
HAL Id: tel-04136213
https://theses.hal.science/tel-04136213v1

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware accelerated simulation and automatic design
of heterogeneous architecture

Minh Thanh Cong

To cite this version:
Minh Thanh Cong. Hardware accelerated simulation and automatic design of heterogeneous architec-
ture. Hardware Architecture [cs.AR]. Université de Rennes, 2023. English. �NNT : 2023URENS002�.
�tel-04136213�

https://theses.hal.science/tel-04136213v1
https://hal.archives-ouvertes.fr

Par

« Minh Thanh CONG »

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES

ECOLE DOCTORALE N° 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Electronique
Spécialité : Informatique

« Hardware Accelerated Simulation and Automatic Design of
Heterogeneous Architecture »

Thèse présentée et soutenue à « RENNES », le « 15 Mars 2023 »
Unité de recherche : IRISA / INRIA Rennes – Bretagne Atlantique

Rapporteurs avant soutenance :

Abdoulaye GAMATIÉ Directeur de Recherche CNRS, LIRMM Montpellier
Roselyne CHOTIN Maître de Conférence HDR, LIP6 Sorbonne Université

Composition du Jury :

Président : Daniel CHILLET Professeur, Université Rennes 1
Examinateurs : Abdoulaye GAMATIÉ Directeur de Recherche CNRS, LIRMM Montpellier

 Roselyne CHOTIN Maître de Conférence HDR, LIP6 Sorbonne Université
 Kevin MARTIN Maître de Conférence, Université Bretagne Sud

Dir. de thèse : Steven DERRIEN Professeur, Université de Rennes 1
Co-dir. de thèse : François CHAROT Chargé de Recherche, INRIA Rennes

Titre : Simulation accélérée par matériel et conception automatique d'architectures hétérogènes

Mots clés : Conception d'architecture hétérogène, Simulation, FPGA, RISC-V, Système sur
puce, Optimisation d'hyperparamètres

Résumé : La conception de plates-formes
de système sur puce hétérogènes est
complexe avec de nombreuses combinaisons
possibles. La simulation détaillée de
différentes solutions est nécessaire pour
déterminer le meilleur design. Les
environnements de simulation existants (tels
que gem5) sont limités car purement logiciels
et ne prennent pas en compte les
architectures hétérogènes. Pour pallier ces
limitations, l'utilisation de composants
reprogrammables FPGA pour accélérer la
simulation est motivée. Notre travail est divisé
en deux parties. La première partie est
d'ordre expérimental et a étudié une
approche de conception d'architectures
hétérogènes en se concentrant sur la
simulation de modèles de performance de

simulation de modèles de performance de
composants de l'architecture (accélérateurs
matériels et cœurs de processeurs) sur
FPGA. La seconde partie est
méthodologique et concerne un flot pour
déterminer la meilleure microarchitecture en
termes de rapport
performance/consommation d'énergie. Ce
flot combine un simulateur logiciel
d'architecture et une méthode
d'optimisation d'hyperparamètres pour
trouver la meilleure combinaison de
parallélisme, stratégies de déroulage de
boucles et interfaces de mémoire. Les
expérimentations ont été menées sur
différents problèmes pour déterminer les
solutions les plus optimales en termes
d'efficacité énergétique.

Title : Hardware accelerated simulation and automatic design of heterogeneous architectures

Keywords : Heterogeneous architecture design, Simulation, FPGA, RISC-V, System-on-Chip,
Hyperparmeter optimization

Abstract : The design of heterogeneous
system-on-chip platforms is complex with
many possible combinations. A detailed
simulation of different solutions is
necessary to determine the best design.
Existing simulation environments (such as
gem5) are limited as they are purely
software-based and do not take
heterogeneous architectures into account.
To address these limitations, the use of
reprogrammable FPGA components to
accelerate simulation is motivated. Our
work is divided into two parts. The first part
is experimental and studies an approach to
designing heterogeneous architectures,

focusing on simulating models of architecture
components (hardware accelerators and
processor cores) on FPGA. The second part
is methodological and concerns a flow to
determine the best microarchitecture in terms
of performance to energy consumption ratio.
This flow combines a software architecture
simulator and a hyperparameter optimization
method to find the best combination of
parallelism, loop unrolling strategies, and
memory interfaces. Experiments were
conducted on different problems to determine
the most optimal solutions in terms of energy
efficiency.

ACKNOWLEDGMENT

With the assistance of different people, this thesis can become a reality. I would like
to give my deepest appreciation to everyone involved.

First of all, I would like to express my sincere gratitude to my supervisor, François
CHAROT, researcher at INRIA Rennes, for his unwavering support and guidance through-
out my thesis work. His expertise, encouragement and insights have been invaluable in
shaping this work. I am deeply thankful for his dedication to my growth as a researcher
and his commitment to ensuring the success of my project. This thesis would not have
been possible without his invaluable guidance and support. Thank you, François.

I would also like to thank Professor Steven DERRIEN of the University of Rennes 1
for his insightful contribution. His insightful comments and suggestions played a signif-
icant role in the final outcome of my doctoral thesis.

I would like to express my sincere appreciation to the members of my committee
for their contributions to this thesis. Their insightful comments and constructive criti-
cism have been extremely helpful in refining and elevating the quality of my work. Their
expertise and guidance were essential in ensuring that the final product met the stan-
dards of excellence and rigor expected in a doctoral thesis.

Furthermore, I am grateful for the support of all permanent staff as well as my col-
leagues on the TARAN (CAIRN) team. Your support has made my work much easier
and more enjoyable.

And finally, I would like to express my heartfelt gratitude to my family, including my
wife, my daughter, my son, and my parents. Your unwavering support, encouragement,
and belief in me have been the driving force behind my achievements and completion of
my thesis. Your love and sacrifice have made this journey much easier and enjoyable.
Thank you for always being there for me and for making my life complete.

RÉSUMÉ EN FRANÇAIS

L’architecture des processeurs a évolué au cours des dernières années, des struc-
tures homogènes vers des systèmes hétérogènes plus complexes, en profitant de
l’évolution de la technologie et des capacités d’intégration permettant ainsi une aug-
mentation du nombre de transistors ; cela s’est entre autres traduit par des circuits com-
binant accélérateurs matériels dédiés économes en énergie et des cœurs de proces-
seurs généralistes. Ces systèmes sur silicium hétérogènes sont des ordres de gran-
deur plus efficaces et nécessitent moins d’énergie que les processeurs généralistes.
Un des principaux problèmes de ces systèmes hétérogènes est qu’ils sont beaucoup
plus difficiles à concevoir et à évaluer. Aussi, des approches de conception efficaces
sont nécessaires pour aider à spécifier ces systèmes complexes et en particulier à
explorer plus rapidement l’espace de conception.

En ce qui concerne la conception de ces systèmes multi-cœurs hétérogènes, le
nombre de combinaisons possibles conduit à un grand espace de conception, avec
souvent des compromis subtils. Déterminer la meilleure conception pour une appli-
cation cible donnée nécessite une simulation détaillée de nombreuses solutions pos-
sibles. Des environnements de simulation, tels que gem5, existent et sont couramment
utilisés pour réaliser ces simulations. Malheureusement, ils ne sont basés que sur des
approches purement logicielles et ne permettent pas une véritable exploration de l’es-
pace de conception. De plus, ils ne prennent pas vraiment en charge les architectures
multi-cœurs hétérogènes (accélérateurs matériels et cœurs de processeur). Ces li-
mitations motivent l’utilisation de matériel spécifique pour accélérer la simulation, en
particulier les composants FPGA reprogrammables.

Cette thèse apporte une contribution aux méthodes de conception de systèmes
sur puces hétérogènes (SoC) ciblant les plateformes à base de composants FPGA
en explorant automatiquement ou semi-automatiquement l’espace de conception sur
la base de critères puissance-performance au niveau système. L’un de nos objectifs
est de pouvoir modéliser les processeurs et les accélérateurs de manière à permettre
ensuite de les simuler sur des plates-formes FPGA. Il s’agit aussi de déterminer l’ar-
chitecture optimale pour une architecture efficiente sans nécessiter de connaissances

i

d’expert.
Nous avons établi une infrastructure de conception basée sur l’utilisation de trois

outils de simulation : Aladdin [105], gem5 [14] et HAsim [89]. Le simulateur d’accéléra-
teur Aladdin fournit un cadre pour modéliser la puissance, les performances, l’activité
au niveau cycle des accélérateurs autonomes, réalisant une fonction fixée sans avoir
à générer de description matérielle de niveau transfert de registre (RTL). Le simula-
teur architectural gem5 est un simulateur de système bien connu pour la simulation
de cœurs de processeurs configurables et des systèmes de mémoire. Le simulateur
FPGA HAsim permet de construire des modèles de simulation de processeurs et des
systèmes de mémoire, incluant le support pour les protocoles de cohérence de cache
et les modèles d’interconnexion.

FIGURE 1 – Un aperçu de la méthodologie de conception et des contributions couvertes dans la thèse.

Le haut de la Figure 1 montre un flot basé sur l’utilisation d’un simulateur d’architec-
ture (gem5-Aladdin) et d’une méthode d’optimisation d’hyperparamètre [11] (Hyperopt)
dont le but est de rechercher une performance optimale en termes de puissance. Il y
a une motivation pour les concepteurs d’outils à aider les architectes, les ingénieurs
en logiciel et les développeurs d’algorithmes et ainsi contribuer à améliorer la concep-

ii

tion du matériel. Par conséquent, un flot de conception efficace allant de l’algorithme
à l’architecture avec une sélection automatique ou semi-automatique d’une solution
optimisée est attractif. Les approches basées sur l’optimisation des hyperparamètres 1

s’avèrent très utiles pour optimiser les fonctions objectives inconnues [104, 12]. En
termes de convergence et de qualité des solutions obtenues, il a été montré qu’ils
surpassent l’optimisation heuristique.

Comme illustré sur la Figure 1, notre approche repose sur l’utilisation de plusieurs
simulateurs, d’algorithmes d’optimisation et d’un flot de conception qui peut être dé-
ployé sur une plate-forme matérielle combinant CPU et FPGA. L’environnement prend
en entrée des algorithmes décrits en C/C++ ; des paramètres de conception (déroulage
de boucles, pipeline de boucles, partitionnement de tableaux, etc.) ; des configurations
de SoC; des programmes utilisateurs ; et des métriques de conception. L’espace de
conception est exploré et l’architecture est simulée automatiquement. Nous pouvons
choisir de manière flexible d’effectuer la simulation sur le CPU hôte ou sur la plate-
forme matérielle CPU/FPGA. Par exemple, si une simulation rapide et précise est re-
quise, elle peut être exécutée sur la plate-forme matérielle CPU-FPGA; une première
évaluation peut être réalisée sur le CPU hôte préalablement au déployement sur la
plate-forme matérielle. La prochaine étape de conception est l’exploration de l’espace
de conception et l’identification d’une architecture adaptée. A l’issue de l’exploration,
le résultat est une architecture appropriée qui satisfait les exigences du concepteur. La
plate-forme matérielle CPU-FPGA utilisée pour les expérimentations et le déploiement
du simulateur HAsim est une plate-forme d’Intel où les processeurs Xeon et le FPGA
sont étroitement couplés.

Le simulateur exploite des traces d’exécution, il utilise le flot Aladdin pour générer
et ordonnancer une trace d’exécution sous la forme de graphe de dépendance de
données. Le graphe ordonnancé est ensuite traduit dans un format de représentation
compact adapté à son interprétation par le module matériel correspondant au modèle
du chemin de donnée de l’accélérateur et implémenté dans les FPGA. La stratégie
de base est de réutiliser le résultat du simulateur d’accélérateur et de se concentrer
sur la simulation de la communication entre les accélérateurs et le reste du système
(processeurs, systèmes de mémoire, etc.).

Nous avons choisi de construire des modèles de processeur basés sur le jeu

1. L’optimisation des hyperparamètres est la sélection des paramètres optimaux ou meilleurs pour
un algorithme d’apprentissage automatique ou d’apprentissage en profondeur.

iii

d’instructions RISC-V [119], développé à l’Université de Californie à Berkeley. En utili-
sant l’environnement HAsim, nous avons modélisé différentes versions de processeurs
RISC-V (non pipeliné, pipeliné et avec exécution dans le désordre), ceux-ci s’inter-
facent avec le reste du système composé d’accélérateurs et de mémoire. Afin d’invo-
quer l’accélérateur depuis le processeur, nous avons ajouté des instructions dédiées
au jeu d’instructions RISC-V. L’intégration des blocs matériels est réalisée à travers une
interface similaire à celle conçue pour le circuit Rocket 2 (RoCC). Cette interface per-
met au processeur de communiquer avec le bloc matériel en exécutant des instructions
dédiées prises en charge par l’ISA RISC-V.

Toutes les contributions de ce travail s’intègrent dans un environnement pour la
conception rapide et efficiente d’une architecture SoC hétérogène. Les travaux peuvent
être décomposés en deux contributions principales.

— La première partie du travail présenté dans cette thèse est de nature expérimen-
tale. Elle a porté sur l’étude d’une approche de conception pour les architec-
tures hétérogènes basée sur la conception de modèles de performance pour les
composants de l’architecture hétérogène, à savoir les accélérateurs matériels et
les cœurs de processeurs. La contribution a porté sur l’expérimentation et l’éva-
luation des outils de simulation pour ces modèles d’architecture hétérogène sur
FPGA. Une méthodologie pour construire des modèles de performance d’accé-
lérateur et un flot de conception ont été proposés.

— La seconde partie du travail est de nature méthodologique. Elle a porté sur l’étude
d’un flot pour déterminer, au niveau système, une microarchitecture offrant la
meilleure efficacité en termes de rapport performance/consommation d’énergie.
Le flot proposé combine deux techniques : l’utilisation d’un simulateur logiciel
d’architecture et d’une méthode d’optimisation des hyperparamètres. Cette mé-
thodologie permet de balayer différents types de parallélisme avec différentes
stratégies de déroulement de boucles tout en prenant en compte différents types
d’interfaces avec les mémoires. Les expériences sur différents problèmes (ré-
seaux de neurones convolutionnels, SoC constitué de plusieurs accélérateurs)
ont permis de déterminer les solutions les plus optimales en termes de rapport
performance/consommation d’énergie.

2. https ://github.com/chipsalliance/rocket-chip

iv

TABLE OF CONTENTS

Introduction 1

1 Heterogeneous System-on-Chip achitectures 13
1.1 The rise of heterogeneous system on chip 14

1.1.1 Technology scaling challenges 14
1.1.2 Trends in heterogeneous architecture 16

1.2 Architectural simulators using FPGAs 18
1.2.1 Simulation wall . 18
1.2.2 FPGAs used for simulation instead of prototyping 19
1.2.3 Functional/Timing partitioning simulators 21
1.2.4 FPGA-accelerated microarchitecture simulation projects 23

1.3 Heterogeneous SoC design . 26
1.3.1 SoC design Flow . 26
1.3.2 Design frameworks for heterogeneous-accelerator SoC 28
1.3.3 Design space exploration . 32

1.4 Summary . 34

2 FPGA-accelerated simulation of heterogeneous architectures 36
2.1 Introduction . 38
2.2 FPGA-based processor simulation with HAsim 40

2.2.1 HAsim framework overview . 42
2.2.2 The LEAP operating system for FPGA-based applications 43
2.2.3 Bluespec system verilog . 46

2.3 A case study with the design of RISC-V models within the HAsim frame-
work . 49
2.3.1 Semantic of function partition . 50
2.3.2 Timing model creation . 51
2.3.3 Evaluation results . 54
2.3.4 Targeting the Xilinx Virtex-7 FPGA platform 56

v

TABLE OF CONTENTS

2.4 Deploying the HAsim simulator on a Intel CPU-FPGA platform 58
2.4.1 Intel Xeon+FPGA platforms . 59
2.4.2 Implementing communication channels support for Intel CPU-

FPGA platform . 60
2.4.3 Validation . 63

2.5 FPGA-Accelerated microarchitecture simulation challenges 65
2.6 Conclusions . 70

3 Integration of a pre-RTL accelerator model in the FPGA-based simulator 72
3.1 Introduction . 74
3.2 Design flow overview . 76
3.3 Accelerator modeling (Pre-RTL accelerator model) 78

3.3.1 DDDG generation and scheduling 78
3.3.2 Scheduled Graph Trace (SGT) generation 79
3.3.3 Flow explanation by an example 81

3.4 Integration of an accelerator model in the HAsim simulator 82
3.5 Performance assessment . 86

3.5.1 Case study: Blocked Matrix Multiply accelerator 87
3.5.2 Machsuite benchmarks . 89

3.6 Conclusion . 90

4 Determining optimal configuration architecture for heterogeneous-accelerator
SoCs 91
4.1 Introduction . 93
4.2 Design space exploration using Hyperparameter Optimization 95

4.2.1 Synthetic view of a Heterogeneous-Accelerator SoC 95
4.2.2 Design space exploration via Hyperparameter Optimization . . . 96
4.2.3 Hyperopt: Hyperparameter Optimization python library 98

4.3 Design methodology . 104
4.3.1 Hyperopt-gem5-Aladdin framework 105
4.3.2 Parallel accelerator exploration 107
4.3.3 Memory coherency models exploration 108
4.3.4 Automatic architectural optimization design flow 109

4.4 Experiments . 110
4.4.1 Convolutional Neural Network accelerator in a SoC 111

vi

TABLE OF CONTENTS

4.4.2 Multi-context accelerator . 113
4.4.3 Coherency interface choice study 116
4.4.4 Hyperopt convergence study . 118

4.5 Conclusion . 120

Conclusion and future works 122

Bibliography 125

Acronyms 139

vii

LIST OF FIGURES

1 Un aperçu de la méthodologie de conception et des contributions cou-
vertes dans la thèse. ii

2 Energy and area efficiency of different architectures [122]. 2
3 An example of a typical heterogeneous architecture. 3
4 A die photo shows the makeup of several common mobile processors (SoC). The blue

boxes are CPU cores, and the red boxes are GPU cores. Most of the area of the pro-

cessors is not the CPU and GPU blocks, which are taken up by application-specific

accelerators. The original die photos are from AnandTech [47], ChipRebel [4], TechIn-

sights [99]. 4
5 Frameworks of the methodology together with covered contributions. . . 8

1.1 Transistor scaling challenges with the evolution of computer systems. 14
1.2 Trends in heterogeneous architecture view. 17
1.3 The use of FPGA in the circuit design flow. 20
1.4 A partitioned simulator is divided into two partitions: functional and timing. 22
1.5 SoC design flow overview [54]. 26

2.1 HAsim Framework Overview. 43
2.2 The HAsim simulator is based on the LEAP Virtual Platform [65]. 46
2.3 A Counter expressed in Bluespec. 47
2.4 Design flows target FPGA platforms using Bluespec System Verilog. 49
2.5 An example of three different timing models operating on the same instruction set. . . 52
2.6 Target processors and their simulator implementation. 53
2.7 Evaluating the performance of the simulators with target processsor models. 55
2.8 FPGA-based platform overall setup. 57
2.9 An overview of the architecture and hardware of Intel Arria systems. The "Green Re-

gion" identifies the portion of the FPGA that may be reconfigured in user space during

runtime. The "Blue Region" describes the FPGA’s static soft core (Intel API). It makes

the CCI-P interface accessible to the AFU. 59
2.10 Quick Assist (QA) driver with CCI-P and OPAE. 61

viii

LIST OF FIGURES

2.11 An overview of the leap environment includes the QA driver modules for the Intel CPU-

FPGA platform. 62
2.12 Set of FPGA-based platform development tools. 66
2.13 An overview of modules to develop functional and timing partitions in in-order pipelined

processor models. 68

3.1 Illustration of the generic design flow. 77
3.2 Actions taken by the timing accelerator for the SGT format. 80
3.3 An example of an accelerator model with a factor of 2 loop iteration par-

allelism, partitioning factor 2, and without loop pipelining. 81
3.4 The flow designed to generate a customized accelerator and its simula-

tion models. 83
3.5 An overview of the communications, including the rocket core and accel-

erator. 84
3.6 Custom instruction format. 85
3.7 Structure of the proposed simulation platform. 86
3.8 The pseudocode of the blocked GEMM algorithm. 87
3.9 Blocked GEMM evaluation. 88
3.10 Performance validation under different architectures. 89

4.1 View of a typical heterogeneous-accelerator SoC. 95
4.2 The pseudo-code of generic Sequential Model-Based Optimization [9]. . 97
4.3 Adaptive-TPE algorithm: a tuning parameters technique for improving

TPE. 101
4.4 An example of the TPE procedure with six loop iteration parallelism fac-

tors and its Energy-Delay-Product. 102
4.5 An example of a Hyperopt configuration with six loop iteration parallelism

factors. 103
4.6 Overview of our generic design flow using the hyperparameter optimization-

based method. 105
4.7 Convolutional layer operation of a CNN. 108
4.8 EDP improvement for CNN workloads. 114
4.9 Radar charts of architecture configurations with optimal EDP. 116
4.10 EDP improvement for coherency interface. 117
4.11 The convergence of parallel exploration in LeNet-5 workload. 119

ix

4.12 The convergence of the coherency interface experiment. 120
*

x

LIST OF TABLES

2.1 Comparison of Research Accelerator for Multiple Processors (RAMP)
projects. 41

2.2 Functional partition operations. 51
2.3 Synthesis results for a Virtex-7 VC707 FPGA platform. 57
2.4 Results of experimental application synthesis targeting Arria 10 FPGA. . 64
2.5 CPU-FPGA communication channel validated in Intel Xeon+FPGA. . . . 64
2.6 Lines of Bluespec code to implement the simulation models. 69

4.1 gem5-Aladdin SoC Architecture Configuration. 111
4.2 Unrolling factors for CNN-Workloads(M,N,K,S) (loop m,loop n,loop r,loop

c,loop i,loop j).
. 113

4.3 SoC-Accelerators Design Space, where (M,N,K,S) represents four pa-
rameters at the CONV layer C1/C3 ,and x::y::z denotes a set of values
from x to z by a stepping factor of y.
. 115

4.4 Energy Delay Product improvements of the multi-context architecture
over the most optimal configuration for each CNN-workload. 115

4.5 Accelerated-workloads in a SoC.
. 116

*

xi

INTRODUCTION

The desire for improved computing speed is continuous in the computer architec-
ture design community. In addition, artificial intelligence and data science are among
the fastest growing technologies that need an increase in hardware’s computation
power. Self-driving vehicles, 5G communication, video monitoring, and analytics are
examples of highly demanding applications. In an effort to support these applications
on vehicles and other mobile devices, architects and researchers focus on embed-
ded high-performance computing architectures to solve these problems effectively and
quickly.

Designers have already proposed solutions based on processor core duplication to
address significant computational demands and have pushed the number of cores on
a chip as high as a thousand [15]. This idea led to the evolution of replacing single-
core designs with multi-core 3 and many-core 4 architectures to perform several tasks
concurrently and continue increasing the hardware performance. However, multi/many-
core chips have billions of transistors, which cannot all be activated or switched on
simultaneously at high frequencies (utilization wall) [117]. The silicon parts powered
off to prevent overheating (referred to as dark silicon) [42] will grow exponentially with
each new technology generation. Thus, microprocessor performance gains are slowing
down due to modern applications’ power and growing computation demands.

In this context, computer architects are moving toward specialization, with designs
trading off dark silicon for a collection of customized hardware. As a result, heteroge-
neous architectures (HAs) combining processor cores with specialized hardware (ac-
celerators) has received increasing interest in recent years. By implementing particular
functions in hardware, HAs provide increased power efficiency 5. Hardware acceler-
ators in specialized datapaths and memory management promise to support highly
demanding workloads while increasing performance and energy efficiency. Figure 2
shows the energy efficiency and area comparison between three basic architectural

3. A multicore processor is typically made up of two or more independent processor cores on the
same silicon.

4. A many-core processor typically refers to devices with dozens or hundreds of cores.
5. Operations per second per watt.

1

Introduction

Figure 2 – Energy and area efficiency of different architectures [122].

categories: microprocessors, digital signal processing (DSP), and application-specific
hardware accelerators. The data came from 20 distinct chips that were first presented
at the International Solid State Circuits Conference (ISSCC) between 1998 and 2002 [122].
When compared to microprocessors (general-purpose CPUs), customized processors
such as DSPs perform 10 to 100 times better in terms of energy efficiency, while spe-
cialized hardware accelerators perform 1000 times better. Area efficiencies follow a
similar trend, with the exception of a few cases when the targeted application specifies
a low clock frequency.

Heterogeneous Systems on Chip (SoC)

As a result of this trend, heterogeneous architectures, which include processor
cores and multiple hardware accelerators, have emerged as the most important com-
puting platform in a wide range of applications, from embedded systems to data cen-
ters [76, 85, 97]. In this study, we focus on accelerators and processors with shared
interfaces in heterogeneous architectures. Figure 3 illustrates an example of a typical
heterogeneous architecture that trades dark general-purpose cores for a collection of

2

Introduction

Figure 3 – An example of a typical heterogeneous-accelerator architecture.

customized hardware but transiently powered accelerators [28, 30, 74]. It includes a
number of processor cores and many specialized accelerators. Each accelerator com-
prises several dedicated datapaths that implement parts or all of an algorithm in a spe-
cific application domain. Each accelerator has a local memory (scratchpad memory or
private cache) to speed up data transfer and thus be able to achieve high performance.
The SoC architecture also includes the cache and coherent memory controllers shared
by both processor cores and accelerators. At the system-level, the hardware blocks are
connected by routers, which represent a customized network-on-chip.

Heterogeneous architecture system-on-chip can be seen in mobile computing ar-
eas with, for example, Qualcomm, Apple’s A-series, Samsung Exynos, Nvidia Tegra,
Texas Instruments OMAP, and HiSilicon Kirin processors. When we take a look at the
die photographs in Figure 4, we can see that the blocks that make up the central pro-
cessing unit (CPU) and the graphics processing unit (GPU) do not take up the majority
of the processor’s area. According to the findings of Shao et al. [107], the number of
specialized hardware blocks that have been implemented throughout all five genera-
tions of Apple SoCs has been steadily increasing over the last 10 years. In addition,
Intel developed a program called HARP [103] that combines Xeon processor cores with
FPGA fabric. This program suggested that the FPGA fabric may be integrated directly
onto the chip, which would allow for the implementation of specialized accelerators

3

Introduction

Figure 4 – A die photo shows the makeup of several common mobile processors (SoC). The blue
boxes are CPU cores, and the red boxes are GPU cores. Most of the area of the processors is not the
CPU and GPU blocks, which are taken up by application-specific accelerators. The original die photos
are from AnandTech [47], ChipRebel [4], TechInsights [99].

on a server-class data center CPU. It is clear that more and more chip area is being
used by application-specific accelerators. Instead of using a general-purpose CPU to
do the same work, specialized accelerators provide much higher performance while
using significantly less power.

Design challenges

Unfortunately, the main problem with these heterogeneous systems is that they are
much more challenging to design and evaluate. This is especially significant at a time
when customers want more powerful technological products in ever-shorter time peri-
ods. Therefore, new design methodologies are required to forecast and validate these
complex systems more rapidly during the early design phase. The research carried out
in this thesis focuses on these topics. Each component in a heterogeneous system
has many possible configurations. For example, the design of accelerators can choose
how many computing units run concurrently 6, the direct memory access (DMA) or
cache system, cache bandwidth, and cache size when integrating with the memory

6. To expose algorithmic parallelism level.

4

Introduction

hierarchy. They also drive to choose how a processor can communicate with the accel-
erator when integrated onto the same silicon die. The overall purpose is to configure
specialized accelerators, processors, memory structures, and others to maximize the
power-performance efficiency of a given application.

It is obvious that most designers nowadays want to add more and more compo-
nents to their systems. As a consequence of the many design combinations, there is
a huge amount of design space available. Exploring the design space of heterogene-
ity at the system level requires a significant amount of time, effort, and knowledge. It
is essential to rapidly explore and determine an optimal architecture to save cost and
design time. Nevertheless, designing heterogeneous systems is still in its early stages
and lacks quick and efficient design tools. To tackle the challenge of designing optimal
heterogeneous systems, we propose a framework that enables simulation and design
exploration rapidly. Our framework relies on an optimization algorithm built on top of
the architectural simulation framework.

Simulation techniques

Determining which architecture is best requires a detailed simulation of many dif-
ferent possible solutions. Simulation techniques enable the prediction of many various
features without the explicit need to build the system itself. The most commonly pre-
dicted computer system features are performance, latency, area, and energy/power
consumption. For example, evaluating the impact of the memory system on acceler-
ators is done quickly by changing some of memory configurations (cache size, cache
bandwidth, cache associativity, cache line size, etc.) and simulating with a variety of
benchmarks. Today, the simulator has gone a long way in validating computer archi-
tecture research, and it can rapidly evaluate points in design space to save design
time.

However, the performance of computer simulation is decreasing over time. Com-
puter system simulators are typically implemented in software due to the need for
flexibility and accuracy. Many simulators used commercially and academically for cycle-
accurate or approximate simulation are designed around single-threaded discrete event
simulation, with SystemC, Simics, and gem5 based simulation [69], gem5 [14] being
one of the most popular tools. Unfortunately, given the rapid growth of their complex-
ity over time, software simulators are becoming slower and slower. A fast and cost-

5

Introduction

effective alternative to software is to employ hardware that directly matches the hard-
ware level parallelism required in an accurate computer system simulation [113]. The
significant capabilities and flexibility of field programmable gate array (FPGA) make
them an ideal vehicle for accelerating and addressing the challenge of computer sys-
tem simulation. Based on these considerations, a model of heterogeneous accelerator
architectures targeting FPGAs toward speeding up the simulation needs to be studied.

Instead of looking for a new design methodology for heterogeneous SoC architec-
tures, we propose to study and develop a design framework based on the existing ar-
chitecture simulators. The biggest advantage of reusing methodologies is that it saves
effort in developing a reliable design framework. The simulation of a particular hetero-
geneous architecture is built from models of hardware components (processor cores,
domain-specific accelerators, memory hierarchies, interconnects, etc.). Detailed mod-
els of these components can be specified as hardware description language modules,
which can be reused by different architectures.

Design space exploration

Exploring the SoC design space is a challenging task that requires expert hardware
architects. Designers have to deal with many design issues and choices that require
in-depth knowledge of specific scientific fields [27, 19, 52]. Besides, there is a lack
of knowledge on utilizing efficient resources for different application domains, and de-
signers have to explore a huge space to find an optimal architecture. This design space
contains architectural design configurations regarding the number of accelerators, their
integration with the memory hierarchy, the computational parallelism, and the on-chip
interfacing. For example, when designing efficient convolutional neural network (CNN)
SoC accelerators, the designer can play with the loop unrolling factor (computational
parallelism), interfacing with different memory coherency (data reuse), memory band-
width, and cache sizing to meet power and performance constraints.

The designer is often constrained by the heuristic design process, which increases
design time and costs. There is a motivation for tool designers to help architects, soft-
ware engineers, and algorithm developers improve hardware design. Therefore, an
efficient design flow from algorithms to architectures with automatic or semi-automatic
selection of an optimized solution is attractive. Approaches based on hyperparameter 7

7. They are values/weights that determine the learning process of an algorithm.

6

Introduction

optimization 8 proves to be very useful in optimizing unknown objective functions, as
stated in works presented in [104, 12]. They are more powerful than heuristic optimiza-
tion in terms of convergence and quality of obtained solutions.

