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This work is concerned with the development of energy management strategies for hybrid ships. It is split into the following topics:

Chapter 2 presents necessary background to understand the topic of energy management on hybrid ships. The topic goes from powertrain modelling to energy management strategies. Among the different kinds of offline energy management strategies, special attention is given to Pontryagin's Minimum Principle based indirect method. For the case of online energy management strategies, special attention is given to the Equivalent Consumption Minimization Strategy.

Chapter 3 contains the first contribution: An improvement on the classical implementation of est de simplifier la conception du contrôleur qui détermine la répartition du couple dans un navire à plusieurs arbres. La précision du modèle d'état stable simplifié est comparée au modèle d'origine.

Tracking of the optimal control within

 3.2Removing the points ν k < u -in U grid . 3.3 Removing the points ν k > u + in U grid . 3.4 Number of Hamiltonian evaluation: classical approach (left) vs improved approach (right). 3.5 Load power profile w(t). 3.6 Optimal trajectories of the state of charge x(t) and the costate λ(t) obtained from the constrained algorithm. 3.7 Relation between the number of operations of the classical and the improved approach. 3.8 Optimal trajectories of the state of charge x(t) and the costate λ(t) obtained from the constrained algorithm, improved algorithm solution (left) and classical algorithm solution (right). 3.9 Ratio of improvement between the number of operations of the classical and the improved approach along with the constrained algorithm . 4.4 state dynamics g(λ(t), w(t)) and bounds such that ∂g(λ(t), w(t))/∂λ < ϵ. . . 4.8 Tradeoff between fuel consumption m f and RMS of the SOC tracking error J δx for the proposed qLPV approach (blue) and the adaptive ECMS (red). Results obtained using the suggested control law tunings are depicted with a star . . . . . . . . . . . . . . . . 4.9 Comparison of the proposed approach (qLPV), the adaptive ECMS (adaptive) and the offline optimal solution (optimal). The final state of charge is forced to be 20 ± 0.1% . 4.10 Comparison of the proposed approch (qLPV) and the adaptive ECMS (adaptive). . . . 5.2 Maud water resistance under smooth water conditions (courtesy of Solent University). . 5.3 state dynamics g θ (λ(t), w(t)) and bounds such that ∂g θ (λ(t), w(t))/∂λ < ϵ, for θ ∈ {1, 2}. 5.4 Multimode quasi-LPV ECMS structure. 

Series/Parallel powertrain (From Hybrid marine LTD

the offline Pontryagin's Minimum Principle based energy management strategy, achieving an improvement in its computational efficiency. The baseline of the implementation is that, at each instant, the control is a solution to an instantaneous optimization sub-problem that depends on an additional parameter denoted as co-state and second, the co-state is the root of a function that is computed using a bisection search. The basic idea of the improvement is that we don't need to solve both sub-problems with high accuracy before their convergence towards the optimal solution. As a result, the intermediate solutions are computed using weak but sufficient accuracy by exploiting the convexity properties of both subproblems. Also, a mathematical proof of the convergence of the algorithm is presented. There is a comparison on the improvement by comparing the reduction in the number of times the Hamiltonian needs to be computed. The proposed approach shows to be at least 2231 times more efficient than the classical one.

Chapter 4 presents the second contribution: A controller design scheme that integrates the Equivalent Consumption Minimization Strategy framework and the quasi Linear Parameters Varying framework. The proposed scheme allows exploiting the characteristics of both frameworks, i.e, the regulation of the state-of-charge nearby a reference setpoint and the minimization of the fuel consumption (ensuring energy-efficient powertrain operations). Also, a proof (expressed as linear-matrix-inequality conditions) of the input-state-stability of the closed-loop is presented.

Simulation results are provided to illustrate the applicability of this approach to hybrid powertrains.

Chapter 5 presents the third contribution: A extension of the results presented in Chapter 4 to account for powertrains that may include clutches or elements that can modify its configuration; as a result we obtain a multimode quasi Linear Parameters Varying Equivalent Consumption Minimization Strategy used for systems with multiple modes of operation. Also, aiming to improve the EMS performance, a SOC profile generator is included. This SOC generation is made of a Neural Network that estimates the optimal SOC trajectory reference that minimizes the fuel consumption. The resulting methodology transform the energy management problem into a nonlinear control feedback scheme whose nonlinear control gain is computed by solving a set of Linear Matrix Inequalities.

Chapter 6 presents the fourth contribution: A methodology used to obtain a reduced order model in a hybrid vessel. The purpose for obtaining a reduced order model is to simplify the controller design that determines the torque split in a vessel with multiple shafts. The accuracy of the simplified steady -state model is compared with the original model. 

Résumé

Ce travail porte sur le développement de stratégies de gestion de l'énergie pour les navires hybrides. Il est divisé en sujets suivants : Le chapitre 2 présente le contexte nécessaire pour comprendre le sujet de la gestion de l'énergie sur les navires hybrides. Le sujet va de la modélisation des motopropulseurs aux stratégies de gestion de l'énergie. Parmi les différents types de stratégies de gestion de l'énergie hors ligne, une attention particulière est accordée à la méthode indirecte basée sur le principe minimum de Pontryagin. Dans le cas des stratégies de gestion de l'énergie en ligne, une attention particulière est accordée à la stratégie de minimisation de la consommation équivalente.

Le chapitre 3 contient la première contribution : Une amélioration de la mise en oeuvre classique de la stratégie de gestion de l'énergie basée sur le principe minimum de Pontryagin hors ligne, permettant une réduction significative du temps de calcul. A chaque instant, la commande est obtenue par résolution d'un sous-problème d'optimisation instantané imbriqué dans un problème de plus haut niveau visant à calculer un paramètre appelé état adjoint par une méthode de bisection. L'amélioration proposée repose sur le fait qu'il n'est pas nécessaire de résoudre ces deux problèmes avec une grande précision avant leur convergence vers la solution optimale. Par conséquent, les solutions intermédiaires sont calculées avec une précision faible mais suffisante en exploitant les propriétés de convexité des deux sous problèmes. De plus, une preuve mathématique de la convergence de l'algorithme est présentée. Il y a une comparaison sur l'amélioration en comparant la réduction du nombre de fois où l'hamiltonien doit être calculé. L'approche proposée s'avère au moins 2231 fois plus efficace que l'approche classique.

Le chapitre 4 présente la deuxième contribution : Une structure de commande qui allie la stratégie ECMS (Equivalent Consumption Minimization Strategy) et l'approche de commande quasi-LPV (Linear Parameter Varying). Cette structure bénéficie de l'efficacité énergétique de l'approche ECMS et les preuves de stabilisation de l'état de charge par le régulateur liés à l'utilisation de modèle quasi-LPV. En outre, une preuve (exprimée en conditions d'inégalité de matrice linéaire) de la stabilité de l'état d'entrée de la boucle fermée est présentée. Des résultats de simulation sont fournis pour illustrer l'applicabilité de cette approche aux groupes motopropulseurs hybrides.

Le chapitre 5 présente la troisième contribution : Une extension des résultats présentés au chapitre 4 pour tenir compte des groupes motopropulseurs pouvant comporter des embrayages ou des éléments pouvant modifier sa configuration; en conséquence, nous obtenons une stratégie de minimisation de la consommation équivalente quasi linéaire multimode à paramètres variables utilisée pour les systèmes à modes de fonctionnement multiples. De plus, dans le but d'améliorer les performances EMS, un générateur de profil SOC est inclus. Cette génération de SOC est constituée d'un réseau de neurones qui estime la référence de trajectoire SOC optimale qui minimise la consommation de carburant. La méthodologie résultante transforme le problème de gestion de l'énergie en un schéma de rétroaction de contrôle non linéaire dont le gain de contrôle non linéaire est calculé en résolvant un ensemble d'inégalités matricielles linéaires.

Le chapitre 6 présente la quatrième contribution : Une méthodologie utilisée pour obtenir un modèle d'ordre réduit dans un navire hybride. Le but d'obtenir un modèle de commande réduit

Chapter 1 Introduction

This chapter explains the motivation and problem statement of this work. It begins by describing the motivations to develop new technologies in order to achieve the challenges to reduce the emission in maritime applications. The problem statement poses some questions, foreseen problems, and the objectives that this research will deal with. At the end of the chapter, an overview addresses what the reader is about to see in the upcoming chapters.

Motivation

Due to the demand of energy, goods, and services, the use of ships is accountable for two-thirds of worldwide trading volume, according to the United Nations Conference on Trade and Development (UNCTAD) [5]. Although, in 2020, merchandise trade fell by 5.4% and international maritime quantity of goods shipped fell by 3.8%, from 11.22 billion tons to 10.65 billion tons, UNCTAD projects a recovery in global maritime trade, and growth is expected to continue through the period 2022-2026 [5]. Due to the increase of trade, inland and maritime traffic is growing and, as a result, maritime emissions are rising [6][7]. This rise in emissions has environmental and social health impacts such as:

Air pollution due to the emissions of exhaust gases that contribute to the green house effect.

Human health risks related to the sulphur content in the fuels used in global shipping.

The Fourth International Maritime Organization (IMO) GreenHouse Gases (GHG) Study [6] shows that the GHG emissions of total shipping have increased [START_REF]United nations framework convention on climate change. Kyoto Protocol[END_REF].6% from 2012 to 2018, going from 977 million tonnes in 2012 to 1,076 million tonnes in 2018; which represent an increase from 2.76% in 2012 to 2.89% in 2018 of the global anthropogenic GHG emissions. It is projected that without any additional regulations, shipping emissions will increase 90 -130% of 2008 emissions by 2050.

Besides the GHG emissions, maritime transportation contributes to SOx emissions (estimated to be 13% of total SOx emissions annually [START_REF] Sofiev | Cleaner fuels for ships provide public health benefits with climate tradeoffs[END_REF]); which contributes to the increase of human health problems due to the presence of sulphate SO 4 pollution in the air. The study presented in [START_REF] Sofiev | Cleaner fuels for ships provide public health benefits with climate tradeoffs[END_REF] shows that ship-emissionrelated has an impact in social health, causing approximately 14 million childhood asthma cases and approximately 400, 000 premature deaths from lung cancer and cardiovascular diseases annually.

In order to reduce the effects of maritime pollution, targets to limit the emission have already been established, for instance:

In 1997 the Kyoto Protocol [START_REF]United nations framework convention on climate change. Kyoto Protocol[END_REF] delegated targets to the IMO in order to limit GHG from international shipping.

In 2015, the Paris Agreement adopted in December 2015 recognises that climate change is an urgent global threat and established the goals of limiting temperature increases below to 2 • C (ideally below 1.5 • C) by 2050 [START_REF]Paris agreement[END_REF].

The EU 2020 Climate and Energy Package set a target of a 20% reduction in overall GHG emissions, compared to a baseline of 1990 [START_REF]climate & energy package[END_REF].

Towards achieving the targets to reduce maritime emissions, policies, regulations, and measures have been implemented. For instance, Emission Control Areas (ECAs) are sea regions where there are strong controls in airborne emissions from ships to control NOx, SOx, and particulate matter; ECAs has been implemented in the North Sea, Baltic Sea, North American, and United States Caribbean Sea [START_REF] Fagerholt | Maritime routing and speed optimization with emission control areas[END_REF]. Also, the IMO has proposed different measures of a ship efficiency aiming to improve the operational energy efficiency of ships. Their goal is to enhance the energy efficiency of the propulsion systems in a ship. Examples include the Energy Efficiency Operational Indicator and the Energy Efficiency Design Index [6].

Despite the existence of these regulations and guidelines, stronger international shipping regulations may be necessary to simultaneously reduce greenhouse gas emissions and air pollution in order to meet social health and climate goals [START_REF] Sofiev | Cleaner fuels for ships provide public health benefits with climate tradeoffs[END_REF].

In order to achieve these goals, the ISHY project, which is founded by the Interreg 2 seas program, aims to develop, test and validate technical tools and socio-economic implementation models for hybridization or fuel cell powering of ships. The scope of the project also includes hydrogen supply aspects in ports.

The project will demonstrate the effectiveness, in terms of CO 2 emission reduction, of these approaches by updating and building several types of ships (CTV, barges, cruise ship, etc.) as well as the associated port storage solutions.

In order to cope with these regulations it is more than relevant that the shipping industry and the port authorities start to invest in new technologies, which may include the use of low emission fuels, more efficient vessel designs and hybridization. [START_REF] Wang | Sizing and control of a hybrid ship propulsion system using multi-objective double-layer optimization[END_REF] shows that hybridization can be used achieve zero emissions making it an attractive option.

Hybridization consist in shifting from the traditional mechanical propulsion systems based on the diesel propulsion to mechanical-electrical propulsion systems. Electric propulsion technologies have been developed quickly due to the improvements in batteries, especially lithium-ion (Li-ion) batteries [START_REF] Alnes | Battery-powered ships: A class society perspective[END_REF].

Additionally, the most recent advancements in hydrogen fuel cells have generated interest since they are emission-free and have relatively high energy density [START_REF] Thomas | Fuel cell and battery electric vehicles compared[END_REF] [START_REF] Ogawa | Development of the fuel-cell/battery hybrid railway vehicle[END_REF].

Typically, a hybrid powertrain combines mechanical propulsion by internal combustion engines (ICE) and electrical motors (EM). This powertrain connects all propulsion elements by gearboxes, clutches, and transmission lines. One of the advantages of employing this kind of propulsion system is integrating multiple propulsion elements that allow the ship to alternate/combine different kinds of fuels during its operation (e.g. diesel and hydrogen). Also, it is possible to decide the power split between the propulsion elements; this task accomplished by means of an algorithms known as Energy Management Strategy (EMS), which is used to optimize the power split in the powertrain [17][18]. This algorithm processes input data from from the sensors in the powertrain as well as the vessel pilot command to shift the operating point of the propulsion component toward high-efficiency regions. In the case that the powertrain has multiple modes of operation, the EMS also chooses the mode of operation.

The existing literature on EMS is mainly devoted to automotive applications, and adapting the existing algorithms to maritime applications represents a challenge since in maritime hybrid applications we usually consider much more complex powertrains, since many of them uses many engines and/or gensets. Also, vessels are usually designed for each customer and every application is likely to be quite different from the others; hence, the EMS have to be designed to cope with this variety of powertrain topology and sizing.

When we refer to problems solved by the EMS, two general categories can be identified, namely offline energy management and online energy management. Designing an offline EMS consists in the optimal power split in simulation over an a priori known mission, while online energy management algorithms are designed to perform the power split of an actual vessel where only the past information is available.

Problem statement

Although in the offline EMS the information of the power profile is known a priori, finding an optimal solution is still a complex task; among the most spread approaches we can find Dynamic Programming (DP) [START_REF] Johannesson | Approximate dynamic programming applied to parallel hybrid powertrains[END_REF] [START_REF] Wei | Hev energy management fuzzy logic control based on dynamic programming[END_REF], and Pontryagin Minimum Principle (PMP) [START_REF] Pontryagin | Mathematical theory of optimal processes[END_REF], [START_REF] Schättler | The pontryagin maximum principle: From necessary conditions to the construction of an optimal solution[END_REF], even though alternative approaches based on the calculus of variations have been considered. Dynamic Programming requires discretizing both the state and the time; then, extensive search in the resulting grid allows approximating the optimal solution; Pontryagin's Minimum Principle (PMP) allows formulating optimality conditions in continuous-time, which it then reduced into a Boundary Value Problem (BVP) that can be solved using an appropriate solver. The resulting algorithm is, in general, faster than Dynamic Programming. Nevertheless, the computational cost of the classical algorithm used to solve BVP does not take advantage of the convexity of the problem to reduce the computation cost. On the other hand, among the different online EMS this thesis is devoted to the study of the Equivalent Consumption Minimization Strategy (ECMS) [START_REF] Yang | Self-adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF][24] [START_REF] Xie | Mpc-informed ecms based real-time power management strategy for hybrid electric ship[END_REF], for which almost no stability proof or robustness approaches exist, such that, there is a need to bridge the link between classical control approaches and energy management.

Overview

The topic of this thesis is to present an improvement in energy management strategies in the cases:

1. Offline: Exploiting convexity to relax one of the conditions required to compute the solution of the EMS, reducing the number of required computations. 

Chapter 2 Background

This chapter presents necessary background to understand fuel consumption economy on hybrid vessel, the content goes from modelling of the powertrain to energy management strategies.

In Section 2.1, this chapter presents different hybrid vessel component models. These component models can then be assembled to determine the energy consumption of a hybrid ship over a mission. Considering constant operating conditions for the energy converters (electric machines, gearboxes, etc.), nonlinear static relationships between the input/output signals have been shown to be sufficient to represent their efficiency. The resulting models are denoted as quasi-static [START_REF] Horrein | Dynamical and quasistatic multi-physical models of a diesel internal combustion engine using energetic macroscopic representation[END_REF].

Then, in Section 2.2, different hybrid vessel powertrain architectures are considered. These architectures are obtained by assembling distinct components. For instance, an electric machine can be coupled with a diesel engine to form an auxiliary power unit denoted as "Genset". Three different powertrain architectures, studied within the ISHY project scope, will be introduced.

Finally, in Section 2.3, an energy management algorithm state of the art review is provided. Hybrid powertrains have at least one degree of freedom to produce the power or torque requested by the vessel pilot. Energy management algorithms use these degrees of freedom to minimize a criterion such fuel consumption. Two main classes of energy management algorithms are considered: (i) Off-line algorithms, used in simulation over an a priori known mission and (ii) real-time algorithms, implemented within vessels to actually control their powertrain.

Component model

Battery

Battery packs are one of the most common energy storage systems for hybrid/electric maritime powertrains; being used in cargos, offshore vessels, and passenger/car ferries [START_REF] Naish | Outlook of energy storage technologies[END_REF]. Moreover, battery use in maritime applications is projected to increase, since improvements in Li-ion batteries are expected to continue, including a considerable increase in its life cycle, energy density, and current ratings [START_REF] Alnes | Battery-powered ships: A class society perspective[END_REF]; growing its suitability for maritime applications.

For the applications considered in this thesis, the battery pack is connected to the DC bus through a DC/DC converter. This bus connects all the electric components and has a constant voltage (Fig 2 .1). Equivalent-circuit models focus on the description of the terminal voltage using, for instance, R/C cells in series [START_REF] Wang | A novel energy management strategy for the ternary lithium batteries based on the dynamic equivalent circuit modeling and differential kalman filtering under time-varying conditions[END_REF]. For energy management purpose, a simple equivalent circuit model is considered for most of the applications. It comprises an ideal voltage source in series with a resistance [32] [33] [34] [START_REF] Tang | Energy management strategy for hevs including battery life optimization[END_REF].

It is assumed that the converter losses are negligible and that the battery open-circuit voltage and internal resistance can be regarded as a constant [START_REF] Armenta | Ecms for energy management of hybrid vessels via quasi-lpv control[END_REF] .

With the battery open-circuit voltage E and the battery internal resistance R, the battery voltage is :

V batt (t) = E -RI batt (t) (2.1)
The dynamics of the battery state of charge x(t) is a function of the current I batt (t) [START_REF] Delprat | Control of a parallel hybrid powertrain: optimal control[END_REF]:

ẋ(t) = -I batt (t) Q (2.2)
with Q as the battery pack capacity.

The battery current I batt (t) is expressed as a function of the battery power y(t) = V batt I batt (t). We will consider that the battery discharge corresponds to the positive values of y(t):

I batt (t) = E -E 2 -4Ry(t) 2R (2.3) 
Then, combining (2.2) and ( 2.3) we obtain:

ẋ (t) = -E + E 2 -4Ry(t) 2QR (2.4)
Additionally, to ensure safe operation of the battery, the battery current I batt (t) and the state of charge are constrained by

I batt ≤ I batt (t) ≤ I batt (2.5) x ≤ x(t) ≤ x.
(2.6)

Electric machine and power electronics circuit

Electric machines (EM) are devices responsible for converting electrical power to rotational work, and conversely [START_REF] Pralhaddas | Electric machines[END_REF]. If electrical energy is transformed into mechanical energy, then the electric machine works as a motor; if conversely, the electric machine works as a generator.

For the considered applications, the electric machines are connected to a DC bus via a power electronic device (Fig. 2.2). This device controls the current in the machine phases in order to produce the requested torque τ em (t). Given the rotation speed ω em (t), the current I em (t) drown on the DC bus is obtained.

Different electric machine technologies have been developed: synchronous, asynchronous, etc. However, a single steady state model suitable for energy consumption analysis is used. It represents the energy conversion efficiency at steady state of both the electric machine and its associated power electronics (i.e. for a constant speed ω em (t) and constant torque τ em (t)). It is assumed that the bus voltage V bus remains constant; also, due to its fast response in comparison with the displacement dynamics of the vessel, the torque transient response of the electric machine is neglected [39][20]. The efficiency η EM (t) of the electric machine depends on its angular speed ω EM (t) and torque τ EM (t), (Fig. 2.3).Then, the power P EM (t) of the electric machine is:

P EM (t) = ω EM (t)τ EM (t) (η EM (ω EM (t), τ EM (t))) sign(-τ EM (t)) (2.7) 
where ω EM (t) and τ EM (t) are constrained by:

ω EM (t) ≤ ω EM (t) ≤ ω EM (2.8) τ EM (ω EM ) ≤ τ EM (t) ≤ τ EM (t) (ω EM ) .
(2.9) 

Internal combustion engine

Internal combustion engines convert fuel into mechanical work (Fig. 2.4). For marine applications, the fuel is Diesel for most applications and the engine size can vary significantly from approximately 10kW to 80 000kW depending on the vessel size.

Whatever the technology is, internal combustion engines share some common principles: they are thermal machines that burn fuel with oxygen from the air in a confined space called the combustion chamber.

The ignition of the fuel creates gases at high temperature and pressure, causing their expansion. The pressure of the expanding gas applies a force on a piston, either producing a movement or producing movements that will be transferred to rotating elements via a crankshaft; as a result, chemical energy is converted into kinetic energy. Engine models for control can be classified according to their level of details for the combustion process. For example; Mean Value First Principle (MVFP) models which include air and exhaust gas flow dynamics in high-order and need a large number of parameters and considerable calibration [START_REF] Ding | Characterising combustion in diesel engines: using parameterised finite stage cylinder process models[END_REF]; first order models, which include the dynamical behaviour of a state variable, and can be based on the underlying physics [START_REF] Sa Miedema | The dynamic behavior of a diesel engine[END_REF]. Finally, zero order models, which represent the relation between fuel consumption and the engine torque and speed as a static nonlinear function. This function can be obtained using interpolation between values measured on a test bench in steady state operation [START_REF] Bishop | Engine maps of fuel use and emissions from transient driving cycles[END_REF].

For energy management studies, zero order models have been shown to be accurate enough [START_REF] Sciarretta | A control benchmark on the energy management of a plug-in hybrid electric vehicle[END_REF][43]

[17] [START_REF] Lian | Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle[END_REF][45] [START_REF] Garcia | Energy management strategies comparison for a parallel full hybrid electric vehicle using reactivity controlled compression ignition combustion[END_REF].

Similarly to the electric machine, it is assumed that its transient behaviour can be neglected. Fig. 2.5

shows the contour levels of the fuel consumption ṁf (t) (in g/s) with respect to (ω ICE (t), τ ICE (t)) in steady state. Finally, the considered IC engine model is:

m f (T ) = T 0 ṁf (ω ICE (t), τ ICE (t)) dt (2.10)
with t ∈ [0, T ] as the time horizon, and

ω ICE ≤ ω ICE (t) ≤ ω ICE (2.11) 0 ≤ τ ICE (t) ≤ τ ICE (ω ICE ) .
(2.12)

Auxiliary Power Unit

The Auxiliary power unit (APU) is a device that, in addition to the energy storage system, provides electrical power to a vehicle. Typically gensets and fuel cells are used for this purpose.

Genset

The genset is a device made up of a diesel engine coupled to an electric machine aiming to generate electric energy. The mechanical power, converted from the fuel by an ICE, is then transformed into electrical energy that supplies the electrical bus (Fig. 2.6). Assuming that the dynamics of the ICE and the EM can be neglected, the fuel consumption ṁf (u(t)) (in g/s) and the specific fuel consumption ṁf (u(t)) • u(t) -1 (in g/kWh) are computed as a static function of the genset electric output power u(t), (Fig. 2.7). The relation between fuel consumption (diesel) and the generated power can be approximated by a quadratic function of the form [START_REF] Sánchez | Energy management of hybrid vehicles with state constraints: A penalty and implicit hamiltonian minimization approach[END_REF]:

ṁf (t) = au(t) 2 + bu(t) + c (2.13)
where a, b, and c are coefficients adjusted to fit with the fuel consumption shown in Fig. 2. [START_REF] Chen | The relationship between the development of global maritime fleets and ghg emission from shipping[END_REF].

The physical limits of the components determine the restrictions of the power produced by the APU,

such that 0 ≤ u(t) ≤ u (2.14)

Fuel Cell and auxiliaries

Fuel cells are devices that use electrochemical redox reactions to convert the chemical energy of a fuel and an oxidant agent into electricity. In a fuel cell, an electrolyte separates two electrodes, the anode and cathode, and if the circuit is closed then an ionic current is generated. There exist several kinds of fuel cells. For this thesis, only hydrogen fuel cells are under consideration. Coupled to the fuel cell, an auxiliary supply system ensures the air supply, and a DC/DC converter connects the system to the electric bus, (Fig. 2.8). It is assumed that the dynamics of the fuel cell and auxiliaries can be neglected. The following loss model is used to estimate the electric consumption p(t) of the fuel cell auxiliary [3]:

p(t) = γ 0 + γ 1 u(t) (2.15) 
where u(t) is the fuel cell generated power; γ 0 and γ 1 are the losses coefficients. The relation between hydrogen consumption and the generated power can be approximated by a quadratic function. The following equation describes the relationship between fuel cell power and hydrogen fuel consumption:

ṁf (t) = P F Cmax H H 2 µ 2 u(t) P F Cmax 2 + µ 1 u(t) P F Cmax + µ 0 • P loss (2.16)
where H H 2 = 121 MJ/kg stands for the lower heating value of hydrogen, P F Cmax is the maximum stack power; µ 2 , µ 1 , and µ 0 are constant coefficients; and P loss = 1.04 is a factor included to account for the purge losses. The approximation presented in [3] is shown in Fig. 2.9. Since part of the power produced by the fuel cell will be consumed by the auxiliary unit; the effective power supplied to the electric bus will be u(t) -p(t). The restrictions of the produced power are related to the size of the fuel cell system, such that:

0 ≤ u(t) ≤ u.
(2.17)

Gearbox

Gearboxes are used to increase or decrease the rotational speed in a mechanical transmission (Fig. 2.10).

