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Notations

The tensor product is denoted ⊗, and •, • is the notation of the scalar product. Bold letters signify that the variable is a vector. 

Introduction

This work falls into the general framework of fluid dynamics which is the study of a gas or a liquid in motion. What particularly interests us in this scope is fluid-structure interactions and more precisely the case of thin structures. There exists a wide range of phenomena that deals with these kind of interactions. We can think about examples of natural flows such as the blood circulation in arteries, or the air motion in lunges as we breathe. We can also cite a lot of industrial processes that involve these fluid-structure interactions. For instance the study of the lift of a plane, or the wind resistance of a bridge or again systems of cooling in nuclear power plants. The great variety of application fields motivates the development of radically different numerical methods.

In shock dynamics, to approach the movement of fluids, explicit in time schemes are traditionally used. To be stable, they are subject to a CFL (Courant-Friedrichs-Lewy) condition

c ∆t ∆x 1.
This CFL condition depends on the speed of sound c and the cell size ∆x. In our case, the thickness of the structure can be very thin and the speed of sound very high in some materials. The CFL constraint then implies to use a very small time step for the structure which leads to an enormous computational effort. Moreover, this small time step also deteriorates the numerical results for the fluid. Thus, in this configuration, it is unfavorable to use explicit methods. An alternative is to use implicit in time schemes for which the time step will be managed by the fluid flow. In this thesis, we aim at proposing a robust implicit numerical method to solve flows for compressible non viscous fluids.

To link this work with the above fluid-structure discussion, the goal of this study is firstly to model and simulate the compressible fluid part using an implicit scheme. To do so, we use the Euler equations, written here in 1D and in Eulerian formalism.

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x (ρEu + pu) = 0. (1)
The variables are the fluid density ρ, the velocity u, the pressure p and the specific total energy E. The derivative in time is ∂ t and the space derivative is denoted ∂ x . The idea is to develop an implicit in time semi-Lagrangian scheme for the fluid part by extending existing Finite Volume GLACE and EUCCLHYD schemes, see [START_REF] Després | Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems[END_REF]. Secondly, the aim is to generalize this fluid scheme to elasto-plastic structures following the ideas of Kluth and Després, see [START_REF] Kluth | Discretization of Hyperelasticity on Unstructured Mesh With a Cell-Centered Lagrangian Scheme[END_REF] or Maire, Georges and Breil, see [START_REF] Georges | A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity[END_REF]. In the end, we will then have an implicit scheme for the solid coupled with a fluid scheme that could be explicit and/or implicit depending on the situation. As mentioned earlier, in this manuscript we treat the fluid part.

In the literature, implicit and semi-implicit schemes for the Euler equations have been investigated with different strategies. For example, a Finite Difference algorithm is proposed in [START_REF] Beam | An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form[END_REF], or implicit upwind methods are experimented in [START_REF] Toth | Implicit and Semi-Implicit Schemes in the Versatile Advectio Code: Numerical Tests[END_REF]. A large part of them use the method of prediction-correction like in [START_REF] Issa | Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting[END_REF] or [START_REF] Van Der Heuk | A Conservative Pressure-Correction Method for FLow at All Speed[END_REF]. In more recent works, implicit schemes are developed after relaxation as in [START_REF] Abbate | An all-speed relaxation scheme for gases and compressible materials[END_REF] or [START_REF] Thomann | An all-speed second order IMEX relaxation scheme for the Euler equations[END_REF].

In the context of our study, an important reference is [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF]. An implicit Lagrangian scheme is examined for non viscous compressible gas dynamics but only by means of numerical experiments and without further theoretical foundation. Indeed, major technical difficulties appear for the resolution of fully implicit non linear schemes. At a theoretical level, it is difficult to prove existence and uniqueness of a solution to implicit schemes. Some strategies arise, among them the topological degree [START_REF] Gallouët | An Unconditionally Stable Pressure Correction Scheme for the Compressible Barotropic Navier-Stokes Equations[END_REF], or the use of the symmetrical structure of the linear part of the system as in [START_REF] Brugnano | Iterative Solution of Piecewise Linear Systems[END_REF].

In this thesis, we develop an implicit prediction-correction scheme to solve the Euler equations, for which the prediction step is based on the isentropic Euler equations [START_REF] Abbate | Thesis: Numerical methods for all-speed flows in fluid-dynamics and nonlinear elasticity[END_REF], where S is the entropy.

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρS) + ∂ x (ρSu) = 0. ( 2 
)
This idea is an adaptation of the work of Chalons, Coquel and Marmignon, see [START_REF] Chalons | Time-Implicit Approximation of the Multipressure Gas Dynamics Equations in Several Space Dimensions[END_REF]. As a matter of fact, there is a strong non-linearity coming from the flux terms in the second and third equations of [START_REF] Abbate | An all-speed relaxation scheme for gases and compressible materials[END_REF]. Using the isentropic equations in the prediction step permits to get rid of a part of this non-linearity.

Instead of using an Eulerian description, we choose here to consider a semi-Lagrangian formalism. What changes is the way of representing the movements of the matter. In an Eulerian formalism, the mesh is fixed. It means that the results are plotted on the same grid during the whole simulation, the cells do not deform. For the entire time of computation, we have an estimation of physical quantities in all points of the domain of study, and we describe what enters and what exits from it. However, in Lagrangian formalism, we consider the volume of matter transported and the mesh corresponds to the initial configuration of the simulation. The observation is made from an internal point of view, there is no mass flux between cells. This formalism permits a natural track of the contact discontinuities even with strong deformations. For example, it is particularly suited for Inertial Confinement Fusion, see [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian hydrodynamics[END_REF] or [START_REF] Maire | Contribution to the numerical modeling of Inertial Confinement Fusion[END_REF]. The description used in this work is a combination of the above two called semi-Lagrangian. It means that the time evolution operator is Lagrangian and the space coordinates are Eulerian, see [START_REF] Mazeran | Thèse: Sur la Structure Mathématique et l'Approximation Numérique de l'Hydrodynamique Lagrangienne Bidimensionnelle[END_REF] [ Chapter 1,p11]. The mesh deforms all along the simulation to follow the displacements of the matter (i.e. displacement, expansion or compression of cells).

To go from the Eulerian to the semi-Lagrangian framework, we use the material derivative D t = ∂ t + u∂ x , giving the following semi-Lagrangian Euler system

       ρD t τ -∂ x u = 0, ρD t u + ∂ x p = 0, ρD t E + ∂ x (pu) = 0.
One has τ = 1 ρ the specific volume.

Under this formalism, we have been able to define a suitable framework to prove the existence and uniqueness of a solution to our implicit scheme (3) -( 4).

Prediction step

               τ j = τ n j + ∆t M j (u j+ 1 2 -u j-1 2
),

u j = u n j - ∆t M j (p j+ 1 2 -p j-1 2 
), S j = S n j .

(3)

Fluxes        p j+ 1 2 = ρ j c j + ρ j+1 c j+1 4 (u j -u j+1 ) + 1 2 (p j + p j+1 ),
u j+ 1 2 = 1 ρ j c j + ρ j+1 c j+1 (p j -p j+1 ) + 1 2 (u j + u j+1 ). (4) 
Correction step

                   τ n+1 j = τ n j + ∆t M j (u j+ 1 2 -u j-1 2 
),

u n+1 j = u n j - ∆t M j (p j+ 1 2 -p j-1 2 
),

E n+1 j = E n j + ∆t M j (p j+ 1 2 u j+ 1 2 -p j-1 2 u j-1 2 
).

(

) 5 
This scheme is composed of two steps and the Definition (4) of the fluxes, here the fluxes of the acoustic two states solver. The first step is the prediction step (3), to solve the isentropic Euler equations. It is implicit, thus the overline values symbolize the terms obtained implicitly during this phase. The second step is the correction step [START_REF] Aw | Resurrection of "Second Order" Models of Traffic Flow?[END_REF], where the conservation of the total energy E is recovered in the last equation. It is an explicit step during which the predicted fluxes, evaluated during the previous step are injected into the discretized version of the Euler equations. Thanks to [START_REF] Aw | Resurrection of "Second Order" Models of Traffic Flow?[END_REF], the scheme is entropic. A difficulty for implicit schemes, as mentioned earlier, is to justify their well-posedness and it is an important point on which we focus in Chapter 3. In this introduction, we present the reader the 1D version of our implicit scheme. The 2D version with multi-D formalism will be introduced in Chapter 2 and studied in Chapters 3 and 4.

There are 6 Chapters in this manuscript all of them starting with a brief description of their content. The organization is as follows.

In Chapter 1, Generalities, the basic definitions and concepts useful for the comprehension of this work are introduced. The presentation of the Euler equations is refined, as well as the different formalisms that have been previously mentioned. The notion of entropy is recalled, since it will turn useful for future questions on the scheme stability. Finally, a reminder on Finite Volume schemes is made and their main properties are written.

Chapter 2, Implicit scheme, positions the implicit scheme of this work with regards to the existing strategies. It details the construction of the implicit prediction-correction scheme, in Finite Volumes and semi-Lagrangian formalism. The entropy stability of each step of the discretized scheme is proved. Lastly, the treatment of the different boundary conditions is explained.

In Chapter 3, Existence and uniqueness of a solution for the implicit step, we explain how to express the implicit prediction step under the form of a gradient problem. In this framework, a Theorem of existence and uniqueness is written in details. Then, the complete proof of this Theorem is realized. Finally, the result is applied to the scheme of the Euler equations.

Chapter 4, entitled Boundary conditions, GCL and coupling, tackles three distinct subjects. The first one is the inclusion of the boundary conditions in the gradient formulation of the problem. The respect of the different hypotheses linked to the well posedness of the Theorem of existence and uniqueness is evaluated. The second point concerns the Geometric Conservation Law that is defined under a general point of view. Its respect is proven for Dimensions 1 and 2. The last point of this

Introduction en français

Ce travail s'inscrit dans le cadre général de la dynamique des fluides, qui consiste en l'étude d'un gaz ou d'un liquide en mouvement. Ce qui nous intéresse particulièrement dans ce contexte est l'interaction fluide-structure et plus précisément le cas des structures fines. Il existe une grande variété de phénomènes qui traitent de ce type d'interaction. On peut penser à des flux naturels comme la circulation du sang dans les artères, ou le mouvement de l'air dans les poumons lorsque nous respirons. On peut également citer un grand nombre de procédés industriels qui impliquent ces interactions fluide-structure. Par exemple l'étude de la portance d'un avion, ou la résistance d'un pont face au vent, ou encore les systèmes de refroidissement des centrales nucléaires. La grande diversité des champs d'applications motive le développement de méthodes numériques radicalement différentes.

En dynamique rapide, pour approcher le mouvement des fluides, des schémas explicites en temps sont traditionnellement utilisés. Pour être stables, ils sont sujets à une condition CFL (Courant-Friedrichs-Lewy)

c ∆t ∆x 1.
Cette condition CFL dépend de la vitesse du son c et de la taille des mailles ∆x. Dans notre cas, l'épaisseur de la structure peut être très fine et la vitesse du son très élevée dans certains matériaux. La contrainte CFL implique d'utiliser un pas de temps très petit pour la structure ce qui conduit à un effort de calcul énorme. De plus, ce petit pas de temps détériore aussi la qualité des résultats numériques pour le fluide. Ainsi, dans cette configuration, il est défavorable d'utiliser des méthodes explicites. Une alternative est d'utiliser des schéma implicites en temps pour lesquels le pas de temps sera géré par la vitesse d'écoulement du fluide. Dans cette thèse nous proposons une méthode numérique robuste et implicite pour résoudre les écoulements de fluides compressibles non visqueux. Pour relier ce travail avec la discussion ci-dessus, le but de cette étude est premièrement de modéliser et de simuler la partie fluide compressible en utilisant un schéma implicite. Pour ce faire, on utilise les équations d'Euler, écrites ici en Dimension 1 en formalisme Eulérien.

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x (ρEu + pu) = 0. ( 6 
)
Les variables sont la densité du fluide ρ, la vitesse u, la pression p et l'énergie totale spécifique E. La dérivée en temps est ∂ t et la dérivée d'espace est notée ∂ x . L'idée est de développer un schéma implicite en semi-Lagrangien pour la partie fluide en étendant les schémas Volumes Finis existants GLACE et EUCCLHYD, voir [START_REF] Després | Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems[END_REF]. Deuxièmement, le but est de généraliser ce schéma fluide au cas des structures élasto-plastiques suivant les idées de Kluth et Després, voir [START_REF] Kluth | Discretization of Hyperelasticity on Unstructured Mesh With a Cell-Centered Lagrangian Scheme[END_REF] ou Maire, Georges et Breil, voir [START_REF] Georges | A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity[END_REF]. À la fin, nous aurons un schéma implicite pour le solide couplé avec un schéma fluide qui pourra être explicite et/ou implicite suivant la situation. Comme mentionné précédemment, dans ce manuscrit, nous traitons la partie fluide.

Dans la littérature, les schémas implicites et semi-implicites pour les équations d'Euler ont été étudiés selon différentes stratégies. Par exemple, un algorithme en Différences Finies est proposé dans [START_REF] Beam | An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form[END_REF], ou des méthodes amont implicites sont éxpérimentées dans [START_REF] Toth | Implicit and Semi-Implicit Schemes in the Versatile Advectio Code: Numerical Tests[END_REF]. Une grande partie de ces travaux utilise un schéma de type de prédiction-correction, comme dans [START_REF] Issa | Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting[END_REF] ou [START_REF] Van Der Heuk | A Conservative Pressure-Correction Method for FLow at All Speed[END_REF]. Dans des articles plus récents, des schémas implicites de relaxation sont développés comme dans [START_REF] Abbate | An all-speed relaxation scheme for gases and compressible materials[END_REF] ou [START_REF] Thomann | An all-speed second order IMEX relaxation scheme for the Euler equations[END_REF]. Dans le contexte de notre étude, une référence importante est [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF]. Un schéma implicite Lagrangien est examiné pour la dynamique des gaz non visqueux et compressibles, mais seulement au moyen de tests numériques et sans réel fondement théorique. En effet, des difficultés techniques majeures apparaissent pour la résolution de schémas non linéaires totalement implicites. Au niveau théorique, il est difficile de prouver l'existence et l'unicité d'une solution pour les schémas implicites. Quelques stratégies apparaissent, parmi elles le degré topologique [START_REF] Gallouët | An Unconditionally Stable Pressure Correction Scheme for the Compressible Barotropic Navier-Stokes Equations[END_REF], ou l'utilisation de la structure symétrique de la partie linéaire du système comme dans [START_REF] Brugnano | Iterative Solution of Piecewise Linear Systems[END_REF].

Dans cette thèse, nous développons un schéma implicite de type prédiction-correction pour résoudre les équations d'Euler, pour lequel l'étape de prédiction est basée sur les équations d'Euler isentropiques [START_REF] Azé | Analyse Variationnelle et Optimisation[END_REF], où S est l'entropie.

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρS) + ∂ x (ρSu) = 0. ( 7 
)
Cette idée est une adaptation du travail de Chalons, Coquel et Marmignon, voir [START_REF] Chalons | Time-Implicit Approximation of the Multipressure Gas Dynamics Equations in Several Space Dimensions[END_REF]. En effet, il y a une forte non linéarité venant des termes de flux des deuxième et troisième équations de [START_REF] Aw | Derivation of continuum flow traffic models from microscopic follow the leader models[END_REF]. Utiliser les équations isentropiques dans la phase de prédiction permet de supprimer une partie de cette non linéarité.

Au lieu d'utiliser la description Eulérienne, nous avons choisi ici de considérer le formalisme semi-Lagrangien. Ce qui les diffère est la manière de représenter le mouvement de la matière. En formalisme Eulérien, le maillage est fixe. Cela veut dire que les résultats sont tracés sur la même grille durant toute la simulation, les mailles ne se déforment pas. Pendant toute la durée de la simulation, nous avons une estimation des quantités physiques en tout point du domaine d'étude et l'on décrit ce qui en entre et ce qui en sort. En revanche, en formalisme Lagrangien, on considère le volume de matière transporté et le maillage correspond à la configuration initiale de la simulation. L'observation est faite d'un point de vue interne, il n'y a pas de transfert de masse entre les mailles. Ce formalisme permet une capture naturelle des discontinuités de contact même lors de fortes déformations. Par exemple, il est particulièrement adapté aux simulations de fusions par confinement inertiel (ICF), voir [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian hydrodynamics[END_REF] ou [START_REF] Maire | Contribution to the numerical modeling of Inertial Confinement Fusion[END_REF]. La description utilisée dans ce travail est une combinaison des deux précédentes appelée semi-Lagrangienne. Cela veut dire que l'opérateur d'évolution en temps est Lagrangien, et les coordonnées d'espace sont Eulériennes, voir [START_REF] Mazeran | Thèse: Sur la Structure Mathématique et l'Approximation Numérique de l'Hydrodynamique Lagrangienne Bidimensionnelle[END_REF] [ Chapitre 1,p11]. Le maillage se déforme durant toute la simulation pour suivre les déplacements de la matière (c.-à-d. déplacement, expension, compression de mailles).

Pour passer du formalisme Eulérien au semi-Lagrangien, on utilise la dérivée matérielle D t = ∂ t + u∂ x , donnant le système d'Euler semi-Lagrangien suivant Dans ce formalisme, nous avons pu définir un cadre adapté pour prouver l'existence et l'unicité d'une solution à notre schéma implicite (8) - [START_REF] Beam | An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form[END_REF].

Etape de prédiction

               τ j = τ n j + ∆t M j (u j+ 1 2 -u j-1 2
),

u j = u n j - ∆t M j (p j+ 1 2 -p j-1 2 
),

S j = S n j . ( 8 
)
Flux

       p j+ 1 2 = ρ j c j + ρ j+1 c j+1 4 (u j -u j+1 ) + 1 2 (p j + p j+1 ),
u j+ 1 2 = 1 ρ j c j + ρ j+1 c j+1 (p j -p j+1 ) + 1 2 (u j + u j+1 ). (9) 
Etape de correction

                   τ n+1 j = τ n j + ∆t M j (u j+ 1 2 -u j-1 2 
),

u n+1 j = u n j - ∆t M j (p j+ 1 2 -p j-1 2 
),

E n+1 j = E n j + ∆t M j (p j+ 1 2 u j+ 1 2 -p j-1 2 u j-1 2 
).

(

) 10 
Ce schéma est composé de deux étapes et de la Définition des flux [START_REF] Beam | An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form[END_REF], ici les flux du solveur acoustique à deux états. La première phase est l'étape de prédiction [START_REF] Beam | An Implicit Factored Scheme for the Compressible Navier-Stokes Equations[END_REF] qui résout les équations d'Euler isentropiques. Elle est implicite et les termes surlignés symbolisent le fait qu'ils ont été obtenus de manière implicite durant cette étape. La deuxième phase est l'étape de correction [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian hydrodynamics[END_REF], où la conservation de l'énergie totale E est restaurée dans la dernière équation. C'est une étape explicite durant laquelle les flux prédits, évalués lors de la précédente étape, sont injectés dans la version discrète des équations d'Euler. Grâce à [START_REF] Breil | Numerical methods for Lagrangian and Arbitrary-Lagrangian-Eulerian hydrodynamics[END_REF] Plusieurs algorithmes sont étudiés au travers d'exemples numériques, notamment l'algorithme de Newton qui est comparé à une solution obtenue de manière directe.

Le dernier chapitre est le Chapitre 6 intitulé Numerical results. Ce Chapitre contient un rappel détaillé sur l'obtention d'une solution à un problème de Riemann dans le cas des gaz raidis. Nous trouvions cela intéressant puisque la plupart des cas tests classiques 1D en semi-Lagrangien s'insèrent dans ce cadre. De nombreux exemples 1D et 2D illustrent par la suite le comportement de notre schéma implicite. Enfin, la dernière partie de ce Chapitre est constituée d'une étude préliminaire sur l'incidence de plusieurs paramètres tels que le stockage utilisé pour les inconnues, le solveur linéaire, le schéma, ou la précision de résolution du Newton. Nous y prodiguons des conseils ou plutôt des recommandations basés sur notre expérience dans l'utilisation du schéma implicite.

Chapter 1

Generalities

Outline of the current chapter This Chapter is devoted to the presentation of the Euler equations as well as some of its characteristics. Its objective is also to give the basic definitions and concepts that are going to be used in this manuscript. Our main concern in this project is the approximation of the Euler equations also called system of gas dynamics. This system models the movement of a fluid. It is composed of three equations, or conservation laws that reflect physical principles. We aim at solving these equations using a Finite Volume method, with a scheme that satisfies an entropy inequality. Section 1.1 of this Chapter presents the Euler equations in Eulerian formalism and recalls some of their properties such as hyperbolicity but also the definition of conservation laws. Section 1.2 explains our interest in semi-Lagrangian formalism and the differences with the Eulerian framework. Section 1.3 deals with some thermodynamics concepts such as equation of state and entropy. The last sections draw a brief overview of Finite Volume schemes from an historical and mathematical point of view. Namely, Section 1.4 reminds the principles of such schemes and introduces some notations whereas Section 1.5 defines a nodal solver notation and gives some useful properties.

Presentation of the Euler equations

In the Euler system, the viscosity is neglected and the fluid is considered compressible. It means that friction terms are set to 0 and that the space occupied by the fluid can vary in time. Consider an open bounded domain Ω of R d , d ∈ {1, 2, 3}, the Euler equations write

       ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t (ρE) + ∇ • (ρEu) + ∇ • (pu) = 0. (1.1)
The unknowns of this system are ρ, u and E, the time derivative is ∂ t and the space derivative is ∇ = (∂ x , ∂ y , ∂ z ). The variables (x, t) of this system belong to Ω × R + . Bold letters symbolize a vector and simple letters are for scalars. To finish with the presentation, it stays to introduce the tensor product that appears in the second equation.

Definition 1.

Let E and F be two real vector spaces of respective dimensions n and m. Let u ∈ E and v ∈ F . The tensor product of two vectors is defined as

(u ⊗ v) kl := u k v l ∀ k ∈ 1, . . . , n, ∀ l ∈ 1, . . . , m. Property 1. Let u, v, w ∈ R n . One has u, v w = (w ⊗ v)u.
The notation •, • stands for the dot product. In (1.1), the first equation is scalar and shows the principle of mass conservation. The mass density of the fluid is ρ. It is supposed to be positive (ρ > 0) and u is the velocity of the displacement. The equation states that the mass contained in the moving fluid volume is conserved.

The second equation that is a vector equation expresses the conservation of the momentum, where p is the pressure of the fluid. It is a rewriting of the fundamental principle of dynamics: Newton's second law. It states that the rate of increase of momentum is balanced by the momentum applied by forces.

Finally, the last scalar equation formalizes the conservation of ρE where E = e+ u,u 2 is the specific total energy of the fluid. It is sometimes referred to as the fundamental principle of thermodynamics. The variable e is the internal energy of the fluid and u,u 2 is the kinetic energy. The rate of increase of total energy is balanced by the energy supplied by the forces and heat conducted through the boundaries.

System (1.1) is an hyperbolic system of conservation laws. One wishes to approach a solution (ρ, ρu, ρE) of this system. Because of the non linearity of this problem, even if one considers a smooth initial condition, the solution can develop discontinuities and shock waves in finite time. This is why weak solutions, in the sense of distributions, are considered, see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] [Chapter II, Section 2 p 108]. Though, there is no uniqueness of the weak solutions. An equation based on the physical entropy is thus added. It permits to chose an existing weak entropic solution ∂ t (ρS) + ∂ x (ρSu) 0, in the sense of distributions. The physical entropy is a non measurable variable that characterizes the degree of energy dispersion in a system, it can only increase in time. It is the second principle of thermodynamics. In our case S := S(ρ, e).

Conservation laws

A conservation law states that a measurable physical quantity of an isolated system stays constant in time.

Nothing is lost, nothing is created, everything is transformed, Lavoisier.

Mathematically it traduces under equations of the form

∂ t U + ∇ • f (U ) = 0, (1.2)
where ∂ t is the time derivative and ∇ is the space derivative. The variable U is the vector of the conserved quantities and f is called the flux. The time variable is t ∈ R + and the space variable is x ∈ Ω. In other words, over a certain domain of study, the variation in time of the quantity U is equal to the flux f measured through the boundaries of this peculiar domain.

The conservation laws are used to model numerous phenomenon. For example in economics with the Fisher's accounting identity or in chemistry with the principle of conservation of matter, and more generally for physical phenomenon. For instance, conservation laws are used to model the resistance of a bridge against the wind, or the lift of a plane. In medecine, they can represent the blood circulation in arteries, or in physics they can deal with Inertial Confinement Fusion problems. To give a last example, the traffic flow model is also a conservation law, a scalar yet very interesting model that we will use several times as an application. The focus of this thesis deals with hyperbolic conservation laws.

Hyperbolicity

In mathematics, an hyperbolic problem or an hyperbolic partial derivative equation is a set of equations that models propagation phenomenon, arising naturally in mechanics.

Taking (1.2), one supposes that the flux is differentiable.

Definition 2 (see [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] Def 1.4.10 p 30). A non linear system of conservation laws in several space variables

∂ t U + d i=1 ∂ ∂x i f i (U ) = 0, U ∈ R n , f i (U ) ∈ R n , x ∈ R d is said to be hyperbolic at U 0 ∈ R n in the domain of study Ω ⊂ R n if

and only if the matrix

A(α) = d i=1 α i ∇f i (U 0 ) ∈ R n×n is hyperbolic for all α = (α 1 , . . . , α d ) ∈ R d , where ∇f i = d j=1 ∂ ∂x j f ij .
One then needs the definition of hyperbolicity for a matrix.

Definition 3 (see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] Introduction p 2). The matrix A ∈ R n×n is said to be hyperbolic if it has n real eigenvalues λ 1 . . . λ n and n linearly independent corresponding eigenvectors r 1 , . . . , r n such that Ar k = λ k r k , 1 k n. In addition, if the eigenvalues λ k are all distinct, the matrix is said to be strictly hyperbolic.

To give another definition Definition 4. A system of conservation laws is said to be hyperbolic if the Jacobian of the fluxes is diagonalisable and of real eigenvalues. The system is said to be strictly hyperbolic if the eigenvalues are two-by-two distinct.

Hyperbolic equations represent a wide range of physical phenomenon and are still abundantly studied. In the past already, they have raised a big infatuation and have constituted the interest of many, see Toro [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF], Godlewski-Raviart [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF], Roe [START_REF] Roe | Upwind Differencing Schemes for Hyperbolic Conservation Laws with Source Terms[END_REF], or Tadmor [START_REF] Tadmor | A Minimum Entropy Principle in the Gas Dynamics Equations[END_REF] just to name a few.

Let us give a first scalar example.

Example 1. The first example concerns the LWR (Lighthill-Whitham-Richards) approach for the traffic flow. This model represents the behavior of the flux of traffic through an equation of continuity and an equilibrium between speed and density. It reads

∂ t ρ + ∇ x (ρ -ρ 2 ) = 0,
where ρ represents the density of cars. One can write the flux quantity f (U ) = ρ -ρ 2 ∈ R and its Jacobian matrix

A(U 0 ) = 1 -2ρ 0 ∈ R.
Example 2. The second example concerns Euler equations that we remind here in 1D. We also suppose that the pressure term can be written in terms of ρ and S, following a gas law for which ∂p ∂ρ > 0. This is the case for the perfect gas law for instance, see Section 1.3 for more precision.

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρE) + ∂ x (u(ρE + p)) = 0.

Under the vector form, it gives

∂ t U + ∂ x f (U ) = 0, where U =    ρ ρu ρE    and f (U ) =    ρu ρu 2 + p ρEu + pu    .
We make the change of variables V = (ρ, u, S) t to facilitate the calculations, see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] [Chapter 1 Example 2.4 

p 45]. Let us evaluate the Jacobian of the flux

A(V ) =    u ρ 0 1 ρ ∂p ∂ρ u 1 ρ ∂p ∂S 0 0 u    .
Thus, the equation to obtain the eigenvalues denoted by λ is

det(A -λI 3 ) = 0, that is (u -λ) 3 -ρ(u -λ) ∂p ∂ρ = 0.
A trivial eigenvalue is λ = u. So one can factorize to get

(u -λ)((u -λ) 2 - ∂p ∂ρ ) = 0.
As ∂p ∂ρ > 0, there exists two other real roots that are λ = u -∂p ∂ρ and λ = u + ∂p ∂ρ . In this configuration, the eigenvalues are distincts and reals, this system is thus strictly hyperbolic.

Lagrangian and Eulerian formalisms

There exists two main kinematic possible representations to formalize fluid mechanics, or continuous mechanics: the Eulerian description and the Lagrangian description. We go through each of them and explain how to write the Euler system under the semi-Lagrangian formalism that can be seen as a combination of both point of views. Finally, we see how to obtain the integral formulation of the Euler system.

Definition of the frameworks

The Eulerian description consists in observing a fluid from a fixed point that does not change in time. It means that the coordinate system is chosen once and for all independently of the situation modeled. At every time, one measures the values of each physical quantity at fixed determined points. As the domain of study is fixed and the fluid moves through each cell of the mesh, this is a geometrical description. The physical quantities can be seen as fields, and between two measurements, the volume of fluid transported can vary. Indeed given an initial Eulerian volume of fluid, at the interface of each cell there will be exchanges of mass, momentum and energy. The Eulerian description is adapted to transport phenomenon and aerodynamics problems such as turbulent flows.

On the contrary, the Lagrangian description describes the movement of the fluid following its trajectory over time. It means that the coordinate system is attached to the fluid, and the origin is the initial location of the fluid. The conservation laws are written using a reference domain that moves to follow the displacements of the fluid. This is a moving computational grid. As there is no mass flux through the boundaries of the control volume, the Lagrangian description is perfect to describe the fluids that go under strong deformations such as strong compressions or expansions, but also to follow with exactitude the interfaces between different compressible materials. This formalism is particularly suited for compressible problems as Inertial Confinement Fusion or High Energy Density Physics flows, but also to simulate bullet impacts or car crashes. When using a Lagrangian description one needs to give a particular attention to cell tangling that can lead the simulation to stop.

The description we choose in this study is the semi-Lagrangian approach. It can be defined as a Lagrangian description using the Eulerian variables. It comes from an algebraic manipulation of the Eulerian formulation, in the case of sufficiently smooth solutions. Under this peculiar formalism the equations seem to simplify.

To have more details about the similarities and the differences between these frameworks the reader can refer to [START_REF] Maire | Contribution to the numerical modeling of Inertial Confinement Fusion[END_REF] [Chapter 2 p 9] or [START_REF] Mazeran | Thèse: Sur la Structure Mathématique et l'Approximation Numérique de l'Hydrodynamique Lagrangienne Bidimensionnelle[END_REF] [Chapter 1 p 11].

From one formalism to the other

Let us detail how to go from the Eulerian into the semi-Lagrangian description. In Eulerian formalism, studying a physical quantity φ corresponds to measure its value at a fixed time and position denoted (t, x). In Lagrangian formalism, studying this same physical quantity corresponds to describe φ at time T in terms of its position X at the initial time. The semi-Lagrangian coordinates are (T, x). They follow the evolution in time of the physical quantity φ looking at the current position of the fluid. The notion of material derivative also called the Lagrangian derivative comes from the derivation of the physical quantity φ(T, x) with respect to T . One introduces the following definition for the velocity of the fluid u = dx dT . Applying the chain rule one gets

∂ T φ(T, x) = ∂ T φ(T, x) + ∂ T x • ∇ x φ(t, x), = ∂ t T ∂ t φ(t, x) + u • ∇ x φ(t, x), = ∂ t φ(t, x) + u • ∇ x φ(t, x).
In the rest of this manuscript, the material derivative will be denoted

D t = ∂ t + u • ∇ x .
The reader can find more details in [START_REF] Mazeran | Thèse: Sur la Structure Mathématique et l'Approximation Numérique de l'Hydrodynamique Lagrangienne Bidimensionnelle[END_REF] [Chapter 1 p 11] for instance.

Let us detail how to obtain the semi-Lagrangian formulation of the equations of gas dynamics. The Eulerian formulation writes

       ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t (ρE) + ∇ • (ρEu) + ∇ • (pu) = 0. (1.3)
The semi-Lagrangian equivalent non conservative system is

       ρD t τ -∇ • u = 0, ρD t u + ∇p = 0, ρD t E + ∇ • (pu) = 0.
(1.4) Proposition 1. For smooth solutions, (1.3) is equivalent to (1.4).

Proof. For a smooth solution (ρ, ρu, ρE) of (1.3), one can algebraically obtain a solution (τ, u, E) of (1.4), where by definition τ = 1 ρ > 0. One supposes that the flow variables are sufficiently smooth. One can develop the divergences and the time derivatives to get

       ∂ t ρ + u∇ρ + ρ∇ • u = 0, ρ∂ t u + u∂ t ρ + ρu∇ • u + u∇ • (ρu) + ∇p = 0, ρ∂ t E + E∂ t ρ + E∇ • (ρu) + (ρu)∇ • E + ∇ • (pu) = 0.

Rearranging the terms

       (∂ t ρ + u∇ρ) + ρ∇ • u = 0, ρ(∂ t u + u∇ • u) + +∇p + u(∂ t ρ + ∇ • (ρu)) = 0, ρ(∂ t E + u∇ • E) + ∇ • (pu) + E(∂ t ρ + ∇ • (ρu)) = 0.
Using the continuity equation and the definition of the material derivative, one concludes

       D t ρ + ρ∇ • u = 0, ρD t u + ∇p = 0, ρD t E + ∇ • (pu) = 0.
Usually, the first equation is expressed in terms of the specific volume τ = 1 ρ . Let us rewrite the previous system with this change of variable.

As ρτ = 1, it implies ρ∂ t τ = -τ ∂ t ρ. One can rewrite the mass conservation as

ρ∂ t τ -τ ∇ • (ρu) = 0.
Similarly, for the divergence, one finds ρ∇τ = -τ ∇ρ, hence

ρ∂ t τ -τ ρ∇ • u -τ u∇ρ = 0.
Simplifying, one concludes with the non conservative semi-Lagrangian system

       ρD t τ -∇ • u = 0, ρD t u + ∇p = 0, ρD t E + ∇ • (pu) = 0.

Integral formulation

The integral form of conservation laws is the predestined form to study mean evolution of the conserved quantities within the framework of Finite Volume methods. As the quantities evolve through fluxes, it is thus obvious how to obtain a flux formulation thanks to the integral formulation using the divergence Theorem.

Let us describe the Lagrangian integral form and its construction from the Eulerian formalism in order to facilitate the introduction of Finite Volume discretization. The Lagrangian integral form is suitable to describe fluid flows undergoing large shape deformations such as strong compression or sudden expansion.

Consider an open bounded domain Ω(t) ⊂ R d . For all t > 0, for all open smooth Lagrangian subdomain ω(t) ⊂ Ω(t), for any point x ∈ R d into ω(t), the Euler equations can be integrated over this domain. The integral formulation of the Euler system is

∀ t > 0, ∀ ω(t) ⊂ Ω(t),                    ˆω(t) [∂ t ρ + ∇ • (ρu)]dx = 0, ˆω(t) [∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p]dx = 0, ˆω(t) [∂ t (ρE) + ∇ • (ρEu) + ∇ • (pu)]dx = 0.
However, as the domain moves with respect to the fluid motion, the integration of the time derivatives is not immediate. Using Leibniz for integrals also called Reynolds transport formula, the Lagrangian integral version is obtained.

Theorem 1 (Reynolds transport Theorem, see [START_REF] Reynolds | [END_REF] p12, or [START_REF] Leal | Advanced Transport Phenomena: FLuid Mechanics and Convective Transport Processes[END_REF] p23). Let ω ⊂ Ω be a control volume. Suppose that the border ∂ω moves at velocity v ∂ω . Let f (x, t) be a real function defined almost everywhere for x ∈ ω(t), then

d dt ˆω(t) f = ˆω(t) ∂ t f + ˆ∂ω(t) f v ∂ω • n,
n being the outward normal pointing vector on the control surface ∂ω. To give a precise mathematical sense to this formula, v is supposed to be continuous and For the third equation on the conservation of the total energy, one has ˆω(t)

f differentiable. Moreover, if v is a regular extension of v ∂Ω into ω, meaning v : ω(t) → R d , regular, v| ∂ω(t) = v ∂ω , then d dt ˆω(t) f = ˆω(t) ∂ t f + ˆω(t) ∇ • f v.
[∂ t (ρE) + ∇ • (ρEu) + ∇(pu)] dx = ˆω(t) ∂ t (ρE)dx + ˆω(t) ∇ • (ρEu)dx + ˆω(t) ∇ • (pu)dx = 0.
Using Reynolds Theorem one finds

d dt ˆω(t) ρE + ˆ∂ω(t) pu • n = 0.
To these three equations, one adds the GCL. Let us introduce the concept of GCL: Geometric Conservation Law. It is a key point for Lagrangian schemes.

