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École doctorale de Physique en Île de France - ED 564
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ABSTRACT

Most of the recently discovered so-called “unconventional superconductors,” such as the
quasi-one-dimensional (Q1D) organic superconductors, or quasi-two-dimensional (Q2D) cop-
per oxides superconductors share a unifying property: they exhibit a general phase diagram
where superconductivity has a common border with a magnetically ordered phase. One way is
to apply pressure in order to induce superconductivity like in (Q1D) organic superconductors.
The other way is to induce superconductivity by doping like in Cuprates and in α-Sn/Si(111).
In this framework we have studied the properties of α-Sn/Si(111) and organic superconductor,
(TMTSF)2ClO4 using scanning tunneling microscopy and spectroscopy (STM and STS) tech-
niques. Starting with α-Sn/Si(111), there is an ongoing attention drawn to a class of correlated
surface crystals called α-phase. They consist in a low density single-layer (1/3 monolayer) of
metal atoms (Pb or Sn) grown on semiconducting substrates like Si (111) or Ge (111). Recently
α-Sn/Si(111) was shown to have superconducting properties with a Mott insulator to Supercon-
ductor phase transition upon doping, which resembles the one occurring in the more complex
high temperature cuprates superconductors. While the structure of α-Sn/Si(111) is very simple,
making it a very good candidate to understand the physics of cuprates, its Mott insulating ground
state is still debated. In this framework, by using STM and STS at low temperatures we have
shown that the ground state of this material is an insulator with a gap of 650 meV, more than
10 times higher than previously reported values, driven by exchange interaction between the Sn
atoms and the substrate surface atoms. Moreover this is accompanied by a colinear row-wise
antiferromagnetic order deduced from quasi-particle interferences (QPI) measurements and ad-
vanced density functional theory (DFT) calculations. In addition, we have also studied by STS
α-Pb/Ge(111) as another example of 2d correlated materials and indeed, we have found a large
depletion of the density of states around the Fermi level indicating a correlated metallic ground
state close to an insulating state. Regarding (TMTSF)2ClO4, we have measured the excitation
spectrum of this Q1D superconductor, using STS for the first time. (TMTSF)2ClO4 is an ambi-
ent pressure superconductor below 1.2 K exhibiting a quantum critical point with a competition
between spin density wave (insulating) and superconducting ordering. In the bulk these ground
states can coexist with each other by playing with the cooling speed. We showed that the surface
cleavage offers another way to probe this phase coexistence for nominally bulk superconducting
samples, leading to surface granular electronic properties. Lastly in the context of unconven-
tional superconductivity, we have performed for the first time STM/STS measurements on the
superconducting 2D Electron Gas (2-DEG) formed at the interface of KTO/Al2O3. We de-
veloped a new method to perform STS maps on this 2-DEG layer which is buried under the
surface.

Keywords: Unconventional superconductors, quasi-one-dimensional, quasi-two-dimensional,
organic superconductor, scanning tunneling microscopy and spectroscopy,insulator,density func-
tional theory, Mott insulator, exchange interaction , quasi-particle interference , spin density
wave.
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Résumé

La plupart des ”supraconducteurs non conventionnels” découverts récemment, tels que les
supraconducteurs organiques quasi unidimensionnels (Q1D) ou les supraconducteurs d’oxydes
de cuivre quasi bidimensionnels (Q2D), partagent une propriété commune : ils présentent un
diagramme de phase général où la supraconductivité a une frontière commune avec une phase
magnétiquement ordonnée. L’une des méthodes consiste à appliquer une pression afin d’induire
la supraconductivité comme dans les supraconducteurs organiques (Q1D). L’autre façon est
d’induire la supraconductivité par dopage comme dans les Cuprates et dans α-Sn/Si(111). Dans
ce cadre, nous avons étudié les propriétés de l’α-Sn/Si(111) et du supraconducteur organique,
(TMTSF)2ClO4 en utilisant les techniques de microscopie à effet tunnel et de spectroscopie
(STM et STS). En commençant par α-Sn/Si(111), une classe de cristaux de surface corrélés ap-
pelée phase α fait l’objet d’une attention soutenue. Ils consistent en une monocouche de faible
densité (1/3 de monocouche) d’atomes de métal (Pb ou Sn) cultivés sur des substrats semi-
conducteurs comme Si (111) ou Ge (111). Récemment, il a été démontré que l’α-Sn/Si(111)
possède des propriétés supraconductrices avec une transition de phase de l’isolant de Mott au
supraconducteur par dopage, qui ressemble à celle qui se produit dans les cuprates, des supra-
conducteurs plus complexes à haute température. Alors que la structure de α-Sn/Si(111) est très
simple, ce qui en fait un très bon candidat pour comprendre la physique des cuprates, son état
fondamental d’isolation de Mott est encore débattu. Dans ce cadre, en utilisant le STM et le STS
à basse température, nous avons montré que l’état fondamental de ce matériau est un isolant à
bande avec un gap de 650 meV, plus de 10 fois supérieur aux valeurs précédemment rapportées,
piloté par une interaction d’échange entre les atomes de Sn et les atomes de la surface du sub-
strat. De plus, cet état est accompagné d’un ordre antiferromagnétique en rangées déduit de
mesures d’interférences quasi-particulaires (QPI) et de calculs avancés de théorie fonctionnelle
de la densité (DFT). En outre, nous avons également étudié par STS α-Pb/Ge(111) comme un
autre exemple de matériaux corrélés 2d et, en effet, nous avons trouvé un grand appauvrisse-
ment autour de la densité d’états du niveau de Fermi indiquant un mauvais état fondamental
métallique. En ce qui concerne (TMTSF)2ClO4, nous avons mesuré le spectre d’excitation
supraconducteur de ce supraconducteur Q1D, en utilisant le STS pour la première fois. Le
(TMTSF)2ClO4 est un supraconducteur à pression ambiante qui présente un point critique
quantique avec une compétition entre l’onde de densité de spin (isolant) et l’ordre supraconduc-
teur. Dans le bulk, ces états fondamentaux peuvent coexister l’un avec l’autre en jouant sur la
vitesse de refroidissement. Nous avons montré que le clivage de surface offre un autre moyen
de sonder cette coexistence de phases pour des échantillons supraconducteurs nominalement
massifs, conduisant à des propriétés électroniques granulaires de surface. Enfin, dans le con-
texte de la supraconductivité non conventionnelle, nous avons effectué pour la première fois des
mesures STM/STS sur le gaz d’électrons 2D supraconducteur (2-DEG) formé à l’interface de
KTO/Al2O3. Nous avons développé une nouvelle méthode pour réaliser des cartes STS sur
cette couche 2-DEG qui est enterrée sous la surface.

Keywords: Supraconducteurs non conventionnel, quasi unidimensionnels, quasi bidimension-
nels, supraconducteurs organique, microscopie à l’effet tunnel et de spectroscopie,isolant à
bande,
fonctionnelle de la densit e, l’isolant de Mott , interaction d’échange , quasi-particle interfer-
ences , l’onde de densit e de spin.
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General introduction

Superconductivity has been discovered a century ago but it still remains one of the active

research topics in condensed matter physics. After the discovery of high-temperature super-

conductivity in 1986 by IBM researchers Bednorz and Müller, who were awarded the Nobel

Prize in physics in 1987, a huge research activity has been devoted to find new high temper-

ature superconductors and to find an appropriate theoretical description of high temperature

superconductivity. The very complex nature of cuprate materials exhibiting high temperature

superconductivity has added some complexity to this problem. One strategy that we would ex-

pect quite efficient would be to identify some class of material which share some similarities

with High Tc superconductors but with much simpler structures. For instance, would be very

exciting to find some very simple materials that would be 2d Mott insulators in their undoped

structurebut which become superconducting upon doping with either electron or holes.

In this thesis, we have decided to investigate one of the best candidate for such Mott-

insulator physics. Our system is the α-phase of Sn or Pb on Si(111) or Ge(111), which is

believed to have a correlated ground state similar to that of the Cuprates. to study the un-

doped ground state and its transition to a superconducting state upon doping. Here we couldn’t

perform experiments in the heavy hole doped regime where superconductivity has been found

recently. However, we have conducted experiments in the undoped regime for Sn/Si(111) and

Pb/Ge(111) and we have revealed an insulating ground state for α-Sn/Si(111) and a correlated

metallic phase for α-Pb/Ge(111).

The transition between a magnetically ordered phase to a superconductor is observed not

only in cuprates. It has been shown that (TMTSF)2ClO4 is an ambient pressure superconduc-

tor exhibiting a quantum critical point with a competition between spin density wave (insulating)

and superconducting ordering.In my thesis indeed we have seen that a plausible d-wave super-

conducting state develops at the surface of (TMTSF)2ClO4. In addition we could show that

this state is not homogeneous at the surface but also presents spin-density-wave phase regions

as well as correlated metallic areas.

This thesis is organized in 5 chapters. The first chapter is devoted to a general introduction

to superconductivity, Charge density and spin density waves and Mott and Band insulators. The

second chapter is devoted to experimental setups and devices used during this thesis, namely,

scanning tunneling microscopy and spectroscopy, explaining several techniques that can be im-

plemented by using them. Chapater 3 is devoted to presenting and discussing our results on

Sn/Si(111) and Pb/Ge(111). In Chapters 4 and 5 we discuss our results on (TMTSF)2ClO4

and KTO/Al2O3.

Chapter 1: In this chapter, we explain the theoretical background of superconductivity and

how it relates to insulators. At first, the phenomenological approach of Ginzburg-Landau in de-

scribing superconductivity is explained and then the microscopic approach of Bardeen-Cooper-

Schrieffer is used to describe conventional superconductors. Then we give a short description on

unconventional superconductivity and chiral superconductivity and we explain how impurities

1



can be used as a tool to find the nature of superconductivity. We then continue our discussion

by explaining Charge Density Wave and Spin Density Wave states. Finally, we give a short in-

troduction to Mott insulators and we explain how the Upper Hubbard Band and Lower Hubbard

Band evolve as function of doping or correlations. Furthermore we show that a band insulator

and a Mott insulator have different properties in electron or hole doped regimes.

Chapter 2: In this chapter first the theoretical background behind Scanning Tunneling Mi-

croscopy and Scanning Tunneling Spectroscopy (STM/STS) is explained. We then discuss how

this exceptional tool can be sued to not only probe the surface topography on atomic scale but

also give us information about the local density of states. After, we show how a grid spectro-

scopic map can be measured in order to record the local density of states. Then, we introduce

several techniques that can be implemented using STM/STS, such as lock-in, Spin Polarized

STM (SPSTM), and Quasi Particle Interferences (QPIs). Finally, a description of the micro-

scope “M3” and “VT-STM”, the two main devices that have been used during thesis, is given.

At the end we explain the preparation of the samples and the tips. Furthermore, we will see

how the VT-STM is used in parallel to M3 in order to find optimized parameters for sample

preparation.

Chapter 3: This chapter, which contains the main results of this thesis, is dedicated to the

study of α-phase of Sn/Si(111) and Pb/Ge(111). In the case of α-Sn/Si(111) we start by ex-

plaining the literature and the state of the art research that indicates a Mott insulating ground

state with row wise antiferromagnetic order. However, while our contaminated samples show

similar results as in the literature, our results on the clean samples using STS maps together with

QPIs calculations predict a ground state which is of Slater-type insulator. Our results are in good

agreement with density functional theory calculations by considering the exchange interaction

between the Sn atoms and the underlying Si atoms, carried out by carried out by Amitayush

Thakur, helped by Cesare Tresca and Matteo Calandra. Afterwards,

several interesting phenomena like artificial molecules and edge states in this phase are

discussed. Finally, we introduce the concept of multifractality and we show how it can be used

as a tool in order to determine Anderson criticality in phase transitions between extended states

and localized states depending on the energy of the electronic states while keeping the same

disorder. In the end, we will give a short discussion about our preliminary spectroscopy results

on different phases of Pb/Ge(111).

Chapter 4: This chapter is devoted to our studies on (TMTSF)2ClO4, a Quassi-1-dimensional

organic material that shows ambient pressure superconductivity with a critical temperature of

1.2 K. This sample was prepared by cleaving inside the STM chamber which is maintained in

ultra-high vacuum. We have measured a V-shaped superconducting gap using STS at 300 mK

that is consistent with a d wave symmetry gap. Furthermore, we show the results of magnetic de-

pendent STS measurements revealing a gap filling at high perpendicular magnetic fields. Also,

we have found that superconductivity is not homogenous throughout the sample, regions with

metallic, bad and/or correlated metal and insulating behavior were observed, which, can be due

in part to the predicted granularity of the superconductivity by previous XRD results or due to

the defects induced by the cleavage process. At the end, we will show that our measured excita-

tion spectra fit very well with the results of renormalization group calculations in the framework

2



of a quasi-1D electron gas model experiencing a d-wave superconducting pairing. Importantly,

this ground state is very close to a quantum critical point which explains also part of the strong

V-shape measured in the dI/dV spectra. These calculations were carried out by Abdel Sedeki

and Claude Bourbonnais.

Chapter 5: In this chapter, we present briefly our results on STS measurements of a buried

superconducting 2-Dimensional Electron Gas at the interface of KTiO3 and Al2O3. We present

the measured superconducting gap together with a magnetic field dependent point spectroscopy

measurement.

3



CHAPTER 1

Introduction

1.1 Introduction

In this chapter, we are going to start by introducing superconductivity, specifically high temper-

ature superconductivity which is mostly seen in Cuprates and believed to be the result of doping

Mott insulators with either electrons or holes. The motivation behind this thesis is to better un-

derstand this transition by studying a simple system of 1/3 ML of Sn on Si(111) surface which

is long believed to be a classic Mott-insulator (proved to be wrong by us), and recently shown

to transition to a superconducting phase. To understand better these phenomena we are going

to give a basic knowledge of conventional and unconventional superconductivity and how to

characterize them and after we are going to explain Mott insulators and Band-insulators, all by

keeping track of our system in favor which is the aforementioned Sn/Si(111)−
√
3×

√
3− R◦

structure.

1.2 Superconductivity

In 1911, the Dutch physicist Heike Kamerlingh Onnes and his team discovered that the electri-

cal resistance of mercury goes to zero below a certain temperature (Fig. 1.1), while studying

the properties of materials at low temperatures. This was the first observation of a phenomenon

called superconductivity. There are a majority of chemical compounds that become supercon-

ductors at sufficiently low temperatures.

The superconducting state is characterized by two main properties; first, there is no resis-

tance to the passage of the electrical current, so the current can circulate in a closed supercon-

ducting wire infinitely without any dissipation. Second, at a sufficiently low magnetic field,

the field cannot penetrate the superconductor; it remains at its surface. This field exclusion

phenomenon was observed by Meissner in 1933.

In the beginning stages of the discovery of superconductivity, the critical temperature was

below 20K, the uses of superconductors required cooling using liquid helium. It was in 1986

that high-temperature superconductivity in Cuprates [1] was discovered, and the rapid rise of

the temperature to well above the boiling point of nitrogen [2] started a great era of excitement

in the field of condensed matter.

Today superconductors have a vast application in industry; they are used in generators,

particle acceleration, transportation, electric motors, computing, medicine, etc. However, one

main drawback of superconductors is that despite the discovery of high Tc superconductors,

4



Fig. 1.1 Resistivity of Mercury in terms of temperature

their relatively low operating temperature makes them costly and difficult to use; that is why

understanding deeply high-Tc superconductivity could make it easier to find systems with much

higher Tc than what is available now.

Although there are hundreds of highTc compounds, they all share the same layered com-

pound made up of one or more copper oxygen planes and have the same universal phase dia-

gram as shown in Fig. 1.2. An undoped cuprate compound, which has one electron per unit cell,

should be a metal under conventional band theory; however, strong on-site repulsion prevents

electron motion and turns it into a Mott insulator, a strongly correlated phase discovered by Mott

in 1949 [3]. The Mott physics will be explained in more details further in this chapter; however,

the main important note here is that the physics behind the transition from a Mott insulator to a

superconductor upon doping is still not perfectly understood and there are many efforts to ease

the pathway to a clear picture behind this phenomenon. One of them is to introduce a much

simpler model compared to the Cuprates which is also the main motivation behind this thesis

and it is explained in chapter 3 of this thesis.

1.2.1 Ginzburg-Landau Theory

We will not delve deep in to the details of the underlying microscopic mechanism for the forma-

tion of a superconducting state, a phenomenological description given by the Ginzburg-Landau

theory captures the key features of a superconducting phase transition. Near the phase transition

from normal state to superconducting state, the free energy can be expressed as an expansion

of a complex order parameter, ψ =
√
nsexp(iθ), where ns is the superfluid density and θ is the

5



Fig. 1.2 Schematic phase diagram of cuprate superconductors as a function of hole doping
concentration p. The Mott insulator phase near p = 0 shows antiferromagnetic (AF) order below
TN, which vanishes rapidly with doping [3]. Then for higher p doping a superconducting dome
emerges with a maximum TC at the optimal doping surrounded by an underpoded side at low p
and overdoped side at large p. For large p, above TC the cuprates are metallic. However, on the
underdoped side, a badly understood pseudogap phase develops.

phase of the order parameter [4].

F = α|ψ|2 + β

2
|ψ|4 + 1

2ms
|(−iℏ∆− qsA)ψ|2 +

|B|2

2µ0
(1.1)

Where α and β are constants, ms is the density of the superfluid, qs is the charge of the

superfluid, A is the magnetic vector potential, B = ∇×A is the magnetic field and µ0 is the

permeability of the free space. By minimizing the free energy with respect to ψ and A, we have:

1

2ms
(−iℏ∆+ qsA)

2ψ + (α+ β|ψ|2)ψ = 0

Js =
iqsℏ
2ms

(ψ∗∆ψ − ψ∆ψ∗)− q2s
ms

Aψ∗ψ = −qsns
ms

(ℏ∆θ + qsA)

(1.2)

Where Js is the supercurrent density. Two characteristic length scales can be deduced from

these two equations, the penetration depth λ and the coherence length ξ, which are important

for classifying the superconducting behavior. λ is a measure of how far the magnetic field can

penetrate into a superconductor and ξ is the coherence length of the superconductor which is the

typical length-scale over which the superconducting order evolves.

There are two classes of superconductors that are defined according to the dimensionless

Ginzburg-Landau parameters:

κ = λ/ξ (1.3)
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For κ < 1/
√
2, we have a ’type-1’ superconductor, in which magnetic flux coming from an

external magnetic field is expelled until the superconductivity is suddenly destroyed at a single

critical field Bc (Fig. 1.3 ). When κ > 1/
√
2, we have a “type-II“ superconductor where, instead

of a sudden change from a Meissner state (expelling the magnetic flux completely) to a normal

state, a vortex state with an arrangement of quantized magnetic flux line is reached above a

lower critical field HC1 . The superconducting state totally vanishes at the upper critical field

HC2 (Fig. 1.3).

Fig. 1.3 Phase diagram of superconductivity with illustration on the magnetic penetration for a.
Type 1 and b. Type 2 superconductors.

1.2.2 BCS theory

The modern understanding of the superconducting state and its microscopic mechanism started

with the brilliant formalism proposed by Bardeen, Cooper and Schrieffer (BCS) [5]. They

showed that a weak arbitrary attractive interaction between electrons can result in the formation

of a coherent many-body state which could be interpreted as a condensate of cooper pairs. The

excitations of this condensate are separated from its ground state by an energy gap of ∆. In

the BCS picture the formation of Cooper pairs arises from an attractive interaction mediated

through the vibrations of the ionic lattice (phonons). Let’s go through this phenomenon from

a classical picture: an electron moving in a conductor will attract the nearby lattice ions which

are positively charged, which move slower due to their higher mass. It hence leaves behind

a region with higher positive charges; thus, another electron with opposite spin is attracted

to such a region, resulting in an effective attraction between the two electrons. This type of

phonon-mediated superconductivity is called conventional superconductivity.

To derive the ground state properties, in a second-quantized form, the pairing Hamiltonian

can be expressed as:

HBCS =
∑
k,σ

ξkc
†
k,σck,σ +

∑
k,k′,q,σ,σ′

V (k, k′, q)c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ (1.4)

Where k is the momentum of an electron and σ is its spin (↑↓) and ξk = ϵk − µ, where ϵk is the

electron dispersion relation and µ is the chemical potential.
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It was suggested in the original article by Barden, Cooper, and Shrieffer [5] that the exchange

interaction energetically favors electrons interacting with opposite spins such that the following

follows:

HBCS =
∑
k,σ

ξkc
†
k,σck,σ +

∑
k,k′,q

V (k, k′, q)c†k+q,↑c
†
k′−q,↓ck′,↓ck,↑ (1.5)

The matrix element V (k, k′, q)c†k+q,↑c
†
k′−q,↓ck′,↓ck,↑ term indicates destroying a (k′ ↓, k, ↑) pair

of states and create a new pair of states (k′−q ↓, k+q ↑) while conserving the total momentum

k + k′. By using a mean field approximation proposed by Bogoliubov in 1958 [6] the gap

function can be written as follows:

∆k = −
∑
k′

Vkk′⟨c−k′,↓ck′,↑⟩ (1.6)

In a conventional superconductor, the electrons of a cooper pair have opposite momenta and

spins. Since the interactions between the electrons in a Cooper pair is mediated by the phonons

only electrons within an energy window ℏωD around the Fermi level contribute to form Cooper

pairs, where ωD is the Debye frequency which is the maximum vibrational frequency in a crystal

lattice.

Vkk′ is taken equal to a constant V0 for energies lower than ℏωD from Fermi level, thus

k ∼= k′ ∼= kF where kF is the momenta of an electron close at the Fermi level, hence:{
∆, for |ξk| < ℏωD

0, for |ξk| > ℏωD

(1.7)

The Eqn. 1.7 can be diagonalized using a Bogoliubov transformation (for more information

see Ref [7]), and after it can be solved using the BSC coherent ground state, which leads to the

following energy spectrum of the excited states:

Ek = ±
√
ξ2k + |∆k|2 (1.8)

The density of states of N(Ek) of the low-energy excitations can be defined as

N(Ek)dEk = N(0)dξk where N(0) is the electronic density of states at the Fermi level. Close

to the Fermi energy, we have:

N(Ek) = N0
|Ek|√

E2
k − |∆|2

(1.9)

The density of states shown in Eqn.1.9 is presented in Fig. 1.4 as it can be seen that there is

no excitation of energy lower than the absolute gap ∆. It can be interpreted as the fact that an

energy higher than 2∆ is needed to break a Cooper pair.

The energy gap function can be determined by the self-consistent equation:

∆k = −1/2
∑
k′

∆′
k√

ξ2k′ + |∆k′ |2
Vkk′ (1.10)
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Fig. 1.4 Density of states of the low-energy excitation of a conventional superconductor.

