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Résumé

Dans cette Thèse de Doctorat, nous nous intéressons à deux problématiques: (i) le développement
de stratégies de stabilisation pour des méthodes de type discontinuous Galerkin (DG) appliquées
à des écoulements shallow-water fortement non-linéaires, (ii) le développement d’une stratégie de
modélisation et de simulation numérique des interactions non-linéaires entre les vagues et un objet
flottant en surface, partiellement immergé. Les outils développés dans le cadre du premier axe de
travail sont mis à profit et valorisés au cours de la deuxième partie.
Les méthodes de discrétisation de type DG d’ordre élevé présentent en général des problèmes de
robustesse en présence de singularités de la solution. Ces singularités peuvent être de plusieurs
natures: discontinuité de la solution, discontinuité du gradient ou encore violation de la positiv-
ité de la hauteur d’eau pour des écoulements à surface libre. Nous introduisons dans la première
partie de ce manuscript deux approches de type Finite-Volume Subcells permettant d’apporter une
réponse à ces problèmes de robustesse. La première approche repose sur une correction a priori du
schéma DG associée à un limiteur TVB et un limiteur de positivité. La seconde approche s’appuie
quant à elle sur une correction a posteriori permettant d’identifier avec une meilleure précision les
cellules incriminée, ainsi que sur les propriétés de robustesse inhérentes au schéma Volumes-Finis
limite d’ordre un. Cette seconde approche permet d’assurer la robustesse du schéma DG initial en
présence de discontinuité, ainsi que la positivité de la hauteur d’eau, tout en préservant une excel-
lente qualité d’approximation, bénéficiant d’une résolution de l’ordre de la sous-maille. De façon
préliminaire, cette seconde approche est également étendue au cas de la dimension deux d’espace
horizontal. De nombreux cas-test permettent de valider cette approche.
Dans la seconde partie, nous introduisons une nouvelle stratégie numérique conçue pour la modéli-
sation et la simulation des interactions non linéaires entre les vagues en eau peu profonde et un objet
flottant partiellement immergé. Au niveau continu, l’écoulement situé dans le domaine extérieur est
globalement modélisé par les équations hyperboliques non-linéaires de Saint-Venant, tandis que la
description de l’écoulement sous l’objet se réduit à une équation différentielle ordinaire non linéaire.
Le couplage entre l’écoulement et l’objet est formulé comme un problème au bord, associé au calcul
de l’évolution temporelle de la position des points d’interface air-eau-objet. Au niveau discret, la
formulation proposée s’appuie sur une approximation DG d’ordre arbitraire, stabilisée à l’aide de
la méthode de correction locale des sous-cellules (a posteriori) introduite dans la première partie.
L’évolution temporelle de l’interface air-eau-objet est calculée à partir d’une description Arbitrary
Lagrangian-Eulerian (ALE) et d’une transformation appropriée entre la configuration initiale et celle
dépendant du temps. Pour n’importe quel ordre d’approximation polynomiale, l’algorithme résul-
tant est capable de: (i) préserver la loi de conservation géométrique discrète (DGCL), (ii) garantir la
préservation de la positivité de la hauteur d’eau au niveau des sous-cellules, (iii) préserver la classe
des états stationnaires au repos (well-balancing), éventuellement en présence d’un objet partielle-
ment immergé. Plusieurs validations numériques sont présentées, montrant le caractère opératoire
de cette approche, et mettant en évidence que le modèle numérique proposé: (i) permet effective-
ment de modéliser les différents types d’interactions vague / objet flottants, (ii) calcul efficacement
l’ évolution temporelle des points de contact air-eau-objet et redéfinit en conséquence le nouveau
maillage grâce à la méthode ALE (iii) gère avec précision et robustesse les possibles singularités de
l’écoulement, (iv) préserve la haute résolution des schémas DG au niveau des sous-cellules.
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Abstract

In this Ph.D., we investigate two main research problems: (i) the design of stabilization patches for
higher-order discontinuous-Galerkin (DG) methods applied to highly nonlinear free-surface shallow-
water flows, (ii) the construction of a new numerical approximation strategy for the simulation of
nonlinear interactions between waves in a free-surface shallow flow and a partly immersed floating
object. The stabilization methods developed in the first research line are used in the second part of
this work.
High-order discontinuous-Galerkin (DG) methods generally suffer from a lack of nonlinear stability
in the presence of singularities in the solution. Such singularities may be of various kinds, involving
discontinuities, rapidly varying gradients or the occurence of dry areas in the particular case of
free-surface flows. In the first part of this work, we introduce two new stabilization methods based
on the use of Finite-Volume Subcells in order to alleviate these robustness issues. The first method
relies on an a priori limitation of the DG scheme, together with the use of a TVB slope-limiter
and a PL. The second one is built upon an a posteriori correction strategy, allowing to surgically
detect the incriminated local subcells, together with the robustness properties of the corresponding
lowest-order Finite-Volume scheme. This last strategy allows to ensure the nonlinear stability of the
DG scheme in the vicinity of discontinuities, as well as the positivity of the discrete water-height,
while preserving the subcell resolution of the initial scheme. This second strategy is also preliminary
investigated in the two dimensional horizontal case. An extensive set of test-cases assess the validity
of this approach.
In the second part, we introduce a new numerical strategy designed for the modeling and simulation
of nonlinear interactions between surface waves in shallow-water and a partially immersed surface
piercing object. At the continuous level, the flow located in the exterior domain is globally modeled
with the nonlinear hyperbolic shallow-water equations, while the description of the flow beneath
the object reduces to a nonlinear ordinary differential equation. The coupling between the flow and
the object is formulated as a free-boundary problem, associated with the computation of the time
evolution of the spatial locations of the air-water-body interface. At the discrete level, the proposed
formulation relies on an arbitrary-order discontinuous Galerkin approximation, which is stabilized
with the a posteriori Local Subcell Correction method through low-order finite volume scheme in-
troduced in the first part. The time evolution of the air-water-body interface is computed from
an Arbitrary-Lagrangian-Eulerian (ALE) description and a suitable smooth mapping between the
original frame and the current configuration. For any order of polynomial approximation, the result-
ing algorithm is shown to: (i) preserves the Discrete Geometric Conservation Law, (ii) ensures the
preservation of the water-height positivity at the subcell level, (iii) preserves the class of motionless
steady states (well-balancing), possibly with the occurrence of a partially immersed object. Sev-
eral numerical computations and test-cases are presented, highlighting that the proposed numerical
model (i) effectively allows to model all types of wave / object interactions, (ii) efficiently provides
the time-evolution of the air-water-body contact points and accordingly redefine the new mesh-grid
thanks to ALE method (iii) accurately handles strong flow singularities without any robustness
issues, (iv) retains the highly accurate subcell resolution of discontinuous Galerkin schemes.
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Chapter 1

Introduction

1.1 Modeling: a floating object in shallow-water

The mathematical and numerical study of the propagation and transformations of waves in the
presence of a floating structure is a complex problem in which one has to model the time evolution
of the mechanical system made of a solid body partially immersed in an incompressible fluid. Besides
the hydrodynamic issues generally associated with the simulation of free surface flows, an important
additional difficulty is that the immersed part of the structure (the wetted surface) generally depends
on time, leading to another free boundary problem.

Linear modeling

The modeling of such a system can be traced back to the pioneering work [97], in which a lin-
ear potential model is used for the hydrodynamics (the fluid is assumed irrotational and inviscid),
and the motion of the solid is assumed to be of small amplitude around a fixed mean position.
Although being over-simplified for applications of interest, this approach put the light on the im-
portant (and difficult) issue of defining suitable transmission conditions between the exterior area
(where the surface waves do not interact with the structure) and the interior area (the fluid under
the solid, exercising a pressure on the wetted surface). Such a linear strategy has been refined,
extended and adapted in several subsequent studies, let mention for instance the important domains
of offshore structures [132], floating Wave Energy Converters (WEC) [108] or floating breakwaters,
see for instance [173, 104]. When combined with Boundary Element Methods (linear-BEM, in fre-
quency domain) for the computation of the hydrodynamics, the linear potential theory defines the
background of several popular dedicated softwares, like WAMIT or ANSYS Aqwa. Among the de-
scriptions and models grounded on linearity assumptions, let also mention "semi-analytic" methods,
like for instance the point absorber method for the hydrodynamic interactions with WEC where some
diffraction by the devices are neglected and the potential flow is described with a semi-analytical
representation, see for instance [27], or the use of the (time dependent) mild-slope equation, see
for instance [13]. Such linear models are particularly fast when compared to Reynolds Averaged
Navier-Stokes (RANS) simulations, see for instance [182] for an application to WEC, or to potential
approaches with a nonlinear surface boundary. Moreover, for small to moderate sea states, the as-
sumptions related to linear theory generally provide some numerical previsions with reliable leading
orders or approximation.
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Nonlinear strategies

However, for larger sea states, the linearity assumptions do not hold anymore as nonlinear effects
become important, see for instance the case for WECs operating inside the resonance domain, or
floating breakwaters in the nearshore area. This is also true for the bathymetry effects, which
are generally neglected within linear-BEM in intermediate sea levels, but cannot being neglected
anymore in shallow-water, where nonlinear dynamics and bottom induced effects such as shoaling,
refraction or energy transfers and dissipation, may be significant. Hence, several attempts to account
for nonlinear effects have been reported in the literature and most of them rely on fully nonlinear
potential flow models used together with nonlinear BEM, in time/physical domain, also allowing to
account for varying bathymetry [79]. Another strategy, yet far less investigated, is to use some sim-
plified asymptotic models instead of the full water-waves equations. Using such simpler asymptotics
may appear as an interesting compromise between oversimplified linear models and too expensive
CFD strategies. Such depth-integrated models may be used at least to describe the free surface
fluid evolution like in [103], where floating breakwater are modelized using a Boussinesq model and
a Finite-Difference (FD) scheme. The flow under the breakwater is regarded as a confined flow and
the pressure field beneath the floating structure is determined by solving implicitly the Laplace equa-
tion. Asymptotic flow models may be applied also to describe the flow under the floating structure,
see [40] where the Kadomtsev-Petviashvili (KP) equations are used to compute wave generation by
ships in shallow-water, or [95, 180, 96] where Boussinesq equations are applied to model the inter-
actions in the near-ship flows. Let also mention the recent numerical study [24], where a Boussinesq
model is applied to compute the heave (vertical) motion of structures with straight-sided boundaries,
which are assumed vertical at the fluid-structure contact line.
Recently, a new formulation of the fully nonlinear floating body problem has been introduced in
[107], describing the flow with respect to the free surface parameterization and the horizontal dis-
charge instead of the velocity potential, and the particular assumptions/simplifications leading to
depth-integrated free surface models with floating-body are detailed, with a particular emphasize
put on the simple elliptic equation solved by the pressure of the fluid under the body.

Focusing on shallow-water flows

In what follows, we focus on the shallow-water (or long-wave) regime:

(shallow-water regime) µ :=
H2

0

λ2
� 1, (1.1)

where H0 refers to the typical water depth and λ the typical wave length of the flow. In this regime,
the hyperbolic Nonlinear shallow-water (NSW) equations [50] can be derived from the full water
waves equations by neglecting all the terms of order O(µ) and greater, see for instance [106]. It is
also worth noticing that no smallness assumption is made on the size of the surface perturbations
for this derivation, and the corresponding regime is also said to be fully nonlinear :

(fully nonlinear / large amplitude regime) ε :=
a

H0
= O(1), (1.2)

where a is the typical wave’s amplitude. Numerous asymptotic models may be obtained from the
water-wave equations with a free-surface boundary condition. Among them, the NSW equations are
one of the most popular model for the description of shallow-water flows when the dispersive effects
can be neglected and they are extensively used for the study of geophysical flows and coastal engi-
neering problems related to wave propagation and transformations. Given a smooth parametrization
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of the topography variations b : R → R, and denoting by H the water-height, u the horizontal
(depth-averaged) velocity, q = Hu the horizontal discharge, see Fig.3.1, the NSW equations may be
written as follows:

∂tH + ∂xq = 0,

∂tq + ∂x
(
uq +

1

2
gH2

)
= −gH∂xb.

(1.3a)

(1.3b)

A derivation of this system is provided in Appendix A for the sake of completeness. As H stands for
the water-height, the flow main variables (H, q) should belong to the following convex set of physical
admissible states Θ, defined as follows:

Θ =
{

(H, q) ∈ R2; H ≥ 0
}
. (1.4)

For practical applications, these NSW equations may be supplemented with several additional source
terms, depending on the leading physical processes at stake, modeling wind forcing, rainfall contri-
butions, bottom friction, Coriolis effect or eddy viscosity. The interested reader may find several
supplemented models in [51, 52, 93, 175, 41, 122, 6, 21, 25, 82, 120]. Also, the NSW equations do not
account for dispersive effects and as a consequence, they can’t describe the weakly dispersive pro-
cesses that generally occur in nearshore areas, like wave shoaling for instance. To achieve this, more
accurate models like the Boussinesq-type (BT) equations [26] or the Green-Naghdi (GN) equations
[76] should be derived, by keeping the terms of order µ (and even beyond for higher-order models).
However, those "augmented" NSW equations, which are also called weakly dispersive shallow-water
asymptotics are much more complex than the classical NSW equations and they generally require
some considerable efforts on both theoretical and numerical sides to produce reliable forecasting.
Hence, in what follows, we choose to focus on the classical (hyperbolic) NSW system with a topog-
raphy source term as a valuable "starting’ model to describe the flow evolution.

There are however very few studies in the literature which are devoted to the possible extension of
the NSW equations to embed a floating structure. Yet, such an approach appears as very promising,
allowing to overcome the heavy computational cost of RANS, while accounting for the nonlinearity
of the physical processes at stake. We can mention the recent studies [72, 73] for the computation
of congested shallow-water flows with a compressible/incompressible projection scheme, and also
[24] as the dispersive effects of the chosen BT equations are actually neglected in the vicinity of the
floating structure.

Hence, the main purpose of this Ph.D. is to develop a new numerical strategy for the modeling
and simulation of the evolution of a floating object in a shallow-water flow described by the NSW
equations.

In this respect, we choose to start from the very recent theoretical work [87], in which a general
theory for a class of quasi-linear hyperbolic IBVP with free boundaries is introduced. This theory
is further applied to the modeling of a partially immersed floating structure in a shallow-water flow
described by the NSW equations, providing a convenient theoretical ground for our purpose.
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1.2 Numerical ingredients

The design of our new numerical strategy relies on several ingredients and methods which are briefly
described in the remainder of this section. We only provide some insights of the salient features of
these numerical aspects, together with some references, and we leave the details of the recipe for the
next Chapters.

Numerical methods for the NSW equations

As already mentioned, the NSW equations are one of the most widely used set of equations for
simulating long wave hydrodynamics. Considering their hyperbolic (and hydrostatic) nature, they
generally provide a reliable description of steep-fronted flows, such as dam-breaks or flood-waves.
This model is also extensively used in coastal engineering, for the study of nearshore flows involving
bores propagation in the surf zone, run-up and run-down on sloping beaches or coastal structures
and to forecast coastal inundations. To allow a proper description of such phenomena, accurate and
robust numerical methods should be considered. Great efforts have been made since the sixties in or-
der to produce accurate approximations of weak solutions of the NSW equations and a large variety
of numerical methods have been developed, including Finite-Volumes (FV) [3, 67, 7, 14, 171, 63],
Finite-Elements (FE) [129, 157, 136, 11], spectral methods [89, 121, 133] or residual distribution
methods [144, 143, 8]. Among these numerical strategies, the Godunov-type FV methods are par-
ticularly praised, thanks to their low computational cost and their shock-capturing ability, which
allows to preserve the discontinuous or steeply varying gradients that may occur in sharp-fronted
and trans-critical shallow-water flows, see for instance [145, 7, 156, 52, 131, 18, 116] among others
and also some references herein. Many of them particularly focus on the issue of balancing the
flux gradient and the topography source term [9, 130, 68, 119, 116, 32, 100, 35, 125]. However, FV
methods usually offer low accuracy and one generally needs to use some reconstruction methods to
offset the low order of convergence and the diffusive losses, see for instance [94, 109, 138, 126, 19].

Discontinuous Galerkin methods

In what follows, we use the discontinuous Galerkin (DG) method to approximate the solutions of the
NSW equations. This choice is mainly motivated by the numerous assets of this family of methods.
Indeed, the possibility of reaching an optimal (possibly high-) order of accuracy where the solution is
smooth enough is a major concern in the design of discrete formulations for transport flow problems,
and the development of high-order methods and their application for solving real-world problems is
a very active research topic in computational mechanics. In this context, although DG methods have
existed in various forms for more than 45 years, they have experienced a vigorous development over
last 25 years. The first DG method to approximate first-order PDEs has been introduced by Reed
and Hill in 1973 [142] in the framework of steady neutron transport (i.e. a time independent linear
hyperbolic equation), while the first analysis for steady first-order PDEs was presented by Lesaint
and Raviart in 1974 [110, 111]. The error estimate was improved by Johnson and Pitkäranta in 1986
[98] who set up an order of convergence of k+ 1

2 in the L2 norm for a Pk polynomial approximation
of degree k with a smooth enough exact solution. In 1990, the method was further developed by
Caussignac and Touzani [36, 37] to approximate the three-dimensional boundary-layer equations for
incompressible steady fluid flows. During this period (1989-1991), DG methods were extended to
time-dependent hyperbolic PDEs by Chavent and Cockburn [38] using the forward Euler scheme for
time discretization together with limiters. In the same years, an improvement for time discretization
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schemes was introduced by Cockburn and Shu [46, 47], by using explicit Runge-Kutta (RK) schemes,
improving finally the order of accuracy. A convergence proof to the entropy solution was obtained
by Jaffré, Johnson, and Szepessy [92] in 1995. Extensions where presented in a series of papers
by Cockburn, Shu, and coworkers [43, 46, 44]. Nowadays, DG methods are widely used in several
large classes of problems, in fluid dynamics, geophysical flows, aero-acoustics or electromagnetism
for instance.
Such a success may be explained by the fact that DG methods combine the background of FE meth-
ods, FV methods and Riemann solvers, allowing to take into account the physic of the problem, and
they have been successfully validated in many domains of application. Indeed, on one hand a DG
method can be seen as a FE method allowing for discontinuities in the discrete trial and test spaces,
localizing test functions to single mesh elements and introducing numerical fluxes at cells boundaries.
On the other hand, the sought solution is only smooth inside each element and like in FV methods,
the solution at cells interfaces is not uniquely defined. The interface fluxes are thus approached by
some suitable numerical fluxes involving the jumps of the solution at the interface, and allowing to
weakly enforce the coupling conditions of the discrete solution. Hence, DG methods can also be seen
as FV methods in which the approximate solution is represented by piecewise-polynomial functions
and not only by piecewise-constant values. Of course, the design of the interface fluxes is not trivial,
since it is closely related to the consistency, conservation, stability and accuracy of the resulting
scheme.
The generally acknowledged assets of DG schemes are the following: (i) any order of polynomial
approximation can be used within elements, allowing to possibly reach some high-order of accuracy
depending on the solution’s regularity, (ii) the decoupling of the system of equations: the matrices
involved in the linear system to be solved are sparse and structured by blocks which are dimensioned
by the number of degrees of freedom in each mesh element, (iii) the size of the stencil is independent
of the order of precision: the computation of the discrete residual depends only on the solution in
the element and its first neighbors. This appealing feature also allows for some easier parallel com-
putation, (iv) the boundary conditions are weakly enforced, through the numerical fluxes, without
modifying the definition of the approximation space like in conforming FE methods, allowing a sim-
plified implementation, (v) working with discontinuous discrete spaces offers a substantial amount of
flexibility, making the approach appealing for multi-domain and multi-physics simulations, (vi) the
sensitivity to the regularity of the mesh is weak, thanks to the discontinuity of the solution between
elements. This point allows, not only the adequacy with unstructured and non-conforming meshes
to represent the industrial geometries, but also the development of refinement, coarsening or moving
grid strategies. For instance, it is possible to combine a mesh refinement (h-adaptation) in the areas
of low regularity of the solution with an increase in the order of approximation (p-adaptation) where
the solution is regular enough.
Several DG methods have been designed for the NSW equations since the early 2000s, see for instance
[147, 154, 112, 174, 2, 5, 99, 16, 128, 147, 71, 65, 177, 176, 101] and some references hereafter.
In particular, the choice of using DG methods was also motivated by some of the previous works
of my Ph.D. advisors [62], and the availability of a locally developed and maintained arbitrary-
order DG C++ solver for the NSW equations (called WaveBox), which was provided as a starting
computational code for this Ph.D.

DG suffers: a priori and a posteriori stabilization

However, while DG methods may be mature enough to accurately handle some realistic nonlinear
problems in various applications, they originally suffer from the lack of nonlinear stability. In partic-

12



ular, high-order DG methods may produce spurious oscillations in the presence of discontinuities or
steeply varying gradients (i.e. Gibbs phenomenon), potentially leading to overshoots and unphys-
ical solutions. Also, focusing on the NSW equations, another challenging issue is the preservation
of the set of admissible states (1.4) at the discrete level, which is closely related to the issue of
the occurrence and propagation of wet/dry fronts that may occur in dam-breaks, flood-waves or
run-up over coastal shores. Hence, while a minimal nonlinear stability requirement is to preserve
the water-height positivity at the discrete level, this is clearly a challenging purpose when high-order
polynomials are used within mesh elements and standard (non-stabilized) DG methods may produce
negative values for the water-height H in the vicinity of dry areas.
Generally speaking, robustness issues may be among the main remaining challenges for the use of
high-order methods in realistic problems for many domains of applications, and in recent years,
several approaches have been proposed to stabilize high-order approximations. These techniques
mainly rely on two different paradigms that we referred to as a priori and a posteriori. In the
so-called a priori framework, the correction procedure is applied before advancing the numerical
piecewise polynomial solution further in time. So first, a troubled zone indicator is used to find
where a correction is required (see [140] for a review of such troubled elements sensors). Then, suf-
ficient efforts are made on the numerical solution or on the numerical scheme to be sure that one
is able to carry the computation out to the next time-step. Among others a priori correction tech-
niques, we could mention artificial viscosity methods [134, 159, 66, 77, 102], where some dissipative
mechanism is added in shock regions, borrowing ideas from the streamline upwind Petrov Galerkin
(SUPG) and Galerkin least-squares methods. Some other very popular limiting techniques can be
gathered and referred to as slope and moment limiters [44, 20, 29, 105, 181, 91, 57, 113]. In the
former ones, as in [46, 44], the polynomial approximated solution is flattened around its mean-value
to control the solution jumps at cell interfaces. A smooth extrema detector is then generally used
to prevent the limitation technique to spoil the accuracy in regions where no limiting is required.
Moments limiters, mainly based on [20] and further developed in [29], can be seen as the extension
of the aforementioned slope-limiters to the case of very high-orders of accuracy. In those limiting
strategies, the different moments of the polynomial solution are successively scaled in a decreasing
sequence, from the higher degree to the lower one, allowing the preservation of the solution accuracy,
as well as ensuring the solution boundedness near discontinuities. The high-order DG limiter [105],
generalized moment limiter [181], hierarchical Multi-dimensional Limiting Process (MLP) [91, 90]
and vertex-based hierarchical slope-limiters [57, 113] all derive from [46, 20, 29], and thus fall into
this category. Now, another limiting strategy that deserves to be mentioned is the (H)WENO lim-
iting procedure [141, 10, 187, 114, 188], where the DG polynomial is substituted in troubled regions
by a reconstructed (H)WENO polynomial. An alternative way to treat this spurious oscillations
issue may be to use a solution filtering method, see for instance [160, 153, 127, 135], which aim at
removing high wave-number oscillations. Those filtering procedures are generally done in an ad hoc
fashion, filtering being applied “as little as possible, but as much as needed”. Last but not least, some
original FV-Subcell shock capturing techniques in the frame of DG schemes [84, 34, 151, 49] have
recently gained in popularity. In [84], the authors use a convex combination between high-order DG
schemes and first-order FV on a sub-grid, allowing them to retain the very high accurate resolution
of DG in smooth areas and ensuring the scheme robustness in the presence of shocks. Similarly, in
[151, 49], after having detected the troubled zones, cells are then subdivided into subcells, and a
robust first-order FV scheme is performed on the sub-grid in troubled cells.
The a priori paradigm has already and extensively proved in the past its high capability and fea-
sibility, as in the aforementioned articles. Those techniques are a priori in the sense that only the
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data at time tn are needed to perform the limitation procedure. Then, the limited solution is used to
advance the numerical scheme in time to tn+1. The “worst case scenario” has to be generally consid-
ered as a precautionary principle. Furthermore, let us emphasize that most of the a priori correction
procedures previously quoted do not ensure a maximum principle or the positivity-preservation of
the solution. Generally, additional effort has to been made specifically on that matter, as for example
by means of positivity-preserving limiters [183, 185]. Specifically concerning the issue of positivity
preservation in DG methods for the NSW equations, various a priori strategies have been intro-
duced recently: a free-boundary treatment in mixed Eulerian-Lagrangian elements is introduced in
[22] to locate the wet/dry interface, a fixed mesh method with a local conservative slope modification
technique based on a redistribution of the fluid and cut-off in discharge is presented in [64], local
first moment limitations without mass adding in [28, 100, 99, 161], high-order accuracy a priori
polynomial reconstruction and limitation to enforce a strict maximum principle on mean-values in
[179, 178], in [62] for the so-called pre-balanced formulation of the NSW equations, or in [123] for a
formulation with implicit time-stepping. Let us finally mention [124] where an a priori FV-Subcell
approach has been adopted.
Now, the paradigm of a posteriori correction is different in the way that first an uncorrected candi-
date solution is computed at the new time-step. The candidate solution is then checked according
to some criteria (for instance positivity, discrete maximum principle, . . . ). If the solution is consid-
ered admissible, we go further in time. Otherwise, we return to the previous time-step and correct
locally the numerical solution by making use of a more robust scheme. Because the troubled zone
detection is performed a posteriori, the correction can be done only where it is absolutely necessary.
Furthermore, let us emphasize that in a posteriori correction procedures, the maximum principle
preservation or positivity preservation is included without any additional effort. Indeed, the whole
procedure is positivity-preserving as soon as the numerical scheme used as a correction procedure is.
Consequently, all the a posteriori techniques that make use of FV scheme as correction method is
then positivity-preserving. Recently, some new a posteriori limitations have arisen. Let us mention
the so-called MOOD technique, [42, 55, 56]. Through this procedure, the order of approximation
of the numerical scheme is locally reduced in an a posteriori sequence until the solution becomes
admissible. In [61, 59, 88], a FV-Subcell technique similar to the one presented in [151] has been
applied to the a posteriori paradigm. Practically, if the numerical solution in a cell is detected as
bad, the cell is then subdivided into subcells and a first-order FV, or alternatively other robust
scheme (second-order TVD FV scheme, WENO scheme, . . . ), is applied on each subcell. Then,
through these new subcell mean-values, a high-order polynomial is reconstructed on the primal cell.
Related strategies applied to dispersive and turbulent shallow-water flows have been introduced in
[30, 31].
Nonetheless, in all the aforementioned limitation techniques, a priori and a posteriori, in the trou-
bled cells the high-order DG polynomial is either globally modified in the cell, or even discard as
it is in the (H)WENO limiter or any a posteriori correction procedure. One of the main advantage
of high-order scheme is to be able to use coarse grids while still being very precise. But even in
the case where the troubled zone, as the vicinity a shock for instance, is very small regarding the
characteristic length of a cell, the DG polynomial is globally modified. In [164], a new conservative
technique is introduced to overcome this issue, by modifying the DG numerical solution only locally
at the subcell scale. This correction procedure has been designed first to avoid the occurrence of
non-admissible solution, to be maximum principle preserving and to prevent the code from crashing.

Another goal of this Ph.D. is to extend and adapt this new subcell correction strategy to the NSW
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equations and equip the existing arbitrary-order DG formulation for the NSW equations with a new,
robust and accurate stabilization operator with the additional constraint that the well-balancing
property for motionless steady states should be ensured.

We choose to call this method a posteriori Local Subcell Correction (LSC). The purpose of the
LSC operator is of course to enforce the water-height positivity and avoid spurious oscillations in
the vicinity of solution’s singularity. But the resulting corrected scheme is also conservative at the
subcell level. Additionally, it allows us to retain as much as possible the high accuracy and subcell
resolution of DG schemes, by minimizing the number of subcells in which the solution has to be
recomputed. Practically, the correction procedure only modifies the DG solution in troubled subcell
regions without impacting the solution elsewhere in the cell. It is also worth mentioning that the
whole procedure is totally parameter free, and behaves properly from 2nd order to any order of
accuracy.

Free-boundary problems and Arbitrary Lagrangian-Eulerian description

From a numerical point of view, the study of flows with a free moving boundary is a very difficult
problem, which may be encountered in engineering domains like aeroelasticity or fluid-structure in-
teractions. On one hand, Immersed or Embedded Boundary Methods (IBM or EBM), which are
classically constructed in the Eulerian setting, are particularly attractive for complex fluid–structure
interaction problems characterized by large structural motions and deformations and for flow prob-
lems with topological changes and / or with cracking, as they allow to directly embed some material
boundaries into the computational domain. We refer the reader to [139] for a general description of
the IBM and to [150] for a recent work concerning the closely related shifted boundary method.
On the other hand, to avoid interface-tracking methods, one may require the formulation to handle
moving or deforming domains and related meshes, following the time-evolution of the fluid-structure
interface. In such a context, the Arbitrary Lagrangian-Eulerian (ALE) description appears as a
popular and convenient choice for flow problems involving time-varying boundaries. Additionally,
it is important to highlight that the interactions of flows with moving boundaries may also result
in additional unsteady phenomena, generally coming with the need of high-order accurate approx-
imations to resolve the unsteadiness of flows at various scales and correctly predict and model, for
instance, the conditions at which some kind of instabilities may occur.
Initially developed in combination with a FD discretization in [83], and later extended to FE and
FV methods for both fluids and structures, see for instance [58] for a review, the ALE description
is generally put forward as combining the best of both Lagrangian (-material domain) and Eulerian
(-spatial domain) worlds. In the Eulerian framework, the conservation laws governing the physical
phenomenon under consideration are developed on a fixed referential, while in the Lagrangian for-
malism the referential is attached to the material. Thus, in the case of hydrodynamic problem for
instance, the mesh move and get deformed as the fluid flows [168, 169, 166]. The ALE methods
lies in between, where the computational mesh can move with an arbitrary velocity, which may
be chosen independently from the material (fluid in our case) velocity. This provides some great
flexibility in handling moving domains, avoiding the issues usually associated with the tracking of
interfaces in the Eulerian approach, as well as the large distortion generally encountered in the La-
grangian framework when (not so) large time evolutions are considered. It may also be important
to distinguish between indirect and direct ALE method. The indirect ALE methods consist in a
purely Lagrangian phase, followed by re-meshing and projection phases [117, 17]. The direct ALE
methods are different in the way that they take directly into account the mesh displacement in the
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flux definition of the discretized system of equations, see for instance [60, 23], which make them
particularly appealing for the problem at stake here, by potentially allowing to propagate the grid
deformation induced by the displacement of the moving floating object at the water surface.
Within ALE simulations of flow problems with moving boundaries, it is also important to ensure
that a numerical scheme reproduces exactly a constant solution. The Geometric Conservation Law
(GCL) is a relation between the ALE mapping’s Jacobian and the mesh velocity, which simply states
that a uniform flow field should not be influenced by any arbitrary grid’s motion. The notion of
GCL was first introduced in [155] and is also discussed for instance in [118, 137] and [78] where
relations between GCL and time stability are investigated. Of course, ALE descriptions may be
also conveniently applied together with a DG discretization method and such DG-ALE numerical
strategies for the study of moving boundaries in fluid-structure interactions or free-surface flows
have been introduced for instance in [162, 118, 137], see also the related space-time DG methods of
[159, 158].

Wave-structure interactions: a DG-ALE-LSC discrete formulation

In the second part of this work, we design a new robust high-order DG-ALE discrete formulation
which is directly modeled from the class of IBVP introduced and analyzed in [87]. This provides
a new way of simulating adaptive solutions for floating structures in nonlinear shallow-water flows.
The wetted surface and contact points are of course expected to vary over time following the body
motion, and the computational grid is expected to move accordingly. To achieve this, a continuous
explicit mapping between a fixed reference configuration and a time-varying domain is constructed,
taking inspiration from the analysis of the continuous problem in [87], and the NSW equations are
recast in the reference domain with the introduction of an additional geometric term, before being
approximated through high-order discontinuous polynomial interpolation. We extend the a poste-
riori LSC method to the proposed DG-ALE framework and enforce some nonlinear stability and
monotonicity, that are minimal requirements for the high-order approximations of nonlinear flows
with floating objects, thus leading to what we call a DG-ALE-LSC formulation. This stabilization
procedure through corrected fluxes is successfully combined with some suitable local conservative
variables reconstructions borrowed from [116], and a definition of the Lax-Friedrichs interface flux
adapted to moving meshes, ensuring that robustness and well-balancing (for motionless steady states)
are embedded properties of the limit lowest-order scheme. It is also proved that the global stabilized
DG-ALE formulation proposed in this thesis naturally ensures such a property, both at the semi-
discrete level (GCL) and the fully discrete level with the Discrete GCL (DGCL), hence successfully
combining well-balancing with geometric conservation.

The resulting modeling strategy is then applied and validated through a battery of benchmarks
involving different kind of configurations: (i) stationary partially immersed structures: the position
of the structures is fixed, with no motion over time, leading to a simpler model in the interior
domain, under the structure, (ii) prescribed structures’s motion: an operator enforces the body to
move according to some prescribed motion’s laws, impacting the flow motion around the structure
and leading to a more complex computational problem to be solved beneath the structure, (iii) free
floating structure: the structure moves according to the forces and torque deduced from the flow
and reversely, the structure’s motion impacts the flow configuration. In this last case, additional
equations describing the dynamics of the floating structure should be considered. We emphasize
that the structure is allowed for a vertical (heaving), horizontal (surging) and rotational (pitching)
motion and its shape’s lateral boundaries are not necessarily vertical.
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1.3 Discrete settings and basic formulations

In this section, we introduce and define several mathematical objects, tools and notations related
to discretization, that are extensively used in the next Chapters. Then, we state a straightforward
(non-stabilized) DG formulation for the NSW equations, as a starting point for the upcoming new
materials.

Discrete setting for DG methods

Let Ω ⊂ R denote an open segment with boundary ∂Ω, which serves as the computational domain.
We consider a partition Th =

{
ω1, . . . , ωnel

}
of Ω in open disjoint segments ω of boundary ∂ω such

that Ω =
⋃
ω∈Th

ω. The partition is characterized by the mesh size h := max
ω∈Th

hω, where hω is the

length of element ω. For a given mesh element ωi ∈ Th, we also note ωi =
[
xi− 1

2
, xi+ 1

2

]
and by xi

its barycenter.

Given an integer polynomial degree k ≥ 1, we consider the broken polynomial space

Pk(Th) :=
{
v ∈ L2(Ω), v|ω ∈ Pk(ω), ∀ω ∈ Th

}
,

where Pk(ω) denotes the space of polynomials in ω of total degree at most k, with dim(Pk(ω)) = k+1.
Piecewise polynomial functions belonging to Pk(Th) are denoted with a subscript h in the following,
and for any ω ∈ Th and vh ∈ Pk(Th), we may use the convenient shortcut: vωh := vh|ω when no
confusion is possible.

For any mesh element ω ∈ Th and any integer k ≥ 0, we consider a basis for Pk(ω) denoted by

Ψω =
{
ψωj
}
j∈J1, k+1K.

A basis for the global space Pk(Th) is obtained by taking the Cartesian product of the basis for the
local polynomial spaces:

Ψh = ×
ω∈Th

Ψω =
{{
ψωj
}

j∈J1, k+1K

}
ω∈Th

.

Note that we have:
supp(ψωj ) ⊂ ω, ∀ω ∈ Th, ∀j ∈ J1, k + 1K.

We introduce the following shortcut notations for smooth enough scalar-valued functions v, w:
∫

Th

v(x)w(x)dx :=
∑

ω∈Th

∫

ω
v(x)w(x)dx,

[
v
]
∂ωi

:= v(xi+ 1
2
)− v(xi− 1

2
), ∀ωi ∈ Th.

For ω ∈ Th, we denote pkω the L2-orthogonal projector onto Pk(ω) and pkTh
the global L2-orthogonal

projector onto Pk(Th) that gather all the local L2-projectors pkω on each element. Similarly, we de-
note ikω the element nodal interpolator into Pk(ω). The corresponding nodal distributions in elements
are chosen to be the approximate optimal nodes introduced in [39], which have better approximation
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properties than equidistant distributions, and include, for each element, the elements boundaries into
the interpolation nodes. The global ikTh

interpolator into Pk(Th) is obtained by gathering the local
interpolating polynomials defined on each element.

We also define the broken gradient operator ∂x : Pk(Th)→ Pk(Th) such that, for all vh ∈ Pk(Th),

(∂xvh)|ω := ∂x(vh|ω) = ∂xv
ω
h , ∀ω ∈ Th.

Remark 1. The degrees of freedom are classically chosen to be the functionals that map a given
discrete unknown belonging to Pk(Th) to the coefficients of its expansion in the selected basis.
Specifically, the degrees of freedom applied to a given function vh ∈ Pk(Th) return the real numbers

vωj with j ∈ J1, k + 1K and ω ∈ Th, (1.5)

such that

vωh =
k+1∑

j=1

vωj ψ
ω
j , ∀ω ∈ Th.

With a little abuse in terminology, we refer hereafter to the real numbers (1.5) as the degrees of
freedom associated with vh and we note v ω ∈ Rk+1 the vector gathering the degrees of freedom
associated with vωh .

Discrete setting for FV-Subcell Correction methods

For any mesh element ωi ∈ Th, we introduce a sub-partition Tωi into k + 1 open disjoint subcells:

ωi =
k+1⋃

m=1

S
ωi

m ,

where the subcell S ωi
m =

[
x̃ ωi

m− 1
2

, x̃ ωi

m+ 1
2

]
is of size

∣∣∣S ωi
m

∣∣∣ =
∣∣∣x̃ ωi

m+ 1
2

− x̃ ωi

m− 1
2

∣∣∣, with the convention

x̃ ωi
1
2

= xi− 1
2
and x̃ ωi

k+ 3
2

= xi+ 1
2
, see Fig. 1.1. When considering a sequence of neighboring mesh

elements ωi−1, ωi, ωi+1, the convenient convention S ωi
0 := S

ωi−1

k+1 and S ωi
k+2 := S

ωi+1

1 may be used.

xi−1
2

xi+1
2

x̃ωi
1
2

x̃ωi

k+3
2

x̃ωi
3
2

x̃ωi

m−1
2

x̃ωi

m+1
2

S ωi
m

Figure 1.1: Partition of a mesh element ωi in k + 1 subcells
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To define the sub-resolution basis functions, required in § 3.2 and initially introduced in [164],
we introduce for a given mesh element ω ∈ Th the following set of subcell indicator functions{
1
ω
m, m ∈ J1, k + 1K

}
, with:

1
ω
m(x) =

{
1 if x ∈ Sωm,
0 if x 6∈ Sωm,

∀m ∈ J1, k + 1K.

Then, the set of sub-resolution basis functions
{
φωm ∈ Pk(ω), m ∈ J1, k+1K

}
are defined as follows:

φωm = pkω(1ωm), ∀m ∈ J1, k + 1K, (1.6)

∫

ω
φωmϕdx =

∫

ω
1
ω
mϕdx =

∫

Sω
m

ϕdx, ∀m ∈ J1, k + 1K, ∀ ϕ ∈ Pk(ω). (1.7)

For all ω ∈ Th we also introduce the set of piecewise constant functions on the sub-grid:

P0(Tω) :=
{
v ∈ L2(ω), v|Sω

m
∈ P0(Sωm), ∀Sωm ∈ Tω

}
.

For any ω ∈ Th, and any vωh ∈ Pk(ω), let denote

v ωm with m ∈ J1, k + 1K,

the low-order piecewise constant components defined as the mean-values of vωh on the subcells be-
longing to the subdivision Tω, called sub-mean-values in the following, which may be gathered in
a vector v ω ∈ Rk+1. Whenever a sequence of neighboring mesh elements ωi−1, ωi, ωi+1 and asso-
ciated neighboring approximations is considered, the following convenient convention may be used:
v ωi

0 := v
ωi−1

k+1 and v ωi
k+2 := v

ωi+1

1 .

Remark 2. We observe that the degrees of freedom
{
v ωm, m ∈ J1, k + 1K

}
are uniquely defined

through the sub-mean-values
{
v ωm, m ∈ J1, k + 1K

}
, and reversely. Specifically, considering the

local transformation matrix Πω =
(
πωm,p

)
m,p

defined as:

πωm,p =
1

|Sωm|

∫

Sω
m

ψωp dx, ∀ (m, p) ∈ J1, k + 1K2, (1.8)

we have the following relation:

Πω v ω = vω and Π−1
ω vω = v ω. (1.9)

As a consequence, any polynomial function vωh ∈ Pk(ω) can be expressed equivalently either in terms
of the degrees of freedom v ω, or the sub-means values vω.

Finally, let introduce the (one-to-one) following projector onto the piecewise constant sub-grid space:

πkTω
: Pk(ω) −→ P0(Tω)

vωh 7−→ πkTω
(vωh ) := vω.

(1.10)

(1.11)

In practice, once the transformation matrices Πω are initialized in a preprocessing step, it is straight-
forward and computationally inexpensive to switch from one representation to another, see Fig. 1.2.
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h

Figure 1.2: Piecewise polynomial function and associated sub-mean-values

Remark 3. The local projection matrices (1.8) are obviously non-singular. This property would be
straightforwardly extended to the multi-dimensional case with Cartesian grids.

Time discretization

Concerning time discretization, for a given final computational time tmax > 0, we consider a partition
(tn)0≤n≤N of the time interval [0, tmax] with t0 = 0, tN = tmax and tn+1 − tn =: ∆tn. More details
on the computation of the time-step ∆tn and on the time marching algorithms are given in § 3.3.
For any sufficiently regular scalar-valued function of time w, we let wn := w(tn).

A straightforward DG formulation for the NSW equations

The NSW equations may be written in a compact form:

∂tv + ∂xF (v) = B(v, ∂xb). (1.12)

where v : R×R+ → Θ is the vector of conservative variables, F : Θ → R2 is the flux function and
B : Θ× R→ R2 is the topography source term, defined as follows:

v =

(
H
q

)
, F (v) =

(
q

uq + 1
2gH

2

)
, B(v, ∂xb) =

(
0

−g H ∂xb

)
. (1.13)

We multiply (1.12) by an arbitrary function ψ ∈ Pk(Th) and we integrate locally on the cell ωi:
∫

ωi

ψ∂tvdx+

∫

ωi

ψ∂xF (v)dx =

∫

ωi

ψB(v, ∂xb)dx. (1.14)

The basis function ψ is not time-dependent, thus we can rewrite equation (1.14) as:

d
dt

∫

ωi

vψdx+

∫

ωi

ψ∂xF (v)dx =

∫

ωi

ψB(v, ∂xb)dx, (1.15)

an integration by parts leads to:
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d
dt

∫

ωi

vψdx−
∫

ωi

F (v)∂xψdx+ [ψF (v)]
i+ 1

2

i− 1
2

=

∫

ωi

ψB(v, ∂xb)dx. (1.16)

Let consider the restrictions of the sought solution and the bathymetry to the mesh element ωi,
which writes:

vωi
h =

k+1∑

p=1

vωi
p ψ

ωi
p and bωi

h =

k+1∑

p=1

bωi
p ψ

ωi
p , (1.17)

then the DG local formulation writes:

d
dt

∫

ωi

vωi
h ψ

ωi
l dx−

∫

ωi

F (vωi
h )∂xψ

ωi
l dx+

[
ψωi
l F

]i+ 1
2

i− 1
2

=

∫

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h )dx, l = 1, ..., k + 1.

(1.18)

In this last formulation, F is a numerical flux which should be consistent with the physical flux
function F .

Remark 4. The terms
∫
ωi
F (vωi

h )∂xψ
ωi
l dx and

[
ψωi
l F

]i+ 1
2

i− 1
2

are respectively referred to as volume and

surface integrals. The term
∫
ωi
ψωi
l B(vωi

h , ∂xb
ωi
h )dx is referred to as source term.

In the context of DG schemes, the numerical flux is defined as a function of the left and right traces
of the local polynomial approximation coming from each side of the interface:

Fi+ 1
2

= F
(
vωi
h

(
xi+ 1

2
, t
)
, v
ωi+1

h

(
xi+ 1

2
, t
))

.

This function is generally obtained through the resolution of an exact or approximated Riemann
solver. In the remainder of this work, we use the global Lax-Friedrichs (LF) numerical flux which
reads:

F(vL; vR) =
1

2
(F (vR)− F (vL)− σ(vR − vL)) , (1.19)

with,

σ = max
ω∈Th

(
|u|+

√
gH
)
, (1.20)

and the maximum is taken over the whole region. In what follows, we use the notations v±
i− 1

2

, v±
i+ 1

2

for the left and right traces of vh in the boundaries xi− 1
2
and xi+ 1

2
of ωi. Hence the formulation

(1.18) becomes:

k+1∑

p=1

∂tv
ωi
p

∫

ωi

ψωi
p ψ

ωi
l dx−

∫

ωi

F (vωi
h )∂xψ

ωi
l dx+

[
ψωi
l F

]i+ 1
2

i− 1
2

=

∫

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h )dx, l = 1, ..., k + 1.

(1.21)

The global DG solution is obtained by the gathering all the local solutions.
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Remark 5. The local semi-discrete system (1.21) can be expressed in matrix form:

Mωi∂tv ωi
= L̃ωi (1.22)

where Mωi =
(
mωi
l,p

)
l,p=1,...,k+1

is the local mass matrix defined by:

mωi
l,p =

∫

ωi

ψωi
l ψ

ωi
p dx,

and the local residual vector L̃ωi =
(
l̃ωi
l

)
l=1,...,k+1

gathers the volume integrals, surface integrals

and source terms as follows:

l̃ωi
l =

∫

ωi

F (vωi
h )∂xψ

ωi
l dx−

[
ψωi
l F

]i+ 1
2

i− 1
2

+

∫

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h )dx

Remark 6. The global semi-discrete system may be written as follows in matrix form:

M∂tv = L̃ (1.23)

where M is the block-diagonal matrix and L̃ the global residual vector are defined by:

M =




Mω1 0 · · · 0
0 Mω2 · · · 0
...

...
. . .

...
0 0 · · · Mωnel


 and L̃ =

[
L̃ω1 , L̃ω2 , · · · , L̃ωnel

]T

and v the global solution on the whole domain:

v =
[
v ω1

, v ω2
, · · · , v ωnel

]T
.
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Outline of this tapescript

We are now ready to present the work performed during this Ph.D. In this respect, the presentation
is divided into two parts.

The first part of this work is devoted to the construction and analysis of new FV-Subcell
correction methods for the NSW equations with varying topography. This part is divided
into three chapters (Chapter 2 to Chapter 4).

In Chapter 2, we introduce a FV-Subcell correction strategy within an a priori approach. In particu-
lar, we introduce a novel numerical method that efficiently combines FV-Subcell correction within an
a priori treatment, together with the high-order positivity-preserving limiter of [179] and a classical
TVB slope-limiter [45]. This work has not been published yet, as we believe that the a posteriori
strategy (introduced in Chapter 3) results in a globally more satisfying parameter-free algorithm.
Though, a priori strategies may be of interest for other applications and this is the reason why we
choose to provide some details in this chapter.

In Chapter 3, we detail how one can reformulate a straightforward DG formulation as a FV method
operating on a sub-partition, with particular subcell’s interfaces fluxes, which are called reconstructed
fluxes. Then, we show how it is possible to surgically replace these interface fluxes by the lowest-
order FV fluxes only in troubled subcells. This approach is then embedded into a new a posteriori
correction strategy, which is extensively validated to highlight its robustness. It is also shown that,
provided some interface states reconstructions are performed, it is possible to obtain a globally well-
balanced discrete formulation. This work is already published in Journal of Computational Physics,
see [80]. We also take advantage of this a posteriori strategy is the second part of this work to
stabilize the computations associated with the floating object.

In Chapter 4, we introduce some preliminary works concerning the 2d extension of the a posteriori
LSC methodmethod for the NSW equations on unstructured simplicial meshes. Several new dif-
ficulties associated with the construction of the sub-partitions are identified, and some numerical
validations involving wet/dry interfaces and well-balancing are shown. This part is still an ongoing
project, and will be the topic of a near future article.

The second part is dedicated to the study of nonlinear interactions between free-surface
shallow-water flows and a partially immersed floating object. Specifically, we design and
analyze a new robust high-order DG-ALE discrete formulation for such adaptive simulations. This
second part is splitted into two chapters (Chapter 5 and Chapter 6). The content of this second
part has been submitted for publication in Journal of Computational Physics under the form of two
full-length research papers.

Chapter 5 is devoted to the introduction of the continuous models associated with the presence of a
partly immersed floating object in shallow-water. Some local existence results coming from [87] are
also recalled.

