
HAL Id: tel-04134528
https://theses.hal.science/tel-04134528v1

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel algorithms for computing low rank
decompositions of matrices and tensors

Matthias Beaupère

To cite this version:
Matthias Beaupère. Parallel algorithms for computing low rank decompositions of matrices and ten-
sors. Numerical Analysis [math.NA]. Sorbonne Université, 2023. English. �NNT : 2023SORUS108�.
�tel-04134528�

https://theses.hal.science/tel-04134528v1
https://hal.archives-ouvertes.fr

Sorbonnes Université
Inria

Algorithmes parallèles pour le
calcul des décompositions de rang

faible des matrices et tenseurs

par Matthias Beaupère

Thèse de doctorat en mathématiques appliquées
dirigée par Laura Grigori

École doctorale Sciences Mathématiques de Paris Centre
Laboratoire Jacques-Louis Lions

Présentée et soutenue publiquement le 23 mars 2023

devant un jury composé de

Julien Langou University of Colorado Denver Rapporteur
Olivier Beaumont Université Bordeaux 1 Rapporteur
Laura Grigori Inria Paris Directrice de thèse
Bora Uçar ENS Lyon Examinateur
Grey Ballard Wake Forest University Examinateur
Virginie Ehrlacher École des Ponts ParisTech Examinatrice
Frédéric Nataf Sorbonne-Université Examinateur

Sorbonnes Université
Inria

Parallel algorithms for computing
low rank decompositions of

matrices and tensors

by Matthias Beaupère

Ph.D thesis in applied mathematics
directed by Laura Grigori

Doctoral School Sciences Mathématiques de Paris Centre
Laboratoire Jacques-Louis Lions

Publicly defended on March 23rd 2023

with a jury composed of

Julien Langou University of Colorado Denver Reviewer
Olivier Beaumont Université Bordeaux 1 Reviewer
Laura Grigori Inria Paris Ph.D Advisor
Bora Uçar ENS Lyon Examiner
Grey Ballard Wake Forest University Examiner
Virginie Ehrlacher École des Ponts ParisTech Examiner
Frédéric Nataf Sorbonne-Université Examiner

Acknowledgment

The preparation of my doctorate thesis lasted three and a half years in Paris. I
would like to thank all people who accompagnied me during this time.

To those who warmly welcomed me on the third floor, Fabien Raphel, Math-
ieu Mezaches, Thibault Cimic, Igor Chollet, Antoine Lesieur, Jan Papez, Liudi
Lu, Van Thanh Nguyen, thank you for setting up such a nice environment. To
those who joined afterwards, Siwar Baddreddine, David Frenkiel, Daniel Torres,
Édouard Timsit, Niels Guilbert, Mathieu Rigal, Apolline El Baz, Chourouk El
Hassianeh, Jean-Guillaume de Damas, Victor Lederer, Amélia Ferhat, Haibo
Liu, Juliette Dubois, Norbert Tognon, Oleg Balabanov, thank you for your joy
every day. To my longest office mate Suraj Kumar, thank you for helping me
in every way, and for your support throughout the thesis. Thank you to
all researchers and staff from Inria, especially Sever Hirstoaga, Frédéric Nataf,
Laurence Bourcier, Julien Guieu, Irène Vignon-Clémentel, Damiano Lombardi,
from the LJLL, especially Mi-Song Dupuy, Xavier Claeys, Corentin Lacombe,
Jean-François Venuti, and from the Cermics, especially Éric Cancès and Virginie
Ehrlacher.

I am grateful to the reviewers of my thesis, as well as all jury members, for
their fruitful feedbacks.

Thank you to my advisor Laura Grigori, you trusted me and guided me with
great wisdom throughout the four years working together.

Thank you to my wife Marie. You followed me in this adventure and I can
never be grateful enough for your support.

i

ii

Contents

Acknowledgment i

Résumé en français vii

Introduction 1

1 Background on numerical linear and multilinear algebra 5
1.1 Notation . 5
1.2 Matrix low-rank approximation 6

1.2.1 Projections . 6
1.2.2 Preliminary definitions . 7
1.2.3 Truncated Singular Value Decomposition 8
1.2.4 QR, QRCP and strong RRQR 8
1.2.5 Cross approximation . 10

1.3 Tensor approximation . 10
1.3.1 Introduction to tensors . 11
1.3.2 Tensor train . 12

1.4 Application to chemistry . 14
1.4.1 Introduction to the electronic Schrödinger equation 14
1.4.2 Hamiltonian and state function as tensors 17
1.4.3 Density Matrix Renormalization Group 21
1.4.4 Conclusion . 22

1.5 Matrix generation . 22
1.5.1 Random matrices . 22
1.5.2 Matrices with prescribed singular values 22
1.5.3 Specific problems . 23
1.5.4 Matrix and tensor repositories 23

1.6 High performance computing . 24
1.6.1 Numerical Linear Algebra softwares 24
1.6.2 Supercomputer topology 25

2 Subspace projection with the block subsampled randomized
Hadamard transform 27
2.1 Context . 27

2.1.1 Subspace embeddings . 28
2.1.2 Gaussian sampling . 28
2.1.3 Structured random embeddings 29

2.2 Sampling a matrix in parallel . 30

iii

2.2.1 Block Gaussian sampling 31
2.2.2 Block subsampled randomized Hadamard transform . . . 32
2.2.3 Numerical experiments . 33

2.3 Low-rank approximation with parallel sampling 39
2.3.1 Nyström approximation 39
2.3.2 Inversion of the middle matrix 40
2.3.3 Numerical results . 40

2.4 Conclusion . 43

3 Distributed QR decomposition with tournament pivoting 45
3.1 Earlier work . 45

3.1.1 Tournament pivoting for 1D block column partitioned ma-
trices . 46

3.1.2 Randomized QRCP . 48
3.2 Tournament pivoting for 1D block row partitioned matrices . . . 49
3.3 QR factorization with 2D tournament pivoting 54

3.3.1 QRTP algorithm . 54
3.3.2 Spectrum preserving and kernel approximation properties

of QRTP . 56
3.4 Numerical results . 58

3.4.1 Influence of the reduction tree used during tournament
pivoting . 60

3.4.2 QRTP for image compression 62
3.4.3 Accuracy comparison with RQRCP 63

3.5 Parallel design of QRTP . 65
3.5.1 Computational and communication cost 66

3.6 Parallel performance of QRTP 68
3.7 Conclusion . 70

4 Distributed Tucker decomposition using QR with tournament
pivoting 71
4.1 Context . 71

4.1.1 Tucker decomposition . 71
4.1.2 Existing solutions to compute the Tucker decomposition

in parallel . 74
4.2 Partitioned unfolding and applying QRTP 74
4.3 High-Order QR with tournament pivoting 77

4.3.1 Error bound . 78
4.3.2 Numerical experiments . 79

4.4 Sequentially Truncated HOQRTP 80
4.4.1 Error bound . 82
4.4.2 Cost of ST-HOQRTP . 84
4.4.3 Numerical experiments . 84

4.5 Conclusion . 86

Conclusion and perspectives 89

iv

A Source code 91
A.1 Subsampled Randomized Hadamard Transform 91
A.2 Gaussian sampling . 92
chapter

v

vi

Résumé en français

Les matrices et tenseurs figurent parmi les outils les plus répandus de représenta-
tion et d’exploitation de l’information. Certaines sources produisent de grandes
quantités de données, et déterminer l’information précise présente dans ces don-
nées est primordial au sein d’un grand nombre de domaines. D’une autre façon,
les simulations numériques produisent parfois des objets très grands comparés
à la quantité d’information réelle présente dans le système simulé, comprimer
cette information permettrait alors d’effectuer une simulation efficace et peu
coûteuse.

Pour mettre en place cette simplification, nous considérons les méthodes
d’algèbre linéaire telles que la décomposition en valeurs singulières (SVD) ainsi
que la décomposition QR. Elles s’appliquent sur tout type de matrices et four-
nissent des indices sur l’organisation de l’information, ainsi que des outils ef-
ficaces pour les manipuler, comme l’approximation de rang faible. L’appro-
ximation de rang faible permet de compresser des matrices de grande taille dans
un format réduit, avec ou sans perte (erreur). Elle représente la matrice d’entrée
comme un produit de matrices plus petites, pouvant être vues comme la pro-
jection de la matrice dans un sous-espace, selon deux principes: le sous-espace
est de faible dimension; l’information perdue lors de la projection est moindre.
La perte d’information correspond ici à l’erreur entre la matrice originale et
son approximation. Ces deux principes antagonistes conduisent au double prob-
lème de minimisation sous-jacent: d’une part en fixant la taille du sous-espace
et en minimisant l’erreur; d’autre part en fixant une contrainte d’erreur et en
minimisant la taille du sous-espace.

Les approximations de rang faible sont appliquées dans nombre de domaines
qui nécessitent de récupérer une information utile dans une grande quantité de
données d’entrée (parfois redondante). L’étude des approximations de rang faible
a débuté en psychométrique [43], où les données d’entrée étaient issues de l’étude
d’un groupe d’individus. Bien qu’au début ces individus étaient référencés selon
un unique attribut, le nombre d’attributs a par la suite augmenté, déplaçant
ainsi l’étude dans le domaine tensoriel [111]. Les approximations de rang faible
furent ensuite appliquées aux sciences des données, dont la fouilles de données
[45, 9], les systèmes de recommandation [39, 121, 29], la recherche internet [77,
73], les base de données et l’indexation de corpus de documents [1, 98, 19], le
partitionnement de données [49, 48, 40], le partitionnement de graphes [14], et
la regression linéaire [89, 120]. On trouve également des approximations de rang
faible dans des applications physiques comme l’astronomie [44], la géophysique
[55, 108], la science du climat [122], le traitement du signal [113] ainsi que la
dynamique des fluides [38]. Ces questions apparaissent aussi dans le domaine
de la compression d’image et de vidéo [104], et dans le contexte de l’imagerie

vii

médicale [46, 72].
Si ces méthodes sont facilement applicables à une échelle raisonnable au

moyen d’un ordinateur moderne, elle deviennent difficiles à utiliser sur des matri-
ces de grande tailles, en particulier dépassant l’espace mémoire de l’ordinateur.
De nos jours, il est de plus en plus courant de manipuler de telles matrices en sci-
ences des données ou en simulation, et un grand nombre de méthodes des deux
dernières décennies permettent de s’y adapter. De telles méthodes suggèrent la
division de la matrice (ou du tenseur) sur plusieurs processeurs associés en centre
de calcul, et le calcul de l’approximation en parallèle. Le but est alors d’obtenir
avec plusieurs ordinateurs une décomposition qui ressemble au mieux à celle
calculée par un unique ordinateur. L’échange d’information est autorisé entre
les nœuds, mais devrait rester minimal car la communication est la principale
cause de ralentissement lors du passage à grande échelle.

Cette thèse vise à présenter de nouvelles méthodes parallèles diminuant plus
encore le coût des calculs et des communications. Ces nouvelles méthodes perme-
ttent de manipuler des matrices de grande taille plus efficacement, économisant
de l’espace de stockage et du temps. De plus, elles résument l’information con-
tenue dans une matrice, fournissant une vue interne et découvrant la struc-
ture des données. Pour beaucoup d’applications, les données sont fonction de
nombreuses variables, alors représentées par un tableau multidimensionnel, un
tenseur. Ce document développe cet aspect en orientant une partie de l’étude
vers le domaine tensoriel.

Ce travail traite principalement des approximations de rang faible obtenues
par décomposition QR. Pour cela, on utilise la décomposition QR avec piv-
otement des colonnes (QRCP) [21]. Une implémentation couramment utilisée
de QRCP est disponible dans la routine dgeqpf de LAPACK (Linear Algebra
Package [7]), mais la dernière version est dans la routine dgeqp3 [cf. 99]. Cette
implémentation écrite en Fortran est inclue dans la plupart des langages et
outils haut niveau tel que Matlab, Python et Julia. Cet algorithme a une implé-
mentation parallèle dans le routine pdgeqpf de ScaLAPACK (Scalable Linear
Algebra Package [18]). Cet algorithme produit la décomposition QRCP com-
plète, cependant seule une petite partie est nécessaire pour l’approximation.
Cette partie réduite, formant une décomposition partielle nommée QRCP tron-
quée, est le sujet de nombreuses discussions exposant plusieurs stratégies de
pivotement [106, 25, 26, 66, 59, 96]. Nous retiendrons ici la méthode strong
rank revealing QR [59], dont la stratégie de pivotement garantie des bornes sur
l’erreur d’approximation. Cet algorithme fut étendu pour prendre en compte
le pivotement indépendant de groupes séparés de colonnes, afin de permettre
la parallélisation, et la borne d’erreur fut adaptée en conséquence, conduisant
à l’algorithme CARRQR [36]. Dans ce contexte, nous généralisons CARRQR
afin de pouvoir non seulement déterminer indépendamment des pivots sur des
groupes de colonnes, mais également sur des groupes de lignes, permettant ainsi
d’agir sur des sous-matrices; nous évaluons en pratique l’erreur d’approximation
(par rapport à la borne théorique), ainsi que l’influence de la structure de la
matrice d’entrée; nous étudions comment cet algorithme se comporte à grande
échelle, en comparaison avec l’existant. D’un autre point de vue, la randomisa-
tion a connu un gain d’attractivité au cours de la dernière décennie, et plusieurs
articles traite du couplage entre QRCP tronquée et l’échantillonnage statistique
visant à réduire le nombre de lignes [42, 118, 86]. La randomisation est effectuée
dans ce cas avec un échantillonnage gaussien. À ce propos, nous considérons une

viii

autre transformation aléatoire, subsampled randomized Hadamard transform, et
nous étudions si cet transformation est efficace à grande échelle. En déplaçant
l’étude dans le domaine tensoriel, on étudie l’approximation de rang (multil-
inéaire) faible obtenue avec la décomposition de Tucker [111] et implémentée
en parallèle dans la bibliothèque TuckerMPI [13]. La décomposition de Tucker
utilise des approximations de rang faible, effectuées en général via des décompo-
sitions SVD tronquées. Récemment furent conçues plusieurs variantes intégrant
la randomisation [47, 97, 90, 91, 28]. On se pose la question de substituer QRCP
tronquée parallèle à SVD tronquée pour calculer la décomposition de Tucker,
et de comparer l’erreur et le temps d’exécution avec la décomposition Tucker
parallèle.

Ce document répondra à ces problèmes de recherche dans l’ordre suivant.
Le chapitre 1 donne les éléments théoriques d’algèbre linéaire et multilinéaire,

et du calcul à grande échelle. Le lecteur trouvera dans ce chapitre les nota-
tions générales, les théorèmes et algorithmes liés aux décompositions QR et
SVD, ainsi que les bornes d’erreur usuelles. De plus, le formalisme tensoriel est
présenté, accompagné d’un exemple d’application pratique qui motive les dif-
férentes méthodes présentées dans ce travail. Cette application consiste en une
simulation moléculaire, représentée par des opérations tensorielles, exposant dif-
férentes étapes où les approximations de rang faible de matrices et de tenseurs
sont cruciales pour une fiabilité à grande échelle. La dernière section donne un
tour d’horizon de l’environnement de calcul disponible pour les expériences, en
termes matériels et logiciels.

Le chapitre 2 présente la parallélisation d’une technique alternative de ran-
domisation appelée subsampled randomized Hadamard transform (SRHT). Des-
tinée à la même utilisation que l’échantillonnage gaussien, avec une précision
similaire elle produit de meilleurs temps d’exécution. Block SRHT est notre
version distribuée de cette méthode, pouvant être appliquée sur des matrices
de grande taille. De plus, block SRHT est utilisée pour calculer l’approximation
de Nyström, une décomposition de rang faible pour les matrices positives semi-
définies.

Le chapitre 3 généralise CARRQR pour un partitionnement quelconque de
colonnes et de lignes de la matrice d’entrée, conduisant au nouvel algorithme QR
avec tournoi par colonne (QRTP). QRTP calcule le vecteur de pivots d’une ma-
trice distribuée quelconque à l’aide de décompositions QRCP tronquées locales.
La borne de la méthode strong RRQR est adaptée pour offrir des garanties dans
la nouvelle configuration, et l’implémentation logicielle est détaillée. On anal-
yse le comportement de cette algorithme selon le profil des valeurs singulières
de la matrice d’entrée, et on fournit des expériences de passage à l’échelle sur
un grande nombre de nœuds de calcul, en comparant avec l’alternative QRCP
randomisé.

Le chapitre 4 présente l’algorithme high order QRTP (HOQRTP), substitu-
ant la decomposition QRCP tronquée à la SVD tronquée dans la décomposition
de Tucker. Il utilise notre algorithme QRTP pour calculer efficacement chaque
approximation de rang faible en parallèle. Nous expliquons comment QRTP
peut être appliqué dans chaque dimension sans mouvement de données, et four-
nissons des bornes d’erreur théoriques. Nous intégrons également les idées liées
à l’algorithme sequentially truncated HOSVD, formant un nouvel algorithme ap-
pelé sequentially truncated HOQRTP (ST-HOQRTP). Cet algorithme est com-
paré à TuckerMPI sur des tenseurs de grande taille.

ix

Cette thèse à mené aux publications suivantes.

Accepté Matthias Beaupère, David Frenkiel, Laura Grigori. Higher-Order QR
with Tournament Pivoting for Tensor Compression. À paraître dans le SIAM
Journal on Matrix Analysis and Applications. Épreuve: https://hal.inria.
fr/hal-03079236.

Soumis Matthias Beaupère, Laura Grigori. Communication avoiding low rank
approximation based on QR with tournament pivoting. 2022. Épreuve: https:
//hal.inria.fr/hal-02947991.

Soumis Oleg Balabanov, Matthias Beaupere, Laura Grigori, Victor Lederer.
Block subsampled randomized Hadamard transform for low-rank approximation
on distributed architectures. 2022. Épreuve: https://arxiv.org/abs/2210.
11295.

x

https://hal.inria.fr/hal-03079236
https://hal.inria.fr/hal-03079236
https://hal.inria.fr/hal-02947991
https://hal.inria.fr/hal-02947991
https://arxiv.org/abs/2210.11295
https://arxiv.org/abs/2210.11295

Introduction

Matrices and tensors are amongst the most common tools to represent and ex-
ploit information. Some sources produce large quantities of data, and analyzing
the information provided by this data is important in many domains. Addi-
tionally, numerical simulations sometimes produce objects that are very large
compared to the actual quantity of information residing in the simulated system,
and compressing these objects yields efficient and cost-saving simulations.

To achieve this compression, we consider linear algebra methods such as the
singular value decomposition (SVD) and the QR decomposition. They apply on
any matrix and provide hints on the information to compress as well as efficient
tools to manipulate it, such as the low rank approximation. The low rank
approximation compresses large matrices into a smaller format, with or without
loss of information (error). It represents the input matrix as a product of factor
matrices of smaller dimension, equivalently seen as projecting the matrix into
a subspace with two principles: the subspace is small; little information is lost
from the matrix—the loss of information is quantified as an error between the
matrix and its approximation. This can be formulated as a double minimization
problem, tackled from two possible angles: either by fixing the subspace size
and minimizing the error, or by fixing an error constraint and minimizing the
subspace size.

Applications of low rank approximation are multiple, in many domains where
valuable information is sought from a large amount of (often redundant) input
data. The study of low rank approximation began in the field of psychometrics
[43], where the input data comes from studying a group of individuals. If, at
first, the subjects were described with a single feature, the dimension increased
afterwards and it became relevant to study the problem in tensor form [23].
Low rank approximation was later applied to data sciences including general
data mining [45, 9], recommendation systems [39, 121, 29], web search [77, 73],
database and document corpus indexing [1, 98, 19], clustering [49, 48, 40], graph
partitioning [14], and linear regression [89, 120]. Low rank approximations are
also used in physical applications such as astronomy [44], geophysics [55, 108],
climate science [122], signal processing [113] and fluid dynamics [38]. The same
question arises also in the field of image and video compression [104], and in the
context of medical imagery [46, 72].

If these methods are quite easy to use at reasonable scale with a modern
laptop, they can be more difficult to apply at larger scale especially when the
matrix does not fit entirely in the laptop’s memory. Such large matrices occur
more and more in modern simulations and data science, and various methods
were presented in the last two decades addressing this problem. These methods
propose to divide the matrix (or tensor) across several computers, associated

1

in a computing cluster, and perform the decomposition in parallel. The goal is
to obtain, with multiple computers, a decomposition that resembles as much as
possible the decomposition obtained on a single computer. Communication is
allowed between the nodes, but should be kept minimal, as it is the main factor
of inefficiency at large scale (see e.g. [15]).

This thesis introduces novel parallel methods, further decreasing commu-
nication and computational cost with respect to existing algorithms. These
new methods enable to manipulate very large matrices more efficiently, saving
storage and time. As an additional benefit, they summarize the information
contained in matrices, unveiling mathematical properties such as the column
and row spaces of the matrix. For many applications, the data is a function of
many variables, hence represented as a multidimensional array, a tensor. This
document addresses this aspect by directing part of the analysis toward the
higher dimension domain.

This work primarily focuses on low rank approximations obtained with the
QR decomposition. To this end, we use the QR decomposition with column
pivoting (QRCP) [21]. A broadly used implementation of QRCP is available
as the routine dgeqpf from LAPACK (Linear Algebra Package [7]), but the
recommended version is routine dgeqp3 [see 99]. This implementation written
in Fortran is included in most modern high-level languages and tools such as
Matlab, Python and Julia. This algorithm has a parallel implementation in
routine pdgeqpf of ScaLAPACK (Scalable Linear Algebra Package [18]). This
algorithm provides the complete QRCP decomposition, while a small part is
sufficient for the approximation. This reduced part, forming a partial decom-
position named truncated QRCP, is the topic of many discussions, introducing
different pivoting strategies [106, 25, 26, 66, 59, 96]. We retain here the strong
rank revealing QR [59], where the pivoting strategy guarantees bounds on the
approximation error. This algorithm was extended to consider independent piv-
oting on separate groups of columns of the matrix, with parallelism in mind,
and the bound was accordingly adapted, leading to the communication avoiding
rank revealing QR (CARRQR) algorithm [36]. In this context, we extend CAR-
RQR to perform independent pivoting not only on groups of columns, but on
submatrices, separating rows as well; we study the practical value of the error
(compared to the bound) and its behavior depending on the singular value pro-
file of the input matrix; we investigate the practical scalability of this algorithm,
and compare it with existing ones. From another point of view, randomization
has gained a lot of attention in the last decade, and various papers focused on
coupling the parallel truncated QRCP with sampling to reduce the number of
rows [42, 86, 118]. The randomization is performed here with Gaussian sam-
pling. To follow this direction, we consider a different random transform, the
subsampled randomized Hadamard transform. We introduce a parallel version
of this transform and study its scalability. Translating this analysis in the ten-
sor domain, we focus on the low multilinear rank approximation obtained with
the Tucker decomposition [111], implemented in parallel by the TuckerMPI li-
brary [13]. The Tucker decomposition uses matrix low rank approximations,
generally performed with a truncated SVD decomposition. Recently, several
variants were designed incorporating randomization [47, 97, 90, 91, 28]. We ad-
dress the question of substituting a parallel truncated QRCP to the truncated
SVD to compute the Tucker decomposition, and compare the obtained error
and speedup with the parallel Tucker decomposition.

2

These research problems are addressed in this document in the following
order.

Chapter 1 provides the background information on linear and multilinear
algebra, and large scale computing. The reader can find in this chapter the
general notations, theorems and algorithms related to the SVD and QR de-
compositions as well as the error bounds from the literature. Additionally, the
formalism of tensors is given along with a typical application of the material
produced in this work. It presents molecular simulation from a tensor point
of view, exposing different steps where matrix and tensor low rank approxima-
tions are key to scalability and accuracy. In the last section, the computing
environment landscape available for the experiments is presented, both in terms
of software and hardware.

Chapter 2 presents the parallelization of an alternative randomization tech-
nique called subsampled randomized Hadamard transform (SRHT). Intended
for the same use as Gaussian sampling, it exhibits a similar accuracy yet a bet-
ter speedup. Block SRHT is our distributed version of the method, such that it
can be applied on large matrices. In this chapter, it is compared to the Gaus-
sian sampling with a theoretical error estimate and numerical experiments. In
addition, block SRHT is used to compute the Nyström approximation, a low
rank decomposition for symmetric positive semi-definite matrices.

Chapter 3 generalizes CARRQR to any row and column partitioning of the
input matrix, leading to a new algorithm called QR with tournament pivoting
(QRTP). QRTP computes the column pivoting vector of any distributed ma-
trix by means of local truncated QRCP decompositions. The strong RRQR
error bound is adapted to provide guarantees on the new configuration, and the
practical implementation is detailed. We analyze the behavior of this algorithm
depending on the singular value profile of the input matrix, and provide scala-
bility experiments on a large number of nodes, comparing with the alternative
randomized QRCP algorithm.

Chapter 4 presents the higher order QRTP (HOQRTP) algorithm, substi-
tuting the truncated QRCP decomposition to the truncated SVD in the Tucker
decomposition. It uses our QRTP algorithm to compute each low rank approx-
imation efficiently in parallel. We explain how QRTP can be applied in each
dimension without data mouvements, and provide theoretical error bounds. We
also incorporate the sequentially truncated approach to speed up the compu-
tation, constituting a new version called sequentially truncated HOQRTP (ST-
HOQRTP). This algorithm is compared to the TuckerMPI implementation on
large scale tensors.

This thesis led to the following publications.

Accepted Matthias Beaupère, David Frenkiel, Laura Grigori. Higher-Order
QR with Tournament Pivoting for Tensor Compression. To appear in SIAM
Journal on Matrix Analysis and Applications. Preprint https://hal.inria.
fr/hal-03079236.

Submitted Matthias Beaupère, Laura Grigori. Communication avoiding low
rank approximation based on QR with tournament pivoting. 2022. Preprint
https://hal.inria.fr/hal-02947991.

3

https://hal.inria.fr/hal-03079236
https://hal.inria.fr/hal-03079236
https://hal.inria.fr/hal-02947991

Submitted Oleg Balabanov, Matthias Beaupere, Laura Grigori, Victor Led-
erer. Block subsampled randomized Hadamard transform for low-rank approxi-
mation on distributed architectures. 2022. Preprint https://arxiv.org/abs/
2210.11295.

4

https://arxiv.org/abs/2210.11295
https://arxiv.org/abs/2210.11295

Chapter 1

Background on numerical
linear and multilinear algebra

The present document introduces different methods to approximate large ma-
trices and tensors. To prepare the introduction of each method, this chapter
reviews basic notions surrounding them. It first provides the general defini-
tions of linear and multilinear algebra, including related work on the topic. In
addition, we present a typical application motivating the use of the methods
presented in the following chapters. Finally, practical information on how test
cases are generated is given, as well as the usage of high performance computing
in the field of linear algebra.

1.1 Notation

Throughout this work we use the following notations.
A matrix is denoted A, a vector x, and a tensor A. Rm×n is the set of

matrices having m rows and n columns. For any matrix A, A⊺ is the transpose
of A and A+ is the pseudo-inverse of A

For any matrix A, A[i : j, k : l] denotes the submatrix containing rows i to
j and columns k to l of A, A[:, k : l] denotes the submatrix containing columns
k to l of A, A[:, : l] denotes the submatrix containing the l first columns of A,
and A[:, j] denotes jth column of A. For any matrix A, and a set of indices I,
A[:, I] denotes the submatrix containing columns of indices I of A.

For any matrix A ∈ Rm×n, we define

ωi(A) =
1

∥A−1[i, :]∥ , γj(A) = ∥A[:, j]∥ .

Additionally, O denotes a matrix containing only zeroes, and I denotes the
identity matrix.

For any matrices A1 and A2 having the same number of rows, [A1;A2] =[
A1

A2

]
denotes the vertical concatenation of A1 and A2. Similarly, for a common

number of columns,
[
A1 A2

]
denotes the horizontal concatenation of A1 and

A2.

5

For any matrix A ∈ Rm×n, σk(A) denotes the kth largest singular value of
A. ∥A∥2 = maxx∈Rn

∥Ax∥
∥x∥ , is the ℓ2 operator norm of A, also called the 2-norm,

or spectral norm. It corresponds to the maximum singular value of A (see below
the definition of the singular value decomposition). ∥A∥F =

√∑
1≤i≤m
1≤j≤n

a2ij ,

where aij is a coefficient of A, is the Frobenius norm of A. ∥A∥∗ = tr(A),
where tr() denotes the trace, is the nuclear norm, also called the trace norm, of
A.

For any random variable X, E [X] is the expected value of X.

1.2 Matrix low-rank approximation

After defining the low-rank property for a matrix, we give several decompositions
leading to a low-rank approximation.

1.2.1 Projections

Orthogonal projections are abundantly used throughout the document. As an
introduction, the following gives a simple presentation of orthogonal projections.

An orthogonal matrix Q is square and obeys the rule QQ⊺ = Q⊺Q = I. Its
columns form a set of linearly independent vectors, orthogonal to one another. A
partial orthogonal matrix Q1, sometimes also named shortly orthogonal through
misuse of language, contains a column subset from an orthogonal matrix (there
exists Q and Q2 such that Q =

[
Q1 Q2

]
is orthogonal), hence also has or-

thogonal columns to one another. A partial orthogonal matrix obeys the rule
Q⊺

1Q1 = I, yet Q1Q
⊺
1 = P ̸= I. In particular, Q⊺

1 operates an orthogonal
change of basis to a smaller space.

P belongs to the set of projection matrices: it obeys the rule PP = P.
In particular, while defined on a vector space E, its range lies in the vector
subspace span(Q1) ⊂ E generated by the columns of Q1.

x

z

y

q1

q2

x

Q1Q
⊺
1x

Figure 1.1: Projection plan, image of the projector P in R3, along with one
vector x of R3 and its orthogonal projection.

6

As an example, consider a randomly chosen 3× 3 matrix

Q =

−0.306899 0.935221 −0.176561
−0.792075 −0.353832 −0.497414
−0.527665 −0.0128059 0.849356

and select two columns to form a partial orthogonal matrix

Q1 =

−0.306899 0.935221
−0.792075 −0.353832
−0.527665 −0.0128059

 .
The transpose Q⊺

1 applied to any vector of R3 writes its orthogonal projection
on Span(Q1) as a linear combination of these two columns, its image lies in R2.
The projection matrix P = Q1Q

⊺
1 projects any vector of R3 onto the plane

generated from the column vectors of Q1. The image is still in R3 but lies in
a vector subspace of dimension 2. This plane is represented in Figure 1.1. The
vector x in Figure 1.1 is a random vector of R3, applying Q1Q

⊺
1 comes down to

projecting it on the plane.

