
HAL Id: tel-04136202
https://theses.hal.science/tel-04136202

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantization and adversarial robustness of embedded
deep neural networks

Thibault Allenet

To cite this version:
Thibault Allenet. Quantization and adversarial robustness of embedded deep neural networks. Ma-
chine Learning [cs.LG]. Université de Rennes, 2023. English. �NNT : 2023URENS003�. �tel-04136202�

https://theses.hal.science/tel-04136202
https://hal.archives-ouvertes.fr

Par

Thibault ALLENET

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES

ECOLE DOCTORALE N° 601

Mathématiques, Télécommunications, Informatique, Signal, Systèmes,

Electronique

Spécialité : Informatique

Quantization and Adversarial Robustness of Embedded Deep
Neural Networks

Thèse présentée et soutenue à DIGITEO Saclay – CEA LIST, le 24 mars 2023
Unité de recherche : IRISA/INRIA & CEA-LIST

Rapporteurs avant soutenance :

Fan YANG Professeur – Université de Bourgogne
Kevin BAILLY Maître de conférences – Sorbonne Université

Composition du Jury :

Président : Alberto BOSIO Professeur – Ecole Centrale de Lyon, INL
Examinateurs : Pierre-Alain MOELLIC Ingénieur-chercheur – CEA-LETI

Fan YANG Professeur – Université de Bourgogne
Kevin BAILLY Maître de conférences – Sorbonne Université

Dir. de thèse : Olivier SENTIEYS Professeur - Université de Rennes, IRISA, Rennes, France
Co-dir. de thèse : Olivier BICHLER Ingénieur Chercheur – CEA-LIST

Invité(s) :
David BRIAND PhotoRoom

Remerciements

Je tiens à exprimer ma sincère gratitude à toutes les personnes qui ont contribué à mon

parcours de thèse et à son succès.

Tout d’abord, je suis profondément reconnaissant envers mon directeur de thèse, Olivier

SENTIEYS, et mes encadrants, Olivier BICHLER et David BRIAND, pour leur mentorat,

leur patience, et leur motivation tout au long de ma formation à la recherche. Leur

expertise, leurs commentaires et leur critique constructive m’ont poussé à m’améliorer

techniquement et à gagner en maturité sur le travail de recherche.

Je tiens également à exprimer mon appréciation aux rapporteurs et membres de mon

jury de doctorat, Fan YANG, Kevin BAILLY, Pierre-Alain MOELLIC, Alberto BOSIO

pour leur examen critique de ma thèse et leurs suggestions avisées.

Je suis également reconnaissant envers mes collègues de laboratoire. Ces années passées

à vos côtés ont cultivé des amitiés que je chéris. Merci à Guillaume pour avoir partagé ses

connaissances et son expérience. Merci à Inna pour sa relecture du manucrit et son soutien

au moment de la rédaction. Merci à Vincent L. pour ses critiques constructives et ses

perspectives diverses. Merci à Clément, Cyril, Gabriel, Guillaume, Inna, Jason, Johannes,

Pierre-Guillaume, Quentin, Vincent L., Vincent T. et Thibaut pour les discussions à

l’espace café, pour la bonne ambiance quotidienne et pour les soirées.

Merci à mes parents et à mes soeurs, pour leur amour, leur écoute et leur soutien.

Enfin, mais surtout, je voudrais exprimer ma profonde gratitude envers ma femme, My,

pour son amour, son écoute, sa patience, ses encouragements et son soutien indéfectible

tout au long de mon parcours de doctorat.

3

Abstract

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have

been broadly used in many fields such as computer vision, natural language processing

and signal processing. Nevertheless, the computational workload and the heavy memory

bandwidth involved in deep neural networks inference often prevents their deployment on

low-power embedded devices. Moreover, deep neural networks vulnerability towards small

input perturbations questions their deployment for applications involving high criticality

decisions. This PhD research project objective is twofold. On the one hand, it proposes

compression methods to make deep neural networks more suitable for embedded systems

with low computing resources and memory requirements. On the other hand, it proposes a

new strategy to make deep neural networks more robust towards attacks based on crafted

inputs with the perspective to infer on edge.

We begin by introducing common concepts for training neural networks, convolutional

neural networks, recurrent neural networks and review the state of the art neural on

deep neural networks compression methods. After this literature review we present two

main contributions on compressing deep neural networks: an investigation of lottery

tickets on RNNs and Disentangled Loss Quantization Aware Training (DL-QAT) on

CNNs. The investigation of lottery tickets on RNNs analyze the convergence of RNNs and

study its impact when subject to pruning on image classification and language modelling.

Then we present a pre-processing method based on data sub-sampling that enables faster

convergence of LSTM while preserving application performance. With the Disentangled

Loss Quantization Aware Training (DL-QAT) method, we propose to further improve an

advanced quantization method with quantization friendly loss functions to reach low bit

settings like binary parameters where the application performance is the most impacted.

Experiments on ImageNet-1k with DL-QAT show improvements by nearly 1% on the

top-1 accuracy of ResNet-18 with binary weights and 2-bit activations, and also show the

best profile of memory footprint over accuracy when compared with other state-of-the art

methods.

This work then studies neural networks robustness toward adversarial attacks. After

introducing the state of the art on adversarial attacks and defense mechanisms, we propose

the Ensemble Hash Defense (EHD) defense mechanism. EHD enables better resilience

to adversarial attacks based on gradient approximation while preserving application

5

performance and only requiring a memory overhead at inference time. In the best

configuration, our system achieves significant robustness gains compared to baseline

models and a loss function-driven approach. Moreover, the principle of EHD makes it

complementary to other robust optimization methods that would further enhance the

robustness of the final system and compression methods. With the perspective of edge

inference, the memory overhead introduced by EHD can be reduced with quantization or

weight sharing.

The contributions in this thesis have concerned optimization methods and a defense

system to solve an important challenge, that is, how to make deep neural networks more

robust towards adversarial attacks and easier to be deployed on the resource limited

platforms. This work further reduces the gap between state of the art deep neural networks

and their execution on edge devices.

Page 6 of 147

Résumé substantiel en français

L’attention portée à l’intelligence artificielle et à l’apprentissage automatique s’est ample-

ment accrue au cours de la dernière décennie. L’apprentissage automatique, désigne un

ensemble d’algorithmes qui apprennent et s’adaptent sans suivre d’instructions explicites

en analysant et en tirant des conclusions à partir de structures dans les données. La

capacité à produire et à stocker des données a considérablement augmenté au cours des

dernières décennies et, avec elle, le succès de l’apprentissage automatique. Parmis les

algorithmes d’apprentissage automatique, les réseaux de neurones profond apportent les

meilleures performances de modélisation.

Les réseaux de neurones convolutifs et les réseaux neurones récurrents ont été largement

utilisés dans de nombreux domaines tels que la vision par ordinateur, le traitement naturel

du langage et le traitement du signal. Néanmoins, la charge de calcul et le besoin en

bande passante mémoire impliqués dans l’inférence des réseaux de neurones profonds

empêchent souvent leur déploiement sur des cibles embarquées à faible ressources. De plus,

la vulnérabilité des réseaux de neurones profonds à de petites perturbations sur les entrées

remet en question leur déploiement pour des applications impliquant des décisions de haute

criticité. Pour relever ces défis, cette thèse propose deux principales contributions. D’une

part, nous proposons des méthodes de compression pour rendre les réseaux de neurones

profonds plus adaptés aux systèmes embarqués ayant de faibles ressources. D’autre part,

nous proposons une nouvelle stratégie pour rendre les réseaux de neurones profonds plus

robustes aux attaques adverses en tenant compte des ressources limitées des systèmes

embarqués. Le manuscrit est organisé de la façon suivante.

Apprentissage profond et état de l’art

Dans un premier temps, nous présentons des principes et des outils de bases de l’ appren-

tissage profond et nous fournissons un état de l’art sur des méthodes de compressions de

réseaux de neurones. Nous introduisons des concepts de base pour l’apprentissage des

réseaux de neurones comme le principe de généralisation, la rétropropagation, les fonctions

de coût, l’apprentissage par transfert, la tendance principale de l’apprentissage profond

et certaines limitations. Nous introduisons trois types de réseaux de neurones reconnus

7

: les perceptrons à plusieurs couches, les réseaux de neurones convolutifs et les réseaux

de neurones récurrents. Nous passons en revue quelques méthodes de compression des

réseaux de neurones profonds de l’état de l’art.

Compression de réseaux de neurones

Ensuite, nous présentons deux contributions autour de la compression des réseaux de

neurones profonds.

• Une étude de transferabilité d’une technique avancée de pruning, le lottery ticket

[25], originalement appliqué aux perceptrons à plusieurs couches et aux réseaux

de neurones convolutifs dans l’objectif d’être appliqué aux réseaux de neurones

récurrents.

• Une méthode de quantification avancée des réseaux de neurones convolutifs, Disen-

tangled Loss Quantization Aware Training (DL-QAT).

Compression de réseaux de neurones récurrents

Cette étude de transferabilité du lottery ticket sur les RNN analyse la convergence des RNN

et étudie son impact sur l’élagage (pruning) pour des taches de classification d’images et de

modélisation du langage. Frankle et al . [25] ont étudié la corrélation entre l’initialisation

et le pruning des réseaux de neurones non récurrent. Plus précisément, l’hypothèse du

lottery ticket conjecture que les réseaux de neurones contiennent de petits sous-réseaux

qui peuvent être réentrainés à partir de la même initialisation et obtenir une précision

similaire en un nombre proportionnel d’étapes d’entrainement.

Nous utilisons leur méthode comme outil pour étudier la convergence des réseaux de

neurones récurrents. Nous étendons leur cadre expérimental en évaluant leur algorithme

sur des Recurrent Neural Networks (RNN) avec des tâches de classification d’images et

de modélisation du langage. En comparaison avec les travaux originaux sur MultiLayer

Perceptrons (MLP) et Convolutional Neural Networks (CNN), il apparâıt que le profil de

convergence de RNN est instable. En couplant l’analyse de la convergence avec plusieurs

configurations pertinentes de la méthode, nous avons observé que, pour trouver un lottery

ticket sur une architecture récurrente, le réapprentissage doit être initialisé avec un état de

réseau dense à partir duquel le profil de la fonction de coût converge sans instabilités.

De plus, nous proposons une nouvelle méthode de prétraitement basée sur le sous-

échantillonnage des données qui permet une convergence plus rapide des LSTM tout en

préservant les performances applicatives. La figure 1 montre que le LSTM entrainé avec la

méthode proposée converge vers une asymptote à l’itération 20k, soit la moitié du nombre

d’itérations nécessaires pour l’apprentissage sans la méthode de sous-échantillonnage, et

les performances applicatives sont préservées.

Page 8 of 147

0 10 20 30 40 50 60 70 80 90 100 110 120

Training iterations ·103

0

0.5

1

1.5

2

2.5

3

T
ra
in
in
g
lo
ss

va
lu
e

Training with sub-sampling. Test score : 98.98 %
Training without sub-sampling. Test score : 98.91 %

Figure 1: Courbes de convergence des LSTM sur la tache du MNIST séquentiel avec et sans
la méthode de sous-échantillonnage proposée. La méthode de sous-échantillonnage proposée
permet une convergence plus rapide des LSTM tout en préservant les performances de
l’application.

Les méthodes de pruning des poids permettent d’obtenir un taux de compression de

modèle significatif tout en préservant les performances applicatives. Une telle compression

de modèle permet le stockage de nombreux modèles sur du matériel à mémoire limitée.

Cependant, l’architecture creuse qui en résulte n’est pas structurée pour être facilement

accélérée sur cible. Cela constitue leur principale limitation pour des applications critiques

ayant des contraintes en latence et en faible consommation. Au regard de ces critères, la

quantification est une solution élégante pour à la fois compresser le stockage mémoire du

réseau et permettre une inférence optimisée avec des opérateurs de moindre précision au

moment de l’inférence. Ce premier travail a motivé notre choix de poursuivre ce travail de

recherche sur des méthodes de quantification de réseaux de neurones.

Quantification de réseaux de neurones convolutifs

Nous proposons d’améliorer une méthode de l’état de l’art de quantification à l’ apprentis-

sage, la méthode Scaled Adjust Training (SAT) proposée par Jin et al . [48]. Comme toute

les autres méthodes de quantification, elle repose sur la fonction de coût cross-entropy.

Page 9 of 147

Nous proposons Disentangled Loss Quantization Aware Training (DL-QAT), une méthode

utilisant des fonctions de coût favorables à la quantification pour quantifier des réseaux de

neurones à l’apprentissage. L’algorithme 1 détaille l’implémentation de DL-QAT. Nous

posons donc l’hypothèse que l’entrâınement de ResNets-18 avec des fonctions de coûts

encourageant à produire des caractéristiques discriminantes améliore la résiliance des ces

modèles à la quantification.

Algorithm 1 Disentangled Loss Quantization Aware Training

1: Inputs: a neural network f and its FP32 parameters WFP32, training data x and
its corresponding target y, the disentangled Loss L. Clamp() is Eq. (5.2), DoReFa is
Eq. (5.3) and Eq. (5.4), Scaled-Adjust is Eq. (5.5).

2: Outputs: the quantized parameters Q and the activation quantization learned pa-
rameters α.

3: DL-QAT(f ,W ,x,y,L):
4: Training I. FP32 clamped and scaled weights
5: Learn the network minimizing L[f(x,Clamp(WFP32)), y]
6: WFP32 ← converged FP32 parameters of the first training
7: Training II. Quantized weight and activation
8: For each Quantization Aware Training iteration using input data (x, y):
9: Wclamp ← Clamp(WFP32)
10: Q← DoReFa(Wclamp)
11: If No Batch Normalization:
12: Q← Scaled-Adjust(Q)
13: Out← f(x,Q). (Propagate and quant. the activations on the fly with PACT(α))
14: Error ← L(Out, y)
15: Backpropagate the error. (The quant. functions are approximated as detailed in [48])

16: Update WFP32 and α with SGD and their respective gradients:
∂Error

∂W
,
∂Error

∂α
17: return Q, α

Afin de visualiser la contribution des fonctions de coût utilisées pour quantifier, Additive

Margin Softmax (AMS) et Gaussian Mixture Loss (GML), la figure 2 montre les projections

des sorties de ResNets-18 avec l’algorithme t-sne [107] à partir des données de test de

CIFAR-10. En comparant la fonction de coût cross entropique (a & d) aux fonctions de

coût AMS (b & e) et GML(c & f), il apparâıt clairement que les caractériques apprises

par AMS et GML sont plus discriminatives que les caractériques apprises par la CEL et

d’autant plus pour les ResNets-18 quantifiés à faible précision.

Des résultats sur ImageNet-1k sont illustrés dans la figure 3 où l’axe x correspond à

l’empreinte mémoire du réseau et l’axe y correspond au score de test top-1 sur ImageNet.

L’empreinte mémoire d’un réseau neurone quantifié est approximée en additionnant le

stockage total des paramètres associé à leur précision respective avec la mémoire nécessaire

pour bufferiser l’activation de la plus grande taille. Pour obtenir des réseaux de neurones

quantifiés à faible empreinte mémoire, les paramètres de quantification deviennent de

plus en plus extrêmes et par conséquent les performances applicatives diminuent. En

Page 10 of 147

(a) full-precision CEL (b) full-precision AMS loss (c) full-precision GML

(d) 2-bit W&A CEL (e) 2-bit W&A AMS loss (f) 2-bit W&A GML

Figure 2: Projection de la sortie d’un resnet-18 avec l’algorithme t-sne à partir des données
de test de CIFAR-10. Les t-sne ont été exécutés sur 1000 itérations avec une perplexité
de 30.

comparant (DL-QAT) à toutes les autres méthodes de l’état de l’art, il apparâıt clairement

que notre méthode fournit le meilleur profil du compromis entre l’empreinte mémoire et

la performance applicative. De plus, notre méthode permet d’atteindre des paramètres

binarisés.

Dans l’ensemble, nos expériences confirment notre hypothèse et encouragent l’utilisation

et la recherche futures des pertes démêlées pour la formation consciente de la quantification.

DL-QAT contribue à rendre l’inférence des réseaux de neurones convolutifs plus accessible

sur cibles à faible ressources. Alors que de plus en plus d’applications basées sur les réseaux

de neurones sont déployées, les CNN sont de plus en plus exposés aux menaces de sécurité

telles que les attaques adverses. Comprendre la vulnérabilité de ces réseaux aux attaques

adverses est plus que jamais un problème crucial.

Robustesse des réseaux de neurones aux attaques ad-

verses

Les réseaux de neurones sont vulnérables à de petites perturbations sur ses entrées. Cette

vulnérabilité peut être exploitée par un attaquant pour compromettre l’intégrité du modèle

et pour forcer le modèle à faire des prédictions erronées uniquement en perturbant les

entrées. Pour y parvenir, un attaquant calcule des exemples adverses, comme introduit

Page 11 of 147

0 1 2 3 4 5 6 7 8
62

63

64

65

66

67

68

69

70

71

72

score en FP32

p1a2

p1a2

p4a4/32

p4a4

p2a32

p2a32p1a32

p1a32

p1a8
p1a2

p2a2/32

p2a2

p2a2

p1a4
p1a8

p4a4

p2a8

p1a4
p1a8

p4a4

p2a8

Empreinte mémoire (Mo)

S
co
re

to
p
-1

Im
ag
eN

et
-1
k

DL-QAT GML
SAT

LSQ 2019
HAWQ-V3 2021

INQ 2017
ABC-Net 2017
DSQ 2019
IR-Net 2020
SYQ 2018

LQ-Net 2018

Figure 3: Comparaison de l’empreinte mémoire (en Mo) de réseaux quantifiés à différentes
précisions. Chaque point est un réseau quantifié et est associé à la précision de ses poids
(p) et de ses activations (a). Les ronds pleins sont les résultats issus de nos expériences
tandis que les ronds vides sont les résultats issus de l’état de l’art.

par Szegedy et al . [103]. Le but de l’attaque est de trouver une petite variation de l’entrée

qui soit imperceptible à la perception humaine mais qui trompe la prédiction du réseau de

neurone. Prenons l’exemple de la figure 4, le modèle classe correctement l’image originale

comme un panda. Puis en ajoutant une petite perturbation à l’image originale, une image

adverse est générée, celle-ci étant identifié de manière érronée comme un gibbon. Bien que

les différences entre l’image originale et l’image adverse soient indiscernables à l’œil humain,

la petite perturbation est suffisante pour tromper la prédiction du modèle neuronal.

Figure 4: Exemple d’une image adverse. Source de l’illustration : [32]

Page 12 of 147

Nous présentons un état de l’art sur les attaques adverses et les mécanismes de défense.

Dans l’ensemble, les mécanismes de défense cherchent soit à augmenter la robustesse des

modèles face aux attaques adverses grâce à des mécanismes d’apprentissage spécifiques,

soit à détecter les attaques adverses. Ces mécanismes de défense présentent cependant

deux limites principales :

• les gains de robustesse se font au détriment des performances applicatives [121] ou

d’une surcharge en calcul et en mémoire lors de l’inférence [105, 78, 93, 108, 70]

• les mécanismes de défense restent plus ou moins vulnérables aux attaques par

estimation de gradient comme SPSA [77].

Nous proposons alors le système de défense Ensemble Hash Defense (EHD) répondant à

ces deux limitations. EHD contre les attaques par approximation par gradient avec un

mécanisme de défense en deux étapes basé sur un ensemble de modèles et des fonctions de

hachage cryptographiques.

1. Entrâınement

Apprendre k modèles. Chaque modèle doit avoir une performance applicative

similaire.

2. Inférence

Lors de l’inférence, EHD combine une stratégie d’ensemble de modèles avec un

processus de sélection de modèles d’inférence. A partir de l’image d’entrée, le

processus de sélection choisit un modèle parmi les k modèles pour inférer l’image

d’entrée. La figure 5 illustre le processus d’inférence de EHD pour k = 3 modèles.

Nous présentons le sytème de défense EHD selon les points suivants :

• La formulation d’une hypothèse selon laquelle le système EHD bénéficie de la diversité

de réponse des k modèles impliqués.

• Les avantages et limitations identifiés d’EHD.

• Le détail du processus de sélection de modèle à l’inférence.

• Un exemple du comportement de la méthode face à une attaque SPSA.

Dans la meilleure configuration, Ensemble Hash Defense (EHD) atteint une résilience

de 41% par rapport à une résilience de 10.0% avec une approche d’apprentissage robuste

utilisant une fonction de coût Max-Mahalanobolis Center loss (MMC) [77]. Nous pensons

que ce résultat n’est que le premier pas vers des systèmes plus robustes basés sur le concept

simple introduit par notre méthode EHD. En ayant une approche pratique, lorsqu’il est

Page 13 of 147

Figure 5: Principe du système de défense Ensemble Hash Defense proposé

envisagé d’utiliser des réseaux de neurones pour une application, il est necessaire de prendre

en compte les risques d’attaques adverses et d’étudier si une méthode de défense existante

permet de réduire la criticité résultante à un niveau acceptable.

En conclusion, les travaux de cette thèse ont proposé des méthodes de compression de

réseaux de neurones et un système de défense pour résoudre des défis importants, à savoir

comment rendre les réseaux de neurones profonds plus robustes face aux attaques adverses

et plus faciles à déployer sur les plateformes à ressources limitées. Ces travaux réduisent

davantage l’écart entre l’état de l’art des réseaux neurones profonds et leur exécution sur

des cibles embarquées à faible ressources.

Page 14 of 147

Contents

1 Introduction 25

1.1 Context . 25

1.2 Issues related to compression and vulnerability of DNNs 28

1.3 Contributions . 28

1.4 Thesis outline . 29

2 Deep Neural Networks 31

2.1 Common Concepts for Training Neural Networks 32

2.1.1 Model, data, and generalization . 32

2.1.2 Loss function . 32

2.1.3 Initialization . 33

2.1.4 Training paradigms . 34

2.1.5 Data augmentation . 35

2.1.6 Supervised training of a neural network 35

2.1.7 Transfer learning . 37

2.1.8 Increasing model size . 38

2.1.9 Exploding and vanishing gradients phenomena 38

2.2 Multi-Layer Perceptrons . 39

2.2.1 Fully-connected layer . 39

2.2.2 Non-linear activation function . 40

2.2.3 Limitations . 41

2.3 Convolutional Neural Network . 41

2.3.1 Convolution layer . 41

2.3.2 Pooling layer . 42

2.3.3 Batch Normalization layer . 43

2.3.4 Resnets . 43

2.4 Recurrent Neural Networks . 46

2.4.1 Concept . 46

2.4.2 Backpropagation through time . 48

2.4.3 Gated mechanism - Long Short Term Memory 49

2.5 Deep Neural Network compression . 51

15

CONTENTS

2.5.1 Compression objective and data availability 51

2.5.2 Pruning . 52

2.5.3 Quantization . 53

2.6 Conclusion . 61

3 Deep Learning Tools 63

3.1 Libraries . 63

3.1.1 Deep Learning Frameworks . 63

3.1.2 Libraries for deploying neural networks on the Edge 65

3.1.3 N2D2 - Neural Network Design & Deployment 66

3.2 Benchmark Datasets . 67

3.2.1 MNIST . 68

3.2.2 CIFAR-10 & CIFAR-100 . 68

3.2.3 ImageNet-1k . 69

3.2.4 Wikitext-2 . 69

4 Compressing Recurrent Neural Networks 71

4.1 Introduction . 71

4.2 Sparse and dense models . 72

4.3 The Lottery Ticket Hypothesis . 73

4.4 Experimental protocol . 73

4.5 Handwritten digits recognition . 76

4.5.1 Task and training setup. 76

4.5.2 Convergence on Sequential MNIST 76

4.5.3 Lottery ticket experiments . 78

4.5.4 Sub-sampling pre-processing . 80

4.6 Language Modelling . 83

4.6.1 Task and training setup . 83

4.6.2 Convergence on Wikitext-2 . 84

4.6.3 Lottery ticket experiments . 86

4.7 Discussion and Perspectives . 88

5 Disentangled Loss for Low-Bit Quantization Aware Training 89

5.1 Introduction . 89

5.2 Previous Work . 91

5.2.1 Quantization Aware Training . 91

5.2.2 Disentangled Losses . 93

5.3 Disentangled Loss Quantization Aware Training 94

5.4 Experiments . 94

5.4.1 Training setups . 94

Page 16 of 147

CONTENTS

5.4.2 Results and analysis . 96

5.4.3 Discussion and Perspectives . 101

6 Adversarial Robustness 103

6.1 Introduction . 103

6.2 Common concepts for adversarial attacks 104

6.2.1 Distance metrics . 104

6.2.2 Attacker goals . 105

6.2.3 Attacker knowledge . 105

6.3 State of The Art . 105

6.3.1 White-box attacks . 105

6.3.2 Black-box attacks . 107

6.3.3 Defense mechanisms . 108

6.3.4 Current limitations . 109

6.4 Ensemble Hash Defense (EHD) . 110

6.4.1 Concept . 110

6.4.2 Diversity hypothesis . 110

6.4.3 Model selection process . 111

6.4.4 Defense example . 113

6.4.5 Advantages and limitations . 114

6.5 Experiments . 115

6.5.1 Evaluation setup . 115

6.5.2 First results . 116

6.5.3 EHD with different objective functions 117

6.5.4 Influence of the number of models 118

6.6 Discussion and perspectives . 120

7 Conclusion 123

7.1 Summary of our results . 123

7.2 Potential improvements . 124

7.2.1 Mixed precision . 125

7.2.2 Transferability of adversarial examples 125

7.3 Future research directions . 125

7.3.1 Neural architecture search for embedded applications 125

7.3.2 Self-supervised learning . 126

A Quantization and Adversarial Robustness 127

A.1 Previous work . 127

A.2 DL-QAT and Adversarial Robustness . 127

Page 17 of 147

CONTENTS

B Simultaneous Perturbation Stochastic Approximation 130

Acronyms 133

Page 18 of 147

List of Figures

1.1 Evolution of the number of publications in the AI field. 26

2.1 Cross Entropy Loss (CEL) function in a multi-classification task. 33

2.2 Main training paradigms: supervised learning, self-supervised learning,

reinforcement learning. 34

2.3 Supervised training with the gradient descent method. 36

2.4 Transfer learning possible advantages: higher asymptote, faster convergence,

higher starting performance. 38

2.5 Fully-connected layer with parameter matrix θ ∈ R3×n and a non-linear

activation function σ. It takes an input x ∈ Rn and returns an output

y ∈ R3. Several fully-connected layers can be stacked to form a multi-layer

perceptron. The last layer will not have an activation function. 40

2.6 An example of convolution using a 3× 3× 1 kernel 42

2.7 An example of max pooling and average pooling with kernel of size 2× 2

applied with a stride of 2 . 43

2.8 Residual blocks proposed by He et al . [38]. Left: a residual building

block traditionally used for ResNet-34 and shallower ResNets. Right: a

”bottleneck” building block traditionally used for ResNets-50/101/152 . . . 44

2.9 The full pre-activation configuration of a residual block proposed by He et

al . [39] . 45

2.10 The computational graph of a basic recurrent neural network that maps

a sequence of input vectors X = (x1, ..., xt−1, xt, xt+1, ...xT) to a sequence

of output probabilities O = (o1, ..., ot−1, ot, ot+1, ...oT). Equations (2.10)

and (2.11) defines the forward propagation of this recurrent neural network. 47

2.11 The computational graph of a LSTM layer that maps a sequence of input vec-

torsX = (x1, ..., xt, ...xT) to a sequence of output vectors (out1, ..., outt, ..., outT).

