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A3 -ANALISI MATEMATICA, PROBABILITÀ' E STATISTICA MATEMATICA

This work aims to develop a neurogeometric model of stereo vision, based on cortical architectures involved in the problem of 3D perception and neural mechanisms generated by retinal disparities. We apply it to reproduce phenomenological experiments as well as to process 3D images, identifying three-dimensional visual percepts in space, solving the correspondence problem.

First, we provide a sub-Riemannian geometry for stereo vision. This proposal is inspired by the work on the stereo problem by Li and Zucker in [START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF], and it uses sub-Riemannian tools introduced by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] for monocular vision. In particular, we present a mathematical interpretation of the neural mechanisms underlying the behavior of binocular cells, that integrate monocular inputs, by introducing a suitable cortical fiber bundle. The natural compatibility between stereo geometry (stereo triangulation [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF]) and neurophysiological models (binocular energy model [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF]) shows that these binocular cells are sensitive to position and orientation. Therefore, we model their action in the space

M = R 3 × S 2
θ,ϕ equipped with a sub-Riemannian metric. Integral curves of the sub-Riemannian structure shed light on the computations underlying the correspondence problem. They encode not only the variables of the space, but also curvature and torsion, which are necessary for the 3D matching. Moreover, a fan of these curves can model the 3D analog of the psychophysical association fields of Field, Heyes and Hess [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF], for the 3D process of regular contour formation, studied by psychophysical experiments in [START_REF] Hess | Contour integration across depth[END_REF][START_REF] Hess | Integrating contours within and through depth[END_REF][START_REF] Khuu | The perception of threedimensional contours and the effect of luminance polarity and color change on their detection[END_REF]. This illustrates how good continuation in the world generalizes good continuation in the plane, as conjectured in [START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF].

As a second step, we study the constitution of 3D perceptual units in the three-dimensional scene generated from the sub-Riemannian geometry. Following i [START_REF] Barbieri | A cortical-inspired geometry for contour perception and motion integration[END_REF], these perceptual units emerge as a consequence of the random corticocortical connection of binocular cells. We present the stochastic process at the basis of this phenomenon, by considering an opportune stochastic version of the integral curves. We generate a family of kernels through the forward Kolmogorov operator associated to the generated stochastic process, and approximate them using a Monte Carlo simulation-based method.

These kernels represent the probability of interaction between binocular cells and are implemented as facilitation patterns to define the evolution in time of neural population activity at a point ξ ∈ M. This activity is usually modeled through a mean field equation.

The existence and uniqueness of a solution classically follow from the Cauchy problem in Banach spaces, while the stability analysis is performed using the Lyapunov method, leading to the consideration of the associated eigenvalue problem.

We show that three-dimensional perceptual units naturally arise from the discrete version of the eigenvalue problem associated to the integro-differential equation of the population activity.

Résumé en français

Ce travail vise à développer un modèle neurogéométrique de la vision stéréo, basé sur les architectures corticales impliquées dans le problème de la perception 3D et les mécanismes neuronaux générés par les disparités rétiniennes. Nous l'appliquons pour reproduire des expériences phénoménologiques ainsi que pour traiter des images 3D, en identifiant des percepts visuels tridimensionnels dans l'espace, en résolvant le problème de correspondance (the correspondence problem).

Tout d'abord, nous proposons une géométrie Sous-Riemannienne pour la vision stéréo. Cette proposition s'inspire du travail sur le problème de la stéréo effectué par Li et Zucker dans [START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF], et elle utilise les outils Sous-Riemanniens introduits par Citti et Sarti dans [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] pour la vision monoculaire. En particulier, nous présentons une interprétation mathématique des mécanismes neuronaux qui sous-tendent le comportement des cellules binoculaires, qui intègrent les entrées monoculaires, en introduisant un espace fibré corticales approprié. La compatibilité naturelle entre la géométrie stéréo (triangulation stéréo [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF]) et les modèles neurophysiologiques (modèle d'énergie binoculaire [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF]) montre que ces cellules binoculaires sont sensibles soit à la position et soit à l'orientation. Nous modélisons donc leur action dans l'espace M = R 3 × S 2 θ,ϕ équipé d'une métrique Sous-Riemannienne.

Les courbes intégrales de la structure Sous-Riemannienne éclairent les calculs qui sous-tendent le problème de correspondance. Elles codent non seulement les variables de l'espace, mais aussi la courbure et la torsion, qui sont nécessaires pour résoudre la correspondance 3D. De plus, un éventail de ces courbes peut modéliser l'analogue 3D des champs d'association psychophysiques de Field, Heyes et Hess [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF] ; il s'agit d'un processus de formation de contours réguliers, étudié par des expériences psychophysiques dans [START_REF] Hess | Contour integration across depth[END_REF][START_REF] Hess | Integrating contours within and through depth[END_REF][START_REF] Khuu | The perception of threedimensional contours and the effect of luminance polarity and color change on their detection[END_REF]. Ceci illustre comment une bonne continuation dans le monde généralise une bonne continuation en 2D, iii comme conjecturé dans [START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF].

Ensuite, nous étudions la constitution d'unités perceptuelles 3D dans la scène tridimensionnelle générée à partir de la géométrie sub-riemannienne. Suivant [START_REF] Barbieri | A cortical-inspired geometry for contour perception and motion integration[END_REF], ces unités perceptuelles émergent comme une conséquence de la connexion cortico-corticale aléatoire des cellules binoculaires. Nous présentons le processus stochastique à la base de ce phénomène, en considérant une version stochastique opportune des courbes intégrales. Nous générons une famille de solutions fondamentales pour l'opérateur de Kolmogorov direct associé au processus stochastique généré, en les approximant à l'aide d'une méthode basée sur la simulation de Monte Carlo.

Cette famille représente la probabilité d'interaction entre les cellules binoculaires et est mise en oeuvre comme un modèle de facilitation pour définir l'évolution dans le temps de l'activité de la population neuronale à ξ ∈ M. Cette activité est généralement modélisée par une équation de champ moyen.

L'existence et l'unicité d'une solution découlent classiquement du problème de Cauchy dans les espaces de Banach. En revanche, l'analyse de stabilité est effectuée à l'aide de la méthode de Lyapunov, ce qui conduit à la prise en compte du problème des valeurs propres associé. Nous démontrons que les unités perceptuelles tridimensionnelles apparaissent de façon naturelle, à partir de la version discrète du problème des valeurs propres, associé à l'équation intégro-différentielle de l'activité de la population.

Chapter 1

Introduction

In this thesis, we present a mathematical model of the neural mechanisms underlying the perception of three-dimensional visual stimuli. Since differential geometric tools are used in this interpretation, we speak about neurogeometry of stereo vision, as the word neurogeometry was introduced by Jean Petitot in [START_REF] Petitot | Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF] to refer to geometrical models of the functional architecture of primary visual areas, which include mathematical models concerning the neural origin of the perceived space.

Precisely, stereo vision systems recover the 3D images from projections onto the two retinae, projections which are slightly different, due to the horizontal separation of the eyes. These differences are usually referred to as disparities and they are the main clues for 3D visual perception. Our main focus will be on horizontal disparity d, defined by introducing a set of coordinates:

x = x L + x R 2 , y = y L , d = x L -x R 2 (1.1)
with (x L , y L ) left retinal coordinates, (x R , y R ) right retinal coordinates, and noting that y L = y R since we are projecting onto aligned parallel planes. This set of coordinates is usually referred to as the cyclopean coordinate, because we perceive the world like we have a single eye in the middle of the head, [START_REF] Julesz | Foundations of cyclopean perception[END_REF].

The three-dimensional world must be reconstructed from two-dimensional retinal projections. The major difficulty is understanding how to pair points in the left retinal plane with corresponding points in the right retinal plane. This inverse optics problem is fundamentally underdetermined because a given pair of retinal images coincides with many distal stimuli [START_REF] Pizlo | Perception viewed as an inverse problem[END_REF][START_REF] Bruno | Introduzione alla percezione visiva: come facciamo a vedere[END_REF], leading to the stereo cor-respondence problem. The principal hints used (by the brain or computer vision algorithms) to reconstruct the 3D world and thus perceive the visual scene are precisely the disparities.

The brain processes the visual signals coming from the two eyes along the visual pathway. In particular, the integration of the (visual) binocular signals is generally thought to occur in the primary visual cortex. By studying cells stimulated by the depth feature in V1, Ohzawa et al. in '99 [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF] found that these cells perform a non-linear integration of left and right monocular cells that are selective for orientation. A classic model of binocular cell behavior based on physiological experiments is the binocular energy model (BEM) first presented in [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF],

which encodes disparities through the receptive profiles of simple cells, leading to the notion of position and phase disparities [START_REF] Jaeger | Encyclopedia of Computational Neuroscience[END_REF]. However, Read and Cumming

proposed in [START_REF] Read | Sensors for impossible stimuli may solve the stereo correspondence problem[END_REF], building upon [START_REF] Anzai | Neural mechanisms for encoding binocular disparity: Receptive field position versus phase[END_REF], that phase disparity neurons tend to be strongly activated by false correspondence pairs. Therefore, it is widely concluded, the most relevant disparity in the receptive fields is the position alone.

This, however, neglects the orientation difference between the two eyes [START_REF] Nelson | Discrimination of orientation and position disparities by binocularly activated neurons in cat straite cortex[END_REF],

disregarding the orientation disparity. Although there are attempts to extend the energy model to incorporate binocular differences in receptive-field orientation [START_REF] Bridge | Modeling V1 neuronal responses to orientation disparity[END_REF], they are limited. The geometrical model we will present incorporates orientation differences directly.

The goal of this work is to propose a neurogeometric model for the corticalinspired geometry underlying the stereo vision, based on the encoding of position and orientation differences in the two eyes. The encoding of features in the early stages of the visual process is the focus of neuromathematical models, developed from the work of Hoffmann [Hof89] and Koenderink-van Doorn [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF]. Our neuro-geometrical model considers essential the geometric frameworks used for the descriptions of the functional architecture of V1 proposed by Petitot and Tondut [START_REF] Petitot | Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF], Bresslof and Cowan [START_REF] Bressloff | The functional geometry of local and horizontal connections in a model of V1[END_REF], Citti and Sarti [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], Zucker [START_REF] Zucker | Differential geometry from the Frenet point of view: boundary detection, stereo, texture and color[END_REF], and many others works [Pet08, DBRS13, SCS10a, SC15, SCP07].

The starting point is the study of the problem from both technical (stereo triangulation) and neural (binocular energy model) perspectives. If we assume that a three-dimensional stimulus is a curve γ : R -→ R 3 , we can use the classical tools of stereo geometry to determine both the position and the direction of γ given the corresponding retinal points. Similarly, binocular neurons encode the orientation of the three-dimensional scene as a first-order information of the stimulus: the binocular cells naturally recognize the unitary tangent direction γ to the 3D spatial stimulus γ, which can be described by the parameters n = n(θ, ϕ) of S 2 . This natural compatibility between neural elements and stereo geometry allows us to suitably define the space of stereo cells as the manifold of positions and orientations

M = R 3 S 2 .
The coupling of positions and orientations, as already noted by Duits and Franken in [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF], allows to endow the manifold with a sub-Riemannian structure by using left-invariant vector fields of SE(3) acting on M, thus defining the horizontal connectivity for the space. This action is quite natural since M is a quotient of SE(3) by the one-parameter subgroup {0}×SO(2). Under these conditions, the sub-Riemannian structure on M can be expressed locally by considering Curvature and torsion of the restriction of the integral curves (1.2) in R 3 are expressed in terms of the coefficients c 1 , c 2 ∈ R:

k = c 2 1 + c 2 2 , τ = c 2 1 -c 2 2 k 2 cotan ϕ (1.3)
Planar curves of this family reduce to circular arcs, and are compatible with the integral curves of the monocular model proposed by Citti-Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. Also helices in the direction of depth belong to the family (1.2), introducing a geometrical setting in which the curves conjectured by Alibhai-Zucker in [AZ00] are natural.

These curves generalize to the three-dimensional case the Gestalt law of good continuation, one of the laws underlying the formation of percepts in space and introduced in seminal psychological works such as [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF][START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF][START_REF] Koffka | Principles of gestalt psychology (nueva york, harcourt, brace &co)[END_REF][START_REF] Koffka | Principles of Gestalt psychology[END_REF][START_REF] Kohler | Gestalt psychology[END_REF]. The law of good continuation states that elements that are aligned in space tend to be perceived as belonging to the same perceptual unit. How the visual system encodes this regular contour formation principle was theorized by Field, Hayes and Hess in [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF] through psychophysical experiments for the bi-dimensional case. They introduced the concept of association field, which essentially describes the pattern that determines whether stimuli can be associated with the same perceptual unit in terms of position and orientation: a stronger correlation characterizes mainly aligned or co-circular elements.

The generalization of the 3D process of regular contour formation has been generalize to the three-dimensional case the concept of alignment and co-circularity introduced by Field, Hayes and Hess [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF] in the two-dimensional case. They introduce a theory called 3D relatability which basically imposes conditions on edges' orientations in space. Moreover, they propose that the strength of the relatable edges in co-planar planes with the initial edge must meet the relations of the bi-dimensional association fields. The properties of the curves that are suitable for connecting these relatable points have been investigated in [HHK97, KHK16, DW14, DW15], and they are described as being smooth and monotonic. We model associations underlying the 3D perceptive organization with the family of integral curves (1.2). These curves satisfy the above properties and locally connect the fan of associations generated by the geometry of 3D relatability.

The extension of the law of good continuation and its formalization through the concept of association field makes it possible to identify the visual units in 3D space. The first step for understanding this identification is to consider the stochastic counterpart of the involved integral curves. These are assumed to describe the interactions between the (binocular) cells involved. The stochastic process underlying this phenomenon is described by a stochastic differential equation:

d Γ(t) = Y R 3 ,Γ(t) d t + λ(Y θ,Γ(t) , Y ϕ,Γ(t) ) d B(t), λ ∈ R, (1.4) 
with B(t) 2-dimensional Brownian motion. The probability of reaching a point ξ, starting from a point ξ along these curves has a (time-independent) density:

{J λ (ξ, ξ )} λ∈R , (1.5) which coincides with the (time-integrated) fundamental solution of the forward Kolmogorov equation associated to (1.4) with operator

L = -Y 3 + λ(Y 2 θ + Y 2 ϕ ) (1.6)
written in terms of the chosen vector fields. These PDEs, in principle very difficult to deal with, have been solved exactly in [START_REF] Portegies | New exact and numerical solutions of the (convection-)diffusion kernels on SE(3)[END_REF][START_REF] Duits | Fourier transform on the homogeneous space of 3D positions and orientations for exact solutions to linear pdes[END_REF] using Fourier transforms and validated with numerical Fourier methods and Monte-Carlo simulations in [START_REF] Duits | Fourier transform on the homogeneous space of 3D positions and orientations for exact solutions to linear pdes[END_REF]. The latter one is the method we implement, in order to follow the approach presented in [START_REF] Barbieri | A cortical-inspired geometry for contour perception and motion integration[END_REF] based on the stochastic integral curves of the sub-Riemannian structure.

The evolution of a state of a population of cells has been first modeled through mean field equations by Wilson-Cowan [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF][START_REF] Wilson | A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue[END_REF] and Amari [START_REF] Amari | Characteristics of random nets of analog neuron-like elements[END_REF], then extended by Ermentrout and Cowan in [START_REF] Ermentrout | Temporal oscillations in neuronal nets[END_REF][START_REF] Ermentrout | Large scale spatially organized activity in neural nets[END_REF] and by Bresslof and Cowan in [BCG + 02, BC03]. Other modified models that take into account the delay of the cortex are proposed by Faye and Faugeras in [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF].

Following the work of Sarti and Citti [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of V1[END_REF], the result of the propagation along the connectivity of the visual impulse can be described, without considering the delays for the transmission of the signal, by the following integro-differential equation in the 3D perceptive space of positions and orientations: da(ξ, t) dt = -a(ξ, t) + µJ λ (ξ, ξ )a(ξ , t)dξ + h(ξ, t), in M (1.7)

where ξ ∈ M , h(ξ, t) is the feedforward input, µ ∈ R. The existence and uniqueness of a solution classically follow using instruments of functional analysis, recasting equation (1.7) as a Cauchy Problem.

Stability analysis is performed through the Lyapunov method applying the results of Faye-Faugeras [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF] in our setting. The existence of a stable steady state of (1.7) leads to an eigenvalue problem. In analogy with the work of Perona and Freeman in [START_REF] Perona | A factorization approach to grouping[END_REF], we show that the eigenvectors associated with the largest eigenvalues encode the greater salience of objects in the analyzed visual scene, leading to the identification of the perceptual units in space. An opportune normalization has been introduced to improve the performance of the affinity matrix in [START_REF] Meilă | A random walks view of spectral segmentation[END_REF], with the introduction of the transition matrix of a Markov chain. In this setting, stable solutions are computed as eigenvectors of this matrix, and they represent perceptual units in the three-dimensional visual scene.

The thesis is organized as follows:

Chapter 2 starts by briefly reviewing the basis underlying visual sensory perception. We first describe the visual cortex, introducing the visual pathways and concentrating on the monocular and binocular organization of neurons in the primary visual cortex V1. Then, we present the perceptual phenomena that govern the formation of perceptual units in space, investigating the Gestalt laws, with particular attention to the law of good continuation and its neural formalization through the introduction of the notion of association field by Field, Hayes and

Hess in [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF].

Chapter 3 provides a background for the stereo problem. First, we introduce classical stereo geometry. Then, we study neural models proposed for describing the behavior of binocular cells, introducing the classical binocular energy model.

Finally, presenting the constraints that are usually imposed for solving the stereo correspondence problem, we conclude with the description of our main reference model for the solution of the stereo problem: the proposal of Zucker et al. in [START_REF] Alibhai | Contour-based correspondence for stereo[END_REF][START_REF] Li | A differential geometrical model for contour-based stereo correspondence[END_REF][START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF].

Chapter 4 gives a presentation of the main mathematical tools, definitions, and notions of sub-Riemannian geometry used to develop geometrical models for the functional architecture of the primary visual cortex. We present the notions of fiber bundles, integral curves, Lie groups and algebras, sub-Riemannian manifolds. Finally, we describe its applications to vision, presenting the sub-Riemannian model for monocular cells selective for orientation introduced by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF].

Chapter 5 contains our first original contribution. Starting from binocular receptive profiles, we introduce the neuro-mathematical model for binocular cells.

First, we define the cortical fiber bundle of binocular neurons, followed by the differential interpretation of the binocular profiles in terms of the neurogeometry of the simple cells. Then, we give a mathematical definition of the manifold R 3 S 2 with the sub-Riemannian structure we choose and we study its integral curves and the properties of these curves in relation to the notion of torsion and curvature. Finally, we proceed to the validation of our geometry with respect to biological and psychophysical phenomena present in literature. Integral curves model neural connectivity, and they can be related to the geometric relationships from psychophysical experiments on perceptual organization of oriented elements in R 3 , generalizing the concept of an association field in 3D.

Chapter 6 deals with the individuation of three-dimensional perceptual units in the visual scene. We start with the introduction of a stochastic model for cortical connectivity, considering the stochastic differential equation (1.4). We compute its probability density through the fundamental solution of the generator of the associated forward Kolmogorov operator. Numerical implementation of the kernel is performed via a Monte Carlo simulation. Then, we introduce the neural activity of the population via an integro-differential equation, studying the existence and uniqueness of the solution through a Cauchy problem in Banach spaces, and we perform stability analysis using a variation of the Lyapunov method introduced in [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF]. Finally, we see how the discretization of the problem leads to spectral clustering. We perform some numerical experiments to validate our algorithm, and we conclude with a comparison with Gaussian type kernel to emphasize the role of our chosen metric.

The last Chapter is devoted to conclusions.

Chapter 2

Neurophysiology and psychophysics of vision

In this chapter we briefly give an introduction to the basis of visual sensory perception. Let us first clarify that perception does not necessarily coincide with sensation: sensation is the registration of the physical stimuli on the sensory receptors and perception is the process of creating a conscious perceptual experience from sensory input. We first summarize a background on the main structures of the cortical areas involved in the vision process, with particular attention devoted to the early visual pathways and the primary visual cortex. Then, we investigate how the stimuli in the outside world become a perceptual experience.

Contents

2.1 The cerebral cortex and the (early) visual pathway . . 

The cerebral cortex and the (early) visual pathway

The visual system begins to process the real world by converting the light entering the eye into a neural signal. This process is called transduction and can be interpreted in terms of pixelation of the external stimulus. The generated action potentials are conveyed through the optical nerve in the lateral geniculate nucleus (LGN), and then they spread in the main visual sensory areas. In the following, we review this procedure. 

Retina and LGN

The neural mechanisms involved in the visual system originate in the retina, the first region where the light arrives from entering through the eye.

Anatomically, the retina has many layers of brain tissue, in particular, the vertebrate retina is inverted so light has to pass through layers of neurons (as for example ganglion and bipolar cells), before reaching the photosensitive sections of Then, the signals coming from ganglion (or bipolar) cells are fed to the brain, broadcasted into the optical nerve, which transmits the visual information to the lateral geniculate nucleus (LGN). The LGN is a bilateral1 structure in the thalamus that relays information from the optic nerve to (visual) sensory processing cortical areas. The most important area is the primary visual cortex, where most of the retinal output first arrives.

The primary visual cortex V1

The primary visual cortex receives input from the LGN, it is responsible for the early visual processing, and it is the most widely studied visual area: this is why it is referred to by different names in different contexts. For instance, we recall here -primary visual cortex V1 : the position of the area along the flow of information in the visual system;

-striate cortex: the way the brain cells in this area look under certain conditions;

-area 17 and BA 17 : area's position on Brodmann charts.

Anatomically, as shown in Figure 2.1.1, the primary visual cortex is a bilateral structure in the occipital lobe of the brain: there is one in the left hemisphere, which receives inputs from the right visual field, and there is one in the right hemisphere, which receives inputs from the left visual field. The two sides of V1 are connected via the corpus callosum. Moreover, V1 is divided into 6 horizontal layers with a characteristic distribution of inputs and outputs across layers [START_REF] Douglas | Neocortex[END_REF].

The most important typical feature it is its high organization: the anatomical structure can be correlated directly with its functions, as we will see in the next paragraphs.

Retinotopic organization

The propagation of the visual signal from the retina to the visual cortices is performed through the optical nerve. The induced map from the retina to the cortex respect the topographic organization of the retina: adjacent locations on the retina project to adjacent neurons in V1 by a point-by-point relationship, through a topographic map, which is maintained in the LGN. This phenomenon goes under the name of retinotopy. This map is not isotropic: some regions of the retina get to take up a much greater proportion of V1 than others. This feature is called cortical magnification: there is more space in the cortex devoted to some sensory receptors than to others.

Different types of neurons

Neurons that populate V1 can be of different types. Hubel and Wiesel in [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF] discovered particular families:

• simple cells: neurons characterized by a strong push-pull antagonism built in terms of elongated, adjacent ON and OFF subregions that have a mutually suppressive influence. They respond to stimuli with particular orientations within their receptive field.

• complex cells: neurons that also respond optimally to stimuli with particular orientations. But, unlike simple cells, they respond to a variety of stimuli across different locations, regardless of where it is within their receptive field.

• hypercomplex cells: neurons that display orientation selectivity but are confined to stimuli of a limited size. This property is referred to as end-stopping.

If for example, the pattern continues beyond the receptive field, these cells do not respond as greatly.

• binocular cells: neurons that receive inputs from both the left and right eyes and integrate the signals to create a perception of depth. They respond excellently to binocular disparity and are thought to be the first stage for the processing of 3D vision. 

Cell's receptive profile

Monocular organization

The primary visual area organizes its monocular neurons in an hypercolumnar structure, where columns correspond to parameters representing the cell's features such as orientation, ocular dominance, color, etc. Moreover, V1 neurons alternate ocular dominance columns [START_REF] Levay | The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain[END_REF], containing cells that are responsive only to input from the left or right eye at the center of these bands (and binocular neurons at the boundaries), and there are also blobs [START_REF] Margaret | Anatomy and physiology of a color system in the primate visual cortex[END_REF], columns for a group of neurons sensitive to color.

All these columnar structures are organized in hypercolumns, a block of V1 containing both the ocular dominance and orientation columns for a particular region in the visual space, together with blob structure. This is the so-called classical "ice cube" model presented in [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF], shown in Figure 2.1.5. the injection of a chemical tracer into a small area of the visual cortex propagates through lateral connections and this result is combined with the orientation map.

Orientation maps

Cortical connectivity

It can be noticed that in the immediate neighborhood of each neuron, the connections are relatively isotropic, but over larger distances, they follow the orientation preferences, preferably by connecting neurons with co-oriented aligned receptive profiles.

Binocular organization

A generally accepted theory is that binocularly driven neurons in the primary visual cortex form the first stage for the processing of binocular disparity ([PNB68, BBP67, PF77, SK17]). Indeed, cells at lower levels in the visual pathway, such as

LGN cells or monocular simple cells, are not driven by stimulation through both eyes, as remarked by Hubel and Wiesel in [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF]. They account for disparitytuned neurons in a brief report in [START_REF] Hubel | Stereoscopic vision in macaque monkey: cells sensitive to binocular depth in area 18 of the macaque monkey cortex[END_REF] and they observe single units driven from both eyes from which it is possible to determine separate left and right RFs. Moreover, as already said, binocular cells in V1 encode horizontal positional disparity, usually referred to as disparity, and orientation features, directly linked with the monocular orientation preferences. We will investigate these properties in the next paragraphs. several categories. We recall here three main groups:

Disparity tuning cells

• tuned excitatory neurons displayed binocular facilitation to stimuli over a narrow range of small disparities, including zero disparity. Since zero disparity is a characterization of the fixation point, they respond best to objects that are located within the plane of fixation, namely when the image has zero disparity.

• far neurons are inhibited by stimuli in front of the fixation point and activated by stimuli behind the fixation point, so they respond optimally to objects behind the plane of fixation.

• near neurons show a reciprocal disparity sensitivity with respect to far neurons. Indeed, they respond best to objects located in front of the plane of fixation.

Interocular orientation differences from monocular outputs

The standard neurophysological technique applied for the measurement of binocular profiles assumes the mono dimensionality of the monocular RPs, ignoring information about the orientation selectivity of monocular simple cells. This assumption is made because the response of the cell should change quickly when disparities are measured orthogonally to the RP's orientation, as the structure of the monocular RPs changes most rapidly in that direction [START_REF] Cumming | The physiology of stereopsis[END_REF]. Differences between left and right structures which only involve the (absolute) locations of the RPs are usually called absolute (horizontal) positional disparity, or zero order disparity.