1.2.2 Preliminary definitions

The singular value decomposition (SVD) of a matrix A ∈ Rm×n is defined as

A = UΣV⊺,

where U and V are orthogonal matrices composed of the left and right singular
vectors, and Σ is a diagonal matrix composed of the singular values, the set
of which we call the spectrum of A. This decomposition is essentially unique
under the constraint that the coefficients of Σ are positive and sorted.

The rank k of A ∈ Rm×n is the number of non-zeros on the diagonal of Σ.
If Σ contains any zero, i.e. if k < min(m,n), the matrix A is called singular,
or rank-deficient. In practice, in linear algebra computations, matrices that are
expected to be singular are not necessarily so, due to round-off errors and other
approximations. Thus, we rather study the ratio σi(A)

σ1(A) . We call numerical rank

the index i such that for a given threshold ε, ∀j > i,
σj(A)
σ1(A) < ε.

A matrix A is of low rank if it has rank k, and k ≪ min(m,n). It typically
manifests itself as rapidly decaying singular values, meaning that the coefficients
on the diagonal of Σ decrease fast enough. A low-rank matrix is numerically
rank deficient, but the converse is not necessarily true: a numerically rank-
deficient matrix is not necessarily low-rank.

The low-rank property is a good indicator that a matrix can be compressed,
meaning that a lower amount of coefficients is sufficient to represent the matrix.
Such a matrix can be stored in an alternative format, decreasing the storage
and computational cost.

Other indicators are also useful to consider. The condition number of A
defined as κ(A) = σmax(A)/σmin(A) describes the spectrum width of A. The
gap between two consecutive singular values i and i + 1 is σi(A)/σi+1(A). If
there exists a gap of several orders of magnitudes at index k in the spectrum
of A, then A can be compressed with an accuracy depending on σk+1, and if
additionally k ≪ min(m,n), then A has a low numerical rank. We also define

7

the tail of A from index k as
√∑n

i=k+1 σ
2
i (A). The tail often helps to measure

the information lost (in Frobenius norm) when compressing a matrix at rank k.
The following recalls various methods from the literature to compute the

compressed format of a dense matrix.

1.2.3 Truncated Singular Value Decomposition
The truncated SVD (see Figure 1.2) is defined as Aopt,k = UkΣkV

⊺
k , where

Σk ∈ Rk×k is a diagonal matrix formed by the k leading singular values of A,
σ1(A), . . . , σk(A), Uk ∈ Rm×k and Vk ∈ Rn×k are the corresponding left and
right singular vectors, respectively. The truncated SVD provides the best low
rank approximation in terms of Frobenius norm and 2-norm [43], with ∥A −
Aopt,k∥2 = σk+1(A) and ∥A−Aopt,k∥F =

√∑min(m,n)
i=k+1 σ2

i (A).

Aopt,k =

Uk Σk Vk

Figure 1.2: Truncated singular value decomposition.

This method is the reference to evaluate the performance of a compression
method. Nevertheless for large matrices the truncated SVD is expensive to
compute. The reasons are the following: one often has to compute the full SVD
to obtain the truncated version; the sequential implementation of the accurate
SVD has a complexity of O(n3) where n is the number of rows of a square
matrix [54, Fig. 8.6.1]; the SVD is not easy to parallelize.

1.2.4 QR, QRCP and strong RRQR
The QR decomposition of a matrix A ∈ Rm×n is denoted by

A = QR,

where Q is an orthogonal matrix, and R is an upper triangular matrix. These
matrices are typically computed by applying the Gram-Schmidt process to the
columns of A, alternatively using Householder reflectors [68] or Givens rotations
[53].

If A is a tall matrix, we define an alternative thin QR decomposition A =
Q1R1 where Q1 ∈ Rm×n is tall with orthonormal columns and R1 ∈ Rn×n is
square, upper-triangular and relatively small.

Throughout this work orthogonal matrices such as Q are typically split such
that Q =

[
Q1 Q2

]
, as mentioned in Section 1.2.1. Recall the behavior of

partial orthogonal matrices: Q⊺
1Q1 = I is a small identity matrix and Q1Q

⊺
1 is

a projection matrix. Theorem 1 and Theorem 2 provide useful inequalities on
the behavior of the singular value, the former for a submatrix of A, the latter
for a matrix projected with Q1 or Q2.

Theorem 1 (Interlacing singular values [109]). Let A ∈ Rm×n and B ∈ Rp×q
a submatrix of A. Then for 1 ≤ i ≤ min(p, q)

σmin(p,q)−i+1(A) ≤ σi(B) ≤ σi(A)

8

See the proof in the reference.

Theorem 2. Let A ∈ Rm×n and Q ∈ Rm×p be two matrices such that p ≤ m
and Q has orthonormal columns. Then for 1 ≤ i ≤ min(p, n)

σi(Q
⊺A) ≤ σi(A).

Proof. We use the following well-known singular value inequalities. Given two
matrices A,Q ∈ Rm×n, using [67, Thm. 3.3.16(d)] restricted to the real case,
we have that for 1 ≤ i ≤ min(m,n), σi(AQ⊺) ≤ σi(A)σ1(Q). If Q has or-
thonormal columns, then σ1(Q) = 1, and we obtain σi(Q⊺A) ≤ σi(A).

By using the correct padding and Theorem 1 it holds with Q ∈ Rm×p for
p ≥ 1.

The QR decomposition with column pivoting [21], QRCP (see Figure 1.3),
derives the QR decomposition introducing a permutation matrix Π such that

AΠ = QR.

This method introduces a pivoting at each iteration of Householder QR, in
order to permute first the column of largest norm. The reference implementation
is the dgeqp3 routine from LAPACK. There is not yet an equivalent distributed
routine pdgeqp3 in the official release of ScaLAPACK, at the time of writing.
ScaLAPACK only has pdgeqpf, an equivalent to LAPACK’s dgeqpf routine.

Qk Rk

Ak =

Figure 1.3: Truncated QR decomposition

The QR decomposition with column pivoting relies on a permutation matrix
Π and computes the decomposition AΠ = QR. There are several approaches
for choosing a permutation Π that reduce the error of the low rank approxima-
tion ∥A −Ak∥2. One approach, referred to as QRCP, is to select the column
with the largest norm [21] at each step of the QR factorization. Another ap-
proach is to reject n − k columns one-by-one using the lowest singular value
of the non-rejected columns [25, 26]. This strategy is sometimes referred to as
reverse pivoting [96, 66, 106]. Strong rank revealing QR (strong RRQR) [59]
is another approach that relies on computing QRCP followed by a number of
additional column permutations. In our implementation we use dlaqps from
LAPACK [7, 99, 41] which implements a block QRCP based on the original
algorithm from Businger and Golub. In prior works, implementation of the
truncated QRCP decomposition was obtain by modifying of the dgeqp3 rou-
tine from LAPACK [42, 118]. However, our theoretical results are based on
the bounds obtained by strong RRQR, that we present in the following two
theorems.

Theorem 3. Gu and Eisenstat [59, Lem. 3.1 and Alg. 4] Let A be an m × n
matrix and 1 ≤ k ≤ min(m,n). For any f > 1 there exists a permutation matrix
Π such that the decomposition

AΠ = QR =
[
Q1 Q2

] [R11 R12

R22

]
, (1.1)

9

verifies for all (i, j) ∈ [1, k]× [1, n− k],

(R−1
11 R12)

2

ij + ω2
i (R11)γ

2
j (R22) ≤ f2. (1.2)

A factorization satisfying Eq. (1.2) is thus called a strong RRQR factoriza-
tion. We also use the relaxed form by summing over i [36, Cor. 2.3],

γ2j (R
−1
11 R12) + γ2j (R22)/σ

2
min(R11) ≤ kf2, (1.3)

leading to the following theorem.

Theorem 4. [59, Thm. 3.2] and [36, Thm. 2.4] Let A be an m× n matrix and
1 ≤ k ≤ min(m,n). Let f > 1 and Π be a permutation matrix such that the
decomposition described in Eq. (1.1) verifies for all (i, j) ∈ [1, k]× [1, n− k]

γ2j (R
−1
11 R12) + γ2j (R22)/σ

2
min(R11) ≤ kf2

Then for any 1 ≤ j ≤ n− k and 1 ≤ i ≤ k

1 ≤ σi(A)

σi(R11)
≤
√
1 + kf2(n− k), 1 ≤ σj(R22)

σk+j(A)
≤
√

1 + kf2(n− k) (1.4)

Note that in Eq. (1.4), being greater than or equal to 1 is satisfied in each
case for any Π as a consequence of Theorem 1.

1.2.5 Cross approximation

Any matrix A ∈ Rm×n of rank r can be written as

A = CÂ−1R,

where C is a subset of r columns of A, and R is a subset of r rows of A.
Â is the submatrix at the intersection of both these rows and columns. This
decomposition is known as cross approximation [112, 17]. Even though we did
not focus on this during this work, it is closely connected to the QR decompo-
sition (see e.g. Savostyanov and Tyrtyshnikov [101, Sec. 4]). Furthermore, this
concept is explored in details in Oseledets [94], Oseledets et al. [95], Oseledets
and Tyrtyshnikov [93] and especially the tensor train decomposition is partially
based on this concept.

It is also important to mention at this point the max-volume concept [56]. In
the case that A is square, the volume is given by its determinant. In the cross
approximation, the best submatrix suited for the decomposition is determined
by comparing the volume of the candidate submatrices.

1.3 Tensor approximation

This section introduces multilinear algebra with the definition of tensors and
associated properties.

10

1.3.1 Introduction to tensors
Any discrete multivariate function f(x1, . . . xd) can be represented as a hyper-
rectangle of Rn, a tensor. For a review of tensors and their decompositions, the
reader is referred to Kolda and Bader [78]. Grasedyck et al. [57] is also very
handy, as it lists the reference papers for many applications of tensor low-rank
approximation. A tensor is a d-dimensional array of values, identified by a set
of d indices (coordinates) each ranging from 1 to nj , where 1 ≤ j ≤ d. Then
a value of the tensor is noted A(i1 . . . id). If this tensor was built from a dis-
cretization [see 80] we have A(i1 . . . id) = f(x1(i1), . . . xd(id)) where for a given
i, xi is a discrete mapping from the range 1 . . . di to the definition space of the
ith variable of f . The letter i in this context represents a dimension, or mode
of the tensor. The number d is the order of the tensor. Figure 1.4 represents a
3-order tensor. The red cube is the position of the value for indices (3,3,3).

i
1

=
1
.
.
.
n
1

i2 = 1 . . . n2
i 3

=
1
. .
. n

3

Figure 1.4: 3-order tensor, the inner red cube represents a specific value in the
tensor.

When manipulating tensors, one can exchange, merge or expand indices
without changing the number of coefficients. This change of structure in the
tensor is a reshape. Merging indices, i.e. unfolding or matricizing the tensor, is
done using the Kronecker product. In general indices are grouped into two new
indices forming a matrix. To unfold a tensor A, its indices (i1, . . . , id) are split
into two groups, leading to the matrix indices (I, J) = (i1⊗. . .⊗ik, ik+1⊗. . .⊗id).
If I contains a single index ij of A, then the matricization is a j-mode unfolding
of A, noted Aj .

3

2

i3 = 1

→

321

Figure 1.5: 1-mode unfolding of a 3-order tensor.

Figure 1.5 displays an 1-mode unfolding of a 3-order tensor. In this example,
dimensions 2 and 3 are combined to form the column space of the matrix, such
that (I, J) = (i1, i2 ⊗ i3).

The matrix rank definition is generalized to the higher order tensor case, i.e.
when d > 2, using the CP decomposition [63]. This decomposition consists of

11

a sum of rank-one tensors. A rank-one tensor X ∈ Rn1×...×nd can be written
as the outer product of d vectors X = a1 ⊗ . . .⊗ ad. The CP decomposition is
written A =

∑r
i=1 a

(i)
1 ⊗ . . .⊗ a

(i)
d . The rank is then r, the minimal amount of

rank-one tensor needed to totally represent A. Unfortunately, the problem of
finding the rank is NP-hard [70].

Matrix singular values do not have a straightforward equivalent for tensor.
The simple alternative is to study the singular values of each unfolding.

Bader and Kolda [10] provide further details about tensor unfolding, and
mentions several tensor products: inner product, outer product and contracted
product. The latter, also known as contraction, is of interest to us hence recol-
lected in the following. A contraction between two tensors is the summation of
these tensors over a common index. For instance let tensors A ∈ Rn1...nd have
indices (x1, . . . , xd) and B ∈ Rm1...md have indices (y1, . . . , yd). For 1 ≤ i, j ≤ d,
if ni = mj then the result of the contraction over index xi and yj is the tensor

C(x1 . . . xi−1, xi+1 . . . xd, y1 . . . yj−1, yj+1 . . . yd) =∑
xi,yj ,xi=yj

A(x1 . . . xd)B(y1 . . . yd).

Very similarly to the matrix product, two indices vanish and the remaining ones
are combined in the resulting tensor. As a matter of fact, the contraction can
be represented as the matrix product of the i and j-mode unfoldings Ai and
Bj , followed by the reshape of the resulting matrix into tensor C. If i = j the
contraction is written A×i B.

The tensor decompositions studied in the present work involve a great am-
ount of contractions, making it a common operation despite its complexity.
However, the diagram representation introduced in Section 1.3.2 greatly simpli-
fies its notation.

1.3.2 Tensor train
To compress a tensor, this thesis focuses on the Tucker decomposition, presented
in Chapter 4. This decomposition is particularly efficient when the tensor order
is reasonably small. For higher order tensors, one of the components of the
Tucker decomposition (the core tensor) is of high order as well, thus having
an exploding number of coefficients. To break this curse of dimensionality,
we present another well-known tensor decomposition, proved useful for high
dimensional data handling. Even though this decomposition is not directly
involved in one of our contributions, it is highly connected to our work and
plays an important part in the next section.

Any tensor can be decomposed as a contraction (product) of lower order
tensors, called a tensor train. Before having a formal study in Oseledets [94], this
decomposition was previously exposed in a form specific to quantum chemistry
[115].

Algorithm 1 presents an algorithm to compute a sequence of 3-order tensors,
forming a tensor train from a n-order tensor. One can verify this by multiplying
(contracting) all tensors over the created indices (β1, . . . , βn−1).

Figure 1.6 illustrates this contraction in diagram notation: each vertex rep-
resents a tensor and each edge a summation over an index, meaning that we
multiply the two connected tensors over this index.

12

Algorithm 1 TT-SVD (Algorithm 1 from Oseledets [94]).
Require: A n-order tensor A(x1, . . . , xn)
1: Extend A by adding two constant indices (β0, βn) such that

∀(x1, . . . , xn) ∈ Rn, Ã1(β0, x1 . . . , xn, βn) = Ã1(0, x1 . . . , xn, 0)

= A(x1 . . . , xn)

2: for i from 1 to n do
3: Compute the truncated SVD of the (βi−1, xi)-mode unfolding Ã

(xi)
i =

USV⊤, introducing a new index βi corresponding to the columns of U
and the rows of S

4: Mi is the tensorization of U, thus has indices (βi−1, xi, βi)
5: Ãi+1 is the tensorization of SV⊤, thus has indices (βi, xi+1, . . . , xn, βn)
6: end for
7: Mn ← Ãn

Ensure: A sequence (M1, . . . ,Mn) of 3-order tensors such that ∀(x1, . . . , xn) ∈
Rn, A(x1, . . . , xn) =

∑
β0...βn

M1(β0, xi, β1) . . .Mn(βn−2, xi, βn−1)

x1 x2 xn−1 xn

. . .
β1 β2 βn−2 βn−1

Figure 1.6: An n-order tensor train in diagram notation.

13

Algorithm 1 can be generalized to decompose a tensor A ∈ Rkn , k ∈ N
into a train of 3-order tensors. The algorithm can be adapted by setting x′i =
(xki+1, . . . , xki+k).

The diagram of the tensor train is in one dimension, but alternative meth-
ods take advantage of a two dimensional topology, or more, to obtain a tensor
network [4].

1.4 Application to chemistry

This section motivates the development of low rank approximations of large ma-
trices and tensors, by describing a numerical simulation employing these meth-
ods in the domain of physics and chemistry. This work being founded under
the Extreme-Scale Mathematically-based Computational Chemistry (EMC2)
project, aiming at accelerating molecular simulations, along the preparation
of the thesis we discussed with chemists to understand how advances in tensor
algebra can be used to speed up molecular simulations. In this section we recol-
lect our understanding in this domain, and present several angles to apply the
methods introduced in the next chapters to improve molecular simulations.

To apply tensor algebra in the context of molecular simulation, we retained
the DMRG algorithm (see Section 1.4.3). Applied to any molecular system, it
models the electronic interactions and exposes inherent properties of the system
such as the ground state energy. When the number of electrons is larger than 50,
or even 100, state-of-the-art algorithms cannot cope with the exponential com-
putational cost simulating fine-grained molecular models. Thanks to scalable
tensors, this method is useful for larger molecules.

The first part of this section presents the quantum chemistry context, fol-
lowed by a formulation of the problem in the tensor space, and finally the DMRG
algorithm is introduced.

1.4.1 Introduction to the electronic Schrödinger equation

This section describes modelling a molecule using the electronic Schrödinger
equation, introducing molecular orbitals and the Born-Oppenheimer approxi-
mation.

Consider a system (e.g. a molecule), and denote by R the positions of the
nuclei and by r the positions of the electrons. In the Born-Oppenheimer ap-
proximation, nuclei are fixed points, hence R is a constant of the system.

The Schrödinger equation is written

H(r, R)Ψ(r, R) = EΨ(r, R), (1.5)

where E and Ψ are the energy (a scalar) and its associated state of the system,
unknowns of the problem, and H is the Hamiltonian, a given operator.

14

Expression of the Hamiltonian

In practice the Hamiltonian has the following expression.

H =
1

2

∑
∇i−

∑
i electron
A nucleus

ZA
rAi

+
∑

A>B nuclei

ZAZB
RAB

+
∑

i>j electrons

1

rij
(1.6)

= T̂e(r)+ V̂eN (r,R)+ V̂NN (R)+ V̂ee(r), (1.7)

where ZA is the charge of nucleus A, rAi is the distance between nucleus A and
electron i, RAB is the distance between nuclei A and B, and rij is the distance
between electrons i and j. In addition, T̂e is the kinetic energies of the electrons,
V̂eN is the potential attraction energy between electrons and nuclei, V̂ee is the
potential repulsion energy between electrons and V̂NN is the potential repulsion
energy between nuclei.

Expression of the state function

Atomic orbitals are volumes containing (occupied) or not (unoccupied) exclu-
sively one electron, according to the Pauli principle. Let φi be a basis function
corresponding to the atomic orbital i. φi is usually built as a linear combination
of Gaussian functions, different from zero only in the area of the orbital. An
occupation state I = (i1, . . . , iN) is a combination of occupied orbital. We note
N the number of electrons, and L the number of orbitals. We must have L ≥ N .
If L > N , excited state are considered. Even when looking for the ground state,
excited states (higher layers orbitals) are included in the probabilistic model to
obtain an accurate state function. An occupation state is described by a basis
function ϕI , called molecular orbital, and written as a Slater determinant to
respect the antisymmetric property: ϕI = φi1 ∧ . . .∧ φiL . The state function is
the superposition of all physically possible occupation states I, weighed with a
probability cI , hence it is decomposed on the basis (ϕI)I , such that

Ψ =
∑
I

cIϕI .

This method involves Hilbert spaces and Galerkin approximation. For a
complete mathematical overview of the problem, including spin considerations,
consider reading Szalay et al. [107] . There are many ways to find the basis (ΦI).
As an example, one can compute the φi functions by solving local Schrödinger
equations, and subsequently the ΦI functions using the Hartree-Fock method.
The Hartree-Fock method finds each coefficient cI corresponding to an orbital by
considering all other orbitals as constant interaction potentials. This work does
not focus on building the basis set, and uses instead predefined techniques, see
e.g. Hehre et al. [62]. In order to build the tensor train representation addressed
thereafter, and to apply the DMRG algorithm, the coefficients of the second
quantization can be computed with the Quantum Package [52].

Minimization problem

The first goal of molecular simulation is finding the ground state energy of
the system. The different levels of energy are given by the eigenvalues of the
Hamiltonian in the Schrödinger equation. The larger eigenvalue corresponds to

15

most excited state when considering a given set of orbitals, and a number of
electrons, whereas the smallest signed eigenvalue corresponds to the ground state
energy. Finding the smallest eigenvalue comes down to solving the minimization
problem (more details can be found in Holtz et al. [64])

E0 = min
ψ

(Hψ,ψ)

(ψ,ψ)
, (1.8)

where H is the Hamiltonian operator. The solution E0 is the lowest energy level
and the associated argument Ψ0 is the corresponding state of the system. The
scalar product denoted by (,) is the scalar product of ℓ2.

Discretization as a tensor

The construction of the basis set (ϕI) exposed in the previous section is in-
dependent to this research. To focus on the tensor expression, the basis set
is abstracted by considering a set of given orbitals, and only the occupation
information remains. We consider two spaces to pose this problem:

The CAR algebra The Pauli exclusion principle, the conservation of the
particle number N , as well as the symmetries are encoded in the algebra. Oper-
ators are expressed as products composed of two basic operators: the creation
operator a†i , consisting of creating an electron in orbital i, and the annihilation
operator ai, consisting of removing an electron from orbital i.

The occupation state I corresponding to orbitals (i1, . . . , iL) occupied is
written in the CAR algebra

ϕI = ai1ai2 . . . aiLO,

with O being the empty state. The full state function hence writes as the
different occupation states weighed by their probability

Ψ =
∑
I

hi1...iLai1 . . . aiLO,

where hi1...iL is the probability that the system described by Ψ occupies orbitals
i1 . . . iL.

In the CAR algebra, the Hamiltonian can be written as

Ĥ =
∑
ij

hij ĉ
†
i ĉj +

1

2

∑
ijkl

uijklĉ
†
i ĉ

†
j ĉlĉk + VNN . (1.9)

This expression is called the second quantization formula. It transforms each
operator from the Hamiltonian given in Eq. (1.6) with creation and annihilation
operators. In each sum indices i, j, k and l loop over each orbital. The coeffi-
cient hij corresponds to the one electron integral, translating T̂e(r) + V̂eN (r,R)
with CAR algebra operators. The coefficient uijkl is the two electrons integral,
translating V̂ee(r) to the CAR algebra. VNN is a constant scalar. With this
expression, we can store the Hamiltonian of L orbitals as the combination of a
basis set, a tensor hij ∈ RL2

, a tensor uijkl ∈ RL4

and a scalar. All these ele-
ments can be computed using modern methods, for example with the Quantum
Package [52]. It involves computing sums of integrals, hence their name [88, 62].

16

The tensor uijkl is large for complex molecules. Therefore, an interesting
future goal would be to use the ST-HOQRTP algorithm introduced in Chapter 4
to approximate this tensor, in order to speedup its handling during standard
simulations. See Xing et al. [119], Huang et al. [69] for existing research results
on low rank representations of this tensor.

Encoding the problem in this way is very efficient, and used by many molec-
ular simulation methods. But it makes it hard to use standard linear alge-
bra methods, due to the particular laws of creation and annihilation operators.
Therefore, we further transform this formulation to express it in a standard vec-
tor space. Even though this adds zeros and redundancies, it can be mitigated
with tensor approximation.

The tensor algebra The state function is expressed as a vector of
⊕L

i=1 R2,
where L is the total number of orbitals considered, and each R2 space corre-

sponds to the state of one orbital with the following basis:
(
1
0

)
corresponds to

an occupied orbital and
(
0
1

)
corresponds to an unoccupied orbital.

We can then translate all vectors and operators from the CAR algebra in
this formalism. In particular,

O =

(
1
0

)
1

⊗ . . .⊗
(
1
0

)
L

,

a†i =

(
1 0
0 −1

)
⊗ · · · ⊗

(
1 0
0 −1

)
⊗
(
0 0
1 0

)
i

⊗
(
1 0
0 1

)
⊗ · · · ⊗

(
1 0
0 1

)
,

ai =

(
1 0
0 −1

)
⊗ · · · ⊗

(
1 0
0 −1

)
⊗
(
0 1
0 0

)
i

⊗
(
1 0
0 1

)
⊗ · · · ⊗

(
1 0
0 1

)
.

All operators in this context are in R2L×2L , including ai, a
†
i and H. Oper-

ators can be summed and multiplied such that the Hamiltonian in tensor form
can be deduced from Eq. (1.9). The Pauli principle, the conservation number
and the symmetries are not encoded anymore, therefore a particular attention
has to be paid on validating them. This new formulation lies in the well-known
multilinear algebra domain. Yet to obtain this a very high-dimensional object
was created, containing a lot of redundancy and sparsity. In the next section
we present how to alleviate this using a new compression format.

1.4.2 Hamiltonian and state function as tensors

The previous section exposed the electronic Schrödinger equation, and reformu-
lated it as a multilinear equation. Even though each dimension is small, each
tensor involved has a very large number of dimensions, meaning that its num-
ber of coefficients is very large. In addition, these tensors are likely to be easily
compressed, as they are quite sparse, and observe a lot of symmetries.

In this section we address the compression and manipulation of these tensors
using the tensor train compression format (introduced in Section 1.3.2).

Two specific forms of tensor trains are used. Let n be the number of orbitals
considered for the basis set. The first form, the Matrix Product State (MPS),
represents the state function Ψ from Eq. (1.5). It is a train of n 3-order tensors,

17

each having one dimension from the original tensor. See Figure 1.7 for the
diagram notation of the MPS.

x1 x2 xn−1 xn

. . .
α1 α2 αn−2 αn−1

Figure 1.7: Representation of an MPS in diagram notation.

We distinguish two groups of indices. The indices (x1 . . . xn) are fixed, of
dimension 2, corresponding to the indices of the original tensor. The indices
(α1 . . . αn−1) are much more intriguing. They can grow very large, especially
in the middle of the train. Keeping them low, if possible, requires contracting
tensors in the train. A method is given in Section 1.4.2, yet this question is still
of interest, see e.g. Holtz et al. [65]. In the context of quantum chemistry, these
indices are called bond dimensions. The index αi represents the interactions
between the electrons represented by the indices (x1, . . . , xi) and those repre-
sented by the indices (xi+1, . . . , xn). If we consider the matricization putting
(x1, . . . , xi) has rows and (xi+1, . . . , xn) as columns, the rank of this matrix will
be the minimal bond dimension αi (without compression) [107, Thm. 3.4].

The second form, the Matrix Product Operator (MPO), represents the
Hamiltonian operator H from Eq. (1.5). It is a train of n 4-order tensors,
each having two dimensions from the original tensor. See Figure 1.8 for the
diagram notation of the MPO.

x′1

x1

x′2

x2

x′n−1

xn−1

x′n

xn

. . .
β1 β2 βn−2 βn−1

Figure 1.8: Representation of an MPO in diagram notation.

In the following we recall a few operations involving MPO or MPS, men-
tioned in Oseledets [94].

Product of tensor trains

Consider the MPS corresponding to wave functions Ψ(x1, . . . , xn) and Ψ′(x1,
. . . , xn). The product of this two MPS is represented in Figure 1.9. This is
equivalent to computing the scalar product (Ψ,Ψ′) and the result is a scalar.

We now present two additional operations. When applying an operator
H(y1 . . . ynx1 . . . xn) to a wave function Ψ(x1, . . . , xn) to compute the wave func-
tion Ψ′ = HΨ, having H in MPO form and Ψ in MPS form leads to the tensor
product represented in Figure 1.10.

Finally, when composing two operators H(y1, . . . , yn, x1 . . . xn) and H ′(x1,
. . . , xn, x

′
1 . . . x

′
n) in tensor form, it leads to a tensor product as represented in

Figure 1.11.

18

(Ψ,Ψ′)

. . .
α1 α2 αn−2 αn−1

. . .
α′
1 α′

2 α′
n−2 α′

n−1

x1 x2 xn−1 xn

Figure 1.9: Scalar product of two MPSs. The result is a scalar.

HΨ

. . .
α1 α2 αn−2 αn−1

y1 y2 yn−1 yn

. . .
β1 β2 βn−2 βn−1

x1 x2 xn−1 xn

Figure 1.10: Apply an MPO H to an MPS Ψ.

Sum of tensor trains

The sum G = H + F of two tensors H(x1, . . . , xn) and F(x1, . . . , xn) of the
same size is directly applicable to tensors in tensor train format. In this case
the result G will also be in tensor train format.

As an illustration, let Hi(xi, yi, βi−1, βi) be the ith tensor in the tensor train
format. Hi can be represented as a matrix of matrices, with the outer indices
(βi−1, βi) and the inner indices (xi, yi), hence noted Hi,xi,yi . For given indices
(x1, . . . , xn, y1, . . . , yn), the matrix product

H(x1, . . . , xn, y1, . . . , yn) = H1,x1,y1 . . .Hn,xn,yn

produces the corresponding coefficient of the tensor. Hence, the tensor addition
translates as ∀(x1, . . . , xn, y1, . . . , yn),

G(x1 . . . xny1 . . . yn) = H(x1 . . . xny1 . . . yn) + F(x1 . . . xny1 . . . yn)
= H1,x1y1 . . .Hn,xnyn + F1,x1y1 . . .Fn,xnyn

=
(
H1,x1y1 F1,x1y1

)(H2,x2y2

F2,x2y2

)
. . .

(
Hn,xnyn

Fn,xnyn

)
,

HH ′

x′1 x′2 x′n−1 x′n

. . .
β1 β2 βn−2 βn−1

y1 y2 yn−1 yn

. . .
β′
1 β′

2 β′
n−2 β′

n−1

x1 x2 xn−1 xn

Figure 1.11: Composing two MPOs.

19

involving the block matrix product. Therefore, each tensor in the tensor train of
G can be identified. This property is summarized in the following proposition.

Proposition 1. Consider two operators H ∈ Rn1...nL and F ∈ Rn1...nL in
MPO form. Their global indices have identical sizes, but the bond dimensions
may be of different sizes. In the notations above, we denote by G the sum of
operators G = H+ F in MPO form. It has bond indices {γ1, . . . , γL} such that
|γi| = |αi| + |βi|. Computing G is equivalent to performing the following local
computation on each tensor of the tensor train format.

If 1 < i < L,

Gi(xi, yi, γi−1, γi) =

Hi(xi, yi, αi−1, αi), if γi−1 ≤ αi−1 and γi ≤ αi
Fi(xi, yi, βi−1, βi), if γi−1 > αi−1 and γi > αi

0, otherwise
,

if i = 1,

G1(x1, y1, γ1) =
{
Hi(x1, y1, α1), if γ1 ≤ α1

Fi(x1, y1, β1), if γ1 > α1

,

if i = 1,

Gi(xL, yL, γL−1) =

{
Hi(xL, yL, αL−1), if γL−1 ≤ αL−1

Fi(xL, yL, βL−1), if γL−1 > αL−1

.