The torque and inertia output will increase if the input speed is reduced; conversely, the torque and inertia output will decrease if the input speed is increased. Gearboxes are typically used in maritime applications to reduce the speed of the engines and/or electric machines to the speed required for optimal propeller operation [START_REF] Klein | Design of propulsion and electric power generation systems[END_REF]. Assuming that the gearbox efficiency η g is a constant, the considered gearbox model is [START_REF] Bennabi | Modeling and simulation of a series hybrid propulsion chain for small ships[END_REF]: ) [START_REF] Johannesson | Approximate dynamic programming applied to parallel hybrid powertrains[END_REF])

τ out (t) = η sign(τ in (t)) g κ i τ in (t) (2.
ω out (t) = ω in (t)/κ i (2.
I out = κ 2 i I in (2.20)
where κ i is the gearbox ratio which takes values from the set {κ 1 , κ 2 , . . . , κ n } for a gearbox with n gears;

τ in (t) and τ out (t) are the input and torque, respectively; ω in (t) and ω out (t) are the input and rotation speed, respectively; and I in and I out are the inertia of the input and output, respectively.

Propeller and shaft model

Propellers are used to generate the required thrust by producing water displacement during their rotation, (Fig. 2.11); the produced thrust is a function of the shaft torque τ s (t), the propeller speed ω p (t), the propeller resistance torque τ p (t), and the vessel speed v s (t).

Due to the interaction of water with the hull, the propeller size, and its location, the speed of water arriving at the propeller, known as advance speed v A (t), is lower than the velocity of the vessel v s (t), and their difference is called wake. The relation between the ships speed v s (t) and the advance speed v A (t) is established by a value known as the wake factor f w (which is considered to be constant [START_REF] Klein | Design of propulsion and electric power generation systems[END_REF]), as follows:

v A (t) = (1 -f w ) v s (t) (2.21)
Knowing the advance speed v A (t), the rotational speed of the propeller n p (t) (rev/s), and the diameter of the propeller D p , it is possible to describe the propeller's performance using three different variables:

the advance ratio J(t), the thrust coefficient K T (t), and the torque coefficient

K Q (t).
Given the advance speed v A (t) of the water flow into the propeller , the rotational speed n p (t), and the propeller diameter D p , the advance ratio is defined as :

J(t) = v A (t) n p (t)D p (2.22) 
The water resistance to the propeller rotation generate a resistive torque denoted by τ p (t), while it simultaneously generates a propelling thrust denoted as T p (t) (N). The resistive torque τ p (t) (Nm) can be computed as follows [START_REF] Klein | Design of propulsion and electric power generation systems[END_REF]:

T p (t) = K T (J(t)) ρn p (t) 2 D 4 p (2.23) τ p (t) = K Q (J(t)) ρn p (t) 2 D 5 p (2.24)
where ρ is the water density.

Several propeller models based on geometrical characteristics have been proposed to determine K T (t) and K Q (t) as a function of J(t). For example a polynomial model is proposed in [START_REF] Barnitsas | kq and efficiency curves for the wageningen b-series propellers[END_REF]. Nevertheless, for a particular propeller, a model can be obtained from measured data as depicted in the calm open water diagram in Fig. 2.12, with N 0 as the propeller efficiency. The dynamics of the shaft can be derived from the first principle of mechanics:

I T dω p dt (t) = τ s (t) -τ p (ω p (t), v s (t)) -µω p (t) (2.25) 
where ω p (t) = 2πn p (t) is the rotational speed of the propeller (rad/s), µ is the viscous friction coefficient of the shaft bearings, τ p (ω p (t), v s (t)) is the resistive propeller torque, and I T = I s + I Eq is the total inertia, with I s and I Eq as the inertia of the shaft and the equivalent inertia of the connected mechanical elements, respectively.

The propeller (shaft) speed ω p (t) has to be restricted for safety reasons:

0 ≤ ω p (t) ≤ ω p . (2.26) 

Longitudinal dynamics

The considered model analyses ship motion only in one dimension, (Fig. 2.13); although there exist more complex 6 degrees of freedom models that account for manoeuvrability, it is assumed that manoeuvres consume significantly less energy than cruising over the considered mission; then, a longitudinal motion model can be used.

From Newton's second law of motion, the longitudinal dynamics is: where M ship is the mass of the ship, f t is the thrust deduction factor, R T (t) is the total resistance acting on the hull, and T T otal (t) is the total thrust produced by the propellers in the powertrain.

M ship dv s dt (t) = (1 -f t ) T T otal (t) -R T (v s (t)) (2.27)

Hull resistance

Ship displacement through water produces a reaction force from its surroundings; namely, resistance force, and it is the required force to propel the ship at a specific speed (Fig. 2.13). Thus, in order to keep a constant speed it is necessary that the propulsion system overcomes the resistance force of the ship.

Total resistance estimation

The total resistance can be decomposed in the following components [START_REF] Klein | Design of propulsion and electric power generation systems[END_REF]:

Frictional resistance: It is the result of displacement of the boundary layer of water induced by the ship movement; it acts tangentially on the hull.

Pressure resistance: It is the result of the perpendicular forces on the hull caused by the pressure difference between the front and the behind of the ship.

Wave resistance: When the ship moves it produces waves; the energy required to produce them causes a drag in the hull of the ship.

Even though there are several estimation methods of the total resistance that are helpful to obtain insights into a vessel's resistance behaviour, model testing is still the most reliable way of predicting resistance and powering requirements for a ship [START_REF] Birk | Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion[END_REF].

It is assumed that results from a towing tank can be extrapolated to estimate the hull resistance for a full scaled vessel; also the resistance produced by the air is neglected since in most of the cases it is very low compared to the water resistances [START_REF] Klein | Design of propulsion and electric power generation systems[END_REF].

Resistance profiles

Towing tanks are large water-filled basins used to test the water resistance of ship models. In towing tanks a ship model is hooked up to a towing carriage equipped with sensors and a data acquisition system. The ship model generates a wave pattern that is dynamically similar to the wave system of the full-scale vessel during the towing test; then, the resistance data can be scaled using similarity assumptions and correction factors [START_REF] Birk | Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion[END_REF]. Making the test for different speed values, a resistance profile (a resistance/speed function) can be obtained.

A resistance profile of is presented in Fig. 2.14 (it has been normalized for the sake of confidentiality).

It was obtained from towing tank experiments conducted by Southampton Solent University within the ISHY project. 

Maritime Powertrain

The components described in Section 2.1 can be assembled in multiple ways to create a powertrain architecture that will produce the required thrust to propel the vessel at the desired speed. In a real vessel, the speed is controlled by the human pilot according to the environment and speed limits, whereas in simulation the required torque is usually computed using a PI controller to track a velocity profile.

In both cases, the total power request that the powertrain must transfer to the propeller is known. The required torque τ req or power u req for each propulsion element and auxiliary power unit is considered as control variable Fig. 2.15 presents a generic diagram of the information flow in a powertrain (series or parallel). Deciding on how to realize the power request using all the powertrain components is managed by an energy management system that will be further detailed in Section 2.3. Let us remember that the considered powertrain architectures are used for energy management studies and this work is limited to determine the best power split strategy once the powertrain architecture has already been decided on. Extensive information on determining the best architecture and component sizing is given in [START_REF] Wang | Sizing and control of a hybrid ship propulsion system using multi-objective double-layer optimization[END_REF]. The goal of this section is to define, for every studied architecture:

The exogenous data w(t) that depends on either the pilot request and/or the environment.

The control variable u(t) to be computed by the energy management algorithm.

The power or torque split equation that provides degree of freedom in the powertrain control.

The control constraints u(t) ∈ U (w(t)) that allows a safe powertrain operation.

The criterion to be optimized.

Series hybrid powertrain with 1 propeller

In this hybrid topology, the vessel is exclusively propelled by an electric motor powered by the battery and/or a genset (see Fig. The genset output power u(t) is considered as the control variable. The electric power to be delivered to the motor is denoted by w(t). For this architecture, the energy management problem consists in determining how to split the requested electric power w(t) by the pilot between the battery and the APU. The power split equation is :

w(t) = y(t) + u(t) (2.28) 
where y(t) = I batt (t)•V batt (t) is the electrical power provided by the battery with

V batt (t) = E -RI batt (t),
where E is the open-circuit voltage and R is the battery internal resistance. The degree of freedom in the energy management comes from this power split as both y(t) and u(t) can be chosen freely (in their admissible range). The constraints (2.5) and (2.14) are considered:

y(t) ∈ y, y = I batt V batt (I batt ) , I batt V batt I batt u(t) ∈ [0, u max ]. (2.29) 
From (2.28) and (2.29), the set of admissible inputs U (w(t)) is defined as

U (w(t)) = u(t), u(t) = max(0, -y + w(t)), min(u max , -y + w(t)) (2.30) 
Combining equation (2.4) and (2.28) we determine that the battery dynamics can be expressed as scalar state-of-charge independent function: .31) Since this architecture uses a genset as APU, its fuel consumption rate ṁf (t) can be computed according to (2.13). Finally, the fuel consumption to be minimized is :

ẋ(t) = f (u(t), w(t)) = -E + E 2 -4R (w(t) -u(t)) 2RQ . ( 2 
J(T ) = T 0 ṁf (t)dt (2.32) 
with T as the mission duration.

Series hybrid powertrain with hydrogen fuel cell

The considered series hybrid powertrain depicted in Fig. 2.17 is made up of a traction motor, connected to the propeller; a battery pack, with a DC/DC converter; and a fuel cell, with auxiliaries. The power to be delivered to the propulsion motor is denoted by w(t). It is requested at every instant by the pilot. y(t) is the power provided to/from the battery, the control u(t) is the fuel cell output power, and p(t) is the power consumed by the fuel cell auxiliaries. The power split is defined as

w(t) = y(t) + u(t) -p(t) (2.33) 
The power split is quite similar to the previous architecture one, except that now, the APU and battery have not only to provide the pilot request w(t) but also the auxiliaries power p(t).

Taking into account the fuel cell auxiliaries electric consumption (2.15), the set of admissible inputs, defined as U (w(t)) = [u(w(t)), u(w(t))], is determined by:

u(w(t)) = min u max , max u min , w(t) + γ 0 -y min (1 -γ 1 ) (2.34) u(w(t)) = max u min , max u max , w(t) + γ 0 -y max (1 -γ 1 ) . ( 2 

.35)

The battery dynamics is similar to (2.31) .36) Since this architecture uses a genset as APU, its fuel consumption rate ṁf (t) can approximated by quadratic function of the generated power u(t) as in (2.16). Finally, the fuel consumption to be minimized is:

ẋ(t) = f (u(t), w(t)) = -E + E 2 -4R (w(t) + p(t) -u(t)) 2RQ . ( 2 
J(T ) = T 0 ṁf (t)dt (2.37)
with T as the mission duration.

Series hybrid powertrain with 3 shafts

In this hybrid topology, the vessel is propelled by 3 propellers; two of them are connected to 2 ICE and third is connected to an EM. This powertrain is a multi-shaft version of the powertrain of Section 2.2.1; where the electric power is supplied by the battery and/or the genset (see Fig. 2.18). This architecture is used as an example where the requested propelling thrust T T otal (t) can be mechanically split on different propeller shafts:

T T otal (t) = 3 i=1
T p,i (t) (2.38) with T p,i (t) as the thrust produced by the i-th propeller. From the vessel dynamics (2.27), the required total thrust T total (t) has to be equal to:

T T otal (t) = (1 -f ) -1 M ship dv s dt (t) + R T (v s (t)) (2.39)
Since only the longitudinal motion is considered, a symmetrical usage of the propellers is studied. It is enough to consider that the propellers connected to the ICE work symmetrically. Therefore, equation (2.38) reduces to:

T p,1 (t) + T p,3 (t) = αT T otal (t) T p,2 (t) = (1 -α)T T otal (t) (2.40)
where α is a thrust split ratio between the EM and the ICEs. Considering equations (2.23)-(2.24) it is possible to define a function between the propeller torque τ p i and the thrust T p i by: Then, the total electric power consumption is given by

τ p i (t) = T p i (t) K Q i (J i (t)) D p i K T i (J i (t)) (2.
w(t) = ω EM 2 (t)τ EM 2 (t) (η EM 2 (ω EM 2 (t), τ EM 2 (t))) sign(-τ EM 2 (t)) (2.44)
Finally, the total electric power is subject to the following power split equation:

w(t) = y(t) + u(t) (2.45)
where the battery dynamics is described by (2.31). Since this architecture uses a genset as APU, it fuel consumption rate ṁf (t) can approximated by a static function (2.13).

Series/Parallel hybrid powertrain

The following architecture corresponds to a multi-mode series/parallel hybrid powertrain that corresponds to the powertrain used by the ISHY project member Hybrid Marine Ltd to propulse the hybrid vessel named "Maud", Fig 2.19, which is propulsed by an electric motor (EM2) and/or an internal combustion engine (ICE); there is also an electric motor (EM1) connected to the combustion engine to be used as a generator. Both electric motors are connected to the same battery pack and can be switched on or off. The combustion engine along with the generator EM1 are coupled to the main shaft by means of a gearbox that allows forward and neutral mode (reverse operation is not considered in this study), while the electric motor EM2 is coupled by a reducer. A general formulation of the powertrain operation is given by the following equations:

τ s (t) = θ 3 (t) • τ GB (t) + θ 1 (t) • τ 1 (t) (2.46) θ 3 (t) • τ GB (t) = τ 3 (t) + θ 2 (t) • τ 2 (t) (2.47) 
τ 1 (t) = η sign(τ EM 1 (t)) R1 • κ R1 • τ EM 1 (t) (2.48) τ 2 (t) = (η R2 • η GB ) sign(τ EM 2 (t)) • κ R2 • κ GB • τ EM 2 (t) (2.49) τ 3 (t) = η GB • κ GB • τ ICE (t) (2.50) ω ICE (t) = θ 3 (t)κ GB ω p (t) + (θ 3 (t) -1) ω EM 2 (t) κ R2 (2.51 
)

ω EM 2 (t) = κ R2 • ω ICE (t) (2.52) ω EM 1 (t) = κ R1 • ω p (t) (2.53) 
I bus (t) = θ 1 (t) • I EM 1 (τ EM 1 (t), ω EM 1 (t)) + θ 2 (t) • I EM 2 (τ EM 2 (t), ω EM 2 (t)) (2.54) 
I batt (t) = -E + E 2 -4R (V bus I bus (t)) 2R (2.55)
where θ 1 (t), θ 2 (t) ∈ {0, 1} control the state of the electrical switches and θ 3 (t) ∈ {0, 1} control the gearbox position (neutral and forward, respectively); τ s (t) is the total propeller shaft torque. τ ICE (t), τ EM 1 (t), τ EM 2 (t) are the torques provided by the combustion engine, the electric motor 1 and electric motor 2, respectively; ω p (t), ω ICE (t), ω EM 1 (t), ω EM 2 (t) are the rotational speed of the propeller, the combustion engine, the electric motor 1 and, the electric motor 2, respectively; I batt (t), I EM 1 (t), and

I EM 2 (t)
are the current of the battery, the electric motor 1 and the electric motor 2, respectively; and

V bus and E are the DC bus and the battery open circuit voltage, respectively. τ 1 (t) and τ 2 (t) are the torques of the electric motor 1 and 2 at gearbox output; τ 3 (t) is the combustion engine torque at the gearbox output.

The total fuel consumption as described in 2. 1.3 is a function of engine torque τ ICE (t) and speed ω ICE (t):

m f (T ) = T 0 ṁf (τ ICE (t), ω ICE (t)) dt (2.56) 
Depending on θ 1 (t), θ 2 (t), θ 3 (t), different modes of operation can be obtained and the equations presented above can be simplified. Our attention will be focused in the following cases. In this mode, the pilot power request corresponds to w(t) = V bus I EM 1 (ω EM 1 (t), τ EM 1 (t)). The control signal is the auxiliary unit power output u(t) = V bus I EM 2 (ω EM 2 (t), τ EM 2 (t)). The battery power being denoted as y(t), the power split is written as:

w(t) = y(t) + u(t) (2.57)
The battery dynamics is similar to (2.31)

ẋ(t) = f (u(t), w(t)) = -E + E 2 -4R (w(t) -u(t)) 2RQ . (2.58) 
As with any APU, the combustion engine torque and speed point can be precomputed offline such that for a given DC bus electric power u(t), the fuel consumption is minimized. As a result, the fuel consumption is given as in 2.7, and can be approximated by a quadratic function of the generated power u(t). Finally, the fuel consumption to be minimized is:

J(T ) = T 0 ṁf (t)dt (2.59)
2) Parallel mode. The two electric switches are closed, θ 1 = 1, θ 2 = 1, and the gearbox is in forward mode, θ 3 = 1. In this mode of operation the propulsion components are mechanically connected to the propeller; thus, their speed only depends on the propeller speed ω p .

In this mode, the power equations reduces to: )

τ s (t) = τ 1 (t) + τ 2 (t) + τ 3 (t) (2.60) τ 1 (t) = η sign(τ EM 1 (t)) R1 • κ R1 • τ EM 1 (t) (2.61) τ 2 (t) = (η R2 • η GB ) sign(τ EM 2 (t)) • κ R2 • κ GB • τ EM 2 (t) (2.62) τ 3 (t) = η GB • κ GB • τ ICE (t) (2.63) ω ICE (t) = κ GB ω p (t) (2.64) ω EM 1 (t) = κ R1 • ω p (t) (2.65) ω EM 2 (t) = κ R2 • ω ICE (t) (2.66) I eq (t) = I EM 1 (τ EM 1 (t), ω EM 1 (t)) + I EM 2 (τ EM 2 (t), ω EM 2 (t)) (2.
I batt (t) = -E + E 2 -4R (V bus I bus (t)) 2R (2.68)
The powertrain mechanical and electrical structure in Fig. 2.19 can be alternatively represented using an equivalent electric machine that encompasses both EM1 and EM2, Fig. The equivalent electric machine torque τ eq (t) and current I eq (t) are :

τ eq (t) = τ 1 (t) + τ 2 (t) = η sign(τ EM 1 (t)) R1 • κ R1 • τ EM 1 (t) + (η R2 • η GB ) sign(τ EM 2 (t)) • κ R2 • κ GB • τ EM 2 (t) (2 .69) 
I eq (ω p (t), τ EM 1 (t), τ EM 2 (t)) = I bus (t) = I EM 1 (τ EM 1 (t), ω EM 1 (t)) + I EM 2 (τ EM 2 (t), ω EM 2 (t)) (2.70) 
The equivalent electric machine torque is limited :

τ eq = η R1 • κ R1 • τ EM 1 + η R2 • η GB • κ R2 • κ GB • τ EM 2 (2.71
)

τ eq = η -1 R1 • κ R1 • τ EM 1 + η -1 R2 • η -1 GB • κ R2 • κ GB • τ EM 2 (2.72)
Straightforwardly from (2.69), any feasible τ eq (t) ∈ [τ eq , τ eq ] can be produced by possibly an infinite pair of EM1 and EM2 torque (τ EM 1 (t), τ EM 2 (t)). This degree of freedom is solved by minimizing the equivalent current (2.70).

(τ * EM 1 (t), τ * EM 2 (t)) = arg min τ EM 1 (t),τ EM 2 (t) I eq (ω p (t), τ EM 1 (t), τ EM 2 (t)), ∀ω p (t) ∈ (ω p , ω p ) (2.73)
Then the equivalent electric machine current I eq (t) is computed as

I eq (t) = 1 V bus 2 i=1 ω EM i (t)τ * EM i η EM i ω EM i (t), τ * EM i (t) sign(-τ * EM i (t)) (2.74)
The powertrain model in the parallel mode can thus be written using a single equivalent electric machine as in the classic parallel single shaft arrangement as in Fig. 2.22. The exogenous variable w(t) = [τ s (t), ω p (t)] T is now a vector comprising the propeller shaft torque τ s (t)

requested by the pilot and propeller speed ω p (t). The control variable u(t) is the combustion engine torque τ ICE (t). The battery power y(t) is obtained from the equivalent machine current y(t) = V bus I eq (t).

The battery dynamics is :

ẋ(t) = f (u(t), w(t)) = -E + E 2 -4R (w(t) -u(t)) 2RQ . ( 2 

.75)

As a result, the powertrain is reduced to a simple parallel one with the following torque split:

τ s (t) = τ eq (t) + η GB • κ GB • τ ICE (t) (2.76) 
The fuel consumption to be minimized is

J(T ) = T 0 ṁf (τ ICE (t), ω ICE (t))dt.
(2.77)

Energy management as an optimization problem

An energy management strategy (EMS) is used to optimize the power split in the powertrain while keeping the battery state of charge within a safe operating range [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF]. This algorithm receives and processes data from the powertrain's sensors as well as the vessel pilot in order to generate the best operating points for the propulsion components. The EMS also chooses the mode of operation in a hybrid powertrain. Depending on the considered powertrain architecture, the criterion to be minimized, the model of the system, and the considered constraints, many energy management problems can be formulated. For this reason, it is convenient to use a generic problem formulation suitable for most of the encountered powertrain architectures:

min u(•) J[u] = T 0 L(u(τ ))dτ (2.78a) subject to (2.78b) ẋ(t) = f (x(t), u(t), w(t)) (2.78c) u(t) ∈ U(w(t)) (2.78d) x ≤ x(t) ≤ x (2.78e) x(0) = x 0 and x(T ) = x T (2.78f) 
where x(t) ∈ R n is the state vector representing the state of charge of the storage systems, u(t) ∈ R m is the control input representing the torque/power setpoint to be produced by the controlled propulsion components, w(t) ∈ R p is an exogenous signal representing the mission power profile, f : R m+n+p → R n is the energy storage systems dynamics, L : R m → R is the criterion integrand (e.g. fuel consumption, emissions, etc), J : R m → R is the total cost to be minimized, U(w(t)) is the set of admissible inputs,

x 0 and x T are the boundary conditions representing the initial and final state of charge, x and x are the restrictions representing lower and upper bound of the state of charge.

When we refer to energy management problems, two general categories can be identified, namely offline energy management and online energy management. Designing an offline EMS consists in solving the energy management problem (2.78a)-(2.78f) in simulation over an a priori known mission, while online energy management algorithms are designed to deal with the control of an actual vessel where only the past information is available. Although, offline energy management strategies are not used for real-time applications, they are useful as a benchmark.

Offline energy management

In an offline energy management problem the mission profile is known a priori and the cost function J can be globally minimized, i.e, the problem (2.78a)-(2.78f) is solved for the known duration T of the mission. This results in a non-causal solution, since the cost function value is minimized using future knowledge of the mission. Although offline energy management approaches cannot be used for realtime applications, they are important tools to get insights of the optimal solution or as a benchmark to evaluate the performance of real-time energy management strategies. The existing methods used for solving these problems can be classified in three groups: (i) Dynamic programming, (ii) Direct methods, and (iii) Indirect methods. A brief description of each group is presented, although the attention will focus on indirect methods, since they allow deriving real-time suboptimal control algorithms referred to as the Equivalent Consumption Minimization Strategy (ECMS) [START_REF] Xie | Mpc-informed ecms based real-time power management strategy for hybrid electric ship[END_REF], [START_REF] Sampathnarayanan | An optimal regulation strategy with disturbance rejection for energy management of hybrid electric vehicles[END_REF], further detailed in section 2.3.3.

Dynamic programming

Dynamic programming is a method based on Bellman's optimality principle [START_REF] Johannesson | Approximate dynamic programming applied to parallel hybrid powertrains[END_REF]. It provides an optimal solution by discretizing both the state and the time, and performing an extensive search in the obtained grid to find the transitions over time that minimize the overall cost. Thus, the original optimization problem (2.78a)-(2.78f) is formulated as a shortest path problem within an oriented graph, Fig. Considering an Euler discretization scheme, the following problem formulation is obtained [START_REF] Viktor Larsson | Cubic spline approximations of the dynamic programming cost-to-go in hev energy management problems[END_REF]:

J N -1 = N -1 k=0 L(u(k))s (2.79) x(k + 1) = x(k) + f (x(k), u(k), w(k))s ∀k = 0, 1, . . . , N -1 (2.80) u(k) ∈ U D (k, x(k)) ∀k = 0, 1, . . . , N -1 (2.81) x ≤ x(k) ≤ x ∀k = 0, 1, . . . , N -1 (2.82) x(0) = x 0 and x(N -1) = x T (2.83)
where is s the time discretization interval such that T = (N -1) • s and

U D (k, x(k)) is the discretized set of admissible inputs at t = k • s, which depends on the state x(k), i.e., u(k) ∈ U D (k, x(k)) (in contrast
with the set of admissible inputs in continuous time, which depends on the disturbance w(•)). By going backward in time, the DP algorithm determines the cost-to-go function at each node of the discretized state. The solution of the optimal control problem (2.78a)-(2.78f) solved by DP can be expressed in the following recursive form

J * k (x(k)) = min u(k)∈U D (k,x(k)) {L(u(k)) + J * k+1 (x(k + 1))} (2.84)
where

J * k+1 (x(k + 1)) is the minimum cost-to-go from N -k + 1 to N .
The vertexes of the graph are defined by the grid and the cost associated with every single edge transition represents the fuel consumption/CO 2 emissions required to bring the battery state of charge from one value to each other. This approach is widely used; one reason is that it easily allows integrating state (by simply restricting the solution of (2.84) to the admissible state domain) and input constraints.

