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Abstract

A better understanding of dissipation is crucial for understanding real-world quantum systems. Indeed,
all quantum systems experience interactions with an (often) uncontrollable outside environment that can
lead to a decay of excited state populations and a loss of quantum coherences. The study of dissipation
is timely as the development of next-generation nanoscale quantum technologies is on its way, and the
existence of non-trivial quantum effects in biological systems is being seriously investigated. However,
descriptions of dissipation in quantum systems are reduced (most of the time) to time-local approaches
and (everywhere) to space-local independent environments. These simplifying assumptions do render
analytic and numerical calculations possible, yet they get rid of a breadth of physical processes that can
alter radically the quantum systems’ dynamics. In this thesis, building on a numerically exact tensor
networks method, we developed a technique able to handle spatio-temporal correlations between a
quantum system and bosonic (i.e. vibrational, electromagnetic, magnons, etc.) environments. With this
method we studied the signalling process - a form of information backflow - in quantum systems, and
uncovered how it can induce non-trivial dynamics, and be leveraged to populate otherwise inaccessible
excited states. We also evidenced the ability of ‘non-local’ environment reorganisation, induced by system-
environment interactions, to radically change the nature of the thermodynamically favoured system
ground state. The new phenomenology of physical processes, resulting from considering quantum systems
interacting with a common environment, has important consequences for the design of nanodevices as it
gives access to new control, sensing and cross-talk mechanisms. In another vein, these results might also
give us a new framework to study and interpret (quantum?) effects in the biological realm.

Résumé

Une meilleure compréhension de la dissipation est cruciale pour décrire les systèmes quantiques de façon
réaliste. En effet, tous les systèmes quantiques interagissent avec un environnement extérieur (souvent)
incontrôlable qui peut conduire à une décroissance des populations d’états excités et à une perte de
cohérence quantique. L’étude de la dissipation est opportune car le développement des technologies
quantiques de nouvelle génération à l’échelle nanométrique est en cours, et l’existence d’effets quantiques
non triviaux dans les systèmes biologiques est sérieusement étudiée. Cependant, les descriptions de la
dissipation dans ces systèmes sont réduites (souvent) à des approches locales en temps et (partout) à des
environnements locaux et indépendants. Ces hypothèses simplificatrices rendent les calculs analytiques
et numériques possibles, mais elles font abstraction d’un grand nombre de processus physiques qui
peuvent modifier radicalement la dynamique des systèmes quantiques. Dans cette thèse, en se basant
sur une méthode de réseaux de tenseurs numériquement exacte, nous avons développé une technique
capable de traiter les corrélations spatio-temporelles entre un système quantique et des environnements
bosoniques (c.-à-d. vibrationnel, électromagnétique, de magnons, etc.). Avec cette méthode, nous avons
étudié le processus de signalisation - une forme de retour d’information (information backflow) - dans un
système quantique, et nous avons découvert comment il peut induire une dynamique non triviale, et être
utilisé pour peupler des états excités autrement inaccessibles. Nous avons également mis en évidence la
capacité de la réorganisation "non locale" de l’environnement, induite par les interactions avec le système,
à changer radicalement la nature de l’état fondamental thermodynamiquement favorisé du système. La
nouvelle phénoménologie de processus physiques, résultant de la description de systèmes quantiques
interagissant avec un environnement commun, a des conséquences importantes pour la conception de
nano-dispositifs, car elle donne accès à de nouveaux mécanismes de contrôle, de détection et de diaphonie.
Dans une autre direction, ces résultats pourraient également nous donner un nouveau cadre pour étudier
et interpréter des effets (quantiques ?) dans le domaine biologique.
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It hurt a little, scattering their
hard-won revelation to the wind
for anyone to use — perhaps even
to beat them to some far greater
prize — but they’d relied on the
generosity of their predecessors
from the moment they’d arrived
on Nazdeek, and the sheer scale of
the overall problem made it
utterly perverse to cling selfishly
to their own small triumph.

Greg EGAN,
Riding the Crocodile

1.1 Opening quantum physics

Since its discovery slightly more than a hundred years ago, quantum
theory radically changed our understanding of physics at small length-
scales. Nevertheless its actual technological outputs – even though they
had a huge impact on modern society – mostly remain limited to cases
that can be argued to be within the reach of semi-classical descriptions:
lasers, semiconductors, Nuclear Magnetic Resonance, etc. Applications
that necessitate a fundamentally quantum description (such as quan-
tum communication, computation or sensing) exist only at the stage of
proof of concepts on noisy implementations on lab benches. This state
of affairs is the direct consequence of the fragile nature of quantum
coherence which disappears when a quantum system is interacting
with a macroscopic uncontrolled environment. This loss of coherence
resulting from interactions with the outside world is the main reason
why, for instance, quantum computers are so difficult to manufacture
and physical qubits need to be kept near absolute zero temperature.
Indeed, insulating a quantum system from its environment enables to
treat it as a closed system, as described by textbook quantum physics
where the system is associated with a state in a complex Hilbert space,
and this state evolves in an unitary fashion through the Schrödinger
equation.

However, as we are used to in classical physics, every system does



2 1 Introduction

interact with the rest of the world and in doing so dissipates energy.
Whether this dissipation has to be taken into account or not is (simply)
a question of time-and-length scales. These dissipative processes can
‘live’ at the ‘margin’ of the theory – like friction in mechanics – or be at
its very core – like baths in thermodynamics. It is even argued that the
open systems view should be fundamentally considered on an equal
footing with the closed systems view [4]. In any cases, considering
the interaction of a system of interest with its environment is central
for the goal of understanding real life systems, even when they are as
simple as the wheels of a car, or complex like a four-stroke engine.

Given that we live in a time – the advent of the so called second quan-
tum revolution – when the wish to design (nano)devices that make use
of quantum theory most fundamental features is vocal; a comprehen-
sive description of dissipative (i.e. open) quantum system is needed.
The foundations of the theory of open quantum systems have been laid
down in the 60’s during the development of quantum optics [5, 6] but
remained limited to the – perfectly justified in this context – simpler
cases where interactions are weak and the environment ‘memoryless’.
At the same time, the theoretical development of quantum master
equations and their formalisation took place between the 60’s and the
80’s. The pivotal results of this period were the famous GKSL and
Redfield master equations [7, 8] that allow to describe the dissipative
dynamics of a quantum system without describing the microscopic
degrees of freedom of the environment, nor a fortiori their dynamics.
All these approaches rely on the so called Markovian approximation –
the memoryless environment – that will be discussed in the next chap-
ter. However, models originating from condensed matter require to go
beyond weak coupling and the Markovian approximation [9]. The first
investigations in this direction have been performed during the 80’s
and the 90’s, especially by studying quantum Brownian motion [10]
and the Spin Boson Model [11]. Concurrently, a different formalism
relying on path integrals was developed by Vernon and Feynman
to generally describe a quantum system interacting linearly with an
environment [12]. This influence functional formalism was extremely
insightful and is still nowadays the source of numerous perturbative
and numerical methods (especially in quantum chemistry). In spite of
major advances in the field, the applications of the theory of open quan-
tum systems beyond the Markovian case remained limited because
the computational tools needed to accurately describe the dynamics of
non-analytical models were not available until the present day.

During the last decade, a broad range of numerically exact methods
A numerically exact method is a method
where convergence to the actual dynam-
ics is ensured by the tuning of some sim-
ulation parameters. Said differently, it is
a method for which the numerical error
can be estimated exactly in terms of the
convergence parameters.

has been developed to tackle this challenging problem. Among these
methods, a subset relies on tensor networks; a tool initially applied in
the context of quantum many-body physics to describe the quantum
state of multipartite systems. At the heart of tensor network methods
is the idea – that will be developed further in a dedicated chapter
– that physically relevant states inhabit a ‘small’ corner of the total
Hilbert space, and that it is possible to restrict the dynamics to this
corner to render complex computations tractable. Furthermore, tensor
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networks give us important insights about the entanglement geometry
of quantum states, and are sometimes boldly considered to be a new
language for (finite-dimensional) quantum physics [13, 14].

1.2 Inspirations from biology

Renewed interest about whether quantum physics is necessary to un-
derstand some biological processes has grown in the previous decade.
In a trivial sense, all of biology relies on quantum physics at the
biochemical level as it is the theory governing chemical bonds, and
thus the properties of molecules and their possible chemical reactions.
Therefore, when we are asking the question of the role of quantum
effects in biological processes, we are speaking of effects beyond these
trivial ones. In the last decades new results have pointed to quantum
mechanics being decisive to explain key features of some biological
functions [15, 16]. Photosynthesis is the canonical example of such
systems. Photosynthesis is the light-harvesting process that transforms
energy contained in photons into chemical energy that can be used by
plants, algae and cyanobacteria to grow and perform vital functions.
This process relies on a large number of so called pigment-protein com-
plexes forming light-harvesting complexes Light-harvesting complexes are often re-

ferred to as ‘antennas’, as they absorb
electromagnetic radiation.

that collect electromagnetic
energy from sunlight and funnel it to a reaction centre. Schematically,
the biological energy conversion consists in a photon being absorbed
by the pigment complexes, this absorption creates an exciton, i.e. a
bounded pair of electron and hole, that is transported thanks to dissi-
pative processes to the reaction centre where charge separation occurs.
The extracted electron will then be used for the splitting of water
molecules The other product of the water splitting

reaction is the dioxygen released by pho-
tosynthetic life forms.

that produces hydrogen. The obtained hydrogen is then
used to form the NADPH and ATP molecules that chemically store the
harvested energy, and will fuel the reactions leading to the synthesis
of sugar and starch. The quantum efficiency of the photon/exciton
conversion is estimated around 95% and the yield of charge separation
event per formed exciton is close to 100% [15]. The main pigments in-
volved in light harvesting are (bacterio-)chlorophylls and carotenoids,
and the protein scaffolds around them tune their excited state energies
and the inter-pigment interactions. Figure 1.1 shows a light-harvesting
complex and a reaction centre found in Thermochromatium tepidum
bacteria.

The green sulfur bacteria’s photosystem has been studied extensively
by biologists and spectroscopists. It possesses an additional type of
pigment-protein complex in between the antennas and the reaction
centre – an excitonic wire – called the Fenna-Mathews-Olson complex
(FMO), depicted in Fig. 1.2. The FMO is made of seven bacteriochloro-
phylls pigments held together non-covalently by a protein scaffold.
The FMO is often considered as the prototypical example of biological
systems evidencing the existence of non-trivial quantum effects in bi-
ology. Experimental results of beatings in a cross-peak of 2D electronic
spectra of the FMO at low and physiological temperature [17, 18] –
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Figure 1.1: Structure of photosynthetic
LH1-RC super-complex in Thermochro-
matium tepidum. The reaction centre is
made of the protein depicted in green
and orange in the foreground and the
light-harvesting complex 1 (LH1) is in
the background. The diameter of LH1 is
of the order of 10 nm and the height of
the super-complex is around 20 nm.

which have been associated with the existence of quantum coherences
– have opened a fascinating and animated debate on the interpretation
of these signals. Similar results have been reported on spectra of light-
harvesting complexes in marine algae [19].

These results open the door to the exciting question of the possibility
of maintaining the existence of quantum features in a complex and
highly noisy system at room temperature. Previous works have stud-
ied Environment-Assisted Quantum Transport to describe energy trans-
port in light-harvesting complexes, where interactions with Markovian
baths (i.e. memoryless) can enhance excitonic current, enable specific
energy transitions, or make the system insensitive to structural dis-
order [20–25]. However, the highly structured protein environment
of the photosynthetic pigments that constitute the light-harvesting
complexes and reaction centres requires to go beyond the Markovian
treatment [21, 23].

This possibility resonates strongly with the aim of the current quan-
tum ‘revolution’ and the current engineering capabilities of quantum
nanodevices. Therefore, investigating the dynamics of open quantum
systems in structured environments at finite temperature is interesting
and useful for at least two reasons. Firstly, it might help us gain a new
understanding of possible bio-physical mechanisms, and secondly –
even if it turns out that biological systems do not rely on quantum
mechanical effects – adding new finite-temperature quantum mechan-
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Figure 1.2: Fenna-Matthews-Olson
complex (FMO) from Chlorobaculum
Tepidum bacteria. Seven bacteriochloro-
phylls pigments are held inside a protein
backbone.

ical processes to our toolbox is valuable. Hence, pushing further the
investigation of out-of-equilibrium open quantum dynamics, with
state-of-the-art methods, is necessary for both the development of
quantum technologies and the study of fundamental biological pro-
cesses. Moreover, these two endeavours are not disjoint as the results
(positive or negative) obtained in quantum biology might be useful to
propose novel organic quantum nanodevices. One of the key technical
issues to the description of these complex multi-components quantum
systems is the inclusion of environmental spatial correlations, as stated
in the monograph of reference in the field of quantum biology [15]

It should be noted however, that at present the inclusion of spatial
quantum correlations between environments is challenging and
restricted to simple cases. This may be a drawback for certain
applications in which spatial correlations play a significant role

This problem will be addressed directly in the work presented in this
thesis.

More generally, the richness of nanoscale biological processes In addition, these nanoscale biological
processes are cyclic processes, and can
thus be compared to heat engines. This
comparison opens the questions of their
study in terms of (quantum) thermody-
namics [26, 27].

that are
taking place inside living organisms, and are relying on the concerted
actions of a few fermions or excitons – over very diverse timescales
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and lengthscales – to perform energy harvesting, energy transduction,
charge separation, catalysis, etc., make them a wonderful playground
to explore many-body dissipative quantum physics.

1.3 Outline

This thesis is divided into three parts. The first part, Background, is
made of chapter 2 and is concerned with the theory of open quantum
systems, how they are related to the usual closed systems described
by the Schrödinger equation and what are the consequences of the
different approximations one might perform to study such systems.
Notably, the concepts of Markovian and non-Markovian environments
are introduced. Some material of this chapter lead to a pedagogical
article currently under review [3].

The second part, Methods, composed of chapters 3, 4 and 5, deals
with the methods I have used and developed to study the dynam-
ics of non-Markovian quantum systems. The fundamental concepts
of tensor networks and why they are a tool of choice to describe
one-dimensional many-body quantum states and their dynamics are
introduced in chapter 3. In chapter 4 we present the environment chain-
mapping technique at the core of the versatile TEDOPA method that
enables a description of zero and finite temperature open quantum
systems states as simple tensor networks called Matrix Product States.
We then derive an original extension of this technique to spatially
extended systems [1], that enable the resolution of the problem quoted
above. Finally, chapter 5 compares different ways of representing the
state of an open quantum system as a tensor network and shows that
the ‘intuitive’ one usually used to perform simulation is not the most
efficient one. Furthermore, I show that simpler representations seem
to be the most efficient ones and relate this to the connectivity of the
network.

In the last part, Applications, I introduce applications of the frame-
work and tools developed in the previous chapters [1, 2]. Chapter 6
– motivated by questions arising from biological systems – explores
the concept of environmentally mediated spatiotemporal signalling
in open systems, and chapter 7 applies it to a generic model of dis-
sipation in multi-components quantum system that can describe a
wide diversity of (bio)chemical and man-made systems. I also discuss
in this chapter the biological problem of allostery and how the new
framework introduced in this work could be useful to improve its
understanding.

The final chapter, chapter 8, aims at summarising the main results of
this thesis and discusses the next steps of this work (some of them
already under investigation).
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In this thesis, alongside the scientific and research materials, are small
biographical notes on the scientists explicitly cited in the main text.
I decided to add them as a reminder that science is done by actual
human beings and that our work is built on top of theirs – Nanos
gigantum umeris insidentes. These biographical sidenotes become rarer
as one advances in the thesis because most recent results are not named
(yet?) upon their discoverer.





BACKGROUND





Figure 2.1: Schematic representation of
the separation of a physical object ( + �
into a System ( whose free dynamics is
induced by the Hamiltonian �̂( and an
Environment � with a Hamiltonian �̂� .
The black double arrows represent the
possible interactions between these two
parts through the Hamiltonian �̂int.
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If we wish to remain human, then
there is only one way, the way
into the open society. We must go
into the unknown, the uncertain
and the insecure [...]

Karl POPPER, The Open
Society and its Enemies

2.1 Isolated, closed and open systems

Physicists draw imaginary boundaries between the object they are
interested in and the rest of the world in order to focus only on the
features that are characteristic of the object. This distinction between
the object of interest – called the physical system or system – and the
rest of the world – called the environment of the system or environment –
leads to a classification of physical systems depending on the nature of
their interactions with their environment. This classification is relevant
at every scale regardless of the nature of the system itself: it can be a
collection of point-like particles as in mechanics, a macroscopic system
as in thermodynamics or quantum fields as in condensed matter. An
illustration in the context of quantum systems is shown in Fig. 2.1.

Definition 2.1.1 A physical system is isolated if it can’t exchange energy
or matter with the outside world.

The prototypical example of an isolated system is the Thermos bottle
and the trivial one is the entire universe.

Definition 2.1.2 A physical system is closed if it can only exchange
energy with the outside world.

An everyday example of a closed system would be a hermetically
sealed room where no matter could get out but heat could flow through
the windows, walls, etc.

Definition 2.1.3 A physical system is open if it can exchange energy and
matter with the outside world.
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The reader, as well as every other living creature, is an open system
who needs to exchange energy (e.g heat) and matter (e.g food) with
the outside world.

Quantum theory, as developed in the first half of the twentieth cen-
tury, is formulated for a closed system which can be described by a
wave-vector (if it is a pure state) or a density matrix (if it is a statistical
mixture). However, realistic quantum objects are never isolated sys-
tems but are interacting with ‘external’ (e.g. electromagnetic, electronic,
vibrational...) degrees of freedom which constitute their environments.
These interactions have consequences for the dynamics of the system
as they often lead to the decay of excited states populations toward the
ground state of the system (i.e. dissipation) and in the loss of quantum
coherences in the eigenbasis (i.e. decoherence). The study of the result-
ing dynamics is the subject of the theory of open quantum systems
(TOQS).
Understanding the processes leading to dissipation and decoherence
is crucial both from a theoretical and an experimental point of view.
It allows us to understand the observed dynamics of quantum sys-
tems (physical, chemical or biological ones) and to invent strategies
to suppress or harness dissipation and decoherence. This knowledge
becomes of paramount importance as we are entering a so called sec-
ond quantum revolution [16, 28] in which quantum superposition and
entanglement are being used as resources to reach a desired function
(e.g. communication, computation, energy transport...). As the scale
of these devices reduces for integration purposes, they become more
exposed to the very dissipative phenomena described by TOQS. En-
vironments are often complex and composed of a large number of
degrees of freedom. Hence, the dynamics of the system is not an easy
thing to predict.
Another motivation for the study of OQS comes, surprisingly, from
biology. Spectroscopic experiments performed on photosynthetic com-
plexes show the presence of quantum coherences during energy trans-
port in the form of beatings [17, 19]. A lot of debate emerged following
these measurements on the nature of the observed signal [29], the func-
tional role of quantum coherences [25] and the (absence of) selection
pressure associated with the existence of coherence [30]. These results
and debates around photosynthetic complexes rejuvenated interest
in other biological processes where quantum physics might play a
non-trivial role [20, 31]. Among the other processes where quantum ef-
fects are hypothesised we can cite avian navigation (which might be the
most promising one), olfaction, the physiological mechanism behind
anaesthetics, or proton tunnelling in enzymatic reaction and DNA mu-
tations [20, 31–33]. All these biological processes have in common the
strong interplay between a quantum system (excitons, spins...) with a
few degrees of freedom and a very structured environment at room
temperature (solvent and protein complexes). This is a striking differ-
ence from the man-made quantum devices that need to be shielded
from their environment.
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Figure 2.2: John von Neumann (De-
cember 28, 1903 – February 8, 1957)
was a Hungarian-American mathemati-
cian, physicist, computer scientist and
economist.

2.2 Environment, bath and reservoir

The environment of the system of interest could be anything: vibra-
tional modes of molecules, a gas of conduction electrons in a metal,
electronic spins, etc. Nevertheless, big picture characterizations that
don’t take into account the actual nature of the degrees of freedom
can be made. Two types of environments are particularly relevant in
the study of open quantum systems: reservoir and heat bath (commonly
abridged bath). These definitions are in accordance with the use of the
same terms in classical thermodynamics. When the environment has
a larger number of degrees of freedom than the reduced system, it
is often possible to describe it with infinitely many degrees of free-
dom. Sometimes the environment really has an infinite number of
degrees of freedom. For example, this is the case of the electromagnetic
field.

Definition 2.2.1 A reservoir is an environment with an infinite number
of degrees of freedom.

The continuous nature of the reservoir’s spectrum implies that the
Poincaré recurrence time of the system’s state is in principle infinite;
meaning that the dynamics of a system coupled to a reservoir is irre-
versible. If the reservoir has a well-defined temperature, it is called a
bath. More generally, a bath is a reservoir with

a well defined and constant conjugate
thermodynamic variable: temperature
for a heat bath (or thermostat), pressure
for a pressurestat, chemical potential for
a matter reservoir...

Definition 2.2.2 A heat bath (or bath) is a reservoir in a thermal equi-
librium state.

2.3 Time evolution

The quantum theory of closed systems describes the evolution be-
tween two times C > C0 of a quantum system associated with a density
operator d̂(C) via the unitary time-evolution operator *̂ (C, C0) defined
with the Hamiltonian operator �̂ 1 1 In the general case

*̂ (C , C0) =
←
) exp

(
− i
ℎ̄

∫ C

C0

dC′�̂ (C′)
)

where
←
) is time-ordering operators

chronologically from right to left, and
�̂ (C) depends parametrically on time C .

[34]

d̂(C) = *̂ (C, C0) d̂(C0)*̂† (C, C0) . (2.1)

The equation of motion (EOM) of the density matrix d̂ is given by the
von Neumann equation

d
dC
d̂(C) = − i

ℎ̄

[
�̂, d̂(C)

] def.
= Ld̂(C) . All the operators introduced so far are in

the so called Schrödinger picture.
(2.2)

In Eq. (2.2) the Liouvillian super-operator Lhas been defined. A super-
operator S is an application that acts on the space of operators to the
space of operators. With the Liouvillian, we can formally solve the
equation of motion

d̂(C) =
←
) exp

(∫ C

C0

dC ′L(C ′)
)
d̂(C0) (2.3)

https://en.wikipedia.org/wiki/John_von_Neumann
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Figure 2.3: Joseph Liouville (March 24,
1809 – September 8, 1882) was a French
mathematician who worked on number
theory, complex analysis, differential ge-
ometry and topology, but also mathemat-
ical physics and astronomy.

where, here,
←
) is time-ordering super-operators chronologically from

right to left. The goal of the TOQS is to be able to describe the time-
evolution of the density matrix of the system of interest given its
interactions with its environment [9, 35, 36].

The main approach is to consider the system and the environment as a
larger isolated system, where the evolution of the joint density matrix
of the {System + Environment} is described by the von Neumann
equation (2.2), and then to get rid of the degrees of freedom of the
environment. Several approximations are then possible to obtain a
tractable formulation of the evolution of the system.
The total Hilbert space Hof the isolated {System + Environment} is
identified as a tensor product H = H( ⊗H� where H( is associated
with the system, and H� associated with the environment.

We can thus decompose the Hamiltonian into three different terms:

I the system Hamiltonian �̂( which contains only terms acting on
H( – it describes the free evolution of the reduced system.

I the environment Hamiltonian �̂� which contains only terms
acting on H� – it describes the free evolution of the environment.

I the interaction Hamiltonian �̂int which acts on the full Hilbert
space H.

The density matrix of the system, often referred to as the reduced density
matrix, can be defined by taking the partial trace over the environment
degrees of freedom of the full density matrix

d̂( (C) = tr� [ d̂(C)] . (2.4)

Expectation values of observables acting on the system’s Hilbert space
are defined as follow

〈�̂〉 = tr(
[
�̂d̂( (C)

]
= tr

[
�̂ ⊗ 1̂� d̂(C)

]
, (2.5)

where 1̂� is the identity on H� .

Therefore taking the trace of Eq. (2.2) over the environment formally
gives the equation of motion of the system density matrix

d
dC
d̂( (C) = −

i
ℎ̄

tr�
[
�̂, d̂(C)

]
. (2.6)

The equation of motion Eq. (2.6) is called the master equation.

Definition 2.3.1 A master equation (ME) is an equation of evolution
of the density matrix d̂( (C) of the reduced system (. It has the form

d
dC
d̂( (C) = !d̂( (2.7)

where ! is a linear operation on d̂( that can be non-local in time.

https://en.wikipedia.org/wiki/Joseph_Liouville
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The formal solution of Eq. (2.7) gives the so called dynamical map
+ (C, C0) giving the evolution of d̂( between C0 and C > C0

d̂( (C) = + (C, C0) d̂( (C0) . (2.8)

We can define as follow the so called interaction picture in which the
interaction Hamiltonian �̂int gives the evolution of the density matrix
and the free Hamiltonian �̂0 = �̂( + �̂� defines a unitary transforma-
tion for the other operators

d̂� (C) = *̂� (C, C0) d̂(C0)*̂†� (C, C0) (2.9)

with *̂� (C, C0) =
←
) exp

(
− i
ℎ̄

∫ C

C0

dC ′�̂int (C ′)
)

, (2.10)

$̂ � (C) = *̂†0 (C, C0)$̂ (C)*̂0 (C, C0) (2.11)

with *̂0 (C, C0) =
←
) exp

(
− i
ℎ̄

∫ C

C0

dC ′�̂0 (C ′)
)

. (2.12)

The main point of this new picture is that the evolution of the density
matrix only depends on the interaction Hamiltonian. In the interaction
picture the von Neumann equation and its formal solution become

d
dC
d̂� (C) = − i

ℎ̄

[
�̂ �int (C), d̂

� (C)
] def.
= L� (C) d̂� (C) , (2.13)

d̂� (C) =
←
) exp

(∫ C

C0

dC ′L� (C ′)
)
d̂(C0) . (2.14)

For the rest of the manuscript, the � su-
perscript on the interaction picture den-
sity matrix will be dropped.

From there, the theory of open quantum systems could be (crudely)
summarised as a variety of cases and the corresponding approxima-
tions that can be made to write down an explicit form of the dynamical
map + (C, C0).

We will now focus on a specific type of bath that will be of particular
interest in the rest of this manuscript: the harmonic bath.

2.4 Harmonic Bath, correlation function and
spectral density

Equation (2.14) gives the formal solution of the von Neuman equation
for the total density matrix d̂(C). Tracing over the environment, we
obtain a formal solution for the reduced density matrix d̂( (C) which
can then be tractable with further simplification coming from the
specific physical problem under consideration. If there are no initial
correlations between the system of interest and its environment, the
initial state is a product states d̂(C0) = d̂( (C0) ⊗ d̂� (C0). Which also implies that we can separate

the time-ordering
←
) =

←
)(
←
)� .