It is clear that the summation of tensor trains introduces sparsity to the final
MPO. In fact, a sequence of 2× 2 blocks will appear on the diagonal. Another
important question is optimizing this operation. Note that this is the difference
between naive and compact construction in Keller et al. [76].

Multiplication by a scalar

The product F = αH where α ∈ R and H is a tensor in MPO form is equivalent
to scaling only one of the tensors in the tensor train.

Fi =
{
αHi, if i = 1

Hi, if i > 1

Normalization and recompression of a tensor train

They are two analogous operations necessary to complete the list of tools to
manipulate tensors in the context of quantum chemistry. The first one, normal-
izing a tensor train, applies to an MPS Ψ and requires (Ψ,Ψ) = 1 (involving
the tensor train product). The second one, compressing a tensor train, aims
at finding close to optimal bond dimensions. Both operations involve a similar
technique often referenced as optimizing the tensor train, mentioned in Snajberk
[105, Sec. 4.1.3], Dolfi et al. [37, Sec. 2.2] and Fröwis et al. [51, Sec. IV.A].

Normalization consists of applying sequentially the QR decomposition on
each unfolded tensor of the train. The Q factor reshaped becomes the new
tensor, and the R is integrated in the next tensor before applying QR again. The
last R factor is discarded. Very similarly, the compression uses a k-truncated

20

SVD instead of QR, and does not discard the last right factor. The right singular
vectors are transferred to the next tensor, and the left singular vectors together
with the singular values form the new current tensor. The new bond dimension
has size k.

The presentation of the tensor train format shows that this representation
benefits the manipulation of the Hamiltonian and the state function in different
ways. First it enables to break the curse of dimensions, by converting an L2-
order tensor to a sequence of 4-order tensors. It also proves efficient for basic
operations such as product and sum of MPO and MPS. For these operations,
only a local operation on each tensor of the train is needed, hence making it
possible to perform the operation using a distributed memory architecture [see
e.g. 82, 87]. Furthermore, the compression of tensor trains is tightly related to
low rank approximation, and we can expect methods presented in this work to
improve current implementations. The QRTP algorithm presented in Chapter 3
is a good candidate for finding the ranks of the tensor trains (the bond dimen-
sion). The randomized methods presented in Chapter 2 are already used to
speed up the tensor train compression [27, 3], and using bSRHT is a promising
direction.

1.4.3 Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) algorithm is the key to
linking tensor algebra and electronic molecular simulation. It was introduced
in White [115] and reviews include Schollwoeck [103], Chan et al. [24], Baiardi
and Reiher [11]. More mathematical overviews include Holtz et al. [64], Keller
et al. [76].

The goal is to solve the minimization problem of Eq. (1.8) where the state
function and the Hamiltonian are in tensor train formats.

The solution is to perform local minimizations on each index. The unknown
is the ground state energy E0 (the smallest eigenvalue), and its associated eigen-
vector Ψ0. The procedure to find Ψ0 is as follows.

1. Build the Hamiltonian in tensor train from the second quantization de-
composition.

2. Initialize Ψ as a random orthonormal tensor.

3. For 1 ≤ i ≤ L, minimize (HΨi(xi, αi, αi+1),Ψi(xi, αi, αi+1)) to obtain the
smallest eigenvalue E and associated argument Ψi. Replace the argument
into Ψ.

4. Output the final E and Ψ.

We now detail each step. 1) The one-electron and two electron integrals
describe the Hamiltonian. By performing multiplications, additions and multi-
plications with scalars of operators in tensor train formats, a tensor train for
the full Hamiltonian is obtained (see the previous section for details on these
operations). It may require several compressions, or a block diagonal storage to
optimize its use. 2) We require an initial guess for Ψ. The most common way
is to generate it randomly with a bond dimensions of size 1 and normalize it
such that (Ψ,Ψ) = 1. 3) We craft a particular Ψi(xi, αi, αi+1) by removing the

21

ith tensor in the MPS. By contracting all other indices in the inner product, we
obtain a 6-order tensor. Unfolding the tensor by regrouping 3 indices together,
and computing the smallest eigenvalue of the unfolding, we obtain an associated
eigenvector. We can reshape this vector into a 3-order tensor Ψi that we can
replace in the train of the MPS. 4) After iterating on each index of the MPS
(several passes are sometimes needed to converge, called sweeping) the resulting
E approximates the global ground state energy and Ψ the associated state.

1.4.4 Conclusion

This section introduced the quantum chemistry application, relatively to the
research project funding this thesis. We presented the DMRG algorithm involv-
ing tensor low rank approximation, with the goal to simulate large molecules.
At various steps of this method the distributed algorithms introduced in the
next chapter, bSRHT, QRTP and ST-HOQRTP, could be used to speed up
computations: randomization and QR are adequate for compressing the tensor
train, as well as computing a priori properties of the tensor train; the Tucker
decomposition done with ST-HOQRTP would improve handling the two elec-
trons integral more efficiently. This goal is an active interest of our research
team, and, as one of the first study of this project, the role of this thesis in
this area is merely introductory. Building efficiently the MPO and solving lo-
cal minimization problems using optimized routines are challenges ahead. This
question is also a great opportunity to study the tensor train format, widely
used in numerical multilinear algebra.

1.5 Matrix generation

This section is dedicated to exhibit various methods to generate a dense dis-
tributed matrix. Several criteria are important to select a generation method.
The perfect matrix is deterministic, low-rank with parametrizable rank and has
a structure originated from a real life problem. Having an implicit formula is a
plus because it makes it possible to generate it locally on each processor. The
alternative is to store the matrix in different files, growing quickly with the
number of blocks, and then read the corresponding part of the corresponding
file on each processor.

1.5.1 Random matrices

The most naive method is to generate each coefficient as independent random
variables from the uniform distribution N (0, 1). It doesn’t have any internal
structure due to independent randomness.

As displayed in Figure 1.12 the first singular value is larger, e.g. 500 for
a 1000 × 1000 matrix, and subsequent singular values decrease slowly. This
method is easy to implement and doesn’t require storing any file.

1.5.2 Matrices with prescribed singular values

This method produces a matrix M ∈ Rm×n from a given profile of singular
values. First initialize a vector s = (s1, . . . , smin(m,n)) with those singular values,

22

200 400 600 800 1,000

1 · 10−2

0.1

1

10

100

1,000

Figure 1.12: Singular values of a 1000× 1000 random matrix drawn from inde-
pendent variables in N (0, 1).

for instance it can be formed with inverse decay coefficients such that

si = α/i, α > 1,

or with exponential decay such that

si = e−αi,

or with two segments decay such that for a given separating index k,{
si = nk − ni+ 1 if i ≤ k
si = 1− i/n if i > k.

It additionally requires generating two random orthogonal matrices U and
V of respective sizes m×min(m,n) and min(m,n)×n. We can then finally build
the matrix M = UΣV where Σ is a diagonal matrix having s as coefficients.

This method is useful to set the desired singular value profile, and compare
the approximated singular values to the original ones.

1.5.3 Specific problems

These are several matrices generated from simulating specific problems, exhib-
ited in Table 1.1.

These problems offer matrices with various singular values profiles, including
gaps, or very close values as well. The matrix size is an input parameter, such
that any size can be obtained for a given problem. One limitation lies in the
sequential nature of the computational scheme of each problem. Therefore, to
obtain a distributed matrix, we can only write the whole matrix at once in
an intermediate file, then reading a part on each node. This finally limits the
maximum matrix size to a single node’s memory size.

1.5.4 Matrix and tensor repositories

The following mentions several websites offering test matrices and tensors.

• Matrix market - small sparse matrices.

23

Number Name Size Description

1 baart 1000×1000 1st kind Fredholm integral equation
2 blur 900×900 Digital image deblurring
3 deriv2 1000×1000 Computation of the second derivative
4 foxgood 1000×1000 Severely ill-posed problem
5 gravity 1000×1000 1-D gravity surveying model problem
6 heat 1000×1000 Inverse heat equation
7 parallax 28×1000 Stellar parallax problem with 28 obs.
8 phillips 1000×1000 Phillips’ “famous” problem
9 shaw 1000×1000 1-D image restoration model
10 spikes 1000×1000 Problem with a “spiky” solution
11 tomo 900×900 Create a 2D tomography test problem
12 ursell 1000×1000 Integral equation with no ℓ2 solution
13 wings 1000×1000 Problem with discontinuous solution

Table 1.1: Matrices generated from integral equations

• SuiteSparse Matrix Collection - medium size sparse matrices.

• LIBSVM Data - medium size to very large machine learning datasets,
useful to flow into the RBS kernel method.

• UCI Machine Learning Repository - medium size to very large machine
learning datasets, useful to flow into the RBS kernel method.

• FROSTT - large to very large sparse tensors.

These datasets being very structural, they are good candidates for compres-
sion. Nevertheless, most matrices and tensors are sparse or too small to fit the
need for large dense matrix compression. A possible explanation is the apparent
difficulty to store such an object online. Furthermore, there is no possibility to
generate the matrix on each processor (except by using the RBS kernel method)
when considering the matrices available online. The only option is reading from
the disk. This makes it difficult to use for high performance computing.

1.6 High performance computing
The computational aspect of this thesis makes it important to present various
inherent characteristics of high performance computing. The different algo-
rithms introduced in the subsequent chapters are run with scalability in mind,
therefore the following high performance computing principles were considered
for their design.

1.6.1 Numerical Linear Algebra softwares

C++ and Fortran are low level languages. Implementing with these languages
requires more time, nevertheless they provide a fine-grained control over each
memory byte and each floating point operation (flop). They make it very easy to
understand how the time is spent when executing the program, find bottlenecks

24

and optimize them. Hence, they allow to provide very fast and memory efficient
programs.

Julia and Python are high-level languages. One can translate easily math-
ematical expressions to the programming language. But the distance to the
compiled code is larger and numerous choices of implementation are made by
the interpreter and package developers, which are hence not specific to an ap-
plication.

LAPACK [7] is a linear algebra package developed in Fortran widely used
by the community. It is known to contain the state-of-the-art algorithms of the
common used linear algebra tools. BLAS (Basic Linear Algebra Subroutines)
is at the heart of LAPACK, providing optimized low level linear algebra rou-
tines. LAPACK only implements sequential methods, i.e. running on a single
computer. Note however that multiprocessing is possible.

When one wants to involve more than one node, having separate memory
spaces, one has to use internode communication. This is the role of MPI (Mes-
sage Passing Interface). Julia also includes a master-workers communication
layer. In the MPI paradigm however all processes have equivalent roles.

ScaLAPACK [18], based on PBLAS and BLACS, implements linear algebra
routines in Fortran intended for distributed environment.

The Intel corporation provides tools to run specifically on its own hardware.
In particular, Intel develops its own modified implementation of LAPACK and
ScaLAPACK called MKL (mathematical kernel library), provides its own For-
tran and C++ compilers, as well as its own MPI implementation. These imple-
mentations often prove more optimized than the Netlib ones when running on
Intel CPUs.

Running Linear Algebra programs frequently involves operations on large
matrices. Numerous low-level and hardware optimizations have to be taken
into account when manipulating large matrices. Vectorization enables to apply
an identical operation to several registers at the same time. Pipelining enables
to use various modules of a CPU at the same time when executing the same
sequence of operations a number of times. These enhancements are oriented
towards the use of large data operations rather than many small tasks. For
example, it is more efficient to multiply two matrices rather than computing
each coefficient separately with numerous scalar products.

1.6.2 Supercomputer topology

The large scale numerical experiments presented in this document were done on
the TGCC Joliot-Curie cluster. It was installed at the end of 2017. In Novem-
ber 2022, it was ranked 83 in the TOP500, listing the 500 most computation-
powerful clusters in the world.

Considering only the Skylake hardware we used, the cluster contains 1656
nodes shared amongst 6 cabinets. Each cabinet can host 48 blades of 3 nodes
each.

Each node is composed of 2 Intel Xeon Platinum 8168 processors. This
processor was released in the 3rd quarter of 2017, it runs at 2.7 GHz with 33
MB of L3 cache. In addition, each node contains 180 GB of shared memory.
All nodes are interconnected in a fat tree topology with a 100 GB/s Infiniband
EDR network.

25

To have an idea of the environmental impact of the experiments, Table 1.2
displays the energy consumption for several of the runs exposed in Chapter 3.
This energy is given by the job scheduler of the cluster, for each job indepen-
dently.

Table 1.2: Energy consumption on the TGCC Joliot cluster.

Matrix size time (s) Node count Processor count Energy (KJ)

2048× 2048 5 1 4 1.7
8192× 8192 8 2 64 3.6
65536× 65536 40 86 4128 1237
131072× 131072 420 342 16416 36135

On this cluster, the experiments used in total 65306.31 hours core. By taking
an average of 20 KJ per hour cores, it means that this project used, over three
years, 1306 MJ of energy, i.e. 362 kWh. It is equivalent to having a 100-watt
light bulb operating for 150 days.

26

Chapter 2

Subspace projection with the
block subsampled randomized
Hadamard transform

We study in this chapter how randomness is used to build a projection space
together with methods to implement it on a parallel computer. This projection
is key to constructing a low rank approximation of a matrix, the matter at hand
in this work. This work partly lead to the writing of Balabanov et al. [12].

The first section introduces the theoretical background for randomization,
as well as standard sequential algorithms. The subsequent sections present our
contribution. Given a very large matrix A, we have two goals: sampling (also
called sketching) A to decrease the row dimension, addressed in Section 2.2;
building a low rank approximation of A, addressed in Section 2.3.

2.1 Context

Using randomness to extract information from a large system is a relatively re-
cent research topic. In addition to validating a global error constraint, random
projections preserve local properties of vectors such as the distance. Since the
Johnson-Lindenstrauss theorem [71, 32], where a fundamental theorem bound-
ing the distance between projected vectors to the distance between the original
vectors was given, many projection mappings have been studied (e.g. the fast
Johnson-Lindenstrauss transform [2]) and many applications have been pur-
sued. Overall such projections enable to faster compute low rank approxima-
tions [49, 50, 98, 48], matrix multiplications, singular value decompositions, and
faster solve linear systems of equations.

This section gives the basic theorem and the main projection operators,
especially we introduce the subsampled randomized Hadamard transform which
we will abundantly use for our novel method presented in the rest of the chapter.

For further details, randomization is reviewed widely in Woodruff [117], Mar-
tinsson and Tropp [85].

27

2.1.1 Subspace embeddings
The previous chapter defined orthogonal projections and their use to build low
rank approximations. In this chapter we introduce projections specific to ran-
domization. The next embedding properties characterize this kind of projec-
tions, and provides guarantees useful for its subsequent use. Theorem 5 shows
that there exists a mapping from Rm to Rl with controlled distortion. This
mapping projects all columns from a matrix A to a reduced size l < m. Orig-
inally formulated in Johnson et al. [71], the bound on the parameter l results
from a more recent contribution [32].

Theorem 5 (Johnson-Lindenstrauss Theorem [71, 32]). Let n be an integer,
and ε be such that 0 ≤ ε ≤ 1. Let l be a positive integer such that l > 4(ε2/2−
ε3/3)−1 lnn. For any set V of n points in Rm, there is a map f : Rm → Rl
such that

∀(u, v) ∈ V 2, (1− ε)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ε)∥u− v∥2.

This mapping is referenced in the literature as a subspace embedding.
In the following we take the map f as a matrix Ω ∈ Rl×m. If Ω is indepen-

dent of the data (f does not depend on V in the notation of Theorem 5) and
drawn from random variables, it is called an (ε, δ, d)-oblivious subspace embed-
ding (OSE), as defined in Definition 1.

Definition 1 (Oblivious subspace embedding). Let m and l be two positive
integers such that l < m. Let 0 ≤ δ ≤ 1 and 0 ≤ ε ≤ 1. The matrix Ω ∈ Rl×m
is an (ε, δ, d)-oblivious subspace embedding for the norm ∥.∥ when for any fixed
d-dimensional subspace S ⊂ Rm,

(1− ε)∥x∥2 ≤ ∥Ωx∥2 ≤ (1 + ε)∥x∥2 for all x ∈ S (2.1)

holds with probability at least 1− δ.
In practice, an oblivious subspace embedding is generally a linear operator

mixing all coefficients of the operand vector, such that extracting a few coeffi-
cients from the result is sufficient to conserve the distance and orthogonality of
the vectors in the projected space. We now present a few well-known embed-
dings.

2.1.2 Gaussian sampling
The reference random embedding is the Gaussian embedding consisting of a
matrix Ω ∈ Rl×m where each coefficient of Ω is an independent uniform random
variable ofN (0, 1). In addition, the matrix is multiplied by a scaling factor

√
1/l

[85, Sec 8.3], such that

∀x ∈ Rm,E
[
∥Ωx∥2

]
= ∥x∥2. (2.2)

Theorem 8.4 and Analysis 8.7.2 from Martinsson and Tropp [85] lead to say
that Gaussian sampling respects the oblivious subspace embedding property, for
example by taking ε = 0.8, and l = 2m.

This mapping is easy to code and performs with a complexity similar to the
multiplication of two matrices, and is widely used in the literature. Thus, it is
used here as the reference embedding to evaluate the new method.

28

From Eq. (2.2) we have that E [∥ΩA∥F] = ∥A∥F . It is not always true with
the operator norm. Indeed, we have ∥ΩA∥22 = ∥ΩA∥2F −

∑n
i=2 σ

2
i (ΩA) and the

tail plays an important role. In the specific case where the first singular value
is dominant, i.e. if σ1(A) ≫ σ2(A) and σ1(ΩA) ≫ σ2(ΩA), then both norms
are almost equal and E [∥ΩA∥2] ≈ E [∥ΩA∥F] = ∥A∥F ≈ ∥A∥2.

According to Tropp [110, Sec. 1.3], given a set of n vectors, l ≈ log(n) is
sufficient to conserve the distance between vectors.

2.1.3 Structured random embeddings

We can also build a subspace embedding by associating a mixing (structured
and sometimes random step) with a sampling (random step). For the mixing
part, the literature offers many options. We present a few in this section and
Martinsson and Tropp [85, Sec. 9] provides a more refined list.

The discrete Fourier transform (DFT) uses trigonometric properties. Con-
sider the mth root of 1: for 0 ≤ k ≤ m− 1

wkm = eki2Π/m.

Then the matrix Fm ∈ Rm×m where

(Fm)ij = w(i−1)(j−1)
m

defines the DFT. It is specific for the complex case, and a clever algorithm, the
Fast Fourier Transform (FFT), reduces the complexity dramatically. There also
exists parallel implementations for the FFT.

The Walsh-Hadamard transform (WHT) is recursively defined for any m a
power of 2 as

H(2) =

[
1 1
1 −1

]
,

and for any k > 1

H(2k) =

[
H(2k−1) H(2k−1)
H(2k−1) −H(2k−1)

]
= H(2)⊗H(2k−1).

Examples of the Hadamard matrix:

H(4) =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

H(8) =

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

.

29

This method is suited for real matrices whose size is a power of two, or
using zero-padding. Associated with a random signs vector and a random per-
mutation, it forms the subsampled randomized Hadamard transform (SRHT)
introduced in Tropp [110]. This full-featured subspace embedding takes the
form of the following Ω:

Ω =

√
m

l
RHD,

where R ∈ Rl×m is a random sample selection matrix, H ∈ Rm×m is the
Walsh-Hadamard matrix scaled by 1/

√
m, and D ∈ Rm×m is a diagonal matrix

of random coefficients in {−1, 1}.
In the continuity of Tropp [110, Thm. 1.3], Boutsidis and Gittens [20,

Lem. 4.5] claim that the SRHT operator conserves the orthogonality of the
input matrix. It is recollected in Theorem 6.

Theorem 6. Fix an m× n matrix V with orthonormal columns, and let m be
a power of 2. Let 0 < ε < 1 and 0 < δ < 1. Draw a random l×m SRHT matrix
Ω where the embedding dimension satisfies

8

3
ε−1

[√
n+

√
8 log(m/δ)

]2
log(n/δ) ≤ l ≤ m.

Then, with probability at least 1− 3δ, for all i = 1, . . . , n,√
1−√ε ≤ σi(ΩV) ≤

√
1 +
√
ε.

It is shown in Tropp [110] that the SRHT is an oblivious subspace embedding,
and this can be extended to other structured embeddings [85, Rem. 9.3]. The
SRHT is a very handy tool because it can be applied implicitly, meaning that
it is not necessary to store beforehand the matrix in memory to perform the
product ΩA, and computing the product is cheaper than the matrix product.
This gives the SRHT good chances to be more efficient than Gaussian sampling
in practice.

The matrix R randomly selects rows. There is a significant discussion about
whether R should select identical rows. The selection is then said to be with
replacement. Tropp achieved to prove its version of Theorem 6 with replacement
with the help of Gross and Nesme [58] [see 110, Sec. 2.2]. Boutsidis and Gittens
[20] provides theorem for with and without replacement, as well as additional
properties when sketching any matrix. Given an input matrix A ∈ Rm×n,
computing B = ΩA ∈ Rl×n including a selection with replacement has chances
to produce duplicated rows in B and make the matrix singular, specifically if
l ≲ n. Therefore, it is important to keep l≫ n if the resulting matrix is required
to be nonsingular.

2.2 Sampling a matrix in parallel

We consider a matrix A ∈ Rm×n distributed on a Pr × Pc grid of processors.
We note P = PrPc the total number of processors. If Pr = 1, A is 1D column-
partitioned, noted A =

[
A1 A2 . . . AP

]
, if Pc = 1, A is 1D row-partitioned,

30

noted A =
[
A1;A2; . . . ;AP

]
, otherwise A is 2D partitioned, noted

A =

A11 . . . A1Pc

...
...

APr1 . . . APrPc

 .
The first objective is to sample a matrix using a distributed architecture.
One can reduce the dimension of A by multiplying it from the left with

a random short and wide matrix Ω. The resulting matrix B = ΩA has fewer
rows, while retaining similar inner product between columns, Ω satisfying indeed
the oblivious subspace embedding property described in Section 2.1.1. Subse-
quently to Section 2.1.1 are exposed different ways to build such an Ω. In this
work we introduce adaptations of these methods to take advantage of a parallel
architecture.

2.2.1 Block Gaussian sampling
The Gaussian sampling method is widely used, and it has a parallel version
popular as well. Indeed, it can be applied to a 2D distributed matrix with
only one reduce operation. This method is given in Algorithm 2 for a 1D row-
partitioned matrix.

Algorithm 2 1D Block Gaussian Sampling

Require: A =
[
A1;A2; · · · ;AP

]
∈ RmP×n distributed on P processors

1: for i = 1 . . . P do
2: Draw Ωi ∈ Rl×m a Gaussian sampling matrix
3: Bi ← ΩiAi

4: end for
5: B←∑

iBi

The matrix Ωi from Algorithm 2 is drawn independently on each pro-
cessor from the normal distribution N (0, 1) and scaled with

√
1
lP , such that

∀x ∈ Rn,E∥Ωx∥ = ∥x∥ [85, Sec. 8.3]. The step 3 is the dominant cost in terms
of floating point operations (flops). It requires a matrix multiplication having
complexity O(lmn). The step 5 implies a reduction step which is the domi-
nant cost of communications, with O(log(P)) messages and a total volume of
O(ln log(P)). The resulting matrix B is stored on the elected processor (typ-
ically the one of lowest global identification number). We consider two other
cases: A is 1D column-partitioned and A is 2D-partitioned.

If A ∈ Rm×nP is 1D column-partitioned, the matrix Ω ∈ R with scaling
factor

√
1
lP has to be applied on each processor such that Bi ← ΩAi. Then the

result B =
[
B1 B2 · · · BP

]
has the same distribution grid as A. In this

case it is not necessary to broadcast Ω to all processors, and only the random
number generator seed (a single integer) is shared. Thus, it does not require
any significant communication.

If A ∈ RmPr×nPc is 2D-partitioned, ideas from both 1D row and column-
partitioned algorithms are combined. The matrices Ωi from Algorithm 2 with
scaling factor

√
1
lPr

are duplicated using the seed on their respective rows of

31

processors, then applied to each block and reduced to the first column. The
resulting matrix B is distributed on the first column of processors.

The Gaussian sampling is simple to implement and lays out good perfor-
mance. Therefore, it is the reference implementation, used here for comparison.

2.2.2 Block subsampled randomized Hadamard transform

We now introduce the parallel adaptation of the subsampled randomized Hada-
mard transform (SRHT) detailed in Section 2.1.3. Computing the exact SRHT
is poorly suited for parallelisation. We introduce a derivated algorithm to obtain
communication and computation efficiency in a distributed framework. Indeed,
SRHT can be applied on each block of the distributed input matrix, as with
block Gaussian sampling. We call this algorithm block SRHT (bSRHT). We
present in this section first the 1D left sketching, meaning that for a given 1D
or 2D distributed input matrix A we compute ΩA. Note that this part can be
adapted to the 1D right sketching, i.e. to compute AΩ⊺. In a second part we
present 2D sketching, where the goal is to compute ΩAΘ⊺ where Θ and Ω are
built with two different sets of independent random variables.

Applications can differ a lot depending on the input matrix distribution and
the sketching direction. For instance in the case of 1D left sketching with a
1D row-partitioned matrix we can expect very large distributed vectors coming
from a very tall and skinny matrix or from a streaming input of data. Changing
the distribution or the sketching direction of this matrix results in a smaller
dimension to sketch and thereby making the method less efficient. Consequently,
2D sketching requires both dimensions of the input matrix to be very large.

Algorithm 3 1D left block SRHT

Require: A =
[
A1;A2; · · · ;AP

]
∈ RmP×n distributed on P processors, l

sampling size
1: Draw R ∈ Rl×n a truncated random permutation matrix
2: Broadcast R
3: for i = 1 . . . P do
4: Draw d

(i)
R ∈ {±1}n and d

(i)
L ∈ {±1}n Rademacher vectors

5: Bi ← diag(d
(i)
R)Ai

6: Bi ← HBi

7: Bi ← diag(d
(i)
L)Bi

8: Bi ←
√

m
l RBi

9: end for
10: B←∑

iBi

Ensure: B

Given a 1D row partitioned matrix A ∈ RmP×n, computing the left random
projection ΩA of A using bSRHT is described in Algorithm 3. It consists of a
local SRHT applied on each block Ai followed by a sum of all the blocks, i.e.
a reduction with the summation operator. The operator Ω ∈ Rl×mP is written
in explicit matrix form as

Ω =
[
Ω1 Ω2 . . . ΩP

]
. (2.3)

32

Each block Ωi ∈ Rl×m details as

Ωi = SD
(1)
i HD

(2)
i ,

where S ∈ Rl×m randomly selects rows, D(1)
i and D

(2)
i ∈ {−1, 1}m×m are sign

matrices, equivalently referred to as diagonal matrix with a Rademacher vector
as the diagonal, and H ∈ Rm×m is the Walsh-Hadamard matrix. S and H
are identical in all blocks yet the sign matrices are built with different random
variables for each block, and for each of the two. Note that it can happen that
l ≤ m, then the local SRHT would increase the size of the input blocks. This is
only feasible if the random selection is done with replacement as mentioned in
Section 2.1.3.

The oblivious subspace embedding property is defined in Section 2.1.1. It
provides guarantees on the distance between columns of the sketched matrix
with regard to the original matrix. Theorem 7 gives a value for l for which Ω is
an oblivious subspace embedding, when the selection is done with replacement.
In particular, this is important to make sure that we can perform an efficient
subspace selection on the sketched matrix, mirroring the behavior of the original
matrix. By doing this, an economic operation can be executed on the sketch
rather than a full expensive operation on the original matrix.

Theorem 7 (Balabanov et al. [12]). Let 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. Let
Ω ∈ Rl×m defined as in Eq. (2.3). If

l ≥ 3ε−2(
√
d+

√
8 log(6mP/δ))23d/δ,

then Ω is an (ε, δ, d) oblivious subspace embedding.

The proof of Theorem 7, derived by Oleg Balabanov, is provided in Bala-
banov et al. [12]. The given bound shows that the required number of rows in
Ω is similar to the sequential algorithm counterpart, given in Theorem 6.

This algorithm can be adapted for other distribution layouts, and the theory
still applies. If the input matrix is 1D column-partitioned, then the local SRHTs
are computed in parallel without communication, and the same output matrix
as with a global SRHT is obtained. If the input matrix is 2D-partitioned,
then bSRHT is performed on each column of the processor grid without extra
communication, obtaining the same result as with one column of processors.
However, in both cases the result is 1D column-partitioned.

It can also be adapted to right sketching, with any distribution layout, by
left sketching the transpose of the input matrix. Beware that the processor grid
is also transposed in this case.

We now present how to implement 2D sketching, i.e. from left and right. To
compute the 2D sketch of a 2D-partitioned matrix, one can perform local SRHT
from left and right locally on each processor, and then sum all blocks of size
l × l on an elected process. This is described in Algorithm 4.

This algorithm requires twice more flops than the 1D version, and O(log(P))
messages, for a total communication volume of O(l2 log(p)). In Section 2.3 2D
sketching is discussed further and applied to the Nyström approximation.

2.2.3 Numerical experiments
In this section we provide numerical experiments of 1D right sketching with
bSRHT.

33

Algorithm 4 2D block SRHT.

Require: A ∈ RmPr×nPc distributed on a Pr × Pc processor grid
1: B← O
2: for j = 1 . . . Pc do
3: for i = 1 . . . Pr do
4: Ωi ← generate l ×m random matrix
5: Θj ← generate l × n random matrix
6: Bj ← B+ΩiAi,jΘ

⊺
j

7: end for
8: end for

Ensure: B ∈ Rl×l on processor 1

RBS kernel

For numerical experiments, all-purpose test matrix generation methods are given
in Section 1.5. An additional method specifically intended for this chapter is
presented here. The radial basis function enables to build a dense positive
definite matrix A of size n× n from a dataset containing n records.

We denote by xi the ith record of the dataset. The matrix A is built with
the formula

aij = e−∥xi−xj∥2/σ2

.

In this work we limit ourselves to numerical datasets, but it could be easily
extended to any type of data, as long as the distance between two records exists
and provides a real number.

The parameter σ is a real number greater than zero. The larger it is, the
steeper the singular values. If σ is very small, A is close to the identity.

We use the datasets described in Section 2.2.3.

Table 2.1: List of input datasets for the RBS kernel method.

Name Record
length

Maximum
record
number

description

mnist 784 8,100,000 70000 images of handwritten materials
from 500 different writers. Each record
corresponds to an image is converted to
a vector.

year 90 515,345 Prediction of the release year of a song
from audio features.

xor 129 6,000,000 Physical Unclonable Functions (PUFs)
simulation, specifically XOR Arbiter
PUFs. PUFs are used for authentica-
tion purposes.

botnet 115 7,062,606 Network traffic simulating a botnet at-
tack.

