
HAL Id: tel-04136582
https://theses.hal.science/tel-04136582

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logic-based Cognitive Planning : from theory to
implementation

Jorge Luis Fernandez Davila

To cite this version:
Jorge Luis Fernandez Davila. Logic-based Cognitive Planning : from theory to implementation.
Artificial Intelligence [cs.AI]. Université Paul Sabatier - Toulouse III, 2022. English. �NNT :
2022TOU30193�. �tel-04136582�

https://theses.hal.science/tel-04136582
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Jorge LUIS FERNANDEZ DAVILA

Le 23 septembre 2022

Planification cognitive basée sur la logique: de la théorie à
l'implémentation

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Emiliano LORINI

Jury
M. Bruno ZANUTTINI, Rapporteur

M. Tiago DE LIMA, Rapporteur
Mme Serena VILLATA, Examinatrice

Mme Sylvie THIEBAUX, Examinatrice
Mme Leila AMGOUD, Examinatrice

M. Dominique LONGIN, Examinateur
M. Emiliano LORINI, Directeur de thèse

i

Abstract
In this thesis, we define a logic-based cognitive planning framework for endowing artificial
agents with the skills aimed to persuade humans to believe something or to induce a certain
behavior in them. Our cognitive planning framework is based on an NP-complete fragment
of an epistemic logic with a semantics exploiting belief bases and whose satisfiability prob-
lem can be reduced to SAT. We propose a general architecture for the cognitive planning
problem, which considers two main components: the belief revision and the cognitive plan-
ning module. We formalized two types of planning problem: informative and interrogative,
and we studied the complexity of finding a solution in both cases. Moreover, we intro-
duce an alternative encoding to the SAT approach for finding a solution to the informative
problem using quantified boolean formula (QBF), which considers an optimal number of
quantifiers in the prefix. We illustrate the potential of our framework for cognitive planning
in the context of HMI by implementing two examples. In the first example, an artificial
assistant recommends to a human user an ideal sport to practice based on the human’s
preferences. In the second example, we extend our epistemic language to represent the be-
liefs and actions of an artificial player in the context of the cooperative board game Yokai.
This game requires a combination of the theory of mind, temporal reasoning, and spatial
reasoning for an artificial agent to play effectively. Our implementations demonstrate that
our NP-complete fragment and the cognitive planning problem formulated in this logic are
suitable for real-world applications in the domain of HMI.

Résumé
Dans cette thèse, nous définissons un cadre de planification cognitive basé sur la logique
pour doter les agents artificiels des compétences visant à persuader les humains de croire
quelque chose ou d’induire un certain comportement en eux. Notre cadre de planification
cognitive est basé sur un fragment NP-complet d’une logique épistémique avec une séman-
tique exploitant des bases de croyances et dont le problème de satisfiabilité peut être réduit à
SAT. Nous proposons une architecture générale pour le problème de planification cognitive,
qui considère deux composantes principales: la révision des croyances et le module de plani-
fication cognitive. Nous avons formalisé deux types de problème de planification: informatif
et interrogatif, et nous avons étudié la complexité de trouver une solution dans les deux cas.
De plus, nous introduisons un codage alternatif à l’approche SAT pour trouver une solution
au problème informatif en utilisant une formule booléenne quantifiée (QBF), qui consid-
ère un nombre optimal de quantificateurs dans le préfixe. Nous illustrons le potentiel de
notre cadre de planification cognitive dans le contexte de l’HMI en mettant en œuvre deux
exemples. Dans le premier, un assistant artificiel recommande à un utilisateur humain un
sport idéal à pratiquer en fonction des préférences de l’humain. Dans le deuxième exemple,
nous étendons notre langage épistémique pour représenter les croyances et les actions d’un
joueur artificiel dans le contexte du jeu de société coopératif Yokai. Ce jeu nécessite une
combinaison de la théorie de l’esprit, du raisonnement temporel et du raisonnement spatial
pour qu’un agent artificiel joue efficacement. Nos implémentations démontrent que notre
fragment NP-complet et le problème de planification cognitive formulé dans cette logique
conviennent aux applications du monde réel dans le domaine de l’HMI.

ii

Acknowledgments

First and foremost, I would like to express my gratitude to my thesis supervisor Emil-
iano Lorini and my co-supervisors, Dominique Login and Frédéric Maris. Thanks
to Emiliano for always listening to me, understanding what I had issues with, and
guiding me in a direction where I could “comfortably” excel. This was because he
knew what my strengths and weaknesses were. He never gave up on me and always
preserved his confidence in my ability to complete this Ph.D., but overall thank
you for always challenging me to probe myself. Also, I owe a lot from these three
years to Dominique, co-author in several of these investigations. I wish to thank
Dominique for helping me to ground the philosophical concepts and relate them to
my engineering background. Our meetings always involved funny stories related to
what we dealt with, especially when we worked on the Yokai game’s modelization,
which involved countless hours of intensive meetings and tests that were finally re-
flected in Chapter 5. Similarly, my gratitude to Frédéric, whose precise and concise
advice led us to implement the QBF version of our planning algorithm in a few
weeks. Thanks to that, we could devote more time to the experimental part when
we compare the QBF version and the brute force approach of our cognitive planning
algorithm, outcomes that are detailed in Chapter 3.

I also extend my deepest gratitude to Andreas Herzig, who gave us insightful
advice during the definition of the translations from our logic to propositional logic,
which later would become the main set of reductions in our logical framework men-
tioned in Chapter 2. I wish to acknowledge the help provided by the DAVI company
technical staff. Thanks to Yannick Gérard, Delphine Potdevin, Francisco Sanchez,
and Raphaël Zaragoza for their continuous support, which allowed us to successfully
integrate the emotional AI avatar interface into our cognitive planning architecture,
work that is described in Chapter 4. People who came to IRIT to give lectures and
with whom I had the opportunity to talk about the topics of this thesis, Carlos Are-
ces, who dedicated part of his time to provide me with an overview of similar works
in this field of research. Thanks to Renata Weissman for her valuable comments
concerning the belief revision part. My appreciation goes equally to Antonio Yuste
Ginel for his advice on the logical framework.

I wish to express my most sincere gratitude and appreciation to my thesis com-
mittee members: Leila Amgoud, Bruno Zanuttini, Tiago de Lima, Serena Villata,
Sylvie Thiébaux and Elise Perrotin, whose comments and questions during the de-
fense gave me a chance to reflect on possible new branches of this research. Special
thanks to Tiago and Bruno for their careful reading of this thesis and whose detailed
reports that help me to improve it significantly.

Undertaking a Ph.D. has been one of the best decisions in my life, although it
has been a challenging road. However, I am grateful to have had the opportunity to
light my journey by sharing moments with my colleagues Thorsten Engesser, Mun-
yque Mittelmann, Julien Vianey, Saúl Fernández González, Xinghan Liu and Mouna
Mayouf, whose hard work and dedication to research motivated me to continue and
overcome the challenges.

iii

Thank God, my parents, my wife and my children. It would have been impossible
to finish my studies without their unwavering support over the past few years.

To conclude, I would like to thank the ANR for funding this thesis work through
the CoPains PRCE-Défi 7-Axe 3-2018 project (https://www.irit.fr/CoPains/).

https://www.irit.fr/CoPains/

Contents

Introduction 1
Research questions . 2
Motivation and contribution of the thesis 3
Outline of the thesis . 3
Sources of the chapters . 4

1 Basics 5
1.1 Epistemic Logic . 5
1.2 Doxastic logic . 9
1.3 Dynamic Epistemic Logic - DEL . 9
1.4 Logic of Doxastic Attitudes - LDA 12
1.5 Epistemic planning . 13
1.6 Satisfiability - SAT . 13
1.7 Quantified Boolean Formula - QBF 15

2 Logical Framework 17
2.1 Full Language and Semantics . 17
2.2 NP-Complete Fragment . 19
2.3 Dynamic Extension . 23
2.4 Conclusion . 25

3 Cognitive Planning 27
3.1 Related Work on Epistemic Planning and Persuasion 27
3.2 General Architecture . 29
3.3 Planning Problems . 30
3.4 Complexity results . 34
3.5 Belief Revision Module . 36
3.6 Example 1: Artificial assistant . 38
3.7 Example 2: Virtual coaching agent 43

3.7.1 Motivational interviewing . 43
3.7.2 Formalization . 44

3.8 Optimal QBF Encoding . 48
3.9 Conclusion . 53

4 An Implemented System for Cognitive Planning 55
4.1 Implementation . 55
4.2 Experiments . 65
4.3 Discussion . 68
4.4 Conclusion . 69

vi Contents

5 A Logical Modeling of the Yōkai Board Game 71
5.1 Introduction . 71
5.2 Game description . 73
5.3 A timed language for explicit and implicit belief 75

5.3.1 Static language . 75
5.3.2 Dynamic extension . 78

5.4 Artificial agent architecture . 80
5.4.1 Action selection . 80
5.4.2 Belief change . 80

5.5 Game modeling . 84
5.5.1 Static aspects . 85
5.5.2 Dynamic aspects . 90
5.5.3 Example of action selection 92

5.6 Goals modeling . 92
5.6.1 Observe actions . 94
5.6.2 Move actions . 97
5.6.3 Mark actions and active actions 100

5.7 Implementation and experiments . 102
5.8 Discussion . 107
5.9 Conclusion . 108

Conclusion 109

Appendices 111

Appendix A 113
Detailed proof of Theorem 10 . 113
Detailed proof of Theorem 11 . 117
The separation constraint . 118

Appendix B 121
Implementation of Yōkai . 121

Grouping cards . 132
Action selection . 136
Belief revision . 138
Hierarchy of goals . 140

Bibliography 143

Introduction

Automated planning is at the center of AI research with a variety of applica-
tions ranging from control traffic and robotics to logistics and services. Epis-
temic planning extends automated planning by incorporating notions of knowledge
and beliefs [Bolander & Andersen 2011, Löwe et al. 2011, Kominis & Geffner 2015,
Muise et al. 2015, Cooper et al. 2021]. Cognitive planning is a generalization of
epistemic planning, where the goal to be achieved is not only a belief state but
a cognitive state of a target including not only beliefs but also intentions. Moreover,
we are particularly interested in the planning agent’s persuasive goals, aimed at
influencing another agent’s beliefs and intentions.

In this thesis, an integrated framework for cognitive planning is proposed. A
key aspect of our framework is that it is based on an epistemic logic that adopts
the “database perspective” [Lorini 2018, Lorini 2020]. This feature allows us to
model agents’ “mental states” in a compact way. Furthermore, we develop an auto-
mated reasoning procedure for this language based on an extension of an encoding
tool called TouIST (Toulouse Integrated Satisfiability Tool) [Fernandez et al. 2020],
which provides a flexible and intuitive syntax for writing logical formulas that allows
us to encode agents’ cognitive states.

In the subsequent stage, the machine will reason about the facts represented in
its database to deduce information about the human agent’s beliefs and intentions.
In other words, the machine can predict human behavior based on its model of the
human’s mind, and given a goal (persuasive or influential), the machine will select
a sequence of speech acts aimed at changing the human agent’s behavior.

We demonstrated through an implementation that the proposed architecture
leads to the rise of a sufficiently viable artificial reasoning agent. The system archi-
tecture considers two core components, the belief revision and the cognitive plan-
ning module. For the belief revision module, we use maximal consistent subsets.
We consider a brute force algorithm based on SAT (Boolean satisfiability problem)
for the cognitive planning module. The implemented artificial agent interacts with
the human to collect information and increases its ability to understand the human
agent’s mental state. Based on experimental results, we conclude that it is possible
to use our cognitive planning framework for implementing real-world applications.
Furthermore, we proposed an optimal encoding for the cognitive planning problem,
expressing the planning formula in terms of a quantified boolean formula (QBF).
The experimental evaluation concludes that the QBF approach outperforms the
brute force technique based on SAT for solving the cognitive planning problem.

Finally, we applied our cognitive planning framework to a case of a cooperative
board game called Yōkai, involving the human and the machine in which they have
to exchange information and collaborate in order to achieve a common goal. Yōkai
requires a combination of Theory of Mind (ToM), temporal and spatial reasoning to
be played effectively by the artificial agent. We showed that the language properly

2 Introduction

accounts for these three dimensions and proved that its satisfiability problem is NP-
complete. Moreover, we implement Yōkai and we perform experiments to evaluate
the performance between two game configurations: human-machine versus human-
human collaboration.

Research questions

We want to find the answers to four fundamental research questions in our path to
building a cognitive planning framework. We can formulate them as follows:

1. Can we build a logical framework whose satisfiability problem can be reduced
to SAT to represent and reason about an agent’s beliefs, desires, and inten-
tions?

To answer this question, we need to study a multi-agent epistemic logic that
allows us to represent and reason about other agents’ beliefs and intentions
and whose complexity allows us to move towards a realistic implementation.
Moreover, we are expecting to use SAT solvers, so we need to define a sequence
of reductions to transform formulas expressed in our logical language to their
equivalent propositional logic version.

2. Can we propose an integrated architecture for cognitive planning in the context
of our logical framework?

To answer this, we need first to define the cognitive planning problem and an-
alyze the complexity of finding a solution plan. Moreover, we need to consider
two types of planning problem: informative and interrogative. Finally, if we
are expecting to model a dialog between the human and the machine, it is
necessary to capture the input coming from the human using a belief revision
technique.

3. How can we implement the integrated architecture for cognitive planning using
functional programming?

We need to identify a strong mathematical language suitable for implementing
the recursive functions that will allow us to transform the planning formulas
into their propositional logic version. In addition, we need to select a SAT
solver tool to verify the validity of the planning formulas expressed in propo-
sitional logic.

4. Is it possible to apply our cognitive planning model for the case of a cooperative
game that uses ToM as well as temporal and spatial reasoning?

To answer this question we need to extend the language to include the temporal
aspects. In addition, to cooperate with humans the machine should be able
to deduce information given by the human agent by means of hints.

Motivation and contribution of the thesis 3

Motivation and contribution of the thesis

Our motivation is to endow an artificial agent with cognitive planning capabilities in
order to persuade humans to believe something or behave in a certain way. In order
to do that, we are expecting to build a model of the human agent’s mind from the
daily interaction between the machine and the human. This model will contain the
interconnection between the human’s beliefs, desires, and intentions. In addition,
we will set up a persuasive or influential goal and a set of actions in the machine.

These actions will be in the form of speech acts. During the cognitive planning
process, the machine will choose a sequence of speech acts from the set of actions
that will lead the machine to reach the goal. In other words, the cognitive planning
process consists of identifying a sequence of speech acts that will be successful in
persuading the human agent.

Our main contribution is the development of an integrated framework for cogni-
tive planning. Our work goes towards the integration effort, bringing together three
fields related to our approach: Dynamic Epistemic Logic, Knowledge Representa-
tion and Reasoning, and Automated Reasoning unifying these fields in an integrated
framework for cognitive planning. We believe that our logical framework and archi-
tecture are general enough and technology agnostic to be implemented in different
tools. In order to show its potential for application, we implement our model and
instantiate it in a scenario of human machine interaction (HMI).

Outline of the thesis

In this section we provide a short summary of each chapter.
In Chapter 1, we give an introduction to the different fields of research this thesis

contributes to, starting with a list of logics for which we summarize the standard
syntax and semantics: Epistemic Logic, Doxastic Logic, Dynamic Epistemic Logic
and the Logic of Doxastic Attitudes. We also illustrate, with an example, the
fundamentals of Epistemic Planning. The last two sections of the first chapter then
introduce the Satisfiability and Quantified Boolean formula problems.

In Chapter 2, an NP-complete fragment of an epistemic logic with a semantics
exploiting belief bases is presented. We start by recalling the syntax and the seman-
tics for the full logic. Then, we define our NP-complete fragment and its dynamic
extension. Next, we detail the set of translations for the reduction of our fragment
to SAT. Finally, we provide complexity results for checking satisfiability of formulas
in our NP-fragment.

In Chapter 3, we define a general architecture for the cognitive planning problem.
Afterward, we define two types of planning problem: informative and interrogative,
and we find the complexity of finding a solution for the cognitive planning problem
in both cases. Furthermore, we illustrated the potential of our framework for ap-
plications in human-machine interaction with the help of two examples in which an
artificial agent is expected to interact with a human agent through dialogue and to

4 Introduction

persuade the human to behave in a certain way. At the end of this chapter we intro-
duced a formalization of simple cognitive planning as a quantified boolean formula
(QBF) with an optimal number of quantifiers in the prefix.

The model for cognitive planning is implemented in Chapter 4. We describe how
to represent and generate the belief base. Furthermore, we demonstrate how the
machine performs the reasoning process to find a sequence of speech acts intended to
induce a potential intention in the human agent. The implemented system has three
main components: belief revision, cognitive planning, and the translator module.
These modules work integrated to capture the human agent’s beliefs during the
human-machine interaction process and generate a sequence of speech acts to achieve
a persuasive goal.

In Chapter 5, we present an epistemic language to represent the beliefs and ac-
tions of an artificial player in the context of the board game Yōkai. The cooperative
game Yōkai requires a combination of theory of mind (ToM), temporal and spatial
reasoning for an artificial agent to play effectively. We show that the language prop-
erly accounts for these three dimensions, and we show that its satisfiability problem
is NP-complete. We implement the game and perform experiments to compare the
level of cooperation in two scenarios: when the game is played between a human
and the artificial agent versus when two humans play the game.

Sources of the chapters

Parts of this thesis have been published before. Below, we give a quick overview of
the publications and ongoing works on which each chapter is based.

• Chapter 1 is a new summary of basic concepts and ideas from the literature.

• Chapter 2 is based on : Fernandez Davila, J. L., Longin, D., Lorini, E., Maris,
F. (2021). A Simple Framework for Cognitive Planning. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(7), 6331-6339.

• Chapter 3 is based on : Lorini, E.; Sabouret, N.; Ravenet, B.; Fernandez,
J. and Clavel, C. (2022). Cognitive Planning in Motivational Interviewing.
In Proceedings of the 14th International Conference on Agents and Artificial
Intelligence - Volume 2, ISBN 978-989-758-547-0, ISSN 2184-433X, pages 508-
517.

• Chapter 4 is based on : Fernandez, J.; Longin, D.; Lorini, E. and Maris, F.
(2022). An Implemented System for Cognitive Planning. In Proceedings of the
14th International Conference on Agents and Artificial Intelligence - Volume
3, ISBN 978-989-758-547-0, ISSN 2184-433X, pages 492-499.

• Chapter 5 is based on an ongoing work. Jorge Luis Fernandez Davila, Do-
minique Longin, Emiliano Lorini, Frédéric Maris. A Logical Modeling of the
Yōkai Board Game. [Research Report] IRIT - Institut de recherche en infor-
matique de Toulouse. 2020.

Chapter 1

Basics

This thesis combines ideas from epistemic logic and computer science.
In this preliminary chapter we introduce the basic building blocks of
our framework. Depending on their background, the reader should feel
free to skip over sections about structures or methods already known to
them.

1.1 Epistemic Logic

The term epistemic logic (EL) can be understood in two senses. In the broader
sense, it includes the analysis of both the concept of knowledge and the weaker
concept of belief. This is the way in which it is used throughout this thesis. In a
narrower sense, the name epistemic logic is reserved for the former, leaving for the
latter the name of doxastic logic (from the Greek δóξα: belief). When it is not clear
from the context, it will be specified which meaning is targeted.

Since epistemic logic is an extension of propositional logic (PL), we start by
defining the syntax for a PL formula.

Definition 1 (Language of propositional logic) Let Atm be a set of atomic
propositions. The set of formulas in boolean propositional logic language, denoted by
LProp, is defined by the following grammar in BNF:

φ ::= p | ¬φ | φ ∧ φ,

where p ∈ Atm. In terms of the semantics, the meaning of LProp formulas is given by
an interpretation I that gives the truth value for each atom. Given an interpretation,
we can assign values to LProp formulas using the logical operators.

Definition 2 (Satisfaction) The LProp formula φ is true in an interpretation (an
assignment) I, written I |= φ, as inductively defined by distinguishing the shape of
formula φ. Then:

I |= p ⇐⇒ I(p) = true for atoms p,

I |= ¬φ ⇐⇒ I ̸|= φ,

I |= φ ∧ ψ ⇐⇒ I |= φ and I |= ψ.

6 Chapter 1. Basics

In the Theaetetus, Plato argues that knowledge is true belief plus “something
else” which is often difficult to define and which he described as rational justification.
Thus, the following condition can be applied to knowledge: if agent i knows that φ,
then φ is true. On the other hand, we shall argue that it is not possible to apply
such a rule to the concept of belief. In fact, it is widely accepted that beliefs can be
false. Therefore, when we are talking about belief we refer to a rational belief, i.e.,
agent i doesn’t believe φ ∧ ¬φ.

Epistemic logic studies what agents know or believe about certain facts. The
following are some examples of expressions formulated by epistemic logic:

(1) Agent i knows that φ
(2) Agent i knows whether φ
(3) Agent i does not know φ

(4) Agent i does not know whether φ
(5) It is possible, taking into account what agent i knows, that φ

In order to formalize these expressions, epistemic logic introduces two modal
operators K and K̂, using a sub index to identify the agent who owns the knowledge:

(1) Kiφ (2) Kiφ ∨Ki¬φ (3) ¬Kiφ (4) ¬Kiφ ∧ ¬Ki¬φ (5) K̂iφ

Using Kripke’s terms, we will understand that expression (1) informs us that φ is
true in all possible worlds compatible with what agent i knows, while (5) tells us
that φ is true in at least one possible world compatible with what agent i knows.
We define the dual operator K̂iφ as follows: K̂iφ

def
= ¬Ki¬φ.

Definition 3 (Language of epistemic logic) Let Agt = {1, . . . , n} a finite set
of agents. The language LK(Atm,Agt), the language for multiagent epistemic logic,
is an extension of LProp with modal operators for knowledge, represented by the
following grammar:

φ ::= p | ¬φ | φ ∧ φ | Kiφ

where p ∈ Atm and i ∈ Agt. We read Kiφ as “agent i knows φ”.
When Atm and Agt are clear from the context, we will write LK instead of

LK(Atm,Agt).

Definition 4 (Kripke model) An epistemic model on (Atm,Agt) is a structure
M = ⟨W, (Ri)i∈Agt, V ⟩, where :

• W is a non-empty set of possible worlds (or states),

• Ri ⊆W ×W represents the epistemic accessibility relation for agent i ∈ Agt.

1.1. Epistemic Logic 7

• V : Atm→ 2W is a valuation function which associates to every p ∈ Atm the
set of worlds in which p is true.

We often suppress the reference to the agent in the accessibility relation and we
simply write M = ⟨W,R, V ⟩. The truth of formulas in LK are interpreted with
respect to a pointed Kripke model. A pointed Kripke model is a pair (M,w) where
w is a world of W .

Definition 5 (Satisfaction) Given a model M = ⟨W,R, V ⟩ and a pointed Kripke
model (M,w). Then we can interpret formulas in LK as:

(M,w) |= p⇐⇒ w ∈ V (p) ,
(M,w) |= ¬φ⇐⇒ (M,w) ̸|= φ ,
(M,w) |= (φ ∧ ψ)⇐⇒ (M,w) |= φ and (M,w) |= ψ,
(M,w) |= Kiφ⇐⇒ (M,w′) |= φ for all w′ such that wRiw′

When (M,w) |= φ for all w ∈M , we write M |= φ. Similarly, we write |=χ φ to
represent the fact that M |= φ for all models M existing in a class χ.

Example 1 Let us suppose, that as far as we are concerned, there are only two
relevant facts, namely, that Newton formulated the law of universal gravitation (p)
and that Newton discovered infinitesimal calculus (q). Therefore, there exist only
four possible descriptions of the world:

w1 : p ∧ q w2 : p ∧ ¬q w3 : ¬p ∧ q w4 : ¬p ∧ ¬q

Now let’s suppose that agent i knows the first of these facts, but ignores the
second. This means that w1 and w2 are, as far as agent i is concerned, possible
descriptions of the real world that he cannot distinguish himself. Knowing that w1

is the real world, we will consider that w2 is accessible from w1 for the agent i, or also
that it is an epistemic alternative for agent i thanks to the accessibility relation (or
indistinguishably relation) which is formalised as : w1Riw2. In the model sketched
in Figure 1.1, the formulas Kip, K̂iq and K̂i¬q are true.

w1

p, q
w2

p,¬q

w3

¬p, q
w4

¬p,¬q

Figure 1.1: Possible worlds.

We shall start by presenting the possible axiomatisations of propositional epis-
temic logic (PEL) before proceeding to a critical discussion of their axioms. The
simplest system, known as K, consists of the following axiom schemes (henceforth,
for brevity, we will simply say axioms) and inference rules (for φ, ψ ∈ PEL,
i ∈ Atm):

8 Chapter 1. Basics

PC : Complete set of axioms for PC
K : Distribution: Kiφ ∧Ki(φ→ ψ)→ Kiψ

MP : Modus ponens: from φ and φ→ ψ infer ψ
NEC : Necessitation: from φ infer Kiφ

We can obtain stronger systems by adding some of the following axioms:

T : Kiφ→ φ 4 : Kiφ→ KiKiφ 5 : ¬Kiφ→ Ki¬Kiφ

The systems derived from the addition of each of these axioms are known, for his-
torical reasons, by the following names:

T = K + T S4 = T + 4 S5 = S4 + 5

Standardly accepted properties of knowledge are that: known information is true
(Axiom T), you are aware of - know - your knowledge (Axiom 4), and you are aware
of your ignorance (Axiom 5). These axioms correspond to the structural properties
of reflexivity, transitivity and Euclidicity. The complete list of axioms is shown in
Table 1.1.

Axiom Condition on Kripke models Diagram of the condition

K Kiφ ∧Ki(φ→ ψ)→ Kiψ None

T Kiφ→ φ
Reflexivity: for all w, (w,w) ∈
Ri

w i

4
Kiφ→ KiKiφ

Transitivity: for all w, u, v,
(w, u) ∈ Ri and (u, v) ∈ Ri
implies (w, v) ∈ Ri

w u v

i i

⇒
w u v

i i

i

5 K̂iφ→ KiK̂iφ

Euclidean: for all w, u, v,
(w, u) ∈ Ri and (w, v) ∈
Ri implies (u, v) ∈ Ri

u

w

v

i

i

⇒

u

w

v

i

i

i

Table 1.1: Structural properties of knowledge.

One critical aspect that appears in models based on EL is they are subjective
to the logical omniscience problem (LOP): agents believe all logical consequences
of what they believe. LOP is a major objection against EL because it makes unre-
alistic assumptions about the reasoning power of the agents. Two notions of belief
have been proposed to tackle the omniscience problem: implicit and explicit belief.
Implicit beliefs are closed under logical consequence, while implicit beliefs are not
[Levesque 1984].

1.2. Doxastic logic 9

1.2 Doxastic logic

Doxastic logic is a type of logic concerned with reasoning about beliefs. However,
as we said before, the term epistemic logic is often used generically to represent
both knowledge and belief [Gabbay & Guenthner 2003]. Regarding the basic axioms
and rules used to specify doxastic logic at syntactic level, there are no essential
modifications in comparison with those used by epistemic logic: all the tautologies
of propositional logic and the axiom of distribution are still admitted as basic axioms,
in addition to the rules of modus ponens and generalization of knowledge. However,
axiom T seems to be too strong to fit in the definition of doxastic logic. With respect
to knowledge it seems reasonable to postulate that everything someone knows is true,
while in the case of a belief it is possible, or almost a general fact, that beliefs could
be false. We use Biφ to represent the fact that agent i believes that φ. Thus, the
truth axiom is manifestly excessive and we must settle for a weaker requirement.
Therefore, in order to make the beliefs of our agents logically consistent, we must
replace axiom T by the weaker one: D = ¬(Biφ ∧ Bi¬φ), which states that for
any φ that agent i accepts to believe, he can not believe its opposite ¬φ at the
same time. The basic system for propositional doxastic logic is represented by these
axioms and is known as KD. We can add the axioms of positive (4) and negative (5)
introspection to the basic system in order to generate the systems KD4 and KD45
respectively.

Regarding the semantics, a model M is defined above as a structure M =

⟨W,R, V ⟩, where W is a non-empty set of possible worlds, R is a function map-
ping now a doxastic accessibility relation Ri ⊆ W ×W for each agent i ∈ Agt and
V : Atm → 2W is a valuation function that assigns to each p ∈ Atm a truth value
in each possible world w ∈W .

The truth of a formula φ in a possible world w of a model (M,w |= φ) is defined
as above, substituting K for B and K̂ for B̂. Thus, the difference between these
operators lies in the properties required for axiom T , where the accessibility relation
must be reflexive, while in axiom D, it is only required to be serial, i.e. for all w ∈M
there is a w′ ∈M such that wRw′.

1.3 Dynamic Epistemic Logic - DEL

DEL is the logic resulting from the combination of two operators. One for repre-
senting the agent’s knowledge or belief and the other for representing the evolution
of knowledge or belief as a consequence of the occurrence of an action (also called
event).

Two of the most common types of actions are public and private announcements.
Public Announcement Logic (PAL) incorporates an action which is used to inform
all agents about a sentence and allows them to simultaneously accept this announce-
ment. Private announcements are inside the group of more complex actions which
involves passing information to an agent or a group of agents as a secret, hidden com-
pletely or partially from others. The latter actions of communication can be modeled

10 Chapter 1. Basics

using action models [van Ditmarsch et al. 2007, van Benthem 2003]. Action models
were first introduced under the name of action structure in [Baltag et al. 1998].

An event model is similar to a Kripke model, but instead of worlds it contains
events with preconditions. Like epistemic models, event models describe indistin-
guishability for agents with a relation ∼i for each of them.

Definition 6 (Action Model) An action model is a tuple E = (E, (∼i)i∈Agt, pre)
where:

• E is a non-empty set of events,

• ∼i⊆ E × E is a binary accessibility relation for each agent i ∈ Agt,

• pre: E → LK(Atm,Agt) assigns a precondition to each event.

The state-transition function of DEL is called product update. This operation
allows applying an action model to an epistemic model to describe epistemic change.
It generates a new epistemic model by performing a cross product between a Kripke
model and an action model.

Definition 7 (Product Update) Giving an epistemic model M = ⟨W,R, V ⟩ and
an action model E = (E,∼i, pre), the product update is defined as M ⊗ E =

⟨W ′, R′, V ′⟩, where:

• W ′ = {(w, e) | w ∈W , e ∈ E and (M,w) |= pre(e)},

• R′
i = {((w, e), (w′, e′)) ∈W ′ ×W ′ | wRiw′ and e ∼i e

′} ,

• V ′(p) = {(w, e) ∈W ′ | (M,w) |= p}.

Example 2 Two friends, Alice and Bob, meet in a bar. Bob knows that Alice has
submitted a paper for an important AI conference. He also knows that she is waiting
for an email confirming whether the paper was accepted.

Let’s represent these two possible outcomes as p = “the paper was accepted” and
¬p = “the paper was not accepted”. While they are talking, Alice checks her phone
and exclaims: “I just got an email from the conference organizers”. At this point,
Alice reads the mail in front of Bob, but without telling him the content of it. Thus,
Bob can not distinguish between Alice learning p or Alice learning ¬p. We are going
to encapsulate these two actions in an action model and define these actions as e1
and e2 with preconditions p and ¬p respectively, as shown in Figure 1.2.

Example 3 In a variant of the previous example: At the moment that Alice indi-
cates to Bob that she has just received an email from the conference organizers, Bob
receives a call and has to leave the room to answer the call. Upon returning he sees
that Alice is absent and that she has left her phone on the table.

1.3. Dynamic Epistemic Logic - DEL 11

w1
p

a, b

w2

¬p

a, b

a, b
⊗

e1
p

a, b

e2
¬p

a, b

b =
(w1, e1)

p

a, b

(w2, e2)
¬p

a, b

b

Figure 1.2: Dynamic operator effect on the model

Now Bob is not sure whether Alice has read the email or not. If the first scenario
happened then Alice knows whether p. But if she hasn’t read the email, then nothing
changes and therefore the result is the same as before the email arrived. We represent
this last scenario with ⊤ in Figure 1.3.

Definition 8 (Language of dynamic epistemic logic) The language of dy-
namic epistemic logic LDel extends LK by means of the addition of a dynamic
operator:

φ ::= p | ¬φ | φ ∧ φ | Kiφ | [E , e]φ,

where, K is the epistemic modality and [E , e] the dynamic modality (a pointed
action model) with E denoting an event model and e ∈ E . We read [E , e]φ as “after
the occurrence of (E , e), φ holds”.

Definition 9 (Satisfaction Relation) We interpret the dynamic operator for ac-
tion models as follows :

(M,w) |= (E , e)⇐⇒M,w |= pre(e) implies M ⊗ E , (w, e) |= φ.

Although EL and DEL allow the representation of two important epistemic as-
pects such as the deep-nested beliefs and the model dynamics by means of product
update operations, these approaches present two main limitations. Firstly, in EL
and DEL the difference between explicit and implicit beliefs can not be captured.
Secondly, updating the epistemic model by means of private announcements in DEL
implies that two copies of the model are maintained, one for the perceiver (the up-
dated model) and the other for the non-perceivers (the original model), increasing
the complexity of the satisfiability problem for DEL to NEXTPTIME-complete in
a multi-agent environment.

12 Chapter 1. Basics

w1
p

a, b

w2

¬p

a, b

a, b
⊗

e1
p

a, b

e2
¬p

a, b

e3
⊤

a, b

b

b b =

(w1, e1)
p

a, b

(w2, e2)
¬p

a, b

(w1, e3)
p

a, b

(w2, e3)
¬p

a, b

b

a, b

b bb b

Figure 1.3: Dynamic operator effect on the model

1.4 Logic of Doxastic Attitudes - LDA

LDA is a multi-agent epistemic logic whose semantics exploits the concept of belief
base [Lorini 2020, Lorini 2018]. In this logic it is possible to identify explicit beliefs,
as a fact in an agent’s belief base, from implicit beliefs, as those pieces of information
that can be deducible from the agent’s explicit beliefs. LDA provides a set of features
that allow overcoming the EL and DEL limitations. First of all, a generalization
of the standard EL approach is provided by LDA in order to capture the difference
between explicit and implicit belief. Another advantage of LDA in comparison with
DEL, is when we deal with information updates of type private belief expansion
(PBE). In the former, the original epistemic model has to be duplicated by creating
one copy of the model for the perceiver, in which their beliefs have changed and
another copy for the non-perceivers, in which their beliefs have not changed leading
to an exponential growth of the model in the length of the sequence of private
announcements. In the latter the effects of the actions are represented only in the
perceiver’s belief base, while the belief base of the other agents remain unchanged.
We are going to provide details about the syntax and the semantics of the logic LDA
in Chapter 2.

1.5. Epistemic planning 13

1.5 Epistemic planning

According to [Ghallab et al. 2004] planning can be understood as the reasoning side
of acting. Planning is the type of reasoning in which we try to establish what to
do in order to make some arbitrary condition true. The condition that we want to
achieve is called the goal, and the sequence of actions we seek that will make the
goal true is called a plan [Brachman & Levesque 2004]. Actions to be considered
can be of two types: ontic (physical) and epistemic actions (related to obtaining
knowledge). Among the former we can mention the action of moving a package
from one position to another, while among the latter we can consider observations
and sensing actions [Herzig & de Lima 2006].

Epistemic planning extends classical planning by adding the epistemic concepts
of knowledge and belief. Based on the fact that we are interested in modeling
knowledge and belief in planning, it seems to be that DEL provides the conceptual
framework over which we can specify our epistemic planning problem.

Definition 10 (Epistemic planning) An epistemic planning problem is a triple
⟨Σ, Op, αG⟩, where Σ is a knowledge or a belief structure, Op is a finite set of
operators and αG is a formula from the epistemic language LK . We call the first
component the initial situation, the second the available set of epistemic actions and
the third the goal.

A solution to an epistemic planning problem ⟨Σ, Op, αg⟩ is given by a finite
sequence of actions ϵ1, ..., ϵn from Op such that Σ |= [ϵ1] . . . [ϵn]αG. The sequence of
actions is what we call the plan. The size of the plan is the number of actions in
the sequence.

Epistemic planning based on DEL allows us to represent the effect of the epis-
temic actions in the initial state by using action models.

Example 4 In a variant of our Example 3, let us suppose now that Alice and Bod
are co-authors of the paper and the goal is to made both agents knowing p without
suspecting that each other does. Therefore, αG is specified as follows: Kap ∧Kbp ∧
¬KaKbp ∧ ¬KbKap. Let ϵ1 denote the epistemic action corresponding to a private
announcement of p to Alice. Similarly, ϵ2 is the epistemic action of informing Bod
about the true of p. In terms of DEL, a solution to this epistemic planning task is
the action sequence ϵ1, ϵ2, since we have Σ⊗ ϵ1 ⊗ ϵ2 |= αG.

1.6 Satisfiability - SAT

Given a propositional formula φ, the satisfiability problem (SAT), consists of finding
a set of values (either true or false) for each literal ∈ φ in a way that φ evaluates to
true. If this is the case, φ is called satisfiable. By contrast, if no such assignment
exists, i.e., φ is false for all possible variable assignments, then the formula is un-
satisfiable. For instance, the formula “p ∧ ¬q” is satisfiable because it is possible to

14 Chapter 1. Basics

assign the values of p to true and q to false, which makes (p∧¬q) true. Conversely,
“p ∧ ¬p” is unsatisfiable.

In addition, we know that only the set of atoms that are true are included in an
interpretation. Therefore, the interpretation: I = p, q assigns the value true to p and
q, and false to all others. For example, the formula: (p∧q → r)∧(p→ q)→ (p→ r),
would evaluate to false under I, because I(p) = true; I(q) = true; I(r) = false, so
I |= p ∧ q and I ̸|= p ∧ q → r.

Definition 11 (Validity and Satisfiability) A formula φ is called valid iff it is
true in all interpretations, i.e. I |= φ for all interpretations I. We write |= φ iff
formula φ is valid. A formula φ is called satisfiable if there is an interpretation I in
which φ is true, i.e. I |= φ. Otherwise it is called unsatisfiable.

Satisfiability and validity are duals one another. As a result, a formula φ is valid
if and only if ¬φ is unsatisfiable. A proof of validity for φ from the unsatisfiability
of ¬φ is called a refutation.

SAT solvers are software tools which aim to solve the Boolean satisfiability prob-
lem. Most state-of-the art SAT solvers are based on algorithms which include vari-
ants of Davis–Putnam–Logemann–Loveland (DPLL) [Davis et al. 1962] or conflict-
driven clause learning (CDCL) [Marques Silva & Sakallah 1996] techniques. The
main difference between the two approaches is that CDCL, unlike DPLL, is able to
learn “from its mistakes”, i.e.: when it reaches a conflict, it backtracks to the con-
flict level and then applies the knowledge it has gathered from previous unsuccessful
assignments to the implication graph it has generated.

Hence, the solver is able to ignore huge sections of the search space that
will never satisfy the formula. MiniSAT [Sörensson & Een 2005] and Glucose
[Audemard & Simon 2009] are among the SAT solvers that implement the CDCL
algorithm.

Most of the current SAT solvers require the LProp formula to be in its Conjunc-
tive Normal Form - CNF.

Definition 12 (Conjunctive Normal Form (CNF)) Let φ be a formula in its
CNF. Then:

A literal l is a variable p or its negation ¬p,
A clause C = (l1 ∨ ... ∨ lm) is a disjunction over literals,
A formula φ is in CNF if it consists of a conjunction of clauses.

In order to express a LProp formula into its CNF form, the translation of it
in its Negation Normal Form - NNF is requiered. A formula in NNF form may
comprise of conjunctions, disjunctions, or literals. The negation symbol may only
be found in literals. Every formula has an equivalent in NNF. Thus, the formula:
p ∧ (¬q ∨ r) ∧ ¬r) ∨ s is in NNF form, while ¬(p ∧ ¬q) ∨ r is not.