In that case, the
trace in Eq. (2.14) becomes an expectation value on the environment

d̂( (C) =
←
)(

〈
exp

(∫ C

C0

dC ′L� (C ′)
)〉
�

d̂( (C0) . (2.15)
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where the super-operator valued expectation is defined as

〈S〉� = tr�

[
←
)�Sd̂� (C0)

]
. (2.16)

In Eq. (2.15), we can identify + (C, C0) =
←
)(

〈
exp

(∫ C
C0

dC ′L� (C ′)
)〉
�

as
being a time-propagator between times C0 and C for the system density
matrix. We can pause for a few lines to illustrate an important property
of dynamical maps. Contrary to isolated systems’ evolution operator,
open systems’ time-propagator are not in general divisible

For C0 < D < C, + (C, C0) ≠ + (C, D) ·+ (D, C0) in general. (2.17)

Indeed, as can be noticed in Eq. (2.15), in general〈
exp

(∫ C

C0

dC ′L� (C ′)
)〉
�

≠

〈
exp

(∫ C

D

dC ′L� (C ′)
)〉
�

〈
exp

(∫ D

C0

dC ′L� (C ′)
)〉
�

,

(2.18)

because the expectation value of a product is different from the product
of expectation values.
We are now going to specify an explicit Liouvillian L� (C) by choosing
a specific Hamiltonian that describes the environment as a bosonic
bath with a linear coupling to the systemWhen �̂� describes vibrational modes

and �̂int their coupling to an electronic
system, the model they define is called
Linear Vibronic Coupling.

�̂� =
∑
8

ℎ̄l8 0̂
†
8
0̂8 , (2.19)

�̂int = $̂
∑
8

(
68 0̂8 + 6∗8 0̂

†
8

)
(2.20)

where $̂ is an operator acting on the reduced system Hilbert space
($̂ = $̂ ⊗ 1̂�), l8 is the angular frequency associated with the 8th bath
mode and 68 the coupling strength between the system and the 8th bath
mode. Furthermore, if we consider that the bath initial state is a Gibbs
state 22 A Gibbs state is a state of thermal equi-

librium where

d̂(C) = 1
/

exp
(
− �̂

:�)

)
with / = tr

[
exp

(
− �̂
:�)

)]
the partition

function.

, we can use the following relation [37]

〈exp(X)〉� = exp
(
〈X〉� +

1
2
〈X2〉�

)
, (2.21)

where, here, X is a super-operator.
Hence, choosing 〈X〉� = 0, we can cast Eq. (2.15) in the following form3

3 Because �̂ �int (C) is linear in bath opera-
tors.

System Density Matrix with Time Propagator (Bosonic Bath)

d̂( (C) =
←
)( exp

(∫ C

C0

∫ C′

C0

dC ′dC ′′
〈
L� (C ′)L� (C ′′)

〉
�

)
d̂( (C0) (2.22)

where L� (C)• = − i
ℎ̄

[
�̂ �int (C), •

]
. In general, the propagator is not

time-local because of the time dependence of
〈
L� (C ′)L� (C ′′)

〉
�

.

The next step is then to evaluate
〈
L� (C ′)L� (C ′′)

〉
�

in order to be able
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to have an explicit form for the propagator acting on d̂( (C0).

Super-operator notation

Let us introduce a useful set of notation defining super-operators.
Given an operator $̂ we can define the four following super-operators

$! d̂
def.
= $̂ d̂ , (2.23)

$' d̂
def.
= d̂$̂ , (2.24)

$+ d̂
def.
= {$̂, d̂} , (2.25)

$− d̂
def.
= [$̂, d̂] . (2.26)

Moreover, one can notice that $± = $! ±$'.

Therefore, we can rewrite the interaction Liouvillian as

L� (C) = − i
ℎ̄
� � −int (C) . (2.27)

The interaction Hamiltonian for a linear coupling with a bosonic bath
(Eq. (2.20)) is a product of a system operator and a bath operator
which can be written �̂ �int (C) = $̂ (C) ⊗ �̂(C).

Thus, with our new super-operator notation

L� (C) = − i
ℎ̄

(
� � !int (C) − �

� '
int (C)

)
(2.28)

= − i
ℎ̄

(
$! (C)�! (C) −$' (C)�' (C)

)
(2.29)

= − i
4ℎ̄

( (
$− (C) +$+ (C)

) (
�− (C) + �+ (C)

)
−

(
$− (C) −$+ (C)

) (
�− (C) − �+ (C)

) )
(2.30)

L� (C) = − i
2ℎ̄

(
$+ (C)�− (C) +$− (C)�+ (C)

)
. (2.31)

This leads us to〈
L� (C ′)L� (C ′′)

〉
�
= − 1

4ℎ̄2

〈(
$+ (C ′)�− (C ′) +$− (C ′)�+ (C ′)

)
×

(
$+ (C ′′)�− (C ′′) +$− (C ′′)�+ (C ′′)

) 〉
�

.

(2.32)

Because �±d̂� ∝ 68 0̂8 + 6∗8 0̂
†
8
.One can show easily that for a Gibbs state and an interaction Hamilto-

nian given by Eq. (2.20), tr [�−�− d̂�] = tr [�−�+ d̂�] = 0. Hence〈
L� (C ′)L� (C ′′)

〉
�
= − 1

4ℎ̄2$
− (C ′)

(
$+ (C ′′)〈�+ (C ′)�− (C ′′)〉� +$− (C ′′)〈�+ (C ′)�+ (C ′′)〉�

)
.

(2.33)

Defining the two-time bath correlation function � (C ′, C ′′)

� (C ′, C ′′) = tr�
[
�̂(C ′)�̂(C ′′) d̂� (C0)

]
, (2.34)
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we have tr� [�+ (C ′)�− (C ′′) d̂� (C0)] = 4Im [� (C ′, C ′′)] and tr� [�+ (C ′)�+ (C ′′) d̂� (C0)] =
4Re [� (C ′, C ′′)].

Finally, we can express
〈
L� (C ′)L� (C ′′)

〉
�

in terms of super-operators
acting only on the system and the bath two-times correlation func-
tion

Super-Operator Valued Expectation of L� (C ′)L� (C ′′)

〈
L� (C ′)L� (C ′′)

〉
�
= − 1

ℎ̄2$
− (C ′)

(
$− (C ′′)Re [� (C ′, C ′′)]

+ i$+ (C ′′)Im [� (C ′, C ′′)]
)

(2.35)

The two-time correlation function � (C, C ′) can be made explicit using
the expression of �̂ �int (C) given in Eq. (2.20)

� (C, C ′) = tr�
[
�̂(C)�̂(C ′) d̂� (C0)

]
=

∑
8, 9

X8, 9

(
6∗8 6 9e

il8 (C−C′)=V (l8) + 686∗9e−il8 (C−C′) (=V (l8) + 1)
)

with =V (l8) = 1
exp(Vℎ̄l8 )−1 , where

V = (:�) )−1, the Bose-Einstein
distribution.

=
∑
8

|68 |2
(
eil8 (C−C′)=V (l8) + e−il8 (C−C′) (=V (l8) + 1)

)
� (C − C ′) =

∑
8

|68 |2
[
coth

(
Vℎ̄l8

2

)
cos (l8 (C − C ′)) − i sin (l8 (C − C ′))

]
.We can notice that, due to the stationarity

of the initial bath state, the bath correla-
tion function became a function� (C − C′)
of a single time argument g = C − C′.

(2.36)

If we define a new quantity called the spectral density of the bath,
Eq. (2.36) can be cast in an integral form.

To approximate the limit case of a per-
fectly flat spectral density at ) = 0 K, we
look at the bath correlation function for
a rectangular spectral density of height
�0 centered on l0 with a width Δl

� (g) = �0Δlsinc
(
Δlg

2

)
e−il0g .

The characteristic correlation time of the
bath correlation function (correspond-
ing to the first zero of the sinc) is g� =
2c
Δl

. Taking the infinite bandwidth limit
we obtain an instantaneous correlation
limΔl→∞� (g) ∝ X (g) .
If the spectral density is a Lorentzian of
the same height, bandwidth and peaked
at the same frequency, the correlation
function becomes

� (g) = c Δl
2
�0e−

Δlg
2 e−8l0g

which has the similar characteristic time
g� and the same infinite bandwidth
limit.

Definition 2.4.1 The bath spectral density contains all the information
about the interaction between the system and the bath

� (l) =
∑
8

|68 |2X(l −l8) where l ≥ 0 . (2.37)

For a bosonic bath, the bath Power Spectrum ((l) is proportional to the
spectral density

((l) = 2c=� (l)� (l) where l ≥ 0 . (2.38)

Finally, the general form of the correlation function of a bosonic bath
is

Bosonic Bath Auto-Correlation Function

� (g) =
∫ ∞

0
dl� (l)

[
coth

(
Vℎ̄l

2

)
cos (lg) − i sin (lg)

]
(2.39)

Hence, for a bosonic bath with a linear coupling, the time propagator
of the reduced system density matrix is defined by the super-operator
valued expectation

〈
L� (C ′)L� (C ′′)

〉
�

, which is entirely defined by the
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Figure 2.4: Andrei Markov (June 14, 1856
– July 20, 1922) was a Russian mathemati-
cian best known for his work on stochas-
tic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

bath auto-correlation function � (g) or equivalently by the bath spec-
tral density � (l). Here we recover the well-known result that for a
Gaussian environment, the dynamics of the system does not depend
on the microscopic details of the environment but only on the bath
correlation function [9, 35].

We can already see that for different spectral densities � (l) the bath
correlation function is going to have different behaviours, and espe-
cially it will decay on different timescales g�. We call this timescale g�
the bath correlation time.

For example, if only one bath mode couples to the system the correla-
tion function has a purely oscillatory behaviour and thus an infinite
correlation time.

Generally, if the system couples to a range of frequencies Δl the corre-
lation time is going to be of the order g� ≈ 2c/Δl.

2.5 (Non-)Markovianity

If all the bath modes couple to the system the same way, i.e. � (l) = �0,
at zero temperature the correlation function is a Dirac delta function.
In that case, there are only instantaneous correlations into the bath.
Such a ‘white noise’ spectral density is a limit case of what is called a
Markovian behaviour.

Definition 2.5.1 An environment is called Markovian if its timescale of
relaxation g� is much shorter than the timescales of the processes happening
in the system g(

g� � g( . (2.40)

Being in a Markovian regime allows one to make important simpli-
fications to the equations of motion as the dynamic of the system
doesn’t depend on past interactions with the bath. With the addi-
tional assumptions of separability of the system and the bath states
d̂(C) ≈ d̂( (C) ⊗ d̂� (C) because of weak coupling (Born approximation)
and the secular approximation, The secular approximation considers

that the infinitesimal timespan dC is
larger than the fastest transition in the
system.

one can write down the famous Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) equation.

Definition 2.5.2 Assuming the Born, Markov and secular approxima-
tions, the most general form of a ME is the GKSL master equation

d
dC
d̂( (C) = −

i
ℎ̄

[
�̂eff, d̂( (C)

]
+
32−1∑
:=1

W:

(
�̂: d̂( (C) �̂†: −

1
2

{
�̂
†
:
�̂: , d̂( (C)

})
,

(2.41)

Vittorio Gorini (born 4 December 1940) is
an Italian physicist and professor at the
Università degli Studi dell’Insubria. His
work include research in the structure
of quantum dynamical semigroups and
formulation of de Sitter relativity.

where �̂eff = �̂ + �̂LS is an effective Hamiltonian with �̂LS a Lamb shift
term renormalising the system’s energy levels due to the interaction with
the bath, W: > 0 are relaxation rates, �̂: ∈ B(HS) are traceless so called
jump operators and 3 = dim(H().

https://en.wikipedia.org/wiki/Andrey_Markov
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Figure 2.5: Andrzej Kossakowski (20
February 1938 – 31 January 2021) was
a Polish theoretical physicist and a pro-
fessor at the Nicolaus Copernicus Uni-
versity. He was best known for his work
on open quantum systems.

Equation (2.41) is a master equation describing the evolution of d̂(
with a unitary contribution given by the effective Hamiltonian and a
dissipative part generated by the action of the jump operators on the
instantaneous density matrix. Hence, by construction, Eq. (2.41) is a
time-local equation. The GKSL equation of motion is often used in the
context of quantum optics [6].
We call a bath non-Markovian if we cannot neglect its past interactions
with a system to describe the dynamics of the system44 The adjective ‘non-Markovian’ can

also be used in a general sense of ‘not
relying on a Markovian approximation’
without implying that this is of particu-
lar importance for the dynamics of the
system.

. Whereas the
Markovian case is well-studied, the non-Markovian one is still poorly
understood as it is more complex. A consequence of non-Markovianity
is that energy that has been dissipated into the environment can be
re-injected into the system at later times (as illustrated in Fig. 2.6) and
thus possibly altering drastically its dynamics. This corresponds to
the so called information backflow from the environment to the system
which is often responsible for recurrences in the system’s state [38].

Figure 2.6: When the environment is
Markovian, energy injected by the sys-
tem is simply dissipated away, whereas
in the non-Markovian case it can be in-
jected back into the system at a latter
time and a different place.

Space

S S

Markovian

Non-Markovian

E

Note that the backflow can happen at a different position in space than
the one where the energy was dissipated initially. This is of strong
importance for multi-component systems like machines designed by
humans or emerging from natural selection which often rely on dif-
ferent pieces being arranged in space to realise a desired function. For
instance, an engine is composed of valves, pistons, etc. that act in an
ordered manner, such as a four-stroke cycle, to perform energy conver-
sion; and a light harvesting complex is made of pigments held together
by a protein scaffold in such a way to efficiently transfer energy. Hence,
to describe accurately such concerted actions in a extended device
under dissipation, it is needed to go beyond the usual assumption of
Markovian bath dynamics.
This opens the possibility that injecting an excitation in an extended
system causes the local structure to relax to a new equilibrium position,
but in doing so key system properties such as energy gaps or couplings
to other systems can be strongly modified in the new conformation [39,
40]. It thus becomes possible for local reorganization dynamics to prop-
agate and effect dramatic changes at distal locations at later times [41].

https://en.wikipedia.org/wiki/Andrzej_Kossakowski
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Figure 2.7: Ennackal Chandy George Su-
darshan (16 September 1931 – 13 May
2018) was an Indian theoretical physi-
cist and a professor at the University
of Texas. Sudarshan has been credited
with, inter alia, Glauber–Sudarshan P
representation, V-A theory, tachyons and
quantum Zeno effect.

Figure 2.8: Göran Lindblad (9 July 1940 -
1 December 2022) was a Swedish theoret-
ical physicist and a professor emeritus at
the KTH Royal Institute of Technology,
Stockholm.

This phenomenology will be of central interest in this thesis as
we will show in subsequent chapters examples of the richness of non-
Markovian dynamics. However, the necessity to take into account
the interaction history in order to accurately describe non-Markovian
dynamics is the very source of the difficulty of this description. Major
advances on this problem happened recently as modern computation
techniques became available and as new numerical approaches were
uncovered. For instances, the reaction-coordinate mapping incorpo-
rate the ‘non-Markovian part’ of the environment in the definition of
the system and the remaining modes are described with a Markovian
EOM [42]; at zero temperature, the pseudo-modes method is able to
access the system dynamics in the ultra-strong coupling regime by
replacing the environment by a few unphysical pseudo-modes [43];
and the reduced hierarchical equations of motion (HEOM) method
maps non-Markovian effects into new terms in the density matrix
EOM that, as suggested by the name, belongs to a hierarchy of equa-
tions [44]. However, these methods are either not generally applicable
or numerically expensive. New techniques relying on so called tensor
networks have emerged to represent either the system propagator
[45, 46], the bath influence functional in the form of a process tensor
[47] or the total wave function of the system and the environment
together [48]. They allow a general, numerically exact and efficient
description of the system and the bath dynamics. Chapters 3 and 4
treat in more detail the basics of tensor networks and a specific method,
the Time-Dependent Density operator with Orthonormal Polynomials
(TEDOPA), that will be used in the rest of the thesis.

https://en.wikipedia.org/wiki/E._C._George_Sudarshan
https://en.wikipedia.org/wiki/E._C._George_Sudarshan
https://en.wikipedia.org/wiki/Goran_Lindblad_(physicist)
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At the least [Nature] must wear a
matrix, with here and there a
tensor to hold the queer garment
together.

Sydney EVERSHED

3.1 Quantum states, tensors and
diagrammatic representation

A multipartite quantum state |k〉, e.g. a #-site system where the sites
can each be in a state |q8〉 belonging to a 3-dimensional Hilbert space,
can be written as follows

|k〉 =
∑
{8: }

281...8# |q81〉 ⊗ . . . ⊗ |q8# 〉 , (3.1)

where the complex numbers 281...8# are the amplitudes of each state
|q81〉 ⊗ . . . ⊗ |q8# 〉 whose superpositions form in full generality the
state |k〉. Thus the state |k〉 can be completely represented by a rank-#
tensor 2 that is the collection of all possible amplitudes 281...8# . Here
by the rank of a tensor, we simply mean the number of indices it has.
This tensor is represented diagrammatically in Fig. 3.1.

The diagrammatic notation used in Fig. 3.1 consists in representing a
rank-: object by a geometric shape with as many legs as its rank. For
example, a scalar is a rank-0 tensor so its diagrammatic representation
has no legs; a vector has one index, so its representation has one leg;
etc. These examples are shown in Fig. 3.2.

scalar
(a)

vector
(b)

matrix
(c)

rank-3 tensor
(d)

Figure 3.2: (a) A scalar is a rank-0 ten-
sor which is represented by a plain geo-
metrical shape. (b) A matrix is a rank-1
tensor, thus it is represented by a geo-
metrical shape with one leg. (c) A matrix
has two indices, thus its representation
has two legs. (d) A rank-3 tensor is an
object with 3 indices, its representation
thus has three legs.
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Figure 3.3: Sir Roger Penrose (born 8 Au-
gust 1931) is an English mathematician
and mathematical physicist who was
awarded the Nobel Prize in Physics "for
the discovery that black hole formation
is a robust prediction of the general the-
ory of relativity".

The action of a matrix on a vector is represented by joining the legs
that correspond to the summed over index during contraction.The identity matrix 1 is usually

represented as a simple wire
X8, 9 = 8 9 .

For
instance the equation ®E = �®D, where � is a = ×<-matrix and ®D is a <-
dimensional vector and ®E is a =-dimensional vector, can be written

E= = = � < D
, (3.2)

where, to render the different dimensions of the matrix and vectors
explicit, we have written them in extenso inside of the legs themselves.
A matrix multiplication � = �� can be written in a similar fashion

= � ? = = � < � ?
.

(3.3)

More complex linear operations can also be represented, such as the
trace of a = × =-matrix " which is depicted by contracting the two legs
of the matrix together

tr["] =

=

" . (3.4)

The diagrammatic notation of tensors is a useful tool to simply rep-
resent complex operations involving several contractions at the same
time. It gives a representation of equations and mathematical opera-
tions that is easy to read and intuitive to manipulate. Such notation
was first introduced by Roger Penrose [49] and gained traction in the
last twenty years when one of the leading methods to determine the
ground state of 1d-system, the Density Matrix Renormalization Group
(DMRG) [50, 51], was reformulated in terms of tensor networks [52],
and when tensor-network-based methods applicable to other geome-
tries [53–56] to find ground states or time-evolve quantum states were
found [57–60]. Simultaneously, a reformulation of (finite dimensional)
quantum theory in terms of abstract diagrams representing states,
effects and processes was also developed stemming from category
theory [14].

3.2 Matrix Product States

The tensor 2 of a quantum state |k〉 corresponding to a one-dimensional
system can be decomposed into a product of # smaller rank-3 tensors
): (except for the first and last sites where the tensors will have a
rank-2)

281...8# =
∑
{U}

)
U1
81
)
U1U2
82

)
U2U3
83

. . . )
U#−1
8#

. (3.5)

In this form, the local tensor ): contains the information on the quan-
tum state on site : and its relation (especially the entanglement) with
the neighbouring sites.

https://en.wikipedia.org/wiki/Roger_Penrose
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Full Hilbert Space

log(�) ∝ #

Area law states

log(�) < ��!

Product states

Figure 3.4: Hierarchy of sub-manifolds
of the total Hilbert space. MPS of bond
dimension � independent on # follow
the area law (E# ∼ ��! . By having a
bond dimension scaling exponentially
with # , states outside of the area law
manifold can be recovered up to the full
Hilbert space.

Definition 3.2.1 The decomposition of the tensor of the amplitudes of a
quantum state into a product of smaller rank tensors is called a Matrix
Product State decomposition.

|k〉 =
∑
{8: }

∑
{U}

)
U1
81
)
U1U2
82

)
U2U3
83

. . . )
U#−1
8#

|q81〉 ⊗ . . . ⊗ |q8# 〉 (3.6)

The contracted indices U: between the tensors are called virtual indices
and carry information about the correlations between bi-partitions of the
state at bond : . The number of different values a virtual index can take is
called the bond dimension and is denoted �.
The free indices 8: associated with local quantum states are called physical
indices. Thus, they can take 3 values (with 3 the dimension of the local
Hilbert space).

Diagrammatically the decomposition of a quantum state as a MPS
presented in Eq. (3.5) takes the form

c
81

82
. . . 8#

= )1

81

)2

82

)3

83

. . . )#

8#

U1 U2 U3 U#−1 ,

(3.7)

where the labels of the legs have been written next to them.

Any state in the Hilbert space of a one-dimensional many-body system
can in principle be represented by a MPS by choosing a sufficiently
large value for the bond dimension � [13]. On top of this intellectually
satisfying property of MPSs being a dense set of states for a 1d-system,
they can also be used as a practical Ansätze for a many-body quantum
states by setting a maximal allowed value j for the bond dimension �.
In doing so, we restrict ourselves to a corner of the total Hilbert space.
The rationale behind this Ansatz is the following: if the initial quantum
state of a many-body system has a low bond dimension (typically if
the initial state is a product state with � = 1), then in a finite time it
will only be able to explore a region of the Hilbert space that is not to
far away from its starting point. Thus, the bond dimension will not
have the time to diverge exponentially [61]. However, depending on
the physical system at hand, this sub-manifold of the Hilbert space
could still be ‘too large’. There is an additional reason that explains
why MPSs are good Ansätze for 1d physical systems. Most many-body
Hamiltonians we (physicists) are interested in are local, meaning that
the interactions they describe involve objects that are ‘neighbours’7 7 One might think of nearest neighbours or

next-to-nearest neighbours interactions.
.

For such Hamiltonians, the ground states (outside of potential critical
phases) follow the so called area law for the entanglement entropy8 8 In a critical phase, the entanglement en-

tropy follows a logarithmic growth with the
size of the system (E# ∼ log(# ) .

[62–
64]. This law states that the entanglement entropy (E# of a bi-partition
of the system is proportional, not to the volume of the partition as
one might expect, but to the hyper-surface of the partition’s boundary;
hence the name ‘area law’. For a 3d system this corresponds to an
actual surface area �, (E# ∼ �; for a 2d system it corresponds to the
length ! of the partition’s boundary, (E# ∼ !; and in 1d the boundary
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reduces to a point, thus the entropy will be independent of the size of
the system (E# ∼ constant. The MPSs are states that satisfy this area
law, as we will show in the next section. Hence, MPSs are the relevant
states to describe 1d physical systems that are interacting through local
interactions. Figure 3.4 shows a drawing of the hierarchy of manifolds
inside a 1d many-body Hilbert space. Moreover, the main asset of this
Ansatz – that follows from the reduction to a corner of the Hilbert
space – is its practical numerical advantage over generic formulations
of many-body wave functions. In full generality, for a tensor 2 repre-
senting a #-component many-body state with local Hilbert spaces of
dimension 3, the number of elements that need to be stored is 3# . The
number of coefficients thus grows exponentially with the size of the
system, rapidly preventing any reasonable size calculations. Storing
the state of one of the simplest many-body systems, a spin chain, of
40 sites already requires 8 tebibits.99 1 tebibit = 240 bits ≈ 1.0995 Tbit. In

the Julia programming language or in
Python, unsigned integers are coded on
8 bits, hence storing the state of a 40-site
long spin chain requires around 8 Tbit.

It is therefore unimaginable to
practically perform any simulation this way even on such a simple
system. Whereas the number of coefficients describing a MPS of the
order of ≈ #3�2, which grows linearly with the size of the system.

3.3 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a tensor is a factorisation
that generalises the eigen-decomposition of square matrices to rectan-
gular matrices and higher rank tensors. As in an eigen-decomposition
the goal is to represent a tensor in a diagonal form (along a given par-
tition of its indices), denoted (, whose entries are called the Singular
Values of the tensor.

The SVD can be interpreted geomet-
rically. The unitary matrices * and
+ † correspond to a rotation in the
complex plane and the singular matrix
( corresponds to a "squeezing" of the
basis vectors.

There exists another version of the SVD
called ‘compact’ where ( is a ?× ?-matrix
with ? = min{=,<}, and* and + † are
respectively = × ? and ? ×< isometries
(whose definition will be given latter on).
The compact version is often used in
practice for numerical calculations.

Definition 3.3.1 The Singular Value Decomposition of a complex = ×
< rectangular matrix ) is a decomposition such that

) = *(+† (3.8)

where* and + are respectively = × = and < ×< square unitary matrices
and ( is a = ×< rectangular diagonal matrix whose entries are positive
numbers ordered in decreasing order and called the singular values of the
matrix.

This definition can be extended to higher-rank tensors by partitioning
their indices into two groups forming two super-indices. The tensor
can then be represented as a rectangular matrix on which the SVD can
be applied. In that case the result of the decomposition depends on the
partition of the indices.

Equation (3.9) shows a diagrammatic representation of this decompo-
sition for a rank-3 tensor ) , along a partition of its indices given by
the red dotted line, into the product*(+† where*†* = 1 and +†+ = 1

and ( is a diagonal matrix whose elements (the singular values of
the tensor along the given partition) are positive and arrange in a
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decreasing order

)

(

+†

*

=

SVD

. (3.9)

The SVD can be used to construct the MPS in the RHS of Eq. (3.7)
from the tensor 2 in the LHS of the equation. The first step is to group
the indices into two super-indices � = {81} and � = {82, 83, . . . , 8# }.
Then, a SVD is performed in between the two super indices 2� � =
*� U(UV+

†
V� Here we use the Einstein summation con-

vention.
. The matrices * and ( are contracted to obtain a new

matrix *( = )1. After ungrouping the indices, the tensor as now the
form 281...8# = )181W+

†
W82...i#

. Next, the indices of +† are grouped into
{W, 82} and {83, . . . , i# } and a SVD is performed along this partition.
The obtained* and ( matrices are contracted to form a new matrix )2.
The tensor 2 now reads 281...8# = )181W)2W82a+

†
ai3...i#

. The procedure is
repeated on the tensor +† until completion.

c
81

82
. . . 8#

=

=

=

= . . .