To generate a distributed matrix, each processor only needs to read the

34

records corresponding to its row as well as column indices. Therefore, if a
processor generates a submatrix of sizem×n, it only needs reading (and parsing)
m + n records. Figure 2.1 displays the singular values of the matrix generated
from each dataset.

Figure 2.1: Singular values for the matrix formed with the RBS kernel method
applied to the first 4096 records of datasets mnist, year, xor and botnet for
different values of σ.

Accuracy

According to Theorem 7 the bSRHT is a subspace embedding, meaning that it
preserves inner products with high probability. In the following we study how
inner products between columns of a matrix are preserved. Indeed, validat-
ing this property is paramount for many use cases in low rank approximation,
for instance to select pivots in the QRCP decomposition (see Sections 1.2.4
and 3.1.2). Considering an input matrix of size 4096× 4096 1D-row partitioned
on 4 processors, 30 pairs of vectors are randomly drawn, and their inner product
is compared with the inner product of their sketch. The sketch is performed
with either bSRHT or Gaussian sampling. Two different input matrices were
chosen. The first one is built using the RBS kernel method applied to the mnist
dataset. The results are displayed in Figure 2.2. The second input matrix is
drawn from random variables, and its results are displayed in Figure 2.3. Each
subfigure corresponds to a different sampling size: 20, 200 and 500.

The figures show clearly that increasing the sampling size makes the sketch
more reliable. Indeed, sketched vectors better mimic the original behavior when
a larger sampling size is used. In the case of structured data, here the mnist
dataset, large sampling size results in very reliable preservation of angles. On
the other hand, for random data, it does not completely eliminate discrepancies.

35

5 10 15 20 25 30

3,960

3,970

3,980

3,990

4,000

4,010

Random pair of vectors

In
ne

r
pr

od
uc

t

(a) l = 20

5 10 15 20 25 30

3,960

3,970

3,980

3,990

4,000

4,010

Random pair of vectors

In
ne

r
pr

od
uc

t

(b) l = 200

5 10 15 20 25 30

3,960

3,970

3,980

3,990

4,000

4,010

Random pair of vectors

In
ne

r
pr

od
uc

t

Original
bSRHT
Gaussian

(c) l = 500

Figure 2.2: Angle conservation after randomization of the mnist dataset. Using
4 processors, and using 4096 records of the dataset.

36

5 10 15 20 25 30

600

800

1,000

1,200

1,400

Random pair of vector

In
ne

r
pr

od
uc

t

(a) l = 20

5 10 15 20 25 30

600

800

1,000

1,200

1,400

Random pair of vector

In
ne

r
pr

od
uc

t

(b) l = 200

5 10 15 20 25 30

600

800

1,000

1,200

1,400

Random pair of vector

In
ne

r
pr

od
uc

t

Original
bSRHT
Gaussian

(c) l = 500

Figure 2.3: Angle conservation after randomization of a random matrix of size
4096× 4096. Using 4 processors.

37

Comparing bSRHT and Gaussian, for the mnist dataset they are very close,
almost coinciding, whereas for random data both behaviors differ entirely from
one another. Furthermore, the distributed method bSRHT does not exhibit
worst performance than the classical sampling, pledging for its use in real life
applications.

Execution time

Previous section illustrated that bSRHT is very close in accuracy to Gaus-
sian sampling. The focus is now on the computational performance, comparing
the runtime of both methods. Gaussian sampling and SRHT are implemented
with Julia programming language version 1.5.3 along with Hadamard.jl and
Statistics.jl packages. The source code for SRHT and Gaussian sampling is
available in Appendix A. Consider first the sequential Gaussian sampling and
SRHT. The Gaussian sampling ΩA where Ω ∈ Rl×m and A ∈ Rm×n is equiva-
lent to a matrix product, hence a complexity of O(mnl). SRHT’s most expensive
operation is the fast Walsh-Hadamard transform (step 6 of Algorithm 3) with
complexity O(mn log(n)). Note that the complexity of SRHT is independent of
the sampling size l, and the ratio l/ log(n) represents how SRHT and Gaussian
sampling execution times compare. If this ratio is large, SRHT will be faster
than Gaussian sampling. On the contrary, if this ratio is small, it suggests
that Gaussian sampling is faster. Figure 2.4 displays numerical results, taking
m = 65536, n = 256 or 512 and l varying from 2 to 4096.

1000 2000 3000 4000
sampling size

0

1

2

3

4

Ex
ec

ut
io

n
tim

e
(s

)

A , A m × n, n = 64000 sequential
Gaussian sampling m=256
SRHT sampling m=256
gaussian sampling m=512
SRHT sampling m=512

Figure 2.4: Block Gaussian and bSRHT execution time with varying sampling
sizes.

For large values of l, the runtime of Gaussian sampling becomes large, mak-
ing the use of SRHT advantageous.

SRHT is also interesting when it comes to memory usage, because the sam-
pling matrix is never formed. In our use case, the sampling matrix can be very
large, for instance given a matrix of size 256 × 65536 and a sampling size of
4096 the sampling matrix will have 268 million coefficients and take up to 17
gigabytes of memory.

Consider the bSRHT method, on a distributed architecture. The exper-
imental environment is made of 8 nodes, each being a 2x Cascade Lake In-
tel Xeon 5218 2.4GHz of 32 cores. The input matrix is distributed using the
Distributed.jl and DistributedArrays.jl Julia packages. Figure 2.5 shows
the scaling execution time while increasing the number of cores, each core own-
ing a submatrix of size 4096×256 (corresponding to the case of Figure 2.4 where

38

l = 4096), distributed on a column of processors. The green line stands for the
communication part of the algorithm, the reduction. Note that the reduction
takes an insignificant part of the execution time, even for a large number of
cores.

248 16 32 64 128 256
P (proc count)

0

5

10

15

ex
ec

ut
io

n
tim

e
(s

)
A , A m × Pn, m = 256, n = 65536, sampling size 4096

Gaussian
SRHT
reduction

Figure 2.5: Weak scaling of Algorithm 3 with local submatrix size 256×65, 536.

Notice that the slope is steeper (meaning scalability is worse) when there
are less than 64 cores. There is up to 32 cores per node, so from 1 to 32 we
increase the number of processes on the same node. A possible explanation is
that some resources are shared amongst the cores of a same node (for example
the L3 cache is shared amongst all cores of a node). Increasing the number of
cores will overload these resources and slow down the execution of each process.

2.3 Low-rank approximation with parallel sam-
pling

2.3.1 Nyström approximation

The Nyström approximation aims to obtain a low rank approximation from
a symmetric positive semi-definite (SPSD) matrix. It involves sketching from
both right and left of the matrix. The output decomposition reads as

Ak = (ΩA)(ΩAΩ⊺)+(ΩA)⊺. (2.4)

The parentheses delimit 3 different terms in the decomposition, pictured
in Figure 2.6, such that Ak = B⊺CB where B = ΩA is the left sketch, and
C = BΩ⊺ is the left and right sketch of the input matrix. The matrix Ω
corresponds to applying a random sampling to a matrix on the right, and Ω⊺

on the left. Similarly to other low rank approximations, this decomposition
makes it possible to store and use the matrix with less resources.

Ak =

ΩA (ΩAΩ⊺)+ (ΩA)⊺

Figure 2.6: Low rank approximation with the Nyström method.

39

The Nyström approximation involves 3 steps, summarized in Algorithm 5. It
is not necessary here to use directly the 2D sketching presented in Algorithm 4,
as sketching in two steps makes use of the intermediate 1D sketch B needed to
build the decomposition.

Algorithm 5 Nyström approximation

Require: A matrix A ∈ Rm×n

1: Left sketch A: B = ΩA
2: Right sketch B: C = BΩ⊺

3: Compute the pseudo-inverse C+

Ensure: B and C+ forming the Nyström decomposition Ak = BC+B⊺.

The 2D-sketched matrix C is usually singular, due to SRHT with replace-
ment repeating columns and rows. Therefore, it is necessary to apply pre-
treatment. The next section presents different ways to deal with this.

2.3.2 Inversion of the middle matrix
Inverting a matrix is not computationally efficient. Therefore, the concatena-
tion is better obtained by combining factors B̃ = BC+ or B̄ = BC− 1

2 . There
are several ways to apply this matrix inverse. The non-exhaustive list includes
the least-square system resolution, GMRES and Conjuguate gradient. Alter-
natively the matrix inversion can be performed after decomposing the matrix
with Cholesky, QR or SVD. The latter proves useful when ΩAΩ⊺ is numerically
singular, i.e. a subset of its singular values are close to machine precision. In the
extreme case the matrix is so ill-conditioned that the Cholesky decomposition is
not applicable. To circumvent this, the smallest singular values can be ignored
by using the SVD.

In more details, to compute the inverse of a rank-deficient matrix one has to
perform the truncated SVD (see Section 1.2.3). The input rank k is determined
with a threshold ε such that ∀i > k, σi(ΩAΩ⊺) ≤ ε. The singular vectors are
equal because A is SPSD, and therefore ΩAΩ⊺ also. We obtain a replacement
matrix ΩAΩ⊺ = UkΣU⊺

k and ΩAΩ⊺ = UkΣ
−1Uk. We can also work with the

matrix square root such that

ΩA(ΩAΩ⊺)+(ΩA)⊺ = ΩAUkΣ
− 1

2

k Σ
− 1

2

k

⊺
U⊺
t (ΩA)⊺

= ΩAUkΣ
− 1

2

k (ΩAUkΣ
− 1

2

k)⊺

= B̄B̄⊺,

converting the decomposition of Eq. (2.4) to a 2-factor decomposition Ak =
B̄B̄⊺.

With this in mind, we present a refined version of the randomized Nyström
approximation in Algorithm 6 optimized for parallel processing. Because B̃ is
tall and skinny, its SVD is efficiently obtained by using the R factor from the
QR decomposition computed with the TSQR algorithm.

2.3.3 Numerical results
To illustrate the practical usability of block SRHT we now present numerical
experiments. Its efficiency and accuracy are characterized through compari-

40

Algorithm 6 Randomized Nyström approximation, suited for distributed com-
puting.
Require: n× n matrix A, l × n matrix Ω with l≪ n, the target rank k.
1: Compute Y = AΩ⊺.
2: Obtain a Cholesky factor C of ΩY.
3: Compute B̃ = YC−1 with backward substitution.
4: Obtain the R factor B of B̃ (with TSQR or similar).
5: Use SVD to compute the best rank-k approximation ŨkΣ̃kṼ

⊺
k of B.

6: Compute Uk = (YṼk)Σ̃
−1
k .

7: Output factorization A
(Nyst)
k = UkΣ̃

2
kU

⊺
k.

son with the Gaussian embeddings. We picked the Nyström approximation
as the representative application. The experiments were executed with Ju-
lia programming language version 1.7.2 along with the Distributed.jl and
DistributedArrays.jl packages for parallelism. We used 2 nodes Intel Sky-
lake 2.7GHz (AVX512) having 48 available cores and 180 MB of RAM each. In
this experiment we used only 32 cores on each node. As input data we used the
datasets mnist, year, xor and botnet, mentioned in Section 2.2.3. They are
input to the RBS kernel method, generating a distributed matrix. The param-
eter σ was respectively chosen as 10000 for mnist, 1000 or 10000 for year, and
1000 for xor and botnet, and the dimension n of the input matrix is chosen
as 32768 or 65536. The matrix A has been uniformly distributed on a square
grid of 8× 8 processors. In all the experiments, the local matrices Ω(i) on each
processor were generated with a seeded random number generator with a low
communication cost.

200 300 400 500 600

10−5

10−4

10−3

Approximation rank

(a) Block SRHT

200 300 400 500 600

10−5

10−4

10−3

Approximation rank

l = 600
l = 1000
l = 2000

(b) Gaussian matrix

Figure 2.7: Trace error ∥A − A
(Nyst)
k ∥∗/∥A∥∗ of the Nyström approximation

computed with bSRHT and Gaussian sampling. The input matrix is built with
dataset mnist and has dimension n = 32768.

Figure 2.7 depicts the convergence of the error of the low-rank approximation
obtained with Algorithm 5 taking Ω as either block SRHT or Gaussian sampling,
and n = 32768. In this numerical experiment, the error is measured with the
trace norm. Different sketching sizes l were tested. For each pair of parameters
(l, k) 20 different approximations were computed for each type of Ω, in order to

41

have the 95% confidence interval. Nevertheless, this interval is not displayed as
it is too small to be visible, that particularly implies the stability of Algorithm 6.
This figure shows that block SRHT and Gaussian embedding give very similar
results.

Figure 2.8 extends this analysis for larger input matrices by taking n =
65536, and other datasets. Similarly to the case n = 32768, the Gaussian
sampling and bSRHT exhibit almost identical results for all datasets. Therefore,
to save space the Gaussian sampling plot is not displayed here.

200 400 600

10−5

10−4

10−3

Approximation rank

T
ra

ce
re

la
ti

ve
er

ro
r

(a) Dataset mnist

200 400 600

1

0.95

0.9

Approximation rank
T
ra

ce
re

la
ti

ve
er

ro
r

(b) Dataset botnet

200 400 600

10−8

10−7

10−6

10−5

10−4

Approximation rank

T
ra

ce
re

la
ti

ve
er

ro
r

(c) Dataset xor

200 400 600 800 1,000

10−3

10−2

Approximation rank

T
ra

ce
re

la
ti

ve
er

ro
r

(d) Dataset year with σ = 104

200 400 600 800 1,000

10−8

10−7

10−6

Approximation rank

T
ra

ce
re

la
ti

ve
er

ro
r

l = 600
l = 1000
l = 2000
l = 2500
l = 3000

(e) Dataset year with σ = 105

Figure 2.8: Trace error ∥A− [[A]](Nyst)

k ∥∗/∥A∥∗ using bSRHT. The input matrix
dimension is n = 65536.

For datasets mnist and year we observe the same behavior as in the previous
figure. For datasets botnet and xor the sampling parameter does not have much

42

impact. Indeed, the approximation for the xor dataset is very precise, whereas
the dataset botnet is approximated with a large error, for any value of l. It can
be explained by looking at Figure 2.1 with the guess that the singular values
profile is similar when including more records (which is what we experience in
practice). In Figure 2.1 botnet is very low rank, explaining a very accurate
approximation for any sampling size. On the contrary xor has a numerical rank
around 2500, which is much higher than the maximum approximation of 600 in
the experiment, hence a large error.

Figure 2.9 gives runtime characterization. In particular, we depict the time
spent on computing Y = AΩT and ΩY in step 1 and 2 of Algorithm 6. These
operations will dominate the overall computational cost, when the submatrix
size is large enough. Nevertheless, the reader should be aware that TSQR and
the SVD of B (step 4 and 5) are also important, especially when the sampling
size is close to the submatrix size. The parameter k is not involved in steps 1
and 3 hence not mentioned in Figure 2.9.

600 1,000 2,000

0

1

2

3

4

Sampling size

R
un

ti
m

e
(s

)

(a) Matrix 32768 x 32768

600 1,000 2,000

0

2.5

5

7.5

10

12.5

Sampling size

R
un

ti
m

e
(s

)

Gaussian
bSRHT

(b) Matrix 65536 x 65536

Figure 2.9: Runtimes of computing Y = AΩT and ΩY in Algorithm 6 for
different sampling sizes.

According to Figure 2.9, the runtime of the Gaussian sampling is up to 2.5
times higher and grows faster with l than the runtime taken by SRHT. Note that
for SRHT the local computation cost is independent of l, hence the slope comes
only from the reductions in steps 1 and 2. On the other hand, the Gaussian
sampling involves local computations with linear dependency in l, in addition
to these reductions.

2.4 Conclusion
This chapter presented a distributed adaptation of the subsampled randomized
Hadamard transform. Backed up with a theorem from our paper [12], it is nu-
merically illustrated to have the same accuracy as its sequential counterpart, as
well as Gaussian sampling, the standard method. Compared to the parallel ver-
sion of Gaussian sampling, it exposes a speedup of more than 2, increasing with
the sampling size. Other contributions in this work present deterministic algo-
rithms with similar goals, and the randomization is again used as comparison
in the next chapter.

43

44

Chapter 3

Distributed QR
decomposition with
tournament pivoting

This chapter is dedicated to the computation of the truncated QRCP decompo-
sition (see Section 1.2.4) on a distributed architecture. Unlike the randomized
methods presented in the preceding chapters, the focus is now on deterministic
methods. Computing this decomposition leads to obtaining a low rank approxi-
mation of the input matrix, hence, as before, improving the storage and manip-
ulation efficiency of this matrix. Based on a previous algorithm, CARRQR [36],
this work extends and generalizes this method as well as it provides numerical
experiments. The reader should also note that another recent thesis implements
the block truncated QRCP decomposition (see Korkmaz [79, Alg. 4]), based on
the modified dgeqp3 routine from MUMPS block low-rank solver [5, 6].

The chapter is organized as follows. Section 3.1 gives background and past
work leading to 1Dc-TP, which generalizes the bounds of tournament pivoting
from Demmel et al. [36] to more general reduction trees. Section 3.2 introduces
1Dr-TP, an analogous strategy that allows to select k columns from a matrix
partitioned into blocks of rows. Section 3.3 introduces QRTP (2D tournament
pivoting), the main algorithm of this chapter, which relies on a combination of
1Dc-TP and 1Dr-TP. We show that QRTP provides a spectrum revealing and
kernel approximation of the original matrix and works well in practice. Sec-
tion 3.5 presents the parallel design of QRTP as well as its estimated parallel
cost. Parallel performance results from Section 3.6 compare the runtimes of
QRTP and randomized QRCP [42, 86] as implemented in Xiao et al. [118], an
algorithm that uses randomization to select columns during the QR factoriza-
tion. We show that QRTP scales well on up to 16384 processors for a matrix of
size 131072× 131072.

3.1 Earlier work

This section presents the preceding work, CARRQR, a method on which our
novel algorithm is based. Additionally, we present the randomized QRCP algo-

45

rithm used for comparison.

3.1.1 Tournament pivoting for 1D block column parti-
tioned matrices

In the context of computing a low rank approximation of a matrix while also
minimizing communication, a communication avoiding version of strong RRQR
factorization is introduced in Demmel et al. [36]. It relies on a technique referred
to as tournament pivoting for selecting k columns from the columns of the
input matrix A, which proceeds as following. Consider that the matrix A is
partitioned into 4 column blocks, A =

[
A11 A12 A13 A14

]
. From each

column block A1i, i = 1, . . . , 4, k columns are selected by using strong RRQR,
and their indices are given in Ii0.

[A11 A12 A13 A14]

= = = =

[Q00R00Π
⊺
00 Q10R10Π

⊺
10 Q20R20Π

⊺
20 Q30R30Π

⊺
30]

↓ ↓ ↓ ↓
I00 I10 I20 I30

From these 4 sets of columns, the final k columns are selected through a
reduce like operation, with the operator being the strong RRQR factorization.
Thus, 2 sets of k columns are concatenated, and a new set of k columns is
selected with strong RRQR.

[A[:, I00 ∪ I10] A[:, I20 ∪ I30];]

= =

[Q01R01Π
⊺
01 Q11R11Π

⊺
11]

↓ ↓
I01 I11

The final set of k columns is obtained by concatenating the two sets of k
columns whose indices are in I01 and I11, and performing strong RRQR on the
obtained matrix.

A[:, I01 ∪ I11] = Q02R02Π
⊺
02 → I02

The indices of the selected columns are in I02.
In the original algorithm, each step of the reduction operation is performed

on 2 sets of columns. We extend now the analysis to the case where each
reduction involves a number of p sets of columns, as presented in Algorithm 7.

Algorithm 7 1Dc-TP: Tournament pivoting for 1D column partitioned matri-
ces (one reduction step, selection of k columns).

Require: Input matrices A1, . . . ,Ap, approximation rank k
1: For each Ai, compute strong RRQR to select k columns, store indices in Ii
2: Concatenate selected columns Ā =

[
A1[:, I1] · · · Ap[:, Ip]

]
3: Compute strong RRQR of Ā to select k columns

Ensure: indices of k rank revealing columns of A

Theorem 8 generalizes Lemma 2.5 from Demmel et al. [36] to any number p
of matrices from which k columns are selected.

46

Theorem 8. Let p be a positive integer. Let f > 1 and 1 ≤ k ≤ min(m,n, p).
For any 1 ≤ ℓ ≤ p, let Aℓ ∈ Rm×n and fℓ > 1. We note A =

[
A1 · · · Ap

]
and the strong RRQR decomposition of any Aℓ as

AℓΠℓ = Qℓ

[
Rℓ

11 Rℓ
12

Rℓ
22

]
,

where Rℓ
11 ∈ Rk×k and where Πℓ is such that for any 1 ≤ j ≤ n− k

γ2j (R
ℓ
11

−1
Rℓ

12) + γ2j (R
ℓ
22)/σ

2
min(R

ℓ
11) ≤ kf2ℓ .

Then the horizontal concatenation Ã =

[
Q1

[
R1

11

]
· · · Qp

[
Rp

11

]]
factorized

as

Q̃

[
R̃11 R̄12

R̄22

]
with R̃11 ∈ Rk×k, such that (R̃−1

11 R̄12)
2

ij+ω
2
i (R̃11)γ

2
j (R̄22) ≤ f2,

verifies

γ2j (R̃
−1
11 R̃12) + γ2j (R̃22)/σ

2
min(R̃11) ≤ 2k3f2 max(f21 , . . . , f

2
p).

Here R̃12 and R̃22 are such that AΠ̃ = Q̃

[
R̃11 R̃12

R̃22

]
and Π̃ is a permutation

matrix.

Proof. Let p > 1. Consider Section 2.3.1 of Demmel et al. [36] which proves the
theorem for p = 2. We now give the main differences to generalize it for p > 2.
Start with p matrices A1 . . .Ap and Ã =

[
A1 · · · Ap

]
. For 1 ≤ ℓ ≤ p we

define for Aℓ the following matrices the same ways N , C, N , C1 and C2 are
defined for B and B̂ in section 2.3.1 of Demmel et al. [36].

Nℓ =
(
Rℓ

11

)−1
Rℓ

12

Ñ = R̃−1
11 R̄12

Mℓ =
[
Ik Ñ

]
Π̄⊺[:, 1 : k]

Dℓ =
[
O R̄22

]
Π̄⊺[:, 1 : k][

Cℓ
1

Cℓ
2

]
= Q̃⊺

ℓQℓ

[
Rℓ

22

]
With the same reasoning as in Demmel et al. [36] we obtain

R̃12 =
[
R̄12 R̃11(M1N1 + R̃−1

11 C
1
1) · · · R11(MpNp + R̃−1

11 C
p
1)
]
,

R̃22 =
[
R̄22 D1N1 +C1

2 · · · DpNp +Cp
2

]
.

By adapting the second part of the proof of Demmel et al. [36] we obtain for
1 ≤ ℓ ≤ p,

γ2j (MℓNℓ +R−1
11 C

ℓ
1) + γ2j (DℓNℓ +Cℓ

2)/σ
2
min(R11) < 2f2k3f2ℓ .

By combining these two relations, we obtain the result of the theorem.

47

3.1.2 Randomized QRCP
A randomized version of QRCP was introduced in the recent years in Duer-
sch and Gu [42], Martinsson et al. [86]. This algorithm, that selects through
a randomized process a set of pivot columns during the QR factorization, will
be later compared to our QRTP algorithm in terms of both accuracy and per-
formance. Randomized QRCP [118], presented in Algorithm 8, selects k pivot
columns from a large matrix distributed over a grid of Pr×Pc processors in two
steps. (1) Given an input matrix A ∈ RmPr×nPc , A is sketched into a matrix
B = ΩA, where Ω ∈ Rl×m is a

√
1/l scaled matrix of independent random

variables drawn from M(0, 1). (2) The selection of k pivot columns is obtained
by computing the QRCP factorization of B involving Pc processors.

Algorithm 8 Randomized QRCP to find pivots columns.
Require: Input matrix A distributed on a Pr × Pc processor grid, approxima-

tion rank k, sampling parameter l
1: B = 1√

l
ΩA, and Ω ∈ Rl×m coefficients i.i.d. from M(0, 1)

2: Distributed truncated QRCP on B to select k columns
Ensure: indices of k pivot columns of A

In the section with numerical experiments we compare the accuracy and the
runtime of QRTP with RQRCP. To this end we used the Fortran/C++/MPI
code provided along with Xiao et al. [118]. Several characteristics of this code
are important to mention with respect to our comparison. First, RQRCP uses
a block cyclic distribution, based on a block size parameter NB. In order to
compare with QRTP, which does not use a block cyclic distribution, we set the
block size to be equal to the size of the submatrix on each processor. Second, to
select columns of a distributed matrix, the authors of Xiao et al. [118] modified
ScaLAPACK’s pdgeqpf to truncate the QRCP decomposition. Hence, the per-
formance of the second step of RQRCP is directly related to the performance
of ScaLAPACK. We note that the full RQRCP algorithm, as presented in Al-
gorithm 9, computes the low rank approximation Ak = QkRk, where Qk and
Rk are the factors of the truncated QR decomposition from Eq. (1.1). This
requires two extra steps: (3) swap selected columns in the leading positions of
the distributed matrix, and (4) perform a partial QR factorization. It can also
proceed with the QR factorization to some larger rank k. For the comparison
presented in this work we limit ourselves to Algorithm 8.

Algorithm 9 Randomized QRCP to compute a low rank approximation.
Require: Input matrix A distributed on a Pr × Pc processor grid, approxima-

tion rank k, sampling parameter l
1: B = 1√

l
ΩA, and Ω ∈ Rl×m coefficients i.i.d. from M(0, 1)

2: Distributed truncated QRCP on B to select k columns
3: Swap the k to the front in A
4: Distributed truncated QR on the pivoted A to compute QkRk

Ensure: Low rank approximation Ak = QkRk

We now recall some error guarantees of RQRCP derived in Xiao et al. [118].
Considering the factorization given in Eq. (1.1), it is shown in Xiao et al. [118]

48

that for any permutation matrix Π and 1 ≤ j ≤ k we have:

σ2
j (A) ≤ σ2

j (
[
R11 R12

]
) + ∥R22∥22. (3.1)

In addition, when Π is obtained from RQRCP or QRCP, the following upper
bound on ∥R22∥2 holds:

∥R22∥2 ≤ g1g2
√
(l + 1)(n− l)σl+1(A), (3.2)

where g1 =
∥R22∥1,2

|α| , g2 = |α|∥R̂−⊺∥1,2, ∥.∥1,2 denotes the largest column norm,

and R̂ =

(
R11 a

α

)
is a leading submatrix of R. It is also shown in Xiao

et al. [118] that for QRCP, g1 ≤ 1 and g2 ≤ 2l, while for RQRCP g1 ≤
√

1+ε
1−ε

and g2 ≤
√

2(1+ε)

1−ε (1 +
√

1+ε
1−ε)

l−1 with high probability. Here l = k for QRCP,
l ≥ k for RQRCP because of oversampling, and ε ∈ (0, 1). In other words,
both QRCP and RQRCP have exponential terms in the error bounds of the sin-
gular values. Furthermore the authors indicate that computing a Π such that
∥R22∥2 ≤ O(σl+1(A)) will reveal well the singular values of A in

(
R11 R12

)
.

Since RQRCP does not guarantee that ∥R22∥2 ≤ O(σl+1(A)), the authors intro-
duce SRQR, an algorithm that relies on efficiently estimating g2 and performing
extra column permutations until g2 is small. However, the extra permutations
are performed on the large matrix A and thus this algorithm becomes less effi-
cient. Hence, we do not consider further SRQR in our work.

3.2 Tournament pivoting for 1D block row parti-
tioned matrices

In this section we present a new algorithm to compute a spectrum preserving
and kernel approximation factorization of a block row partitioned matrix by
using tournament pivoting. We use this algorithm in Section 3.3 to extend
tournament pivoting to the case when a matrix is distributed over a set of
processors by using a 2D partitioning of both rows and columns.

Tournament pivoting for 1D block row partitioned matrices, referred to as
1Dr-TP, selects k columns of a matrix from the selections performed on its
blocks of rows using a reduction tree. It has thus similarities with the column
partitioned version (1Dc-TP cf. Section 3.1.1), however now the selections are
performed from subcolumns of the matrix. We present the algebra of 1Dr-TP
by using a simple example in which A is partitioned into 4 blocks of rows,
A = [A11; . . . ;A41]. First k columns are selected from each block of rows
Ai1, i = 1, . . . , 4 and their indices are stored in Ii0, i = 1, . . . , 4,

A =

A11

A21

A31

A41

 =

Q00R00Π

−1
00

Q10R10Π
−1
10

Q20R20Π
−1
20

Q30R30Π
−1
30

→ select k cols I00
→ select k cols I10
→ select k cols I20
→ select k cols I30

Then the sets of k indices are combined two by two to select each time a new
set of k indices. For example, for the first two sets, I00 and I10, the selection

49

is performed as following. The columns of the first two block rows [A11;A21]
whose indices belong to I00∪I10 are concatenated together to form a new matrix,
[A11;A21][:, I00 ∪ I10]. Strong RRQR is applied to this matrix to select a new
set of its columns I01,

[
A11

A21

]
[:, I00 ∪ I10][

A31

A41

]
[:, I20 ∪ I30]

 =

[
Q01R01Π

−1
01

Q11R11Π
−1
11

]
→ I01
→ I11

.

In the last step, the columns of A whose indices belong to I20 ∪ I30 are
concatenated together, and the final k columns are selected through strong
RRQR from A[:, I01 ∪ I11],

A[:, I01 ∪ I11] = Q02R02Π
−1
02 → I02.

Algorithm 10 describes one reduction of 1Dr-TP, i.e. selects k columns from
A = [A1; . . . ;Ap] through local selections of k indices from subcolumns of A in
A1, . . . ,Ap.

Algorithm 10 1Dr-TP: Tournament pivoting for row partitioned matrix (one
reduction step, selection of k columns).

Require: Input matrices A1 . . .Ap, rank of approximation b
1: For each Ai, compute strong RRQR to select k columns, store indices in Ii
2: Concatenate selected columns Ā =

[
A[:, I1] · · · A[:, Ip]

]
3: Compute strong RRQR of Ā to select k columns

Ensure: indices of k rank revealing columns of A

Similarly to Theorem 8 we derive bounds on the quality of the approximation
in the sense of Theorem 3 from bounds corresponding to the selection at each
step of the tournament.