As the mesh follows the fluid motion, it thus gives two ways of computing the volume variation: by the use of the coordinates of the cell nodes with direct computation or by the discretization of the GCL formula.

This formula comes from the fact that each internal displacement of the fluid into the domain of study does not produce any change in the volume. In other words, it means that Ω which represents the total volume does not have any change in volume. Mathematically, it traduces for all t > 0 by

d dt ˆω(t) 1 = ˆω(t) ∇ • u.
As we consider a smooth solution, using the divergence formula one deduces

d dt ˆω(t) 1 - ˆ∂ω(t) u • n = 0.
The GCL compatibility criterion then states that both computations give the same result. We develop GCL compatibility in Section 4.2.

The compressible Euler equations under Lagrangian integral form are

∀ t > 0, ∀ ω(t) Lagrangian,                                d dt ˆω(t) 1 - ˆ∂ω(t) u • n = 0, d dt ˆω(t) ρ = 0, d dt ˆω(t) ρu + ˆ∂ω(t) p • n = 0, d dt ˆω(t) ρE + ˆ∂ω(t) pu • n = 0.

Thermodynamics

To close the Euler system, one needs to relate the pressure p with the other variables. This additional hypothesis is a thermodynamical assumption: the pressure of a gas can be written as a function of two other independent variables. We thus introduce three complete descriptions of gas laws. In a second time, we introduce more precisely the notion of entropy and its importance in a mathematical and numerical point of view.

Equation of state

The equation of state is a relation that links the pressure of a gas with the other thermodynamical quantities. For example one can define p = p(τ, S) or p = p(ρ, e). In the latter, we recall that the internal energy e can actually be expressed as the difference between the total energy E per unit mass and the kinetic energy

e = E - 1 2 u, u .
Thermodynamics links the internal energy of a fluid with its specific entropy S and specitfic volume τ : e := e(τ, S). The pressure and the temperature of the fluid are obtained as the following derivatives

p = - ∂e ∂τ S , T = ∂e ∂S τ .
It thus implies a very useful relation between the entropy S, that is a non measurable quantity describing the disorder of a system, and the other variables. This relation is called Gibbs relation and writes T dS = de + pdτ.

It is sometimes referred to as the second law of thermodynamics. Let us introduce the examples of three laws that we will use later on in applications.

Perfect gas law

A perfect gas is a gas where the particles do not interact with each other and where their size is negligible with respect to intermolecular distances. To model it, one uses the perfect polytropic gas law

       p = (γ -1)ρe, e = C v T, S = C v log(eτ γ-1 ), (1.5) 
where C v = ∂e ∂T > 0 is the thermal capacity at constant volume and γ > 1 is the adiabatic index.

Stiffened gas law

However, to describe a less compressible gas, one needs to use an enriched and more general law named the stiffened gas law

       p = (γ -1)ρe -γπ, e = C v T + πτ, S = C v log((e -πτ )τ γ-1 ), (1.6) 
where π > 0 is the reference pressure. It describes the attractive effects that lead to a cohesion in the matter. One remarks that when π is set to 0 the perfect gas law is recovered. This law, describing rarefied gases, is also able to model liquids and solids that are weakly compressible with reasonable accuracy such as water. See [START_REF] Godunov | Résolution numérique des problèmes multidimensionnels de la dynamique des gaz[END_REF] for a complete description. In Table 1.1 are some useful reference values taken from [START_REF] Saurel | A Simple Metohd For Compressible Multifluid Flows[END_REF] that will be used in the numerical examples of this manuscript. 

Complete convex law

In order to have a more general point of view it could be interesting to have the definition of a more abstract law. Consider a complete law, it means that the thermodynamical terms all possess their analytical expression. Suppose the three following inequalities ∂p ∂τ (τ, S) < 0, (1.7) ∂p ∂S (τ, S) > 0, and ∂ 2 p ∂τ 2 (τ, S) > 0. We will call a convex law a law that satisfies these three inequalities.

Remark 1. The first inequality (1.7) comes from the strict convexity of the internal energy e(τ, S), since Gibbs relation gives ∂p ∂τ (τ, S) = -∂ 2 e ∂τ 2 (τ, S) < 0. These inequalities are satisfied by polytropic perfect gases among others.

Notion of entropy

Some non linear systems of equations develop shock waves in finite times in their solutions even if the initial conditions were chosen smooth. This is for example the case with the Euler system. A weak solution, in the sense of distributions will then be considered.

Definition 5 (see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] 

Introduction Definition 2.1 p 15). Suppose O is an open subset of R p . As- sume that the initial solution u 0 is in L ∞ loc (R d ) p . A function u : R d × [0, +∞[→ O such that u ∈ L ∞ loc (R d × [0, +∞[) p is called a weak solution of the Cauchy problem            ∂u ∂t + d j=1 ∂ ∂x j f j (u) = 0, x j ∈ R, t > 0, u =    u 1 . . . u p    , u(x, 0) = u 0 (x), x ∈ R d , if u(x, t) ∈ O almost everywhere and satisfies ˆ+∞ 0 ˆRd    u • ∂φ ∂t + d j=1 f j (u) • ∂φ ∂x j    + ˆRd u 0 (x) • φ(x, 0)dx = 0. for any function φ ∈ C 1 0 (R d × [0, +∞[) p .
A classical solution is also a weak solution as it satisfies this definition. The reciprocal occurs when

∀ φ ∈ C ∞ 0 (R d ×]0, +∞[) p , the weak solution u ∈ C 1 (R d × [0, +∞[) and satisfies ∂u ∂t + d j=1 ∂ ∂x j f j (u) = 0.
Nonetheless, the weak solution is not unique. As previously mentionned, the notion of entropy takes part in the choice of the weak solution. Indeed, the entropy permits to consider only physically admissible solutions.

The physical entropy, denoted S measures the degree of dispersion of energy in a system. It can only grow in time: either it is conserved, or it increases. It is another way of explaining the second principle of thermodynamics.

The entropy also appears when the question of stability arises, as it is the case in numeric. To talk about it, one also needs to define the entropy flux. Definition 6 (see [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] Chapter 2 Def 2.3.2 p 52). A function η : Ω ⊂ R d → R which is twice differentiable and convex is called an entropy. The coresponding entropy flux function ξ :

Ω → R is defined up to a constant by η (u)f j (u) = ξ j (u), 1 j d, ξ(u) = ˆη (v)f j (v)dv,
where η = ( ∂η ∂u 1 , . . . , ∂η ∂up ), ξ j = ( ∂ξ j ∂u 1 , . . . , ∂ξ j ∂up ), and f j = (

∂f ij ∂u k ) 1 i,k p .
When such an entropy-entropy flux pair has been found, the weak solution of the system also satisfies the following entropy inequality

∂ ∂t η(u) + d j=1 ∂ ∂x j ξ j (u) 0,
in the sense of distributions on R d ×]0, +∞[. 

Entropy of the isentropic Euler equations

To give another example of entropy, consider the isentropic Euler system that we recall hereafter in Eulerian formalism in one dimension.

       ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t (ρS) + ∇ • (ρSu) = 0, (1.9) 
in Ω in the sense of distributions. Take a smooth solution (ρ, ρu, ρS) of (1.9). The following entropy inequality is associated to this system.

∂ t (ρE) + ∇ • (ρEu + pu) 0, (1.10)
in Ω, in the sense of distributions. Let us prove that is is indeed an entropy inequality on the total energy.

Proposition 2. The inequality (1.10) is an entropy inequality for (1.9).

Let us recall the following result

Theorem 2 (see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] Chapter 2 Th 1.1 p 100). The following two assertions are equivalent: Evaluate the gradient and the hessian matrix of E in terms of the variables (τ, u, S). One finds

∇E =    ∂E ∂τ ∂E ∂u ∂E ∂S    =    -p u T    .
The hessian matrix of E is

∇ 2 E = H E =    -∂p ∂τ 0 -∂p ∂S 0 1 0 ∂T ∂τ 0 ∂T ∂S    .
Look at the symmetry and the positivity of H E to conclude. This notion of entropy inequality will be developed further for numerical stability concerns, in a discrete and semi-discrete sense. The links between physical entropy, specific total energy and their roles as entropies of systems will play a major role in the definition and the properties of our implicit scheme.

Cell centered Finite Volume schemes

As previously mentioned, for Lagrangian framework, the physical conservation laws have to be discretized on a moving grid. In contrast to Eulerian methods, the vertex velocity that defines the mesh motion also has to be taken into account. The complexity lies in a compatible discretization both for the fluxes and the vertex velocity. In other words, it means the GCL compatibility criterion must be satisfied. In this Section we give a brief overview of Finite Volume schemes, detail some notations and how to effectively write such a scheme. In the end, we give the definition of a nodal solver and recall some of its properties.

Brief history of Finite Volume schemes in semi-Lagrangian

To give a brief overview of Finite Volume schemes for hydrodynamics, there exists several types of schemes and among them the staggered schemes and the non-staggered ones for which we give a short definition. For the former, the variable quantities are evaluated at different locations, namely the cell centers usually for the density and the pressure and the cell nodes for the velocity. The staggered schemes have the particularity to satisfy naturally the GCL, but the discretized conservation laws do not conserve the quantities over the same space which can be disturbing. However, for the nonstaggered schemes, all the variables belong to the same space but the GCL requires to be treated.

The first Lagrangian method to appear was due to Godunov. In the 1950's, Godunov proposed a method of resolution based on the solution of the Riemann problem. The flux at each interface between cells is the exact solution of a Riemann problem associated to the left and right mean values. This method has been written in Lagrangian [START_REF] Godunov | A Finite Difference Method for the Numerical Computation of Discontinuous Solutions of the Equations of Gas Dynamics[END_REF] but popularized in Eulerian [START_REF] Richtmyer | Difference Methods for Initial Value Problems[END_REF] because Eulerian methods were easier to traduce in multi-dimensions. Indeed, Godunov solver also named acoustic Riemann solver has been developed in 1D so the GCL was trivially satisfied.

In the 1980's, an American team of researchers proposed a computer code named CAVEAT [4] that computes the normal velocity at faces and the velocity at the vertices using weighted least squares algorithm. This method however does not satisfy the GCL property [START_REF] Maire | Contribution to the numerical modeling of Inertial Confinement Fusion[END_REF]. It is a Lagrangian computer code.

A possibility to guarantee the GCL is to derive a cell-centered scheme based on total Lagrangian formulation. The problem is that this system is only weakly hyperbolic and requires a lot of computational efforts due to the Jacobian matrix of the Euler-Lagrange mapping. In 2003, Després and Mazeran, see [START_REF] Després | Symmetrisation of Lagrangian Gas Dynamics and Lagrangian Solvers[END_REF], [START_REF] Després | Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems[END_REF] and [START_REF] Mazeran | Thèse: Sur la Structure Mathématique et l'Approximation Numérique de l'Hydrodynamique Lagrangienne Bidimensionnelle[END_REF], defined a first order scheme that satisfies exactly the GCL. It is named GLACE for Godunov type LAGrangian scheme Conservative for total Energy. It is based on a reformulation of the numerical fluxes at the nodes of the mesh. One considers only one pressure and one velocity per cell surrounding a node. The computation follows a node centered approximate Riemann solver, see for example [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF].

In 2007, a variation of this scheme has been proposed by Maire, Abgrall, Breil and Ovadia [START_REF] Maire | A cell-centered Lagrangian scheme for two dimensional compressible flow problems[END_REF]. Indeed, GLACE scheme is sensitive to the cell ratio. The modification proposed consists in taking two pressures at each node, one for each outward normal direction. It is called EUCCLHYD and stands for Explicit Unstructured Cell Centered Lagrangian HYDrodynamics. This alteration permits to have a more stable scheme, yet more dissipative.

Finite Volume methods are used to solve partial differential equations. They are suited for arbitrary geometry. A Finite Volume scheme is an approximation of integrals over a control volume. The domain of study is approached by a mesh composed of a finite number of volumes of which the union is exactly the domain. Those volumes are segments in 1D, areas in 2D and volumes in 3D. It is the reference method for hyperbolic conservation laws as the conservation property is guaranteed. Indeed, the flux terms are evaluated at the interfaces between two volumes and as the outgoing flux of one volume is equal to the in going flux of the adjacent volume, they are naturally conservative. This is an important property since consistent and conservative schemes that converge, converge to weak solutions in the presence of shocks thanks to the Lax Wendroff Theorem, see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] [Prop 4.1 p 378] or [START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF] [Theorem 12.1 p 130].

Notations

Let us consider, for each time t > 0, a regular domain of study Ω(t) ⊂ R d , where d = {1, 2, 3}, filled with a homogeneous fluid. A mesh is defined as a set of points denoted as x r (t) ∈ Ω(t), with r ∈ R the index of the node or vertex. We consider that these points are differentiable functions whose derivative are u r (t) = x r (t) ∈ C 0 (R d ). The volume of the domain is covered by a collection of volumes Ω j (t) ⊂ Ω(t) for {1, . . . , j, . . . , N }, with N the number of cells. The set of volumes realizes a partition of Ω(t). We denote V j (t) = |Ω j (t)| 0 the measure of a volume so that

|Ω(t)| = N j=1 V j (t).
With this notation, it is implicitly assumed that Ω(t) is bounded which is the case in all practical computations. The connection between points and volumes is made via a finite number of continuously differentiable functions. In the rest of this manuscript, we identify the volumes V j and the function so that V j = V j ({x r } r∈R j ). We also identify the volumes Ω j by their cell index j. The collection of cells j is J . Then for all j ∈ J , j is an open volume, its boundary is denoted ∂j and its closure j.

To be valid, a mesh satisfies a few hypotheses: (H1) For all cell j ∈ J , j ⊂ Ω, (H2) For all point x ∈ Ω, it exists a cell j ∈ J such that x ∈ j, (H3) For all pair of cells j, k ∈ J , j ∩ k = ∅ ⇐⇒ j = k or ∂j ∩ ∂k = ∅ and j ∩ k = ∅. Hypothesis (H3) says that if the closure of two cells is non empty, they are linked via their boundary. It can be via a face (3D), an edge (2D, 3D) or a vertex (1D, 2D, 3D). We introduce two other sets for convenience. The set of vertices of a cell j is denoted R j . Similarly, one introduces the set of cells linked to the vertex r by J r . In one dimension, #R j = 2 and #J r = 2, except for boundary nodes. 2 -Example of a 2D mesh, for instance R j 1 = {r 1 , r 2 , r 3 }, and J r 3 = {j 1 , j 5 , j 6 , j 7 , j 8 , j 9 }.

r j-3 2 r j-1 2 r j+ 1 2 r j+ 3 2 r j+ 5 2 j -1 j j + 1 j + 2
The time step writes ∆t > 0 with t n = n∆t, n ∈ N. The space discretization is denoted ∆x.

Discretization in 1D

The numerical discretization of Finite Volume methods is based on 3 factors. The first one is a rewriting of the equations under divergent form. It means that all the terms are put inside of a differential operator. This is the case for the expression of general conservation laws (1.2). The second is an integration of the equations on a control volume using a mesh defined as previously mentionned in Section 1.4.2. The semi-Lagrangian formalism is used here. The third factor is the definition of the numerical fluxes to close the construction.

In the general 1D form, the Finite Volume scheme is

U n+1 j -U n j ∆t + f n j+ 1 2 -f n j-1 2 ∆x j = 0, ∀ j ∈ Z, ∀ n ∈ N.
The initial value is approximated by

U 0 j = 1 ∆x j ˆxj+ 1 2 x j-1 2 U j (x)dx, ∀ j ∈ Z.
This scheme is explicit because the fluxes are evaluated at time t n and the numerical solution at the next time is obtained using

U n+1 j = U n j + ∆t ∆x j (f n j+ 1 2 -f n j-1 2 ), ∀ j ∈ Z.
Whatever the fluxes are, the scheme is conservative. We thus could have taken implicit fluxes namely Proof.

U n+1 j -U n j ∆t + f n+1 j+ 1 2 -f n+1 j-1 2 ∆x j = 0, ∀ j ∈ Z, ∀ n ∈ N.
j∈J U n+1 j - j∈J U n j = j∈J (U n+1 j -U n j ), = j∈J ∆t ∆x j (f n j+ 1 2 -f n j-1 2 ), = 0,
since it is a telescopic sum, up to boundary terms if there are some. The sum is finite because the mesh contains a finite number of cells.

One can remark that implicit fluxes could have been used instead of explicit ones without changing the result.

One can use a Finite Difference approximation for the temporal derivative. An approximation of d dt using Finite Difference method gives

d dt ˆU (t, x)dx = ∆x j ∆t (V n+1 j -V n j ) + O(∆t),
where V n j is the mean value over cell j at time t n

V n j = 1 ∆x j ˆxj+ 1 2 x j-1 2 U (x, t n )dx.
It stays to define the fluxes with their quantities per cell to finish the construction of the scheme for the Euler equations. A key in the process is to impose (pu) r = p r u r . The fluxes can be approximated implicitly or explicitly.

ˆxj+ 1 2 x j-1 2 ∂ x U (n∆t, x)dx = U (n∆t, x j+ 1 2 ) -U (n∆t, x j-1 2
).

Acoustic Godunov solver in 1D

The Riemann acoustic solver used here in 1D is based on the following Riemann invariants dp + (ρc)du = 0, and dp -(ρc)du = 0.

It leads to the Godunov acoustic solver.

∀t > 0, ∀j ∈ J ,                V j (t) = u j+ 1 2 -u j-1 2 , M j (t) = 0, M j u j (t) = p j-1 2 -p j+ 1 2 , M j E j (t) = p j-1 2 u j-1 2 -p j+ 1 2 u j+ 1 2 .
The values per vertex depend on the expression of the fluxes. We detail two of them in the 1D case.

For the two states solver, one has

p j+ 1 2 = α j α j+1 α j + α j+1 u j - α j α j+1 α j + α j+1 u j+1 + α j+1 α j + α j+1 p j + α j α j + α j+1 p j+1 ,
and

u j+ 1 2 = α j α j + α j+1 u j + α j+1 α j + α j+1 u j+1 + 1 α j + α j+1 p j - 1 α j + α j+1 p j+1 .
where α j is the acoustic impedance α j = ρ j c j > 0.

For the one state solver it simplifies into

p j+ 1 2 = α j + α j+1 4 u j - α j + α j+1 4 u j+1 + 1 2 p j + 1 2 p j+1 ,
and

u j+ 1 2 = 1 2 u j + 1 2 u j+1 + 1 α j + α j+1 p j - 1 α j + α j+1 p j+1 .
So the one dimensional discretized scheme is

∀t n > 0, ∀j ∈ J ,                    τ n+1 j = τ n j + ∆t M j (u j+ 1 2 -u j-1 2
),

u n+1 j = u n j - ∆t M j (p j+ 1 2 -p j-1 2 
),

E n+1 j = E n j - ∆t M j (p j+ 1 2 u j+ 1 2 -p j-1 2 u j-1 2 
).

One can remark that the fluxes do not have any trait of time. It is because it depends on the choice of discretization.

Discretization in multi-D

Let us introduce a discretization of the divergence operator that permits to have a compatible discretization of the gradient operator. It could have been justified as well by the fact that these operators are adjoints, see for example [START_REF] Caramana | The Construction of Compatible Hyodrodynamics Algorithms Utilizing Conservation of Total Energy[END_REF] or [START_REF] Scheurer | Quelques Schémas Numériques pour l'Hydrodynamique Lagrangienne[END_REF].

The GCL imposes that the vertices of a cell j move at the vertex velocity u r

u r = d dt x r , x r (0) = X r .
where x are the Eulerian coordinates. By giving this relation, one supposes implicitly that a polygonal cell stays polygonal after any displacement.

The volume of a cell j ∈ J is denoted V j and can be defined in function of its vertices V j = V j (x 1 , . . . , x N ) where for all r ∈ R j , x r ∈ R d are the coordinates of the vertex r. Using the chain rule, the variation of the volume is thus

V j (t) = N r=1 ∇ xr V j , d dt x r = r∈R j ∇ xr V j , u r .
(1.11)

The geometrical corner vector C jr is defined by Definition 7. The corner vectors are defined for all j ∈ J and for all r ∈ R by

C jr := ∇ xr V j . Hence V j (t) = r∈R j C jr , u r .
This geometrical vector is the key to approximate the fluxes. In semi-Lagrangian formalism, as the cells move at each time step, there are a lot of variations of volume to evaluate and this formulation turns very useful, see [START_REF] Caramana | The Construction of Compatible Hyodrodynamics Algorithms Utilizing Conservation of Total Energy[END_REF].

Example 3. In one dimension this vector is equal to ±1. Indeed, in 1D, the so-called volume of the Finite Volume scheme is the interval

(x j-1 2 , x j+ 1 2 ), so C jj+ 1 2 = 1 and C jj-1 2 = -1. j -1 2 j + 1 2 j + 3 2 j j + 1 C jj-1 2 C jj+ 1 2 Figure 1.3 -Example of 1D geometrical vectors.
Example 4. In two dimensions, this corner vector is equal to

C jr = 1 2 y r+1 -y r-1 x r-1 -x r+1 = - 1 2 (x r+1 -x r-1 ) ⊥ .
It can be developed to

C jr = 1 2 y r+1 -y r x r -x r+1 + 1 2 y r -y r-1 x r-1 -x r .
For the EUCCLHYD scheme for example that requires to separate the components of each edge C jr = N + jr + N - jr where N + jr and N - jr are defined by

N + jr = - 1 2 (x r+1 -x r ) ⊥ , N - jr = - 1 2 (x r -x r-1 ) ⊥ ,
and as depicted in Figure 1.4. Property 2. For all cell j ∈ J , one has

r∈R j C jr = 0. (1.12)
And for all node r ∈ R that are not on the boundary of the mesh, one has j∈Jr C jr = 0.

Proof. For the first equality, consider a fluid going at an arbitrary constant velocity u cst ∈ R d . For all vertex r ∈ R, u r = u cst . As the speed is constant, the cells are just transported and their volume is constant. Hence, d dt V j = 0 for all j ∈ J . Using the definition of the geometrical vectors, one has

r∈R j C jr , u r = 0, r∈R j C jr , u cst = 0.
It implies that r∈R j C jr = 0, which is exactly (1.12).

For the second equality, assume that the volume of the domain is constant, it means that d dt V total = 0 or in terms of the geometrical vectors that j∈J r∈R j C jr , u r = 0. Take an arbitrary interior vertex r of the mesh, the sum can then be separated into

r =r∈R j∈J r C jr , u r + j∈Jr C jr , u r = 0.
The volume is constant, the velocity can be set to u r = 0, and to u r = u cst for the arbitrary chosen interior node. It implies that j∈Jr C jr = 0, which proves the second equality.

After these specifications, let us precise an interest of these vectors. Let f be a smooth function, one then has the following approximation

r∈R j C jr , f (x r ) ≈ ˆ∂j f, n ,
where n is the outward normal. It is an approximation with the trapezium method of order 2. It means that the formula is exact for continuous affine smooth functions on ∂j.

Applying this approximation for the fluxes of the Euler equations, one finds

r∈R j C jr , u r ≈ ˆ∂j u, n
and -

r∈R j C jr , (pu) r ≈ - ˆ∂j (pu), n .
For the gradient of the pressure, using the same approximation one gets

r∈R j C jr p r ≈ ˆ∂j ∇p.
An explanation comes from duality arguments as previously mentionned. The spatially discretized scheme is

∀ t > 0, ∀ j ∈ J ,                          V j (t) = r∈R j C jr , u r , M j (t) = 0, M j u j (t) = - r∈R j C jr p r , M j E j (t) = - r∈R j C jr , (pu) r .
The totally discrete scheme will be presented later.

Fluxes in multi-D

For the two dimensional case, one wants to mimic the 1D acoustic Godunov solver in the direction n

dp + (ρc)du • n = 0.
The following relations arise

∀ r ∈ R,     
∀ j ∈ J r p jr -p j + (ρc) j u r -u j , n jr = 0, j∈Jr C jr p jr = 0.

The quantity p jr is the pressure in the cell j at vertex r. It appears for the same reason than the constraint on the sum. This is to have the same number of unknowns than equations to guarantee the uniqueness of the quantities (u r , p jr ).

Let us give two examples on quadrangular and triangular 2D meshes.

In the case of a 2D quadrangular mesh, each interior node has 4 neighbour cells, and each vertex is linked to 4 edges. For each vertex, one needs to determine (u r , (p jr )), where u r = (u x , u y ) is the nodal velocity and the four p jr values that correspond to the pressure at the node r in each neighbour cell. One then has 6 unknowns per node. For all vertex r ∈ R of the interior mesh one has

                       p 1r -p 1 + α j u r -u 1 , n 1r = 0, p 2r -p 2 + α j u r -u 2 , n 2r = 0, p 3r -p 3 + α j u r -u 3 , n 3r = 0, p 4r -p 4 + α j u r -u 4 , n 4r = 0, C x 1r p 1r + C x 2r p 2r + C x 3r p 3r + C x 4r p 4r = 0, C y 1r p 1r + C y 2r p 2r + C y 3r p 3r + C y 4r p 4r = 0.
where

C jr = (C x jr , C y jr ) ∈ R 2 .
• r A second example is the case of a 2D triangular mesh. One can suppose each interior vertex is linked to 6 cells, and 6 edges. For each node, one needs to determine (u r , (p jr )), where u r is the nodal velocity and the six p jr values. For all vertex r ∈ R in the interior mesh, one has 

                                 p 1r -p 1 + α j u r -u 1 , n 1r = 0, p 2r -p 2 + α j u r -u 2 , n 2r = 0, p 3r -p 3 + α j u r -u 3 , n 3r = 0, p 4r -p 4 + α j u r -u 4 , n 4r = 0, p 5r -p 5 + α j u r -u 5 , n 5r = 0, p 6r -p 6 + α j u r -u 6 , n 6r = 0,

Nodal schemes

To cover a larger range of schemes, one can use the notation of the nodal solvers to write the scheme.

Definition of a nodal solver

What will change between the GLACE scheme or another nodal solver will be the definitions of the F jr and A jr terms.

∀j ∈ J ,                    τ j = τ n j + ∆t M j r∈R j C jr , u r , u j = u n j - ∆t M j r∈R j F jr , S j = S n j . with ∀r ∈ R,      ∀j ∈ J r , F jr = A jr (u j -u r ) + C jr p j , j∈Jr F jr = 0, (1.13)
The system is well posed as long as ∀ j ∈ J , ∀ r ∈ R j the matrices A jr are symmetric positive and ∀ r ∈ R j∈Jr A jr is symmetric positive definite. For instance, in the case of the GLACE scheme, one has for all j ∈ J , for all r ∈ R j

n jr := C jr ||C jr || , A jr := (ρc) j C jr ⊗ C jr ||C jr || , F jr := C jr p jr .
(

The matrices A jr are symmetric positive or rank 1 and their sum over j ∈ J is symmetric positive definite for an admissible mesh. For the EUCCLHYD scheme, one defines for all j ∈ J , for all r ∈ R j n ± jr :=

N ± jr ||N ± jr || , A jr := (ρc) j N + jr ⊗ N + jr ||N + jr || + N - jr ⊗ N - jr ||N - jr || , F jr := N + jr p + jr + N - jr p - jr .
(1.15)

As soon as there are at least two non aligned edges per node r ( n + jr , n - jr = 0), the matrix A jr is definite positive.

Once the nodal quantities are evaluated, the mesh moves:

x n+1 r = x n r + ∆tu r . Then, the density is updated ρ n+1 j = M j V n+1 j
thanks to the new mesh. Finally, one updates the following quantities

u n+1 j = u n j -∆t M j r∈R C n jr p jr and E n+1 j = E n j -∆t M j r∈R
C n jr , u r p jr .

Some properties of nodal solvers

To prove the following properties of nodal solvers, we remind that ∀ j ∈ J , α j = (ρc) j > 0. For all j ∈ J and for all r ∈ R j , one denotes

A G jr = α j C jr ⊗ C jr ||C jr || , and A E jr = α j N + jr ⊗ N + jr ||N + jr || + N - jr ⊗ N - jr ||N - jr || . (1.16)
Property 3. The matrices A jr defined for all j ∈ J and for all r ∈ R by (1.16) are symmetric and non-negative.

Proof. It is clear that the matrix is symmetric by definition. Verify that the matrix is non-negative for the GLACE scheme. Let x ∈ R d with d = {1, 2, 3} the dimension of the space.

x,

A G jr x = x, α j C jr ⊗ C jr ||C jr || x , = α j ||C jr || x, C jr ⊗ C jr x , = α j ||C jr || x, x, C jr C jr , = α j ||C jr || x, C jr 2 .
As α j is positive, one concludes x, A G jr x 0. For the EUCCLHYD scheme, one has

x, A E jr x = α j ||N + jr || x, N + jr ⊗ N + jr x 2 + α j ||N - jr || x, N - jr ⊗ N - jr x 2 , = α j ||N + jr || x, N + jr 2 + α j ||N - jr || x, N - jr 2 .

Remark 2. The matrix

A G jr is not positive definite because for x = C ⊥ jr one has x, A G jr x = 0.
Denote for all r ∈ R A r = j∈Jr A jr .

(1.17)

Property 4. The matrices A r defined for all r ∈ R by (1.17) are symmetric and positive definite provided the mesh is admissible.

Proof. Given the matrix A r is a sum of symmetric matrices, it is therefore symmetric.

Let x ∈ R d , verify that A r is non-negative. x, A r x = x, j∈Jr A jr x , = j∈Jr x, A jr x , 0
for both GLACE and EUCCLHYD schemes. Hence, A r is non-negative.

To show that A r is a positive definite matrix, let us study separately GLACE and EUCCLHYD schemes. The case of the EUCCLHYD scheme is the simplest. Thanks to the Definition in 2D (1.15), as the mesh is supposed to be admissible by hypothesis, the matrices A jr are positive definite. Thus A r is definite positive in the EUCCLHYD case. In the case of the GLACE scheme, one needs a bit more details. To be positive definite, A r must satisfy for all r ∈ R, that if there exists x ∈ R d such that A r x = 0 then x must be the null-vector.

Let x ∈ R d such that A r x = 0. Then x, A r x = 0. Thanks to the previous calculations, one has for all j ∈ J r that αr ||C jr || x, C jr 2 = 0. As αr ||C jr || > 0, then x must satisfy for all j ∈ J r that

x, C jr = 0. To satisfy this equation, x must be orthogonal to all (C jr ) j∈J . As (C jr ) j∈J is a linearly dependent family that spans R d (if #j > d + 1), one can extract a basis of R d . So the only possibility for x to satisfy this equation is to be the null-vector. Therefore, the matrix A r is positive definite.

Remark 3. When r is a corner node, the same result holds for the EUCCLHYD scheme if there exists two directions. In other words, if the relation n + jr , n - jr = 0 is valid provided j is the corner cell and r the corner node.

For the GLACE scheme, the inversion of the matrices A r can be proven for every boundary condition.

Remark 4. For example, for GLACE in 2D, the matrix

A r is A r = α r    j∈Jr (C x jr ) 2 j∈Jr C x jr C y jr j∈Jr C x jr C y jr j∈Jr (C y jr ) 2    .
The non-negativity is easily proved.

Let x = (x x , x y ) ∈ R 2 , x, A r x = α r j∈Jr (C x jr x x + C y jr x y ) 2 .

Proposition 4. [see [74]] Some results on matrices (P1) Every symmetric and positive definite matrix is non degenerate. (P2) If a matrix A is symmetric and non degenerate, then the matrix

A -1 is symmetric. (P3)
The inverse matrix of a positive definite matrix is also positive definite.

Property 5. The matrix A -1 r is symmetric and positive definite.

Proof. The matrix A r is symmetric and positive definite. Thanks to Proposition 4 (P2), the matrix A -1 r is symmetric. Moreover, A -1 r is the inverse of a positive definite matrix, therefore it is positive definite thanks to Proposition 4 (P3). Property 6. Given ∀j ∈ J , r ∈ R, A jr is symmetric, and A r is positive definite, then the system (1.13) admits a unique solution for each node r ∈ R. The matrices A jr are symmetric, so is A r . Moreover, A r is positive definite and hence invertible. Therefore u r = A -1 r j∈Jr

A jr u j + A -1 r j∈Jr C jr p j . (1.18)
The vectors u r are uniquely determined. One can then inject this quantity into the first equation to deduce the values of p jr .

Chapter 2

Implicit scheme

Outline of the current chapter Our strategy to solve the Euler equations is to use an implicit in time scheme. This permits theoretically to get rid of any CFL condition, but adds an extra computational cost compared to an explicit solver. In this Chapter we aim at constructing our implicit scheme and study some of its properties as well as the treatment of boundary conditions. Thus, in a first Section we talk about existing strategies in implicit. In a second Section we recall the method of prediction correction schemes. Section 2.3 explains the relations between the Euler equations and their isentropic version. In Section 2.4, we define our implicit scheme and study its conservation and stability properties in Section 2.5. The last Section deals with the presentation of the boundary conditions. The Euler equations are a non linear problem. To solve them implicitly one has to deal with the non linearity of the flux terms in the second and third equations. This non linearity of the pressure is too important to design a competitive implicit solver because the matrix representing the problem is too complicated to invert. That is why isentropic Euler equations are favored. Indeed, it permits to get rid of the non linearity of ∇ • (pu) and simplify the problem to two unknowns.

Existing implicit strategies

Implicit schemes have always aroused interest in the literature. Indeed, even though they require more complex algorithms in general and also more computational effort, the fact that they are less sensitive 37 to the CFL number is a great advantage.

The oldest implicit methods have appeared for ordinary differential equations, and in the context of hyperbolic systems of conservation laws. The first papers to propose implicit in time schemes were Finite Difference algorithms. They have appeared in the late 1970s. Beam and Warming collaborated since 1975 on several papers where they explained strategies of linearization of fluxes. The reader can refer to [START_REF] Beam | An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form[END_REF] for the Euler equations, where the algorithm presented is compatible with large CFL numbers, and [START_REF] Beam | An Implicit Factored Scheme for the Compressible Navier-Stokes Equations[END_REF] for the Navier-Stokes equations. Steger, in 1976 also gave clues on a practical Finite Difference scheme to solve both the Euler and the Navier Stokes equations, see [START_REF] Steger | Implicit Finite Difference Simulation of Flow about Arbitrary Geometries with Application to Airfoils[END_REF]. Several other implicit and semi-implicit schemes are presented in [START_REF] Toth | Implicit and Semi-Implicit Schemes in the Versatile Advectio Code: Numerical Tests[END_REF].

In the context of our work, [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF] is a major reference. An Implicit Lagrangian scheme for non viscous compressible gas dynamics is studied for astrophysical purposes. This study is made only by means of numerical experiments, without further theoretical foundation. Indeed, the non-linear implicit-explicit strategy is second order in both space and time but there are no proof of existence or uniqueness even if the numerical results indicate good robustness. In some sense, the work presented here answers positively to the question of the construction of a fully justified implicit scheme, see Chapter 3. Few years later, another class of schemes has emerged. Different papers were published on implicit Finite Volume schemes, for instance in [START_REF] Demirdzic | A Collocated Finite Volume Method For Predicting Flows at All Speeds[END_REF] or [START_REF] Politis | A Pressure-Based Algorithm for High Speed Turbomachinery Flows[END_REF] where pressure-based algorithms are developed. The method is to find a predicted value for the pressure by combining the continuity and momentum equations. Then, from this value, the other unknowns can be evaluated.

A series of articles have been published by Casulli et al. for piecewise linear functions in the case of a symmetrical structure of the linear part of the system. See for instance [START_REF] Brugnano | Iterative Solution of Piecewise Linear Systems[END_REF]. In collaboration with Dumbser, he also investigated semi-implicit strategies for the compressible Euler or Navier-Stokes equations, see [START_REF] Dumber | A Conservative, Weakly Nonlinear Semi-Implicit Finite Volume Scheme for the Compressible Navier Stokes Equations with General Equation of State[END_REF].