SAT was the first NP-complete problem, and as such is among the most im-
portant problems in computer science. This problem has applications in inductive
inference, database integrity, circuit synthesis and many others.

1.7. Quantified Boolean Formula - QBF 15

1.7 Quantified Boolean Formula - QBF

In computational complexity theory, the quantified Boolean formula problem (QBF)
is a generalization SAT with the addition of existential and universal quantifiers
that can be applied to each variable. To rephrase this, it asks whether a quantified
sentential form over a set of Boolean variables is true or false. For example, the
following is an instance of QBF: ∀p∃q, r.((p ∨ r) ∧ q). The standard encoding of a
QBF formula is defined in PCNF (Prenex Conjuntive Normal Form): φ ::= Q.ψ,
where:

φ ::= ∀p∃q, r︸ ︷︷ ︸
quantifier prefix Q

((p ∨ r) ∧ q)︸ ︷︷ ︸
propositonal CNF ψ

We require that no variable appears twice in Q and that all variables in ψ appear
in Q (i.e., ψ contains no free variables).

Most current QBF solvers algorithms can be divided into classic DPLL
based [Goultiaeva & Bacchus 2010, Klieber et al. 2010] and expansion based tech-
niques [Bloem et al. 2018]. The former perform conflict and solution-driven search
throughout the formula’s assignment. In contrast, the latter eliminate quanti-
fiers by expanding into boolean connectives. Experimental evaluation showed in
[Bubeck & Büning 2007] demonstrates that expansion-based QBF solvers outper-
form DPLL-based solvers on a number of benchmark families. However, in the
case of large size formulas, expansion-based solvers may lead to an exponential
blowup. To mitigate this drawback [Janota et al. 2016] proposes an improving of
the expansion-based technique using Counterexample Guided Abstraction Refine-
ment (CEGAR) [Clarke et al. 2003]. Among the QBF-solvers that employ CEGAR
are RaReQS [Janota et al. 2016] and GhostQ [Klieber et al. 2010].

With QBF, it is possible to compactly model problem-solving and planning in
multiagent settings, thanks to its feature of combining universal and existential
quantifiers.

In general it is the case that any NP problem can be compactly encoded in SAT
while QBF allows us to compactly encode any PSPACE problem: QBF is PSPACE
complete [Coste Marquis et al. 2006].

Chapter 2

Logical Framework

This chapter is devoted to presenting the logic which will serve as a spec-
ification language for cognitive planning. We start by recalling the full
language and the semantics presented in [Lorini 2018, Lorini 2020]. This
language distinguishes explicit belief (a fact in an agent’s belief base)
from implicit belief (a fact that is deducible from the agent’s explicit
beliefs). Next, we study an NP-fragment of the logic, whose satisfiabil-
ity problem is reduced to SAT. Finally, we focus on the extension of the
latter by belief base expansion operators.

2.1 Full Language and Semantics

The language of our logic of explicit and implicit belief is defined in two steps. First,
the language L0(Atm,Agt) is defined by the following grammar in BNF:

α ::= p | ¬α | α1 ∧ α2 | α1 ∨ α2 | △iα,

where p ranges over Atm and i ranges over Agt . L0(Atm,Agt) is the language for
representing agents’ explicit beliefs. The formula △iα is read “i explicitly believes
that α”. Then, the language L(Atm,Agt) extends the language L0(Atm,Agt) by
modal operators of implicit belief and is defined by the following grammar:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □i φ | ♢i φ,

where α ranges over L0(Atm,Agt) and i ranges over Agt . For notational convenience
we write L0 instead of L0(Atm,Agt) and L instead of L(Atm,Agt), when the context
is unambiguous. The formula □i φ is read “i implicitly believes that φ” and ♢i φ is
read “φ is compatible (or consistent) with i’s implicit beliefs”. The other Boolean
constructions ⊤, ⊥,→ and↔ are defined in the standard way. We introduce here ∨
and ♢i as primitive and do not define them from ∧ and □i because at a later stage
we will need them for translating formulas in negation normal form.

The interpretation of language L exploits the notion of belief base. While the
notions of possible state (or world) and epistemic alternative are primitive in the
standard Kripke semantics for epistemic logic, they are defined from the primitive
concept of belief base in this semantics. In particular, a state is a composite object
including a description of both the agents’ belief bases and the environment.1

1This is similar to the way states are modeled in the interpreted system semantics for multi-agent
systems [Fagin et al. 1995, Lomuscio et al. 2017].

18 Chapter 2. Logical Framework

Definition 13 (State) A state is a tuple B = (B1, . . . , Bn,V) where: for every
i ∈ Agt , Bi ⊆ L0 is agent i’s belief base; V ⊆ Atm is the actual environment. The
set of all states is noted S.

Note that an agent’s belief base Bi can be infinite. The sublanguage L0(Atm,Agt)
is interpreted w.r.t. states, as follows:

Definition 14 (Satisfaction) Let B = (B1, . . . , Bn,V) ∈ S. Then:

B |= p ⇐⇒ p ∈ V ,

B |= ¬α ⇐⇒ B ̸|= α,

B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2,

B |= α1 ∨ α2 ⇐⇒ B |= α1 or B |= α2,

B |= △iα ⇐⇒ α ∈ Bi.

Observe in particular the set-theoretic interpretation of the explicit belief operator:
agent i explicitly believes that α if and only if α is included in her belief base.

A multi-agent belief model (MAB) is defined to be a state supplemented with a
set of states, called context. The latter includes all states that are compatible with
the common ground [Stalnaker 2002], i.e., the body of information that the agents
commonly believe to be the case.

Definition 15 (Multi-Agent Belief Model) A multi-agent belief model (MAB)
is a pair (B,Cxt), where B ∈ S and Cxt ⊆ S. The class of all MABs is noted M.

Note that we do not impose that B ∈ Cxt . When Cxt = S then (B,Cxt) is said
to be complete, since S is conceivable as the complete (or universal) context which
contains all possible states. We compute an agent’s set of epistemic alternatives
from the agent’s belief base, as follows.

Definition 16 (Epistemic alternatives) Let i ∈ Agt . Then Ri is the binary
relation on the set S such that, for all B = (B1, . . . , Bn,V), B′ = (B′

1, . . . , B
′
n,V

′) ∈
S:

BRiB′ if and only if ∀α ∈ Bi : B′ |= α.

BRiB′ means that B′ is an epistemic alternative for agent i at B. So i’s set of
epistemic alternatives at B includes exactly those states that satisfy all i’s explicit
beliefs.

Definition 17 extends Definition 14 to the full language L. Its formulas are
interpreted with respect to MABs. We omit Boolean cases that are defined in the
usual way.

2.2. NP-Complete Fragment 19

LFrag
nnf
99K LNNFFrag

tr1
99K LMod

tr2
99K LProp

Figure 2.1: Summary of reduction process

Definition 17 (Satisfaction) Let (B,Cxt) ∈M. Then:

(B,Cxt) |= α⇐⇒B |= α,

(B,Cxt) |= □i φ⇐⇒∀B′ ∈ Cxt ,

if BRiB′ then (B′,Cxt) |= φ,

(B,Cxt) |= ♢i φ⇐⇒∃B′ ∈ Cxt such that

BRiB′ and (B′,Cxt) |= φ.

A formula φ ∈ L is valid in the class M, noted |=M φ, if and only if (B,Cxt) |= φ

for every (B,Cxt) ∈M; it is satisfiable in M if and only if ¬φ is not valid in M.

Theorem 1 Checking satisfiability of L(Atm,Agt) formulas in the class M is a
PSPACE-hard problem.

This theorem is a consequence of the fact that our logic contains the basic modal
logic K whose satisfiability problem is PSPACE-complete [Halpern & Moses 1992].

2.2 NP-Complete Fragment

In this section, we study the following fragment of the language L, called LFrag:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □m α | ♢m α,

where α ranges over L0 and m is a special agent in Agt called the ‘machine’. In LFrag,
all agents have explicit beliefs but only agent m has implicit beliefs, and moreover
the latter are restricted to L0 formulas of type α. So there are no nested implicit
beliefs for agent m. Agent m is assumed to be the unique artificial agent in the
system which is endowed with unbounded reasoning and planning capabilities. The
cognitive planning problem will be modeled from agent m’s perspective.

In the rest of this section, we are going to provide a polysize reduction of the
satisfiability problem of LFrag to SAT. The reduction consists of three steps which
are summarized in Figure 2.1. As a first step, we put LFrag formulas in negation

20 Chapter 2. Logical Framework

normal form (NNF) via the following function nnf :

nnf (p) = p,

nnf (△iα) = △iα,

nnf (□m α) = □m nnf (α),

nnf (♢m α) = ♢m nnf (α),

nnf (φ ∧ ψ) = nnf (φ) ∧ nnf (ψ),

nnf (φ ∨ ψ) = nnf (φ) ∨ nnf (ψ),

nnf (¬p) = ¬p,
nnf (¬△iα) = ¬△iα,

nnf (¬¬φ) = nnf (φ),

nnf
(
¬(φ ∧ ψ)

)
= nnf (¬φ ∨ ¬ψ),

nnf
(
¬(φ ∨ ψ)

)
= nnf (¬φ ∧ ¬ψ),

nnf (¬□m α) = ♢m nnf (¬α),
nnf (¬♢m α) = □m nnf (¬α).

Let us define the NNF variant LNNF0 of the language L0 by the following grammar:

β ::= p | ¬p | △iα | ¬△iα | β1 ∧ β2 | β1 ∨ β2,

where p ranges over Atm, i ranges over Agt and α ranges over L0. Furthermore, let
us define the language LNNFFrag by the following grammar. For β ranging over LNNF0 :

φ ::= β | φ1 ∧ φ2 | φ1 ∨ φ2 | □m β | ♢m β.

Proposition 1 Let φ ∈ LFrag. Then, φ ↔ nnf (φ) is valid in the class M, and
nnf (φ) ∈ LNNFFrag .

Note that the size of nnf (φ) is polynomial in the size of φ.
As a second step, we define the following modal language LMod into which the

language LNNFFrag will be translated:

ω ::= q | ¬ω | ω1 ∧ ω2 | ω1 ∨ ω2 ,
φ ::= q | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ■ω | ♦ω ,

where q ranges over the following set of atomic formulas:

Atm+ = Atm ∪ {p△iα : i ∈ Agt and α ∈ L0(Atm,Agt)}.

So p△iα is nothing but a special propositional variable.
We interpret the language LMod w.r.t. a pair (M,w), called pointed Kripke

model, where M = (W,⇒, π), W is a non-empty set of worlds, ⇒ ⊆ W ×W and
π : Atm+ −→ 2W . (Boolean cases are again omitted as they are defined in the usual
way.)

2.2. NP-Complete Fragment 21

Definition 18 The semantic interpretation for formulas in LMod w.r.t. a pointed
Kripke model (M,w) is as follows:

(M,w) |= q ⇐⇒w ∈ π(q);
(M,w) |= ■ω ⇐⇒∀v ∈W, if w ⇒ v then (M,v) |= ω;

(M,w) |= ♦ω ⇐⇒∃v ∈W s.t. w ⇒ v and (M, v) |= ω.

The class of pointed Kripke models is noted K. Satisfiability and validity of formulas
in LMod relative to the class K is defined in the usual way.

Let tr1 : LNNFFrag −→ LMod be a translation such that:

tr1(p) = p,

tr1(¬p) = ¬p,
tr1(φ1 ∧ φ2) = tr1(φ1) ∧ tr1(φ2),

tr1(φ1 ∨ φ2) = tr1(φ1) ∨ tr1(φ2),

tr1(△iα) =

{
p△mα ∧■tr0(α), if i = m,

p△iα, otherwise,

tr1(¬△iα) = ¬p△iα,

tr1(□m β) = ■tr0(β),

tr1(♢m β) = ♦tr0(β);

with tr0 : L0 −→ LMod such that:

tr0(p) = p,

tr0(¬α) = ¬tr0(α),
tr0(α1 ∧ α2) = tr0(α1) ∧ tr0(α2),

tr0(α1 ∨ α2) = tr0(α1) ∨ tr0(α2),

tr0(△iα) = p△iα.

As the following theorem indicates, the polynomial translation tr1 guarantees
the transfer of satisfiability from model class M to model class K.

Theorem 2 Let φ ∈ LNNFFrag . Then, φ is satisfiable in the class M if and only if
tr1(φ) is satisfiable in the class K.

Sketch of Proof. The proof relies on the fact that the belief base semantics for
the language LFrag is equivalent to a “weaker” semantics exploiting pointed structures
of the form (X, s) where X = (S,B, (⇒i)i∈Agt , τ), S is a non-empty set of states,
s ∈ S is the actual state, B : Agt×S −→ 2L0 is a belief base function, τ : Atm −→ 2S

is valuation function,⇒i ⊆ S×S is agent i’s epistemic accessibility relation and with
respect to which L-formulas are interpreted as follows (boolean cases are omitted
for simplicity): (i) (X, s) |= p iff s ∈ τ(p), (ii) (X, s) |= △iα iff α ∈ B(i, s), (iii)

22 Chapter 2. Logical Framework

(X, s) |= □i φ iff ∀s′ ∈ S, if s ⇒i s
′ then (X, s′) |= φ. In particular, for every

φ ∈ LFrag, we have that φ is satisfiable in M iff φ is satisfiable in the subclass of
pointed structures (X, s) such that ⇒m (s) ⊆

⋂
α∈B(m,s) ||α||(X,s) with ||α||(X,s) =

{s′ ∈ X : (X, s′) |= α}. ■

As a last step, we provide a polysize reduction of LMod-satisfiability to SAT,
where the underlying propositional logic language LProp is built from the following
set of atomic propositions:

Atm++ ={qx : q ∈ Atm+ and x ∈ N}∪
{rx,y : x, y ∈ N}.

The set Atm++ includes two types of atomic propositions: one of the form qx
denoting the fact that q is true at world x and the other of the form rx,y denoting
the fact that world x is related to world y.
Let tr2 : LMod × N× N −→ LProp be the following translation function:

tr2(q, x, y) = qx,

tr2(¬φ, x, y) = ¬tr2(φ, x, y),
tr2(φ1 ∧ φ2, x, y) = tr2(φ1, x, y) ∧ tr2(φ2, x, y),

tr2(φ1 ∨ φ2, x, y) = tr2(φ1, x, y) ∨ tr2(φ2, x, y),

tr2(■ω, x, y) =
∧

0≤z≤y

(
rx,z → tr2(ω, z, y)

)
,

tr2(♦ω, x, y) =
∨

0≤z≤y

(
rx,z ∧ tr2(ω, z, y)

)
.

Translation tr2 is similar to the translation of modal logic S5 into propositional
logic given in [Caridroit et al. 2017] and, more generally, to the standard translation
of modal logic into FOL in which accessibility relations are encoded by special
predicates. The size of an LMod formula, size(φ), is defined by:

size(p) = 1,

size(φ1 ∧ φ2) = size(φ1) + size(φ2) + 1,

size(φ1 ∨ φ2) = size(φ1) + size(φ2) + 1,

size(¬φ) = size(φ) + 1,

size(■ω) = size(♦ω) = size(ω) + 1.

Note that the size of tr2
(
φ, 0, size(φ)

)
is polynomial in the size of φ.

Theorem 3 Let φ ∈ LMod. Then, φ is satisfiable in the class K if and only if
tr2
(
φ, 0, size(φ)

)
is satisfiable in propositional logic.

Sketch of Proof. The theorem is proved in the same way as the standard
translation of modal logic to FOL plus a straightforward adaptation of [Ladner 1977,

2.3. Dynamic Extension 23

Lemma 6.1] about polysize-model property for S5 to our case. ■

The size of tr2
(
φ, 0, size(φ)

)
being polynomial in the size of φ, thanks to Propo-

sition 1, Theorem 2 and Theorem 3 we state the following complexity result.

Theorem 4 Checking satisfiability of formulas in LFrag in the class M is an NP-
complete problem.

2.3 Dynamic Extension

In this section, we extend the language LFrag by belief expansion operations. Specif-
ically, we introduce the following language L+Frag:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □m α | ♢m α | [+iα]φ,

where α ranges over L0 and i ranges over Agt . The formula [+iα]φ is read “φ holds
after agent i has privately expanded her belief base with α”. Events of type +iα are
generically called informative actions.

Our extension has the following semantics relative to a MAB:

Definition 19 (Satisfaction relation, cont.) Let B = (B1, . . . , Bn,V) ∈ S and
let (B,Cxt) ∈M. Then:

(B,Cxt) |= [+iα]φ ⇐⇒ (B+iα,Cxt) |= φ

with V +iα = V , B+iα
i = Bi ∪ {α} and B+iα

j = Bj for all j ̸= i.

Intuitively speaking, the private expansion of i’s belief base by α simply consists of
agent i adding the information that α to her belief base, while all other agents keep
their belief bases unchanged.

The following equivalences are valid in the class M:

[+iα]α
′ ↔

{
⊤, if α′ = △iα,

α′, otherwise;

[+iα]¬φ↔ ¬[+iα]φ;

[+iα](φ1 ∧ φ2)↔ [+iα]φ1 ∧ [+iα]φ2;

[+iα](φ1 ∨ φ2)↔ [+iα]φ1 ∨ [+iα]φ2;

[+iα]□m α
′ ↔

{
□m(α→ α′), if i = m,

□m α
′, otherwise;

[+iα]♢m α
′ ↔

{
♢m(α ∧ α′), if i = m,

♢m α′, otherwise.

24 Chapter 2. Logical Framework

Thanks to these equivalences we can define the following reduction red trans-
forming every L+Frag formula φ into an equivalent LFrag formula red (φ):

red (p) = p,

red (△iα) = △iα,

red (¬φ) = ¬red (φ),
red (φ1 ∧ φ2) = red (φ1) ∧ red (φ2),

red (φ1 ∨ φ2) = red (φ1) ∨ red (φ2),

red (□m φ) = □m red (φ),

red (♢m φ) = ♢m red (φ),

red ([+iα]α
′) =

{
⊤, if α′ = △iα,

red (α′), otherwise;

red ([+iα]¬φ) = red (¬[+iα]φ),

red
(
[+iα](φ1 ∧ φ2)

)
= red ([+iα]φ1 ∧ [+iα]φ2),

red
(
[+iα](φ1 ∨ φ2)

)
= red ([+iα]φ1 ∨ [+iα]φ2),

red ([+iα]□m α
′) =

{
red
(
□m(α→ α′)

)
, if i = m,

red (□m α
′) otherwise;

red ([+iα]♢m α
′) =

{
red
(
♢m(α ∧ α′)

)
if i = m,

red (♢m α′) otherwise;

red ([+iα1][+jα2]φ) = red
(
[+iα1]red ([+jα2]φ)

)
.

Proposition 2 Let φ ∈ L+Frag. Then, φ ↔ red (φ) is valid in the class M, and
red (φ) ∈ LFrag.

The following theorem is a consequence of Theorem 4, Proposition 2 and the
fact that the size of red (φ) is polynomial in the size of φ.

Theorem 5 Checking satisfiability of formulas in L+Frag in the class M is an NP-
complete problem.

Before concluding this section, we define the concept of logical consequence for
the language L+Frag which will be used in the formulation of the cognitive planning
problem in Chapter 3. Let Σ be a finite subset of L0 and let φ ∈ L+Frag. We say
that φ is a logical consequence of Σ in the class M, noted Σ |=M φ, if and only
if, for every (B,Cxt) ∈ M such that Cxt ⊆ S(Σ) we have (B,Cxt) |= φ, with
S(Σ) = {B ∈ S : ∀α ∈ Σ, B |= α}. We say that φ is Σ-satisfiable in the class M if
and only if, ¬φ is not a logical consequence of Σ in M. Clearly, φ is valid if and only
if φ is a logical consequence of ∅, and φ is satisfiable if and only if φ is ∅-satisfiable.

As the following deduction theorem indicates, the logical consequence problem
with a finite set of premises can be reduced to the satisfiability problem.

2.4. Conclusion 25

Theorem 6 Let φ ∈ L+Frag and let Σ ⊂ L0 be finite. Then, Σ |=M φ if and only if
|=M

∧
α∈Σ□m α→ φ.

2.4 Conclusion

This chapter started from the multi-agent epistemic logic presented in [Lorini 2020].
The logic distinguishes between explicit and implicit belief and is interpreted relative
to a semantic using belief bases.

Given that the satisfiability checking problem for this logic is PSPACE complete,
we studied a fragment that considers a mono-modal version of the language with a
single reasoning agent. We proposed a sequence of translations to transform formulas
expressed in our fragment into propositional logic. We demonstrated that checking
satisfiability of formulas in our fragment is an NP-complete problem.

Finally, we extended our NP-fragment by dynamic operators of belief expansion.
We found that adding this extension does not increase the complexity for checking
satisfiability of formulas in our NP-fragment.

Chapter 3

Cognitive Planning

In Chapter 2, we studied an NP-complete logic of explicit and implicit
belief. We reduce its satisfiability checking problem to SAT. This chapter
presents a novel approach to cognitive planning based on this logic, i.e.,
a planning agent aimed at changing another agent’s cognitive attitudes,
including her beliefs and intentions. We propose a general architecture
that considers the modules and data structures needed to perform the
cognitive planning task. Afterwards, we formalize two cognitive planning
problems, informative planning and interrogative planning. We encode
both types of planning problems in our NP-fragment.

Moreover, we illustrate the potential for application of our model by
means of two examples. In the first example, an artificial agent interacts
with a human agent through dialogue and tries to induce in her a poten-
tial intention to practice a sport. In the second example, the artificial
agent acts as a counselor, applying the principles of motivational inter-
viewing [Lundahl & Burke 2009] in order to make the human aware of
the inconsistency between her desires and her current behavior. Next,
the artificial counselor tries to promote a positive behavior change in the
person, by performing a sequence of assertions oriented to convince the
human about the necessity of changing her behavior in order to achieve
her goals.

Finally, this chapter presents an optimal encoding for the informative
planning problem using QBF. Furthermore, we provide complexity re-
sults for finding a solution plan for the informative planning problem.

3.1 Related Work on Epistemic Planning and Persuasion

In social sciences, influence is defined as “change in an individual’s thoughts, feelings,
attitudes, or behaviors that results from interaction with another individual or a
group” [Rashotte 2009]. It is conceived as tightly connected with persuasion. The
latter is the intentional form of influence in which an agent (the persuader) tries to
make someone (the persuadee) do or believe something by giving her a good reason
[Cialdini 2001, Perloff 2003].

Models of persuasion in AI are mostly based on argumentation. (See
[Prakken 2006] for a general introduction to the research in this area.) Some of these
models are built on Walton & Krabbe’s notion of persuasion dialogue in which one

28 Chapter 3. Cognitive Planning

party seeks to persuade another party to adopt a belief or point-of-view she does not
currently hold [Walton & Krabbe 1995]. There exist models based on abstract ar-
gumentation [Bench-Capon 2003, Bonzon & Maudet 2011, Amgoud et al. 2000] as
well probabilistic models where the persuader’s uncertainty about what the per-
suadee knows or believes is represented [Hunter 2015]. There exist also models based
on possibility theory in which a piece of information is represented as an argument
which can be more or less accepted depending on the trustworthiness of the agent
who proposes it [Da Costa Pereira et al. 2011]. Persuasion has also been formalized
with the support of logical tools, e.g., by combining abstract argumentation with
dynamic epistemic logic (DEL) [Proietti & Yuste-Ginel 2019] and epistemic logic
with dynamic logic [Budzyńska & Kacprzak 2008].

Epistemic planning is a generalization of classical planning that has been in-
creasingly studied in AI in the last years. The goal to be achieved is not nec-
essarily a state of the world but some belief states of one or more agents. This
requires a theory of mind by the planning agent [Goldman 2006]. A typical goal
in epistemic planning is to make a certain agent believe something. Such a be-
lief of the persuadee may be a higher-order belief, i.e., a belief about another
agents’ beliefs. The initial proposal was to use a standard logic of knowledge
or belief together with a representation of actions in terms of event models of
DEL [Bolander & Andersen 2011, Löwe et al. 2011]. While the DEL framework
is very expressive, it turned out that the existence of a solution becomes quickly
undecidable even for very simple kinds of event models [Aucher & Bolander 2013,
Bolander et al. 2015a, Lê Cong et al. 2018]. Kominis and Geffner considered epis-
temic planning problems with very simple event models leading to a decidable frag-
ment [Kominis & Geffner 2015]. They distinguish three kinds of actions: physical
actions modifying the world, public updates (DEL-like public announcements), and
sensing actions by means of which an agent learns whether a formula is true. Other
researchers investigated another source of complexity, namely that of standard epis-
temic logic. There, reasoning is strictly more complex than in classical logic: the
satisfiability problem is at least in PSPACE [Halpern & Moses 1992]. Based on ear-
lier work by Levesque, Muise et al. studied epistemic planning in fragments of stan-
dard epistemic logic [Muise et al. 2015, Muise et al. 2021]. They considered state
descriptions in terms of conjunctions of epistemic literals: formulas that do not
contain any conjunction or disjunction. Cooper et al. considered another fragment:
boolean combinations of ‘knowing-whether’ operators followed by propositional vari-
ables [Cooper et al. 2016].

Our approach pushes the envelope of the above approaches to epistemic planning.
Our main contribution is its generalization to cognitive planning: it is not only some
belief state of a target agent that is to be achieved, but more generally a cognitive
state. The latter could involve not only beliefs, but also intentions. Cognitive
planning makes clear the distinction between persuasion on beliefs (i.e., inducing
someone to believe that a certain fact is true) and persuasion on intentions (i.e.,
inducing someone to form a certain intention) and elucidates the connection between
these two notions. Specifically, since beliefs are the input of decision-making and

3.2. General Architecture 29

Belief baseBelief base
revision Planning

GoalSpeech act
repertoire

Act Act

Machine

Human

Figure 3.1: General architecture

provide reasons for deciding and for acting, the persuader can indirectly change the
persuadee’s intentions by changing her beliefs, through the execution of a sequence
of speech acts. In other words, in cognitive planning, the persuader tries to modify
the persuadee’s beliefs in order to affect persuadee’s intentions. Moreover, cognitive
planning takes into consideration resource boundedness and limited rationality of
the interlocutor agent. This makes cognitive planning a very well-suited model
for implementing motivational interviewing in human-machine interaction (HMI)
applications in which an artificial agent is expected to interact with a human —
who is by definition resource-bounded — through dialogue and to induce her to
behave in a certain way.

3.2 General Architecture

The general architecture of our system is detailed in Figure 3.1.

Data structures The artificial planning agent, that for simplicity we call the
machine, is endowed with three kinds of data structure: its belief base, the goal
to be achieved and the repertoire of speech acts (or communicative actions) it can
perform. We assume the machine’s action repertoire includes two types of speech
act: assertions and questions. The machine can have persuading goals, aimed at
changing the human’s beliefs, or influencing goals, aimed at inducing the human
to form a certain intention or to behave in a certain way. The machine’s belief
base includes both information about the environment and information about the
human’s overall cognitive state and its way of functioning. In other words, the
machine has a theory of the human’s mind. The machine’s belief base evolves
during its dialogue with the human.

30 Chapter 3. Cognitive Planning

Interrogative and informative phase The interaction between the machine
and the human is structured in two phases the interrogative (or exploratory) phase
and the informative phase. In the interrogative phase the machine gathers infor-
mation about the human’s cognitive state. This includes information about the
human’s beliefs, desires and preferences. The interrogative phase is identified with
a sequence of questions by the machine to the human. The informative phase is
the core of the influence process. In this phase, the machine performs a sequence of
assertions aimed at modifying the human’s cognitive state (her beliefs and/or inten-
tions). The interrogative phase is propaedeutic to the informative phase. Indeed,
for the machine to be able to lead the human to change her behavior, it must have
information about the human’s cognitive state. Such an information is acquired
during the interrogative phase. In this work, we assume that the two phases are
unified at the planning level: the machine includes in its plan not only the asser-
tions but also the questions. In particular, the machine has to find a sequence of
questions followed by a sequence of assertions such that, for some possible answer
by the human, the composition of the two sequences guarantees that the persuading
or influencing goal will be achieved. It is reasonable to assume that the machine
first tries to find a plan with only assertions. (why asking questions to the human if
what the machine knows about the human’s cognitive state is already sufficient to
persuade or influence her). However, in most cases, the machine has uncertainty and
lacks information about the human’s cognitive state so that it must ask questions
to the human before trying to induce her attitude change.

Execution of the plan After having selected a plan, the machine executes it. The
machine can either execute the entire plan or execute it one piece after the other
by waiting the reply of the human before executing the next piece. We assume
that how the plan is executed depends on the application under consideration and
on the type of speech act in the plan to be executed. It is reasonable to suppose
that when executing the interrogative part of the plan, the machine asks a single
question at each step and waits the answer by the human before moving to the next
question. After each question by the machine, the human gives an answer and the
machine expands or revises, when necessary, its belief base accordingly. Indeed, the
information provided by the human in response to the machine’s question can enrich
the machine’s belief base with new facts about the environment (objective facts) or
about the human’s cognitive state (mental facts) or make the machine’s belief base
inconsistent. In the latter case, the machine must revise its belief base after having
incorporated the new information.

3.3 Planning Problems

In this section, we specify the cognitive planning problem in a two-agent version of
the language L+Frag presented in chapter 2. Thus, we consider this time a finite set
of agents Agt = {h,m}, with h denoting the human and m the machine.

3.3. Planning Problems 31

The cognitive planning problem consists of finding a sequence of questions or
informative actions for agent m which guarantees that it believes that its goal αG
is satisfied. Agent m is assumed to be an artificial agent which interacts with the
resource-bounded human agent h.

Informative actions Let Actm = {+mα : α ∈ L0} be agent m’s set of belief
expansion operations (or informative actions) and let elements of Actm be noted
ϵ, ϵ′, . . . Speech acts of type ‘assertion’ are formalized as follows:

assert(m,h,α)
def
= +m△h△mα.

The event assert(m,h,α) captures the speech act “agent m asserts to agent h that
α”. The latter is assumed to coincide with the perlocutionary effect [Searle 1969,
Sect. 6.2] of the speaker learning that the hearer has learnt that the speaker believes
that α.1 We distinguish simple assertions from convincing actions:

convince(m,h,α)
def
= +m△hα.

The event convince(m,h,α) captures the action “agent m convinces agent h that
α”. We have assert(m,h,α) = convince(m,h,△mα). We assume ‘to assert’ and ‘to
convince’ correspond to different utterances. While ‘to assert’ corresponds to the
speaker’s utterances of the form “I think that α is true!” and “In my opinion, α is
true!”, ‘to convince’ corresponds to the speaker’s utterances of the form “α is true!”
and “it is the case that α!”.

The previous abbreviations and, more generally, the idea of describing speech
acts of a communicative plan performed by agent m with m’s private belief expan-
sion operations is justified by the fact that we model cognitive planning from the
perspective of the planning agent m. Therefore, we only need to represent the effects
of actions on agent m’s beliefs.

Questions We consider binary questions by the machine m to the human h of the
form ?m,hα.2 The set of binary questions is noted Quem. Intuitively, ?m,hα is the
utterance performed by agent m and directed to agent h of the form “Do you think
that α is true?”. Let elements of Quem be noted λ, λ′, . . . Each question is associated
with its set of possible answers. The answer function A : Quem −→ 2Actm is used to
map each binary question to its set of possible answers and is defined as follows:

A
(
?m,hα

)
=
{
+m △hα,+m¬△hα

}
.

Answers to binary questions are noted ρ, ρ′, . . . The operation +m△hα captures
agent h’s positive answer to agent m’s binary question ?m,hα (“I think that α is

1We implicitly assume that, by default, m believes that h trusts its sincerity, so that h will
believe that m believes what it says.

2In speech act theory, binary (yes-no) questions are usually distinguished from open questions.

32 Chapter 3. Cognitive Planning

true!”), while +m¬△hα captures agent h’s negative answer (“I don’t think that α is
true!”). Note that if agent h answers negatively to the consecutive questions ?m,hα

and ?m,h¬α, then she expresses her uncertainty about the truth value of α.
We assume that the positive answer is the default answer to a question. Indeed,

when agent m asks question ?m,hα, it wants to verify whether agent h endorses the
belief that α and presupposes that agent h will answer positively to the question. In
this perspective, the speaker expects a confirmation by the interlocutor. Thus, for
notational convenience, we write da(?m,hα) to denote the default answer +m△hα to
the question ?m,hα.

The following abbreviation defines a dynamic operator capturing the necessary
effects of agent m’s question:

[λ]φ
def
=

∧
ρ∈A(λ)

[ρ]φ,

with λ ∈ Quem. Note that, unlike the basic belief expansion operator [+mα], the
operator [λ] is non-deterministic, as it represents the consequences of all possible
answers to question λ. In fact, while the formula [+mα]¬φ ∨ [+mα]φ is valid in the
class M, the formula [λ]¬φ ∨ [λ]φ is not.

Executability preconditions The set of events includes both informative actions
and questions, and is defined as follows: Evtm = Actm ∪ Quem. Elements of Evtm
are noted γ, γ′, . . . They have executability preconditions that are specified by the
following function: P : Evtm −→ LFrag. We assume that an event γ can take place
if its executability precondition P(γ) holds.

We use the executability precondition function P to define the following operator
of possible occurrence of an event:

⟨⟨γ⟩⟩φ def
= P(γ) ∧ [γ]φ,

with γ ∈ Evt . The abbreviation ⟨⟨γ⟩⟩φ has to be read “the event γ can take place
and φ necessarily holds after its occurrence”.

Informative and interrogative planning problems We conclude this section
with a formal specification of two planning problems, informative planning and
interrogative planning.

Definition 20 (Informative planning problem) An informative planning
problem is a tuple ⟨Σ,Op inf , αG⟩ where:

• Σ ⊂ L0 is a finite set of agent m’s available information,

• Op inf ⊂ Actm is a finite set of agent m’s informative actions,

• αG ∈ L0 is agent m’s goal.

3.3. Planning Problems 33

Informally speaking, an informative planning problem is the problem of finding
an executable sequence of informative actions which guarantees that, at the end of
the sequence, the planning agent m believes that its goal αG is achieved. Typically,
αG is a persuading or influencing goal, i.e., the goal of affecting agent’s h cognitive
state (including her beliefs and intentions) in a certain way. A solution plan to
an informative planning problem ⟨Σ,Op inf , αG⟩ is a sequence of informative actions
ϵ1, . . . , ϵk from Op inf for some k such that Σ |=M ⟨⟨ϵ1⟩⟩ . . . ⟨⟨ϵk⟩⟩□mαG.

In an interrogative planning problem, the machine can perform both informative
actions and questions. This problem is specified in the following definition.

Definition 21 (Interrogative planning problem) An interrogative planning
problem is a tuple ⟨Σ,Op inf ,Opquest, αG⟩ where:

• Σ ⊂ L0 is a finite set of agent m’s available information,

• Op inf ⊂ Actm is a finite set of agent m’s informative actions,

• Opquest ⊂ Quem is a finite set of agent m’s questions,

• αG ∈ L0 is agent m’s goal.

Intuitively, an interrogative planning problem is the problem of finding a se-
quence of questions as a means of understanding the interlocutor’s cognitive state
and, consequently, of being able to identify the inconsistencies that she must be
made aware of, via a sequence of informative actions. In other words, the sequence
of questions serves the purpose of “exploring” the interlocutor’s cognitive state and
of building a representation of it in order to being able to find a plan to reach the
motivational interviewing (MI) goal.

A strong solution plan to an interrogative planning problem
⟨Σ,Op inf ,Opquest, αG⟩ is a sequence of questions λ1, . . . , λm from Opquest such that

Σ |=M ⟨⟨λ1⟩⟩ . . . ⟨⟨λm⟩⟩⊤,

and ∀ρ1 ∈ A(λ1), . . . ,∀ρm ∈ A(λm), ∃τ1, . . . , τk ∈ Op inf such that

Σ |=M [ρ1] . . . [ρm]⟨⟨τ1⟩⟩ . . . ⟨⟨τk⟩⟩□mαG.

A weak solution plan to an interrogative planning problem ⟨Σ,Op inf ,Opquest, αG⟩
is a sequence of questions λ1, . . . , λm from Opquest such that

Σ |=M ⟨⟨λ1⟩⟩ . . . ⟨⟨λm⟩⟩⊤,

and ∃τ1, . . . , τk ∈ Op inf such that

Σ |=M [da(λ1)] . . . [da(λm)]⟨⟨τ1⟩⟩ . . . ⟨⟨τk⟩⟩□mαG.

34 Chapter 3. Cognitive Planning

3.4 Complexity results

It is easy to verify that checking existence of a weak solution for an interrogative
planning problem (EWS-INT problem) is reducible to checking existence of a solu-
tion for an informative planning problem (ES-INF problem).

As the following proposition highlights, checking existence of a solution for an
informative planning problem (ES-INF problem) has the poly-size property.

Proposition 3 An ES-INF problem ⟨Σ,Op inf , αG⟩ has a solution plan if and only
if it has a poly-size solution plan ε1, . . . , εk with k ≤ |Op inf | and εi ̸= εj for all i < j.

Sketch of Proof. It is easily seen that if an operator has been executed in a
plan, another future occurrence of the same operator will not change the planning
state due to the monotonicity of private belief expansion:((

...
(
B+iα
i

)+iα1...)+iαh
)+iα =

(
...
(
B+iα
i

)+iα1...)+iαh .

■

The previous proposition is crucial for proving the following complexity result
for the ES-INF problem.

Theorem 7 The ES-INF problem is in ΣP
2 .

Sketch of Proof. By Propostion 3, an ES-INF planning problem ⟨Σ,Op inf , αG⟩
has a solution plan if and only if it has a poly-size solution plan. Con-
sider a poly-time non-deterministic Turing machine with an NP-oracle (ΣP

2 -
Turing machine). It begins with an empty plan and branches over all poly-
size plans of length k ≤ |Op inf | choosing non deterministically operators to add
to the plan. It accepts if Σ |=M ⟨⟨ϵ1⟩⟩ . . . ⟨⟨ϵk⟩⟩□mαG i.e., using Theorem 6, if
¬
((∧

α∈Σ□m α
)
→ ⟨⟨ϵ1⟩⟩ . . . ⟨⟨ϵk⟩⟩□mαG

)
is unsatisfiable in the class M. Thanks to

Theorem 5, unsatisfiability of this L+Frag formula can be checked by the NP-oracle.
When k = |Op inf | and the formula is satisfiable, the Turing machine rejects. ■

It is easy to verify that checking existence of a weak solution for an interrogative
planning problem (EWS-INT problem) is reducible to the ES-INF problem. Thus,
thanks to the previous theorem, we get the following complexity upper bound for
the EWS-INT problem as a corollary.

Corollary 1 The EWS-INT problem is in ΣP
2 .

Checking existence of a strong solution for an interrogative planning problem (ESS-
INT problem) is not comparable to the ES-INF problem or the EWS-INT problem.
Indeed, it requires to take all possible answers to the questions and their possible
ramifications into account. The EWS-INT problem considers a single sequence of
answers (the sequence of default answers) instead.

The following theorem provides a complexity lower bound for the ES-INF prob-
lem.

3.4. Complexity results 35

Theorem 8 The ES-INF problem is ΣP
2 -hard.