Equations (2.12) to (2.17) define the forward propagation of the LSTM

layer. Illustration from [28] . 49

2.12 Concept of pruning a deep neural network 52

2.13 IEEE 754 single-precision format on 32 bits 54

2.14 Custom fixed-point representation on 8 bits 55

19

LIST OF FIGURES

2.15 Integer representation on 8 bits . 56

2.16 Quantization points with uniform scalar quantization (left) and non-uniform

scalar quantization in the case of logarithmic quantization (right). Real

values in the continuous domain r are mapped into discrete quantized values

q, which are the red bullets. Note that the distances between the quantized

values (quantization levels) are the same in uniform quantization, whereas

they can vary in non-uniform quantization 58

2.17 Example of one layer propagation and backpropagation during Quantization

Aware Training. The Straight-Through-Estimator (STE) estimates the

derivative of quantization functions. NQ stands for Non-Quantized values

and refers to real values represented with the single-precision floating-point

format. FQ stands for Fake Quantized values and refers to the finite set of

values representing quantized levels in single-precision floating-point. η is

the learning rate used to perform the update. 60

3.1 Overview of the N2D2 Framework . 67

3.2 MNIST handwritten digits examples . 68

3.3 CIFAR-10 image examples . 69

4.1 Performance comparison of sparse and dense models. In (a) the performance

of the convolutional neural networks are measured using the top-1 accuracy

(the higher the better) on Imagenet. In (b) the performance of the LSTM-

based models are measured using the perplexity (the lower the better) on

Penn Treebank. Both experiments (a) and (b) show that sparse models

outperform comparably-sized dense models. The figures are taken from [125]. 73

4.2 LSTM inference pipeline on Sequential MNIST. 76

4.3 LSTM training loss on sequential MNIST. The convergence is unstable. . . 77

4.4 Profile of LSTM performance under increasing sparsity, trained on sequential

MNIST and following several lottery ticket configurations. Each point

corresponds to a test accuracy reported in Table 4.3. 79

4.5 LSTM training losses on sequential MNIST when trained with and without

the proposed sub-sampling method. 81

4.6 Profile of LSTM performance under increasing sparsity, trained with sub-

sampling on sequential MNIST and following several lottery ticket configu-

rations. Each point corresponds to a test accuracy reported in Table 4.6. . 82

4.7 LSTM inference pipeline on Wikitext-2. 83

4.8 LSTM training loss on Wikitext-2. 85

4.9 Profile of LSTM performance under increasing sparsity, trained on Wikitext-

2 and following several lottery ticket configurations. Each point corresponds

to a test accuracy reported in Table 4.3. 87

Page 20 of 147

LIST OF FIGURES

5.1 Scaled Adjust Training method. 92

5.2 Dimension reduction with the t-sne algorithm representing the input features

of the linear classifier from CIFAR-10 test data. The corresponding top-

1 test accuracies are reported in Table 5.3. t-sne performed over 1000

iterations and a perplexity of 30. 97

5.3 Memory footprint (Mega-Bytes) comparison of different precision settings

from Table 5.3. Each point is one quantized network associated to the bit

precision of its weight and activation. 98

5.4 Memory footprint (Mega-Bytes) comparison of different precision settings

from Table 5.4. Each point is one quantized network associated to the bit

precision of its weight and activation. The filled round marks are results

from our experiments while the empty round marks are results reported

from the State of The Art. 101

6.1 Example of an adversary image. Illustration from [32] 104

6.2 Ensemble Hash Defense principle . 111

6.3 Model selection process. 112

6.4 Ensemble Hash Defense targeted by SPSA attack. 113

B.1 Example of an adversary image. Illustration from [32] 130

Page 21 of 147

List of Tables

4.1 Notations for the winning ticket algorithm. 75

4.2 LSTM performance on Sequential MNIST. 77

4.3 LSTM test accuracy on sequential MNIST following several lottery ticket

configurations. 78

4.4 Sparsity per-layer for the WT 30k LSTM with 80% sparsity that achieves

98.96 test top-1 accuracy. 79

4.5 LSTM test accuracy trained with and without sub-sampling on Sequential

MNIST. 81

4.6 LSTM test accuracy trained with sub-sampling on sequential MNIST fol-

lowing several lottery ticket configurations. 82

4.7 LSTM performance on Wikitext-2. 85

4.8 LSTM perplexity on Wikitext-2 with different pruning pipelines 86

5.1 2-bit weight and activation (W&A) quantization of Resnet-18 on CIFAR-100

with various GML margins. 96

5.2 2-bit weight and activation (W&A) quantization of Resnet-18 on CIFAR-100

with various AMS margins. 96

5.3 CIFAR-10 and CIFAR-100 test top-1 Accuracy for extreme quantization

settings of ResNet-18. 98

5.4 ImageNet-1k Top-1 Accuracy for extreme quantization settings of Resnet-

18. Disentangled Loss Quantization Aware Training (DL-QAT) and Scaled

Adjust Training (SAT) results are obtained from our experiments, all the

other results are reported from the original papers. DL-QAT and SAT

use original Resnet-18. LSQ and PACT use full pre-activation Resnet-18.

LQ-Net use Resnet-18 type-A shortcut. BWN use Resnet-18 type-B shortcut.100

6.1 ResNet performance on CIFAR-100 for three independent trainings 116

6.2 SPSA attack targeting the ResNet-32 0 with 72.7% top-1 test accuracy

trained on CIFAR-100 with the cross entropy loss. 116

22

LIST OF TABLES

6.3 SPSA attack targeting the EHD mechanism that achieves 73.4% top-1 test

accuracy combining three ResNets-32 trained on CIFAR-100 with different

initialisations and the cross entropy loss. 117

6.4 SPSA attack targeting a ResNet-32 with 73.5% top-1 test accuracy trained

on CIFAR-100 with the gaussian mixture loss (GML). 118

6.5 SPSA attack targeting a ResNet-32 with 71.9% top-1 test accuracy trained

on CIFAR-100 with the max mahalanolis center (MMC) loss. 118

6.6 SPSA attack targeting the EHD mechanism that achieves 73.2% top-1 test

accuracy combining three ResNets-32 trained on CIFAR-100 with three

different loss functions: CEL, GML and MMC. 119

6.7 SPSA attack targeting the EHD mechanism that achieves 73.4% top-1 test

accuracy combining k = 4 ResNets-32 trained on CIFAR-100 with different

initialisations and the cross entropy loss. 119

6.8 SPSA attack targeting the EHD mechanism that achieves 73.1% top-1 test

accuracy combining k = 5 ResNets-32 trained on CIFAR-100 with different

initialisations and the cross entropy loss. 119

A.1 Top-1 accuracy (%) on the white-box adversarial examples crafted on the

test set of CIFAR-100 targeting ResNet-32 quantized with DL-QAT. 129

Page 23 of 147

Chapter 1

Introduction

The attention that Artificial Intelligence (AI) and Machine Learning (ML) get has grown

dramatically over the past decade. AI is the science and engineering of creating intelligent

machines that have the ability to perform tasks commonly associated with intelligent

beings. Traditionally, rule-based AI systems are designed to achieve ”intelligence” via a

model solely based on predetermined rules. Such systems comprise a set of human-coded

rules that result in pre-defined outcomes. In contrast to rule-based programming, machine

learning algorithm learn and adapt without following explicit instructions by analysing

and drawing inferences from patterns in data. The capacity to produce and store data has

drastically increased over the past decades and with it the success of machine learning.

One of the best machine learning algorithm is Deep Neural Networks (DNNs) and its

use is known as the field of deep learning. DNNs can solve problems in computer vision,

such as segmentation for autonomous driving, in natural language processing, and in

speech recognition where traditional rule-based programming methods only provide limited

solutions. However, there are still many challenges for DNNs. The work in this thesis

proposes solutions for two important challenges:

• How to make resource consuming deep neural networks easier to deploy on resource

limited platforms.

• How to make deep neural networks more robust towards attacks based on crafted

inputs.

1.1 Context

Historically, deep learning emerged from a neuroscience perspective in the 1940s in a

context of low computation and data resources. The creation of the Internet as the most

advanced communication tool of humanity and cloud storage led us in a data abundant

era. Moreover, the computing power greatly increased from the 1970s following Moore’s

law. Especially, it came to light that parallel single instructions multiple data (SIMD)

25

Chapter 1 – Introduction

architectures like graphic processing units (GPUs) are a powerful tool for neural network

training. This context led to a significant breakthrough in 2012 when Alexnet [55] was

implemented using cuda kernels to accelerate training on graphic processing units and

surpassed the human programmed approaches for image classification. Since then, research

effort on neural networks and neural network accelerators grew steadily and numerous

works have been published to improve those methods and exploit their potential in various

applications such as health care, self driving cars, virtual assistants, face recognition,

content generation, speech recognition, protein structure prediction, automatic game

playing, etc. Figure 1.1 shows the number of publications during the last decade by field

of study in the AI domain. The number of publications in the field of machine learning

increased from around 5000 in 2010 to almost 40000 in 2021. Notably, this growth took a

change in slope between 2015 and 2017.

Figure 1.1: Evolution of the number of publications in the AI field.

Several other enabling factors behind this growth include the accessibility of learning

neural networks with the release of open-source frameworks, such as Tensorflow in 2015

and Pytorch in 2016, and also the techniques to learn deeper neural networks to achieve

better performance, like the approach of residual networks, published in 2015.

Such research effort opens many applications possibilities and in order to support

their development and deployment, a tremendous amount of computing power is needed.

Cloud-based platforms offer a relevant strategy to centralize those heavy computation

needs. However, the demand for deployment on edge is also growing. Indeed, critical

applications with real-time constraints such as memory, latency, power consumption, with

a resource-scarce hardware target or with privacy issues, cannot be inferred on cloud.

Instead, the neural networks are always pre-trained offline, and then implemented in

Page 26 of 147

1.1. Context

embedded systems for the inference stage. However, neural networks are still memory and

computation intensive during the inference phase. In order to meet the requirements for

edge inference, the networks are optimized with compression and/or speed-ups techniques.

Quantization is a class of methods that reduces the number of bits to represent the

parameters of the DNN (and sometimes also changes the number representations), while

keeping the performance and quality of results as close as possible to the floating-point

reference. The compression factor is proportional to the number of bits reduction. For

instance, the weights of a Deep Neural Networks (DNN) can be stored as signed integers

using 8 bits instead of 32 bits with the single-precision floating-point format without any

loss in application performance, in this case the compression factor of the neural network

parameters storage is 32
8
= 4. As such, it reduces the memory footprint and once the

operators are engineered to take advantage of the quantization scheme, the computations

require fewer bits, and thus enable higher throughput and energy savings. Pruning is

another class of methods that cut (i.e., set to zero) the redundant neurons in neural

networks, and thus reduces its memory storage. Those compression techniques are further

discussed in Chapter 2.

In 2013, Szegedy et al . [103] first exposed neural networks vulnerability towards small

input perturbations. In this aim, they show that introducing a small perturbation into the

input, which is invisible to humans, can cause the neural network to dysfunction. Those

modified inputs, called adversarial examples, are specifically crafted for a target model

using an optimization method. As the scope of neural network-based applications expands,

neural networks are facing more and more threats from any attacker who wishes the system

to misbehave. This poses strong security concerns with deployment in applications of the

deep neural network.

In summary, deep learning is an approach to machine learning that has drawn heavily

on our knowledge of the human brain, statistics, and applied mathematics as it developed

over the past several decades. In recent years, deep learning has seen tremendous growth in

its popularity and usefulness, largely as the result of more computing power, the availability

of large datasets, technologies and knowledge to train deeper networks. In order to deploy

the neural networks performance on edge, compression and speed-ups techniques and

speed-ups techniques are required. Also, neural networks have a vulnerability that poses

security concerns for certain applications.

Page 27 of 147

Chapter 1 – Introduction

1.2 Issues related to compression and vulnerability

of DNNs

The research around compression and acceleration of DNNs has been very active in recent

years. There are still shortcomings to those methods. Taking quantization methods as an

example: while very low-precision settings like binary parameters have the best advantages

for compression and acceleration, the resulting drop in performance undermines the appli-

cation needs. Meanwhile, the proposed defense methods towards adversarial attacks often

compromise application performance or significant memory and computational overhead

at inference time. To address the limitations of the current compression, acceleration and

vulnerability of neural networks, the following questions are proposed:

• Is it possible to transfer existing compression methods to different types of neural

networks and to improve quantization methods to find better trade-off points between

model compression and application performance?

• To what extent a defense mechanism can help build a neural network robust towards

adversarial perturbations and is it possible to propose a new direction to imply

robustness towards adversarial attacks, so that it can combine with existing methods

and require less resources for inference on edge?

The works in this thesis attempt to answer those questions.

1.3 Contributions

In order to compress and accelerate Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs), several contributions are proposed. First, we investigate the

transferability of an existing iterative pruning method with retraining originally designed

on CNNs to compress RNNs. The contributions of this investigation are threefold:

• We investigate practical RNNs learning behaviour.

• We extend the experimental part from the works of Frankle et al . [25, 26], an iterative

pruning and retraining technique, with the most used recurrent architecture, the

Long Short Term Memory (LSTM).

• We introduce a pre-processing method based on data sub-sampling that enables

faster convergence of LSTM while preserving application performance.

Then, a new quantization aware training (QAT) method for CNN is proposed by

improving an existing advanced quantization method. The contributions are twofold:

Page 28 of 147

1.4. Thesis outline

• We introduce a new quantization method, called Disentangled Loss Quantization

Aware Training (DL-QAT), that improves the Scaled Adjust Training (SAT) method

[48] with a type of loss function that we qualify as disentangled losses.

• Experiments on the resnet-18 CNN topology using the ImageNet image classification

task highlight that the proposed method provides the best compromise between

memory footprint and application performance among existing state of the art.

Finally, the Ensemble Hash Defense is proposed. It enables better resilience to ad-

versarial attacks while preserving application performance and only requiring a memory

overhead at inference time. The contributions are the following:

• We survey the state of the art of adversarial attacks and defenses.

• We introduce the Ensemble Hash Defense. The defense system combines several

neural networks with comparable application performance and a model selection

process. At inference time, the selection process chooses, based on the input, one

model for inference. An attack focusing the EHD system will have to deal with

multiple targets, i.e. with multiple neural networks. The concept of the defense

mechanism is compatible with other robust optimization methods and neural network

compression methods. With the perspective of edge inference, the memory overhead

introduced by EHD can be further reduced with quantization or weight sharing.

• We then provide first experimentation to study the robustness of quantized CNNs

with the proposed DL-QAT.

1.4 Thesis outline

This thesis is organised into three main parts as follows.

Background and state of the art. In Chapter 2, we first introduce common concepts

for training neural networks. Then, we present convolutional neural networks and recurrent

neural networks and finally we introduce some neural networks compression techniques.

Then, Chapter 3 introduces libraries to enable deep neural network training and deploy-

ment on edge, along with benchmark datasets used in this work. Those two chapters

lay the groundwork for the contributions of this thesis which are divided in two parts :

Compression of neural networks and Neural networks robustness toward adversarial attacks.

Compression of neural networks. We present our work toward more efficient methods

of training neural networks that are easier to deploy on resource limited platforms. On

Page 29 of 147

Chapter 1 – Introduction

one hand, the parameters of the neural network are compressed to make it less demanding

on memory. On the other hand, the approximation applied to structure, operands, and

operators, which makes the calculation faster on real-time platforms with limited computing

resources. The primary goal being able to provide the best performance neural networks

with the lowest memory and computational usage for inference.

In Chapter 4, we investigate the compression of RNNs with unstructured pruning

methods: the parameters are iteratively set to zero during training based on a threshold

in order to reduce the parameters memory storage. We extend the experimental scope of

an advanced pruning technique to RNNs in order to investigate a recurrent architecture

practical learning behaviour, known as LSTM. We analyse the convergence of such models

when subject to the pruning techniques on image classification and language modelling.

We present a pre-processing method based on data sub-sampling that enables faster

convergence of LSTM while preserving application performance.

In Chapter 5, we propose to further improve an advanced quantization method: the

number of bits used to represent the parameters and the dataflow at inference is reduced in

order to lower the parameters memory storage and unlock possible hardware acceleration.

We introduce the context of application and the state of the art methods for quantization.

We then present our approach and experiments to compare its performance with state-of-

the-art methods on common image classification datasets. In particular our contribution

focuses on the challenging low-bit settings like binary parameters where the application

performance is the most impacted.

Neural networks robustness toward adversarial attacks. We present our work to

make neural networks more robust towards Adversarial Attacks based on crafted inputs. In

Chapter 6, we introduce the state of the art on adversarial attacks and defense mechanisms.

We then present our defense mechanism and evaluate its resilience under several relevant

settings using an image classification task. We also discuss its main limitation on memory

overhead at inference time. In fact, we put in perspective the EHD system inference on

edge thanks to the easy compatibility of EHD with compression methods like quantization

or weight sharing. Related to this chapter, Appendix A moreover discusses previous works

studying the effect of quantization on adversarial robustness and also presents preliminary

attacks results of quantized convolutional neural networks based on our quantization

approach presented in Chapter 5.

Finally, we conclude with a discussion of our results, potential improvements on this

work and insights for future research directions in Chapter 7.

Page 30 of 147

Chapter 2

Deep Neural Networks

Deep neural networks approximate some function f∗. Taking a classifier y = f∗(x) that

maps an input x to a category y, the deep neural network f defines a mapping y = f(x, θ)

and learns network parameters, also called weights θ, that best approximate the function

f∗. Neural networks are called networks because they compose a succession of functions,

often in a chain manner, to form a network. For example, we might have three functions

f1, f2, and f3, with the corresponding parameters θ1, θ2 and θ3, to form the model

f(x, θ) = f3(f2(f1(x, θ1), θ2), θ3). In this case, f1 is called the first layer or input layer of

the network, f2 is the second layer, and so on. The final layer of a network is called the

output layer or last layer. The overall length of the chain gives the depth of the model.

The name ”deep” in deep neural networks and deep learning arose from this terminology.

How do we optimize the parameters θ? Some deep neural networks may be non-linear

systems containing billions of parameters, and a naive random search approach could not

get the optimal solution within a reasonable amount of time. In 1986, Rumelhart et al .

[89] proposed the backpropagation algorithm, that efficiently computes gradients of each

parameter with respect to a performance metric, also called loss function, or cost function,

or error function. The gradient-based learning algorithm decides how to use each layers

to produce an output to best implement an approximation of f∗. In the aforementioned

classifier example, the loss function is the function assessing the difference between the

category y predicted by the network f and the ground truth category ŷ. In practice, the

parameters are iteratively updated to minimize the loss function with gradient descent.

To this day, gradient-based optimization strategies remain the most popular methods to

learn neural networks.

31

Chapter 2 – Deep Neural Networks

2.1 Common Concepts for Training Neural Networks

2.1.1 Model, data, and generalization

Deep learning algorithms approximate some function by analysing and drawing inferences

from patterns in data. The model and the data are the two fundamental elements of deep

learning. Choosing a model usually depends on the addressed problem. For example,

convolutional neural networks (CNN) are powerful to process images, whereas recurrent

neural networks (RNN) are used to process temporal signals like audio.

The training dataset should be representative of the function the model tries to ap-

proximate. Properties like data quantity and quality and class balance have a critical

impact on the training outcome. Usually, the more data the training dataset contains, the

better the performance of the model. Data quality refers to the reliability of the data

(the presence of duplicate examples, inaccurate values, wrong labels, etc.) and the feature

representation. For example, when we want to train a network that can distinguish cat

and dog pictures, as the dataset only contains cats and dogs images, the trained network

will not recognize pandas or tigers. Also, if the training set only contains images of black

dogs and white cats, then the system may learn a bias to recognize colors instead of animals.

The goal of deep neural networks is to adapt properly to new, previously unseen data,

not just perform well on training samples. This ability of the learned model to apply to

new samples is called generalization. However, neural networks are prone to rely on the

specific characteristics of training samples, that is to say, they are easily drowned to learn

biases in the training data. This phenomenon is called over-fitting. To overcome this, the

quality of the data plays a major role to enable the model to learn general characteristics of

samples. Then, there exist regularization techniques to mitigate over-fitting and improve

training.

2.1.2 Loss function

In this section, we introduce loss functions by providing an example of multi-class classi-

fication with the cross entropy loss. The loss function L is used to quantify the quality

of the set of trainable parameters. By minimizing the loss function with an iterative

optimization process, the parameters are tuned to achieve better performance. The cross

entropy loss is the most popular cost function for multi-class classification.

Taking an example where a model has to predict whether the input input contains a

dog, a cat, a panda or a tiger, Fig. 2.1 decomposes the steps to compute the cross entropy

loss function in the case of one input image that contains a cat. The vector values of

Page 32 of 147

2.1. Common Concepts for Training Neural Networks

non-normalized predictions that a classification model generates are called logits. The

cross-entropy loss function takes this logits vector y and the ground truth label ŷ as inputs.

The cross entropy loss formulation combines the softmax function and the negative log

likelihood function as

LCE(y, ŷ) = −
C∑
c=1

ŷc log

(
exp(yc)∑C
i=1 exp(yi)

)
(2.1)

where C is the number of classes.

The logits vector is normalized into a vector of probabilities corresponding to each

class with the softmax function. As they are probabilities, they are positive and sum to

1. The softmax output probabilities can be interpreted as a vector of dimension C. The

one-hot vectors encoding the different classes are the orthogonal vectors that construct

the canonical basis of RC . The network tries to map the input image to a vector as close

as possible to the orthogonal vector associated with its ground truth class.

Each predicted class probability is compared to the actual class desired output 0 or 1

and the calculated loss penalizes the probability based on how far it is from the actual

expected value. Using the negative log likelihood enables a large loss for large differences

close to 1 and small loss for small differences tending to 0.

Figure 2.1: Cross Entropy Loss (CEL) function in a multi-classification task.

2.1.3 Initialization

Training deep learning models with stochastic gradient descent requires the user to specify

some initial point from which to begin the iterations. The choice of the initialization

strongly affects the convergence of deep neural networks and can even determine if the

stochastic gradient descent converges at all. On one hand, some initial points are so unsta-

ble that the algorithm faces numerical difficulties (namely the vanishing and exploding

gradients problems) and fails altogether. On the other hand, the initialization can benefit

Page 33 of 147

Chapter 2 – Deep Neural Networks

the convergence, how quickly it converges and whether it converges to a point with high

or low cost.

The initialization of deep neural networks gained a lot of maturity in the past decade,

improving the performance and convergence speed of deep neural networks. Such maturity

is reflected in deep learning frameworks where the initialization is not an primary issue for

the user as default initialization methods almost always enable the gradient descent to

converge. The Kaiming initialization scheme, proposed by [37], is one of the most popular

initializations.

2.1.4 Training paradigms

Figure 2.2: Main training paradigms: supervised learning, self-supervised learning, rein-
forcement learning.

Supervised learning is the machine learning task of learning a function that maps

an input to an output based on the example of input-output pairs. A pair consists of

an input object and the desired output value (for example an image of a dog and its

label ”dog”), that is to say, each input is provided with its expected solution. Those

input-output pair examples build a labeled dataset. A supervised learning algorithm

analyzes the training labeled dataset and produces an inferred function, which can be

used for mapping new inputs. In practice, a test dataset, i.e., input-output pairs that

are not used during training, is used to evaluate the performance of the learned model.

Such a test dataset is essential in order to assess if the network can generalize. The

supervised learning paradigm enables learning neural networks with significant guidance

and is very efficient to approximate a function related to a problem. However, build-

ing large labeled datasets requires a tremendous effort in human labelling, and is thus

very expensive. One may not have the data or finance resources to rely on a labeled dataset.

Self-supervised learning is a self-organized learning that finds data patterns without

the support of labels and with a minimum of human supervision. In contrast to supervised

learning that usually makes use of human-labeled data, the model learns to predict part

of its input from other parts of the input. A portion of the input is used as a supervisory

Page 34 of 147

2.1. Common Concepts for Training Neural Networks

signal to a predictor fed with the remaining portion of the input [49].

Reinforcement learning algorithms enable learning models by evolving in an environ-

ment. Software agents take actions in an environment to maximize a cumulative reward

in a trial and error fashion. It does not need labeled datasets, instead, the focus is on

finding a balance between exploration of uncharted territory and the exploitation of current

knowledge [51].

2.1.5 Data augmentation

Data augmentation is a technique used in data analysis to increase data volume by adding

slightly modified copies of already existing data or newly created synthetic data from

existing data. This method is usually used when the training dataset is insufficiently

large. It also helps to reduce over-fitting [94]. Classic data augmentations for images are

geometric transformations, flipping, color modification, cropping, rotation, noise injection

and random erasing.

2.1.6 Supervised training of a neural network

This section presents the supervised training iterative method using the Stochastic Gradient

Descent (SGD) optimization. The Stochastic Gradient Descent method is an iterative

optimization algorithm for finding the minimum value of a cost function. This is probably

the most widely used method for optimizing deep neural networks. Figure 2.3 details

the basic process flow of one training iteration that can be separated into two phases:

propagation and backpropagation. The propagation phase is the prediction process of the

model. Until the network converges to a desired performance, the backward propagation

process is performed to train the network. From an initial set θ0, the parameters are

iteratively updated to gradually minimize the loss function L. It performs two steps

iteratively:

1. Compute the gradient ∂L

∂θji
that is the first order derivative of the loss function L

with respect to θji , the trainable parameter j at the training iteration i. For deep

neural networks, the multi-layer can be regarded as a nested compound function

which the direct derivation is complicated to calculate. In practice, the chain rule is

used to decompose this derivative into simple ones and compute the gradient of the

model parameters. It requires that all functions composing the neural network are

differentiable.

2. Update the parameters from the current point to the direction of the gradient descent.

The basic gradient descent updating process of θji , the trainable parameter j at the

Page 35 of 147

Chapter 2 – Deep Neural Networks

Figure 2.3: Supervised training with the gradient descent method.

training iteration i is expressed as:

θji+1 = θji − η
∂L

∂θji
(2.2)

where η is the learning rate, a scalar that directly scales the contribution of the

gradient in the update process. This formulation is often upgraded with momentum

to help accelerate the convergence of the model. More advanced update methods

like the Adam optimizer [53] further accelerate the convergence of neural networks.

Moreover, the way the data is fed to the model during the training process impacts its

convergence:

• Random sampling without replacement of input data helps to avoid local minimums.

This technique is the reason the gradient descent optimization is denominated

as ”stochastic”. When conducting experiments, the random sampling without

replacement is emulated by shuffling the training dataset at each epoch, i.e. one

complete pass through the training data.

• Perform one update based on a batch of data. In practice, all gradients corresponding

to each input in the batch are accumulated. This accumulation of gradients carries

more accurate information than a single gradient. Updating using this accumulation

at each iteration of the training contributes to obtain a better convergence profile and

Page 36 of 147

2.1. Common Concepts for Training Neural Networks

a better asymptote. When conducting experiments, one generally tries to maximize

the size of the batch. Training on GPUs, the computation overhead induced by

a bigger batch can easily be parallelized. The practical bottleneck is the memory

overhead induced to enable this parallelized computing. Distributed learning enables

splitting a big batch into smaller ones in order to, first, calculate all gradients on

different devices, then accumulate the gradients and perform an overall update.

2.1.7 Transfer learning

Transfer learning is a machine learning technique where a model trained on one task is

re-purposed on a second related task, also called downstream task. It is based on the fact

that the features learned on a task are useful for a related task. For example, it is known

that the first layers in convolutional neural networks learn general features such as edges

and those features are generic to almost any task involving image processing. In practice,

two tools are widely used to adapt a pre-trained model to a new task:

• Learning new heads. For example, a supervised pre-trained model on ImageNet-1k

can be adapted to a detection task where the classification head would be replaced

by a detection head.

• Fine-tuning. The parameters of the pre-trained models are trained again during

the training of the new task. Their training is usually performed on a subset of

parameters in the deep layers with a small learning rate to adapt the features to the

new task and avoid relearning from scratch.

There are three potential benefits in using transfer learning, as shown in Fig. 2.4:

• Higher asymptote. The convergence of the trained model based on the pre-trained

model is better than training the model from scratch.

• Faster convergence. The slope of convergence of the trained model based on the

pre-trained model is better than training the model from scratch.

• Higher starting performance. The initial performance using the pre-trained

model on the new task allows to have some initial performance.

Those benefits are especially relevant for niche applications where the amount of labeled

data is very limited and/or the data are expensive to label. It is often the case for edge

applications, and thus transfer learning significantly improves the performance of those

niche applications compared to models learned from scratch. Transfer learning is one key

method to embed deep neural networks on edge devices with state-of-the-art performance.

Page 37 of 147

Chapter 2 – Deep Neural Networks

Figure 2.4: Transfer learning possible advantages: higher asymptote, faster convergence,
higher starting performance.

2.1.8 Increasing model size

Following Moore’s law, the computing resources have grown significantly over the past

decades and make it possible to run much larger models. Larger models are able to achieve

higher accuracy on more complex tasks. Since neural networks are modeled with neurons,

the major research axis consists in increasing the number of neurons in the model. This

growth is driven faster by the technological breakthrough and by the availability of larger

datasets. Technological breakthroughs like the single instruction multiple data hardware

Graphic Processing Unit (GPU), more efficient memory and better software infrastructure

for distributed computing are among the most important trends in the history of deep

learning. Today, self-supervised learning unlocks training on much bigger datasets than the

supervised learning. Despite many works pursuing this legacy, a recent research direction,

causal learning, focuses on the reasoning ability of the model instead of the performance

only.

2.1.9 Exploding and vanishing gradients phenomena

The phenomena of vanishing and exploding gradients were first discussed by Hochreiter et al .

[40] in 1991, and then demonstrated by Bengio et al . [11] to arise when training deep neural

networks with gradient-based strategies. When backpropagating errors, the gradients

are subject to numerical instabilities, known as the exploding gradient phenomenon and

the vanishing gradients phenomenon. In the case of the exploding gradient, large error

gradients accumulate and result in very large updates on the neural network parameters

during training. The resulting optimization step is not reliable and causes instability

for the next optimization steps. The network is unable to learn from the training data,

Page 38 of 147

2.2. Multi-Layer Perceptrons

the objective function is also likely to diverge. In the case of the vanishing gradient, the

backpropagation algorithm is unable to backpropagate useful gradient information from

the output end of the model back to the layers near the input end of the model. As the

gradients do not carry useful information, the resulting optimization step is not reliable,

and the model is unable to converge.

As discussed in previous Section 2.1.8, increasing the model size, and so the depth of

deep networks, is the main research axis to achieve better performance. The exploding and

vanishing gradient phenomena are more likely to arise as the depth of the network increases.

Many works were proposed to mitigate those phenomena and unlock the convergence of

deeper networks.

2.2 Multi-Layer Perceptrons

There are different types of deep neural networks such as Multi-Layer Perceptrons, Con-

volutional Neural Networks, Recurrent Neural Networks, Transformers, Graph Neural

Networks. In this work, we limit our scope to compressing and accelerating CNNs and

RNNs. Multi-layer perceptrons (MLPs) are the quintessential of deep learning models. In

this section, we give a brief introduction to MLPs and its basic components.

MLPs and convolutional neural networks (presented in Section 2.3) are feedforward

networks, that is to say the information flows through the model being evaluated from

an input x to the output y. There are no feedback connections in which outputs of the

model are fed back into itself. When neural networks are extended to include feedback

connections, they are called recurrent neural networks, as presented in Section 2.4.

2.2.1 Fully-connected layer

A multi-layer perceptron is a neural network with an input and an output layers and at

least one hidden layers with many densely connected neurons that are stacked together.