A large part of implicit schemes use the method of predictor-corrector scheme that we detail in the following Section. For example, see [START_REF] Moukalled | A High-Resolution Pressure-Based Algorithm for Fluid Flow at All Speeds[END_REF] where the algorithm SIMPLE is explained. The reader can also refer to [START_REF] Chalons | Implicit Finite Volume Relaxation Scheme for Steady State Solutions[END_REF] or [START_REF] Chalons | Time-Implicit Approximation of the Multipressure Gas Dynamics Equations in Several Space Dimensions[END_REF] for predictor-corrector schemes with a relaxation parameter for the pressure term. The relaxation method seems to be a standard strategy, but it adds an extra equation on the pressure.

More recent works talk about operator splitting strategies as [START_REF] Peluchon | A Robust Implicit-Explicit Acoustic-Transport Splitting Scheme for Two-Phase Flows[END_REF], or investigate new relaxation algorithms as in [START_REF] Coulette | Implicit Time Schemes for Compressible Fluid Models Based on Relaxation Methods[END_REF].

Prediction-correction schemes 2.2.1 Methodology

Prediction-correction methods or PECE (Prediction Evaluation Correction Evaluation), see [START_REF] Butcher | Numerical Methods for Ordinary Differential Equations[END_REF], are used in order to develop stable and precise schemes. Especially for implicit and implicit-explicit methods they are largely used. They are composed of two steps. A prediction step followed by a correction step. During the prediction step, the solution is approximated without taking into account every required conditions and predicted values are evaluated. An intermediate solution U is then in possession. During the correction step, the intermediate solution U will be used to get to the final solution. For this step, all the required conditions on positivity or inequality for example must be satisfied. Once this step is completed the solution is evaluated. Usually, the set of equations is the same for the prediction and the correction scheme.

Application for the Euler equations

The predictor-corrector scheme presented in this manuscript is an adaptation of ideas from the article [START_REF] Chalons | Time-Implicit Approximation of the Multipressure Gas Dynamics Equations in Several Space Dimensions[END_REF] which is dedicated to solve the Euler equations in Eulerian formalism.

The authors explain that the difficulties of solving the Euler equations come from the flux terms in the second and third equations. Indeed, there is a strong non linearity due in particular to the pressure. To overcome this complexity, the authors propose a predictor-corrector strategy that we use also in this work. Firstly is to solve the isentropic Euler equations (2.1) during the prediction step

       ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t ρS + ∇ • (ρSu) = 0. (2.1)
Secondly, the classical Euler equations (1.3) are solved in order to restore the conservation of the specific total energy. At a discrete level, the fluxes are expressed thanks to an isentropic scheme, and then inserted in the scheme associated to (1.3).

Replacing the equation on total energy with the one on the entropy simplifies the system and such a change can be done because the two quantities are related by the second principle of thermodynamics, see Section 1.3. Moreover, for smooth solutions, the two systems are equivalent.

For the prediction step, the authors use a relaxation scheme on the pressure. They prove the existence of a solution to the relaxation implicit scheme. Nonetheless, the robustness of the scheme depends on an extra equation as mentionned in a report, see [START_REF] Seguin | Approximation par Relaxation de Systèmes Hyperboliques[END_REF].

Relations between (1.3) and (2.1)

Proposition 5. Systems (1.3) and (2.1) are equivalent for smooth solutions.

Proof. Reformulate the last equation of (1.3) in terms of the internal energy ρe = ρ(E -1 2 u, u ). For all x ∈ Ω, for all t > 0 one has

       ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t ρe + ∇ • (ρeu) + p∇ • u = 0. (2.2)
This systems is not written under conservative form because the differential operator of the last equation is not a divergence anymore. It means that the internal energy equation is not a conservation law.

Show that (ρ, ρu, ρE)

is solution of (1.3) if and only if (ρ, ρu, ρe) is solution of (2.2) with e = E -1 2 u, u . Start with ∂ t (ρE) + ∇ • ((ρE + p)u) = 0.
Use the fact that ρE = ρ(e + 1 2 u, u ) to find

∂ t (ρe + 1 2 ρ u, u ) + ∇ • (ρ(e + 1 2 u, u )u) + ∇ • (pu) = 0.
Develop and rearrange the terms

∂ t (ρe) + ∇ • (ρeu) + p∇ • u + 1 2 ∂ t (ρ u, u ) + 1 2 ∇ • ρ(u ⊗ u), u + u∇p = 0. Prove that 1 2 ∂ t (ρ u, u ) + 1 2 ∇ • ρ(u ⊗ u), u + u∇p = 0 to conclude. 1 2 ∂ t (ρ u, u ) + ∇ • (ρ u, u u) + u∇p = 1 2 ρu∂u + 1 2 u∂ t (ρu) + 1 2 u∇ • (ρu ⊗ u) + 1 2 ρ u, u ∇ • u + u∇p, = u∂ t (ρu) - 1 2 u, u ∂ t ρ + u∇ • (ρu ⊗ u) - 1 2 u, u ∇ • (ρu) + u∇p, = u (∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p) - 1 2 u, u (∂ t ρ + ∇ • (ρu)) .
Thanks to the continuity and momentum equations, one concludes that Rearrange the terms

∂ t (ρe) + ∇ • (ρeu) + p∇ • u = 0. A smooth solution of (1.3) is
1 T ∂ t (ρe) + ∇ • (ρeu) + pρ∂ t τ + pρu∇τ -e(∂ t ρ + ∇ • (ρu)) = 0.
Thanks to the continuity equation, it stays to study

1 T ∂ t (ρe) + ∇ • (ρeu) + pρ∂ t τ + pρu∇τ = 0.
By definition τ = 1 ρ , so d(ρτ ) = 0. With the continuity equation, it gives ρ∂ t τ = τ ∇ • (ρu) and ρ∇τ = -τ ∇ρ. Injecting these results into the previous equation leads to

1 T ∂ t (ρe) + ∇ • (ρeu) + pτ ∇ • (ρu) -pτ u∇ρ = 0, 1 T ∂ t (ρe) + ∇ • (ρeu) + pτ u∇ρ + pτ ρ∇ • u -pτ u∇ρ = 0, 1 T ∂ t (ρe) + ∇ • (ρeu) + p∇ • u = 0.
As T > 0, one concludes

∂ t (ρe) + ∇ • (ρeu) + p∇ • u = 0.
In the end, each smooth solution of (2.1) is solution of (2.2). Combining the two results show that (ρ, ρu, ρE) is solution of (1.3) if and only if (ρ, ρu, ρS) is solution of (2.1) and reciprocally.

One can also see the link between (2.1) and (2.2) as a change of variables

   ρ ρu ρe    →    ρ ρu ρS    to
come back to a conservative form. Indeed, thanks to Gibbs relation T dS = de + pdτ where τ = 1 ρ so the mapping (τ, S) → e(τ, S) is strictly convex and (ρ, ρe) → ρS(ρ, ρe) is strictly concave, see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] [Chapter 2 Theorem 1.1 p 100].

Definition of the implicit discrete scheme

To define our scheme, we use the idea of an isentropic prediction scheme followed by a correction scheme. Nonetheless, we do not apply any relaxation. In the previous Chapter 1 we have already detailed the obtention of a Finite Volume scheme for the Euler equations that we will use for the correction step. Let us now precise how to deal with the isentropic equations. Consider the isentropic Euler equations 2.1 in multi-D. We recall them

       ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • (ρu ⊗ u) + ∇p = 0, ∂ t ρS + ∇ • (ρSu) = 0.
To recall the unknowns, one has ρ = 1 τ > 0 the mass density, u ∈ R d is the velocity, p is the pressure and S denotes the physical entropy. The first equation is the conservation of the mass, the second is the conservation of momentum and the last one is the conservation of the entropy. The only change with regards to the system (1.3) is the last equation. Following the same steps of constructions, we define the integral form of the system (2.1) and then discretize it in space.

Let Ω(t) be a regular domain where the fluid is studied. For all ω(t) open Lagrangian subdomain of Ω(t), one gets the integral formulation of the isentropic Euler equations.

∀ t > 0, ∀ ω(t) ⊂ Ω(t),                    ˆω(t) [∂ t ρ + ∇ • (ρu)] = 0, ˆω(t) [∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇p] = 0, ˆω(t) [∂ t (ρS) + ∇ • (ρSu)] = 0.
(2.3)

One will apply Reynolds Theorem, see Theorem 1 p 18, given that (ρ, ρu, ρS) is a regular solution of the system (2.3) to get the integral formulation. The first two equations have already been detailed in Section 1.2.3, only the equation on the entropy will be explained here. The equation on the conservation of the entropy gives ˆω(t)

∂ t (ρS) + ˆω(t) (ρSu) = 0,
and Reynolds transport Theorem permits to conclude

d dt ˆω(t) ρS = 0.
To sum up, one has

∀ t > 0, ∀ ω(t) ⊂ Ω(t) Lagrangian,                                d dt ˆω(t) 1 = ˆ∂ω(t) u • n, d dt ˆω(t) ρ = 0, d dt ˆω(t) ρu = - ˆ∂ω(t) pn, d dt ˆω(t) ρS = 0.
To write a numerical scheme from this formulation, one needs to discretize the domain into a mesh.

Using the notations introduced in Section 1.4.2, for all Lagrangian cell j ∈ J , one gets

                             d dt ˆj 1 = ˆ∂j u • n, d dt ˆj ρ = 0, d dt ˆj ρu = - ˆ∂j pn, d dt ˆj ρS = 0.
One integrates over a cell j ∈ J . The volume of the cell is noted V j and the mass M j . The volume depends on the time t whereas the mass is constant in time. The variation of the volume becomes

V j (t) = ˆ∂j u • n.
The conservation of the mass is

M j (t) = 0.
The momentum equation becomes

M j u j (t) = - ˆ∂j pn.
For the entropy, the same result applies and gives

M j S j (t) = 0.
It remains to establish the approximation of u and p. For that, use the fluxes explained in Section 1.5.

In the end, the nodal velocity and the pressure terms are uniquely determined by the following fluxes. For all cell j ∈ J , for all node r ∈ R j

     F jr = A jr (u j -u r ) + C jr p j , j∈Jr F jr = 0.
For all cell j of the mesh M, the semi-discretized version of the isentropic Euler equations is

                     d dt τ j = ∆t M j r∈R j C jr , u r , d dt u j = - ∆t M j r∈R j F jr , d dt S j = 0.
The predicted fluxes are given by (1.13) and they are injected into the correction scheme

                         d dt τ j = ∆t M j r∈R j C jr , u r , d dt u j = - ∆t M j r∈R j F jr , d dt E j = ∆t M j r∈R j F jr , u r .
After discretization in time on each cell j ∈ J , it gives the following implicit scheme.

Prediction step

                   τ j = τ n j + ∆t M j r∈R j C jr , u r , u j = u n j - ∆t M j r∈R j F jr , S j = S n j .
(2.4)

Fluxes      F jr = A jr (u j -u r ) + C jr p j , j∈Jr F jr = 0. (2.5) Correction step                          τ n+1 j = τ n j + ∆t M j r∈R j C jr , u r , u n+1 j = u n j - ∆t M j r∈R j F jr , E n+1 j = E n j + ∆t M j r∈R j F jr , u r . (2.6)
This implicit scheme (2.4) -(2.5) contains two steps. The first prediction step is implicit. The second correction step is explicit. All the difficulties to solve this coupled problem come from the implicit step, the prediction step. We thus study this step in details in Chapter 3, to arrive at the conclusion that this problem is well defined.

Properties of conservation and stability

Proposition 6. The prediction step is conservative in volume, mass, momentum and entropy. The correction step is conservative in volume, mass, momentum and total energy. Proof. To prove the conservation properties, one needs to verify that the flux sum over the whole mesh is null for every equation of the scheme.

For the conservation of the volume, one has

j∈J V j -V n j = j∈J r∈R j C jr , u r , = r∈R j∈Jr C jr , u r , = 0, because j∈Jr C jr = 0. Hence j∈J V j = j∈J V n j which means the volume is conserved.
For the conservation of the mass j∈J M j -M n j = 0, because we are in Lagrangian framework.

For the conservation of momentum, one has

j∈J M j u j -M j u n j = j∈J r∈R j F jr , = r∈R j∈Jr F jr , = 0.
Indeed, the sums are finite so one can invert their order and j∈Jr F jr = 0.

For the prediction step, the conservation of entropy is trivially satisfied

∀ j ∈ J , S j = S n j .
For the correction step, the conservation of the total energy is given by j∈J

M j E n+1 j -M j E n j = j∈J r∈R j F jr , u r , = r∈R j∈Jr F jr , u r , = 0,
As a matter of fact, with the same arguments of exchange of sum order and because j∈Jr F jr = 0, one arrives at the wanted conclusion.

Proposition 7. The prediction scheme is stable in the sense that it satisfies the following inequality on the total energy

M j E n+1 j -E n j ∆t + r∈R j F jr , u r 0.
The stability property is studied in the entropic sense. In theory it is interesting to have entropy inequalities for hyperbolic equations, see [START_REF] Mathis | Entropie en dynamique des fluides[END_REF]. Usually, entropy stability is defined for continuous in time problems, or explicit in time schemes. A continuous definition is found in [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF] [Introduction Theorem 3.3 p 27] and a 1D discrete version of entropy stability is written in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] [Chapter 2 Proposition 2.5.2 p 74].

Proof of Proposition 7. We denote U = (τ, u, S) t the vector of unknowns. The entropy corresponding to the isentropic system is E. To stress on the properties of entropy functions, we denote η(U

) = E. As η is convex, one gets η(U j ) -η(U n j ) ∇η(U j ) • (U j -U n j ), that is η(U j ) -η(U n j ) ∆t M j ∇η(U j ) • r∈R j f jr ,
where the flux f jr is for all j ∈ J and all r ∈ R j

f jr =    C jr , u r -F jr 0    .
To begin with, evaluate ∇η(U j ) • r∈R j f jr . Thanks to Gibbs formula, see [START_REF] Raviart | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF], [Chapter 4, p 318], one

has dη = udu -pdτ + T dS. So ∇η(U j ) = (-p j , u j , T j ) t .
One has ∇η(U j ) •

r∈R j f jr = -p j r∈R j C jr , u r -u j , r∈R j F jr .
By Definition of the F jr , equation (2.5), one obtains

∇η(U j ) • r∈R j f jr = -u j , r∈R j A jr (u j -u r ) - r∈R j u j , C jr p j -p j r∈R j C jr , u r .
To conclude, we look at the sign of

∇η(U j ) • r∈R j f jr + r∈R j F jr , u r = -u j , r∈R j A jr (u j -u r ) - r∈R j u j , C jr p j -p j r∈R j C jr , u r + r∈R j A jr (u j -u r ), u r + r∈R j C jr p j , u r .
Some simplifications occur: a term is null because

r∈R j
C jr = 0, and two terms cancel. It gives

∇η(U j ) • r∈R j f jr + r∈R j F jr , u r = -u j , r∈R j A jr (u j -u r ) + r∈R j A jr (u j -u r ), u r , ∇η(U j ) • r∈R j f jr + r∈R j F jr , u r = - r∈R j A jr (u j -u r ), u j -u r .
Written differently

∇η(U j ) • r∈R j f jr + r∈R j F jr , u r = - r∈R j (u j -u r ) T A jr (u j -u r ).
As A jr are positive by construction, one concludes that

∇η(U j ) • r∈R j f jr + r∈R j F jr , u r 0.
In the end, one finds

η(U j ) -η(U n j ) ∆t + r∈R j F jr , u r M j ∇η(U j ) • r∈R j f jr + r∈R j F jr , u r , 0.
Therefore, as η = E, one rewrites

E j -E n j ∆t + r∈R j F jr , u r M j 0.
Proposition 8. The correction scheme is stable in the sense that it satisfies an entropy inequality

S n+1 j -S n j ∆t 0.
Proof. Denote by r n the following quantity, where the values without any time exponent come from the prediction step.

r n = E j -E n j ∆t + r∈R j F jr , u r M j 0.
During the correction step, the discretization of the total energy E is

E n+1 j -E n j ∆t = - r∈R j F jr , u r M j .
The variation of total energy is evaluated between the correction and the prediction step as

E n+1 j -E j ∆t = E n+1 j -E n j ∆t + E n j -E j ∆t , = - r∈R j F jr , u r M j -r n + r∈R j F jr , u r M j , = -r n 0.
One has E = e + 1 2 u, u , since u n+1 = u one finds

E n+1 j -E j ∆t = e n+1 j -e j ∆t = -r n 0. (2.7)
To conclude, use Gibbs formula T dS = de+pdτ where the variable τ is fixed because

τ n+1 = τ = 1 ρ . One then has S n+1 j -S n j ∆t = S n+1 j -S j ∆t + S j -S n j ∆t .
During the isentropic prediction step, S j = S n j , so

S n+1 j -S n j ∆t = S n+1 j -S j ∆t , = S(e n+1 j , ρ j ) -S(e j , ρ j ) ∆t .
Thus, thanks to (2.7), S(e, ρ) is a growing function of e for ρ fixed. One concludes that

S n+1 j -S n j ∆t 0.
These inequalities, and similar ideas can be seen in [START_REF] Chalons | Time-Implicit Approximation of the Multipressure Gas Dynamics Equations in Several Space Dimensions[END_REF], in an Eulerian formalism.

Treatment of boundary conditions

Three different types of boundary conditions can be applied on the boundary of a Lagrangian domain of study. We cover all three in the order of which they must be applied into the numerical code if it happens for a vertex to be subject to more than one boundary condition at a time. We denote Rj := {r ∈ R j such that r / ∈ ∂Ω} the set of interior nodes, and ∂R j := {r ∈ R j such that r ∈ ∂Ω} the set of boundary nodes. In the treatment of boundary conditions, we only mention the first two equations of the prediction scheme (2.4) because the last one does not change. This is a preliminary work that is extended in Chapter 4.

Pressure boundary conditions

The pressure boundary condition means that a pressure is imposed at the surface of the boundary, see Figure 2.1 . The pressure can not be applied on a specific node, it is a variable that must be applied on the faces. Pressure boundary conditions consists then in p ext = p jr for all boundary node r.

The nodal velocity at node r ∈ ∂R j is given by the following calculations. If at the vertex r there are at least two non colinear C jr , then the matrix A r is invertible, so

u r = A -1 r j∈Jr A jr u j + A -1 r j∈Jr C jr (p j -p ext ). (2.8)
We take the implicit prediction scheme (2.4) and replace the nodal velocity with formula (2.8), taking into account the pressure imposed at the boundary.

             M j ∆t (τ j -τ n j ) = r∈ Rj C jr , u r + r∈∂R j C jr , u r , M j ∆t (u j -u n j ) = - r∈R j C jr p j - r∈R j C jr α j u j , n jr + r∈ Rj C jr α j u r , n jr + r∈∂R j C jr α j u r , n jr .                        M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i + r∈∂R j C jr , A -1 r i∈Jr C ir p ext = r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j + r∈∂R A jr A -1 r i∈Jr C ir p ext = - r∈R j A jr A -1 r i∈Jr C ir (-p i ).
(2.9) 

Remark 5. In 1D, at a boundary node,

A -1 r = A -1

Sliding conditions

For the sliding conditions, a normal vector is chosen and one has u r , n = 0 for all r ∈ ∂R, see Figure 2.3. We separate the normal and tangential components

• • • • n u, n = 0
A r u r , n = b r , n , A r u r , t = b r , t .
One projects on to the normal and tangential components

n ⊗ n(A r u r ) = (n ⊗ n)b r , (Id -n ⊗ n)A r u r = (Id -n ⊗ n)b r . As u r , n = 0, it means (n ⊗ n)u r = 0. Moreover, (Id -n ⊗ n)u r = u r , so (n ⊗ n)u r = 0, (Id -n ⊗ n)A r (Id -n ⊗ n)u r = (Id -n ⊗ n)b r . (2.10)
One has a new way of evaluating u r at the boundary. For all cell j of the mesh M that only has interior nodes, it does not change anything. But for all cell j that has at least one of its vertex on the boundary, a new equation is satisfied:

[(Id -n ⊗ n)A r (Id -n ⊗ n) + tr(A r )n ⊗ n] u r = (Id -n ⊗ n)b r .
We define the matrix Ãr

Ãr := [(Id -n ⊗ n)A r (Id -n ⊗ n) + tr(A r )n ⊗ n] .
(2.11)

The equations (2.10) and (2.11) differ in the sense that a trace term has been added in the latter. This is just to ensure the inversion of the matrix.

Property 7. Let n ∈ R d , d ∈ {1, 2, 3} be a normal vector. One has (Id -n ⊗ n)n ⊗ n = 0 and (Id -n ⊗ n) 2 = Id -n ⊗ n.
Proof. We detail the proof in the d dimensional case.

(Id -n ⊗ n)n ⊗ n = n ⊗ n -(n ⊗ n)(n ⊗ n).
Let us prove that (n ⊗ n)(n ⊗ n) = n ⊗ n using the properties of the tensor product.

(n ⊗ n)(n ⊗ n) = n ⊗ n, n n, = n ⊗ n, 1 n, n , = n ⊗ n.
because the normal vector has a norm equal to 1.

(Id -n ⊗ n) 2 = Id -2(n ⊗ n) + (n ⊗ n)(n ⊗ n) = Id -2(n ⊗ n) + (n ⊗ n) = (Id -n ⊗ n).

Properties of Ãr

One can wonder whether the matrix Ãr is invertible and has the same properties of symmetry and positivity than A r .

Property 8. Suppose the matrix A r is symmetric positive definite, then the matrix Ãr is symmetric and positive definite.

Proof. The term tr(A r )n ⊗ n only adds diagonal terms to Ãr , hence it is symmetric. Let us study the symmetry of the other term that we denote à r .

à r := (Id -n ⊗ n)A r (Id -n ⊗ n). Let us evaluate ( à r ) t . ( à r ) t = ((Id -n ⊗ n)A r (Id -n ⊗ n)) t , = (Id -n ⊗ n) t A t r (Id -n ⊗ n) t . As A r and Id -n ⊗ n are symmetric ( à r ) t = (Id -n ⊗ n)A r (Id -n ⊗ n), = à r ,
so Ãr is symmetric.

Let us now prove the positivity. For all x ∈ R d \ {0} one has

x, Ãr x = x, Ã r x + x, tr(A r )n ⊗ n x = x, (Id -n ⊗ n)A r (Id -n ⊗ n)x + x, tr(A r )n ⊗ n x , = x, (Id -n ⊗ n) t A r (Id -n ⊗ n)x + tr(A r ) x, n 2 , because Id -n ⊗ n is symmetric. So x, Ãr x = (Id -n ⊗ n)x, A r (Id -n ⊗ n)x + tr(A r ) x, n 2 , > 0,
because A r is positive definite and so tr(A r ) > 0.

In the end, Ãr is symmetric positive definite.

To have a unique velocity per node, one needs to have the existence of an inverse for Ãr . As A r is invertible, up to boundary conditions, the matrix Ãr is then invertible and u r is uniquely determined.

For all r ∈ R u r = Ã-1 r (Id -n ⊗ n) j∈Jr A jr u j + Ã-1 r (Id -n ⊗ n) j∈Jr C jr p j . Property 9. The matrix Ã-1 r (Id -n ⊗ n) is symmetric. Proof. One denotes C = Ã-1 r (Id -n ⊗ n) -(Id -n ⊗ n) Ã-1 r . Let us prove that C = 0. One evaluates Ãr C Ãr = Ãr Ã-1 r (Id -n ⊗ n) -(Id -n ⊗ n) Ã-1 r Ãr , = (Id -n ⊗ n) Ãr -Ãr (Id -n ⊗ n).

Inject the expression of Ãr

Ãr

C Ãr = (Id -n ⊗ n) (Id -n ⊗ n)A r (Id -n ⊗ n) + tr(A r )(Id -n ⊗ n) -(Id -n ⊗ n)A r (Id -n ⊗ n) + tr(A r )(Id -n ⊗ n) (Id -n ⊗ n), = (Id -n ⊗ n) 2 A r (Id -n ⊗ n) + tr(A r )(Id -n ⊗ n) -(Id -n ⊗ n)A r (Id -n ⊗ n) 2 -tr(A r )(Id -n ⊗ n) 2 .
Use the property (Id

-n ⊗ n) 2 = (Id -n ⊗ n) to conclude Ãr C Ãr = (Id -n ⊗ n)A r (Id -n ⊗ n) -(Id -n ⊗ n)A r (Id -n ⊗ n), = 0.
The product Ãr C Ãr = 0. Multiplying by Ã-1 r on the left and on the right gives

C = 0. It means Ã-1 r (Id -n ⊗ n)
is symmetric, and that the product commutes.

These properties on the matrix Ãr will turn useful for the analysis of existence and uniqueness. One starts from the implicit prediction step scheme, omitting the equation on the conservation of the entropy.

             M j ∆t (τ j -τ n j ) = r∈ Rj C jr , u r + r∈∂R j C jr , u r , M j ∆t (u j -u n j ) = - r∈R j C jr p jr .
Replacing u r by its expressions on the inside and on the boundary leads to

                                   M j ∆t (τ j -τ n j ) - r∈∂R j C jr , Ã-1 r (Id -n ⊗ n) i∈Jr C ir p i - r∈ Rj C jr , A -1 r i∈Jr C ir p i = r∈∂R j C jr , Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i + r∈ Rj C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈∂R j A jr ( Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i + Ã-1 r (Id -n ⊗ n) i∈Jr C ir p i ) + r∈R j A jr u j - r∈ Rj A jr A -1 r j∈Jr A ir u i = - r∈R j C jr p j .
Rearranging the second equation, one obtains

                                   M j ∆t (τ j -τ n j ) - r∈∂R j C jr , Ã-1 r (Id -n ⊗ n) i∈Jr C ir p i - r∈ Rj C jr , A -1 r i∈Jr C ir p i = r∈∂R j C jr , Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i + r∈ Rj C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) + r∈R j A jr u j - r∈∂R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i - r∈ Rj A jr A -1 r i∈Jr A ir u i = - r∈∂R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-p i ) - r∈ Rj A jr A -1 r i∈Jr C ir (-p i ).
(2.12)

Link between sliding and symmetry conditions

In this section, we explain how symmetry conditions lead to the expression of the sliding conditions. One supposes to have a symmetric mesh, and that the boundary becomes the axe of symmetry. The symmetric part is denoted with overline letters and belongs to the symmetrical mesh. One has

u j = -(n ⊗ n)u j + (Id -n ⊗ n)u j , p j = p j .
That corresponds to Figure 2.4 For all cell j ∈ J , all symmetric cell j ∈ J , and all boundary vertex r ∈ ∂R, the geometrical vectors satisfy

C jr = -(n ⊗ n)C jr + (Id -n ⊗ n)C jr . j ∈ J j j M j ∈ M (Id -n ⊗ n)u j -(n ⊗ n)u j (n ⊗ n)u j Figure 2.4 -Symmetric cell of a mesh.
We write what happens for the evaluation of the nodal velocitity u r on the whole mesh M = {j ∈ J } ∪ {j ∈ J }. 

j∈Jr 2α j ||C jr || (C n jr ) 2 0 0 (C t jr ) 2 u r = j∈Jr α j ||C jr || (C n jr ) 2 C n jr C t jr C n jr C t jr (C t jr ) 2 (n ⊗ n)u j + (Id -n ⊗ n)u j + j∈Jr α j ||C jr || (C n jr ) 2 -C n jr C t jr -C n jr C t jr (C t jr ) 2 -(n ⊗ n)u j + (Id -n ⊗ n)u j + j∈Jr 2(Id -n ⊗ n)C jr p j .
One uses the fact that (n

⊗ n)u j + (Id -n ⊗ n)u j = u n j u t j . j∈Jr 2α j ||C jr || (C n jr ) 2 0 0 (C t jr ) 2 u r = j∈Jr α j ||C jr || (C n jr ) 2 u n j + C n jr C t jr u t j C n jr C t jr u n j + (C t jr ) 2 u t j + j∈Jr α j ||C jr || -(C n jr ) 2 u n j -C n jr C t jr u t j C n jr C t jr u n j + (C t jr ) 2 u t j + j∈Jr 2(Id -n ⊗ n)C jr p j , = j∈Jr α j ||C jr || 0 2C n jr C t jr u n j + 2(C t jr ) 2 u t j + 2C t jr p j .
We recover that only the normal component of u r is not null. We want to obtain the sliding system from the symmetry conditions. We first need to check some equalities Property 10. For all r ∈ ∂R, for all j ∈ J r , and for all related j ∈ J r , one has

(Id -n ⊗ n)A jr (Id -n ⊗ n)u r = (Id -n ⊗ n)A jr (Id -n ⊗ n)u r ,
and

(Id -n ⊗ n) j∈Jr A jr u j + j∈J r A jr u j = 2(Id -n ⊗ n) j∈Jr A jr u j .
Proof. Let j and j be 2 symmetric cells of the mesh M, and r ∈ ∂R be a common vertex.

(Id -n ⊗ n)A jr (Id -n ⊗ n)u r = (Id -n ⊗ n) α j ||C jr || (C n jr ) 2 C n jr C t jr C n jr C t jr (C t jr ) 2 0 u t j , = α j ||C jr || (Id -n ⊗ n) C n jr C t jr u t j (C t jr ) 2 u t j , = α j ||C jr || 0 (C t jr ) 2 u t j .
With the same method one obtains

(Id -n ⊗ n)A jr (Id -n ⊗ n)u r = (Id -n ⊗ n) α j ||C jr || (C n jr ) 2 -C n jr C t jr -C n jr C t jr (C t jr ) 2 0 u t j , = α j ||C jr || (Id -n ⊗ n) -C n jr C t jr u t j (C t jr ) 2 u t j , = α j ||C jr || 0 (C t jr ) 2 u t j ,
which gives the first equality.

For the second equality, one has

(Id -n ⊗ n) j∈Jr A jr u j + j∈J r A jr u j = (Id -n ⊗ n) j∈Jr α j ||C jr || (C n jr ) 2 C n jr C t jr C n jr C t jr (C t jr ) 2 u n j u t j + (Id -n ⊗ n) j∈Jr α j ||C jr || (C n jr ) 2 -C n jr C t jr -C n jr C t jr (C t jr ) 2 -u n j u t j , = (Id -n ⊗ n) j∈Jr α j ||C jr || 0 2C n jr C t jr u n j + 2(C t jr ) 2 u t j , = j∈Jr α j ||C jr || 0 2C n jr C t jr u n j + 2(C t jr ) 2 u t j .
And the development of the second term of the equation gives

2(Id -n ⊗ n) j∈Jr A jr u j = 2(Id -n ⊗ n) j∈Jr α j ||C jr || (C n jr ) 2 C n jr C t jr C n jr C t jr (C t jr ) 2 u n j u t j , = 2(Id -n ⊗ n) j∈Jr α j ||C jr || (C n jr ) 2 u n j + C n jr C t jr u t j C n jr C t jr u n j + (C t jr ) 2 u t j , = j∈Jr α j ||C jr || 0 2C n jr C t jr u n j + 2(C t jr ) 2 u t j .
The second equality is satisfied.

Using the previous results, one can then write

(Id -n ⊗ n)   j∈Jr A jr + j∈J r A jr   (Id -n ⊗ n)u r = (Id -n ⊗ n) j∈Jr A jr u j + j∈J r A jr u j + 2(Id -n ⊗ n)C jr p j , 2(Id -n ⊗ n) j∈J A jr (Id -n ⊗ n)u r = 2(Id -n ⊗ n) j∈Jr A jr u j + 2(Id -n ⊗ n)C jr p j .
One can divide by 2 to obtain exactly

(Id -n ⊗ n)A r (Id -n ⊗ n)u r = (Id -n ⊗ n)( j∈Jr A jr u j + j∈Jr C jr p j ), or written differently à r u r = (Id -n ⊗ n)b r .

Velocity conditions

The velocity conditions are of two kinds, either a null velocity is imposed, that we call the homogeneous Dirichlet conditions, or a non null velocity called Dirichlet conditions. We treat the second case, because it is a generalization of the first one. Non homogeneous Dirichlet boundary conditions mean that the velocity is given on each boundary ∂Ω of the domain. We will denote v r the value imposed on the boundary vertex r. One can have different velocities for different vertices as shown in Figure 2.5. Let us rewrite the prediction step with non homogeneous Dirichlet boundary conditions. We will omit the entropy equation, and take the same notations as previously that is Rj for the interior nodes, and ∂R j for the boundary nodes. For all cells j on the boundary of the mesh, one has

• • • • • v 1 v 2 v 3 v 4 v 5
             τ j = τ n j + ∆t M j r∈ Rj C jr , u r + ∆t M j r∈∂R j C jr , v r , u j = u n j - ∆t M j r∈R j F jr .
Replacing F jr by its definition (1.13) p 33 leads to

                         τ j = τ n j + ∆t M j r∈ Rj C jr , u r + ∆t M j r∈∂R j C jr , v r , u j = u n j - ∆t M j r∈R j C jr p j - ∆t M j r∈R j A jr u j , n jr + ∆t M j r∈ Rj A jr u r , n jr + ∆t M j r∈∂R j A jr v r , n jr .
Using the explicit formula of u r on the interior vertices gives In order to analyze the existence and uniqueness of a solution for the implicit prediction step, the scheme (2.4) is put under the form of a gradient problem. In a first Section, we detail the steps to get to this gradient formulation. In a Second section the Theorem is stated and proved in Section 3. Section 4 contains the application of this Theorem and the verification of the hypotheses for the isentropic Euler equations (2.1).

                                 M j ∆t (τ j -τ n j ) - r∈ Rj C jr , A -1 r i∈Jr C ir p i - r∈ Rj C jr , A -1 r i∈Jr A ir u i - r∈∂R j C jr , v r = 0, M j ∆t (u j -u n j ) + r∈R j A jr u j - r∈ Rj A jr (A -1 r i∈Jr A ir u i + A -1 r i∈Jr C ir p i ) - r∈∂R j A jr v r = 0.                            M j ∆t (τ j -τ n j ) - r∈ Rj C jr , A -1 r i∈Jr C ir p i - r∈∂R j C jr , v r = r∈ Rj C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) + r∈ Rj   A jr u j -A jr A -1 r i∈Jr A ir u i   + r∈∂R j A jr (u j -v r ) = - r∈ Rj A jr A -1 r i∈Jr C ir (-p i ).

Formulation under the form ∇J(U ) = AU

We start from the prediction step scheme written as presented before in Section 2.4. The fluxes are injected into this formulation and rearranged to obtain a new formulation for the implicit scheme. We then justify our choice of unknowns with the Legendre transform and define the objects of this new formulation. In the last part we present another possible set of unknowns. 59

Formulation of the problem

Put the prediction scheme under the form of a gradient problem allows to use frameworks of continuous problems. More particularly we are able to use the framework of convex analysis and ordinary differential equations.

Let us recall the prediction scheme, with periodic boundary conditions for practical purpose. For each cell j ∈ J of the mesh M, the discretized version of the isentropic Euler equations (2.1) is

                   τ j = τ n j + ∆t M j r∈R j C jr , u r , u j = u n j - ∆t M j r∈R j F jr , S j = S n j . (3.1)
The implicit fluxes are given by

∀ r ∈ R      ∀j ∈ J r , F jr = A jr (u j -u r ) + C jr p j , j∈Jr F jr = 0.
We want to reformulate this scheme under the form ∇J(U ) = AU , where U is the vector of unknowns, J a functional under gradient form and A a matrix of real coefficients.

As the entropy is conserved, there is no interest in keeping it for the calculation. We can then simplify the problem to the seeking of two unknowns instead of three. In the rest of this Chapter we omit the entropy equation.

We also recall that the matrices A jr are symmetric and positive, and that the matrices A r = j∈Jr A jr are invertible.

Replace the fluxes with their explicit formula, then do the same with the node velocity u r which is given by (1.18) p 36.

               τ j = τ n j + ∆t M j r∈R j C jr , A -1 r i∈Jr A ir u i + A -1 r i∈Jr C ir p i , u j = u n j - ∆t M j r∈R j   A jr   u j -(A -1 r i∈Jr A ir u i + A -1 r i∈Jr C ir p i )   + C jr p j   .
As the variable τ can be expressed in terms of the pressure thanks to the equation of state, namely τ j = τ (-p j ) we separate on the one side the velocity terms and on the other side the ones depending on the pressure.

