
HAL Id: tel-04136838
https://theses.hal.science/tel-04136838v2

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of correct-by-construction self-adaptive cloud
applications using formal methods

Trinh Le Khanh

To cite this version:
Trinh Le Khanh. Design of correct-by-construction self-adaptive cloud applications using formal meth-
ods. Symbolic Computation [cs.SC]. Université de Lille, 2023. English. �NNT : 2023ULILB002�.
�tel-04136838v2�

https://theses.hal.science/tel-04136838v2
https://hal.archives-ouvertes.fr

Design of Correct-by-Construction
Self-adaptive Cloud Applications using

Formal Methods

Trinh LE-KHANH

Thesis Committee:

Inria center at the University of Lille
CRIStAL laboratory

MADIS doctoral school

27 January 2023

Presented by:

Jean-Marie JACQUET Professor at University of Namur Reviewer

Marius BOZGA CNRS Research Engineer at Université
Grenoble Alpes

Reviewer

Olga KOUCHNARENKO Professor at University of Franche-Comté Jury President /
Examiner

Philippe MERLE Inria Research Director at Centre Inria de
l'Université de Lille

Supervisor

Simon BLIUDZE Inria Researcher at Centre Inria de
l'Université de Lille

Co-supervisor

Conception d'applications Cloud Auto-
adaptatives Correct-by-Construction à

l'aide de Méthodes Formelles

Trinh LE-KHANH

Comite de Thèse:

Centre Inria de l'Université de Lille
Laboratoire CRIStAL

Ecole Doctorale MADIS

27 Janvier 2023

Présenté par:

Jean-Marie JACQUET Professeur à l'Université de Namur Rapporteur

Marius BOZGA Ingénieur de recherche CNRS à l'Université
Grenoble Alpes

Rapporteur

Olga KOUCHNARENKO Professeur à l'Université de Franche-Comté Président du
jury/
Examinateur

Philippe MERLE Directeur de recherche Inria au Centre Inria
de l'Université de Lille

Directeur de
thèse

Simon BLIUDZE Chercheur Inria au Centre Inria de
l'Université de Lille

Co-encadrante

Acknowledgements

On my adventures in research, there have been moments of everything, favorable and
challenging, but at all times, I have received great help and advice from surrounding
people. First, I would like to express my deepest gratitude to my supervisors, Prof.
Philippe MERLE and Dr. Simon BLIUDZE. Their patience, timely comments, and
continuous guidance and support have made this thesis possible.

In particular, Prof. Philippe helped me point out my mistakes and gave me comments
to deal with many problems during my thesis. Working with Simon, I have learned
the value of research and how to become a good researcher. I can achieve good results
from this study with his enthusiastic advice, precise comments, and encouragement. In
addition, discussing with him in weekly meetings helped significantly improve my writing
and presenting skills. Without their help, I would have had many difficulties finishing
this thesis.

Besides my supervisors, I would like to thank all my thesis committee members for
agreeing to review my work. A special thank you to M. Jean-Marie JACQUET and M.
Marius BOZGA for being the reviewers (“rapporteurs”) of my PhD thesis and Mme.
Olga KOUCHNARENKO for being the examiner (“examinateur”) of my dissertation.
I would also like to extend my warmest thanks to my colleagues and friends in the
INRIA-SPIRALS team, Lionel, Pierre, Larisa, Rémy, Antonin, Salman, and Alexandre,
for maintaining a very enjoyable atmosphere.

In retrospect, I am indebted to all the people who looked after my first steps in
France. Special thanks to Simon, who was my guarantee in processing paper works, and
madam Trâm in the doctoral school for supporting me in the beginning and bridging me
to people who can help. My life in France has been pleasant, thanks to my Vietnamese
friends: Ms. Linh Giang, Kita Bùi, Minh Ngọc, Gia Nghị, and SvLille members, for
helping me set up my daily life when I arrived and for other help during the last three
years.

Great thanks to Prof. Phạm Ngọc Hùng for supervising my bachelor’s thesis, encour-
aging me during my PhD, and passing on to me the lesson: “Try your best, and you
will gain some things in the end”. I also thank my UET colleagues: Hảo Nguyễn, Mạnh
Hùng, Sơn Nguyễn, and Đình Dương, for your discussions and help.

ii

Last but not least, I express my heartfelt gratitude to my family members, who have
always encouraged me to pursue my passion, trusted in me, and shown me the value of
knowledge and diligence. Sweetest thanks and a huge hug to my girlfriend, Phương, for
her love and patience.

Thank you! / Merci! / Cảm ơn!
Lê Khánh Trình

Abstract

Correctly coordinating access to cloud resources across concurrent cloud software com-
ponents is essential to ensure that they satisfy user and system requirements and avoid
operational faults and deadlocks. Cloud systems must be able to self-adapt to changes
at run time without interruption. Traditional approaches do not separate the code
of component computations from their coordination, making it difficult to debug and
maintain. Changes in coordination policies require reprogramming the components and
affecting other components interacting with them. This Ph.D. thesis aims to ensure that
concurrent cloud application entities have the correct access to cloud resources through
three main contributions:

• NaturalBIP—a pseudo-natural language for specifying functional requirements.
This language is defined through an ontology-driven specification approach. This
ontology precisely defines concepts and their relationships in a specific domain.
Then, the specifications are written in pseudo-natural templates with placeholders
restricted by ontology concepts.

• NaturalBIP Compiler—a compiler to analyze and translate the specifications
written in NaturalBIP language into JavaBIP artifacts (i.e., JavaBIP GlueBuilder,
data transfers, and safety properties) and BIP connectors.

• An extension of OCCIware with coordination capabilities using JavaBIP. The
Finite State Machine (FSM) specification in OCCIware design is used to specify
the component’s behavior. Then, the coordination between them is established by
JavaBIP generated using the NaturalBIP Compiler. The BIP model is computed
from the BIP connectors and the configuration model to verify the deadlock-free
property using iFinder, a tool for the compositional detection of deadlocks at design
time.

With these contributions, I provide a toolchain to develop correct-by-construction self-
adaptive cloud applications and conclude this thesis by presenting future perspectives to
improve this work.

Résumé

Il est essentiel de coordonner correctement l’accès aux ressources cloud entre les com-
posants logiciels cloud simultanés pour s’assurer qu’ils satisfont aux exigences des utilisa-
teurs et du système et éviter les pannes opérationnelles et les blocages. Les systèmes
cloud doivent être capables de s’adapter aux changements au moment de l’exécution
sans interruption. Les approches traditionnelles ne séparent pas le code des calculs des
composants de leur coordination, ce qui rend difficile le débogage et la maintenance.
Les changements dans les politiques de coordination nécessitent de reprogrammer les
composants et d’affecter d’autres composants en interaction avec eux. Cette thèse de
doctorat vise à s’assurer que les entités applicatives cloud concurrentes ont le bon accès
aux ressources cloud à travers trois contributions principales :

• NaturalBIP—un langage pseudo-naturel pour spécifier les exigences fonctionnelles.
Ce langage est défini par une approche de spécification basée sur l’ontologie.
Cette ontologie définit précisément les concepts et leurs relations dans un domaine
spécifique. Ensuite, les spécifications sont écrites dans des modèles pseudo-naturels
avec des espaces réservés limités par des concepts d’ontologie.

• NaturalBIP Compiler—un compilateur pour analyser et traduire les spécifica-
tions écrites en langage NaturalBIP en artefacts JavaBIP (c’est-à-dire JavaBIP
GlueBuilder, transferts de données et propriétés de sécurité) et connecteurs BIP.

• Une extension d’OCCIware avec des capacités de coordination utilisant JavaBIP.
La spécification Finite State Machine (FSM) dans la conception OCCIware est
utilisée pour spécifier le comportement du composant. Ensuite, la coordination
entre eux est établie par JavaBIP généré à l’aide du compilateur NaturalBIP. Le
modèle BIP est calculé à partir des connecteurs BIP et du modèle de configuration
pour vérifier la propriété sans blocage à l’aide d’iFinder, un outil de détection
compositionnelle des blocages au moment de la conception.

Avec ces contributions, je propose une châıne d’outils pour développer des applications
cloud auto-adaptatives correctes par construction et conclus cette thèse en présentant
des perspectives futures pour améliorer ce travail.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 List of Tools and Language . 4
1.5 Structure of the Thesis . 5

2 State of the Art 7
2.1 Self-adaptive Cloud Applications . 7

2.1.1 Standards for Managing Cloud Resources 9
2.1.2 Frameworks for Managing Cloud Resources 10
2.1.3 OCCIware . 12

2.2 Model-Based Approach . 15
2.2.1 Requirement Engineering . 15
2.2.2 Component-Based Approach . 16
2.2.3 Correct-by-Construction Software Development 17

2.3 Used Component-based Frameworks and Tools 18
2.3.1 PBL . 18
2.3.2 The BI(P) Framework . 19
2.3.3 The JavaBIP Framework . 22
2.3.4 iFinder . 24

2.4 Discussion . 26

3 Domain-Specific Language for Developing Self-adaptive Applications 29
3.1 Introduction . 29
3.2 NaturalBIP Language . 31

3.2.1 Ontology Architecture . 31

viii Contents

3.2.2 NaturalBIP Syntax and Semantics 34
3.3 NaturalBIP Compiler . 42

3.3.1 Pre-processing . 43
3.3.2 Boolean Encoding . 46
3.3.3 Dual-Horn clauses generation . 47
3.3.4 JavaBIP artifacts generation . 53
3.3.5 BIP Connectors generation . 56

3.4 Summary . 58

4 Towards Exogenous Coordination of Concurrent Cloud Applications 59
4.1 Introduction . 59
4.2 Motivation & Running Example . 60
4.3 Methodology of extending coordination capability of the OCCIware design 63

4.3.1 Concepts for extending coordination capability in the OCCIware
design . 64

4.3.2 Generate artifacts for verification 68
4.3.3 Integration of JavaBIP into OCCIware implementation 71

4.4 Evaluation . 71
4.4.1 OCCIware design and configuration model 72
4.4.2 Generated artifacts from the OCCIware design 72
4.4.3 Verification using iFinder . 76
4.4.4 Implementing and Adapting to changes 77

4.5 Summary . 77

5 Experimental Validation 81
5.1 The overview of Heroku Deployer . 81
5.2 The HerokuDeployer microservice design 83

5.2.1 The structure of HerokuDeployer 83
5.2.2 Writing functional requirements in NaturalBIP language 86

5.3 Generating Java artifacts and implementing the Heroku Deployer 87
5.3.1 Artifacts for the verification . 87
5.3.2 Artifacts for the implementation 88

5.4 Verifying the deadlock-freedom using iFinder 90
5.5 Running the experiment . 93
5.6 Summary . 96

6 Conclusion 99

Bibliography 101

Appendix Heroku Requirements 111

List of Figures

1.1 The process for developing correct-by-construction systems 2
1.2 The overview of our contributions . 4

2.1 The overview of OCCIware—a model-driven vision to manage Everything
as a Service . 13

2.2 Ecore diagram of OCCIware Metamodel [132] 14
2.3 BIP connectors with the corresponding sets of interactions 21

3.1 Ontology Architecture . 32
3.2 Behavioral Ontology . 33
3.3 Domain Specific Ontology of the Tracker-Peer communication system . . 34
3.4 NaturalBIP Requirement Ontology . 35
3.5 The decomposition of requirement TP_01_register 40
3.6 The decomposition of requirement TP_02_speak 41
3.7 The process for the generation of JavaBIP artifacts from NaturalBIP

requirements . 43
3.8 The finite state machines of Tracker and Peer 43
3.9 The pre-processing of requirement HTP 44
3.10 Collecting quantifiers, actions, and conditions from the pre-processed

requirement . 45

4.1 The overview of Monitor-Switch Web application 62
4.2 Model-Driven Managing Everything as a Service with OCCIwareBIP . . 63
4.3 The OCCIwareBIP design of the Monitor-Switch Web application 65
4.4 Domain-specific ontology for the cloud domain 67
4.5 Update new property in the OCCI metamodel 67
4.6 The type of action chooseServer is spontaneous 68
4.7 Connector c in the tree structure . 70
4.8 The result of the verification using the iFinder tool 77
4.9 The user interface of the Monitor-Switch Web application 78

x List of Figures

4.10 After the current server reaches the threshold, the subsequent request will
be directed to another server . 78

5.1 The overview of HerokuDeployer microservice 82
5.2 The overview of the Monitor-Switch Web application 83
5.3 The OCCIwareBIP design of Heroku Deployer 84
5.4 Class DeployerConnector with generated template code 88
5.5 The result of the verification using the iFinder tool 94
5.6 The result after deploying the application 94
5.7 The deployed Heroku Dyno . 95
5.8 Running the microservice compute . 95
5.9 Running the Web application Monitor-Switch 96

List of Tables

2.1 Element Quantifier . 19
2.2 AI(P) and AC(P) representations of some basic interaction schemes . . 22
2.3 List of analysis methods for computing invariants 26

3.1 NaturalBIP grammar . 36
3.2 Notations used in our grammar . 37
3.3 The derivable Clauses contain Constraints 37
3.4 Grammar rules of Compound Expression 37
3.5 Element Quantifier . 39

4.1 Mapping between the Behavioral Ontology classes and the OCCIware
metamodel concepts . 66

5.1 The number of lines for writing the constraints to describe the functionality
choose Java language and the whole functionalities in deploying a Web
application onto a free Heroku Dyno . 97

Chapter 1

Introduction

1.1 Context

As modern software systems, cloud applications are inherently concurrent. Their com-
ponents run simultaneously and share access to resources such as virtual machines,
application servers, or database managers. The cloud applications need to be monitored
correctly at run time, and adaptations may be performed following the changes in avail-
able resources. When cloud applications run, there is little control over their resource
use. The applications must be able to dynamically adapt their behaviors to the changes
in cloud resource availability. Correct coordination of resource access between concur-
rent entities of cloud applications is critical for meeting user and system requirements
while avoiding operational faults and deadlocks. Cloud applications are self-adaptive by
nature, especially when users use resources in a pay-as-you-go manner. Self-adaptive
systems [105] are capable of adjusting their behavior to satisfy the expected objectives. A
self-adaptive system continuously monitors itself to deal with unforeseen circumstances,
such as changes in the system environment, system failures, new requirements, or require-
ments priority changes [116]. Continuously monitoring and assessing the correctness of
cloud systems is not trivial in the context of the application’s evolution.

In traditional development, the code coordinating entities’ access to available re-
sources is interleaved with software components’ business functionality. This complicates
application maintenance when facing policy changes. Although maintenance can be
supported by change impact analysis [82, 111, 112], this process takes time and effort.
Exogenous models and languages [32] were introduced to deal with this problem. The
exogenous approach distinctly separates computation and coordination code. This sepa-
ration enhances the reusability of components. The advantages of exogenous coordination
are supporting and permitting verification techniques to compute components’ code and
dependencies between them [25].

2 Introduction

Figure 1.1: The process for developing correct-by-construction systems

System errors found at the late phase of the development process are widespread [77]
and might cause enormous consequences in deployment. Fixing these errors frequently
or rebuilding the system can be costly and time-consuming. Furthermore, during an
application’s life cycle, several versions with new features are officially released, or the
coordination between cloud components may change according to changing requirements
from users and the system [107]. Therefore, early error detection of system requirements
and fixing them is essential in cloud development.

A method for dealing with this issue is the correct-by-construction (CbyC) approach, a
combination of formal methods and incremental developments [49]. In CbyC development,
developers create a formal model from the requirements. Based on this model, developers
can prove the requirements’ consistency and correctness. This approach’s advantage
is detecting system errors and correcting them early. Hence, minimizing the potential
system errors in the implementation phase. Figure 1.1 presents the process for developing
correct-by-construction self-adaptive cloud applications. In particular, when designing
cloud applications, designers provide a high-level abstract model (i.e., the formal model) of
the system. The formal model is analyzed to verify its functionality’s correctness through
a verification tool, which applies various techniques such as theorem proving or model
checking. Then, the verified design is used as a stable foundation for implementing cloud
applications. Unfortunately, cloud developers lack an easy-to-use framework supporting
the correct-by-construction design of self-adaptive cloud applications.

1.2 Objectives

The main objective of this thesis is to provide developers with methodologies
and tools to ensure that concurrent cloud application entities access cloud
resources correctly.

Learning to develop cloud applications using correct-by-construction development
methodologies is challenging for cloud designers unfamiliar with formal methods. The first
objective is to provide cloud designers with means to write unambiguous specifications

1.3 Contributions 3

of the system functionalities. These specifications can be used to validate the system
requirements and design using correct-by-construction techniques.
To this end, I address the following research questions:

• RQ1: How do we provide designers with means to write functional specifications
in a language that is easy to learn and use?

• RQ2: How can these specifications be used to validate the safety properties of the
target system?

The second objective is to provide tool support for an end-to-end development flow
from specifications to run time enforcement of safety properties. To reach this objective,
we address the following research questions:

• RQ3: How to support cloud designers with means to write a high-level abstract
design of a cloud application graphically?
More concretely, cloud designers should be able to describe types of behaviors
and define behavioral constraints through specifications written in an easy-to-use
language.

• RQ4: How to effectively adapt to the change in both the design and implementation
phases?

1.3 Contributions
This dissertation presents a methodology to design and implement correct-by-construction
self-adaptive cloud applications. Figure 1.2 provides an overview of our contributions.

In Chapter 3, we address RQ1 by proposing NaturalBIP, a pseudo-natural language
for specifying functional requirements. This language supports cloud designers in writing
unambiguous specifications of system functionalities. To address the RQ2, we provide
NaturalBIP Compiler, a tool taking the specification written in NaturalBIP language as
the input to generate:

• a formal model, which is used as the input for an appropriate tool to ensure that
the target system operates safely, and

• Java classes with empty functions and JavaBIP annotations. In particular, each
generated Java class represents a component in the OCCIware design. Then,
developers write those functions to complete the component’s functionalities.

In Chapter 4, we address RQ3 by extending the OCCIware implementation with the
exogenous coordination capability. OCCIware Studio is an OCCI model-driven tool built

4 Introduction

Figure 1.2: The overview of our contributions

around the OCCIware metamodel for designing, verifying, and implementing everything
as a service. We start by defining some concepts in the OCCIware framework to write
the specification in NaturalBIP language and specify the possible events occurring at
run time. We also provide a mechanism to select some specifications within the list
of available ones to achieve the customers’ current demand. Following the exogenous
approach, the computation code of components is independent of the coordination code
generated from the selected specifications. By providing a mechanism for selecting
policies and generating the corresponding implementation through NaturalBIP Compiler,
we help developers quickly update the design and implementation, hence contributing
toward answering RQ4.

1.4 List of Tools and Language

During this thesis, I developed tools and a language to reach the above objectives:

• NaturalBIP is a language to write the specification of functional requirements in a
pseudo-natural manner.

• OCCIwareBIP Studio [8] is a platform that supports developers in creating high-
level abstract designs of self-adaptive cloud applications.

1.5 Structure of the Thesis 5

• NaturalBIP Compiler [7] is a compiler for analyzing and parsing the requirements
written in the NaturalBIP language to generate JavaBIP artifacts and BIP connec-
tors.

• GeneratingBIPFile [2] is an implementation of the algorithm (see Section 4.3.2) that
computes the BIP model from the BIP connectors and the configuration model.

1.5 Structure of the Thesis
This thesis is organized as follows.

• We begin by surveying the literature on methodologies, tools, and frameworks for
developing correct-by-construction self-adaptive cloud applications in Chapter 2.
Based on the survey, we suggest directions to achieve our main objective.

• In Chapter 3, we propose the NaturalBIP language for writing specifications of
functional requirements in a pseudo-natural manner. We introduce an ontology-
driven specification approach to restrict the specification to terms an ontology
defines. The ontology provides precise concepts and the relationships between
them in the domain of the system under design. This ontology is a part of an
architecture to employ textual templates for the specifications. The specifications
written in these templates can be formalized and verified. We also present the
process used by our tool—NaturalBIP Compiler—to generate JavaBIP artifacts
and BIP connectors from the design with the selected specifications.

• In Chapter 4, we present the OCCIwareBIP framework. This framework supports
cloud developers in creating a high-level abstraction design of a cloud application
graphically. To write cloud applications specification using the NaturalBIP language,
we define a domain-specific ontology for cloud applications to express specifications
from the cloud domain by mapping concepts in the OCCIware metamodel to
classes in our proposed behavior ontology. After that, a configuration model is
created based on the OCCIwareBIP design. From the configuration model and the
OCCIwareBIP design, we propose an algorithm to generate the corresponding BIP
model and the instruction for computing the system’s invariant using an appropriate
tool. The user then defines linear safety properties to be proven. Together with
the generated instruction and BIP model, they form the input of iFinder to verify
whether these properties hold and whether the design is free from deadlocks.

• In Chapter 5, we present the experimental validation of our toolchain on the example
of Heroku Deployer—a microservice to deploy Web applications/microservices on
Heroku automatically.

6 Introduction

• We conclude the thesis in Chapter 6 with an overview of the contributions and a
discussion of the perspectives for future work.

Chapter 2

State of the Art

In this chapter, we review the context of the research question stated in the chapter
Introduction and related issues. The chapter is organized as follows. The main concept
of self-adaptive cloud applications and cloud resource management are introduced in
Section 2.1. We discuss the principles and techniques to build correct cloud applications in
Section 2.2. We introduce the existing component-based frameworks and tools supporting
the thesis in Section 2.3. Finally, we finish the chapter with a discussion of the approaches
presented in Section 2.4.

2.1 Self-adaptive Cloud Applications
In the software domain, a self-adaptive system adapts itself to the changes in the
environment or system policies. This system can self-configure, self-optimize, self-protect,
or self-recover [113].

• Self-configuration. Components automatically adjust to environmental changes
caused by policy changes, such as adding a new component or removing some
existing components. This adaptation helps to ensure the performance of the target
system.

• Self-optimization. Components can self-optimize resource access in response to
changing workloads. This improves the performance of resource usage.

• Self-protection. This is the mechanism to detect undesired behaviors (e.g.,
unauthorized access, denial-of-service attacks) and performs appropriate actions to
reduce vulnerability.

• Self-recovery. When system malfunctions are detected, the related components
perform actions to correct the system without disrupting other components.

8 State of the Art

In our work, we consider two attributes: self-configuration and self-optimization, to
develop a self-adaptive cloud application. Once the application is deployed, resource
usage and requirements control are limited. It is necessary to safely manage the resources
at run time by adapting entities’ behaviors in reaction to resource availability changes.
Components of cloud applications interact through cloud resources such as virtual
machines, networks, storage, application servers, database managers, middleware services,
etc. Thereby, cloud resource sharing can lead to cloud resource contention, such as
deadlocks, starvation, and race conditions.

• A deadlock is a situation in which two or more components are waiting for each
other to perform an action, but none can proceed because they are waiting on the
other. This can result in a standstill, where the system becomes stuck and unable
to progress.

• Starvation is a situation in which a component or process is prevented from making
progress because other components or processes constantly block it. This can
result in the component or process being unable to access the resources it needs to
complete its work.

• A race condition is a situation in which the outcome of a computation depends on
the order in which multiple components or processes access shared resources. This
can result in unpredictable and inconsistent behavior in the system.

Several approaches can be used to address coordination issues, including using syn-
chronization mechanisms such as mutex and semaphores to control access to shared
resources.

• Mutex (mutual exclusion) is a synchronization mechanism that allows only one
component or process to access a shared resource at a time. This mechanism can
prevent data/state corruption by ensuring that only one component or process can
access the resource at any time.

• Semaphore is a synchronization mechanism that allows multiple components or
processes to access a shared resource but limits the number of components or
processes that can access the resource simultaneously. This mechanism can ensure
that resources are used correctly by limiting the number of components or processes
that can access the resource simultaneously.

While these synchronization mechanisms can effectively address coordination issues, they
also have limitations. For example, using mutex and semaphore can introduce overhead
and complexity into the system and may not be appropriate for all types of systems or
situations. Additionally, these mechanisms may not always be sufficient to prevent all
coordination issues from occurring.

2.1 Self-adaptive Cloud Applications 9

2.1.1 Standards for Managing Cloud Resources
In recent years, cloud computing has become the preferred delivery model for comput-
ing resources [23]. Cloud developers can manage the resource using a cloud resource
management application programming interface (CRM-API) [91].

Several APIs (Application Programming Interfaces) are available for cloud resource
management, depending on each cloud platform. Some common cloud platforms and the
APIs they offer for resource management include:

• Amazon Web Services (AWS)1: AWS offers a variety of APIs for managing resources
on its cloud platform, including the AWS Management Console, the AWS Command
Line Interface (CLI), and the AWS SDKs (Software Development Kits).

• Microsoft Azure2: Azure offers some APIs for managing resources on its cloud
platform, including the Azure Portal, the Azure CLI (Command Line Interface),
and the Azure SDKs.

• Google Cloud Platform3: Google Cloud offers several APIs for managing resources
on its platform, including the Google Cloud Console, the Cloud SDK (Software
Development Kit), and the Cloud Client Libraries.

• IBM Cloud4: IBM Cloud offers some APIs for managing resources on its platform,
including the IBM Cloud Console, the IBM Cloud CLI (Command Line Interface),
and the IBM Cloud SDKs.

• Heroku5 is a cloud platform that enables developers to build, run, and scale
applications. It offers several APIs that can be used to manage resources on the
platform, including Heroku Platform API, Heroku Connect API, Heroku Builds
API, etc.

These APIs allow users to programmatically manage resources such as compute instances,
virtual machines, storage, networking, and databases. However, each cloud provider
proposes a CRM-API with different concepts and architectures. Therefore, the pro-
vision and management of cloud resources face problems such as compatibility while
constructing multi-cloud systems with CRM-API and the flexibility of cloud management
applications [132]. Several cloud computing standards have been developed to address
these issues.

1https://aws.amazon.com/
2https://azure.microsoft.com/
3https://cloud.google.com/
4https://www.ibm.com/cloud
5https://www.heroku.com/

https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/
https://www.ibm.com/cloud
https://www.heroku.com/

10 State of the Art

CIMI. The Distributed Management Task Force (DMTF)6 provides Cloud Infras-
tructure Management Interface (CIMI) standard [54], which focuses on managing
Infrastructure-as-a-Service (IaaS) resource life-cycle by defining a RESTful (REpre-
sentational State Transfer) API.

OVF. Open Virtualization Format (OVF) [9] is another standard provided by the
DMTF for packaging and describing software appliances running in virtual machines.
The OVF package contains one XML file describing hardware and network configuration,
disk images, etc.

CAMP. Cloud Application Management for Platforms (CAMP) is a standard for
managing Platform-as-a-Service (PaaS) resources, provided by Organization for the
Advancement of Structured Information Standards (OASIS)7. CAMP specifies operations
such as administration, monitoring tasks, and life-cycle management [84].

OCCI. Open Cloud Computing Interface (OCCI) is an open standard proposed for
managing cloud resources [18] from the Open Grid Forum (OGF)8. While CIMI, OVF,
and CAMP address a specific resource model (i.e., IaaS or PaaS), OCCI manages all the
above cloud resources by providing a RESTful API. Thus, cloud developers can specify
cloud providers using OCCI Core Model [93]—a resource-oriented model based on OCCI.
The OCCI Core Model can be extended for specific purposes and accessed via a REST
API [64].