Sketch of Proof. It is well known that checking satisfiability of a ∃∀ QBF is
ΣP
2 -hard as it is possible to simulate an alternating Turing machine in polynomial

time with 2 alternations and starting in an existential state, that decides all the
problems in the class ΣP

2 . Let ψ = ∃x1 . . . ∃xn∀y1 . . . ∀ymφ(x1, . . . , xn, y1, . . . , ym)
be a quantified boolean formula (QBF) in prenex normal form. We consider the
ES-INF planning problem ⟨Σ,Op inf , αG⟩ where:

Σ = {¬△hxi ∨ ¬△h¬xi : i ∈ {1, . . . , n}}
Op inf = {+m△hxi,+m△h¬xi : i ∈ {1, . . . , n}}

P(+m△hxi) = ♢m△hxi for all i ∈ {1, . . . , n}
P(+m△h¬xi) = ♢m△h¬xi for all i ∈ {1, . . . , n}

αG =
∧

i∈{1,...,n}

(△hxi ∨△h¬xi) ∧ encode
(
φ(x1, . . . , xn, y1, . . . , ym)

)
where

encode(xi) = △hxi

encode(¬xi) = △h¬xi
encode(yi) = △hyi

encode(¬yi) = ¬△hyi

encode(φ1 ∧ φ2) = (φ1) ∧ (φ2)

encode(φ1 ∨ φ2) = (φ1) ∨ (φ2)

Remark that here, as Σ is consistent, it is possible to use ♢m in the preconditions
of the actions because there is at least one accessible world.

We want to prove that ⟨Σ,Op inf , αG⟩ has a solution plan if and only if ψ is true.
(⇒) Suppose that ⟨Σ,Op inf , αG⟩ has a solution plan. Then by Proposition 3, it has
a poly-size solution plan P = ε1, . . . , εk with k ≤ |Op inf | and εi ̸= εj for all i < j.
It is easily seen that for each i ∈ {1, . . . , n}, exactly one action of either +m△hxi or
+m△h¬xi is in the plan P . Indeed on the one hand, at most one of these actions is
in the plan because ¬△hxi ∨ ¬△h¬xi ∈ Σ. And on the other hand, at least one is
in the plan because of the goal △hxi ∨△h¬xi.
(⇐) Let v be a valuation of variables in {x1, . . . , xn} such that ψ is true. Hence, a
solution plan for ⟨Σ,Op inf , αG⟩ is given by ⟨⟨ε1⟩⟩ . . . ⟨⟨εn⟩⟩, with for all i ∈ {1, . . . , n}:

εi =

{
+m△h¬xi if v(xi) = 0

+m△hxi if v(xi) = 1

36 Chapter 3. Cognitive Planning

Indeed, let’s prove that Σ |=M ⟨⟨ε1⟩⟩ . . . ⟨⟨εk⟩⟩□mαG which can be also written as:

Σ |=M

(∧
i∈{1,...,k}

[+mαε1] . . . [+mαεi−1]P(εi)

)
∧

(
[+mαε1] . . . [+mαεk−1

][+mαεk]□mαG

)

Given that, on the one hand red ([+mα]♢m α′) = red
(
♢m(α∧α′)

)
= ♢m

(
red (α∧

α′)
)
, and on the other hand red ([+mα]□m α

′) = red
(
□m(α→ α′)

)
= □m

(
red (¬α∨

α′)
)
, when applying recursively the reduction from L+Frag to LFrag we obtain:

red
(
⟨⟨ε1⟩⟩ . . . ⟨⟨εn⟩⟩□mαG

)
=♢m

(∧
i∈{1,...,n}
v(xi)=0

△h¬xi

)
∧ ♢m

(∧
i∈{1,...,n}
v(xi)=1

△hxi

)

∧□m

(∨
i∈{1,...,n}
v(xi)=0

¬△h¬xi

)
∨

(∨
i∈{1,...,n}
v(xi)=1

¬△hxi

)
∨ αG

This formula can be simplified to:

red
(
⟨⟨ε1⟩⟩ . . . ⟨⟨εn⟩⟩□mαG

)
=♢m

(∧
i∈{1,...,n}
v(xi)=0

△h¬xi

)
∧ ♢m

(∧
i∈{1,...,n}
v(xi)=1

△hxi

)
∧□m(αG)

■

The complexity lower bound for the EWS-INT problem follows as a corollary.

Corollary 2 The EWS-INT problem is ΣP
2 -hard.

3.5 Belief Revision Module

In this section, we describe the belief revision module of the architecture we sketched
in Section 3.2. As we emphasized above, such a module is necessary for updating
the machine’s belief base after the human has replied to its questions.

Let LPROP be the propositional language built from the following set of atomic
formulas:

Atm+ = Atm ∪ {p△iα : △iα ∈ L0}.

Moreover, let trPROP be the following translation from the language L0 defined in

3.5. Belief Revision Module 37

Section 2.1 to LPROP:

trPROP(p) =p,

trPROP(¬α) =¬trPROP(α),

trPROP(α1 ∧ α2) =trPROP(α1) ∧ trPROP(α2),

trPROP(△iα) =p△iα.

For each finite X ⊆ L0, we define trPROP(X) = {trPROP(α) : α ∈ X}. Moreover,
we say that X is propositionally consistent if and only if ⊥ ̸∈ Cn

(
trPROP(X)

)
,

where Cn is the classical deductive closure operator over the propositional language
LPROP. Clearly, the latter is equivalent to saying that

∧
α∈X trPROP(α) is satisfiable

in propositional logic.
Let Σcore ,Σmut ⊆ L0 denote, respectively, the core (or, immutable) information

in agent m’s belief base and the volatile (or, mutable) information in agent m’s belief
base. Agent m’s core beliefs are stable and do not change under belief revision. On
the contrary, volatile beliefs can change due to a belief revision operation . Moreover,
let Σinput ⊆ L0 be agent m’s input information set. We define Σbase = Σcore ∪
Σmut . The revision of (Σcore ,Σmut) by input Σinput , noted Rev(Σcore ,Σmut ,Σinput),
is formally defined as follows:

1. if Σcore ∪ Σinput is not propositionally consistent then
Rev(Σcore ,Σmut ,Σinput) = (Σcore ,Σmut),

2. otherwise, Rev(Σcore ,Σmut ,Σinput) = (Σ′
core ,Σ

′
mut), with Σ′

core = Σcore and

Σ′
mut =

⋂
X∈MCS(Σcore ,Σmut ,Σinput)

X,

where X ∈ MCS (Σcore ,Σmut ,Σinput) if and only if:

• X ⊆ Σmut ∪ Σinput ,

• Σinput ⊆ X,

• X ∪ Σcore is propositionally consistent, and

• there is no X ′ ⊆ Σmut ∪ Σinput such that X ⊂ X ′ and X ′ ∪ Σcore is proposi-
tionally consistent.

The revision function Rev has the following effects on agent m’s beliefs: (i) the
core belief base is not modified, while (ii) the input Σinput is added to the mutable
belief base only if it is consistent with the core beliefs. If the latter is the case,
then the updated mutable belief base is equal to the intersection of the subsets of
the mutable belief base which are maximally consistent with respect to the core

38 Chapter 3. Cognitive Planning

belief base and which include the input Σinput .3 This guarantees that belief revision
satisfies minimal change. The function Rev is a screened revision operator as defined
in [Makinson 1997]. The latter was recently generalized to the multi-agent case
[Lorini & Schwarzentruber 2021]. Let Rev(Σcore ,Σmut ,Σinput) = (Σ′

core ,Σ
′
mut).

For notational convenience, we write Revcore(Σcore ,Σmut ,Σinput) to denote Σ′
core

and Revmut(Σcore ,Σmut ,Σinput) to denote Σ′
mut . Note that, if Σbase is proposi-

tionally consistent, then Revcore(Σcore ,Σmut ,Σinput)∪Revmut(Σcore ,Σmut ,Σinput) is
propositionally consistent too.

3.6 Example 1: Artificial assistant

In this section, we illustrate an example of an ES-INF problem. This example
explores only one direction of the interaction between the two agents and does not
use the belief revision component of the architecture we sketched in section 3.2.

We consider a HMI scenario in which agent m is the artificial assistant of the
human agent h. Agent h has to choose a sport to practice since her doctor recom-
mended her to do a regular physical activity to be in good health. Agent m’s aim is
to help agent h to make the right choice, given her actual beliefs and desires. The
finite set of sport activities from which h can choose is noted Opt . Elements of Opt

are noted o, o′, . . . Each option in Opt is identified with a finite set of variables Var .
Each variable x in Var takes a value from its corresponding finite set of values Valx.

In this example, we suppose that Opt is composed of the following eight el-
ements: swimming (sw), running (ru), horse riding (hr), tennis (te), soccer (so),
yoga (yo), diving (di) and squash (sq). Moreover, there are exactly six variables in
Var which are used to classify the available options: environment (env), location
(loc), sociality (soc), cost (cost), dangerousness (dan) and intensity (intens). The
set of values for the variables are:

Valenv = {land ,water},
Val loc = {indoor , outdoor ,mixed},
Valsoc = {single, team,mixed},
Valcost = {low ,med , high},
Valdan = {low ,med , high},
Val intens = {low ,med , high}.

3Note that the revision function Rev does not expand agent m’s core belief set Σcore with the
input information set Σinput . It would be interesting to introduce a function fappr : L0 −→ {0, 1}
which specifies for every formula α in L0 whether the information α is completely apprehensible
by agent m (i.e., fappr(α) = 1) or not (i.e., fappr(α) = 0). Specifically, fappr(α) = 1 means that if
agent m learns that α is true then, as a consequence, it will firmly believe that α is true thereby
adding α not only to its set of mutable beliefs but also to its set of core beliefs. The function
fappr would allow us to define a variant of belief revision according to which if Σcore ∪ Σinput is
propositionally consistent, then the core belief set Σcore is expanded by all formulas α in Σinput

such that fappr(α) = 1, that is, Σ′
core = Σcore ∪ {α ∈ Σinput : fappr(α) = 1}.

3.6. Example 1: Artificial assistant 39

The set of assignments for variable x is defined as follows:

Assignx = {x 7→ v : v ∈ Valx}.

The set of variable assignments is

Assign =
⋃

x∈Var
Assignx.

Elements of Assign are noted a, a′, . . .
We assume that the content of an atomic desire is a variable assignment or its

negation. That is, agent h’s atomic desire can be any element from the following
set:

Des0 = Assign ∪ {∼a : a ∈ Assign}.

Elements of Des0 are noted d, d′, For example, the fact that h has loc 7→ indoor

as a desire means that h would like to practice an indoor activity, while if h’s desire
is ∼cost 7→ high, then h would like to practice an activity whose cost is not high.
Agent h’s desires are either atomic desires or conditional desires. That is, h’s desire
can be any element from the following set:

Des = Des0 ∪
{
[d1, . . . , dk]⇝ d : d1, . . . , dk, d ∈ Des0

}
.

Elements of Des are noted γ, γ′, . . . For example, if agent h has [cost 7→ high] ⇝
dan 7→ low as a desire, then she would like to practice a sport whose dangerousness
level is low, if its cost is high. We define 2Des∗ = 2Des \ ∅.

Let us assume that the set Atm includes four types of atomic formulas, for every
x 7→ v ∈ Assign, o, o′ ∈ Opt and Γ ∈ 2Des∗: (i) val(o, x 7→ v) standing for “option o
has value v for variable x”, (ii) ideal(h, o) standing for “o is an ideal option for agent
h”, (iii) justif(h, o) standing for “agent h has a justification for choosing option o”,
and (iv) des(h,Γ) standing for “Γ is agent h’s set of desires”.

The following function fcomp specifies, for every option o ∈ Opt and possible
desire γ ∈ Des, the condition guaranteeing that o satisfies (or, complies with) γ:

fcomp(o, a) = val(o, a),

fcomp(o,∼a) = ¬val(o, a),
fcomp

(
o, [d1, . . . , dk]⇝ d

)
= ¬fcomp(o, d1) ∨ . . . ∨ ¬fcomp(o, dk) ∨ fcomp(o, d).

The following function fhcomp specifies, for every option o ∈ Opt and possible
desire γ ∈ Des, the condition guaranteeing that agent h believes that o satisfies γ:

fhcomp(o, a) = △hfcomp(o, a),

fhcomp(o,∼a) = △hfcomp(o,∼a),
fhcomp

(
o, [d1, . . . , dk]⇝ d

)
= △h¬fcomp(o, d1) ∨ . . . ∨△h¬fcomp(o, dk) ∨△hfcomp(o, d).

40 Chapter 3. Cognitive Planning

The previous formulation of fhcomp

(
o, [d1, . . . , dk] ⇝ d

)
presupposes an understand-

ing of conditional (goal) sentences by agent h. In particular, agent m does not need
to provide information to agent h about the antecedent of the conditional, if the
consequent is true.

We assume that the artificial agent m has the following pieces of information in
its belief base:

α1
def
=

∧
o∈Opt
x∈Var

v,v′∈Valx:v ̸=v′

(
val(o, x 7→ v)→ ¬val(o, x 7→ v′)

)
,

α2
def
=

∧
o∈Opt
x∈Var

v,v′∈Valx:v ̸=v′

(△hval(o, x 7→ v)→ △h¬val(o, x 7→ v′)) ,

α3
def
=

∧
Γ,Γ′∈2Des∗:Γ ̸=Γ′

(
des(h,Γ)→ ¬des(h,Γ′)

)
,

α4
def
=

∨
Γ∈2Des∗

des(h,Γ),

α5
def
=

∧
o∈Opt

(
ideal(h, o)↔

∨
Γ∈2Des∗

(
des(h,Γ)∧

∧
γ∈Γ fcomp(o, γ)

))
,

α6
def
=

∧
o∈Opt

(
justif(h, o)↔

∨
Γ∈2Des∗

(
des(h,Γ)∧

∧
γ∈Γ f

h
comp(o, γ)

))
.

Formula α1 captures the fact that a sport cannot have two different values for a
given variable. Formula α2 is its subjective version for agent h. Formulas α3 and
α4 capture together the fact that agent h has exactly one non-empty set of desires.
According to formula α5, an option o is ideal for agent h if and only if it satisfies
all agent h’s desires. Finally, according to formula α6, agent h has a reasonable
justification for choosing option o if and only if she has all necessary information to
conclude that option o satisfies all her desires.

We also assume that agent m has in its belief base a complete representation of
Table 3.1, which specifies the variable assignments for all options:

αo,x7
def
= val(o, x 7→ vo,x).

In order to help agent h to select an activity, agent m also needs information
about h’s set of actual desires. The latter is captured by the following formula:

α8
def
= des(h,Γh), with

Γh ={env 7→ land , intens 7→ med ,∼ loc 7→ indoor ,

[cost 7→ high]⇝ soc 7→ mixed}.

3.6. Example 1: Artificial assistant 41

env loc soc cost dan intens
sw water mixed single med low high
ru land outdoor single low med high
hr land outdoor single high high low
te land mixed mixed high med med
so land mixed team med med med
yo land mixed single med low low
di water mixed single high high low
sq land indoor mixed high med med

Table 3.1: Variable assignments. For every option o ∈ Opt and variable x ∈ Var ,
we denote by vo,x the corresponding entry in the table. For instance, we have
vsw,env = water .

This means that, according to agent m, agent h would like to practice a land activity,
with medium intensity, which is not exclusively indoor, and which can be practiced
both in single and team mode, if its cost is high.

Let us now turn to the informative planning problem. We suppose agent m’s set
of operators Op inf is:

Op inf =
{
convince

(
m,h,val(o, a)

)
: o ∈ Opt and a ∈ Assign

}
∪{

convince
(
m,h,ideal(h, o)

)
: o ∈ Opt

}
.

In other words, agent m can only inform agent h about an option’s value for a certain
variable or about the ideality of an option for her.

We use the speech act convince since we suppose agent h fully trusts what agent
m says (i.e., h believes that m is both sincere and competent).

We suppose the following executability precondition for every o ∈ Opt and
a ∈ Assign:

P
(
convince

(
m,h,val(o, a)

))
= □m

(
val(o, a) ∧

∧
v∈Valdan

(
val(o,dan 7→ v) → △hval(o,dan 7→ v)

))
if a ̸∈ Assigndan,

P
(
convince

(
m,h,val(o, a)

))
= □m val(o, a)

if a ∈ Assigndan,

P
(
convince

(
m,h,ideal(h, o)

))
= □m

(
ideal(h, o) ∧ justif(h, o)

)
.

According to the first definition, agent m can inform agent h about an option’s
value for a certain variable, if and only if this information is believed by m and
m believes that h has been already informed about the dangerousness level of the
option. Indeed, we assume that, before being presented with an option’s features,
agent h must be informed about its the dangerousness level and agent m complies
with this rule. The second definition simply stipulates that m can inform h about
the dangerousness level of an option if and only if it believes what it says. Finally,
according to the third definition, m can inform h about the ideality of an option only
if it believes that h has a reasonable justification for choosing it. Indeed, we assume

42 Chapter 3. Cognitive Planning

m will inform h about the ideality of an option only after having explained why the
option is ideal for her. The three definitions presuppose that agent m cannot spread
fake news (i.e., something that it does not implicitly believe).

We moreover suppose that, for agent h to have a potential intention to choose
option o, denoted by potIntend(h, o), she must have a justified belief that o is an
ideal option for her:4

potIntend(h, o)
def
= △hideal(h, o) ∧ justif(h, o).

This abbreviation together with the abbreviation α6 given above relate inten-
tion with belief and desire, in line with existing theories of intention [Audi 1973,
Davidson 1980].

It turns out that the sequence of speech acts ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6 with

ϵ1
def
= convince

(
m,h,val(te,dan 7→ med)

)
,

ϵ2
def
= convince

(
m,h,val(te, env 7→ land)

)
,

ϵ3
def
= convince

(
m,h,val(te, intens 7→ med)

)
,

ϵ4
def
= convince

(
m,h,val(te, loc 7→ mixed)

)
,

ϵ5
def
= convince

(
m,h,val(te, soc 7→ mixed)

)
,

ϵ6
def
= convince

(
m,h,ideal(h, te)

)
.

provides a solution for the informative planning problem ⟨Σ,Op inf , αG⟩, where

Σ ={α1, α2, α3, α4, α5, α6, α8} ∪ {αo,x7 : o ∈ Opt and x ∈ Var},

Op inf has the previous specifications and agent h’s persuasive goal αG is defined as
follows:

αG
def
=

∨
o∈Opt

potIntend(h, o).

This means that, by performing the sequence of operators ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, agent
m will induce agent h to form a potential intention to choose an activity. In other
words, agent m will provide an effective recommendation to agent h.

We conclude this section with a general observation about the formulation of the
planning problem for our example. Let ⟨Σ,Op inf , αG⟩ be the informative planning
problem we want to solve. Let m’s set of operators for option o ∈ Opt relative to

4Our account of potential intention is reminiscent of the JTB (‘justified true belief’) account to
knowledge [Goldman 1979].

3.7. Example 2: Virtual coaching agent 43

⟨Σ,Op inf , αG⟩ be defined as follows:

Op
⟨Σ,Op inf ,αG⟩
o =

{
convince

(
m,h,val(o, a)

)
: val(o, a) ∈ Σ

}
∪{

convince
(
m,h,ideal(h, o)

)}
.

It is easy to verify that the informative planning problem ⟨Σ,Op inf , αG⟩ has a solu-
tion if and only if there exists o ∈ Opt such that the informative planning problem
⟨Σ,Op

⟨Σ,Op inf ,αG⟩
o , αG⟩ has a solution. Therefore, in order to solve the informative

planning problem ⟨Σ,Op inf , αG⟩, we simply need to linearly order the options in Opt

and solve the informative planning problems ⟨Σ,Op
⟨Σ,Op inf ,αG⟩
o , αG⟩ in sequence one

after the other according to the ordering.

3.7 Example 2: Virtual coaching agent

In this section, we illustrate an example of an EWS-INT problem. Unlike the
example of Section 3.6, this example explores both directions of the interaction
between agent h and agent m. It moreover exploits the belief revision component of
our architecture.

We illustrate the use of the cognitive planning and belief revision module of
the architecture with the aid of a human-machine interaction (HMI) scenario. We
assume m is a virtual coaching agent which has to motivate the human agent h to
practice a physical activity. We suppose agent m complies with the general principles
of the theory of motivational interviewing (MI) to find a persuasive strategy aimed
at changing the human’s attitude.

3.7.1 Motivational interviewing

Motivational interviewing (for short MI) is a counseling method used in clinical psy-
chology for eliciting behavior change [Lundahl & Burke 2009]. One crucial aspect
of MI consists of exploring the participant’s subjectivity through open questions to
identify her desires and personal values (e.g., conformity, independence, carefulness,
etc.) [Miller & Rollnick 2012]. This exploration allows to become aware of the in-
consistency between her desires or personal values (e.g., being in good health), and
her current behavior (e.g., not doing enough physical activity). However, MI does
not necessarily try to induce beliefs about positive aspects of the behavior change
(e.g., most people are already aware that reasonable physical activity is good for
health and would like to practice a sport regularly). It rather helps the participant
to identify the reasons why she did not convert her mere desires (e.g., I would like to
practice a sport) into intentions (e.g., I commit to do sport regularly) and reassures
her that these limitations can be overcome. To this aim, the counselor rephrases the
ideas expressed by the participant so as to provoke reflections about the connection
between her beliefs, desires and intentions.

Several automated MI systems have been proposed in recent
times [da Silva et al. 2018, Kanaoka & Mutlu 2015, Lisetti et al. 2013,

44 Chapter 3. Cognitive Planning

Olafsson et al. 2019, Schulman et al. 2011]. However, all these systems use
predefined dialogue trees to conduct the MI. In this paper, we propose a model
based on cognitive planning for driving MI in a human-agent interaction system.

MI is composed of several stages: prior to having the participant change her
intentions, one has to make her aware of the inconsistencies between her desires and
her actual behavior. In other words, she has to recognize the fact that her current
behavior will prevent her from obtaining what she wants. In order to that, the
artificial agent has both (i) a model of the human’s overall cognitive state, including
her beliefs and intentions, and (ii) a goal towards the human’s mental attitudes, e.g.,
the goal of making the human aware of the inconsistency between her desires and her
actual behavior. Given (i) and (ii), it tries to find a sequence of speech acts aimed
at modifying the human’s cognitive state thereby guaranteeing the achievement of
its goal.

3.7.2 Formalization

Let us assume the disjoint sets CondAtm, DesAtm and ActAtm are subsets of the set
of atomic propositions Atm. Elements of CondAtm are atoms specifying conditions,
while elements of DesAtm are atoms specifying desirable properties, that is, prop-
erties that agent h may wish to achieve (i.e., agent h’s possible desiderata). Finally,
atoms in ActAtm are used to describe agent h’s behavior. Specifically, we define
ActAtm = {does(h,a) : a ∈ Act}, where Act is a finite a set of action names. The
atom does(h,a) has to be read “agent h behaves in conformity with the requirement
a” or, simply, “agent h does action a”.

The sets of literals from CondAtm, DesAtm and ActAtm are defined in the usual
way as follows:

DesLit = DesAtm ∪ {¬p : p ∈ DesAtm},
CondLit = CondAtm ∪ {¬p : p ∈ CondAtm},
ActLit = ActAtm ∪ {¬p : p ∈ ActAtm},
Lit = DesLit ∪ CondLit ∪ActLit .

We define LitSet = 2Lit and LitSet0 = LitSet \ {∅}.
We moreover assume that the set of atomic propositions Atm includes one atom

des(h, l) for each l ∈ DesLit standing for “agent h desires l to be true”.
For the sake of illustration, we suppose that Act = {ps} where ps is the ac-

tion (or requirement) “to practice regularly a sport or physical activity”. There-
fore, ActAtm = {does(h,ps)}. Moreover, DesAtm = {dr , pw , lw , at , gh, st} and
CondAtm = {ow , sl , co}, with the atoms having the following intuitive meaning:
dr : “agent h has dietary restrictions”; pw : “agent h puts on weight”; lw : “agent h

loses weight”; at : “agent h is attractive”; gh: “agent h is in good health”; st : “agent h
is stressed”; ow : “agent h has an office work”; sl : “agent h has a sedentary life style”;
co: “agent h is a commuter and spends quite some time in the traffic everyday”.

The following abbreviation captures a simple notion of necessity for X ∈ LitSet

3.7. Example 2: Virtual coaching agent 45

and l ∈ Lit :

nec(X, l)
def
=

∧
l′∈X

(l′ → l).

nec(X, l) has to be read “the facts in X will not be true unless l is true” or more
shortly “l is necessary for X”.

Agent m’s initial knowledge about agent h’s cognitive state is specified by the
following six abbreviations:

α1
def
=

∧
l∈Lit
△hnec({l}, l),

α2
def
=

∧
l∈Lit

(
△hnec(∅, l)↔△hl

)
,

α3
def
=

∧
l∈Lit ,X,X′∈LitSet :X′⊆X

(
△hnec(X, l)→

∧
l′∈X′

(
△hl

′ →△hnec(X \X ′, l)
))
,

α4
def
=

∧
l∈Lit ,X,X′∈LitSet :X⊆X′

(
△hnec(X, l)→△hnec(X

′, l)
)
,

α5
def
=

∧
l∈Lit

((
des(h, l)↔△hdes(h, l)

)
∧
(
¬des(h, l)↔△h¬des(h, l)

))
,

α6
def
=

∧
a∈Act

((
does(h, a)↔△hdoes(h, a)

)
∧
(
¬does(h, a)↔△h¬does(h, a)

))
,

Hypotheses α1-α4 are general properties about agent h’s conception of necessity. Ac-
cording to α1, agent h believes that every fact is necessary for itself while, according
to α2, agent h believes a fact is true regardless of the circumstances if and only if
she believes that it is true. According to α3, if agent h believes that l is necessary
for the facts in X being true and believes every fact in X ′ ⊆ X, then she believes
that l is necessary for the facts in the remaining set X \X ′ being true. According to
α4, if X ⊆ X ′ and agent h believes that l is necessary for X then she believes that
l is necessary for X ′ as well. Hypotheses α5 and α6 capture agent h’s introspection
over her desires (hyphothesis α5) and agent h’s perfect knowledge about her actions
and inactions (hyphothesis α6).

We moreover suppose that agent m has the following information in its belief
base capturing the necessity relations between conditions, desirable properties and
actions:

α7
def
= nec

(
{¬dr ,¬pw , sl}, does(h,ps)

)
∧

nec
(
{at ,¬dr}, does(h,ps)

)
∧

nec
(
{sl , gh}, does(h,ps)

)
∧

nec
(
{gh},¬st

)
∧

nec
(
{co, ow}, sl

)
.

46 Chapter 3. Cognitive Planning

For example, nec
(
{¬dr ,¬pw , sl}, does(h,ps)

)
means that practicing regularly a

sport is necessary for not having dietary restrictions and not putting weight, while
having a sedentary work style (i.e., a person cannot pretend to not put weight and
not have dietary restrictions without practicing a sport, if she has a sedentary work
style).

The following abbreviation defines the concept of agent h’s awareness of the
inconsistency between the actual state of affairs α and her desires:

AwareIncon(h, α)
def
=

∨
X∈LitSet

(∧
l′∈X

des(h, l′) ∧△hnec(X,¬α) ∧△hα
)
.

According to the previous definition, agent h is aware of the inconsistency between
the actual state of affairs α and her desires, noted AwareIncon(h, α), if she believes
that the satisfaction of her desires is jeopardized by the fact that α is true. More
precisely, (i) agent h believes that she will not achieve her desires unless α is false
and (ii) she believes that α is actually true.

We suppose that the pieces of information α1, . . . , α7 constitute agent m’s initial
core belief base, that is, Σcore = {α1, . . . , α7}. Moreover, we suppose that agent m’s
initial mutable belief base is empty, that is, Σmut = ∅. We consider the planning
problem in which agent m tries to motivate agent h to practice regularly a sport.
To this aim, agent m tries to achieve the following goal:

αG
def
= ¬does(h,ps)→ AwareIncon

(
h,¬does(h,ps)

)
.

In other words, agent m tries to make it the case that if agent h does not practice a
sport, then she becomes aware of the inconsistency between her actual desires and
the fact that she does not practice a sport.

Let X ⊆ DesLit , X ′ ⊆ CondLit and l ∈ ActLit ∪CondLit . We assume agent m’s
action convince

(
m,h,nec(X ∪X ′, l)

)
to be concretely realized through the utterance

“since condition X ′ holds, you will not satisfy your desires X unless l is true!”. For
example, convince

(
m,h,nec(X ∪X ′, does(h,ps))

)
corresponds to the utterance “since

condition X ′ holds, you will not satisfy your desires X unless you do action ps!”,
while convince

(
m,h,nec(X ∪ X ′,¬does(h,ps))

)
corresponds to the utterance “since

condition X ′ holds, you will not satisfy your desires X unless you refrain from
doing action ps!”. For notational convenience, we abbreviate convince

(
m,h,nec(X ∪

X ′, l)
)

by !m,h(X,X
′,l). We assume the following repertoires of informative and

interrogative actions for agent m:

Op inf =
{
!m,h(X,X

′,l) : X ⊆ DesLit , X ′ ⊆ CondLit and l ∈ ActLit ∪ CondLit
}
,

Opquest =
{
?m,hdes(h, l) : l ∈ DesLit

}
∪
{
?m,hl : l ∈ ActLit ∪ CondLit

}
,

3.7. Example 2: Virtual coaching agent 47

with the following executability preconditions for their elements:

P
(
!m,h(X,X

′,l)
)
=□m

(
nec(X ∪X ′, l) ∧

∧
l′∈X

des(h, l′) ∧
∧

l′′∈X′

△hl
′′),

P
(
?m,hdes(h, l)

)
=P
(
?m,hl

)
= ⊤.

In other words, a question is always executable. Moreover, agent m can perform
the action !m,h(X,X

′,l) — i.e., “since condition X ′ holds, you will not satisfy your
desires X unless l is true!” — only if (i) it believes that agent h desires every fact
in X to be true, (ii) it believes that agent h believes every fact in X ′, and (iii) it
believes that l is necessary for X when X ′ holds. Thus, by performing the speech
act !m,h(X,X ′,l), agent m informs agent h that, in view of the fact that condition X ′

holds, l is necessary for the satisfaction of her desires X, since it presupposes that
agent h has indeed such desires and believes that the condition holds.

We suppose that at every step k of the interaction with agent h, agent m

tries to find a solution for the informative planning problem ⟨Σkbase ,Opkinf , αG⟩.
If it can find it, it proceeds with its execution and then interaction stops. Oth-
erwise, it tries to find a weak solution for the interrogative planning problem
⟨Σkbase ,Opkinf ,Opkquest, αG⟩. If it cannot find it, the interaction stops. Otherwise,
it executes the corresponding sequence of questions and revises its belief base ac-
cording to agent h’s set of responses Respkh . Then, it moves to step k + 1. We
suppose that Σ0

core = Σcore , Σ0
mut = Σmut , Op0inf = Op inf and Op0quest = Opquest.

Moreover,

Σk+1
core =Revcore(Σkcore ,Σ

k
mut ,Resp

k
h),

Σk+1
mut =Revmut(Σkcore ,Σ

k
mut ,Resp

k
h),

Opk+1
inf =Opkinf ,

Opk+1
quest =Opkquest \ Selected(Opkquest),

where Selected(Opkquest) is the set of questions included in the interrogative plan
selected at step k. We remove them because we want to avoid that agent m keeps
asking the same question indefinitely.

Let us illustrate an example of interaction. At step 0, agent m cannot find a
solution for the informative planning problem. Thus, it decides to go with ques-
tions. It finds ?m,hdoes(h,ps) as solution for the interrogative planning problem. We
suppose agent h’s response to agent m’s question is +m¬△hdoes(h,ps). At step 1,
again agent m cannot find a solution for the informative planning problem. Thus,
it moves to the interrogative planning problem and finds the following sequence of
questions as a weak solution:

?m,hdes(h, gh), ?m,hco, ?m,how .

Agent m executes the interrogative plan. We suppose agent h’s set of responses to
agent m’s questions at step 1 is

{
+m △hdes(h, gh),+m△hco,+m△how

}
.

48 Chapter 3. Cognitive Planning

Thus, at step 2, agent m can find a solution for the informative planning problem.
The solution is the following sequence of assertive speech acts of length 2:

!m,h(∅,{co, ow},sl), !m,h
(
{gh},{sl},does(h,ps)

)
.

Agent m executes the informative plan. The previous interaction between agent m

and agent h is illustrated in Figure 3.2 in which every speech act is associated with
its corresponding utterance.

Speaker Utterance Speech act
m Do you practice ?m,hdoes(h,ps)

a sport regularly?
h I don’t +m¬△hdoes(h,ps)
m Do you wish ?m,hdes(h, gh)

to be in good health?
h Yes +m△hdes(h, gh)
m Do you spend quite ?m,hco

some time in the traffic
everyday as a commuter?

h Yes +m△hco
m Do you have ?m,how

an office work?
h Yes +m△how
m You spend quite some !m,h(∅,{co, ow},sl)

time in the traffic
everyday as a
commuter and you have
an office work. Therefore,
your life style is sedentary!

m Your life style is sedentary. !m,h

(
{gh},{sl},does(h,ps)

)
Therefore, you will not
satisfy your desire to be
in good health unless you
practice a sport regularly!

Figure 3.2: Human-machine dialogue

3.8 Optimal QBF Encoding

We present now a QBF encoding of the ES-INF problem with prefix ∃∀. Intuitively,
a solution plan candidate is non-deterministically chosen (∃) and the validity of this
plan is checked (∀). Formally, we introduce global variables (atomic propositions)
whose truth value are independent of the beliefs of the agents and therefore is the
same in all mental states. These variables will be used as selectors in a LFrag formula
in order to focus on the reduction of different L+Frag formulas depending on the truth
values of these global variables.

For a given ES-INF planning problem ⟨Σ,Op inf , αG⟩, by Proposition 3, we can
only consider poly-size solution plan candidates of the form ε1, . . . , εk with k ≤
|Op inf | and εi ̸= εj for all i < j. We define the set of global selector variables
Vs = {sε⪯ε′ : ε, ε′ ∈ Op inf} ⊆ Atm and the formula φVs as the conjunction of the
following axioms:

3.8. Optimal QBF Encoding 49

∧
ε∈Op inf

(
¬sε⪯ε →

∧
ε′∈Op inf
ε̸=ε′

¬sε⪯ε′ ∧ ¬sε′⪯ε
)

(S1)

∧
ε∈Op inf

∧
ε′∈Op inf
ε̸=ε′

(
¬sε⪯ε′ ∨ ¬sε′⪯ε

)
(S2)

∧
ε∈Op inf

∧
ε′∈Op inf
ε ̸=ε′

∧
ε′′∈Op inf
ε̸=ε′′

ε′ ̸=ε′′

(
sε⪯ε′ ∧ sε′⪯ε′′ → sε⪯ε′′

)
(S3)

∧
ε∈Op inf

∧
ε′∈Op inf
ε̸=ε′

(
sε⪯ε ∧ sε′⪯ε′ → sε⪯ε′ ∨ sε′⪯ε

)
(S4)

∧
ε∈Op inf

∧
ε′∈Op inf

(
sε⪯ε′ ↔ □m sε⪯ε′

)
(S5)

These axioms are constructed in order to set a bijective function between the
models of φVs and the solution plan candidates for ⟨Σ,Op inf , αG⟩. In the sequel,
for a given model of φVs , the corresponding plan will be called the designated plan.
Intuitively, we define a total order ⪯ between the elements of the designated plan,
and other actions from Op inf are not ordered at all. Axiom S1 states that if an action
ε ∈ Op inf is not selected in the designated plan then no other action ε′ ∈ Op inf is ⪯-
related with ε. Note that its contrapositive implies the reflexivity of ⪯ on elements
of the designated plan and only on these elements of Op inf . The following axioms
define antisymmetry (S2) and transitivity (S3) of ⪯ on elements of the designated
plan. Finally, axiom S4 states that ⪯ is total on elements of the designated plan.

A plan candidate ε1, . . . , εk is a solution plan for ⟨Σ,Op inf , αG⟩ if and only if the
following formula is valid:(∧

α∈Σ
□m α

)
→ ⟨⟨ε1⟩⟩ . . . ⟨⟨εk−1⟩⟩⟨⟨εk⟩⟩□mαG

which can be also written as:

50 Chapter 3. Cognitive Planning

(∧
α∈Σ
□m α

)
→

(∧
i∈{1,...,k}

[+mαε1] . . . [+mαεi−1]P(εi)

)
∧ [+mαε1] . . . [+mαεk−1

][+mαεk]□mαG

Remark that for a given i ∈ {1, . . . , k}, we have

red
(
[+mαε1] . . . [+mαεi−1]P(εi)

)
=

{
⊤, if P(εi) = △mαεj for some j < i,

red
(
P(εi)

)
, otherwise;

In words, if the precondition P(εi) of an operator εi is an explicit belief △mαεj
of agent m which is added by another operator εj which precedes εi in the plan
candidate, then the reduction of the test of the precondition of εi into LFrag is set to
⊤. Hence, we can use a selector variable sεj⪯εi to generate a reduction depending
on its value by replacing ⊤ by sεj⪯εi ∨△mαεj . Indeed, if εj is selected and precedes
εi in a designated plan then sεj⪯εi and the reduction are equivalent to ⊤, else sεj⪯εi
is equivalent to ⊥ and the reduction is equivalent to △mαεj .

Moreover, if P(εi) contains implicit belief subformulas of the form □mα, the
reduction of such a subformula is given by:

red
(
[+mαε1] . . . [+mαεi−1]□mα

)
= □m

(
αε1 → . . .→ αεi−1 → α

)
= □m

((∨
j∈{1,...,i−1}

¬αεj
)
∨ α

)

As previously, we can use a selector variable sεj⪯εi to generate a reduction
depending on its value by replacing ¬αεj by sεj⪯εi ∧ ¬αεj . Indeed, if εj is selected
and precedes εi in a designated plan then sεj⪯εi is equivalent to ⊤ and the disjunct
¬αεj is present in the reduction, else sεj⪯εi is equivalent to ⊥ and the disjunct ¬αεj
is absent from the reduction.