               M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i = r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr   A -1 r i∈Jr A ir u i + A -1 r i∈Jr C ir p i   + r∈R j A jr u j = - r∈R j C jr p j .
The second equation is developed

             M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i = r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i - r∈R j A jr A -1 r i∈Jr C ir p i + r∈R j A jr u j = - r∈R j C jr p j ,
and rearranged

             M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i = r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j = - r∈R j C jr p j + r∈R j A jr A -1 r i∈Jr C ir p i .
The sum of the vectors C jr over r ∈ R j being equal to zero one has

             M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i = r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j = r∈R j A jr A -1 r i∈Jr C ir p i . (3.2)
This system has two unknown vectors that are the pressures and the velocities. Indeed, as mentioned earlier, the specific volume τ can be expressed in terms of p thanks to the equation of state for the studied gas. In this context and for further use, let us introduce the notion of the Legendre transform.

Legendre transform

The Legendre transform is a useful tool that gives the definition of a function in terms of different variables thanks to the use of derivability. It permits to switch from a set of variables to another set of thermodynamics components. In our case the Legendre transform links the pressure to the specific volume by means of differentiation. Definition 8. Let f be a function of U = (x 1 , x 2 , . . . , x n ) ∈ R n . Suppose that f is convex and sufficiently smooth. The Legendre transform of f is given by

g(V ) = U, V -f (U ),
where V = (y 1 , y 2 , . . . , y n ) with y i = ∂f ∂x i , ∀i ∈ {1, . . . , n}. The origins of this formula are explained for example in the paper [START_REF] Zia | Making Sense of the Legendre Transform[END_REF]. Let us write the Legendre transform of the total energy E, that is a convex function, see Proposition 2, p 22. One has E(τ, u) which plays the role of f . We set U = (τ, u) that are the variables of the function E and also the unknowns of the prediction step (3.1). One needs to evaluate V to have another set of variables. Thanks to Gibbs formula, one has T dS = pdτ + de. As e = E -1 2 u, u and dS = 0 because we consider the isentropic Euler equations, one finds dE = -pdτ + u • du. It means

∂E ∂τ = -p and ∂E ∂u = u.
One thus has V = (-p, u). Apply the Definition of the Legendre transform:

E * = U, V -E. E * (-p, u) = (τ, u), (-p, u) -E, = -pτ + u, u -E, = -pτ + u, u -(e + 1 2 u, u ), = -pτ + 1 2 u, u -e.
Differentiating E * with respect to (-p, u) permits to recover the variables (τ, u).

Let us write the Legendre transform when the fluid follows a perfect gas law or a stiffened gas law, and show how to come back to the initial set of variables. When the fluid follows a convex complete law, the Legendre transform is written with the same method as soon as the law is provided.

Legendre transform for perfect gas law

When the fluid follows a perfect gas law, see (1.5) p 20, the Legendre transform E * is as follows. The internal energy can be expressed as e = pτ γ-1 and replaced in the definition of E * .

E * (-p, u) = -pτ + 1 2 u, u -e, = -pτ + 1 2 u, u - pτ γ -1 , = -γ γ -1 pτ + 1 2 u, u .
The next step is to express τ in terms of p and S. Start from the expression of the entropy S and replace the internal energy e by the same previous formula.

S C v = log(eτ γ-1 ), = log pτ γ -1 τ γ-1 , = log pτ γ γ -1 .
Use the relation between the exponential and the logarithm to conclude.

exp S C v = pτ γ γ -1 , (γ -1) exp S C v 1 γ = p 1 γ τ. ( 3.3) 
One obtains τ = (γ -1) exp( S Cv )

1 γ p -1 γ . Inject it into E * . E * (-p, u) = - γ γ -1 p (γ -1) exp S C v 1 γ p -1 γ + 1 2 u, u , = -p 1-1 γ (γ -1) 1 γ -1 γexp S C v 1 γ + 1 2 u, u .
Just to give all the details, we differentiate this function E * with respect to (-p, u) to show that we eventually recover the primary variables (τ, u).

For the first expression it gives

∂E * ∂(-p) = -(γ -1) 1 γ -1 γexp S C v 1 γ 1 - 1 γ (-1)p -1 γ , = γ -1 γ γ(γ -1) 1 γ -1 exp S C v 1 γ p -1 γ , = p -1 γ (γ -1) exp S C v 1 γ , = τ.
The second variable is easy to obtain

∂E * ∂u = 1 2 2u = u.

Legendre transform for stiffened gas

When the fluid follows a stiffened gas law, see (1.6) p 20, one can construct the Legendre transform E * as follows. Suppose that p + π > 0. One easily finds e = (p+γπ)τ γ-1 , that can be replaced in the definition of

E * . E * (-p, u) = -pτ + 1 2 u, u -e, = -pτ + 1 2 u, u - p + γπ γ -1 τ, = - (γ -1)pτ γ -1 - pτ γ -1 - γπτ γ -1 + 1 2 u, u , = - γ γ -1 (p + π)τ + 1 2 u, u .
The next step is to express τ in terms of p and S. Start from the expression of the entropy S and replace the internal energy e by the same previous formula.

S C v = log((e -πτ )τ γ-1 ), = log (p + γπ)τ γ -1 - (γ -1)πτ γ -1 τ γ-1 ,

Develop and simplify

S C v = log pτ γ -1 + πτ γ -1 τ γ-1 , = log p + π γ -1 τ γ .
Use the relation between the exponential and the logarithm to conclude

exp S C v = p + π γ -1 τ γ , (γ -1) exp S C v 1 γ = (p + π) 1 γ τ.
One obtains τ = (γ -1) exp S Cv

1 γ (p + π) -1 γ . Inject it into E * E * (-p, u) = - γ γ -1 (p + π) (γ -1) exp S C v 1 γ (p + π) -1 γ + 1 2 u, u , = -(p + π) 1-1 γ (γ -1) 1 γ -1 γexp S C v 1 γ + 1 2 u, u .
To give the link with the prediction scheme, it means that the discretization in time of τ can be rewritten as the derivative of E * in terms of -p in the first equation of (3.2). It explains our choice for the vector of unknowns that we detail in the following Section.

Definition of the objects

This Section aims at defining the three objects that form the gradient problem used to prove the existence and uniqueness of the implicit prediction scheme (3.1). The first object is the vector of unknowns, the second is the matrix A and the third is the definition of the functional J. We express the functional J in the case of a perfect gas law for the sake of simplicity and we provide the reader the elements to define it for another law.

Definition of the vector of unknowns U

The coefficients of the vector AU correspond to the right term of (3.2) that is

AU =    r∈R j C n jr , A -1 r i∈Jr A ir u i - r∈R j A jr A -1 r i∈Jr C n ir (-p i )    ∈ R N +dN .
One defines

U = (-p j ) j∈J (u j ) j∈J ∈ R N +dN (3.4)
as the vector of unknowns. This choice of unknowns is obviously linked to the variables of the Legendre transform as mentioned in the previous Sections. The next step is to define the matrix A.

Definition of the matrix A

The matrix A belongs to M N +dN (R). A rewriting is necessary to obtain the coefficients of the matrix A alone, and not those of the whole product AU . For the first expression, one finds ∀ j ∈ J

r∈R j C jr , A -1 r i∈Jr A ir u i = r∈R j i∈Jr C jr , A -1 r A ir u i , = r∈R j i∈Jr (C jr ) T A -1 r A ir u i , = i∈J ∂i∩∂j =∅ r∈R i ∩R j (C jr ) T A -1 r A ir u i .
(3.5)

The second expression leads ∀ j ∈ J to -

r∈R j A jr A -1 r i∈Jr C ir (-p i ) = - r∈R j i∈Jr A jr A -1 r C ir (-p i ), = - i∈J ∂i∩∂j =∅ r∈R j ∩R i A jr A -1 r C ir (-p i ). (3.6) 
Non-zero coefficients are those of the sum over indices i, which are exactly all the neighbor cells of cell j. Thanks to (3.5) and (3.6), A is a matrix of the form

A =      0 B C 0      , ( 3.7) 
where B ∈ M N,dN (R) and C ∈ M dN,N (R).

The matrix B can be identified as a matrix of matrices. It means that B can be seen as B ∈ M N (M 1,d (R)). For all i, j ∈ J one has

B ji = r∈R i ∩R j (C jr ) T A -1 r A ir ∈ M 1,d (R). (3.8) 
For the rectangular matrix C, the same remark gives for all i, j ∈ J

C ji = - r∈R j ∩R i A jr A -1 r C ir ∈ M d,1 (R).
(3.9) Remark 6. The matrix A, in the notation ∇J(U ) = AU , is defined by (3.7), where B and C are respectively given by (3.8) and (3.9).

Definition of the functional J

To get the definition of the functional J, one needs to multiply the first line of (3.2) by -p j and the second line by u j . Then, sum up over all cells j ∈ J . This actually corresponds to the fact that any solution ((-p j ) j∈J , (u j ) j∈J ) of (3.2) is also solution of the variational formulation of the equations. Multiply by -p j and u j is equivalent to take the solution of (3.2) as the test function, and the sum corresponds to the integration in a discrete sense.

                           j∈J   M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i   (-p j ) = j∈J   r∈R j C jr , A -1 r i∈Jr A ir u i   (-p j ), j∈J M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j , u j = - j∈J r∈R j A jr A -1 r i∈Jr C ir (-p i ), u j .
The coefficient -p j is a scalar. It can then be put in the scalar product.

                                     j∈J M j ∆t (τ j -τ n j )(-p j ) + j∈J r∈R j C jr (-p j ), A -1 r i∈Jr C ir (-p i ) = j∈J r∈R j C jr (-p j ), A -1 r i∈Jr A ir u i , j∈J M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j , u j = - j∈J r∈R j A jr A -1 r i∈Jr C ir (-p i ), u j .
Expand and separate the scalar product into the second equation

                                     j∈J M j ∆t (τ j -τ n j )(-p j ) + j∈J r∈R j C jr (-p j ), A -1 r i∈Jr C ir (-p i ) = j∈J r∈R j C jr (-p j ), A -1 r i∈Jr A ir u i , j∈J   M j ∆t u j -u n j , u j - r∈R j A jr A -1 r i∈Jr A ir u i , u j + r∈R j A jr u j , u j   = - j∈J r∈R j A jr A -1 r i∈Jr C ir (-p i ), u j .
The symmetry of the matrices A jr and A r leads to

                                   j∈J M j ∆t (τ j -τ n j )(-p j ) + j∈J r∈R j C jr (-p j ), A -1 r i∈Jr C ir (-p i ) = j∈J r∈R j C jr (-p j ), A -1 r i∈Jr A ir u i , j∈J   M j ∆t u j -u n j , u j - r∈R j i∈Jr A ir u i , A -1 r A jr u j + r∈R j A jr u j , u j   = - j∈J r∈R j i∈Jr C ir (-p i ), A -1 r A jr u j .
The sums can be inverted because they are finite

                                 j∈J M j ∆t (τ j -τ n j )(-p j ) + r∈R j∈Jr C jr (-p j ), A -1 r i∈Jr C ir (-p i ) = j∈J r∈R j C jr (-p j ), A -1 r i∈Jr A ir u i , j∈J M j ∆t u j -u n j , u j - r∈R j i∈Jr A ir u i , j∈Jr A -1 r A jr u j + r∈R j∈Jr A jr u j , u j = - j∈J r∈R j i∈Jr C ir (-p i ), A -1 r A jr u j .
(3.10)

We want to have an expression of the functional J : D → R of the form

J(U ) = N j=1 M j ∆t L 1 j (-p) + L 2 j (u) + r∈R Q 1 r ((-p j ) j∈J ) + Q 2 r ((u j ) j∈J ) . (3.11)
where the functions L 1 j , L 2 j , Q 1 r and Q 2 r are elementary. To give a bit more details, the functions L 1 We give the definition of L 1 j and L 2 j for a fluid following a perfect gas law.

The function L 1 j is given by

L 1 j : R --→ R, L 1 j (-p) = -p 1-1 γ (γ -1) 1 γ -1 γexp( S C v ) 1 γ + τ n j p. (3.12)
The function L 2 j corresponds to

L 2 j : R d -→ R, L 2 j (u) = u, u 2 -u n j , u . (3.13) b) Definition of Q 1 r and Q 2 r
Use system (3.10) to deduce the definitions of the quadratic functions Q 1 r and Q 2 r .

For the first expression, i is a dummy index of the sum, it can then be renamed. Indeed, using the same index emphasizes the symmetry of the formula.

r∈R j∈Jr C jr (-p j ), A -1 r i∈Jr C ir (-p i ) = r∈R j∈Jr C jr (-p j ), A -1 r j∈Jr C jr (-p j ) . The function Q 1 r is given by Q 1 r : R N → R, Q 1 r ((-p l ) l∈J ) = 1 2 j∈Jr C jr (-p j ), A -1 r j∈Jr C jr (-p j ) . (3.14)
With the same method of rename, Q 2 r can be determined as follows

- r∈R i∈Jr A ir u i , j∈Jr A -1 r A jr u j + r∈R j∈Jr A jr u j , u j = - r∈R j∈Jr A jr u j , A -1 r j∈Jr A jr u j + r∈R j∈Jr
A jr u j , u j .

The function

Q 2 r is defined by Q 2 r : R dN → R, Q 2 r ((u l ) l∈J ) = 1 2 j∈Jr A jr u j , u j - 1 2 j∈Jr A jr u j , A -1 r j∈Jr
A jr u j .

(3.15) Definition 9. The functional J whose expression corresponds to (3.11) is composed of the four following functions L 1 j , L 2 j , Q 1 r and Q 2 r respectively defined by (3.12), (3.13), (3.14) and (3.15).

c) Verification of the gradient of J

In order to justify that the formulation ∇J(U ) = AU is equal to the scheme (3.1), we differentiate each component of J.

Property 11. For all j ∈ J , L 1 j defined by (3.12) verifies

∂L 1 j ∂(-p) -p j = τ j -τ n j .
Proof. Let j ∈ J be a cell index of the mesh M.

∂L 1 j ∂(-p) -p j = ∂ -p 1-1 γ (γ -1) 1 γ -1 γexp( S Cv ) 1 γ + τ n j p ∂(-p j ) -p j , = -1 - 1 γ (-1)p -1 γ (γ -1) 1 γ -1 γexp S C v 1 γ -τ n j , = (γ -1) exp S C v 1 γ p -1 γ -τ n j , using (3.3), = τ j -τ n j .
Property 12. For all j ∈ J , the gradient of the function L 2 j given by (3.13) 

is ∇ u L 2 j (u j ) = u j -u n j .
Proof. Let j be a cell index of the mesh M.

∇ u j L 2 j ((u j ) j∈J ) = ∇ u j 1 2 u j , u j -u n j , u j , = 1 2 u j + 1 2 u j -u n j , = u j -u n j .
Property 13. For all j ∈ J , for all r ∈ R, the function Q 1 r in (3.14) satisfies

∂Q 1 r ∂(-p j ) -p j = -C jr , A -1 r i∈Jr C ir p i .
Proof. Let j be a cell index of M and r be a node index of j.

∂Q 1 r ∂(-p j ) -p j = 1 2 ∂ ∂(-p j ) i∈Jr C ir (-p i ), A -1 r i∈Jr C ir (-p i ) , = 1 2   C jr , A -1 r i∈Jr C ir (-p i ) + i∈Jr C ir (-p i ), A -1 r C jr   .
The matrix A r is symmetric and positive definite, so the matrix A -1 r is also symmetric. It gives

∂Q 1 r ∂(-p j ) -p j = 1 2   C jr , A -1 r i∈Jr C ir (-p i ) + A -1 r i∈Jr C ir (-p i ), C jr   ,
that is simplified into

∂Q 1 r ∂(-p j ) -p j = 1 2   2 C jr , A -1 r i∈Jr C ir (-p i )   ,
because the scalar product is a symmetric bilinear form. Hence,

∂Q 1 r ∂(-p j ) -p j = -C jr , A -1 r i∈Jr C ir p i .
Property 14. For all j ∈ J and for all r ∈ R, the function Q 2 r given by (3.15) satisfies

∇ u j Q 2 r ((u j ) j∈J ) = -A jr A -1 r i∈Jr A ir u i + A jr u j .
Proof. Let j ∈ J ,

∇ u j Q 2 r ((u j ) j∈J ) = 1 2 ∇ u j   i∈Jr A ir u i , u i - i∈Jr k∈Jr A ir u i , A -1 r A kr u k   , = 1 2   2A jr u j -A jr A -1 r k∈Jr A kr u k -(A -1 r A jr ) T k∈Jr A kr u k   , = A jr u j -A jr A -1 r k∈Jr
A kr u k because the matrices A jr and A -1 r are symmetric.

We can then conclude that Property 15. The system (3.2) can be put under the form ∇J(U ) = AU where J, A and U are respectively defined by Definition 9, (3.7) and the formula (3.4).

Possible change of variable

In this Section, we want to show that it is possible to make another choice of variables, namely to take ((p j ) j∈J , (u j ) j∈J ) as the vector of unknowns instead of U = ((-p j ) j∈J , (u j ) j∈J ). Take V = P U as the new vector of unknowns, V = ((p j ) j∈J , (u j ) j∈J ), where P is a change of basis matrix.

P =

-Id 0 0 Id .

We want that the new functional satisfies J(V ) = J(U ). As J • (V ) = J(P U ), one thus writes J(V ) = J(P -1 U ).

Let us recall the chain rule formula Definition 10. Let f : R n → R and g : R p → R n be two differentiable functions. Let h = f • g.

Thanks to the chain rule, one has h

(x) = (f • g) (x) = f (g(x)) • g (x)
. The derivative of f • g is a line vector, the derivative of g is a matrix and the one of f (g) is a line vector.

One has ∇ V J(V ) = ∇ V J(U ). Apply Definition 10 of the chain rule with f = J and g = U . It gives g (U ) = g (P -1 V ) = P -1 and f = ∇ U J(U ). Hence

∇ V J • (V ) = ∇ U J(U ) • P -1 = P -t ∇ U J(U ).
For our problem, one finds

P -t ∇ U J(U ) = P -t AU that is ∇ V J(V ) = P -t AP -1 V .
In this configuration, the new matrix of the system is à = P

-t AP -1 . Ã = -Id 0 0 Id 0 B C 0 -Id 0 0 Id , = 0 -B -C 0 .
It is skew-symmetric: (P -t AP -1 ) t = P -t A t P -1 = -P -t AP -1 = -Ã. Indeed, one has

Ãt = 0 -C t -B t 0 , = 0 B C 0 , = -A • .
because of the skew symmetry of the matrix A.

For the functional J, let us rewrite the system

             - M j ∆t (τ j -τ n j ) + r∈R j C jr , A -1 r i∈Jr C ir p i = - r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j = r∈R j A jr A -1 r i∈Jr C ir p i .
Only the first line has been multiplied by (-1), so the Definition of J becomes

J(V ) = N j=1 M j ∆t L 1 j (-p) + L 2 j (u) + r∈R Q 1 r ((p j ) j∈J ) + Q 2 r ((u j ) j∈J ) .

Theorem of existence and uniqueness

In this Section, we theoretically prove the existence and uniqueness of a solution for the implicit prediction step (3.1). This Section gives detailed explanations on the results taken from the article [START_REF] Plessier | Implicit Discretization of Lagrangian Gas Dynamics[END_REF].

To do so, we define a framework and hypotheses under which the Theorem is proved. Consider a problem Find U ∈ D such that

∇J(U ) = AU, ( 3.16) 
where U is a vector of real unknowns, J is a functional defined on a domain D and A is a matrix of real coefficients. The proof that (3.16) has a unique solution relies on Theorem 3 that seems to be new considering the classical literature of convex analysis, see [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF][START_REF] Azé | Analyse Variationnelle et Optimisation[END_REF][START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF]. The ingredients to establish Theorem 3 are the following.

Hypothesis 1. The open convex domain is

D =]-∞, 0[ n ×R m ⊂ R n ×R m , where n > 0 and m 0 are two integers. Its boundary is ∂D = {V ∈ R n+m : ∃ j * ∈ {1, . . . , n} V j * = 0, ∀j = j * ∈ {1, . . . , n}, V j 0}.
We make a slight abuse of notations by using the same letter n in the Hypothesis 1 as the iteration index in the scheme (2.4) -(2.6). We believe this does not interfere with the readability. The case m = 0 corresponds for example to the Traffic flow equations where the only unknown is the density. Chapter 5 is dedicated to its study. Otherwise m > 0 and for instance, for Euler in one dimension m = n.

Hypothesis 2. The function

J : U ∈ D → J(U ) ∈ R is C 3 , strictly convex and coercive in the sense that J(U ) → +∞ for ||U || ---→ U ∈D +∞. (3.17)
Moreover for all V ∈ ∂D there exists a unit direction d ∈ R n+m which is outward from D such that

(∇J(V -εd), d) ε→0 + -----→ V -εd∈D +∞. (3.18)
Also for all V ∈ ∂D, one has

||∇J(W )|| W →V ----→ W ∈D +∞. (3.19)
The verification of (3.17), (3.18) and (3.19) will be obtained directly from the equation of state followed by the fluid. Applying this Theorem, we show that (3.1) is well defined for all ∆t > 0.

Proof of Theorem 3

We prove Theorem 3 stated under the Hypotheses 1, 2 and 3. Each Subsection corresponds to an intermediate result leading to the final outcome.

In convex analysis, the closure of a function is Definition 11 (Hirriart-Urruty and Lemarechal [START_REF] Hiriart-Urruty | Convex Analysis and Minimization[END_REF] Def. 3.2.5 p 19). The closure of J being a convex function is the function J, defined as

J : R n+m →R U →    lim V →U inf V ∈D J(V ) if U ∈ D, +∞ if not.
By construction, J is lower semi-continuous because J is continuous over D. For a function J which is coercive on its domain D like in (3.17), the closure J is also coercive in the sense of the book of Hirriart-Urruty [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF], [Chapter 2, p 41]

J(U ) → +∞ for ||U || ------→ U ∈R n+m +∞.
The proof of this Theorem is separated into 2 main parts: the uniqueness that only relies on the Hypotheses on J and A, and the existence of a solution that is more complex to prove and needs several intermediate results. We begin with the uniqueness.

Proof of uniqueness

It relies on elementary considerations.

Lemma 1.

Assuming that the problem (3.16) admits a solution in D, then it is unique. 

∇J(U 1 ) = AU 1 , ∇J(U 2 ) = AU 2 . One has ∇J(U 1 ) -∇J(U 2 ), U 1 -U 2 = A(U 1 -U 2 ), U 1 -U 2 .
Since by Hypothesis 3, A is a skew-symmetric matrix, therefore

A(U 1 -U 2 ), U 1 -U 2 = 0. It means ∇J(U 1 ) -∇J(U 2 ), U 1 -U 2 = 0.
Since by Hypothesis 2 J is strictly convex, this is only satisfied if U 1 = U 2 .

Proof of existence

The existence of a solution relies on a few intermediate results as mentioned previously. First we prove that there exists a minimum point for J inside of D. Then, we rewrite the scheme under the form of a family of Cauchy problems with a parameter ε that varies between 0 (convex minimization problem) and 1 (the principal problem), and prove that this problem admits a solution. Finally, using bounds we conclude on the existence of a solution for the prediction scheme for all ∆t > 0.

Existence of a minimum for J

The first result to prove is the existence of a minimum point for the function J, using a classical result from convex analysis.

Lemma 2. The function J admits a unique minimum U ∈ D.

Proof. We apply Theorem 27.1 (d) p 265 of Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF] to the function f = J. So there exists

U ∈ R n+m such that J(U ) J(V ) for all V ∈ R n+m . Necessarily J(U ) < ∞ is finite so U ∈ D.
It remains to show that U / ∈ ∂D. Let us assume on the contrary that U ∈ ∂D. Thanks to the convexity of J, see [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF] [eq. (1.6) p 3], one writes

J(U ) J(U -εd) + ∇J(U -εd), U -(U -εd) , J(U -εd) + ε ∇J(U -εd), d .
Thanks to inequality (3.18) in Hypothesis 2, one deduces

J(U ) > J(U -εd).
It is a contradiction. Therefore U ∈ D is a minimum and U is unique thanks to the strict convexity of J on D.

Since D is an open set, the unique minimum U ∈ D of J satisfies the Euler equation, see Hirriart-Urruty [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF], [Chapter 2, p 41] where it is referred to as conditions of minimum at order 1.

∇J(U ) = 0.

A continuation method

We define for all 0 ε 1 Find

U ε ∈ D such that ∇J(U ε ) = εAU ε . (3.20)
In this Section, we prove that the problem (3.20) admits a solution in the domain D. For ε = 0, the problem is treated in Section 3.3.2.1. This allows to write (3.20) with a continuation method under the form of an initial value problem (3.21)

       ∇ 2 J(U ε ) dU ε dε = AU ε + εA dU ε dε , U 0 = argmin U ∈D J(U ).
(3.21)

A rearrangement yields (∇ 2 J(U ε ) -εA) dUε dε = AU ε . For U ∈ D, the matrix ∇ 2 J(U ) -εA is invertible thanks to the following result. Lemma 3. Let A and B be two matrices of M N,N (R), N > 0 ∈ N, such that A is skew symmetric and B is positive definite. Then the matrix

C = A + B ∈ M N,N (R) is invertible.
Proof. Let us show that the kernel of C is reduced to the null element, basically ker(C) = {0}.

Let X be a vector of R N such that X ∈ ker(C). Necessarily CX = 0. Using the definition of C it means that (A + B)X = 0 or written differently that AX + BX = 0. Apply the scalar product with X to find that AX, X + BX, X = 0.

By definition, A is a skew symmetric matrix so AX, X = 0. Moreover, B is positive definite so for all Y ∈ R N \ {0} one has BY, Y > 0.

In order to satisfy the equality, X must be equal to 0. It is therefore the only element of B's kernel and so is for C as well. As ker(C) = 0, the rank-nullity Theorem says that C is a matrix of rank N and consequently it is invertible. Lemma 3 is applied with -εA ∈ M n+m,n+m (R) as the skew symmetric matrix, and ∇ 2 J(U ε ) ∈ M n+m,n+m (R) as the positive definite matrix. Thus (∇ 2 J(U ε ) -εA)

-1 exists. The initial value problem can be rewritten as

       dU ε dε = (∇ 2 J(U ε ) -εA) -1 AU ε , U 0 = argmin U ∈D J(U ).
Let us define I = [0, +∞[ and the function F :

I × D → R n+m by F (ε, V ) = (∇ 2 J(V ) -εA) -1 AV .
The problem is rewritten as

       dU ε dε = F (ε, U ε ), U 0 = argmin U ∈D J(U ). (3.22)
To obtain the existence of a maximal solution to (3.22), one can apply standard results from the theory of ODEs that we recall now. Theorem 4 (Cauchy Lipschitz Theorem for locally Lipschitz functions [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF], [Chapter 1 Theorem 3.1, p 12). ] Let F be a C 1 function, then, for all initial data (ε 0 , U 0 ) ∈ I × R N , there exists an interval I ∈ I containing ε 0 such that there exists in I a unique solution to the associated initial value problem.

U (ε) = F (ε, U (ε)), ( 3 
In particular for all such data, there exists a unique maximal solution and all other solution verifying the condition of Cauchy is a restriction of the maximal solution.

Lemma 4. There exists 0 < ε max such that for all ε ∈ [0, ε max [, the problem (3.22) admits a solution in D. This solution satisfies (3.20).

Proof. One applies the Cauchy Lipschitz Theorem. The function F is well defined, and differentiable in terms of ε. The derivative is continuous because A is a matrix of scalar coefficients, and J is a function of class C 3 thanks to Hypothesis 2, p 71. In terms of the second variable, as ∇ 2 J is locally Lipschitz, and the other terms are locally bounded, F is then of class C 1 . Thanks to Theorem 4, the problem (3.22) admits a unique maximal solution. To prove the last part of the Lemma, one notes that d dε

(∇J(U ε ) -εAU ε ) = (∇ 2 J(U ε ) -εA) d dε U ε -AU ε = 0.
Since ∇J(U 0 ) = 0 it shows that ∇J(U ε ) -εAU ε = 0 on the maximal interval, (3.20) is satisfied.

In the rest of this Section, we prove that ε max > 1.

Upper bound of J(U ε )

In this Section, the objective is to prove that J(U ε ) is bounded, which is necessary to conclude that the solution of the problem (3.20) stays in the domain D.

Lemma 5. There exists U ∈ D such that the following inequality is satisfied on the maximal interval

J(U ε ) J(U ) < +∞.
Proof. Let us take U ∈ ker(A) ∩ D that is non empty by Hypothesis 3, p 72. The convexity of J implies that

J(U ε ) + ∇J(U ε ), U -U ε J(U ).
One finds

J(U ε ) + εAU ε , U -εAU ε , U ε J(U ).
The matrix A is skew symmetric, hence AU ε , U ε = 0. So

J(U ε ) + ε AU ε , U J(U ).
Using again the property of skew symmetry, one has

ε AU ε , U = -ε AU , U ε . As U ∈ ker(A) ∩ D, hence -ε AU , U ε = εAU ε , U = 0. So J(U ε ) J(U ) < +∞.
In addition, since J is a coercive function by Hypothesis 2, p 71, there exists K < +∞ such that

||U ε || < K (3.24)
for all ε in the maximal interval.

End of the proof of Theorem 3

The end of the proof of Theorem 3, p 72, is based on the following standard result.

Theorem 5.

[see Demailly [START_REF] Demailly | Analyse Numérique et Equations Différentielles-4ème Ed[END_REF], 

C = D ∩ B(0, K) ∩ {V ∈ D such that ||∇J(V )|| 2||A||K} . It remains to prove that C is a compact of D. Let us take a sequence V n ∈ C for n ∈ N. Since (V n ) is bounded, there exists V ∈ B(0, K) and a subsequence still denoted V n such that V n → V . Necessarily V ∈ D, so either V ∈ ∂D or V ∈ D.
Let us assume that V ∈ ∂D. Thanks to Hypothesis 2, p 71 inequality (3.19), one has

||∇J(V n )|| → +∞. It is a contradiction with the definition of C. Therefore V ∈ D. Since J is C 2 , ∇J is a continuous function and ||∇J(V )|| 2||A||K. So V ∈ C, which shows that C is a compact of D.
Proof of Theorem 3, p 72. Thanks to Proposition 9 and Theorem 5, one has that ε max > 1. Therefore, one takes ε = 1 which concludes the proof of existence of the solution of (3.16). 

Verification of the hypothesis for the prediction scheme

In order to apply Theorem 3, p 72, to the prediction step (3.1), the functional J and the matrix A must satisfy a few criteria. In a first part we analyze the properties of A and J in the case of a perfect gas and in a second part we apply the Theorem of existence and uniqueness of a solution for the implicit scheme (3.1).

Properties of A

We start with the properties of A. To apply the Theorem of existence and uniqueness, we recall that the matrix A must satisfy Hypothesis 2, p 71, that is to be skew symmetric, and with a kernel that intersects the domain of definition of the functional J.

Property 16. The matrix A defined in (3.7) is skew-symmetric.

Proof. One has

A T =      0 C T B T 0      , where B T ∈ M dN,N (R) and C T ∈ M N,dN (R). For all i, j ∈ J , one has C T ji ∈ M 1,d (R) C ji T =   - r∈R j ∩R i A jr A -1 r C ir   T = - r∈R j ∩R i (C ir ) T (A jr A -1 r ) T , = - r∈R j ∩R i (C ir ) T (A -1 r ) T (A jr ) T , = - r∈R j ∩R i (C ir ) T A -1 r A jr , = -B ij .
because the matrices A jr and A r are symmetric. Similarly, one has

B ji T = -C ij ∈ M d,1 (R). The matrix A is then skew-symmetric.

Property 17. The kernel of the matrix A in (3.7) and the domain of definition

D =] -∞, 0[ N ×R dN of J in Definition 9 intersect.
Proof. We first evaluate the kernel of the matrix A.

Let X = ((-p i ), (u i )) ∈ R N × R dN satisfying AX = 0. One then has    r∈R j C jr , A -1 r i∈Jr A ir u i - r∈R j A jr A -1 r i∈Jr C ir (-p i )    = 0.
For all i ∈ {1, . . . , N }, one takes p i = k where k ∈ N and u i = v with v ∈ Z. Verify that X = ((-k), (v i )) ∈ ker(A). One has

AX =    r∈R j C jr , A -1 r i∈Jr A ir v - r∈R j A jr A -1 r i∈Jr C ir (-k)    , =    r∈R j C jr , A -1 r A r v k r∈R j A jr A -1 r i∈Jr C ir    , =    r∈R j C jr , v k r∈R j A jr A -1 r i∈Jr C ir    .
As i∈Jr C ir = 0 and r∈R j

C jr = 0 one concludes X ∈ ker(A). In particular one can choose X = ((-1 i ) i∈{1,...,N } , (0 i ) i∈{1,...,N } ) and then X ∈ ker(A) ∩ D.

Properties of J

We focus in this Section on the functional J. To apply Theorem 3, p 72 J must satisfy Hypothesis 3, p 72. One then needs to verify that J is C 3 , strictly convex, coercive and that its gradient explodes at the boundary of the domain D.

In order to prove the strict convexity of J, the functions L 1 j , L 2 j , Q 1 r and Q 2 r are analyzed. The first two are obviously convex. L 1 j because it is linked to the equation of state (perfect gas, stiffened gas, convex law), L 2 j because it is quadratic by definition. The last two functions need a more precise analysis.

Property 18. For all node r ∈ R, the function Q 1 r defined by (3.14) is a positive and strictly convex quadratic form.

Proof. The function Q 1 r is for all r ∈ R the quadratic form associated to the positive symmetric matrix A -1 r . Hence, Q 1 r is strictly positive and strictly convex for all non zero (-p j ) j∈J .

Property 19. The function Q 2 r given by (3.15) is a non negative and convex quadratic form for all node r ∈ R.

Proof. For the convexity, as the matrices A jr are positive for all j ∈ J and for all r ∈ R, it implies that Q 2 r is a convex function. For the positivity, we need to prove that for all u ∈ R dN , one has

Q 2 r ((u l ) l∈J ) 0. For all r ∈ R, we denote A r v r = j∈Jr A jr u j . By definition of A r , one has A r = j∈Jr A jr . Evaluate 2Q 2 r ((u l ) l∈J ) = j∈Jr A jr u j , u j - j∈Jr A jr u j , A -1 r j∈Jr A jr u j , = j∈Jr A jr u j , u j - j∈Jr A jr u j , A -1 r A r v r , = j∈Jr A jr u j , u j - j∈Jr A jr u j , v r .
A term is artificially introduced to be able to write Q 2 r under the form of a unique scalar product.

2Q 2 r ((u l ) l∈J ) = j∈Jr A jr u j , u j -2 j∈Jr A jr u j , v r + j∈Jr A jr u j , v r , = j∈Jr A jr u j , u j -2 j∈Jr A jr u j , v r + A r v r , v r .
As A jr is a symmetric matrix, one can separate the scalar product of the mixed terms.

2Q 2 r ((u l ) l∈J ) = j∈Jr A jr u j , u j - j∈Jr A jr u j , v r - j∈Jr A jr v r , u j + A r v r , v r , = j∈Jr A jr u j , u j -v r - j∈Jr A jr v r , u j -v r , = j∈Jr A jr (u j -v r ), u j -v r .
The function Q 2 r is indeed a non negative quadratic form because the A jr matrices are non negative.

Property 20. The functional J defined by (3.11) is of class C 3 and strictly convex.

Proof. The functions L 1 j , L 2 j , Q 1 r and Q 2 r are differentiable. The functional J is then differentiable as a sum of C 3 functions.

For the strict convexity, one needs to evaluate the second derivatives of the L j functions. For all j, k ∈ J one has

∂ 2 L 1 j ∂(-p j ) 2 = 1 γ (γ -1) 1 γ exp S C v 1 γ p -1-1 γ j > 0, ∂ 2 L 1 j ∂(-p j )∂(-p k ) = 0,
and

∂ 2 L 2 j ∂u 2 j = 1 > 0, ∂ 2 L 2 j ∂u j ∂u k = 0.
For all j ∈ J the L j functions are then strictly convex. Thanks to the previous results, Q 1 r is strictly convex and Q 2 r is convex. So, J is strictly convex and for all U ∈ D, for all Z ∈ R N +dN , Z = 0 one has ∇ 2 J(U )Z, Z > 0.