Figure 2.5 illustrates one densely connected layer, also called fully-connected layer that

can be stacked to form a multi-layer perceptron. The last layer will not have an activation

function. The matrix-vector multiplication highlighted by the blue dotted box is a linear

operation. In the general case, the layer input vector x ∈ Rn represents the input data or the

previous layer output in the neural network. θ ∈ Rm×n is the trainable parameter matrix

associated to the fully connected layer. The result of the matrix-vector multiplication,

symbolized by ×, is the vector y ∈ Rm defined as

y = θ × x. (2.3)

Page 39 of 147

Chapter 2 – Deep Neural Networks

Figure 2.5: Fully-connected layer with parameter matrix θ ∈ R3×n and a non-linear
activation function σ. It takes an input x ∈ Rn and returns an output y ∈ R3. Several
fully-connected layers can be stacked to form a multi-layer perceptron. The last layer will
not have an activation function.

Usually, a vector of trainable biases b is added to the multiplication result to form the

multiplication accumulate operator, which gives

y = θ × x+ b. (2.4)

2.2.2 Non-linear activation function

In order to model complex data patterns, a neural network needs to establish non-linear

relation between inputs and outputs. Non-linear activation functions are used in each layer

to introduce non-linearity. The activation function σ, highlighted by the green dotted

box in Fig. 2.5, is applied element-wise on the propagated signal at each layer. The most

popular activation functions are the following:

• Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) =

0 if x < 0

x otherwise
(2.5)

• Sigmoid

σ(x) =
1

1 + e−x
(2.6)

Page 40 of 147

2.3. Convolutional Neural Network

• Hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x
(2.7)

2.2.3 Limitations

While MLPs or fully connected models can learn handwritten digit recognition on the

MNIST dataset, it does not scale up well to more complicated tasks. Two main limitations

arise. Firstly, as the size of the input data increases, the densely connected paradigm

implies many parameters. For example, processing a 3-channels colored image from the

ImageNet dataset that represents 224 ∗ 224 ∗ 3 ∼ 150k data values by a fully connected

layer with merely 100 output units would already contain several million parameters.

This over-parameterization can easily lead to overfitting. Secondly, the fully connected

architectures entirely ignore the structure of the input. On the one hand the input can

be presented in any fixed order without affecting the outcome of the training. On the

other hand it is difficult to learn local correlations, for example on images or spectral

representations that have strong 2D local correlations. Today, fully connected layers are

used as heads rather than as standalone models.

2.3 Convolutional Neural Network

To overcome the shortcomings of fully connected layers, Yan LeCun introduced convolu-

tional neural networks in 1989 [60]. Convolutional Neural Networks (CNNs) have been

widely used in 2D image and video tasks and 1D signals. In this section, we give a brief

introduction to CNNs.

2.3.1 Convolution layer

The discrete spatial convolution applied to a two-dimensional input image I ∈ Rwidth×height

using a smaller kernel K ∈ Rkw×kh , and symbolized as ⊗, is formulated as

(I ⊗K)(w, h) =

fw∑
n1=1

fh∑
n2=1

K(n1, n2)I(w + n1, h+ n2). (2.8)

The convolution of a pixel corresponds to the weighting and accumulation of its surrounding

pixels. The calculation in Fig. 2.6 shows an example that calculates the convolution of

one pixel with a filter with size 3× 3× 1.

To use this convolution operation over the whole image, the filter is applied to each pixel

location, scanning the image one kernel area at a time. The convolution of the image strides

in the width and height dimensions. The output of the convolution is a two-dimension

tensor recording the positions of receptive and non-receptive areas, called feature-map.

Page 41 of 147

Chapter 2 – Deep Neural Networks

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
Input I

∗
1 0 1

0 1 0

1 0 1

Kernel K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.6: An example of convolution using a 3× 3× 1 kernel

Each filter can extract one feature-map and more filters can be added to extract more

feature-maps. Those feature-maps are stacked in a channel dimension to produce an output.

A convolution layer contains a set of trainable kernels, also called filters θ ∈ Rkw×kh×kc

and trainable bias b ∈ Rkc . The computation of a convolution layer from an input

X ∈ Rwidth×height×channel can be expressed as

Conv(X)(w, h, c) = θ(w, h, c)⊗X(w, h, c) + b. (2.9)

It is a common vision that the filters in the first convolutional layers learn visual features

like edges, and also higher level features such as textures in deeper convolutional layers.

Compared to the fully connected layers, convolutional layers yield several advantages.

• Striding filters on the image instead of densely connecting all pixels allows to reduce

significantly the number of trainable parameters. This weight sharing also helps

mitigate the overfitting problems of large fully-connected layers.

• Convolutional layers force the extraction of local features by restricting the receptive

fields of hidden units to be local. Moreover, when multiple convolutional layers are

stacked, their receptive fields expand.

• By forcing the replication of weight configurations across space, convolutional layers,

and by extension CNNs, are shift invariant, a convenient property for the model

to generalize better to unseen data. For example, shift invariance means that the

classifier is not affected by the position of the object (e.g . cat) in the image.

2.3.2 Pooling layer

Pooling is a tool to reduce the size of a 2D input. Pooling layers are used in CNNs to cut

down the size of feature maps and so reduce the number of parameters and computation

in the network. Doing so, pooling layers contributes to mitigate over-fitting. Similarly to

convolution kernels, pooling kernels strides the input on both width and height. They resize

Page 42 of 147

2.3. Convolutional Neural Network

2 7 8 4

6 1 3 5

8 0 7 7

1 3 9 5

Input I

7 8

8 9

Max pooling (I)

4 5

3 7

Average pooling (I)

Figure 2.7: An example of max pooling and average pooling with kernel of size 2 × 2
applied with a stride of 2

those two dimensions, whereas the channel dimension remains unchanged. Figure 2.7

illustrates the most commonly used pooling layer with filters of size 2× 2 applied with

a stride of 2. This pooling setting down-samples both width and height discarding by 2

and so discard 75% of the feature-maps. Also, the pooling units can perform different

functions, such as the maximum operation, the average operation, or the L2-norm.

2.3.3 Batch Normalization layer

When learning the parameters of a neural network, the distribution of each layer input

changes during training. This can cause the gradient descent trajectory to oscillate,

thus taking more steps to reach the minimum. Before the use of batch normalization,

the learning rate was set to a low value and the initialization was carefully designed

for the network to converge, hence a long training time. To enable faster and more

stable convergence, Ioffe et al . [46] proposed to normalize layer inputs with a learnable

normalization layer called batch normalization. In practice, batch normalization applies

a transformation that maintains the mean output close to 0, and the output standard

deviation close to 1.

2.3.4 Resnets

Increasing the depth of a deep neural network, i.e., increasing the number of stacked layers,

generally enables to achieve higher performance on more complex tasks. However training

deeper models comes with challenges like vanishing and exploding gradients phenomena,

as well as overfitting. He et al . [38] conducted preliminary experiments to study how the

depth influences the training of CNNs. They learned several CNNs with an increasing

number of convolutional layers on image classification datasets CIFAR-10 and ImageNet.

Results on both datasets showed two major points. First, they confirmed that deeper

networks achieve better performance. Secondly, there is a limit on which the depth of

the network leads to higher performance. Indeed, the training error, and consequently

the testing error, of a very deep CNN is worse than a shallower CNN. These experiments

Page 43 of 147

Chapter 2 – Deep Neural Networks

showed that deeper networks are harder to train as they face the aforementioned challenges.

X

•
64-d

Conv(3× 3),@64

BN

ReLU

Conv(3× 3),@64

BN

⊕

ReLU

Y

X

•
256-d

Conv(1× 1),@64

BN

ReLU

Conv(3× 3),@64

BN

ReLU

Conv(1× 1),@256

BN

⊕

ReLU

Y

Figure 2.8: Residual blocks proposed by He et al . [38]. Left: a residual building block
traditionally used for ResNet-34 and shallower ResNets. Right: a ”bottleneck” building
block traditionally used for ResNets-50/101/152

To overcome these challenges, He et al . [38] proposed a new convolutional topology

called ResNets that is capable of scaling up the depth of the model. To build ResNets,

the authors introduced two basic blocks illustrated in Fig. 2.8. The Resnet topology

contribution can be summarized with two main features:

• Residual connections. A residual connection is an identity mapping that bypasses

Page 44 of 147

2.3. Convolutional Neural Network

X

•

Convolutional layer

Batch Normalization

Rectified Linear Unit

Convolutional layer

Batch Normalization

Rectified Linear Unit

⊕

Y

Figure 2.9: The full pre-activation configuration of a residual block proposed by He et al .
[39]

layers and later adds to the output of the bypassed layers. He et al . [39] investigated

different arrangements of convolutions, batch normalization and ReLU to implement

the residual connections and proposed the full pre-activation configuration illustrated

in Fig. 2.9. It is important to notice that the choice of arrangement leads to significant

differences when paired with neural network quantization. This will be discussed in

Section 5.4.2.

• Backpropagation friendly activations. As the depth of the network increases,

the more non-linear activations are stacked across the layers, the more backpropa-

gated signals have to be derived from the activation. In order to provide relevant

parameter gradients throughout the model, two main elements fluidify the activation

backpropagation. First, the derivative of the ReLU activation function is the Heavy-

side function. Thanks to this derivative, the information backpropagated through

each ReLU is kept entirely. Then, batch normalization layers are used after each

convolutional layer and contribute to keep gradients in the same scale. This allows

Page 45 of 147

Chapter 2 – Deep Neural Networks

faster convergence for very deep neural networks that have many parameters and

are longer to train.

Residual networks showed significant improvements over all other approaches in ILSVRC

2015 and revealed to have the most significant impact in the domain during the past

decade. They provide a new solution for training deeper networks and are an important

step towards more complex tasks such as object detection and advanced semantic feature

extraction.

2.4 Recurrent Neural Networks

2.4.1 Concept

Historically, recurrent neural networks (RNNs) arose from the motivation of modelling time

dependencies within data, e.g., video, audio chunks, and words as part of sentences. Indeed,

traditional machine learning algorithms such as Support Vector Machines and logistic

regression cannot model time dependencies well. Throughout the 20th century, approaches

based on Markov chains [18] like Hidden Markov Models (HMMs) [100, 110] were widely

studied. When modelling complex time dependency, the approach of the Markov chain

paradigm to represent each possible event is fundamentally limited. Indeed, when the time

dependency becomes more complex, more events in the HMM are required. The model

representativeness being exponentially correlated to computational needs directly limits

their capacity to model complex time dependencies.

In the 1980-90s, early recurrent neural networks approaches were presented by Hopfield

et al ., Jordan et al ., and by Elman et al . with a neuroscience perspective. Motivated by

practical results rather than biological plausibility, a formulation of a RNN is described

in Eqs. (2.10) and (2.11) and illustrated in Fig. 2.10. A recurrent layer is specialized for

processing a sequence of input vectors x1, ..., xt, ..., xT with t ∈ {1, T}. While each input

vector xt must have the same size input size, the recurrent layer can process sequences

with a variable number of vectors, that corresponds to the length T of the sequence. We

refer to the entire input sequence as X = (x1, ..., xt, ...xT) and the hidden size of the layer as

hidden size. Given the input to hidden weight matrix U of size (input size, hidden size)

and the hidden to hidden weight matrix V of size (hidden size, hidden size),the hidden

bias vector b of size hidden size, the hidden to output weight matrix W and the output

bias the basic RNN is formulated as

ht = σ(Uxt + V ht−1 + b) (2.10)

Page 46 of 147

2.4. Recurrent Neural Networks

ot = softmax(Wht + bo) (2.11)

where ht is the hidden state at step t and ot the output probabilities at step t. Depending

on the application, h0 can be the initial zero state h0 = (0, .., 0) or it can be the initial state

containing information from a previous sequence. The σ function is a non-linear activation

function such as hyperbolic tangent or Rectified Linear Unit. In Fig. 2.10 the implicit

operator between a matrix and a vector is the matrix-vector multiplication. The green

square boxes are the trainable parameters and the blue circle is the non-linear activation

function. Thanks to those recurrent connections, the hidden state retains the information

Figure 2.10: The computational graph of a basic recurrent neural network that maps
a sequence of input vectors X = (x1, ..., xt−1, xt, xt+1, ...xT) to a sequence of output
probabilities O = (o1, ..., ot−1, ot, ot+1, ...oT). Equations (2.10) and (2.11) defines the
forward propagation of this recurrent neural network.

from previous inputs. The key value of RNN lies in the expressive power of the hidden

state, indeed, the ensemble of representable states grows exponentially with the number of

neurons inside a layer, i.e., the dimension of the hidden state [67]. To summarize, the recur-

rent connections coupled with the modelization capacity of neural networks enable RNNs

to model patterns whose origins could pertain down to the beginning of the input sequence.

A first noticeable aspect of the recurrent architecture is its capacity to learn the context

needed to complete a task without any human knowledge input. As the RNN is trained

with data and an objective function, it models the data patterns guided by the optimization

algorithm without any input on the time interval needed to capture those patterns. To

illustrate this, let’s consider a Structure Health Monitoring task where a recurrent model

needs to predict the maintenance of mechanical parts of a plane based on multiple sensors

recording their vibration. Even with an expertise in the domain, the context needed for

Page 47 of 147

Chapter 2 – Deep Neural Networks

such a task is not intuitive. Throughout the learning phase, the RNN would learn the

relevant patterns to predict maintenance without any prior information on the overall

pattern time window.

Another noticeable aspect of the recurrent architecture is that the input sequence

length is not constrained. In fact, the input sequence is an arbitrary long sequence of

fixed length elements. During the processing of the sequence X, the same input weight

matrix U is applied on each element of the input sequence xt and the same recurrent

weight matrix V is applied on each hidden state ht−1 to compute the next hidden state

ht. Thus, input sequences fed to an RNN can have different lengths without the need for

more model parameters.

2.4.2 Backpropagation through time

Applying the backpropagation strategy to RNNs, the contribution of each parameter to

the error is affected by the recurrence paradigm. Indeed, the contribution of each RNN

parameter depends on each time step. A derivative of the backpropagation algorithm

is then employed, the Backpropagation Through Time (BPTT) algorithm [115]. The

BPTT algorithm relies on the product rule to exhaustively compute the contribution of

the parameters across all the timesteps. For an in-depth explanation of this algorithm, the

reader can refer to the works of Werbos et al . [115] and Goodfellow et al . [31]. Instead, this

section focuses on the practical limitations of RNNs and the different solutions explored

in the literature.

In the case of RNNs, backpropagating errors with BPTT not only retraces each layer,

but also every time steps, making recurrent architectures significantly more sensitive to

numerical instabilities and to vanishing and exploding gradients. Indeed, as the length

of the input sequence grows, the shrinking or expanding contribution of each time step

can grow exponentially and lead to vanishing or exploding gradients. In practice, they

directly affect the capacity of RNNs to learn complex time dependencies, as presented

by Hochreiter et al . [41], to the point that the basic recurrent architecture presented in

Eq. (2.10) can have trouble converging on many tasks. Motivated by the hope to unlock

the potential of the recurrent approach, different approaches were studied to mitigate

those phenomena. To enable smooth convergence, Quoc Le et al . [59] initialized recurrent

weights as identity matrix and used Rectified Linear Units instead of hyperbolic tangent.

Arjovsky et al . [3] proposed to tackle the loss of information through backpropagation with

unitary matrices but their approach does not scale well on more complicated task. To this

day, the main approach is the gated mechanism approach proposed by Sepp Hochreiter

and Jürgen Schmidhuber in 1997.

Page 48 of 147

2.4. Recurrent Neural Networks

2.4.3 Gated mechanism - Long Short Term Memory

In 1997, the RNN field reached a turning point with the LSTM architecture proposed by

Sepp Hochreiter and Jürgen Schmidhuber. In order to tackle Exploding and Vanishing

gradients, they introduced a variation of the recurrent architecture based on a gated

mechanism. This groundbreaking contribution is the beacon of the field as LSTM is the

first to achieve practical results on many tasks using the BPTT algorithm. LSTM provided

significant improvements in language modelling and unraveled many applications such as

machine translation [7, 102], image captioning [109], handwriting recognition [33], question

answering [112], speech recognition [34, 90], and more. The most popular formulation of

LSTM is described in Eqs. (2.12) to (2.17) and illustrated in Fig. 2.11.

Figure 2.11: The computational graph of a LSTM layer that maps a sequence of input
vectors X = (x1, ..., xt, ...xT) to a sequence of output vectors (out1, ..., outt, ..., outT).
Equations (2.12) to (2.17) define the forward propagation of the LSTM layer. Illustration
from [28]

An LSTM layer maps a sequence of input vectors X = (x1, ..., xt, ...xT) with T elements

to a sequence of output vectors (out1, ..., outt, ..., outT) with T elements . The proposed

gated mechanism is articulated between an internal cell state statet that embed temporal

information and gates that regulate the information flow. In the following formulas, the

basic matrix operators are the matrix-vector multiplication, which is an implicit operation,

and the element-wise matrix product or Hadamard product, which is noted with a ”·”. The
output sequence Y is computed in a recurrent manner by the set of following equations.

• Input activation:

at = tanh(Uaxt + Vaoutt−1 + ba) (2.12)

• Input gate:

it = σ(Uixt + Vioutt−1 + bi) (2.13)

Page 49 of 147

Chapter 2 – Deep Neural Networks

• Forget gate:

ft = σ(Ufxt + Vfoutt−1 + bf) (2.14)

• Output gate:

ot = σ(Uoxt + Vooutt−1 + bo) (2.15)

• Cell state:

statet = at · it + ft · statet−1 (2.16)

• Output:

outt = tanh(statet) · ot (2.17)

in which, Ua, Ui, Uf , Uo are the weights matrices applied to the input xt that belong to the

input activation, the input gate, the forget gate and the output gate, respectively. Va, Vi,

Vf , Vo are weights matrices applied to the recurrent input outt−1 that belong to the input

activation, the input gate, the forget gate and the output gate, respectively. ba, bi, bf , bo are

the bias vectors that belong to the input activation, the input gate, the forget gate and the

output gate, respectively. Similarly to the RNN Eq. (2.10), the same weights matrix and bi-

ases are applied on each time step. The notation σ corresponds to the sigmoid function and

at, it, ft, ot, statet respectively denote the input activation, the input gate, the forget gate,

the output gate and the cell state at the time step t. The output outt has a double purpose:

it is propagated throughout the sequence as the recurrent input, and it stacks across the

time steps to build the output sequence Y that is then propagated to the next neural layers.

The main contribution of the LSTM is the gated mechanism that articulates the

internal cell state statet and the gates. As the gates are activated by a sigmoid function,

they filter the information flow from the input sequence elements xt and the recurrent

inputs outt−1. Simply put, the scalars from the gates vectors range between 0 and 1

allowing the LSTM to characterize relevant information to retain when the scalar is close

to 1, and, on the contrary, to cut irrelevant information when the scalar is close or equal

to 0. By controlling the information flow with this mechanism, the LSTM focuses the

gradient calculations on relevant information throughout the sequence. The gradients can

carry information through longer time dependencies, and thus the LSTM mitigates the

effects of the vanishing and exploding gradients.

Looking at the gates and input activation, each one has its own set of weights and

biases that are optimised towards specific roles that structures the LSTM architecture:

• The input gate it (Eq. (2.13)) and input activation at (Eq. (2.12)) compose the first

part of the internal cell state statet (Eq. (2.16)). The input gate filters the input

activation information to be integrated by the internal cell state.

Page 50 of 147

2.5. Deep Neural Network compression

• The forget gate ft is responsible for filtering information from the recurrent input of

the cell state statet−1 to the cell state statet. This gate is involved in the unrolling

of gradients computation with the product rule. As such, the forget gate plays a

major role in mitigating vanishing and exploding gradients.

• The output gate ot filters the information from the cell state statet to the output

outt.

However, this improvement comes with a higher number of parameters making the

LSTM one of the most memory and computation expensive within the recurrent architec-

tures. With the objective of reducing memory and computational needs while preserving

performance, other works built on this approach and proposed memory and computation

efficient recurrent architectures variations, such as the works in [20, 58].

2.5 Deep Neural Network compression

In order to make deep neural network viable to infer and sometimes even learn on edge,

many compression and acceleration methods have been proposed in the past decade. The

work of Han et al . [36] on CNN compression with pruning, quantization and Huffman

encoding showed significant compression ratios on AlexNet and VGG-16 and motivated

many other works. There are many different methods to compress neural networks such as

pruning, weight sharing, matrix low rank factorization, structured matrices, quantization,

knowledge distillation, and others. In this work, we limit our scope to pruning and

quantization methods for RNNs and CNNs. This section introduces the compression

objectives, the impact of the training data for compressing neural network and pruning

and quantization methods.

2.5.1 Compression objective and data availability

When compressing neural networks, there is a trade-off between the compression ratio and

the application performance. The higher compression ratio, the bigger the application

performance drop. Traditionally, the objective of neural network compression methods is

to find the best operating point among this trade-off, often being the highest compression

ratio without ”significant” application performance loss. Recently, several approaches

propose a more hardware-oriented objective, with new hardware agnostic metric [122] or

directly optimizing a target metric like latency [64].

The quality of the operating point highly depends on the usage of the training data.

The application training data are a valuable resource for compressing neural networks.

Each compression method has its data requirements, ranging from data-free to the entire

Page 51 of 147

Chapter 2 – Deep Neural Networks

training data. In practice, choosing a method highly depends on the availability of data.

Usually, the training data are used for calibration or fine-tuning or retraining from scratch.

2.5.2 Pruning

As the size of neural network increases, the number of parameters increases too. However,

some parameters have little to no contribution to the final result, in other words, they are

redundant. Pruning is the process of removing redundant connections in a DNN, which is

equivalent to setting some weights to zero.

An example of a neural network is shown on the left-hand side of Fig. 2.12. In this

example, every neuron in the lower layer is connected to the neuron in the upper layer,

which means that the model is heavy to store and there are a lot of operations to perform.

A network is qualified as dense when there are little to no parameters equal to zero.

When pruning the neural network, the redundant connections are removed, that is to say

the redundant parameters are set to zero. This results in a sparse neural network, as

exemplified in the right-hand side of Fig. 2.12. The memory storage of the resulting sparse

model is reduced and there is a potential for reducing the amount of calculations. The

sparsity of a network is the metric that measures the percentage of zero parameters with

respect to the total number of parameters.

Dense neural network Sparse neural network

Figure 2.12: Concept of pruning a deep neural network

Generally, there are two strategies for pruning a neural network: the structured

pruning and the magnitude pruning (or weight pruning). In the case of convolutional

neural networks, structured pruning aims at removing entire filters to gain model memory

storage and directly reduce the amount of computation by bypassing the pruned filter. The

magnitude pruning removes redundant parameters at the granularity of single parameters

to reduce the model memory storage. Weight pruning methods often rely on a pruning

Page 52 of 147

2.5. Deep Neural Network compression

threshold to determine which parameters are replaced with zeros. Srinivas et al . [98]

proposed a data-free method for removing redundant parameters in trained CNNs. Using

training data to prune while training achieves better compressing ratios and reduces

performance loss [125]. Moreover, the lottery ticket hypothesis proposed by Frankle et al .

[25] found that sparse CNNs can be retrained from scratch. In this work, we limit our

scope to magnitude pruning on RNNs.

2.5.3 Quantization

Quantization for deep learning is the process of approximating a neural network that

uses floating-point numbers by a neural network that uses lower bit-width numbers, and

potentially other number representations such as fixed-point or integer arithmetic. In

general, neural networks are learned using the 32-bit, also called single-precision, or

64-bit, also called double-precision, floating-point format from the IEEE-754 standard.

Quantization takes advantage of DNN resilience to small errors to relax the need for

fully precise operations. This dramatically reduces both the memory bandwidth and

computational cost of deep neural networks training and inference. In practice, the desired

objective is to maximize the throughput of the network.

What to quantize?

One can quantize three main elements in a deep neural network: weights, activations and

gradients. The motivation behind quantizing the weights is the fact that it can decrease

the memory storage of the model, the memory bandwidth associated to the loading of the

parameters, as well as the computations. For instance, the weights of a DNN can be stored

as signed integers using 8 bits, instead of 32 bits with the single-precision floating-point

format without any loss in application performance. In this case, the compression factor

of the neural network parameter storage is 32
8
= 4.

The choice of which elements {weight, activation, gradient} are subject to quantization

is motivated by two main objectives:

• Accelerate inference with weight and activation quantization. Quantizing

the weights decreases the memory storage of the model as well as the memory

bandwidth involved in loading the weight. Quantizing the activations further reduces

the memory bandwidth involved in the inference of the neural network. When both

weights and activations are quantized with a matching format, each computation

uses the corresponding format. In the end, this enables higher throughput and

energy savings.

• Accelerate training with weight, activation and gradient quantization.

The weight, activation and gradient floating-point precision can be relaxed to lower

Page 53 of 147

Chapter 2 – Deep Neural Networks

bit-width to train faster and reduce the memory needs at training time. This

approach is mainly focused on the context of the data-parallel training framework

of DNNs. Quantizing gradients directly reduces their representation potential and

hinders their capacity to backpropagate information. That is to say, relaxing the

precision of the gradients impacts the neural network capacity to learn from the

data and consequently its application performance. The main existing library to

enable quantization of gradients is developed by NVIDIA for GPUs and is called

Apex. They propose to automatically choose the precision of weight, activation and

gradient to accelerate training without impacting the application performance. So

far, the quantization mainly remains in 16-bit floating point format, also called half

precision. While using half precision can lead to important savings for training and

inferring on Cloud services, the memory bandwidth and computing size gains are

still often not sufficient to deploy neural networks on low-power Edge devices.

In this work, we focus on accelerating neural network inference with weight and

activation quantization.

Reducing precision

Reducing the number of bits used to represent the data and computations can lead to

some changes in the representation of a number. Several representations can be used to

represent numbers with low precision which are integers, fixed point and small floats. Here,

we present the IEEE754 single precision floating-point, the fixed-point and the integer

representations.

Floating-Point The floating-point representation regroups three sequences of bits,

namely, the sign bit, the exponent and the fraction. Figure 2.13 illustrates the single-

precision format using 32 bits. The representation of the floating-point number can also

be encoded with 64 bits, also called double-precision, or 16 bits, also called half-precision.

Small floats are customized floating-point formats with fewer bits of exponent and fraction

than the half precision.

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

exponent (8bits) fraction (23bits)sign

32 31 23 22 0(bit index)

Figure 2.13: IEEE 754 single-precision format on 32 bits

Page 54 of 147

2.5. Deep Neural Network compression

The single-precision floating-point numbers are expressed from binary values following

number = (−1)sign × 2E−127 ×

(
1 +

23∑
i=1

b23−i2
−i

)
(2.18)

As an example, the number shown in Fig. 2.13 is calculated as:

• sign = b32 = 0

• E =
∑7

i=0 b23+i2
i = 20 + 21 + 22 + 23 + 24 + 25 + 26 = 127

• fraction = 1 +
∑23

i=1 b23−i2
−i = 1 + 2−1 + 2−2 = 1.75

• number = (−1)0 × 2127−127 × 1.75 = 1.75.

0 0 0 1 1 1 0 0

int fractionsign

7 0(bit index)

Figure 2.14: Custom fixed-point representation on 8 bits

Fixed-Point When fewer bits are used to express parameters, numbers can be rep-

resented using the fixed-point format. The fixed point representation regroups three

sequences of bits, namely, the sign bit, the integer and the fraction parts. Figure 2.14

illustrates a custom fixed-point format to represent the same number as the floating point

in Fig. 2.13 but using 8-bit fixed-point with 3 bits of integer part. The fixed point number

is calculated as:

• sign = b7 = 0

• integer = 20 = 1

• fraction = 2−1 + 2−2 = 0.75

• number = (−1)0 × (1 + 0.75) = 1.75

Integers The numbers can also be scaled directly to integers without fraction parts.

Floating-point parameters can then be represented as integers. Figure 2.15 illustrates

the 8-bit integer representation and uses the same number of bits as the previous custom

fixed-point representation.

Page 55 of 147

Chapter 2 – Deep Neural Networks

0 1 0 1 0 0 0 1

integer (8bits)

7 0(bit index)

Figure 2.15: Integer representation on 8 bits

The most basic way to encode unsigned integers with binary values follows

number =
7∑

i=0

bi2
i. (2.19)

Of course, the potential to represent a single-precision floating-point number is much higher

than for an 8-bit integer. In most cases, the scaled floating-point number will not directly

correspond to the one that can be represented with the integer format. A quantization

function Q, also called quantizer, maps the non-quantized value r to the quantized value

q. The range of parameters is accounted for with two floating-point numbers to store

the maximum real value max and minimum real value min. In this example, we scale

the floating point number r and use the popular rounding operator resulting in uniform

quantization, such as

Q(r) = round(
r

S
) (2.20)

with

S =
max−min

2B − 1
(2.21)

where B is the bit-width of the integer representation. For example, taking the value

r = 1.75 in a weight distribution clipped in [min,max] with min = −2.5 and max = 3,

the quantized value q using the 8-bit integer format is calculated as

q = Q(1.75) = round(1.75× 28 − 1

3 + 2.5
) = 81 (2.22)

The floating point number r = 1.75 represented in Fig. 2.13 in a distribution clipped in

[−2.5, 3] is then represented by the 8-bit integer format as shown in Fig. 2.15 and following

number = 26 + 24 + 20 = 81. (2.23)

In the end, the choice of the representation all comes down to the operator implemen-

tation on a target device. An implementation of an operator computes inputs with a

determined number representation. For example the multiply accumulate operator has a

different implementation for 8-bit integers than for single-precision floating-point inputs,

Page 56 of 147

2.5. Deep Neural Network compression

with much less hardware and energy consumption. According to the hardware design, spe-

cific implementations of operators can be created to exploit different input representations.