By replacing the aforementioned equation by an integration from −ℏωc to ℏωc, and noting

the symmetry between ±ξ, we can get the following:

1

N(0)V
=

∫
0
ℏωc

dξ√
∆2 + ξ2

= sinh−1ℏωc/∆ (1.11)

Which gives:

∆ =
ℏωc

sinh[ 1
N [0]V ]

≈ 2ℏωce
−1/N(0)V (1.12)

At finite temperature, considering the excitations of quasiparticles and their probability dis-

tribution, the temperature dependence of the BCS gap function, ∆(T), can be calculated by

solving the self-consistent equation [4]:

1

N [0]V
=

∫
0
ℏωc

dξ√
ξ2 + |∆(T )|2

tanh(

√
(ξ2 + |∆(t)|2)

2kBT
) (1.13)

the ratio between the value of the energy gap at zero temperature and the superconducting criti-

cal temperature takes a universal form as follows:

∆(T = 0) = 1.764KBTc (1.14)

The microscopic BCS theory was very successful in describing the s-wave superconductors,

where the origin of the pairing of the electrons is the electron-phonon interaction, however, there

are other materials that have interactions that lead to non s-wave superconductivity. Among the

various possibilities, one could mention singlet d-wave pairing, like in cuprates, or triplet p-wave

and f-wave pairing like in heavy fermions compounds. Such materials are called unconventional

superconductors. Unconventional superconductivity will be described in the following subsec-

tion.
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1.2.3 Unconventional superconductivity

Since a Cooper pair is a two-particles fermionic state, its wave function ψ(k,−k, σ1, σ2) (where

k is the momenta and σ denotes the spin of the electrons) must be antisymmetric under the

exchange of the two electrons, so ψ(k,−k, σ1, σ2) = −ψ(−k, k, σ2, σ1). Now lets consider

the gap function explained in the previous section for conventional superconductivity with a

notation that displays explicitly the spin dependence:

∆k,↑,↓ = −
∑

k′ V−k,k′ ⟨c−k,↓, ck′,↑⟩. In the following, we will compare ∆k,↑,↓ to ∆−k,↑,↓ to

see if the gap function possesses the same antisymmetric properties as the wave function of the

Cooper pair, by placing −k′ instead of k′ in the formula aforementioned we have:

∆−k,↑,↓ = −
∑
k′

V−k,−k′⟨c−k′,↑ck′,↓⟩ (1.15)

Assuming a time-reversal symmetry potential V−k,−k′ and because of the anticommutation

relation of the fermionic operators: V−k,−k′ = Vk,k′ andv

⟨ck′,↑c−k′,↓⟩ = −⟨c−k′,↓ck′,↑⟩, we have:

∆−k,↑,↓ = +
∑
k′

Vk,k′⟨c−k′,↓ck′,↑⟩ = −∆k,↓,↑ (1.16)

As can be seen, the gap function of a superconductor which is a function of k and the spins of

electrons is also antisymmetric under particle exchange like what we had for the Cooper pairs

wave function. The gap function has both a spin part and a spatial part, so if one of them is

antisymmetric the other one should be necessarily symmetric. As we have seen in the case of

conventional superconductors: Vk,k′ =

{
V0, for |ξk| ≤ ℏωD

0, for else
, it can be clearly seen that

the gap function is even in k; hence, the spatial part of the gap function is symmetric, which

means that the spin part should be antisymmetric. Separating the spin part and the spatial part

of the gap function we have:

∆S1,S2(k) = ∆(k)χs1s2 (1.17)

Where ∆S1,S2(k) is the gap function for any arbitrary type of superconductivity, ∆(k) is the

spatial part of the gap function, and χs1s2 is the spin part of the gap function, with s1 and s2

being the indices for the spin part of the paired states. Following the aforementioned arguments,

there are two different possibilities that respect the antisymmetric character of the gap function

(∆S1,S2(k) = −∆S1,S2(−k):{
χs1s2 = −χs2s1 , and ∆(k) = ∆(−k)
χs1s2 = χs2s1 , and ∆(k) = −∆(−k)

(1.18)

The first case refers to a spin singlet since the total spin of the pair is equal to zero (S = 0) and

the second case refers to a spin-triplet pairing since in that case: S = 1. Depending on the total

angular momentum of the cooper pairs (L), they have different properties and different classes.

If the total angular momentum is equal to 0, which is the case of conventional superconductivity,

the Cooper pairs will be referred to as ‘s-wave’. A Cooper pair with angular momentum L
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= 1 is a spin triplet and superconductivity is called the ’p wave’. In the case of L = 2 the

pairing will be singlet and the superconducting order parameter is d-wave. As mentioned earlier

this kind of superconductivity is seen in cuprate-based high temperature superconductors [8].

Lastly, L = 3 represents a triplet pairing. Generally, an even (symmetric) angular momentum

characterizes a singlet pairing, while an odd (antisymmetric) angular momentum corresponds

to an even pairing.

1.2.4 Impurity effect in superconductors

One of the most important questions in solid state physics is to understand how impurities are

going to change the electronic properties of correlated materials.

Indeed, real materials inevitably contain impurities and lattice defects. In 1961 Anderson

showed that non-magnetic impurities in a BCS superconductor have no effect on Tc due to

time-reversal symmetry [9]. However, the magnetic impurity can strongly affect both the Tc

and energy gap in an s-wave superconductor.

It was shown in a seminal work by Abrikosov and Gorkov that the presence of magnetic

disorder in s-wave superconductors is able to reduce the superconducting BCS gap and may

ultimately destroy the coherence of the superconducting state [10]. Abrikosov and Gorkov have

shown the dependence of Tc on the magnetic scattering rate Γ using Green’s function method.

A few years later, it was predicted that a single classical spin is able to create a localized

state, named Yu-Shiba-Rusinov bound state, within the BCS gap [11, 12, 13, 14, 15].

These bound states were observed recently using scanning tunneling spectroscopy (STS)

[16] as indicated in green and red curves in Fig. 1.5.d and Fig. 1.5.g which show Shiba states

induced by a single Mn atom deposited on SIC and
√
7×

√
3 phases of Pb/Si(111), respectively.

(Fig. 1.5.a shows a schematic of how the Mn atom is positioned and Fig. 1.5.c and Fig. 1.5.f

show a spectroscopic map for the SIC and
√
7×

√
3 phases of Pb/Si(111), respectively.

In 3D materials, the spatial extension of the Shiba bound states was shown to be limited to

a few Å around the magnetic impurities. It was shown in my team that in 2H-NbSe2 the spatial

extent of the Shiba bound states was up to 8 nm as shown in Fig. 1.6 [17], and even up to 50

nm in Pb/Si(111) Monolayers as shown in Fig. 1.5. This very large extent of the Shiba states is

a dimensionality effect due to the fact that at a scale inferior to the coherence length the wave

function of Yu-Shiba-Rusinov bound states decay like 1/
√
r in 2D while the decay is like 1/r in

a 3D system. Hence, in the low dimensionality systems I studied during my thesis, such defects

were expected to give strong signatures even quite remotely from the impurities.

A finite concentration of magnetic impurities can form an impurity band from the over-

lapping Shiba states, within the superconducting gap as first demonstrated experimentally in

manganese implanted lead by Bauriedl et al. in 1981 [13]. This impurity band merges with

the continuum as the concentration exceeds a critical value [14, 18] and the system recovers an

Abrikosov-Gork’ov like behavior.

The physics of magnetic impurities in a classical s-Wave superconductor can be linked to

the effect on non-magnetic impurities in unconventional superconductors. Indeed, in Anderson’s

theorem it was assumed that a non-magnetic disorder has mainly the effect of homogenizing a

weakly anisotropic order parameter. However, for unconventional superconductors with a sign
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Fig. 1.5 High-resolution spectroscopy of an individual magnetic impurity in a disordered su-
perconducting Pb/Si(111) Monolayer: a Schematics of the physical situation for an individual
magnetic impurity (YSR bound state case). b. Topography of the 21 × 21 nm2 scanned area
with atomic resolution in the SIC phase. c. Conductance map integrated over the superconduct-
ing gap showing the spatial dependence of the YSR bound state. d. Selected spectra taken at
the largest conductance point (red), 7 nm away (green) and on the side of the measurement area
(blue). e, f, g Same as a. b. and c. for the

√
7×

√
3 phase of Pb/Si(111) [16].

Fig. 1.6 a, Experimental conductance map taken at -0.13 meV. The a and b lines indicate the
crystallographic axes of 2H-NbSe −2, whereas the a∗ and b∗ lines indicate the directions in the
reciprocal space. b, Characteristic experimental spectra taken on top of the impurity (red), on
the right branch, 4 nm from the centre of the impurity (green), and far from the impurity (blue).
c, Spatial and energy evolution of the experimental tunnelling conductance spectra, dI/dV (x,
V) along one branch of the star. The left side of the figure corresponds to the centre of the star
and the right side to the top-right corner of the scanning area. The colour conductance scale is
the same as that used in a. d, Conductance profiles of the electron- and hole-like YSR states as
a function of the distance to the impurity along the same line as for c [17].

changing order parameter, such as a d-wave pairing, the disorder averaged order parameter

will vanish! This is not a small effect. Hence, the pair breaking theory was later generalized

and non-magnetic impurities were shown to have pair-breaking properties for unconventional

superconductors like the magnetic impurities in conventional superconductors [19, 20].

Finally, in the case of higher orbital momentum pairing state, like a d-wave superconductor,

a single non-magnetic defect might also give rise to the formation of Yu-Shiba-Rusinov bound

states. And looking at the presence or absence of bound states around non-magnetic defect might
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help elucidating the underlying symmetry of the order parameter. For instance in Fig. 1.5 no Yu-

Shiba-Rusinov bound states are observed above a non magnetic impurity like a Si substitution,

while magnetic impurities give rise to the appearance of bound states. By contrast, a non-

magnetic Zn impurity in substitution to Cu in the Cuprate superconductor Bi2Sr2CaCu2O7−δ

leads to the formation of a zero energy bound state within the gap, with a four fold shape that

reflects the dx2−y2 symmetry of the underlying superconducting order parameter [21]. The

effect of defects in superconducting systems has played an important role in understanding the

symmetry of the order parameter in heavy-Fermion superconductors and Cuprates [18].

1.2.5 Chiral Superconductivity (a brief introduction)

Chiral superconductivity is a striking quantum phenomenon in which an unconventional super-

conductor lower its free energy by eliminating nodes in the gap while spontaneously developing

an angular momentum [22]. A chiral superconducting phase happens when the complex su-

perconducting gap function
−−−→
∆(k) winds in a clockwise or counterclockwise manner when

−→
k is

rotating around some axis on the Fermi surface of the underlying metallic phase [22] for example

the chiral gap funciton kx ± ky will presses by ±2π as
−→
k follows a closed path enclosing the kz

axis. Chiral superconductivity is kind of a topological state and the Chiral superconducting gap

breaks the time reversal symmetry while being degenerate with its time reversal mate. In highly

correlated materials and in the presence of coulomb repulsion, as in the case of high temperature

superconductors (Cuprates), the superconducting state favours a d-wave state. For a honeycomb

lattice the two d-wave solutions, dxy and dx2−y2 are dictated to be degenerate by group theory

while they become a fully gaped Chiral superconducting state of the form dx2−y2 ± dxy wave

below the critical temperature whose absolute squared value will be isotropic [23]. The system

however should choose between one of the ± signs in the ±i, the result is a spontaneous symme-

try breaking [22]. Triangular lattices naturally allow for Chiral d-wave superconductivity with

topological edge states[23, 22] if the repulsive interaction dominates the pairing.

1.3 Density waves

1.3.1 Charge density wave

The aim of this part of the chapter is to give an introduction to the fundamentals of charge den-

sity wave (CDW) formation and the phenomena associated to this order phase of a compound.

Deeper insights mainly in the theoretical aspects can be found in [24, 25]. In general, CDW

is the appearance of a periodic modulation of the conduction electron density in a metal ac-

companied by a distortion of the atomic lattice. In 1955 Peierls proposed a mechanism which

explained CDWs as a Fermi surface nesting effect in a one-dimensional electron gas. One-

dimensional compounds, such as for example K2Pt(CN)4, predominantly show CDW phases,

while there are many examples of CDW in higher dimensions like Transition Metal Dichalco-

genides (TMDCs) [26, 27]. A one-dimensional chain as a model system is presented in Fig. 1.7

for the explanation of the Peierls distortion. Considering an atomic chain of atoms with an equal

distance of ’a’, the unit cell in the reciprocal space is in the interval:
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−π/a < k < π/a (1.19)

If every nth atom in the unit cell is distorted by δ in one direction, we have the following:

−π/na < k < π/na (1.20)

Since the reciprocal space is reduced, the band structure opens a gap at the Fermi level at the

intersection points of the bands. For example, moving every second atom results in a doubling

of the unit cell or reducing the reciprocal unit cell by half. When the energy gain due to the

lowering of occupied bands is larger than the strain energy costs for the lattice distortion, a

stable state will be formed for a finite values of the lattice distortion [28].

This effect will be noticeable only when the electrons are arranged close to their ground

state, meaning that thermal excitation should be minimized. That is why the Peierls transition

is observed most of the time at low temperatures.

The resulting modulation of the charge density is called the charge density wave with the

wave vector of the lattice distortion having the absolute value of 2π/2a in the case of doubled

periodicity of 2a in real space. In the new BZ a gap opens naturally, as can be seen in Fig.

1.7 through the formation of standing waves. The CDW wavevector qCDW = 2kf naturally

produces the CDW wavelength of 2a by 2π/qCDW.

Fig. 1.7 Schematic illustration of one-dimensional periodic metallic lattice and Peierls distorted
insulating lattice. a. Without electron–phonon interaction, the lattice with a period of ”a” ex-
hibits a constant charge density and filled electron states up to Fermi level. b. Considering the
electron–phonon interaction, the Peierls distortion results in the periodically modulated charge
density and an energy gap at the Fermi level [29].

In 1D there are exactly two points in the Fermi surface that always connect through, which

makes the Fermi surface completely nested by qSDW (Fig. 1.7.c). In a 2D free-electron system

the Fermi surface is cylindrical as can be seen in Fig. 1.8.a , only two points, an infinitesi-

mal part, are connected for a given qSDW, however electron-electron interactions can cause the

Fermi surface of 1-D and 2-D systems to differ from its isotopic shapes resulting in different

nesting properties as can be seen in Fig. 1.8.d and Fig. 1.8.b for quasi 1-D and anisotropic

2-D systems, respectively where nesting can happen in specific directions, stabilizing CDW in

those directions. Fig. 1.8.a is a circular Fermi surface of subbands of isotropic 2D quantum well

states of an ultrathin Ag film prepared on Si(111)− 7× 7. Fig. 1.8.b is the hexagonal Fermi
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surface for Ge(111)
√
3×

√
3− Sn. Fig. 1.8.c is 1-dimensional Fermi surface and Fig. 1.8.d

is the Fermi surface of Si(111)− 4× 1− In which resembles wavy sheets and satisfies nesting

conditions.

Fig. 1.8 Fermi surfaces in various dimensions a. Isotropic two-dimensional (2D) cylinder b.
Anisotropic (hexagonal) 2D cylinder c. One-dimensional (1D) sheet and d. quasi-1D sheet.

1.3.2 Spin density wave

Like CDW, the spin density wave (SDW) is also a low-energy ordered phase of solids; however,

in the spin density wave, the modulation of the density of states is derived by spins of the

electrons rather than charges.

1.4 Insulators

In the basic conception of solid states physics one can see insulators in the semiconductor view-

point than can be described by a two band model, a valence band and a conduction band. In

this simple picture, a material with a fully occupied valence band and unoccupied conduction

band is an insulator. However, this picture is far too simplistic and many other kind of insulators

are possible. For instance, some materials with a half filled valence band should normally be

a metal, however, we are going to explain below, the electron-electron Coulomb repulsion can

lead to a Mott insulating state instead of a metallic one. The very same material with half filling

can also become an insulator if a magnetic order appear below a critical temperature. In addi-

tion, a strong disorder might also induce some Anderson Localization and drive the system from

a metallic to insulating state, in particular in low dimensional systems. In some cases, when an
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insulating state is found instead of an expected metallic one, it is not an easy task to understand

which mechanism is the correct one. Part of my thesis was devoted to such effort. In this sec-

tion, I will recap some basic features about Mott insulators and (magnetic) band insulators and I

will also explain a recent study that made an effort to find characteristics to distinguish between

a Mott and band Insulator.

1.4.1 Mott insulators

Mott insulators are strongly correlated systems that cannot be described by the conventional

Fermi liquid theory. The elementary excitations are no more single particle excitations like, but

instead collective excitations, this is why a simple description of the Mott insulators, and more

particularly the doped Mott insulators is rather difficult. Here, we will carry a basic explanation

of Mott physics, by starting with a lattice of atoms with one valence electron per atom (unit

cell). The atoms are very close to each other and their electronic orbitals will overlap between

the nearest neighbors, creating a set of available states for the electrons which are called the

’bands’; while the bands are the allowed states for the electrons, the space between the bands

is forbidden energies for the electrons, they are the so called ’forbidden bands’. For a single

electron per atom, in our simple model, the Fermi level should lie in the middle of a band, thus,

electrons can easily be mobilized with low energy excitation contrary to insulators in which,

the Fermi level (or more precisely the chemical potential) lies within a forbidden band. The

band theory treat the single electron states for simplicity by not considering electron-electron

interactions, however, in some cases it has been discovered that some materials which should

be metallic in the framework of band theory show insulating behaviour, which can only be

understood by exploring deeper than the band theory and taking into consideration the electronic

correlations or better said Coulomb repulsion between the electrons. In the case of a Mott

insulator which ought to be a half filled metal, the on site Coulomb repulsion, if strong enough,

will forbid two electrons from sitting on the same lattice site. In order to have conduction,

the electrons should jump from one site to the neighbouring one which would lead to double

occupancy which is prohibited. Therefore, if the Coulomb repulsion is dominant over the nearest

neighbour hopping, the electrons can be frozen with one electron per lattice site, this is a Mott

insulating state. Adding dopants, such as hole doping, one will have free atomic lattice site in

which an electron from a nearest neighbour site will be allowed to jump, this mechanism will

break the Mott insulating state and lead to metallicity.

In order to illustrate this mechanism, we will try to understand the Mott insulating phase

from a tight-binding lattice model with N electrons distributed over L = N Lattice sites in a

square lattice. Now by considering both the kinetic part which is hopping to the nearest neighbor

and also on-site Coulomb repulsion we can write the Hamiltonian as follows for the Hubbard

model in a general form as:

H = Hkin +Hint =
∑
ijσ

−tijc†iσcjσ+
1

2

∑
ijklσσ′

c†iσc
†
iσ′Uijklσσ′ckσ′clσ (1.21)

Where c†αβ is the electronic creation operator on the site αwith spin β and c†αβ is the annihilation
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operator on the siteα with spin β. The parameter tij is the hopping amplitude between sites i

and j and U is the on-site coulomb repulsion.

To proceed further to simplify the Hubbard model, it is assumed that there is only one band

at the Fermi energy and that all the other bands are energetically far from the Fermi energy. This

is termed as the single band Hubbard model and means that the intra-atomic coulomb repulsion

is the same for all the lattice sites. The process of hopping of the electrons does not undergo any

spin flip. The Pauli exclusion principle state that for the electrons to be on the same site, they

should have anti-parallel spins, so, the simplified Hubbard model can be rewritten as follows:

H =
∑
ijσ

−tijc†iσcjσ + U
∑
i

ni↑ni↓ (1.22)

Here, ni = c†i ci are number operators.

In the case of no on-site coulomb repulsion which means U = 0, the energy dispersion can be

computed by diagonalizing the Hamiltonian in the k-space, which gives: Ek = −2t(cos kxa+

cos kya). Since there is only one electron per site and the band is half filled, in the absence of U

the system is metallic.

Now let us turn on the on-site coulomb repulsion U ̸= 0 and let us consider a simple two-

lattice sites Hubbard model and for simplicity we will consider all the hopping parameters to be

the same tij = t, So we have:

H = −t(c†1↑c2↑ + c†1↓c2↓ + c†2↑c1↑ + c†2↓c1↓) + U(n1↑n1↓ + n2↑n2↓) (1.23)

To simplify the notation for the possible states corresponding to this Hamiltonian we will

consider the following notation called Foch states: |n1↑, n1↓,n2↑,n2↓⟩ since both the number

and the spins of the electron are conserved. To understand better this notation, consider that

there is a single electron on the first site then the corresponding Foch states will be |1, 0, 0, 0⟩
for spin up and |0, 1, 0, 0⟩ for spin down configuration and the corresponding wave function will

be: ψ = a|1, 0, 0, 0⟩+ b|0, 1, 0, 0⟩, where a and b are complex numbers.

Since there is only one electron there is no Coulomb term in the Hubbard Hamiltonian. In

the {|1, 0, 0, 0⟩, |0, 1, 0, 0⟩, |0, 0, 1, 0⟩, |0, 0, 0, 1⟩} basis the Hamiltonian can be written as:

H =


0 0 −t 0

0 0 0 −t
−t 0 0 0

0 −t 0 0

 (1.24)

Solving this Hamiltonian one obtains two ground state eigenstates:

|ψ1⟩ = 1√
2
(|1, 0, 0, 0⟩+ |0, 0, 1, 0⟩) and |ψ2⟩ = 1√

2
(|0, 1, 0, 0⟩+ |0, 0, 0, 1⟩) with energy E =

−t and two excited states |ψ3⟩ = 1√
2
(|1, 0, 0, 0⟩ − |0, 0, 1, 0⟩)) and

|ψ4⟩ = 1√
2
(|0, 1, 0, 0⟩ − |0, 0, 0, 1⟩)) with energy E = t (assuming t > 0).

Now let us consider the case of two-particles states having the same spins. The subspace

will be composed of |1, 0, 1, 0⟩ and |0, 1, 0, 1⟩. The eigenvalue corresponding to this subspace

will be 0, however, in the two-particle case the spins can also be opposite, in this case the

subspace can be described by the basis {|1, 1, 0, 0⟩, |0, 1, 1, 0⟩, |1, 0, 0, 1⟩, |0, 0, 1, 1⟩} . The
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corresponding Hamiltonian will be:

H =


U −t −t 0

−t 0 0 −t
−t 0 0 −t
0 −t −t U

 (1.25)

After diagonalization of the matrix, the following four eigenvalues can be found:

E = 0,U, U2 ±
√

4t2 + U2

4 . Since we are only interested in half filled band the two particle

states mentioned above will be of interest. In this case, there are a total number of 6 states

available for this subspace with energies equal to 0,U, U2 ±
√

4t2 + U2

4 . Now let us see what

happens if the on-site Coulomb repulsion is very highU ≫ 0 , in this caseU
2 ±

√
4t2 + U2

4 will

be approximately equal to 0 or U and we will end up with 4 states having 0 energy and 2 states

having energy U. What we have mentioned until now was that in the case of a two-site system.

Now, scaling up the system to an infinite network, the two sets of states separated by U in the

limit of U ≫ 0 will turn into two sets of bands separated roughly by a gap equal to U. The bands

with lower energy are called the lower Hubbard band and the sets of bands with higher energy

are called the upper Hubbard band.

In our simple two site Hubbard model, the ratio U/t plays a very important role in deciding

the electronic properties of the system if U = 0 the ground state energy will be −2t and the

system is metallic; however, if U/t >> 1 then the system will become an insulator with a

ground state energy of −4t2/U, and a ground state eigenstate identical to the one of a two sites

Heisenberg Hamiltonian with antiferromagnetic coupling [30]. In the case of an infinite network

the same happens and for large U the system will also display an antiferromagnetic ordering,

at least in 1D and square 2D lattices. In order to ilustrate this point better we will present the

results of Monte Carlo simulations done by Rozenberg et al. [31] and presented in Fig. 1.9 as

it can be seen, the DOS is finite at the Fermi level in low U, but becomes zero as the insulating

gap opens at large U, with the existence of a peak at the intermediate U values which is called

the quasi-particle peak.

In the case of a triangular lattice I studied during my thesis, the situation is more complex

since magnetic frustration will show up.

1.4.2 Comparison between band-insulator and Mott-insulator

A band insulator and a Mott insulator may differ when comparing their spectral weight transfer

properties. In a ”good” metal the low energy excitations are electron like quasiparticles, and

well described by the Landau Fermi liquid theory. However, in a strongly correlated material,

the excitations cannot anymore be accounted for by a simple Fermi liquid with well defined

quasiparticles; in the limit of very large U, no such quasiparticles exist anymore. Starting from

a metal and adding some Coulomb repulsion some spectral weight of the quasparticles will

be transferred progressively to collective modes in a broad spectral background, when all the

spectral weight of the quasiparticles will have been transferred to the spectral background the

system will become a Mott insulator. A more accurate explanation of the difference between a

Mott insulator and a Band insulator in term of spectral weight is given by Menders et al. [32].
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Fig. 1.9 DOS (ω) of the HM at T = 0 for increasing values of U. The quasiparticle peak narrows
as U increases until it collapses at the critical value Uc2.

In the following, the physical arguments will be reproduced and we refer to the original article

[32] for more details.

First, we start with a band-insulator with a filled valence band and an empty conduction band

separated by a band gap EG. For the undoped band insulator, the total removal and addition of

electrons is illustrated in Fig. 1.10 . If N is the total number of sites, then there are 2N occupied

states and 2N unoccupied states available, taking the spin into account. If we chemically dope

the band insulator by adding one hole, the chemical potential will shift into the former occupied

band, if we neglect the chemical potential of the dopant. The total spectral weight for electron

removal will be 2N-1 (the number of electrons in the ground state) and the total spectral weight

for electron addition will be 2N+1 (the number of holes in the ground state) [1.10. The electron

addition spectrum can be divided into two parts, the conduction band and the unoccupied part

of the valence band (Fig. 1.10) it can be seen that the Low Energy Spectral Weight (LESW)

is equal to 1: one state available for an additional electron at low energy in the valence band.

In contrast the High Energy Spectral Weight (HESW) will remain 2N, the number of available

states in the conduction band.