Property 21. The function J given by (3.11) is coercive.

Proof. For all node r ∈ R, the quadratic functions Q 1 r et Q 2 r are non negative, hence bounded from below. There exists a set of non negative scalars (δ r ) r∈R such that

r∈R Q 1 r ((-p j ) j∈J ) + Q 2 r ((u j ) j∈J r∈R δ r 0.
For all j ∈ J , the function L 1 j is coercive. Indeed, τ n j > 0, γ > 1 and exponential is a positive function. Moreover p 1-1 γ is dominated by p when p → +∞. The function L 2 j is coercive for all j ∈ J as a quadratic form. As the function J is a finite sum of coercive and non negative functions bounded from below, J is coercive. Property 22. For all V ∈ ∂D, there exists a unit direction d ∈ R N +dN which is outward from D such that (∇J(V -εd), d)

ε→0 + -----→ V -εd∈D +∞.
Also, for all V ∈ ∂D, one has

||∇J(W )|| W →V ----→ W ∈D +∞.
Proof. The first derivative of J with respect to -p j is

∂J ∂(-p j ) = M j ∆t (γ -1) exp S C v 1 γ p -1 γ j - M j ∆t τ n j + r∈R j C jr , A -1 r i∈Jr i =j C ir (-p i ) + r∈R j C jr , A -1 r C jr (-p j ) .
Let V ∈ ∂D. It means that there exists a subset K ⊂ {1, . . . , N } such that for all k ∈ K, V k = 0. Take d ∈ R N +dN such that ∀ k ∈ K, d k > 0 and for all j / ∈ K, d j = 0. The limit of the first derivative of J when ε → 0

+ is ∀ k ∈ K lim ε→0 + ∂J ∂(-p k ) V -εd = lim ε→0 + M j ∆t (γ -1) exp( S C v ) 1 γ 1 ε 1 γ -τ n k + lim ε→0 + r∈R k C kr , A -1 r i∈Jr i =j C ir (-p i ) + lim ε→0 + r∈R k C kr , A -1 r C kr ε , = +∞.
Indeed, the first term is the one that gives the limit. The second term does not depend on ε and is finite. The other two are finite sums. By summation on k ∈ K and then over all other indices for which the value of d is 0, one obtains (3.18). An evaluation of lim

W →V ∂J ∂(-p k ) W
easily gives (3.19).

Precisions in the case of a stiffened gas or a convex gas law

In the case of another gas law, the domain of definition of J changes via the functions L j . Thus, one needs to check properly the satisfaction of Hypothesis 3, p 72.

For the stiffened gas law, the modification consists in a translation of the domain of definition of the function J: D stif f ened =] -∞, -π[ n ×R m . Indeed, the term p + π must remain positive, which implies to take p between ] -π, +∞[. As the vector of unknowns contains the set of (-p j ) j∈J , it explains the translation. The function L 1 j changes into

L 1 j (-p) = -(p + π) 1-1 γ (γ -1) 1 γ -1 γexp S C v 1 γ + τ n j p.
The function L 2 j remains the same. The verification of Hypothesis 3, p 72 is as follows. Let V ∈ ∂D. It means that there exists a subset K ⊂ {1, . . . , N } such that for all k ∈ K, V k = -π. Take d ∈ R N +dN such that ∀ k ∈ K, d k > 0 and for all j / ∈ K, d j = 0. The limit of the first derivative of J when

ε → -π is ∀ k ∈ K lim ε→-π ∂J ∂(-p k ) V -εd = lim ε→-π M j ∆t   (γ -1) exp( S C v ) 1 γ 1 (ε + π) 1 γ -τ n k   + lim ε→-π r∈R k C kr , A -1 r i∈Jr i =j C ir (-p i ) + lim ε→-π r∈R k C kr , A -1 r C kr ε , = +∞.
Indeed, the first term is the one that gives the limit. The second term does not depend on ε and is finite. The other two are finite sums. By summation on k ∈ K and then over all other indices for which the value of d is 0, one obtains (3.18). An evaluation of lim

W →V ∂J ∂(-p k ) W easily gives (3.19).
In the case of a convex law, one needs to isolate the pressure dependent term that must remain positive and set D convex consequently. Only the Definitions of L j vary. The explosion of the gradient at the boundary of D convex also needs to be checked.

Application of the Theorem for the Euler equations (1.3)

Corollary 1. Considering physically admissible data (τ j > 0 and p j > 0), the scheme (3.1) can be written under the form (3.16). Therefore, it is unconditionally stable.

Proof. Let n = N and m = dN . Let U = ((-p j ) j∈J , (u j ) j∈J ), and A and J defined respectively by (3.7) and Definition (3.11). All the Hypotheses of Theorem 3, p 72, are satisfied. The existence and uniqueness of a solution to the implicit scheme of the isentropic Euler equations for all time step is proved. In this Chapter, the boundary conditions are studied in details and every hypothesis for the application of the theorem is verified. Then we explain how to handle the GCL, from the trivial 1D case, via the 2D case that is detailed, and to the 3D case for which we precise the difficulties. After that, Section 4.3 explains a possible coupling between our implicit scheme and the acoustic explicit solver. We give theoretical details about the management of the interface between an explicit and an implicit zone and provide a numerical validation.

Chapter 4

Boundary conditions, GCL and coupling

Outline of the current chapter

Boundary conditions treatment

In this Section, we identify how the boundary conditions defined in Section 2.6 affect the objects of the gradient formulation. The three boundary conditions treated in Lagrangian are pressure in Section 4.1.1, symmetry in Section 4.1.2 and velocity in Section 4.1.3. Obviously more than one boundary condition can be applied on the boundary at once, and the order of application follows the same than our study.

Pressure boundary condition

We recall that a pressure boundary condition corresponds to j∈Jr C jr p jr + (-j∈Jr C jr )p ext = 0 at each node. Starting from (2.9), ∀ j ∈ J

                       M j ∆t (τ j -τ n j ) - r∈R j C jr , A -1 r i∈Jr C ir p i + r∈∂R j C jr , A -1 r i∈Jr C ir p ext = r∈R j C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) - r∈R j A jr A -1 r i∈Jr A ir u i + r∈R j A jr u j + r∈∂R A jr A -1 r i∈Jr C ir p ext = - r∈R j A jr A -1 r i∈Jr C ir (-p i ),
one can now write the changes it makes for matrix A and function J.

Pressure boundary conditions do not affect the definition of the matrix A. For the function J, it only adds a term for boundary nodes. Indeed, in the case of pressure boundary conditions, let us denote the function J p . One has J p : D → R,

J p (U ) = J(U ) + j∈J r∈∂R j   C jr (-p j ), A -1 r i∈Jr C ir p ext + i∈Jr C ir p ext , A -1 r A jr u j   .
where J is the regular function defined by (3.11), p 67. As a term has been added, let us verify the properties of J p . To apply Theorem 3, p 72, the function needs to satisfy Hypothesis 2, p 71.

Proposition 10. The function J p is continuous, C 3 and strictly convex on D.

Proof. The additional term is linear and differentiable so the function J p keeps the property of continuity, derivability and convexity of J.

For the coercivity, let us detail the calculations.

Proposition 11. The function J p is coercive on D.

Proof. For all r ∈ R, the function Q 2 r is non negative and hence bounded from below. It is also the case for all r ∈ ∂R for the function Q 1 r . So there exists a family of non negative coefficients (δ r ) r∈R 0 such that 

r∈∂R Q 1 r ((-p j ) j∈J ) + r∈R Q 2 r ((u j ) j∈J ) r∈R δ r 0.
C ir p ext , A -1 r A jr u j = j∈J u j , u j 2 - j∈J u n j , u j + r∈∂R j∈Jr i∈Jr C ir p ext , A -1 r A jr u j , = j∈J u j , u j 2 - j∈J u n j , u j + r∈∂R j∈Jr A jr A -1 r i∈Jr C ir p ext , u j , = j∈J u j -u n j + r∈∂R j A jr A -1 r i∈Jr
C ir p ext , u j .

The limit when u → ±∞ is equal to infinity as a quadratic form.

The function J p is coercive as the finite sum of coercive functions.

For the verification of the limits, the reader can refer to the general proof, Property 22 p 81. Indeed, the additional terms do not interfere in the calculation.

Symmetry boundary condition

A boundary condition of symmetry or sliding conditions are given by

u r , n = 0, ∀ r ∈ ∂R,
where n is a chosen vector. From Chapter 2 one has (2.12), ∀ j ∈ J such that a symmetry is applied on the associated boundary nodes

                                   M j ∆t (τ j -τ n j ) - r∈∂R j C jr , Ã-1 r (Id -n ⊗ n) i∈Jr C ir p i - r∈ Rj C jr , A -1 r i∈Jr C ir p i = r∈∂R j C jr , Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i + r∈ Rj C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) + r∈R j A jr u j - r∈∂R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i - r∈ Rj A jr A -1 r i∈Jr A ir u i = - r∈∂R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-p i ) - r∈ Rj A jr A -1 r i∈Jr C ir (-p i ).
One can now express A and J in this configuration.

The right handside is the vector A sym U with U = ((-p j ) j∈J , (u j ) j∈J ). We denote A sym the matrix A containing the sliding boundary conditions.

A sym U =       i∈J ∂i∩∂j =∅ r∈∂R j ∩∂R i (C jr ) T Ã-1 r (Id -n ⊗ n)A ir u i + i∈J ∂i∩∂j =∅ r∈ Rj ∩ Ri (C jr ) T A -1 r A ir u i - i∈J ∂i∩∂j =∅ r∈∂R j ∩∂R i A jr Ã-1 r (Id -n ⊗ n)C ir (-p i ) - i∈J ∂i∩∂j =∅ r∈ Rj ∩ Ri A jr A -1 r C ir (-p i )       . We recall that Ãr := [(Id -n ⊗ n)A r (Id -n ⊗ n) + tr(A r )n ⊗ n]. One deduces A sym =      0 B sym C sym 0      (4.1)
with B sym ∈ M N,dN (R) and C sym ∈ M dN,N (R).

For all i, j ∈ J ,

B sym ji = r∈ Ri ∩ Rj (C jr ) T A -1 r A ir + r∈∂R i ∩∂R j (C jr ) T Ã-1 r (Id -n ⊗ n)A ir ∈ M 1,d (R).
For the rectangular matrix C sym , for all i, j ∈ J , one has

C sym ji = - r∈ Rj ∩ Ri A jr A -1 r C ir - r∈∂R j ∩∂R i A jr Ã-1 r (Id -n ⊗ n)C ir ∈ M d,1 (R).
To say it differently, the matrix A sym consists in the matrix A with A r for the interior nodes, and for the boundary nodes of the altered invertible matrix Ãr .

The matrix A sym still satisfies Hypothesis 3, p 72. Indeed, Proposition 12. The matrix A sym defined by (4.1) is skew symmetric and its kernel intersects D.

Proof. Let us evalutate the tranpose of A sym .

A T sym =      0 C T sym B T sym 0      .
One has for all i, j ∈ J

C sym T ji = - r∈ Rj ∩ Ri A jr A -1 r C ir - r∈∂R j ∩∂R i A jr Ã-1 r (Id -n ⊗ n)C ir T , = - r∈∂R j ∩∂R i (C ir ) T (A jr Ã-1 r (Id -n ⊗ n)) T - r∈ Rj ∩ Ri (C ir ) T (A jr A r -1) T .
Thanks to the symmetry of A jr and Ãr , one concludes

C sym T ji = - r∈∂R j ∩∂R i (C ir ) T Ã-1 r (Id -n ⊗ n)A jr - r∈ Rj ∩ Ri (C ir ) T A -1 r A jr , = -B sym ij .
So the matrix A sym is skew symmetric.

Concerning the kernel of this matrix A sym , let us show that X = ((-1) j∈J , (0) j∈J ) is in ker(A sym )∩ D. It is evident that X belongs to D. The vector X also satisfies the sliding conditions, namely for all r ∈ ∂R, one has 0, n = 0. Let us evaluate A sym X.

A sym X =     r∈∂R j C jr , A -1 r (Id -n ⊗ n) i∈Jr A ir 0 + r∈ Rj C jr , A -1 r i∈Jr A ir 0 - r∈∂R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-1) - r∈ Rj A jr A -1 r i∈Jr C ir (-1)     , =   0 r∈∂R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr C ir + r∈ Rj A jr A -1 r i∈Jr C ir   , =   0 r∈R j A jr Ã-1 r (Id -n ⊗ n) i∈Jr C ir   .
As i∈Jr C ir = 0, the vector X belongs to the kernel of A sym .

To find the expression of J sym , we multiply the first equation by -p j and the second equation by u j , then sum over all j ∈ J . After rearrangment, one gets

                                                       j∈J M j ∆t (τ j -τ n j ) + r∈∂R j j∈Jr C jr (-p j ), Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-p i ) + r∈ Rj j∈Jr C jr (-p j ), A -1 r i∈Jr C ir (-p i ) = - j∈J r∈∂R j C jr (-p j ), Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i - j∈J r∈ Rj C jr (-p j ), A -1 r i∈Jr A ir u i , j∈J M j ∆t (u j -u n j ) + r∈R j j∈Jr A jr u j , u j - r∈∂R j i∈Jr A ir u i , Ã-1 r (Id -n ⊗ n) j∈Jr A jr u j - r∈ Rj i∈Jr A ir u i , A -1 r j∈Jr A jr u j = - j∈J r∈∂R j i∈Jr C ir (-p i ), ( Ã-1 r (Id -n ⊗ n)) T A jr u j - j∈J r∈ Rj i∈Jr C ir (-p i ), A -1 r A jr u j .
The definition of J sym is

J sym : D → R J sym (U ) = j∈J M j ∆t L 1 j (-p j ) + L 2 j (u) + r∈ Rj Q 1 r ((-p j ) j∈J ) + Q 2 r ((u j ) j∈J ) + r∈∂R 1 2 j∈Jr C jr (-p j ), Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-p i ) + r∈∂R j 1 2 j∈Jr A jr u j , u j - r∈∂R 1 2 j∈Jr A jr u j , Ã-1 r (Id -n ⊗ n) i∈Jr A ir u i .
One deduces that L 1 j and L 2 j remain the same, the functions Q 1 r and Q 2 r are summed up over the interior nodes instead of all the nodes. We call

Q1 r ((-p j ) j∈J ) = r∈ R Q 1 r ((-p j ) j∈J ) + r∈∂R 1 2 j∈Jr C jr (-p j ), Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-p i ) and Q2 r ((u j ) j∈J ) = r∈ R Q 2 r ((u j ) j∈J ) + r∈∂R j 1 2 j∈Jr A jr (u j ) j , (u j ) j - r∈∂R 1 2 j∈Jr A jr (u j ) j , Ã-1 r (Id -n ⊗ n) i∈Jr A ir (u j ) i .
Proposition 13. The function J sym is continuous, C 3 , strictly convex and coercive on D.

Proof. The continuity and derivability of J sym do not need further explanation. We concentrate first on the convexity. The function Q1 r is convex, because the function Q 1 r is strictly convex, and the additional term 1 2 j∈Jr

C jr (-p j ), Ã-1 r (Id -n ⊗ n) i∈Jr C ir (-p i
) is a quadratic form associated to the non negative symmetric matrix Ã-1 r (Idn ⊗ n). Thus Q2 r is non negative and convex for all non zero (-p j ), j ∈ J . The function Q2 r is convex because the matrices A jr are positive for all j ∈ J and for all r ∈ R. It implies that the function Q 2 r is convex as well as the additional terms. For the positivity, we need to prove that for all u ∈ R dN satisfying the sliding conditions, one has Q2 r ((u l ) l∈J ) 0. Indeed, for all r ∈ R we denote Ãr v r = j∈Jr A jr u j , with v r satisfying the sliding boundary conditions. By definition one also has

A r = j∈Jr A jr . Evaluate 2 Q2 r ((u l ) l∈J ) = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j - j∈Jr A jr u j , Ã-1 r (Id -n ⊗ n) j∈Jr A jr u j   , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j j∈Jr
A jr u j , u j -

r∈∂R j j∈Jr A jr u j , Ã-1 r (Id -n ⊗ n) Ãr v r , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j j∈Jr A jr u j , u j - r∈∂R j j∈Jr A jr u j , v r .
Indeed, one has Ãr := [(Idn ⊗ n)A r (Idn ⊗ n) + tr(A r )n ⊗ n] and thanks to Proposition 9 p 51, one rearranges Ã-1

r (Id -n ⊗ n) Ãr = (Id -n ⊗ n) Ã-1 r Ãr = (Id -n ⊗ n).
Moreover, because v r satisfies the sliding conditions, one has (Idn ⊗ n)v r = v r . A term is artificially introduced to be able to write Q2 r under the form of a unique scalar product.

2 Q2 r ((u l ) l∈J ) = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j -2 j∈Jr A jr u j , v r + j∈Jr A jr u j , v r   , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j -2 j∈Jr A jr u j , v r + Ãr v r , v r   .
As A jr is a symmetric matrix, one can separate the scalar product of the mixed terms, and inject the definition of Ãr .

2 Q2 r ((u l ) l∈J ) = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j - j∈Jr A jr u j , v r - j∈Jr A jr v r , u j + Ãr v r , v r   , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j - j∈Jr A jr u j , v r - j∈Jr A jr v r , u j   + r∈∂R j (Id -n ⊗ n)A r (Id -n ⊗ n) + tr(A r )n ⊗ n v r , v r , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j - j∈Jr A jr u j , v r - j∈Jr A jr v r , u j   + r∈∂R j (Id -n ⊗ n)A r (Id -n ⊗ n)v r , v r + r∈∂R j tr(A r )n ⊗ nv r , v r ,
Use the properties of symmetry and the definition of sliding conditions to conclude.

2 Q2 r ((u l ) l∈J ) = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j - j∈Jr A jr u j , v r - j∈Jr A jr v r , u j   + r∈∂R j A r v r , v r + tr(A r ) v r , v r , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr u j , u j -v r - j∈Jr A jr v r , u j -v r + tr(A r ) v r , v r , = 2 r∈ R Q 2 r ((u l ) l∈J ) + r∈∂R j   j∈Jr A jr (u j -v r ), u j -v r + tr(A r ) v r , v r   , = r∈R j   j∈Jr A jr (u j -v r ), u j -v r   + r∈∂R j tr(A r ) v r , v r .
The function Q2 r is indeed a non negative quadratic form because the A jr matrices are non negative. Hence, the function J sym is strictly convex as the sum of convex and strictly convex functions.

For the coercivity, one can bound the quadratic functions Q1 r and Q2 r from below, following the same steps than explained in Proposition 21 p 80. The function J sym is then coercive for the same reasons than function J.

For the limits at the boundaries in Hypothesis 2 p 71 use the same technique than in Proposition 22 p 81 because the additional terms do not add any difficulties.

Velocity boundary condition

The velocity boundary conditions can be homogeneous or non homogeneous, the second case being more general than the first. Hence, only the second case is treated in this manuscript.

The non homogeneous Dirichlet boundary condition consists in a given velocity on each boundary ∂Ω of the domain, see Section 2.6.3. We denote v r the value imposed on the boundary vertex r ∈ R. Starting from (2.15)

                           M j ∆t (τ j -τ n j ) - r∈ Rj C jr , A -1 r i∈Jr C ir p i - r∈∂R j C jr , v r = r∈ Rj C jr , A -1 r i∈Jr A ir u i , M j ∆t (u j -u n j ) + r∈ Rj   A jr u j -A jr A -1 r i∈Jr A ir u i   + r∈∂R j A jr (u j -v r ) = - r∈ Rj A jr A -1 r i∈Jr C ir (-p i ).
One has

A dir U =        r∈ Rj C jr , A -1 r i∈Jr A ir u i j - r∈ Rj A jr A -1 r i∈Jr C ir (-p i ) j        .
Rearranging the expression, one finds

r∈ Rj C jr , A -1 r i∈Jr A ir u i = r∈ Rj i∈Jr (C jr ) T A -1 r A ir u i , = i∈J ∂i∩∂j =∅ r∈ Ri ∩ Rj (C jr ) T A -1 r A ir u i .
The matrix A dir is then given by

A dir =      0 B dir C dir 0      , (4.2) with B dir ∈ M N,dN (R) and C dir ∈ M dN,N (R). For all i, j ∈ J B dirji = r∈ Ri ∩ Rj (C jr ) T A -1 r A ir ∈ M 1,d (R).
For the rectangular matrix C dir , for all i, j ∈ J , one has

C dirji = - r∈ Rj ∩ Ri A jr A -1 r C ir ∈ M d,1 (R).
Proposition 14. The matrix A dir , defined by (4.2) is skew-symmetric and its kernel intersects the domain of definition D of the functional J dir .

Proof. The skew-symmetry is verified because of the symmetry of the matrices A jr and A r , see proof of Property 16 p 78. The kernel of A dir intersects the domain of definition of the functional, for example one can take the vector X = ((-1) j∈J , (0) j∈J ) that satisfies the Dirichlet boundary conditions and belongs to the kernel of A dir in addition to being in D.

The function J dir is given by Proof. The additional terms are linear for two of them, and one is a positive quadratic term. The function J dir then keeps the property of strict convexity of J.

J dir : D → R J dir (U ) = j∈J M j ∆t L 1 j (-p j ) + L 2 j (u) + r∈ R Q 1 r ((-p j ) j∈J ) + Q 2 r ((u j ) j∈J ) + j∈J r∈∂R j -C jr , v r (-p j ) + 1 2 A jr u j , u j -A jr v r , u j .
Proposition 16. The function J dir is coercive on D under the sufficient hypothesis that

∀ j ∈ J , M j ∆t τ n j + r∈∂R C jr , v r > 0.
Proof. To evaluate the limit of J dir when ||U || → +∞, we separate the components. For all r ∈ R, the functions Q 1 r and Q 2 r are non negative, hence bounded from below by a set of non negative scalar terms. For the velocity related terms, one has j∈J

M j ∆t L 2 j (u)+ j∈J r∈∂R j 1 2 A jr u j , u j -A jr v r , u j = j∈J M j ∆t u j , u j 2 - j∈J M j ∆t u n j , u j + j∈J r∈∂R j 1 2 A jr u j , u j -A jr v r , u j , = j∈J u j , 1 2   M j ∆t + r∈∂R j A jr   u j - M j ∆t u n j - r∈∂R j
A jr v r .

The limit when u j → ±∞ is equal to infinity, because A jr are positive matrices.

The limit depends then on the pressure related terms. Denote K j = γ(γ -1)

-1+ 1 γ exp S j Cv 1 γ > 0
in the case of a perfect gas. One finds

j∈J M j ∆t L 1 j (-p j ) + j∈J r∈∂R j -C jr (-p j ), v r = j∈J M j ∆t -K j p -1 γ + τ n j p j + j∈J r∈∂R j C jr , v r p j , = j∈J   - M j ∆t K j p 1 γ j + M j ∆t τ n j + r∈∂R j C jr , v r    p j .
When p j → +∞, the first term tends to zero. The sum of the other two must be positive to obtain the coercivity. Hence, we obtain the following coercivity condition

M j ∆t τ n j + r∈∂R j C jr , v r > 0.
Remark 7. If we consider the 1D case:

v 1 2 = u G and v N + 1 2 = u D .

It gives the following condition

M 1 ∆t τ n 1 -u G > 0 and M N ∆t τ n N + u D > 0.
Hereafter are some examples of boundary conditions. In Figure 4.1, the condition of Proposition 16 is satisfied. In Figure 4.2 and Figure 4.3, this condition is violated leading to crossing or deletion of cells in the mesh. 

j 0 j 1 j 2 j N u G u D t = 0 j 0 j 1 j 2 j N t + ∆t
j 0 j 1 j 2 j N u G u D t = 0 j 0 j 1 j 2 j N t + ∆t j 0 j 1 j 2 j N t + 2∆t
j 0 j 1 j 2 j N u G u D t = 0 j 0 j 1 j 2 j N t + ∆t j 0 j 2 j N t + 2∆t

GCL management

The GCL (Geometric Conservation Law) is a law which states that every internal displacement in the domain of calculation does not change its global volume. The GCL describes the variation of the fluid volume in the Lagrangian description. As the mass does not change in time in the Lagrangian formalism, but the density of the fluid volume changes, then the volume must change to satisfy the mass principle conservation.

∀ ω(t) ⊂ Ω(t) d dt ˆω(t) ρdx = 0,
where ω(t) is a Lagrangian subdomain of the domain Ω(t), and d dt is the usual derivative. At a semi-discrete level, the GCL is satisfied, see Property 23. However, after time discretization one needs to study what happens.

Property 23. Let ρ j > 0 be the mass density in the cell j ∈ J . For all cell j ∈ J , one has equivalence between (ρ j V j ) (t) = 0 and M j τ j (t) = r∈R C jr , u r .

Proof. Let j be a cell in the mesh M. One has M j (t) = ρ j (t)V j (t). In the case of a Lagrangian mesh, the mass does not change in time so M j (t) = 0. One then has (ρ j V j ) (t) = 0.

For all t > 0, ρ j is supposed to be positive. As M j (t) = ρ j (t)V j (t), one then has V j (t) = M j (t)τ j (t) where ρ j = 1 τ j . Derive in time to obtain V j (t) = M j (t)τ j (t) + M j (t)τ j (t) = M j (t)τ j (t). Indeed the mass derivative is equal to 0 in Lagrangian formalism. Taking the definition of

V j (t) = r∈R C jr , u r , one then concludes M j (t)τ j (t) = r∈R C jr , u r .

1D case

In the 1D case, the GCL property is easily obtained. For all j ∈ J and for all r ∈ R, the C jr are constants and equal to ±1. Indeed, the volume of cell j is given by x j+ 1 2 -x j-1 2 and thanks to (1.11) p 29, one finds the value of the C jr . Proposition 17. Let M be a 1D mesh. Let us suppose that for all time step t n , ρ n j > 0. For all cell j ∈ J one then has the GCL property

V n+1 j -V n j ∆t = M j τ n+1 j -τ n j ∆t . Proof. Recalling V n j = x j+ 1 2 -x j-1 2
, one evaluates the variation of the volume

V n+1 j -V n j ∆t = x n+1 j+ 1 2 -x n+1 j-1 2 -x n j+ 1 2 + x n j-1 2 ∆t , = x n+1 j+ 1 2 -x n j+ 1 2 -x n+1 j-1 2 + x n j-1 2 ∆t , = x n+1 j+ 1 2 -x n j+ 1 2 ∆t - x n+1 j-1 2 -x n j-1 2 ∆t .
With the definition of the velocity, one finds

V n+1 j -V n j ∆t = u n+1 j+ 1 2 -u n+1 j-1 2 .
The discretized scheme gives

u n+1 j+ 1 2 -u n+1 j-1 2 = M j τ n+1 j -τ n j ∆t .
And hence the property is verified.

2D case

The 2D case requires a lot more attention. Indeed, the C jr are linear functions of the position. Let us start with some results before stating the requirements for the GCL.

Property 24. For all cell j ∈ J , V j satisfies

V j = 1 2 r∈R (x r y r+1 -x r+1 y r ). (4.4)
Proof. In the 2D planar case, the volume V j of a cell is the sum of all oriented triangular areas formed by two successive vertices x r = (x r , y r ) and x r+1 = (x r+1 , y r+1 ), considering the vertices are arranged counter clockwise, and the origin is O = (0, 0). The area of an oriented triangle is evaluated as follows

A xr,x r+1 = 1 2 det x r y r x r+1 y r+1 , = 1 2 (x r y r+1 -x r+1 y r ).
The volume is then the sum on all vertices

V j = r∈R A xr,x r+1 , = r∈R 1 2 (x r y r+1 -x r+1 y r ).
Proposition 18. For all cell j ∈ J , and for all node r ∈ R,

C jr = 1 2 y r+1 -y r-1 x r-1 -x r+1 . (4.5)
Proof. By definition, C jr = ∇ xr V j . Let us differentiate the volume formula (4.4).

∇ xr V j = ∇ xr 1 2 r∈R (x r y r+1 -x r+1 y r ), = 1 2 ∇ xr (x r y r+1 -x r+1 y r ) + (x r-1 y r -x r y r-1 ) , = 1 2 
y r+1 -y r-1 x r-1 -x r+1 .
In 2D, one also has the following formula Proposition 19. For all cell j ∈ J one has

V j = 1 2 r∈R C jr , x r .
Proof. Taking the definition of the corner vector of each cell j ∈ J and replacing it by its explicit formula, one has

1 2 r∈R C jr , x r = 1 2 r∈R 1 2 y r+1 -y r-1 x r-1 -x r+1 , x r y r , = 1 4 r∈R (y r+1 -y r-1 )x r + (x r-1 -x r+1 )y r , = 1 4 r∈R (y r+1 x r -y r-1 x r + y r x r-1 -y r x r+1 ).
Separate the terms depending on the vertices involved, and reindex the sum.

1 2 r∈R C jr , x r = 1 4 r∈R (x r y r+1 -x r+1 y r ) + 1 4 r∈R (y r x r-1 -y r-1 x r ), = 1 4 r∈R (x r y r+1 -x r+1 y r ) + 1 4 r+1∈R (x r y r+1 -x r+1 y r ), = 1 2 r∈R (x r y r+1 -x r+1 y r ), = V j .
We will now focus on the discretization in time. We need to verify that for all cell j ∈ J , the volume satisfies

V n+1 j = τ n+1 j M j . (4.6)
To make the calculations, we will consider the following scheme for all cell j ∈ J .

                   τ n+1 j = τ n j + ∆t M j r∈R j C n+ 1 2 jr , u n+1 r , u n+1 j = u n j - ∆t M j r∈R j C n+ 1 2 jr p n+1 jr , S n+1 j = S n j , (4.7)
where C

n+ 1 2 jr = 1 2 (C n jr + C n+1 jr ). It is equivalent to verify (4.6) than V n+1 j -V n j ∆t = r∈R C n+ 1 2 jr , u n+1 r . (4.8)
The property we want to show is that evaluating V n+1 j for all cell j ∈ J using the formula (4.9) is the same than using (4.8).

V n+1 j = 1 2 r∈R C n+1 jr , x n+1 r . (4.9)
Proposition 20. Let M be a 2D mesh. For all time step t n , one has ρ n j > 0 for all j ∈ J . The nodal velocity u r , is evaluated using

∀ r ∈ R      ∀ j ∈ J r , p jr -p j + α j u r -u j , n jr = 0, j∈Jr C jr p jr = 0.
So for all cell j ∈ J , one has

V n+1 j -V n j ∆t = r∈R C n+ 1 2 jr , u n+1 r .
Before the proof of this proposition, let us show an intermediate result.

Property 25. For all cell j ∈ J ,

r∈R C n+1 jr , x n r - r∈R C n jr , x n+1 r = 0.
Proof. The scalar product is developed using the definition (4.5) of the C jr .

r∈R

C n+1 jr , x n r - r∈R C n jr , x n+1 r = r∈R 1 2 
y n+1 r+1 -y n+1 r-1 x n+1 r-1 -x n+1 r+1 , x n r y n r - r∈R 1 2 
y n r+1 -y n r-1 x n r-1 -x n r+1 , x n+1 r y n+1 r , = r∈R 1 2 (y n+1 r+1 -y n+1 r-1 )x n r + (x n+1 r-1 -x n+1 r+1 )y n r -(y n r+1 -y n r-1 )x n+1 r -(x n r-1 -x n r+1 )y n+1 r , = r∈R 1 2 y n+1 r+1 x n r -y n+1 r x n r-1 + r∈R 1 2 y n+1 r x n r+1 -y n+1 r-1 x n r + r∈R 1 2 x n+1 r-1 y n r -x n+1 r y n r+1 + r∈R 1 2 x n+1 r y n r-1 -x n+1 r+1 y n r .
The sums are indexed as follows

r∈R 1 2 y n+1 r+1 x n r -y n+1 r x n r-1 = r∈R 1 2 y n+1 r+1 x n r + r-1∈R 1 2 y n+1 r+1 x n r .
As the sum is over all nodes, the previous term is equal to 0. The same method is applied on all four terms to conclude that

r∈R C n+1 jr , x n r - r∈R C n jr , x n+1 r = 0.
Let us now prove the GCL proposition.

Proof of Property 20. Let j ∈ J . One uses the formula (4.4) and the previous result to make the calculations.

V n+1 j -V n j ∆t = 1 ∆t r∈R 1 2 C n+1 jr , x n+1 r - r∈R 1 2 C n jr , x n r , = 1 ∆t r∈R 1 2 C n+1 jr , x n+1 r - r∈R 1 2 C n jr , x n r - 1 2∆t r∈R C n+1 jr , x n r - r∈R C n jr , x n+1 r , = r∈R 1 2 C n jr , x n+1 r -x n r ∆t + r∈R 1 2 C n+1 jr , x n+1 r -x n r ∆t , = r∈R 1 2 C n jr , u n+1 r + r∈R 1 2 C n+1 jr , u n+1 r , = r∈R 1 2 (C n jr + C n+1 jr ), u n+1 r , = r∈R C n+ 1 2 jr , u n+1 r .
The GCL property is then satisfied. As a matter of fact, using the definition of the scheme (4.7), one finds

V n+1 j -V n j ∆t = M j τ n+1 j -τ n j ∆t . It is necessary to have τ n+1 j = 1 ρ n+1 j
to obtain the entropy inequalities seen in Chapter 2.

The scheme (4.7) will be used as the prediction step scheme, the only difference with (2.4) being the corner vectors C n+ 1 2 jr .

3D case

In the 3D case, it can happen that between time t n and time t n+1 , the deformation of the cell creates a non planar face. The computation of the volume then requires a precise definition of what the geometry of a polyhedron is, see [START_REF] Carré | A cell-centered Lagrangian Hydrodynamics Scheme on General Unstructured Meshes in Arbitrary Dimension[END_REF]. A higher order scheme is needed to be able to interpolate the variation of the volume with a third value of C jr at a different time. Indeed, the variation of the volume in the 3D case corresponds to a polynomial of degree 2, namely

V n+1 j -V j ∆t = A + B∆t + C∆t 2 ,
where A, B, C depend on the corner vectors.

Implicit-explicit coupling

This Section aims at dealing with implicit-explicit coupling. We explain in which configurations it is useful to have such a tool, how to effectively use this coupling and present a numerical validation.

Interest and goals

When the situation we want to simulate concerns more than one fluid, the representation and hence the mesh needs to adapt. Indeed, when more than one fluid is modeled, it is interesting to have an appropriate cell size for each fluid. It can thus lead to great disparities in the dimension of the cells and can constrain the time step even more when an explicit scheme is used. Indeed, the CFL constraint is linked to the cell size and the sound speed via c ∆t ∆x 1. When we want to model water or iron for example, using a stiffened gas law, the sound speed is higher in these materials than in the air. It implies an even smaller time step constraint. In other situations, for example for fluid-structure interactions, when the inner structure is very thin compared to the volume of fluid, we can have great disparities as well in the size of the cells, see To deal with these configurations, it is interesting to use an implicit-explicit coupling. The domain of calculus is separated between different zones. Each part of the mesh is treated using either the acoustic explicit solver or our implicit solver. The zones containing the biggest cells are treated with the explicit solver because in this case the CFL is less restrictive. However, in the zones containing the smallest cells, the implicit scheme is used because not subject to any CFL constraint, see Figure 4.5.

Explicit Implicit Figure 4.5 -Example of a distribution between implicit and explicit zones

At the interface between explicit and implicit cells, the values of the fluxes must coincide, we explain how to deal with it in the next Section.