In Chapter 6, we finally design and analyze the corresponding discrete formulation, which is then
extensively validated through several benchmarks. This formulation depends on the object’s motion,
which may be either prescribed, or computed as a response to the hydrodynamic forcing associated
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with the flow (with heave, surge and pitch motions allowed in the horizontal one-dimensional case).
These assets are numerically illustrated through an extensive set of manufactured benchmarks vali-
dating the water-body interaction model.

We provide a brief conclusion that summarizes the new materials obtained during these three years
and described here. This conclusion is supplemented with several insights of the upcoming works.

Finally, several Appendices are provided in order to specify several technical issues without making
the tapescript more cumbersome.
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Part I

Stabilization of DG through FV-Subcell
correction
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Chapter 2

An a priori hybrid DG / FV-Subcell
method for the NSW equations

In this chapter, we develop an a priori positivity-preserving high-order accurate, well-balanced DG
method for the NSW equations with topography source term, using the high-order Positivity-Limiter
(PL) of [183, 185]. Most existing numerical solutions to deal with wet/dry fronts in NSW equations
are developped within an a priori reconstructions or limitations. While such approaches may po-
tentially ensure the water-height positivity at a given time-step, nothing generally ensures that it
remains non-negative after the upcoming time-step. Borrowing some ideas from [183, 185], we use
a positivity-preserving limiter which preserves the accuracy and ensures the local mass conserva-
tion. We also introduce some modifications on the numerical fluxes in order to further ensure the
well-balanced property. Assuming that the water-height is initially positive, we show that the water-
height remains positive at the next time-step under a suitable CFL condition.

However, in practice, additional trouble may generally be experienced as the water-height is close
to zero. In such almost-dry areas, the fluid horizontal velocity u = q/H is not computed accurately
and very large values can be produced, even with a small numerical error on the discharge, leading
to over-restricted time-steps and an inaccurate description of the flow. To alleviate this limitation,
by taking inspiration from the NSW DG/FV scheme of A. Meister and S. Ortleb, see [124], we
introduce in this chapter an hybrid approach, in which we locally replace the high-order DG scheme
by some lowest-order FV scheme acting on a dedicated sub-grid, only in the vicinity of dry areas.
Hence, the high-order DG scheme with positivity-preserving limiter approach is used only in wet
areas. The precise definition of the vicinity of such dry areas is specified in an ad hoc fashion with
an arbitrary threshold value εd. Incidentally, this method also leads to some sensible decreasing of
the computational cost, thanks to the use of a less expensive lowest-order FV scheme in all the dry
and almost dry regions. Also, some local modifications of the numerical fluxes are performed for the
lowest-order FV-Subcell scheme to enforce the well-balanced property. A proof of the well-balanced
property for each ingredient (pure DG, pure FV-Subcell and hybrid DG / FV-Subcell) is provided
in § 2.5.1 and § 2.5.2. This positivity-preserving hybrid approach is denoted by PL DG-FVsubcell in
the following. Several numerical computations that highlight the resulting properties of this new a
priori hybrid strategy, are presented in this chapter.

We also show that a TVB slope-limiter may be efficiently embedded within the high-order DG
schemes, in combination with the PL [183, 185]. The characteristic-wise total variation bounded

26



(TVB) limiter is used, see [48, 148]. This combination was introduced by [179], and is denoted
by PL/TVB in the following. Several numerical computations for the resulting properties of the
PL/TVB method, are presented and compared with the a posteriori LSC method in chapter 3.

2.1 Well-balanced numerical fluxes

Remark 7. The notations used in this chapter are defined either whenever needed, or previously
in Chapter 1, §1.3.

Several well-balanced DG methods for the NSW equations have been developed, see for example
[146] for a list of references. In this work, we consider the approach of [177], (see also [179]), where
it is shown that the straightforward DG method is able to exactly preserve the motionless steady
state, provided some modifications of the interface fluxes. This is one of the simplest approaches to
obtain a high-order well-balanced DG scheme, and the computational cost is basically the same as
the straightforward DG method. In this section, we briefly recall this well-balanced approach. We
first define the reconstructed interface values v∗,±

i+ 1
2

as follows:

v∗,±
i+ 1

2

=




H∗,±
i+ 1

2

H∗,±
i+ 1

2

u±
i+ 1

2


 , (2.1)

with the cell’s interface reconstruction for the water-height:

H∗,±
i+ 1

2

= max

(
0, H±

i+ 1
2

+ b±
i+ 1

2

−max

(
b−
i+ 1

2

, b+
i+ 1

2

))
, (2.2)

the numerical flux F are replaced by the redefined numerical flux F∗ as follows:

F∗,l
i+ 1

2

= F
(
v∗,−
i+ 1

2

; v∗,+
i+ 1

2

)
+

(
0

1
2g(H−

i+ 1
2

)2 − 1
2g(H∗,−

i+ 1
2

)2

)
, (2.3)

F∗,r
i− 1

2

= F
(
v∗,−
i− 1

2

; v∗,+
i− 1

2

)
+

(
0

1
2g(H+

i− 1
2

)2 − 1
2g(H∗,+

i− 1
2

)2

)
. (2.4)

Finally, the DG scheme (1.18) is replaced by the well-balanced DG scheme (2.5):

d
dt

∫

ωi

vωi
h ψ

ωi
l dx−

∫

ωi

F (vωi
h )∂xψ

ωi
l dx+

[
ψωi
l F∗

]i+ 1
2

i− 1
2

=

∫

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h )dx, ∀ l = 0, ..., k.

(2.5)

2.2 TVB slope-limiter

Another stabilization process for the DGmethods may generally be needed to deal with the occurence
of discontinuities in the underlying solution. To this end, one of the simplest approach is to use a
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slope-limiter, as in the FV methods, which should be applied after each inner stage of the RK time-
stepping. Such a slope-limiter, like the TVB limiter of [44], may be used on top of the positivity-
preserving limiter § 2.4. This double limitation process (positivity-preserving limiter and TVB
slope-limiter) is used for instance in [179] and referred to as PL/TVB method in what follows.
Usually, for the shallow-water system, we perform the TVB limiting in the local characteristic
variables (Riemann invariants). However, this limiter procedure might destroy the preservation of
the still water steady state H+ b = cst. Therefore, following the idea presented in [9, 186], we apply
the limiter procedure on the function (H + b, q)T instead. The modified RK-DG solution is then
defined by H̃ = H̃ + b − b. We denote by η = H + b the total water elevation and the modified
solution writes H̃ = η̃ − b.

Remark 8. We observe that this procedure does not destroy the conservation of H, which should

be maintained during the limiter process. In fact H̃ = η̃ − b = η̃ − b
(2.7)︷︸︸︷
= η − b = η − b = H.

We start by introducing the minmod function defined by:

minmod (a1, · · · , am) =

{
smini |ai| , if s = sign (a1) = · · · = sign (am) ,
0, otherwise.

If the following inequalities

|η−
i+ 1

2

− ηωi
h | ≤Mh2

ωi
and |η+

i− 1
2

− ηωi
h | ≤Mh2

ωi
(2.6)

are satisfied, then the solution in cell ωi is assumed to be smooth, and thus the cell is not considered
problematic. Otherwise, we compute the following quantities:

∆η̃−ωi
= minmod

(
ηωi
− η+

i− 1
2

, ηωi+1
− ηωi

, ηωi
− ηωi−1

)
,

∆η̃+
ωi

= minmod
(
η−
i+ 1

2

− ηωi
, ηωi+1

− ηωi
, ηωi

− ηωi−1

)
.

Then we set

∆η̃ωi = min
(
∆η̃−ωi

,∆η̃+
ωi

)
.

Finally, the modified η̃ is defined by

η̃ = η +
2

hωi

(x− xi)∆η̃ωi . (2.7)

We remind the reader that xi is the center of the cell ωi and η is the mean-value of η on ωi:

η =
1

hωi

∫

ωi

ηdx.

We refer the reader to [179] for more information about the choice of the parameter M in (2.6).
Finally, the modified water-height H is simply defined by H̃ = η̃ − b. We do exactly the same
procedure for the modified water discharge q̃. Whenever the condition (2.6) is not satisfied the
solution (H, q)T is replaced by (H̃, q̃)T .
The discrete initial data v0

h is defined as in Remark 24
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2.3 Time marching algorithm

Supplementing (2.5) with an initial datum v(0, ·) = v0 = (H0, q0)t, the time-stepping may be carried
out using explicit SSP-RK schemes, [74, 149]. For instance, writing the semi-discrete equation (2.5)
in the operator form

∂tvh +Ah(vh) = 0,

we advance from time level n to (n+ 1) with the third-order scheme as follows:

vn,1h = vnh −∆tnAh(vnh),

vn,2h =
1

4
(3vnh + vn,1h )− 1

4
∆tnAh(vn,1h ) ,

vn+1
h =

1

3
(vnh + 2vn,2h )− 2

3
∆tnAh(vn,2h ) ,

where vn,ih , 1 ≤ i ≤ 2, are the solutions obtained at intermediate stages. As the correction described
in the following section make use of both DG scheme on the primal cells ω ∈ Th and FV scheme on
the subcells Sωm ∈ Tω, the time-step ∆tn is computed adaptively using the following CFL condition:

∆tn =

min
ω∈Th

(
hω

2k + 1
, min
Sω
m∈Tω

|Sωm|
)

σ
, (2.8)

where σ is the constant defined in (2.33).

2.4 Positivity-preserving limiter

Recalling that high-order RK SSP time marching algorithms [74, 149] may be regarded as convex
combinations of first-order forward Euler schemes, for sake of simplicity we will consider the Euler
first-order scheme. By taking the test function ψωi

l = 1 in (2.5), we obtain the governing equation
satisfied by the cell averages. Dropping the ”n” notation for the numerical fluxes and source term
for conciseness, we get:

vn+1
ωi

= vnωi
− ∆t

hωi

(
F∗,l
i+ 1

2

−F∗,r
i− 1

2

)
+

∆t

hωi

∫

ωi

B(vωi
h , ∂xb

ωi
h )dx. (2.9)

We remind the reader that hωi = |ωi| is the size of the cell ωi and vnωi
the average value of vωi

h on ωi:

vnωi
=

1

hωi

∫

ωi

vωi,n
h dx.

By plugging (2.3)-(2.4) and (2.1) into (2.9), the governing equations of the cell averages of the
water-height in the well-balanced DG scheme (2.5) can be written as:

H
n+1
ωi

= H
n
ωi
− ∆t

hωi

[
F1

(
H∗,−
i+ 1

2

, u−
i+ 1

2

;H∗,+
i+ 1

2

, u+
i+ 1

2

)
−F1

(
H∗,−
i− 1

2

, u−
i− 1

2

;H∗,+
i− 1

2

, u+
i− 1

2

)]
, (2.10)

where the H∗,±i±1/2 are defined in (2.2) and F1 is the first component of the numerical flux:
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F1

(
H∗,−
i+ 1

2

, u−
i+ 1

2

;H∗,+
i+ 1

2

, u+
i+ 1

2

)
=

1

2

(
H∗,−
i+ 1

2

u−
i+ 1

2

+H∗,+
i+ 1

2

u+
i+ 1

2

− σ
(
H∗,+
i+ 1

2

−H∗,−
i+ 1

2

))
. (2.11)

Before going further, the essential ingredient to ensure a high-order positivity-preserving scheme is
to guarantee that the first-order version of it does indeed produce of positive solution. To this end,
let us define the cell reconstructed first-order interface values for the topography:

bi+ 1
2

:= max(bωi , bωi+1) and bi− 1
2

:= max(bωi−1 , bωi), (2.12)

where bωi and bωi±1 are the average values of bωi
h on ωi and ωi±1 respectively.

Lemma 9. Under the CFL condition ∆t
hωi

α ≤ 1, where α = max(|u| + √gH), we consider the
following first order scheme (we drop the ”n” notation)

H
n+1
ωi

= Hωi −
∆t

hωi

[
F1

(
H

+
ωi
, uωi ;H

−
ωi+1

, uωi+1

)
−F1

(
H

+
ωi−1

, uωi−1 ;H
−
ωi
, uωi

)]
, (2.13)

where F1 is defined as in (2.11). We also consider

H
±
ωi

= max
(

0, Hωi + bωi − bi± 1
2

)
. (2.14)

If Hωi and Hωi±1 are non-negative, then Hn+1
ωi

is non-negative.

Proof. We suppose first that Hωi and Hωi±1 are strictly positive. Denoting by λ = ∆t
hωi

, the scheme
(2.13) is equivalent to:

H
n+1
ωi

=H
n
ωi
− λ

[
1

2

(
H

+
ωi
uωi +H

−
ωi+1

uωi+1 − σ
(
H
−
ωi+1
−H+

ωi

))]

+ λ

[
1

2

(
H

+
ωi−1

uωi−1 +H
−
ωi
uωi − σ

(
H
−
ωi
−H+

ωi−1

))]
.

Finally, the scheme (2.13) can be written as:

H
n+1
ωi

=

[
1− 1

2
λ (σ + uωi)

H
−
ωi

Hωi

− 1

2
λ (σ − uωi)

H
+
ωi

Hωi

]
Hωi

+

[
1

2
λ
(
σ + uωi−1

) H+
ωi−1

Hωi−1

]
Hωi−1 +

[
1

2
λ
(
σ − uωi+1

) H−ωi+1

Hωi+1

]
Hωi+1 .

Therefore, Hn+1
ωi

is a convex combination of Hωi−1 , Hωi and Hωi+1 . Moreover the coefficients are
non-negative since λα ≤ 1 and 0 ≤ H±ωi

≤ Hωi for all ωi. Thus, we get Hn+1
ωi
≥ 0.

Let us suppose now that Hωi = 0. Since bωi − bi± 1
2
≤ 0, we have H+

ωi
= H

−
ωi

= 0. Thus, the
equation (2.13) writes

H
n+1
ωi

=

[
1

2
λ
(
σ + uωi−1

) H+
ωi−1

Hωi−1

]
Hωi−1 +

[
1

2
λ
(
σ − uωi+1

) H−ωi+1

Hωi+1

]
Hωi+1 ,
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which is still a positive term. We proceed in the same way for the remaining cases (Hωi±1 = 0).

Let us introduce theN -points Legendre Gauss-Lobatto quadrature rule on the interval ωi =
[
xi− 1

2
, xi+ 1

2

]
.

This rule is exact for the integral of polynomials of degree up to 2N − 3, where N is such that
2N − 3 ≥ k. We denote these quadrature points on ωi as

Si =
{
xi−1/2 = x̂1

ωi
, x̂2

ωi
, · · · , x̂N−1

ωi
, x̂Nωi

= xi+1/2

}
.

Let {ŵt}t=1,...,N be the quadrature weights for the interval such that
∑N

t=1 ŵt = 1. We recall that
Hωi
h (x) denotes the DG polynomial approximating the water-height in the cell ωi. We have:

Hωi =
1

hωi

∫

ωi

Hωi
h (x)dx =

N∑

t=1

ŵtH
ωi
h

(
x̂tωi

)
=

N−1∑

t=2

ŵtH
ωi
h

(
x̂tωi

)
+ ŵ1H

+
i− 1

2

+ ŵNH
−
i+ 1

2

, (2.15)

where H+
i− 1

2

= Hωi
h (x̂1

ωi
) and H−

i+ 1
2

= Hωi
h (x̂Nωi

).

Proposition 1. Let Hωi
h (x) be the DG polynomial for the water-height in the cell ωi obtained through

(2.5). If H−,n
i− 1

2

, H+,n

i+ 1
2

and Hωi,n
h

(
x̂tωi

)
are non-negative ∀ t = 1, · · · , N , then the water-height mean

value at time level n+ 1, Hn+1
ωi

, is non-negative under the CFL condition

λσ ≤ ŵ1. (2.16)

Proof. We drop the "n" notation for the sake of conciseness. By substituting (2.15) into (2.10), we

can rewrite (2.10) by adding and subtracting the term F1

(
H∗,+
i− 1

2

, u+
i− 1

2

;H∗,−
i+ 1

2

, u−
i+ 1

2

)
:

H
n+1
ωi

=

N−1∑

t=2

ŵtH
ωi
h

(
x̂tωi

)
+ ŵ1H

+
i− 1

2

+ ŵNH
−
i+ 1

2

− λ
[
F1

(
H∗,−
i+ 1

2

, u−
i+ 1

2

;H∗,+
i+ 1

2

, u+
i+ 1

2

)
−F1

(
H∗,+
i− 1

2

, u+
i− 1

2

;H∗,−
i+ 1

2

, u−
i+ 1

2

)

+F1

(
H∗,+
i− 1

2

, u+
i− 1

2

;H∗,−
i+ 1

2

, u−
i+ 1

2

)
−F1

(
H∗,−
i− 1

2

, u−
i− 1

2

;H∗,+
i− 1

2

, u+
i− 1

2

)]

=
N−1∑

t=2

ŵtH
ωi
h

(
x̂tωi

)
+ ŵNHN + ŵ1H1,

(2.17)

where

H1 = H+
i− 1

2

− λ

ŵ1

[
F1

(
H∗,+
i− 1

2

, u+
i− 1

2

;H∗,−
i+ 1

2

, u−
i+ 1

2

)
−F1

(
H∗,−
i− 1

2

, u−
i− 1

2

;H∗+
i− 1

2

, u+
i− 1

2

)]
(2.18)

and

HN = H−
i+ 1

2

− λ

ŵN

[
F1

(
H∗,−
i+ 1

2

, u−
i+ 1

2

;H∗,+
i+ 1

2

, u+
i+ 1

2

)
−F1

(
H∗,+
i− 1

2

, u+
i− 1

2

;H∗,−
i+ 1

2

, u−
i+ 1

2

)]
. (2.19)
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We notice that (2.18) and (2.19) are both of the type (2.13). Hence H1 ≥ 0 and HN ≥ 0 under the
CFL condition (2.16) λσ ≤ ŵ1 = ŵN . Therefore, H

n+1
ωi
≥ 0 since it is a convex combination of H1,

HN and Hωi
h

(
x̂tωi

)
t=2,··· ,N−1

.

To enforce the conditions of this proposition, we need to modify Hωi,n
h (x) for it to be non-negative

for all x ∈ Si. At time level n, given that Hn
ωi
≥ 0, we can introduce the following limiter on the

DG polynomial vωi,n
h (x) =

(
Hωi,n
h (x), (Hu)ωi,n

h (x)
)T as introduced in [179]. This limiter is a linear

scaling around its cell average:

ṽωi,n
h (x) = θ

(
vωi,n
h (x)− vnωi

)
+ vnωi

, θ = min

{
1,

H
n
ωi

H
n
ωi
−mωi

}
(2.20)

mωi = min
x∈Si

Hωi,n
h (x) = min

t=1,...N
Hωi,n
h

(
x̂tωi

)
.

It is easy to observe that H̃ωi,n
h

(
x̂tωi

)
≥ 0 t=1,··· ,N for any cell ωi. We compute the modified polyno-

mial ṽωi,n
h (x) and use it instead of vωi,n

h (x). Hence, using the positivity-preserving limiter (2.20), we
can ensure the positivity of the water-height mean-value Hn+1

ωi
for any cell ωi at the next time level

n+1. Therefore (2.20) is indeed a positivity-preserving limiter for the well-balanced DG scheme (2.5).

Until now we can ensure the positivity of the height mean-values Hn+1
ωi i=1,...,nel

at the next time
level n+ 1 via the well-balanced DG scheme (2.5) with the previously defined positivity-preserving
limiter (2.20). We already know that a first-order well-balanced FV-Subcell scheme § 2.5.1 is applied
on specific cells (where Hn

ωi
< εd), see Remark 10-11. Considering a cell ωi, to ensure the positivity

of the water-height mean-value on ωi at the next time level n + 1, this is enough to guarantee the
positivity of the water-height sub-mean-values Hωi+1,n

1 , Hωi−1,n
k+1 and {Hωi,n

m }m=1,...,k+1 on ωi at the
current time level n and then apply a FV-Subcell scheme on ωi, since a first-order FV scheme con-
serves positivity.

The positivity limiter already introduced in (2.20) does not ensure the positivity of the water-
height sub-mean values on subcells. Therefore we need to modifie the coefficient θ and replace it by
θ′:

θ′ = min

{
1,

H
n
ωi

H
n
ωi
−m′ωi

}
, (2.21)

where

m′ωi
= min( min

x∈Si

Hωi,n
h (x), min

m=1,...,k+1
H
ωi,n
m ). (2.22)

The new limiter on the DG polynomial vωi,n
h (x) is finally written as:

ṽωi,n
h (x) = θ′

(
vωi,n
h (x)− vnωi

)
+ vnωi

. (2.23)
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We note this new positivity limiter (2.23) by "DG-FVsubcell positivity limiter". Thanks to (2.23),
the water-height sub-mean-values H̃

ωi,n

m m=1,...,k+1 associated to the "limited" polynomial ṽωi,n
h (2.23)

are non-negative for any cell ωi. We drop the tilde notation in what follows.

Finally, using the well-balanced FV-Subcell scheme § 2.5.1, the DG-FVsubcell positivity limiter

ensures the positivity of the water-height mean-value Hn+1
ωi

for any cell ωi at the next time level
n+ 1. Thus DG-FVsubcell positivity limiter is a positivity-preserving limiter for both well-balanced
DG method § 2.5.2 and well-balanced FV-Subcell method § 2.5.1.

Remark 10. A cell ωi for which the water-height mean-value is smaller than the threshold εd (for
a small enough εd) is considered as a dry cell. In this case, we use a first-order FV-Subcell scheme
instead of the DG scheme. Also, there is no need to worry about negative water-height problem in
dry regions, since we have just shown that the first-order FV-Subcell scheme ensures the positivity
of H, thanks to the PL.

Remark 11. The DG-FVsubcell positivity limiter (2.23) is applied in both cases, Hn
ωi
> εd and

H
n
ωi
< εd. In the first case (Hn

ωi
> εd), the well-balanced DG scheme (2.5) is applied. While in the

second case (Hn
ωi
< εd), we use the well-balanced FV-Subcell scheme (see § 2.5.1). In both cases,

the DG-FVsubcell positivity limiter ensures the water-height positivity. This procedure is referred
to as PL DG-FVsubcell method in what follows.

Remark 12. The TVB limiter should be used before the positivity-preserving limiter, so that the
water-height positivity is not impacted. Indeed, by applying the positivity-preserving limiter on the
linear solution (TVB-limited polynomial) on ωi, we do not increase the slope associated with the
piecewise-linear solution. For higher-order time-discretization, the positivity-preserving and TVB
limiters are applied at each sub-step.

2.5 DG and FV-Subcell methods

Let us consider a cell ωi. If the water-height mean-value on ωi at time level n satisfies Hn
ωi
< εd,

then a well-balanced FV-Subcell method is applied on ωi. To this end, we subdivide ωi into k + 1
subcells (Sωi

m )m=1,...,k+1. Then, using the transformation matrix Πω (1.9), we compute the k + 1
sub-mean-values from the high-order DG polynomial solution. The next step consists in applying a
first-order FV scheme on each subcell of the cell under consideration (see Remark 13 for the different
involved cases), and we obtain accordingly k + 1 new sub-mean-values at time level n+ 1. Finally,
using the inverse transformation matrix Π−1

ω , we reconstruct a high-order Pk polynomial solution
on ωi.

2.5.1 FV-Subcell method: well-balancing and water-height positivity

The first-order FV scheme on a subcell Sωi
m is defined as follows:

vωi,n+1
m = vωi,n

m − ∆t

|Sωi
m |
(
F l
m+ 1

2

−Fr
m− 1

2

)
+

∆t

|Sωi
m |

∫

S
ωi
m

B
(
vωi
m , (∂xb)

ωi
m

)
dx, (2.24)

where the well-balanced first-order FV numerical fluxes Fr
m− 1

2

and F l
m+ 1

2

will be defined, accordingly
to the different scenarii, in the remainder of this section. For the source term discretization, we may
use a simple FD approximation of term (∂xb)

ωi
m :
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1

|Sωi
m |

∫

S
ωi
m

B
(
vωi
m , (∂xb)

ωi
m

)
dx =




0

1
|Sωi

m |

∫
S
ωi
m
−gHωi

m (∂xb)
ωi
mdx


 =




0

−gHωi

m

(
bm+ 1

2
− bm− 1

2

)

|Sωi
m |


 ,

where bm± 1
2
would be the subcell version of the first-order topography interface reconstrcuted values

defined in (2.12). However, let us emphasize that because we aim at designing an hybrid DG/FV
scheme, we already have introduced an underlying polynomial representation of the water height
and bathymetry, see (1.17). The source term

1

|Sωi
m |

∫

S
ωi
m

B
(
vωi
h , ∂xb

ωi
h

)
dx =




0

1
|Sωi

m |

∫
S
ωi
m
−gHωi

h ∂xb
ωi
h dx




can then be computed exactly through an accurate enough quadrature rule. This option naturally
enables us to impose a well-balanced property, see the remainder of the section.

Remark 13. For the computation of the numerical fluxes in (2.24), we have to distinguish two cases.
We note FV subcell, the subcell in which we apply the well-balanced first-order FV scheme (2.24)
and by DG cell the cell in which we apply the well-balanced DG scheme (2.5)-(2.3)-(2.4). Then, the
two cases are the following: (i) the FV subcell Sωi

m is surrounded by FV subcells, (ii) the FV subcell
Sωi
m is bounded from the left by a DG cell and from the right by a FV subcell. By symmetry, the

situation where FV subcell Sωi
m is bounded from the left by a FV subcell and from the right by a

DG cell falls into this latter.

Remark 14. For sake conciseness, we generally replace the notation of the sub-mean-value vωi
m on

the cell Sωi
m by the notation vm.

Case 1: If the FV subcell Sωi
m is surrounded by FV subcells, see Fig. 2.1.

Figure 2.1: FV subcell Sωi
m is surroundedt by FV subcells

In this case, the numerical fluxes Fr
m− 1

2

and F l
m+ 1

2

are defined by:
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Fr
m− 1

2

= F
(
H

+
m−1, um−1;H

−
m, um

)
+

(
0

1
2g(Hm− 1

2
)2 − 1

2g(H
−
m)2

)
, (2.25)

F l
m+ 1

2

= F
(
H

+
m, um;H

−
m+1, um+1

)
+

(
0

1
2g(Hm+ 1

2
)2 − 1

2g(H
+
m)2

)
, (2.26)

where Hm+ 1
2
and Hm− 1

2
are respectively the interpolated values of the water-height polynomial Hωi

h

on Sωi
m interfaces x̃m+ 1

2
and x̃m− 1

2
. Let us note that the H±m are nothing but the subcell version of

the H±ωi
defined in (2.14). By applying Lemma 9 on subcells, this first-order FV scheme does indeed

preserve water-height positivity under the assumptions

∆t

|Sωi
m |

σ ≤ 1 and σ = max
m

(|um|+
√
gHm).

Remark 15. Let us note that the additional terms present in the numerical fluxes definition (2.25)-
(2.26) do no impact the water height positivity.

Now, let us ensure that this scheme does enforce a well-balanced property.

Lemma 16. We consider the scheme (2.24) with the numerical fluxes defined in (2.25)-(2.26). This
scheme preserves the motionless steady-states at the subcell level:

∀ωi ∈ Th, ∀m ∈ [1, . . . , k+1], H
ωi,n
m +b

ωi

m = ηc, uωi,n
m = 0 =⇒ H

ωi,n+1
m +b

ωi

m = ηc, uωi,n+1
m = 0.

Proof. Dropping the "ωi" notation for submean-values, we have at time level n:

unm =
qnm
H
n
m

= 0 and H
n
m + bm = ηc.

Let us show that the free-surface elevation is always equal to ηc and the water velocity is always
zero in Sωi

m at the next time level n+ 1. Assuming that ωi is a wetted cell, we have then:

∂x
(
Hωi,n
h + bωi,n

h

)
= 0, (2.27)

where Hωi,n
h and bωi,n

h are the restriction of the polynomial solutions over the cell ωi. It follows that:

∂xH
ωi,n
h = −∂xbωi,n

h ⇒ gHωi,n
h ∂xH

ωi,n
h = −gHωi,n

h ∂xb
ωi,n
h .

Then, by means of:

∂x

(
1

2
g(Hωi,n

h )2

)
= −gHωi,n

h ∂xb
ωi,n
h ,

we are able to reformulate the source term as F
(
vωi,n
h

)
=

(
0

1
2g(Hωi,n

h )2

)
. We finally get:

∂x(F (vωi,n
h ))−B(vωi,n

h , ∂xb
ωi,n
h ) = 0. (2.28)

We drop the "n" notation in what follows. Let us first compute the global LF numerical flux with
the re-defined variables (2.14) on Sωi

m left interface:
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F
(
H

+
m−1, um−1;H

−
m, um

)
=

1

2

[(
0

1
2g(H

−
m)2

)
+

(
0

1
2g(H

+
m−1)2

)
− σ

[(
H
−
m

0

)
−
(
H

+
m−1

0

)]]
,

since um = um−1 = 0. Recalling the definitions of H−m and H+
m−1 from (2.14), one can easily note

that H−m = H
+
m−1. Following the same development for the right interface, the numerical fluxes

yield:

F
(
H

+
m−1, um−1;H

−
m, um

)
=

1

2

[(
0

1
2g(H

−
m)2

)
+

(
0

1
2g(H

+
m−1)2

)]
=

(
0

1
2g(H

−
m)2

)
.

This enables to rewrite the subcell mean governing equation as:

vn+1
m = vnm −

∆t

|Sωi
m |

∫

S
ωi
m

∂x(F (vωi
h ))dx+

∆t

|Sωi
m |

∫

S
ωi
m

B(vωi
h , ∂xb

ωi
h )dx.

It directly follows that vn+1
m = vnm, which is equivalent to:

H
n+1
m + bm = H

n
m + bm = ηc and un+1

m =
qn+1
m

H
n+1
m

=
qnm
H
n
m

= 0.

We conclude that this scheme satisfies the well-balanced property.

Case 2: If the FV subcell Sωi
m is bounded from the left by a DG cell and from the right by a FV

subcell, see Fig. 2.2.

=

Figure 2.2: FV subcell Sωi
m is bounded from the left by a DG cell and from the right by a FV subcell

In this case, the numerical fluxes Fr
m− 1

2

and F l
m+ 1

2

are defined by:

Fr
m− 1

2

= F
(
H∗,−
m− 1

2

, u−
m− 1

2

;H
−
m, um

)
+

(
0

1
2g(Hm− 1

2
)2 − 1

2g(H
−
m)2

)
, (2.29)

F l
m+ 1

2

= F
(
H

+
m, um;H

−
m+1, um+1

)
+

(
0

1
2g(Hm+ 1

2
)2 − 1

2g(H
+
m)2

)
. (2.30)

As we see in Fig. 2.2, the left edge x̃m− 1
2
coincides with xi− 1

2
. We use on its left an interpolated

value and on its right a sub-mean-value:
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H∗,−
m− 1

2

= H∗,−
i− 1

2

= max

(
0, H−

i− 1
2

+ b−
i− 1

2

−max

(
b−
i− 1

2

, bm

))
, (2.31)

H
−
m = max

(
0, Hm + bm −max

(
b−
i− 1

2

, bm

))
. (2.32)

As for the right interface, we keep the same reconstructed sub-mean values on both sides of the
interface x̃m+ 1

2
as in the first case.

Lemma 17. The first-order FV scheme (2.24), provided with the numerical fluxes defined in (2.29)-
(2.30), is indeed positivity-preserving under the CFL condition ∆t

|Sωi
m |
σ ≤ 1, with

σ = max

(
max
m

(|um|+
√
gHm) , max

ωi

(|u±
i+ 1

2

|+
√
gH±

i+ 1
2

)
, (2.33)

as if Hm, Hm+1 and H−
m− 1

2

are non-negative, then Hn+1
m is non-negative.

Proof. It is clear that 0 ≤ H∗,−
m− 1

2

≤ H−
m− 1

2

, 0 ≤ H
±
m ≤ Hm and 0 ≤ H

−
m+1 ≤ Hm+1. Proceeding

in the same way as in the proof of Lemma 9, we obtain that Hn+1
m is non-negative under the CFL

condition ∆t
|Sωi

m |
σ ≤ 1.

As said previously, the third case where the FV subcell Sωi
m is bounded from the left by a FV

subcell and from the right by a DG cell falls in this latter case by symmetry. Let us now show the
well-balanced property for this scheme.

Lemma 18. We consider the scheme (2.24) with the numerical fluxes defined in (2.29)-(2.30). This
scheme preserves the motionless steady-states at the subcell level:

∀ωi ∈ Th, ∀m ∈ [1, . . . , k+1], H
ωi,n
m +b

ωi

m = ηc, uωi,n
m = 0 =⇒ H

ωi,n+1
m +b

ωi

m = ηc, uωi,n+1
m = 0.

Proof. This is enough to notice that H∗,−
m− 1

2

= H
−
m under steady state hypothesis. We then proceed

in a similar way as in the proof of lemma 16.

2.5.2 DG method: well-balancing and water-height positivity

We now consider a cell ωi where the water-height mean-value at time level n satisfies Hn
ωi
> εd.

Then, the well-balanced DG scheme (2.5) is applied on this cell. Let us recall that the well-balanced
DG scheme (2.5) on the cell ωi, with the redefined well-balanced numerical fluxes (2.3)-(2.4):

∫

ωi

∂tv
ωi
h ψ

ωi
l dx =

∫

ωi

F
(
vωi
h

)
∂xψ

ωi
l dx− [F∗ψωi

l ]
i+ 1

2

i− 1
2

+

∫

ωi

B
(
vωi
h , ∂xb

ωi
h

)
ψωi
l dx, ∀ l = 0, ..., k.

(2.34)

Recalling once more that SSP-RK time discretization can be seen as a convex combination of first-
order forward Euler time marching, let us focus on this latter for sake of simplicity. The total
discrete version of DG scheme (1.22) then becomes:
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vn+1
ωi

= vnωi
+ ∆tM−1

ωi
L̃ωi , (2.35)

where v ωi
=
(
vωi
p

)
p=0,...,k

stands for the local vector solution that gathers the degrees of freedom

associated with vωi
h =

k∑
p=0

vωi
p ψ

ωi
p , Mωi the local mass matrix, and L̃ωi =

(
l̃ωi
l

)
l=0,...,k

is local residual

vector that gathers the volume integral, the surface integral and the source term. We recall that
L̃ωi is defined by:

l̃ωi
l =

∫

ωi

F (vωi
h )∂xψ

ωi
l dx−

[
ψωi
l F∗

]i+ 1
2

i− 1
2

+

∫

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h )dx, ∀ l = 0, ..., k.

For the computation of the numerical fluxes, we have two cases to distinguish.

Case 1: If the DG cell ωi is surrounded by DG cells, see Fig 2.3.

Figure 2.3: DG cell ωi is surrounded by DG cells

In this case, the numerical fluxes F∗,r
i− 1

2

and F∗,l
i+ 1

2

are defined by:

F∗,r
i− 1

2

= F
(
H∗,−
i− 1

2

, u−
i− 1

2

;H∗,+
i− 1

2

, u+
i− 1

2

)
+

(
0

1
2g(H+

i− 1
2

)2 − 1
2g(H∗,+

i− 1
2

)2

)
, (2.36)

F∗,l
i+ 1

2

= F
(
H∗,−
i+ 1

2

, u−
i+ 1

2

;H∗,+
i+ 1

2

, u+
i+ 1

2

)
+

(
0

1
2g(H−

i+ 1
2

)2 − 1
2g(H∗,−

i+ 1
2

)2

)
. (2.37)

As we saw in Proposition 1, the DG scheme (2.34) with the numerical fluxes (2.36)-(2.37) preserves
water-height positivity. Furthermore, as mentioned in [179], this DG scheme is capable of maintain-
ing the still solution exactly, i.e. it satisfies the well-balanced property.

case 2: If the DG cell ωi is bounded from the left by a DG cell and from the right by FV subcell,
see Fig 2.4.
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Figure 2.4: DG cell ωi is bounded from the left by a DG cell and from the right by FV subcell

In this case, the numerical fluxes F∗,r
i− 1

2

and F∗,l
i+ 1

2

are defined by:

F∗,r
i− 1

2

= F
(
H∗,−
i− 1

2

, u−
i− 1

2

;H∗,+
i− 1

2

, u+
i− 1

2

)
+

(
0

1
2g(H+

i− 1
2

)2 − 1
2g(H∗,+

i− 1
2

)2

)
, (2.38)

F∗,l
i+ 1

2

= F
(
H∗,−
i+ 1

2

, u−
i+ 1

2

;H
−
1 , u1

)
+

(
0

1
2g(H−

i+ 1
2

)2 − 1
2g(H∗,−

i+ 1
2

)2

)
, (2.39)

where

H∗,−
i+ 1

2

= max

(
0, H−

i+ 1
2

+ b−
i+ 1

2

−max

(
b−
i+ 1

2

, b1

))
(2.40)

and

H
−
1 = max

(
0, H1 + b1 −max

(
b−
i+ 1

2

, b1

))
, (2.41)

using the simplified notations b1 = b
ωi+1

1 and H1 = H
ωi+1

1 .

Lemma 19. Scheme (2.34), provided with the numerical fluxes defined in (2.38)-(2.39), does preserve
the motionless steady states, as:

∀ωi ∈ Th, H
ωi,n
h + b

ωi

h = ηc, uωi,n
h = 0 =⇒ H

ωi,n+1
h + b

ωi

h = ηc, uωi,n+1
h = 0.

Proof. We assume that, at time level n, we have

uωi,n
h =

qωi,n
h

Hωi,n
h

= 0 and Hωi,n
h + bωi

h = ηc. (2.42)

Let us show that the surface elevation remains equal to ηc and the water velocity remains equal to
zero in ωi at the next time level n+1. Under the steady state assumptions (2.42), we getH∗,−

i+ 1
2

= H
−
1 .

Thus,

F∗,l
i+ 1

2

=

(
0

1
2g(H−

i+ 1
2

)2

)
= F (vωi

h (xi+ 1
2
)).

Similarly, since H∗,−
i− 1

2

= H∗,+
i− 1

2

, we get

F∗,r
i− 1

2

=

(
0

1
2g(H+

i− 1
2

)2

)
= F (vωi

h (xi− 1
2
)).
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This leads us to:

[
F∗ψωi

l

]i+ 1
2

i− 1
2

=
[
F (vωi

h (xi+ 1
2
))ψωi

l (xi+ 1
2
)− F (vωi

h (xi− 1
2
))ψωi

l (xi− 1
2
)
]

= [F (vωi
h )ψωi

l ]
i+ 1

2

i− 1
2

.

Finally, the residual l̃ωi
l can be recast into:

l̃ωi
l =

∫

ωi

ψωi
l B(vωi

h , ∂xb
ωi
h )dx−

∫

ωi

ψωi
l ∂xF

(
vωi
h

)
dx,

=

∫

ωi

(
B
(
vωi
h , ∂xb

ωi
h

)
− ∂xF

(
vωi
h

))
ψωi
l dx

(2.28)︷︸︸︷
= 0, ∀ l = 0, ..., k.

(2.43)

Replacing L̃ωi = 0 in (2.35), we finally get vn+1
ωi

= vnωi
.

Let us still consider scheme (2.34) with the numerical fluxes defined in (2.38)-(2.39). Assuming that
H−
i+ 1

2

, H1 and H±
i− 1

2

are non-negative, it is then easy to notice that 0 ≤ H∗,−
i+ 1

2

≤ H−
i+ 1

2

, 0 ≤ H−1 ≤ H1

and 0 ≤ H∗,±
i− 1

2

≤ H±
i− 1

2

. Proceeding in a similar way as for the proof of Proposition 1, we obtain

that the water-height mean-value Hn+1
ωi

at time level n + 1 on the cell ωi is non-negative under a
suitable CFL condition.

Remark 20. We can show the well-balanced property when only wet cells are involved. Indeed,
a motionless steady-state is defined through the assumption η = cst everywhere. This assumption
does not hold anymore in the vicinity of a wet/dry interface, when higher-order polynomials are
used to describe the solution (see Fig. 2.5). From a practical viewpoint, it is however possible to
numerically preserve a motionless steady-states even in the presence of wet/dry interfaces with a
fine enough mesh, allowing to maintain a very small computational error.

Figure 2.5: steady state
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2.6 Numerical validations

This section is dedicated to the validation of the well-balanced PL DG-FVsubcell method through
the use of different standard test-cases.

2.6.1 Well-balancing property

In this test, we focus on the preservation of the motionless steady states in the case of a totally
submerged bump. The computational domain is Ω = [0, 1]. The topography profile is defined as
follows

b(x) =





A

(
sin

(
(x− x1) · π

75

))2

if x1 ≤ x ≤ x2,

0 elsewhere,
(2.44)

where A = 4.75, x1 = 0.125 and x2 = 0.875. The initial data is defined as

η0(x) = 10 and q0(x) = 0.

We evolve this initial configuration in time up to tmax = 50s, with a tenth-order approximation and
10 mesh elements. The numerical results obtained with the well-balanced PL DG-FVsubcell method
are shown on Fig. 2.6. In Table 2.1, we gather the global L2-errors obtained for several orders of
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element boundaries
analytic
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η
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)

Figure 2.6: Test 1 - Preservation of a motionless steady state - Free surface elevation at t = 50s, for
k = 9 and nel = 10.

approximation for the surface elevation at t = 50s. As expected, the steady state is preserved up to
double precision accuracy.
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k 1 2 3
h EηL2

EηL2
EηL2

1
15 1.26E-15 8.13E-16 9.48E-17
1
30 3.63E-16 1.77E-16 5.11E-17
1
60 1.53E-16 4.68E-17 1.01E-17
1

120 5.71E-17 1.38E-17 1.26E-18

Table 2.1: Test 1 - Preservation of a motionless steady state: L2-errors between numerical and exact
steady state solutions for η at time t = 50s.

Next, we slightly modify the initial condition for the water-height in order to have the bump above
the water level:

η0(x) = max (3, b(x)) and q0(x) = 0.

We evolve this initial configuration in time up to tmax = 50s, with a fourth-order approximation
and 120 mesh elements. The numerical results obtained with the well-balanced PL DG-FVsubcell
method are shown on Fig. 2.7.

Remark 21. We refine the mesh sufficiently so that the interface of the cell almost falls on the
wet/dry transition point, see Fig. 2.8 (right).
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)

Figure 2.7: Test 2 - Preservation of a motionless steady state - Free surface elevation at t = 50s,
with k = 3 and nel = 120.
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Figure 2.8: Test 2 - Preservation of a motionless steady state - Free surface elevation at t = 50s,
with k = 3 and nel = 120 (left), with a zoom on the wet/dry interface (right).

We highlight in Fig. 2.8 the particular marked cells (blue squares), in which the FV-Subcell method
has been performed. We emphasize that the steady state is effectively preserved up to the machine
accuracy, validating numerically the compatibility of the PL DG-FVsubcell method with the well-
balancing property for the wet/dry context. A similar behavior is reported for other orders of
accuracy and number of cells.

2.6.2 Run-up of a solitary wave on a plane beach

The last test-case is devoted to the computation of the run-up of a solitary wave on a constant slope.
Such run-up phenomena are investigated experimentally and numerically in [152]. In this test, a
solitary wave traveling from the shoreward is let run-up and run-down on a plane beach, before being
fully reflected and evacuated from the computational domain. The topography is made of a constant
depth area juxtaposed with a plane sloping beach of constant slope α such that cot(α) = 19.85. The
right boundary condition is transmissive. The initial condition is defined as follows:

η0(x) = H0 +
A

H0
sech2 (γ (x− x1)) and u0(x) =

√
g

H0
(η0(x)−H0) ,

with γ =

√
3A

4H0
, and where x1 =

√
4H0
3A arcosh

(√
1

0.05

)
is nothing but the initial position of the

center of the solitary wave. This test is run with A = 0.019m, H0 = 1.0m, nel = 150 and t = 40 s.
We show on Fig. 2.9 the free surface obtained with the well-balanced PL DG-FVsubcell method at
several times in the range [1 s, 40 s] for k = 1, and for k = 3 on Fig. 2.10, showing a good agree-
ment with the reference solution obtained with a robust FV method on a very fine mesh nel = 10000.

To be more precise, we see a good performance for the run-up of the solitary wave. As for the
run-down, we notice small disturbances, specially for high-order of approximation (k = 3). In this
case the solution is not robust enough, because during water run down, the wave breaks acting like
discontinuities or steeply varying gradients and thus, weak spurious oscillations (or disturbances)
have appeared (see Fig. 2.11). In order to solve this issue, a slope-limiter can be added (besides of the
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Figure 2.9: Test 3 - Run-up of a solitary wave on a plane beach - Free surface elevation computed
for different values of time in the range [1 s, t = 40 s] with the PL DG-FVsubcell method obtained
for k = 1 and nel = 300.

positivity-preserving limiter), as the TVB slope-limiter § 2.2. We are talking here about an a priori
correction procedure. Another method that allows us to solve the problem of spurious oscillations,
in addition to being a substitute for the positivity-preserving limiter, is the a posteriori LSC method
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Figure 2.10: Test 3 - Run-up of a solitary wave on a plane beach - Free surface elevation computed
for different values of time in the range [1 s, t = 40 s] with the PL DG-FVsubcell method obtained
for k = 3 and nel = 150.

that will be introduced in details in the next chapter. The main tool of this correction procedure is
a first-order FV scheme, which is a positivity-preserving scheme and shocks capturing (i.e. robust
scheme). In chapter 3, we take advantage of these first-order FV robustness properties to reach our
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Figure 2.11: Test 3 - Run-up of a solitary wave on a plane beach - Free surface elevation computed
at t = 22 s with the PL DG-FVsubcell method obtained for k = 3 and nel = 150, with a zoom on the
shoreline.

goal by solving these robustness issues while maintaining a high-order DG subcell accuracy.

46



Chapter 3

An a posteriori DG-LSC method for the
NSW equations

Robustness issues may be among the main remaining challenges for the use of high-order DG meth-
ods in realistic problems for many domains of applications. In recent years, several approaches have
been proposed to stabilize high-order approximations. As we mentioned in § 1.2, these techniques
mainly rely on two different paradigms that we referred to as a priori and a posteriori.
In the paradigm of a posteriori correction, an uncorrected candidate solution is first computed at
the new time-step. The candidate solution is then checked according to some admissibility criteria.
If the solution is considered admissible, we go further in time. Otherwise, we return to the previ-
ous time-step and correct locally the numerical solution by making use of a more robust scheme.
Recently, some new a posteriori limitations have arisen. Let us mention the so-called MOOD tech-
nique, see [42, 55, 56]. Through this procedure, the order of approximation of the numerical scheme
is locally reduced in an a posteriori sequence until the solution becomes admissible. In [61, 59, 88],
a FV-Subcell technique similar to the one presented in [151] has been applied to the a posteriori
paradigm. Practically, if the numerical solution in a cell is detected as bad, the cell is then subdi-
vided into subcells and a first-order FV, or alternatively other robust scheme (second-order TVD
FV scheme or WENO scheme for instance), is applied on each subcell. Then, through these new
subcell mean-values, a high-order polynomial is reconstructed on the primal cell. Related strategies
applied to dispersive and turbulent shallow-water flows have been introduced in [30, 31].

Making use of the a posteriori LSC method introduced in [164] for general hyperbolic conservation
laws, the main objective in this chapter is to develop a novel shock-capturing, positivity-preserving
and well-balanced DG method for the NSW equations with topography source term by using specific
local flux correction at the subcell level, with a posteriori numerical admissibility detectors. To be
more precise, a posteriori correction is only applied locally at the subcell level where it is absolutely
needed (i.e. only non-admissible subcells are marked), while not neglecting the scheme conservation
property. In practice, we first reformulate DG scheme as a FV-like subcell schemes provided the
use of the so-called DG reconstructed flux. Then, the correction procedure is done as follows: at
each SSP-RK time-step, we compute a high-order DG candidate solution and check its admissibility
(non-negative water-height and no spurious oscillations). If the solution is admissible, we go further
in time. If it is not the case, we go back to the previous time-step and correct locally at the subcell
level the non-admissible local numerical solution. Actually, we divide the cell into subcells, then,
if the solution at a specific subcell is detected as bad, we substitute the DG reconstructed flux on
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the subcell boundaries by a robust low-order FV numerical flux. Otherwise, if the solution is de-
tected as admissible on this subcell, we keep the high-order DG reconstructed numerical flux. The
purpose of applying this correction procedure is to enforce the water-height positivity and to avoid
spurious oscillations in the vicinity of solution’s singularity while preserving as much as possible the
high accuracy and the very precise subcell resolution of high-order DG schemes, by minimizing the
number of subcells in which the solution has to be recomputed. To this end, we pay attention to
keep the scheme local conservation property. Not only the solutions are recomputed in the troubled
subcells, but also in its first neighbors, so that we can have the same numerical fluxes on both sides
of subcells interfaces. To complete the picture, it remains to ensure the well-balanced property for
our a posteriori LSC scheme in wet-wet and wet-dry contexts.