In practice, integer implementations are more commonly integrated on general-purpose

chips than fixed-point or small-float implementations. Therefore, the quantization using

the integer representation is often preferred over the fixed-point representation or small

floats to deploy deep neural networks on common targets.

In order to represent a single-precision floating-point number with an integer, a

rounding quantization function is used. The next paragraphs further introduce quantization

functions.

Deterministic and stochastic

A quantization function is called deterministic when there is a one-to-one mapping that

exists between the non-quantized value and the quantized value. There is no randomness

involved in the deterministic quantization function. Given one non-quantized value, the

quantization function will always output the same quantized value. The most basic

deterministic quantization function is rounding. Well known contributions like Binary

Connect [21], Dorefa-Net [124] and Xnor-Net [86] use the rounding function. For example,

Binary Connect uses the sign function to quantize a real values r into a one-bit quantized

value q ∈ {−1, 1} such as

q = sign(r) =

1 r ≥ 0

−1 otherwise.
(2.24)

A quantization function is called stochastic quantization when the quantized value

is sampled from the discrete distribution of its non-quantized counterpart. There is

randomness involved in the stochastic quantization function. Given one non quantized

value, the quantization function can output different quantized values. The most basic

stochastic quantization function is random rounding. Binary Connect [21] also formulates

a stochastic quantization function Qs to quantize a real values r into a one-bit quantized

value q ∈ {−1, 1} such as

q = Qs(r) =

1 with probability p = max(0,min(1, r+1
2
)))

−1 with probability 1− p.
(2.25)

Page 57 of 147

Chapter 2 – Deep Neural Networks

Vector quantization and non-uniform quantizers

The two quantization functions in Section 2.5.3 map one real value to one quantized value

and the quantization levels are uniformly spaced. This type of quantizer is referred to as

uniform scalar quantization. The quantization process induces a loss of information when

relaxing the number of bits, and several works proposed to reduce this loss of information.

Using non-uniform spaced quantization levels like logarithmic quantization can cover

wide ranges using fewer bits than uniform quantization. In a base-two logarithmic

representation, parameters are quantized into powers of two with a scaling factor. Lee

et al . [62] quantized CNNs with weights encoded in a four-bit logarithmic format and

proposed an inference engine based on bitshift-add convolutions.

Figure 2.16: Quantization points with uniform scalar quantization (left) and non-uniform
scalar quantization in the case of logarithmic quantization (right). Real values in the
continuous domain r are mapped into discrete quantized values q, which are the red bullets.
Note that the distances between the quantized values (quantization levels) are the same in
uniform quantization, whereas they can vary in non-uniform quantization

Instead of applying the quantization function in an element-wise manner, vector

quantization applies the quantization function on clusters of parameters. Gong et al . [30]

replaced weights by the centroids of the k-mean clusters during inference. Stock et al . [99]

introduced a vector quantization method to compress weights using codebooks that are

optimized to minimize the layer output reconstruction error. Such methods lead to more

flexible quantization sets and often achieve better compression ratios when compared to

scalar quantization.

Page 58 of 147

2.5. Deep Neural Network compression

Quantization methods

According to their hypothesis on the training data availability, the quantization methods

can be classified into two main categories, Post Training Quantization (PTQ) and Quanti-

zation Aware Training (QAT).

Post Training Quantization methods do not rely on training data or use a limited

quantity of training data. Nagel et al . [75] proposed a data-free quantization method

relying on weight equalization and bias correction which does not require any fine-tuning.

Banner et al . [8] used per-channel quantization to allow more flexible quantization and

used a batch of data to calibrate activation quantization thresholds. Then, Nagel et al .

[74] proposed to use limited data to fine-tune one layer at a time in order to improve

quantization locally.

Quantization Aware Training methods rely on the full training data to retrain the

model from scratch with stochastic gradient descent. Given a network f : Rn ⇒ R with

its parameters W , an input x ∈ Rn and its corresponding label y, we refer to QAT for

classification as finding the non-differentiable quantization function q with the loss function

L as

min
W

L[f(x,Q(W)), y]. (2.26)

In order to enable Quantization Aware Training as illustrated in Fig. 2.17, two tools are

most commonly used:

• Straight-Through Estimator (STE). Bengio et al . proposed the Straight-Through

Estimator (STE) to enable training with backpropagation [10]. The STE method

estimates the gradients of the quantized parameters assuming that the derivative of

the quantization function Q is the identity function.

• Fake quantization. Instead of using a different format like integers to represent the

quantized values, the quantized values are represented in a finite set of values using

the floating-point format that is called ”fake” quantized values. All weights and

activations subjected to quantization have both a non-quantized value represented

with single-precision floating-point and a ”fake” quantized value, a value taken

from a finite set represented in floating-point. The target quantization bit-width

determines the number of quantization levels, i.e., the number of values in this finite

set. For example, fake quantized values on two bits would have a finite set of 22 = 4

values. At each inference, the quantization function is applied on the non-quantized

value to obtain the fake quantized values. These fake quantized values are then

used to infer the network and obtain a prediction. During backpropagation, the

gradients are calculated using the fake quantized values of weights and activations

Page 59 of 147

Chapter 2 – Deep Neural Networks

subjected to quantization and accumulated in single-precision floating-point. Finally,

the parameters are updated using the non-quantized value.

Figure 2.17: Example of one layer propagation and backpropagation during Quantization
Aware Training. The Straight-Through-Estimator (STE) estimates the derivative of
quantization functions. NQ stands for Non-Quantized values and refers to real values
represented with the single-precision floating-point format. FQ stands for Fake Quantized
values and refers to the finite set of values representing quantized levels in single-precision
floating-point. η is the learning rate used to perform the update.

Quantization Aware Training methods better exploit the domain information and

normally achieve better compression over performance ratios. However, the quantized

models still suffer from significant application performance reduction. The question arises

whether the application performance reduction is due to the reduced capacity of quantized

models or to the non-suitable quantization procedure. Following the latter, the approxi-

mation error made by STE grows bigger as the bit-width goes smaller, hence decreasing

the performance for low-bit settings. Esser et al . tackled this issue by scaling dynamically

the gradients with a learnable step [23]. Following their method, the gradient landscape is

shaped to encourage the full precision parameters towards the quantized points. Doing

so, the proposed Learned Step Size Quantization (LSQ) method implicitly reduces the

approximation error introduced by the STE and shows substantially better results over

the previous quantization techniques. Alternatively, the Scaled Adjust Training (SAT)

method introduced by Jin et al . directly scales the weights instead of the gradients to

control the training dynamics, which yields state-of-the-art results [48].

Page 60 of 147

2.6. Conclusion

2.6 Conclusion

In this chapter, we first introduce several deep learning concepts. Section 2.1 explains

the importance of data quality and its influence on a model generalization or over-fitting.

Different bricks that enable training neural networks such as initialization, cost functions,

data augmentation, backpropagation and stochastic gradient descent are presented and

Section 2.1.6 combines those into a typical pipeline of a supervised training. In many

niche applications, data quantity and/or quality are the bottlenecks to a machine learning

approach. Section 2.1.7 introduces transfer learning and how it can cope with this issue

by transferring the knowledge of a given DNN to others. Section 2.1.8 discusses the most

popular research direction consisting in scaling up models for better performance. One of

the main lever to scale up models is to increase their depth, that is to say to increase the

number of consecutive layers. Training deeper neural network faces numerical instabilities

that are introduced in Section 2.1.9. Despite many works pursuing this legacy, another

research direction, causal learning, focus on the reasoning ability of the model instead of

the performance only.

We then present different types of neural network. Section 2.2 introduces the multi-

layer perceptron composed of multiple fully connected layers and non-linear activation

functions. The densely connected layers imply many parameters. Section 2.3 presents

convolutional neural networks composed of convolutional layers, pooling layers and batch

normalization layers. As one ground-breaking innovation for training deeper networks, the

Resnet architecture is detailed. Then, Section 2.4 introduces Recurrent Neural Networks,

their historical context, the adaptation of the backpropagation algorithm for the recurrent

paradigm and its impact on the numerical instabilities during training. The LSTM is then

detailed as it is the recurrent architecture that allows to achieve practical results on many

tasks.

Despite the success of deep neural networks in many applications, they remain difficult

to run on embedded devices with challenges such as memory bandwidth, computing

resources, energy efficiency and latency. Therefore, we finally present the two most popular

state-of-the-art solutions for compression of neural networks, pruning and quantization.

The pruning method removes connections of neural networks based on an evaluation

of each connection importance. Pruning methods are separated between two strategies:

structured pruning and magnitude pruning (or weight pruning). While both allow signifi-

cant compression of model parameters, the structured pruning strategy is known to allow

better acceleration. Meanwhile, in [25], Frankle et al . observed that sparse CNN can be

trained from scratch using a method based on magnitude pruning. Doing so, it opened

new perspectives for CNN optimization. A similar study is yet to be conducted on RNN

Page 61 of 147

Chapter 2 – Deep Neural Networks

and we propose to extend their experimentation scope on RNN in Chapter 4.

Quantization is the process of approximating a neural network, from values expressed

with a high number of bits to values expressed with fewer bits. Sometimes this process in-

volves changing the values representation and we introduced three common representations

used for DNN: floating-point, fixed-point and integers. Quantization allows to compress

the model storage and reduces both the memory bandwidth and computational cost of

deep neural networks. Different purposes such as accelerating inference or accelerating

training determine which components to quantize, e.g ., relax the precision of weights

and activation for accelerating inference. The methods that yield state-of-the-art results

for CNN quantization down to 2 bits involve training the models with fake quantized

values and the whole database. The approximation error made to train those quantized

values grows bigger as the target precision is lower, and thus, hinders the optimization of

quantized networks. In Chapter 5, we propose to improve those methods with quantization

friendly loss functions to enable the quantization of CNN down to binary parameters.

Page 62 of 147

Chapter 3

Deep Learning Tools

3.1 Libraries

Advances in deep learning have also depended heavily on advances in software infrastruc-

ture. Software libraries such as Scikit Learn [83], Theano [12, 9], Caffe [47] TensorFlow [1],

Pytorch [82, 52] and N2D2 [14] have all supported important research projects or commer-

cial products. We first present deep learning frameworks, deployment libraries and N2D2

then we introduce the benchmark datasets used in this work.

3.1.1 Deep Learning Frameworks

Most of the operations in neural networks are modular, and they are composed of com-

putational primitives, such as matrix multiplications or convolutions. Machine learning

frameworks encapsulate those basic operators to build the backbone for neural network

learning. These tools are often open-source, meaning that the source code is freely avail-

able for possible modifications. Such a quality facilitates research developments and new

implementations for novel ideas. Frameworks provide different sets of features to further

improve the accessibility to deep learning tools:

• Accelerated operators on the single instruction multiple data architectures like

Graphic Processing Units. Those operators are either coded from scratch in Cuda or

used from an existing library like Cuda Basic Linear Algebra Subprograms (CuBLAS)

or Cuda Deep Neural Network (CuDNN).

• Automatic differentiation of basic differentiable operators that automate the compu-

tation of gradients in order to train using the gradient descent optimization algorithm.

From a user perspective, this feature greatly unravels the complexity of deep neural

network training.

• Distributed training across multi-node and/or multi-GPU systems. With this feature,

the training can be performed with larger batches thanks to the stacked memories

63

Chapter 3 – Deep Learning Tools

of each device. When it is done correctly, training with bigger batches enables a

smoother convergence and can lead to better results. Also, scaling up this process to

many nodes can drastically reduce the training time.

• Tools for loading, pre-processing and augmenting different type of data.

In this section, the two main frameworks, Pytorch and TensorFlow, are introduced.

It should be noted that the frameworks of neural networks are difficult to compare with

each other, which means that there is no best or worst framework, but one needs to make

choices based on the purpose of tasks. Meanwhile, the framework of the neural network is

a commercial technology, they are also developing rapidly, or are gradually eliminated by

users. This is just an overview of the framework as of the time of writing.

Pytorch - a framework for research

PyTorch is an open-source deep learning framework mainly based on Python, C++ and

Cuda. It was created by Facebook and is currently widely used in research and industry.

Here are some of its features:

• Pytorch provides accelerated operators on GPU.

• With the automatic differentiation module ”autograd”, neural networks design is

done dynamically without having to pre-define a static network diagram to perform

calculations.

• Pytorch provides the ”DistributedDataParallel” library for training across multi-node

and multi-GPU systems.

• Several Pytorch libraries are available to load, pre-process and augment well-known

datasets and custom data of different types like torchvision for images, torchtext for

text, torchaudio for audio signals.

• Pytorch is also compatible with Python libraries such as NumPy and SciPy.

However, Pytorch features to compress and deploy neural networks on edge like QPytorch

only propose limited solutions compared to other efforts. Pytorch’s reputation is to be

easy to use, the many tutorials proposed on the official website and the support provided

on both git and Pytorch forums make it attractive for new users. Consequently, PyTorch

has quickly become the mainstream deep learning framework in academia.

TensorFlow - a framework for cloud deployment

Often put in competition with Pytorch, TensorFlow is one of the most popular deep

learning frameworks today. This is an open-source framework developed and maintained

Page 64 of 147

3.1. Libraries

by Google. Many famous groups such as Gmail, Uber, Airbnb, Nvidia are using it. Here

are some of its features:

• TensorFlow provides accelerated operators on GPU and Tensor Processing Units

and an automatic differentiation mechanism.

• TensorFlow provides the ”distribute” library for training across multi-node and

multi-GPU systems.

• TensorFlow has visualization tools like TensorBoard that help to see the structure of

neural network graphs and the distribution of data, which facilitates neural networks

design.

• TensorFlow not only can deploy on powerful computing clusters (with the TensorFlow

Serving library), but also on mobile platforms such as iOS, Android and Raspberry

Pi with the TensorFlow Lite library.

TensorFlow recently transitioned to a new version TensorFlow 2.0 to improve the user

experience and the developer productivity. To that end, the high-level API Keras was

added to build and train models more easily. However, this transition resulted in major

compatibility issues and many open-source contributions based on the previous version on

github are hardly still exploitable.

Instead of GPUs, training and inference using Tensorflow can be achieved on Tensor

Processing Units, a hardware architecture developed by Google that is specialized into

computing the Matrix Accumulate operator.

TensorFlow is widely used in the industrial field and, as Google continues to optimize

and improve the framework, it will become more powerful and easier to use.

3.1.2 Libraries for deploying neural networks on the Edge

There is a growing need to execute neural networks on edge devices to reduce latency,

preserve privacy, and enable new interactive use cases. Designing and deploying a neural

network on the Edge is a complex task that requires expertise from both software and

hardware fields. To achieve this type of deployment, the most mainstream approach is a

two-step process. First, compression and acceleration techniques are applied on a neural

network to make it viable in terms of memory and computing size for embedded devices.

Then, the code for deep neural networks execution on one or multiple edge targets is

generated.

Several libraries have been developed and propose technical blocks to help automate

this process:

• Apache Tensor Virtual Machine (TVM) is an open-source deep learning compiler for

CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning

Page 65 of 147

Chapter 3 – Deep Learning Tools

engineers to optimize and run computations efficiently on any hardware backend.

The currently supported targets are Android, Jetson Nano, Raspberry Pi, CPU and

microcontrollers like the STM32.

• TensorFlow Lite is a library for easily deploying TensorFlow models on mobile,

microcontroller and Raspberry Pi targets.

• TensorRT is a software development kit that facilitates high-performance machine

learning inference. It focuses specifically on deploying and running an already-trained

network quickly and efficiently on NVIDIA hardware such as the Jetson Nano.

• Xilinx FINN is a dataflow compiler for quantized neural network inference on FPGAs.

• Pytorch Mobile (beta version) is a library for easily deploying Pytorch models on

mobile and microcontroller targets.

Another notable approach for neural network execution on the Edge is the design of a

specific neural network accelerator ASIC like PNeuro [16]. In other words, there are many

different efforts to help reduce the gap between neural network design and neural network

on edge.

3.1.3 N2D2 - Neural Network Design & Deployment

Neural Network Design & Deployment (N2D2) [14] is an open-source deep learning frame-

work that focuses on building full DNN-based applications on embedded platforms. It is

developed along with industrial and academic partners in the Embedded Artificial Intelli-

gence Laboratory at the french research institute CEA-LIST. Its objective is to become a

hub that centralizes and normalizes processes for deep neural network deployment on the

Edge. As such, it is the first European deep learning hub for developing and deploying

DNN. The code is accessible on github, together with its documentation.

The N2D2 framework tackles this complex task with an approach combining many

tools from the data conditioning to the code generation for embedded inference on different

targets, as illustrated in Fig. 3.1.

The main features of N2D2 are:

• Several data drivers to load, pre-process and augment well-known datasets (such as

ImageNet, KITTI, Cityscapes, DOTA) and custom data.

• Accelerated operators for training on GPU.

• ONNX imports and exports to provide an intuitive interface with other libraries and

frameworks.

Page 66 of 147

https://github.com/CEA-LIST/N2D2
https://n2d2.readthedocs.io/en/latest/

3.2. Benchmark Datasets

Figure 3.1: Overview of the N2D2 Framework

• A Python API that provides a user-friendly interface for neural network design with

the efficiency of C++ and Cuda for training.

• The continuous integration of state-of-the-art compression and acceleration tools

like the advanced quantization aware training method Scaled Adjust Training [48].

• A strong diversity of hardware targets and associated code generation tools that

enable flexibility for neural network deployment.

Thanks to this unique workflow proposition, N2D2 is able to reach competitive solutions

and is sure to grow as a major actor to the edge AI industrial ecosystem. In this work,

we use N2D2 to support the experimentation of Chapter 5 as it allows to implement

quantization tools with precise control over computation and memory overhead while

training on GPU.

3.2 Benchmark Datasets

This section presents the tasks and datasets used throughout this research project. In this

work, two tasks are considered: image classification and language modelling.

Most of the experiments are carried out on the image classification task. It is generally

believed that image classification is an easier task in the field of computer vision. Given

an input image, the aim of image classification is to determine the category of the image.

On the other hand, language modeling is the task of predicting the next word or

character in a document. This technique can be used to train language models that can

further be applied to a wide range of natural language tasks like text generation, text

classification, and question answering.

Page 67 of 147

Chapter 3 – Deep Learning Tools

3.2.1 MNIST

The Modified National Institute of Standards and Technology (MNIST) handwritten digits

database was introduced by LeCun et al . [61]. The dataset includes 10 classes for handwrit-

ten digits ranging from 0 to 9. It contains a training set of 60, 000 labeled examples and a

test set of 10, 000 labeled examples for a total of 6000 handwritten digits per class. The

digits have been size-normalized and centered in a fixed-size image of 28× 28 pixels. Fig-

ure 3.2 displays some examples. It is the most basic dataset to perform image classification.

Figure 3.2: MNIST handwritten digits examples

In Chapter 4, we use a variation called Sequential MNIST that considers each 28× 28

handwritten digit image as a sequence of 784 pixels. It is used to measure how well

recurrent architectures can learn long-term dependencies.

3.2.2 CIFAR-10 & CIFAR-100

The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 millions tiny image

dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton

[54]. The CIFAR-10 and CIFAR-100 datasets [54] are used for image classification tasks

containing RGB images of 32×32 pixels with respectively 10 and 100 classes. Each dataset

contains 50, 000 training labeled images and 10, 000 test labeled images for a total of

6000 images per class for CIFAR-10 and 600 images per class for CIFAR-100. Figure 3.3

displays some image examples from CIFAR-10.

In Chapter 5, we use CIFAR-10 and CIFAR-100 for preliminary experiments. We

then use CIFAR-100 to evaluate neural networks robustness towards adversarial attacks

in Chapter 6.

Page 68 of 147

3.2. Benchmark Datasets

Figure 3.3: CIFAR-10 image examples

3.2.3 ImageNet-1k

The database ImageNet-1k refers to the database used for the ImageNet Large Scale

Visual Recognition Challenge 2012 (ILSVRC 2012). The training data was extracted from

the large hand-labeled ImageNet dataset and contains 1000 classes and 1.2 million images.

In this work, we use ImageNet-1k to benchmark our method for quantization aware

training and compare it to other state of the art methods.

3.2.4 Wikitext-2

The WikiText-2 is a subset of the WikiText database introduced by Merity et al . [72].

The data was extracted from the set of verified Good and Featured articles on Wikipedia.

It contains a training set with more than 2 millions of tokens, a validation set with about

218k tokens and a test set with about 246k tokens. The validation set is used to evaluate

the model performance during training while the test set is used to assess the performance

of the converged model. The WikiText-2 database features a vocabulary size of around

33k and retains the original case, punctuation, and numbers.

In Chapter 4, we use the WikiText-2 database for a language modelling task. An

LSTM model is used to predict the next word based on the previous set of words.

Page 69 of 147

Chapter 4

Compressing Recurrent Neural

Networks

4.1 Introduction

The basic concept of RNNs presented in Section 2.4.1 is an intuitive approach to model

complex time dependencies: the temporal information is recurrently updated within a

state. Training recurrent architectures to learn complex time dependencies is however very

difficult due to vanishing and exploding gradients. At first, it is not easy to understand

the learning dynamics of the recurrent architectures. For instance, it took several years

of research to propose dedicated initialization [50], normalization [6] and regularization

techniques [119, 56, 126]. Also, the update mechanism RMSProp and Adam are generally

found to allow smoother and faster convergence of RNNs than the basic SGD.

The Long Short Term Memory marked a turning point in the field as it provided ground

breaking performance on many different applications such as machine translation [7, 102],

image captioning [109], hand writing recognition [33], question answering [112], speech

recognition [34, 90] and more. However, the gated mechanism in the LSTM introduces a

lot of parameters and makes the recurrent architecture a lot more computation expensive.

A first approach to tackle this drawback is to propose lighter variations of recurrent

architecture built on the gated mechanism like the Gated Recurrent Unit [20] and the Fast

Gated Recurrent Neural Network [58]. Another approach aims at compressing RNN by

reducing the total number of parameters, using pruning methods for instance.

The contribution of this chapter is threefold:

• We investigate practical RNN learning behaviour.

• We extend the experimental part from the works of Frankle et al . [25, 26], an iterative

pruning and retraining technique, with LSTM.

71

Chapter 4 – Compressing Recurrent Neural Networks

• We introduce a pre-processing method based on data sub-sampling that enables

faster convergence of LSTM, while preserving application performance on Sequential

MNIST.

This chapter is organized as follows. Section 4.2 introduces a weight pruning method

and the main empirical observation in the domain. Section 4.3 presents the lottery

ticket hypothesis and motivates its investigation for RNN. Section 4.4 details different

configurations of the finding winning ticket algorithm that are used in the experimentation.

The experiments on Sequential MNIST are presented in Section 4.5 and motivate the

pre-processing method introduced in Section 4.5.4. Section 4.6 then studies RNN using

the wikitext-2 language modelling task. Each dataset experiment is developed through

three parts. First, we explain the task and training setup, then we analyse a dense LSTM

convergence profile, and we finally apply relevant pruning algorithm configurations to

provide insight on RNN learning behaviour. Finally, some perspectives are discussed in

Section 4.7.

4.2 Sparse and dense models

In this section, we present a weight pruning method and the main empirical observation

in the domain. Pruning DNNs is the process that removes redundant connections. This

method showed impressive compression ratios without performance loss on Deep Con-

volutional Neural Networks [36]. Similar results were found by Narang et al . [76] while

pruning RNNs.

Moreover, Zhu and Gupta [125] proposed a method to gradually prune the network

parameters in a element-wise fashion during training to achieve a defined pruning objective.

Doing so, the network is trained to gradually increase the sparsity of the network while

allowing the network training steps to recover from any pruning-induced loss in performance.

Their experiments covers both convolutional and recurrent architectures on three different

tasks : image classification, language modelling and machine translation. Figure 4.1 reports

their results on image classification with a convolutional neural network and language

modelling with a recurrent neural network. Dense models refers to models that are not

pruned, i.e. all parameters are non-zero parameters. Sparse models refers to models that

are pruned, i.e. part of the parameters are zeroes. First, they confirmed the trade-off

between model accuracy and model size encountered while pruning models. Secondly,

both experiments (a) and (b) show that sparse models outperform comparably-sized dense

models.

Page 72 of 147

4.3. The Lottery Ticket Hypothesis

Figure 4.1: Performance comparison of sparse and dense models. In (a) the performance
of the convolutional neural networks are measured using the top-1 accuracy (the higher
the better) on Imagenet. In (b) the performance of the LSTM-based models are measured
using the perplexity (the lower the better) on Penn Treebank. Both experiments (a) and
(b) show that sparse models outperform comparably-sized dense models. The figures are
taken from [125].

4.3 The Lottery Ticket Hypothesis

In 2018 and 2019, Frankle et al . [25, 26] studied the correlation between initialization

and pruning of Feed Forward Neural Networks that provides insight on their learning

behaviour. Specifically, their Lottery Ticket Hypothesis conjectures that typical neural

networks contain small sub-networks that can train to similar accuracy in a commensurate

number of steps. They proposed a method to find Winning Tickets (WT), i.e., sparse

network initialization that can converge to similar or even better performance than the

dense network.

Inspired by the works of Frankle et al . [25, 26], this chapter conveys insight on RNN

learning behaviour rather than showing opportunities to directly improve performance or

the above-mentioned trade-off. Towards that objective, we extend the experimental scope

of their works with RNN in order to better understand their learning behaviour.

4.4 Experimental protocol

The notations used for the Algorithm 2 are listed in Table 4.1.

In order to find winning tickets for Feed Forward Neural networks, Frankle et al .

proposed an iterative pruning and retraining algorithm that can be implemented following

Algorithm 2. Algorithm 3 details the implementation of the magnitude pruning algorithm.

Those algorithms are applied on an LSTM for Sequential MNIST classification task in

Section 4.5 and for Word prediction on Wikitext-2 in Section 4.6. The following method

Page 73 of 147

Chapter 4 – Compressing Recurrent Neural Networks

Algorithm 2 Finding Winning Tickets

1: Inputs: a neural network f and its parameters θ, a list of K pruning objectives
Pobj = (p1, .., pk, .., pK), the parameters save iteration tsave that is used as initialization
for each retraining and the total number of training iterations T .

2: Outputs: a list of K masks M = (m1, ..mk, ..,mK) corresponding to each pruning
objective. Each mask mk unravels the sparse parameters mk ◦ θ corresponding to the
pruning objective pk.

3: Winning tickets(f ,θ,Pobj,tsave,T):
4: m0 ←mask filled with ones.
5: Randomly initialize the neural network parameters as θ0.
6: Train the network for t iterations and save its parameters as θtsave .
7: For k in range(1..K):
8: From f(mk−1 ◦ θt) train for T − tsave iterations.
9: Obtain the converged parameters θTk .
10: mk ← Pruning(θTk ,pk)
11: return M = (m1, ..,mk, ..,mK)

Algorithm 3 Magnitude Pruning method

1: Inputs: a set of parameters θ to prune, a pruning objective p ∈ [0, 1] and the threshold
step ϵ.

2: Outputs: a mask m filtering pruned parameters with element-wise product: m ◦ θ.
3: Pruning(θ,p,ϵ):
4: threshold← 0
5: s← 0
6: While s < p:
7: m← θ ⩾ threshold
8: s← Number of zeros in m

Total number of parameters in θ

9: threshold← threshold+ ϵ
10: return m

Page 74 of 147

4.4. Experimental protocol

Notation Description
f neural network model
θ parameters of the model f
Pobj = (p1, .., pk, .., pK) a list of K pruning objective defining the iterative

pruning steps
M = (m1, ..,mk, ..,mK) a list of K binary masks corresponding to each pruning

objective.
T total number of training iterations
tsave save the parameters of the network f at iteration tsave

to be used as initialization at each retraining
θtsave saved parameters at training iteration tsave from the

first training
θTk converged parameters k
θrand random initialization of parameters

Table 4.1: Notations for the winning ticket algorithm.

configurations are compared:

Winning Tickets. Iterative pruning and retraining from scratch using the same

initialization. In this case, the save iteration tsave = 0, that is to say each retraining starts

from the same initialization θ0. This configuration is the original method proposed in their

first work [25].

Winning Tickets with save. Iterative pruning and retraining from scratch using

as initialization an early save of the parameters θtsave from the first training. This

configuration is the upgraded method proposed in follow-up work [26] in order to stabilize

their algorithm.

Rand init. Iterative pruning and retraining from scratch using a new random

initialization. In this case, line 6 of Algorithm 2 is ignored and line 8 is replaced

by:

From f(mk−1 ◦ θrand) train for T iterations.

with θrand a new random initialization at each retraining. Similarly to Frankle et al . [25],

this configuration is used to assess the importance of a winning ticket’s initialization.

Iterative Magnitude Pruning (IMP). Iterative pruning during learning. The

Finding Winning Tickets algorithm is adapted to become a naive Iterative Magnitude

Pruning. Instead of retraining from scratch with a re-initialisation, the network continues

learning with its current parameters. In this case, line 6 of Algorithm 2 is ignored and line

8 is replaced by:

From f(mk−1 ◦ θTk−1) train for T iterations.

with θTk−1 the parameters from the previous converged training and θTk−1 = θ0 when k = 1.

This configuration can be interpreted as the edge case between the Finding Winning

Tickets algorithm and Iterative Magnitude Pruning methods. It gives a first idea of the

Page 75 of 147

Chapter 4 – Compressing Recurrent Neural Networks

performance that could be obtained with more elaborated IMP methods. Note that from

all the configurations, it is the only one that does not retrain from an earlier state of the

network.