=

c

� = {81}
� = {82, . . . , 8# }

SVD

* ( +†

� = {82, . . . , 8# }81

Contract

)1 +†

{82}
{83, . . . , 8# }

81

SVD

)1

81

)2

82

)3

83

. . . )#

8# .
(3.10)
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Restricted rank approximation of quantum states

An application of the SVD is to create efficient approximations of
quantum states to perform computations. The main idea is to reduce
the content of the MPS to keep only the parts that contain the physics
of interest. One method to realise this approximation is to do a SVD
on each of the tensors of the MPS after each time step of the state
time-evolution and to trim the smallest singular values in order to
decrease the bond dimension of the MPS down to a chosen maximal
value j. The corresponding columns and rows of the unitary matrices
* and +† are also removed. Then, the trimmed matrices *̃, (̃ and +̃†

are contracted back to give an approximated tensor ) with a smaller
bond dimension.
Another way to apply the restricted rank approximation is to restrict
oneself into working in a manifold of fixed bond dimension � and to
use methods that can enforce this constraint. Such a method will be
presented in Sec. 3.5.

Gauge freedom and canonical forms

The MPS representation of a wave function is not unique. Indeed, at
any bond a resolution of the identity can be inserted as a product of
a matrix � and its inverse �−1. Then contracting � and �−1 with their
neighbouring tensors we define a new MPS for |k〉

|k〉 = )1

81

� �−1 )2

82

)3

83

. . . )#

8#

U1 U2 U3 U#−1

Contract Contract

(3.11)

= ) ′1

81

) ′2

82

)3

83

. . . )#

8#

U1 U2 U3 U#−1

. (3.12)

This gauge freedom on the actual MPS representing a state can be
exploited to simplify (numerical) calculations. A specific gauge can be
chosen where most tensors in the MPS are isometries. An isometric
matrix - has two indices with dimensions 31 ≥ 32. When contracted
on the larger dimensional index with its conjugate the identity is pro-
duced, -†- = 1̂. However, contraction along the other index produces
a projector, --† = %̂. Unitary matrices are double-sided isometries.
Isometries are usually represented as triangle where the larger 31-leg
is attached to the larger side of the triangle and the smaller 32-leg is
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attached to the apex of the triangle

-

-31 32 31 = %̂
, (3.13)

-

-

32 31 32 = 1̂
. (3.14)

Hence, upon contraction with the corresponding tensors of the associ-
ated bra 〈k | they will simply reduce to the identity

〈k |k〉 =
. . .

. . .

=

. . .

. . .

= . . . = 1 .

(3.15)

By performing a SVD on the left-most tensor, and then contracting the
singular matrix ( and the right unitary +† with the tensor on the right,
the left-most tensor of the MPS becomes a unitary itself. By repeating
this process with the tensor on its right, and then with the next tensor,
etc., we arrive at the so called left canonical gauge where all the tensors
are unitaries

|k〉 = )1

81

)2

82

)3

83

. . . )#

8#

SVD

(3.16)

= *1 ( +†

81

)2

82

)3

83

. . . )#

8#

Contract

(3.17)

= *1

81

) ′2

82

)3

83

. . . )#

8#

SVD

(3.18)

Because of the normalisation of the wave
function 〈k |k〉 = 1, we can show that
the last, right-most, tensor is also a uni-
tary.

= . . . (3.19)

|k〉 = *1

81

*2

82

*3

83

. . . *#

8# . (3.20)

Of course, we can apply the same procedure starting from the right-
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most tensor and obtain a right canonical gauge

|k〉 = +
†
1

81

+
†
2

82

+
†
3

83

. . . +
†
#

8# . (3.21)

It is also possible to mix left and right canonical gauges to obtain a
representation that is centred on a specific tensor (or bond) called
orthogonality center (OC). All the tensors on the left (right) of the OC
are in the left (right) canonical form. This mixed canonical gauge is
especially suited for computing expectation values of local operators
as the expectation reduces to the contraction of the hermitian conjugate
of the OC, the operator, and the OC. For example, if we chose to set
the OC on the second site, the site-centred form this gauge is

|k〉 = *1

81

)�2

82

+
†
3

83

. . . +
†
#

8# , (3.22)

and the bond-centred form is

|k〉 = *1

81

( +
†
2
′

82

+
†
3

83

. . . +
†
#

8# . (3.23)

In these mixed gauges, the expectation value of an operator $̂2 =

1̂ ⊗ $̂2 ⊗ 1̂ ⊗ . . . ⊗ 1̂ acting on the second site simply becomes

〈k | $̂2 |k〉 = =

)�2

$̂2

)�2

(

(

+
†
2
′

$̂2

+
†
2
′

. (3.24)

Here, we have implicitly used the convention that tensors with phys-
ical legs pointing upward are complex conjugates of tensors with
downward-pointing physical legs. When $̂2 = 1̂, we can see that the
tensor )�2 and ( are fully responsible for the norm of the state |k〉. More
precisely, here ( contains the Schmidt coefficients {B8} of the decompo-
sition of the state |k〉 at the bond separating {site 1} and {sites 2, . . . , #}.
The bond-centred mixed gauge enables us to define the entanglement
entropy of the corresponding bi-partition of the state as

(E# = −
�∑
8=1

B2
8 ln(B2

8 ) . (3.25)

We can see that the entanglement entropy is bounded by

(E# ≤ ln(�) (3.26)
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where � is the bond dimension of the MPS. Hence, because � is inde-
pendent of the size # of the system, MPSs belong to the class of area
law states.
The SVD is not the only way to decompose a tensor into a product of
other tensors. For instance, if it were possible to write the considered
tensor ) as a square matrix, we could have simply used a diagonaliza-
tion ) = *�*†. For rectangular matrices, the QR decomposition can
also be used where a = × <-matrix " (= > <) is decomposed into a
= ×< isometry & and a < ×< upper-triangular matrix '

"= < = &= < ' <

.
(3.27)

The QR decomposition is useful when one is mainly interested in
the unitarity properties and not in the Schmidt coefficients, as this
decomposition is computationally faster than the SVD.

3.4 Matrix Product Operators

In order to compute expectation values of observables or apply unitary
transformations to a quantum state, we need a TN representation of
operators. In the same fashion as a one-dimensional quantum state
can be represented as a MPS, operators acting on those states can be
represented as Matrix Product Operators (MPO). For an operator $̂, its
MPO can be defined as follows

Definition 3.4.1 The decomposition of the tensor of the coefficients of an
operator acting on a quantum state into a product of smaller rank tensors
is called a Matrix Product Operator decomposition.

$̂ =
∑

{8: }{8
′
:
}{F }

,
81 8
′
1

1 F0F1
. . .,

8# 8
′
#

# F#−1F#
|q8′1 . . . q8′# 〉 〈q81 . . . q8# |

(3.28)
The contracted indices between the tensors are called virtual indices. The
free indices are called physical indices and correspond to the different
input and output local quantum states. They can take 3 values (with 3 the
dimension of the local Hilbert space).

A diagrammatic formulation of a MPO representation of an operator
is

$̂ = 1 ,1 ,2 ,3 . . . ,# 1
F1 F2 F3 F#−1

8
′

1

81

8
′

2

82

8
′

3

82

8
′
#

8#

,
(3.29)
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where the convention to put free legs of dimension 1 to the first and
last tensors have been used to have only rank-4 tensors. These extra
free legs are equivalent to no legs.

The action of an operator on a quantum state can then be represented
as the action of a MPO on a MPS and the resulting state is given by the
contraction of the local tensors

)1 )2 )3 . . . )#

,1 ,2 ,3 . . . ,#

=

. . .

U1 U2 U3 U#−1

F1 F2 F3 F#−1

8
′

1 8
′

2 8
′

3 8
′
#

8
′

1

U1F1

8
′

2

U2F2

8
′

3

U3F3

8
′
#

U#−1F#−1

. (3.30)

Note that during the contraction of the physical legs of the MPS and
MPO, the dimensions of their respective virtual indices multiply. This
is the reason why we need the restricted rank approximation intro-
duced above. Without it, the bond dimension of a MPS will grow
exponentially during the time evolution performed with a MPO. In
Sec. 3.5 we will show how to write a MPO for the time evolution. To do
so, we first need to be able to write the Hamiltonian as a MPO. Hence,
we present a general method to construct the MPO representation of a
Hamiltonian.

Constructing a MPO for a Hamiltonian

To construct the MPO representation of a Hamiltonian �̂ which is
made of a sum of local terms, we use a method based on the recurrence
relation presented in Ref. [60].

To define the : th tensor of the MPO, we have to decompose the Hamil-
tonian into

I a part �̂!
:−1 that describes what happens before the bond :

I a part �̂'
:+1 describing what happens after the bond : ,

I a part
∑
0 ℎ̂

!
: 0
⊗ ℎ̂'

: 0
which is an interaction Hamiltonian be-

tween the part of the system on the left of bond : and the one on
the right of bond : .

The Hamiltonian thus reads

�̂ = �̂!
:−1 ⊗ 1̂': + 1̂!: ⊗ �̂

'
:+1 +

∑
0

ℎ̂!: 0 ⊗ ℎ̂
'
: 0 (3.31)
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where 1̂'
:
= 1̂ ⊗ . . . ⊗ 1̂︸       ︷︷       ︸
#−:+1 times

and 1̂!
:
= 1̂ ⊗ . . . ⊗ 1̂︸       ︷︷       ︸

: times

. Hence ℎ̂!
: 0

contains an

operator defined on the left of : and ℎ̂'
: 0

an operator defined on the
right of : . For instance, if we consider a -./-Hamiltonian with nearest
neighbours couplings, we could have ℎ̂!

: 0
= �0 (̂

0
:

and ℎ̂'
: 0

= (̂0
:+1 with

0 ∈ {G, H, I}. A recurrence relation between the ‘right parts’ of the
Hamiltonian at two consecutive sites can be defined

©«
�̂'
:

ℎ̂'
:

1̂'
:

ª®®¬ = ,:+1
©«
�̂'
:+1
ℎ̂'
:+1

1̂'
:+1

ª®®¬ , (3.32)

with the matrices,: defining the Hamiltonian MPO

�̂ =
∑

f,f′ ,F

,
f1f

′
1

1 F1
,
f2f

′
2

2 F1F2
. . .,

f# f
′
#

# F#−1
|f1 . . . f# 〉 〈f′1 . . . f

′
# | . (3.33)

In Eq. (3.33) the f and f′ indices refer to the local Hilbert spaces of
the different parts of the system (e.g. spins in the XYZ-Hamiltonian)
whereas the F indices relate to virtual bonds between the different
parts of the system.

The on-site tensors,: have a general structure The first and last tensors will be respec-
tively a row-vector and a column-vector,
as can be seen in the example below.

,: =

©«

1̂ �: �:

0
... �: �:

0
0 . . . 1̂

ª®®®®®®®¬
, (3.34)

where the blocks �: , . . ., �: are operator-valued, 1̂ is an identity oper-
ator on the local Hilbert space of site : and 0 is a notation for tensor
elements equal to zero. The number of columns in �: and �: is equal
to size of the set ran through by the index 0 in Eq. (3.31), which also
corresponds to the number of lines of �: and �: . The different blocks
can be interpreted as follow:

�: is the on-site energy.
�: corresponds to the local contribution of the coupling between

site : and sites to its right.
�: corresponds to the local contribution of the coupling between

site : and sites to its left.
�: corresponds to long-range coupling terms (as we will show in

chapter 6).

For example, a -./-Hamiltonian with a nearest neighbours interaction
on a 1d lattice with an external field ®ℎ = (ℎG , 0, ℎI)

�̂-. / =
∑
8

�G (̂
G
8 (̂

G
8+1 + �H (̂

H

8
(̂
H

8+1 + �I (̂
I
8
(̂I
8+1 + ℎG (̂

G
8 + ℎI (̂I8 , (3.35)
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will have on-site MPO tensors of the form

,8 =

©«

1̂2×2 �G (̂
G
8

�H (̂
H

8
�I (̂

I
8

ℎG (̂
G
8
+ ℎI (̂I8

0 0 0 0 (̂G
8

0 0 0 0 (̂
H

8

0 0 0 0 (̂I
8

0 0 0 0 1̂2×2

ª®®®®®®¬
, (3.36)

that has a bond dimension � = 5 and a physical dimension (dimension
of the local Hilbert space) 3 = 2.
We can see how the contraction of the {,8}8=1...# gives back the Hamil-
tonian by looking at a three-spins -./-chain. Starting from the left,
the on-site tensors contract as follow

,1,2 =
(
1̂2×2 �G (̂

G
1 �H (̂

H

1 �I (̂
I
1 ℎG (̂

G
1 + ℎI (̂

I
1

) ©«

1̂2×2 �G (̂
G
2 �H (̂

H

2 �I (̂
I
2 ℎG (̂

G
2 + ℎI (̂

I
2

0 0 0 0 (̂G2
0 0 0 0 (̂

H

2
0 0 0 0 (̂I2
0 0 0 0 1̂2×2

ª®®®®®®¬
(3.37)

=

(
1̂2×2 �G (̂

G
2 �H (̂

H

2 �I (̂
I
2 ℎG (̂

G
2 + ℎI (̂

I
2 + �G (̂

G
1 (̂

G
2 + �H (̂

H

1 (̂
H

2 + �I (̂
I
1 (̂
I
2 + ℎG (̂

G
1 + ℎI (̂

I
1

)
. (3.38)

The resulting tensor has the same shape as,1 with its �-block being
�2 and its �-block corresponding to both the on-site energies of the
first and second spins and their interaction term. Contraction with the
last tensor,3 is simply a dot product of two operator-valued vectors

,1,2,3 =
(
1̂2×2 �G (̂

G
2 �H (̂

H

2 �I (̂
I
2 ℎG (̂

G
2 + ℎI (̂

I
2 + �G (̂

G
1 (̂

G
2 + �H (̂

H

1 (̂
H

2 + �I (̂
I
1 (̂
I
2 + ℎG (̂

G
1 + ℎI (̂

I
1

) ©«

ℎG (̂
G
3 + ℎI (̂

I
3

(̂G3
(̂
H

3
(̂I3

1̂2×2

ª®®®®®®¬
(3.39)

= ℎG (̂
G
3 + ℎI (̂

I
3 + �G (̂

G
2 (̂

G
3 + �H (̂

H

2 (̂
H

3 + �I (̂
I
2 (̂
I
3 + ℎG (̂

G
2 + ℎI (̂

I
2 + �G (̂

G
1 (̂

G
2 + �H (̂

H

1 (̂
H

2 + �I (̂
I
1 (̂
I
2 + ℎG (̂

G
1 + ℎI (̂

I
1 (3.40)

,1,2,3 = �̂-. / . (3.41)

The operator recovered in Eq. (3.40) is the Hamiltonian in Eq. (3.35) for
three spins.

The interpretation of the blocks inside of the site tensors of the MPO in
Eq. (3.34) allows them to be constructed ‘by hand’ for local interactions.
We will make use of this construction in chapters 5, 6 and 7.

3.5 Time-evolution methods

To study the dynamics of a quantum state |k(C)〉 starting from a given
initial condition |k(0)〉, one has to be able to perform time-evolution
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Figure 3.5: Matsuo Suzuki (born on
March 3, 1937) is an emeritus profes-
sor at the University of Tokyo. He has
been working on critical phenomena and
phase transitions in spin systems.

Figure 3.6: Hale Freeman Trotter (30 May
1931 – 17 January 2022) was a Canadian-
American mathematician known for the
Lie–Trotter product formula.

on a MPS. The general solution of the Schrödinger equation for a
time-independent Hamiltonian is (ℎ̄ = 1)

|k(C)〉 = e−i�̂ C |k(0)〉 . (3.42)

The straightforward solution would thus be to write down the evolu-
tion operator *̂ (C) = exp(−i�̂C) as a MPO. However, this is unpractical
for long time simulations as the size of the bond dimension would
become too large. A solution is to split up *̂ (C) into a product of #
one-time-step evolution operators *̂ (XC), with XC = C/# , and truncate
the MPS bond dimension after each application

*̂ (C) = e−i�̂ # XC =
(
e−i�̂ XC

)#
= *̂ (XC)# . (3.43)

The Time-Evolving Block Decimation (TEBD) method is based on this
approach [53, 57]. It is adapted for Hamiltonians with short-range
interactions10 10 Long-range interaction can also be de-

scribed with TEBD using a succession of
swap gates to exchange local terms to-
gether in order to effectively write the
long-range interaction as a local one [65].
Nonetheless, this increases the complex-
ity of the method.

that can be split into internally commuting parts. For
example, let us say that the Hamiltonian �̂ can be decomposed into
two terms �̂ = �̂1 + �̂2 where the terms forming each �̂8 commute with
one another but �̂1 and �̂2 don’t necessarily commute. Then, the single
time step evolution operator can be split up using a Suzuki-Trotter
decomposition [66]

*̂ (XC) = e−i�̂1 XCe−i�̂2 XC + O(XC2) . (3.44)

Each exponential can then be written in the form of a MPO. The error
induced by the Trotterization of the exponential can be decreased to
O(XC3) by symmetrising the decomposition. The impact of this time
step error on the unitarity of the time evolution can be controlled by
choosing a sufficiently small XC. The other source of error originates
from the truncation of the bond dimension performed after each time
step. This truncation affects directly the unitarity of the time-evolution
but convergence can be easily controlled by varying the number of
kept singular values.
Other methods share a similar philosophy: find an approximate for-
mulation of the single-time-step evolution operator *̂ (XC) and write it
in the form of an MPO. For example, the, � method relies on a second
order Taylor expansion of *̂ (XC) where terms acting on overlapping
supports are being discarded, i.e. products of the type �̂8�̂ 9 , with
�̂ =

∑
8 �̂8 , are set to zero if �̂8 and �̂ 9 act on a common part of the

system [59]. This method is simple and has the advantage of having an
implementation that is agnostic of the particular problem at hand; it
only requires the knowledge of the MPO representation of �̂. However,
it suffers from strong limitations and is not able to accurately compute
the evolution generated by single-site Hamiltonians [60]. An improve-
ment named, � � takes into account single-site operator overlapping
but requires a more complex implementation [59].

Another set of time evolution methods takes a different perspective.
Instead of finding an efficient MPO representation *̂ (XC) they aim at
approximating the action of the time evolution operator on a quantum
state. This means that they offer a way to evolve |k(C)〉 into |k(C + XC〉)
without constructing an explicit representation of *̂ (XC). The two main

https://en.wikipedia.org/wiki/Hale_Trotter
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Figure 3.7: Nikolay Mitrofanovich
Krylov (29 November 1879 – 11 May
1955) was a Soviet mathematician
known for his works in mathematical
physics, numerical methods and
mechanics. He was the PhD supervisor
of Nikolay Bogoliubov.

methods representative of this approach are the global Krylov method
[60, 67] and the time-dependent variational principle (TDVP). The
global Krylov method approximates the action of *̂ (XC) by restricting
oneself to the so called Krylov subspace K# which is the space spanned
by the set of vectors {|k(0)〉 , �̂ |k(0)〉 , . . . , �̂# |k(0)〉}If # = dim(H) the Krylov subspace en-

compasses the whole Hilbert space.
. Defining the

Krylov vectors {|:1〉 , . . . , |:# 〉}, which form an orthonormal basis of
K# , the method consists in searching for the vector |:8〉 that is the
closest approximation to *̂ (XC) |k(C)〉.

We now focus more specifically on the TDVP method as it is the one
we have been using in our work.

Time-Dependent Variational Principle

The original idea behind TDVP goes back to Dirac [68] and Frenkel [69].
The main point, in the modern tensor networks formulation, is that
instead of solving the Schrödinger equation and then truncating the
MPS representation of the quantum state, one can solve the equations
of motion projected into a space of restricted bond dimension [58, 70].
The general formulation of the Dirac-Frenkel Variational Principle [71]
is that one looks for a solution |i〉 ∈ M of the Schrödinger equation
where M ⊂ H is a manifold of the total Hilbert space H in which
we think that the relevant physical states ‘live’. We define )|i〉M the
tangent space of Maround the state |i〉. The criterion to find |i〉 is that
for every state |j〉 ∈ )|i〉MThe term ‘variational’ in the name of the

method comes from the fact that in prac-
tice one aims at minimising the right-
hand side of Eq. (3.45) to find |i〉. 〈j |

(
d
dC
− 1

iℎ̄
�̂

)
|i〉 = 0 , (3.45)

which can be interpreted as saying that the time evolution proce-
dure should keep |i〉 inside of the manifold M. Introducing %̂)|i〉M

the projector onto the tangent space )|i〉M, we can write the state
|j〉 = %̂)|i〉M |q〉 with |q〉 a state in H. Leading to

∀ |q〉 ∈ H, 〈q| %̂)|i〉M
(

d
dC
− 1

iℎ̄
�̂

)
|i〉 = 0 . (3.46)

Because the time derivation and the projector commute, we have

∀ |q〉 ∈ H, 〈q|
(

d
dC
− 1

iℎ̄
%̂)|i〉M�̂

)
|i〉 = 0 . (3.47)

This equation must be true for any |q〉 ∈ H, Eq. (3.45) can thus be
written (

d
dC
− 1

iℎ̄
%̂)|i〉M�̂

)
|i〉 = 0 . (3.48)

In the context of MPS, the manifold Mwill correspond to the space
of full-ranked MPS of a given bond dimension �, and the tangent
space will be the space spanned by variations of single MPS tensors.
The major advantage of this method is that it naturally preserves the
unitarity of the time evolution and conserves the energy.

https://en.wikipedia.org/wiki/Nikolay_Krylov_(mathematician,_born_1879)
https://en.wikipedia.org/wiki/Nikolay_Krylov_(mathematician,_born_1879)
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Figure 3.8: Paul Adrien Maurice Dirac (8
August 1902 – 20 October 1984) was an
English theoretical physicist who made
fundamental contributions to the early
development of both quantum mechan-
ics and quantum electrodynamics. He
was awarded the Nobel prize in Physics
with Schrödinger "for the discovery of
new productive forms of atomic theory".

At first glance, Eq. (3.48) is quite a complex equation as the projector
itself depends on |i〉. However it has a simple decomposition [70] that
can be written easily in a tensor network form

%̂)|i〉M =

#∑
8=1

%̂!|i〉,8−1 ⊗ 1̂8 ⊗ %̂'|i〉,8+1 −
#−1∑
8=1

%̂!|i〉,8 ⊗ %̂
'
|i〉,8+1 , (3.49)

where %̂!/'|i〉,8 projects on all the sites left (right) of site 8 included. The
first terms of Eq. (3.49) neutralises states that differ from |i〉 by more
than one tensor. The second term is there to ensure normalisation of the
projected states by removing contributions in excess that correspond
exactly to |i〉. These left and right projectors can be written as TN in
the left and right canonical gauges

%̂!|i〉,8 =

. . . *8−2

9 ′
8−2

*8−1

9 ′
8−1

*8

9 ′
8

. . . *8−2

98−2

*8−1

98−1

*8

98

,

(3.50)

%̂'|i〉,8 =

. . .+
†
8

9 ′
8

+
†
8+1

9 ′
8+1

+
†
8+2

9 ′
8+2

. . .+
†
8

98

+
†
8+1

98+1

+
†
8+2

98+2

.

(3.51)

The projection of the application of the Hamiltonian on |i〉 results
in 2# − 1 terms. They can be decomposed for each site 8 and bond
connecting sites 8 and 8 + 1, hence giving a set of local equations for
orthogonality centres )�

8
at site 8 and the corresponding bond-centred

matrix (8 In our implementation of TDVP, we
actually perform the gauge transfor-
mations with a QR decomposition in-
stead of a SVD, hence the unitaries of
Eqs. (3.54) & (3.55) are replaced by isome-
tries and the bond-centred matrices (8
are not diagonal.

d
dC
)�8 = −i�̂8eff)

�
8 for 8 ∈ [1, #] , (3.52)

d
dC
(8 = +i ̂ 8eff(8 for 8 ∈ [1, # − 1] , (3.53)

with �̂8eff and  ̂ 8eff that can be obtained by contractions of the dashed
boxes in Eqs. (3.54) & (3.55)

https://en.wikipedia.org/wiki/Paul_Dirac
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Figure 3.9: Yakov Il’ich Frenkel (10
February 1894 – 23 January 1952) was
a Soviet physicist who worked in con-
densed matter.

%̂!|i〉,8−1 ⊗ 1̂8 ⊗ %̂'|i〉,8+1�̂ |i〉 =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

*8−2 *8−1 )�
8 +

†
8+1 +

†
8+2

�8−2 �8−1 �8 �8+1 �8+2

*8−2 *8−1 +
†
8+1 +

†
8+2

*8−2 *8−1 +
†
8+1 +

†
8+2

def.
= �̂8eff

, (3.54)

%̂!|i〉,8 ⊗ %̂
'
|i〉,8+1�̂ |i〉 =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

*8−1 *8 (8 +
†
8+1 +

†
8+2

�8−1 �8 �8+1 �8+2

*8−1 *8− +
†
8+1 +

†
8+2

*8−1 *8 +
†
8+1 +

†
8+2

def.
=  ̂ 8eff

. (3.55)

Formally, these 2# − 1 equations are coupled as �̂eff and  ̂eff depend
on |i〉. However, we can still solve these equations sequentially and
update �̂eff and  ̂eff after each site evolution. This procedure is known
as one-site TDVP (1TDVP) [60].
The error induced in this method has three contribution:

(1) the projection error resulting from restricting the dynamics to
the manifold M. However, this error is easily controllable by
increasing the bond dimension of the MPS until convergence is
reached.

(2) the finite time step error which is of order O(XC3).
(3) the error coming from considering the 2# − 1 equations as inde-

pendent.

Alternative formulations of TDVP that evolve several sites at once
at each time step also exist. The manifold considered in those cases
include MPS of larger bond dimension than the initial one. The most
famous several site TDVP is the two-site implementation (2TDVP).
This implementation of TDVP has the ‘advantage’ of allowing the
bond dimension to evolve dynamically during the time evolution but
its complexity scales poorly with the physical dimension of the MPS
tensors.
Recently, a new implementation of TDVP combining the simplicity

of 1TDVP with the flexibility of the bond dimension of 2TDVP has
been developed under the name Adaptive 1TDVP (A1TDVP) [72]. This
new method is able to increase the bond dimension of the MPS ‘on
the fly’ while performing one-site evolution of the MPS. It relies on

https://en.wikipedia.org/wiki/Yakov_Frenkel
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performing sub-space expansion (i.e. adding basis vectors to the space
under consideration) in the one-site projectors %̂!/'|i〉,8 . These projectors
now project to a manifold of higher bond dimension.