TOSCA. Besides OCCI, the OASIS’s Topology and Orchestration Specification for
Cloud Applications (TOSCA) [34, 48] is a standard for describing the topology or
architecture of cloud applications. TOSCA provides a language for expressing cloud
applications/services and their relations (i.e., topology). The language can also describe
the operations of such applications/services independently of the cloud providers (i.e., the
orchestration). The advantage of TOSCA is allowing cloud designers to manage cloud
resources from different providers interoperably. While TOSCA focuses on providing a
description language, OCCI provides an API for managing cloud resources.

2.1.2 Frameworks for Managing Cloud Resources
Various frameworks have been developed based on cloud standards and language to
provide a unified API for managing cloud resources across multi-cloud services.

6https://www.dmtf.org/
7https://www.oasis-open.org/
8https://www.ogf.org/ogf/doku.php

https://www.dmtf.org/
https://www.oasis-open.org/
https://www.ogf.org/ogf/doku.php

2.1 Self-adaptive Cloud Applications 11

Frameworks relying on the OCCI standard. Some frameworks that support
managing OCCI resources have been provided. For example, rOCCI [12], pySSF [13]
and pyOCNI [10], OCCI4Java [11], and erocci [5] are implementations relying on Ruby,
Python, Java, and Erlang, respectively. Although the OCCI standard supports all
cloud resources, these frameworks support a specific resource model, mainly IaaS. By
contrast, OCCIware is a model-driven vision for managing Everything as a Service
(XaaS) [106, 132]. It enables modeling any type of resource by providing capabilities to
design, validate, implement, deploy, and manage XaaS using OCCI.

Similar to the OCCIware metamodel, CompatibleOne Resource Description System
(CORDS) [130] describes cloud applications on top of the OCCI standard. This model can
describe IaaS and PaaS resources or be extended as domain-specific models for managing
the resources [128]. The Advanced Capabilities for CORDS (ACCORDS) platform
executes CORDS models for describing and validating user requirements, managing
provision plans, and delivering cloud services.

Frameworks relying on the TOSCA standard. Several research and frameworks
have been proposed to exploit the TOSCA standard, such as Cloudify [3], Alien4Cloud [1],
TosKer [42], TOSCAMP [17], OpenTOSCA [33], TOSCA Studio [48] TORCH [123], etc.

• Cloudify [3] and Alien4Cloud [1] provide their own proprietary Domain-Specific
Language (DSL) based on TOSCA for modeling and deploying cloud applications.
However, providing new DSLs with constraints makes templates not portable to
various frameworks.

• By separating the definition of cloud applications and containers, TosKer [42] allows
flexibly managing cloud systems consisting of containers and running applications.
On the other hand, the separation also increases the complexity of the usage.

• TOSCAMP [17] is the combination of TOSCA and CAMP for orchestrating multi-
cloud applications using policies. Cloud designers must declare both deploying
applications and policies to ensure those policies are applied.

• OpenTOSCA [33] is a platform for deploying and managing TOSCA-modeled cloud
applications. It converts TOSCA descriptions into executable actions and sends
these actions to the cloud through the corresponding API.

• TOSCA Studio [48] is a model-driven cloud orchestration framework based on
the combination of TOSCA and OCCI. This framework maps the TOSCA-based
description into the OCCI meta-model through Ecore meta-modeling. However,
when TOSCA updates a new resource type, mapping it into OCCI is a challenge.

12 State of the Art

• TORCH [123] converts the TOSCA model of the application into the BPMN
workflow and dataflow models. These models specify the operations that can be
executed using the BPMN engine. By separating the provisioning workflow from
the invocation of the cloud services enforcing the provisioning, it takes the benefits
of maintainability and scalability.

Other frameworks. Deltacloud [4] is an implementation of the CIMI standard. It
contains API servers and drivers for several cloud providers. Deltacloud supports
constructing an interoperable solution by wrapping several clouds using the corresponding
driver. However, it has been retired since 2015.

Claudia [114] is a service management system that allows deploying and scaling
services automatically based on the infrastructure and service status. Claudia defines
these services using the Service Description File (SDF), whose syntax is based on the
OVF standard. ASCETiC [62] is an open architecture proposed in the homonymous EU
project to optimize energy cost-effectiveness in multi-cloud. It uses the OVF specification
to express information about deploying Virtual Machines on IaaS providers.

CloudML [41, 63] allows describing cloud services and application components in
provisioning cloud resources. However, CloudML is just a language to specify the de-
ployment and management concerns by textual syntax. ClOud sOlution design tooL
(COOL) [98] supports cloud developers in the design of cloud architectures from high-level
requirements. The COOL architectures can be specified using CloudML and deployed
via OCCIware.

In this thesis, we choose OCCIware because it supports managing Everything as a Service
(XaaS). The OCCIware provides a means for specifying the behaviors associated with
OCCIware entities as a Finite State Machine (FSM). These FSM specifications are
already available for cloud infrastructure elements such as virtual machines, networks,
and storage and the cloud applications elements such as databases. The specifications
make it possible to guide the deployment of cloud applications based on available cloud
resources. While such FSMs in the OCCIware models can be leveraged to monitor
and coordinate the activities of the corresponding entities, there are currently no such
mechanisms available.

2.1.3 OCCIware
Our OCCIwareBIP framework (see Chapter 4) relies on OCCIware [132]—an OCCI-
based model-driven cloud resource management framework. This framework allows cloud
architects to construct cloud computing modeling frameworks that target specific cloud
domains, such as infrastructure management, elasticity management, etc. Using a simple
resource-oriented metamodel can deal with any kind of resource-based software. It also

2.1 Self-adaptive Cloud Applications 13

drastically reduces development time by supporting the Models@run.time approach [35]
and code generation [106]. In the development phase, the OCCIware approach relies
on model-driven engineering (MDE), which allows for raising the abstraction level of
a system as a model adhering to a metamodel defines the modeling language. The
OCCIware approach consists of (i) OCCIware Studio (yellow boxes) and (ii) OCCIware
Runtime (purple boxes), as shown in Figure 2.1.

Figure 2.1: The overview of OCCIware—a model-driven vision to manage Everything as
a Service

OCCIware Studio. OCCIware Studio is built on top of Eclipse to provide a means to
design the resource of cloud applications (i.e., OCCIware design). The OCCIware design
can be represented both textually and graphically to describe components conforming
to OCCIware Metamodel concepts (Figure 2.2) and the system’s constraints. Resource,

14 State of the Art

Link, Entity, Kind, Mixin, Action, Category, and Attribute are eight OCCI core
concepts colored in gray. Resource is the center of the OCCI Core Model, and it owns
a set of links, which describe the relationship between two resources. Entity is an
abstract concept and is typed by a Kind and could be annotated by several Mixin
instances. While Kind indicates the immutable type of the OCCI entity, Mixin represents
cross-cutting attributes and actions that can be added to an OCCI entity. A Kind or
Mixin contains a set of actions describing specific behaviors. Kind, Mixin, and Action
inherit from Category to identify themselves uniquely by using a scheme and a term and
owning a set of attributes. The remaining classes can be found in [132].

Figure 2.2: Ecore diagram of OCCIware Metamodel [132]

After creating a OCCIware design, developers can trigger the generation process to
generate a set of Extension Tooling artifacts, including Documents, Formal Specifications,
Extension Connectors, etc. Extension Connectors are Java classes containing templates
for the necessary business code of the extension’s components. Developers then complete
these templates to maintain the synchronization between the designed configurations
and running ones on the OCCIware Runtime.

On the cloud developers’ side, they can create a configuration model conforming to
the OCCIware Metamodel and depending on OCCIware design. To deploy and manage
this configuration model in the cloud, applications send OCCI HTTP requests to the OC-
CIware Runtime extended with the deployed Extension Connector. OCCIware toolchain
supports generating a cURL-based script, which interacts with OCCIware Runtime via
both OCCI HTTP Protocol [100] and OCCI Text Rendering [59] to instantiate OCCI

2.2 Model-Based Approach 15

entities into an offline OCCI-compliant runtime. The OCCIware Runtime then invokes
the appropriate Extension Connector to create corresponding resources.

OCCIware Runtime. OCCIware Runtime is a generic OCCI-compliant models@run.time
support and includes a cloud resource container and tools for deployment, execution, and
supervision of Everything as a Service (XaaS).

The models in OCCIware Studio provide abstractions for managing cloud resources
but lack the ones related to coordination, which are synchronization constraints that
enforce restrictions on the interaction patterns between components [53].

2.2 Model-Based Approach

The system design aims to define the system’s architecture, components, or data to
satisfy requirements [45]. Validating the design is needed to ensure that the specification
is valid for the implementation. Natural languages are ambiguous [115]; hence, they
are not suitable for the specification of requirement to create a quality design. Formal
model-based development is the process of implementing the system correctly. In this
process, requirements are transformed into formal specifications [26], which describe the
system’s structure and behaviors together with external stimuli [133]. Then, the formal
specification will be used to verify some properties, such as consistency or completeness.

2.2.1 Requirement Engineering

An ontology-driven specification is an approach for formulating system requirements
in natural language. Numerous research on requirement engineering based on ontol-
ogy [52], including representing domain knowledge [55, 71, 127, 121, 119], formaliz-
ing requirements [85, 134], verifying some properties of the requirements (e.g., consis-
tency [129, 68, 97], completeness [47, 57, 99]), or validating requirements [129, 85, 90].
In particular, starting from an upper ontology describing the general concepts for using in
multiple contexts, developers define the domain-specific ontology to define domain-specific
concepts and their relationship.

Pattern-based specifications are textual templates filled by defined ontology concepts.
Restricting the specification to terms from an ontology removes the ambiguity of the nat-
ural language. To ensure a unique interpretation for each specification, some approaches
employ requirement boilerplates [90, 96, 88]. However, the more boilerplates, the more
effort, and time developers need to learn and apply them correctly. In our work, we
provide templates, which are structures with placeholders that ontology concepts can
replace. By defining the semantics of each template, we ensure the unique interpretation

16 State of the Art

of each specification and flexibility in writing them. Therefore, reducing the effort and
time to learning our language.

Ontology-Driven Conceptual Modeling (ODCM) [125] is the application of ontological
theories to improve the theory and practice of conceptual modeling. Conceptual modeling
represents aspects of the physical world using models for communicating, learning, and
problem-solving between users. The ability to detect and correct errors depends on
the conceptual models’ quality. However, many conceptual models lacked an adequate
specification of terminologies and semantics of the underlying models, which led to the
inconsistency of knowledge’s interpretation and use [73]. Therefore, ontologies were
introduced to provide a foundation for conceptual modeling. Ontology is “the set of
things whose existence is acknowledged by a particular theory or system of thought” [79].
Ontology can be used to evaluate conceptual modeling languages of frameworks (e.g.,
Web Ontology Language (OWL), Unified Modeling Language (UML)) [74], become the
theoretical foundations of a conceptual model [103, 75], or improve semantic interoper-
ability [70].

2.2.2 Component-Based Approach

Most programs are implemented using endogenous [32] coordination, where coordina-
tion codes are incorporated within computational codes of components. For complex
distributed systems, it is hard to debug and maintain because developers must recheck
all related components codes and other components interacting with them. Meanwhile,
in the exogenous coordination [32] approach, each component implements its functions
by only computation codes and interacts with the others through external ports. This
high level of abstraction makes it easy to reuse components to build large-scale systems
like cloud applications and tackle the difficulty in debugging and maintaining of the
development following the endogenous coordination approach.

The computation and coordination are separated in the component-based design, where
the computational entities are the system’s components. Connectors coordinate the
interaction among these components. Some formal approaches for modeling, compositing,
and analyzing connectors include the algebra of stateless connectors [43], the Tile
model [66], nets with boundaries [120], process calculi, REO [21], and BIP [28].

• The algebra of stateless connectors. Bruni et al. [43] present an algebra
consisting of five classes of basis stateless connectors. Then they used graphs
to describe concrete structures, tiles to represent operational and observational
semantics, and tick-tables to provide denotational semantics.

• The Tile model. The Tile model [66] provides a flexible and appropriate semantic
configuration for concurrent systems [44, 61]. This configuration defines operational

2.2 Model-Based Approach 17

and abstract semantics to suitable connectors classes in the algebra of stateless
connectors.

• Process calculi. Calculi such as CSP [78], CCS [95], the π-calculus [117], process
algebras [31, 30, 65], and the actor model [15] are computation models to handle
the complexities in constructing concurrent systems. Capizzi et al. [46] introduced
the aspect-oriented technique to redesign a distributed program by altering only the
coordinating aspects while keeping the computational code untouched. Scholten
et al. [118] proposed a variant of the π-calculus that allows different processes to
communicate and impose exogenous coordination through user-defined channel
types.

• The Reo coordination model. Reo Scripting Language (RSL) [21] is a declarative
channel-based language supporting exogenous coordination. This language is
used with Constraint Automata Reactive Module Language (CARML) in Vereofy
toolkit [25] to model the system. Vereofy also supports model checking of specific
components and composite systems with safety properties written in Linear Time
Logic (LTL) [108] and Branching-time Stream Logic (BTSL) [83].

• The BIP framework. Behavior-Interaction-Priority (BIP) [27, 36] is a framework
providing a mechanism for coordinating concurrent components. Correctness-
by-construction is a significant feature of BIP. Its composability can be used to
preserve the deadlock-freedom of the underlying behaviors using appropriate tools
such as iFinder [6]. JavaBIP [37, 92] is an open-source Java version of the BIP
framework that relies on Java annotations, component APIs, and specification files
to coordinate concurrent components.

Our work is based on BIP and JavaBIP frameworks to support designing, verifying, and
implementing correct-by-construction self-adaptive cloud applications.

2.2.3 Correct-by-Construction Software Development
System errors found at the late phase of the development process are popular [77].
Undetected system errors in the requirement analysis cause enormous consequences in the
deployment. Fixing these errors or rebuilding the system is costly and time-consuming.
The Correctness by Construction (CbyC) approach is a solution to address this problem.
The CbyC combines formal methods and incremental developments [49]. It starts by
constructing a formal model from the system requirements. This model can be used
as the input for model checkers or theorem provers to validate and verify whether the
design meets its specification and whether the specification meets the requirements. This
process has been applied in industry and demonstrated its effectiveness for decreasing

18 State of the Art

errors and increasing productivity in developing safety-critical applications [76, 14] or
distributed systems (e.g., cloud applications) [58].

In the implementation phase, developers choose the appropriate language to implement
the design depending on the target system. The selected language must have supporting
frameworks/tools to analyze and verify the correctness effectively. For example, BIP and
JavaBIP frameworks are suitable for developing cloud applications due to their rigorous
and unambiguous semantics. In particular, BIP allows the creation of an executable
model to verify whether the system under design satisfies a specific property (e.g., the
deadlock-freedom). To ensure the high-level abstraction of the model, only relevant
actions are represented as FSM’s transitions. All the allowed synchronizations (i.e., the
interactions) between the concurrent components are specified in BIP glue.

As modern software systems, cloud applications are inherently concurrent. Thus,
CbyC is an appropriate approach to reach our objective. In summary, the advantages of
CbyC are proven by the following:

• It addresses defects early when the changes are cheap. The testing process is to
confirm that the target system works instead of debugging it.

• It ensures the safety properties of the system through verification.

2.3 Used Component-based Frameworks and Tools

This section introduces frameworks and tools that are important to this work, including
PBL - an open-source library to handle Boolean formulas, BIP and JavaBIP frameworks,
and the iFinder - the model checker used to verify the deadlock-freedom of the target
system.

2.3.1 PBL

PBL9 is a general-purpose Python library for working with Boolean formulas. It can
parse and manipulate standard DIMACS (i.e., Discrete Mathematics and Theoretical
Computer Science) files and a proprietary language for the formulas. This library allows
programmers to quickly complete binary decision diagrams (BDD) and SAT projects by
focusing on core algorithms rather than Boolean expressions. Furthermore, the code is
written with readability in mind, so algorithms (introduced in [40]) and rendering methods
can be easily read, inspected, or modified. The Boolean formulas can be represented as a
recursive dictionary or as a list of lists with the supporting types described in Table 2.1:

9https://github.com/tyler-utah/PBL

https://github.com/tyler-utah/PBL

2.3 Used Component-based Frameworks and Tools 19

Table 2.1: Element Quantifier

Type Explanation Corresponding symbol
const constant type True or False

var variable type variables with the name including text
and numbers

neg negative type ∼
and operator “and” &

or operator “or” |

xor operator “exclusive or” XOR

impl operator “imply” =>

eqv operator “iff” <=>

“var” can be an expression or a variable. If it is a variable, it has a string name and
a number for converting to conjunctive normal form (CNF). In this form, the negative
values denote the negation of corresponding variables.

PBL provides functions to convert the Boolean formulas to the Negation Normal
Form (NNE) or CNF. Listing 2.1 shows an example with a Boolean formula (line 2) and
its corresponding CNF clauses (line 4).

Listing 2.1: A Boolean formula and its corresponding CNF clauses
1 // Boolean formula
2 ((x1 => y1 & y2) & (x2 => y2 & y3)) & ~(x3 => x4)
3 // CNF clauses
4 (~x1 | y1) & (~x1 | y2) & (~x2 | y2) & (~x2 | y3) & x3 & ~x4

In our work, we extend PBL to compute dual-Horn clauses, which are used to generate
coordination codes in BIP and JavaBIP (see Section 3.3 of Chapter 3).

2.3.2 The BI(P) Framework

Behavior-Interaction-Priority (BIP) [28] is a component-based framework for the design
of correct-by-construction systems. By superimposing three layers: behavior, interaction,
and priority, it provides a simple yet effective framework for managing concurrent
components. In the simplified version, there is no Priority. Hence, we denote it as BI(P).

The first layer (Behavior) presents atomic components with fixed activities considered
ports, which are pairwise distinct. The components are modeled as automata, in which
their transitions are labeled by sets of ports.

20 State of the Art

Definition 2.3.1 (Component)
A component C = (S, P, →) is a transition system where S is the set of states, P is the
set of ports, and →⊆ S × 2P × S is the set of transitions.

For all s, s′ ∈ S and p ∈ P , we write s
p−→ s′ to denote the labeled transition (s, p, s′)

∈ →. It means a is enabled in s (i.e., s
p−→) iff s′ exists.

The second layer (Interaction) defines a mechanism to coordinate components. Interac-
tions are sets of ports that determine the allowable synchronizations between components.

Definition 2.3.2 (Interaction)
Let P be the set of ports, an interaction over P is a non-empty set a, such that a ⊆ P .

In [38], the authors defined AI(P) to provide a clear and convenient notation for
manipulating sets of interactions.

Priorities in the third layer of BIP (Priority) establish scheduling limits and resolve
conflicts simultaneously when many interactions are enabled. We named Glue refers to
the interaction and priority layers together. In brief, the BIP engine drives the execution
of a BIP system by cyclically applying the following protocol:

1. At the current state, each component sends to the BIP engine all the possible
transitions;

2. The BIP engine selects an interaction that meets the glue requirements, conducts
the data transmission, and notifies all components involved;

3. The notified components perform the functions related to the corresponding transi-
tions.

Connectors are used to define an interaction model in a structured manner. Simon
et al. proposed a causal semantic [39] for the Algebra of Connectors AC(P) [38], which
has the syntax is defined as follows:

s ::= [0] | [1] | [p] | [x] (synchrons)
t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)
x ::= s | t | x · x

(2.1)

where p ∈ P , ‘·’ is a binary operator (called fusion), and brackets ‘[·]′’ and ‘[·]’ are unary
typing operators.

In AI(P), the fusion operator is synchronization, and a connector is the set of allowed
interactions based on two kinds of connected ports: synchron or trigger (Figure 2.3a).
The semantic of AC(P) is the function | · | : AC(P) → AI(P) defined by the following

2.3 Used Component-based Frameworks and Tools 21

rules:

|p| = p,∣∣∣∣ n∏
i=1

[xi]
∣∣∣∣ =

n∏
i=1

|xi|,∣∣∣∣ n∏
i=1

[xi]′ ·
m∏

j=1
[yj]

∣∣∣∣ =
n∑

i=1
|xi|

∏
k ̸=i

(1 + |xk|)
m∏

j=1
(1 + |yj|),

(2.2)

where ∏ is the synchronization operator and ∑ is the synchronization operator of
AI(P) for p ∈ P ∪ {0, 1} and x1, . . . , xn, y1, . . . , ym ∈ AC(P). If all connected ports
are synchrons, this is a rendezvous synchronization, i.e., a connector defines exactly
one interaction comprising all its ports (Figure 2.3b). If there are one or more trigger
ports, this is a broadcast synchronization, i.e., The connector describes the interactions
consisting of all non-empty subsets of the connected ports containing one or more trigger
ports(Figure 2.3c).

synchron trigger

(a) Port attributes

p q r
{pqr}

(b) Rendezvous

p q r p q r
{p, pq, pr, pqr}{p, q, pq, pr, qr, pqr}

(c) Broadcast

q rp

Rendezvous
{pqr}

q rp

Atomic broadcast
{p, pqr}

q rp

Coordinated broadcast
{qr, pqr}

q rp
Causality chain

{p, pq, pqr}

(d) Hierarchical connectors

Figure 2.3: BIP connectors with the corresponding sets of interactions

In the hierarchical connector, the interaction from each subconnector forms an allowed
interaction according to the port labeling of the connector nodes. For instance, the causal
chain connector in Figure 2.3d has a trigger port p and a synchron, which is a binary
broadcast subconnector q▶−−−•r. Thus the causal chain connector allows interactions
are the single port p and any combination of p with some interaction of q▶−−−•r. The
subconnector q▶−−−•r allows interactions q and qr. As a result, the allowed interactions
of the causal chain are {p, pq, pqr}. Table 2.2 shows the representation in AI(P) (column
2) and AC(P) (column 3) for some interaction schemes of Figure 2.3.

22 State of the Art

Table 2.2: AI(P) and AC(P) representations of some basic interaction schemes

AI(P) AC(P)
Rendezvous pqr pqr
Broadcast p(1 + q)(1 + r) p′qr
Atomic broadcast p(1 + qr) p′[qr]
Coordinated broadcast qr(1 + p) [qr]′p
Causality chain p(1 + q(1 + r)) p′[q′r]]

2.3.3 The JavaBIP Framework
JavaBIP [37] is a Java implementation of the BIP framework. Component behaviors in
JavaBIP can be represented by a Finite State Machine (FSM), which has a finite number
of states and a finite number of transitions between them. JavaBIP framework uses Java
annotations associated with class, method, and parameter declaration to represent the
FSMs. In particular, there are six kinds of annotations, including:

• @ComponentType: the annotation declares a component type with the FSM’s name
and initial state. For example, the below code illustrates a class Peer with the
annotation that defines the component’s name as Peer, and the initial state of its
FSM is PeerInit.

@ComponentType(initial="PeerInit", name="demo.Peer")
public class Peer{ ... }

• @Ports and @Port: these annotations declare the name and the type of transition
and usually be set before defining ComponentType. There are three types of FSM
transformations: executable, spontaneous, and internal. The enforceable transitions
are controlled by the engine through the notification of executors at each execution
cycle. Spontaneous transitions are considered environmental events of a component.
Finally, internal transitions allow a component to execute a behavior immediately.
Only enforceable transitions are used for synchronization between components.

@Ports({
@Port(name="speak", type=PortType.enforceable)

, @Port(name="listen", type=PortType.enforceable)
, @Port(name="register", type=PortType.enforceable)
, @Port(name="unregister", type=PortType.enforceable)

})
@ComponentType ...

• @Guard: this annotation is used for boolean methods to define the guard of
transitions.

2.3 Used Component-based Frameworks and Tools 23

@Guard(name="is_registered_to")
public boolean is_registered_to (@Data(name="Tracker2Peer_data") String trackerID)
{ ... }

• @Transition: declares a transition of an FSM specified by event name, source
and target states, and a guard expression (if necessary). Guard expression of a
transition can be a single guard or comprise a set of guards using three logical
operators: negation ‘!’, the conjunction ‘&’, and disjunction ‘|’.

@Transitions({
@Transition(name="speak", source="PeerInit", target="Registered", guard="

is_registered_to")
})
public void speak(){ ... }

• @Data: this annotation can be used in two aspects as follows:

– To define data provided by components, which is declared by the non-void
method (lines 1 and 2 in the below block), or

– To define data required by components, which is used as method parameters
(line 5).

1 @Data(name="Tracker2Peer_data", accessTypePort=AccessType.any)
2 public String trackerID () { ... }
3
4 @Guard(name="is_registered_to")
5 public boolean is_registered_to (@Data(name="Tracker2Peer_data") String trackerID)
6 { ... }

In [39], the authors demonstrate that the interactions set defined by a BIP connector
can be characterized by a Boolean formula that is a conjunction of implications of the
form:

p ⇒ a1 ∨ ... ∨ an (2.3)

with port p is considered as effect and each ai (i ∈ [1, n]), being a conjunction of several
ports, is considered causes. Obviously, for p to engage in an interaction, at least one ai

for i ∈ [1, n], in which all the belonging ports participate. Therefore, in an interaction,
p can participate if there is some participation of ai. To specify the constraint (2.3) in
JavaBIP, one uses the macro notation:

p Require a1; ...; an

24 State of the Art

For example, the encodings of Broadcast 2 (Figure 2.3c) is

r Require p; q

The macro Accept defines that if a port p participates in an interaction, it must be
accepted by all the participating ports in the considering interaction.

p Accept a, which formally means p ⇒
∧

q∈P \a
q ̸=p

q (2.4)

where P is the set of all ports of all the BIP components in the system.
In JavaBIP, the data transfer is performed before the execution of the transition. At

present, JavaBIP does not implement any priority except the so-called maximal progress
priority applied by default to all JavaBIP systems, where interactions larger in terms of
set inclusion are prioritized.

2.3.4 iFinder
iFinder [102] is the improvement of D-Finder [29], a tool for verifying component-based
systems described in the BIP language. iFinder proposed a compositional verification
technique to avoid the combinatorial explosion of component-based systems. It uses
interaction invariants for components instead of searching for adequate assumptions.
The interaction invariants are considered “cooperation tests” [20] because they allow
subtracting states infeasible by the semantics.

iFinder consists of two highly connected tools10: ifinder and ichecker. The first tool
computes invariants for each component using a specific “analysis” method as described
in the “.inv” file. The latter gathers all the invariants and uses them to prove properties.
It uses computed invariants in the “.inv” file and properties described in the “.pro” file
to collect information such as the properties to be proven, the components on which
the properties shall apply, the BIP model, etc. Then, ichecker generates an SMT file
containing the conjunction of the invariants and the negation of the safety properties as
input to the Z3 SMT solver [50]. If the result is unsatisfied, the properties are invalid,
and the Z3 solver returns a counter-example. Developers must refine the design and
repeat the process until satisfactory results. The input of the iFinder tool consists of
three components as follows:

1. BIP model (.bip file): contains the information of the components extracted from
the design and the configuration file.