4.5 Handwritten digits recognition

4.5.1 Task and training setup.

The LSTM architecture [42] is trained on the MNIST[61] handwritten digits classification

task. Each 28×28 2D image is flattened into a sequence of 784 pixels. Figure 4.2 shows the

inference pipeline on an LSTM, each pixel is sequentially fed into the LSTM and only the

last output is used to make a prediction with a linear classifier. The network is composed

Figure 4.2: LSTM inference pipeline on Sequential MNIST.

of a single LSTM layer with a hidden dimension of 128 and a fully connected layer 128×10

for a total of 68k parameters. Standardization is applied on each image. Each training

uses the Cross Entropy Loss (CEL) objective function, the RMSProp optimizer [104] with

a learning rate of 10−3, 120k iterations with a batch size of 100 (i.e. 200 epochs). No

Regularization is applied.

The performance of each network is evaluated by their top-1 accuracy on MNIST and

the compression of the network is assessed by the sparsity percentage of the parameters,

i.e. the percentage of zero parameters in the network.

4.5.2 Convergence on Sequential MNIST

In this section, we investigate the convergence of one dense LSTM model on Sequential

MNIST. Our model reproduces a similar top-1 accuracy of the LSTM from the work of

Arjovsky et al . [3], and both scores are reported in Table 4.2. We then use this model as

the baseline performance to compare to sparse models.

Page 76 of 147

4.5. Handwritten digits recognition

Model Top-1 Accuracy
LSTM [3] 98.2
LSTM (Ours) 98.9

Table 4.2: LSTM performance on Sequential MNIST.

0 10 20 30 40 50 60 70 80 90 100 110 120

Training iterations ·103

0

0.5

1

1.5

2

2.5

T
ra
in
in
g
lo
ss

va
lu
e

Figure 4.3: LSTM training loss on sequential MNIST. The convergence is unstable.

The training loss convergence associated with our LSTM score is plotted on Fig. 4.3.

The loss convergence profile is divided into three parts.

1. From 0 to around 17k iterations (highlighted by the green dashline on Fig. 4.3), the

loss does not converge. On two occasions around 5k and 15k iterations, the network

starts to converge but then quickly setback.

2. Then, from around 17k iterations to 40k iterations (highlighted by the red dashline

on Fig. 4.3), the loss profile shows a clear convergence. Despite this converging

tendency, the loss is very unstable. In particular, one can notice the loss pick around

27k iterations.

3. In the last 80k iterations, the loss reaches an asymptote.

This training instability is explained by the Vanishing and Exploding gradients as

the Backpropagation Through Time algorithm has to back propagate through the long

Page 77 of 147

Chapter 4 – Compressing Recurrent Neural Networks

784-pixel sequence. Note that the gated mechanism introduced by the LSTM structure

only mitigates the recurrent architecture sensitivity to those phenomenons.

4.5.3 Lottery ticket experiments

In this section, sparse LSTM models are learned with the following configurations:

Rand init, Winning Tickets (WT), WT with save at iteration 1200 (i.e. the second

epoch), WT with save at iteration 30k (i.e. epoch 50) and the Iterative Magnitude Prun-

ing. The two save iterations were chosen according to the convergence of the LSTM

from Fig. 4.3. At iteration 1200 the LSTM is not converging yet while it is converging

at iteration 30k. All pruning experiments follow the same iterative pruning objectives

Pobj = (0.3, 0.5, 0.7, 0.8, 0.9, 0.95). We found that using a threshold step ϵ = 3 · 10−4

for the magnitude pruning Algorithm 3 to accurately achieve the pruning objective.

The results for each configuration are reported in Table 4.3 and plotted in Fig. 4.4.

The dense LSTM score of 98.91 is considered as the baseline and all sparse networks

outperforming it are highlighted in bold.

Sparsity
(%)

Params
(k)

Rand init WT WT 1200 WT 30k IMP

0 68 98.91 98.91 98.91 98.91 98.91
30 48 98.86 98.58 98.87 98.91 98.9
50 34 98.55 98.3 98.82 98.94 98.94
70 21 98.55 98.23 98.48 98.94 37.37
80 14 98.48 98.49 98.47 98.96 14.77
90 6.8 76.21 71.53 98.46 98.43 13.68
95 3.4 93.16 68.12 63.32 96.78 20.72

Table 4.3: LSTM test accuracy on sequential MNIST following several lottery ticket
configurations.

As we read Table 4.3 from top to bottom, the networks are more and more sparse.

Considering the three configurations Rand init, WT and WT 1200 (respectively in teal,

blue and orange on Fig. 4.4), the scores only drops compared to the dense model. With

those configurations, the pruned networks have to retrain through the first no convergence

part showed on Fig. 4.3. Only the WT 30k retrains from a save in the converging part of

the first learning and this configuration finds pruned networks with similar performance

to the dense model. This observation confirms the importance of the initialization to find

winning tickets emphasized by the original works. It also leads to the hypothesis that the

training instability of recurrent architectures conditions the finding of winning tickets.

Page 78 of 147

4.5. Handwritten digits recognition

0 30 50 70 80 90 95
98

98.2

98.4

98.6

98.8

99

99.2

Sparsity (%)

T
op

-1
A
cc
u
ra
cy

S
eq
u
en
ti
al

M
N
IS
T

WT 30k
WT 1200

IMP
Rand init

WT

Figure 4.4: Profile of LSTM performance under increasing sparsity, trained on sequential
MNIST and following several lottery ticket configurations. Each point corresponds to a
test accuracy reported in Table 4.3.

One noticeable result is the winning ticket at 80% sparsity with a score of 98.96%.

To better understand how the network allocates its parameters to learn, the sparsity

percentages of each layer are summarized in Table 4.4. Input LSTM (InpLSTM) and

Recurrent LSTM (RecLSTM) respectively regroups all input and recurrent weight matrices

from each LSTM gate, Bias LSTM regroups all input and recurrent biases from each

LSTM gate, FC regroups the weights and biases from the linear layer. Note that the great

majority of parameters are the recurrent weight matrices from each LSTM gate. For this

winning ticket, the network prunes proportionally less parameters in the InpLSTM and

the linear layer compared to RecLSTM and BiasLSTM. We interpret such partitioning to

avoid a drop in performance as InpLSTM conditions the information input, and the linear

layer directly outputs the prediction.

Layer Params Sparsity (%)

Input LSTM 512 52
Recurrent LSTM 65536 81
Bias LSTM 1024 84
FC 1290 48

Table 4.4: Sparsity per-layer for the WT 30k LSTM with 80% sparsity that achieves 98.96
test top-1 accuracy.

Considering the IMP method, the method achieves reliable performance for 30% and

Page 79 of 147

Chapter 4 – Compressing Recurrent Neural Networks

50% pruned models, but drops starting 70% of pruned parameters. The learning diverged

during the training iterations with 70% sparsity and did not manage to converge again

with less parameters.

Motivated by our observations on the convergence analysis and the pruning experimen-

tation, we propose a simple method to enable early convergence of the LSTM for this task

by sub-sampling the input data.

4.5.4 Sub-sampling pre-processing

In order for the loss to converge in the first training iterations, we propose to introduce the

task complexity progressively with a data pre-processing method relying on sub-sampling.

The implementation of this sub-sampling method is detailed in Algorithm 4. The input

data is sub-sampled into a smaller sequence at the beginning of the training for the LSTM

backpropagation to be less sensitive to Vanishing and Exploding gradients. We use a naive

sub-sampling process that extracts the sequence elements based on a dilation rate. For

instance, sub-sampling the sequence of pixels from an MNIST digit X = (x1, .., x784), with

a dilation rate r = 2, produces the sub-sampled sequence Xs = (x1, x3, .., x2l+1, .., x783).

During the beginning of the training, the input data progressively carries all of its original

information by decreasing the sub-sampling dilation rate with a step strategy.

Algorithm 4 Sub-sampling method

1: Inputs: one train data sequence X = (x1, .., xL) with L the sequence length, the
training iteration i and a list of J sub-sampling dilation rates R = (r1, ..rJ) correlated
to the step strategy target iterations S = (s1, .., sJ) (and s0 = 0).

2: Outputs: the sub-sampled sequence data Xs.
3: Sub-sampling(X,i,R,S):
4: If ∃ j such as sj−1 ⩽ i < sj then
5: Xs ← (x(rj l+1)) for each l ∈ [0, (L//rj)− 1]
6: else
7: Xs ← X
8: return Xs

Convergence with sub-sampling

We apply this method to learn the same LSTM over 36k iterations with the same batch size

of 100 (i.e. 60 epochs). The method uses the sub-sampling dilation rates R = (8, 6, 4, 2)

correlated to the step strategy target iterations S = (3k, 6k, 9k, 12k) resulting into input

sequences of length L = (98, 130, 196, 392). After 12k iterations, the input sequence length

is L = 784. With a top-1 accuracy of 98, 98%, the LSTM trained with the sub-sampling

method achieves similar performance with both LSTM models reported in Table 4.5.

Page 80 of 147

4.5. Handwritten digits recognition

Model Top-1 Accuracy
LSTM trained without sub-sampling 98.91
LSTM trained with sub-sampling 98.98

Table 4.5: LSTM test accuracy trained with and without sub-sampling on Sequential
MNIST.

0 10 20 30 40 50 60 70 80 90 100 110 120

Training iterations ·103

0

0.5

1

1.5

2

2.5

T
ra
in
in
g
lo
ss

va
lu
e

Training with sub-sampling
Training without sub-sampling

Figure 4.5: LSTM training losses on sequential MNIST when trained with and without
the proposed sub-sampling method.

Figure 4.5 compares the LSTM training losses on sequential MNIST when trained

with and without the proposed sub-sampling method. The plot shows clearly that the

loss convergence is smoother and faster when the sub-sampling method is used. Each

transition from one sub-sampling dilation to another triggers a little loss pick, but the

network quickly adapts to the increasing complexity. As a result, the network converges to

an asymptote by the iteration 20k that is half the number iterations needed when training

without the sub-sampling method, and the application performance is preserved.

Lottery ticket experiments with sub-sampling

We conduct lottery ticket experiments using the sub-sampling method with the following

configurations: Rand init, WT, WT with save at iteration 13.2k (i.e. epoch 22) and the

IMP. The save on iteration 13.2k was chosen to be after the first 12k iterations where

Page 81 of 147

Chapter 4 – Compressing Recurrent Neural Networks

the sub-sampling method dilates the input sequence. The data sub-sampling is applied

during each training with the exception of the WT with save at iteration 13.2k (i.e. epoch

22) and the IMP. Indeed, for those two configurations, the state of the network at the

beginning of re-trainings already learned through the sub-sampling method. The results

for each configuration are reported in Table 4.6 and plotted in Fig. 4.6. The dense LSTM

score of 98.98 is considered as the baseline, and all sparse networks outperforming it are

highlighted in bold.

Sparsity
(%)

Params
(k)

Rand init WT WT 13.2k IMP

0 68 98.98 98.98 98.98 98.98
30 48 98.92 98.13 99.08 99.14
50 34 98.66 98.75 99.15 99.19
70 21 98.44 98.64 99.03 99.08
80 14 98.47 98.62 98.82 98.98
90 6.8 97.44 97.12 97.96 97.63
95 3.4 90.52 92.49 88.51 71.03

Table 4.6: LSTM test accuracy trained with sub-sampling on sequential MNIST following
several lottery ticket configurations.

0 30 50 70 80 90 95
98

98.2

98.4

98.6

98.8

99

99.2

99.4

Sparsity (%)

T
op

-1
A
cc
u
ra
cy

S
eq
u
en
ti
al

M
N
IS
T

WT 13.2k
IMP

Rand init
WT

Figure 4.6: Profile of LSTM performance under increasing sparsity, trained with sub-
sampling on sequential MNIST and following several lottery ticket configurations. Each
point corresponds to a test accuracy reported in Table 4.6.

Comparing the results without the sub-sampling method in Table 4.3 to the results

using the data sub-sampling method in Table 4.6, we find that similar tendencies for

Rand init, WT and WT with save. The WT with save is able to find pruned networks

Page 82 of 147

4.6. Language Modelling

with similar performance to the dense model. The results of the IMP configuration show

more consistency when the network is learned with the sub-sampling method.

In the end, the sub-sampling method enables faster convergence while maintaining the

performance for the Sequential MNIST task. However, training with the sub-sampling

method failed to change the tendency of the WT configurations.

To broaden the scope of the study, the next section performs similar experiments on a

text prediction task.

4.6 Language Modelling

4.6.1 Task and training setup

In this section, LSTM models are trained on the Wikitext-2 [72] Language Modelling

task. We chose this dataset because it is a reference for benchmarking models on Language

Modelling. The dataset is introduced in Section 3.2.4.

The text is partitioned into sequences of words and for each input word, the model

tries to predict the next. Figure 4.2 shows the inference pipeline on an LSTM, each word is

first encoded into a word embedding that is sequentially fed to the recurrent architecture.

Each recurrent output is then projected into the vocabulary space with a fully connected

layer and compared to the target word. We build our experiments based on the standard

Figure 4.7: LSTM inference pipeline on Wikitext-2.

Page 83 of 147

Chapter 4 – Compressing Recurrent Neural Networks

approach for the Language Modelling task. The network topology is the same as the

Medium LSTM from the work of Inan et al . [45] and is composed of an embedding layer,

two LSTM layers with a hidden dimension of 650 and a fully connected layer. We also use

their weight sharing technique between the embedding layer and the weights of the fully

connected layer as it reduces the number of parameters and allows for faster convergence.

Accounting with respect to the weight sharing method, the total number of parameters

is 26 Millions. The input sequences are composed with 35 words to follow the standard

and compare our LSTM result with their Medium LSTM [45]. This fixed sequence length

however prevents the LSTM from learning time dependencies exceeding 35 words. Each

training uses the Cross Entropy Loss objective function, the Adam optimizer [53] with a

learning rate of 10−3 subject to a cosine annealing strategy, 183k iterations with a batch

size of 64 (i.e. 200 epochs). A random dropout mask with probability of 0.4 is used on

each layer output (except the output of fully connected layer) to prevent the model from

overfitting.

At the beginning of training and test time, the first sequence (seq = 0) starts with a

zero state hseq=0
0 = 0. In the case of the LSTM, h stands either for the cell state state and

the output out and both of them are treated the same way. Each input recurrent state for

the sequences following hseq
0 follows the policy introduced by Melis et al . [71]:

hseq
0 =

hseq−1
35 with probability p = 0.99

0 with probability (1− p) = 0.01
(4.1)

When hseq
0 = hseq−1

35 with a probability of p = 0.99, the continuity of the text is preserved

and context information is provided to the new sequence to make relevant first words

predictions. Otherwise, the hseq
0 is set to a constant zero state to bias the model towards

being able to easily start from such a state at test time.

The performance of each network is evaluated with the perplexity metric and corre-

sponds to the exponential of the CEL error. The lower the perplexity metric, the better

the performance of a model on the language modelling task. The compression of the

network is assessed by the sparsity percentage of the parameters, i.e., the percentage of

zero parameters in the network.

4.6.2 Convergence on Wikitext-2

In this section, we investigate the convergence of one dense LSTM model on the Wikitext-2

language modelling task. Our model produces a slightly better validation perplexity (on

the validation Wikitext-2 set) and test perplexity (on the test Wikitext-2 set) perplexity

Page 84 of 147

4.6. Language Modelling

of the LSTM from the work of [45] and both scores are reported in Table 4.7. We then

use this model as the baseline performance to compare to sparse models.

Model Perplexity
Val Test

LSTM [45] 100 95.3
LSTM (Ours) 97.9 94.4

Table 4.7: LSTM performance on Wikitext-2.

0 20 40 60 80 100 120 140 160 180

Training iterations ·103

0

1

2

3

4

5

6

7

T
ra
in
in
g
lo
ss

va
lu
e

Figure 4.8: LSTM training loss on Wikitext-2.

The training loss convergence associated with our LSTM score is plotted in Fig. 4.8.

Globally, the training loss clearly converges and the overall profile is smoother than the

Sequential MNIST task. We assume the gradients are more stable for two main reasons.

First, the LSTM has input errors from all time steps instead of only the last one, which

thus provides much more information to compute the gradients from. Second, the sequence

length is fixed at 35 instead of 784 for the Sequential MNIST, directly reducing the

sensitivity towards Vanishing and Exploding gradients.

Locally, the loss is still unstable and we assume the main reason is the dropout regu-

larization. Although necessary to prevent the model from overfitting, masking activations

still filter information during the training.

Page 85 of 147

Chapter 4 – Compressing Recurrent Neural Networks

4.6.3 Lottery ticket experiments

In this section, sparse LSTM models are learned with the following configurations:

Rand init, WT, WT with save at iteration 1830 (i.e., the second epoch) and the IMP.

The save iteration was chosen during the convergence of the dense model as seen in

Fig. 4.8. All pruning experiments follow the same iterative pruning objectives Pobj =

(0.3, 0.5, 0.7, 0.8, 0.9, 0.95). We also using a threshold step ϵ = 3 ·10−4 for the magnitude

pruning of Algorithm 3.

Applying the pruning algorithm naively on the model only results in poor performance.

We found that having one pruning objective for the whole model masked more connections

in the LSTM than in the Embedding (and the tied fully connected) to the point that

the recurrent structure could not learn anything with 50% or even 30% sparsity. To

answer this limitation, we set two distinct pruning objectives for the tied parameters

of the embedding and fully connected layers, and for the LSTM parameters. Also, we

excluded the LSTM bias parameters from the pruning algorithm as it showed better results.

The results for each configuration are reported in Table 4.8 and plotted in Fig. 4.9. The

dense LSTM test perplexity of 94.4 is considered as the baseline and all sparse networks

outperforming it are highlighted in bold.

Sparsity Params Rand init WT WT 1830 IMP
(%) (Mi) Val Test Val Test Val Test Val Test

0 26 97.9 94.4 97.9 94.4 97.9 94.4 97.9 94.4
30 18 118 113 95.3 91.4 94.8 91.1 106 103
50 13 120 114 97.1 92.8 96.2 92.8 122 117
70 7.6 124 117 106 101 107 103 125 120
80 5.1 125 117 111 105 112 107 127 120
90 2.6 139 131 139 130 139 131 164 152
95 1.3 164 154 156 145 160 150 210 193

Table 4.8: LSTM perplexity on Wikitext-2 with different pruning pipelines

As we read Table 4.8 from top to bottom, the networks are more and more sparse.

The two configurations WT and WT 1830 (respectively in blue and red in Fig. 4.9) finds

winning tickets outperforming the dense model perplexity with 30% and 50% sparsity.

They even find similar winning tickets over the pruning objectives. Contrary to the loss

profile on Sequential MNIST of Fig. 4.3, the loss profile on wikitext-2 of Fig. 4.8 shows

convergence from the beginning of the of the training. Each retraining is intuitively ex-

pected to approximately retrace the loss profile of the dense model. The WT configuration

retrains from the original initialization and is able to retrace this smooth early convergence

Page 86 of 147

4.6. Language Modelling

0 30 50 70 80 90 95
90

92

94

96

98

100

102

104

106

108

110

Sparsity (%)

T
es
t
P
er
p
ex
it
y
on

W
ik
it
ex
t-
2

WT 1830
WT
IMP

Rand init

Figure 4.9: Profile of LSTM performance under increasing sparsity, trained on Wikitext-2
and following several lottery ticket configurations. Each point corresponds to a test
accuracy reported in Table 4.3.

profile on wikitext-2 to find winning tickets. A similar observation can be made for the

WT 1830 configuration. Under this observation, when the two configurations find similar

winning tickets performance for each pruning objective on Fig. 4.8, they most likely retrace

similar training loss convergence profile at each retraining.

Considering the Rand init configuration (in teal on Fig. 4.9), the perplexity only

increases compared to the dense model. Even if the loss profile has a smooth and early

convergence, trying to find trainable sparse networks with similar performance fails when

the initialization does not correspond to a state of the dense model. This observation on

RNNs is aligned with the observations made by Frankle et al . [25] on Feed Forward Neural

Network.

Contrary to the experiments on Sequential MNIST, the IMP configuration is not relevant

on wikitext-2. The IMP method is too naive to prune the network while preserving the

performance. A more advanced IMP method would find a much more relevant operating

point. For example, Zhu and Gupta [125] introduced an advanced pruning method able to

Page 87 of 147

Chapter 4 – Compressing Recurrent Neural Networks

find a large LSTM with 80% pruned parameters while preserving performance on another

reference language modelling task.

4.7 Discussion and Perspectives

This chapter is dedicated to the investigation of practical RNN learning behaviour. The

Lottery Ticket Hypothesis formulated by Frankle et al . [25] is introduced and we use their

method as our tool to investigate the convergence of RNNs. We extend their experimen-

tal scope by assessing their algorithm with RNN on image classification and language

modelling. When compared to the original work on MLP and CNN, it appears that

RNN convergence profile is unstable. Coupling convergence analysis with relevant method

configurations, we observed that, to find winning tickets on recurrent architectures, each

retraining needs to be initialized with a dense network state from which the loss profile

converges smoothly.

We proposed a sub-sampling method that enables faster convergence while maintaining

the performance for recurrent architectures on the Sequential MNIST task. However,

our method failed to shape the learning landscape to be friendly enough for the basic

configuration to find winning tickets.

Magnitude pruning methods achieve significant model compression ratio while preserv-

ing application performance. Such model compression enables the storage of many models

on memory-limited hardware. However, the resulting sparse architecture is not structured

to be easily accelerated on target. Indeed, magnitude pruning finds its limitation when

critical applications have latency and low power requirements. Regarding those criteria,

DNN quantization is an elegant solution to both compress the memory storage of the

network and enable an optimized inference with lower precision operators at inference

time. This first work inspired us to pursue studying advanced quantization methods in

the Chapter 5.

Page 88 of 147

Chapter 5

Disentangled Loss for Low-Bit

Quantization Aware Training

5.1 Introduction

Many deep learning contributions rely on increasing the number of parameters and com-

putation power to achieve better performance. With application performance as the

one-trick-pony objective, deep learning models have become continually larger, more

memory demanding and computationally heavier. Supporting this trend, Resnet [38], one

of the most popular convolutional architectures, was designed to mitigate the vanishing

gradient phenomenon in order to enable the convergence of very deep neural networks.

This greedy approach is not limiting as long as the running environment offers sufficient

resources. For that matter, cloud-based platforms offer a relevant strategy by centralizing

all the computations resources.

However, cloud-based solutions cannot satisfy the requirements for all applications.

Specifically, critical applications with real-time constraints such as memory, latency, power

consumption, with a resource-scarce hardware target or with privacy issues, cannot be

inferred on cloud. Instead, the requirements of those critical applications can be met

with a local execution of the input data, i.e. on the edge. To be deployed on the edge,

neural networks compromise between performance and the limited resources. Inventing

new neural networks to meet specific needs requires a lot of effort. This is why compressing

existing architectures is the preferred solution as they offer a good trade-off and they are

reliable to transfer knowledge to down-stream tasks.

Therefore, various methods were designed to reduce memory and computational needs

of these models, in order to use Deep Convolutional Neural Networks for low power and/or

low memory applications. There are two major ways of reducing the size of a deep neural

89

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

network:

• Reducing the total number of parameters, with methods such as pruning, weight

sharing, low-rank factorization, structured matrices, knowledge distillation. We refer

to Wang et al . [113] for an in-depth explanation of each of these methods.

• Reducing the memory footprint of its parameters with quantization.

DNN quantization aims at reducing the number of bits to represent its parameters,

while keeping the performance and quality of results as close as possible to the floating-

point reference. For instance, the weights of a DNN can be stored as signed integers using

8 bits instead of 32 bits with the single-precision floating-point format, without any loss

in application performance. Moreover, the added value of quantization lies with a fully

quantized pipeline, i.e., weights and activations, where, once engineered with hardware

accelerators to reduce operator complexity, it achieves significant memory footprint reduc-

tion proportional to the reduction of the number of bits, along with energy savings and

higher throughput.

In practice, the availability of training data and computation resources motivates the

use of different quantization methods. With both those resources, the quantization process

can rely on retraining the model from scratch with stochastic gradient descent. This class

of methods is known as Quantization Aware Training (QAT), and the latest proposals lead

to the best performance for settings from 8 bits down to 2 bits [23, 48]. Those methods

rely on the CEL function, i.e. a combination of softmax and negative log likelihood, as it

is the reference loss function for classification. A variation of the softmax was proposed

by Liu et al . to encourage more discriminating features for image classification [69]. This

research led to significant performance gains, especially in the face recognition domain

[68, 114], where the number of classes is an order of magnitude higher than academic image

classification tasks. Also, Wan et al . used Gaussian Mixtures to formalize the classification

space and encourage more discriminating features [111].

To date, the effect of those loss functions on QAT remains unexplored. This chapter

studies the quantization aware training with disentangled loss functions for settings down

to binary weights. We empirically show that training a model to output discriminative

features improves its resilience to quantization. Results on CIFAR-10, CIFAR-100 and

ImageNet datasets show the clear advantage of our approach, with significant performance

gains, especially for very low-bit settings.

This chapter is organized as follows. Section 5.2 presents some previous work on QAT

as well as the foundation of disentangled loss functions. Section 5.3 introduces our method

that takes advantage of both Additive Margin Softmax (AMS) loss and Gaussian Mixture

Page 90 of 147

5.2. Previous Work

Loss (GML) to improve the QAT procedure. Section 5.4 presents our experimental setup

and the results obtained on relevant datasets.

5.2 Previous Work

To better understand the intuition behind our approach, we first give a brief review of the

state-of-the-art techniques on quantization-aware training and disentangled losses.

5.2.1 Quantization Aware Training

Given a network f : Rn ⇒ R with its parametersW , an input x ∈ Rn and its corresponding

label y, we refer to QAT for classification as finding the non-differentiable quantization

function q with the loss function L as

min
W

L[f(x, q(W)), y]. (5.1)

Bengio et al . proposed the Straight-Through-Estimator (STE) to enable training

with backpropagation [10]. The STE method estimates the gradients of the quantized

parameters assuming that the derivative of the quantization function q is the identity

function. QAT methods use this approximation tool to backpropagate errors and update a

single-precision floating-point copy of the weights. Those updated weights are then being

injected in the quantization function for the next inference. However, the approximation

error grows bigger as the bitwidth goes smaller hence decreasing the performance for low-bit

settings. Esser et al . tackled this issue by scaling dynamically the gradients with a learnable

step [23]. Following their method, the gradient landscape is shaped to encourage the full

precision parameters towards the quantized points. Doing so, the proposed Learned Step

Size Quantization (LSQ) method implicitly reduces the approximation error introduced by

the STE and shows substantially better results over the previous quantization techniques.

Alternatively, the Scaled Adjust Training (SAT) method introduced by Jin et al . directly

scales the weights instead of the gradients to control the training dynamics, which yields

state-of-the-art results [48]. Their approach is driven by the distribution of parameters

and gradients, which is summarized by two rules:

1. Keep the output of the linear layer from entering the saturation region of the CEL.

2. Keep the gradients of the weights at the same scale throughout the network.

To quantize a weight matrix Wij, the SAT method relies on the DoReFa scheme [124].

First a weight matrix Wij is clamped in the range [0, 1] as

W̃ij =
1

2

(
tanh(Wij)

maxr,s | tanh(Wrs)|
+ 1

)
. (5.2)

Page 91 of 147

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

The element-wise quantization function q is applied on each weight x towards 2b quantized

points using the factor a = 2b − 1 as

q(x) =
1

a
⌊ax⌉. (5.3)

The final quantized weight matrix Qij is obtained following

Qij = 2q(W̃ij)− 1. (5.4)

To enable efficient quantization following their rules, they proposed the SAT method

introducing constant rescaling [48]. For a layer with a quantized weight matrix Qij and

nout (number of output neurons), the scaled quantized weights Q∗
ij are computed as

Q∗
ij =

1√
noutVAR[Qrs]

Qij. (5.5)

To quantize the activations, the authors replace the identity function for a better

approximation of the quantization function derivative to upgrade the PACT [19] method.

This new formulation especially reduces the approximation error for low-bit settings.

Concretely, they proposed the two-step training method for QAT illustrated in Fig. 5.1.

During Training I, the network f is learned with 32-bit floating-point parameters, while

constraining the range of its parameters W with clamping based on Eq. (5.2). The layers

that are not followed by batch normalization [46] see their parameters scaled following

Eq. (5.5). This first training step returns a converged network f whose learned floating-

point parameters Wclamp are constraint and scaled in a quantization friendly range. Those

learned parameters Wclamp are then used as initialisation for Training II. During the second

step, the network weights are quantized following the DoReFa scheme, and/or activations

are quantized with an upgraded version of PACT [19, 48].

Figure 5.1: Scaled Adjust Training method.

Page 92 of 147

5.2. Previous Work

5.2.2 Disentangled Losses

We call a loss ”disentangled” as it encourages the network output space to be easily

discriminated with linear functions.

Additive Margin Softmax

Inspired by Large-Margin Softmax [69] and Sphereface [68], Wang et al . proposed an

intuitive formulation of the margin softmax loss function called Additive Margin Softmax

[114]. The authors considered the propagation of features f in the linear layer without bias

as scalar products for each column j of the weight matrix W . They used the geometric

definition of the scalar product of Eq. (5.6), coupled with feature and weight normalization

to rewrite the loss function applying a margin m on the target logit W T
y f and a scaling

factor s, following Eq. (5.7).

f ·Wj = ∥Wj∥∥f∥cos(θj) (5.6)

LAMS = − log
es·(cos θy−m)

es·(cos θy−m) +
∑C

j=1, j ̸=y e
s·(cos θj)

(5.7)

The softmax output probabilities can be interpreted as a vector of dimension C, C being

the number of classes. The one-hot vectors encoding the different classes are the orthogonal

vectors that construct the canonical basis of RC . Here, the subtracted margin m acts as a

classification boundary offset, forcing the network to output features that are closer to the

orthogonal vector corresponding to their label, thus reducing the intra-class variance of

each class cluster in the network.