Method of treatment

The interface between implicit and explicit zones must contain common values of velocity and pressure as we want to have a continuity of the fluxes. It leads to the following interface problem. Consider that there exists a zone interface between cell j and cell j + 1 of a certain mesh M in dimension 1, as in Figure 4.6. The problem at the interface is

j j + 1 j -1 j + 2 r r * j+ 1 2 u * j+ 1 2 , p * j+ 1 2 r + 1 ρ exp , u exp , p exp c exp ρ imp , u imp , p imp c imp Explicit Implicit M e M i
   p j+1 -p * j+ 1 2 = α j+1 (u j+1 -u * j+ 1 2 ), p n j -p * j+ 1 2 = α j (u * j+ 1 2 -u n j ),
where p n j and u n j are respectively the values of the pressure and the velocity in cell j at time t n . The values obtained by the prediction step of the implicit scheme in cell j + 1 are p j+1 for the pressure and u j+1 for the velocity. The fluxes at the interface are p * In multi-D, all the cells that are in contact with the interface must be taken into account in the evaluation of the flux terms, leading to a sum in the interface problem. An illustration is provided in Figure 4.7 I n t e r f a c e

M i M e • u * r p * jr • u * r+1 p * j+1r+1 • u * r+2 p * j+2r+2 • • • • Figure 4.7 -Example of a 2D interface
For all node r belonging to the interface between an explicit and an implicit zone, one has

           F * jr = A jr (u j -u * r ) + C jr p j , ∀ j ∈ J i r F * jr = A jr (u n j -u * r ) + C jr p n j , ∀ j ∈ J e r A r u * r = j∈J i r A jr u j + j∈J e r A jr u n j + j∈J i r C jr p j + j∈J e r C jr p n j .
The sets J r are defined as follows

J i r = {j ∈ J i ⊂ M i : r ∈ j}, J e r = {j ∈ J e ⊂ M e : r ∈ j}.
Theorem 3, p 72, states that there exists a unique solution for the prediction step into the implicit zones of the mesh. The values at the interface are treated as boundary conditions.

For the computation, the implicit part of the mesh M i is treated first using a Newton algorithm to obtain (p j ) j∈J i and (u j ) j∈J i . At the end of this step, the values of the fluxes are evaluated on the implicit and explicit part of the mesh then used to update u, E and ρ at time t n+1 in each cell of M.

To handle this coupling, the implicit and explicit schemes need to exchange information. The computation goes as explained hereafter.

1. Read the mesh and separate the explicit and implicit zones 2. Save the values of p and u given at time t n 3. Treat the implicit part with a Newton algorithm for the prediction step, namely

U k+1 = U n -∇f (U k ) -1 f (U k ), k ∈ N,
where U = ((-p j ) j∈J , (u j ) j∈J ), and f = ∇J(U ) -AU . Add the necessary interface terms for the gradient of J in the definition of f . For the cells j whose node r is at the interface between explicit and implicit parts, one needs to adjust the definition of f . It becomes

f j = M j ∆t (τ k j -τ n j ) - r∈R j C jr , A -1 r i∈J i r C ir p i - r∈R j C jr , A -1 r i∈J i r A ir u i + r∈R i j ∩R e j C jr , A -1 r j∈J e r A jr u n j + A -1 r j∈J e r C jr p n j ∈ R
for the first N rows. And for the last dN rows, it gives 

f j = M j ∆t (u k j -u n j ) - r∈R j A jr A -1 r i∈J i r A ir u i + r∈R j A jr u j - r∈R j A jr A -1 r i∈J i r C ir p i + r∈R i j ∩R e j A jr A -1 r j∈J e r A jr u n j + r∈R i j ∩R e j A jr A -1 r j∈J e r C jr p n j ∈ R d .

Numerical validation

To validate this coupling, we present a water-gas simulation and compare the results to the solution obtained with a totally explicit solving. For this example, one considers the case of a stiffened gas. The definition of this law is given by (1.6) p 20.

The two-phase shock test case presented here originates from [START_REF] Saurel | A Simple Metohd For Compressible Multifluid Flows[END_REF]. It considers having two materials with all the variables strongly discontinuous. On the left part of the tube there is water (high pressure) and on the right part air (low pressure). The initial conditions are ρ 0 (x) = 1000 x < 0.7 50 x > 0.7 , u 0 (x) = 0, p 0 (x) = 10 9 x < 0.7

10 5 x > 0.7 , γ 0 (x) = 4.4 x < 0.7, 1.4 x > 0.7.
The variable π is set to π 0 (x) = 6 • 10 8 for x < 0.7. The simulation is performed on a mesh of 1000 cells. There are 950 cells between [0,0.7] and 50 cells between [0.7, 1]. The smaller cells lie in the left region that is thus solved using the implicit scheme, and the right part is solved with the explicit acoustic solver. It corresponds to the situation described in The explicit solver reaches the final time t = 240 • 10 -6 in 2160 iterations and a time step of dt = 1.11 • 10 -7 s. The implicit-explicit solver runs during 585 iterations and a time step of dt = 3.9 • 10 -7 s. The computational time is approximately the same. In Figure 4.9 one notices that the rarefaction wave is more dissipated with the implicit-explicit treatment due to a larger time step. The contact discontinuity and the shock are well placed. This validates the implicit-explicit coupling. 5.5.3 Sinusoidal simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This Chapter is devoted to the study of the traffic flow problem. By using this simpler problem we are able to apply the Theorem of existence and uniqueness to another hyperbolic case. It also serves to try several possibilities for the implicit numerical resolution and to use this experience for the numerical study of the Euler equations that we explain in the following Chapter. Indeed, for the traffic flow, it is possible to evaluate direct solutions using explicit and implicit algorithms. In this Chapter, we thus study theoretically this problem. It means that we explain how to get the gradient formulation, and show that the Theorem of existence and uniqueness applies as well as the proof of entropy stability. In the end we present some numerical possible schemes, a series of numerical results and comment them.

Traffic flow problem

Brief presentation of traffic flow models

The traffic flow models derive from fluid mechanic models. There exists two different scales of approach. The first one is the microscopic scale from which the models describe individual behaviors and interactions between vehicles, see [START_REF] Gazis | Nonlinear follow-the-leader models of traffic flow[END_REF] and [START_REF] Herman | Kinetic theory of vehicular traffic[END_REF]. For example one can refer to particular models such as Follow-the-Leader models [START_REF] Gazis | Nonlinear Follow-The-Leader Models of Traffic Flow[END_REF]. The second scale of approach is macroscopic, see [START_REF] Goatin | The Aw-Rascle vehicular traffic flow model with phase transitions[END_REF] or [START_REF] Aw | Resurrection of "Second Order" Models of Traffic Flow?[END_REF]. These models are also called hydrodynamic models or fluid models. They consist in a synthetic vision of the traffic based on variables concerning all the vehicles such as the density, the velocity or the flow. They are used to model collective phenomenon such as congestion or velocity propagation of traffic jam.

Fluid models are based on conservation equations. They are of two kinds: first order models and second order models. The former are constituted of one conservation equation on the density of vehicles

∂ t ρ + ∂ x f (ρ) = 0, f (ρ) = ρu(ρ). (5.1)
combined with the hypotheses that u (ρ) 0 and that the density is bounded. The maximum density corresponds to vehicles that are bumper to bumper. For example one can cite the LWR model [START_REF] Lighthill | On kinematic waves II. A theory of traffic flow on long crowded roads[END_REF], for which we propose a representation in Figure 5.1. The second order models are used to describe transition phase and are composed of 2 equations, one on the density and another using the velocity. For example the reader can see [START_REF] Aw | Resurrection of "Second Order" Models of Traffic Flow?[END_REF] or this other transition model [START_REF] Aw | Derivation of continuum flow traffic models from microscopic follow the leader models[END_REF]. We study first order models.

Lagrangian problem

For the Lagrangian version, one can use the work already done for the conservation of the mass density (first equation of the Euler system) to obtain the traffic flow problem under Lagrangian formalism. The unknown that we consider is the specific volume τ (t, x) = 1 ρ(t,x) > 0. This system only has one unknown and possesses an analytical solution which is ideal to test implicit algorithms. Consider the traffic flow problem in Lagrangian formalism

ρ∂ t τ + ∂ x f (τ ) = 0, f (τ ) = -u(τ ) = 1 τ -1, (5.2)
where f is the flux and u is the velocity.

One needs to remark that for this system, it is impossible to take a zero initial density, otherwise the problem becomes nonsense.

After discretizing this problem in time t n = n∆t and space on a mesh M composed of N > 0 cells denoted by j, the following implicit scheme is obtained

ρ j ∆t (τ n+1 j -τ n j ) + 1 τ n+1 j+1 -1 τ n+1 j ∆x n+1 j = 0,
which can be rewritten as

M j ∆t (τ n+1 j -τ n j ) + 1 τ n+1 j+1 - 1 τ n+1 j = 0, ( 5.3) 
where M j = ρ n j ∆x n+1 j .

Application of Theorem 3

As soon as the implicit scheme has been written, it is interesting to formalize it under the gradient form in order to apply Theorem 3, p 72. We first describe the objects composing this formulation, then verify the hypotheses and eventually apply the Theorem of existence and uniqueness.

Definition of the objects

We recall that the gradient formulation is

Find U ∈ D such that ∇J(U ) = AU.
The scheme (5.3) is provided with periodic boundary conditions for the sake of simplicity in the expression of the matrix A and the verification of the hypotheses of the Theorem of existence and uniqueness. This problem only needs one step to be solved implicitly. It means that contrary to the Euler equations that need a two-step resolution with the introduction of the isentropic equations, the traffic flow problem can be solved straightforward.

To avoid heavy notations, the dependence in time t n+1 is omitted in this Section. Only the dependence in time t n is written with the exponent n. The scheme becomes

M j ∆t 1 ρ j - 1 ρ n j + (ρ j+1 -ρ j ) = 0.
Artificially subtract the term 1 2 (ρ j+1 -ρ j-1 ) on both sides of the equation to obtain

M j ∆t 1 ρ j - 1 ρ n j + (ρ j+1 -ρ j ) - 1 2 (ρ j+1 -ρ j-1 ) = - 1 2 (ρ j+1 -ρ j-1 ).
Factorize the left handside to get

M j ∆t 1 ρ j - 1 ρ n j + 1 2 (ρ j+1 -2ρ j + ρ j-1 ) = 1 2 (ρ j-1 -ρ j+1 ). (5.4) 
From there, define the objects of the gradient formulation. As previously described, U is the vector of unknowns, J is a functional and A is a matrix of real coefficients.

The vector of unknowns is defined by

U = (-ρ j ) 1 j N ∈ R N . ( 5.5) 
The matrix A corresponding to the coefficients for the right handside of the equation (5.4) reads

A = 1 2            0 1 0 • • • 0 -1 -1 0 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 -1 0 1 1 0 • • • 0 -1 0            ∈ M N,N (R). (5.6) 
The terms -1 on the first row and 1 on the last row are due to periodic boundary conditions. These terms might vary with other boundary conditions such as velocity boundary conditions. The functional

J : D → R, is defined on the domain D =] -∞, 0[ N . (5.7)
It is actually the definition given in Hypothesis 1, p 71 for n = N and m = 0. J is evaluated as follows

J(U ) = N j=1 M j ∆t -log(ρ j ) + ρ j ρ n j + N j=1 1 4 (ρ j -ρ j+1 ) 2 .
(

By construction the j th first partial derivative of J, is

∂J ∂(-ρ j ) = M j ∆t 1 ρ j - 1 ρ n j + 1 2 (ρ j-1 -ρ j -ρ j + ρ j+1 ), (5.9) 
which is exactly the left handside of (5.4).

Verification of Hypothesis 2

Let us prove that the functional J, given by (5.8) for the traffic flow problem satisfies Hypothesis 2, p 71, namely the strict convexity, coercivity and that its gradient explodes at the boundaries of D.

Property 26. The function J given by (5.8) is continuous on D.

Proof. As the function J contains a logarithm, a linear term and a quadratic term that are all independently continuous on D, thus J is continuous on D.

Property 27. The function J defined by (5.8) is strictly convex on D.

Proof. The first derivative of J is given by (5.9). Let us evaluate the second derivative of this function.

Let j and k be two cell indices of a mesh M.

∂ 2 J ∂(-ρ j )∂(-ρ k ) =                        M j ∆t 1 ρ 2 j + 1, if k = j, - 1 2 , if k = j -1, - 1 2 , if k = j + 1, 0, otherwise. 
Hence, for all U ∈ D, and all Z ∈ R N \{0}, one has

∇ 2 J(U )Z, Z = j M j ∆t 1 ρ 2 j (-ρ Z j ) 2 + j 1 2 (ρ Z j -ρ Z j+1 ) 2 > 0.
So that J is strictly convex.

The boundary of D is defined as follows

∂D = V ∈ R N : ∃ j * ∈ {1, . . . , N }, V * j = 0, ∀ j = j * ∈ {1, . . . , N }, V j 0 .
We use the same closure

J(U ) = +∞, U ∈ D, J(U ), U ∈ D,
evoked by Hirriart-Urruty and Lemarechal [START_REF] Hiriart-Urruty | Convex Analysis and Minimization[END_REF] to analyze the coercivity of J.

Property 28. The function J is coercive on R.

Proof. For all cell j ∈ J , the quadratic part is non negative, hence bounded from below. There exists a set of non-negative scalars (c j ) j∈J such that

N j=1 1 4 (ρ j -ρ j+1 ) 2 N j=1 c j 0.
For all j ∈ J , the functionlog(ρ j ) + ρ j τ n j is coercive. Indeed, suppose that ρ j → +∞, then lim

ρ j →+∞ ρ j τ n j -log(ρ j ) = lim ρ j →+∞ ρ j (τ n j - log(ρ j ) ρ j ) , = +∞.
As a matter of fact, lim x→+∞ log(x) x = 0, and lim

ρ j →+∞ τ n j ρ j = +∞ because τ n j > 0.
As the function J is a finite sum of coercive and non negative functions bounded from below, J is coercive.

Property 29. For all V ∈ ∂D, there exists a unit direction d ∈ R N which is outward from D such that (∇J(V -εd), d) ε→0 + -----→ V -εd∈D +∞.
Also for all V ∈ ∂D, one has

||∇J(W )|| W →V ----→ W ∈D +∞,
with J given by (5.8).

Proof. The first derivative of J with respect to -ρ is

∀ j ∈ J ∂J ∂(-ρ j ) = M j ∆t 1 ρ j - 1 ρ n j + 1 2 (ρ j-1 -ρ j -ρ j + ρ j+1 ),
Let V ∈ ∂D. It means that there exists a subset K ⊂ {1, . . . , N } such that for all k ∈ K, V k = 0. Take d ∈ R N such that ∀ k ∈ K, d k 0 and for all j / ∈ K, d j = 0. The limit of the first derivative of

J when ε → 0 + is ∀ k ∈ K lim ε→0 + ∂J ∂(-ρ k ) V -εd = lim ε→0 + M j ∆t 1 ε -ε - M j ∆t 1 ρ n k + 1 2 (ρ j-1 + ρ j+1 ), = +∞.
Indeed, the first term is the one that gives the limit. The others do not depend on ε and are finite. By summation over k ∈ K and then over all other indices for which the value of d is 0, one obtains the first limit. An evaluation of lim

W →V ∂J ∂(-ρ k ) W gives the second limit. Let W ∈ D and V ∈ ∂D such that V j * = 0. lim W →V ∂J ∂(-ρ k ) W = lim W →V M j ∆t 1 ρ j * - 1 ρ n j * + 1 2 (ρ j * -1 -ρ j * -ρ j * + ρ j * +1 ) , = +∞ because ρ * j → 0.

Verification of Hypothesis 3

Let us prove that the matrix A, defined by (5.6) for the traffic flow problem satisfies Hypothesis 3, p 72.

Property 30.

The matrix A given by (5.6) is skew-symmetric.

Proof. We recall that the matrix A is given by

A = 1 2            0 1 0 • • • 0 -1 -1 0 1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 -1 0 1 1 0 • • • 0 -1 0            ∈ M N,N (R).
An evaluation of the transpose of A gives

A t = 1 2            0 -1 0 • • • 0 1 1 0 -1 0 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 1 0 -1 -1 0 • • • 0 1 0            = -A,
which proves that A is skew symmetric.

Property 31. The kernel of the matrix A defined by (5.6) intersects the domain of definition of J namely D.

Proof. Let us evaluate the kernel of A. Let X ∈ R N satisfying AX = 0. It means, after simplification

                   -x 2 + x N = 0, x 1 -x 3 = 0, . . . x N -2 -x N = 0, -x 1 + x N -1 = 0. ⇔                    x N = x 2 , x 1 = x 3 , . . . x N -2 = x N , x 1 = x N -1 . So ker(A) =      Vect 1 0 , 1 0 , if N = 2k, k ∈ N, Vect 1 , if N = 2k + 1, k ∈ N.
where

1 =         1 1 . . . 1 1         ∈ R N , 1 0 =           1 0 1 . . . 0 1           ∈ R N , 1 0 =           0 1 0 . . . 1 0           ∈ R N .
One can take X = (-1) ∈ ker(A) ∩ D.

Application of the Theorem

The scheme and objects satisfy Hypotheses 1, 2, and 3 p 71. Thanks to Theorem 3, p 72 there exists a unique solution to (5.3).

Stability properties

By applying the Theorem of existence and uniqueness, we have shown that the scheme (5.3) possesses a solution for every ∆t > 0. To mimic the properties of explicit traffic flow schemes, we prove that the implicit scheme verifies the maximum principle and an entropy inequality.

Maximum principle

To prove that the implicit scheme satisfies the maximum principle, we prove the following result Proposition 21. Consider a problem under the form

(Id + M )x = b, where x, b ∈ R N and M ∈ M N ×N (R), M ij = a i 0 i = j, -a i 0 i + 1 = j, Suppose ∀ i ∈ {1, . . . , N } that m = min j b j b i max j b j = M,
where m, M finite. Suppose periodic boundary conditions. Hence ∀ i ∈ {1, . . . , N },

m x i M.
(5.10)

Proof. Write the equation satisfied on each line. ∀ i ∈ {1, . . . , N }

x i + a i x i -a i x i+1 = b i , (1 + a i )x i -a i x i+1 = b i , x i = 1 1 + a i b i + a i 1 + a i x i+1 .
(5.11)

Remark that x i is a convex combination of b i and x i+1 .

Let a i = 0, then x i = b i , so it trivially satisfies (5.10). Exclude this case for the rest of the proof. Let a i > 0, one then has 1 1+a i + a i 1+a i = 1 where all the terms lie in ]0, 1[. Show first that ∀ i ∈ {1, . . . , N }, x i max j b j , then show that ∀ i ∈ {1, . . . , N }, x i min j b j , with proofs by contradiction.

Suppose the first hypothesis to be false. It then exists i

* ∈ {1, . . . , N }/ x i * > max j b j = M , in particular x i * > b i * , so x i * > 1 1+a i * b i * .
To satisfy (5.11), one needs x i * +1 > x i * , but as a i * 1+a i * < 1, one deduces that x i * +1 > M . By iteration on i * , one concludes that x i * +2 > M , x i * +3 > M . The last line gives x 1 * > x N * . So one obtains

x i * > x i * -1 > • • • > x i * +1 > x i * > M. It is impossible so ∀ i ∈ {1, . . . , N } x i max j b j .
Similarly, let us show that ∀ i ∈ {1, . . . , N }, x i min j b j . Suppose this to be false. It then exists

i * ∈ {1, . . . , N }/ x i * < min j b j = m, in particular x i * < b i * . As x i * is a convex combination of b i * and
x i * +1 , it belongs to the interval (x i * +1 , b i * ], so x i * > x i * +1 . One deduces that m > x i * +1 . By iteration on parameter i * , one concludes that x i * +2 < m, x i * +3 < m, until the last row of the matrix that gives x 1 * x N * < m. So one obtains

x i * < x i -1 < • • • < x 1 * x N * < • • • < x i * +1 < x i * < m.
It is impossible, so ∀ i ∈ {1, . . . , N } x i min j b j . We have just shown that if b is bounded, it is also the case for x. Proposition 22. The implicit scheme (5.3) satisfies the maximum principle.

Proof. Suppose that the initial data τ 0 is bounded, and that it is the case until t n (τ n bounded).

Thanks to Theorem 3, p 72 of existence and uniqueness, we know that τ n+1 > 0.

Start from the implicit scheme (5.3), and put the flux under a common denominator. It gives

M j ∆t (τ n+1 j -τ n j ) + τ n+1 j -τ n+1 j+1 τ n+1 j τ n+1 j+1 = 0.
Express τ n j in terms of τ n+1 j .

τ n j = τ n+1 j + ∆t M j 1 τ n+1 j τ n+1 j+1 (τ n+1 j -τ n+1 j+1 ).
Apply Proposition 21 with the following settings:

x = τ n+1 , b = τ n and a i = ∆t M j 1 τ n+1 i τ n+1 i+1 > 0.
As b is bounded, hence, the implicit scheme solution satisfies the maximum principle.

Entropy inequality

We first recall the definition of entropy inequality, and prove this result for a particular entropy-entropy flux pair. We then extend this result in the general 1D case. Definition 13. We say that an implicit scheme of unknown u ∈ R N is consistent with the entropy condition in the sense that for all j ∈ {1, . . . , N },

η(u n+1 j ) -η(u n j ) ∆t + ξ(u n+1 j+1 ) -ξ(u n+1 j ) M j 0,
for all entropy-entropy flux pairs (η, ξ).

Peculiar example

We take the following particular entropy-entropy flux pair: η(τ ) = τ 2 2 and ξ(τ ) = -log(τ ). In one dimension, to verify that this pair is an entropy-entropy flux pair, one has to satisfy ξ (τ ) = η (τ )f (τ ). On the one side ξ (τ ) = -1 τ , and on the other side f (τ )η (τ ) = -1 τ 2 × τ = -1 τ . Therefore, we can use this specific pair for the verification of the entropy inequality of Definition 13.

Use the property of convexity of η to write

η(τ n+1 j ) -η(τ n j ) η (τ n+1 j )(τ n+1 j -τ n j ), τ n+1 j (τ n+1 j -τ n j )
, by definition of η.

Replace τ n+1 j -τ n j using the implicit scheme (5.3).

η(τ n+1 j ) -η(τ n j ) ∆t M j τ n+1 j 1 τ n+1 j - 1 τ n+1 j+1 , ∆t M j 1 - τ n+1 j τ n+1 j+1 .
(5.12)

Use the property of concavity of the logarithm. One has

∀ x > 0, log(x) x -1 ⇔ 1 -x -log(x). Set α = τ n+1 j τ n+1 j+1 > 0.
Apply the previous result to inequality (5.12)

η(τ n+1 j ) -η(τ n j ) ∆t M j (1 - τ n+1 j τ n+1 j+1 ), ∆t M j (1 -α), ∆t M j (-log(α)). Evaluate ξ(τ n+1 j+1 ) -ξ(τ n+1 j ) = -log(τ n+1 j+1 ) + log(τ n+1 j ), = log τ n+1 j τ n+1 j+1
, thanks to logarithm property, = log(α).

One deduces that η(τ n+1 j

) -η(τ n j ) ∆t M j (ξ(τ n+1 j ) -ξ(τ n+1 j+1 )).
Put everything onto the left handside of the inequality to obtain

η(τ n+1 j ) -η(τ n j ) + ∆t M j (ξ(τ n+1 j+1 ) -ξ(τ n+1 j
)) 0.

General case

Let us prove that the implicit scheme satisfy an entropy inequality.

Property 32. The implicit scheme (5.3) is entropy stable in the sense that it satisfies Definition 13.

Proof. Let (η, ξ) be an entropy-entropy flux pair of (5.3). One uses the property of convexity of η to write η(τ n+1 j

) -η(τ n j ) η (τ n+1 j )(τ n+1 j -τ n j ). Equation (5.3) can be rewritten (τ n+1 j -τ n j ) + ∆t M j f (τ n+1 j+1 -f (τ n+1 j )) = 0,
where f is defined as in (5.2). Thus, replace (τ n+1 j -τ n j ).

η(τ n+1 j ) -η(τ n j ) η (τ n+1 j ) ∆t M j f (τ n+1 j ) -f (τ n+1 j+1 ) . (5.13) Introduce the function H where a, b ∈ [m, M ], a b, such that ∀ z ∈]a, b[, H(z) = ξ(z) -ξ(a) -η (z)(f (z) -f (a)).
One has H(a) = 0. Write Taylor development at order 1 of H(b). As H is differentiable, there exists

z ∈]a, b[ such that H(b) = (b -a)H (z), = (b -a) ξ (z) -η (z) f (z) -f (a) -η (z)f (z) , = (b -a) -η (z) f (z) -f (a) , because η (z)f (z) = ξ (z), = (b -a)η (z)(-f (k))(z -a), thanks to Rolle Theorem.
By convexity of η, we know that η (z) 0. Similarly, -f (k) 0. One can write

H(b) = R(z)(b -a)(z -a), where R(z) 0.
As b a, and z lies between a and b, one has H(b) 0. The implicit scheme satisfies the maximum principle, we can then set a = τ n+1 j+1 , z = τ n+1 j and evaluate H(τ n+1 j ).

H(τ

n+1 j ) = ξ(τ n+1 j ) -ξ(τ n+1 j+1 ) -η (τ n+1 j ) f (τ n+1 j ) -f (τ n+1 j+1 ) , 0, So ξ(τ n+1 j ) -ξ(τ n+1 j+1 ) η (τ n+1 j ) f (τ n+1 j ) -f (τ n+1 j+1 ) , M j ∆t η(τ n+1 j ) -η(τ n j ) ,
thanks to (5.13). Rearranging the terms, one finds

η(τ n+1 j ) -η(τ n j ) ∆t + ξ(τ n+1 j+1 ) -ξ(τ n+1 j ) ∆m 0.

Numerical schemes and treatment of boundary conditions

There exists different ways of writing a scheme and coding it. We propose here three possible methods to solve the traffic flow problem. The first one is the direct resolution of the problem, the second one uses the form of the matrix A, namely the lower triangular fulfillment. The third one consists in a Newton algorithm. The last possibility is evaluated compared to the other two, because it is the method we will implement for the Euler equations in the next Chapter.

Direct algorithm

In this Section, we write the direct solution of the traffic flow problem in the case of velocity boundary conditions. It consists in the solving of a degree two equation.

Start from (5.3) and multiply it by τ n+1 j .

M j ∆t (τ n+1 j ) 2 -τ n j τ n+1 j + τ n+1 j τ n+1 j+1 -1 = 0.
Rearrange the terms to obtain the following second-degree polynomial equation

(τ n+1 j ) 2 -τ n j - ∆t M j 1 τ n+1 j+1 τ n+1 j - ∆t M j = 0. Evaluate the discriminant ∆ = τ n j - ∆t M j 1 τ n+1 j+1 2 + 4 ∆t M j = (τ n j ) 2 -2τ n j ∆t M j 1 τ n+1 j+1 + ∆t 2 M 2 j 1 (τ n+1 j+1 ) 2 + 4 ∆t M j .
As long as ∆ is positive, there exists a solution to the traffic flow problem. The solution τ n+1 j must remain positive, so one takes the positive root between

x 1 = τ n j -∆t M j 1 τ n+1 j+1 + √ ∆ 2 and x 2 = τ n j -∆t M j 1 τ n+1 j+1 - √ ∆ 2 .
One can remark that this resolution works starting from the right of the mesh and going left. The first step is thus to use the boundary conditions to find the starting value τ n+1 N and then go backward until τ n+1 1 given a mesh M containing N cells.

Consider an imposed velocity at the end of the domain of study u

N + 1 2 = u D , and evaluate τ n+1 N . One has (τ n+1 N ) 2 -τ n N - ∆t M N (1 -u D ) τ n+1 N - ∆t M N = 0. The discriminant is ∆ = (τ n N ) 2 -2τ n N ∆t M N (1 -u D ) + ∆t 2 M 2 N (1 -u D ) 2 + 4 ∆t M N .
When ∆ is positive, the root is the positive value between

x 1 = τ n N -∆t M N (1 -u D ) + √ ∆ 2 and x 2 = τ n N -∆t M N (1 -u D ) - √ ∆ 2 .
This algorithm is useful because it directly gives a solution and one can compare the explicit and implicit versions to it.

Iterative algorithm

In this Section, we consider periodic boundary conditions to write the matrices, and the treatment of boundary conditions is explained in a second time.

Iteration with respect to τ

Start from (5.3) and write the fluxes under the same denominator.

M j ∆t (τ n+1 j -τ n j ) + 1 τ n+1 j+1 τ n+1 j τ n+1 j -τ n+1 j+1 = 0.
Rearrange the terms to obtain an expression for τ n j .

τ n j = τ n+1 j + ∆t M j 1 τ n+1 j+1 τ n+1 j (τ n+1 j -τ n+1 j+1 ). Denote ν = ∆t M j and a k j = 1 τ k j+1 τ k j . Under matrix form, it gives            1 + νa n+1 1 -νa n+1 1 0 . . . . . . 0 0 1 + νa n+1 2 -νa n+1 2 0 . . . 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . 0 1 + νa n+1 N -1 -νa n+1 N -1 -νa n+1 N 0 . . . . . . 0 1 + νa n+1 N                  τ n+1 1 τ n+1 2 . . . τ n+1 N       =       τ n 1 τ n 2 . . . τ n N       .
The vector of unknowns is X = τ n+1 , the matrix is T τ (a n+1 ) and the right handside is b = τ n .

a) Method of computation

To obtain a solution, we use a fixed point method. It is an iterative resolution. To find the solution of T τ (a)X = b, process as follows

The algorithm can be coded with either a backward substitution using the form of the matrix, or a linear algorithm like BiCGStab.

b) Velocity boundary condition

In the numerical examples, we will consider a free boundary at the beginning of the domain and an imposed velocity at the end of the domain of study. Hence, we only have one change in the rightest node r

= N + 1 2 u N + 1 2 = u D .

It then implies to replace

τ n+1 N +1 = 1 1 -u D . Algorithm 1 Iterative algorithm Input: τ n Initialize: k ← 0 X k ← τ n b ← τ n while |X k j -X k+1 j | > 10 -8 do a ← a k T ← T τ (a) X k ← T X k = b k ← k + 1 end while Output: X k = τ n+1
Inject it in the iterative step to find

τ n N = τ k+1 N + ∆t M N ( 1 1 1-u D τ k N )(τ k+1 N - 1 1 -u D ), = τ k+1 N + ∆t M N 1 τ k N (1 -u D )(τ k+1 N - 1 1 -u D ), = τ k+1 N + ∆t M N 1 -u D τ k N τ k+1 N - ∆t M N 1 τ k N , τ n N + ∆t M N 1 τ k N = 1 + ∆t M N 1 -u D τ k N τ k+1 N .
One deduces

            1 + νa k 1 -νa k 1 0 . . . . . . 0 0 1 + νa k 2 -νa k 2 0 . . . 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . 0 1 + νa k N -1 -νa k N -1 0 0 . . . . . . 0 1 + ν (1-u D ) τ k N                   τ k+1 1 τ k+1 2 . . . τ k+1 N       =       τ n 1 τ n 2 . . . τ n N + ∆t ∆m 1 τ k N       .

Iteration with respect to 1 τ

Start form (5.3) and multiply the first term by a specific coefficient.

M j ∆t τ n+1 j -τ n j τ n+1 j τ n j τ n+1 j τ n j + 1 τ n+1 j+1 - 1 τ n+1 j = 0.
Expand and rearrange the terms to express 1

τ n j . M j ∆t τ n j τ n+1 j 1 τ n j - 1 τ n+1 j + 1 τ n+1 j+1 - 1 τ n+1 j = 0, 1 τ n j = 1 + ∆t M j 1 τ n j τ n+1 j 1 τ n+1 j - ∆t M j 1 τ n j τ n+1 j 1 τ n+1 j+1 . Denote ν = ∆t M j and set a k j = 1 τ k-1 j τ k j so            1 + νa n+1 1 -νa n+1 1 0 . . . . . . 0 0 1 + νa n+1 2 -νa n+1 2 0 . . . 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . 0 1 + νa n+1 N -1 -νa n+1 N -1 -νa n+1 N 0 . . . . . . 0 1 + νa n+1 N                    1 τ n+1 1 1 τ n+1 2 . . . 1 τ n+1 N         =        1 τ n 1 1 τ n 2 . . . 1 τ n N        .
For this linearization, the vector of unknowns is X = 1 τ n+1 , the matrix is T 1 τ (a n+1 ) and the right

handside is b = 1 τ n .

a) Method of computation

To obtain a solution, we use a fixed point method. It is an iterative resolution. To find the solution of T 1 τ (a)X = b, follow the instructions Algorithm 2 Iterative algorithm with respect to

1 τ Input: τ n Initialize: k ← 0 X k ← 1 τ n b ← 1 τ n while |X k j -X k+1 j | > 10 -8 do a ← a k T ← T 1 τ (a) X k ← T X k = b k ← k + 1 end while Output: 1 X k = τ n+1

b) Velocity boundary conditions

When a velocity is imposed at the end of the domain, it gives

u N + 1 2 = u D , so τ N +1 = 1 1 -u D .
Inject it into the iterative step

1 τ n N = 1 + ∆t M N 1 τ n N τ k N 1 τ k+1 N - ∆t M N 1 τ n N τ k N 1 1 1-u D , = 1 + ∆t M N 1 τ n N τ k N 1 τ k+1 N - ∆t M N 1 τ n N τ k N (1 -u D ), 1 τ n N + ∆t M N 1 τ n N τ k N (1 -u D ) = 1 + ∆t M N 1 τ n N τ k N 1 τ k+1 N .            1 + νa k 1 -νa k 1 0 . . . 0 0 1 + νa k 2 -νa k 2 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 1 + νa k N -1 -νa k N -1 0 0 . . . 0 1 + νa k N                    1 τ k+1 1 1 τ k+1 2 . . . 1 τ k+1 N         =        1 τ n 1 1 τ n 2 . . . 1 τ n N + ∆t M N 1 τ k N τ n N (1 -u D )        .

Newton algorithm

In this Section, we give the definition of the Newton algorithm, based on the reformulation of the problem under the gradient form. We explain the treatment of velocity conditions.

Start from the implicit gradient problem (5.4) and the definition of the vector of unknowns U given by (5.5), the matrix A (5.6) and the functional J (5.8). The corresponding Newton problem is to find the root of ∇J(U ) -AU = 0.

Hence, the Newton algorithm is given by

U k+1 = U n -∇f (U k ) -1 f (U k ), k ∈ N,
where U = ((-ρ j ) j∈J ) and f (U ) = ∇J(U ) -AU . To be a bit more precise, the vector f is defined on each row by

f j = M j ∆t 1 ρ j - 1 ρ n j + 1 2 (ρ j-1 -2ρ j + ρ j+1 ) - 1 2 (ρ j-1 -ρ j+1 ),
for all j ∈ {1, . . . , N }. The matrix ∇f (U ) is defined by ∇f (U ) = ∇ 2 J(U ) -A. For all j ∈ {1, . . . , N }, the non null terms are

∇f jj = M j ∆t 1 ρ 2 j + 1, ∇f jj+1 = -1.
It is obvious that this matrix is well defined and invertible.

a) Method of computation

To solve the Newton algorithm, we process as follows. For every time step t = t n .

Algorithm 3 Newton algorithm

Input: τ n Initialize: k ← 0 U k ← -1 τ n while |U k j -U k+1 j | > 10 -14 do U k ← U n -∇f (U k ) -1 f (U k ) k ← k + 1 end while Output: -1 U n+1 = τ n+1

b) Velocity boundary conditions

For an imposed velocity u N + 1 2

= u D at the end of the domain, the only change is in the function f .

f N = M N ∆t 1 ρ N - 1 ρ n N + (1 -u D ) -ρ N .
For the matrix corresponding to the gradient of f there is no consequence.

Numerical results

For the numerical results, we are going to compare the solutions obtained with the implicit algorithms with an explicit upwind solver. We tackle three different situations, the first one is a congestion of cars, the second one is a release of the traffic and the third one is a mix of the two.

Congestion simulation

To simulate a congested traffic, we take the following initial conditions

ρ 0 (x) =        0.5 x < 0.3, 5/7 0.3 x < 0.7, 0.9 0.7 x, u D = 0.2.
In this test case, there are two shock waves that represent denser traffics. On the density curve, one can see that the density increases from 0.5 to 0.9, with a middle step. On the velocity curve, one can notice a decrease of the speed due to this increase of density. In Figure 5.3, one can see that with a same CFL, all the implicit schemes give the same results. The only difference we can comment is that the explicit curve is sharper.

In Figure 5.4, we see that the greater the CFL is, the more the numerical dissipation occurs. To give an idea of the time of computation, with a CF L = 10 the Newton algorithm needs 3 iterations to converge at a precision of 10 -14 in 0.19s. With a CF L = 20 it takes 4 iterations for the Newton to converge but less time steps and so the time of computation is the same than the explicit scheme namely 0.04s. 