10https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/IFinder/-/tree/
real-time-marius

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/IFinder/-/tree/real-time-marius
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/IFinder/-/tree/real-time-marius

2.3 Used Component-based Frameworks and Tools 25

Listing 2.2: The structure of the BIP model
1 package <package_name>
2 port type <Port_type>()
3 atom type <Component_name> ([parameters])
4 export port <Port_type> <Port_name>()
5 place <state_name>+
6 initial to <state_name>
7 on <Port_name> from <state_name_1> to <state_name_2> do {...}
8 end
9 connector type <Connector_name>(<Port_type> p1, <Port_type> p2, ..., <Port_type> pn)

10 [export port ep()]
11 define p1’ p2 ... pn
12 end
13 compound type <package_name> Compound()
14 component <Component_name> <Component_instances>+
15 connector <Connector_name> <Connector_instance>()
16 end
17 end

Listing 2.2 shows the template of a BIP model with the elements in “<..>” are
mandatory placeholders and “ [..] ” are optional. The BIP model starts by declaring
the package name (i.e., the name of the target system). For example, “package
monitorswitch”. After that, users define the port type used in the whole system.
By default, we set it as “Port” (line 2). Each component has an FSM presented
by an “atom type” (line 3), which uses “port” and “place” to declare the FSM’s
transitions and states, respectively (lines 4 and 5). It determines the initial state
by the keyword “initial to” (line 6). Then, all the transitions of the FSM are
defined as the pattern in line 7. Each connector is defined by a function “connector
type” with a list of child node ports (lines 9-12). If a node is a trigger, we encode it
following a symbol “prime” (i.e., ’). If the considering connector is a subconnector of
a bigger connector, it has an “export port” to interact with other ports at the same
level of the connector tree. Finally, in function “compound type” (lines 13-16), we
declare concrete instances of each atom type (i.e., component) and the concrete
connectors generated from the component instances and “connector type”.

2. Invariants instructions (.inv file): it defines instructions for computing invariants
using the analysis method. In the verification step, the invariants will be computed
based on the defined analysis methods specified for components. Table 2.3 shows
some analysis methods for computing invariants.

Taking the command “−at Switch −a the atom−control” as an example, it illustrates
an instruction that the component (-at Switch) will be analyzed by atom-control
analysis method.

26 State of the Art

Table 2.3: List of analysis methods for computing invariants

Analysis methods Explanation

trap trap invariants in Petri nets

liner linear invariants in Petri nets

control-reachability control reachability (ignoring data / clocks)

zone-reachability full zone reachability, if timed automata

atom-control (only for atomic components) direct state/place enumeration

interaction-time (only for compound components) the method of history clocks

guest user provided invariant in external file

3. Safety properties (.pro file): properties that need to be proven. Those properties
are written in the prefix way, and their variables are viewed in terms of Petri
nets [51]. Looking at the property (>=(+ m0_Init s0_Init) 2) as an example, the
variable s0_Active indicates that s0 is started in state Init (following the FSM
described in the design). Since FSM is a special case of Petri nets, the number of
tokens in any given place cannot exceed 1. The sum of the token’s number in the
corresponding two places in the clause is at least 2. It means that s0 and m0 are
both started.

2.4 Discussion
There are some requirements for building correct self-adaptive cloud applications:

1. We need a framework to create a correct-by-construction cloud design. This
framework provides a means to specify concepts of cloud components and related
compositional operators for correct-by-construction development.

2. Instead of applying coordination techniques such as monitors, message forwarding, or
semaphores, the framework should assist cloud designers in specifying coordination
by using well-founded and organized concepts.

3. The component’s behavior and coordination should be described in a high-level
abstraction to help cloud architects efficiently and correctly design complex appli-
cations.

4. The framework should be able to derive a correct and efficient implementation.

2.4 Discussion 27

This chapter presents the current state of the art of principles, concepts, and techniques
supporting our objective, including the correct-by-construction approach, cloud resource
management, and model-based approach. This thesis combines all these approaches
to develop correct-by-construction self-adaptive cloud applications. OCCIware is an
open-source model-driven framework for designing cloud applications. We address
the first requirement by introducing some new usage of OCCIware entities’ properties
(Section 4.3.1) and leveraging FSM specifications (Section 4.4.2).

We deal with the second requirement by using the BIP framework. BIP framework
provides a means to design correct-by-construction systems following the exogenous coor-
dination, which specifies the coordination separately to computation. The coordination
code is represented by BIP connectors constructed by the trigger, synchron ports, or
sub-connectors.

However, learning to use BIP is not easy for cloud developers unfamiliar with formal
methods. Thus, we proposed a language that allows cloud developers to specify require-
ments to develop correct-by-construction cloud applications using BIP (Section 3.2).
Some related research provides boilerplates for writing specifications. However, developers
must learn to use numerous boilerplates depending on the target domain. To reduce the
effort and time of the learning activity, our ontology architect provides patterns, which
are the general textual templates for specifying requirements in a pseudo-natural manner.
By introducing the NaturalBIP language, we addressed the third requirement.

We answer the fourth requirement by developing NaturalBIP Compiler (Section 3.3),
which analyzes the specification written in the NaturalBIP language to compute BIP
model and Java BIP artifacts. The BIP model are part of the input for iFinder to verify
whether the design is deadlock-free. JavaBIP artifacts, including JavaBIP GlueBuilder,
data transfers, and safety properties (represented as conditions/constraints), are used to
support developers in implementing the target cloud applications correctly.

Chapter 3

Domain-Specific Language for
Developing Self-adaptive
Applications

This chapter introduces our language called NaturalBIP for specifying behavioral con-
straints of self-adaptive applications. We begin by explaining why we decided to create
the NaturalBIP language in Section 3.1. Section 3.2 defines the ontology architecture to
construct the NaturalBIP language. The architecture includes an ontology specifying
system concepts and relationships between them, a component for describing conditions,
and a domain-specific language for naturally writing functional requirements. The Natu-
ralBIP Compiler to translate the specification to JavaBIP artifacts and BIP connectors
is presented in Section 3.3. Finally, Section 3.4 is a summary of this chapter.

3.1 Introduction
Context. Over the last decade, exogenous coordination has become a promising
approach for managing the complexity of the design and implementation of distributed
systems by controlling components from the outside. BIP is a framework supporting
exogenous coordination. It allows building complex designs from smaller designs to
enforce given properties. The challenge is applying BIP in designing cloud applications
since cloud designers have no background knowledge of BIP. To develop an application
in an exogenous approach, developers have to conduct a lot of manipulations that are
difficult to learn. In contrast, there is no baseline for specifying clear and consistent
requirements in natural language. They are written based on personal knowledge with
some implicit expectations.

To reduce the specifying and coding efforts, we propose NaturalBIP language for
developing correct-by-construction self-adaptive applications. This language applies

30 Domain-Specific Language for Developing Self-adaptive Applications

an ontology-driven specification approach for formulating functional requirements in a
pseudo-natural language. We adopt the approach proposed by Stachtiari et al. [122] using
boilerplates [80] in combination with a conceptual model. More concretely, boilerplates
are semi-completed specifications containing placeholders that can be filled by concepts
specified in the conceptual model or the ontology of the target system.
Our proposed language should be able to:

• specify functional requirements and properties in a language similar to English
sentences,

• transform the specifications to BIP connectors for verification, and

• transform the specifications to JavaBIP macro code for the implementation.

Methodology. An ontology explicitly declares concepts in a well-defined knowledge
domain. It consists of classes, their individuals, properties, relations, and axioms, forming
the overall theory that describes the ontology. Ontologies encode relationships between
concepts used in placeholders. Using the proper tool support, engineers can avoid
ambiguous references and maintain the relationships between concepts described in
requirements. We defined grammar to derive patterns that are pseudo-natural language
templates with placeholders to capture requirements. Each derived pattern is associated
with a formal representation in a logical language. By using these patterns, it addresses the
ambiguity of natural language requirements. According to [110], a boilerplate comprises
attributes and fixed syntax elements. For example, in the boilerplate (3.1), “executes” is
a fixed syntax element, while ⟨instance⟩ and ⟨action⟩ are placeholder attributes for user
input.

⟨instance⟩ executes ⟨action⟩ (3.1)

Figure 1.2 provides an overview of the methodology to support the development of
concurrent applications following the exogenous approach:

• We proposed an architecture to formulate well-defined semantic requirements by
applying an ontology-driven specification approach. In particular, we introduce an
ontology that precisely defines concepts and semantic relationships [56, 60, 89] of
components in a concurrent system and provides a grammar to write functional
requirements.

• Software designers construct the application design and write requirements using
the defined ontology and grammar in the NaturalBIP language.

3.2 NaturalBIP Language 31

• The written requirements and design model are sent to NaturalBIP Compiler to
check the syntax and semantics before generating corresponding BIP connectors
and JavaBIP artifacts for verifying and implementing the application following the
exogenous approach.

Running example. We use an example of Tracker-Peer communication to illustrate
the use of our proposed language.

Example 3.1.1 (Tracker-Peer communication [37])
Consider the Tracker-Peer example inspired by a wireless audio protocol for peer-to-peer
communication. There are two component types: Tracker and Peer. The protocol
allows an arbitrary number of peers to communicate along a random number of wireless
communication channels, and a unique tracker manages each channel. There is the list
of requirements written in natural language as follows:

• Req_log: “Every tracker shall log whenever a peer registering or unregistering to
it.”

• Req_action: “Registered peers shall either speak to the channel or listen to other
registered peers in the channel.”

• Req_constraint: “At most one registered peer shall speak at the moment.”

3.2 NaturalBIP Language
We propose an ontology architecture for specifying the functional requirements of self-
adaptive applications. Based on the proposed ontology architecture, we define the syntax
for our language in the context-free grammar form to interpret functional requirements
and parse them to generate BIP connectors.

3.2.1 Ontology Architecture
Figure 3.1 shows the architecture overview, which includes ontologies, components,
and the relationships between them to preserve the semantics and resolve conflicts
and ambiguities. The requirements are written following the semantic definitions of
NaturalBIP Requirement Ontology (NRO). The NRO imports the Domain Specific
Ontology (DSO), transitively imports Behavioral Ontology (BO), and uses DSO instances.

Behavioral Ontology (BO) defines core concepts (e.g., Subject, Action, State,
Finite State Machine (FSM)) that are used as requirements specification elements.
It plays the role of top-level ontology, supporting broad semantic compatibility among
domain-specific ontologies.

32 Domain-Specific Language for Developing Self-adaptive Applications

A Domain-Specific Ontology (DSO) contains the domain-specific classes of the system
to be designed. DSO imports all classes in the top-level ontology (i.e., the BO) and further
specializes in them. The DSO instances define corresponding instances or variables for
the corresponding Subject in DSO.

The NaturalBIP Requirement Ontology (NRO) provides sentence structures using boil-
erplate forms with placeholders to construct a well-formed requirement, thus, decreasing
specification errors.

Figure 3.1: Ontology Architecture

3.2.1.1 Behavioral Ontology (BO)

This ontology contains concepts for specifying functional requirements and their rela-
tionships, such as components, actions, states, etc. These concepts are semantically
interrelated, as shown in the conceptual overview in Figure 3.2. The BO concepts and
their relationships are introduced and explained as follows:

• A Subject represents an interactive element in a concurrent system, and it has a
finite state machine. Its status is determined by a State (via isIn property). A
Subject can inherit from another Subject via the extends property, and performs
actions.

• Each finite state machine (FSM) contains a set of transitions (i.e., TransitionSet)
and a set of states (i.e., StateSet).

• An Action denotes a behavior of a related Subject. One Action belongs to a
TransitionSet in a FSM of the Subject. The execution of Action might change
the State of the Subject (via sets property).

• Each State belongs to the StateSet of the Subject’s FSM and its value can be set
by executing an Action.

3.2 NaturalBIP Language 33

Figure 3.2: Behavioral Ontology

3.2.1.2 Domain Specific Ontology (DSO)

DSO describes the vocabulary to express a system domain. The DSO concepts and their
interactions provide a semantic model of the system’s domain. Figure 3.3 shows the DSO
for the Tracker-Peer communication system conforms to Example 3.1.1.

There are two Subjects are Tracker and Peer. Each has a FSM which contains a set
of transition and state. The TransitionSet of Tracker includes broadcast and log,
while Peer consists of register, unregister, speak, and listen. State TrackerInit
belongs to the StateSet of Tracker, and states PeerInit, Registered belong to the
StateSet of Peer.

3.2.1.3 NaturalBIP Requirement Ontology (NRO)

Figure 3.4 shows the ontology for encoding elements of requirement specifications. The
detail elements and the relations between them are defined as follows:

• The Requirement in our language is a Clause scoped by one or more Quantifiers
(via hasClause and hasQuantifier properties).

• Each Clause always has a Main clause (hasMain property) and may have a Con-
straint (hasConstraint property).

• The Main clause describes the occurrence of actions and may specify State Values
scoped by corresponding Quantifiers.

34 Domain-Specific Language for Developing Self-adaptive Applications

Figure 3.3: Domain Specific Ontology of the Tracker-Peer communication system

• The Constraint clause specifies the observation of events and may describe State
Values scoped by corresponding Quantifiers.

• Quantifier is a component determining the scope of application for specific classes
in functional requirements. A Quantifier might contain Conditions.

• Component Condition defines conditions or constraints that affect classes, in-
stances, or the relations between them.

• Observing Event, Occurring Action, and State Value: These components spec-
ify the observation of an event, the occurrence of an action, or the state’s value,
respectively.

Quantifier, Condition, Occurring Action, State Value, and Observing Event are
boilerplate syntax containing fixed elements and placeholders.

3.2.2 NaturalBIP Syntax and Semantics
The grammar rules of our language are presented in Table 3.1 with some notations defined
in Table 3.2. The grammar rules are left-associative, and non-terminal symbols will be
parsed until reaching terminal symbols. A Requirement is always scoped by at least one

3.2 NaturalBIP Language 35

Figure 3.4: NaturalBIP Requirement Ontology

Quantifier and contains a Main clause. Constraint clause is optional in a Requirement,
and if it exists, this clause will be separated from the Main clause by a comma symbol (i.e.,
“,”). As described in Table 3.1, Main is constructed by compound expressions including
Occurring Actions, State Values, or Conditions with connective operators. If the
Main clause and Constraint clause use a new variable, the new variable must be scoped
by a Quantifier. Table 3.4 illustrates operators to associate elements in a compound
expressions including: conjunction operator (i.e., “and”) and disjunction operator (i.e.,
“or”).

Table 3.3 presents all the derivable phrases of a requirement if it contains constraints.
The Constraint is defined after conjunction words (i.e., “if ”, “while”, “after”, “before”),
and the constraints expression consists of Observing Events, State Values, or
Condition with connective operators. The Quantifier is optional in Constraint.

Observing Event, Occurring Action, State Value, Condition, and Quantifier
are atomic components that contain placeholders to be filled with information adhering
to the design of the target application (i.e., DSO).

State Value. This element describes that an instance of a Subject reaches a specific
state. For example, “p is in Registered state” expresses that instance p is in the state
Registered.

36 Domain-Specific Language for Developing Self-adaptive Applications

Table 3.1: NaturalBIP grammar

⟨Requirement⟩ ::= (⟨Quantifier⟩)+ ⟨Clause⟩

⟨Clause⟩ ::= ⟨Main⟩
| ⟨Constraint⟩, ⟨Main⟩

⟨Quantifier⟩ ::= ⟨quantification of amount⟩ subject␣instance,
[⟨separator⟩ ⟨Condition⟩,]

⟨Constraint⟩ ::= ⟨conjunction⟩ ⟨constraint expression⟩

⟨Main⟩ ::= ⟨compound expression⟩

⟨compound expression⟩ ::= ⟨compound expression⟩ synchronized with ⟨compound expression⟩
| ⟨compound expression⟩ ⟨connective⟩ ⟨State Value⟩
| ⟨compound expression⟩ ⟨connective⟩ ⟨Occurring Action⟩
| [⟨Quantifier⟩] ⟨State Value⟩
| [⟨Quantifier⟩] ⟨Occurring Action⟩

⟨constraint expression⟩ ::= ⟨constraint expression⟩ ⟨connective⟩ ⟨state value⟩
| ⟨constraint expression⟩ ⟨connective⟩ ⟨Observing Event⟩
| [⟨Quantifier⟩] ⟨State Value⟩
| [⟨Quantifier⟩] ⟨Observing Event⟩

⟨State Value⟩ ::= instance is in state_value state
⟨Observing Event⟩ ::= instance executes action

| instance does not execute action

⟨Occurring Action⟩ ::= instance shall action
| instance shall not action
| (instance shall either action1 or action2 or . . . or actionn)

⟨Condition⟩ ::= ⟨Condition⟩ ⟨connective⟩ ⟨Condition⟩
| instance is phenomenon [instances]
| instance has phenomenon [instances]
| instance can do phenomenon [instances]

⟨conjunction⟩ ::= if | while | after | before

⟨connective⟩ ::= and | or

⟨quantification of amount⟩ ::= for all | for any | for every
| there is a | there is one | there are some

⟨separator⟩ ::= where | such that

Observing Event. This element is used in Constraint to specify the observation of
an event. For example, “t executes broadcast” denotes the observation of an event that

3.2 NaturalBIP Language 37

Table 3.2: Notations used in our grammar

Symbol Meaning

⟨. . . ⟩ Non-terminal symbol

[. . .] Optional symbol

. . . | . . . Disjunction logic operator

(. . .)+ The number of elements inside the parentheses is at least one

bold string The placeholder with semantics defined or deduced from the DSO

emphasis string Keyword

normal string Normal meaning in the natural language

Table 3.3: The derivable Clauses contain Constraints

Derivable Clause Explanation

If ⟨Constraint⟩, ⟨Main⟩ Globally, ⟨Main⟩ occurs next to the occurrence of
⟨Constraint⟩

While ⟨Constraint⟩, ⟨Main⟩ Globally, ⟨Main⟩ occurs during the observation of
⟨Constraint⟩

After ⟨Constraint⟩, ⟨Main⟩
| ⟨Main⟩ after ⟨Constraint⟩

Eventually, ⟨Main⟩ occurs after the occurrence of
⟨Constraint⟩

Before ⟨Constraint⟩, ⟨Main⟩
| ⟨Main⟩ before ⟨Constraint⟩

⟨Main⟩ can be observed until the occurrence of
⟨Constraint⟩

Table 3.4: Grammar rules of Compound Expression

Grammar Explanation

elem_1 and . . .and elem_n Globally, elements elem_1 to elem_n occur at
the same time.

elem_A synchronized with elem_B Globally, the occurrence of elem_A is synchro-
nized with the occurrence of elem_B.

elem_A or elem_B At the current state, elem_A or elem_B or both
can be observed.

Tracker t executes the broadcast action, where t is an instance variable of Tracker

38 Domain-Specific Language for Developing Self-adaptive Applications

(cf. Example 3.1.1).

Occurring Action. This component specifies the occurrence of actions in Main includ-
ing the execution (i.e., instance shall action, instance shall not action), and exclusive
disjunction operator (i.e., “(shall either . . . or . . .)”).

• “p shall listen” expresses that action listen of Peer p must be executed.

• “p shall not speak” expresses that action speak of Peer p must not be executed.

• “(p shall either speak or listen)” expresses that two actions speak and listen of
instance p cannot occur at the same time.

Quantifier. This element is mandatory to determine the application scope of the
requirement. The quantifier is defined in the Quantifier rule in Table 3.1 and explained
in Table 3.5. Looking at the requirement in Example 3.1.1, the quantifier for Peer can
be presented as follows:

• “For all Peer p,” expresses that for all instance p of component Peer, or

• “There are some Peer p, such that p is registered to t,” expresses a condition applied
for some instance p of component Peer, or

• “There is a Tracker t, where t is not null,” expresses another derivation of quantifiers
with a condition but uses a different separator.

Conditions. This element describes the constraints or conditions to execute actions.
The template of this block is defined in Formula (3.2):

instance is/has/can phenomenon [instances] (3.2)

Following the template, the first placeholder instance is the affected object of other
instances if they exist. The phenomenon is defined by the collocation of lexical units of
English from the Gellish English Dictionary [124] and the WordNet Lexical Database [94].
For examples, “p has no capacity”, “p is registered to t”.

Let us consider the requirements in Example 3.1.1, the functional requirements for
Req_log can be written in our language as two following requirements:

• TP_01_register: “For any Peer p, there is a Tracker t, if p executes register, t
shall log.”

3.2 NaturalBIP Language 39

Table 3.5: Element Quantifier

Blocks Explanation Values

⟨quantification of amount⟩ Mandatory. To specify the
scope for applying the re-
quirement. There are two
types of ⟨quantification of
amount⟩: universal quanti-
fier and existential quanti-
fier.

Universal quantifier: “all”,
“any”, “every”
Existential quantifier: “a”,
“one”, “some”.

subject Mandatory. Subjects af-
fected by the quantifier.

The value of this block
is mapped from the corre-
sponding Subject in the
BO.

instance Mandatory. The specific
variable of the subject.

This value can be inferred
from the value of the
Subject in BO and vocab-
ulary in LO.

⟨separator⟩ Optional. Indicator to
start describing conditions
related to the quantifier’s
instance.

“where”, “such that”.

⟨Condition⟩ Optional. It appears fol-
lowing separators to de-
scribe the condition(s) of
variables.

• TP_01_unregister: “For any Peer p, there is a Tracker t, such that p is registered
to t, if p executes unregister, t shall log.”

• TP_01_mutex: “For any Peer p, there is a Tracker t, if t executes log, p shall
register or p shall unregister.”

Figure 3.5 illustrates the decomposition of the requirement TP_01_register. The
requirement is decomposed following the defined grammar until the terminal symbol (i.e.,
Quantifier, Observing Event, Occurring Action, or Condition) is reached. The
specific values (i.e., the bold strings in the grammar) are mapped or referred from
the DSO and DSO instance. In particular, requirement TP_01_register has Main
and Constraint clauses and scopes them by Quantifier-01 and Quantifier-02. The
Constraint clause specifies the observation of event “p executes register”, and the Main

40 Domain-Specific Language for Developing Self-adaptive Applications

clause specifies the occurrence of action “t shall log”. DSO instances contains the
values deduced from the DSO’s concepts. Then, the placeholders use those values to
complete the requirements.

Figure 3.5: The decomposition of requirement TP_01_register

The original requirements Req_action and Req_constraints are related to the
action speak of subject Peer and action broadcast of subject Tracker. Therefore, we
write those requirements in NaturalBIP as follows:

• TP_02_mutex: “For any Peer p, (p shall either speak or listen).”

• TP_02_speak: “For any Peer p, there is a Tracker t, such that p is registered to
t, if t executes broadcast, p shall speak and for all Peer p1, where p1 is registered
to t and p1 is different with p, p1 shall not speak.”

• TP_02_listen: “For any Peer p, there is a Tracker t where p is registered to t, if
t executes broadcast, p shall listen or for all Peer p1, such that p1 is registered to t
and p1 is different with p, p1 shall listen.”

TP_02_mutex describes a constraint that a specific instance of Peer cannot speak and
listen at a time. In the case that there are more than one instance of Peer registered
to the same Tracker’s instance, TP_02_speak states that at most one instance of
Peer can speak, while TP_02_listen claims that more than one instance of Peer can
listen in a specific moment. The three requirements have the same TP_02 part in
their name because they associate each other following the description in Req_action
and Req_constraint in Example 3.1.1.

Figure 3.6 presents the decomposition of requirement TP_02_speak. This require-
ment includes Main and Constraint clauses. Both of them are affected by quantifier-01

3.2 NaturalBIP Language 41

Figure 3.6: The decomposition of requirement TP_02_speak

42 Domain-Specific Language for Developing Self-adaptive Applications

and quantifier-02. quantifier-02 contains condition-01, which describes the con-
straint between variables p and t. The Constraint describes the observation of event
event-01, which expresses that instance t of Tracker executes action broadcast. After
observing that event, the Main clause contains a compound expression expressions-01,
which specifies the occurrence of action action-02 and a sub-compound expression (i.e.,
expressions-02). expressions-02 includes quantifier-03 and action-03, where
quantifier-03 expresses variable p1 and a conjunction of two conditions, condition-02
and condition-03; and action-03 expresses that p1 shall not speak.

3.3 NaturalBIP Compiler

In Section 3.2, we have proposed the NaturalBIP language for writing functional require-
ments for cloud applications. In this section, we propose an automated generation of
the artifacts, including the JavaBIP macro, data transfers, and constraints from the
functional requirements written in the NaturalBIP language. Figure 3.7 shows the overall
process of the NaturalBIP compiler step by step, together with the corresponding input
and output data:
Input: (i) the application design, and (ii) the NaturalBIP requirements
Output: JavaBIP artifacts for the implementation

• Step 1 Pre-processing: Analyzing the NaturalBIP requirements to get the informa-
tion of Quantifier, Interaction, and Condition; and skolemizing the requirements
(cf. Section 3.3.1).

• Step 2 Boolean Encoding: Generating Boolean formulas from requirements by
handling patterns.

• Step 3 Conjunctive Normal Form (CNF) Transformation: Using PBL—an open-
source tool for handling Boolean formulas following algorithms proposed in [40]—to
generate CNF clauses (see Section 2.3.1).

• Step 4 Dual-Horn Generator : Calculating dual-Horn clauses from the CNF obtained
in the previous step. The dual-Horn clauses present the interactions between the
system’s components [39].

• Step 5 BIP Generator : Generating artifacts, including JavaBIP macros, data
transfers, conditions, and BIP connector in the form of the algebra of connectors
(AC) [39].

3.3 NaturalBIP Compiler 43

Figure 3.7: The process for the generation of JavaBIP artifacts from NaturalBIP require-
ments

3.3.1 Pre-processing
Pre-processing converts the requirements written in NaturalBIP into input for PBL (i.e.,
Boolean formulas). This process is performed in the following steps:

1. Pre-processing of NaturalBIP requirements.

The output of the NaturalBIP compiler is the JavaBIP macro, which describes the
interaction between system components through actions. Therefore, requirements
written in the NaturalBIP contain descriptive information about some components’
states that must be transformed into the corresponding actions. Based on the FSM
specification in the design, the transformation converts state description to the
disjunction of actions leading to that state. For example,

Figure 3.8: The finite state machines of Tracker and Peer

To depict the use of some special expressions, consider a hypothetical requirement
named HTP (i.e., hypothetical Tracker-Peer example) that specifies “For any
Tracker t, while t is in TrackerInit, there is a Peer p, where p is registered to
t, (p shall either speak or listen) and p shall not unregister.”, where Peer and
Tracker are components having the corresponding FSMs described in Figure 3.8.

44 Domain-Specific Language for Developing Self-adaptive Applications

State TrackerInit has two incoming transitions: log and broadcast. Thus,
state TrackerInit is replaced with two actions log and broadcast and “while”
connective is replaced by “if ” because “while” specifies the state values. The
original requirement will be rewritten as “For any Tracker t, if (t shall log or t
shall broadcast), there is a Peer p, where p is registered to t, (p shall either speak
or listen) and p shall not unregister.” (cf. Step 1 in Figure 3.9).
The expression “either ...or ...” in our language will be presented by “A XOR
B” in Boolean formulas. The requirement HTP becomes “For any Tracker t, if (t
shall log or t shall broadcast), there is a Peer p, where p is registered to t, (p shall
speak XOR p shall listen) and p shall ~unregister.” (cf. steps 2 and 3 in Figure 3.9).

Figure 3.9: The pre-processing of requirement HTP

2. Collecting components
After being pre-processed, the requirement is analyzed to extract quantifiers and
actions following the corresponding grammar rules in Table 3.1 (cf. steps (1) and
(2) in Figure 3.10). To collect the conditions, first, remove the quantifiers and
actions obtained in steps (1) and (2) from the request (cf. step (3) in Figure 3.10).
Then split the remaining string with the “and”/“or” operators as keywords; remove
the keywords (i.e., if, while) and parentheses to get the conditions (cf. step (4) in
Figure 3.10). Finally, actions and conditions are converted to variables for Boolean
formulas and updated into the requirement (cf. step (5) in Figure 3.10).