We are now aware of the challenges that come with the process of heterogeneous
SOC designs using software simulators, as well as the challenges that come with ex-
ploring the design space. The research motivation related to these problems will be
developed later in this manuscript.

Overview of results

This dissertation contributes to SoC design methods targeting FPGA platforms by
automatically exploiting a power-performance design space at the system level. One of
our goals is to model processors and accelerators so they can be simulated on FPGAs.
The other is to determine the optimal architecture for an efficient architecture without
requiring expert knowledge.

We established a design infrastructure based on the use of three simulation tools:
Aladdin [105], gem5 [14], and HAsim [89]. The Aladdin accelerator simulator provides a
framework for modeling the power, performance, area, and cycle-level activity of stan-
dalone, fixed-function accelerators without the need to generate RTL. The gem5 archi-
tectural simulator is a well-known system simulator with configurable CPU cores and
memory systems. The HAsim FPGA-based simulator builds processor timing models
and memory systems, including support for cache coherence protocols and intercon-
nect models.

As illustrated in Figure 5, our approach relies on the use of simulators, optimization
algorithms, and design flows that can be deployed on a CPU-FPGA platform. The
framework takes inputs from: algorithms in C/C++; design parameters (loop unrolling,
loop pipelining, array partitioning, etc.); SoC configurations; user programs; and design
metrics. The design space is explored, and the architecture is automatically simulated.
We can flexibly choose the simulation platform on the host CPU or CPU/FPGA. For
instance, if a fast and accurate simulation is required, it can be run on the CPU-FPGA
platform; if we need to rapidly evaluate an early design, we can run it on the host
CPU. The next step is to explore the design space and identify suitable architecture.

8. Hyperparameter optimization is the selection of optimum or best parameters for a machine learning
or deep learning algorithm.

7

Introduction

Figure 5 – Frameworks of the methodology together with covered contributions.

8

Introduction

After exploration, the result is an appropriate architecture that satisfies the designer’s
requirements.

To the upper right of Figure 5, the accelerator trace-driven simulator uses the Al-
addin flow to generate and schedule an execution trace as a data dependence graph.
The scheduled graph is then translated into a compact representation format suited to
its interpretation by the hardware module corresponding to the accelerator datapath
model and implemented in the FPGAs. The basic strategy is to reuse the accelerator
simulator’s scheduling and focus on simulating communication between accelerators
and the rest of the system (processors, memory systems, etc.).

At the bottom right corner of Figure 5, we chose to build processor models based
on the RISC-V 9 instruction set [119], originally developed in the Computer Science
Division department at the University of California, Berkeley. Using the HAsim frame-
work, we modeled unpipelined, in-order-pipelined and out-of-order RISC-V processor
interfacing accelerator and memory systems. In order to invoke the accelerator from
the processor, we added custom instructions to the RISC-V instruction set.

On the left hand side of Figure 5, we have a flow that uses an architecture simu-
lator (gem5-Aladdin) and a hyperparameter optimization method (Hyperopt) to find an
optimal power-performance.

Contributions

This thesis focuses on heterogeneous SoC architectures due to their ability to de-
liver higher performance under the same power budget. The FPGA platforms will be
used to simulate specialized hardware accelerators and processor core models. We
explored the power-performance of heterogeneous systems and determined the opti-
mal configuration using a hyperparameter optimization algorithm. As a result, we built
a fast and efficient design framework for designing heterogeneous SoC architectures.

All of the contributions of this work fit into a framework for fast and effective design
of heterogenous SoC architecture. These contributions are presented in detail in the
three main chapters and illustrated in Figure 5:

9. RISC-V is a new instruction set architecture (ISA) that was originally designed to support computer
architecture research and education, for which it could become a standard open architecture for industry
implementations.

9

Introduction

Chapter 2

— We present the design of RISC-V processor models within the HAsim framework.
The potential of the HAsim simulator for the simulation of heterogenous architec-
tural systems is explored through a case study. By running on top of the virtual
platform infrastructure known as LEAP and utilizing the bluespec system verilog
(BSV) high-level synthesis language, HAsim is able to reduce the development
effort on FPGA.

— In an effort to deploy the FPGA-based simulator on an Intel CPU-FPGA platform,
we have developed a communication channel that enables FIFO-managed bidi-
rectional data exchange. This implementation also enables the system memory
interface for read and write requests.

Chapter 3

— By integrating a pre-RTL accelerator model into the HAsim simulator, we provide
a method for designing application-specific heterogeneous systems. The applica-
tion is profiled by the dynamic execution trace and is used to construct a data flow
model of the accelerator. The architecture models are deployed on an FPGA sim-
ulator. As a result, the design of a multiple-core, multiple-accelerator architecture
is made easier by automating the design process.

Chapter 4

— An automatic architectural optimization design flow for determining, at the system-
level, the microarchitecture with the best efficiency in terms of performance-power
ratio is presented. In our work, we employ the hyperparameter optimization library
Hyperopt to select the most optimal architecture. Before starting the optimization,
the search space, design parameters, and stop criteria have to be defined.

— A case study allowed us identifying the most energy efficient architecture for
a convolutional neural network (CNN). We showed that the solution obtained
achieves a 2x to 4x improvement in energy-delay-product (EDP) compared to an
architecture without parallelism. Furthermore this solution is more efficient than
commonly implemented architectures (Systolic, 2D-mapping, and Tiling).

10

Introduction

— To demonstrate the efficiency of the heterogeneous SoC design approach, we de-
termined the optimal architecture, including its coherency interface, for a complex
SoC made up of six common accelerated-workloads. Three possible coherency
models are considered: a software-managed direct memory access (DMA), a
shared last level cache (LLCcoherent), and a fully-coherent cache. Our frame-
work allowed us to determine that a hybrid interface appears to be the most effi-
cient; it achieves 22% and 12% improvement in EDP compared to just only using
non-coherent and only LLC-coherent models, respectively.

Organization of the manuscript

Chapter 1 provides the state of the art, enabling us to take a comprehensive ap-
proach to the topics discussed in this thesis. The rise of heterogeneous systems on
chips is defined first, followed by the design methodology relevant to this type of archi-
tecture. Following that, we present what exists to accelerate computer architecture sim-
ulation by using FPGA. Finally, this chapter illustrates the approach to heterogeneous
SoC design, including the flow, existing development platforms, and design space ex-
ploration via optimization.

In chapter 2, we mainly focus on FPGA-based simulation, specifically building ex-
periments to explore the capabilities of the HAsim simulator. We introduce LEAP and
its simulator, as well as a case study on the building of RISC-V processor models. We
also present a contribution that implements communication channels for simulation on
the Intel CPU-FPGA platform. Finally, we describe the barriers to FPGA-accelerated
microarchitecture simulation development.

Chapter 3 proposes a method for designing application-specific heterogeneous sys-
tems by integrating the pre-RTL accelerator model into the FPGA-based simulator. We
demonstrate the design flow and proposed design methodology. The accelerator mod-
eling methodology, which is based on the Aladdin simulator, is then presented. We
will then show how to simulate heterogeneous systems with HAsim by combining the
accelerator and processor models. Finally, MachSuite benchmark experiments are pre-
sented and discussed.

In chapter 4, we use gem5-Aladdin and the hyperparameter optimization (Hyperopt)
library to explore the design space of power-performance heterogeneous SoCs. This
chapter introduces hyperparameter-based optimization methods for unknown objec-

11

Introduction

tive functions. We then demonstrate how the Hyperopt-gem5-Aladdin framework and
automatic design flow sweep various forms of parallelism with loop unrolling strate-
gies and memory coherency interfaces. Finally, the framework designs a convolutional
neural network and a multi-context CNN accelerator. We use the methodology to find
the best architecture and coherency interface for a complex SoC with six accelerated
workloads.

Finally, the manuscript concludes with an overview of the presented work and a
discussion on future research directions.

Publications

Thanh Cong, François Charot. Designing Application-Specific Heterogeneous
Architectures from Performance Models. MCSoC 2019 - IEEE 13th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip, Oct 2019, Singa-
pore, Singapore. pp.1-8.

Thanh Cong, François Charot. Design Space Exploration of Heterogeneous-
Accelerator SoCs with Hyperparameter Optimization. ASP-DAC 2021 - 26th Asia
and South Pacific Design Automation Conference, Jan 2021, Virtual Conference, Japan.
pp.1-6.

12

CHAPTER 1

HETEROGENEOUS SYSTEM-ON-CHIP

ACHITECTURES

The objective of the first chapter is to describe the current state of the art in het-
erogeneous system-on-a-chip (SoC) architecture, which is required for understanding
this manuscript. First of all, this chapter discusses the rise of heterogeneous architec-
ture with technological scaling issues and the trend toward SoC. Next, the need for
simulation and the problem of all software simulators are addressed. The benefits of
using FPGAs for simulation acceleration and simulator parallelization are discussed.
Additionally, heterogeneous SoC design is introduced along with the general design
flow and current academic and commercial development platforms. Finally, we present
the hyperparameter optimization-based method for exploring the design space.

Contents
1.1 The rise of heterogeneous system on chip 14

1.1.1 Technology scaling challenges 14

1.1.2 Trends in heterogeneous architecture 16

1.2 Architectural simulators using FPGAs 18

1.2.1 Simulation wall . 18

1.2.2 FPGAs used for simulation instead of prototyping 19

1.2.3 Functional/Timing partitioning simulators 21

1.2.4 FPGA-accelerated microarchitecture simulation projects 23

1.3 Heterogeneous SoC design . 26

1.3.1 SoC design Flow . 26

1.3.2 Design frameworks for heterogeneous-accelerator SoC 28

1.3.3 Design space exploration . 32

1.4 Summary . 34

13

Chapter 1 – Heterogeneous System-on-Chip achitectures

1.1 The rise of heterogeneous system on chip

1.1.1 Technology scaling challenges

Figure 1.1 – Transistor scaling challenges with the evolution of computer systems.

Gordon Moore published an observation in 1965 that would influence the evolution
of computer systems and the semiconductor industry for the next five decades. Ac-
cording to "Moore’s Law" the number of transistors that can fit on an integrated circuit
will double every two years [81]. This study indicates that we need to make transistors
smaller, and Robert Dennard stated in 1974 [35] how to achieve this happen. When
voltages are scaled along with transistor dimensions, "Dennard Scaling" means that
the device’s electric fields remain constant and the majority of device characteristics
are preserved. This indicates transistors are becoming smaller and switching faster at
the same power density.

Moore’s law and Dennard scaling combined provide us with both cost scaling and
performance scaling. Consequently, it allowed the performance of microprocessors to
increase by 10,000x, a speed that we had never seen before [115]. However, transistor
scaling has not fundamentally extended Dennard scaling, which has posed different
challenges in recent years. These challenges are considered design walls that have
been solved by building new computer architectures.

The power wall

Due to the increasing demands of applications in terms of computing power, pro-
cessor designers have favored increasing the clock frequencies of the cores of proces-
sors. Equation 1.1 describes how energy (E) and power consumption (P) depend on
the activity factor (α), the effective capacitance of the transistor (C), the voltage level
(V), the operating clock frequency (f), and the delay time (t) [116]. The activity factor

14

1.1 The rise of heterogeneous system on chip

is the probability that the node of the circuit changes from 0 to 1, which is the only time
the circuit uses power. The activity factor is affected by the decisions made regarding
logic and architecture. The size of the transitor influences the capacitance. When tran-
sistors are small, the gate capacitance and the diffusion capacitance are also small.
The voltage level has decreased because we need to maintain the same amount of
power while simultaneously increasing the clock frequency. When the voltage level is
below its threshold, the circuit delay will increase, and the increase in leakage energy
will exceed any decrease in switching energy [36, 61].

E = P ∗ t = α ∗ C ∗ V 2 ∗ f ∗ t (1.1)

Dependencies of energy and power consumption

The power wall forced an increase in processor frequency, which led to excessive
power consumption and heat dissipation limitations of cooling systems [96]. Due to
the continuous increase in transistor density, transistors are unable to switch faster.
As a result, computer designers have embraced multi/many-core architectures. These
architectures use a large number of single cores operating at lower frequencies and in-
crease the aggregated performance of the entire chip through thread-level parallelism.

The utilization wall

Starting in the early 2000s, multi-core and many core processors emerged as lead-
ing solutions to the power restrictions imposed by voltage scaling. The semiconductor
industry has already started duplicating processor cores and has succeeded in increas-
ing the number of cores that may be included on a single chip to up to a thousand [15].
This strategy, however, only postpones the beginning of the power scalability issue. The
number of cores in these multi-core and many-core circuits capable of actively switch-
ing at full speed while remaining within the chip’s power budget will decrease (utilization
wall). The remaining silicon, which is left unpowered and is often referred to as "dark
silicon," will continue to increase at an exponential rate with each new generation of
technology [42]. Moreover, Amdahl’s Law [1] demonstrates that the total acceleration
is always strongly constrained by the sequential element of the program. This is the
case even when the overall speed has increased. Due to power and parallelism con-
straints, microprocessor performance has hit a wall.

15

Chapter 1 – Heterogeneous System-on-Chip achitectures

To overcome the utilization wall, heterogeneous architectures combining proces-
sor cores and hardware accelerators [28, 73] have been proposed that trade general-
purpose dark cores for a collection of specialized but transiently powered accelerators.
Silicon customization allows us to construct accelerator-based architectures that effi-
ciently use just the mission-critical transistors for a computation [114]. Compared to
performing the same task on a general-purpose CPU, architectures with custom accel-
erators are orders of magnitude faster and consume significantly less power.

The accelerator wall

In recent years, specialized architectures have enabled significant performance im-
provements. This raises expectations that growing computing needs will be met when
Moore’s Law scaling reaches its limit. Fuchs and Wentzlaff predicted that, in 2019, chip
specialization would hit an accelerator wall [49]. Based on an analysis of more than
1,000 device datasheets, they determined how current accelerators depend on CMOS
scaling. Additionally, case studies were examined to see how computing capabilities
scale with a given budget in various applications and chip platforms (e.g., GPUs, FP-
GAs, and ASICs). Their results showed that the slowdown of CMOS scaling on a chip
would limit the accelerator design optimization space, leading to reduced performance
improvements and ultimately hitting a wall, much like shrinking transistors.

So if specialized architectures do not continue to provide significant performance
improvements once Moore’s law scaling breaks down, what will be the solution? First,
Wentzlaff suggests that the computer architects shift computations from the non-scaling
transistor domain to the still-scaling memory domain [48]. For example, they reused
previous computations instead of recomputing them by taking advantage of the fact
that the number of flash memory bits on a chip is continuing to increase independently
of Moore’s Law. Second, despite the prediction hitting the accelerator wall, the special-
ized architecture is still a good solution for high performance and low power chips. In
order to facilitate its advancement and push the technology forward, hardware acceler-
ator optimization needs to continue.

1.1.2 Trends in heterogeneous architecture

The technological scaling crisis encouraged the development of new computer plat-
forms, which often contain numerous diverse components that work together to im-

16

1.1 The rise of heterogeneous system on chip

prove energy efficiency. Multicore chip manufacturing has given us two decades of
performance gains, but the desired scaling of performance can’t be sustained in the
future [77]. Traditional CPU cores, as "multi" as they are, are not as efficient as they
should be at running the huge data models that researchers are currently building.
This is especially true in intensive applications that use artificial intelligence (AI), such
as natural language processing (NLP), image processing, and recommender systems.
New architectures that work better with AI and machine learning applications now and
in the future are needed.

For example, in gaming, to support increasingly complex image processing and
rendering, these accelerators have evolved from microprogrammed processors to fully
programmable systems known as graphics processing unit (GPU). They process tasks
with a high degree of parallelism. Because of this parallelism, GPU evolved into mas-
sively parallel systems, merging them onto a single chip with an increasing number of
small cores. Despite their success and widespread deployment in data centers, where
better performance can still be achieved, GPU fall far short of the expected energy-
efficiency requirements needed for future systems. By connecting CPUs, GPU, and
hardware accelerators, specialization and heterogeneity could reduce the efficiency
gap [53].

Figure 1.2 – Trends in heterogeneous architecture view.

Most complicated SoCs are now heterogeneous, as seen in Figure 1.2. They are
comprised of embedded processors, GPU, and a sea of specialized hardware acceler-
ators, all of which are linked together via shared memory and network on chip (NoC).
Heterogeneous SoCs are faster than general-purpose systems and use orders of mag-

17

Chapter 1 – Heterogeneous System-on-Chip achitectures

nitude less power. The integration of dedicated blocks into SoCs has led to an increase
in their performance, despite the fact that the design process has become more com-
plicated and the verification difficulties have increased.

1.2 Architectural simulators using FPGAs

1.2.1 Simulation wall

In computer architecture, simulation is the common and standard way for evaluat-
ing the performance of a computer system. There are several reasons for its extensive
use. Although analytical models lead to a quick assessment and give a lot of informa-
tion, they are not accurate enough for many design decisions that an architect must
make. One could argue that analytical modeling is useful for making high-level de-
sign decisions and figuring out which parts of the huge design space are of interest.
However, it is more difficult to analyze modest performance differences across design
choices using analytic models. On the other end of the scale, while hardware proto-
types are extremely accurate, their development is too time-consuming and expensive.
Simulation has the benefit of inexpensive development compared to building hardware
prototypes, and it is often more accurate than analytical models.

The simulator is adaptable and easily parameterizable, enabling exploration of the
architectural design space, a crucial feature for computer architects designing a mi-
croprocessor and researchers analyzing a novel concept. The simulation of computer
systems make it possible to predict many behaviors without the explicit need to build
the system itself. The characteristic of a computer system that is most frequently pre-
dicted is its performance, which is frequently measured in terms of the number of cycles
required to execute a set of instructions. Other frequently expected features include en-
ergy/power consumption and fault-tolerance reliability.

The introduction of heterogeneous architecture has led to an increasingly diverse
set of computer architecture ideas being considered. When traversing the design space
to understand the performance of individual design parameters, computer architects of-
ten need to run a huge number of simulations. Therefore, they deploy their simulations
across a huge cluster of computers. All of these simulations are independent of each
other and are often run in parallel. The increase in simulation throughput is related to
the quantity of simulation machines in distributed simulation. Indeed, this does not min-

18

1.2 Architectural simulators using FPGAs

imize the time required to produce a single simulation result. This is a significant issue
for simulation runs that take days or weeks. Waiting for these simulations to finish is
inefficient and slows down the entire design process.

In real situations, it is best to run simulations that take a few hours or less. Or, to
put it another way, it’s necessary to quickly achieve a unique simulation result because
it may be a crucial discovery that supports research and development. Moreover, in-
dustrial and academic architects traditionally use software-based simulators that are
cycle-accurate but slow. Murkherjee et al. stated that the slowing down by a factor of 2
relates to the target per year [23]. At the same time as their simulator capabilities have
improved, computer designers have reduced their ability to model their next-generation
systems. The term "simulation wall" which is accurate and slow, refers to this particular
situation [2].

1.2.2 FPGAs used for simulation instead of prototyping

The use of parallelism is a method of trying to speed up individual simulation runs.
There are three ways to achieve this [38]. The first is the sampled simulation, in which
the sampling units are spread over a cluster of computers. The second technique is
parallel simulation, which uses coarse-grain parallelism to transfer a software simu-
lator onto parallel hardware, such as a multicore processor, a cluster of computers,
etc. The third is FPGA-accelerated simulation, which uses fine-grained parallelism by
mapping a simulator onto field programmable gate array (FPGA) hardware. The advan-
tage of FPGA-accelerated simulation over traditional software simulation is that parallel
work on the target architecture can also be performed in parallel on the FPGAs. In ad-
dition, FPGAs are less expensive and have a faster turnaround time for new hardware
than ASICs. As Moore’s law implies that it will be possible to implement an increasing
number of components in a single FPGA, we can continue to take advantage of tech-
nological developments and design next-generation systems using current technology.

The FPGA is an integrated circuit with an array of programmable logic blocks and
a hierarchy of reconfigurable interconnects that allows the linking of logic blocks. Af-
ter fabrication, the FPGA can be reprogrammed according to the specifications of the
application or functionality. This feature distinguishes the FPGA from application spe-
cific integrated circuit (ASIC), which is custom-built for specific design tasks. As shown
in Figure 1.3,the FPGA has typically been used in different contexts of the computer

19

Chapter 1 – Heterogeneous System-on-Chip achitectures

architecture design flow:

Figure 1.3 – The use of FPGA in the circuit design flow.

— (1) The FPGA is used as an end product that provides reprogrammed hardware.
In this case, the RTL circuit description is created using FPGA CAD tools. This us-
age is for applications that involve video and image processing, high-performance
computing, and data centers.

— (2) In function emulation, the FPGA is used to construct a design that implements
the functionality of the final system. However, timing information for the individual
components is missing. The goal is to develop a functionally accurate emulation
with minimal design effort. These designs can use FPGA-specific structures and
avoid inefficient FPGA ones.

— (3) The FPGA is used for circuit prototyping, where it helps in verification before
the expensive manufacturing step. The target 1 micro-architecture is mapped el-
ement by element onto the FPGA and constitutes a prototype. When the work of
implementing and integrating the target isn’t that different from the manufacturing
of the target itself, it’s difficult to use FPGA to directly prototype more complex
cores and systems.

— (4) FPGA accelerates architecture simulation, the effort focuses on configuring
the FPGA into a simulator rather than a prototype. A simulator helps the architect
to make good architectural decisions through exploration.

1. The computer system being simulated.

20

1.2 Architectural simulators using FPGAs

When developing a simulator using FPGAs as the host 2 platform, the objective is
to recreate the behavior of the target system with the desired degree of completeness,
accuracy, and speed. An FPGA-accelerated simulator can use building components
simplifications, such as constant memory latency or implementing only cache tags
(and not the data storage). Accuracy is sacrificed to simplify the simulator’s implemen-
tation. However, accuracy is not necessarily compromised if the simulator produces
sufficiently accurate results, even if it does not model every component perfectly.

A designer can combine hardware and software to generate a faster simulator with
minimal additional development time and cost compared to a software-only simulator.
FPGA-accelerated simulators are hybrid simulators in which FPGAs are used to ac-
celerate specific components of the simulator but not necessarily the entire simulator.
Therefore, well-designed FPGA-accelerated simulators are faster than software-only
simulators and may even be faster than the physical prototype of the target. They offer
greater capability, including full system support, than would otherwise be possible.

1.2.3 Functional/Timing partitioning simulators

To improve performance through parallelization, there are many ways to partition
simulators. Separating simulators into functional and timing partitions is one approach
that could be taken. The timing partition makes predictions about the performance
(and/or power, temperature, dependability, etc.) of the target system, while the func-
tional partition mimics the operation of the target system. Functionality changes lit-
tle because it is exposed to the entire software stack as a contract through the ISA,
but the microarchitecture, which is described in the timing model, changes frequently.
Thus, most changes between architectural refinements are in the timing model, while
the same functional model can be designed and tested once and then used with only
minor changes. As shown in Figure 1.4, there are five basic functional and timing simu-
lator architectures [2] organization. They are monolithic (sometimes called integrated),
timing-directed, functional-first, timing-first, and speculative functional-first.

A monolithic simulator integrates the prediction of target functionality and perfor-
mance into a single block of code. This is a possible implementation and can be con-
sidered as prototype, but it is possible that it was built differently or simplified in some
way in comparison to the objective. Monolithic simulators are expensive to develop

2. The physical machine on which the simulator runs.

21

Chapter 1 – Heterogeneous System-on-Chip achitectures

Figure 1.4 – A partitioned simulator is divided into two partitions: functional and timing.

and update, despite the possibility of high precision. Because they are not partitioned
into functional and timing components, it becomes challenging to accelerate specific
simulator components in the FPGA. Very often, the prototypes are not flexible enough
to allow exploration, as they only mimic their final microarchitecture. RAMP Blue [62],
RAMP White [3] are two examples of monolithic simulators built on FPGA.

Timing-directed simulators are subdivided into timing models and functional mod-
els. The timing model determines the execution of specific functions. It then sends a
request to the relevant functional model, asking it to execute the specified operation
and provide the result. To be accurate, the timing model must involve a large number
of concurrent events that are highly interconnected. Timing and functional models are
intimately integrated into a timing-directed simulator, with two-way communications oc-
curring multiple times on each target cycle. The functional model is built separately
from the timing models and can be used with multiple timing models. The amount of
resources needed to implement the functional partition in the FPGA depends on the
complexity of the modeled instruction set. Intel/MIT HAsim [87] and RAMP-Gold [112]
are examples of timing-directed simulators that have been built on FPGAs.

Functional-first simulators are built on the presumption that timing has no effect
on functionality. Unlike a time-driven simulator, functionality is performed before timing.

22

1.2 Architectural simulators using FPGAs

It produces an instruction trace that includes the opcode, source registers, destination
registers, and data addresses. A timing model implemented on an FPGA is compa-
rable to a functional-first simulator. The hardware essentially implements a significant
amount of tightly connected concurrent activities. An instruction trace can be created by
a simulator, a virtual machine, or a microprocessor configured to generate traces. The
functional-first simulation of a 4-way superscalar processor using an FPGA is demon-
strated in ReSim [50]. It operates at around 28 MHz, which is significantly quicker than
a software-based timing system model.

A timing-first simulator [79] is composed of a performance simulator that imple-
ments the desired functionality. It is possible to consider it as a timing-directed simulator
or even as a monolithic simulator. It does not have to implement the whole instruction
set or peripheral functions, nor does it have to be accurate. The functional simulator
is responsible for identifying and fixing any errors or omissions that may occur. To our
knowledge, no timing-first simulators have been developed or accelerated on an FPGA.
This is possible with an FPGA-based performance model and a software-based func-
tional model. Timing-first simulators are limited by the speed of the slowest component.
Such a technique would maintain the constraints of timing-first simulation, such as the
inability to simulate alternative memory models and errors induced by any performance
simulator mistake or omission.

The speculative functional-first (SFF) simulator is based on the functional first
simulator but provides opportunities for parallelization and FPGA speed up while solv-
ing the accuracy problem. The functional model of an SFF simulator operates and
initially populates the trace without input from the timing model. Instead of assuming
that the information is correct, the timing model reads information from the trace as
needed. Since the functional model is executable in software, it is possible to extract it
from an existing simulator. UT-FAST [23] is an example of a speculative functional-first
simulator. It is presented in the section 1.2.4.

1.2.4 FPGA-accelerated microarchitecture simulation projects

In the 1990s and early 2000s, many academics turned to FPGAs as efficient pro-
totyping and emulation tools for ASICs. Additionally, FPGAs would be used as a de-
vice for microarchitectural models written in RTL rather than directly implementing an
ASIC design. Initiated in 2007, the research accelerator for multiple processors (RAMP)

23

Chapter 1 – Heterogeneous System-on-Chip achitectures

project [120] focuses on the vast majority of research in this field. The objective of
the RAMP project was to build a shared infrastructure for full-system simulation that
would be more effective than traditional software simulators for studying thread-parallel
machines. Indeed, the FPGA’s highly parallel, programmable execution substrate is
suitable for the requirements of multi-core simulation. It can provide multiple orders of
magnitude speedup over pure software simulators for detailed models, as shown in
different papers [112, 87]. Efforts to explore FPGA-accelerated simulation gave rise
to several simulators: FAST, ProtoFlex, RAMP Gold, and HAsim. These simulators all
employ functional and timing model partitioning, but they differ in how the two parti-
tions are mapped to the execution platform (composed of the FPGA board and the
host computer). This has led to different architectures of simulators as classified in [79,
24]: time-directed (RAMP-Gold, HAsim), functional-only (ProtoFlex), and speculative
functional-first (FAST):

— FAST [22, 21], developed at the University of Texas, was a cycle-accurate x86
simulator that leveraged a split, CPU-hosted functional model and FPGA-hosted
timing model. It uses a functional software emulator, QEMU [7], highly modified to
introduce instruction trace generation, checkpointing, and rollback. This emulator
feeds the resulting instruction trace into a timing model implemented in a FPGA.

— RAMP-Gold [113], developed at Berkeley, uses a FPGA to perform cycle-accurate
simulation of multi-core. It can simulate up to 64 cores on a Xilinx Virtex-5 FPGA.
RAMP-Gold comprises two main in-FPGA components: a functional model of the
cores, which time multiplexes the multiple instances of the simulated core, shar-
ing memory and cache resources between the models; and a separate timing
model, which drives the functional model’s scheduler.

— ProtoFlex [26], developed at Carnegie Mellon University, uses a pipelined core
simulation engine, called BlueSPARC, in FPGA to simulate up to 16 instances of
a SPARC processor model. ProtoFlex supports full system simulation by falling
back to a Simics [75] based simulation when the FPGA model cannot simu-
late some parts of the simulation. It can boot commercial operating systems.
ProtoFlex was the first system to introduce hierarchical simulation and host multi-
threading as techniques for reducing the complexity of simulator development
and to virtualize hardware resources [25].

— HAsim [87], developed at MIT and Intel, used timing and functional models on

24

1.2 Architectural simulators using FPGAs

FPGA. Additionlly, it provided more detailed models of the pipeline and the mem-
ory hierarchy. It is presented in more detail section 2.2.1.

The use of FPGAs for microarchitecture simulation was investigated around the
same time by other teams unrelated to the RAMP project. DART [118], an FPGA-based
NoC simulator, is a good example. It uses multithreading, like many RAMP simulators,
but it also uses NoC-specific model abstractions to allow a wide range of model pa-
rameters to be changed at runtime.

The RAMP project has led to FPGA accelerated model execution (FAME) tech-
niques [113], which summarize many of the contributions of the FPGA-accelerated
simulation work into three dimensions: host decoupling, abstract RTL, and multithread-
ing. RAMP-Gold and HAsim utilize all three techniques:

— When using the host-decoupled FPGA technique, a target simulation cycle is
executed over many FPGA cycles. With host decoupling, ASIC structures that
don’t map well to FPGA fabric can be replaced with structures that are better on
FPGA but take more host cycles to execute. This saves FPGA resources and
improves host-cycle time.

— Components of an abstract-RTL FPGA-accelerated simulator do not exactly model
the implementation RTL. Through abstraction, components of the target can have
their complexity reduced, allowing for a reduction in the amount of FPGA re-
sources required.

— A multithreaded FPGA-accelerated technique uses a single physical datapath
on an FPGA to mimic many virtual instances of a block or module inside the
target. Each virtual instance has a copy of the target state, and the scheduler
chooses which virtual instance to simulate during each host cycle. Multithreading
increases target mapping efficiency by reusing expensive logic over many target
state copies, which can be mapped onto many FPGA BRAMs and registers.

The RAMP project and FPGA-accelerated simulation did not impress the computer
architecture community. There are several technical reasons for this, including the ab-
sence of a strong open ISA at the time (only SPARC was available), which in part mo-
tivated the development of RISC-V. A RISC-V Chisel-to-Verilog simulator 1 converter
transforms a simulator written in a new hardware construction language (Chisel) de-
veloped by UC Berkeley into Verilog HDL. After that, processor simulation can be run

1. https://riscv.org/wp-content/uploads/2015/01/riscv-chisel-tutorial-bootcamp-jan2015.pdf

25

Chapter 1 – Heterogeneous System-on-Chip achitectures

directly on FPGA. The ADEPT Lab designed FireSim [60], an open-source, FPGA-
based hardware emulation framework hosted in the public cloud, to reduce the cost of
performing fast and accurate full-system simulation. Both academics and industry have
used FireSim, particularly for evaluating the performance of new microarchitecture fea-
tures implemented as Rocket Chip extensions. FireSim uses the public cloud, namely
Amazon Web Services’ Elastic Computer Cluster (EC2), to solve many of FPGA-based
simulation’s issues by providing elasticity, scalability, and reduced capital expenses.