The well-balanced property for NSW equations, first introduced in [15], has been widely studied
in recent years. Following the ideas of [62], we use the so-called pre-balanced formulation of the
NSW equations. Indeed, the alternative formulation of the NSW equations in deviatoric form, ob-
tained by subtracting an equilibrium solution, and introduced in [145] is interesting as it leads to a
balanced set of hyperbolic equations that does not require specific numerical algorithms to obtain a
well-balanced property. However, such a formulation is given in terms of free surface elevation above
the still water level (denoted ζ in (A.3)), and is therefore not suitable to model cases involving dry
areas (the still water depth is undefined in dry areas). In [115, 116], a new formulation given in terms
of the total free surface elevation η = H+ b (see Fig. 3.1) allows to alleviate this drawback, allowing
to study cases involving dry areas. Such a formulation is very suitable to show the well-balanced
property due to assumptions (η = ηc) that simplifie the calculation procedure. In addition, the
pre-balanced formulation can be less computationally expensive than the (H, q) formulation (A.38),
for example, in computing volume integrals and source terms numerically (see Remark 23).

topography

O

Figure 3.1: Free surface flow: main notations for the pre-balanced formulation

Indeed, observing that

1

2
g∂xH

2 + gH∂xb =
1

2
g∂x(η2 − 2ηb) + gη∂xb,

we obtain the so-called pre-balanced form of the NSW equations, given in a compact form:

∂tv + ∂xF(v, b) = B(v, ∂xb), (3.1)
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where v : R×R+ → Θ is the vector of conservative variables, F : Θ×R → R2 is the flux function
and B : Θ× R→ R2 is the topography source term, defined as follows:

v =

(
η
q

)
, F(v, b) =

(
q

uq + 1
2g(η2 − 2 η b)

)
, B(v, ∂xb) =

(
0

−g η ∂xb

)
. (3.2)

Finally, the proposed strategy is investigated through an extensive set of benchmarks, including a
brand new smooth solution for the computation of convergence rates, stabilization of flows with dis-
continuities, the preservation of motionless steady states, or moving shorelines over varying bottoms.
We observe in particular that this approach provides a very accurate description of wet/dry inter-
faces, even with the use of very high-order schemes on coarse meshes, showing the subcell resolution
ability of the resulting high-order DG scheme.

Remark 22. The notations used in this chapter are defined either in this chapter or in chapter 1,
section § 1.3.

Let start by presenting the DG formulation for the pre-balanced NSW equations (3.1).

3.1 DG formulation

Let bh = ikTh
(b) denote a globally continuous piecewise polynomial approximation of the topography

parametrization. A straightforward semi-discrete in space DG approximation of (3.1) reads: find
vh = (ηh, qh) ∈ (Pk(Th))2 such that, for all ϕ ∈ Pk(Th),

∫

Th

∂tvhϕdx+

∫

Th

Ah(vh)ϕdx = 0, (3.3)

where the discrete nonlinear operator Ah is defined by

∫

Th

Ah(vh)ϕdx :=−
∑

ω∈Th

∫

ω
F(vh, bh)∂xϕdx+

∑

ω∈Th

[
ϕF

]
∂ω
−
∑

ω∈Th

∫

ω
B(vh, ∂xbh)ϕdx, ∀ϕ ∈ Pk(Th).

(3.4)

In (3.4), F stands for the interface numerical flux function. Denoting by v−
i+ 1

2

and v+
i+ 1

2

, respectively

the left and right traces of vh on interface xi+ 1
2
, and by bi+ 1

2
= b−

i+ 1
2

= b+
i+ 1

2

the trace of bh, we
define the numerical flux function Fi+ 1

2
on interface xi+ 1

2
as follows:

Fi+ 1
2

:= F(v−
i+ 1

2

,v+
i+ 1

2

, bi+ 1
2
), (3.5)

where the numerical flux function chosen here is the simple global LF flux:

F(v−,v+, b) :=
1

2

(
F(v−, b) + F(v+, b)− σ(v+ − v−)

)
, (3.6)

with σ := max
ω∈Th

σω and

σω := max
m

(
|uωm|+

√
gH

ω
m

)
.
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Remark 23. We require that the volume integral and source term in formula (3.4) are exactly
computed at motionless steady states. This can be achieved, for the pre-balanced formulation
(3.1)-(3.2), by using any quadrature rule exact for polynomials of degree up to 2k, thanks to the
pre-balanced formulation (3.1)-(3.2). On the other hand, for the classical NSW formulation (A.38),
a quadrature rule exact for polynomials of degree up to 3k is needed.

Remark 24. The topography b is interpolated by bh through a piecewise polynomial but globally
continuous function over the mesh. To achieve this, one can simply choose the elements boundaries
among the interpolation points with any corresponding interpolation method. To ensure that the
scheme is indeed well-balanced, and particularly in wet/dry context, see § 3.8, we initialize the surface
elevation ηh in dry areas by setting ηh = bh. Thus, water-height positivity is also assured in dry areas
since Hh = ηh − bh = 0, by construction. We emphasize that as long as H = η − b is non-negative,
its subcell mean-values are also non-negative. However, nothing ensures that after performing a L2

projection of the initial water-height, the associated sub-mean-values of the L2 projection Hω
h are

positive. This is the reason why, in wet regions, for the initialization, we start by computing the
positive H sub-mean-values using (3.7) and then reconstruct the associated polynomial using Π−1

ω .

H
ω
m =

1

|Sωm|

∫

Sω
m

H(x)dx. (3.7)

In the following, similarly to what has been done in [164], we demonstrate an equivalence relation
between (3.3) and a FV-like method on a sub-mesh.

3.2 DG formulation as a FV-like scheme on a sub-grid

Let introduce the L2-projections of the flux function Fh = pkTh
(F(vh, bh)) and of the source term

Bh = pkTh
(B(vh, ∂xbh)), such that:

∫

Th

F(vh, bh)ϕdx =

∫

Th

Fhϕdx, ∀ϕ ∈ Pk(Th),

∫

Th

B(vh, ∂xbh)ϕdx =

∫

Th

Bhϕ, ∀ϕ ∈ Pk(Th).

(3.8a)

(3.8b)

Remark 25. As we mentioned, in DG schemes, volume integral and source term contribution are
computed using quadrature rule. This quadrature rule should be used to compute the left hand side
of the L2 projections (3.8a) and (3.8b).

From (3.3), we now have:
∫

Th

∂tvhϕdx−
∑

ω∈Th

∫

ω
F(vh, bh)∂xϕdx+

∑

ω∈Th

[
ϕF

]
∂ω
−
∑

ω∈Th

∫

ω
B(vh, ∂xbh)ϕdx = 0, ∀ϕ ∈ Pk(Th),

which is the so called strong DG scheme. Using the L2 projections (3.8a) and (3.8b):
∫

Th

∂tvhϕdx−
∑

ω∈Th

∫

ω
Fh∂xϕdx+

∑

ω∈Th

[
ϕF

]
∂ω
−
∑

ω∈Th

∫

ω
Bhϕdx = 0, ∀ϕ ∈ Pk(Th),

or equivalently, using an integration by parts:
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∫

Th

∂tvhϕdx+
∑

ω∈Th

∫

ω
∂xFhϕdx−

∑

ω∈Th

[
ϕ (Fh −F)

]
∂ω
−
∑

ω∈Th

∫

ω
Bhϕdx = 0, ∀ϕ ∈ Pk(Th),

(3.9)

Substituting φωm, defined in (1.6), into (3.9) gives the local equations on mesh element ω ∈ Th:
∫

ω
∂tv

ω
hφ

ω
mdx = −

∫

ω
∂xF

ω
hφ

ω
mdx+

∫

ω
Bω
hφ

ω
mdx+ [(Fω

h −F)φωm]∂ω , ∀m ∈ J1, k + 1K.

Since ∂tvωh , ∂xF
ω
h and Bω

h belong to (Pk (ω))2 and considering (1.7), it follows that,
∫

Sω
m

∂tv
ω
hdx = −

∫

Sω
m

∂xF
ω
hdx+

∫

Sω
m

Bω
hdx+ [(Fω

h −F)φωm]∂ω , ∀m ∈ J1, k + 1K.

and then,

∂tv
ω
m = − 1

|Sωm|
([

Fω
h

]
∂Sω

m
−
[
φωm (Fω

h −F)
]
∂ω

)
+ B

ω
m, ∀m ∈ J1, k + 1K,

where vωm and B
ω
m are respectively the mean-values of vωh and Bω

h on the subcell Sωm, defined by:

vωm =
1

Sωm

∫

Sω
m

vωhdx and B
ω
m =

1

Sωm

∫

Sω
m

Bω
hdx. (3.10)

Let introduce the k + 2 subcells interfaces fluxes
{
F̂ ω
m+ 1

2

}
m∈J0, k+1K such that:

F̂ ω
m+ 1

2

− F̂ ω
m− 1

2

=
[
Fω
h

]
∂Sω

m
−
[
φωm (Fω

h −F)
]
∂ω
, ∀m ∈ J1, k + 1K, (3.11)

so that we have
∂tv

ω
m = − 1

|Sωm|
(
F̂ ω
m+ 1

2

− F̂ ω
m− 1

2

)
+ B

ω
m. (3.12)

Formulation (3.12) can be seen as a FV-like scheme on subcell Sωm. The values
{
F̂ ω
m+ 1

2

}
m∈J0, k+1K is

thereafter referred to as reconstructed fluxes. Considering the mesh element ωi =
[
xi− 1

2
, xi+ 1

2

]
∈ Th,

and setting the first and last reconstructed fluxes to the DG numerical flux values at cell boundaries
such as:

F̂ ωi
1
2

:= Fi− 1
2

and F̂ ωi

k+ 3
2

:= Fi+ 1
2
. (3.13)

The linear system (3.11)-(3.13) is straightforward to solve. Indeed, substituting subscript m by p in
(3.11) and summing for p from 1 to m leads to

F̂ ωi

m+ 1
2

= Fωi
h

(
x̃ ωi

m+ 1
2

)
−

(
1−∑m

p=1 φ
ωi
p

(
xi− 1

2

))(
Fωi
h

(
xi− 1

2

)
−Fi− 1

2

)

−
(∑m

p=1 φ
ωi
p

(
xi+ 1

2

)) (
Fωi
h

(
xi+ 1

2

)
−Fi+ 1

2

)

the m interior reconstructed fluxes expression. We recast those expressions into:
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F̂ ωi

m+ 1
2

= Fωi
h

(
x̃ ωi

m+ 1
2

)
− Ci−

1
2

m+ 1
2

(
Fωi
h

(
xi− 1

2

)
−Fi− 1

2

)
− Ci+

1
2

m+ 1
2

(
Fωi
h

(
xi+ 1

2

)
−Fi+ 1

2

)
, ∀m ∈ J1, k + 1K,

(3.14)

where the Ci±
1
2

m+ 1
2

are defined by:

C
i− 1

2

m+ 1
2

=

k+1∑

p=m+1

φ ωi
p

(
xi− 1

2

)
and C

i+ 1
2

m+ 1
2

=

m∑

p=1

φ ωi
p

(
xi+ 1

2

)
. (3.15)

As detailled in [164], it is possible to explicitly express the k + 2 correction coefficients Ci±
1
2

m+ 1
2

. To

this end, let us set J ∈ Rk+1 to be the vector defined as

Jj = (−1)j+1

(
k + j
j

)(
k + 1
j

)
,

where
(
p
j

)
stands for the binomial coefficient

(
p
j

)
= p!

j!(p−j)! . Let us note that vector J only

depends on the degree of approximation k, and not on the flux points position. By introducing{
ξ̃m+ 1

2

}
m

the flux points counterpart in the referential element [0, 1], as ξ̃m+ 1
2

=
x̃
m+1

2
−x

i− 1
2

x
i+1

2
−x

i− 1
2

, the

correction coefficients finally write

C
i− 1

2

m+ 1
2

= 1−




ξ̃m+ 1
2(

ξ̃m+ 1
2

)2

...(
ξ̃m+ 1

2

)k+1




� J.

For further details, we refer the reader to [164].

Remark 26. One can see that the reconstructed flux is nothing but the polynomial interior flux
Fω, plus some correction terms taking into account the jump in fluxes at cell boundary ∂ω.

Remark 27. Let us note that if this particular definition of
{
C
i± 1

2

m+ 1
2

}
m∈J0, k+1K, (3.15), gives the

equivalence with DG schemes, other choices obviously lead to other schemes. For instance, if one
set these constants to zero, except for the first and last to be one, one would then recover the
Spectral Volume (SV) method, [172, 81]. Indeed, even if the interior flux, here referred to as
reconstructed flux, is continuous inside the cells, as for the SV methods, those two methods are
still quite different. In SV methods, the interior flux is nothing but the flux function applied to
the polynomial solution, i.e. F(vh, bh). Here, the reconstructed flux can be seen as some specific
approximation of the L2 projection of such function but prescribing its boundary values to be the
DG numerical fluxes. Hence, such an approach may be rather compared to the Flux Reconstruction
method, also referred to as CPR method (Correction Procedure through Reconstruction), with
which we share this reconstructed fluxes framework, see for instance [86, 170, 4, 69, 85] or the
dedicated paragraph in [164] for more insight on the analogy between the present theory and Flux
Reconstruction schemes.
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Remark 28. The choice of the sub-partition points,
{
x̃ ω
m+ 1

2

}
m∈J0, k+1K, has already been discussed

in [164]. It appeared that, regarding the reformulation of DG schemes into FV-Subcell methods,
the cell decomposition into subcells does not come into account, as any choice would lead to the
same piecewise polynomial solution. However, for the correction procedure introduced in § 3.4, the
sub-division does has a slight impact. Indeed, the use of a non-uniform sub-partition, for instance
by means of the Gauss-Lobatto points, leads to better results compared to a uniform sub-division.
This is more likely the manifestation of the Runge phenomenon in the context of histopolation, as
the histopolation basis functions underlying the sub-mean-value representation, are more oscillatory
for a uniform cell sub-partition. Consequently, in the remainder, we make use of Gauss-Lobatto
points to define the sub-partition points

{
x̃ ω
m+ 1

2

}
m∈J0, k+1K.

3.3 Time marching algorithm

Supplementing (3.3) with an initial datum v(0, ·) = v0 = (η0, q0)t, the time-stepping may be carried
out using explicit SSP-RK schemes, [74, 149], see §2.3 for explicit discretisation example. The
discrete initial data v0

h is defined as in Remark 24. As the correction described in the following
section make use of both DG scheme on the primal cells ω ∈ Th and FV scheme on the subcells
Sωm ∈ Tω, the time-step ∆tn is computed adaptively using the same CFL condition introduced in
(2.8):

∆tn =

min
ω∈Th

(
hω

2k + 1
, min
Sω
m∈Tω

|Sωm|
)

σ
, (3.16)

where σ is the constant previously introduced in the global LF numerical flux definition (3.6).

3.4 A posteriori local subcell correction

In this section, we show how it is possible to modify the reconstructed fluxes F̂m+ 1
2
in a robust way

in subcells where the uncorrected DG scheme (3.3) has failed, either by obtaining negative value
for the water-height or by generating nonphysical oscillations due to the Gibbs phenomenon in the
vicinity of discontinuities. For sake of conciseness in notations, the superscript ωi may be avoided
in the following when no confusion is possible.

Once again, as high-order RK SSP time marching algorithms may be regarded as convex combina-
tions of first-order forward Euler schemes, we consider in the following, for sake of simplicity, a fully
discrete formulation obtained from (3.3) and a first-order forward Euler scheme. We assume that at
time level n the numerical solution vnh is admissible in a sense to be clarified later. We then compute
an updated candidate solution vn+1

h through the uncorrected DG scheme (3.3). If the candidate
vn+1
h is admissible, no correction is needed. Otherwise, the uncorrected DG scheme has produced

an updated solution vn+1
h which is not admissible on at least one particular mesh element cell ωi.

Looking at the subcell level, and assuming that vω,n+1
h is not admissible in the particular subcell

Sm ∈ Tωi , which is thus called a troubled subcell in the following, the main idea of our a posteriori
LSC method is to replace the incriminated subcell mean-value vn+1

m by a new one, denoted with a ?
as follows v?,n+1

m , which is computed using a first-order FV-Subcell scheme of the form:
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v?,n+1
m = vnm −

∆tn

|Sm|
(
F l
m+ 1

2

−Fr
m− 1

2

)
+ ∆tnBm, (3.17)

with some new subcell lowest-order corrected numerical fluxes F l
m+ 1

2

, Fr
m− 1

2

which are defined here-
after. Indeed, because the uncorrected DG scheme (3.3) is equivalent to the subcell FV-like scheme
(3.12) with high-order reconstructed fluxes (3.14), we propose to substitute, at the boundaries of
Sm, the high-order reconstructed fluxes with first-order FV numerical fluxes. Finally, new degrees
of freedom at discrete time tn+1 are computed from the modified set of sub-mean-values, now given
as a blend of uncorrected values vn+1

m and corrected values v?,n+1
m . This strategy is illustrated in

Fig. 3.2, where the marked subcell is identified with red color.

F̂k+3
2

F̂m−1
2

F̂1
2

F̂m+1
2

S ω
m

F̂3
2

Fm+1
2

Fm−1
2

Figure 3.2: Sketch of the correction of the reconstructed fluxes at subcell boundaries

Additionally, to preserve the local conservation property of the resulting scheme, the left and right
neighboring subcells, colored in green in Fig. 3.2, have to be updated too, even if they are flagged
as admissible subcells, since we have substituted the reconstructed fluxes F̂m− 1

2
and F̂m+ 1

2
with

corrected ones. In the particular case depicted in Fig. 3.2 where Sm−2 and Sm+2 are also flagged as
admissible, the sub-mean-values vn+1

m+1 and vn+1
m−1 are thus replaced respectively by v?,n+1

m−1 and v?,n+1
m+1

computed through a high-order reconstructed flux on one end and a first-order FV numerical flux
on the other end, as follows:

v?,n+1
m−1 = vnm−1 −

∆tn

|Sm−1|
(
F l
m− 1

2

− F̂m−3/2

)
+ ∆tnBm−1, (3.18)

v?,n+1
m+1 = vnm+1 −

∆tn

|Sm+1|
(
F̂m+3/2 −Frm+ 1

2

)
+ ∆tnBm+1. (3.19)

For all the remaining admissible subcells (left in grey on Fig. 3.2), because the associated recon-
structed fluxes are not corrected, they do not require any further computation, and the corresponding
sub-mean-values are the values obtained through the uncorrected DG scheme, see Fig. 3.3.
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S ω
m

v⋆, n+1
m−1

vn+1
1

v⋆, n+1
m

v⋆, n+1
m+1

vn+1
k+1

Figure 3.3: Sketch of sub-mean-values before and after correction

3.5 Subcell low-order corrected FV fluxes

In this section, we define the corrected FV fluxes F l/r

m± 1
2

. Such corrected fluxes are designed in

order to: (i) ensure the desired robustness properties, in particular we aim at preserving the set of
admissible states (3.20), see § 3.7 for the details, (ii) obtain a global discrete formulation which is
well-balanced.

Θ =
{

(H, q) ∈ R2; H ≥ 0
}
. (3.20)

To achieve this, we adapt the ideas introduced in [116, 62] to the framework of the current FV-Subcell
method. For any ωi ∈ Th and any marked subcell Sm ∈ Tωi , let define the sub-mesh reconstructed
interface values for the topography:

bm+ 1
2

:= max(bm, bm+1) and bm− 1
2

:= max(bm−1, bm),

and the additional subcell’s interfaces (considering Sm) topography values:

b
±
m := bm± 1

2
−max

(
0, bm± 1

2
− ηm

)
, (3.21)

b
−
m+1 := bm+ 1

2
−max

(
0, bm+ 1

2
− ηm

)
, b

+
m−1 := bm− 1

2
−max

(
0, bm− 1

2
− ηm

)
. (3.22)

We introduce subcell’s interfaces reconstructions for the water-height as follows:

H
±
m := max

(
0, ηm − bm± 1

2

)
,

and for the surface elevation and discharge:

η±m := H
±
m + b

±
m, q±m := H

±
m

qm
Hm

, (3.23)
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leading to the new subcell’s interfaces values:

v±m := (η±m, q
±
m).

Using these reconstructed values, we introduce some new FV numerical fluxes on subcell’s Sm left
and right interfaces, denoted by Fr

m− 1
2

and F l
m+ 1

2

, as follows:

F l
m+ 1

2

:= F
(
v+
m,v

−
m+1, b

+
m

)
+




0

gη+
m

(
b
+
m − bx̃m+1

2

)

 , (3.24)

Fr
m− 1

2

:= F
(
v+
m−1,v

−
m, b

−
m

)
+




0

gη−m

(
b
−
m − bx̃m− 1

2

)

 , (3.25)

where bx̃
m± 1

2

are respectively the interpolated polynomial values of bh at x̃m+ 1
2
and x̃m− 1

2
.

Remark 29. To compute the velocity in the vicinity of dry areas, we classically set a numerical
threshold ε = 10−8 to numerically define what "a dry cell" is and set the velocity to 0 if H < ε.

Remark 30. Considering the initialization choice mentioned in Remark 24 for the water elevation
and the topography, we can ensure the well-balanced property for the uncorrected DG scheme
simply by means of:

Fi+1/2 = F
(
v−i+1/2,v

+
i+1/2, bi+1/2

)
and Fi−1/2 = F

(
v−i−1/2,v

+
i−1/2, bi−1/2

)
,

the standard DG numerical fluxes, where v±i±1/2 are nothing but the interpolated interface values
of vωi

h . If one would like to use discontinuous topographies, one can then refer to the modified
numerical flux strategy for DG schemes (see [62, 116]), as we did in the previous chapter §2.1. In
the remainder, this stategy is used only for the first-order FV schemes.

3.6 Flowchart

We summarize the proposed new a posteriori LSC method of DG schemes through the following
flowchart:

1. starting from an admissible piecewise polynomial approximate solution vnh ∈ (Pk(Th))2, com-
pute the candidate solution vn+1

h ∈ (Pk(Th))2 using the uncorrected DG scheme (3.3),

2. for any mesh element ω ∈ Th, compute the candidate associated sub-mean-values:

P0(Tω) 3 vn+1
ω = πTω(vω,n+1

h ),

3. for any mesh element ω ∈ Th, for any subcell Sm ∈ Tω, check admissibility of the associated
sub-mean-values vn+1

m , and identify accordingly the sub-partition Tω = T f
ω ∪ T u

ω , where T f
ω

and T u
ω respectively refer to the set of flagged (non-admissible) subcells and the set of non-

flagged (admissible) subcells (note that the sub-mean-values vn+1
m may be obtained either from

Step 2. (without correction) or from Step 4. (b) (after correction)),
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4. if, for all ω ∈ Th, the identity T u
ω = Tω holds, then for all ω ∈ Th, vω,n+1

h = π−1
Tω

(vn+1
ω ) is

admissible, no additional correction is required and we can go further in time: go to Step 1,
starting from vn+1

h instead of vnh .

Otherwise:

(a) for all ω ∈ Th such that T f
ω 6= ∅, and all Sm ∈ T f

ω , substitute the corresponding
reconstructed fluxes with some corrected fluxes defined in (3.24)-(3.25), as follows:




F̃l
m+ 1

2

←− F l
m+ 1

2

and F̃r
m+ 1

2

←− Fr
m+ 1

2

if either Sm or Sm+1 is marked,

F̃l
m+ 1

2

←− F̂m+ 1
2

and F̃r
m+ 1

2

←− F̂m+ 1
2

otherwise,

(b) for all ω ∈ Th such that T f
ω 6= ∅, and all Sm ∈ T f

ω , compute new sub-mean-values for the
marked subcells and their first neighboring subcells, respectively denoted v∗n+1

m ,v∗n+1
m−1 ,v

∗n+1
m+1 ,

by means of a corrected FV-Subcell scheme as:

v?,n+1
p = vnp −

∆tn

|Sp|
(
F̃l
p+ 1

2

− F̃r
p− 1

2

)
+ ∆tnBp, (3.26)

for p ∈ Jm−1, m+1K. This subcell corrected method (3.26) falls in one of the previously
introduced cases (3.17), (3.18) or (3.19),

(c) for all ω ∈ Th such that at least one subcell has been corrected, gather the uncorrected
sub-mean-values vn+1

m and corrected sub-mean-values v∗n+1
m in a new element of P0(Tω),

which is still denoted vn+1
ω for the sake of simplicity,

(d) go to step 3,

Step 3 of the flowchart is detailed in the next section.

3.7 Admissibility criteria

A large number of sensors or detectors have been introduced in the literature, to identify the marked
subcells, where some kind of stabilization is required to avoid a loss of robustness. Following [164], we
use two admissibility criteria: one for the Physical Admissibility Detection (PAD), another address-
ing the occurrence of spurious oscillations, namely the Subcell Numerical Admissibility Detection
(SubNAD). This last criterion is supplemented with a relaxation procedure to exclude the smooth
extrema from the troubled cells.

Physical Admissibility Detection (PAD)

Here, we define a sensor function that :

- Check if the sub-mean-values vn+1
m belongs to Θ, see (3.20).

- Check if there is any NaN values.

Those are the minimum requirements to enforce the code robustness.
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Subcell Numerical Admissibility Detection (SubNAD)

In order to tackle the issue of spurious oscillations near discontinuities, we enforce a local Discrete
Maximum Principle (DMP), at the subcell level, on the surface elevation as follows:

- Check if, for m = 1, . . . , k + 1, the following inequalities hold:

min
(
ηnm−1, η

n
m, η

n
m+1

)
≤ ηn+1

m ≤ max
(
ηnm−1, η

n
m, η

n
m+1

)
.

The SubNAD criterion relies on a DMP based on subcell mean-values, and not the whole polynomial
set of values. Furthermore, as the neighboring subcells set used in the SubNAD is reduced to the
first left and right subcells, and not all the subcells contained in the DG cell as well as in the the
left and right first neighboring DG cells, see [164], one has to introduce a relaxation mechanism in
order to preserve the scheme accuracy in the vicinity of smooth extrema.

Detection of smooth extrema.

In the relaxation procedure proposed in [164], it is assumed that the numerical solution exhibits a
smooth extremon if at least the following linearized version of the surface elevation spatial derivative:

(∂xη)lin
ωi

(x) = ∂xη
ωi,n+1
h + (x− xi) ∂xxηωi,n+1

h ,

has a monotonous profile, where ∂xη
ωi,n+1
h and ∂xxη

ωi,n+1
h are respectively the mean-values of

(∂xηh)|ωi
and (∂xxηh)|ωi

on mesh element ωi. In practice, the DMP relaxation used here works

as a vertex-based limiter on (∂xη)lin
ωi
. Hence, we set ∂xηL := ∂xη

ωi,n+1
h − hωi

2 ∂xxη
ωi,n+1
h to be the left

boundary value of (∂xη)lin
ωi

on cell ωi, as well as ∂xηLmin \max = min \max
(
∂xη

ωi−1,n+1
h , ∂xη

ωi,n+1
h

)

respectively the minimum and maximum values of the mean derivative around xi− 1
2
. We then define

the left detection factor αL as follows:

αL =





min

(
1,
∂xη

L
max − ∂xηωi,n+1

h

∂xηL − ∂xηωi,n+1
h

)
, if ∂xηL > ∂xη

ωi,n+1
h ,

1, if ∂xηL = ∂xη
ωi,n+1
h ,

min

(
1,
∂xη

L
min − ∂xηωi,n+1

h

∂xηL − ∂xηωi,n+1
h

)
, if ∂xηL < ∂xη

ωi,n+1
h .

Introducing the symmetric values ∂xηRmin \max = min \max
(
∂xη

ωi,n+1
h , ∂xη

ωi+1,n+1
h

)
and ∂xηR :=

∂xη
ωi,n+1
h +

hωi
2 ∂xxη

ωi,n+1
h , the right detection factor αR is obtained in a similar manner. Finally,

introducing α := min (αL, αR) , we consider that the numerical solution presents a smooth profile on
the cell ωi if α = 1. In this particular case, the SubNAD criterion is relaxed, allowing the high-order
accuracy preservation of smooth extrema.

Remark 31. One can apply the subcell numerical admissibility detection SubNAD and relaxation
method detailed above on the Riemann invariants I± = u± 2

√
gH instead of the surface elevation

η. Actually, the simplest choice, that also leads to the best results, is to perform the detection on
the surface elevation η. The detection applied to the Riemann invariants produces a more diffused
solution.
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3.8 Well-balancing property

This section is now dedicated to the demonstration of the well-balanced property of this a posteriori
LSC of DG schemes.

Remark 32. Let us note that under the motionless steady-state assumption ηh = ηe and qh = 0,
the following relation holds:

∂xF(vωh , b
ω
h) = B(vωh , ∂xb

ω
h), ∀ω ∈ Th.

Moreover, as we have

F(vh, bh) =

(
0

1
2gη

2
h − gηhbh

)
,

we emphasize that, under the steady-state hypothesis, F(vh, bh) belongs to Pk(Th)2 and not only
to P2k(Th)2 , since ηh = ηe. Therefore, at steady state,

Fh := pkTh
(F(vh, bh)) = F(vh, bh).

As for B, under the same assumptions we have:

B(vh, ∂xbh) =

(
0

−gηe∂xbh

)
∈ Pk (Th)× Pk−1 (Th) ⊂ Pk (Th)2 ,

thus,
Bh := pkTh

(B(vh, ∂xbh)) = B(vh, ∂xbh).

We have then the following result:

Proposition 1. The discrete formulation obtained by gathering (3.3) and the local corrected FV
schemes on subcells (3.17), (3.18) and (3.19), together with a first-order Euler time-marching al-
gorithm, preserves the motionless steady states, providing that the integrals of (3.4) are exactly
computed for the motionless steady states. Specifically, for all n ≥ 0 and all ηe ∈ R,

(ηnh = ηe and qnh = 0) =⇒
(
ηn+1
h = ηe and qn+1

h = 0
)
.

Proof. We consider the scheme (3.12) on uncorrected subcells, and schemes (3.17), (3.18) and (3.19)
on corrected subcells. We have to distinguish three different situations: (i) uncorrected subcell,
(ii) neighbor of a marked subcell, (iii) marked subcell. We show in what follows that in all those
situations, the corrected DG scheme preserves the motionless steady-states at the subcell level:

∀ω ∈ Th, ∀m ∈ [1, . . . , k + 1], ηω,nm = ηe, qω,nm = 0 =⇒ ηω,n+1
m = ηe, qω,n+1

m = 0.

1. Uncorrected subcell: Sm−1, Sm and Sm+1 are not marked.
In this case, we consider the uncorrected DG scheme or this is equivalent FV-like scheme with
reconstructed fluxes:

vn+1
m = vnm −

∆tn

|Sm|
(
F̂m+ 1

2
− F̂m− 1

2

)
+ ∆tnBm, (3.27)

with F̂m+ 1
2
and F̂m− 1

2
defined in (3.14). We have, at steady state:

η+
i± 1

2

= η−
i± 1

2

= ηe, q+
i± 1

2

= q−
i± 1

2

= 0, and b+
i± 1

2

= b−
i± 1

2

,
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and therefore
Fi± 1

2
= F

(
vh(xi± 1

2
), bh(xi± 1

2
)
)
,

so that
F̂m± 1

2
= F

(
vh(x̃m± 1

2
), bh(x̃m± 1

2
)
)
.

As a consequence, we have

F̂m+ 1
2
− F̂m− 1

2
=

∫

Sm

∂xF(vh, bh) dx, (3.28)

and injecting (3.28) into (3.27) gives

vn+1
m = vnm −

∆tn

|Sm|

∫

Sm

∂xF(vh, bh)dx+
∆tn

|Sm|

∫

Sm

B(vh, ∂xbh)dx

= vnm.

2. Neighbor of a troubled subcell: Sm, Sm−1 are not marked and Sm+1 is marked.
The corresponding scheme, in this case, is the following:

v?, n+1
m = vnm −

∆tn

|Sm|
(
F l
m+ 1

2

− F̂m− 1
2

)
+ ∆tnBm,

with F l
m+ 1

2

and F̂m− 1
2
respectively defined in (3.24) and (3.14). At steady state, the recon-

struction (3.23) yields η+
m = η−m+1 = ηc (see Fig. 3.4 and 3.5) and q+

m = q−m+1 = 0. It leads
to:

F
(
v+
m,v

−
m+1, b

+
m

)
=

1

2

[
F(v+

m, b
+
m) + F(v−m+1, b

+
m)
]

=
1

2

(
0

g
(

(ηe)2 − 2ηeb
+
m

)
)
,

and then to:

F l
m+ 1

2

=
1

2




0

g

(
(ηe)2 − 2ηebx̃

m+1
2

)

 = F

(
vh(x̃m+ 1

2
), bh(x̃m+ 1

2
)
)
. (3.29)

Moreover, as in the previous case:

F̂m− 1
2

= F
(
vh(x̃m− 1

2
), bh(x̃m− 1

2
)
)
. (3.30)

Gathering (3.29) and (3.30), we then have

F l
m+ 1

2

− F̂m− 1
2

=

∫

Sm

∂xF(vh, bh) dx,

so that
v?, n+1
m = vnm.
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3. Corrected subcell: Sm is marked.
In this case, the corresponding scheme reduces to (3.17). Following the lines of the previous
cases, we have:

F l
m+ 1

2

= F
(
vh(x̃m+ 1

2
), bh(x̃m+ 1

2
)
)
, Fr

m− 1
2

= F
(
vh(x̃m− 1

2
), bh(x̃m− 1

2
)
)
,

and therefore
F l
m+ 1

2

−Fr
m− 1

2

=

∫

Sm

∂xF(vh, bh) dx,

so that
v?, n+1
m = vnm.

We have just shown that schemes (3.12)-(3.17)-(3.18)-(3.19) do ensure the well-balanced property
in wet subcells for all contexts, wet/wet and wet/dry. As for dry subcells, we can also simply show
well-balancing property. Considering a dry zone at time level n, under the assumptions ηn = b and
qn = 0, one can easily show that the dry zone stays a dry zone a the next time level n + 1, i.e.
ηn+1 = b and qn+1 = 0, by following a very similar procedure as in the previous proofs.

Figure 3.4: The sub-mesh reconstructed interface values for the water elevation: considering a
wet/wet context
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Figure 3.5: The sub-mesh reconstructed interface values for the water elevation: considering a
wet/dry context

Remark 33. As we mentioned in Remark 24, the topography approximation bh is a globally contin-
uous function over the mesh. Indeed, the piecewise constant bathymetry values presented in Fig. 3.4
and 3.5 do not represent a discontinuous bathymetry, but a piecewise constant representation of bh
on the sub-grid.

Remark 34. We recall that the use of a non-smooth topography parameterization may be allowed,
while still ensuring the well-balancing property, at the price of considering interface reconstructions
also for the cells interfaces, for the DG scheme, in the spirit of [62, 116], see also §2.1.

3.9 Preservation of the water-height positivity

After computing the candidate solution vn+1
h through the uncorrected DG scheme (3.3), if we detect

a negative sub-mean-value on an arbitrary subcell, this subcell is then marked and a new (corrected)
sub-mean-value is evaluated by means of the first-order FV-Subcell scheme (3.17). As a consequence,
scheme (3.17) with reconstruction (3.23) should preserve positivity.

Proposition 2. Under the CFL condition (3.16), if ∀ω ∈ Th, ∀Sm ∈ Tω, v
ω, n
m ∈ Θ, then ∀ω ∈

Th, ∀Sm ∈ Tω, v
ω, n+1
m ∈ Θ.

Proof. As the positivity-preserving property of our a posteriori LSC of DG schemes relies on the
positivity of the first-order FV scheme used as the correction method, let us prove that if Hn

m and
H
n
m±1 are non-negative, then scheme (3.17) does produce a water-height Hn+1

m also non-negative.
Let us first recall the equation corresponding to the time evolution of the discrete surface elevation:

ηn+1
m = ηnm −

∆tn

|Sm|
(
F1

(
vn,+m ,vn,−m+1, b

+
m

)
−F1

(
vn,+m−1,v

n,−
m , b

−
m

))
, (3.31)

where F1 represents the first component of the numerical flux F and vn,±m , bn,±m are defined in (3.23)
and (3.21)-(3.22). For sake of simplicity, we drop in the following the superscript n. Equation (3.31)
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rewrites explicitly as:

ηn+1
m = ηm − ∆tn

2 |Sm|

(
H

+
m

qm
Hm

+H
−
m+1

qm+1

Hm+1

− σ
(
η−m+1 − η+

m

))

− ∆tn

2 |Sm|

(
H
−
m

qm
Hm

+H
+
m−1

qm−1

Hm−1

− σ
(
η−m − η+

m−1

))
.

(3.32)

Noticing that η−m+1 − η+
m = H

−
m+1 −H

+
m as well as η−m − η+

m−1 = H
−
m −H

+
m−1, and subtracting bm

on both sides of this last expression, equation (3.32) can be reformulated as:

H
n+1
m =

[
1− 1

2
λ (σ − um)

H
−
m

Hm

− 1

2
λ (σ + um)

H
+
m

Hm

]
Hm

+

[
1

2
λ (σ + um−1)

H
+
m−1

Hm−1

]
Hm−1 +

[
1

2
λ (σ − um+1)

H
−
m+1

Hm+1

]
Hm+1,

(3.33)

with um =
qm
Hm

and λ =
∆tn

|Sm|
. Therefore, Hn+1

m reads as a convex combination of Hm−1, Hm and

Hm+1. Furthermore, since by construction 0 ≤ H
±
p ≤ Hp, ∀p ∈ J1, k + 1K and by respect of the

CFL condition (3.16), λα ≤ 1, and then all the coefficients involved in the convex combination
(3.33) are non-negative. It follows that Hn+1

m ≥ 0.

Remark 35. The proposed positivity criteria are based on subcell values, and indeed, our goal is
to show that our scheme preserves the positivity at the subcell level. Hence, the chosen strategy, as
it is, does not ensure the pointwise positivity of H at some specific nodes: such a property is not
needed. If one requires such pointwise positivity, for some specific reasons, we emphasize that an
additional "positivity limiter", as the one provided in [179] for instance, can be combined with our
approach, to ensure the positivity of the polynomial solution at any chosen points. We emphasize
that enforcing the positivity of H at the subcell level, we are able to compute the approximated
eigenvalues u±√gH appearing in the CFL condition (3.16).

3.10 Numerical validations

In this numerical results section, we make use of several widely addressed and challenging test-
cases to demonstrate the performance and robustness of DG schemes provided the a posteriori local
subcell correction presented. In all following test-cases, if not stated differently, sub-mean-values are
displayed. It allows us to fully illustrate the very precise subcell resolution of our scheme.

3.10.1 A smooth sinusoidal solution

This first test-case aims at numerically evaluating the rates of convergence of the present a posteriori
LSC of DG schemes. To do so, following the methodology introduced in [167] in the context of
compressible gas dynamics, we make use of a smooth solution of the NSW equations. Details on the
design of such solution can be found in Appendix B. To do so, we initialize the problem with the
following initial data:

η0 =
u2

0

4 g
and q0 =

u3
0

4 g
,
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with the initial constant velocity perturbed by a sinusoidal signal:

u0(x) = 1 + 0.1 sin(2πx).

We run this test-case with the fourth-order scheme on 60 cells on the domain [0, 1], up to the stopping
time t = 0.3, with periodic boundary conditions. The result is plotted in Fig. 3.6. In Table 3.1, we
gather the global L2-errors as well as the rates of convergence for different order of approximation,
computed on the surface elevation at t = 0.3s. As expected, the computed rates of convergence
scale as O(k + 1). A similar behavior can be observed for the horizontal discharge q.
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Figure 3.6: Test 4 - A smooth sinusoidal analytical solution for the NSW equations - Free surface
elevation computed at t = 0.3 s with the a posteriori LSC method for k = 3 and nel = 60.

k 1 2 3
h EηL2

qηL2
EηL2

qηL2
EηL2

qηL2
1
15 1.093E-5 2.05 1.91E-7 2.99 9.390E-7 4.32
1
30 2.62E-6 2.02 2.40E-8 3.004 4.70E-8 4.27
1
60 6.43E-7 2.01 2.99E-9 3.003 2.43E-9 3.89
1

120 1.59E-7 - 3.73E-10 - 1.64E-10 -

Table 3.1: Test 4 - A smooth sinusoidal analytical solution for the NSW equations: L2-errors between
numerical and analytical solutions and convergence rates for η at time t = 0.3s.

3.10.2 A new analytical solution for the NSW equations

An other test-case that also aims to numerically evaluate the rates of convergence of the present a
posteriori LSC of DG schemes is presented. To do so, we follow always the methodology introduced
in [167] in the context of compressible gas dynamics, see Appendix B. This solution has the very
interesting features to achieve any arbitrary regularity, i.e. v(., t) ∈ C Ns(Ω), ∀ t < tc(Ns) and any
Ns ∈ N∗, allowing the study of convergence up to any order of accuracy, while involving almost
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vanishing water depth, together with a loss of regularity and the occurrence of discontinuous profiles
for t ≥ tc.

We consider here the computational domain Ω = [−0.5, 2.5], and the particular case of Ns = 3. It
follows that the critical time reads tc ≈ 0.44 s, see B for more details. We initialize the problem with
the following initial data:

η0 =
u2

0

4 g
and q0 =

u3
0

4 g
,

with the following CNs smooth initial velocity

u0(x) =

{
1 if x ≤ 0,

e−x
Ns+1 elsewhere.

While the uncorrected DG scheme (3.3) allows to compute the solution without any robustness issue
for small enough values of time, nonphysical oscillations may be generated for larger values of time,
leading to the activation of the a posteriori LSC method . A comparison between our fourth-order
numerical solution computed on a mesh made of 60 cells, and the analytical solution at t = 0.1 s is
shown on Fig. 3.7. One can see in Fig. 3.7 that only the cell mean-values are displayed. We can also
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Figure 3.7: Test 5 - A new analytical solution for the NSW equations - Free surface elevation
computed at t = 0.1 s with the a posteriori LSC method for k = 3 and nel = 60.

observe how the numerical scheme has very accurately captured to exact solution. In Table 3.2, we
gather the global L2-errors as well as the rates of convergence for different order of approximation,
computed on the surface elevation at t = 0.1s. As expected, the computed rates of convergence
scale as O(k + 1). A similar behavior can be observed for the horizontal discharge q.
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k 1 2 3
h EηL2

qηL2
EηL2

qηL2
EηL2

qηL2
1
15 5.91E-4 1.96 2.13E-5 3.19 3.20E-6 4.05
1
30 1.52E-4 2.02 2.33E-6 2.85 1.93E-7 4.18
1
60 3.73E-5 2.02 2.99E-7 2.95 1.06E-8 3.95
1

120 9.21E-6 - 4.18E-8 - 6.91E-10 -

Table 3.2: Test 5 - A new analytical solution for the NSW equations: L2-errors between numerical
and analytical solutions and convergence rates for η at time t = 0.1s

In a second time, we consider a larger final computational time t > tc, so that a right-going discon-
tinuity has developed from the initially regular profile, allowing to check the ability of the proposed
a posteriori LSC method to stabilize the computation, namely to get rid of the spurious oscillations
as well as enforcing the positivity of the water-height. We run the previous case until t = 0.55,
with k = 3 and nel = 100 mesh elements. Note that the standard DG method crashes in this case,
since nonphysical undershoots would be rapidly amplified. In Fig. 3.8, a comparison between the
a posteriori corrected DG solution and a reference solution obtained with a robust first-order FV
method and nel = 10000 mesh elements.
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Figure 3.8: Test 5 - A new analytical solution for the NSW equations - Free surface elevation
computed at t = 0.55 s with the a posteriori LSC method (left) for k = 3 and nel = 100, with a zoom
on the discontinuity and wet/dry interface (right).

This is a challenging computation for high-order methods since small values of water-height occur
and thus small undershoots generally quickly lead to larger undershoots and possibly loss of pos-
itivity. In practice, the sensor starts to be activated when the strong gradient appears, slightly
before the apparition of the discontinuity. A particular emphasize is put in Fig. 3.8 on the location
of marked subcells, where uncorrected subcells are plotted by green dots while corrected subcells
are plotted with blue squares. We observe that the particular combination of admissibility criteria
introduced in §3.7 works quite well in practice, as the detection has been able to accurately track
the moving front, and doing so removed the spurious oscillations without impacting smooth areas.
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To conclude this test, we show on Fig. 3.9 the numerical results obtained with the a posteriori LSC
methodwith a high-order polynomial approximation k = 8, along with a quite coarse mesh made of
20 elements, at time t = 0.55 s. The use of such a coarse mesh permits to highlight the particularly
interesting subcell resolution capabilities of our method, allowing to accurately locate the wet-dry
interface inside a mesh element.
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Figure 3.9: Test 5 - A new analytical solution for the NSW equations - Free surface elevation
computed at t = 0.55 s with the a posteriori LSC method (left) for k = 8 and nel = 20, with a zoom
on the discontinuity and wet/dry interface (right).

3.10.3 Dam-break

In this second test-case, we focus on two dam-break problems over flat bottoms. The computational
domain is set to Ω = [0, 1] and the first set of initial conditions is defined as follows:

η0(x) =

{
1 if x ≤ 0.5,
0.5 elsewhere, , q0 = 0, b = 0.

The final time is set to t = 0.075 s. In Fig. 3.10, on a 50 cells mesh, fourth-order uncorrected DG
solution is displayed on the left figure, while the corrected solution is plotted on the right one. This
illustrates very clearly that even if the correction has been activated on in a very sharp area in the
vicinity of the discontinuity, the solution has still been cleansed from its spurious oscillations. Now,
we compare our a posteriori LSC methodwith the limitation process introduced in [179] (refereed to
as PL/TVB method in what follows) and presented in (2.20)-(2.7), which combines the positivity-
preserving limiter [184] with a standard TVB limiter [44]. Following [179], the constant M involved
in the TVB limiter is set to M = 0. The results are plotted in Fig. 3.11 and Fig. 3.12.
In Fig. 3.11 and 3.12, one can observe that the present correction technique outperforms the
positivity-preserving + TVB limiter, both in the rarefaction and shock resolution. Finally, to
demonstrate how this a posteriori LSC method scales going to very high-orders of accuracy and
very coarse meshes, we run the same test with k = 9 and a 10 mesh elements. The corresponding
numerical result is shown on Fig. 3.13.
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Figure 3.10: Test 6 - Dam break on a wet bottom- Free surface elevation computed at t = 0.075 s
with the uncorrected DG method (left) and the a posteriori LSC method (right), with k = 3 and
nel = 50 mesh elements.
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Figure 3.11: Test 6 - Dam break on a wet bottom - Free surface elevation computed at t = 0.075 s
- Comparison between a posteriori LSC method and PL/TVB method for k = 3 and nel = 50.

Fig. 3.13 illustrates the high capability of this a posteriori LSC method to retain the precise subcell
resolution of DG schemes, allowing the use of very coarse meshes, along with being able to avoid the
appearance of spurious oscillations or any unfortunate crash of the code. This figure also displays
how the present correction affects the solution only at the subcell level, allowing the resolution of
the shock in only one mesh element.
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Figure 3.12: Test 6 - Dam break on a wet bottom - Free surface elevation computed at t = 0.075 s
- Comparison between a posteriori LSC method and PL/TVB method for k = 3 and nel = 50, with
a zoom on the rarefaction wave (left) and the shock wave (right)
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Figure 3.13: Test 6 - Dam break on a wet bottom - Free surface elevation computed at t = 0.075 s
- Comparison between a posteriori LSC method (right) and PL/TVB method (left) for k = 9 and
nel = 10.

In a second time, we modify the initial conditions as follows:

η0(x) =

{
1 if x ≤ x0

0 elsewhere , q0(x) = 0.
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We compute the evolution up to t = 0.05 s, with k = 3 and nel = 50, in order to show the ability
of the proposed method to compute the propagation of a wet/dry front. A comparison between the
numerical results obtained with the a posteriori LSC method and the analytical solution is shown
on Fig. 3.14 (left). Additionally, we compare these results with those obtained with the PL/TVB
limitation process at the same times on Fig. 3.14 (right), together with zoomed profiles on Fig. 3.15
and Fig. 3.16.
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Figure 3.14: Test 7 - Dam break on a dry bottom - Free surface elevation computed at different
times between 0.002s and 0.05 s - Comparison between a posteriori LSC method (left) and PL/TVB
method (right) for k = 3 and nel = 50.
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Figure 3.15: Test 7 - Dam break on a dry bottom - Free surface elevation computed at different
times between 0.002s and 0.05 s - Comparison between a posteriori LSC method (left) and PL/TVB
method (right) for k = 3 and nel = 50, with a zoom on the wet/dry interface.

Those results show how our subcell correction technique behaves in comparison to the PL/TVB
limiter, in the context of the propagation of a wet/dry front. Finally, to exhibit once more the high
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Figure 3.16: Test 7 - Dam break on a dry bottom - Free surface elevation computed at different
times between 0.002s and 0.05 s - Comparison between a posteriori LSC method (left) and PL/TVB
method (right) for k = 3 and nel = 50, with a zoom on the top.

scalability of the present a posteriori LSC method to very high-order of accuracy, we set k = 8 and
nel = 10. The corresponding numerical result is shown on Fig. 3.17.
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Figure 3.17: Test 7 - Dam break on a dry bottom - with the a posteriori LSC method for k = 8 and
nel = 10 at t = 0.01s.
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3.10.4 Well-balancing property

In this third test, we focus on the preservation of the motionless steady states. The computational
domain is Ω = [0, 1]. The topography profile is defined as follows

b(x) =





A

(
sin

(
(x− x1) · π

75

))2

if x1 ≤ x ≤ x2,

0 elsewhere,
(3.34)

where A = 4.75, x1 = 0.125 and x2 = 0.875. The initial data is defined as

η0(x) = max (3, b(x)) and q0(x) = 0.

We evolve this initial configuration in time up to 100000 time iterations, with a fourth-order ap-
proximation and 120 mesh elements. The numerical results obtained with the a posteriori LSC
method are shown on Fig. 3.18 and Fig. 3.19.