Gaussian Mixture Loss

Wan et al . proposed to model the classification layer with Gaussian mixtures [111]. The

Gaussian Mixture Loss (GML) draws the distances dj between features f and the learned

means µj to minimize the distance to the mean associated to the true label dy. A positive

margin factor α artificially inflates the distance dy to help regulate the convergence of the

network. Under the assumption that the covariance matrix is isotropic, the GML can be

rewritten as

LGM = − log
e−dy(1+α)

e−dy(1+α) +
∑C

j=1, j ̸=y e
−dj

(5.8)

with dj =
1

2
∥f − µj∥22 (5.9)

Page 93 of 147

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

5.3 Disentangled Loss Quantization Aware Training

Intuition. Considering that features can be more discriminative with disentangled losses

than with CEL, we assume that low-bit quantization-aware training can benefit from a

disentangled loss. Indeed, a smaller intra-class variance and a bigger inter-class difference

should be more robust to the quantization noise. With CEL, the inter-class features are

optimized to be orthogonal without constraint on their actual distance in the output space.

While it is also true for AMS, it still allows for an additional margin on the orthogonality.

On the contrary, GML directly minimizes the distance between the features and their

corresponding centroids, thus, minimizing the intra-class variance. The use of learned

centroids instead of orthogonal features ensures that the distance between inter-class

features is constrained by the distance of their respective centroids, as the features are

attracted to their corresponding centroids. To reformulate, while AMS loss encourages a

smaller intra-class variance than CEL, GML ensures both a smaller intra-class variance and

a bigger inter-class difference than CEL. This motivates the formulation of our hypothesis

along with our investigation combining several state-of-the-art methods: the presented

disentangled loss functions with the SAT procedure [48].

Hypothesis. Disentangled losses encourage a small intra-class variance and a big inter-

class difference. They are robust to quantization noise and benefits Quantization Aware

Training.

Method. In order to assess our hypothesis, we introduce DL-QAT, a method applying

the intuitive formulation of AMS or GML loss function with the quantization-aware

training method SAT [48]. Algorithm 5 details the implementation of DL-QAT.

5.4 Experiments

5.4.1 Training setups

All experiments use a Resnet-18 [38] with the CIFAR-10, CIFAR-100 [54] and ILSVRC

2012 ImageNet-1k dataset [22]. All the 8-bit images are divided by 255 and no stan-

dardization is applied. The train data are augmented with random rescaling, cropping and

flipping. The learning strategy proposed by [48] is used for all experiments with different

learning rates that we specify later. All networks are trained over 150 epochs.

For the experiments on CIFAR-10 and CIFAR-100 datasets [54], as our input images

are 32×32, the Resnet-18 [38] is adapted with a first {3,3} kernel, stride= 1, which output

is directly fed to the first residual block. The batch size is 768. When training is performed

with SAT using the CEL or DL-QAT using the AMS loss, the learning rate is 0.01. When

Page 94 of 147

5.4. Experiments

Algorithm 5 Disentangled Loss Quantization Aware Training

1: Inputs: a neural network f and its FP32 parameters WFP32, training data x and
its corresponding target y, the disentangled Loss L. Clamp() is Eq. (5.2), DoReFa is
Eq. (5.3) and Eq. (5.4), Scaled-Adjust is Eq. (5.5).

2: Outputs: the quantized parameters Q and the activation quantization learned pa-
rameters α.

3: DL-QAT(f ,W ,x,y,L):
4: Training I. FP32 clamped and scaled weights
5: Learn the network minimizing L[f(x,Clamp(WFP32)), y]
6: WFP32 ← converged FP32 parameters of the first training
7: Training II. Quantized weight and activation
8: For each Quantization Aware Training iteration using input data (x, y):
9: Wclamp ← Clamp(WFP32)

10: Q← DoReFa(Wclamp)
11: If No Batch Normalization:
12: Q← Scaled-Adjust(Q)
13: Out← f(x,Q). (Propagate and quant. the activations on the fly with PACT(α))
14: Error ← L(Out, y)
15: Backpropagate the error. (The quant. functions are approximated as detailed in [48])

16: Update WFP32 and α with SGD and their respective gradients:
∂Error

∂W
,
∂Error

∂α
17: return Q, α

the training is performed with DL-QAT using the GML, the learning rate is 0.2. We use

the same AMS scale s = 30 from Eq. (5.7) hyperparameter from the best results of the

original paper [114]. Preliminary experiments were conducted to find the best AMS loss

additive margin m from Eq. (5.7) as well as the best GML multiplicative margin α from

Eq. (5.8) and are respectively reported in Table 5.2 and Table 5.1. We chose the margin

parameters α = 0.7 and m = 0.35 for all experiments on CIFAR-10 & CIFAR-100

based on the best floating-point performance.

For the experimentations on ILSVRC 2012 ImageNet-1k dataset, the Resnet-18

is the original ResNet proposed by He et al . [38]. The batch size is 1024. The learning

rate is 0.02 for both SAT using CEL and DL-QAT using GML. The GML multiplicative

margin is α = 0 from Eq. (5.8) as it gives best results.

As it is common practice in the previous quantization approaches [23, 48], the precision

of filters from the first convolution, the weights of the last layer and the activation preceding

the last layer are fixed to 8 bits. Also, all batch normalization layers and the bias in the

linear layer are not quantized. For the experiments using the AMS loss function, we do not

use the bias of the linear layer, in order to respect the geometric definition of the scalar

product as previously introduced in Section 5.2.2.

All experimentations presented in this chapter were done in the Neural Network Design

Page 95 of 147

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

& Deployment (N2D2) framework (Section 3.1.3).

Margin α Accfloat32GML Acc2bitsGML

0 70.5 68.6

0.1 71.3 69.5

0.3 72.0 70.7

0.5 72.8 70.8

0.7 73.6 71.9

1.0 72.9 71.3

Table 5.1: 2-bit weight and activation (W&A) quantization of Resnet-18 on CIFAR-100
with various GML margins.

Margin m Accfloat32AMS Acc2bitsAMS

0 65.2 62.2

0.1 67.2 65.1

0.2 68.1 65.8

0.35 68.7 66.1

0.5 68.6 66.4

Table 5.2: 2-bit weight and activation (W&A) quantization of Resnet-18 on CIFAR-100
with various AMS margins.

5.4.2 Results and analysis

To better visualize the contribution of the AMS loss and the GML during quantization,

we performed dimension reduction with the t-sne algorithm [107] over the input features

of the linear classifier. The features fed to the t-sne algorithm are extracted from the

converged Resnet-18 inferring with the same sets of 50 test images for each class. The

2D visualisations from full precision and 2-bit Resnet-18 for CEL, AMS loss and GML

are plotted in Fig. 5.2. As expected, the full precision Resnet-18 clusters with AMS loss

(b) and GML (c) are more compact than with CEL (a). It manifests that separating the

clusters thanks to straight lines modeled by the linear classifier will be easier. Comparing

full precision in Fig. 5.2.(a-b-c) to 2-bit quantization in Fig. 5.2.(d-e-f), the clusters with

the quantized version are less compact, and we can interpret this as the effect of the

quantization. In Fig. 5.2, comparing (d) to (e) and (f), the plots show that the ambiguities

caused by the quantization are reduced thanks to the disentangled losses.

Page 96 of 147

5.4. Experiments

(a) full-precision CEL (b) full-precision AMS loss (c) full-precision GML

(d) 2-bit W&A CEL (e) 2-bit W&A AMS loss (f) 2-bit W&A GML

Figure 5.2: Dimension reduction with the t-sne algorithm representing the input features
of the linear classifier from CIFAR-10 test data. The corresponding top-1 test accuracies
are reported in Table 5.3. t-sne performed over 1000 iterations and a perplexity of 30.

The top-1 test accuracies on CIFAR-10 and CIFAR-100 of the proposed DL-QAT

method (AccAMS) and (AccGML) compared to the SAT method (AccCEL) are reported

in Table 5.3. The lines with 32 correspond to single-precision floating-point, which is

considered as the full precision baseline. Table 5.3 also reports the ∆Ploss quality metric

to compare the QAT methods defined as

∆Ploss = Accfloat32loss − Accquantloss . (5.10)

∆Ploss measures the drop in top-1 accuracy between the full precision version and a

quantized version of a network trained with the same loss function. Given ∆PGML and

∆PCEL, we can better compare the quantization resilience between disentangled losses and

CEL.

One of the main results is that Resnet-18 with binary weights and 2-bit activations

trained with GML (71.3%) outperforms the full precision Resnet-18 trained with CEL

(66.2%). We also want to emphasize that ∆PCEL > ∆PAMS and ∆PCEL > ∆PGML for

all settings. As the precision is reduced, the drop in top-1 accuracy grows larger. Our

approach especially well limits the drop in top-1 accuracy for low-bit settings. Hence,

the discriminative features, enforced by the AMS loss or the GML, enable more resilient

quantization-aware training than the CEL, especially for low-bit settings. Overall, a clear

Page 97 of 147

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

SAT [48] DL-QAT (ours) SAT [48] DL-QAT (ours)
Dataset W [bits] A [bits] AccCEL AccAMS AccGML ∆PCEL ∆PAMS ∆PGML

CIFAR-10
32 32 89.4 91.7 93.0 – – –
2 2 76.5 89.1 91.3 12.9 2.6 1.7
binary 2 72.4 88.3 91.2 17.0 3.4 1.8

CIFAR-100

32 32 66.2 68.7 73.6 – – –
8 8 65.8 68.5 73.1 0.4 0.2 0.5
4 4 65.4 68.4 72.6 0.8 0.3 1.0
3 3 65.1 68.2 73.3 1.1 0.5 0.3
2 2 61.1 66.1 71.9 5.1 2.6 1.7
binary 8 63.9 67.9 72.5 2.3 0.8 1.1
binary 4 63.2 67.1 72.5 3.0 1.6 1.1
binary 3 62.4 67.0 72.0 3.8 1.7 1.6
binary 2 59.0 65.5 71.3 7.2 3.2 2.3

Table 5.3: CIFAR-10 and CIFAR-100 test top-1 Accuracy for extreme quantization settings
of ResNet-18.

tendency appears where AccCEL < AccAMS < AccGML. Indeed, GML minimizes the

intra-class variance and constrains the distances of inter-class features while the AMS

loss only minimizes the intra-class variance. Those results confirm our hypothesis on the

loss function that both intra-class variance and inter-class difference need to be constrained.

0 1 2 3 4 5 6 7
56

58

60

62

64

66

68

70

72

74

76

w1a2

w1a2

w1a2

w1a3w1a4 w1a8
w2a2

w3a3
w4a4

w1a3 w1a4
w1a8

w2a2

w3a3 w4a4

w1a3
w1a4

w1a8

w2a2

w3a3 w4a4

Memory Footprint (MB)

T
op

-1
A
cc
u
ra
cy

C
IF
A
R
-1
00

DL-QAT GML
DL-QAT AMS

SAT

Figure 5.3: Memory footprint (Mega-Bytes) comparison of different precision settings from
Table 5.3. Each point is one quantized network associated to the bit precision of its weight
and activation.

Fig. 5.3 maps the performance of each ResNet-18 with respect to their memory footprint.

Page 98 of 147

5.4. Experiments

The memory footprint of a quantized neural network is approximated by summing the

total memory storage for all the parameters at their respective bit-representation with the

memory needed to contain the biggest activation. With this perspective, the reliable score

and competitive memory footprint showed by the binary versions of ResNet-18 better

stands out. Moreover, we can better grasp the opportunities that DL-QAT creates. The

binary versions of ResNet-18 are suitable to infer on microcontrollers such as STM32 chips

as their memory constraint is met with less than 2Mb. The image classification task on

CIFAR-100 is a representative task for the Internet of Things. Our approach brings us

one step closer to the inference on microcontrollers of IoT tasks.

ImageNet-1k

In this section, we evaluate the performance of our method using the ImageNet-1k

dataset. Considering the results on CIFAR and our hypothesis on the losses, we chose to

focus on the GML for ImageNet-1k experiments. We report the top-1 test accuracy on

ImageNet-1k of our method DL-QAT using the GML and the SAT method [48] using

CEL and other state-of-the-art approaches in Table 5.4.

As we read Table 5.4 from left to right, the quantization is more and more aggressive.

Considering our experimental results only (DL-QAT using GML and SAT using CEL),

the gap between the disentangled loss GML and the CEL is getting bigger as the settings

reach more extreme quantization. Ultimately, in the binary weights and 2-bit activation

setting, our approach reaches an accuracy of 64, 0%, improving by 0.9% the CEL score of

63.1%.

When comparing our method to the other approaches, the version of Resnet-18 and the

quantization method matter. Notably, the Resnet-18 results reported in Esser et al . [23]

use pre-activation quantization scaling and thus keep the residual connections in the same

precision as the accumulation (i.e., 32 bits). While this significantly improves the final

accuracy in low precision, the actual precision of the dataflow is not strictly the activation’s

precision. For this reason, we have chosen to keep Resnet-18 with post-activation for

our experiments, which makes it however not fully comparable with the LSQ reported

results. For 2-bit weights, our method achieves substantial improvement over ABC-Net[66]

and INQ[123], while the setting is more constraining on the activations. One noticeable

result over the binary weights experiments is that our method with 4-bit activations

reaches 67.2% and surpasses all other approaches with full precision or 8-bit activations.

Looking at the stricter quantization setting with binary weights and 2-bit activations, our

approach achieves the highest performance with 64% top-1 accuracy. Over all approaches,

our method demonstrates the best performance on ImageNet-1k for extreme quantization.

Page 99 of 147

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

Method Weights Activations Top-1Accuracy
[bits] [bits]

Baseline 32 32 70.2

LSQ [23] 4 4/32* 71.1
HAWQ-V3[118] 4 4 68.5
SAT[48] 4 4 70.0
DL-QAT GML (ours) 4 4 70.1
ABC-Net [66] 2 32 63.7
INQ [123] 2 32 66.0
SAT[48] 2 8 67.4
DL-QAT GML (ours) 2 8 67.9
LSQ [23] 2 2/32* 67.6
SAT[48] 2 2 63.1
DL-QAT GML (ours) 2 2 64.0
BWN [86] binary 32 60.8
ABC-Net [66] binary 32 62.8
BWNH [43] binary 32 64.3
DSQ [29] binary 32 63.7
Q-Networks [117] binary 32 66.5
IR-Net [85] binary 32 66.5
SYQ [24] binary 8 62.9
SAT[48] binary 8 67.5
DL-QAT GML (ours) binary 8 67.5
SAT[48] binary 4 66.9
DL-QAT GML (ours) binary 4 67.2
PACT [19] binary 2/32* 62.9
LQ-Net [120] binary 2 62.6
SAT[48] binary 2 63.1
DL-QAT GML (ours) binary 2 64.0
* For LSQ and PACT, the residual connections remain in the accumulation dynamic.

Table 5.4: ImageNet-1k Top-1 Accuracy for extreme quantization settings of Resnet-18.
DL-QAT and SAT results are obtained from our experiments, all the other results are
reported from the original papers. DL-QAT and SAT use original Resnet-18. LSQ and
PACT use full pre-activation Resnet-18. LQ-Net use Resnet-18 type-A shortcut. BWN
use Resnet-18 type-B shortcut.

Figure 5.4 shows the results from Table 5.4 in a plot with the memory footprint of

the network on the x axis and the ImageNet top-1 test accuracy on y axis. The memory

footprint of a quantized neural network is approximated by summing the total memory

storage for all the parameters at their respective bit-representation with the memory

needed to contain the biggest activation. We considered that every method quantized the

first and last layers parameters to 8bits. To achieve lower memory footprint quantized

neural networks, the quantization settings get more and more extreme and the application

performance drops significantly. Comparing DL-QAT to all other methods, it is visually

Page 100 of 147

5.4. Experiments

0 1 2 3 4 5 6 7 8
62

63

64

65

66

67

68

69

70

71

72

Floating-point score

w1a2

w1a2

w4a4/32

w4a4

w2a32

w2a32w1a32

w1a32

w1a8
w1a2

w2a2/32

w2a2

w2a2

w1a4
w1a8

w4a4

w2a8

w1a4
w1a8

w4a4

w2a8

Memory Footprint (MB)

T
op

-1
A
cc
u
ra
cy

Im
ag
eN

et
-1
k DL-QAT GML

SAT
LSQ 2019

HAWQ-V3 2021
INQ 2017

ABC-Net 2017
DSQ 2019
IR-Net 2020
SYQ 2018

LQ-Net 2018

Figure 5.4: Memory footprint (Mega-Bytes) comparison of different precision settings from
Table 5.4. Each point is one quantized network associated to the bit precision of its weight
and activation. The filled round marks are results from our experiments while the empty
round marks are results reported from the State of The Art.

clear that our method provides the best application performance over memory footprint

trade-off.

5.4.3 Discussion and Perspectives

In this chapter, we target very-low-bit settings and study multiple losses to further reduce

the gap in accuracy of quantization. Quantization-aware training techniques and margin-

based losses are reviewed in order to show that QAT may benefit from disentangled losses.

We introduce DL-QAT, a method combining quantization-aware training and disentangled

losses, as our tool to investigate the contribution of those different loss functions for

extreme quantization. Preliminary experiments on CIFAR-10 and CIFAR-100 are

conducted to visualise and lighten the advantage of our method. We reduce the drop in

top-1 accuracy on Resnet-18 with binary weights and 2-bit activations from 7.2% to 2.3%.

Further results on ImageNet-1k show that our approach improves by nearly 1% the top-1

accuracy of Resnet-18 with binary weights and 2-bit activations. Overall, the experiments

confirm our hypothesis and encourage future use and research of disentangled losses for

Quantization Aware Training.

A first natural future work would first experiment our method on the variety of classi-

cal models for the image classification task. We would also like to experiment on other

classification tasks as we think they would benefit from DL-QAT.

Page 101 of 147

Chapter 5 – Disentangled Loss for Low-Bit Quantization Aware Training

The approach of this contribution aims at further improving the Quantization Aware

Training process to reach substantial improvement for very low-bit settings. One may

consider the low-bit quantization from a representation capacity perspective. Indeed, when

the model has binary parameters, its representation capabilities are far lesser than one with

8-bits or even 4-bits parameters. This might explain the significant drop in application

performance for the most extreme quantization settings like binary or 2-bits models despite

the progress of quantization methods. Trying to answer this limitation, some methods

proposed to offer more flexibility by quantizing different parameter sets of the model to

different bit-width. Further work could investigate the benefits of disentangled losses with

the mixed-precision approach.

DL-QAT contributes to make the CNN inference further accessible for edge applications.

As more and more neural network-based applications are deployed, DNN are more and

more exposed to security threats like adversarial attacks. Understanding the vulnerability

of those neural networks towards adversarial attacks and how to address it is more than

ever a crucial problem. We address this question by proposing a defense system in the

next chapter. Moreover, we provide first experiments to measure the impact of DL-QAT

on the robustness of neural networks in Appendix A.

Page 102 of 147

Chapter 6

Adversarial Robustness

6.1 Introduction

The very active research around neural networks and their compression make DNNs

competitive candidates in many areas. As the logical next step, many applications are

starting to be deployed on both edge and cloud. This industrial transfer is only going to

grow even more in the next few years. In this context, DNNs are facing more and more

threats from any attacker who wishes the system to misbehave. Understanding the security

properties of deep learning is a crucial question in this area. Based on the definition of

Confidentiality, Integrity, Availability (CIA) model, the security of neural systems can be

defined by three aspects:

• Confidentiality: The neural model would leak sensitive data.

• Integrity: An attacker would alter the prediction of a classification model.

• Availability: An attacker would compromise the system into a failsafe mode.

In this chapter, we focus on the vulnerability of DNNs towards small perturbations.

Such vulnerability is exploited by attackers to compromise the model integrity and to

force models to make wrong predictions only by perturbing the inputs. To that end,

an attacker computes adversary examples, as introduced by Szegedy et al . [103]. The

purpose of the attack is to find a small variation of the input that is imperceptible to the

human perception and yet that fools the neural model prediction. Taking an example from

Fig. 6.1, the model correctly classifies the original image as a panda. But, adding the small

perturbation to the original image, an adversary image is generated, which is misclassified

as a gibbon. Despite the original image and the adversary image being indistinguish-

able to the human eye, the small perturbation is enough to fool the neural model prediction.

103

Chapter 6 – Adversarial Robustness

Figure 6.1: Example of an adversary image. Illustration from [32]

This chapter focuses on image classification tasks and is organized as follows. Sec-

tion 6.3 presents the state of the art on adversarial attacks and defense mechanisms.

Section 6.4 exposes the EHD system as the main contribution of this chapter with relevant

experimentation.

6.2 Common concepts for adversarial attacks

An adversarial attack is an adversarial generation method targeting a specific model.

6.2.1 Distance metrics

In order to ensure that the perturbation to the original image remains indistinguishable

to the human eye, all adversary generation methods constrains the perturbation. In the

literature, distance metrics are used to bound the perturbation and all are Lp = ∥x−xadv∥p
norms with the p-norm defined as:

∥v∥p =

(
n∑

i=1

|vi|p
) 1

p

(6.1)

Three distance metrics are commonly used:

• The L0 distance metric measures the number of pixels that have been changed by

the adversary example. However, it does not constrain how much each pixel was

changed.

• The L2 distance metric measures the euclidean distance between x and xadv. This

metric can remain small when many pixels have a small change, but it can also hide

Page 104 of 147

6.3. State of The Art

some singular pixel big change due to the global pixel average in the root-mean-square

process.

• The L∞ = ∥x− xadv∥∞ = max(|x1 − xadv
1 |..., |xn − xadv

n |) distance metric measures

the maximum change above all pixels. Applying a bound on this distance directly

limits the maximum change on all pixels.

6.2.2 Attacker goals

The attackers may have different reasons to target a specific algorithm. When an adversarial

attack targets a classification model, it can choose between two goals:

• Targeted attack. The adversarial generation method tries to misguide the model

to a particular class other than the true class.

• Untargeted attack. The adversarial generation method tries to misguide the

model to predict any of the incorrect classes.

6.2.3 Attacker knowledge

Adversarial attacks can access different resources and there are two standard resource

settings in the literature: white-box attacks and black-box attacks:

• White-box attack. The adversarial generation method has access to the model

internals like its architecture and parameters as well as the training dataset.

• Black-box attack. The adversarial generation method only has access to the model

inputs and outputs by submitting inference queries.

6.3 State of The Art

This section presents adversarial attacks, defense mechanism and some works studying the

effect of quantization on adversarial robustness as well as the current limitations. In the

past decade, the research in this field has been stacking many attack methods to counter

the latest defense mechanisms. We present the ones that had the most impact in the

domain.

6.3.1 White-box attacks

DNNs are end-to-end differentiable to enable learning with the backpropagation algorithm.

With a white-box setting, the attacks dispose of all resources needed to use the backpropa-

gation algorithm and find small perturbations very efficiently. To some extent, one could

Page 105 of 147

Chapter 6 – Adversarial Robustness

say that DNN are vulnerable to adversarial attacks by construction.

The most basic white-box attack was introduced by Goodfellow et al . [32] in 2014, the

Fast Gradient Sign Method (FGSM) attack. As described in Algorithm 6, it performs

a gradient ascent based on the signs of the input image gradients. For instance on one

image, the gradients of each pixel are computed with backpropagation and the signs of

each pixel gradient decide to either add or subtract a small δ to each pixel. This method

was designed to produce an adversary image fast rather than optimal. As the adversary

image is generated with a one shot strategy, the perturbation on each pixel is bounded by

the ϵ argument, i.e. the L∞ bound.

Algorithm 6 The FGSM attack

1: Inputs: the target model f , the original image x and y its corresponding label, the
loss function L, the perturbation on each pixel ϵ.

2: Outputs: the adversary image xadv

3: FGSM(f ,x,y,L,ϵ):
4: cost← L(f(x), y)
5: Backpropagation to obtain xgrad based on cost
6: xadv ← x+ ϵ ∗ Sign(xgrad)
7: xadv ← Clamp(xadv, 0, 1)
8: return xadv

The Projected Gradient Descent (PGD) attack, introduced by Kurakin et al . [57],

extends the FGSM attack with an iterative process. As described in Algorithm 7, the ad-

versary image is generated iteratively with a small α and an L2 bound or, more commonly,

an L∞ bound. Obviously, the PGD attack proved to find better adversary examples than

FGSM.

Algorithm 7 The PGD attack

1: Inputs: the target model f , the original image x and y its corresponding label, the
loss function L, the number of iterations steps, the iteration step α, the maximum
perturbation per pixel ϵmax.

2: Outputs: adversary image xadv.
3: PGD(f ,x,y,L,α, ϵmax):
4: xadv ← x
5: For in range(steps):
6: cost← L(f(xadv), y)
7: Backpropagation to obtain xadv

grad based on cost

8: xadv ← xadv + α ∗ Sign(xadv
grad)

9: Clamp the perturbation following ∥x− xadv∥∞ < ϵmax

10: xadv ← Clamp(xadv, 0, 1)
11: return xadv

There are many other white-box adversarial attacks relying on backpropagation that

Page 106 of 147

6.3. State of The Art

propose different objective functions to find adversary examples [17, 73, 81, 101]. Noticeably,

Carlini and Wagner [17] introduced the C&W attack that is now a standard in the

community. The proposed attack relies on a two-component objective function to balance

between minimizing the perturbation and the adversary objective. For an in-depth

presentation, we refer to the original paper [17].

6.3.2 Black-box attacks

Even without the knowledge of the internal structure and parameters of a targeted DNN

model, i.e., the backpropagation algorithm to compute gradients from the target model,

black-box attacks can still exploit DNN vulnerability using different approaches. Those

approaches are reviewed from the most basic one to the most elegant one in the rest of

this section.

Random search

A random search attack is the brute force approach towards finding adversary examples.

Random small perturbations are generated and added to the original image until one

successfully fools the target model prediction. This attack is time and computation

intensive. Still et al . [2] proposed an upgraded algorithm based on random search that

converges faster than the naive random search.

Gradient estimation

While the backpropagation algorithm cannot be used to compute the gradient of the image,

the gradient can still be approximated. Based on the definition of the derivative, the

numerical gradient approximation is often used to perform gradient checking in the DNN

domain. The idea is to consider the target model as the function and to approximate

its gradient. Note that a DNN is a complex and highly non-linear function. Intuitively,

estimating a DNN gradient is much harder than estimating the gradient of a classical

function. To overcome this issue, Spall et al . [97] proposed an attack combining a

relevant choice of perturbators and multiple approximations in an iterative procedure.

The Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm manages

to converge effectively on target models. We further detail this attack in Appendix B.

Despite being computation-extensive, this algorithm is still very efficient even with many

defense mechanisms [77].

Attack by transfer

In 2016, Papernot, McDaniel, and Goodfellow [79] uncovered that the adversary examples

can be transferred from one machine learning system to another. The transfer property

Page 107 of 147

Chapter 6 – Adversarial Robustness

means that an adversary example generated to misclassify a target model can also misclas-

sify another model. Most surprisingly, they also find that not only adversarial samples are

transferable across models trained using the same machine learning technique, but also

across models trained by different techniques.

Consequently, Papernot et al . [80] proposed a black-box attack relying on this transfer

property. The strategy of the attack is to learn a substitute model from the queries delivered

by the target model. Using the queries as training data, i.e., inputs and corresponding

outputs, the substitute model learns the classification problem and approximates the

target model. The substitute model is transparent to the attacker and it is used to

craft the adversary images with any adversarial attack, in particular, the efficiency of

the backpropagation algorithm can be exploited. The target model is then expected to

misclassify the adversary examples generated from the substitute model thanks to the

transferability between architectures.

6.3.3 Defense mechanisms

Answering those attacks threats, many defenses were proposed in the past decade and this

section overviews the main contributions.

Gradient masking

A gradient masking method deteriorates or invalidates the gradient computed with the

backpropagation algorithm. This deteriorated gradient only serves poor purpose in the

convergence of a classical white-box attack and those methods show good robustness.

Several methods rely on randomization at inference time. Guo et al . [35] apply random

transformations to the input, Xie et al . [116] add a randomized zero-padding before the

classifier, and Pinot et al . [84] conduct a theoretical analysis of those randomization tech-

niques. Some other methods rely on vanishing and exploding gradients or non-differentiable

operations[96, 91].

However, Athalye et al . [4] show that these methods can be countered by attacks that

bypass the gradient masking. In the case of randomization at inference time, they bypass

the defense mechanism by estimating the gradient of the stochastic function with the

Expectation Over Transformation (EOT) algorithm [5]. In the case of methods relying

on vanishing and exploding gradients or non-differentiable operations, they propose to

approximate the function that is non-differentiable or that introduces instability with tools

such as the STE [10]. Finally, the authors argue that the evaluation of defense system

robustness should also consider counter attacks that could exploit the knowledge of the

defense system.

Page 108 of 147

6.3. State of The Art

Robust optimization

Robust optimization makes the model itself more robust using optimization methods.