1.3 Heterogeneous SoC design

1.3.1 SoC design Flow

Figure 1.5 – SoC design flow overview [54].

The SoC design flow is not an integrated flow or a single method that produces the
chips. Despite the increasing use of computer-aided design (CAD) tools, the standard
SoC design cycle is still quite complicated and requires the use of a large number of
dedicated tools by expert architects. Figure 1.5 illustrates the design flow for SoC and

26

1.3 Heterogeneous SoC design

shows the process descriptions that provide a common understanding of SoC project
operations from exploration to production [54]. It starts with a system design (explo-
ration, planning, and modeling); after that, designers manually build the digital design
in register transfer level (RTL) using Verilog or VHDL or use high-level synthesis (HLS)
tools. Once all physical designs are complete and validated, the team develops pro-
totype versions and low-level software. Finally, hardware and software are integrated,
and application software is developed for the final product. Although the process is
iterative, it is usually presented as a single iteration.

Low-level languages such as Verilog and VHDL, which are used in most hardware
designs today, require lots of knowledge to create efficient designs. In order to scale
with rapid SoC design cycles, the design process must be faster. Hardware engineers
must use higher-level programming languages and tools for the next generation of
SoC designs. Additionally, higher levels of abstraction in hardware design could make
it easier for application programmers to test high-level algorithms in hardware. To in-
crease the degree of abstraction in hardware designs, academics and industry are
increasingly focusing on HLS tools that transform a high-level algorithm description
into low-level RTL code. It is possible to automate the process of converting functional
requirements to RTL using HLS. Specifically, HLS claims to accelerate the design flow
using an error-free technique that enables designers to separate the functional behav-
ior definition from the micro-architectural choices for its implementation. Although HLS
is necessary to improve the degree of abstraction in SoC architecture, some limitations
remain. For instance, HLS tools provide a complex design cycle to create the optimal
RTL for a single component but not for system integration.

System-level design has been recommended for years [100, 27, 77] but computer-
aided design (CAD) tools still provide little assistance during the exploration and plan-
ning stages. Design work often begins with an exploration to understand the require-
ments and target ASIC technology early to acquire an idea of the feasibility and con-
straints of the implementation system. A top-down design approach is typically em-
ployed, with the construction of a system architecture model that predicts system
power, performance, and area. Once the architectural model is complete, it can be
evaluated as a simulation model to provide system architecture decisions. The design
and validation processes are prolonged due to the difficulties of integrating a growing
number of heterogeneous components. My thesis addresses this difficulty and uses
commonly used simulation technologies to facilitate the system design of complex sys-

27

Chapter 1 – Heterogeneous System-on-Chip achitectures

tems. Recently, there have been attempts by industry and academics to assist in the
development of SoCs, which are discussed in the following section.

1.3.2 Design frameworks for heterogeneous-accelerator SoC

We are seeing many efforts aimed at proposing novel architectures for a wide range
of applications and new tools to design heterogeneous-accelerator SoCs. There are
frameworks that can simulate several heterogeneous components, such as special-
ized accelerators and processors or heterogeneous multi-core architectures. Similar
frameworks are also being developed to enable RISC-V processors, which can be im-
plemented in a variety of application domains and are increasing in popularity. There
are several projects that can design and generate FPGA prototypes. In an effort to aid
in the development of SoCs, researchers and engineers alike have created CAD tools
for HLS and programming languages that increase the abstraction level in hardware
design.

Simulation of Accelerator-Processor coupling

Co-processors. Several CPU cores operate on a specific problem, and support-
ing chips have traditionally been referred to as "coprocessors." There is a trend to use
coprocessors to offload and accelerate domain-specific applications in order to obtain
significant performance improvements and energy/power reductions. For example, the
most well-known coprocessor in the history of the PC is the mathematical coproces-
sor, which later became the floating point unit, or FPU. Technically, an accelerator is a
coprocessor, but it has more independence than coprocessors since it is not responsi-
ble for completing an entire process; instead, the CPU ignores it except to receive the
final results or to determine when the work is complete. Suleyman et al. [101] present
a generic methodology for designing domain-specific heterogeneous many-core archi-
tectures based on accelerators integrated into simple cores that is comparable to ours.
They reveal the steps undertaken to integrate the accelerators into an open source core
and use them via custom instructions. They automate custom hardware generation to
facilitate design space exploration of heterogeneous architectures. A trace-driven sim-
ulation framework for multi-processors using FPGA is presented in [40]. The simulator’s
input is a specially developed compact execution trace (CET) of the application. The
application trace is generated in an architecture agnostic executable format that the

28

1.3 Heterogeneous SoC design

timing model can directly interpret on the FPGA to re-create the original application’s
execution events.

Accelerator-centric architectures. Simulation platforms adapted to accelerator-
centric architectures are proposed in PARADE [27] and gem5-Aladdin [106]. Both pro-
vide simulation platforms that enable the exploration of many accelerator designs. PA-
RADE is a simulation platform that can automatically generate a high-level synthe-
sis (HLS) description of the accelerator when the AutoPilot [123] and Synopsys De-
sign Compiler 2 are used. Unlike PARADE, gem5-Aladdin models accelerators from a
dataflow representation extracted from the profiling of the dynamic execution of the pro-
gram, enabling fast design space exploration. The gem5 simulator [14] is then used for
the simulation. With such approaches, the designer is faced with the problem of a trade
off between accuracy and speed of the simulation. To speed up the simulation, there
are approaches where performance models are deployed on FPGA-based platforms,
as presented in Chapter 2.

Heterogeneous Systems-on-Chip using RISC-V

Recent platforms are built with a processor-centric perspective, and most of them
are based on the RISC-V open-standard instruction set architecture (ISA). Using the
Chisel RTL language, the Rocket Chip Generator project creates SoCs with many
RISC-V cores linked through a TileLink bus [68]. Celerity [33] uses the Rocket chip’s
custom co-processor interface (RoCC) to combine five Rocket cores, an array of 496
smaller RISC-V cores, and a binarized neural network (BNN) accelerator developed
with HLS it in a 385-million-transistor circuit. Blackparrot [92] is a multicore RISC-V
architecture that provides some support for the integration of loosely coupled accelera-
tors. At the moment, it supports fully-coherent and non-coherent caches, out of a total
of four that are supported by ESP. As part of our research, we also developed RISC-V-
based system-on-chips (SoCs) with support for a number of different cache-coherence
options. An adaptive tile-based many-core architecture known as AGILER [59] is pre-
sented as a solution for heterogeneous RISC-V-based computers. The suggested ar-
chitecture is made up of heterogeneous modular multi-/single-core computing tiles that
are both adaptive and modular. These tiles support 32-bit and 64-bit RISC-V instruction
sets and have various memory hierarchies. In order to provide a high level of system

2. https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test.html

29

Chapter 1 – Heterogeneous System-on-Chip achitectures

scalability, the communication between tiles is designed to be based on a scalable
network-on-chip architecture. Run-time adaptability is supported by AGILER thanks
to a specialized internal reconfiguration manager that allows for dynamic and partial
reconfiguration across Xilinx FPGAs.

FPGA-based full-system prototyping

There are several projects with the ability to full-system design and generate FPGA
prototypes. Embedded Scalable Platforms (ESP) [93] offers RTL, high-level synthesis
(HLS), and machine learning frameworks as three accelerator flows. Each of the three
design flows merges into the ESP automated SoC integration flow, which creates the
required hardware and software interfaces to quickly enable full-system prototyping on
FPGA. The ARA Prototyper [20] is an FPGA-based technique that uses the ZYNQ sys-
tem to create a sea of accelerators managed by the processor cluster. It has the same
objective as in my research, which is to enable quick system-level Design Space Ex-
ploration (DSE) with FPGAs. However, the overall architecture is prototyped, restricting
the scalability of the desired design, and DSE at several layers of abstraction is dif-
ficult to perform. Cosmos [94] leverages both HLS and memory optimization tools to
improve exploration of the accelerator design space. Centrifuge [55] is able to generate
and evaluate heterogeneous accelerator SoCs by combining HLS with FireSim [60], a
FPGA-accelerated simulation platform. All these works provide design frameworks for
evaluating accelerators, and it is up to the user to select the optimal one. Unlike these
projects, we aim to provide a unified framework for the design, simulation, and opti-
mization of the architecture of accelerator-based SoCs.

High-level synthesis

Currently, low-level languages, such as Verilog and VHDL, are primarily used to
program hardware designs. Using low-level languages to create efficient designs takes
skill. Even for hardware experts, it’s time-consuming. A method of design that is too
slow will not scale with SoC design cycles or hardware accelerators. The low-level pro-
gramming style prevents application programmers with minimal expertise in hardware
design from transforming apps into hardware. In addition, the history of software de-
velopment shows the value of higher abstraction levels to tackle growing complexity.
High-level synthesis tools that turn a high-level algorithm description into low-level RTL

30

1.3 Heterogeneous SoC design

code are gaining popularity in academia and industry as a way to increase the degree
of abstraction in hardware designs. High-level synthesis tools can be classified into
three categories that are based on hardware-description language, C-like language ,
and high-level language.

Hardware-description language. Bluespec [84] is a hardware-description language
that allows designers to specify hardware with the same accuracy as RTL but in a
more compact form. Similar to Verilog, Bluespeculies requires the definition of mod-
ules, wires, and blocking and non-blocking assignments for specifying hardware com-
ponents. Bluespec provides more expressive types, overloading, encapsulation, and
flexible parametrization to facilitate the reuse of code. Using the Bluespec compiler,
RTL descriptions corresponding to Bluespec programs are generated.

Designers may decide to use languages developed for a specific application domain
like C, C++, SystemC, and OpenCL. These languages benefit from a compact and
high-level syntax, which is very efficient for representing the target code. They are
used in almost all high-level synthesis tools from CAD vendors (Cadence C-to-Slicing
Compiler, Synopsys Synphony C Compiler, Mentor Graphics Catapult C, Intel Quartus,
and Xilinx Vivado). The quality of the RTL designs created by synthesis processes is
highly dependent on the quality of the input source code.

C-like language. Designers may decide to use languages developed for a specific
application domain like C, C++, SystemC, and OpenCL. These languages benefit from
a compact and high-level syntax, which is very efficient for representing the target code.
They are used in almost all high-level synthesis tools from CAD vendors (Cadence
C-to-Slicing Compiler, Synopsys Synphony C Compiler, Mentor Graphics Catapult C,
Intel Quartus, and Xilinx Vivado). The quality of the RTL designs created by synthesis
processes is highly dependent on the quality of the input C-like programming language.

High-level language. There are languages that allow designers to retain control
over all the details of the generated hardware. These languages leverage more com-
plex constructs and more powerful semantics to enable a compact and less error-prone
description of the target design. Chisel [6] is a popular example of these languages,
which define the necessary data types and constructs to embed hardware descriptions
in Scala. Chisel provides Scala libraries for defining hardware datatypes as well as
procedures for compiling source code into either a cycle-accurate C++ emulator or a
Verilog implementation.

31

Chapter 1 – Heterogeneous System-on-Chip achitectures

1.3.3 Design space exploration

Design space exploration (DSE) is the process of determining the design solutions
that best meet the required design criteria. DSE methods should come up with designs
quickly while meeting the given requirements (e.g., power, performance, and area).
This kind of exploration is obviously complicated, as the search may involve tentative
designs that come from choosing specific parameter values, configurations, or even
algorithmic alternatives. Most of the time, developers can evaluate a design in two
ways: empirically (execution/simulation) or analytically (modeling). Designs can be ei-
ther single-objective or multi-objective with respect to the optimization criteria. A single-
objective optimization problem aims to identify the optimal solution for a single criteria
or metric, such as execution time, or a combination of this metric with energy consump-
tion or power dissipation metrics. A multi-objective optimization problem is one where
you have to find the best solutions for many different, often competing, goals.

In some cases, an exhaustive search can be conducted, or heuristic methods can
be used to find the best design solutions. However, in the vast majority of cases, an
exhaustive exploration of this space, even if it is done automatically, is not possible. Dif-
ferent approaches to DSE use different kinds of algorithms, including random search,
evolution, and swarm algorithms, as well as machine learning [16]. Due to the com-
plexity and speed of this search field, automation of design choice selection, creation,
and evaluation is essential. Existing work for DSE utilizing CAD tools can be divided
into four approaches:

— First of all, local-search heuristics are the most common since they can be used
to find the Pareto-optimal ones [5]. These techniques generate a high number of
trial synthesis tasks in each iteration, but a major fraction of the synthesis outputs
are discarded as the algorithm progresses.

— The second strategy predicts the quality of results (QoR) rather than invoking ac-
tual synthesis jobs. The iterative-refinement framework outperforms local-search-
based frameworks in general [78]. By merging accelerator-core design with com-
mercial HLS tools and industrial physical-synthesis tools, the effectiveness of
DSE is confirmed.

— The third approach entails pre-pruning the design space to reduce the search
space. This approach still requires significant design skill and is limited to a small
set of applications [102].

32

1.3 Heterogeneous SoC design

— The fourth approach derives Pareto points from well-defined "knob-setting to
QoR" mapping functions [108].

Electronic design automation (EDA) tools are important to the evolution of the Very
Large-scale Integration (VLSI) industry. Currently, as the technological node scales
down, design complexity continues to rise. In order to ensure timing closure, reliabil-
ity, and manufacturability, more sophisticated algorithms and optimizations have been
integrated into EDA tools, therefore increasing their complexity. The purpose of CAD
tools is to determine the settings in CAD tool scripts that, after synthesis, result in op-
timal circuit performance. It can be stated intuitively as an optimization issue, but the
synthesis process is too complex to be modeled analytically. The solution space can-
not be fully searched by designers, nor can they deduce a closed-form solution. In the
design space, optimization should be addressed in an exploratory manner.

Bayesian hyperparameter optimization

The field of architecture has found many uses for machine learning (ML), and it is
now widely used for tasks such as design, optimization, and simulation [121]. Numer-
ous components, such as the core, cache, NoC, and memory, have already achieved
success with ML, with performance frequently exceeding that of previous state-of-the-
art analytical, heuristic, and human-expert solutions. These approaches are more pow-
erful than heuristic optimization in terms of convergence and the quality of the solutions
that are obtained. Bayesian hyperparameter optimization (also known as sequential
model-based optimization, SMBO) should be considered carefully when applying ma-
chine learning to design space exploration problems. The model is trained using input
features and output targets, with the result being a model that can predict the output
of new, unseen inputs. The strategy is to construct a probability model of the objective
function, which is then utilized to choose the most promising hyperparameters for eval-
uating the true objective function. Typically, the case for computer system workloads
consists of several discrete variables, i.e., categorical (e.g., boolean) or ordinal (e.g.,
choice of cache sizes), over which derivatives cannot even be formed. This approach
is referred to as black-box optimization and design space exploration in the computer
systems world.

Machine learning has evolved into an effective tool in the field of computer archi-
tecture. A survey by Penny et al. [91] shows that it can be used for design, optimiza-

33

Chapter 1 – Heterogeneous System-on-Chip achitectures

tion, simulation, and many other design processes. These techniques offer interesting
opportunities for architecture simulation, especially in the early stages of the design
process. As an example, Bhardwaj et al. present in [12] a Bayesian optimization-
based framework for determining the optimal hybrid coherency interface for many-
accelerator SoCs in terms of performance. Due to trade-offs between different criteria,
most computer architecture designs need multi-objective optimization (power, perfor-
mance, area, etc.). These are some of the many factors that have led to a new trend:
multi-objective hardware design, in which a single architecture is optimized for multi-
ple metrics simultaneously. HyperMapper [82] handles multi-objective optimization, un-
known feasibility constraints, and categorical and ordinal variables. This new approach
uses the user’s past knowledge when it is available. These features are common in
computer systems but not so common in systems made for space exploration. The
suggested method uses a white-box model, which, unlike neural networks, is easy
to understand and can help people understand the result produced by an automatic
search. They use and study the new technique to automate the static tuning of hard-
ware accelerators in the recently announced Spatial programming language, with the
goal of minimizing design run-time and computing logic while fitting on a target FPGA
chip. HyperMapper gives better Pareto fronts than state-of-the-art baselines, better or
comparable hypervolume indicators, and an 8x improvement in sampling budget for
most benchmarks.

1.4 Summary

The crisis caused by the scaling of technologies has pushed the semiconductor
industry in the direction of adopting innovative and emerging technologies. Because of
this shift in paradigm, the idea of a system-on-chip, or SoC, came to be characterized
as a design for a single chip that integrates numerous different kinds of components.
Heterogeneity makes SoC design and programming more difficult. For a few skilled
engineers who understand system-level trade-offs, how to build appropriate hardware,
and how to handle memory and power management, this may be a challenging job.
So, designers need tools that make it easy for them to develop heterogeneous SoCs.

Simulation is often used in the design of new computer architectures or in the study
of existing ones. It was found that an FPGA-accelerated simulator can improve the
speed of simulations and even make them possible to run on a powerful server using

34

1.4 Summary

FPGAs. FPGA-accelerated simulators have great potential for heterogeneous system
design. In hardware design and computer architecture, the issue of looking for com-
plex design spaces while considering simulation as a black-box function arises. As
the complexity of the SoCs develops, so does the importance and difficulty of finding
the optimal design. We explore the use of Bayesian optimization to solve a hardware
design challenge.

Our research aims to contribute to the design process by helping with the develop-
ment of new SoC designs that combine more heterogeneous components. The result
is a flexible design methodology that promotes simulator reuse and supports system
design space exploration. The following three chapters will highlight three major contri-
butions I made during my PhD: FPGA-accelerated simulation; integration of a pre-RTL
accelerator model into the FPGA-based simulator; and determining the optimal config-
uration architecture for heterogeneous SoCs.

35

CHAPTER 2

FPGA-ACCELERATED SIMULATION OF

HETEROGENEOUS ARCHITECTURES

This chapter mainly focuses on FPGA-based simulation, specifically building exper-
iments to explore the capabilities of the HAsim FPGA-accelerated simulator. First of
all, an overview of the HAsim framework is presented. We introduce LEAP, an operat-
ing system that provides a platform for developing FPGA-based applications, and the
HAsim simulator. We also present Bluespec System Verilog and its simulator, which is
used to specify and verify simulation models on HAsim . Secondly, we present a case
study on the building of RISC-V processor models (unpipelined, in-order-pipelined, and
out-of-order). Several simple benchmarks have been defined to make sure that our
models of processors are correct. Thirdly, we exploit the fact that the simulator is inde-
pendent of the hardware platform by running experiments on AMD/Xilinx and Intel/Al-
tera FPGAs. In an effort to deploy the FPGA-based simulator on an Intel CPU-FPGA
platform, we implemented a communication channel between the CPU and the FPGA.
The communication channel has been evaluated through a series of experiments. Fi-
nally, we illustrate the FPGA-accelerated microarchitecture simulation challenges by
describing the obstacles to approaching and developing them.

36

Contents
2.1 Introduction . 38

2.2 FPGA-based processor simulation with HAsim 40

2.2.1 HAsim framework overview . 42

2.2.2 The LEAP operating system for FPGA-based applications . . . 43

2.2.3 Bluespec system verilog . 46

2.3 A case study with the design of RISC-V models within the HAsim
framework . 49

2.3.1 Semantic of function partition 50

2.3.2 Timing model creation . 51

2.3.3 Evaluation results . 54

2.3.4 Targeting the Xilinx Virtex-7 FPGA platform 56

2.4 Deploying the HAsim simulator on a Intel CPU-FPGA platform . . 58

2.4.1 Intel Xeon+FPGA platforms . 59

2.4.2 Implementing communication channels support for Intel CPU-
FPGA platform . 60

2.4.3 Validation . 63

2.5 FPGA-Accelerated microarchitecture simulation challenges . . . 65

2.6 Conclusions . 70

37

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

2.1 Introduction

When considering designing heterogeneous architectures, the number of possible
design combinations leads to a huge design space with subtle trade-offs and design
interactions. To determine which design is optimal for a given application, it is nec-
essary to simulate with accuracy many possible solutions. Although software-based
simulation has significantly contributed to the validation of computer architecture re-
search, its capacity to rapidly evaluate design space points may be reducing. Tan et
al. [113] argue the move to multi-core has hampered the performance of pure software-
based simulators since multi-core simulation targets exhibit complex timing-dependent
non-deterministic behavior. Such behavior needs detailed cycle-level simulation. Unfor-
tunately, software-based simulators are notoriously challenging to parallelize, that is to
say, to take advantage of multi-core host machines, and as a result, their performance
continues to decline.

To tackle this simulation gap and perform cycle-accurate simulation quickly, perhaps
the only way is to use dedicated hardware to accelerate the most complicated parts of
the target architecture model. Several research groups have been exploring the use
of hardware to build various forms of hardware-accelerated architecture simulators.
There are successful projects that use FPGA to implement all or part of the simulation
(usually micro-architecture and interconnect models at least), and the industry makes
extensive use of large FPGA-based modeling and prototyping systems [111]. This re-
search has led to FPGA accelerated model execution (FAME) techniques, where the
desired target architecture is mapped to an FPGA for evaluation [113]. Another ex-
ample of specialized hardware is the use of Graphics Processing Units [95]. Although
FPGA can help improve simulators’ performance, designing a performance model tar-
geting an FPGA is more complicated than designing a software simulator. Moreover,
once the FPGA has been designed, it also needs to be debugged. Therefore, the risk
is that the idea of the deployment of performance models on FPGA will fail not because
of a lack of performance but because of increased model development time. To over-
come these development challenges, we advocate for a platform that offers a set of
module abstractions that simplify the construction of FPGA-based simulators within a
convenient infrastructure.

latency-insensitive environment for application programming (LEAP) [45] was de-
signed at Massachusetts Institute of Technology in 2014. It offers fundamental device

38

2.1 Introduction

abstractions for FPGAs and a suite of standard I/O and memory management utili-
ties to address these concerns. LEAP works as a software-based operating system by
providing standard, abstract interfaces to underlying hardware resources, automated
resource management, and efficient system libraries. Thanks to a powerful compiler
that supports automated implementation decisions, LEAP can be very efficient. LEAP
is compatible with several FPGA platforms from AMD/Xilinx and Intel/Altera. It was
exploited by Intel and MIT for a variety of FPGA projects, including the HAsim perfor-
mance modeling framework [87], an H.264 decoder [46], an OFDM framework [83], an
SSD [67], and other projects.

The classical design methodology of a software-based simulator generally consists
of a partition into a functional model that is responsible for correct ISA-level execu-
tion of the computer system and a timing model that predicts performance and other
metrics. In the context of FPGA-based simulators, partitioning along the functional and
timing boundaries allows for a variety of mapping choices [79, 24]. By selecting which
parts of the simulator are mapped to the FPGA and how these components interact,
different simulator organizations can be envisioned. HAsim is based on the principle
of a timing-directed simulation [88]. It places both partitions on the FPGA in order to
minimize communication latency. It uses the bluespec system verilog (BSV) [84] high-
level synthesis language and runs on top of the LEAP virtual platform infrastructure,
which allows it to run on different FPGAs without recoding. HAsim is designed to con-
struct efficient simulators from a library of reusable components rather than emphasize
any particular target processor. The key idea is to reduce development efforts by re-
ducing the amount of code the architects must change to perform their design space
exploration.

Besides, cloud service providers are investing more in FPGA infrastructure to offer
it to clients. Amazon web services (AWS) 1 and Alibaba Cloud 2, both using AMD/Xil-
inx FPGAs, started offering FPGA-based infrastructure as a IaaS (Infrastructure as a
Service). Likewise, Intel is developing a family of FPGA accelerators for data center ap-
plications. Through the Intel hardware accelerator research program (HARP) [58] and
the IL academic compute environment (IL ACE) 3, they are making a variety of plat-
forms available to academics. In 2016, Intel initiated the HARP program, consisting of
a single chip combining an FPGA and an Intel Xeon CPU. It is designed to accelerate

1. https://aws.amazon.com/ec2/?nc1=hls
2. https://eu.alibabacloud.com/en
3. https://wiki.intel-research.net/Introduction.html

39

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

the development of new technologies. It enables a complete redesign of the traditional
architectures used for accelerated computing to be accomplished. The IL academic
compute environment (IL ACE) enables and advances academic research in a wide
range of fields. It is now comprised of servers powered by Intel Xeon processors and
FPGAs. The Intel platform makes it possible to create an innovative hardware solution
that properly adapts to the software that is being run. The open programmable ac-
celeration engine (OPAE) 4, as well as a common hardware-side core cache interface
(CCI-P) 5, are shared by the whole family of processors. This design is intended for
large workloads in data centers as well as application-specific accelerators. According
to researchers at Stanford University’s Graduate School of Computer Science, cloud
service providers are investing more in FPGA infrastructure, which will enable access
to more powerful platforms. An objective of the research is to determine whether cloud-
based FPGAs can accelerate computer architecture simulations. The following are the
contributions presented in this chapter:

— Through a case study, we demonstrate the potential of the HAsim framework
for the building of performance models for the RISC-V instruction set defined at
Berkeley. By using the HAsim framework, we modeled an unpipelined, in-order-
pipelined, and out-of-order RISC-V processor and evaluated their performance.

— The study of FPGA-based application support platforms is independent of the
physical platform. A cloud-based simulator has been developed using the Intel
CPU-FPGA. Using OPAE and the CCI-P software libraries, we have developed a
communication channel that enables FIFO-governed bidirectional data exchange
between the Xeon processor and the FPGA.

2.2 FPGA-based processor simulation with HAsim

The research accelerator for multiple processors (RAMP) project was started in
2005, and it aimed to create a shared full-system simulation infrastructure for studying
thread-parallel machines. In section 1.2.4 of Chapter 1, four FPGA-based simulators
are described. These are the most popular RAMP projects and are summarized in Ta-
ble 2.1. ProtoFlex is a simulator at the architecture level with 16-way host multithreading

4. https://github.com/OPAE
5. https://www.intel.com/content/www/us/en/docs/programmable/683190/1-3-1/core-cache-

interface-cci-p.html

40

2.2 FPGA-based processor simulation with HAsim

of a single functional model hosted on an FPGA. Through a process called "transplan-
tation," ProtoFlex could switch between running on an FPGA and running on a CPU.
FAST is a cycle accurate x86 simulator that uses a functional model hosted by the CPU
and a timing model hosted by the FPGA. RAMP-Gold uses 64-way host multithreading
and timing and functional models hosted on an FPGA.

FAST-
2007[22]

Protoflex-
2009[26]

RAMP Gold-
2010[113]

HAsim-
2011 [87]

Open Source No Yes Yes Yes
Cores/Speed 1/ 1 MIPS 16/ 62 MIPS 64/ 50 MIPS 16/ 1.6 MIPS
Cycle Accurate Yes Yes Yes Yes
Network on Chip No No Yes Yes
Code Reuse No No No Yes
Full System Simulation Yes Yes Yes Yes
Multi-threading No Yes Yes Yes
Programming Language Bluespec Bluespec HDL Bluespec
Functional/Timing CPU/FPGA FPGA/CPU FPGA/FPGA FPGA/FPGA
Simulator Architecture SFF Functional Timing-directed Timing-directed
Comments Bottleneck Bottleneck No Pipeline &

NoC
Trade-off accu-
racy & speed

Table 2.1 – Comparison of Research Accelerator for Multiple Processors (RAMP)
projects.

Likewise, HASim also used timing and functional models that were implemented on
an FPGA. Its pipeline and memory hierarchy models were more detailed. In addition,
research was conducted to determine how to divide HASim across multiple FPGAs.
Using two FPGAs allowed virtual instances to share resources more efficiently, allowing
HASim to host eight times as many cores. HAsim appears to be a good choice for a
depth study for the following reasons:

— Both partitions (functional and timing) are placed on the FPGA. This leads to a
more traditional partitioning, whereby the functional partition does not need to
speculate as to the timing model’s direction as it can receive feedback directly
after every instruction.

— HAsim uses a migration scheme so that rare events that are difficult to place
on the FPGA, such as system call instructions, can be farmed out to software
regardless of whether they occur in the functional or timing partition. However,
this requires being able to interface with a software simulator.

41

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

— Compared to RAMP Gold, HAsim has many similar characteristics (time-directed
architecture, functional/timing on an FPGA, time-multiplex simulator, etc.). How-
ever, RAMP Gold does not model a realistic core pipeline and does not model
micro-architectures that use branch prediction or out-of-order execution.

— HAsim also approaches reducing development effort. It enables the reuse of
source codes, uses a high-level hardware description language, and is built on
top of a virtual platform, which makes FPGA easier to use.

2.2.1 HAsim framework overview

The "Hardware-based Architecture Simulator" (HAsim) is an open-source infras-
tructure developed at MIT, mainly written in Bluespec System Verilog. It is used to build
processor models and has a suitable environment for creating timing models for pre-
RTL FPGAs. The structure distinguishes between functional and timing components.
Timing is separated from the FPGA clock, which enables hybrid computing, in which
software handles complex but infrequent tasks. HAsim is built on top of a virtual plat-
form and is used to provide operating system services to FPGAs. This virtual platform
is LEAP, and it can be used for a wide range of applications.

HAsim is designed to construct efficient simulators from a library of reusable compo-
nents rather than emphasize any particular target processor. The key idea is to reduce
development efforts by minimizing the amount of code the architects must change to
construct their space exploration designs. HAsim is divided into four major components,
as shown in Figure 2.1:

— The functional partition handles correct ISA level execution of the instruction
stream.

— The timing partition (or timing model) is responsible for tracking micro-architectural
specific timings (such as branch predictors and cache misses).

— A collection of predefined modeling components that serve as a library (such as
branch predictors and caches).

— The unmodeled component refers to all functionality not directly related to simu-
lation (including the ability to track statistics and parameters, as well as the virtual
platform necessary to interact with the host CPU).

42

2.2 FPGA-based processor simulation with HAsim

Figure 2.1 – HAsim Framework Overview.

HAsim is a hybrid model comprising code running on a general-purpose host CPU
as well as on an FPGA. This scheme leverages the strengths of each physical platform:
the FPGA for fine-grain parallelism and the CPU for rare but challenging implementa-
tion events, such as system calls.

2.2.2 The LEAP operating system for FPGA-based applications

FPGAs provide significant power and performance advantages over more tradi-
tional sequential architectures for a wide range of applications. In spite of these bene-
fits, FPGAs have only been used in a small number of specialized fields so far. FPGA
programmers are currently exposed to all of the essential system details that software
operating systems have long since abstracted away. The problem is that this makes
it impossible for FPGAs to be used in more general systems because of the difficulty
of programming them. Latency-insensitive Environment for Application Programming
(LEAP) 6 is a set of modules that provide a straightforward foundation for developing
FPGA-based applications. It is similar to an operating system, but its compilation sup-

6. https://github.com/LEAP-Core

43

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

port is more extensive. Interfacing with the physical devices attached to the FPGA is
one of the most challenging aspects of FPGA development. LEAP abstracts physical
devices into a number of fundamental abstraction layers. On top of these abstraction
layers, LEAP offers a library of generally helpful services. Because the LEAP virtual
platform offers a collection of virtualized device abstractions, FPGA developers may fo-
cus on implementing core functionality rather than debugging low-level device drivers.
LEAP provides a library of generally useful services built on top of these abstraction
layers. LEAP facilities include communication services, memory services, and latency-
insensitive channels.