The same is also true for an electron-doped band insulator, thus when doping a band insula-

tor, the total spectrum will be formed by just the repositioning of the chemical potential and the

LESW will grow with x (x is the number of dopants). The spectral weight of the high-energy

band will remain unchanged. Therefore, there will be no redistribution of the spectral intensities

upon doping a simple semiconductor 1.10. Considering now a correlated system, we are going

to investigate a Mott insulator in its localized regime with N sites. The total photoelectron and

inverse photoelectron spectrum at half-filling are shown in Fig. 1.10. While the total number of

electron addition spectral weights is equal to the number of unoccupied states, the total number

of electron removal spectral weights is equal to the number of occupied states Fig. 1.10. There-

fore, the intensity of both will be equal to N. If the system is doped with one hole, there will be

N-1 singly occupied sites; therefore, the total electron removal spectral weight will be equal to
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N-1. When an electron is added to the system now there are N-1 possibilities to add an electron

and get a doubly occupied site, therefore the Upper Hubbard Band (UHB) will have N-1 states

(not N), this process will cost at least U and will contribute to the high energy spectral weight.

Now, one empty site remain and there are two possibilities to add an electron to this site (spin

up and spin down), both belonging to LHB Fig. 1.10. As, in this case, there is no U to pay,

this process will contribute to the low energy spectral weight. In summary, there will be N-1

electron removal states near the Fermi level, two electron addition levels near the Fermi level,

and N-1 electron addition states at the UHB. The same also holds for the electron doped case.

Fig. 1.10 A schematic drawing of the electron-removal and electron-addition spectra for a semi-
conductor (left) and a Mott- Hubbard system in the localized limit (right). a. Undoped (half
filling), b. One-electron doped, and c. One-hole doped. The bars just above the figures represent
the sites and the dots represent the electrons. The on-site repulsion U and the charge-transfer
energy ∆ are also indicated.

Menders et al. [32] have done some calculation for a Mott-Hubbard model with on-site

Coulomb repulsion U = 10 eV. In Fig. 1.11 the total electron removal and addition spectra are

plotted for a 10-site one-dimensional ring with t = −1.0 eV and for various number of electrons

N. The hole(electron) doping concentration is given by (N−N′)/N′ with the number of sites

N′ = 10 (N < N′ corresponds to hole doping and N > N′ corresponds to electron doping).

As can be seen in Fig. 1.11 going from the one-hole-doped to one-electron-doped case, the

chemical potential shifts by the amount of the insulating gap.

However the mentioned Monte Carlo calculations are done only for a finite chain of atoms

in the case of infinite lattice more powerful calculation like Dynamical Mean Field Theory is

needed to illustrate more precisely. Such calculations are done by Camjayi et al. [33] they have

shown that the Mott insulating phase can be destabilized by hole doping and thus changing the
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particle occupation δ (at T = 0.1 K and strong enough U). A narrow quasi particle peak at Fermi

level can be seen in Fig. 1.12 with an intensity that depends on the doping level.

21



Fig. 1.11 One-particle Green’s function for a one-dimensional Hubbard-ring of X= 10 sites for
U = 10 eV and t =1 eV. The number of electrons in the ground state X are indicated. The low
energy electron-addition spectral weight is obtained by integration over the shaded area [32].
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Fig. 1.12 Left: Paramagnetic Density of states (DOS(ω)) of a lightly hole-doped Hubbard model
at U = 3.125, T = 0.1, and increasing δ = 0.003, 0.0076, 0.0114, 0.022, 0.038, and 0.055, from
top to bottom. Top right: Detail of the evolution of the quasiparticle peak in the previous results.
Bottom right: Phase diagram as a function of δ and T for U > Ucritical. [33]
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CHAPTER 2

Devices and Experimental methods

2.1 Introduction

In this Chapter first the principles of Low Energy Electron Diffraction (LEED), Scanning Tun-

neling Microscopy/Spectroscopy (STM/STS) are explained together with various methods that

can be implemented using STS measurements including, Spin-Polarized STM (SPSTM), Lock-

in technique and Quasi Particle Interference measurements. After the setups used in this the-

sis, including the VT-STM and M3, will be presented in detail. And at the end the methods

and parameters that has been used to prepare the samples and also the tips together with a de-

tailed description of the steps that lead us to find optimized parameters to prepare for both the

Sn/Si(111)−
√
3×

√
3− R30◦ and the Pb/Ge(111) samples are explained.

2.2 Surfaces and Wood’s notation

At the surface of bulk material, many bonds between atoms are broken, which implies a new

electronic distribution together with an increase in the total energy. This energy can be compen-

sated by means of a reconstruction of the top layer or the top few layers of the material. The

reconstructed surface may exhibit a superstructure with a different periodicity from the one of

the bulk. A very famous notation to describe this superstructure is the Woods notation. In this

notation, the primitive vectors of the superstructure are written as the multiples of the ones from

the bulk terminated unreconstructed structure, as follows:

|as| = m|a|, |bs| = n|b| (2.1)

If the superstructure is rotated with respect to the unreconstructed surface the angle of rota-

tion is noted in the formalism, which leads to the following general notation:

X(hkl)−m× n−Rα (2.2)

Where hkl are the notation of the unreconstructed surface, m and n are the proportionality

between the primitive vectors of the superstructure and the bulk and α is the angle of rotation.

For example, Si−7× 7 means that the superstructure primitive cell is 7 times higher than

that of the Si (111) surface and in the same direction.

When a new substance is deposited, either as molecules or atoms on a semiconductor/metal

surface, it forms a superstructure with a periodicity that differs from the one of the host sub-
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strates. In this case, the substance’s chemical symbol is also mentioned in the wood’s notation.

For example Si(111)−
√
3×

√
3− R30◦ − Sn (Sn-

√
3) superstructure indicated in Fig. 2.1.

Fig. 2.1 Top-view of the Si(111)−
√
3×

√
3− R30◦ − Sn. Small Yellow (grey) circles repre-

sent first (second) atomic layer of the Si(111) substrate and the large green circles represent the
Sn atoms adsorbed on the Si(111) substrate. As it can be seen the

√
3×

√
3 unit cell (orange

filling) corresponding to Sn atoms is 30◦ rotated with respect to the 1× 1 unit cell (blue filling)
corresponding to Si atoms.

It should be noted that woods notation can only be used if the superstructure and the unre-

constructed surface have the same symmetry, otherwise the matrix notation should be used.

2.3 Low Energy Electron Diffraction (LEED)

In this Thesis, LEED is used as a useful tool in addition to STM in order to have a quick check to

see if the sample preparation parameters are optimized enough to have our desired samples. We

start the section by giving an introduction to LEED and then we will present our LEED results

on our samples. Davisson and Germer were among the first scientists who observed the electron

diffraction process by exposing a nickel crystal to a monochromatic electron beam [34]. They

have found that the distribution-in-angle of the scattered electrons shows sharp peaks at certain

angles. They have realized that these peaks are indeed interference patterns following Bragg’s

law (a schematic figure is shown in Fig. 2.2)

nλ = asinθ (2.3)

Where n is an integer number indicating the diffraction order, λ is the wavelength of the

electron, a is the lattice periodicity, and θ is the angle of the incident diffracted (or reflected)

beam. This is one of the first experiments that shows the wave like behaviour of electrons

which awarded Davison and Germer with a Nobel prize in 1937 for the discovery of electron

diffraction by crystals. An electron of momentum p can be seen as a wave with wavelength

of λ = h/p [35]. To probe the surface using LEED, electrons with the energy range of 20
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Fig. 2.2 Schematic picture showing electron diffraction and Braggs law.

to 200 eV are typically being used because the penetration depth in this case will be around

10 Å. The diffracted electrons impact on a fluorescent screen and form a pattern of bright spots,

which is a scale of the reciprocal lattice of the surface reconstruction. The LEED patterns of the

Si(111)− 7× 7 and Sn-
√
3 are shown in Fig. 2.3.a and Fig. 2.3.b respectively.

As can be seen in the LEED pattern Fig. 2.3.b, the Sn/Si(111) reconstruction is rotated 30

degrees with respect to the 1× 1 (2.3.a) unreconstructed surface as expected. In both cases, the

spots of the bulk Si and the superstructure can be seen. If the periodicity of the superstructure is

longer in the real space, its periodicity should be smaller in the reciprocal space, as can be seen

in 2.3.a For example, in the case of the Si(111)− 7× 7 superstructure, since the periodicity of

the surface is 7 times higher than that of the 1× 1 lattice, the periodicity of this superlattice will

be 7 times smaller than that of the 1× 1 lattice in the reciprocal space. It can be seen that the

sides of the hexagon formed by 1× 1 are divided by 7 parts by the extra spots.

A typical diagram of the LEED is shown in Fig 2.4. As can be seen in this figure, the LEED

consists of an electron gun that sends an electron beam from behind a transparent fluorescent

screen to the surface of the sample. The electron beams are produced by heating a cathode and

afterward by a Wehnelt and a set of electrostatic lenses the parallelism, energy and focus of the

electron beams are adjusted. The electron beam will go towards the surface, become diffracted

and it will reflect on the screen. A high positive voltage is applied to the fluorescent screen in

order to accelerate the diffracted electron to make them visible.

In this study LEED has been used to check the quality of crystallographic growth of the

prepared samples. In particular, when the surface is clean and well reconstructed the LEED

pattern shows sharp, well-defined peaks; however, if the sample contains defects, disorder or

contaminations the peaks of the LEED will become broader. It is also worth noting that if the

surface contains contamination another technique that can be used by LEED setup is Auger

spectroscopy which allows probing the exact elements present close to the surface of the sam-
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Si 111 1 × 1
Bragg peak

Fig. 2.3 a. Leed image of Si(111)-7× 7 reconstruction and b. Leed image of Sn-
√
3 reconstruc-

tion

ple, which can be useful in case LEED is not showing the desired reconstruction. Even with

sharp peaks of a desired surface reconstruction, it is always better to verify the quality of the

reconstruction using STM since LEED is not accurate enough for determining the amount of

contamination, disorder and other non-local structural perturbations. It is quite common in

practice that a surface that looks nice by LEED appears as pretty bad in STM due to the fact

that STM is local while LEED is an integral probe that averages over many different areas. In

particular the presence of tens of nm wide domains separated by twin boundaries will not affect

much the LEED pattern.
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Fig. 2.4 Simplified schematic picture of LEED components.

2.4 Scanning Tunneling Microscopy/Spectroscopy

Scanning tunnel Microscopy (STM) is a near field probing tool that is used to characterize the

electronic and structural properties of materials at their surfaces. Its invention in 1982 by Gerd

Binnig, Heinrich Rohrer, and Christophe Gerber [36, 37] awarded a Nobel Prize in 1986 for

Rohrer and Binnig. This near field microscope utilizes a well-known phenomenon called the

quantum tunneling effect. This technique is the main experimental tool that has been used in

this thesis and all the results are obtained using this technique. In this chapter the principle of

STM and the different techniques it can perform are presented in the following order: First, in

this section, the surface imaging procedure using STM is explained. In Section 2.4 the prin-

ciples of scanning tunneling spectroscopy (STS) are introduced, explaining how this technique

can measure the (LDOS) of the samples. The lock-in technique and the spin-polarized STM

technique are introduced in Sections 2.5 and 2.6, respectively. In Section 2.7, it will be shown

how the Fourier transform combined with STS measurements can extract Quasi Particle Inter-

ference (QPI) information which can help to have a clearer picture of the band structure. In

Section 2.8, we introduce the experimental setup and sample preparation techniques.

2.4.1 Surface topography imaging

We consider two metallic electrodes separated by a vacuum barrier of width d. If we consider

an electron on one of the electrodes, there is an energy barrier of height W for this electron to

move to the other electrode (Fig. 2.5). The time independent Schrödinger equation for the wave

function ψ(x) in a 1D potential barrier is as follows:

(− ℏ
2me

+W )ψ(x) = Eψ(x) (2.4)

Now if we consider an incident wave function eikx and energy E, which can be transmitted

or reflected through the barrier, its probability of being transmitted is:

T = exp(−κ(E)d) (2.5)
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where κ(E) is [38]:

κ(E) =
2
√

2me(W − E)

ℏ
(2.6)

The probability is decreasing exponentially in terms of barrier width d. κ is in the order

of a few Å−1; if d changes by around one Å the tunneling current will change by one order of

magnitude [1]. This current-height dependence is very sensitive and is what enables us to have

atomic resolution extremely localized around the atom at the apex of the tip, which makes it

possible to have a high atomic resolution.

V(x)

W

0 d x

evanescent
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−

i𝑛𝑐𝑖𝑑𝑒𝑛𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−

r𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−

t𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−

Fig. 2.5 propagating wave in a one-dimensional potential barrier of height W and width d

Now, considering that one of the electrodes is a metallic tip and the other one is the sample.

If a positive bias is applied to the sample the electrons will tunnel from the tip to the sample and

vice versa. If the voltage is fixed the tunneling current depends only on the distance between the

sample and the tip. If we consider the applied voltage to be V , the probability of the electrons

to be transmitted through the barrier at absolute zero temperature can be written as follows [38]:

IT ∝
∫ eV

0
ρs(r, E)ρt(r, eV − E)T (d,E, eV ) dE (2.7)

and:

T (d,E, eV ) = exp(
−2d

√
2m

ℏ

√
Φtip +Φsample

2
+
eV

2
− E) (2.8)

Where T (d,E, eV ) is the probability of the electron to be transmitted, ρs(r, E) and ρt(r, E)

are the density of states of the sample and the tip and Φtip and Φsample are the work functions

of the tip and the sample, respectively. E represents one generic energy level of the electrons

transmitted through the barrier in the energy interval eV from the Fermi level. As can be seen

in Eqn. 2.8 the tunneling current is a convolution of the density of states of the sample and the
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density of states of the tip integrated in an interval of Ef and Ef + eV.

By scanning the surface in x− y using a Piezo-tube, with a fixed tunneling voltage, a feed-

back loop can be used to regulate the height of the tip in a way that the current always remains

constant and equal to a defined set-point (Fig. 2.7.a). In this way, The transmission probability,

T(d,E,eV) is considered constant for scanning voltages around the Fermi level V << Φ and

since the tip is modeled as a simple metal with a constant density of states around the Fermi

level, the tunneling current mainly depends on the density of states of the sample. In this way

scanning with a positive or negative bias enables us to measure the filled or empty states of the

sample as indicated in Fig. 2.6.a and Fig. 2.6.b, respectively.

Fig. 2.6 a(b) A schematic figure showing positive(negative) bias voltage applied to the tip cre-
ating unfilled (filled) states within an interval of eV from the Fermi level making it possible for
the electrons to tunnel from yellow stripes to the Tip (sample).

With this method, one can construct topographic images by plotting the variation of the
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height of the tip as a function of x− y. All the topographic images in this thesis are taken using

this constant current mode. An STM image taken from Si(111)−
√
3×

√
3− R30◦ − Sn (for

simplicity this phase is going to be called Sn−
√
3) surface is shown in Fig. 2.7.b. It should be

noted that the tip has an arbitrary shape at the apex, however for simplicity it is considered to be

locally spherical, for more information see [39].

2.5 Scanning Tunneling Spectroscopy

As we have seen scanning tunneling microscopy allows measuring topographic features of the

material at a given tunneling voltage. But we can also play with the voltage as a parameter to

get a much wider set of information. Indeed, using scanning tunneling spectroscopy (STS) we

can measure the Local Density of States (LDOS) of a material, which can give us information

about the spatial electronic structure down to the atomic scale.

2.5.1 Local Density of States Measurements

To measure the density of states, the tip is first fixed at a certain point. Then the feed-back

loop is turned off and the tip is fixed at a certain distance from the sample depending on the set

points of the voltage and the current. Then, by sweeping the voltage between a desired range,

the tunneling current IT (V ) is recorded. If we differentiate the tunneling current with respect

to the voltage, we obtain the differential conductance dIT /dV and the density of states of the

sample can be obtained by differentiating the relation in Eqn. 2.7. Since the density of states of

the tip is uniform, the ρt is evaluated at the Fermi eV = 0.

dIT
dV

= ρs(r, eV )ρt(r, 0)T (d, eV, eV ) +

∫ eV

0
ρs(r, E)ρ(r, eV − E)

dT (d,E, eV )

dV
dE (2.9)

The second term can be neglected if the IT curve is measured in a low range close to the

Fermi level, however, it can bring a smooth background if the voltage range is in the order of

1-2 V which can also be neglected, leaving only the first term that makes a relation between the

tunneling conductance (dIT /dV) and the density of states of the sample ρs(r, eV ):

dIT
dV

∝ ρs(r, eV )T (d, eV, eV ) (2.10)

Equation 2.9 only holds true at absolute zero temperature where the derivative of the current

is directly proportional to the density of states of the sample, however, it should be noted that

at finite temperature since the derivative of the tunneling current is a convolution of the density

of states of the studied material with the derivative of the Fermi-Dirac function, the spectral

features are broadened by a factor of ≈ 3.5KBT. That is why we try to perform our measure-

ments at the lowest possible temperature, 300 mK. At 300 mK and 4.2 K this broadening factor

will be equal to 100 µeV and 1.4 meV. While STS measurements on samples with broad spec-

tral features (like an insulating gap of several hundreds of meV) can be performed at Helium

temperature (4.2 K) with a negligible thermal broadening, for very small spectral features like

a BCS superconducting gap which is in the range of several meV it is necessary to perform
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Fig. 2.7 a. Schematic view of the principle of the STM b. a 30× 30nm2 Atomic resolution
image taken from the surface of Sn−

√
3
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STS measurements at mK range. One example would the thermal broadening of the measured

superconducting gap between a Nb tip and Au(111) sample at elevated temperatures. Nb has a

Tc of 9K and a superconducting gap of 1.47 meV at zero temperature. We can see in Fig. 2.8

that while at 300 mK the superconducting gap features are very sharp, increasing the temper-

ature to higher values while staying below the Tc broadens these features because of reduced

spectroscopic resolution and also because the gap becomes smaller above Tc/3 [40].

Fig. 2.8 Measured differential conductance spectra (circles) for tunneling between a Nb tip and
a Au surface at several temperatures. The spectra are displaced vertically from each other for
clarity. The solid lines are the calculated conductance using a BCS DOS with ∆tip(0) = 1.47
meV and the temperatures shown [40].

While measuring the IT curves normally, there is a certain amount of noise that is also

acquired. Since the LDOS is measured by differentiating the IT curves with respect to V , a

noise in I(V ) is strongly enhanced in dI/dV . Moreover, in the case of mechanical noise on

the z axis, we obtain a noise on I(V ) which is proportional to I , this manifest in the dI/dV

as a butterfly shape of noise that is almost negligible at low bias but quite problematic at high

bias. During my thesis we have been fighting with this kind of noise that at some times was so

large that we couldn’t exploit the data for several months. Suddenly it almost disappeared with

no explanation. Some amount of mechanical noise was still there and by changing some cables

we recently obtained a big improvement on the noise level. In order to remove the noise we

normally use a smoothing procedure using Gaussian filtering.

2.5.2 Spectroscopic Grid Measurement

Here we will explain the procedure used to measure the spectroscopic grids that are used to

measure the spatial dependence of the density of states of the samples. To illustrate it better a

schematic figure is presented in Fig. 2.9 which shows the grid spectroscopy measurement and

data treatment procedure. The I(V ) curves are measured at each point of an N ×N grid. This
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grid is a reciprocal grid which is illustrated as green circles on top of the topographic image.

All the I(V ) curves are measured at the same bias range [Vmin, Vmax]. After performing data

treatment as mentioned before, differential conductance curves are obtained at each point of the

N ×N grid for the bias range. Now, if we choose a voltage Vi between Vmin and Vmax we can

obtain the spectroscopic map by defining a N ×N matrix that contains the dI/dV (Vi) at each

point. By doing this procedure for all the voltages we can find the local density of state maps at

all the energies in the range of the measurement.

Fig. 2.9 a. Grid of spectroscopic measurements, I(V ) curves are taken at the grin nodes of a
square grid. b. I(V ) curve measured at a node in the range of [Vmin, Vmax]. c. Derivative of the
I(V ) curve corresponding to a. d. The density of states map constructed at different energies in
the range of [Vmin, Vmax].

2.6 Lock-in Technique

Lock-in amplifiers are common in experimental measurements as a technique in a noisy envi-

ronment. Generally, a reference signal is introduced to an experimental parameter and a filter

is used to extract the signal with the same modulation frequency. The working principle is ex-

plained as follows: A small high frequency sinusoidal signal, Vac, is imposed to the constant

DC bias voltage, which will then cause a sinusoidal response in the tunneling current. The am-

plitude of the modulated current is dependent on the slope of the I-V curve. Fig. 2.10 shows

how the convolution of the applied sinusoidal voltage and the resulting current can detect the

changes in the I − V curve.

For a small lock-in sinusoidal signal Vac = Vmaxsin(ω), the modulated current expressed

in a Taylor series is as follows:

I(Vbias+Vmaxsin(ωt)) ≈ I(Vbias)+
dI(Vbias)

dV
×Vmaxsin(ωt)+

1

2

d2I(Vbias)

dV 2
×V 2

maxsin
2(ω)+...

(2.11)

And by means of the lock-in amplifier which can demodulate and extract the first harmonic

frequency, which is proportional to the differential conductance dI/dV . The inelastic modes
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Fig. 2.10 schematic figure showing the dependence of the amplitude of the current on the slope
of the I-V curve.

manifest by a peak in the second derivative d2I/dV 2 and can be extracted from the second

harmonic.

2.7 Spin polarized STM

If the tip that is being used to do STM is magnetized, the electrons with spins matching the tip’s

magnetization have a higher chance of tunneling, this effect is called tunnel magnetoresistance

and the tip or the surface will act as a spin valve. The LDOS of the sample and the tip are

different for different spin orientations, the tunneling can only occur between the states with

the same spin orientation (without considering the spin flip). If the spin of the tip and the

sample are parallel there are many available states for the electrons to tunnel resulting in a

large tunneling current, however, if they are antiparallel most of the available states are already

occupied resulting in a low tunneling current as it can be seen in Fig 2.11.

So, with spin-polarized STM (SP-STM) it is possible to probe the spin dependence of the

LDOS and probe if a magnetic order is present. The lock-in technique is a convenient way

to perform SP-STM since it can measure the LDOS at a specific energy, however, the energy

range in which the lock-in is working should be in the range the spin contrast of the density of

states is the highest. The spin texture of the sample’s surface can be studied down to the atomic

scale using this technique if the tip is chosen properly. There are several ways to prepare a spin

polarized tip, in which the two most common ones are to either use a bulk magnetic tip or to

deposit several layers of magnetic atoms on a non-magnetic tip (W tip). The bulk magnetic
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Fig. 2.11 schematic of density of states of the tip and the sample in a. Parallel spin configuration
and b. Antiparallel spin configuration.

tip can be either ferromagnetic (Fe or Ni tip) or antiferromagnetic (Cr tip). Bulk Ni or Fe tips

work very well as spin-polarized tips since the magnetization can be easily controlled, although

Fe-coated W tips fulfill the same conditions however the magnetization can be easily lost due

to crashes or bias pulses and these tips are also hard to make. It should be noted that since bulk

ferromagnetic tips create a strong stray field compared to other types of spin polarized tips, they

are suitable for systems that are robust against external magnetic fields like antiferromagnetic

materials with strong exchange coupling. The magnetization in antiferromagnetic Cr tips cannot

be easily controlled however they don’t create any stray field and the magnetization of the sam-

ple is preserved [41]. During my thesis, we tried to perform some spin-polarized measurements

with an electrochemically etched tip, but we couldn’t get convincing results. Our goal was to

be able to observe some predicted striped antiferromagnetic ordering in Sn/Si(111) monolayers

where we expected to observe a doubling of periodicity with a magnetic tip.

2.8 Quasiparticle interferences and Fourier Transform STS

In this section the use of Fourier transform Scanning tunneling spectroscopy FT-STS to ob-

tain information about Quasiparticle interference patterns is explained. This method is used to

extract information about the band structure of the materials being investigated. In condensed

matter physics, the electron inside a perfect crystal propagates with a wavefunction that contains

a plane wave part and a periodic part:

ψk = eikruk(r) (2.12)

Were u(r) is a periodic function with the same periodicity as the Ionic lattice. However,

if there are defects in the lattice structure the electrons will be scattered by the defects and

the Bloch wave function will no longer belong to the basis for the wave functions of electrons
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in crystalline solids. If we only consider elastic scattering, since, the energy of the electron

is conserved after being scattered by a defect, the wave function of the electrons ψe is the

interference of ψki and ψkf , which are the electronic wavefunction before and after scattering,

so:

ψe = ψki + ψkf = eiki.ruki(r) + eikf .rukf (r) (2.13)

And the local density of states, which is calculated by STS measurements as mentioned

before is as follows:

|ψe|2 = (eiki.ruki(r) + eikf .rukf (r))(e
−iki.ru∗ki(r) + e−ikf .ru∗kf (r)) (2.14)

By multiplication:

|ψe|2 = |uki(r)|
2 + |ukf (r)|

2 + 2Re
(
ei(kf−ki).ru∗ki(r)ukf (r)

)
(2.15)

QPIs are plotted by calculating the Fourier transform of the density of the states map. So,

by calculating the Fourier transform of |ψe|2 (Eqn 2.15) we can quantify the QPIs. After some

calculations, we will find that QPIs give a signal at scattering wave vector q up to a reciprocal

lattice vector G and that the interference of the incoming and final state gives rise to the standing

wave patterns of wave vector q. More details about the calculation are explained well in the the-

sis of Raphael Leriche [7]. Due to Fermi’s golden rul,e the probability of a scattering happening

between the state ki and the sate kf is as follows:

Γi→f =
2π

ℏ
|V (q)|2ρ(ki, Ei)ρ(kf , Ef ) (2.16)

Where Vs is the scattering potential and ρ(ki) and ρ(kf ) are the density of states of initial

and final states, so, the more the density of states of the initial and the final states, the highest

the probability of the scattering to happen. However, if there are a couple of initial and final

states with the same scattering vector q, then the probability of the standing waves occurring at

this energy will also be high.