Theorem 9. Let p be any strictly positive integer. Let f > 1 and 1 ≤ k ≤
min(m,n/p). For any 1 ≤ ℓ ≤ p, let Aℓ ∈ Rm×n and fℓ > 1. We note
A =

[
A1; . . . ;Ap

]
and the strong RRQR decomposition of any Aℓ as,

AℓΠℓ = Qℓ

[
Rℓ

1,ℓ Cℓ

Dℓ

]
, (3.3)

where Rℓ
1,ℓ ∈ Rk×k and where Πℓ is such that for any 1 ≤ j ≤ n− k,

γ2j (R
ℓ
1,ℓ

−1
Cℓ) + γ2j (Dℓ)/σ

2
min(R

ℓ
1,ℓ) ≤ kf2ℓ . (3.4)

Then the horizontal concatenation Ā =
[
AΠ1[:, 1 : k] · · · AΠp[:, 1 : k]

]
fac-

torized as

Q̃

[
R̃11 R̄12

R̄22

]
with R̃11 ∈ Rk×k, such that (R̃−1

11 R̄12)
2

ij+ω
2
i (R̃11)γ

2
j (R̄22) ≤ f2,

verifies

γ2j (R̃
−1
11 R̃12) + γ2j (R̃22)/σ

2
min(R̃11) ≤ 2k3f2

p∑
i=1

f2i ,

50

where R̃12 and R̃22 are such that AΠ̃ = Q̃

[
R̃11 R̃12

R̃22

]
and Π̃ is a permutation

matrix.

Proof. Under the same hypothesis as Theorem 9 and Π a permutation matrix
such that

Π =
[
Π1[:, 1 : k] · · · Πp[:, 1 : k] Πp+1

]
,

where Πp+1 selects the remaining columns so that Π is orthogonal. For the
sake of clarity, blocks are supposed to reveal non overlapping sets of columns,
i.e. ∀ℓ′ ̸= ℓ,Πℓ[:, 1 : k]

⊺
Πℓ′ [:, 1 : k] = O. Using Π we can rewrite the strong

rank revealing factorization 3.3 as,

AℓΠ = Qℓ

[
Rℓ

1,1 · · · Rℓ
1,p Rℓ

1,p+1

Rℓ
2,1 · · · Rℓ

2,p Rℓ
2,p+1

]
,

with Rℓ
2,ℓ = O, Rℓ

1,1, . . . ,R
ℓ
1,p ∈ Rk×k, Rℓ

2,1, . . . ,R
ℓ
2,p ∈ R(m−k)×k, Rℓ

1,p+1 ∈
Rk×(n−kp) and Rℓ

2,p+1 ∈ R(m−k)×(n−kp).
The condition 3.4 on the factorization of each Aℓ can be reformulated with

the alternative permutation Π as the following. For 1 ≤ ℓ′ ≤ p+1 so that ℓ′ ̸= ℓ
and j is a column index of Rℓ

1,ℓ′ ,

γ2j (R
ℓ
1,ℓ

−1
Rℓ

1,ℓ′) + γ2j (R
ℓ
2,ℓ′)/σ

2
min(R

ℓ
1,ℓ) ≤ kf2ℓ .

Recalling the hypothesis of Theorem 9, Ā = A
[
Π1[:, 1 : k] · · · Πp[:, 1 : k]

]
=

AΠ[:, 1 : kp] ∈ Rmp×kp contains the columns of A selected on each block Aℓ.
The RRQR factorization of Ā is defined as,

ĀΠ̄ = Q̃

[
R̃11 R̄12

R̄22

]
,

where Q̃ ∈ Rmp×mp and R̃11 ∈ Rk×k such that for any 1 ≤ i ≤ k and 1 ≤ j ≤
k(p− 1)

(R̃−1
11 R̄12)

2

ij + ω2
i (R̃11)γ

2
j (R̄22) ≤ f2 (3.5)

Finally, the global approximation can be expressed as

AΠ̃ = Q̃

[
R̃11 R̄12

R̄22

]
, Q̃⊺

Q1

[
R1

1,p+1

R1
2,p+1

]
...

Qp

[
Rp

1,p+1

Rp
2,p+1

]

 =def Q̃

[
R̃11 R̃12

R̃22

]

We will now express R̃12 and R̃22. Let Q̃ =
[
Q̃1; . . . ; Q̃p

]
, where ∀ℓ ≤

p, Q̃ℓ ∈ Rm×mp leading to,

Q̃⊺

Q1

[
R1

1,p+1

R1
2,p+1

]
...

Qp

[
Rp

1,p+1

Rp
2,p+1

]
 =

p∑
ℓ=1

Q̃⊺
ℓQℓ

[
Rℓ

1,p+1

Rℓ
2,p+1

]
.

51

We can express, with Nℓ = Rℓ
1,ℓ

−1
Rℓ

1,p+1,

Q̃⊺
ℓQℓ

[
Rℓ

1,p+1

Rℓ
2,p+1

]
= Q̃⊺

ℓQℓ

[
Rℓ

1,ℓ

]
Nℓ + Q̃⊺

ℓQℓ

[
Rℓ

2,p+1

]
. (3.6)

To ease the selection notation, let Iℓ = [(ℓ−1)k+1 : ℓk] be the indices of the
columns of Ā corresponding to the selected columns of Aℓ. From the definition
of Ā,

Qℓ

[
Rℓ

1,ℓ

]
= Q̃ℓ

[
R̃11 R̄12

R̄22

]
Π̄⊺[:, Iℓ]

= Q̃ℓ

[
R̃11Mℓ

Dℓ

]
,

with

Mℓ =
[
Ik Ñ

]
Π̄⊺[:, Iℓ],

Dℓ =
[
O R̄22

]
Π̄⊺[:, Iℓ],

Ñ = R̃−1
11 R̄12.

Note that the new introduced matrices verify for 1 ≤ i ≤ k and 1 ≤ j ≤ k,

(Mℓ)
2
i,j + γ2j (Dℓ)ω

2
i (R̃11) ≤ f2. (3.7)

We also define,

Q̃⊺
ℓQℓ

[
Rℓ

2,p+1

]
=def

[
Cℓ

1

Cℓ
2

]
.

Plugging everything using the global approximation expression, we obtain,

Q̃⊺

Q1

[
R1

1,p+1

R1
2,p+1

]
...

Qp

[
Rp

1,p+1

Rp
2,p+1

]
 =

p∑
ℓ=1

([
R̃11Mℓ

Dℓ

]
Nℓ +

[
Cℓ

1

Cℓ
1

])
,

and then

R̃12 =

[
R̄12 R̃11

p∑
ℓ=1

(
MℓNℓ + R̃−1

11 C
ℓ
1

)]
,

R̃22 =

[
R̄22

p∑
ℓ=1

(
DℓNℓ +Cℓ

2

)]
.

We are looking for an upper bound of the following expression

γ2j (R̃
−1
11 R̃12) + γ2j (R̃22)/σ

2
min(R̃11). (3.8)

Case 1 If 1 ≤ j ≤ k, then γ2j (R̃
−1
11 R̃12) = γ2j (R̃

−1
11 R̄12) and γ2j (R̃22) =

γ2j (R̄22). So we can use (3.5) which gives (3.8) < kf2.

52

Case 2 Assume k + 1 ≤ j ≤ n− kp. We have,

(3.8) = γ2j

(
p∑
ℓ=1

(
MℓNℓ + R̃−1

11 C
ℓ
1

))
+ γ2j

(
p∑
ℓ=1

(
DℓNℓ +Cℓ

2

)
/σ2

min(R̃11)

)

= γ2j

(
p∑
ℓ=1

([
MℓNℓ

DℓNℓ/σmin(R̃11)

]
+

[
R̃−1

11 C
ℓ
1

Cℓ
2/σmin(R̃11)

]))

≤ 2p

p∑
ℓ=1

(
γ2j

([
MℓNℓ

DℓNℓ/σmin(R̃11)

])
+ γ2j

([
R̃−1

11 C
ℓ
1

Cℓ
2/σmin(R̃11)

]))
.

On one hand we can say using the relaxed form (cf. Eq. (1.3)) of (3.7) that
for any 1 ≤ ℓ ≤ p,

γ2j

([
MℓNℓ

DℓNℓ/σmin(R̃11)

])
≤
∥∥∥∥[Mℓ

Dℓ/σmin(R̃11)

]∥∥∥∥2
F

γ2j (Nℓ) ≤ f2k2γ2j (Nℓ).

(3.9)
On other hand using in a similar manner as Eq. (3.9) that for any x ∈ Rk,

∥R̃−1
11 x∥ ≤ σmax(R̃

−1
11)∥x∥ = σmin(R̃11)∥x∥,

γ2j

([
R̃−1

11 C
ℓ
1

Cℓ
2/σmin(R̃11)

])
≤ γ2j

([
Cℓ

1

Cℓ
2

])
/σ2

min(R̃11).

Furthermore, using definition of Cℓ
1 and Cℓ

2,

p∑
ℓ=1

γ2j

([
Cℓ

1

Cℓ
2

])
= γ2j

C1

1,1

C1
2,1
...

Cp
1,p

Cp
2,p

 = γ2j

R

1
2,p+1
...

Rp
2,p+1

 =

p∑
ℓ=1

γ2j
(
Rℓ

2,p+1

)
.

(3.10)
We can use Eq. (3.9) and Eq. (3.10) to derive further Eq. (3.8).

(3.8) ≤ 2p

p∑
ℓ=1

(
f2k2γ2j (Nℓ) +

γ2j (R
ℓ
2,p+1)

σ2
min(R̃11)

)
.

Firstly considering that for any 1 ≤ ℓ ≤ p,

σ2
min

([
R̃11Mℓ

Dℓ

])
≤ σ2

min

(
R̃11

)
∥Mℓ∥22 + ∥Dℓ∥22 ≤ f2k2σ2

min(R̃11),

secondly with the interlacing singular values theorem (see Theorem 1),

σ2
min(R

ℓ
1,ℓ) ≤ σ2

min

(
Ā[:, Iℓ]

)
,

and the fact that Q1

. . .
Q̂p

A[:, Iℓ] = Q̃

[
R̃11Mℓ

Dℓ

]
,

53

we obtain
σ2
min(R

ℓ
1,ℓ) ≤ f2k2σ2

min(R̃11).

Using these two relations we continue to derive Eq. (3.8),

(3.8) ≤ 2pf2k2
p∑
ℓ=1

(
γ2j (Nℓ) +

γ2j (R
ℓ
2,p+1)

σ2
min(R

ℓ
1,ℓ)

)

≤ 2pf2k3
p∑
ℓ=1

f2ℓ .

3.3 QR factorization with 2D tournament pivot-
ing

In this section we introduce an algorithm for computing a low rank approxima-
tion of a matrix distributed over a 2D grid of processors by using tournament
pivoting. We refer to this pivoting strategy as 2D tournament pivoting, or 2D
TP, which combines the two pivoting strategies introduced in the previous sec-
tions, 1Dc-TP for matrices partitioned into blocks of columns and 1Dr-TP for
matrices partitioned into blocks of rows.

3.3.1 QRTP algorithm

We consider a matrix A ∈ Rm×n distributed on a Pr × Pc grid of processors.
We explain the algorithm considering a 2 × 4 grid of processors, that is A is
partitioned as,

A =

(
A11 A12 A13 A14

A21 A22 A23 A24

)
.

We consider here that tournament pivoting relies on a binary tree. The
general case will be covered in a following section. First, k columns are selected
from each column block by using binary 1Dr-TP.(

A11

A21

) (
A12

A22

) (
A13

A23

) (
A14

A24

)
↓ ↓ ↓ ↓
I00 I10 I20 I30

Second, binary 1Dc-TP is applied on the sets of k selected columns to obtain
the final k columns.

A(:, I00) A(:, I10) A(:, I20) A(:, I30)
↓
I02

Figure 3.1 illustrates this algebra and Algorithm 11 gives the formal pro-
cedure for computing the QR factorization of a matrix with 2D tournament
pivoting, referred to as QRTP.

54

A11 A12 A13 A14

A21 A22 A23 A24

I00 I10 I20 I30

I01 I21

I02

Figure 3.1: Column selection using Algorithm 11. A set of k columns are selected
for each submatrix Aij , then these columns are combined along a reduction tree
to find k columns for the complete matrix A. I represents a set of indices.

Algorithm 11 QRTP: QR factorization with 2D tournament pivoting.
Require: Pr×Pc processor grid, A distributed matrix, k approximation rank
1: for 1 ≤ i ≤ Pr in parallel do
2: Ii ← select k columns from each block column i using binary 1Dr-TP
3: end for
4: I ← Select k columns from A(:,∪Pr

i=1Ii) using binary 1Dc-TP
Ensure: I indices of k rank revealing columns of A

55

We now give the bounds for the approximations of the singular values ob-
tained by QRTP. We assume that each selection of k columns in the algorithm
is performed such that the bounds in Eq. (1.2) are satisfied with a constant f .
Let P = PrPc. Then with

fTP =
√
PPrk

log2(P) f log2(P)+1, (3.11)

and by using Theorem 4, it can be shown that the singular values of R̃11 and R̃22

approximate the singular values of A in the following sense: for 1 ≤ j ≤ n− k
and 1 ≤ i ≤ k,

1 ≤ σi(A)

σi(R̃11)
≤
√
1 + kf2TP (n− k), 1 ≤

σj(R̃22)

σj+k(A)
≤
√

1 + kf2TP (n− k).
(3.12)

The steps to find these bounds are detailed in Section 3.3.2 in a more general
setting.

We compare now the bounds of QRTP with the bounds of RQRCP from
Eq. (3.2). For a given i ≤ n − k, the bound of ∥R22∥2 can be compared by
contrasting g21g22(l+1)(n− l) for RQRCP to kf2TP (n− k) for QRTP. The terms
g1 and g2 are defined in Xiao et al. [118] and recalled in Section 3.1.2. In
particular, g2 depends exponentially on l for the RQRCP bound, whereas the
QRTP bound depends exponentially on log2 P .

3.3.2 Spectrum preserving and kernel approximation pro-
perties of QRTP

We discuss in this section the spectrum preserving and kernel approximation
properties of QRTP by considering more general reduction trees. We also com-
pare the reduction strategy used in QRTP with an alternative one in terms of
approximation bounds.

Spectrum preserving and kernel approximation properties of 1Dc-TP
and 1Dr-TP

We discuss first these two properties for both 1Dc-TP and 1Dr-TP. Let A be
partitioned into Pc blocks of columns and let Ai be the ith block. Let k be the
rank of all approximations. Consider that the selection of k columns from each
block Ai satisfies inequality Eq. (1.3) with the upper bound being Fi. Consider
the hth reduction step out ofD reduction steps of the algorithm and let fhi be the
bound corresponding to the selection of k columns at this reduction step, and
let xh be the number of column sets implied in this reduction. Using induction
on Theorem 8, we obtain that the selection of k columns from A leads to a
factorization based on 1Dc-TP that satisfies Eq. (1.3) with the upper bound
being

F 2
c = (2k2)

D
max

1≤i≤Pc

(
F 2
i

D∏
h=1

(fhi)
2

)
. (3.13)

This expression relates to Corollary 2.6 and 2.7 in Demmel et al. [36] by as-
suming that all approximations enforce the same bound f in inequality Eq. (1.3),
i.e. for 1 ≤ i ≤ Pc and 1 ≤ h ≤ D, Fi =

√
kf and fhi = f .

56

Now assume that A is partitioned into Pr blocks of rows. With the same
conventions as for Eq. (3.13), using induction on Theorem 9, the approximation
obtained by selecting k columns from A using 1Dr-TP satisfies Eq. (1.3) with
the upper bound being

F 2
r = (2k2)

D ∑
1≤i≤N

(
F 2
i

D∏
h=1

xh(f
h
i)

2

)
. (3.14)

Row-first and column-first strategies

When considering a matrix partitioned into Pr×Pc blocks, the choice of reduc-
tion tree impacts the accuracy and the performance of QRTP. In Section 3.3
we described 2D TP by using first 1Dr-TP followed by 1Dc-TP, we refer to this
strategy as row-first strategy. Additionally, we define the column-first strategy
as 1Dc-TP followed by 1Dr-TP, and we show in this section that given any
partitioning of A, the row-first strategy has better theoretical approximation
bounds than the column-first strategy. There can be more complex ways to
combine row and column reductions, but we do not explore them in this work.

Let A be a matrix partitioned into Pr × Pc blocks and Ai,j be the block at
indices (i, j) in the partitioned matrix. Let k be the rank of all approximations.
Let Fi,j be the bound associated with the selection of k columns from Ai,j in the
sense of Eq. (1.3). We assume that 1Dr-TP is composed of Dr reduction steps
and 1Dc-TP has Dc reduction steps. Let fhi,j be the bounds associated with the
hth reduction step of the partition Ai,j . Replacing each Fi in Eq. (3.13) with
Fr from Eq. (3.14), we obtain the following bounds in the sense of Eq. (1.2) for
the row-first strategy,

F 2
rc = (2k2)

Dr+Dc
max

1≤j≤Pc

(
Pr∑
i=1

[
F 2
i,j

Dr+Dc∏
h=1

(fhi,j)
2
Dr∏
h=1

xi

])
. (3.15)

Replacing each Fi in Eq. (3.14) with Fc from Eq. (3.13), we have the following
bounds in the sense of Eq. (1.2) for the column-first strategy,

F 2
cr = (2k2)

Dr+Dc

Pr∑
i=1

[
max

1≤j≤Pc

(
F 2
i,j

Dc+Dr∏
h=1

(fhi,j)
2
Dc+Dr∏
h=Dc+1

xi

)]
. (3.16)

We conclude with the following corollary.

Corollary 1. Let A be a matrix partitioned into Pr × Pc blocks for which a
low rank approximation based on QRTP is computed using 1Dr-TP and 1Dc-
TP with given reduction trees. Let Frc resp. Fcr be the bounds in the sense of
Eq. (1.2) obtained when executing QRTP with 1Dr-TP followed by 1Dc-TP resp.
1Dc-TP followed by 1Dr-TP. We have the following relation on the bounds,

Frc ≤ Fcr.

Corollary 1 shows that once the reduction trees are fixed for 1Dr-TP and
1Dc-TP, the row-first strategy always has a smaller lower bound than the
column-first strategy. In more details, it means that given a matrix partitioned
into Pr×Pc blocks for which a low rank approximation is computed using QRTP,

57

the guarantees of the low rank approximations in the sense of Theorem 3 are
better when reducing first along the first dimension (1Dr-TP to select Pc subsets
of columns, then 1Dc-TP to select k columns) than along the second dimension
(1Dc-TP to select Pr subsets of columns, then 1Dr-TP to select k columns).

3.4 Numerical results

In this section we study the numerical behavior of QRTP on matrices of small
size. The parallel performance of the algorithm on large matrices is studied
later in Section 3.6. We consider first the following two matrices,

• heat is a 1000×1000 matrix modeling an inverse heat equation[22],

• gravity is a 1000×1000 matrix modeling a gravity problem[116].

Let A be one of these two matrices and AQRTP its low rank approximation
computed with QRTP. Figure 3.2 displays the first 50 singular values of the
matrix heat and their approximations computed with QRTP with the matrix
being partitioned into 8 × 8 blocks (which corresponds to executing the algo-
rithm on 64 processors). The red dots give the ratio between the singular values
of the QRTP approximation and the singular values of A, σi(AQRTP)/σi(A).
The approximations σi(AQRTP) are computed by applying the SVD to AQRTP .
Figure 3.2 shows that the QRTP approximation gives a very accurate approx-
imation of the 40 largest singular values of A with a ratio larger than 0.975.
For the singular values 41 to 48, the ratio decreases to 0.9 and reaches 0.8 for
singular values 49 and 50. It also shows that QRTP is close to the QRCP
approximation, and for some singular values QRTP is more accurate, see for
example the 48th singular values.

0 10 20 30 40 50
i

10−4

10−3

10−2

10−1

S
in

gu
la

r
va

lu
es

SVD

QRCP

QRTP

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

σ
i(
A
Q
R
T
P

)/
σ
i(
A

)

σi(AQRTP)/σi(A)

Figure 3.2: Singular values of the matrix heat and its approximation with
QRCP and QRTP on 64 processors. The rank of the approximation is 50. The
red dots give the ratio of the singular values of the approximation with QRTP
to the original singular values.

58

Figure 3.3 presents the same analysis for the matrix gravity. The first
25 singular values of this matrix decay rapidly, while the following ones decay
slowly. This figure shows that the QRTP approximation gives a very accurate
approximation for the 22 largest singular values of the matrix gravity, with a
ratio larger than 0.99. From the 23rd singular value the ratio decreases to reach
0.7 for the 26th singular value and is between 0.58 and 0.75 for the singular
values 27 to 50. In addition, we see that QRCP and QRTP give an almost
identical approximation. We also compute the relative error between QRCP
and QRTP as ∥A−AQRTP ∥F−∥A−AQRCP ∥F

∥A−AQRCP ∥F
= −4.9 × 10−5, showing that both

algorithms have indeed very close results, with QRTP performing slightly better
than QRCP in terms of Frobenius norm. Nevertheless, the two algorithms select
different columns of A, with only 5 columns selected by both QRCP and QRTP.
For the matrix heat the relative error between QRCP and QRTP is −0.06 and
there are 4 common columns selected by both algorithms, leading to the same
conclusion for the matrix heat: both approximations have very close results
even though most of the columns selected are different.

0 10 20 30 40 50
i

10−6

10−5

10−4

10−3

10−2

10−1

100

101

S
in

gu
la

r
va

lu
es

SVD

QRCP

QRTP
0.6

0.7

0.8

0.9

1.0

σ
i(
A
Q
R
T
P

)/
σ
i(
A

)

σi(AQRTP)/σi(A)

Figure 3.3: Singular values of the matrix gravity and its approximation with
QRCP and QRTP on 64 processors. The rank of the approximation is 50. The
red dots give the ratio of the singular values of the approximation with QRTP
over the original singular values.

We now consider a set of 13 matrices arising from different application do-
mains. They are presented in Table 3.1, where we also display the ratio σ1(A)

σk+1A

as an indication of the decay of their singular values, where k = 50. Fig-
ure 3.4 displays the minimum, maximum and average over 1 ≤ i ≤ 50 of
the ratio σi(AQRTP)

σi(A) where A corresponds to the input matrix, and AQRTP

to the compression of A distributed on an 8 × 8 processor grid using QRTP
with a rank of 50. We can see that the worst ratio is 0.58 for the matrix
gravity, and the smallest average is 0.72 for the matrix ursell. These val-
ues are far greater than the theoretical lower bound given in Eq. (3.12), which
is 1√

1+50∗
√
64∗8∗506(1000−50)

= 5 × 10−9. This lower bound is calculated using

59

Name Size σ1(A)
σk+1(A)

Description

1 baart 1000×1000 2× 107 Fredholm integral equation of the first kind
2 blur 900×900 1× 100 Digital image deblurring
3 deriv2 1000×1000 3× 103 Computation of the second derivative
4 foxgood 1000×1000 8× 106 Severely ill-posed problem
5 gravity 1000×1000 6× 106 1-D gravity surveying model problem
6 heat 1000×1000 3× 103 Inverse heat equation
7 parallax 28×1000 N/A Stellar parallax problem with 28 fixed, real ob-

servations
8 phillips 1000×1000 1× 104 Phillips’ “famous” problem
9 shaw 1000×1000 6× 106 One-dimensional image restoration model
10 spikes 1000×1000 2× 107 Test problem with a “spiky” solution
11 tomo 900×900 3× 100 Create a 2D tomography test problem
12 ursell 1000×1000 3× 107 Integral equation with no square integrable so-

lution
13 wings 1000×1000 3× 107 Test problem with a discontinuous solution

Table 3.1: Matrices corresponding to various modelisation problems.

f = 1 for all executions of strong RRQR.

ba
ar
t

blu
r

de
riv

2

fox
go

od

gr
av

ity he
at

pa
ra
lla

x

ph
illi

ps
sh

aw
sp

ike
s
tom

o
ur

sel
l
wing

0.6

0.8

1

Min Average Max of
σi(AQRTP)

σi(A)

Figure 3.4: Singular values of the approximation of the 13 matrices.

3.4.1 Influence of the reduction tree used during tourna-
ment pivoting

We study now the influence of the structure of the reduction tree on the accuracy
of QRTP. We define the degree of the tree as the number of children of each node.
We assume the degree is constant for a given tree, and we study the impact of
this parameter along with the type of reduction executed first, 1Dr-TP versus
1Dc-TP.

We compare the following strategies for QRTP. We set the number of proces-
sors to 64 such that the matrix is partitioned into 8× 8 blocks and we compute
approximations of rank k = 50.

• Row-first of degree 2: 1Dr-TP with reduction tree of degree 2, followed by
1Dc-TP with reduction tree of degree 2. Therefore, each 1D tournament
executes three reductions.

60

• Row-first of degree 8: 1Dr-TP with a reduction tree of degree 8, followed by
1Dc-TP with a reduction tree of degree 8. Therefore, each 1D tournament
executes one reduction.

• Column-first of degree 2: 1Dc-TP with reduction tree of degree 2, followed
by 1Dr-TP with reduction tree of degree 2. Therefore, each 1D tournament
executes three reductions.

• Column-first of degree 8: 1Dc-TP with reduction tree of degree 8, followed
by 1Dr-TP with reduction tree of degree 8. Therefore, each 1D tournament
executes one reduction.

0 10 20 30 40 50
Singular value index

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Er
ro

r r
at

io

i(A
k)/

i(A
)

heat

QRCP
row-first of degree 2
row-first of degree 8
column-first of degree 2
column-first of degree 8

Figure 3.5: Error on the singular values σi(Ak)/σi(A) of the matrix heat dis-
tributed on an 8× 8 processor grid using generalized QRTP with a rank 50 and
different reduction trees. Degree 2 means that the 64 blocks are combined 2 by
2, degree 8 means that the 64 blocks are combined 8 by 8. Column-first and
row-first refer to the reduction strategies defined in Section 3.3.2.

The results, displayed in Figure 3.5 for the matrix heat and Figure 3.6
for the matrix gravity, show the ratios of the approximated leading singular
values with respect to the singular values as computed by SVD, i.e. σi(Ak)

σi(A) ,
where σi(A) is the ith singular value of the input matrix and σi(Ak) is the
singular value of the approximation computed as explained previously. In this
experiment the number of cores is always 64, what changes is the strategy to
combine the selected columns. Corollary 1 suggests that the row-first strategy
is more accurate than the column-first strategy, and the relations Eq. (3.13) and
Eq. (3.14) lead to the conclusion that a lower degree strategy is less accurate (it
has indeed more intermediate reductions). We use these two claims to state the
following relation on the theoretical bounds of the approximations computed
with QRTP using the differents strategies.

Fcolumn_first,degree 2 ≤ Fcolumn_first,degree 8, Frow_first,degree 2 ≤ Frow_first,degree 8
(3.17)

61

0 10 20 30 40 50
Singular value index

0.6

0.7

0.8

0.9

1.0

Er
ro

r r
at

io

i(A
k)/

i(A
)

gravity
QRCP
row-first of degree 2
row-first of degree 8
column-first of degree 2
column-first of degree 8

Figure 3.6: Error on the singular values σi(Ak)/σi(A) of the matrix gravity
distributed on an 8 × 8 processor grid using generalized QRTP with a rank 50
and different reduction trees. Degree 2 means that the 64 blocks are combined
2 by 2, degree 8 means that the 64 blocks are combined 8 by 8. Column-first
and row-first refer to the reduction strategies defined in Section 3.3.2.

Note that the bounds in Eq. (3.17) are only lower bounds for the ratios of the
singular values and do not give the exact precision of the algorithm, because a
relation between two lower bounds does not give any conclusion on the relation
between the two actual values. We mention it here to merely link the theoretical
and practical conclusions.

Going back to Figure 3.5 and Figure 3.6 we see that all strategies give very
similar results. It invalidates in this case the expectations behind the relation
Eq. (3.17), that there is an inequality relation between the accuracies of the
different strategies. This leads to conclude that for these matrices the strategy
does not impact the accuracy of QRTP, meaning that an approximation can be
computed with the cheapest reduction tree without much loss of accuracy.

3.4.2 QRTP for image compression

We discuss here the results obtained by QRTP when used to compress images.
While we do not claim that these methods should be used for image compression,
we use them to visually display and interpret the selection of columns done by
tournament pivoting on partitioned matrices. We use black and white images as
matrices. After applying a low rank approximation, the factors are multiplied
back such that the approximation matrix can be displayed as an image and can
be compared with the original image.

Figure 3.7 presents an image and its compressions obtained using truncated
SVD, QRCP, and QRTP with a truncation rank of 10. The last image shows the
10 columns selected by QRTP. Figure 3.8 gives the singular values of this image
and their approximations obtained by the different algorithms. Performing a
rank-10 approximation brings a lot of distortion to the original image. But only
few differences can be seen between the images obtained by different approx-
imation algorithms. QRCP and QRTP have less information for the left and

62

the right sides of the picture (note that the selected columns are mainly in the
middle of the picture), leading to the presence of lines in this area. Moreover,
QRCP and QRTP have very close results, showing that the subset selected by
QRTP is close to the one selected by QRCP. The singular values represented
in Figure 3.8 confirm this, with an error ratio for QRTP from 1 to 0.6. We
see that the matrix corresponding to the image is close to low rank and the
approximated singular values are very close to the original ones.

Original Truncated SVD

QRCP QRTP

Selected columns for QRTP

Figure 3.7: Compression of a 1190 × 1920 image for different algorithms with
an approximation rank 10. QRTP uses a binary row-first reduction tree on an
8× 8 processor grid.

Additional results obtained for four other images are displayed in Figure 3.9,
where the results of QRCP and QRTP use truncation ranks 10 and 50. We see
that these images have a more complex structure than the first one, which
explains the need of a higher rank to capture more details in the compressed
versions. We also see that the images compressed with QRTP and QRCP are
very similar.

3.4.3 Accuracy comparison with RQRCP
The accuracy of QRTP is further illustrated in Figure 3.10. In this figure we
compare the Frobenius norm error of the low rank approximation for three
matrices and three algorithms. To the two matrices already presented in this

63

0 2 4 6 8 10
i

0

25000

50000

75000

100000

125000

150000

175000
SVD

QRCP

QRTP

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
rr

or

σi(Ak)/σi(A)

Figure 3.8: Singular values of the billiard ball image, original and compressed
with QRCP and QRTP. The scale on the right gives the ratio σi(Ak)/σi(A)
where A is the matrix corresponding to the picture and Ak is its approximation
with QRTP.

Original QRCP QRTP QRCP QRTP
k = 10 k = 10 k = 50 k = 50

Figure 3.9: Compression of different images using QRCP and QRTP. QRTP
uses a binary row-first division tree on an 8× 8 processor grid.