3. Skolemization
Skolemization is a process of removing quantifiers from a predicate logic formula.

3.3 NaturalBIP Compiler 45

Figure 3.10: Collecting quantifiers, actions, and conditions from the pre-processed
requirement

Assume that a requirement REQ has an existential quantifier describing the instance
ei of a class C and a universal quantifier describing instance ui of class C ′. If the
existential quantifier is inside the universal quantifier, ei will be replaced with a
new value composed by the concatenation of the requirement name, instance name
in the universal quantifier, and its name (cf. equation(1.4)). In particular, ei will
be replaced with REQuiei.

ei =

REQuiei, if ei is bounded in ui.

ei, otherwise.
(3.3)

In this way, the instance p in the hypothetical example HTP is replaced with
HTPtp. Thus, the HTP becomes: “if (t_log or t_broadcast), HTPtp_is_registered_to_t
and (HTPtp_speak XOR HTPtp_listen) and ~HTPtp_unregister.” (cf. step (5) in
Figure 3.10).

Regarding the requirement TP_02, which includes three related requirements
TP_02_mutex, TP_02_speak and TP_02_listen, its Boolean formulas after the
pre-processing are shown in Listing 3.1:

Listing 3.1: req_file contains the Boolean formulas of requirement TP_02

46 Domain-Specific Language for Developing Self-adaptive Applications

1 // File : TP_02.txt
2 TP_02_speak = ((p_speak => (p1_is_registered_to_TP02speakptt & p1_is_different_with_p & ~p1_speak &

p_is_registered_to_TP02speakptt & TP02speakptt_broadcast)))
3 TP_02_mutex = (p_speak XOR p_listen)
4 TP_02_listen = ((p_listen => (p_is_registered_to_TP02listenptt & TP02listenptt_broadcast))) & ((p1_listen => (

p1_is_registered_to_TP02listenptt & p1_is_different_with_p & p_is_registered_to_TP02listenptt &
TP02listenptt_broadcast)))

5 Main_Exp: TP_02_speak & TP_02_mutex & TP_02_listen

3.3.2 Boolean Encoding

Boolean Encoding is the process of converting requirements containing Constraint
clauses (i.e., “if”, “while”, “after”, and “before”) into Boolean formulas. Among grammar
rules in Table 3.3, the pre-processing step converted “while” clause to “if” clause. Assume
that the compound expression in Main contains a disjunction of n sub-expression (i.e.,∨n

i=1 expri) and expri are conjunctions of elements state value, observing event,
occurring action, or Condition (as shown in Table 3.1). We denote the conjunctions
as ∧|expri|

j=1 elmi
j

We write Elm to denote an element in the Main clause. The grammar rules for “if”,
“while”, and “after” are presented in formulas (3.4):

if/after Constraint, Main

≡ if/after Constraint,
n∨

i=1

|expri|∧
j=1

elmi
j

(3.4)

This pattern will be converted to Boolean formulas as equation (3.5):

n∧
i=1

|expri|∧
j=1

(elmi
j =⇒ Constraint ∧

∧
j′ ̸=j

elmi
j′) (3.5)

As mentioned in Table 3.3, the grammar “Before Constraint, Main” states that
“globally, Constraint is absent in the occurrence of Main”, so the corresponding Boolean
formula for this grammar is shown in formula (3.6):

n∧
i

|expri|∧
j

(elmi
j =⇒ ∼Constraint ∧

∧
j′ ̸=j

elmi
j′) (3.6)

3.3 NaturalBIP Compiler 47

3.3.3 Dual-Horn clauses generation
Given a formula F in conjunctive normal form (CNF), where F = C1 ∧ C2 ∧ · · · ∧ Cn

and Ci = ¬x1 ∨ . . . ¬xm ∨ y1 ∨ · · · ∨ yk, where ¬xj(j ∈ [1, m]) are negative literals and
yl(l ∈ [1, k]) are positive literals, the dual-Horn clauses are computed as follows:

1. For each clause Ci in F :

• If Ci contains at most one negative literal (i.e., m <= 1), keep Ci

• Otherwise, split Ci into the disjunction of multiple clauses. Ci = C1
i ∨· · ·∨Cm

i =
(¬x1 ∨ y1 · · · ∨ yk) ∨ · · · ∨ (¬xm ∨ y1 · · · ∨ yk)

2. Conjoin the resulting clauses with the logical “and” (i.e., ∧) operator to obtain the
final formula. Assume that clause C1 contains more than one negative literal, the
final formula F = (C1

1 ∧ C2 ∧ · · · ∧ Cn) ∨ · · · ∨ (Cm
1 ∧ C2 ∧ · · · ∧ Cn) is the disjunction

of dual-horn clauses.

The process to generate dual-Horn clauses [39] consists of the following steps:

• Step 1: generate CNF clauses using PBL library.

Listing 3.2 shows CNF clauses generated from Boolean expressions (described in
Listing 3.1) using the PBL library.

Listing 3.2: CNF clauses generated from the Boolean formulas in req_file in Listing 3.1
1 // 1. generated CNF clauses
2 (~(p_speak) | p1_is_registered_to_TP02speakptt)
3 & (~(p_speak) | p1_is_different_with_p)
4 & (~(p1_speak) | ~(p_speak))
5 & (~(p_speak) | p_is_registered_to_TP02speakptt)
6 & (~(p_speak) | TP02speakptt_broadcast)
7 & (p_speak | p_listen)
8 & (~(p_speak) | p_speak)
9 & (~(p_listen) | p_listen)

10 & (~(p_speak) | ~(p_listen))
11 & (~(p_listen) | p_is_registered_to_TP02listenptt)
12 & (~(p_listen) | TP02listenptt_broadcast)
13 & (~(p1_listen) | p1_is_registered_to_TP02listenptt)
14 & (~(p1_listen) | p1_is_different_with_p)
15 & (~(p1_listen) | p_is_registered_to_TP02listenptt)
16 & (~(p1_listen) | TP02listenptt_broadcast)

• Step 2: synthesize clauses that have the same negative elements

Considering any two different clauses cnf_clauses[i] and cnf_clauses[j] in the
given CNF formula, we denote by cnf_clauses[i].neg and cnf_clauses[j].neg the
sets of negative variables and by cnf_clauses[i].pos and cnf_clauses[j].pos the

48 Domain-Specific Language for Developing Self-adaptive Applications

sets of positive variables in cnf_clauses[i] and cnf_clauses[j], respectively. If two
negative sets of cnf_clauses[i] and cnf_clauses[j] are equivalent (line 10 in Algo-
rithm 1), assign cnf_clauses[i].neg to temp_clauses.neg. The temp_clauses.pos
is the Cartesian product of cnf_clauses[i].pos and cnf_clauses[j].pos (lines 12 and
13). If the temp_clauses.pos is not empty, add it into the synthesized_cnf_clauses
(lines 17-19). For example, the two CNF clauses “(~x1 | y1 | y2) & (~x1 | z1 | z2)”
will be replaced by “~x1 | y1&z1 | y1&z2 | y2&z1 | y2&z2”.

Algorithm 1 Combine clauses having the same negative variables
Require: cnf_clauses ▷ given set of CNF clauses
Ensure: synthesized_cnf_clauses

1: synthesized_cnf_clauses := {}
2: combined_clauses := {}
3: i := 0 ▷ counter variable for iteration
4: while i < cnf_clauses.size() do
5: if cnf_clauses[i] ∈ combined_clauses then ▷ ignore combined clauses
6: continue
7: end if
8: initialize temp_clauses ▷ create a temporary clause
9: for j ∈ [i + 1, cnf_clauses.size()] do

10: if cnf_clauses[i].neg = cnf_clauses[j].neg then
11: temp_clause.neg := cnf_clauses[i].neg
12: cnf_clauses[i].pos := cnf_clauses[i].pos × cnf_clauses[j].pos
13: temp_clause.pos := cnf_clauses[i].pos
14: combined_clauses := combined_clauses ∪ {cnf_clauses[j]}
15: end if
16: end for
17: if temp_clause.pos.size() != 0 then
18: synthesized_cnf_clauses := synthesized_cnf_clauses ∪ temp_clause
19: end if
20: i := i+1
21: end while

Listing 3.3: cnf_clauses after being synthesized
1 (~(p_speak) | p1_is_different_with_p & TP02speakptt_broadcast & p_is_registered_to_TP02speakptt &

p1_is_registered_to_TP02speakptt)
2 & (~(p_listen) | p_is_registered_to_TP02listenptt & TP02listenptt_broadcast)
3 & (~(p1_listen) | p1_is_different_with_p & p1_is_registered_to_TP02listenptt & TP02listenptt_broadcast &

p_is_registered_to_TP02listenptt)
4 & (~(p1_speak) | ~(p_speak))
5 & (p_speak | p_listen)
6 & (~(p_speak) | ~(p_listen))

3.3 NaturalBIP Compiler 49

• Step 3: collect conditions to relevant negative actions
We introduce a causal rule (Definition 3.3.1) that provides mechanism for computing
BIP connectors [39].

Definition 3.3.1 (Causal rule [39])
A causal rule is a B[P] formula E =⇒ C, where E (the effect) is a constant true
or an action variable p ∈ P ; and C (the cause) is a constant (true or false) or a
disjunction of interactions, i.e., ∨n

i=1 ai where, for i ∈ [1, n], ai are conjunctions of
action variables (i.e., a ∈ 2P).

There are three types of causal rules with constants:

1. true =⇒ a expresses that the considered interaction contains a,
2. The form p =⇒ true are satisfied by all interactions, and
3. p =⇒ false expresses that the considered interaction does not contain p.

Definition 3.3.2 (Interaction)
An interaction a ∈ 2P satisfies a formula R ∈ B[P] (denoted a |= R) iff the
corresponding boolean valuation satisfies R. A term x ∈ AI(P) (i.e., algebra of
interactions [38]) satisfies R (denoted x |= R) iff all interactions belonging to x

satisfy R, that is

x |= R
def⇐⇒ ∀a ∈ x, a |= R

A non-constant causal rule can be represented in the form p ∨ ∨n
i=1 ai where, p is

a variable belonging to the action set P of the whole system (i.e., p ∈ P), and
ai with i ∈ [1, n] are conjunctions of action variables (i.e., a ∈ 2P). Therefore, if
one of the negative variables in a clause is a condition, it must be combined with
the related negative action by De Morgan’s laws [104]. For example, consider the
clause “~p_speak | ~p1_listen | ~p_is_registed_to_t”, where “p_is_registed_to_t” is
a condition and the action “p_speak” is related to the condition “p_is_registed_to_t”
because they have the same instance value “p”. Thus, they must be combined
to have a new clause “~(p_speak &p_is_registed_to_t) | ~p1_listen”, which presents
two actions in the corresponding causal rule. Listing 3.3 has no change because
the clauses do not contain any negative conditions.

• Step 4: generate the sets of dual-Horn clauses
Dual-Horn clauses are the disjunctions of variables whereof at most one is negative
and, consequently, consists of non-constant causal rules. The synthesized CNF
clauses in Listing 3.3 contain two clauses having two negative variables (lines 4 and
6). Thus, four sets of dual-Horn clauses are computed, as shown in Listing 3.4.

50 Domain-Specific Language for Developing Self-adaptive Applications

Listing 3.4: The generated dual-Horn clauses
1 (
2 (~(p_speak) | p1_is_different_with_p & TP02speakptt_broadcast & p_is_registered_to_TP02speakptt &

p1_is_registered_to_TP02speakptt)
3 & (~(p_listen) | p_is_registered_to_TP02listenptt & TP02listenptt_broadcast)
4 & (~(p1_listen) | p1_is_different_with_p & p1_is_registered_to_TP02listenptt & TP02listenptt_broadcast &

p_is_registered_to_TP02listenptt)
5 & (~(p1_speak))
6 & (p_speak | p_listen)
7 & (~(p_speak))
8)
9 | (

10 (~(p_speak) | p1_is_different_with_p & TP02speakptt_broadcast & p_is_registered_to_TP02speakptt &
p1_is_registered_to_TP02speakptt)

11 & (~(p_listen) | p_is_registered_to_TP02listenptt & TP02listenptt_broadcast)
12 & (~(p1_listen) | p1_is_different_with_p & p1_is_registered_to_TP02listenptt & TP02listenptt_broadcast &

p_is_registered_to_TP02listenptt)
13 & (~(p_speak))
14 & (p_speak | p_listen)
15 & (~(p_speak))
16)
17 | (
18 (~(p_speak) | p1_is_different_with_p & TP02speakptt_broadcast & p_is_registered_to_TP02speakptt &

p1_is_registered_to_TP02speakptt)
19 & (~(p_listen) | p_is_registered_to_TP02listenptt & TP02listenptt_broadcast)
20 & (~(p1_listen) | p1_is_different_with_p & p1_is_registered_to_TP02listenptt & TP02listenptt_broadcast &

p_is_registered_to_TP02listenptt)
21 & (~(p1_speak))
22 & (p_speak | p_listen)
23 & (~(p_listen))
24)
25 | (
26 (~(p_speak) | p1_is_different_with_p & TP02speakptt_broadcast & p_is_registered_to_TP02speakptt &

p1_is_registered_to_TP02speakptt)
27 & (~(p_listen) | p_is_registered_to_TP02listenptt & TP02listenptt_broadcast)
28 & (~(p1_listen) | p1_is_different_with_p & p1_is_registered_to_TP02listenptt & TP02listenptt_broadcast &

p_is_registered_to_TP02listenptt)
29 & (~(p_speak))
30 & (p_speak | p_listen)
31 & (~(p_listen))
32)

Since each dual-Horn clause is a causal rule, a dual-Horn set is a system of causal
rules defined in Definition 3.3.3 [39].
Definition 3.3.3 (System of Causal rules)
A system of causal rules is a set R = {p =⇒ xp}p∈P t , where P t def= P ∪ {true}. An
interaction a ∈ 2P satisfies the system R (denoted a |= R), iff a |= ∧

p∈P t(p =⇒ xp).
We denote by |R| the union of interactions satisfying R:

|R| def=
∑
a|=R

a

Listing 3.5 shows four systems of causal rules for the corresponding dual-Horn
clauses in Listing 3.4 by removing conditions.

3.3 NaturalBIP Compiler 51

Listing 3.5: The systems of causal rules corresponding to the sets of dual-Horn clauses
1 {
2 p_speak => TP02speakptt_broadcast,
3 p_listen => TP02listenptt_broadcast,
4 p1_listen => TP02listenptt_broadcast,
5 p1_speak => false, // ~(p1_speak)
6 true => p_speak | p_listen,
7 p_speak => false
8 },
9 {

10 p_speak => TP02speakptt_broadcast,
11 p_listen => TP02listenptt_broadcast,
12 p1_listen => TP02listenptt_broadcast,
13 p_speak => false,
14 true => p_speak | p_listen,
15 p_speak => false
16 },
17 {
18 p_speak => TP02speakptt_broadcast,
19 p_listen => TP02listenptt_broadcast,
20 p1_listen => TP02listenptt_broadcast,
21 p1_speak => false,
22 true => p_speak | p_listen,
23 p_listen => false
24 },
25 {
26 p_speak => TP02speakptt_broadcast,
27 p_listen => TP02listenptt_broadcast,
28 p1_listen => TP02listenptt_broadcast,
29 p_speak => false,
30 true => p_speak | p_listen,
31 p_listen => false
32 }

The causal rules can be simplified as follows:

{p =⇒ a1, p =⇒ a2}⇝ {p =⇒ a1 ∧ a2} (3.7)

Furthermore, notice that a1 ∨ a1a2 = a1, thus causal rules can be also simplified
accordingly:

(p =⇒ (a1 ∨ a1a2))⇝ (p =⇒ a1) (3.8)

All the causal rules are simplified and absorbed using (3.7) and (3.8). Listing 3.6
illustrates the system of causal rule following simplification and absorption. In this
listing, the causal rule p =⇒ false and its port p are also removed.

Listing 3.6: The systems of causal rules after simplifying and absorbing
1 {
2 p_listen => TP02listenptt_broadcast,
3 p1_listen => TP02listenptt_broadcast,
4 true => p_listen
5 },

52 Domain-Specific Language for Developing Self-adaptive Applications

6 {
7 p_listen => TP02listenptt_broadcast,
8 p1_listen => TP02listenptt_broadcast,
9 true => p_listen

10 },
11 {
12 p_speak => TP02speakptt_broadcast,
13 p1_listen => TP02listenptt_broadcast,
14 true => p_speak
15 },
16 {
17 p1_listen => TP02listenptt_broadcast,
18 }

Each system of causal rules contains causal rules with constant (cf. Definition 3.3.1),
including true =⇒ ∨n

i pi and pi =⇒ true, where pi are actions in the considered
system of causal rules. Listing 3.7 presents the systems of causal rules after adding
the causal rules with constant.

Listing 3.7: The systems of causal rules after adding causal rules with constant
1 {
2 p_listen => TP02listenptt_broadcast,
3 p1_listen => TP02listenptt_broadcast,
4 p_listen => true, p1_listen => true, TP02listenptt_broadcast => true,
5 true => p_listen | p1_listen | TP02listenptt_broadcast
6 },
7 {
8 p_listen => TP02listenptt_broadcast,
9 p1_listen => TP02listenptt_broadcast,

10 p_listen => true, p1_listen => true, TP02listenptt_broadcast => true,
11 true => p_listen | p1_listen | TP02listenptt_broadcast
12 },
13 {
14 p_speak => TP02speakptt_broadcast,
15 p1_listen => TP02listenptt_broadcast,
16 p_speak => true, p1_listen => true, TP02listenptt_broadcast => true, TP02speakptt_broadcast => true
17 true => p_speak | p1_listen | TP02listenptt_broadcast | TP02speakptt_broadcast
18 },
19 {
20 p1_listen => TP02listenptt_broadcast,
21 p1_listen => true, TP02listenptt_broadcast => true,
22 true => p1_listen | TP02listenptt_broadcast
23 }

• Step 5: saturate the systems of causal rules

The systems of causal rules need to be saturated to construct BIP connectors.

Definition 3.3.4 (Saturated System of Causal Rules [39])
A system of causal rules {pi =⇒ xi}n

i=1 is saturated iff, for all i ∈ [1, n], xi =
xi[(xjpj)/pj], where xi[(xjpj)/pj] is obtained by substituting (xjpj) for pj in xi, for
all j ̸= i.

3.3 NaturalBIP Compiler 53

For example, consider a system of causal rules CR(P) = {p =⇒ ap, q =⇒ paq},
where p, q ∈ P are ports, and ap, aq ∈ 2P are interactions. We obtain the saturated
system of causal semantic CRsat(P) = {p =⇒ ap, q =⇒ papaq} by substituting pap

for p in the second rule. Obviously, CR(P) and CRsat(P) are equivalent:

(p =⇒ ap) ∧ (q =⇒ paq) = (p ∨ ap) ∧ (q ∨ paq)
= p q ∨ apq ∨ papaq = pq ∨ apq ∨ papaqap

= (p ∨ ap) ∧ (q ∨ papaq) = (p =⇒ ap) ∧ (q =⇒ papaq)

Listing 3.8 shows the saturated systems of causal rules for the corresponding one
in Listing 3.7.

Listing 3.8: Saturated systems of causal rules
1 {
2 p_listen => p_listen & TP02listenptt_broadcast,
3 p1_listen => p1_listen & TP02listenptt_broadcast,
4 TP02listenptt_broadcast => true,
5 true => TP02listenptt_broadcast
6 },
7 {
8 p_listen => p_listen & TP02listenptt_broadcast,
9 p1_listen => p1_listen & TP02listenptt_broadcast,

10 TP02listenptt_broadcast => true,
11 true => TP02listenptt_broadcast
12 },
13 {
14 p_speak => TP02speakptt_broadcast & p_speak,
15 p1_listen => p1_listen & TP02listenptt_broadcast,
16 TP02listenptt_broadcast => true,
17 TP02speakptt_broadcast => true,
18 true => TP02listenptt_broadcast | TP02speakptt_broadcast
19 },
20 {
21 p1_listen => p1_listen & TP02listenptt_broadcast,
22 TP02listenptt_broadcast => true,
23 true => TP02listenptt_broadcast
24 }

3.3.4 JavaBIP artifacts generation

JavaBIP macros represent BIP connectors in Java implementation to coordinate the
components’ activities at runtime. Algorithm 2 presents how to generate the macro codes
from the dual-Horn clauses representing the systems of causal rules in Listing 3.7.

For each clause in the considered dual-Horn set (lines 5 and 6 in Algorithm 2), if
it is a non-constant clause (lines 8), save it into the requires set (line 9) to generate
corresponding JavaBIP macro for require part (lines 17-19). For example, the clause “~(
p_speak) | TP02speakptt_broadcast” is used to synthesize JavaBIP macro “port(Peer. class

54 Domain-Specific Language for Developing Self-adaptive Applications

, "speak"). requires (Tracker . class , "broadcast")”. In this transformation, the instances’
names are replaced with the corresponding class names in the design (line 16).

Each sub-set in the dualHorn_clauses_sets contains a clause presenting the causal
rule “true =⇒ ∨n

i=1pi” (line 10). The set of accepts is computed by the union oper-
ation of such clauses (line 11) in all the sub-set. Based on the accepts, we generate
“accepts_macro” by each element in accepts accepts all the others (lines 20-22).

Listing 3.9 explains the process of generating “accepts_macro”. From the set of
actions (line 2), we replace instances names with classes name (line 5) then generate
“accepts” part for JavaBIP macro (lines 8-10). Finally, the JavaBIP macro is generated
as shown in Listing 3.10.

Algorithm 2 JavaBIP macro generation
1: Input: dualHorn_clauses ▷ sets of dual-Horn clauses
2: Output: javaBIP_GlueBuilder ▷ JavaBIP macros
3: init accepts
4: init requires
5: for sub_set ∈ dualHorn_clauses_sets do
6: for clause ∈ sub_set do
7: if clause.pos ̸= ∅ then
8: if clause.neg ̸= ∅ then ▷ This is a non-constant clause
9: requires := requires ∪ {clause}

10: else ▷ This clause contains set of interactions
11: accepts := accepts ∪ clause.pos
12: end if
13: end if
14: end for
15: end for
16: //replace instance names with corresponding class names in requires and accepts
17: for clause ∈ requires do
18: require_macro += "port("+clause.neg+").requires("+",".join(clause.pos)+");"
19: end for
20: for elm_i ∈ accepts do
21: accepts_macro += "port(" + elm_i + ").accepts(" + ",".join (accepts \ {elm_j})

+ ");"
22: end for
23: return require_macro + accept_macro

Listing 3.9: Accept parts generated from the set of actions
1 //accepts − set of actions
2 accepts = {’TP02listenptt_broadcast’ , ’p_speak’, ’TP02speakptt_broadcast’, ’p_listen ’ , ’ p1_listen ’}
3
4 // replace instances names with classes name
5 accepts = {’Tracker.broadcast ’ , ’Peer.speak’ , ’Tracker .broadcast ’ , ’Peer. listen ’ , ’Peer. listen ’}

3.3 NaturalBIP Compiler 55

6
7 // generate corresponding accepts_macro
8 port(Peer. class , " listen ") .accepts(Peer. class , "speak", Peer. class , " listen ", Tracker . class , "broadcast") ;
9 port(Peer. class , "speak").accepts(Peer. class , " listen ", Tracker . class , "broadcast") ;

10 port(Tracker . class , "broadcast") . accepts(Tracker . class , "broadcast", Peer. class , "speak", Peer. class , " listen ") ;

Listing 3.10: Generated JavaBIP macros
1 port(Peer. class , " listen ") . requires (Tracker . class , "broadcast") ;
2 port(Peer. class , "speak"). requires (Tracker . class , "broadcast") ;
3 port(Peer. class , " listen ") .accepts(Peer. class , " listen ", Tracker . class , "broadcast", Peer. class , "speak");
4 port(Peer. class , "speak").accepts(Peer. class , " listen ", Tracker . class , "broadcast") ;
5 port(Tracker . class , "broadcast") . accepts(Peer. class , " listen ", Tracker . class , "broadcast", Peer. class , "speak");

The GlueBuilder contains JavaBIP macros and data transfers between components
at runtime. To generate such information, we consider the conditions. If the condi-
tion template is “⟨instance1⟩ is/has/can something ⟨instancei⟩” (where i ≥ 0) and
the subject of ⟨instance1⟩ is different from the subject of ⟨instancei⟩, there is a data
transfer from ⟨subjecti⟩ to ⟨subject1⟩. Thus, the generated data transfer for require-
ment TP_02 is “data(Tracker . class ,"Tracker2Peer_data").to(Peer. class ,"Tracker2Peer_data
");”. This data transfer is generated from condition “is_registered_to” which is for
“TP02speaktp_is_registered_to_t, TP02listentp_is_registered_to_t, p1_is_registered_to_t”.

As mentioned in Section 2.3.3, JavaBIP classes contain @Guard functions specifying
the condition to fire FSM’s transitions. Each condition is considered as a @Guard (i.e., a
boolean function). The boolean functions are generated as a template with the default
returning value set as “True”. Depending on the context of the requirements, developers
write the actual content for those functions. The parameters of those functions are
generated depending on the kind of ⟨subjecti⟩:

• If ⟨subjecti⟩ is empty, there is no parameter,

• If ⟨subjecti⟩ is the same as ⟨subject1⟩, generate a normal parameter,
In Peer. java :

@Guard(name="is_different_from")
public boolean is_different_from (Peer Peer_ins) {

return true ;
}

• If ⟨subjecti⟩ is different from ⟨subject1⟩, the generated parameter is a @Data received
through the specified data transfers.

In Peer. java :
@Guard(name="is_registered_to")
public boolean is_registered_to (@Data(name="Tracker2Peer_data") Tracker

Tracker_ins) {
return true ;

56 Domain-Specific Language for Developing Self-adaptive Applications

}

3.3.5 BIP Connectors generation

Algorithm 3 describes the process of generating BIP connectors. This algorithm is a
variation of the algorithm constructing a causal interaction tree from a saturated system
of causal rules [39], and the correctness argument for our algorithm is similar to that
in [39]. The input of Algorithm 3 is a set of atomic interactions computed from the
system of causal rules. Let X = {p =⇒ xp}p∈P t be a saturated system of causal rules,
with xp = ∨np

i=1 ap
i , atomic_interaction_set = {pap

p|p ∈ P ∪ {true}, i ∈ [1, np]}. The
output is BIP connectors, which are the textual representation of AC(P).

Algorithm 3 BIP connectors generation
Input: ais ▷ set of atomic interactions computed from dual-Horn clauses
Output: bip_connector ▷ BIP connectors formalized in AC(P)

1: procedure genConnector(ais)
2: initalize triggers, remains, result_str
3: triggers = {aisi | card(aisi) = 1}
4: remains = ais \ triggers
5: triggers = triggers ∪ get_intersection(remains)
6: if triggers = ∅ then
7: result_str += gen_rendezvous_str (remains)
8: else
9: result_str += gen_triggers_str (triggers)

10: end if
11: for each trigger in triggers do
12: dependent_elements = get_dependent_elements(remains, trigger)
13: if is_connector(dependent_elements) then
14: result_str += genConnector(dependent_elements)
15: else
16: result_str += gen_rendezvous_str(dependent_elements)
17: end if
18: end for
19: return result_str
20: end procedure

Consider a set of interactions {p, pq, pqrt}, and each element is a set of ports. Thus,
the input for the algorithm is “ais = {{p}, {p, q}, {p, q, r, t}}”. In the first steps, the
algorithm detects and separates the triggers (triggers) (i.e., “{{p}}”) and the remaining
elements (remains) (i.e., “{{p, q}, {p, q, r, t}}”), where the triggers are sets with a single
element (lines 3 and 4).

3.3 NaturalBIP Compiler 57

Function get_intersection(remains) takes input as the remains to compute an in-
teraction that is a sub-interaction of all remains’ elements. If the computed one is not
empty and does not contain elements in triggers, it will be added into triggers (line
5). In this example, although the intersection of “{p, q}” and “{p, q, r, t}” is “{p, q}”,
triggers contains “{p}”. Thus, triggers does not add “{p, q}” into it.