Such a defense strategy is composed of methods that improve the optimization function

either by adding regularization terms, certification bounds or adversarial examples in

the training process. For a thorough review of those methods, we refer to the work of

Silva and Najafirad [95]. Instead, we want to highlight that these methods search for a

trade-off between robustness either with the application performance, as discussed in the

contribution of Zhang et al . [121], or with computation and memory overhead at inference

time. Taking the proposed MMC of Pang et al . [77] as an example, models trained with

their loss are significantly more robust to white-box and black-box attacks than models

trained with CEL. However, the CIFAR-100 score of their Resnet trained with MMC

drops by 1% compared to the one trained with CEL. Some works based on an ensemble

approach show both good robustness and application performance while increasing both

the storage needed for each model instead of one and the inference computational cost as

one input image will infer on each model [105, 78, 93, 108, 70].

Attack detection

Instead of a proactive approach to make the DNN robust to adversarial attacks, several

works proposed a reactive approach where a defense system would seek to detect adversarial

examples. Detecting adversarial examples usually involves statistical tools or an ensemble

strategy that can distinguish between perturbed and normal images. Noticeably, Li et al .

[63] proposed Blacklight, a black-box attack detection system using a fingerprint buffer.

Blacklight distinguishes attack queries from benign queries by searching for this invariant

in a model’s stream of input queries. As it would be a very computational extensive task to

perform on the inputs directly, Blacklight proposes a probabilistic algorithm that detects

highly similar images using probabilistic fingerprints. The probabilistic fingerprint is a set

of hash key computed from defined segments of the input image with a cryptographic hash

function. They identify similar images, i.e., the adversary images, when their respective

sets of hash keys have a higher collision frequency than the average collision frequency.

However, Blacklight requires to store query fingerprints in order to compare the different

fingerprints and detect an adversarial attack. Such a system becomes memory extensive as

the number of queries increase. Indeed, for scalability purposes, they propose to reset the

fingerprint storage every once in a while. In the end, it is still possible for an adversary to

perform an undetected black-box attack.

6.3.4 Current limitations

Overall, defense mechanisms either seek to increase models robustness towards adversarial

attacks with specific learning mechanisms or to detect adversarial attacks. While applying

Page 109 of 147

Chapter 6 – Adversarial Robustness

those defenses mechanisms, two main limitations arise:

• The robustness gains trade-off with either the application performance [121] or

computation and memory overhead at inference time [105, 78, 93, 108, 70].

• The defense mechanisms remain more or less vulnerable to gradient estimation

attacks like SPSA [77].

In the next section, we then propose a defense system addressing those two limitations.

6.4 Ensemble Hash Defense (EHD)

Answering the limitations presented in Section 6.3.4, we propose EHD, a defense system

to improve DNN robustness towards black-box attacks based on gradient estimation while

maintaining the application performance.

6.4.1 Concept

EHD undermines gradient approximation with a two-step defense mechanism based on

model ensemble and cryptographic hash functions.

1. Learning phase

Learn k models. Each model needs to achieve similar performance.

2. Inference phase

At inference time, EHD combines a model ensemble strategy with an inference

model selection process. Based on one input image, the selection process chooses

one model from the k models to infer the input image. Figure 6.2 illustrates the

EHD inference pipeline for k = 3 models.

6.4.2 Diversity hypothesis

We formulate the hypothesis that the EHD system benefits from the diversity of the models

involved. That is to say, combining models with more output diversity would introduce

more misleading information during the attack. With more misleading information, the

attack is less likely to converge, and so the EHD system shows better robustness. We

identify the learning phase as the main way to induce diversity between the models. We

list some training configuration to induce model diversity that we find interesting to

investigate:

• Train the models with different objective functions.

Page 110 of 147

6.4. Ensemble Hash Defense (EHD)

Figure 6.2: Ensemble Hash Defense principle

• Train the models with an ensemble objective instead of training the models indepen-

dently.

• Train the models with robust optimization mechanisms from the state of the art.

• Train the models with different weight and activation quantization bit-width.

• Use different topologies for models.

6.4.3 Model selection process

This section details the model selection process and explains the relevance of each compo-

nents. Figure 6.3 details the process of the model selection. Each input image is flattened

into a sequence of bytes and encoded by a cryptographic hash function (e.g ., SHA-256

that is propagated with a random value chosen by the defender). Operating through a

modulo k operator, the resulting hash key determines the inference model kinfer. The

input image is then only inferred on the kinfer model.

The use of a cryptographic hash function is justified by its properties that are presented

by order of importance:

• It is a one-way function, i.e., a function for which it is practically infeasible to reverse

the computation.

• Deterministic, i.e., one input image will always have the same hash key. The hash

function will always generate the same hash key from one input image, that is to say,

one input image will always be inferred on the same model. In the end, this property

prevents an adversary from using multiple inferences to target one of the models.

Page 111 of 147

Chapter 6 – Adversarial Robustness

Figure 6.3: Model selection process.

• Easy to compute, so we consider the computation overhead negligible compared to

the model inference.

• Any slight modification of the input image would change dramatically the hash key

and so the inference model.

• It is impossible to create an image having the same hash key as another image. With

our method perspective, one adversary would only need to create an image with

the same modulo k. However, regarding the facts that an adversary would not have

access to the number of models k, the random private key, and that, in order to

complete the attack, he would need to keep a coherence for its attack to converge, it

is practically impossible to force EHD.

The choice of the cryptographic hash function matters in terms of security and rep-

resentation potential. Taking SHA-256 and SHA-512 Secure Hash Algorithm (SHA) as

examples:

• Security: The number of operations needed to brute force revert the bit operator

drastically increases from SHA-256 to SHA-512.

• Representation potential: The hash key size is 32 bits with SHA-256 while it is 64

bits with SHA-512. A higher number of bits allows a bigger representation potential

and so less collision in the hash key domain.

Again, the main purpose of the hash function is to choose the inference model in an

unpredictable and deterministic manner. The inference model is selected based on the

hash key. The modulo operator truncates the hash key to a distribution of k elements and

directly returns the index of the selected inference model. We sum the bits with value 1

from the hash key to obtain the number of bits to 1 and apply the modulo k operator.

Page 112 of 147

6.4. Ensemble Hash Defense (EHD)

6.4.4 Defense example

In order to understand the intuition of our approach, we propose to detail how our defense

system functions while targeted by one iteration of SPSA attack. We use the following

notations:

• image the original image,

• f1, f2 and f3 the k = 3 models composing the defense system,

• δ the perturbation to perform the gradient approximation, and

• n the size of the gradient approximation batch.

Figure 6.4: Ensemble Hash Defense targeted by SPSA attack.

To approximate the gradient, the attack performs two inferences with two inputs

image+ δ and image− δ. Figure 6.4 shows a example where the model selection process

chooses the model f3 for the first input image+ δ and the model f1 for the second input

image− δ. The numerical approximation of the input gradient is:

Gradapprox =
f3(image+ δ)− f1(image− δ)

2δ
(6.2)

For the SPSA attack to converge, the gradient approximation must carry relevant informa-

tion. However, in the configuration described by Eq. (6.2), the formulation of the gradient

approximation is not correct. In practice, one can distinguish two cases:

• Wrong gradient approximation: The chosen inference models are different with a

frequency of k−1
k
:

fi ↔ fj for i, j ∈ [1..k] and i ̸= j

• Correct gradient approximation: The chosen inference models are the same with a

frequency of 1
k
:

Page 113 of 147

Chapter 6 – Adversarial Robustness

fi ↔ fi for i ∈ [1..k]

The attack averages a batch of approximations of size n to obtain a more precise

gradient.

Gradavgapprox =
1

n

n∑
1

fi(image+ δ)− fj(image− δ)

2δ
with i, j ∈ [1..k] (6.3)

This average gradient contains wrong approximations as well as correct approximations.

It is used to update the input image with a step of ADAM optimizer. Wrong gradient

approximations are meant to mislead the attack convergence. Also, while correct gradient

approximation carries relevant information for the attack on one specific model, different

models can show opposite directions with their respective correct gradient approximation.

In the end, even if the attack manages to converge, one adversary image might infer a

model that would not be fooled. To summarize, EHD limits the convergence of SPSA

attack by introducing misleading gradient approximation.

6.4.5 Advantages and limitations

The main advantage of our method Ensemble Hash Defense is that it can be combined

with any robust optimization method in the recent SoTA to further enhance the final

defense system robustness towards adversarial attacks.

A first limitation is the requirements to train k models. Firstly, it requires more

training resources and the usage of different training methods (examples in Section 6.4.2)

to induce diversity in the response of the different models. Secondly, each model needs

to reach similar application performance in order for the defense system to maintain the

performance. As soon as one model has lower application performance, its usage with

EHD at inference time will hinder the overall performance of the system.

Other defense systems that rely on model ensemble [105, 78, 93, 108, 70] infer one

input on all models to produce one output. Such a pipeline leads to memory overhead

for each model storage and computation overhead for each model inference. Whereas our

method infer one input on only one model. Therefore, there is no computation overhead

compared to a traditional model. However, the EHD system still has a memory overhead

to store k models at inference time. Finally, the Model Selection Process infers each

input image with a cryptographic hash function like SHA-256. The computation overhead

involved with the cryptographic hash function is considered negligible compared to the

model inference.

Page 114 of 147

6.5. Experiments

6.5 Experiments

6.5.1 Evaluation setup

All experiments are based on residual blocks[38] with the CIFAR-100[54] dataset. All

experiments are using the same ResNet-32 as the one used by Pang et al . [77]. All the

8-bit images are divided by 255 and no standardization is applied. The train data are

augmented with random rescaling, cropping and flipping. The learning strategy is different

according to the objective function used for training. All models trained with the CEL

and the GML use a learning rate of 0.1 with a cosine annealing strategy over 150 epochs.

All models trained with the MMC uses a learning rate of 0.01 with a step decay strategy

factor of 0.1 on epoch 100 and 150 over a total epoch of 200. Also, all experiments with

GML use a multiplicative margin α = 0.3.

To evaluate the robustness of our EHD system, we compare how successful SPSA

attacks are between EHD and single models. An SPSA attack generates an adversary

test set specific to the targeted model from each image of the test set of CIFAR-100. To

measure how successful is one attack targeting a model, we compute the accuracy obtained

by the model with its corresponding adversary test set. The lower the accuracy, the more

the model has been fooled by the adversary images and so, the more successful is the attack.

All SPSA attacks presented in this work are conducted in the untargeted mode and

the L∞ distance between the original and adversary image bound by ϵmax = 8/255. In the

untargeted mode, each adversary image only needs to fool the prediction of the model

to any arbitrary class. In the experimentation, the intensity of the SPSA attacks are

controlled with two parameters:

• The number of iterations, i.e., the number of times the adversary images are updated

by the ADAM optimizer. The more iteration steps, the better the convergence of

the SPSA attack, and the stronger the attack.

• The gradient approximation batch size that determines how many gradient approx-

imation are averaged for one update by the ADAM optimizer. The bigger the

gradient approximation batch, the more precise the gradient approximation, the

more meaningful each update, and the stronger the attack.

In this chapter, most of the results presented in the tables are SPSA attacks. All

tables have the same format, from left to right, the columns show results with increasing

number of iterations, and, from top to bottom, the lines show results with increasing batch

Page 115 of 147

Chapter 6 – Adversarial Robustness

approximation size. In the end, the top left result is the less intense SPSA attack and the

bottom right result is the most intense SPSA attack.

6.5.2 First results

In this section, our EHD system is configured with 3 ResNets that are trained independently

with the CEL and a slightly different parameters initialization. Different parameters

initialization are generated with a different random seed. Each ResNet converges to a

similar top-1 accuracy on CIFAR-100, as reported in Table 6.1.

Resnets Top-1 Accuracy
ResNet-32 0 72.7
ResNet-32 1 73.4
ResNet-32 2 72.8

Table 6.1: ResNet performance on CIFAR-100 for three independent trainings

The SPSA attack results on the ResNet-32 0 are presented in Table 6.2. We only

show the results on model 0 because models 1 and 2 have similar results. The less intense

SPSA attack brings the accuracy down from 72.7% to 26.4%. As the intensity of SPSA

attacks increases, the score of the attacks reaches an asymptote around 9, 6%. It shows

how vulnerable are vanilla image classification models to the SPSA attack.

Approximation batch size Number of iterations
10 20 50 100

10 26.4 16.1 10.5 9.7
128 10.6 9.8 9.7 9.7
1024 9.8 9.7 9.7 9.6

Table 6.2: SPSA attack targeting the ResNet-32 0 with 72.7% top-1 test accuracy trained
on CIFAR-100 with the cross entropy loss.

The SPSA attack results on the EHD system that uses the three Resnets (model

0, model 1 and model 2) are presented in Table 6.3. The defense system preserves the

application performance of the best model with a top-1 accuracy of 73.4%. Comparing

Table 6.2 with Table 6.3, the EHD system offers a better robustness for all settings of the

SPSA attack. The EHD system also offers a better resilience to SPSA attacks than the

single model. However, the SPSA attack with 100 iterations and a batch approximation

size of 1024 targeting the EHD achieves 10.8% that is only 1% over the single model. The

SPSA attack targeting the EHD still manages to converge well with enough iterations and a

significant batch approximation size. We explain this with the configuration of the models

Page 116 of 147

6.5. Experiments

being too naive. Indeed, when trained independently with a slightly different initialization

as the only difference in the learning strategy, the adversary images fooling one model are

very likely to fool the other ones. One could speculate that in such configuration, multiple

models would converge to a very similar solution, and that the optimization problems that

those models are solving are not intricate enough to show drastically different solutions.

Approximation batch size Number of iterations
10 20 50 100

10 52.2 45.8 37.5 33.7
128 32.8 23.4 17.0 15.8
1024 17.8 13.9 11.5 10.8

Table 6.3: SPSA attack targeting the EHD mechanism that achieves 73.4% top-1 test
accuracy combining three ResNets-32 trained on CIFAR-100 with different initialisations
and the cross entropy loss.

6.5.3 EHD with different objective functions

This section investigates the use of different objective functions to independently train the

EHD models while inducing diversity. In order to assess our hypothesis, we selected the

following objective functions:

• The classic CEL.

• The GML proposed by Wan et al . [111]. We use the same formulation as in

Section 5.2.2:

LGM = − log
e−dy(1+α)

e−dy(1+α) +
∑C

j=1, j ̸=y e
−dj

(6.4)

with dj =
1

2
(f − µj)

2 (6.5)

The GML draws the distances dk between output features f and the learned means

µk to minimize the distance to the mean associated to the true label dzi . A positive

margin factor α artificially inflates the distance dzi to help regulate the convergence

of the network.

• The MMC loss proposed by Pang et al . [77]:

LMMC =
1

2
∥f − µ∗

y∥22 (6.6)

The MMC loss directly minimizes the square of the L2 distance between output

features f and the preset center µ∗
y associated to the true label y.

Page 117 of 147

Chapter 6 – Adversarial Robustness

Each objective function is used to train one model. Tables 6.2, 6.4 and 6.5 report the

results of SPSA attacks targeting models trained with CEL, GML and MMC, respectively.

While SPSA attacks on CEL and GML show very similar results, the MMC loss shows a

better robustness for every setting of the SPSA attack. However, the SPSA attack with

100 iterations and a batch approximation size of 1024 targeting the MMC achieves 10.0%,

which is similar to the other objective functions. Our results on the MMC loss extends

the analysis of Pang et al . [77] with SPSA attacks on CIFAR-100. Under intense attack

settings, the MMC is not more robust than CEL or GML.

Approximation batch size Number of iterations
10 20 50 100

10 25.8 16.2 10.2 9.1
128 10.8 9.5 9.3 9.2
1024 9.2 9.3 9.3 9.3

Table 6.4: SPSA attack targeting a ResNet-32 with 73.5% top-1 test accuracy trained on
CIFAR-100 with the gaussian mixture loss (GML).

Approximation batch size Number of iterations
10 20 50 100

10 33.6 26.1 19.2 15.6
128 22.1 17.6 12.1 10.4
1024 16.7 12.9 10.5 10.0

Table 6.5: SPSA attack targeting a ResNet-32 with 71.9% top-1 test accuracy trained on
CIFAR-100 with the max mahalanolis center (MMC) loss.

The EHD system then uses the three models trained with CEL, GML and MMC,

achieving top-1 accuracies of 72.7%, 73.5% and 71.9%, respectively. The SPSA attacks

targeting the EHD with the different objective function configurations are reported in

Table 6.6. The defense system shows a top-1 accuracy of 73.2% that is lower than the

best performance of 73.5% from the GML model. However, it still outperforms the top-1

accuracy of the CEL and MMC models. This configuration achieves significant robustness

improvement over all the other experiments so far. Comparing the first configuration based

on different parameter initialization in Table 6.3 to this objective function configuration

in Table 6.6, there is a substantial gain of 30% in the most intense SPSA attack. These

results strongly encourage our hypothesis on model diversity for EHD robustness.

6.5.4 Influence of the number of models

To further study the proposed defense system, we compare the robustness of the EHD

systems with an increasing number k of models. Tables 6.7 and 6.8 report the results of

Page 118 of 147

6.5. Experiments

Approximation batch size Number of iterations
10 20 50 100

10 58.5 55.8 52.8 50.5
128 54.4 49.9 47.0 45.3
1024 48.5 45.0 41.9 41.0

Table 6.6: SPSA attack targeting the EHD mechanism that achieves 73.2% top-1 test
accuracy combining three ResNets-32 trained on CIFAR-100 with three different loss
functions: CEL, GML and MMC.

EHD systems with respectively k = 4 and k = 5 models, using the same configuration as

in Section 6.5.2, i.e., models trained independently with the CEL and a slightly different

parameter initialization.

Approximation batch size Number of iterations
10 20 50 100

10 54.1 49.4 42.0 38.0
128 37.3 28.0 20.0 17.8
1024 20.7 15.7 12.7 11.6

Table 6.7: SPSA attack targeting the EHD mechanism that achieves 73.4% top-1 test
accuracy combining k = 4 ResNets-32 trained on CIFAR-100 with different initialisations
and the cross entropy loss.

Approximation batch size Number of iterations
10 20 50 100

10 55.6 51.3 44.3 41.0
128 39.0 30.5 22.3 19.1
1024 22.3 16.8 12.8 12.0

Table 6.8: SPSA attack targeting the EHD mechanism that achieves 73.1% top-1 test
accuracy combining k = 5 ResNets-32 trained on CIFAR-100 with different initialisations
and the cross entropy loss.

Comparing the EHD system with 3, 4 and 5 models, with the respective Tables 6.3,

6.7 and 6.8, and with the naive configuration, only limits slightly the success of the SPSA

attacks. Such configuration offers a poor trade-off between the memory storage and the

robustness. However, increasing the number of models could still offer an interesting

trade-off with other configurations such as different objective functions or an ensemble

objective. Based on this work, a first investigation would be to add a model learned with

another loss function, e.g. the AMS loss used in Chapter 5, to the EHD system from

Section 6.5.3.

Page 119 of 147

Chapter 6 – Adversarial Robustness

6.6 Discussion and perspectives

In this chapter, we introduced some of the key contributions from the literature on adver-

sarial attacks. We then uncover from the State of The Art that defense methods tarde-off

robustness either over application performance or computation and memory overhead at

inference time. Also, many defense methods are still vulnerable to adversarial attacks

based on gradient estimation such as SPSA. To overcome those shortcomings, we propose

the EHD system that enables better resilience to adversarial attacks based on gradient

approximation while preserving application performance and only requiring a memory

overhead at inference time. In the best EHD configuration, our system achieves a resilience

of 41% compared to a resilience of 10.0% for the MMC loss defense [77] under the most

intense SPSA attack. We believe that this result is only the first step towards more robust

systems based on the simple concept introduced with EHD.

We identify the memory overhead induced by the model redundancy as the main

bottleneck for the deployment on edge of the EHD system. The concept of EHD makes it

compatible with neural network compression methods like weight sharing and quantization.

A first idea would be to use weight sharing between the models. A naive solution would

simulate different models by considering a set of different layers inside a common topology.

During inference, the Model Selection Process would select one processing path from the

set of different layers instead of selecting a model. Only redundant layers would need to be

stored instead of redundant models thus drastically reducing the memory overhead at the

inference phase. Using quantization on each model in the EHD system would drastically

reduce the memory storage overhead as well as the memory bandwidth and computational

workload required for inference.

Future work would also investigate more configurations listed in Section 6.4.2: an

ensemble objective to train the models and induce diversity, use robust optimization

mechanism from the state of the art or use different topologies for the models.

We investigated the work of Pang et al . [78], who proposed to pair an ensemble loss

with a term to encourage the logits of each model to be orthogonal. Preliminary ex-

perimentation based on this loss showed that their method cannot be directly applied

with EHD. Indeed, the global objective allows good average performance with model

diversity but undermines the performance of each model. Thus, using those models

with the EHD system only results in poor application performance. Despite this first

experimentation, we emphasize on the potential of combining a diversity ensemble loss

with the EHD system in order to further extend resilience of neural networks to adver-

sarial attacks. For further investigation, we find the contribution of Huang et al . [44]

to be an interesting lead as they proposed a diversity loss based on the gradient of the input.

Page 120 of 147

6.6. Discussion and perspectives

Another perspective would be to evaluate the resilience of the EHD system when

targeted by other black-box and white-box attacks. The transfer black-box attack from

Papernot et al . [80] is a good first candidate for this investigation as it would give feedback

on the transferability between the models involved in the EHD system. We think that

diversity of the different inference models is a key point to induce poor transferability of

the adversary images between models and so good resilience towards many black-box and

white-box adversarial attacks. Bernhard et al . [13] also discussed the quantization shift

phenomenon as a way to induce poor transferability. Their results further motivate the

use of quantized models in the EHD system to reduce the memory storage overhead and

induce poor transferability at the same time. As a first step, we provide experiments to

measure the impact of our proposed quantization method DL-QAT on the robustness of

neural networks in Appendix A. Further experiments could use k models quantized with

DL-QAT at different precision settings into the EHD defense system to evaluate if the

quantization shift phenomenon adapts to the EHD method.

Page 121 of 147

Chapter 7

Conclusion

7.1 Summary of our results

This research project contribution is twofold, on the one hand, the compression and

acceleration of neural networks for deployment on edge devices and on the other hand, the

robustness of neural networks towards adversarial attacks. In particular, we addressed the

problematic of extreme quantization of convolutional neural networks in order to enable

inference on resource-scarce targets such as microcontrollers. Then we addressed the

problematic of neural network robustness towards adversarial attacks so that it requires

less resources for inference on edge.

In Chapter 2, we introduced typical neural network types like deep feed forward

neural networks, convolutional neural networks and recurrent neural networks as well as

different methods to compress neural networks. Among the neural network compression

and acceleration methods, we highlight the advantages of quantization. The parameters

of the neural network are compressed to make it less demanding on memory and once

the quantization approximation is applied to the inference dataflow and operators, it

increases throughput while being more energy efficient on real-time platforms with limited

computing resources.

In Chapter 3, we introduced the rich development of deep learning libraries for neural

network training and deployment on edge devices alongside the tasks and datasets used

in this work. The maturity of deep learning frameworks makes neural networks design

easily accessible and benefits both research and the usage of neural network for industrial

applications. However, the deployment of deep neural networks on edge is still a challenging

task. So far, the current neural network deployment libraries propose solutions for a

restricted set of targets. The contribution of N2D2 is to unify and normalize processes for

deep neural network deployment on edge on a large set of hardware targets. This work

contributes to this effort as the proposed quantization method DL-QAT is implemented in

N2D2.

123

Chapter 7 – Conclusion

In Chapter 4, we proposed to transfer an existing weight compression method based

on pruning from CNN to RNN, the winning ticket. We investigated the convergence of

RNN and its influence on pruning method performance. In our experiment settings, RNN

showed an unstable convergence profile and we observed that it directly impacted the

performance of the pruning method. In the end, we found winning tickets on recurrent

architectures bypassing those instabilities. While magnitude pruning methods achieve

significant model compression, the resulting sparse architecture cannot be accelerated

easily. To overcome this limitation, we chose to focus on a different class of methods :

quantization.

In Chapter 5, we detailed our main contribution, Disentangled Loss Quantization

Aware Training, which we used to further improve the performance of convolutional

neural networks under extreme quantization settings by relying on quantization friendly

loss functions. Our experiments, conducted on CIFAR-10, CIFAR-100 and Imagenet-1k

datasets, showed superior results compared to other state of the art approaches. Our

interpretation is that extreme quantization benefits from the better clustering of the

classes provided by those disentangled loss functions in comparison to the classic cross

entropy loss. This work contributes to make the CNN inference further accessible for edge

applications. As more and more neural network-based applications are deployed, DNN are

more and more exposed to security threats like adversarial attacks. Understanding the

vulnerability of those neural networks towards adversarial attacks and how to address it is

more than ever a crucial question.

Finally, Chapter 6 we proposed Ensemble Hash Defense, a defense system that enables

better resilience to adversarial attacks based on gradient approximation while preserving

application performance and only requiring a memory overhead at inference time. In

the best EHD configuration, our system achieves significant robustness gains compared

to baseline models and a loss function-driven approach. Moreover, any existing robust

optimization mechanism can be used to further enhance the robustness of the final system.

We discuss its main limitation on memory overhead at inference time. In fact, we put in

perspective the EHD system inference on edge thanks to its compatibility with compression

methods like quantization or weight sharing. Taking a step back from this work, as one

considers to use neural networks for an application, he would need to take in account the

risks of adversarial attacks and if an existing robust method allow to reduce the resulting

criticality to an acceptable level.

7.2 Potential improvements

While the proposed methods for quantization, DL-QAT and for adversarial robustness,

EHD presents interesting performance and advantages, we also highlight some current

limitations that may serve as a starting point for future improvement.

Page 124 of 147

7.3. Future research directions

7.2.1 Mixed precision

With DL-QAT, our approach focuses on quantizing all weights and activations to the same

precision so that the inference dataflow has an homogeneous precision throughout the

network and simplifies the hardware implementation. However, when convolutional neural

networks reach extreme quantization settings, we found that some activation needs higher

precision to maintain the application performance, like the residual connection in ResNets.

To overcome this limitation, mixed precision quantization seems to be a relevant future

direction to investigate.

7.2.2 Transferability of adversarial examples

In 2016, Papernot N., McDaniel P. and Goodfellow I. [79] uncovered that the adversary

examples can be transferred from one machine learning system to another. The transfer

property means that an adversary example generated to misclassify a target model can

also misclassify another model. Meanwhile, Bernhard et al . [13] discussed that models

quantized to different precisions show a poor transferability of adversarial examples. We

think there is a potential improvement for the EHD in this direction.

7.3 Future research directions

Adding to the limitations and perspectives of the different contributions discussed in the

chapters and in the previous section, I provide in this section my thoughts on research

directions that I find relevant.

7.3.1 Neural architecture search for embedded applications

So far, most of the approaches to make neural networks viable for embedded constraints

focused on creating efficient structures like ResNets, MobileNets, SqueezeNet or EfficientNet

and on the design of methods to compress and/or accelerate the network neural networks

like pruning, quantization or knowledge distillation.

In contrast, neural architecture search approach automatizes the architecture search.

Neural Architecture search methods explore a lot of potential architecture solutions in

order to find efficient architectures that could not be designed by hand. However those

methods require a tremendous amount of computing to explore the search space. Yet,

several recent approaches of neural architecture search overcome this complexity and show

interesting results on making neural networks viable for edge deployment :

• Cai et al . [15] proposed to train a once-for-all network that supports diverse ar-

chitectural settings. Their shrinking algorithm allows to efficiently find specialized

architectures that are able to fit different hardware platforms and latency constraints

Page 125 of 147

Chapter 7 – Conclusion

while maintaining the same level of accuracy as training from scratch on a classic

topology.

• Zeghidour et al . [87] proposed DiffStride, a method that downsample the feature

maps by learning the convolution stride with the gradient-based optimization strategy.

One of the main advantages is the fast convergence thanks to the gradient based

learning. Using this method, the authors are able to generate semi-specialized CNN

architecture from existing CNN topology like ResNet that have a lower computational

cost for the same application performance.

Those NAS approaches show very competitive results compared to traditional ap-

proaches and have a high potential for future deployment of neural network applications

on edge.

7.3.2 Self-supervised learning

Self supervised learning has the main advantage that data does not need to be labeled for a

neural network to be learned. As such, it carries the hope to better exploit the potential of

the colossal amount of unlabeled data. Self supervised learning unlocks training on much

bigger datasets than supervised learning. In the recent years, many works investigated

self supervised learning and proposed improvements in generative learning, contrastive

learning and task learning. The state of the art shows that further scaling up the models

to learn data representations on such big datasets enable better performance (the language

model GPT-3, speech representations with Wav2vec 2.0 [92] and stable diffusion [88]) and

unlocks new exciting usecases (text-to-image, text-to-audio ...). Thanks to the quality of

the representations learned by Wav2vec 2.0, the model easily transfers to downstream

tasks with a limited amount of data. This would benefit many niche applications including

the ones inferred on the edge. How to transfer and downscale the knowledge of those new

blocks for edge inference is a relevant problema to be explored in further research.

Page 126 of 147

Appendix A

Quantization and Adversarial

Robustness

A.1 Previous work

In Chapter 5, our work on quantization aware training contributes to learning more efficient

DNN for deployment. Understanding the security properties of those deployed models is a

crucial question. Here, our motivation is to study a possible bridge between quantization

and robustness to enable efficient and secure DNN deployment. We present some works

that studied this topic. The early work of Galloway et al . [27] empirically showed on

MNIST that stochastic quantization and especially binarization offer interesting robustness

to white-box attacks. On the contrary, preliminary experiments with FGSM targeting Wide

ResNets that were trained on CIFAR10 of Lin et al . [65] showed that the more extreme the

quantization, the less robust the model. Moreover, Bernhard et al . [13] highlighted that

adversarial examples have poor transferability between full precision models and quantized

models. Based on this phenomenon, Bernhard et al . [13] and Sen et al . [93] both proposed

a defense with an ensemble of quantized models with different precision settings. These

defense mechanisms achieve substantially better robustness towards white-box attacks,

while requiring a computation and memory overhead at inference time due to the ensemble

strategy.