Communication services

When instantiating modules, most hardware-design languages impose a rigid com-
munication hierarchy. This has the unintended consequence of adding charges to a
child’s interface and leading to changes for the parents. Pellauer et al. [86] solve this
problem by "softening" the rigid communication structure, hence the name "soft con-
nections" for their technique. The user can define connection endpoints that are au-
tomatically connected at compilation time rather than by the user. This technique pre-
serves modularity by allowing the designer to specify a logical communication topology
that is distinct from the physical implementation. The user does not link the endpoints;
instead, static elaboration is used to do it automatically. Soft Connections maintains
modularity by allowing individual modules to be swapped out without affecting the in-
stantiation hierarchy as a whole. They are made up of three basic primitives: send, re-
ceive, and chain, each of which can be customized in a variety of ways. Send-Receive
pairs behave similarly to FIFO channels, whereas chains are broadcast primitives.

To facilitate typed communication methods between an FPGA and an external soft-
ware process, LEAP offers a typed asynchronous request-response protocol known as
Remote Request Response (RRR). The user creates services whose servers exist on
either the FPGA or in software, with the client located on the other end of the commu-
nication chain. The interface that each server exposes is defined by the end user. At
compile time, RRR stub compilers create the marshaling, demarshalling, and multiplex-
ing code that is used to connect the user code to the underlying LEAP communication
channels, which is then executed by the user code. The RRR interface abstracts away
almost all of the complexities related to communicating between an FPGA module and
a software module, allowing for more efficient communication.

44

2.2 FPGA-based processor simulation with HAsim

Memory services

LEAP scratchpads are hierarchical storage structures that provide the same inter-
face as block RAMs but allow the allocation of larger arrays than what an FPGA can
support. They are a form of abstraction that creates and maintains numerous self-
contained memory arrays inside a massive underlying store in a dynamic manner. Au-
tomatic caching of scratchpad accesses happens at many levels, from set-associative
caches based on shared on-board RAM to private caches stored in FPGA RAM blocks.
In the LEAP framework, scratchpads are plug-in replacements for on-die RAM blocks.
Additional libraries facilitate the management of heaps inside a storage set. Similar to
how software is made, LEAP scratchpads let the architect of hardware focus more on
basic algorithms and less on managing memory. HAsim makes use of LEAP scratch-
pads to facilitate the simulator’s scaling to larger multicore targets. Usually, the data
space needed to simulate the CPU caches is too large to fit on the FPGA.

Latency-insensitive channels

LEAP separates logical and physical communication using latency-insensitive chan-
nels (LI) to make communication between the FPGA and CPU easy and portable.
These channels are implemented as simple FIFOs in hardware. Designs are built such
that processing only occurs when data is available in input FIFOs or when output FIFOs
have sufficient space. As with concurrent FIFO modules, latency-insensitive channels
provide basic enqueue and dequeue operations as well as status methods (such as
notFull and notEmpty) for the user application to consider in deciding when to transmit
and receive data.

The structure of the virtual platform used by HAsim is shown in 2.2. It illustrates the
fundamental interactions between the simulator and the platform. Multiple distributed
services on the CPU and the FPGA are able to communicate with one another thanks
to a collection of virtual devices and a communication protocol called Remote Request-
Response (RRR). The key advantage of this method is its mobility. Without modifying
the program, the virtual platform may be transferred to a new physical FPGA platform.
Developers just have to rewrite low-level device drivers. LEAP provides a common
set of interfaces for the FPGA to communicate with the outside world, which reduces
development time. Thus, it is expected that the majority of FPGA-based simulators will
be hosted on hybrid computing platforms consisting of one or more FPGAs and one or

45

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

Figure 2.2 – The HAsim simulator is based on the LEAP Virtual Platform [65].

more CPUs. In a hybrid CPU/FPGA system, the platform is becoming more accessible
for sharing tasks between the FPGA and the CPU through communication protocols
such as remote procedure calls (RPC) and shared memories.

2.2.3 Bluespec system verilog

Bluespec SystemVerilog (BSV) is among the first efforts to develop a higher-level
hardware description language than Verilog/VHDL. Bluespec is based on System Ver-
ilog syntax and allows a high degree of abstraction in both behavioral and structural
descriptions. Defining modules, wires, and blocking and non-blocking assignments in
Bluespec is similar to Verilog. The movement of data from one state to another is de-
scribed by rule. Rules consist of two components: rule conditions, which are boolean
expressions that determine when the rule is enabled, and rule bodies, which are ac-
tions that describe state transitions. Bluespec substitutes processes with atomic rule,
from which control logic is automatically inferred as a step toward HLS. For example,
assume that two rules give the same wire a value based on different conditions. If both
conditions are met in the same clock cycle, the compiler generates the logic to avoid the

46

2.2 FPGA-based processor simulation with HAsim

conflict, which would otherwise result in a double-driven signal. The Bluespec compiler
can perform a partial schedule of the code to determine which rule run concurrently
and which do not. However, the designer is still responsible for the specification and
timing of a rule’s behavior.

The core of BSV is formed of modules and interfaces. Modules and interfaces make
up the actual hardware. An interface contains members known as methods. To begin,
a method is similar to a function in that it is a procedure that takes zero or more ar-
guments and returns a result. As a result, method declarations within interface dec-
larations mimic function prototypes. Each method becomes a bundle of wires when
translated into RTL. Module instances are arranged in a hierarchy. A module definition
may include instantiation specifications for other modules and their interfaces. Within a
module, a single module definition can be instantiated multiple times. Let us illustrate
the foundation of BSV with the example of a counter, as shown in Figure 2.3.

Figure 2.3 – A Counter expressed in Bluespec.

The counter is a register (the state). The increment Incr and the decrement Decr
are operations on the register. Bluespec provides a way to declare a state, define op-
erations on the state, wrap the state/operations in modularity, and define operations on

47

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

modules. First, an interface is defined, and it has two different kinds of methods: one
that returns a value read(), and two that perform actions: increment(), decrement() and
load(), respectively. The module implementing the Counter interface is then defined.
This module has the name mkCounter(). In Bluespec, rules are used to describe how
data is moved from state to state. It may fire when the predicate is true, the entire rule
executes in one cycle, and side effects are visible at the start of the next cycle. The
method is one of a module’s public functions and is invoked by the parent module’s
rules or other methods. By combining the register instance with the methods and plac-
ing them all inside of the module and endmodule keywords, we are able to obtain the
full counter module. Running this program will allow us to convert our BSV into Verilog.

The design flow that is used in this work, illustrated in Figure 2.4 uses Bluespec
System Verilog (BSV) and its compiler to provide rapid simulation of a hardware system
and its FPGA implementation. The BSV compiler generates efficient RTL code that
manages all possible interactions between rules by inserting the necessary arbitration
and scheduling logic, which would otherwise need to be manually designed and coded.
Using BSV syntax, the compiler produces a hardware description in either Verilog or
Bluesim.

The entire architectural design is implemented using BSV, and the simulation re-
sults were analyzed using Bluesim, a cycle-accurate BSV simulator, to investigate the
system’s correctness. Bluesim has been utilized for accurate analysis of simulation re-
sults generated in value change dump (VCD) format by the Bluespec compiler. Using
BSV synthesis, Verilog files corresponding to each implemented BSV module are then
generated. The bit stream file is then generated using synthesis tools (Vivado, Quar-
tus, etc.) to generate Verilog files. The output bit stream file was then loaded into the
FPGA, and the entire system’s functionality was evaluated in real time.

The Bluesim simulator converts Bluespec designs into C++ objects that imple-
ment the rules and methods defined in each module and store any relevant data and
temporary variables. In addition to the modules, scheduling routines are also generated
to coordinate the application of rules across the whole design. The compiler includes
a library that implements fundamental program components like modules, functions,
and system tasks. Bluesim involves C++ header files (.h), C++ source code files (.cxx),
compiled object files (.o), and compiled shared object files (.so). When the executable
files are called, the default service begins timing the circuit and running the program.
Bluesim was used to analyze the performance of the three processor models presented

48

2.3 A case study with the design of RISC-V models within the HAsim framework

Figure 2.4 – Design flows target FPGA platforms using Bluespec System Verilog.

in section 2.3.2, which were developed in BSV. The Ventor synthesis tools (Vivado and
Quartus) have been employed for the purpose of producing the bit stream files for
FPGAs as well as the synthesis of the Verilog files that have been generated by the
Bluespec compiler. Our study utilized the Xilinx Virtex-7 and Intel BDX platforms as
FPGA target platforms.

2.3 A case study with the design of RISC-V models

within the HAsim framework

RISC-V ("risk-five") [119] was originally developed at the University of California,
Berkeley, in 2010. RISC-V is an instruction set architecture (ISA) that was originally
designed to support computer architecture research and education, for which it could
become a standard open architecture for industry implementations. Instead of being
an open-source CPU, RISC-V is an ISA specification. Unlike the RISC instruction set
architectures on which it is based, RISC-V is freely available for use by any party via
a permissive free software license and a patent grant. They help to make sure that
software can be re-used across several chip designs and to develop open standards

49

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

for whole platforms, including I/O and accelerators. RISC-V claims that the ISA is ideal
for a wide range of uses, including embedded systems, low power applications, and
industrial uses. Due to these advantages, it is a suitable target for the case study.

Through a case study, we show how the HAsim framework could be used to build
performance models for the RISC-V 7 instruction set, which was released to the open
source community. The traditional way to make a software-based simulator is to de-
compose it into a functional model that makes sure the computer system runs correctly
at the ISA level and a timing model that predicts performance and other metrics. We
present in this section the implementation of RISC-V processor models and show how
code reuse facilitates the design of two timing models for different target processors
that can use the same functional partition and assess their performance.

2.3.1 Semantic of function partition

The role of the functional partition is to calculate the new state of the processor after
executing an instruction. It consists of eight operations, as shown in Table 2.2, corre-
sponding to traditional microprocessor pipeline stages. The timing partition invokes the
operations and determines the state of the machine in the order. The operations are
used by the timing model to produce a cycle accurate simulation. The same functional
partition can be reused across different timing models to simulate different microar-
chitectures. The operations are typically invoked in the order specified for a single
instruction. This corresponds to instructions flowing through pipeline stages in a real
computer: the instruction is fetched (getInstruction) before it is decoded (getDependen-
cies), which takes place before register reading (getOperands) and so on. The order in
which the timing model invokes these operations on instructions determines the state
of the machine.

Most of the components needed for the specification of the functional partition come
from existing HAsim modeling projects at MIT. They can be easily instantiated by way
of the AWB tool [41]. In order to design RISC-V models, only information related to
instruction decoding (number of sources, destinations, and barrier information) and the
hardware datapath for executing common instructions has to be specified. This is the
advantage of the ISA-independent datapath feature of HAsim.

7. https://riscv.org/

50

2.3 A case study with the design of RISC-V models within the HAsim framework

Table 2.2 – Functional partition operations.

Operation Behavior
getInstruction Get memory address, return corresponding instruction.
getDependencies Allocate the destination physical register,

look up physical registers containing the operands.
getOperands Read the physical register file and the instruction,

return opcodes and immediate operands.
getResult Execute the instruction, return the result including

branch information, effective address.
doLoads Read the value from memory, write to register.
doStores Read the register file, write the value to memory.
commit Commit the instruction’s changes, remove instruction.

2.3.2 Timing model creation

Three target architectures are considered in this work, which are defined to be used
with the RISC-V functional partition: an unpipelined processor, an in-order pipelined
processor, and an out-of-order processor. Three timing models operate the same op-
eration, as shown in Figure 2.5. Each model does the same amount of fundamental
work, and the only change is related to the time modeling. Every operation in the tim-
ing model of an unpipelined processor always takes one cycle to run. It needs 15 model
cycles to execute. Following that, we have a simple in-order pipeline timing model. This
model stalls between instructions 0x101 and 0x102 because of a hazard called "read
after write." Assuming a perfect memory hierarchy and a one-cycle ALU, it takes 9
model cycles to execute this sequence of operations. An out-of-order, 2-way super-
scalar model executes multiple operations on the functional partition before advancing
the model clock cycle. If a branch is stalled on a dependency, the out-of-order model
predicts that the branch will not be taken and will issue past the stalled branch..

The advantage of the timing model is being able to reuse the same functional par-
tition across multiple timing models to simulate multiple microarchitectures. The timing
model does not need to implement all structures, as the functional partition handles the
functionality. Figure 2.6A shows the specification to be used in a basic processor timing
model for a processor that doesn’t use pipelines (an unpipelined processor) and runs
each instruction in a single clock cycle. Each functional partition action is carried out
by the implementation before the model time counter is incremented. The actions that

51

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

Figure 2.5 – An example of three different timing models operating on the same instruction set.

52

2.3 A case study with the design of RISC-V models within the HAsim framework

Figure 2.6 – Target processors and their simulator implementation.

53

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

make up the timing model are referred to as getToken(), getInst(), getDeps(), getRe-
sult(), doLoads(), doStores(), and commit(). All of the simulation work for the different
components of the processor (ALU, IMEM, and DMEM) is done via functional partition-
ing operations. Figure 2.6B shows an in-order processor target. The branch predictor
structure is implemented entirely in the timing model, as it controls which address the
timing model will pass to getInstruction(). On mispredictions, a rewind() is issued to
represent a pipeline flush.

As shown in Figure 2.6C, an out-of-order, 2-way superscalar processor is built as
an extended version of the unpipelined timing model. The functional partition is called
before launching model time to simulate superscalar behavior. In particular, the ge-
tResult() operation is called four times, and the ALUs do not need to be used. The
simulated Reorder Buffer (ROB) is considerably simpler than a real ROB, as it does
not implement dependency tracking logic. Instead, it uses the result of the getDeps()
operation and then uses a sequential search to determine which instructions should be
issued next.

2.3.3 Evaluation results

The three processor models (unpipelined, in-order-pipelined, and out-of-order) have
been synthesized, targeting the Bluesim simulator. Four simple benchmarks [88] were
run to assess the simulation speed and processor’s performance: the numeric median
filter, multiplication, Towers of Hanoi, and vector-vector addition.

Performance of processor models

The performance evaluation of the processor is represented in Figure 2.7A. The
performance of the unpipelined processor is constant because every instruction is al-
ways executed in one model cycle, giving a CPI (cycles per instruction) of 1. On our
benchmarks, the in-order pipeline target achieves an average CPI of 2.6. The smaller
CPI of the out-of-order processor, which enables the execution of more instructions per
cycle, makes it faster than the in-order processor. The out-of-order processor performs
best on the vector-vector add benchmark because its performance is based on the
amount of available instruction-level parallelism.

54

2.3 A case study with the design of RISC-V models within the HAsim framework

Figure 2.7 – Evaluating the performance of the simulators with target processsor models.

Performance of simulators

The principle behind using FPGA for processor simulation is that one tick of the
FPGA clock does not match one tick of the target model’s clock. This enables the pro-
cessor’s components to be simulated in parallel on available areas of the FPGA, while
a separate mechanism ensures that their simulated timings fit the design objective. We
don’t need to configure the FPGA in the hardware model. Alternatively, we need to have
a mechanism that precisely counts the number of clock cycles in the target model. We
will use the FPGA-cycles-to-Model-cycles Ratio (FMR) [90] to analyze the simulation
speed. FMR is expressed as the average ratio of FPGA cycles to model (i.e., target
processor) cycles. We will have to consider that the higher the FMR is, the less time is
necessary to simulate.

FMR = cyclesFPGA

cyclesmodel
(2.1)

FPGA-cycles-to-Model-cycles Ratio

The evaluation of the simulators’ performance for each considered architecture is
shown in Figure 2.7B. The unpipelined model has the slowest simulation rate, while the
5-stage model achieves the fastest, with the out-of-order model in the middle. Because

55

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

the timing model performs each of the seven functional partition operations for an in-
struction before even beginning to fetch the next one, it should not come as a surprise
that the unpipelined simulator is so slow. This results in 31 FPGA cycles being spent
replicating one model cycle. Timing-directed simulation is not suitable for this objec-
tive because the model cannot exploit the parallelism that is present in the functional
partition.

In contrast, the in-order pipeline simulator is absolutely faster than the unpipelined
processor simulator, taking an average of 12.5 FPGA cycles to simulate one model
cycle. This is due to two reasons: firstly, the pipelined architecture of the model means
that it executes functional partition operations in parallel; and secondly, the fact that
the target circuit delays the pipeline for back-to-back dependent instructions actually
increases the simulation rate. Both of these considerations contribute to this result.
Because they do not need invocations of the functional partition, pipeline bubbles may
be simulated very quickly. This makes them very efficient.

It is difficult to evaluate the out-of-order simulator. It has a slower FMR ratio than
an in-order pipeline. In this instance, the simulator’s limiting step is dictated by the
timing model itself. The out-of-order processor’s performance is reliant on the amount
of instruction-level parallelism available and consequently performs best on the vector-
vector addition benchmark. The usefulness of the out-of-order simulator is significantly
benchmark-dependent. Due to the time necessary to multiplex the ALU during each
model cycle, the out-of-order simulation in Vvadd and Tower applications is the slowest.

2.3.4 Targeting the Xilinx Virtex-7 FPGA platform

We designed three different processor models (non-pipelined, pipelined, and out-
of-order) and synthesized them to target the Virtex-7 FPGA. The VC707 8 is an evalu-
ation board that is extensively used and was designed using the Virtex-7 LX485T. The
VC707 FPGA, which communicates with a host computer over a high-speed peripheral
component interconnect express (PCIe) connection, is the board that will be the focus
of this discussion. The VC707 has 1 gigabyte (GB) of DDR2 onboard memory. Table
2.3 summarizes the synthesis results in terms of FPGA slices and block RAMs.

LEAP supports VC707 evaluation board using BlueNoc Linux drivers. We rein-

8. https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html#overview

56

2.3 A case study with the design of RISC-V models within the HAsim framework

Unpipelined In-order-pipelined Out-of-order
FPGA slices 87193 (28.7%) 135890 (44.75%) 215703(71%)
Block RAMs 65 (6.35%) 83 (8.05%) 85(9%)
Clock Speed 100 MHZ 100 MHZ 100 MHZ

Table 2.3 – Synthesis results for a Virtex-7 VC707 FPGA platform.

stalled the LEAP base platform tools and BlueNoc 9 Linux drivers to target the VC707
FPGA. Users have to configure an environment by running a provided "settings file,"
resulting in poor compatibility with other tools in the LEAP infrastructure. Unfortunately,
the driver that is supposed to connect the host computer and the FPGA is not working
properly. PCIe device administration in LEAP needs knowledge of system addressing.
It is necessary to examine the different components of the system to determine the
PCIe address of the hot-plug controller for a certain card. Moreover, after the FPGA
has been programmed, the system must be rebooted. Host computers often require a
restart since their PCIe controller hardware lacks hot-plugging capabilities.

Figure 2.8 – FPGA-based platform overall setup.

In our study, simulation models are implemented on a platform that includes both the
CPU and the FPGA. Device locality and fast interconnects between the host computer
and FPGA are critical for accelerating simulations. Regardless of the interface em-
ployed in CPU-FPGA platforms, data transmission has an impact on simulation speed’s
communication delays. As depicted in Figure 2.8A, a typical FPGA-accelerated server
consists of cards in a PCIe slot on the motherboard of the host server. This configu-
ration typically results in latency. In addition, the complexity of the architectural design

9. https://github.com/LEAP-FPGA/leap-documentation/wiki/ML605-and-VC707

57

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

target can result in additional overhead in situations where the data stored on the CPU
needs to be transferred to the FPGA.

Intel’s Broadwell Xeon multicore processor with integrated Arria 10 FPGA capabili-
ties is motivated by communication delays within hybrid architectures. Intel places the
FPGA close to the CPU (reducing the distance from inches to millimeters) and also
connects them via a high-speed QPI link. Intel also intends to characterize the commu-
nication delays between CPUs and the FPGA by utilizing both the low-latency cache
coherent interface and the two PCIe links provided by this platform. The Intel Xeon
CPU with FPGAs is considered to deploy our simulation models.

2.4 Deploying the HAsim simulator on a Intel CPU-FPGA

platform

HAsim is a hybrid simulator that employs both a central processing unit (CPU) and a
field-programmable gate array (FPGA). We can utilize the FPGA for fine-grained paral-
lelism and the CPU for infrequent but challenging-to-implement events that may appear
in the simulator, such as system calls. While FPGA-based simulators offer significant
speedups over software-based alternatives, they are not without limitations. The la-
tency that occurs during the transfer of large amounts of data between the FPGA and
CPU can be considered a problem that slows simulation speed. In addition, a large
number of operations wait for the FPGA to read and write host memory. Reducing
the latency of data transfer between the FPGA and CPU, which includes speeding up
the communication channel and shared-memory access, is one of the most impor-
tant strategies for accelerating the FPGA-based simulator. The latency-insensitive en-
vironment for application programming (LEAP) is mostly focused on latency-insensitive
communication channels by providing a large number of portable abstraction layers for
program development. Communication delays within hybrid architectures, on the other
hand, have gotten much less attention. A solution proposed by Intel using Intel’s Broad-
well Xeon multicore processor with integrated Arria 10 FPGA capabilities appears to
be an interesting approach to reducing communication delays between CPUs and the
FPGA, utilizing both the low latency cache coherence interface and the PCIe links pro-
vided by this architecture.

58

2.4 Deploying the HAsim simulator on a Intel CPU-FPGA platform

2.4.1 Intel Xeon+FPGA platforms

Through the IL Academic Compute Environment 10, academics may have access to
Intel technology, which will hopefully advance research efforts. It offers two separate
FPGA-CPU solutions with the Intel Arria 10 FPGA: an integrated CPU and FPGA and a
programmable acceleration card (PAC). The innovative hardware solution that shares
and adapts the OPAE application programming interface (API) and CCI-P used for
FPGA-CPU communication is made possible by Intel CPU-FPGA systems. This design
is intended for large workloads in data centers as well as application-specific hardware.

Figure 2.9 – An overview of the architecture and hardware of Intel Arria systems. The "Green Region"
identifies the portion of the FPGA that may be reconfigured in user space during runtime. The "Blue
Region" describes the FPGA’s static soft core (Intel API). It makes the CCI-P interface accessible to the
AFU.

Figure 2.9 provides an overview of the components of the BDX platform. The FPGA
is divided into two distinct sections. The blue region, which is FPGA interface unit
(FIU), is provided by Intel and does not undergo any changes during runtime. The
Green Region, which is called the accelerated function unit (AFU), is capable of being
reconfigured by users. The CPU part is connected to the FPGA through the QuickPath
interconnect (QPI), a point-to-point processor interconnect that increases scalability
and available bandwidth (it has a speed of 6,400 gigabits per second). The fact that
the FPGA and CPU share the same address space minimizes overhead by eliminating

10. https://wiki.intel-research.net/index.html

59

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

memory transfers between the CPU and FPGA. Using a cache protocol, the CPU and
FPGA interact with one another. The CPU can deliver 20 GB/s of bandwidth. AFUs can
reach the last level cache of the CPU. In an ideal situation, we would acquire a read hit
and not have to access system memory.

The Open Programmable Acceleration Engine, often known as OPAE, is a soft-
ware framework that was developed in order to manage and access FPGAs. Develop-
ers may use the OPAE Software Development Kit (SDK) 11 to build AFUs as well as
Linux drivers that work with both PACs and BDXs. To transfer data from the CPU to
the FPGA, the API uses two methods: memory-mapped I/O (MMIO) and direct mem-
ory access (DMA). Software programs have the ability to submit MMIO requests to the
AFU with a width of either 64 bits or, optionally, 32 bits. It is also possible to give DMA
to an AFU in certain sections of the system’s main memory.

Core Cache Interface (CCI-P) [57] is a host interface bus for an AFU that consists
of separate wires for the header and the data. It is designed to connect an AFU to a FIU
within the FPGA. It saves a lot of time and effort by giving MMIO and DMA requests
a simple, hardware-independent way to be handled. CCI-P provides an abstraction
layer that may be applied on top of various platform interfaces, such as PCIe and QPI.
Therefore, AFUs developed for CCI-P can be synthesized for any CCI-P-compatible
platform without requiring design modifications. The CCI-P is an architecture for devel-
oping reusable FPGA libraries consisting of hardware and software modules and may
be viewed as the "API" for developers of accelerators.

2.4.2 Implementing communication channels support for Intel CPU-
FPGA platform

Figure 2.9 illustrates the QuickAssist Xeon+FPGA platform. This platform is com-
prised of a multicore Xeon processor and an Arria 10 FPGA that share memory access
via a variety of physical channels, including Intel’s Quick Path Interconnect (QPI) and
two PCIe 3.0 x8 links. In order to construct the communication channel between the
host CPU and the FPGA, we made use of the QuickAssist (QA) driver that we had
extended 12. This work is summarized in Figure 2.10. The purposes of the QA driver
are:

11. https://github.com/OPAE/opae-sdk
12. https://github.com/LEAP-Core/leap-platforms-intel

60

2.4 Deploying the HAsim simulator on a Intel CPU-FPGA platform

— interface to a host/FPGA channel with the same width as a cache line and a
simple First In First Out (FIFO).

— interface to system memory for read/write requests.

— interface to the CCI-P provided by Intel.

Figure 2.10 – Quick Assist (QA) driver with CCI-P and OPAE.

In order to interface with physical devices, software operating systems employ hard-
ware abstraction layers. Each device provides a standard API that is shared by all
devices of its type. This strategy is embraced by LEAP. Classes of physical devices
provide a standardized, abstract device interface in LEAP. As shown in Figure 2.11,
LEAP devices offer a module-based FPGA environment (fpgaenv) instead of a call-
based API. This environment has a virtual platform with a set of hardware driver layers
that provide a uniform, abstract device interface. FPGA platforms can be viewed as
a collection of low-level device driver modules. LEAP accepts a platform description
file containing abstract drivers for each physical device on each target platform. We
extended drivers that are compatible with the Intel CPU/FPGA platform, which can be
found in Figure 2.11.

A connection can be made between the AFU and the host CPU through the use of
CCI-P. By providing a specific memory address, an AFU is able to obtain data from the
system’s memory. An AFU is also able to write data to the system memory by providing
a specific address to write to as well as the data that is to be written.

61

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

Figure 2.11 – An overview of the leap environment includes the QA driver modules for the Intel CPU-
FPGA platform.

62

2.4 Deploying the HAsim simulator on a Intel CPU-FPGA platform

A standardized set of memory semantic extensions for CCI is made available via
the Memory Properties Factory (MPF). It has a number of logic layers that define how
to access memory. For instance, the virtual to physical address translation (VTP) layer
offers support for virtual address translation, which enables the AFU to do read/write re-
quests by making use of virtual addresses. In a similar manner, the read ordering (RO)
layer supports read response ordering, which ensures that responses are received in
the same order as requests are given by the AFU.

On the host CPU, software that uses OPAE can access an AFU. OPAE is respon-
sible for defining the protocols that are necessary to initialize modules on the FPGA,
creating a shared virtual address space for the CPU and FPGA, and communicating
with AFU. Specifically, OPAE is responsible for the creation of, as well as the provision
of, procedures for accessing a collection of control and status registers (CSRs). These
are what are used to begin the operation of an AFU, to transmit the AFU’s parameters,
and to otherwise connect with and control the AFU. To transmit a message, the host
sends data to the FPGA’s CSRs via the channel interface. Once a message has been
completely assembled in CSRs, the FPGA logic handling the connection stores the
message in a FIFO within the FPGA logic. The FPGA module on the channel’s receiv-
ing side retrieves new messages from this FIFO. In a similar way, an FPGA module
sends a message to the host on the transmit side of its channel, where it is then stored
in another on-chip FIFO. The host draws from this FIFO through successive MMIO
reads to CSRs after verifying a status flag indicating a new message is available.

2.4.3 Validation

We used several benchmarks of significantly varying sizes in order to demonstrate
how LEAP is validated on the Intel CPU-FPGA platform. Table 2.4 summarizes the
results of experimental application synthesis for the Arria 10 FPGA.

Hello World: This program, much like its well-known equivalent in the software
world, first prints out a message and then terminates.

Counter: In this simple HW/SW hybrid application, a counter is implemented in
hardware utilizing shared memory, and the streaming device is used to show the count
and status messages from both HW and SW.

FPGA-Host Channels: Communication between the host CPU and FPGA in an
Intel CPU/FPGA environment is crucial and frequently more difficult. The primary fo-

63

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

cus of test programs is on the communication channels between the FPGA module
and the send/receive stream software running on the host CPU. We send a stream of
data from the host CPU to the FPGA and receive a stream of data generated by the
FPGA. Additionally, we send numerous data packets in both directions and validate the
data during the transfer. The results, as well as the number of error packets and their
bandwidth, are included in the reports.

HAsim: As stated in section 2.2.1, HAsim is a framework for the construction of
high-speed and cycle-accurate simulators of processors [87]. HAsim recycles parts of
a single processor and distributes them to several modeled processors so that they
can be used more than once. Both in terms of its structure and the number of cores
that it models, HAsim features a high level of parametric flexibility. Because of its scal-
able architecture and parameterization, HAsim models are able to scale to hundreds
or thousands of cores with just a few changes to the source code. This, however, is
predicated on the assumption that the operating system has sufficient support to map
large designs. The target architecture is the RISC-V unpipelined processor model.

LUTS Registers RAM Blocks Memory Bits
Hello World 89,172(21%) 108309 398(15%) 2,975,536(5%)
Counter 114,810(27%) 148333 542(20%) 4,617,402(8%)
Channel-16 95,012(22%) 117990 409(15%) 3,297,037(6%)
Channel-32 97,479(23%) 122529 409(15%) 3,297,037(6%)
Unpipelined Processor 130,113(30%) 160115 600(22% 3,954,350(7%)

Table 2.4 – Results of experimental application synthesis targeting Arria 10 FPGA.

Size of data 1 GB of data 100000 packets
Latency(s) Bandwidth(GB/s) Error packets

Host –> FPGA 0.2 4.910 1-700
FPGA –> Host 0.266 3.759 0

Host –> FPGA –> Host 0.35 5.642 –

Table 2.5 – CPU-FPGA communication channel validated in Intel Xeon+FPGA.

The QA driver is step-by-step validated for operation through the development of
test programs. Firstly, Hello World and Counter can be executed successfully to demon-
strate that the configuration and communication between the CPU and FPGA are op-
erating correctly. Secondly, the results of the FPGA-Host Channels test are illustrated
in Table 2.5. It takes 0.2 seconds to transfer 1 GB of data in each direction, and 0.35

64

2.5 FPGA-Accelerated microarchitecture simulation challenges

seconds for two directions. The bandwidth ranges from 3.7 to 5.6 GB/s. The channel
transferred data successfully, but when we transferred 100000 packets of data from
the host to the FPGA in various test runs, we obtained fluctuations from 1 to 700 error
packets. This issue is a result of the failure of the last test to run HAsim to simulate an
unpipelined processor. Due to the use of low-level simulation to debug, predicting the
cause of error data during transfer requires a significant amount of effort. This is also
one of the challenges in developing an FPGA-based simulation project, as discussed
in the following section.