In the next chapter, we will see how to naturally give a one-dimensional
geometry to a joint {System + Environment} state. This will enable the
construction of a MPS representation of the wave function of an open
quantum system.
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As explained in chapter 2, most of the time the very large number of
d.o.f. of the environment is best described by a continuum of modes.
In order to study the open system’s dynamics we wish to describe the
full wave function of both the system and the environment as a single
MPS. This means that we have to select a finite number of environ-
mental modes that are the most relevant for the system dynamics, i.e.
the most relevant to approximate the bath correlation function � (g). A
first approach would be to sample the bath at frequencies that have
a large contribution to the spectral density. However, this approach
has the drawback of being somewhat ‘arbitrary’ and requires a subjec-
tive human selection of the modes to keep. Another limitation of this
method is that nothing guarantees that the joint wave function of the
system and the selected modes would be well represented by a MPS
as the ‘natural’ geometry of the problem would rather be tree-like (see
Fig. 4.1).
Instead of sampling the infinitely many normal modes of the environ-
ment to keep only a discrete set of modes, we use a chain mapping
approach that generates a discrete representation of the environment
that naturally has a 1d geometry and thus enables us to keep all the
relevant bath modes easily [48, 73, 74]. This method consists of using
a unitary transformation, defined through a family of orthonormal
polynomials, that transforms a continuous bosonic environment into a
semi-infinite chain and is known as Time Evolving Density matrix with
Orthonormal Polynomials Algorithm (TEDOPA). The chain is then trun-
cated in a fashion that allows the convergence of the desired system’s
dynamics.
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4.1 Principle of the chain mapping

Let us consider a bosonic bath at zero temperature coupled to a system
via an operator $̂. The bath free Hamiltonian and the interaction
Hamiltonian areThis form for �̂int is the simplest form

of linear coupling. More complex inter-
actions can have the system’s operator
depend on the bath or the bath’s opera-
tor depend on the system as we will see
later.

�̂� =

∫ +∞

0
ℎ̄l0̂†l 0̂ldl , (4.1)

�̂int = $̂

∫ +∞

0
6l (0̂l + 0̂†l)dl , (4.2)

where 0̂†l creates an excitation in the bath mode of energy ℎ̄l and 6l
is the coupling strength between the system and the bath mode of
angular frequency l. In practice, there exists a maximal frequency of
the bath l2 that can be excited through its interaction with the system.
These Hamiltonians define a geometry of the system and the bath
interaction. The bath modes are independent (normal) modes and the
system interacts with all of them. Figure 4.1 shows schematics of this
interaction geometry in the cases of a continuum of modes and a finite
number of modes. This type of geometry is called a star geometry.

Figure 4.1: Geometry of the system in-
teracting with a bosonic environment.
Black lines represent interactions. (a) For
a continuum of normal modes depicted
as a green shade. (b) For a finite set
of modes, depicted as green discs. This
structure where the system couples to
all the modes and the modes only to the
system is called the star geometry.

(a) (b)

( (

We can introduce the following unitary transformation of the bath
creation operators

0̂†l =
∞∑
==0

*= (l)1̂†= (4.3)

where*= (l) is defined with the real orthonormal polynomials %=

*= (l) = 6l%= (l) . (4.4)

Equation (4.3) expresses the decomposition of the continuum of inde-
pendent bosonic modes labelled by l ∈ R+ onto a new infinite set of
discrete modes labelled by = ∈ N. This is a reflection of the separa-
bility of the bath Hilbert space [37]. Because the transformation from
{0̂l}l∈R+ to {1̂=}=∈N is unitary, the bosonic canonical commutation
relations are satisfied by 1̂= and 1̂†=. The unitarity of the transformation
imposes an orthogonality relation for the polynomials∫ +∞

0
dl*= (l)*< (l) =

∫ +∞

0
dl62

l%= (l)%< (l) = X=,< . (4.5)

This orthogonality relation defines the family of polynomials used
for the transformation. Thus, the chosen polynomials depend on the
bath spectral density � (l) = 62

l . Another useful property of these
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polynomials is that they obey a recurrence relation

%= (l) = (�=−1l − �=−1)%=−1 (l) + �=−1%=−2 (l) , (4.6)

where �= is related to the first moment of %=, �= and �= to the norms
of %= and %=−1 [37, 73]. This recurrence relation can be used to construct

the polynomials with the conditions that %0 (l) = | |?0 | |−1 =
(∫

R+
� (l)dl

)− 1
2

and %−1 (l) = 0, with | | • | | the norm of •with respect to the measure
� (l), and %= (l) = ?= (l) | |?= | |−1. The polynomials {?= }=∈N are the so

called monic polynomials where the fac-
tor in front of l= is equal to 1.

If we apply this unitary transformation to the interaction Hamilto-
nian

�̂int = $̂

∫ +∞

0
6l

∑
=

*= (l) (1̂= + 1̂†=)dl (4.7)

=
∑
=

$̂

∫ +∞

0
� (l)%= (l) (1̂= + 1̂†=)dl (4.8)

=
∑
=

$̂

(∫ +∞

0
� (l)%= (l)%0 (l)dl

)
︸                                 ︷︷                                 ︸

X=,0

| |?0 | | (1̂= + 1̂†=) (4.9)

�̂int = | |?0 | |$̂ (1̂0 + 1̂†0) (4.10)

we obtain a new expression where the system couples only to the first

mode with the coupling strength | |?0 | |
def.
= 20.

The chain coefficients l=, C= and 20 can
sometimes by calculated analytically, for
instance at V = ∞ for the family of Ohmic
SD defined below, otherwise they are
computed numerically using an imple-
mentation of the ORTHPOL package [75]
in Julia [76].

The same transformation applied to the bath Hamiltonian yields to the
following nearest neighbours hopping Hamiltonian where l= = �=

�=
is

the energy of the chain mode = and C= = �−1
= is the coupling between

mode = and = + 1[73]

�̂� =
∑
=

l= 1̂
†
= 1̂= + C= (1̂†= 1̂=+1 + 1̂†=+11̂=) . (4.11)

From the new bath and interaction Hamiltonians of Eqs. (4.10) and
(4.11) we can see that the unitary transformation*= (l) transforms the
bosonic environment composed of a continuum of independent modes
— the star environment — into a semi-infinite chain of interacting
modes (see Fig. 4.2) [23].

( . . .l0 l1 l2 l3 l4 l5 l6 l7 l8
20 C0 C1 C2 C3 C4 C5 C6 C7

Figure 4.2: Schematic drawing of the ge-
ometry of the system interacting with
the new semi-infinite chain environment.
Black lines represent interactions. This
new geometry is one-dimensional.

The new chain coefficients 20, l= and C= are all defined by the bath
spectral density. However, the asymptotic behaviours of the energy
l= and the hopping term C= for =→∞ are universal and only depend
on the support of the measure � (l)

lim
=→∞

l= =
l2

2
= lim
=→∞

2C= , (4.12)

where l2 is the maximal bath frequency coupled to the system. Fig-
ure 4.3 shows the distribution of the chain coefficients for an Ohmic
SD.
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Definition 4.1.1 The family of Ohmic spectral densities is defined as
follow

� (l) = 2U
lB

lB−1
2

5l2 (l) , (4.13)

where U, called the Kondo parameter, is the strength of the system-bath
couplingFor an Ohmic SD (B = 1) the coupling

strength U is a dimensionless parameter.
, l2 is the bath cut-off frequency, 5l2 (l) is the a cut-off function,

and B is the Ohmicity. When B = 1, the SD is called Ohmic; for B < 1 it is
sub-Ohmic; and for B > 1 it is super-Ohmic.

We can see in Fig. 4.3 that the chain coefficients quickly become uni-
form, defining the so called translationally invariant part of the chain.
This also means that the bath-specific physics of the system-bath inter-
action happens in the first few modes of the chain.

Figure 4.3: Chain modes energy l= and
tunneling C= for an Ohmic spectral den-
sity with a hard cut-off. These chain co-
efficients are independent of the Kondo
parameter U.

The nature of the orthonormal polynomials, and hence of the chain co-
efficient, depends on the cut-off function 5l2 (l). For a Heaviside step
function (hard cut-off), the corresponding polynomials will be Jacobi
polynomials. Whereas for an exponential cut-off the polynomials will
be Laguerre polynomials.

One can show that for Ohmic spectral densities, the chain modes’ on-
site and hopping energies are independent of the coupling strength U.
Initially the system was coupled to all the normal bath modes, and
after this transformation it is only coupled to the first chain mode = = 0.
An excitation injected into this mode, i.e. the system dissipating energy
into the environment, can then travel along the chain as a wavefront.

At zero temperature, this chain-mapped environment is well-suited
for a representation of the joint {System + Bath} wave function as a
MPS because the bath is now made of discrete modes, and all the
couplings of the joint system are local. One just needs to truncate the
chain keeping only the first #< modes. The only constraint is that this
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number should be large enough so that the wavefront generated by
the interaction with the system does not reach the end of the chain.
Retaining only a finite number of modes in the chain representation
also corresponds to considering a finite set of normal modes in the
original bath. Truncating the chain can thus be seen as an optimal
sampling procedure where the bath modes are not sampled uniformly.
These sampled bath modes can be recovered by diagonalizing the
tri-diagonal symmetric #< × #<-matrix ℎ�

ℎ� =

©«

l0 C0 0 0 . . . 0
C0 l1 C1 0 . . . 0
0 C1 l2 C2 . . . 0

...
. . .

...
C#<−2

0 0 0 0 C#<−2 l#<−1

ª®®®®®®®®®®®¬
, (4.14)

defined such that

�̂truncated
� = b̂†ℎ�b̂ with b̂ =

©«
1̂0

1̂1
...

1̂#<−1

ª®®®®®¬
. (4.15)

The combination of the chain mapping and a MPS representation gives
the method known as Time Evolving Density Operator with Orthonor-
mal Polynomial (TEDOPA) [48, 74]. This method is very efficient for
simulating OQS non-perturbatively and in the non-Markovian regime
as it allows the simulation of the evolution of the full wave-function of
the system and its environment.

4.2 Extension to finite temperature

The chain mapping allows the quantum state to have a natural repre-
sentation as a MPS at V = ∞when the initial state of the environment is
a vacuum state. However, when one wants to describe an environment
at finite temperature (V ≠ ∞), the joint state is not a wave function
anymore and must be written as a density matrix. Especially, we are
interested in initial states of the following form

d̂(0) = |k( (0)〉 〈k( (0) | ⊗
1
/

exp(−V�̂�) , (4.16)

where |k( (0)〉 is an initial pure state for the system, and / = tr[exp(−V�̂�)]
is the partition function of the bath. This initial state d̂(0) is a product
state between the system and its environment where the latter is in
a Gibbs state at the inverse temperature V. A natural approach there
could be to write the density matrix as a MPO [77] and use meth-
ods originating from DMRG to time-evolve it but the scaling of these
methods with the local Hilbert’s space dimensions is fairly poor. Other
methods based on an expression of the bath influence functional as
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a tensor network are able to handle (reduced) density matrices and
finite temperatures [46, 47].
Nevertheless, in some cases TEDOPA can be extended to finite temper-
ature [78]. As we have seen in Sec. 2.4, for harmonic baths the dynam-
ics of the reduced system only depends on the bath auto-correlation
function � (g). The exact nature of the environment is not essential
to calculate the system’s observables, thus the real microscopic bath
can be replaced by a fictitious one that is more convenient. Hence, if
we are able to find a zero temperature bath with the same correlation
function as the finite temperature one, then it will be possible to use a
MPS representation of the quantum state and use TEDOPA. The finite
temperature bath correlation function is

�V (g) =
∫ l2

0
dl� (l)

(
=V (l)eilg + (=V (l) + 1)e−ilg)

)
. (4.17)

Whereas, for V = ∞, the correlation function reduces to

�∞ (g) =
∫ l2

0
dl� (l)e−ilg . (4.18)

We want to rewrite �V (g) in the same form as Eq. (4.18), i.e. the integral
of a spectral density multiplied by a time-dependent phase factor. In
other words, we want to find a bath at zero ) with a different spectral
density but with the same system dynamics as the finite ) bath.
We recast the first term of �V (g) in Eq. (4.17) such that the argument
of the exponential is the same as the second term by sending l→ −l,
allowing for negative frequencies and using the identity

=V (−|l |) = −(=V ( |l |) + 1) . (4.19)

The correlation function thus reads

�V (g) =
∫ 0

−l2
dlsign(l)� ( |l |) (=V ( |l |) + 1)e−ilg +

∫ l2

0
dl� (l) (=V (l) + 1)e−ilg .

(4.20)

We define the extended SD �ext (l) = sign(l)� ( |l |) with a domain
extended to negative frequencies. Finally, the bath correlation function
can be written

�V (g) =
∫ +l2

−l2
dl �ext (l) (=V (l) + 1)e−ilC (4.21)

where the new bath has an effective temperature-dependent SD

�V (l) = �ext (l) (=V (l) + 1) . (4.22)

The behaviour of the thermal SD �V (l) when varying V is shown in
Fig. 4.4. We can see that it is always positive and converges to the zero
temperature limit over a couple orders of magnitude.
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Figure 4.4: Thermal spectral density �V
in the Ohmic case with U = 0.01 and
a hard cut-off for different values of V.
The thermal SD is always positive and
its contribution in the negative part of
the spectrum decreases rapidly with the
inverse temperature V.

With this transformation we have, in a sense, double the number
of bath modes. The new corresponding free bath Hamiltonian and
interaction Hamiltonian are

�̂� =

∫ l2

−l2
dll0̂†l 0̂l , (4.23)

�̂int = $̂

∫ l2

−l2
dl

√
�V (l) (0̂l + 0̂†l) . (4.24)

The new initial state of the bath now corresponds to the vacuum
state [78, 79]

d̂(0) = ( |k( (0)〉 ⊗ |{0}〉)(〈k( (0) | ⊗ 〈{0}|) . (4.25)

This new fictitious bath at zero temperature replaces emission of en-
ergy at frequency l from the bath into the system by an absorption in
the bath mode of frequency −l.

We can now define a set of orthonormal polynomials with the asso-
ciated measure �V (l), and follow again the procedure outlined in
Sec. 4.1 to map the extended environment to a chain. The combination
of the chain mapping technique, the description of a finite tempera-
ture environment as a zero temperature one and the description of
the joint wave function as a MPS is called Thermalised-TEDOPA (T-
TEDOPA) [78] and enables the efficient description of OQS at finite
temperature.
The new temperature-dependent chain parameters have an asymptotic
behaviour given by

lim
=→∞

l
V
= =

lMax +lmin

2
= 0 , (4.26)

lim
=→∞

C
V
= =

lMax −lmin

4
=
l2

2
, (4.27)
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Figure 4.5: Chain mode energy lV= and
tunneling CV= for an Ohmic spectral den-
sity at the inverse temperature V = 5.
These chain coefficients are independent
of the Kondo parameter U.

where lmin/Max is the lowest (largest) frequency that couples to the sys-
tem. The asymptotic speed of excitations CV∞ on the finite-temperature
chain is two times larger than the speed for zero-temperature. As a
consequence, to simulate the same evolution time, the temperature-
dependent chain must be at least twice as long – which is consistent
with the fact that the number of normal modes in the environment has
been doubled. The distribution of the chain coefficients for an Ohmic
SD at V = 5 can be seen in Fig. 4.5.

4.3 Spatially extended systems

The chain mapping procedures presented in the two previous sections
were for baths ‘indifferent’ to the potential spatial structure of the
system, i.e. different parts of the system being at different positions in
space. This can be seen by the fact that the bath part of the interaction
Hamiltonian �̂int in Eq. (4.2) does not depend on a spatial coordinate.
From the point of view of the environment, the system acts as a whole
and there is no propagation of bath excitations in space. However, in
actual multipartite quantum systems, the different parts are at a given
distance from one another and information takes time to travel in space.
Indeed, in many cases (for instance, concerted dynamics in biological
systems [15]) it is important to be able to take into account the spatial
quantum correlations inside of the environment. This means that we
have to describe space-dependent interactions and thus adapt our
chain mapping technique. Most of the original results to be presented
here have been published in Ref. [1].

We consider a one-dimensional bosonic bath with modes characterised
by the wave-vectors : ∈ [−:2 ,+:2], where :2 is the environment cut-
off wave-vector. The environment linear dispersion relation is given
by l: = |: |2 with 2 the speed of the phonons in the bath. The bath and
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interaction Hamiltonians are

�̂� + �̂int =

∫ +:2

−:2
l: 0̂

†
:
0̂:d: +

∑
U

$̂U

∫ +:2

−:2
(6U: 0̂: + h.c.)d: , (4.28)

where 0̂: is the annihilation operator of a bath mode of wave-vector : ,
6U
:
= 6:ei:AU , with 6: = 6−: ∈ R, is the coupling strengths between the

system and the bath and AU is the position of the system site U,
$̂U is a system operator acting locally on the system at the position
AU. The phase factor ei:AU in the interaction Hamiltonian takes into
account the phase difference between a plane wave generated at a
position A1 and one generated at another position A2.

Zero temperature

We separate positive and negative wave-vector modes and apply to

them two different chain mappings, and we introduce 1̂:
def.
= 0̂−: .

Two chain mappings are required here because of the bath dispersion
relation l: = |: |2 which prevents Eq. (4.6) to be successfully applied
on the interval [−:2 ,+:2]. The bath and interaction Hamiltonians
become

�̂� + �̂int =

∫ +:2

0
d:l: (0̂†: 0̂: + 1̂

†
:
1̂: )

+
∑
U

$̂U

∫ +:2

0
d:6:

(
ei:AU (0̂: + 1̂†: ) + h.c.

)
. (4.29)

We now introduce two unitary transformations

0̂:≥0 =
∑
=

*= (:)2̂= , (4.30)

1̂:≥0 =
∑
<

+< (:) 3̂< , (4.31)

where the matrix elements are

*= (:) = += (:) = 6:%= (:) (4.32)

where {%=}=∈N are orthonormal polynomials with respect to the mea-

sure `(:) = |6U
:
|2 = 62

:

def.
= � (:) (which is the bath spectral density)

such that ∫ +:2

0
%= (:)%< (:)� (:)d: = X=,< . (4.33)

We can then map the bath Hamiltonian using the unitary transforma-
tions from Eqs. (4.30)-(4.31) to two independent tight-binding chains
with the same on-site energies l= and hopping energies C=:

�̂� =
∑
=

l= (2̂†= 2̂= + 3̂†= 3̂=) + C= (2̂†= 2̂=+1 + 2̂†=+12̂= + 3̂
†
= 3̂=+1 + 3̂†=+1 3̂=) .

(4.34)



52 4 Chain Mapping of Bosonic Environments

Figure 4.6: The unitary transformation
*= (:) transforms a continuous environ-
ment of normal :-modes to semi-infinite
discrete tight-binding chains with inter-
acting =-modes. A sub-system at posi-
tion A is now coupled to the modes of the
chains with the coupling strength W= (A ) .
This new chain-mapping preserves the
1d geometry of the system and the envi-
ronment but introduces long-range cou-
plings.

For the interaction Hamiltonian, we apply the same procedure and
make use of Eq. (4.6) and find that the chains couple to the system
with coupling coefficients W= (AU) and W= (AU)∗

�̂int =
∑
U

$̂U

∑
=

(
W= (AU) (2̂= + 3̂†=) + h.c.

)
(4.35)

where

W= (AU) =
∫ +:2

0
d:� (:)ei:AU%= (:) . (4.36)

In preceding works, TEDOPA resulted in the system being connected
only to the first site of the chain. By contrast, here the system is gen-
erally coupled to all the sites of the chain, as represented in Fig. 5.1.
Nevertheless, the description of the Hamiltonian as a MPO is not com-
promised by this change of geometry, as we will show in chapter 6.
Another difference between this chain mapping and the previously
introduced ones, is that after the mapping the system is now formally
coupled to two environments, as can clearly be seen in Fig. 5.1.
We can study the behaviour of these new long-range coupling co-

efficients for the widely used Ohmic spectral density with a hard
cut-off at :2 . Figure 4.7 shows the absolute values of the system-chain
coupling for zero temperature for an Ohmic spectral density. A sub-
system at :2' = 0 couples only to the first site of the chain. However
sub-systems at other positions ' couple to a range of modes with a
maximum strength for the mode = ∼ :2'/22. We see there that a sub-
system at a given position couples mostly to a specific portion of the
chain and not to the whole chain. Hence, it is still possible to perform
numerically exact simulations by truncating the chain. Because of this
correspondence between a part of the chain and a region in space, we
call this newly introduced chain-mapped environment a "correlated
environment".
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n

R

Figure 4.7: Absolute value of the system-
chain coupling constants, for a bosonic
bath with a hard cut-off Ohmic spectral
density, as a function of the chain modes
= and the sites separations '. Note that
the main peak is centred around '/22.
Here U = 0.12, 2 = 1 and :2 = 1.

Finite temperature

To describe finite temperature systems in a statistical mixture as equiv-
alent zero temperature state vectors, we again apply the same strategy
as the one developed for T-TEDOPA by allowing the bath to have neg-
ative frequency modes to describe thermal fluctuations and using an
alternative bath spectral density that captures the temperature depen-
dence. To identify this new effective spectral density, we put the finite
temperature bath auto-correlation functions �V (A, C) for propagating
and counter-propagating modes in the form of a zero temperature
auto-correlation �∞ (A , C).

The interaction Hamiltonian in interaction picture is

�̂ �int =
∑
U

$̂U

∫ +:2

0
d:6:

(
ei(:AU−l: C) 0̂: + h.c.

)
+
∑
U

$̂U

∫ +:2

0
d:6:

(
e−i(:AU+l: C) 1̂: + h.c.

)
(4.37)

=
∑
U

$̂U

(
�̂1
AU
(C) + �̂2

AU
(C)

)
. (4.38)

Hence the bath correlation function for the propagating modes is

�V (A − A ′, C) = 〈�̂1
A (C)�̂1

A ′ (0)〉� (4.39)

=

∫ +:2

0
d:� (l: )

(
=V (l: )e−i(: (A−A ′)−l: C)

+ (=V (l: ) + 1)ei(: (A−A ′)−l: C)
)

. (4.40)

We could write the corresponding correlation function for the counter-
propagating modes which would be the same except for the sign of
the wave-number : . These two correlation functions have, in addition
to the usual temperature-dependence V and time-dependence C, a
spatial-dependence A − A ′ originating from the spatial-dependence of
the coupling coefficients {6U

:
} between the system and the bosonic bath.

Hence these correlation functions contain more information (i.e. about
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space and time) than the correlation functions usually encountered.
For zero-temperature, the correlation function reduces to

�∞ (A − A ′, C) =
∫ +:2

0
d:� (l: )ei(: (A−A ′)−l: C) . (4.41)

We want to rewrite �V (A − A ′, C) in the same form as Eq. (4.41), i.e. the
integral of a spectral density times a plane-wave phase factor. In other
words, we want to find a bath at zero ) with a different spectral density
but with the same system dynamics as the finite ) bath.

We recast the first term of �V (A − A ′, C) in Eq. (4.40) such that the argu-
ment of the exponential is the same as the second term by sending
: → −: , allowing for negative frequencies (hence, l−: = −l: ) and
using the identity in Eq. (4.19). With this transformation we have, in a
sense, double the number of propagating modes. There are the propa-
gating positive : modes with positive energies and the propagating
negative : modes with negative energies (coming from the second
term of the correlation function).

Finally, the bath correlation function for propagating modes can be
written

�V (A − A ′, C) =
∫ +:2

−:2
d: �ext (l: ) (=V (l: ) + 1)ei(: (A−A ′)−l: C) (4.42)

with �ext is the spectral density with a domain extended to negative fre-
quencies and antisymmetrized such that �ext (−|l: |) = −�ext ( |l: |). The
same procedure can be applied to the counter-propagating modes. We
can thus define orthonormal polynomials with the finite-temperature
spectral density

�V (:) = �ext (l: ) (=V (l: ) + 1), (4.43)

which is always positive and continuously differentiable. We define
the unitary transformation to chain modes

0̂: =
∑
=

*
V
= (:)2̂= for : ∈ [−:2 ,+:2] , (4.44)

1̂: =
∑
=

*
V
= (:)3̂= for : ∈ [−:2 ,+:2] (4.45)

where *V= (:) =
√
�V (:)%V= (:) and %

V
= (:) is a polynomial of order =

from a family of orthonormal polynomials with respect to the measure
d`(:) = �V (:)d: , i.e.∫ +:2

−:2
%
V
= (:)%V< (:)d`(:) = X=,< . (4.46)

With this set of orthogonal polynomials, we can map the environment
to two tight binding chains and a coupling coefficient

W= (A) =
∫ +:2

−:2
d: �V (l: )ei:A%

V
= (:) (4.47)
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n

Figure 4.8: Absolute value of the system-
chain coupling constants at finite temper-
ature, for a bosonic bath with a hard cut-
off Ohmic spectral density, as a function
of the chain modes = and the site sepa-
rations '. The peaks are centred around
= = '/2. Here U = 0.12, V = 0.5, 2 = 1
and :2 = 1.
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Figure 4.9: Absolute value of the system-
chain coupling constants at finite tem-
perature, for a bosonic bath with a hard
cut-off Ohmic spectral density, as a func-
tion of the chain mode number = for a
fixed ' = 5 and several temperatures
(U = 0.12 and :2 = 1).

between the system and the 2̂= and 3̂†= operators.

The finite temperature coupling constants between the system and
the chain for a hard cut-off Ohmic SD keep broadly the same form
as the zero temperature ones. A coupling profile as a function of
system site separations is displayed in Fig. 4.8. The differences are
that the amplitudes increase with temperature, and the peak value is
no longer centred around the mode = = '/22 but rather = = '/2. For
V = 0.5 the amplitude of the coupling is doubled compared to the zero
temperature case. We also note that the tail before the peak presents
more oscillations than the zero-temperature one which is smoother.
The change in the coupling profile as a function of temperature is
shown in Fig. 4.9. For high and moderately high temperatures, the
couplings decrease in amplitude as V increases but are still centred
around = ≈ '/2. For high values of V, the amplitude stays constant but
the maximum swaps to = ≈ '/22 as we recover the zero temperature
value.
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Appendix

4.A Finite-temperature extended bath and
thermofields

The thermofields method is a purification procedure that maps a sys-
tem in interaction with a bath at temperature ) to a system in interac-
tion with two baths at ) = 0 in a vacuum state. It thus enables the use
of a wave function representation at finite temperature, instead of a
density matrix, at the cost of doubling the number of environmental
modes. The standard derivation of thermofields relies on the bijection
between a Hilbert space and the linear forms on this Hilbert space (i.e.
the bra/ket correspondence) and Bogoliubov transformations. Clearly,
there are parallels between this method and the construction of the
extended environment presented above in the derivation of the finite-
temperature chain mapping. Here, we give an alternative derivation
of the thermofields solely using bath correlation functions and present
its relationship with the extended bath method.