A.2 DL-QAT and Adversarial Robustness

In this section, we extend the previous studies covering quantization and adversarial

robustness by evaluating the robustness of the models learned with our DL-QAT method

on the CIFAR100 dataset. Adding to the GML [111], the loss proposed by Pang et al . [77]

is used in our quantization method. The MMC is designed to learn more robust models

127

Chapter A – Quantization and Adversarial Robustness

and is formulated as followed:

LMMC =
1

2
∥f − µ∗

y∥22 (A.1)

The MMC loss directly minimizes the square of the L2 distance between output features f

and the preset center µ∗
y associated to the true label y. This loss does not rely on softmax.

The GML and the MMC share the same minimization idea as they both minimize

distances between features and class centers with the difference that MMC pre-defines

fixed class centers while GML learns those centers. We refer to Pang et al . [77] for the

definition of the centers.

All the presented models are the ResNet architecture used by Pang et al . [77] and

are based on bottleneck-like blocks. All the 8-bit images are divided by 255 and no

standardization is applied. The train data are augmented with random rescaling, cropping

and flipping. The learning strategy is different according to the objective function used

for training. All models trained with the CEL and the GML uses a learning rate of 0.1

with a cosine annealing strategy over 150 epochs. All models trained with the MMC uses

a learning rate of 0.01 with a step decay strategy factor of 0.1 on epoch 100 and 150 over

a total epoch of 200. Also, all experiments with GML use a multiplicative margin α = 0.7

as it gives best quantization results.

To evaluate the robustness of the models quantized with our DL-QAT method, we

compare how successful PGD (Algorithm 7) attacks are between models learned with

DL-QAT and models learned with SAT [48]. The PGD attack generates an adversary

test set specific to the targeted model from each image of the test set of CIFAR-100. To

measure how successful is one attack targeting a model, we compute the accuracy obtained

by the model with its corresponding adversary test set. The lower the accuracy, the more

the model has been fooled by the adversary images and so, and the more successful the

attack.

All PGD attacks presented in this work are conducted in the untargeted mode and

the L∞ distance between the original and adversary image bound by ϵmax = 8/255. The

attacks are all performed over a total of 10 iterations with an iteration step α = 2/255. In

the untargeted mode, each adversary image only needs to fool the prediction of the model

to any arbitrary class.

The results of PGD attacks targeting models learned with SAT method and our DL-

QAT method, in full precision and several low-bit settings, are reported in Table A.1.

The top-1 test accuracies on CIFAR-100 of the proposed DL-QAT method with the

Page 128 of 147

A.2. DL-QAT and Adversarial Robustness

SAT[48] DL-QAT GML DL-QAT MMC
W [bits] A [bits] Acc PGD Acc PGD Acc PGD
32 32 72.9 5.9 73.8 10.1 70.8 17.3
4 4 72.1 7.9 73.0 10.9 69.4 19.1
2 2 69.8 8.9 70.5 10.7 67.9 18.5
binary 4 70.7 9.2 72.2 10.7 69.3 18.1
binary 2 68.2 7.1 69.8 10.7 66.1 17.8

Table A.1: Top-1 accuracy (%) on the white-box adversarial examples crafted on the test
set of CIFAR-100 targeting ResNet-32 quantized with DL-QAT.

Gaussian Mixture Loss (DL-QAT GML) and the Max Mahalanolis Loss (DL-QAT MMC)

compared to the Scaled Adjust Training (SAT) method are reported in the corresponding

Acc columns of Table A.1. The line with 32 corresponds to single-precision floating-point,

which is considered as the full precision baseline. Table 5.3 also reports the white-box

attack Projected Gradient Descent (PGD) attack targeting each model. The resulting

accuracy displayed in the PGD columns corresponds to the score of the targeted model

on the adversary examples generated from the test set. The higher the score, the more

robust the model towards the PGD attack.

As we read Table 5.3 from top to bottom, the quantization is more and more aggressive.

In accordance with our previous results in Chapter 5, the performance (Acc) of DL-QAT

GML method outperforms both SAT and DL-QAT MMC in all precision settings. Looking

at the PGD scores, all the models are vulnerable with a drop in performance ranging from

around 50% for DL-QAT MMC to 60− 65% for SAT and DL-QAT GML. Nevertheless,

the MMC loss, initially designed to promote robustness, shows a better robustness towards

PGD attack than SAT and DL-QAT, and our experiment further extends the scope of the

original paper with quantized models. However, the main drawback of the MMC Loss is

the compromise between application performance and the robustness gain. Indeed, each

model trained with DL-QAT MMC shows almost always a 2% drop in score than the SAT

with the cross-entropy loss.

Contrary to other state-of-the-art works [65, 27, 13], we find that using DL-QAT

to quantize resnets with more and more aggressive precision settings has little to no

influence on the robustness of the models towards PGD attack. One relevant direction

to investigate would be constructing the Ensemble Hash Defense system proposed in

Chapter 6 with quantized models of different precision to exploit the potential poor

transferability hypothesis formulated in Bernhard et al . [13].

Page 129 of 147

Appendix B

Simultaneous Perturbation Stochastic

Approximation

This appendix presents the concept of the adversarial attack SPSA introduced by Spall et

al . [97] along with one iteration example. In an image classification context, an adversarial

attack generates adversary images, i.e., slight variations from original images, that fool

the prediction of a target model, while the differences between adversary and original

images are imperceptible to the human perception. Following Fig. B.1, the adversary

attack tries to find a small perturbation ϵ which, once added to the original image x0,

gives the adversary image xt and fools the model f prediction during inference. A human

easily identifies both original and adversary images as pandas, whereas the model is fooled

by the perturbation ϵ and predicted a gibbon.

Figure B.1: Example of an adversary image. Illustration from [32]

The SPSA black-box attack that relies on the derivative definition to approximate the

gradient of the perturbation ϵ. The perturbation is iteratively updated with the stochastic

130

gradient descent. In order to keep the perturbation ϵ imperceptible to the human eye, the

L∞ distance between the original and adversary image is bound by ϵmax. For a better

understanding, we take the example of the iteration t with:

• xt the adversary image at iteration t (x0 being the original image).

• f the model.

• out = f(x) the output vector of the model and ypred, ytrue the predicted label and

the true label of the input x. top1 and top2 refer to the maximum value and second

maximum value of a vector.

• δ the perturbation to perform the gradient approximation. Each pixel will be affected

by a value of ±0.01 from a Bernoulli law.

• n the size of the gradient approximation batch.

• α the learning step.

• ϵmax the perturbation bound.

The error function L aims at fooling the network prediction with the closest second

prediction of the network:

L(out, ytrue) =

{
0 if ypred ̸= ytrue

outtop1 − outtop2 otherwise
(B.1)

For the gradient approximation to be meaningful, the algorithm performs n approxi-

mations to average. The bigger the gradient approximation batch, the more precise the

average gradient approximation, and the more meaningful one update.

Gradavgapprox =
1

n

n∑
i=1

L(f(xt + δi), ytrue)− L(f(xt − δi), ytrue)

2δi
(B.2)

This average gradient approximation is then used to update the adversary image as

x
′

t = xt − αGradavgapprox. (B.3)

The adversary image is then clamped according to the L∞ bound and the image bound as

∥x0 − x
′

t∥∞ < ϵmax & x
′

t ∈ [0, 1]. (B.4)

This L∞ bound on images can be interpreted as a limit to the variation of ϵmax in absolute

value on each pixel, without any limit on the number of pixels that are modified. Once

Page 131 of 147

Chapter B – Simultaneous Perturbation Stochastic Approximation

the update is bounded, the adversary image is ready for another iteration:

xt+1 = x
′

t (B.5)

One noticeable aspect of the SPSA attack is its computational needs. For k iterations,

the number of inferences needed to complete the attack follows O(kn). Increasing both

the number of iterations and the gradient approximation batch greatly increases the

computational needs. In practice, the Adam optimizer is used instead of the stochastic

gradient descent as it makes the attack converge with less iterations. For an in-depth

explanation of the attack, we refer to Spall et al . [97] and Uesato et al . [106].

Page 132 of 147

Acronyms

AMS Additive Margin Softmax 90, 93–98, 119

BPTT Backpropagation Through Time 48, 49, 77

CEL Cross Entropy Loss 76, 84, 90, 91, 94–97, 99, 109, 115–119, 128

CNN Convolutional Neural Networks 8, 61, 62, 88

CNNs Convolutional Neural Networks 28

DL-QAT Disentangled Loss Quantization Aware Training 22, 94, 95, 99–102, 121, 123–

125, 127, 128

DNN Deep Neural Networks 27, 53, 61, 62, 72, 88, 90, 102, 103, 105–107, 109, 110, 124,

127

EHD Ensemble Hash Defense 13, 104, 110, 114–121, 124, 125

EOT Expectation Over Transformation 108

FGSM Fast Gradient Sign Method 106, 127

GML Gaussian Mixture Loss 90, 93–99, 115, 117, 118, 127, 128

LSTM Long Short Term Memory 28, 30, 49–51, 69, 71–73, 76, 78, 80, 83

MLP MultiLayer Perceptrons 8, 88

MMC Max-Mahalanobolis Center loss 13, 109, 115, 117, 118, 120, 127, 128

MNIST Modified National Institute of Standards and Technology 68

N2D2 Neural Network Design & Deployment 95

PGD Projected Gradient Descent 106, 128

133

Acronyms

QAT Quantization Aware Training 90–92, 94

RNN Recurrent Neural Networks 8, 46, 48, 61, 62, 71–73, 87, 88

RNNs Recurrent Neural Networks 28, 30

SAT Scaled Adjust Training 22, 60, 91, 92, 94, 95, 97, 99, 100, 128

SHA Secure Hash Algorithm 112

SPSA Simultaneous Perturbation Stochastic Approximation 107, 113–116, 120, 130

Page 134 of 147

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous systems, 2015.

[2] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.

Square attack: a query-efficient black-box adversarial attack via random search. In

European Conference on Computer Vision, pages 484–501. Springer, 2020.

[3] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent

neural networks. In International Conference on Machine Learning, pages 1120–1128.

PMLR, 2016.

[4] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false

sense of security: Circumventing defenses to adversarial examples. In International

conference on machine learning, pages 274–283. PMLR, 2018.

[5] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing

robust adversarial examples. In International conference on machine learning, pages

284–293. PMLR, 2018.

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[8] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization

of convolutional networks for rapid-deployment. Advances in Neural Information

Processing Systems, 32, 2019.

[9] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow,

Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio.

Theano: new features and speed improvements. arXiv preprint arXiv:1211.5590,

2012.

135

BIBLIOGRAPHY

[10] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating

gradients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[11] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,

1994.

[12] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.

Theano: A cpu and gpu math compiler in python. In Proc. 9th python in science

conf, volume 1, pages 3–10, 2010.

[13] Remi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre, and France Gardanne. Ad-

versarial robustness of quantized embedded neural networks. Computer & Electronics

Security Applications Rendezvous, pages 1–33, 2019.

[14] Olivier Bichler, David Briand, Vincent Lorrain, Vincent Templier, Inna Kucher,

Cyril Moineau, Johannes Thiele, Thibaut Goetghebuer-Planchon, et al. N2d2 :

Neural network design and deployment. https://github.com/CEA-LIST/N2D2.

[15] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-

all: Train one network and specialize it for efficient deployment. arXiv preprint

arXiv:1908.09791, 2019.

[16] A. Carbon, J.-M. Philippe, O. Bichler, R. Schmit, B. Tain, D. Briand, N. Ventroux,

M. Paindavoine, and O. Brousse. Pneuro: A scalable energy-efficient programmable

hardware accelerator for neural networks. In 2018 DATE, pages 1039–1044, 2018.

[17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,

2017.

[18] Jean-Jacques Ruch-Marie-Line Chabanol. Châınes de markov. https://www.math.

u-bordeaux.fr/~mchabano/Agreg/ProbaAgreg1213-COURS5-CM.pdf.

[19] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijay-

alakshmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping

activation for quantized neural networks. arXiv preprint arXiv:1805.06085, 2018.

[20] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

Page 136 of 147

https://github.com/CEA-LIST/N2D2
https://www.math.u-bordeaux.fr/~mchabano/Agreg/ProbaAgreg1213-COURS5-CM.pdf
https://www.math.u-bordeaux.fr/~mchabano/Agreg/ProbaAgreg1213-COURS5-CM.pdf

BIBLIOGRAPHY

[21] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. Advances

in neural information processing systems, 28, 2015.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In IEEE CVPR, pages 248–255, 2009.

[23] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,

and Dharmendra S Modha. Learned step size quantization. In ICLR, 2020.

[24] Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip HW Leong. Syq:

Learning symmetric quantization for efficient deep neural networks. In IEEE CVPR,

pages 4300–4309, 2018.

[25] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,

trainable neural networks. ICLR 2019, 2018.

[26] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.

The lottery ticket hypothesis at scale. arXiv preprint arXiv:1903.01611, 2019.

[27] Angus Galloway, Graham W Taylor, and Medhat Moussa. Attacking binarized

neural networks. arXiv preprint arXiv:1711.00449, 2017.

[28] Aidan Gomez. Backpropogating an lstm : A numerical example. https://medium.

com/@aidangomez/let-s-do-this-f9b699de31d9, 2016.

[29] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin,

Fengwei Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision

and low-bit neural networks. In IEEE ICCV, pages 4852–4861, 2019.

[30] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep

convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115,

2014.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[32] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[33] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[34] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recog-

nition with deep bidirectional lstm. In 2013 IEEE workshop on automatic speech

recognition and understanding, pages 273–278. IEEE, 2013.

Page 137 of 147

https://medium.com/@aidangomez/let-s-do-this-f9b699de31d9
https://medium.com/@aidangomez/let-s-do-this-f9b699de31d9
http://www.deeplearningbook.org

BIBLIOGRAPHY

[35] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Counter-

ing adversarial images using input transformations. arXiv preprint arXiv:1711.00117,

2017.

[36] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In IEEE CVPR, pages 770–778, 2016.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In European conference on computer vision, pages 630–645.

Springer, 2016.

[40] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München, 91(1), 1991.

[41] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient

flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[43] Qinghao Hu, Peisong Wang, and Jian Cheng. From hashing to cnns: Training binary

weight networks via hashing. In AAAI, 2018.

[44] Bo Huang, Zhiwei Ke, Yi Wang, Wei Wang, Linlin Shen, and Feng Liu. Adversarial

defence by diversified simultaneous training of deep ensembles. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 35, pages 7823–7831, 2021.

[45] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word

classifiers: A loss framework for language modeling. arXiv preprint arXiv:1611.01462,

2016.

[46] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International conference on machine

learning, pages 448–456. PMLR, 2015.

[47] Yangqing Jia and Eric Shelhamer. Caffe: An open source convolutional architecture

for fast feature embedding (2013), 2013.

Page 138 of 147

BIBLIOGRAPHY

[48] Qing Jin, Linjie Yang, and Zhenyu Liao. Towards efficient training for neural network

quantization. arXiv preprint arXiv:1912.10207, 2019.

[49] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep

neural networks: A survey. IEEE transactions on pattern analysis and machine

intelligence, 43(11):4037–4058, 2020.

[50] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration

of recurrent network architectures. In International conference on machine learning,

pages 2342–2350. PMLR, 2015.

[51] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[52] Nikhil Ketkar and Jojo Moolayil. Introduction to pytorch. In Deep learning with

python, pages 27–91. Springer, 2021.

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[54] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images, 2009.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Communications of the ACM, 60(6):84–90,

2017.

[56] David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas,

Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Chris

Pal. Zoneout: Regularizing rnns by randomly preserving hidden activations. arXiv

preprint arXiv:1606.01305, 2016.

[57] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the

physical world. In Artificial intelligence safety and security, pages 99–112. Chapman

and Hall/CRC, 2018.

[58] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and

Manik Varma. Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated

recurrent neural network. In Advances in Neural Information Processing Systems,

pages 9017–9028, 2018.

[59] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize

recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Page 139 of 147

BIBLIOGRAPHY

[60] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[62] Edward H Lee, Daisuke Miyashita, Elaina Chai, Boris Murmann, and S Simon

Wong. Lognet: Energy-efficient neural networks using logarithmic computation. In

2017 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5900–5904. IEEE, 2017.

[63] Huiying Li, Shawn Shan, Emily Wenger, Jiayun Zhang, Haitao Zheng, and Ben Y

Zhao. Blacklight: Defending black-box adversarial attacks on deep neural networks.

arXiv preprint arXiv:2006.14042, 2020.

[64] Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao

Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, et al. Auto-vit-acc: An fpga-

aware automatic acceleration framework for vision transformer with mixed-scheme

quantization. arXiv preprint arXiv:2208.05163, 2022.

[65] Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When efficiency meets

robustness. arXiv preprint arXiv:1904.08444, 2019.

[66] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional

neural network. arXiv preprint arXiv:1711.11294, 2017.

[67] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent

neural networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[68] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.

Sphereface: Deep hypersphere embedding for face recognition. In IEEE CVPR,

pages 212–220, 2017.

[69] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax

loss for convolutional neural networks. In ICML, volume 2, page 7, 2016.

[70] Kaleel Mahmood, Phuong Ha Nguyen, Lam M Nguyen, Thanh Nguyen, and Marten

van Dijk. Buzz: Buffer zones for defending adversarial examples in image classification.

arXiv preprint arXiv:1910.02785, 2019.

[71] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in

neural language models. In International Conference on Learning Representations,

2018.

Page 140 of 147

BIBLIOGRAPHY

[72] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer

sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[73] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:

a simple and accurate method to fool deep neural networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[74] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen

Blankevoort. Up or down? adaptive rounding for post-training quantization. In

International Conference on Machine Learning, pages 7197–7206. PMLR, 2020.

[75] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free

quantization through weight equalization and bias correction. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 1325–1334, 2019.

[76] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring

sparsity in recurrent neural networks. In Proceedings of the ICLR, 2017.

[77] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. Re-

thinking softmax cross-entropy loss for adversarial robustness. arXiv preprint

arXiv:1905.10626, 2019.

[78] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial

robustness via promoting ensemble diversity. In International Conference on Machine

Learning, pages 4970–4979. PMLR, 2019.

[79] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples. arXiv

preprint arXiv:1605.07277, 2016.

[80] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,

and Ananthram Swami. Practical black-box attacks against machine learning. In

Proceedings of the 2017 ACM on Asia conference on computer and communications

security, pages 506–519, 2017.

[81] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

2016 IEEE European symposium on security and privacy (EuroS&P), pages 372–387.

IEEE, 2016.

[82] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. In NIPS-W, 2017.

Page 141 of 147

BIBLIOGRAPHY

[83] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[84] Rafael Pinot, Laurent Meunier, Alexandre Araujo, Hisashi Kashima, Florian Yger,

Cédric Gouy-Pailler, and Jamal Atif. Theoretical evidence for adversarial robustness

through randomization. Advances in Neural Information Processing Systems, 32,

2019.

[85] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei

Yu, and Jingkuan Song. Forward and backward information retention for accurate

binary neural networks. In IEEE CVPR, pages 2250–2259, 2020.

[86] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:

Imagenet classification using binary convolutional neural networks. In ECCV, pages

525–542. Springer, 2016.

[87] Rachid Riad, Olivier Teboul, David Grangier, and Neil Zeghidour. Learning strides

in convolutional neural networks. arXiv preprint arXiv:2202.01653, 2022.

[88] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models, 2021.

[89] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[90] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling, 2014.

[91] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protect-

ing classifiers against adversarial attacks using generative models. arXiv preprint

arXiv:1805.06605, 2018.

[92] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec:

Unsupervised pre-training for speech recognition. arXiv preprint arXiv:1904.05862,

2019.

[93] Sanchari Sen, Balaraman Ravindran, and Anand Raghunathan. Empir: Ensembles

of mixed precision deep networks for increased robustness against adversarial attacks.

arXiv preprint arXiv:2004.10162, 2020.

[94] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation

for deep learning. Journal of big data, 6(1):1–48, 2019.

Page 142 of 147

BIBLIOGRAPHY

[95] Samuel Henrique Silva and Peyman Najafirad. Opportunities and challenges in deep

learning adversarial robustness: A survey. arXiv preprint arXiv:2007.00753, 2020.

[96] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.

Pixeldefend: Leveraging generative models to understand and defend against adver-

sarial examples. arXiv preprint arXiv:1710.10766, 2017.

[97] James C Spall et al. Multivariate stochastic approximation using a simultaneous

perturbation gradient approximation. IEEE transactions on automatic control,

37(3):332–341, 1992.

[98] Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural

networks. arXiv preprint arXiv:1507.06149, 2015.

[99] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou.

And the bit goes down: Revisiting the quantization of neural networks. arXiv

preprint arXiv:1907.05686, 2019.

[100] Ruslan Leont’evich Stratonovich. Conditional markov processes. In Non-linear

transformations of stochastic processes, pages 427–453. Elsevier, 1965.

[101] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for

fooling deep neural networks. IEEE Transactions on Evolutionary Computation,

23(5):828–841, 2019.

[102] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. Advances in neural information processing systems, 27, 2014.

[103] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[104] Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running

average of its recent magnitude. coursera: Neural networks for machine learning.

COURSERA Neural Networks Mach. Learn, 2012.

[105] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv

preprint arXiv:1705.07204, 2017.

[106] Jonathan Uesato, Brendan O’donoghue, Pushmeet Kohli, and Aaron Oord. Ad-

versarial risk and the dangers of evaluating against weak attacks. In International

Conference on Machine Learning, pages 5025–5034. PMLR, 2018.

Page 143 of 147

BIBLIOGRAPHY

[107] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(11), 2008.

[108] Gunjan Verma and Ananthram Swami. Error correcting output codes improve

probability estimation and adversarial robustness of deep neural networks. Advances

in Neural Information Processing Systems, 32, 2019.

[109] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: A neural image caption generator. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3156–3164, 2015.

[110] Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE transactions on Information Theory, 13(2):260–269, 1967.

[111] Weitao Wan, Yuanyi Zhong, Tianpeng Li, and Jiansheng Chen. Rethinking feature

distribution for loss functions in image classification. In IEEE CVPR, pages 9117–

9126, 2018.

[112] Di Wang and Eric Nyberg. A long short-term memory model for answer sentence

selection in question answering. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference

on Natural Language Processing (Volume 2: Short Papers), pages 707–712, Beijing,

China, July 2015. Association for Computational Linguistics.

[113] Erwei Wang, James J Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu, Wayne Luk,

Peter YK Cheung, and George A Constantinides. Deep neural network approximation

for custom hardware: Where we’ve been, where we’re going. ACM Computing Surveys

(CSUR), 52(2):1–39, 2019.

[114] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Additive margin softmax for

face verification. IEEE Signal Processing Letters, 25(7):926–930, 2018.

[115] Paul J Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

[116] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating

adversarial effects through randomization. arXiv preprint arXiv:1711.01991, 2017.

[117] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jian-

qiang Huang, and Xian-sheng Hua. Quantization networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

7308–7316, 2019.

Page 144 of 147

BIBLIOGRAPHY

[118] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan,

Leyuan Wang, Qijing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic

neural network quantization. In International Conference on Machine Learning,

pages 11875–11886. PMLR, 2021.

[119] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329, 2014.

[120] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned

quantization for highly accurate and compact deep neural networks. In ECCV, pages

365–382, 2018.

[121] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and

Michael Jordan. Theoretically principled trade-off between robustness and accuracy.

In International conference on machine learning, pages 7472–7482. PMLR, 2019.

[122] Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A binary pursuit of lightweight

accuracy. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 12475–12485, 2022.

[123] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental

network quantization: Towards lossless cnns with low-precision weights. arXiv

preprint arXiv:1702.03044, 2017.

[124] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv preprint arXiv:1606.06160, 2016.

[125] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of

pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

[126] Konrad Zolna, Devansh Arpit, Dendi Suhubdy, and Yoshua Bengio. Fraternal

dropout. arXiv preprint arXiv:1711.00066, 2017.

Page 145 of 147

Titre : Quantification et robustesse aux attaques adverses d’algorithmes neuronaux

profonds embarqués

Mots clés : Réseaux neuronaux; Quantificateurs; Commande robuste; Systèmes embarqués

Résumé : Les réseaux de neurones
convolutifs (CNN) et les réseaux de
neurones récurrents (RNN) sont largement
utilisés dans de nombreux domaines. Ce
projet de recherche vise à rendre les réseaux
de neurones profonds (DNNs) plus robustes
face aux attaques adverses et plus faciles à
déployer sur les plateformes embarquées.
Après une revue de la littérature, nous
proposons trois contributions sur la
compression et la robustesse des DNNs : le
lottery ticket sur les RNNs, Disentangled
Loss Quantization Aware Training (DL-QAT)
et Ensemble Hash Defense (EHD). L'étude
du lottery ticket analyse la convergence des
RNN et son impact sur le pruning.

Ce travail nous a conduit vers des
méthodes de quantifications en raison de
leurs avantages pour l'inférence des
DNNs. Nous proposons DL-QAT, une
méthode de quantification avancée avec
fonctions de coût adaptées qui permet
d'atteindre des paramètres binaires sur
les CNNs. Ce travail propose ensuite
EHD, un méchanisme de défense
permettant une meilleure résistance aux
attaques adverses tout en préservant les
performances et ne nécessitant qu'une
surcharge mémoire lors de l'inférence.
Ces travaux réduisent l'écart entre l'état
de l'art des DNNs et leur exécution sur
des cibles embarquées.

Title : Quantization and Adversarial Robustness of Embedded Deep Neural Networks

Keywords : Neural Networks; Quantization; Adversarial Attacks; Embedded systems

Abstract : Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks
(RNNs) have been broadly used in many
fields. This PhD research project tackles how
to make the Deep Neural Networks (DNNs)
more robust towards adversarial attacks and
easier to deployed on the resource limited
platforms. After a literature review, we
propose three contributions on compression
and robustness of DNNs: lottery tickets on
RNNs, Disentangled Loss Quantization
Aware Training (DL-QAT), and Ensemble
Hash Defense (EHD). The investigation of
lottery tickets analyzes the convergence of
RNNs and study its impact when subject to
pruning on image classification and language
modelling.

We then study quantization because of its
advantages for DNNs inference. DL-QAT
further improve an advanced quantization
method with quantization friendly loss
functions to reach binary parameters on
CNNs where the application performance
is the most impacted. We finally study
neural networks robustness toward
adversarial attacks and we present the
EHD defense mechanism. EHD enables
better resilience to adversarial attacks
based on gradient approximation while
pre- serving application performance and
only requiring a memory overhead at
inference time. All these contributions
further reduce the gap between DNNs
state of the art and their execution on edge
devices.

	Introduction
	Context
	Issues related to compression and vulnerability of DNNs
	Contributions
	Thesis outline

	Deep Neural Networks
	Common Concepts for Training Neural Networks
	Model, data, and generalization
	Loss function
	Initialization
	Training paradigms
	Data augmentation
	Supervised training of a neural network
	Transfer learning
	Increasing model size
	Exploding and vanishing gradients phenomena

	Multi-Layer Perceptrons
	Fully-connected layer
	Non-linear activation function
	Limitations

	Convolutional Neural Network
	Convolution layer
	Pooling layer
	Batch Normalization layer
	Resnets

	Recurrent Neural Networks
	Concept
	Backpropagation through time
	Gated mechanism - Long Short Term Memory

	Deep Neural Network compression
	Compression objective and data availability
	Pruning
	Quantization

	Conclusion

	Deep Learning Tools
	Libraries
	Deep Learning Frameworks
	Libraries for deploying neural networks on the Edge
	N2D2 - Neural Network Design & Deployment

	Benchmark Datasets
	MNIST
	CIFAR-10 & CIFAR-100
	ImageNet-1k
	Wikitext-2

	Compressing Recurrent Neural Networks
	Introduction
	Sparse and dense models
	The Lottery Ticket Hypothesis
	Experimental protocol
	Handwritten digits recognition
	Task and training setup.
	Convergence on Sequential MNIST
	Lottery ticket experiments
	Sub-sampling pre-processing

	Language Modelling
	Task and training setup
	Convergence on Wikitext-2
	Lottery ticket experiments

	Discussion and Perspectives

	Disentangled Loss for Low-Bit Quantization Aware Training
	Introduction
	Previous Work
	Quantization Aware Training
	Disentangled Losses

	Disentangled Loss Quantization Aware Training
	Experiments
	Training setups
	Results and analysis
	Discussion and Perspectives

	Adversarial Robustness
	Introduction
	Common concepts for adversarial attacks
	Distance metrics
	Attacker goals
	Attacker knowledge

	State of The Art
	White-box attacks
	Black-box attacks
	Defense mechanisms
	Current limitations

	Ensemble Hash Defense (EHD)
	Concept
	Diversity hypothesis
	Model selection process
	Defense example
	Advantages and limitations

	Experiments
	Evaluation setup
	First results
	EHD with different objective functions
	Influence of the number of models

	Discussion and perspectives

	Conclusion
	Summary of our results
	Potential improvements
	Mixed precision
	Transferability of adversarial examples

	Future research directions
	Neural architecture search for embedded applications
	Self-supervised learning

	Quantization and Adversarial Robustness
	Previous work
	DL-QAT and Adversarial Robustness

	Simultaneous Perturbation Stochastic Approximation
	Acronyms