Finally, we can then define a function generating the reduction of the precondi-
tion P(ε) of any action ε from a designated plan, depending on all the actions ε′

that precede ε in the designated plan given by a model of φVs . For ε ∈ Op inf , we
define such a function Π⪯ε : LFrag −→ LFrag such that:

3.8. Optimal QBF Encoding 51

Π⪯ε(p) = p,

Π⪯ε(α) =

{
sε′⪯ε ∨△mαε′ , if ∃ε′ ̸= ε : α = △mαε′ ,

α, otherwise;

Π⪯ε(¬φ) = ¬Π⪯ε(φ),

Π⪯ε(φ1 ∧ φ2) = Π⪯ε(φ1) ∧Π⪯ε(φ2),

Π⪯ε(φ1 ∨ φ2) = Π⪯ε(φ1) ∨Π⪯ε(φ2),

Π⪯ε(□m α) = □m

 ∨
ε′∈Op inf
ε ̸=ε′

sε′⪯ε ∧ ¬αε′

 ∨ α

Π⪯ε(♢m α) = ♢m

 ∧
ε′∈Op inf
ε̸=ε′

(
¬sε′⪯ε ∨ αε′

)
∧ α

For the goal, we proceed in a similar manner to calculate the reduction depending
on the selector variables, and we obtain the formula:

φP = □m

((∨
ε∈Op inf

sε⪯ε ∧ ¬αε
)
∨ αG

)
It is now easily seen that, depending on the values of selector variables, the

following formula of LFrag represents all possible formulas that allows us to check
the validity of all plan candidates for the planning problem ⟨Σ,Op inf , αG⟩:

φ⟨Σ,Op inf ,αG⟩ = φVs ∧

((∧
α∈Σ
□m α

)
→

∧
ε∈Op inf

(
sε⪯ε → Π⪯ε

(
P(ε)

))
∧ φP

)

Indeed,

Proposition 4 Given a plan candidate P = ε1, . . . , εk with k ≤ |Op inf | and εi ̸= εj
for all i < j, if we consider the valuation v of variables in Vs such that P is the
corresponding designated plan, then the formula φ⟨Σ,Op inf ,αG⟩ is equivalent to

red

((∧
α∈Σ
□m α

)
→ ⟨⟨ε1⟩⟩ . . . ⟨⟨εk−1⟩⟩⟨⟨εk⟩⟩□mαG

)

Sketch of Proof. Let P = ε1, . . . , εk a sequence of actions such that k ≤ |Op inf |
and εi ̸= εj for all i < j. We consider the valuation v of variables in Vs such that

52 Chapter 3. Cognitive Planning

P is the corresponding designated plan. Then, v is a model of φVs , and ∀i, j such
that 1 ≤ i ≤ j ≤ k, we have v |= sεi⪯εj and ∀ε, ε′ ∈ Op inf \ P we have v ̸|= sε⪯ε′ .
Hence we can simplify the formula:((∧

α∈Σ
□m α

)
→

∧
ε∈Op inf

(
sε⪯ε → Π⪯ε

(
P(ε)

)))
∧□m

((∨
ε∈Op inf

sε⪯ε∧¬αε
)
∨αG

)
((∧

α∈Σ
□m α

)
→

∧
ε∈Op inf

Π⪯ε
(
P(ε)

))
∧□m

((∨
ε∈Op inf

¬αε
)
∨ αG

)

Moreover, by construction of the function Π⪯ε, we know for each i ∈ {1, . . . , k}
with ε = εi that Π⪯ε

(
P(ε)

)
is the reduction of [+mαε1] . . . [+mαεi−1]P(ε) for the

designated plan P . At this point, there is no more selector variables in the simplified
formula and we obtain the result by definition of the reduction function. ■

In order to propagate the selector variables the right way, we extend the defini-
tions of translations tr0, tr1 and tr2 by:

tr0(sε⪯ε′) = sε⪯ε′

tr1(sε⪯ε′) = sε⪯ε′

tr1(¬sε⪯ε′) = ¬sε⪯ε′
tr2(sε⪯ε′ , x, y) = sε⪯ε′

We can then calculate the translation of φ⟨Σ,Op inf ,αG⟩ into propositionnal logic
by:

F⟨Σ,Op inf ,αG⟩ = tr2

(
tr1
(
nnf (φ⟨Σ,Op inf ,αG⟩)

)
, 0, size

(
tr1
(
nnf (φ⟨Σ,Op inf ,αG⟩)

)))
We denote by Vars(F⟨Σ,Op inf ,αG⟩) the set of all propositional variables which

occur in the formula F⟨Σ,Op inf ,αG⟩.

Theorem 9 The ES-INF problem ⟨Σ,Op inf , αG⟩ has a solution plan iff the following
quantified boolean formula is true:

Q = ∃
sε⪯ε′∈Vs

sε⪯ε′ ∀
p∈Vars(F⟨Σ,Opinf ,αG⟩)\Vs

p F⟨Σ,Op inf ,αG⟩

Sketch of Proof. (⇒) Suppose that the ES-INF problem ⟨Σ,Op inf , αG⟩ has a
solution plan. Then, by Proposition 3, we know that there it has a solution plan
P = ε1, . . . , εk with k ≤ |Op inf | and εi ̸= εj for all i < j. We consider the valuation
v of variables in Vs such that P is the corresponding designated plan (i.e. ∀i, j such
that 1 ≤ i ≤ j ≤ k, we have v |= sεi⪯εj and ∀ε, ε′ ∈ Op inf \ P we have v ̸|= sε⪯ε′).

φ⟨Σ,Op inf ,αG⟩ is valid in the class M then, by theorem 2, tr1(φ⟨Σ,Op inf ,αG⟩) is valid
in the class K. By Theorem 3, F⟨Σ,Op inf ,αG⟩ is valid.

3.9. Conclusion 53

(⇐) Let v a valuation of variables in Vs for which Q is true. We can remark that in
this case, φVs is evaluated to true as it remains as a conjunct of F⟨Σ,Op inf ,αG⟩ after
application of tr2 ◦ tr1 on φ⟨Σ,Op inf ,αG⟩. We have to prove that the corresponding
designated plan P = ε1, . . . , εk with k ≤ |Op inf | is a solution plan. We simplify
the formula F⟨Σ,Op inf ,αG⟩ with respect to v that leads to a formula equivalent to the
translation into propositional logic of

(∧
α∈Σ□m α

)
→ ⟨⟨ε1⟩⟩ . . . ⟨⟨εk⟩⟩□mαG. Then,

using respectively Theorem 2, Theorem 3, Proposition 2 and Theorem 6 we can
deduce that Σ |=M ⟨⟨ε1⟩⟩ . . . ⟨⟨εk⟩⟩□mαG (i.e. P is a solution plan). ■

3.9 Conclusion

In this chapter, we presented an integrated architecture for cognitive planning that
considers two core components: the belief revision and the planning module.

We specified two kinds of planning problem: informative and interrogative. A
solution plan for an informative planning problem is a sequence of informative ac-
tions, while a solution plan for an interrogative planning problem is given by a
sequence of informative actions and questions. Moreover, we considered that the
questions asked by agent m to agent h, are binary, which means there are only two
possible answers: yes or no. We defined the default answer to a binary question as
the positive answer. Based on the previous assumption, we explored two solutions
for an interrogative planning problem, a strong and a weak solution. A strong solu-
tion for the interrogative planning problem considers finding a sequence of questions
for every possible answer. In contrast, a weak solution for an interrogative planning
problem considers discovering a sequence of questions taking into account that the
answer is always the default one.

We proved that checking existence of a solution for an informative planning
problem is ΣP

2 -complete. Likewise, we proved that checking existence of a weak
solution for an interrogative planning problem has the same complexity.

Afterwards, we illustrated the potential for application of our model for cognitive
planning by means of two examples. The first one is an instance of an informative
planning problem. In this example we considered a HMI scenario in which agent m

is the artificial assistant of the human agent h. Agent h has to choose a sport to
practice since her doctor recommended her to do a regular physical activity to be
in good health. Agent m’s aim is to help agent h to make the right choice, given her
actual beliefs and desires.

The second example is an instance of an interrogative planning problem in which
we shown that our model for cognitive planning can elegantly formalize some prin-
ciples of the motivational interviewing (MI) methodology, a counseling method used
in clinical psychology for eliciting attitude and behavior change in humans.

Finally, in this chapter we introduced an optimal encoding for an informative
planning problem using quantified boolean formula (QBF) with an optimal number
of quantifiers in the prefix.

54 Chapter 3. Cognitive Planning

In future we plan to extend our analysis to aspects of MI that we were ne-
glected in this chapter, such as: an important strategy of MI consists of helping the
participant to overcome the obstacles that prevent her from converting her mere
desires into intentions and then into effective behavior. Some of these obstacles are
of cognitive nature. For example, the participant could hesitate whether to start to
practice a sport regularly since she fears that practicing a sport increases the risk of
getting injured. In this situation, the counselor can try to reassure the participant
that her fear is unfounded. More generally, it can try to make the participant to
revise her beliefs that a certain action has negative consequences. Another cognitive
obstacle could be the participant’s belief that she does not have the right capabilities
and potential to change her behaviour. The counselor can again try to make the
participant revise her belief by providing counterevidence.

Chapter 4

An Implemented System for
Cognitive Planning

In this chapter we present the implementation of example 1 we intro-
duced in Chapter 3 in which an artificial agent has to persuade a human
agent to practice a sport based on her preferences1. The implemented
system allows us to represent and reason about other agents’ beliefs, de-
sires, and intentions using our logical framework introduced in Chapter
3.

The system has three components: the belief revision, the planning and
the translator modules. They work in an integrated way to firstly cap-
ture new information about the world, secondly to plan a sequence of
speech acts aimed at achieving a persuasive goal and, finally, to verify
satisfiability of the formulas generated at each step of the process. We
explain how the formulas representing the rules and constraints for a
specific problem domain are loaded into the system. The system takes
this information as the initial state and some actions — which are of
type speech act — to build a plan that leads to the goal. An impor-
tant feature is that actions have preconditions that impose constraints
on their execution order.

The initial GUI of our system was developed using a chatbot interface.
Afterwards, we replaced this component with a multimodal web interface
developed in cooperation with the IA Enterprise DAVI 2. The new GUI
goes beyond verbal behavior to enhance our artificial agent with the skill
to express emotions and gestures.

We conducted experiments to test and compare our artificial agent per-
formance using the brute force technique versus the QBF approach for
cognitive planning detailed in Chapter 3.

4.1 Implementation

The functionality of our integrated system for cognitive planning is defined by the
use case presented in Figure 4.1.

1https://github.com/iritlab/artificial_agent
2https://davi.ai/en/home/

https://github.com/iritlab/artificial_agent
https://davi.ai/en/home/

56 Chapter 4. An Implemented System for Cognitive Planning

Artificial Agent

Artificial Agent

≪include≫

≪include≫

GUI

Belief revision

Translations

Cognitive
Planning

User

Figure 4.1: Use Case Artificial Agent.

Its two core modules are belief revision and cognitive planning which work in
an integrated way. Firstly, the belief revision module reads the input coming from
the human through the graphical user interface (GUI) for dialog and verifies that
this input does not contradict the core beliefs stored in the belief base. If the input
contradicts the core beliefs, then the input is rejected and the belief base is not
updated. On the contrary, if the input does not contradict the core beliefs, then the
belief base is revised using a maximal consistent subset (MCS) approach whereby
the input has priority over the old volatile beliefs.

Secondly, the planning module reads the initial state, the set of actions, and the
goal and starts to generate candidate plans of different size, starting with size equal
to one. During this phase, the planning module calls the translator module which
converts the L+Frag planning formula into its equivalent in propositional logic, follow-
ing the sequence of reductions detailed in Figure 2.1. After the reduction process
performed by the translator, the planning module executes the SAT encoding tool
TouIST [Fernandez et al. 2020] to verify the validity of the propositional formula.
TouIST will encode the formula in CNF format and send it to MiniSAT (this solver
is set by default in the application) for checking satisfiability. TouIST can work with
external solvers that accept standardized DIMACS as input language. In Figure 4.2
we show the flow diagram for the cognitive planning process:

4.1. Implementation 57

S ← Σcore ∧ ΣinputΣinput

Σbase ← Σcore ∪ Σvol
Σcore Σvol

S′ ← TouIST(S)

S′ is SAT

C ← Σvol

n ← |C|
i ← 0

i ≤ n

Rev(Σbase ,Σinput)←
Σbase

C ′ ← subSets(C, n-i)
j ← 1

i ← i + 1

j ≤ |C ′| |MCS| = 0

X ← Σcore ∧ C ′[j] ∧ Σinput

Rev(Σbase ,Σinput)←⋂
X∈MCS X

X ′ is SAT

MCS ← X

j++

X ′ ← TouIST(X)

yesno

yes

no

no

yes

yes

no

yes

no

Figure 4.2: Belief revision process flow diagram

In Algorithm 1, planL+
Frag

[k, i] (line 5) is the i-th candidate plan of size k, gener-
ated from the following elements: the belief base Σbase , the i-th element in the set
of combinations C of size k from Op with its corresponding pre-conditions and the
goal αG.

58 Chapter 4. An Implemented System for Cognitive Planning

Figure 4.3: System architecture

Algorithm 1 Cognitive planning
1: function generatePlans(k)
2: C ← getSubsets(Op, k)
3: for i← 1 to |C| do
4: ϵ← preconditions(C[i]) ▷ Assigns the pre-condition to

each element in C[i]
5: planL+

Frag
[k, i]← ¬ (□mΣbase ⇒ ϵ[i]□mαG)

6: planLProp
[k, i]← Translator(planL+

Frag
[k, i]) ▷ Call Translator module

7: if TouIST(planLProp
[k, i]) = UnSAT then ▷ Call TouIST solver

8: Print “Plan i of size k is valid”
9: return 0 ▷ Exit

10: end if
11: end for
12: end function
13:
14: k=1
15: while (k ≤ |Op|) do ▷ Op is the set of actions
16: generatePlans(k) ▷ k is the size of the plan
17: k=k+1
18: end while
19: Print “Plan not found”

In Figure 4.3 we show the detailed system architecture based on the general one
sketched in Section 3.2.

4.1. Implementation 59

In order to probe the potential of our framework for cognitive planning we im-
plemented the example presented in Section 3.6. In this scenario agent m is the
artificial assistant of the human agent h. Agent h has to choose a sport to practice
since her doctor recommended her to do a regular physical activity to be in good
health.

Agent m’s aim is to help agent h to make the right choice, given her actual beliefs
and desires. Consequently, to set the initial belief base agent m has to be provided
with information about the possible options that the user can choose (Opt) and
their properties (Var). For each pair (Opt ,Var) we have a valuation Val as is shown
in Table 3.1

Formulas representing the rules and constraints are loaded as part of agent m’s
belief base. For example, the implementation of the formula representing the fact
that agent h explicitly believes that a sport cannot have two different values for a
given property is formalized as follows:∧

o∈Opt
x∈Var

v1,v2∈Valx:v1 ̸=v2

(△hval(o, x 7→ v1)→△h¬val(o, x 7→ v2))

The syntax for writing the formulas is based on the TouIST language, with the
extension of the modal operators for explicit and implicit belief. For example, we
use {h} for representing △h. Similarly we use [m] for □m.

bigand $o, $x, $v1, $v2 in $Opt, $Var, $Val($x), $Val($x) when $v1 != $v2:
{h}val($o,ass($x,$v1)) => {h}not val($o,ass($x,$v2))

end

Thus, this syntax allows us to represent functions like the one included in the
next formula, which states that an option o is ideal for agent h if and only if the
option satisfies all agent h’s desires:∧

o∈Opt

(
ideal(h, o)↔

∨
Γ∈2Des∗

(
des(h,Γ) ∧

∧
γ∈Γ fcomp(o, γ)

))
The function fcomp specifies, for every option o ∈ Opt and possible desire γ ∈

Des, the condition guaranteeing that o satisfies (or, complies with) γ:

fcomp(o, a) = val(o, a),

fcomp(o,∼a) = ¬val(o, a),
fcomp

(
o, [d1, . . . , dk]⇝ d

)
= ¬fcomp(o, d1) ∨ . . .∨

¬fcomp(o, dk) ∨ fcomp(o, d).

The full implementation of the formula with the function fcomp included,
requires the capture of the human’s desires which together with the set of rules and
constraints are used to generate the machine’s belief base.

60 Chapter 4. An Implemented System for Cognitive Planning

1

2 $n1 =2
3 $n2 =1
4 $n3 =1
5

6 $Delta0 = [
7 "ass(env ,land)",
8 "ass(intens ,med)",
9 "not ass(loc ,indoor)",

10 "ass(cost ,high) => ass(soc ,mixed)"
11]
12

13 $Delta0_1 (1) = ["ass(env ,land)"]
14 $Delta0_1 (2) = ["ass(intens ,med)"]
15 $Delta0_2 (1) = ["not ass(loc ,indoor)"]
16 $Delta0_2 (1,1) = ["ass(loc ,indoor)"]
17 $Delta0_3 (1) = ["ass(cost ,high) =>
18 ass(soc ,mixed)"]
19 $Delta0_3 (1,1) = ["ass(cost ,high)"]
20 $Delta0_3 (1,2) = ["ass(soc ,mixed)"]
21

22 $Opt = [sw , ru , te, hr, so, yo, di, sq]
23 $Var = [env , loc , soc , cost , danger , intens]
24

25 $Val(env) = [land ,water]
26 $Val(loc) = [indoor , outdoor , mixed]
27 $Val(soc) = [single , team , mixed]
28 $Val(cost) = [low , med , high]
29 $Val(danger) = [low , med , high]
30 $Val(intens) = [low , med , high]
31 .
32 .
33 .
34 bigand
35 $o in $Opt :
36 ideal(h,$o) <=>
37 ((bigand $d0 , $i, $e
38 in $Delta0 , [1.. $n1], $Delta0_1($i)
39 when $d0 in $Delta0_1($i):
40 val($o,$e)
41 end) and
42 (bigand $d0 , $i, $e
43 in $Delta0 , [1.. $n2], $Delta0_2($i ,1)
44 when $d0 in $Delta0_2($i):
45 not val($o,$e)
46 end) and
47 (bigand $d0 , $i, $p, $c
48 in $Delta0 , [1.. $n3], $Delta0_3($i ,1), $Delta0_3($i ,2)
49 when $d0 in $Delta0_3($i):
50 not val($o,$p) or val($o,$c)
51 end))
52 end

Listing 4.1: Formulas representing the model of the human agent’s mind

The set of human desires is represented by $Delta0 in the previous syntax.
The counters $n1, $n2, $n3 specify the number of positive desires, negative desires
and conditional desires respectively. We conceive a positive desire as the human
expressing a valuation for a variable assignment (e.g., environment is land). A neg-
ative desire is a negative valuation for a variable assignment. Finally, a conditional

4.1. Implementation 61

desire is a conditional valuation between variable assignments (e.g., if the cost is
high then sociality level should be mixed).

Similarly, the goal to be achieved by the planning agent is captured by the
following formula:

αG
def
=

∨
o∈Opt

potIntend(h, o).

Moreover, we suppose that, for agent h to have a potential intention to choose
option o, denoted by potIntend(h, o), she must have a justified belief that o is an
ideal option for her:

potIntend(h, o)
def
= △hideal(h, o) ∧ justif(h, o).

The latter is defined using the same syntax and in our case is expressed by the next
formula:

1 $Opt = [sw , ru, te, hr, so, yo, di, sq]
2 .
3 .
4 bigor $o in $Opt :
5 {h}ideal(h,$o) and justif(h,$o)
6 end
7 .
8 .

Listing 4.2: Formula representing αG

The set of actions are generated from Table 3.1. For instance,
convince(m,h,val_so_ass_env_land) is an informative action. It is interpreted
as the speech act used by agent m to inform agent h that the valuation of the
property:environment for the option:soccer is land. In order to help agent h

to select an activity, agent m also needs information about h’s desires. This
information is gathered by agent m during its interaction with agent h. The
interactive interface between h and m is shown in Figure 4.4. The belief revision
module is called after each agent h’s feedback and it restores consistency of the
agent m’s belief base, in case the incoming information is inconsistent with agent
m’s pre-existent beliefs.

62 Chapter 4. An Implemented System for Cognitive Planning

Figure 4.4: Collecting agent h’s preferences

In the example, agent h would like to practice a land activity, with medium
intensity, which is not exclusively indoor, and which can be practiced both in single
and team mode, if its cost is high. The next rule for precondition states that agent
h must be informed by agent m about the dangerousness level of a sport, before
presenting other properties for an option. For a ̸∈ Assigndan:

P
(
convince

(
m,h,val(o, a)

))
= □m

(
val(o, a)∧∧

v∈Valdan

(
val(o,dan 7→ v)→△hval(o,dan 7→ v)

))
Next we illustrate how the precondition is assigned (lines 9 to 14) by the planning
module together with its +mα operator in order to specify the successful occurrence
of an informative action:

1 (not ([m](
2 (val_di_ass_cost_high => not val_di_ass_cost_low) and
3 (val_di_ass_cost_high => not val_di_ass_cost_med) and
4 (val_di_ass_cost_low => not val_di_ass_cost_high) and
5 .
6 .
7 .
8)=>
9 ([m](val_te_ass_danger_med and plusa(th_val_te_ass_danger_med ,

10 ([m](val_te_ass_intens_med and (val_te_ass_danger_med =>
th_val_te_ass_danger_med)) and plusa(th_val_te_ass_intens_med ,

11 ([m](val_te_ass_soc_mixed and (val_te_ass_danger_med =>
th_val_te_ass_danger_med)) and plusa(th_val_te_ass_soc_mixed ,

12 ([m](val_te_ass_loc_mixed and (val_te_ass_danger_med =>
th_val_te_ass_danger_med)) and plusa(th_val_te_ass_loc_mixed ,

13 ([m](val_te_ass_env_land and (val_te_ass_danger_med =>
th_val_te_ass_danger_med)) and plusa(th_val_te_ass_env_land ,

14 ([m](ideal_h_te and justif_h_te and plusa(th_ideal_h_te ,
15 [m]
16 ((th_ideal_h_di and justif_h_di) or (th_ideal_h_hr and justif_h_hr) or (

th_ideal_h_ru and justif_h_ru) or (th_ideal_h_so and justif_h_so) or (

4.1. Implementation 63

th_ideal_h_sq and justif_h_sq) or (th_ideal_h_sw and justif_h_sw) or (
th_ideal_h_te and justif_h_te) or (th_ideal_h_yo and justif_h_yo))

17))
18)

Listing 4.3: Preconditions assigned to each action by the system during the
planning process

The planning module generates plans with the elements contained in the action
file. It starts with plans of length 1, and enters in a loop. At each interaction the
planning module asks the SAT solver to verify whether the plan allows to achieve
the goal. If no plan of length k is found, the program will increase the counter in
one and look for a plan of length k + 1. An example of an abstract plan generated
by the planning module is:

plus({h}(val_te_ass_danger_med)
plus({h}(val_te_ass_intens_med)
plus({h}(val_te_ass_soc_mixed)
plus({h}(val_te_ass_loc_mixed)
plus({h}(val_te_ass_env_land)
plus({h}(ideal_h_te)

The order of speech acts is determined by the preconditions. Specifically, the plan-
ning module informs firstly about the dangerousness level of the sport. Secondly, it
provides explanation of why the user’s desires are satisfied. Finally, it indicates the
ideal sport for the user, in this case tennis.

Figure 4.5: Plan shown by the chatbot to the human

The chatbot writes both the sequence of speech acts and its translation into natu-
ral language expressions. We decided to display the abstract plan in the GUI, as
shown in Figure 4.5, for illustrative purposes oriented to demonstrate how the GUI
transforms it into natural language using a simple function. The abstract plan will
not be displayed by the GUI in the end-user version of the system.

64 Chapter 4. An Implemented System for Cognitive Planning

We improved our system GUI module by replacing the chatbot interface with a
web avatar3 developed by the IA Enterprise DAVI as part of joint work on the ANR
project: Cognitive Planning in Persuasive Multimodal Communication (CoPains)4.
The avatar allows us to endow the artificial agent with emotions and gestures, as is
shown in Figures 4.6 and 4.7.

Figure 4.6: Avatar developed in cooperation between IRIT and DAVI

The avatar interacts with the human user to collect her preferences:

Figure 4.7: Avatar developed in cooperation between IRIT and DAVI

3https://cognitive-planning.schm.fr/
4https://www.irit.fr/CoPains/

https://cognitive-planning.schm.fr/
https://www.irit.fr/CoPains/

4.2. Experiments 65

After the avatar performs the planning process, it recommends the ideal sport
to the human (Figure 4.8):

Figure 4.8: Avatar developed in cooperation between IRIT and DAVI

The belief revision and planning modules were encapsulated in a web api. The
GUI was installed on a different server in order to improve the system performance.

4.2 Experiments

In this section, we present the experiments conducted in order to test the imple-
mented cognitive planning system. The experiment was devoted to evaluate the
performance of the planning module in integration with the belief revision module.
The GUI was not used during the test, therefore the procedure was carried out on
command line mode.

In order to perform the test we generate first a set of desires of the human in
different input files. These input files are processed by the belief revision module
sequentially in order to generate the volatile side of the belief base. Second, the
translator module is called to generate the initial state and the goal. Finally, the
initial state, the set of actions (repertoire of speech acts) and the goal are used to
call the planning module.

The set of options and variables described in Table 3.1 were used to test the
performance of the system, expanding the table in the number of sports available.
Similarly, we vary the number of the human’s desires. Figure 4.9 shows the results
of the computation. The data plotted in the previous graph are shown in Table 4.1.

66 Chapter 4. An Implemented System for Cognitive Planning

3 4 5 6

0

1

2

3

4

plan size

se
co

nd
s

Number of options:

3
4
5
6
7
8

Figure 4.9: Processing time consuming by the brute force approach based on the
number of options.

Number of options (sports)
Plan size

3 4 5 6 7 8
3 0.059 0.067 0.063 0.066 0.068 0.070
4 0.438 0.482 0.494 0.506 0.539 0.567
5 1.355 1.433 1.505 1.608 1.668 1.731
6 3.274 3.217 3.353 3.696 3.747 4.045

Table 4.1: Processing time (in seconds) to achieve a plan based of the number of
options

We now present the experiments conducted in order to compare the brute force
and the QBF approach, applied to our implemented system for cognitive planning.
The experiment was devoted to evaluate the performance of the planning module
based on the time needed to find a valid plan. We also evaluate the performance
of the translator module during the transformation process of the planning formula
into its equivalent in propositional logic or quantified boolean formula. Finally,
we compare the execution times required by the SAT and QBF solver to solve the
formulas.

In Table 4.2 we present the data corresponding to the time in seconds used by
the planning module in order to find a valid plan:

4.2. Experiments 67

Planning module processing time
(seconds)Plan size

Brute force QBF

4 0.464 10.015
5 2.059 10.936
6 12.610 12.343
7 61.920 12.837

Table 4.2: Planning module processing time required to achieve a plan.

4 5 6 7
0

10

20

30

40

50

60

plan size

se
co

nd
s

Brute force

QBF

Figure 4.10: Comparison in performance between the brute force and the QBF
approaches.

To test the performance of the translator module in applying the set of transfor-
mations shown in Figure 2.1, we carried out an independent analysis of this module.
The following table shows the difference in time when transforming the planning
formula to their equivalent propositional logic or QBF formula (column a). Simi-
larly, we evaluate the time used by TouIST in order to solve the propositional logic
formula using MiniSat5 as well as the time used to solve the QBF formula using
RAReQS6 (column b).

5http://minisat.se/
6http://sat.inesc-id.pt/~mikolas/sw/areqs/

http://minisat.se/
http://sat.inesc-id.pt/~mikolas/sw/areqs/

68 Chapter 4. An Implemented System for Cognitive Planning

Time in seconds used by the
Translator module (a)

Time in seconds used by
TouIST (b)

Plan size
Propositional

Logic QBF MiniSat RAReQS

4 0.009 1.840 0.013 8.240
5 0.009 2.013 0.014 8.539
6 0.019 2.233 0.026 10.038
7 0.013 2.520 0.027 10.402

Table 4.3: Translator module and TouIST solver processing times

These experiments were conducted using an Ubuntu 64 bits linux virtual machine
running on a core i7 processor with 16 gigabytes RAM.

4.3 Discussion

The architecture presented in Figure 4.3 works as an integrated system. All the pro-
cesses, interfaces and exchange of data between the modules are working according
to the definition of the use cases displayed in Figure 4.1.

The system dialogue capability is limited for the moment. The human agent
communicates her desires to the machine, and the latter computes the most suit-
able plan. There is no feedback from the human after the sequence of speech acts
performed by the machine.

We observed that the brute force approach is efficient when the size of the plan is
small (not more that 5 actions in the length of the plan), but when the size increases
the computation tends to be exponential. In the search for an alternative to the
brute force algorithm, we implement and test the optimal QBF encoding detailed
in Section 3.8.

However, it would be possible to include a heuristic to improve the performance
of the general process. For example, the planning module could consider the size of
the input (based on the human’s set of desires) as the initial size of the plan. Thus,
the planner will generate plans of that size at least. This prevents the planner
from spending time to generate candidate plans of smaller size than the number of
human’s desires. In addition, an optimization can be included in the algorithm if
we add a mechanism for giving priorities to certain types of actions. For example,
the actions which are stated as preconditions should be prioritized to be included
between the first sets of combinations to be tested by the planning module.

In the brute force approach, we need to call the SAT solver to verify satisfiability
for each candidate plan generated by the system until a valid plan is achieved.
In contrast, with the QBF approach, the system generates a single formula that
considers all the possible plans. Moreover, with the QBF approach, the time needed
for solving the cognitive planning problem has a stable average time that does
not depend on the plan size (Table 4.2). This performance improvement can be
explained by the fact that the QBF solver parallelizes the solving process by creating
multiple solver instances.

4.4. Conclusion 69

We found that the time needed by the translator module when it transforms the
planning formula with optimal QBF encoding into its equivalent QBF formula is
more significant (nearly a 200:1 ratio) than the time needed to transform the SAT
planning formula into its propositional logic version (Table 4.3 column a). This
difference can be explained by the additional process the translator module needs
to perform in order to generate the existential and universal variables for the QBF
formula.

Similarly, we found that the time consumed by the RAReQS solver to solve the
QBF formula is also more significant than the time needed by the MiniSAT solver
to solve the propositional logic formula. In Table 4.3 column (b), we can see that
this resolution time proportion varies between 600:1 and 300:1, depending on the
size plan.

However, this important difference in performance between the brute force and
the QBF approach, is overcome by the QBF encoding because in the brute force
approach it is necessary to call the SAT solver for each candidate plan until a valid
plan is found, while in the QBF approach we only need to call the QBF solver once.

4.4 Conclusion

In this chapter, we described the steps performed during the implementation of ex-
ample 1 described in Chapter 3. We found that the general architecture proposed in
Section 3.2 provides the right separation between functionalities and allows us to or-
ganize the application code in two layers front-end (interface module) and back-end
(belief revision and planning modules). We encapsulated the set of transformations
shown in Figure 2.1 in a separate component called translator module. We verified
that all the components interact between them as an integrated system.

We found that functional programming was the correct choice for implementing
the back-end modules, in particular the translator module, thanks to its well-known
feature of effectively dealing with recursive calls. Another important feature of the
language that we want to remark is that it allows to capture the abstract syntax
tree (AST) during the translation process. This last property allowed us to track
the translation of formulas expressed in our NP-fragment at each step of the trans-
formation process.

Moreover, our system’s modular design allowed us to detach our initial chatbot
interface and replace it with a web interface developed in cooperation with a com-
mercial company dedicated to building artificial agents endowed with emotions and
gestures.

We performed experiments to compare our two approaches for finding a solution
for informative planning problems, the brute force technique based on SAT and the
QBF approach. The experiments demonstrated that the QBF approach outperforms
the brute force method as plan size increases.

Our main contribution is that we have built our system in a modular way by
designing the different components, including planning and belief revision, with the

70 Chapter 4. An Implemented System for Cognitive Planning

necessary interfaces to work in an integrated way. This feature allows the scalability
of the system.

The results of this chapter lead to many interesting directions for future work.
We aim to implement the interrogative planning problem of the scenario described
in Section 3.7 and evaluate the performance of the artificial agent in its interac-
tion with the human. Moreover, we could combine our implementation of cogni-
tive planning with machine learning and data mining techniques, as presented in
[Krzywicki et al. 2016], in order to extract information about the human user from
real data. We also could use a learning function to let the system select the most
convenient approach, brute force or QBF, depending on the plan size. We plan to
include a security module for granting access to the system in a multi-user environ-
ment.

Chapter 5

A Logical Modeling of the Yōkai
Board Game

In Chapter 4 we implemented an example of an informative planning
problem with a chatbot application that includes the core components
of our architecture sketched in Figure 4.3. However, the chatbot imple-
mentation does not consider three aspects we are interested in evaluat-
ing. First, the logical framework used in the chatbot implementation
does not incorporate the temporal aspect. Therefore, the artificial agent
is not able to reason about other agents’ past or future beliefs. Second,
the chatbot implementation explores only one direction of the interac-
tion between the two agents. Accordingly, the belief revision module
revises the belief base taking into account the feedback from only one
participant (the human agent). Finally, the chatbot application uses a
single goal for planning. We want to explore the option of considering
a set of goals, among which the artificial agent will select the best one
following a strategy.

In this chapter we apply our model of cognitive planning to the case
of the Yōkai cooperative board game1. Yōkai requires a combination
of Theory of Mind (ToM), temporal and spatial reasoning to be played
effectively by an artificial agent. We extend our logical framework to
properly account for these three dimensions. Furthermore, we show that
the belief revision module can revise the belief base with information
related to the actions performed by the human and the artificial player.
Moreover, we load a set of goals into the system that allow the artificial
player to select the best strategy to win the game in cooperation with
the human player.

Finally, we provide experimental results to compare two game configu-
rations: human-machine and human-human collaboration.

5.1 Introduction

When one wishes to model socio-cognitive agents and, in particular, agents endowed
with a Theory of Mind (ToM) who are capable of reasoning about other agents’
beliefs, some of the privileged tools are epistemic logic (EL) [Fagin et al. 1995,

1https://github.com/iritlab/yokai.

https://github.com/iritlab/yokai

72 Chapter 5. A Logical Modeling of the Yōkai Board Game

Halpern & Moses 1992] and its extensions by informative and communicative ex-
tensions such as public and private announcements [Gerbrandy & Groeneveld 1997,
Plaza 1989, Baltag et al. 1998]. The latter belongs to the Dynamic Epistemic Logic
(DEL) family [van Ditmarsch et al. 2007].

The major disadvantage of EL and DEL is that they have most of the time
a high complexity thereby making them not very well-suited for practical applica-
tions. In particular, extending multi-agent EL by simple notions of state eliminating
public announcement or arrow eliminating private announcement does not increase
its PSPACE complexity [Lutz 2006, Bolander et al. 2015b]. However, the satisfi-
ability problem of full DEL with public, semi-private and private communicative
actions was shown to be NEXPTIME-complete [Aucher & Schwarzentruber 2013].
The situation is even worse in the context of epistemic planning: it is known that
epistemic planning in public announcement logic (PAL) is decidable, while it be-
comes undecidable in full DEL, due to the fact that the epistemic model may grow
as a consequence of a private announcement [Bolander & Andersen 2011].

In [Lorini 2020, Lorini 2018], a variant of epistemic logic with a semantics ex-
ploiting belief bases is introduced. It distinguishes explicit belief from implicit belief.
The former is modeled as a fact in an agent’s belief base, while the latter is modeled
as a fact that is deducible from the agent’s explicit beliefs. The main advantages
of the belief base semantics for epistemic logic compared to the standard possible
world semantics based on multi-relational structures (so-called Kripke models) are
(i) its compactness, and (ii) its closeness to the way artificial cognitively-inspired
agents are traditionally modeled in AI and in the area of knowledge representa-
tion and reasoning (KR) by adopting a database perspective [Shoham 2009]. In
[Lorini & Romero 2019], it is shown that this variant of epistemic logic provides
a valuable abstraction for modeling multi-robot scenarios in which each robot is
endowed with a ToM whereby being able to ascribe epistemic states to the other
robots and to reason about them.2

In this chapter, we leverage the belief base semantics for epistemic logic to model
interaction in the context of the cooperative board-game Yōkai.3 We consider its
two-player variant in which an artificial agent has to collaborate with a human agent
to win it and to obtain the best score as possible. Yōkai is an interesting testbed for
artificial agents, as it covers a lot of epistemic and strategic reasoning aspects as well
as planning and belief revision aspects. The idea of testing the performance of artifi-
cial agents in the context of cooperative board-games in which ToM reasoning plays a
role is not new. Some works exist about modeling and implementing artificial players
for the card game Hanabi [Bard et al. 2020, Eger et al. 2017, Eger & Martens 2017].
Yōkai adds to the ToM dimension, which is central in Hanabi, the temporal and spa-
tial dimension. First of all, in Yōkai a player’s performance relies on her/its capacity
to remember the cards she/it and the other player have seen in the past. Secondly,
the players must move cards in a shared space and there are spatial restrictions on

2See also [Bolander 2014, Dissing & Bolander 2020] for a DEL-based approach to modeling and
implementing ToM on social robots.

3https://boardgamegeek.com/boardgame/269146/ykai

https://boardgamegeek.com/boardgame/269146/ykai

5.2. Game description 73

card movements that should be taken into account by the players. More generally,
the interesting feature of Yōkai, from the point view of KR, is the combination of
epistemic, temporal and spatial reasoning that is required to completely apprehend
all the game facets and dimensions.

The main novelty of our approach to modeling artificial board-game players is the
use of SAT-based techniques. Specifically, the language we present for representing
the artificial player’s beliefs about the static and dynamic aspects of the game as
well as about the human player’s beliefs has the same complexity as SAT and can
be polynomially translated into a propositional logic language. This opens up the
possibility of exploiting SAT techniques for automating reasoning of the artificial
player in the context of the Yōkai board-game.

The chapter is organized as follows. In Section 5.2, we explain the rules of Yōkai
and clarify the representation and reasoning requirements that are necessary for the
artificial player to be able to play the game in a clever way. In Section 5.3, we
introduce the specification language for modeling the artificial player’s actions and
beliefs about the game properties and about the human player’s beliefs. It is a timed
language for explicit and implicit belief with a semantics exploiting belief bases. The
main novelty compared to the epistemic language presented in [Lorini 2020] is the
temporal component: the artificial player modeled in the language has knowledge
about the current time of the game and beliefs about current and past beliefs of
the human player. Thereafter, in Section 5.4 the artificial agent architecture is
explained. We provide details regarding the two main components of the system:
the action selection and the belief change. Finally, Section 5.5 is devoted to the
encoding of the game in the language. We first model the static aspects, namely,
the artificial agent’s beliefs about the rules and properties of the game. Then, we
focus on the dynamic aspects by modeling the artificial player’s actions and how
they are used for planning a sequence of moves at a given round of the game.

5.2 Game description

In this section, we explain the rule of the Yōkai game. As pointed out in the
introduction, we only consider the two-player variant of the game with an artificial
and a human player.

Colored cards and actions. There are 4 types of card, red, yellow, green and
blue cards, and 4 cards for each color. This gives us a total amount of 16 cards.
The cards are placed face down in a grid of size 4× 4 in a random way, so that the
players cannot see their colors. The goal of the game is to gather together the cards
of the same color, as illustrated in Figure 5.1a.

74 Chapter 5. A Logical Modeling of the Yōkai Board Game

(a) Winning configuration (b) Illegal move

Figure 5.1: Examples of game configuration

The players play sequentially in each round of the game. At each round, each
player has to play the following 4 actions in the order she/it prefers:

1. to look at two cards privately (2 actions),

2. to move one card from its current position to a new position adjacent to
another card (that is, linked to the latter by one of its sides) and without
separating the cards into two disjointed groups,

3. either to activate a hint from the set of available hints (see next paragraph)
or to disclose an information by marking one card with an active hint.

Figure 5.1b portrays an example of illegal move. Indeed, the move will separate
the cards into two independent groups.

Hints. Three types of hint are available: 1-color, 2-color and 3-color hints. Specif-
ically, 1-color, 2-color and 3-color hints indicate, respectively, a single color, two
colors and three colors in the set {red, green, blue, yellow}. There are 14 different
hints available, but only seven hints are randomly selected at the beginning of the
game: two occurrences of 1-color hint, three occurrences of 2-color hint and two
occurrences of 3-color hint.

A hint can be used after being activated, and only available hints can be acti-
vated. Moreover, it can be used only once throughout the game. The state of a hint
is unique: it is either available, activated, or marking. In particular, after a hint
has been activated and used to mark a card, it is no longer available or activated.
For example, suppose a player just looked at one card and discovers it is a red card.
She can mark it with an active 2-color hint of type red/green to inform the other
player that it is either a red card or a green card.

A hint is properly used if one of its colors matches with the color of the card it
marks. For example, if a player uses an active 2-color card of type green/blue to
mark a blue card, then the hint is properly used. Conversely, if the player uses it to
mark a red card, then the hint is improperly used. Note that unless a mistake has
been made, hints must be used properly.

Finally, when an active hint marks a card, that card can no longer be moved or
observed.

5.3. A timed language for explicit and implicit belief 75

End of the game. When a player thinks that the goal state is achieved, she/it
can decide to stop the game. Otherwise, the game ends when all hints have been
used by the players. At the end of the game, the cards are turned face up. If the
goal state is achieved, the players win the game. Otherwise, they lose it. In case
of win, the final score is calculated as follows: score = x1 − x2 + 2x3 + 5x4 where
x1 is the number of properly used hints, x2 is the number of improperly used hints,
x3 is the number of activated hints that were not used by the players, and x4 is the
number of non-activated hints. The final score ranges in the interval [−7, 35].