Main results of thermofields

We outline the principle results of thermofields, i.e. the characteris-
tics of the two new baths. Detailed derivations of the thermofields
approach can be found in Refs. [80, 81]. We start from the following
OQS Hamiltonian

�̂ = �̂( +
∫

R+
dl ℎ̄l0̂†l 0̂l︸                ︷︷                ︸

�̂�

+
∑
U

&̂U

∫
R+

dl (6l 0̂l + h.c.)︸                                  ︷︷                                  ︸
�̂int

(4.48)

where &̂U is a system operator coupling to the bath and 0̂†l is the bath
creation operator for the mode of energy ℎ̄l.
A new set of environmental modes {0̃l}l∈R+ independent of the orig-
inal one is introduced, and a new bath term is added to the Hamilto-
nian

ˆ̃�� =
∫

R+
dl (−l)0̃†l 0̃l . (4.49)

Starting from a bath with coupling coefficients {6l}l∈R+ , the two new
baths have coupling strengths

61
l = 6l cosh(\l) , (4.50)

62
l = 6l sinh(\l) , (4.51)

where 61
l couples to the initial bath modes 0̂l and 62

l to the additional
bath modes 0̃l ; with the mixing angle \l being defined by

tanh(\l) = exp
(
− Vl

2

)
. (4.52)
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Alternative derivation from the bath correlation
function

From the Hamiltonian in Eq. (7.1) we define the bath correlation func-
tion

�V (g) = tr� [�̂(g)�̂(0) d̂�] =
∫

R+
|6l |2

(
=V (l)eilg + (=V (l) + 1)e−ilg

)
,

(4.53)

where �̂ =
∫

R+
dl (6l 0̂l + h.c.) and d̂� is a Gibbs state at the in-

verse temperature V. At zero-temperature, the correlation function
becomes

�∞ (g) =
∫

R+
|6l |2e−ilg . (4.54)

We can see the correlation function �V (g) as the sum of two zero )
correlation functions with coupling constants 6′l = 6l

√
=V (l) and

6”l = 6l
√
=V (l) + 1. Furthermore, one can notice that(√

=V (l) + 1
)2

−
(√
=V (l)

)2

= 1 . (4.55)

Thus, we can define

cosh(\l)
def.
=

√
=V (l) + 1 , (4.56)

sinh(\l)
def.
=

√
=V (l) . (4.57)

Hence, we have

tanh(\l) =
√

=V

=V + 1
= exp

(
− Vl

2

)
. (4.58)

For these two terms to appear in the correlation function we could
have �̂ = �̂′ + �̂” with 〈�̂′�̂”〉� = 〈�̂”�̂′〉� = 0, which is possible at
) = 0 if �̂′ and �̂” act on different bath modes. Hence, we introduce

�̂′
def.
=

∫
R+

dl (6′l 0̂′l + h.c.) , (4.59)

�̂” def.
=

∫
R+

dl (6”l 0̂”l + h.c.) (4.60)

with [0̂′l1
, 0̂”l2 ] = [0̂′l1

†, 0̂”l2 ] = 0 and [0̂′l1
, 0̂′l2

†] = X(l1 −l2) (idem
for 0̂”).

The two terms �V (g) have opposite phases, thus we also require that
in the interaction picture these new bath �̂′ and �̂” operators acquire
an opposite phase

*
†
�
(C)0̂”l*� (C) = 0̂”le−ilC , (4.61)

*
†
�
(C)0̂′l*� (C) = 0̂′leilC (4.62)
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where*� (C) is the interaction picture evolution operator, which implies
that the bath Hamiltonian is

�̂� = �̂
′
� + �̂”�

def.
=

∫
R+
(−l)0̂′†l 0̂′ldl +

∫
R+
l0̂”†l 0̂”ldl . (4.63)

Because the dynamics of the system is entirely determined (given an
initial condition) by the system Hamiltonian �̂( and the bath correla-
tion function �V (g), there is an equivalence between a bosonic bath at
temperature ) (described by a density matrix) coupled to the system
with the coupling strength 6l , and two baths at ) = 0 (described with
a wave-function) coupled to the system with strengths 6′l = 6l

√
=V (l)

and 6”l = 6l
√
=V (l) + 1.

Relation with the extended bath

The extended bath introduced in the T-TEDOPA [78] method merges
the two types of effective zero ) modes into a single bath where nega-
tive energies are allowed by noticing that

=V (−|l |) = −(=V ( |l |) + 1) . (4.64)

This identity can be ‘propagated’ to the two sets of thermofields anni-
hilation and creation operators by imposing

0̂′l = 0̂”−l . (4.65)

This corresponds to merging together the two Hilbert spaces H′ and
H” of the ‘primed’ and ‘seconded’ modes respectively into a single
Hilbert space Hext

�
= H′ ⊕ H”. The bath Hamiltonian can now be

written

�̂� =

∫
R+
(−l)0̂”†−l 0̂”−ldl +

∫
R+
l0̂”†l 0̂”ldl (4.66)

=

∫
R

l0̂”†l 0̂”ldl . (4.67)

It is then natural to interpret 0̂”†−|l | as creating a bath excitation of neg-
ative energy −ℎ̄|l |. Similarly, following the consequences of Eq. (4.64),
we can define a single set of temperature-dependent coupling constant
for the new bath modes and the system

6”l = 6l
√
=V ( |l |) + 1 . (4.68)

These new zero ) independent bath modes with positive and nega-
tive energies form the extended bath on which we apply the chain
mapping.
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I think the problem is not to find
the best or most efficient method
to proceed to a discovery, but to
find any method at all.

Richard FEYNMAN,
Nobel Lecture

5.1 How to manage multiple environments?

In the previous chapter, we introduced chain-mapping techniques of
bosonic environments which enable us to represent the joint state of
an OQS as MPS. The current chapter focuses on how the obtained
MPS is going to be written in practice when several environments are
interacting with the system. This is the case, for instance, with the
‘correlated environment’ we introduced previously. There, the envi-
ronment is split in two baths corresponding to different directions of
propagation for the environmental excitations. Another example, of
high interest for quantum technologies, comes from quantum thermo-
dynamics where one might be interested in studying the heat exchange
of a quantum system interacting with a hot and a cold reservoirs. A last
example comes from molecular systems where electronic excitations
can effectively couple to several different vibrational environments [82,
83]. Having several environments interacting with the system leads to
an increase of the required computational resources needed to perform
an accurate simulation, because the amount of correlation between the
system and the environmental degrees of freedom grows. A few meth-
ods exist to reduce the computational cost of such simulations, either
based on entanglement renormalisation (i.e. changing the structure of
the TNS Ansatz to lower locally the entanglement) [82] or on ‘cluster-
ing’ of environmental modes (i.e. changing the order of modes). The
entanglement renormalisation approach relies on expressing the joint
quantum state as a tree tensor network (TTN) state and then analysing
the entanglement properties of system/environments and environ-
ments/environments partitions. From this analysis, a new layer of
so called entanglement renormalising (ER) tensors The ER tensors don’t have physical legs

and are there to ‘compress’ correlations.
They are to be related to the disentan-
glers that can be found in another TNS
the Multiscale Entanglement Renormali-
sation Ansatz (MERA) [84].

is constructed and
placed in between the system and the environments to lower the entan-
glement but keep correlations between environments. This approach
necessitates a thorough analysis of the entanglement structure between
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the system and the environments and between the environments them-
selves before being able to write the TTN state.

On the other hand, the methods relying solely on the reordering of the
environmental modes preserve a simple TTN state or MPS structure.
How environmental modes are ordered in the MPS representation of
the quantum state is a priori arbitrary. One just has to make sure that
the operators in the MPOs applied to the state follow the same order-
ing (which might make their expression more complex). Nevertheless,
it does not mean that all orderings of the environmental modes are
equivalent. The computational cost associated with MPSs is related to
their bond dimension (as introduced in chapter 2). As explained be-
fore, these bond dimensions are related to the amount of correlations,
or the degree of entanglement, between bi-partitions of the quantum
state. It is known that reordering the modes in some specific cases of
single bosonic or fermionic environments leads to reducing the degree
of entanglement, and thus to an improved efficiency of the computa-
tions. In the case of bosonic modes, the On the Fly Swapping (OFS)
is a procedure applied during the sweeps of the (real or imaginary)
time evolution where neighbouring tensor sites are swapped if it re-
sults in decreasing a given cost function (entanglement entropy or the
truncation error) [85]. Even though this method is a practical way of
improving computational performance, it needs to be applied at each
time step of the state evolution. In the case of fermionic bath modes,
the reordering is particularly simple and consists of alternating bath
modes corresponding to filled orbitals with modes corresponding to
empty ones [86, 87]. Whereas the reordering procedure for bosonic de-
grees of freedom is a dynamic procedure, this fermionic reordering is
static and done once and for all when writing down the initial state.

A natural question then emerges: is there a similar efficiency-increasing
static reordering of bath modes in the bosonic case? We study here the
influence of different bosonic modes arrangements on the efficiency of
open quantum systems simulations. We initially conjecture that entan-
glement in MPS states can be lowered by diminishing the ‘correlation
length’ between two environmental excitations created at the same
time. Investigating the convergence of different arrangements of baths
modes we are able to give a negative answer to this hypothesis. This
exploration brings us to study another property of tensor network
states that we show to be related to entanglement: the connectivity of
the system with its environments. We bring evidence that adopting a
geometry where there is a single ‘interface’ between the system and the
several environments it connects reduces the amount of entanglement
in the state.

5.2 Two environments: Mode arrangements

In several cases the quantum system of interest is interacting with
two baths. A first instance comes from the study of thermodynamic
properties and dynamics of quantum systems. For example, when
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Figure 5.1: Schematic drawing of the uni-
tary transformation* – the chain map-
ping – changing two baths of indepen-
dent bosonic modes into two chains with
nearest neighbour interactions. The cor-
relation length b (C) measures the dis-
tance in between two dynamically corre-
lated environmental excitations.

studying heat flows when a quantum system is between a cold bath
and a hot bath or the system thermalization behaviour [72, 88]. This
category of situations are important in the context of quantum ther-
mal machines. Another example is the two chains of our correlated
environment for spatially extended systems. More generally, the two
bosonic baths could be of different nature, for example one repre-
senting a vibrational environment and the other an electromagnetic
environment [89]. There, the two environments could play a different
role, and their effects can simply add up, or new features that don’t
come from one environment alone could emerge (such behaviour is
called non-additive). In any cases, the problem of a quantum system
interacting with two bosonic environments is more than just a case
study and has physical relevance.

When the two environments have similar characteristic timescales,
energy dissipation from the system results in the generation of en-
vironmental excitations that are then propagating in their respective
chains in a dynamically correlated way. It thus appears ‘natural’ to
define a ‘correlation length’ b between these excitations, namely the
number of MPS’s sites in between them. The hypothesis that directly
follows is that the degree of entanglement, as described by the bond
dimension, grows with this correlation length. Though not formulated
in this way, this hypothesis forms a main conclusion of the work pre-
viously performed on modes reordering in the context of fermionic
baths [87].

Hence, in this section we introduce three different orderings of bath
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Figure 5.2: Diagram of the different
mode arrangements in the MPS for a
system interacting with two bosonic
baths. The dotted lines represent the
long-range couplings between the sys-
tem and chain modes. (a) ‘Left-Right’ ar-
rangement of the chain-mapped environ-
ment. Chain modes are symmetrically
placed on both sides of the system. The
correlation length between the excita-
tions of the two chains grows linearly in
time. (b) ‘Successive’ arrangement of the
chain-mapped environment. One chain
connects directly to the system and the
second one is appended to the first one.
The correlation length between the ex-
citations of the two chains is a constant
of the order of the length of the chain.
(c) ‘Interleaved’ arrangement of the chain-
mapped environment. Chain modes are
alternating and thus coupling to their
next nearest neighbours. The correlation
length is constant of the order of 1.
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3 41 23'4' 1'2'
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modes (depicted in Fig. 5.2) that display three different behaviours
for the correlation length b, and we compare the minimum bond
dimension they require in order to reach convergence in 1TDVP simu-
lations.

Left-Right arrangement

The Left-Right MPS is ‘isomorphic’ to
a TTN state with two branches: one for
each environment.

Usually, the MPS and MPO representation of the joint system-environment
state and Hamiltonian follows what we call a ‘Left-Right’ ordering
where the system is placed in between the two chains. This arrange-
ment is ‘intuitive’ because it reproduces the structure of the Hamilto-
nian and, thus, often used when describing a quantum system inter-
acting with two independent baths [72, 86]. However, this ordering of
the environmental modes might lead to a non-optimal maximal bond
dimension. Indeed, the initial environmental excitations created by the
environment propagate towards the end of their respective chains but
are dynamically correlated. Hence, as time passes, these excitations
that are highly correlated move further apart thus a priori requiring a
higher bond dimension for the MPS as the correlation length grows
linearly with time b ∝ C. Figure 5.1 shows a representation of this
correlation length.

Successive arrangement

An alternative ordering of the chain modes corresponds to placing
the system at one end of a chain and the other chain at the other end
(i.e. concatenate the two chains), as shown in Fig. 5.2 (b). We coin
this ordering of the bath modes ‘Successive’. This might seem counter-
intuitive as the initial bath excitations thus induce immediately a
correlation over a chain-long region. However, the correlation length
stays approximately constant b ≈ #< as the excitations propagate
along the chain. Moreover, the arrangement of the chain modes enables
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a small optimization of the size of the system’s tensor in the MPO
representation of the Hamiltonian.

Interleaved arrangement

To diminish the bond dimension a solution would be to bring closer the
modes that are highly correlated with one another. In the Successive
arrangement case, compared to the Left-Right one, this is done by
having a fixed distance of b ≈ #< between the correlated excitations.
An improvement could be achieved by interleaving the two chains
together into a single one. This is done by alternating the mode of
one chain with the corresponding mode of the other one, as shown in
Fig. 5.2 (c). Thus, correlated excitations are now separated by a fixed
distance of b ≈ 1 thus diminishing the correlation length. This type
of mode ordering has already been applied to fermionic problems,
namely Anderson impurity, where one bath describes empty orbitals
and the other one filled orbitals.

Comparison

To compare these three different mode arrangements, we are first
going to apply them to a well known and studied OQS model, the
Independent Boson Model (IBM), and later on to the Spin Boson Model
(SBM).

Definition 5.2.1 In the IBM, because
[
�̂( , �̂int

]
= 0, the

system’s populations are invariant. The
system only experiences pure dephasing
of its initial coherences and is not sub-
jected to decay.

The Spin Boson Model is a paradigmatic model of
OQS where a single two-level system interacts linearly with a bosonic
environment

�̂ =
n

2
f̂I +

Δ

2
f̂G +

∫ +∞

0
l0̂†l 0̂ldl + f̂I

2

∫ +∞

0
(6l 0̂l + h.c.) dl ,

(5.1)

with n the TLS energy gap and Δ its tunnelling term. When the tunnelling
is null the SBM reduces to the so called Independent Boson Model where
the system and interaction Hamiltonians commute. Contrary to the SBM,
the IBM is analytically solvable.

Independent Boson Model

We first show that all arrangements are able to accurately describe
system’s dynamics at zero and finite temperature by considering an
analytically solvable model. The IBM describes a spin interacting with
a bosonic environment where the system coupling operator commutes
with the system’s Hamiltonian �̂( . The Hamiltonian considered here
is rotated by c/2 compared to Def. 5.2.1, i.e the coupling operator is
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f̂G . The Hamiltonian we consider has two bosonic bathsBecause the coupling constants 6: are
the same for both baths, this model could
also be written as a single bath IBM with
a fourfold Kondo parameter U. �̂ =

Δ

2
f̂G +

2∑
8=1

∫
R

l: 0̂
8†
:
0̂8:d: + f̂G

2

2∑
8=1

∫
R

(
6: 0̂

8
: + h.c.

)
d: , (5.2)

where 0̂8†
:

creates an excitation in bath 8 with energy l: , and 6: is the
coupling strength between bath mode : and the system for both baths.
The expectation value 〈fI〉 is given by [9, 35]

〈fI〉(C) = cos(ΔC)Re
[
d↑↓(0) exp

(
−

∫ ∞

0

� (l)
l2 (1 − cos(lC)) coth

(
Vl

2

))]
,

(5.3)

where d↑↓(0) is the initial coherence of the system, � (l) = ∑
: |6: |2X(l−

l: ) = 2Ul� (l2 − l) is the bath spectral density and V = (:�))−1 is
the bath inverse temperature. Figures 5.3 (a) and 5.3 (b) show that the
Left-Right, Successive and Interleaved arrangements all recover the an-
alytical expression for the smallest non-trivial bond dimension � = 2
for widely different values for Δ and U. This small bond dimension
is expected as the analytical solution of state of the system (for the
initial state given below) is known to be an entangled state between
the system and a displaced environment

|k(C)〉 = e−i\ (C)
√

2

(
|↑G〉 ⊗ �̂ ({U: (C)}) |{0}:〉 − |↓G〉 ⊗ �̂ ({−U: (C)}) |{0}:〉

)
(5.4)

where \ (C) and U: (C) depend solely on the SD � (l) and the energies
of bath modes l: [35] and �̂ ({U: }) is a multi-mode displacement
operator. Given that the environment state is simply a displaced state,
manifesting no entanglement of its own, the information about the
joint state can be stored with a single bit of information, hence the
value of the bond dimension � = 2. Similarly, Fig. 5.3 (c) shows that
the analytical behaviour is also recovered at finite temperature for the
first non-trivial bond dimension. The initial joint state is a product
state {

|↓I〉 ⊗ |{0}:〉 if V = ∞
|↓I〉 〈↓I | ⊗ exp

(
−V�̂�

)
// if V ≠ ∞ , (5.5)

where |↓I〉 is the eigenstate of f̂I associated with the eigenvalue −1,
and / is the bath partition function.

Correlated Environment

Now that we have established that our three different arrangements are
able to accurately describe OQS dynamics, we are going to study the
convergence behaviour of these different orderings with a non-trivial
model: a correlated environment model. We consider a 1D system
composed of two sites labelled by W placed in space at the position
AW . These two sites are interacting with a common bosonic bath of
plane waves labelled by the wave-vector : ∈ R. The corresponding
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Figure 5.3: Dynamics of the 〈fI 〉 for the Interleaved, Successive and Left-Right chain arrangements for several maximal bond
dimensions �. (a) The model parameters are Δ = 0.8l2 , V = ∞, U = 0.2. (b) The model parameters are Δ = 0.2l2 , V = ∞, U = 0.1. (c)
The model parameters are Δ = 0.4l2 , l2V = 10, U = 0.1. The three different arrangements are able to recover the analytical results at
zero and finite temperature for the first non trivial bond dimension � = 2.

Hamiltonian is

�̂ =
∑
W

�W 5̂
†
W 5̂W +l0

(
5̂W 5̂
†
W+1 + h.c.

)
+
∫

R

l: 0̂
†
:
0̂:d:

+
∑
W

5̂ †W 5̂W

∫
R

(
6:ei:AW 0̂: + h.c.

)
d: , (5.6)

where 5̂
†
W creates an excitation on site W, 0̂†

:
creates a plane wave of

energy l: = |: |2 with 2 the phonon speed (and ℎ̄ = 1), and 6:ei:AW

is a coupling strength between bath mode : and the site W. As in-
troduced in chapter 4, the bosonic environment is mapped to two
chains, one for the propagating bath modes and the other one for
the counter-propagating modes, with long-ranged couplings with the
system. Figure 5.1 shows a schematic diagram of the chain mapping
procedure that transforms a continuous environment into two interact-
ing chains. We comment on the fact that this is a particular instance of
a system coupled to two bosonic baths (they happen to be described
by the same parameters up to complex conjugation). We consider this
specific type of environment because it is general and can be easily
extended to the case of two bosonic baths with different parameters.
Furthermore, in that case, the dynamics of the two environments are
highly correlated. The results shown hereafter are for degenerate sites
�W = 0 at positions :2A1 = 0 and :2A2 = 5 for different values of cou-
pling strengths to the bath U (the SD is again taken to be Ohmic) and
coherent coupling l0. Initially the system state is localised on the first
site {

|A1〉 ⊗ |{0}:〉 if V = ∞
|A1〉 〈A1 | ⊗ exp

(
−V�̂�

)
// if V ≠ ∞ , (5.7)

where |A1〉 is the state corresponding to site 1 being occupied, i.e.
〈A1 | 5̂ †1 5̂1 |A1〉 = 1. Figure 5.4 (a) shows the population of the second
site at zero temperature for a strong system-bath coupling U = 0.1 and
a weak tunnelling energy l0 = 0.1l2 . The Left-Right arrangement
converges at � = 5 whereas successive and interleaved are already
converged at � = 4. One can notice that for the first non-trivial bond
dimension � = 2, the Interleaved ordering is slightly better than the
Successive one. Increasing the system-bath coupling and the tunnelling
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Figure 5.4: Population of the second site in the correlated environment model. Generally the Left-Right arrangement converges for
higher bond dimensions than the Interleaved and Successive arrangements that have a similar convergence behaviour. The amount of
correlations in the joint state is increasing throughout the three parameter regimes (a), (b) and (c). In the legends, Int., Succ. and L.-R.
respectively stand for an Interleaved, a Successive, and a Left-Right chain arrangement. The model parameters are (a) �W = 0, U = 0.1,
l0 = 0.1l2 , V = ∞, (b) �W = 0, U = 0.2, l0 = 0.4l2 , V = ∞, and (c) �W = 0, U = 0.1, l0 = 0.1l2 , V = 1.

energy requires a larger bond dimension to describe accurately the
dynamics of the system, as shown in Fig. 5.4 (b). The system-bath cou-
pling has been doubled U = 0.2 and the tunnelling energy multiplied
by four l0 = 0.4l2 compared to the previous case. The different mode
arrangements are all converged for � = 10 but only Interleaved one
is represented for readability. We can see that Left-Right is generally
performing worse than the Successive and Interleaved arrangements.
For unconverged values of �, it exhibits dynamics that are further
away from the converged one than the Successive and Interleaved
arrangements. These two arrangements look similar but interleaved
seems to catch the coherent oscillations better for � = 6. In order to
require a higher bond dimension for the state, we now consider a finite
temperature l2V = 1 case. The couplings are the same as in Fig. 5.4 (a).
We do not show the converged results in Fig. 5.4 (c) (which are for
� = 15) as we are only interested in the differences between the differ-
ent arrangements, and want to prevent the graph to be too cluttered.
We can see in Fig. 5.4 (c) that the Left-Right ordering is again less
accurate than the other two for smaller bond dimensions. It exhibits
a dynamic similar to the other orderings only when reaching � = 10.
The Interleaved arrangement performs better than the Successive one
for � = 5, but both become similar for larger values.

From these examples, we can rule out the explanation in terms of
correlation length because the Interleaved and Successive arrange-
ments have very similar convergence properties despite having an
order of magnitude difference in their correlation lengths. Neverthe-
less, these two orderings are still converging faster than the usual
Left-Right one. This result might be surprising as these arrangements
don’t reproduce the structure of the underlying Hamiltonian. This
leads us to consider another hypothesis related to the connectivity of
the system-environment couplings. In the Left-Right case the system
is connected twice to the environment, doubling – so to speak – its
surface of exchange with it, whereas the Successive and Interleaved
ones are coupled only once to a composite environment. A second
piece of evidence that the correlation length is not a valid explana-
tion for the efficiency of the computation is given by a fourth mode
arrangement which has a constant correlation length and two points
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Figure 5.5: ‘Reverse Left-Right’ arrange-
ment of the chain-mapped environment.
Chains modes are symmetrically placed
on both side of the system but on one
chain they are in the reverse order. The
correlation length between the excita-
tions of the two chains remains constant
and is the same as in the ‘Successive’ or-
dering.

Figure 5.6: Comparison of the Left-
Right and Reverse Left-Right ordering
of chains modes for the same parame-
ters as in Fig. 5.4 (b) (�W = 0, U = 0.2,
l0 = 0.4l2 , V = ∞). Even though the
correlation length b of correlated envi-
ronmental excitations are different by an
order of magnitude, the convergence be-
haviour of the dynamics with respect to
� is the same.

of connection – ‘interfaces’ – between the system and the environment.
Keeping a Left-Right arrangement of the mode but taking one of the
chain in the reverse order (see Fig. 5.5) gives a situation where the
correlation length is fixed (and similar to the Successive arrangement)
as the excitations are now propagating in the same direction. Hence,
this new Reverse Left-Right arrangement has the same topology as
the Left-Right ordering but a different correlation length. Figure 5.6
shows the second site population for the same choice of parameters as
in Fig. 5.4 (b). The two versions of the Left-Right arrangement have
a similar convergence behaviour despite having radically different
correlation lengths. Hence, we can rule out the hypothesis that the
important metric for the MPS bond dimension is the correlation length
between excitations in both environments.

Now that the hypothesis of the connection between the correlation
length and the bond dimension has been refuted, it is important to
notice that the intuitive relation between the dynamics of correlated
excitations and the growth of bond dimension – often invoked to jus-
tify the feasibility of a given TNS representation – is hand-wavy. As
convincing as it may sound initially, there is no firm ground on which
this assertion is set. Indeed, one could argue that dynamically corre-
lated excitations carry very low entanglement in the MPS as the only
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information they share is their distance from the system which is up-
dated by the action of the time evolution operator. Therefore, to better
understand the absence of connection between the correlation length
b and the growth of the bond dimension, a rigorous mathematical
analysis for simple local Hamiltonian should be performed.

5.3 Three environments: Connectivity

To test the hypothesis of the importance of connectivity on the growth
of bond dimensions, we study a spin interacting with three identi-
cal bosonic baths. We name these baths ‘up’, ‘left’ and ‘right’. The
Hamiltonian of this three baths Spin Boson Model (S3BM) isAgain, this simple model can be mapped

to a SBM with a single environment, and
is used here as a first investigation of our
hypothesis. �̂ =

n

2
f̂I +

Δ

2
f̂G +

3∑
8=1

f̂G

∫ ∞

0
dl

√
� (l) (0̂8l + 0̂†l8) , (5.8)

where f̂9 are Pauli matrices, � (l) is the bath spectral density and 0̂†l8

creates a bosonic excitation of energy l in the 8th bath. We keep an
Ohmic spectral density with a hard cut-off � (l) = 2Ul2� (l2 −l).

Three different configurations are looked at to test the hypothesis of
the role of connectivity in the growth of maximal bond dimension: (1)
the tree configuration where the system is connected directly to three
baths; (2) the left-right configuration where the system is connected
to the left and (right + up) chains; and (3) the successive configura-
tion where the system is connected to a single chain (left + right +
up). In order to study in real time the evolution of the required bond
dimension necessary for the convergence of the MPS state, we time-
evolve the state using a 2-site variant of the TDVP method (2TDVP)
and the adaptive variant of the 1-site TDVP (DTDVP) [72]. These two
variants are able to update in real time the bond dimensions of the
MPS sate. Figure 5.7 (a) shows the evolution of the bond dimension
of the MPS with a Left-(Successive Right+Up) arrangement during
a time evolution performed with 2TDVP [60]. The chains all have
#< = 30 modes. We can see that the bond dimension grows quickly
and reaches the cut-off bond dimension of the simulation (�Max = 50)
at l2C ≈ 6. The other noticeable element is that the third chain which
was appended to the right chain was not updated by 2TDVP. This
is consistent with the known fact that 2TDVP has difficulties taking
into account long-ranged interaction. Hence, this case has also been
studied with an Interleaved arrangement of the (right + up) chain
to make it tractable with 2TDVP as shown in Fig. 5.7 (b). The main
conclusion on the growth of the bond dimensions is unchanged. These
heat maps directly show that the growth of the bond dimensions is
localised around the system. The DTDVP algorithm which enables a
one-site update of the MPS and dynamically evolving bond dimen-
sions was also tried on this arrangement but always got stuck in the
initial manifold.