Nevertheless, as the computational cost increases exponentially with respect to the number of states (denoted as curse of dimensionality [START_REF] Bellman | Dynamic programming[END_REF]), in practice this approach is restricted to be used in problems with one or two states.

Direct methods

In a direct method, the original optimal control problem is transcribed into a nonlinear programming problem by discretizing the time variable and approximating the state and/or control by some parametrized functions (e.g. piecewise polynomials). The resulting problem is a finite-dimensional nonlinear programming problem of the form:

min J(z) (2.85) subject to g(z) = 0 (2.86) h(z) ≤ 0 (2.87)
where z = [z 1 , z 2 , . . . , z N ] is the vector of N decision variables derived from the transcription, g(•) is the set of algebraic constraints and h(•) is the set inequality constraints. Since the problem is now simplified to computing simply a defined set of parameters that approximate the optimal control rather than an unknown function of the continuous time variable t. Let us remember that the resulting nonlinear programming problem depends on the chose of transcription approach, often referred as parametrization. These transcriptions can be classified into three types [START_REF] Thomas | Hybrid systems, optimal control and hybrid vehicles[END_REF]: direct single shooting, direct multiple shooting, and direct collocation. Some of the direct methods that have been studied

for energy managements purposes are: [START_REF] Jia | Numerical methods for optimal control of hybrid electric agricultural tractors[END_REF], where the state and control are approximated using the Legendre-Gauss-Radau orthogonal collocation and [START_REF] Balsamo | Optimal design and energy management of hybrid storage systems for marine propulsion applications[END_REF], where collocation method based on the Ritz method is used to solve a maritime energy management problem. Once the desired transcription is obtained any nonlinear problem solver, such as BFGS [START_REF] Lu | A modified bfgs trust region method[END_REF], can be used to resolve the problem. Most of the available solvers requires continuity of the considered problem. As a result, it is in general difficult, if not impossible, to optimize discrete variable such as an engine on/off signal using direct methods.

Moreover, these solvers needs an initial solution. Constructing such an initial solution is quite difficult due to the exogenous signal: most of the trivial signal (constant, etc.) are not admissible in general and trigger a significant number of constraints leading, in some case, to very slow convergence. If the problem is restricted to be convex using the so-called "Disciplined Convex Programming" method [START_REF] Adionel Guimaraes | A tutorial on the cvx system for modeling and solving convex optimization problems[END_REF], then the problem can be solved very efficiently using interior point methods. However, writing the optimization problem using the "Disciplined Convex Programming" method is in general quite complex and requires some approximations [START_REF] Nüesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF].

Indirect methods

In an indirect method, the original problem is converted into a boundary value problem. PMP allows formulating necessary (not sufficient, generally) optimality conditions in the form of a system of differential equations that satisfies endpoint conditions and possibly input/state constraints [START_REF] Kirk | Optimal control theory: an introduction[END_REF]. In the state unconstrained case, these optimality conditions are derived from a function H called Hamiltonian defined as follows:

H (x(t), u(t), λ(t), w(t)) = L(u(t)) + λ T (t)f (x(t), u(t), w(t)) (2.88) 
Where L(u(t)) is the cost functional (2.78a), f (x(t), u(t), w(t)) is the system dynamics (2.78c), and λ (t) ∈ R n is the costate. Pontryagin's Minimum Principle consists in the following necessary conditions for optimality:

ẋ * (t) = - ∂H ∂λ (x * (t), u * (t), λ * (t), w(t)) (2.89) λ * (t) = - ∂H ∂x (x * (t), u * (t), λ * (t), w(t)) (2.90) 
u(t) = arg min ν∈U (w(t)) H(x * (t), ν, λ * (t), w(t)) (2.91) 
From (2.91) the optimal control policy u(t) = Π (x(t), λ(t), w(t)) is obtained by minimizing the Hamiltonian: 

Π (x(t), w(t), λ(t)) = arg min ν∈U (w(t)) H (x(t), ν(t), λ(t), w(t)) (2.
ẋ (t) = f (x (t) , Π (x (t) , w (t) , λ (t)) , w (t)) (2.93) λ (t) = - ∂H (x(t), Π (x (t) , w (t) , λ (t)) , λ(t), w(t)) ∂x (2.94) x(0) = x 0 and x(T ) = x T (2.95)
The resulting BVP can be numerically solved using appropriate BVP solver such as BVP5C [START_REF] Ümit | Solution of bvps using bvp4c and bvp5c of matlab[END_REF]. In its simplest form, it is only suitable for state unconstrained problem (i.e., the state constraint (2.95)

is not taken into account). Some approaches have been devoted to solve the constrained problem;

for example, in [START_REF] Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF] the optimal control problem is transformed into a series of unconstrained optimal control problems that can be resolved iteratively as a two-point boundary value problem. Penalty function approaches have been used to solve problems with many constrained states, consisting in adding an additional cost to the criterion that enforces the state to stay in the feasible region [START_REF] Kareemulla | State constrained hybrid vehicle optimal energy management: an interior penalty approach[END_REF]. This kind of approach converts the state constrained problem into an unconstrained one. Nevertheless, the resulting optimality conditions are significantly more difficult to solve.

PMP implementation for energy management in a series hybrid ship

The problem formulation of the optimality conditions is the same for all powertrains considered in section 2.2, since the battery pack is modelled as a scalar function state-of-charge independent. For the sake of illustration we will consider a series hybrid architecture; nevertheless, it could be applied to the rest of the powertrains. Let us consider the following battery dynamics:

ẋ (t) = -I batt (u(t), w(t)) Q (2.96)
with the mass fuel rate ṁf (u(t)) as the function L(u(t)) in (2.78a). The resulting Hamiltonian for each powertrain has the following form

H(u(t), λ(t), w(t)) = ṁf (u(t)) + λ T (t)f (u(t), w(t)) (2.97)
Since the Hamiltonian is a function independent of the state of charge x(t) because the objective function is state-of charge independent as well as the battery dynamics (also temperature independent), the costate will be a constant according to (2.90):

λ(t) = - ∂H ∂x = 0 ⇒ λ(t) = λ 0 , ∀t ∈ [0, T ] , (2.98) 
with λ 0 the initial co-state value to be determined. Furthermore, assuming that the Hamiltonian is convex in the control; then, PMP optimality conditions are also sufficient. From (2.92) and (2.98), the optimal policy Π, is a function dependent of the load power w(t) and the co-state value λ 0 :

u(t) = Π (λ 0 , w(t)) = arg min ν∈U (w(t))
H (ν, λ 0 , w(t)) .

(2.99)

Thus, the original optimal control problem is reduced to a Boundary Value Problem (BVP) parametrized by a single unknown λ 0 :

ẋ(t) = f (Π (λ 0 , w(t)) , w(t)) , (2.100 
)

x(0) = x 0 , x(T ) = x T . (2.101) 
Considering any arbitrary value for λ 0 , the initial state of charge x 0 being known, the final state of charge value can be determined by direct integration:

x T (λ 0 ) = x(0) + T 0 f (Π(λ 0 , w(t)), w(t))dt. (2.102) 
Finally, the initial costate λ 0 is the root of the following defect function:

g(λ 0 ) = x T (λ 0 ) -x T . (2.103) 
The existence of a costate value λ 0 that produces g (λ 0 ) = 0 is proved using the following theorems from [START_REF] Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF]:

Theorem 2.1. Consider a Hamiltonian function of the form (2.97), with f (u(t), w(t)) as a convex function of u(t) and λ ≤ 0, and λ = -∂H ∂x locally Lipschitz in the set of admissible inputs U(w(t)), then the solution of (2.100) is a monotonic decreasing function of λ and there is a monotonic increasing relation between the initial value of the costate λ 0 = λ(0) and the final state x(T ) and between the inverse relation of the final state x(T ) and the initial value of the costate λ 0 = λ(0).

Proof. See Lemma 1 from [65].

Theorem 2.2. Let λ 0 ≤ 0, -∂ ṁf /∂u be a strictly decreasing function with respect to u, and f be as (2.96), then the optimal policy Π is a decreasing function with respect to λ 0 and there is a monotonic increasing relation between the value of λ 0 and the final state of charge x(T ).

Proof. Let us first consider the u c the unconstrained solution to the Hamiltonian minimization:

u c = arg min ν∈U (w(t))
H (ν, λ 0 , w(t)) .

(2.104)

H has a local minimum if ∂H ∂u = 0, then ∂H ∂u (u c (t), λ 0 , w(t)) = ∂ ṁf ∂u (u c (t)) + 1 Q λ 0 = 0 ⇒ λ 0 = -Q ∂ ṁf ∂u (u c (t)) , (2.105) 
since -∂H ∂u (u c (t)) is a strictly decreasing function with respect to u c (t), the relation between the optimal control u c (t) and λ 0 is strictly decreasing. The Hamiltonian being convex in u(t), and considering the control saturation such that u(t) ∈ U(w(t)), the optimal policy is:

u(t) = min(u, max(u, u c (t))). (2.106) 
As a result, the optimal control policy Π is a monotonic decreasing function of λ 0 . The second assertion follows from the latter and 2.1.

Theorem 2.2, implies that g(λ 0 ) is only a monotonic function of λ 0 (not a strictly monotonic one). Due to the control saturation u(t) ∈ U(w(t)), the reachable final state of charge set for x(T ) is bounded.

As a result, g has a null derivative for small and large λ 0 values that may induces numerical issues when solving (2.107) using root finding algorithms such as Newton's method. Instead, derivative-free algorithms are preferred and the bisection method is considered. The co-state is obtained by numerically solving the following optimization:

λ 0 = arg min λ∈[λ,λ] |g (λ)| , (2.107) 
with g being monotonic, there always exist sufficiently small (resp. large) λ (resp. λ) such that

g(λ) > 0 > g(λ).
Let us note that the state independence of the Hamiltonian with respect to the state allows avoiding the so called Hamiltonian's divergence [START_REF] Anil | A survey of numerical methods for optimal control[END_REF] [57]. The state trajectory can be accurately estimated using an explicit ODE solver and as a result a simple the BVP (2.100)-(2.101) solution can be numerically obtained.

Unconstrained case

In order to solve the unconstrained boundary value problem, one must solve two sub-problems:

The Hamiltonian minimization (2.99).

The costate computation (2.103).

Hamiltonian minimization: Determining (2.99) can be a complicate task if obtaining an explicit solution is desired, even if the Hamiltonian is convex. Thus, some options have been studied to solve it.

For example, the implicit Hamiltonian minimization consists in replacing the Hamiltonian minimization by an additional ordinary differential equations and one boundary condition [START_REF] Sánchez | Energy management of hybrid vehicles with state constraints: A penalty and implicit hamiltonian minimization approach[END_REF]:

arg min u(t)∈R H(u(t), λ 0 , w(t)) = u(t) : q(t) = dH(u(t), λ 0 , w(t)) du = 0 ⇐ q(0) = 0 q(t) = 0 (2.108)
Let us note that this approach is only suitable for unconstrained problem. As a result, this requires for instance to manage state and control constraint using penalties as in [START_REF] Sánchez | Energy management of hybrid vehicles with state constraints: A penalty and implicit hamiltonian minimization approach[END_REF].

The Hamiltonian minimum can also be estimated numerically; a widespread method consist in gridding the control space and evaluating the Hamiltonian at each node [START_REF] Delprat | Hybrid vehicle energy management: Singular optimal control[END_REF], Fig 2. [START_REF] Serrao | Ecms as a realization of pontryagin's minimum principle for hev control[END_REF]. Depending on the exogenous signal w(•), the control grid denoted by U grid (i) is defined at every instant i = 0, 1, . . . , N with M as the number of nodes in the grid. Let us denote by u grid (i, k) the elements of U grid (i) sorted from the smallest to the largest such that u grid (i, k) < u grid (i, k +1), ∀k = 0, . . . , M . The considered grid for the numerical Hamiltonian minimization is defined as follows:

u grid (i, k) = ν(i) + k (ν(i) -ν(i)) /M, ∀i = 0, . . . , N and ∀k = 0, . . . , M (2.109) 
with ν(i), ν(i) as the bounds of the set of admissible inputs U(w(i)) at the instant i. Thus we can define U grid (i) as follows

U grid (i) = {ν k ∈ U : ν k = ν(i) + k (ν(i) -ν(i)) /M, k = 0, 1, . . . , M }. (2.

110)

As a result, the optimal policy (2.99) is replaced by the following approximation:

Π grid (λ 0 , w(i • s)) = arg min ν k ∈U grid (i) k∈{0,1,...,M } H (ν k , λ 0 , w(i • s)) , (2.111) 
This way, for a given λ 0 and w(i • s), the optimal control is estimated with an accuracy ϵ N : |Π grid (λ 0 , w

(i • s)) -Π (λ 0 , w (i • s))| < ϵ N , (2.112) 
with ϵ N = u-u 2N .

Costate computation:

The costate computation is performed to solve the defect function g(λ 0 ) =

x T (λ 0 ) -x T and meet the boundary conditions x(0) = x 0 and x(T ) = x T . Using the solution of the Hamiltonian minimization (2.111), the final state of charge x T (λ 0 ) is estimated using the following Euler quadrature:

x(T ) = x(0) + N -1 i=0 f (Π grid (λ 0 , w(i • s)), w(i • s))s, (2.113) 
with s as the sampling period and T = (N -1) • s. Let us recall that derivative free algorithms are preferred when solving g(λ 0 ) = 0 in order to prevent numerical issues and the bisection method is considered to find the root of g(λ 0 ).

Notice that the only unknown variable in the solution of (2.111) is λ 0 ; thus, the co-state is obtained by computing the roots of the following defect function: 

g(λ 0 ) = xT (λ 0 ) -x T . ( 2 
λ 0 = (λ + λ)/2 5:
for i = 0 to N -1 do

6:

Π grid (i) = arg min

ν k ∈U grid H(ν k , λ 0 , w(i • s)) 7:
end for

8:

Compute x(T ) using (2.113) 

end if 14: while |x(T ) -x T | > ∆ 2.3.2.

Constrained case

In order to include state constraints to the computation of the optimal control by means of the PMPbased method, the algorithm presented in [START_REF] Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF] can be used. This method is used to find each boundary interval or time when the state constraint is violated the most in the unconstrained optimal trajectory such that the problem can be split in two subproblems that can again be solved with the PMP-based method presented in 2. 3 

Find the time τ

where the constraint is violated the most τ = argmin t∈ t a t b (x(t) -x(t, λ τ ), x(t, λ τ ) -x(t)), where t a t b is the interval where the sub-trajectory is defined and λ τ is the costate of the subtrajectory at t a .

5:

Split the initial (sub-)trajectory in two sub-trajectories: t a τ and τ t b . 

if x(t, λ τ ) -x(t) > x(t) -x(t, λ τ ) then 7:
Solve the two unconstrained boundary value problems using x(τ ) = x(t) as the endpoint for the interval t a τ and as the initial condition for the interval τ t b . Solve the two unconstrained boundary value problems using x(τ ) = x(t) as the endpoint for the interval t a τ and as the initial condition for the interval τ t b 10:

end if 11: while max t∈ t a t b (x(t) -x(t, λ τ ), x(t, λ τ ) -x(t)) ≥ 0
The prove of convergence of the constrained algorithm is detailed in [START_REF] Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF]. The output of the constrained algorithm are the trajectories of the costate λ(t) and the state x(t).

Example 2.1. Consider a series hybrid vessel with a genset as an APU as the one presented in 2.2.1.

The list of parameter for its components is presented Table 2.1.

The pilot actions are modelled using a PI controller (τ ref (t) = K p e(t) + K I e(t)dt) that receives the The considered speed profile is similar to a typical real time mission of a vessel [START_REF] Wang | Sizing and control of a hybrid ship propulsion system using multi-objective double-layer optimization[END_REF]. The resulting load request w(t) to be supplied by the propulsion motor is shown in Fig. 2. [START_REF] Bizeray | Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended kalman filter[END_REF]. In this case the state of charge does not remain within the interval [0 1]; then the constrained algorithm 2.3.2.2 comes at hand. Considering a boundary condition with a tolerance ∆ = 0.01 and the restriction 0 < x(t) < 1 the solution is shown in Fig. 2. [START_REF] Li | Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications[END_REF]. The obtained fuel consumption is 4.871 kg and the final SOC is 0.2011. We can notice the variation of the costate when the state trajectory is about to violate the state constrain.

Online energy management

Online energy management strategies are control algorithms whose purpose is to minimize the fuel consumption while achieving certain efficiency goals of a hybrid powertrain under real-time applications.

Since online energy management strategies do not depend on future information there is no guarantee of obtaining optimal solutions, whereas they can be used to provide sub-optimal solutions [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF]. Different kind of algorithms have been proposed to cope with reducing the fuel consumption in real-time;

for example, rule-based energy management strategies, which are algorithms that use logical control rules to coordinate the energy storage as well as the power flow and generation in the powertrain. These rules are based on human expertise and intuition and a powertrain model is not needed (although it is possible to use mathematical models to design more sophisticated control strategies). Their main advantage lies in their robustness and simplicity [START_REF] Chen | A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles[END_REF], since their implementation can be set using lookup tables with if-then rules, state machines or fuzzy-logic tables. Nevertheless, since they strongly depend on human expertise, their usage is limited for complex missions with large speed variations.

In addition, learning-based energy management strategies are a kind of online algorithms that are increasing in popularity since they show high adaptiveness to different sailing conditions [START_REF] Dai-Duong Tran | Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies[END_REF]. They apply machine learning schemes, that use large dataset of measurements from the powertrain under a set of missions, to derive algorithms that determine the optimal control decisions to achieve the minimization of the fuel consumption. Similarly to the rule-based methods they do not depend on mathematical models; the drawback is their dependence on the quality of the dataset and appropriate datasets are not always available. A few examples of learning based methods are: reinforcement learning [START_REF] Sun | Data-driven reinforcementlearning-based hierarchical energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles[END_REF], supervised/unsupervised learning [START_REF] Qi | Self-supervised reinforcement learning-based energy management for a hybrid electric vehicle[END_REF], neural network learning [START_REF] Chen | A neural network-based ecms for optimized energy management of plug-in hybrid electric vehicles[END_REF], and classification learning approaches [START_REF] Lv | Hybridlearning-based classification and quantitative inference of driver braking intensity of an electrified vehicle[END_REF].

Other real-time energy management algorithms are based upon instantaneous optimization methodologies. Similarly as in the global optimization problem (2.78a)-(2.78e), it is intended to minimize a cost function that takes into account the fuel consumption and the battery charge and discharge.

An example of this kind of online algorithms is the Equivalent Consumption Minimization Strategy (ECMS) [START_REF] Yang | Self-adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF] , which is based on the heuristic concept of equivalent fuel consumption, i.e., the notion that in a hybrid powertrain the amount of power absorbed/supplied by the battery under charge/discharge can be associated to with a virtual fuel consumption represented by ṁeq (t). Thus, by considering an equivalence between the fuel consumption ṁf (t) and the electric consumption the objective is to minimise the total equivalent fuel consumption ṁf,eq (t), which is the sum of the equivalent and the actual fuel consumption [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF]:

ṁf,eq (t) = ṁf (t) + ṁeq (t) (

From the state of charge dynamics ẋ = -I batt (u(t), w(t))/Q, and the battery/storage power P batt (t) = -I batt (t)E (with E and I batt (t) as the battery voltage and current), we obtain:

P batt (t) = -I batt (t)E = -QE ẋ(u(t), w(t)) (2.116) 
with Q as the battery capacity and E as the battery open circuit voltage.

Considering that the battery power is proportional to the equivalent fuel from the battery by an equivalence factor s(t), whose value may be different whether the battery is being charged or discharged;

then, the equivalent fuel consumption can be written as

m eq (t) = s(t)QE ẋ(u(t), w(t)) (2.117)
Then, the total equivalent fuel consumption is ṁf,eq (t) = ṁf (u(t)) + s(t)QE ẋ (u(t), w(t))

Typically, the equivalence factor s(t) is regarded as a vector of values [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF], one corresponding for charging s chg (t) and other for discharging s dis (t), s(t) = [s chg (t), s dis (t)], although in some applications it is regarded as a constant [START_REF] Kim | Optimal control of hybrid electric vehicles based on pontryagin's minimum principle[END_REF].

The underlying idea is that a virtual fuel consumption can be linked to the usage of electrical energy and added to the actual fuel consumption. Then, an immediate optimization is performed on the total of the two, or equivalent fuel use. The result is an algorithm with low computational effort that can be implemented in real-time.

It can be seen that there is a strong similarity between the total equivalent fuel consumption (2.115) presented in ECMS and the Hamiltonian from Pontryagin's minimum principle conditions presented in

2.3.2.
It has been shown in the literature that the ECMS can be derived from the optimality conditions stated by PMP [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF] [77] [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF], considering equivalence factor analogous to a costate that does not follows the PMP dynamics and instead is a function that controls the state of charge of the battery.

In order to show this equivalence, let us consider the Hamiltonian function used in the offline PMP-based formulation:

H(u(t), λ(t), w(t)) = ṁf (u(t)) + λ T (t) ẋ(u(t), w(t)) (2.119) 
We can see that the Hamiltonian function H(u(t), λ(t), w(t)) and the total equivalent fuel consumption ṁf,eq (t) are equivalent if QEs(t) = λ(t). Since this equivalence has been established, we will keep the use of λ(t) and Hamiltonian minimization instead of s(t) and Equivalent Consumption Minimization for the sake of consistency with the offline algorithm.

In this thesis we consider that ECMS algorithms have the control structure presented in Fig. 2.31, which adapts the offline PMP approach by reusing in real-time the Hamiltonian minimization while replacing the optimal co-state dynamics by a state of charge controller, with a state of charge reference

x ref (t) as a piecewise linear function of time [START_REF] Armenta | Ecms for energy management of hybrid vessels via quasi-lpv control[END_REF].

The purpose of using a SOC controller is to minimize the fuel consumption while regulating the SOC nearby a reference setpoint. This reference setpoint can be either a constant or may follow a discharge Depending on how the costate λ(t) is obtained, several ECMS algorithm can be proposed, for example:

Penalty function ECMS:

The original ECMS is modified to account for state of charge constraints by including penalty functions as a factor that increases the equivalent fuel consumption of the battery as the state of charge approaches to the boundary values of the state of charge x min and x max :

H(u(t), λ(t), w(t)) = ṁf (u(t)) + λ T (t) ẋ (u(t), w(t)) p(x(t)) (2.120) 
with p(x(t)) as a continuous correction function that that takes into account the deviation of the final state of charge such that p(x(t)) < 1 when x(t) > x T which means that a lower cost is attributed to the battery energy, thus making the discharge more likely when the SOC is above the reference value. On the other hand, p(x(t)) > 1 when x(t) < x T ; in this condition, the cost of battery energy is increased to make its discharge less likely [START_REF] Onori | Hybrid electric vehicles: Energy management strategies[END_REF].

Adaptive ECMS: In this kind of approaches the costate λ(t) is a non constant function of time, such that they can be classified according to the adaptation technique for λ(t) [START_REF] Saiteja | Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles[END_REF]. Examples of Adaptive-ECMS methodologies are: [START_REF] Chen | A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles[END_REF].

-PI ECMS: It is based on feedback from the error of the SOC reference x ref (t) -x(t) and its integral [START_REF] Zhang | An adaptive equivalent consumption minimization strategy for parallel hybrid electric vehicle based on fuzzy pi[END_REF], such that the costate value λ(t) is updated at each instant to account for the deviation of the state of charge from its reference value.

-Mission condition recognition: In this approach, the mission profile is categorized for different conditions; for each of these categories, an costate value λ(t) is used; a pattern recognition algorithm then detects at each instant the category of the current mission condition [START_REF] Gu | An adaptive algorithm for hybrid electric vehicle energy management based on driving pattern recognition[END_REF].

Predictive ECMS: ECMS can be used along with model predictive control when information about the past and present mission profile w(t) is used to predict the mission conditions w(t) in The drawback of this approach is the high level of computing needed to solve the minimization at each sample interval. The predictive-ECMS strategy structure is depicted in Fig. 2. [START_REF] Sciarretta | A control benchmark on the energy management of a plug-in hybrid electric vehicle[END_REF]. speed prediction is high computationally consuming; [START_REF] Delprat | Reducing the computation effort of a hybrid vehicle predictive energy management strategy[END_REF] presents a way to deal with distribution to avoid such complex time ordered prediction of velocity.

Examples of online ECMS

The following results are obtained from simulation; hence, even though the results hereby presented is a case of ECMS offline solution and is not obtained from real-time applications it can be useful as a benchmark to compare online algorithms.

Example 2.2. Consider the arrangement of example 2.1, consisting on a series powertrain with a genset.

Considering adaptive-ECMS strategy from [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF], where the costate is computed by the following discrete time model (Appendix A):

λ (k + 1) = 0.5 (λ (k) + λ (k -1)) + c p (x -x ref ) , ∀k = 0, 1, . . . N -1 (2.121)
with c p = 600 as a proportional gain and s = 50 seconds is the discretization period and N is the number of discrete time values such that for the mission duration T = 40100 seconds then T = (N -1)s. A solution for the adaptive ECMS is obtained, Fig. 2. [START_REF] Sánchez | Energy management of hybrid vehicles with state constraints: A penalty and implicit hamiltonian minimization approach[END_REF].

Notice that the costate is saturated such that λ(t) ∈ λ(t) λ(t) , since the solution of the Hamiltonian minimization does not change for values outside the interval. We can see that the process of charging of the battery is related to upper the bound of the costate λ(t), whereas the battery discharge is related to λ(t). 

Introduction

As was presented in Section 2. 3.3, real-time control algorithms can be derived from optimality conditions. Considering potential real-time applications, the reduced computational cost of the PMP based algorithms is of importance. Improving optimal control algorithm efficiency is also of interest for topology an sizing optimization. It consists of choosing the powertrain components and also the way they should be connected [87][88]. This is typically done by solving many optimization problems for different numerical settings (such as component power rating, energy storage capacity) over a large set of mission profiles. This procedure can be computational intensive since it relies on an almost exhaustive search.