Considering triggers, if triggers is empty, the input presents a Rendezvous con-
nector (lines 6 and 7). Function gen_rendezvous_str(remains) generates the textual
representation of the Rendezvous connector. For instance, if triggers = {} and remains
= {{p, q}}, result_str is “(p)-(q)” (i.e., pq in AC(P)). Otherwise, generating the tex-
tual representation of triggers (line 9). At this step, because triggers = {{p}} the
result_str appends “(p)’” using function gen_triggers_str(triggers).

In the next step, function get_dependent_elements(remains, trigger) calculates
elements in remainswhich are dependent on each element in triggers (line 12). For
example, for triggers = {{p}} and remains = {{p, q}, {p, q, r, t}}, the function returns
{{q}, {q, r, t}}. If dependent_elements is a connector (line 13), invoke the algorithm
recursively with the input is dependent_elements (line 14). In particular, function
is_connector(dependent_elements) checks whether the intersection of any two elements
in dependent_elements is not empty. If it is not empty, dependent_elements is con-
sidered a set that constructs a connector. In this example, dependent_elements is a
connector because the intersection of {q} and {q, r, t} is {q} (i.e., not empty). Thus,
we run the algorithm recursively on the set {{q}, {q, r, t}}. Following the above steps,
there is another trigger (i.e., “(q)’”) and the dependent_elements = [‘r’, ‘t’]. If
dependent_elements is not a connector (line 15), generate a textual representation for
synchron elements as a Rendezvous connector (line 16). As a result, the BIP connector of
{{q}, {q, r, t}} is q′[rt] (the corresponding textual representation is “(q)’-[(r)-(t)]”)
and the final BIP connector is p′[q′[rt]] (the corresponding textual representation is
“(p)’-[(q)’-[(r)-(t)]]”).

Listing 3.11 illustrates the generated BIP connectors (lines 7-9) from the sets of atomic
interactions (lines 2-4) conforms to the saturated systems of causal rules in Listing 3.8.

Listing 3.11: Generated BIP connectors
1 // sets of atomic interactions
2 {{{’TP02listenptt_broadcast’}, {’ p_listen ’ , ’TP02listenptt_broadcast’}, {’ p1_listen ’ , ’TP02listenptt_broadcast’

}},
3 {{’p1_listen ’ , ’TP02listenptt_broadcast’}, {’p_speak’, ’TP02speakptt_broadcast’}, {’TP02listenptt_broadcast’}, {’

TP02speakptt_broadcast’}},
4 {{’p1_listen ’ , ’TP02listenptt_broadcast’}, {’TP02listenptt_broadcast’}}}
5
6 // corresponding generated BIP connectors
7 (Tracker .broadcast)‘−(Peer. listen)−(Peer. listen)
8 (Tracker .broadcast)‘−(Tracker.broadcast)‘−(Peer.speak)−(Peer. listen)

58 Domain-Specific Language for Developing Self-adaptive Applications

9 (Tracker .broadcast)‘−(Peer. listen)

3.4 Summary
Based on the ontology-driven requirement engineering and semantic analysis approach, we
proposed NaturalBIP—a domain-specific language to specify the functional requirements
of cloud applications. In this language, we defined grammar rules and templates with
ontology-based semantics to tackle the ambiguity of the natural language syntax and
express the semantic relationships and implicit assumptions through the information in
the NRO.

We also proposed the NaturalBIP compiler for producing BIP connectors and JavaBIP
GlueBuilder to coordinate component interactions at runtime following an exogenous
approach. The compilation includes:

1. analyzing the requirements to collect quantifiers and actions defined in the design
and explore the system’s conditions/constraints, then generate corresponding
Boolean formulas for each requirement,

2. computing dual-Horn clauses representing all possible allowed interactions of the
system,

3. generating BIP connectors specify the interactions between the system’s compo-
nents,

4. generating JavaBIP artifacts, including JavaBIP macros, data transfers, and boolean
functions (i.e., guards) for classes,

5. handles some basic errors, such as undefined actions or states of classes from the
requirement written in NaturalBIP language.

In general, we provide a tool for system designers to write functional requirements
explicitly (cf. Section 3.2) and developers to implement the application following an
exogenous approach (cf. Section 3.3). We demonstrated the whole process through the
example of Tracker-Peer communication.

Chapter 4

Towards Exogenous Coordination of
Concurrent Cloud Applications

This chapter proposes a methodology to develop and maintain cloud applications follow-
ing the exogenous approach. To illustrate the idea, we propose a new framework named
OCCIwareBIP, which integrates JavaBIP—a framework for the exogenous coordination
of concurrent Java components into OCCIware—a framework for designing cloud appli-
cations. From the OCCIwareBIP design, we generate an executable model to verify the
deadlock-free property of the cloud application. Finally, we present an example to show
the ability of our approach to guarantee the safety and benefits of modularization in
developing cloud applications.

The rest of this chapter is structured as follows: We introduce the context and motiva-
tion leading to our contributions in Section 4.1. Section 4.2 specifies an example used in
the rest of the chapter. Section 4.3 provides an overview of our OCCIwareBIP toolchain
and presents algorithms to generate artifacts supporting the exogenous coordination and
deadlock-freedom verification. Section 4.4 demonstrates how the example is implemented
to evaluate the proposed approach. Finally, we conclude the chapter in Section 4.5.

4.1 Introduction
Cloud computing has become the dominant delivery model for computing resources [24].
It plays an essential role in several business models and academic research by providing
services such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS) [16]. When cloud applications run, there is little control over
their resource use and requirements. The applications must be able to dynamically adapt
their behaviors to the changes in cloud resource availability. Essentially, any application
entity, beyond simply computing a specific function, must communicate and share
resources with other entities. Correct coordination of resource access between concurrent

60 Towards Exogenous Coordination of Concurrent Cloud Applications

entities of cloud applications is critical for meeting user and system requirements while
avoiding operational faults and deadlocks.

In traditional development, the codes coordinating entities’ access to available re-
sources are often interleaved with software components’ business functionality. This
complicates application maintenance when facing policy changes. Although maintenance
can be supported by change impact analysis [82, 111, 112], this process takes time and
effort.

Exogenous models and languages [32] were introduced to deal with this problem.
The exogenous approach distinctly separates computation and coordination code. This
separation enhances the reusability of components. Furthermore, other applications with
similar interaction patterns may reuse the coordination specification. The advantages of
exogenous coordination are supporting and permitting verification techniques to compute
components’ code and dependencies between them [25]. Behavior-Interaction-Priority
(BIP) [27, 36] is a framework for the component-based design of correct-by-construction
applications. It provides a mechanism for coordinating concurrent components. Jav-
aBIP [37, 92] is an open-source Java implementation of the BIP framework for coordi-
nating concurrent components, relying on annotations, component APIs, and external
specification files.

The main contribution of this chapter is to propose a methodology to develop and
maintain cloud applications following the exogenous approach. To illustrate the idea,
we propose a new framework named OCCIwareBIP, which integrates the OCCIware
design framework with the exogenous coordination capability using JavaBIP. In the
OCCIwareBIP framework, we introduce new concepts for describing action types and
specifying behavioral constraints in our NaturalBIP language. Our framework allows
developers to generate an executable model to safely manage cloud entities’ access to the
resources at run time. We leverage the inherent modularity of exogenous coordination to
enable cloud architects easily substitute coordination policies according to the user and
system requirements. In addition, the OCCIwareBIP supports users in generating input
for iFinder [6] from the cloud application design and the configuration models. iFinder is
a compositional deadlock detection tool to ensure the design is deadlock-free.

4.2 Motivation & Running Example
This section describes an example that we use to illustrate our approach to ensuring
the safety of concurrent cloud application development and the modularity it provides
for the specification of coordination policies. Intuitively, safety properties state that a
specified bad condition never occurs. In concurrent cloud applications, safety properties
can formalize access rules to resources. For example, “The number of sequential requests
to the same server will never exceed a given threshold”. However, the current design

4.2 Motivation & Running Example 61

platforms have no means to specify such information. Thus, it leads to the research
question (RQ3): How to support cloud designers with a means to write a high-level
abstraction design of a cloud application graphically?

In the life cycle of cloud applications, the functionalities can be updated depending on
the change in system/user requirements, which are unpredictable. Modularity provides
“option values” for creating new or improving existing functions in software evolution,
primarily when a system must satisfy unforeseen future demands [87]. For instance,
in the (fictional) example below, we consider four different situations triggering the
deployment of a database to be used by the application. Modular applications, where
the coordination and computation codes are separated, can be easily adapted to the
change of requirements by substituting the appropriate components and adjusting the
coordination specification without modifying the functional components. Thus, we need
to answer the research question (RQ4): How to effectively adapt to the change in both
the design and implementation phases?

To demonstrate our proposed approach, we use the example of Monitor-Switch, a
Web application deployed on a Heroku Dyno to direct the requests to a list of servers.
In particular, this Web application ensures that when a server reaches the specified
threshold for the number of requests, the subsequent activities are switched to run on
another server. The application is initialized by choosing a server from a list of servers.
The user can then click the button “compute random number” to request a number from
0 to 100 computed by the microservice ComputeRN.

The Web application consists of two components, including Switch and Monitor.
Switch provides actions to pick a list of servers (i.e., action addServer), choose an ini-
tial server from the list (i.e., action chooseServer), or remove all the picked servers
(i.e., action removeAllServers). Monitor communicates to the Switch through action
receiveSwitchConfirm. Then, the user can send requests to the server using receiveRan-
domNumberRequest. The server returns a random number if the number of requests is
within the allowed threshold. Otherwise, the Monitor will redirect the request to another
server. The switching process is synchronized between the Switch and Monitor.

Structural Constraints. In the case where the Heroku Dyno was created without any
database add-on, it is necessary to be able to deploy one for saving data when running
the Monitor-Switch application.

Behavioral Constraints. 1) The application can request random numbers from a
specific server at most five times; 2) We consider four different (fictional) scenarios for
adding a database add-on to the current Heroku Dyno from the running Web application:

1. User clicks on the “Create Database add-on” button (i.e., Monitor).

62 Towards Exogenous Coordination of Concurrent Cloud Applications

Figure 4.1: The overview of Monitor-Switch Web application

2. The returned number is greater than 70 (i.e., Monitor_2): When the user sends
a request to the server, and the server calculates a random number value greater
than 70, trigger the addDatabase action. We assume the random number returned
represents the server resource consumption from the corresponding request. Under
the above assumption, when the consumption exceeds a certain threshold (i.e., 70),
then trigger addDatabase.

3. the limitation is nearly reached (i.e., Monitor_3): Before reaching the limit of
requests, the addDatabase will be fired.

4. the system switches to another server (i.e., Monitor_4): After switching servers,
the addDatabase will be fired.

4.3 Methodology of extending coordination capability of the OCCIware design 63

Action addDatabase in components Monitors is synchronized with the corresponding
action in the HerokuController component.

Figure 4.1 presents the overview of the Web application Monitor-Switch, which
consists of a Switch and four different scenarios of Monitor. Each component has an
FSM, where the dash arrows denote actions executed by users, and the connectors present
the interactions between these components.

4.3 Methodology of extending coordination capabil-
ity of the OCCIware design

This section describes the workflow of the OCCIwareBIP toolchain, which extends the
OCCIware framework to allow the safe management of resources at run time, as shown
in Figure 4.2. The light blue boxes show pre-existing artifacts from the OCCIware
framework we extended; the dark blue ones are developed in this work.

Figure 4.2: Model-Driven Managing Everything as a Service with OCCIwareBIP

64 Towards Exogenous Coordination of Concurrent Cloud Applications

To assist OCCIware architects in designing cloud applications following the exogenous
approach, we extend the OCCIware Metamodel described in [131] by defining different
concepts required to model components and the coordination between them (Section 4.3.1).
Section 4.3.2 describes algorithms to prepare the BIP model and the “.inv” file (i.e.,
instructions to compute the system’s invariants) for the verification using the iFinder
model checker. Since the algorithm to generate JavaBIP macro has been introduced in
Chapter 3, we describe how to generate the implementation of the component and prove
the equivalence between JavaBIP macro and generated BIP connector in Section 4.3.3.

4.3.1 Concepts for extending coordination capability in the
OCCIware design

As introduced in Section 4.1, the OCCIware design supports users to specify cloud
components and their structural constraints. In contrast, behavior constraints are
implemented by developers in the implementation phase. With this approach, the
developers must track and analyze impacted codes whenever behavior constraints change,
and this process is time-consuming. To quickly adapt to those changes, we defined the
concept “Specification” specifying those behavior constraints in design.

Concepts for specifying behavioral constraints. Figure 4.3 illustrates the OCCI-
wareBIP design of a Web application named Monitor-Switch, where Monitor, Monitor_2,
Monitor_3, Monitor_4, Switch, and HerokuController are components (the Monitor_i
components encode the corresponding scenario discussed above); and Specification is
the new concept specifying the coordination between those components. Components’
behaviors can be represented by an FSM, consisting of a finite set of states and a finite set
of transitions between these states. The transitions are associated with the corresponding
actions of each OCCIware component.

Listing 4.1: Requirements are specified using “Specification”
1 <annotations name="Specification">
2 <annotation id="switchServer_3">For any Monitor_3 m, there is a Switch s, such that m is

reached the threshold , m shall switchServer synchronized with s shall switchServer .</
annotation>

3 <annotation id="switchConfirm_3">For any Monitor_3 m, there is a Switch s, m shall
receiveSwitchConfirm synchronized with s shall switchConfirm.</annotation>

4 <annotation id="addDB_3">For any Monitor_3 m, there is a HerokuController hc, such that hc can
add database, m shall addDatabase synchronized with hc shall addDatabase.</annotation>

5 <annotation id="switchServer_4">For any Monitor_4 m, there is a Switch s, m shall switchServer
synchronized with s shall switchServer .</annotation>

6 <annotation id="switchConfirm_4">For any Monitor_4 m, there is a Switch s, m shall
receiveSwitchConfirm synchronized with s shall switchConfirm.</annotation>

4.3 Methodology of extending coordination capability of the OCCIware design 65

Figure 4.3: The OCCIwareBIP design of the Monitor-Switch Web application

66 Towards Exogenous Coordination of Concurrent Cloud Applications

7 <annotation id="addDB_4">For any Monitor_4 m, there is a HerokuController hc, such that hc can
add database, m shall addDatabase synchronized with hc shall addDatabase.</annotation>

8 ...
9 <annotation id="MAIN">switchServer_3, switchConfirm_3, addDB_3</annotation>

10 </annotations>

Listing 4.1 shows the Specification in details. Each annotation specifies:

• A functional requirements written in our NaturalBIP language (lines 2-9); or

• Annotation “MAIN” indicates the selected requirements from the list of requirements
(line 10). To select all the requirements, the value of “MAIN” can be set as “all”.
To select all except a small set of requirements, “MAIN” is written in the template
“except requirement_i”, where requirement_i are deselected requirements.

Domain-Specific Ontology for the Cloud Domain. To express specification from
the cloud domain, we construct a DSO encompassing the cloud domain by mapping the
OCCIware metamodel concepts to the corresponding classes in the Behavioral Ontology
(see Section 3.2.1.1) as shown in Table 4.1.

Table 4.1: Mapping between the Behavioral Ontology classes and the OCCIware meta-
model concepts

OCCIware metamodel concepts Behavioral Ontology classes
Kind Subject
Mixin Subject
FSM FSM

Transition Transition
State State
Action Action

Figure 4.4 illustrates our DSO for the cloud domain, which is the semantic model for
writing specifications in the NaturalBIP language, following the mapping in Table 4.1.

Concepts for specifying action types. When extending the coordination capability
of the OCCIware design, actions in the OCCIware design should be able to describe
observed events (i.e., spontaneous), reactions when observing the event (i.e., enforceable),
or internally updates the component’s states (i.e., internal). Therefore, we update the
OCCI Metamodel by defining a new property named “actiontype” to specify each action
type (Figure 4.5).

When declaring actions in the OCCIware design, if the value of “actiontype” is
spontaneous or internal, the transition is spontaneous or internal, respectively.

4.3 Methodology of extending coordination capability of the OCCIware design 67

Figure 4.4: Domain-specific ontology for the cloud domain

Figure 4.5: Update new property in the OCCI metamodel

The transition is enforceable if the value of “actiontype” is enforceable or empty (by

68 Towards Exogenous Coordination of Concurrent Cloud Applications

default). Figure 4.6 depicts that the action chooseServer in component Switch is a
spontaneous action.

Figure 4.6: The type of action chooseServer is spontaneous

4.3.2 Generate artifacts for verification
The design can be verified from the specified behavioral constraints to check whether it
satisfies some safety properties and is free from deadlocks. In this work, we use iFinder—a
compositional deadlock detection and verification tool for BIP models. iFinder expects
a BIP model, a .inv file, and a set of linear safety properties on input. The .inv file
specifies the instructions for computing the system’s invariants. It is generated as follows:

• Each component in the OCCIwareBIP design is generated following the template
“−at <OCCIwareBIP Component> −a atom−control”

• Specifying a compound element to control the whole system
“−ct <Application_Name>Compound −a control−reachability”

Options -at and -ct represent atom type and compound type, respectively. Option -a
specifies the applied analysis method (see Section 2.3.4).

The BIP model is generated from the OCCIwareBIP design and the OCCI configura-
tion model. Since the BIP model encodes behavior constraints for specific instances, as
opposed to component types (Kinds and Mixins) specified in OCCIware, a configuration
model is needed to generate BIP connectors. The pseudo-code in Algorithm 4 presents
the steps for generating BIP connector definitions. The input is the textual representation
of the BIP connector, and the output is the set of connector type definitions in the BIP
language. Each definition represents a flat connector, while the input connector can be
hierarchical. Thus, a BIP connector might be represented by more than one connector
type definition.

4.3 Methodology of extending coordination capability of the OCCIware design 69

Algorithm 4 Generate connectors for BIP models
Input: connector ▷ BIP connector in textual representation
Output: list_connector_definition ▷ corresponding connector type definitions

1: TreeNode root = createTree("root", connector)
2: list_connector_definition = ""
3: genConnectorTemplate(root)
4: procedure genConnectorTemplate(TreeNode node)
5: for child in children do
6: genConnectorTemplate(child)
7: end for
8: if children.size() > 0 then
9: list_connector_definition += "connector type " + nodeName +

"_define("
10: for i in children.size() do
11: list_connector_definition += addParameter("Port p" + i)
12: end for
13: if nodeName != "root" then
14: list_connector_definition += "\n export port Port ep()"
15: end if
16: list_connector_definition += "\n define "
17: for i in children.size() do
18: if children[i].isTrigger() then
19: list_connector_definition += "p" + i + "’"
20: else
21: list_connector_definition += "p" + i
22: end if
23: end for
24: list_connector_definition += "\n end \n"
25: end if
26: end procedure

In the initial state, we encode the textual representation of the BIP connector to
a tree structure (line 1). Each node has nodeName property to specify its name and
children property to describe its child nodes. Consider the BIP connector from input as
a tree with a root node (i.e., nodeName is “root”), leaf nodes (i.e., nodeName is port
type), and compound nodes (i.e., nodeName is “ci”, where i is the index number). For
instance, connector c in Figure 4.7 can be presented as a tree with a root node having a
leaf node named s.act and a compound node named c1. c1 has two leaf nodes t.act
and v.act. The next step generates the connector type definitions by executing function
genConnectorTemplate() for the root node (line 3).

The algorithm is first recursively applied to each child node (lines 5-7). If the node
under consideration is not a leaf, it is a compound node corresponding to a sub-connector

70 Towards Exogenous Coordination of Concurrent Cloud Applications

and is represented by a connector type (lines 8-12). If the nodeName is not “root”
(i.e., this node is a sub-connector), an export port should be declared to allow that
sub-connector to interact with siblings (lines 13-15). An apostrophe after the variable
name denotes a trigger in the BIP language (line 19). Finally, from the generated
template functions of connectors and the given configuration model defining the port
type and corresponding port instances, we generate concrete connectors, which are the
combinations of the port’s instances.

Figure 4.7: Connector c in the tree structure

Consider connector c = (s .act) ’−[(t.act) ’−(v.act)] in Figure 4.7, let the configuration
model config_model = {s:{s0,s1}, t:{t0,t1}, v:{v0}} specify instances of each
class s, t, v. The template of the connector is generated by function genConnec-
torTemplate() (line 5 - Algorithm 4) as lines 1-7 in Listing 4.2. Firstly, function
genConnectorTemplate() generates the template for c1 (lines 1-4). Then, the
connector type root is generated to connect port s.act and the export port (ep) of
c1 (lines 5-8).

Finally, the concrete connectors will be generated as a list of all possible combinations
of component instances in the configuration model (lines 13-19). Since connector c1 is
the sub-connector of connector c, it interacts with port instances of “s” through the
export port “ep” (lines 16-19).

Listing 4.2: generated BIP connectors in the BIP language for connector c
1 connector type connector_c1_define(Port p1, Port p2)
2 export port Port ep()
3 define p1’ p2
4 end
5 connector type connector_root_define(Port p1, Port p2)
6 define p1’ p2
7 end
8 compound type connectorCompound()
9 component t t0, t1

10 component s s0, s1
11 component v v0
12
13 connector connector_c1_define connector_c1_0(t0.act, v0.act)

4.4 Evaluation 71

14 connector connector_c1_define connector_c1_1(t1.act, v0.act)
15
16 connector connector_root_define connector_root_0(s0.act, connector_c1_0.ep)
17 connector connector_root_define connector_root_1(s0.act, connector_c1_1.ep)
18 connector connector_root_define connector_root_2(s1.act, connector_c1_0.ep)
19 connector connector_root_define connector_root_3(s1.act, connector_c1_1.ep)
20 end

4.3.3 Integration of JavaBIP into OCCIware implementation
Following the exogenous approach, the application is implemented with the separation of
the computation code and coordination code. The computation codes are Java classes
generated by mapping information from the OCCIware design, where:

• Kind and Mixin components in the OCCIware design are the Java classes with the
annotation @ComponentType.

• Each action in the OCCIware component is a function with annotation @Transition
labeled by the action’s name from one state to another state or itself.

The coordination code that describes the interaction between the components and the
data exchange is the GlueBuilder class, which is generated following Section 3.3.4.

In [39], it is shown that the connectors and the set of dual-Horn clauses that they
are generated from define the same set of interactions. The textual representations we
generate for JavaBIP (GlueBuilder macros) and BIP (connectors) correspond precisely to
the dual-Horn clauses and the generated connectors. They are, therefore, also equivalent
among themselves. Thus, verification results obtained on the BIP model remain valid for
the JavaBIP one.

4.4 Evaluation
This section demonstrates how the example specified in Section 4.2 is developed following
the process in Figure 4.2. In particular, the process steps are as follows:

• Step 1. Create the OCCIware design for the target application.

• Step 2. Generate artifacts for verification and implementation.

• Step 3. Specify safety properties. Then, use those properties, the BIP model, and
the .inv file computed from Step 2 as the input for iFinder to verify whether the
OCCIware design is deadlock-free.

• Step 4. Write concrete code of the generated template Java classes to complete the
implementation.

72 Towards Exogenous Coordination of Concurrent Cloud Applications

4.4.1 OCCIware design and configuration model
Figure 4.3 presents the OCCIware design of the Monitor-Switch. This Web application
illustrates the advantages of the exogenous approach (i.e., ensuring modularity). It
consists of different policies for reacting to various events. Our approach allows users
to specify those policies as components, and then users can pick ones following the
corresponding synchronization constraints.

Four Monitor components (i.e., Monitor, Monitor_2, Monitor_3, and Monitor_4)
for adding a database add-on into the current Heroku Dyno, corresponding to scenarios
specified in Section 4.2. Component HerokuController is the API invoking a function
from HerokuDeployer to create a database add-on.

OCCIware Studio also provides a means to create the configuration model, which
consists of concrete instances of components defined in the OCCIware design [131]. For
example, Listing 4.3 illustrates the configuration model, where each component has an
instance.

Listing 4.3: The configuration model of Monitor-Switch application
1 configuration use "http://occiwarebip .org/monitorswitch#/" resource "urn:uuid:ecbc6aee−2269−4

fb8−a413−c9a3fd81f303" : monitorswitch.Monitor title "monitor"
2 { } resource "urn:uuid:256089b1−5d9e−4abd−ba07−a392a929af4e" : monitorswitch.Monitor_2 title

"monitor_2"
3 { } resource "urn:uuid:92924e87−3871−49e2−96c6−1692d6177796" : monitorswitch.Monitor_3 title

"monitor_3"
4 { } resource "urn:uuid:dcf8234a−38c9−482f−bd2e−1d81de6140c4" : monitorswitch.Monitor_4 title

"monitor_4"
5 { } resource "urn:uuid:c317de8b−cb9a−429e−8e87−7fdec132bb3f" : monitorswitch.Switch title "

switch"
6 { } resource "urn:uuid:c317123b−4444−5555−6666−77c132bb3f77" : monitorswitch.

HerokuController title "herokucontroller"
7 { }

4.4.2 Generated artifacts from the OCCIware design
From the OCCIware design, we generate artifacts that include (1) Java classes with
JavaBIP annotations, (2) JavaBIP GlueBuilder specifying the coordinations and data
transfers, and (3) the textual representation of BIP connectors. Then, taking the BIP
connectors and the configuration model, we generate the (4) BIP model and compute (5)
instructions for computing invariants of the target application.

Java classes with JavaBIP annotations. Once the OCCIware model is completed,
developers can trigger the generation process to generate artifacts in Extension Tooling
(Figure 4.2). Extension Connectors contains computation codes with JavaBIP annota-

4.4 Evaluation 73

tions, while coordination codes are separated and defined in Glue Builder. Listing 4.4
shows a part of the generated Monitor_3 class from the corresponding element in the
OCCIware design in Figure 4.3.

• The annotation ComponentType defines the component’s name is Monitor_3 and
the initial state of its FSM is MonitorInit (line 7).

• Annotations @Ports and @Port declare the name and type of kind-specific ac-
tions (lines 1-5). For example, receiveRandomNumberRequest and resetMonitor
are spontaneous actions, and sendRandomNumberRequest, receiveSwitchConfirm,
switchServer, and addDatabase are enforceable actions.

• Annotation @Transition specifies the event name, source state, target state, and a
guard expression. Guard expression of a transition can be a single guard or a set of
guards using logical operators: negation ‘!’, the conjunction ‘&’, and disjunction ‘|’.
For instance, lines 10-12 depicts a transition labeled sendRandomNumberRequest
from RandomNumberRequestReceived to SwitchReady. This transition can be
fired if and only if it satisfies the guard “!is_reached_the_threshold”, which
means the threshold is not reached.

• @Guard: this annotation is used for specifying boolean methods to define conditions
to trigger a transition (lines 16 and 19).

• Annotation @Data is declared before a non-void method to define data provided by
a component to other components. @Data can also be used in method parameters
(line 20) to represent received data from another one.