However, the DTDVP method was used to study the one chain (Left +
Right + Up) case shown in Fig. 5.7 (c). This chain was in a Successive
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Figure 5.7: Evolution for a S3BM at V = ∞ of the bond dimensions of the MPS with: (a) a Left - S - (Right + Up) configuration obtained
with 2TDVP. The cut-off value for the bond dimensions �Max = 50 is quickly reached and 2TDVP is not able to handle the long range
coupling induced by appending the right and up chains. (b) a Left - S - (Right interleaved with Up) configuration obtained with 2TDVP.
The cut-off value for the bond dimensions �Max = 50 is quickly reached. (c) a S - (Left + Right + Up) configuration obtained with
DTDVP. The bond dimensions evolve more slowly.

arrangement and the long range coupling were handled correctly by
the method. Here, the bond dimensions grow at a slower pace and
reach maximal allowed bond dimension �Max = 50 at l2C ≈ 25, which
corresponds to a fourfold improvement on the case Left-(Right+Up)
geometry that has a connectivity of 2. The growth of the bond dimen-
sion with this arrangement is not localised around the system per se
but at the beginning of each chain.

The 2TDVP and DTDVP algorithms, as currently implemented in our
MPSDynamics package [76], are not yet straightforward to apply to
TTN. In that case we went back to the 1TDVP method and chose
the relative error of the expectation value 〈fI〉 with respect to the
� = 50 results to be our metric for the growth of the bond dimension
as we are not interested in the dynamics of this observable in itself.
Figure 5.8 shows the relative error for � ∈ {10, 20, 30} for a selection of
parameters spanning a variety of dynamics. In most cases a residual
error still persists in the � = 30 case whose value is on the order of a
percent. Most importantly, these errors consistently manifest at early
times l2C . 5 which does not contradict our hypothesis and seems to
point in the same direction as the results obtained for the Left-Right
and Successive arrangements. However, in order to formulate a firm
conclusion we would need to have access to the dynamics of the bond
dimension for the TTN as we did in Fig. 5.7. To do so, we are currently
developing an implementation of the DTDVP method to TTN.

With these examples we can see that connectivity seems to play an
important role in limiting the growth of the bond dimensions needed
to accurately describe the state in time.
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Figure 5.8: Relative error between the dynamics of 〈fI 〉 for different values of � and � = 50 obtained with 1TDVP for different
simulation parameters with a TTN state. In every case small errors of the order of a percent are always present for � = 30 at early time.
The simulation parameters are (a) U = 0.1, n = 0.2l2 and Δ = 0.2l2 , (b) U = 0.5, n = 0.2l2 and Δ = 0.2l2 , and (c) U = 0.5, n = 0.2l2
and Δ = 0.5l2 .

5.4 Discussion

In this chapter, we have shown that, when a system is interacting with
several environments, different arrangements of the environmental
modes – and crucially, not only the ‘intuitive’ TTN structures – can
lead to well-converged results. The hand-wavy argument often given
against arrangements where independent environments are not cou-
pled directly to the system, namely that the growth of bond dimension
in the multi-environments MPS states is related to the correlation
length b (C) of dynamically correlated environmental excitations, has
been disproved for bosonic environments. We came to this conclusion
by

(1) categorising (and introducing new) environmental mode ar-
rangements in the chain representation,

(2) showing that they are all able to accurately simulate the OQS
dynamics,

(3) comparing their convergence behaviour with respect to the joint
state bond dimension,

(4) therefore showing that their convergence behaviours are inde-
pendent of the correlation length b.

This first result has a consequence of practical importance as it implies
that joint system-environments state can always be written as MPS
which are slightly easier to implement than TTN.

Showing that the usual Left-Right ordering of bath modes is less effi-
cient than the less ‘natural’ Successive and Interleaved arrangements
lead us to consider an alternative hypothesis to the correlation length
one. For bosonic environments, the number of bonds connecting the
system to the environments (‘interfaces’) is a quantity associated with
the growth of the bond dimension. The lower the number of interfaces,
the lower the required bond dimension. For simple models that can be
mapped easily to single environment problems, our results agree with
this hypothesis. Nevertheless, investigations must continue to test this
new conjecture in more complex settings and – if it holds true – gain a
deeper understanding of its origin.
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These results have a compounding impact on the efficiency of TN
simulations as the number of elements in the system’s tensor scales
proportionally to �# with # the number of interfaces between the sys-
tem and its environments. For instance, in the S3BM the scaling is pro-
portional to �3 for TTN states, �2 for Left-Right MPS, and only � for
Successive and Interleaved MPS. The results presented here thus im-
ply that simple TTN states can always be recast as Successive-ordered
MPS, thus a priori removing the need for entanglement renormalisa-
tion of environmental couplings. These results add to the diverse body
of knowledge around the importance of selecting the appropriate ge-
ometry when using TNS and highlight that the appropriate geometries
are not always the ones reproducing the structure of the interaction
Hamiltonian.

The following chapters will focus on applying the tools introduced
and developed so far to study non-Markovian effects in OQS.
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Someone I say, will remember us
in another time

Sappho, FRAGMENT 147

Building on the concepts and tools we introduced and developed
in the previous parts, in this chapter, we formulate a fully quantum
mechanical model that allows us to explore strong spatio-temporal
correlations. The existence of such correlations necessitates a mani-
festly non-Markovian description of the dynamics. The majority of the
original results we are presenting in this chapter have been published
in Ref. [1]. This model opens a route to establishing the phenomenol-
ogy of non-Markovian dissipation in the regime where all the relevant
timescales – system dynamics, relaxation transitions and environmen-
tal signalling – are similar. Our objective is to identify and understand
the underlying microscopic phenomena behind the non-Markovian
phenomena emerging from our model, in order to create a conceptual
toolkit that could be used to exploit these effects, including any explic-
itly non-classical effects, in artificial nanoscale devices. The motivation
for this exploration arises from protein-based ‘nanomachines’ selected
through natural selection to perform the key optoelectronic tasks of
photosynthesis as presented in chapter 1. For example, the pigment-
protein complexes (PPC) that perform the electron transfers at the core
of photosynthesis are composed of photoactive pigments in interac-
tion with a highly structured environment made of a protein scaffold
that tunes the electronic and vibrational properties of the molecular
network. Coordinating multiple charge dynamics in structures with
poor dielectric screening and typical lateral sizes of only 5 − 6 nm re-
quires exquisite spatio-temporal control of energy transfer and electron
transport, including mechanisms of feedback to ensure the processes
occur in the correct order without waste of excited state energies. While
the role of the structured environments found PPCs has been widely
discussed in terms of transport efficiency and the possible support of
coherent electronic dynamics in light-harvesting [17, 19, 90, 91], the sig-
nalling and potential efficiency gains from spatio-temporal feedback
and heralding feedforward processes in the environment has received
rather scant attention. However, first principles methods based on
crystal structures do show that the large secondary protein elements
that span the electron transport chain in the Reaction Center (RC)
could ‘communicate’ the initial and final sites of the electron trans-
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Figure 6.1: Biological inspiration for our
correlated bath model. (Left) The pro-
tein structure of a nanoscale photosyn-
thetic reaction centre. Photoactive pig-
ments are held rigidly by non-covalent
protein interactions that also tune their
electronic overlaps, interactions and ex-
cited state energies. The coordination
of multiple cofactors by extended struc-
tures, such as quasi-1d alpha helices, al-
lows vibrational fluctuations to act on
different cofactors in a spatio-temporally
correlated manner. (Right) Structure of
the cofactors active in charge separa-
tion through quantum electron transport
(ET). The oxidation of water in photosyn-
thesis requires four successful electron
transports, and this multi-fermion pro-
cess is regulated through feed-forward
(FF) and feedback (FB) mechanisms in-
duced by strong electron-hole interac-
tions with the dissipative protein scaf-
fold.

ET

FF FB

port, and may act to prevent accumulation of further charges [92].
Elsewhere in biology, the idea of dynamical structural changes as a
way to regulate processes is well established, especially in the field of
allosteric regulation [93, 94]. Considered as an open quantum system
problem, the existence of strong spatio-temporal correlations necessi-
tates a manifestly non-Markovian description of the dynamics, as the
key physics is encoded in the retarded ‘action at a distance’ that results
from previous system-bath interactions, energy exchange, etc.

6.1 Model

We consider a one-dimensional chain of # sites labelled by {U}U=1...#

in a common one-dimensional bosonic bath with modes characterised
by the wave-vectors : ∈ [−:2 ,+:2], where :2 is the environment cut-
off wave-vector. The environment dispersion relation is chosen as the
usual linear dispersion l: = |: |2 with 2 the speed of the phonons
in the bath. We restrict ourselves to the single excitation subspace of
the system described by a Hamiltonian �̂( with nearest neighbour
hopping. The total Hamiltonian has the formBecause we restrict ourselves to the

system’s single excitation subspace, we
don’t have to deal with the fermionic na-
ture of the system excitation.

�̂ =�̂( + �̂� + �̂int (6.1)

=

#∑
U=1

�U 5̂
†
U 5̂U +

#−1∑
U=1

�

(
5̂ †U 5̂U+1 + h.c.

)
+
∫ +:2

−:2
l: 0̂

†
:
0̂:d: +

#∑
U=1

5̂ †U 5̂U

∫ +:2

−:2
(6U: 0̂: + h.c.)d: (6.2)

where 5̂U annihilates a system excitation on site U, 0̂: is the annihilation
operator of a bath mode of wave-vector : , 6U

:
= 6:ei:AU , with 6: = 6−: ∈

R, is the coupling strengths between the system and the bath and AU
is the position of the site U. A schematic of the model is presented in
Fig. 6.2.
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Figure 6.2: Schematic diagram of the
model under study. A system composed
of interacting sites is embedded into a
single bosonic environment. Each site
couples differently to the environment.

In the rest of the chapter, we consider a system made of two degenerate
sites with an initial state where the system and its environment are
decoupled and the bath is empty

|k(C = 0)〉 = |((0)〉
⊗

:∈[−:2 , :2 ]
|0:〉 = |((0)〉

⊗
=∈Z
|0=〉 , Here we introduce a convention where

one chain is labelled with positive inte-
gers and the other one with negative in-
tegers.

(6.3)

where |((0)〉 is the initial state of the system, |0:〉 represents the vac-
uum state of the mode : of the bath, and |0=〉 the vacuum state of the
mode = of the chains (as presented in chapter 4). The restriction to two
degenerate sites is made for simplicity and ease of results interpreta-
tion. As we have already shown in Sec. 4.3, the empty bath can also be
used to effectively describe a Gibbs state at temperature ) , and so we
are also presenting results at non-zero temperature. Even though the
method here presented works for any initial state of the system, the
initial state of the system is chosen to be the highest energy eigenstate
(i.e. upper eigenstate) of the system Hamiltonian �̂( .
The resulting {System + Chains} joint wave function is represented as
a MPS in a successive ordering (as presented in chapter 5) where the
first couple tensors correspond to the system sites and the following
ones to the modes of the two chains

|k(C)〉 = (1

2

� (2

2

� = = 1

3

� 2

3

. . . −1

3

� −2

3

. . .

(6.4)

where 3 < ∞ is the truncated Hilbert space dimension of the chain
modes, i.e. the maximal number of excitations of a mode. The number
of modes of the two semi-infinite chains are truncated at large enough
values #<, such that an excitation on the chain does not have the
possibility to reach the end of the chain during the time evolution.
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Hamiltonian MPO formulation

Following the structure of the MPS presented above, we want to write
the corresponding MPO representation of the Hamiltonian in Eq. (6.2)
in the chain picture using the method presented in chapter 3. The
on-site tensor has a bond dimension � = 2(U + 2) for the Uth site and a
physical dimension 3( = 2

,1 =
(
1̂ � 5̂1 � 5̂

†
1 5̂

†
1 5̂1 5̂

†
1 5̂1 �1 5̂

†
1 5̂1

)
, (6.5)

and (in the general case of # sites for completeness)

,1<U≤# =

©«

1̂ � 5̂U � 5̂
†
U 0 0

2(U−2)︷︸︸︷
. . . 5̂

†
U 5̂U 5̂

†
U 5̂U �U 5̂

†
U 5̂U

0 5̂
†
U

0 5̂U

1̂ 0
1̂ 0

. . .
...

0 0 0
1̂

ª®®®®®®®®®®®®®®®¬

(6.6)

with � → 0 for the last system tensor, and empty elements correspond-
ing to zeros. The first chain on-site tensor has a similar structure, but
with a constant bond dimension � = 2(# + 2) for each mode, and a
physical dimension 3 < ∞

,0≤=≤#<−1 =

©«

1̂ C= 2̂
†
= C= 2̂= 0 0 . . . 0 l= 2̂

†
= 2̂=

0 2̂=

0 2̂
†
=

1̂ W1
= 2̂=

1̂ W1∗
= 2̂
†
=

. . .
...

1̂ W# ∗= 2̂
†
=

1̂

ª®®®®®®®®®®®®®®¬
, (6.7)

with C#<−1 = 0. The second chain tensors are identical with 3̂= and
W= (A) 3̂†= instead of 2̂= and W= (A)2̂=. The last tensor is

,−(#<−1) =

©«

l#<−1 3̂
†
#<−13̂#<−1

3̂#<−1

3̂
†
#<−1

W∗
#<−1 3̂

†
#<−1

W1∗
#<−1 3̂#<−1

...
W# ∗
#<−1 3̂#<−1

1̂

ª®®®®®®®®®®®®®®¬
. (6.8)

One might notice that the chains sites tensors have a bond dimension
� that is fixed by the number of sites in the system # . This means that
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having a large environment only increases the number of individual
tensors one needs but not their size. We would like to stress that this
result is central for the tractability of this approach. We have introduce
identity operators on the diagonals of the �: blocks to carry out along
the chain the long range coupling coefficients such that they are asso-
ciated with the corresponding system site operator 5̂ †U 5̂U. Hence, they
allow a local representation of the Hamiltonian as a MPO even though
the interactions are long range across the chains.

To illustrate how the Hamiltonian is recovered from these tensors, we
perform the calculation in the case where there is only one site in the
system and two modes on a unique chain. In that case there are only
three tensors:

,1 =
(
1̂ 5̂

†
1 5̂1 5̂

†
1 5̂1 �1 5̂

†
1 5̂1

)
, (6.9)

,2 =

©«
1̂ C12̂

†
1 C12̂1 0 0 l12̂

†
12̂1

0 0 0 1̂ 0 W1
1 2̂1

0 0 0 0 1̂ W1∗
1 2̂
†
1

0 0 0 0 0 1̂

ª®®®®¬
, (6.10)

,3 =

©«

l22̂
†
22̂2

2̂2

2̂
†
2

W1
2 2̂2

W1∗
2 2̂
†
2

1̂

ª®®®®®®®®¬
. (6.11)

The contraction of,2 and,3 gives a 5 × 1 tensor – the same shape as
,3 and the transpose of the shape of,1

,2 ·,3 =

©«
l22̂

†
22̂2 + C1 (2̂†12̂2 + 2̂12̂

†
2) +l12̂

†
12̂1

W1
2 2̂2 + W1

1 2̂1

W1∗
2 2̂
†
2 + W

1∗
1 2̂
†
1

1̂

ª®®®®¬
. (6.12)

The W1
2 and W1∗

2 couplings have been ‘captured’ by the identity opera-
tors and added to the W1

1 and W1∗
1 terms. Further contraction with ,1

gives a ‘scalar’ corresponding to the example Hamiltonian

,1 ·,2 ·,3 = l22̂
†
22̂2 + C1 (2̂†12̂2 + 2̂12̂

†
2) +l12̂

†
12̂1

+ W1
2 5̂
†
1 5̂12̂2 + W1

1 5̂
†
1 5̂12̂1 + W1

2 5̂
†
1 5̂12̂2

+ W1∗
1 5̂
†
1 5̂12̂

†
1 + W

1∗
2 5̂
†
1 5̂12̂

†
2

+ �1 5̂
†
1 5̂1 (6.13)

,1 ·,2 ·,3 = �̂ . (6.14)

Long- and short-distance limits

Because of the dependence of the system-bath coupling strengths on
the spatial configuration of the system, the system-chain couplings are
long-ranged; thus the system can create excitations on different regions
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of the chain. We consider an Ohmic SD as presented in chapter 4. As
we have seen in Fig. 4.7, the amplitude of the coupling before the
peak decreases with the position of the peak. Said differently, the
larger distance between the two sites, the less the second site interacts
with the beginning of the chain. Thus, we can expect that for infinite
separation when ' →∞ this system will solely interact with the first
mode of each chain, and hence behave like a SBM. The Hamiltonian in
Eq. (6.2) can be mapped onto the SBM Hamiltonian in Eq. (5.1) with
n = 0, Δ = 2�, and 5̂

†
U 5̂U = (f̂I + 1̂)/2, for large '. Figure 6.3 shows

the comparison between the SBM and the infinite separation case. As
expected, in this limit we recover the well-studied SBM. Looking at

Figure 6.3: Dynamics of the up-state
|↑I 〉 of a Spin Boson Model (SBM) com-
pared with the dynamics of the upper
eigenstate of the Correlated Environ-
ment model for corresponding param-
eters (2 = 1, � = 0.25l2 and U = 0.2)
with a large separation :2' = 200 be-
tween the two sites of the system. The
two dynamics are the same.
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the opposite limit, when the separation between the two system sites
vanishes, Eq. (6.2) tells us that the system completely decouples from
the environment because in the single excitation subspace

∑
U 5̂
†
U 5̂U =

1̂.

Mapping to SBM for # = 2

The # = 2 case is a specific case where, because of the symmetry
around the midpoint between the two sites, the problem presented
here can be written in the form of a SBM with an effective spectral
density that depends explicitly on the sites separation. Consider the
interaction Hamiltonian �̂int in Eq. (6.2) in the case of a two-site system
with intersite distance ', we have

�̂int =

2∑
U=1

5̂ †U 5̂U

∫ +:2

−:2
(6U: 0̂: + 6

U∗
: 0̂
†
:
)d: (6.15)

=

2∑
U=1

5̂ †U 5̂U

∫ +:2

0

(
6U: (0̂: + 0̂

†
−: ) + 6

U∗
: (0̂

†
:
+ 0̂−: )

)
d: . (6.16)
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We can introduce a new set of vibrational modes, the symmetric mode
2̂: and the antisymmetric mode 3̂:

2̂: =
0̂: + 0̂−:√

2
, (6.17)

3̂: =
0̂: − 0̂−:√

2
. (6.18)

Hence, the interaction Hamiltonian becomes

�̂int =

2∑
U=1

5̂ †U 5̂U

∫ +:2

0

[
6U:

√
2(2̂: + 2̂†: ) + 6

U∗
:

√
2(2̂: + 2̂†: )

+6U:
√

2(3̂: − 3̂†: ) − 6
U∗
:

√
2(3̂: − 3̂†: )

]
d: (6.19)

We choose the origin of position at the midpoint between the two sites
so that (in the single excitation subspace)

�̂int =
(
5̂
†
1 5̂1 + 5̂

†
2 5̂2

) ∫ +:2

0
2
√

26: cos
(
:'

2

)
(2̂: + 2̂†: )d:

+
(
5̂
†
1 5̂1 − 5̂

†
2 5̂2

) ∫ +:2

0
2
√

2i6: sin
(
:'

2

)
(3̂†
:
− 3̂: )d: (6.20)

�̂int = 1̂( const + f̂I
∫ +:2

0
2
√

2i6: sin
(
:'

2

)
(3̂†
:
− 3̂: )d: (6.21)

Therefore the system only couples to the antisymmetric vibration
modes and thus corresponds to a SBM with an effective spectral den-
sity �eff (:) = 8|6: |2 sin2 ( :'2 ). However for larger values of # it is no
longer possible to map the system to a SBM. This is similar to the
spin-mapping presented in [46].

Now, we study the system and bath dynamics for intermediate values
of the separation between the two sites. In this distance range we ex-
pect that the new phenomenology of non-Markovian effects associated
with spatial correlations between the system and the environment will
be manifest.

6.2 Non-Markovian recurrences and
information backflow

Zero temperature

At zero temperature, the dynamics of the two-level system in a bosonic
environment is well known and described by the SBM [35]. In the sys-
tem’s eigen-basis, the population of the upper state (high energy state)
should spontaneously decay to the lower state on a time-scale given
by the intensity of the coupling between the system and the bath (as
illustrated in Fig. 6.3). The right panel of Figure 6.4 shows the evolu-
tion of the eigen-populations with an initial state of the system being
the upper eigenstate. We clearly see that the upper level population
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Figure 6.4: System and bath dynamics. (Left) A heatmap of the chain occupation in time showing the propagation of bath excitations
along the chains. (Right) Upper eigenstate population. An eigenstate revival and a site localisation are associated with a chain excitation
reaching the beginning of the chain. The separation between the two sites is :2' = 40, their coupling is � = 0.25l2 , the speed of sound
is 2 = 1, U = 0.12 and :2 = 1.

decays as expected until C ≈ '/2 when a revival happens. This revival
corresponds to an increased localisation of the excitation on the second
site of the system after following an evolution in a spatial superposi-
tion. With the same conditions, the SBM exhibits the same dynamics
except for the revival. The study of the bath in the chain representation
allows us to have a spatial interpretation of the interaction between
the system and its environment as the maximum coupling between
a system’s site and the chain is localised around = = :2'/2. The left
part of Fig. 6.4 shows a heatmap of the occupation of the modes of the
chains as a function of time. The positive and negative chain modes
each correspond to one of the two chains necessary to take into account
propagating and counter-propagating :-modes. The corresponding
initial system state is an excitation delocalised on the two sites with a
separation :2' = 40.
We can see that the chain modes around = = ±:2'/2 = ±20 get popu-
lated first and that the corresponding bath’s excitations then propagate
on the chains. At l2C ≈ 20 an excitation propagating from the mode
= = 0, coupled mostly to the first site, and an excitation propagating
from the mode = = 20 constructively interfere around = = 10. The
former continues to propagate on the chain and traces a ray in the dia-
gram. The latter reaches = = 0 at l2C ≈ 40 and is reflected. We can see
from this diagram that revivals happen when the excitation emitted
along the chain by one site reaches the part of the chain interacting
with the other site. We thus have a feedback effect of the environment
on the system. This transfer of bath’s excitations from one site to the
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Figure 6.5: (Left) A heatmap of the chain occupation in time showing the propagation of bath excitations along the chains. Arrows
have been added to represent the trajectories of chains’ excitations. (Right) System eigenstate population for an initial state in the upper
eigenstate). The separation between the two sites is :2' = 20, their coupling is � = 0.25l2 , the speed of sound is 2 = 2 and U = 0.12.
We can definitely see a revival of population at a time consistent with the amount of time needed for a bosonic excitation to travel into
the bath from one system’s site to the other.

other is a direct manifestation of the information backflow we men-
tioned in chapter 2 as a source of non-Markovian effects.
The dynamics of the chain with negative modes is not the reflection of
the dynamics of the chain with positive modes. Indeed the negative
chain modes correspond to the propagating :-modes, hence the excita-
tions created by the second site move away from the origin of the chain
(which is coupled to the first site). On the contrary, bath’s excitations
created by the second site on the positive modes chain correspond to
the counter-propagating :-modes and move toward the origin of the
chain. On both chains the excitations created by the first system site
propagate toward the end of the chain as they move away in real space
from the first site. This explains the apparent ‘asymmetry’ between the
two chains.
The dynamics of the system, all other parameters being the same, only
depends on the ratio '/2. This is also true for the chain dynamics,
for example the (' = 40, 2 = 1) and (' = 20, 2 = 0.5) cases have the
same heatmaps. This was expected as the system’s sites couple in both
cases to the same parts of the chain and the bath’s excitations travel
on the chain at the same speed. Increasing the propagation speed of
the bath excitations we can generate several revivals with something
like an echo between the two sites, as shown in Fig. 6.5 where revivals
with decreasing amplitudes can be observed with a periodicity of '/2.
All the parameters are the same as in Fig. 6.4 except the speed of the
bath’s excitations that has been doubled. The left panel of Fig. 6.5
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shows the heatmap of the chains for the same parameters as Fig. 6.4
except the speed of bosonic excitation 2 which is doubled. We note
that even though 2 is doubled, the speed of the excitation on the chain
remains the same as the rays in both figures 6.4 and 6.5 travel the
same distance along the chain in the same time. We recall the result
presented in chapter 4, that the propagation speed on the chain is
independent of the coupling strength U or the bosonic excitation speed
2. The propagation speed on the chain depends on the asymptotic
hopping energy between the modes of the chain which depends on
the cut-off frequency l2 of the spectral density which is here held
constant [23]. However, for a fixed separation ', for 2 = 2 the modes
for which the coupling between the chain and the second system site
is maximal are twice as close to the origin as the ones for 2 = 1. Hence,
for a given distance ', it takes half the time for an excitation to travel
from the second to the first system site for 2 = 2 than for 2 = 1. The
four revivals of eigen-population that we see in Fig. 6.5 correspond to
the four rays on the positive chain that come from internal reflections
of the initial chain excitation highlighted with arrows. These rays cor-
respond to transmitted parts of bath’s excitations bouncing back and
forth between the two system sites.

To see the influence of the coupling strength U between the system
and the bath, we varied it while keeping a fixed separation ' between
the system’s sites and a fixed speed of phonons 2. These results are
presented in Fig. 6.6 where we can see that increasing the coupling
strength sharpens the revivals and brings their peaks closer to l2C ≈
:2'. The amplitude of the revivals decrease with the increase of the
upper level population prior to the revival.

Figure 6.6: Comparison of the dynam-
ics of the upper eigenstate at zero tem-
perature for different values of the cou-
pling to the bath U. As the coupling in-
creases, the revivals become sharper. The
other parameters are held constant at
:2' = 30, 2 = 1 and � = 0.25l2 .
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Figure 6.7 shows the coherence in the site basis in the case described
by Fig. 6.4 where the initial state of the system is the upper eigenstate.
For a degenerate two-level system, the coherences are proportional
to the upper eigenstate population. This means that the revivals co-
incide with a decrease of coherences in absolute value. A decrease of
coherences is hence associated with re-localisation.

Another way to show that this revival of eigen-population (re-localisation)
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Figure 6.7: Real and imaginary part of
the coherence between the two system
sites. The real part is proportional to the
upper eigenstate population, hence the
revival coincides with a sudden loss of
coherence.

is an incoherent mechanism is to look at the evolution of the purity
_ = tr[d2

(
] of the system state. The purity measures how close state is

to a pure state: For _ = 1, the state is a pure state and for _ = 0.5 the
state of a two level system is a maximal statistical mixture. Figure 6.8
presents the evolution of the purity, and clearly shows that revivals
are associated with an increase of mixedness of the system’s state.
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Figure 6.8: Purity tr[d2
(
] of the system.