64

0 50 100 150 200

10−6

10−5

10−4

10−3

10−2

Approximation rank

Fr
ob

en
iu

s
er

ro
r

QRTP

(a) gravity

0 50 100 150 200

10−6

10−5

10−4

10−3

10−2

0.1

Approximation rank

QRCP

(b) heat

0 50 100 150 200

10−6

10−5

Approximation rank

RQRCP

(c) shaw

Figure 3.10: Error when approximating with the truncated QRCP decompo-
sition of three 10 000 × 10 000 matrices. Different distributed algorithms are
compared for pivoting 50 columns of the QRCP decomposition.

section, we add the matrix shaw coming from a 1-D image restoration model,
forming a test set of matrices of dimension 10000 × 10000 with rapidly decay-
ing singular values, distributed on an 8 × 8 processor grid. Each of the three
algorithms, QRTP, RQRCP and truncated QRCP, selects 10 to 200 columns
from each matrix to produce the decomposition Eq. (1.1). RQRCP has a fixed
oversampling of 10. To compute QRCP we used the routine pdgeqpf from
ScaLAPACK, however the routine pdgeqp3 and the truncated implementations
(partial_pdgeqpf and partial_pdgeqp3) provided in Xiao et al. [118] give
identical results. The Frobenius norm error is computed as ∥A−Ak∥F

∥A∥F
where A

and Ak are respectively the input matrix and its approximation. This figure
illustrates that both algorithms QRTP and RQRCP provide very close accuracy
to QRCP, the reference sequential algorithm. RQRCP and QRTP are always
almost equal to QRCP, except for matrix shaw for which QRTP provides slightly
less accuracy.

3.5 Parallel design of QRTP

In this section we present the parallel design of Algorithm 11 and then we
determine its cost in terms of computation, number of messages and volume of
communication.

The parallel implementation of QRTP is described in Algorithm 12 with the
following notation. For the coordinate (i, j) on the grid, Aij is the submatrix of
A on processor Pij . Let H be the depth of the reduction tree and for 0 ≤ h ≤ H,
Ihij is the set of columns selected by the hth reduction of Aij (in particular
I0ij is the set of columns selected locally for Aij and IHij is the set of final
columns, output of the algorithm). Let Chij be the MPI communicator containing
processors in the subtree having root Ihij . Considering that there is a processor
in each communicator elected to own the selected columns at the end of the

65

reduction (for example MPI rank 0), let Chij be the communicator containing
processors Pi′j′ such that Pi′j′ ∈ Chij and Pi′j′ is elected for the reduction
Ih−1
i′j′ . Figure 3.11 illustrates how the two kinds of communicators are composed.

In Algorithm 12 the processors are not descheduled during binary 1Dr-TP,
corresponding to the first iterations, but half of them are idle at each iteration
of binary 1Dc-TP, corresponding to the last iterations of QRTP.

I411

I311

I211

I111

I011

A11

I012

A12

I113

I013

A13

I014

A14

C311
I221

I121

I021

A21

I022

A22

I123

I023

A23

I024

A24

I331

I231

I131

I031

A31

I032

A32

C1
31

I133

I033

A33

I034

A34

I241

I141

I041

A41

I042

A42

I143

I043

A43

I044

A44

Figure 3.11: Reduction tree of QRTP on a 4×4 processor grid. Each node of the
tree represents a reduction to select k columns from 2k columns concatenated
from its children. Sets of processors are represented to illustrate the notation
of MPI communicators. The communicator C311 regroups the elected processors
on the children subtrees of the reduction I311 i.e. processors P11 and P21. The
communicator C1

31 regroups all processors in the subtree of reduction I131 i.e.
P31 and P32.

3.5.1 Computational and communication cost
We now determine the computation and communication cost of QRTP as de-
scribed in Algorithm 12 for a row-first strategy (binary 1Dr-TP followed by
binary 1Dc-TP) and A ∈ RmPr×nPc . The maximum computation cost per
processor is,

#flops(QRTP) = QRCP(m× n, k) + log2(Pr)QRCP(2k × 2k, k)

+

log2(Pr)∑
i=1

TSQR(m× 2k, 2i) + log2(Pc)TSQR(m× 2k, Pr)

+ log2(Pc)QRCP(2k × 2k, k),

where QRCP(m × n, k) represents the computational cost of the rank k QRCP
algorithm on an m × n matrix, which we use in practice to substitute strong
RRQR, and TSQR(m × n, Pr) represents the cost of TSQR [35] applied on Pr
blocks of sizem×n. Considering that QRCP(m×n, k) = 4mnk [54] and TSQR(m×
n, Pr) = 2n2(m+ (5 log2 Pr − 1)n3), we obtain

#flops(QRTP) = 4mnk +K1k
3 +K2mk

2,

66

Algorithm 12 Parallel QRTP
Require: input matrix A, reduction tree S, rank of the approximation k, cur-

rent processor Pij
1: Compute strong RRQR of Aij to select k columns → I0ij
2: for h from 1 to H do
3: if {Aij , Pij ∈ Chij} is a row partition then
4: if Pij ∈ Chij then
5: Merge Ih−1

ij on communicator Chij → Īhij
6: Broadcasts Īhij on communicator Ch−1

ij

7: else
8: Receive broadcast from communicator Ch−1

ij

9: end if
10: TSQR of columns Īhij of {Aij , Pij ∈ Chij} → R factor on elected processor

of Chij
11: Compute strong RRQR of R→ Ihij
12: else
13: if ∃i′, Pi′j ∈ Chij then
14: Elected processor of Chij → Pi′y

15: Gather subcolumns Ih−1
ij of Aij on Phiy → Īhij

16: if j = y (Pi′j is elected on Chij) then
17: TSQR of columns Īhij → R factor on elected processor of Chij
18: Compute strong RRQR of R→ Ihij
19: end if
20: end if
21: end if
22: end for
Ensure: IHij indices of k columns of A

67

where

K1 = 16 log2(PrPc) + 8 log2(Pr)(1 + 5 log2(Pr)/3) +
16

3
(5 log2(Pr)− 1),

K2 = 8(log2(Pr) + 1).

The number of messages is,

#messages = (log2 Pc + log2 Pr)(1 + log2 Pr),

and the volume of communication is

#words = (2k2 +
k

2
)(log2 Pr)(1 + log2 Pr) + 2k(log2 Pc)(m+ 2k log2 Pr).

3.6 Parallel performance of QRTP
In this section we study the parallel performance of Algorithm 11 and also com-
pare it with that of RQRCP. We use a parallel machine formed by 342 nodes,
each composed of two Intel Skylake 2.7GHz (AVX512) with 24 physical cores
each. Each node has 180 GB of shared memory. This machine thus has a total
of 16384 cores with 60.117 TB of distributed memory. The algorithm is im-
plemented in C++ and built with Intel C Compiler 20.0.0, MKL 20.0.0 and
IntelMPI 2018.0.3.222. For these parallel performance results, to be able to use
large dense matrices, we generate for each run a double precision matrix using
C++’s pseudo-random double precision number generator1. For P a given num-
ber of processors, the matrix is distributed over a

√
P ×

√
P grid of processors

and QRTP is applied. Experiments compare only runtimes to obtain a set of
column indices. The subsequent steps to obtain a low rank approximation, i.e.
computing Q1 and

[
R11 R12

]
from Eq. (1.1) are identical in both algorithms.

Figure 3.12 displays the weak scaling of QRTP and RQRCP with the sub-
matrices owned by each processor being of constant dimensions of 1024× 1024
while the number of processors increases. Starting with a 2× 2 processor grid,
each dimension of the global matrix is doubled until the processor grid reaches
a size of 128 × 128 and the global matrix has dimensions 131072 × 131072. In
weak scaling experiments scalable algorithms runtimes are expected to follow a
straight line. In our case QRTP is more scalable than RQRCP and especially
for a large number of processors the runtime of RQRCP is at least 6 times larger
than the runtime of QRTP.

The computational cost of QRTP essentially comes from sequential trun-
cated QRCP factorizations. The first QRCP is performed locally on each initial
submatrix, and subsequent QRCPs are performed on k × k matrices along the
reduction tree (step 11 of Algorithm 12), where k is the approximation rank.
Therefore, the size of the input submatrices and the approximation rank have a
significant impact on the runtime. To illustrate this Figure 3.13 and Figure 3.14
display runtimes when increasing the approximation rank, for different matrix
sizes, and a 64 × 64 processor grid. In the first figure the input matrix has di-
mensions 32768×32768, hence the local submatrices have dimensions 512×512.
In the second figure the input matrix has dimensions 65536× 65536, hence the

1initialized with std::uniform_real_distribution<double> dist(-32.768, 32.768), c.f.
https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

68

https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

4 16 64 256 1,024 4,096 16,384

0

0.25

0.5

0.75

1

1.25

1.5

Processor count

R
un

ti
m

e
(s

)

QRTP
RQRCP

4 16 64 256 1,024 4,096 16,384

0

0.25

0.5

0.75

1

Processor count

P
ar

al
le

le
ffi

ci
en

cy

QRTP
RQRCP

Figure 3.12: Weak scaling for a random matrix with a fixed processor submatrix
size of 1024× 1024 and an approximation rank of 50. We compare the column
selection steps of QRTP and RQRCP when increasing together the number of
processors and the global matrix size. The processor grid is

√
P ×

√
P where

P is the processor count. The cyclic block size of RQRCP is 1024 and the
oversampling is 10.

25 50 75 100 125 150 175 200

0

0.2

0.4

0.6

0.8

Approximation rank

R
un

ti
m

e
(s

)

QRTP
RQRCP

Figure 3.13: Random matrix of size 32 768 × 32 768 distributed on a 64 × 64
grid of processors. The cyclic block size of RQRCP is 512 and the oversampling
size is 10.

69

25 50 75 100 125 150 175 200

0

0.25

0.5

0.75

1

Approximation rank

R
un

ti
m

e
(s

)

QRTP
RQRCP

Figure 3.14: Random matrix of size 65 536 × 65 536 distributed on a 64 × 64
grid of processors. The cyclic block size of RQRCP is 1024 and the oversampling
size is 10.

local submatrices have dimensions 1024 × 1024. With regard to the impact
of the approximation rank, QRTP is faster than RQRCP for a lower approxi-
mation rank. Implementing the block cyclic distribution in QRTP may allow
a similar performance for larger values. In terms of submatrix size, 1024 and
512 submatrix sizes give reasonable results. However, more extensive tests with
larger block size, not produced here, showed that if the submatrix size increases
beyond 2048× 2048, the first QRCP tends to become a bottleneck in QRTP.

3.7 Conclusion
In this chapter we introduced QRTP, a scalable communication avoiding al-
gorithm using QR with tournament pivoting to compute a low rank approxi-
mation. QRTP guarantees bounds on the singular values of the resulting low
rank approximation and provides accurate results in practice. QRTP for image
compression shows very close results to the sequential QRCP algorithm. We
also presented an MPI implementation of QRTP that is shown to scale well
on up to several thousand cores. Future work may address the possibility of
using non-binary reduction trees and the associated trade-off between perfor-
mance and accuracy, as well as the possibility of combining the selection of
subsets of columns and of rows during the same tournament to obtain a CUR
approximation.

70

Chapter 4

Distributed Tucker
decomposition using QR with
tournament pivoting

Many scientific problems involve multilinear operators. As an example, solving
the electronic Schrödinger equation of an N -electrons molecule can be rewritten
as finding the smallest eigenvalue of an operator belonging to R4N . To this end
matrix approximations presented in previous chapters are not sufficient, and
higher order approximations are to be considered. The Tucker decomposition
presented in Section 4.1.1 is a widely recognized generalization of the truncated
SVD. For this reason it is a good candidate to fulfill this goal. In this section
we consider a very large tensor, typically larger than the memory of a single
computer, and present how to compute a Tucker decomposition using a dis-
tributed architecture. First, several existing solutions are recollected, then a
new method taking advantage of the QRTP algorithm presented in Chapter 3 is
introduced. After producing error bounds for this method, the practical runtime
and accuracy is evaluated and compared with the state-of-the-art.

4.1 Context

This section introduces the tensor decomposition at stakes in this chapter, the
Tucker decomposition, as well as several state-of-the-art implementations.

4.1.1 Tucker decomposition

Considering a d-order tensor, each mode (dimension) of the tensor can be re-
duced by means of projection matrices, called factor matrices, converting each
initial observational modes into new, preferably smaller, derivational modes.
The tensor is then represented as the contracted product of this core tensor
with the factor matrices.

Formally, the Tucker decomposition [111] of a d-order tensor A ∈ Rn1×...nd

and ranks (r1 . . . rd) is composed of a core tensor C ∈ Rr1×...×rd and factor
matrices (U1, . . . ,Ud) such that

71

Ã = C ×1 U
⊺
1 . . .×n U⊺

n. (4.1)

The factor matrices have orthonormal columns and for a given i, Ui ∈
Rni×ri . The core tensor is then the projected representation of A in Rr1×...×rd ,
obtained from Rn1×...×nd by applying orthogonal transformations in every di-
mension. The factor matrices are projection matrices on this new vector space,
applying also the change of basis.

This decomposition was first introduced by Tucker [111] along with several
methods to compute it: method I addresses balanced modes, methods II and III
address the particular cases of one mode being much larger. The first method
recollects as the following for each mode i:

1. Compute the Gram matrix of the unfolding P = AiA⊺
i .

2. Select the eigenvectors corresponding to the ri largest eigenvalues of P,
forming the matrix Ui.

Because the i-mode unfolding is usually short and wide, it is adequate to rather
compute the truncated SVD on the Gram matrix, i.e. AiA⊺

i , as the left singular
vectors of Ai are a set of orthonormal eigenvectors of AiA⊺

i .
To complete the picture, it is important to mention a similar method. Car-

roll and Chang [23] introduced the alternating least squares (ALS) algorithm,
called CANDECOMP and at the same time Harshman [61] introduced the equiv-
alent PARAFAC algorithm. ALS, further studied in Kroonenberg and de Leeuw
[81], Sands and Young [100], is another method to find factor matrices in the
Tucker decomposition. Because resolving all factor matrices at once is not com-
putationally feasible, this method suggests initializing all factor matrices but
one and performing a least squares resolution limited to this factor matrix.
All factor matrices are updated subsequently in this manner. These steps are
repeated until the error requirement is met. More recently, Kaya and Uçar
[75] proposed a faster distributed version of the CANDECOMP algorithm with
sparse matrices.

Kroonenberg and de Leeuw [81] show that the full Tucker decomposition,
i.e. with (n1 . . . nd) = (r1 . . . rd), is unique. Furthermore they prove that the
minimization problem for a given (r1 . . . rd),

min ∥A − Ã∥F

where the factor matrices have orthonormal columns, always has a solution,
which is the factor matrix being the left singular vectors corresponding to re-
spective largest singular values (the largest components) of each unfolding.

Later, De Lathauwer et al. [34] further formalized the Tucker decomposi-
tion with contemporary terminology around the singular value decomposition,
renaming it high order SVD (HOSVD). This algorithm is recollected in Algo-
rithm 13. It is directly linked to the steps given by Tucker, and provides many
additional properties derived from the SVD.

72

Algorithm 13 HOSVD - High Order Singular Value Decomposition.
Require: A d-order tensor A, a set of ranks (k1, . . . , kd)
1: for i from 1 to d do
2: Compute the Gram matrix AiA⊺

i of the i-mode unfolding of A
3: Compute the ki truncated SVD Ai = UiΣV
4: end for
5: C = A
6: for i from 1 to d do
7: C = C ×i Ui

8: end for
Ensure: A core tensor C and d factor matrices (U1, . . . ,Ud) with orthonormal

columns.

Kolda and Bader [78] observe that "the truncated HOSVD is not optimal in
terms of giving the best fit as measured by the norm of the difference, but it is a
good starting point for an iterative ALS algorithm". Indeed De Lathauwer et al.
[33] provides a method to initialize the ALS with an HOSVD. This method is
called High Order Othogonal Iteration (HOOI).

Various notable contributions make use of randomization to compute the
Tucker decomposition [47, 97, 91, 90, 28], while others use the cross approxima-
tion [102, 101].

Vannieuwenhoven et al. [114] more recently produced a faster version of the
HOSVD, called sequentially truncated high order SVD (ST-HOSVD), given in
Algorithm 14.

Algorithm 14 ST-HOSVD - Sequentially Truncated High Order Singular Value
Decomposition.
Require: A d-order tensor A, a set of ranks (k1, . . . , kd)
1: C = A
2: for i from 1 to d do
3: Compute the Gram matrix CiC⊺i of the i-mode unfolding of C
4: Compute the ki truncated SVD Ci = UiΣV
5: C = C ×i Ui

6: end for
Ensure: A core tensor C and d factor matrices (U1, . . . ,Ud) with orthonormal

columns.

The following theorem is provided in Vannieuwenhoven et al. [114], and
proves correct for both HOSVD and ST-HOSVD. The error bound sums the
error lost when truncating each unfolding. Even though in the case of ST-
HOSVD, the truncation on the i-mode unfolding is done on the projection of
the unfolding, the error bound relates to the original tensor unfolding truncation
error. As said in the paper, "when truncating the T-HOSVD and ST-HOSVD
to a given multilinear rank, both approximation errors are bounded by the same
quantity".

Theorem 10 (HOSVD and ST-HOSVD error bound). Let A ∈ Rn1×...×nd be
a d-order tensor, and Ã its (k1, . . . , kd) HOSVD or ST-HOSVD approximation.

73

Then the following holds,

∥A − Ã∥2F ≤
d∑
i=1

ni∑
j=ki+1

σ2
j (Ai).

This bound does not depend on the order of processing the modes of A.
The question of finding an approximate column space for matrices, discussed

in previous sections, strongly echoes in this context. Consider the matrix A, a
2-order tensor, to compute U1 and U2 in Eq. (4.1) is to compute two partially
orthogonal matrices mapping respectively the row and column indices (modes)
to smaller indices. This is the exact purpose of the truncated SVD, the trun-
cated QR decomposition and the cross approximation to name a few. For this
reason the Tucker decomposition can be considered as a high order low rank
approximation.

4.1.2 Existing solutions to compute the Tucker decompo-
sition in parallel

The HOSVD algorithm, extensively introduced in Section 4.1.1, aims at pro-
ducing a Tucker decomposition of a tensor. It consists of computing the factor
matrix for each dimension i from the truncated SVD of the i-mode unfolding.
HOSVD can be parallelized in two ways. First, each factor matrix can be com-
puted independently. Indeed, the input data, the initial tensor, is available from
the beginning. Therefore, each factor matrix can be computed on a different
set of nodes. Second, the operations for computing a factor matrix can be per-
formed using parallel implementations, and especially the matrix product to
compute the Gram matrix is very well parallelizable.

The alternative algorithm ST-HOSVD requires to compute the factor ma-
trices sequentially. For this, only the second type of parallelisation (computing
a factor matrix) can be performed.

Parallel implementations of ST-HOSVD include TuckerMPI [13, 8], Kaya
and Uçar [74] specific for sparse tensors, and more recent ones such as Choi
et al. [30] using GPUs and Cobb et al. [31] decreasing memory usage.

TuckerMPI stands out as the reference modern implementation of ST-HO-
SVD. The code is openly available, thus it is our choice in the following for
comparison.

4.2 Partitioned unfolding and applying QRTP
In the cited literature, computing the factor matrices is done with the truncated
SVD. In the following QRTP (see Chapter 3) is used instead to compute the
factor matrices of the Tucker decomposition.

Consider a tensor A ∈ Rn1×···×nd distributed on a set of processors. Each
mode is partitioned, hence the processor grid becomes a processor tensor. An
example is given in Figure 4.1, where a 4 × 4 × 4 tensor is distributed on a
2× 2× 2 processor tensor. Each processor owns a 2× 2× 2 subtensor, identified
with a particular color.

When unfolding this tensor, the resulting matrix has a spread block distri-
bution, as displayed in Figure 4.2, such that it is not distributed on a typical

74

i
1

=
1
.
.
.
n
1

i2 = 1 . . . n2 i3
= 1 . . .

n3

Figure 4.1: Distribution of a 3-order tensor on a 2× 2× 2 processor tensor.

processor grid. We call this distribution a partitioned unfolding. Yet, a regular
distribution is necessary if this matrix is to be approximated with QRTP.

1-mode unfolding

2-mode unfolding

3-mode unfolding

Figure 4.2: Processor repartition of the different unfolding of the tensor from
Figure 4.1.

Austin et al. [8, Sec. IV.C] exposes an alternative via duplicating the subten-
sor along the unfolding direction and considering the result in a different data
layout. Performing communications to gather continuous blocks on the same
processor, as mentioned in Zhou et al. [123, Sec. IV.B], is another method to
unfold a distributed tensor. Nevertheless, in order to avoid communication as
well as storage and alternative data layouts, we propose a different approach.
First we show that unfolding local subtensors on each processor, and concate-
nating the resulting matrices, leads to a column permutation from the actual
unfolding. In addition, we show that QRTP gives the same output when applied
to a column-permuted matrix and the original one. We detail this method in
the following.

Theorem 11 (Partitioned unfolding [16]). For each i ∈ (1, . . . , d), the i ∥ -mode
partitioned unfolding A

i ∥ of the tensor A ∈ Rn1×···×nd is equal to a column

75

permutation of the corresponding matrix of the direct i-mode unfolding of A.
In other words, A

i ∥ = AiΠi ∀i ∈ (1, . . . , d), where each Πi is a permutation
matrix, A

i ∥ is the i ∥ -mode partitioned unfolding, and Ai is the ordinary i-mode
unfolding of A.

Theorem 11 shows that a partitioned unfolding of a tensor is only a column-
wise permutation of the actual tensor unfolding. See Beaupère et al. [16] for
a formal proof of this theorem, mostly written by co-authors. For a deeper
explanation, consider on the one hand that each processor unfolds its subtensor
locally, and that processors are organized in a grid computed by unfolding the
processor tensor. The resulting distributed matrix is formed from each of these
local unfoldings. On the other hand imagine the complete tensor located on a
single processor, unfolded on this processor, and then distributed on the same
processor grid. Theorem 11 claims that these two distributed matrices are only
different by a permutation of columns. Nevertheless, the first method is very
advantageous as it generates unfoldings for all modes without communication
or extra storage.

To use QRTP on partitioned unfoldings, it remains to prove that it is com-
patible with the permutation of columns. We now compare the executions of
QRTP on a matrix and its column-wise permutation. The following shows that
both executions comply to the same error bound.

Let A ∈ Rm×n, Π a permutation matrix, 1 ≤ k ≤ min(m,n). We note the
RRQR decomposition of AΠ computed with QRTP as

(AΠ)Π̄ = Q

[
R11 R12

R22

]
, (4.2)

where R11 ∈ Rk×k and where Π̄ is such that for any 1 ≤ j ≤ n− k

γ2j (R
−1
11 R12) + γ2j (R22)/σ

2
min(R11) ≤ kf2TP (4.3)

and fTP ≥ 1. We suppose that the QRTP process does not encounter identical
column norms, hence no arbitrary choice of pivot is made. Then

1. ΠΠ̄ leads to the same RRQR decomposition for the matrix A, with the
same bound fTP ,

2. A computed with QRTP also observes the same bound fTP .

The first point is obvious by changing the parenthesis (AΠ)Π̄ with A(ΠΠ̄)
in Eq. (4.2). It shows that the columns selected with QRTP on the permuted
matrix are valid pivots for the original matrix, producing the same decomposi-
tion. From Eq. (3.11) it is clear that the upper bound fTP does not depend on
the order of the columns of the input matrix, hence the second point. It sug-
gests that truncating the permuted decomposition will produce a similar error
as executing QRTP on the original matrix.

By considering the theorem and subsequent affirmations of this section, it is
now explicit that QRTP can be applied directly on the partitioned unfoldings
of the input tensor.

76

4.3 High-Order QR with tournament pivoting
The previous section revealed the feasibility to apply QRTP on the partitioned
unfolding of a tensor. For each unfolding a set of pivot columns is computed,
and subsequently, with additional parallel operations, the factor matrices of
the Tucker decomposition. The complete algorithm, the High Order QRTP
decomposition (HOQRTP), appears in Algorithm 15. Section 4.3 was made in
collaboration with David Frenkiel (in addition to Laura Grigori), a former Phd
student at Inria, and the figures of Section 4.3 are due to him. Section 4.3
summarizes the results presented in Beaupère et al. [16, Sec. 3,5.1-5.3], initially
written by D. Frenkiel.

Algorithm 15 HOQRTP: Low-rank approximation of a tensor

Require: A tensor A and a set of ranks {ki}1≤i≤d
1: Distribute the sub-tensors of A amongst the processors
2: for i in 1 : d do
3: Extract i-mode unfolding of sub-tensor on each processor
4: if unfolding matrix Ai is tall then
5: Unfold processors according to the i-mode unfolding so that A

i ∥ is
logically distributed on the processor grid

6: Run QRTP (for rank ki) on A
i ∥ to get A

i ∥Π = QR
7: Truncate Q to get the factor matrix Ui = Q[:, 1 : ki]
8: else if /* Ai is wide */ then
9: Unfold processors according to the i-mode unfolding so that A⊺

i ∥
is

logically distributed on the processor grid
10: Run QRTP (for rank ki) on A⊺

i ∥
to get A⊺

i ∥
Π = QR

11: Run SVD on Π1R
⊺
11 +Π2R

⊺
12 to get Π1R

⊺
11 +Π2R

⊺
12 = UΣV⊺

12: Let Ui = U[:, 1 : ki] be the factor matrix associated with the i-mode
unfolding

13: end if
14: end for
15: Compute the core tensor: C = A×1 U

⊺
1 ×2 U

⊺
2 · · · ×d U⊺

d

Ensure: A Tucker decomposition (core tensor C and factor matrices {Ui}1≤i≤d
such that Ã = C ×1 U1 ×2 · · · ×d Ud)

For each unfolding, Algorithm 15 lays out two different cases. If the unfolding
is tall, QRTP is applied directly. If the unfolding is short and wide, QRTP is
applied on its transpose. In this way QRTP is always applied to a tall and
skinny matrix. This is particularly interesting because the error of QRTP grows
with the width of the input matrix (see Eq. (3.12)).

In the second case, QRTP approximates the row space, instead of the column
space, of the input matrix such that

A⊺Π = Q

(
R11 R12

R22

)
.

To find an approximate column space, we propose the following. First trans-
pose both sides such that

A = Π

(
R⊺

11

R⊺
12 R⊺

22

)
Q⊺

77

and furthermore
A =

[
Π

(
R⊺

11

R⊺
12

)
Π

(
R22

)]
Q⊺.

By computing the economic SVD Π

(
R⊺

11

R⊺
12

)
= UΣV⊺, we can use U, a

partial orthogonal matrix, as the factor matrix, such that the residual of the
approximation is

A−UU⊺A = (I−UU⊺)Π

(
R⊺

22

)
Q⊺, (4.4)

corresponding to R22 arranged in different, reduced, row and column basis sets.

4.3.1 Error bound
The HOQRTP algorithm uses several QRTP approximations. An error bound
was given above for QRTP, in Eq. (3.11), in the form of RRQR. In addition
bounds on the singular values were given in Eq. (3.12). The following theo-
rem uses these inequalities to produce a Frobenius norm of the residual, when
applying HOQRTP to a tensor.

Theorem 12. Given a set of ranks {ki}1≤i≤d and any f > 1, the QRTP
factorizations of the unfolding matrices of the tensor A ∈ Rn1×···×nd are such
that the low-multilinear rank tensor approximation Ã ∈ Rn1×···×nd generated by
Algorithm 15 satisfies the error bound,

∥A − Ã∥2F ≤
d∑
i=1

ri∑
j=ki+1

σ2
j (Ai)[1 + f̃2i (ni − ki)],

where

f̃i =
√
PP (i)

r k
log2(P)
i f log2(P)+1,

and ri and σj(Ai) are respectively the rank and singular values of the i-mode
unfolding Ai, and where P is the total number of processors and P

(i)
r is the

height of the processor grid related to the ith unfolding.

In the following Corollary this residual is compared to the residual of Abest,
the best rank-(k1, . . . , kd) approximation. The existence of Abest is proved in
Kroonenberg and de Leeuw [81], as mentioned in Section 4.1.1.

Corollary 2. Given a set of ranks k1, . . . , kd and any f > 1, the QRTP fac-
torizations of the unfoldings matrices of the tensor A are such that the low-
multilinear rank tensor approximation Ã ∈ Rn1×···×nd generated by Algorithm
15 satisfies the error bound,

∥A − Ã∥2F ≤ d(1 + max
i

[f̃2i (ni − ki)])∥A −Abest∥2F , (4.5)

where

f̃i =
√
PP (i)

r k
log2(P)
i f log2(P)+1.

Proofs for both propositions, mainly derived by co-authors, can be found in
Beaupère et al. [16].

78

4.3.2 Numerical experiments
The following presents several numerical experiments using the HOQRTP. We
first apply it to a 3D medical image representing an aneurysm. Each figure
reveals the isosurface view of the tensor, note that empty spaces do not indicate
sparsity in the tensor. Figure 4.3 compares the original 256× 256× 256 tensor
on the left to the rank-(64× 64× 64) compressed tensor on the right.

(a) Uncompressed. (b) Rank-(64, 64, 64) approximation on 64
processors.

Figure 4.3: Isosurface views of 256×256×256 aneurysm 3D image from https:
//tc18.org/3D_images.html.

Figure 4.4 displays the singular values of the 1-mode unfolding of the original
aneurysm tensor, as well as compressed tensor with different number of proces-
sors. The associated Table 4.1 provides the minimum, maximum and average
ratio of the approximated singular values with respect to the original one. Note
that this layout was already used in Figure 3.2 and Figure 3.3.

Figure 4.4: Singular values of the 1-mode unfolding matrix of the uncompressed
and compressed aneurysm 3D image.

Executing HOQRTP with only one processor is equivalent to using the trun-
cated QRCP. We observe that the average singular value ratio is reasonably high,
meaning that the singular values are quite well approximated with HOQRTP.
It is confirmed by the image, the major parts of the isosurface being conserved
by the compression. We note that the accuracy decreases with the number of
processors, in compliance with the trend of the error bound.

79

https://tc18.org/3D_images.html
https://tc18.org/3D_images.html

Proc count maxi
σi(Ã1)
σi(A1)

mini
σi(Ã1)
σi(A1)

1
64

∑
i
σi(Ã1)
σi(A1)

1 0.996 0.385 0.763
16 0.996 0.0440 0.636
64 0.995 0.0715 0.642

Table 4.1: Maximum, minimum and mean ratio σi(Ã1)
σi(A1)

where σi(Ai) (resp
σi(Ãi)) is the ith largest singular value of the 1-mode unfolding of the un-
compressed (resp compressed) aneurysm 3D image (see Figure 4.4).

