection  du  plan  du  jour  dans  une  bibliothèque  
de  plans  de  traitement.
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