As a result, improving the optimal control algorithm efficiency allows either expanding the search space or reducing the computation time.

Problem statement: The classical implementation of the PMP-based algorithm consists of two major optimization sub-problems. First, at each instant, the control is a solution to an instantaneous optimization sub-problem that depends on an additional parameter denoted as co-state and second, the co-state is the root of a function that is computed using a bisection search. The classical, procedure may have a large computational cost.

Contribution:

The algorithm is modified to improve the computational efficiency of the algorithm significantly. The underlying idea is that both sub-problems do not need to be solved with high accuracy before their convergence towards the optimal solution. As a result, the intermediate solutions are computed using weak but sufficient accuracy by exploiting the convexity properties of both subproblems.

Also, a mathematical proof of the convergence of the algorithm is presented.

Organization: This chapter is organized as follows: Sect. 3.2 details how to improve the classical approach; Sect. 3.3 puts the proposed improved control scheme and the classical one at test in an academic example in simulation; conclusions are given in Sect. 3.4.

Improved algorithm implementation

The battery dynamic of any powertrain presented in Section 2.2 can be expressed as ẋ = f (u(t), w(t))

and its fuel consumption by ṁf (u(t)), with w(t) as the load and, u(t) the power/torque to be controlled.

The associated Hamiltonian H is a function of the form

H(u(t), λ(t), w(t)) = ṁf (u(t)) + λ T (t)f (u(t), w(t)) (3.1) 
As presented in Section 2.3.2, the optimal control problem solution using PMP can be divided into two subproblems 1. The Hamiltonian minimization.

The costate computation.

From the Hamiltonian minimization, the optimal policy control Π is determined, by solving

u(t) = Π (λ 0 , w(t)) = arg min ν∈U (w(t)) H (ν, λ 0 , w(t)) . (3.2) 
whereas, the costate computation is determined by a bisection algorithm that find the value λ 0 such that x(T ):

x(T ) ≈ x(0) + N -1 i=0 f (Π(λ 0 , w(i • s)), w(i • s))s, (3.3) 
is close enough to the desired final state of charge, for a mission of duration T and with s as the sample period and T = (N -1)s.

Classically, the Hamiltonian minimization, is solved by discretizing the set of admissible inputs U(w(t)),

defining the set U grid (i) at every instant i = 0, 1, . . . , N as a vector whose entries are the elements from the set

U grid (i) = {u grid (i, k), ∀k = 0, . . . , M }. (3.4) 
with u grid (•, k) < u grid (•, k + 1).

The control is thus gridded and the Hamiltonian is evaluated at each node. As the Hamiltonian minimum is not computed exactly but estimated using the grid U grid , under the hypothesis of a convex

Hamiltonian one should carefully track the actual value of the true optimal control policy Π with respect to the grid vertices.

As a result, the improved algorithm consists in reducing the grid U grid to the smallest required set and adapting it at each iteration. Thus, it is possible to define the numerical estimate of the optimal control Π grid and the control brackets u -, and u + as follows:

ν k = arg min ν k ∈U grid (i) H(ν k , λ 0 , w(i • s)), (3.5) 
Π grid (i) = ν k , (3.6) 
u

-(i) = ν k-1 , (3.7) 
u

+ (i) = ν k+1 . (3.8) 
As depicted in Fig. 3.1, the actual control input that minimises the Hamiltonian, denoted as the optimal policy Π, is always bracketed by the interval [v k-1 , v k+1 ] due to the Hamiltonian convexity. Then, the set U grid (i) can be refined using a smaller accuracy size ϵ N and then, at the next iteration the difference v k+1 -v k-1 will be reduced, and so the approximation of the optimal solution will be closer to its actual value. Notice that the final state of charge x(T ), which used the optimal policy Π is also bracketed by xu - and xu + , with : The induced bracket [x u -, xu + ] can be used to remove points within the grid U grid . Since points ν k < u -

xu -= x(0) + N -1 i=0 f (u -(i), w(i • s))s, xu + = x(0) + N -1 i=0 f (u + (i), w(i • s))s. (3.9) 
will not be considered the future Hamiltonian minimization, these can be removed, see Fig. 3.2.

Analogously, if the bracket is above the final state x T the points ν k > u + will not be considered the future Hamiltonian minimization, then these can be removed, Fig. In order to implement the bisection algorithm, it is necessary to determine if the final state x(T ) is greater or lower than x T (step 9 of Algorithm 1). Exploiting Theorem 2.2, which states the monotonic relation between x(T ), the optimal policy and the costate, during each iteration of the bisection algorithm three cases may occur:

xu -, xu + > x T , the optimal final state for this co-state exceed the target x(T ) > x T . Then the costate value must be reduced (according to Theorem 2.2). In the considered iteration, at each instant i, the optimal control u(i) is lower than u + (i) and it will remain true for the future iterations. Then, any value above u + (i) can be removed from U grid (i):

U grid (i) ←U grid (i) ∩ ν ∈ U grid (i) : ν ≤ u + (i) , ∀i = 0, 1, . . . , N. (3.10) 
xu -, xu + < x T , the optimal final state for this co-state subceed the target x(T ) < x T . Then the costate vale must be increased (according to Theorem 2.2). In the considered iteration, at each instant i, the optimal control u(i) is greater than u -(i) and it will remain true for the future iterations. Any value below u -(i) can be removed from U grid (i): 

U grid (i) ←U grid (i)∩ ν ∈ U grid (i) : ν ≥ u -(i) , ∀i = 0, 1, . .
U grid (i) ←U grid (i) ∪ 2u -(i)+u + (i) 3 , u -(i) + 2u + (i) 3 -{Π grid (i)}, ∀i = 0, 1, . . . , N. (3.12)
The intuitive idea is to add gridding points closer and closer to the optimal value. Also, by this method, at the beginning of the algorithm, U grid might contain a small number of points to be evaluated in the Hamiltonian. Algorithm 3.2 shows the detailed procedure. for i = 0 to N -1 do 5:

ν k (i) = arg min ν k ∈U grid (i) H(ν k , λ 0 , w(i • s)) 6: u -(i) = ν k-1 7: u + (i) = ν k+1 8:
end for

9:

Compute xu -and xu + according to (3.9).

10:

if (x T -xu -)(x T -xu + ) > 0 then 11: if xu -> x T then 12: λ = λ 0 13:
Remove values in U grid according to (3.10) for i = 0 to N do 20:

Refine U grid according to (3.12)

21:

end for 22:

end if 23: while |x T -xu -| > ∆ OR |x T -xu + | > ∆
In order to prove that the procedure described above will track the optimal solution, a proof of convergence is provided. First, let us introduce the following theorem and its proof: Theorem 3. [START_REF] Menne | Energy-efficiency evaluation of traction drives for electric vehicles[END_REF]. Let H j (u), with j = 1, 2, . . . , p, be a sequence of convex functions on a convex domain D, and assume that the sequence converges to a function H(u). Then H(u) is convex.

Proof. Let us assume that H(u) is non-convex, i.e., if we have a pair of points u 1 , u 2 , and a scalar α within the interval (0, 1) then for the point u = αu 1 + (1 -α)u 2 , we have

H(u) > αH(u 1 ) + (1 -α)H(u 2 ).
(3.13) Also, from the convexity assumption for every element in the sequence {H j (u)}, the following inequality is true

H j (u) ≤ αH j (u 1 ) + (1 -α)H j (u 2 ), ∀j. (3.14) 
Taking the limit, we have H(u) ≤ αH(u 1 ) + (1 -α)H(u 2 ), which contradicts (3.13).

Then, let us consider the sequence of Hamiltonian convex functions {H n (u)}, such that the value of the co-state λ 0 determines every element of the sequence. Thus, if λ 0 converges using the bisection algorithm then, from Theorem 3.1, the sequence of Hamiltonian functions converges to a convex function H(u).

Each time the grid is refined according to (3.12) a new pair of optimal control brackets u -and u + will be included within it for the next iteration. Then, the sequences {u - n } and {u + n } are defined, where the subscript n stands for the number of refinements in the gridded set. For a specific n in the sequence, two cases might occur:

1. u - n = u - n-1 and u + n = u - n-1 +2u + n-1 3 . 2. u - n = 2u - n-1 +u + n-1 3 and u + n = u + n-1 .
The convergence of the improved algorithm towards the optimal solution is then guaranteed by Theorem and defined by the following rules

u - n =      u - n-1 H 2u - n-1 +u + n-1 3 > H u - n-1 +2u + n-1 3 2u - n-1 +u + n-1 3 otherwise u + n =      u + n-1 H u - n-1 +2u + n-1 3 > H 2u - n-1 +u + n-1 3 u - n-1 +2u + n-1
3 otherwise for any n > 2 and any convex function H. Then the sequences {H(u - n )}, {H(u + n )} converge, moreover, they converge to the same limit.

Proof. Suppose that the inequality

H 2u - n-1 +u + n-1 3 < H u - n-1 +2u + n-1 3 
holds, then

H(u - n ) = H(u - n-1 ) and H(u + n ) = H u - n-1 + 2u + n-1 3 (3.15) 
also holds. Considering that

H 2u - n-1 + u + n-1 3 < H(u + n ) ⇐⇒ H(u + n ) < 2H(u + n ) -H 2u - n-1 + u + n-1 3 . (3.16) 
Since H is convex the following holds:

H u + n ≤ 2H u + n -H 2u - n-1 + u + n-1 3 ≤ 2 3 H u - n-1 + 4 3 H u + n-1 - 2 3 H u - n-1 + 1 3 H u + n-1 = H u + n-1 .
Thus,

H (u + n ) ≤ H u + n-1 . The proof is analogous for H 2u - n-1 +u + n-1 3 > H u - n-1 +2u + n-1 3 
. Since the sequences {H(u - n )} and {H(u + n )} are monotonically decreasing and bounded, then they converge to a minimum and, since H is a convex function, both sequences converge to the global minimum.

Examples

In this section, the classical Hamiltonian minimization through grid evaluation presented in Section 2. 3.2 is compared to Algorithm 3.2.

First, both algorithms are compared using a toy example to illustrate how the computational reduction is achieved by evaluating the Hamiltonian in a reduced grid. The second example presents an energy management problem in the series powertrain described in Section 2.2.2 without any state constraint.

Finally, the state constrained case for the second example is solved. In all the examples, the number of Hamiltonian evaluations is used as the criterion of improvement.

Example 3.1. Consider the following system and criteria ṁf (t) = 2.5u 2 (t) + 1.7u(t) + 0.3 (3.17)

ẋ(t) = 0.15u(t) + 0.1 (3.18) 
The Hamiltonian associated to the system above is The optimal solution for a system with fuel consumption and dynamics depicted in (3.17)-(3.18) is found using algorithm 2.3.2.1 and algorithm 3.2 to reach meet the boundary condition x 0 = x T = 0.5 with a tolerance of ∆ = 0.1. In order to compare both algorithms performance, the control accuracy ϵ N obtained from algorithm 3.2, is used as the accuracy of algorithm 2.3.2.1.

H(u(t), λ(t)) = 2.
Due to the simplicity of this example a few insights can be obtained. The optimal control is obtained from (3.19) and the first order minimization conditions

∂H ∂u (u(t), λ(t)) = 5u(t) + 1.7 + 0.15λ = 0 ⇒ u(t) = -1 5 (0.15λ(t) + 1.7) (3.20)
The optimal policy u(t) is thereby a constant. The improved algorithm is used to find the optimal solution for the control obtaining u(t) = 0.75 for λ(t) = 0. algorithm are applied to series hybrid vessel with a genset as an APU as the one presented in 2.2.1, with its list of parameter presented in table 2.1, the boundary condition is x 0 = x T = 0.5 and the mission load request w(t) presented in Fig. 3.5.

To make a fair comparison of both algorithms, the solutions must be computed with the same accuracy ϵ N . So, first, for a given final state of charge accuracy ∆, the algorithm 3.2 is executed, and the final optimal control accuracy ϵ N is obtained. Then, the classic algorithm 2. Let us define the improvement factor µ(ϵ N ) as the ratio of Hamiltonian evaluations between the classical and improved algorithm. The effectiveness of the improved algorithm is illustrated in Fig. 3.7, showing that even for a very sparse control grid, generated using ϵ N = 0.092 kW , the improvement factor is greater than 143. For a very refined grid the improvement factor can reach values greater than four orders of magnitude. It is important to notice that as long as ϵ N tends to 0 the ratio tends to grow exponentially, making it clear that the more accurate the solution is required, the more efficient the improved algorithm is. Example 3.3. In Fig. 3.6, it is obvious that the state of charge reaches inadmissible values because the state constraints are not considered. To avoid this, we can solve the state constrained problem using the recursive algorithm, Algorithm 2.3.2.2. However, in order to solve each sub problem, we can now user either the classical algorithm or the improved one. Let us recall that when the classical algorithm, we use the control grid is generated using a step ϵ N between two consecutive control value. Therefore this parameter controls the control grid size. For the improved algorithm, the most important parameter is the final state of charge accuracy ∆.

As an illustration, we consider again the example 3.2 but we now introduce the state constraint with

x min = 0% and x max = 100%. The results are depicted in Fig. 3.8.

Right part is obtained using the classical algorithm to solve each subproblems whereas the right part is obtained using the improved algorithm. For the classical algorithm, we used ϵ N = 0.008 kW and for the improved algorithm we used ∆ = 1%. Overall, there is no major difference in the obtained result. The fuel consumption is 21.753 kg for the classical algorithm and 21.75 kg for the improved. The number of Hamiltonian evaluations is 9.36672 × 10 8 for the classical algorithm and 444572 for the improved algorithm.

However, these numbers cannot be directly compared as these results do not have the same state trajectory accuracy. In order to compare both algorithms, let us define the final state of charge bracket ∆ i = [x u -, xu + ]; for the i-th subproblem, where xu -, and xu + are computed as:

xu -= x(0) + N -1 i=0 f (u -(i), w(i • s))s, xu + = x(0) + N -1 i=0 f (u + (i), w(i • s))s k = arg min ν k ∈U grid (i) H(ν k , λ 0 , w(i • s)), u -(i) = ν k-1 , u + (i) = ν k+1 .
The main difficulty is that, for every subproblem i, the state of charge bracket ∆ i depends not only on the control grid size but also on the subproblem optimization horizon length. As a result, the actual state of charge bracket ∆ i is different for each subproblem and preventing any comparison of both algorithm performances.

In order to perform a pessimistic evaluation of the improved algorithm benefits, the following procedure is considered:

1. The state constrained problem is solved using the algorithm 2.3.2.2 and the classical algorithm over each subproblems. For each subproblem, the same control grid is considered. It is generated by considering a fixed ϵ N .

2.

Once the solution is obtained, for each subproblem, we compute ∆ x/u = min(∆(i)) which is the best accuracy achieved over one single subproblem by the classical algorithm.

3.

The state constrained problem is then solved using the algorithm 3.2 and the improved algorithm.

Over each subproblems, we use the final accuracy ∆ = ∆ x/u .

So the improved algorithm solve every subproblem with a state of charge bracket always lower than the smallest one obtained with the classical algorithm. In other words, the classical algorithm solution always have a state of charge bracket larger than the ones achieved by the improved, leading to a pessimistic estimation of the improved algorithm performances.

This procedure ensures that the improved algorithm is always more accurate than the classical one. By changing the value of ϵ N used to generate the control grid in step 1, different ∆ x/u can be achieved.

Results are depicted in Fig. 3.9. The improved algorithm is at least 2231 times more efficient that the classical one. 

Conclusions

An improvement of the classical implementation of an algorithm used for solving hybrid powertrain optimal energy management for system with 1 input and 1 state has been presented. It has been shown that the number of computations of the Hamiltonian is significantly reduced using the proposed algorithm, even in the cases where the required accuracy is low. The methodological improvement has been demonstrated over a simplified series hybrid case and a recorded mission profile. Future work will be devoted to the extension to more complex vessel architectures encountered in maritime applications.

Chapter 4 quasi-LPV-ECMS: Energy management of a hybrid vessel

This chapter presents a controller design that integrates an Equivalent Consumption Minimization Strategy framework and a quasi-LPV framework. The proposed scheme allows exploiting the characteristics of both frameworks. Also, a proof of the input-state-stability (ISS) of the closed-loop is presented, expressed as linear-matrix-inequality conditions. Simulation results are provided to illustrate the applicability of this approach to hybrid powertrains, such as those presented in section 2.2.

Parts of this chapter are published in [START_REF] Armenta | Ecms for energy management of hybrid vessels via quasi-lpv control[END_REF].

Introduction

Recalling Chapter 2, if operational and environmental details of a mission are known a priori, the energy management problem can be formulated as an optimal control problem. Pontryagin's Minimum Principle (PMP) allows formulating optimality conditions in continuous-time, which boils down to consideration of a Boundary Value Problem (BVP) that can be solved using an appropriate solver.

Within PMP, the energy management optimal control problem is solved by computing the control as the minimization of the Hamiltonian at every instant. This Hamiltonian is defined as the fuel consumption and the state dynamics multiplied by a co-state and this co-state dynamics is given by an optimality condition. Within the real-time ECMS, the Hamiltonian is denoted as total equivalent consumption.

The control is also obtained by minimizing the Hamiltonian at every instant but the co-state is not following the optimal dynamics given by the PMP. The reasons for that are the unknown initial costate and possible disturbance and model mismatch. A closed loop feedback is therefore necessary. As a result, ECMS implement a closed-loop control on the energy storage state (typically the battery state of charge) using the co-state as the manipulated variable.

The contribution of this chapter is twofold:

How to design the controller that minimizes the fuel consumption.

Provide a closed-loop stability proof of the system.

A controller that will benefit from the ECMS framework and the underlying PMP optimal control theory. It is designed using the quasi-Linear Parameters Varying (LPV) approach and comprises a nonlinear state feedback control law coupled with a state observer. The Input-to-State Stability (ISS)

of the closed loop is demonstrated [START_REF] Eduardo | On characterizations of the input-to-state stability property[END_REF].

First, an introduction to nonlinear TS modelling along with the study of their stability and stabilization using Lyapunov theory is given in 4. [START_REF] Benajes | An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining rcci and dual-fuel diesel-gasoline[END_REF]. In section 4.3, this TS framework is used to propose a new ECMS denoted as quasi-LPV EMCS. Then, simulation results are presented in section 4. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. Finally, conclusion are presented in section 4.5

Takagi-Sugeno modelling and controller synthesis

In this section we recall the standard methodology used to synthesize a controller that stabilizes a nonlinear system through Takagi-Sugeno (TS) models and the direct Lyapunov method; this methodology is well established in literature as given, for instance, in [START_REF] Hua | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF]. The aim is to help to understand the methodology that will be further used to design the proposed energy management strategy.

Takagi-Sugeno models, also known as quasi-LPV models, are systems of first order differential equations that are expressed as convex sums of linear models multiplied by nonlinear interpolation functions [START_REF] Yacine | Finite-time impulsive observers for nonlinear systems represented by takagi-sugeno models: Application to a chaotic system[END_REF].

TS models can exactly represent nonlinear systems in a compact set of their state space, which combined with the direct Lyapunov method, proves to be an effective and systematic methodology to synthesise controllers [START_REF] Abdelkrim | Relaxed stabilization conditions for takagi-sugeno systems[END_REF] [93] [START_REF] Ariño | Guaranteed cost control for constrained Takagi-Sugeno fuzzy systems[END_REF]. The basic methodology for controller synthesis is presented below.

Consider the following affine in control nonlinear system:

ẋ(t) = f (x(t)) + g (x(t)) u(t), y(t) = p (x(t)) (4.1)
where x(t) ∈ R n is the state vector, u(t) ∈ R m is the control input, y(t) ∈ R o is the system output, and f (x(t)), g(x(t)), and p(x(t)) are vector functions of adequate dimensions. It is possible to equivalently represent system (4.1) in a matrix multiplication form as long as the matrix functions are well defined, as follows:

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), y(t) = C(x(t)) (4.2) 
where A(•), B(•), and C(•) are matrix functions of proper dimensions.

Using the sector nonlinearity approach, a TS model can be obtained, which is an exact rewriting of (4.2).

The sector nonlinearity approach consists of rewriting every bounded nonlinear function z(x) ∈ [z, z] as a convex sum of its bounds as follows:

z(x) = w 1 (x)z + w 2 (x)z with w 1 (x) = z -z(x) z -z and w 2 (x) = z(x) -z z -z (4.3) 
where w 1 (x) and w 2 (x) are known as membership functions due to their origins in fuzzy control. Let us highlight the fact that the membership functions w 1 (x) and w 2 (x) are convex functions of the state even if the non-linearity z(x) within them is not.

An important characteristic of the membership functions is that within the interval z(x) ∈ [z, z], they hold the convex sum property, this is: The following equation is true

w 1 (x) + w 2 (x) = 1 and 0 ≤ w 1 (x), w 2 (x) ≤ 1 (4.
z(x) = 8 -x 3 8 -(-8) (-8) + x 3 -8 8 -(-8) (8) = x 3 . (4.5) according to (4.3) z = -2, z = 2, w 1 (x) = 8 -x 3 8 -(-8)
, and

w 2 (x) = x 3 -8 8 -(-8)
.

This procedure can be generalized for any of the p nonlinear terms in the matrices of the system (4.2). First, each non-constant term are grouped in a vector z(x), which is called the premise vector (named after its origin in fuzzy systems). It is important to notice that to be able to employ the sector nonlinearity approach to perform stability analysis it is assumed that any of the z i (x), i ∈ {1, , 2, . . . , p}, is bounded in a compact set of the state space that contains the origin.

Convex sums as the presented above have the following properties:

Sums of convex sums: The sum of convex sums of functions can be cast as a single nested convex sum as follows:

2 i 1 =1 w 1 i 1 A 1 i 1 + 2 i 2 =1 w 2 i 2 A 2 i 2 +• • •+ 2 ip=1 w p ip A p ip = 2 i 1 =1 2 i 2 =1 • • • 2 ip=1 w 1 i 1 w 2 i 2 • • • w p ip A 1 i 1 +A 2 i 2 +• • •+A p ip , (4.6) 
Product of convex sums: The product of convex sums of functions can be cast as a single nested convex sum as follows:

2 i 1 =1 w 1 i 1 A 1 i 1 2 i 2 =1 w 2 i 2 A 2 i 2 • • •   2 ip=1 w p ip A p ip   = 2 i 1 =1 2 i 2 =1 • • • 2 ip=1 w 1 i 1 w 2 i 2 • • • w p ip A 1 i 1 A 2 i 2 • • • A p ip . (4.7) 
Considering that the membership functions of every nonlinear function will be multiplied and they will be inside multiple nested sums the notation can be cumbersome for a system with large number of nonlinear functions; thus, the following functions are defined in order to simplify the notation

h i = h 1+i 1 +2×i 2 +•••+2 p-1 ×ip = p j=1 w j i j (z j ) (4.8)
where h i presents the convex sum property (4.4). Then, the following TS model, based on the prior definitions, provides a exact convex rewriting of (4.2) in the compact

C = {x ∈ R n : z i (x) ∈ [z i , z i ], i =
1, 2, . . . , p}:

ẋ(t) = r i=1 h i (z(x(t))) (A i x(t) + B i u(t)) = A h x(t) + B h u(t) (4.

9)

where

A h = r i=1 h i (z(x(t)))A i and B h = r i=1 h i (z(x(t)))B i .
Example 4.2. Consider the following nonlinear system. 

  ẋ1 (t) ẋ2 (t)   =    3 sin(x 2 (t)) x 2 (t) -1 -1.5    +    g(t) sin(x 2 (t)) x 2 (t)    u(t) (4.
w 2 0 (g(t)) = g -g(t) g -g , w 2 1 (g(t)) = g(t) -g g -g .
From equation (4.8), the following membership functions are obtained:

h 1 (z(t)) = w 2 0 (g(t)) • w 1 0 (x 2 (t)), h 2 (z(t)) = w 2 0 (g(t)) • w 1 1 (x 2 (t)), h 3 (z(t)) = w 2 1 (g(t)) • w 1 0 (x 2 (t)), h 4 (z(t)) = w 2 1 (g(t)) • w 1 1 (x 2 (t)).
Then the system (4.10), can exactly be rewritten as

ẋ(t) = 4 i=1 h i (z(t)) (A i x(t) + B i u(t)) (4.11) with A 1 = A 3 =   3 1 -1 -1.5   , A 2 = A 4 =   3 -0.217 -1 -1.5   , B 1 =   g 1   , B 2 =   g -0.217   , B 3 =   g 1   , B 4 =   g -0.217   .

Lyapunov stability

Consider the following dynamical autonomous system

ẋ (t) = f (x(t)) (4.12)
where x(t) ∈ R n is the state vector and f : R n → R n is a locally Lipschitz mapping over a domain

C. An equilibrium point x is the state value that causes f (x) = 0; which means, that any trajectory that reaches an equilibrium point will remain in it. Without loss of generality, the origin x = 0 will be considered as the equilibrium point (since equilibrium points can be shifted by a change of coordinates).

Equilibrium points can be classified according to stability criteria as follows:

The equilibrium point x = 0 is stable if for every neighbourhood N = {x ∈ R n : |x| < ϵ, ϵ > 0} there exists a scalar δ > 0 such that |x (0

)| < δ ⇒ |x (t)| < ϵ, ∀t ≥ 0.
The equilibrium point x = 0 is unstable if it is not stable.

The equilibrium point x = 0 is asymptotically stable if it is stable and there exists δ > 0 such

that |x (0)| < δ ⇒ lim t→∞ |x (t)| = 0.
The criteria above are definitions of different kind of equilibrium points; nevertheless, it might not be convenient to use them directly to study stability of an equilibrium point; alternatively there exists methodologies that simplify the task, such as the Lyapunov direct method.