By calculating the auto-correlation of the energy contour at a specific energy we can find

the QPIs which is equivalent to joint density of states (JDOS).

In Fig. 2.12 and Fig. 2.14 some examples of QPIs are presented; in all of them the Brillouin

zone is hexagonal since our system also exhibits hexagonal Brillouin zone.

Fig. 2.12 presents a circular energy contour cantered at the center of the Brillouin zone

(the Γ point). The wave vector q⃗ shows good nesting properties since the points it connects are

tangential to each other, the same is true about all the q⃗ vectors with the same amplitude and

different directions. The QPIs contour will be a circle with the radius |2q⃗| and centered at Γ.

One of the examples of such QPIs with circular pattern is the surface of Cu (111) [42].

The band structure of surface states of Cu (111) is parabolic as presented in Fig. 2.12. In the

STM study done by Crommie et al. the interference of quasi-electrons leads to the formation of

standing waves around defects (single atom, step edges) that manifests by ripples of periodicity

2π/|q⃗|. If the ripples are formed around a point defect, the ripples will be circular and if they
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are at a step edge, they will have a linear shape as illustrated in Fig. 2.12.

Fig. 2.12 a. The red circle is the energy contour of diameter q and centered at Γ. b. The
expected QPIs pattern for ’a’ which is the red circle with radius q and centred at Γ. c. The
energy dispersion of the surface state of Cu (111). d. Constant current 50 nm ×50 nm image of
the Cu (111) surface showing standing waves around monoatomic steps and point defects.

The scattering channels depend on the symmetry and also on its spin properties. If there is a

magnetic impurity on the sample it can change the spin of the incident electron. In this case, the

incoming and outcoming electrons cannot interfere because they are orthogonal to each other

so the QPIs will not occur. For example, the Rashba spin-orbit coupling splits the spin states of

the surface states of Au(111). Thus the fermi contour will split in two with two different spin

direction as indicated in Fig. 2.13.a In this case the scattering only happen between the inner

and outer Fermi contours with wave-vector, qintra and there will be no intra-band scattering

processes with qinter and q′inter, thus instead of having QPI’s with 3 circles corresponding to the

3 wave-vectors indicated in Fig. 2.13.a will have only one allowed QPI pattern corresponding

to

This was recently measured using Spin resolved ARPES but it can also be observed indi-

rectly by QPIs measurements [43]. One way is to see the Rashba band splitting is to measure

QPIs scattering channels between epitaxially grown graphene flakes on Au (111) and the surface

of Au(111) [44].

When the band structure is anisotropic the QPIs pattern becomes more complex. For in-

stance, let us consider a hexagonal energy contour. As it can be seen in Fig. 2.14, q⃗1 is the

vector that connects two vertical lines of the energy contour which gives a stripe with a maxi-

mum intensity (in the middle of the stripe) positioned at q1 in the reciprocal lattice. The middle
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Fig. 2.13 a. Schematic Spin-split Fermi contour of Au(111) with two orthogonal spin directions
showing an allowed scattering process with wave-vector qintra and three unallowed scattering
processes with wave-vectors qinter, q′inter and q′′inter b. The QPIs patterns correspond to allowed
(green solid line) and un-allowed (red dashed line) scattering processes. The filled circle in the
middle corresponds to the tangential scattering process close to q = 0.

of the stripe is of high intensity due to lots of |q⃗| points that connect these two vertical lines,

it’s a kind of nesting effect. The intensity of the stripe fades by going away from the center of

the stripe. The reason is that q1 is the smallest wave vector that connects the vertical lines of

the Fermi contour, thus it can bridge more points between them compared to other nesting wave

vectors like qR that are longer and have a rotation with respect to q1, as indicated in Fig. 2.14.

The same is also true for |q⃗2| and |q⃗3| vectors. In addition to these scattering vectors on each

line of the energy contour there are also allowed scattering processes, indicated in Fig. 2.14.a

as |q⃗4|, |q⃗5| and |q⃗6|, here the wave-vector can take any length smaller than the straight line of

the Fermi-contour that the scattering is happening, the smaller the wave vector the higher the

intensity of the QPP due to more possible scattering processes, thus normally in the QPP pattern

we should see a star like a feature with a maximum size of |q⃗4|, |q⃗5| and |q⃗6| with an intensity

that fades towards the end of the star.

In general, the band structure is more complex than just a circular or hexagonal shape and

DFT calculations are needed to understand the complicated QPIs pattern. For instance, some

experimental data for the system Pb/Si(111)− 3× 3 reconstruction [45] are shown in Fig.

2.15. It shows an almost circular ring with a little bit of hexagonal modulation. It corresponds to

the scattering between the inner and outer Rashba split Fermi surface. Indeed, due to the Rashba

spin orbit coupling the back-scattering of outer-outer and inner-inner are not contributing to

QPI signal due to the spin orthogonality. Note that there is also a star-shape pattern at low

q that corresponds to intra-pocket (inner-inner and outer-outer) scattering for small scattering

vectors, because here for small q transfer the spin are almost parallel in the inner band and also

in the outer band. These QPI measurements are in perfect agreement with those estimated by

DFT calculations, and hence it was used to validate that the DFT+U band structure calculation
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Fig. 2.14 a. The red hexagon is an energy contour with q⃗1, q⃗2 and q⃗3 being nesting vectors and
q⃗4, q⃗5 and q⃗6 being an indication of nesting vectors on each line of the energy contour. b. The
stripes positioned at q⃗1, q⃗2 and q⃗3 show the corresponding QPIs patterns of energy contour of a.
And the star shape feature which is rotated 30◦ corresponds to the QPIs patterns of q⃗4, q⃗5 and
q⃗6.

was accurate in a much debated topic where some authors pretended that instead of DFT+U,

dynamical mean field theory (DMFT) should be more accurate due to strong Mott-Hubbard

interaction.

a b

Fig. 2.15 a. DFT + U Fermi surface of Pb-3×3 / Si (111) including polarization (arrows). The
out-of-plane component of the spin is 1% of the in-plane one. White arrows have 100 in-plane
polarization. Blue and red arrows are opposite out of plane components. b. Symmetrized
Fourier transform of a 60 ×60 nm2 dI/dV (V = 0) map measured by STS at T = 0.3 K and B
= 0.5 T, corresponding to quasiparticle interference at E = EF [45].
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2.9 Experimental setups

In this section, two experimental setups on which all the scanning tunneling measurements have

been performed and presented in this manuscript are described. First, the M3 setup in which

most of the measurements have been done is presented and after LT-STM in which sample

preparations have been checked and verified is presented.

2.9.1 M3 setup

Fig. 2.16 presents photographs and a schematic picture of the M3 STM setup. This experimental

setup is home-made and allows to perform STM/STS measurements under ultra-high vacuum,

very low temperature (down to 300 mK) and under strong magnetic field (7T). This equipment is

composed of two main chambers, a preparation chamber in which the samples can be prepared

and an STM chamber in which the tips and the sample can be stored or put in the STM, cleaving

the samples is performed in this chamber. Both chambers are under ultra-high vacuum and

the base pressure inside them is around 10−11 mbar, which can be achieved after a bakeout at

150 °C and it is maintained over time through a combination of pumping systems that includes

primary, turbomolecular, ionic, and titanium sublimation pumps. The whole setup is isolated

from the mechanical vibrations by compressed air legs. High frequency noise is eliminated by

means of dedicated electronic fibres. In order to transfer the samples and the tips to the UHV

an extra chamber is attached to the preparation chamber called the load-lock. It is linked to a

primary pump (which allows to reach a pressure of around 10−2 at first) and a turbo pump which

further reduces the pressure down to 2 × 10−8. A magnetic manipulator is used to transfer the

samples/tips to the preparation chamber when the pressure is low enough. The load-lock can be

only opened under an over pressure of nitrogen in order not to pollute the preparation chamber.

There is a valve that separates the STM and the preparation chamber in order to keep the STM

chamber clean while preparing samples in the preparation chamber. The preparation chamber

contains among other components, a quartz microbalance (QCM) and a triple electron beam

(omicron). It possesses three independent cells of high purity crucibles. The crucible is heated

by electron bombardments and therefore a fraction of ionized atoms is produced during the

evaporation. The evaporator thus, is equipped with a high voltage suppressor in order to supress

the ions created while the ionic bombardment, which helps to have less defects on the surface.

The QCM is used to calibrate the deposition. A water-cooling system is used to stabilize the

temperature of the evaporator during the deposition.

The preparation chamber is also equipped with a 4 axes Cryomanipulator which consists of

two separated heating modules. One of them can heat the sample by means of direct heating

(up to 1200 °C) and the other by means of resistive heating (up to 800 °C). The manipulator is

also used to move the samples/tips from the preparation chamber to STM chamber. There is a

carousel inside the STM chamber which allows the storage of several tips and samples. Those

samples/tips can be moved inside the STM chamber by a wobble stick. The approach of the

tip to the sample is controlled by the help of a camera filming the reflection of the tip and the

sample. It is essential to approach the tip as close as possible to the sample in order to gain time

on the fine approach which is done automatically by piezoelectric motors.
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Fig. 2.16 a. Photograph and b. Schematic picture of the M3 setup

2.9.2 Cooling system

Once the tip approached near the surface the microscope is transferred down to a cryostat by

means of a transfer rod (1.8 m) which is moved by a motor. The transfer rod is centered on the

outer tube by means of several springs. The cryostat has a capacity of 60 liters and it can be

either filled by nitrogen or helium. When it is filled by nitrogen it can be thermalized at 77 K

or it can be stabilized at around 50 K by pumping on the cryostat. To reduce the temperature of

the microscope to 4.2 K it is necessary to first pre-cool the microscope by nitrogen and then to

remove all the nitrogen by means of gaseous 4He. After, the cryostat can be filled with liquid

42



4He. During the cooling procedure, the 4He gas is put inside the IVC (internal vacuum can)

in order to make a thermal contact between the 3He pot and the cryostat. The 3He pot is in

thermal contact with the bottom of the microscope (3He tail). Below 50 K the 3He is absorbed

by a sorption pump which consists of activated carbon, the pressure of the IVC thus, should

be adjusted in order to have an exchange gas between the IVC and the 3He pot allowing the

microscope to stabilize at 4.2 K. next to the sorption pump is a pot which is connected to the
4He bath through a capillary with a valve, called 1K pot. The reason why it is called a 1K pot is

that, by means of pumping, its temperature can be reduced to around 1K.

Now the procedure to cool the microscope down to 300 mK is described. Before starting

the cooling, all the 3He is absorbed on the wall of the sorption pump. The sorption pump is then

heated by means of a resistive heater to reach a temperature of around 50K. At this temperature

all the 3He is evaporated into the 3He chamber. The temperature of the 1K pot is lowered by

adjusting the valve down to 1.4-1.5 K. At this temperature the 3He will start to liquidity in

contact with the 1K pot and when the sorption pump temperature reaches 40 K it will start to

absorb the 3He, thus, lowering the pressure inside the 3He chamber which consequently will

lower the temperature of the condensed 3He to 300 mK by means of cryocooling. The different

elements of the cooling system are shown in the schematic Fig. 2.17.

Fig. 2.17 Schematic image of M3 cooling system
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2.9.3 variable temperature STM

In addition to the M3 setup another STM setup was used in this study called the VT-STM. The

purpose of using this setup was mainly to perform structural study in parallel to the experiments

on the M3 setup in order to optimize the best parameters of sample growth and preparation to be

later used in M3 to do further study of the system. The reason for this arrangement is that growth

studies are normally very time consuming and it is not reasonable to use very low temperature

setup (M3) for these studies.

A picture of the VT-STM is shown in Fig. 2.18.a. Like M3, the experimental apparatus

consists of two main chambers, the preparation and the STM chambers which both are under

ultra-high vacuum. The samples are introduced to the preparation chamber by means of the load-

lock. The base pressure of the two chambers is at 10−10 mbar which is possible after a bake-out

at 150 °C and it is maintained with a combination of turbopumps, ionic pumps, and titanium

sublimation. The same e-beam evaporation systems is also used here in order to deposit pure Sn

and pure Pb on top of Si (111) and Ge (111) respectively. The chambers are also equipped with

a manipulator which makes it possible to perform resistive and direct heating of the samples.

The preparation chamber is also equipped with a LEED-Auger (SPEC). The manipulator also

permits cooling the samples to nitrogen temperature by pumping liquid nitrogen inside it. The

STM chamber hosts a variable temperature STM (Omicron VT-STM) whose head is shown in

Fig. 2.18.b. This microscope can work in a range of temperatures from around 30 K to around

500 K and controlled pressures ranging from 10−10 mbar to 10 mbar.

The fact that this setup can work in environmental conditions, high temperatures and high

pressure makes it a great tool to study physicochemical processes like the growth of materials

and catalysts. As it has been mentioned before the STM is very sensitive to the tip-surface

distance, thus having vibrations in the system can highly affect the results of the STM, that is

why the VT-STM is mechanically isolated from the rest of the setup by means of cupper support

suspended by springs. The copper support is embedded in a magnetic field generated by fixed

magnets. In these conditions, the oscillatory displacement of the conductor will induct current

which according to Faraday’s law can reduce the oscillatory displacements.

2.10 preparation of the samples

In this study all the samples were prepared in an ultrahigh vacuum, however, all types of tips

were prepared outside the setup without any further preparation in an ultra-high vacuum. In the

following, the different preparation procedures for samples and the tips are explained.

2.10.1 (TMTSF)2ClO4

(TMTSF)2ClO4 single crystals were obtained from our colleagues Denis Jérôme and Claire

Marrache from Paris-Sud University. They were grown by the group of Patrick Batail from

Angers laboratory. The crystals are small (length up to 1cm, width less or much less than

1mm, thickness few tens of microns) and extremely fragile. They should be manipulated very

carefully. The surface of this sample should be cleaved inside the ultra-high vacuum to avoid any

kind of contamination on the surface. The crystals were glued on a clean stainless-steel sample
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Fig. 2.18 a. A photograph of the VT-STM and b. The head of the VT-STM.

holder with a silver epoxy hardening at room temperature after one day. Then a flat piece of

stainless steel is glued on top of the sample with the same silver epoxy and introduced in the

load lock chamber. The sample was further transferred inside the STM chamber through the

preparation chamber. The crystal surface was cleaved at room temperature in P ∼ 4× 10−11

mbar by removing the cleavage support with the wobble stick of the STM chamber. (Fig. 2.19)

Fig. 2.19 Schematic picture explaining the cleavage procedure of the (TMTSF)2ClO4 sample.
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2.10.2 Sn/Si(111) (highly n doped)

In order to prepare a clean Sn/Si (111) surface, clean Si (111) surface should be first prepared.

The n-doped Si wafer (111) highly doped with As with a resistivity of 0.003-0.004 Ω.cm−1 is cut

to obtain a small piece after it is fixed between two electrodes. The sample is introduced into the

preparation chamber and out-gassed at 600◦C in the resistive stage to not exceed the pressures

above 2× 10−10 during the sample preparation process. After the sample is repeatedly flashed

at 1150-1200 ◦C for 5 – 20 seconds by means of direct heating. This will remove the covering

oxide on the surface together with other contaminants. Finally, the reconstruction Si− 7× 7 is

prepared by a last quick flash at 1000 ◦C and cooling to 800 ◦C and then further cooling down

to 600◦C. In about 20 minutes in order to obtain a large monoatomic terrace. After, in order to

obtain the Si− 7× 7 reconstruction the sample is cooled down to room temperature. The Sn

deposition is done by keeping the sample at 600◦C. This is deposited while the ion suppressor

of the e-beam evaporator is on. The flux is kept at 4 µA/min and the deposition is done in

2 minutes, in order to have slightly higher than 1/3 ML of Sn over layer in order to ensure

full coverage of the Sn. After the deposition has finished, the sample is annealed at 600◦C for

around 1 minute.

The excess Sn atoms will form other phases which are the

Si(111)− 2
√
3× 2

√
3− R30◦ − Sn (Sn− 2

√
3) reconstruction and a glassy phase. While the

first one is not well known the latter got a denser 4/3 ML density and it is very well studied in

the literature [46]. Both of these phases have semiconducting electronic properties.

The coexistence of these three phases is shown in Fig. 2.20.a The atomic resolution of

Sn-
√
3 and Sn-2

√
3 are shown in Fig. 2.20.b and Fig. 2.20.c. As it can be seen the Sn 2

√
3

is grown either on the step edges or around the glassy phase and also Sn-2
√
3 contains fewer

defects than the Sn-
√
3 phase. The number of defects on the

√
3 phase account for 2-3 % of

the total Sn atoms. As it can be seen in Fig. 2.20.b the defects consist of Sn atom vacancies, Si

substitutional atoms and dopant substitutional atoms. The properties of these defects are very

well studied in the literature and will be discussed in more detail in Chapter 3. As can be seen

in Fig. 2.20 the domains have an average size of around 200 nm, which makes them a perfect

area to measure spectroscopic maps.

Note: if the sample is annealed at temperatures lower than 600 ◦C (around 550 ◦C) the

structural domains are smaller as can be seen in Fig. 2.22.a, this can pose problems for further

QPI calculations since in this kind of measurement large domains are required. At higher tem-

peratures (around 700 ◦C) the domains are larger (Fig. 2.22.b) however the number of defects

is higher (Fig. 2.21.b), for this reason, it is very important to optimize the deposition parameters

in order to have the least number of atomic defects together with largest domains which was

observed for annealing temperature of around 600 ◦C as it can be seen in Fig. 2.22.c and Fig.

2.21.c.
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Fig. 2.20 a. Large scale topographic image of Sn/Si(111) showing different reconstructions b.
Atomic resolution of Sn−

√
3 showing different defects (a) Sn vacancy, (b) Si substitution, and

(c) dopant substitution c. Atomic resolution on Sn− 2
√
3

Another parameter that plays an important role is whether the annealing was done at the

same time as the Tin deposition or if it has been done only afterward. We have observed that

to have the least amount of defects, annealing should be done at the same time as the Tin

deposition, as can be seen in Fig. 2.23 we have also observed that extended annealing in both

cases will not change the quality of the sample in terms of domain size and also the number of

defects.

2.10.3 Shadowing effect

One of the problems that usually is faced in thin layer depositions is the shadowing effect which

means that close to the electrodes that connect to the sample there will be no deposition because

of the angle of the incident beam of the atoms as is shown in Fig. 2.24.a.
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Fig. 2.21 Atomic reolution of Si(111)−
√
3×

√
3− R30◦ − Sn phase annealed at different

temepratures of a. 550◦C,b. 700◦C and c. 600 ◦C

This situation can make a problem, especially in the case of n-doped silicon at low temper-

atures. The reason for this is that after the flashing the dopants will migrate from the surface
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b

c

Fig. 2.22 Large scale images of Si(111)−
√
3×

√
3− R30◦ − Sn phase with the same amount

of deposition but annealed at different temperatures of a. 550◦C,b. 700◦C and c. 600 ◦C

to the bulk of the sample leaving the surface with a very low number of dopants, which makes

the surface insulating with a very large gap at very low temperatures, thus, having electrodes

connected to the surface of the Si (111) and not to the deposited Sn atoms makes it impossi-
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a b

Fig. 2.23 Atomic resolution images of Sn−
√
3 phase annealed at 600◦C in two different

modes: a. At the same time as Tin deposition (for 1 min) and b. After the Tin deposition
(for 2 mins)

ble to perform STM. This is especially true for the case of Si with low N doping. In order to

solve this problem and anticipate electrical conductivity problems at low temperatures we have

tried two different approaches, one of the electrodes which is connected to the colder part of the

sample (to prevent evaporation) is connected to a region between the middle of the sample and

the electrode through either a Pt wire (Fig. 2.24.b) or by depositing tantalum on one side of the

sample (Fig. 2.24.c).

However, we have realized that by using either of these two configurations, the sample will

be prone to contamination since the Pt and Ta ions will migrate over the whole surface of the

sample making a different reconstruction and different electronic properties at the surface. As it

can be seen in Fig. 2.25 in the case of the Pt wire a stream of Pt ions has created a silver line on

the sample which depends on the polarity of the voltage applied while flashing the Si samples.

The topographic image in Fig. 2.25 shows the regions with a new reconstruction related to this

contamination that differs from the underlying 7× 7 reconstruction, therefore it should be noted

that this kind of contacts are not recommended in our studies.

2.10.4 Sn/Si (111) (highly P doped)

The goal is to prepare a Si(111) : B−
√
3×

√
3− R30◦ − Sn (Sn−

√
3− B) sample which

means the surface contains 1/3 ML of Sn on top of Boron doped Si (111) surface. The first step is

to prepare Si−
√
3− B samples, in order to do so highly P-doped samples (doped with Boron)

with a resistivity of 0.001-0.003 Ω.cm−1 are outgassed in the preparation chamber and they are

flashed at 1150-1200 ◦C for several times for about 5 to 20 seconds. After this procedure, the

Boron dopants will segregate to the surface and a proper Si−
√
3− B reconstruction can be

seen on the surface. It should be noted that the top layer, in this case, is the Si atoms and not the
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Fig. 2.24 schematic figure showing a.the shadowing effect close to an electrode and using b.
Pt/Ir wire or c. Tantalum deposition reinforces the electrical connection between a deposited
layer and the electrodes in order to surpass the shadowing effect

Fig. 2.25 a. Stream of Pt ions migrated over the sample leaving a silver line on the surface b.
The new reconstruction on the Si(111) surface made by the Pt contamination on the surface

B atoms. A topographic image of the sample is shown in Fig. 2.27. After the flashing is done

the sample is annealed and the deposition of Sn is done the same way that has been discussed

for the highly N-doped sample.

On this sample, the Sn−
√
3 reconstruction is less stable than that of the highly n-doped

samples. To solve this, we have tried to stabilize the Sn−
√
3 structure with the help of

Sn− 2
√
3 regions because we have observed that close to the Sn− 2

√
3 regions the Sn−

√
3

reconstruction is more stable with much fewer defects, as can be seen in Fig. 2.27.b. It should
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Fig. 2.26 Atomic resolution of Si(111) : B−
√
3×

√
3− R30◦

be noted that in this case the deposition is done at the same flux as for the highly n-doped sam-

ples but for a longer time in order to have most of the sample being covered by the Sn− 2
√
3

regions. A large-scale topographic image is shown in Fig. 2.27.a.

Note: the time of the deposition should be adjusted carefully in order not to have excess Sn

which can render the whole surface being covered by the Sn− 2
√
3 regions.

2.10.5 Pb/Ge(111)

To deposit 1/3 monolayer of Pb/Ge(111) we started by preparing a clean Ge(111) surface. To do

that a p-doped Ge(111) wafer was mounted on a sample holder and fixed by welding Tantalum

ribbons to the sample holder and on the sides of the Ge(111) sample. The sample was then

introduced into the prep chamber and out-gassed at around 700 ◦c. we have started by preparing

the Ge(111) sample in the VT-STM by several cycles of 1.5 KeV Ar+ for 20 mins sputtering

together with annealing at 750 ◦c for 5 mins (5-10 times) which resulted in a clean Ge(111)-c(2

× 8) reconstructing.