The revival corresponds to a loss of pu-
rity.

Hence the mechanism behind the revivals can be seen as a partial
measurement by the environment on the system’s sites that, as a con-
sequence, re-localizes the system’s excitation. As the purity is a first
order approximation of (one minus) the von Neumann entropy, the
decreasing purity at the time of a revival can be seen as an increasing
entanglement between the system and its environment. This analysis
is consistent with what has been previously said and can be further
understood by considering the chain sites that couple the most to the
system sites as fragments of the environment that can inform us about
the system populations [95]. Indeed, knowing when the chain modes
around = = 20, in the case where :2' = 40 and 2 = 1, have a gain in
population enables us to affirm that there will be a revival at this same
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time.

Finite temperature

Using the method presented in chapter 4, we also investigated the
finite temperature dynamics of the system. For a large range of values
of V, the system’s dynamics stay qualitatively the same except that the
steady state population is increased because of thermal fluctuations,
as we can see for l2V = 5 in Fig. 6.9. The peak of the coupling is
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Figure 6.9: (Left) A heatmap of the chain occupation in time showing the propagation of bath excitations along the chains. (Right)
Upper eigenstate population. The separation between the two sites is :2' = 30, the speed of sound is 2 = 1, the inverse temperature
l2V = 5 and U = 0.12.

at = = '/2 and not '/22 as in the zero temperature case, but the
propagation speed along the chain is doubled because the support of
the extended spectral density is twice as large as the support of the
zero-temperature spectral density [78]. The left part of Fig. 6.9 shows
the time-frequency diagram for finite temperature for the inverse
temperature l2V = 5 and a separation :2' = 30. For this intermediate
temperature, the chain excitation propagate ballistically in way similar
to the zero temperature case, except that modes are more populated
thanks to thermal fluctuations. Wave-packets emitted from the origin
of the chain and the part coupled to the second site interfere when
they meet. Hence, we see interference fringes appear when excitations
with different phases come together. As in the finite temperature case,
when excitations reach the origin of the chain they give rise to a revival
of the eigenstate population.
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Figure 6.10 shows the upper eigenstate population for increasing val-
ues of the temperature. The revivals are still present for moderate
temperatures such as l2V = 5 but they become barely noticeable for
high-temperature, as we can also see in Fig. 6.11. Between l2V = 5
and l2V = 1 the dynamics of the chains’ modes are the same but the
populations are increased by a factor ∼ 5. This increased population is
a direct consequence of the thermal population. We can see, in Fig. 6.10,
that the amplitude of the revival seems to be related to the depth of
the plateau reached before l2C ≈ :2'. Hence, as the eigen population
in this region gets closer to a half, the revival is suppressed.
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Figure 6.10: Upper eigenstate popula-
tions for :2' = 30, 2 = 1, � = 0.25l2
and U = 0.12 for several values of the
inverse temperature V.

For higher temperature, as in Fig. 6.11, the behaviour of the chain
is akin to the one we could see for a SBM with a Ohmic spectral
density [96] but duplicated on the chain. As they propagate on the
chain, excitations leave a trail of populated modes behind them that
correspond to the cones we can see on the figure.
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Figure 6.11: (Left) A heatmap of the chain occupation in time showing the propagation of bath excitations along the chains. (Right)
Upper eigenstate population. For high-temperature the revival is less pronounced. The separation between the two sites is :2' = 30,
the speed of sound is 2 = 1, the inverse temperature l2V = 1 and U = 0.12.

6.3 Discussion

Motivated by the ability of biological nanostructures to coordinate
(opto)electronic processes through the relaying of environmental (struc-
tural) ‘signal’ motions, we have presented a numerically exact explo-
ration of a model that can describe these highly non-Markovian effects.
To do so, we have used the extension of the standard T-TEDOPA
techniques presented in previous chapters, in the 1TDVP formula-
tion, to treat the long-range chain couplings that encode information
about spatial correlations. In doing so, we have proved that for system-
bath problems with spatially correlated interactions, the Hamiltonian
matrix product operator will always have a bond dimension propor-
tional to the number of system states, regardless of the range of the
interactions. Provided that – as in most models of open systems – the
environment is non-interacting, this allows tensor network to be a com-
putationally powerful method for exploring multisite dynamics where
non-Markovian environmental feedback could lead to functionally
relevant non-equilibrium states and/or transient effects that could ma-
terially alter the outcome of a process, if a certain set of events precede
it. As our first exploration of this aspect of highly structured nanoscale
dissipation, we have shown, with a model composed of two sites,
that one of the simplest conceptual forms of correlated environments
(plane waves in 1D) supports strong spatio-temporal feedback effects
that introduce new timescales into the dissipative dynamics and show
clear signs of having stored information about the early time motion,
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i.e. after sharp decays, we find sharp revivals. Moreover, we have also
found that periodic behaviour with ) = '/2 can also be obtained in
which each revival acts as a generator of subsequent revivals, leading
to periodic – but highly anharmonic – energy exchange between the
system states. Finally, we have shown that finite temperatures tend
to broaden and suppress these revival effects, although they visibly
persist for temperatures up to the system energy gap. These results en-
couragingly point to the idea that suitably tailored environments could
be coupled to electronic processes in order to produce well-defined
functional effects at later times and in distant places in the structure.

In the next chapter, building up on our newly acquired knowledge of
non-Markovian signalling we will study how quantum systems can be
dissipatively controlled and we will discuss how this problem relates
to allosteric regulation in proteins.
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Qui cherche trouve toujours. Il ne
trouve pas nécessairement ce qu’il
cherche, moins encore ce qu’il faut
trouver. Mais il trouve quelque
chose de nouveau à rapporter à la
chose qu’il connait déjà.

Jacques RANCIÈRE ,
Le Maître ignorant

Using the insights on environmental signalling gained in Chapter 6,
we now focus on the investigation of the consequences of environ-
mental signalling in dissipative quantum systems. This issue arises
from the remarkable advances made in the last decades in the stabil-
isation and exploitation of quantum effects in man-made nanostruc-
tures. This progress opens the possibility for an ever-growing array of
technological applications which extract functional advantages from
non-classical properties such as coherence and entanglement [97–102]
and would constitute the so-called second quantum revolution[16, 28].
However, such quantum properties – particularly when distributed
over multiple components/qubits – remain inherently fragile and are
easily destroyed by the unavoidable interactions of the functional
system states with the macroscopically large number of degrees of
freedom that comprise their electromagnetic, electronic, or vibrational
environments (as explained in Chapter 2). The theory, simulation and
understanding of such open quantum systems is thus central for the
development of quantum technologies and, as we shall expose here,
could even provide the insights necessary to turn system-environment
interactions from a problem into a potent resource. Most of the results
presented in this chapter have been made public in Ref. [2].

While a number of strategies have been devised to mitigate the dele-
terious actions of environmental phenomena, such as relaxation and
decoherence, the most common practical approach is to try to insulate
the working quantum systems from environmental fluctuations, e.g.
by working at low temperatures, or using nanostructuring to suppress
the relevant spectrum of environmental excitations and noise [103]. On
the other hand, emerging theoretical interest in quantum devices for
harvesting and transforming energy has pointed to a number of ways
in which dissipative and noisy processes could actually enhance the ef-
ficiency of energy transfer and transduction tasks, compared to purely
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classical or fully coherent operations. Exploiting these effects requires
an optimal, and not necessarily weak, coupling between systems and
environments. Notable examples of such environment-assisted phe-
nomena include exciton and charge transfer in photosynthesis, photo-
voltaics and batteries [104–108], state control and energy transport in
qubit networks [109–111], and the operations of ‘machines’ in quantum
thermodynamics [112, 113]. Indeed, there have even been proposals
to use dissipative processes to implement universal quantum compu-
tation and information processing in nanoengineered environments
[65, 114]. This nascent appreciation that environments and their (non-
Markovian) dynamics could be active and potentially programmable
components of future quantum devices raises exciting possibilities
that could be accessible with current nanofabrication techniques and
experimental probes [115–119].

Here we address a relatively unexplored aspect of environment-assisted
phenomena that is of relevance for all of the examples and topics
given above. Most theoretical descriptions of interacting arrays of
open quantum systems use models in which each component (qubits,
chromophores, quantum dots, etc.) interact with ‘local’, independent
environments, i.e. while the components may interact with each other,
their dissipative environments do not. Energy and/or information dis-
sipated into these local environments is forever lost to the global multi-
component system. However, as the density of components increases
– as required for more sophisticated quantum devices – the indepen-
dence of these local environments becomes harder to justify [120]:
propagating perturbations (excitations) of their common medium at
one location become able to affect the dynamics of spatially remote
systems, and maybe even do so on timescales that could be compa-
rable to the intrinsic inter-system dynamics (see Fig. 7.1(a)). Indeed,
the possibility of this type of dynamics has been made clear by the
results of the previous chapter. Moreover, due to the retarded nature
of these environmental signals, the subsequent dynamics of each com-
ponent depends on the whole history of previous system-environment
interactions of every component. The resulting complex, multi-scale
decoherence phenomena present a new challenge for controlling or
mitigating the effects of quantum noise, however such spatiotemporal
effects may also present a mechanism for collective, co-operative and
non-linear feedforward/feedback responses to external perturbations,
and this emerging paradigm is the focus of this chapter.

The dynamics of such concerted, history dependent actions in a ex-
tended system under dissipation, are manifestly non-Markovian [122,
123], implying that they are also non-perturbative and can only be sim-
ulated with state-of-the-art numerical techniques such as the one we
have been developing in this thesis. Despite this challenge, the need to
explore such transient out-of-equilibrium phenomena is highlighted
by physical examples in which environment (structure)-mediated com-
munication and feedback are thought to play a key role, such as the
coordination of multiscale, multielectron processes across photosyn-
thetic proteins, electron transfer in metabolism and multistage cataly-
sis [92, 124–127]. For example, in the case of reaction centre proteins
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Figure 7.1: (a) Spatially distributed systems dissipate energy into their environment and/or cause local deformations that typically
propagate and are lost in the bulk medium (red arrows). When systems are packed into nanoscale regions, a significant fraction of
environmental excitations will encounter neighbouring systems and influence their dynamics (green arrows), even if the systems are
uncoupled (yellow arrow indicates coherent coupling). These interactions are retarded, i.e. depend on the speed of signal propagation
and the separation of the systems, providing new time and length scales to their now cooperative dissipative dynamics. Examples
in 1D: (b) in photosynthetic reaction centres, pigments are held by a protein scaffold that can dissipatively mediate vibrations and
structural reorganisation to coordinate exciton (eh pair) splitting, electron transfer and hole refilling in different locations (separated by
4 − 5 nm) on timescales from the fs to the µs [92]. (c) Spin-entangled triplet-pairs generated by intramolecular singlet fission interact
strongly through the vibrational wave packets of the molecular backbone structure, as in polydiacetylene [121]. (d) A pair of uncoupled
quantum dots (QDs) are encapsulated in a nanowire. Exciting one of them thus excites the mechanical modes of the wire. These
distortions propagate and could interact with the other QD.

(Fig. 7.1(b)), the existence of extended 1D structural elements (alpha
helices) couples charge-induced mechanical/vibrational relaxation at
the two functional (donor/acceptor) sites of the system, so that the
presence or absence of a charge at a site can modify the activity of the
other on relevant timescales [92].

Indeed, it is to be expected that environment-mediated phenomena
will be strongly enhanced in low dimensional systems, and especially
in 1D, as propagating environmental excitations will necessarily en-
counter the other working components. Other, somewhat arbitrarily
chosen, real-world 1D systems where strong environmental signalling
effects could be expected include entangled triplet exciton dynamics
in pi-conjugated polymers and coupled quantum dot emitters grown
in nanowires, as shown in Fig. 7.1(c)&(d) [121, 128]. In general, but
particularly in molecular matter, injecting ‘system’ excitations causes
the local structure to relax to a new equilibrium position, and in doing
so key system properties such as energy gaps or couplings to other
systems can be strongly modified in the new conformation [39, 40].
As the establishment of this new global conformation must proceed
through the propagation of local reorganisation dynamics, dramatic
changes at distal locations can be effected at later times [41]. Such a
propagating reorganisation could be leveraged to act as a perturbation,
a ‘signal’, used to modify the state of a system after a given event
has happened, and/or provide the energy to push remote systems
out of equilibrium. Alternatively, the same signal could be used, not
to control a quantum system, but as a non-destructive sensor of the
transitions happening in a system.

To investigate such possibilities, we introduce a fully quantum me-
chanical model that describes how the sudden excitation of a TLS
in a bosonic environment can induce spatiotemporal reorganisation
dynamics capable of reversibly triggering and controlling the quantum
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Figure 7.2: (a) Representation of the system. A TLS made of sites 0 and 1, whose energy difference is �1 − �0 , is interacting with the
same bosonic environment as the so called “switch" site excited at C = 0. This excitation will transiently perturb the environment which
will influence the energy levels of the two sites. (b) Heatmap of the energy shift Δ� (A , C) for an Ohmic spectral density with a hard
cutoff induced by an excitation at A = 0 with _ the bath reorganisation energy, 2 = 1 and :2 = 1. The energy shift is composed of a static
stabilising contribution centred on the excitation and two destabilising contributions (only A > 0 shown), whose amplitudes are half
the size, propagating away from the excitation at the speed of sound 2.

dynamics of a second TLS not directly coupled to the first. Exploiting
the numerically exact tensor networks methods that we developed in
the previous chapters, we demonstrate that the energy of propagating
environmental signals can be harvested by the second TLS to populate
metastable excited states that could trigger downstream processes with
timing and lifetime information that could be leveraged to match them
to other processes. Strikingly, when the TLSs are placed closer to one
another, analysis of the complete system-bath wave functions reveals
that static, non-local reorganisation can stabilise this activated state,
leading to 100% quantum yield and a lifetime that is only limited by
the lifetime of the first TLS excited state. We further demonstrate that
these ‘transient’ (energy harvesting) and ‘conformational’ (thermody-
namic) physics are robust at finite temperatures. We suggest that the
rich phenomenology of this remote control OQS model could open up
new design concepts for multi-component quantum ‘machines’ and
functional materials.

7.1 Quantum switch

Figure 7.2(a) shows a schematic representation of the model we shall
investigate, which consists of two uncoupled and spatially separated
TLSs that couple to the excitations of a common environment. Inspired
by 1D mechanically deformable structures coupled to qubits or op-
toelectronic excitations – e.g. nanomechanical resonators [129–131],
organic polymers [132] and the examples of Fig. 7.1 – our environment
is taken to be a 1D continuum of spatially extended harmonic oscilla-
tors, as would be expected in an extended mechanical structure, and
could naturally represent phononic, vibrational, photonic, or magnon
baths in specific applications. For simplicity, we take these environ-
ment modes to be dispersionless 1D plane waves. The first part of the
system is a single site that can be either occupied or unoccupied that
we call ‘the switch’ ((). The second part of the system, composed of two
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sites 0(1) at a distance A0 (A1) from the switch, is a TLS with an energy
gap �1 − �0 and coherent tunnelling coupling F. The Hamiltonian
describing the system, the environment and their interaction is

�̂ =
∑
8=0,1

�8 %̂8 + F (|0〉 〈1 | + h.c.) +
∫

R

d: ℎ̄l: 0̂†: 0̂: +
∑

8=(,0,1

e8 %̂8

∫
R

d:
(
68:ei:A8 0̂: + h.c.

)
,

(7.1)

where e8 = ±1 determines the sign of the coupling, %̂8 = |8〉 〈8 | projects
onto the localised system state |8〉 in which site 8 is excited, and 0̂†

:
is the

bath creation operator for the plane-wave mode of energy ℎ̄l: = ℎ̄2 |: |
with : the wave-vector of the mode and 2 the speed of sound. The
coupling coefficients between the site 8 and the mode : are 68

:
ei:A8 .

This coupling induces energy shifts of the system sites that are pro-
portional to the linear displacement of the environmental modes. The
sites 0 and 1 have the same coupling coefficients 60/1

:
= 6: and the

ratio of the switch coupling coefficients and the site coupling coeffi-
cients is 6(

:
/6: =

√
^. The coupling coefficients define the bath spectral

density � (l) = ∑
: |6: |2X(l −l: ), which we take to have the widely

used Ohmic form � (l) = 2Ul� (l2 −l) We again highlight here that we could, in
general, use any spectral function with
our techniques.

where U is the dimensionless
strength of the system-bath coupling, � (G) is the Heaviside function
and l2 = 2 |:2 | is the cut-off frequency corresponding to the largest
wave-vector :2 of the bath. We use l2 as our reference energy scale in
all numerical calculations.

The initial joint state for the simulation at ) = 0 is

|k(C = 0+)〉 = |1, 1, 0〉( ⊗ �̂ ({X: }) |{0}〉� (7.2)

where |1, 1, 0〉( is the system’s state with an excitation on the switch
site, an excitation on site 0 and no excitation on site 1, |{0}〉� is the
vacuum state of the bath and �̂ ({X: }) is a multi-mode displacement
operator. The displacement comes from allowing the bath to reach
equilibrium with the system’s state |0, 1, 0〉( where there are no excita-
tions on the switch site and an excitation on site 0 which is positively
coupled to the environment (e0 = 1). The relaxed initial state of the
environment is a coherent state where each mode : has been displaced
by an amount X: . Then, at C = 0+, the switch site is excited.
The description of non-vacuum environmental states in the fictitious
extended environment used in T-TEDOPA is currently an open prob-
lem. Hence at finite temperature the initial system state is unchanged
but the environment is described by an undisplaced Gibbs state at
inverse temperature V = (:�))−1

d̂(C = 0+) = |1, 1, 0〉( 〈1, 1, 0|( ⊗ exp
(
−V�̂�

)
// , (7.3)

where �̂� =
∫

R
d: ℎ̄l: 0̂†: 0̂: is the free bath Hamiltonian, and / is the

bath partition function. Nevertheless, we will see that in practice this
change of initial condition makes little difference, as the bath relaxes
very rapidly to its equilibrium state once the dynamics are initiated
by turning on the switch, and this relaxation occurs well before the
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propagating signal reaches the distal system.

Displaced bath in the chain representation

We want the environment to be, at C = 0, at equilibrium with an
occupied site 0 and unoccupied switch site and site 1. One way to
obtain this equilibrium state would be to run a first simulation until
the desired steady state is reached and use this final state to initialise
the next simulation where at C = 0+ the switch site is excited. However,
the equilibrium state reached by the environment can be calculated
analytically and corresponds to a displaced state. As we will see in the
next section, one of the advantages of this approach is that such a state
only takes into account the static part of the reorganisation energy.
Hence, fewer chain modes are needed compared to the numerical
initialisation. The complex amplitudes of the displacement X: of :-
modes for a static excitation on site 0 are given by the solution of the
equation of motion of 〈0̂:〉(C). For the system state we described above,
we have

d
dC
〈0̂:〉(C) = −il: 〈0̂:〉(C) − i6:e−i:A0 . (7.4)

We can integrate this differential equation with a bath in its vacuum
state as the initial condition 〈0̂:〉(C = −∞) = 0

〈0̂:〉(0) = −i6:e−i:A0
∫ 0

−∞
eil: gdg . (7.5)

Yet, using the identity∫ 0

−∞
eil: gdg =

∫ +∞

0
e−il: gdg = cX(l: ) − iP

(
1
l:

)
, (7.6)

where P(·) is the principal value distribution, and using the fact that
6:X(l: ) = 0 for an Ohmic SD, we finally have

X:
def.
= 〈0̂:〉(0) = −6:e−i:A0P

(
1
l:

)
. (7.7)

For any practical purpose because we use an Ohmic spectral density

(which is linear in :) we can substitute 6:P
(

1
l:

)
by 6:/l: if we keep

in mind that X:=0 = 0. The bath displacement operator �̂ ({X: }) can be
written in the chain representation
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�̂ ({X: }) = exp
(∫

R

(X: 0̂†: − X
∗
: 0̂: )d:

)
(7.8)

= exp
( ∫

R+
(X: 0̂†: − X

∗
: 0̂: )d: +

∫
R+
(X−: 0̂†−: − X

∗
−: 0̂−: )d:

)
(7.9)

= exp
(∫

R+
(X: 0̂†: − X

∗
: 0̂: )d:

)
exp

(∫
R+
(X∗: 0̂

†
−: − X: 0̂−: )d:

)
(7.10)

=
∏
=

exp
(∫

R+
X:*= (:)2̂†=d: − h.c.

) ∏
=

exp
(∫

R+
X∗:*= (:) 3̂

†
=d: − h.c.

)
(7.11)

=
∏
=

exp
(
X= 2̂
†
= − h.c.

) ∏
=

exp
(
X∗= 3̂

†
= − h.c.

)
(7.12)

⇒ �̂ ({X: }) = �̂ ({X=}) (7.13)

where �̂ ({X=}) is a displacement operator on the chain and 1̂
†
= (2̂†=)

are the chain creation operator originating from positive (negative)
:-vectors. The complex displacements of chain modes are

X= =

∫
R+
X:*= (:)d: (7.14)

=

∫
R+

−6:
l:

e−i:A06:%= (:)d: (7.15)

X= (A0) = −
∫

R+

� (:)
l:

%= (:)e−i:A0d: = −2cF
[
�

l
%=

]
(A0) . (7.16)

The complex displacement amplitude of a chain mode = is proportional
to the Fourier transform (because � (:) is non-zero only for positive :)
of the reorganisation energy multiplied by the =th order polynomial
defining the chain mapping. For an Ohmic spectral density the dis-
placement is proportional to the Fourier transform of the appropriate
polynomial, which might be computed analytically. For an Ohmic
spectral density, if A0 = 0 only the first site of the chain is displaced
thanks to the orthogonality of the polynomials. The chain displace-
ment operator �̂ ({X=}) naturally has a MPO representation with bond
dimension 1 as can be seen in Eq. (7.12).

7.2 Reorganisation dynamics

We first present some physical intuition for the action of the reorgani-
sation dynamics by considering the exactly solvable case of a single
excitation on the switch site and occupation of the remote site with
a separable system-bath state [35]. The bath part of the interaction
Hamiltonian (the last term in Eq. (7.1)) can then be treated as an effec-
tive external field that creates a space-dependent shift of the system
energies given by

Δ� (AW , C) =eWtr
[∫

R

6: (0̂:ei:AW + h.c.)d: d̂� (C)
]

. (7.17)

Δ� (AW , C) can be interpreted as work performed by the environment
on site W due to its displacement at position AW [113]. From Eq. (7.17),
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we have an analytic expression for the energy shift

Δ� (AW , C) = eW
∫

R

26:Re
[
〈0̂:〉� (C)ei:AW

]
d: , (7.18)

and thanks to Ehrenfest theorem given the Hamiltonian in Eq. (7.1)

〈0̂:〉� (C) =
6:

l:

∑
U

e−i:AU 〈%̂U〉(e−il: C − 1) assuming 〈%̂U〉(g) ' cst .

(7.19)

Under this assumption, the energy shift can be expressed as

Δ� (AW , C) = eW
∑
U

〈%̂U〉
∫

R

2
� (:)
l:

[
cos

(
l: C − : (AW − AU)

)
− cos

(
: (AW − AU)

) ]
d: .

(7.20)

This energy shift can be interpreted for each system site as a wave-
packet propagating away from the site with an envelope ∝ � (:)/l: ,
plus a static term centred on the site. It can be readily noticed that,
because of energy conservation, the energy shift summed over all
space at a given time is zero. Trivially, we can see that at C = 0 the
energy shift vanishes. More generally, for a single localised excitation
at AU = 0, for any time C and taking eW = +1∫

R

Δ� (A, C)dA =
∫

R

dA
∫

R

d:2
� (l: )
l:

(
cos

(
l: C − :A

)
− cos(:A)

)
, (7.21)

but
∫

R
(cos(l: C − :A) − cos(:A)) dA = X(:) − X(:) = 0 as l:=0 = 0.

Hence, conservation of energy is satisfied. The shape of the wave-
packet depends on the bath spectral density � (:). For a SD of the
Ohmic family with a soft cutoff the energy shift is

Δ� (A, C) = 4U2:2Γ(B)
(
−2 cos

(
arctan(:2A)B

)
(1 + (:2A)2)B/2

+
cos

(
arctan(:2 (A − 2C))B

)
(1 + (:2 (A − 2C))2)B/2

+
cos

(
arctan(:2 (A + 2C))B

)
(1 + (:2 (A + 2C))2)B/2

)
,

(7.22)

which reduces in the Ohmic (B = 1) case to

Δ� (A , C) = _
(
−2

1 + (:2A)2
+ 1

1 + (:2 (A − 2C))2
+ 1

1 + (:2 (A + 2C))2

)
, (7.23)

where _ =
∫ ∞

0 � (l)l−13l = 4Ul2 is the bath reorganisation energy.
The three terms are Lorentz distributions of heights −2_, _ and _

respectively and width 1/:2 . Figure 7.3 shows the energy shift given
by Eq. (7.23) at different times. The first term is the static negative
contribution corresponding to twice the reorganisation energy and the
two other terms are destabilising (positive) perturbations propagating
away from the site. The stationary state is realised by taking C → ∞
and corresponds only to the negative static contribution around the
position of the site, i.e. twice the reorganisation energy.

For the hard cut-off case, the results are qualitatively the same as in



7.2 Reorganisation dynamics 99

Figure 7.3: Energy shift Δ� (A , C) at sev-
eral times for an Ohmic spectral density
with a soft cutoff induced by an excita-
tion at A = 0.

the soft cutoff case but with modulation of the wave packet at the
wavelength 2c/:2 due to the Gibbs phenomenon. The energy shift
becomes

Δ� (A , C) = _
(
−2 sin(:2A)

:2A
+ sin(:2 (A − 2C))

:2 (A − 2C)
+ sin(:2 (A + 2C))

:2 (A + 2C)

)
. (7.24)

Injecting an excitation onto the switch site (A = 0) at C = 0 would create
a time-dependent energy shift of a system at AW , given by

Δ� (AW , C) =
−eW2_ sin(:2AW)

:2AW
+ eW

∑
b=±1

_ sin(:2 (AW − b2C))
:2 (AW − b2C)

, (7.25)

Figure 7.2(b) shows the time evolution described by Eq. (7.25) for eW =
1; the local relaxation of the environment stabilises the switch excitation
on a timescale ≈ l−1

2 (negative energy shift), while two outgoing
waves with positive amplitude propagate away from the origin with
velocity 2. These constitute the signals that will act on the distant TLS
in the following sections. We note that the positive propagating shifts
are a manifestation of conservation of energy under the mechanical
distortion of the medium induced by the presence of an excitation on
the switch site: in the local bath approximation these contributions
are assumed to propagate away rapidly without encountering any
other system components, i.e. their energy is essentially lost and the
local relaxation is irreversible, whereas in our common bath model their
interactions with other system components are taken into account (see
Fig. 7.1a). At long times only the static contribution centred at the
position of the excitation remains (first term of Eq. (7.25)), although it
has a non-negligible spatial extension (≈ :−1

2 ) and acts like a potential
energy shift on the other sites. Additionally, this potential also shows
spatial oscillations that will also play an important role in the full
quantum dynamics, below.
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7.3 Remote transient activation

To study the influence of the transient energy perturbation on the
distant TLS at zero temperature, we consider the initial state described
above. Site 0 is positively coupled to the environment (e0 = 1) and the
environment is in equilibrium with an occupied site 0 and unoccupied
switch site and site 1. Throughout, we take �1 −�0 = 0.5l2 , F = 0.15l2
and U = 0.2, so that including the reorganisation energy due to the ini-
tial relaxation, the total energy gap of the TLS is �1 − �0 + 2_ = 2.1l2 .
This is over ten times larger than the coupling F, so there is negligible
population dynamics in the absence of signals from the switch. At
C = 0+, we inject an excitation onto the switch site, hence triggering
the reorganisation signal. Figures 7.4(a)-(b) show the dynamics of the
population of site 1 for different switch-site distances A0 and fixed
:2' = 4 (' = A1 − A0) both at zero (V = ∞) and finite (V = 10) temper-
atures. All other parameters are held fixed, the coupling signs set to
e( = e0 = −e1 = 1 and ^U = 1.2. The impact of interaction signs on
the dynamics will be discussed below. The choice of opposite signs
for sites 0 and 1 has been made here to enhance the possibility of a
population transfer.