2.5 FPGA-Accelerated microarchitecture simulation chal-

lenges

HAsim FPGA-accelerated simulation is not widely utilized by computer architecture
designers [13]. There are various technical explanations for this, including the perspec-
tive of simulator implementation. This section summarizes the challenges associated
with using FPGAs to simulate SoCs that we faced during our research.

Controlling and utilizing various development tools

Platform development refers to the collection of tools, libraries, and hardware that
lead to the construction of simulation models and the operation of an FPGA-based sim-
ulator. Figure 2.12 illustrates the various software tools required to construct simulation
models, including:

— The LEAP version 15.02 12, packages are available for Ubuntu 14.04 . LEAP is
released under BSD and MIT license terms.

— AWB is the Asim Architect’s Workbench 13, a set of abstractions that enables the
plug and play of modules to facilitate design.

— The core libraries and utilites for using the Asim modeling infrastructure 14.

— Bluespec System Verilog(version Bluespec-2017.07.A) and Bluesim simulator. 15.

12. https://github.com/LEAP-Core/leap
13. https://github.com/AWB-Tools/awb/wiki
14. http://asim.csail.mit.edu/apt/releases/ubuntu
15. http://wiki.bluespec.com/Home/BSV-Documentation

65

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

Figure 2.12 – Set of FPGA-based platform development tools.

— The RISC-V software toolchain 16. It includes RISC-V compiler using for generate
binary code when running benchmarks.

— The gem5 computer-system architecture simulator has been adapted to allow an
interface with HAsim. It is also used to simulate the system-level architecture as
well as processor microarchitecture, like the original gem5 13 simulator.

— The Virtex-7 FPGA is targeted using Xilinx Vivado HLS version 2018.3.

— The Open Programmable Acceleration Engine (OPAE), a software layer, works
with Quartus Prime Pro 17.1.1 to target servers and FPGAs with Intel Xeon pro-
cessors. The experiments are done on the Illinois Academic Compute Environ-
ment (ACE) 14, which is a place for supporting and advancing academic research
in many different areas.

— Programming languages like C/C++, Bluespec, Verilog, and scripting languages
are used.

Software-based simulators are inexpensive and can run on desktop machines,

16. https://github.com/riscv/riscv-tools
13. https://www.gem5.org/
14. https://wiki.intel-research.net/Introduction.html

66

2.5 FPGA-Accelerated microarchitecture simulation challenges

whereas FPGA-based simulators require expensive hardware. FPGAs range from a
few euros to thousands of euros in price. It is important to choose an FPGA that
works well with the application. If the application requires a large number of tasks
to be processed in parallel, the cost of an FPGA is considered. FPGA-based simu-
lators are used to run massive parallel experiments, which require the most powerful
FPGA board, which means we have to buy expensive hardware. If the simulator utilized
low-cost FPGA boards, simulation capacity would be reduced, and many resource opti-
mization efforts would be required. Additionally, the partitioning of large designs across
multiple FPGAs must be done manually or with the aid of specialized tools (such as
HAsim project) because they cannot fit on a single FPGA. This increases the cost of
the simulation based on FPGAs.

It is difficult to install the environment and reproduce the result when designers ap-
proach an FPGA-based simulation project. For instance, because FPGA-based simu-
lators are dependent on particular FPGA platforms, researchers are required to get the
same host in order to reproduce published results. Even if researchers had access to
their FPGAs, they could not usually run existing simulation models without modifying
them.

Complexity of simulation modeling

Designing these models in RAMP required less time and effort as compared to writ-
ing RTL for the actual implementation. However, RAMP simulator designers stated that
designing models was more challenging than writing RTL for the corresponding im-
plementation. For example, consider that when modeling the detailed, cycle-accurate
behavior of this pipeline processor, the model designer must write RTL that contains a
significant amount of the complexity inherent in the actual pipeline’s design in order to
capture all hazards that may affect the processor’s performance. In addition, designers
must add even more complexity to support modeling a space of different processor de-
signs, either at compile time by generating different model RTL or at runtime by adding
logic to allow reconfiguration of the simulator. Figure 2.13 captures the structure of the
model in the HAsim framework; it is a tree structure with many branches. For each
branch, modules are associated, written in Bluespec. Three main categories make up
our division:

— The functional partition and instruction set definition (hasim funcp, hasim isa)

67

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

Figure 2.13 – An overview of modules to develop functional and timing partitions in in-order pipelined
processor models.

are responsible for correct ISA level execution of the instruction stream. This part
is written once and can be reused by many timing models.

— The timing partition (hasim timep) is responsible for tracking micro-architecture
specific timing, such as branch predictors and cache misses. This component is
changed according to the chosen timing model (unpipelined, in-order-pipelined,
and out-of-order). As shown in figure 2.13, it is an example of in-order-pipelined
simulation, where stages of the pipeline are integrated in hasim timep.

— Another set of modules in the HAsim framework (hasim common, hasim model
services, fpgaenv) are not directly related to simulation. They provide common
utilities, such as tracking statistics and parameters and interacting with the host
CPU as well as the virtual platform.

Development efforts

HAsim’s partitioning scheme can remarkably reduce development time because the
same functional partition can be reused across different timing models. Table 2.6 illus-
trates the lines of code required to implement each partition as well as the reusability of

68

2.5 FPGA-Accelerated microarchitecture simulation challenges

the code. The timing model does not need to implement all structures because some of
their functionality can be reused when developing different timing models, reducing de-
veloper effort. For example, it was possible to use the same code for both the in-order
and out-of-order models of timing. First, the whole functional partition was used again
without any changes. In the timing partition, the branch predictor was the most likely to
be used again, and it was used exactly the same way. The designers have to write a
lot of code, but they don’t have to re-implement the functionality of the instruction set
for every new simulator. If they change the processor target, only its partition-related
ISA will be implemented. When targeting a new architecture and simulation hardware
platform, development and debugging efforts are still necessary.

Category Lines of Bluespec Code Code Reuse
Functional Partition 3133 All modules
RISC-V ISA 691 None
Unpipelined 405 Some modules
In-order-pipelined 725 Some modules
Out-of-order 1219 Some modules
Communication Channel 316 None

Table 2.6 – Lines of Bluespec code to implement the simulation models.

The amount of time and effort required to develop fpga-accelerated simulators is
an important factor to consider. FPGA-accelerated simulators may fail not because of
simulator performance but because the increased development time makes modeling
take longer than with slower software. Architectural simulators are built in software,
which reduces development time and enables small teams of skilled architects to con-
duct computerized architectural studies. Developing fpga-based simulators currently
necessitates greater development efforts than software for the reasons outlined below:

— Insufficient design visibility makes it challenging to debug failing systems. There
is no standard library infrastructure compared to software, which makes printout-
based debugging more difficult. Designers must instantiate fpga-specific debug-
ging modules. The design must be resynthesized with new tested inputs if the
bug is not found on the first iteration.

69

Chapter 2 – FPGA-accelerated simulation of heterogeneous architectures

— Prolonged development times are made more difficult by long compile and syn-
thesis times (1 to 10 hours), which increase the time spent on the debugging
step. To do a test, we have to perform multiple iterations of the synthesis process
and determine whether the design meets the constraints set at each stage. For a
reasonably large design, this can take a lot of time.

— For fpga-accelerated simulators, the development time is a major concern. The
designer must initially implement and validate simulation models on Bluespec.
Additionally, the models must be compiled for the platform using numerous tools
and libraries. Therefore, platform compatibility has a twofold effect on develop-
ment time. All structures must be implemented, tested, and ported, resulting in
an increase in developer effort.

2.6 Conclusions

Most computer system simulators are implemented with software because they
need to be fast and flexible. Unfortunately, given the rapid growth of their complex-
ity over time, software simulators are slower, and the performance of computer sim-
ulation has decreased. The use of hardware that directly matches the hardware level
parallelism required in accurate computer system simulation is a fast and cost-effective
alternative to software. FPGAs are an ideal vehicle for accelerating and addressing the
challenge of computer system simulation because of their significant capabilities and
flexibility.

HAsim does not reflect the simulation of any particular target CPU running on any
particular FPGA platform. Instead, HAsim is a general framework that can be used to
model target processors with a wide variety of properties and then run those models
on FPGA platforms. Developing for FPGAs continues to be much more difficult than
developing software; therefore, HAsim places a significant emphasis on simplifying
development efforts.

We were able to construct three different RISC-V processor models by utilizing
HAsim framework (unpipelined, in-order-pipelined, and out-of-order). We also demon-
strated the implementation of communication channels on systems that tightly couple a
CPU and FPGA. Using the Intel QuickAssist Xeon+FPGA platform as a cloud platform,
we aim to accelerate and scale the HAsim simulator in order to design more complex
heterogeneous systems.

70

2.6 Conclusions

To summarize, while HAsim can be fast and accurate for simulation, building com-
plex SoC architecture models onto an FPGA is still challenging. There are difficulties
in approaching the complexity of simulation modeling and development efforts. Due
to these factors, FPGA-based microarchitecture simulation may not be utilized by the
majority of SoC designers.

71

CHAPTER 3

INTEGRATION OF A PRE-RTL
ACCELERATOR MODEL IN THE

FPGA-BASED SIMULATOR

Currently, computer architects are focusing on heterogeneous multi core architec-
tures combined with special-purpose accelerators that can improve performance and
reduce energy consumption by orders of magnitude. However, because of their inher-
ent complexity, heterogeneous systems are difficult to design. Building tools to support
these architectures has been a growing topic in both academic research and com-
mercial development for the past decade. In this chapter, we present a method for
developing heterogeneous systems using a combination of accelerator and processor
models relying on an FPGA-based simulator. Our approach takes high-level language
descriptions of application-specific programs as inputs and models an accelerator us-
ing dynamic data dependency graphs (DDDG) without generating RTL. The accelerator
model is integrated into the HAsim simulator, and the processor models from Chapter 2
are used. Initially, we illustrate the design flow and the steps of the proposed design
methodology. The accelerator modeling methodology is then presented, which is based
on the Aladdin simulator. After that, by combining the accelerator and processor mod-
els, we will demonstrate how to use HAsim to simulate heterogeneous systems. Fi-
nally, experiments for a subset of the MachSuite benchmark [98] are presented and
their results discussed. As a result, the design of application-specific heterogeneous
architectures is simulated by an FPGA simulator at an early stage of the design.

72

Contents
3.1 Introduction . 74

3.2 Design flow overview . 76

3.3 Accelerator modeling (Pre-RTL accelerator model) 78

3.3.1 DDDG generation and scheduling 78

3.3.2 Scheduled Graph Trace (SGT) generation 79

3.3.3 Flow explanation by an example 81

3.4 Integration of an accelerator model in the HAsim simulator 82

3.5 Performance assessment . 86

3.5.1 Case study: Blocked Matrix Multiply accelerator 87

3.5.2 Machsuite benchmarks . 89

3.6 Conclusion . 90

73

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

3.1 Introduction

Nowadays, artificial intelligence and data science are among the most emerging
technologies that demand more computation power from hardware. Several highly de-
manding applications currently include these algorithms, such as self-driving vehicles,
5G communication, video monitoring, and analytics. In an effort to support these ap-
plications on vehicles and other mobile devices, scientists and researchers focus on
embedded high performance computing architectures to solve these problems effec-
tively and quickly.

To address these significant computational demands, some companies have al-
ready proposed solutions based on processor core duplication and pushed the number
of cores on a chip as high as a thousand [15]. However, the number of cores in these
multi/many-core chips that can actively switch at full speed within the chip power budget
will decrease (utilization wall). The remaining silicon, which is left unpowered (referred
to as "dark silicon"), will grow exponentially with each new technology generation [42].
To address this, heterogeneous architectures combining processor cores and hard-
ware accelerators [28, 73] have been proposed by designing heterogeneous systems
that trade dark general purpose cores for a collection of specialized but transiently
powered accelerators. Architectures with customized accelerators induce orders-of-
magnitude performance and energy efficiency improvements compared to performing
the same task on a general-purpose CPU.

In Chapter 2, we exploited the fine-grained/coarse-grained parallelism of FPGA to
speed up the simulation of computer architecture. However, these techniques rely on
execution-driven models, which consume an excessive amount of FPGA resources
and make it more difficult to model various types of custom hardware. Numerous re-
searchers have already described the use of trace-driven simulation of multi-threaded
programs on multi-core platforms. Using trace-driven simulation has several advan-
tages. Interestingly, it does not need the functional execution of the original code,
which makes it perfect for accelerator simulations where an execution model would
take excessive resources. Also, a trace is only made once and can be used for many
simulation-based architectural explorations. These simulations may streamline the de-
sign, saving FPGA resources and development time while also accelerating simulation
speed.

In this chapter, we present a design approach for application-specific heteroge-

74

3.1 Introduction

neous architectures based on the usage of performance models of hardware compo-
nents (processor cores, domain-specific accelerators, memories, and interconnects).
The simulator of a particular heterogeneous architecture can be built from these mod-
els and deployed on an FPGA-based system, thus helping to speed up the simulation.
It is a question of taking into account data movement between hardware components
and coherency management for accelerators during the simulation. This aspect is often
neglected, and its impact has however been well shown by Shao et al. in [105].

We are particularly interested in how the accelerator models are designed, starting
from the C code of the algorithm and showing how they are integrated with the other
components of the heterogeneous architecture. The data flow graph of the algorithm is
used as a representation of the accelerator without having to generate HDL (Hardware
Description Language) code. From this representation, the scheduling of the graph is
realized, and the control for a generic template of an accelerator model is produced.
The innovative technique for generating traces brings the trace size down by several
orders of magnitude, making it possible for the majority of the trace to be stored in the
embedded RAMs of the FPGA. This, in turn, speeds up the simulation while reducing
the amount of communication needed with the host CPU.

The proposed simulation infrastructure is based on the use of two simulation tools:
Aladdin [105] and HAsim [87]. The Aladdin accelerator simulator provides a frame-
work for modeling the power, performance, and cycle-level activity of standalone fixed-
function accelerators without the need to generate RTL. The HAsim FPGA-based sim-
ulator allows the building of processor timing models and memory systems, including
support for cache coherence protocols and interconnect models. The contributions pre-
sented in this work are as follows:

— A methodology for generating performance models of accelerators targeting the
FPGA by exploiting a part of Aladdin flow is proposed. The application trace is
generated in a compact graph scheduled trace (SGT) format. It can be directly
interpreted by the timing accelerator model on the FPGA to re-create the original
computation and memory behaviors of the application.

— A cycle accurate and cost-effective simulation framework is presented. It simu-
lates the whole system of the accelerator-processor architecture, including the
RISC-V core, dedicated accelerators, coherent cache/scratchpad with shared
memory, and routers. The framework targets platforms combining CPU and FPGA
with the goal of speeding up the simulation.

75

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

3.2 Design flow overview

Our approach to designing domain-specific heterogeneous architectures is based
on a trace-based accelerator simulator that profiles the dynamic execution of a program
by integrating hardware accelerators coupled to a single-core processor. The starting
point is the construction of a dynamic data dependence graph (DDDG) as a data flow
representation of an accelerator. Fig. 3.1 shows the generic flow of the proposed design
method. It consists of the following steps, which are described in the following sections:

— Application development utilizing the C/C++ programming language to analyze
systems within a given domain and develop specialized hardware blocks.

— Modeling of the accelerator using dynamic data dependency graphs (DDDG)
without RTL generation(3.3).

— System integration where the hardware accelerator is integrated with processor
models (3.4).

— Simulation where all models are simulated and evaluated on the FPGA-based
simulator (3.4).

The design method aims to build an efficient architecture for a domain-specific ap-
plication by integrating task-specific custom hardware into a single core. It takes as
input a high-level specification (C/C++) of an algorithm without any modification and
generates its execution trace. According to the designer’s optimization pragmas (loop
unrolling, loop pipelining, and array partitioning), a sub-trace is extracted, and the cor-
responding DDDG is generated. After applying a number of optimizations to the DDDG,
the tool schedules the graph’s nodes with resource constraints to obtain an early perfor-
mance estimate of the accelerator. The obtained results can be exploited by hardware
architects in order to further develop the application. By analyzing applications within a
domain, designers desired to develop specialized hardware blocks to execute compute-
intensive parts of these applications and integrate them with processor cores. When
an application is executed on a processor, only the required accelerators are utilized in
order to save energy.

The application software developer writes programs for a certain architecture us-
ing software development tools. Understanding how the development tools generate
code and how to use them effectively is essential for producing code that achieves the
desired outcomes. Even though the compiler will generate code optimized for a spe-

76

3.2 Design flow overview

Figure 3.1 – Illustration of the generic design flow.

77

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

cific architecture, the developer must typically supply information to aid the compiler in
producing optimal code. For instance, when we implement matrix multiplication algo-
rithms, we can observe that the majority of calculations occur within the loop, so we
will optimize the code by focusing on the loop. In certain applications, such as vector
dot products, when dual MACs are desired on target, the loop is unrolled by a factor of
4 to maximize memory access bandwidth.

3.3 Accelerator modeling (Pre-RTL accelerator model)

We present a flow that accepts high-level language descriptions of algorithms as
inputs and represents an accelerator using dynamic data dependence graphs (DDDG)
without creating RTL. The tool starts with the unconstrained program DDDG, which
represents accelerator hardware, and optimizes and constrains the graph to build a
realistic model of accelerator activity. The application trace is then generated in a com-
pact graph scheduled trace (SGT) format. It can be immediately understood that the
timing accelerator model on the FPGA will reproduce the application’s original com-
putation and memory behaviors. In addition, we provide an example to illustrate the
workflow of our tool.

3.3.1 DDDG generation and scheduling

Our accelerator modeling methodology is based on the Aladdin simulator to which
modifications have been brought [105]. To define the accelerator modeling phases, we
start from a C description of an algorithm before passing through an instrumentation
phase where an execution trace of the application is generated. In this process, the low-
level virtual machine (LLVM) [64] is leveraged for instrumentation and trace collection.
The core of LLVM is a static single assignment (SSA) based intermediate represen-
tation (IR). The IR is machine-independent and uses unlimited virtual registers. The
Execution Engine, an LLVM just-in-time (JIT) compiler integrated into the simulator, is
invoked to execute the instrumented IR and generate the runtime trace. The generated
trace contains runtime instances of static instructions, including instruction IDs, op-
codes, operands, virtual register IDs, memory addresses (for load/store instructions),
and basic block IDs.

78

3.3 Accelerator modeling (Pre-RTL accelerator model)

After the instrumentation process, a DDDG is produced as a directed and acyclic
graph, where nodes represent dynamic instances of LLVM IR instructions and edges
denote dependencies between nodes, including register/memory dependencies. Edges
only correspond to true dependencies and do not include output dependencies. These
are dynamic traces, so control dependencies are not concerned.

Before scheduling, the DDDG is optimized by performing tree-height reduction to
decrease long-expression chains’ height and expose potential parallelism, similar to
Shao’s work [105]. Focusing only on actual computations, we remove supporting in-
structions (data movement and conversion between registers) and dependencies be-
tween loop index variables that are not relevant to accelerators. They are assigned
zero latency to the associated nodes. Removing redundant load/store operations is
also considered an efficient way to save memory bandwidth. For instance, two load
operations can be reduced to one load node if they have the same memory address,
so there is no store operation in between with the same address. The load can be
eliminated by adding edges between the store and successors of the load if a store is
a direct predecessor of a load with the same memory address. We map the memory
address of load/store operations to a memory bank according to the array partitioning
factor after removing redundancies. The graph is then scheduled for execution through
a breadth-first traversal while considering user-defined hardware parameters: loop un-
rolling, loop pipelining, and memory ports.

3.3.2 Scheduled Graph Trace (SGT) generation

Using trace-driven, HW simulations on FPGAs instead of execution-based simula-
tions avoids the need for resource-intensive execution units like floating point units. It
saves FPGA resources, so multiple accelerator simulations can be run at once without
having to time multiplex. Most execution events can be represented as compact traces,
which can then be used for scheduling and power/performance estimation through
trace-based simulation. Without having to implement functional or write HDL code on
an FPGA, designers are free to experiment with a wide variety of different architectures.

The scheduled graph is then translated into a compact representation format suited
to its interpretation by the hardware module corresponding to the accelerator datap-
ath model and implemented in the FPGA. The basic strategy is to interpret the DDDG,
which has already scheduled both instruction and data memory operations correspond-

79

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

ing to each node of the graph. A graph called Scheduled Graph Trace (SGT) is derived
from the DDDG. It has two components: one corresponding to the instruction called
SGT code, and one corresponding to the data called SGT data. The SGT code and
data can be run statically on the FPGA to simulate the original application. The SGT
code keeps the scheduled order of the DDDG without retaining the addresses of any
instructions. Every SGT operation is either an ALU instruction or a load/store instruc-
tion. Continuous data addresses are recorded inside the SGT code itself. This occurs
when successive addresses vary from one another by a constant value. The SGT data
is stored in a FIFO queue in the same order as the SGT codes that utilizes it. When
the SGT code is executed, the next item needed is at the top of the FIFO and can be
easily popped.

Figure 3.2 – Actions taken by the timing accelerator for the SGT format.

Figure 3.2 presents an illustration of the structure of the SGT format. It also demon-
strates how the SGT format is decoded and executed by the timing component of the
accelerator. The SGT code has seven bits to encode the operations of the RISC-V ISA,
which can be decoded on the RISC-V processor model. SGT format preserves the ex-
ecution order of scheduled DDDG with the bit "is new cycle" that is used to calculate

80

3.3 Accelerator modeling (Pre-RTL accelerator model)

the performance of the accelerator. The graph is translated into three instruction cat-
egories: ALU instructions (i.e., register to register operations), load/store instructions
with their data addresses, and other instructions that do not constitute loops. The ALU
instructions execute the instruction and return the result to the SGT data file (accel-
erator memory). The instructions for load/store read or write, and update accelerator
memory After each instruction, the timing model will use the isNewCycle bit to update
the cycle counter.

3.3.3 Flow explanation by an example

Figure 3.3 – An example of an accelerator model with a factor of 2 loop iteration parallelism, partition-
ing factor 2, and without loop pipelining.

Figure 3.3 illustrates the flow using an example corresponding to the addition of two
vectors. The accelerator modeling steps initiate with a C description of the algorithm

81

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

and the instrumentation step that generates the application execution trace. There are
instances of instruction IDs, operators, operands, and virtual register IDs in the IR trace
(Figure 3.3B). In the next step, an unoptimized DDDG (Figure 3.3C) is generated as a
directed and acyclic graph, with nodes representing instructions and edges represent-
ing dependencies. To schedule DDDG, let us suppose that the add unit operation, the
memory load operation, and the store operation each have a delay of one cycle. We
will assume that the designer made the decision to implement a cyclic partitioning of
the array c with a factor of 2 together with a loop unrolling with a factor of 2 and without
loop pipelining.

Optimizations are then applied to the DDDG. The optimized DDDG, shown in Fig-
ure 3.3D, reflects the dataflow nature of the accelerator. Edges in the DDDG represent
flow dependencies, and DDDG node latencies are added to edges as edge weights.
The scheduled DDDG is generated by the breadth-first traversal algorithm. Each mem-
ory partition has two read ports, memory load operations for vector a and b can be
executed in the same cycle. Vector c has cyclic partitioning with a factor of 2, and two
memory stores accessing different memory banks can be executed in the same cy-
cle. Figure 3.3D represents a feasible schedule for which the loop iteration takes eight
cycles. Finally, the scheduled DDDG is generated. The basic strategy is to remove all
possible redundancies from the program execution trace while preserving fidelity.

3.4 Integration of an accelerator model in the HAsim

simulator

In the previous section, we used a set of supporting tools to model specialized
hardware accelerators. We also presented the processor models targeting the FPGA-
based simulator (HAsim) in chapter 2 (2.3). In this section, we will show how to use
HAsim to simulate heterogeneous systems by combining the accelerator and proces-
sor models. Specifically, we will focus on the Rocket Custom Co-processor (RoCC) 1

interface offered by the Rocket Core 2, the hardware blocks can be included. This in-
terface enables the processor to connect with the hardware accelerator by executing
RISC-V ISA-supported custom instructions. At the end, our method can simulate cus-

1. https://inst.eecs.berkeley.edu/ cs250/sp17/disc/lab2-disc.pdf
2. https://github.com/chipsalliance/rocket-chip

82

3.4 Integration of an accelerator model in the HAsim simulator

tom hardware accelerators and processors targeted at the FPGA platform.

Programming flow

Figure 3.4 – The flow designed to generate a customized accelerator and its simulation models.

As shown in Figure 3.4, a flow has been designed to produce a customized accel-
erator and its simulation models. On the right side of Figure 3.4 is the process flow
for generating customized accelerator models. The inputs required by the simulation
model generator are the high-level C/C++ source code and design parameters for the
accelerator. The C code will then be generated into a scheduled Graph Trace format,
which will be decoded and interpreted by the accelerator timing partition. The acceler-
ator timing partition (or timing model) is in charge of tracking architectural performance
and communicating with the processor and its memory. The user program is initially
written in C/C++, and the RISC-V compiler will then generate code compatible with
RISC-V processor models. Because the RoCC custom instruction is not supported by
the RISC-V compiler, it is inlined as assembly. The RoCC interface enables the RISC-V

83

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

processor to communicate with the accelerator by executing custom instructions sup-
ported by the RISC-V ISA. The compiler will generate the application binary that the
FPGA’s functionality will execute.

Accelerator-Processor model integration

Integration of the hardware blocks can be done through an interface similar to the
rocket custom co-processor (RoCC) that is provided by the rocket core. This interface
allows the processor to communicate with the hardware block by executing custom
instructions supported by the RISC-V ISA. The Rocket core is an in order, single-issue,
scalar processor with a 5-stage pipeline. It executes the 32/64-bit RISC-V ISA and
features an integer ALU and an optional FPU. The default configuration of this core
includes first level instruction and data caches. It additionally provides an accelerator
or co-processor interface called RoCC. Through the interface provided by the rocket
core’s rocket custom co-processor (RoCC), the hardware blocks may be integrated.
This interface enables the core to connect with the hardware block by executing RISC-
V ISA-supported custom instructions.

Figure 3.5 – An overview of the communications, including the rocket core and accelerator.

Figure 3.5 shows the processing tile combining the rocket core, the accelerator,
and its RoCC interface. The Rocket core transmits the custom instructions together
with the instruction’s source registers to the RoCC interface. Consequently, the custom
instructions must be executed in order to trigger the accelerator.

Figure 3.6 gives an overview of the custom instruction format. It provides two source
registers and one destination register value that can be passed to the accelerator;

84

3.4 Integration of an accelerator model in the HAsim simulator

Figure 3.6 – Custom instruction format.

a function code is used to trigger a specific accelerator; additional bit fields in the
instructions indicate if the processor requires an answer from the accelerator. Due to a
lack of compiler support, the custom instruction needs to be inlined as assembly. The
number of integrated hardware blocks might change based on the requirements of the
target application.

Simulation targeting the HAsim simulator

Figure 3.7 presents the structure of the proposed HAsim-based simulation platform.
The application code and structural design parameters are entered by users. Between
the user and the FPGAs is a software layer running on the host CPU. It comprises a
set of tools that includes Aladdin, gem5, the trace generation tool, and other software
services.

The simulator uses the Aladdin flow to generate and schedule the DDDG graph. It
then generates compact STG data and SGT code using the accelerator trace tool. The
accelerator trace-based modeling should be interpreted on the FPGA and integrated
into the processor core. Each accelerator model is composed of the accelerator timing
partition with its SGT data, SGT code, and an interface . The SGT code and data are
interpreted by the timing partition. The timing model of accelerator (written in Bluespec
System Verilog) interfaces with the processor simulation models (functional partition,
timing partition, memory system, and router). The Bluespec System Compiler is used
to synthesize the simulation models and generate the FPGA bitstream. The simulator
finally configures the FPGA and loads it with the SGT code, SGT data, and the RISC-V
binary.

More details about the processor models and HAsim framework were given in 2.2.1.
The functional partition handles correct ISA level execution of the instruction stream.
The timing partition (or timing model) is responsible for tracking micro-architectural
specific timings. For rare but challenging implementation events, such as system calls,

85

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

Figure 3.7 – Structure of the proposed simulation platform.

HAsim includes the gem5 simulator running on the host CPU. Additionally, to achieve
flexibility and to reduce the development effort when designers can change the sim-
ulation architecture, a library of predefined modeling components allows architects to
adapt pre-existing modules to their experiments, such as caches, processor models,
network models, etc. The software services refer to all functionality not directly related
to simulation (including the ability to track statistics and parameters, as well as the vir-
tual platform necessary to interact with the host CPU). Finally, the simulator returns the
results back to the host CPU and presents them to the user.

3.5 Performance assessment

In this section, we present a case study of the system level design and evaluation
for heterogeneous SoC architectures using the FPGA-based simulator to evaluate the
correctness of the design flow. The architectural models have been compiled for the
Bluesim simulator, as illustrated in section 2.2.3 of chapter 2. We examine two types of
experiments:

— First, we illustrate how to design a hardware specific accelerator for the Blocked

86

3.5 Performance assessment

General Matrix Multiply algorithm [63]. Our results are compared to those ob-
tained with the Vivado High-Level Synthesis (HLS) tool. The Xilinx Vivado HLS
version 2018.3 is used, and the accelerator clock frequency is set to 100 MHz.

— Second, we expand this case study (in simulation only) to seven benchmarks of
the MachSuite benchmark suite [98] and compare the performance of the stand-
alone processor to different heterogeneous architectures.

3.5.1 Case study: Blocked Matrix Multiply accelerator

Figure 3.8 – The pseudocode of the blocked GEMM algorithm.

General Matrix Multiply (GEMM) is a common algorithm in linear algebra, machine
learning, statistics, and many other domains. It provides a trade-off between space
and time, as there are many ways to partition the computation. Matrix multiply is more
commonly computed using a blocked loop structure. Memory locality is dramatically
improved by commuting the arithmetic to reuse all of the elements in one block before
moving on to the next. Implementation uses a fixed blocking factor of 4 and is based on
the algorithm proposed in [63]. Figure 3.8 illustrates the core computation of blocked
GEMM.

Starting from the algorithm, the accelerator model is generated, its simulation is
then performed with HAsim. Vivado HLS is used as a reference tool for evaluation. A C

87

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

code application program is also developed which includes the following steps: loading
input data, invoking accelerator, waiting for accelerator response, and storing results.
The main program is compiled to RISC-V binary and loaded into the processor model.

As shown in Figure 3.9A, the cycle count for blocked GEMM application while con-
sidering loop unrolling, pipelining and array partitioning pragmas can be predicted. The
x-axis denotes the loop unrolling factor ranging from 1 to 16.

For each configuration, we set the loop unrolling factor and apply pipelining to all
loops in the algorithm (the array partitioning is not considered in this experiment). This
evaluation highlighted a decrease in the number of cycles when the unrolling factor
increased. In addition, the number of cycles predicted by the accelerator simulator
corresponds very closely to that provided by Vivado HLS.

Figure 3.9 – Blocked GEMM evaluation.