Lyapunov direct method

Studying the stability of an equilibrium point of a dynamical system ẋ (t) = f (x(t)) can be performed using the direct Lyapunov method, proposed by Aleksandr Lyapunov [START_REF] Mikhailovich | The general problem of the stability of motion[END_REF]. It consists of finding a positive definite function V (x(t)), regarded as a Lyapunov function candidate, such that its time derivative is negative. The intuition of the method is to consider V (x(t)) as a function related to the energy of the system, thus if V (x(t)) decreases along time the energy will eventually reach zero; since x = 0 is the only point within C that satisfies V (x) = 0 it implies that the considered equilibrium point is asymptotically stable. If the proposed function V (x(t)) has a negative definite time derivative V (x(t)), the Lyapunov function candidate becomes a Lyapunov function. The convenience of employing this method relies on the fact that it is not necessary to find the solution of (4.12) to determine if the trajectories go to the equilibrium point. The Lyapunov's stability theorem is stated as follows:

Theorem 4.1. Let x = 0 be an equilibrium point of the system ẋ(t) = f (x(t)) in a domain C ⊂ R n containing x = 0. If there exists a continuously differentiable scalar function V defined in C such that the following conditions hold:

V (0) = 0 (4.13) V (x) > 0 ∀x ∈ C, x ̸ = 0 (4.14) V (x(t)) = ∂V ∂x f (x(t)) < 0 ∀x ∈ C, x ̸ = 0 (4.15)
then the equilibrium point x = 0 is asymptotically stable.

A function that verifies conditions (4.13)-(4.15) is called a Lyapunov function and allows to prove the asymptotic stability of an equilibrium point of a dynamic system.

Employing the theorem above to determine the stability of a system is known as the direct Lyapunov method.

TS-models and synthesis of nonlinear controllers

In general, this methodology combines the exact TS representation of the closed loop system and the direct Lyapunov method to obtain a set of Linear Matrix Inequalities (see Appendix A) that can be further solver employing convex optimization solvers [START_REF] Lofberg | YALMIP : a toolbox for modeling and optimization in MATLAB[END_REF]; in order to show this, let us consider the following TS model of a nonlinear system:

ẋ(t) = r i=1 h i (z(t)) (A i x(t) + B i u(t)) (4.16)
Also, consider the quadratic Lyapunov function:

V (x(t)) = x T (t)P x(t), with P = P T > 0 (4.17)

It is a standard procedure to consider a nonlinear control law, denoted as Parallel Distributed Compensation (PDC), of the following form:

u(t) = r j=1 h j (z(t)) F j x(t) (4.18)
The PDC control gain F h is the convex sum of the state feedback gains F j using the TS model membership functions h i (z(t)), i ∈ {1, 2, . . 

h i (z(t)) A i x(t) + B i r j=1 h j F j x(t) = r i=1 r j=1 h i (z(t)) h j (z(t)) (A i + B i F j ) x(t) (4.19)
where the last equality is obtained from making use of the property r i=1 h i (z(t)) = 1. Calculating the time derivative of (4.17) for the dynamics of the system (4. [START_REF] Johannesson | Approximate dynamic programming applied to parallel hybrid powertrains[END_REF]) we obtain:

V (t) = x T (t)P ẋ(t) + ẋ(t)P x(t) = x T (t)P r i=1 r j=1 h i (z(t)) h j (z(t)) (A i + B i F j ) x(t) + r i=1 r j=1 h i (z(t)) h j (z(t)) (A i + B i F j ) x(t) T P x(t) = r i=1 r j=1 h i (z(t)) h j (z(t)) x T (t)P (A i + B i F j ) x(t) + r i=1 r j=1 h i (z(t)) h j (z(t)) x T (t) A T i + F T j B T i P x(t) = r i=1 r j=1 h i (z(t)) h j (z(t)) x T (t) P A i + P B i F j + A T i P + F T j B T i P x(t) (4.20) 
satisfying:

|x(t)| ≤ β(|x(t 0 )|, t -t 0 ) + α( sup t 0 ≤τ ≤t |u(τ )|) (4.25)
Input-to-state stability of a system like (4.24) has the following implications [START_REF] Khalil | Nonlinear Control[END_REF]:

For any bounded input w(t), the state trajectories x(t) are bounded.

The origin of the unforced system ẋ(t) = f (x(t), 0) is globally asymptotically stable.

If w(t) converges to zero then the state x(t) converges to zero.

A function V (t) is called ISS-Lyapunov function for a system (4.24) if and only if there exist K ∞functions, ϕ i , i ∈ {1, 2, 3, 4}, such that

ϕ 1 (|ξ|) ≤ V (ξ) ≤ ϕ 2 (|ξ|) ∀ξ ∈ R n (4.26) V (ξ) = ∇V (ξ) f (ξ, w) ≤ -ϕ 3 (|ξ|) + ϕ 4 (|w|) , ξ ∈ R n , u ∈ R m (4.27)
Theorem 4.2. The system ẋ (t) = f (x (t) , w (t)) is ISS if it admits an ISS-Lyapunov function.

Proof. See Theorem 1 in [START_REF] Eduardo | On characterizations of the input-to-state stability property[END_REF].

Hence, the problem of determining the ISS of a nonlinear system under disturbances can be tackled by finding an ISS-Lyapunov which can be found by solving a set of LMIs, according to the methodology detailed in subsection 4.2.3.

Example 4.3. Consider the system

ẋ(t) = f (x(t), w(t)) = -x(t) + w(t) (4.28)
Let us use the following Lyapunov function candidate V (x(t)) = 1 2

x 2 (t). Computing V (t) we obtain

V (t) = x(t) ẋ = x(t) (-x(t) + w(t)) = -x 2 (t) + xw(t) (4.29) considering a constant θ such that 0 < θ < 1 V (t) = -x 2 (t) + x(t)w(t) = -(1 -θ)x 2 (t) -θx 2 (t) + x(t)w(t) (4.30)
To show that (4.30) can be written in the form (4.27) let us consider the following inequalities

-θ x(t) - w(t) θ < 0 ⇐⇒ -θx 2 (t) + 2x(t)w(t) < w 2 (t) θ 2 (4.31)
Thus combining the right-side inequality in (4.31) with (4.30) we obtain

V (t) = -(1 -θ)x 2 (t) -θx 2 (t) + x(t)w(t) ≤ -(1 -θ)x 2 (t) + w 2 (t) θ 2 (4.32) Fixing ϕ 1 (x(t)) = 0.25x 2 ,ϕ 2 (x(t)) = x 2 , ϕ 3 (x(t)) = (1 -θ)x 2 (t)
, and ϕ 4 (w(t)) = w 2 (t)/θ 2 it is proved that the system is ISS.

Quasi-LPV ECMS

During real-time operation, the future values of a mission profile and the mission length are unknown.

The considered energy management consists of minimizing the fuel consumption while regulating the state-of-charge (SOC) nearby a reference setpoint. This reference setpoint can be either constant or may follow a discharge profile when the battery is large enough to ensure the vessel operation in pure electric mode for a long enough time period (plug-in operations). It should be noted that the considered problem involves not only the SOC tracking but also the energy management (i.e. ensuring energyefficient powertrain operations). In order to implement the controller, two aspects are tackled:

Using a quasi-LPV controller to compute the dynamics of the costate dynamics λ(t) = ν(x(t)) as a function of the state of charge, instead of the PMP condition λ(t) = ∂H ∂x (u(t), λ(t), w(t)).

Using the Hamiltonian minimization, based on optimal policy Π(λ(t), w(t)) within the control scheme to ensure an efficient energy management.

Case of study

Let us consider the simplified series hybrid vessel shown in Fig. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF].1, which uses a hydrogen fuel cell along with a battery as the sources of propulsion to the electric motor. Let us recall that y(t) is the power provided to/from the battery, u(t) is the fuel cell output power, and p(t) is the power consumed by the fuel cell auxiliaries. The power to be delivered to the load is denoted by w(t), and it is subject to the following power split equation:

w(t) = y(t) + u(t) -p(t) (4.33)
Both the battery power y(t) and the fuel cell output power u(t) are limited:

y(t) ∈ y min y max (4.34) u(t) ∈ u min u max (4.35)
Over an optimization horizon [0, T ], the hydrogen consumption to be minimized is assumed to be a quadratic function of the fuel cell produced power [3]:

m f (T ) = T 0 L(u(t))dt (4.36) L(u(t)) = a + bu(t) + cu 2 (t) (4.37)
with a, b, and c as the coefficients of the quadratic approximation. The fuel cell auxiliaries electric consumption is estimated using the following linear relation [3]: 

p(t) = γ 0 + γ 1 u(t) (4.
u(w(t)) = min u max , max u min , w(t) + γ 0 -y min (1 -γ 1 ) (4.39) u(w(t)) = max u min , max u max , w(t) + γ 0 -y max (1 -γ 1 ) . ( 4 

.40)

The parameters of the considered powertrain are shown in Table 4.1. The mission profile consists of the DC power to be provided to the traction motor as a function of time.

It may be computed from a speed profile and a vessel model as described in example 2.1. Alternatively, in this case, we will use data recorded from an existing vessel. The considered mission profile is given in Fig. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF].2. For the considered optimal control problem, the mission is assumed to be of fixed length. 

Control structure

The controller objective is to minimize the fuel consumption of the powertrain, regulate the state of charge of the battery, and make sure that the power profile is achieved. The control structure is shown in Fig. 4.3. As shown in Fig. 4.3, the optimal control policy is computed by the following Hamiltonian function minimization:

H(u(t), λ(t), w(t)) = ṁf (t) + λ T (t)f (u(t), w(t)) (4.41)
with the optimal policy expressed as follows:

u(t) = Π (λ(t), w(t)) = arg min ν∈U (w(t)) H(ν, λ(t), w(t)) (4.42)
where U(w(t)) is the set of admissible inputs. In order to design a controller let us first consider the battery's dynamic of any powertrain presented in section 2.2, which is expressed as ẋ(t) = f (u(t), w(t)),

under the optimal control policy ( 6.22); then, the closed-loop state dynamics lies:

ẋ(t) = g(λ(t), w(t)) = f (Π(λ(t), w(t)), w(t)) (4.43) 
It is important to note that due to the control saturation imposed by the set of admissible inputs U(w(t)) not all co-state values are of interest for the SOC controller, since for certain limits increasing/decreasing the value of λ(t) would produce control saturation ; therefore, the value of g(λ(t), •) wouldn't change.

Let us restrict the co-state to λ min (w(t)) < λ(t) < λ max (w(t)) such that ∂g/∂λ (λ(t), w(t)) < 0.

The limits λ min and λ max are computed numerically replacing the condition ∂g/∂λ (λ(t), w(t)) < 0 by ∂g/∂λ (λ(t), w(t)) < ε, with ε as a small negative constant. As an example, λ min (w(t)) and λ max (w(t))

have been computed for the case of study; they are depicted with a green and red line in Fig. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF].

Let us consider the following assumptions: 1) The mission profile w(t) is differentiable and its derivative ẇ(t) is bounded.

2) The SOC reference x ref (t) is a piecewise linear function of time, so ẍref (t) = 0 holds almost everywhere. 3) L(u(t)) is a convex function in u(t) and the battery dynamics ẋ(t

) = f (u(t), w(t))
is a strictly concave and strictly monotonically decreasing function in u(t), for λ min (w(t)) < λ(t) < λ max (w(t)).

Let e(t) = x(t) -x ref (t) be the tracking error. The dynamic to be controlled is: To design a controller for (4.44), first, we consider its time derivative:

ė (t) = g (λ (t) , w (t)) -ẋref (t) (4.44) 
ë(t) = ∂g ∂λ (λ(t), w(t)) • λ(t) + ∂g ∂x (λ(t), w(t)) • ẋ(t) + ∂g ∂w (λ(t), w(t)) • ẇ(t) -ẍref (t) (4.45) 
Since ∂g/∂x = 0 and ẍref (t) = 0, (4.45) can be simplified:

ë(t) = ∂g ∂λ (λ(t), w(t)) • λ(t) + ∂g ∂w (λ(t), w(t)) • ẇ(t) (4.46) 
Let us introduce v(t) as a new control with:

λ(t) = sat   t 0 v (τ ) dτ, λ min (w(t)) , λ max (w(t))   (4.47) 
where sat (a, b, c) = min (b, max (a, c)). In practice, (4.47) should be implemented using an anti-windup scheme. The following state space representation is considered:

  ë(t) ė(t)   =   0 0 1 0     ė(t) e(t)   +   ∂g ∂λ (λ(t), w(t)) 0   • v(t) +   ∂g ∂w (λ(t), w(t)) 0   • ẇ(t) (4.48) 
Notice that the derivative of the mission profile ẇ(t) is in general not available; nevertheless, it will be assumed that it is a norm bounded disturbance.

Controller design

Let us introduce a more compact notation for the system (4.48):

   Ẋ(t) = AX(t) + B (λ(t), w(t)) • v(t) + D (λ(t), w(t)) • d(t) e(t) = CX(t) (4.49) 
with

X(t) =   e(t) ė(t)   , A =   0 0 1 0   , B =   ∂g ∂λ (λ(t), w(t)) 0   , D   ∂g ∂w (λ(t), w(t)) 0   , C = 0 1 , d(t) = ẇ(t).
The quasi-LPV provides a methodology to stabilize a wide range of nonlinear systems in a systematic way. According to theorem 2.

) is upper bounded. In order to formulate the system dynamic as a quasi-LPV model, let us consider a non-linear sector

z(t) ∈ [z 1 , z 2 ]
with z 1 < z 2 ≤ ε < 0 and x(t) as the measured and controlled output [START_REF] Hua | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF]:

     Ẋ(t) = AX(t) + 2 i=1 h i (z(t)) (z) B i v (t) + Dd(t) = AX(t) + B h v (t) + Dd(t) e(t) = CX(t) (4.50) 
with

B i =   z i 0   , h 1 (z(t)) = z 2 -z(t) z 2 -z 1 , h 2 (z(t)) = 1 -h 1 (z(t)
) (let us recall that the convexity of the membership functions with respect to the state is independent from the convexity of the Hamiltonian with respect to the control). In order to stabilize the system (4.50) let us consider a PDC control law [START_REF] Hua | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF]. It has the following form:

v(t) = 2 i=1 h i (z(t)) F i X(t) (4.51) 
with F i as the gains to be determined and X(t) an estimate of the state X(t) computed using a linear observer of the form:

   Ẋ(t) = A X(t) + B (λ(t), w(t)) v + L (x(t) -x(t)) ê(t) = C X(t) (4.52) 
with L as the observer gain. Let e o (t) = X(t) -X(t) be the observer error whose dynamics is

ėo (t) = (A -LC) e o (t) + D (λ(t), w(t)) d(t). (4.53) 
Considering (4.50) and (4.53) , we obtain

Ẋ(t) = 2 i=1 2 j=1 h i (z(t)) h j (z(t)) G ij X(t) + Dd(t) = G h X(t) + Dd(t) (4.54) 
where

X(t) =   X(t) e o (t)   , G ij =   A + B i F j -B i F j 0 A -LC   , and D =   D D   .
In the particular case d (t) = 0, computing the gain F j and L for the closed loop (4.54) stabilization using Linear Matrix Inequalities (LMI) is straightforward using classical matrix manipulations [START_REF] Hua | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF], [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. Then, our goal is to prove the ISS stability of the system (4.53) in the presence of a disturbance d(t).

The following matrix property will be useful. and input constraint |v| ≤ µ, for a scalar µ > 0 and initial condition X 0 , if there exist matrices P 1 > 0, P 2 > 0, L, M i , i ∈ {1, 2, . . . , r} of suitable size, such that

S 11 < 0, (4.55) 
S 11 -S 12 S -1 22 S T 12 < 0, (4.56) 
  1 X T 0 X 0 P -1 1   > 0,   P -1 1 M T i M i Iµ 2   > 0, (4.57) 
where

S 11 = AP 1 -1 + B i M j + ( * ) + αP -1 1 , S 12 = -B i M j P 1 -1 , S 22 = β P 2 -1 (A -LC) + ( * ) + αP -1 2 ,
with controller gains F i = M i P 1 and observer gain L.

Proof. Considering d (t) = 0, let us prove that the origin X = 0 of the system is asymptotically stable with a decay rate α. Taking a quadratic Lyapunov function as:

V X(t) = X(t) T P X(t) = XT (t)   P 1 0 0 βP 2   X(t). (4.58) 
Let σ min P and σ max P be the smallest and largest eigenvalue of P . The proof of the stability conditions (4.55)-(4.56) is trivial and is given in [START_REF] Yoneyama | Output stabilization of takagi-sugeno fuzzy systems[END_REF]. Since the system is asymptotically stable with a decay rate α, we have:

XT (t) G T h P + P G h X(t) ≤ -α XT (t)P X(t) ≤ -ασ min P X(t) 2 (4.59) 
Now, let us consider d (t) ̸ = 0. If there exist K-functions ϕ i , i ∈ {1, 2, 3, 4} such that

ϕ 1 X(t) ≤ V X(t) ≤ ϕ 2 X(t) ∀ X(t) ∈ R n (4.60) V X(t) , |d(t)| ≤ -ϕ 3 X(t) + ϕ 4 (|d(t)|) (4.61)
then the system is ISS [START_REF] Eduardo | On characterizations of the input-to-state stability property[END_REF]. The first condition (4.60) is fulfilled by taking

ϕ 1 X(t) = σ min P X(t) 2 , ϕ 2 X(t) = σ max P X(t) 2 since σ min P ∥x(t)∥ 2 ≤ x T (t)P x(t) ≤ σ max P ∥x(t)∥ 2
for any quadratic Lyapunov function. To prove the second condition (4.61), let us consider the derivative of the Lyapunov function:

V (x(t)) = XT (t) G T h P + P G h X(t) + d T (t) DT P X(t) + X(t) T P DT d(t) (4.62) Since d T (t) DT P X(t) is a scalar, it is true that d T (t) DT P X(t) = (d T (t) DT P X(t)) T = X(t) T P DT d(t) V (x(t)) = XT (t) G T h P + P G h X(t) + 2d T (t) DT P X(t) (4.63) 
employing the Cauchy-Schwarz inequality on d T (t) DT P X(t) we have d T (t) DT P X(t) ≤

P D |d(t)| X(t) , thus V (x(t)) ≤ XT (t) G T h P + P G h X(t) + 2 P D |d(t)| X(t) (4.64) 
Substituting (4.59) in (4.64) we obtain

V (x(t)) ≤ -ασ min P X(t) 2 + 2 P D X(t) |d(t)| = -ασ min P X(t) 2 + 2δ X(t) |d(t)| = -ασ min P θ X(t) 2 + 2δ X(t) |d(t)| -ασ min P (1 -θ) X(t) 2 (4.65) 
where 0 < θ < 1, and δ = P D = √ 2 ∂g ∂w max σ max P . Since P > 0 it means that σ min P > 0; then the following inequality holds:

-ασ min P θ X(t) - δ αλ min P θ |d(t)| 2 < 0 (4.66)
expanding the expression above we obtain

2δ |d(t)| X(t) < ασ min P θ X(t) 2 + δ 2 ασ min P θ |d(t)| 2 (4.67) 
Finally, substituting (4.67) into (4.65) we obtain

V ( X(t)) < -ασ min P (1 -θ) X(t) 2 + δ 2 ασ min P θ |d(t)| 2 (4.68) taking ϕ 3 X(t) = -ασ min P (1 -θ) X(t) 2 and ϕ 4 (|d(t)|) = δ 2
ασ min P θ |d(t)| 2 , the second condition is fulfilled.

From the first inequality (4.55), matrices M i , i ∈ {1, 2} , can be obtained. In the second inequality, by fixing negative poles for the linear observer, β can be chosen large enough such that (4.56) holds.

The proposition above implies that the LMI conditions allow designing the observer and the controller separately and moreover the origin X = 0 of the closed-loop system (4.54) is ISS. Finally, the control design procedure is summarised in the following steps:

Compute the function g and its limits λ min (w(t)) and λ max (w(t)) . 

Simulation Results

In this section, a simulation of the hybrid powertrain used in the case study is carried out using the quasi-LPV ECMS to obtain the control signal. The model and the controller are simulated using Simulink ODE45 Runge Kutta solver.

From the numerical computation of the nonlinearity z(t) = ∂g ∂λ (λ(t), w(t)), the bounds The control law tuning consists in finding a compromise between the tracking error and the fuel consumption. The tracking error is typically related to the norm of control gains. Let us define the average control gain norm ν F :

ν F = 1 2 • 2 i=0 ∥F i ∥ (4.69) 
The quality of the SOC regulation is assessed through the RMS value of the SOC deviation J δx

J δx = 1 T T 0 (x (t) -x ref (t)) 2 dt (4.70) 
From the PMP optimality conditions λ(t) = ∂H/∂x = 0, we can see that λ(t) should be kept as close to 0 as possible to achieve optimality. As a result, it is expected that small µ values will lead to better fuel economy. Fig. 4.5 depicts the simulation results obtained using µ ∈ {15, 57, 300}.

For every µ value, different metrics values are provided in Table 4. [START_REF] Benajes | An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining rcci and dual-fuel diesel-gasoline[END_REF]. Larger (resp. lower) µ values lead to larger (resp. lower) control gains F 1,2 and larger (resp. smaller) amplitude of the control signal λ(t) in response to the exogenous signal w(t). The hydrogen consumption m f is greater when the state of charge tracking error is lower. It should also be noticed that these fuel consumption values cannot be compared directly as the final state of charge differs in every simulation. In order to allow the comparison of the fuel consumption obtained with different µ values, the reference signal is adjusted such that ∥x(T ) -0.2∥ < 0.1%. 20 values linearly spaced between 10 and 350 are now considered for the µ parameter. In order to assess the effectiveness of the quasi-LPV approach, it is compared against the adaptive-ECMS strategy presented in Section 2.2, where the costate is computed according to the following discrete-time model (see Appendix A.3):

λ(k + 1) = 0.5 (λ(k) + λ(k -1)) + c p (x(k) -x ref (k)) (4.71) 
where λ(k + 1), λ(k) and λ(k -1) indicate the next, current and past iteration value of the costate, respectively; and c p is the proportional controller gain. Adapting the results from [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF] to this case of study, the costate update period is T s = 100 s, as a result c p is the only remaining parameter to be tuned.

The adaptive approach is simulated for different values of the proportional gain c p . Simulation results are depicted in Fig. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF].7 and different metrics are also provided in Table 4. 3. As expected, a small value of c p does not allows a good SOC reference tracking (e.g. for c p = 20, J δx = 31.28%) and lead to small fuel consumption (e.g. m f = 5.75kg) due to a full battery discharge (x T = -45.61 < 0 which is impossible in practice). Larger c p values lead to a "bang-bang" control which my not be acceptable in practice. Let us also recall that the fuel consumptions presented in Table 4.3 cannot be compared due to the different final state of charge values x(T ). To get a better understanding of the two considered control law tunings, several simulations have been conducted for different values of µ and c p . For each simulation, the value of the reference signal is adjusted such that ∥x(T ) -0.2∥ < 0.1%, thereby allowing the fuel consumptions to be compared.The obtained results are summarized in Fig. 4.8 where the fuel consumption m f is plotted as a function of J δx for both the proposed approach, denoted as "qLPV" and the adaptive ECMS.

The value c p = 5000 is selected, such that for both control laws, the same J δx ≈ 4.8 value is obtained.

Note that for any J δx < 8%, the qLPV approach provide a better fuel consumption. Values such that J δx > 8% have little interest, since for most of the corresponding simulations, the state of charge is not really controlled and reaches inadmissible values (x(t) < 0 for instance).

The results obtained using the suggested control law tunings are depicted with a start in Fig. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. [START_REF] Sofiev | Cleaner fuels for ships provide public health benefits with climate tradeoffs[END_REF].

It can be seen that the suggested tunings lead to approximatively the same value of J δx , thus a fair comparison can now be performed. First, simulations are performed and the reference signal is adjusted such that ∥x(T )-0.2∥ < 0.1%. The (offline) optimal solution is also computed. Results are depicted in Fig. 4.9 and results are summarized in Table 4. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. The proposed control law achieve a 15.12 kg hydrogen consumption while the Adaptive ECMS required 17.22 kg on the same mission, with the same final state of charge (12% more hydrogen). Nevertheless, operating the vessel in real time leads to a fuel consumption 14% higher than the optimal one. In the previous simulations, the state of charge trajectories were forced to end at the same value 20% through the adjustment of the state of charge reference x ref . Now, the simulations are conducted again, but the final state of charge reference remains equal to 20%. As a result, each control law will lead to state of charge trajectories that does not necessarily end with the same value.

The obtained results are given in the Fig. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF].10 and different metrics a presented in Table 4. 5. Despite having a higher final state of charge (4.66% vs 4.91%, the proposed approach leads to a lower fuel consumption (14.36 kg vs 16.17 kg) and a better state of charge tracking (4.66% vs 4.91%). 

Conclusions

A controller that benefits from the ECMS and quasi-LPV framework has been proposed. The controller synthesis is reduced to a set of LMI conditions to be solved. The closed loop ISS has been demonstrated.

Preliminary results have been presented to illustrate the effectiveness of our approach. Two design parameters µ (related to a constraint on the costate derivative) and α (decay rate) allows tuning the closed loop dynamics. µ control the tradeoff between fuel consumption and state of charge regulation.

Future work will be devoted to more in-depth analysis of the control performances both in terms of fuel consumption and SOC reference tracking.

Chapter 5

Multimode qlvp-ECMS

This chapter presents an extension of the results presented in chapter 4 for designing a controller that integrates an Equivalent Consumption Minimization Strategy framework and a quasi-LPV framework with a powertrain that may include clutches or elements that can modify its configuration, e.g., changing from a series architecture to a parallel architecture. In this case the use of switched system to model the hybrid powertrain comes at hand. This class of system involve the interaction of continuous and discrete dynamics, where a set of indexed modes interacts with a switching signal that determines which mode is active at any given time instant. Since switched systems appear in numerous physical applications, including embedded systems [START_REF] Formentini | A switched predictive controller for an electrical powertrain system with backlash[END_REF], biological systems [START_REF] Liu | Optimal switching control of a fed-batch fermentation process[END_REF], and robotic systems [START_REF] Sheng | Switched control of an ndegree-of-freedom input delayed wearable robotic system[END_REF],

they have received extensive research attention.