When the perturbation generated by the switch-induced reorganisa-
tion reaches the system at C ≈ A0/2, a sudden transfer of population is
initiated that can pump over 50% into the higher-energy site 1. Once
the perturbation has passed, this population decays back to site 0 be-
cause of downhill energy relaxation. This transfer of population occurs
both at V = ∞ and V ≠ ∞. Figure 7.4(c) shows the evolution at zero
temperature of the TLS energy gap as it dramatically closesWe bring to the reader’s attention that

the dynamics of the TLS energy gap
�6 (C) is a joint system-bath observable
which would be difficult to extract in a
master equation approach.

, as the
perturbation raises the energy of site 0, and Fig. 7.4(d) is a schematic
drawing of the spacing of the sites’ energy levels at different moments
in time. This transient near-resonance allows coherent transfer of pop-
ulation through an adiabatic transition, creating a metastable excited
state whose energy could, for example, be directed towards a desired
function. Zero and finite temperatures present the same qualitative
dynamics where relaxation of the bath induced by the switch causes a
sudden large transfer of population into site 1. To reduce computation
time and illustrate the general nature of the phenomenon, the finite
temperature results shown in Fig. 7.4(b) are for smaller :2A0 than the
zero temperature results. At finite temperature the initial state we use
assumes a bath that has not relaxed when there is an excitation on site
0; this initial relaxation can be seen in the additional smaller transient
population transfer starting at C = 0+ in Fig. 7.4(b). With an unoccu-
pied switch, this initial transfer of population at finite temperature
decays back to zero on a timescale of l2C ∼ 40. The gain of population
when the perturbation reaches site 0 happens at a similar rate in both
cases. The available energy of this state has come directly from the
work performed on the system by the reorganisation dynamics, and
optimising this would be an interesting area for further work. We note
a difference in the decay rates between the zero and finite temperature
cases. Figure 7.4(b) clearly exhibits exponential decay of the excited
state, whereas the highly non-exponential decay of the excited state
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Figure 7.4: Site 1 population for several
distances A0 between the switch and site
0 with U = 0.2, ^U = 1.2, F = 0.15l2 .
(a) ) = 0, there is no dynamics until
C = A0/2. The separation between the
sites 0 and 1 is :2' = 4. (b) Finite
Temperature V = 10 presents similar
results. (c) Effective energy gap �6 be-
tween the two sites as a function of time
for :2A0 = 104 at) = 0. When the energy
perturbation reaches the site it momen-
tarily closes the gap. Three regions are la-
belled: I before the perturbation reaches
the sites; II when the perturbation is clos-
ing the gap; and III after the passage of
the perturbation. (d) Schematics of the
relative spacing between the sites 0 and
1 energy levels (grey lines represent the
levels at the previous time).

for zero temperature in Fig. 7.4(a) is suggestive of non-Markovian dis-
sipation. The timing of the population transfer event can be controlled
via distance or propagation speed. Indeed, modification of the spectral
function may provide a way to tune the excited state lifetime to match
its downstream function. Additionally, the philosophy of our model
is conserved if one swaps the roles of the switch site and the remote
TLS. If one considers the switch site as the system of interest, then
the TLS can be seen as a sensor which can monitor transitions of the
switch without direct interactions. In that case Figs. 7.4(a)-(b) can be
reinterpreted as an indirect way to access the state of the switch site by
‘listening’ to the environment.

Sign of the interaction Hamiltonian

To illustrate the influence of the sign of the coupling between system’s
sites and the environment on the dynamics of the system, let us con-
sider the following choice of parameters: the gap is �1 − �0 = 0.5l2 ,
the tunnelling energy is F = 0.15l2 , the separation between the sites is
:2' = 10, the coupling strength is U = 0.4, the speed of sound is 2 = 1,
^ = 3 and e0 = 1. With such parameters the initial renormalised energy
gap is �1 − (�0 − 8Ul2) = 3.7l2 � F, hence we expect no dynamics
for the populations. However, if the switch site is excited at C = 0, the
transient energy perturbation should affect the energy of site 0 and
site 1 respectively around the times C = '/2 and C = 2'/2, and could
induce some dynamics because the renormalised gap is reduced for
a short amount of time. The dynamics of the gap between the two
sites will also depend on the sign of e1. A positive sign would mean
that the perturbation increases the gap and a negative sign reduces
the gap. Figure 7.5 shows the evolution of the population of site 1 for
both values of e1. In both cases the dynamics is radically altered as
the population grows instead of staying at zero. When e1 = −1, two
steps are visible and can be clearly associated with the transient energy
perturbation. In the opposite case, the population stays constant after
the first step. Indeed, the gap becoming larger when the perturbation
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reaches site 1 prevents further population transfer. With this example
we can see that non-trivial population transfer can be induced by the
environment no matter the specific choice of signs in the interaction
Hamiltonian.

Figure 7.5: Population of site 1. Vertical
dashed lines are times of the peak of the
perturbation reaching site 0 and site 1.
We can see step-like population growth
corresponding to the perturbation. The
pink dashed line shows the absence of
evolution of the population in the ab-
sence of the transient perturbation.

7.4 Remote permanent activation

A striking change of behaviour is observed when the TLS is brought
closer to the switch site, causing the fate of the excited state to become
highly sensitive to the switch-TLS distance. Figure 7.6(a) shows the
TLS dynamics of the system at zero temperature for smaller A0, where
for :2A0 = :2' = 5, the population is permanently transferred from
site 0 to site 1 with 100% yield. For :2A0 = :2' = 4, 6 the yield drops
to less than 25%. An analogous behaviour can be observed at finite
temperature (see Fig. 7.6(b)), where at V = 10 for :2A0 = :2' = 4, 6 a
transient transfer of population to the higher-energy state on site 1 is
induced, whereas for :2' = 5 a full transfer is achieved. However the
kinetics of the full population transfer are different. Contrary to the
V = ∞ case, at finite temperature the :2A0 = :2' = 4, 6 populations
decay to the lower energy eigenstate populations. This is due to the
presence of thermal fluctuations that allow the remnant population
on site 1 to explore the energy landscape and decay back to the lower
energy site 0. The stability of population transfer at :2' = 5 suggests
a lasting thermodynamic change in the energy ordering of the TLS
sites, which we have traced to the role of the static shift Δ� (A, C →∞)
induced by the switch (Eq. (7.25)). This can be directly visualised by
computing Δ01� (G, C) = ∑

8=0,1 〈k(C) | e8 %̂8
∫

R
d:

(
6:ei:G 0̂: + h.c.

)
|k(C)〉.

This gives a representation of the evolution of the transient ‘energy
landscape’ perceived by the TLS, and is composed of a large number of
two-time two-point correlation functions that can be readily evaluated
within our many-body tensor networks simulation framework.

To gain more insight into these effects Fig. 7.7(0) shows a heatmap
of Δ01� for the full population transfer case (:2' = 5) at V = ∞. At
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Figure 7.6: (a) For :2A0 = :2' = 5 there
is a full population transfer at V = ∞
– both when the full reorganisation dy-
namics is taken into account and when
only the static part of the landscape is
considered – that is not seen for other
positions. In the :2' = 5 case, the pop-
ulation decays back to site 0 when the
switch site is de-excited at l2 C = 200
(dashed vertical line and orange back-
ground). (b) Finite Temperature V = 10
also presents a full population transfer.

C = 0+ the environment starts to relax because of the presence of the
switch and generates a static negative energy shift at G = 0 and two
propagating positive energy shifts (only the positive G one is shown)
which propagate at the speed of sound. When the right-propagating
transient perturbation reaches site 0, it lifts its energy level and thus
initiates population transfer to site 1. However, once the perturbation
passes, the population transfer continues. Fig. 7.7(b) shows a cross
section of the heat maps at the final time and the energy landscape
in the hypothetical case where the environment has relaxed to an
equilibrium state in presence of an excited switch and a populated site
0. It can be seen that after the switch is fully relaxed, an occupied site
1 now corresponds to the global ground state of the system, and local
environmental dissipation will thus drive the system to this state, as
illustrated in Fig. 7.7(c).
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Figure 7.7: (a) Energy landscape perceived by sites 0 and 1 (marked by dashed lines) as a function of time and space for :2' = 5,
U = 0.2, ^U = 1.2, and V = ∞. (b) Energy shifts for the state a long time after the transient perturbation has passed (i.e. relaxed
environment in the presence of the excited switch and site 1) and the state where the environment reached an equilibrium when the
switch is excited and the population of the remote TLS is localised on site 0 (F = 0). As the absolute minimum of the energy landscape
moves from the location of site 0 to that of site 1, the population evolves correspondingly. (c) Schematics of the absolute energy levels
of sites 0 and 1 for the different configurations.

7.5 Energy landscape texture

Light can be shed on the distance-dependence of this stabilised trans-
fer by also considering the ‘texture’ of the energy shift induced by the
sinc-shaped static part of the switch-generated energy perturbation
(see Fig. 7.8(b)). The switch generates a static negative energy shift
of large amplitude around the origin and several local minima and
maxima that alternate in sign with a wavelength 2c/:2 . The further
away from the switch, the lower the amplitude of these extrema (at
:2G = 10, 90% of the amplitude has been lost already). In the :2' = 5
case, site 0 is close to a maximum of this landscape and is raised in en-
ergy. Site 1 sits on the second maximum, but because it couples to the
environment with a negative sign, this static contribution corresponds
to a stabilising shift. The energy landscape texture depends on the
nature of the bath spectral density. Sharp decays or super-Ohmicity
for example can be a source of texture. For the parameters used in
our simulations, these static shifts cause the bare energy of site 1 to
become lower than site 0, after the switch has relaxed. Small changes
X'/' < 1 in the position of the sites would not drastically alter the full
population transfer results as the important factor for this process to
happen is that the static contribution is enough to invert the energy
gap. Although the initial relaxation of the environment around site
0 still creates a large barrier for population transfer, the static switch
potential now renders the population on site 0 metastable. Thus, the ac-
tivation of the switch has primed a permanent conformational change
in the environment that drives full population transfer. This is directly
evidenced in Fig. 7.6(a), showing that an excitation initially localised
on site 0 undergoes spontaneous and complete transfer to site 1, when
the environment is initially relaxed in the presence of a populated
switch. This observation has a strong implication, namely that this
transition should be reversible once the switch is depopulated, as is
verified in Fig. 7.6(a) for :2' = 5 when we remove the switch excitation
at l2C = 200. All these transitions can be summarised by looking at the
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sites’ energy levels for different configurations, as shown in Fig. 7.7(c).
Reversibility of transitions is of paramount importance, from a control
perspective, as it enables the switching of the state of the TLS using a
mechanical medium; our model highlights how spatial variations in
the non-local energy shift could be exploited for dissipatively ‘locking
in’ activated states. This reversible 100%-yield population transfer also
enables the possibility of information transduction from, for instance,
an electromagnetic medium (a laser-pulse used to excite the switch
site) to a mechanical medium. An additional way to frame this effect of
spatial variation of the reorganisation energy landscape is to consider
it as a simple form of environment engineering. The excited switch site
precisely located could be considered as part of the environment of
the TLS — which would effectively be described with a new spectral
density — whose dissipative dynamics now spontaneously populates
the TLS site 1. Hence, one could design a dissipative energy land-
scape by combining several switch-like systems and placing them at
selected positions in space. Finally, in contrast to dynamically acti-
vated metastable states, we note that ‘permanently activated’ states are
favoured thermodynamically, i.e. do not harvest energy from the trig-
gering of the switch directly; the work done by the environment has
gone into creating the driving force for the dissipative population trans-
fer. The deterministic movement of, say, charged excitations to new
sites could be used to trigger a wide range of chemical and mechani-
cal processes which could provide catalytic coordination or sensing
functions.

7.6 Analogies with allosteric regulation

Allostery refers to the central regulation process in proteins in which
the binding of an effector molecule (ligand) at one site of the protein
can have a reversible at-a-distance effect on a distal site: increasing
or decreasing its ability to bind (see Fig. 7.8(a)). Despite having been
conceptualised almost sixty years ago [133, 134], understanding the
biophysical mechanisms behind this long-range coupling remains a
highly active topic [135–137]. Hence, numerous structural and ther-
modynamical models [138–143] to explain this crucial process have
been proposed but, even though some give quantitatively accurate
predictions, none of these alone provide a convincing explanation for
the nature of allosteric signalling. Therefore, allostery is often referred
to as “the second secret of life" [144] The first secret of life has already been un-

covered when it was demonstrated that
DNA is the physical support of heredi-
tary information.

.

The at-a-distance environmentally driven dynamics studied in this
chapter presents common features with the biological process of al-
losteric regulation. Indeed, the simple model presented here exhibits
several features that are central to the mechanism of allostery:

I the mechanical nature of the signal,
I the distal control of a transition,
I the reversibility of the transition upon removal of the effector,

and
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Figure 7.8: (a) Representation of an al-
losteric enzyme. The binding of an ef-
fector molecule on the allosteric site
can change the configuration of a dis-
tal binding site. (b) The components of
the model presented in this chapter have
been relabelled to their analogous com-
ponents in an allosteric enzyme. The
binding of the ligand will transiently per-
turb the environment which will influ-
ence the stability of the binding-site’s
configurations.

I the specific spatial arrangement of allosteric and active sites
(called allosteric pathways).

Our generic OQS model can be thought of as a basis for describing the
effect of a ligand-binding site to induce a transition between two pos-
sible enzyme conformations. Hence, one could assign to the different
elements of our models counterparts in the prototypical description of
enzyme allostery. The switch site could play the role of an allosteric
site and the states of the distal TLS could stand for two different bind-
ing site conformations. The vibrational environment would then be
associated with the rest of the enzyme. Figure 7.8(b) shows how the
analogy is constructed. In this analogy, the excitation of the switch
corresponds to the binding of an effector at the allosteric site. This
binding generates a structural reorganisation of the enzyme which in-
duces a conformational change at the binding site. This conformational
change of the whole structure of the enzyme now renders another con-
figuration of the binding site more stable, henceforth changing the
binding ability of the site. Reversibility of transitions once the effector
molecule unbinds is one of the key dynamical features of allosteric
regulation, and our model highlights how spatial variations in the
non-local energy shift could be exploited for dissipatively ‘locking in’
activated states whose lifetimes are now set by the binding time of a
ligand. In such a model, the allosteric signal sending information from
one site to the other is the reorganisation energy landscape introduced
above, and the non-local reorganisation can stabilise this configuration,
leading to 100% quantum yield and a lifetime that is only limited by
the dwell time of the ligand. This simple model is able to recover the
key features of allostery and provide a clear picture of a potential
underlying mechanism in terms of reorganisation energy. However,
we wish to highlight that the model presented here is not a model
describing biological allostery and it cannot make any quantitative
predictions in its current formulation about, for instance, chemical
reaction rates or the actual arrangement of the allosteric pathways.
Such a quantitative model would need additional ingredients, the
most straightforward one being a biologically relevant SD that corre-
sponds to a specific enzyme. Another ingredient would be a better
description of the vibrational environment (e.g. dispersion, additional
dissipation of the vibrational mode themselves...) and its coupling
with the binding sites (under which hypothesis is it linear?). Never-
theless, this model of non-Markovian remote control could provide
high-level insights that could be relevant for actual biological allostery.
I would like to add environmental signalling through transient energy
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shifts and background energetic texture to the list of possible elements
of understanding of the fundamental issue of allosteric regulation.

7.7 Discussion

Our open quantum model of non-Markovian, environmentally me-
diated signalling, allows us to leverage unavoidable dissipative pro-
cesses to reversibly control the transition of a remote TLS. Using our
numerically exact tensor networks simulation methods, two distinct
classes of controlled process — transient and permanent activations —
have been identified both at zero and finite temperatures, and further
work will explore the efficiency of these mechanisms in single-shot
and cyclic, i.e. engine, operation. Crucially our quantum switch model
provides a natural platform to explore strongly non-classical effects
in remote signalling, and could naturally be extended to multiparticle
systems to explore spatiotemporal entanglement dynamics driven by
dissipative processes. Indeed, this quantum switch model could pro-
vide a reversible and non-invasive means of controlling, entangling
and probing qubits. Physical 1D platforms such as cold atoms, super-
conducting qubit chains and ion traps could also be used as quantum
simulators for such physics. The study of common environment dis-
sipative physics that can give rise to non-local and non-Markovian
effects is crucial in the context of quantum engineering in order to
be able to channel dissipation toward useful functions, and to miti-
gate induced cross-talk errors in multi-component nanodevices. The
possibility, opened by our model, for the environment to be in a su-
perposition of two different displacements of opposite magnitudes
hints toward indefinite causal order of dissipative processes [145, 146].
In another direction, our model could be refined in multiple ways to
describe realistic (bio-)chemical systems. For instance, our present the-
oretical tools could be used to approach structured spectral densities
found by ab initio methods [83, 147], anharmonic effects [148, 149], or
Hamiltonian topologies that account for more complex connectivity
between systems and/or environments [39]. Another perspective for
this model is to provide a new set of processes to analyse the intricate
physical effects happening in biological systems made of complexes
of organic molecules such as allostery [134, 135, 142] or multi-electron
processes [124].
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Appendix

7.A Definition of the reorganisation energy
with a toy example

Consider a system interacting with a single harmonic oscillator of
angular frequency l with the following Hamiltonian

�̂ = �̂( +
ℎ̄l

2
( -̂2 + %̂2) + 6(̂-̂ (7.26)

where -̂ and %̂ are respectively the dimensionless displacement and
dimensionless momentum operators of the harmonic oscillator, (̂ is
a diagonal system operator, and 6 is the coupling strength between
the system and the oscillator. The linear coupling term between the
system and the oscillator can be removed by changing -̂ → -̃ = -̂ + �̂,
i.e. by changing the equilibrium position of the oscillator. Hence the
harmonic oscillator’s Hamiltonian becomes

�̂� =
ℎ̄l

2
( -̂2 + %̂2) (7.27)

=
ℎ̄l

2
(( -̃ − �̂)2 + %̂2) (7.28)

=
ℎ̄l

2
( -̃2 + �̂2 − 2-̃ �̂ + %̂2) (7.29)

�̂� =
ℎ̄l

2
( -̃2 + %̂2) + ℎ̄l

2
( �̂2 − 2-̃ �̂) , (7.30)

and the interaction Hamiltonian becomes

�̂int = 6-̂ (̂ = 6-̃ (̂ − 6�̂(̂ . (7.31)

We choose �̂ = 6

ℎ̄l
(̂ such that the new linear coupling term 6-̃ (̂ is

cancelled out by the linear term −ℎ̄l-̃ �̂ from the oscillator’s Hamilto-
nian.

The Hamiltonian has now the following form

�̂ = �̂( +
ℎ̄l

2
( -̃2 + %̂2) + ℎ̄l

2
�̂2 − 6�̂(̂ (7.32)

= �̂( +
ℎ̄l

2
( -̃2 + %̂2) + 62

2ℎ̄l
(̂2 − 62

ℎ̄l
(̂2 (7.33)

�̂ = �̂( +
ℎ̄l

2
( -̃2 + %̂2) − 62

2ℎ̄l
(̂2 . (7.34)

We define the reorganisation energy _ def.
=

62

2ℎ̄l . This reorganisation
energy comes from a positive contribution from the oscillator’s Hamil-
tonian and a negative contribution twice as large from the interaction
Hamiltonian. Hence, at equilibrium (〈-̃〉 = 0), the expectation value of
the interaction Hamiltonian is 〈�̂int〉 = −2_〈(2〉.
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No. Never, not even when falling
asleep, will I ever proudly mutter
about nothing being able to
surprise me. No. As one year has
passed, so will another, and it will
be just as rich in surprises as the
first one... And so I have to go on
dutifully learning.

Mikhail BULGAKOV,
A Young Doctor’s Notebook

In this thesis, we have studied the behaviour of nanoscale quantum
systems interacting with a macroscopic bosonic environment. Moti-
vated by considerations from condensed matter physics and biological
systems, we highlighted the need to go beyond the usual Markovian
assumption and, furthermore, beyond the approximation (often taken
for granted) of local independent baths. Indeed, miniaturised nanode-
vices have several working units in a small volume that thus dissipate
energy in the same region of space. Similarly, biological ‘nanoma-
chines’, such as enzymes or pigment protein complexes, have different
functional sites nanometers apart that hence dissipate energy in the
very same environmental modes as well. In such cases, energy dissi-
pated into the environment by a given sub-system can be absorbed
later on by another sub-system – a highly non-Markovian process by
nature. However, the description of such spatial correlations in the
environment are known to be challenging. To tackle this problem, we
have built upon a powerful numerically exact method named Time
Evolving Density operator with Orthonormal Polynomials Algorithm
(TEDOPA) that treats the system and the environment on an equal
footing. By using tensor networks to represent the joint {System +
Environment} quantum state as a Matrix Product State (MPS) this
method is able to circumvent the curse of dimensionality inherent to
many-body quantum systems.

In chapter 4, we introduced the chain mapping technique on which
TEDOPA is based, and showed how it can be applied both at zero and
finite temperature. From there, in order to describe spatial correlations,
we have extended this technique to systems with an explicit spatial
structure. The obtained chain mapping is what we call a correlated
environment. By developing this new method, we made possible the
description of multi-component quantum systems interacting with a
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single common environment, and thus the study of spatiotemporal
correlations inside the environment.

On the methodology side of things, after developing our method to
handle a correlated environment, we studied in chapter 5 the influ-
ence of the ordering of bath modes in the MPS. This question stems
from the study of systems interacting with several distinct environ-
ments, for instance a hot and a cold bath. In these situations, it is
possible to organise the elements of the MPS in several ways. We
have shown that, for bosonic environments, the usual ‘natural’ way
to represent the MPS following the structure of the Hamiltonian is
not optimal, and we have introduced new ways of ordering the MPS
sites that are computationally more efficient. In doing so, we refuted a
common-sense assumption about the growth of MPS bond dimension
in multi-environment cases and made a conjecture on the origin of this
gain in efficiency.

Equipped with these new tools, we studied in chapter 6 the influence of
spatial correlations on the dynamics of a simple two-level system. We
have shown that such a system experiences non-Markovian revivals
of its initial state population that are associated with information
backflow from the environment. The environmental non-Markovian
signalling that we unveiled could shed light on biological processes,
for instance charge separation in reaction centres, where several mech-
anisms happening at the single excitation level are concerted over
different timescales.

Armed with our new understanding of environmental signalling, a
general model of dissipation in one-dimensional multi-component
systems has been studied in chapter 7. Looking at joint system/envi-
ronment observables, we have studied the out-of-equilibrium dynam-
ics induced by the excitation of a sub-system on another uncoupled
sub-system. Two different types of processes impacting the second
sub-system have been uncovered: (1) a transient energy harvesting
process enabling dynamically prohibited transitions, and (2) a per-
manent process where the reorganisation of the environment alters
the nature of the thermodynamically favoured ground state. In this
chapter, we also drew a parallel between the features of our general
dissipation model and the features of a biological regulatory process
called allostery.

The work presented in this thesis can lead to further developments
in several directions. The conjecture formulated in chapter 5 needs
further investigations to be either refuted or proven correct. In a similar
vein, more work is needed to understand the connection between the
ordering of the environmental modes when a system couples to several
environments and the growth of the state bond dimension. In the case
of several environments, it would also be of interest to discover how
non-additivity manifests itself in the chain dynamics.
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The comparison of the exact results obtained with our numerical
method with approximate treatments of the same problems would
give us the opportunity to understand the open system’s dynamics
from a different vantage point, and to highlight the essential features of
the environmental dynamics resulting in the observed non-Markovian
effects. This has partially been done by formulating a non-time-local
master equation with a discrete memory kernel reflecting the spatial
structure of the system in the environment response. Applying what
we have called a ‘local Markov approximation’ leads to a time-delayed
master equation able to recover the revivals observed in chapter 6.

Keeping a two qubit model such as the one presented in chapter 7,
the range of new phenomena that can be investigated in a model as
simple as this one has not been exhausted. Once driven, for example
by an electromagnetic field, a TLS is an oscillator that oscillates at
its autonomous Rabi frequency. Environmental signalling indirectly
couples two oscillators that could thus synchronise to a new mutual
frequency and phase lock, and possibly display other non-equilibrium
phenomena. An experimental realisation of such a system could be
done by encapsulating two quantum dots in a nanowire forming their
common vibrational environment. Quantitative predictions could be
made with the appropriate SD and compared with the dots emission
spectra.

In the work presented here, biological systems were a motivation
but no model of a specific biological system was studied. As we ex-
plained in chapter 1, there is a lot to gain in understanding how some
crucial non-equilibrium biological processes are performed by a few
correlated excitations. The electron bifurcation process, central to respi-
ration, is an energy transduction mechanism where two electrons are
spontaneously separated, the first one going down an energy gradient
while the other one is climbing up another energy gradient. The elec-
tron gaining energy does so by reusing part of the energy dissipated
by the first electron. Macroscopic thermodynamic models of this sepa-
ration process have been proposed, but the microscopic mechanisms
behind this out-of-equilibrium phenomenon are not yet understood.
The tools we developed in this thesis are fit to describe such a system.
It would require three local fermionic baths (one for the two electron
donor and two for the electron acceptors at the end of each energy
gradient) and a common vibrational bath. One of the difficulties of
this project would be the parametrisation of the system Hamiltonian
as the only accessible experimental data are the reduction potentials
(or alternatively the reaction Gibbs free energy) of the constituents of
the system.
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