However, tilt and slant of objects in space are coded in the concept of interocular orientation differences, namely differences between left and right monocular preferred orientations. This difference in orientation generates when stimuli are not located on fronto-parallel planes, introducing the concept of first order disparity, involving the difference in orientation of the two left and right retinal projections. The existence of different preferred monocular orientations as inputs of a binocular cell, confirmed by neural works such as [STO10, BCP01, BFM72, BC01, STR + 22], has led to the question of whether neurons characterized by this interocular difference are selective for orientation disparities, and hence forming another neural mechanism for depth perception, [START_REF] Blakemore | A second neural mechanism of binocular depth discrimination[END_REF], or not. Until now, no one has found evidence for this mechanism, see for example [START_REF] Bridge | Responses of macaque V1 neurons to binocular orientation differences[END_REF], attributing the role of physiological variables to the couple of monocular orientations. was centered on a binocular zone. The patches' propagation (red corresponds to dense while green to sparsely labeled) tended to avoid highly monocular sites and were located in binocular zones.

Long range connectivity for binocular cells

Beyond V1

Physiological and psychophysical neural evidence [START_REF] Schwartz | Sensation and perception[END_REF][START_REF] Hubel | Eye, brain, and vision[END_REF] states that V1 is just the beginning of the visual processing. Although it is not really clear how the visual pathway continues, the second major area involved in processing the visual signal is V2, the secondary visual cortex (also known as Brodmann area 18, or prestriate cortex).

V2 receives strong feedforward input from and gives feedback to V1, with which it shares many properties: cells are tuned to simple characteristics such as orientation, spatial frequency, and color but also cells' responses are modulated by more complex properties such as orientation of illusory contours [START_REF] Von Der Heydt | Illusory contours and cortical neuron responses[END_REF][START_REF] Anzai | Neurons in monkey visual area V2 encode combinations of orientations[END_REF], and of course, binocular disparity [START_REF] Von Der | Representation of stereoscopic edges in monkey visual cortex[END_REF].

Moreover, V2 sends strong connections to the upper layers of the visual cortex.

The signal travels in multiple areas creating functional pathways that feed visual information from V1 into associational cortical areas, where the processing of visual information continues. These areas are situated in the parietal and temporal lobes, and following the "two-streams hypothesis", they give rise to two different pathways, [SK17]:

• dorsal (lateral parietal) pathway: it is also known as the "where pathway" and it is involved with processing the object's spatial location relative to the viewer through the environment.

• ventral (inferior temporal) pathway: it is also known as the "what pathway" and it is responsible for a high-resolution form of vision, meaning that it is involved with objects and visual identification and recognition, and color processing. These two streams are supposed to communicate with each other, to ensure that vision comes together. In fact, the only sure thing is that V1 and V2 are the last areas to have all the visual information. And so, conscious vision happens when simultaneous or approximately simultaneous activations across all visual areas happen, [START_REF] Schwartz | Sensation and perception[END_REF].

What appears to be really important is the existence of feedback loops that stand in the brain. At every level, there is a return of input from higher levels of the visual pathways to earlier ones. Forward and backward connections are thought to play a role in synchronizing the responses in the brain so that our perceptual experiences are whole objects and not just fragmented parts. Thus, our experience of vision is distributed across the cortex and constant feedback loops from higher to lower levels integrate our perception.

Perceptual phenomena

Visual perception is the result of a series of complex mechanisms carried out by the visual system, which mediate between the acquisition of the real stimulus and its interpretation, to obtain a coherent description of the visual scene. This process takes place through a perceptual organization, whose principles were first expressed by Gestalt psychologists on a phenomenological level, using only subjective experience without any neurophysiological evidence.

Many psychological experiments suggest that the principles underlying Gestalt laws are implemented within the mammalian primary visual cortex [START_REF] Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF].

Gestalt theory

The first studies concerning the perceptual organization of the visual scene were conducted in the 1920s by German psychologists Max Wertheimer, Wolfgang Köhler, and Kurt Koffka, who founded the school of thought known as Gestalt psychology. The classical references for these topics are [Kof35, [START_REF] Kohler | Gestalt psychology[END_REF][START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF] and it is also possible to refer to [WEK + 12] for a more recent review. The word Gestalt in German means "organized whole" and refers to the general concept that the perceived stimulus is something more than the simple sum of all its parts.

The purpose of Gestalt theory is to understand the laws behind the human mind's ability to construct meaningful perceptions from disorganized real stimuli.

A pattern for self-organization is sought that can combine smaller elements to form larger objects.

The Gestalt approach is based on the development of a set of principles known as the laws of perceptual organization, which can be summarized by the following points, visually represented in Figure 2.2.1: • Law of proximity: elements that are close to each other and apart enough from the rest of the elements form a group or a cluster.

• Law of similarity: elements similar in color, texture, shape, or orientation are grouped together.

• Law of good continuation: elements aligned (or with comparable alignment) and which tend to form continuous curves are grouped together.

• Law of closure: the perception of forms and figures in their complete appearance happens despite the absence of some of their parts.

• Law of common fate: pieces which are subjected to the same spatial or temporal change are grouped together.

• Law of symmetry: spatially symmetric pieces are more likely to be perceived together rather than non-symmetric ones.

Association field and good continuation

One of the most studied laws of perceptual organization, which plays a fundamental role within the problem of perceptual grouping, is the law of good continuation, quantitatively studied in many works [FHH93, GM91, GM85, PZ89, KS91, SK94].

In [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF] The results of this experiment can be summarized in the concept of an association field. This is the description of a pattern that allows determining the stimuli that can be associated with the same perceptual unit, representing the elements of the stimulus that are associated with a central point. In particular, correlations between elements are stronger between segments that are collinear or co-circular.

In 

Classical stereo geometry

It is generally accepted that the first scientist to give mathematical attention to 3D vision is the greek mathematician Euclid around 300 BC, in his work Optics, which deals almost entirely with the geometry of vision. These preliminary notions laid the foundation for the development of the configuration of the stereo vision problem over the centuries, and a complete historical background can be found in [START_REF] Howard | Perceiving in depth, volume 1: basic mechanisms[END_REF][START_REF] Howard | Binocular vision and stereopsis[END_REF]. Nowadays, extensive textbooks on the subject have been published, as

for example [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF][START_REF] Faugeras | The geometry of multiple images: the laws that govern the formation of multiple images of a scene and some of their applications[END_REF][START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Sturm | Camera models and fundamental concepts used in geometric computer vision[END_REF]. In this subsection we briefly recall this geometrical configuration, to define the variables that we will use, mainly referring to [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF]Ch. 6].

Stereo variables

Consider the global reference system (O, i, j, k) in R 3 , with O = (0, 0, 0) the origin and with coordinates (r 1 , r 2 , r 3 ). We introduce the optical centers C L = (-c, 0, 0)

and C R = (c, 0, 0), with c real positive element, and we define two reference sys- 

tems: (C L , i L , j L ), (C R , i R , j R ),
π L : R 3 -→ R 2 π R : R 3 -→ R 2     r 1 r 2 r 3     → f (r 1 +c) r 3 f r 2 r 3 ,     r 1 r 2 r 3     → f (r 1 -c) r 3 f r 2 r 3 . (3.1)
We call the pair of points Q L and Q R projections of Q as corresponding points, since this definition is usually referred to points on the retinae of the two eyes which when simultaneously stimulated normally produce a single visual impression.

Proof. A point on the left retinal plane of local coordinates (x L , y) has global coordinates

Q L = (-c + x L , y, f ), and it corresponds to a point Q = (r 1 , r 2 , r 3 ) in the Euclidean R 3 such that C L , Q L and Q are aligned. This means that the vectors Q L -C L = (x L , y, f ) and Q -C L = (r 1 + c, r 2 , r 3 ) are parallel, obtaining
the following relationships:

x L = f r 1 + c r 3 , y = f r 2 r 3 . (3.2)
Analogously, considering Q R and C R , we get:

x R = f r 1 -c r 3 , y = f r 2 r 3 . (3.3)
In a standard way, the horizontal disparity is defined as the differences between left and right retinal abscissa coordinates

d := x L -x R 2 , (3.4)
up to a scalar factor. Moreover, it is also possible to define the coordinate x as the average of the two retinal coordinates

x := x L +x R 2
, leading to the following change of variables:

           x = f r 1 r 3 y = f r 2 r 3 d = f c r 3 ←→            r 1 = xc d r 2 = yc d r 3 = f c d , (3.5)
where the set of coordinates (x, y, d) is known as cyclopean coordinates, because, in a sense, we perceive the world with a single eye in the middle of the head.

For further details see [START_REF] Julesz | Foundations of cyclopean perception[END_REF].

Tangent estimation

Corresponding points in the retinal planes allow to project back in R 3 . An analogous reasoning can be done for the tangent structure: starting from tangent vectors of corresponding curves in the retinal planes, it is possible to project them back and recover the 3D tangent vector. We recall here this result, while for a detailed explanation the reader can consult [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF].

Remark 3.1.2. Consider γ L and γ R corresponding left and right retinal curves, perspective projections of a curve γ ∈ R 3 . Knowing the left and right retinal tangent structures, then it is possible to recover the direction of the tangent vector γ.

Proof. Starting from a curve γ ∈ R 3 , we can project it in the two retinal planes obtaining γ L = π L (γ) and γ R = π R (γ) from equations (3.1). The retinal tangent vectors are obtained through the differential γL,R (t) = Dπ γ(t) γ(t):

γR (t) =   f (γ 3 γ1 +(c-γ 1 ) γ3 ) γ 3 (t) 2 f (γ 3 γ2 -γ 2 γ3 ) γ 2 3   , γL (t) =   f (γ 3 γ1 -(c+γ 1 ) γ3 ) γ 3 (t) 2 f (γ 3 γ2 -γ 2 γ3 ) γ 2 3   . (3.6)
Extending the tangent vectors and the points into R 3 , we get tL = ( γL1 , γL2 , 0) T , and mL = (γ L1 , γ L2 , f ) T , and U t L = (P L ) -1 mL ×(P -1 L ) tL , with

P L =     1 0 -c/f 0 1 0 0 0 1    
projection matrix. The same reasoning holds for the right structure, with projec-

tion matrix P R =     1 0 c/f 0 1 0 0 0 1     .
Then U t R × U t L is a vector parallel to the tangent vector γ:

U t R × U t L =       f 4 2c( γ2 γ 3 -γ3 γ 2 ) γ 4 3 λ(t) γ1 , f 4 2c( γ2 γ 3 -γ3 γ 2 ) γ 4 3 γ2 , f 4 2c( γ2 γ 3 -γ3 γ 2 ) γ 4 3 γ3       = λ(t) ( γ1 (t), γ2 (t), γ3 (t)) = λ(t) γ(t).
(3.7)

Neural model for stereo vision

In this section, we recall the classical model used to explain the behavior of binocular neurons in V1. We will focus in particular on binocular simple cells.

Binocular energy model (BEM)

The typical model, based on physiological experiments, which describes the output of binocular cells is the binocular energy model (BEM), first introduced by Anzai, Ohzawa and Freeman in [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF]. This model encodes disparities through the receptive profiles of simple cells, leading to the definition of position and phase disparities [START_REF] Jaeger | Encyclopedia of Computational Neuroscience[END_REF].

Position and phase disparities

The characterization of position disparity is based on the idea that the binocular visual system infers different positions in the retinae. The encoding mechanism of this phenomenon is developed through position differences between the centers of right and left eye receptive profiles, of which a graphic representation can be seen in Figure 3.2.1. Formally, this definition coincides with the definition of horizontal disparity introduced in (3.4). 

d P = φ R -φ L (deg PA) d P = -( φ R 360f R - φ L 360f L ) (deg VA) (3.8)
with PA=phase angle in the retina, and VA= visual angle in the 3D world, f R , and f L frequency of the right and left RPs.

Read and Cumming in [RC07], building upon [START_REF] Anzai | Neural mechanisms for encoding binocular disparity: Receptive field position versus phase[END_REF], proposed that phase disparity neurons tend to be strongly activated by false correspondence pairs, namely pairs of points in projection on the retinae that do not correspond to a three-dimensional percept. Therefore the most relevant disparity in the receptive fields is the position alone. 

Description of the model

The BEM model, introduced at the beginning of the 90s in [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF], involves the behavior of binocular simple cells. The basic idea behind it, it is a binocular neuron with a receptive field in each eye. The output of each eye depends on the inner product of each eye's image with the corresponding receptive field: for example for the left eye the output is More precisely, the energy model assumes that monocular left and right outputs are summed linearly; if the result is negative, the neuron is inhibited and does not fire, while if positive, the neuron fires at a rate proportional to the square of the inputs:

O L = R ϕ L (x,
P os(O L + O R ) 2 , ( 3.10) 
where P os(x) := max{x, 0}.

A relationship exists between the binocular interaction RP and monocular RPs, and it can be explained observing that, if O L + O R > 0 then the output of the binocular simple cell is the following:

O 2 L + O 2 R + 2O L O R .
The first two terms represent responses due to monocular stimulation while the third term O B := O L O R is the one that depends on binocular disparity, so it is called binocular interaction term. In this sense, although the model is mainly linear, the binocular interaction introduces a non-linear factor (multiplicative model).

The binocular receptive profile's computation of the interaction part is performed in [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF] and it is in accordance with the prediction of the BEM, as displayed in Figure 3.2.3. 

Mathematical model for stereo correspondence

Three-dimensional vision involves the use of two eyes (or at least two cameras)

to encode visual scene information. This information is projected into the aligned retinal planes starting from parallel optical centers. Going from the 3D world to the retinae is a simple process, characterized by central projections; on the other hand, the 3D reconstruction problem requires to solve the stereo matching problem.

The stereo matching problem, also known as stereo correspondence problem, refers to the problem of ascertaining which parts of one image correspond to which parts of the other image. Indeed, the horizontal separation of the eyes (different points of view) causes the two retinal images to be slightly different and 

Constraints on the coupling problem

Modeling stereo vision has made significant progress in the field of computer vision in the last 20 years and surveys for this literature review can be found for example in [START_REF] Kumari | A survey on stereo matching techniques for 3D vision in image processing[END_REF][START_REF] Hamzah | Literature survey on stereo vision disparity map algorithms[END_REF].

The central point is the introduction of algorithms able to find a disparity map that solves the matching. However, none of the proposed algorithms has optimal performance on all occasions and this happens because they often conflict with the presence of constraints, which can be inserted or naturally emerge from the geometry of stereo images.

The classical constraints that often appear are:

-Epipolar constraint: the imposition of the ordinate coordinate of the two images to be the same. It is always possible to return in this case by applying the rectification process. For more details on this topic see [START_REF] Faugeras | Three-dimensional computer vision: a geometric viewpoint[END_REF].

-Uniqueness: the requirement that a feature in one stereo half-image has to be matched to, at most, one similar feature in the other half-image.

-Continuity (or smoothness): the disparity of the matches should vary smoothly almost everywhere over the image.

-Ordering: the ordering of features is preserved across images.

-The disparity gradient: the disparity gradient is defined as the derivative of the disparity with respect to the Cyclopean coordinate x, namely ∂d/∂x.

A disparity gradient limit requires that the absolute value of the disparity gradient never exceeds a given value.

-Geometric constraints: punctual constraints, arising from the geometric rela- 

tionships

The Zucker model

The model introduced by Zucker, Alibhai and Li for stereo vision in [AZ00, LZ03, LZ06], aims at generalizing the fundamental concept of co-circularity in three dimensional space. In particular, co-circularity in R 2 has been firstly developed by Parent and Zucker in [START_REF] Parent | Trace inference, curvature consistency, and curve detection[END_REF] observing that a bi-dimensional curve γ can be locally approximated at 0 via the osculating circle and so its generalization involves the Frenet differential geometry of a three-dimensional curve.

While in the two-dimensional case the approximation of the curve using the Frenet 2D basis causes the curvature to appear in the coefficient of the Taylor series development (1st order), in the three-dimensional case the coefficients involve both the curvature and torsion. So, in [START_REF] Alibhai | Contour-based correspondence for stereo[END_REF] the authors propose heuristically to generalize the osculating circle for space curves with an osculating helix, with a preference for r 3 -helices (helices whose spiral develops along the r 3 -axis) to provide stability in terms of camera calibration. In this way the orientation disparity is encoded in the behavior of the helix in the 3D space: there is no difference in orientation in the retinal planes if the helix is confined to be in the fronto-parallel plane (the helix in this plane becomes a circle and the torsion of the curve is equal to zero), otherwise as the magnitude of the torsion increases, moving along the 3D curves, the retinal projections have different orientations.

In [START_REF] Li | A differential geometrical model for contour-based stereo correspondence[END_REF][START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF] they observe that with the introduction of the curvature variable as a feature in the two monocular structures, assuming having corresponding points, it is possible to reconstruct the 3D Frenet geometry of the curve, starting from the two-dimensional Frenet geometry, with the exception of the torsion parameter.

The success of this model is due to the simultaneous use of the notions of disparity of position and orientation, which are naturally tied together by differential geometry, as we will see in the next paragraphs.

Geometry of the model

In Hence, using the knowledge of the Frenet basis together with the fundamental addition of the curvature variable, they used the concept of transport to build a stereo correspondence algorithm.

Transport in R 3

The proposed idea is to move the 3D Frenet frame consistently with the 2D Frenet structure of the left and right retinal planes, to match the stereo correspondence between pairs of (left and right) pairs of tangents. More specifically, they compare the measurements obtained from transporting the differential structure with the information on the measured point. This is shown in Figure 3.3.1, image (a). Since the osculating plane is at disposition, thanks to Proposition 3.3.1, it is possible to define a distance on the osculating plane and, for everything to remain compatible, a minimum torsion constraint is (heuristically) imposed.

Thus, the notion of transport translates into the definition of a distance, or rather a probability measure, which tells how likely it is that a pair of points is made up of corresponding elements and it is not a false match. This goes under the name of compatibility.

More precisely, the compatibility from a point i to a point j is defined starting from the reconstructed tangents T i and T j , considering the projection of T * i of T i in the osculating plane at point j. They call s the transport distance from T * i to T j on the osculating plane , c the projection distance from T i to T * i and ∆φ the difference of rotation between T * i and T j in the osculating plane, and define the compatibility matrix:

R = [R ij ] = G σt (s)G σc (c) cos ∆φ, (3.11)
with G σ Gaussian kernel of parameter σ. Chapter 4

Elements of sub-Riemannian geometry and application to vision

This chapter includes a brief introduction to the mathematical tools that are used to describe the neural mechanisms underlying the visual system. We will introduce the notions of smooth manifold, tangent bundle, Lie group and sub-Riemannian manifold. Finally, we present an application of this mathematical theory to the field of perceptual vision, describing the sub-Riemannian model proposed by Citti-Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] for neural mechanisms underlying monocular vision. 

Basic differential geometry

In this section, we review basic notions of differential geometry, mainly following [START_REF] Tu | Manifolds. In An Introduction to Manifolds[END_REF]. 

{φ α ; α ∈ A} is a collection of coordinate systems φ α : U α → R m such that: • ∪ α∈A U α = M ; • the transition map φ α • φ -1 β : φ β (U α ∩ U β ) → φ α (U α ∩ U β ) between local coordinate systems is C ∞ for every α, β ∈ A; • if a coordinate system φ satisfies that φ • φ α and φ α • φ -1 are C ∞ for every α ∈ A, then φ ∈ F.
A manifold M together with a smooth structure F on it is called smooth manifold (or differentiable manifold).

Definition 4.1.3. Let M and N be smooth manifolds. A map

F : M -→ N is C ∞ at a point p ∈ M if there exist charts (U, φ), (V, ψ), around p ∈ M and F (p) ∈ N respectively, such that the composition ψ • F • φ -1 is C ∞ at p. We say that F is smooth if it is C ∞ at every point of M , and write F ∈ C ∞ (M, N ). If N = R, we simply write F ∈ C ∞ (M ).
For smooth maps between manifolds, it is possible to give the notion of differential, which will be described as a linear map acting on germs of smooth functions.

Definition 4.1.4. Let U, V ⊂ M be neighborhoods of p ∈ M and let f ∈ C ∞ (U )
and g ∈ C ∞ (V ). We say that f and g are equivalent if there is a neighborhood

W ⊂ U ∩V of p such that f agrees with g on W . The equivalence class of f : U → R is called the germ of f at p.
The set of germs of smooth functions at p in M is denoted by C ∞ p (M ) and it is a unitary commutative ring. Definition 4.1.5. Let M be a smooth manifold and let p ∈ M . A derivation at

p is a linear map D : C ∞ p (M ) → R such that, for any f, g ∈ C ∞ p (M ), D p (f g) = (D p f )g(p) + f (p)(D p g) (Leibniz rule). (4.1)
A derivation at p is also called a tangent vector at p. We denote by T p M the tangent space of M at p, i.e. the set of all tangent vectors at p.

Definition 4.1.6. Let F ∈ C ∞ (M, N ) and let p ∈ M . The differential of F at p is the linear map D p F : T p M → T F (p)
N defined as:

D p F (X p )(f ) = X p (f • F ), ∀f ∈ C ∞ F (p) (N ), X p ∈ T p M. (4.2)
When the target space is N = R, we also use the notation d p F for the differential of F at p.

Note that the above definition is well

-posed since f • F ∈ C ∞ p (M ) for any f ∈ C ∞ F (p) (N ).
Using the notion of differential, one can prove that T p M is a vector space of dimension n = dimM . Definition 4.1.7. Let M and N be smooth manifolds of dimension n. We say

that F ∈ C ∞ (M, N ) is a diffeomorphism if F is a homeomorphism with smooth inverse. We say that F is a local diffeomorphism at p if there exist neighbor- hoods U ⊂ M , V ⊂ N of p and F (p) respectively such that F |U : U → V is a diffeomorphism.

Vector fields and covariant tensors

Definition 4.1.8. Let E, M, N be smooth manifolds and let π : E → M be a smooth surjection. We say that the structure (E, M, π, N ) is a fiber bundle if, for every x ∈ E, there exists an open neighborhood U ⊂ M of π(x) and a diffeo-

morphism φ : π -1 (U ) → U × N , such that the following diagram commutes: π -1 (U ) π % % φ / / U × N proj 1 U (4.3)
where proj 1 : U × N -→ U is the projection onto the first factor. The manifold M is called the base space, E the total space, and N the fiber. In particular, for any p ∈ M , the preimage π -1 (p) is diffeomorphic to the fiber over p, namely {p} × N . Definition 4.1.9. Let (E, M, π, N ) be a fiber bundle. We say that e : M -→ E is a smooth section of the fiber bundle if e ∈ C ∞ (M, E) and π • e = id M .

Note that, every fiber bundle π : E -→ M is an open map, since projections of products are open maps. A particular case of fiber bundle is given by vector bundles, that is when the fiber N = R k for some k ∈ N. In this case, we say that the triple (E, M, π) is a vector bundle of rank k. A notable example of vector bundle is the tangent bundle of a manifold. T M has the structure of a differentiable manifold. Moreover, denote by π :

T M → M the projection such that, for every p ∈ M , π -1 (p) = T p M . The triple (T M, M, π) is a

vector bundle of rank n, called tangent bundle. A vector field

on manifold M is a smooth section of the tangent bundle. The set of vector fields on a manifold M is denoted by Vec(M ).

In an analogous way, one can define the cotangent bundle T * M , which is a vector bundle of rank n whose fibers are given by T * p M := (T p M ) * , for every p ∈ M . Sections of the cotangent bundle are called differential 1-forms.

We remark that, by the very definition of tangent vector, a vector field can be seen as a derivation on C ∞ (M ), namely a linear map on C ∞ (M ) satisfying the Leibniz rule. Moreover, Vec(M ) is a module over the ring of smooth functions.

We introduce the notion of differential form on a manifold, which is a particular case of a covariant tensor. We refrain to give the general definition of tensor bundles and (k, r)-tensors on a manifold since we will not need it. Definition 4.1.10. Let M be a smooth manifold. A covariant tensor T of order k ∈ N is a C ∞ (M )-multilinear mapping of the form:

T : Vec(M ) × . . . × Vec(M ) k times -→ C ∞ (M ). (4.5)
Namely, this means that T is a homomorphism of C ∞ (M )-modules in each argument.

Remark 4.1.1. A covariant tensor T of order k on a smooth manifold is a pointwise object, in the following sense: let p ∈ M and fix a set of coordinates (x 1 , . . . , x n ), on U ⊂ M , where p ∈ U . These coordinates induce a basis of the tangent space T q M , for any q ∈ U , denoted by {∂ x 1 , . . . , ∂ xn }. Then, letting X 1 , . . . , X k ∈ Vec(M ), we may write

X i|q = n j=1 a ij (q)∂ x j |q , ∀ q ∈ U, i = 1, . . . , k. (4.6)
Therefore, by linearity we have 

T (X 1 , . . . , X k )(q) = n j 1 ,...,j k =1 a ij 1 (q) . . . a ij k (q) T (∂ x j 1 , . . . , ∂ x j k ) T j 1 ,...,j k (q) . ( 4 
g p : T p M × T p M -→ R (4.8)
is a bilinear, symmetric map and the dependence p → g p is smooth. We say that the pair (M, g) is a Riemannian manifold.

One can define notions of length and distance on M , using the Riemannian metric. We will do this in the more general framework of sub-Riemannian manifolds in Section 4.3.

Remark 4.1.2. Let (M, g) be a Riemannian manifold. Then, we can define a canonical isomorphism between the tangent space at a point and its dual:

α : T p M → T * p M ; α(v), w = g p (v, w), ∀ w ∈ T p M. (4.9)

Differential forms and Hodge star operator

Definition 4.1.12. Let M be a smooth manifold. We say that ω is a differential form of order k, and write ω ∈ Ω k (M ), if it is an alternating covariant tensor of order k, such that for any permutation σ ∈ S k ,

ω X σ(1) , . . . , X σ(k) = sgn(σ)ω(X 1 , . . . , X k ), ∀ X 1 , . . . , X k ∈ Vec(M ). (4.10)
By construction, Ω k (M ) is a real vector space of finite dimension.

Note that the notion of differential forms of order 1 coincides with the one given in Definition 4.1.1, as covariant tensors are pointwise objects.