Figure 3.9B compares the performance of an accelerator for the blocked GEMM
benchmark according to the usage of different memory structures: one cycle memory
latency (ideal memory), scratchpad memory having a fixed latency for each request,
and cache model. In order to decompose the execution time, we performed simulations
with the heterogeneous simulation model (processor, accelerator, cache, scratchpad,
and router). This highlights that memory access time takes up a significant portion
of the execution time as the complexity of memory increases. Moreover, the number
of cycles decreases as the memory size grows from 4 KB to 8 KB. This reduction is
explained by the fact that a 4 KB memory size is too small to store the blocked data
size (a 16*16 matrix).

88

3.5 Performance assessment

3.5.2 Machsuite benchmarks

We considered seven benchmarks from different domains and studied their im-
plementation with our FPGA-based simulator. Benchmarks are chosen from Mach-
suite [98], with some modifications to fit the gcc RISC-V compiler. Figure 3.10 shows
the estimated performance of these algorithms for different instantiations of the processor-
accelerator pair. For all the applications, configurations for loop unrolling factors, pipelin-
ing options, and array partitioning factors/types are identical.

Figure 3.10 – Performance validation under different architectures.

To assess the performance of a system combining a processor core and an accel-
erator models, we considered that the core executes a program that make a call to the
accelerator that implements each of these benchmarks.

It is not surprising to see that for every application the in-order pipelined with cache
is the slowest architecture because it simulates the complex behavior of the architec-
ture. We also see improved performance of heterogeneous models over processor-only
models. The key motivation behind the proposed design method is to rapidly evaluate
the processor/accelerator performance in an architecture exploration context.

Finally, we evaluated the simulator accuracy of our framework. As shown in Fig-
ure 3.10, the line shows the simulation results for the baseline gem5 simulator (un-
pipelined model), which is measured in number of simulated execution cycles. Experi-
ments show that our simulator has the same level of precision as the gem5 simulator.

89

Chapter 3 – Integration of a pre-RTL accelerator model in the FPGA-based simulator

3.6 Conclusion

To overcome the power and utilization walls in today’s SoC design, computer ar-
chitects replace redundant processors with accelerators that can achieve orders-of-
magnitude performance and energy gains. In this chapter, we introduced an approach
for designing application-specific heterogeneous architecture based on performance
models through integrating an accelerator into a RISC-V core model. The primary
purpose of generating these models is to use them to simulate future heterogeneous
multi-core/multi-accelerator architectures. The design approach aims to explore archi-
tectures based on the FPGA-based simulator. We developed a tool to automatically
generate the data flow graph and the scheduled trace of an accelerator from applica-
tions written in C. We integrated the accelerator model into a module that executes the
custom RISC-V instruction set. By using HAsim framework, we modeled an unpipelined
and in-order-pipelined RISC-V processor’s interfacing accelerator and memory system.
The blocked GEMM case study showed that accelerators can be produced from the ap-
plication program without investing any extra effort into developing the hardware. The
architecture exploration is confirmed by running the MatchSuite benchmark in different
heterogeneous architectures.

90

CHAPTER 4

DETERMINING OPTIMAL CONFIGURATION

ARCHITECTURE FOR

HETEROGENEOUS-ACCELERATOR SOCS

Modern SoC systems consist of general-purpose processor cores augmented with
large numbers of specialized accelerators. Building such systems requires a design
flow that allows the design space to be explored at the system level with an appro-
priate strategy. In this chapter, we focus on a methodology allowing us to explore the
design space of power-performance heterogeneous SoCs by combining an architec-
ture simulator (gem5-Aladdin) and a hyperparameter optimization method (Hyperopt).
We introduce this chapter by presenting related works and then our design approach.
After that, we illustrate how the hyperparameter optimization method works, using two
algorithms called TPE and adaptive-TPE as well as the Hyperopt library. Then, show
how the Hyperopt-gem5-Aladdin framework and the automatic design flow enable the
sweeping of various forms of parallelism with loop unrolling strategies and memory co-
herency interfaces. Finally, the framework is applied to the design of a convolutional
neural network and a multi-context CNN accelerator. We also use the methodology to
find the best architecture, including its coherency interface, for a complex SoC that is
comprised of six different types of accelerated workloads. All the results are studied
and analyzed by way of experiments.

91

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Contents
4.1 Introduction . 93

4.2 Design space exploration using Hyperparameter Optimization . . 95

4.2.1 Synthetic view of a Heterogeneous-Accelerator SoC 95

4.2.2 Design space exploration via Hyperparameter Optimization . . 96

4.2.3 Hyperopt: Hyperparameter Optimization python library 98

4.3 Design methodology . 104

4.3.1 Hyperopt-gem5-Aladdin framework 105

4.3.2 Parallel accelerator exploration 107

4.3.3 Memory coherency models exploration 108

4.3.4 Automatic architectural optimization design flow 109

4.4 Experiments . 110

4.4.1 Convolutional Neural Network accelerator in a SoC 111

4.4.2 Multi-context accelerator . 113

4.4.3 Coherency interface choice study 116

4.4.4 Hyperopt convergence study 118

4.5 Conclusion . 120

92

4.1 Introduction

4.1 Introduction

The energy efficiency gap between application-specific integrated circuits (ASICs)
and general-purpose processors motivates the design of heterogeneous accelerator
system-on-chip (SoC) architectures, the latter of which have received increasing in-
terest in recent years [107]. To support several heavy demanding workloads simulta-
neously and reduce unpowered silicon area, the trend in computer architecture de-
sign is to implement many special-purpose on-chip accelerators in ASIC and share
them among multiple processor cores. Such architectures offer much better perfor-
mance and lower power compared to performing the same task on a general-purpose
CPU. Designing heterogeneous-accelerator SoCs is extremely expensive and time-
consuming. The designer has to face many design issues, such as the choice of the
parallelism degree and the resource utilization of accelerators, their interfaces with the
memory hierarchy, etc. Design space exploration methodologies are of major impor-
tance.

Most of the time, engineers who want to tune a design will try out some of the op-
tions to see how it responds. They will start to understand how the different choices
affect the model in their minds. However, it is a difficult task to explore a huge design
space without the aid of an automated system. An inexperienced designer will prob-
ably struggle to model this complex process when the response surface is complex,
such as non-linear, non-convex, discontinuous, or multi-modal, ultimately missing the
chance to produce high-quality hardware. Also, models of computer architecture aren’t
accurate because they don’t take into account how things interact with each other in
a complex way. This makes it hard to predict how well a computer will perform and
makes it hard to design an architecture. To meet the growing demand for automatic
and accurate design of heterogeneous SoC, there is a way to simulate and optimize
design space in the computer systems domain. We can consider the simulation an un-
known objective function that is intended to be optimized. This problem is also known
as black-box optimization [43] and, in the computer systems world, as design space
exploration. Approaches based on hyperparameter optimization prove to be very use-
ful in optimizing unknown objective functions, as stated in the works presented in [104,
12]. They are more powerful than heuristic optimization in terms of convergence and
quality of obtained solutions.

In this chapter, we present a methodology for designing modern SoC architectures,

93

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

which combine many specialized hardware accelerators and processor cores. We ex-
plore the design space of power/performance accelerator-based systems with a SoC
simulator and determine the optimal configuration using a hyperparameter optimiza-
tion algorithm. The proposed simulation infrastructure is based on the use of two tools:
gem5-Aladdin [106] and Hyperopt [8]. gem5-Aladdin is an architectural simulator that
supports the modeling of complex systems made up of heterogeneous accelerators.
Hyperopt is a library implementing different hyperparameter optimization algorithms
suitable for solving optimization problems with an unknown objective function [104],
such as architecture simulation in our case. The main contributions of this work are as
follows:

— A new framework for determining, at the system-level, the microarchitecture with
the best efficiency, in terms of performance-power ratio.

— A case study allowing to identify the most energy efficient architecture for a con-
volutional neural network (CNN). We showed that the obtained solution achieves
a 2x to 4x improvement in energy-delay-product compared to an architecture
without parallelism. Furthermore, this solution is more efficient than commonly
implemented architectures (systolic, 2D-mapping, and tiling).

— Using the framework, we proposed an accelerator for three representative CNNs
and chose the configuration with the most efficient EDP. The improvement of the
selected CNN accelerator configuration relative to the most optimal architectural
configuration for each individual CNN ranges between 10 and 13.4 %.

— To demonstrate the efficiency of the heterogeneous-accelerator SoC design ap-
proach, we determined the optimal architecture, including its coherency inter-
face, for a complex SoC made up of six common accelerated-workloads. Three
possible coherency models are considered: a software-managed direct memory
access (DMA), a shared last level cache (LLC-coherent), and a fully-coherent
cache. Our framework has shown that a hybrid interface appears to be the most
efficient, with a 22 % and 12 % improvement in EDP compared to just only using
non-coherent and only LLC-coherent models, respectively.

94

4.2 Design space exploration using Hyperparameter Optimization

4.2 Design space exploration using Hyperparameter Op-

timization

This section describes optimization techniques based on hyperparameters that
have been demonstrated to be highly effective for optimizing unknown objective func-
tions. These methods are better than heuristic optimization in terms of convergence
and the quality of the obtained solutions. This section is organized the following way:
First, we present our view of heterogeneous architecture, which is targeted in this the-
sis. Then, Bayesian hyperparameter optimization (also referred to as sequential model-
based optimization, SMBO) is introduced. Finally, we present the Hypertopt Python
library, which is used to construct a probability model of the objective function and se-
lect the most promising hyperparameters for evaluating the true objective function. The
TPE and adaptive-TPE algorithms, which are the heart of the method as well as an
example of how the Hypertopt works, are both explained and demonstrated here.

4.2.1 Synthetic view of a Heterogeneous-Accelerator SoC

Figure 4.1 – View of a typical heterogeneous-accelerator SoC.

95

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Figure 4.1 depicts a view of a typical heterogeneous-accelerator SoC, which con-
sists of general-purpose cores, memory controllers, a DMA engine, and several types
of specialized accelerators, all of which are connected through a configurable network-
on-chip (NoC). Each accelerator is constructed out of a number of dedicated datapaths,
each of which implements a part of an algorithm or the entire algorithm for a specific
application domain. The accelerator has scratch-pad memory (SPM) or a cache con-
troller for its local memory. Each accelerator uses a software-programmed SPM and a
direct memory access (DMA) engine in order to achieve high performance. These two
components allow for communication with the other components of the cache memory
hierarchy. Additionally, there are last-level cache (LLC) and memory controllers that are
coherent and shared by both the processor cores and the accelerators. This is done in
order to provide high bandwidth to the accelerators.

4.2.2 Design space exploration via Hyperparameter Optimization

Design-space exploration (DSE) is usually needed in the design process to deter-
mine the best choices for the target architecture. Simulators are often used to perform
DSE in the early stages of computer architecture design [29, 73]. At the system level,
the DSE is inherently a component-based design effort since the choice of a RTL im-
plementation of a module must be made in the context of all the other modules that are
also components. In the multi-objective design space of the whole SoC, a set of deci-
sions leads to a specific point. As a result, the method is used to obtain the diagram of
Pareto-optimal points and is repeated hierarchically at the system level [71].

Recent computer systems and architectures have been optimized for machine learn-
ing (ML) models. System and computer architecture may be improved with the assis-
tance of ML [121]. A model of machine learning is a formula with several parameters
that must be learned from data. These parameters correspond to "higher-level" char-
acteristics of the model, such as its complexity or learning rate. They are known as
hyperparameters. This might include, for example, the number of trees in a random for-
est, the number of hidden layers in neural networks, the design of a telecom network,
etc.

Automated hyperparameter optimization can reduce human effort, improve produc-
tivity, and be more fair in scientific studies [44]. Approaches based on hyperparameter
optimization prove to be very effective in optimizing unknown objective functions, as

96

4.2 Design space exploration using Hyperparameter Optimization

stated in the works presented in [104, 12]. They outperform heuristic optimization in
terms of convergence and quality of solutions. We refer to the computer architecture
simulation as a "black-box function" which lacks an algebraic system model to be opti-
mized. We can also assess the potential of space for configurations for heterogeneous
SoC design because hyperparameters must be quickly optimized in order to obtain an
architectural solution. Our work focuses on developing a methodology that relies on
hyperparameter optimization to help select an optimal architecture.

There are two primary approaches: the random search and the grid search. If each
training session takes several hours or even days to complete, it is unrealistic to con-
duct such an exhaustive search because it would be extremely expensive. It would be
impossible to try all of the cases that are contained within the search space, so it is
strongly recommended to exploit the search result. For instance, after we have tried
a few different points in the search space, we will have a better idea of which areas
of such a space produce good results and which areas do not produce good results.
Therefore, we are going to be focused on a concept that is known as SMBO, which
stands for sequential model-based optimization [56].

Figure 4.2 – The pseudo-code of generic Sequential Model-Based Optimization [9].

The pseudocode of a generic SMBO is shown in Figure 4.2. The method starts
by evaluating a function f called true function and establishing the search history H.
The following procedure steps are done iteratively t times, where T is the budget for
the number of iterations. SMBO algorithms choose promising configurations x ∗ from
a model M that models f based on the history of observations H at each iteration.
There are two innovative techniques S for estimating f by modelingH [9]: a hierarchical
Gaussian Process and a Tree-structured Parzen Estimator (TPE).

97

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Bayesian optimization is a machine-learning-based method for the global optimiza-
tion of black-box functions that is widely applied to many real-world problems [109,
110, 32, 80]. It implements a probabilistic surrogate model and an acquisition function
iteratively. The probabilistic surrogate models the unknown objective function based
on already observed samples (search history). The acquisition function optimizes the
surrogate model to decide which point to evaluate next.

Bayesian optimization can figure out how the parameters work together and ignore
configurations that have a low chance of being good solutions, so that the search can
be done more globally. Thus, it can speed up the search and better avoid bad local
if the current state is on a plateau or a bad local minima. So, Bayesian optimization
seems like a good way to speed up exploration of the design space for computer archi-
tecture. Based on these features and properties, we propose a framework that applies
Bayesian optimization to an architecture simulation in order to make early design ex-
ploration more efficient. Bayesian optimization methods, such as gaussian processes
(GP), Random Forest, and Tree-structured Parzen Estimator, use different ways to
build surrogate models (TPE). Tree-based models like Random Forest and TPE are
appropriate for solving large-size discrete domain problems [39]. GP is often used for
moderate-size problems with a continuous domain. In our work, we chose TPE for
Bayesian optimization because it is well suited for discrete problems, and architecture
configuration is used to explore design.

4.2.3 Hyperopt: Hyperparameter Optimization python library

We rely on the use of a hyper-parameter optimization library called Hyperopt [11] to
choose the design that is the most efficient. Hyperopt offers an optimization method-
ology that distinguishes between a configuration space and an architectural simulation
function that associates power/performance values to configuration space locations.
When using Hyperopt, the SMBO algorithm may be replaced with any other search
algorithm. In the library, there are currently three methods [10]: random search, TPE,
and the adaptive TPE algorithms. The adaptive TPE (ATPE), which is an extension of
TPE, is a model that uses machine learning to automatically tune the hyperparameters.

98

4.2 Design space exploration using Hyperparameter Optimization

Tree-structured Parzen Estimator (TPE algorithm)

The SMBO algorithm narrows the search space sequentially based on previous
results and is used for hyperparameter optimization tasks with high dimensions and
small evaluation budgets. The tree parzen estimator (TPE) is a model and Expected
Improvement (EI) the optimization strategy for the SMBO algorithm. It has been thor-
oughly validated by a large number of people who have used it in a variety of machine
learning algorithms and demonstrated its usefulness. As a result, we chose to employ
it as a strategy in our research. The goal of the TPE algorithm is to maximize (EI).
EI is given by equation 4.1, where variables and their probabilities are x , P(x) for hy-
perparameters, y , P(y) for the objective function, and y∗ as the best value found after
observing history H.

EIy∗(x) =
∞∫
−∞

max (y ∗ −y , 0)P(x | y)P(y)
P(x) dy (4.1)

P(x | y), which is the probability of the hyperparameters given the score of the
objective function, is expressed as:

P(x | y) =

l(x) if y < y∗

g(x) if y ≥ y∗
(4.2)

TPE models the density of a parameter for "good" results and compares it to its
density for "bad" results. It can then use these models to determine the expected im-
provement of the objective function for any value a parameter can take. The TPE al-
gorithm depends on a value called y∗, which is either the desired result or the best
value found by looking at the past. The density that is formed by using the observation
parameter x in such a way that the result of function y is less than y∗ is denoted by l(x)
(good results), while the density that is formed by using the remaining observations is
denoted by g(x) (bad results). Once l(x) and g(x) have been expressed, TPE is able
to identify the next parameter to consider using an equation (4.4).

99

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Gamma (γ) represents the quantile of the search result. Lower values of γ corre-
spond to bad results, and higher values of γ correspond to good results. On The TPE
method by γ is defined by the following equation:

γ = P(y < y∗) =
y∗∫
−∞

P(y) dy (4.3)

TPE picks the previous value y∗ to be some quantile of the observed current y
values, but there is no need for a specific model for P(y). By keeping sorted lists of
observed variables in a search history, the runtime of each iteration of the TPE method
can scale linearly with history H and the number of parameters being optimized.

EIy∗(x) ∝ (y + g(x)

l(x)
(1− γ))−1 (4.4)

Equation 4.4 [9] illustrates the parametrization used in the TPE algorithm to facilitate
the optimization of EI . Points x are looked at with the goal of maximizing improvement
if they have a high probability under l(x) and a low probability under g(x). The tree-
structured form of l and g makes it simple to generate multiple candidates based on l
and evaluate them based on g(x)/l(x). As a result, the algorithm delivers the candidate
x∗ with the highest EI at each iteration.

Adaptive-TPE (ATPE) algorithm

TPE may be viewed as an algorithm that predicts the optimal trial to try next based
on past trials. The only fundamental hyperparameter for TPE is gamma (γ). However,
we can modify the value of some parameters to improve the effectiveness of the TPE
algorithm:

— n startup trials : random sampling is used instead of the TPE algorithm until a
given number of trials is achieved.

100

4.2 Design space exploration using Hyperparameter Optimization

— seed : seed for the random number generator.

— n ei candidates : number of candidate samples used to calculate the expected
improvement.

— gamma: a function that forms a density function for samples that have low grains.
It takes the number of completed trials as an input and returns the number of
trials as an output.

— prior weight the weight of the prior.

— locking value: a hypothetical way that could force TPE to spend more time ex-
ploring specific hyperparameters by ‘locking in’ the values for the others for some
trials.

Figure 4.3 – Adaptive-TPE algorithm: a tuning parameters technique for improving TPE.

The adaptive tree of parzen estimators (ATPE) 1 is a method that enhances the be-
havior of the TPE algorithm. Figure 4.3 shows the parameters that can be tuned to
explore more widely (more random search) or more narrowly (closer to current best)

1. https://github.com/electricbrainio/hypermax

101

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

based on the situation. In order to improve TPE [8], the authors searched out the opti-
mal values for those parameters across a wide variety of different simulated hyperpa-
rameter spaces. They used this dataset to build a machine learning model that could
predict the TPE algorithm’s optimal parameters. This algorithm is called Adaptive-TPE
(ATPE). ATPE is the optimization algorithm that uses a pre-trained machine-learning
model to help optimizing faster and more accurately.

An example of using the Hyperopt library

The example considers an architecture where configurations result from a code
consisting of six nested loops. A history table including a set of six parameters and
their Energy Delay Products (EDP) is shown in Figure 4.4. After being simulated with
the parameters of an architectural configuration, we got an EDP. The EDPs are sorted,
saved, and used in order to partition the space into two separate sets, namely, "good
results" and "bad results".

A search space is a stochastic expression that always evaluates to an argument that
can be used as an input to the objective function. The hyperparameters are referred to
as stochastic expressions. In this example, each group fits the configuration distribution
of architecture parameters. We are able to match the configuration space utilizing cat-
egorical variables as well as uniform, log-uniform, and quantized log-uniform variables.
We will refer to the top distribution as l and the bottom distribution as g .

The next step is to choose the next configuration to be evaluated. The output of
the TPE method is the absolute minimum of the bottom distribution divided by the top
distribution. We take this value and use it as our argument’s minimum. The objective
here is to maximize the good result while minimizing the bad result.

Figure 4.4 – An example of the TPE procedure with six loop iteration parallelism factors and its
Energy-Delay-Product.

102

4.2 Design space exploration using Hyperparameter Optimization

Figure 4.5 – An example of a Hyperopt configuration with six loop iteration parallelism factors.

103

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

The way the configuration search space, the objective function, and the optimiza-
tion algorithm setup are illustrated in Figure 4.5. A configuration search space object
defines the searchable domain within which Hyperopt is allowed to operate. In this ex-
ample, the architecture configuration parameters include six values. hp.quniform(label ,
low , high, q) is a function that identifies a line using the formula round(uniform(low , high)/q)
∗q . This function is appropriate for use with discrete values in relation to which the ob-
jective is still somewhat smooth. For instance, if we desire to search for loopm across
the value of m from 1 to 6, each value is incremented by 1. This configuration also
applies to loop n, r , c, i , and j .

An objective function is a python function that accepts a single argument for x (which
may be any object) and returns the f (x) incurred as a result of that input. Although
Hyperopt supports objective functions with more complicated parameters and return
values, we will utilize the simulator as an objective function that receives an array of
architecture configurations and returns an EDP. This indicates that the objective func-
tion will initiate the architectural simulation and return power/performance results that
correspond to the configuration.

In order to carry out optimization, we first call the fmin() function, which allows
us to search through the available options for the best possible objective function.
In order to select a search algorithm, it is essential to assign the algo keyword pa-
rameter to hyperopt .tpe.suggest . This will allow you to narrow down your options. Ran-
dom search, also known as hyperopt .rand .suggest , and TPE search, also known as
hyperopt .tpe.suggest , are two of the search algorithms that are now supported. There is
also an extended version of the ATPE search method available.

4.3 Design methodology

The purpose of this section is to introduce Hyperopt-gem5-Aladdin, a framework
that automatically determines the optimal architecture by simulating the dynamic inter-
actions between accelerators and the SoC platform. We describe an automatic design
flow that makes use of this framework.

104

4.3 Design methodology

4.3.1 Hyperopt-gem5-Aladdin framework

Choosing the optimal architecture and its coherency interface for each accelerator
in a complex SoC including several heterogeneous accelerators is a difficult and time
consuming task. Each accelerator’s performance is impacted by a number of factors,
including its own computation time and memory access patterns, as well as competi-
tion with other accelerators for shared resources. We propose a solution to automati-
cally select the optimized accelerator architecture and the coherency interface for each
accelerator in a heterogeneous SoC architecture. Figure 4.6 illustrates the interaction
between the tools gem5-Aladdin simulator and Hyperopt involved in our framework.

Figure 4.6 – Overview of our generic design flow using the hyperparameter optimization-based
method.

The accelerator modeling is based on Aladdin [105] whose target model is the stan-
dalone datapath and its local memories. The Aladdin trace-based accelerator simulator
profiles the dynamic execution trace of an accelerated workload initially expressed in C
and estimates its performance, power, and area. The process mainly consists in build-
ing a dynamic data dependence graph (DDDG) of the workload which can be viewed
as a data flow representation of the accelerator. This graph is then scheduled taking
into account the resource constraints by the way of user-defined hardware parameters
such as loop unrolling, loop pipelining, and number of memory ports. The underlying
model of the Aladdin simulator is a standalone datapath and its local memories.

The interactions at the SoC view level, that is, between the accelerators and the
other components of the system, are managed by gem5-Aladdin [106], which realizes
the coupling of Aladdin with the gem5 architectural simulator [14]. gem5-Aladdin is able
to evaluate interactions between accelerators and processor cores, DMAs, caches, and
virtual memory in SoC architectures, as illustrated in Figure 4.6. With some modifica-

105

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

tions to gem5, a user program running on a CPU can invoke accelerators via a system
call ioctl. An interrupt mechanism will wake up the CPU when the accelerators finish.
It helps to put the CPU in sleep mode and eliminate polling while waiting for the accel-
erators to finish. gem5-Aladdin supports three coherency models for accelerators: (i)
non-coherent: using software-managed DMAs; (ii) LLC-coherent: by directly access-
ing the coherent data in the last-level-cache (LLC) without having a private cache; (iii)
fully-coherent caches: each accelerator can use its private cache to access the main
memory. These coherency models are described in subsection 4.3.3.

The potential parallelism of an accelerator is expanded by design pragmas such as
the loop unrolling factor during the accelerator modeling phase. This phase is used to
evaluate and update the power-performance of accelerators. The gem5-Aladdin simu-
lator can model SoCs including several accelerators that can use different coherency
models, and run various workloads concurrently. The complete SoC is specified using
a SoC configuration file which describes the configuration of processors, accelerators,
memories/caches, and interconnect. The gem5-Aladdin simulation is an objective func-
tion of the optimization method; it provides the performance, power, delay time of SoC
architectures that one wishes to optimize.

Algorithm 1: TPE-based Optimization Pseudo-Code
Data: Architecture design space X , sampling size N , random initial

configurations k
Result: A parameter vector x with the minimum f (x)

1 Randomly simulate k architecture configurations;
2 Define initial search history with k pairs (x , f (x));
3 n ← 0;
4 while n ≤ (N − k) do
5 Construct models density functions g(x), l(x);
6 xnext = argminx

g(x)
l(x)

;

7 Simulate xnext ;
8 Update search history ← (xnext , f (xnext));
9 n + +;

10 Return the best (x , f (x)min);

Using Hyperopt, the following steps are required to explore the architecture space:

— Design an objective function that performs a simulation of configuration points
and gives the power/performance value.

106

4.3 Design methodology

— Define a configuration space of valid configuration points.

— Select a search algorithm to optimize the objective function.

Algorithm 1 presents the pseudo-code of the TPE-based method used in the frame-
work. The algorithm starts by randomly selecting k architecture configurations and sim-
ulates them with the gem5-Aladdin simulator (line 1). The search history is initiated
(line 2), it consists of k pairs of configurations and their associated simulation result
f (x). The next steps of the method are iterative and are performed N-k times, where N
is the budget for the number of architecture simulations. The search space is narrowed
down from the search history and a new configuration for the next simulation step is
suggested using equations presented in subsection 4.2.3 (lines 5, 6, 7, 8, 9). Once all
the iterations have been completed, the optimal architecture configuration set which
reaches the minimum f (x) is selected (line 10).

4.3.2 Parallel accelerator exploration

Applications in domains such as multimedia and telecommunications often spend a
significant amount of time running a number of time-critical code segments with well-
defined features, making them suitable for architectural specialization. These computation-
intensive sections, generally loops, can be mapped onto hardware accelerators in order
to increase the overall performance of the program. In addition, these computation-
intensive tasks often have a high degree of inherent parallelism. Therefore, it makes
sense to exploit this parallelism, and it is crucial to leverage its efficiency while devel-
oping these accelerators.

Loop nests of the considered workloads define the exploration space, as illustrated
in Figure 4.7, with the convolutional layer of a Convolutional Neural Network (CNN) ap-
plication. The convolutional layer (CONV) of a typical CNN application exhibits intensive
parallelism at the feature map, neuron, and kernel levels. There are four parameters: M
(number of output feature maps), N (number of input feature maps), S (output feature
map size, or number of neurons), and K (kernel size). This is an interesting example
to explore the architecture of parallel computing accelerators because it is possible to
play with different loop unrolling factors with the 6 nested-loops corresponding to the
CONV computation as illustrated in Figure 4.7.

107

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Figure 4.7 – Convolutional layer operation of a CNN.

4.3.3 Memory coherency models exploration

When designing an accelerator, the system view is of great importance and it is
essential to take into account how the different components interact with each other.
Indeed, the system must be designed to take into account the bandwidth available
with the memory so that the accelerator units are correctly supplied with data. It is a
question of considering data movement between hardware components and coherency
management for accelerators. Giri et al. [51] identified three common coherency inter-
faces used to integrate accelerators with the memory hierarchy in a loosely coupled
architecture.

— In a non-coherent interfacing model, the accelerator has a scratchpad memory
(SPM) for local storage and uses DMA to load data from DRAM, as illustrated in
Figure 4.1.

— LLC-coherent accelerators send DMA requests to the last level cache. Their im-
plementation is similar to that of non-coherent accelerators, but the LLC-coherent
DMA requests/responses are routed to the cache-coherent module instead of the
DMA.

— In a fully coherent model, each accelerator has its private cache which imple-

108

4.3 Design methodology

ments a cache coherence protocol such as MESI or MOESI, similar to a proces-
sor’s cache.

Each of these three coherency models offers interesting power-performance trade-
offs. For instance, overheads due to the costly main memory accesses increase con-
tention when operating concurrently. Irregular data access patterns increase LLC misses,
and generate a significant hardware area/power overhead. In a SoC integrating several
accelerators to support a versatile application, a single coherency interface used by all
accelerators may not be the most optimal in terms of power and performance as shown
by Giri et al. [51]. Each accelerator may have its coherency model, and this is what we
explore with the flow.

4.3.4 Automatic architectural optimization design flow

Hardware designers often use the heuristic design method, which in the future will
increase design time and expenses. Hardware design automation is motivated by the
need to enable novice architects, software engineers, and algorithm developers to par-
ticipate in hardware design. Consequently, an efficient design flow from algorithms to
architectures and the selection of an automatically optimized solution are essential.
Approaches based on TPE algorithm optimization must define the number of samples
and explore them all in order to get the results. In addition, we must begin from scratch
when we run optimization again. This is time-consuming when simulating a complex ar-
chitecture and a huge design space, as each simulation may take a significant amount
of time. To overcome this drawback, we employ a multi-step HyperOpt-gem5-Aladdin
optimization that can automatically select the optimal architecture design without re-
quiring a predetermined number of simulations. Additionally, it stores the search his-
tory, allowing the user to continue exploring the design space without having to start
over. The multi-step optimization procedure is demonstrated in algorithm 2.

The designer will first define expected results, such as the desired level of perfor-
mance or power value. The notations S , N , and f (x)min represent, respectively, the
size of the design space, the number of simulations performed, and the optimal value
for each step. In the first step of the procedure, the search history is defined, which in-
cludes the architecture parameter vector x along with the simulation result f (x)min . The
investigation can be saved and resumed without necessitating re-running simulations.
The budget for the number of designs that the Hyperopt-gem5-Aladdin framework will

109

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

produce is denoted by the parameter N . Step-by-step, the design space is explored
so that the Hyperopt-gem5-Aladdin framework is invoked and the search history is up-
dated (lines 5, 6, 7). As a prerequisite for stopping the exploration at each successive
step, the most optimal value is compared to the Expected Result (ER). Or we try all
spaces (S) until we reach the point where the ER value is closest. ER is defined by the
designer based on the requirements of the target architecture.

Algorithm 2: Pseudo-code For Automatic Architectural Optimization Flow
Data: Architecture design space X , design space size S , sampling size of

Hyperopt-gem5-Aladdin N , the expected result is the desired outcome
for the designer ER.