Release simulation

To simulate the end of a traffic jam, one needs to decrease the density of cars gradually. We take the following initial conditions In this test case, there are two rarefaction waves that represent lighter traffics. On the density curve, one can see that the density decreases from 0.9 to 0.5. On the velocity curve, one can notice an increase of the speed due to this decrease of density of cars.

ρ 0 (x) =        0.9 x < 0.
For this release test case, at a same CFL of 1, the exact and iterative algorithm curves are superimposed in Figure 5.6. At the beginning of the domain, the density level for a resolution with Newton algorithm is lower but this gap becomes invisible after the first rarefaction wave.

With an increased CFL, there is more numerical dissipation for the rarefaction waves, but the curves are following the same movement. The plateau at ρ = 0.72 is shortened as the CFL increases. With a CF L = 20, the time of computation is the same than the exact algorithm.

Sinusoidal simulation

This test case can be seen as the simulation of a road containing a lot of traffic lights. Indeed, we take a sinusoidal initial condition to simulate increase and decrease in the traffic. On the density curve, one can notice a lot of rarefaction waves and shocks. At time t = 0.25 the shocks are even sharper, as n-waves simulations.

The curves are following the same movement, and it can only be mentioned a dissipation at the end of the rarefaction waves. Figure 5.9 shows the precision of the implicit scheme considering a larger CFL. 

Chapter 6

Numerical results

Outline of the current chapter In this Chapter, we provide numerical illustrations which show that the theoretical properties of the numerical methods are transferred to real calculations. In a first Section, we present pugs, which is the open source code we use to implement our schemes, and our coding journey. A certain amount of our 1D simulations are Riemann problems with various initial data. We thus recall in a second Section how to obtain an exact solution for perfect and stiffened gas. The implicit scheme is solved using a Newton algorithm and the final update of the solution is performed in a conservative way, so the scheme is implemented in a perfectly conservative fashion, as for state-of-art Finite Volume methods [START_REF] Leveque | [END_REF][START_REF] Eymard | Handbook of Numerical Analysis -Finite[END_REF][START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF]. For all our 1D test problems, we have observed that the Newton algorithm converges without any difficulties in only few iterations. We give the details of this convergence for the Sod shock tube and other water/gaz simulations for which we have the exact solution. Then, in Section 6.3, we illustrate accuracy issues in the position of the contact discontinuity from reasonable CFL numbers (CF L = 0.4) to huge ones (CF L = 537) and give a theoretical explanation for this phenomenon. In Section 6.4, we provide other 1D test cases such as blast wave or Noh. To finish with the 1D examples, we give an idea of the CPU time compared to the explicit solver. Section 6.6 contains some 2D numerical illustrations. It studies the incidence of order of storage for the unknowns, linear solver used for the calculations, scheme chosen for the definition of A jr matrices and precision of convergence for the Newton loop.

Development of the C++ code

This Section aims at providing an overview of the C++ environment we used to code our scheme. It also gives the reader an idea of the implementation of our implicit scheme, with the additional functionalities we successively put.

PUGS

To code our scheme, we used an open source solver named pugs. It stands for Parallel Unstructured Grid Solvers. It is inspired by FreeFEM, nevertheless it is designed mainly for Finite Volume methods instead of Finite Elements. This project has been launched in 2018. Since then, it has evolved a lot through discussions with pairs but also to respond specific needs of the dozen of CEA users. As the development of pugs is a work in progress, the C++ code of this thesis has been revised several times. pugs contains modules about mesh, math functions, schemes implemented, linear solvers, and boundary conditions just to name a few. They are the solid foundation of numerical tools on which the scripts rely on to be run. All these modules are written in C++, and then called via a .pgs file itself written in a more user friendly DSL language. It means that the validation and the test cases are written in this language of which we provide an example in Figure 1.

Successive improvements

As mentioned in the previous Section, our implicit scheme has been implemented in C++ language in a specific branch of pugs that also contains all the other implicit schemes of the traffic flow problem.

In its present version, the code of the implicit solver I developed for the Euler equations contains approximately 2000 lines. The code has initially been designed and implemented in 1D for perfect gas, with a one state solver, using a Newton algorithm to solve the implicit prediction step. The boundary conditions velocity and pressure have been implemented and tested in 1D before any additional feature was considered. From there, some improvements have been added. The first amelioration was the possibility to use a stiffened } while (t<tmax); //Write solution write(gnuplot_1d_writer("newton_congestion_t03_5dt_exp",0), (name_output(tau,"tau")),t); gas law that is more general than a perfect gas equation of state. The parameter π was declared and added in the evaluation of the entropy and in the definition of the functional J, see Chapter 3 p 59.

Secondly, the coupling between explicit and implicit zones has been implemented. To do so, the mesh contains labeled zones that the code interprets to run the Newton algorithm only on the implicit parts. The complete description of the process can be found in Section 4.3.2 p 99.

A major improvement was the passage to a multi-D formalism to be able to simulate 2D and 3D test cases. This change was an opportunity to add the EUCCLHYD solver, and to then have the possibility to choose between the 1 state or 2 states GLACE solver in 1D and 2D and the EUCCLHYD solver in 2D. It is very easy to switch from one solver to the other during simulations. Indeed, the code contains distinct functions to create the different objects needed in the definition of the gradient problem associated to the implicit prediction step. It is then simple to evaluate the A jr matrices depending on the solver chosen, see 1.14 or 1.15 p 33 and to use them in the other functions as a variable. This multi-D formalism also permits to add the symmetry boundary conditions and validate them.

The last additional functionality was the implementation of the C n+ 1 2 jr , see the definition of the associated scheme (4.7) p 96. It consists in a loop that occurs after the Newton algorithm has converged.

Once the validation is made, the only need to run this program is a .pgs file that contains the call for an implicit solver.

Remark 8. To code the four implicit solvers for the traffic flow problem evoked in Chapter 4, the same environment has been used. Each of these files contains roughly 400 lines of C++ code.

The Riemann problem for compressible Euler equations

In this Section, we recall the definition of a Riemann problem and provide the details of the solution for the Euler system, in Eulerian formalism. The reader can refer to Toro [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] [Chapter 4 p 115] for a complete description.

Theoretical study of the Riemann problem

Write the one dimensional hyperbolic system of Euler under a conservative form, in Eulerian formalism.

∂ t U + ∂ x F (U ) = 0, (6.1) 
where

U =    ρ ρu E    and F =    ρu ρu 2 + p uE + pu    .
The initial condition of a Riemann problem consists in two constant states given here by

U (x, 0) = U 0 (x) = U L x x c , U R x > x c , ( 6.2) 
for a given x c . It is simpler to express the procedure in terms of the primitive variables

W =    ρ u p   
instead of the conserved variables U . The corresponding initial data are

W (x, 0) = W 0 (x) = W L = (ρ L , u L , p L ) T x x c , W R = (ρ R , u R , p R ) T x > x c ,
We consider a stiffened gas equation of state

e = p + γπ (γ -1)ρ ,
where γ > 1 is the ratio of specific heat. The ideal gas equation corresponds to π = 0. When no vacuum is present, the exact solution of the Riemann problem has three waves associated with the three eigenvalues of the system (6.1), namely λ 1 = u -c, λ 2 = u and λ 3 = u + c where c = γ(p+π) ρ . The three waves separate four constant states named W L , W * L , W * R and W R . The unknown region between W * L and W * R is always a contact discontinuity while left and right waves can be either shock or rarefaction waves. Indeed, this distribution comes from the fact that the fields associated to λ 1 and λ 3 are genuinely non linear while the one associated to λ 2 is linearly degenerate. Therefore, there exists four possible wave patterns represented in Figure 6.1.

(1) [see [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] Proposition 4.1 p 119 for ideal EOS] The solution for pressure p * of the Riemann problem (6.1)-( 6.2) with stiffened gas EOS is the root of the algebraic equation

W L W * L W * R W R (2) W L W * L W * R W R (3) W L W * L W * R W R (4) W L W * L W * R W R
f (p, W L , W R ) ≡ f L (p, W L ) + f R (p, W R ) + ∆u = 0, where ∆u = u R -u L , f L (p, W L ) =              (p -p L ) A L p + B L 1 2 , if p > p L (shock), 2c L (γ L -1)   p + π L p L + π L γ L -1 2γ L -1   , if p p L (rarefaction), and 
f R (p, W R ) =              (p -p R ) A R p + B R 1 2 , if p > p R (shock), 2c R (γ R -1)   p + π R p R + π R γ R -1 2γ R -1   , if p p R (rarefaction).
The values c L and c R are respectively the speed of sound in the left and right states. The constants are

A L = 2 (γ L + 1)ρ L , B L = γ L -1 γ L + 1 p L + 2γ L γ L + 1 π L , A R = 2 (γ R + 1)ρ R , and B R = γ R -1 γ R + 1 p R + 2γ R γ R + 1 π R .
The solution for the particle velocity u * is

u * = 1 2 (u L + u R ) + 1 2 f R (p * ) -f L (p * ) .
To find the value of the pressure p * , the equation f (p) = 0 needs to be solved. One can use any relevant iterative procedure to find the solution. In [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] [Chapter 4 p 131], the interested reader can have the exact values of the pressure and the velocity for a few famous problems.

At this time, Proposition 23 gives the value of u * and an iterative process leads to p * . To finish with, we need to have an analytical formula for the density in the star region and to express correctly the intervals in which lie each wave.

There are two cases to study, each one of them leading to two possibilities. For the first case, we consider the region at the left of the CD. We then need to compute which points W are reachable through a left shock wave and a left rarefaction wave.

a) Left shock wave

A left shock wave corresponds to p * > p L . We then find the density

ρ sho * L = ρ L   p * +π L p L +π L + γ L -1 γ L +1 γ L -1 γ L +1 p * +π L p L +π L + 1   ,
and the velocity

u * = u L -(p * -p L ) A L p * + B L 1 2 .
The left shock speed is given by

S L = u L -c L γ L + 1 2γ L p * + π L p L + π L + (γ L -1) 2γ L 1 2
.

For the left side, before the contact discontinuity, one then has

W (x, t) =      W L , if x -x C t S L , W sho * L , if S L x -x C t u * ,
where W sho * L = (ρ sho * L , u * , p * ) T .

b) Left rarefaction wave

For a left rarefaction, the condition is p * p L . In the star region, the density follows an isentropic law. As a matter of fact, ρ * L can be written

ρ f an * L = ρ L p * + π L p L + π L 1 γ L ,
the velocity u * is equal to

u * = u L - 2c L γ L -1   p * + π L p L + π L γ L -1 2γ L -1   ,
and the sound speed is given by

c * L = c L p * + π L p L + π L γ-1 2γ L .
The rarefaction wave is enclosed between the Head characteristic and the Tail one of respective speeds S HL = u L -c L , and S T L = u * -c * L .

For the left rarefaction wave, before the contact discontinuity, one then has

W (x, t) =                W L , if x -x C t S HL , W Lf an , if S HL x -x C t S T L , W f an * L , if S T L x -x C t u * ,
where

W Lf an (ρ, u, p) =                      ρ = ρ L 2 (γ L + 1) + γ L -1 (γ L + 1)c L u L - x -x C t 2 γ L -1 , u = 2 (γ L + 1) c L + (γ L -1) 2 u L + x -x C t , p = (p L + π L ) 2 (γ L + 1) + (γ L -1) (γ L + 1)c L u L - x -x C t 2γ L γ L -1 -π L ,
and W f an * L = (ρ f an * L , u * , p * ) T . For the second and last case, we consider the region at the right of the CD. We repeat the same procedure to compute the set of points reachable trough a right rarefaction wave or a right shock.

c) Right shock wave

Having a right shock wave means p * > p R . One can evaluate the density

ρ sho * R = ρ R   p * +π R p R +π R + γ R -1 γ R +1 γ R -1 γ R +1 p * +π R p R +π R + 1   , the velocity u * = u R + (p * -p R ) A R p * + B R 1 2
, and the shock speed

S R = u R + c R γ R + 1 2γ R p * + π R p R + π R + (γ R -1) 2γ R 1 2
.

For the right side, after the contact discontinuity, one then has

W (x, t) =      W sho * R , u * x -x C t S R , W R , x -x C t S R .
where the shock state is W sho * R = (ρ sho * R , u * , p * ) T .

d) Right rarefaction wave

For a right rarefaction wave, one finds that the density in the star region is

ρ f an * R = ρ R p * + π R p R + π R 1 γ R ,
the velocity is

u * = u R + 2c R γ R -1   p * + π R p R + π R γ R -1 2γ R -1   ,
with a sound speed

c * R = c R p * + π R p R + π R γ R -1 2γ R .
The speeds of the Head and Tail of the fan are

S HR = u R + c R , and S T R = u * + c * R , x t W L W * L =    ρ * L u * p *    W * R =    ρ * R u * p *    W R Figure 6.

-Sod shock tube wave pattern

The particularity here is that p * and u * are constant between the left and right waves while, as mentioned earlier, the density takes two constant values. To express totally the solution, one has

W (x, t) =                                            Rarefaction wave W L , if x -0.5 t S HL , W Lf an , if S HL x -0.5 t S T L , W f an * L , if S T L x -0.5 t u * , Contact discontinuity p * , u * , Shock wave W sho * R , if u * x -0.5 t S R , W R , if x -0.5 t S R .
We run the simulation until t = 0.2, before the shock reaches the right wall x = 1 and boundary conditions are u L = 0, u R = 0. We consider the two gases follow a perfect gas law, see (1.5), and set γ = 1.4 accordingly. The results are plot for a mesh of 100 cells and compared with the solution of the explicit acoustic scheme.

For a CFL equal to 0.4 the curves are quasi identical in Figure 6.3. One can observe some oscillations on the density and entropy curves near contact discontinuity (undershoot of density and overshoot of entropy). This is a classical phenomenon for explicit Lagrangian schemes named wall heating. The implicit scheme does not correct these oscillations. Numerous papers have been dedicated to the correction of this phenomenon. The interested reader can see [START_REF] Rider | Revisiting Wall Heating[END_REF] or [START_REF] Váchal | Volume Change and Energy Exchange: How They Affect Symmatry in the Noh Problem[END_REF]. Even for a finer mesh, the wall heating is visible. In Figure 6.4, for 1000 cells over [0;1], one can notice it.

Position of the contact discontinuity

This Section, more than showing the unconditional robustness of our implicit scheme for the Sod test case, gives an explanation on the precision of the location for the contact discontinuity. A remark can be done on the position of the contact discontinuity that is slightly shifted. To explain the origin of this misplacement, we can evoke the fact that the interaction with the boundaries of the domain is very important.

Experiment on larger domain, validation of hypothesis

To validate the hypothesis that the interaction with the boundaries misplaces the contact discontinuity, we performed another calculation (same initial conditions and final time) on a domain 9 times larger. The results are visible in Figure 6.9, and the contact discontinuity is once again well positioned. Keeping the same precision as before, namely 100 cells between [0;1], the contact discontinuity has the same location than the explicit scheme, except that it is sharper for the implicit scheme with maximum CFL. The results are visible in Figure 6.10. To lower the interactions with the boundaries the domain was taken very large.

Study of the Implicit Riemann problem

We develop hereafter a possible explanation for the precision of the position for the contact discontinuity in Figure 6.9. It deals with the integration of the Lagrangian Riemann problem.

Indeed, consider the following initial conditions

τ 0 (x) = τ L , x < 0, τ R , x > 0, u 0 (x) = u L , x < 0, u R , x > 0, S 0 (x) = S L , x < 0, S R , x > 0.
Lagrangian isentropic Euler equations are The equations (6.3) are discretized in time but the space part is left continuous, ∆t > 0, x ∈ R. This mimics the implicit scheme, indeed ∆t can be taken extremely big, but the space step ∆x is very small. This corresponds of having a discrete ∆t compared to a small continuous ∆x. The method of calculation of a solution to (6.5) is detailed after. For x < 0 the solution satisfies the equations

       ∂ t τ (x) -∂ m u(x) = 0, ∂ t u(x) + ∂ m p(τ (x), S(x)) = 0, ∂ t S(x) = 0.
                 τ (x) -τ 0 (x) ∆t -∂ m u(x) = 0, u(x) -u 0 (x) ∆t + ∂ m p(x) = 0, S(x) -S 0 (x) ∆t = 0. ( 6 
       τ (x) -τ L - 1 ρ L ∂ x u(x) = 0, u(x) -u L + 1 ρ L ∂ x p(x) = 0.
The variable u is derived from the second equation and injected in the first equation to obtain

τ (x) -τ L + 1 ρ 2 L p (x) = 0.
Introducing the enthalpy H(p, S) = e + pτ , one has dH = de + pdτ + τ dp = T dS + τ dp, hence Factorizing the pressure derivative, one gets

∂H ∂p (p, S L ) -τ L + 1 ρ L 2 p (x) = 0.
1 ρ L 2 p (x) + ∂ ∂p (H(p, S L ) -pτ L ) = 0. One then obtains ∂ ∂ x 1 ρ L 2 (p (x)) 2 2 + H(p, S L ) -pτ L = 0. Therefore 1 ρ L 2 (p (x)) 2 2 + H(p, S L ) -pτ L = K L .
Using the boundary conditions (6.4), the integration constant is For x > 0, the solution verifies the equations

K L = e L . 1 ρ L 2 (p (x)) 2 2 + H(p, S L ) -pτ L -e L = 0. So p (x) 2 2ρ L 2 = -H(p, S L ) + pτ L + e L .

One finally obtains

p (x) = ±ρ L -2H(p, S L ) + 2pτ L + 2e L . ( 6 
       τ (x) -τ R - 1 ρ R ∂ x u(x) = 0, u(x) -u R + 1 ρ R ∂ x p(x) = 0.
We apply the same method than in the case x < 0, and check that the solution is of the same kind. One finally finds an expression for p p

(x) = ±ρ R -2H(p, S R ) + pτ R + e R . ( 6.7) 
At the interface, when x = 0, the continuity conditions are

p(0 -) = p(0 + ) = p , u(0 -) = u(0 + ) = u , with p ∈ R. One gets u = u L - 1 ρ L p (0 -) = u R - 1 ρ R p (0 + ). That is -u L + 1 ρ L p (0 -) = -u R + 1 ρ R p (0 + ).
Using (6.6) and (6.7), one finds the scalar equation

-u L ± -2H(p , S L ) + 2p τ L + 2e L = -u R ± -2H(p , S R ) + 2p τ R + 2e R ,
where p is the unknown.

In the numerical examples, we took initial conditions of a Sod shock tube, that are recalled hereafter.

u L = u R = 0, ρ L = 1 τ L = 1, ρ R = 1 τ R = 1 8 , p L = 1, p R = 0.1, γ = 1, 4, e S L = 10 4 , e S R = 8 1.4 4 . As u L = u R = 0, one has -H(p , S L ) + p τ L + e L = -H(p , S R ) + p τ R + e R . ( 6.8) 
Using the perfect gas law, one can rewrite the equation in terms of p and S. τ = ((γ -1)e S )

1 γ p 1 γ , e = pτ γ -1 = (γ -1) 1 γ -1 e S γ p 1-1 γ .
One obtains

e S L γ   - γ γ -1 p 1-1 γ + p -1 γ L p + p 1-1 γ L γ -1   = e S R γ   - γ γ -1 p 1-1 γ + p -1 γ R p + p 1-1 γ R γ -1   .
Lemma 7. The equation (6.8) admits a unique positive solution p ∈

[p R , p L ]. Proof. Let us denote f L (p) = -H(p, S L ) + pτ L + e L , and f R (p) = -H(p, S R ) + pτ R + e R , so that (6.8) is rewritten as f L (p ) -f R (p ) = 0.
The properties of the function f L are the following. One has

f L (p L ) = 0, f L (p L ) = - ∂H(p L , S L ) ∂p + τ L = -τ L + τ L = 0, and f L (p) = - ∂ 2 H(p, S) ∂p 2 = - ∂τ ∂p = 1 ρ 2 c 2 > 0.
With the same calculations, one finds

f R (p R ) = 0, f R (p R ) = 0 and f R (p) > 0.
The two functions f L and f R are strictly convex, with a minimum value equal to 0, obtained respectively for p L and p R .

Let us denote f (p) = f L (p) -f R (p). One analyzes the function f in the case of the Sod shock tube, that is for p R p p L . One obtains

f (p R ) = f L (p R ) > 0, and f (p L ) = -f R (p L ) < 0.
The function f changes sign, so it takes at least once the value 0 in between p R and p L , which validates the existence of a solution. To have the uniqueness, one needs to prove the monotonicity of f . One has f (p) = f L (p) -f R (p). For all p R < p < p L , one finds f L (p) < 0 and f R (p) > 0, so f (p) < 0 which concludes to the monotonicity of f , and the uniqueness of the solution to (6.8).

Numerically, we calculate with a Newton method that the solution to (6.8) is approximately equal to p = 0.2559. It corresponds to a velocity of u = 0.8789. The exact value of the velocity for the Riemann problem at the contact discontinuity is u exact = 0.9275. This value is found in Toro [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF], [Table 4.3,p 131].

The difference between u and u exact is equal to 5.5%, which is a satisfying accuracy considering that the implicit simulation performs with only one time step. In our mind, this small relative error of 5.5% is the reason why the contact discontinuity of the implicit solver is approximately superimposed with the reference one in Figure 6.9. In Figure 6.10, the contact discontinuity has the same precision than the explicit acoustic solver and is no more shifted as it was on a smaller domain. We observed a similar behavior for all the other test problems and we believe it is a strong asset of this family of implicit Lagrangian schemes.

Other 1D test cases 6.4.1 Water/gas simulations

In this Section, we perform two other Sod tube tests taken from [START_REF] Abbate | Thesis: Numerical methods for all-speed flows in fluid-dynamics and nonlinear elasticity[END_REF] with different materials. The first one represents a low Mach gas-gas interaction and the second one a fluid-fluid problem.

a) Low Mach gas-gas interaction

This test case is similar to the classic Sod shock tube except that the heat ratio γ is different for each gas. In addition, a small variation of velocity and pressure is imposed. The initial conditions are the following ρ 0 (x) = 1, u 0 (x) = 0, x < 0.5 0.008, x > 0.5 , p 0 (x) = 0.4, x < 0.5 0.399, x > 0.5 , γ 0 (x, t) = 1.4, x < 0.5, 1.6, x > 0.5.

The domain of simulation is Ω = [0; 1], discretized over 100 cells and plots are made for t = 0.25. The two gases expand in the two directions with rarefaction waves. The interface between the gases moves slowly and is kept very sharp by the implicit solver even for a maximal CFL of 20 which corresponds to one time step, see Figure 6.11. Nonetheless, there is some numerical dissipation that increases as the CFL becomes larger. To give an idea of the time of calculation, the explicit solver needs about 0.13s, while the implicit solver lasts 0.31s, for a same CFL. For a CFL of 2 however the time is similar.

b) Low Mach water-water interaction

This simulation is a Sod shock tube with a small imposed ratio on the pressure. The initial conditions are ρ 0 (x) = 10 3 , u 0 (x) = 0, x < 0.5 15, x > 0.5 , p 0 (x) = 10 8 , x < 0.5 0.98 10 8 , x > 0.5 , γ 0 (x, t) = 4.4.

The water has been modeled with a stiffened gas law where π 0 (x, t) = 6.8 10 8 , see (1.6) and Table 1.1 p 20. The material wave is very sharp but correctly approximated and the rarefaction waves are well captured. The results are plotted for t = 10 -4 on a mesh of 100 cells over [0; 1]. In Figure 6.12, one can remark that the contact discontinuity is well placed, even if it is a bit shifted on the y-axis. Implicit CFL=2 Implicit CFL=4 Implicit CFL max =19 Figure 6.12 -Water-water interaction for Euler equations.

Blast wave

To give the reader an idea of how the implicit scheme behaves in other configurations, we present here a more severe test case called the blast wave problem. It is also known as the Woodward and Colella problem, see [START_REF] Woodward | The Numerical Simulation of 2D Fluid Flow with Strong Shocks[END_REF]. This test case involves multiple interactions. Indeed, two strong blast waves develop right after the beginning of the simulation, then collide at t = 0.028s, inducing a decrease of the time step for explicit schemes, and at the final time t = 0.038s, a new contact discontinuity can be observed. For this example, the initial conditions consist in three constant states of perfect gas at very different pressures.

ρ 0 (x) = 1, u 0 (x) = 0, p 0 (x) =        1000 x < 0.1 0.01 0.1 < x < 0.9 100 x > 0.9 , γ 0 (x) = 1.4.
The simulation is performed on a mesh of 400 cells between [0, 1], following the article [START_REF] Zakirov | On the conservativity of the Particles-on-Demand method for solution of the Discrete Boltzmann Equation[END_REF], and there are reflexive boundary conditions on both sides of the domain. As the shocks are very strong, it would not be relevant to take large time steps. In Figure 6.13, the precision of the implicit scheme is visible for a same CFL than the explicit scheme. In Figure 6.14, we increase the CFL of the implicit scheme and we observe some oscillations in the density curve for CF L = 5. The wall heating is visible in the density curve for both the explicit and the implicit scheme at the location of the contact discontinuity. For strong shocks, it seems that the numerical dispersion is sensible to the CFL number. We do not comment this result further as we do not know if it comes from a numerical artifact. 

Noh

We consider Noh test case with initial conditions

ρ 0 (x, t) = 1, u 0 (x, t) = -1, p 0 (x, t) = 10 -6 .
The boundary conditions are given by an imposed left and right velocity, u L = 0 and u R = -1. The final time is t = 0.6 and and the adiabatic constant is γ = 5 3 . This test case is very difficult and we want to show that the stability of the scheme is conserved at a relatively high CFL number compared to the explicit one. There is a bit of numerical smearing but the curve is similar in shape to the explicit one. The shock is well placed, as can be seen in Figure 6.15. For large CFL numbers, the algorithm still provides a solution. Yet, some oscillations are produced, and the position of the shock is really sensitive to the CFL. For a CFL bigger than 1 there are two sources of inaccuracy: the position of the shock that is shifted to the left, and extra oscillations before the shock. These sources start to be visible for a CFL of 1.2, as in Figure 6. [START_REF] Chalons | Time-Implicit Approximation of the Multipressure Gas Dynamics Equations in Several Space Dimensions[END_REF] 

Water drop

We present here an original test case where the implicit-explicit coupling algorithm is more efficient than the explicit acoustic solver of reference. It consists of a Sod shock tube perturbed by a water drop. This configuration corresponds to the interest we have for fluid-structure interaction with an inner structure represented here by the water drop. The final time of the simulation is t = 1.6 • 10 -4 . The water drop is located between [0.65, 0.6501]. The initial conditions are The adiabatic constant is set to explicit one are similar in shape with the reference solution. The gas hits the water drop from the left side, creating an important reflexive pressure wave as can be seen in Figure 6.17 at x = 0.6. It is well modeled by both of the methods. The explicit solution is evaluated in 65161 iterations in time, corresponding to a dt = 2.45 • 10 -9 . The time of computation is around 76.5s. The implicit-explicit solution is obtained in 158 iterations in time, with a time step dictated by the size of the bigger explicit cells, corresponding to dt = 2.58 • 10 -7 , and a computational time of about 4.5s. For this type of test case, the implicit-explicit coupling performs well.

ρ 0 (x) =           
γ 0 (x) =        1.4 x < 0.

2D numerical test cases

In this Section, we perform a series of tests to evaluate the performances of our implicit scheme in 2D. We show the preservation of symmetry properties, some results on triangular and quadrangular meshes, and 2D classic test cases that show the unconditional stability of our method.

Sod shock tube in 2D

We consider a tube of unity lenth, Ω = [0; 1] × [0; 0.1] filled with a perfect gas at two different density and pressure. The initial conditions are the same than for the 1D test case, that is W L = (1, 0, 1) T and W R = (0.125, 0, 0.1) T . We impose symmetry boundary conditions. The interface is at x C = 0.5 and the final time of the computation is t = 0.2. The initial mesh is composed of 3 × 100 uniformly spread rectangular cells. The initial mesh and the final mesh are both plotted on Figure 6.18. We can see that as any Lagrangian mesh, the cells deform due to the rarefaction and shock waves. Namely an expansion of the cells on the left part due to the rarefaction and a compression on the right due to the shock. The final mesh is symmetric which means that our scheme preserves the fact that the flow is only on the x-axis. We can compare the results we obtain in 2D with the 1D ones. Indeed, in 2D, Final mesh t = 0.2 Figure 6.18 -Lagrangian 2D 100 × 3 mesh for the Sod shock tube. Left is the initial mesh and right is the mesh at t = 0.2.

the loop over the corner vectors C jr has to converge which was trivial in 1D. In Figure 6.19 one can see that for one layer of cells in the x-direction, the 1D and 2D curves are superimposed either for 100 cells on the left or 1000 cells on the right. These curves are obtained at explicit CFL CF L = 0.4.

Density curve for 100 cells Density curve for 1000 cells Figure 6.19 -Comparison of density between the 1D and 2D solution obtained with the implicit scheme. Left on a mesh of 100 cells in the x-direction and Right for a mesh of 1000 cells in the x-direction.

The scheme also provides satisfying results for a maximal CF L = 537 as can be noticed in Figure 6.20. It happens the same phenomenon as for the 1D case: the interaction with the boundaries, which leads to a shifting of the contact discontinuity a bit on the left. Figure 6.20 -Comparison of density between the 1D and 2D solution obtained with the implicit scheme. 1D solution for 1000 cells with a CF L = 0.4, 2D solution for 10x100 triangular mesh with a CF L = 537.

Divergent shock

This test case results in a Sod shock tube solved on a quarter of a disk, namely the initial mesh is given in Figure 6.21. The initial conditions are

ρ 0 (x, y) = 1, x 2 + y 2 < 0.25 0.125, x 2 + y 2 > 0.25 , u 0 (x, y) = 0, p 0 (x, y) = 1, x 2 + y 2 < 0.25, 0.1, x 2 + y 2 > 0.25.
We impose a null velocity on the bottom and left side of the disk quarter. In this configuration, the 

Convergent shock

For the convergent shock test case, we take the same initial mesh than for the previous test case, see Figure 6.21. As the shock goes to the center of the portion of disk, it compresses the inner cells to a very small volume. It has incidence on the CFL for the explicit scheme that becomes smaller. However, the implicit scheme doesn't have this constraint. The initial conditions are We then complete with homogeneous Dirichlet conditions on the left and bottom part of the disk quarter. We compare the results on a 30 × 30 mesh between the explicit scheme with a CFL=0.4, and the implicit scheme with CFL=4. We can see in Figure 6.23 that there is no difference for the contact discontinuity. The shock is a bit dissipated but the rarefaction wave is well approximated. Figure 6.23 -Convergent shock, comparison of the density between the explicit scheme (CFL=0.4) and the implicit scheme (CFL=4) on a 30 × 30 mesh with EUCCLHYD.

Saltzmann test case

The Saltzmann test case is the simulation of a shock on a bi-dimensional mesh. The difficulty of the Saltzmann test case comes from a deformation of the mesh, non aligned with the physics. It tests the sensitivity of the Lagrangian scheme to the mesh and show the potential geometrical instabilities. The domain of calculation is a rectangle, defined on [0; 1] × [0; 0.1], and distorted as described in [START_REF] Abgrall | Un schéma centré pour l'hydrodynamique Lagrange bidimensionnelle[END_REF], namely x = x + 0.1(1 -20y) sin(πx), ỹ = y.

It gives the initial mesh of Figure 6.24. Then, at t = 0.7 and t = 0.74, the shock approaches the right wall but has not reached it yet. The explicit and implicit meshes are very similar, see Figure 6.26. At t = 0.77, the shock just hit the right wall, see Figure 6.27, and then in Figure 6.28, a t = 0.79 one can see that after a first rebound, the meshes are more distorted but the implicit scheme is able to provide a satisfactory solution in total accordance with the explicit results.

Noh test case

We present a cylindrical Noh shock tube on a 2D Cartesian grid. The initial domain of computation is

[0; 1] × [0; 1]. The initial conditions are ρ 0 (x) = 1, u 0 (x) = - x ||x|| , p 0 (x) = 10 -6 .
We apply symmetry boundary conditions for x = 0 and y = 0, where x = (x, y) ∈ [0; 1] × [0; 1]. The final time of the simulation is t = 0.6. The explicit CFL is CF L = 0.001, and we show the comparison with the implicit scheme for this same CFL in Figure 6.29. The results are identical.

Explicit solution at t=0.7 and t=0.74 Implicit solution at t=0.7 and t=0.74 

Sedov test case

This test case simulates the propagation of a shock induced by a large amount of energy in a restrained area. We take (x, y) ∈ [0; 1.2] × [0; 1.2] as the domain of computation, that we subdivide into n × n cells uniformly spread and filled it with a diatomic gas (γ = 7 3 ). The initial state is

ρ 0 (x, y) = 1, u 0 (x, y) = 0, p 0 (x, y) =    (γ -1)e 0 /v 0 , if x < 1.2 n and y < 1.2 n , 10 -6 , else.
where e 0 = 0.106384 is the initial specific energy, and

v 0 = 1.2 n 2
is the volume of the cell containing the point (0, 0). We apply symmetry boundary conditions on all the boundaries of the domain. We make the simulation for n = {20, 40, 80} until t = 1. As we increase the precision of the mesh, the front shock tends to contain higher density values, see Figure 6.30.

Explicit solution

Implicit solution 

Numerical study of the performances

In this Section, we analyze the parameters that can influence the time of computation such as the type of mesh, the storage of variables, the linear solver used and the precision of the convergence for Newton.

Order of storage

We have implemented a function that permits to choose how to store the unknowns. Indeed, it has an influence on the way the matrices will be filled. In 1D, as the pressure and the velocity only have one value par cell, it does not change the time of computation. However, when running 2D computations, it has an impact as the velocity now has two components, one for the x-direction and one for the y-direction. Namely, we have two main possible storages: either we store all the pressure variables and then all the velocity variables, or we store for each cell pressure and velocity variables right after each other. where k ∈ {1, 2, 3} is the number of the wanted component (for example k=1 for the x variable). Both storages lead to sparse matrices. Indeed, our objects A and ∇J in the formulation ∇J(U ) = AU contain non null values on line j in columns i given i and j are neighbor cells. The exact number of non null columns on row j is the number of neighbors of cell j ∈ J , that is

#   r∈R j J r   .
Nonetheless, the position of these non null values depends on the type of storage used. As the cells are usually numbered in order on a regular mesh, neighbor cells have relatively close number indices. In this configuration, Storage 2 must be privileged. As a matter of fact, it induces a matrix that contains non null values close to the diagonal whereas Storage 1 produces block matrix.

Concerning the time of computation, we run a Sod shock tube on a 3 × n mesh, where n = {20, 40, 60, 120}. We use the same CF L = 0.4 than the explicit scheme and then write the time of computation also for CF L = 4. For both solving, we use EUCCLHYD scheme and LU solver. The computational times are given in Table 6.1.

One can notice that for this 2D case with a flow going only on the x-direction, there is a noticeable difference between the two storages. For example, for a 40 × 3 mesh the time of computation is divided by two when Storage 2 is used. Storage 2 reveals more efficient in terms of computational time in general, which is in accordance with the previous remarks. With a CFL ten times bigger than the explicit scheme, the time of computation with Storage 2 is quite similar for relatively small meshes, Explicit CFL=0. 120 × 3 mesh Table 6.1 -Computational times for Sod shock tube using different unknown variables storage. Error with respect to the exact solution, and iterations in time but tends to augment as the mesh refines. To give an example, for a mesh of 1000 × 3, the explicit solver needs 5 times less than the implicit solver, see Table 6 

Type of solver used

The parameter we analyze in this Section is the solver used. We have implemented three different solvers for the 2D implicit scheme that are: GLACE 1 state, GLACE 2 states and EUCCLHYD. In 1D we only have GLACE 1 state and 2 states. The test case we take is the Sod shock tube in 2D. The computational times are evaluated for a mesh of 100 × 3 and 1000 × 3 for the three solvers, using Storage 2, compared to the explicit solver implemented with EUCCLHYD scheme. The results are in One notices that in general, GLACE 1 state is slower than GLACE 2 states and also a bit less precise. EUCCLHYD tends to take less computational time than GLACE. Nevertheless, as we solve an implicit system, the cost of computation is bigger than for an explicit method, for a mesh of 1000×3 for example, in Table 6.4, the implicit scheme with GLACE solver is 7 times slower than the explicit scheme, and it reduces to 5 times for EUCCLHYD solver. For some two dimensional cases, the solution obtained by the different solvers can vary a lot. For instance, we take Sedov test case as described in Section 6.5.6. The mesh resulting from GLACE 2 states is much more distorted than the one coming from EUCCLHYD, see Figure 6 It may be explained by the fact that EUCCLHYD scheme is more numerically dissipative. When the CFL is increased as well, GLACE is sometimes unable to provide a solution where EUCCLHYD gives one. For example, for the Sod shock tube in 2D, with only one time step, GLACE solver conducts to cells with non positive volume in the mesh whereas with EUCCLHYD, the implicit scheme is able to finish the calculations. The results are shown in Figure 6.33. EUCCLHYD Glace Figure 6.33 -Sod shock test case on a 100 × 10 mesh, with the implicit scheme for comparison between GLACE and EUCCLHYD.