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

a posteriori LSC
b

x(m)

η
(m

)

Figure 3.18: Test 8 - Preservation of a motionless steady state - Free surface elevation at t = 50s.

We highlight in Fig. 3.19 the particular marked subcells, in which the correction has been performed.
We emphasize that the steady state is effectively preserved up to the machine accuracy, validating
numerically the compatibility of the a posteriori LSC methodwith the well-balancing property. A
similar behavior is reported for other values of k and nel.

Next, we slightly modify the initial condition for the water-height in order to have the bump totally
submerged:

η0(x) = 10 and q0(x) = 0.
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Figure 3.19: Test 8 - Preservation of a motionless steady state - Free surface elevation at t = 50s
(left), with a zoom on the wet/dry interface (right).

We evolve this initial configuration in time up to 100, 000 time iterations, with a fourth-order ap-
proximation and 120 mesh elements. The numerical results obtained with the a posteriori LSC
method are shown on Fig. 3.20.
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Figure 3.20: Test 9 - Preservation of a motionless steady state - Free surface elevation at t = 50s.

In Table 3.3, we gather the global L2-errors obtained for several orders of approximation, for the
surface elevation at t = 50s. As expected the steady state is preserved up to double precision

73



accuracy.

k 1 2 3
h EηL2

EηL2
EηL2

1
15 1.35E-15 1.12E-15 6.32E-16
1
30 4.70E-16 2.61E-16 9.01E-17
1
60 1.52E-16 5.64E-17 1.03E-17
1

120 6.57E-17 1.27E-17 1.48E-18

Table 3.3: Test 9 - Preservation of a motionless steady state: L2-errors between numerical and exact
steady state solutions for η at time t = 50s.

3.10.5 Trans-critical flow over a bump: without shock

We focus in this test on a classical trans-critical flow without shock, see for instance [75] for a
complete description. The computational domain is Ω = [0, 25] (m). The topography profile is
defined as follows:

b(x) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,
0 elsewhere. (3.35)

In this test, the incoming flow is enforced to be fluvial upstream and becomes torrential at the top
of the bump. The initial data is defined as:

η0(x) = 0.66 m and q0(x) = 0 m3.s−1,

and we prescribe the following boundary conditions:
{

upstream: q = 1.53 m3.s−1,
downstream: h = 0.66 m while the flow is subcritical.

We run this test-case with k = 3, nel = 100 and tmax = 200s. We show on Fig. 3.21 the free
surface elevation and the discharge obtained with the a posteriori LSC method , at several moments
during the transient part of the flow (3.55 s and 20.3 s) and when the steady state is reached (200 s),
showing a very good agreement with the analytical solution.

3.10.6 Transcritical flow over a bump: with shock

Now we include some modifications in order to obtain a transcritical flow over a bump with shock.
The computational domain is always Ω = [0, 25] (m) and the topography profile is defined as in
(3.35). The initial data is defined as:

η0(x) = 0.33 m and q0(x) = 0 m3.s−1,

and we prescribe the following boundary conditions:
{

upstream: q = 0.18 m3.s−1,
downstream: h = 0.33 m while the flow is subcritical.
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Figure 3.21: Test 10 - Transcritical flow over a bump without shock - Free surface elevation and
discharge computed at several moments, 3.55s, 20.3s and 200s, with the a posteriori LSC method ,
for k = 3 and nel = 100.

We run this test-case with k = 3, nel = 100 and tmax = 200s. We show on Fig. 3.22 the free
surface elevation obtained with the a posteriori LSC method , when the steady state is reached at
t = 200s, showing a very good agreement with the analytical solution.

3.10.7 Transcritical flow over a bump and through a contraction

Here we conducted flow simulation as a response to both a contraction and a bump. The bump used
in this simulation is always (3.35). The initial condition used are:

η0(x) = 0.5 m and q0(x) = 0 m3.s−1.
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Figure 3.22: Test 11 - Transcritical flow over a bump with shock - Free surface elevation at t = 200 s,
with the a posteriori LSC method , for k = 3 and nel = 100.

Boundary conditions used here are a hard wall boundary on the left, and an absorbing boundary on
the right. The computed water elevation at subsequent times is plotted in Fig. 3.23, showing a very
good behavior at all time stages and a very good agreement with the analytical solution at steady
state. As time progresses, water on the downstream part is draining out, by the implementation
of the absorbing right boundary, whereas on the upstream part, the water is being trapped by the
hard wall and the bump.

3.10.8 Carrier and Greenspan’s transient solution

This test-case, introduced in [33], describes the physical process in which the water level near the
shoreline of a sloping beach is initially depressed, the fluid held motionless and then released at t = 0.
A transient wave is generated which runs up the beach, before returning to equilibrium state in a
slow convergence process, reproducing some interesting conditions for assessing the robustness of the
a posteriori LSC method in computing long waves run-up. In [33], a hodograph transformation is
used to solve the NSW equations and obtain an analytical solution. The transformation makes use
of two dimensionless variables (in the following, starred variables denote dimensionless quantities)
σ∗ and λ∗ which are, respectively, a space-like and a time-like coordinate given by

σ∗ = 4c∗, λ∗ = 2 (u∗ + t∗) .

Let l be the typical length scale of this specific problem and α the beach slope. The scales used to
obtain the nondimensionalized variables are:

x∗ = x/l, η∗ = η/(αl), u∗ = u/
√
gαl, t∗ = t/

√
l/αg, (3.36)

76



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

a posteriori LSC
b

analytic

x(m)

η
(m

)

Figure 3.23: Test 12 -Transcritical flow over a bump and through a contraction - Free surface
elevation at water elevation at subsequent times with the a posteriori LSC method , for k = 3 and
nel = 100.

and the non-dimensional phase speed is given by:

c∗ =
√
η∗ − x∗. (3.37)

The initial solution is specified by the following initial conditions:

η∗0(σ∗) = e
(

1− 5

2

a3

(a2 + σ∗2)
3
2

+
3

2

a5

(a2 + σ∗2)
5
2

)
, q∗0(σ∗) = 0 and x∗ = −σ

∗2

16
+ η∗0,

(3.38)

where a = 3
2(1 + 0.9e)

1
2 and e is a small parameter which characterizes the surface elevation profile.

The analytical solution is then given by




η∗(σ, λ) = −u
∗2

2
+ eRe

[
1− 2

5/4− iλ
[(1− iλ)2 + σ2]

3
2

+
3

2

(1− iλ)2

[(1− iλ)2 + σ2]
5
2

]
,

u∗(σ, λ) =
8e

a
Im

[
1

[(1− iλ)2 + σ2]
3
2

− 3

4

1− iλ
[(1− iλ)2 + σ2]

5
2

]
,

t∗ =
1

2
aλ− u∗ and x∗ = η∗ − a2σ2

16
,

where we have set σ∗ = aσ, λ∗ = aλ . This set of equations may be solved by some iterative
process. In what follows, we set e = 0.1, α = 1/50, the initial surface profile (3.38) is provided in
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the dimensional case with the length scale l = 20 m and we define β := α e l. We run this test-case
with k = 3 and 50 mesh elements, for different values of discrete time t in the range [0.5 s, 23 s], see
Fig. 3.24 (left) and at t = 200 s on Fig. 3.24 (right).

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

a posteriori LSC
analytic

b

a posteriori LSC
analytic

b

x∗

η
∗ /
β

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

a posteriori LSC
analytic

b

x∗

Figure 3.24: Test 13 - Carrier and Greenspan’s transient solution - Free surface elevation η∗/β
plotted versus the onshore coordinate x∗ - Free surface elevation for different values of time in the
range [0.5 s, 23 s] (left) and at t = 200 s (right) for k = 3 and nel = 50.

In view of result displayed in Fig.3.24, one can see how accurate DG scheme along with our a pos-
teriori LSC method is, as the numerical solution is extremely close to the exact solution and is able
to simulate the return to the equilibrium state. This is due to the ability of our correction method
to surgically modified the numerical solution only in the very few concerned subcells, as illustrated
on Fig. 3.25. Additionally, we compare these results with those obtained with the PL/TVB method
on Fig. 3.27 with M = 0 (left) and with M = 32 (right). Let us note that in [179], the authors make
use of M = 0 in every situations, except for the convergence rate analysis where M = 32 is used.
As this test-case is for the most part smooth (except at the wet/dry transition point), a non-zero
value of M can be used in order to improve the quality of the results, as depicted by Fig. 3.27.
However, even for higher value of M (M = 32), the PL/TVB limiter is outperformed by the present
a posteriori LSC method .
We finally assess the use of a high-order polynomial approximation (k = 8) on a very coarse mesh
(nel = 10) to emphasize the very accurate and interesting subcell resolution ability of the proposed
approach. The results obtained at t = 7 s are plotted on Fig. 3.28.
In Table 3.4, we gather the global L2-errors associated with the computation of η, for different poly-
nomial orders, and increasing mesh refinements, computed at t∗ = 1 s, for Carrier and Greenspan’s
transient test-case. We emphasize that in such situations, in which the a posteriori LSC is activated,
the resulting scheme is not a "pure" DG scheme, but a combination of a pure DG scheme with a first
order FV scheme. Also the solution is only H1(Ω) and the regularity is not sufficient to obtain the
"optimal" order. As a consequence, it is no surprise that, the observed rates of convergence are not
the optimal rates generally associated for a "sufficiently regular" solution with pure DG schemes.
Measuring order of convergence in such test-cases is not a criterion for accuracy of our DG scheme.
The order of convergence of our DG scheme has already been calculated in § 3.10.1 and § 3.10.2,
where a very good results for errors and order of convergence are shown.
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Figure 3.25: Test 13 - Carrier and Greenspan’s transient solution - Free surface elevation computed
at t = 7 s with the a posteriori LSC method for k = 3 and nel = 50 (left): corrected and uncorrected
subcells are respectively plotted with blue squares and green dots, with a zoom on the shoreline
(right)
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Figure 3.26: Test 13 - Carrier and Greenspan’s transient solution - Free surface elevation computed
for different values of time in the range [0.5 s, 15 s] with the a posteriori LSC method for k = 3 and
nel = 50.
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Figure 3.27: Test 13 - Carrier and Greenspan’s transient solution - Free surface elevation computed
for different values of time in the range [0.5 s, 15 s] with the PL/TVB method for k = 3 and nel = 50,
with M = 0 (left) and M = 32 (right).
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Figure 3.28: Test 13 - Carrier and Greenspan’s transient solution - Free surface elevation computed
at t = 7 s with the a posteriori LSC method for k = 8 and nel = 10.

3.10.9 Carrier and Greenspan’s periodic solution

In this test-case, a monochromatic wave is let run-up and run-down on a plane beach. This solution
represents the motion of a periodic wave of dimensionless amplitude A∗ and frequency ω∗ traveling
shoreward and being reflected out to sea generating a standing wave on a plane beach. Recalling
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k 1 2 3
h EηL2

qηL2
EηL2

qηL2
EηL2

qηL2
1
15 7.02E-3 3.49 1.27E-3 4.23 8.72E-4 4.95
1
30 6.23E-4 1.94 6.77E-5 2.43 2.80E-5 2.05
1
60 1.61E-4 1.98 1.25E-5 2.10 6.75E-6 1.95
1

120 4.07E-5 - 2.92E-6 - 1.74E-6 -

Table 3.4: Test 13 - Carrier and Greenspan’s transient solution: L2-errors between numerical and
analytical solutions for η at time t∗ = 1s

the dimensionless quantities (3.36) and (3.37), the analytical solution is formulated as follows:




u∗ = −A
∗J1 (σ∗) sin (λ∗)

σ∗
,

η∗ =
A∗

4
J0 (σ∗) cos (λ∗)− u∗2

4
,

t∗ =
1

2
λ∗ − u∗ and x∗ = η∗ − σ∗2

16
,

where J0 and J1 stand for the Bessel functions of zero and first order. We consider the solution
obtained for A∗ = 0.6 and ω∗ = 1 (non-breaking wave), together with the length scale l = 20m and
a bottom slope α = 1/30. The value of this solution at t = 0 is supplied as initial condition, and
similarly to the previous transient case, the analytical variations of the surface elevation at the left
boundary is used as an offshore inlet boundary condition, generating the motion. We refer the reader
to [33] for a complete description. We set k = 3 and nel = 50 and we compute the time evolution
up to t = 1.5T , where T is the time period of the periodic forcing. We show on Fig. 3.29 some
snapshots of the free surface elevation plotted at several discrete time in the range [1.25T, 1.5T ] with
the a posteriori LSC method , showing a very good agreement between the numerical solution and
the analytical one. Additionally, we compare these results with those obtained with the PL/TVB
method on Fig. 3.30 with M = 0 (left) and with M = 32 (right). However, even for higher value of
M (M = 32), the PL/TVB limiter is outperformed by the present a posteriori LSC method .
In order to emphasize the accuracy of the proposed approach for long time integration, we set
t = 15T and show on Fig. 3.31 the free surface elevation obtained at times t = 14.5T (left) and
t = 15T (right), for k = 3 and nel = 50. We observe that such a long time-integration has a negligible
impact on the accuracy of the predictions of the shoreline location. Such a result can be reproduced
with a high-order approximation k = 8 and a very coarse mesh nel = 10, showing again the ability
of our approach to provide a high-order accurate subcell description of the motion, see Fig. 3.33. In
Fig. 3.32, we show time-series of the shoreline elevation "ηs" in the range [0, 6T ] (left) and [0, 15T ]
(right). We can see that the minimum and maximum water elevations are accurately computed,
even after a large number of periods.

3.10.10 Run-up of a solitary wave on a plane beach

The last test-case is devoted to the computation of the run-up of a solitary wave on a constant slope.
Such run-up phenomena are investigated experimentally and numerically in [152]. In this test, a
solitary wave traveling from the shoreward is let run-up and run-down on a plane beach, before being
fully reflected and evacuated from the computational domain. The topography is made of a constant
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Figure 3.29: Test 14 - Carrier and Greenspan’s periodic solution - Free surface elevation computed
for different values of time in the range [1.25T, 1.5T ] with the a posteriori LSC method for k = 3
and nel = 50
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Figure 3.30: Test 14 - Carrier and Greenspan’s periodic solution - Free surface elevation computed
for different values of time in the range [1.25T, 1.5T ] with the PL/TVB method for k = 3 and
nel = 50, with M = 0 (left) and M = 32 (right).

depth area juxtaposed with a plane sloping beach of constant slope α such that cot(α) = 19.85. The
right boundary condition is transmissive. The initial condition is defined as follows:
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Figure 3.31: Test 14 - Carrier and Greenspan’s periodic solution - Free surface elevation computed
at t = 14.5T (left) and t = 15T (right) with the a posteriori LSC method for k = 3 and nel = 50.
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Figure 3.32: Test 14 - Carrier and Greenspan’s periodic solution - Time-series of the shoreline
elevation in the range [0, 6T ] (left) and [0, 15T ] (right), with the a posteriori LSC method for k = 3
and nel = 60.

η0(x) = H0 +
A

H0
sech2 (γ (x− x1)) and u0(x) =

√
g

H0
(η0(x)−H0) ,

where γ =

√
3A

4H0
and x1 =

√
4H0
3A arcosh

(√
1

0.05

)
is nothing but the initial position of the center

of the solitary wave. This test is run with A = 0.019m, H0 = 1.0m, k = 8, nel = 20 and t = 40 s.
We show on Fig. 3.34 the free surface obtained with the a posteriori LSC method at several times in
the range [1 s, 40 s], showing once more a very good agreement with the reference solution obtained
with a robust FV method on a very fine mesh nel = 10000.
In this work, we have introduced a new well-balanced high-order DG discrete formulation with a
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Figure 3.33: Test 14 - Carrier and Greenspan’s periodic solution - Free surface elevation computed
for different values of time in the range [14.5T, 15T ] for k = 8 and nel = 10.

FV-Subcell correction patch designed for the NSW equations. This formulation, based on [164],
combines the very high accuracy of DG schemes along with a robust correction procedure ensuring
the water-height positivity as well as addressing the issue of spurious oscillations in the vicinity of
discontinuities. This robustness is enforced by means of an a posteriori LSC of the conservative vari-
ables. This procedure relies on an advantageous reformulation of DG schemes as a FV-like method
on a sub-grid, which makes the correction strategy surgical and flexible, as well as conservative at
the subcell level. Indeed, only the non-admissible subcells are marked and subject to correction, re-
taining as much as possible the very accurate subcell resolution of high-order DG formulations. The
proposed strategy is investigated through an extensive set of benchmarks, including a brand new
smooth solution for the computation of convergence rates, stabilization of flows with discontinuities,
the preservation of motionless steady states, or moving shorelines over varying bottoms. We observe
in particular that this approach provides a very accurate description of wet/dry interfaces even with
the use of very high-order schemes on coarse meshes.
Regarding potential advantages of this a posteriori limiting strategy compared to a priori limiters,
because the troubled zone detection is performed a posteriori, the correction can be done only
where it is absolutely necessary. Furthermore, positivity preservation of the water-height is included
without any additional effort, while it is generally not the case of a priori limitations of high-order
schemes. Let us further emphasize that this a posteriori LSC method scalability to any order of
accuracy is also perfectly natural. Finally, it is important to note that this new correction procedure
is totally parameter free.
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Figure 3.34: Test 15 - Run-up of a solitary wave on a plane beach - Free surface elevation computed
for different values of time in the range [1 s, t = 40 s] with the a posteriori LSC method obtained for
k = 8 and nel = 20.
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Chapter 4

An a posteriori LSC method for the
NSW equations: the 2d case

The a posteriori LSC procedure introduced in chapter § 3 for the one-dimensional NSW model can
be extended to the 2d NSW system, following the steps presented in [165]. Many articles have been
devoted to the study of correction strategies for high-order DG scheme using FV-Subcell method
for multi-dimensional hyperbolic systems. The reader may refer for instance to [151, 61, 59, 88]. In
all these aforementioned papers, the idea of the proposed correction procedure is the following: If
the numerical solution in a cell is detected as bad, the cell is then subdivided into subcells and a
first-order FV, or alternatively other robust scheme is applied on each subcell, i.e., the entire cell is
corrected. Contrary to our a posteriori LSC method, where the correction is strictly local. In fact,
only the non-admissible subcells are corrected via a first-order FV scheme on those marked subcells
without impacting the high-order DG solution elsewhere in the cell. There are very few works in
the literature which are devoted to the study of such a local correction procedure, and none up to
our knowledge for multi-dimensional hyperbolic systems on unstructured grids. In this chapter, an
arbitrary-order DG discretization is proposed for the 2d NSW system with topography source term.
Then, similarly to what has been done in [165], our a posteriori LSC method is extended to this 2d
system. Let us mention that this 2d extension is still an ongoing project, and will be the topic of a
near future article.

Denoting by q = (qx, qy)
t the water discharge as a vector variable and u = (ux, uy)

t the depth-
averaged water velocity vector, the 2d NSW equations are commonly written as follows :

∂V

∂t
+∇ ·G(V) = B(V,∇b) (4.1)

with

V =




η
qx
qy


 ,G(V) =

(
G1(V),G2(V)

)
=




qx qy
uxqx + 1

2g(η2 − 2ηb) uyqx
uxqy uyqy + 1

2g(η2 − 2ηb)


 (4.2)

and the bathymetry source term defined by :
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B(V,∇b) =




0
−gη∂xb
−gη∂yb


 .

4.1 Discrete formulation

In this section, we use smilar notations than for the 1d case, and introduce some new ones when it is
necessary. Let Ω be the computational domain and we consider a triangulation T =

{
T1, . . . , Tnel

}
of

Ω in open disjoint triangles T of boundary ∂T such that Ω =
⋃
T∈T T . The partition is characterized

by the mesh size h := max
T∈T

|T |, where |T | is the volume of element T . For a given mesh element

Ti ∈ T , we note by ci its barycenter.

We aim at computing an approximate vector solution on this triangulation. Given an integer poly-
nomial degree k ≥ 1, we define:

Pk(T ) :=
{
v ∈ L2(Ω), v|T ∈ Pk(T ), ∀T ∈ T

}
,

where Pk(T ) denotes the space of 2-variables polynomials in T of degree at most k.

A weak formulation of the problem is obtained by multiplying (4.1) by a test function φ ∈ Pk(T ).
We integrate locally on a mesh element Ti and the flux term is integrated by part to obtain :

∫
Ti

∂
∂tV(x, t)φ(x)dx−

∫
Ti

G(V, b) �∇φ(x)dx+∫
∂Ti

G(V, b) � ~n∂Tiφ(s)ds =
∫
Ti

B(V,∇b)φ(x)dx,
(4.3)

where ~n∂Ti is the unit outward normal of ∂Ti. The approximated vector solution Vh ∈ Pk(T )3 is
expressed as a polynomial of order k on each element T :

Vh(x, t) =

nd∑

j=1

VT
j (t)ϕTj (x), ∀x ∈ T, ∀t ∈ [0, tmax]

where
{
ϕTj

}nd

j=1
are the polynomial basis functions of Pk (T ), and

{
VT
j (t)

}nd

j=1
are the local degrees

of freedom vectors associated to VT
h := Vh|T with VT

j (t) =
(
ηTj (t), (qx)Tj (t), (qy)

T
j (t)

)t
, with nd :=

(k+1)(k+2)
2 = dimPk(T ) is the number of the degrees of freedom. Let also consider a polynomial

expansion of the bathymetry parameterization b :

bh(x) =

nd∑

j=1

bTj ϕ
T
j (x), ∀x ∈ T. (4.4)

We replace the exact solution V(x, t) by the approximation Vh(x, t) in order to obtain the discrete
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formulation of (4.3) and the test function φ by the basis function ϕ ∈ Pk (T ):

∫

T




nd∑

j=1

d

dt
VT
j (t)ϕTj (x)


ϕTl (x)dx−

∫

T
G
(
VT
h , b

T
h

)
�∇ϕTl (x)dx+

∫

∂T
G (Vh, bh) � ~n∂T ϕ

T
l (s)ds =

∫

T
B
(
VT
h ,∇bTh

)
ϕTl (x)dx, 1 ≤ l ≤ nd.

(4.5)

and the semi-discrete DG formulation of (4.3) writes:

nd∑

j=1

d

dt
VT
j (t)

∫

T
ϕTj (x)ϕTl (x)dx−

∫

T
G
(
VT
h , b

T
h

)
�∇ϕTl (x)dx+

3∑

k=1

∫

Γij(k)

G?
ij(k)ϕ

T
l (s)ds =

∫

T
B
(
VT
h ,∇bTh

)
ϕTl (x)dx, 1 ≤ l ≤ nd.

Noting that we have :

G?
ij(k) = G (Vh, bh) |Γij(k)

� ~nij(k).

To approximate G?
ij(k) on the k-th interface Γij(k) of the triangle (element) Ti, we may use any

consistent numerical flux, like the global LF numerical flux for instance, see Fig. 4.1. We introduce
in the following a simple choice for the interfaces numerical fluxes G?

ij(k), inspired from the FV
well-balanced discretization detailed in § 3.

Figure 4.1: Test 2 - Ti element and its first neighbors

4.2 DG well-balancing

Let us define, for a given interface Γij(k),V
−
k and V+

k respectively the restrictions of Vh|Ti and Vh|Tj(k)
to Γij(k) (the interior and exterior traces, with respect to the element Ti ). Similarly, b−k and b

+
k stand
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for the interior and exterior values of bh on Γij(k). For each interface Γij(k)k=1,...,3
, we follow exactly

the same procedure as in the FV frame § 3.5:

b̃k = max
(
b−k , b

+
k

)
, b̌k = b̃k −max

(
0, b̃k − η−k

)
,

and
Ȟ−k = max

(
0, η−k − b̃k

)
, Ȟ+

k = max
(

0, η+
k − b̃k

)
,

η̌−k = Ȟ−k + b̌k, η̌+
k = Ȟ+

k + b̌k,

(4.6)

leading to the new interior and exterior values :

V̌−k =

(
η̌−k ,

Ȟ−k
H−k

q−k

)t
, V̌+

k =

(
η̌+
k ,
Ȟ+
k

H+
k

q+
k

)t
.

Now we set:
G?
ij(k) = G?

(
V̌−k , V̌

+
k , b̌k, b̌k, ~nij(k)

)
+ Ǧij(k), (4.7)

as the numerical flux function through the interface between Ti and Tj(k), with G? (V−,V+, b−, b+, ~n)
is the global LF numerical flux:

G?
(
V−,V+, b−, b+, ~n

)
=

1

2

(
G
(
V−, b−

)
� ~n + G

(
V+, b+

)
� ~n
)
− σ

2

(
V+ −V−

)
,

where

σ = max
i∈Z

λi, (4.8)

with

λi = max
∂Ti

(
|ui � ~nij |+

√
gHi

)
,

Vi to refer to the restriction of Vh on the element Ti . This also stands stand for b and each scalar
component of Vh. Ǧij(k) is a correction term needed to ensure flux balancing at motionless steady
states, defined as follows:

Ǧij(k) =




0 0

gη̌−k
(
b̌k − b−k

)
0

0 gη̌−k
(
b̌k − b−k

)


 � ~nij(k).

Remark 36. For the 1d case in § 3, to have the well-balance property, this modified flux strategy
(4.7) was applied only for FV scheme and we didn’t need to apply it to the DG scheme. Actually, the
well-balanced property can be satisfied for DG scheme simply by ensuring the continuity of ηh and bh
globally at initial time (under steady state hypothesis), using a corresponding interpolation method,
see Remark 24. Here, for the 2d context we can use a similar strategy. Among the interpolation
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points of a mesh element T , one have to choose k interpolation points on each element boundary
Γij so the interpolated Pk polynomial be continuous on all elements boundaries, and thus, globally
continuous. If one would like to use discontinuous and complex topographies, then he can refer to
the modified flux strategy (4.7) for DG scheme. We choose not complicate things and we initialize
bh with a globally continuous polynomial. To ensure that the scheme is indeed well-balanced, and
particularly in wet/dry context, we initialize the surface elevation ηh in dry areas by setting ηh = bh.
Then, water-height positivity is also ensured in dry areas at initial time since hh = ηh − bh = 0 by
construction, and in this case we simply use the following classic DG numerical flux without any
additional modification strategies .

G?
ij(k) = G?

(
V−k ,V

+
k , b
−
k , b
−
k , ~nij(k)

)
. (4.9)

4.3 Sub-partition

For any mesh element (triangle) Ti ∈ T , we introduce a sub-partition TTi into nd = (k+1)(k+2)
2 open

disjoint subcells:

Ti =

nd⋃

m=1

S
Ti
m ,

where the subcell S Ti
m has a polygonal shape of volume

∣∣∣S Ti
m

∣∣∣, see Fig. 4.2, and Fig. 4.3 for two
subdivision examples for a triangular cell T .

Figure 4.2: Example 1: Partition of a mesh element T in nd subcells for P2 (left) and P3 (right)
cases.
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Figure 4.3: Example 2: Partition of a mesh element T in nd subcells for P2 (left) and P3 (right)
cases.

For further details concerning the cell subdivision, we refer to [165]. To define the sub-resolution
basis functions, required in § 3.2, we introduce for a given mesh element T ∈ T the following set of
subcell indicator functions

{
1
T
m, m ∈ J1, ndK

}
, with:

1
T
m(x) =

{
1 if x ∈ STm,
0 if x 6∈ STm,

∀m ∈ J1, ndK.

Recalling that pkT is L2-orthogonal projector onto Pk(T ), the set of sub-resolution basis functions{
φTm ∈ Pk(T ), m ∈ J1, ndK

}
are defined as follows:

φTm = pkT (1Tm), ∀m ∈ J1, ndK, (4.10)

∫

T
φTmϕdx =

∫

T
1
T
mϕdx =

∫

ST
m

ϕdx, ∀m ∈ J1, ndK, ∀ ϕ ∈ Pk(T ). (4.11)

Now, similarly to what we have done in the 1d case, we now seek to reformulation DG scheme as a
FV-like scheme on a subgrid. To this end, we follow the step presented in [165].

4.4 DG formulation as a FV-like scheme on a sub-grid

Let us introduce the global L2-projector pkT onto Pk(T ) that gather all the local L2-projectors pkT
on each element T . Now, let Gh and Bh be the L2-projections of the flux function and source term
onto Pk(T )

Gh = pkT (G(Vh, bh)) and Bh = pkT (B(Vh,∇bh)).

By replacing the flux function and the source term by their L2-projections in (4.5) we get:

∫

T

∂

∂t
VT
hϕdx−

∫

T
GT
h �∇ϕdx +

3∑

k=1

∫

Γij(k)

G?
ij(k)ϕ(s)ds =

∫

T
BT
hϕdx, ∀ϕ ∈ Pk(T ). (4.12)

Equivalently, using an integration by parts leads to:
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∫

T

∂

∂t
VT
hϕdx +

∫

T
∇ � GT

hϕdx−
3∑

k=1

∫

Γij(k)

(
GT
h � ~nij(k) −G?

ij(k)

)
ϕ(s)ds =

∫

T
BT
hϕdx, ∀ϕ ∈ Pk(T ),

(4.13)

which is generally referred to as the strong form of DG scheme. Now, since ∂tVT
h , ∇ � GT

h and BT
h

belong to (Pk (T ))3, by substituting φTm into (4.13), one gets:

∫

ST
m

∂

∂t
VT
h dx = −

∫

ST
m

∇ � GT
h dx +

∫

ST
m

BT
h dx +

3∑

k=1

∫

Γij(k)

(
GT
h � ~nij(k) −G?

ij(k)

)
φTm(s)ds, ∀m ∈ J1, ndK.

(4.14)

It immediately follows that:

∂

∂t
V
T
m = − 1

|STm|




nm
f∑

k=1

∫

ΓT
mp(k)

GT
h � ~nds−

3∑

k=1

∫

Γij(k)

(
GT
h � ~nij(k) −G?

ij(k)

)
φTm(s)ds


+ B

T
m, ∀m ∈ J1, ndK,

(4.15)

where ΓTmp denotes the face between subcell STm and its neighbor Sp while nmf is the number of subcell
STm faces. Let us mention that Sp can either be inside cell T (Sp=STp ) or in one of its neighboring
cell V (Sp=SVp ). In (4.15), V

T
m and B

T
m stand respectively for the mean-values of Vh and Bh on

subcell STm, defined as:

V
T
m =

1

|STm|

∫

ST
m

VT
h dx and B

T
m =

1

|STm|

∫

ST
m

BT
h dx. (4.16)

We now introduce the DG reconstructed flux Ĝn such that

∂

∂t
V
T
m = − 1

|STm|




nm
f∑

k=1

∫

ΓT
mp(k)

Ĝn ds


+ B

T
m, ∀m ∈ J1, ndK. (4.17)

with

nm
f∑

k=1

∫

ΓT
mp(k)

Ĝn ds =

nm
f∑

k=1

∫

ΓT
mp(k)

GT
h � ~nds−

3∑

k=1

∫

Γij(k)

(
GT
h � ~nij(k) −G?

ij(k)

)
φTm(s)ds (4.18)

or equivalently
∫

∂ST
m

Ĝn ds =

∫

∂ST
m

GT
h � ~nds−

∫

∂T

(
GT
h � ~nij −G?

ij

)
φTm(s)ds. (4.19)
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To further develop relation (4.19), we impose that on the boundary of cell T the reconstructed flux
coincide with the DG numerical flux (same as what we did in the 1d case):

Ĝn|∂T = G?. (4.20)

Expression (4.19) then rewrites
∫

∂ST
m\∂T

Ĝn ds =

∫

∂ST
m\∂T

GT
h � ~nds−

∫

∂T

(
GT
h � ~nij −G?

ij

)
φ̃Tm(s)ds, (4.21)

where φ̃Tm reads as follows

φ̃Tm =

{
φTm if x ∈ ∂T\∂STm
φTm − 1 if x ∈ ∂T ∩ ∂STm.

Similarly to [165], we now make use here of a face integrated version of the high-order DG recon-
structed flux. Indeed, for a face ΓTmp, let Ĝmp be defined as follows

∫

ΓT
mp

Ĝn ds = εTmpĜmp.

Similarly, let Gmp be the face integrated integrated value of the polynomial interior flux
∫

ΓT
mp

GT
h � ~nds = εTmpGmp.

In those definitions, the sign function εTmp imposes an orientation for each face ΓTmp:

εTmp =





1 if face ΓTmp is direct or if ΓTmp ⊂ ∂T,

−1 if face ΓTmp is indirect,

0 if Sp /∈ VTm,

where VTm denotes the set of the face neighboring subcells of STm, and
^

VTm stands for the set containing

only the face neighboring subcells of STm inside T . Actually, ∀ STp ∈
^

VTm, we have εTpm = −εTmp.
Now, let GT ∈ Rn

T
f be the vector containing all the interior faces fluxes, while ĜT ∈ Rn

T
f would be

the vector containing all the interior faces reconstructed fluxes. By denoting by nTf the number of
subcells faces inside T , meaning not belonging to ∂T , one finally gets

AT ĜT = ATGT −RT
where AT ∈ Mnd×nT

f
, defined as (AT )mp = εTmp, stands for the adjacency matrix, and RT contains

the boundary contribution as

(RT )m =

∫

∂T

(
GT
h � ~nij −G?

ij

)
φ̃Tm(s)ds.

Finally, by means of the graph Laplacian technique employed in [1, 165], we are able to solve such
system and express explicitly the reconstructed flux ĜT through the interior flux and a boundary
correction term. We note by LT the Laplacian matrix of the interior subgrid graph LT = ATAT

t,
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and by L−1
T the inverse of LT on the orthogonal of its kernel . For any λ 6= 0, this generalized inverse

writes:
L−1
T = (LT + λΠ)−1 − 1

λ
Π

with Π = 1
nd

(1⊗ 1) ∈Mnd
. We are now able to exhibit the following definition of the reconstructed

flux

ĜT = GT −At
TL−1

T RT . (4.22)

Theorem 37. DG scheme, expressed in the following equation in cell T through volume and bound-
ary flux contribution

∫

T

∂

∂t
VT
hϕdx−

∫

T
G(VT

h , b
T
h ) �∇ϕdx +

3∑

k=1

∫

Γij(k)

G?
ij(k)ϕ(s)ds =

∫

T
B(V T

h ,∇bTh )ϕdx, ∀ϕ ∈ Pk(T ),

(4.23)

can be recast into nd FV-like subcell schemes as

∂

∂t
V
T
m = − 1

|STm|
∑

Sp∈VT
m

εTmpĜmp + B
T
m, ∀m ∈ J1, ndK (4.24)

where the FV-like fluxes Ĝmp, referred to as reconstructed fluxes, are defined in equation (4.22) if
Sp ⊂ T and in (4.20) otherwise.

4.5 Corrected scheme

In this section, we show that the reconstructed fluxes may be locally corrected to enforce some
required properties. As investigated in § 3 for the 1d NSW equations, lowest-order FV fluxes may
be introduced in order to prevent high-order approximations from spurious oscillations in the vicinity
of discontinuities or sharp gradients, as well as to ensure the preservation of water-height positivity.
Additionally, we introduce the same states reconstructions as the one presented in §4.2 in order
to ensure a well-balancing property. For a neighbor subcell SVp sharing with STm the face ΓTmp, we
denote by V T

m and V
V
p respectively the interior (STm sub-mean-value) and exterior (SVp sub-mean-

value) mean-values with respect to the ΓTmp. We proceed exactly as in (4.6) by defining V̌
T

m and V̌
V
p

as follows:

b̃mp = max
(
b
T
m, b

V
p

)
, b̌mp = b̃mp −max

(
0, b̃mp − ηTm

)
,

and
Ȟ
T

m = max
(

0, ηTm − b̃mp
)
, Ȟ

V
p = max

(
0, ηVp − b̃mp

)
, (4.25)

where η̌Tm and η̌Vp write:

η̌
T
m = Ȟ

T

m + b̌mp, η̌
V
p = Ȟ

V
p + b̌mp. (4.26)
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Those definitions lead to new interior and exterior values:

V̌
T

m =


η̌Tm,

Ȟ
T

m

H
T
m

qTm



t

, V̌
V
p =


η̌Vp ,

Ȟ
V
p

H
V
p

qVp



t

.

Finally, we set the FV corrected numerical flux to:

Gmp = lTmp

(
G∗
(

V̌
T

m, V̌
V
p , b̌mp, b̌mp, ~nmp

)
+ Ǧmp

)
, (4.27)

where Ǧmp, defined in the expression right bellow, is a correction term required to ensure flux
balancing at motionless steady states:

Ǧmp =




0 0

gη̌Tm
(
b̌mp − bmp

)
0

0 gη̌Tm
(
b̌mp − bmp

)


 � ~nmp. (4.28)

In definition (4.28), bmp is the mean-value of the bathymetry in T at the face ΓTmp. Noting by lTmp
the length of ΓTmp, the bathymetry term bmp writes:

bmp =
1

lTmp

∫

ΓT
mp

bTh ds.

By means of such FV corrected numerical flux (4.27), it is possible to modify the reconstructed
fluxes Ĝmp in a robust way, in some particular subcells, where the uncorrected DG scheme (4.23)
has failed to produce an admissible solution. As we did for the 1D case, we compute the candidate
solution with the fully DG high-order scheme (4.23) or (4.24). If all the sub-mean-values V

T,n+1
m are

admissible, we go further in time. Otherwise, we modify the corresponding reconstructed flux value
on the troubled subcells faces through the first-order numerical flux as following





G̃mp = εTmpGmp if STm or SVp ∈ VTm is either marked,

G̃mp = Ĝmp otherwise.

Through the corrected reconstructed flux, we recompute the sub-mean-values for tagged subcells
and their first neighboring subcells, as depicted in Figure 4.4, through a FV-like scheme as:

∂tV
T
m = − 1

|STm|
∑

SVp ∈VT
m

εTmpG̃mp + B
T
m. (4.29)
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Figure 4.4: STim subcell and its first neighbors

4.6 Positivity-preserving and well-balancing property

4.6.1 Well-balancing property

Proposition 38. The semi-discrete DG formulation (4.23), combined with the local low-order cor-
rection (4.29), together with high-order SSP-RK time marching algorithms, preserves the motionless
steady states, provided that the integrals of (4.23) are exactly computed at motionless steady states.
Specifically, for any n ∈ N∗+:

(ηnh = ηc and qnh = 0) =⇒
(
ηn+1
h = ηc and qn+1

h = 0
)
.

4.6.2 Positivity-preserving

Proposition 39. Considering the first-order FV sheme on subcell STm, together with a first-order
Euler time-marching algorithm:

V
T,n+1
m = V

T,n
m − ∆t

|STm|
∑

SVp ∈VT
m

Gmp + B
T
m, (4.30)

where Gmp is defined in (4.27). Under the CFL condition:

∆tn =

min
T∈T , ST

m∈TT

|STm|

σmax
T∈T

(pT )
, (4.31)

with

σ = max
T∈T

λT , λT = max
m∈J1, ndK, ∂ST

m

(∣∣uTm � ~n
∣∣+

√
gHT

m

)
, (4.32)

and pT stands for the perimeter of cell T . If ∀ T ∈ T , ∀ STm ∈ TT , H
T, n
m ≥ 0, then ∀ T ∈ T , ∀ STm ∈

TT , H
T, n+1
m ≥ 0.
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Remark 40. The two previous propositions have been proved for the 1d case in the previous chapter.
As the 2d extension is still an ongoing work, complete description and proofs will be presented in
details in a future paper. Here, we only present a brief description and some numerical results for
the a posteriori LSC in the 2d case.

4.7 Numerical validations

4.7.1 Well-balancing property

The initial condition of this test is a flow at rest, with a varying topography, and a dry area. We
consider a rectangular domain [0, 2]× [0, 1], with the following topography :

b(x, y) =





0.5e−(100((x−1.2)2+150(y−0.7)2) if x > 0.68,

−0.5e−(100(x−0.45)2+150(y−0.4)2) elsewhere.

The domain is meshed with nel = 5000 elements and we impose at t = 0 that:

η0 = max(b, 0.2) and q0 = 0.

Results are reported in Fig. 4.5 for the 3rd-order corrected scheme, up to time tmax = 50s. We
emphasize that the steady state is effectively preserved up to the machine accuracy, validating nu-
merically the compatibility of the a posteriori LSC method with the well-balancing property. A
similar behavior is reported for higher orders of approximations and different grids.

free surface (blue)

bathymetry (white)
free surface (blue)

bathymetry (white)

Figure 4.5: Test 16 - Preservation of a motionless steady state - Free surface elevation at tmax = 50s,
with k = 2 and nel = 5000.

Next, we slightly modify the initial condition for the water-height in order to have the bump above
the water level:

η0 = 0.8 and q0 = 0.

Under the same conditions (for k, tmax and nel), numerical results are shown on Fig. 4.6.
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free surface (blue)

bathymetry (white)
free surface (blue)

bathymetry (white)

Figure 4.6: Test 17 - Preservation of a motionless steady state - Free surface elevation at tmax = 50s,
with k = 2 and nel = 5000.

4.7.2 Dam-break

Dam-break pseudo-1d

In this second test-case, we focus on two pseudo-1d dam-break problems over flat bottoms. We
consider a rectangular domain [0, 1] × [0, 0.5] and the first set of initial conditions is defined as
follows:

η0(x) =

{
1.5 if x ≤ 0.5,
0.5 elsewhere, , q0 = 0, b = 0.

The final time is set to t = 0.055 s. In Fig. 4.7, on a 3600 cells mesh, third-order solution is
displayed. The solution has been cleansed from its spurious oscillations, which illustrate very clearly
the efficiency of the a posteriori LSC method.

free surface (blue)

bathymetry (white)

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

free surface

Figure 4.7: Test 18 - Dam break 1D on a wet bottom - Free surface elevation computed at t = 0.055 s
for k = 2 and nel = 3600, with the a posteriori LSC method.
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In a second time, we modify the initial conditions as follows:

η0(x) =

{
1 if x ≤ 0.5
0 elsewhere , q0(x) = 0.

We compute the evolution up to t = 0.05 s, with k = 2 and nel = 3600 , in order to show the ability
of the a posteriori LSC method to compute the propagation of a wet/dry front, see Fig. 4.8.

free surface (blue)

bathymetry (white)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

free surface

Figure 4.8: Test 19 - Dam break 1D on a dry bottom - Free surface elevation computed at t = 0.05 s
for k = 2 and nel = 3600, with the a posteriori LSC method.

Dam-break 2d

Now, we focus on two 2d polar dam-break problems over flat bottoms. We consider a polar domain
(R, θ) ∈ [0, 1]× [0, π4 ] and we set the initial conditions as follows:

η0(x) =

{
1.5 if R ≤ 0.6,
0.5 elsewhere, , q0 = 0, b = 0.

The final time is set to t = 0.05 s. We make use of an unstructured totally anisotropic polar grid
made of 2676 triangular cells, as displayed in Figure 4.9. This test-case consists in an expansion
wave and a cylindrical diverging shock. If no correction is applied, the DG scheme would produce an
oscillatory solution, which may even lead to negative water height for very high-order of accuracy.
In Figure 4.10, the 3rd-order numerical solution obtained through our a posteriori LSC method is
depicted. One can clearly see how the solution exhibits the correct radial wave structure, even in
this anisotropic grid case, while still ensuring a non-oscillatory behavior.

The high accuracy of DG scheme is preserved, while ensuring a robust solution, since the a pos-
teriori correction is done locally, at the subcell level. Indeed, as illustrated by Figure 4.11 where
the troubled subcells are colored red and their first neighbors are colored green, only the subcells
where the uncorrected DG method has failed as well as their face neighbors will be recomputed in
our a posteriori LSC method . The remaining subcells, colored blue in Figure 4.11, do not require
any additional treatment, which means that their corresponding mean value is nothing but the one
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Figure 4.9: Test 20-21 - polar unstructured-grid made of 2676 triangular cells

free surface (blue)

bathymetry (white)
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0 0.2 0.4 0.6 0.8 1

free surface

Figure 4.10: Test 20 - Dam break 2D on a wet bottom - Free surface elevation computed at t = 0.05 s
for k = 2 and nel = 2676, with the a posteriori LSC method.

obtained through the uncorrected DG scheme.

In a second time, we modify the initial conditions as follows to assess the capibility of the a posteriori
local subcell corrected DG scheme in the case of a 2D cylindrical dam break on a dry bottom:

η0(x) =

{
1 if R ≤ 0.6
0 elsewhere , q0(x) = 0.

We compute the evolution up to t = 0.045 s, by means of the 3rd-order method and the same polar
grid as before, see Fig. 4.12. This result demonstrates once more the ability of the proposed method
to accurately and robustely compute the propagation of a wet/dry front, as it produced a very high
accurate solution while ensuring the positivity of the water-height and avoiding the apparition of
spurious oscillations.

100



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.11: Test 20 - Dam break 2D on a wet bottom - computed at t = 0.05 s for k = 2 and
nel = 2676, with the a posteriori LSC method: flagged-subcells (red), neighboors of flagged-subcells
(green), uncorrected-subcells (blue).
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Figure 4.12: Test 21 - Dam break 2D on a dry bottom - Free surface elevation computed at t = 0.045 s
for k = 2 and nel = 2676, with the a posteriori LSC method.

4.7.3 Rock-wave interaction

We now consider a challenging 2d test-case consisting of the propagation of a solitary wave over a
solid rock. We assume a rectangular domain [5, 25]× [0, 30], with the following topography (rock):

b(x, y) = 5e−(0.4((x−15)2+0.2(y−15)2).

The domain is meshed with nel = 7000 triangular elements. At the initial time, the solitary wave is
defined as follows:

η0(x, y) = H0 +A sech (γ (20y − y1)) and q0(x, y) =

(
0

0.3
√
g (η0(x, y)−H0)

)
,
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where γ =

√
A

600H0
and y1 = 180. The computation is run with A = 2m and H0 = 2m. In

Fig. 4.13, the free surface obtained with the third-order a posteriori LSC method is displayed at
several times in the range [0 s, 3.5 s].

free surface (blue)

bathymetry (white)
free surface (blue/red)

bathymetry (white)

free surface (blue)

bathymetry (white)
free surface (blue)

bathymetry (white)

free surface (blue)

bathymetry (white)

free surface (blue)

bathymetry (white)

Figure 4.13: Test 22 - Propagation of a solitary wave over a solid rock - Free surface obtained at
several times in the range [0 s, 3.5 s], with k = 2 and nel = 7000.
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We can see in Figure 4.13 how the solitary wave collides with the rock while its front getting steeper,
how the collision induces a cylindrical diverging shock shave around the rock and how those different
waves interact with each other. Those results exhibit once more the robustness of the corrected,
even in this quite challenging test-case.

4.7.4 Run-up of a solitary wave on a plane beach

The last test-case is devoted to the computation of the run-up of a solitary wave on a constant
slope [152]. In this test, a solitary wave traveling from the shoreward is let run-up and run-down
on a plane beach, before being fully reflected and evacuated from the computational domain. The
topography is made of a constant depth area juxtaposed with a plane sloping beach of constant
slope α = 1

11 . The initial condition is defined as follows:

η0(x, y) = H0 +A sech2 (γ (x− x1)) and q0(x, y) =

( √
g (η0(x, y)−H0)

0

)
.

where γ =

√
3A

4H0
and x1 = 13. This test is run with A = 0.1m, H0 = 0.3m, k = 2, nel = 4000

triangular cells and tmax = 27 s. We show on Fig. 4.14 the free surface obtained with the a posteriori
LSC method at several times in the range [0 s, 27 s].
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free surface (blue)

bathymetry (white)

free surface (blue)
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free surface (blue)
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Figure 4.14: Test 23 - Run-up of a solitary wave on a plane beach - Free surface elevation computed
for time different values in [0 s, t = 27 s] with the 3rd-order a posteriori LSC methodwith 4000 cells.
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Part II

Wave interactions with a floating
structure in shallow-water
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In this second part, we intend to model the interaction between water waves in NSW and a rigid
floating structure. We follow the approach proposed in [107], where, under the body, the surface of
the fluid coincides with the bottom of the body. As shown in [107], this approach can be used for the
NSW approximation. In this work a NSW system with topography source term for the pre-balance
formulation is considered (5.1)-(5.3). The coupling of our NSW system (5.1)-(5.3) with the floating
structure is based on the model proposed in [87], and is achieved using ALE mesh displacement
method.

In some situations, the boundary of the domain on which the equations are cast depends on time,
where the function x (boundary node position) is either a known function (prescribed boundary
motion) or an unknown function determined by an equation involving the solution v of the hyper-
bolic system. In the proposed water-structure interaction model, we come across the second case,
typically, x satisfies x ′(t) = ϕ(v) for some smooth function ϕ and the regularity of x ′ is the same
as the regularity of the solution at the boundary. The free boundary problem that motivates this
work is the evolution of the contact line between a floating structure and the water, in the situation
where the motion of the waves is assumed to be governed by the hyperbolic NSW equations, and
in horizontal dimension d = 1. This is the framework that we shall consider here, addressing three
cases: the floating body is fixed; the motion of the body is prescribed (and is therefore not influenced
by the surface waves); and the body floats freely (and is therefore submitted to the flow motion),
according to Newton’s laws under the action of the gravitational force and the pressure exerted by
the water on the structure. The floating body is allowed to move with heave, surge and pitch motions.