Then we tried to reproduce the same results in M3 setup. However due to the different

geometry of the sputter gun (the distance to the sample was higher) we used a higher voltage for

sputtering. By several cycles (5-10 times) of 3.0 KeV Ar+ sputtering for 20 min and annealing at

800 ◦c for 5 mins in UHV, the Ge(111)-c(2 × 8) reconstruction was observed again. Fig. 2.28.a

and Fig. 2.28.b show the large-scale and atomic resolution of the sample for 3.0 KeV Ar+

sputtering which are the parameters we used at the beginning of the preparations. However, as

can be seen in Fig. 2.28.a the size of the terraces is not large enough, which is due to the high

voltage used for sputtering. So we have reduced the sputtering voltage to 1KV which resulted

in larger terraces as can be seen in Fig. 2.29.
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Fig. 2.27 a. Topographic image showing zero to no defects on the Sn−
√
3 regions which are

grown next to the Sn− 2
√
3 regions b. Large scale topographic image of the Sn−

√
3− B

reconstruction

Pb was deposited on the clean Ge(111)-c(2 × 8) surface using an e-beam evaporator at

room temperature (RT). The amount of deposition was determined by the deposition duration

time at a constant evaporation rate. After that, the samples were annealed to get the desired

reconstruction. Fig. 2.30 shows the phase diagram of the Pb/Ge(111) phase. As can be seen,

there are two types of
√
3 ×

√
3 reconstruction, the α −

√
3 ×

√
3 and the β −

√
3 ×

√
3,
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a

b

Fig. 2.28 a. Large scale and b. Atomic resolution of the yellow window shown in a of Ge(111)-
c(2 × 8) surface prepared using 3KV as sputtering voltage

54



Fig. 2.29 Large scale image of Ge(111)-c(2 × 8) surface prepared using 1KV as sputtering
voltage

which corespond to 1/3 and 4/3 monolayer of Pb/Ge(111). The aim of this thesis is to study

the α
√
3×

√
3 structure. We deposited 1/3 ML of Pb on Ge(111)-c(2 × 8) at room temperature

and annealed the sample at 200 - 250 ◦c afterward. Fig. 2.31 shows a large scale image of the

α −
√
3 ×

√
3 structure in coexistence with denser β −

√
3 ×

√
3 phase which means that the

deposition is slightly in excess. The atomic resolution of the α −
√
3 ×

√
3 structure is shown

in Fig. 2.32.
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Fig. 2.30 Phase diagram of Pb/Ge(111) proposed by Grey [47]

2.10.6 Tip preparations

There are two main kinds of tips used in this study, Pt0.8Ir0.2 tips and Bulk Cr tips, while the

latter is a spin polarized tip with antiferromagnetic order.

The Pt0.8Ir0.2 tips were simply cut with scissors to make their apex sharp enough, Pt0.8Ir0.2
are known to be a good choice for both topography and spectroscopic measurements. While

the Pt0.8Ir0.2 tips are prepared easily the preparation of Cr tips are quite complex. In order to

prepare the Cr tips first a solution of NaOH is prepared with the concentration of 1 mol/l. Then

a circular shaped copper wire is put in the solution together with a Cr rod, which is put in the

middle of the circle. After a voltage is applied between the copper wire electrode and the tip,

which will etch the tip.

The tip is then sharpened by means of the etching and taken out from the solution before

the part of the tip which is inside the solution is fully etched and after it is rinsed with water. To

check if the tip is spin polarized it has been checked on a Co/Au (111) sample. The Co is known

to form islands on top of the Au (111) surface and these islands are known to have a strong

magnetic anisotropy which makes them to stabilize different magnetic in-plane directions. A

topographic image of Co islands grown on Au(111) surface is shown in Fig. 2.33.a. However,

while probing the surface of this sample using the lock-in technique, we couldn’t see a magnetic

contrast between the islands in the absence and presence of an external magnetic field. Fig.

2.33.b, Fig. 2.33.c and Fig. 2.33.d show dI/dV images taken at 600 meV and at external

perpendicular magnetic fields of 1T, -1T and 3T, respectively. It can be seen that the magnetic
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𝜷 − 𝒑𝒉𝒂𝒔𝒆

𝜶 − 𝒑𝒉𝒂𝒔𝒆

Fig. 2.31 Large scale image of α−
√
3×

√
3 phase in coexistence with the β−

√
3×

√
3 phase

Fig. 2.32 Atomic resolution of α−
√
3×

√
3 phase
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contrast can not even be seen in different magnetic fields and the dI/dV maps look all the

same. This might be due to the fact that either our Co islands were too small to exhibit a stable

magnetization at 4K, or our tip was not well prepared enough (i.e. pulsed) to exhibit a well-

defined spin polarization at its atomic apex.

Fig. 2.33 a. Topographic image taken from the Co/Au(111) surface showing islands grown on
the edges of the Au(111) herringbone structure and dI/dV map taken at 600 meV using the
lock-in technique at external magnetic fields of b. 1T, c. -1T and d. 3T.

2.10.7 Nanonis electronics calibration

Since the electronics that control the M3 setup have been changed from Matirx to Nanonis,

we have decided to calibrate the energy resolution of the electronics using a system that is

the 2d grown Pb islands on Ge(111) and has a well-known superconducting gap dependence

on temperature. Toyama et al. [48] have shown that different coverage of Ge(111) surface

with islands shows different superconducting behavior. While 1 ML Pb/Ge(111) sample has a

wetting layer with small clusters without any sign of superconductivity, 3 ML Pb/Ge(111) has

a wetting layer with unconnected Pb islands with a Tc of 4K. However, if the surface is fully

covered by a Pb thin film in the case of 10 ML coverage the superconducting temperature will

be 6K.

For our purpose, we have used the more than 10 ML coverage of Pb/Ge(111). To produce

the sample we have prepared 1 ML Pb/Ge(111) sample with the same procedure as described
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before and shown in Fig. 2.31. Then more than 10 ML of Pb have been deposited on the sample

at room temperature forming a continuous film of Pb/Ge(111) with different heights (Fig. 2.34).

The different phases of the 1 ML Pb/Ge(111) sample can be seen as a ”moire” on the continuous

Pb film.

a b

Fig. 2.34 a. continuous film of Pb/Ge(111) showing islands with different height and b. zooming
in the window shown in a, to show a small patch of 4× 4 on the left and the ”moire” of the√
3×

√
3 structure that can be seen on the right part of the panel

In order to calibrate the energy resolution of the microscope we have performed spectro-

scopic measurements on the continuous Pb/Ge(111) film in an energy range close to the super-

conducting gap, as shown in Fig. 2.35 which exhibits spectroscopy measurements at approxi-

mately 380 mK. Note that this is a Superconductor-Insulator-Superconductor (S-I-S) measure-

ment with a PtIr tip covered with a thin layer of Pb that was formed by digging Pb into the

Pb film several times before the experiment. We have found that the STM was not very well

grounded and that can induce a lot of voltage noise (jitter) and thus a lower energy resolution.

The superconducting gap after improving the grounding of the STM is shown in orange in Fig.

2.35. The superconducting gap is now sharper. However the spectra shown on figure 2.35 are

still not as sharp as one could expect for S-I-S spectroscopy. The best conductance peaks are

only about 3 times higher than the normal conductance background while we would expect more

than 5 if we consider the usual jitter of the apparatus which was measured to be around 30µeV

prior to my thesis. The base temperature of 300 mK was not achieved due to some change in the

length of a tube that have been broken during my thesis and which length control the pressure

of the STM cone and 1K cone. Too much pressure is applied on the STM cone and not enough

on the 1K cone, this result in a bad thermalization of the wiring at the 1K cone. This might

lead to a strong thermal load on the STM and a bad electron temperature which could lead to

some broadening of the conductance spectra. Additional measurements in S-I-N and S-I-S will

be needed once the fine tuning of the pressures on the cones will be properly achieved.
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Fig. 2.35 S-I-S point spectroscopy at 380 mK on Pb/Ge(111) islands with a superconducting tip
Pb/PtIr. The blue spectrum was measured before the appropriate grounding of the STM and the
orange was performed with the correct grounding.
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CHAPTER 3

Electronic properties of correlated diluted 2d layers of tetravalent metals on
semiconducting surfaces

3.1 Introduction

In this chapter we are going to share our measurements on two remarkable phases of matter

which are α-phase of Sn and Pb on Si(111) and Ge(111), respectively, with more emphasis on

the former one. The reason for that is that there are many unanswered questions about the α-

Sn/Si(111) for many years. One of them is: what is the ground state of this material in undoped

regime, a Mott insulator or a band insulator? The reason why we think this is an important

question is because recently on this phase an interesting superconducting state was observed

upon hole doping. Such a doped Mott insulator that becomes a superconductor upon hole dop-

ing might be a model system for probing the physics of high-temperature superconductivity in

Cuprates but with a much simpler structure that can pave the way to better understanding this

exotic phase transition. That is why we think that understanding the ground state of the insu-

lating α-Sn/Si(111) phase and confirming that it is related or not to a Mott insulating state is of

fundamental importance.

We are going to shed more light to understand better the electronic properties ofα-Sn/Si(111)

by scanning tunneling spectroscopy at low temperatures which led us to propose that this ma-

terial is in fact a magnetic band-insulator and not a Mott insulator, which is one of the most

important result in this thesis, even if a bit deceptive.

unfortunately we couldn’t perform measurements on the superconducting phase of this ma-

terial because of technical problems and lack of time.

In this chapter first we will discuss the literature and give a general picture about 1/3 ML of

Pb and Sn metals on top of Si(111) and Ge(111) which exhibit α phase and then we see how and

why Sn−
√
3 was thought to be a Mott insulator and how it can transition to a superconducting

state upon doping. Then we will expose our results in detail while comparing them to previous

studies. Then, we will discuss some exotic phenomenon that we have observed on this material

like: surface ”molecules”, edge state and multifractality.

At the end of the chapter we are going to also show some of our interesting measurements

on the α-Pb/Ge(111) surface.

61



3.2 Previous studies

There is a huge on-going interest both from fundamental and applications perspectives to search

for two-dimensional magnetic materials and in particular for antiferromagnets. One interesting

way of getting antiferromagnets is to look for the low temperature ground state of correlated

electronic materials exhibiting Mott physics [49], the cuprates materials being a characteristic

example [50]. In the search for true two-dimensional materials, surface crystals appear very

appealing as reference materials, as it was shown for instance recently in the context of two-

dimensional superconductivity [51].

In this context attention was drawn to a class of correlated surface crystals, the so-called

α-phase. It consists in a low density single-layer (1/3 Monolayer) of metal atoms (Pb or Sn)

grown on semiconducting substrates like Si(111) or Ge(111), occupying the T4 cites of their

surface [52, 53, 54]. The atoms are organized in a triangular lattice forming a
√
3×

√
3− R30◦

reconstruction (the so-called α phase) in the high-temperature phase. Each tetravalent metal

atom leaves a free electron leading to a narrow single half-filled electronic band confined at the

surface and isolated from bulk bands, the DFT calculation without considering any correlations

in this system shows a half filled band as can be seen in Fig. 3.1.

Fig. 3.1 Non-interacting dispersion of the dangling-bond surface state. The inset shows the
Fermi surface in the hexagonal surface Brillouin zone. The high symmetry points are indicated
[55, 56].

Due to the large nearest neighbor distance between Sn or Pb atoms, inducing an on-site

Coulomb repulsion U larger than the electronic bandwidth, these materials were believed to be

a well suited platform for the realization of the single band Hubbard model.

Experimentally a 3 × 3 reconstruction is observed at low temperature for all α-phase com-

pounds except Sn/Si(111). While the Sn/Si(111) and Sn/Ge(111) show insulating behaviour at

low temperatures, Pb/Ge(111) and Pb/Si(111) remain a metal with a pseudo-gap at low temper-

atures.

The origin of this 3× 3 phase transition was under the debate and several model have been

proposed, one suggesting the formation of a charge density wave triggered by the Fermi nesting

at low temperatures for Pb/Ge (111) or by the correlation effects in the case of Sn/Ge(111) [57].

However, the defects play an important role [58] since the 3 × 3 phase nucleates around the

defects even at the room temperature.

Several experiments have been done to reveal if there is indeed any difference in the elec-
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tronic band structure of 4d core levels of Sn at RT and LT. However there has been no difference

between the measurements at those temperatures and photo-emission spectroscopy didn’t show

any sign of Charge Density Wave (CD) at low temperatures [59, 60].

Surface diffraction patterns show that in the case of 3× 3 both Pb/Ge (111) [59] and Sn/Ge

(111) [61] show two different types of atoms with different heights. One atom top and two

atoms down per unit cell.

In fact, in the less correlated materials Pb/Ge(111) and Pb/Si(111) that remain metallic, this

aspect has been recently questioned by us[8, 9]. Our theoretical and experimental works showed

that an accurate description of their metallic ground state with the 3 × 3 charge order should

include the significant exchange interaction with the substrate atoms induced by the strong ver-

tical hybridization between Pb and Si or Ge valence orbitals, in addition to the on-site repulsion

term U in addition to the surface lattice degrees of freedom. In the more correlated materials

Sn/Ge(111) and Sn/Si(111) that become insulating, the well-accepted theoretical description in

terms of Mott-Hubbard physics was challenged by Lee et al. [62]. These authors argued that

the strong vertical hybridization between Sn and Si or Ge valence orbitals renders the Mott-

Hubbard modeling not appropriate as the exchange interaction with the substrate atoms plays a

crucial role in determining different electronic and magnetic properties of the insulating ground

state. This contradicting state-of-the-art requires a careful experimental characterization of the

ground state regarding the charge, spin and lattice degrees of freedom, in order to finally enable

deciding which theoretical description is most appropriate between DMFT-like methods only

considering surface atoms and advanced DFT-like methods including suubstrate atoms.

3.3 Sn/Si(111) (highly n-doped)

In the following Chapter we focus on the more studied Sn/Si(111). Structure-sensitive measure-

ments reported the absence of structural transition at helium temperature [63]. Angular-resolved

photoemission (ARPES) results [64, 55] and STM/STS studies [65, 66] reported a strong reduc-

tion of density of states (DOS) at the Fermi level between room temperature and 77 K or 30 to

40 K, typically by a factor close to ten, accompanied by a transfer of spectral weight to lower

binding energies. Nevertheless the DOS was found to remain finite at EF in all these works.

Only two works, to our knowledge, reported spectroscopic results below 30 K at helium

temperature by STS [65, 67], suggesting the possible opening of true energy gap of less than

100 meV at EF . Modesti et al. [65] have done spectroscopy measurements at 5 K and they

have shown a gap opening of around 40 meV in the dI/dV curves which they consider to be

a phase transition to a Mott insulating phase as can be seen in Fig 3.2 (b and c). However, the

validity of this measurement is under question since there is no large scale STM images shown

in this work proving the purity and lack of any contamination on the samples, also, the best STM

image, which is shown in Fig. 3.2.a is taken from a very small scale which contains defects. In

fact as mentioned in Chapter 2 some of our Sn−
√
3 samples were contaminated by either Ta

or Pt, and surprisingly in these contaminated sample we have observed a gap similar to the one

reported by Modesti et al. [65].

As mentioned in Chapter 2, we have tried to improve the contact to the electrodes using

either Ta deposition or Pt wire, which, resulted in a contaminated sample. While performing
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Fig. 3.2 a. Filled state STM image of the Sn−
√
3 at 5 K, sample bias -1.9 V, tunneling current

0.3 nA. b. Average tunneling spectra of the same surface measured far from the defects at
different temperatures c. Single conductance spectra at 5 K [65].

spectroscopy measurements on this sample we have observed that the electronic structure and

the gap looks similar to the aforementioned measurement at 5 K by Modesti et al. [65] as it can

be seen in Fig. 3.3.b. The Fig. 3.3.a shows the surface of this Sn−
√
3 highly contaminated

phase.

Also as can be seen in Fig. 3.4, in the work of Odobescu [67] a similar energy gap was mea-

sured but at 30 K, however we are going to see later in this chapter that indeed a phase transition

to an insulating phase can happen at temperatures lower than 30 K. These two aforementioned

works are the basis to some misleading interpretations, one example would be the recent work

by Weitering [66], in which they assert that the Sn−
√
3 is a Mott insulator. The authors note

that they could not perform measurement in the case of highly n-doped samples at 4 K, but only

at 77 K, due to the fact, according to them, the system was experiencing and Anderson localiza-

tion at low temperature making it unsuitable for scanning tunneling spectroscopy. We will see

that this Anderson localization on top of a Mott insulating phase is not a correct interpretation

as we are going to explain in the next subsection. We will also explain why we believe that their

assumption of a Mott insulating ground state for this system is wrong.
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b

a

b

Fig. 3.3 a. Topographic image taken from the Sn−
√
3 surface in a 100× 100nm2 window b.

Average spectra of the map taken in the area shown in a.

3.3.1 Is Sn/Si(111) a Mott insulator?

As can be seen in Fig. 3.5 Weitering et al. [66] have shown that by doping the Sn−
√
3 systems

with holes, starting from the undoped sample (n-0.002 corresponding to highly n-doped Si(111)

substrate), subsequently to a saturated hole doped sample (indicated by B−
√
3 corresponding

to a highly P-doped Si(111) substrate) at 77 K a pick in DOS starts to appear. In this figure

the DOS curves are fitted using several Gaussians corresponding to the Si edge band, higher

and lower energy Upper/Lower Hubbard Bands (UHB/LHB) and also a Quasi Particle Peak that

becomes bigger at higher dopings.

The UHB and LHB look very similar, however the spectral weight of the UHB decreases

with hole doping of the substrate, while the relative spectral weight of the LHB remains constant.

At the same time, the spectral weight of the QPP increases monotonically with increased hole

doping. A similar behaviour was predicted by Menders et al. [32] and was discussed in Chapter
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Fig. 3.4 STS spectra in the vicinity of the energy gap developed at the Fermi level on the
Sn−

√
3 surface for n- and p-type samples. Set point parameters are VT = −2V, IT = 50PA

for the n type and VT = 1.8V, IT = 50PA for the p type [66].

1, however, the correctness of this assumption is questionable since in the calculations [32, 33]

it has been predicted that the UHB is detached from the QPP and also the QPP should be

positioned at the Fermi level. In the measurements of Weitering et al. the QPP appears at about

100 meV, and the putative UHB is overlapping with the QPP while we would expect an overlap

of LHB with the QPP in the case of a hole doped Mott insulator as shown in Chapter 1.

Another contradictory point is that in the case of a hole (electron) doped Mott insulator,

the QPP intensity should only be considered at the energies higher(lower) than the Fermi level,

while they have considered the intensity of the whole peak to calculate the amount of doping.

Also, there is one point that still remains unclear, Weitering et al. [68] used DMFT mea-

surements of Meinders et al. [32] as reference to calculate the amount of doping, which they

showed that the normalized spectral weight, S of the QPP is equal to the amount of doping in

local limit (t = 0) and can be overestimated by a factor of 2 if hopping is considered. Weitering

et al. [68] have calculated the normalized spectra S of QPP, LHB and UHB by deviding the area

of the associated Gaussians by the sum of the total spectral intensity (i.e., LHB+QPP+UHB).

The results of their DCA calculations of the spectral weight transfer indicate that S = 0.1 for 5%

hole doping (which is twice the amount of doping). They used the same way to calculate the

amount of doping of the p-doped Sn−
√
3 samples.

What we think is wrong is that they verifed this with the results of DMFT calculations [32]

that doesn’t have the same LHB and UHB structure and the position of the QPP is not the same

as in the work of Weitering et al as mentioned before.

In the present work, we have performed new measurements in order to elucidate these ques-

tions that were raised by the state-of-the-art work. We reveal for the first time the nature of the
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Fig. 3.5 Determination of the relative spectral weight of the QPP, UHB and LHB. (a Fitting of
the spectra using six (or five for the n-0.002 sample) Gaussian peaks. The solid bars below (g)
mark the centers of the Gaussian peaks: one peak for the bulk VBM (indicated in blue), two
peaks for the LHB, one peak for the QPP, and two peaks for the UHB (all indicated in red)[66].

Sn−
√
3 ground state. Using spatial and spectral STM/STS measurements, we show that below

20 K an insulating state develops with a large energy gap of about 650 meV at 4 K. This value is

about ten times more than previously suggested both experimentally and theoretically. Signature

of the magnetic order existing at 4 K is revealed using quasiparticle interference measurements

in single structural domains.
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3.3.2 possible spin ordering in Sn−
√
3

Regarding the possible spin ordering, a spin-resolved ARPES study performed at 40 K claimed

to have measured a very small spin polarization consistent with a colinear antiferromagnetic

order [69]. However, the high temperature of this study, the complexity induced by the presence

of three possible orientational domains together with the absence of spectroscopic signatures at

the expected 2
√
3 period render this study questionable to our opinion regarding the eventual

presence of a magnetic order.

Different possible magnetic ordering of the spin 1/2 lattice at low temperature are presented

in Fig. 3.6 [62].

Fig. 3.6 Three different magnetic structures with the AFM, 120 ◦ spiral, and FI spin orders are
schematically drawn in (b), where the corresponding 2

√
3×

√
3, 3× 3, and 3× 3 unit cells are

indicated by the solid lines. The Brillouin zones (BZs) of various unit cells are drawn in (c).
The rectangular I represents the BZ of the AFM structure shown in (b), while the rectangular II
and III represent the BZs of other AFM spin alignments [62].

3.3.3 Chiral superconductivity observed in Sn/Si(111) (highly p-doped)

In this subsection the results of Weitering et al. on the Chiral superconducting state of Sn/Si(111)

(highly p-doped) is presented. As mentioned before we couldn’t perform these measurements

ourselves because of technical problem of our STM setup and also lack of time, however, we

have some insights regarding the previous results on this interesting phase transition. We think

that while the discovery of the superconductivity and its properties under magnetic field is quite

convincing, the results and the discussions in this paper must be confirmed with more scientific

studies. In the future the same experiments are going to be carried out in our group to verify

what is the nature of the superconducting phase. Recently Weitering et al. [70] have reported

that Sn−
√
3 can be modulation hole doped and becomes a superconductor at low temperatures.
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They have found that for a Si(111) sample with 0.008 Ω.cm, the Tc of the superconducting state

becomes 9K and that the Tc of this systems is dependent on the hole doping concentration and

they compare this system with high temperature Cuprates which are the state of the art high

Tc superconductors which have a Mott-insulating initial state and become superconductor upon

doping. We have discussed before in this chapter why their calculation for the amount of doping

for this system is not accurate and also we will prove in the next pages that this system is in

fact not a Mott-insulator but a Band-insulator before doping and can not be trivially compared

to the high temperature superconductors. However, the evidence of the superconducting state

is quite clear. Fig. 3.7.a shows the lattice structure of the Sn−
√
3 and the dependency of the

superconducting gap to the doping level (Fig. 3.7.b), position (Fig. 3.7.c) and temperature (Fig.

3.7.d). They have argued that the nature of this superconducting state can be either S-wave or

chiral d-wave by fitting the data, while the latter is more in favour because by inducing non-

magnetic defects (Sn ad-atoms or Si substitution defects) they see scattering patterns which can

only happen if the order parameter is chiral d-wave superconductor, however the non-magnetic

properties of this defects are not proven accurately. It means that if the defects are magnetic there

is a chance for the possibility of a s-wave superconducting order parameter and the scattering

pattern reminds us of the Yu-Shiba-Rusinov (YSR) states as discussed in chapter 1.

Fig. 3.7 a. Topographic STM image (Vs = -0.1 V, It = 0.1 nA) showing a near perfect Sn adatom
lattice, along with a substitutional Si defect, vacancy, and other defect, labelled with a triangle,
square and a circle, respectively (p = 0.08). b. Normalized STS spectra for three different hole
concentrations, revealing a clear doping dependence of the superconducting gap. c. A Set of
raw dI/dV spectra taken at equidistant locations along the dotted line shown in panel d, starting
on the left. (p = 0.08). d, Normalized dI/dV spectra as a function of temperature (p = 0.08). The
spectra in panels f and g are offset vertically for clarity.
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3.3.4 Spectroscopy measurements

The STS spectroscopy measurements were performed on Sn−
√
3 single domains having a lat-

eral size larger than 50-100 nm at T = 4.2 K with metallic Pt-Ir tips. For such domain sizes

we have found that the spectral characteristics presented hereafter are well established and re-

producible. The I(V ) spectra were measured far enough from the boundaries with neighboring

Sn− 2
√
3 to neglect any interaction with this phase and to probe intrinsic electronic properties

of the Sn−
√
3 phase. The dI/dV (V ) spectra were obtained by numerical derivation of the

raw I(V ) curves. Representative tunneling conductance spectra are shown in panel a of Fig. 3.8

at room temperature, 77 K and 4 K. Negative (positive) bias voltage corresponds to occupied

(empty) sample states.