Result: An architecture parameter vector x with the minimum result of the
simulation f (x)min

1 Define expected result ER;
2 Define initial search history ;
3 i ← 0;
4 while (f (x)min − ER) > 0) or ((i ∗ N) < S) do
5 (x , f (x)min)← HyperOpt-gem5-Aladdin(N);
6 Update search history with N pairs (x , f (x));
7 i + +;

8 Return the best (x , f (x)min);

4.4 Experiments

In this section, we investigate the design space and optimize the configuration for
the Convolutional Neural Network Accelerator in a SoC utilizing our hyperOpt-gem5-
aladdin framework. Through experiments, we were able to find the CNN architecture
that achieves high performance while using the least amount of energy. We also looked
into a CNN accelerator that can run different CNN applications in different contexts (a
multi-context accelerator). Also, we figured out the best architecture for a complex SoC
with six common accelerated workloads, including the coherency interface. Finally, we
compared the convergence of random search, traditional TPE, and ATPE.

Our studies aim to characterize, in terms of energy delay, the system-level explo-
ration of the architectural design space of a heterogeneous accelerator SoC. We dy-
namically estimate the value of the associated Energy-Delay Product (EDP) for each

110

4.4 Experiments

point in the design space, taking into account both performance and energy limitations.
The energy usage in the EDP function was indicated in Joules Per Instruction (JPI),
while the execution latency was given in Clock Cycles Per Instruction (CCPI or CPI).
The EDP has been chosen as the assessment measure for comparing alternative de-
signs in terms of various parameters. Through the use of EDP, our experiments focus
on memory coherency models and parallel architecture exploration.

The experimental setup for the modeled SoC includes the processor configura-
tion and the accelerators that will be designed. Our framework is based on gem5-
Aladdin, and most configurations are the same for all experiments. Table 4.1 outlines
the system-on-chip configuration of the gem5-Aladdin simulator used for the experi-
ments.

Table 4.1 – gem5-Aladdin SoC Architecture Configuration.
Component Description
CPU Type Out-of-order X86
System Clock 100MHz
Cache Line Size 64 bits
L2 Cache (LLC) 2 MB, 16-way, LRU
Memory DDR3 1600 8x8, 4 GB
Hardware Prefetchers Strided
Data Transfer Mechanism DMA/Cache

4.4.1 Convolutional Neural Network accelerator in a SoC

As presented in subsection 4.3.2, Figure 4.7 depicts an example of a convolutional
layer of a convolutional neural network (CNN) application. The layers of a standard
CNN include convolution (CONV), pooling, and fully connected. The first two layers,
convolution and pooling, extract features, while the third layer, fully connected, trans-
lates the retrieved features to the final output, such as classification. In a typical im-
plementation, the CONV layers use more than 90% of the execution time during the
inference [31]. CNN layers are highly computation intensive and exhibit fine-grained
parallelism at feature map (FP), neuron (NP), and synapse (SP) levels. This poten-
tial parallelism offers many opportunities to speed up the calculations. However, most
existing CONV accelerators exploit the parallelism only at one level [72]. Systolic archi-
tectures can usually exploit synapse parallelism [17], 2D-Mapping architectures neuron
parallelism [37], and Tiling architectures feature map parallelism [18].

111

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

There is a lack of architectural studies trying to exploit these different types of fine-
grained parallelism simultaneously. By exploring all possible types of parallelism, and
depending on user constraints, greater efficiency can be expected.

The calculations of a CONV layer, as shown with the code in Figure 4.7, can be un-
rolled in different ways. The labels in the code (loop m, loop n, loop r , loop c, loop i , loop j)
are used to set the unrolling factors and quantify the parallelism degree of each loop.
According to the different unrolling strategies of the loops, there are three types of
parallelism.

— Feature map Parallelism (FP), loop m output feature maps, and loop n input fea-
ture maps are processed at a time (maximum factors are M and N respectively).

— Neuron Parallelism (NP), loop r , and loop c neurons of one output feature map
are processed at a time (maximum factor is S).

— Synapse Parallelism (SP), loop i , and loop j synapses of one kernel are com-
puted at a time (maximum factor is K).

The design space is built by combining these three types of parallelism. As an
example, an architecture may handle a single input feature map and a single output
feature map (loop m = 1 and loop n = 1), one neuron of each output feature map
(loop r = 1 and loop c = 1), but multiple synapses of each kernel at a time (loop i
> 1 or loop j > 1). This corresponds to a style of parallel computing named Single
Feature map, Single Neuron, Multiple Synapses (SFSNMS). It is obviously possible to
define other processing styles: SFSNSS, SFMNSS, SFMNMS, MFSNSS, MFSNMS,
MFMNSS and MFMNMS [72].

We evaluated three common workloads selected from published papers. LeNet-
5 [66], the most famous handwriting recognition model, FR[34] implementing a face
recognition model, and HG [70] used to recognize hand gestures of humans. In this
experiment, we used a non-coherent interface model, it has a private scratchpad mem-
ory for local storage and uses DMA to request data from the main memory.

Table 4.2 gives the configuration of three well-known parallel architectures (tiling,
2D-mapping and systolic) for each of the considered workloads. The fourth architec-
ture, called selection, corresponds to that resulting from our exploration.

Figure 4.8 shows the EDP results for the six workloads. In this figure, the hori-
zontal axis denotes the workloads and the vertical axis denotes EDP value normal-
ized by EDP of a baseline architecture without any parallelism whose parameters are

112

4.4 Experiments

Table 4.2 – Unrolling factors for CNN-Workloads(M,N,K,S) (loop m,loop n,loop r,loop
c,loop i,loop j).

Workloads Systolic 2Dmapping Tiling Selection
LN5 C1(6,1,5,28) 1,1,1,1,5,5 1,1,28,28,1,1 6,1,1,1,1,1 1,1,15,15,5,5
LN5 C3(16,6,5,10) 1,1,1,1,5,5 1,1,10,10,1,1 16,6,1,1,1,1 2,2,7,7,5,5
FR C1(4,1,5,28) 1,1,1,1,5,5 1,1,28,28,1,1 4,1,1,1,1,1 1,1,15,15,5,5
FR C3(16,4,4,10) 1,1,1,1,4,4 1,1,10,10,1,1 16,4,1,1,1,1 1,1,10,10,4,4
HG C1(6,1,5,24) 1,1,1,1,5,5 1,1,24,24,1,1 6,1,1,1,1,1 1,1,16,16,5,5
HG C3(12,6,4,8) 1,1,1,1,4,4 1,1,8,8,1,1 12,6,1,1,1,1 1,1,7,7,4,4

(1,1,1,1,1,1). The columns represent the normalized EDP of the different architectures.
The figure shows that the selected architecture always gets better improvement com-
pared to classical architectures.

The different EDP improvements of these architectures, illustrated in Figure 4.8, can
be explained by two main reasons: data reuse and use of computing resources. Sys-
tolic and 2D-Mapping architectures have a comparable improvement in terms of energy.
Systolic has a higher latency than 2D-Mapping because of the long initialization phase
to fill the chain of processing elements. But systolic has a higher data reuse factor than
2D-Mapping, therefore systolic consumes less energy than 2D-Mapping for most work-
loads. At the SoC level, most of the energy is consumed by the data movement, so if
data reuse increases, EDP also increases. In the case of tiling, the EDP improvement
is very low because of low computing resource utilization and the poorest energy effi-
ciency due to high latency and poor data reuse. Our selected configuration combines
systolic and 2D-Mapping. This corresponds to configurations having maximal synapse
parallelism to increases data reuse, and high neuron parallelism to balance computing
resource utilization and local memory load/store power consumption.

In summary, the configuration proposed with our flow allows obtaining a better
EDP than usual architectures (Systolic, 2D-mapping, and Tiling) for accelerator-based
SoCs. This results in an improvement of the EDP by a factor between 2 and 4 com-
pared to a sequential architecture.

4.4.2 Multi-context accelerator

We have found that the optimal hardware accelerators for various CNN applications
are rather different from one another. In this part, we investigate if additional optimiza-

113

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Figure 4.8 – EDP improvement for CNN workloads.

tion possibilities exist when multiple CNN programs run on the same hardware acceler-
ator. First, interleaving the convolutional layers allows us to combine LeNet-5, FT, and
HG into multi-context applications. Then, we explore the multi-context CNN-accelerator
SoC architectures as well as parallelism and memory optimization using the automatic
design flow. EDP is chosen as the optimization metric for a high-performance, low-
power accelerator. As a consequence of this, rather than utilizing specific accelerators,
we are able to obtain an optimal accelerator that is capable of running a variety of CNN
applications.

Our approach to the optimization of the architectural task is to model it as a multidi-
mensional optimization problem. The variables are depicted in Table 4.3. The parallel
architectures are constructed using the four loop unrolling factors, where M , N , K , and
S represent four parameters at the CONV layer C1/C3 and x::y::z represents a set of
values ranging from x to z with a step size of y between each value. For instance, the
parameters for CacheL1Size [4::2::128] are 4, 8, 16, 32, 64, and 128. Moreover, since
the memory system has a significant impact on the performance of accelerators, we
also optimize the architecture that employs a memory hierarchy model, including L1

114

4.4 Experiments

size, L2 size, and cache configuration.

Table 4.3 – SoC-Accelerators Design Space, where (M,N,K,S) represents four param-
eters at the CONV layer C1/C3 ,and x::y::z denotes a set of values from x to z by a
stepping factor of y.

Parameters Values
Loop Rolling Factor m [1 → max (M C1, M C3)]
Loop Rolling Factor n [1 → max (N C1, N C3)]
Loop Rolling Factor r c [1 → max (S C1, S C3)]
Loop Rolling Factor i j [1 → max (K C1, K C3)]
Cache L1 Bandwidth (bytes/cycle) [4::2::128]
Cache L1 Size (KB) [4::2::128]
Cache L2 Size (KB) [4::2::256]
Cache Assoc [4::2::16]

Table 4.4 – Energy Delay Product improvements of the multi-context architecture over
the most optimal configuration for each CNN-workload.

Over optimal Lenet5 Over optimal HG Over optimal FR
13.4% 10.2% 11.9%

The resulting architectural configurations, along with the EDP that is most suitable
for this multi-context CNN accelerator, are displayed in Figure 4.9. This radar chart
was created so that a comparison could be made between the various configurations
of standalone CNN applications. It is measured against the architectural configurations
that achieve the highest effective data processing (EDP) on each CNN workload. Ac-
cording to the data presented in Table 4.4, the multi-context accelerator has an EDP
efficiency that is 10.2 percent to 13.4 percent higher than that of the best configuration
for each CNN. Since each of the CNN workloads has its own characteristics, the de-
sign space is characterized by a wide variety of different configurations. For this reason,
consideration of the target applications ought to take place during the early stages of
design in order to design effective accelerators for a wide variety of CNN applications.
The results of the exploration can be used by the designer to gain an understanding of
the steps they should take to mitigate any drawbacks posed by the architecture.

115

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Figure 4.9 – Radar charts of architecture configurations with optimal EDP.

4.4.3 Coherency interface choice study

The SoC configuration used for evaluating heterogeneous-accelerator architectures
is a tiled architecture consisting of one CPU and six accelerator tiles, along with L2
cache controller and main memory controller tiles. The processing units all perform
different tasks, which means that all the accelerators operate in parallel.

Table 4.5 – Accelerated-workloads in a SoC.
Workloads Description
LeNet5 C1 Convolutional layer (5x5), 32x32 input, 6x28x28 output
LeNet5 C3 Convolutional layer (5x5), 28x28 input, 16x10x10 output
AES-256 AES encryption 256 bits
GEMM nCubed Matrix multiplication, 64x64 input
FFT-Transpose Fast Fourier transform (512-point)
Stencil-3D Stencil computation, 32x32x16 input
SPMV-Crs Sparse matrix-vector multiply (2048x512 matrix)

Table 4.5 gives the features of the accelerated workloads used for the experiment.
Two LeNet-5 convolutional neural network layers perform an image classification task.

116

4.4 Experiments

The others correspond to four benchmarks from MachSuite[98]: AES-256, GEMM-
nCubed, FFT-Transpose, and Stencil-3D.

This experiment aims to determine the best coherency interface for each of the
accelerators separately and for the SoC made up of these six accelerators. The per-
formance of each accelerator is affected not only by its computation time and memory
access patterns but also by possible conflicts when accessing shared resources. Con-
sequently, the coherency models adapted to each accelerator are difficult to predict
at design time. The input space of hyperparameter is six dimensional due to the six
accelerators. Each accelerator interface can be either non-coherent, LLC-coherent or
fully-coherent, this results in a total of 729 possible configurations.

Figure 4.10 shows the EDP results for each accelerator and the six-accelerator
version. In this figure, the horizontal axis denotes the different accelerators, and the
vertical axis denotes EDP normalized with respect to the non-coherent configuration.
For each benchmark , the columns represent the normalized EDP of the different inter-
faces.

Figure 4.10 – EDP improvement for coherency interface.

In most cases, except for FFT-transpose, the full-coherent interface performs worst

117

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

due to its significant hardware and performance overheads. In particular, for CONV-
accelerators such as LeNet-5 C1 and LeNet-5 C3. They access a large amount of
data (kernels, inputs, and outputs), which cannot fit in the L1 caches and can therefore
lead to significant cache misses, penalizing the overall latency. FFT-transpose performs
better with fully-coherent than with non-coherent because only eight bytes per 512
bytes of data are read per iteration whereas with the DMA system almost all the data
must be available before the computation starts. Furthermore, LLC-coherent shows a
better EDP than non-coherent since the memory requests are first sent to the LLC, and
when the LLC hits, this results in much shorter access latency.

For the six-accelerator version, the hybrid selection offers better EDP than systems
using a single coherency interface. The solution obtained is the following: LeNet-5
C1 and LeNet-5 C3 use non-coherent while the other accelerators use LLC-coherent
interface. This hybrid solution results in an improvement in EDP of 22% and 12%
respectively, compared to only non-coherent and LLC-coherent.

Although the average (geometric mean) of the EDP improvement over the six accel-
erators gives the benefit to the only LLC-coherent model, it appears that in the global
system view, the hybrid coherent model achieves better EDP improvement.

There are many reasons that explain the EDP improvement brought by the hybrid
solution. Having a subset of accelerators with non-coherent interfaces reduces pres-
sure at the LLC level. Indeed, if only four accelerators share the last-level cache, the
time spent in data movement compared to an all LLC-coherent solution is reduced.
In addition, CONV accelerators benefit from the use of a non-coherent interface with
streaming data access patterns applications.

4.4.4 Hyperopt convergence study

We studied the convergence of the hyperparameter optimization algorithm and
compared three implementations: random search, conventional TPE, and ATPE. LeNet-
5 workload is used as a case study. The three implementations are executed in the
same search space and the convergence results are illustrated in Figure 4.11.

The total number of possible configurations is 840. The simulation of all possible
configurations confirmed the solution obtained with our optimization method. As illus-
trated in Figure 4.11, the optimal solution is obtained after a small number of iterations,
since 40 are sufficient. The EDP improvement values are distributed into four groups.

118

4.4 Experiments

Figure 4.11 – The convergence of parallel exploration in LeNet-5 workload.

This distribution can be explained by the complexity of the exploration space, since we
try to mix three types of parallelism, as mentioned in 4.4.1. The ATPE algorithm re-
quires around 30 iterations to converge in the lowest group and achieves the best EDP
improvement after 40 iterations. Each iteration requires 30 minutes of CPU time (Intel
Xeon E5-2609 at 1.9GHz), considering that gem5-Aladdin represents most of the CPU
time.

Figure 4.12 illustrates the convergence study of the coherence interfaces devel-
oped for the six accelerators utilizing the automated HyperOpt-gem5-Aladdin frame-
work, from which the lowest EDP normalized to a non-coherent interface was selected.
In this instance, 10 random samples were used in the initialization phase, followed by
70 optimization rounds to reach convergence. The ATPE algorithm is found to be effec-
tive because it only requires 70 gem5-Aladdin evaluations to get the expected optimal
solutions, while there are 729 possible configurations in the whole design space. There
are three distinct possibilities for the coherence of each of the six accelerators. On the
gem5-Aladdin run, the duration of each iteration of the tool is sixty minutes.

We are able to get a solution more quickly by using TPE and ATPE, as is demon-
strated in these examples, which is helpful in that it narrows down the search for good

119

Chapter 4 – Determining optimal configuration architecture for heterogeneous-accelerator
SoCs

Figure 4.12 – The convergence of the coherency interface experiment.

regions. Compared to traditional TPE, the ATPE demonstrates greater efficiency since
it converges faster. Experiments have shown that using this optimized method can sig-
nificantly decrease the amount of time spent exploring. In the presence of complex
design spaces, it proves to be an extremely useful tool.

4.5 Conclusion

In this chapter, we described a flow helping in the design of heterogeneous SoCs.
The flow combines the gem5-Aladdin simulator and a hyperparameter optimization
method. It automatically identifies the optimal architecture for heterogeneous-accelerator
SoCs. To evaluate our approach, we explored the design space of accelerators for con-
volutional neural networks, including their memory coherency interfaces.

In the case of the CNN experiments, the optimal solution enables a 2x to 4x im-
provement in the EDP in comparison to an architecture that does not exploit paral-
lelism. In addition to this, its effectiveness surpasses that of the majority of the archi-
tectures that are currently in use (systolic, 2D-mapping, and tiling). We optimized one

120

4.5 Conclusion

accelerator for three CNNs and chose the best EDP. The CNN accelerator configura-
tion improves the architecture by 10 to 13.4 percent. We also demonstrated that the
use of a hybrid coherency interface enables an improvement in EDP of 22 percent and
a 12 percent EDP in comparison to only having a non-coherent or an LLC-coherent
interface for a SoC that contains six accelerators. This is in comparison to only hav-
ing an LLC-coherent interface. From the result, our method can help with large design
spaces by reducing the time it takes to explore and by optimizing complex architectural
parameters.

121

CONCLUSION AND FUTURE WORKS

Thesis summary

Processor architecture has moved from homogeneous designs to more complex
heterogeneous systems taking advantage of the large number of available transistors
by adding customized energy-efficient accelerators as well as general-purpose pro-
cessor cores. These heterogeneous SoCs are orders of magnitude more efficient and
utilize less power than general-purpose processors. Unfortunately, the primary issue
with these heterogeneous systems is that they are far more challenging to design and
evaluate. This is especially important at a time when customers expect more powerful
technological devices in ever-decreasing amounts of time. Therefore, efficient design
approaches are necessary to build and explore these complex systems more rapidly.

When considering designing these heterogeneous multi-core systems, the num-
ber of possible design combinations leads to a large design space, with often sub-
tle trade-offs. Determining the best design for a given target application requires de-
tailed simulation of many possible solutions. Simulation environments, like gem5, exist
and are commonly used to perform these simulations. Unfortunately, these are purely
software-based approaches, and they do not allow true exploration of the design space.
Moreover, they do not really support heterogeneous multicore architectures (hardware
accelerators and processor cores). These limitations motivate the use of specific hard-
ware to accelerate the simulation, and in particular reprogrammable FPGA compo-
nents.

The first part of the work presented in this dissertation is of an experimental nature.
It was about the study of a design approach for heterogeneous architectures based on
the design of performance models for the components of the heterogeneous architec-
ture, namely hardware accelerators and processor cores. The contribution focused on
the experimentation and evaluation of simulation tools for these heterogeneous archi-
tecture models on FPGAs. A methodology for building accelerator performance models
and a design flow have been proposed.

The second part of the work carried out is of a methodological nature. It focused

122

on the study of a flow to determine at the system level a microarchitecture offering the
best efficiency in terms of performance/energy consumption ratio. The proposed flow
combines two techniques: the use of a software architecture simulator and a hyper-
parameter optimization method. This methodology makes it possible to scan different
types of parallelism with various loop unwinding strategies while also taking into ac-
count different types of interfaces with memories. Experiments on different problems
(convolutional neural network, SoC consisting of several accelerators) have made it
possible to determine the most optimal solutions in terms of performance/energy con-
sumption ratio.

123

Future works

There is an element that has not been addressed in this work, and which concerns
the integration of the architecture exploration methodology using HyperOpt with the
accelerated simulation environment HAsim. Moreover, there is a need to develop a
heterogeneous multi-core architecture by merging multi-processor, multi-accelerator,
and shared-memory systems with an on-chip network. This would better distribute pro-
cessing and acceleration across multiple cores. It would also be interesting to work
on memory structure and memory access patterns for accelerators. Finally, in order
to cover the design space more widely, additional parameters (scratchpad partition-
ing, system bus width, cache size, on-chip network, etc.) would be added. Moreover, it
would be interesting to quantify the efficiency of the optimization algorithms and also
to integrate new algorithms in order to be able to compare them.

The continued crisis of transistor scaling forces us to think about future architec-
tures. The design community must make an ever greater effort to develop new archi-
tectures, design tools, and programming paradigms in response to these challenges.
This dissertation describes methods for simulating and exploring heterogeneous archi-
tectures at the system level. Thus, further research is needed to make this methodology
more fast and cost-effective.

By continuing to integrate others’ works into the design infrastructure, I believe that
my work can contribute to developing a platform to conduct future research and build
heterogeneous systems that scale to larger architectures. This will not only benefit my
own research but also future and ongoing research.

124

BIBLIOGRAPHY

[1] Gene M. Amdahl, « Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities », in: Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference, AFIPS ’67 (Spring), Atlantic City, New Jersey: Association for Com-
puting Machinery, 1967, 483–485, ISBN: 9781450378956, DOI: 10 . 1145 / 1465482 .

1465560, URL: https://doi.org/10.1145/1465482.1465560.

[2] Hari Angepat, Derek Chiou, Eric S. Chung, and James C. Hoe, FPGA-Accelerated
Simulation of Computer Systems, en, Morgan & Claypool Publishers, July 2014, ISBN:
9781627052146.

[3] Hari Angepat, Dam Sunwoo, and Derek Chiou, « RAMP-White: An FPGA-Based Co-
herent Shared Memory Parallel Computer Emulator », in: Mar. 2007.

[4] Apple A11 Bionic chip image TMHS09, URL: https://www.chiprebel.com/apple-

a11-bionic/ (visited on 09/16/2020).

[5] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, and Da-
vide Patti, « Efficient design space exploration for application specific systems-on-a-
chip », in: Journal of Systems Architecture 53.10 (2007), Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, pp. 733–750, ISSN: 1383-7621, DOI:
https://doi.org/10.1016/j.sysarc.2007.01.004, URL: https://www.sciencedirect.

com/science/article/pii/S1383762107000173.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović, « Chisel: Constructing hardware in
a Scala embedded language », in: DAC Design Automation Conference 2012, 2012,
pp. 1212–1221, DOI: 10.1145/2228360.2228584.

[7] Fabrice Bellard, « QEMU, a Fast and Portable Dynamic Translator », in: Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC ’05, Anaheim,
CA: USENIX Association, 2005, pp. 41–41, URL: http://dl.acm.org/citation.cfm?

id=1247360.1247401.

125

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://www.chiprebel.com/apple-a11-bionic/
https://www.chiprebel.com/apple-a11-bionic/
https://doi.org/https://doi.org/10.1016/j.sysarc.2007.01.004
https://www.sciencedirect.com/science/article/pii/S1383762107000173
https://www.sciencedirect.com/science/article/pii/S1383762107000173
https://doi.org/10.1145/2228360.2228584
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401

[8] J. Bergstra, D. Yamins, and D. D. Cox, « Making a Science of Model Search: Hyper-
parameter Optimization in Hundreds of Dimensions for Vision Architectures », in: Pro-
ceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28, ICML’13, Atlanta, GA, USA: JMLR.org, 2013, I–115–I–123.

[9] James Bergstra, R. Bardenet, Yoshua Bengio, and Balázs Kégl, « Algorithms for Hyper-
Parameter Optimization », in: 25th Annual Conference on Neural Information Process-
ing Systems (NIPS 2011), Granada, Spain, 2011, URL: https://hal.inria.fr/hal-

00642998.

[10] James Bergstra and Yoshua Bengio, « Random search for hyper-parameter optimiza-
tion. », in: Journal of machine learning research 13.2 (2012).

[11] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D. Cox, « Hyper-
opt: a Python library for model selection and hyperparameter optimization », in: Com-
putational Science and Discovery 8.1, 014008 (Jan. 2015), p. 014008, DOI: 10.1088/

1749-4699/8/1/014008.

[12] K. Bhardwaj, M. Havasi, Y. Yao, D. M. Brooks, J. M. H. Lobato, and G. Wei, « Determin-
ing Optimal Coherency Interface for Many-Accelerator SoCs Using Bayesian Optimiza-
tion », in: IEEE Computer Architecture Letters 18.2 (2019), pp. 119–123.

[13] David Biancolin, « Automated, FPGA-Based Hardware Emulation of Dynamic Frequency
Scaling », PhD thesis, EECS Department, University of California, Berkeley, 2022, URL:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-21.html.

[14] Nathan Binkert et al., « The Gem5 Simulator », in: SIGARCH Comput. Archit. News
39.2 (Aug. 2011), pp. 1–7, DOI: 10.1145/2024716.2024718, URL: http://doi.acm.

org/10.1145/2024716.2024718 (visited on 11/26/2014).

[15] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu, A. T. Tran, E. Adeagbo,
and B. M. Baas, « KiloCore: A 32-nm 1000-Processor Computational Array », in: IEEE
Journal of Solid-State Circuits 52.4 (2017), pp. 891–902, ISSN: 0018-9200, DOI: 10.

1109/JSSC.2016.2638459.

[16] João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz, « Chapter 8 - Addi-
tional topics », in: Embedded Computing for High Performance, ed. by João M.P. Car-
doso, José Gabriel F. Coutinho, and Pedro C. Diniz, Boston: Morgan Kaufmann, 2017,
pp. 255–280, ISBN: 978-0-12-804189-5, DOI: https://doi.org/10.1016/B978-0-12-

804189-5.00008-9, URL: https://www.sciencedirect.com/science/article/pii/

B9780128041895000089.

126

https://hal.inria.fr/hal-00642998
https://hal.inria.fr/hal-00642998
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-21.html
https://doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/https://doi.org/10.1016/B978-0-12-804189-5.00008-9
https://doi.org/https://doi.org/10.1016/B978-0-12-804189-5.00008-9
https://www.sciencedirect.com/science/article/pii/B9780128041895000089
https://www.sciencedirect.com/science/article/pii/B9780128041895000089

[17] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi, « A
Dynamically Configurable Coprocessor for Convolutional Neural Networks », in: Pro-
ceedings of the 37th Annual International Symposium on Computer Architecture, ISCA
’10, Saint-Malo, France: Association for Computing Machinery, 2010, 247–257, ISBN:
9781450300537, DOI: 10.1145/1815961.1815993, URL: https://doi.org/10.1145/

1815961.1815993.

[18] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and
Olivier Temam, « DianNao: A Small-Footprint High-Throughput Accelerator for Ubiq-
uitous Machine-Learning », in: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, Salt Lake City, Utah, USA: Association for Computing Machinery, 2014, 269–284,
ISBN: 9781450323055, DOI: 10.1145/2541940.2541967, URL: https://doi.org/10.

1145/2541940.2541967.

[19] Y. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and Y. Zou, « Accelerator-
rich CMPs: From concept to real hardware », in: 2013 IEEE 31st International Con-
ference on Computer Design (ICCD), 2013, pp. 169–176, DOI: 10.1109/ICCD.2013.

6657039.

[20] Y. Chen, J. Cong, and B. Xiao, « ARACompiler: a prototyping flow and evaluation frame-
work for accelerator-rich architectures », in: 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2015, pp. 157–158.

[21] D. Chiou, H. Angepat, N. Patil, and Dam Sunwoo, « Accurate Functional-First Multicore
Simulators », in: Computer Architecture Letters 8.2 (Feb. 2009), pp. 64–67, DOI: 10.

1109/L-CA.2009.44.

[22] D. Chiou, Dam Sunwoo, H. Angepat, Joonsoo Kim, N.A. Patil, W. Reinhart, and D.E.
Johnson, « Parallelizing computer system simulators », in: IEEE International Sympo-
sium on Parallel and Distributed Processing, 2008. IPDPS 2008, Apr. 2008, pp. 1–5,
DOI: 10.1109/IPDPS.2008.4536407.

[23] D. Chiou, Dam Sunwoo, Joonsoo Kim, N. Patil, W.H. Reinhart, D.E. Johnson, and
Zheng Xu, « The FAST methodology for high-speed SoC/computer simulation », in:
IEEE/ACM International Conference on Computer-Aided Design, 2007. ICCAD 2007,
Nov. 2007, pp. 295–302, DOI: 10.1109/ICCAD.2007.4397280.

[24] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William Reinhart, Darrel Eric
Johnson, Jebediah Keefe, and Hari Angepat, « FPGA-Accelerated Simulation Tech-
nologies (FAST): Fast, Full-System, Cycle-Accurate Simulators », in: Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture, 2007, pp. 249–

127

https://doi.org/10.1145/1815961.1815993
https://doi.org/10.1145/1815961.1815993
https://doi.org/10.1145/1815961.1815993
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ICCD.2013.6657039
https://doi.org/10.1109/ICCD.2013.6657039
https://doi.org/10.1109/L-CA.2009.44
https://doi.org/10.1109/L-CA.2009.44
https://doi.org/10.1109/IPDPS.2008.4536407
https://doi.org/10.1109/ICCAD.2007.4397280

261, DOI: 10.1109/MICRO.2007.36, URL: http://dx.doi.org/10.1109/MICRO.2007.

36.

[25] Eric S. Chung, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, and Ken Mai, « A
Complexity-effective Architecture for Accelerating Full-system Multiprocessor Simula-
tions Using FPGAs », in: Proceedings of the 16th International ACM/SIGDA Sympo-
sium on Field Programmable Gate Arrays, 2008, pp. 77–86, DOI: 10.1145/1344671.

1344684.

[26] Eric S. Chung, Michael K. Papamichael, Eriko Nurvitadhi, James C. Hoe, Ken Mai, and
Babak Falsafi, « ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations
Using FPGAs », in: ACM Trans. Reconfigurable Technol. Syst. 2.2 (June 2009), 15:1–
15:32, DOI: 10 . 1145 / 1534916 . 1534925, URL: http : / / doi . acm . org / 10 . 1145 /

1534916.1534925.

[27] J. Cong, Z. Fang, M. Gill, and G. Reinman, « PARADE: A cycle-accurate full-system
simulation Platform for Accelerator-Rich Architectural Design and Exploration », in:
2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2015,
pp. 380–387, DOI: 10.1109/ICCAD.2015.7372595.

[28] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, « Architecture sup-
port for accelerator-rich CMPs », in: DAC Design Automation Conference 2012, 2012,
pp. 843–849, DOI: 10.1145/2228360.2228512.

[29] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik Gururaj,
and Glenn Reinman, « Accelerator-rich architectures: Opportunities and progresses »,
in: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 2014, pp. 1–6,
DOI: 10.1145/2593069.2596667.

[30] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Rein-
man, « CHARM: A Composable Heterogeneous Accelerator-Rich Microprocessor », in:
Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electron-
ics and Design, ISLPED ’12, Redondo Beach, California, USA: Association for Com-
puting Machinery, 2012, 379–384, ISBN: 9781450312493, DOI: 10 . 1145 / 2333660 .

2333747, URL: https://doi.org/10.1145/2333660.2333747.

[31] Jason Cong and Bingjun Xiao, « Minimizing Computation in Convolutional Neural Net-
works », in: Artificial Neural Networks and Machine Learning – ICANN 2014, 2014,
pp. 281–290, ISBN: 978-3-319-11179-7.