A critical element when we consider sway, surge and pitch motions of a floating structure is to
keep track of the contact points x±(t) ( x−(t) < x+(t) ) between water and structure as it defines
the boundary between the free water surface, the body lateral surface and the air, see Fig. 5.1. The
position of the contact points can be accounted using some tracking techniques as the one developed
in [72] for congested shallow-water flow and adapt the roof model to a moving body. Here in our
work we are inspired by the method developed by [87] which allow us to describe the position of
the contact points x±(t) for translating and rotating structure which lateral walls are not necessarily
vertical at the contact points. The approach consists in having water-structure interfaces that are
time dependent and move accordingly to the water and body motion, which may cause a displace-
ment of the mesh nodes. This can be treated by setting up the NSW system in a ALE framework in
the exterior region (flow region), thus leading to what we call a DG-ALE formulation for the NSW
system. As for the interior region (beneath the floating body) the computation of the water eleva-
tion is reduced to a nonlinear algebraic equation to solve, essentially ruled by the object’s position
and underside’s shape. Where the discharge is solution of a nonlinear ordinary differential equation.

We extend the a posteriori LSC method to the proposed DG-ALE framework and enforce some
nonlinear stability and monotonicity, that are minimal requirements for the high-order approxima-
tions of nonlinear flows with floating objects, which ultimately results in what we call a DG-ALE-LSC
formulation. We show also that, besides this stabilization procedure we are able to ensure the well-
balanced property and both GCL and DGCL properties for the DG-ALE-LSC formulation. These
assets are numerically illustrated through an extensive set of manufactured benchmarks validating
the water-structure interaction model.

Remark 41. For the sake of clarity and readability, we may recall in this second part some essential
notations previously defined in previous chapters.
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Chapter 5

Modeling and analysis

In this Chapter, we provide some general floating structure models based on the NSW equations,
in the particular case d = 1, considering the three different cases: the floating body is fixed; the
motion of the body is prescribed; and the body floats freely. The corresponding Initial Boundary
Value Problems (IBVP) are also stated. This Chapter, mostly adapted from [87], does not introduce
any new result, but the 1d hyperbolic theory for free-boundary problem introduced in [87] is very
recent, and for the sake of completeness and consistency in the notations, we choose to completely
recall the mathematical results that serve as a theoretical ground to our numerical work.

5.1 Free surface flow in shallow-water

Given a smooth parametrization of the topography b : R → R, denoting by H the water-height,
η = H+b the water elevation, u the horizontal (depth-averaged) velocity and q = Hu the horizontal
discharge (see Fig.3.1), the NSW equations may be written as follows:

∂tv + ∂xF(v, b) = B(v, b′), (5.1)

where v : R × R+ → Θ gathers the flow’s conservative variables and is assumed to take values in
the convex and open set Θ defined as

Θ = {(η, q) ∈ R2, H = η − b ≥ 0}, (5.2)

F : Θ × R → R2 is the (nonlinear) flux function and B : Θ × R → R2 is the topography source
term, defined as follows:

v =

(
η
q

)
, F(v, b) =

(
q

uq + 1
2gη(η − 2 b)

)
, B(v, b′) =

(
0

−g η b′

)
. (5.3)

The benefits of using this pre-balanced formulation instead of the classical form are highlighted in
[116, 62] and also in chapter 3.

5.2 Shallow-water flow with a floating object

We consider a floating non-deformable object, denoted by Obj, of mass mo, inertia coefficient io
and center of mass MG, which is partly immersed in an inviscid, incompressible and irrotational

107



shallow-water flow, under the assumption that there are only two contact-points where the water,
the air, and the object meet, see Fig. 5.1, and that no wave overhanging occurs. For any given time
value t ≥ 0, the horizontal spatial coordinate of these contact-points are denoted by x−(t) and x+(t),
with x−(t) < x+(t). Let split the horizontal line into two time-dependent sub-domains, namely the
interior sub-domain, denoted by I(t), and the exterior sub-domain E(t), E(t) and I(t) being the
projections on the horizontal line of the areas where the water surface get in touch with the floating
structure and the air:

I(t) :=
]
x−(t), x+(t)

[
, E(t) := E−(t) ∪ E+(t), E−(t) :=

]
−∞, x−(t)

[
, E+(t) :=

]
x+(t), +∞

[
,

(5.4)
and we conveniently gather the contact-points into the set ∂I(t) := {x−(t), x+(t)}. The topography
variations are parameterized by a regular function denoted by b : R → R, H i and ui respectively
denote the water-height and the water averaged horizontal velocity in I(t), He and ue the water-
height and the velocity in E(t) and we set ηi := H i + b, ηe := He + b, qe := Heue, qi := H iui the
free-surface elevations and the vertically averaged horizontal discharge respectively in E(t) and I(t).
The vectors of conservative variables respectively in E(t) and I(t) are denoted by ve(x, t) and vi(x, t)
with

ve =

(
ηe

qe

)
, vi =

(
ηi

qi

)
, (5.5)

We also assume the pressure field to be hydrostatic, so that the pressure may be described as follows:

p(x, z, t) :=





patm − ρg(z − ηe(x, t)) in E(t),

pi(x, t)− ρg(z − ηi(x, t)) in I(t),
(5.6)

where ρ is the density of the water, patm the atmospheric pressure (at the fluid free-surface) and
pi(x, t) is the inner pressure that applies on the underside of the floating object. Hence, we consider
the following flow model:





E(t) =
]
−∞, x−(t)

[
∪
]
x+(t), +∞

[
and I(t) =

]
x−(t), x+(t)

[
,

∂tη
e + ∂xq

e = 0,

∂tq
e + ∂x

(
ueqe +

1

2
gηe(ηe − 2b)

)
= −gηeb′,



 in E(t)

∂tη
i + ∂xq

i = 0,

∂tq
i + ∂x

(
uiqi +

1

2
g(H i)2

)
= −gH ib′ − 1

ρ
H i∂xpi,



 in I(t)

ηe = ηi, qe = qi and pi = patm at x±(t)

(5.7a)

(5.7b)

(5.7c)

(5.7d)

or equivalently
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



∂tv
e + ∂xF(ve, b) = B(ve, b′) in E(t) =

]
−∞, x−(t)

)
∪
(

x+(t),+∞
[
,

∂tv
i + ∂xF(vi, b) = B(vi, b′) + P(vi, ∂xpi) in I(t) =

]
x−(t), x+(t)

[
,

ve = vi and pi = patm on ∂I(t),

(5.8a)

(5.8b)

(5.8c)

where

ve : E(t)× [0, Tmax] 3 (x, t) 7→ ve(x, t) ∈ Θ := {(η, q) ∈ R2, H = η − b ≥ 0},
vi : I(t)× [0, Tmax] 3 (x, t) 7→ vi(x, t) ∈ Θ ,

(5.9)

(5.10)

respectively gather the flow’s main variables in E(t) and I(t), F : Θ × R → R2 is the (nonlinear)
flux function, B : Θ× R → R2 is a topography source term, see (5.3), and P(vi,pi) : Θ× R → R2

is a pressure source term defined as follows:

P(vi, ∂xpi) :=




0

−1

ρ
H i∂xpi


 . (5.11)

x- +x (t)(t)

Figure 5.1: shallow-water interacting with a floating object.

For further use, let introduce the unit vectors ex := (1, 0)T and ez := (0, 1)T in the plane (Oxz),
together with the following operators, respectively extracting an average and an oscillating part of
any regular enough scalar function v(·, t) defined on I(t), as follows:

⟪v⟫I(t) :=

(∫

I(t)

1

H i
dx

)−1 ∫

I(t)

v

H i
dx, v?I(t) := v − ⟪v⟫I(t) , (5.12)

and the subscript I(t) may be forgotten when no confusion is possible.

5.3 A stationary partly immersed object

As we mentioned, we shall consider in this chapter three different cases of water-structure interac-
tions: the floating body is fixed; the motion of the body is prescribed; and the body floats freely.
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5.3.1 The model

We start by considering the first case, assuming that the surface-piercing structure is stationary, the
profile ηi on the underside of the structure is prescribed by the parametrization of the structure’s
profile and does not explicitly depend on time (though it implicitly depends on time as I(t) does):

ηi(x, t) := ηlid(x) on I(t) ⊂ Ilid, (5.13)

where ηlid is a given function defined on Ilid, which is the open interval where the parametrization
of the partially immersed object’s underside is defined, see Fig. 5.2. The continuity equation in I(t)
in (5.8) yields ∂xqi = 0 and therefore qi(x, t) = qi(t). Injecting this information into the momentum
equation for the interior sub-domain in (5.8), we obtain:

1

Hi

d qi

dt
+ ∂x

(1

2

( qi
H i

)2
+ gH i

)
= −gb′ − 1

ρ
∂xpi,

so that pi satisfies the following Boundary Value Problem (BVP):




∂xpi = −ρ
(

1

Hi

d qi

dt
+ ∂x

(1

2

( qi
H i

)2
+ gηi

)
)

in I(t),

pi = patm on E(t) ∩ I(t).

(5.14a)

(5.14b)

Integrating (5.14a) on I(t), we get:

d qi

dt
= −

(∫

I(t)

1

H i
dx
)−1r1

2

( qi
H i

)2
+ gηi

z

I(t)
. (5.15)

As a consequence, in the particular case of free surface shallow-water flows with a stationary surface-
piercing partially immersed object, model (5.8) may be simplified as follows:





E(t) =
]
−∞, x−(t)

[
∪
]
x+(t), +∞

[
and I(t) =

]
x−(t), x+(t)

[
,

∂tv
e + ∂xF(ve, b) = B(ve, b′) in E(t),

ηi = ηlid,

d qi

dt
= −

(∫

I(t)

1

H i
dx
)−1r1

2

( qi
H i

)2
+ gηi

z

I(t)
,





in I(t)

ηe = ηi, qe = qi and pi = patm at x±(t)

(5.16a)

(5.16b)

(5.16c)

(5.16d)

Remark 42. Equation (5.15) may be regarded as a solvability condition for problem (5.14). Hence,
assuming that qi′ and I(t) =

(
x−(t), x+(t)

)
satisfying (5.15) are known, one can solve (5.14) for any

given x ∈ I(t):
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pi(x, t) =patm − ρ
{

d qi(t)

dt

∫ x

x9(t)

dx′

H i(x′, t)
+

1

2
qi(t)2

( 1

H i(x, t)2
− 1

H i(x−(t), t)2

)
+ g
(
ηi(x, t)− ηi(x−(t), t)

)}
.

(5.17)

5.3.2 IBVP and existence result

x- +x (t)(t)

t
t= 0

Figure 5.2: Water interacting with a surface-piercing body.

Let consider the initial partition of the computational domain: Ω0 = E0 ∪ I0 with

I0 =
]
X−0 , X+

0

[
, E0 = E−0 ∪ E+

0 , with E−0 =
]
−∞, X−0

[
, E+

0 =
]
X+

0 , +∞
[
, (5.18)

where X±0 are the initial locations of the contact points, see Fig. 5.2. Supplementing (5.16) with
the following initial data:





ve
|t=0 := ve

0 ∈ Hs(E0)2,

(x−, x+)|t=0 := (X−0 , X
+
0 ),

vi
|t=0 := (ηlid, q

i
0) ∈

(
C1(Ilid) ∩W s,∞(Ilid)

)
× R,

(5.19a)

(5.19b)

(5.19c)

where Hs(E) is the Sobolev space of functions v ∈ L2(E) such that their weak derivatives up
to order s have a finite L2-norm, a local well-posedness result is stated in [87] for the particular
model of shallow-water flow with a stationary surface-piercing object, under additional assumptions
on the data which aim at ensuring that: (i) no dry state occur in the vicinity of the partially
immersed objects, (ii) the flow is initially sub-critical at the free boundaries, (iii) the first-order
spatial derivative of the free surface is singular at the contact points:

(ηe0 − ηi0)′ 6= 0 on X±0 , (5.20)

and (iv) ηlid and its weak derivatives up to order s are uniformly bounded, then there exists a
maximum time Tmax and a unique solution of (5.16) such that ve ◦ χ ∈ C0 ([0, Tmax];Hs(E0)) ∩
C1
(
[0, Tmax];Hs−1(E0)

)
, qi,nHs+1(0, Tmax), (x−, x+) ∈ (Hs(0, Tmax))2, where the smooth mapping χ,

between the initial domain E0 and the current one E(t) is defined in (6.23).
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5.4 A moving partly immersed object

We consider now the case of a moving object, and face the following alternative: (i) the motion of
the object may be prescribed (and is therefore not influenced by the surface waves), (ii) the motion
of the object may be free (and is therefore submitted to the flow motion).

5.4.1 Modeling and geometric description

Motion’s laws

In both cases, for any time value, the spatial position of Obj is completely specified through the
knowledge of the spatial coordinates xG(t) = (xG(t), zG(t)) of MG (where xG, zG are respectively
the horizontal and vertical coordinates), together with the (signed) value of the rotation (pitch)
angle θ(t), see Fig. 5.3. In a similar way, the object’s motion may be entirely defined through the
knowledge of the velocity vG(t) =

(
uG(t),wG(t)

)
= xG

′(t) and the angular velocity w(t) := −θ′(t)
(so that θ is oriented according to the standard trigonometric convention in the plane (Oxz)) of MG.
For the sake of convenience, let introduce the vectors XG and ϑG defined as follows:

XG :=



xG

zG

−θ


 , ϑG :=




uG

wG

w


 .

lid( )

x

i( )t ,x

X

X

z = η
η

θ

( ),

z

x

Z =

xG

( ),xG(t)

(0)

θ )0( = 0

zG(t)

zG(0)

)t(

t = 0
t

Figure 5.3: Translating and rotating body in water

We investigate the two situations:

] 1 t 7→ XG(t) and t 7→ ϑG(t) := X ′G(t) belong to the provided data,

] 2 t 7→ ϑG(t) and 7→ XG(t) :=
∫ t

0 ϑG(s)ds+XG(0) both have to be explicitly computed from the
object’s response to external forces.
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In order to specify such laws, several additional geometrical considerations should be stated:

− at t = 0, the initial location MG is denoted by (XG, ZG) := (xG(0), zG(0)) and the initial
pitch angle θ0 is arbitrarily set to zero. We assume that the underside of the floating body is
initially parameterized by a smooth function ηlid defined on an open interval Ilid ⊂ R, with
ηlid ∈ C1(Ilid) ∩W s,∞(Ilid), s ≥ 1 (W s,∞(I) being the Sobolev space of functions which are
uniformly bounded on I, together with their weak derivatives up to order s). We observe that:

ηi(·, 0) = ηlid on I0 := (X−0 , X
+
0 ) ⊂ Ilid,

and for any material point located on the underside of the object, which is identified by its
horizontal and vertical coordinates (X,Z), we have Z = ηlid(X) = ηi(X, 0). For further use,
let also define a normal vector on the underside of the body, with:

nlid(x) :=

(
−η′lid(x)

1

)
.

− at any time value t > 0, we denote by x = (x, z), with z = ηi(x, t), the coordinates of
an arbitrary point belonging to the object’s underside, and we note by rG := x − xG the
translated coordinate vector of this point with respect to MG and by ni a normal vector on
the underside of the body, with:

ni(x, t) :=

(
−∂xηi(x, t)

1

)
= −∂xrG(x, t)⊥.

Object’s dynamics

When a free motion is allowed for the floating object, its response to external forces and torques
is ruled by Newton’s second law for the conservation of linear and angular momentum, which are
formulated as follows:

{
mo∂tvG = −mogez +

∫
I(t)

(
pi − patm

)
ni,

io∂tw = −
∫
I(t)

(
pi − patm

)
r⊥G � ni,

(5.21)

or equivalently,

M0ϑ
′
G = −

(
mo g ez

0

)
−
∫

I(t)

(
pi − patm

)( −ni

r⊥G � ni

)
, (5.22)

where the mass-inertia matrix is defined as:

M0 :=

(
mo Id2×2 0

0 io

)
.

For further use, let also introduce the vector TG defined as follows:

TG(x, t) :=

( −r⊥G(x, t)
1
2 |rG(x, t)|2

)
,

such that the following identities hold:

∂xTG =

(
−ni

r⊥G � ni

)
, ∂tTG = MGϑG, (5.23)
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with

MG :=




ex � nlid 0 −r⊥G � nlid

1 0 0
−r⊥G � nlid 0 −(ez � rG)(r⊥G � nlid)


 .

Interior flow description

Then, we reformulate the flow equations in the interior domain. For any point (x, z) of the object’s
underside, the corresponding initial coordinates (X,Z), with X ∈ I0, can be traced back through
the following identity:

rG(x, t) =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
rG(X, 0), (5.24)

and as a consequence, we have for any given t > 0 and x ∈ I(t):

ηi(x, t) = zG(t) + sin
(
θ(t)

)(
X−XG

)
+ cos

(
θ(t)

)(
ηlid(X)−ZG

)
=: z̃(X, t, zG, XG, ZG, θ, ηlid), (5.25)

where X satisfies the following nonlinear algebraic equation:

x− xG(t) + sin(θ(t))(ηlid(X)− ZG)

cos(θ(t))
+XG −X = 0. (5.26)

Remark 43. Using (5.24), the equation (5.25) can be written as:
(
ηi(x, t)− zG(t)

)
cos θ(t)− (x− xG(t)) sin θ(t) + zG(0)

= ηlid
(
(x− xG(t)) cos θ(t) +

(
ηi(x, t)− zG(t)

)
sin θ(t) + xG(0)

)
,

(5.27)

which gives an expression of ηi(x, t) implicitly in terms of xG, zG, θ and ηlid.

Under the additional assumptions that MG remains close to its initial location, and that the pitch
angle is small enough, in the following sense:

∀ t ∈]0, Tmax], |θ(t)| ≤ θmax, with θmax ∈ (0, π/2) such that
∥∥η′lid

∥∥
∞ tan (θmax) < 1,

it is possible to show that: (i) there is a unique X ∈ I0 satisfying (5.26), (ii) the discharge can be
expressed as:

qi(x, t) = ϑG(t) � TG(x, t) + qi(t), (5.28)

where qi is the solution of the following BVP:

d

dt
qi = −

(
⟪ f1⟫I(t)

+ ⟪ f2⟫I(t)
+ ⟪ f3⟫I(t)

)
,

qi(0) := qi
0
,

(5.29a)

(5.29b)

with the following right-hand sides:

f1 := ∂x
(
uiqi

)
+ gH i∂xη

i,

f2 :=
d

dt
ϑG � TG,

f3 :=ϑG � ∂tTG.

(5.30)

The reader is referred to [87] for the details of this formulation.
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Remark 44. Additionally looking at the pressure in I(t), we observe that pi satisfies the following
BVP:

∂xpi = − ρ

H i

(
d

dt
qi + f1 + f2 + f3

)
in I(t),

pi|x±
:= patm.

(5.31a)

(5.31b)

Remark 45. It is known that, for partially immersed object, part of the force and torque applied on
the object by the surrounding fluid acts as if the mass-inertia matrix in Newton’s laws was modified
through the addition of a positive matrix, which is the so-called added-mass effect. Hence, (5.22)
may be reformulated in order to exhibit the corresponding added-mass, as follows:

(
M0 + Ma

(
H i,TG

)) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫

I(t)

(
f ?1 + f ?3

) T ?
G

H i
, (5.32)

where the added-mass-inertia matrix Ma is defined as:

Ma

(
H i,TG

)
:=

∫

I(t)

T ?
G ⊗ T ?

G

H i
. (5.33)

see Appendix § F for more details about the calculation of (5.32).

Remark 46. We note that deriving the second equation of the geometric relation (5.24) with respect
to t and x leads to the following identity for the time derivative of the interior free-surface:

∂tη
i
h(·, t) =

(
vG(t)− rG(·, t)⊥w(t)

)
� ni(·, t) = −∂x

(
ϑG(t) � TG(x, t)

)
. (5.34)

This identity is used in the next section to update the location of the contact-points.

Remark 47. The assumption that MG remains close to its initial location helps to ensure that some
singular configurations do not occur. In particular, one has to ensure that the law t 7→ XG(t) is such
that the object is never entirely immersed and that for all time value H i(·, t) > 0. To achieve this,
we typically require that the object’s diameter do is small when compared to the mean water-depth:
do � H0 (or do � minHb with Hb := H0 − b when the topography is varying), in order to ensure
that H i > 0 and that ηi remains close to ηlid.

5.4.2 IBVP and existence results

Prescribed motion

In the case of a prescribed object’s motion, the coupled problem (5.8) may be particularized as
follows: find (ve,vi, x−, x+) such that




∂tv
e + ∂xF(ve, b) = B(ve, b′) in E(t) =

]
−∞, x−(t)

)
∪
(

x+(t),+∞
[
,

ηi(x, t) = z̃(X, t, zG, XG, ZG, θ, ηlid) where X solves (5.26),

qi(x, t) = ϑG(t) � TG(x, t) + qi(t),

d

dt
qi = −⟪ f1⟫I(t)

− ⟪ f2⟫I(t)
− ⟪ f3⟫I(t)

,





in I(t) =
]
x−(t), x+(t)

[
,

ve = vi and pi = patm on ∂I(t).

(5.35a)

(5.35b)

(5.35c)
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Supplementing (5.35) with the following initial data, for s ≥ 2:

ve
|t=0 := ve

0 ∈ (Hs(E0))2,

(x−, x+)|t=0 := (X−0 , X
+
0 ),

vi
|t=0 := (ηlid, q

i
0) ∈

(
C1(Ilid) ∩W s,∞(Ilid)

)
× R,

(5.36a)

(5.36b)

(5.36c)

together with the prescribed evolution law:

XG ∈ (Hs+2(0, T ))3,

XG(0) := (XG, ZG, 0),

(5.37a)
(5.37b)

a local well-posedness result is proved in [87]. Specifically, under further assumptions on the data,
which can be summarized as: (i) there is no dry state in the vicinity of the floating structure, (ii) the
flow is initially sub-critical at x±, (iii) the first-order spatial derivative of the free-surface is initially
discontinuous at contact points:

(ηe0 − ηi0)′ 6= 0 on X±0 , (5.38)

then there exists a maximum time Tmax ≤ T and a solution of (5.35)-(5.36)-(5.37) such that ve ◦χ ∈
C0([0, Tmax];Hs(E0)) ∩ C1([0, Tmax];Hs−1(E0)), qi ∈ Hs+1(0, Tmax), (x−, x+) ∈ (Hs(0, Tmax))2 and χ
is a smooth diffeomorphism defined from the initial exterior domain towards the current one at time
t, defined later in (6.23).

Free motion

When an object’s free motion is allowed, (5.35) has to be supplemented with Newton’s law (5.32)
for the object’s motion, and XG is part of the problem’s unknowns. The global problem reads as:
find (ve,vi, x−, x+,XG) such that:




∂tv
e + ∂xF(ve, b) = B(ve, b′) in E(t) =

]
−∞, x−(t)

)
∪
(

x+(t),+∞
[
,

ηi(x, t) = z̃(X, t, zG, XG, ZG, θ, ηlid) where X solves (5.26),

qi(x, t) = ϑG(t) � TG(x, t) + qi(t),

d

dt
qi = −⟪ f1⟫I(t)

− ⟪ f2⟫I(t)
− ⟪ f3⟫I(t)

,





in I(t) =
]
x−(t), x+(t)

[
,

ve = vi and pi = patm on ∂I(t),

d

dt
XG = ϑG,

(
M0 + Ma

(
H i,TG

)) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫

I(t)

(
f ?1 + f ?3

) T ?
G

H i
.

(5.39a)

(5.39b)

(5.39c)

(5.39d)
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Supplementing (5.39) with some initial data as specified in (5.36), together with the initial data for
the equations of the object’s motion:

XG(0) := (XG, ZG, 0),

ϑG(0) := (u0
G, w

0
G,w0),

(5.40a)

(5.40b)

a local well-posedness result is obtained in [87] under the same assumptions as for the prescribed
motion case: there exists a maximum time Tmax ≤ T and a unique solution of (5.36)-(5.39)-(5.40)
such that ve ◦ χ ∈ C0([0, Tmax];Hs(E0)) ∩ C1([0, Tmax];Hs−1(E0)), qi ∈ Hs+1(0, Tmax), (x−, x+) ∈
(Hs(0, Tmax))2 and XG ∈ (Hs+2(0, Tmax))3.

Remark 48. In the next section, as for the numerical validations of §6.5, we consider these IBVPs
on a bounded computational domain of the form

Ωt = E−(t) ∪ I(t) ∪ E+(t) =
]
xleft, x−(t)

[
∪
]
x−(t), x+(t)

[
∪
]
x+(t), xright

[
,

so that the exterior domain’s boundary is defined as ∂Ω = {xleft, xright} and (5.16)-(5.35)-(5.39) has
to be supplemented both with some initial data of the form (5.19) and with prescribed boundary
conditions on ve

|xleft and/or ve
|xright depending on the flow characteristics, see also Remark 57.
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Chapter 6

A robust discrete formulation for the
floating body problem

6.1 Discrete setting for DG-ALE on mesh elements and FV-ALE
on subcells

Computational domain, sub-domains and mesh

We consider an open bounded computational domain Ω =
]
xleft, xright

[
, with boundary ∂Ω =

{xleft, xright} and for any time value t ∈ [0, Tmax], we introduce a partition PΩ(t) = {E−(t), I(t), E+(t)}
of Ω into disjoint sub-domains, defined through the knowledge of the contact points x−(t) < x+(t)
such that I(t) =

]
x−(t), x+(t)

[
and we set

E(t) := E−(t) ∪ E+(t), Ωt := E(t) ∪ I(t).

We consider a conforming partition Th(t) =
{
ωi(t)

}
1≤i≤nel

of Ωt into |Th(t)| disjoint segments, such
that we have Ωt =

⋃
ω(t)∈Th(t) ω(t). We make the following additional assumptions:

]1 nel does not depend on time,

]2 ∀t ∈ [0, Tmax], x−(t) 6= xleft(t) and x+(t) 6= xright(t),

]3 Th(t) is compatible with PΩ(t): each mesh element ω(t) ∈ Th(t) is a subset of only one set of
the partition PΩ(t).

in practice, the two first assumptions are not very influential for our purpose . As a consequence,
we can write:

Th(t) = T e
h (t) ∪T i

h (t), with E(t) =
⋃

ω(t)∈T e
h (t)

ω(t) and I(t) =
⋃

ω(t)∈T i
h (t)

ω(t),

where T e
h (t) and T i

h (t) are respective partitions of the sub-domains E(t) and I(t), and at any time
t ∈ [0, Tmax], the contact points x−(t), x+(t) are uniquely identified with some mesh interfaces. For
some specified mesh element ωi(t) ∈ Th(t), we note ωi(t) :=

]
xi− 1

2
(t), xi+ 1

2
(t)
[
(with the convention

that x 1
2

:= xleft, xnel+ 1
2

:= xright), xi(t) its barycenter and ∂ωi(t) := {xi− 1
2
(t), xi+ 1

2
(t)} its boundary.
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Mesh interfaces are collected in the sets ∂T e
h and ∂T i

h , respectively defined as follows:

∂T e
h (t) := {∂ω(t), ω(t) ∈ T e

h (t)} , ∂T i
h (t) :=

{
∂ω(t), ω(t) ∈ T i

h (t)
}
,

such that we have

∂I(t) = ∂T e
h (t) ∩ ∂T i

h (t), ∂Th(t) := ∂T e
h (t) ∪ ∂T i

h (t) =
{
xi+ 1

2
(t), 0 ≤ i ≤ nel

}
. (6.1)

DG: approximation spaces, basis functions

For any integer k ≥ 0 and for any t ∈ [0, Tmax], we consider the broken-polynomials space defined
on the exterior domain:

Pk(T e
h (t)) :=

{
v(·, t) ∈ L2(E(t)), ∀ω(t) ∈ T e

h (t), v|ω(t) ∈ Pk(ω(t))
}
.

In what follows, piecewise polynomial functions (and, more generally, any discrete counterpart com-
puted from or acting on piecewise polynomial functions) are denoted with a subscript h. Also, for
any ω(t) ∈ T e

h (t) and vh(·, t) ∈ Pk(T e
h (t)), we may use in this chapter the alleviated short-

cut vω instead of vωh := vh|ω for an easy reading, and we also note Pk(T e
h (t)) :=

(
Pk(T e

h (t))
)2.

Remark 49. In this section, some notations defined in § 1.3 are extended to account for the time
dependency t accordingly to the mesh-grid displacement.

For any mesh element ω(t) ∈ T e
h (t) and any integer k ≥ 0, we consider a basis for Pk(ω(t)) denoted

by
Ψω(t) =

{
ψωj (·, t)

}
j∈J1, k+1K.

We observe that we have:

∀t ∈ [0, Tmax], ∀ω(t) ∈ T e
h (t), ∀j ∈ J1, k + 1K, supp(ψωj (·, t)) ⊂ ω(t).

A basis for the global space Pk(T e
h (t)) is obtained by gathering the local basis functions:

Ψe
h(t) := ×

ω(t)∈T e
h (t)

Ψω(t) =
{{
ψωj (·, t)

}
j∈J1, k+1K

}
ω(t)∈T e

h (t)
.

Remark 50. In what follows, we choose the set of monomials in the physical space as basis functions,
defined as follows:

∀ωi(t) ∈ T e
h (t), ∀j ∈ J1, . . . , k + 1K, ∀x ∈ ωi(t), ψωi

j (x, t) :=

(
x− xi(t)
|ωi(t)|

)j
. (6.2)

For any given time value, the degrees of freedom are chosen to be the functionals that map a given
discrete unknown belonging to Pk(T e

h (t)) to the coefficients of its expansion on the chosen basis
functions. Specifically, the degrees of freedom applied to a given function vh ∈ Pk(T e

h (t)) return the
real numbers

{
vωj

}ω∈T e
h (t)

j∈ J1, k+1K
, such that vω =

k+1∑

j=1

vωj ψ
ω
j (·, t), ∀ω ∈ T e

h (t). (6.3)
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With a little abuse, we refer hereafter to the real numbers (6.3) as the degrees of freedom associated
with vh and we note v ω ∈ Rk+1 the vector that gathers the degrees of freedom associated with vω.

In a similar way, the approximating space Pk(T i
h (t)) may be defined for the interior domain, and the

global approximation space Pk(Th(t)) is obtained by gathering the contributions coming from both
sub-domains. The product spaces Pk(T i

h (t)) and Pk(Th(t)) are defined accordingly. Reversely,
any function φh(·, t) ∈ Pk(Th(t)) may be regarded as the gathering of its contributions coming
respectively from the exterior and interior domains:

φh(·, t)|E(t) = φe
h(·, t), φh(·, t)|I(t) = φi

h(·, t), φe
h(·, t) ∈ Pk(T e

h (t)), φi
h(·, t) ∈ Pk(T i

h (t)).

Projection, interpolation, averages and jumps

For ω(t) ∈ T e
h (t), we denote by pkω(t) the L2-orthogonal projector onto Pk(ω(t)) and pkT e

h (t) the L2-
orthogonal projector onto Pk(T e

h (t)). Similarly, we denote ikω(t) the element nodal interpolator into
Pk(ω(t)). The global interpolator into Pk(T e

h (t)), denoted by ikT e
h (t), is obtained by gathering the

local interpolating polynomials defined on each elements. Similar projector pk
T i
h (t)

and interpolator

ik
T i
h (t)

may be defined on I(t), and globally on Ωt by gathering the sub-domains contributions.

For any φh(·, t) ∈ Pk(Th(t)) defined on ωi(t)∪ωi+1(t), we introduce the following interface-centered
average {{·}} and jump J·K operators defined as follows:

{{φh(·, t)}}i+ 1
2

:=
1

2

(
φωi(·, t)|xi+1

2

+ φωi+1(·, t)|x
i+1

2

)
, Jφh(·, t)Ki+ 1

2
:= φωi+1(·, t)|x

i+1
2

−φωi(·, t)|xi+1
2

,

and this definition should be supplemented with suitable values for the averages and jumps at exterior
boundaries, depending on the chosen type of boundary conditions. For any regular-enough scalar-
valued function v(·, t) defined on ωi(t), and extending the convenient notation vωi(t)(·) := v(·, t)|ωi(t)

,
we also introduce the cell-centered jump value defined as:

q
v(·, t)

y
∂ωi(t)

:= vωi(t)|xi+1
2

− vωi(t)|xi− 1
2

,

together with the following shortcuts for the exterior scalar-products of functions v, w ∈ L2(T e
h (t))

and µ, ν ∈ L2(∂T e
h (t)):

(
v, w

)
T e
h (t)

:=
∑

ω(t)∈T e
h (t)

∫

ω(t)
v(x, t)w(x, t)dx,

〈
µ, ν

〉
∂T e

h (t)
:=

∑

ω(t)∈T e
h (t)

q
µν

y
∂ω(t)

,

the extension to vector-valued functions being straightforward.

Discrete derivation and integration

In what follows, we need a consistent and accurate discrete counterpart of the first-order derivative,
which may be applied to the broken polynomial functions defined above, while accounting for the
domain partition PΩ(t) and the jumps of the functions at interfaces. This may be achieved in the
current setting by adapting the liftings and discrete gradient of [12] to the sub-domains partition. Let
define the element-by-element first-order derivative of a broken-polynomial belonging to Pk(T e

h (t)):

∂hx : Pk(T e
h (t)) 3 φe

h(·, t) 7→ ∂hxφ
e
h(·, t) ∈ Pk−1

(
T e
h (t)

)
,
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such that:
(∂hxφ

e
h)|ω(t) := ∂x(φe

ω(t)), ∀ω(t) ∈ T e
h (t).

Then, for any φe
h(·, t) ∈ Pk(T e

h (t)), we introduce the following global lifting of the jumps on the
exterior mesh interfaces ∂T e

h (t), defined as follows:

Rkh(Jφe
h(·, t)K) :=

∑

x
i+1

2
(t)∈∂T e

h (t)

rk
i+ 1

2

(Jφe
h(·, t)K),

where, for all xi+ 1
2
(t) ∈ ∂T e

h (t), the local lifting operator rk
i+ 1

2

applied to the jumps of φe
h(·, t) is

defined as the unique solution in Pk(T e
h (t)) of the following problem:

(
rk
i+ 1

2

(Jφe
h(·, t)K), ψe

h(·, t)
)
T e
h (t)

= Jφe
h(·, t)Ki+ 1

2
{{ψe

h(·, t)}}i+ 1
2
, ∀ψe

h(·, t) ∈ Pk(T e
h (t)). (6.4)

In order to apply the definition (6.4) to the interfaces corresponding to the contact-points (which are
boundaries for E(t)), the definitions of the interface-centered jumps and averages on x±(t) have to be
provided. Denoting by i and i the respective mesh element labels such that x−(t) = ωi(t) ∩ ωi+1(t)
and x+(t) = ωi(t) ∩ ωi+1(t), we set:

Jφe
h(·, t)Kx9(t) := φe

ωi
(·, t)|x9 − φi

ωi+1
(·, t)|x9 ,

Jφe
h(·, t)Kx+(t) := φi

ωi
(·, t)|x+ − φe

ωi+1
(·, t)|x+ ,

{{φe
h(·, t)}}x9(t) :=

1

2

(
φe
ωi

(·, t)|x9 + φi
ωi+1

(·, t)|x9
)
,

{{φe
h(·, t)}}x+(t) :=

1

2

(
φi
ωi

(·, t)|x+ + φe
ωi+1

(·, t)|x+
)
.

Following [54, Section 2.3], we define the discrete first-order derivative Gk
h : Pk(T e

h (t))→ Pk(T e
h (t))

such that, for all φe
h(·, t) ∈ Pk(T e

h (t)),

Gk
hφ

e
h(·, t) := ∂hxφ

e
h(·, t)−Rkh(Jφe

h(·, t)K). (6.5)

This operator has better consistency properties than the element-by-element derivative, as it ac-
counts for the jumps of its argument through the second contribution; see [53, Theorem 2.2] for
further insight into this point. In a similar way, a discrete derivative acting on functions of Pk(T i

h (t))
may be defined, and a discrete gradient globally defined on Pk(Th(t)) is obtained by gathering both
contributions coming from the exterior and interior domains.

Let also introduce a discrete counterpart for the integration of a regular-enough function φ(·, t) on
I(t) :

S
h,ng
I(t)[φ] :=

∑

ω(t)∈T i
h (t)

∑

1≤r≤ng

αωr (t)φ(xωr (t), t), (6.6)

where (αωr (t))1≤r≤ng and (xωr (t))1≤r≤ng respectively refer to some suitable Gauss quadrature weights
and nodes transported onto the transient mesh element ω(t) ∈ T i

h (t), and the degree ng may
be adapted to the polynomial degree of the integrand (or estimated from the regularity of non-
polynomial integrands). From (6.6), we deduce a discrete counterpart of the I(t)-averaging operator
(5.12), as follows:

⟪v⟫h := S
h,ng
I(t)

[ 1

H i
h

]−1
S
h,ng
I(t)

[ v
H i
h

]
, (6.7)
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and we set
v?h := v − ⟪v⟫h . (6.8)

FV on subcells: sub-partitions, sub-resolution basis and sub-mean-values

For any mesh element ωi(t) ∈ T e
h (t), we introduce again a sub-partition Tωi(t) into k + 1 open

disjoint subcells:

ωi(t) =
k+1⋃

m=1

S
ωi

m (t), (6.9)

where the subcell S ωi
m (t) =

[
x̃ ωi

m− 1
2

(t), x̃ ωi

m+ 1
2

(t)
]
is of size

∣∣∣S ωi
m (t)

∣∣∣ =
∣∣∣x̃ ωi

m+ 1
2

(t)− x̃ ωi

m− 1
2

(t)
∣∣∣, with the

convention x̃ ωi
1
2

(t) = xi− 1
2
(t) and x̃ ωi

k+ 3
2

(t) = xi+ 1
2
(t), see Fig. 1.1. When considering a sequence of

neighboring mesh elements ωi−1, ωi, ωi+1, the convenient convention S ωi
0 := S

ωi−1

k+1 and S ωi
k+2 := S

ωi+1

1

may be used. For any regular enough function v(·, t) defined on Sωm(t), we use the following shortcut:
q
v(·, t)

y
∂Sω

m(t)
:= v(·, t)|x̃ω

m+1
2

(t) − v(·, t)|x̃ω
m− 1

2

(t).

For ω(t) ∈ T e
h (t), we define the subcell indicator functions

{
1
ω
m(·, t), m ∈ J1, k + 1K

}
as follows:

1
ω
m(x, t) :=

{
1 if x ∈ Sωm(t),
0 if x 6∈ Sωm(t),

∀m ∈ J1, k + 1K,

and the sub-resolution basis functions
{
φ
ω(t)
m (·, t) ∈ Pk(ω(t)), m ∈ J1, k + 1K

}
as follows:

φω(t)
m (x(X, t), t) := φ̃ω(0)

m (X), ∀X ∈ ω(0), ∀t ≥ 0, (6.10)

with
φ̃ω(0)
m := pkω(0)(1

ω(0)
m ), ∀m ∈ J1, k + 1K, (6.11)

in other words:
∫

ω(0)
φ̃ω(0)
m ψ̃dx =

∫

Sω
m(0)

ψ̃dx, ∀ψ̃ ∈ Pk (ω(0)) . (6.12)

One can easy show that:
∫

ω(t)
φω(t)
m ψdx =

∫

Sω
m(t)

ψdx, ∀ψ ∈ Pk (ω(t)) . (6.13)

Actually, for a good choice of the mapping function x(X, t), as in (6.26), such that x|ω(t)
∈ Pk (ω(0)),

ψ(x(X, t)) can be writen as ψ̃(X, t) with ψ̃(., t) ∈ Pk (ω(0)), thus,
∫

ω(t)
φω(t)
m (x, t)ψ(x)dx =

∫

ω(0)
φω(t)
m (x(X, t), t)ψ(x(X, t))J (X, t)dX

=

∫

ω(0)
φ̃ω(0)
m (X)ψ̃(X, t)J (X, t)dX =

∫

Sω
m(0)

ψ̃(X, t)J (X, t)dX =

∫

Sω
m(0)

ψ(x(X, t))J (X, t)dX =

∫

Sω
m(t)

ψ(x)dx.

See sub-section § 6.1.1 for the definition of J .
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For any ω(t) ∈ T e
h (t), we introduce the set of piecewise constant functions on the sub-grid:

P0(Tω(t)) :=
{
v(·, t) ∈ L2(ω(t)), v|Sω

m(t) ∈ P0(Sωm(t)), ∀Sωm(t) ∈ Tω(t)
}
.

For ω(t) ∈ T e
h (t), and vω ∈ Pk(ω(t)), let denote

v ωm with m ∈ J1, k + 1K, (6.14)

the lowest-order piecewise constant components defined as the mean-values of vω on the subcells
belonging to the subdivision Tω(t), called sub-mean-values in the following, which may be gathered
in a vector vω ∈ Rk+1. Whenever a sequence of neighboring mesh elements ωi−1, ωi, ωi+1 and
associated neighboring approximations is considered, the following convenient convention may be
used: v ωi

0 := v
ωi−1

k+1 and v ωi
k+2 := v

ωi+1

1 .

Remark 51. We observe that any polynomial function vω ∈ Pk(ω) can be expressed equivalently
either in terms of the degrees of freedom vω, or the sub-means values vω. Indeed, the degrees
of freedom

{
v ωm
}
m∈ J1, k+1K are uniquely defined through the sub-mean-values

{
v ωm
}
m∈ J1, k+1K, and

reversely. Considering the local transformation matrix Πω =
(
πωm,p

)
m,p

defined as:

πωm,p =
1

|Sωm(t)|

∫

Sω
m(t)

ψωp (·, t)dx, ∀ (m, p) ∈ J1, k + 1K2, (6.15)

the following identities hold:

Πω v ω = vω and Π−1
ω vω = v ω.

From a practical viewpoint, such transformation matrices Πω are initialized in a preprocessing step
and it is therefore computationally inexpensive to locally switch from one representation to another.

Relying on the previous Remark, we introduce the (one-to-one) following projector onto the piecewise
constant sub-grid space:

πkTω
: Pk(ω(t)) −→ P0(Tω(t))

vω 7−→ πkTω
(vω) := vω.

(6.16)

6.1.1 ALE description

In this section, an ALE description for the coupled problems (5.16), (5.35) and (5.39) is introduced.
A central aspect of any ALE description is the construction of a continuous and regular coordinate
transformation, allowing to recast the equations from the initial (stationary) domain Ω0 to the
current (moving) domain Ωt:

Ω0 × [0, Tmax] 3 (X, t) 7→ x(X, t) ∈ Ωt, (6.17)

where X refers to the reference coordinate (in the reference frame) and x := x(X, t) the associated
physical coordinate (in the current frame). Further assuming this mapping to be continuously
differentiable with respect to time, piecewise continuously differentiable with respect to X, and
denoting by vg(x, t) the grid’s velocity at the physical point x := x(X, t), the following identity
holds:

vg(x(X, t), t) = ∂tx(X, t). (6.18)
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Now, for the sake of notations, considering any function v(x, t), let introduce ṽ(X, t) its counterpart
defined on the referential frame as

v (x(X, t), t) =: ṽ(X, t). (6.19)

Then, for any arbitrary and regular enough function v(x, t), the fundamental ALE relation between
the total time derivative, the Eulerian time derivative and the spatial derivative is

d

dt
v
(
x(X, t), t

)
:=
(
∂t + vg ∂x

)
v(x(X, t), t) =: ∂tṽ(X, t). (6.20)

Grid’s motion

In order to build such a mapping, for any given time value, the velocity of the contact points may be
deduced from the current flow configuration, deriving the free surface continuity condition (5.16d)
with respect to time, as follows:

(
∂t + vg∂x

)
ηe =

(
∂t + vg∂x

)
ηi on x±,

so that using the identity ∂tηe = −∂xqe :

vg|x± =

(
∂xq

e + ∂tη
i

∂xηe − ∂xηi
)
∣∣x±

. (6.21)

Remark 52. For the case of a fixed body, the term ∂tη
i is equal to zero, so the velocity of the

contact points may have the form:

vg|x± =

(
∂xq

e

∂xηe − ∂xηi
)
∣∣x±

. (6.22)

Having such contact points velocity at hand, let consider the following smooth diffeomorphism
χ(·, t) : E0 → E(t), defined as:

χ(X, t) :=





X + ϕ
(
X−X−0

ε

) (
x−(t)−X−0

)
for X ∈ E−0 ,

X + ϕ
(
X−X+

0
ε

) (
x+(t)−X+

0

)
for X ∈ E+

0 ,

(6.23)

where ϕ ∈ C∞0 (R) is a cut-off function satisfying ϕ(x) = 1 for |x| ≤ 1 and ε := ε0` (the reader
is referred to Appendix.C C for the practical definition of ϕ, ε0 and Remark 54 for additional
considerations regarding the value of `). Then, for any moving grid’s interface xi+ 1

2
(t) := x

(
Xi+ 1

2
, t
)
,

we enforce the corresponding interface’s velocity as follows:

vg|i+1
2

(t) := ṽg(Xi+ 1
2
, t),

with:
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vg|i+1
2

(t) = ṽg(Xi+ 1
2
, t) :=





∂tχ(·, t)|X
i+1

2

=





ϕ

(
X

i+1
2
−X−0
ε

)
vg|x9 if Xi+ 1

2
∈ E−0 ,

ϕ

(
X

i+1
2
−X+

0

ε

)
vg|x+ if Xi+ 1

2
∈ E+

0 ,

(X+
0 −Xi+ 1

2
)

|I0|
vg|x9 +

(Xi+ 1
2
−X−0 )

|I0|
vg|x+ if Xi+ 1

2
∈ I0.

(6.24)

Once the grid’s velocity is prescribed at the grid’s interfaces, the updated locations of such interfaces
may be obtained as the solutions of the following family of IVPs:




∂tx(Xi+ 1

2
, t) = vg|i+1

2

(t),

x(Xi+ 1
2
, 0) = Xi+ 1

2
.

(6.25)

Gathering (6.21), (6.24) and solving (6.25), for any time value, one have available the following sets
of discrete grid’s interfaces velocities

(
vg|i+1

2

(t)
)

0≤i≤nel
and locations

(
xi+ 1

2
(t)
)

0≤i≤nel
.

Remark 53. The relations (6.21)-(6.22) are initially well-defined, thanks to the assumption (5.38)
on the initial data. For t > 0, and under the assumptions recalled in §5.3.2, the solution of (5.16)-
(5.35)-(5.39)-(5.19) may exist as long as ∂x(ηe − ηi)|x± 6= 0.

Remark 54. Knowing x±(t), (6.23) offers a way to dispatch the mesh elements in the moving
exterior sub-domain E(t), avoiding elements collapsing, distorting and related stability issues. We
also emphasize that (6.23) allows to properly deal with the possible occurrence of dry areas, provided
that such areas are initially far enough from the object to prevent the water-height from vanishing
at contact points. Indeed, assuming that the distance between x±(t) and the nearest mesh interface
where the water-height vanishes is greater than `, then (6.23) ensures that this mesh interface
location does not vary over time.

Mapping and geometric parameters

We are now able to provide a suitable definition for the mapping (6.17) and we consider a piecewise
linear and globally continuous transformation:

Ω0 × [0, Tmax] 3 (X, t) 7→ x(X, t) ∈ Ωt,

is such that, for any ωi(0) :=
]
Xi− 1

2
, Xi+ 1

2

[
∈ Th(0), X ∈ ωi(0) and t ∈ [0, Tmax]:

x|ωi(0)(X, t) :=

(
Xi+ 1

2
−X

)

|ωi(0)| xi− 1
2
(t) +

(
X −Xi− 1

2

)

|ωi(0)| xi+ 1
2
(t) ∈ ωi(t). (6.26)

From this mapping, the frame’s velocity can be deduced:
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Proposition 55. The frame’s velocity is such that, for all t ∈ [0, Tmax] and all mesh element
ωi(t) =]xi− 1

2
(t), xi+ 1

2
(t)[∈ Th(t), we have:

∀x ∈ ωi(t), vg|ωi(t)

(
x, t
)

=

(
xi+ 1

2
(t)− x

)

|ωi(t)|
vg|i− 1

2

(t) +

(
x− xi− 1

2
(t)
)

|ωi(t)|
vg|i+1

2

(t). (6.27)

Proof. Deriving (6.26) with respect to time gives:

ṽg|ωi(0)(X, t) =
(Xi+ 1

2
−X)

|ωi(0)| vg|i− 1
2

(t) +
(X −Xi− 1

2
)

|ωi(0)| vg|i+1
2

(t). (6.28)

The deformation gradient associated with the grid’s motion is obtained as the Jacobian of this
mapping. In particular, the following identities are satisfied:

∂Xx(X, t)|ωi(t) =: Jωi(t) =
|ωi(t)|
|ωi(0)| ,

∂kXx(X, t)|ωi(t) = 0, ∀k ≥ 2,

so that the mapping is invertible and orientation-preserving. Also, for any (Xa, Xb) ∈ (ωi(0))2, we
have:

x(Xb, t) = x(Xa, t) + (Xb −Xa)Jωi(t),

and in particular, we deduce (6.27).