The room temperature spectrum is in good agreement with previous STS [65], ARPES

[64, 65] and inverse photoemission results [71]. It features LDOS maxima around -0.3 eV

and +0.35 eV and suggests an experimental bandwidth larger than 1 eV. The strong spectrum

modification seen at 77 K also agrees with the large changes reported in previous STS [65, 66]

or ARPES [55, 65, 69] results. The spectral weight across most of the bandwidth is depleted and

appears to be transferred to lower binding energies and larger unoccupied energies. The DOS

around EF is lowered by a factor close to ten. At 4 K we see that a large energy gap has set-in,

reaching true zero conductance and being equal to about 650 meV. The gap has been calculated

by measuring the enrgy range aound the Fermi level (E = 0 meV) in which the LDOS becomes

zero.

This value is much larger than the ones reported in [65, 72] or theoretically predicted using

many-body approaches based on the Hubbard model [55, 73], or DFT calculations assuming a

DFT+U approach with a PBE functional [54].

To gain more insight into the opening of the energy gap, we have followed its temperature

dependence presented in Fig. 3.8b. At 40 K the LDOS is still finite at EF. Below around 30 K,

the LDOS gets progressively strongly depleted in the energy range [-400;+500] meV. Within

our experimental resolution, the tunneling conductance reaches zero around 25 K. It should be

noted that as can be seen in Fig. 3.8.b, changing the sample and the tip doesn’t change the

value of the energy gap at 4K. Also, the value of the energy gap changes negligibly at different

positions of the Sn−
√
3 phase, especially on the defects, as can be seen in Fig. 3.9 which

shows the spectra of the different defects together with the average spectra of the map.

Another important note that should be discussed is that the energy gap that we have observed

for the Sn−
√
3 phase can not be attributed to band bending or coming from the underlying

Si(111)− 7× 7 surface. As can be seen in Fig. 3.10 it has been shown by Myslivecek et al.

[74] that by lowering the temperature at 7K changing the set current (It0) can change the value

of the energy gap, however, it should be noted that while this has an effect on the positive side

of the gap it doesn’t change the position of the gap edge on the negative side of the energy gap

meaning that band bending can not explain such a large gap at the negative side of the band gap.

We now present how to rationalize and successfully model our surprising spectroscopic re-

sults using advanced DFT calculations and further discuss in detail the theoretical investigations

of the 1/3 ML Sn−
√
3 phase.
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a

b

Fig. 3.8 (color online) Temperature dependent dI/dV (E = eVbias) spectra acquired by scan-
ning tunneling spectroscopy in single Sn−

√
3 domains. a. Comparison between tunneling

spectra acquired at room temperature (RT), 77 K and 4 K. A large energy gap has set in at 4 K.
These spectra are measured between [-1;1] V using a set-point at I = 200 pA for Vbias = −1V.
b. Temperature evolution of the dI/dV tunneling spectra between 37.6 K and 4 K. The energy
gap opening starts around 25-30 K. These spectra are measured between -2V and 2V using a
set-point at I = 200 pA for Vbias = −2V. Note that the spectrum at 4K is also given for another
experiment with a different sample and different tip.

3.3.4.1 Computational details

As in [75] we model the Sn/Si(111) surfaces by considering a layer of Sn atoms on top of 3 Si

bi-layers. Hydrogen atoms are bonded to the dangling bonds of the bottom Si surface fixed to

the relaxed positions obtained by capping one side of the pristine Si surface. The Sn atoms are

placed on the T4 sites above the Si(111) and the position of the atoms of the top two Si bilayers

together with the Sn atoms were optimized to reduce any residual forces introduced by adding
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a

b

c

Fig. 3.9 a. Atomic resolution image taken from a window of 50× 50nm2 b. spectroscopic map
recorded at E = 1600 meV at the same window as a, c. spectra showing the total average and
local density of states averaged on the circles on different defects shown in a and b.
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Fig. 3.10 a. Dependence of the STS spectra on It
0 at T = 7K. b, c and d. Spectroscopic

measurements at T = 7, 77 and 297 K (RT), respectively (all the measurements has been done
on a highly n-doped Si(111)− 7× 7 sample). By lowering the temperature at 7K, the measured
energy gap becomes dependent on the spectroscopy set-point. This points out that part of this
energy gap is due to a voltage drop across the sample. For more information please see [74].

Sn ad atoms. A vacuum of 16Å is considered to simulate a slab and prevent the interaction

between the slab in z-direction. Calculations has been done by the master student Amitayush

Thakur, helped by Cesare Tresca and Matteo Calandra, using QUANTUM ESPRESSO code

with GGA exchange-correlation functional (PBE). The calculation was done using ultra-fast

pseudo-potential with an energy cutoff of 45 Ry or by using HSE functional from CRYSTAL17

package (using 25 % mixing parameter) and calculating accurate values for exchange part of the

energy performed in Gaussian basis set.

3.3.4.2 Determination of the ground state and comparison to experimental results

It has been shown that the Sn−
√
3 with a 2

√
3×

√
3 AFM super-lattice in the presence of a

Hubbard repulsion U = 2.12 eV has a band gap of 70 meV as is shown together with the band

structure in Fig. 3.11.a and Fig. 3.11.b respectively. However, while this calculation estimates

very well what is measured at low temperature in our contaminated samples it can not account

for the band structure in clean system at 4 K which shows a gap of approximately 650 meV.

However, using exchange interaction with the substrate in the case of HSE calculation it has

been observed that the calculated band gap matches very well with the experimental data as

it can be seen in Fig. 3.12 with a calculated band gap of around 600 meV. This very good

agreement with HSE calculation supports the fact that the electronic orbitals of the Sn atoms,

as predicted before by Lee et al. [62], has an exchange interaction with the Si(111) top layer.
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This means that the Mott-Hubbard scheme is not appropriate for this systems in contrary to the

conclusions of most of the previous researches.
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a

b

Fig. 3.11 a. DOS in the presence of U=2.12 eV with a gap of 70 meV. b. Band structure of the
AFM configuration 2

√
3×

√
3 with U
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Fig. 3.12 HSE band structure for AFM configuration with default range of interactions, the
insulating gap is around 0.7 eV

3.3.4.3 Experimental signature of the colinear antiferromagnetic order and theoretical
modeling

An elegant and efficient way to infer information about order parameter symmetry, topology,

spin and band-structure properties is to use quasi-particle interference (QPI) STS measurements.

QPI are a phase-coherent manifestation of the scattering of elementary electron or hole excita-

tions by defects [76, 77, 78]. These QPI measurements are typically obtained by performing

the Fourier transform of a dI/dV (V, x, y) map measured for a given energy E = eV . In the

neighboring material Pb/Si(111)-
√
3×

√
3R◦30 the team had shown that this technique could

be successfully used to map out the main elastic scattering vectors of the Fermi surface and

hence reveal the under-lying Rashba spin-orbit coupling and shape/size of the Fermi surface

[79]. As recently explained [80], care should be taken in acquiring such constant energy tunnel-

ing conductance maps and full STS mode where full spectra are taken at each point of a large

grid should be privileged as I did during my thesis work. In previous work some wrong con-

clusions were drawn based on scanning at a given voltage while recording some dI/dV signal

with the lock-in, however this technique can remove LDOS the signal from the lock-in sector if

it is contained principally in the z-regulation channel, i.e. the topography, which is particularly

the case at low voltage in a metal or at gap edge in a semiconductor [80].

In the present work we again followed a careful procedure in order to obtain reliable spec-

troscopic maps with a minimum of STM z-regulation artifacts. We directly acquired a complete

set of dI/dV maps between -2V and +2V numerically derivated from a dense I(V ) 256× 256
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grid on a 60 × 60 nm2 area. A proper normalization condition for all spectra was found for

Vbias = 2 V and I = 200 pA. In the context of determining the ground state of the Sn−
√
3

phase, QPI are particularly interesting due to the band gap opening and the possibility of having

a magnetic ordering of the spin 1/2 lattice. The topographic image, the Energy-dependent dI/dV

maps and the Energy-dependent QPI measurements acquired at 4K in a single structural domain

are presented in Fig. 3.13, Fig. 3.14 and Fig. 3.15, respectively.

Fig. 3.13 A 50 × 50 nm2 area of a single Sn -
√
3 domain in which, further spectroscopic

measurements have been done
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E = -1.45 eV E = -1.1eV

E = -0.61 eV E = +1.1eV

E = +1.5eV E = +1.8eV

Fig. 3.14 Energy dependent dI/dV maps. Each panel represents the dI/dV (E = eVbias) map
acquired at the indicated energy. All dI/dV (E) maps were acquired at 4 K in the same 50 × 50
nm2 area of a single Sn−

√
3 domain shown in Fig. 3.13, by derivation a grid of 256 × 256

individual I(E = eVbias) spectra acquired using a set-point for spectroscopy ofVbias = -2 V and
I = 200 pA, together with a constant current STM topography measured at Vbias = -2 V and I =
50 pA.

Three energies cover the occupied states (−1.45 eV, −1.00 eV, −0.61 eV) and three others

the unoccupied ones (+1.1 eV, +1.5 eV, +1.8 eV). The Bragg peaks associated to the structural

Sn−
√
3 unit cell are nicely visible for all energies and one of them is indicated by the arrow

labeled Q√
3 for E = −1.45 eV. Starting from E = −1.45 eV, a diffuse disk-like signal is

observed for the wave vector modulus smaller than |Q√
3|. This signal gets reorganized for

78



E = -0.61 eV

E = -1.00 eVE = -1.45 eV

E = +1.1 eV

E = +1.5 eV E = +1.8 eV

𝑄 3

𝑞𝑚𝑎𝑔−𝐴𝐹 = 𝑄2 3

Fig. 3.15 (color online) Revealing the magnetic superstructure in Energy dependent quasiparti-
cles interference maps. Each panel represents the numerical Fourier transform of a dI/dV (E =
eVbias) map acquired at the indicated energy. All dI/dV (E) maps were acquired at 4 K in the
same 50 × 50 nm2 area of a single Sn−

√
3 domain shown in Fig. 3.13, by derivation a grid of

256 × 256 individual I (E = eVbias) spectra acquired using a set-point for spectroscopy of Vbias

= -2 V and I = 200 pA, together with a constant current STM topography measured at Vbias = -2
V and I = 50 pA. The Bragg peaks associated to the

√
3×

√
3 atomic structure form an hexagon

consisting in 6 sharp brag spots. Along a particular direction, one of the Bragg peaks is labelled
Q√

3. At a vector qmaf−AF = Q√
3/2 = Q2

√
3 sharp superlattice spots of weaker intensities are

seen, associated to the antiferromagnetic ordering of the spin 1/2
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−0.61 eV in a more hexagonal shape and a strong component has developed close to q = 0. For

E = 1.1 eV the hexagonal signal is better defined and additional pockets are seen faintly near

the corners of the hexagon. Simultaneously, the signal close to q = 0 has grown in diameter.

For E = 1.5 eV the hexagonal shape has turned into a star-like shape with curved edges. A

darker corona has appeared between the external star and the brighter disk located near q = 0.

Simultaneously, diffuse signal forms around each Bragg peak. At E = 1.8 eV, these patterns

are even clearer and keep the same shapes.

In addition to these spectroscopic signatures, sharp Bragg-like spots but of smaller inten-

sities, are seen for all the QPI maps and are indicated by the vector qmag−AF. This set of

additional spots are located as satellites of the main Bragg peaks with the vector qmag−AF.

They correspond precisely to the expected 2
√
3×

√
3 supercell in real space, that is predicted

by our advanced DFT calculations to be associated to the antiferromagnetic ground state. We

thus interpret our findings as an experimental hint of the existence of the ordering of the spin

1/2 triangular lattice in a colinear raw-wise 2
√
3×

√
3 antiferromagnetic superlattice using a

normal tip. It might be surprising that a normal tip may be sensitive to a spin contrast, we don’t

have the explanation yet. Non magnetic tip have been shown to give magnetic contrast; for

instance, in the presence of a strong Rahsba spin-orbit one has a spectroscopic contrast directly

in the LDOS between an in plane spin and a out-of-plane, this is called Tunneling Anisotropic

Magnetov Resistance (TAMR). But, two opposite spin both in plane or both out-of-plane would

not give any TAMR signal. One possible explanation could be that the tip picked up some

magnetic impurities, but where these impurities could come from is not clear.

In order to confirm this measurement and ascertain the magnetic origin of the 2
√
3×

√
3

supercell, I tried to directly measure the spin polarisation using spin polarized STM with an an-

tiferromagnetic Cr tip. Unfortunately, as mentioned earlier, the attempt to use Cr tip to measure

the spin order was not successful.

3.3.4.4 Discussion

In this work we could reveal for the first time the nature of the Sn−
√
3 ground state, which

was long thought as a natural implementation of the two-dimensional Mott-Hubbard model on

a triangular lattice because very few experimental work are available that do not correspond to

the accurate nature of this system due to either contamination or not the right conditions for

the experiments specially measurements that are not being done at low enough temperatures to

reveal the true ground state of this system.

We show that below 30 K an insulating state develops with a large energy gap of about

650 meV at 4 K. This value is about ten times more than previously suggested both experimen-

tally and theoretically, however, when doing measurement on this sample with contamination

either Pt or Ta we have seen the small gap that was reported in the literature.

Signatures of a colinear antiferromagnetic order existing at 4 K are revealed using quasi-

particle interference measurements in single structural domains, leading to a sharp non-dispersive

superstructure associated to a 2
√
3 period, consistent with the establishment of a 2

√
3×

√
3

super-cell. These experimental results are fully supported by advanced DFT calculations em-

phasizing the crucial role played by the Sn-Si exchange interaction, concerning the energy gap’s
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size and ordering of the magnetic state. Our work definitely supports, for the two-dimensional

α-phase surface materials, the super-exchange model as being much more appropriate to de-

scribe this antiferromagnetic insulating state than the canonical on-site Mott-Hubbard model

because of the important role played by the surface substrate atoms and in particular their im-

portant exchange interaction that stabilize a non-colinear magnetic order.

In my opinion this findings can create more opportunities for researcher to design supercon-

ductors based on doped band-insulators and not be restricted to only a Mott-insulating phase.

Now in the next subsections we are going to present other interesting experimental measure-

ments and also calculations that has been done for the Sn/Si(111) and also the Pb/Ge(111)

3.3.5 Artificial molecules induced by defects

An interesting phenomenon that has been observed on the surface of Sn−
√
3 is the interaction

of substitutions defects which leads to bonding interaction between them and create artificial

molecules. As can be seen from Fig. 3.16 which shows an atomic resolution of this struc-

ture, there are white spots in between the defects that correspond to electronic orbitals. These

electronic orbitals bond the defects together to form artificial molecules on the surface. The

structure of the molecules changes when the scanning voltage is changed. As indicated by yel-

low arrows in Fig. 3.16.a and Fig. 3.16.b corresponding to scanning voltages of −1 V and

−2 V, respectively, the white spots have disappeared and reappeared between other defects.

These modifications are pure LDOS effects and are not associated to any moving atoms. De-

pending on the bias voltage, different orbitals appears that exhibit different kind of bonding. For

instance, the vertical up arrow point to a pattern, in image b at -2V, that evokes an antibonding

link with a node (dark region) surrounded by two lobes (withe spots). This interpretation is still

speculative and DFT simulations would be needed in order to ascertain this molecular scenario.

-1 eV, measured at 4.2 K -2 eV, measured at 4.2K

➢At 4KSwitching of the interactions between defects:

a b

Fig. 3.16 Atomic resolution of Sn−
√
3 Reconstruction recorded at 4K scanned with two dif-

ferent voltages: a. −1 V and b. −2 V the white arrows show the area in which a switching of
the artificial molecules appeared.

Some switching of electronic orbitals were also observed on the boundaries of the Sn−
√
3

domains. As can be seen in Fig. 3.17 on the domain boundaries several triplets of white spots

corresponding to electronic orbitals can be seen. Here the STM images are done at the same

voltage and they show some triplets that tend to switch back and forth to another configuration
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as it has been indicated in Fig. 3.17 with yellow arrows. This switching of the white spots

corresponds to the switching of electronic orbitals. The additional withe spot cannot be due

to an additional adatom since at different voltages the shape and intensity of the white spots

changes as can be seen in Fig. 3.17(a and b) at -2V and Fig. 3.17.c at -1V. Also, the switching

of the these white spots is changing the electronic configuration at other parts of the surface as

indicated by the red arrows, white spots appear in Fig. 3.17.b (shown by the red arrow) that

can only be an electronic effect. It seems quite likely that these switching are linked to an atom

that slightly moves around its position and depending on its precise positioning it’s orbitals are

redistributed as well as those of neighbouring atoms.

a b c

Fig. 3.17 a and b. Triplets of electronic orbitals observed on the domain boundaries of Sn−
√
3

switching randomly while scanning using the STM with the same voltage (−2 V) as indicated
with the yellow arrows c. Atomic resolution at the same position as a and b but at scanning bias
of −1 V
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3.3.6 Edge states

While measuring the spectroscopic maps in an area involving both the Sn−
√
3 and Sn− 2

√
3

as shown in Fig. 3.18 we have observed that at the energies inside the Sn− 2
√
3gap, there

is a high density of state region close to the domain boundary, on the Sn− 2
√
3 side with

an evanescent decaying when we move away from the domain boundaries (Fig. 3.18.c). This

features can only be seen in the gap edge of the Sn− 2
√
3 and might thus correspond to a Tamm

state.

Fig. 3.18 a. Spectroscopic map taken from the intersection of Sn− 2
√
3 and Sn−

√
3 phases,

in the window of 41× 7nm2 and energy range of -880 meV b. Average spectra taken from the
circles indicated in a and c in an energy interval of [-1500, 1500] meV. c. Spectra profile taken
from the white line shown in a.

Tamm states named after the Russian physicist Igor Tamm [81] are surface states which are

calculated in the framework of tight bonding model and describes well the edges of transition
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metals and wide gap semiconductors [82]. More explanation about this topic can be found in

the mentioned references and is beyond the purpose of this thesis.

3.3.7 Multifractal electronic wave functions at the gap edge of Sn−
√
3

In this section we are going to discuss a very interesting character of electronic wave functions:

they behave like a multifractal at the intersection of extended and localized state. We will see

why it is related to our system and how we can characterize multifractality using box counting

method. While performing STM measurements we have observed that by reducing the scanning

bias, from -2 V till -550 mV (close to the gap edge) we start to see a transition from extended

states w to localized electronic states. Fig. 3.19 shows that close to the gap edge (around -

550 meV) there are some areas with high intensity corresponding to localized states with high

density of states and there are some areas depleted from electronic states with low or zero density

of states.
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-2 (v) -1.0 (v)

-0.8 (v) -0.7 (v)

-0.6 (v) -0.55 (v)

Fig. 3.19 Atomic resolution topographic images taken at different energies from -2 eV down to
-0.55 eV from Sn−

√
3 phase

Large scale topographic images are shown at -2 V (Fig. 3.20) which shows some extended

metallic states and at -600 meV in Fig. 3.21 which shows some localized states as it can be

observed.
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Fig. 3.20 300× 300nm2 image taken from Sn−
√
3 phase with a scanning bias of -2 V

Fig. 3.21 300× 300nm2 image taken from Sn−
√
3 phase with a scanning bias of -600 meV

In addition to topographic images we have also observed the same characteristics in spec-

troscopic maps as it can be seen in Fig. 3.22.a in the case of extended states and away from the

gap (Fig. 3.22.b) and in Fig. 3.22.c in the case of localized states at the gap edge (Fig. 3.22.d).
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a b

c d

Fig. 3.22 a and c. Spectroscopic maps recorded at the energies corresponding to extended states
(-800 meV) and localized states (-480 meV) respectively in a window of 50× 50nm2, b and d.
Average spectra of the map with the red circle showing the energies that the maps at a and c are
shown.

In the Fourier transform images we have seen that the brag peaks are present even very

close to the gap at about 450 meV. But when entering the gap, in the tail states that we can

detect between -350 mV and -450 mV, the Bragg peaks disappear as well as the QPIs due to

the localization. The tail states are coming from Sn orbitals at the gap edge and are localized

because of the defects in the disordered monolayer. The scattering by defects induces Anderson

localization in the tail states and this manifests by a multifractal aspect of the LDOS. In the

following we will delve deeper in multifractal concept and we will show how these states near

localization can be described and characterized by multifractal analysis tools.

A multifractal system is a generalized concept of a fractal system in which a single expo-

nent is not enough to describe its dynamics and a continuous spectrum of exponents is needed

to describe it well [83]. Multifractal systems are very common in nature. We can encounter

multifractality in mountain topography [84], fully developed turbulence, human heart beat dy-

namics [85] and many other examples. Multifractality is also found in the physics of Anderson

quantum phase transition in disordered systems, which happens in the phase transition from An-

87



derson localized states with localized electronic wave functions (insulating phase) to a metallic

phase in the extended electronic wave functions. At the Anderson critical point, which separates

the localized systems from the metallic ones, the real space distribution of the local density of

states (LDOS) is multifractal [86, 87].

Multifractal analysis is based on the standard box-counting procedure. The following cal-

culations are adopted from a paper written by Schrebier et al. [88]. We start by dividing the

system into NL sub-systems of lateral linear size L and measuring the average of the modulus

squared of the wave function in the kth box:

µk(L) =
L×L∑
n=1

|Ψn|2, k = 1, ...., NL (3.1)

Multifractality can be completely characterized with the singularity strength of the fractal,

given by the Lipschitz-Holder exponent α, and the corresponding singularity spectrum f(α). In

the kth box the singularity strength α is given by:

µk(L) = const.Lαk (3.2)

The spatial distribution of subsets N(α) for whose this relation holds is a fractal itself, with the

Hausdorff dimension f(α):

N(α) = const.L−f(α) (3.3)

The singularity spectrum can be obtained by means of a Legendre transform [89, 90, 91] which

suffers from inaccuracies, here a parametric representation of f and α in terms of q is presented:

f(q) = lim
L→0

∑
k

µk(q, L) ln(µk(q, L))/ ln(L) (3.4)

and

α(q) = lim
L→0

∑
k

µk(q, L) ln(µk(1, L))/ ln(L) (3.5)

with µk(q, L) the qth moment of the measure:

µk(q, L) = µqk(L)/
∑
k

µqk(L) (3.6)

From these relations f(q) and α(q) one can deduce the relation between the f and α: f(α)

which is the so-called singularity spectrum. In the presence of multifractality at the Anderson

localization, the singularity spectrum f(α) describes a continuous set of scaling exponents. In

the case of extended metallic states, f(α) shows only a delta Dirac distribution positioned at

α = 2 as it can be seen in Fig. 3.23. In case of a multifractal wave function induced for instance

by Anderson localization on expect the f(α) function to broaden and shift towards higher values

of α.

Previous STM measurements on disordered Two-dimensional quantum Hall systems [92,
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93], on the surface of bulk GaAsMn [94], and on 2d layers of transition metal Dichalcogenieds

[95] reported f(α) spectra, calculated from density of states maps whose broadened characteris-

tics were consistent with interpretation of a Multifractal scaling at criticality (Fig. 3.23). Chris-

tian Ast et al. [96] have shown that a disordered 2d electron gas of mixed alloys at the Anderson

criticality shows Multifractal behaviour. They have found that for BixPb(1−x/Ag(111) there is

a good agreement between measured dI/dV maps and the LDOS calculated by the Anderson

tight binding model, with some deviation which comes from the simplified thigh binding model

(only considering nearest neighbour hopping) and neglecting any interaction to the Au(111)

substrate. While Multifractality was observed in disordered metallic systems it has never been

observed in an insulator in the vicinity of the gap, here we report a continuous amplification of

the multifractal behaviour while entering into the tail states at gap edge of Sn−
√
3.

Fig. 3.23 Schematic plot of the singularity spectrum f(α) for a d = 2 dimensional system with
multifractal (purple) and metallic (black) scaling behavior

We have measured the multifractal singularity spectrum, f(α), which can be directly ob-

tained from the LDOS maps as a function of singularity strength α. The parabolic appearance

of f(α) is broadened while going from the extended states (-700 meV) to the gap edge (-520

meV) as can be seen in Fig. 3.24 and it shrinks while going further and inside the gap (-450

meV), The position of the maxima of the parabolas corresponding to α0 is close to 2 for ex-

tended states and it becomes higher than 2 when the multifractality is stronger as can be also

seen in Fig. 3.24.

To illustrate this point better we have measured α0 in all the energies of the measured maps.