This chapter presents the analysis and synthesis of a control law for switching models of nonlinear systems that represent the battery dynamics in a hybrid vessel that changes its mode of operation.

First, the introduction presents the standard methodology on controller design for nonlinear discrete system via Takagi-Sugeno modelling and Lyapunov stability to obtain a set of LMIs. Then, this methodology is extended to be applied on switched nonlinear systems; as a result, we obtain a new set of LMIs to be solved to proof the stability of the switched system; these results will be further used to design the SoC controller that will be used in the ECMS applied to the considered case of study. Then, simulation results are provided at the end of the chapter. Finally, conclusions are given in Section 5.5

Discrete-time TS model and synthesis of controller

Consider the following discrete-time TS model

x(k + 1) = r i=1 h i (z(x(k))) (A i x(k) + B i u(k)) = A h x(k) + B h u(k) (5.5) 
where

A h = r i=1 h i (z(x(k)))A i , B h = r i=1 h i (z(x(k)
))B i , and z(x(k)) is the premise vector.

In a similar procedure as in the continuous case, the system (5.5) will be considered to be under the standard state feedback control law of the form

u(k) = F h x(k) (5.6) 
with F h = r i=1 h i (z(x(k)))F i as the nonlinear PDC control gain. Using the PDC control law (5.6) the following theorem can be stated [START_REF] Hua | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF]: Theorem 5.2. Let the origin x = 0 be an equilibrium point of the discrete-time TS model (5.5). The origin under, the control law (5.6), is asymptotically stable if there exist matrices X > 0 and M j , j ∈ {1, 2, . . . , r}, such that

  X XA T i + M T j B T i A i X + B i M j X   > 0, i, j ∈ {1, 2, . . . , r}. (5.7) 
The PDC gains in this instance are F j = M j X -1 , j ∈ {1, 2, . . . , r}.

Proof. Consider a Lyapunov function candidate V (x(k)) = x (x(k)) T P x (x(k)), P = P T > 0 for the following closed loop discrete TS model:

x(k + 1) = (A h + B h F h ) x(k) (5.8) 
Computing the forward difference ∆V (x(k)) = V (x(k + 1)) -V (x(k)) we obtain

∆V (x) = x T (k) (A h + B h F h ) T P (A h + B h F h ) x(k) -x T (k)P x(k) = x T (k) (A h + B h F h ) T P (A h + B h F h ) -P x(k) = x T (k) (A h + B h F h ) T P P -1 P (A h + B h F h ) -P x(k) (5.9) 
By the congruence property (see A.1) we can see that ∆V (x) < 0 if

(A h + B h F h ) T P P -1 P (A h + B h F h ) < 0 (5.10)
By Schur complement(see property A.2 in Appendix A) 

  P A T h P + F T h B T h P P (A h + B h F h ) T P   > 0 (5.
of variable M h = F h X we obtain   X XA T h + M T h B T h A h X + B h M h X   > 0 ⇐   X XA T i + M T j B T i A i X + B i M j X   > 0, ∀i, j, ∈ {1, 2, . . . , r} (5.12) 
where the right side is derived from the properties, r i=1 h i (z(x(k))) = 1, and h i (z(x(k))) ≥ 0, i ∈ {1, 2, . . . , r}, not all simultaneously 0.

Non-quadratic stabilization of TS models

Besides the quadratic Lyapunov function V (x(k)) = x T (k)P x(k), with P = P T > 0, there exist other kind of functions that hold with properties (5.2)-( 5 The Lyapunov function presented in [START_REF] Thierry | Lmi-based relaxed nonquadratic stabilization conditions for nonlinear systems in the takagi-sugeno's form[END_REF] is

V (x(k)) = x(k) T P -1 h x(k), P h = r i=1 h i (z(x(k)))P i > 0 (5.13)
with a standard PDC control law (5.6).

The structure presented in [START_REF] Kerkeni | Analyse et synthèse des modèles non linéaires périodiques[END_REF] uses

V (x(k)) = x T (k)G -T h P h G h x(k), P h = r i=1 h i (•)P i > 0, G h = r i=1 h i (•)G i > 0 (5.14)
along with a PDC control law with the form

u(k) = F h G -1 h x(k) (5.15) 
The advantage of using a nonquadratic Lyapunov function along with a more general PDC control law introduces more degrees of freedom; this, the closed loop system (5.5) under the control law can be written as (5.15)

x(k + 1) = A h + B h F h G -1 x(k) (5.16) 
the following theorem can be stated:

Theorem 5. 3. Let the origin x = 0 be an equilibrium point of the discrete-time TS model (5.5). The origin, under the control law (5.6), is asymptotically stable if there exist matrices of suitable size P > 0, G, and F j , j ∈ {1, 2, . . . , r}, such that

  P ( * ) A i G + B i F i G + G T -P   > 0, ∀i, j ∈ {1, 2, . . . , r} (5.17) 
with F j , j ∈ {1, 2, . . . , r}, as the PDC controller gains.

Proof. Consider the following Lyapunov function candidate:

V (x(k)) = x T (k)G -T P G -1 x(k), P = P T > 0 (5.18)
The variation ∆V of the Lyapunov function for the closed loop system (5. [START_REF] Ogawa | Development of the fuel-cell/battery hybrid railway vehicle[END_REF]) we obtain

∆V (x(k)) = x T (k) A h + B h F h G -1 T G -T P G -1 (A h + B h F h ) x(k) -x T (k)G -T P G -1 x(k) = x T (k) A h + B h F h G -1 T G -T P G -1 A h + B h F h G -1 -G -T P G -1 x(k) (5.19) 
By the congruence property (see A.1) we can see that ∆V (x(k)) < 0 if

A h + B h F h G -1 T G -T P G -1 A h + B h F h G -1 -G -T P G -1 < 0 (5.20)
Pre-and post-multiplying by G T and G, respectively, and using the Schur complement (see property A.2 in Appendix A) we obtain

  P ( * ) A h G + B h F h G T P G   > 0 (5.21) 
Using the matrix property

(G -P ) T P -1 (G -P ) > 0 ⇐⇒ GP -1 G T > G + G T -P (5.22) 
we obtain

  P ( * ) A h G + B h F h G + G T -P   > 0 ⇐   P ( * ) A i G + B i F i G + G T -P   > 0, ∀i, j ∈ {1, 2, . . . , r} (5.23) 
where the right side is derived from the properties, r i=1 h i (z(x(k))) = 1, and h i ≥ 0, i ∈ {1, 2, . . . , r}, not all simultaneously 0.

Switched TS systems

A set of continuous-time subsystems plus a rule that controls the switching between them is refereed as switched system [START_REF] Benzaouia | Stabilization of switching takagisugeno systems by switched lyapunov function[END_REF] Generally, a discrete time nonlinear switched system is described as follows [START_REF] Garbouj | Optimal interval observer for switched takagi-sugeno systems: an application to interval fault estimation[END_REF]:

x(k + 1) = x(k) + f θ(k) (x(k), u(k), w(k))
(5.24) 

y(k) = g θ(k) (x(k), u(k)) (5 

Switched TS systems and controller design

In order to obtain a TS representation of a nonlinear switched system (5.24), we can use the sector nonlinearity approach to rewrite each nonlinearity for every mode of operation in the system.

As a result, the switched discrete-time TS model is represented as follows:

x(k + 1) = A θ h x(k) + B θ h u(k) (5.27) y(k) = C θ h x(k) (5.28) 
under this notation the matrices A θ h , B θ h , and

C θ h stand for A θ h = r i=1 h θ i (z(k))A θ i , B θ h = r i=1 h θ i (z(k))B θ i , and C θ h = r i=1 h θ i (z(k))C θ i
, respectively; where the superscript θ stands for the mode of operation and z(k) stands for the vector of non-linearities in discrete time.

The membership functions verify the convex sum property:

0 ≤ h θ i (z(x(k))) ≤ 1 ∀θ ∈ {1, 2, . . . , N }, ∀i ∈ {1, 2, . . . , r} (5.29) 
r i=1 h θ i (z(x(k))) = 1 (5.30)
The stability analysis of the switching model with N m modes of operation can be performed using a switched Lyapunov function of the form .31) where θ is a known signal representing the switching function that determines the mode of operation .

V θ (x(k)) = x T (x(k)) P θ x (x(k)) , P θ > 0, θ ∈ {1, 2, . . . , N m }. ( 5 
Inspired on the theorem 11 in [START_REF] Kerkeni | Analyse et synthèse des modèles non linéaires périodiques[END_REF], the following theorem is presented Theorem 5. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. A discrete switching model ( 5.24) with N m possible modes of operation is asymptotically stable is there exist N m Lyapunov functions candidates V θ (x(k)) = x(k) T P θ x(k), θ ∈ {1, 2, . . . , N }, such that if for the instants k and k + 1 the corresponding Lyapunov functions V m (x(k)) and V n (x(k)),

with n, m ∈ {1, 2, . . . , N }, fulfil the following inequality [START_REF] Thales | Stability analysis of discrete-time switched systems under arbitrary switching[END_REF]:

V n (x(k)) > V m (x(k + 1)) , ∀x(k). (5.32) 
Let us consider a control law to cope with a system whose dynamics changes according to the mode of operation. Consider the following control possible control law associated to the system (5.27) is .33) this control law uses the same membership functions as (5.27) for each mode of operation with F θ h = r i=1 h θ i (z(x(k)))F θ i , i ∈ {1, 2, . . . , r} as the nonlinear control gain for every mode θ ∈ {1, 2, . . . , N }. Substituting (5.33) into (5.27) the closed-loop dynamics is then: Proof. In order to determine the stability conditions let us consider the following Lyapunov function

u(t) = F θ h G θ -1 x(t) (5 
x(k + 1) = (A θ h + B θ h F θ h G θ -1 )x(k) (5.34) with F θ h = r i= h θ i F θ i , i ∈ {1,
A m i G m + B m i F m j -G n -G nT + P n   < 0 i, j ∈ {1, 2 
V m (x(k)) = x T (k)G m-T P m G m-1 x(k), G m-T P m G m-1 > 0 (5.36)
Combining the Lyapunov function candidate (5.36) with the closed-loop dynamics (5.34) we can compute the variation for every pair of mode of operation, i.e., ∆V n,m (k) = V n (k + 1) -V m (k). It is expressed as follows:

V n (k + 1) -V m (k) = x T (k)(A m T h +G m -T F m T h B m T h )G n -T P n G n -1 (A m h +B m h F m h G m -1 )x(k)-x(k)G m -T P m G m -1 x(k) = x T (k) A m T h +G m -T F m T h B m T h )G n -T P n G n -1 (A m h +B m h F m h G m -1 )-G m -T P m G m -1 x(k) (5.37) 
By the congruence property (see A.1) we can see that ∆V n,m (x) < 0 if

A m T h +G m -T F m T h B m T h )G n -T P n G n -1 (A m h +B m h F m h G m -1 )-G m -T P m G m -1 < 0, ∀n, m ∈ {1, . . . , N } (5.38)
Using congruence ( A.1) pre-and post-mutipliying by G m T and G m , respectively, we obtain

(G m T A m T h + F m T h B m T h ) T G n -T P n G n -1 (A m h G m + B m h F m h ) -P m < 0, ∀n, m ∈ {1, . . . , N } (5.39) 
Applying the Schur complement to (5.39) we obtain the following inequality

  -P m ( * ) A m h G m + B m h F m h -G n T P n -1 G n   < 0, ∀n, m ∈ {1, . . . , N } (5.40) 
Using the matrix property 

(G -P ) T P -1 (G -P ) > 0 ⇐⇒ GP -1 G T > G + G T -P ⇐⇒ -G -G T + P < -GP -1 G T (5.
A m h G m + B m h F m h -G n T -G n + P n   < 0,
A m i G m + B m i F m j -G n T -G n + P n   < 0, ∀m, n ∈ {1, 2 

Case of study

In this section, the energy management of a multimode vessel is presented. In the first subsection, the multimode powertrain introduced in Section 2. 2.4, is briefly recalled. In the second subsection, considering the ECMS framework, a discrete time quasi-LPV state of charge controller is designed.

Finally, the considered state of charge reference generator is presented.

A multimode hybrid powertrain

The architecture seen in Fig. 2.19 is taken into consideration as a case of study. It is a multi-mode series/parallel hybrid powertrain used to propel the hybrid vessel known as "Maud" by ISHY project member Hybrid Marine Ltd. It is propelled by a combustion engine (ICE) or an electric motor (EM1), also, there it has an electric motor (EM2) that can be used as a generator. This architecture has been already presented in Section 2.2. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. It is briefly recalled here for the sake of convenience. Smooth water conditions are assumed for navigation. Fig. 5.2 shows the resistance profile for these conditions. As previously mentioned in Section 2. 2.4, the studied powertrain has numerous modes of operation that depend on the state of the clutches and the gearbox. Nevertheless, it has been shown that they can be summarized as two modes:

One parallel mode that uses the internal combustion engine together in parallel with an equivalent electric machine for EM1 and EM2.

One series mode that uses EM2 and the internal combustion engine as an Auxiliary Power Unit (genset) and EM1 has a propulsion motor.

In order to adapt the original algorithm to cope with an architecture with multiple modes of operations let us consider the corresponding optimal control problem :

min (u,θ) J = min T 0 m θ f (u(τ ))dτ (5.44) ẋ(t) = f θ (u(t), w(t)) (5.45) u(t) ∈ [u θ (w(t)), u θ (w(t))]
( 5.46) where θ(t) ∈ {1, 2} is the switching function that takes the values 1 and 2 for the series and parallel mode, respectively; ṁθ f (t) is the mass fuel ratio; f θ (u(t), w(t)) is the battery dynamics that switches according to the mode of operation; u θ (w(t)) and u θ (w(t)) are the limit of the control signal u(t).

1) Series mode: In this mode, the electric motor EM1 works as a propulsor whereas EM2 and the ICE work as an APU.

w(t) corresponds to the propelling power of EM1, u(t) ∈ [u min , u max ] is the genset electric power output, and y(t) ∈ [y, y] denotes the battery power.

Then, the power split is written as:

w(t) = y(t) + u(t) (5.47) 
The battery dynamics is: .48) In this architecture, the fuel ratio ṁ1 f (t) can be modelled using a look-up table or approximated by a quadratic function of the generated power u(t). The set of admissible inputs

ẋ(t) = f 1 (u(t), w(t)) = -E + E 2 -4R (w(t) -u(t)) 2RQ . ( 5 
U(w) = [u 1 , u 1 ], is
The fuel mass rate for this mode of operation is ṁ2

f (u(t), w(t)) = m f (τ ICE (t), ω ICE (t)).
The parameter list of the considered vessel is presented in table 5.1. Mass of the ship 30000/kg 5.3.2 Derivation of the discrete time system dynamics to be controlled

The goal to be achieved is to design a discrete time control law to ensure an efficient energy management.

The ECMS framework is chosen and the main task is to design the controller in charge of determining the costate λ(t) value such that the state x(t) tracks a given setpoint x ref (t). The controller objective is to minimize the fuel consumption of the powertrain while regulating the state of charge of the battery.

Overall, the derivation of the system dynamics to be controlled is quite similar to the approach used in the Chapter 4 except that now most of the dynamics and the optimal control are mode-dependent.

First, the Hamiltonian function is defined for every mode θ:

H θ (u(t), λ(t), w(t)) = ṁθ f (u(t)) + λ T (t)f θ (u(t), w(t)) (5.58) 
From the Pontryagin's Minimum Principe, the optimal control policy comprises the optimal mode θ(t) = Π θ (λ(t), w(t)) and the optimal continuous control u(t) = Π u (λ(t), w(t)):

[θ(t), u(t)] = [Π θ (λ(t), w(t)) , Π u (λ(t), w(t))] = arg min θ∈{1,2},ν∈U (w(t)) H θ (ν, λ(t), w(t)) (5.59) 
In order to lighten the following expressions, it is assumed that θ always refers to the optimal mode and Π u is also simply denoted as Π. For instance f θ (Π(λ, w), w) is used instead of f Π θ (λ(t),w(t)) (Π u (λ, w), w).

The optimal state trajectory is given, for every optimal mode θ:

ẋ(t) = g θ (λ(t), w(t)) = f θ (Π (λ(t), w(t)) , w(t)) (5.60) 
Similarly to the approach presented in Chapter 4, the saturation of g as a function of λ(t) needs to be defined: Due to the control saturation (4.39), not all the co-state values are of interest for the SOC controller, since for certain limits, increasing/decreasing the value of λ(t) will not change the value of g θ (λ(t), w(t)). Let us restrict the co-state to λ θ min (w(t)) < λ(t) < λ θ max (w(t)) such that ∂g θ /∂λ (λ(t), w(t)) < 0. The limits λ θ min and λ θ max are computed numerically replacing the condition ∂g θ /∂λ (λ, w(t)) < 0 by ∂g θ /∂λ (λ, w(t)) < ε, with ε as a small negative constant.

Let us recall that for the parallel mode (θ = 1), the exogenous variable w(t) is the vector w(t) = [τ s (t), ω p (t)], whose entries are the propeller speed ω p (t) and the shaft torque τ s (t). For the series mode θ = 2, w(t) represents the electric power to be provided to the propulsion motor. The obtained numerical results are depicted in Fig. 5.3, where λ θ min (w(t)) and λ θ max (w(t)) are presented with a green and red line. For the parallel mode (θ = 1), the left part of the figure has been computed for ω p = 44.5rpm.

The following assumptions are considered. The mission profile w(t) is differentiable and its derivative ẇ(t) is bounded. The SOC reference x ref (t) is a piecewise linear function of time, so ẍref (t) = 0 holds almost everywhere. Additionally, the fuel mass rate m θ f (u(t)), θ ∈ {1, 2} is a convex function in u and the battery dynamics f θ (x(t), u(t)) is a strictly concave and strictly monotonically decreasing function in u, for u = Π (λ, w) and λ θ min (w) < λ < λ θ max (w). Let e(t) = x(t) -x ref (t) be the tracking error. The dynamic to be controlled is:

ė (t) = g θ (λ (t) , w (t)) -ẋref (t) (5.61)
To design a controller for (5.61), first, we consider its time derivative:

ë(t) = ∂g θ ∂λ (λ(t), w(t)) • λ(t) + ∂g θ ∂x (λ(t), w(t)) • ẋ(t) + ∂g θ ∂w (λ(t), w(t)) • ẇ(t) -ẍref (t) (5.62) 
Since ∂g θ /∂x = 0, θ ∈ {1, 2} and ẍref (t) = 0, (5.62) can be simplified as follows:

ë(t) = ∂g θ ∂λ (λ(t), w(t)) • λ(t) + ∂g θ ∂w (λ(t), w(t)) • ẇ(t) (5.63) 
The following state space representation is considered:

  ë(t) ė(t)   =   0 0 1 0     ė(t) e(t)   +    ∂g θ ∂λ (λ(t), w(t)) 0    • v(t) +    ∂g θ ∂w (λ(t), w(t)) 0    • ẇ(t) (5.64) 
The derivative of the mission profile ẇ(t) is in general not available; nevertheless, from the assumptions it can be treated as a norm bounded disturbance. The continuous time model is written as a discrete time model using an Euler approximation [START_REF] Butcher | Numerical methods for ordinary differential equations[END_REF]; after discretization with a period T s , the obtained discrete-time nonlinear model lies:

  e 1 (k + 1) e 2 (k + 1)   =   1 0 T s 1     e 1 (k) e 2 (k)   +    ∂g θ ∂λ (λ(k), w(k)) T s 0    • v(k) +    ∂g θ ∂w (λ(k), w(k)) 0    • w(k)T s (5.65)
where e 1 (k) and e 2 (k) corresponds to the discretized states ė(t) and e(t), respectively.

Controller design

Model (5.65) can be written in the following form:

   X(k + 1) = AX(k) + B θ (λ(k), w(k)) • v(k) + D θ (λ(k), w(k)) • d(k) e 2 (k) = CX(k) (5.66) 
with X =   e 1 (k + 1)

e 2 (k + 1)   , A =   1 0 T s 1   , B =    ∂g θ ∂λ (λ(k), w(k)) T s 0    , D =    ∂g θ ∂w (λ(k), w(k)) 0    , C = 0 1 , d(k) = ẇ(k).
Aiming to synthesize a controller using the methodology presented in subsection 5.2.1,, let us consider a non-linear sector at each mode of operation of system (5.66).

From the numerical computation of the nonlinearity z θ (k) = ∂g θ ∂λ (λ(k), w(k)) T s , for θ ∈ {1, 2}, we obtain:

Parallel mode: z 1 (k) ∈ [-0.5118 × 10 -7 , -0.338 × 10 -7 ].
Series mode: z 2 (k) ∈ [-0.5774 × 10 -5 , -0.124 × 10 -7 ].

obtained by poles placement with poles e -1•Ts and e -1. 

State of charge reference generation

In the previous subsection, a control law has been proposed to control the state of charge x(k) close to a given reference x ref (k). The purpose of this section is to design a SOC reference generator to compute this x ref value in real time. The overall control scheme structure is depicted in the Fig. 5. 5.

Within the ISHY project, several vessels are operated over a limited set of possible journeys. This is the case for the sightseeing vessels that operates on a limited set of tours and also for the Crew Transfer The vessel speed depends mostly on its environment (and so its position). For instance, the vessel speed while navigating in ports is always slow due to regulations. So regardless to time, as long as the vessel is in a port, its speed is slow. Then, disregarding the time at which the vessel exit the port, its speed is likely to increase while in open sea.

Unfortunately, only a single mission profile for the Maud vessel considered for this study is available.

As a result, a set of additional artificial profiles have been generated, by perturbing the original one A typical mission is selected to be a reference and an optimal control can be computed for the actual initial state of charge. In practice, the final state of charge x f is set to be the lowest as possible since the vessel batteries can be recharged once the vessel is back to the dock (typically x f = 20%).

A naive control approach would be to apply, in open loop, the optimal control computed over the reference mission. However, as the actual mission is different from the reference one, the obtained state of charge is unlikely to track the state of charge of the optimal reference and may possibly reach inadmissible values.

Instead, the idea implemented in the state of charge reference generator is to exploit state trajectories precomputed over the reference mission as the state of charge reference x ref used by the TS controller.

At the discrete time index k such that t = k • T s , v(k) being the vessel speed, the covered a distance d(k) is approximated by: 

d(k) ≈ k-1 i=0 v(k) • T s ( 5 
J = T ref k ref •Ts m f (u ref (t))dt ẋref (t) = f θ (u ref (t), w ref (t)) u ref (t) ∈ [u(w ref ), u(w ref )] x ref (k ref • T s ) = x(k) x ref (T ref ) = x f (5.74) 
As an illustration, the available Maud mission is selected as the reference one. The optimal control problem 5.74 has been solved for initial states of charge in the range 20% -100%, a final state of charge

x f = 20% and for d ref (k ref ) spanning from 0 to the mission length with L s = 5km steps. The obtained trajectories are depicted on the bottom graph of the Fig. 5.9. Note that due to the components physical limits, it is not always possible to find a state trajectory that reaches x f . In such cases, the trajectory that ends closest to x f is kept. Even if some really quick algorithms are available to solve online the optimal control problem 5.74, for some applications such as the vessel Maud from Hybrid Marine LTD, the on-board limited computing capability requires an alternative solution.

Here, the methodology used to generated the SoC reference x ref (k) is thus based on [START_REF] Tian | Adaptive fuzzy logic energy management strategy based on reasonable soc reference curve for online control of plug-in hybrid electric city bus[END_REF] that proposes a state of charge generator for an hybrid truck. Authors suggest to use a neural network to compress and interpolate all the state trajectories depicted the Fig. 5.9.

As using a neural network to predict all the possible states trajectory (for any initial distance and initial state of charge) would requires a large number of neurons, the authors suggest to reduces the SOC reference trajectories to a piecewise function of the covered distance. So the reference trajectory is first split into several segments. In their paper, the authors suggest to define these segments as the reference mission data between two truck stops. As in our study, the vessels almost never stops, the reference mission is thus split into segments of constant length L s = 5km.

The following inputs are used for the neural network:

The initial state of charge x(k)

The average speed of the segment V a NB: if segments with variable length are considered, then the current segment length L s should also be considered as a neural network input.

The neural network output is the reference state of charge at the end of the current segment denoted as x end . Then the state of charge reference is : .75) with d end the distance at the end of the current segment.

x ref (k) = x start + (x end -x start ) • (d(k) -d end ) ( 5 
The state of charge generation process is depicted in Fig. 5.9. The upper graph represents the reference mission speed. For that particular setting, when the vessels has covered 25km, its actual state of charge is x start = 20.56%. Over the reference mission, the optimal state trajectory that starts with the current state of charge is depicted in blue on the lower graph. The neural network has to predict x end = 22.53% the optimal state of charge at the end of the current segment. The SOC reference generator block depicted in Fig. 5.5 will then output the SOC reference represented in red, whose equation is given in the equation 5. [START_REF] Lv | Hybridlearning-based classification and quantitative inference of driver braking intensity of an electrified vehicle[END_REF]. In order to train the neural network, three datasets have been created. The obtained performances on the test dataset are presented in the Fig. 5. [START_REF]Paris agreement[END_REF]. The Mean Square Error (MSE) of the neural network prediction is plotted against the neural network number of weights (which is a metric of the inference complexity). Using a ReLu as an activation function does not help improving the network performance, since here the neural networks remain shallow. For neural networks using the sigmoid activation function, using more than 2 hidden layers does not seems improving the performance. It can be concluded that the neural network is able to interpolate the x end value with a sufficient accuracy. 