Definition 4.1.13. Let M be a smooth manifold and let

ω ∈ Ω k (M ), η ∈ Ω l (M ).
Then, the exterior product between ω and η is the differential form ω ∧ η ∈

Ω k+l (M ), defined by: for any X 1 , . . . , X k+l ∈ Vec(M ), Moreover, since covariant tensors are pointwise objects, we may define local differential forms. In coordinates (x 1 , . . . , x n ) on U ⊂ M , (4.12) allows to make sense of the (local) 1-forms dx 1 , . . . , dx n . By construction, we also have

(ω ∧ η)(X 1 , . . . , X k+l ) = σ∈S(k,l) sgn(σ)ω X σ(1) , . . . , X σ(k) η X σ(k+1) , . . . , X σ(k+l) , (4.11) where S(k, l) = {σ ∈ S k+l | σ(1) < . . . < σ(k), σ(k + 1) < . . . < σ(k + l)}.
dx i (∂ x j ) = δ ij , ∀ i, j = 1, . . . , n. (4.13)
Reasoning as in Remark 4.1.1, one can prove that any 1-form is a linear combination of the set {dx 1 , . . . , dx n }, thus it is a basis of Ω 1 (U ). In an analogous way, one can prove that dim Ω k (M ) = n k with basis given by on U ⊂ M , as

dx i 1 ∧ . . . ∧ dx i k , ∀ 1 ≤ i 1 < . . . < i k ≤ n. ( 4 
vol g |q = | det g q |dx 1 ∧ . . . ∧ dx n , ∀ q ∈ U. (4.15)
The definition of vol g at a point is independent of the choice of local coordinates.

Moreover, if M is orientable than vol g ∈ Ω n (M ).

Remark 4.1.4. Let (M, g) be a Riemannian manifold and let (x 1 , . . . , x n ) be local coordinates on U ⊂ M . The canonical ismoprphism (4.9) and the description through (4.14) allow to extend the Riemannian metric to k-forms, namely for 1forms:

g 1 q (dx i , dx j ) := g q (α(∂ x i ), α(∂ x j )), ∀ q ∈ U, i, j = 1, . . . , n. (4.16)
Then, for k-forms, for any ω 1 , . . . , ω k , η 1 , . . . , η k ∈ Ω 1 (M ), we have Moreover, the Hodge star relates the exterior and cross-product in three dimensions:

g k q (ω 1 ∧ . . . ∧ ω k , η 1 ∧ . . . ∧ η k ) := det g 1 q (ω i , η j ) k i,j=1 , ∀ q ∈ U.
(u ∧ v) = u × v (u × v) = u ∧ v. (4.20)
where u and v are 1-forms, or vectors, according to the opportune interpretation.

Integral curves on a manifold

Definition 4.1.16. Let M be a smooth manifold. A smooth curve is defined by a map γ : I → M , where I ⊂ R is an open interval. The tangent vector γ (t) to the curve γ is defined as its differential at t, namely

γ (t) = D t γ (∂ t ) ∈ T γ(t) M, t ∈ I, (4.21)
where ∂ t denotes the tangent vector to the interval I at t. Definition 4.1.17. Let M be a smooth manifold and X ∈ Vec(M ). We say that

γ : I → M is an integral curve of X if γ (t) = X γ(t) , ∀t ∈ I. (4.22)
The flow φ : I × M → M of the vector field X is defined in such a way φ(•, p) is the unique integral curve of X starting at p, i.e. such that φ(0, p) = p.

In local coordinates (x 1 , . . . , x n ), we may write a smooth curve as γ(t) = (γ 1 (t), . . . , γ n (t)). In the basis of the tangent space {∂ x 1 , . . . , ∂ xn }, we have

γ (t) = (γ 1 (t), . . . , γ n (t)) = γ i (t)∂ x i . (4.23)
Analogously, we can write the vector field X ∈ Vec(M ) in coordinates:

X p = a i (x 1 , . . . , x n )∂ x i , (4.24)
where a i 's are smooth and p ∈ M has coordinates (x 1 , . . . , x n ). Therefore, we can rewrite equation (4.22) as

i γ i (t) ∂ ∂ x i = a i (γ 1 , . . . , γ m )∂ x i , (4.25)
Thus, γ is integral curve of X if and only if, in coordinates, is a solution of the previous system of autonomous first order ODEs. In particular, this ensures that, locally, integral curves of a vector field always exist.

Lie algebras and Lie groups

Definition 4.2.1. Let M be a smooth manifold and let X, Y ∈ Vec(M ). Their Lie bracket, or commutator, is defined by their action on smooth functions f ∈ C ∞ (M ) as:

[X, Y ](f ) = X(Y (f )) -Y (X(f )). (4.26)
This quantity is a measure of non-commutativity of the vector fields. Indeed, if [X, Y ] = 0, the flows of X and Y commute, in the sense that φ 

X (t, φ Y (p)) = φ Y (t, φ X (p)),
• anti-commutativity property: [X, Y ] = -[Y, X] • Jacobi identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 for all X, Y, Z ∈ g.
Lie(F) = span{[X j 1 , [. . . [X j l-1 , X j l ]]] | j i ∈ {1, . . . ,
* : G × G → G; (g, h) → g * h, ∀ g, h, ∈ G (4.28)
and the inversion 

i : G → G; i(g) = g -1 , ∀ g ∈ G (4.
L g (h) = g * h, ∀ h ∈ G. (4.30) A vector field X on G is called left-invariant if X(f • L g ) = (Xf ) • L g , ∀ f ∈ C ∞ (G), g ∈ G. ( 4 
Lie(G) = {X ∈ Vec(G) | X left-invariant }. (4.32)
The previous definition makes sense, since Vec(G), with the bracket, is a Lie algebra. The Lie algebra of a Lie group can be identified as the tangent space at the identity e of the group G :

Lie(G) ∼ = T e G.
(4.33)

Sub-Riemannian geometry

We recall some basic facts about sub-Riemannian geometry, following [START_REF] Agrachev | A comprehensive introduction to sub-Riemannian geometry[END_REF].

Definition 4.3.1. A sub-Riemannian manifold is defined as a triple (M, D, g),
where M is a smooth, connected finite-dimensional manifold, D is a sub-bundle of rank k ∈ N of the tangent bundle, called distribution, and g is a metric on D.

This implies that for any p ∈ M , there exist a neighborhood U ⊂ M of p and k orthonormal vector fields {X 1 , . . . , X k } defined on U , such that 

D p = span{X 1| p , . . . , X k| p } ⊆ T p M, ∀ p ∈ U. ( 4 
(γ) = T 0 γ(t) |γ(t) dt. (4.39)
Then, the Carnot-Carathéodory distance, or sub-Riemannian distance, is defined by length-minimization procedure: for any p, q ∈ M , we set 

d SR (p, q) = inf{ (γ) | γ : [0, T ] → M,
L = X 1 + k i=2 X 2 i (4.41) is hypoelliptic, which means that if ϕ is a distribution defined on an open set Ω ⊂ M , such that Lϕ ∈ C ∞ (Ω), then ϕ ∈ C ∞ (Ω).
In a sub-Riemannian manifold M , with generating frame (4.34) satisfying the Hörmander condition, we can immediately apply the above theorem to obtain regularity for the solution to Lu = 0.

Sub-Riemannian model of monocular vision

Sub-Riemannian models of visual perception have been introduced in the work of Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], enriching the field of neurogeometry of vision. In this section, we briefly review the history underlying the development of this discipline, and then we concentrate on the study of the monocular Citti-Sarti model, one of the starting points for our work.

Neurogeometry of vision

Families of cells involved in the visual sensory perceptual process are sensitive to different properties of the image: position, orientation, contrast, curvature, scale, phase, motion and stereo. In general, most of these families have a hypercolumnar structure, as shown in Section 2.1.2.3: over every point (x, y) of the retinal plane there is an entire set of cells, each one sensible to a particular feature. Neuromathematical models of V1 often adopt a differential geometry approach to modeling the functional architecture of this area. We summarize the main steps characterizing the evolution of neurogeometry, principally following [CS14, Chapter 1]:

•

Introduction of differential geometry to vision

The pioneering idea underlying the application of differential geometry to vision is introduced in the seminal works of perceptual psychology specialists Koenderink and van Doorn in [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF] and Hoffmann in [Hof89] in the mid-80s. In particular, Hoffman had the breakthrough idea of representing the hypercolumnar organization of V1 as a fiber bundle with the space of retinal locations as a basis, introducing Lie group theory to model the functional architecture of the primary visual cortex. Almost simultaneously Mumford in [START_REF] Mumford | Elastica and computer vision[END_REF], announced a variational approach to describe smooth edges, in terms of the elastica functional, developing a stochastical explanation.

• The concept of neurogeometry

Results dealing with differential geometry and vision were unified under the name of neurogeometry by Petitot and Tondut [START_REF] Petitot | Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF], who related the association fields of Field Hayes and Hess [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF] with the contact geometry introduced by Hoffmann [Hof89] and the elastica of Mumford [START_REF] Mumford | Elastica and computer vision[END_REF]. By describing the set of simple cells as a fiber bundle, they identified the structure of this layer of cortical cells with the Heisenberg group, performing contour completion in this structure by minimizing a suitable functional.

• Developments after 2000

The proposal of Petitot in [START_REF] Petitot | Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF], with the introduction of the term neurogeometry, is at the basis of a large class of models, which uses instruments of differential geometry or group theory to explain the behavior of the visual cortex starting from its functional architecture.

In this framework, Citti We have seen that the receptive field (RF) of a cortical neuron is the portion of the retina to which the neuron reacts, and the receptive profile (RP) ϕ is the function that models the activation of a cortical neuron. In particular, the receptive profiles of simple cells in the primary visual cortex V1, sensitive to position (x, y)
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and orientation θ, has classically been modeled through a bank of Gabor filters ϕ {x,y,θ} , which act on a visual stimulus ([BCS14, Dau85, JP87]).

Following the neuro-mathematical model of Citti and Sarti [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], the set of simple cells RPs can be obtained via translations of vector (x, y) and rotation of angle θ from a unique mother profile ϕ 0 (ξ, η) can be expressed as:

ϕ 0 (ξ, η) = exp (2πiξ) exp - ξ 2 + η 2 2σ 2 , ( 4 
T (x,y,θ) (ξ, η) = x y + cos θ -sin θ sin θ cos θ ξ η , ( 4.43) 
and T (x,y,θ) denotes the action of the group of rotation and translation SE(2) on R 2 , which associate to every vector (ξ, η) a new vector (x, ỹ), according to the law (x, ỹ) = T (x,y,θ) (ξ, η). Hence a general RP can be expressed as

ϕ (x,y,θ) (ξ, η) = ϕ 0 (T -1 (x,y,θ) (ξ, η)), (4.44)
and this represents the action of the group SE(2) on the set of receptive profiles.

The retinal plane R is identified with the R 2 plane, whose coordinates are denoted by (x, y). When a visual stimulus I : R -→ R + activates the retinal layer, the neurons centered at every point (x, y) produce an output O(x, y, θ), which can be modeled as the integral of the signal I with the set of Gabor filters:

O(x, y, θ) = R ϕ {x,y,θ} (ξ, η)I(ξ, η)dξdη, (4.45)
where the function I represents the retinal image.

For (x, y) fixed, we will denote θ(x, y) the angle of maximal response: 

ω θ = -sin θ d x + cos θ d y.
(4.48)

The vector fields lying on its kernel, namely

X 1 = cos θ∂ x + sin θ∂ y , X 2 = ∂ θ (4.49)
define a bi-dimensional sub-bundle of the tangent bundle to R 2 × S 1 , referred to as the horizontal tangent bundle. One can define a scalar product on this sub-bundle by imposing the orthonormality of X 1 and X 2 : this determines a sub-Riemannian structure on R 2 × S 1 .

Example 4.4.1. (Imposing orthonormality of vector fields) The enforcement of the orthonormality of the vector fields X 1 and X 2 results in the imposition of a degenerate metric for the space R 2 × S 1 with coordinates (x, y, θ). The metric matrix in these coordinates can be obtained in two steps: first by considering the metric matrix in the basis determined by the involved vector fields, and then by applying a classic change of basis.

The tangent space basis determined by the involved vector fields, more precisely X 1 , X 2 defined in (4.49) and X 3 introduced in (4.47), is:

B = {X 1 , X 3 , X 2 }. (4.50)
Using this basis, the g B matrix of the metric takes the form

g B =     1 0 0 0 0 0 0 0 1     , (4.51)
since we are imposing just the orthonormality of X 1 and X 2 . Let us now consider the canonical basis of the space tangent to R 2 × S 1 with respect to the coordinates

(x, y, θ) i.e. C = {∂ x , ∂ y , ∂ θ }.
The metric matrix in this basis is given by Other models have been proposed, as for example the work of Boscain, Duits, Rossi and Sachkov [START_REF] Boscain | Curve cuspless reconstruction via sub-riemannian geometry[END_REF] or the one of Duits, Boscain, Rossi and Sachkov [START_REF] Duits | Association fields via cuspless sub-Riemannian geodesics in SE(2)[END_REF]. They consider the SE(2) sub-Riemannian point of view presented in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], and then, they study the geodesics of the sub-Riemannian structure, to take into account all appropriate end-conditions of association fields. More precisely, the set of possible orientations in a point (x, y) that can be reached and connected with an initial segment in (0, 0) oriented along the horizontal axis is usually described

g C =     cos 2 θ cos θ sin θ 0 cos θ sin θ sin 2 θ 0 0 0 1     (4.52) obtained via g C = M T C→B (g B )M C→B ,

Chapter 5

The

sub-Riemannian model for stereo vision

In this chapter we present the neurogeometric model for stereo vision proposed in [START_REF] Bolelli | Good continuation in 3D: the neurogeometry of stereo vision[END_REF], in which the parametrization involves both spatial and orientation disparities. This model is based on a sub-Riemannian structure on the three-dimensional space of positionorientation and provides insight into neurobiology, suggesting an implicit organization for neural interactions and a well-defined 3D association field. Integral curves of the sub-Riemannian structure shed light on the computations underlying the correspondence problem, and the model illustrates how good continuation in the world generalizes good continuation in the plane. 

Motivation for the mathematical approach

Results presented in previous chapters show that, for the cortical-inspired geometry underlying stereo vision, it makes sense to encode positional disparities and orientation differences in the information coming from the two eyes. In this chapter we specify these interactions through the proposition of a neurogeometric model for binocular cells, building on neuromathematical models, with particular emphasis on the neurogeometry of monocular simple cells in V1 ([CS06, Pet08, PT99, SCS10a, SC15, SCP07]).

Differential interpretation of binocular neural mechanisms

The first step to tie biological results, pre-existing neuromathematical models and classical stereo geometry is to give a differential interpretation of binocular neural mechanisms underlying the stereo problem. We start with binocular receptive profiles and we realize a natural fiber bundle for modeling stereo, then, we identify the natural direction emerging from these binocular RPs, which will be the direction of the tangent to a potential 3D curvilinear object in the scene.

Binocular profiles

Binocular neurons receive inputs from both the left and right eyes, and to facilitate calculations, we assume these inputs are first combined in simple cells in the primary visual cortex. This is a widely studied approach, see for example This binocular model allows us to define disparity and frontoparallel coordinates as

   d = x L -x R 2 x = x R +x L 2 ,
(5.1) perfectly in accordance with the introduction of cyclopean coordinates in (3.4). In this way (x, y, d) correspond to the neural correlate of (r 1 , r 2 , r 3 ), via the change of variables (3.5).

The cortical fiber bundle of binocular cells

The hypercolumnar structure of monocular simple cells (orientation selective) has been described as a jet fiber bundle in the works of Petitot and Tondut [START_REF] Petitot | Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux[END_REF],

among many others. We concentrate on the fiber bundle R 2 × S 1 , with fiber S 1 , see e.g. [START_REF] Ben-Shahar | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF].

In our setting, the binocular structure is based on monocular ones. In particular, for each cell on the left eye there is an entire fiber of cells on the right, and vice versa, for each cell on the right there is an entire fiber of cells on the left.

This implies that the binocular space is equipped with a symmetry that involves the left and right structures, allowing us to use the cyclopean coordinates (x, y, d) defined in (5.1). Hence, we define the cyclopean retina R, identified with R 2 , endowed with coordinates (x, y). The structure of the fiber is

F = R × S 1 × S 1 , with coordinates (d, θ L , θ R ) ∈ F. The total space is defined in a trivial way, E = R × F = R 2 × R × S 1 × S 1 , and the projection π : E -→ R is the trivial projection π(x, y, d, θ L , θ R ) = (x, y).
The preimage of the projection E (x,y) := π -1 ({(x, y)}), for every (x, y) ∈ R, is isomorphic to the fiber F, and the local trivialization property is naturally satisfied.

A schematic representation can be found in Figure 5. 

Beyond the binocular energy model

We have recalled in subsection 3.2.1 that the classical model for expressing the left/right-eye receptive field combination is the binocular energy model (BEM) introduced in [START_REF] Anzai | Neural mechanisms for processing binocular information i. simple cells[END_REF] for binocular RPs. However, this proposal typically ignores the orientational feature of monocular simple cells, even if we have seen that this information is needed to encode tilt and slant of objects in the space: orientation disparity happens in the projections in the left and right eye. This orientational inequality has mathematical but also neurophysiological evidence, as shown for example in [START_REF] Bridge | Modeling V1 neuronal responses to orientation disparity[END_REF], when the authors extended the BEM to incorporate these differences, or in the many works presented in paragraph 2.1.2.4.2.

So, even though the binocular energy model is a type of minimal model, it serves as a starting point, allowing the combination of monocular inputs. However, it is not sufficient to solve the stereo-matching problem. It is argued in [START_REF] Parker | Neural architectures for stereo vision[END_REF][START_REF] Samonds | Recurrent connectivity can account for the dynamics of disparity processing in V1[END_REF] that, in addition to the neural mechanisms that couple characteristics (such as signals, stimuli, or particular features) relating the left and right monocular structures, there must be a system of connections between binocular cells, which characterizes the processing mechanism of stereo vision.

In the following, binocular RPs and differential forms will allow us to identify a natural direction along which we can establish an opportune set of connections.

Differential forms and binocular RPs

The BEM model, according to equation (3.10), generates the interaction term O L O R , which can be expressed using left and right monocular RPs:

O R O L = ϕ θ R ,x R ,y (x R , ỹR )I R (x R , ỹR )dx R dỹ R ϕ θ L ,x L ,y (x L , ỹL )I L (x L , ỹL )dx L dỹ L = ϕ θ R ,x R ,y (x R , ỹR )ϕ θ L ,x L ,y (x L , ỹL )I R (x R , ỹR )I L (x L , ỹL )dx R dỹ R dx L dỹ L .
(5.2) If we fix ỹi for i = L, R, we derive the expression of the binocular profiles ϕ R,L = Since we know from the monocular case ( [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]) that there exists a relationship between RPs and 1-forms, we can see that there is an analogous correspondence in the binocular case with a 2-form of the space expressed in cyclopean coordinates.

ϕ θ R ,x R ,y ϕ θ L ,x L ,
Proposition 5.2.1. The binocular interaction term can be recast as wedge product of the two monocular 1-forms ω θ L and ω θ R defined in (4.48):

O R O L = ω θ R ∧ ω θ L .
(5.3)

Proof. It follows from [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] that the output of simple cells (4.45) in SE(2) can be locally approximated as O(x, y, θ) = -X 3,θ (I σ )(x, y). We will denote with the subscript R the quantities corresponding to the right monocular structure, and we will use the subscript L for the left one. Accordingly, it is possible to re-write the binocular interaction term as:

O R O L = X 3,θ R (I σ R )(x R , y)X 3,θ L (I σ L )(x L , y). (5.4) We define v R := (D (x R ,y) I σ R X 3,θ R )X 3,θ R with D (x R ,y) I σ R differential (Jacobian)
of the smoothed version of the image I σ R at the point (x R , y), in such a way that we have

O R = X 3,θ R (I σ R )(x R , y) = (D (x R ,y) I σ R X 3,θ R ) = ω θ R (v R ) (5.5) since ω θ R (X 3,θ R ) = 1 and D (x R ,y) I σ R X 3,θ R ∈ R;
the same reasoning holds for the left structure. It is then possible to recast (5.4) in the retinal coordinates as:

O R O L =ω θ R (v R )ω θ L (v L ) =ω θ R ∧ ω θ L (v R , v L ) + ω θ L (v R )ω θ R (v L ) =0 , =ω θ R ∧ ω θ L (v R , v L ), (5.6) 
exploiting the properties of the wedge product and the left and right retinal coordinates.

Expressing the retinal coordinates in terms of cyclopean ones (3.4) we have

x R = x -d and x L = x + d, (5.7)
and the extended left and right 1-form can be written as:

ω θ R = -sin θ R d x + cos θ R d y + sin θ R d d ω θ L = -sin θ L d x + cos θ L d y -sin θ L d d.
(5.8)

We define ω bin := ω θ R ∧ ω θ L as the natural 2-form characterizing the binocular structure. By an abuse of notation, identifying 1-forms with vectors, it is possible to use the Hodge duality in three dimension to relate the wedge product with the

cross product ω bin = (ω θ R ∧ ω θ L ) = ω θ R × ω θ L .
In this way we get:

ω bin =     sin(θ R + θ L ) 2 sin θ R sin θ L sin(θ L -θ R )     .
(5.9)

Remark 5.2.1. The vector ω bin of equation (5.9) can be interpreted as the intersection of the kernels generated from ω θ R , ω θ L expressed in in cyclopean coordinates (x, y, d):

ker ω θ L = span            cos θ L sin θ L 0     ,     1 0 1            , ker ω θ R = span            cos θ R sin θ R 0     ,     -1 0 1            ⇒ ω bin = ker ω θ R ∩ ker ω θ L .
(5.10)

The result of the intersection of these structures identifies a direction, as shown in Figure 5.2.2.

In other words, we earlier recalled (subsection 4.4.2) that the result of the action of a monocular odd simple cell is to select directions for the propagation of information. We now have combined these, for the two eyes, to show that in the three-dimensional case the binocular neural mechanisms also lead to a direction.

We will see in the next sections that this direction is the direction of the tangent vector to the 3D stimulus, provided points are corresponding.

Compatibility with stereo geometry

We consider the 2-form characterizing the binocular structure ω bin defined in (5.9)

and we show that it can be associated with the tangent vector of the 3D stimulus, mathematically modeled as a curve γ : R -→ R 3 . The idea is that this tangent vector is orthogonal both to ω θ R and to ω θ L , and therefore it has the direction of the vector product

ω θ R ∧ ω θ L .
Precisely, we consider the normalized tangent vector t L and t R on retinal planes

t R = (cos θ R , sin θ R ) t L = (cos θ L , sin θ L ),
(5.11) applied to the points (x R , y) and (x L , y), retinal projections of γ ∈ R 3 , according to equations (3.1). Taking into account that f is the focal coordinate of the retinal planes in R 3 , we associate to these planar points the corresponding points mL = (x L -c, y, f ) , mR = (x R + c, y, f ) in R 3 , with c ∈ R coordinate of the optical centers as defined in section 3.1. Applying equation (3.7) to this setting, it is possible to derive the tangent vector of the three-dimensional contour:

U t L = P -1 L mL × P -1 L tL =     x L y L f     ×     cos θ L sin θ L 0     =     -f sin θ L f cos θ L x L sin θ L -y L cos θ L     , U t R = P -1 R mR × P -1 R tR =     x R y R f     ×     cos θ R sin θ R 0     =     -f sin θ R f cos θ R x R sin θ R -y R cos θ R     ,
(5.12)

and recovering the tangential direction via the cross product

U t R × U t L = f     cos θ R (x L sin θ L -y L cos θ L ) -cos θ L (x R sin θ R -y R cos θ R ) sin θ R (x L sin θ L -y L cos θ L ) -sin θ L (x R sin θ R -y R cos θ R ) f (sin θ L cos θ R -sin θ R cos θ L )     .
(5.13) Proposition 5.2.2. If we define

ωθ L := U t L , ωθ R := U t R (5.14)
and the corresponding 2-form ω R 3 := ωθ R ∧ ωθ L , then, up to a multiplicative factor, the following equalities hold:

ωθ L = ω θ L , ωθ R = ω θ R , ω R 3 = ω bin .
(5.15)

Proof. Let us recover the expression of the 1-forms ωθ L := U t L and ωθ R := U t R .

Recall here the change of variable (3.5):

           r 1 = xc d r 2 = yc d r 3 = f c d , (5.16)
and its differential:

           d r 1 = c d d x -cx d 2 d d d r 2 = c d d y -cy d 2 d d d r 3 = -f c d 2 d d .
(5.17) Writing the quantity U t L of equation (5.12), in term of a 1-form in the variables (r 1 , r 2 , r 3 ), we have:

ωθ L = -f sin θ L d r 1 + f cos θ L d r 2 + (x L sin θ L -y cos θ L ) d r 3 .
(5.18)

Changing coordinates:

ωθ L = -f sin θ L c d d x - cx d 2 d d + f cos θ L c d d y - cy d 2 d d + (x L sin θ L -y cos θ L ) - f c d 2 d d = f c d (-sin θ L d x + cos θ L d y -sin θ L d d) = f c d ω θ L .
(5.19) So, up to the multiplicative factor f c d , we have that ωθ L = ω θ L in the variables (x, y, d). The same reasoning holds for the right structure.

In this way, the disparity binocular cells couple in a natural way positions, identified with points in R 3 , and orientations in S 2 , identified with three-dimensional unitary tangent vectors. As already observed in subsection 5.2.3, the geometry of the stereo vision is not solved only with these punctual and directional arguments, but there is the need to take into account suitable types of connections. In the perceptual space via the manifold R 3 S 2 , and look for appropriate curves.

A perceptual model in the space of 3D position

- orientation R 3 S 2
We have just clarified that binocular cells are parametrized by points in R 3 , and orientations in S 2 . An element ξ of the space R 3 S 2 it is defined by a point p = (p 1 , p 2 , p 3 ) in R 3 and an unitary vector n ∈ S 2 . It is usual to define the 2 dimensional sphere as the set of points in R 3 having (Euclidean) distance from the origin equal to 1, formally S 2 = {n ∈ R 3 ; n = 1}. Since the topological dimension of this geometric object is 2, we introduce the classical spherical coordinates (θ, ϕ)

such that n = (n 1 , n 2 , n 3 ) ∈ S 2 can be parametrized as: (5.21)

n 1 = cos θ sin ϕ n 2 =
The left group action L g of g ∈ SE(3) onto (q, n) ∈ R 3 S 2 is:

L g (q, n) = (Rq + p, Rn). (5.22)
It is then clear that the group product (5.21) influences the group action (5.22) in R 3 S 2 ; for this reason then we use the notation even though this is usually reserved for the semi-direct product of groups. For further information regarding the relationships between SE(3) and R 3 S 2 from a differential point of view, see Duits and Franken in [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF] and also Duits, Creusen, Ghosh and Dela Haije in [START_REF] Duits | Diffusion, convection and erosion on R3xS2 and their application to the enhancement of crossing fibers[END_REF], with application to HARDI/DTI images. In the following, we adapt these mathematical results to apply them to the problem of stereo perception.