Fig. 3.25 shows the average spectra of the spectroscopic maps together with the α0 curve, as

it can be seen in this Figure, α0 is around 2 in the extended state (at -700 meV), it rises at the

transition energy (-520 meV) and it reduces again inside the gap to around 2. Note that the latter

doesn’t have a physical meaning, since it correspond to a very weak LDOS in tail states that is

dominated by white noise. The bad noise to signal ratio results in a ill defined α0 values.
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Fig. 3.24 f(α) spectrum measured for spectroscopic maps with different energies

Fig. 3.25 Average spectra of the spectroscopic maps together with the α0 curve shown in an
energy interval of [-800, -300] meV

The f(α) is a parabola in the weak multifractality regime and close to be a parabola with

some anti-symmetric feature in strong multifractality regime which can approximately be quan-

tified by this formula: f(α) = 2− (α− 2− γ)2/(4γ), where γ is a measure for the strength

of multifractality and defines both the position of the maximum at α = 2 + γ and the open-

ing angle of the parabola [97]. Applying a quadratic fit to the f(α) spectrum at the extended

state (-700 meV) and at the gap edge (-520 meV) yields a γ value of 11.2 ± 0.1 × 10−3 and

0.85 ± 0.1 × 10−3 respectively. Christian Ast et al. [96] attributed this small values of γ to

be due to weak multifractality. Our observations can be further quantified by investigating the

distribution of the probability distribution of LDOS in a given area [86, 87]. While the LDOS

of extended states follows a Gaussian distribution the LDOS of insulating states shows a log-

normal distribution, related to the broad distribution of the LDOS in this state [89].

The lognormal distribution is defined by the following formula:

P (x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
The normal distribution is defined by the usual:

P (x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
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Applying this analysis to the measured spectroscopic maps reveal a transformation from the

Gaussian distribution in the extended states to a lognormal distribution at the gap edge, Fig. 3.26

shows the distribution of the LDOS/⟨LDOS⟩ for 4 different energies in the range of metallic to

insulating states together with the Gaussian fit for metallic states (E = −700,−650 meV) and

lognormal fit for the insulating states (E = −520,−550 meV). Table 3.1 shows the parameters

related to the fits.

Fig. 3.26 The distribution of the LDOS/⟨LDOS⟩ for 4 different energies in the range of metallic
to insulating states indicated with scatter points together with the Gaussian fit for metallic states
(E = −700,−650 meV) and lognormal fit for the insulating states (E = −520,−550 meV)
indicated in solid lines.

Table 3.1 Fitting parameters of the LDOS/⟨LDOS⟩ histograms of the maps at different energies

Energies (meV) σ µ

-700 0.164 1.0
-600 0.221 1.0
-550 0.324 ln(0.968)
-520 0.408 ln(0.970)

3.3.8 Conclusion

While nice QPIs are observed well inside the conduction band of Sn/Si(111), the LDOS near

the gap edge seems to show some clear signature of localization. We have thus used some tools

devoted to the study of multifractality in order to study that tail state at gap edge as such tools

are adequate for Anderson localization. It seems that the multifractality is indeed observed both

by the broadening of f(α) and the shift of the maximum of this curve toward values higher than

α = 2 in the tail states. Conversely, well in the conduction band one recover a sharp parabolic

f(α) well centered at α = 2. We also observed that the distribution of the LDOS values is

well accounted for the states well inside the conduction band while close to the band edge the

distribution is stretched and well fitted by a lognormal distribution as expected for localization.

Note, however, that the LDOS should exhibit multifractality in the Anderson localization only

at criticality. In a three-dimensional system, there is indeed a critical disorder threshold at

which the system transit from delocalized to localized states. Just at this point, the system is
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critical and its LDOS is expected to manifest multifractality. While disorder strength plays

an important role in criticality in the crossover from extended states to localized states in 3d

systems, in an infinite 2d system localization happens regardless of disorder strength. Hence our

two dimensional system Sn/Si(111) should be localized whatever the strength of the disorder.

However, the coherence length of the localization can be affected by the disorder’s strength

and depends on the considered energy range. We assume that well inside the conduction band

the localization length is way larger the size of the sample however, close to gap edge, in the

tail states the localization length is expected to be much shorter. Indeed imagine the case of

a punctual disorder (dopants) with some impurity localized states below the conduction band,

such states are by construction perfectly localized. We have seen in this section that for the

same amount of disorder the localization appeared at a certain energy, meaning that not all the

eigenstates of the system experience the Anderson localization the same and there should be

a criticality in the energy that distinguishes between localized and extended states, at the gap

edge, but we didn’t expect such property in this crystalline material and additional studies are

necessary to prove the multifractality and the assumptions discussed here.

3.4 Pb/Ge(111)

The system studied here is 1/3 Monolayer of Pb/Ge(111) (α-phase) which undergoes a reversible

phase transition from a
√
(3)×

√
(3) to a 3× 3 phase at around 250 K [98]. The 3× 3 phase

is the result of a reconfiguration of Pb atoms which is an ordered supper-lattice of 1 atom up

and 2 atoms down as shown in Fig. 3.27.

B1 B2

T B1B2
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T
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b

c

a

Fig. 3.27 a. Top view of α− Pb/Ge(111) phase showing the 1 atom top and 2 atoms down
concept, Pb atoms are shown in blue while Si top and down atoms are shown in white and yellow
circles respectively. ’T’, ’B1’ and B2 notes on the circles refers to Pb ’Top’, ’Lower Bottom’ and
’Upper Bottom’ atoms respectively. The different reconstruction are shown, including

√
3×

√
3

unit cell in green and a 3× 3 unit cell in orange. b and c are the side view of the
√
3×

√
3 and

3× 3 reconstructions respectively. It can be seen in c that the two Pb bottom atoms do not have
the same height.

The low-temperature metallic phase exhibits a pseudogap, the nature of this phase is char-
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acterized by a charge-density waves (CDW) which gives rise to a 3× 3 structure [99, 52]. Only

few works theoretical works are present in the literature on this system [52, 100]. They assert

that, due to strong correlations, the low-temperature ground state cannot be explained using the

density functional theory which only predicts a metallic state. However, recently Cesare Tresca

and Matteo Calandra [75] showed by DFT calculations that the driving force behind the 3× 3

CDW structure is the non-local exchange interaction between the Pb and the substrate atoms

and the electronic structure of this phase is mainly determined by two factors: the magnitude of

the Pb distortion and the large spin-orbit coupling.

Guo et al. have reported a new phase transition on α− Pb/Ge(111) at lower temperatures

(Tc ≈ 76K) from the (3× 3) to a glassy (labyrinth-like) phase (Fig. 3.28) [101]. This phase

transition was characterized only by filled-state STM imaging and was proposed to occur as a

result of a balance between two driving forces: the long-range electron-mediated interaction and

the elastic stress imposed on the substrate [102].
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Fig. 3.28 STM images (14× 14nm2 of the Pb/Ge interface at (a) RT, (b) 90K, and (c) 41 K. STM
images presented were obtained with the tip bias at +1.5 V and feedback current at 3 nA. The
Fourier Transform images are shown as insets of the corresponding real space images. (d)-(f)
show the perpendicular distortion by filtering out the

√
3×

√
3 symmetry from images (a)-(c),

respectively. Ge substitutions defects are marked with red, green, or blue circles depending on
their coordination relative to the three nonequivalent sites in a (3× 3) lattice. In (e), the (3× 3)
domains are highlighted in colors following the up sites. Three or more neighbouring defects
are marked in light blue in (f), and the ad atoms distorted downwards are connected with gray
lines [101].

While cooling down the sample with Pb/Ge(111)
√
3×

√
3 we have also observed a similar

coexistence of the (3× 3) and Labyrinth phase at 77 K and also at 4 K. We have thought this

might be due to thermal quenching of the sample while cooling down from room temperature

after sample preparation, which is not true since we have observed that even while cooling down

the sample slowly we still see that a large portion of the 1/3 ML is covered by the Labyrinth

phase. Fig. 3.29 shows an STM image showing empty states (Fig. 3.29.a) and filled states (Fig.

3.29.b) of 4 different phases taken at 4 K , the β
√
3×

√
3, 3× 3, 4× 4 and the Labyrinth phase.

Our initial purpose was to produce large areas of 3× 3 reconstruction (around 50× 50nm2) in

order to perform QPIs measurements. However, due to this phase’s very small domain size, we

have decided to perform point spectroscopy on all 4 different phases mentioned before at 4 K.

Fig. 3.30 shows the point spectroscopy measurement in the range of [-200, 200] meV for all the

94



different mentioned phases.

a

b

1

3

4

Fig. 3.29 STM images taken from a. Filled (-500 mV) and b. Empty (+800 mV) states of
Pb/Ge(111) taken in a window of 140× 140nm2 showing 4 different reconstructions as indi-
cated in the empty states images by numbers: 1. β

√
3×

√
3, 2. 3× 3, 3. Defective 3× 3

(Labyrinth) and 4. 4× 4.

As it can be seen from Fig. 3.30 the β −
√
3×

√
3 is a metallic phase while the 4× 4

phase has a vanishing density of state above EF with a totally gapped dos between 50 meV and

200 meV.

Both the 3× 3 and the 3× 3 (Labyrinth) phases are metallic at low-temperature but show a

depletion around the Fermi level, a characteristic of electronic correlations as mentioned before

while the density of states is lower in 3× 3 (labyrinth) phase at the Fermi level. This phase is

probably less metallic due to the localization induced by the intrinsically high disorder of the

labyrinth structure.
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Fig. 3.30 Spectroscopic measurement of different reconstruction of Pb/Ge(111) at 4K

3.4.0.1 conclusion

While our main intention was to perform QPIs measurements on the 3× 3 phase of Pb/Ge(111)

samples we couldn’t find large homogeneous regions of this phase due to the stabilization of a

labyrinth phase appearing at temperatures below 78 K. However, we have measured the LDOS

at different phases of the Pb/Ge(111), we have found that on the normal and disordered 3× 3

phases we see a depletion around EF as was predicted by previous theoretical works [99, 52, 75]

while the disordered phase has a slightly lower DOS at the Fermi level probably due to its

intrinsic disorder.
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CHAPTER 4

Granular superconductivity at cleaved(TMTSF)2ClO4

4.1 Bechgard salts

Among the various families of materials presenting unconventional superconductivity, organic

materials occupy a very noticeable place thanks to their strong quasi-one dimensional electronic

properties and close proximity to a quantum critical point where superconductivity is found

to emerge on the brink of antiferromagnetism, as pressure is tuned either hydrostatically or

chemically, by substitution of anion X [103, 104]

Among organic crystals there are two types that exhibit superconductivity, (TMTSF)2ClO4

or “Bechgaard salts” and the (BEDT− TTF) salts, where TMTSF is the tetramethyl-tetrafulvalent

electron donner molecule, (BEDT-TTF) is bisethylenedithio-tetrathiafulvalene and X is a mono-

valent anion [105, 106].

Bechgaard salts are quasi-one-dimensional systems (Q-1D) that show unconventional su-

perconductivity together with a competition between a spin density wave ground state (having

an insulating ground state) and a superconducting state [105, 106, 107].

(TMTSF)2PF6 is the prototype of Bechgard salts that shows superconducting behavior

under pressure greater than 9 kbar, the ground state being a spin density wave (SDW) state at

lower pressure [108, 109] .

The aim of this part of the thesis is to study the exotic low temperature properties of

(TMTSF)2ClO4, which is the only ambient pressure superconductor of the family of (TMTSF)X

with Tc = 0, discovered shortly after (TMTSF)2PF6 [110]. The single crystals of (TMTSF)2ClO4

can be obtained by electrochemical oxidation of TMTSF the chemical reaction is as follows

[111]:

2nTMTSF + nClO−
4

ne−→ [(TMTSF )2ClO4]n (4.1)

The crystal structure of (TMTSF)2ClO4 is the triclinic space group P1 with the unit cell pa-

rameters: a = 7.27Å,b = 7.7Å, c = 13.38Å, α = 84.58, β = 86.73andγ = 70.43◦ [111, 112,

113]. Fig. 4.1 shows a schematic figure of the direction perpendicular to the a-b, b-c and a-c

planes of this material. The a-b plane is the most conducting plane, with ’a’ being the most

conducting axis, while the “c” direction is the least conducting axis [113].

At ambient pressure in (TMTSF)2PF6 there is a strong anisotropy in resistivity with respect

to the direction of the applied current: the minimum is along the chain direction with a typical

value similar to a normal conductor which is 10−3 − 10−2Ω.cm (along a in Fig. 4.2), 100 times

higher perpendicular to the chain (along b’ in Fig. 4.2) and 10000 times higher perpendicular to
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Fig. 4.1 a,b and c are top views of ab, bc and ac planes. d. Is showing different crystallographic
planes and e displays the TMTSF molecule, adopted from [112]

the ab plane (c∗ in Fig. 4.2). The transition to a SDW ground state is seen between 10 and 20 K

by a large increase in resistivity in this material.

Fig. 4.2 Resistivity measurement along different crystallographic directions of (TMTSF)2PF6

[114]
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In the (TMTSF)2X family the SDW instability at low temperature is favored and stabilized

by a one-dimensional Fermi surface with small warping, together with electron-electron repul-

sion at quarter filling due to correlations. The quarter filling originates from one electron being

taken by the counterion (PF−
6 or ClO−

4 ) from two nearest-neighbour TMTSF molecules. The

resulting Q-1D fermi surface is shown in Fig. 4.3 and clearly explains the quasi-1D properties.

Fig. 4.3 calculated fermi surface of (TMTSF)2PF6 [115]

The isomorphic compound (TMTSF)2PF6 based on the sulfur-based fulvalene donor molecule

has allowed the construction of a generic phase diagram (T - P) for (TM)2X (TM = TMTSF

or TMTTF) in which the one-dimensional character of these materials is dominant for all of

their physical properties. In addition, the close proximity between the antiferromagnetic and

superconducting ground states of the materials (TM)2X , the deviation from the metallic phase

from the traditional Fermi-liquid behavior, was recognized in the early 1980s. The possibility of

a pairing mechanism involving carriers on neighboring chains in these Q1D conductors avoid-

ing the Coulomb repulsion has been proposed by Emery in the contex of the phonon exchange

mechanism [116]. Subsequently, the possibility for the pairing emerging from antiferromag-

netic fluctuations has been suggested, although, superconducting pairing would in turn emerge

with the exchange of charge density waves proposed by Kohn and Luttinger in the context of a

new pairing mechanism in low-dimensional conductors [117].

Furthermore, the quasi-one-dimensionality of these conductors should manifest itself not

only in the nature of the SC pairing but also in the behavior of various properties of the normal

state, differing from those of a regular Fermi liquid. This is supported by experimental evidence

of a power law temperature dependence followed by the resistivity of conducting (TMTSF)2X

compounds below room temperature, which is reminiscent of the theoretical expectation of

weakly coupled Luttinger chains [118, 119]. Regarding the low temperature regime, the pos-

sibility of non conventional pairing mechanism has been investigated by thermodynamic mea-
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surements and also by a determination of the density of states at the Fermi level through various

junction devices. (TMTSF)2ClO4 being the only member of the (TMTSF)2X family display-

ing a superconducting ground state below 1.2 K under ambient pressure, it is the reason why

this is the material on which most sophisticated experiments have been conducted. The tem-

perature dependence of the spin lattice relaxation rate in its superconducting state under zero

applied magnetic field using a field cycling experiment was consistent with either an anisotropic

s-singlet or a p triplet superconducting gap. While the s-wave scenario had received some

support from early specific heat data looking like a BCS behaviour [120], NMR Knight shift

experiments tended to favor a triplet coupling [121].

This experimental controversy has been settled after new experimental results in the super-

conducting phase came out, specific heat and Se77 NMR relaxation [122] establishing conclu-

sively the singlet nature of the pairing and a linear energy dependence of the superconduct-

ing gap in the vicinity of line nodes on the Fermi surface. In addition, a field-angle-resolved

calorimetry of (TMTSF)2ClO4 succeeded in mapping the nodal gap structure [123].

A very direct way to access the quasi-particle density-of-states of the superconducting phase

is given by tunneling spectroscopy [124]. Several attempts have been performed using different

tunneling setups. Early experiments used a n-doped GaSb Schottky barrier evaporated onto a

(TMTSF)2PF6 single crystal down to 50 mK under a pressure of 11 Kbar [125]. It provided

evidence of a well developed gap 2 ≈ 3.6 meV at the Fermi level, interpreted as a superconduct-

ing gap, persisting above Tc. Subsequent (TMTSF)2ClO4 studied at ambient pressure revealed

similar results and evidenced also the role of the cooling speed. An estimation of the SDW

gap of 2∆SDW ≈ 6meV was given [126]. Further SIS experiment using (TMTSF)2ClO4-

amorphous Si-Pb junctions, revealed a much smaller superconducting energy gap in the ordered

state of 2∆ ≈ 0.8meV and an SDW gap of 2∆SDW ≈ 3meV [127].

At low temperature, the SDW transition is derived from a 2kF exchange interaction between

conducting electrons. There are subtle differences among the behaviors of (TMTSF)2PF6 and

(TMTSF)2ClO4. The reason for this is that the PF−
6 ion is centrosymmetric and the ClO−

4

ion is noncentrosymmetric. This will result in ClO−
4 ions occupying two equivalently stable

positions in the crystal structure, while PF−
6 can only occupy one. Thus, at high temperature,

the ClO−
4 ion will continuously switch between the two stable positions. However, while the

material is cooled down, the ClO−
4 ions will choose a particular position below 25K, resulting

in an order. The formation of large domains of ordered ions is subject to the speed of cooling.

While slow cooling will stabilize large domains of the ordering with the same positions, fast

cooling helps to retain disorder in the anion ordering at low temperature. More details can be

found in the literature . [105, 128, 115, 129, 130]

Different orderings of the ClO−
4 ions have a profound effect on the ground state of the ma-

terial. It has been shown that if (TMTSF)2ClO4 is cooled slowly, it will show unconventional

superconducting properties at temperatures bellow Tc = 1.3K [110, 131, 132]. This is because

of the fact that new ions will strongly dimerize the TMTSF molecules, which will result in a

doubling of the bands and will completely reshape the Fermi surface. However, when the sam-

ple is sufficiently fast cooled at temperatures below 25K, the material will transition to an SDW

state, with an insulating ground state stabilized at temperatures below 4-5 K [128, 133, 134].
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In this situation, due to the ion disorder, the band structure is not reconstructed and the Fermi

surface remains similar to the one shown in Fig. 4.3. Here the origin of the SDW instability

is the same as the (TMTSF)2PF6 system. A schematic figure of the resistivity versus tem-

perature dependence of (TMTSF)2ClO4 in three different cooling rate regimes, including fast,

intermediate and slow rate, is shown in Fig. 4.4.

Fig. 4.4 Schematic picture showing different cooling rate regimes (adapted from [130])

Interestingly, the local electronic properties of this material are expected to change a lot

depending on the cooling rate. That is, even for a slow-cooled material, one expects to find

few regions with disordered regions, thus insulating phase. The opposite is true for the fast-

cooled sample, ordered regions with superconducting character that should exist. In a study

done by Claire Marrache and Denis Jérome, it has been shown that when the disorder in the sys-

tem increases (upon fast cooling), a crossover from a homogeneous ’d-wave’ superconducting

state at low cooling rates to a granular superconducting state at faster cooling rates (intermedi-

ate cooling) also occurs. Granular superconductivity means that superconducting puddles are

embedded in a normal or poorly metallic background and are connected through the proximity

effect [105]. The motivation behind our project is to search for inhomogeneous local electronic

properties showing the interplay between superconducting and SDW regions in the moderate

cooling rates.

4.2 Results and discussion

Topographic images of the (TMTSF)2ClO4 sample will be presented in this chapter together

with structural analysis. The local density of states (LDOS) and also LDOS maps at different

energies have also been measured.

Measurements were made at two different temperatures, 300 mK and 2.2K. The sample was

cooled to these temperatures at a very low cooling rate (around 0.02 K/min) below 45K to reach

a very good anion ordering, allowing us to reach a superconducting state below Tc. The typical
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cooling of the sample is quantified in a graph in Fig. 4.4 down to around 5K, then the sample is

cooled faster to 2.2K but was cooled slower to 300mK.

Fig. 4.5 Typical cooling rate curve between 45 K and 5 K

When probing the electronic structure of the sample using the LDOS measurements tech-

nique with STS in a low bias range, we found conducting and insulating types of regions. There

are regions in the sample where the tip does not change nor interact with the surface plane of

the sample. In these regions, the spectroscopic measurements have been performed in the top

plane of the surface of the sample. Additionally, we found that there are other regions of the

sample in which the tip changes the surface by digging into the sample because these regions

are not well connected to the electrodes and/or are insulating. In these regions, while perform-

ing spectroscopic measurement, the tip digs several tens of nanometers below the surface plane

in order to find conducting or superconducting planes. The mechanism behind these different

regions might be due to i) the cleavage process locally removing a large fraction of the anions

and ii) there might exist regions where anions are disordered, thus insulating. In the following,

these two different behaviors are presented.

4.2.1 surface spectroscopy

Fig. 4.6 shows a large-scale topographic image that corresponds to the a-b plane of the sample

(area 410×325 nm2) at 300mK. The monoatomic steps separating flat terraces of size 100 nm

in width can be well seen. The height of the steps was measured to be 1.49 nm on average from

the profile taken from the topographic image (Fig. 4.6), which is in agreement with the value

reported for the lattice constant along the c direction (c = 1.33 nm) with an error of slightly

larger than 10%)

Subsequently, a 64× 64 grid of I(V) curves was measured in this region on a flat atomic

terrace of size 8×8 nm2 area at 300mK and later at 2K. The average of all dI/dV curves was

measured in an energy range of [-4, +4] meV. Filtering of the data is performed as discussed in

102



Fig. 4.6 a) large scale 410 x 325 nm2 topographic image measured in constant current mode
with V = -0.1 V and I=50 pA, b) profile measured along the direction shown in a.
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Fig. 4.7 a. Differential tunneling conductance dI/dV spectra measured in the energy range [-
4;+4] mV with the following set-point for STS: I = 300 pA and V = -9 mV. Each presented
spectrum is the average of a 60 × 60 STS grid measured at T = 300 mK (yellow spectrum) or T
= 2.13 K (blue spectrum) over the same homogeneous area of 8× 8nm2.

From the resistivity measurement presented in the literature, the sample should be in the

normal state at 2K. As can be seen in the orange curve in Fig. 4.7a, there is also a depletion of

DOS near the Fermi surface, which is an indication of a bad metal due to the strong electron

correlation existing in this material. At 300 mK the average LDOS shows a larger depletion

in the density of states near the Fermi level, which remains also finite at the Fermi level, as

can be seen in Fig. 4.7a. By comparing the behaviors of LDOS at 2K and also 300 mK, a

change in the slope can be seen in the density of states at 1K and around 1 meV. This energy

is compatible with what might be expected from the superconducting gap of this material. The

shape of dI/dV spectra that shows no coherence peaks and an almost linear dependence below 1

meV is consistent with the d-wave superconductivity expected for this material [135]. The ratio

of ∆/kbTc is estimated to be 10. Indeed, as discussed in chapter 1 the superconducting gap is

much larger in d-wave superconductors than the theoretical value calculated on the basis of the
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BCS theory.

In addition to the low-energy scale dI/dV measurements, the dI/dV curves of the normal and

superconducting states were also measured at the same area as shown before in Fig. 4.7a in

larger scale [-40, 40] meV which is 50 times the superconducting energy gap. (see Fig. 4.7b).

The LDOS shows a strong V-shaped behavior with a close to linear energy dependence. This

points out the strongly correlated quasi-1D character of the LDOS due to quantum criticality

that links anti-ferromagnetism with superconductivity in this material [104].

Bulk experiments suggested that maybe the electronic structure at the whole sample should

be rather homogeneous of the surface, but other regions revealed that, in fact, the sample surface

is showing near-insulating behavior. The region shown in Fig. 4.8 has been studied at 300 mK

and has an area of 12×40 nm2 and an energy interval of [-10, 10] meV. When grid spectroscopy

measurements are performed, the dI / dV map at -1.9 meV is presented in Fig. 4.8.a. The Fig.

4.8.b shows spectroscopy data measured at the three different areas indicated in Fig. 4.8.a.

Fig. 4.8 (color online) Measurements performed at T = 300 mK. a. Differential tunneling con-
ductance map dI/dV (at -1.90 meV) measured over an area of size 12×40 nm2 in the energy
range [-9;+9] mV with the following set-point for STS: I = 300 pA and Vbias = -9 mV. b. Se-
lected dI/dV (E) spectra averaged locally in the conductance map presented in panel ’a’. Three
different neighboring regions are seen: left superconducting area (blue spectrum), middle spin-
density-wave area (red region), right superconducting area (green spectrum). Each spectrum is
the average of about 100 single spectra.

As can be seen in Fig. 4.8 the dI/dV spectra in the two circle-shaped areas on the left

part and the right part of the area show a V-shaped DOS below -2meV, reminding us of the

superconducting features observed above.