Requirements. As emphasized in the introduction, in order to be able to reason
about the static and dynamic aspects of the game, a player must have beliefs about:

• the other player’s actual beliefs (ToM reasoning);

• the current positions of the cards and the executable card movements, given
the current spatial configuration of the game (spatial reasoning);

• the color of the cards she/it observed in the past as well as the other player’s
past observations (temporal reasoning).

5.3 A timed language for explicit and implicit belief

This section presents a two-agent timed variant of the language and the semantics
of the logic of explicit and implicit belief presented in [Lorini 2020]. The two agents
are the artificial agent (or machine) m and the human user h. Agents m and h are
treated asymmetrically. Our language allows us to represent (i) h’s explicit beliefs
at different points in a game sequence, and (ii) m’s actual explicit and implicit
beliefs, namely, m’s explicit and implicit beliefs at the current time point of the
game sequence. Following [Lorini 2020], explicit beliefs are defined to be beliefs in
an agent’s belief base, while implicit beliefs are those beliefs that are derivable from
the agent’s explicit beliefs.

We first present the static language in which agent m’s beliefs do not change.
Then, we present a dynamic extension in which agent m’s belief base can be ex-
panded by new information.

5.3.1 Static language

Assume a countably infinite set of atomic propositions Atm. We define the language
in two steps.

We first define the language L0(Atm) by the following grammar in BNF:

α ::= pt | △t
h α | now≥t | ¬α | α1 ∧ α2 | △m α

where p ranges over Atm. L0(Atm) is the language for representing agent h’s
timed explicit beliefs and agent m’s actual explicit beliefs. Specifically, the formula

76 Chapter 5. A Logical Modeling of the Yōkai Board Game

△t
h α is read “agent h explicitly believes at time t that α is true”, whilst △m is read

“agent m actually has the explicit belief that α”. The beliefs of the machine m are
not indexed by time because our language only allows us to talk about the beliefs of
m in the present tense. (It is not a question here of a technical impossibility, but the
language thus extended would introduce a greater expressiveness of the language
not necessary here to model our problem.) Furthermore, it is important to note
that past beliefs are accessible from previous belief states (see below the section
on revision of the belief base). Atomic propositions are assumed to be timed: pt

is read “atomic proposition p is true at time t”. Finally, formula now≥t provides
information about the current time point. It is read “the actual time of the game
play is at least t”.

Then, we define LT0 (Atm) to be the subset L0(Atm) including only timed for-
mulas, that is:

LT0 (Atm) ={pt : p ∈ Atm and t ∈ N}∪
{△t

h α : α ∈ L0(Atm) and t ∈ N}∪
{now≥t : t ∈ N}.

Elements of LT0 (Atm) are denoted by x, y, . . .
The language L(Atm) extends the language L0(Atm) by a modal operator of

implicit belief for agent m and is defined by the following grammar:

φ ::= α | ¬φ | φ1 ∧ φ2 | □m α,

where α ranges over L0(Atm). For notational convenience we write L0 instead of
L0(Atm), LT0 instead of LT0 (Atm) and L instead of L(Atm), when the context is
unambiguous. The formula □m α is read “agent m currently has the implicit belief
that α”. The other Boolean constructions ⊤, ⊥, ∨, → and ↔ are defined in the
standard way. Notice that only formulas from the sublanguage L0 can be in the
scope of the implicit belief operator □m. Therefore, nesting of this operator is not
allowed (e.g., □m ¬□m p

t is not a well-formed formula). As we will show at the
end of the section, this syntactic restriction on our language is useful to make the
complexity of its satisfiability problem the same as the complexity of SAT.

The interpretation of the language L exploits the notion of belief base. While
the notions of possible world and epistemic alternative are primitive in the standard
Kripke semantics for epistemic logic [Fagin et al. 1995], they are defined from the
primitive concept of belief base in our semantics.

Definition 22 (State) A state is a tuple S = (B,V) where (i) B ⊆ L0 is agent
m’s belief base (or, agent m’s subjective view of the actual situation), (ii) V ⊆ LT0
is the actual situation, and such that, for every t, t′ ∈ N,

now≥0 ∈ V , (5.1)

if now≥t ∈ V and t′ ≤ t then now≥t′ ∈ V , (5.2)

now≥t ∈ V iff now≥t ∈ B. (5.3)

5.3. A timed language for explicit and implicit belief 77

The set of all states is denoted by S.

Conditions (5.1) and (5.2) in the previous definition guarantees time consistency,
namely, that the current time should be at least 0 and that if the current time is at
least t and t′ ≤ t, then it should be at least t′. Condition (5.3) captures agent m’s
time-knowledge, namely, the assumption that m has complete information about
the current time.

The sublanguage L0(Atm) is interpreted w.r.t. states as follows.

Definition 23 (Satisfaction) Let S = (B,V) ∈ S. Then:

S |= x ⇐⇒ x ∈ V ,

S |= ¬α ⇐⇒ S ̸|= α,

S |= α1 ∧ α2 ⇐⇒ S |= α1 and S |= α2,

S |= △m α ⇐⇒ α ∈ B.

Observe in particular the set-theoretic interpretation of the explicit belief operator
for agent m: agent m actually has the explicit belief that α if and only if α is included
in her actual belief base. This highlights the asymmetry between agent m and agent
h in our semantics. We adopt agent m’s internal perspective, that is, the point of
view of its belief base.4 On the contrary, agent h’s explicit beliefs are modeled from
an external point of view and semantically interpreted in the same way as the other
timed formulas in LT0 (Atm).

A multi-agent belief model (MAB) is defined to be a state supplemented with a
set of states, called context. The latter includes all states that are compatible with
agent m’s background knowledge.

Definition 24 (Model) A model is a pair (S,Cxt), where S ∈ S and Cxt ⊆ S.
The class of all models is denoted by M.

Note that we do not impose that S ∈ Cxt . When Cxt = S then (S,Cxt) is said
to be complete, since S is conceivable as the complete (or universal) context which
contains all possible states.

Definition 25 (Epistemic alternatives) We define R to be the binary relation
on the set S such that, for all S = (B,V), S′ = (B′,V ′) ∈ S:

SRS′ if and only if ∀α ∈ B : S′ |= α.

SRS′ means that S′ is an epistemic alternative for the artificial agent m at S. So
m’s set of epistemic alternatives at S, noted R(S) = {S′ ∈ S : SRS′}, includes
exactly those states that satisfy m’s explicit beliefs.

Definition 26 extends Definition 23 to the full language L. Its formulas are
interpreted with respect to models. We omit Boolean cases that are defined in the
usual way.

4See [Aucher 2012] for an in-depth logical analysis of the internal perspective on modeling
knowledge and belief.

78 Chapter 5. A Logical Modeling of the Yōkai Board Game

Definition 26 (Satisfaction, cont.) Let (S,Cxt) ∈M. Then:

(S,Cxt) |= α ⇐⇒ S |= α;

(S,Cxt) |= □m φ ⇐⇒ ∀S′ ∈ Cxt , if SRS′ then (S′,Cxt) |= φ.

A formula φ ∈ L is valid in the class M, noted |=M φ, if and only if (S,Cxt) |= φ

for every (S,Cxt) ∈M; it is satisfiable in M if and only if ¬φ is not valid in M. As
the following theorem indicates, the satisfiability problem for L(Atm) has the same
complexity as SAT.

Theorem 10 Checking satisfiability of L(Atm) formulas in the class M is an NP-
complete problem.

Sketch of Proof. Hardness is clear since L(Atm) extends the propositional
logic language. As for membership, we can find a polysize satisfiability preserving
translation from L(Atm) to propositional logic. The translation is divided in three
steps. First, we transform the input formula in L(Atm) into negated normal form
(NNF). Secondly, we translate the formula in NNF into a restricted mono-modal
language with no nesting of the modal operator. Thirdly, we translate the latter
into a propositional logic language in a way similar to the standard translation of
modal logic into FOL. We take care of translating a finite theory including axioms
corresponding to the four constraints of Definition 22. The axioms have the following
form: now≥0, now≥t → now≥t′ for t′ ≤ t, now≥t ↔ △m now≥t and ¬now≥t ↔
△m ¬now≥t. The theory is finite since we only need to consider instances of the
axioms whose symbols occur in the input formula. For example, if t′ ≤ t and both
now≥t and now≥t′ occur in the input formula, then now≥t → now≥t′ should be
included in the theory, otherwise not. See Appendix A for a detailed proof. ■

5.3.2 Dynamic extension

Let us now move from a static to a dynamic perspective by presenting an extension
of the language L(Atm) with belief expansion operators. Specifically, we introduce
the following language L+(Atm), or simply L+:

φ ::= α | ¬φ | φ1 ∧ φ2 | □m α | [+t
mα]φ,

where α ranges over L0 and t ranges over N. The formula [+t
mα]φ is read “φ holds

after agent m has privately learned that α and that the current time is at least t”
or simply “φ holds after agent m has privately learned that α at time at least t”.

Our extension has the following semantics relative to a model:

Definition 27 (Satisfaction relation, cont.) Let S = (B,V) ∈ S and
(S,Cxt) ∈M. Then,

(S,Cxt) |= [+t
mα]φ ⇐⇒ (S+t

mα,Cxt) |= φ

5.3. A timed language for explicit and implicit belief 79

with

S+t
mα = (B+t

mα,V +t
mα),

V +t
mα = V ∪ {now≥t′ : t′ ≤ t},

B+t
mα = B ∪ {α} ∪ {now≥t′ : t′ ≤ t}.

Intuitively speaking, agent m’s private learning that α at time at least t simply
consists of (i) adding the information α to m’s belief base, and (ii) moving the
objective time and m’s subjective view of time to index t.

As the following proposition indicates, the dynamic semantics given in Defini-
tion 27 is well-defined, as it guarantees that the structure resulting from a belief
expansion operation belongs to the class M, if the initial structure also belongs to
M.

Proposition 5 Let (S,Cxt) ∈M. Then, (S+t
mα,Cxt) ∈M.

Satisfiability and validity of formulas in L+ relative to the class M are analogous
to satisfiability and validity for formulas in L(Atm) defined above. Interestingly,
adding belief expansion operators to the language L does not increase the complexity
of the corresponding satisfiability problem.

Theorem 11 Checking satisfiability of L+(Atm) formulas in the class M is an
NP-complete problem.

Sketch of Proof. The theorem is a consequence of Theorem 10 and the fact
that we can a find a polysize reduction of the satisfiability problem for L+(Atm) to
the satisfiability problem for L(Atm). The reduction makes use of reduction axioms
which allow us to eliminate dynamic operators from the input formula and to obtain
a logically equivalent formula in L(Atm). See Appendix A for a detailed proof. ■

It is useful to define the concept of logical consequence for the language L+(Atm)

which will be used at a later stage to define the action selection problem for the
artificial agent m. Let Σ be a finite subset of L0(Atm) and let φ ∈ L+(Atm). We
say that φ is a logical consequence of Σ in the class M, noted Σ |=M φ, if and
only if, for every (B,Cxt) ∈M such that Cxt ⊆ S(Σ) we have (B,Cxt) |= φ, with
S(Σ) = {B ∈ S : ∀α ∈ Σ, B |= α}. We say that φ is Σ-satisfiable in the class M if
and only if, ¬φ is not a logical consequence of Σ in M. Clearly, φ is valid if and only
if φ is a logical consequence of ∅, and φ is satisfiable if and only if φ is ∅-satisfiable.

As the following deduction theorem indicates, the logical consequence problem
with a finite set of premises can be reduced to the satisfiability problem.

Theorem 12 Let φ ∈ L+(Atm) and let Σ ⊂ L0(Atm) be finite. Then, Σ |=M φ if
and only if |=M

∧
α∈Σ□m α→ φ.

80 Chapter 5. A Logical Modeling of the Yōkai Board Game

5.4 Artificial agent architecture

In this section, we are going to show how the formal language presented in Section
5.3 can be used to endow the artificial agent m with the capacity (i) to select an
executable action for achieving a certain goal, and (ii) to revise its beliefs during its
interaction with agent h.

5.4.1 Action selection

Let Actm = {+t
mα : α ∈ L0, t ∈ N} be the set of belief expansion events, or

informative actions, formally defined in Section 5.3.2. Such informative actions
have executability preconditions that are specified by the following function P :

Actm −→ L(Atm). We define the following operator of successful occurrence of an
event in Actm:

⟨⟨+t
mα⟩⟩φ

def
= P(+t

mα) ∧ [+t
mα]φ.

The formula ⟨⟨+t
mα⟩⟩φ in L(Atm) has to be read “agent m can privately learn that

α at time t and φ holds after the occurrence of this learning event”.
Suppose the artificial agent m has a goal represented by a formula in the language

L0(Atm). An action selection problem for m just consists of finding an executable
action in its finite action repertoire whose execution guarantees that the goal will
be achieved.

Definition 28 (Action selection problem) An action selection problem is a tu-
ple ⟨Σ,Op, αG⟩ where:

• Σ ⊂ L0(Atm) is a finite set of agent m’s available information,

• Op ⊂ Actm is a finite set of operators representing agent m’s action repertoire,

• αG ∈ L0(Atm) is agent m’s goal.

A solution to the action selection problem ⟨Σ,Op, αG⟩ is an action ϵ in Op such that
Σ |=M ⟨⟨ϵ⟩⟩□mαG. In other words, a solution to the action selection problem is an
executable action in agent m’s repertoire such that if agent m has the information
in Σ at its disposal then, after executing the action, it will believe that its goal αG
is achieved.

An action selection problem can be seen as a limit case of a planning problem
with a single action to be selected from the action repertoire, instead of a sequence
of actions as in the general planning domain. Thanks to Theorems 11 and 12, we
can conclude that the action selection problem is NP-complete too.

5.4.2 Belief change

A crucial component of the action selection problem defined in Definition 28 is agent
m’s available information Σ. The latter includes the information about the rules of

5.4. Artificial agent architecture 81

the game as well as information about the actual configuration of the game and
agent h’s beliefs. Some of this information evolve during the game. In this section
we describe agent m’s belief change mechanisms that are responsible for inducing
this kind of information change.

We distinguish belief update from belief revision. Belief update consists of mak-
ing the agent m’s explicit beliefs evolve from a time t to the next time t+ 1. Belief
revision is the result of agent m learning a new fact and adding a new piece of infor-
mation to its belief base. We assume agent m’s available information Σ used in the
action selection phase is split into two sets Σc,Σm ⊆ L0. They denote, respectively,
the core (or, immutable) information in agent m’s belief base and the volatile (or,
mutable) information in agent m’s belief base. Agent m’s core beliefs are stable and
do not change under belief revision. On the contrary, volatile beliefs can change due
to a belief revision operation. Moreover, we assume the mutable belief base Σm is
the union of two sets Σh and Σf . Σh includes all hypothetical information that agent
m can use for reasoning, while Σf contains agent m’s factual information, that is, all
facts that agent m observes during its interaction with agent h through the game.
We assume information in Σf has priority over information in Σh, in the sense that
in case its belief base becomes inconsistent, agent m prefers to remove information
from Σh than to remove information from Σf in order to restore consistency.

We assume agent m’s mutable belief base is present-focused, in the sense that
it contains information about the present time point t and no other time point t′

in the future or in the past of t. Let us define this notion formally. The following
function specifies the set of time indexes appearing in a L0-formula:

time(pt) ={t},
time(△t

h α) ={t} ∪ time(α),

time(now≥t) ={t},
time(¬α) =time(α),

time(α1 ∧ α2) =time(α1) ∪ time(α2).

The fact that Σm is present-focused means that there exists Σ ⊆ L0 and t ∈ N such
that:

• ∀α ∈ Σ, time(α) = {t},

• Σm = Σ ∪
{
now≥t′ : t′ ≤ t

}
.

5.4.2.1 Belief update

We see belief update as a function Upd which takes a triple (Σc,Σh,Σf) specifying
the core belief base, the hypothetical mutable belief base and the factual mutable
belief base of agent m as input and returns a new triple (Σ′

c,Σ
′
h,Σ

′
f) as output.

We consider a specific update function which simply increments of one unit the
time indexes of all formulas appearing in agent m’s mutable belief base, while keeping

82 Chapter 5. A Logical Modeling of the Yōkai Board Game

agent m’s core belief base unchanged. That is, let incrt be the function devoted to
increment the time indexes of a L0-formula of one unit:

incrt(pt) =pt+1,

incrt(△t
h α) =△t+1

h incrt(α),

incrt(△m α) =△mincrt(α),

incrt(now≥t) =now≥t+1,

incrt(¬α) =¬incrt(α),
incrt(α1 ∧ α2) =incrt(α1) ∧ incrt(α2).

For each finite X ⊆ L0, we define incrt(X) = {incrt(α) : α ∈ X}.
We stipulate that Upd(Σc,Σh,Σf) = (Σ′

c,Σ
′
h,Σ

′
f) if and only if:

• Σ′
c = Σc,

• Σ′
h = incrt(Σh),

• Σ′
f = incrt(Σf) ∪ {now≥0}.

It is straightforward to verify that Σ′
m = Σ′

h ∪ Σ′
f is present-focused since Σm =

Σh ∪ Σf is present-focused too.
The belief update function so defined relies on two assumptions that make perfect

sense in the context of the interaction between agent m and agent h in the Yōkai
game. First, agent m does not keep in its memory information about past facts.
We make this assumption since we want to maintain agent m’s mutable belief base
manageable and to avoid that it constantly increases through the game. Secondly,
agent m assumes that by default (i) the world does not change and agents h and m

do not forget what they believe, and (ii) agents h and m have common knowledge
that (i).5 Nonetheless, after having updated its belief base, agent m can learn new
information which is incompatible with its actual beliefs. In this case, it will need
to revise its beliefs. How agent m must revise its beliefs is the content of the next
section.

5.4.2.2 Belief revision

At each time step of the game agent m performs belief revision after belief update.
We assume that in the belief revision phase formulas in the language L0 are treated
as atomic formulas. In particular, let LPROP be the propositional language built
from the following set of atomic propositions:

PROP =
{
τx : x ∈ LT0 (Atm)

}
∪
{
τ△m α : △m α ∈ L0(Atm)

}
.

5‘By default’ means “if no agent acts”.

5.4. Artificial agent architecture 83

The following translation transforms each formula in L0 into its propositional logic
counterpart in the language LPROP:

trPROP(x) =τx for x ∈ LT0 (Atm),

trPROP(△m α) =τ△m α,

trPROP(¬α) =¬trPROP(α),

trPROP(α1 ∧ α2) =trPROP(α1) ∧ trPROP(α2).

For each finite X ⊆ L0, we define trPROP(X) = {trPROP(α) : α ∈ X}.
We say that X is propositionally consistent if and only if ⊥ ̸∈ Cn

(
trPROP(X)

)
,

where Cn is the classical deductive closure operator over the propositional language
LPROP. Clearly, the latter is equivalent to saying that

∧
α∈X trPROP(α) is satisfiable

in propositional logic.
Let Σinput ⊆ L0 be agent m’s input information set. We see belief revision as a

function Rev which takes a quadruple (Σc,Σh,Σf ,Σinput) specifying the core belief
base, the hypothetical mutable belief base and the factual mutable belief base of
agent m together with the input information set and returns a triple (Σ′

c,Σ
′
h,Σ

′
f).

The revision of (Σc,Σh,Σf) by input Σinput , noted Rev(Σc,Σh,Σf ,Σinput), is
formally defined as follows:

1. if Σc ∪ Σinput is not propositionally consistent then Rev(Σc,Σh,Σf ,Σinput) =

(Σc,Σh,Σf),

2. otherwise, Rev(Σc,Σh,Σf ,Σinput) = (Σ′
c,Σ

′
h,Σ

′
f), with

Σ′
c = Σc,

Σ′
f =

⋂
X∈MCS(Σc,Σf ,Σinput)

X,

Σ′
h =

⋂
X∈MCS(Σc∪Σ′

f ,Σh,∅)

X,

where for all Σ,Σ′,Σ′′ ⊆ L0, we have X ∈ MCS (Σ,Σ′,Σ′′) if and only if:

• X ⊆ Σ′ ∪ Σ′′,

• Σ′′ ⊆ X,

• X ∪ Σ is propositionally consistent, and

• there is no X ′ ⊆ Σ′ ∪ Σ′′ such that X ⊂ X ′ and X ′ ∪ Σ is propositionally
consistent.

The revision function Rev has the following effects on agent m’s beliefs. First of
all, the core belief base is not modified.

Secondly, the input Σinput is added to the factual mutable belief base only if it
is consistent with the core beliefs. In the latter case, the updated factual mutable

84 Chapter 5. A Logical Modeling of the Yōkai Board Game

belief base is equal to the intersection of the subsets of the factual mutable belief base
which are maximally consistent with respect to the core belief base and which include
the input Σinput . This guarantees that belief revision satisfies minimal change for
factual information.

Finally, agent m checks whether the hypotheses in its hypothetical mutable belief
base are still consistent with its core beliefs and its revised factual information. If
so, it does not modify them. If not, it minimally contracts its hypothetical mutable
belief base: it takes the intersection of the subsets of the hypothetical mutable
belief base which are maximally consistent with respect to the core belief base and
its revised factual information.

For notational convenience, we write Revcore(Σc,Σh,Σf) to denote Σ′
c,

Revhyp(Σc,Σh,Σf) to denote Σ′
h and Rev fact(Σc,Σh,Σf) to denote Σ′

f . Note that
if Σ = Σc ∪ Σh ∪ Σf is propositionally consistent, then Revcore(Σc,Σh,Σf) ∪
Revhyp(Σc,Σh,Σf) ∪ Rev fact(Σc,Σh,Σf) is propositionally consistent too.

In the next section, we will provide a formalization of the Yōkai board-game with
the aid of the language L+(Atm). We will represent agent m’s action repertoire to be
used in the action selection problem as a set of events in Actm affecting m’s beliefs.
We assume in its turn agent m faces four consecutive action selection problems.
First, agent m has to decide at which card to look. It faces this problem twice.
Then, it has to decide which card to move and to which position. Finally, it has to
decide whether to activate a hint or mark a card with a hint. For every action of
m, we will specify the corresponding executability precondition.

Moreover, we will specify agent m’s available information at the beginning of the
game and clearly distinguish mutable (factual and hypothetical) information from
core information.

5.5 Game modeling

In this section, we first formalize all the static aspects of the game (the different
rules, the initial state of the game, etc.) and then the action representation. Finally,
we present an example of action selection by agent m in the game.

5.5. Game modeling 85

5.5.1 Static aspects

Let be the following sets:

TIME = {0, 1, .., end} where end = 56

TIME ∗ = TIME \ {0}
GRID = {1, . . . , 32} × {1, . . . , 32},
IPOS =

{
(l, c) ∈ GRID : l, c ∈ {15, ..., 18}

}
,

COLORS = {r, g, b, y},
HINTS = 2COLORS \

{
{}, {r, g,b, y}

}
,

CARDS = {1, . . . , 16}
CARDSn = {X ∈ 2CARDS : |X| = n} with n ∈ N

There are seven hints at the start of the game, and each player must take turns
activating a hint or using a hint to mark a card. Thus, each player plays 7 times.
As each player must take 4 different actions in turn, the game lasts a maximum of
(7× 4)× 2 = 56 time units (56 actions are executed during a game). So, let TIME

be the set of time points, including initial state of the game at time 0. End of the
game is marked by the natural end ∈ TIME and end = 56.

However, each player only performs the action of moving a card once among the
4 actions she/it must perform during her/its turn. There are therefore a total of
7× 2 = 14 card moves. As in the initial state the 16 cards are placed in a square of
4× 4 cards, whatever the movements made during a game, the cards will evolve in
a grid of 32× 32 positions represented by the set GRID , and IPOS represents the
set of cards positions at the start of the game.

A hint is viewed as a non empty subset of 1, 2 or 3 colors among 4 different
colors (r for red, g for green, b for blue and y for yellow). HINTS is the set of all
hints and |HINTS | = 14. When the game starts, only 7 hints are available.

Vocabulary. The set of atomic proposition Atm is defined as follows:

Atm =
⋃

t∈TIME
x∈CARDS
c∈COLORS

{col tx,c} ∪
⋃

t∈TIME
x∈CARDS
p∈GRID

{postx,p} ∪
⋃

t∈TIME
h∈HINTS

{activeth}∪

⋃
t∈TIME
x∈CARDS
h∈HINTS

{mark tx,h} ∪
⋃

t∈TIME
x∈CARDS
p∈GRID

{legMov tx,p}

where: col tx,c is true iff card x is of color c at time t; postx,p is true iff card x is at
position p at time t; activeth is true iff hint h is enabled at time t; mark tx,h is true iff
card x is marked with hint h at time t. Finally, legMov tx,p is true iff to move card x
to position p at time t is legal (see paragraph “The separation constraint” page 91
for more details).

86 Chapter 5. A Logical Modeling of the Yōkai Board Game

Moreover, we define a function σ : CARDS −→ IPOS that assigns to each card
x a position p in the initial positions set, and a function NEIG : GRID −→ 2GRID

that assigns to each position (l, c) the set of its neighboring positions in the grid
NEIG

(
(l, c)

)
=
{
(l + 1, c), (l − 1, c), (l, c+ 1), (l, c− 1)

}
∩GRID .

In the following, we consider that belief bases of agents are defined in L0 and
are divided into two (sub)bases: the core beliefs base (containing all the beliefs that
cannot be modified during the game), and the mutable beliefs base (containing all
the belief that may change). As we want to model the game from m’s perspective,
we only model its beliefs about the facts of the game or about the beliefs of agent
h.

Initial mutable beliefs of agent m. Recall (see Section 5.4.2) that mutable
beliefs base Σm = Σf ∪ Σh (union of factual beliefs base and hypothetical beliefs
base).

In initial state, Σf (the factual beliefs base of agent m) contains not only beliefs
on facts of the world (which is captured by the definition of the set ΣWf in the next
paragraph) but also on the beliefs of the agent h on these facts of the world (see
below the definition of Σh

f).
ΣWf contains all m’s beliefs about the initial state of the game. It includes the

fact that: time is at least 0, each card position is known (we assume that function
σ is known), the cards color is not known, only seven hints are available et and the
others are not known, none is activated yet, and none marks a card yet. Moreover,
agent m knows all positions that are adjacent and those that are not.

Σh
f includes the fact that agent m believes that the initial state of the game is

also known by agent h. That is, m believes that h believes all the facts included in
ΣWf , plus the fact that h does not know the color of any card.

Finally, Σf is the union of ΣWf and Σh
f . So, formally:

ΣWf = {now≥0} ∪
⋃

x∈CARDS

{pos0x,σ(x)} ∪
⋃

x∈CARDS
c∈COLORS

{¬△m col0x,c}∪

⋃
h∈HINTS

{¬active0h} ∪
⋃

x∈CARDS
h∈HINTS

{¬mark0x,h}

Σh
f =

⋃
α∈ΣW

f

{△0
h α} ∪

⋃
x∈CARDS
c∈COLORS

{¬△0
h col

0
x,c}

Σf =ΣWf ∪ Σh
f

Note that Σf does not contain any conjunction or disjunction big operator. It is
for technical considerations: when expanding the belief base of the agent following
the execution of an action, formulas can be deleted from the base. If these are
present in the form of a conjunction, it suffices that one term of this conjunction is
inconsistent with the new information for the whole conjunction to be deleted. In
order to minimize the suppressed information, each conjunction is seen as a set of

5.5. Game modeling 87

(sub-)formulas.
In initial state, the hypothetical beliefs base Σh of agent m includes the fact that

m believes that when a card is marked with a hint that provides a set of possible
colors for that card, this card cannot have a color other than those provided by the
hint. That is:

Σh =
⋃

x∈CARDS
h∈HINTS

c∈COLORS\h

{mark0x,h → ¬col0x,c , △0
h mark0x,h →△0

h ¬col0x,c}

For example, Σh ⊇ {mark01,{g,r} → ¬col
0
1,b,mark01,{g,r} → ¬col

0
1,y}. Suppose now

that mark01,{g,r} ∈ Σf , then Σc ∪ Σm |= □m

(
(col01,g ∨ col01,r) ∧ ¬col01,b ∧ ¬col01,y

)
holds (see below for Σc definition).

Why is this type of knowledge in Σh and not in Σf? Because it is general
knowledge that can be questioned (like default rules of reasoning). Thus, if we
suppose that agent h puts a hint h = {g} on a card (which means “this card is
green”) then agent m can deduce implicitly (thanks to Σh) that this card is green.
But in fact, four cases are possible: 1) m already explicitly believes that the card is
green, in which case m does not learn anything that it did not already know; 2) m

does not know the color of the card, and in this case it can implicitly deduce that
the card is neither yellow, nor red, nor blue; 3) m already explicitly believes that
the card is of another color (red, for example), and in this case it is primarily Σh
that will be revised; 4) m implicitly believes that the card cannot be green (because
m already knows the 4 green cards for example), and then this case is treated as 3).

Initial core beliefs of agent m. Core belief base includes all the agent m’s beliefs
that cannot change during the game. It concerns both integrity constraints (that
describe rules of the game) and successor state axioms (SSAs) that describe the
building of the belief base after the execution of an action. SSAs describe both
what changes in the new state, and what do not (thanks to frame axioms). So, we

88 Chapter 5. A Logical Modeling of the Yōkai Board Game

define the following integrity constraints (IC):

Σic
c =

⋃
t∈TIME

{ ∧
x∈CARDS

∨
p∈GRID

postx,p , (ICP1)

∧
x∈CARDS

p,p′∈GRID:p ̸=p′

¬(postx,p ∧ postx,p′) , (ICP2)

∧
p∈GRID

x,x′∈CARDS :x̸=x′

¬(postx,p ∧ postx′,p) , (ICP3)

∧
x∈CARDS

∨
c∈COLORS

col tx,c , (ICC4)∧
x∈CARDS

c,c′∈COLORS :c̸=c′

¬(col tx,c ∧ col tx,c′) , (ICC5)

∧
c∈COLORS

∨
X∈CARDS4

(∧
x∈X

col tx,c ∧
∧
x ̸∈X

¬col tx,c
)

, (ICC6)

∧
h∈HINTS

x,x′∈CARDS
x ̸=x′

¬(mark t
x,h ∧mark t

x′,h) , (ICH7)

∧
x∈CARDS
h∈HINTS

¬(activeth ∧mark t
x,h)

}
(ICH8)

ICP1 and ICP2 mean that each card has at least one, and at most one, position
respectively ; ICP3 means that each position can only accommodate one card. In the
same way, ICC4 and ICC5 means that each card has at least one, and at most one,
color respectively. ICC6 means that there are exactly 4 cards of each color. ICH7
means a hint cannot marks two different cards. ICH8 means that a hint is either
not active and not marking, active and not marking, or not active and marking.
Finally, Σc assumes that agent m believes that the initial state of the game is also
known by agent h.

Note that by definition, Σc cannot be revised by any action, one can add con-
junctions directly to this set (rather than the set of their sub-formulas).

Frame axioms (FA) describe the facts that does not change after the execution
of an action. For convenience, we define the following FA abbreviations (for every

5.5. Game modeling 89

X ⊆ CARDS , H ⊆ HINTS and t ∈ TIME ∗):

posFAt
X

def
=

∧
x∈CARDS\X

p∈GRID

(postx,p ↔ post−1
x,p)

colFAt
X

def
=

∧
x∈CARDS\X
c∈COLORS

(
(col tx,c ↔ col t−1

x,c) ∧ (¬△m col tx,c ↔ ¬△m col t−1
x,c)

)

hintFAt
H

def
=

∧
h∈HINTS\H

(activeth ↔ activet−1
h)∧

∧
x∈CARDS

h∈HINTS\H

(mark t
x,h ↔ mark t−1

x,h)

posFAtX (resp. colFAtX) reads “the position (resp. color) of every cards except those
in X is preserved from time t − 1 to t”. hintFAtXH reads “the status (active or
marking) of every hints except those in H is preserved from time t− 1 to t”.

Finally, we define the following successor state axioms that are useful for planning
since they allow to deduce what will be true at some time t in the future:

Σssa
c =

⋃
t∈TIME∗

{
∧

x∈CARDS
p∈GRID

(postx,p ∧ ¬post−1
x,p → posFAt

{x} ∧ colFAt
∅ ∧ hintFAt

∅) , (SSA9)

∧
x∈CARDS
c∈COLORS

(col tx,c ∧ ¬△m col t−1
x,c → posFAt

∅ ∧ colFAt
{x} ∧ hintFAt

∅) , (SSA10)

∧
h∈HINTS

(activeth ∧ ¬activet−1
h → posFAt

∅ ∧ colFAt
∅ ∧ hintFAt

{h}) , (SSA11)∧
x∈CARDS
h∈HINTS

(mark t
x,h ∧ ¬mark t−1

x,h → posFAt
∅ ∧ colFAt

∅ ∧ hintFAt
{h}) (SSA12)

}

SSA9 means that if card x has a new position p at time t, the position of others
cards, the color of every cards, and the status of all hints, remain unchanged from
t − 1 to t. SSA10 means that if card x has a new color c at time t, the position
of every cards, the color of every other cards, and the status of all hints, remain
unchanged from t − 1 to t. SSA11 and SSA12 mean that if a hint becomes active
(resp. marks a card) between time t − 1 and t then neither positions and colors of
cards did change nor the status of other hints. Moreover, we assume that at least
one action is performed at each time point. Formally, this is represented by the
disjunction of antecedents of SSA9 to SSA12.

Finally, we suppose that agent m believes that all the fact in its core belief base

90 Chapter 5. A Logical Modeling of the Yōkai Board Game

are also known by the other agent h.

Σc = Σic
c ∪ Σssa

c

In principle, agent m believes that agent h shares the same rules of the game (set
Σic
c) and the same successor states axioms (set Σssa

c), but for the sake of simplicity,
we omit this part which is not currently used by m for planning actions.

5.5.2 Dynamic aspects

We introduce in what follows actions of perceptions. These actions allow the agent
m to expand its belief base by a certain formula.

Vocabulary. For convenience, we define the action repertoire ACT ⊆ EVT of
agent m (for every t < end , x ∈ CARDS , p ∈ GRID , h ∈ HINTS):

+
colt+1

x,c
m

def
= +t+1

m

(
col t+1

x,c ∧△m col t+1
x,c ∧

(△t+1
h

∨
c′∈COLORS

△m col t+1
x,c′) ∧△

t+1
h now≥t+1

)
+

post+1
x,p

m
def
= +t+1

m

(
post+1

x,p ∧△m post+1
x,p ∧△

t+1
h post+1

x,p ∧△
t+1
h now≥t+1

)
+

actHintt+1
h

m
def
= +t+1

m

(
activet+1

h ∧△m activet+1
h ∧△t+1

h activet+1
h ∧

△t+1
h now≥t+1

)
+

markHintt+1
x,h

m
def
= +t+1

m

(
mark t+1

x,h ∧△m mark t+1
x,h ∧△

t+1
h mark t+1

x,h ∧

△t+1
h now≥t+1

)
As each action entails a new time point, each action execution entails the fact

that the agent learns not only that time increases (which is taken into account
directly in the semantics, see Definition 22), but also that time increases for agent
h (so, △t+1

h now≥t+1 must be added to m’s belief base). Moreover, each time pt is
added, △m p

t is also added. The reason is that in the case where the agent does not
explicitly believe that p (¬△m p

t) and we want to add pt to the belief base of the
agent, we have to remove ¬△m p

t from the base. For example, in the initial state,
the agent does not know the color of the card x (that is, for any color c, ¬△m col0x,c
belongs to the base). As soon as he observes the color of a card (which is green,
for example), then ¬△m col1x,g must be deleted from the base, which will be done
automatically by our revision module as soon as △m col1x,g is added to the database
(in addition to col1x,g).

Note also that △t+1
h

∨
c′∈COLORS △m col t+1

x,c′ reads “agent h believes that m knows
the color of card c′ ”, that is quite different from △t+1

h △m

∨
c′∈COLORS col t+1

x,c′ that
reads “agent h believes that agent m believes that card x has at least one color
(among COLORS)”.

Moreover, each action about a fact also informs agent m that h believes this fact.

5.5. Game modeling 91

Finally, note that these actions concern the point of view of agent m but say
nothing about their author (which can be m or h).

The separation constraint. When moving a card from a position p to a position
p′, it is forbidden to create two separate groups of cards (see Figure 5.1b). In other
words, there must be a path between a given card x and all the other cards y, which
automatically ensures that there is a path between any two different cards y′ and
y′′ of the game.

We have a logical characterization of this constraint (See in Appendix A the de-
tailed function). However, because this function is complex, for the sake of simplicity
and for efficiency, we introduced in Atm definition (see paragraph “Vocabulary” page
85) an atomic formula legMov tx,p whose truth value is supposed to be updated at a
metalogical level.

The meaning of “ legMov tx,p is true” is: “the move of card x towards position
p at time t is authorized by the rules of the game”, that is: p is currently an
empty position and there is a sequence of adjacent positions between p and any
other occupied positions (except the initial position p′′ of card x) through the set of
currently occupied positions (excluding p′′).

Action preconditions. We assume now that the operators in ACT have the
following executability preconditions, for t ∈ TIME such that t < end , x ∈ CARDS ,
c ∈ COLORS , h ∈ HINTS and now=t def

= now≥t ∧ ¬now≥t+1:

P(+colt+1
x,c

m)
def
= now=t ∧□m

∧
h∈HINTS

¬mark tx,h

P(+post+1
x,p

m)
def
= now=t ∧□m

∧
h∈HINTS

¬mark tx,h ∧□m legMov tx,p

P(+actHintt+1
h

m)
def
= now=t

P(+
markHintt+1

x,h
m)

def
= now=t ∧□m activeth ∧

∨
c∈h
□m col tx,c ∧

□m

∧
h′∈HINTS
h′ ̸=h

¬mark tx,h′

P(+colt+1
x,c

m) reads “agent m implicitly believes that time is currently equal to t and also

implicitly believes that no hint marks card x”; P(+post+1
x,p

m) reads “agent m implicitly
believes that time is currently equal to t and also implicitly believes that no hint
marks card x and that it is currently authorized, w.r.t. rules of the game, to move
cards x to position p”; P(+actHintt+1

h
m) reads “agent m implicitly believes that time

is currently equal to t”; P(+
markHintt+1

x,h
m) reads “agent m implicitly believes that time

is currently equal to t, that hint h is currently active, that h includes the colors of
card x, and that no other hint h′ already marks card x”.

92 Chapter 5. A Logical Modeling of the Yōkai Board Game

5.5.3 Example of action selection

In this section, we are going to illustrate the action selection problem defined in
Section 5.4.1 on a specific configuration of the game. We assume is agent m’s turn
to play and its goal αG is to mark a card which is not actually marked, whose color
is not known by the human and which is adjacent to a card of the same color. That
is,

αG
def
=

∨
x∈CARDS
p∈GRID

c∈COLORS

(
postx,p ∧ col tx,c ∧ ¬△t

h col
t
x,c∧

∧
h∈HINTS

¬mark tx,h∧∨
p′∈NEIG(p)
x′∈CARDS

(postx′,p′ ∧ col tx′,c)∧

∨
h∈HINTS

c∈h

mark t+1
x,h

)

We suppose agent m has the following information in its factual mutable belief
base Σf : {

activet{r,g}, pos
t
3,(16,16), pos

t
6,(16,17), col

t
3,r, col

t
6,r,¬△t

h col
t
3,r

}
∪⋃

h∈HINTS

{
¬mark t3,h

}
∪
⋃
t′≤t

{
now≥t′}

Moreover, for every t′′ > t, we suppose that now≥t′′ ̸∈ Σ = (Σm ∪ Σc). This means
that agent m knows that the current time is exactly t.