More details about these mathematical spaces can be found in Appendix A.

Stereo sub-Riemannian geometry

The emergence of a privileged direction in R 3 , associated with the tangent vector to the three-dimensional curvilinear stimulus, is the reason why we endow R 3 S 2 with a sub-Riemannian structure that favors the direction in 3D identified by the 2-form ω bin .

To do so, we consider the following basis for the tangent space

∂ 1 , ∂ 2 , ∂ 3 , ∂ θ , ∂ ϕ .
(5.23) and we move them with the push-forward of the group action (5.22): with the first rotation around the third axis equal to zero, the push forwarded vectors can be expressed in the coordinate chart as:

Y i | g φ = (L g ) * ∂ i φ = ∂ i (φ • L g ),
Y 1 = cos ϕ cos θ∂ 1 + cos ϕ sin θ∂ 2 -sin ϕ∂ 3 Y 2 = -sin θ∂ 1 + cos θ∂ 2 Y 3 = (sin ϕ cos θ)∂ 1 + (sin ϕ sin θ)∂ 2 + cos ϕ∂ 3 Y θ = - 1 sin ϕ ∂ θ Y ϕ = ∂ ϕ (5.24)
for ϕ = 0, ϕ = π.

We define the distribution D on R 3 S 2 in such a way that it encodes the coupling between positions and orientations. As proved by Duits and Franken in [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF], D is well-defined and a local frame in the coordinate chart is given by:

D = span{Y 3 , Y θ , Y ϕ }.
(5.25)

In particular, the vector field Y 3 identifies the privileged direction in R 3 , while Y θ and Y ϕ involve just orientation variables of S 2 . The commutation rules of the vector fields {Y 3 , Y θ , Y ϕ } make them verify the Hörmander condition, defining a sub-Riemannian structure if we also choose a metric on D. The metric is not unique and the simplest choice is the metric which makes the vector fields {Y 3 , Y θ , Y ϕ } orthonormal. More precisely, the metric that we consider restricted to S 2 is the classical Riemannian metric of the sphere, induced by the Euclidean metric of R 3 .

The reader interested in more details can refer to Appendix A.

Change of variables

We have set the sub-Riemannian model in R 3 S 2 starting from a cortical parametrization involving position and orientation disparity. We have already expressed the change of variable in the variables (x, y, d) to (r 1 , r 2 , r 3 ) in equations (3.5).

However, the cortical coordinates also contain the angular variables θ R and θ L related in the perceptual space to the spherical angles θ, ϕ.

To identify a change of variable among these variables, we first introduce the function (r 1 , r 2 , r 3 , θ, ϕ)

F -→ (x, y, d, θ L , θ R ) : F : R 3 S 2 -→ R 3 × S 1 × S 1          r 1 r 2 r 3 θ ϕ          →           f r 1 r 3 f r 2 r 3 cf r 3
tan -1 ( r 3 sin θ sin ϕ-r 2 cos ϕ r 3 cos θ sin ϕ-(c+r 1 ) cos ϕ ) tan -1 ( r 3 sin θ sin ϕ-r 2 cos ϕ

r 3 cos θ sin ϕ-(c-r 1 ) cos ϕ           ,
(5.26) expressed locally in chart θ ∈ [0, 2π], ϕ ∈ (0, π) and where the retinal right and left angles θ R = tan -1 ( r 3 sin θ sin ϕ-r 2 cos ϕ r 3 cos θ sin ϕ-(c+r 1 ) cos ϕ ) and θ L = tan -1 ( r 3 sin θ sin ϕ-r 2 cos ϕ r 3 cos θ sin ϕ-(c-r 1 ) cos ϕ ) are obtained considering equation (3.6).

Remark 5.3.1. Three-dimensional stimuli lying in fronto parallel planes project in retinal planes with the same orientation. The angle ϕ = k π 2 with k ∈ N identifies fronto-parallel planes, and substituting this value in (5.26), it follows that

θ L = θ R = θ.
Analogously, it is possible to define the change of variable (x, y, d, θ

L , θ R ) G -→ (r 1 , r 2 , r 3 , θ, ϕ): G : R 3 × S 1 × S 1 -→ R 3 S 2          x y d θ R θ L          →           cx d cy d cf d tan -1 ( 2 sin θ R sin θ L sin(θ R +θ L ) ) tan -1 ( √ sin 2 (θ R +θ L )+4 sin 2 θ R sin 2 θ L sin(θ R -θ L ) )           .
(5.27)

The angles

θ = tan -1 ( 2 sin θ R sin θ L sin(θ R +θ L ) ) and ϕ = tan -1 ( √ sin 2 (θ R +θ L )+4 sin 2 θ R sin 2 θ L sin(θ R -θ L )
) are obtained considering that tan θ = ( γ) 2 ( γ) 1 and tan ϕ =

√ ( γ) 2 1 +( γ) 2 2 ( γ) 3
, applying these relations to the spatial components of vector field Y 3 .

Remark 5.3.2. In accordance with Remark 5.3.1, projections on retinal planes in which the tangents are characterized by angles θ L = θ R correspond to three dimensional stimuli lying on fronto-parallel planes, identified with an integer multiple of ϕ = π 2 .

Integral curves

We will assume that the connectivity of the space is described by horizontal curves of the distribution D, and thanks to the Hörmander condition it defines a metric. According to definition (4.3.2), a curve Γ : [0, T ] -→ R 3 S 2 is said to be admissible (or horizontal) if :

Γ(t) ∈ D Γ(t) , ↔ Γ(t) = a(t)Y 3,Γ(t) + b(t)Y θ,Γ(t) + c(t)Y ϕ,Γ(t) , (5.28)
where a, b, c are sufficiently smooth functions on t ∈ [0, T ]. We consider the particular case of constant coefficient admissible curves, with a(t) = 1, since the vector field Y 3 represents the tangent direction of the stimulus and so it never vanishes: Formally, the amount of "twisting and bending" in space is measured by introducing the notions of curvature and torsion. We then investigate how these measurements are encoded in the parameters of the family of integral curves, and what constraints have to be imposed to obtain different typologies of curves.

Γ(t) = Y 3,Γ(t) + c 1 Y θ,Γ(t) + c 2 Y ϕ,Γ(t) , ( 5 
Remark 

k = ( φ) 2 + sin 2 θ( θ) 2 , τ = 1 k 2 (-cos ϕ sin 2 ϕ( θ) 3 -sin ϕ φθ + θ(-2 cos ϕ( φ) 2 + sin ϕ φ)).
(5.30)

Using the explicit expression of the vector fields Y θ and Y ϕ in equation (5.29), we

get θ = - c 1 sin ϕ , φ = c 2 , (5.31)
from which it follows that:

k = c 2 1 + c 2 2 τ = c 2 1 -c 2 2 k 2 c 1 cotan ϕ.
(5.32) Proposition 5.3.1. By varying the parameters c 1 and c 2 , or equivalently imposing conditions on the angles θ and ϕ of the integral curves (5.29), we have:

1. If ϕ = π 2 then k = c 2
1 , τ = 0, and so the family of curves (5.29) are circles of radius 1/c 2 1 on the fronto-parallel plane r 3 = cost.

2. If ϕ = ϕ 0 , with ϕ 0 = π/2, then k = c 2 1 and τ = c 1 cotan ϕ 0 , and so the family of curves (5.29) are r 3 -helices. 

If

θ = θ 0 then k = c 2 2 , τ = 0,

Comparison with experimental data

In this section, we present results of compatibility between the proposed sub-Riemannian model and biological and psychophysical phenomena present in literature. The integral curve viewpoint suggests underlying biological circuits by providing the direction of information flow. Moreover, the integral curves formalize association field models: their parameters describe the spray of curves that is well in accordance with 3D curves as studied in psychophysical experiments in [HF95, HHK97, KHK16].

Biological connections

The foundation for building our sub-Riemannian model of stereo was a sub-Riemannian model of curve continuation. This was motivated by the orientation column at each position, and the connections between cells in nearby columns. These connections were, in turn, a direct model of the long-range horizontal connections in visual cortex, for which there is biological data (e.g. [START_REF] Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]). Aspects of the cortical architecture that support binocular processing are illustrated in 2.1.2.4.

Although the inputs from each eye are organized into ocular dominance bands, there is no direct evidence for "stereo columns" analogous to the monocular orientation columns. But, there is evidence of long-range connections between binocular cells, and our model informs, concretely, what information should be carried by these long range connections. Thus, an organization for stereo is suggested, but it is implicit in the architecture. Nevertheless, there is evidence in support of it. 

Psychophysics and association fields

The connections described by the integral curves in our model can be related to the geometric relationships from psychophysical experiments on perceptual organization of oriented elements in R 3 . The goal here is to establish that our connections serve as a generalization of the concept of an association field in 3D.

Towards a notion of association field for 3D contours

The perception of continuity between two elements of position-orientation in R 3 has been studied experimentally: in the works of Kellman, Garrigan, Shipley et al. Particularly, in a system of 3D Cartesian coordinates, it is possible to introduce an oriented edge E, defining the application point (r 1 , r 2 , r 3 ) and its orientation identified with the angles θ and ϕ. This orientation can be read through the direction expressed by the vector (cos θ sin ϕ, sin θ sin ϕ, cos ϕ) T . Consider an initial edge E 0 , with application point on the origin of the coordinate system (0, 0, 0) and orientation lying on the r 1 -axis, described by θ = 0, ϕ = π/2. The range of possible orientations (θ, ϕ)2 for 3D-relatable edges with E 0 is given by:

tan -1 r 2 r 1 ≤ θ ≤ π 2 and π 2 ≤ 3π 2 -ϕ ≤ tan -1 r 3 r 1 .
(5.33)

The bound of these equations identified with the quantity π 2 incorporate the 90 degrees constraint in three dimensions, while the bounds defined by the inverse of the tangent express the absolute orientation difference between the reference edge E 0 and an edge positioned at the arbitrary oriented point E (r 1 ,r 2 ,r 3 ) so that its linear extension intersects E 0 , see [KGS05a, KGS + 05b] for further details.

In Figure 5.4.2 we visually represent an example of 3D positions and orientations that meet the 3D relatable criteria. Starting from initial edge E 0 applied in (p 01 , p 02 , p 03 ) and orientation on the e 1 -axis, we display for an arbitrary point (p 1 , p 2 , p 3 ) the limit of the relatable orientation (θ, ϕ).

Good continuation properties in 3D

Psychophysical studies, see [START_REF] Deas | Perceptual grouping via binocular disparity: The impact of stereoscopic good continuation[END_REF][START_REF] Hess | Contour integration across depth[END_REF][START_REF] Hess | Integrating contours within and through depth[END_REF], have investigated the properties of the curves that are suitable for connecting these relatable points. These curves are well described by being smooth and monotonic. In particular, using non-oriented contour elements for contours, Hess et al. in [START_REF] Hess | Integrating contours within and through depth[END_REF] indicate that contour elements can be effectively grouped based primarily on the good continuation of contour elements in depth. This statement is confirmed by the more recent work of Deas and Wilcox [START_REF] Deas | Perceptual grouping via binocular disparity: The impact of stereoscopic good continuation[END_REF], who in addition observe that detection of contours defined by regular depth continuity is faster than detection of discontinuous contours. All these results support the existence of depth grouping operations, arguing for the extension of Gestalt principles of continuity and smoothness in three-dimensional space.

Finally, on the relationship of the three-dimensional curves to 2-dimensional association fields, see [KGS + 05b, KHK16]. These authors have assumed that the strength of the relatable edges in the co-planar planes of E 0 must meet the relations of the bi-dimensional association fields of [START_REF] Field | Contour integration by the human visual system: Evidence for a local "association field[END_REF].

Compatibility with the sub-Riemannian model

To model associations underlying the 3D perceptive organization previously introduced, we consider a family of integral curves (with constant coefficients) generated from the local orthonormal frame (5.25) of the distribution D:

Γ(t) = Y 3,Γ(t) + c 1 Y θ,Γ(t) + c 2 Y ϕ,Γ(t) .
(5.34)

These curves locally connect the association fan generated by the geometry of Finally, observing the behavior of the fan (5.34) on a three-dimensional curvilinear stimulus, we can see in Figure 5.4.6 how the proposed 3D association field envelopes a space curve, in the same way that a 2D association field envelopes a planar curve. The integral curve viewpoint does provide a direction of information flow: curvature, implicitly described through coefficients c 1 and c 2 , supplies a kind of glue that enable transitions from points to nearby points. As in all models, it is possible to admit alternative viewpoints. One of these, not covered in this thesis, involves the geodesics of the sub-Riemannian structure. These curves have already been proposed in the two-dimensional case, by the authors of [START_REF] Boscain | Curve cuspless reconstruction via sub-riemannian geometry[END_REF][START_REF] Duits | Association fields via cuspless sub-Riemannian geodesics in SE(2)[END_REF], as a model for the geometry of 2D relatability (and the two-dimensional association fields). Geodesics of the sub-Riemannian structure of position-orientation in 3D have been the object of interesting papers, such as [START_REF] Duits | On sub-riemannian geodesics in SE(3) whose spatial projections do not have cusps[END_REF][START_REF] Duits | Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis[END_REF]. In these works, the authors not only characterize geodesics with spatial cuspless projections but also their admissible boundary conditions, which, depending on the point, could be used to involve all orientational end-conditions according to the theory of 3D relatability.

Integration of contours and the stereo correspondence problem

The notion of 3D association field helps to understand how the brain integrates contours to perceive a three-dimensional stimulus from images captured by the eyes. We can see how the geometry we propose is a good starting point to understand how to match left and right points and features. This output can be seen as a probability measure that gives information on the correspondence of the couple of left and right points. We can simply evaluate which are the points with the highest probability of being in correspondence, applying a process of suppression of the non-maximal pairs over the fiber of disparity. In this way, noise points are removed (Figure 5.4.9, image (a)).

We now directly exploit good continuation in depth. The remaining noise elements are orthogonal to the directions of the elements of the curve that we would like to reconstruct. Calculating numerically the coefficients c 1 and c 2 of integral curves (5.29) that connect all the remaining pairs of points, we can obtain for every pair the value of curvature and torsion using (5.32). The proposed neuro-geometry of stereo vision allows us to be precise about the type of geometry that is relevant for understanding stereo abstractly, and concretely it is informative toward the physiology: even though a "stereo columnar architecture" is not obvious from the anatomy, it is well-formed computationally, reasonable matching (at a first stage) left and right points and features.
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Chapter 6

Individuation of 3D percepts

In this chapter we study the emergence of perceptual units in the three-dimensional scene, starting from the stochastic counterpart of the 3D association fields. These curves model the interactions among binocular cells involved, and we use them to define a connectivity kernel inserted as a facilitator pattern in the activity equation of the population. Then, we see how the stability analysis of this equation leads to the identification of the three-dimensional perceptual units of the scene, through the proposition of a grouping algorithm. Finally, we examine the numerical results. 

Stochastic model of 3D association fields

The probabilistic version of the association fields is used in the two-dimensional case as a model of connectivity for cortical cells, for example in the works [PT99, SC15, ASFC + 17, DF10, SCS10b, BCCS14], based on the pioneering work of Mumford [START_REF] Mumford | Elastica and computer vision[END_REF]. We apply this approach to the three-dimensional case, probabilistically interpreting the 3D extension of the law of good continuation: entities described by similar local orientations are more likely to belong to the same perceptual unit. We will consider an equation predominated by transport in the Y 3 direction and diffusion in the orientation variables, as done for example in [START_REF] Momayyez | 3D stochastic completion fields for fiber tractography[END_REF][START_REF] Momayyezsiahkal | 3D stochastic completion fields for mapping connectivity in diffusion MRI[END_REF]. In general, these equations describe the motion of a particle moving with constant speed in a direction randomly changing accordingly with the stochastic process, and the effect is that particles tend to travel in straight lines, but over time, they drift in space.

Stochastic differential Langevin equation

We consider the trajectory described by a deterministic law given by the vector field Y 3 , altered by a certain random noise in the directions Y θ and Y ϕ . The result is a Itô's stochastic process Γ(t) satisfying the stochastic differential Langevin equation:

d Γ(t) = Y 3,Γ(t) d t + λ (Y θ,Γ(t) , Y ϕ,Γ(t) ) σ(Γ(t)) d B(t), (6.1)
with B(t) = (B 1 (t), B 2 (t)) T two dimensional Brownian motion, and λ ∈ R scalar parameter. By abuse of notation, Y 3 is interpreted as a deterministic coefficient and it is called the drift coefficient, while σ is the diffusion coefficient of the stochastic differential equation (SDE) (6.1). In our case, locally in the chart of subsection 5.3.1, the drift term is given by Y 3,Γ = (cos θ sin ϕ, sin θ sin ϕ, cos ϕ, 0, 0) T , (6.2) and the diffusion coefficient

σ(Γ) = (Y θ,Γ , Y ϕ,Γ ) is
Y θ,Γ = (0, 0, 0, -1/ sin ϕ, 0) T and Y ϕ,Γ = (0, 0, 0, 0, 1) T . (6.3)

The coefficients written in coordinates are smooth functions with locally bounded derivatives. Therefore, classical results on uniqueness and existence of a strong solution to the SDE (6.1) hold thanks to the fact that the terms of the drift and diffusion coefficients are Lipschitz continuous.

Forward Kolmogorov operator

Itô's formula allows us to formally associate to equation ( 6.1) its characteristic operator, a second order differential operator L with variable coefficients. Locally in the chart of subsection 5.3.1, L can be written as (see for example [Øks03]):

L = 3 i=1 (Y 3,Γ ) i ∂ i + λ 2 i,j∈{θ,ϕ} (σ(Γ)σ(Γ) T ) i,j ∂ i ∂ j (6.4)
Let's consider a starting point Γ(t 0 ) = ξ 0 at a time t 0 and a test function φ.

After having applied the expected value to Itô's formula, we have

(∂ t + L)φ(t, ξ)ρ λ (ξ, t; ξ 0 , t 0 )dξdt = 0, (6.5)
where ρ λ is the density law of the stochastic process Γ, and it is a distributional solution to the forward Kolmogorov (or Fokker-Planck) equation:

(∂ t + L * )ρ λ (ξ, t; ξ 0 , t 0 ) = δ ξ-ξ 0 δ t-t 0 (6.6)
with δ the delta distribution and L * the formal adjoint of L. Since the drift term and the diffusion coefficient are defined as (6.2) and ( 6.3), the operator L * satisfies the following expression in coordinates: 

L * f (t, ξ) = - 3 i=1 (Y 3,ξ ) i ∂ i f (t, ξ) + λ 2 i,j∈{θ,ϕ} (σ(ξ)σ(ξ) T ) i,j ∂ i ∂ j f (t, ξ). ( 6 
L * = -Y 3 + λ(Y 2 θ + Y 2 ϕ ). (6.8)
Since the vector fields satisfy the Hörmander's rank condition, the operator L * is hypoelliptic, and so there exists a fundamental solution associated with the forward Kolmogorov operator, with the property of being smooth out of the pole (see Hörmander theorem [Hör67], recall here in Theorem 4.3.2). We will recall in the next subsection that this fundamental solution is none other that the probability density ρ λ of the forward Kolmogorov equation (6.5), integrated over time.

Time independent kernel

The fundamental solution for the operator ∂ t + L * , with L * defined in (6.8), corresponds to the probability density function ρ λ (ξ, t; ξ 0 , t 0 ) associated with the stochastic process satisfying equation (6.1). More precisely, it expresses the probability of having reached the point ξ after having evolved the equation (6.1) up to time t, starting from ξ 0 at time t 0 .

The main goal of this section is to identify a time-independent probability, to characterize each point of the space in terms of the paths (6.1) that reach it independently of the value of the evolution temporal parameter. It is therefore worth noting that these density functions ρ λ locally admit exponential-type estimates, which decay to zero for very "evolutional" times.

Remark 6.1.2. (Gaussian estimates)

The operator L * of (6.6) belongs to a class of hypoelliptic operators that locally admit estimates for their fundamental solution.

Rotschild and Stein in [RS76] obtained optimal local estimates of the kernels, while

Gaussian upper and lower bounds have been proven in [START_REF] Bonfiglioli | Uniform Gaussian estimates for the fundamental solutions for heat operators on Carnot groups[END_REF][START_REF] Boscain | Gaussian estimates for hypoelliptic operators via optimal control[END_REF][START_REF] Cinti | Pointwise local estimates and gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators[END_REF].

In literature, it is common to integrate over time to obtain such a timeindependent fundamental solution as shown in [START_REF] Bonfiglioli | Uniform Gaussian estimates for the fundamental solutions for heat operators on Carnot groups[END_REF] or in [START_REF] Cocci | Spatio-temporal models of the functional architecture of the visual cortex[END_REF][START_REF] Favali | Local and global gestalt laws: A neurally based spectral approach[END_REF].

We recall here this result, which we will adopt throughout the thesis. Proposition 6.1.1. Let ξ be a point in R 3 S 2 and ρ λ the fundamental solution of the operator ∂ t + L * with L * defined in (6.8), and pole in (ξ 0 , 0), with t 0 = 0 without loss of generality. Then

J λ (ξ, ξ 0 ) = R + ρ λ (ξ, t; ξ 0 , 0)dt (6.9)
is fundamental solution for the operator L * :

L * J λ (ξ, ξ 0 ) = δ ξ-ξ 0 . (6.10)
Proof. Let u be a smooth function on R 3 S 2 with compact support, independent from the time variable t. Then:

-u(ξ 0 ) = R + ×R 3 S 2 ρ λ (ξ, t; ξ 0 , 0)(∂ t + L * )u(ξ)dξdt = R + ×R 3 S 2 ρ λ (ξ, t; ξ 0 , 0)L * u(ξ)dξdt = R 3 S 2 R + ρ λ (ξ, t; ξ 0 , 0)dt L * u(ξ)dξ = R 3 S 2 J λ (ξ, ξ 0 )L * u(ξ)dξ (6.11) with J λ (ξ, ξ 0 ) = R + ρ λ (ξ, t; ξ 0 , 0)dt.
Alternatively, another way to deal with the time parameter is to make a further assumption on the random walk, supposing having exponentially distributed traveling time. Therefore, the time-independent fundamental solution is obtained by taking the Laplace transform of the probability density, as done for example by the authors of [DF11, PD17].

Monte Carlo simulation of the kernel

Approximation techniques based on Monte Carlo simulation are commonly developed to numerically compute the probability density related to these diffusion processes but also to validate exact solutions obtained analytically, for example in terms of Fourier transform as done in the works [PD17, DBM19] for (convection-) diffusion Kolmogorov equations in the 3D space of position-orientations. In these papers, the authors compare the numerical Fourier methods with the Monte Carlo simulations. Although the approach is the same, we use this simulation with the purpose of locally traveling along the integral curves, assuming the possibility of drifting in space in accordance with some stochastic noise. In this way, we approximate the fundamental solution (6.9) using a procedure developed in [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of V1[END_REF][START_REF] Barbieri | A cortical-inspired geometry for contour perception and motion integration[END_REF] adapted to our case. First, a simulation of the stochastic paths is carried out by applying the Euler-Maruyama method, then an appropriate average is made, using the Strong Law of Large Numbers.

Euler-Maruyama's type scheme

In order to generate the discrete version of the stochastic process Γ t ∈ R 3 S 2 , in coordinates Γ t = (r 1 (t), r 2 (t), r 3 (t), ϕ(t), θ(t)), satisfying the Langevin equation ( 6.1), we choose the Euler-Maruyama scheme approximation: this very simple method allows a convergence rate result very satisfying if M → ∞. For the reader interested in this topic, further details can be found in [START_REF] Graham | Stochastic simulation and Monte Carlo methods[END_REF].

We fix T > 0 and N M ≥ 1 number of steps of the path. Then, we construct

iteratively Γ M kT /M with 0 ≤ k ≤ M , by setting    Γ M 0 = Γ 0 , Γ M (k+1)T /M = Γ M kT /M + Y 3 (Γ M kT /M ) T M + λσ(Γ M kT /M ) T M δ k (6.12)
where T M δ k comes from the fact that the Brownian increments dW i (t) follow the Gaussian law N (0, T M ), with zero mean and variance T M , and so δ k = (δ k 1 , δ k 2 ) is defined from the fact that δ k i has normal distribution N (0, 1). In coordinates we have the following system:

                       r 1 (k + 1) = r 1 (k) + T M cos θ(k) sin ϕ(k) r 2 (k + 1) = r 2 (k) + T M sin θ(k) sin ϕ(k) r 3 (k + 1) = r 3 (k) + T M cos ϕ(k) θ(k + 1) = θ(k) -T M λδ k 1 sin ϕ(k) ϕ(k + 1) = ϕ(k) + T M λδ k 2 for k = 0, 1, . . . , M -1, (6.13) 
with Γ 0 = (r 1 (0), r 2 (0), r 3 (0), ϕ(0), θ(0)) initial point.

Remark 6.2.1. A similar formulation has been introduced in [DBM19] to compute

numerically the fundamental solution associated with the Kolmogorov equation of a diffusion process (the operator is written as sum of squares of vector fields generating the distribution) on the position-orientation space. The proposed discretization [DBM19, eq. ( 72)] is based on the fact that a point in S 2 can be thought of in terms of three-dimensional rotations starting from an initial axis (see Appendix A.2, equation (A.18)). For example,

S 2 n(θ, ϕ) = R θ 3 R ϕ 2 e 3
, where e 3 is the third Cartesian reference axis, R θ 3 is the rotation around the third axis of angle θ and R ϕ 2 is the rotation around the second axis of angle ϕ. If we recast (6.13) using rotations, we have:

   r(M ) = r(0) + M -1 k=0 T M n(k + 1) n(k + 1) = R θ (k+1) 3 R ϕ (k+1) 2 e 3 (6.14) where n(k + 1) = (sin θ (k+1) cos ϕ (k+1) , cos θ (k+1) sin ϕ (k+1) , cos ϕ (k+1) ) ∈ S 2 , the point r(k) = (r 1 (k), r 2 (k), r 3 (k)) ∈ R 3 , k = 0, M , and    θ(k + 1) = θ(k) -T M λδ k 1 sin ϕ(k) ϕ(k + 1) = ϕ(k) + T M λδ k 2 (6.15)
for k = 0 . . . M -1. This differs from the discretization proposed in [DBM19, eq. ( 72)], where the spherical term n(k + 1) is computed as a consecutive rotations' product on the index k.