We now analyse the runtime of HOQRTP on a cluster. Consider a tensor of
size 1024×1024×1024. Figure 4.5 distributes the strong scaling runtime of the
rank-(16, 16, 16) compression of the tensor when increasing the number of pro-
cessors from 8 to 512. The QRTP slice of each bar is the sum of the 3 execution
times of the QRTP algorithm (one for each unfolding). The Matrix Product
slice of each bar is the cumulated time of the matrix products used to compute
the factor matrix (i.e. to compute R11 and R12 at line 11 of Algorithm 15). The
Other operations slice corresponds mainly to the SVD of R11 and R12 and the
projection of the tensor to compute the core tensor.

Figure 4.5: Strong scaling performance and speedup of HOQRTP applied to a
logarithm tensor of size 1024×1024×1024 on varying numbers of processors.

Figure 4.6 displays the weak scaling experiment. The size of the input tensor
increases with the number of processors such that on each processor the local
subtensor has a fixed size of 256×256×256. The approximation ranks are fixed
to (16, 16, 16). The different runtime slices have the same meaning as in the
previous figure.

These figures show very similar scaling as in previous study of QRTP, in
Section 3.6. Even though the weak scaling is not a straight line, it tends to-
wards it as the number of processors increases. The QRTP operations do not
seem to be the main bottleneck, as they scale similarly to other parts involving
ScaLAPACK routines such as pdgeqpf, pdormqr and pdgemm.

4.4 Sequentially Truncated HOQRTP
In this section we consider the sequentially truncated HOSVD as introduced in
Vannieuwenhoven et al. [114], in which an approximation is computed for each

80

Figure 4.6: Weak scaling performance and speedup of HOQRTP applied to
logarithm tensors of varying sizes on a varying numbers of processors, where
the subtensor on each processor has a fixed size 256×256×256.

mode iteratively. Thus, the size of the tensor is progressively reduced and hence
a lower computational cost is obtained with respect to HOSVD. Algorithm 16
is a sequentially truncated version of HOSVD in which the compression of each
unfolding matrix is obtained through QRTP. We refer to this algorithm as se-
quentially truncated HOQRTP. The main difference with Algorithm 15 is step
15, which appears inside the for loop at line 14. In this manner the tensor is
projected onto a subspace corresponding to a mode at each iteration.

Updating the tensor (line 14) is done with limited communication. The
tensor A is distributed amongst processors, while the matrix Ui is broadcast
to all processors. Let (I, J) be the coordinate of a processor in the i-unfolding
processor tensor, A(I,J) be the local tensor unfolding, and U

(I)
i be the columns

of Ui corresponding to the rows of A(I,J)
i in Ai. Then the projection is done in

two steps:

1. Locally on processor (I, J): Compute A(I,J)
i ←

(
U

(I)
i

)⊺
A(I,J)
i .

2. Sum-reduce to the first processor of the column:

Ai(1, J) =
di∑
I=1

Ai(I, J).

The approximated tensor is then stored on a subset of processors (the first row of
the i-unfolded processor tensor). The algorithm continues on these processors,
thus avoiding communication for redistributing data and taking into account
that the amount of computation decreases for the subsequent modes. The local
tensor dimensions, denoted by b1 × . . . × bd, would increase if ki > bi for some
i, leading to memory problems. Thus, the experiments are limited to the case
ki ≤ bi. Another option would be to redistribute the data amongst all the
processors after each iteration, but this would lead to extra communication.
We do not explore this option in this work.

81

Algorithm 16 ST-HOQRTP: Low-rank approximation of a tensor

Require: A tensor A ∈ Rn1×...×nd and a set of ranks {ki}1≤i≤d
1: Distribute the sub-tensors of A amongst the processors
2: for i in 1 : d do
3: Extract i-mode unfolding of sub-tensor on each processor
4: if unfolding matrix Ai is tall then
5: Unfold processors according to the i-mode unfolding so that A

i ∥ is
logically distributed on the processor grid

6: Run QRTP (for rank ki) on A
i ∥ to get A

i ∥Π = QR
7: Truncate Q to get the factor matrix Ui = Q[:, 1 : ki]
8: else if /* Ai is wide */ then
9: Unfold processors according to the i-mode unfolding so that A⊺

i ∥
is

logically distributed on the processor grid
10: Run QRTP (for rank ki) on A⊺

i ∥
to get A⊺

i ∥
Π = QR

11: Run SVD on Π1R
⊺
11 +Π2R

⊺
12 to get Π1R

⊺
11 +Π2R

⊺
12 = UΣV⊺

12: Let Ui = U[:, 1 : ki] be the factor matrix associated with the i-mode
unfolding

13: end if
14: Update the tensor A ← A×i U⊺

i

15: end for
16: C,U1,U2, . . . ,Ud

Ensure: A Tucker decomposition (core tensor C and factor matrices {Ui}1≤i≤d
such that Ã = C ×1 U1U

⊺
1 ×2 · · · ×d U⊺

d)

4.4.1 Error bound
In this section we show that ST-HOQRTP has the same error bound as HO-
QRTP.

Theorem 13. Given a set of ranks {ki}1≤i≤d and f > 1, the QRTP factoriza-
tions of the unfolding matrices of the tensor A are such that the low-multilinear
rank tensor approximation Ã ∈ Rn1×···×nd generated by Algorithm 16 satisfies
the error bound,

∥A − Ã∥2F ≤
d∑
i=1

ri∑
j=ki+1

σ2
j (Ai)[1 + f̃2i (ni − ki)],

where

f̃i =
√
P (i)P (i)

r k
log2(P

(i))
i f log2(P

(i))+1,

and ri and σj(Ai) are respectively the rank and singular values of the i-mode
unfolding Ai, and where P

(i)
r is the height of the processor grid related to

the ith unfolding and P (i) =
∏d
j=i P

(j)
r is the total number of processors still

involved at step i. Then at step i the unfolding lies on the processor grid
P

(i)
r × P (i+1)

r P
(i+2)
r . . . P

(d)
r .

Proof. As in the proof of Theorem 12 we first consider the case of Ai being
tall. Using the Theorem 5.1 from Vannieuwenhoven et al. [114] with the QRTP

82

factor matrices as the orthogonal projection matrices we can link the error and
the residual of each QRTP operation as follows.

∥A − Ã∥2F =

d∑
i=1

∥∥A×1 Q̄
⊺
1Q̄1 . . .×i−1 Q̄

⊺
i−1Q̄i−1 ×i (I− Q̄⊺

i Q̄i)
∥∥2
F

=

d∑
i=1

∥∥(I− Q̄iQ̄
⊺
i)(A×1 Q̄

⊺
1Q̄1 . . .×i−1 Q̄

⊺
i−1Q̄i−1)i ∥

∥∥2
F

(Th. 11)

(4.6)

=

d∑
i=1

∥∥R(22)
i

∥∥2
F
,

where R(22)
i is the residual matrix obtained after the QRTP compression i. Note

that unlike in the proof of Theorem 12 we obtain a strict equality. In the case
of a wide unfolding, starting again from expression Eq. (4.6) and substituting
Eq. (4.4), we obtain

∥A − Ã∥2F =

d∑
i=1

∥∥(I− Q̄iQ̄
⊺
i)(A×1 Q̄

⊺
1Q̄1 . . .×i−1 Q̄

⊺
i−1Q̄i−1)i ∥

∥∥2
F

=

d∑
i=1

∥∥(I− Q̄iQ̄
⊺
i)Π

(
R

(22)
i

⊺

)
Q⊺
∥∥2
F

=

d∑
i=1

∥∥R(22)
i

∥∥2
F
.

By using the bounds of QRTP given in Eq. (3.11) we obtain,

d∑
i=1

∥∥R(22)
i

∥∥2
F
=

d∑
i=1

ri−ki∑
j=1

σ2
j (R

(22)
i)

≤
d∑
i=1

ri∑
j=ki+1

σ2
j (Ãi)[1 + f̃2i (ni − ki)],

where Ãi = (A ×1 U1 . . . ×i−1 Ui−1)i is the unfolding of the projected tensor
at step i, f̃i =

√
P (i)P

(i)
r k

log2(P
(i))

i f log2(P
(i))+1, since QRTP is applied on Ãi

and executed on a subset of processors P (i) = P
(i)
r P

(i+1)
r . . . P

(d)
r , as explained

previously in this section.
We now prove that for any ki + 1 ≤ j ≤ ri, σj(Ãi) ≤ σj(Ai). Fix such a j

and an i such that 1 ≤ i ≤ d. As mentioned in Bader and Kolda [10, Sec. 4.2],
Ãi can be expressed as:

Ãi = UiAi(U⊺
1 ⊗ . . .⊗U⊺

i−1 ⊗ Ii+1 ⊗ . . .⊗ Id). (4.7)

We use the singular value inequality from Theorem 2. Given two matrices
A ∈ Rm×n,Q ∈ Rp×n, if Q has orthonormal columns, we obtain

σi(AQ⊺) ≤ σi(A). (4.8)

83

The rightmost term U⊺
1 ⊗ . . . ⊗U⊺

i−1 ⊗ Ii+1 ⊗ . . . ⊗ Id of Eq. (4.7) has or-
thonormal columns because each term in the Kronecker product has orthonor-
mal columns (see e.g. Tucker [111, Prop. (f)]). By substituting it to Q and
UiAi to A in Eq. (4.8) and then using its transposed version we obtain that
σj(Ãi) ≤ σj(UiAi) ≤ σj(Ai).

We note that the bound of ST-HOQRTP is slightly smaller than the bound
of HOQRTP. Indeed, f̄i in the bound of ST-HOQRTP depends on the number of
processors used for each i-mode unfolding, which is decreasing as the algorithm
proceeds. However, Corollary 2 still holds for ST-HOQRTP by replacing f̃i with
f̄i from Theorem 13.

4.4.2 Cost of ST-HOQRTP
Let A ∈ Rn×...×n and equidimensional tensor. Consider P processors forming
an equidimensional processor tensor, i.e. there exists l such that P = ld. Using
the cost of QRTP given in Section 3.5, the costs of the sequentially truncated
version of the algorithm is:

#flops =
d∑
i=1

[
4ki
(

n
d
√
P

)d−i+1

+K
(i)
1 k3 +K2k

i+1

(
n

d
√
P

)d−i]
.

where

K
(i)
1 = 16 log2 P

d−i+1
d + 8 log2 Pr

[
1 +

5 log2 Pr
3

]
+

16

3
[5 log2 Pr − 1] ,

K2 = 8(log2 Pr + 1).

and

#messages =
d∑
i=1

log2 P
d−i+1

d (1 + log2 Pr)

=

(
d− d− 1

2

)
log2 P (1 + log2 Pr).

In terms of computation cost, the dimension of the problem decreases at
each iteration of the algorithm, and the cost of the first iteration dominates the
overall cost. In terms of number of messages, the dominant factor is decreased
by almost a factor of 2 with respect to HOQRTP.

4.4.3 Numerical experiments
In this section we present results obtained with the sequentially truncated ver-
sion of the algorithm and compare them with HOQRTP and ST-HOSVD. For
ST-HOSVD we use TuckerMPI1 presented in Austin et al. [8]. The input tensor
is the same tensor as in Figure 4.5.

Figure 4.7 presents weak scaling results, for which the subtensor on each
core has constant size 256×256×256, for a number of cores increasing from 8
to 512. The multilinear rank is 128 in this experiment. It can be seen that

1Commit number 2b3c356 from https://gitlab.com/tensors/TuckerMPI

84

8 16 32 64 128 256 512

200

400

600

800

Number of cores

E
xe

cu
ti

on
ti

m
e

(s
) ST-HOQRTP HOQRTP TuckerMPI

Figure 4.7: Execution time of HOQRTP and ST-HOQRTP having as input
a distributed logarithm tensor where each processor owns a subtensor of size
256×256×256. The final core tensor is of size 128×128×128.

ST-HOQRTP is faster by a factor of almost 4 on 512 cores with respect to
HOQRTP, and also scales better than HOQRTP for 128 cores and more. On
the other hand, TuckerMPI is faster than HOQRTP and ST-HOQRTP for this
example. Even if QRTP is less expensive than SVD, TuckerMPI uses a Gram
matrix, which leads to computing the SVD of a smaller matrix in this case. As
an example, for an equidimensional d-order tensor of size n × . . . × n the first
SVD of TuckerMPI will be computed on a matrix of size n× n, whereas in ST-
HOQRTP the first QRTP will be computed on a nd×n matrix. Figure 4.8 gives
the corresponding Frobenius error ∥A−Ak∥F

∥A∥F
, where A is the input tensor and

Ak its compressed version. We see that ST-HOQRTP and HOQRTP have very
similar accuracy. The accuracy for TuckerMPI is not represented here because
for this tensor and a compression rank of 128 the error is exactly zero.

8 16 32 64 128 256 512

1 · 10−20

1 · 10−19

1 · 10−18

Number of cores

Fr
ob

en
iu

s
er

ro
r

ST-HOQRTP HOQRTP

Figure 4.8: Frobenius relative error of HOQRTP and ST-HOQRTP having as
input a distributed logarithm tensor where each processor owns a subtensor of
size 256×256×256. The final core tensor is of size 128×128×128.

We consider the experiment illustrated in Figure 4.8. For this experiment,
the value of the bound

√
1 + maxi(f2i (ni − ki)) given in Corollary 2, which

holds for HOQRTP, goes from 6.75×105 for 8 cores to 4.09×1012 for 512 cores.
Therefore, this bound is pessimistic.

We now study the case of tensors having unbalanced dimensions. In Fig-
ure 4.9 we consider a 4-order tensor having one large mode varying from 256 to
16384 and three small modes of constant size 32. While increasing the number

85

of processors from 8 to 32 to investigate the scaling of the approximation time,
we also increase the size of the large mode. The data is distributed such that
each local subtensor has size 512× 32× 32× 32.

2 4 8 16 32

10

100

1,000

Number of cores

E
xe

cu
ti

on
ti

m
e

(s
)

ST-HOQRTP HOQRTP TuckerMPI

Figure 4.9: Compressing a logarithm tensor of size 2a×32×32×32 on 2p cores
where 1 ≤ p ≤ 5 and a = p+ 9 to multilinear rank 16

In this experiment ST-HOQRTP times stay under 10 seconds while HO-
QRTP times increase above 100 seconds and TuckerMPI times increase above
1500 seconds. When running on 32 cores TuckerMPI lasted more than 3 hours.
This shows that for particular cases ST-HOQRTP computes a Tucker decompo-
sition in a smaller amount of time compared to other algorithms. It should be
noted that in this case, TuckerMPI is parameterized with a fixed rank such that
it can be compared with ST-HOQRTP, meaning that it may be better tuned
for this specific problem.

To study the difference between ST-HOQRTP and TuckerMPI on a less ex-
treme experiment, we compare the two algorithms on a logarithm tensor having
two large modes varying from 128 to 2048 and two small modes of fixed size
32. Figure 4.10 gives the execution time of ST-HOQRTP and TuckerMPI for
these cases, increasing the number of processors along with the size of the large
modes to keep the local tensors size constant (when we double the number of
cores, we first double the first mode, then the second mode and so on). The
data is distributed such that each local subtensor has size 128× 128× 32× 32.
In these figures we can see that ST-HOQRTP is 3 times faster for compressing
the tensor on 256 cores and 10 times faster on 512 cores.

To conclude, ST-HOQRTP is faster by large factors with respect to HO-
QRTP, and is faster than TuckerMPI in the case of tensors having unbalanced di-
mensions. In the case of an equidimensional tensor TuckerMPI is faster, mainly
due to the use of a Gram matrix for computing the SVD of unfolding matrices.

4.5 Conclusion
In this chapter we introduced Higher-Order QR with Tournament Pivoting (HO-
QRTP). HOQRTP is a parallel variant of HOSVD that uses QRTP (instead of
SVD) and partitioned unfolding to extract factor matrices from the unfolding
matrices of a dense distributed tensor. We have shown that HOQRTP pro-
vides good error bounds for tensor approximations, and exhibits good strong

86

8 16 32 64 128 256 512

100

200

300

400

500

Number of cores

E
xe

cu
ti

on
ti

m
e

(s
) ST-HOQRTP TuckerMPI

Figure 4.10: Compressing a logarithm tensor of size 2a×2b×32×32 on 2p cores
where 3 ≤ p ≤ 9, a = ⌈p2⌉+ 7 and b = ⌊p2⌋+ 7 to rank 16.

and weak scaling performance. We derived this algorithm into ST-HOQRTP, an
algorithm that exploits the projections to provide lower execution costs while
retaining a similar error bound. From the numerical experiments it was shown
that TuckerMPI, the reference software for our analysis, gives better perfor-
mance than ST-HOQRTP for equidimensional tensors. In cases of unbalanced
mode sizes, however, TuckerMPI performs worse. ST-HOQRTP is thus useful
to compute the Tucker decomposition of tensors with unbalanced mode sizes.
We have also shown that partitioned unfolding provides a method to distribute
tensor data amongst a set of processors such that each factor matrix can be
computed without additional communication. Although the SVD decomposi-
tion provides the best low-rank approximation, the scalability of QRTP makes
it a good candidate for the compression of a large tensor.

87

88

Conclusion and perspectives

This thesis introduced several scalable distributed algorithms to perform com-
pression through low rank approximation of dense arbitrary matrices. The first
part presented a block version of SRHT, thereby demonstrating sampling of a
large matrix in a distributed manner. Block SRHT exhibits similar accuracy
with Gaussian sampling, while better speedup characteristics on large scale ma-
trices. It is further adapted to compute the Nyström approximation, a matrix
low rank approximation. By illustrating that SRHT can be efficiently paral-
lelized, this new algorithm stands out as a new fast parallel method to perform
randomization on a large dense matrix. Afterwards was presented QRTP, a
parallel method to compute the truncated QRCP decomposition of a large dis-
tributed matrix. We proved that the previous error bound used in the literature
still applies to this new method, with a minor modification. Through various
highly parallel steps, the complete implementation provides an efficient method
to select pivot columns from a very large matrix with a low amount of com-
munications. To select a small number of columns, this new algorithm scales
on a large number of nodes more efficiently than the state-of-the-art counter-
part. The pivot selection being a major bottleneck for various linear algebra
routines, this new algorithm is expected to speedup their parallel execution on
a large number of nodes, for a large input matrix. At the end, the QRTP
method is adapted to be applied to tensors and compute the Tucker decomposi-
tion, in a way that the current state-of-the-art only operates with the truncated
SVD. Using the truncated SVD is indeed very efficient on tensors with balanced
dimensions, but on particular cases where the dimensions are very different,
QRTP appears to be a reasonable alternative. The sequentially truncated ver-
sion applies well to our algorithm, giving similar bounds and increasing further
the speedup of our method. This algorithm enables to compute in parallel the
Tucker decomposition of a large tensor without the use of the SVD or Gram
matrices, hence making it efficient at large scale.

We now discuss the perspectives of this work. First are presented the direct
possible improvements of our work, then we discuss supplementary topics of
interest. Concerning the tournament pivoting, the next step is to couple QRTP
with the idea inside randomized QRCP. It would cumulate advantages from both
methods. Indeed, we can substitute QRTP to pdgeqpf in the RQRCP algorithm
(see Algorithm 9), which was identified as the longest step in our experiments.
The QRTP is then executed on the sketch of the input matrix, having less
rows hence requiring less resources. Concerning the computation of the Tucker
decomposition, randomization is also an interesting approach as suggested in
the recent contributions on this topic [91, 90, 28]. These contributions propose
to substitute randomized SVD (as given in Halko et al. [60]) to the truncated

89

SVD in HOSVD and ST-HOSVD algorithms. We suggest to go further and
use a randomized QRTP method to compute each factor matrix. Additionally,
applying our methods to the tensor train is promising as well, especially speeding
up tensor train manipulations such as normalization, compression, addition,
and contraction. Existing work introduces randomization for the tensor train
compression [27, 3]. As an example, applying QRTP on different matricizations
of a tensor train would produce useful projection matrices to decrease the bond
dimensions connecting two tensors. By preventing these bond dimensions from
increasing to large values, especially in the middle of the train, its manipulation
would remain efficient. As another example, when computing the inner product
of two or three tensor trains, for example to perform the alternate least squares
scheme (ALS), we could use a randomized inner product to speed up each ALS
iteration. This is already addressed for the ALS in Tucker format [84, 83].
Closely related, Oseledets [92] uses randomization to check the error of the tensor
train compression. Molecular simulations presented in the first chapter expose
several research problems, such as computing the tensor train representation
of the Hamiltonian or computing the inner product of tensors in the alternate
least squares scheme, where these optimized operations are key to improve the
efficiency of the simulation.

More generally, this study raises several topics of interest that are part of
our scientific domain. On the topic of strong rank revealing QR, it would be in-
teresting to find a tight error bound, perhaps it should depend on the properties
of the input matrix. This would enable to compute the low rank approximation
through another approach, by minimizing the approximation rank and fixing the
error, which is already possible with the truncated SVD. Another point is the
opportunity of software development behind these methods. There is probably
a way to expose these algorithms in a common scientific library, compressing a
matrix or a tensor in various ways and manipulating it. Furthermore, a bench-
mark to evaluate and compare practically the numerical performance of a low
rank approximation would certainly improve the scientific debate. The algo-
rithms presented in this work offer scalable methods to compute the low rank
approximation of any matrix. Nowadays, numerous domains manipulate very
large matrices and tensors, such as climatology, medical imagery or molecular
simulations—involved in drug design, new material design. By representing the
data in a reduced format, and distributing it on a computer cluster, our novel
methods are deemed to greatly increase the computational capabilities of the
current numerical methods, hence extending the outreach in these domains.

90

Appendix A

Source code

A.1 Subsampled Randomized Hadamard Trans-
form

us ing Hadamard
us ing Random
us ing TimerOutputs
us ing LinearAlgebra
us ing Dates

#=
Compute the Subsampled Randomized Hadamard Transform o f A with a

sampling s i z e o f l .
Return B = Omega x A where A i s mxn, Omega i s lxm and B i s lxn
Omega = sq r t (m/ l) Dr R H Dl
∗ Dl and Dr are d iagona l matr i ce s o f random s i gn s
∗ H i s the Hadamard matrix
∗ R i s a sampling matrix , s e l e c t i n g l rows out o f m

A should be s to r ed in column major format .

In the context o f a block SRHT: (Omega_1 . . . Omega_p) (A_1 . . . A_p)
^\tr , then the

random number genera to r seeds should be passed to a l l s rh t () c a l l s .
param global_seed : same f o r a l l b lock
param block_seed : d i f f e r e n t f o r each block
=#
func t i on s rh t (A : : Array{Float64 , 2} , l : : Int ; to : : TimerOutput=

TimerOutput () , g lobal_seed : : UInt=rand (UInt) , block_seed : : UInt=
rand (UInt)) : : Array{Float64 ,2}

rng_global = MersenneTwister (g lobal_seed)
rng_block = MersenneTwister (block_seed)
@assert l <= s i z e (A) [1]
@timeit to " i n i t rand" begin

Rademacher vec to r
Dr : : Array{ Int } = rand (rng_block , (−1 ,1) , s i z e (A) [1])
Dl : : Array{ Int } = rand (rng_block , (−1 ,1) , l)

Sampling without replacement g i v e s b e t t e r r e s u l t s in p r a c t i c e
f o r t h i s usecase

Random sampling permutation without replacement
#P : : Array{ Int } = randperm (rng_global , s i z e (A) [1]) [1 : l]

91

Random sampling permutation with replacement
P : : Array{ Int } = rand (rng_global , 1 : s i z e (A) [1] , l)

Resca l ing
s c a l e : : Float64 = s i z e (A) [1] / sq r t (l)

end

X = Dr A
@timeit to "Dr" lmul ! (Diagonal (Dr) , A)

X1 = H X
@timeit to "H" fwht_natural ! (A, 1)

X2 = R X1
@timeit to "R" B : : Array{Float64 ,2} = s c a l e .∗ A[P , :]

Compute B = R Dl H Dr A
@timeit to "Dl" lmul ! (Diagonal (Dl) , B)

re turn B
end

A.2 Gaussian sampling

us ing Random
us ing D i s t r i bu t i o n s

func t i on sketch_right_gauss ian (A : : Array{Float64 , 2 } , l : : Int ; seed : :
UInt64=rand (UInt64)) : : Array{Float64 ,2}

m, n = s i z e (A)
d = Normal (0 , 1 / sq r t (l))
Ω’ = rand (MersenneTwister (seed) , d , (n , l))
r e turn A ∗ Ω

end

func t i on sketch_le f t_gauss ian (A : : Array{Float64 , 2} , l : : Int ; seed : :
UInt64=rand (UInt64)) : : Array{Float64 ,2}

m, n = s i z e (A)
d = Normal (0 , 1 / sq r t (l))
Ω = rand (MersenneTwister (seed) , d , (m, l))
r e turn Ω ’ ∗ A

end

92

Bibliography

[1] D. Achlioptas. Database-friendly random projections: Johnson-Linden-
strauss with binary coins. Journal of Computer and System Sciences, 66
(4):671–687, June 2003. doi: 10.1016/S0022-0000(03)00025-4.

[2] N. Ailon and B. Chazelle. The Fast Johnson–Lindenstrauss Transform
and Approximate Nearest Neighbors. SIAM Journal on Computing, 39
(1):302–322, Jan. 2009. doi: 10.1137/060673096.

[3] H. Al Daas, G. Ballard, P. Cazeaux, E. Hallman, A. Międlar, M. Pasha,
T. W. Reid, and A. K. Saibaba. Randomized algorithms for rounding in
the tensor-train format. SIAM Journal on Scientific Computing, 45(1):
A74–A95, 2023. doi: 10.1137/21M1451191.

[4] M. Ali and A. Nouy. Approximation with Tensor Networks. Part I: Ap-
proximation Spaces. Feb. 2021, arXiv: 2007.00118.

[5] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and
C. Weisbecker. Improving multifrontal methods by means of block low-
rank representations. SIAM Journal on Scientific Computing, 37(3):
A1451–A1474, 2015. doi: 10.1137/120903476.

[6] P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. On the complexity
of the block low-rank multifrontal factorization. SIAM Journal on Scien-
tific Computing, 39(4):A1710–A1740, 2017. doi: 10.1137/16M1077192.

[7] E. Anderson, editor. LAPACK users’ guide. Software, environments,
tools. Society for Industrial and Applied Mathematics, Philadelphia, 3rd
ed edition, 1999.

[8] W. Austin, G. Ballard, and T. G. Kolda. Parallel Tensor Compression
for Large-Scale Scientific Data. 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2016. doi: 10.1109/
ipdps.2016.67.

[9] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis
of data. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing - STOC ’01, pages 619–626, Hersonissos, Greece,
2001. ACM Press. doi: 10.1145/380752.380859.

[10] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for
fast algorithm prototyping. ACM Transactions on Mathematical Software,
32(4):635–653, Dec. 2006. doi: 10.1145/1186785.1186794.

93

http://doi.org/10.1016/S0022-0000(03)00025-4
http://doi.org/10.1137/060673096
http://doi.org/10.1137/21M1451191
http://arxiv.org/abs/2007.00118
http://doi.org/10.1137/120903476
http://doi.org/10.1137/16M1077192
http://doi.org/10.1109/ipdps.2016.67
http://doi.org/10.1109/ipdps.2016.67
http://doi.org/10.1145/380752.380859
http://doi.org/10.1145/1186785.1186794

[11] A. Baiardi and M. Reiher. The density matrix renormalization group
in chemistry and molecular physics: Recent developments and new chal-
lenges. The Journal of Chemical Physics, 152(4):040903, Jan. 2020. doi:
10.1063/1.5129672.

[12] O. Balabanov, M. Beaupère, L. Grigori, and V. Lederer. Block subsam-
pled randomized Hadamard transform for low-rank approximation on dis-
tributed architectures. 2022, arXiv: 2210.11295.

[13] G. Ballard, A. Klinvex, and T. G. Kolda. TuckerMPI: A Parallel
C++/MPI Software Package for Large-scale Data Compression via the
Tucker Tensor Decomposition. ACM Transactions on Mathematical Soft-
ware, 46(2):1–31, June 2020. doi: 10.1145/3378445.

[14] O. Beaumont, L. Eyraud-Dubois, and T. Lambert. A New Approximation
Algorithm for Matrix Partitioning in Presence of Strongly Heterogeneous
Processors. In 2016 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), pages 474–483, Chicago, IL, USA, May 2016.
IEEE. doi: 10.1109/IPDPS.2016.32.

[15] O. Beaumont, L. Eyraud-Dubois, and M. Verite. 2D Static Resource Al-
location for Compressed Linear Algebra and Communication Constraints.
In 2020 IEEE 27th International Conference on High Performance Com-
puting, Data, and Analytics (HiPC), pages 181–191, Pune, India, Dec.
2020. IEEE. doi: 10.1109/HiPC50609.2020.00032.

[16] M. Beaupère, D. Frenkiel, and L. Grigori. Higher-order qr with tourna-
ment pivoting for tensor compression. SIAM Journal on Matrix Analysis
and Applications, 44(1):106–127, 2023. doi: 10.1137/20M1387663.

[17] M. Bebendorf. Approximation of boundary element matrices:. Numerische
Mathematik, 86(4):565–589, Oct. 2000. doi: 10.1007/PL00005410.

[18] L. S. Blackford and S. for Industrial and Applied Mathematics, editors.
ScaLAPACK user’s guide. Software, environments, tools. SIAM, Philadel-
phia, 1997. doi: 10.1137/1.9780898719642.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. J.
Mach. Learn. Res., 3(null):993–1022, Mar. 2003. Publisher: JMLR.org.

[20] C. Boutsidis and A. Gittens. Improved Matrix Algorithms via the Subsam-
pled Randomized Hadamard Transform. SIAM Journal on Matrix Analy-
sis and Applications, 34(3):1301–1340, Jan. 2013. doi: 10.1137/120874540.

[21] P. Businger and G. H. Golub. Linear least squares solutions by householder
transformations. Numerische Mathematik, 7(3):269–276, June 1965. doi:
10.1007/BF01436084.

[22] A. Carasso. Determining Surface Temperatures from Interior Observa-
tions. SIAM Journal on Applied Mathematics, 42(3):558–574, June 1982.
doi: 10.1137/0142040.

94

http://doi.org/10.1063/1.5129672
http://doi.org/10.1063/1.5129672
http://arxiv.org/abs/2210.11295
http://doi.org/10.1145/3378445
http://doi.org/10.1109/IPDPS.2016.32
http://doi.org/10.1109/HiPC50609.2020.00032
http://doi.org/10.1137/20M1387663
http://doi.org/10.1007/PL00005410
http://doi.org/10.1137/1.9780898719642
http://doi.org/10.1137/120874540
http://doi.org/10.1007/BF01436084
http://doi.org/10.1007/BF01436084
http://doi.org/10.1137/0142040

[23] J. D. Carroll and J.-J. Chang. Analysis of individual differences in mul-
tidimensional scaling via an n-way generalization of “Eckart-Young” de-
composition. Psychometrika, 35(3):283–319, Sept. 1970. doi: 10.1007/
BF02310791.