From (6.18), we observe that the deformation gradient J = |J | satisfies the fundamental relation,
generally referred to as Geometric Conservation Law (GCL):

∂t J (X, t) = J ∂xvg(x(X, t), t). (6.30)

We also state an important property concerning the basis and sub-resolution basis functions:

Proposition 56. The basis functions, as well as the sub-resolution basis functions, follow the
trajectories:

∀ω(t) ∈ T e
h (t), ∀p ∈ J1, . . . , k + 1K,

d

dt
ψωp (x(X, t), t) = 0, (6.31)

∀ω(t) ∈ T e
h (t), ∀m ∈ J1, . . . , k + 1K,

d

dt
φωm(x(X, t), t) = 0. (6.32)

Proof. We have:

ψωi
p (x, t) = ψωi

p (x(X, t), t) =

(J (X −Xi)

J |ωi(0)|

)p
=

(
X −Xi

|ωi(0)|

)p
= ψ̃ωi

p (X),

thus (6.31) is ensured, and the basis function ψωi
p (., t) follows the trajectory of x(X, t) in ωi(t):

∂tψ
ωi
p (x(X, t), t) = −vg∂xψ

ωi
p (x(X, t), t). (6.33)

In a similar way, the property for the sub-resolution basis derives from the piecewise linearity of the
mapping. Indeed, we have by definition φω(t)

m (x(X, t), t) = φ̃
ω(0)
m (X), where

φ̃ω(0)
m := pkω(0)(1

ω(0)
m ), ∀m ∈ J1, k + 1K, (6.34)

which directly implies (6.32).
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Multiplying (5.8a) by any ψ(., t) ∈ Pk(T e
h (t)) satisfying

d
dt
ψ(x(X, t), t) = 0, and integrating over

ωi(t) gives:
∫

ωi(t)
ψ ∂tv

edx+

∫

ωi(t)
ψ ∂xF(ve, b)dx =

∫

ωi(t)
ψB(ve, b′)dx. (6.35)

Using (6.20) and (6.30) one can write:

d
dt

∫

ωi(t)
veψdx =

d
dt

∫

ωi(0)
veψJ dX =

∫

ωi(0)
ψ
dve

dt
J dX +

∫

ωi(0)
ψve∂tJ dX,

=

∫

ωi(0)
ψ
dve

dt
J dX +

∫

ωi(0)
ψveJ∂xvgdX

=

∫

ωi(t)
ψ
dve

dt
dx+

∫

ωi(t)
ψve∂xvgdx

=

∫

ωi(t)
ψ∂tv

edx+

∫

ωi(t)
(ψvg∂xv

e + ψve∂xvg)dx

=

∫

ωi(t)
ψ∂tv

edx+

∫

ωi(t)
ψ∂x(vevg)dx,

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

and therefore

d
dt

∫

ωi(t)
veψdx =

∫

ωi(t)
ψ∂tv

edx+

∫

ωi(t)
ψ∂x(vevg)dx,

and (6.35) becomes:

d
dt

∫

ωi(t)
veψdx+

∫

ωi(t)
ψ∂xG(ve, b, vg)dx =

∫

ωi(t)
ψB(ve, b′)dx, (6.41)

where we have set G(ve, b, vg) = F(ve, b)− vevg. Another integration by parts gives:

d
dt

∫

ωi

veψdx−
∫

ωi

G(ve, b, vg)∂xψ dx+
q
ψG(ve, b, vg)

y
∂ωi(t)

=

∫

ωi

ψB(ve, b′)dx. (6.42)

which is the formulation retained for the next sub-section. Note that the eigenvalues and eigenvectors
of the Jacobian matrix associated with G(v, b, vg) are trivially obtained from the NSW system
written in ALE description:

∂(F(v, b)− vvg)

∂v
(v, b) =

(
vg 1

−u2 + gH 2u− vg

)
,

leading to the eigenvalues that account for the frame velocity:

λ± := u− vg ±
√

gH.
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6.1.2 DG-ALE formulation for the fluid/stationary structure model

In this sub-section, we introduce a general DG formulation in ALE description for the fluid-stationary
structure problem. Let consider the coupled problem (5.16), together with initial data as specified in
(5.19) with the assumptions of §5.3.2. Then, the associated DG-ALE semi-discrete formulation reads:

Find ve
h ∈ C1

(
[0, Tmax];

(
Pk(T e

h (t))
)2) and

(
qi, x−, x+

)
∈
(
Hs(0, Tmax)

)3 such that, ∀ϕh(·, t) ∈
Pk(T e

h (t)) with
d

dt
ϕh(x(X, t), t) = 0 the following system is ensured:





d

dt

(
ve
h, ϕh

)
T e
h (t)

+
(
Ah(ve

h), ϕh
)
T e
h (t)

= 0,

ve
h(·, 0) := pk

T e,0
h

(ve
0),

ηeh|x± = ηih|x± ,

qeh(x±, ·) = qi,

ηih(·, t) := pkT i
h (t)(η

i),

d

dt
qi(t) = −

(∫

I(t)

dx

H i
h

)−1r1

2

(qi(t)
H i
h

)2
+ g ηih

z

I(t)
,

qi(0) := qi0,

ṽg|X±0
= vg|x±:=

(
Gk
h q

e
h|x±

)(
Gk
h η

e
h|x± −Gk

h η
i
h|x±

)−1
,

d

dt
x±(t) = ṽg(X±0 , t),

x±(0) := X±0 ,

bh(·, t) := ikTh(t)(b),

(6.43a)

(6.43b)

(6.43c)

(6.43d)

where:

(i) the discrete nonlinear operator Ah in (6.43a) is defined by
(
Ah(ve

h), ϕh
)
T e
h (t)

:=−
(
G(ve

h, bh, vg), ∂hxϕh
)
T e
h (t)

+
〈
G?, ϕh

〉
∂T e

h (t)
−
(
B(ve

h, b
′
h), ϕh

)
T e
h (t)

, (6.44)

and G? is an interface numerical flux which aims at approximating F(v, b) − vgv at an interior
element boundary, which is moving with velocity vg,

(ii) we set G? := F? − vgv
?, where F? and v? are also interface numerical fluxes, respectively

consistent with F and v, and computed with the LF formula:

F?(vR,vL, bR, bL) :=
1

2
(F(vR, bR)− F(vL, bL)− σ(vR − vL)) ,

v?(vR,vL, bR, bL) :=
1

2

(
vR + vL −

1

σ
(F(vR, bR)− F(vL, bL))

)
,

(6.45)

(6.46)
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with
σ := max

ω∈T e
h (t)

(
|ue − vg|+

√
gHe

)
|∂ω

. (6.47)

(iii) we introduce the following projections:

ηih(·, t) := pkT i
h (t)(η

i), bih(·, t) := ikT i
h (t)(b), H i

h := ηih − bih,

where the implicit time dependency, due to L2-projections onto time-dependent sub-domains, is
made explicit for the sake of clarity. The interpolation of b into Pk(Th(t)) allows to preserve the
continuity of b at the mesh interfaces, provided that the elements boundary is included into the set
of interpolation nodes. It also allows to easily compute a polynomial approximation of b′.
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6.1.3 DG-ALE formulation for the fluid/moving structure model

In this sub-section, we introduce a general DG-ALE semi-discrete formulation associated to the
free-boundary problems for the fluid/moving structure model. We directly describe the discrete
formulation for the more general model (5.39), together with initial data (5.36)-(5.40) in the case of
an object’s free motion. The formulation for a prescribed motion can be straightforwardly deduced
by forgetting the discrete dynamic equations for the object’s motion (6.48e), which are replaced by
some prescribed data (5.37). Then, the associated DG-ALE semi-discrete formulation reads:

for all t ≤ Tmax, find
(
ve
h(·, t),vi

h(·, t)
)
∈ Pk(T e

h (t))×Pk(T i
h (t)), (x−(t), x+(t)) ∈

]
xleft(t), xright(t)

[2
and XG(t) ∈

]
x−(t), x+(t)

[
× R2, such that the following system holds:





d

dt

(
ve
h, ϕh

)
T e
h (t)

+
(
Ah(ve

h), ϕh
)
T e
h (t)

= 0, ∀ϕh(·, t) ∈ Pk(T e
h (t)) s.t.

d

dt
ϕh(x(t), t) = 0,

ve
h(·, 0) := pk

T e,0
h

(ve
0),

ve
h|x± = vi

h|x± ,

ηih(·, t) := pkT i
h (t) ◦zh(·, t,XG(t),XG(0), ηlid),

qih(·, t) := pkT i
h (t)

(
ϑG(t) � TG,h(·, t) + qi(t)

)
,

d

dt
qi(t) = −

(
⟪ f1,h⟫h + ⟪ f2,h⟫h + ⟪ f3,h⟫h

)
,

qi(0) := qi0,

ṽg|X±0
= vg|x±:=

(
Gk
h q

e
h|x± +

(
vG − wr⊥G,h

)
� ni

h

)(
Gk
h η

e
h|x± −Gk

h η
i
h|x±

)−1
,

d

dt
x±(t) = ṽg(X±0 , t),

x±(0) := X±0 ,

bh(·, t) := ikTh(t)(b),

d

dt
XG = ϑG,

(
M0 + Ma,h

[
H i
h,TG,h

]) d

dt
ϑG =

(
−mogez

0

)
− ρSh,ng

I(t)

[(
f ?1,h + f ?3,h

) T ?
G,h

H i
h

]
,

XG(0) := (X0, Z0, 0),

ϑG(0) := (u0
G, w

0
G,w0),

(6.48a)

(6.48b)

(6.48c)

(6.48d)

(6.48e)

where:

(i) the discrete nonlinear operator Ah in (6.48a) is defined as in (6.44),
(ii) the first equation in (6.48b) offers a way to compute a high-order broken polynomial approxi-
mation of the specific part of the object’s underside, which projection along the horizontal line at
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time t identifies to I(t). More precisely, zh(·, t,XG(t),XG(0), ηlid) is a discrete nonlinear operator
such that, for all x ∈ I(t):

zh(x, t,XG(t),XG(0), ηlid) := z̃(Xh, t,XG(t),XG(0), ηlid), (6.49)

where Xh is an approximation of the following nonlinear equation’s unique root, obtained by Newton
iterations:

x− xG(t) + sin(θ(t))(ηlid(Xh)− ZG)

cos(θ(t))
+XG −Xh = 0. (6.50)

Having ηih in hands, one can compute

H i
h := ηih − pkT i

h (t)(b), (6.51)

(iii) the second and third equations in (6.48b) allow to compute an approximation of the discharge
in the interior domain, through the evaluation of a purely geometrical term, together with a time-
dependent term obtained as the solution of a nonlinear ordinary differential equation. Specifically,
we set:

rG,h(·, t) :=

(
· − xG(t)

ηih(·, t)− zG(t)

)
, TG,h(·, t) :=

( −r⊥G,h(·, t)
1
2 |rG,h(·, t)|2

)
, (6.52)

and the discrete versions of the right-hand sides are defined as follows

f1,h :=Gk
h ◦ pkT i

h (t)

(
uihq

i
h

)
+ gH i

hG
k
h η

i
h,

f2,h :=
d

dt
ϑG � TG,h,

f3,h :=ϑTG MG,hϑG,

(6.53)

where we use a discrete version of (5.23) to evaluate the term ∂tTG that appears in f3, with

MG,h :=




ex � nlid 0 −r⊥G,h � nlid

1 0 0
−r⊥G,h � nlid 0 −(ez � rG,h)(r⊥G,h � nlid)


 .

and we recall that the discrete version of the I(t)-averaging operator is provided in (6.7),

(iv) the BVPs (6.48c) allow to compute the time evolution of the contact-points x±(t), and therefore
to re-define a new mesh-grid accordingly using (6.24) and (6.28).

(v) the discrete contact-points velocity (6.48c) is obtained from (6.21), using the expression of the
time-derivative (5.34). Once this velocity is known, the the updated Ωt = E(t) ∪ I(t) may be com-
puted,

(vi) the discrete counterpart of the added-mass-inertia matrix, denoted by Ma,h

[
H i
h,TG,h

]
, is de-

fined as follows:

Ma,h

[
H i
h,TG,h

]
:= S

h,ng
I(t)

(T ?
G,h ⊗ T ?

G,h

H i
h

)
. (6.54)

This matrix is simply denoted by Ma,h in what follows.
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Remark 57. The boundary conditions on ∂Ωt are weakly enforced through the numerical fluxes
G?. As far as boundary conditions are concerned on ∂Ω, we may enforce any type of boundary
conditions usually available for the NSW equations, including inflow and outflow conditions within
subcritical or supercritical configurations relying on local Riemann invariants, periodic conditions
or solid-wall conditions.

Remark 58. In practice, the positivity of H i
h (defined in (6.51)) may be obtained from the sizing

introduced in Remark 47. Indeed, considering a flat bottom for the sake of simplicity, assuming that
H i,0
h � 0, together with do � H0 and considering that the object can not be completely immersed,

with an object’s motion XG such that MG remains close to its initial location, then we necessarily
have H i

h(·, t) > 0 for t ∈ [0, Tmax]. According to (6.49), this entails that zh(·, t,XG(t),XG(0), ηlid) >
0. This can be also verified when the topography is not flat by assuming that do � Hb.

Remark 59. This general DG-ALE formulation has still to be supplemented with some specific
treatments to ensure its robustness and to handle the topography variations in a well-balanced way.
These issues are addressed in the remainder of this section. A global flowchart of the resulting
general algorithm, detailing the processing order of these various numerical ingredients for the most
complex case (i.e. case of a freely floating body), is also provided in §6.4.

6.1.4 Time-marching algorithms

For a given final computational time Tmax > 0, we consider a partition (tn)0≤n≤N of the time interval
[0, Tmax] with t0 := 0, tN := Tmax and tn+1 − tn =: ∆tn. For any sufficiently regular function w
depending on time , we set wn := w(tn) and in what follows, such a "superscript n" notation may
be used with any time-varying entity, evaluated at discrete time tn. In particular, we note:

En := E(tn), In := I(tn), x n− := x−(tn), x n+ := x+(tn), T n
h := Th(tn), T e,n

h := T e
h (tn),

and so on, together with similar notations for the main unknowns of the problem:

ve,n
h := ve

h(·, tn), vi,n
h := vi

h(·, tn), x n± := x±(tn), X n
G := XG(tn), ϑnG := ϑG(tn).

When fully-discrete formulations are considered, the time-stepping is carried out with explicit SSP-
RK schemes [74, 149]. For instance, writing the semi-discrete evolution equation of (6.48a) (or
(6.43a)) in the operator form

∂tv
e
h +Ah(ve

h) = 0,

we advance the discrete solution ve,n
h ∈ Pk(T e,n

h ) from time-level n to level (n + 1), with ve,n+1
h ∈

Pk(T e,n+1
h ), through the third-order SSP-RK scheme as follows:

v
e,n,(1)
h = ve,nh −∆tnAh(ve,nh ),

v
e,n,(2)
h =

1

4
(3ve,nh + v

e,n,(1)
h )− 1

4
∆tnAh(v

e,n,(1)
h ) ,

ve,n+1
h =

1

3
(ve,nh + 2v

e,n,(2)
h )− 2

3
∆tnAh(v

e,n,(2)
h ) ,

(6.55)

where v
e,n,(i)
h , 1 ≤ i ≤ 2, are the solutions obtained at intermediate stages and ∆tn is obtained from

the CFL condition (6.56). Anticipating on the description of our stability-enforcement operator in
the next section, which relies on both DG approximations on mesh elements ωn ∈ T e,n

h and FV
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schemes on the subcells Sω,nm ∈ T n
ω , the time-step ∆tn is computed adaptively using the following

CFL condition:

∆tn =

min
ωn∈T e,n

h

(
hnω

2k + 1
, min
Sω,n
m ∈T n

ω

|Sω,nm |
)

σ
, (6.56)

where σ is the constant previously introduced in (6.47). The same SSP-RK method for the dis-
cretization of (6.48c) leads to the following discrete algorithm:

x n,(1)
± = x n± + ∆tnvng|x± ,

x n,(2)
± =

3x n± + x n,(1)
±

4
+

∆tn

4
vn,(1)

g|x± ,

x n+1
± =

x n± + 2x n,(2)
±

3
+

2∆tn

3
vn,(2)

g|x± .

(6.57)

Also, we use the same SSP-RK method for the discretization of the EDOs equations as (6.18),
(6.43b), (6.48b) and (6.48e).

6.1.5 DG-ALE as a FV-ALE scheme on subcells

It is well-established that the discrete formulation (6.43a) (or (6.48a)) needs some additional stabi-
lization in order to ensure the positivity of He

h at the discrete level, and to avoid Gibbs phenomenon
in the vicinity of spatial discontinuities, sharp gradients or smooth extrema. In order to design some
suitable correction mechanisms, we show that the FV-Subcell reformulation of the DG method for
the NSW equations developed in § 3, and initially introduced in [164] for general hyperbolic conser-
vation laws, may be extended to the current DG-ALE framework. We follow the lines of § 3 while
highlighting the differences due to the frame’s motion. Let introduce the following projections onto
Pk(T e

h (t))2:

Fe
h := pkT e

h (t)(F(ve
h, bh)) and Be

h := pkT e
h (t)(B(ve

h, b
′
h)), (6.58)

together with the respective shortcuts Fωi(t) = Fe
h|ωi(t)

, Bωi(t) = Be
h|ωi(t)

, Gωi = Fωi − vgvωi . We
substitute these projections into (6.43a) and integrate by parts the second term to obtain, for all

ψ(., t) ∈ Pk(T e
h (t)) satisfying

d
dt
ψ(x(X, t), t) = 0:

d
dt

∫

ωi(t)
ve
ωi
ψdx = −

∫

ωi(t)
∂xGωiψdx+

q
(Gωi −G?)ψ

y
∂ωi(t)

+

∫

ωi(t)
Bωiψdx. (6.59)

For a given mesh element ω(t) ∈ T e
h (t), we consider a sub-partition Tω(t) defined in (6.9), to-

gether with the sub-resolution basis functions (6.10). Substituting ψ = φωi
m into (6.59), for all m in

J1, . . . , k + 1K, recalling the definition of the sub-mean-values vωi
m in (6.14), recalling also that vωi ,

∂x(vωivg), ∂xFωi and Bωi all belong to Pk (ωi(t))
2 and finally using identity (6.13), the following

discrete formulation holds, for all m in J1, . . . , k + 1K:

d
dt

(|Sωi
m (t)|vωi

m ) = −
q
Gωi

y
∂Sω

m(t)
+

q
(Gωi −G?)φωi

m

y
∂ωi(t)

+ |Sωi
m (t)|Bωi

m . (6.60)
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We introduce the k+ 2 subcell’s reconstructed fluxes, denoted by
{
Ĝωi

m+ 1
2

}
m∈J0, k+1K, and defined as

the solution of the following linear system:

Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

:=
q
Gωi

y
∂Sω

m(t)
−

q
(Gωi −G?)φωi

m

y
∂ωi(t)

, ∀m ∈ J1, k + 1K,

Ĝωi
1
2

:= G?
i− 1

2

,

Ĝωi

k+3/2 := G?
i+ 1

2

,

so that (6.43a) may be recast as a FV-ALE formulation on the sub-partition:

d
dt

(|Sωi
m (t)|vωi

m ) = −
(
Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

)
+ |Sωi

m (t)|Bωi

m , ∀m ∈ J1, k + 1K. (6.61)

Remark 60. For practical purpose, an explicit formula for the computation of the interior recon-
structed fluxes for m ∈ J1, . . . , kK is:

Ĝωi

m+ 1
2

= Gωi

(
x̃m+ 1

2

)
− Ci−

1
2

m+ 1
2

(
Gωi

(
xi− 1

2

)
−G?

i− 1
2

)
− Ci+

1
2

m+ 1
2

(
Gωi

(
xi+ 1

2

)
−G?

i+ 1
2

)
, (6.62)

with

C
i− 1

2

m+ 1
2

=

k+1∑

p=m+1

φωi
p

(
xi− 1

2

)
and C

i+ 1
2

m+ 1
2

=

m∑

p=1

φωi
p

(
xi+ 1

2

)
. (6.63)

Remark 61. We require that the integrals and source term in (6.43a) are exactly computed at
motionless steady states. This can be achieved, thanks to the pre-balanced formulation of the NSW
equations, by using any quadrature rule that is exact for polynomials of degree up to 2k. Let us
recall that 2 k is in any case the minimum requirement to reach the expected k+1 order of accuracy.

6.1.6 Subcell low-order corrected FV-ALE fluxes

In this sub-section, we show that the reconstructed fluxes may be locally corrected to enforce some
required properties. As investigated in § 3 for the NSW equations, lowest-order FV fluxes may
be introduced in order to: (i) prevent high-order approximations from spurious oscillations in the
vicinity of discontinuities and sharp gradients, (ii) ensure the preservation of the water-height’s
positivity. Additionally, one needs to introduce some states reconstructions, inspired from [116] in
order to ensure a well-balancing property. In what follows, we recall the definition of such corrected
fluxes, highlighting the new terms associated with the frame’s motion. The specification of suitable
admissibility criteria is postponed to the next section.
For any time value t ∈ [0, Tmax], ωi(t) ∈ T e

h (t), and any marked subcell Sωi
m (t) ∈ Tωi(t), let define the

sub-partition interface values for b, where the subscript ωi and the time dependency are forgotten
for the sake of simplicity:

bm+ 1
2

:= max(bm, bm+1), b
±
m := bm± 1

2
−max

(
0, bm± 1

2
− ηm

)
.
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Subcell’s interfaces reconstructions for the water-height are defined as follows:

H
±
m := max

(
0, ηm − bm± 1

2

)
,

and the corresponding free surface elevation and discharge are deduced as follows:

η±m := H
±
m + b

±
m, q±m := H

±
m

qm
Hm

, v±m := (η±m, q
±
m), (6.64)

where b̄±m refer to the trace of b̄m at the subcell’s interfaces. Related lowest-order numerical fluxes
on subcell’s Sm(t) left and right interfaces are built accordingly:

F l
m+ 1

2

:= F?
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
+




0

gη+
m

(
b
+
m − bx̃m+1

2

)

 , (6.65)

Fr
m− 1

2

:= F?
(
v+
m−1,v

−
m, b

−
m, b

−
m

)
+




0

gη−m

(
b
−
m − bx̃m− 1

2

)

 , (6.66)

where bx̃
m± 1

2

are respectively the interpolated polynomial values of bh at x̃m+ 1
2
and x̃m− 1

2
. The

associated numerical flux, in the ALE description, are deduced as follows:

Gl
m+ 1

2

:= F l
m+ 1

2

− vg|m+1
2

v?,l
m+ 1

2

, and Gr
m− 1

2

:= Fr
m− 1

2

− vg|m− 1
2

v?,r
m− 1

2

, (6.67)

with
v?,l
m+ 1

2

:= v?
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
, and v?,r

m− 1
2

:= v?
(
v+
m−1,v

−
m, b

−
m, b

−
m

)
. (6.68)

Using such corrected FV-ALE fluxes, it is possible to modify the reconstructed fluxes Ĝm+ 1
2
in

a robust way, in some particular subcells, where the uncorrected DG scheme (6.61) has failed to
produce an admissible solution. We are thus left with the issues of identifying the local subcells
that may need some corrections and defining a robust correction procedure, which are respectively
addressed in §6.2 and §6.3.

Remark 62. For the fully wet case, we show that our DG-ALE (for an arbitrary vg) scheme with a
posteriori LSC method, conserve the well-balanced property, see § 6.3.2. As near wet/dry regions,
the mesh-grid velocity vg is equal to zero, see Remark 54, so we come across the Eulerian framework,
where we already shown the well-balanced property in § 3 for wet and wet/dry context. In addition,
practically, we do not obtain negative water-height, since the ALE-moving grid (vg 6= 0) method
is only activated in a "sufficiently" wet area far enough from dry regions. As for dry and almost
dry regions, we have already shown in § 3 the preservation of water-height positivity for Eulerian
method (vg = 0).

6.2 Admissibility criteria

A large number of sensors or detectors have been introduced in the literature in order to identify
the particular cells/subcells in which some additional stabilization mechanisms are required. We
use always the two admissibility criteria used in § 3: one for the Physical Admissibility Detection

135



(PAD) and the other to address the occurrence of spurious oscillations, called Subcell Numerical
Admissibility Detection (SubNAD). This last criterion is supplemented with a relaxation procedure
to exclude the smooth extrema from the troubled cells. These criteria, which definitions are not
recalled in this chapter, are detailed in § 3.7.

6.3 A posteriori LSC method for DG-ALE scheme

Gathering all the previous ingredients, we introduce a global algorithm that ensures the stability
and robustness of the flow’s computation in E(t). This algorithm is adapted from § 3 and extended
to the current DG-ALE framework. We only provide a qualitative description and focus on the steps
that require further comments, due to the additional ALE description.
Starting from an admissible piecewise polynomial approximate solution ve,nh ∈

(
Pk(T e,n

h )
)2 at dis-

crete time tn, we first compute a predictor candidate solution ve,n+1
h ∈

(
Pk(T n+1

h )
)2 at time tn+1

using the uncorrected DG-ALE scheme (6.44), together with the corresponding SSP-RK time dis-
cretization of §6.1.4. Then, for any mesh element ωn+1

i ∈ T e,n+1
h , we compute the predictor candi-

date sub-mean-values:
P0(T e,n+1

ωi
) 3 ve,n+1

ωi
= πT e,n+1

ωi
(ve,n+1
ωi

).

For any subcell Sωi,n+1
m ∈ T n+1

ωi
, we check admissibility of the associated sub-mean-values vωi,n+1

m

using the criteria of §6.2. For a given subcell Sωi,n+1
m that may need additional stabilization, the

corresponding DG reconstructed interface fluxes Ĝm± 1
2
defined in (6.62), which were initially used

to compute the predictor candidate ve,n+1
h , may be replaced by the FV corrected fluxes Gl/r

m± 1
2

of

(6.67) into the update process to compute a new candidate subcell value through the local FV-ALE
formulation (6.61). Both left and right interface fluxes, or only left or right interface flux, may be
replaced depending on the admissibility of the neighboring subcells. The complete set of substituting
rules is not recalled here (see § 3 for a complete description), but concisely, the new updating process
for subcell value vωi,n+1

m may fall into one of the following alternative:

i)
d
dt

(|Sωi
m (t)|vωi

m ) = −
(
Gl
m+ 1

2

− Gr
m− 1

2

)
+ |Sωi

m (t)|Bωi

m ,

ii)
d
dt

(|Sωi
m (t)|vωi

m ) = −
(
Gl
m+ 1

2

− Ĝωi

m− 1
2

)
+ |Sωi

m (t)|Bωi

m ,

iii)
d
dt
(
|Sωi
m (t)|vωi

m

)
= −

(
Ĝωi

m+ 1
2

− Gr
m− 1

2

)
+ |Sωi

m (t)|Bωi

m .

(6.69)

(6.70)

(6.71)

For mesh elements ωi(t) in which such fluxes corrections have occurred, leading to the computation
of updated/limited sub-mean-values, a new high-order polynomial candidate solution, still denoted
by ve,n+1

h for the sake of simplicity, is built upon these updated sub-mean-values:

Pk(ωni ) 3 ve,n+1
ωi

= π−1

T n+1
ωi

(ve,n+1
ωi

),

and the process may go further in time after checking that this new candidate is admissible.

The whole detection-correction-projection iterative process may be conveniently summarized through
the application of a stabilization/correction operator denoted as follows:

Λk,nh :
(
Pk
(
T e,n
h

))2 →
(
Pk
(
T e,n
h

))2
,

ve,nh 7→ Λk,nh (ve,nh ),
(6.72)
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where the resulting broken polynomial Λk,nh (ve,nh ) satisfies all the admissibility criteria, see §6.2.
Embedding such a stabilization operator into a fully discrete version of (6.43a), with for instance a
third order SSP-RK method, would simply gives:

v
e,n,(1)
h = Λ

k,n,(1)
h

(
ve,nh −∆tnAh(ve,nh )

)
,

v
e,n,(2)
h = Λ

k,n,(2)
h

(1

4
(3ve,nh + v

e,n,(1)
h )− 1

4
∆tnAh(v

e,n,(1)
h )

)
,

ve,n+1
h = Λk,n+1

h

(1

3
(ve,nh + 2v

e,n,(2)
h )− 2

3
∆tnAh(v

e,n,(2)
h )

)
,

(6.73)

and, for the sake of simplicity, this may be summarized within a semi-discrete notation as follows:

d

dt

(
Λkh(ve

h), ϕh
)
T e
h (t)

+
(
Ah
(
ve
h

)
, ϕh

)
T e
h (t)

= 0, ∀ϕh(·, t) ∈ Pk(T e
h (t)),

ve
h(·, 0) = pk

T e,0
h

(ve
0),

(6.74)

where the shortcut semi-discrete notation d
dtΛ

k
h(ve

h) simply means: apply a posteriori LSC stabiliza-
tion procedure to any fully discrete solution obtained through any chosen time-marching algorithm,
at any updated discrete time or intermediate stage.
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6.3.1 A RK-DG-ALE fully-discrete formulation

In this sub-section, we describe the fully-discrete formulation obtained by considering the most com-
plex case (i.e., a case of a freely floating body) (6.48) together with a first-order Euler time-marching
algorithm. Any higher-order RK-DG-ALE formulation based on §6.1.4 can be straightforwardly de-
duced from this lowest-order one by adapting accordingly the various time stages. Assuming that the
needed quantities are available at discrete time tn, the first-order in time fully-discrete formulation
associated with (5.39) reads as follows:
find

(
ve,n+1
h ,vi,n+1

h

)
∈ Pk(T e,n+1

h ) × Pk(T i,n+1
h ), X n+1

G ∈
]
x n+1
− , x n+1

+

[
× R2 and (x n+1

− , x n+1
+ ) ∈

]
xn+1

left , x
n+1
right

[2, such that the following system holds:





vng|x± :=
(
Gk
h q

e,n
h|x± +

(
vnG − wr⊥,nG,h

)
� ni,n

h

)(
Gk
h η

e,n
h|x± −Gk

h η
i,n
h|x±

)−1
,

x n+1
± − x n± = ∆tnṽg

n(X±0 ),

bn+1
h := ik

T n+1
h

(b),

X n+1
G −X n

G = ∆tnϑnG,

(
M0 + Ma,h

) (
ϑn+1

G − ϑnG
)

= ∆tn

{(
−mogez

0

)
− ρSh,ng

In

(
( f ?,n1,h + f ?,n3,h )

T ?,n
G,h

H i,n
h

)}
,

ηi,n+1
h := pk

T i,n+1
h

◦zn+1
h (X n+1

G ;X 0
G, ηlid),

qi,n+1
h := pk

T i,n+1
h

(
ϑn+1

G � T n+1
G,h + qi,n+1

)
,

qi,n+1 − qi,n = −∆tn
(
⟪ f n1,h⟫h + ⟪ f n2,h⟫h + ⟪ f n3,h⟫h

)
,

ve,n+1
h := Λk,n+1

h

(
ve,n
h −∆tnAh(ve,n

h )
)
,

ve,n+1
h|x± = vi,n+1

h|x± ,

(6.75a)

(6.75b)

(6.75c)

(6.75d)

(6.75e)

and the first iteration is initialized with the following data:

ve,0
h := pk

T e,0
h

(ve
0), with ve

0 ∈ (Hs(E0))2,

X 0
G := XG(0),

ϑ0
G := ϑG(0),

x 0
± := X±0 ,

qi,0 := qi0.

(6.76a)

(6.76b)

(6.76c)

(6.76d)

(6.76e)

Note that, for the sake of simplicity, the DG scheme (6.75e) is written in the operator form. In
practice, it may be convenient either to express the corresponding scalar-products at the initial
time, or to use the equivalent FV formulation on the subcells.
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6.3.2 Some properties

Invertibility of the discrete added-mass matrix

Proposition 63. The matrix Ma,h

[
H i
h,TG,h

]
is symmetric and non-negative.

Proof. The matrix T ?
G,h ⊗ T ?

G,h is obviously symmetric and of rank one, with non-negative eigen-
values, thus a non-negative matrix. From the implicit additional assumption that H i

h ≥ 0 (some
justifications are provided in Remarks 47 and 58), and since we are using quadrature rules with
positive coefficients, it results that Ma,h

[
H i
h,TG,h

]
is a symmetric and non-negative matrix.

Properties of the DG-ALE formulation with the a posteriori LSC method

In this section, we show that the resulting global fully-discrete DG-ALE scheme with a posteriori LSC
is globally well-balanced for motionless steady states and satisfies the DGCL. To avoid repetition,
we prove the properties for the stationary partly immersed structure case (5.16), considering the
discrete formulation (6.43). We also show how the well-balanced property is also extended to the
case of moving structure, see Remarks 65.

Well-balancing for motionless steady states

Let begin with the well-balanced property. Motionless steady states for problem (5.16) are trivially
defined as follows:

ve(·, t) = vc =

(
ηc

0

)
, qi(t) = 0, x±(t) = X±0 , ∀t ≥ 0. (6.77)

We highlight that proving that the global semi-discrete formulation (6.43) preserves such steady
states is equivalent to prove that the DG-ALE scheme (6.43a) is well-balanced on E(t) = E−(t) ∪
E+(t), which again reduces to ensure the property on E−(t) and E+(t) separately. Indeed, it is
straightforward to observe that at steady states, (6.43b)-(6.43c) lead to

d

dt
qi(t) = 0, vg|x±(t) = 0, ηix± = ηc,

so that the coupling with the floating structure actually does not disturb the flow steady state.
Hence, we have the following result for the first-order in time fully discrete formulation:

Proposition 64. The discrete formulation (6.43) with possible occurence of local corrected lowest-
order fluxes in one of the three possible formulations (6.69)-(6.70)-(6.71), together with a first-order
Euler time-marching algorithm, preserves the motionless steady states (6.77), provided that the
integrals of (6.43a) are exactly computed at motionless steady states. Specifically, for all n ≥ 0,

(ηnh = ηc and qnh = 0) =⇒
(
ηn+1
h = ηc and qn+1

h = 0
)
.

Proof. At steady states, for any given t and any mesh element ω(t), we have

∂xF(vω(t), bω(t)) = B(vω(t), b
′
ω(t)). (6.78)
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Furthermore, both F(ve
h, bh) and B(ve

h, b
′
h) belong to

(
Pk(T e

h (t))
)2 so that we have:

Fh := pkT e
h (t)(F(ve

h, bh)) = F(ve
h, bh),

Bh := pkT e
h (t)(B(ve

h, b
′
h)) = B(ve

h, b
′
h).

(6.79)

(6.80)

We also emphasize that it is equivalent to prove the property for the formulation (6.61) on the
sub-partitions or for the formulation (6.43a) on T e,n

h . We choose to work with (6.61) and we want
to show that the scheme is well-balanced at the subcell level:

∀ωn ∈T e,n
h , ∀m ∈ J1, . . . , k + 1K, ηω,nm = ηc, qω,nm = 0

=⇒ ∀ωn+1 ∈ T e,n+1
h , ∀m ∈ J1, . . . , k + 1K, ηω,n+1

m = ηc, qω,n+1
m = 0.

(6.81)

As stated in §6.3, investigating the various possibilities for the definition of the interface fluxes im-
plies to investigate the "uncorrected" situation (6.61) (corresponding to high-order DG reconstructed
fluxes at all subcells interfaces) plus three "corrected" situations enumerated in (6.69)-(6.70)-(6.71)
(and corresponding to the occurrence of modified lowest-order FV fluxes at (some of) the subcells
interfaces). As (6.70) and (6.71) boil down to the same situation with a permutation of left and
right fluxes, we have, for any given value m ∈ J1, . . . , k+ 1K, to distinguish three different situations:

case 1 - admissible subcell: Sωi
m−1, S

ωi
m and Sωi

m+1 are all admissible. The local time-update formula
(with reconstructed fluxes) is

|Sωi,n+1
m |vωi,n+1

m = |Sωi,n
m |vωi,n

m −∆tn
(
Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

)
+ ∆tn|Sωi,n

m |Bωi

m . (6.82)

where Ĝωi

m+ 1
2

and Ĝωi

m− 1
2

are defined in (6.62). We observe that at steady state:

η+
i± 1

2

= η−
i± 1

2

= ηc, q+
i± 1

2

= q−
i± 1

2

= 0, and b+
i± 1

2

= b−
i± 1

2

,

and therefore,

F?
i± 1

2

=

(
0

1
2gηc

(
ηc − 2bi± 1

2

)
)

= F
(
vωi|xi± 1

2

, bωi|xi± 1
2

)
, (6.83)

and,

v?
i± 1

2

=

(
ηc

0

)
= vωi|xi± 1

2

,

resulting in

G?
i± 1

2

= F
(
vωi|xi± 1

2

, bωi|xi± 1
2

)
− vg|i± 1

2

vωi|xi± 1
2

. (6.84)

Using (6.79), we also have:

Gωi|xi± 1
2

= F
(
vωi|xi± 1

2

, bωi|xi± 1
2

)
− vg|i± 1

2

vωi|xi± 1
2

, (6.85)

thus, using the definition (6.62) of Ĝωi

m± 1
2

, we obtain:
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Ĝωi

m± 1
2

= Gωi|x̃m± 1
2

= F
(
vωi|x̃m± 1

2

, bωi|x̃m± 1
2

)
− vg|i± 1

2

vωi|x̃m± 1
2

, (6.86)

allowing to compute the difference:

Ĝωi

m+ 1
2

− Ĝωi

m− 1
2

=

∫

Si
m

∂xF(vωi , bωi)dx− (vg|m+1
2

− vg|m− 1
2

)vc. (6.87)

Additionally, updating in time the frame’s interfaces with a first-order Euler scheme leads to:

xn+1 = xn + ∆tnvng ,

so that the geometric term may be simplified as follows:

(vg|m+1
2

− vg|m− 1
2

)vc =
x̃n+1
m+ 1

2

− x̃n+1
m− 1

2

− (x̃n
m+ 1

2

− x̃n
m− 1

2

)

∆tn
vc =

|Sωi,n+1
m | − |Sωi,n

m |
∆tn

vc.

Finally, (6.82) writes:

|Sωi,n+1
m |vωi,n+1

m = |Sωi,n
m |vc −∆tn

(∫

S
ωi,n
m

∂xF(vnωi
, bωi)−B(vnωi

, ∂xbωi)dx

)

+ |Sωi,n+1
m |vc − |Sωi,n

m |vc,

and using (6.78), we obtain:

vωi,n+1
m = vc = vωi,n

m . (6.88)

case 2 - neighbor of a non-admissible subcell: Sωi
m , Sωi

m−1 are admissible but Sωi
m+1 is non-admissible

(the symmetric situation of Sωi
m , Sωi

m+1 are admissible but Sωi
m−1 is non-admissible may be treated in

a similar way). The corresponding time-update formula is :

|Sωi,n+1
m |vωi,n+1

m = |Sωi,n
m |vωi,n

m −∆tn
(
Gωi,l

m+ 1
2

− Ĝωi

m− 1
2

)
+ ∆tn|Sωi,n

m |Bωi

m , (6.89)

with Gωi,l

m+ 1
2

and Ĝωi

m− 1
2

defined in (6.65)-(6.67) and (6.62). To evaluate Gωi,l

m+ 1
2

at steady state, we

observe that η+
m = η−m+1 = ηc, leading to:

F?
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
=

1

2

(
0

gηc
(
ηc − 2b

+
m

)
)
,

and
Fωi,l

m+ 1
2

= F
(
vωi|x̃m+1

2

, bωi|x̃m+1
2

)
. (6.90)

As we also have
v?,l
m+ 1

2

= v?
(
v+
m,v

−
m+1, b

+
m, b

+
m

)
= vωi|x̃m+1

2

,

we obtain
Gωi,l

m+ 1
2

= F
(
vωi|x̃m+1

2

, bωi|x̃m+1
2

)
− vg|m+1

2

vωi|x̃m+1
2

.
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The computation of Ĝωi

m− 1
2

is performed as in case 1, leading to (6.86) and we may evaluate the
difference as follows:

Gωi,l

m+ 1
2

− Ĝωi

m− 1
2

=

∫

S
ωi
m

∂xF(vωi , bωi)dx− (vg|m+1
2

− vg|m− 1
2

)vc, (6.91)

so that,
vωi,n+1
m = vc = vωi,n

m .

case 3 - corrected subcell: Sωi
m is non-admissible. The time-update formula is:

|Sωi,n+1
m |vωi,n+1

m = |Sωi,n
m |vωi,n

m −∆tn
(
Gωi,l

m+ 1
2

− Gωi,r

m− 1
2

)
+ ∆tn|Sωi,n

m |Bωi

m . (6.92)

with Gωi,l

m+ 1
2

and Gωi,r

m− 1
2

defined in (6.67). Reproducing the computation steps as in case 2, we obtain:

Gωi,l

m+ 1
2

= F
(
vωi|x̃m+1

2

, bωi|x̃m+1
2

)
− vg|m+1

2

vωi|x̃m+1
2

,

Gωi,r

m− 1
2

= F
(
vωi|x̃m− 1

2

, bωi|x̃m− 1
2

)
− vg|m− 1

2

vωi|x̃m− 1
2

,

(6.93)

(6.94)

and
Gωi,l

m+ 1
2

− Gωi,r

m− 1
2

=

∫

S
ωi
m

∂xF(vωi , bωi)dx− (vg|m+1
2

− vg|m− 1
2

)vc, (6.95)

so that,
vωi,n+1
m = vc = vωi,n

m .

Remark 65. The well-balanced property may also be obtained for the moving-object problem
(6.48). Motionless steady states for (6.48) are defined as follows:

ve(·, t) = vc, qi(t) = 0, x±(t) = X±0 , XG(t) = XG(0) and ϑG(t) = 0, ∀t ≥ 0, (6.96)

with the additional constraint that XG(0) should be defined according to the mass mo and inertia
coefficient io of the object, so that Newton’s laws are initially balanced too (or for the sake of
simplicity, according to Appendix E, the mass mo may be chosen such that the initial discrete
acceleration is equal to zero, for a given value of XG(0)). Indeed, under the assumptions and
configuration of the previous proposition, we consider the following flow/object equilibrium state,
at time-step t = tn:

ve,n
h = vc, qi,n

h = 0, x n± = X±0 , X n
G = X 0

G, and ϑnG = 0, (6.97)

together with the initial dynamic balance of Appendix E

(
−mogez

0

)
= ρS

h,ng
I(0)

(
( f ?,01,h + f ?,03,h )

T ?,0
G,h

H i,n
h

)
,
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then it is possible to show that this entails ϑn+1
G = 0 and thus ⟪ f n1,h⟫h = ⟪ f n2,h⟫h = ⟪ f n3,h⟫h = 0,

leading to qi,n+1
h = qi,nh = 0. The fact that vng|x± = 0 can be deduced from the first and last

assumptions of (6.97) and thus
x n+1
± = x n± = X±0 ,

and the fact that ϑnG = 0 also implies that

X n+1
G = X n

G = X 0
G.

We proceed in the same way as in Proposition 64 to show the well-balanceness property for the
DG-ALE scheme (6.75e), and we get:

ve,n+1
h = vc.

Finally, the moving object problem (6.48) respect the well-balanced property:

ve,n+1
h = vc, qi,n+1

h = 0, x n+1
± = X±0 , X n+1

G = X 0
G, and ϑn+1

G = 0.

Remark 66. This well-balanced property can be extended to any higher-order SSP-RK time dis-
cretization that can be expressed as a convex combination of first-order Euler schemes.

Discrete Geometric Conservation Law (DGCL)

In simulations of free surface flows involving free moving boundaries, it is important to ensure that the
proposed numerical scheme in ALE description exactly preserves uniform flows. Such preservation
property is called Geometric Conservation Law in the literature and simply states that the moving
mesh procedure does not disturb the uniform flow configuration. Hence, considering Ωt = E(t) (no
floating object) and b = 0, we inject a constant solution ve

h(·, t) = (ηc, qc) into (6.43a), together with

ϕh(x, t) := 1
ωi(x, t) =

{
1 if x ∈ ωi(t),
0 if x 6∈ ωi(t), ∀m ∈ J1, k + 1K,

to obtain:
vc

d
dt

∫

ωi(t)
dx = −

q
F(vc, 0)− vgv

c
y
∂ωi(t)

= vc
q

vg

y
∂ωi(t)

,

and thus the GCL reduces to the following (automatically satisfied) property:

d
dt
|ωi(t)| =

q
vg

y
∂ωi(t)

. (6.98)

At the fully discrete level, we show that a fully discrete formulation, relying on a third-order RK
time discretization, satisfies the DGCL.

Proposition 67. The high-order DG-ALE semi-discrete scheme (6.43a), together with the third-
order accurate SSP-RK time-marching algorithm (6.73) and the embedded stabilization operator
with possible occurence of corrected lowest-order fluxes in one of the following formulations (6.69)-
(6.70)-(6.71), preserves the Discrete Geometric Conservation Law. Specifically, assuming b = 0, we
have, for any discrete time tn:

(
ve,n
h = vc

)
=⇒

(
ve,n+1
h = vc

)
.
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Proof. Under the assumption ve,n
h = vc, we have F(ve

h, bh) ∈
(
Pk(T e,n

h )
)2, and the following identity

holds:
Fn
h := pkT e,n

h
(F(ve,n

h , bh)) = F(ve,n
h , bh). (6.99)

As in the proof of Proposition 64, it is equivalent to show that the property holds at the subcell level,
using formulation (6.61). Let denote by |Sωi,(1)

m |, |Sωi,(2)
m |, and |Sωi,n+1

m | the length of the subcell Sωi
m

at the three different time stages of the SSP-RK algorithm (and whenever the RK stage dependency
has to be specified, we apply the superscripts (.)(1), (.)(2) and (.)n+1 to the concerned quantities).
The 3rd order SSP-RK discretization reads as follows:





|Sωi,(1)
m |vωi,(1)

m = |Sωi,n
m |vωi,n

m + ∆tnRωi,n
m ,

|Sωi,(2)
m |vωi,(2)

m =
3|Sωi,n

m |vωi,n
m + |Sωi,(1)

m |vωi,(1)
m

4
+

∆tn

4
Rωi,(1)
m ,

|Sωi,n+1
m |vωi,n+1

m =
|Sωi,n
m |vωi,n

m + 2|Sωi,(2)
m |vωi,(2)

m

3
+

2∆tn

3
Rωi,(2)
m .

(6.100)

We have, for any given value m ∈ J1, . . . , k + 1K, to distinguish three different cases:
case 1 - admissible subcell: Sωi

m−1, S
ωi
m and Sωi

m+1 are all admissible. The residual Rωi,(j)
m is:

Rωi,(j)
m = −

(
Ĝ
ωi,(j)

m+ 1
2

− Ĝ
ωi,(j)

m− 1
2

)
, (6.101)

As we assume ve,n
h = vc, using (6.99), we get :

Ĝωi,n

m± 1
2

= Gn
ωi|x̃m± 1

2

= F (vc, 0)− vng|m± 1
2

vc,

so that
Ĝωi,n

m+ 1
2

− Ĝωi,n

m− 1
2

= (vng|m+1
2

− vng|m− 1
2

)vc.

Using the SSP-RK time update of the grid motion (as in (6.57)), we obtain:

|Sωi,(1)
m |vωi,(1)

m = |Sωi,n
m |vc + ∆tn

( x̃(1)

m+ 1
2

− x̃n
m+ 1

2

− x̃(1)

m− 1
2

+ x̃n
m− 1

2

∆tn

)
vc

= |Sωi,n
m |vc + |Sωi,(1)

m |vc − |Sωi,n
m |vc,

= |Sωi,(1)
m |vc,

(6.102)

(6.103)

(6.104)

and therefore:
vωi,(1)
m = vc.

In a similar way, we show that v
ωi,(2)
m = vc and vωi,n+1

m = vc, leading to the desired conclusion.

case 2 - corrected subcell: Sωi
m is non-admissible. The residual Rωi,(j)

m is:

Rωi,(j)
m = −

(
Gl,ωi,(j)

m+ 1
2

− Gr,ωi,(j)

m− 1
2

)
, (6.105)

and one can show that we have:
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Gl,ωi,n

m+ 1
2

= F (vc, 0)− vng|m+1
2

vc, and Gl,ωi,n

m− 1
2

= F (vc, 0)− vng|m− 1
2

vc,

leading to
Gl,ωi,n

m+ 1
2

− Gr,ωi,n

m− 1
2

= (vng|m+1
2

− vng|m− 1
2

)vc,

and therefore
vωi,n+1
m = vc.

case 3 - neighbor of a non-admissible subcell: Sωi
m , Sωi

m−1 are admissible but Sωi
m+1 is non-admissible

(the symmetric situation of Sωi
m , Sωi

m+1 are admissible but Sωi
m−1 is non-admissible may be treated in

a similar way). The residual Rωi,(j)
m in a mixed DG/FV context is:

Rωi,(j)
m = −

(
Ĝ
ωi,(j)

m+ 1
2

− Gr,ωi,(j)

m− 1
2

)
. (6.106)

As in the two previous situations, we have:

Ĝωi,n

m+ 1
2

= F (vc, 0)− vng|m+1
2

vc,

Gr,ωi,,n

m− 1
2

= F (vc, 0)− vng|m− 1
2

vc,

leading to
Ĝωi,n

m+ 1
2

− Gr,ωi,n

m− 1
2

= (vng|m+1
2

− vng|m− 1
2

)vc,

so that,
vωi,n+1
m = vc.

Remark 68. One can also show the GCL property at the sub-cell level:

d
dt
|Sωm(t)| =

q
vg

y
∂Sω

m(t)
, (6.107)

by considering the semi-discretised FV-like scheme (6.61) with the possible occurence of corrected
lowest-order fluxes in one of the following formulations (6.69)-(6.70)-(6.61).