Strong Law of Large Numbers

Let us denote with Γ (t,ξ 0 ,t 0 ) the stochastic process associated to (6.1) starting from the point ξ 0 at time t 0 . Its density law ρ λ is defined through a probability measure

P as ρ λ (S, t; ξ 0 , t 0 ) := P [Γ (t,ξ 0 ,t 0 ) ∈ S] = E[1 S (Γ (t,ξ 0 ,t 0 ) )], (6.16) 
with E the average in probability and S a subset of R 3 S 2 . To recover the density from the approximated stochastic process (6.13), it is possible to use the Strong Law of Large Numbers.

Theorem 6.2.1. (Strong Law of Large Numbers) Let (Γ (i)

t ), i ≥ 0 be a sequence of independent and identically distributed random variables. Assume that E[Γ

(i) t ] < ∞. For N ≥ 1, denote the empirical mean of (Γ (1) t , . . . , Γ (N ) t ) by SN = 1 N N i=1 Γ (i) t .
Then, the Strong Law of Large Numbers holds true:

lim N →∞ SN = E[Γ (1)
t ], P -a.s. (6.17) To apply the Theorem to our case, we first concentrate on the set S of interest.

We fix a discrete covering grid {ξ j } j∈N,j≤J of a suitable subset V of R 3 S 2 : this is a collection of subsets {Ω i } satisfying Ω i ∩ Ω j = ∅ if i = j and ∪ J j=1 Ω j = V . If we perform a discretization on R 3 with step size ∆ 1 , ∆ 2 , ∆ 3 and on S 2 with step size ∆ ϕ , ∆ θ , we assign the element ξ j to be a representative of the j th box. In this sense we define S := {ξ j } j∈N,j≤J .

Then, applying Theorem 6.17 to the stochastic process 1 ξ j (Γ (i) (t,x 0 ,t 0 ) ), we get:

ρ λ (ξ j , t; ξ 0 , t 0 ) = 1 N N i=1 1 ξ j (Γ (i) (t,x 0 ,t 0 ) ). (6.18) 
In other words, for a given ξ 0 ∈ R 3 S 2 we simulate N several discrete-time random paths and assign to each region ξ j a value between 0 and 1 corresponding to the number of paths that passed through it at the final time t divided by N .

This provides a distribution over the cells ξ j that, up to a multiplicative constant, for large values of N gives a discrete approximation of the kernel.

What we have just obtained is a probability density relative to the Kolmogorov equation (6.6). We have seen in subsection 6.1.3 that a time integration is sufficient to obtain the time-independent fundamental solution. In the discrete case, this corresponds to a sum over t:

J T λ (ξ j , ξ 0 ) = T t=t 0 ρ λ (ξ j , t; ξ 0 , t 0 ). (6.19) 
In other words, by applying the numerical method just described not only on the final points of the random walk (6.13) but on all the points of the path (relative to different evolutions times t < T ), we obtain a numerical approximation of J T λ . With this notation we explicitly underline the dependence of the kernel on the parameters of diffusion λ and time T . We will see in subsection 6.2.4 how these parameters affect the shape of the kernel.

Examples of the numerical kernels are shown in Figure 6.2.1. The iso-surfaces in R 3 , images (a) and (b), are obtained considering the marginal distribution

J R 3 (ξ j , ξ 0 ) = S 2 J T λ (ξ j , ξ 0 )dσ, (6.20) 
where dσ = sin ϕdθdϕ is the spherical measure on S 2 . On the other hand, the marginal distributions on the sphere J λ S 2 (ξ j , ξ 0 ) are obtained by integrating J λ (ξ j , ξ 0 ) over R 3 . They are shown using a chart of S 2 in images (c) and (d): the greater probability is that of remaining in a neighborhood of the initial point of angles (θ 0 , ϕ 0 ).

(a) J λ=0.035

R 3 (ξ j , ξ 0 ) (b) J λ=0.08 R 3 (ξ j , ξ 0 ) (c) J λ=0.035 S 2 (ξ j , ξ 0 ) (d) J λ=0.035 S 2
(ξ j , ξ 0 ) Figure 6.2.1: Top: Display of J R 3 (ξ j , ξ 0 ) for two different diffusion coefficients λ (left λ = 0.035, right λ = 0.08), at isovalue 0.1. Euler-Maruyama scheme parameters are M = 400, T = 100, N = 10 6 . Bottom: Display of the marginal distribution J S 2 obtained after an integration of J T λ over R 3 , for the same parameters as above. The starting point ξ 0 has orientation defined by (θ 0 , ϕ 0 ) = (π/2, π/2). This simulated kernel approximates well the fundamental solution thanks to the Strong Law of Large Numbers, recalled here in Theorem 6.17. And, even though this Theorem can be applied to strengthen numerical convergence results in this setting, as, for instance, those proposed by Duits, Bekkers and Mashtakov in [DBM19, eq. ( 76)], a necessary condition is that N is large enough. To better understand how precise the numerical estimation is, it is useful to study the error uncertainty regarding the reported measurement (6.18), as we will see in the next section.

Error estimate

Monte Carlo method is based on the Strong Law of Large numbers and clearly yields approximate results whose accuracy depends on the number of values N used in equation (6.17). Indeed, the numerical mean J T λ (ξ, ξ 0 ) computed via (6.18) and (6.19) estimates the real mean E[1 ξ j (Γ (1) )]. The difference between these two quantities is usually called statistical error. Since it is not numerically possible to know the true value of E[1 ξ j (Γ (1) )], a possible measurement of the error corresponds to studying the probability with which the true mean

E[1 ξ j (Γ (1) )] lies in the interval I = [J T λ -r, J T λ + r],
where r is a suitable confidence radius around the estimated value J T λ . In probabilistic terms, this is equivalent to calculate

P (|J T λ -E[1 ξ j (Γ (1) )]| ≤ r). ( 6.21) 
The interval I is usually called confidence interval, because there is a probability equal to (6.21) to know if the real mean lies within the interval itself.

Taking advantage, first, of the fact that we want this convergence radius to depend on the parameter N (more specifically we require that this radius decreases as N increases), and the fact that we can use the central limit theorem to compute (6.21), it makes sense to consider r = σ √ N , with σ = V ar((1 ξ (Γ (1) )) standard deviation of the random variable. Since the actual variance of the process cannot be computed, it is standard to consider its approximation:

σ2 = 1 N N i=1 1 ξ Γ i -J T λ 2 , ( 6.22) 
also known as the variance of Monte Carlo's estimates.

So, with a probability determined by (6.21), we can say that the true mean is in a neighborhood of the approximated mean. Monte Carlo practitioners usually use one standard deviation to determine the confidence radius, and thus the range

considered is [J T λ -σ √ N , J T λ + σ √ N ]
: this corresponds to know with a probability of 33 percent that the estimated mean lies within the interval. Another widely used value (the one used in our simulation) is to consider 2.57 standard deviations, having r = 2.57σ √ N , which turns into a probability of 95 percent. Statisticians usually display the confidence interval using an error bar of symmetric size r around the empirical mean. For the reader interested in more information, we refer to [START_REF] Nicholls | Confidence limits, error bars and method comparison in molecular modeling. Part 1: the calculation of confidence intervals[END_REF].

We display error bars for some sections of our kernel, and the results are shown in Figure 6.2.2 and Figure 6.2.3. More precisely, keeping fixed the initial point ξ 0 ∈ R 3 S 2 , and integrating over S 2 as in (6.20), the kernel can be viewed as a function of the variable (r 1 , r 2 , r 3 ) ∈ R 3 , namely J T λ = J T λ (r 1 , r 2 , r 3 ). For simplicity, we focus on a section of the kernel: for example, fixing (r 2 , r3 ) we consider J T λ (r 1 ) = J T λ (r 1 , r2 , r3 ). We estimate the variance σ through the equation (6.22), and an error bar corresponding to the confidence interval determined by r = 2.57σ √ N at the point of coordinates (r 1 , J T λ (r 1 )) is then placed along the vertical axis. The same procedure can be applied to the others coordinates. λ (r 1 ), namely a section perpendicular to the r 1 -axis, related to kernels simulated with a different number of paths. Image (a) shows the comparison between the values of a kernel generated by a number of paths N = 10 5 with one generated considering N = 10 6 , in a neighborhood of the pole ξ 0 : the magnitude of the confidence interval, indicated in the picture as ∆(N ), decreases as N increases. Image (b) shows that, as we get further and further away from ξ 0 (both along the r 1 -axis and on the r 2 -axis), the kernel value decays to zero, as does the standard deviation. This is well in agreement with Remark 6.1.2: as time becomes larger, the kernel value tends to zero. Figure 6.2.3 shows the error along the section perpendicular to the r 2 -axis and passing through ξ 0 . This section is orthogonal to the ones studied in Figure 6.2.2. Image (a) displays the trend of the error bars on the values J T λ (r 2 ): moving along the r 2 -axis the function decreases to zero, as does the error. This is well in accordance with results of Figure 6.2.2 and Remark 6.1.2. On the other hand, image (b) of Figure 6.2.3 shows the behavior of the percent error, defined here as E % := 100 r J T λ (r 2 ) , with r = 2.57σ √ N . In this case, the tendency is the opposite compared to image (a): we have a good percentage estimate near ξ 0 , while this goodness decreases as the distance from the ξ 0 increases. This happens because near the pole the points are reached by a high number of stochastic paths, and this number decreases as we move away from ξ 0 .

On the other hand, the temporal parameter T can be seen as a scale parameter. The effect of the variation of the parameter T on the shape of the kernel is shown in Figure 6.2.4: the columns show a proportional relationship between the increase in the final time of the stochastic path, and the amplitude of the kernel.

During numerical experiments for visual grouping, this parameter will be taken in accordance with the image dimension.

Comparison with stereo compatibility fields

In [START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF] the authors transport the differential structure in a way that nearby points are comparable with the measured information, and in particular, the set of all compatible points is called the compatibility field around the starting point j.

The correlation between a neighboring point i and the starting point j shows the degree of support in term of positions and orientations, and moreover, the different slices of Figure 3.3.2 bring out the bending and twisting in space encoded by the differential structure.

The kernels presented in this section, defined through the transition probabilities of equation (6.19), are the counterpart of the compatibility fields in our work. Indeed, these kernels express the correlation rate between neighbors of a starting point p, which in this case we can think of as a position-orientation element whose orientation is determined by the direction (0, 1, 0) in the 3D Cartesian space. Positions and orientations in 3D space affect the compatibilities, as shown in Figure 6.2.5. More precisely, the image shows a collection of position-orientation elements selected by the kernel: we represent for points in R 3 the preferred orientation picked out from the kernel, together with its intensity in R 3 , computed via equation (6.19). The intensity is characterized both by color and length of the three-dimensional segment: the darker and longer the segment is, the more it correlates with the starting point p. The bending and twisting information are coded in the measurements since the different position-orientation elements are not constrained to be in fronto-parallel planes. The dependence on position is well displayed: as we move away from the initial position, the points in space lose intensity. The same thing happens for orientations compatible with the initial direction. 

Neural activity via mean field equation

The evolution of a state of a cells' population has been modeled through a mean field equation in many works, for example see [EC80, BC03, FF10, SC15], firstly proposed in the works of Amari [START_REF] Amari | Characteristics of random nets of analog neuron-like elements[END_REF] and Wilson and Cowan [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF]. According to these works, the result of the propagation along the connectivity generated by the visual scene can be described, without considering the delays for the transmission of the signal, by the following integer differential equation in the 3D perceptive space of positions and orientations:

da(ξ, t) dt = -αa(ξ, t) + Ω µJ λ (ξ, ξ )a(ξ , t)dξ + h(ξ, t) , in R 3 S 2 (6.23)
where ξ is a point of R 3 S 2 , t > 0, dξ = dxdσ(n) = dx sin ϕdθdϕ, with dx Lebesgue measure in R 3 and dσ spherical measure on S 2 , the coefficient α repre-sents the decay of activity, and h(ξ, t) is the feedforward input.

The function is the transfer function of the population and it has a piecewise linear behavior, as proposed in [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of V1[END_REF]:

(s) =            0, s ∈] -∞, c -1 2γ [ γ(s -c) + 1 2 s ∈ [c -1 2γ , c + 1 2γ ] 1, s ∈]c -1 2γ , +∞[ (6.24) 
where γ is a real number that represents the slope of the linear regime and c is the half-height threshold.

The kernel J λ (ξ, ξ ) is the contribution of the cortico-cortical connectivity introduced in the previous sections through equation ( 6.9), while the parameter µ is a coefficient of short-term synaptic facilitation.

Remark 6.3.1. In the bi-dimensional case, it is customary when dealing with kernels with the purpose of describing pure orientation, to consider reciprocal connections [START_REF] Sanguinetti | A model of natural image edge co-occurrence in the rototranslation group[END_REF][START_REF] Barbieri | A cortical-inspired geometry for contour perception and motion integration[END_REF]. This assumption is justified by neural studies, see for example [START_REF] Kisvarday | Cellular organization of reciprocal patchy networks in layer iii of cat visual cortex (area 17)[END_REF], where it is reasonable to consider two cells to be symmetrically connected. We then take as kernels a symmetrization of the corresponding connectivity kernels. The chosen symmetrization consists of taking 

J S (ξ i , ξ j ) = J λ (ξ i , ξ j ) + J λ (ξ j , ξ i ) 2 . ( 6 
Ω = {ξ ∈ R 3 S 2 ; h(ξ) = c}. ( 6 

Existence and uniqueness of a solution

In this subsection, we deal with the property of existence and uniqueness of a solution to equation (6.23). We use classical instruments of functional analysis, assuming to work in L 2 (Ω, R), the space of the square-integrable functions from Ω to R. This is a Hilbert space for the usual inner product with initial value a 0 .

< a 1 , a 2 >= Ω a 1 (ξ)a 2 (ξ)dξ, ( 6 
To apply the results that guarantee the existence and uniqueness of the solution to the Cauchy Problem (6.30) in Banach spaces, we need to show that the function f is well defined on L 2 (Ω, R) and that f is Lipschitz, in accordance with the results presented in [START_REF] Hale | Introduction to functional differential equations[END_REF].

Proposition 6.3.1. If J S (ξ, ξ ) ∈ L 2 (Ω × Ω, R), the function f is well defined and f (a) ∈ L 2 (Ω, R) for all a ∈ L 2 (Ω, R).
Proof. Performing a direct computation: (6.31) exploiting the Cauchy-Schwarz inequality. Since a and c ∈ L 2 (Ω, R), we only need to prove that A(a) L 2 (Ω,R) < ∞: Proof. We have

f (a) 2 L 2 (Ω,R) ≤ a 2 + A(a) 2 + c 2 + 2 a 2 A(a) 2 + 2 c 2 A(a) 2 + 2 c 2 a 2 ,
A(a) 2 L 2 (Ω,R) = Ω Ω J S (ξ, ξ )a(ξ , t)dξ 2 dξ ≤ Ω Ω J 2 S (ξ, ξ )dξ Ω a 2 (ξ , t)dξ dξ ≤ J S 2 L 2 (Ω×Ω,R) a 2 L 2 (Ω,R) (6 
f (a 1 ) -f (a 2 ) L 2 (Ω,R) = -a 1 + a 2 + A(a 1 ) -A(a 2 ) L 2 (Ω,R) ≤ a 1 -a 2 L 2 (Ω,R) + A(a 1 ) -A(a 2 ) L 2 (Ω,R) ≤(1 + M ) a 1 -a 2 L 2 (Ω,R) (6.33)
where we first use the triangular inequality, and then the properties of Remark 6.3.3. In particular, M is the Lipschitz constant for the operator A.

Stability analysis

We perform a stability analysis for the equation (6.23), exploiting the Lyapunov method in Banach spaces, by applying the results of Faye and Faugeras in [START_REF] Faye | Some theoretical and numerical results for delayed neural field equations[END_REF] to our case of study. • V (0) = 0 and V (a) > 0 for all a ∈ F, a = 0,

• dV (a)(f (a)) ≤ 0 for all a ∈ F, where the derivative of the functional is defined as: such that the following conditions hold:

dV (a)(f (a)) = lim ε→0 V (a + εf (a)) -V (a) ε . ( 6 
• u 1 ( a ) ≤ V (a) ≤ u 2 ( a )
, where u 1 and u 2 are real, continuous, non decreasing functions such that u 1 (s), u 2 (s) positive for s > 0 and u 1 (0) = u 2 (0) = 0.

• u 1 (t) → +∞, t → +∞

• dV (a)(f (a)) < -u 3 ( a ) where u 3 is real continuous non decreasing positive for s > 0 and u 3 (0) = 0.

Then, the point 0 is asymptotically stable for (6.30).

In the following, we are interested in the study of stationary solutions, namely time-independent solutions. Definition 6.3.3. An element a 0 ∈ L 2 (Ω, R) is said to be a stationary (or steady) state for (6.30) if f (a 0 ) = 0.

In the case of a steady state a 0 , the solution φ(t) = a 0 is a constant solution to the Cauchy problem (6.30). It is possible to write the Taylor expansion of the function f in a neighborhood of the steady state a 0 , by defining à := df (a 0 ), in the following way f (a) = Ã(a -a 0 ) + o( a -a 0 ), for a → a 0 . (6.35) Definition 6.3.4. We call linearized system associated to (6.30) in a 0 the following a = Ãa. (6.36)

Lyapunov method in the space of position and orientation

To study the stability of the stationary solution a 0 , we consider a small perturbation around the stationary state u = a -a 0 , obtaining the linearized system

Ã(u) = -αu + γµ Ω J S (ξ, ξ )u(ξ )dξ . (6.37)
In particular, the linearized equation around a 0 , associated to (6.23) has the following expression:

∂ t u = -αu + γµ Ω J S (ξ, ξ )u(ξ )dξ . (6.38)
If 0 is asymptotically stable for for (6.38), then a 0 is asymptotically stable for (6.23).

The Lyapunov functional that we consider is defined as the quadratic form:

V (u) = 1 2 Ω u 2 (ξ)dξ. (6.39)
For (6.39) to be a Lyapunov functional, we need to check the properties of Definition 6.3.2. The first property is trivially satisfied. Regarding the derivative, we have:

dV (u)( Ã(u)) = - Ω αu(ξ)u(ξ)dξ + Ω u(ξ)µγ Ω J S (ξ, ξ )u(ξ )dξ dξ ≤ -α u 2 L 2 (Ω,R) + µγ J S L 2 (Ω 2 ,R) u 2 L 2 (Ω,R) = (-α + µγ J S L 2 (Ω 2 ,R) ) u 2 L 2 (Ω,R) .
(6.40)

In particular, it follows that if J S L 2 (Ω 2 ,R) < α µγ then a 0 it is stable.

Stability via Eigenvalues problem

The equation satisfied by small perturbation around the stationary state u = a-a 0 , is given by:

du(ξ, t) dt = -αu(ξ, t) + γ Ω µJ S (ξ, ξ )u(ξ , t)dξ , in Ω. (6.41)
In particular, it is worth noting that in this framework, u is a solution of the homogeneous equation associated to equation (6.23). Then, the stability of the solution of this linear equation can be studied by mean of the eigenvalue problem associated to the linear operator

Lu = -αu + γµ Ω J S (ξ, ξ )u(ξ )dξ = λu, (6.42)
which is equivalent to the following expression

J S (ξ, ξ )u(ξ )dξ = λu, (6.43) 
with λ = λ+α γµ . In general, the system is stable if λ < 0 and so imposing it to be negative we get λ < α γµ . Moreover, if we consider all parameters equal to 1, we obtain that the system is stable if the eigenvalue λ < 1.

It follows from the Spectral Theorem on Hilbert spaces that a solution φ can be written in terms of eigenvectors u i and eigenvalues λ i of the operator (6.29) in the following way:

φ(t) = c i u i e λ i t (6.44)
and in particular, if t = 0 we have a 0 = c i u i .

Discrete mean field equation and spectral clustering

The spectral analysis implemented by the neural population translates into the identification of perceptual units, leading to a grouping performance strictly linked with arguments of spectral clustering and dimensionality reduction, where the salient objects in the scene correspond to the eigenvectors with the largest eigenvalues.

More precisely, in application it is common to work with a finite number of points, hence having a discrete structure of the input. The configurations are then constituted by a finite number N of elements in the lifted space with coordinates In particular, the kernel J S is reduced to a symmetric matrix J of dimension N ×N , whose entries (i, j) are

ξ i = (p i , n(θ i , ϕ i )), p i ∈ R 3 , n(θ i , ϕ i ) ∈ S 2 ,
J ij = γµJ S (ξ i , ξ j ),
and the eigenvalue problem (6.43) becomes Ja = λa.

This matrix can be considered as the equivalent of the affinity matrix introduced in many works for spectral clustering and dimensionality reduction problems, see for example [RS00, BN03, CL06, PF98, MS01, SM00].

Spectral Clustering and dimensionality reduction

In this paragraph, we explain how (discrete) spectral analysis is connected with the problem of perceptual grouping, linked with results of dimensionality reduction.

Let us suppose that the visual setting is composed of N discrete elements ξ i , i = 1, . . . , N that are present in the visual scenery. It is possible to describe the visual scene in terms of an affinity matrix J, whose elements J i,j describe the affinities between elements ξ i and ξ j . It is then clear that the complexity of the matrix J is of order O(N 2 ).

The idea of Perona and Freeman in [START_REF] Perona | A factorization approach to grouping[END_REF] is to characterize the scene by approximating the matrix J by matrices of rank 1 and complexity N , each of which will identify a perceptual unit in the scene. In particular, a rank 1 matrix is represented as the external product of a vector p with itself: the element of place i, j of the matrix is p i p j , for every i, j = 1, . . . , N . So, the first approximating matrix is computed as the best approximation of J minimizing the Frobenius norm as follows:

p 1 = argmin p N i,j=1 (J ij -p i p j ) 2 . (6.46)
It has been proved in [START_REF] Perona | A factorization approach to grouping[END_REF] that the minimizer p 1 is the first eigenvector v 1 of the matrix Jx with largest eigenvalue λ 1 :

p 1 = λ 1/2
1 v 1 . This procedure is applied iteratively until all significant eigenvectors are deter-mined. The salience of an eigenvector is determined starting from the magnitude of the corresponding eigenvalue: the process ends when this is sufficiently small. In general, this method selects only n eigenvectors, with n < N , reducing the dimensionality of the problem.

Normalization with the transition matrix of a Markov chain

Spectral analysis techniques, proposed in [START_REF] Meilă | A random walks view of spectral segmentation[END_REF] and used for example in [START_REF] Barbieri | A cortical-inspired geometry for contour perception and motion integration[END_REF],

have shown that there exists a normalization that turns the real symmetric affinity matrix J into the transition matrix P of a Markov process, via row-wise normalization. More precisely, if D is the diagonal degree matrix, having elements

D i,i = N j=1 J ij , for i = 1 . . . N
the normalized affinity matrix P is given by P = D -1 J. Remark 6.4.1. This matrix in general is not symmetric. However, it can be shown (see for example [START_REF] Meilă | A random walks view of spectral segmentation[END_REF]) that its eigenvalues λ i are real and satisfy 0 ≤ λ i ≤ 1, and its eigenvectors u i accordingly can be chosen with real components. Remark 6.4.2. This grouping mechanism arises from a spectral clustering of the associated graph Laplacian, see for example [START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Sarkar | Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors[END_REF][START_REF] Chung | Spectral graph theory[END_REF][START_REF] De La Porte | An introduction to diffusion maps[END_REF].

Then it is possible to interpret the stimulus as a weighted graph. Remark 6.4.3. We recall here that the normalization introduced in this paragraph is supposed to occur at neural level throughout the neural visual system ( [START_REF] Carandini | Normalization as a canonical neural computation[END_REF]), and in particular, in the primary visual cortex, see for example [START_REF] Heeger | Normalization of cell responses in cat striate cortex[END_REF]. In general, a normalization divides the response of a neuron and the sum of the activity of a pool of neurons. This is in agreement with the so-called Tononi normalization, introduced in [START_REF] Tononi | A measure for brain complexity: relating functional segregation and integration in the nervous system[END_REF], where the sum of the weights of the connections is required to be equal to a constant value. This is consistent with the behavior of biological neural systems in which the weight of connections is adjusted in such a way that a neuron with few connections will weigh these inputs more heavily than a neuron with many connections. Further discussion regarding this type of normalization can be found in [START_REF] Barnett | Neural complexity and structural connectivity[END_REF].

Grouping results

In this section, we develop the ideas illustrated so far by numerical examples: first, we describe the stimulus used, and then we proceed with the spectral analysis, adapting the spectral clustering algorithm introduced in [BCCS14, SC15] to our case of study. In particular, eigenmodes are computed as eigenvectors of the P matrix, and we show how they represent perceptual units in the 3D space. The main steps of the algorithm are summarized in Remark 6.5.1. -Build the affinity matrix J ij = J(ξ i , ξ j ).

-Compute the normalization P = D -1 J and solve the eigenvalue problem Pu = λu.

-Find the q eigenvalues {λ i } q i=1 > 1 -ε and take the corresponding eigenvectors {u i } q i=1 .

-For k = 1, . . . , n assign the point ξ k to the clustered labeled by max i {u i (k)} q i=1 .

-Join together the clusters with less than Q elements.

Parameterized curve

Starting from two retinal images which are the projection of a curve γ : [0, T ] → R 3

of n curve = 40 points, we recover the lifting of the stimulus in the space R 3 S 2 , as shown in Figure 6.5.1.

Then, we apply the grouping algorithm to resolve both the corresponding problem and the segmentation of the tridimensional scene. The results derived from the spectral analysis, in this case, can be seen in Figure 6.5.2. We used the time interval of evolution [0, 300] for generating random paths for the computation of the kernel. We compute the affinity matrix P and, after having thresholded and selected the eigenvalues, we notice that there is only one main cluster that group together more than Q = 25 points, described fully by the first eigenvector. The first eigenvector in this case recovers satisfyingly the real curve, except for a ladder point. 

Helix and arc

Then, we tested our algorithm on a synthetic stimulus similar to the one presented in the work of Alibhai and Zucker [START_REF] Alibhai | Contour-based correspondence for stereo[END_REF]. The stimulus is a couple of synthetic images, composed of an arc and an y-helix. In our example the arc has n arc = 40 points, and the helix is composed by n helix = 80 points, as shown in Figure 6.5.3.

We then apply our grouping algorithm in the interval of time [0, 57] and the spectral analysis is displayed in Figure 6. (c) of Figure 6.5.4. So, these eigenvectors are well suited to describe the two main perceptual units in the visual scene, even if two ladder points are recovered from the helix.

We also generate a depth map, which allows us to display the points recovered in R 3 with different colors following depth (blue is closest to the observer, and yellow is the farthest away).