Agent m is at the last step of its turn. It has decide how to mark one card with
an active hint. Thus, its action repertoire Op includes all and only actions of type

+
markHinttx,h
m . It is straightforward to verify that action +

markHintt3,{r,g}
m of marking

card 3 with the hint {r, g} is a solution to the action selection problem ⟨Σ,Op, αG⟩
so defined. Indeed, according to the available information in agent m’s belief base Σ,
card 3 at position (16, 16) is unmarked and is adjacent to card 6 at position (16, 17),
the two cards are both red and the color of card 3 is not known by agent h.

5.6 Goals modeling

We introduce several additional definitions. First, we define the following abbrevi-
ation for t ∈ TIME and p ∈ GRID :

emptp
def
=

∧
x∈CARDS

¬postx,p

5.6. Goals modeling 93

emptp reads “the position p is empty”. Moreover:

OPOS : TIME −→ 2GRID

t 7→ OPOS t = {p ∈ GRID : ¬emptp ∈ Σf and now≥t ∈ Σf}

is a function returning the set of all occupied positions at time t.
A set of two different cards x and x′, or a non-empty set X of cards, contains

“neighboring cards” if these cards are located in neighboring positions. Thus, we
defined the following two functions, the former checks whether two cards x and
x′ are neighbors, while the latter verifies whether a group of 3 or 4 cards (X ⊆
CARDS : 3 ≤ |X| ≤ 4) are neighbors calling the first function recursively:

nbgCardst{x,x′}
def
=

∨
p∈OPOS t

p′∈NEIG(p)

(postx,p ∧ postx′,p′)

nbgCardstX
def
=

∨
x,x′∈X
x̸=x′

(
nbgCardstX\{x} ∧ nbgCardst{x,x′}

)

For every non empty X,X ′ ⊆ CARDS : X ∩X ′ = ∅, hvECNtX,X′ is true iff there
are a card in X and a card in X ′ that have at least one Empty Common Neighbor
position. That is:

hvECNtX,X′
def
=

∨
x∈X

p∈OPOS t

∨
x′∈X′

p′∈OPOS t:
NEIG(p)∩NEIG(p′) ̸=∅

(
postx,p ∧ postx′,p′

)

Finally, for every non empty X ⊂ CARDS , hvENtX is true iff X has at leat one
emtpy neighboor position :

hvENtX
def
=

∨
x∈X

p∈OPOS t

p′∈NEIG(p)

(postx,p ∧ emptp′)

In the rest of this section, we associate to each action that the agent must
perform a set of goals. It is the satisfaction of one of these goals that will cause the
agent to perform a specific action. Among these goals, there is always one (called
“default goal”) corresponding to a strategy to be executed by default when all the
other more specific “specific goals” have failed or have been judged unreachable. A
goal is considered “attainable” when its precondition is satisfied before attempting
to satisfy this goal. This precondition is there to inform the agent m that it is
not useful to look for a plan to satisfy this goal if this precondition is false. If the
precondition is satisfied, this does not mean that the goal will always be satisfied,
only that it is possible that it will be.

94 Chapter 5. A Logical Modeling of the Yōkai Board Game

Of course, the set of specific goals given for each action is not complete, and one
can imagine defining other specific goals. Likewise, there are probably other default
goals. This is only to give examples and show how to proceed.

5.6.1 Observe actions

Here we describe a set of goals that will guide the agent m to observe one card rather
than another. If the agent fails to successfully execute a specific goal, then it will
try to satisfy the default goal of looking at a random card.

(Specific) goal: observe a card around a cards group of the same color.
This goal concerns the observation of a card around a set X of cards of the same
color, known by the agent m. By definition, this means that m aims there exists a
card x′ not belonging to X such that: the color of x′ is not known by m at time t,
x′ is in a neighbour position with X at time t, and the next instant (at t+1) m will
know the color of x′.

A precondition that must be verified before trying to satisfy this goal and that
all the cards of the set X are indeed cards located in neighboring positions at time
t.

Let X ⊆ CARDS : 1 ≤ |X| ≤ 3, a set of cards of the same color:

αtobsArroundCards(X)
def
=

∨
x′∈CARDS

x′ ̸∈X

((∧
c∈COLORS

¬△m col tx′,c

)
∧

nbgCardstX∪{x′} ∧
(∨
c∈COLORS

△m col t+1
x′,c

))
Pg(αtobsArroundCards(X))

def
= nbgCardstX

(Specific) goal: observe a card whose color is unknown. If agent m con-
siders that it is not possible to satisfy the previous goal, then m will aim to observe
the color of a card that it does not already know (this is the precondition of the
action).

Let x ∈ CARDS :

αtobsUnknownColorCard(x)
def
=

∨
c∈COLORS

△m col t+1
x,c

Pg(αtobsUnknownColorCard(x))
def
=

∧
c∈COLORS

¬△m col tx,c

(default) goal: observe a card randomly. When all other goals failed or were
impossible to achieve, then agent m performs the default goal of observing a random
card. Because of the previous goal, m already knows the color of this card, but it is
still obliged by the rules of the game to observe the color of a card. This action is
always executable (no precondition).

5.6. Goals modeling 95

Let x ∈ CARDS :

αtobsRandomly(x)
def
=

∨
c∈COLORS

△m col t+1
x,c

Pg(αtobsRandomly(x))
def
= ⊤

How to compute parameters of goals? The parameters of a goal are the free
variables in the definition of this goal. For convenience, we define a useful function
in Algorithm 2.

Algorithm 2 Userful functions for goals parameters computation
1: function getSubsetsGtLeq(X, τm, τM)
2: S ← ∅
3: for all X ′ ∈ 2X do
4: if τm < |X ′| ≤ τM then
5: push(X ′, S)
6: end if
7: end for
8: return S
9: end function

10:
11: function getElementsOfSize(X,ω)
12: S ← ∅
13: for all X ′ ∈ X do
14: if |X ′| == ω then
15: push(X ′, S)
16: end if
17: end for
18: return S
19: end function

The getSubsetsGtLeq function returns all the subsets of the set X whose
number of elements is strictly greater than τm and is lower or equal to τM . For ex-
ample, getSubsetsGtLeq({1, 2}, 0, |{1, 2}|) returns {{1}, {2}, {1, 2}} (the empty
set is not in the answer but {1, 2} is). Moreover, the getElementsOfSize func-
tion returns all elements of the input parameter X whose length is exactly ω (X is
a set of sets, and ω ∈ N).

Goals parameters, the ordering of the goals and the verification of their precon-
dition are determined by the metalogical Algorithm 3.

In this algorithm, the tryToObserve function checks, for each element x of
S (line 4), that the goal precondition for x is true (line 5), and if so attempts to
accomplish the goal for x (line 6). If at least one attempt is successful the function
returns true. If for every x the precondition is false or the goal not satisfied, the

96 Chapter 5. A Logical Modeling of the Yōkai Board Game

Algorithm 3 Computation of the arguments for observe goals

1: function tryToObserve(S, αtg)
2: success ← false
3: while S ̸= ∅ && ¬success do
4: x← pop(S)
5: if Pg(αtg(x)) then
6: success ← checkPlan(αtg(x))
7: end if
8: end while
9: return success

10: end function
11:
12: S ← ∅
13: for all c ∈ COLORS do
14: Xc ← {x ∈ CARDS : △m col tx,c ∈ Σf}
15: S ← S ∪ getSubsetsGtLeq(Xc, 0, |Xc|)
16: end for
17: S′ ← sortByDecreasingSize(S) ▷ ∀Xi, Xi+1 ∈ S′, |Xi| ≥ |Xi+1|
18:
19: if ¬tryToObserve(S′, αtobsArroundCards) then
20: X ← {x ∈ CARDS : ∃c ∈ COLORS ,△m col tx,c ∈ Σf}
21: X ′ ← CARDS \X ▷ The set of cards whose color is unknown
22: if ¬tryToObserve(X ′, αtobsUnknownColorCard) then
23: tryToObserve(CARDS , αtobsRandomly)
24: end if
25: end if

function returns false. Note that the function parameter S is a set of elements that
can be cards or non empty subsets of cards.

So, in Algorithm 3, we start by computing the set S which contains, for each
color (line 13), the set of cards of this color that are known by the agent m (line 14),
as well as all its non-empty subsets (line 15). Finally, S′ (line 17) is the set such
that: each element is a subset of cards of the same color, and all these elements are
sorted by size decreasing. For example, suppose that:

Σf = {△m col t15,b,△m col t6,b,△m col t1,g,△m col t13,g,△m col t7,g,△m col t9,y}.

So, we have:

S = {{15, 6}, {15}, {6}, {1, 13, 7}, {1, 13}, {1, 7}, {13, 7}, {1}, {13}, {7}, {9}}
S′ = {{1, 13, 7}, {15, 6}, {1, 13}, {1, 7}, {13, 7}, {15}, {6}, {1}, {13}, {7}, {9}}

The end of Algorithm 3 describes the ordering of the different goals: the agent

5.6. Goals modeling 97

m will first try to observe a card around a group of neighboring cards of the same
color (line 19), then it will try to look at a random card among those it does not
know (line 20 to line 22), then if no previous goal has been achieved, then he will
look at a random card (line 23).

5.6.2 Move actions

Goal: group 4 cards of the same color. Let X ⊆ CARDS such that |X| = 4

and every cards in X have the same color:

αtgroupCards4 (X)
def
= nbgCardst+1

X

Pg(αtgroupCards4 (X))
def
= ¬nbgCardstX∧(∨

X′⊆X
|X′|=3

(nbgCardstX′ ∧ hvENtX′) ∨
∨

X′⊆X
|X′|=2

(nbgCardstX′ ∧ hvECNtX\X′,X′)

)

The precondition above reads that there exists a plan to group the 4 cards in X iff:
1) they are currently not neighboring cards; and 2) either a subset X ′ of 3 cards is a
set of neighboring cards and at least one card of X ′ has a free neighboring position,
or a subset X ′ of 2 cards is a set of neighboring cards and at least one of the other
cards of X (not in X ′) has a neighboring free position in common with a card of X ′.

Goal: group 3 cards of the same color. Let c ∈ COLORS , X ⊆ CARDS such
that |X| = 3 and every cards in X have the same color:

αtgroupCards3 (X)
def
= nbgCardst+1

X

Pg(αtgroupCards3 (X), c)
def
= ¬nbgCardstX∧∧

x∈CARDS\X

(
col tx,c → ¬nbgCardstX∪{x}

)
∧

(∨
X′⊆X
|X′|=2

(nbgCardstX′ ∧ hvENtX′) ∨
∨

x,x′∈X
x ̸=x′

hvECNt{x},{x′}

)

The precondition above reads that there exists a plan to group the 3 cards in X

having the same color c iff: 1) the cards in X are currently not neighboring cards;
2) there does not exist a card of color c not in X forming (together with X) a set
of neighboring cards ; and 3) either a subset X ′ of 2 cards is a set of neighboring
cards and at least one card of X ′ has a free neighboring position, or at least 2 cards
in X have a neighboring free position in common.

98 Chapter 5. A Logical Modeling of the Yōkai Board Game

Goal: group 2 cards of the same color. Let c ∈ COLORS , X ⊆ CARDS such
that |X| = 2 and every cards in X have the same color:

αtgroupCards2 (X)
def
= nbgCardst+1

X

Pg(αtgroupCards2 (X), c)
def
= ¬nbgCardstX∧∧

x∈CARDS\X

(
col tx,c →

∧
x′∈X

¬nbgCardst{x,x′}
)
∧
∨
x∈X

hvENt{x}

The precondition above reads that there exists a plan to group 2 cards x and x′

having the same color c iff: 1) the cards in X are currently not neighboring cards;
2) there does not exist a card of color c not in X forming, together with a card in
X, a set of neighboring cards ; and 3) at least 1 card in X has a neighboring free
position in common.

Goal: move randomly a card. Let x ∈ CARDS :

αtrandomMove(x)
def
=

∨
p∈OPOS t

p′∈GRID\OPOS t

(postx,p ∧ post+1
x,p′)

Pg(αtrandomMove(x))
def
=

(∧
c∈COLORS

¬△m col tx,c

)
∨

∨
c∈COLORS

(
col tx,c ∧

∧
x′∈CARDS

x′ ̸=x

(col tx′,c → ¬nbgCardst{x,x′})
)

How to compute arguments of goals? The parameters of goals and their
precondition are computed directly from the mutable belief base Σm of agent m.

In Algorithm 4, the function getMarkedCards has a parameter X (a set of
cards having a same color). If X does not already contain 4 cards (line 4), then
this function will return the set of all cards x such that: 1) there exist a hint h that
includes the color c of cards in X (line 5); 2) x is marked by h (line 6) and 3) m

believes that x does not have a color not represented in h (that is, m has no reason
to believe that h gives a false indication about the color of x). Note that Hc is
computed only if the number of known cards is lower than 4 (line 4) because when
all the cards of a same color are known, we do not try to generate moves near cards
with a hint.

The function tryToMove has three parameters: a set S of elements (either
subsets of cards, or cards), a given goal αtg and a boolean b. The only difference
of this function from the tryToObserve function is the case where b is true (line
16): in this case, an additional parameter (the color of cards in Xc) is used to check
the goal precondition. This additional parameter is required when αtg is either
αtgroupCards3

(to group 3 cards) or αtgroupCards2
(to group 2 cards), which indicates a

true value for b.

5.6. Goals modeling 99

Algorithm 4 Computation of the arguments for move goals
1: function getMarkedCards(X)
2: ▷ X is a set of cards of the same color
3: c← getColor(X) ▷ return the color of cards in X
4: if |X| < 4 then
5: Hc ← {x ∈ CARDS : ∃h ∈ HINTS such that c ∈ h and
6: Σm ∪ Σc |= □m

(
mark tx,h ∧

∧
c′∈COLORS\h ¬col

t
x,c′
)
}

7: else
8: Hc ← ∅
9: end if

10: end function
11:
12: function tryToMove(S, αtg, b)
13: success ← false
14: while S ̸= ∅ && ¬success do
15: x← pop(S)
16: if b then
17: Precond ← Pg(αtg(x),getColor(x))
18: else
19: Precond ← Pg(αtg(x))
20: end if
21: if b then
22: success ← checkPlan(αtg(x))
23: end if
24: end while
25: return success
26: end function
27:
28: S ← ∅
29: for c ∈ COLORS do
30: Xc ← {x ∈ CARDS : △m col tx,c ∈ Σm}
31: Hc ← getMarkedCards(Xc)
32: S ← getSubsetsGtLeq(Xc ∪Hc, 1, 4)
33: end for
34: S′ ← sortByDecreasingSizeHints(S) ▷ See below for explanations
35:
36: X4 ← getElementsOfSize(S′, 4)
37: if ¬tryToMove(X4, α

t
groupCards4

, false) then
38: X3 ← getElementsOfSize(S′, 3)
39: if ¬tryToMove(X3, α

t
groupCards3

, true) then
40: X2 ← getElementsOfSize(S′, 2)
41: if ¬tryToMove(X2, α

t
groupCards2

, true) then
42: tryToMove(CARDS , αtrandomMove , false)
43: end if
44: end if
45: end if

100 Chapter 5. A Logical Modeling of the Yōkai Board Game

Finally, for each color c (line 29) we compute: Xc (line 30) that is the set of cards
of color c which are known by m; Hc (line 31) that is the set of cards unknown by
agent m but marked by a hint containing color c. Then, we generate the set of subsets
of cards (line 32) for which either the color is c or the color is unknown but these cards
are marked with a hint containing color c, and we only retain the subsets having
between 2 and 4 cards. As it is preferable to first try to group together the greatest
possible number of cards of the same color, and preferably cards of which we know
the color (that is, not marked by a hint), we sort all the subsets of cards using the
sort function (line 34). So, sortByDecreasingSizeHints(S) = {X1, X2, ..., Xn}
is a set of subsets of cards such that, for every i ∈ [1..n − 1]: 1) |Xi| ≥ |Xi+1|; 2)
if |Xi| = |Xi+1| then |hintst(Xi)| ≥ |hintst(Xi+1)|, where hintst(X) = {x ∈ X :

∃h ∈ HINTS ,mark tx,h ∈ Σf} is the set of cards in X marked by a hint.
In the rest of Algorithm 4, for each subset of S′ we try to group sets of cards

of decreasing size (line 36 to line 41). If no plan is successful, then the default goal
(move a card randomly, see line 42) is executed (which is always executable).

5.6.3 Mark actions and active actions

Goal: mark a card unknown by h with the smallest hint available. Let
x ∈ CARDS be a cards that is not marked at time t and h ∈ HINTS a hint that is
active at time t:

αtmarkUnknownCard(x,h)
def
= mark t+1

x,h

Pg(αtmarkUnknownCard(x,h))
def
=

∧
c∈COLORS

¬△t
h col

t
x,c ∧

∨
c′∈h
△m col tx,c′

Agent m has a goal to mark with a hint h a card x for which the color is unknown
by agent h at time t if and only if x is marked by h at time t + 1. Note it is not
necessary to check if x is not marked at time t because we already suppose it is the
case for the x goal parameter.

The precondition ensures that h does not know the color of card x yet at time
t, and that there exists a color c′ in the hint h such that m believes that x has the
color c′.

Goal: mark randomly a card. Let x ∈ CARDS be a cards that is not marked
at time t and h ∈ HINTS a hint that is active at time t:

αtmarkRandomCard(x,h)
def
= mark t+1

x,h

Pg(αtmarkRandomCard(x,h))
def
=

∨
c′∈h
△m col tx,c′

The goal is less restrictive than the previous one, since the fact that agent h does
not know the color of the card that agent m is trying to mark is not a precondition
for trying to reach this goal. Thus, this goal allows to play in the case where at least

5.6. Goals modeling 101

one hint is active but its use will not be optimally informative for h (who already
knows the color of the marked card).

The precondition just ensures there exists a color c′ in the hint h such that m

believes that x has the color c′.

How to compute arguments of goals? The parameters of goals and their
precondition are computed directly from the mutable beliefs base Σm of agent m

following Algorithm 5.

Algorithm 5 Computation of the arguments for mark goals

1: function tryToMark(X,H,αtg)
2: success ← false
3: while H ̸= ∅ && ¬success do
4: h← pop(H)
5: SX ← X
6: while SX ̸= ∅ && ¬success do
7: x← pop(SX)
8: if Pg(αtg(x,h)) then
9: success ← checkPlan(αtg(x,h))

10: end if
11: end while
12: end while
13: return success
14: end function
15:
16: X ←

{
x ∈ CARDS : Σm ∪Σc |=

∨
t∈TIME

(
now=t ∧□m

∧
h∈HINTS ¬mark tx,h

)}
17: H ←

{
h ∈ HINTS : Σm ∪ Σc |=

∨
t∈TIME

(
now=t ∧□m activeth

)}
18: HI ← sortByIncreasingSize(H)
19: if ¬tryToMark(X,HI , α

t
markUnknownCard) then

20: HD ← sortByDecreasingSize(H)
21: if ¬tryToMark(X,HD, α

t
markRandomCard) then

22: h← Random(HINTS \H) ▷ a non active hint
23: Active(h)
24: end if
25: end if

In Algorithm 5, we first define the tryToMark function which is similar to
tryToMove and tryToObserve previous functions. This function try, for each
hint in parameter H (line 3) and each card in parameter X (line 6), to check
precondition of the goal in parameter αtg (line 8). If this precondition is satisfied,
the algorithm try to satisfy the goal itself (line 9). As soon as a goal is satisfied (a
plan has been found) the true value is returned, else false is returned.

So, x contains the set of cards that are not marked at time t (line 16), and H

contains the set of active hints at time t (line 17).

102 Chapter 5. A Logical Modeling of the Yōkai Board Game

So, we compute HI (line 18) that gets elements of H sorted following in-
creasing size (that is, for every hj , hj+1 ∈ HI , |hj | ≤ |hj+1|), and HD (line
20) that gets elements of H sorted following decreasing size (that is, for every
hj , hj+1 ∈ HD, |hj | ≥ |hj+1|).

In the rest of Algorithm 5, we try first to satisfy the goal “to mark an unknown
card x with an active hint h”. If it is not possible to satisfy this goal or its precon-
ditions, or if there is no active clue, or if there is no card whose color is unknown to
the agent h (line 19), then the agent m will try to satisfy the next goal “to mark a
randomly chosen card x with an active hint h” (line 21).

Note that when m seeks to satisfy the first goal, the set of available indices are
classified according to increasing order with respect to their size (i.e., with respect
to the number of colors that defines them). This is because the smaller the size of
a hint, the more informative that hint is. (A hint of size 1 actually tells agent h the
real color of the card.) Conversely, when m tries to satisfy the second goal, we use
the list of hints classified according to their decreasing size. In other words, we start
by trying to satisfy the goal with the largest hint (therefore, the least informative
hint for agent h). This is simply because, in this case, there is no card whose color
h does not know, so we try to use the least informative hint first (in order to keep
the most informative hints for the end of the game).

If no goal is satisfiable, then the agent m activates a hint randomly chosen among
the set of indices which are not yet active.

Note that in the game, the following situation is possible: agent m does not
know any green card, but the only remaining hint has already been enabled and its
color is blue. In this case, the previous algorithm allow m to not execute any action
related to hint (m passes its turn).

5.7 Implementation and experiments

Implementation. The architecture presented in Figure 6 (See Appendix B for
more details about the architecture) works as an integrated system. All the pro-
cesses, interfaces and exchange of data between the modules work according to the
game rules.

The GUI module allows players to perform observations, movements, and active
or mark a card with a hint. The activation of hints is randomly generated cor-
rectly and according to the specifications for hints detailed in the paragraph “hints”
page 74. In addition, the generation of the set of data after each game exactly
reflects the current state of the game (current position, marked cards, occupied
positions, perimeter of the set of cards, etc.).

Some data can be computed inside the logical model (for example, a position in
the grid is occupied if there is a card occupying this position). But the fact of having
to recompute them each time the solver is requested, may be very costly in terms
of computation time and memory space. Thus, the graphical interface manages a
certain amount of data natively (position of the cards, movement authorized or not,

5.7. Implementation and experiments 103

Figure 5.2: Two different scenarios when players lost the game

etc.), and it can be categorized as a third agent, which controls, for example, the
real colors of the cards as well as the hints generation.

Here is important to mention that the GUI will verify when the players manage
to group the cards, because it has the knowledge about the distribution of all cards
in the grid.

The belief revision module can drop the older beliefs that contradict new inputs.
Similarly, the hierarchy of goals works fine and manages to group the cards according
to the cards known by agent m.

Data set. Our experiment was constructed as follows. We conducted 10 experi-
ment sets. Each experiment set consisted of 20 games: 10 games were played by the
human-machine configuration type (h-m) and 10 were played by the human-human
configuration type (h-h). Finally, the experiment includes 200 games of Yōkai (10
times 20 games). Every time a new game started, the system generated a random
distribution of the 16 cards in the grid.

Collaboration level analysis. First, we are interested in measuring the level of
collaboration between players, regardless of whether players win or fail the game.
We propose to calculate the level of collaboration based on the number of y-groups
(Yōkai groups) when the game is over. We call “y-group” a group of cards of the
same color without separation (see p. 91) for this group. If k is the size of a y-group
(that is, it contains k cards), we write it is a k-y-group. Then, the collaboration
level is n when, at the end of the game, players have built n 4-y-groups.

For instance, consider the example shown in Figure 5.2 above. In this figure,
although in both cases the players lost the game, it is easy to see that the collab-
oration between players was more efficient in case 1 than in case 2: as in case 1,
we observe three 4-y-groups while in case 2 we do not observe any 4-y-group, then
the collaboration level is 3 in case 1 and 0 in case 2.

As players win the game when they have built four 4-y-groups, they win when
the collaboration level is maximal (that is, equal to 4).

In the following, we seek to measure the collaboration level in different cases.
We show in Table 5.1 the results achieved during the games performed in the

104 Chapter 5. A Logical Modeling of the Yōkai Board Game

first experiment set. Note that the maximal score for a game configuration in an
experiment set is 40 (that is, 10 times 4 points).

h-m h-hExperiment
set Game

4-y-groups Score # 4-y-groups Score
1 1 - 1 -
2 1 - 2 -
3 4 8 2 -
4 1 - 2 -
5 3 - 1 -
6 4 8 4 9
7 4 7 3 -
8 2 - 2 -
9 1 - 1 -

1

10 1 - 0 -
Total: 22 18

Table 5.1: Games performed during experiment set 1

The entire data set of the experiment is presented in Table 5.2 and is plotted in
Figure 5.3. In Table 5.2, the average score of the h-m configuration is 26.7, and that
of the h-h configuration is 21.6.

Experiment
setConfig.

type
1 2 3 4 5 6 7 8 9 10

h-m 22 28 33 32 28 30 19 26 23 26

h-h 18 23 21 23 24 25 17 19 21 25

Table 5.2: Average total points by experiment set

In Figure 5.3, we can see that the plot representing the h-m configuration (in
blue) is always located above that representing the h-h configuration (in red in the
figure). This means that the level of collaboration is always higher in the first
type than in the second type. (Of course, one can object that a very high level of
collaboration can still lead to a low result, but remember that here we define the
level of collaboration according to the number of 4-y-groups which is an indicator
based on the results of the games.)

5.7. Implementation and experiments 105

h-m h-h
Experiment set

Games won Best score Games won Best score
1 3 8 1 9
2 3 9 2 7
3 5 9 2 8
4 4 11 1 7
5 2 12 1 5
6 4 7 3 8
7 2 8 0 0
8 2 7 1 7
9 1 7 0 0
10 2 8 2 9

Table 5.3: Games won and best scores for each experiment set

1 2 3 4 5 6 7 8 9 10

18

20

22

24

26

28

30

32

34

22

28

33

32

28

30

19

26

23

26

18

23

21

23

24

25

17

19

21

25

Experiment set

T
ot

al
#

4-
y-

gr
ou

ps

h-m h-h

Figure 5.3: Total # 4-y-groups by experiment set

Won games and scores analysis. The next step was to count the number of
winning games between the ten games performed by type of configuration in each
experiment set. Even more, we are interested in the highest score achieved between
the ten games performed by type of configuration. Recall the score is computed
according to the formula detailed in Section 5.2. We represented both measures in
Table 5.3.

We show in Figure 5.4 the number of games won for each type of configuration.
Note that the best possible result by set is 10. Again, we can see that the number
of games won in blue (h-m) is always greater than or equal to that in red (h-h).
The best result is 5 (that is, one out of two games was won within this set) and is

106 Chapter 5. A Logical Modeling of the Yōkai Board Game

obtained by h-m collaboration. For h-h collaboration, the best score is only 3.

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

3 3

5

4

2

4

2 2

1

2

1

2 2

1 1

3

0

1

0

2

Experiment set

G
am

es
w

on

h-m h-h

Figure 5.4: Number of games won in each experimental set by each game configu-
ration

In Figure 5.5 we show the best score achieved in each experiment set and for
each type of collaboration. We can observe that in three experiment sets the h-m
configuration was able to overcome the score achieved by the h-h configuration.

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

8

9 9

11

12

7

8

7 7

8

9

7

8

7

5

8

0

7

0

9

Experiment set

B
es

t
Sc

or
e

h-m h-h

Figure 5.5: Best score achieved among games performed in each experimental set
by each game configuration

5.8. Discussion 107

5.8 Discussion

Let’s first compare the level of collaboration according to the type of game con-
figuration. We can see in Figure 5.3 that the h-m collaboration overcomes the h-h
collaboration in grouping cards of the same color. Among the 10 experiment sets,
the h-h configuration was close to reaching the same level of collaboration as the
h-m configuration in only two sets (7 and 9) .

Additionally, analysis of the scoring system from the Figure 5.4 shows that the
number of games won in the configuration h-m is higher than that of the configura-
tion h-h in all experiment sets. Moreover, the Figure 5.5 shows that the highest score
obtained in the configuration h-m is on average better than that in the configuration
h-h, since there are only three cases (sets 1, 6 and 10) where the configuration h-h
exceeds the best score achieved in the configuration h-m.

By analyzing the games played during the experiment, it seems that if the hints
activated at the start of the game are those with a single color, then there is a
greater probability of winning the game because one player can use these hints to
guide the other player about the cards it knows and the other doesn’t. Similarly,
marking cards with a hint having three colors sometimes makes it possible to deduce
the color of a card according to the other active hints. For example, suppose agent
h observes a card while there are three active hints {y,b}, {y, r} and {y, g, r}.
Suppose also that a player marks a card with the hint {y, g, r}. In such a case, and
assuming that we keep in mind that the smaller hints are played first because they
are more informative, we could deduce that the marked card is green. In order not
to complicate our model, this type of reasoning has not been taken into account
for the moment. Nevertheless, it is not a technical impossibility: as we did for the
rules of the type “if a card is marked with a hint h then its color cannot be a color
not belonging to h” (see page 87), we could integrate similar rules into the Σh set
of revisable beliefs of the agent m so that we can remove them if necessary. For
example, suppose that using such a rule, the agent m deduces that the marked card
is green, and suppose that later, by observing other cards, m actually knows the 4
cards that are really green. m should no longer deduce from the clue that the marked
card is green and m just has to revise its beliefs by removing the rule allowing it to
deduce the color of the marked card.

Following the Yōkai rules, we can only activate a hint or use it for marking a
card. Currently, the algorithm that manages the fact of marking a card using a hint
(see Algorithm 5) only allows activating a new hint if no more hints are playable
or available. Nevertheless, sometimes it is better to activate a new hint than to use
a hint in a non-informative way for the other player. For example, this case can
occur if the only active hint is {g} and I know that the other player already knows
all the green cards that I know. The algorithm can be improved, although the idea
was not in this work to describe all the possible goals and the best strategy to seek
to satisfy them, but rather to simply show how to proceed, and the capacity of the
formal language to do this work.

108 Chapter 5. A Logical Modeling of the Yōkai Board Game

5.9 Conclusion

We introduced a simple epistemic language to represent the knowledge and actions
of an artificial player in the context of the cooperative board game Yōkai. We
have shown that this game requires a combination of theory of mind (ToM) and
temporal and spatial reasoning to be played effectively by an artificial agent. Our
approach relies on SAT given the existence of a translation preserving the polysize
satisfiability of the epistemic language into propositional logic.

We implemented the game following the same architecture used for the imple-
mentation of the artificial assistant detailed in Chapter 4. We noticed that the two
main factors that facilitated the implementation were the belief update process and
the delegation of some validations to the GUI.

We found that the dynamic generation of actions improved the planner’s perfor-
mance. This improvement is based on the fact that at each time point the machine
performs only one action, which type is known in advance based on its sequence in
the round. For instance, if the current action is in fact the machine’s third action,
then it is of type moving a card. Thus, it is not efficient to perform planning with
repertoire of actions that considers all the possible kinds of operations. Thus, if the
action the machine has to perform is to move a card, then the system only generates
moving actions in the repertoire of actions. Furthermore, the target positions will be
around the perimeter of the cards in the grid, avoiding separating the cards into two
isolated groups. We demonstrated that the hierarchy of goals was the appropriate
technique to guide the machine’s actions during the game.

Future work could be organized in two steps. First, we could try to implement
a machine-machine version of the Yōkai game and compare the effectiveness of this
collaboration with our results in the h-m and h-h configuration. Second, we could
include a machine learning module in the system architecture, which will endow the
machine agent with the necessary skills to learn new strategies based on previous
games. Finally, just as we did with our basic GUI chatbot in Chapter 4, we could
detach our java interface and replace it with a web version that will allow us to
make the game available to a wider audience.

Conclusion

In concluding this thesis, we give a summary of our work. How did we answer our
research questions? Which new concepts did we introduce? Which results did we
show? Which open questions remain?

Summary

We started our investigations with an overview of the standard frameworks for Epis-
temic Logic, Doxastic Logic, Dynamic Epistemic Logic, Logic of Doxastic Attitudes
and Epistemic Planning. Finally, we studied SAT and QBF in Chapter 1. The
chapters which followed tackled four research questions:

1. Can we build a logical framework to represent and reason about an agent’s be-
liefs, desires, and intentions and whose satisfiability problem could be reduced
to SAT?

2. Can we propose an integrated architecture for cognitive planning in the context
of our logical framework? Moreover, is it possible to find an efficient encoding
for our cognitive planning problem?

3. How can we implement our integrated architecture for cognitive planning using
functional programming?

4. How to apply our framework for cognitive planning to model and implement
a cooperative game that uses ToM as well as temporal and spatial reasoning?

In Chapter 2 we achieved our goal of finding an NP-fragment of the LDA logic
by avoiding the recursive call to the implicit belief modality. We proved that the
satisfiability problem of our NP-fragment is reduced to SAT. Furthermore, we pro-
vided a set of reduction axioms to transform formulas expressed in our NP-fragment
to their propositional logic version with sub-indexes to represent the Kripke worlds
and special atoms to simulate accessibility relations. Therefore, our first research
question can be answered with a clear yes.

In Chapter 3, we answered our second question by proposing an integrated frame-
work for cognitive planning. We presented a general architecture that considers two
core modules: belief revision and cognitive planning module. Next, we defined two
types of planning problem: the informative planning problem and the interrogative
planning problem. Two examples are proposed to illustrate both approaches. The
first example describes a scenario where an artificial assistant aims to induce in the
human agent a potential intention to choose the ideal sport recommended for him,
based on the user’s preferences. In the second example, an artificial agent plays
the role of a virtual coach, trying to persuade the human agent to practice physical

110 Conclusion

activity using the principles of motivational interviewing. The virtual coach tries
to reach her goal by making the human agent aware of the inconsistency between
his current behavior (not doing physical exercise) and his desires (to be in good
health). We formalized the belief revision functionality, where the belief base is di-
vided into core beliefs and mutable beliefs. At the end of this chapter, we introduced
an optimal QBF encoding for an informative planning problem.

In Chapter 4 we tackled our third research question by moving from mathe-
matics to programming. We implemented our model for cognitive planning in the
functional programming paradigm using Ocaml. We implemented the set of transla-
tions proposed in Chapter 2 in an independent module called translator integrated
with the belief revision and cognitive planning modules represented in the system
architecture detailed in Chapter 3. The cognitive planning module generates the
planning formulas using an initial state, a set of actions and a persuasive goal.
Thereafter, the planning module calls the translator and once the planning for-
mula is transformed into propositional logic, the cognitive planning module calls
the TouIST solver to verify the validity of the formula. An additional technical
point here was the introduction of parallelism to improve the system’s performance.
In fact, in our implementation of the scenario presented in example 1 (Section 3.6),
in which an artificial assistant aims to persuade the human agent to practice a sport
based on her preferences, the system starts a set of threads per each possible ideal
sport. When one of the threads is able to find a valid plan, the system saves it as an
abstract plan. Later, the GUI translates the abstract plan into a natural language
expression and shows it to the human agent.

A second application for our cognitive planning framework was a cooperative
board game called Yōkai. In Chapter 5, we presented the logical modeling for Yōkai
in which in order to be played effectively, participants are required to reason about
time, space as well as apply principles of ToM. We first presented a two-agent timed
variant of the language and the semantics of our logical framework presented in
Chapter 2. Second, we modeled the game considering the static (the different rules,
the initial state of the game, etc.) and dynamic aspects (the effects of the actions
during the evolution of the game and its preconditions). In terms of our two previous
definitions, it seems that to make it fit into a planning problem we are missing the
goals. In Section 5.6, the goals were modeled for each of the actions type. One
of the main challenges was implementing the functionality to allow the machine to
select the best strategy depending on the action type. We demonstrated that the
hierarchy of goals was the correct technique for guiding the artificial agent’s actions
during the game.

Appendices

Appendix A

Detailed proof of Theorem 10

In this section, we are going to provide a polysize reduction of the satisfiability
problem of L to SAT. The reduction consists of three steps.

As a first step, we put L formulas in negation normal form (NNF) via the
following function nnf :

nnf (pt) = pt,

nnf (now≥t) = now≥t,

nnf (△t
h α) = △t

h α,

nnf (△mα) = △mα,

nnf (□m α) = □m nnf (α),

nnf (♢m α) = ♢m nnf (α),

nnf (φ ∧ ψ) = nnf (φ) ∧ nnf (ψ),

nnf (φ ∨ ψ) = nnf (φ) ∨ nnf (ψ),

nnf (¬pt) = ¬pt,
nnf (¬now≥t) = ¬now≥t,

nnf (¬△t
h α) = ¬△t

h α,

nnf (¬△m) = ¬△mα,

nnf (¬¬φ) = nnf (φ),

nnf
(
¬(φ ∧ ψ)

)
= nnf (¬φ ∨ ¬ψ),

nnf
(
¬(φ ∨ ψ)

)
= nnf (¬φ ∧ ¬ψ),

nnf (¬□m α) = ♢m nnf (¬α),
nnf (¬♢m α) = □m nnf (¬α).

Let us define the NNF variant LNNF0 of the language L0 by the following gram-
mar:

β ::= pt | ¬pt | now≥t | ¬now≥t | △t
h α | ¬△t

h α | △mα |
¬△mα | β1 ∧ β2 | β1 ∨ β2

where pt ranges over Atm, t ranges over TIME and α ranges over L0.
Furthermore, let us define the language LNNF by the following grammar. For β

ranging over LNNF0 :

φ ::= β | φ1 ∧ φ2 | φ1 ∨ φ2 | □m β | ♢m β.

114 Appendix A

Proposition 6 Let φ ∈ L. Then, φ ↔ nnf (φ) is valid in the class M, and
nnf (φ) ∈ LNNF .

Note that the size of nnf (φ) is polynomial in the size of φ.
As a second step, we define the following modal language LMod into which the

language LNNF will be translated:

ω ::= q | ¬ω | ω1 ∧ ω2 | ω1 ∨ ω2,

φ ::= q | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ■ω | ♦ω

where q ranges over the following set of atomic formulas:

Atm+ = Atm ∪ {pnow≥t : t ∈ TIME}∪ {p△mα : α ∈ L0}∪
{p△t

h α
: t ∈ TIME and α ∈ L0}.

So pnow≥t , p△mα and p△t
h α

are nothing but special propositional variables.
We interpret the language LMod w.r.t. a pair (M,w), called pointed Kripke

model, where M = (W,⇒, π), W is a set of worlds, ⇒ ⊆W ×W and π : Atm+ −→
2W . (Boolean cases are again omitted as they are defined in the usual way.)

Definition 29 The semantic interpretation for formulas in LMod w.r.t. a pointed
Kripke model (M,w) is as follows:

(M,w) |= q ⇐⇒w ∈ π(q);
(M,w) |= ■ω ⇐⇒∀v ∈W if w ⇒ v then (M,v) |= ω;

(M,w) |= ♦ω ⇐⇒∃v ∈W s.t. w ⇒ v and (M, v) |= ω.

The class of pointed Kripke models is denoted by K. Satisfiability and validity of
formulas in LMod relative to the class K is defined in the usual way.

Let tr0 : L0 −→ LMod be a translation such that:

tr0(p
t) = pt,

tr0(¬α) = ¬tr0(α),
tr0(α1 ∧ α2) = tr0(α1) ∧ tr0(α2),

tr0(△i α) = p△i α

Detailed proof of Theorem 10 115

Let tr1 : LNNF −→ LMod be a translation such that:

tr1(p
t) = pt,

tr1(¬pt) = ¬pt,
tr1(now

≥t) = pnow≥t ,

tr1(¬now≥t) = ¬pnow≥t ,

tr1(△t
h α) = p△t

h α
,

tr1(¬△t
h α) = ¬p△t

h α
,

tr1(φ1 ∧ φ2) = tr1(φ1) ∧ tr1(φ2),

tr1(φ1 ∨ φ2) = tr1(φ1) ∨ tr1(φ2),

tr1(△mα) = p△mα ∧■ tr0(α),

tr1(¬△mα) = ¬p△mα,

tr1(□m β) = ■ tr0(β),

tr1(♢m β) = ♦ tr0(β).

As the following theorem indicates, the polynomial translation tr1 guarantees
the transfer of satisfiability from model class M to model class K.