[24] G. K.-L. Chan, A. Keselman, N. Nakatani, Z. Li, and S. R. White. Matrix
product operators, matrix product states, and ab initio density matrix
renormalization group algorithms. The Journal of Chemical Physics, 145
(1):014102, July 2016. doi: 10.1063/1.4955108.

[25] T. F. Chan. Rank revealing QR factorizations. Linear Algebra and its
Applications, 88-89:67–82, Apr. 1987. doi: 10.1016/0024-3795(87)90103-0.

[26] T. F. Chan and P. C. Hansen. Computing truncated singular value de-
composition least squares solutions by rank revealing QR-factorizations.
Society for Industrial and Applied Mathematics. Journal on Scientific and
Statistical Computing, 11(3):519–530, 1990. doi: 10.1137/0911029.

[27] M. Che and Y. Wei. Randomized algorithms for the approximations of
Tucker and the tensor train decompositions. Advances in Computational
Mathematics, 45(1):395–428, Feb. 2019. doi: 10.1007/s10444-018-9622-8.

[28] M. Che, Y. Wei, and H. Yan. Randomized algorithms for the low multilin-
ear rank approximations of tensors. Journal of Computational and Applied
Mathematics, 390:113380, July 2021. doi: 10.1016/j.cam.2020.113380.

[29] H. Chen, J. Zhao, Q. Luo, and Y. Hou. Distributed randomized singular
value decomposition using count sketch. In 2017 International Conference
on Security, Pattern Analysis, and Cybernetics (SPAC), pages 187–191,
Shenzhen, Dec. 2017. IEEE. doi: 10.1109/SPAC.2017.8304273.

[30] J. Choi, X. Liu, and V. Chakaravarthy. High-Performance Dense Tucker
Decomposition on GPU Clusters. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
543–553, Dallas, TX, USA, Nov. 2018. IEEE. doi: 10.1109/SC.2018.00045.

[31] B. Cobb, H. Kolla, E. Phipps, and U. V. Çatalyürek. FIST-HOSVD:
fused in-place sequentially truncated higher order singular value decom-
position. In Proceedings of the Platform for Advanced Scientific Comput-
ing Conference, pages 1–11, Basel Switzerland, June 2022. ACM. doi:
10.1145/3539781.3539798.

[32] S. Dasgupta and A. Gupta. An Elementary Proof of a Theorem of Johnson
and Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, Jan. 2003.
doi: 10.1002/rsa.10073. Place: USA Publisher: John Wiley & Sons, Inc.

[33] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the Best Rank-
1 and Rank-(R 1 , R 2 ,. . ., R N) Approximation of Higher-Order
Tensors. SIAM Journal on Matrix Analysis and Applications, 21(4):1324–
1342, Jan. 2000. doi: 10.1137/S0895479898346995.

[34] L. De Lathauwer, B. De Moor, and J. Vandewalle. A Multilinear Singular
Value Decomposition. SIAM Journal on Matrix Analysis and Applica-
tions, 21(4):1253–1278, Jan. 2000. doi: 10.1137/S0895479896305696.

95

http://doi.org/10.1007/BF02310791
http://doi.org/10.1007/BF02310791
http://doi.org/10.1063/1.4955108
http://doi.org/10.1016/0024-3795(87)90103-0
http://doi.org/10.1137/0911029
http://doi.org/10.1007/s10444-018-9622-8
http://doi.org/10.1016/j.cam.2020.113380
http://doi.org/10.1109/SPAC.2017.8304273
http://doi.org/10.1109/SC.2018.00045
http://doi.org/10.1145/3539781.3539798
http://doi.org/10.1145/3539781.3539798
http://doi.org/10.1002/rsa.10073
http://doi.org/10.1137/S0895479898346995
http://doi.org/10.1137/S0895479896305696

[35] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-
optimal Parallel and Sequential QR and LU Factorizations. SIAM
Journal on Scientific Computing, 34(1):A206–A239, Apr. 2008. doi:
10.1137/080731992.

[36] J. W. Demmel, L. Grigori, M. Gu, and H. Xiang. Communication avoiding
rank revealing QR factorization with column pivoting. SIAM Journal
on Matrix Analysis and Applications, 36(1):55–89, 2015. doi: 10.1137/
13092157X.

[37] M. Dolfi, B. Bauer, S. Keller, A. Kosenkov, T. Ewart, A. Kantian, T. Gi-
amarchi, and M. Troyer. Matrix product state applications for the ALPS
project. Computer Physics Communications, 185(12):3430–3440, Dec.
2014. doi: 10.1016/j.cpc.2014.08.019.

[38] S. Dolgov and M. Stoll. Low-Rank Solution to an Optimization Problem
Constrained by the Navier–Stokes Equations. SIAM Journal on Scientific
Computing, 39(1):A255–A280, Jan. 2017. doi: 10.1137/15M1040414.

[39] P. Drineas, I. Kerenidis, and P. Raghavan. Competitive recommendation
systems. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing - STOC ’02, page 82, Montreal, Quebec, Canada,
2002. ACM Press. doi: 10.1145/509907.509922.

[40] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering
Large Graphs via the Singular Value Decomposition. Machine Learning,
56(1-3):9–33, July 2004. doi: 10.1023/B:MACH.0000033113.59016.96.

[41] Z. Drmač and Z. Bujanović. On the Failure of Rank-Revealing QR Fac-
torization Software – A Case Study. ACM Transactions on Mathematical
Software, 35(2):1–28, July 2008. doi: 10.1145/1377612.1377616.

[42] J. A. Duersch and M. Gu. Randomized QR with Column Pivoting. SIAM
Journal on Scientific Computing, 39(4):C263–C291, Jan. 2017. doi: 10.
1137/15M1044680.

[43] C. Eckart and G. Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1(3):211–218, Sept. 1936. doi: 10.1007/
BF02288367.

[44] H. El Bouhargani, A. Jamal, D. Beck, J. Errard, L. Grigori, and R. Stom-
por. MAPPRAISER: A massively parallel map-making framework for
multi-kilo pixel CMB experiments. Astronomy and Computing, 39:100576,
Apr. 2022. doi: 10.1016/j.ascom.2022.100576.

[45] D. Feldman, M. Schmidt, and C. Sohler. Turning Big Data into Tiny
Data: Constant-Size Coresets for k-Means, PCA and Projective Cluster-
ing. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1434–1453, USA, 2013. Soci-
ety for Industrial and Applied Mathematics. event-place: New Orleans,
Louisiana.

96

http://doi.org/10.1137/080731992
http://doi.org/10.1137/080731992
http://doi.org/10.1137/13092157X
http://doi.org/10.1137/13092157X
http://doi.org/10.1016/j.cpc.2014.08.019
http://doi.org/10.1137/15M1040414
http://doi.org/10.1145/509907.509922
http://doi.org/10.1023/B:MACH.0000033113.59016.96
http://doi.org/10.1145/1377612.1377616
http://doi.org/10.1137/15M1044680
http://doi.org/10.1137/15M1044680
http://doi.org/10.1007/BF02288367
http://doi.org/10.1007/BF02288367
http://doi.org/10.1016/j.ascom.2022.100576

[46] S. Fischman, J. Pérez-Anker, L. Tognetti, A. Di Naro, M. Suppa,
E. Cinotti, T. Viel, J. Monnier, P. Rubegni, V. del Marmol, J. Malvehy,
S. Puig, A. Dubois, and J.-L. Perrot. Non-invasive scoring of cellular
atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning.
Scientific Reports, 12(1):481, Dec. 2022. doi: 10.1038/s41598-021-04395-1.

[47] S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla. Fast low rank
approximations of matrices and tensors. The Electronic Journal of Linear
Algebra, 22, Jan. 2011. doi: 10.13001/1081-3810.1489.

[48] A. Frieze and R. Kannan. The regularity lemma and approximation
schemes for dense problems. In Proceedings of 37th Conference on Foun-
dations of Computer Science, pages 12–20, Burlington, VT, USA, 1996.
IEEE Comput. Soc. Press. doi: 10.1109/SFCS.1996.548459.

[49] A. Frieze and R. Kannan. Quick Approximation to Matrices and Ap-
plications. Combinatorica, 19(2):175–220, Feb. 1999. doi: 10.1007/
s004930050052.

[50] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for
finding low-rank approximations. In Proceedings 39th Annual Symposium
on Foundations of Computer Science (Cat. No.98CB36280), pages 370–
378, Palo Alto, CA, USA, 1998. IEEE Comput. Soc. doi: 10.1109/SFCS.
1998.743487.

[51] F. Fröwis, V. Nebendahl, and W. Dür. Tensor operators: Constructions
and applications for long-range interaction systems. Physical Review A,
81(6):062337, June 2010. doi: 10.1103/PhysRevA.81.062337.

[52] Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté, J. Pa-
quier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco,
N. Renon, G. David, J.-P. Malrieu, M. Véril, M. Caffarel, P.-F. Loos,
E. Giner, and A. Scemama. Quantum Package 2.0: An Open-Source
Determinant-Driven Suite of Programs. Journal of Chemical Theory and
Computation, 15(6):3591–3609, June 2019. doi: 10.1021/acs.jctc.9b00176.

[53] W. Givens. Computation of plain unitary rotations transforming a gen-
eral matrix to triangular form. Journal of the Society for Industrial and
Applied Mathematics, 6(1):26–50, 1958. doi: 10.1137/0106004.

[54] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
Baltimore, MD, fourth edition, 2013.

[55] N. Golubev, M. S. Zhdanov, and B. Chernobay. Three-dimensional inver-
sion of array magnetotelluric data based on quasi-analytical approxima-
tion. In SEG Technical Program Expanded Abstracts 2002, pages 637–640.
Society of Exploration Geophysicists, Jan. 2002. doi: 10.1190/1.1817333.

[56] S. Goreinov and E. Tyrtyshnikov. The maximal-volume concept in ap-
proximation by low-rank matrices. Contemporary Mathematics, 208, 01
2001. doi: 10.1090/conm/280/4620.

97

http://doi.org/10.1038/s41598-021-04395-1
http://doi.org/10.13001/1081-3810.1489
http://doi.org/10.1109/SFCS.1996.548459
http://doi.org/10.1007/s004930050052
http://doi.org/10.1007/s004930050052
http://doi.org/10.1109/SFCS.1998.743487
http://doi.org/10.1109/SFCS.1998.743487
http://doi.org/10.1103/PhysRevA.81.062337
http://doi.org/10.1021/acs.jctc.9b00176
http://doi.org/10.1137/0106004
http://doi.org/10.1190/1.1817333
http://doi.org/10.1090/conm/280/4620

[57] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78, Aug.
2013. doi: 10.1002/gamm.201310004.

[58] D. Gross and V. Nesme. Note on sampling without replacing from a finite
collection of matrices. May 2010, arXiv: 1001.2738.

[59] M. Gu and S. C. Eisenstat. Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization. SIAM Journal on Scientific Comput-
ing, 17(4):848–869, July 1996. doi: 10.1137/0917055.

[60] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding Structure with
Randomness: Probabilistic Algorithms for Constructing Approximate
Matrix Decompositions. SIAM Review, 53(2):217–288, Jan. 2011. doi:
10.1137/090771806. arXiv: 0909.4061.

[61] R. A. Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an "explanatory" multimodal factor analysis. Technical
Report 16, UCLA, Dec. 1970.

[62] W. J. Hehre, R. F. Stewart, and J. A. Pople. Self-Consistent Molecular-
Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic
Orbitals. The Journal of Chemical Physics, 51(6):2657–2664, Sept. 1969.
doi: 10.1063/1.1672392.

[63] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum
of Products. Journal of Mathematics and Physics, 6(1-4):164–189, Apr.
1927. doi: 10.1002/sapm192761164.

[64] S. Holtz, T. Rohwedder, and R. Schneider. The Alternating Linear
Scheme for Tensor Optimization in the Tensor Train Format. SIAM
Journal on Scientific Computing, 34(2):A683–A713, Jan. 2012. doi:
10.1137/100818893.

[65] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of
fixed TT-rank. Numerische Mathematik, 120(4):701–731, Apr. 2012. doi:
10.1007/s00211-011-0419-7.

[66] Y. P. Hong and C.-T. Pan. Rank-revealing QR factorizations and the
singular value decomposition. Mathematics of Computation, 58(197):213–
213, Jan. 1992. doi: 10.1090/S0025-5718-1992-1106970-4.

[67] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1 edition, Apr. 1991. doi: 10.1017/CBO9780511840371.

[68] A. S. Householder. Unitary triangularization of a nonsymmetric matrix.
J. ACM, 5(4):339–342, oct 1958. doi: 10.1145/320941.320947.

[69] H. Huang, C. D. Sherrill, and E. Chow. Techniques for high-performance
construction of Fock matrices. The Journal of Chemical Physics, 152(2):
024122, Jan. 2020. doi: 10.1063/1.5129452.

[70] J. Håstad. Tensor rank is NP-complete. Journal of Algorithms, 11(4):
644–654, Dec. 1990. doi: 10.1016/0196-6774(90)90014-6.

98

http://doi.org/10.1002/gamm.201310004
http://arxiv.org/abs/1001.2738
http://doi.org/10.1137/0917055
http://doi.org/10.1137/090771806
http://doi.org/10.1137/090771806
http://doi.org/10.1063/1.1672392
http://doi.org/10.1002/sapm192761164
http://doi.org/10.1137/100818893
http://doi.org/10.1137/100818893
http://doi.org/10.1007/s00211-011-0419-7
http://doi.org/10.1007/s00211-011-0419-7
http://doi.org/10.1090/S0025-5718-1992-1106970-4
http://doi.org/10.1017/CBO9780511840371
http://doi.org/10.1145/320941.320947
http://doi.org/10.1063/1.5129452
http://doi.org/10.1016/0196-6774(90)90014-6

[71] W. B. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions of lip-
schitz maps into Banach spaces. Israel Journal of Mathematics, 54(2):
129–138, June 1986. doi: 10.1007/BF02764938.

[72] E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A. Valdes-
Hernandez, and P. A. Valdes-Sosa. Tensor Analysis and Fusion of Mul-
timodal Brain Images. Proceedings of the IEEE, 103(9):1531–1559, Sept.
2015. doi: 10.1109/JPROC.2015.2455028.

[73] A. R. Karlin. Web Search via Hub Synthesis. In G. Goos, J. Hartmanis,
J. van Leeuwen, M. Goemans, K. Jansen, J. D. P. Rolim, and L. Trevisan,
editors, Approximation, Randomization, and Combinatorial Optimization:
Algorithms and Techniques, volume 2129, pages 6–6. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2001. doi: 10.1007/3-540-44666-4_3. Series
Title: Lecture Notes in Computer Science.

[74] O. Kaya and B. Uçar. High Performance Parallel Algorithms for the
Tucker Decomposition of Sparse Tensors. In 2016 45th International Con-
ference on Parallel Processing (ICPP), pages 103–112, Philadelphia, PA,
Aug. 2016. IEEE. doi: 10.1109/ICPP.2016.19.

[75] O. Kaya and B. Uçar. Parallel Candecomp/Parafac Decomposition of
Sparse Tensors Using Dimension Trees. SIAM Journal on Scientific Com-
puting, 40(1):C99–C130, Jan. 2018. doi: 10.1137/16M1102744.

[76] S. Keller, M. Dolfi, M. Troyer, and M. Reiher. An Efficient Matrix Product
Operator Representation of the Quantum-Chemical Hamiltonian. The
Journal of Chemical Physics, 143(24):244118, Dec. 2015. doi: 10.1063/1.
4939000. arXiv: 1510.02026.

[77] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, Sept. 1999. doi: 10.1145/324133.
324140.

[78] T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications.
SIAM Review, 51(3):455–500, 2009. doi: 10.1137/07070111X.

[79] E. Korkmaz. Improving the memory and time overhead of low-rank parallel
linear sparse direct solvers. PhD thesis, ED39 Mathématiques et Infor-
matique, Université de Bordeaux, 2022. Supervised by Ramet, Pierre and
Faverge, Mathieu.

[80] K. Kormann. Low-rank tensor discretization for high-dimensional prob-
lems. Technical report, Max-Planck-Institut für Plasmaphysik, Aug. 2017.

[81] P. M. Kroonenberg and J. de Leeuw. Principal component analysis of
three-mode data by means of alternating least squares algorithms. Psy-
chometrika, 45(1):69–97, Mar. 1980. doi: 10.1007/BF02293599.

[82] N. Lee and A. Cichocki. Fundamental tensor operations for large-scale
data analysis using tensor network formats. Multidimensional Systems
and Signal Processing, 29(3):921–960, July 2018. doi: 10.1007/s11045-
017-0481-0.

99

http://doi.org/10.1007/BF02764938
http://doi.org/10.1109/JPROC.2015.2455028
http://doi.org/10.1007/3-540-44666-4_3
http://doi.org/10.1109/ICPP.2016.19
http://doi.org/10.1137/16M1102744
http://doi.org/10.1063/1.4939000
http://doi.org/10.1063/1.4939000
http://arxiv.org/abs/1510.02026
http://doi.org/10.1145/324133.324140
http://doi.org/10.1145/324133.324140
http://doi.org/10.1137/07070111X
http://doi.org/10.1007/BF02293599
http://doi.org/10.1007/s11045-017-0481-0
http://doi.org/10.1007/s11045-017-0481-0

[83] L. Ma and E. Solomonik. Fast and accurate randomized algorithms
for low-rank tensor decompositions. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. S. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 24299–24312. Curran
Associates, Inc., 2021.

[84] L. Ma and E. Solomonik. Accelerating alternating least squares for tensor
decomposition by pairwise perturbation. Numerical Linear Algebra with
Applications, 29(4), Aug. 2022. doi: 10.1002/nla.2431.

[85] P.-G. Martinsson and J. A. Tropp. Randomized numerical linear algebra:
Foundations and algorithms. Acta Numerica, 29:403–572, May 2020. doi:
10.1017/S0962492920000021.

[86] P.-G. Martinsson, G. Quintana Ortì, N. Heavner, and R. van de Geijn.
Householder QR Factorization With Randomization for Column Pivoting
(HQRRP). SIAM Journal on Scientific Computing, 39(2):C96–C115, Jan.
2017. doi: 10.1137/16M1081270.

[87] D. A. Matthews. High-Performance Tensor Contraction without Trans-
position. July 2017, arXiv: 1607.00291.

[88] L. E. McMurchie and E. R. Davidson. One- and two-electron integrals
over cartesian gaussian functions. Journal of Computational Physics, 26
(2):218–231, Feb. 1978. doi: 10.1016/0021-9991(78)90092-X.

[89] T. Minka. A Comparison of Numerical Optimizers for Logistic Regression.
Technical report, Microsoft, Mar. 2003.

[90] R. Minster, A. K. Saibaba, and M. E. Kilmer. Randomized Algorithms for
Low-Rank Tensor Decompositions in the Tucker Format. SIAM Journal
on Mathematics of Data Science, 2(1):189–215, Jan. 2020. doi: 10.1137/
19M1261043.

[91] R. L. Minster. Randomized Algorithms for Tensors and Matrices with
Applications. PhD thesis, North Carolina State University, 2021.

[92] I. Oseledets. DMRG Approach to Fast Linear Algebra in the TT-Format.
Computational Methods in Applied Mathematics, 11(3):382–393, 2011. doi:
10.2478/cmam-2011-0021.

[93] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidi-
mensional arrays. Linear Algebra and its Applications, 432(1):70–88, Jan.
2010. doi: 10.1016/j.laa.2009.07.024.

[94] I. V. Oseledets. Tensor-Train Decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, Jan. 2011. doi: 10.1137/090752286.

[95] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov. Tucker Dimen-
sionality Reduction of Three-Dimensional Arrays in Linear Time. SIAM
Journal on Matrix Analysis and Applications, 30(3):939–956, Jan. 2008.
doi: 10.1137/060655894.

100

http://doi.org/10.1002/nla.2431
http://doi.org/10.1017/S0962492920000021
http://doi.org/10.1017/S0962492920000021
http://doi.org/10.1137/16M1081270
http://arxiv.org/abs/1607.00291
http://doi.org/10.1016/0021-9991(78)90092-X
http://doi.org/10.1137/19M1261043
http://doi.org/10.1137/19M1261043
http://doi.org/10.2478/cmam-2011-0021
http://doi.org/10.2478/cmam-2011-0021
http://doi.org/10.1016/j.laa.2009.07.024
http://doi.org/10.1137/090752286
http://doi.org/10.1137/060655894

[96] C.-T. Pan and P. T. P. Tang. Bounds on singular values revealed by
QR factorizations. Bit Numerical Mathematics, 39(4):740–756, 1999. doi:
10.1023/A:1022395308695.

[97] V. Y. Pan, G. Qian, and A.-L. Zheng. Randomized Matrix Computations.
Oct. 2012, arXiv: 1210.7476.

[98] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent
semantic indexing: a probabilistic analysis. In Proceedings of the sev-
enteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems - PODS ’98, pages 159–168, Seattle, Washington, United
States, 1998. ACM Press. doi: 10.1145/275487.275505.

[99] G. Quintana Ortì, X. Sun, and C. H. Bischof. A BLAS-3 Version of the QR
Factorization with Column Pivoting. SIAM Journal on Scientific Com-
puting, 19(5):1486–1494, Sept. 1998. doi: 10.1137/S1064827595296732.

[100] R. Sands and F. W. Young. Component models for three-way data: An
alternating least squares algorithm with optimal scaling features. Psy-
chometrika, 45(1):39–67, Mar. 1980. doi: 10.1007/BF02293598.

[101] D. V. Savostyanov and E. E. Tyrtyshnikov. Approximate multiplication of
tensor matrices based on the individual filtering of factors. Computational
Mathematics and Mathematical Physics, 49(10):1662–1677, Oct. 2009. doi:
10.1134/S0965542509100029.

[102] D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. Fast
truncation of mode ranks for bilinear tensor operations. Numerical Linear
Algebra with Applications, 19(1):103–111, Jan. 2012. doi: 10.1002/nla.765.

[103] U. Schollwoeck. The density-matrix renormalization group in the age of
matrix product states. Annals of Physics, 326(1):96–192, Jan. 2011. doi:
10.1016/j.aop.2010.09.012. arXiv: 1008.3477.

[104] M. Sharma and S. Kumar. A Flexible Lossy Depth Video Coding Scheme
Based on Low-rank Tensor Modelling and HEVC Intra Prediction for Free
Viewpoint Video. Apr. 2021, arXiv: 2104.04678.

[105] P. B. Snajberk. Direct density matrix renormalization group approaches
for strong correlation effects in quantum chemistry. PhD thesis, Ludwig
Maximilians Universität München, 2017.

[106] G. W. Stewart. Rank Degeneracy. SIAM Journal on Scientific and Sta-
tistical Computing, 5(2):403–413, June 1984. doi: 10.1137/0905030.

[107] S. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider, and
O. Legeza. Tensor product methods and entanglement optimization for ab
initio quantum chemistry. International Journal of Quantum Chemistry,
115(19):1342–1391, Oct. 2015. doi: 10.1002/qua.24898.

[108] P. Tarits, S. Hautot, J. D’Eu, P. Wawrzyniak, F. Bretaudeau, S. Vé-
drine, M. Darnet, and A. Stopin. On the Importance of Nearshore Ex-
tension of MT Arrays for Geothermal Exploration of Coastal Geother-
mal Systems. In EAGE GET 2022, pages 1–5, The Hague, Nether-
lands„ 2022. European Association of Geoscientists & Engineers. doi:
10.3997/2214-4609.202221077.

101

http://doi.org/10.1023/A:1022395308695
http://doi.org/10.1023/A:1022395308695
http://arxiv.org/abs/1210.7476
http://doi.org/10.1145/275487.275505
http://doi.org/10.1137/S1064827595296732
http://doi.org/10.1007/BF02293598
http://doi.org/10.1134/S0965542509100029
http://doi.org/10.1134/S0965542509100029
http://doi.org/10.1002/nla.765
http://doi.org/10.1016/j.aop.2010.09.012
http://doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/1008.3477
http://arxiv.org/abs/2104.04678
http://doi.org/10.1137/0905030
http://doi.org/10.1002/qua.24898
http://doi.org/10.3997/2214-4609.202221077
http://doi.org/10.3997/2214-4609.202221077

[109] R. C. Thompson. Principal submatrices IX: Interlacing inequalities for
singular values of submatrices. Linear Algebra and its Applications, 5(1):
1–12, 1972.

[110] J. A. Tropp. Improved analysis of the subsampled randomized Hadamard
transform. Advances in Adaptive Data Analysis, 03(01n02):115–126, Apr.
2011. doi: 10.1142/S1793536911000787.

[111] L. R. Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, Sept. 1966. doi: 10.1007/BF02289464.

[112] E. Tyrtyshnikov. Incomplete Cross Approximation in the Mosaic-
Skeleton Method. Computing, 64(4):367–380, June 2000. doi: 10.1007/
s006070070031.

[113] J. Vandewalle and B. De Moor. On the Use of the Singular Value De-
composition in Identification and Signal Processing. In G. H. Golub and
P. Van Dooren, editors, Numerical Linear Algebra, Digital Signal Process-
ing and Parallel Algorithms, pages 321–360. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1991. doi: 10.1007/978-3-642-75536-1_16.

[114] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. A New Trunca-
tion Strategy for the Higher-Order Singular Value Decomposition. SIAM
Journal on Scientific Computing, 34(2):A1027–A1052, Jan. 2012. doi:
10.1137/110836067.

[115] S. R. White. Density matrix formulation for quantum renormaliza-
tion groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992. doi: 10.1103/
PhysRevLett.69.2863.

[116] G. M. Wing and J. D. Zahrt. A primer on integral equations of the first
kind: the problem of deconvolution and unfolding. Society for Industrial
and Applied Mathematics, Philadelphia, 1991.

[117] D. P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Foun-
dations and Trends® in Theoretical Computer Science, 10(1-2):1–157,
2014. doi: 10.1561/0400000060. arXiv: 1411.4357.

[118] J. Xiao, M. Gu, and J. Langou. Fast Parallel Randomized QR with Col-
umn Pivoting Algorithms for Reliable Low-rank Matrix Approximations.
2017 IEEE 24th International Conference on High Performance Comput-
ing (HiPC), pages 233–242, Dec. 2017. doi: 10.1109/HiPC.2017.00035.
arXiv: 1804.05138.

[119] X. Xing, H. Huang, and E. Chow. A linear scaling hierarchical block low-
rank representation of the electron repulsion integral tensor. The Journal
of Chemical Physics, 153(8):084119, Aug. 2020. doi: 10.1063/5.0010732.

[120] Y. Yang, M. Pilanci, and M. J. Wainwright. Randomized sketches for
kernels: Fast and optimal non-parametric regression. Jan. 2015, arXiv:
1501.06195.

[121] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Parallel matrix factorization
for recommender systems. Knowledge and Information Systems, 41(3):
793–819, Dec. 2014. doi: 10.1007/s10115-013-0682-2.

102

http://doi.org/10.1142/S1793536911000787
http://doi.org/10.1007/BF02289464
http://doi.org/10.1007/s006070070031
http://doi.org/10.1007/s006070070031
http://doi.org/10.1007/978-3-642-75536-1_16
http://doi.org/10.1137/110836067
http://doi.org/10.1137/110836067
http://doi.org/10.1103/PhysRevLett.69.2863
http://doi.org/10.1103/PhysRevLett.69.2863
http://doi.org/10.1561/0400000060
http://arxiv.org/abs/1411.4357
http://doi.org/10.1109/HiPC.2017.00035
http://arxiv.org/abs/1804.05138
http://doi.org/10.1063/5.0010732
http://arxiv.org/abs/1501.06195
http://arxiv.org/abs/1501.06195
http://doi.org/10.1007/s10115-013-0682-2

[122] R. Yu, D. Cheng, and Y. Liu. Accelerated Online Low Rank Tensor Learn-
ing for Multivariate Spatiotemporal Streams. In F. Bach and D. Blei,
editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages
238–247, Lille, France, July 2015. PMLR.

[123] G. Zhou, A. Cichocki, and S. Xie. Decomposition of Big Tensors With
Low Multilinear Rank. 2014, arXiv: 1412.1885.

103

http://arxiv.org/abs/1412.1885

	Acknowledgment
	Résumé en français
	Introduction
	Background on numerical linear and multilinear algebra
	Notation
	Matrix low-rank approximation
	Projections
	Preliminary definitions
	Truncated Singular Value Decomposition
	QR, QRCP and strong RRQR
	Cross approximation

	Tensor approximation
	Introduction to tensors
	Tensor train

	Application to chemistry
	Introduction to the electronic Schrödinger equation
	Hamiltonian and state function as tensors
	Density Matrix Renormalization Group
	Conclusion

	Matrix generation
	Random matrices
	Matrices with prescribed singular values
	Specific problems
	Matrix and tensor repositories

	High performance computing
	Numerical Linear Algebra softwares
	Supercomputer topology

	Subspace projection with the block subsampled randomized Hadamard transform
	Context
	Subspace embeddings
	Gaussian sampling
	Structured random embeddings

	Sampling a matrix in parallel
	Block Gaussian sampling
	Block subsampled randomized Hadamard transform
	Numerical experiments

	Low-rank approximation with parallel sampling
	Nyström approximation
	Inversion of the middle matrix
	Numerical results

	Conclusion

	Distributed QR decomposition with tournament pivoting
	Earlier work
	Tournament pivoting for 1D block column partitioned matrices
	Randomized QRCP

	Tournament pivoting for 1D block row partitioned matrices
	QR factorization with 2D tournament pivoting
	QRTP algorithm
	Spectrum preserving and kernel approximation properties of QRTP

	Numerical results
	Influence of the reduction tree used during tournament pivoting
	QRTP for image compression
	Accuracy comparison with RQRCP

	Parallel design of QRTP
	Computational and communication cost

	Parallel performance of QRTP
	Conclusion

	Distributed Tucker decomposition using QR with tournament pivoting
	Context
	Tucker decomposition
	Existing solutions to compute the Tucker decomposition in parallel

	Partitioned unfolding and applying QRTP
	High-Order QR with tournament pivoting
	Error bound
	Numerical experiments

	Sequentially Truncated HOQRTP
	Error bound
	Cost of ST-HOQRTP
	Numerical experiments

	Conclusion

	Conclusion and perspectives
	Source code
	Subsampled Randomized Hadamard Transform
	Gaussian sampling