Simulation results

In this section, a simulation of the hybrid powertrain used in the case study is carried out using the For the sake of illustration let us consider the simulation when x 0 = 100. The resulting real-time trajectories for the state of charge x(k), the costate λ(k), and the mode of operation θ(k) , resulting For the switched membership function h θ 1 and h θ 2 they are presented in Fig. 5. [START_REF] Ogawa | Development of the fuel-cell/battery hybrid railway vehicle[END_REF]. We can see that 0 < h θ i < 1, i = 1, 2, such that the convexity property holds and the use of the PDC controller is valid. the propellers. Depending on that power split, certain amount of fuel consumption and certain electric power consumption will be obtained.

The optimal energy management strategy consists in finding the optimal power split that minimizes the fuel consumption over a given mission, such that the final state reaches a specified value at the end of the mission.

To preform the mechanical power split, we need to consider the following characteristics:

The thrust depends on the propeller torque and the vessel speed

Computing the shaft speed requires to solve an ordinary differential equation.

Hence, solving the energy management problem that considers the thrust split would require to solve the dynamics of the propeller. Nevertheless, similarly as in hybrid vehicle energy management studies [START_REF] Lino | Vehicle propulsion systems, introduction to modeling and optimization[END_REF] where the tire slip can be neglected, we consider here only the steady state of the propeller shaft.

Since the shaft dynamics are much faster than the vessel dynamics, the effect of the shaft dynamics on the energy behaviour is assumed to be negligible.

Reduced order model of a vessel

The reduced order model of i th the propeller shaft expresses the relation between the torque τ s,i (t) to be generated at the output of a gearset such that a given thrust T p,i (t) is produced. It depends on many other variables such as the advance ratio J i (t), the shaft rotation speed ω p,i (t), the vessel speed v s (t) and the propeller torque (i.e. the resistive torque generated by the propeller) τ p,i (t).

Nb: when there is no ambiguity, the dependence on the shaft number i and the time t is dropped for the sake of clarity.

Let us consider the i th shaft dynamics equation in the i-th propeller (2. where I T is the shaft inertia, µ is the shaft friction coefficient.

At the steady state (ω p = 0), equation 6.1 is reduced to:

τ s = τ p + µω p (6.
3)

The propeller model described in Section 2. 1.6 provides the necessary relation between all the variables: Then the shaft speed ω p is obtained with (6.4) and the torque τ s is computed using (6.5). These variable can then be used to compute either the ICE fuel consumption or the battery current.

n p = ω p 2π ( 6 

Case of study

Let us considered the multi shaft series hybrid vessel 2.2.3 with 3 shafts: two propellers being connected to two ICE and one propeller connected to on electric machine. This architecture could be encountered when electrifying an existing vessel: instead of replacing the two existing 700kW diesel engines by some costly genset, a 400kW electric machine is added to provide emission-free operations when the thrust demand is low. The two ICE and their associated gearsets are assumed to be identical and are denoted with a subscript 1. The electric machine and its gearset are denoted with a subscript 2. Aiming to assess the reduced order model quality, the normalized root mean square value (NRMS) is used as the deviation measure. For example, if the deviation of the rotational speed ω p,i is considered, the N RM S(ω p,i ) is computed as:

δω p,i = 100 • (ω p,i ) -1 1 T T 0 ω p,i (t) -ω ′ p,i (t)
2 dt (6.12)

where ω p,i and ω ′ p,i are the shaft obtained with the original and simplified model, respectively. Moreover, ω p,i is the average value of the original model speed and T the simulation duration.

Therefore, the NRMS values of the deviation from both the simplified and original ship models' signals have been computed, as depicted in Table 6.2. Despite the fact that the power split has been artificially made very dynamic, the error tracking is low. 

Control structure

In order to determine the optimal solution that minimizes the fuel consumption during a mission, we use the offline algorithm presented in Chapter 3. In contrast to the case of study in 3, which computes the Let us recall that the propeller torque τ p,2 (t) and the rotational speed ω 2,p (t) are functions of v s and T p,2 according to the steady state solutions in Figs. 6.4-6.5, also T p,2 = T total -2u(t); thus, we have that τ p,2 and ω 2,p are functions of the control variable u(t) and the exogenous variable w(t).

The battery dynamics is computed as follows The fuel rate is the sum of the fuel ratio m f (u(t)) from the two ICEs connected to the propellers.

ω EM (t) = ω p,2 ( 
Considering an optimization horizon [0, T ]. The fuel consumption is aimed to be minimized, the specific fuel consumption of the engine, used to compute ṁf (t) is shown in Fig. 6.10. The control structure is shown in Fig. 6.11. As depicted in Fig. 6.11, the optimal control policy is computed by the following Hamiltonian function minimization:

H(u(t), λ(t), w(t)) = ṁf (t) + λ T (t)f (u(t), w(t)) (

with the optimal policy expressed as follows: u(t) = Π (λ(t), w(t)) = arg min ν∈U (w(t))

H(ν, λ(t), w(t)) ( 6.22) where U(t) is the set of admissible inputs; it is obtained from the are the maximum value of the thrust at each speed value U(w(t)) = [u(v s ), u(v s )].

Optimization problem over a known profile

In this section, an energy management problem on the multishaft hybrid powertrain used in the case study is solved using the offline energy management algorithm presented in Section 2.3.2 and Section 3.2, The model and the controller are simulated using Simulink ODE45 Runge Kutta solver.

The considered mission trajectory corresponds to the mission profile of a CTV vessel from the harbour to a wind farm. The vessel position as well as the vessel speed profile is presented in Fig. 6.12. Let us notice that in this architecture the battery only operates in discharging mode, since there is no auxiliary unit that can be used to recharge it. Hence, the reduction of the fuel consumption is achieved by consuming energy from the battery instead of fuel. In order to illustrate this reduction, Fig. 6.13 presents the optimal SOC trajectories of 9 simulations where x0 takes values linearly space in the interval 100% to 30%. We can see that the state of charge decreases persistently when the initial SOC is high (e.g. x 0 = 100%), whereas when de SOC is low (e.g. x 0 = 20%), the SOC remains with no decrease for longer periods. Table 6.3 presents the resulting fuel consumption for different initial conditions. We can see that a difference of 10% in the initial state reflects a difference of ≈ 4 kg in the fuel consumption. For the sake of illustration let us considered the solution of the optimal control problem with boundary conditions x0 = 100% and x T = 20%. 

Conclusions

The suggested simplification consists in reducing the propeller dynamics to its steady state. Simulation results are presented to compare both models and evaluate the effects of reducing the propeller shaft dynamics to its steady-state operation. Two cases were considered to assess the difference between the original and simplified model when a mission profile is tracked. In the realistic case, the NRMS error of the power consumption was lower than 1%. According to the obtained results, the suggested simplification on the propeller behaviour allows formulating the energy management problem without considering the shaft dynamics while providing similar results as the original model.

Chapter 7 Conclusions

In this work, solutions to energy management problems for hybrid ships have been derived. For the computational cost reduction, an improvement in the computation of the Hamiltonian minimization have been employed.

Computational reduction: An improvement of the classical implementation of an algorithm used for solving hybrid powertrain optimal energy management has been presented. It has been shown that the number of computations of the Hamiltonian is significantly reduced using the proposed algorithm, even in the cases where the required accuracy is low. The methodological improvement has been demonstrated over a simplified series hybrid case and a recorded mission profile. Future work will be devoted to the extension to more complex vessel architectures encountered in maritime applications.

Quasi-LPV scheme for a single mode: A controller that benefits from the ECMS and quasi-LPV framework has been proposed. The controller synthesis is reduced to a set of LMI conditions to be solved. The closed loop ISS has been demonstrated. Preliminary results have been presented to illustrate the effectiveness of our approach. Two design parameters µ (related to a constraint on the costate derivative) and α (decay rate) allows tuning the closed loop dynamics. µ control the tradeoff between fuel consumption and state of charge regulation. Future work will be devoted to more in dept analysis of the control performances both in terms of fuel consumption and SOC reference tracking.

Multimode quasi-LPV: In this chapter, a methodology to design a the ECMS that uses a switched quasi-LPV controller has been proposed. The controller design has been formulated using a discrete where

F 0 =   2 -1 -1 1   , F 1 =   1 1 1 3   , F 2 =   3 4 4 -1   ,
With x 1 , x 2 as the decision variables. In order for F (x) to be positive, its principal minors must be positive; i,e, x 1 + 3x 2 + 2 > 0 and 2x 2 1 + 9x 1 -19x 2 2 + 9x 2 + 1 > 0.

The set of solutions S ⊂ R 2 in the example above is called the solutions set and it is defined as S = {x : F (x) > 0}. Each constraint defines a convex set (implying their intersection is also convex), which means that for every two points y 1 , y 2 ∈ S then αy 1 + (1 -α)y 2 ∈ S for 0 ≤ α ≤ 1.

LMIs are a central tool for analysing and synthesising convex non-linear control systems. Several literatures have been devoted to the implementation of convex optimisation techniques. There are three standard problems which are considered in the use of linear matrix inequalities [START_REF] Scherer | Linear Matrix Inequalities in Control Theory[END_REF]:

1. Feasibility:It consist in finding the existence of an instance of the decision variable that satisfies the LMI F (x) > 0. If a solution exists the LMI is called feasible, otherwise is called unfeasible. 
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 2 Online: An EMS that benefits from the ECMS framework and the quasi-Linear Parameters Varying (LPV) approach.The thesis is structured as follows: Chapter 2 provides necessary background for this work: At the beginning, mathematical modelling of a hybrid vessel is detailed. Then, energy management algorithms are explained, putting extra attention to Pontryagin minimum principle for offline EMS; for the case of online EMS, the ECMS receives extra attention. Chapter 3 contains the first contribution: An improvement on the classical PMP-based algorithm is presented. There is a comparison on the improvement by comparing the reduction in the number of times the Hamiltonian needs to be computed. Chapter 4 presents the second contribution: quasi-LPV energy management algorithm along with a proof of the Input-to-State Stability (ISS) of the closed loop system. This case requires defining an error function of the state of charge with respect to a piecewise continuous reference corresponding with the battery discharge profile. With this model at hand, controllers can be designed via LMI. A proof that grantees the ISS of the closed loop system is also presented. The case of study used a resistances and speed profiles obtained from real time data. Chapter 5 presents the third contribution: The analysis and synthesis of a control law for switching models of nonlinear systems that represent the battery dynamics in a hybrid vessel that changes its mode of operation. It is an extension of the results presented in Chapter 4 for designing a controller that integrates an Equivalent Consumption Minimization Strategy framework and a quasi-LPV framework with a powertrain that may include clutches or elements that can modify its configuration. Chapter 6 presents some conclusions and remarks; also some ideas are mentioned about future work. The ISHY project is funded by the Interreg 2 seas program. Considering the future developments of the maritime sector, 15 partners from the United Kingdom, France, the Netherlands and Flanders have been working together in order to design a pragmatic cross-border project related to the introduction of Zero-Emission Technologies in the maritime sector. The overall objectives of the ISHY project are: Development of tools for implementation of hybrid and hydrogen technologies in vessels and ports Demonstration of hybrid and hydrogen technologies in newly built and retrofitted vessels. Establishment of a hydrogen bunkering station at the Port of Oostende Increase the acceptance of low or zero-carbon technologies with high impact potential and costeffectiveness on the longer term This thesis has been funded by this project and mostly deals with activities of WP1 and especially the energy management of hybrid ship.
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Figure 2 . 3 :

 23 Figure 2.3: Electric machine efficiency contour curves [1].
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 25 Figure 2.5: Example of ICE fuel consumption map [2].
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 27 Figure 2.7: An example of APU fuel consumption (left) and sfc (right).
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 29 Figure 2.9: Fuel cell quadratic approximation from [3].
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 211 Figure 2.11: Propeller diagram.
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 212 Figure 2.12: Open water diagram of a propeller from the Wageningen B-screw Series [4].
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 213 Figure 2.13: Froces acting on the Hull
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 214 Figure 2.14: Normalized resistance profile of the GEOxyz vessel obtained from towing tank experiments.
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 215 Figure 2.15: Example of vessel/powertrain diagram for simulation model.

  2.16).
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 216 Figure 2.16: Series hybrid powertrain with a Genset as the APU.
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 217 Figure 2.17: Series hybrid powertrain with a hydrogen fuel cell as the APU.
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 218 Figure 2.18: Series hybrid, multiple shaft
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 219 Figure 2.19: Series/Parallel powertrain (From Hybrid marine LTD)

1 )

 1 Series mode: θ 1 = 1, θ 2 = 1, θ 3 = 0. The gearbox is in neutral position (θ 3 = 0)and the electrical switches are closed (θ 1 = θ 2 = 1). Since the combustion engine and the electric motor 2 are mechanically isolated from the rest of the powertrain, they form a genset as described in 2.1.4. The powertrain is operated as a series architecture (2.2.1), with EM1 as the propulsion motor and the ICE along with EM2 working as an APU, Fig.2.20. 
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 220 Figure 2.20: Maud powertrain in series mode.
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 221 Figure 2.21: Powertrain in parallel mode with an equivalent electric machine

Figure 2 . 22 :

 222 Figure 2.22: Simplification of the powertrain in parallel mode with an equivalent electric machine.
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 223 Figure 2.23: Lowest cost path determination within an oriented graph.

Figure 2 . 24 :

 224 Figure 2.24: Hamiltonian minimization by gridding the control and evaluating the Hamiltonian at each point.

  speed error , e(t) = v ref (t) -v s (t) and produces the control signal corresponding to the torque reference τ ref such that the vessel tracks the mission profile, Fig. 2.25. In this example, the PI controller is tuned with k p = 60 and K I = 6 as the proportional and integral gain, respectively.
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 225 Figure 2.25: Forward simulator of the vessel speed control.

  6) (mΩ, V, CAh)It is considered that it is valid to use the resistance curve obtained from experimental results in a towing tank, from subsection 2.1.8.1. Thus, the ship resistance is a scaled version of the results previously mentioned, Fig.2.26. 
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 226 Figure 2.26: Vessel resistance profile R T (v s )

  Fig. 2.27, shows the speed profile v ref (t) and the resulting speed tracking v s (t) and the respective error e(t) = v ref (t) -v s (t).
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 227 Figure 2.27: Ship mission speed reference v ref (t) vs actual ship speed v s (t)
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 228 Figure 2.28: Resulting load power request w(t)
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 229 Figure 2.29: Simulation results for the unconstrained case: APU power u(t) and load power w(t), battery state of charge x(t) (middle), and costate value λ(t) (down).
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 230 Figure 2.30: Simulation results for the constrained case: APU power u(t) and load power w(t), battery state of charge x(t) (middle), and costate value λ(t) (down).
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 231 Figure 2.31: Diagram for the implementation of an online ECMS using a SOC controller

  the future time domain [t, t + T ] [83][84][85], with T as the prediction horizon; then the power split that minimizes the equivalent fuel consumption is computed.
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 232 Figure 2.32: Diagram of predictive control scheme.
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 2333 Figure 2.33: Power provided by the genset u(t) .
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 31 Figure 3.1: Tracking of the optimal control within U grid
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 32 Figure 3.2: Removing the points ν k < u -in U grid .

  3.3. 
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 33 Figure 3.3: Removing the points ν k > u + in U grid .

  . , N. (3.11) xu -< x T < xu + , then the location of the actual x(T ) with respect to x T is unknown. It is possible to refine the grid according to Theorem 2.2 (step 10) by adding two extra values and removing Π grid (i) from the grid:

Algorithm 3 algorithm 1 :: do 3 :

 313 Improved Set λ, λ and the inputs w(t), x T , N , u max , y, y 2Initialize λ 0 = (λ + λ)/2 4:

  15 and an accuracy ϵ N = 0.1. The implementation of the improved algorithm needed 11 iterations of the bisection algorithm and 115 Hamiltonian evaluations. Using the classical algorithm with an accuracy ϵ N = 0.1, the optimal control solution is u(t) = 0.75 for λ(t) = 0.15. The number of iterations is 47 with 1150 Hamiltonian evaluations. Each asterisk in Fig. 3.4 represents an evaluation of the Hamiltonian, whilst the blue squares represent the control in the grid that minimized the Hamiltonian in both algorithms; for Algorithm 3.2, the red dots represent the control interval in the grid that brackets the optimal solution. The classical algorithm requires 11 times more evaluations than the improved one.
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 34 Figure 3.4: Number of Hamiltonian evaluation: classical approach (left) vs improved approach (right).

Example 3 . 2 .

 32 Let us consider the case in which the classic algorithm 2.3.2.1 and the proposed3.2 

3 . 2 . 1

 321 is run using ϵ N as a control grid accuracy in(2.111). 40 values of the final state of charge tolerance ∆ linearly spaced within the interval [0.005 0.2] are considered. The accuracy achieved by the improved algorithm ranges from ϵ N = 0.092 (kW) down to ϵ N = 5.88 × 10 -3 (kW), depending on the tolerance value. The computed costate for the optimal solution that matches the boundary condition with a tolerance ∆ = 0.5% using an accuracy ϵ N = 0.092 is λ = -301.76 for both algorithms. The solution is shown in Fig.3.6 
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 35 Figure 3.5: Load power profile w(t).
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 36 Figure 3.6: Optimal trajectories of the state of charge x(t) and the costate λ(t) obtained from the constrained algorithm.
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 37 Figure 3.7: Relation between the number of operations of the classical and the improved approach.
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 38 Figure 3.8: Optimal trajectories of the state of charge x(t) and the costate λ(t) obtained from the constrained algorithm, improved algorithm solution (left) and classical algorithm solution (right).
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 39 Figure 3.9: Ratio of improvement between the number of operations of the classical and the improved approach along with the constrained algorithm .
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 441 Example Consider the following nonlinear function z(x) = x 3 , which is bounded for any x ∈ [-2, 2].

Figure 4 . 1 :

 41 Figure 4.1: Diagram of a series powartrain with hydrogen fuel cell.

38 ) with γ 0 and γ 1

 381 as the coefficients of the linear approximation. Combining (4.33)-(4.35) and (4.38), the fuel cell output power set of admissible inputs, defined as U(w(t)) = [u(w(t)), u(w(t))], is determined by:

Figure 4 . 2 :

 42 Figure 4.2: Measure of data of the power profile w(t) to be provided by the motor during a mission, courtesy of De Zilvermeeuw.

Figure 4 . 3 :

 43 Figure 4.3: Quasi-LPV ECMS structure.

Figure 4 . 4 :

 44 Figure 4.4: state dynamics g(λ(t), w(t)) and bounds such that ∂g(λ(t), w(t))/∂λ < ϵ.

Theorem 4 . 3 .

 43 Let us consider the system dynamics (4.50) with the nonlinear control law (4.51) and observer (4.53), then, the origin X = 0 of the closed-loop dynamics (4.54) is ISS with a decay rate α

  Choose a nonlinear sector z(t) ∈ [z 1 , z 2 ] and solve the LMI (4.55)-(4.57). Design a linear observer (4.53) using pole placement. The whole control scheme to be implemented comprises the observer (4.53), the control law (4.51), the change of variable (4.48), and finally the Hamiltonian minimization (6.22).

- 4 .

 4 696 × 10 -7 -3.2021 × 10 -8 , used in the controller synthesis, are obtained. The controller gains are computed choosing a decay rate α = 10 -7 and the initial condition X 0 = 0 0.425 T ; whereas the observer gain is obtained by poles placement with poles -10 and -11. When solving the LMI conditions of theorem 4.3, the value of µ allows reaching different closed loop dynamics.
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 45 Figure 4.5: Simulation results obtained for three different µ values.
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 431 6 depicts the obtained fuel consumption m f and the RMS of the tracking error J δx . The value µ = 44.72 is kept as the final tuning and is depicted using a vertical dashed line. The following gains are obtained by solving the LMI conditions in theorem 4.= 59.7605 0.191 , F 2 = 90.5128 0.0349 , L = 110 21 P 1 =   5.32 1.00 × 10 -3 1.00 × 10 -3 9.49 × 10 -7   .
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 46 Figure 4.6: Fuel consumption m f (blue) and RMS of the SOC tracking error J δx (red) as a function of the control law tuning parameter µ.

Figure 4 . 7 :

 47 Figure 4.7: Simulation results of the adaptive-ECMS for different c p values.

Figure 4 . 8 :

 48 Figure 4.8: Tradeoff between fuel consumption m f and RMS of the SOC tracking error J δx for the proposed qLPV approach (blue) and the adaptive ECMS (red). Results obtained using the suggested control law tunings are depicted with a star

Figure 4 . 9 :

 49 Figure 4.9: Comparison of the proposed approach (qLPV), the adaptive ECMS (adaptive) and the offline optimal solution (optimal). The final state of charge is forced to be 20 ± 0.1%

Figure 4 . 10 :

 410 Figure 4.10: Comparison of the proposed approch (qLPV) and the adaptive ECMS (adaptive).

  .4) and allow reducing the conservatism in the resulting LMIs by means of nonquadratic Lyapunovs functions. Different kind of nonquadratic Lyapunov functions have been studied in literature.

. 25 )

 25 θ(k) : Z → {1, 2, . . . , N } (5.26) where x(k) is the state vector, u(k) is the control input and y(k) is the output, w(k) is the disturbance and θ(k) is the switching law such that θ(k) ∈ {1, 2, . . . , N }. Notice that θ(k) is a known measured signal which is the index of the active mode of operation.

  , . . . , r}, m, n ∈ {1, 2, . . . , N } (5.35) 

  ∀n, m ∈ {1, . . . , N } (5.42) using the convex sum property (5.29), the following conditions are obtained:

  , . . . , N }, ∀i, j ∈ {1, 2, . . . , r}.(5.43) 

Figure 5 . 1 :

 51 Figure 5.1: Series/Parallel powertrain (From Hybrid marine LTD)
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 52 Figure 5.2: Maud water resistance under smooth water conditions (courtesy of Solent University).
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 53 Figure 5.3: state dynamics g θ (λ(t), w(t)) and bounds such that ∂g θ (λ(t), w(t))/∂λ < ϵ, for θ ∈ {1, 2}.

  discrete time control structure is shown in Fig. 5.4. It is denoted as mq-LPV (Multimode Quasi LPV).
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 54 Figure 5.4: Multimode quasi-LPV ECMS structure.
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 55 Figure 5.5: SOC reference and Multimode quasi-LPV ECMS control scheme.
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 56 Figure 5.6: Graphic representation of 3 missions of a CTV. Left: X-Y vessel position with respect to the harbour. Middle : speed as a function of covered distance. Right : Speed as a function of time.Courtesy of Geo XYZ
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 5 Fig. 5.7.

Figure 5 . 7 :

 57 Figure 5.7: Top: Original mission profile. Bottom: Synthetic missions used for this study.

. 72 )

 72 Let us denote the signals over the reference mission with a subscript ref , the reference mission length is T ref = N ref • T s . The index k ref is defined such that the deviation between the actual distance d(k) and the distance over the reference mission d ref (k ref ) is minimum:k ref = arg min i∈{0,...,N ref -1} (d ((k) -d ref (i)) 2 (5.73) The equation 5.73 simply states that both the actual mission and the reference mission are synchronized according to distance, k and k ref being the indexes allowing this synchronization. As a result, at every instant k, the state of charge reference trajectory x ref is obtained as a solution of an optimal control problem computed over the reference mission of length T ref and the optimization horizon t ∈ [k ref • T s , T ref ] and considering the actual state of charge x(k) as the initial state value: min

Figure 5 . 8 :

 58 Figure 5.8: State of charge trajectories (bottom) over the reference mission (top) computed as a solution to the optimal problem 5.74

  The normalized remaining distance L l = L r /L T otal with L r the remaining distance L r = d ref (N ref ) -d ref (k ref ) and L total = d ref (N ref ) the reference mission length.
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 59 Figure 5.9: State of charge generation
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 510 Figure 5.10: Neural network tunning

Figure 5 . 11 :

 511 Figure 5.11: Neural network validation.

  Multimode quasi-LPV ECMS to obtain the control signal. The model and the controller are simulated using Simulink ODE45 Runge Kutta solver.The pilot actions are modelled with a PI controller (τ ref (t) = K p e(t) + K I e(t)dt) that receives the speed error , e(t) = v ref (t) -v s (t) and produces the desired propeller torque τ ref (t) that must be transferred the shaft. The PI controller is tuned with k p = 25 and K I = 1 as the proportional and integral gain, respectively.The considered speed profile is similar to a typical real time mission of a vessel which is generated as the artificial profiles used to train the neural network in Section 5.3.2. Fig 5.12, shows the speed profile v ref (t) and the resulting speed tracking v s (t).
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 512 Figure 5.12: Maud speed profile v s (k) tracking the reference v ref (k) (above), tracking error e(k) middle, and the torque reference τ ref (k).

Figure 5 . 13 :

 513 Figure 5.13: Maud speed profile v s (k) tracking the reference v ref (k) (above), tracking error e(k) middle, and the torque reference τ ref (k).

  torque of each electric motors EM 1 and EM 2 and the internal combustion machine ICE that must produce the shaft torque τ s (t) Fig.5.14. 

Figure 5 . 14 :

 514 Figure 5.14: Simulation of the state of charge x(k), costate λ(k), and modes of operation θ(k), and torques of the propulsion elements τ EM 1 , τ EM 2 and τ ICE . The initial SoC x 0 = 100%.

  the vessel speed is close to zero. Let us recall τ s (t) = τ 1 (t) + τ 2 (t) + τ 3 (t), with τ1 (t) = η R2 • κ R2 • τ EM 1 (t), τ 2 (t) = η R1 • η GB • κ R1 • κ GB • τ EM 2 (t), and τ 3 (t) = η GB • κ GB • τ ICE (t).Its is shown in Fig.5.15 how the specific fuel consumption changes according to the mode of operation.
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 515 Figure 5.15: Specific fuel consumption of the ICE for each mode of operation.
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 516 Figure 5.16: Membership function for a multimode

  25):I T dω p dt = τ s -τ p -µω p(6.1) (6.2)

. 4 ) 5 p 4 p( 6 . 7 ) 4 p

 454674 τ p = ρK Q (J)n 2 p D f w )v s n p D p(6.6)T p = ρK T (J)n 2 p DAs a results, equation (6.3)-(6.7) describe the nonlinear steady state relation between shaft torque τ s , as a function of the propeller thrust T p and the actual vessel speed v s .Let the shaft rotation frequency n p be the solution of (6.6)-(6.7). It can be computed for every propeller thrust T p and actual vessel speed v s as root of the following defect function L vs,Tp (T p , n p ) = T p -ρK T (1 -f w )v s n p D p n 2 p D

Figure 6 . 2 :

 62 Figure 6.2: Multishaft powertrain architecture with two ICE and one EM.

  Since we are considering to compute the power split, let us recall equation(2.38) that relates the speed of the vessel v s with the total thrust T total :T T otal (t) = (1 -f ) -1 M ship dv s dt (t) + R T (v s (t)) (6.9)where M ship is the mass of the ship, f t is the thrust deduction factor, and R T (t) is the total resistance acting on the hull, Fig.6.3. 
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 63 Figure 6.3: Total resistance profile R T .