Theorem 13 Let φ ∈ LNNF . Then, φ is satisfiable in the class M if and only
if ■

(∧
α∈Γφ

tr1(α)
)
∧ tr1(φ) is satisfiable in the class K, where Γφ is defined as

follows:

Γφ ={now≥0} ∪ {now≥t → now≥t′ : t′ ≤ t and now≥t,now≥t′ ∈ SF (φ)}∪
{now≥t ↔△mnow

≥t : now≥t ∈ SF (φ)}∪
{¬now≥t ↔△m¬now≥t : now≥t ∈ SF (φ)},

116 Appendix A

and SF (φ) is the set of subformulas of φ which is inductively defined as follows:

SF
(
pt
)
= {pt},

SF
(
¬pt
)
= {¬pt} ∪ SF

(
pt
)
,

SF
(
now≥t) = {now≥t},

SF
(
¬now≥t) = {¬now≥t} ∪ SF

(
now≥t) ,

SF
(
△t

h α
)
= {△t

h α} ∪ SF (α) ,

SF
(
¬△t

h α
)
= {¬△t

h α} ∪ SF
(
△t

h α
)
,

SF (△mα) = {△mα} ∪ SF (α) ,

SF (¬△mα) = {¬△mα} ∪ SF (△mα) ,

SF (φ1 ∧ φ2) = {φ1 ∧ φ2} ∪ SF (φ1) ∪ SF (φ2) ,

SF (φ1 ∨ φ2) = {φ1 ∨ φ2} ∪ SF (φ1) ∪ SF (φ2) ,

SF (□m β) = {□m β} ∪ SF (β) ,

SF (♢m β) = {♢m β} ∪ SF (β) .

As a last step, we provide a polysize reduction of LMod-satisfiability to SAT,
where the underlying propositional logic language LPL is built from the following
set of atomic propositions:

Atm++ = {qx : q ∈ Atm+ and x ∈ N} ∪ {rx,y : x, y ∈ N}.

Let tr2 : LMod × N× N −→ LPL be the following translation function:

tr2(q, x, y) = qx,

tr2(¬φ, x, y) = ¬tr2(φ, x, y),
tr2(φ1 ∧ φ2, x, y) = tr2(φ1, x, y) ∧ tr2(φ2, x, y),

tr2(φ1 ∨ φ2, x, y) = tr2(φ1, x, y) ∨ tr2(φ2, x, y),

tr2(■ω, x, y) =
∧

0≤z≤y

(
rx,z → tr2(ω, z, y)

)
,

tr2(♦ω, x, y) =
∨

0≤z≤y

(
rx,z ∧ tr2(ω, z, y)

)
.

Translation tr2 is similar to the translation of modal logic S5 into propositional
logic given in [Caridroit et al. 2017] and, more generally, to the standard translation
of modal logic into FOL in which accessibility relations are encoded by special
predicates.

Detailed proof of Theorem 11 117

The size of an LMod formula, size (φ), is defined by:

size
(
pt
)
= 1,

size (φ1 ∧ φ2) = size (φ1) + size (φ2) + 1,

size (φ1 ∨ φ2) = size (φ1) + size (φ2) + 1,

size (¬φ) = size (φ) + 1,

size (■ω) = size (♦ω)

= size (ω) + 1.

Note that the size of tr2
(
φ, 0, size(φ)

)
is polynomial in the size of φ.

Theorem 14 Let φ ∈ LMod. Then, φ is satisfiable in the class K if and only if
tr2
(
φ, 0, size(φ)

)
is satisfiable in propositional logic.

Note that the size of tr2
(
φ, 0, size(φ)

)
is polynomial in the size of φ. Therefore,

Theorem 10 follows from Proposition 6, Theorem 13 and Theorem 14.

Detailed proof of Theorem 11

The following equivalences are valid in the class M:

[+t
mα]α

′ ↔

⊤, if α′ = △mα or (α′ = now≥t′ and t′ ≤ t) or

(α′ = △mnow
≥t′ and t′ ≤ t),

α′, otherwise;

[+t
mα]¬φ↔ ¬[+t

mα]φ;

[+t
mα](φ1 ∧ φ2)↔ [+t

mα]φ1 ∧ [+t
mα]φ2;

[+t
mα](φ1 ∨ φ2)↔ [+t

mα]φ1 ∨ [+t
mα]φ2;

[+t
mα]□m α

′ ↔ □m

(
(α ∧

∧
t′≤t

now≥t′)→ α′);
[+t

mα]♢m α
′ ↔ ♢m

(
(α ∧

∧
t′≤t

now≥t′) ∧ α′).
Thanks to these equivalences we can define the following reduction red trans-

118 Appendix A

forming every L+ formula φ into an equivalent L formula red (φ):

red (pt) = pt,

red (△t
h α) = △t

h α,

red (△mα) = △mα,

red (¬φ) = ¬red (φ),
red (φ1 ∧ φ2) = red (φ1) ∧ red (φ2),

red (φ1 ∨ φ2) = red (φ1) ∨ red (φ2),

red (□m φ) = □m red (φ),

red (♢m φ) = ♢m red (φ),

red ([+t
mα]α

′) =

⊤, if α′ = △mα or (α′ = now≥t′ and t′ ≤ t) or

(α′ = △mnow
≥t′ and t′ ≤ t),

red (α′), otherwise;

red ([+t
mα]¬φ) = red (¬[+t

mα]φ),

red
(
[+t

mα](φ1 ∧ φ2)
)
= red ([+t

mα]φ1 ∧ [+t
mα]φ2),

red
(
[+t

mα](φ1 ∨ φ2)
)
= red ([+t

mα]φ1 ∨ [+t
mα]φ2),

red ([+t
mα]□m α

′) = red
(
□m

(
(α ∧

∧
t′≤t

now≥t′)→ α′));
red ([+t

mα]♢m α
′) = red

(
♢m
(
(α ∧

∧
t′≤t

now≥t′) ∧ α′)).
Proposition 7 Let φ ∈ L+. Then, φ ↔ red (φ) is valid in the class M, and
red (φ) ∈ L.

Theorem 11 is a consequence of Theorem 10, Proposition 7 and the fact that the
size of red (φ) is polynomial in the size of φ.

The separation constraint

For every p, p′ ∈ GRID : p ̸= p′, t ∈ TIME , and S ⊆ GRID : p, p′ ̸∈ S:

linkedtp,p′,S
def
=

 ∨
1≤i≤|S|

patht(p,p′),p′,i

 ∧ ∧
p′′∈S\NEIG(p)

¬patht(p,p′),p′′,1

∧
∧

2≤i≤|S|
p′′∈S

patht(p,p′),p′′,i →
∨

p′′′∈NEIG(p′′)

patht(p,p′),p′′′,i−1

that reads: “there is a path in S from position p to position p′ iff: (1) p′ is reachable
in at most |S| steps, (2) no position which is not a neighbor of p in S is reachable

The separation constraint 119

from p in 1 step, (3) any position p′′ in the path is reachable from p within i steps
only if there is at least a neighbor p′′′ of p′′ in S which is reachable in i− 1 steps.”

Finally, for p ∈ GRID , and x ∈ CARDS :

OPOS t(S)
def
=

∧
p∈S
¬emptp ∧

∧
p∈GRID\S

emptp

legMov tx,p
def
=

∨
p′′∈GRID
p′′ ̸=p

(
postx,p′′ ∧ emptp ∧

∧
p′∈NEIG(p′′)

∨
S∈2GRID

(
OPOS t(S) ∧ linkedtp,p′,S\{p′′}

))
emptp reads “the position p is empty”; OPOS t is the set of positions occupied by a
card at time t; legMov tx,p reads “the move of card x towards position p at time t is
authorized by the rules of the game iff p is currently an empty position and there is a
sequence of adjacent positions between p and any other occupied positions (except
the initial position p′′ of card x) through the set of currently occupied positions
(excluding p′′).

Appendix B

Implementation of Yōkai

This appendix is devoted to explaining the implementation of the Yōkai board game.
In the system architecture presented in Figure 6, it is possible to identify three main
modules: the GUI (front-end) and the belief revision and planning modules (back-
end). The GUI allows the players to perform their actions at each turn, while the
back-end modules update the belief base and generate the actions corresponding to
agent m. During the game, players can observe in the GUI the actions performed
by the other player.

Figure 6: System architecture

At each time point, the GUI module generates the text file
/sdata/01_ini_set.txt (Listing 1). This file contains information related
to the positions of the cards, neighbors’ cards, occupied positions, empty positions
on the game perimeter, active hints, and hints colors. The function that generates
this file has been implemented in the GUI program inside the Translator.java
class. In fact, by generating this information and performing some validations, the
GUI plays the role of the third agent that we described in Section 5.7.

1 $now = 0
2 $length = ($now + 1)
3 $I = [pos_1_p_12_12 , pos_2_p_12_13 , pos_3_p_12_14 , pos_4_p_12_15 ,

pos_5_p_13_12 , pos_6_p_13_13 , pos_7_p_13_14 , pos_8_p_13_15 , pos_9_p_14_12
, pos_10_p_14_13 , pos_11_p_14_14 , pos_12_p_14_15 , pos_13_p_15_12 ,
pos_14_p_15_13 , pos_15_p_15_14 , pos_16_p_15_15]

/sdata/01_ini_set.txt
Translator.java

122 Appendix B

4 $POSINI (1) = [p_12_12]
5 $POSINI (2) = [p_12_13]
6 $POSINI (3) = [p_12_14]
7 $POSINI (4) = [p_12_15]
8 $POSINI (5) = [p_13_12]
9 $POSINI (6) = [p_13_13]

10 $POSINI (7) = [p_13_14]
11 $POSINI (8) = [p_13_15]
12 $POSINI (9) = [p_14_12]
13 $POSINI (10) = [p_14_13]
14 $POSINI (11) = [p_14_14]
15 $POSINI (12) = [p_14_15]
16 $POSINI (13) = [p_15_12]
17 $POSINI (14) = [p_15_13]
18 $POSINI (15) = [p_15_14]
19 $POSINI (16) = [p_15_15]
20 $NEIG(p_12_12) = [p_11_12 , p_12_11]
21 $NEIG(p_12_13) = [p_11_13]
22 $NEIG(p_12_14) = [p_11_14]
23 $NEIG(p_12_15) = [p_11_15 , p_12_16]
24 $NEIG(p_13_12) = [p_13_11]
25 $NEIG(p_13_13) = []
26 $NEIG(p_13_14) = []
27 $NEIG(p_13_15) = [p_13_16]
28 $NEIG(p_14_12) = [p_14_11]
29 $NEIG(p_14_13) = []
30 $NEIG(p_14_14) = []
31 $NEIG(p_14_15) = [p_14_16]
32 $NEIG(p_15_12) = [p_16_12 , p_15_11]
33 $NEIG(p_15_13) = [p_16_13]
34 $NEIG(p_15_14) = [p_16_14]
35 $NEIG(p_15_15) = [p_16_15 , p_15_16]
36 $NEIGBOR(p_12_12) = [p_11_12 , p_13_12 , p_12_13 , p_12_11]
37 $NEIGBOR(p_12_13) = [p_11_13 , p_13_13 , p_12_14 , p_12_12]
38 $NEIGBOR(p_12_14) = [p_11_14 , p_13_14 , p_12_15 , p_12_13]
39 $NEIGBOR(p_12_15) = [p_11_15 , p_13_15 , p_12_16 , p_12_14]
40 $NEIGBOR(p_13_12) = [p_12_12 , p_14_12 , p_13_13 , p_13_11]
41 $NEIGBOR(p_13_13) = [p_12_13 , p_14_13 , p_13_14 , p_13_12]
42 $NEIGBOR(p_13_14) = [p_12_14 , p_14_14 , p_13_15 , p_13_13]
43 $NEIGBOR(p_13_15) = [p_12_15 , p_14_15 , p_13_16 , p_13_14]
44 $NEIGBOR(p_14_12) = [p_13_12 , p_15_12 , p_14_13 , p_14_11]
45 $NEIGBOR(p_14_13) = [p_13_13 , p_15_13 , p_14_14 , p_14_12]
46 $NEIGBOR(p_14_14) = [p_13_14 , p_15_14 , p_14_15 , p_14_13]
47 $NEIGBOR(p_14_15) = [p_13_15 , p_15_15 , p_14_16 , p_14_14]
48 $NEIGBOR(p_15_12) = [p_14_12 , p_16_12 , p_15_13 , p_15_11]
49 $NEIGBOR(p_15_13) = [p_14_13 , p_16_13 , p_15_14 , p_15_12]
50 $NEIGBOR(p_15_14) = [p_14_14 , p_16_14 , p_15_15 , p_15_13]
51 $NEIGBOR(p_15_15) = [p_14_15 , p_16_15 , p_15_16 , p_15_14]
52 $HINTS = [1, 2, 3, 4, 5, 6, 7]
53 $AVHINTS = []
54 $ACHINTS = []
55 $HINT_COLOR (1) = [B]
56 $HINT_COLORSS (1,1) = [B]
57 $HINT_COLOR (2) = [B, G]
58 $HINT_COLORSS (2,1) = [B]
59 $HINT_COLORSS (2,2) = [G]
60 $HINT_COLOR (3) = [R, B, Y]
61 $HINT_COLORSS (3,1) = [R]
62 $HINT_COLORSS (3,2) = [B]
63 $HINT_COLORSS (3,3) = [Y]
64 $HINT_COLOR (4) = [R]
65 $HINT_COLORSS (4,1) = [R]

Implementation of Yōkai 123

66 $HINT_COLOR (5) = [Y, G]
67 $HINT_COLORSS (5,1) = [Y]
68 $HINT_COLORSS (5,2) = [G]
69 $HINT_COLOR (6) = [G, R, Y]
70 $HINT_COLORSS (6,1) = [G]
71 $HINT_COLORSS (6,2) = [R]
72 $HINT_COLORSS (6,3) = [Y]
73 $HINT_COLOR (7) = [G, B]
74 $HINT_COLORSS (7,1) = [G]
75 $HINT_COLORSS (7,2) = [B]
76 $COLORS = [R,G,B,Y]
77 $OPOS($now) = [p_12_12 , p_12_13 , p_12_14 , p_12_15 , p_13_12 , p_13_13 , p_13_14 ,

p_13_15 , p_14_12 , p_14_13 , p_14_14 , p_14_15 , p_15_12 , p_15_13 , p_15_14 ,
p_15_15]

78 $PERIM = [p_11_12 , p_12_11 , p_11_13 , p_11_14 , p_11_15 , p_12_16 , p_13_11 ,
p_13_16 , p_14_11 , p_14_16 , p_16_12 , p_15_11 , p_16_13 , p_16_14 , p_16_15 ,
p_15_16]

79 $GRID = [p_12_12 , p_13_12 ,p_14_12 , p_15_12 , p_15_13 , p_15_14 , p_15_15 ,
p_14_15 , p_13_15 , p_12_15 , p_12_14 , p_12_13]

80 $CARDS = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Listing 1: Sets file generated by the GUI module

Formulas representing Σc are saved in the file /sdata/00_axioms.touist as it
is shown in Listing 2.

1 ;; (SAT -EFA1) Etat initial et but
2 bigand $i in $I: $i($now) end
3

4 ;;ICP1
5 bigand $t in [$now.. $length]:
6 bigand $x in $CARDS :
7 bigor $p in $GRID :
8 pos($x,$p ,$t)
9 end

10 end
11 end
12 ;; END_ICP1
13

14 ;;ICP2
15 bigand $t in [$now.. $length]:
16 bigand $x,$p1 ,$p2 in $CARDS ,$GRID ,$GRID when $p1 != $p2:
17 not (pos($x,$p1 ,$t) and pos($x,$p2 ,$t))
18 end
19 end
20 ;; END_ICP2
21

22 ;;ICP3
23 bigand $t in [$now.. $length]:
24 bigand $x1 ,$x2 ,$p in $CARDS ,$CARDS ,$GRID when $x1 != $x2:
25 not (pos($x1 ,$p,$t) and pos($x2 ,$p,$t))
26 end
27 end
28 ;; END_ICP3
29 ;;ICC4
30 bigand $t in [$now.. $length]:
31 bigand $x in $CARDS :
32 bigor $c in $COLORS :
33 col($x,$c ,$t)
34 end
35 end

/sdata/00_axioms.touist

124 Appendix B

36 end
37 ;; END_ICC4
38

39 ;;ICC5
40 bigand $t in [$now.. $length]:
41 bigand $x,$c1 ,$c2 in $CARDS ,$COLORS ,$COLORS when $c1 != $c2:
42 not (col($x,$c1 ,$t) and col($x,$c2 ,$t))
43 end
44 end
45 ;; END_ICC5
46

47 ;;SSA11
48 bigand $t in [$now +1.. $length]:
49 bigand $xa , $ap , $movact in $CARDS , $POSINI($xa), $NEIG($ap) :
50 (pos($xa ,$movact ,$t) and not pos($xa ,$movact ,$t -1))
51 => ((bigand $x , $p in $CARDS diff [$xa], $POSINI($x) : pos($x,$p,$t)

<=>
52 pos($x,$p ,$t -1) end) and
53 (bigand $x , $c in $CARDS , $COLORS : (col($x,$c,$t) <=>
54 col($x,$c ,$t -1)) and (not tm_col($x,$c,$t) <=>
55 not tm_col($x ,$c,$t -1)) end) and
56 (bigand $x , $h in $CARDS , $AVHINTS : mark($x ,$h,$t) <=>
57 mark($x,$h ,$t -1) end))
58 end
59 end
60 ;; END_SSA11
61

62 ;;SSA11
63 bigand $t in [$now +1.. $length]:
64 bigand $xa , $coloract in $CARDS , $COLORS :
65 (col($xa ,$coloract ,$t) and not tm_col($xa ,$coloract ,$t -1))
66 => ((bigand $x, $p in $CARDS , $POSINI($x) : pos($x ,$p,$t) <=>
67 pos($x,$p ,$t -1) end) and
68 (bigand $x , $c in $CARDS diff [$xa], $COLORS : (col($x,$c,$t) <=>
69 col($x,$c ,$t -1)) or (not tm_col($x,$c,$t) <=>
70 not tm_col($x ,$c ,$t -1)) end) and
71 (bigand $x , $h in $CARDS , $AVHINTS : mark($x ,$h,$t) <=>
72 mark($x,$h ,$t -1) end))
73 end
74 end
75 ;; END_SSA11
76

77 ;;SSA12
78 bigand $t in [$now +1.. $length]:
79 bigand $hintact in $HINTS :
80 (act($hintact ,$t) and not act($hintact ,$t -1))
81 => ((bigand $x, $p in $CARDS , $GRID : pos($x,$p ,$t) <=>
82 pos($x,$p ,$t -1) end) and
83 (bigand $x , $c in $CARDS , $COLORS : (col($x,$c,$t) <=>
84 col($x,$c ,$t -1)) and (not tm_col($x,$c,$t) <=>
85 not tm_col($x ,$c,$t -1)) end) and
86 (bigand $h in $HINTS diff $ACHINTS : act($h,$t) <=> act($h,$t -1) end

)
87)
88 end
89 end
90 ;; END_SSA12
91

92 ;;SSA13
93 bigand $t in [$now +1.. $length]:
94 bigand $xa , $hintact in $CARDS , $HINTS :
95 (mark($xa ,$hintact ,$t) and not mark($xa ,$hintact ,$t -1))

Implementation of Yōkai 125

96 => ((bigand $x , $p in $CARDS , $GRID : pos($x ,$p,$t) <=>
97 pos($x,$p ,$t -1) end) and
98 (bigand $x , $h in $CARDS diff [$xa], $AVHINTS : mark($x ,$h,$t) <=>
99 mark($x,$h ,$t -1) end))

100 end
101 end
102 ;; END_SSA13

Listing 2: Formulas representing core beliefs

Formulas in Σc uses the sets of information provided by the file:/sdata/01_ini_
set.txt. Thus, the next step is to join the information of both files. The sets of
information provided by the file:/sdata/01_ini_set.txt are inserted dynamically
at the top of the axioms file: /sdata/00_axioms.touist at each time point.

We use TouIST to verify the syntax of the logical formulas. Next, we can observe
the validation of the sets and formulas in the TouIST GUI.

Figure 7: Checking syntax for formulas in Σc using TouIST GUI

/sdata/01_ini_set.txt
/sdata/01_ini_set.txt
/sdata/01_ini_set.txt
/sdata/00_axioms.touist

126 Appendix B

Figure 8: Checking syntax for formulas in Σc using TouIST GUI

The initial mutable beliefs are saved in the file /sdata/00_axioms.touist as it
is shown in Listing 3.

1 now_t0
2 not tm_col_1_G_t0
3 not tm_col_2_B_t0
4 not tm_col_3_R_t0
5 not tm_col_4_R_t0
6 not tm_col_5_G_t0
7 not tm_col_6_R_t0
8 not tm_col_7_B_t0
9 not tm_col_8_Y_t0

10 not tm_col_9_Y_t0
11 not tm_col_10_Y_t0
12 not tm_col_11_Y_t0
13 not tm_col_12_G_t0
14 not tm_col_13_B_t0
15 not tm_col_14_G_t0
16 not tm_col_15_B_t0
17 not tm_col_16_R_t0
18 not th_col_1_B_t0 and not th_col_1_G_t0 and not th_col_1_R_t0 and not

th_col_1_Y_t0
19 not th_col_2_B_t0 and not th_col_2_G_t0 and not th_col_2_R_t0 and not

th_col_2_Y_t0
20 not th_col_3_B_t0 and not th_col_3_G_t0 and not th_col_3_R_t0 and not

th_col_3_Y_t0
21 not th_col_4_B_t0 and not th_col_4_G_t0 and not .
22 .
23 .
24 .
25 not th_col_15_B_t0 and not th_col_15_G_t0 and not th_col_15_R_t0 and not

th_col_15_Y_t0
26 not th_col_16_B_t0 and not th_col_16_G_t0 and not th_col_16_R_t0 and not

th_col_16_Y_t0
27 not act_1_t0
28 not act_2_t0
29 not act_3_t0
30 not act_4_t0
31 not act_5_t0

/sdata/00_axioms.touist

Implementation of Yōkai 127

32 not act_6_t0
33 not act_7_t0
34 not mark_1_1_t0
35 not mark_1_2_t0
36 .
37 .
38 .
39 not mark_16_6_t0
40 not mark_16_7_t0
41 pos_1_p_12_12_t0
42 pos_2_p_12_13_t0
43 pos_3_p_12_14_t0
44 pos_4_p_12_15_t0
45 pos_5_p_13_12_t0
46 pos_6_p_13_13_t0
47 pos_7_p_13_14_t0
48 pos_8_p_13_15_t0
49 pos_9_p_14_12_t0
50 pos_10_p_14_13_t0
51 pos_11_p_14_14_t0
52 pos_12_p_14_15_t0
53 pos_13_p_15_12_t0
54 pos_14_p_15_13_t0
55 pos_15_p_15_14_t0
56 pos_16_p_15_15_t0

Listing 3: Mutable beliefs

Thereafter, the system joins the previous files containing Σc and Σm. This union
will represent agent m’s belief base Σ we illustrate in the architecture sketched in
Figure 6.

At this point, it is worth mentioning that when we used TouIST to obtain the
Abstract Syntax Tree (AST) 6 from the set of formulas in 00_axioms.touist and
we saved the AST in a text file, the generated file had approximately 6 megabytes
size on average. This size is a significant amount of data for a text file. When we
traced the source of this problem by evaluating the AST, we found that the reason
was that some formulas contained in Σc generated too many combinations.

An example of this situation is formula ICC6 detailed in section 5.5.1. According
to this there should be a maximum of 4 cards of the same color. The formula tries to
implement this constraint by generating all possible combinations of 4 cards among
16 cards. The resulting combination produces 1,820 possibilities by color, so when
we multiply by four existing colors, the resulting combinations increase to 7,280
possibilities only for this formula.

Similarly, formula ICP1 states that each card has a position, and that position
must be unique in the grid. If we have a board with 32 x 32 positions, then for each
card, we have 1024 possible positions multiplied by 16 cards. Thus, the possible
positions for the total cards are 16,384.

We consider it redundant to implement formula ICC6 because the GUI will never
generate more than four cards of the same color. Similarly, in the case of formula
ICP1, the GUI will assign each card a unique position in the grid at each time

6https://www.irit.fr/TouIST/wp-content/uploads/2020/04/reference-manual.html

00_axioms.touist
https://www.irit.fr/TouIST/wp-content/uploads/2020/04/reference-manual.html

128 Appendix B

point. We propose implementing these formulas at the GUI level and not in the
logical language to avoid overflow and reduce the computation time.

Furthermore, some functions also represent a big challenge to implement using
purely logical formulas. An example of this situation is the function legMov tx,p used
to validate the separation constraint 5.5.2.

In order to simplify the implementation and reduce the programming time, we
included this function in the Yōkai GUI :

legalmove = game.move(out, (Position)computerActionx.get(2));

The previous function reads the new position and verifies if this has a common side
with another card in the grid using the following java code:

1 public int adjacent(Card c, Position pos) {
2 int numberAdjacent = 0;
3 if (pos.getX() - 1 >= 0 && cardList[pos.getX() - 1][pos.getY()] != null
4 && !(cardList[pos.getX() - 1][pos.getY()]. equals(c)))
5 numberAdjacent ++;
6 if (pos.getX() + 1 < LENGTH && cardList[pos.getX() + 1][pos.getY()] != null
7 && !(cardList[pos.getX() + 1][pos.getY()]. equals(c)))
8 numberAdjacent ++;
9 if (pos.getY() + 1 >= 0 && cardList[pos.getX()][pos.getY() + 1] != null

10 && !(cardList[pos.getX()][pos.getY() + 1]. equals(c)))
11 numberAdjacent ++;
12 if (pos.getY() - 1 < LENGTH && cardList[pos.getX()][pos.getY() - 1] != null
13 && !(cardList[pos.getX()][pos.getY() - 1]. equals(c)))
14 numberAdjacent ++;
15 return numberAdjacent;
16 }

Listing 4: Legal move function in the GUI

The GUI executes the legalmove function passing the target position as parame-
ter. The resulting value is assigned to the boolean variable legalmove. For example
in the scenario illustrated in Figure 9, the machine intends to move card 3, from the
current position pos_3_p_12_14 to the final position pos_3_p_11_12.

In this case the final position is linked with at least one card in the grid (card
1). Consequently the legalmove function is equal to True. Based on that, the GUI
will repaint the board to show the new cards’ positions.

Otherwise, the system will rerun the planning module until it can find a valid
target position. Moreover, at each iteration the system will excluded illegal target
positions generated by previous plans from the set of available actions to prevent
an infinite loop.

legalmove
pos_3_p_12_14
pos_3_p_11_12
legalmove

Implementation of Yōkai 129

Figure 9: Legal move function

When the game starts, the cards are placed forming a square in the middle of the
board. The cards are randomly colored, as shown in Figure 10. Concerning the
initial positions, card 1 is always placed on the upper left corner of the square at
position p_12_12 (axis x = 12 and axis y = 12). Similarly, card 16 will be located
on the lower right corner of the square at position p_15_15 (axis x = 15 and axis y
= 15).

Figure 10: Cards distribution at the beginning of the game

In Figure 11 we can see the section of Σm that contains the beliefs resulting from
the actions performed during agent m’s round 1.

Figure 11: Agent m’s first round

p_12_12
p_15_15

130 Appendix B

At slot time 1, agent m’s observes card 1:
1 col_1_R_t1 and tm_col_1_R_t1 and (th_tm_col_1_G_t1 or th_tm_col_1_Y_t1 or

th_tm_col_1_B_t1 or th_tm_col_1_R_t1)

Listing 5: Σm entries at time point 1

At slot time 2, agent m’s observes card 2:
1 col_1_R_t2 and tm_col_1_R_t2 and (th_tm_col_1_G_t2 or th_tm_col_1_Y_t2 or

th_tm_col_1_B_t2 or th_tm_col_1_R_t2)
2 col_2_B_t2 and tm_col_2_B_t2 and (th_tm_col_2_G_t2 or th_tm_col_2_Y_t2 or

th_tm_col_2_B_t2 or th_tm_col_2_R_t2)

Listing 6: Σm entries at time point 2

At slot time 3, agent m’s moves card 3 from pos_12_14 to pos_11_12:
1 col_1_R_t3 and tm_col_1_R_t3 and (th_tm_col_1_G_t3 or th_tm_col_1_Y_t3 or

th_tm_col_1_B_t3 or th_tm_col_1_R_t3)
2 col_2_B_t3 and tm_col_2_B_t3 and (th_tm_col_2_G_t3 or th_tm_col_2_Y_t3 or

th_tm_col_2_B_t3 or th_tm_col_2_R_t3)
3 pos_3_p_11_12_t3 and tm_pos_3_p_11_12_t3 and th_pos_3_p_11_12_t3

Listing 7: Σm entries at time point 3

At time 4, agent m’s activates a hint:
1 col_1_R_t4 and tm_col_1_R_t4 and (th_tm_col_1_G_t4 or th_tm_col_1_Y_t4 or

th_tm_col_1_B_t4 or th_tm_col_1_R_t4)
2 col_2_B_t4 and tm_col_2_B_t4 and (th_tm_col_2_G_t4 or th_tm_col_2_Y_t4 or

th_tm_col_2_B_t4 or th_tm_col_2_R_t4)
3 pos_3_p_11_12_t4 and tm_pos_3_p_11_12_t4 and th_pos_3_p_11_12_t4
4 act_1_t4 and tm_act_1_t4 and th_act_1_t4

Listing 8: Σm entries at time point 4

Once agent m has finished its round, it is time to play for agent h. In Figure 12,
we illustrate an example of a sequence of actions performed during agent h’s first
round.

Figure 12: Agent h’s first round

At slot time 5, agent h’s observes card 15:
1 col_1_R_t5 and tm_col_1_R_t5 and (th_tm_col_1_G_t5 or th_tm_col_1_Y_t5 or

th_tm_col_1_B_t5 or th_tm_col_1_R_t5)
2 col_2_B_t5 and tm_col_2_B_t5 and (th_tm_col_2_G_t5 or th_tm_col_2_Y_t5 or

th_tm_col_2_B_t5 or th_tm_col_2_R_t5)
3 pos_3_p_11_12_t5 and tm_pos_3_p_11_12_t5 and th_pos_3_p_11_12_t5
4 act_1_t5 and tm_act_1_t5 and th_act_1_t5

pos_12_14
pos_11_12

Implementation of Yōkai 131

5 (th_col_15_R_t5 or th_col_15_G_t5 or th_col_15_Y_t5 or th_col_15_B_t5)

Listing 9: Σm entries at time point 5

At slot time 6, agent h’s observes card 16:
1 col_1_R_t6 and tm_col_1_R_t6 and (th_tm_col_1_G_t6 or th_tm_col_1_Y_t6 or

th_tm_col_1_B_t6 or th_tm_col_1_R_t6)
2 col_2_B_t6 and tm_col_2_B_t6 and (th_tm_col_2_G_t6 or th_tm_col_2_Y_t6 or

th_tm_col_2_B_t6 or th_tm_col_2_R_t6)
3 pos_3_p_11_12_t6 and tm_pos_3_p_11_12_t6 and th_pos_3_p_11_12_t6
4 act_1_t6 and tm_act_1_t6 and th_act_1_t6
5 (th_col_15_R_t6 or th_col_15_G_t6 or th_col_15_Y_t6 or th_col_15_B_t6)
6 (th_col_16_R_t6 or th_col_16_G_t6 or th_col_16_Y_t6 or th_col_16_B_t6)

Listing 10: Σm entries at time point 6

At slot time 7, agent h moves card 16 from pos_15_15 to pos_14_16:
1 col_1_R_t7 and tm_col_1_R_t7 and (th_tm_col_1_G_t7 or th_tm_col_1_Y_t7 or

th_tm_col_1_B_t7 or th_tm_col_1_R_t7)
2 col_2_B_t7 and tm_col_2_B_t7 and (th_tm_col_2_G_t7 or th_tm_col_2_Y_t7 or

th_tm_col_2_B_t7 or th_tm_col_2_R_t7)
3 pos_3_p_11_12_t7 and tm_pos_3_p_11_12_t7 and th_pos_3_p_11_12_t7
4 act_1_t7 and tm_act_1_t7 and th_act_1_t7
5 (th_col_15_R_t7 or th_col_15_G_t7 or th_col_15_Y_t7 or th_col_15_B_t7)
6 (th_col_16_R_t7 or th_col_16_G_t7 or th_col_16_Y_t7 or th_col_16_B_t7)
7 pos_16_p_14_16_t7 and tm_pos_16_p_14_16_t7 and th_pos_16_p_14_16_t7

Listing 11: Σm entries at time point 7

At slot time 8, agent h activates a hint:
1 col_1_R_t8 and tm_col_1_R_t8 and (th_tm_col_1_G_t8 or th_tm_col_1_Y_t8 or

th_tm_col_1_B_t8 or th_tm_col_1_R_t8)
2 col_2_B_t8 and tm_col_2_B_t8 and (th_tm_col_2_G_t8 or th_tm_col_2_Y_t8 or

th_tm_col_2_B_t8 or th_tm_col_2_R_t8)
3 pos_3_p_11_12_t8 and tm_pos_3_p_11_12_t8 and th_pos_3_p_11_12_t8
4 act_1_t8 and tm_act_1_t8 and th_act_1_t8
5 (th_col_15_R_t8 or th_col_15_G_t8 or th_col_15_Y_t8 or th_col_15_B_t8)
6 (th_col_16_R_t8 or th_col_16_G_t8 or th_col_16_Y_t8 or th_col_16_B_t8)
7 pos_16_p_14_16_t8 and tm_pos_16_p_14_16_t8 and th_pos_16_p_14_16_t8
8 act_6_t8 and tm_act_6_t8 and th_act_6_t8

Listing 12: Σm entries at time point 8

The planning process determines agent m’s actions. Actions performed by agent
m and agent h are saved in the interface file: /sdata/interfacefx.txt with a
flag equal to 1. These actions represent the Σinput parameter as it is shown in the
architecture in 4.3. Subsequently, and after the belief review process is executed,
the flag indicator changes from 1 to 0. In Listing 13 we can see an example of the
information stored in the interface file:

1 m:col_1_R_t1 and tm_col_1_R_t1 and (th_tm_col_1_G_t1 or th_tm_col_1_Y_t1 or
th_tm_col_1_B_t1 or th_tm_col_1_R_t1):0

2 m:col_2_B_t2 and tm_col_2_B_t2 and (th_tm_col_2_G_t2 or th_tm_col_2_Y_t2 or
th_tm_col_2_B_t2 or th_tm_col_2_R_t2):0

3 m:pos_3_p_11_12_t3 and tm_pos_3_p_11_12_t3 and th_pos_3_p_11_12_t3 :0
4 m:act_1_t4 and tm_act_1_t4 and th_act_1_t4 :0
5 h:(th_col_15_R_t5 or th_col_15_G_t5 or th_col_15_Y_t5 or th_col_15_B_t5):0

pos_15_15
pos_14_16
/sdata/interfacefx.txt

132 Appendix B

6 h:(th_col_16_R_t6 or th_col_16_G_t6 or th_col_16_Y_t6 or th_col_16_B_t6):0
7 h:pos_16_p_14_16_t7 and tm_pos_16_p_14_16_t7 and th_pos_16_p_14_16_t7 :0
8 h:act_6_t8 and tm_act_6_t8 and th_act_6_t8 :0

Listing 13: Interface file

As shown above, the interface file keeps the history of actions performed by the
players, allowing us to follow the game’s evolution.

Grouping cards

During the game, agent m obtains new information that it will use to achieve the
goal of grouping cards of the same color together in cooperation with agent h. As
an example of m’s ability to group cards based on previous observations, we can
consider the following scenario illustrated in Figure 13.

Figure 13: Agent m’s round 2

At time point 10, agent m observes that card 4 is blue and, thanks to a previous
observation at time 2 (see Figure 11), agent m knows that card 2 is also blue, thereby
m will try to achieve the goal of grouping these two cards.

The system calls the planning module with three parameters ⟨Σ,Op, αG⟩, as
detailed in Definition 28.

The belief base Σ includes the SSA11 axiom as part of agent m’s initial core
beliefs (section 5.5.1). According to SSA11, if card x has a new position p at time
t, the position of the other cards, the colors of all cards, and the status of all hints
remain unchanged from t− 1 to t.

The formula used for implementing SSA11 is included in file /sdata/00_axioms.
touist that contains the set of formulas representing agent m’s core beliefs.

The set Xc used in algorithm 4 is generated by the system based on the observed
cards. Next, we show the content of Xc for our example:

G|3;
Y|
R|1;
B|2;4;

The set Xc considers four rows, one per color, and is generated based on the ob-
servations performed by agent m. In addition, according to algorithm 4 for grouping
cards, we also need to consider the set of deductions that agent m makes about the

/sdata/00_axioms.touist
/sdata/00_axioms.touist

Implementation of Yōkai 133

possible color of a card based on the hints provided by the agent h. In algorithm 4,
the system assigns the set of deductions to the variable Hc. Thus, in our example
based on the fact that agent h still does not mark any card, the variable Hc set is
empty.

We join the sets Xc and Hc in the set S, and we filter and sorted S according
to algorithm 4 :

B|2;4;
R|1;
G|3;

Now that we have the set S sorted in descending order, agent m will try to group
these cards starting from the first element in the list. Thus, the system extracts
the first element from S and assigns it to Xc as is indicated in algorithm 4. In
order to see if it is possible for agent m to group the cards in Xc, agent m evaluates
Pg(αtgroupCardsN (Xc)

, c) specified in sub-section 5.6.2 as it is shown in Listing 14.