128

https://doi.org/10.1109/MICRO.2007.36
http://dx.doi.org/10.1109/MICRO.2007.36
http://dx.doi.org/10.1109/MICRO.2007.36
https://doi.org/10.1145/1344671.1344684
https://doi.org/10.1145/1344671.1344684
https://doi.org/10.1145/1534916.1534925
http://doi.acm.org/10.1145/1534916.1534925
http://doi.acm.org/10.1145/1534916.1534925
https://doi.org/10.1109/ICCAD.2015.7372595
https://doi.org/10.1145/2228360.2228512
https://doi.org/10.1145/2593069.2596667
https://doi.org/10.1145/2333660.2333747
https://doi.org/10.1145/2333660.2333747
https://doi.org/10.1145/2333660.2333747

[32] George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton, « Improving deep neural net-
works for LVCSR using rectified linear units and dropout », in: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013, pp. 8609–8613, DOI:
10.1109/ICASSP.2013.6639346.

[33] S. Davidson et al., « The Celerity Open-Source 511-Core RISC-V Tiered Accelerator
Fabric: Fast Architectures and Design Methodologies for Fast Chips », in: IEEE Micro
38.2 (2018), pp. 30–41, ISSN: 0272-1732, DOI: 10.1109/MM.2018.022071133.

[34] S. A. Dawwd and B. S. Mahmood, « A reconfigurable interconnected filter for face
recognition based on convolution neural network », in: 2009 4th International Design
and Test Workshop (IDT), 2009, pp. 1–6.

[35] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
« Design of ion-implanted MOSFET’s with very small physical dimensions », in: IEEE
Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.

[36] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge, « Near-Threshold
Computing: Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits », in:
Proceedings of the IEEE 98.2 (2010), pp. 253–266.

[37] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam,
« ShiDianNao: Shifting vision processing closer to the sensor », in: 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), 2015, pp. 92–
104.

[38] Lieven Eeckhout, « Computer Architecture Performance Evaluation Methods », in: Com-
puter Architecture Performance Evaluation Methods, 2010.

[39] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek,
Holger H. Hoos, and Kevin Leyton-brown, « Towards an empirical foundation for as-
sessing Bayesian optimization of hyperparameters », in: In NIPS Workshop on Bayesian
Optimization in Theory and Practice, 2013.

[40] M. E. S. Elrabaa, A. Hroub, M. F. Mudawar, A. Al-Aghbari, M. Al-Asli, and A. Khayyat,
« A Very Fast Trace-Driven Simulation Platform for Chip-Multiprocessors Architectural
Explorations », in: IEEE Transactions on Parallel and Distributed Systems 28.11 (2017),
pp. 3033–3045, ISSN: 1045-9219, DOI: 10.1109/TPDS.2017.2713782.

[41] Joel Emer, Carl Beckmann, and Michael Pellauer, « Awb: The asim architect’s work-
bench », in: 3rd Annual Workshop on Modeling, Benchmarking, and Simulation (MoBS
2007), 2007.

129

https://doi.org/10.1109/ICASSP.2013.6639346
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/TPDS.2017.2713782

[42] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, « Dark sili-
con and the end of multicore scaling », in: 2011 38th Annual International Symposium
on Computer Architecture (ISCA), 2011, pp. 365–376.

[43] Paul Feliot, Julien Bect, and Emmanuel Vazquez, « A Bayesian Approach to Con-
strained Single- and Multi-Objective Optimization », in: J. of Global Optimization 67.1–2
(2017), 97–133, ISSN: 0925-5001, DOI: 10.1007/s10898-016-0427-3, URL: https:

//doi.org/10.1007/s10898-016-0427-3.

[44] Matthias Feurer and Frank Hutter, « Hyperparameter Optimization », in: Automated Ma-
chine Learning: Methods, Systems, Challenges, ed. by Frank Hutter, Lars Kotthoff, and
Joaquin Vanschoren, Cham: Springer International Publishing, 2019, pp. 3–33, ISBN:
978-3-030-05318-5, DOI: 10.1007/978-3-030-05318-5_1, URL: https://doi.org/

10.1007/978-3-030-05318-5_1.

[45] K. Fleming, Hsin-Jung Yang, M. Adler, and J. Emer, « The LEAP FPGA Operating
System », in: 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), Sept. 2014, pp. 1–8, DOI: 10.1109/FPL.2014.6927488.

[46] Kermin Fleming, Chun-Chieh Lin, Nirav Dave, Arvind, Gopal Raghavan, and Jamey
Hicks, « H.264 Decoder: A Case Study in Multiple Design Points », in: 2008 6th ACM/IEEE
International Conference on Formal Methods and Models for Co-Design, 2008, pp. 165–
174, DOI: 10.1109/MEMCOD.2008.4547707.

[47] Andrei Frumusanu, The Snapdragon 845 - A Quick Recap - The Samsung Galaxy S9
and S9+ Review: Exynos and Snapdragon at 960fps, Mar. 26, 2018, URL: https://

www.anandtech.com/show/12520/the-galaxy-s9-review/2 (visited on 09/16/2020).

[48] A. Fuchs and D. Wentzlaff, « The Accelerator Wall: Limits of Chip Specialization »,
in: 2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 1–14.

[49] Adi Fuchs, « Overcoming the Limitations of Accelerator-Centric Architectures with Memoization-
Driven Specialization », PhD thesis, Princeton University, 2019.

[50] S. Fytraki and D. Pnevmatikatos, « ReSim, a trace-driven, reconfigurable ILP processor
simulator », in: Design, Automation Test in Europe Conference Exhibition, 2009. DATE
’09. Apr. 2009, pp. 536–541, DOI: 10.1109/DATE.2009.5090722.

[51] D. Giri, P. Mantovani, and L. P. Carloni, « Accelerators and Coherence: A SoC Perspec-
tive », in: IEEE Micro 38.6 (2018), pp. 36–45.

130

https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.1007/s10898-016-0427-3
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1109/FPL.2014.6927488
https://doi.org/10.1109/MEMCOD.2008.4547707
https://www.anandtech.com/show/12520/the-galaxy-s9-review/2
https://www.anandtech.com/show/12520/the-galaxy-s9-review/2
https://doi.org/10.1109/DATE.2009.5090722

[52] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and
C. Kim, « DySER: Unifying Functionality and Parallelism Specialization for Energy-
Efficient Computing », in: IEEE Micro 32.5 (2012), pp. 38–51.

[53] Mark Horowitz, « 1.1 Computing’s energy problem (and what we can do about it) »,
in: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014, pp. 10–14, DOI: 10.1109/ISSCC.2014.6757323.

[54] https://sochub.fi/wp-content/uploads/2021/03/Making-of-SoCs-presentation-material-1.pdf,
[Online; accessed 2022-07-24].

[55] Q. Huang, C. Yarp, S. Karandikar, N. Pemberton, B. Brock, L. Ma, G. Dai, R. Quitt,
K. Asanovic, and J. Wawrzynek, « Centrifuge: Evaluating full-system HLS-generated
heterogenous-accelerator SoCs using FPGA-Acceleration », in: 2019 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[56] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown, « Sequential Model-Based Op-
timization for General Algorithm Configuration », in: Learning and Intelligent Optimiza-
tion, ed. by Carlos A. Coello Coello, Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 507–523, ISBN: 978-3-642-25566-3.

[57] Intel, Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface
(CCI-P) Reference Manual, URL: https : / / www . intel . com / content / dam / www /

programmable/us/en/pdfs/literature/manual/archives/mnl-ias-ccip-1-2.pdf.

[58] IvyTown Xeon + FPGA : The HARP Program. [Online; accessed 2022-03-11].

[59] Ahmed Kamaleldin and Diana Göhringer, « AGILER: An Adaptive Heterogeneous Tile-
Based Many-Core Architecture for RISC-V Processors », in: IEEE Access 10 (2022),
pp. 43895–43913, DOI: 10.1109/ACCESS.2022.3168686.

[60] S. Karandikar et al., « FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Sim-
ulation in the Public Cloud », in: 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 29–42, DOI: 10.1109/ISCA.2018.00014.

[61] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and S. Borkar, « Near-
threshold voltage (NTV) design — Opportunities and challenges », in: DAC Design
Automation Conference 2012, 2012, pp. 1149–1154.

[62] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz, « RAMP Blue: A
Message-Passing Manycore System in FPGAs », in: International Conference on Field
Programmable Logic and Applications, 2007. FPL 2007, Aug. 2007, pp. 54–61, DOI:
10.1109/FPL.2007.4380625.

131

https://doi.org/10.1109/ISSCC.2014.6757323
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/archives/mnl-ias-ccip-1-2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/archives/mnl-ias-ccip-1-2.pdf
https://doi.org/10.1109/ACCESS.2022.3168686
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/FPL.2007.4380625

[63] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf, « The Cache Performance
and Optimizations of Blocked Algorithms », in: Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS IV, Santa Clara, California, USA: ACM, 1991, pp. 63–74, ISBN: 0-89791-
380-9, DOI: 10.1145/106972.106981, URL: http://doi.acm.org/10.1145/106972.

106981.

[64] C. Lattner and V. Adve, « LLVM: a compilation framework for lifelong program analysis
transformation », in: International Symposium on Code Generation and Optimization,
2004. CGO 2004. 2004, pp. 75–86, DOI: 10.1109/CGO.2004.1281665.

[65] LEAP, https://github.com/LEAP-FPGA/leap-documentation/wiki, 2015, URL: http://

riscv.org/ (visited on 08/30/2015).

[66] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, « Gradient-based learning applied to
document recognition », in: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[67] Sungjin Lee, Kermin Fleming, Jihoon Park, Keonsoo Ha, Adrian Caulfield, Steven Swan-
son, . Arvind, and Jihong Kim, « BlueSSD: An Open Platform for Cross-layer Experi-
ments for NAND Flash-based SSDs », in: WARP - 5th Annual Workshop on Architec-
tural Research Prototyping, ed. by Omar Hammami and Sandra Larrabee, Saint Malo,
France, June 2010, URL: https://hal.inria.fr/inria-00494143.

[68] Yunsup Lee et al., « An Agile Approach to Building RISC-V Microprocessors », in: IEEE
Micro 36.2 (2016), 8–20, ISSN: 0272-1732, DOI: 10.1109/MM.2016.11, URL: https:

//doi.org/10.1109/MM.2016.11.

[69] Rainer Leupers and Olivier Temam, Processor and System-on-Chip Simulation, en,
Springer Science & Business Media, Sept. 2010, ISBN: 9781441961754.

[70] H. Lin, M. Hsu, and W. Chen, « Human hand gesture recognition using a convolution
neural network », in: 2014 IEEE International Conference on Automation Science and
Engineering (CASE), 2014, pp. 1038–1043.

[71] Hung-Yi Liu, Michele Petracca, and Luca P. Carloni, « Compositional system-level de-
sign exploration with planning of high-level synthesis », in: 2012 Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, pp. 641–646, DOI: 10 . 1109 /

DATE.2012.6176550.

[72] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, « FlexFlow: A Flexible Dataflow Ac-
celerator Architecture for Convolutional Neural Networks », in: 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2017, pp. 553–564.

132

https://doi.org/10.1145/106972.106981
http://doi.acm.org/10.1145/106972.106981
http://doi.acm.org/10.1145/106972.106981
https://doi.org/10.1109/CGO.2004.1281665
http://riscv.org/
http://riscv.org/
https://hal.inria.fr/inria-00494143
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1109/MM.2016.11
https://doi.org/10.1109/DATE.2012.6176550
https://doi.org/10.1109/DATE.2012.6176550

[73] M. Lyons, M. Hempstead, G. Wei, and D. Brooks, « The Accelerator Store framework for
high-performance, low-power accelerator-based systems », in: IEEE Computer Archi-
tecture Letters 9.2 (2010), pp. 53–56, ISSN: 1556-6056, DOI: 10.1109/L-CA.2010.16.

[74] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks, « The Acceler-
ator Store: A Shared Memory Framework for Accelerator-Based Systems », in: ACM
Trans. Archit. Code Optim. 8.4 (Jan. 2012), ISSN: 1544-3566, DOI: 10.1145/2086696.

2086727, URL: https://doi.org/10.1145/2086696.2086727.

[75] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner, « Simics: A full system simulation platform »,
in: Computer 35.2 (Feb. 2002), pp. 50–58, ISSN: 0018-9162, DOI: 10.1109/2.982916.

[76] H. Mair et al., « 23.3 A highly integrated smartphone SoC featuring a 2.5GHz octa-
core CPU with advanced high-performance and low-power techniques », in: 2015 IEEE
International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers,
2015, pp. 1–3.

[77] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph Zuck-
erman, Emilio G. Cota, Michele Petracca, Christian Pilato, and Luca P. Carloni, « Agile
SoC Development with Open ESP », in: Proceedings of the 39th International Con-
ference on Computer-Aided Design, ICCAD ’20, Virtual Event, USA: Association for
Computing Machinery, 2020, ISBN: 9781450380263, DOI: 10.1145/3400302.3415753,
URL: https://doi.org/10.1145/3400302.3415753.

[78] Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano, « OS-
CAR: An Optimization Methodology Exploiting Spatial Correlation in Multicore Design
Spaces », in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31.5 (2012), pp. 740–753, DOI: 10.1109/TCAD.2011.2177457.

[79] Carl J. Mauer, Mark D. Hill, and David A. Wood, « Full-System Timing-First Simula-
tion », in: SIGMETRICS Perform. Eval. Rev. 30.1 (2002), 108–116, ISSN: 0163-5999,
DOI: 10.1145/511399.511349, URL: https://doi.org/10.1145/511399.511349.

[80] Gábor Melis, Chris Dyer, and Phil Blunsom, « On the State of the Art of Evaluation in
Neural Language Models », in: CoRR abs/1707.05589 (2017), arXiv: 1707.05589, URL:
http://arxiv.org/abs/1707.05589.

[81] G. E. Moore, « Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. », in: IEEE Solid-State
Circuits Society Newsletter 11.3 (2006), pp. 33–35.

133

https://doi.org/10.1109/L-CA.2010.16
https://doi.org/10.1145/2086696.2086727
https://doi.org/10.1145/2086696.2086727
https://doi.org/10.1145/2086696.2086727
https://doi.org/10.1109/2.982916
https://doi.org/10.1145/3400302.3415753
https://doi.org/10.1145/3400302.3415753
https://doi.org/10.1109/TCAD.2011.2177457
https://doi.org/10.1145/511399.511349
https://doi.org/10.1145/511399.511349
https://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589

[82] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun, « HyperMapper: a
Practical Design Space Exploration Framework », in: 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2019, pp. 425–426, DOI: 10.1109/MASCOTS.2019.00053.

[83] Man Cheuk Ng, Kermin Elliott Fleming, Mythili Vutukuru, Samuel Gross, Arvind, and
Hari Balakrishnan, « Airblue: A system for cross-layer wireless protocol development »,
in: 2010 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 2010, pp. 1–11.

[84] Rishiyur Nikhil, « Bluespec System Verilog: efficient, correct RTL from high level spec-
ifications », in: Second ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings, June 2004, pp. 69–
70, DOI: 10.1109/MEMCOD.2004.1459818.

[85] J. Park, I. Hong, G. Kim, Y. Kim, K. Lee, S. Park, K. Bong, and H. Yoo, « A 646GOPS/W
multi-classifier many-core processor with cortex-like architecture for super-resolution
recognition », in: 2013 IEEE International Solid-State Circuits Conference Digest of
Technical Papers, 2013, pp. 168–169.

[86] M. Pellauer, M. Adler, D. Chiou, and J. Emer, « Soft connections: Addressing the
hardware-design modularity problem », in: 46th ACM/IEEE Design Automation Con-
ference, 2009. DAC ’09, July 2009, pp. 276–281.

[87] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, « HAsim: FPGA-Based
High-Detail Multicore Simulation Using Time-Division Multiplexing », in: 2011 IEEE 17th
International Symposium on High Performance Computer Architecture (HPCA), Feb.
2011, pp. 406–417, DOI: 10.1109/HPCA.2011.5749747.

[88] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, « Quick Performance
Models Quickly: Closely-Coupled Partitioned Simulation on FPGAs », in: IEEE Interna-
tional Symposium on Performance Analysis of Systems and software, 2008. ISPASS
2008, Apr. 2008, pp. 1–10, DOI: 10.1109/ISPASS.2008.4510733.

[89] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel Emer,
« A-Port Networks: Preserving the Timed Behavior of Synchronous Systems for Model-
ing on FPGAs », in: ACM Trans. Reconfigurable Technol. Syst. 2.3 (Sept. 2009), 16:1–
16:26, DOI: 10 . 1145 / 1575774 . 1575775, URL: http : / / doi . acm . org / 10 . 1145 /

1575774.1575775.

134

https://doi.org/10.1109/MASCOTS.2019.00053
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/HPCA.2011.5749747
https://doi.org/10.1109/ISPASS.2008.4510733
https://doi.org/10.1145/1575774.1575775
http://doi.acm.org/10.1145/1575774.1575775
http://doi.acm.org/10.1145/1575774.1575775

[90] Michael (Michael Ignatius) Pellauer, « HAsim : cycle-accurate multicore performance
models on FPGAs », eng, Thesis, Massachusetts Institute of Technology, 2011, URL:
http://dspace.mit.edu/handle/1721.1/64584.

[91] Drew Penney and Lizhong Chen, « A Survey of Machine Learning Applied to Computer
Architecture Design », in: ArXiv abs/1909.12373 (2019).

[92] Daniel Petrisko et al., « BlackParrot: An Agile Open-Source RISC-V Multicore for Ac-
celerator SoCs », in: IEEE Micro 40.4 (2020), 93–102, ISSN: 0272-1732, DOI: 10.1109/

MM.2020.2996145, URL: https://doi.org/10.1109/MM.2020.2996145.

[93] L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, « Broadening the ex-
ploration of the accelerator design space in embedded scalable platforms », in: 2017
IEEE High Performance Extreme Computing Conference (HPEC), 2017, pp. 1–7.

[94] Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca Carloni, « COS-
MOS: Coordination of High-Level Synthesis and Memory Optimization for Hardware Ac-
celerators », in: ACM Transactions on Embedded Computing Systems 16 (Sept. 2017),
pp. 1–22, DOI: 10.1145/3126566.

[95] Christian Pinto, Shivani Raghav, Andrea Marongiu, Martino Ruggiero, David Atienza,
and Luca Benini, « GPGPU-Accelerated Parallel and Fast Simulation of Thousand-Core
Platforms », in: Proceedings of the 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2011, pp. 53–62, DOI: 10.1109/CCGrid.2011.64.

[96] Fred J. Pollack, « New Microarchitecture Challenges in the Coming Generations of
CMOS Process Technologies (Keynote Address)(Abstract Only) », in: Proceedings of
the 32nd Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 32,
Haifa, Israel: IEEE Computer Society, 1999, p. 2, ISBN: 076950437X.

[97] J. Pyo et al., « 23.1 20nm high-K metal-gate heterogeneous 64b quad-core CPUs and
hexa-core GPU for high-performance and energy-efficient mobile application proces-
sor », in: 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of
Technical Papers, 2015, pp. 1–3.

[98] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks, « MachSuite: Benchmarks for
accelerator design and customized architectures », in: 2014 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2014, pp. 110–119, DOI: 10.1109/IISWC.

2014.6983050.

[99] Samsung Galaxy S9 Teardown, URL: https://www.techinsights.com/blog/samsung-

galaxy-s9-teardown (visited on 09/16/2020).

135

http://dspace.mit.edu/handle/1721.1/64584
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1145/3126566
https://doi.org/10.1109/CCGrid.2011.64
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/IISWC.2014.6983050
https://www.techinsights.com/blog/samsung-galaxy-s9-teardown
https://www.techinsights.com/blog/samsung-galaxy-s9-teardown

[100] Luiz Santos, Sandro Rigo, Rodolfo Azevedo, and Guido Araujo, « Electronic System
Level Design », in: Jan. 2011, pp. 3–10, ISBN: 978-1-4020-9939-7, DOI: 10.1007/978-

1-4020-9940-3_1.

[101] Suleyman Savas, Zain Ul-Abdin, and Tomas Nordström, « Designing Domain-Specific
Heterogeneous Architectures from Dataflow Programs », in: Computers 7 (Apr. 2018),
p. 27, DOI: 10.3390/computers7020027.

[102] Benjamin Carrion Schafer and Kazutoshi Wakabayashi, « Design Space Exploration
Acceleration Through Operation Clustering », in: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 29.1 (2010), pp. 153–157, DOI: 10.1109/

TCAD.2009.2035579.

[103] Herman Schmit and Randy Huang, « Dissecting Xeon + FPGA: Why the Integration
of CPUs and FPGAs Makes a Power Difference for the Datacenter: Invited Paper »,
in: Proceedings of the 2016 International Symposium on Low Power Electronics and
Design, ISLPED ’16, San Francisco Airport, CA, USA: Association for Computing Ma-
chinery, 2016, 152–153, ISBN: 9781450341851, DOI: 10.1145/2934583.2953983, URL:
https://doi.org/10.1145/2934583.2953983.

[104] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, « Taking the Human
Out of the Loop: A Review of Bayesian Optimization », in: Proceedings of the IEEE
104.1 (2016), pp. 148–175.

[105] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, « The Aladdin Approach to Accelerator
Design and Modeling », in: IEEE Micro 35.3 (2015), pp. 58–70, ISSN: 0272-1732, DOI:
10.1109/MM.2015.50.

[106] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks, « Co-designing accelera-
tors and SoC interfaces using gem5-Aladdin », in: 2016 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2016, pp. 1–12, DOI: 10.1109/

MICRO.2016.7783751.

[107] Yakun Sophia Shao and David M. Brooks, Research Infrastructures for Hardware Ac-
celerators, Synthesis Lectures on Computer Architecture, Morgan & Claypool Publish-
ers, 2015, DOI: 10.2200/S00677ED1V01Y201511CAC034, URL: https://doi.org/10.

2200/S00677ED1V01Y201511CAC034.

[108] Amith Singhee and Pamela Castalino, « Pareto sampling: Choosing the right weights
by derivative pursuit », in: Design Automation Conference, 2010, pp. 913–916, DOI:
10.1145/1837274.1837503.

136

https://doi.org/10.1007/978-1-4020-9940-3_1
https://doi.org/10.1007/978-1-4020-9940-3_1
https://doi.org/10.3390/computers7020027
https://doi.org/10.1109/TCAD.2009.2035579
https://doi.org/10.1109/TCAD.2009.2035579
https://doi.org/10.1145/2934583.2953983
https://doi.org/10.1145/2934583.2953983
https://doi.org/10.1109/MM.2015.50
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.2200/S00677ED1V01Y201511CAC034
https://doi.org/10.2200/S00677ED1V01Y201511CAC034
https://doi.org/10.2200/S00677ED1V01Y201511CAC034
https://doi.org/10.1145/1837274.1837503

[109] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams, « Practical Bayesian Optimization
of Machine Learning Algorithms », in: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’12, Lake Tahoe, Nevada:
Curran Associates Inc., 2012, 2951–2959.

[110] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Md. Mostofa Ali Patwary, Prabhat Prabhat, and Ryan P. Adams, « Scalable
Bayesian Optimization Using Deep Neural Networks », in: Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Volume
37, ICML’15, Lille, France: JMLR.org, 2015, 2171–2180.

[111] Synopsys, HAPS ® Family of FPGA-Based Prototyping Solutions, http : / / www .

synopsys.com/Systems/FPGABasedPrototyping/Pages/HAPS.aspx, 2014.

[112] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook, David
Patterson, and Krste Asanović, « RAMP Gold: An FPGA-based Architecture Simulator
for Multiprocessors », in: Proceedings of the 47th Design Automation Conference, DAC
’10, New York, NY, USA: ACM, 2010, pp. 463–468, ISBN: 978-1-4503-0002-5, DOI:
10.1145/1837274.1837390, URL: http://doi.acm.org/10.1145/1837274.1837390

(visited on 11/26/2014).

[113] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and David
Patterson, « A Case for FAME: FPGA Architecture Model Execution », in: Proceedings
of the 37th Annual International Symposium on Computer Architecture, 2010, pp. 290–
301, DOI: 10.1145/1815961.1815999, URL: http://doi.acm.org/10.1145/1815961.

1815999.

[114] M. B. Taylor, « Is dark silicon useful? Harnessing the four horsemen of the coming dark
silicon apocalypse », in: DAC Design Automation Conference 2012, 2012, pp. 1131–
1136.

[115] The End of the Road for General Purpose Processors & the Future of Computing | MIT
CSAIL, URL: https://www.csail.mit.edu/news/end- road- general- purpose-

processors-future-computing (visited on 10/07/2020).

[116] Srinivasa R Vemuru and Norman Scheinberg, « Short-circuit power dissipation estima-
tion for CMOS logic gates », in: IEEE Transactions on Circuits and Systems I: Funda-
mental Theory and Applications 41.11 (1994), pp. 762–765.

137

http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/HAPS.aspx
http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/HAPS.aspx
https://doi.org/10.1145/1837274.1837390
http://doi.acm.org/10.1145/1837274.1837390
https://doi.org/10.1145/1815961.1815999
http://doi.acm.org/10.1145/1815961.1815999
http://doi.acm.org/10.1145/1815961.1815999
https://www.csail.mit.edu/news/end-road-general-purpose-processors-future-computing
https://www.csail.mit.edu/news/end-road-general-purpose-processors-future-computing

[117] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor, « Con-
servation Cores: Reducing the Energy of Mature Computations », in: SIGPLAN Not.
45.3 (Mar. 2010), 205–218, ISSN: 0362-1340, DOI: 10.1145/1735971.1736044, URL:
https://doi.org/10.1145/1735971.1736044.

[118] Danyao Wang, Natalie Enright Jerger, and J. Gregory Steffan, « DART: A programmable
architecture for NoC simulation on FPGAs », in: Proceedings of the Fifth ACM/IEEE In-
ternational Symposium, 2011, pp. 145–152.

[119] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović, The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Version 2.0, tech. rep. UCB/EECS-
2014-54, EECS Department, University of California, Berkeley, May 2014, URL: http:

//www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html.

[120] J. Wawrzynek, D. Patterson, M. Oskin, Shih-Lien Lu, C. Kozyrakis, J.C. Hoe, D. Chiou,
and K. Asanovic, « RAMP: Research Accelerator for Multiple Processors », in: IEEE
Micro 27.2 (Mar. 2007), pp. 46–57, DOI: 10.1109/MM.2007.39.

[121] Nan Wu and Yuan Xie, « A Survey of Machine Learning for Computer Architecture
and Systems », in: ACM Comput. Surv. 55.3 (2022), ISSN: 0360-0300, DOI: 10.1145/

3494523, URL: https://doi.org/10.1145/3494523.

[122] Ning Zhang and Bob Brodersen, « The cost of flexibility in systems on a chip design for
signal processing applications », in: (Jan. 2002).

[123] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong,
« AutoPilot: A platform-based ESL synthesis system », in: Jan. 2008, pp. 99–112, ISBN:
9781402085871, DOI: 10.1007/978-1-4020-8588-8.

138

https://doi.org/10.1145/1735971.1736044
https://doi.org/10.1145/1735971.1736044
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1109/MM.2007.39
https://doi.org/10.1145/3494523
https://doi.org/10.1145/3494523
https://doi.org/10.1145/3494523
https://doi.org/10.1007/978-1-4020-8588-8

ACRONYMS

AFU accelerated function unit. 59

AI artificial intelligence. 17

API application programming interface. 59

ASIC application specific integrated circuit. 19

ATPE adaptive tree of parzen estimators. 101

BSV bluespec system verilog. 10, 39

CAD computer-aided design. 26, 27

CCI-P core cache interface. 40

CET compact execution trace. 28

CNN convolutional neural network. 6, 10

CPU central processing unit. 3, 16

CSRs control and status registers. 63

DDDG dynamic data dependence graph. 76

DMA direct memory access. 4, 11

DSP digital signal processing. 2

EDP energy-delay-product. 10, 94

FAME FPGA accelerated model execution. 25, 38

FIFO First In First Out. 61

FIU FPGA interface unit. 59

FPGA field programmable gate array. 6, 19

GP gaussian processes. 98

139

GPU graphics processing unit. 3, 17

HARP hardware accelerator research program. 39

HAs heterogeneous architectures. 1

HLS high-level synthesis. 27

IL ACE IL academic compute environment. 39, 40

IR intermediate representation. 78

ISA instruction set architecture. 29, 39, 42, 49, 50, 85

JIT just-in-time. 78

LEAP latency-insensitive environment for application programming. 38, 58

LLVM low-level virtual machine. 78

MMIO memory-mapped I/O. 60

NLP natural language processing. 17

NoC network on chip. 17, 25

OPAE open programmable acceleration engine. 40

PAC programmable acceleration card. 59

PCIe peripheral component interconnect express. 56

QoR quality of results. 32

QPI QuickPath interconnect. 59

RAMP research accelerator for multiple processors. 23, 40

RTL register transfer level. 27

SFF speculative functional-first. 23

SMBO sequential model-based optimization. 97

SoC systems-on-chip. 17

SSA static single assignment. 78

TPE tree parzen estimator. 99

140

141

	Introduction
	Heterogeneous System-on-Chip achitectures
	The rise of heterogeneous system on chip
	Technology scaling challenges
	Trends in heterogeneous architecture

	Architectural simulators using FPGAs
	Simulation wall
	FPGAs used for simulation instead of prototyping
	Functional/Timing partitioning simulators
	FPGA-accelerated microarchitecture simulation projects

	Heterogeneous SoC design
	SoC design Flow
	Design frameworks for heterogeneous-accelerator SoC
	Design space exploration

	Summary

	FPGA-accelerated simulation of heterogeneous architectures
	Introduction
	FPGA-based processor simulation with HAsim
	HAsim framework overview
	The LEAP operating system for FPGA-based applications
	Bluespec system verilog

	A case study with the design of RISC-V models within the HAsim framework
	Semantic of function partition
	Timing model creation
	Evaluation results
	Targeting the Xilinx Virtex-7 FPGA platform

	Deploying the HAsim simulator on a Intel CPU-FPGA platform
	Intel Xeon+FPGA platforms
	Implementing communication channels support for Intel CPU-FPGA platform
	Validation

	FPGA-Accelerated microarchitecture simulation challenges
	Conclusions

	Integration of a pre-RTL accelerator model in the FPGA-based simulator
	Introduction
	Design flow overview
	Accelerator modeling (Pre-RTL accelerator model)
	DDDG generation and scheduling
	Scheduled Graph Trace (SGT) generation
	Flow explanation by an example

	Integration of an accelerator model in the HAsim simulator
	Performance assessment
	Case study: Blocked Matrix Multiply accelerator
	Machsuite benchmarks

	Conclusion

	Determining optimal configuration architecture for heterogeneous-accelerator SoCs
	Introduction
	Design space exploration using Hyperparameter Optimization
	Synthetic view of a Heterogeneous-Accelerator SoC
	Design space exploration via Hyperparameter Optimization
	Hyperopt: Hyperparameter Optimization python library

	Design methodology
	Hyperopt-gem5-Aladdin framework
	Parallel accelerator exploration
	Memory coherency models exploration
	Automatic architectural optimization design flow

	Experiments
	Convolutional Neural Network accelerator in a SoC
	Multi-context accelerator
	Coherency interface choice study
	Hyperopt convergence study

	Conclusion

	Conclusion and future works
	Bibliography
	Acronyms