The stereo reconstruction algorithm of [START_REF] Alibhai | Contour-based correspondence for stereo[END_REF] recovers the helix and the arc, which result separate in depth. Even our algorithm allows well this kind of reconstruction, with the additional segmentation of the tridimensional scene in two perceptual objects.

Natural images

A black and white image I is typically described with a function I : R 2 → [0, 1],

where the value 0 corresponds to the color white, while the value 1 corresponds to the black. In particular, since I(x, y) describes the intensity of the retinal image on the retinal point (x, y), we assume that points of maximum intensity are the points characterized by the presence of the stimulus. We work with a couple of twigs images, generated from cameras with a baseline of 6 cm, with the aim to well simulate the distance between the left and right eyes.

The couple of images imported in Matlab can be seen on the left of Figure 6.5.6.

The rescaled images have dimensions 89 × 161. After having applied the maximal selectivity orientation process, we obtain 121 points for the left image, and 127 for the right one, both displayed in the middle of Figure 6.5.6. These points are lifted in the space R 3 S 2 , generating 200 corresponding points. The spectral analysis of the stimulus is shown in Figure 6.5.7. The kernel for computing the affinity matrix has been generated using an evolution interval of time [0, 100]. There are two main clusters of points that correspond to the two twigs represented in the figures: the first cluster (displayed in red) is composed by 46 points, while the second main cluster (blu) is formed by 64. And so 110 points are recovered from the tridimensional visual scene. We consider also a depth map, that allows us to better understand the configuration of the stimulus in the space, image (e) of Figure 6.5.7. The points near the observer are marked with dark blue, while the points farther away are characterized by yellow.

Comparison with Riemannian distance

In this section, we focus on the comparison between the sub-Riemannian distancebased kernel we have introduced, and the kernel obtained by the classical exponential function whose argument depends on the Riemannian distance of the space.

The results presented here show the benefits of grouping using sub-Riemannian distances rather than using isotropic distances.

Gaussian kernel

It is typical in graph-based clustering [SM00, CG97, CL06] to use a Gaussian kernel as a similarity measure to group clouds of points. In particular, if we consider a manifold M , this kernel is usually a non-linear function of a Euclidean-type distance:

k ξ 0 ,E (ξ) = 1 4πσ exp - d E (ξ -ξ 0 ) 2 4σ , ( 6.47) 
with d E Euclidean-type distance on M , ξ 0 , ξ ∈ M , with ξ 0 fixed, and σ ∈ R + .

When we talk about Euclidean-type distance, we are talking about Riemannian distance on the manifold we are considering, in our case, M = R 3 S 2 . The distance is defined as the classic Euclidean distance d R 3 on R 3 , plus the classical Riemannian distance on the sphere d S 2 :

d E (ξ, ξ 0 ) = d R 3 (p, p 0 ) + d S 2 (n, n 0 ), with ξ = (p, n) ∈ R 3 S 2 . ( 6 

.48)

This connectivity kernel can be seen as a fundamental solution of the classical heat operator in M . The parameters involved here are only position ξ ∈ M and the variance √ σ ∈ R, so this kernel associates points that are close in the typical euclidean sense, and decorrelates points that are far. The parameter σ has the function of a scale parameter, and so its function is to enlarge or shrink the correlation area: if σ is small, the correlation is higher between points near ξ 0 , while if σ is large the correlation involves also points far away. This is basically due to the behavior of the Gaussian function.

It is then clear that the Riemannian distance of the space, core of the Gaussian similarity kernel of equation ( 6.47), is not associated with a process of alignment towards a principal direction, but it is at the basis of correlation between points characterized by closeness. We can therefore think that this kernel encodes the Gestalt principle of proximity, rather than the one of good continuation. In fact, the euclidean kernel is usually used for grouping clouds of points instead of elements characterized by specific features.

Numerical simulation

First of all, to visually understand the differences between the introduced sub-Riemannian kernel (6.18) and the Riemannian-based Gaussian kernel, we picture its iso-surfaces by displaying the intensity of (6.47) in R 3 , integrating on the sphere 6.5.1 with the Gaussian kernel (6.47).

On the other hand, if we try to use this kernel on a three-dimensional scene characterized by perceptual units in R 3 S 2 surrounded by noise elements, we observe that the eigenvectors associated with the Riemannian affinity matrix do not represent the contours of the stimulus, but the areas with the highest density of elements. We try this on the introduced stimuli of Section 6.5.

First, we concentrate on the three-dimensional synthetic images. Performing the grouping algorithm on the 3D image representing the parametrize curve, we observe that the first eigenvector (red points) does encode the area with the higher number of elements, but it does not perform 3D reconstruction, result is shown in image (a) of Figure 6.6.3. In this case, the only parameter we can modify to get a better performance is the σ scale parameter, but it is not enough to retrieve the 3D object. This observation is even clearer in the case of the three-dimensional image representing the arc of circle and y-helix. If we group with a suitable value of sigma, for example equal to 3, we notice that the first eigenvector is able to select the points that form the arc of circle, image (b) of Figure 6.6.3. However, Then, we perform the same algorithm on the twig images, which an example can be found in Figure 6.6.4. Even in this case, we find results similar to the previous case, observing that the perceptual law underlying the grouping is based on proximity, and so the closeness of points, without properly segmenting and reconstructing the visual scene.

Chapter 7

Conclusion

In this thesis, a neuro-geometrical model for stereo vision is presented. Stereo geometry has a mathematical structure that is a direct extension of plane curve geometry: instead of (orientation, position) neural columns, these become abstract fibers. The collection of fibers across position (and disparity) is a fiber bundle, and elements of the fiber can be viewed as neurons. The natural coordinates are position, positional disparity and orientations from the left and right eyes, respectively.

The behavior of binocular cells is usually described by the binocular RPs, the product of the left and right monocular RPs. We note that starting from binocular receptive profiles, it is possible to reconstruct the three-dimensional space using only the position and orientation of the visual stimulus in the retinal planes (assuming having corresponding points). This differs from previous models [AZ00, LZ03, LZ06] which assume the existence of monocular cells with curvature-sensitive receptive profiles.

We propose a sub-Riemannian model on the space of position and orientation R 3 S 2 for describing the perceptual space of the involved neurons. This geometrical structure favors the tangent direction of a 3D curve stimulus as a natural consequence of neurophysiological models and classical stereo geometry. The integral curves of the sub-Riemannian structure encode the concepts of curvature and torsion in their coefficients and are introduced to describe the connections between elements. This model can be considered as an extension of the two-dimensional model proposed by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] in the three-dimensional scene.

Integral curves model neural connectivity and they formalize association field

Remark A.1.1. Since SO(3) is diffeomorphic to real projective space P 3(R), which is a quotient of S 3 by identifying antipodal points, inevitable problems always exist in local charts. In (A.1) the ambiguity arises at the intersection of the equator with the r 3 -axis. So, it is possible to introduce a second chart, where every counterclockwise rotation is written as

R = R θ 1 R ϕ 2 R α 3 with ϕ ∈ (-π/2, π/2), θ, α ∈ [-π, π].
In this second chart, the ambiguity arises at the intersection between the equator and the r 1 -axis.

The group of 3D rotation is a Lie group, and associated with every Lie group is its Lie algebra. The Lie algebra of SO(3) is denoted as so(3) and it is the set spanned by the skew symmetric matrices:

A 3 =     0 -1 0 1 0 0 0 0 0     , A 2 =     0 0 1 0 0 0 -1 0 0     , A 1 =     0 0 0 0 0 -1 0 1 0     , (A.2)
each of these represents respectively the vector fields ∂ α , ∂ ϕ , ∂ θ in the neutral element 1 e ∈ SO(3), and so so

(3) = span{∂ α , ∂ ϕ , ∂ θ } e .
We have recalled in Chapter 4, section 4.2, that it is possible to identify the Lie algebra of a Lie group with the set of left-invariant vector fields. The leftinvariant vector fields can be obtained from the basis {∂ i } i of the tangent space at the neutral element through the pushforward of the left multiplication L P Q := P Q, P and Q ∈ SO(3) by:

(L P ) * ∂ i φ = ∂ i (φ • L P )
for all smooth φ : U P → R, which are locally defined on some neighborhood U P ⊆ SO(3) of P . 130 that ∂ ϕ,e = A 2 and so it is natural to choose the curve γ as :

γ(t) = R t 2 =     cos t 0 sin t 0 1 0 -sin t 0 cos t     . (A.4)
This leads to:

d dt |t=0 L R (γ(t)) = R d dt |t=0     cos t 0 sin t 0 1 0 -sin t 0 cos t     = RA 2 , (A.5)
the left-invariant vector fields at point R ∈ SO(3), which we can call Ỹϕ,R .

Then, we need to express this quantity in a basis for the tangent space of SO(3) in a generic point R. The matrices that represents the vector fields {∂ α , ∂ ϕ , ∂ θ } in a generic point R of coordinates (α, ϕ, θ) in the second chart, are:

∂ α,R = R θ 1 R ϕ 2 R α 3 A 3 ∂ ϕ,R = R θ 1 R ϕ 2 A 2 R α 3 ∂ θ,R = R θ 1 A 1 R ϕ 2 R α 3 (A.6)
computed using a curve η such that η(0) = R and η (0) equal to the chosen vector field. Expliciting the left invariant vector field Ỹϕ,R in the basis {∂ α , ∂ ϕ , ∂ θ } |R we have:

Ỹϕ,R = sin α tan ϕ∂ α,R + cos α∂ ϕ,R - sin α cos ϕ ∂ θ,R . (A.7)
According to [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF], left-invariant vector fields express in the second chart, forgetting the dependence on the point R ∈ SO(3), are:

Ỹθ = -cos α tan ϕ∂ α + sin α∂ ϕ + cos α cos ϕ ∂ θ Ỹϕ = sin α tan ϕ∂ α + cos α∂ ϕ - sin α cos ϕ ∂ θ Ỹα = ∂ α ; (A.8)
while in the first chart (A.1) are:

Ỹθ = (cos α cot ϕ)∂ α + (sin α)∂ ϕ - cos α sin ϕ ∂ θ Ỹϕ = -(sin α cot ϕ)∂ α + (cos α)∂ ϕ + sin α sin ϕ ∂ θ Ỹα = ∂ α .
(A.9)

Since we are interested in working with the two-dimensional sphere, it is possible to define a sub-Riemannian metric g SO(3) with respect to vector fields Ỹθ and Ỹϕ (belonging to the tangent space of the sphere) by imposing their orthonormality. In this setting, we say that a curve2 γ :

I -→ SO(3) is horizontal if γ(s) = b(s) Ỹθ + c(s) Ỹϕ ∈ span{ Ỹθ ,
Ỹϕ } for all s ∈ I, and its length is defined as:

SO(3) (γ) = I g SO(3) ( γ(s), γ(s))ds = I b 2 (s) + c 2 (s)ds. (A.10)
The Carnot-Charatheodory distance between two points P and Q ∈ SO(3), is defined as the infimum of the SO(3)-lengths of the horizontal curves joining P and Q:

d SO(3) (P, Q) = inf γ { SO(3) (γ); γ(0) = P, γ(1) = Q}, (A.11)
and such a curve exists because of the Hörmander condition satisfied by the generating vector fields Ỹθ and Ỹϕ . In particular, for the reader interested in the curves (geodesics) that solve(A.11), we refer to [MDS + 17] .

A.2 Two dimensional manifold S 2

It is usual to define the two dimensional sphere as the set of points in R 3 having (Euclidean) distance from the origin equal to 1, namely S 2 = {x ∈ R 3 ; x = 1}.

However, since the topological dimension of this geometric object is 2, we introduce the classical spherical coordinates (θ, ϕ) such that n = (n 1 , n 2 , n 3 ) ∈ R 3 can be parametrized as:

n 1 = cos θ sin ϕ n 2 = sin θ sin ϕ n 3 = cos ϕ (A.12)
with θ ∈ [0, 2π] and ϕ ∈ (0, π).

The ambiguity that arises using a local coordinate chart is overcome by the introduction of a second chart, covering the singular points similarly as already explained in Remark A.1.1.

The Euclidean metric induces on the sphere the classical intrinsic Riemannian metric:

g S 2 := dϕ 2 + sin 2 ϕdθ 2 , (A.13)
and a set of local vector fields that are orthonormal with respect to this metric are

Y θ = - 1 sin ϕ ∂ θ , Y ϕ = ∂ ϕ , (A.14) well defined for θ ∈ [0, 2π], ϕ ∈ (0, π).
If we take a curve γ : I -→ S 2 , such that γ(s) = ( θ(s), φ(s)), it is possible to define its length with respect to the Riemannian metric introduced in (A.13):

S 2 (γ) = I φ2 (s) + θ(s) 2 sin ϕ 2 (s)ds (A.15)
The Carnot-Charatheodory distance associated with this metric is defined by taking the infimum of the S 2 -length of a curve joining the two points:

d S 2 (n 0 , n 1 ) = inf γ { S 2 (γ); γ(0) = n 0 , γ(1) = n 1 }, (A.16)
for every couple of points n i = (θ i , ϕ i ) ∈ S 2 , i = 0, 1. In particular, the correspondence between SO(3)/SO(2) and S 2 is given by the following map:

Remark

H = (0, 0, α) = {R ∈ SO(3); R = R α 3 , ∀α ∈ [0, 2π]}, (A.17
SO(3)/SO(2) [R θ 3 R ϕ 2 ] = {R θ 3 R ϕ 2 R α 3 ; α ∈ [0, π} ⇐⇒ n(θ, ϕ) := (cos θ sin ϕ, sin θ sin ϕ, cos ϕ) T = R θ 3 R ϕ 2 R α 3 e 3 ∈ S 2 , (A.18)
using the first chart, and with e 3 = (0, 0, 1) ∈ R 3 . Analogous reasoning can be done considering chart (A.1.1).

Basically, it is possible to identify the element n ∈ S 2 with the group element We consider the following basis for the tangent space T e (SE(3)) at the unity

element e = (0 R 3 , I d ) ∈ SE(3) B Te(SE(3)) = {∂ 1 , ∂ 2 , ∂ 3 , ∂ θ , ∂ ϕ , ∂ α } (A.20)
with table of Lie brackets (see [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF]):

([∂ i , ∂ j ]) i,j=1...3,θ,ϕ,α =             0 0 0 0 ∂ 3 -∂ 2 0 0 0 -∂ 3 0 ∂ 1 0 0 0 ∂ 2 -∂ 1 0 0 ∂ 3 -∂ 2 0 ∂ α -∂ ϕ -∂ 3 0 ∂ 1 -∂ α 0 ∂ θ ∂ 2 -∂ 1 0 ∂ ϕ -∂ θ 0             . (A.21)
The corresponding left-invariant vector field { Ỹi } i are obtained by the push-forward of the left multiplication, and they can be expressed in the coordinate chart (A.1) for ϕ = 0, ϕ = π:

Ỹ1 =(cos α cos ϕ cos θ -sin α sin θ)∂ 1 + (sin α cos θ + cos α cos ϕ sin θ)∂ 2 + -cos α sin ϕ∂ 3 Ỹ2 =(-sin α cos ϕ cos θ -cos α sin θ)∂ 1 + (cos α cos θ + sin α cos ϕ sin θ)∂ 2 + sin α sin ϕ∂ 3 Ỹ3 =(sin ϕ cos θ)∂ 1 + (sin ϕ sin θ)∂ 2 + cos ϕ∂ 3 Ỹθ =(cos α cot ϕ)∂ α + (sin α)∂ ϕ - cos α sin ϕ ∂ θ Ỹϕ = -(sin α cot ϕ)∂ α + (cos α)∂ ϕ + sin α sin ϕ ∂ θ Ỹα =∂ α (A.22)
or using the second chart (A.1.1), for ϕ = -π/2, ϕ = π/2:

Ỹ1 = (cos α cos ϕ)∂ 1 + (cos θ sin α + cos α sin ϕ sin θ)∂ 2 + (sin α sin ϕ -cos α cos θ sin ϕ)∂ 3 Ỹ2 = (-sin α cos ϕ)∂ 1 + (cos α cos θ -sin α cos ϕ sin θ)∂ 2 + (sin α sin ϕ cos θ + cos α sin θ)∂ 3 Ỹ3 = (sin ϕ)∂ 1 -(cos ϕ sin θ)∂ 2 + (cos ϕ cos θ)∂ 3 , (A.23)
with Ỹθ , Ỹϕ and Ỹα are the same of (A.8), as computed in [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF].

As already noticed by Duits and Franken in [START_REF] Duits | Left-invariant diffusions on the space of positions and orientations and their application to crossingpreserving smoothing of HARDI images[END_REF], interpreting a point on the sphere (A.12) as a direction, then the vector field Ỹ3 expresses the coupling position-orientation. So, by noticing that Ỹθ and Ỹϕ belong to the tangent space of the sphere, it is possible to consider the distribution that naturally couples positions and orientations generated by these vector fields, namely

D = span{ Ỹ3 , Ỹθ , Ỹϕ }, (A.24)
and define a sub-Riemannian metric tensor g SE(3) with respect to these vector fields by imposing their orthonormality. In this setting, a curve γ :

I -→ SO(3) is horizontal if γ(s) = a(s) Ỹ3 + b(s) Ỹθ + c(s)
Ỹϕ for all s ∈ I, and its length is defined as: Proof. The subgroup H has a unique intersection with the plane {α = 0} and so we can identify X with R 3 S 2 via the following map:

SE(3) (γ) = I g SE(3) ( γ(s), γ(s))ds = I a 2 (s) + b 2 (s) + c 2 (
φ : (p R 3 , θ, ϕ, 0) • H → (p R 3 , θ, ϕ). (B.1)
We will see that φ is a surjective isometry: the surjective property follows immediately from the transitive action of SE(3) on R 3 S 2 .

On the other hand, to show that φ is an isometry, we need to prove the equality of the Carnot-Caratheodory distances:

d X (g 1 H, g 2 H) = d R 3 S 2 (φ(g 1 H), φ(g 2 H)). (B.
2)

It is sufficient to show that every horizontal curve γ in R 3 S 2 has a horizontal lifting γ in SE(3). In particular, we say that γ is an horizontal lift if γ is horizontal (in SE(3)) and we have φ • π(γ) = γ, where π is the usual projection. So, we will have SE(3) (γ) = R 3 S 2 (γ) and we can conclude. 

B.2 Fundamental solutions for lifted operators

Since it is possible to switch from a set of vector fields in R 3 S 2 to a set in SE(3), through a change of variable and a passage to the quotient, in this section we study the existence of a relationship between the fundamental solutions of operators in SE(3) and in R 3 S 2 , operators written in terms of vector fields.

B.2.1 Involved operators

Thanks to Remark B.1.1, it is possible to consider a change of variable F : SE(3) -→ SE(3) such that its differential acts on the tangent space via (B.6), introducing the following set of vector fields:

Z 3 =DF ( Ỹ3 ) = Ỹ3 Z θ =DF ( Ỹθ ) = cot ϕ∂ α - 1 sin ϕ ∂ θ Z ϕ =DF ( Ỹϕ ) = ∂ ϕ .
(B.9)

Two hypoelliptic operators, one on R 3 S 2 and the other one on SE(3), can be defined in terms of the vector fields considered: In order to prove the second property, we consider f ∈ C ∞ 0 (R 3 S 2 ). This function can be consider as a function of C ∞ 0 (SE(3)) such that ∂ k α f = 0 for all k ∈ N. Then, we have:

L SE(3) := Z 3 + Z 2 θ + Z 2 ϕ (B.
-f (ξ) = -f (ξ, 0) has an extra first-order term not involving the direction identified by α, so there is the need to introduce a different strategy. We may use a parametrix method, with the idea of choosing the fundamental solution in R 3 S 2 as parametrix, to obtain an approximation via iteration for the left-invariant operator. This will be the object of future research. 

a

  local orthonormal frame {Y 3 , Y θ , Y ϕ } for the distribution D, where the vector field Y 3 encodes the tangent of the stimulus, while Y θ and Y ϕ involve orientation directions.Integral curves with constant coefficients of the sub-Riemannian structure, defined by the differential equationd Γ(t) = Y R 3 ,Γ(t) d t + c 1 Y θ,Γ(t) d t + c 2 Y ϕ,Γ(t) d t, c 1 , c 2 ∈ R, (1.2) shed light on the computations underlying the correspondence problem. They encode not only the variables of the space, but also curvature and torsion, which are necessary for the 3D matching, as favored by Zucker et al. in [AZ00, LZ03, LZ06].

  studied through psychophysical experiments in [HF95, HHK97, KHK16, DW15, KGS05a, KGS + 05b]. Kellman, Garrigan, Shipley et al. [KGS05a, KGS + 05b]
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 2 Figure 2.1.1: Visual pathway in the brain. (a) Left (violet) and right (blue) cerebral areas involved in the visual pathway, image taken from [Hub95]. (b) Cortical regions implicated in the process.

  Figure 2.1.2: Anatomic structure of the retina. Image adapted from [Hub95].
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 2 Figure 2.1.3: Retinotopic mapping of the visual field (left) in the primary visual cortices (right). Image adapted from [PWK18].

  Each cell reacts in an excitatory or inhibitory way to stimuli present in a precise portion of the retina called receptive field (RF), which differs from a cell to the other. The response of the cell when a stimulus is presented on a point (x, y) of their RF, is quantified in terms of a function ϕ(x, y), called receptive profile (RP)ϕ : D → Rwhere D is the receptive field and (x, y) are retinal coordinates. This function describes the neural output of the cell in response to a punctual stimulus in the two-dimensional point (x, y). More precisely, the area is considered ON if the cell spikes in a positive way responding to a signal (excitatory response to a light stimulus) and OFF if the cell spikes negatively to a signal (inhibitory response to a light signal).
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 2 Figure 2.1.4: Receptive fields and profiles of LGN and simple cells. Simple cells arise from LGN cells. Images adapted from [DAOF95, Wan95, Pet08].
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 2 Figure 2.1.5: (a) Hubel's "Ice Cube" model of the functional architecture of the visual cortex. Image adapted from [Hub95]. (b) Orientation columns.

  Figure 2.1.6: Different orientations are coded on a two-dimensional V1 map with different colors. On the right, there is an example of a smooth change of orientation and singular point, also called pinwheel. Image adapted from [BZSF97].

  Figure 2.1.7: Examples of cortical connectivity. (a) Response of a cell to bars presented at various orientations. Orientation tuning curve comes out from the short-range connectivity. (b) Diffusion of a tracer of biocytin along horizontal connections. Image adapted from [BZSF97].

  The architecture and the neural connections of the visual cortex underlying binocular vision have recently been studied in[START_REF] Parker | Neural architectures for stereo vision[END_REF], while binocular interactions characterized by binocular and monocular synaptic inputs have been investigated in [STR + 22]. In general, binocular domains form a separate set of connections in V1, suggesting (if there exists) a distinct columnar system beside the monocular one,[START_REF] Malach | Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex[END_REF]. Anyways, in V1 the binocularly-driven cells tend to be closer to the ocular dominance boundaries, while the monocular cells are toward the centers[START_REF] Levay | The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain[END_REF].

  The positional disparity is encoded by binocular cells through monocular receptive fields, in two different ways: considering the difference between receptive profile center locations (position-shift model) of the two eyes, or by differences in receptive profile organization (phase-shift model).Binocular cells in V1 respond to their preferred disparity value, generating disparity tuning curves, as shown in Figure2.1.8.

Figure 2

 2 Figure 2.1.8: Disparity tuning curves for different types of cells. The horizontal axis represents the disparity while the vertical axis represents the response of the cell to the value of disparity. Image (a) involves a cell responding to negative values of disparity, recognizing objects located in front of the plane of fixation. Image (b) represents cells responding to positive values of disparity, identifying objects located behind the plane of fixation. Image (c) displays cells responding to zero values of disparity, describing objects on the plane of fixation. Images adapted from [TCL03]..
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 2 Figure 2.1.9: (a) Top image illustrates zero-order stimulus involving the frontoparallel plane. The bottom image shows a first-order stimulus on a surface lying in depth. Image adapted from [Orb11]. (b) Orientations differences of two projections. Image adapted from [BCP01]. (c) Differences in orientations receptive fields. Image adapted from [STO10].

  Equivalently to the monocular case, also for binocular cells it is possible to speak of long-range horizontal connections. The existence of lateral connections which spread horizontally across the cortex was detected in [MAHG93] using biocytin injection targeted at a binocular site, see Figure 2.1.10. They observed that the interactions only propagate between binocular regions, and the distribution avoids the centers of ocular dominance columns. Synaptic interactions between binocular neurons have recently been studied also in [STR + 22], discovering that binocular synapses varied in degree of the response correlation between left and right visual stimulation. Binocular congruent input consists of interocular orientation preference difference up to ≈ 19 degrees, and they are highly orientation selective, maintaining the aligned orientation preference, similarly to the monocular case.

Figure 2

 2 Figure 2.1.10: A biocytin injection superimposed on a map of ocular dominance columns, image result from the work in[START_REF] Malach | Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex[END_REF]. Binocular zones are coded black, while monocular zones are coded white. The injection site (yellow circle) was centered on a binocular zone. The patches' propagation (red corresponds to dense while green to sparsely labeled) tended to avoid highly monocular sites and were located in binocular zones.
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 2 Figure 2.1.11: Two streams hypothesis. Green: dorsal pathway. Violet: ventral pathway. Image adapted from Wikipedia.
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 2 Figure 2.2.1: Visual representation of the laws of perceptual organization. Images adapted from [Kan79].

  Field et al. investigated through psychophysical experiments how the visual system encodes the good continuation of the contour. In doing so, they introduced the notion of associative fields, thus formalizing the Gestalt principle in terms of the position and mutual orientation of elements or patches in twodimensional space. During the experiment, an observer was shown an image composed of aligned Gabor patches (oriented elements in space), which form a path, against the background of a large number of randomly distributed patches, image (a) of Figure 2.2.2. The purpose of the experiment was to test the subject's ability to detect the perceptual units present in the visual stimulus.

Figure 2

 2 Figure 2.2.2: Pshychophysical introduction of the association field. (a) Field-Hayes and Hess experiment. Image adapted from [FHH93](b) Pattern describing the association field. Image adapted from [FHH93](c) Ladder effect. Image adapted from [YF98].

  the reference systems of the retinal planes R L and R R with coordinates respectively (x L , y), (x R , y). In the global system we suppose the retinal planes to be parallel and to have equation r 3 = f , with f denoting the focal length. This geometrical set-up is shown in Figure 3.1.1. Remark 3.1.1. A point Q = (r 1 , r 2 , r 3 ) in R 3 projects in the two retinal planes via perspective projection through optical centers C L and C R . This computation defines two projective maps π L and π R respectively for the left and right retinal planes:

Figure 3

 3 Figure 3.1.1: Stereo triangulation. A three-dimensional point Q projects into the left and right parallel and aligned retinal planes R L , R R through optical centers C L and C R . The bidimensional projections on the retinal planes characterized by equation r 3 = f are called Q L and Q R .