Listing 4.4: Monitor_3 class with JavaBIP annotations (cf. the automaton in Figure 4.3)
1 @Ports({
2 @Port(name = "receiveRandomNumberRequest", type = PortType.spontaneous)
3 , @Port(name = "sendRandomNumberRequest", type = PortType.enforceable)
4 , @Port(name = "addDatabase", type = PortType.enforceable), @Port(name = "switchServer", type =

PortType.enforceable)
5 , @Port(name = "receiveSwitchConfirm", type = PortType.enforceable) , @Port(name = "

resetMonitor", type = PortType.spontaneous)
6 })
7 @ComponentType(initial = "MonitorInit", name = "monitorswitch.connector.Monitor_3")
8 public class Monitor_3 extends HttpServlet{
9

10 @Transitions({
11 @Transition(name = "sendRandomNumberRequest", source = "

RandomNumberRequestReceived", target = "SwitchReady", guard = "!
is_reached_the_threshold"),

12 })

74 Towards Exogenous Coordination of Concurrent Cloud Applications

13 public void sendRandomNumberRequest() throws IOException {...}
14 // similarly for the other kind−specific actions
15
16 @Guard(name = "is_reached_the_threshold")
17 public boolean is_reached_the_threshold() {...}
18
19 @Guard(name="can_add_database_through")
20 public boolean can_add_database_through(@Data(name="HerokuController2Monitor_3_data")

HerokuController HerokuController_ins) {}
21 }

JavaBIP GlueBuilder and BIP connectors. As shown in Listing 4.1, there are
three selected requirements are “switchServer_3”, “switchConfirm_3”, and “addDB_3”.
Thanks for the NaturalBIP Compiler (Section 3.3), the selected requirements are parsed
and analyzed to compute the JavaBIP macro codes and the data transfers between
components. Listing 4.5 shows the generated textual representation of BIP connectors
(lines 4, 10, and 16) and JavaBIP GlueBuilder from the selected requirements.

Listing 4.5: The generated JavaBIP GlueBuilder
1 public class GlueBuilder_Specification extends GlueBuilder {
2 @Override
3 public void configure (){
4 //switchServer_3: (Switch. switchServer)−(Monitor_3.switchServer)
5 port(Switch. class , "switchServer") . requires (Monitor_3.class , "switchServer") ;
6 port(Monitor_3.class , "switchServer") . requires (Switch. class , "switchServer") ;
7 port(Switch. class , "switchServer") . accepts(Monitor_3.class , "switchServer") ;
8 port(Monitor_3.class , "switchServer") . accepts(Switch. class , "switchServer") ;
9

10 //switchConfirm_3: (Monitor_3.receiveSwitchConfirm)−(Switch.switchConfirm)
11 port(Switch. class , "switchConfirm"). requires (Monitor_3.class , "receiveSwitchConfirm") ;
12 port(Monitor_3.class , "receiveSwitchConfirm") . requires (Switch. class , "switchConfirm");
13 port(Monitor_3.class , "receiveSwitchConfirm") .accepts(Switch. class , "switchConfirm");
14 port(Switch. class , "switchConfirm").accepts(Monitor_3.class , "receiveSwitchConfirm") ;
15
16 //addDB_3: (Monitor_3.addDatabase)−(HerokuController.addDatabase)
17 port(HerokuController . class , "addDatabase").requires (Monitor_3.class , "addDatabase");
18 port(Monitor_3.class , "addDatabase").requires (HerokuController . class , "addDatabase");
19 port(Monitor_3.class , "addDatabase").accepts(HerokuController . class , "addDatabase");
20 port(HerokuController . class , "addDatabase").accepts(Monitor_3.class, "addDatabase");
21
22 data(HerokuController . class ,"HerokuController2Monitor_3_data").to(Monitor_3.class,"

HerokuController2Monitor_3_data");
23 }
24 }

4.4 Evaluation 75

BIP model and the instruction for computing invariants. From the OCCIware
design (Figure 4.3) and the configuration model (Listing 4.3), we apply the process
in Section 4.3.2 to generate the BIP model and compute the instructions. Listing 4.6
illustrates a part of the generated BIP model. Since three requirements specify three
synchon connectors, the BIP model contains three definitions of connector (lines 6-14).
Based on the configuration model, the compound type declares instances (lines 17-22)
and generates concrete connectors (lines 23-25).

Listing 4.6: The generated BIP model
1 package monitorswitch
2 port type Port()
3 atom type Switch()
4 end
5 ...
6 connector type switchServer_3_root_define(Port p1, Port p2)
7 define p1 p2
8 end
9 connector type switchConfirm_3_root_define(Port p1, Port p2)

10 define p1 p2
11 end
12 connector type addDB_3_root_define(Port p1, Port p2)
13 define p1 p2
14 end
15
16 compound type monitorswitchCompound()
17 component HerokuController herokucontroller ()
18 component Monitor monitor()
19 component Switch switch()
20 component Monitor_2 monitor_2()
21 component Monitor_3 monitor_3()
22 component Monitor_4 monitor_4()
23 connector switchServer_3_root_define switchServer_3_root_0(monitor_3.switchServer, switch.

switchServer)
24 connector switchConfirm_3_root_define switchConfirm_3_root_0(monitor_3.

receiveSwitchConfirm, switch.switchConfirm)
25 connector addDB_3_root_define addDB_3_root_0(monitor_3.addDatabase, herokucontroller.

addDatabase)
26 end

Listing 4.7 shows the content of the .inv file, which provides instructions to iFinder
to compute invariants of the system, where the components are analyzed using the
atom-control method (lines 2-7) and the compound element is analyzed using control-reachability
(line 10). Those analysis methods are introduced in Table 2.3).

Listing 4.7: Instructions for computing system’s invariants
1 # atom control

76 Towards Exogenous Coordination of Concurrent Cloud Applications

2 −at Switch −a atom−control
3 −at Monitor −a atom−control
4 −at Monitor_2 −a atom−control
5 −at Monitor_3 −a atom−control
6 −at Monitor_4 −a atom−control
7 −at HerokuController −a atom−control
8
9 # compound control reachability

10 −ct monitorswitchCompound −a control−reachability

4.4.3 Verification using iFinder

Listing 4.8 illustrates the properties that must be preserved to keep the application
deadlock-free. The property is written in prefix syntax and presents that instance switch is
in state SwitchInit, at least one of the instances monitor, monitor_2, monitor_3, and
monitor_4 are in state MonitorInit, and instance herokucontroller is in state Init. It
means, in a moment, there is one instance of Switch, one instance of HerokuController,
and at least one instance of Monitor* in the initial state (line 2). Line 3 describes there
is a moment, if instance switch is in state ServerReady, monitor monitor_3 shall add
a database (i.e., monitor_3 is in state SwitchReady and instance herokucontroller is
in Init).

Listing 4.8: The properties in the .prop file
1 (or
2 (and (= switch_SwitchInit 1) (>= (+ monitor_MonitorInit monitor_2_MonitorInit

monitor_3_MonitorInit monitor_4_MonitorInit) 1) (= herokucontroller_Init 1))
3 (=> (= switch_ServerReady 1) (and (= monitor_3_SwitchReady 1)) (= herokucontroller_Init 1))
4)

Then, the deadlock-free property of the Monitor-Switch design can be verified by executing
the following command:

ichecker .sh −p monitorswitch −r monitorswitchCompound −i inv_1.inv −s prop_1.pro
The verification process loads 1) package model by the argument -p monitorswitch;
2) instructions for computing invariants of the system by the argument -i inv_1.inv;
and 3) the safety properties by -s prop_1.pro. After loading those inputs, iFinder
generates an SMT model to be checked by Z3. A counter-example is returned if the
result is invalid.

Fig. 4.8 shows the verification result. The BIP model is satisfied the property described
in the “.prop” file. The verification time is acceptable (i.e., 0.733s).

4.5 Summary 77

Figure 4.8: The result of the verification using the iFinder tool

4.4.4 Implementing and Adapting to changes

The application is ready after implementing the component’s functions as shown in
Figure 4.9, where the button “Compute random number” is defined to invoke the
ComputeRN microservice to request a random number, and the “Create Database add-on”
button is to request HerokuDeployer to invoke addDatabase function. As described in
Section 4.2 and Listing 4.1, the Web application is implemented following the policy
Monitor_3, which will add database after reaching the fourth request “Compute random
number”.

Additionally, when the request number reaches the threshold (i.e., five requests in
sequence), the next request will be redirected to another server. Figure 4.10 illustrates
this functionality that the “current server” is directed from server “../compute” to
server “../compute2”.

Finally, when the developers want to change the policies due to a change in user or
system requirements, this can be achieved by simply choosing related annotations in the
“MAIN” annotation of “Specification” from the OCCIware model (see Listing 4.1).

4.5 Summary

In the design process, we defined some concepts to specify/update system synchronizations
and behavioral constraints in the design. It helps cloud architects adapt quickly to any
future system or user requirements change.

78 Towards Exogenous Coordination of Concurrent Cloud Applications

Figure 4.9: The user interface of the Monitor-Switch Web application

Figure 4.10: After the current server reaches the threshold, the subsequent request will
be directed to another server

We introduced the concept of the “actiontype” property to specify the type of actions
in the OCCIware design. We leveraged the FSM specifications of components and the
OCCIware annotation to write behavioral constraints in NaturalBIP language to generate
automatically:

• JavaBIP annotations and macro code for the exogenous coordination of the cloud
resource accesses by components at run time.

4.5 Summary 79

• The input for the iFinder tool consists of the corresponding BIP model and
instructions for computing system invariants.

With the concepts of Specification and OCCIware annotations defined in this
section, designers can specify the interactions and data transfers between components
and the safety properties that need to be held at run time, thus addressing the RQ3.

By integrating JavaBIP into OCCIware, we provided a framework to develop cloud
applications following the exogenous approach. This approach reduces the dependency
between elements and helps developers quickly adapt to the change in requirements
by substituting the appropriate components or adjusting the coordination specification
independently. Therefore, addressing the RQ4. Furthermore, our approach not only
supports OCCIware but can also be applied to other open-source cloud design platforms
supporting FSM specifications.

Chapter 5

Experimental Validation

In this chapter, we illustrate the usage of our toolchain for generating artifacts to support
cloud developers in designing, validating, verifying, implementing, and deploying cloud
applications in the exogenous approach. We introduce the experiment in Section 5.1.
Then, Section 5.2 presents the OCCIwareBIP design of the Heroku Deployer microservice
consisting of its structure and the specifications using our NaturalBIP language. In
Section 5.3, we present the artifacts generated using our NaturalBIP for verifying and
implementing the target application. After completing the generated Java template
classes, we deploy the application and run it on the Heroku platform. The detail of this
process is described in Section 5.5. Finally, we summary this chapter in Section 5.6.

5.1 The overview of Heroku Deployer
HerokuDeployer is a microservice for deploying a Web application/microservice auto-
matically on the Heroku platform. HerokuDeployer was Simon’s project to demonstrate
the application of legacy JavaBIP on the cloud. I extend this project to illustrate the
usage of our toolchain in the development of cloud applications following the exogenous
approach. The experiment includes:

• HerokuDeployer : This microservice is developed following the exogenous approach
for automatically deploying the Monitor-Switch Web application on Heroku. It can
run on IaaS such as Google Compute or the local machine by calling Heroku APIs
and executing Heroku CLI commands through the terminal.

Figure 5.1 shows the overview of the HerokuDeployer microservice. The Dyno
type of the deploying Heroku Dyno is set from the two connectors between
HerokuDeployer and DynoType components. Similarly, the region, add-ons, and
language of the Dyno are specified by connectors from HerokuDeployer to Region
and Buildpacks components, respectively. Each language supports a limited set

82 Experimental Validation

Figure 5.1: The overview of HerokuDeployer microservice

of add-ons. Thus, there is a diamond arrow (i.e, a trigger connector in BIP) from
setAddonsForLanguage of Buildpacks to Addons components. In the same way,
a diamond arrow from setAddonsForRegion of Region to Addons components.

• Monitor-Switch: As introduced in Chapter 4, this Web application illustrates the
advantages of the exogenous approach (i.e., ensuring modularity). It consists of
different policies for reacting to various events. Our approach allows users to
specify those policies as components, and then users can pick ones following the
corresponding synchronization constraints.

Figure 5.2 presents the overview of the Web application Monitor-Switch. There are
four Monitor components (i.e. Monitor, Monitor_2, Monitor_3, and Monitor_4)
for adding a database add-on into the current Heroku Dyno, corresponding to
scenarios specified in Section 4.2. Component HerokuController is the API
invoking a function from HerokuDeployer to create a database add-on.

• Compute: This is a simple microservice generating a random integer number.

5.2 The HerokuDeployer microservice design 83

Figure 5.2: The overview of the Monitor-Switch Web application

5.2 The HerokuDeployer microservice design

To deploy a Web application/microservice on the Heroku platform, end-users directly set
the plans, region, and programming language of the Heroku Dyno—a Linux container
running programs in response to a user-specified command1; and choose some add-ons
depending on the selected configuration.

5.2.1 The structure of HerokuDeployer

Figure 5.3 provides the OCCIware design of Heroku-Deployer, including:

1https://www.heroku.com/dynos

https://www.heroku.com/dynos

84 Experimental Validation

Figure 5.3: The OCCIwareBIP design of Heroku Deployer

5.2 The HerokuDeployer microservice design 85

HerokuDynoType. This component is the Dyno type2, which specifies the appropriate
plan of the Heroku container (e.g., free, hobby, standard) depending on the project’s size,
ranging from demo projects to high-traffic production services.

HerokuRegion. Users can deploy Heroku applications across many geographies3. The
regions available to a specific app are determined by whether deployed to the Common
Runtime or a Private Space.

Addons. Heroku provides add-ons4, which are fully maintained components, services,
or infrastructure provided by a third-party provider or Heroku. In this example, we use
four add-ons are:

• HerokuPostgres5 and HerokuClearDBMySQL6: two add-ons for build applications
using SQL databases.

• HerokuScoutAPM 7 and HerokuNewRelicAPM 8: two add-ons for performance moni-
toring and troubleshooting Web applications.

HerokuBuildpack. This component contains a collection of scripts for retrieving
dependencies, the generated assets, compiled code, and other information depending
on the programming language9. (The slug compiler10 assembles this output into a
slug. Heroku support for Ruby, Python, Java, Clojure, Node.js, Scala, Go, and PHP is
implemented via a set of open-source buildpacks.)

Deployer. This component specifies the process of deploying a microservice/Web
application on Heroku. Users start choosing the configuration (i.e., DynoType, region,
buildpack, add-ons). Then, a Heroku application will be created automatically following
the constraints described in the Specification.

After choosing the DynoType and region, the Deployer will select the corresponding
values through the connections to HerokuDynoType and HerokuRegion. There are some
structural constraints when selecting add-ons because the available add-ons depend
on the region (i.e., HerokuRegion) or the programming language (i.e., HerokuBuildpacks).

2https://devcenter.heroku.com/articles/dyno-types
3https://devcenter.heroku.com/articles/regions
4https://elements.heroku.com/addons
5https://www.heroku.com/postgres
6https://devcenter.heroku.com/articles/cleardb
7https://devcenter.heroku.com/articles/scout
8https://devcenter.heroku.com/articles/newrelic
9https://devcenter.heroku.com/articles/buildpacks

10https://devcenter.heroku.com/articles/slug-compiler

https://devcenter.heroku.com/articles/dyno-types
https://devcenter.heroku.com/articles/regions
https://elements.heroku.com/addons
https://www.heroku.com/postgres
https://devcenter.heroku.com/articles/cleardb
https://devcenter.heroku.com/articles/scout
https://devcenter.heroku.com/articles/newrelic
https://devcenter.heroku.com/articles/buildpacks
https://devcenter.heroku.com/articles/slug-compiler

86 Experimental Validation

If users select add-ons not supported in a region or by a language, those add-ons cannot
be active. For example:

• HerokuPostgres and HerokuClearDBMySQL do not support the language Gradle.
Hence, if the users select the language as Gradle, the two add-ons cannot activate;

• HerokuScoutAPM supports Python, Ruby, and Php;

• HerokuNewRelicAPM does not support Scala, Clojure, Gradle, Go, etc

The behavioral constraint of the deployment is “User can deploy a free Heroku
application in US or EU without the definition of language or add-ons.”

5.2.2 Writing functional requirements in NaturalBIP language
After determining the components and constraints, we analyze the constraints to have
concrete functional requirements. Consider a functionality for choosing a language. We
have the following requirements:

• If the user selects Java language, the language in HerokuBuildpack is set as Java
through the Deployer.

• When HerokuBuildpack sets the add-ons for Java, the Deployer shall set the add-ons
for Java, HerokuPostgres, HerokuClearDBMySQL, and HerokuNewRelicAPM can
activate, and HerokuScoutAPM shall not activate.

• When the Deployer sets the add-ons for Java and HerokuPostgres, HerokuClearDB-
MySQL and HerokuNewRelicAPM can activate, and HerokuScoutAPM shall not
activate, HerokuBuildpack shall set the add-ons for Java.

• If the Deployer decides to add HerokuPostgres, HerokuPostgres shall be added with
the free plan.

These requirements will be written in our NaturalBIP language as shown in Listing 5.1.
There are 105 functional requirements in Appendix 6 for the microservice to automatically
deploy the Heroku application. Listing 5.1 shows a part of the whole requirements. In
particular, these requirements describe constraints for setting Java as a language when
deploying a Heroku Dyno.

Listing 5.1: Requirements for setting Java as language for a Heroku application
1 <annotation id="deployersetJava">There is a HerokuBuildpack buildpack, a Deployer deployer ,

buildpack shall setJava synchronized with deployer shall setJava .</annotation>
2 <annotation id="buildpackpostgres1">There is a HerokuBuildpack buildpack, a HerokuPostgres postgres

, buildpack shall setAddonsForJava synchronized with postgres shall on.</annotation>

5.3 Generating Java artifacts and implementing the Heroku Deployer 87

3 <annotation id="buildpackClearDB1">There is a HerokuBuildpack buildpack, a HerokuClearDBMySQL
cleardb, buildpack shall setAddonsForJava synchronized with cleardb shall on.</annotation>

4 <annotation id="buildpackScout1">There is a HerokuBuildpack buildpack, a HerokuScoutAPM scout,
buildpack shall setAddonsForJava synchronized with scout shall off .</annotation>

5 <annotation id="buildpackNewRelic1">There is a HerokuBuildpack buildpack, a HerokuNewRelicAPM
newrelic, buildpack shall setAddonsForJava synchronized with newrelic shall on.</annotation>

6 <annotation id="buildpackdeployer1">There is a HerokuBuildpack buildpack, a Deployer deployer , if
buildpack executes setAddonsForJava, deployer shall setAddonsForJava.</annotation>

7 <annotation id="synthesisBuildpack1">There is a HerokuBuildpack buildpack, a HerokuNewRelicAPM
newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a HerokuClearDBMySQL cleardb, a
Deployer deployer, if deployer executes setAddonsForJava and cleardb executes on and postgres
executes on and scout executes off and newrelic executes on, buildpack shall setAddonsForJava.
</annotation>

5.3 Generating Java artifacts and implementing the
Heroku Deployer

Following the process in Section 4.3, our OCCIwareBIP toolchain generates Java classes
with JavaBIP annotations and JavaBIP macros from the specified requirements to
coordinate the interactions between components.

5.3.1 Artifacts for the verification
As mentioned in Figure 1.2 (Section 3.1), the NaturalBIP Compiler generates BIP
connectors from the given functional requirements written in the NaturalBIP language.
Listing 5.2 presents some BIP connectors generated from the corresponding requirements
in Listing 5.1:

Listing 5.2: The generated BIP connectors for setting Java language
1 <annotation id="deployersetJava_1">(Deployer.setJava)−(HerokuBuildpack.setJava)</annotation>
2 <annotation id="buildpackpostgres1_1">(HerokuBuildpack.setAddonsForJava)−(HerokuPostgres.on)</

annotation>
3 <annotation id="buildpackClearDB1_1">(HerokuBuildpack.setAddonsForJava)−(HerokuClearDBMySQL.

on)</annotation>
4 <annotation id="buildpackScout1_1">(HerokuBuildpack.setAddonsForJava)−(HerokuScoutAPM.off)</

annotation>
5 <annotation id="buildpackNewRelic1_1">(HerokuBuildpack.setAddonsForJava)−(HerokuNewRelicAPM.

on)</annotation>
6 <annotation id="buildpackdeployer1_1">(HerokuBuildpack.setAddonsForJava)‘−(Deployer.

setAddonsForJava)</annotation>
7 <annotation id="synthesisBuildpack1_1">[(HerokuPostgres.on)−(HerokuClearDBMySQL.on)−(

HerokuScoutAPM.off)−(Deployer.setAddonsForJava)−(HerokuNewRelicAPM.on)]‘−(
HerokuBuildpack.setAddonsForJava)</annotation>

88 Experimental Validation

5.3.2 Artifacts for the implementation
In Figure 5.4, the left column shows the package occideployer containing Java classes of
the Heroku Deployer application. Each class with the ending “Connector” is generated
from the corresponding component in the OCCIwareBIP design of Heroku Deployer. The
canvas shows a part of generated code for the component Deployer.

Figure 5.4: Class DeployerConnector with generated template code

Class GlueBuilder_Specification encodes the coordination between components using
the JavaBIP macro. For example, Listing 5.3 illustrates the generated JavaBIP macro
for corresponding requirements in Listing 5.1.

Listing 5.3: The generated JavaBIP macro for setting Java language
1 //−−−−deployersetJava
2 port(HerokuBuildpackConnector.class, "setJava") . requires (DeployerConnector.java , "setJava") ;
3 port(DeployerConnector. class , "setJava") . requires (HerokuBuildpackConnector.java, "setJava") ;
4 port(HerokuBuildpackConnector.class, "setJava") .accepts(DeployerConnector.java , "setJava") ;
5 port(DeployerConnector. class , "setJava") .accepts(HerokuBuildpackConnector.java, "setJava") ;
6
7 //−−−−buildpackpostgres1
8 port(HerokuPostgresConnector.class , "on"). requires (HerokuBuildpackConnector.java, "

setAddonsForJava");
9 port(HerokuBuildpackConnector.class, "setAddonsForJava"). requires (HerokuPostgresConnector.java, "on

");

5.3 Generating Java artifacts and implementing the Heroku Deployer 89

10 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(HerokuPostgresConnector.java, "on"
);

11 port(HerokuPostgresConnector.class , "on").accepts(HerokuBuildpackConnector.java, "setAddonsForJava
");

12
13 //−−−−buildpackClearDB1
14 port(HerokuClearDBMySQLConnector.class, "on").requires(HerokuBuildpackConnector.java, "

setAddonsForJava");
15 port(HerokuBuildpackConnector.class, "setAddonsForJava"). requires (HerokuClearDBMySQLConnector.

java, "on");
16 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(HerokuClearDBMySQLConnector.

java, "on");
17 port(HerokuClearDBMySQLConnector.class, "on").accepts(HerokuBuildpackConnector.java, "

setAddonsForJava");
18
19 //−−−−buildpackScout1
20 port(HerokuScoutConnector.class, "off ") . requires (HerokuBuildpackConnector.java, "setAddonsForJava")

;
21 port(HerokuBuildpackConnector.class, "setAddonsForJava"). requires (HerokuScoutConnector.java, "off")

;
22 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(HerokuScoutConnector.java, "off") ;
23 port(HerokuScoutConnector.class, "off ") . accepts(HerokuBuildpackConnector.java, "setAddonsForJava");
24
25 //−−−−buildpackNewRelic1
26 port(HerokuNewRelicAPMConnector.class, "on").requires(HerokuBuildpackConnector.java, "

setAddonsForJava");
27 port(HerokuBuildpackConnector.class, "setAddonsForJava"). requires (HerokuNewRelicAPMConnector.

java, "on");
28 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(HerokuNewRelicAPMConnector.java,

"on");
29 port(HerokuNewRelicAPMConnector.class, "on").accepts(HerokuBuildpackConnector.java, "

setAddonsForJava");
30
31 //−−−−buildpackdeployer1
32 port(DeployerConnector. class , "setAddonsForJava"). requires (HerokuBuildpackConnector.java, "

setAddonsForJava");
33 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(HerokuBuildpackConnector.java, "

setAddonsForJava");
34 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(HerokuBuildpackConnector.java, "

setAddonsForJava");
35
36 //−−−−synthesisBuildpack1_1
37 port(HerokuBuildpackConnector.class, "setAddonsForJava"). requires (DeployerConnector. class , "

setAddonsForJava", HerokuClearDBMySQLConnector.class, "on", HerokuPostgresConnector.class, "on
", HerokuScoutAPMConnector.class, "off", HerokuNewRelicAPMConnector.class, "on");

38

90 Experimental Validation

39 port(DeployerConnector. class , "setAddonsForJava"). requires (HerokuClearDBMySQLConnector.class, "on
", HerokuPostgresConnector.class, "on", HerokuScoutAPMConnector.class, "off",
HerokuNewRelicAPMConnector.class, "on");

40 port(HerokuClearDBMySQLConnector.class, "on").requires(DeployerConnector.class, "setAddonsForJava",
HerokuPostgresConnector.class , "on", HerokuScoutAPMConnector.class, "off",

HerokuNewRelicAPMConnector.class, "on");
41 port(HerokuPostgresConnector.class , "on"). requires (DeployerConnector. class , "setAddonsForJava",

HerokuClearDBMySQLConnector.class, "on", HerokuScoutAPMConnector.class, "off",
HerokuNewRelicAPMConnector.class, "on");

42 port(HerokuScoutAPMConnector.class, "off"). requires (DeployerConnector. class , "setAddonsForJava",
HerokuClearDBMySQLConnector.class, "on", HerokuPostgresConnector.class, "on",
HerokuNewRelicAPMConnector.class, "on");

43 port(HerokuNewRelicAPMConnector.class, "on").requires(DeployerConnector.class , "setAddonsForJava",
HerokuClearDBMySQLConnector.class, "on", HerokuPostgresConnector.class, "on",
HerokuScoutAPMConnector.class, "off");

44
45 port(DeployerConnector. class , "setAddonsForJava").accepts(HerokuClearDBMySQLConnector.class, "on"

, HerokuPostgresConnector.class, "on", HerokuScoutAPMConnector.class, "off",
HerokuNewRelicAPMConnector.class, "on", HerokuBuildpackConnector.class, "setAddonsForJava");

46 port(HerokuClearDBMySQLConnector.class, "on").accepts(DeployerConnector.class, "setAddonsForJava",
HerokuPostgresConnector.class, "on", HerokuScoutAPMConnector.class, "off",
HerokuNewRelicAPMConnector.class, "on", HerokuBuildpackConnector.class, "setAddonsForJava");

47 port(HerokuPostgresConnector.class , "on").accepts(DeployerConnector. class , "setAddonsForJava",
HerokuClearDBMySQLConnector.class, "on", HerokuScoutAPMConnector.class, "off",
HerokuNewRelicAPMConnector.class, "on", HerokuBuildpackConnector.class, "setAddonsForJava");

48 port(HerokuScoutAPMConnector.class, "off").accepts(DeployerConnector. class , "setAddonsForJava",
HerokuClearDBMySQLConnector.class, "on", HerokuPostgresConnector.class, "on",
HerokuNewRelicAPMConnector.class, "on", HerokuBuildpackConnector.class, "setAddonsForJava");

49 port(HerokuNewRelicAPMConnector.class, "on").accepts(DeployerConnector.class, "setAddonsForJava",
HerokuClearDBMySQLConnector.class, "on", HerokuPostgresConnector.class, "on",
HerokuScoutAPMConnector.class, "off", HerokuBuildpackConnector.class, "setAddonsForJava");

50 port(HerokuBuildpackConnector.class, "setAddonsForJava").accepts(DeployerConnector. class , "
setAddonsForJava", HerokuClearDBMySQLConnector.class, "on", HerokuPostgresConnector.class, "on
", HerokuScoutAPMConnector.class, "off", HerokuNewRelicAPMConnector.class, "on");

5.4 Verifying the deadlock-freedom using iFinder
iFinder is a compositional deadlock detection and verification tool for BIP models.
Regarding the experiment of Heroku Deployer, the input for running iFinder include:

• herokudeployer.bip: This is the BIP model of the HerokuDeployer. This file
presents each component as Petri nets (lines 1-13 in Listing 5.4) and defines the
connector types between them (lines 15-39) and concrete connectors depending on
the component’s instances (lines 43-50).