Figure 6 . 7 :

 67 Figure 6.7: Vessel speed comparison

Fig. 6 .

 6 Fig. 6.8 presents the comparison of the variables simplified in the reduced order model τ p,1 , τ p,2 ,ω p,1 , and ω p,2 .

Figure 6 . 8 :

 68 Figure 6.8: Comparison of the original model and the reduced order model variables (above) and their deviation (below).
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 610 Figure 6.10: Specific fuel consumption of the ICE used in the multishaft architecture.

Figure 6 . 11 :

 611 Figure 6.11: EMS scheme from a multi shaft powertrain.

Figure 6 . 12 :

 612 Figure 6.12: Mission profile used in a CTV vessel, speed (left), and position (right). Courtesy of GeoXYZ.

Figure 6 . 13 :

 613 Figure 6.13: Optimal SOC trajectories for different initial conditions in a multishaft powertrain.

Figure 6 . 14 :

 614 Figure 6.14: Optimal solution of the offline EMS with x 0 = 100% and x T = 20%.

2 .

 2 Optimization:Consists in minimizing an objective function made up of a linear combination for the decision variables within the convex set. This is:min J(x) (A.2) s.t F (x) > 0Where J(x) is a scalar function of the decision variables. This kind of problem is called an optimization problem under an LMI constraint.

3 .S(A. 9 ) 5 

 395 Generalized eigenvalue minimization problem: It consist in minimizing an scalar λ ∈ R such that min λ (A.3)s.t. λL 1 (x) -L 2 (x) > 0, L 2 (x) > 0, L 3 (x) > 0There exist technical and theoretical interests in treating a control problem as a standard LMI one, two of them are: Property A.2. (Schur complement) Consider a partitioned matrix in the form -N T R -1 N < 0 Property A.3. (Change of decision variable) It allows to rewrite in an LMI for an expression that apparently is not. Consider the following expression AP C + BP Q < 0, (A.10) where P and Q are the decision variables; A, B, and C are constant known matrices. Having an invertible matrix P , the change of variable R = P Q the expression can be changed by AP C + BR < 0, (A.11)Having P and R as the decision matrices, allowing to recover the original variables by Q = RP -1 .Property A.[START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. (Congruence) Given a symmetric matrix P = P T and a full rank-by-column matrix Q, the following holdsP > 0 ⇒ Q T P Q > 0. (A.12)Example A.[START_REF] Benajes | An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining rcci and dual-fuel diesel-gasoline[END_REF]. Consider the LMIs P > 0 and P A + A T P < 0, where P = P T > 0 is a decision variable and is a known matrix. The following Matlab codes check the feasibility of the LMI problem.In the LMIToolbox 1 clear all; clc;

  

  

  

  

  

  .114) Then, a bisection method is used to solve the root finding problem (2.114). Algorithm 2.3.2.1 shows the detailed procedure. Although being quite simple and widespread[START_REF] Robuschi | Minimum-fuel engine on/off control for the energy management of a hybrid electric vehicle via iterative linear programming[END_REF][69][START_REF] Delprat | Hybrid vehicle energy management: Singular optimal control[END_REF][70], this algorithm can be improved, as depicted in Chapter 3. It should be noticed that the studied optimal control problem does not include any SOC limits. As a result, the SOC might reach negative values, and its corresponding fuel consumption will be interpreted as a lower bound as it does not have physical meaning.

	Algorithm 1 Classical unconstrained algorithm
	H

1: Set λ, λ and the inputs w(t), x T , N T , u max , y, y 2: Define U grid 3: do 4:

:

  .1.3 (where the Hamiltonian minimization is solved by 3.2 of by 2.3.2.1). Until all state constraints are met, this method is repeated using a recursive strategy. Set λ, λ and the inputs w(t), x T , N , u max , y, y 2: Compute the unconstrained optimal solution 3: do

	Algorithm 2 Constrained algorithm
	14:

Table 2 .

 2 1: Model list of parameters Battery Pack resistance, OC Voltage, and capacity(72.3, 546, 198.

	Symbol	Description	Value	Units
	D	Propeller Diameter	0.4	m
	ρ	Density of sea water	1024	kg/m 2
	M ship	Ship mass	30 × 10 3	kg
	I s	Shaft inertia	3	kgm 2
	I M	Motor inertia	0.56	kgm 2
	(κ GB , η GB )	Gearbox ratio and efficiency	(2, 0.9)	-
	-	Motor power	175	kW
	u	APU max power	104	kW
	y, y	Battery max/min power	(-759, 551)	kW
	f w	Wake factor	0.12	-
	f t	Thrust deduction	0.12	-
	(R, E, Q)			

  Theorem 3.2. Let {u - n }, {u + n } be a pair of bounded sequences within the interval [a, b], with u - 1 < u + 1

3.2. 

Table 4 .

 4 1: Series powertrain list of parameters.

	Parameter	Description	Value
	V bus	Bus voltage	220/V
	(E, R, Q) Open circuit voltage, resistance and capacity	(522.6/V, 37.764/ mΩ, 364.1/Ah )
	(y min , y max )	Battery power	(-500/kW, 500/kW)
	(a, b, c)	Fuel cell coefficients	(7.48 × 10 -6 , 6.97 × 10 -6 , 7.40 × 10 -7 )
	(γ 0 , γ 1 )	Auxiliary unit coefficients	( 6.3 × 10 -5 , 0.125)

Table 4 . 2

 42 

	15 25.29	14.45	11.03	-4.67
	45 75.14	4.66	14.36	16.00
	300 413.61	2.48	15.98	18.97

: Tuning of µ.

µ ν F J δx (%) m f (kg) x(T )(%)

Table 4 .

 4 3: Tuning of c p .

	%)

c p J δx (%) m f (kg) x(T )(

Table 4 .

 4 4: Performance of qLPV, the proposed control law, and the Adaptive ECMS using a final SOC correction.

	Control law J δx (%) m f (kg) x(T )(%)
	qLPV	4.82	15.12	19.97
	Adaptive	4.88	17.22	20.02
	Optimal	N/A	13.24	19.42

Table 4 .

 4 5: Performance of qLPV, the proposed control law, and the Adaptive ECMS, without a final SOC correction.

	Control law J δx (%) m f (kg) x(T )(%)
	qLPV	4.66	14.36	16.00
	Adaptive	4.91	16.17	14.35

  2, . . . , r} as the nonlinear control gain for every mode θ ∈ {1, 2, . . . , N }. Theorem 5.5. Let us consider the system dynamics (5.27) with the nonlinear control law (5.33); then, the origin x = 0 of the closed-loop dynamics (5.34) is asymptotically stable if there exist matrices of suitable size P θ > 0, G θ > 0, F θ i , i ∈ {1, 2, . . . , r }, θ ∈ {1, 2, . . . , N }, such that

		-P m	( * )
			

Table 5 .

 5 1: Maud powertrain list of parameters.

	Parameter	Description	Value
	V bus	Bus voltage	220/V
	(E, R, Q)	Open circuit voltage, resistance and capacity (48/V, 4.8/ mΩ, 320/Ah )
	-	Motor 1 power	-
	-	Motor 2 power	-
	I M 1	Motor 1 moment of inertia	2.27/ kgm 2
	µ	Shaft friction coefficient	0.1
	I s	Shaft moment of inertia	5.7/ kgm 2
	η GB	Gearbox efficiency	0.77
	κ GB	Gearbox ratio	2
	η R1	Reducer 1 efficiency	0.77
	κ R1	Gearbox ratio	3
	η R2	Reducer 1 efficiency	0.77
	κ R2	Gearbox ratio	4
	I g	Gearbox moment of inertia	15/kgm 2
	(D p , P p , N b )	propeller Diameter, Pitch, blades	(0.4572/m, 0.2794/m, 3)
	f t	Thrust coefficient	0.199
	f w	Wake factor	0.12
	M Ship		

  1•Ts . Using theorem 5.5, the result of the feasibility problem, solved by the package Yalmip toolbox, is presented below:

	P 1 =	  -1.0564 × 10 6 6.0937 × 10 9 540.74 -1.0564 × 10 6	  , G 1 =	  -1.0562 × 10 6 6.0933 × 10 9 540.76 -1.0562 × 10 6	  ,
	P 2 =	  -1.0562 × 10 6 6.0926 × 10 9 540.93 -1.0562 × 10 6	  , G 2 =	  -1.0561 × 10 6 6.0928 × 10 9 540.85 -1.056 × 10 6	  ,
	F 1 1 =	 	4.5947 × 10 6		

  The training dataset contains for each of the 11 segments, 15 values of initial state of charge values x start linearly spaced between 20 % and 100 % as well as the other neural network inputs (V a and L l ). This dataset is used to learn the weight. The validation datasets is similar except that it contains, per segment, 8 x start values linearly spaced between 21% and 98%. This dataset is used to stop the training in case of over-fitting. Finally the training dateset contains, per segment, 10 random x start values between 20 % and 100 %. This dataset is never used during the training and is only used to evaluate the network performances.

	The following neural network configurations have been considered:
	nb hidden ∈ {1, 2, 3, 4} : The number of hidden layers
	nb

neurons ∈ {2, 4, • • • , 20} : The number of neurons per layer. f cn ∈ { sigmoid,ReLu}: the activation neuron function (ReLu = Rectified Linear Unit)

Table 5 .

 5 2: Fuel consumption for different x 0 . x 0 (%) m f (kg) J δx x(T )(%) 100% 12.0875 1.1460 23.6842 90% 12.4696 0.8471 19.8552 80% 13.0365 0.6395 18.9893 70% 13.6258 0.4770 18.8117 60% 14.1796 0.4740 18.7964 50% 14.7635 0.5436 18.7756 40% 15.3918 0.7965 18.7319 30% 15.9957 0.9688 18.6806 20% 16.5931 0.9674 18.6799

Table 6 .

 6 2: Deviation in the simplified variables in the reducer order model. δτ p1 (%) δτ p2 (%) δω p1 (%) δω p2 (%)

	0.5862	0.0781	1.5344	2.5971

  = ω EM (t)τ EM (t)η EM (ω EM (t)τ EM (t)) -τ EM (t)

			t)κ 2	(6.17)
	τ EM (t) =	τ p,2 (t) η 2 κ 2	(6.18)
	y(t) (6.19)
	ẋ = f (y(t)) =	-E + E 2 -4Ry(t) 2RQ	(6.20)

Table 6 .

 6 3: Fuel consumption for different x 0 .

	x 0 (%) m f (kg)	λ	x(T )(%)
	100% 710.79 -36335 19.3017
	90%	714.5	-36361 19.5208
	80%	718.51 -36383 20.5321
	70%	722.02 -36545 20.1563
	60%	725.34 -37842 19.1189
	50%	729.59 -40283 19.9672
	40%	733.63 -45166 19.3725
	30%	739.18 -58594 20.5375

Abbreviations APU

From the property h i (z(t)) ≥ 0, i ∈ {1, 2, . . . , r}, not all simultaneously 0, and using the congruence property (see A.1), the following conditions are sufficient to guarantee V (t) < 0:

Although these conditions are not LMI it is possible to apply some of the properties presented in Appendix A.1 to obtain a set of LMIs. By applying the property of congruence by pre-and postmultiplying with X = P -1 we obtain:

Then, using the property of substitution with M j = K j X the expression (4.22) is equivalent to

which are LMI conditions.

Input-State stability

In this section, we recall the basic principle of ISS that have been initially demonstrated in [START_REF] Eduardo | On characterizations of the input-to-state stability property[END_REF].

The closed-loop stability obtained with the LMIs (4.23) only proves the stability of an autonomous closed-loop system. However, in some problems such as in the case where the system dynamics are disturbed by external signals, a different stability notion is needed. The ISS allows to manage this case, which states that bounded or convergent inputs result in bounded or convergent outputs. Furthermore, it is well established that the direct Lyapunov method can be also used, along with extra conditions, to prove the ISS stability of a nonlinear system [START_REF] Eduardo | On characterizations of the input-to-state stability property[END_REF].

Consider a system of the form ẋ(t) = f (x(t), w(t)).

(4.24

The system is said to be input-state stable if there exists a KL-function β and a K-function α (see Appendix A), such that for any initial state, and any bounded input w(t) there exist a solution x(t)

Quadratic stabilisation of TS models in discrete-time

In this section we present a broad explanation on the standard methodology used to synthesize a controller for a discrete-time non-linear system; this methodology is well established in literature as

given, for instance, in [START_REF] Hua | Fuzzy control systems design and analysis: A linear matrix inequality approach[END_REF].

In contrast to the stabilization of a continuous time system presented in Section 4.2.1, let us now consider the discrete-time case, i.e., models whose dynamics is described at discrete instants k ∈ Z.

The reason for choosing this kind of system is to cope with the discontinuity that may occur when a hybrid powertrain switches its mode of operation time model of the system, since, in the discrete-time case, the discontinuity phenomena during the switching can be omitted.

In this kind of systems, the stability analysis is performed by taking the forward difference in the Lyapunov function instead of the time derivative. The Lyapunov theorem for discrete time case is stated as follows:

Theorem 5.1. Consider the discrete-time nonlinear dynamical system

with x = 0 as an equilibrium point. If there there exist a continuously differentiable function V : R n → R such that

x = 0 is asymptotically stable [START_REF] Chellaboina | Nonlinear dynamical systems and control: A Lyapunov-based approach[END_REF].

In a similar way as it was used in the continuous case; a Lyapunov function candidate can be used to prove the asymptotic stability of a discrete-time dynamic system.

determined by: u 1 (w) = min (u max , w -y min ) (5.49) u 1 (w) = max (u min , w -y max ) .

(5.50)

2) Parallel mode: In the parallel mode, the propulsion components are mechanically connected to the propeller; hence, their speed are functions of the propeller speed. NB: the dependence of the equivalent machine speed and the ICE min and max torque on their speed is dropped to lighten the expressions.

In this mode, the torque/speed equations are:

( 5.51)

The set of admissible inputs U(w) = [u 2 , u 2 ], is determined by:

(5.55)

The battery dynamics depends on the current I eq (t) (cf. 2.74) of the equivalent electric machine:

Considering e 2 (k) as the measured and controlled output:

For the first mode of operation θ = 1

For the second mode of operation θ = 2

In order to stabilize the system (5.67) let us consider a PDC control law with form (5.33): .68) this control law uses the same membership functions as (5.67) for each mode of operation with

. . , r} as the nonlinear control gain for every mode θ ∈ {1, 2}, and X(k) an estimate of the state X(k) computed using a switched linear observer of the form:

with L as the observer gain. Let e o (k) = X(k) -X(k) be the observer error whose dynamics is

The controller gains are computed choosing a decay rate α = 1 × 10 -4 ; whereas the observer gain is

Conclusions

In this chapter, a methodology to design a ECMS that uses a switched quasi-LPV controller has been proposed. The controller design has been formulated using a discrete switched model that allows dealing with possible discontinuities due to the switching in the modes of operation. As a result the controller synthesis is reduced to a set of LMI conditions. The approach also uses a Neural network that is trained with optimal SoC trajectories obtained from simulation of the powertrain under the offline EMS, as a result the state of charge regulation might achieve better fuel economy than using arbitrary SoC profiles. Future work will be devoted to more in-depth analysis to propose more relaxed LMI conditions for switched nonlinear systems.

Chapter 6

Controller design for a reduced order model Energetic models of hybrid vessels are used to test the efficiency of energy management algorithms.

These models must be simple enough to facilitate the energy management algorithm design, while being accurate enough in the estimation of energy consumption. This section presents a methodology to simplify a vessel's model, based on assumptions in the fuel consumption during the transient behaviour.

On some vessels, the total propeller thrust has to be split between several shafts in order to optimize the overall efficiency. Nevertheless, the propeller thrust dynamics is very complex and does not have a significant influence on the energy behaviour, so in order to ease the energy management algorithm design, simplified models are considered. These models accurately compute the fuel consumption and the losses that occur in the powertrain components, from the propulsion element (ICE engine, electrical motors, etc.) down to the propeller. Modelling approaches adopted range from black-box data drivenmodels (neural networks, regression analysis) [START_REF] Coraddu | Vessels fuel consumption forecast and trim optimisation: A data analytics perspective[END_REF] [112] to white-box-based modular-hierarchical-causal models [START_REF] Rd Geertsma | Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification[END_REF] that exploit the knowledge of first principles, empirical laws, and mathematical equations.

In this chapter, we consider the latter, where each powertrain component is modelled independently, either by static relations, look-up tables, or differential equations. One way to simplify the model is to reduce the propeller shaft dynamics to its steady-state operation. This is somehow equivalent to neglect the tire slip in hybrid vehicle energy management studies [START_REF] Lino | Vehicle propulsion systems, introduction to modeling and optimization[END_REF]. The benefits of this simplification are:

To reduce the computational cost of simulation.

Enable simpler energy management when the vessel propulsion is ensured by many propellers.

However, the influence this simplification on the energy consumption accuracy has to be assessed.

Within the context of energy management studies, the contribution of this chapter is a method to compute the propeller shaft's steady-state operation to simplify the vessel model. The accuracy of the simplified steady -state model is hereby compared with the original model. Section 6.1 presents the motivations to obtain a reduced order model in a powertrain with multiple shafts and the methodology to obtain this kind of models. In Section 6.2, the case of study is introduced, the reduced order model is computed, simulation results, and analysis is presented. Finally, conclusions and future research directions are discussed in Section 6.3.

Introduction

This chapter presents an illustration of the effect of the thrust split on the fuel consumption, the motivation for obtaining a reduced order model and the assumption to compute the static map of the propeller in steady-state operation.

In order to illustrate the motivation in this chapter, let us consider the case of a Multishaft powertrain shown in Fig. 6.1. In this architecture, at each instant t, the total thrust T total (t) = 2T p,1 (t) + T p,2 (t) has to be obtained to propel the vessel at the desired speed fixed by the pilot. We can see that the power split occurs between

The thrust split is: 

where α is the thrust split between the EM and the ICEs. The parameters of the considered powertrain are shown in Table 6.1. 

Computation of the reduced order model

The steady state solutions of (6. 

Reduced order model validation

In order to validate the obtained model, one simulation where the vessel tracks a reference signal.

The variables computed from the solution depicted in Fig. 6.4 and 6.5 will be compared against the corresponding variable in the original model.

The simulation scheme for the validation is depicted in Fig. 6.6; where each model receives a torque computed from the thrust split and the steady state mapping. Let us recall that the total thrust T total is computed from equation (6.9). Let us notice that variables in the simplified model are denoted with a tilde. The procedure to obtained the variables to be compared consists in simulate the original model to obtain the produced thrust T p,i and rotational speed ω p,i ; then using the vessel speed v s obtained in simulation and each shaft thrust T p,i along with the static map depicted in 6.4 and 6.5 the shaft torque τ i,s and rotational speed ω ′ p,i for the reduced order model are computed.

The simulation of the original model presents a speed tracking of a piecewise signal v ref (t) that goes from 0 to 8 m/s. The pilot actions is modelled as a PI controller of the thrust T total = K p e(t)

The thrust split factor α (t) is chosen as: α = 0.5 + 0.3 sin(0.1t), such that it will vary during all the simulation; then the desired torque is obtained from the solution of the static mapping that expresses τ s,i as a function of T p,i and v s , Fig. 6. [START_REF] Van-Lammeren | The wageningen b-screw series[END_REF]. The initial condition for the longitudinal dynamics in both models is v s (0) = 0. In the case of the shaft dynamics model, we have ω p,i (0) = 0, i ∈ {1, 2, 3}.

The speed tracking along with the total thrust reference T total is shown in Fig. 6. [START_REF] Chen | The relationship between the development of global maritime fleets and ghg emission from shipping[END_REF].

power split in the electrical elements (battery and APU); in this case the power split is produced in the thrust Fig. 6.9 presents the diagram of the power split, where u(t) it the control variable corresponding to the thrust produced by each ICE. Let us notice that due to the symmetrical usage of the propellers connected to the ICE, the value of u(t) determines the thrust produced by the EM T p,2 = T total -2u, see Fig. 6.9. In order to determine the energy management strategy in an architecture with multiple shafts let us consider the corresponding optimal control problem:

where x(0) = x 0 and x(T ) = x T are the boundary conditions for a mission of length T ; ṁf (t) is the mass fuel ratio; f (u(t), w(t)) is the battery dynamics; u(w(t)) and u(w(t)) are the bounds of the control signal u(t) and w(t) = [v s , T total , θ], where θ is a priori known signal that prevents the engine to work at a speed low the idling speed.

switched model in order to cope with possible discontinuities. As a result the controller synthesis is reduced to a set of LMI conditions. Future work will be devoted to more in-depth analysis to propose more relaxed LMI conditions for switched nonlinear systems.

Reduced order vessel model for energy management analysis: The suggested simplification consists in reducing the propeller dynamics to its steady state. Simulation results are presented to compare both models and evaluate the effects of reducing the propeller shaft dynamics to its steady-state operation.

According to the obtained results, the suggested simplification on the propeller behaviour allows formulating the energy management problem without considering the shaft dynamics while providing similar results as the original model.

A word on future work: There are several pending issues concerning the development of energy management schemes under the quasi-LPV framework. Some of them seem heuristic in nature; their answer may require more experimentation with different kind of vessels: Some other questions seem analytical:

is it "safe" to feed states from a linear observer into the quasi-LPV controller?, is quasi-LPV-based state feedback still a choice as there are only two states in the nonlinear model (the SoC and its derivative)?

How can we include additional information to the algorithm to improve the overall performance? Can the reduced order model be employed to design a controller that can be used in a ECMS framework?.

Appendix A

Convex optimization problems and mathematical review

A.1 Linear Matrix Inequalities

A matrix F ∈ R n×n is positive definitive, denoted as F > 0 if it is symmetric and for every vector v ∈ R n : v ̸ = 0 the inequality v T F v > 0 holds. F > 0 if and only if min(Re{σ(F )}) > 0 where σ(F ) is the spectrum (set of eigenvalues) of F . The definition of negative definite, semi-positive definite, and semi-negative definite are analogous. A linear matrix inequality (LMI) is defined as a constraint of the following form:

where x ∈ R m is a vector of unknown scalars called decision variables; F 0 , F 1 , . . . , F m are given symmetric matrices, and the symbol ">" stands for positive definiteness;i,e, v T F (x)v > 0 holds for v ∈ R n /{0}.

The next example illustrates how, for an LMI, there can be multiple solutions of the vector x.

Example A. 1. Let us consider the following LMI:

LMIs can be solved in polynomial time, i.e , if we consider a deterministic Turing machine, if the problem has a solution it will always produce a correct answer in a time that is bounded by a polynomial function of the input length.

LMIs can be solved in a numerical efficient way.

Inequality (X) can be written in the more general way Consider the following example, usually found in control theory, called Lyapunov inequality: .5) where P = P T ∈ R n×n is a matrix decision variable and A ∈ R n×n is known matrix.

The following properties are introduced in order to express many control problems in the form of LMIs:

Property A. 

A.2 Comparison functions

Consider the following definitions [START_REF] Khalil | Nonlinear Control[END_REF]:

A scalar continuous function g(x), defined within [a, 0) belongs to the class K if dg/dx > 0 and g(0) = 0. It belongs to the class K ∞ if it is defined for all x ≥ 0 and lim x→∞ g(x) → ∞.

A scalar continuous function h(x, t), defined within [a, 0) × [0, ∞) belongs to the class KL if for every fixed t = t 0 , the function h(x, t 0 ) belongs to the class K with respect to x and, for every fixed x = x 0 then dh(x 0 , t)/dt < 0 and lim t→∞ h(x 0 , t) → 0.

A.3 Classes of dynamical systems

A continuous-time nonlinear system is a set of coupled first-order ordinary differential equations (ODES) gathered in a state equation of the form ẋ(t) = f (x(t), u(t), t) (A. [START_REF] Wang | Sizing and control of a hybrid ship propulsion system using multi-objective double-layer optimization[END_REF] where x ∈ R n is the system state, u(t) ∈ R m is the control input, and f (x(t), u(t), t) : R n ×R m ×R → R n is a nonlinear vector function. Whereas, a discrete-time nonlinear system is a set of coupled first-order difference equations gathered in a state equation of the form .14) where x ∈ R n is the system state, u(t) ∈ R m is the control input, and f (x(k), u(k), k) : R n ×R m ×Z → R n is a nonlinear vector function [START_REF] Bernal | Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach[END_REF].

A.3.1 Discretisation and sampling

Discrete-time models can be obtained from sampling of continuous-time dynamic systems employing time interpolation (Euler method is the most straightforward) and zero order hold. In that case, approximations (Euler, mid-point, etc. [START_REF] Helen C Yee | Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. i. the dynamics of time discretization and its implications for algorithm development in computational fluid dynamics[END_REF]) need to be made: hence, there will possibly exist a discretisation error (which will increase with the sampling period T , for instance, the error is in the order of T 2 in the Euler discretisation) so that the subsequent discrete-time design must be robust enough to accommodate it (and T should be reasonably small).

The order differential equation ẋ = f (x, t), with initial condition x(t 0 ) = x 0 , the first order variation with respect to time is