Figure 3

 3 Figure 3.2.1: Positional disparity. (a) Geometry of binocular projection. The fixation point projects to the two corresponding foveas and has zero disparity by definition. Other points of the visual scene project in different positions. (b) Position disparity definition on the retinae. Circle and square points represent the centers of the RPs. Images adapted from [Qia97].

Figure 3

 3 Figure 3.2.2: Behavior of RPs in the definition of position and phase disparity. (a) Position disparity. (b) Phase disparity. Images adapted from [JR15]

  y)I L (x, y)dxdy, (3.9) where the function I L represents the (left) retinal image and ϕ L represents the (left) classical receptive profile. More details concerning the monocular case are given in Chapter 4, subsection 4.4.2.

Figure 3

 3 Figure 3.2.3: Comparisons between binocular interaction RPs and the product of left and right eye RPs. First row: binocular interaction RPs of 3 cells (A-C) are shown on top (Raw data). Second raw: contour plots for the product of left and right eye RPs (LR) are shown for each cell (D-F) on the right (Prediction) along with 1-dimensional (1D) profiles of the left (L) and right (R) eye RPs. Contour plots for the prediction are scaled so that each has the same peak as that of the corresponding plot for the raw data. Predictions are qualitatively very similar to the raw data. Image adapted from [AOF99b].

  so the reconstruction forces to find the set of points in one image which can be identified as the same points in the other image. This is usually done by considering points or features in one image and matching them with the points or features in the other image, establishing corresponding points or corresponding features. Many works in literature have addressed the stereo problem using different viewpoints. Here we recall the work of Vaillant and Faugeras [VF92] in relation to extremal boundaries for 3D curved objects, and, very important from our perspective, the works of Zucker et al. [AZ00, LZ06, LZ03] which deal with curves stereo geometry using tools of differential geometry. In the next subsection, we first recall the classical constraints imposed to facilitate the coupling problem, and then we introduce the model proposed by Zucker et al. [AZ00, LZ06, LZ03] to solve the correspondence.

  underlying the problem embedded in the Euclidean three-dimensional space. The constraints imposed by the projection are described in Section 3.1. In general, several models have been proposed for vision problems which incorporate different types of constraints: for instance, we cite the model introduced by Marr and Poggio in [MP79] to describe human stereo vision, integrating the constraints of uniqueness and continuity. They build it considering orientational differences in the two eyes to compute disparity. Or, the work of Faugeras and Robert [FR96], which relates information concerning two images with a third one, based on constraints emerging from epipolar geometry. At the beginning of the 21st century, Zucker et al. [AZ00, LZ03, Zuc14] employed position, orientations, and curvature in 2D retinal planes to relate the 2D Frenet differential structure in the left and right retinal planes with the Frenet geometry of the 3D space, integrating geometric constraints. We investigate better this model in the following subsection.

  [START_REF] Li | A differential geometrical model for contour-based stereo correspondence[END_REF][START_REF] Li | Contextual inference in contour-based stereo correspondence[END_REF] the authors choose in the external and in the retinal space coordinate systems with the same orientation up to a translation. They suppose to know for every (left and right) retinal image its position, tangent, and curvature (x, y, θ, k), and they prove the following Proposition, of which a graphic representation can be found in Figure3.3.1. Proposition 3.3.1. Given two perspective views of a 3D space curve with full calibration, the normal N and curvature k at a curve space point are uniquely determined from the positions, tangents, and curvatures of its projections in two images. Thus the Frenet frame {T, N, B} and curvature k at the space point can be uniquely determined.

Figure 3

 3 Figure 3.3.1: (a) Geometrical setup of Proposition 3.3.1. Given points (x L , y L , θ L , k L ) and (x R , y R , θ R , k R ) it is possible to determine the position, the Frenet frame {T, N, B} and the curvature k but not the torsion τ . (b) Transport of the Frenet frames in R 3 helps find consistent left-right image tangent pairs. Images adapted from [LZ06].

Figure 3

 3 Figure 3.3.2: Sample compatibility fields around j. Brightness encodes the positive support. Source [LZ06].
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Definition 4.1. 1 .

 1 A topological space M is a manifold of dimension n if every point on M has a neighborhood U homeomorphic to an open subset of R n . The homeomorphism φ : U → R n is called coordinate system or chart. If p ∈ U and φ(p) = 0, then we say that the coordinate system is centered at p. Definition 4.1.2. Let M be a topological manifold of dimension n. Then, a smooth structure F on M consists of a maximal atlas on M , namely F =

  Example 4.1.1. Let M be a smooth manifold of dimension n. Denote by T M the disjoint union of all tangent spaces of M , namely T M = p∈M T p M.(4.4)

Remark 4.1. 3 .

 3 Let us consider a smooth manifold M of dimension n. Then, according to Definition 4.1.6, for any smooth function f ∈ C ∞ (M ), the differential df defines a 1-form. Indeed, df (X)(p) := d p f (X p ), ∀ p ∈ M, X ∈ Vec(M ). (4.12)

(4. 17 )

 17 Definition 4.1.15. Let (M, g) be an orientable Riemannian manifold of dimension n. Then, the Hodge star operator : Ω k (M ) → Ω n-k (M ) is the linear operator defined by ω ∧ η = g k (ω, η)vol g , ∀ ω, η ∈ Ω k (M ). (4.18) A common example of the Hodge star operator is the case n = 3 for the Euclidean space M = R 3 . Example 4.1.2. Let M = R 3 with the basis {dx, dy, dz} of one-forms. One finds that: dx = dy ∧ dz dy = dz ∧ dx dz = dx ∧ dy.(4.19)

  Note that the bracket operation defined in Definition 4.2.1 is actually a bilinear form on Vec(M ) satisfying the requirements of the previous definition. Thus, (Vec(M ), [•, •]) is a Lie algebra of infinite dimension. Definition 4.2.3. Let M be a smooth manifold and let F = {X 1 , . . . , X k } ⊂ Vec(M ) be a family of vector fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M ) containing the family itself, i.e.

  Formally, it is possible to model the primary visual cortex as R 2 × S 1 (positionorientation space), and thus naturally encoding the hypercolumnar structure discovered by Hubel and Wiesel in[START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF]. An example of this structure is displayed in image (a) of Figure 4.4.3, where the model proposed by Ben-Shahar and Zucker in [BSZ04] is shown.

  Figure 4.4.1: Even (a) and odd (b) part of Gabor function: the surface of the two-dimensional filters, their common bi-dimensional representation and a monodimensional section.

  , y, θ) = O(x, y, θ(x, y)) ; (4.46) we will then say that the point (x, y) is lifted to the point (x, y, θ(x, y)). If all the points of the image are lifted in the same way, the level lines of the 2D image I are lifted to new curves in the 3D cortical space (x, y, θ).In the right-hand side of the equation (4.45) the integral of the signal with the real and imaginary part of the Gabor filter is expressed. The two families of cells have different shapes, hence they detect different features. In particular odd cells are responsible for boundary detection, and we concentrate on these ones. The output of simple cells (4.45) can then be locally approximated as O(x, y, θ) = -X 3,θ (I σ )(x, y) at every point (x, y, θ) where I σ is a smoothed version of I, obtained by convolving it with a Gaussian kernel, and X 3,θ = -sin θ∂ x + cos θ∂ y .(4.47)Switching to dual, the action of simple cells induces a choice of contact form separately on each cell:

  where M C→B is the basic change matrix from C to B.

Figure 4 Figure 4

 44 Figure 4.4.2: (a) Examples of the compatibilities around the central point of the image, derived from planar co-circularity. Brightness encodes compatibility values. Figure adapted from [BSZ04]. (b) Starting from the central initial oriented point, the solid line indicates a configuration between the patches where the association exists while the dashed line indicates a configuration where it does not. Figure adapted from [FHH93]. (c) Association field of Field, Hayes and Hess. Figure adapted from [FHH93].
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Figure 5

 5 Figure 5.1.1: Cartoon of visual cortex, V1, superficial layers. (a) Macroscopic organization: a number of (abstracted) orientation hypercolumns, colored by left-eye (green)/right-eye (purple) dominant inputs. The color grading emphasizes that at the center of the ocular dominance bands the cells are strongly monocular, while at the boundaries they become binocularly-driven. (b) A zoom in to a few orientation columns showing left and right monocular cells at the border of ocular dominance bands. Cells in these nearby columns will provide the anatomical substrate for our model. (c) More recent work shows that both monocular and binocular inputs matter to these cells (redrawn from [STR + 22], using data from ferret). This more advanced wiring suggests the connection structures in our model.

[

  Figure 3.2.3.

Figure 5

 5 Figure 5.2.1: Left: schematic representation of the fiber bundle in two dimension, with relationships between left and right retinal coordinates. Right: representation of the selection of a whole fiber of left and right simple cells, for every x and for every d.

  2.1. The base has been depicted as 1-dimensional, considering the restriction R |x of the cyclopean retina R on the coordinate x. The left image displays only the disparity component of the fiber F, encoding the relationships between left and right retinal coordinates. The right image shows the presence of the left and right monodimensional orientational fibers.

  y as product of monocular left and right ones, so that O R O L = ϕ R,L I L I R . This is in accordance with the measured profiles of Figure 3.2.3.

Figure 5

 5 Figure 5.2.2: Direction detected by ω bin through the intersection of left and right planes generated by ker ω θ R and ker ω θ L . Red vector corresponds to the associated 2-form ω bin .

Figure 5

 5 Figure 5.2.3: Three-dimensional reconstruction of the space from retinal planes. The one-dimensional form ω θ L and ω θ R are identified with the normal to the curves γ L and γ R . Their three dimensional counterpart ωθ L and ωθ R identify the tangent vector to the curve γ : R → R 3 by the wedge product ωθ L ∧ ωθ R .

[ AZ00 ,

 AZ00 LZ03, LZ06], Zucker et al. proposed a model that considered the curvature of monocular structures as an additional variable. Instead, we propose to consider simple monocular cells selective for orientation and to insert the notion of curvature directly into the definition of connection. It is therefore natural to introduce

sin θ sin ϕ n 3

 3 = cos ϕ(5.20) with θ ∈ [0, 2π] and ϕ ∈ (0, π). The ambiguity that arises using a local coordinate chart is overcome by the introduction of a second chart (for example, see Remark A.1.1, in Appendix A), covering the singular points. Since S 2 is not a Lie group (Hairy Ball Theorem), we cannot set a product on R 3 S 2 . However, we can use the Euclidean group of rigid body motions in dimension three, SE(3), and consider a group action. An element g = (p, R) in SE(3) is defined by a point p ∈ R 3 and a rotation R ∈ SO(3). The group law expresses the fact that the composition of two body motions is again a body motion, and so for two elements g = (p, R) and g = (p , R ) in SE(3) their product is defined as gg = (p + Rp , RR ).

  with φ smooth function. Noticing that R ∈ SO(3) can be decomposed as a product of rotations around the Cartesian axes (Euler coordinates in (A.1)), and choosing g ∈ SE(3) as the element defined by a rotation R ∈ SO(3)

Figure 5

 5 Figure 5.3.1: Fans of integral curves proposed for the geometry of the stereo vision. (a) Fan of helices from the work of Zucker et al. [AZ00]. (b) Fan of sub-Riemannian integral curves defined by equation (5.29) with varying c 1 and c 2 in R.

Figure 5

 5 Figure 5.3.2: Different types of curves generated by (5.29). (a) Arc of circles for ϕ = π/2. (b) r 3 -helices for ϕ = π/3. (c) Family of curves with constant curvature k and varying torsion parameter.

Figure 5

 5 Figure 5.4.1: (a) A biocytin injection superimposed on a map of ocular dominance columns, image result from the work in [MAHG93]. Binocular zones are in the middle of monocular zones (coded in black and white). Starting from the injection site (yellow circle in the center of a binocular zone) the patches' propagation (red corresponds to dense while green to sparsely labeled) tends to avoid highly monocular sites, bypassing the centers of ocular dominance columns, and are located in binocular zones. (b) 3D interpretation of the physiological image (a).

[ KGS05a ,

 KGS05a KGS + 05b], by introducing a theory called 3D relatability; in the works of Hess and colleagues in[HF95, HHK97] by extending the good regularity/continuity in depth; and the same topic has more recently been addressed by Deas-Wilcox and Khuu-Honson-Kim in [DW15, KHK16]. 5.4.2.1.1 3D relatability Kellman, Garrigan, Shipley [KGS05a, KGS + 05b] introduce a theory called 3D relatability extending to 3D the fundamental work of Field, Heyes and Hess [FHH93], and determining the geometrical affinities between orientations under which a pair of position-orientation elements are perceived as connected in a 3D scene.

Figure 5

 5 Figure 5.4.2: Example of the fan of the 3D relatable edges with initial point E 0 .

Figure 5 Figure 5

 55 Figure 5.4.3: 3D relatable points and integral curves. (a) 3D relatable edges are displayed on the right of the initial edge E 0 . Unrelatable 3D edges are displayed on the left. (b) Horizontal integral curves with filled lines connect 3D relatable edges with initial point E 0 . Horizontal integral curves with dotted lines do not connect 3D unrelatable edges.

Figure 5

 5 Figure 5.4.6: The three-dimensional space curve γ is enveloped by the 3D the association field centered at a point. Formally, this association field is a fan of integral curves in the sub-Riemmanian geometry described by equation (5.34) with varying c 1 and c 2 in R.

Figure 5

 5 Figure 5.4.7: Left and right retinal images of the set Ω. Black points are the projection of the point of the curve γ, while gray points are background random noise.

Figure 5

 5 Figure 5.4.8: Lifting of the two left and right retinal images of Figure 5.4.7 in the space of position and orientation R 3 × S 2 .

Figure 5

 5 Figure 5.4.10 read it in terms of matrices M representing the values of curvature or torsion for every couple of points ξ i , ξ j in the element M ij . In particular, we observe that random points are characterized by a very high curvature and in general also the torsion deviates from minimum magnitudes. So, by discarding these high values, we select only the three-dimensional points of the curve γ, which are well connected by the integral curves, as shown in image (b) of Figure 5.4.9. This is in accordance with the idea developed in [AZ00, LZ03, LZ06], where curvature and torsion provide constraints for reconstruction in 3D.

Figure 5

 5 Figure 5.4.10: Matrices M which element M ij represents the value of curvature or torsion for every couple of points ξ i , ξ j . The first eight points correspond to the stimulus curve γ while the others are random noise. (a) Curvature matrix. (b) Torsion matrix.

  The forward Kolmogorov operator L * can be written in terms of vector fields of the distribution D presented in (5.25):

Figure 6

 6 Figure 6.2.2: Display of error bars on J T λ (r 1 ) sections with λ = 0.035 and T = 100. The initial point ξ 0 is described by spatial indices (r 1 0 , r 2 0 , r 3 0 ) = (50, 1, 50), while (θ 0 , ϕ 0 ) = (π/2, π/2). (a) Display of J T λ (r 1 ) identified by (r 2 , r3 ) = (10, 50) for two different numbers of paths N : blue color corresponds to N = 10 6 , the black one to N = 10 5 . Emphasized in the red square: the amplitude (∆(N )) of the two confidence intervals. The width of the blue interval is about half of the black one. (b) J T λ (r 1 ) identified by (r 2 , r3 ) = (50, 50) for two different number of paths: blue correspond to N = 10 6 , black to N = 10 5 . Moving away from the pole, both the kernel value and the confidence interval decrease.

Figure 6 .

 6 Figure 6.2.2 shows error bars for J T λ (r 1 ), namely a section perpendicular to the r 1 -axis, related to kernels simulated with a different number of paths. Image

Figure 6

 6 Figure 6.2.3: Display of error bars and percentage error for J T λ (r 2 ), with kernel parameters λ = 0.035 and T = 100, N = 10 6 . The initial point ξ 0 is described by (r 1 0 , r 2 0 , r 3 0 ) = (50, 1, 50) and (θ 0 , ϕ 0 ) = (π/2, π/2). The section has indices (r 1 0 , r 3 0 ) = (50, 50). (a) Display of error bars on J T λ (r 2 ). (b) Display of the percentage error E % = 100 r J T λ (r 2 ) , with r = 2.57σ √ N .

Figure 6 .

 6 Figure 6.2.5: Position-orientation elements correlated with initial point p ∈ R 3 and initial direction n(θ, ϕ) = n(π/2, π/2) in the first coordinate chart. Intensity decay depends on position and orientation: the darker and longer the segment is, the more it correlates with the starting point.

. 25 )

 25 This symmetrization is equivalent to sum the fundamental solution associated to (6.1) with the fundamental solution of the same operator under an angular shift in the opposite three-dimensional selected direction. Such rotation turns the drift term Y 3 into -Y 3 , hence transforming the forward Kolmogorov equation into the corresponding backward equation, so the sum of the two solutions is symmetric. Remark 6.3.2. As firstly remarked in[START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of V1[END_REF], the set Ω is the restriction on a domain on the space of points activated by the visual stimulus. In particular, by assuming that the function of the feedforward input h can attain only two values, namely 0 and a constant value c, we define the set of points activated by the presence of the input:

  .28) inducing the norm a L 2 (Ω,R) := Ω a 2 (ξ)dξ 1/2 . We define f (a) := -αa+A(a)+c, with A(a) = γ Ω µJ S (ξ, ξ )a(ξ , t)dξ ,(6.29)and we denote with I a closed interval on the real line containing 0. We consider a mapping a : I -→ L 2 (Ω, R), and equation (6.23) is recast as a Cauchy Problem:

Remark 6 .

 6 5.1. (Main steps of the algorithm)-Recover the domainΩ d ⊂ R 3 S 2 , ξ k ∈ Ω d , k = 1, . . . n,from the coupling of retinal images: the set of input elements appearing in the visual scene, plus some (random) noise.

Figure 6 Figure 6

 66 Figure 6.5.1: (a) Left and right retinal images. (b) Lifting of the stimulus in R 3 S 2 : the coupling generates n = 88 corresponding points.

Figure 6 Figure 6

 66 Figure 6.5.3: (a) Left and right retinal images. (b) Lifting of the stimulus in R 3 S 2 : the coupling generates n = 132 corresponding points.

Figure 6 Figure 6

 66 Figure 6.5.5: (a) Natural image imported in Matlab. (b) Segmentation of the image through the process of maximal selectivity for orientation.

Figure 6

 6 Figure 6.5.7: (a) Display of the affinity matrix P obtain using the kernel with diffusion parameter λ = 0.035, M = 300, N = 10 6 . (b) Plot of the sorted eigenvalues of the affinity matrix. (c-d) Points clustered together. The number of minimum elements to form a cluster is Q = 40. (e) Depth map.

  in a similar way to what we have done in (6.20). The three-dimensional Gaussian kernel surface is shown in Figure 6.6.1, image (a): they are Euclidean balls, characterized by different radii as the parameter σ ∈ R + varies.

Figure 6 .Figure 6

 66 Figure 6.6.1: Iso-surface of Gaussian kernel (6.47).

Figure 6 . 6 . 3 :Figure 6 . 6 . 4 :

 663664 Figure 6.6.3: Grouping with Gaussian kernel (6.47) on different stimuli. The red points correspond to points selected by the first eigenvector. (a) Grouping algorithm performed on the 3D curve of Figure 6.5.1. (b) Grouping algorithm performed on the 3D images generated from Figure 6.5.3, with σ = 3. (c) The same algorithm performed with σ = 9.

Example A.1. 1 .

 1 We recall here the computation of left-invariant vector fields, considering the Lie algebra basis of so(3) in the neutral element e ∈ SO(3), starting from ∂ ϕ,e :(L R ) * ∂ ϕ,e = (DL R ) e ∂ ϕ,e = d dt |t=0 L R (γ(t)) (A.3)with γ : R -→ SO(3) such that γ(0) = e and γ(0) = ∂ ϕ,e . We explicitly remind1 The neutral element e in SO(3) corresponds to the identity matrix I d of dimension 3.

)

  the set of rotations around the third axis, usually identified with SO(2). The quotient space is then defined as SO(3)/H = {RH, R ∈ SO(3)}, namely the class of the left cosets of H. The equivalence relation reads as follow : R1, R2 ∈ SO(3), R1 ∼ R2 ⇐⇒ (R1) -1 R2 ∈ SO(2).

R

  n ∈ SO(3), where R n is any rotation matrix such that R n e 3 = n.A.3 3D Euclidean motion group SE(3)An element g = (p, R) in SE(3) is defined by a point p ∈ R 3 and a rotation R ∈ SO(3). The law group expresses the fact that the composition of two body motions is again a body motion, and so for two elements g = (p, R) and g = (p , R ) in SE(3) their product is defined asgg = (p + Rp , RR ). (A.19)It is possible to notice that the group SE(3) is a semi-direct product of the translation group R 3 and the rotation group SO(3), since it uses an isomorphism R → (p → Rp) from the rotation group onto the automorphism on R 3 . That is why it is more appropriate to write SE(3) = R 3 SO(3).

First, we need

  to determine the existence of the opportune lifting: if we consider a curve γ = (p, (θ, ϕ)) in R 3 S 2 in a way that its length satisfy (A.31), we can define α such that: α(s) = α 0well defined, and so taking the horizontal lifting γ = (p, θ, ϕ, α), we get that γ is an horizontal curve for SE(3):γ = a(s) Ỹ3 + b(s) Ỹθ + c(s) Ỹϕ (B.4) with b(s) = φ sin α -θ sin ϕ cos α and c(s) = φ cos α + θ sin ϕ sin α. With these coefficients it is possible to compute the length of the curve in SE(3):SE(3) (γ) = a 2 (s) + b 2 (s) + c 2 (s)ds = a 2 (s) + ( φ sin α -θ sin ϕ cos α) 2 (s) + ( φ cos α + θ sin ϕ sin α) 2 (s)ds = a 2 (s) + φ2 (s) + θ(s) 2 sin ϕ 2 (s)ds = R 3 S 2 (γ). (B.5)So, the equality of the Carnot-Caratheodory distances (B.2) follows immediately.Corollary B.1.1.Let H be a one-parameter subgroup of SO(3), as defined in(A.17). Then X = SO(3)/H is isometric to S 2 .Proof. The proof follows directly from the proof of Theorem B.1.1, by restriction to the spaces SO(3) and S 2 .In particular, there exists a relationship between the left-invariant vector fields defined in (A.22) and the spherical vector fields (A.14).RemarkB.1.1. The spherical vector fields Y i presented in (A.14) can be obtained from left invariant vector fields Ỹi defined in (A.22) through a rotation described by the matrix R α 3 and quoting with respect to the α variable: Ỹθsin α Ỹϕ sin α Ỹθ + cos α Ỹϕ Ỹα is also another way to get the same set of vector fields in R 3 S 2 , and this is done by choosing the representative of α in the quotient space as α = 0. This can be thought of as the implicit function theorem proved in homogeneous Lie groups by Franchi, Serapioni and Serra Cassano in [FSSC01] and then in Carnot-Carathéodory spaces by Citti and Manfredini in [CM06]: if a function f is of class C 1 with respect to the general vector fields, then f |α=0 is of class C 1 with respect to vector fields restricted to α = 0. This existing relationship that links the vector fields of SE(3) with the vector fields defined in R 3 S 2 , thanks to the formula (B.1), allows us to understand the definition of the lifting proposed in Theorem B.1.1. Remark B.1.2. The lifting of (B.3) has been determined expressing the length of a curve γ : I -→ S 2 defined in (A.15) in terms of the local orthonormal vector fields (A.14): γ = -θ sin ϕY θ + φY ϕ . (B.7) Using result (B.6), thus substituting the expression of the vector fields Y θ , Y ϕ in terms of the vector fields defined in SO(3), we get: γ = -θ sin ϕ(cos α Ỹθsin α Ỹϕ ) + θ(sin α Ỹθ + cos α Ỹϕ ) = ( φ sin α -θ sin ϕ cos α) Ỹθ + ( θ sin ϕ sin α + φ cos α) Ỹϕ = -θ cos ϕ∂ α + φ∂ ϕ + θ∂ θ , (B.8)from which we choose to define α as the coefficient of ∂ α .

  10) and L R 3 S 2 := Y 3 + Y 2 θ + Y 2 ϕ , (B.11)and we observe that one can be written in terms of the other, differing by a remainder.Remark B.2.1. The operator L SE(3) can be expressed in terms of the operatorL R 3 S 2 : L SE(3) = L R 3 S 2 + R, (B.12)with R remainder that involves the α directions, namely in coordinatesR = cot ϕ∂ 2 α -2 cot ϕ sin ϕ ∂ θ ∂ α . (B.13)B.2.2 Lifting of operatorsIn the following we introduce the definition of the lifting of an operator and the results it implies, applying to this setting the introductive results of the work presented by Biagi-Bonfiglioli in [BB17]. Definition B.2.1. Let L be a smooth linear partial differential operator on a manifold M and L = L + R another second order differential operator defined in an higher manifold M × N . We say that L is a lifting of L if the followings conditions hold: i) L has a smooth coefficients, possibly depending on ξ ∈ M and α ∈ N ; ii) for every fixed f ∈ C ∞ (M ), one has L(f • π)(ξ, α) = (Lf )(ξ), for every (ξ, α) ∈ M × N, (B.14) where π(ξ, α) = ξ is the canonical projection of M × N onto M . Remark B.2.2. The partial differential operator L SE(3) introduce in (B.10) is a lifting of L R 3 S 2 introduced in equation (B.11) by considering M = R 3 S 2 and N = S 1 . This definition allows us to recover the relationship between the fundamental solutions, obtaining the solution defined on the quotient space simply by integrating the fundamental solution associated to the operator on SE(3), with respect to the additional variable. Theorem B.2.1. Let L R 3 S 2 be the smooth operator defined in (B.11) on R 3 S 2 and let L SE(3) be the lifting on SE(3) introduced in (B.10), according to Definition (B.2.1). We suppose that there exists a fundamental solution Γ for L SE(3) satisfying the following properties: i) for every fixed ξ, ξ ∈ R 3 S 2 with ξ = ξ , one has α → Γ(ξ, 0; ξ , α) belongs to L 1 (S 1 ); (B.15)ii) for every fixed ξ ∈ R 3 S 2 and every compact set K ⊆ R 3 S 2 , one has(ξ , α) → Γ(ξ, 0; ξ , α) belongs to L 1 (K × S 1 ). (B.16) Then the function Γ : {(ξ, ξ ) ∈ R 3 S 2 × R 3 S 2 : ξ = ξ } -→ R defined by Γ(ξ, ξ ) = S 1 Γ(ξ, 0; ξ , α)dα, (B.17) is a fundamental solution for L R 3 S 2 on R 3 S 2 .Proof. It follows from i) that Γ is well-posed. Then, to have Γ fundamental solution, we need -Γ(ξ, •) ∈ L 1 loc (R 3 S 2 ). This follows from ii); -L R 3 S 2 Γ(ξ, •) = -Dir ξ ∈ D (R 3 S 2 ).