Mesh type

The type of cells composing a mesh has an influence on the calculation. Indeed, if we compare triangular cells versus quadrangular cells, the former are usually more stable than the latter. Triangles have an intrinsic stability property due to the fact that they are a simplex and except from a total flip of the cell, the corners can not result in a crossing of edges. To understand this phenomenon, the possible evolution of two cells has been represented in Figure 6.34. For more information, see [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF] [Chap 4 p 253].

Quadrangular cell

Triangular cell In terms of computational time, for a same test case, the simulation goes faster on a Cartesian mesh. To give an example, for the Sod shock tube test solved in one time step on a 100 × 10 mesh, the simulation runs in 7.31s for the Cartesian grid, whereas it takes 310.39s on a triangular grid. It can be explained by the fact that this case is well adapted for Cartesian grid as the flow goes in the x-direction, aligned with the mesh which is not the case for the triangular mesh. Moreover, for a Cartesian grid, EUCCLHYD and GLACE 2 states give the same result whereas for triangular cells, EUCCLHYD gives a result when GLACE 2 states is not able to finish the simulation.

If we now take a test case for which the dynamic is not aligned with the mesh, meaning a Cartesian grid may not be adapted, let us analyze what happens with the two types of grid. We choose Noh test case, with initial state given in Section 6.5.5. For a CFL=0.005, the simulation stops after few iterations with quadrangular cells because of a tangle in the mesh, see Figure 6.35 although the implicit scheme on triangular mesh gives a solution that is similar to the explicit solution, see Figure 6.36. There exists some stabilization methods to constrain the quadrangular cell and avoid any flip. One can read the paper [START_REF] Labourasse | Stabilization of cell-centered compressible Lagrangian method using subzonal entropy[END_REF] where a method of stabilization using subzonal entropy is provided.

Complete mesh Zoom

Linear solvers

In pugs, several solvers and preconditioners can be chosen to solve the implicit system. The preconditioners are: none, diagonal, ICholesky, ILU and AMG. The linear solvers implemented in pugs are: CG, BICGStab, BICGStab2, GMRES, LU and Cholesky.

When realising one dimensional simulations, the preconditioner is usually set to ILU and LU for the linear solver. However, for 2 dimensional test cases, ILU becomes obsolete so AMG is preferred. For the solvers, GMRES or BICGStab / BICGStab2 give the best convergence in terms of rapidity. There is no rule though, so few set ups can be tried. To give an example, for the Sod shock tube in 2D with only one time step, the preconditioner ILU coupled with BICGStab does not converge, producing the mesh in Figure 6.37 whereas ILU coupled with GMRES gives the results plot in Figure 6.33 with EUCCLHYD. Figure 6.37 -Sod shock test case on a 100 × 10 mesh, with the implicit EUCCLHYD scheme with ILU preconditioner and BICGStab linear solver.

Convergence parameters of Newton

The last parameter on which we can influence to facilitate the obtaining of good numerical results is the rate of convergence of the Newton loop.

The basic set up is a convergence at 10 -14 for the Newton algorithm. With 1D simulations, Newton algorithm converges rapidly. We have condensed the number of iterations for Newton algorithm for Sod shock tube in Figure 6.5, for several mesh sizes and several CFL numbers. The size of the mesh do not seem to play a big role in the convergence of the Newton loop. We remark that for an augmentation of the CFL number the number of iterations increases, see Table 6.6. With 2D simulations, the number of iterations for the Newton is really larger (up to 200 iterations). This is why, it can be interesting to lower the convergence rate to 10 -8 . Without a big loss of accuracy, one can decrease the time of computation. To give an example, on Noh test case, the number of iteration goes from an average of 150 iterations down to about 110 iterations per time step.

Conclusion

The idea of this thesis was to develop a semi-Lagrangian implicit scheme to solve the Euler equations by extending Finite Volumes GLACE and EUCCLHYD schemes. In this manuscript, we have developed a more general framework that permits the study of a class of implicit schemes in order to prove their well-posedness. It means to show the existence and uniqueness of a solution to the scheme.

In Chapter 1, we have presented the Euler system and explained precisely its characteristics. We have detailed the passage from an Eulerian formalism, with a fixed mesh, to the semi-Lagrangian formalism used in this thesis, with a moving mesh. This first Chapter was the occasion to recall some features of Finite Volume methods that have been used later to develop our implicit scheme, and some notions of thermodynamics such as the entropy or equations of states to be able to use them in the rest of this document.

Chapter 2 has drawn up an overview of existing implicit schemes and of the different strategies used so far. We have given the motivations that have driven us to treat the Euler equations implicitly, namely to take a bigger time step than the one permitted by an explicit scheme. It is in this Chapter that we have defined our implicit scheme whose study will take place in Chapters 3 and 4.

The essential contribution of this work is developed in Chapter 3. It is about the description of a mathematical framework able to answer positively to some theoretical questions raised in particular in [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF]. This framework consists in the resolution of a gradient problem using mathematical tools such as convex analysis, monotonicity and ordinary differential equation results among other things. The implicit scheme designed during this thesis for the Euler equations reformulates under the form of a gradient problem whose different objects satisfy the 3 hypothesis of this new Theorem of existence and uniqueness defined p 72. Thus, Chapter 3 details the proof of this Theorem and its application to the implicit scheme for the gas dynamics equations.

In Chapter 4, we have continued the theoretical study of the implicit scheme with the analysis of the boundary conditions and their integration in the framework defined in the previous Chapter. We have also evoked an essential point that is the satisfaction of the Geometrical Conservation Law (GCL), more precisely that the two ways of updating the volume are identical. This verification, that τ n+1 is equal to 1/ρ n+1 , is trivial in 1D but becomes thornier as soon as the dimension increases as we have seen in dimension 2. Indeed, to respect the equivalence of volume formula, we explain that the 2D implicit scheme is constructed with new corner vectors C jr that are the half sum between the corner vectors at times n and n + 1. To finish with, another important point of this Chapter is the management of the coupling between zones treated explicitly and zones treated with the implicit scheme. We define a conservative and entropic coupling. A test case where the coupling reveals more performant than a totally explicit simulation is proposed in Chapter 6. It is a situation of interaction between the air and a very small drop of water, simulating the case of a thin structure.

Chapter 5 is devoted to the traffic flow. We have studied this problem in order to test several numerical strategies. The pros of this scalar equation are triple: first the uniqueness of the unknown, second that the implicit scheme of this problem enters in the theoretical framework of Chapter 3, and 161 third the existence of direct resolutions for implicit schemes. The Newton algorithm giving satisfying numerical results in comparison to direct methods or explicit ones, we have then implemented it to solve our implicit non linear scheme for the Euler equations.

Thus, Chapter 6 closes this manuscript by evoking numerical aspects. We have dedicated a part to the Riemann problem because many test cases are defined as such. Then, we apply this methodology to the 1D test cases we present in this Chapter. These 1D and 2D numerical illustrations permit to attest the precision and the robustness of our implicit scheme in different configurations; for shocks and rarefaction waves more or less stiffened, on more or less distorted meshes. All the numerical results come from the implementation in C++ of the non linear scheme in the opensource code pugs. We also evoke a specificity of this class of implicit schemes that is the precision of the position of the contact discontinuity, for which we also give a possible theoretical explanation. We end this Chapter with some recommendations coming from our knowledge on the use of our implicit scheme.

This work opens the door to several axes of research, notably in terms of numerical performances. Indeed, the algorithm is not optimized and very costly as soon as we use it in dimension 2. Moreover, the convergence of the Newton algorithm is not guaranteed and sometimes long to obtain on some 2D test cases when time steps are relatively large. A parallelization of the code should reduce computational times. As well, a more advanced study on the characteristics of the convergence of this Newton algorithm or the choice of another algorithm should be considered.

An improvement for this work would be to code a higher order scheme. This implicit scheme is currently of order 1 in time and space. Knowing that errors are coming mainly from the time part, increasing the order will permit to gain precision. Indeed, as we have seen on the different test cases, the contact discontinuities are relatively well placed even with large time steps. However, shocks and rarefaction waves are dissipated as soon as the CFL is large. To write a higher order implicit scheme we could refer to the second order Lagrangian scheme of [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF].

A future work could be done on the implementation of the subzonal entropy. This method is explained for example in [START_REF] Labourasse | Stabilization of cell-centered compressible Lagrangian method using subzonal entropy[END_REF] for polygonal cells in explicit. It permits the local add of entropy to avoid any mesh problem as tangle of cells. It will have as consequence to increase the robustness of the scheme by adding some viscosity to it.

In the end, a natural sequel of this work would be to generalize this implicit scheme to an elastic solid and to couple this implicit scheme with a fluid scheme that could be implicit and/or explicit depending on the simulation. To do so, we could use the works of [START_REF] Kluth | Discretization of Hyperelasticity on Unstructured Mesh With a Cell-Centered Lagrangian Scheme[END_REF] or [START_REF] Georges | A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity[END_REF]. The coupling between implicit and explicit parts, in the best configuration, being done as explained in Chapter 4.

Conclusion en français

L'idée de cette thèse était de développer un schéma implicite semi-Lagragien pour la résolution des équations d'Euler en étendant les schémas Volumes Finis GLACE et EUCCLHYD. Dans ce manuscrit, nous avons développé un cadre théorique plus général qui permet l'étude d'une classe de schémas implicites afin de prouver leur caractère bien défini. C'est à dire de démontrer l'existence et l'unicité d'une solution au schéma.

Dans le Chapitre 1, nous avons présenté le système d'Euler en expliquant précisément ses caractéristiques. Nous nous sommes attachés à expliquer le passage d'un formalisme Eulérien, avec maillage fixe, au formalisme semi-Lagrangien utilisé dans ce mémoire, avec maillage déformable. Ce premier Chapitre a été l'occasion de rappeler quelques points des méthodes des Volumes Finis qui ont ensuite servi pour développer notre schéma implicite, ainsi que certaines notions de thermodynamique comme l'entropie ou les lois d'états afin de les utiliser dans la suite du document.

Le Chapitre 2 a permis de dresser un aperçu des schémas implicites existants et des différentes stratégies utilisées jusqu'alors. Nous y avons donné les motivations qui nous ont incité à choisir de traiter les équations d'Euler de manière implicite, à savoir prendre un pas de temps plus grand que ne le permet un schéma explicite. C'est dans ce Chapitre que nous avons défini notre schéma implicite qui a ensuite été étudié aux Chapitres 3 et 4.

L'apport essentiel de ce travail est développé au cours du Chapitre 3. Il s'agit de la mise en place d'un cadre mathématique capable de répondre favorablement aux questions théoriques posées notamment dans [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF]. Ce cadre consiste en la résolution d'un problème de gradient à l'aide d'outils mathématiques tels que l'analyse convexe, des résultats sur la monotonicité et sur les équations aux dérivées ordinaires entre autres. Le schéma implicite développé durant cette thèse pour les équations d'Euler se reformule en un problème de gradient dont les différents objets satisfont aux 3 hypothèses de ce nouveau Théorème d'existence et d'unicité défini p 72. Le Chapitre 3 détaille ainsi la preuve de ce Théorème et son application au schéma implicite pour les équations de la dynamique des gaz.

Dans le Chapitre 4, nous avons continué l'étude théorique du schéma implicite avec l'analyse des conditions limites et leur intégration dans le cadre défini au Chapitre précédent. Nous évoquons également un point essentiel qui est la satisfaction de la Loi de Conservation Geométrique (GCL), plus précisément que les deux manières de mettre à jour le volume des mailles soient identiques. Cette vérification, que τ n+1 soit égal à 1/ρ n+1 , qui est triviale en 1D devient plus épineuse dès lors que la dimension augmente comme nous l'avons vu en dimension 2. En effet, pour respecter l'équivalence des formules de volume, nous expliquons que le schéma implicite en dimension 2 est construit à l'aide de nouveaux vecteurs géométriques C jr qui sont la demi-somme des vecteurs géométriques aux temps n et n + 1. Enfin, un autre point important de ce Chapitre est la gestion du couplage entre des zones traitées de manière explicites et des zones traitées à l'aide du schéma implicite. Nous définissons un couplage conservatif et entropique. Un cas test où le couplage se révèle plus performant qu'une gestion totalement explicite de la simulation est ensuite proposé au Chapitre 6. Il s'agit d'une situation d'interaction entre de l'air et une goutte d'eau très petite simulant le cas d'une structure fine. 163 Le Chapitre 5 traite le cas du trafic routier. Nous avons étudié ce problème dans le but de tester plusieurs stratégies numériques. L'utilité de cette équation scalaire est triple : premièrement l'unicité de l'inconnue, deuxièmement l'insertion du schéma implicite dans le cadre théorique du Chapitre 3 et troisièmement l'existence de méthodes de résolution directes pour des schémas implicites. L'algorithme de Newton donnant des résultats numériques satisfaisants en comparaison de méthodes directes ou explicites, nous l'avons implémenté par la suite pour résoudre notre schéma implicite non linéaire des équations d'Euler.

C'est ainsi que le Chapitre 6 vient clore ce manuscrit en évoquant des aspects plus numériques. Nous y avons d'abord consacré une partie au problème de Riemann car de nombreux cas tests sont définis comme tels. Puis, nous appliquons la méthodologie proposée aux cas tests 1D que nous présentons dans ce Chapitre. Les illustrations numériques 1D et 2D permettent d'attester de la précision et de la robustesse de notre schéma implicite dans différentes configurations; pour des chocs et des détentes plus ou moins raides, sur des maillages plus ou moins déformés. Tous les résultats numériques proviennent de l'implémentation en C++ du schéma implicite non linéaire dans le code opensource pugs. Nous évoquons également une spécificité de cette classe de schéma implicite qui est la précision de la position de la discontinuité de contact, dont nous proposons d'ailleurs une explication théorique. Enfin, nous terminons par quelques recommandations provenant de notre connaissance sur l'utilisation du schéma implicite.

Ce travail ouvre le champ à plusieurs axes de recherches notamment en termes de performance numérique. En effet, l'algorithme n'est pas optimisé et donc assez coûteux dès lors que l'on passe en dimension 2. De plus, la convergence du Newton n'est pas garantie et parfois assez longue à obtenir sur certains cas tests 2D lorsque les pas de temps sont choisis relativement grands. La parallélisation totale du code permettrait de réduire les temps de calculs. De même qu'une étude plus poussée sur les caractéristiques de convergence de cet algorithme de Newton ou bien le choix d'un autre algorithme pourraient être envisagés.

Une amélioration de ce travail serait de coder un schéma d'ordre plus élevé en temps. Ce schéma est actuellement d'ordre 1 en temps et en espace. Sachant que les erreurs viennent principalement de la partie en temps, augmenter l'ordre permettrait de gagner en précision. En effet, comme nous avons pu le constater sur les différents cas tests, les discontinuités de contacts sont relativement bien placées même avec des grands pas de temps. En revanche les chocs et les détentes sont étalés dès que les CFL sont élevées. Pour écrire ce schéma implicite d'ordre plus élevé, on pourrait s'inspirer du schéma Lagrangien d'ordre 2 de [START_REF] Fryxell | An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics[END_REF].

Une future étude pourrait porter sur l'implémentation de l'entropie de sous maille. Cette technique est expliquée par exemple dans [START_REF] Labourasse | Stabilization of cell-centered compressible Lagrangian method using subzonal entropy[END_REF] pour des mailles polygonales en explicite. Elle permet l'ajout local d'entropie pour éviter un problème de maillage comme un retournement de maille. Cela aurait pour effet d'augmenter la robustesse du schéma en y ajoutant de la viscosité.

Enfin, une poursuite naturelle de ces travaux serait de généraliser ce schéma implicite à un solide élastique puis de coupler ce schéma implicite avec un schéma fluide pouvant être implicite et/ou explicite selon les besoin de simulation. Pour cela on pourrait s'inspirer des travaux de [START_REF] Kluth | Discretization of Hyperelasticity on Unstructured Mesh With a Cell-Centered Lagrangian Scheme[END_REF], ou de [START_REF] Georges | A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity[END_REF]. Le couplage se faisant entre les parties implicites et explicites dans l'idéal de la même manière qu'expliqué dans le Chapitre 4.
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Proof.

  Consider a node r of the mesh M. One has by definition of the nodal solver j∈Jr F jr = 0. Using the explicit formulation of F jr one finds j∈Jr A jr (u j -u r ) + j∈Jr C jr p j = 0. Keep the unknown velocity u r on the one side and reorganize the terms j∈Jr A jr u r = j∈Jr A jr u j + j∈Jr C jr p j . Use A r = j∈Jr A jr . As the vectors u r are independent from the index j A r u r = j∈Jr A jr u j + j∈Jr C jr p j .
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 21 Figure 2.1 -Pressure boundary condition, imposed external pressure p ext .

j∈JrC

  jr p jr + (-j∈Jr C jr )p ext = 0, j∈Jr A jr u r = j∈Jr C jr p j + j∈Jr A jr u j + (-j∈Jr C jr )p ext , A r u r = j∈Jr C jr (p j -p ext ) + j∈Jr A jr u j .
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 25 Figure 2.5 -Non homogeneous Dirichlet boundary condition.
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 2 depend on the equation of state of the fluid. The functions Q 1 r and Q 2 r depend only on the choice of the scheme. The domain of definition of J is D =] -∞, 0[ N ×R dN . It is chosen in order to ensure that the pressure term is positive. a) Definition of L 1 j and L 2 j
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 33 The matrix A ∈ M n+m (R) is skew-symmetric and its kernel satisfies ker(A) ∩ D = ∅. Under the Hypotheses 1, 2 and 3, the problem(3.16) has a unique solution.
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 31 Figure 3.1 -Idealization of the graph of J.
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 12 see Coddington and Levinson [17], Chapter 1 p 8). Let N ∈ N and F : I × R N → R N , let ε 0 ∈ I, and U ε ∈ R N where I is a non empty interval of R. A solution of the differential equation

. 23 )

 23 is given by a non empty interval I ⊂ I and a differentiable functionU : I → R N satisfying (3.23) for all ε ∈ I.A solution of the initial value problem (or Cauchy problem) associated to(3.23) is a solution of(3.23) such that ε 0 ∈ I and U (ε 0 ) = U 0 .
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 59 Section 2.6 p 138]] Let Ω be an open domain of R × R m and U : I = [t 0 , b[→ R m a solution of the equation U = F (t, U ) where F is continuous on Ω. So U (t) can be continuated further than b if and only if there exists a compact C ⊂ Ω such that the curve t → (t, U (t)), t ∈ [t 0 , b[, stays in C. Let us use this result to prove the following proposition. There exists a compact C ⊂ D such that U ε ∈ C for all ε ∈ [0, min(ε max , 2)[. This proposition is illustrated by Figure 3.2 Proof. Thanks to (3.24), U ε is in D ∩ B(0, K). Moreover, ∇J(U ε ) = εAU ε , so one has ||∇J(U ε )|| 2||A||K. Let us consider
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 32 Figure 3.2 -Illustration of the domain of definition of J
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 315 PropositionThe function J dir given by (4.3) is continuous, C 3 and strictly convex on D.
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 41 Figure 4.1 -Case when coercivity conditions of J are satisfied.
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 42 Figure 4.2 -Conditions of coercivity of J are flouted, crossing of cells
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 43 Figure 4.3 -Conditions of coercivity on u G not respected, suppression of cells.
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 44 Figure 4.4 -Example of a 1D mesh with different cell sizes
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 46 Figure 4.6 -Example of a 1D interface
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 4 At the end of the prediction step, update the values of p and u for all the implicit cells 5. Evaluate the flux terms u r and F jr for the whole mesh 6. Update the values of u, E and ρ using the new fluxes for time n + 1, and move the mesh 7. Redo until the final time is reached
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 448 Figure 4.8 -Description of the Implicit-Explicit mesh used for Abgrall-Saurel test case
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 49 Figure 4.9 -Two-phase shock tube for Euler equations.
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 51 Figure 5.1 -LWR traffic flow model interpretation for ρ → f (ρ) = ρu(ρ).
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 53 Figure 5.3 -Comparison between Explicit and Implicit algorithms for congestion case at t=0.3.
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 5455 Figure 5.4 -Comparison of different CFL numbers for Newton algorithm for congestion case at t=0.3.
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 5657 Figure 5.6 -Comparison between Explicit and Implicit algorithms for release case at t=0.2.
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 58 Figure 5.8 -Initial density for sinusoidal case.
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 59 Figure 5.9 -Sinusoïdal traffic flow problem at times t = 0.25 and t = 0.75, for the density. CF L exp = 0.4 and CF L imp = 20.

Listing 1

 1 Example of .pgs file for the traffic flow problem on Cartesian mesh with the implicit Newton solver. mesh let m : mesh, m = cartesianMesh([0], [1], 100); //Initialization let tau0 : R^1 -> R, x -> 2*(x[0]<=0.3)+1.4*(x[0]>0.3 and x[0]<0.7) +(1./0.9)*(x[0]>0.7) ; let tau: Vh, tau = interpolate(m, P0(), tau0); //Set time let t:R,t=0; let tmax:R, tmax=0.3; //Set boundary conditions let u_right : R^1 -> R^1, x -> 0.2; let bc_list: (boundary_condition), bc_list = (free(boundaryName("XMIN")), velocity(boundaryName("XMAX"), u_right)); //Time loop do{ //Set time step let dt:R, dt=0.005*5; if (dt > tmax-t) { dt = tmax-t; } //Newton algorithm (m,tau)=implicit_traffic_flow_upwind(tau, bc_list,dt); t+=dt;
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 61 Figure 6.1 -Possible patterns for the Riemann problem. (1) Rarefaction, Contact Discontinuity denoted CD, Shock. (2) Shock, CD, Rarefaction. (3) Rarefaction, CD, Rarefaction. (4) Shock, CD, Shock.
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  Generalities, les définitions basiques et les concepts utiles à la compréhension du travail sont introduits. La présentation des équations d'Euler est affinée, tout comme les différents formalismes sus mentionnés. La notion d'entropie est rappelée puisqu'elle servira par la suite pour des questions de stabilité du schéma. Enfin, un rappel sur les schémas Volumes Finis et leurs principales propriétés est fait.Le Chapitre 2, Implicit scheme, positionne le schéma implicite de ce travail par rapport aux stratégies existantes. Il détaille la construction du schéma implicite de type prédiction-correction, en Volume Finis et formalisme semi-Lagrangien. La stabilité entropique de chacune des phases du schéma discretisé en espace et en temps est démontrée. Enfin le traitement des différentes conditions limites est expliqué.Dans le Chapitre 3, Existence and uniqueness of a solution for the implicit step, nous expliquons comment écrire la phase de prédiction implicite sous la forme d'un problème de gradient. De ce cadre, un Théorème d'existence et d'unicité d'une solution pour la phase de prédiction implicite est énoncé dans le détail. Puis la preuve complète de ce Théorème est réalisée. Enfin, le résultat est appliqué au cas des équations d'Euler.Le Chapitre 4, Boundary conditions, GCL and coupling, aborde trois sujets distincts. Le premier est la prise en compte des conditions limites dans la formulation du problème de gradient. Le respect des différentes hypothèses liées à la bonne application du Théorème d'existence et d'unicité est évalué. Le deuxième point concerne la loi de conservation géométrique (GCL) qui est définie d'un point de vue général. Son respect est démontré en Dimensions 1 et 2. Enfin, le dernier point de ce Chapitre aborde la notion de couplage. Un schéma de couplage implicite-explicite dans le cas de simulations bi-fluides est étudié. Des exemples numériques de simulations bi-fluides ayant des ratios de densité et de vitesse du son de plusieurs ordres de grandeurs sont analysés et valident le couplage proposé.Le Chapitre 5, Traffic flow problem, est consacré à l'étude du trafic routier en une dimension. Le schéma proposé pour ce problème s'inscrit parfaitement dans le cadre théorique proposé au Chapitre 3 et permet d'appliquer le Théorème d'existence et d'unicité à une autre classe de schémas implicites.

, le schéma est entropique. Une difficulté des schémas implicites, comme précédemment mentionné, est de justifier leur caractère bien posé et c'est un point important sur lequel nous nous concentrons dans le Chapitre 3. Dans cette introduction, nous présentons au lecteur la version 1D de notre schéma implicite. La version 2D avec formalisme multi-D sera introduite au Chapitre 2 et étudiée aux Chapitres 3 et 4. Il y a 6 Chapitres dans ce manuscrit, chacun d'entre eux commençant par une brève description de leur contenu. L'organisation est comme suit. Dans le Chapitre 1,
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	1.2.1	

Table 1 .

 1 1 -Some parameters of the stiffened gas equation of state.

	Material Density ρ (kg/m 3 ) Ref. pressure π (Pa) Adiabatic index (γ) Sound speed c (m/s)
	Air	1	0	1.4	340
	Water	998	6.8 • 10 8	4.4	1647
	Copper	8924	341 • 10 8	4	3910
	Granite	2627	142 • 10 8	2.6	3750

1.3.2.1 Entropy of the Euler equations (1.3)

  

	Consider the Euler system (1.3) in Eulerian coordinates. The physical entropy inequality of this system
	is				
				∂ t (ρS) + ∂ x (ρSu) 0,
	in the sense of distributions. The strict convexity of this function comes from the second principle of
	thermodynamics and the assumption of the strict convexity of the internal energy e. As a matter of
	fact, e strictly convex means that its hessian matrix (1.8) is positive definite.
				∇ 2 e = H e =	∂ 2 e ∂τ 2 ∂ 2 e	∂ 2 e ∂τ ∂S ∂ 2 e	.	(1.8)
					∂S∂τ	∂S 2
	One then has ∂ 2 e ∂τ 2	∂ 2 e ∂S 2 -∂ 2 e ∂S∂τ	2	> 0 and ∂ 2 e ∂S 2 = ∂T ∂S > 0.
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  thus a smooth solution of (2.2) and reciprocally. Next, show that (ρ, ρu, ρS) is solution of (2.1) if and only if (ρ, ρu, ρe) is solution of (2.2) where (ρ, ρe) → ρS(ρ, ρe). Start from ∂ t (ρS)+∇•(ρSu) = 0. Develop each operator to get ρ(∂ t S+u•∇S)+S(∂ t ρ+∇•(ρu)) = 0. Thanks to the continuity equation one deduces that S(∂ t ρ + ∇ • (ρu)) = 0.

Use Gibbs relation on ρ(∂ t S + u • ∇S) = 0. One has dS = 1 T (de + pdτ ). Multiply by ρ and inject into the previous equation. It thus gives ρ T ∂ t e + p∂ t τ + u∇e + up • ∇τ = 0.

  One gets

			A jr u r =	A jr u j +			
		j∈J r	j∈J r				
	A jr =	α j ||C jr ||	(C n jr ) 2 C n jr C t jr C n jr C t jr (C t jr ) 2	and A jr =	α j ||C jr ||	(C n jr ) 2 -C n jr C t jr -C n jr C t jr (C t jr ) 2	.	(2.14)
	One injects the expression (2.14) into the equation (2.13)				

j∈Jr A jr u r + j∈Jr A jr u j + j∈Jr C jr p j + j∈J r C jr p j .

(2.13)

Develop the matrix A jr in terms of normal and tangential components to simplify the comprehension. This decomposition can be done in 2D and 3D.

  The function L 1 j is coercive. For the rest of the terms, let us evaluate the limits.The limit when p → +∞ is equal to infinity because A -1 r is positive definite, see Property 5, p 36. For the last term depending on the velocity, one has

		j∈J r∈∂R j	C jr p j , A -1 r	i∈Jr	C ir (-p ext ) =	r∈∂R	1 2 j∈Jr	C jr p j , A r -1	j∈Jr	C jr p j
						+			C jr p j , A -1 r	C ir (-p ext ) ,
						j∈J r∈∂R j		i∈Jr
					=	1 2 r∈∂R j∈Jr	C jr p j ,	1 2	A -1 r	j∈Jr	C jr p j
						+ A -1 r	C ir (-2p ext ) ,
							i∈Jr		
					=	1 2 r∈∂R j∈Jr	C jr p j , A -1 r	j∈Jr	C jr (p j -2p ext ) .
	L 2 j (u) +								
	j∈J	r∈∂R j∈Jr i∈Jr							

r∈∂R Q 1 r ((-p j ) j∈J ) +
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  .Figure 6.15 -Noh test case t=0.6, CF L exp = 4 • 10 -4 and larger implicit CFL, for 100 cells.
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  The reference pressure into the water, for x ∈ [0.65, 0.6501], is π 0 (x) = 6 • 10 8 . One uses a two states solver flux for this simulation. A reference solution is computed first on a uniform mesh of 10000 cells. The solutions for the explicit and the implicit-explicit schemes are obtained using a mesh composed of 110 cells distributed as follows: 65 cells between [0,0.65], 10 cells between [0.65,0.6501] and 35 cells between [0.6501,1]. Only the 10 cells representing the water drop are treated implicitly in the implicit-explicit coupling. The water drop is represented by a characteristic function multiplied by an appropriate scaling factor in the plotted results. In Figure6.17, the explicit curve and the implicit-
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		4	Implicit CFL=0.4	Implicit CFL=4
			Storage 1	Storage 2	Storage 1	Storage 2
	error 2.29 • CPU time 0.25	2.37	1.88	0.35	0.27
	iterations	31	30	30	3	3
			20 × 3 mesh		
		Explicit CFL=0.4	Implicit CFL=0.4	Implicit CFL=4
			Storage 1	Storage 2	Storage 1	Storage 2
	error 1.24 • CPU time 0.31	4.18	2.68	0.80	0.41
	iterations	54	53	53	5	5
			40 × 3 mesh		
		Explicit CFL=0.4	Implicit CFL=0.4	Implicit CFL=4
			Storage 1	Storage 2	Storage 1	Storage 2
	error 8.03 • CPU time 1.01	5.94	4.23	1.30	0.61
	iterations	80	79	79	7	7
			60 × 3 mesh		
		Explicit CFL=0.4	Implicit CFL=0.4	Implicit CFL=4
			Storage 1 Storage 2 Storage 1	Storage 2
	error 5.8 CPU time 3.86 • 10 -4 1.06 16.68	5.04	3.42	2.33
	iterations	159	158	158	15	15

Table 6 .

 6 .2. 2 -Computational time for Sod shock tube, comparison between explicit and implicit scheme with CFL=4 for Storage 2.

		Explicit CFL=0.4 Implicit CFL=4
	error	3.50 • 10 -5	1.49 • 10 -4
	CPU time	6.71	38.18
	iterations	1341	133
		1000 × 3 mesh	

Table 6 .

 6 10 -4 7.68 • 10 -4 7.28 • 10 -4 7.03 • 10 -4 1.55 • 10 -3 1.52 • 10 -3 1.28 • 10 -3

	3.							
		Explicit		Implicit CFL=0.4			Implicit CFL=4	
			G1	G2	E	G1	G2	E
	error 4.72 • CPU time 2.05	8.29	8.50	6.95	2.81	2.58	2.40
	iterations	133	132	132	132	13	13	13
				100 × 3 mesh			

Table 6 .

 6 3 -Computational time for Sod shock tube using different unknown variables storage. G1 for GLACE 1 state, G2 for GLACE 2 states and E for EUCCLHYD.

Table 6 .

 6 • 10 -5 5.42 • 10 -5 5.38 • 10 -5 5.38 • 10 -5 1.49 • 10 -4 1.49 • 10 -4 1.49 • 10 -4 4 -Computational time for Sod shock tube using different solvers. G1 for GLACE 1 state, G2 for GLACE 2 states and E for EUCCLHYD. Error with respect to the exact solution, and iterations in time.

		Explicit		Implicit CFL=0.4			Implicit CFL=4	
			G1	G2	E	G1	G2	E
	error 3.50 CPU time 6.71	355	347	299	48.83	48.27	38.18
	iterations	1341	1337	1339	1339	133	133	133
				1000 × 3 mesh			
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leading to the solution

The states W f an * R and W Rf an correspond to W f an * R = (ρ f an * R , u * , p * ) T and

We are now able to construct an exact solution of a Riemann problem for the compressible Euler equations. Next Section is an application for the Sod shock tube.

Sod test case

The Sod shock tube problem consists of a tube of unit length [0; 1] in the 1D case filled with two different stationary gases separated by a diaphragm located in the middle at x = 0.5. The two gases present different pressure and density. For this classical test, see [START_REF] Sod | A survey of finite difference methods for system of nonlinear conservation laws[END_REF], the left region has higher pressure and density than the right one. Basically, the initial conditions are

At t = 0, the interface separating the two gases is removed. It then generates a shock wave that propagates in the x-axis, in the direction x > 0. The contact discontinuity represented by a jump of density also propagates in the same direction. However, the rarefaction wave induced at the left of the contact discontinuity propagates in the opposite direction.

This test case is very interesting because one can observe the behavior of the scheme for the three types of wave. It also permits, because we have an analytical solution, to check the capacities of the scheme to capture the waves in terms of plateau and timer. Indeed, the exact solution of this Sod problem corresponds to Figure 6.2. 

Increase of the CFL for Sod

We consider the Sod test case whose initial conditions are recalled here after

The boundary conditions are u L = u R = 0. The adiabatic index is γ = 1.4. The final time of the simulation is t = 0.2. Several CFL [START_REF] Kluth | Discretization of Hyperelasticity on Unstructured Mesh With a Cell-Centered Lagrangian Scheme[END_REF]80,537) are taken to evaluate the robustness of the scheme, compared to the explicit acoustic CFL of 0.4. The number of cells in the mesh is 100.

For an implicit CFL 100 times larger, the numerical smearing is visible in Figure 6.5 for the rarefaction waves as well as the shock. On the contrary, the contact discontinuity is still at the correct location.

As it can be seen in Figure 6.6, one observes that when the CFL tends to be very large, there is more numerical dissipation on shocks and rarefaction waves but the contact discontinuity still seems to be at the right position.

The solution of Figure 6.7 shows the unconditional stability of the implicit scheme. The scheme is of order 1, see Figure 6.8.

Implicit semi-Lagrangian schemes for compressible gas dynamics

Abstract

This thesis falls into the general framework of fluid dynamics. The long term goal is to study fluid-structure interactions considering a thin structure in semi-Lagrangian formalism.

To approach the equations modeling the movements of fluids, explicit schemes are traditionally used. To be stable, they are subject to a CFL condition. In the case we are interested in, the thickness of the structure can be very thin and the speed of sound very high. It is then necessary, to satisfy this CFL condition, to take very small time steps. Therefore, it is difficult to obtain good numerical results at least cost.

To overcome this problem, the idea is to locally use implicit in time schemes. Nonetheless, some major technical difficulties appear, especially to show that the scheme is well defined (the solution at the next time step exists and is unique). In this manuscript, we propose an implicit non-linear scheme for the hydrodynamic part that solves the multi-D compressible Euler equations written in semi-Lagrangian formalism. This non-linear implicit scheme is based on a prediction-correction method: the prediction step solves the isentropic Euler equations, and the conservation of the total energy is restored in the correction step. A Theorem of existence and uniqueness of a solution to the prediction step is proved within a framework defined later on. The unconditional stability is also demonstrated in terms of entropy inequalities. Several 1D and 2D numerical results are then presented to attest the precision and the robustness of this implicit scheme for the Euler equations. A specific attention is brought to the definition and the simulation of an implicit-explicit coupling in the bi-fluid case.

To finish with, a part of this work focuses on the traffic flow study. This 1D problem presents a non-negligible interest as it first permits to apply the Theorem of existence and uniqueness to another class of implicit schemes and second to test some numerical algorithms. 
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