Strikingly, the middle area also in the circular shape shows a close-to-insulating phase ac-

companied by a U-shaped spectra. This shows that different parts of the material can have

different electronic properties. It can also be inferred from Fig. 4.8 that the length of the super-

conducting phase is around 10nm along b’ in this region.
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4.2.2 near bulk spectroscopy

Another large-scale topographic image with an area of 328×328 nm2 is presented in Fig. 4.9.a.

It has been measured in a different region of the sample with a distance of several hundreds of

micrometers from the previous area described previously. Flat atomic terraces with a size of 20

nm can be observed in Fig. 4.9.b. The profile through several atomic terraces is also presented.

The average height of the terraces is measured to be 1.57 nm, which is larger than previously

reported and is greater than 10 % of error with respect to the lattice parameter c. This suggests

a symmetric increase of the c lattice parameter at the surface with respect to the bulk reference

value.

The periodic unit cell is presented in topographic image in Fig. 4.9.c. This area was mea-

sured in the yellow window shown in Fig. 4.9.a. The lattice constant along the a and b directions

was determined to be 8.1 and 8.9 Å, respectively, with an angle of approximately γ = 70◦. Al-

though the angle is consistent with the crystallographic value, the lattice constants a and b are

larger by 11 % and 16% respectively with respect to what has been reported in the literature: a

= 7.27 and b = 7.7 Å [136]. The STM is well calibrated, and since the angle between the lattice

directions is the same as that reported before, this enlargement in the lattice constant cannot be

due to the measurements but seems intrinsic to the material. The reason for this behavior is still

not well known, but it might be due to an increase in lattice constants resulting from expansion

of the crystal in every direction because of the ultrahigh vacuum or because charge transfer is

affected after cleavage. Another reason might be due to a distortion in the crystal structure after

the cleavage process.

Fig. 4.9.d shows the topographic image taken after a measurement of a grid spectroscopy

map in the low-energy range in the area shown by a black square in Fig. 4.9.a. From the profile

in Fig. 4.9.e taken through the center of this area, it can be seen that the tip has dug into the

surface, leaving a hole with a depth of 18 nm behind. This behavior was not seen in previous

spectroscopic measurements because the sample surface remained unchanged. This new effect

is interpreted as revealing the areas of the sample that are strongly insulating below the sample

surface. When the resistance of such areas is higher than the tunnel resistance required by the

STM feedback loop, the tip digs into the surface to find conducting regions. For the low bias

set-point spectroscopy that has been used, such as V = -10mV and I = 100-200 pA, the tip must

be displaced at minimum (10-15 layers) to obtain the set-point tunneling current. It should be

noted that these experiments are also done at UHV and since the spectroscopic features are very

similar to the ones that which the tip did not dig into the surface, we believe that the tip is still

in tunneling condition while doing spectroscopic measurements despite digging to the surface.

In this kind of region, since the tip is digging into the surface, the grid spectroscopy at low

bias does not correspond to that of the surface but to the interior of the sample (typically between

several nanometers and 15-20 nanometers deep). Interestingly, it has been found that the dI/dV

curves show local signatures with different spectroscopic properties: superconducting, metallic,

or insulating.

This shows that the interior of the sample also has inhomogeneous regions that can be probed

by penetrating the surface of the sample. The following spectroscopic map was taken at 300mK

and in the energy range of [-10,10] meV in a 20× 20nm2. It shows three different behaviors.
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Fig. 4.9 a. Large scale 328×328 nm2 topographic image measured at V = -0.05 V and I = 50
nA. b Z profile taken along the direction shown in a. c.Atomic resolution of a periodic unit
cell pattern measured at V= -0.1 V and I=50 nA in the blue window shown in a d. Large scale
topographic image taken at V= -0.1 V and I=50 nA in the large green area after grid spectroscopy
was performed in the black window shown in a. and e Z-profile taken along the line shown in d.

These regions can be displayed by showing an LDOS map at -2.2 meV. The three different cir-

cles are shown in Fig. 4.10a and their corresponding average spectra are shown in Fig. 4.10b.

Superconducting, insulating, and bad metal behaviors can be seen in these different regions. Be-

cause the tip dug into the surface of the sample during this measurement, all the individual dI/dV

measurements were not necessarily done at the very same sample plane bellow the surface.

While the low-energy scale spectroscopy leaves a hole on the sample surface because of

its low set-point current and voltage, larger energy-scale spectroscopies leave the surface un-

changed, meaning that above +50 meV the surface plane is always probed. However, also at

larger energy scale, local spectroscopy measurements can also show inhomogeneous electronic

properties. An example is shown in Fig. 4.11.a measured at 300 mK between [-100, 100] meV
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Fig. 4.10 a. dI/dV map taken at -2.2 meV at 300 mK while digging in a window of 20× 20nm2

and b. corresponding average dI/dV curves measured between [-10,10] meV in each different
square region indicated in a.

on a 32× 32nm2 area. Four different regions with a V-shaped behavior and slightly differ-

ent dependence are observed (Fig. 4.11.b). This is consistent with the fact that the electronic

properties are inhomogeneous on most samples, such as those on the surface of the sample.

Fig. 4.11 a. Spectroscopy map taken at 0.4 meV at 300 mK while digging and b. dI/dV curve
measured and averaged in an interval of [-100,100] meV in four regions as indicated in a.

Now in this same sample region where the large energy scale measurement was performed,

the grid spectroscopy map was also measured for a low energy scale of [-10, 10] meV at 300 mK.

Insulating, close to insulating, and metallic regions can be seen in this area and are presented in

Fig. 4.12. In this measurement again the surface was altered and the tip dug in tothe surface.

As can be seen in Fig. 4.12 and the blue curve shows a close to insulating behavior while

the red and violet curves show metallic and close to metal behavior. we anticipated that by de-

positing lead on top of the sample surface, the conductivity of the sample will increase, because

of a charge transfer between the lead adatoms and the surface. However, due to the very low

wettability of the surface by the lead atoms, they form large drop-shaped islands on top of the

surface, leaving the space between the lead atoms empty. This configuration of the lead atoms
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Fig. 4.12 a. dI/dV map measured from a grid STS performed on the same area as in Fig. 4.11
The dI/dV map is taken at Ef (0 meV) at 300 mK while digging and b. dI/dV curve measured
and averaged in an interval of [-10,10] meV in the four different regions indicated in a.

does not help to make the surface of the sample conduct, and it was observed that the lead de-

position did not change the electronic structure of the system after the deposition. A similar

behavior as presented above was again observed.

4.2.3 Magnetic field dependence

To confirm that the gap that we saw while measuring the TMTSF2ClO4 sample corresponds

to a superconducting gap, spectroscopy measurements under magnetic field has been conducted

as follows: a very small scale spectroscopic grid was launched and at the same time the mag-

netic field was turned on and increased with a ramp of 0,05 T/hr. The results of the magnetic

field measurements are shown in Fig. 4.13 which shows the averaged density of states in three

different magnetic fields. As can be seen in Fig. 4.13 the gap starts to fill and the LDOS at

the Fermi level increases with increasing the magnetic field which is another indication of a

superconducting gap which is consistent with the bulk critical field along c∗ which is between

0.1 a,d 0.2 T depending on the experiment.

4.2.4 discussion

The energy dependence of the STS spectra associated with superconducting regions is linear-like

in the energy gap region and always presents a finite LDOS. This is not consistent with an s-

wave order parameter but reminds what is observed in d-wave Cuprates superconductors by STS

[137]. On the other hand, non-magnetic disorder in the ClO4 anions lattice can be expected as a

result of the cleaving process to create local defects. A more natural explanation compatible with

point group symmetry could then be a d-wave symmetry where line nodes would give a linear

energy dependent DOS in the superconducting energy gap, consistent with angular specific heat

measurements [20]. Moreover, for a d-wave symmetry nonmagnetic point defect would behave

as a pair breaker leading to additional gap filling as observed in our experiments.

From electronic bandstructure calculations, a strongly V-shaped LDOS is not expected

around EF [138]. The existence of a quasi-1D bandstructure could lead to a k-parallel tun-
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Fig. 4.13 magnetic field dependence of the density of states which corresponds to, blue line: 0T,
orange line: 0.1T, green line: 0.2 T and red line: 0.3 T.

neling dependence but not as strong as to induce such a fast increase as observed in our case

over only 40 meV assuming a reasonnable sample work function of at least one eV. A more

reasonable explanation is that we measure an intrinsic V-shaped LDOS due to the quasi-1D

correlated electronic LDOS not described by DFT calculations accompanied by an additional

Altshuler-Aronov component [139, 140].

This latter component is likely to be linked with an increase in the anions disorder as well

as with possible other types of structural defects induced by the cleavage process which would

lead to highly resistive surface planes having a resistance not negligible anymore with respect to

the resistance quantum. As to correlation component to the density of states, one can look at the

results of the renormalization group approach to the density of states of the quasi-1D electron

gas model of a d-wave superconductor [104]. The expression for the differential tunneling

conductance at temperature T is given by:

dI

dV
= Gnn

∫ +∞

−∞
Ns(E)[−δf(E + eV )

δ(eV )
]dE, (4.2)

Where Gnn is the normal conductance of the junction and f(E) is the Fermi distribution. The

normalized density of states of the d-wave quasi-1D superconductor can be put in the form

Ns(E) = Nn(E)⟨Re |E + iΓ|√
(E + iΓ)2 −∆2(k⊥)

⟩k⊥ (4.3)
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Where ∆(K⊥) = ∆cosK⊥ is the d-wave SC gap for an open quasi-1D Fermi surface, K⊥

the transverse wave vector, Γ is the scattering rate on impurities; < ... > K⊥ stands for an

average over the transverse wave vector and vNn(E) is the metallic state density of states for

vE > ∆. The latter is formally related to the one-particle Green function, namely vNn(E) =
−2
N0

1
V

∑
K ImG(K,E). Following a renormalization group calculation carried out by Claude

Bourbonnais and Abdelouahab Sedeki at the two-loop level for the coherent part of the Green

function G in the framework of the quasi-1D electron gas model, the expression for the coher-

ent contribution to the normal density of states, vNn = ⟨z(k⊥, E)⟩k⊥ , is related to an effective

energy scale dependent quasiparticle weight z. The RG calculations show a V-shape reduction

of the density of states as a function of energy for |E| > ∆, as a result of strong quantum

fluctuations that emerge close to the QCP tied to the succession antiferromagnetic and super-

conducting ground states under pressure [104]. This reduction is followed at lower |E| < ∆ by

the characteristic dip in the density of states for a d-wave superconductor in Eqn. 4.3.

We have calculated These theoretical features in collaboration with Claude Bourbonnais and

Abdelouahab Sedeki and they are displayed in Fig. 4.14 in the low energy range where they are

confronted to experiments at T = 200 mK. The calculations are obtained with Tc = 0.7K(∼
∆/1.76), a value for Tc close to the QCP in the quasi-1D electron gas model and reduced from

its optimal values (1K) by impurities scattering Γ/∆ = 0.4.

T = 200 mK

RG

E(meV)

dI
dV

(A . U)

Fig. 4.14 Comparison of the renormalization group prediction(dotted line) and STM experi-
ments for the density of states at T = 300 mK.

4.2.5 conclusion

The LDOS measurement of the surface of this material shows regions that are more conducting

and regions that are less conducting, which in the latter the tip digs into the surface leaving a

hole with a height of around 18 nm. Topographic images of the sample show lattice parameters

that are larger than those reported in the literature by 10 % or even higher than 10 % in regions

that are less conducting. We suggest that this change in the lattice parameter is due to an expan-

110



sion inside the ultra-high vacuum plus the charge transfer effect linked to the cleavage process.

It has been found that different regions of the sample have different ground state properties with

superconducting, metallic bad metal, and near-insulating phases appearing during LDOS mea-

surements. The superconducting gap was found to be around 1 meV and the coherence length

of the superconducting phase was found to be around 10 nm along b’. Since the deposition of

lead on the sample did not change the electronic properties, it is highly recommended to deposit

lead in a controlled way to better contact the surface with the electrodes.
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CHAPTER 5

Superconductivity in KTaO3/Al2O3

5.1 Introduction

Heterostructures based on KTaO3 gained a lot of interest after the discovery of superconductiv-

ity in two-dimensional electron gases (2-DEG) at the interfaces of KTaO3 and various overlay-

ers in the beginning of the year 2021, like: EuO [141], LaAlO3 [142] and Al0x [143] with a Tc

that can go as high as 2.2 K for a doping level of ≈ 1.04× 1014e−.cm−2 [141]. Like SrTiO3

[144], KTaO3 can be used in many applications like spintronics [145], orbitronics [146, 147]

and in topological quantum computing [148].

In this chapter we are going to present some rare tunneling spectroscopy measurement on a

superconducting in the two-dimensional electron gas that forms at the interface of two insula-

tors, KTaO3 (substrate) and Al2O3 (top layer) at low temperatures. Such system is generally

not suitable for STM and up to now only one experiment of planar tunneling has been reported

so far in a similar system LaAlO3/SrTiO3. We have tried do develop a method that made it

feasible for us to measure the superconducting gap using STS on this material for the first time.

However due to bias voltage noise due to a bad grounding, that was discussed in chapter 2,

the gap was strongly broadened. We will start our discussion by giving a general introduction

on this type of materials and then we will give our temperature and magnetic dependent STS

results.

5.2 Buried 2-d superconductivity in KTaO3/Al2O3

It was recently discovered that superconductivity is found at the surface of Potassium Tantalate,

KTaO3 where a 2DEG forms. KTaO3 is a band insulator with a large gap of 3.6 eV with a

cubic perovskite structure even at very low temperatures [149]. Recently S. Malik et al. have

shown that 2-DEG can be generated at the surface of a (111)-oriented KTaO3 crystal by sim-

ply sputtering a very thin Al layer. Evidenced by X-ray photoelectron spectroscopy (XPS) the

Ta ions will be reduced by deposition of Al leading to an interfacial gate tunable in-plane su-

perconducting 2-DEG. While different thickness ratios of Al and KTaO3 can lead to different

formulation of AlOx/KTaO3 [143], in this study the deposition and the sample thickness ratio

was tuned to have Al2O3/KTaO3, samples are provided by UMR CNRS-THALES and more

details about sample preparation is given in ref. [143]. It should be noted that the thickness of

the Al layer in our sample is 8Å the Tc and Bc of this material are reported to be around 1 K

and 1 T respectively. Although there are transport measurement available in the literature for
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this material it has never been measured using scanning tunneling spectroscopy which can give

a clearer resolution of the electronic properties and reveal the nature of superconducting phase.

5.2.1 Topography and Point spectroscopy measurement

We have started our measurements by performing topography images at 4 K. As it can be seen

in Fig. 5.1, the STM image shows an amorphous surface which corresponds to the insulating

Al2O3 overlayer. To perform point spectroscopy measurement we have to dig the tip into the

sample to pass some current throughout the insulating overlayer to reach the buried 2-DEG

superconducting phase.

Fig. 5.1 600× 600 topographic image taken from the surface of the AlOx/KTaO3 sample

We have performed point spectroscopy measurement at various temperatures and we have

found a V shape depletion around the Fermi level at 600 mK as can be seen Fig. 5.2 which might

correspond to a broadened superconducting gap. The main reason for the broadening might be

because at the time of this measurement the Nanonis electronics that we use for M3 setup were

not well grounded as was mentioned in chapter 2, thus the differential conductance doesn’t go

to zero. Indeed performing measurement from 600 mK at the superconducting state up to the

normal state at 1.6 K shows an increase in the value of the density of states at the Fermi level

meaning the gradual disappearance of the superconducting gap. Unfortunately, such a poor

energy resolution does not give access to pertinent information on the symmetry of the order

parameter.
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Fig. 5.2 point spectroscopy measurement in an interval of [-2, 2] meV at different temperatures
ranging from 600 meV to 1.6 meV.

5.2.2 spectroscopic map

Despite the thick oxide layer covering the two-dimensional electron gas we could manage to

perform scanning tunneling spectroscopy experiments. Fig. 5.3 shows the way that these mea-

surements have been performed. The tip is gently moving right above the sample while scanning

between the grid points of the spectroscopic map. Then, in order to perform spectroscopic mea-

surements at the grid points, the tip is dig into the sample as discussed in the previous subsection.

This sewing machine mode seems not to destroy the sample which is quite resilient.

Fig. 5.4 shows a spectroscopic map measured on this sample and as it can be seen in the av-

erage spectra of the circles that there are regions that show superconductivity while others shows

a wider depletion corresponding to a normal state. This can be interpreted as the fact that the Al

deposition was not homogeneous over the KTaO3(111) surface leading to an inhomogeneous

2-DEG layer due to the fact that the Ta ions are not reduced in the same way over the sample.

We have also performed magnetic field dependence spectroscopic measurements on this sample

by acquiring spectroscopic maps at different magnetic fields, however we couldn’t preserve the

same position to perform this measurements. The reason is because the sample holder was made

from stainless steal, so by changing the magnetic field the sample holder was subject to a huge

magnetostriction which prevented us to follow a given region as function of the magnetic field.

Thus taking into account the inhomogenity of the sample and the fact that the superconducting

gap will not have the same feature at different areas it was hard to perform a precise magnetic

field dependence study on this sample. The average spectra of the maps at zero and 0.2 T are
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STM Tip

scanning
V = -5 mV
I = 5 pA

spectroscopy
V = [-5,5] mV

I = 70 pA

scanning
V = -5 mV
I = 5 pA

𝐴𝑙2𝑂3

𝐾𝑇𝑎𝑂3

Fig. 5.3 Schematic figure a new method for spectroscopic map measurements by scanning at low
current between the grid points of the spectroscopic map and measuring the spectra at higher
current by digging the tip to the sample to reach the 2-DEG at the grid points of the spectroscopic
map.

shown in Fig. 5.5, it can clearly be seen that the zero energy density of states in the vicinity of

the gap will start to rise at higher magnetic field.
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Fig. 5.4 a. Spectroscopic map at the Fermi level b. Average spectra of the map in an energy
interval of [-4.5, 4.5] meV (the color of the curves in b corresponds to color of the circles in a)
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Fig. 5.5 LDOS measured at 0 and 0.2 Tesla, an increase in the denisty of state at the Fermi level
can be observed.

5.2.3 discussion

For the first time, STM and STS measurements were performed on the superconducting 2-DEG

layer at the interface of two insulating materials (KTaO3/Al2O3). The superconducting gap

couldn’t be measured properly because of the experimental broadening. Due to the heteroge-

neous distribution of the Aluminum overlayer the superconducting phase is not homogeneously

spread over the 2-DEG layer. For future work it is suggested to use a thinner overlayer in order

to have more accuracy in measuring the 2-DEG by not digging to deep into the insulating layer.

It is also suggested to use non-magnetic sample holders in order to have precise magnetic field

dependence measurement of the superconducting gap over a fixed region.
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Conclusion

In the framework of studying systems that show correlation effects and unconventional super-

conductivity, I will give a summary of the results that have been obtained during this thesis. The

studied systems are as follows: Sn/Si(111), Pb/Ge(111), (TMTSF)2ClO4 and KTO/Al2O3.

In the first part of this thesis, we have explained our most important results which is on the

α-Sn/Si(111). Our first aim was to study its transition to a superconducting state while hole

doping by segregation of Boron atom to the surface upon heating a highly P-doped sample.

Unfortunately, because of problems of both vibrations/noise in our STM and of a large delay

induced by studying the clean undoped phase, it was not possible to study this part of our project.

However, we have observed that in the undoped regime for α-Sn/Si(111) a large gap of 650

meV develops at temperatures below about 20 K. The results of QPI measurements show a spot

corresponding to a row-wise antiferromagnetic order with a 2
√
3 ×

√
3 super lattice structure.

These results together with the DFT calculation considering exchange-interaction between Sn

and Si atoms indicates a Slater-type of ground state for this system.

Weitering et al. have performed experiments on doped α-Sn/Si(111) and have found a chi-

ral d-wave superconducting state. However, their previous assumption of a small gap Mott-

insulating phase in the undoped regime (n-doped Sn/Si(111)) was not correct. Another point

in their study that is unclear is that they have assumed that the superconductivity is of chiral

d-wave nature by assuming the fact that it can be suppressed by non-magnetic Sn adatoms and

Si substitutional defects. However, the non-magnetic nature of these defects is not very clear

since it should be true if the system is in a Mott insulator, which we have proven to be incorrect.

Using other defects such as ’K’, which can only be non-magnetic for future work is recom-

mended. Furthermore, we have also studied other interesting phenomena like edge states and

artificial molecules. The artificial molecules showed bonding and anti-bonding orbitals, further

DFT calculations are suggested to prove these results. Finally, we have done a Multifractal anal-

ysis on the α-Sn/Si(111) and we have seen that the defects induced Anderson localization on the

electronic states situated close to the gap edge of α-Sn/Si(111). We believe that the localization

coherence length can be changed by changing the energy of the electrons; however, our results

can be improved by studying larger scale images and also different densities of defects.

Another system we have studied is the α-Pb/Ge(111), which has been shown to have a tran-

sition to a 3× 3 structure at low temperatures. Although our goal was to obtain spectroscopic

maps in this phase and study the properties of QPIs, due to the stabilization of a disordered phase

called the labyrinth phase, it was not possible to find homogeneous regions of α-Sn/Si(111) with

a size more than 10 × 10 nm2. However, we have performed point spectroscopy measurements

on 4 different phases of Pb/Ge(111), which are the 3× 3, the disordered 3× 3, 4× 4 and β-√
3×

√
3. For future work, it is suggested to make the Pb deposition at low temperatures and

do the annealing at temperatures no more than the room temperature, this can help to have larger

areas of 3× 3 reconstruction.

In addition, we have performed STS measurements for the first time on two types of un-

conventional superconductors, the cleaved (TMTSF)2ClO4 and the interfacial 2-DEG devel-
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oped at the interface of KTaO3 and Al2O3. We have observed a V-shape pseudo-gap for

((TMTSF)2ClO4 which does not go exactly to zero. We believe this is due to the nodal behavior

of d-wave superconductivity and also due to the suppression of the gap due to non-magnetic sur-

face disorder (induced by cleavage). In addition to the superconducting state, we have observed

several other phases such as metallic, bad metal, and spin-density-wave insulating phases. We

attribute this to either the granular nature of this material or the disorder induced by the cleavage

process. The result of renormalization group calculations of the excitation spectra in the super-

conducting state fits very well with our experimental results. Since the deposition of lead on the

sample did not change the electronic properties, it is highly recommended to deposit lead in a

controlled way to better contact the surface with the electrodes, i.e. at low temperature.

Our results on the superconducting 2-DEG at the interface of KTaO3 and Al2O3, also

showed a V shape pseudo-gap which does not go to zero; however, it gets suppressed at tem-

peratures higher than Tc ≈ 1K and higher magnetic fields. Unfortunately, at the time of our

measurements, we have switched our electronics from MATRIX to NANONIS and since the

new electronics was not very well calibrated yet on a reference superconducting sample, we

could not have enough resolution on the superconducting gap. Also, the sample holder was

made from stainless steel, and while performing continuous magnetic field measurements the

sample was moving, making it difficult for us to have an exact magnetic field dependent mea-

surement. It is suggested to perform the measurements again, since the calibration problem of

the NANONIS electronics is solved, and to use molybdenum sample holders instead of stainless

steel.
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[69] M. Jäger, C. Brand, A. P. Weber, M. Fanciulli, J. H. Dil, H. Pfnür, and C. Tegenkamp.

-sn phase on Si(111): Spin texture of a two-dimensional mott state. Physical Review B,

98(16):165422, 2018.

[70] Xuefeng Wu, Fangfei Ming, Tyler S. Smith, Guowei Liu, Fei Ye, Kedong Wang, Steven

Johnston, and Hanno H. Weitering. Superconductivity in a hole-doped mott-insulating

triangular adatom layer on a silicon surface. Physical Review Letters, 125(11), 2020.

[71] A. Charrier and et al. Contrasted electronic properties of sn-adatom-based(
√
3 ×√

3)R30◦ reconstructions on Si(111). Phys. Rev. B, 64:115407, 2001.

[72] A. C. Ferrari and J. Robertson. Interpretation of raman spectra of disordered and amor-

phous carbon. Phys. Rev. B, 61:14095–14107, 2000.

[73] P. Hansmann, T. Ayral, L. Vaugier, P. Werner, and S. Biermann. Long-range coulomb in-

teractions in surface systems: A first-principles description within self-consistently com-

bined gw and dynamical mean-field theory. Physical Review Letters, 110(16), 2013.
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