6.4 Flowchart

Let summarize the global numerical strategy associated with (6.48) for the simulation of free sur-
face waves and a freely floating object interactions in shallow-water. For the sake of simplicity, a
first-order Euler time-marching scheme is assumed to produce some fully discrete approximations.
This procedure may be straightforwardly extended to higher-order time-marching algorithms.

Starting from available and admissible values of ve,n
h , x n±, X n

G, ϑ
n
G, qi,n, η

i,n
h and bnh := ikT n

h
(b),

1. locally compute the frame’s velocity at contact points vng|x± (6.75a) that is obtained from (6.21),
using the expression of the time-derivative (5.34) and the discrete first-order derivative (6.5),

2. globally compute the frame’s velocity vng for all mesh interfaces for T e,n
h and T i,n

h , using (6.24),
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3. globally compute the updated locations of mesh interfaces at discrete time t = tn+1 using the
frame’s velocity vng and the family of IVP (6.25). In particular, the updated positions of the
contact points x n+1

± are obtained,

4. from the set of discrete values for grid points velocity and interfaces location, we reconstruct
continuous profiles for both quantities inside mesh elements using (6.26) and (6.28), in order to
qualify updated quadrature nodes or subcells interfaces and compute velocities at these points
(used in the definition of numerical fluxes),

5. compute the new spatial-angular coordinates X n+1
G from the knowledge of X n

G and ϑnG and
then compute ϑn+1

G by solving Newton’s second law system for the conservation of linear and
angular momentum, see (6.75c),

6. compute the updated solution ve,n+1
h and vi,n+1

h while accounting for the geometric terms
related to the displacement of the mesh, position and velocity of the floating body, as well as
for the stabilization procedure (in the exterior region),

7. Increment time and cycle to step 1.

6.5 Numerical validations

In this section, we provide several numerical assessments of the DG-ALE discrete formulations for
the water-body interaction model, associated with a third-order SSP-RK time-marching scheme. In
what follows, unless stated otherwise, we choose to display sub-mean-values instead of point-wise
values of the polynomial approximations, as it allows to precisely illustrate the subcell resolution
of the scheme. In the following numerical validations, we also choose to consider floating objects
with elliptic shapes. Such a choice is of course arbitrary and may be adapted to alternative object’s
profiles. The reader is referred to Appendix § D for explicit formulae.

Remark 69. In order to minimize the total number of figures, we sometimes choose to display both
the free-surface η and the discharge q on the same graphics. As the magnitudes of these two flow
quantities are generally not similar, instead of directly plotting q, we choose to display the rescaled
and translated quantity q̃ := q

H0
+H0.

6.5.1 Dam-break

This first test-case is dedicated to the numerical assessment of the DG-ALE implementation with
a posteriori LSC method for the NSW model and we consider classical dam-break problems over
a flat bottom, without incorporating any partially immerged structure. Hence we only consider
the formulation (6.43a) associated with the shallow-water equation, considering that E(t) = Ω,
and replacing the coupling conditions at the free boundaries by classical homogeneous Neumann
boundary conditions for the NSW equations. The computational domain is defined as Ω = [0, 1]
and the initial data are defined as follows:

η0(x) =

{
1 if x ≤ 0.5,
0.5 elsewhere, , q0 = 0, b = 0.
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We set Tmax = 0.075 s, nel = 50, k = 3 and for this particular test-case, the frame velocity is defined
in a pseudo-Lagrangien way, directly connected to the fluid’s local velocity as follows:

vg|i+1
2

=
1

2

(
u+
i+ 1

2

+ u−
i+ 1

2

− 1

σ

(
Fq(v+

i+ 1
2

, bi+ 1
2
)− Fq(v−

i+ 1
2

, bi+ 1
2
)

))
, (6.108)

where u±
i+ 1

2

are the left and right traces of the fluid’s velocity at the mesh interface xi+ 1
2
and σ is

defined as σ := max
ω∈Th

σω, with

σω := max
m

(√
gH

ω
m

)
.

We show on Fig. 6.1-left a snapshot of the free surface at t = 0.075 s and we highlight the corrected
and uncorrected subcells on the right. This illustrates very clearly that even if the correction has
been activated on in a very sharp area in the vicinity of the discontinuity, the solution has still
been cleansed from its spurious oscillations. We see also that, applying the ALE framework does
not affect our a posteriori LSC method efficiency. In Fig. 6.2 we show the fourth-order a posteriori
LSC solution without applying a moving grid. We notice that, by applying the ALE framework, the
interfaces of the cells to the left of the shock, are the most active, which is expected, since in this
zone, the velocity of the fluid is the highest.
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η
(m

)

0.5

0.6

0.7
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0 0.2 0.4 0.6 0.8 1

uncorrected subcells
corrected subcells

analytic

x(m)

Figure 6.1: Test 24 - Dam break on a wet bottom - Free surface elevation computed at t = 0.075 s
for k = 3 and nel = 50, with the a posteriori LSC with the ALE (6.108) framework, by marking the
corrected and uncorrected subcells (right).

6.5.2 Well-balancing property

In this second test-case, we aim to assess the motionless steady-states preservation property for the
model (6.43). This property has already been studied for the DG method with a posteriori LSC
method in chapter 3. As a consequence, we only consider: (i) the case of a moving grid without
incorporated floating object, (ii) the case of a partially immersed fixed object § 6.1.2 over a varying
bottom (and later on, in § 6.5.8, we study the case of a partially immersed freely-floating object
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x(m)

η
(m

)

Figure 6.2: Test 24 - Dam break on a wet bottom - Free surface elevation computed at t = 0.075 s
for k = 3 and nel = 50, with the a posteriori LSC without applying ALE.

§ 6.1.3 over a varying bottom). Firstly, we consider the computational domain Ω = [0, 1], together
with a varying bottom defined as follows:

b(x) =





A

(
sin

(
π (x− x1)

75

))2

if x1 ≤ x ≤ x2,

0 elsewhere,
(6.109)

where A = 4.75, x1 = 0.125m and x2 = 0.875m. The initial data is defined as:

η0 := 10, q0 := 0,

see Fig. 6.3. We set k := 3, nel := 50 and the frame’s velocity is defined in a pseudo-Lagrangien
way (6.108). We evolve this initial configuration in time up to 4× 105 time iterations (50 s) and we
observe that this initial configuration is preserved up to the machine accuracy, see again Fig. 6.3.
Here the grid is not moving since the velocity of the grid is related to the velocity of the fluid, which
is zero (steady state), see (6.108). As shown in the well-balanced property proof, the grid can move
freely with any arbitrary velocity, while always retaining the well-balanced property of the scheme,
as long as we are considering the totally wet context. In particular, we consider a uniform grid
velocity with vg = 0.01 m · s−1. We can observe that the mesh grid translates with a distance of
0.5m after 50 s, while always respecting the well-balanced property of the scheme, see Fig. 6.4. A
similar behavior is reported for other values of k, nel and vg.
In a second configuration, we introduce a partially immersed fixed object § 6.1.2, together with a
dry area, corresponding to a plane sloping beach. The computational domain is Ω = [−50, 200] and
the object is located at (xG, zG) = (50, H0 + 2.5). The topography profile is defined as follows:
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Figure 6.3: Test 25 - Preservation of a motionless steady state - Free surface elevation at t = 50s
(left), showing element boundaries (right).
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Figure 6.4: Test 25 - Preservation of a motionless steady state - Free surface elevation at t = 50s
(left), showing element boundaries (right).

b(x) =





A

(
sin

(
π (x− x1)

75

))2

if x1 ≤ x ≤ x2,

1

β
(x− x3) if x ≥ x3,

0 elsewhere,

(6.110)

where A = 1.5m, β = 11, x1 = 12.5m, x2 = 87.5m and x3 = 90m. The initial data in E0 is defined
as

ηe0(x) := max (5, b(x)) and qe0 = 0,

while in the interior domain I0, we have

ηi0 := pk
T i,0
h

(ηlid) and qi0 = 0.
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We evolve this initial configuration up to Tmax = 50 s, with k = 3, neel = 50 and n iel = 10. The
numerical results obtained with the DG-ALE scheme using the a posteriori LSC method are shown
on Fig. 6.5, with a zoom in the vicinity of the immersed structure and the shoreline. The corrected
and uncorrected subcells are exhibited on Fig. 6.6.
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Figure 6.5: Test 26 - Preservation of a motionless steady state - Free surface elevation at t = 50s
for k = 3 and neel = 50, n iel = 10.
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Figure 6.6: Test 26 - Preservation of a motionless steady state - Free surface elevation at t = 50s,
with a zoom near the floating body (left) and near shore (right), showing the corrected and the
uncorrected subcells, for k = 3 and neel = 50, n iel = 10.

6.5.3 A solitary wave interacting with a stationary partially immersed object

In this third test-case, we focus on the interactions between a weakly nonlinear solitary wave prop-
agating towards a stationary partially immersed objectover a varying topography made of a bump
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followed by a sloping beach. We consider the computational domain Ω = [0, 100] and H0 = 5m.
The topography profile is defined as follows:

b(x) :=





Ab

(
sin

(
π (x− x1)

75

))2

if x1 ≤ x ≤ x2,

0 elsewhere,
(6.111)

where Ab = 1.5m, x1 = 12.5m and x2 = 87.5m. A stationary partially immersed object is placed
over the bump and the initial data is prescribed as follows:

ηe0(x) := H0 +Aw sech (γ (x− x0)) , qe0(x) := gcq2(ηe0(x)−H0)He
0 ,

and
ηi0 := pk

T i,0
h

(ηlid), qi0 := 0,

where Aw = 0.35m, cq1 = 1, cq2 = 0.5, γ := cq1

√
3Aw
4H0

and x0 = 20m stands for the initial location

of the solitary wave’s center. The elliptic object is defined with respective horizontal and vertical
radius a = 10m and b = 5m, and its center of mass is located at (xG, zG) = (50, H0 + 2.5) (see § D
for the explicit definition of the object and the parameterization of its underside). We set neel = 50,
n iel = 10 and k = 3. Snapshots of the free surface at various times during the propagation are shown
on Fig. 6.7. Interestingly, we observe a partial run-up, run-down and reflection on the object’s
left side. This reflected wave goes back towards the inlet boundary, while the transmitted wave
propagates further beyond the object into the right exterior domain. Finally, both reflected and
transmitted waves are evacuated from the computational domain. In Table 6.1, we gather the global
L2-errors obtained for several numbers of elements with k = 3 for inner pressure at tmax = 100s.
We show in Fig. 6.8 the shape of the error curve for nel = 100 in the range of time [0 s, 100 s].

h E
p
i
L2

100/20 1.72E-3
100/50 8.07E-4
100/100 1.25E-5
100/150 4.40E-6
100/200 1.33E-7

Table 6.1: Test 27 - A solitary wave interacting with a stationary partially immersed object: L2-
errors between numerical and initial solutions for inner pressure p

i
, k = 3 at time tmax = 100 s.

To complete the picture, we also investigate the conservation of total mass

Mtotal(t) =

∫

Ω
H(x, t) dx (6.112)

and total energy

Etotal(t) = Ec(t) + Ep(t) =

∫

Ω

H(x, t)u2(x, t)

2
dx+

∫

Ω
gH(x, t)(b(x) +

H(x, t)

2
) dx (6.113)

over time. We compute the time evolution of their relative errors
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Figure 6.7: Test 3 - A solitary wave interacting with a stationary partially immersed object: surface
elevation η, discharge q and inner pressure p̃i = pi/ρg at the underside of the object for neel = 50,
n iel = 10 and k = 3.

EMtotal
r = |Mtotal(t)−Mtotal(0)

Mtotal(0)
| and EEtotal

r = |Etotal(t)− Etotal(0)

Etotal(0)
|, (6.114)

considering always the same test-case, but this time we impose "wall" boundary conditions for both
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Figure 6.8: Test 27 - A solitary wave interacting with a partially immersed stationary object: L2-
errors between numerical and initial solutions for inner pressure p

i
for neel = 80, n iel = 20 and k = 3

in the range [0 s, 100 s].

left and right exterior boundaries, in order to prevent water from getting out of the computational
domain, see Fig. 6.9 and 6.10. As expected, the total mass and the total energy are preserved up
to the machine accuracy. In table 6.2, we gather the total mass relative errors for several orders of
approximation at t = 20s. Similar results are obtained for the total energy relative errors.
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Figure 6.9: Test 27 - A solitary wave interacting with a partially immersed stationary object: total
mass and relative error, for k = 3, nel = 200 in the range [0 s, 70 s].

6.5.4 A shock-wave interacting with a partially immersed stationary object

In this fourth test-case, we consider a shock-wave propagating over a flat bottom, with a stationary
object partially immersed in the middle of the computational domain, in order to emphasize the
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Figure 6.10: Test 27 - A solitary wave interacting with a partially immersed stationary object: total
energy and relative error, for k = 3, nel = 200 in the range [0 s, 70 s].

k 1 2 3
h EMtotal

r EMtotal
r EMtotal

r

100/50 4.0523E-5 8.7551E-7 9.9301E-8
100/100 5.5104E-6 1.5817E-7 1.0848E-8
100/200 4.0289E-7 7.2318E-9 4.3317E-10
100/400 2.9140E-08 3.1734E-9 2.8571E-11

Table 6.2: Test 27 - A solitary wave interacting with a partially immersed stationary object: total
mass relarive error for several order of approximations at time t = 20 s.

robustness of the discrete formulation. We set Ω := [−20, 120], neel := 70, n iel := 10 and k := 3. The
initial data is defined as follows:

ηe0(x) :=

{
6.5 if x ≤ 0,
5 elsewhere, , ηi0 := pk

T i,0
h

(ηlid), qe0 = qi0 := 0.

The discontinuity, initially located in E−0 , propagates towards the object, generating some interesting
interactions. We emphasize that the proposed configuration simultaneously involves a shock wave
reflection, some displacement of the frame, a partial run-up over the surface piercing object associated
with the collision between the shock wave and the object profile and a partial transmission of the
wave towards the right side of the exterior domain, with the formation of an interesting pattern that
shares some similarities with a rarefaction wave. Snapshots of the free surface elevation at several
time are shown on Fig. 6.11. In Fig. 6.12, we show the corrected and uncorrected subcells which are
respectively plotted with blue squares and green dots. This clearly highlights the high robustness of
the discrete DG-ALE formulation, and in particular of the a posteriori LSC method , as the dynamic
of the free boundaries is computed in a very stable way, without any spurious oscillations or further
time-step restriction. Additionally, a zoom on the surface discontinuity is shown (in Fig. 6.12),
highlighting that the correction has been activated on in a very sharp area in the vicinity of the
discontinuity.
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Figure 6.11: Test 28 - A shock-wave interacting with a partially immersed stationary object - Free
surface elevation computed for different values of time t = 2.7 s, 5.5 s, 14.8 s and 44 s respectively
for k = 3, neel = 70 and n iel = 10.

6.5.5 Run-up of a solitary wave partially reflected by a stationary object

In this test-case, we follow the propagation and run-up of a solitary wave over a plane beach, with
a stationary partially immersed object placed on the way. The computational domain is set to
Ω = [−200, 150] and the topography is made of a constant depth area followed by a sloping beach
of constant slope 1/11. We set k = 3, neel = 50 and n iel = 10. The initial data is defined as follows:

ηe0(x) := H0 +Aw sech(γ(x− x0)), qe0(x) := cq2g(ηe0 −H0)He
0 , (6.115)

where Aw := 0.55m, x0 := −80m, cq1 := 0.1, cq2 := 0.5, γ := cq1

√
3Aw
4H0

and

ηi0 := pk
T i,0
h

(ηlid), qi0 := 0.

We show on Fig. 6.13 some snapshots of the free surface elevation at several discrete times in the
range [0.57 s, 300 s]. We observe a partial run-up and a reflection of the wave on the object, while
the remaining part of the wave is transmitted beyond the object, propagating further in E(t). This
secondary wave subsequently reaches the shore, generating a run-up on the beach, followed by a
full reflection. The reflected wave is itself again partially reflected by the object, generating a third
sequence of run-up and reflection, while the transmitted wave propagates back in E−(t) towards the
domain’s left boundary. In Fig. 6.14, we zoom on the shoreline area, highlighting the corrected and
uncorrected subcells which are respectively plotted with blue squares and green dots. Again, we
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Figure 6.12: Test 28 - A shock-wave interacting with a stationary partially immersed object- Free
surface elevation computed for different values of time t = 2.7 s, 5.5 s and 14.8 s , respectively:
corrected and uncorrected subcells are respectively plotted with blue squares and green dots, with
a zoom on discontinuity, for k = 3, neel = 70 and n iel = 10.

observe that the a posteriori LSC method is only activated in a very thin area in the vicinity of the
wet/dry front. We also display on Fig. 6.15 a comparison between the maximum run-up observed
with the partially immersed object on place, and without the object, in order to highlight the impact
of the object presence on the wave height.

6.5.6 Validations of prescribed motions

Let consider now model (6.48) for a moving object and some prescribed motions which are validated
separately along each motion’s direction.
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Figure 6.13: Test 29 - Run-up of a solitary wave partially reflected by a stationary object - Free-
surface obtained at several times in the range [0.57 s, 300 s], with k = 3 and neel = 50, n iel = 10.

Pure heaving

This test-case focus on a prescribed periodic vertical motion. MG is initially placed at (xG(0), zG(0)) =
(50, H0 + 2.5) and the flow configuration is a lake at rest that extends for 180m in both directions,
with a constant depth H0 = 5. The initial data in the interior and exterior regions are defined by:

ηe0 = H0, η
i
0 = pk

T i,0
h

(ηlid) and qe0 = qi0 = 0.

The parametric equations describing the motion of MG are defined as follows:

xG(t) = 50 and zG(t) = H0 + 3− 1

2
cos(

2πt

15
).

We set neel = 50, n iel = 10, and k = 3. The numerical solution is shown in Fig. 6.16 for several
time-steps, t = 3T + T

4 , 3T + T
2 and 3T + 3T

4 respectively, where T = 15 s is the time-period of
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Figure 6.14: Test 29 - Run-up of a solitary wave partially reflected by a stationary object - A zoom
on the shoreline showing the free surface at t = 31.59 s (left) and t = 69.40 s (right), where corrected
and uncorrected subcells are respectively plotted with blue squares and green dots, for k = 3 and
neel = 50, n iel = 10.
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Figure 6.15: Test 29 - Run-up of a solitary wave - Snapshot of the free surface corresponding to the
maximum observed run-up with the embedded surface-piercing object (in dashed-line) and without
(in blue).

the structure’s motion. The Figure shows the variation of the free surface and the discharge in the
interior and exterior regions (left), with a zoom on the displacement of the mesh nodes near x±
(right).
We also investigate the conservation of total mass and total energy over time, and we compute the
time evolution of their relative errors (see (6.112)-(6.113)-(6.114) for their definitions), see Fig. 6.17
and 6.18. The total mass and the total energy are preserved over time up to order 10−10 and 10−8
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Figure 6.16: Test 30 - Prescribed motion: heaving - Free surface elevation and discharge computed
for different values of time t = 3T + T

4 , 3T + T
2 and 3T + 3T

4 (left) with a zoom showing the
displacement of the mesh nodes near contact points x± (right), for k = 3, neel = 50 and n iel = 10.

respectively.

Pure surging

Now, a purely periodic horizontal motion is enforced. The evolution equations of MG are:

xG(t) = 48 + 2 cos(
2πt

10
) and zG(t) = H0 + 2.5.

The solution is shown in Fig. 6.19 for several time-steps, t = 3T+ T
4 , 3T+ T

2 and 3T+ 3T
4 respectively,

where T = 10 s is the time-period of the body motion. The figure shows the variations of the free
surface and the discharge in the interior and exterior regions (left), with a zoom on the displacement
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Figure 6.17: Test 30 - Prescribed motion: heaving - total mass and relative error, for k = 3, nel = 200
in the range [0 s, 100 s].
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Figure 6.18: Test 30 - Prescribed motion: heaving - total energy and relative error, for k = 3,
nel = 200 in the range [0 s, 100 s].
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of the mesh nodes in the vicinity of x± (right).
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Figure 6.19: Test 31 - Prescribed motion: surging - Free surface elevation and discharge computed for
different values of time t = 3T + T

4 , 3T + T
2 and 3T + 3T

4 (left) with a zoom showing the displacement
of the mesh nodes near contact points x± (right), for k = 3, neel = 50 and n iel = 10.

Pure pitching

Now, we consider a prescribed periodic rotational motion.The angle’s evolution law is given by:

θ(t) =
π

25
sin(

2πt

8
).

The solution is shown in Fig. 6.20 for several time-steps, t = 3T+ T
4 , 3T+ T

2 and 3T+ 3T
4 respectively,

with T = 8 s is the time-period of the body motion. In Fig. 6.21, we show the horizontal coordinates
of the contact points x−(t) and x+(t) in the time range [0, 6T ].
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Figure 6.20: Test 32 - Prescribed motion: pitching - Free surface elevation and discharge computed
for different values of time t = 3T + T

4 , 3T + T
2 and 3T + 3T

4 for k = 3, neel = 50 and n iel = 10.

162



35

40

45

50

55

60

5 10 15 20 25 30 35 40 45

x-
+x (t)
(t)

t(s)

Figure 6.21: Test 32 - Prescribed motion: pitching - Variation of the horizontal coordinate of the
contact points x−(t) and x+(t)

6.5.7 Prescribed motion: heaving with a wet-dry transition

In this test-case, we qualitatively analyze the water-body interactions in the situation of a pure
prescribed heaving, but this time also with a dry area. The purpose of this test-case is to highlight
the scheme’s ability to deal with wet-dry transitions in presence of a floating body, hence validating
the DG-ALE formulation with a posteriori LSC method . The topography profile is defined as
follows:

b(x) =

{ 1
β (x− xβ) if x < xβ,

0 elsewhere ,

where β = 11 and xβ = 65. The right boundary condition is transmissive. As for the left boundary,
we impose ηe = 5m and qe = 0 m2.s−1. The initial condition is defined as follows:

ηe0 = max(H0 − b, 0) + b, ηi0 = pk
T i,0
h

(ηlid) and qe0 = qi0 = 0.

The elliptic object’s location is initialized with (xG(0), zG(0)) = (50, H0 + 2.5) and we set H0 = 5.
We prescribe a periodic heave motion as follows:

xG(t) = 50 and zG(t) = H0 + 2.75− 1

4
cos(

2πt

20
).

We set neel = 60, n iel = 10, and k = 3. The corresponding numerical results are shown on Fig. 6.22
for several time-steps, t = 53 s, 60.5 s and 66 s respectively. This figure shows the variation of the
free-surface (left), and the associated corrected and uncorrected subcells are respectively plotted
with blue squares and green dots, with a zoom on the shoreline (right).
We observe that the periodic heaving generates free-surface waves that propagate seaward and
shoreward, with some run-up and run-down on the shore. After a transient phase, the coupled
system converges towards a quasi-stationary periodic regime. The run-up is computed in a very
stable way, thank’s to the a posteriori LSC method .
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Figure 6.22: Test 33 - Prescribed motion: heaving with a wet-dry transition - Free surface elevation
computed for different values of time t = 53 s, 60.5 s and 66 s respectively (left): corrected and
uncorrected subcells are respectively plotted with blue squares and green dots, with a zoom on the
shoreline (right), for k = 3 and neel = 60 and n iel = 10.
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6.5.8 Free-motion: well-balanced property

In this test-case, we aim to assess the motionless steady-states preservation property for the case of
a floating body partially immersed in water over a varying bottom. The computational domain is
Ω = [−50, 200]. The object is initially placed such that (xG, zG) = (50, H0 + 2.5) and its mass mo is
defined according to Appendix E. The topography profile is defined as follows:

b(x) =





A

(
sin

(
π (x− x1)

75

))2

if x1 ≤ x ≤ x2,

1

β
(x− x3) if x ≥ x3,

0 elsewhere,

(6.116)

where A = 1.5m, β = 11, x1 = 12.5m, x2 = 87.5m and x3 = 90m. The initial data in E0 is defined
as

ηe0(x) := max (5, b(x)) and qe0 = 0,

while in the interior domain I0, we set

ηi0 := pk
T i,0
h

(ηlid) and qi0 = 0.

We evolve this initial configuration up to Tmax = 50 s, with k = 3, neel = 50 and n iel = 10. The
numerical results obtained with the DG-ALE scheme using the a posteriori LSC method are shown
in Fig. 6.23. A zoom in the vicinity of the immersed structure and the shoreline, shows the corrected
and uncorrected subcells in Fig. 6.24. The well-balanced steady state is preserved up to machine
accuracy.
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Figure 6.23: Test 34 - Free-motion: well-balanced property - Free surface elevation at t = 50s for
k = 3 and neel = 50, n iel = 10.
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Figure 6.24: Test 34 - Free-motion: well-balanced property - Free surface elevation at t = 50s, with a
zoom near the floating body (left) and near shore (right), showing the corrected and the uncorrected
subcells, for k = 3 and neel = 50, n iel = 10.

6.5.9 Free motion: convergence towards a motionless steady-state

Here, we analyze the case of a freely floating body returning to equilibrium. We consider the domain
Ω =

]
−50, 150

[
and the topography is defined as

b(x) =





A sin

(
π (x− x1)

75

)
if x1 ≤ x ≤ x2,

0 elsewhere.
(6.117)

where x1 = 12.5, x2 = 87.5 and A = 2.5. The object is initially placed at zG(0) = H0 + 2.5 m, with
H0 = 8m, and the initial conditions are defined as follows:

ηe0 = H0, η
i
0 = pk

T i,0
h

(ηlid) and qe0 = qi0 = 0.

However, we consider a modified (heavier) mass mo such that the Newton’s law is not initially
balanced:

mo = 2.19×
∫

I(0)
ρ(H0 − ηi0(x)) dx. (6.118)

With such a choice, zG = H0 + 0.83 m would be the equilibrium elevation for MG and when the
object is released at t = 0 from an upper position, it returns to the targeted lower equilibrium
location.
We set neel = 60 and n iel = 10, and k = 3. The solution is shown in Fig. 6.25 for several time-steps in
the range [0 s, 25 s]. We see how the release of the object creates some shock waves, due the sudden
fall of the object. Thanks to the a posteriori LSC, the solution is free from spurious oscillations. In
Fig. 6.26, we show the variation of zG(t) in the range of time [0 s, 25 s], describing the return of the
floating body to equilibrium state (left) and showing water-body equilibrium state at t = 25 (right).
In Fig. 6.28, corrected and uncorrected subcells are respectively plotted with blue squares and green
dots (left), and we zoom on the right wave (right). We also show, in Fig. 6.27, the variation of the
horizontal coordinate of the contact points x−(t) and x+(t) in the same range of time.
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Figure 6.25: Test 35 - Free motion: convergence towards motionless steady-state - Free surface
elevation computed for different values of time in the range [0 s, 25 s], for k = 3, neel = 60 and
n iel = 10.
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Figure 6.26: Test 35 - Free motion: convergence towards motionless steady-state - showing the
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t = 25 (right), for k = 3, neel = 60 and n iel = 10.

39.8

40

40.2

40.4

40.6

40.8

41

41.2

41.4

5 10 15 20 25

x (t)-

t(s)

58.6

58.8

59

59.2

59.4

59.6

59.8

60

5 10 15 20 25

x (t)+

η
(m

)

t(s)

Figure 6.27: Test 35 - Free motion: convergence towards motionless steady-state - showing the
variation of the horizontal coordinate of the contact points x−(t) and x+(t) in the range of time
[0 s, 25 s], for k = 3, neel = 60 and n iel = 10.
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Figure 6.28: Test 35 - Free motion: convergence towards motionless steady-state - Free surface
elevation computed at t = 4.9 s: corrected and uncorrected subcells are respectively plotted with
blue squares and green dots, with a zoom on the right wave, for k = 3 and neel = 60 and n iel = 10.

6.5.10 Free motion: interactions with a solitary wave

In this test-case, we aim to study the totally free response of a floating object to a propagating surface
wave, with heaving, surging and pitching. The computational domain is set to Ω = [−150, 150]. The
structure is placed at (xG(0), zG(0)) = (50, H0 + 2.5), in a lake at rest with a flat bottom. The
mass mo of the body is defined as in (E.2) and is thus in equilibrium with the Archimedean force.
A propagating wave is initially defined as follows

ηe0(x) = H0 +
Aw

cosh(γ(x− x0))2 and qe0 = cq2

√g(ηe0 −H0)

cq1
He

0 , (6.119)

and the initial water elevation and discharge beneath the floating body are defined by:

ηi0 = pk
T i,0
h

(ηlid) and qi0 = 0,

with Aw = 0.92m, x0 = −80m, cq1 = 0.1, cq2 = 0.05 and γ =
cq1√
4H0
3Aw

. This wave propagates and

meets the structure, which consequently starts to move, see Fig. 6.29. First, we sequentially isolate
the three possible motions (only one degree of freedom is allowed: pure heaving, pure surging and
pure pitching), see Fig. 6.30-6.31, Fig. 6.32-6.33 and Fig. 6.34-6.35 respectively. Next, we consider a
totally free motion in which heaving, surging and pitching are naturally allowed, see Fig. 6.36- 6.37-
6.38.

6.5.11 Free motion with a wet-dry transition

In this test-case, we study the propagation and run-up of a surface wave over a plane beach, with a
partially immersed object placed on the way. The computational domain is set to Ω = [−300, 150]
and the topography is made of a constant depth area and a plane sloping beach of constant slope
1
α such that α = 11, see Fig. 6.39. The mass of the body mo is defined as in (E.2), and the initial
condition for the flow in the exterior region is defined as follows:

ηe0(x) = H0 +
Aw

cosh(γ(x− x0))
and qe0 = cq2

√g(ηe0 −H0)

cq1
He

0 , (6.120)
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Figure 6.29: Test 36 - Free motion: interactions with a solitary wave - Free surface elevation and
discharge computed at initial time for k = 3, neel = 50 and n iel = 10.
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Figure 6.30: Test 36A - Pure heave motion - Free surface elevation and discharge computed for
different values of time in the range [0 s, 35 s] for k = 3, neel = 50 and n iel = 10.
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Figure 6.31: Test 36A - Pure heave motion - showing the variation of zG(t) in the range of time
[0 s, 35 s] for k = 3 and neel = 50 and n iel = 10.
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Figure 6.32: Test 36B - Pure surge motion - Free surface elevation and discharge computed for
different values of time in the range [0 s, 35 s] for k = 3, neel = 50 and n iel = 10.
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Figure 6.33: Test 36B - Pure surge motion - showing the variation of xG(t) in the range of time
[0 s, 35 s] for k = 3 and neel = 50 and n iel = 10.
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Figure 6.34: Test 36C - Pure pitch motion - Free surface elevation and discharge computed for
different values of time in the range [0 s, 35 s] for k = 3, neel = 50 and n iel = 10.
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Figure 6.35: Test 36C - Pure pitch motion - showing the variation of θ(t) in the range of time
[0 s, 35 s] for k = 3 and neel = 50 and n iel = 10.

while the initial water elevation and discharge under the object are defined by:

ηi0 = pk
T i,0
h

(ηlid) and qi0 = 0,

with Aw = 0.55m, x0 = −150m, cq1 = 0.1, cq2 = 0.05 and γ =
cq1√
4H0
3Aw

.

We set neel = 70, n iel = 10, and k = 3. We show on Fig. 6.40 the free-surface obtained at several
time values in the range [16.78 s, 150 s]. In Fig. 6.41, we show the trajectory of MG, under the
form of time-series of its spatial coordinates (xG, zG) and the pitch angle θ. In Fig. 6.42, we show
the free-surface at t = 28.61 s, where corrected and uncorrected subcells are respectively plotted
with blue squares and green dots (left), with a zoom on the shoreline (right). We observe that the
body is pushed shoreward by the incoming wave, which is almost entirely transmitted to the shore,
generating a run-up, before being reflected by the topography and hit the object again, pushing it
seaward. The computations are performed in a very robust way, and we observe that as expected,
the a posteriori LSC method only operate in the vicinity of the shoreline.
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Figure 6.36: Test 36D - Heaving, surging and pitching are allowed - Free surface elevation computed
for different values of time in the range [0 s, 35 s] for k = 3, neel = 50 and n iel = 10.
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Figure 6.37: Test 36D - Heaving, surging and pitching are allowed - showing the variation of xG(t),
zG(t) and θ(t) in the range of time [0 s, 35 s] for k = 3 and neel = 50 and n iel = 10.
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Figure 6.38: Test 36D - Heaving, surging and pitching are allowed - showing the variation of the
horizontal coordinate of the contact points x−(t) and x+(t) in the range of time [0 s, 35 s] for k = 3
and neel = 50 and n iel = 10.
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Figure 6.39: Test 37 - Free motion with a wet-dry transition - Free surface elevation at initial time
for k = 3, neel = 70 and n iel = 10.
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Figure 6.40: Test 37 - Free motion with a wet-dry transition - Free surface elevation for different
values of time in the range [16.78 s, 150 s], for k = 3, neel = 70 and n iel = 10.
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Figure 6.41: Test 37 - Free motion with a wet-dry transition - Time-series for XG = (xG, zG, θ)
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Figure 6.42: Test 37 - Free motion with a wet-dry transition - Free surface elevation computed at
t = 28.61 s for k = 3, neel = 70 and n iel = 10: corrected and uncorrected subcells are respectively
plotted with blue squares and green dots, with a zoom on the shoreline.
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Chapter 7

Conclusions and perspectives

In this thesis, we begin with the introduction of a new well-balanced high-order DG discrete formula-
tion with a FV-Subcell correction patch designed for the NSW equations. This method combines the
very high accuracy of DG schemes along with a robust correction procedure ensuring the water-height
positivity as well as addressing the issue of spurious oscillations in the vicinity of discontinuities.
This robustness is enforced by means of an a posteriori LSC of the conservative variables. This pro-
cedure relies on an advantageous reformulation of DG schemes as a FV-like method on a sub-grid,
which makes the correction strategy surgical and flexible, as well as conservative at the subcell level.
Indeed, only the non-admissible subcells are marked and subject to correction, retaining as much as
possible the very accurate subcell resolution of high-order DG formulations. The proposed strategy
is investigated through an extensive set of benchmarks, including a brand new smooth solution for
the computation of convergence rates, stabilization of flows with discontinuities, the preservation of
motionless steady states, or moving shorelines over varying bottoms. We observe in particular that
this approach provides a very accurate description of wet-dry interfaces even with the use of very
high-order schemes on coarse meshes.
Regarding the potential advantages of this a posteriori limiting strategy compared to a priori lim-
iters, because the troubled zone detection is performed a posteriori, the correction can be done only
where it is absolutely necessary. Furthermore, the positivity preservation of the water-height is
included without any additional effort, while it is generally not the case for a priori limitations of
high-order schemes as highlighted in Chapter 2 for the PL DG-FVsubcell limitation method. We fur-
ther emphasize that our a posteriori LSC method scalability to any order of accuracy is also perfectly
natural. Finally, it is important to note that this new correction procedure is totally parameter free.
We also extend our a posteriori LSC method to the 2D NSW system and we briefly illustrate the
potentiality of this approach with several numerical results.

In a second part, we introduce a novel numerical approximation algorithm allowing to compute fluid-
structure interactions between a partially immersed floating object and shallow-water flows. This
new discrete formulation is based on a DG-ALE global discretization for the flow model, coupled
with a set of nonlinear ordinary differential equations for the resolution of the free-boundary prob-
lems associated with the time evolution of the air-fluid-structure interface, and the time evolution
of the discharge beneath the object. The computation of the water free-surface beneath the floating
object is reduced to a nonlinear algebraic equation to solve, essentially ruled by the object’s position
and underside’s shape. In order to allow the computation of general waves interactions, possibly
involving non-smooth surface waves, we extend the a posteriori LSC method of [80] to the current
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DG-ALE description. In particular, we show that the resulting global flow discrete formulation
preserves the DGCL, as well as the well-balancing property for motionless steady states, for any
order of approximation in space. The resulting numerical strategy combines the high accuracy of
DG approximations, with a robust stabilization process which ensures the positivity of the water-
height at the subcell level, as well as preventing from the occurrence of spurious oscillations in the
vicinity of discontinuities, discontinuities of the gradient and extrema. Indeed, we studied two types
of object’s motion: the object’s motion may be either prescribed (where the case of a stationary
body can be seen as a particular case of the prescribed body motion), or computed as a response
to the hydrodynamic forcing associated with the flow motion. The floating body is allowed to move
with heave, surge and pitch motions. These assets was numerically illustrated through an extensive
set of manufactured benchmarks validating the water-body interaction model.

In future works, we plan to further investigate the 2D a posteriori LSC method and in particular the
well-balancing and positivity-preserving) properties. Optimizing the code to reduce the computa-
tional time is also an important issue for practical applications. A more difficult goal is to generalize
our numerical approximation algorithm for the wave-floating structure interaction problem in 2D.
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Appendix A

Derivation of shallow-water asymptotics

Free surface flow: main notations and boundary conditions

For nearshore as well as in relatively deep waters, the coastal engineering community has used for a
long time asymptotic depth averaged approximations. Following this approach, we aim in this work
to use the NSW equations for our water-body interaction model. Historically, the physical model
was first proposed by de Saint Venant in 1871 [50], obtained from asymptotic analysis and indeed
depth-averaging the Navier-Stokes equations (see also [70]-[122]). Without including viscosity terms,
a more simplified method to derive the non-linear shallow-Water system is by considering the NSW
as an approximation of the incompressible Euler equations. These equations can be derived from the
incompressible Euler’s equations by combining a depth (height) averaging procedure with asymptotic
expansions. These expansions are expressed in terms of two main dimensionless parameters. The
first is the dispersion parameter µ

µ = khr, with kλ = 2π, (A.1)

where hr is the reference water depth, λ the wavelength and k the wave number. Clearly, in shallow-
waters, or for very long waves this parameter can be assumed to be small. The simplest models is
obtained by considering a zeroth order approximation, which provides the well known hydrostatic
Nonlinear shallow-water (NSW) model. This model gives a good representation of nonlinear waves
as long as the dispersion parameter remains µ ≤ π

20 . To account for the effects of shorter waves,
higher order correction terms can be added. When doing it is customary to distinguish waves for
which these effects are weakly or fully nonlinear. This is done introducing the nonlinearity parameter

ε =
A

hr
, (A.2)

with A the wave elevation. For fully non-linear models ε = 1, while weakly non-linear models are
obtained under the hypothesis that ε � 1. In this chapter, we follow this derivation procedure to
arrive at the desired non-linear shallow-water approximation used in our numerical simulations. We
repeat the formal derivation in one space dimension.

We start by introducing some notations that are going to be used in what follows. The model
for the free surface problem is going to be presented and derived in two dimension (x, z) (one hor-
izontal and the other vertical). We refer the reader to [106], where a Multidimensional expansion
procedure is considered. As shown in Fig. A.1, we consider a cartesian coordinate system. We recall
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that the characteristic scales for the flow are the wave amplitude A, wavelength λ and wave period
T . The bathymetry is denoted by b(x) . The water-height (depth) H(x, t) is the main unknown and
this is defined as:

H(x, t) = H0 + ζ(x, t)− b(x), (A.3)

where ζ(x, t) is the free surface elevation, relative to the reference still water depthH0. The remaining
unknowns are the vertical velocity w(x, z, t) , the horizontal velocity u(x, z, t) and the pressure
P (x, z, t).

topography

O

Figure A.1: Free surface flow: main notations

We note by ρω the constant (and uniform in space) density of the fluid (water), neglecting the effects
of the free surface tension and viscosity, the flow dynamics can be described by the incompressible
Euler’s equations (A.4)-(A.5). Starting by the incompressibility condition (volume conservation
equation):

∂xu+ ∂zw = 0, (A.4)

and the conservation of momentum equations (Newton’s second law):

∂tu+ u∂xu+ w∂zu+
1

ρw
∂xP = 0,

∂tw + u∂xw + w∂zw +
1

ρw
∂zP + g = 0.

(A.5a)

(A.5b)

The boundary condition at the free surface elevation (kinetic condition) is:

wf = ∂t(H + b) + uf∂x(H + b), z = H + b, (A.6)

or equivalently,

wf = ∂tζ + uf∂xζ, z = H + b, (A.7)
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where we have defined uf = u(x,H + b, t) and wf = w(x,H + b, t) , the values of the velocities at
the free surface. The boundary condition of the pressure at the free surface (dynamic condition) is:

Pf − Pair = 0, z = H + b. (A.8)

Since the atmospheric pressure is assumed to be constant, we can thus replace the pressure P by its
relative value,

Π = P − Pair, (A.9)

satisfying the boundary condition Πf = 0. At seabed level (z = b), we have the impermeability
condition, which is similar to the kinematic free surface condition, that is:

ws = ∂tb+ us∂xb = us∂xb, z = b, (A.10)

where us = u(x, b, t) and ws = w(x, b, t) are the values of the variables at the seabed, assuming that
∂tb = 0. Finally, the models considered in this work are obtained under the hypothesis of irrotational
flow which is (in 1d):

∂zu = ∂xw. (A.11)

Dimensional analysis

We introduce here the non-dimensional form of the problem. This is done as a first step toward
the simplification of the Euler’s equations. The nondimensional variables are evaluated dividing all
the physical quantities by a set of selected reference scales for mass, time, length, flow speed and
pressure. The parameters of dispersion µ (A.1) and nonlinearity ε (A.2) naturally appear in this
process. We start by introducing the nonlinearity bathymetry parameter:

β =
b0
H0

,

where b0 is the characteristic variation of the bathymetry. And the non-dimensional bathymetry is
defined by:

b̃(x̃) =
b(x)

βH0
, (A.12)

and the other non-dimensional variables are defined by:

t̃ = µ

√
gH0

H0
t, x̃ =

µ

H0
x, z̃ =

z

H0
, h̃r(x̃) =

hr(x)

H0
= 1, ζ̃(x̃, t̃) =

ζ(x, t)

εH0
,

H̃(x̃, t̃) = εζ̃(x̃, t̃) + h̃r(x̃)− βb = εζ̃ + 1− βb =
H(x, t)

H0
, Π̃ =

1

εgH0

P − Pair
ρω

,

ũ =
1

ε
√
gH0

u, q̃ = H̃ũ, w̃ =
1

ε
√
gH0

w, g̃ = 1.

(A.13a)

(A.13b)

(A.13c)

Dropping the tilde notation, we write the incompressible Euler’s equations in dimensionless form as:
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µ2∂xu+ ∂zw = 0,

∂tu+ ε

(
u∂xu+

1

µ2
w∂zu

)
+ ∂xΠ = 0,

∂tw + ε

(
u∂xw +

1

µ2
w∂zw

)
+ ∂zΠ + 1 = 0.

(A.14a)

(A.14b)

(A.14c)

The nondimensional boundary conditions and irrotationality constraint can be written as

µ2 (∂tζ + εuf∂xζ)− wf = 0, at z = 1 + εζ,

Π = 0, at z = 1 + εζ,

βµ2us∂xb− ws = 0, at z = βb,

∂zu = ∂xw.

(A.15a)
(A.15b)

(A.15c)
(A.15d)

Depth averaging and asymptotic analysis

We derive the asymptotic approximations of the Euler equations in terms of depth averaged quan-
tities:

u =
1

1 + εζ − βb

∫ 1+εζ

βb
udz =

1

H

∫ 1+εζ

βb
udz. (A.16)

A variable playing a major role is also the volume flux (discharge) q:

q :=

∫ 1+εζ

βb
u = (1 + εζ − βb)u = Hu.

One of the main tools used in the following analysis and reported here for completeness is the well
known Leibnitz’s integration rule:

∂x

(∫ b(x)

a(x)
f(x, z)dz

)
=

∫ b(x)

a(x)
∂xf(x, z)dz + ∂xb(x)f(x, b(x))− ∂xa(x)f(x, a(x)), (A.17)

where f , a and b are differentiable functions.

Mass equation

Integrating over the water depth equation (A.14a), we obtain:

∫ 1+εζ

βb

(
µ2∂xu+ ∂zw

)
dz = 0. (A.18)

Applying Leibnitz rule, equation (A.18) can be written as

wf − ws + ∂x

(∫ 1+εζ

βb
µ2udz

)
+ βµ2∂xbus − µ2ε∂xζuf = 0.
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Substituting the kinetic (A.15a) and dynamic (A.15c) conditions to wf and ws and using the defi-
nition of the depth averaged velocity equation (A.16):

∂tζ + ∂x(Hu) = 0,

or equivalently,

∂tH + ∂xq = 0. (A.19)

This is commonly called non-dimensional mass equation (or continuity equation) and it represents
the conservation of volume (or equivalently mass) of water in the domain. The mass equation (A.19)
is a direct consequence of combination of volume conservation with the boundary conditions of the
Euler’s equations.

Momentum equation

To obtain an evolution equation for the depth averaged horizontal velocity (multiplied by H) Hu,
we integrate equation (A.14b) over the depth:

∫ 1+εζ

βb

(
∂tu+ ε

(
u∂xu+

1

µ2
w∂zu

)
+ ∂xΠ

)
dz = 0. (A.20)

Evaluating each terms of (A.20) separately. Using Leibnit’s integration rule (A.17), we get:

∫ 1+εζ

βb
∂tudz = ∂t

(∫ 1+εζ

βb
udz

)
− ε∂tζuf + β∂tbus =

(∫ 1+εζ

βb
udz

)

t

− ε∂tζuf ,
∫ 1+εζ

βb
∂x

(
u2

2

)
dz = ∂x

(∫ 1+εζ

βb

u2

2
dz

)
− ε∂xζ

u2
f

2
+ β∂xb

u2
s

2
,

∫ 1+εζ

βb
∂xΠdz = ∂x

(∫ 1+εζ

βb
Πdz

)
− ε∂xζΠf + β∂xbΠs

Πf=0︷︸︸︷
= ∂x

(∫ 1+εζ

βb
Πdz

)
+ β∂xbΠs

(A.21a)

(A.21b)

(A.21c)

using (A.14a) and then (A.15a)-(A.15c), one can write,

∫ 1+εζ

βb
∂zuwdz = JuwK1+εζ

βb −
∫ 1+εζ

βb
u∂zwdz = ufwf − usws + µ2

∫ 1+εζ

βb
∂x

(
u2

2

)
dz

= µ2 (∂tζuf + ε∂xζuf ) + βµ2∂xbus + µ2

∫ 1+εζ

βb
∂x

(
u2

2

)
dz,

(A.22a)

(A.22b)

where Πs = P (z = b) is the pressure at the seabed. Collecting all the terms and simplifying using
again formula (A.17), we obtain the momentum equation:

∂t(Hu) + ε∂x

(
Hu2

)
+ ∂x(HΠ) + β∂xbΠs = 0, (A.23)

having introduced the depth averaged pressure Π:

Π =
1

1 + εζ − βb

∫ 1+εζ

βb
Πdz.
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Asymptotic velocites

Starting from equation (A.14a), we are going to express the expression for the vertical and horizontal
velocity components in terms of the depth averaged horizontal velocity u. We start by integrating
eq. (A.14a) from the bottom to an arbitary depth z. Using (A.17) and then (A.15c), one can write:

w(z) = ws − µ2

(
∂x

(∫ z

βb
udz

)
+ βbxus

)
= −µ2∂x

(∫ z

βb
udz

)
. (A.24)

Similarly, integrating the irrotationality condition (A.15d) and using equation (A.24) leads to

u(z) = us +

∫ z

βb
∂xwdz = us − µ2

∫ z

βb
∂xx

(∫ z

βb
udz

)
dz. (A.25)

We can now express the vertical velocity in terms of the bottom horizontal velocity by substituting
equation (A.25) into equation (A.24), leading to the O

(
µ4
)
estimate:

w(z) = −µ2∂x

(∫ z

βb
usdz

)
+O

(
µ4
)

= −µ2∂x (us(z − βb)) +O
(
µ4
)
. (A.26)

Integrating again the irrotationality condition (A.15d), we can now, thanks to (A.26), improve the
estimation of u(z) as follows:

u(z) = us − µ2

∫ z

βb
∂xx (us(z − βb)) dz +O

(
µ4
)
,

= us − µ2

(
∂xx (us)

∫ z

βb
(z − βb)dz − us

∫ z

βb
β∂xxbdz

)
+O

(
µ4
)
,

= us − µ2

(
∂xxus

(z − βb)2

2
− βus∂xxb(z − βb)

)
+O

(
µ4
)
.

(A.27)

The depth averaged velocity can be now expressed as a function of the seabed velocity us using
equation (A.27):

u =
1

1 + εζ − βb

∫ 1+εζ

βb
udz = us − µ2

(
∂xxus

H2

6
− βus∂xxb

H

2

)
+O

(
µ4
)
. (A.28)

We have thus a simple relation between the bottom velocity us and the depth averaged one u:

u = us +O
(
µ2
)
. (A.29)

Using (A.29) we can invert (A.28) by writing:

us = u+ µ2

(
∂xxu

H2

6
− βu∂xxb

H

2

)
+O

(
µ4
)
. (A.30)

Using (A.30), we can, finally, express the horizontal and vertical velocity in terms of the depth
averaged velocity:

u(z) = u− µ2

(
∂xxu

(
(z − βb)2

2
− H2

6

)
− βu∂xxb

(
z − βb− H

2

))
+O

(
µ4
)
,

w(z) = −µ2∂x (u(z − βb)) +O
(
µ4
)
.