5.4 Verifying the deadlock-freedom using iFinder 91

Listing 5.4: A part of the generated Heroku Deployer’s BIP model
1 atom type HerokuDynoType()
2 data string occi_core_title
3 data string occi_core_id
4 data string occi_core_summary
5 export port Port reset1 ()
6 export port Port sub1()
7 export port Port sendDynoResponse()
8 place Init , Free
9 initial to Init do {}

10 on sub1 from Init to Free do {}
11 on sendDynoResponse from Free to Free do {}
12 on reset1 from Free to Init do {}
13 end
14 ...
15 connector type deployersetJava_1_root_define(Port p1, Port p2)
16 define p1 p2
17 end
18 connector type buildpackpostgres1_1_root_define(Port p1, Port p2)
19 define p1 p2
20 end
21 connector type buildpackClearDB1_1_root_define(Port p1, Port p2)
22 define p1 p2
23 end
24 connector type buildpackScout1_1_root_define(Port p1, Port p2)
25 define p1 p2
26 end
27 connector type buildpackNewRelic1_1_root_define(Port p1, Port p2)
28 define p1 p2
29 end
30 connector type buildpackdeployer1_1_root_define(Port p1, Port p2)
31 define p1’ p2
32 end
33 connector type synthesisBuildpack1_1_c00_define(Port p1, Port p2, Port p3, Port p4, Port p5)
34 export port Port ep()
35 define p1 p2 p3 p4 p5
36 end
37 connector type synthesisBuildpack1_1_root_define(Port p1, Port p2)
38 define p1’ p2
39 end
40 ...
41 compound type herokudeployerCompound()
42 ...
43 connector deployersetJava_1_root_define deployersetJava_1_root_0(buildpack.setJava, deployer

. setJava)
44 connector buildpackpostgres1_1_root_define buildpackpostgres1_1_root_0(postgres.fon,

buildpack .setAddonsForJava)

92 Experimental Validation

45 connector buildpackClearDB1_1_root_define buildpackClearDB1_1_root_0(postgres.fon,
buildpack.setAddonsForJava)

46 connector buildpackScout1_1_root_define buildpackScout1_1_root_0(postgres.off, buildpack.
setAddonsForJava)

47 connector buildpackNewRelic1_1_root_define buildpackNewRelic1_1_root_0(postgres.fon,
buildpack.setAddonsForJava)

48 connector buildpackdeployer1_1_root_define buildpackdeployer1_1_root_0(buildpack.
setAddonsForJava, deployer.setAddonsForJava)

49 connector synthesisBuildpack1_1_c00_define synthesisBuildpack1_1_c00_0(deployer.
setAddonsForJava, scout.off , postgres . fon, relic . fon, cleardb .fon)

50 connector synthesisBuildpack1_1_root_define synthesisBuildpack1_1_root_0(
synthesisBuildpack1_1_c00_0.ep, buildpack.setAddonsForJava)

51 end

The BIP connector “synthesisBuildpack1_1” is a hierarchical connector with a
sub-connector, which is the synchronization of five ports. Thus, this connector is
encoded by two connectors in the BIP model, the first one is a rendezvous (i.e., c00),
and the latter is the broadcast between the exported port from the sub-connector
and a normal port.

• herokudeployer-scheme.inv: This file provides instruction to iFinder to compute
invariants.

Listing 5.5: The .inv file describes the instruction for computing system’s invariants
1 # atom control
2 −at HerokuBuildpack −a atom−control
3 −at Database −a atom−control
4 −at HerokuClearDBMySQL −a atom−control
5 −at HerokuDynoType −a atom−control
6 −at HerokuNewRelicAPM −a atom−control
7 −at HerokuPostgres −a atom−control
8 −at HerokuRegion −a atom−control
9 −at HerokuScoutAPM −a atom−control

10 −at Monitoring −a atom−control
11 −at Deployer −a atom−control
12
13 # compound control reachability
14 −ct herokudeployerCompound −a control−reachability

As shown in Listing 5.5, there are atomic components including HerokuBuildpack,
Database, HerokuClearDBMySQL, HerokuDynoType, HerokuNewRelicAPM, HerokuPostgres,
HerokuRegion, HerokuScoutAPM, Monitoring, and Deployer. The compound ele-
ment is analyzed using control-reachability.

• herokudeployer-deadlock.pro: This file describes the property that needs to
be held to avoid deadlock situations. As described in Section 5.2.1, we have the

5.5 Running the experiment 93

behavioral constraint that “User can deploy a free Heroku application in US or EU
without the definition of language or add-ons.”

Listing 5.6: The system’s properties is specified in prefix format
1 (=> (and (= deployer_AppPushed 1) (= dynotype_Free 1) (or (= region_USAddonsSet 1) (=

region_EUAddonsSet 1)))
2 (and
3 (>= (+ postgres_HobbyDev cleardb_Ignite) 0)
4 (>= (+ scout_Chair relic_Wayne) 0)
5 (>= (+ buildpack_Java buildpack_Scala buildpack_Python buildpack_Ruby

buildpack_Nodejs buildpack_Clojure buildpack_Gradle buildpack_Jvm buildpack_Php
buildpack_Go) 0)

6)
7)

Listing 5.6 illustrates the constraint. The parenthesis in the first line specifies an
application is pushed to a free Dyno Type in the US or EU. Lines 2-6 describe that
specifying add-ons and languages is not required.

Then, the design is verified whether it satisfies safety properties by executing the following
command:

ichecker .sh −p herokudeployer −r herokudeployerCompound −i inv_1.inv −s prop_1.pro
The verification process loads 1) package model by the argument -p herokudeployer;
2) instructions for computing invariants of the system by the argument -i inv_1.inv;
and 3) the safety properties by -s prop_1.pro. After loading those inputs, iFinder
generates an SMT model to be checked by Z3. A counter-example is returned if the
result is invalid.

Fig. 5.5 shows the verification result. The BIP model is satisfied the property described
in the “.prop” file. The verification time is acceptable (i.e., 0.843s) for checking over 105
BIP connectors between 10 components.

5.5 Running the experiment
From the generated JavaBIP artifacts, including Java classes with template codes and
JavaBIP macro (Section 5.3.2), developers complete codes for template Java classes and
then run them with the coordination described in JavaBIP macro. In this running, we
use APIs supporting HTTP Get methods to deploy the Monitor-Switch application onto
Heroku free container (Dyno) in the US with Heroku Postgres database addon and Java
language.

Deploying. The deployment starts by calling APIs which use HTTP Get methods.
For example, the request http:// localhost :8080/HerokuDemo/BIPDeployerOCCI?req=deploy&

94 Experimental Validation

Figure 5.5: The result of the verification using the iFinder tool

region=us&buildpack=jvm&addon=heroku−postgresql&pushApp=true specifies a deploy action
to create a free Heroku Dyno in the US with the build pack JVM (Java virtual machine),
and the add-on Heroku Postgres. The last parameter (i.e., pushApp) determines whether
the Heroku Dyno will be created in the logged-in Heroku account. When the application
is deployed, it returns a JSON file describing the information of container name, region,
and application URL, as shown in Figure 5.6. In particular, we run it in localhost with

Figure 5.6: The result after deploying the application

Tomcat 9 and JRE 1.8 for the JavaBIP library. To deploy the Monitor-Switch application
on Heroku, we package the project in Figure 5.4 to “HerokuDemo.war” and then use it
to deploy the Heroku application.

5.5 Running the experiment 95

Using the deployed Web application. After deploying the Web application on
Heroku, we have a Heroku Dyno named “whispering-retreat-40514” with a free plan
with the Heroku Postgres add-on, as shown in Figure 5.7.

Figure 5.7: The deployed Heroku Dyno

Users enter the servlet URL of the corresponding application/microservice to use this
application. For instance, when users enter the URL: “whispering−retreat−40514.herokuapp
.com/compute”, they send a request to the deployed microservice named compute, the
server will return the content in JSON format as Figure 5.8.

Figure 5.8: Running the microservice compute

Similarly, users can run the Web application Monitor-Switch on this Heroku container
by entering the following URL: “whispering−retreat−40514.herokuapp.com/MonitorSwitch”
(Figure 5.9). Figure 4.9 also describes the Monitor-Switch application but running on the
local machine, while Figure 5.9 shows the running of the Web application on a Heroku
container.

96 Experimental Validation

Figure 5.9: Running the Web application Monitor-Switch

5.6 Summary

This chapter presents the results of our proposal through the development of Heroku
Deployer—a microservice to automatically deploy a Web application/microservice on the
Heroku platform. Recall that we extend the OCCIware design to be able to specify the
coordination between cloud application entities using our NaturalBIP language. We have
implemented the NaturalBIP Compiler to generate (1) BIP connectors corresponding
to the specification in the NaturalBIP language and (2) JavaBIP macro representing
the coordination between entities in Java. The first artifact is then used along the
configuration model to generate iFinder’s input for verifying the deadlock freedom. The
latter is a part of the implementation.

We have demonstrated the usage of our NaturalBIP language to specify the Heroku
Deployer microservice. By providing the NaturalBIP compiler, we save developers time.
Instead of learning to write BIP connectors (as shown in Listing 5.2), BIP models
(Listing 5.4) for the verification, and JavaBIP macros for the implementation (Listing 5.3)
manually, our toolchain supports generating those artifacts automatically from the
specifications written in NaturalBIP language (Listing 5.1). Row 1 of Table 5.1 compares
the number of lines needs to specify the functionality, which is choosing Java as a language
for deploying a Heroku Dyno. Instead of writing 100 lines for specifying the requirement
using BIP connectors, writing verification code in the BIP model, and JavaBIP macros in
the implementation, users need only 7 lines to specify the requirement in our NaturalBIP
language. Row 2 of Table 5.1 illustrates that developers need 105 lines for specifying all
the deployment functionalities using our NaturalBIP language instead of 1375 lines for

5.6 Summary 97

Table 5.1: The number of lines for writing the constraints to describe the functionality
choose Java language and the whole functionalities in deploying a Web application onto
a free Heroku Dyno

Functionality NaturalBIP
specification
(number of specifications)

Generated artifacts (lines of code)
BIP
connectors

JavaBIP
macros

Connectors in
the BIP model

Choose
Java language 7 7 50 43

100

All 105 105 774 496
1375

specifying those functionalities using BIP connectors (105 lines), writing verification code
in the BIP model (496 lines)11, and JavaBIP macros (774 lines)12 in the implementation.

11https://github.com/TrinhLK/GeneratingBIPFile/blob/master/output/
herokudeployer.bip

12https://github.com/TrinhLK/JavaBIPonCloudDemo/blob/main/HerokuDemo/src/
main/java/occideployer/GlueBuilder_Specification.java

https://github.com/TrinhLK/GeneratingBIPFile/blob/master/output/herokudeployer.bip
https://github.com/TrinhLK/GeneratingBIPFile/blob/master/output/herokudeployer.bip
https://github.com/TrinhLK/JavaBIPonCloudDemo/blob/main/HerokuDemo/src/main/java/occideployer/GlueBuilder_Specification.java
https://github.com/TrinhLK/JavaBIPonCloudDemo/blob/main/HerokuDemo/src/main/java/occideployer/GlueBuilder_Specification.java

Chapter 6

Conclusion

In this chapter, we briefly summarize our work on this thesis and present our contributions.
Then, we discuss potential future work on developing correct-by-construction self-adaptive
cloud applications.

Summary We have proposed an ontology-driven approach to express functional re-
quirements in Chapter 3. Our main intention is that users unfamiliar with exogenous
coordination language can write the specification in a pseudo-natural language. Our
methodology generates the artifacts automatically to express the exogenous coordination
between components, data transfers, and safety properties. In Chapter 4, we have
extended the coordination capability of the OCCIware design and generated artifacts
for verifying the deadlock-free property of the target application. Our methodology is
evaluated through the Heroku Deployer and the Monitor-Switch Web application. The
former shows the ability of our methodology to develop a complex application, and the
latter illustrates the development of a correct-by-construction cloud application.

Contributions

• The main contribution of this thesis is proposing a methodology and providing
tools for developing correct-by-construction self-adaptive cloud applications.

• Our approach is based on the BIP framework, which provides the capability for
developing correct-by-construction systems. To reduce the time and cost of learning
BIP, we proposed NaturalBIP to help users write functional requirements naturally.

• A tool with NaturalBIP Compiler has been developed. It supports developers in
automatically generating JavaBIP macro, data transfers, and safety properties
without the help of JavaBIP experts.

• We have extended the OCCIware Studio by defining new concepts for writing
requirements in our NaturalBIP language and specifying the FSM specification in

100 Conclusion

more detail. The FSM specification is used to generate computation code in the
implementation, and the BIP model for the verification.

Future work We discuss the current limitations of our framework and plan future
work that could further improve our research on developing correct-by-construction cloud
applications.

• The first perspective is validating our ontology for the overall coverage of the cloud
domain. Some analysis tools allow evaluating an ontology in both qualitative and
quantitative aspects [72, 69, 86, 67, 101, 126], such as the depth of inheritance tree
for classes or their ancestor, etc., or identifying potential problems of an ontology.
However, no evaluation method can guarantee an ontology is “sound” [109].

• Currently, safety properties for verification are written manually following the form
provided by iFinder. This task is not easy for a cloud developer. Thus, a future
direction is automatically deriving such properties from the requirements.

• According to the toolchain, we define the concept of “actiontype” in the OCCIware
meta-model to describe the transition type (enforceable, spontaneous, or internal),
but it’s still not intuitive. Therefore, in the future, there will be some upgrades
in the tool to make it more convenient for developers to use. In addition, we
will let some cloud developers use our toolchain to evaluate and improve the user
experience.

• The implementation quality can be guaranteed in the future by generating test
cases from the formal model.

• Our methodology is not limited to OCCIware Studio. It can be applied to any
design framework supporting FSM specification. Using our method on other design
platforms is also a potential direction.

• In the example of Heroku Deployer, specifying the FSM specification takes time and
effort, especially for complex components. Therefore, one of our potential directions
is developing algorithms and infrastructure for generating the FSM specification
from given execution traces of the system [19, 22, 81].

Bibliography

[1] Alien4Cloud. https://alien4cloud.github.io/.

[2] BIP model generator. https://github.com/TrinhLK/GeneratingBIPFile.

[3] Cloudify. https://cloudify.co/.

[4] Deltacloud. https://deltacloud.apache.org/drivers.html#drivers.

[5] erocci. http://erocci.ow2.org/.

[6] ifinder. https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/IFinder/-/tree/
real-time-marius.

[7] NaturalBIP Compiler. https://github.com/TrinhLK/PBL-BIP.

[8] OCCIwareBIP Studio. https://github.com/TrinhLK/OCCIwareBIP-Studio.

[9] Open Virtualization Format (OVF). https://www.dmtf.org/standards/ovf.

[10] PyOCNI: A Python implementation of an extended OCCI with a JSON serialization.
https://github.com/all4innov/pyOCNI.

[11] RESTful OCCI 4 Java. https://github.com/occi4java/occi4java.

[12] rOCCI - A Ruby OCCI Framework. http://gwdg.github.io/rOCCI/.

[13] Service Sharing Facility in Python. https://github.com/tmetsch/pyssf.

[14] Jean-Raymond Abrial. The B-book - assigning programs to meanings. 01 2005.

[15] Gul A Agha. A model of concurrent computation in distributed systems. the MIT
Press, 1986.

[16] Yousra Abdul Alsahib S. Aldeen, Mazleena bt. Salleh, and Mohammad Abdur
Razzaque. A survey paper on privacy issue in cloud computing. Research Journal
of Applied Sciences, Engineering and Technology, 10:328–337, 2015.

[17] Kena Alexander, Choonhwa Lee, Eunsam Kim, and Sumi Helal. Enabling end-
to-end orchestration of multi-cloud applications. IEEE Access, 5:18862–18875,
2017.

[18] Edmonds Andy, Metsch Thijs, Papaspyrou Alexander, and Richardson Alexis.
Toward an opencloud standard, 2012.

https://alien4cloud.github.io/
https://github.com/TrinhLK/GeneratingBIPFile
https://cloudify.co/
https://deltacloud.apache.org/drivers.html#drivers
http://erocci.ow2.org/
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/IFinder/-/tree/real-time-marius
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/IFinder/-/tree/real-time-marius
https://github.com/TrinhLK/PBL-BIP
https://github.com/TrinhLK/OCCIwareBIP-Studio
https://www.dmtf.org/standards/ovf
https://github.com/all4innov/pyOCNI
https://github.com/occi4java/occi4java
http://gwdg.github.io/rOCCI/
https://github.com/tmetsch/pyssf

102 Bibliography

[19] Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Inf.
Comput., 75(2):87–106, nov 1987.

[20] Krzysztof R. Apt, Nissim Francez, and Willem P. de Roever. A proof system for com-
municating sequential processes. ACM Trans. Program. Lang. Syst., 2(3):359–385,
jul 1980.

[21] Farhad Arbab. Reo: a channel-based coordination model for component composi-
tion. Math. Struct. Comput. Sci., 14:329–366, 2004.

[22] George Argyros and Loris D’antoni. The Learnability of Symbolic Automata. In
CAV, 2018.

[23] Michael Armbrust, Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Commun. ACM, 53:50–58, 04 2010.

[24] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A View of Cloud Computing. Commun. ACM, 53(4):50–58, April 2010.

[25] Christel Baier, Tobias Blechmann, Joachim Klein, Sascha Klüppelholz, and Wolf-
gang Leister. Design and Verification of Systems with Exogenous Coordination
Using Vereofy. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification, and Validation, pages 97–111, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[26] Deborah Anne Baker. The Use of Requirements in Rigorous System Design. 1982.

[27] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen, and J. Sifakis.
Rigorous Component-Based System Design Using the BIP Framework. IEEE
Software, 28(3):41–48, May 2011.

[28] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in bip. In Proceedings of the Fourth IEEE International Conference
on Software Engineering and Formal Methods, SEFM ’06, page 3–12, USA, 2006.
IEEE Computer Society.

[29] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-
Finder: A Tool for Compositional Deadlock Detection and Verification. In Ahmed
Bouajjani and Oded Maler, editors, Computer Aided Verification, 21st International
Conference, CAV 2009, volume 5643 of Lecture Notes in Computer Science, pages
614–619, Grenoble, France, June 2009. Springer.

[30] JA Bergstra. Process Algebra: Specification and Verification in Bisimulation
Semantics. CWI monographs, 4:61–94, 1986.

[31] Jan A Bergstra and Jan Willem Klop. Process Algebra for Synchronous Communi-
cation. Information and control, 60(1-3):109–137, 1984.

[32] Marco Bernardo and Francesco Franzè. Exogenous and Endogenous Extensions of
Architectural Types. pages 40–55, 04 2002.

Bibliography 103

[33] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. Opentosca — a runtime for tosca-based
cloud applications. In Proceedings of the 11th International Conference on Service-
Oriented Computing - Volume 8274, ICSOC 2013, page 692–695, Berlin, Heidelberg,
2013. Springer-Verlag.

[34] Tobias Binz, Gerd Breiter, Frank Leyman, and Thomas Spatzier. Portable Cloud
Services Using TOSCA. IEEE Internet Computing, 16(3):80–85, 2012.

[35] G. Blair, N. Bencomo, and R. B. France. Models@run.time. Computer, 42(10):22–27,
2009.

[36] S. Bliudze and J. Sifakis. The Algebra of Connectors—Structuring Interaction in
BIP. IEEE Transactions on Computers, 57(10):1315–1330, Oct 2008.

[37] Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina.
Exogenous coordination of concurrent software components with JavaBIP. Software:
Practice and Experience, 47:1801 – 1836, 2017.

[38] Simon Bliudze and Joseph Sifakis. The Algebra of Connectors - Structuring
Interaction in BIP. In International Conference On Embedded Software (EMSOFT),
pages 11–20, Salzbourg, Austria, October 2007. ACM New York, NY, USA.

[39] Simon Bliudze and Joseph Sifakis. Causal semantics for the Algebra of Connectors
(extended abstract). In Frank de Boer and Marcello Bonsangue, editors, FMCO
2007, number 5382 in LNCS, pages 179–199, Berlin Heidelberg, 2008. Springer-
Verlag. See the journal version.

[40] Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer-Verlag, Berlin, Heidelberg,
2007.

[41] Eirik Brandtzæg, Sébastien Mosser, and Parastoo Mohagheghi. Towards CloudML,
a Model-based Approach to Provision Resources in the Clouds. 2012.

[42] Antonio Brogi, Luca Rinaldi, and Jacopo Soldani. TosKer: a synergy between
TOSCA and Docker for orchestrating multicomponent applications. Software:
Practice and Experience, 48(11):2061–2079, 2018.

[43] Roberto Bruni, Ivan Lanese, and Ugo Montanari. A Basic Algebra of Stateless
Connectors. Theoretical Computer Science, 366(1-2):98–120, 2006.

[44] Roberto Bruni and Ugo Montanari. Dynamic Connectors for Concurrency. Theo-
retical computer science, 281(1-2):131–176, 2002.

[45] Dennis M Buede and William D Miller. The Engineering Design of Systems: Models
and Methods. 2016.

[46] Sirio Capizzi, Riccardo Solmi, and Gianluigi Zavattaro. From Endogenous to
Exogenous Coordination Using Aspect-Oriented Programming. In Rocco De Nicola,
Gian-Luigi Ferrari, and Greg Meredith, editors, Coordination Models and Languages,
pages 105–118, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

104 Bibliography

[47] Ionut Cardei, Mihai Fonoage, and Ravi Shankar. Model Based Requirements
Specification and Validation for Component Architectures. In 2008 2nd Annual
IEEE Systems Conference, pages 1–8. IEEE, 2008.

[48] Stéphanie Challita, Fabian Korte, Johannes Erbel, Faiez Zalila, Jens Grabowski,
and Philippe Merle. Model-Based Cloud Resource Management with TOSCA and
OCCI. Software and Systems Modeling, pages 1–23, February 2021.

[49] Martin Croxford. Correctness by Construction : A Manifesto for High-Integrity
Software. 2006.

[50] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. volume 4963,
pages 337–340, 04 2008.

[51] Jack B. Dennis. Petri Nets, pages 1525–1530. Springer US, Boston, MA, 2011.

[52] Diego Dermeval, Jéssyka Vilela, Ig Ibert Bittencourt, Jaelson Castro, Seiji Isotani,
Patrick Brito, and Alan Silva. Applications of ontologies in requirements engineering:
a systematic review of the literature. Requirements Engineering, 21(4):405–437,
2016.

[53] Peter Dinges and Gul Agha. Scoped Synchronization Constraints for Large Scale
Actor Systems. In Marjan Sirjani, editor, 14th International Conference on Co-
ordination Models and Languages (COORDINATION), volume LNCS-7274 of
Coordination Models and Languages, pages 89–103, Stockholm, Sweden, June 2012.
Springer.

[54] Inc. (DMTF) Distributed Management Task Force. Cloud infrastructure manage-
ment interface (cimi) model and restful http-based protocol, 2016.

[55] Dang Viet Dzung and Atsushi Ohnishi. Improvement of Quality of Software
Requirements with Requirements Ontology. In 2009 Ninth International Conference
on Quality Software, pages 284–289. IEEE, 2009.

[56] Dang Viet Dzung and Atsushi Ohnishi. Improvement of Quality of Software
Requirements with Requirements Ontology. In 2009 Ninth International Conference
on Quality Software, pages 284–289, 2009.

[57] Dang Viet Dzung and Atsushi Ohnishi. A Verification Method of Elicited Software
Requirements using Requirements Ontology. In 2012 19th Asia-Pacific Software
Engineering Conference, volume 1, pages 553–558. IEEE, 2012.

[58] Jonas Eckhardt, Tobias Mühlbauer, Jose Meseguer, and Martin Wirsing. Semantics,
distributed implementation, and formal analysis of klaim models in maude. Science
of Computer Programming, 99, 01 2014.

[59] Andy Edmonds and Thijs Metsch. Open Cloud Computing Interface - Text
Rendering. OGF Published Document GWD-R-P.229, Global Grid Forum, Open
Grid Forum, P.O. Box 1738, Muncie IN 47308, USA, September 2016. Accessed:
2017-1-17.

Bibliography 105

[60] Stefan Farfeleder, Thomas Moser, Andreas Krall, Tor St̊alhane, Inah Omoronyia,
and Herbert Zojer. Ontology-Driven Guidance for Requirements Elicitation. In
The Semanic Web: Research and Applications, pages 212–226. Springer Berlin
Heidelberg, 2011.

[61] GianLuigi Ferrari and Ugo Montanari. Tile formats for located and mobile systems.
Information and computation, 156(1-2):173–235, 2000.

[62] A Juan Ferrer, D Garcia, et al. Ascetic: adapting service lifecycle towards efficient
clouds. European Project Space: cases and examples. SCITEPRESS, pages 89–106,
2014.

[63] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor Solberg.
Towards Model-Driven Provisioning, Deployment, Monitoring, and Adaptation
of Multi-cloud Systems. In 2013 IEEE Sixth International Conference on Cloud
Computing, pages 887–894, 2013.

[64] Roy Thomas Fielding and Richard N. Taylor. Architectural Styles and the Design
of Network-Based Software Architectures. PhD thesis, 2000. AAI9980887.

[65] Wan Fokkink. Introduction to Process Algebra. springer science & Business Media,
1999.

[66] Fabio Gadducci and Ugo Montanari. The Tile Model. Proof, language, and
interaction: Essays in honour of Robin Milner, page 133, 2000.

[67] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann.
Modelling Ontology Evaluation and Validation. In Lecture Notes in Computer
Science, pages 140–154. Springer Berlin Heidelberg, 2006.

[68] Smita Ghaisas and Nirav Ajmeri. Knowledge-Assisted Ontology-Based Require-
ments Evolution. In Managing requirements knowledge, pages 143–167. Springer,
2013.

[69] Asunción Gómez-Pérez. Ontology Evaluation. In Handbook on Ontologies, pages
251–273. Springer Berlin Heidelberg, 2004.

[70] Peter Green, Michael Rosemann, Marta Indulska, and Chris Manning. Candidate
Interoperability Standards: An Ontological Overlap Analysis. Data Knowl. Eng.,
62(2):274–291, aug 2007.

[71] Gerhard Griessnig, Roland Mader, Thomas Peikenkamp, Bernhard Josko, Martin
Törngren, and Eric Armengaud. CESAR: Cost-Efficient Methods and Processes
for Safety Relevant Embedded Systems. Embedded World, 2010.

[72] Thomas R. Gruber. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. Int. J. Hum.-Comput. Stud., 43(5–6):907–928, dec 1995.

[73] Michael Grüninger, Katy Atefi, and Mark S Fox. Ontologies to support process
integration in enterprise engineering. Computational & Mathematical Organization
Theory, 6(4):381–394, 2000.

106 Bibliography

[74] Giancarlo Guizzardi and Terry Halpin. Ontological Foundations for Conceptual
Modelling. Appl. Ontol., 3(1–2):1–12, jan 2008.

[75] Giancarlo Guizzardi and Veruska Zamborlini. Using a Trope-Based Foundational
Ontology for Bridging Different Areas of Concern in Ontology-Driven Conceptual
Modeling. Sci. Comput. Program., 96(P4):417–443, dec 2014.