1 $now = 10
2 $G2CARDS = [2, 4]
3 $G2COLOR = B
4 $X(B,2,1) = [[2, 4]]
5 $I = [pos_1_p_12_12 , pos_2_p_12_13 , pos_3_p_11_12 , pos_4_p_12_15 ,

pos_5_p_13_12 , pos_6_p_13_13 , pos_7_p_13_14 , pos_8_p_13_15 , pos_9_p_14_12
, pos_10_p_14_13 , pos_11_p_14_14 , pos_12_p_14_15 , pos_13_p_15_12 ,
pos_14_p_15_13 , pos_15_p_15_14 , pos_16_p_14_16]

6 $POSINI (1) = [p_12_12]
7 $POSINI (2) = [p_12_13]
8 $POSINI (3) = [p_11_12]
9 $POSINI (4) = [p_12_15]

10 $POSINI (5) = [p_13_12]
11 $POSINI (6) = [p_13_13]
12 $POSINI (7) = [p_13_14]
13 $POSINI (8) = [p_13_15]
14 $POSINI (9) = [p_14_12]
15 $POSINI (10) = [p_14_13]
16 $POSINI (11) = [p_14_14]
17 $POSINI (12) = [p_14_15]
18 $POSINI (13) = [p_15_12]
19 $POSINI (14) = [p_15_13]
20 $POSINI (15) = [p_15_14]
21 $POSINI (16) = [p_14_16]
22 $NEIG(p_12_12) = [p_12_11]
23 $NEIG(p_12_13) = [p_11_13 , p_12_14]
24 $NEIG(p_11_12) = [p_10_12 , p_11_13 , p_11_11]
25 $NEIG(p_12_15) = [p_11_15 , p_12_16 , p_12_14]
26 $NEIG(p_13_12) = [p_13_11]
27 $NEIG(p_13_13) = []
28 $NEIG(p_13_14) = [p_12_14]
29 $NEIG(p_13_15) = [p_13_16]
30 $NEIG(p_14_12) = [p_14_11]
31 $NEIG(p_14_13) = []
32 $NEIG(p_14_14) = []
33 $NEIG(p_14_15) = [p_15_15]
34 $NEIG(p_15_12) = [p_16_12 , p_15_11]
35 $NEIG(p_15_13) = [p_16_13]
36 $NEIG(p_15_14) = [p_16_14 , p_15_15]
37 $NEIG(p_14_16) = [p_13_16 , p_15_16 , p_14_17]

134 Appendix B

38 $NEIGBOR(p_12_12) = [p_11_12 , p_13_12 , p_12_13 , p_12_11]
39 $NEIGBOR(p_12_13) = [p_11_13 , p_13_13 , p_12_14 , p_12_12]
40 $NEIGBOR(p_11_12) = [p_10_12 , p_12_12 , p_11_13 , p_11_11]
41 $NEIGBOR(p_12_15) = [p_11_15 , p_13_15 , p_12_16 , p_12_14]
42 $NEIGBOR(p_13_12) = [p_12_12 , p_14_12 , p_13_13 , p_13_11]
43 $NEIGBOR(p_13_13) = [p_12_13 , p_14_13 , p_13_14 , p_13_12]
44 $NEIGBOR(p_13_14) = [p_12_14 , p_14_14 , p_13_15 , p_13_13]
45 $NEIGBOR(p_13_15) = [p_12_15 , p_14_15 , p_13_16 , p_13_14]
46 $NEIGBOR(p_14_12) = [p_13_12 , p_15_12 , p_14_13 , p_14_11]
47 $NEIGBOR(p_14_13) = [p_13_13 , p_15_13 , p_14_14 , p_14_12]
48 $NEIGBOR(p_14_14) = [p_13_14 , p_15_14 , p_14_15 , p_14_13]
49 $NEIGBOR(p_14_15) = [p_13_15 , p_15_15 , p_14_16 , p_14_14]
50 $NEIGBOR(p_15_12) = [p_14_12 , p_16_12 , p_15_13 , p_15_11]
51 $NEIGBOR(p_15_13) = [p_14_13 , p_16_13 , p_15_14 , p_15_12]
52 $NEIGBOR(p_15_14) = [p_14_14 , p_16_14 , p_15_15 , p_15_13]
53 $NEIGBOR(p_14_16) = [p_13_16 , p_15_16 , p_14_17 , p_14_15]
54 $HINTS = [1, 2, 3, 4, 5, 6, 7]
55 $AVHINTS = [1, 2]
56 $ACHINTS = []
57 $COLORS = [R,G,B,Y]
58 $OPOS($now) = [p_12_12 , p_12_13 , p_11_12 , p_12_15 , p_13_12 , p_13_13 , p_13_14 ,

p_13_15 , p_14_12 , p_14_13 , p_14_14 , p_14_15 , p_15_12 , p_15_13 , p_15_14 ,
p_14_16]

59 $PERIM = [p_12_11 , p_11_13 , p_12_14 , p_10_12 , p_11_13 , p_11_11 , p_11_15 ,
p_12_16 , p_12_14 , p_13_11 , p_12_14 , p_13_16 , p_14_11 , p_15_15 , p_16_12 ,
p_15_11 , p_16_13 , p_16_14 , p_15_15 , p_13_16 , p_15_16 , p_14_17]

60 $GRID = [p_11_12 , p_12_12 , p_13_12 , p_14_12 , p_15_12 , p_15_13 , p_15_14 ,
p_14_15 , p_14_16 ,p_13_15 , p_12_15 , p_13_14 , p_13_13 , p_12_13]

61 $CARDS = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
62

63 $t = $now + 1
64

65 bigand $x,$p in $G2CARDS , $POSINI($x):
66 pos($x,$p ,$t)
67 end
68

69 ;; The cards in X are currently not neighboring cards
70 not (bigand $i, $X in [1..1] , $X($G2COLOR ,2,$i) :
71 (bigor $x, $p, $x1 , $p1 in $X, $POSINI($x), $X , $POSINI($x1)
72 when ($p1 in $NEIGBOR($p)) and ($x != $x1):
73 (pos($x ,$p,$t) and pos($x1 ,$p1 ,$t))
74 end)
75 end)
76

77 ;;At least 1 card in X has a neighboring free position in common
78 (bigor $X in $X($G2COLOR ,2,1) :
79 (bigor $x, $p, $x1 , $p1 in $X , $POSINI($x), $X, $POSINI($x1)
80 when (card($NEIG($p)) >=1 or card($NEIG($p1)) >=1) and ($x != $x1) :
81 (pos($x ,$p,$t) and pos($x1 ,$p1 ,$t))
82 end)
83 end)

Listing 14: Pre-condition for grouping 2 cards

If the precondition is SAT, this means that it is possible to group the two cards,
so next the machine can use the goal : αtgroupCardsN (Xc)

represented by the following
formula:

1 $now = 10
2 $G2CARDS = [2, 4]

Implementation of Yōkai 135

3 $G2COLOR = B
4 $X(B,2,1) = [[2, 4]]
5 $I = [pos_1_p_12_12 , pos_2_p_12_13 , pos_3_p_11_12 , pos_4_p_12_15 ,

pos_5_p_13_12 , pos_6_p_13_13 , pos_7_p_13_14 , pos_8_p_13_15 , pos_9_p_14_12
, pos_10_p_14_13 , pos_11_p_14_14 , pos_12_p_14_15 , pos_13_p_15_12 ,
pos_14_p_15_13 , pos_15_p_15_14 , pos_16_p_14_16]

6 $POSINI (1) = [p_12_12]
7 $POSINI (2) = [p_12_13]
8 $POSINI (3) = [p_11_12]
9 $POSINI (4) = [p_12_15]

10 $POSINI (5) = [p_13_12]
11 $POSINI (6) = [p_13_13]
12 $POSINI (7) = [p_13_14]
13 $POSINI (8) = [p_13_15]
14 $POSINI (9) = [p_14_12]
15 $POSINI (10) = [p_14_13]
16 $POSINI (11) = [p_14_14]
17 $POSINI (12) = [p_14_15]
18 $POSINI (13) = [p_15_12]
19 $POSINI (14) = [p_15_13]
20 $POSINI (15) = [p_15_14]
21 $POSINI (16) = [p_14_16]
22 $NEIG(p_12_12) = [p_12_11]
23 $NEIG(p_12_13) = [p_11_13 , p_12_14]
24 $NEIG(p_11_12) = [p_10_12 , p_11_13 , p_11_11]
25 $NEIG(p_12_15) = [p_11_15 , p_12_16 , p_12_14]
26 $NEIG(p_13_12) = [p_13_11]
27 $NEIG(p_13_13) = []
28 $NEIG(p_13_14) = [p_12_14]
29 $NEIG(p_13_15) = [p_13_16]
30 $NEIG(p_14_12) = [p_14_11]
31 $NEIG(p_14_13) = []
32 $NEIG(p_14_14) = []
33 $NEIG(p_14_15) = [p_15_15]
34 $NEIG(p_15_12) = [p_16_12 , p_15_11]
35 $NEIG(p_15_13) = [p_16_13]
36 $NEIG(p_15_14) = [p_16_14 , p_15_15]
37 $NEIG(p_14_16) = [p_13_16 , p_15_16 , p_14_17]
38 $NEIGBOR(p_12_12) = [p_11_12 , p_13_12 , p_12_13 , p_12_11]
39 $NEIGBOR(p_12_13) = [p_11_13 , p_13_13 , p_12_14 , p_12_12]
40 $NEIGBOR(p_11_12) = [p_10_12 , p_12_12 , p_11_13 , p_11_11]
41 $NEIGBOR(p_12_15) = [p_11_15 , p_13_15 , p_12_16 , p_12_14]
42 $NEIGBOR(p_13_12) = [p_12_12 , p_14_12 , p_13_13 , p_13_11]
43 $NEIGBOR(p_13_13) = [p_12_13 , p_14_13 , p_13_14 , p_13_12]
44 $NEIGBOR(p_13_14) = [p_12_14 , p_14_14 , p_13_15 , p_13_13]
45 $NEIGBOR(p_13_15) = [p_12_15 , p_14_15 , p_13_16 , p_13_14]
46 $NEIGBOR(p_14_12) = [p_13_12 , p_15_12 , p_14_13 , p_14_11]
47 $NEIGBOR(p_14_13) = [p_13_13 , p_15_13 , p_14_14 , p_14_12]
48 $NEIGBOR(p_14_14) = [p_13_14 , p_15_14 , p_14_15 , p_14_13]
49 $NEIGBOR(p_14_15) = [p_13_15 , p_15_15 , p_14_16 , p_14_14]
50 $NEIGBOR(p_15_12) = [p_14_12 , p_16_12 , p_15_13 , p_15_11]
51 $NEIGBOR(p_15_13) = [p_14_13 , p_16_13 , p_15_14 , p_15_12]
52 $NEIGBOR(p_15_14) = [p_14_14 , p_16_14 , p_15_15 , p_15_13]
53 $NEIGBOR(p_14_16) = [p_13_16 , p_15_16 , p_14_17 , p_14_15]
54 $HINTS = [1, 2, 3, 4, 5, 6, 7]
55 $AVHINTS = [1, 3]
56 $ACHINTS = []
57 $COLORS = [R,G,B,Y]
58 $OPOS($now) = [p_12_12 , p_12_13 , p_11_12 , p_12_15 , p_13_12 , p_13_13 , p_13_14 ,

p_13_15 , p_14_12 , p_14_13 , p_14_14 , p_14_15 , p_15_12 , p_15_13 , p_15_14 ,
p_14_16]

59 $PERIM = [p_12_11 , p_11_13 , p_12_14 , p_10_12 , p_11_13 , p_11_11 , p_11_15 ,

136 Appendix B

p_12_16 , p_12_14 , p_13_11 , p_12_14 , p_13_16 , p_14_11 , p_15_15 , p_16_12 ,
p_15_11 , p_16_13 , p_16_14 , p_15_15 , p_13_16 , p_15_16 , p_14_17]

60 $GRID = [p_11_12 , p_12_12 , p_13_12 , p_14_12 , p_15_12 , p_15_13 , p_15_14 ,
p_14_15 , p_14_16 , p_13_15 , p_12_15 , p_13_14 , p_13_13 , p_12_13]

61 $CARDS = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
62

63 ;;GOAL
64 $t = $now + 1
65 (bigor $X , $x1 , $p1 , $x2 , $p2 , $tp in
66 $X($G2COLOR ,2,1), $X , $POSINI($x1), $X diff [$x1], $POSINI($x2),

$NEIG($p2) :
67 (pos($x1 ,$tp ,$t) and pos($x2 ,$p2 ,$t))
68 end)
69 ;; END_GOAL

Listing 15: Goal formula for grouping two cards

Thereafter, the system generates the AST of the goal formula for grouping two cards
using TouIST. The system saves the AST in a file which represents the αG input to
the planning module as it is shown in Figure 6.

$ ~/sw/code/yokai_master/sdata/goals$./touist.exe Goal_32.touist --show
(pos(2,p_11_15,11) and pos(4,p_12_15,11) or
(pos(2,p_12_14,11) and pos(4,p_12_15,11) or
(pos(2,p_12_16,11) and pos(4,p_12_15,11) or
(pos(4,p_11_13,11) and pos(2,p_12_13,11) or
(pos(4,p_12_14,11) and pos(2,p_12_13,11)

The next step is to call the planning module. The planner will try to find an action
from the set of actions Op that will allows to achieve the goal αG starting from
the initial state Σ. At this point in our example, agent m’s beliefs contained in Σ

are indexed at time equal to 10. Thus, the planning module will used information
provided by the successor state axiom SS11, specified in Section 5.5.1, for deducing
what will be true at time 11, which is index time for αG.

Action selection

Afterwards the system runs the planning module with the three input parameters
shown in Figure 6. During the planning process, the system enters in a loop gen-
erating formulas containing candidate plans until one of the formulas is UnSAT. If
this is the case, then the formula contains a valid plan. In Listing 16, we show an
example of a planning formula containing a candidate plan for grouping two cards
moving card 2 to position p_11_15 at slot time 11.

1 (not ([m](
2 not tm_col_5_G_t10 and
3 not tm_col_6_Y_t10 and
4 .
5 .
6 col_1_R_t10 and tm_col_1_R_t10 and (th_tm_col_1_G_t10 or th_tm_col_1_Y_t10 or

th_tm_col_1_B_t10 or th_tm_col_1_R_t10) and
7 col_2_B_t10 and tm_col_2_B_t10 and (th_tm_col_2_G_t10 or th_tm_col_2_Y_t10 or

th_tm_col_2_B_t10 or th_tm_col_2_R_t10) and
8 act_1_t10 and tm_act_1_t10 and th_act_1_t10 and

p_11_15

Implementation of Yōkai 137

9 (th_col_15_R_t10 or th_col_15_G_t10 or th_col_15_Y_t10 or th_col_15_B_t10)
and

10 (th_col_16_R_t10 or th_col_16_G_t10 or th_col_16_Y_t10 or th_col_16_B_t10)
and

11 pos_3_p_11_12_t10 and tm_pos_3_p_11_12_t10 and th_pos_3_p_11_12_t10 and
12 pos_16_p_14_16_t10 and tm_pos_16_p_14_16_t10 and th_pos_16_p_14_16_t10 and
13 act_2_t10 and tm_act_2_t10 and th_act_2_t10 and
14 col_3_G_t10 and tm_col_3_G_t10 and (th_tm_col_3_G_t10 or th_tm_col_3_Y_t10 or

th_tm_col_3_B_t10 or th_tm_col_3_R_t10) and
15 col_4_B_t10 and tm_col_4_B_t10 and (th_tm_col_4_G_t10 or th_tm_col_4_Y_t10 or

th_tm_col_4_B_t10 or th_tm_col_4_R_t10) and
16

17 ;; Current Positions
18 pos_1_p_12_12_t10 and
19 pos_2_p_12_13_t10 and
20 pos_4_p_12_15_t10 and
21 pos_5_p_13_12_t10 and
22 pos_6_p_13_13_t10 and
23 pos_7_p_13_14_t10 and
24 pos_8_p_13_15_t10 and
25 pos_9_p_14_12_t10 and
26 pos_10_p_14_13_t10 and
27 pos_11_p_14_14_t10 and
28 pos_12_p_14_15_t10 and
29 pos_13_p_15_12_t10 and
30 pos_14_p_15_13_t10 and
31 pos_15_p_15_14_t10 and
32 pos_3_p_11_12_t10 and tm_pos_3_p_11_12_t10 and th_pos_3_p_11_12_t10 and
33 pos_16_p_14_16_t10 and tm_pos_16_p_14_16_t10 and th_pos_16_p_14_16_t10 and
34 .
35 .
36 ;;SSA11
37 ((pos_2_p_11_15_t11 and not pos_2_p_11_15_t10) =>
38 ((pos_1_p_12_12_t11 <=> pos_1_p_12_12_t10) and
39 ((pos_3_p_11_12_t11 <=> pos_3_p_11_12_t10) and
40 ((pos_4_p_12_15_t11 <=> pos_4_p_12_15_t10) and
41 ((pos_5_p_13_12_t11 <=> pos_5_p_13_12_t10) and
42 ((pos_6_p_13_13_t11 <=> pos_6_p_13_13_t10) and
43 ((pos_7_p_13_14_t11 <=> pos_7_p_13_14_t10) and
44 ((pos_8_p_13_15_t11 <=> pos_8_p_13_15_t10) and
45 ((pos_9_p_14_12_t11 <=> pos_9_p_14_12_t10) and
46 ((pos_10_p_14_13_t11 <=> pos_10_p_14_13_t10) and
47 ((pos_11_p_14_14_t11 <=> pos_11_p_14_14_t10) and
48 ((pos_12_p_14_15_t11 <=> pos_12_p_14_15_t10) and
49 ((pos_13_p_15_12_t11 <=> pos_13_p_15_12_t10) and
50 ((pos_14_p_15_13_t11 <=> pos_14_p_15_13_t10) and
51 ((pos_15_p_15_14_t11 <=> pos_15_p_15_14_t10) and
52 (pos_16_p_14_16_t11 <=> pos_16_p_14_16_t10)))))))))))))))) and
53 .
54 .
55)=> ([m]now_t10 and [m] (not mark_2_1_t10 and not mark_2_2_t10 and not

mark_2_3_t10 and not mark_2_4_t10 and not mark_2_5_t10 and not
mark_2_6_t10 and not mark_2_7_t10) and plus(pos_2_p_11_15_t11 and
tm_pos_2_p_11_15_t11 and th_pos_2_p_11_15_t11 , [m]((pos_2_p_11_15_t11 and
pos_4_p_12_15_t11) or (pos_2_p_12_14_t11 and pos_4_p_12_15_t11) or (

pos_2_p_12_16_t11 and pos_4_p_12_15_t11) or (pos_4_p_11_13_t11 and
pos_2_p_12_13_t11) or (pos_4_p_12_14_t11 and pos_2_p_12_13_t11))))))

Listing 16: Planning formula for moving cards

The planning formula expressed in L+(Atm) is firstly transformed into its equiv-

138 Appendix B

alent propositional logic formula and secondly it is sent to the SAT solver TouIST
for checking satisfiability. When the planning module finds a valid plan, then the
action is inserted in the interface file with flag equal to one, as it is shown in Listing
17:

1 m:col_1_R_t1 and tm_col_1_R_t1 and (th_tm_col_1_G_t1 or th_tm_col_1_Y_t1 or
th_tm_col_1_B_t1 or th_tm_col_1_R_t1):0

2 m:col_2_B_t2 and tm_col_2_B_t2 and (th_tm_col_2_G_t2 or th_tm_col_2_Y_t2 or
th_tm_col_2_B_t2 or th_tm_col_2_R_t2):0

3 m:pos_3_p_11_12_t3 and tm_pos_3_p_11_12_t3 and th_pos_3_p_11_12_t3 :0
4 m:act_1_t4 and tm_act_1_t4 and th_act_1_t4 :0
5 h:(th_col_15_R_t5 or th_col_15_G_t5 or th_col_15_Y_t5 or th_col_15_B_t5):0
6 h:(th_col_16_R_t6 or th_col_16_G_t6 or th_col_16_Y_t6 or th_col_16_B_t6):0
7 h:pos_16_p_14_16_t7 and tm_pos_16_p_14_16_t7 and th_pos_16_p_14_16_t7 :0
8 h:act_6_t8 and tm_act_6_t8 and th_act_6_t8 :0
9 m:col_3_G_t9 and tm_col_3_G_t9 and (th_tm_col_3_G_t9 or th_tm_col_3_Y_t9 or

th_tm_col_3_B_t9 or th_tm_col_3_R_t9):0
10 m:col_4_B_t10 and tm_col_4_B_t10 and (th_tm_col_4_G_t10 or th_tm_col_4_Y_t10

or th_tm_col_4_B_t10 or th_tm_col_4_R_t10):0
11 m:pos_2_p_11_15_t11 and tm_pos_2_p_11_15_t11 and th_pos_2_p_11_15_t11 :1

Listing 17: Interface file after the planning process finish

Belief revision

At this stage, we can say that the planning process has finished its task and now
it is time to insert the new action Σinput into the belief base. The belief revision
module will be in charge of this work.

Since Σinput consists of moving card 2 to a new position, the belief revision pro-
cess will remove the previous belief containing the old position for this card and
insert the new action in Σm. The belief revision module will revise the belief base
using the integrity constraint ICP2 contained in Σc, which states that a given card
can not be in two different positions at the same time. Thus, the belief revision
module will first call the belief update function detailed in Section 5.4.2.1 to incre-
ment of one unit the time indexes of all formulas contained in Σc. Thereafter and
thanks to ICP2, the belief revision will detect an inconsistency between Σm and
Σinput, consequently it will choose to remove the old belief from Σm and insert the
new Σinput.

Implementation of Yōkai 139

Figure 14: ICP2 in Σc

Given that now we have the following pieces of information in Σm when the belief
revision module tries to save the new Σinput in Σm, it will detect an inconsistency:

1 .
2 .
3 pos_1_p_12_12_t11
4 pos_2_p_12_13_t11
5 pos_4_p_12_15_t11
6 pos_5_p_13_12_t11
7 pos_6_p_13_13_t11
8 pos_7_p_13_14_t11
9 pos_8_p_13_15_t11

10 pos_9_p_14_12_t11
11 pos_10_p_14_13_t11
12 pos_11_p_14_14_t11
13 pos_12_p_14_15_t11
14 pos_13_p_15_12_t11
15 pos_14_p_15_13_t11
16 pos_15_p_15_14_t11
17 pos_3_p_11_12_t11 and tm_pos_3_p_11_12_t11 and th_pos_3_p_11_12_t11
18 pos_16_p_14_16_t11 and tm_pos_16_p_14_16_t11 and th_pos_16_p_14_16_t11
19 .
20 .

Listing 18: New Σm after performed the belief update process

Accordingly, to guarantee the consistency of the belief base, the belief revision mod-
ule will remove the previous information related to the card 2 position and expand
the belief base with the new belief. The section of Σm containing this information
is shown next:

1 .

140 Appendix B

2 .
3 pos_1_p_12_12_t11
4 pos_4_p_12_15_t11
5 pos_5_p_13_12_t11
6 pos_6_p_13_13_t11
7 pos_7_p_13_14_t11
8 pos_8_p_13_15_t11
9 pos_9_p_14_12_t11

10 pos_10_p_14_13_t11
11 pos_11_p_14_14_t11
12 pos_12_p_14_15_t11
13 pos_13_p_15_12_t11
14 pos_14_p_15_13_t11
15 pos_15_p_15_14_t11
16 pos_3_p_11_12_t11 and tm_pos_3_p_11_12_t11 and th_pos_3_p_11_12_t11
17 pos_16_p_14_16_t11 and tm_pos_16_p_14_16_t11 and th_pos_16_p_14_16_t11
18 pos_2_p_11_15_t11 and tm_pos_2_p_11_15_t11 and th_pos_2_p_11_15_t11
19 .
20 .

Listing 19: New Σm after performed the belief revision process

Hierarchy of goals

In the following example we detail the steps performed by agent m for grouping
cards based on the colors of the cards she observed in previous rounds. In Figure 15
we present the set of cards S known by agent m as it is indicated in Algorithm 4.

Agent m reads the first element in the S and tries to group 3 blue cards (2, 4 and
14), but it is not possible to group them because the precondition states that the
cards should not be neighbors. In other words they must not be already grouped.
Hence, given that the precondition for the first sub-set of cards is unsatisfiable,
agent m tries with the second element in S and intends to group two red cards (1
and 8). Again in this case, the precondition is unsatisfiable because any movement
combination of these two red cards will lead to an illegal move. Consequently, agent
m will try with the third element in the hierarchy of goals S and intends to group
two green cards (3 and 5). In this case, the precondition is satisfiable and after that
the system calls the planning module in order to find an action to group cards 3
and 5. In our example, the planning module found a plan containing an action for
moving card 3 close to card 5, as it is shown in Figure 15.

Implementation of Yōkai 141

Figure 15: Hierarchy of goals

Bibliography

[Amgoud et al. 2000] L. Amgoud, N. Maudet and S. Parsons. Modelling dialogues
using argumentation. In Proceedings of the Fourth International Conference
on MultiAgent Systems, pages 31–38. IEEE, 2000.

[Aucher & Bolander 2013] G. Aucher and T. Bolander. Undecidability in epistemic
planning. In Proceedings of the 23rd International Joint Conference on Ar-
tificial Intelligence (IJCAI 2013), pages 27–33. AAAI Press, 2013.

[Aucher & Schwarzentruber 2013] G. Aucher and F. Schwarzentruber. On the com-
plexity of dynamic epistemic logic. In Proceedings of the 14th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK 2013), 2013.

[Aucher 2012] Guillaume Aucher. Private announcement and belief expansion: an
internal perspective. Journal of Logic and Computation, vol. 22, no. 3, pages
451–479, 2012.

[Audemard & Simon 2009] Gilles Audemard and Laurent Simon. Predicting Learnt
Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, IJCAI’09, page 399–404,
San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[Audi 1973] R. Audi. Intending. The Journal of Philosophy, vol. 70, no. 13, pages
387–403, 1973.

[Baltag et al. 1998] Alexandru Baltag, Lawrence S. Moss and Slawomir Solecki. The
Logic of Public Announcements, Common Knowledge, and Private Suspi-
cions. In Proceedings of the 7th Conference on Theoretical Aspects of Ra-
tionality and Knowledge, TARK ’98, page 43–56, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[Bard et al. 2020] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot,
H. F. Song, E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes, I. Dunning,
S. Mourad, H. Larochelle, M. G. Bellemare and M. Bowling. The Hanabi
challenge: A new frontier for AI research. Artificial Intelligence, vol. 280,
2020.

[Bench-Capon 2003] T. J. M. Bench-Capon. Persuasion in practical argument using
value-based argumentation frameworks. Journal of Logic and Computation,
vol. 13(3), pages 429–448, 2003.

[Bloem et al. 2018] Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe
Egly, Florian Lonsing and Martina Seidl. Expansion-Based QBF Solving
Without Recursion. CoRR, vol. abs/1807.08964, 2018.

144 Bibliography

[Bolander & Andersen 2011] T. Bolander and M. B. Andersen. Epistemic planning
for single- and multi-agent systems. Journal of Applied Non-Classical Logics,
vol. 21, no. 1, pages 9–34, 2011.

[Bolander et al. 2015a] T. Bolander, M. Holm Jensen and F. Schwarzentruber.
Complexity Results in Epistemic Planning. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015),
pages 2791–2797. AAAI Press, 2015.

[Bolander et al. 2015b] T. Bolander, H. van Ditmarsch, A. Herzig, E. Lorini,
P. Pardo and F. Schwarzentruber. Announcements to Attentive Agents. Jour-
nal of Logic, Language and Information, vol. 25, no. 1, pages 1–35, 2015.

[Bolander 2014] T. Bolander. Seeing is believing: Formalising false-belief tasks in
dynamic epistemic logic. In A. Herzig and E. Lorini, editors, Proceedings of
the European conference on Social Intelligence (ECSI-2014), pages 87–107,
2014.

[Bonzon & Maudet 2011] E. Bonzon and N. Maudet. On the Outcomes of Mul-
tiparty Persuasion. In Proceedings of the 8th International Conference
on Argumentation in Multi-Agent Systems (ArgMAS 2011), page 86–101.
Springer-Verlag, 2011.

[Brachman & Levesque 2004] Ronald Brachman and Hector Levesque. Knowledge
representation and reasoning. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2004.

[Bubeck & Büning 2007] Uwe Bubeck and Hans Kleine Büning. Bounded Universal
Expansion for Preprocessing QBF. In SAT, 2007.

[Budzyńska & Kacprzak 2008] K. Budzyńska and M. Kacprzak. A Logic for Rea-
soning about Persuasion. Fundamenta Informaticae, vol. 85, no. 1-4, pages
51–65, 2008.

[Caridroit et al. 2017] T. Caridroit, J.-M. Lagniez, D. Le Berre, T. de Lima and
V. Montmirail. A SAT-Based Approach for Solving the Modal Logic S5-
Satisfiability Problem. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence (AAAI-17), pages 3864–3870. AAAI Press, 2017.

[Cialdini 2001] R. B. Cialdini. Influence: science and practice. Allyn & Bacon,
2001.

[Clarke et al. 2003] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu and
Helmut Veith. Counterexample-Guided Abstraction Refinement for Symbolic
Model Checking. J. ACM, vol. 50, no. 5, page 752–794, sep 2003.

[Cooper et al. 2016] M. C. Cooper, A. Herzig, F. Maffre, F. Maris and P. Régnier. A
simple account of multi-agent epistemic planning. In Proceedings of the 22nd

Bibliography 145

European Conference on Artificial Intelligence (ECAI 2016), pages 193–201,
2016.

[Cooper et al. 2021] Martin C. Cooper, Andreas Herzig, Faustine Maffre, Frédéric
Maris, Elise Perrotin and Pierre Régnier. A lightweight epistemic logic and its
application to planning. Artificial Intelligence, vol. 298, page 103437, 2021.

[Coste Marquis et al. 2006] Sylvie Coste Marquis, Daniel Le Berre, Florian Letombe
and Pierre Marquis. Complexity Results for Quantified Boolean Formulae
Based on Complete Propositional Languages. JSAT, vol. 1, pages 61–88, 03
2006.

[Da Costa Pereira et al. 2011] C. Da Costa Pereira, A. Tettamanzi and S. Villata.
Changing One’s Mind: Erase or Rewind? Possibilistic Belief Revision with
Fuzzy Argumentation Based on Trust. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence (IJCAI 2011), page
164–171. AAAI Press, 2011.

[da Silva et al. 2018] Joana Galvão Gomes da Silva, David J Kavanagh, Tony Bel-
paeme, Lloyd Taylor, Konna Beeson, Jackie Andradeet al. Experiences of
a motivational interview delivered by a robot: qualitative study. Journal of
medical Internet research, vol. 20, no. 5, page e7737, 2018.

[Davidson 1980] D. Davidson. Essays on actions and events. Clarendon Press, 1980.

[Davis et al. 1962] Martin D. Davis, George Logemann and Donald W. Loveland.
A machine program for theorem-proving. Commun. ACM, vol. 5, pages 394–
397, 1962.

[Dissing & Bolander 2020] L. Dissing and T. Bolander. Implementing Theory of
Mind on a Robot Using Dynamic Epistemic Logic. In C. Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, (IJCAI 2020), pages 1615–1621, 2020.

[Eger & Martens 2017] M. Eger and C. Martens. Practical Specification of Belief
Manipulation in Games. In B. Magerko and J. P. Rowe, editors, Proceedings
of the Thirteenth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-17), pages 30–36. AAAI Press, 2017.

[Eger et al. 2017] M. Eger, C. Martens and M. A. Cordoba. An intentional AI for
hanabi. In IEEE Conference on Computational Intelligence and Games, CIG
2017, pages 68–75. IEEE, 2017.

[Fagin et al. 1995] R. Fagin, J. Halpern, Y. Moses and M. Vardi. Reasoning about
knowledge. MIT Press, Cambridge, 1995.

[Fernandez et al. 2020] Jorge Fernandez, Olivier Gasquet, Andreas Herzig, Do-
minique Longin, Emiliano Lorini, Frédéric Maris and Pierre Régnier.

146 Bibliography

TouIST: a Friendly Language for Propositional Logic and More. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages 5240–5242. International
Joint Conferences on Artificial Intelligence Organization, 7 2020. Demos.

[Gabbay & Guenthner 2003] D. M. Gabbay and F. Guenthner, editors. Modal epis-
temic and doxastic logic, pages 1–38. Springer Netherlands, Dordrecht, 2003.

[Gerbrandy & Groeneveld 1997] J. Gerbrandy and W. Groeneveld. Reasoning about
information change. Journal of Logic, Language, and Information, vol. 6,
pages 147–196, 1997.

[Ghallab et al. 2004] Malik Ghallab, Dana Nau and Paolo Traverso. Automated
Planning: Theory and Practice. Elsevier - Morgan Kauffman, 2004.

[Goldman 1979] A. Goldman. What is Justified Belief? In G. Pappas, editor,
Justification and Knowledge, pages 1–25. D. Reidel, 1979.

[Goldman 2006] A. I. Goldman. Simulating minds: The philosophy, psychology,
and neuroscience of mindreading. Oxford University Press, 2006.

[Goultiaeva & Bacchus 2010] Alexandra Goultiaeva and Fahiem Bacchus. Exploit-
ing QBF Duality on a Circuit Representation. volume 1, 01 2010.

[Halpern & Moses 1992] J. Y. Halpern and Y. Moses. A guide to completeness and
complexity for modal logics of knowledge and belief. Artificial Intelligence,
vol. 54, no. 3, pages 319–379, 1992.

[Herzig & de Lima 2006] Andreas Herzig and Tiago de Lima. Epistemic Actions
and Ontic Actions: A Unified Logical Framework. In IBERAMIA-SBIA,
2006.

[Hunter 2015] A. Hunter. Modelling the Persuadee in Asymmetric Argumentation
Dialogues for Persuasion. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence (IJCAI 2015), page 3055–3061. AAAI Press,
2015.

[Janota et al. 2016] Mikoláš Janota, William Klieber, Joao Marques-Silva and Ed-
mund Clarke. Solving QBF with counterexample guided refinement. Artificial
Intelligence, vol. 234, pages 1–25, 2016.

[Kanaoka & Mutlu 2015] Toshikazu Kanaoka and Bilge Mutlu. Designing a moti-
vational agent for behavior change in physical activity. In Proceedings of
the 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems, pages 1445–1450, 2015.

[Klieber et al. 2010] William Klieber, Samir Sapra, Sicun Gao and Edmund M.
Clarke. A Non-prenex, Non-clausal QBF Solver with Game-State Learning.
In SAT, 2010.

Bibliography 147

[Kominis & Geffner 2015] F. Kominis and H. Geffner. Beliefs in multiagent plan-
ning: from one agent to many. In Ronen I. Brafman, Carmel Domshlak,
Patrik Haslum and Shlomo Zilberstein, editors, Proceedings of the 25th
International Conference on Automated Planning and Scheduling (ICAPS
2015), pages 147–155. AAAI Press, 2015.

[Krzywicki et al. 2016] Alfred Krzywicki, Wayne Wobcke, Michael Bain, John
Calvo Martinez and Paul Compton. Data mining for building knowledge
bases: Techniques, architectures and applications. The Knowledge Engineer-
ing Review, vol. -1, pages 1–27, 03 2016.

[Ladner 1977] R. E. Ladner. The Computational Complexity of Provability in Sys-
tems of Modal Propositional Logic. SIAM Journal of Computing, vol. 6, no. 3,
pages 467–480, 1977.

[Lê Cong et al. 2018] S. Lê Cong, S. Pinchinat and F. Schwarzentruber. Small Un-
decidable Problems in Epistemic Planning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 4780–4786. ijcai.org, 2018.

[Levesque 1984] H. J. Levesque. A logic of implicit and explicit belief. In Proceedings
of the Fourth AAAI Conference on Artificial Intelligence (AAAI’84), pages
198–202. AAAI Press, 1984.

[Lisetti et al. 2013] Christine Lisetti, Reza Amini, Ugan Yasavur and Naphtali
Rishe. I can help you change! an empathic virtual agent delivers behavior
change health interventions. ACM Transactions on Management Information
Systems (TMIS), vol. 4, no. 4, pages 1–28, 2013.

[Lomuscio et al. 2017] A. Lomuscio, H. Qu and F. Raimondi. MCMAS: an open-
source model checker for the verification of multi-agent systems. International
Journal on Software Tools for Technology Transfer, vol. 19, pages 9–30, 2017.

[Lorini & Romero 2019] E. Lorini and F. Romero. Decision procedures for epistemic
logic exploiting belief bases. In Proceedings of the 18th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2019), pages
944–952. IFAAMAS, 2019.

[Lorini & Schwarzentruber 2021] E. Lorini and F. Schwarzentruber. Multi-Agent
Belief Base Revision. In Proceedings of the 30th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2021). ijcai.org, 2021.

[Lorini 2018] E. Lorini. In Praise of Belief Bases: Doing Epistemic Logic Without
Possible Worlds. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18), pages 1915–1922. AAAI Press, 2018.

[Lorini 2020] E. Lorini. Rethinking epistemic logic with belief bases. Artificial Intel-
ligence, vol. 282, 2020.

148 Bibliography

[Löwe et al. 2011] B. Löwe, E. Pacuit and A. Witzel. DEL planning and some
tractable cases. In Proceedings of the 3rd International International Work-
shop on Logic, Rationality and Interaction (LORI 2011), pages 179–192.
Springer Berlin Heidelberg, 2011.

[Lundahl & Burke 2009] Brad Lundahl and Brian L Burke. The effectiveness and
applicability of motivational interviewing: A practice-friendly review of four
meta-analyses. Journal of clinical psychology, vol. 65, no. 11, pages 1232–
1245, 2009.

[Lutz 2006] C. Lutz. Complexity and succinctness of public announcement logic.
In Proceedings of the Fifth international Joint Conference on Autonomous
agents and Multiagent Systems, pages 137–143. ACM, 2006.

[Makinson 1997] David Makinson. Screened revision. Theoria, vol. 63, pages 14–23,
1997.

[Marques Silva & Sakallah 1996] J.P. Marques Silva and K.A. Sakallah. GRASP-
A new search algorithm for satisfiability. In Proceedings of International
Conference on Computer Aided Design, pages 220–227, 1996.

[Miller & Rollnick 2012] William R Miller and Stephen Rollnick. Motivational in-
terviewing: Helping people change. Guilford press, 2012.

[Muise et al. 2015] C. Muise, V. Belle, P. Felli, S. A. McIlraith, T. Miller, A. R.
Pearce and L. Sonenberg. Planning over multi-agent epistemic states: A
classical planning approach. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015), pages 3327–3334. AAAI Press, 2015.

[Muise et al. 2021] C. Muise, V. Belle, P. Felli, S. A. McIlraith, T. Miller, A. R.
Pearce, and L. Sonenberg. Efficient Multi-agent Epistemic Planning: Teach-
ing Planners About Nested Belief. Artificial Intelligence, vol. 302, 2021.

[Olafsson et al. 2019] Stefan Olafsson, Teresa O’Leary and Timothy Bickmore. Co-
erced change-talk with conversational agents promotes confidence in behavior
change. In Proceedings of the 13th EAI International Conference on Perva-
sive Computing Technologies for Healthcare, pages 31–40, 2019.

[Perloff 2003] R. M. Perloff. The dynamics of persuasion: Communication and
attitudes in the 21st century. L. Erlbaum, 2003.

[Plaza 1989] J. A. Plaza. Logics of public communications. In M. Emrich, M. Pfeifer,
M. Hadzikadic and Z. Ras, editors, Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems, 201-216, 1989.

[Prakken 2006] H. Prakken. Formal Systems for Persuasion Dialogue. The Knowl-
edge Engineering Review, vol. 21, no. 2, page 163–188, 2006.

Bibliography 149

[Proietti & Yuste-Ginel 2019] C. Proietti and A. Yuste-Ginel. Persuasive Argumen-
tation and Epistemic Attitudes. In Proceedings of the Second International
Workshop on Dynamic Logic. New Trends and Applications (DALI 2019),
volume 12005 of LNCS, pages 104–123. Springer-Verlag, 2019.

[Rashotte 2009] L. Rashotte. Social Influence. In G. Ritzer and J. M. Ryan, editors,
Concise Blackwell Encyclopedia of Sociology. Blackwell, 2009.

[Schulman et al. 2011] Daniel Schulman, Timothy Bickmore and Candace Sidner.
An intelligent conversational agent for promoting long-term health behavior
change using motivational interviewing. In 2011 AAAI Spring Symposium
Series, 2011.

[Searle 1969] J. Searle. Speech acts: An essay in the philosophy of language. Cam-
bridge University Press, Cambridge, 1969.

[Shoham 2009] Y. Shoham. Logical Theories of Intention and the Database Perspec-
tive. Journal of Philosophical Logic, vol. 38, no. 6, pages 633–648, 2009.

[Stalnaker 2002] R. Stalnaker. Common ground. Linguistics and Philosophy,
vol. 25(5-6), pages 701–721, 2002.

[Sörensson & Een 2005] Niklas Sörensson and Niklas Een. Minisat v1.13-a SAT
solver with conflict-clause minimization. International Conference on Theory
and Applications of Satisfiability Testing, 01 2005.

[van Benthem 2003] Johan van Benthem. Logic and the Dynamics of Information.
Minds and Machines, vol. 13, no. 4, pages 503–519, 2003.

[van Ditmarsch et al. 2007] H. van Ditmarsch, W. van der Hoek and B. Kooi. Dy-
namic epistemic logic. Synthese Library. Springer Netherlands, 2007.

[Walton & Krabbe 1995] D. Walton and E.C.W. Krabbe. Commitment in dialogue:
Basic concepts of interpersonal reasoning. SUNY Series in Logic and Lan-
guage. State University of New York Press, 1995.