(A.31a)

(A.31b)
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Evaluation of nonlinear velocity term

As we are proceeding, we continue to express every term in terms of depth averaged velocity. The
nonlinear term u2 at precision O

(
µ4
)
becomes:

u2 =
1

H

∫ 1+εζ

βb
u2dz

=
1

H

∫ 1+εζ

βb

[
u− µ2

(
u

(
(z − βb)2

2
− H2

6

)
− βu∂xxb

(
z − βb− H

2

))]2

dz +O
(
µ4
)

= u2 +O
(
µ4
)
.

(A.32)

Asymptotic pressure profile

The pressure is evaluated integrating from depth z to the free surface 1 + εζ equation (A.14c)

Π(z) = (1 + εζ − z) +

∫ 1+εζ

z
∂twdz + ε

∫ 1+εζ

z
u∂xwdz +

ε

µ2

∫ 1+εζ

z
w∂zwdz. (A.33)

Evaluating each terms of (A.33) separately. Using equations (A.31a) and (A.31b) we get:

∫ 1+εζ

z
∂twdz =− µ2

∫ 1+εζ

z
∂t
(
∂x(u(z − βb))−O

(
µ2
))
dz

=− µ2

∫ 1+εζ

z
∂t (∂xu(z − βb)− βu∂xb) dz +O

(
εµ4
)

=− µ2

[
∂xtu

(
H2

2
− (z − βb)2

2

)
− β∂tu∂xb(1 + εζ − z)

]
+O

(
εµ4
)
,

∫ 1+εζ

z
u∂xwdz =− µ2

∫ 1+εζ

z

(
u+O

(
µ2
))
∂x
(
∂x (u(z − βb))−O

(
µ2
))
dz

=− µ2u

∫ 1+εζ

z
∂xx(u(z − βb))dz +O

(
εµ4
)

=− µ2u∂xxu

(
H2

2
− (z − βb)2

2

)
+ µ2u (2β∂xu∂xb+ uβ∂xxb) (1 + εζ − z) +O

(
εµ4
)
,

∫ 1+εζ

z
∂z

(
w2

2

)
dz =

µ4

2

∫ 1+εζ

z
∂z

[(
∂x(u(z − βb)) +O

(
µ2
))2]

dz

=
µ4

2

∫ 1+εζ

z
∂z

[
(∂xu(z − βb)− βu∂xb)2

]
dz +O

(
εµ4
)

=
µ4

2

∫ 1+εζ

z
∂z
[
∂xu∂x(u(z − βb)2)

]
dz +O

(
εµ4
)

= µ4

∫ 1+εζ

z
∂xu∂x(u(z − βb))dz +O

(
εµ4
)

= µ4

[
(∂xu)2

(
H2

2
− (z − βb)2

2

)
− βu∂xu∂xb(1 + εζ − z)

]
+O

(
εµ4
)
.
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The pressure Π at depth z can thus be expressed at pressision O
(
εµ4
)
) as:

Π(z) = (1 + εζ − z)− µ2

[
∂xtu

(
H2

2
− (z − βb)2

2

)
− β∂tu∂xb(1 + εζ − z)

]
+O

(
εµ4
)

− εµ2u

[
∂xxu

(
H2

2
− (z − βb)2

2

)
− (2β∂xu∂xb+ βu∂xxb) (1 + εζ − z)

]

+ εµ2

[
(∂xu)2

(
H2

2
− (z − βb)2

2

)
− βu∂xu∂xb(1 + εζ − z)

]
+O

(
εµ4
)
.

(A.34)

We integrate the above pression equation to derive an explicit expression for the depth averaged
pressure:

HΠ =
H2

2
− µ2

(
∂xtu

H3

3
− β∂tu∂xb

H2

2

)

− εµ2u

(
∂xxu

H3

3
− β (2∂xu∂xb+ u∂xxb)

H2

2

)

+ εµ2

(
(∂xu)2H

3

3
− βu∂xu∂xb

H2

2

)
+O

(
εµ4
)
.

(A.35)

Using (A.34) we can obtain the expression of the pressure at the seabed Πs:

Πs = Π(z = βb) = H − µ2

(
∂xtu

H2

2
− β∂tu∂xbH

)
+O

(
µ4, εµ2

)
. (A.36)

NSW equations

Now we have all the tools to derive the nonlinear shallow-water model (NSW) approximation from
the Euler’s equations. The approximation hypothesis on which this model is based on is:

ε ≈ 1 and µ� 1,

such that all the terms of order O
(
µ2
)
or higher can be neglected. Substituting the equations

(A.32), (A.35) and (A.36) into the momentum equation (A.23), the NSW nondimensional system of
equations reads:

∂tH + ∂x(Hu) = 0

(Hu)t + ε
(
Hu2

)
x

+HHx = −βH∂xb.
(A.37)

Going back to dimensional variables and using the depth averaged flux (discharge) q = Hu, the
dimensional NSW is:

∂tH + ∂xq = 0

∂tq + ∂x

(
uq +

1

2
gH2

)
= −gH∂xb.

(A.38)

In this work, for sake of simplicity, the depth averaged horizontal velocity u notation are replaced
by u.
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Appendix B

New analytical smooth solutions for the
NSW equations

This appendix aims at giving further details on the construction of a new smooth solution, of any
arbitrary regularity, of the NSW equations. Following the methodology introduced in [163], we
consider a smooth solution v in the context of flat bottom (b = 0), so that the NSW equations
rewrite as:

∂tv + A(v)∂xv = 0,

where the Jacobian matrix writes as:

A(v) = ∇vF(v) =

(
0 1

gH − u2 2u

)
.

The eigen-analysis of the matrix A(v) leads to the following pair of eigenvalues λ± = u±√gH and
eigenvectors:

E± =

(
1

u±√gH

)
.

By diagonalizing the NSW system of equations, one finally gets the following Riemann invariants
α± = u± 2

√
gH, governed by the following conservation laws:

∂tα
± + λ±∂xα

± = 0. (B.1)

In light of the definition of the Riemann invariants, the system eigenvalues can be reformulated in
terms of α± as follows:

λ± =
α+(2± 1) + α−(2∓ 1)

4
.

To uncouple the two conservation laws (B.1), we consider a particular flow regime corresponding
to the trans-critical particular situation where α− = 0, i.e. u = 2

√
gH. The NSW equations then

finally reduce to the following very simple Burgers equation:

∂tu+
3

2
u ∂xu = 0.

By definition, the characteristic curves x(X, t) satisfy:
{ d(x(X,t)

dt = 3
2u(x(X, t), t),

x(X, 0) = X,
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u is constant all along the characteristic curve, i.e.,

du(x(x, t), t)

dt
= 0,

thus u(x(X, t), t) = u0(X). We obtain the characteristic curve equation

x(X, t) =
3

2
u0(X)t+X.

To design a CNs smooth solution, we initialize the problem with the following initial data:

η0 =
u2

0

4 g
and q0 =

u3
0

4 g
,

with the following CNs smooth initial velocity

u0(x) =

{
1 if x ≤ 0,

e−x
Ns+1 elsewhere.

The method of characteristics provides us with the expression of the analytical solution, for any
given t ∈ [0, tc[:

u(x, t) =

{
1 if x ≤ 3

2 t,

e−X
Ns+1 elsewhere,

(B.2)

where the characteristic lines read x(X, t) = 3
2 e
−XNs+1

t + X. For practical applications, to assess
the position of the characteristic line origin point X given x and t, one may use an iterative root-
finding process, as Newton’s method, to solve the non-linear problem g(X) = 0, where for given x
and t function g(X) = 3

2 e
−XNs+1

t+X − x.

The analytical solution, (B.2), is defined ∀ t ∈ [0, tc[, where the critical time at which the charac-
teristic lines cross is defined as follows:

tc =
2 e

Ns
Ns+1

3 (Ns + 1)
1

Ns+1 N
Ns

Ns+1
s

.
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Appendix C

Cut-off function

The cut-off function ϕ ∈ D(R) used in (6.23) is defined as follows:

∀x ∈ R, ϕ(x) := eψe(ε0x),

where
∀x ∈ R, ψe(x) := φe(1− |x|2),

and

∀t ∈ R, φe(t) :=





e−t
−1 if t > 0

0 elsewhere,

Note that we have supp(ψe) ⊂ B(0, 1), supp(ϕ) ⊂ [− 1
ε0
, 1
ε0

] and ε0 chosen such that we have
ϕ(x) = 1, ∀|x| ≤ 1.
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Appendix D

Definition of the elliptic object

In this work, we consider a partially immersed object Obj, which center of mass is located initially
at (xG(0), zG(0)) and which boundary is denoted by ∂Obj. Denoted respectively by a, b its major
and minor radius, we define ∂Obj as an ellipse, so that we have:

(x, y) ∈ ∂Obj ⇐⇒ (x− xG(0))2

a2
+

(z − zG(0))2

b2
= 1.

The underside of the object may be locally parameterized as follows:

∀x ∈ Ilid := [xG(0)− a, xG(0) + a], ηlid(x) := zG(0)− b
√

1− (x− xG(0))2

a2
.

We place the body at the initial time in a lake at rest of water elevation H0, so that zG(0) is defined
as, zG(0) = H0 + e0, where e0 is the height of the center of the gravity above the water surface
at initial time. Proceeding this way one can easily determine the position of the contact points at
initial time, that is:

X±0 = x±(0) = xG(0)±
√
a2 − a2e0

2

b2
.

192



Appendix E

Mass and inertia coefficient of the elliptic
object

When embedding a partly immersed object in a free-surface flow which is initially in a motionless
steady-state, one may need to partly immerse it in such a way that the whole system "fluid-object"
is also in equilibrium. In practice, for a given structure that comes with its (already defined) own
mechanical properties (center of mass MG, boundary profile ηlid, mass mo and inertia coefficient io),
this boils down to accurately define the location XG(0) to ensure the balancing of Newton’s law.
That being said, for our numerical study, we choose to consider the following simpler "inverse"
strategy: for a given object profile ηlid, and a given initial location XG(0), we define the mass and
inertia coefficients mo and io such that Newton’s law are initially balanced.
Hence, our elliptic structure may be located with (xG(0), zG(0)) = (xG(0), H0 + e0) in a motionless
steady-state flow configuration. For a given value of e0 (and assuming θ(0) = 0), this boils down to
choosing mo such that the initial acceleration of MG is equal to zero:

−mogez +

∫

I(0)

(
pi − patm

)
ni = 0. (E.1)

Considering the second equation of (E.1), for a motionless steady-state, we get:

mo =

∫

I(0)
ρ(H0 − ηlid(x)) dx, (E.2)

and the corresponding inertia coefficient is defined by:

io =
mo(a2 + b2)

5
.

At the discrete level, considering the semi-discrete equations (6.48e) or the fully-discrete equation
(6.75c), mo is defined such that the initial discrete acceleration of MG is equal to zero:

(
−mogez

0

)
= ρS

h,ng
I(0)

(
( f ?,01,h + f ?,03,h )

T ?,0
G,h

H i,n
h

)
.
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Appendix F

Newton’s second law and added-mass
effect

The pressure pi satisfies the boundary value problem (5.31), whose solvability is guaranteed by
(5.29). Then, pi satisfies:

∂xpi = − ρ

Hi

(
f ?1 + f ?2 + f ?3

)
. (F.1)

Noticing that,

∂xTG =

(
−ni

r⊥G � ni

)
, (F.2)

and by using an integration by parts and the boundary condition pi = patm on x±, we can rewrite
(5.22) as:

M0ϑ
′
G = −

(
mo g ez

0

)
+

∫

I(t)

(
∂xpi

)
T ?

G , (F.3)

by using (F.1), we have,

M0ϑ
′
G = −

(
mo g ez

0

)
− ρ

∫

I(t)

(
f ∗1 + f ∗2 + f ∗3

) T ∗G
Hi

, (F.4)

and by using the definition of f2 in (5.30), (5.22) is finally reduced to the following ODE:

(
M0 + Ma

(
H i,TG

)) d

dt
ϑG =

(
−mogez

0

)
− ρ

∫

I(t)

(
f ?1 + f ?3

) T ?
G

H i
. (F.5)

We refer the reader to [87] for a complete description.

194



Bibliography

[1] R. Abgrall. Some remarks about conservation for residual distribution schemes. Computational
Methods in Applied Mathematics, 18(3):327–351, 2018.

[2] V. Aizinger and C. Dawson. A discontinuous Galerkin method for two-dimensional flow and
transport in shallow water. Advances in Water Resources, 25:67–84, 2002.

[3] F. Alcrudo and P. Garcia-Navarro. A high-resolution godunov-type scheme in finite volumes
for the 2d shallow-water equations. Internat. J. Numer. Methods Fluids, 1993.

[4] Y. Allaneau and A. Jameson. Connections between the filtered discontinuous Galerkin method
and the flux reconstruction approach to high order discretizations. Comput. Meth. Appl. Mech.
Engrg., 200:3628–3636, 2011.

[5] V.R. Ambati and O. Bokhove. Space–time discontinuous galerkin finite element method for
shallow water flows. Journal of Computational and Applied Mathematics, 204:452–462, 2007.

[6] K Anastasiou and CT Chan. Solution of the 2d shallow water equations using the finite volume
method on unstructured triangular meshes. International Journal for Numerical Methods in
Fluids, 24(11):1225–1245, 1997.

[7] K. Anastasiou and C.T. Chan. Solution of the 2d shallow water equations using the finite
volume method on unstructured triangular meshes. Int J Numer Methods Fluids, 24:1225–
1245, 1997.

[8] L. Arpia and M. Ricchiuto. Well balanced residual distribution for the ALE spherical shallow
water equations on moving adaptive meshes. J. Comput. Phys., 405:109–173, 2019.

[9] E Audusse, F Bouchut, M.-O Bristeau, R Klein, and B Perthame. A fast and stable well-
balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on
Scientific Computing, 25(6):2050–2065, 2004.

[10] D. Balsara, C. Altmann, C.D. Munz, and M. Dumbser. A sub-cell based indicator for troubled
zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comp.
Phys., 226:586–620, 2007.

[11] S.R.M. Barros and J.W. Cardenas. A nonlinear galerkin method for the shallow-water equa-
tions on periodic domains. J. Comput. Phys., 172:592–608, 2001.

[12] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the
numerical solution of the compressible navier–stokes equations. J. Comput. Phys., 131:267–
279, 1997.

195



[13] C. Beels, P. Troch, K. De Visch, J.P. Kofoed, and G De Backer. Application of the time-
dependent mild-slope equations for the simulation of wake effects in the lee of a farm of wave
dragon wave energy converters. Renewable Energ, 35(8):1644–1661, 2010.

[14] A. Bermudez, A. Dervieux, J.-A. Desideri, and M.E. Vazquez. Upwind schemes for the two-
dimensional shallow water equations with variable depth using unstructured meshes. Comput.
Methods Appl. Mech. Engrg., 155:49–72, 1998.

[15] A. Bermudez and M.E. Vazquez. Upwind methods for hyperbolic conservation laws with source
terms. Computers & Fluids, 23(8):1049–1071, 1994.

[16] P.-E. Bernard, J.-F. Remacle, R. Comblen, V. Legat, and K. Hillewaert. High-order discon-
tinuous galerkin schemes on general 2d manifolds applied to the shallow water equations. J.
Comput. Phys., 228:6514–6535, 2009.

[17] M. Berndt, J. Breil, S. Galera, M. Kucharik, P.-H. Maire, and M. Shashkov. Two-step hybrid
conservative remapping for multimaterial arbitrary lagrangian–eulerian methods. Journal of
Computational Physics, 230(17):6664–6687, 2011.

[18] C. Berthon and F. Marche. A positive preserving high order VFRoe scheme for shallow water
equations: a class of relaxation schemes. SIAM J. Sci. Comput., 30(5):2587–2612, 2008.

[19] C. Berthon, M. M’Baye, M.H. Le, and D. Seck. A well-defined moving steady states capturing
godunov-type scheme for shallow-water model. Int. J. Finite Volume, 15, 2020.

[20] R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel, adaptive finite element methods for
conservation laws. Applied Numerical Mathematics, 14:255 – 283, 1994.

[21] O. Bokhove. Flooding and drying in finite-element discretizations of shallow-water equations.
part 2: Two dimensions. 2003.

[22] O. Bokhove. Flooding and drying in discontinuous galerkin finite-element discretizations of
shallow-water equations. part 1: One dimension. J. Sci. Comput., 22-23:47–82, 2005.

[23] W. Boscheri, R. Loubere, and M. Dumbser. Direct arbitrary-lagrangian–eulerian ader-mood
finite volume schemes for multidimensional hyperbolic conservation laws. Journal of Compu-
tational Physics, 292:56–87, 2015.

[24] U. Bosi, A.P. Engsig-Karup, C. Eskilsson, and M. Ricchiuto. A spectral/hp element depth-
integrated model for nonlinear wave–body interaction. Comp. Meth. App. Mech. Eng., 348:22–
249, 2019.

[25] F. Bouchut, J. Le Sommer, and V. Zeitlin. Frontal geostrophic adjustment and nonlinear
wave phenomena in one-dimensional rotating shallow water. part 2. high-resolution numerical
simulations. Journal of Fluid Mechanics, 514:35–63, 2004.

[26] J. Boussinesq. Théorie des ondes et des remous qui se propagent le long d’un canal rectangu-
laire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement
pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées, pages 55–108,
1872.

196



[27] K Budal. Theory for absorption of wave power by a system of interacting bodies. Journal of
Ship Research, 21(4), 1977.

[28] S. Bunya, E. J. Kubatko, J. J. Westerink, and C. Dawson. A wetting and drying treatment
for the runge-kutta discontinuous galerkin solution to the shallow water equations. Comput.
Methods Appl. Mech. Engrg, 198:1548–1562, 2009.

[29] A. Burbeau, P. Sagaut, and C.-H. Bruneau. A problem-independent limiter for high-order
Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys., 169(1):111 – 150, 2001.

[30] S. Busto, M. Dumbser, C. Escalante, N. Favrie, and S. Gavrilyuk. On high order ader dis-
continuous galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive
systems. Journal of Scientific Computing, 87(2):1–47, 2021.

[31] S. Busto, M. Dumbser, S. Gavrilyuk, and K. Ivanova. On thermodynamically compatible
finite volume methods and path-conservative ader discontinuous galerkin schemes for turbulent
shallow water flows. Journal of Scientific Computing, 88(1):1–45, 2021.

[32] A. Canestrelli, A. Siviglia, M. Dumbser, and E.F. Toro. Well-balanced high-order centred
schemes for non-conservative hyperbolic systems. applications to shallow water equations with
fixed and mobile bed. Advances in Water Resources, 32(6):634–644, 2009.

[33] G. Carrier and H. Greenspan. Water waves of finite amplitude on a sloping beach. Journal of
Fluid Mechanics, 2:97—109, 1958.

[34] E. Casoni, J. Peraire, and A. Huerta. One-dimensional shock-capturing for high-order discon-
tinuous Galerkin methods. Int. J. Numer. Meth. Fluids, 71:737–755, 2013.

[35] M.J. Castro Diaz, J.A. Lopez-Garcia, and C. Parès. High order exactly well-balanced numerical
methods for shallow water systems. J. Comput. Phys., 246:242–264, 2013.

[36] P. Caussignac and R. Touzani. Solution of three-dimensional boundary layer equations by a
discontinuous finite element method, part i: Numerical analysis of a linear model problem.
Computer methods in applied mechanics and engineering, 78(3):249–271, 1990.

[37] P. Caussignac and R. Touzani. Solution of three-dimensional boundary layer equations by a
discontinuous finite element method, part ii: Implementation and numerical results. Computer
methods in applied mechanics and engineering, 79(1):1–20, 1990.

[38] G. Chavent and B. Cockburn. The local projection-discontinuous-galerkin finite element
method for scalar conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis,
23(4):565–592, 1989.

[39] Q. Chen and I. Babuska. Approximate optimal points for polynomial interpolation of real
functions in an interval and in a triangle. Comput. Methods Appl. Mech. Engrg, 128:405–417,
1995.

[40] X.N. Chen and S.D. Sharma. A slender ship moving at a near-critical speed in a shallow
channel. J. Fluid Mech., 291:263–285, 1995.

197



[41] A. Chertock, S. Cui, A. Kurganov, and T. Wu. Well-balanced positivity preserving central-
upwind scheme for the shallow water system with friction terms. International Journal for
numerical methods in fluids, 78(6):355–383, 2015.

[42] S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of conser-
vation laws—multi-dimensional optimal order detection (mood). J. Comput. Phys., 230:4028–
4050, 2011.

[43] B. Cockburn, S. Hou, and C.-W. Shu. The runge-kutta local projection discontinuous galerkin
finite element method for conservation laws. iv. the multidimensional case. Mathematics of
Computation, 54(190):545–581, 1990.

[44] B. Cockburn, S. Hou, and C.-W. Shu. The Runge-Kutta Discontinuous Galerkin Method for
Conservation Laws V: Multidimensional Systems. J. Comp. Phys., 141:199–224, 1998.

[45] B. Cockburn, S.Y. Lin, and C.-W. Shu. Tvb runge-kutta local projection discontinuous galerkin
finite element method for conservation laws iii: One-dimensional systems. J. Comput. Phys.,
84(1):90 – 113, 1989.

[46] B. Cockburn and C.-W. Shu. Tvb runge-kutta local projection discontinuous galerkin finite
element method for conservation laws. ii. general framework. Mathematics of computation,
52(186):411–435, 1989.

[47] B. Cockburn and C.-W. Shu. The runge-kutta local projection-discontinuous-galerkin finite
element method for scalar conservation laws. ESAIM: Mathematical Modelling and Numerical
Analysis, 25(3):337–361, 1991.

[48] B. Cockburn and C.-W. Shu. The Runge-Kutta discontinuous Galerkin method for conserva-
tion laws V: Multidimensional systems. J. Comput. Phys., 141(2):199 – 224, 1998.

[49] J. N. de la Rosa and C. D. Munz. Hybrid DG/FV schemes for magnetohydrodynamics and
relativistic hydrodynamics. Comp. Phys. Commun., 222:113–135, 2018.

[50] A.J.-C. de Saint-Venant. Théorie du mouvement non-permanent des eaux, avec application
aux crues des rivières et à l’introduction des marées dans leur lit. C.R. Acad. Sci. Paris,
Section Mécanique, 73:147–154, 1871.

[51] O Delestre. Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. PhD thesis,
Université d’Orléans; Université d’Orléans, 2010.

[52] O Delestre and F Marche. A numerical scheme for a viscous shallow water model with friction.
Journal of Scientific Computing, 48(1):41–51, 2011.

[53] D. A. Di Pietro and A. Ern. Discrete functional analysis tools for discontinuous Galerkin
methods with application to the incompressible Navier-Stokes equations. Math. Comp.,
79(271):1303–1330, 2010.

[54] D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin Methods, vol-
ume 69 of Mathématiques and Applications. Springer, 2012.

198



[55] S. Diot, S. Clain, and R. Loubère. Improved detection criteria for the multi-dimensional
optimal order detection (MOOD) on unstructured meshes with very high-order polynomials.
Computers and Fluids, 64:43–63, 2012.

[56] S. Diot, R. Loubère, and S. Clain. The MOOD method in the three-dimensional case: very-
high-order finite volume method for hyperbolic systems. Int. J. Numer. Meth. Fluids, 73:362–
392, 2013.

[57] D.Kuzmin. Slope limiting for discontinuous galerkin approximations with a possibly non-
orthogonal taylor basis. Int J Numer Methods Fluids, 71(9):1178–1190, 2013.

[58] J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodríguez-Ferran. Arbitrary Lagrangian–Eulerian
Methods, The Encyclopedia of Computational Mechanics, pages 413–437. Wiley, 2004.

[59] M. Dumbser and R. Loubère. A simple robust and accurate a posteriorisub-cell finite vol-
ume limiter for the discontinuousGalerkin method on unstructured meshes. J. Comp. Phys.,
319:163–199, 2016.

[60] M. Dumbser, A. Uuriintsetseg, and O. Zanotti. On arbitrary-lagrangian-eulerian one-step
weno schemes for stiff hyperbolic balance laws. Communications in Computational Physics,
14(2):301–327, 2013.

[61] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot. A posteriori subcell limiting of the discon-
tinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys.,
278:47–75, 2014.

[62] A. Duran and F. Marche. Recent advances on the discontinuous Galerkin method for shallow
water equations with topography source terms. Comput. Fluids, 101:88–104, 2014.

[63] K.S. Erduran, V. Kutija, and C.J.M. Hewett. Performance of finite volume solutions to the
shallow water equations with shock-capturing schemes. Int J Numer Methods Fluids, 40:1237–
1273, 2002.

[64] A. Ern, S. Piperno, and K. Djadel. A well-balanced Runge-Kutta discontinuous Galerkin
method for the shallow-water equations with flooding and drying. Internat. J. Numer. Methods
Fluids, 58(1):1–25, 2008.

[65] C. Eskilsson and S.J.Sherwin. Discontinuous galerkin spectral/hp element modelling of dis-
persive shallow water systems. J. Sci. Comput., 22:269–288, 2005.

[66] M. Feistauer, V. Dolejší, and V. Kučera. On the discontinuous Galerkin method for the sim-
ulation of compressible flow with wide range of Mach numbers. Computing and Visualization
in Science, 10(1):17–27, 2007.

[67] L. Fraccarollo and E.F. Toro. Experimental and numerical assessment of the shallow water
model for two-dimensional dam-break type problems. J. Hydraulic Res., 33(6):843–863, 1995.

[68] J.M. Gallardo, C. Parés, and M Castro. On a well-balanced high-order finite volume scheme
for shallow water equations with topography and dry areas. J. Comput. Phys., 227(1):574–601,
2007.

199



[69] H. Gao and Z. J. Wang. A conservative correction procedure via reconstruction formulation
with the Chain-Rule divergence evaluation. J. Comp. Phys., 232:7–13, 2013.

[70] J.-F. Gerbeau and B. Perthame. Derivation of viscous Saint-Venant system for laminar shallow
water; numerical validation. PhD thesis, INRIA, 2000.

[71] F.X. Giraldo, J.S. Hesthaven, and T. Warburton. Nodal high-order discontinuous galerkin
methods for the spherical shallow water equations. J. Comput. Phys., 181(2):499 – 525, 2002.

[72] E. Godlewski, M. Parisot, J. Sainte-Marie, and F. Wahl. Congested shallow water model: roof
modelling in free surface flow. ESAIM Math. Model. Numer. Anal., 52(5):1679 – 1707, 2018.

[73] E. Godlewski, M. Parisot, J. Sainte-Marie, and F. Wahl. Congested shallow water model: on
floating body. SMAI Journal of Computational Mathematics, in press, 2022.

[74] S. Gottlieb, C.-W. Shu, and Tadmor E. Strong stability preserving high order time discretiza-
tion methods. SIAM Review, 43:89–112, 2001.

[75] N Goutal. Proceedings of the 2nd workshop on dam-break wave simulation. Department Lab-
oratoire National d’Hydraulique, Groupe Hydraulique Fluviale, 1997.

[76] A.E Green and P.M. Naghdi. A derivation of equations for wave propagation in water of
variable depth. Journal of Fluid Mechanics, 78(2):237–246, 1976.

[77] J.-L. Guermond, R. Pasquetti, and B. Popov. Entropy viscosity method for nonlinear conser-
vation laws. J. Comput. Phys., 230:4248–4267, 2011.

[78] H. Guillard and C. Farhat. On the significance of the geometric conservation law for flow
computations on moving meshes. Comput. Methods Appl. Engrg, 190:1467–1482, 2000.

[79] C. Hague and C. Swan. A multiple flux boundary element method applied to the description
of surface water waves. J. Comput. Phys., 228(14):5111–5128, 2009.

[80] A. Haidar, F. Marche, and F. Vilar. A posteriori finite-volume local subcell correction of
high-order discontinuous galerkin schemes for the nonlinear shallow-water equations. Journal
of Computational Physics, page 110902, 2021.

[81] R. Harris, Z.J. Wang, and Y. Liu. Efficient Quadrature-Free High-Order Spectral Volume
Method on Unstructured Grids: Theory and 2D Implementation. J. Comp. Phys., 227:1620–
1642, 2008.

[82] H.S. Hassan, K.T. Ramadan, S.N. Hanna, et al. Numerical solution of the rotating shallow wa-
ter flows with topography using the fractional steps method. Applied Mathematics, 1(02):104,
2010.

[83] C.W. Hirt, A.A. Amsden, and J.L. Cook. An arbitrary lagrangian–eulerian computing method
for all flow speed. J. Comput. Phys., 135:203–216, 1997.

[84] A. Huerta, E. Casoni, and J. Peraire. A simple shock-capturing technique for high-order
discontinuous galerkin methods. Int. J. Numer. Meth. Fluids, 69:1614–1632, 2012.

200



[85] H. T. Huynh, Z. J. Wang, and P. E. Vincent. High-order methods for computational fluid
dynamics: A brief review of compact differential formulations on unstructured grids. J. Comp.
Phys., 98:209–220, 2014.

[86] H.T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous
galerkin methods. In 18th AIAA computational fluid dynamics conference, page 4079, 2007.

[87] T. Iguchi and D. Lannes. Hyperbolic free boundary problems and applications to wave-
structure interactions. Indiana Univ. Math. J., 70:353–464, 2021.

[88] M. Ioriatti and M. Dumbser. A posteriori sub-cell finite volume limiting of staggered semi-
implicit discontinuous Galerkin schemes for the shallow water equations. Applied Numerical
Mathematics, 135:443–480, 2019.

[89] M. Iskandarani, D. B. Haidvogel, and J. P. Boyd. A staggered spectral element model with
application to the oceanic shallow water equations. Int J Numer Methods Fluids, 20(5):393–
414, 1995.

[90] J. S. Park and C. Kim. Hierarchical multi-dimensional limiting strategy for correction proce-
dure via reconstruction. J. Comp. Phys., 308:57–80, 2016.

[91] J. S. Park and S.-H. Yoon and C. Kim. Multi-dimensional limiting process for hyperbolic
conservation laws on unstructured grids. J. Comp. Phys., 229:788–812, 2010.

[92] J. Jaffre, C. Johnson, and A. Szepessy. Convergence of the discontinuous galerkin finite ele-
ment method for hyperbolic conservation laws. Mathematical Models and Methods in Applied
Sciences, 5(03):367–386, 1995.

[93] F. James, P.-Y. Lagrée, M.H. Le, and M. Legrand. Towards a new friction model for shallow
water equations through an interactive viscous layer. ESAIM: Mathematical Modelling and
Numerical Analysis, 53(1):269–299, 2019.

[94] G. Jiang and C.-W. Shu. Efficient implementation of weighted eno schemes. J. Comput. Phys.,
126(1):202–228, 1996.

[95] T. Jiang. Ship Waves in Shallow Water. Verkehrstechnik, Fahrzeugtechnik. Fortschritt-
Berichte VDIReihe, 2001.

[96] T. Jiang, R. Henn, and S.D. Sharma. Wash waves generated by ships moving on fairways of
varying topography. In 24th Symposium on Naval Hydrodynamics Fukuoka, JAPAN, 2002.

[97] F. John. On the motion of floating bodies i. Communications on Pure and Applied Mathe-
matics, 2:13–57, 1949.

[98] C. Johnson and J. Pitkäranta. An analysis of the discontinuous galerkin method for a scalar
hyperbolic equation. Mathematics of computation, 46(173):1–26, 1986.

[99] G. Kesserwani and Q. Liang. A discontinuous Galerkin algorithm for the two-dimensional
shallow water equations. Comput. Methods Appl. Mech. Engrg., 199(49-52):3356–3368, 2010.

[100] G. Kesserwani and Q. Liang. Well-balanced RKDG2 solutions to the shallow water equations
over irregular domains with wetting and drying. Comput. Fluids, 39(10):2040–2050, 2010.

201



[101] G. Kesserwani, Q. Liang, J. Vazquez, and R. Mose. Well-balancing issues related to the
RKDG2 scheme for the shallow water equations. Int. J. Numer. Meth. Fluids, 62:428–448,
2010.

[102] R.M. Kirby and S.J. Sherwin. Stabilisation of spectral / hp element methods through spectral
vanishing viscosity: Application to fluid mechanics. Comput. Methods Appl. Mech. Engrg.,
195:3128–3144, 2006.

[103] E.V. Koutandos, T.V. Karambas, and C.G. Koutitas. Floating breakwater response to waves
action using a boussinesq model coupled with a 2dv elliptic solver. J. Waterw. Port Coastal
Ocean Eng., 130:243–255, 2004.

[104] E.E. Kriezi, T. Karambas, P. Prinos, and C. Koutitas. Interaction of floating breakwaters with
waves in shallow waters. In Proc., Int. Conf. IAHR, Beijing, 2001.

[105] L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. J. Comp. Phys.,
226:879–896, 2007.

[106] D. Lannes. The water waves problem: mathematical analysis and asymptotics. Number 188 in
Mathematical Surveys and Monographs. American Mathematical Society, 2013.

[107] D. Lannes. On the dynamics of floating structures. Annals of PDE, 3(1):11, 2017.

[108] C. Lee and J.N. Newman. Computation of wave effects using the panel method. In Numerical
Models in Fluid-Structure Interaction, 2005.

[109] B. Van Leer. Towards the ultimate conservative difference scheme. V. A second-order sequel
to Godunov’s method. J. Comput. Phys., 135(2):227–248, 1997.

[110] P. Lesaint. Finite element methods for symmetric hyperbolic equations. Numerische Mathe-
matik, 21(3):244–255, 1973.

[111] P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport
equation. Publications mathématiques et informatique de Rennes, (S4):1–40, 1974.

[112] H. Li and R.-X. Liu. The discontinuous Galerkin finite element method for the 2d shallow
water equations. Mathematics and Computers in Simulation, 56:223–233, 2001.

[113] L. Li and Q. Zhang. A new vertex-based imiting approach for nodal discontinuous galerkin
methods on arbitrary unstructured meshes. Comput. Fluids, 159:316–326, 2017.

[114] C. Liang, F. Ham, and E. Johnsen. Discontinuous galerkin method with weno limiter for flows
with discontinuity. Center for Turbulence Research 335 Annual Research Briefs 2009, 2009.

[115] Q. Liang and A. G. L. Borthwick. Adaptive quadtree simulation of shallow flows with wet-dry
fronts over complex topography. Comput. Fluids, 38(2):221–234, 2009.

[116] Q. Liang and F. Marche. Numerical resolution of well-balanced shallow water equations with
complex source terms. Advances in Water Resources, 32(6):873 – 884, 2009.

[117] R. Liska, M. Shashkov, P. Váchal, and B. Wendroff. Synchronized flux corrected remapping
for ale methods. Computers & fluids, 46(1):312–317, 2011.

202



[118] I. Lomtev, R.M. Kirby, and G.E. Karniadakis. A discontinuous Galerkin ALE method for
compressible viscous flows in moving domains. J. Comput. Phys., 155(1):128–159, 1999.

[119] M. Lukacova, S. Noelle, and M. Kraft. Well-balanced finite volume evolution galerkin methods
for the shallow water equations. J. Comput. Phys., 221(1):122–147, 2007.

[120] M. Lukacova-Medvidova, S. Noelle, and M. Kraft. Well-balanced finite volume evolution
galerkin methods for the shallow water equations. Journal of Computational Physics, 221:122–
147, 01 2007.

[121] H. Ma. A spectral element basin model for the shallow water equations. J. Comput. Phys.,
109(1):133 – 149, 1993.

[122] F. Marche. Derivation of a new two-dimensional viscous shallow water model with varying
topography, bottom friction and capillary effects. European Journal of Mechanics-B/Fluids,
26(1):49–63, 2007.

[123] A. Meister and S. Ortleb. On unconditionally positive implicit time integration for the DG
scheme applied to shallow water flows. Int. J. Numer. Meth. Fluids, 76::69–94, 2014.

[124] A. Meister and S. Ortleb. A positivity preserving and well-balanced DG scheme using finite
volume subcells in almost dry regions. Appl. Math. Comp., 272:259–273, 2016.

[125] V. Michel-Dansac. A well-balanced scheme for the shallow-water equations with topography.
Computers and Mathematics with Applications, 72(3):568–593, 2016.

[126] V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher. A well-balanced scheme for the
shallow-water equations with topography. Comput. Math. Appl., 72:Comput. Math. Appl,
2016.

[127] H. Mirzaee, L. Ji, J.K. Ryan, and R.M Kirby. Smoothness-increasing accuracy-conserving
(SIAC) post- processing for discontinuous Galerkin solutions over structured triangular meshes.
SIAM J. Numer. Anal., 49(5):1899–1920, 2011.

[128] R. D. Nair, S. J. Thomas, and R. D. Loft. A discontinuous galerkin global shallow water
model. Monthly Weather Review, 133:876–888, 2004.

[129] I.M. Navon. Finite-element simulation of the shallow-water equations model on a limited-area
domain. Appl. Math. Modelling, 3, 1979.

[130] S. Noelle, N. Pankratz, G. Puppo, and J.R. Natvig. Well-balanced finite volume schemes of
arbitrary order of accuracy for shallow water flows. J. Comput. Phys., 213(2):474–499, 2006.

[131] S. Noelle, Y. Xing, and C.-W. Shu. High-order well-balanced finite volume weno schemes for
shallow water equation with moving water. J. Comput. Phys., 226(1):29–58, 2007.

[132] T.F. Ogilvie. Second-order hydrodynamic effects on ocean platforms. In Proc. Intl. Workshop
on Ship and Platform Motions, ed. R. W. Yeung, University of California, Berkeley, pages
205–265, 1983.

[133] H. T. Ozkan-Haller and J.T.Kirby. A fourier-chebyshev collocation method for the shallow
water equations including shoreline. Applied Ocean Research, 19:21–34, 1997.

203



[134] P.-O.Persson and J.Peraire. Sub-cell shock capturing for discontinuous galerkin methods.
AIAA Aerospace Sciences Meeting and Exhibit, 112, 2006.

[135] K.T. Panourgiasa and J.A. Ekaterinaris. A nonlinear filter for high order discontinuous
Galerkin discretizations with discontinuity resolution within the cell. J. Comput. Phys.,
326:234–257, 2016.

[136] J. Patera and V. Nassehi. A new two-dimensional finite element model for the shallow water
equations using a lagrangian framework constructed along fluid particle trajectories. Int. J.
Numer. Meth. Fluids, 39:4159–4182, 1996.

[137] P.-O. Persson, J. Peraire, and J. Bonet. Discontinuous Galerkin solution of the Navier–Stokes
equations on deformable domains. Comp. Meth. App. Mech. Eng., 198:1585–1595, 2009.

[138] B. Perthame and Y. Qiu. A variant of Van Leer’s method for multidimensional systems of
conservation laws. J. Comput. Phys., 112(2):370–381, 1994.

[139] C.S. Peskin. The immersed boundary method the immersed boundary method. Acta Numerica,
pages 479–517, 2002.

[140] J. Qiu and C.-W. Shu. A comparison of troubled-cell indicators for Runge-Kutta discontinuous
Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput.,
27:995–1013, 2005.

[141] J. Qiu and C.-W. Shu. Runge Kutta discontinuous Galerkin method using WENO limiters.
SIAM J. Sci. Comput., 26:907–929, 2005.

[142] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation.
Technical report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

[143] M. Ricchiuto. An explicit residual based approach for shallow water flows. J. Comput. Phys.,
280:306–344, 2015.

[144] M. Ricchiuto and A. Bollermann. Stabilized residual distribution for shallow water simulations.
J. Comput. Phys., 228:1071–1115, 2009.

[145] B. Rogers, M. Fujihara, and A. Borthwick. Adaptive Q-tree Godunov-type scheme for shallow
water equations. Int. J. Numer. Methods Fluids, 35:247–280, 2001.

[146] G. Russo and G. Puppo. High-order well-balanced schemes, in numerical methods for relax-
ation systems and balance equations. eds., Quaderni di Matematica, Dipartimento di Matem-
atica, Seconda Universita di Napoli, Italy, 2009.

[147] D. Schwanenberg and M. Harms. Discontinuous galerkin finite-element method for transcritical
two-dimensional shallow water flows. J.Hydraul. Eng., 130(5):412–421, 2004.

[148] C.-W. Shu. Tvb uniformly high-order schemes for conservation laws. Mathematics of Compu-
tation, 49(179):105–121, 1987.

[149] C.-W. Shu and S. Osher. Efficient implementation of Essentially Non-Oscillatory shock-
capturing schemes. J. Comput. Phys., 77:439–471, 1988.

204



[150] T. Song, A. Main, G. Scovazzi, and M. Ricchiuto. The shifted boundary method for hyperbolic
systems: Embedded domain computations of linear waves and shallow water flows. Technical
report, Inria, 2017.

[151] M. Sonntag and C.D. Munz. Shock capturing for discontinuous Galerkin methods using fi-
nite volume subcells. In Finite Volumes for Complex Applications VII-Elliptic, Parabolic and
Hyperbolic Problems, pages 945–953, 2014.

[152] C.E. Synolakis, E.N. Bernard, V.V. Titov, U Kanoglu, and F.I. Gonzalez. Standards, criteria,
and procedures for noaa evaluation of tsunami numerical models. NOAA Tech. Memo., OAR
PMEL-135, 2007.

[153] J. Tanner and E. Tadmor. Adaptive mollifiers - high resolution recover of piecewise smooth
data from its spectral information. Found. Comput. Math., 2:155–189, 2002.

[154] P.A. Tassi, O. Bokhove, and C.A. Vionnet. Space discontinuous galerkin method for shallow
water flows—kinetic and hllc flux, and potential vorticity generation. Advances in water
resources, 30(4):998–1015, 2007.

[155] P.D. Thomas and C.K. Lombard. Geometric conservation law and its applications to flow
computations on moving grids. AIAA Journal, 17:1030–1037., 1979.

[156] E.F. Toro. Shock-capturing methods for free-surface shallow flows. Chichester: John Wiley
and Sons, 2001.

[157] T. Utnes. A finite element solution of the shallow-water wave equations. Appl. Math. Modelling,
14:20–29, 1990.

[158] J.J.W. van de Vegt and Y. Xu. Space-time discontinuous galerkin method for nonlinear water
waves. J. Comput. Phys., 224:17–39, 2007.

[159] J.J.W. Van der Vegt and H. Van der Ven. Space-time discontinuous Galerkin finite element
method with dynamic grid motion for inviscid compressible flows. J. Comput. Phys., 182:546–
585, 2002.

[160] H. Vandeven. Family of spectral filters for discontinuous problems. J. Sci. Comput., 8:159–192,
1991.

[161] S. Vater, N. Beisiegel, and J. Behrens. A limiter-based well-balanced discontinuous galerkin
method for shallow-water flows with wetting and drying: One-dimensional case. Advances in
Water Resources, 85:1–13, 2015.

[162] C.S. Ventakasubban. A new finite element formulation for ALE (arbitrary Lagrangian Eule-
rian) compressible fluid mechanics. Int. J. Engrg. Sci., 33:1743–1762, 1995.

[163] F. Vilar. A high-order discontinuous Galerkin discretization for solving two-dimensional La-
grangian hydrodynamics. PhD thesis, Université Bordeaux I, 2012.

[164] F. Vilar. A posteriori correction of high-order discontinuous galerkin scheme through subcell
finite volume formulation and flux reconstruction. J. Comput. Phys., 387:245–279, 2019.

205



[165] F. Vilar and R. Abgrall. A Posteriori local subcell correction of high-order discontinuous
galerkin scheme for conservation laws on two-dimensional unstructured grids. SIAM J. Num.
Anal., Under preparation.

[166] F. Vilar, P.-H. Maire, and R. Abgrall. A discontinuous galerkin discretization for solving the
two-dimensional gas dynamics equations written under total lagrangian formulation on general
unstructured grids. Journal of Computational Physics, 276:188–234, 2014.

[167] F. Vilar, P.H. Maire, and R. Abgrall. Cell-centered discontinuous Galerkin discretizations
for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional
Lagrangian hydrodynamics. Comput. Fluids, 46:498–504, 2011.

[168] F. Vilar, C.-W. Shu, and P.-H. Maire. Positivity-preserving cell-centered lagrangian schemes for
multi-material compressible flows: From first-order to high-orders. part i: The one-dimensional
case. Journal of Computational Physics, 312:385–415, 2016.

[169] F. Vilar, C.-W. Shu, and P.-H. Maire. Positivity-preserving cell-centered lagrangian schemes
for multi-material compressible flows: From first-order to high-orders. part ii: The two-
dimensional case. Journal of Computational Physics, 312:416–442, 2016.

[170] P. E. Vincent, P. Castonguay, and A. Jameson. A New Class of High-Order Energy Stable
Flux Reconstruction Schemes. J. Sci. Comput., 47:50–72, 2011.

[171] S. Vukovic. Eno and weno schemes with the exact conservation property for one-dimensional
shallow water equations. J. Comput. Phys., 179(2):593–621, 2002.

[172] Z.J. Wang. High-Order Spectral Volume Method for Benchmark Aeroacoustic Problems. AIAA
Paper, 2003-0880, 2003.

[173] A. N. Williams and W. G. McDougal. Flexible floating break-water. J. Waterw. Port Coastal
Ocean Eng., 117(5):429–450, 1991.

[174] D. Wirasaet, E.J. Kubatko, C.E. Michoski, S. Tanaka, and J.J. Westerink. Discontinuous
Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal
elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Engrg., 270:113–149,
2014.

[175] X. Xia and Q. Liang. A new efficient implicit scheme for discretising the stiff friction terms in
the shallow water equations. Advances in water resources, 117:87–97, 2018.

[176] Y. Xing and C.-W. Shu. High order well-balanced finite volume WENO schemes and discon-
tinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput.
Phys., 214:567–598, 2006.

[177] Y. Xing and C.-W. Shu. A new approach of high order well-balanced finite volume WENO
schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source
terms. Commun. Comput. Phys., 1:100–134, 2006.

[178] Y. Xing and X. Zhang. Positivity-preserving well-balanced discontinuous Galerkin methods
for the shallow water equations on unstructured triangular meshes. J. Sci. Comput., 57:19–41,
2013.

206



[179] Y. Xing, X. Zhang, and C.-W. Shu. Positivity-preserving high order well-balanced discon-
tinuous galerkin methods for the shallow water equations. Advances in Water Resources,
33(12):1476 – 1493, 2010.

[180] G.Q. Yang, O.M. Faltinsen, and R. Zhao. Wash of ships in finite water depth. In Proceedings
of the FAST 2001, Southhampton, UK, 2001.

[181] M. Yang and Z.J. Wang. A parameter-free generalized moment limiter for high-order methods
on unstrucured grids. Adv. Appl. Math. Mech., 4:451–480, 2009.

[182] Y.H. Yu and L. Ye. Reynolds-averaged navier stokes simulation of the heave performance of
a two-body floating-point absorber wave energy system. Computers and Fluids, 73:104–114,
2013.

[183] X. Zhang and C.-W. Shu. On maximum-principle-satisfying high order schemes for scalar
conservation laws. J. Comput. Phys., 229(9):3091 – 3120, 2010.

[184] X. Zhang and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving high-order
schemes for conservation laws: survey and new developments. Proc. R. Soc. A, 467:2752–2776,
2011.

[185] X. Zhang, Y. Xia, and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving
high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci.
Comput., 50:29–62, 2012.

[186] J.G. Zhou, D.M. Causon, C.G. Mingham, and D.M. Ingram. The surface gradient method
for the treatment of source terms in the shallow-water equations. Journal of Computational
physics, 168(1):1–25, 2001.

[187] J. Zhu, J. Qiu, C.-W. Shu, and M. Dumbser. Runge–Kutta discontinuous Galerkin method
using WENO limiters II: Unstructured meshes. J. Comput. Phys., 227:4330–4353, 2008.

[188] J. Zhu, X. Zhong, C.-W. Shu, and J. Qiu. Runge Kutta discontinuous Galerkin method using
a new type of WENO type limiters on unstructured meshes. J. Comp. Phys., 248:200–220,
2013.

207


	Introduction
	Modeling: a floating object in shallow-water
	Numerical ingredients
	Discrete settings and basic formulations

	I Stabilization of DG through FV-Subcell correction
	An a priori hybrid DG / FV-Subcell method for the NSW equations
	Well-balanced numerical fluxes
	TVB slope-limiter
	Time marching algorithm
	Positivity-preserving limiter
	DG and FV-Subcell methods
	Numerical validations

	An a posteriori DG-LSC method for the NSW equations
	DG formulation
	DG formulation as a FV-like scheme on a sub-grid
	Time marching algorithm
	A posteriori local subcell correction
	Subcell low-order corrected FV fluxes
	Flowchart
	Admissibility criteria
	Well-balancing property
	Preservation of the water-height positivity
	Numerical validations

	An a posteriori LSC method for the NSW equations: the 2d case
	Discrete formulation
	DG well-balancing
	Sub-partition
	DG formulation as a FV-like scheme on a sub-grid
	Corrected scheme
	Positivity-preserving and well-balancing property
	Numerical validations


	II Wave interactions with a floating structure in shallow-water
	Modeling and analysis
	Free surface flow in shallow-water
	Shallow-water flow with a floating object
	A stationary partly immersed object
	A moving partly immersed object

	A robust discrete formulation for the floating body problem
	Discrete setting for DG-ALE on mesh elements and FV-ALE on subcells
	Admissibility criteria
	A posteriori LSC method for DG-ALE scheme
	Flowchart
	Numerical validations


	Conclusions and perspectives
	Appendices