[76] A. Hall and R. Chapman. Correctness by Construction: Developing a Commercial
Secure System. IEEE Software, 19(1):18–25, 2002.

[77] Marcus Hanikat. Towards a Correct-by-Construction design flow: A case-study
from railway signaling systems, 2021.

[78] Charles Antony Richard Hoare et al. Communicating Sequential processes, volume
178. Prentice-hall Englewood Cliffs, 1985.

[79] Ted Honderich. The Oxford Companion to Philosophy. Oxford University Press,
2005.

[80] Elizabeth Hull, Ken Jackson, and Jeremy Dick, editors. Requirements Engineering.
Springer, London, 2011.

[81] Natasha Yogananda Jeppu, Tom Melham, and Daniel Kroening. Active Learning
of Abstract System Models from Traces using Model Checking [Extended], 2021.

[82] M.S. Kilpinen, Claudia Eckert, and P. Clarkson. The Emergence of Change at the
Systems Engineering and Software Design Interface: An Investigation of Impact
Analysis. 01 2007.

[83] Sascha Klüppelholz and Christel Baier. Symbolic Model Checking for Channel-
based Component Connectors. Electronic Notes in Theoretical Computer Science,
74:19–37, 07 2009.

[84] Stefan Kolb and Cedric Röck. Unified Cloud Application Management. In 2016
IEEE World Congress on Services (SERVICES), pages 1–8. IEEE, 2016.

[85] Zong-yong Li, Zhi-xu Wang, Ai-hui Zhang, and Yong Xu. The Domain Ontology
and Domain Rules Based Requirements Model Checking. International Journal of
Software Engineering and Its Applications, 1(1):89–100, 2007.

[86] Adolfo Lozano-Tello and Asunción Gomez-Perez. ONTOMETRIC:A Method to
Choose the Appropriate Ontology. Journal of Database Management, 15(2):1–18,
apr 2004.

[87] Alan MacCormack, John Rusnak, and Carliss Baldwin. The Impact of Component
Modularity on Design Evolution: Evidence from the Software Industry. SSRN
Electronic Journal, 12 2007.

[88] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. Resa: An Ontology-
Based Requirement Specification Language Tailored to Automotive Systems. In
10th IEEE International Symposium on Industrial Embedded Systems (SIES), pages
1–10. IEEE, 2015.

Bibliography 107

[89] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. ReSA: An ontology-
based requirement specification language tailored to automotive systems. In 10th
IEEE International Symposium on Industrial Embedded Systems (SIES), pages
1–10, 2015.

[90] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. Specification and
Semantic Analysis of Embedded Systems Requirements: From Description Logic to
Temporal Logic. In International Conference on Software Engineering and Formal
Methods, pages 332–348. Springer, 2017.

[91] J.P. Martin-Flatin. Challenges in cloud management. IEEE Cloud Computing,
1:66–70, 05 2014.

[92] Anastasia Mavridou, Valentin Rutz, and Simon Bliudze. Coordination of dynamic
software components with JavaBIP. In Proceedings of the 14th International
Conference Formal Aspects of Component Software (FACS), volume 10487 of
Lecture Notes in Computer Science, pages 39–57. Springer, 2017.

[93] Thijs Metsch, Andy Edmonds, Ralf Nyren, and A Papaspyrou. Open cloud
computing interface–core. In Open Grid Forum, OCCI-WG, Specification Document.
Available at: http://forge. gridforum. org/sf/go/doc16161. Citeseer, 2010.

[94] George A. Miller. WordNet: A Lexical Database for English. Commun. ACM,
38(11):39–41, nov 1995.

[95] Robin Milner. A Calculus of Communicating Systems. Springer, 1980.

[96] Konstantinos Mokos, Theodoros Nestoridis, Panagiotis Katsaros, and Nick Bassili-
ades. Semantic Modeling and Analysis of Natural Language System Requirements.
IEEE Access, 10:84094–84119, 2022.

[97] Thomas Moser, Dietmar Winkler, Matthias Heindl, and Stefan Biffl. Requirements
Management with Semantic Technology: An Empirical Study on Automated
Requirements Categorization and Conflict Analysis. In International Conference
on Advanced Information Systems Engineering, pages 3–17. Springer, 2011.

[98] Hamid R. Motahari Nezhad, Karen Yorov, Peifeng Yin, Taiga Nakamura, Scott
Trent, Gil Shurek, Takayuki Kushida, and Uma Subramanian. COOL: A Model-
Driven and Automated System for Guided and Verifiable Cloud Solution Design.
pages 194–198, 10 2017.

[99] Tuong Huan Nguyen, Bao Quoc Vo, Markus Lumpe, and John Grundy. Kbre: A
framework for knowledge-based requirements engineering. Software Quality Journal,
22(1):87–119, 2014.

[100] Ralf Nyren, Andy Edmonds, Thijs Metsch, and Boris Parak. Open Cloud Comput-
ing Interface - HTTP Protocol. OGF Published Document GWD-R-P.223, Global
Grid Forum, Open Grid Forum, P.O. Box 1738, Muncie IN 47308, USA, September
2016. Accessed: 2017-1-17.

108 Bibliography

[101] Leo Obrst, Werner Ceusters, Inderjeet Mani, Steve Ray, and Barry Smith. The
Evaluation of Ontologies. In Semantic Web, pages 139–158. Springer US, Boston,
MA, 2007.

[102] Jorge Ocon, Francisco Colmenero, Karl Buckley, Saddek Bensalem, Iulia Dragomir,
Spyridon Karachalios, Mark Woods, F. Pommerening, and Thomas Keller. Using
the ERGO Framework for Space Robotics in A Planetary and An Orbital Scenario.
10 2018.

[103] Andreas L. Opdahl, Giuseppe Berio, Mounira Harzallah, and Raimundas Mat-
ulevičius. An Ontology for Enterprise and Information Systems Modelling. Appl.
Ontol., 7(1):49–92, jan 2012.

[104] Gerard O’Regan. A Brief History of Computing. Springer Publishing Company,
Incorporated, 1 edition, 2008.

[105] Peyman Oreizy, Michael M Gorlick, Richard N Taylor, Dennis Heimhigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S Rosenblum, and Alexander L
Wolf. An architecture-based approach to self-adaptive software. IEEE Intelligent
Systems and Their Applications, 14(3):54–62, 1999.

[106] Jean Parpaillon, Philippe Merle, Olivier Barais, Marc Dutoo, and Fawaz Paraiso.
OCCIware - A Formal and Tooled Framework for Managing Everything as a Service.
In CEUR, editor, Projects Showcase @ STAF’15, volume 1400 of Proceedings of
the Projects Showcase @ STAF’15, pages 18 – 25, L’Aquila, Italy, July 2015.

[107] José D’Abruzzo Pereira, Rui Silva, Nuno Antunes, Jorge L. M. Silva, Breno
de França, Regina Moraes, and Marco Vieira. A platform to enable self-
adaptive cloud applications using trustworthiness properties. In Proceedings of the
IEEE/ACM 15th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’20, page 71–77, New York, NY, USA, 2020.
Association for Computing Machinery.

[108] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57, 1977.

[109] Joe Raad and Christophe Cruz. A survey on ontology evaluation methods. In
Proceedings of the 7th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management. SCITEPRESS - Science and
and Technology Publications, 2015.

[110] A. Rajan and T. Wahl. CESAR - Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems. 10 2014.

[111] Vaclav Rajlich. A Model and a Tool for Change Propagation in Software. ACM
SIGSOFT Software Engineering Notes, 25:72, 01 2000.

[112] Xiaoxia Ren, B.G. Ryder, M. Stoerzer, and F. Tip. Chianti: a Change Impact
Analysis Tool for Java Programs. In Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005., pages 664–665, 2005.

Bibliography 109

[113] João David Marques dos Santos Ribeiro. A Dashboard for Decision Support in
Self-Adaptive Cloud Applications. PhD thesis, Universidade de Coimbra, 2022.

[114] Luis Rodero-Merino, Luis M Vaquero, Victor Gil, Fermín Galán, Javier Fontán,
Rubén S Montero, and Ignacio M Llorente. From infrastructure delivery to service
management in clouds. Future Generation Computer Systems, 26(8):1226–1240,
2010.

[115] Allan Berrocal Rojas and Gabriela Barrantes Sliesarieva. Automated Detection of
Language Issues Affecting Accuracy, Ambiguity and Verifiability in Software Re-
quirements Written in Natural Language. In Proceedings of the NAACL HLT 2010
Young Investigators Workshop on Computational Approaches to Languages of the
Americas, YIWCALA ’10, page 100–108, USA, 2010. Association for Computational
Linguistics.

[116] Maria Salama, Rami Bahsoon, and N Bencomo. Managing trade-offs in self-
adaptive software architectures: A systematic mapping study. Managing trade-offs
in adaptable software architectures, pages 249–297, 2017.

[117] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Processes.
Cambridge university press, 2003.

[118] Juan Scholten, Farhad Arbab, Frank Boer, and Marcello Bonsangue. Mocha-pi:
an Exogenous Coordination Calculus based on Mobile Channels. volume 1, pages
436–442, 01 2005.

[119] Armands Slihte, Janis Osis, and Asnate Jansone. Using use cases for domain
modeling.

[120] Pawe l Sobociński. Representations of petri net interactions. In International
Conference on Concurrency Theory, pages 554–568. Springer, 2010.

[121] Amina Souag, Camille Salinesi, Isabelle Wattiau, and Haris Mouratidis. Using
security and domain ontologies for security requirements analysis. In 2013 IEEE
37th Annual Computer Software and Applications Conference Workshops, pages
101–107. IEEE, 2013.

[122] Emmanouela Stachtiari, Anastasia Mavridou, Panagiotis Katsaros, Simon Bliudze,
and Joseph Sifakis. Early validation of system requirements and design through
correctness-by-construction. Journal of Systems and Software, 145:52–78, November
2018.

[123] Orazio Tomarchio, Domenico Calcaterra, Giuseppe Di Modica, and Pietro Mazza-
glia. Torch: a tosca-based orchestrator of multi-cloud containerised applications.
Journal of Grid Computing, 19(1):1–25, 2021.

[124] Andries van Renssen. Gellish: a Generic Extensible Ontological Language - Design
and Application of a Universal Data Structure. 2005.

[125] Michaël Verdonck, Frederik Gailly, Sergio de Cesare, and Geert Poels. Ontology-
driven conceptual modeling: A systematic literature mapping and review. Appl.
Ontology, 10:197–227, 2015.

110 Bibliography

[126] Denny Vrandečić. Ontology Evaluation. In Handbook on Ontologies, pages 293–313.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[127] Hai H Wang, Danica Damljanovic, and Jing Sun. Enhanced Semantic Access
to Formal Software Models. In International Conference on Formal Engineering
Methods, pages 237–252. Springer, 2010.

[128] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, and Jian Cao. A
model-driven framework for interoperable cloud resources management. In Service-
Oriented Computing: 14th International Conference, ICSOC 2016, Banff, AB,
Canada, October 10-13, 2016, Proceedings, page 186–201, Berlin, Heidelberg, 2016.
Springer-Verlag.

[129] Rongjie Yan, Chih-Hong Cheng, and Yesheng Chai. Formal Consistency Checking
over Specifications in Natural Languages. In 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1677–1682. IEEE, 2015.

[130] Sami Yangui, Iain-James Marshall, Jean-Pierre Laisne, and Samir Tata. Com-
patibleone: The open source cloud broker. J. Grid Comput., 12(1):93–109, mar
2014.

[131] Faiez Zalila, Stephanie Challita, and Philippe Merle. A Model-Driven Tool Chain for
OCCI. In Herve Panetto, Christophe Debruyne, Walid Gaaloul, Mike Papazoglou,
Adrian Paschke, Claudio Agostino Ardagna, and Robert Meersman, editors, On
the Move to Meaningful Internet Systems. OTM 2017 Conferences, pages 389–409,
Cham, 2017. Springer International Publishing.

[132] Faiez Zalila, Stéphanie Challita, and Philippe Merle. Model-Driven Cloud Resource
Management with OCCIware. Future Generation Computer Systems, 99:260 – 277,
October 2019.

[133] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering.
ACM transactions on Software Engineering and Methodology (TOSEM), 6(1):1–30,
1997.

[134] Yingzhou Zhang and Weifeng Zhang. Description Logic Representation for Re-
quirement Specification. In International Conference on Computational Science,
pages 1147–1154. Springer, 2007.

Heroku Requirements

• deployFreeDyno: There is a HerokuDynoType dynotype, a Deployer deployer,
dynotype shall sub1 synchronized with deployer shall setFreeDyno.

• deployResponse: There is a HerokuDynoType dynotype, a Deployer deployer,
dynotype shall sendDynoResponse synchronized with deployer shall receiveDynoRe-
sponse.

• setUSRegion: There is a HerokuRegion region, a Deployer deployer, region shall
toUS synchronized with deployer shall setUSRegion.

• setEURegion: There is a HerokuRegion region, a Deployer deployer, region shall
toEU synchronized with deployer shall setEURegion.

• availableAddons: There is a HerokuRegion region, there is a HerokuPostgres
postgres, there is a HerokuClearDBMySQL cleardb, there is a HerokuScoutAPM
scout, there is a HerokuNewRelicAPM newrelic, if region executes setAddonsForEU
or region executes setAddonsForUS, postgres shall on or cleardb shall on or scout
shall on or newrelic shall on.

• addonsForUS: There is a HerokuRegion region, there is a HerokuPostgres postgres,
there is a HerokuClearDBMySQL cleardb, there is a HerokuScoutAPM scout, there
is a HerokuNewRelicAPM newrelic, there is a Deployer deployer, if postgres executes
on and cleardb executes on and scout executes on and newrelic executes on and
deployer executes setAddonsForUS, region shall setAddonsForUS.

• addonsForEU: There is a HerokuRegion region, there is a HerokuPostgres postgres,
there is a HerokuClearDBMySQL cleardb, there is a HerokuScoutAPM scout, there
is a HerokuNewRelicAPM newrelic, there is a Deployer deployer, if postgres executes
on and cleardb executes on and scout executes on and newrelic executes on and
deployer executes setAddonsForEU, region shall setAddonsForEU.

• setadnsForUS: There is a HerokuRegion region, a Deployer deployer, if region
executes setAddonsForUS, deployer shall setAddonsForUS.

112 Heroku Requirements

• setadnsForEU: There is a HerokuRegion region, a Deployer deployer, if region
executes setAddonsForEU, deployer shall setAddonsForEU.

• deployersetJava: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setJava synchronized with deployer shall setJava.

• deployersetScala: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setScala synchronized with deployer shall setScala.

• deployersetPython: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setPython synchronized with deployer shall setPython.

• deployersetRuby: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setRuby synchronized with deployer shall setRuby.

• deployersetNodejs: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setNodejs synchronized with deployer shall setNodejs.

• deployersetClojure: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setClojure synchronized with deployer shall setClojure.

• deployersetGradle: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setGradle synchronized with deployer shall setGradle.

• deployersetJvm: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setJvm synchronized with deployer shall setJvm.

• deployersetPhP: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setPhP synchronized with deployer shall setPhp.

• deployersetGo: There is a HerokuBuildpack buildpack, a Deployer deployer,
buildpack shall setGo synchronized with deployer shall setGo.

• buildpackpostgres1: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForJava synchronized with postgres shall on.

• buildpackpostgres2: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForScala synchronized with postgres shall on.

• buildpackpostgres3: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForPython synchronized with postgres shall on.

• buildpackpostgres4: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForRuby synchronized with postgres shall on.

113

• buildpackpostgres5: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForNodejs synchronized with postgres shall on.

• buildpackpostgres6: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForClojure synchronized with postgres shall on.

• buildpackpostgres7: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForGradle synchronized with postgres shall off.

• buildpackpostgres8: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForJvm synchronized with postgres shall on.

• buildpackpostgres9: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForPhp synchronized with postgres shall on.

• buildpackpostgresm1: There is a HerokuBuildpack buildpack, a HerokuPostgres
postgres, buildpack shall setAddonsForGo synchronized with postgres shall on.

• buildpackClearDB1: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForJava synchronized with cleardb shall
on.

• buildpackClearDB2: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForScala synchronized with cleardb shall
on.

• buildpackClearDB3: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForPython synchronized with cleardb
shall on.

• buildpackClearDB4: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForRuby synchronized with cleardb
shall on.

• buildpackClearDB5: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForNodejs synchronized with cleardb
shall on.

• buildpackClearDB6: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForClojure synchronized with cleardb
shall on.

• buildpackClearDB7: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForGradle synchronized with cleardb
shall off.

114 Heroku Requirements

• buildpackClearDB8: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForJvm synchronized with cleardb shall
on.

• buildpackClearDB9: There is a HerokuBuildpack buildpack, a HerokuClearDB-
MySQL cleardb, buildpack shall setAddonsForPhp synchronized with cleardb shall
on.

• buildpackClearDBm1: There is a HerokuBuildpack buildpack, a HerokuCle-
arDBMySQL cleardb, buildpack shall setAddonsForGo synchronized with cleardb
shall on.

• buildpackScout1: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForJava synchronized with scout shall off.

• buildpackScout2: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForScala synchronized with scout shall off.

• buildpackScout3: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForPython synchronized with scout shall on.

• buildpackScout4: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForRuby synchronized with scout shall on.

• buildpackScout5: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForNodejs synchronized with scout shall off.

• buildpackScout6: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForClojure synchronized with scout shall off.

• buildpackScout7: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForGradle synchronized with scout shall off.

• buildpackScout8: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForJvm synchronized with scout shall off.

• buildpackScout9: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForPhp synchronized with scout shall on.

• buildpackScoutm1: There is a HerokuBuildpack buildpack, a HerokuScoutAPM
scout, buildpack shall setAddonsForGo synchronized with scout shall off.

• buildpackNewRelic1: There is a HerokuBuildpack buildpack, a HerokuNewRe-
licAPM newrelic, buildpack shall setAddonsForJava synchronized with newrelic
shall on.

115

• buildpackNewRelic2: There is a HerokuBuildpack buildpack, a HerokuNewRel-
icAPM newrelic, buildpack shall setAddonsForScala synchronized with newrelic
shall off.

• buildpackNewRelic3: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, buildpack shall setAddonsForPython synchronized with newrelic
shall on.

• buildpackNewRelic4: There is a HerokuBuildpack buildpack, a HerokuNewRel-
icAPM newrelic, buildpack shall setAddonsForRuby synchronized with newrelic
shall on.

• buildpackNewRelic5: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, buildpack shall setAddonsForNodejs synchronized with newrelic
shall on.

• buildpackNewRelic6: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, buildpack shall setAddonsForClojure synchronized with newrelic
shall off.

• buildpackNewRelic7: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, buildpack shall setAddonsForGradle synchronized with newrelic
shall off.

• buildpackNewRelic8: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, buildpack shall setAddonsForJvm synchronized with newrelic shall
on.

• buildpackNewRelic9: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, buildpack shall setAddonsForPhp synchronized with newrelic shall
on.

• buildpackNewRelicm1: There is a HerokuBuildpack buildpack, a HerokuNewRe-
licAPM newrelic, buildpack shall setAddonsForGo synchronized with newrelic shall
off.

• synthesisBuildpack1: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a HerokuCle-
arDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForJava
and cleardb executes on and postgres executes on and scout executes off and
newrelic executes on, buildpack shall setAddonsForJava.

116 Heroku Requirements

• synthesisBuildpack2: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a HerokuCle-
arDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForScala
and cleardb executes on and postgres executes on and scout executes off and
newrelic executes off, buildpack shall setAddonsForScala.

• synthesisBuildpack3: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a Heroku-
ClearDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsFor-
Python and cleardb executes on and postgres executes on and scout executes on
and newrelic executes on, buildpack shall setAddonsForPython.

• synthesisBuildpack4: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a HerokuCle-
arDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForRuby
and cleardb executes on and postgres executes on and scout executes on and
newrelic executes on, buildpack shall setAddonsForRuby.

• synthesisBuildpack5: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a Heroku-
ClearDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForN-
odejs and cleardb executes on and postgres executes on and scout executes off and
newrelic executes on, buildpack shall setAddonsForNodejs.

• synthesisBuildpack6: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a Heroku-
ClearDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsFor-
Clojure and cleardb executes on and postgres executes on and scout executes off
and newrelic executes off, buildpack shall setAddonsForClojure.

• synthesisBuildpack7: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a Heroku-
ClearDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsFor-
Gradle and cleardb executes off and postgres executes off and scout executes off
and newrelic executes off, buildpack shall setAddonsForGradle.

• synthesisBuildpack8: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a HerokuCle-
arDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForJvm
and cleardb executes on and postgres executes on and scout executes off and
newrelic executes on, buildpack shall setAddonsForJvm.

117

• synthesisBuildpack9: There is a HerokuBuildpack buildpack, a HerokuNewReli-
cAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a HerokuCle-
arDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForPhp
and cleardb executes on and postgres executes on and scout executes on and
newrelic executes on, buildpack shall setAddonsForPhp.

• synthesisBuildpackm1: There is a HerokuBuildpack buildpack, a HerokuNewRe-
licAPM newrelic, a HerokuPostgres postgres, a HerokuScoutAPM scout, a Heroku-
ClearDBMySQL cleardb, a Deployer deployer, if deployer executes setAddonsForGo
and cleardb executes on and postgres executes on and scout executes off and
newrelic executes off, buildpack shall setAddonsForGo.

• buildpackdeployer1: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForJava, deployer shall setAddonsForJava.

• buildpackdeployer2: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForScala, deployer shall setAddonsForScala.

• buildpackdeployer3: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForPython, deployer shall setAddonsForPython.

• buildpackdeployer4: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForRuby, deployer shall setAddonsForRuby.

• buildpackdeployer5: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForNodejs, deployer shall setAddonsForNodejs.

• buildpackdeployer6: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForClojure, deployer shall setAddonsForClojure.

• buildpackdeployer7: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForGradle, deployer shall setAddonsForGradle.

• buildpackdeployer8: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForJvm, deployer shall setAddonsForJvm.

• buildpackdeployer9: There is a HerokuBuildpack buildpack, a Deployer deployer,
if buildpack executes setAddonsForPhp, deployer shall setAddonsForPhp.

• buildpackdeployerm1: There is a HerokuBuildpack buildpack, a Deployer de-
ployer, if buildpack executes setAddonsForGo, deployer shall setAddonsForGo.

• deployFreeAddon1: There is a HerokuPostgres postgres, a Deployer deployer, if
postgres executes sendAddonResponse, deployer shall receiveAddonResponse.

118 Heroku Requirements

• deployFreeAddon2: There is a HerokuPostgres postgres, a Deployer deployer, if
deployer executes addHerokuPostgres, postgres shall sub1.

• deployFreeAddon3: There is a HerokuClearDBMySQL cleardb, a Deployer
deployer, if deployer executes addClearDBMySQL, cleardb shall sub1.

• deployFreeAddon4: There is a HerokuScoutAPM scout, a Deployer deployer, if
deployer executes addScoutAPM, scout shall sub1.

• deployFreeAddon5: There is a HerokuNewRelicAPM newrelic, a Deployer de-
ployer, if deployer executes addNewRelicAPM, newrelic shall sub1.

• resetSetup1: There is a Deployer deployer, a HerokuDynoType dynotype, if
deployer executes resetAll, dynotype shall reset.

• resetSetup2: There is a Deployer deployer, a HerokuRegion region, if deployer
executes resetAll, region shall USreset.

• resetSetup3: There is a Deployer deployer, a HerokuRegion region, if deployer
executes resetAll, region shall EUreset.

• resetSetup4: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeJava.

• resetSetup5: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeScala.

• resetSetup6: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeJvm.

• resetSetup7: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removePython.

• resetSetup8: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeRuby.

• resetSetup9: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeNodejs.

• resetSetupm1: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeClojure.

• resetSetupm2: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeGradle.

119

• resetSetupm3: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removePhp.

• resetSetupm4: There is a Deployer deployer, a HerokuBuildpack buildpack, if
deployer executes resetAll, buildpack shall removeGo.

• resetAddon1: There is a Deployer deployer, a HerokuPostgres postgres, if deployer
executes resetAll, postgres shall reset.

• resetAddon2: There is a Deployer deployer, a HerokuPostgres postgres, if deployer
executes resetAll, postgres shall off.

• resetAddon3: There is a Deployer deployer, a HerokuClearDBMySQL cleardb, if
deployer executes resetAll, cleardb shall reset.

• resetAddon4: There is a Deployer deployer, a HerokuClearDBMySQL cleardb, if
deployer executes resetAll, cleardb shall off.

• resetAddon5: There is a Deployer deployer, a HerokuScoutAPM scout, if deployer
executes resetAll, scout shall reset.

• resetAddon6: There is a Deployer deployer, a HerokuScoutAPM scout, if deployer
executes resetAll, scout shall off.

• resetAddon7: There is a Deployer deployer, a HerokuNewRelicAPM newrelic, if
deployer executes resetAll, newrelic shall reset.

• resetAddon8: There is a Deployer deployer, a HerokuNewRelicAPM newrelic, if
deployer executes resetAll, newrelic shall off.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Contributions
	1.4 List of Tools and Language
	1.5 Structure of the Thesis

	2 State of the Art
	2.1 Self-adaptive Cloud Applications
	2.1.1 Standards for Managing Cloud Resources
	2.1.2 Frameworks for Managing Cloud Resources
	2.1.3 OCCIware

	2.2 Model-Based Approach
	2.2.1 Requirement Engineering
	2.2.2 Component-Based Approach
	2.2.3 Correct-by-Construction Software Development

	2.3 Used Component-based Frameworks and Tools
	2.3.1 PBL
	2.3.2 The BI(P) Framework
	2.3.3 The JavaBIP Framework
	2.3.4 iFinder

	2.4 Discussion

	3 Domain-Specific Language for Developing Self-adaptive Applications
	3.1 Introduction
	3.2 NaturalBIP Language
	3.2.1 Ontology Architecture
	3.2.2 NaturalBIP Syntax and Semantics

	3.3 NaturalBIP Compiler
	3.3.1 Pre-processing
	3.3.2 Boolean Encoding
	3.3.3 Dual-Horn clauses generation
	3.3.4 JavaBIP artifacts generation
	3.3.5 BIP Connectors generation

	3.4 Summary

	4 Towards Exogenous Coordination of Concurrent Cloud Applications
	4.1 Introduction
	4.2 Motivation & Running Example
	4.3 Methodology of extending coordination capability of the OCCIware design
	4.3.1 Concepts for extending coordination capability in the OCCIware design
	4.3.2 Generate artifacts for verification
	4.3.3 Integration of JavaBIP into OCCIware implementation

	4.4 Evaluation
	4.4.1 OCCIware design and configuration model
	4.4.2 Generated artifacts from the OCCIware design
	4.4.3 Verification using iFinder
	4.4.4 Implementing and Adapting to changes

	4.5 Summary

	5 Experimental Validation
	5.1 The overview of Heroku Deployer
	5.2 The HerokuDeployer microservice design
	5.2.1 The structure of HerokuDeployer
	5.2.2 Writing functional requirements in NaturalBIP language

	5.3 Generating Java artifacts and implementing the Heroku Deployer
	5.3.1 Artifacts for the verification
	5.3.2 Artifacts for the implementation

	5.4 Verifying the deadlock-freedom using iFinder
	5.5 Running the experiment
	5.6 Summary

	6 Conclusion
	Bibliography
	Appendix Heroku Requirements