  ξ , α)L * SE(3) f (ξ )dξ dα , (B.18) with L * SE(3) formal adjoint of L SE(3) . Thanks to (B.12), we know that L * SE(3) = L * R 3 S 2 + R * , and so = SE(3)Γ(ξ, 0; ξ, α )(L * R 3 S 2 + R * )f (ξ )dξ dα = R 3 S 2 ×S 1 Γ(ξ, 0; ξ , α )(L * R 3 S 2 )f (ξ )dξ dα = R 3 S 2 Γ(ξ, ξ )(L * R 3 S 2 )f (ξ )dξ . (B.19)The second equality follows from the fact that the formal adjoint R * of the operator R has the form:R * Ψ =(-1) 2 cot ϕ∂ 2 α Ψ(ξ, α) + (-1) 2 ∂ θ -2 cot ϕ sin ϕ ∂ α Ψ(ξ, α) = cot ϕ∂ 2 α Ψ(ξ, α) -2 cot ϕ sin ϕ ∂ θ ∂ α Ψ(ξ, α) =RΨ, (B.20)and so we can conclude thatR 3 S 2 ×S 1 Γ(ξ, 0; ξ , α )(R * )f (ξ )dξ dα = 0. (B.21) Remark B.2.3. It would be interesting to consider the same operator of (B.10) in SE(3) written in terms of left-invariant vector fields Ỹi,SE(3) and searching for a relationship between its fundamental solution and the one defined on R 3 S 2 for the operator defined in (B.11). In particular, the left-invariant operator in SE(3)
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 1 Visual representation of the laws of perceptual organization. Images adapted from [Kan79]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Pshychophysical introduction of the association field. (a) Field-Hayes and Hess experiment. Image adapted from [FHH93](b) Pattern describing the association field. Image adapted from [FHH93](c) Ladder effect. Image adapted from [YF98]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Stereo triangulation. A three-dimensional point Q projects into the left and right parallel and aligned retinal planes R L , R R through optical centers C L and C R . The bidimensional projections on the retinal planes characterized by equation r 3 = f are called Q L and Q R . . . . . . . . . . . . . . . . . . . . 3.2.1 Positional disparity. (a) Geometry of binocular projection. The fixation point projects to the two corresponding foveas and has zero disparity by definition. Other points of the visual scene project in different positions. (b) Position disparity definition on the retinae. Circle and square points represent the centers of the RPs. Images adapted from [Qia97]. . . . . . . 3.2.2 Behavior of RPs in the definition of position and phase disparity. (a) Position disparity. (b) Phase disparity. Images adapted from [JR15] . . . . . . . 3.2.3 Comparisons between binocular interaction RPs and the product of left and right eye RPs. First row: binocular interaction RPs of 3 cells (A-C) are shown on top (Raw data). Second raw: contour plots for the product of left and right eye RPs (LR) are shown for each cell (D-F) on the right (Prediction) along with 1-dimensional (1D) profiles of the left (L) and right (R) eye RPs. Contour plots for the prediction are scaled so that each has the same peak as that of the corresponding plot for the raw data. Predictions are qualitatively very similar to the raw data. Image adapted from [AOF99b]. 3.3.1 (a) Geometrical setup of Proposition 3.3.1. Given points (x L , y L , θ L , k L ) and (x R , y R , θ R , k R ) it is possible to determine the position, the Frenet frame {T, N, B} and the curvature k but not the torsion τ . (b) Transport of the Frenet frames in R 3 helps find consistent left-right image tangent pairs. Images adapted from [LZ06]. . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Sample compatibility fields around j. Brightness encodes the positive support. Source [LZ06]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Even (a) and odd (b) part of Gabor function: the surface of the twodimensional filters, their common bi-dimensional representation and a monodimensional section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 (a) Examples of the compatibilities around the central point of the image, derived from planar co-circularity. Brightness encodes compatibility values. Figure adapted from [BSZ04]. (b) Starting from the central initial oriented point, the solid line indicates a configuration between the patches where the association exists while the dashed line indicates a configuration where it does not. Figure adapted from [FHH93]. (c) Association field of Field, Hayes and Hess. Figure adapted from [FHH93]. . . . . . . . . . . . . . . . . 4.4.3 (a) Orientation columns of cells in (x, y, θ) coordinates and long range horizontal connections. Figure adapted from [BSZ04]. (b) Horizontal integral curves in R 2 × S 1 generated by the sub-Riemannian model geometry proposed by Citti and Sarti in [CS06]. (c) Projection of the fan of the integral curves in the (x, y) plane. Figure adapted from [CS06]. . . . . . . . . . . . . 5.1.1 Cartoon of visual cortex, V1, superficial layers. (a) Macroscopic organization: a number of (abstracted) orientation hypercolumns, colored by left-eye (green)/right-eye (purple) dominant inputs. The color grading emphasizes that at the center of the ocular dominance bands the cells are strongly monocular, while at the boundaries they become binocularly-driven. (b) A zoom in to a few orientation columns showing left and right monocular cells at the border of ocular dominance bands. Cells in these nearby columns will provide the anatomical substrate for our model. (c) More recent work shows that both monocular and binocular inputs matter to these cells (redrawn from [STR + 22], using data from ferret). This more advanced wiring suggests the connection structures in our model. . . . . . . . . . . . . . . . 5.2.1 Left: schematic representation of the fiber bundle in two dimension, with relationships between left and right retinal coordinates. Right: representation of the selection of a whole fiber of left and right simple cells, for every x and for every d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Direction detected by ω bin through the intersection of left and right planes generated by ker ω θ R and ker ω θ L . Red vector corresponds to the associated 2-form ω bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Three-dimensional reconstruction of the space from retinal planes. The onedimensional form ω θ L and ω θ R are identified with the normal to the curves γ L and γ R . Their three dimensional counterpart ωθ L and ωθ R identify the tangent vector to the curve γ : R → R 3 by the wedge product ωθ L ∧ ωθ R . . 5.3.1 Fans of integral curves proposed for the geometry of the stereo vision. (a) Fan of helices from the work of Zucker et al. [AZ00]. (b) Fan of sub-Riemannian integral curves defined by equation (5.29) with varying c 1 and c 2 in R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Different types of curves generated by (5.29). (a) Arc of circles for ϕ = π/2. (b) r 3 -helices for ϕ = π/3. (c) Family of curves with constant curvature k and varying torsion parameter. . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 (a) A biocytin injection superimposed on a map of ocular dominance columns, image result from the work in [MAHG93]. Binocular zones are in the middle of monocular zones (coded in black and white). Starting from the injection site (yellow circle in the center of a binocular zone) the patches' propagation (red corresponds to dense while green to sparsely labeled) tends to avoid highly monocular sites, bypassing the centers of ocular dominance columns, and are located in binocular zones. (b) 3D interpretation of the physiological image (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Example of the fan of the 3D relatable edges with initial point E 0 . . . . . . 5.4.3 3D relatable points and integral curves. (a) 3D relatable edges are displayed on the right of the initial edge E 0 . Unrelatable 3D edges are displayed on the left. (b) Horizontal integral curves with filled lines connect 3D relatable edges with initial point E 0 . Horizontal integral curves with dotted lines do not connect 3D unrelatable edges. . . . . . . . . . . . . . . . . . . . . . . . 5.4.4 (a) Bidimensional projections of the compatibility fields (left, image adapted from [AZ00]) and of the 3D relatable points (right). (b)Superimposition of the compatibility field on the 3D relatable points projection. (c) Emphasizing the involved region on the 3D relatable points projection. . . . . . . 5.4.5 Compatibility with bidimensional constraint. (a) Restriction of the fan of the integral curves on the e 1 -e 2 plane. (b) Restriction of the fan of the integral curves on the e 1 -e 3 plane. (c) Restriction of the fan at ϕ = ϕ 0 . These curves (black lines) are not planar curves but helices. However, their projection (white lines) on the coplanar plane with the initial edge satisfies the bidimensional constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.6 The three-dimensional space curve γ is enveloped by the 3D the association field centered at a point. Formally, this association field is a fan of integral curves in the sub-Riemmanian geometry described by equation (5.34) with varying c 1 and c 2 in R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.7 Left and right retinal images of the set Ω. Black points are the projection of the point of the curve γ, while gray points are background random noise. 5.4.8 Lifting of the two left and right retinal images of Figure 5.4.7 in the space of position and orientation R 3 × S 2 . . . . . . . . . . . . . . . . . . . . . . . 5.4.9 (a) Selection of lifted points according to the binocular output. (b) Points of the stimulus γ connected by integral curves (5.29). . . . . . . . . . . . . 5.4.10Matrices M which element M ij represents the value of curvature or torsion for every couple of points ξ i , ξ j . The first eight points correspond to the stimulus curve γ while the others are random noise. (a) Curvature matrix. (b) Torsion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Top: Display of J R 3 (ξ j , ξ 0 ) for two different diffusion coefficients λ (left λ = 0.035, right λ = 0.08), at isovalue 0.1. Euler-Maruyama scheme parameters are M = 400, T = 100, N = 10 6 . Bottom: Display of the marginal distribution J S 2 obtained after an integration of J T λ over R 3 , for the same parameters as above. The starting point ξ 0 has orientation defined by (θ 0 , ϕ 0 ) = (π/2, π/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Display of error bars on J T λ (r 1 ) sections with λ = 0.035 and T = 100. The initial point ξ 0 is described by spatial indices (r 10 , r 20 , r 30 ) = (50, 1, 50), while (θ 0 , ϕ 0 ) = (π/2, π/2). (a) Display of J T λ (r 1 ) identified by (r 2 , r3 ) = (10, 50) for two different numbers of paths N : blue color corresponds to N = 10 6 , the black one to N = 10 5 . Emphasized in the red square: the amplitude (∆(N )) of the two confidence intervals. The width of the blue interval is about half of the black one. (b) J T λ (r 1 ) identified by (r 2 , r3 ) = (50, 50) for two different number of paths: blue correspond to N = 10 6 , black to N = 10 5 . Moving away from the pole, both the kernel value and the confidence interval decrease. . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Display of error bars and percentage error for J T λ (r 2 ), with kernel parameters λ = 0.035 and T = 100, N = 10 6 . The initial point ξ 0 is described by (r 10 , r 20 , r 30 ) = (50, 1, 50) and (θ 0 , ϕ 0 ) = (π/2, π/2). The section has indices (r 10 , r 30 ) = (50, 50). (a) Display of error bars on J T λ (r 2 ). (b) Display of the percentage error E % = 100 r J T λ (r2) , with r = 2.57σ √ N . . . . . . . . . . . . 6.2.4 Marginal projections on the plane r 1 -r 2 to display dependence on the parameters λ and T . The horizontal axis of the pictures corresponds to r 1axis, while the vertical one corresponds to r 2 -axis. Columns describe the scale parameter T = 15, 50, 100, 300, 600, while rows correspond to different values of diffusion λ = 0.01, 0.035, 0.08. . . . . . . . . . . . . . . . . . . . .
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	implementation of the perceptual phenomenon of the law of good continuation.
	Moreover, while the classical concept of association fields involves only coaxial-
	oriented elements, a similar correlation is also observed between parallel segments,
	or more precisely orthogonal with respect to the central-oriented element. This
	effect is usually called ladder effect [MC82, FHH93, YF98], see image (c) of Figure 2.2.2. Chapter 3
	Historically, good continuation in depth is much less well developed than good
	continuation in the plane. Despite that, the origins of the problem are quite
	ancient: in [Kof63], Koffka noticed that the perception of a perspective drawing is strengthened when viewed with stereoscopic vision, compared to the monocular The stereo problem
	case, observing the introduction of mutual reinforcement rather than a conflict
	of forces. One of the objectives of this thesis is to realize a mutual reinforcement
	In this chapter, we introduce a brief review of classical geometry model, developing good continuation in depth analogously to the models of contour and reference models for the stereo problem. First, we recall the organization in two dimensions. Psychophysical investigations such as [DW14, geometrical properties of perspective projections which are the
	DW15, KHK16, Utt83] suggest that this should be feasible. Indeed, Hess and basis of stereo triangulation. Then, we concentrate on models
	colleagues in [HF95, HHK97] extend the good regularity in 3D, a property that is proposed for describing the stereo vision. At the beginning we
	in accordance with the more recent works of Deas-Wilcox and Khuu-Honson-Kim examine the neural model for the integration of monocular out-
	puts performed by binocular cells, then we study mathematical in [DW15, KHK16]. We will use a more mathematical approach, in agreement models for the stereo correspondence problem, illustrating typ-with the study of 3D-circularity applied to crossing-preserving enhancement DW-ical constraints and finally presenting the differential model of MRI introduced in [MOW + 17, PFS + 15, RDRV10], or for mapping connectivity in reference.
	diffusion MRI [MS09, MS12]. We will study this in more detail in Chapter 5 and
	Chapter 6.
	3.1.1 Stereo variables . . . . . . . . . . . . . . . . . . . . . . .
	3.1.2 Tangent estimation . . . . . . . . . . . . . . . . . . . . .
	fact, the solid lines indicate the elements that can be connected with the central
	component, while the dotted lines indicate unrelated elements, image (b) of Figure
	2.2.2.
	An interesting result that comes out of these psychophysical experiments con-
	cerns the correlation between the association fields and the horizontal connections
	of the monocular cells of V1. In this sense, lateral connectivity is seen as a potential

3.2 Neural model for stereo vision . . . . . . . . . . . . . .
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	3.3.1 Constraints on the coupling problem . . . . . . . . . . .
	3.3.2 The Zucker model . . . . . . . . . . . . . . . . . . . . .

  for any p ∈ M . In this case, it is said that X and Y commute with each other.

Definition 4.2.2. A Lie algebra g on R is a real vector space together with a bilinear operation [•, •] : g × g → g, called Lie bracket, which satisfy:

  Note that the previous definition includes Riemannian manifolds, indeed if D = T M , then g must be a Riemannian metric on M . Thus, sub-Riemannian geometry is a generalization of Riemannian geometry.

		(4.36)	
	We sometimes refer to (4.35) as Hörmander condition. With a slight abuse of	
	notation, we say that M is a sub-Riemannian manifold.	
	Lie p (D) = T p M,	∀ p ∈ M.	(4.35)

.34) We always assume that the distribution is bracket-generating, namely the Lie algebra generated by D at the point p coincides with T p M , for every p ∈ M , i.e. Recall that, according to Definition 4.2.3, the Lie algebra generated by D at p can be expressed by means of (4.34), namely Lie p (D) = Lie p ({X 1 , . . . , X k }). Definition 4.3.2. Let M be a sub-Riemannian manifold. We say that γ : [0, T ] → M is a horizontal curve, if it is absolutely continuous in coordinates and γ(t) ∈ D γ(t) , for a.e. t ∈ [0, T ]. (4.37) This implies there exists a function u : [0, T ] → R k , such that γ(t) = k i=1 u i (t)X i| γ(t) , for a.e. t ∈ [0, T ]. (4.38) where {X 1 , . . . , X k } is a local orthonormal frame for D as in (4.34). We require that u ∈ L 2 ([0, T ], R k ). By construction, γ(t) |γ(t) = |u(t)| for a.e. t ∈ [0, T ], where |•| is the Euclidean norm in R k . Therefore the map t → γ(t) |γ(t) is square integrable on [0, T ] and we can evaluate the length of horizontal curves. This allows us to define the sub-Riemannian distance on M . Definition 4.3.3. Let M be a sub-Riemannian manifold, and let γ : [0, T ] → M be a horizontal curve. Its length is defined as follows:

  and Sarti observed that stratified Lie groups struc-

	basis of visual perception. We will study this model in more detail in Section
	4.4.2.
	This mathematical description of V1 has been used in many other works
	to define a symplectic structure [SCP07], to study cortical orientation maps
	[BCSS12, BCS14], to study different features selectivity such as scale [BCS18]
	and spatio-temporal visual stimuli [BCCS14], to group perceptual stimuli
	[BCCS14, ASFC + 17], to study visual illusions [FMCS19, BCF + 20]. A semi-
	discrete variant of [CS06] was proposed in [BCGR14], and a relation between
	association field curves and sub-Riemannian geodesics in SE(2) has been
	carried out in [DBRS14]. Moreover, a spherical extension of the contour
	perception model has been proposed in [MD16].
	tures more appropriately describe the functional architecture of the visual
	cortex, proposing a description for the set of simple cells requiring invari-
	ance under roto-translations, namely introducing the Lie group SE(2). The
	important idea was to endow it with a sub-Riemannian metric, which well
	describes the behavior of the neural and psychophysical mechanisms at the
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  .26)We suppose that the set Ω has a finite measure with respect to the introduced measure dξ. Hence the mean field activity equation reduces to:

	da(ξ, t) dt	= -αa(ξ, t) + γ	Ω	µJ S (ξ, ξ )a(ξ , t)dξ + c , in Ω.	(6.27)

  The function φ is said to be Lyapunov stable if for all ε > 0 there exists δ > 0 such that for every u 0 s.t. a 0 -u 0 < δ, then for the solution ψ of the Cauchy problem with initial datum u 0 , it holds ψ(t) -φ(t) < ε, for all

	6.3.2.1 General results Definition 6.3.1. Let φ ∈ C 1 ([0, +∞), L 2 (Ω, R)) be a solution to the Cauchy Definition 6.3.2. Let F ⊆ L 2 (Ω, R) an open subset such that 0 ∈ F, and let stable. V : F -→ R be a continuous functional. Then V is a Lyapunov functional for problem (6.30). t ∈ [0, +∞). If then lim t→+∞ ψ(t) -φ(t) = 0 then φ is said asymptotically the problem (6.30) if the following conditions hold:

  .34) Let us assume without loss of generality that the initial datum of the problem (6.30) is a 0 = 0. Let V be a Lyapunov functional defined on L 2 (Ω, R)

	Corollary 6.3.1.

  which are in relationship with the binocular cells activated by the stimulus. We call the activated set Ω d , and so the

	mean field equation (6.41) becomes			
	da(ξ i , t) dt	= -αa(ξ i , t) + γµ	N j=1	J S (ξ i , ξ j )a(ξ j , t), in Ω d .	(6.45)

  Baldi in[START_REF] Arcozzi | From Grushin to Heisenberg via an isoperimetric problem[END_REF] to our setting. In particular, this technique is developed locally, providing the appropriate lifting relating R 3 S 2 to SE(3). Then X = SE(3)/ H is locally (in charts) isometric to R 3 S 2 .

	posed by Arcozzi-Theorem B.1.1. Let H = {0} × H be a one parameter subgroup of SE(3), H
	defined in (A.17).	
	s)ds.	(A.25)

It means that one is present in each hemisphere of the brain.

The general expression for the Gabor function with phase φ and frequency f is ϕ0(ξ, η) = exp (i (2πf ξ + φ)) expξ

+η 2 2σ 2. We assume f = 1 and φ = 0. For the reader interested in a model of phase variation, we recommend[START_REF] Baspinar | A geometric model of multiscale orientation preference maps via gabor functions[END_REF].

This was the case with monocular biocytin injections as well.

The angle ϕ here has been modified to be compatible with our set of coordinates. The relationship between the angle φ in works [KGS05a, KGS + 05b] can be expressed as : φ = acos(sin ϕ) + π.

In the following, unless stated otherwise, I is identified with the interval [0, 1].

by an angle θ, which satisfies the following inequality: tan -1 y x ≤ θ ≤ π 2 . This condition is sometimes referred to as 2D relatability, see for example [START_REF] Kellman | Object interpolation in three dimensions[END_REF].

The authors of [START_REF] Boscain | Curve cuspless reconstruction via sub-riemannian geometry[END_REF][START_REF] Duits | Association fields via cuspless sub-Riemannian geodesics in SE(2)[END_REF] observe that in 2D the set of end-points can be obtained by minimizing geodesics whose spatial projections do not reveal cusps, proposing then a model for 2D relatability and association fields.

It is worth making a final consideration regarding the fact that, in the model proposed by Citti-Sarti, the retina is treated locally as if it were a plane, using retinotopic coordinates (x, y). We will adopt this approach throughout the thesis, as it describes well the local behavior, even if globally the retina can be viewed as a sphere. A model that has adopted this point of view has been introduced in [START_REF] Mashtakov | A cortical based model for contour completion on the retinal sphere[END_REF] in which spherical association fields arise from the SO(3) sub-Riemannian geometry acting on the spherical frame bundle. However, the comparison between sub-Riemannian geodesics and wavefronts in SE(2) and SO(3) studied by the authors of [MDS + 17], shows that locally the two geometries are very similar.

Dependence on parameters

The kernel defined by numerical approximation mainly depends on 4 parameters: M the number of steps of the simulated path, N the number of paths considered, λ the diffusion coefficient, and T the final evolution time of the generated path. We will always consider the first two parameters quite large to ensure the convergence of the method. The last two, on the other hand, affect the behavior of the kernel, see Figure 6.2.4. This diffusion parameter operates a modification on the thickness of the kernel: the bigger λ is, the thicker the kernel, making the diffusion terms prevail. On the other hand, the smaller λ is, the thinner the kernel, mainly concentrated on the initial direction n(ϕ 0 , θ 0 ), making the transport term the leading term characterizing the equation. The stochastic counterpart of the 3D association fields provides a kind of glue that allows transitions from points of the space to nearby points, and is thought of as the underlying circuits of binocular neurons. This leads to the introduction of connectivity kernels that encode the 3D geometric position-orientation information and describe the probability of co-occurrence of elements of the space. These probability densities are inserted as facilitation inducers in a neural population activity model, whose stability analysis leads to the emergence of three-dimensional perceptual units.

We implement a clustering algorithm to test the visual grouping properties of the (discrete) connectivity kernels. We find that our algorithm is able to cluster elements belonging to a single object in the 3D space. At the same time, the algorithm is able to solve the stereo correspondence problem by determining the appropriate match between left and right pixels, while discarding false matches. A comparison with the same algorithm with the classical Gaussian kernel equipped with a Euclidean-type distance explains and justifies the introduction of the proposed sub-Riemannian metric.

Appendices Appendix A

Position-orientation manifold

and Lie group of rigid body motions SE(3)

In this appendix, we recall the detailed definition of the position-orientation space that we used throughout the thesis to describe the behavior of binocular cells. We mainly refer to [DF11, DCGDH11, DGDHM16] to remind how R 3 S 2 can be thought of homogeneous space for the Lie group of rigid body motions SE(3), by taking the quotient of SO(3), the three-dimensional rotation group, on a subgroup identified with SO(2), the bi-dimensional rotation group.

A.1 3D rotation group SO(3)

The 3D rotation group SO(3), also known as the special orthogonal group, is the group of all rotations about the origin of three-dimensional Euclidean space R 3 under the operation of composition.

In particular, if R Ψ i denotes a counterclockwise rotation around the i-th axis by an angle Ψ, then every rotation R ∈ SO(3) can be written uniquely in Euler angle form:

where θ, α ∈ [0, 2π], while ϕ ∈ (0, π). Thus, the angles θ, ϕ, α can be taken as coordinates in SO(3).

Moreover, if we consider g 1 and g 2 ∈ SE(3), then the Carnot-Caratheodory distance between g 1 and g 2 is the infimum of the SE(3)-lengths of the horizontal curves joining g 1 and g 2 : 

where it holds the identification of Remark A.2.1, and the relationship between the elements of S 2 and SO(3)/SO(2) is defined according to (A.18).

The group action

and so, because this group product influences the group action in R 3 S 2 , we use the semi-product notation even though this is usually reserved for the semi-direct product of groups.

Remark A.4.2. Via the group action, the equivalence relation (A.28) amounts to:

g ∼ g ⇐⇒ g • (0, e 3 ) = g • (0, e 3 ), (A.30)

where e 3 = (0, 0, 1) is the third reference axis in R 3 .

Thereby, an arbitrary element ξ in R 3 S 2 can be considered as the equivalence class of all rigid body motions that map reference position and orientation (0, e 3 ) onto (p, n) with arbitrary p ∈ R 3 and n ∈ S 2 defined considering the spherical coordinates introduced in equation (A.12).

It is quite natural now to consider the vector field Ỹ3 of (5.24) which couples positions and orientations and vector field on the sphere Y θ and Y ϕ defined in (A.14). (When we work in the position-orientation space, the vector field Ỹ3 will be denoted with Y 3 for clarity. ) The local frame {Y 3 , Y θ , Y ϕ } satisfies the Hörmander's condition in the chart of definition, and in this setting we extend the classical Riemannian metric on S 2 to a sub-Riemannian metric (A.13) on R 3 S 2 , by imposing the orthonormality of these vector fields.

Naturally, the length of a horizontal curve γ : I -→ R 3 S 2 , is defined as

where a(s) is the coefficient associated to vector field Y 3 .

The Carnot-Charatheodory distance between two points ξ 1 = (p 1 , n 1 ) and ξ 2 = (p 2 , n 2 ) is:

Fundamental solutions in SE(3) and R 3 S 2

In this appendix, we briefly introduce a first investigation on the parametric relationship between the fundamental solution of the forward Kolmogorov operator (6.8), (computed numerically in 6.2), and the fundamental solution of the corresponding hypo-elliptic convection-diffusion operator in SE(3), already solved exactly and with numerical, analytical and stochastical approximation in

First, we find a (local) isometry between R 3 S 2 and its SE(3) counterparts, and then, we relate the behavior of fundamental solutions for operators defined in these spaces, using the notion of lifting of operators, embedding in the work of Bonfiglioli-Biagi [START_REF] Biagi | The existence of a global fundamental solution for homogeneous Hörmander operators via a global lifting method[END_REF].

B.1 Metric property between R 3 S 2 and SE(3)

The manifold R 3 S 2 is a left quotient of the Lie group of rigid body motion SE(3), as recalled in subsection A.4. In this section we show that we can pass the metric defined in subsection A.3 on SE(3) to the quotient on R 3 S 2 , investigating the existence of an isometry between these two spaces.

B.1.1 Local isometry from

The existence of a local isometry, between SE(3) and R 3 S 2 together with the distances defined in the previous sections, is proved by adapting a technique pro- 
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